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Zusammenfassung

Die vorliegende Arbeit berichtet über experimentelle Fortschritte in der Entwicklung
von vielseitig einsetzbaren Frequenzkämmen mit hoher Repetitionsrate im extremen
Ultraviolett (EUV).

Dauerstrichlaser, die in diesem Spektralbereich emittieren, scheinen gegenwärtig nicht
realisierbar. Daher wird auf nichtlineare Konversionsprozesse wie zum Beispiel die
Erzeugung hoher Harmonischer (HHG, von engl. “high harmonic generation”) in Gasen
zurückgegriffen, um kohärentes, extrem ultraviolettes Licht mit verfügbaren Lasern
zu generieren. Die zur Zeit am häufigsten dafür genutzen Lasersysteme erzeugen die
hohen Harmonischen im Einzeldurchgang, jedoch bei vergleichsweise niedrigen Repe-
titionsraten im kHz-Bereich. Es war bislang dem Ansatz der HHG in resonanten Femtose-
kunden-Überhöhungsresonatoren vorbehalten, EUV-Licht mit den für einige Anwendun-
gen, beispielsweise die Präzisions-Frequenzkamm-Spektroskopie, benötigten oder vorteil-
haften Repetitionsraten im MHz-Bereich zur Verfügung zu stellen. Ein schwieriges Un-
terfangen dabei blieb jedoch, das erzeugte Licht aus dem Resonator auszukoppeln, ohne
dabei dessen Überhöhung zu verschlechtern.

Für die vorliegende Arbeit wurde der Prozess der nicht-kollinearen Harmonischen-
Erzeugung sowohl experimentell als auch mit Hilfe numerischer Simulationen unter-
sucht. Diese nicht-kollineare Geometrie scheint sich hervorragend als breitbandige, ver-
meintlich verlustfreie Auskoppelmethode für Überhöhungsresonatoren zu eignen, weil
die generierte EUV-Strahlung entlang der Winkelhalbierenden der beiden sich im Gas
kreuzenden erzeugenden Laserstrahlen emittiert wird, was eine räumliche Trennung
ermöglicht. In ersten spektral aufgelösten Experimenten mit verstärkten Laserpulsen
konnte diese prinzipielle Eignung bestätigt werden. Weitere Experimente und Simula-
tionen zur Abhängigkeit der Emissionsrichtung und des Fernfeld-Strahlprofils der EUV-
Strahlung von experimentellen Parametern wurden durchgeführt. Die genaue Analyse
der Abhängigkeit des NCHHG-Prozesses von der Verzögerung zwischen den treiben-
den Pulsen führte zu der Überlegung, die nicht-kollineare Geometrie möglicherweise zur
Erzeugung von isolierten Attosekundenpulsen verwenden zu können.

Ein weiterer Schwerpunkt der Arbeit war die Erzeugung von EUV-Frequenzkämmen
durch HHG im Einzeldurchgang bei bislang mit solchen Systemen unerreichten Repe-
titionsraten von 10 MHz und 20 MHz. Dies wurde durch den Einsatz eines Hochleis-
tungslaserverstärkers der neuesten Generation ermöglicht. Obwohl sich mit Überhöhungs-
resonator-basierten Systemen gegenwärtig noch höhere Ausgangsleistungen im EUV
erzielen lassen als hier (∼ 1 nW bei ∼ 70 nm) gezeigt, verspricht die Harmonischen-
Erzeugung im Einzeldurchgang ein deutlich höheres Maß an experimenteller Kontrolle
und Flexibilität, da Parameter wie die Repetitionsrate, die Polarisation oder die Fokussie-
rung der Fundamentalen vergleichsweise einfach variiert werden können. Es wird er-
wartet, dass auf HHG im Einzeldurchgang basierende Systeme aufgrund ihrer Vielseit-
igkeit weite Verbreitung finden werden.





Summary

This dissertation reports on experimental advances in the development of versatile
high repetition rate extreme ultraviolet (EUV) frequency combs.

Since continuous wave laser sources are not conceivable in the EUV, nonlinear con-
version processes such as high harmonic generation (HHG) are employed to produce
coherent light in this spectral region. The currently most widespread systems generate
high harmonic radiation in a single pass geometry, but operate at low repetition rates of
several kHz. However, several applications, for example precision EUV frequency comb
spectroscopy, demand or profit from higher repetition rates in the MHz regime. In the
past, the latter could only be realized via cavity-assisted HHG. In this approach, the
available seed radiation is resonantly enhanced in an external broadband resonator and
high harmonics are generated in an intracavity target. Therefore, a suitable method to
extract the generated EUV light from the resonator without disturbing its performance
is required.

In the first part of the work presented here, non-collinear high harmonic generation
(NCHHG) was investigated in detailed experimental and numerical studies. In NCHHG,
the EUV radiation is emitted along the bisector of two driving beams intersecting in the
target at an angle. This intrinsic spatial separation of fundamental and EUV promises
the applicability of NCHHG as a wavelength-independent and highly efficient outcou-
pling method for cavity-assisted HHG. In spectrally resolved experiments with amplified
laser pulses, non-collinear high harmonic emission was observed and hence the potential
of NCHHG as an outcoupling method confirmed. Independent control of the driv-
ing beams allowed the investigation of the spatio-temporal coupling produced by the
NCHHG process. It was found experimentally and reproduced in numerical simulations
that the far field profiles of the non-collinearly generated EUV light show strong spatial
modulations that depend on the delay between the driving pulses and on the intensity-
dependent dipole phase. The generation of angularly separated, isolated attosecond
pulses was identified as a potential application of NCHHG.

The main result described in the second part of this thesis is the first demonstration of
single pass HHG at unprecedented repetition rates of 10 MHz and 20 MHz in a scalable,
versatile setup. These proof-of-principle experiments were rendered possible by the
emergence of laser amplifiers with suitably high output powers. The generated EUV
powers of up to∼ 1 nW around 70 nm are not comparable yet to those currently produced
by cavity-assisted HHG. However, single pass HHG shows favorable scaling properties
because it is less sensitive to nonlinear phase shifts that were identified as detrimental
in cavities. Single pass HHG also enables the generation of high repetition rate EUV
frequency combs at an unprecedented level of experimental control because parameters
such as repetition rate, polarization, driving geometry, and focusing conditions can be
varied rather easily. An increasing number of applications for such versatile table-top
sources is expected.
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1 Introduction

In the now more than fifty years since the first observation of light amplification by
stimulated emission of radiation (“laser”) [1], lasers have become indispensable tools in
science, industry, and every-day life. Their fields of application are as diverse as laser
cooling, precision spectroscopy, photolithography, data transmission, and otorhinolaryn-
gology. New applications have inextricably been linked to advances in laser development
and technology so that extending the spectral band in which laser radiation is available
has been one of the paramount goals of laser research. Currently, the spectral coverage
of commercial lasers is limited to the wavelength range between ∼ 200 nm and hundreds
of µm.

Making the vacuum ultraviolet (VUV) and particularly the extreme ultraviolet (EUV)
spectral regions1 directly accessible to laser radiation is highly desirable for a number of
applications in industry and science. Coherent EUV sources could, for example, be used
both for metrology and material inspection in the next generation of EUV lithography
at 13.5 nm. On the other hand, the simplest atoms and ions of the periodic table such
as hydrogen, helium, and both hydrogen- and helium-like ions all have ground state
transitions in the EUV. Therefore, precision laser spectroscopy of the latter could enable
stringent tests of the underlying fundamental theory of light matter interactions, bound
state quantum electrodynamics (QED).

This thesis reports on advancements of versatile, coherent table-top laser sources of
high spectral purity in the EUV. Building such a source is challenging for a number
of reasons. Since all solid materials become rather opaque below ∼ 105 nm and since
EUV photon energies exceed the ionization potentials of most gases as well, a vacuum
environment is essential and only few (noble) gases or plasmas can be used as laser me-
dia at all. Moreover, enormous pump power densities are required to create inversion,
and in the absence of suitable highly reflecting mirrors, single pass laser configurations
have to be used. The past decade has witnessed remarkable progress in the develop-
ment of coherent table-top EUV sources that are based on discharge- or laser-produced
plasmas and operate at repetition rates of several Hz. However, a coherent narrow-band
continuous-wave (cw) EUV source is currently not conceivable.

Given the constraints outlined above, nonlinear frequency conversion processes in a
gaseous media appear to be the most promising path to this spectral region. Among
those, high harmonic generation (HHG) is particularly attractive since it allows to coher-
ently upconvert the radiation from an appropriate visible or infrared (IR) laser to very
high photon energies beyond the ionization potential of the target gas. However, HHG
only occurs when atoms interact with fields comparable to atomic field strengths which

1See Table 1.1 for the definitions of spectral regions used in this work
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Abbreviation Wavelength range [nm]

soft x-rays SXR/XUV 0.1− 10
extreme ultraviolet EUV 10− 121
vacuum ultraviolet VUV 10− 200

Table 1.1: Excerpt of definition of solar irradiance spectral categories according to ISO 21348

can be translated to threshold intensities above ∼ 1013 W/cm2. The latter make the use
of ultrashort pulses imperative, which at first glance appears to preclude applications
requiring spectrally pure, coherent sources. However, optical frequency comb synthesiz-
ers [2, 3] favorably unite the large peak intensities of the infinite pulse trains that they
emit with the high spectral purity of the discrete comb components that constitute their
broadband spectra. Thus, HHG can enable the realization of an ensemble of extreme
ultraviolet quasi-cw lasers by coherently transferring the frequency comb structure to
the EUV.

In view of both the efficiency of the nonlinear HHG process and the intended appli-
cation, a crucial parameter to be considered is the pulse repetition rate of the frequency
comb synthesizer. Intuitively, the best approximation of a cw laser is obtained for the
highest possible repetition rate. The latter results in a frequency comb spectrum with
well-separated modes and narrow linewidths which is benfeficial for spectroscopy of both
single- and two-photon transitions: On the one hand, the average power per comb mode
is higher assuming a constant attainable EUV power while on the other hand, a larger
mode spacing allows to unequivocally resolve a transition with a large natural linewidth
or multiple simultaneously excited transitions. Apart from spectroscopy, there are sev-
eral other applications that can leverage such a high repetition rate EUV source as
well. Prominent examples comprise techniques for the investigation of solid state sur-
face dynamics such as time- and angle-resolved photoelectron spectroscopy (PES) and
time-resolved photoelectron emission microscopy (PEEM) [4]. If the available EUV av-
erage power is distributed over more pulses, the resulting peak intensity is lower so that
detrimental space charge accumulation, sample heating, and damage can be avoided.
At the same time, high repetition rates enable investigations with both high spatial and
high temporal resolution at high signal-to-noise ratios [5]. In low event rate coincidence
techniques such as the reaction microscope [6], high repetition rates result in significantly
reduced acquisition times to obtain good statistics.

The main technical challenge in the realization of an EUV frequency comb at multi-
MHz repetition rate is to reach the enormous peak intensities necessary for high harmonic
generation. Since the achievable average and peak powers of typical femtosecond laser
systems are limited by the damage threshold of the employed gain media and optical
components, the so far most commonly used approach has been to increase their peak
powers at the expense of repetition rate using techniques such as chirped pulse amplifi-
cation (CPA) [7]. EUV radiation can then be generated in a single pass geometry, but
at repetition rates in the kHz regime. An elegant way to circumvent this limitation in
repetition rate is provided by the concept of cavity-assisted HHG [8,9]. Here, the output
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of a femtosecond oscillator is coupled into an external passive femtosecond enhancement
resonator to boost the available average power at the full oscillator repetition rate. High
harmonic radiation is generated collinearly with the fundamental in an intracavity gas
target so that a viable mechanism to outcouple the EUV from the resonator becomes
necessary.

Since the first proof-of-principle demonstrations [8,9], cavity-assisted HHG has emerged
quite successfully. Several orders of magnitude higher EUV output powers reaching
∼ 100µW in a single harmonic order [10] are now available and have enabled the first
spectroscopic experiments employing cavity-based EUV sources recently [11,12]. Major
advances were enabled by more elaborate dispersion management and ingenious outcou-
pling methods. The latter include precisely etched cavity mirrors that simultanously
serve as gratings for the EUV [13] and outcoupling of a fraction of the generated EUV
through a hole in the first cavity mirror behind the target [14,15]. Nevertheless, further
scaling of the available EUV power is becoming increasingly challenging because damage
and nonlinear responses of the cavity mirrors as well as ionization dynamics in the gas
target currently limit the fundamental intracavity power to below 10 kW [10,16–18].

In the course of this thesis, two approaches were studied that promise improved scala-
bility and pave the way towards higher available EUV powers: single pass high harmonic
generation and non-collinear high harmonic generation (NCHHG). The latter can still
be used in combination with an enhancement cavity, but as the name suggests, the high
harmonics are emitted along the bisectrix of two crossing fundamental beams and can
thus pass between cavity mirrors. In contrast to other outcoupling methods, NCHHG
works for all high harmonic wavelengths with the same (theoretically unity) outcoupling
efficiency. At the same time, omitting the enhancement cavity with its associated diffi-
culties has become feasible due to impressive developments in the field of amplified high
power femtosecond lasers. The single pass HHG configuration grants significantly more
freedom in designing experiments that would be very hard if not impossible using an
enhancement cavity: The conversion efficiency could be improved using techniques such
as quasi phase matching in a hollow core fiber and the beam profile, the wavelength,
and the polarization of the driving pulses could be varied or the repetition rate tuned.

The results of our efforts are presented in the following way: Chapter 2 provides a
basic mathematical description of ultrashort pulses and their properties along with a
summary of related quantities and phenomena for further reference. Chapter 3 gives
a detailed review of the theory of high harmonic generation whose understanding both
on a microscopic and a macroscopic level has proven to be crucial for the optimiza-
tion of EUV frequency comb sources. In Chapter 4, the results of our experimental
and numerical investigations of non-collinear high harmonic generation are summarized.
After confirming its potential application as a combined generation and outcoupling
technique for cavity-assisted HHG in an experiment with amplified pulses, the focus of
our studies was diverted towards the analysis of the strongly modulated high harmonic
far field profiles and their dependence on experimental parameters. Chapter 5 presents
the experimental results of the first proof-of-principle demonstrations of single-pass high
harmonic generation at multi-MHz repetition rates using a robust, versatile, and scalable
approach based on a recently developed high power solid state amplifier system.





2 Basics

2.1 Ultrashort optical pulses

This section is meant to give a brief (mathematical) description of ultrashort optical
pulses and their characteristics as a reference for this thesis. More detailed and elaborate
summaries can be found in the pertinent literature, e.g. in [19–21].

2.1.1 General description

As the naming suggests, ultrashort pulses can be described as a time domain phe-
nomenon. Likewise, however, there is a fully equivalent frequency domain description.
Time and frequency domain are linked via a Fourier transform, and it is thus also com-
mon to talk about ultrabroadband pulses. The most general representation of an optical
pulse has to take into account the polarization and the dependence of the electric field
on space and time. Here, we will first focus on the time-dependence of linearly polarized
light thus neglecting the vector character of the electric field and its spatial dependence.
We also take advantage of the common and convenient practice of using the complex
representation of the electric field as a short-hand notation. In the following, we thus
omit the complex conjugates that are required to obtain real physical quantities. The
time dependent field of an optical pulse then reads

E(t) = A(t)eiφ(t) (2.1)

with (real) pulse envelope A(t) and temporal phase φ(t). The equivalent spectral repre-
sentation

E(ω) = E(ω)e−iΦ(ω) (2.2)

with (real) spectral amplitude E(ω) and spectral phase Φ(ω) can be obtained via Fourier
transformation

E(t) =
1√
2π

∞∫
−∞

E(ω)eiωtdω (2.3a)

E(ω) =
1√
2π

∞∫
−∞

E(t)e−iωtdt. (2.3b)

As long as the spectral bandwidth ∆ω of the pulse is much smaller than the carrier
frequency ω1 at the pulse peak1, it is convenient to expand the temporal phase φ(t)

1The denotation ω1 for the carrier frequency instead of the more common ω0 allows a more intuitive
description of frequency relations in the context of high harmonic generation.
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about t = 0, so that
φ(t) = φ0 + ω1t+ φNL(t). (2.4)

Here, φ0 denotes the so-called carrier-envelope phase, which quantifies the phase advance
of the electric field with respect to the pulse envelope, and the phase function φNL(t)
absorbs all but the linear phase variations. Taking the time derivative of (2.4),

ω(t) =
dφ(t)

dt
= ω1 +

dφNL(t)

dt
, (2.5)

we can introduce the instantaneous frequency ω(t). A non-vanishing, nonlinearly time-
dependent φNL(t) means that the instantaneous carrier frequency varies with time. In
that case, the pulse is called “chirped”. For

dω(t)

dt
> 0, (2.6)

the pulse is up-chirped (sometimes also called positively chirped) while in the opposite
case

dω(t)

dt
< 0 (2.7)

the pulse is down-chirped (or negatively chirped). A purely quadratic modulation of the
phase function φNL(t) corresponds to the special case of linear chirp, i.e. ω(t) = ω1 +a2t
where a2 is the linear chirp parameter.

All of the above is valid if the pulse envelope just exhibits slow variations with respect
to the carrier frequency. Thus, this condition is called slowly-varying envelope approxi-
mation (SVEA). For few-cycle pulses, the SVEA obviously breaks down. In all the cases
relevant for this thesis, however, it can be assumed to be valid.

The relation between the optical intensity I(t) and the corresponding electric field
E(t) is given by

I(t) =
cε0n

2
|E(t)|2 =

cε0n

2
A(t)2 (2.8)

where c, n, and ε0 are the vacuum speed of light, the refractive index of the material in
which the pulse propagates, and the permittivity of free space, respectively.

The pulse duration (or pulse width) τ is defined as the full-width at half-maximum
(FWHM) of the temporal pulse intensity given in (2.8), i.e. as the FWHM of the squared
pulse envelope function A(t). In an analogous manner, the spectral width ∆ω can be
defined. Since the spectral and the time domain are linked via the Fourier transforms
in (2.3), τ and ∆ω are linked by the time-bandwidth product

∆ω τ = 2π∆ν τ ≥ 2π Ctbp (2.9)

where the exact numerical value of the constant Ctbp depends on the specific pulse shape
and the definition of the pulse width2. The equality in (2.9) holds for unchirped pulses
which are also called bandwidth- or Fourier-limited.
2A generalized definition of the time-bandwidth product based on Wigner distributions and their

mean square deviations defined as pulse and spectral widths yields a similar relation as in (2.9)
where equality is given for bandwidth-limited Gaussian pulses [19].
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2.1.2 Spatial properties

In this section, the spatial properties of laser beams are discussed for further reference.
All statements are restricted to cases in which the paraxial approximation is valid. In
that case, the fundamental solution of the wave equation is the transverse elecromagnetic
mode TEM00 that is also called fundamental or Gaussian mode.

2.1.2.1 Gaussian beams

The field of a laser beam propagating along the z-axis with an axially symmetric Gaus-
sian profile is described by

E(r, z) = E0
w0

w(z)
exp

(
− r2

w2(z)

)
exp

[
−i
(
kz − ϕg(z) +

kr2

2R(z)

)]
. (2.10)

The beam radius w, which is defined as the distance from the beam axis at which the
field amplitude drops to 1/e of its on-axis value, varies along the direction of propagation
according to

w(z) = w0

√
1 +

(
z

zR

)2

(2.11)

and reduces to a minimal value w0 at the waist or focus (here taken to coincide with
the origin at z = 0 for the sake of simplicity). The parameter zR defines the so-called
Rayleigh range according to

2zR = 2
πw2

0

λ
= kw2

0 = b (2.12)

and describes the distance from the focus after which the beam radius has increased by
a factor of

√
2. The confocal parameter b represents a measure of the collimation of the

beam since the on-axis intensity changes by no more than a factor of 2 within one confocal
parameter. In Chapter 3, it will thus be used to approximate the interaction volume
of a focused Gaussian laser beam with a gas target. In the far field (|z| � zR), (2.11)
yields a roughly linear increase of the beam radius with distance. The proportionality
factor

θ =
λ

πw0

(2.13)

specifies the divergence of the beam. In contrast to a plane wave, a Gaussian beam
accumulates an additional phase, the Gouy phase

ϕg(z) = arctan

(
z

zR

)
, (2.14)

along the propagation axis. This additional geometric phase ϕg(z) is negative for z < 0
and positive for z > 0 and leads to an overall phase shift of π across the focus. The
curvature of the wavefronts R(z) of the beam which can be defined by

1

R(z)
=

z

z2 + z2
R

, (2.15)

also changes sign across the focus where the curvature is infinite.
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2.1.2.2 Beam quality factor M2 and brightness

Although there is almost no reasonable chance to find an adequate and universally
applicable measure to assess the spatial quality of a laser beam, the concept of the beam
quality factor M2, within certain limits, is a meaningful method to do so [22] that has
been standardized in ISO 11146. According to the standard, M2 is determined from
a set of measurements of the beam radius at different positions along the propagation
axis. The beam radius has to be specified according to the second moments method
(also called D4σ method) in which twice the variance of the intensity profile defines the
beam radius. The evolution of the beam radius along the propagation axis can then
be obtained from generalized versions of (2.11), (2.12), and (2.13) with the substitution
λ→M2λ, for example

θ = M2 λ

πw0

(2.16)

Generally, M2 ≥ 1 applies for arbitrary beam profiles. The limit of purely Gaussian
spatial characteristics, by definition, corresponds to M2 = 1, in which case the beam
is called “diffraction-limited”. For beams that lack full axial symmetry, it is quite
common to specify the beam quality factor along two orthogonal axes. In this thesis,
the sloppy notation M2 = M2

i × M2
j will be used for that case. Experimentally, all

measurements of beam quality were conducted with a CCD-based beam propagation
analyzer (Spiricon M2-200FW) which, unlike several competing commercial products
that rely on simple knife-edge scans, evaluates the full spatial beam profile. To enable
meaningful background subtraction, the device records the beam profiles with the same
exposure time at all positions after automatically attenuating the beam accordingly.

Equation (2.16) illustrates that the minimal beam radius to which a not diffraction-
limited beam can be focused is a factor M2 larger than that of a purely Gaussian beam
for a given divergence angle. Since the outcome of highly nonlinear processes such as high
harmonic generation critically depends on the focused optical intensity (see Chapter 3),
this becomes especially important if these processes are to be driven by high power lasers
and amplifiers whose beam quality is usually deteriorated to M2 > 1 by nonlinear effects
that emerge in both gain media and other optical components as a consequence of the
high powers. Hence, it is a mandatory requirement to deliberate whether a potential
scaling of the output power of a laser system at the expense of beam quality will lead
to an overall benefit.

The quantity to be maximized is the brightness of the laser source which is defined as
the total radiated power divided by the product of the mode area and the solid angle,
which becomes

Ξ =
∆P

∆A∆Ω
=

P

λ2(M2)2
(2.17)

when Equation (2.16) is used. Since the total emitted power P , the beam propagation
factor M2, and the wavelength3 λ of the emitted light are constant for a given source,
the brightness cannot be improved by use of optical elements.

3The dependence on the wavelength is omitted in some definitions.



2.1 Ultrashort optical pulses 9

2.1.3 Phase modulation in linear media: dispersion

In the most general sense, the term “dispersion” describes the phenomenon that waves
with different frequencies travel through a medium at different phase velocities which
depend on the properties of the medium via the frequency dependent index of refraction
n(ω) [23]. Hence, if a pulse propagates through a linear dispersive medium with negligible
absorption, its envelope will disperse in time. The phenomenon is best treated in the
frequency domain where the linear response after propagation through a medium over a
distance z consists of an accumulation of spectral phase

Φ(ω, z) = k(ω)z = n(ω)
ω1

c
z (2.18)

while the spectral amplitude of the pulse remains unaffected. After expanding the dis-
persive propagation phase about the carrier frequency

Φ(ω) =
∑
m

Φ
(m)
ω1

m!
(ω − ω1)m (2.19)

where the notation Φ
(m)
ω1 = ∂m

∂ωm
Φ(ω)

∣∣
ω1

is used, one can identify the effects of the different

orders. The zeroth order term Φ
(0)
ω1 simply causes a constant carrier envelope offset and

leaves the pulse envelope unchanged. The first order term Φ
(1)
ω1 (ω−ω1) results in a group

delay, i.e. a shift of the pulse envelope (or the time axis), but does not affect the shape of
the envelope, either. Therefore, both terms usually just become relevant for applications
that are sensitive to the carrier envelope phase. The quadratic phase term 1

2
Φ

(2)
ω1 (ω−ω1)2,

however, describes the group delay dispersion (GDD) that quantifies the rate at which
the pulse duration of an initially unchirped pulse changes during propagation. In the
ultrafast community, GDD is commonly specified in units of fs2 which also allows to
avoid confusion that may originate as the term “dispersion” is often colloquially used
as a synonym for GDD. Higher order terms in the expansion (2.19) can be neglected in
many cases. However, the third and fourth order dispersion terms, abbreviated TOD and
FOD, respectively, are found to matter in certain applications, e.g., in nonlinear pulse
compression. Since the GDD as defined above depends on the respective propagation
distance in the medium, it is convenient to expand (2.18) in terms of k(ω), that is,

k(ω) =
∑
m

k
(m)
ω1

m!
(ω − ω1)m (2.20)

with k
(m)
ω1 = ∂mk(ω)

∂ωm

∣∣∣
ω1

. In analogy to (2.19), different physical quantities can be identified

in (2.20): The zeroth order term k
(0)
ω1 is proportional to the inverse of the phase velocity

vp(ω1) = c/n(ω1), whereas the inverse of k
(1)
ω1 yields the group velocity vg =

(
∂k(ω)
∂ω

∣∣
ω1

)−1
.

The second order coefficient k
(2)
ω1 characterizes the group velocity dispersion (GVD) which

is a material property typically specified as GDD per unit length.
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2.1.4 Nonlinear effects

In the previous section, the frequency-dependent effects of pulse propagation through
a linear transparent medium have been discussed. For the peak intensities reached by
ultrashort pulses, any nonlinear response of the medium, parameterized by an intensity
dependence of the index of refraction, will additionally affect the pulses both spatially
and temporally. Among the different contributions to this intensity-dependent index,
only the nonlinearities due to the optical Kerr and due to thermal effects will be con-
sidered here so that the refractive index becomes [24]

n(I) = n+ n2I(r, z, t) +
∂n

∂ϑ
∆ϑ(r, z, t) (2.21)

where the Kerr parameter n2 and the temperature dependence of the index ∂n
∂ϑ

are ma-
terial properties. The Kerr effect can be considered instantaneous for fs-pulses whereas
the formation of temperature gradients is comparably slow. The temperature difference
∆ϑ can either result from the propagating pulses themselves or from a different heat
source. While the first case typically just needs to be considered for very high average
powers, the second case is particularly important for the design of laser oscillators and
amplifiers since a fraction of the strongly absorbed pump beams is always dissipated
into heat.

In combination with the spatial index variation, e.g., of a Gaussian beam, the Kerr
nonlinearity leads to self-focusing. For a temporal index variation, the Kerr effect results
in self-phase modulation (SPM) or cross-phase modulation (XPM) depending on whether
the pulse itself or a second pulse causes the variation. Both phenomena normally occur
simultaneously so that transient effects such as reshaping of the temporal pulse enve-
lope within the medium (self-steepening) have to be accounted for to accurately model
propagation. Nevertheless, they can be treated independently within certain limits to
obtain approximate expressions as will be presented in the following.

2.1.4.1 Self-focusing

The spatial index variation that is caused by the radial intensity profile of a Gaussian
laser beam gives rise to a modulation of the spatial phase. Since this approximately
parabolic phase dependence equals the action of a focusing lens and consequently causes
the beam to converge, the effect is called self-focusing or self-lensing4.

While the often undesirable ocurrence of self-focusing can rarely be avoided when
working with ultrashort pulses and high powers, it can also be exploited successfully. In
so-called Kerr-lens mode-locked lasers, for example, self-lensing in either the laser crystal
itself or a designated nonlinear element leads to reduced losses at a hard aperture placed
in the laser resonator or to a higher gain due to better overlap with the pump beam so
that pulsed operation is favored over cw operation.

4Here, n2 > 0 has been assumed as is the case for most transparent bulk media. A more general term
including self-defocusing as well would be self-amplitude modulation (SAM).
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If the length L of the medium that causes self-focusing is short enough, the effective
focal length of the Kerr lens within a purely parabolic (i.e. aberrationless) thin lens
approximation becomes [19,20]

fn2(t) =
w2

0

4n2L I0(t)
(2.22)

with on-axis intensity I0(t). For extended media, the effect of self-focusing can cancel or
even exceed the usual diffraction of the beam during propagation. The former case has
been named self-guiding or self-trapping since the laser beam propagates with constant
beam diameter in a self-induced waveguide. In the latter case, called catastrophic self-
focusing, the laser beam eventually converges to a small filament whereby the medium
is damaged through dielectric breakdown. Since both the diffractive spread of the beam
and the self-focusing effect depend on the beam cross-section, the characteristic quantity
for the effect is the critical power

Pc = a
λ2

n2n
(2.23)

rather than a critical intensity. Here, a is a numerical factor that differs depending
on the exact definition of the condition described by the critical power. Numerical
simulations of propagation including the Kerr effect suggest the existence of a regime of
catastrophic self-focusing above a critical power Pc that corresponds to a ≈ 0.15 [19,20].
Note, however, that catastrophic self-focusing only occurs if the medium is long enough.

A thermal lens effect in transparent media was first observed for cw lasers by Gordon
and co-workers [25]. For radial heat flow in the sample, a Gaussian laser beam expe-
riences an additional lensing effect which corresponds to the action of a lens with an
effective focal length [20]

fϑ =
κπw2

ϑ

Pϑ
∂n
∂ϑ

. (2.24)

Here, κ and wϑ denote the thermal conductivity of the medium and the waist radius
of the laser beam causing the temperature gradient, respectively. Pϑ is the fraction of
power absorbed by the material from that laser beam which is dissipated into heat.

2.1.4.2 Self-phase modulation (SPM)

The spatial consequences of the nonlinear refractive index have been discussed in the
previous section. Similarly, the intensity variation of an ultrashort optical pulse with
respect to time, i.e. the temporal pulse shape or pulse (intensity) envelope, leads to
a time-dependent alteration of the refractive index at a fixed position in the nonlinear
medium during the passage of the pulse. Since this results in a modulation of the
temporal phase of the pulse, the effect is called self-phase modulation (SPM).

The so induced total on-axis nonlinear phase shift after propagation through a medium
of length L

B =
2π

λ

L∫
0

n2I(z, t)dz (2.25)
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Figure 2.1: Normalized intensity profile of a sech2-pulse (dashed blue line) and corresponding
normalized nonlinear instantaneous frequency shift due to self-phase modulation (solid red
line). The SPM-induced frequency chirp is appproximately linear at the center of the pulse
(thin green line).

is often referred to as the B-integral, particularly in the context of laser engineering [20].
For sufficiently short media or propagation in a guided mode, attenuation and reshaping
of the pulse envelope during propagation can be neglected. Including the global sign
from the propagation phase, (2.25) then reduces to

φNL(t) = −n2
2π

λ
I(t)L (2.26)

which applies to all cases discussed in detail in this thesis. As becomes obvious from (2.5),
the additional phase φNL(t) temporally chirps an initially bandwidth-limited pulse. In
the frequency domain, this chirp corresponds to the generation of additional frequencies
and hence a broadening of the spectrum of the pulse. Figure 2.1 shows the instantaneous
frequency shift d

dt
φNL(t) that is caused by SPM of a sufficiently strong sech2-pulse. It

can be seen that the leading edge of the pulse generates additional frequencies at the low
frequency end of the spectrum whereas the trailing edge likewise extends the spectrum
on the blue side. In a reasonably large range around the peak of the pulse that is further
extended when including the effects of group velocity dispersion during propagation, the
impressed chirp is approximately linear. This allows for its removal by a simple disper-
sive delay line, i.e. an optical element with adjustable GVD. Such a rephasing of the
spectral components can produce a pulse with a duration shorter than that of the orig-
inal one. Therefore, the combination of nonlinear spectral broadening and subsequent
(mostly linear) dispersive temporal shortening is called nonlinear pulse compression.
Since such an SPM-based nonlinear pulse compression technique was employed in one
of the experiments described in this thesis (cf. Section 5.3.1), the following section will
provide more details and review the considerations to be made before an experimental
realization.
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2.1.5 Nonlinear pulse compression

High (average) power laser systems like the one employed for some experiments described
in this thesis (see Chapter 5) are difficult to realize technically with gain materials
supporting pulse durations shorter than 100 fs. Depending on the application, it can
thus be advantageous or even mandatory to shorten the emitted pulses in a dedicated
setup outside the laser system. In the case of HHG, for example, shorter driving pulses
enable the generation of radiation with higher energy and may lead to a better conversion
efficiency due to a reduced level of ionized target atoms (cf. Section 3.4.2).

To compress fs-pulses, only optical compression techniques, which were first proposed
and demonstrated in the late 1960s with ps-pulses, can be used. Generally speaking,
nonlinear pulse compression always consists of two steps: In the first step, which ideally
leaves the temporal envelope of the pulse unchanged, the pulse spectrum is broadened
through a temporal phase modulation that can, for example, result from self-phase
modulation as described by (2.26). In the second step, which ideally does not alter
the spectrum of the pulse, the (preferably linear) chirp that was impressed onto the
pulse in the first step is removed by a dispersive delay line. That way, by introducing
the proper amount of GDD (and higher order dispersion), the spectral phase of the
pulse is transformed into that of an unchirped one with shorter duration. For broader
spectra, the higher order dispersion terms of (2.19) become more important. However,
even the temporal shape of the pulse obtained from an ideal compressor may contain
satellite structures, since maximum compression always corresponds to highest peak
power irrespective of exact pulse shape.

For a given input pulse energy,(2.26) seems to indicate that the largest spectral broad-
ening effect can be achieved by focusing tightly into the longest possible material with
the largest nonlinear index coefficient n2. This is a fallacy in most cases since, as
already mentioned at the beginning of Section 2.1.4, self-phase modulation is always ac-
companied by the corresponding spatial domain effect of self-lensing that, for a typical
non-uniform spatial beam profile, may cause beam distortions or even lead to catas-
trophic self-focusing. Consequently, unless the input pulses are already short enough to
allow strong spectral broadening in a bulk medium significantly shorter than the self-
focusing length, some guiding mechanism that preserves the spatial pulse profile has to
be employed to obtain spatially uniform spectral broadening.

Since optical fibers provide a guided spatial mode, they have successfully been used for
SPM-induced spectral broadening and pulse compression since the first demonstrations
in the 1970s. Depending on the initial and the desired final pulse parameters, the
best results are attained with different fiber types and parameters. The applicability
of regular bulk fibers is limited by their optical damage threshold (typically at the
∼µJ/µm2 level), because guiding of just the fundamental mode requires small core
diameters, and by other nonlinear phenomena, e.g. Raman processes. If a thin gas-
filled capillary or a hollow-core fiber is used as the guiding element instead, larger mode
areas become feasible, the damage threshold of the nonlinear medium increases, and its
nonlinearity is adjustable through the selection of gas and pressure so that mJ-pulses
can be compressed to pulse durations in the few-cylce regime [26–28]. This scheme
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can be further extended by cascading several nonlinear pulse compression stages [29–31]
and related alternatives relying on either self-guiding through filamentation [32, 33] or
propagation in a gas-filled multi-pass cell [34, 35] exist. For pulses with high average
powers, damage at the incoupling facet of the fiber is particularly critical so that large
mode area (LMA) solid or gas-filled hollow core photonic crystal fibers (PCFs) are
preferably used for spectral broadening [36–41].

To remove the chirp impressed onto the pulse, compressor units that usually con-
sist of diffraction gratings, Brewster-cut prisms, dispersion compensating mirrors, and
combinations thereof are typically used. Alternatively, there are other schemes based
on active modulators such as, for example, liquid crystal modulators or acousto-optic
programmable delay filters. Pioneered by Szipöcs and co-workers [42], the idea behind
dispersion compensating or chirped mirrors is to modulate the Bragg wavelength of the
regular quarterwave coating layers which results in a frequency-dependent group delay
because different frequencies are reflected at different depths in the coating. The use of
chirped mirrors is especially advantageous for the compression of high energy or high
average power pulses, because they have a high damage threshold and can be engineered
to provide large amounts of dispersion and almost arbitrarily high reflectivity over an
extremely broad bandwidth.

For the experiments described in Section 5.3.1, the 680 fs pulses from a high power
laser system were to be compressed in order to drive the highly nonlinear HHG process
at higher peak power and to reduce the detrimental effects of ionization. The pressures
and propagation distances to achieve significant broadening of the maximally ∼ 10µJ
pulses in a gas-filled fiber are very large and were considered too cumbersome to realize
experimentally. Systematic experiments carried out by our collaborators identified a
short piece of fused silica LMA-PCF as the most suitable option [43]. It achieves strong
spectral broadening within a short distance while preserving the fundamental mode
reasonably well, however, at the expense of a rather low damage threshold of about
2µJ. The effects of SPM and GVD on the pulses from propagation through the PCF
can be compared using the related characteristic length scales, i.e. the dispersion length

LD =
τ 2∣∣∣k(2)
ω1

∣∣∣ , (2.27)

where k
(2)
ω1 represents the GVD parameter from (2.20), and the nonlinear length

LNL =
cAeff

n2 ω1Pp
(2.28)

with effective mode area Aeff and peak power Pp. Since in our case LD � LNL applies,
the spectral broadening can be assumed to originate purely from SPM. In that case, the
broadened power spectral density is simply given by the Fourier transform

S(ω) =

∣∣∣∣∣∣ 1√
2π

∞∫
−∞

A(t)ei(ω1t+φNL(t))e−iωtdt

∣∣∣∣∣∣
2

(2.29)
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Figure 2.2: Nonlinearly broadened spectrum. The parameters of the experiment described in
Section 5.3.1 have been used and the broadening mechanism was considered to be pure SPM.
The initial pulse spectrum is shown as a reference by a dashed blue line.

where the pulse amplitude has been assumed to remain unaffected during propagation.

The characteristically modulated spectrum resulting from a numerical simulation of
(2.29) is depicted in Figure 2.2. Matching the experimental conditions of the single pass
HHG experiment that will be described in Section 5.3.1, the simulation was carried out
for a sech2-pulse with an impressed maximum nonlinear phase of ∼ 10π which yields a
FWHM spectral bandwidth of about 80 nm. For comparison, the initial pulse spectrum
is also shown.

Figure 2.3 illustrates the pulse shape calculated from the broadened spectrum of Fig-
ure 2.2 under the assumption of flat spectral phase, corresponding to a full rephasing
of the spectral components by an ideal compressor. The retrieved FWHM width of
the compressed pulse amounts to ∼ 31 fs. As mentioned earlier, the pulse shows weak
satellite structures as a result of the strongly modulated spectrum. The power content
of the central part of the pulse is about ∼ 80%.

2.1.6 Relation to experimentally accessible parameters

For a meaningful comparison between experiment and simulation(s), it is necessary to
convert the experimentally accessible parameters such as average power P0, repetition
rate fr, FWHM pulse duration τ , and waist radius w0 into the corresponding electric field
E which is a typical quantity required for the simulation. Therefore, in the following,
the relations between these parameters will be summarized.

The energy content of an optical pulse is a good parameter for comparisons between
different experiments because it is independent of the exact pulse shape. Although the
pulse energy can also be measured directly using specially designed meters, it is typically
computed from the average power P0 and the repetition rate fr,
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Figure 2.3: Ideally compressed pulse corresponding to the broadened spectrum shown in
Figure 2.2. Broadening was assumed to originate purely from self-phase modulation. The
compressed pulse has a FWHM duration of about 31 fs and concentrates ∼ 80% of the power
in its central lobe.

WP =
P0

fr
. (2.30)

Contrary to the pulse energy, the peak power depends on the temporal shape of the
pulse, which is taken into account in

Pp = η
WP

τ
(2.31)

by the temporal pulse shape factor η. In the case of a temporally flat-top pulse, η = 1.
The values for Gaussian or sech2-pulses, ηg and ηs, can be calculated from the respective
temporal pulse shapes g(t) and s(t) in the following way: Consider a regular train of
temporally flat-top pulses that do not overlap in time and have a constant amplitude A
and FWHM pulse duration τ , i.e. a constant pulse area Aτ . Gaussian or sech2-pulses
with the same pulse length τ and the same pulse area Aτ have temporal pulse intensity
envelopes

g(t) = 2

√
ln 2

π
Ae−4 ln 2 t

2

τ2 (2.32)

and

s(t) = arsech

(
1√
2

)
A sech2

(
2 arsech

(
1√
2

)
t

τ

)
(2.33)

and thus ηg = 2
√

ln 2
π
≈ 0.94 and ηs = arsech

(
1√
2

)
≈ 0.88. These factors are of-

ten neglected in estimations of peak powers or intensities because other experimental
quantities, e.g. the waist radius w0, are not known well enough anyway.

From the peak power, the peak intensity can be calculated via
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I0 =
Pp
ζ

=
ηP0

ζfrτ
(2.34)

if the spatial characteristics and thus the area ζ over which the energy is distributed are
known. For a spatially uniform beam with radius w0, this area is ζ = πw2

0. For a spatially
Gaussian beam, the on-axis peak intensity at the focus is twice as high as for a spatially
uniform beam of the same radius, i.e. ζg = 1

2
πw2

0. In that case, substituting (2.8)
into (2.34), the relation between maximum field strength and experimental parameters
becomes

|E| = 2

w0

√
ηP0

frτcε0π
≈ 2

w0

√
P0

frτcε0π
. (2.35)
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2.2 The optical frequency comb

This section provides a brief summary of properties and applications of optical frequency
combs. More detailed reviews can, for example, be found in [2, 3, 44,45].

The output of a mode-locked laser consists of an infinite number of replicas of the
pulse circulating in the laser cavity. Since these pulses are evenly spaced in time, with a
temporal separation determined by the length of the laser cavity, the Fourier transform
of this infinite pulse train consists of a series of equidistant, narrow spectral lines. The
latter resemble the teeth of a comb which is why a spectrum with a broadband spectral
envelope and a highly discrete, highly regular spectral substructure has been denoted
“frequency comb”. The bandwidth of the whole spectrum, i.e. the width of the spectral
envelope, is determined by the oscillator characteristics and hence by the bandwidth
of the gain material eventually. For typical oscillator repetition rates on the order of
100 MHz, the coherence between successive pulses is maintained very well so that each
comb mode exhibits an extremely narrow bandwidth. Therefore, a frequency comb can
also be considered as an array of narrow-band continuous wave lasers.

The optical frequency νs of a single comb tooth is described by the equation

νs = νc + sfr (2.36)

where s is a positive or negative integer and fr is the pulse repetition frequency given
by fr = c/Lr with (optical) resonator length Lr, which is in the radio frequency domain
for typical oscillators. The optical frequency νc denotes the frequency of some arbitrary
comb tooth, typically chosen to be the carrier frequency and thus near the center of the
power spectrum.

The significance of the frequency comb becomes obvious in a different parametrization
of the spectrum. Since the spectral separation between different comb modes is equidis-
tant, one can theoretically extend the succession of comb teeth from the optical domain
to the origin of the frequency axis. The comb equation (2.36) then becomes

νm = mfr + f0 (2.37)

where f0 is the spectral offset of the whole frequency comb from zero frequency, i.e.
f0 < fr, and the so-called mode number m is a large positive integer. The physical
manifestation of f0 is best described by a glimpse into the time domain. The carrier-
envelope phase (CEP) φ0 introduced in (2.4) quantifies the phase advance of the electric
carrier field with respect to the pulse envelope. The time derivative of φ0 determines
the carrier-envelope frequency according to

f0 =
1

2π

dφ0

dt
=

∆φ0

2π
fr, (2.38)

where ∆φ0 denotes the pulse-to-pulse slippage of the CEP. The parametrization of (2.37)
shows that the optical frequency comb provides a direct link between the optical and
the radio frequency domain.
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Strictly speaking, it is not until both fr and f0 are measured and controlled that
the spectrum of a mode-locked laser forms a frequency comb [3]. This can be routinely
achieved for fr using a fast photodiode and feedback to a piezo-eletric actuator changing
the length Lr of the laser resonator. In contrast, the development and implementation
of a scheme to measure f0, where no spectral power is available, was crucial for the
realization of the first frequency combs [46,47].

The most commonly used method to access f0 is the so-called f -to-2f self-referencing
technique5. As can easily be verified using (2.37), frequency-doubling of light at fre-
quency ν from the low frequency part of the laser spectrum and subsequently heterodyn-
ing it with light at frequency 2ν from the high frequency part of the spectrum provides
access to f0. The obvious requirement for this technique to work, an octave-spanning
laser spectrum, is challenging to be met directly even for broadband Ti:sapphire os-
cillators. However, nonlinear spectral broadening outside the laser, e.g. by self-phase
modulation in a photonic crystal fiber (PCF) [48], can be used to suitably extend the
spectral bandwidth. Once measured, stabilization of f0 is possible by phase-locking f0

to a stable rf reference and applying the generated feedback signal to the femtosecond
oscillator or by recently demonstrated feed-forward schemes [49,50].

Since its first successful realization, the optical frequency comb has enabled breath-
taking developments in a still growing number of diverse fields. Frequency combs can
be used as frequency “rulers” in optical frequency metrology [51]. In that role, they
are used to accurately determine the frequency of atomic resonances in precision spec-
troscopy experiments or to enable the precise calibration of astronomical spectrographs
for the search of extrasolar planets [52]. Likewise, frequency combs provide the clock-
work for current all-optical atomic clocks [53,54] and could do so for the next generation
“nuclear” clocks [55, 56]. Apart from their use as a reference, frequency combs can
also be used directly for spectroscopic investigations of single- or two-photon transi-
tions in atoms and molecules [57], Fourier transform spectroscopy [58], and dual comb
spectroscopy [59].

Frequency combs are also ideally suited to realize fully coherent laser-like sources in
spectral regions that are currently or may not be at all directly accessible by laser tech-
nology. A prominent example is the spectral region ranging from the vacuum ultraviolet
(VUV) via the extreme ultraviolet (EUV) to the soft x-ray region (SXR) that can be
accessed by driving the extremely nonlinear process of high harmonic generation with
a frequency comb. The topic of this thesis is the advancement of existing EUV sources
based on that concept. In the following chapter, the theory of high harmonic generation
is discussed.

5In the notation used here to distinguish between radio and optical frequencies, it should rather be
called ν-to-2ν technique.





3 Theory of high harmonic generation

3.1 Introduction

The first observation of high1 harmonic generation (HHG) dates back to the late 1980’s
when the rapid progress in the development of intense pulsed lasers rendered exper-
imental investigations with focused intensities exceeding 1013 W/cm2 possible for the
first time. In a pioneering experiment, McPherson and co-workers observed that the
spectrum of the radiation generated by focusing ∼ 350 fs pulses of up to 20 mJ into neon
vapor contained up to the 17th harmonic of their KrF laser emitting at 248 nm [60].
Almost at the same time, Ferray and colleagues reported the generation of harmonics
up to the 33rd, 29th, and 21st order in argon, krypton, and xenon, respectively, with an
Nd:YAG laser producing 30 ps pulses at 1064 nm [61]. Remarkably, in contrast to the
expected pertubative behavior where the intensity Iq of the qth harmonic order scales
with the laser intensity as Iq ∝ Iq, the spectra observed by both groups showed a plateau
of almost equal harmonic intensities spreading over several orders and ranging up to a
sharp cutoff while only the lowest harmonic orders followed the expected fall-off.

These baffling observations, which had been partially foreseen by Shore and Knight
[62], along with the high directionality (collinear with the driving laser beam) and low
divergence of the high harmonic radiation that offered the prospect of EUV spectroscopy
with laboratory-scale sources sparked an immediate strong interest in the theoretical
aspects of high harmonic generation. Historically, these were first studied by numerical
simulations of the time-dependent Schrödinger equation (TDSE) since the field strengths
achieved in the focused laser beam are on the order of the atomic Coulomb potential and
thus too high to be treated analytically by a perturbative approach. However, due to
the immense computational task, physically meaningful approximations of the problem
had to be found, which is why these numerical simulations [63–65] eventually led to the
formulation of an intuitive semi-classical description of HHG by Corkum [66] that is
today widely known and accepted as the so-called “three-step model” or “simple man’s
model”. Despite the considerable predictive power of the three-step model, which, for
example, allows to link the expectable highest harmonic order to the laser parameters, it
falls short of explaining the origin of certain crucial properties of high harmonic radiation
such as its coherence or its intensity-dependent phase.

However, it was shown by Lewenstein and co-workers [67] that the semi-classical model
is completely absorbed by a relatively simple analytic and quantum mechanical descrip-
tion of HHG within the so-called strong field approximation (SFA). Despite several

1It is neither immediately obvious nor precisely specified what “high” means in this context. Here, as
a rule of thumb, harmonic orders q are considered high when q ≥ 9.
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shortcomings, this model, which is now commonly referred to as “Lewenstein model”,
provides deeper insight into the physics and, for example, explains both the coherence
and the intensity-dependent phase of the high harmonic radiation. At the same time,
it enables fast numerical calculations of the experimentally observable macroscopic high
harmonic response, that is, the far-field analysis of the coherent superposition of the
harmonic dipole emission from all individual atoms in the target.

While intricate theoretical details of HHG are still an extremely active field of research,
the basic theory has been exhaustively treated in numerous excellent review articles and
several books [68–74]. Despite their existence and although a full theoretical account of
high harmonic generation is clearly beyond the scope of this thesis, a summary with a
rather high level of detail is still presented here. Apart from explicitly being meant to
serve as an introduction into the field for successive students, the reason is that HHG and
its extension to hitherto unexplored parameter space is the common major topic of the
experimental work discussed in the later chapters of this thesis and that the optimization
of an HHG-based EUV source for applications is a complex task that requires a thorough
understanding of the underlying mechanism. Consequently, this chapter first summarizes
the microscopic picture of HHG, i.e. the interaction of a single atom with an intense
light field in the framework of both the intuitive three-step model and the more accurate
Lewenstein model, and then provides a detailed review of the macroscopic response and
potential ways to optimize it through tuning of experimentally accessible parameters.

3.2 Microscopic description: single atom response

3.2.1 Simple man’s model

The physically intuitive semi-classical three-step or simple man’s model [66] is ideally
suited for a first insightful discussion of the interaction of an atom with an intense laser
field. For the sake of simplicity, it is assumed here that only one of the electrons of the
atom interacts with the laser field whereas the remaining electrons just form an effective
static potential together with the nucleus. This so-called single active electron (SAE)
approximation is a rather strong approximation, but yields results that agree well with
experimental data in most cases. According to the three-step model, the crucial steps
of the laser-atom interaction are:

Ionization The active electron tunnel-ionizes out of the quasi-static potential formed
by the Coulomb potential and the laser field and appears in the continuum with
zero velocity at the origin of the coordinate system. This process happens twice
during one period of the laser field.

Acceleration After ionization, the Coulomb potential is entirely neglected. The electron
propagates under the influence of the laser field. As a free charged particle, it obeys
the classical equations of motion with the initial conditions given in the first step.

Recombination Only for a linearly polarized laser field, there are electron trajectories
which return to the ionic core. Upon impact, the electron recombines with its
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parent ion and radiates off the entire kinetic energy acquired in the laser field in
the form of a single energetic photon.

The description given above is semi-classical because just the second step follows fully
classical arguments whereas the first and the last step are treated quantum-mechanically.
This will now be further elucidated.

3.2.1.1 Ionization

In low intensity laser fields, an atom may undergo the process of multi-photon ionization
(MPI) where it needs to absorb n photons from the laser field to be ionized. This
form of ionization can be treated perturbatively and the corresponding ionization rate
reads wMPI = σnI

n with the n-photon ionization cross-section σn. With increasing
field strength, non-perturbative effects such as above-threshold ionization (ATI) begin
to arise. In ATI, the atom absorbs more photons from the field than are minimally
required to be ionized which manifests iteself in the observation of peaks separated by
the photon energy in the kinetic energy spectra of the freed electrons. Once the laser field
strength becomes comparable to the field strength associated with the atomic binding
potential, there is a non-zero probability for the electron to tunnel through the resulting
instantaneous potential barrier.

These different regimes of ionization can be roughly distinguished with the help of the
so-called Keldysh-parameter [75]

γK =

√
UI

2UP
(3.1)

which relates the ionization potential UI of the atom to the intensity I and the wave-
length λ of the laser field by means of the ponderomotive potential

UP =
e2E2

0

4meω2
1

=
e2λ2I

8π2meε0c3
(3.2)

that corresponds to the average kinetic energy of an electron with mass me subject to
a harmonic field E(t) = E0 cos(ω1t). Typically, the quasi-static tunneling regime and
the multi-photon ionization regime are associated with Keldysh parameters γK � 1
and γK � 1, respectively, which is based on Keldysh’s original idea of comparing the
tunneling time to the period of the optical field. In particular in the case of very
high repetition rates, however, HHG experiments are often also conducted at Keldysh
parameters of γK ≈ 1. It has been shown [76] that tunneling is both possible and
significant in this intermediate regime. Consequently, a strict distinction of cases based
on the value of the Keldysh parameter is neither recommendable nor possible.

The calculation of the ionization rate for particular atoms and initial electronic con-
figurations under certain conditions has been the subject of several investigations, in-
cluding the already mentioned seminal work of Keldysh [75], the more general so-called
PPT theory2 [77], the commonly used ADK rate3 [78], and the Yudin-Ivanov model [76]

2Named after the authors of [77], Perelomov, Popov, and Terentev.
3Named after the authors of [78], Ammosov, Delone, and Krainov.
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that yields more accurate results also for γK ≈ 1. All rates basically share a common
exponential dependence given by [75]

wQS ∝
U

5/2
I

E0

exp

(
−4
√

2meU
3/2
I

3e~E0

)
(3.3)

when ground state depletion is neglected. It is of vital importance for efficient HHG
to gain some insight about the degree of ionization that is caused by the driving pulses
because an ionized atom cannot contribute to HHG within the SAE approximation. The
fraction of ionization at time t can be calculated from the time-dependent instantaneous
ionization rate w(t) according to

Λ(t) = 1− e
−

t∫
−∞

w(τ)dτ

(3.4)

where Λ = 0 and Λ = 1 correspond to no and full ionization, respectively. It is then
possible to determine a saturation intensity, for which a certain fraction of the atoms is
ionized at the peak or after the pulse. We will see later that the saturation intensity de-
pends on the pulse length. For a comparison with real experiments, the spatial variation
of the intensity in the focused laser beam has to be taken into account as well.

In an extremely intense laser field, the atomic potential can be suppressed completely
so that the electron is not bound at all momentarily. Such “barrier suppression ion-
ization” of an atom occurs at intensities above [68] IBSI ' 4× 109(UI [eV])4 W/cm2

where the ionization potential has to be inserted in units of eV. For xenon atoms,
IBSI ' 8.66× 1013 W/cm2.

3.2.1.2 Acceleration

Once the electron is ionized, the influence of the atomic potential is neglected in the sim-
ple man’s model. Consequently, the dynamics of a free electron subject to a monochro-
matic4 laser field E(t) = E0 cos(ω1t + ϕ) can be directly determined starting from the
classical equation of motion in three dimensions of space5

me
d2r

dt2
= −eE(t) = −eE0 cos(ω1t+ ϕ) (3.5)

with the inital conditions r(ti) = 0 and ṙ(ti) = 0. The resulting electron trajectories
consist of a superposition of a constant linear drift and a driven oscillatory motion,
respectively. Since HHG originates from recombination of the electron with the parent
ion, the relevant trajectories are those that return to the parent ion at some later time
tr. However, r(tr) = r(ti) only holds in general for a linearly polarized laser field so that

4The results of the following discussion remain valid for pulsed lasers, as long as their pulse envelope
varies slowly with respect to the carrier.

5As usual, bold symbols denote vector quantities.
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Figure 3.1: Return time tr as a function of ionization time ti. Both times are normalized to
the laser period T0. For the specified cosine field with ϕ = 0, only electrons ionized in the first
quarter of a laser cycle follow trajectories that return to the parent ion. Electrons that get
ionized early during a cycle return later than those which are ionized later.

we can restrict the solution of (3.5) to one dimension, namely

ẋ(t) = − eE0

meω1

(sin(ω1t+ ϕ)− sin(ω1ti + ϕ)) (3.6a)

x(t) =
eE0

meω2
1

[(cos(ω1t+ ϕ)− cos(ω1ti + ϕ)) + ω1(t− ti) sin(ω1ti + ϕ)] (3.6b)

3.2.1.3 Recombination

The condition x(tr) = x(ti) = 0 for recombination does not have analytical solutions.
However, the time of recombination tr can be found numerically as a function of the
time of ionization ti. The resulting plot is depicted in Figure 3.1 for the specified cosine
field with ϕ = 0. The trajectories that return to the ionic core correspond to ionization
times within the first quarter of the laser cycle6. The travel time, i.e. the time between
ionization and recombination tt = tr − ti, is longest for those electrons that get ionized
early during a cycle. In principle, recurring returns without recombination are possible,
however, the cross section for recombination is highest for the first return.

Once the electron returns to the parent ion, there are three possible scenarios that may
occur: elastic scattering with the ion and further acceleration of the electron, inelastic
scattering leading to further ionization of the core (non-sequential double-ionization),
and recombination with emission of a high energy photon, i.e. high harmonic generation,
which is discussed here. Every recombining electron radiates off its entire kinetic energy

6Here, the discussion is restricted to the first half-cycle. Of course, ionization times in the third quarter
of the laser period similarly lead to returning trajectories.
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Figure 3.2: Kinetic energy Wk of returning electrons in units of UP as a function of ionization
time ti (given in laser cycles). The maximum kinetic energy Wmax

k amounts to 3.17UP and
corresponds to a trajectory with an ionization time ti ' 0.05T0 and a return time tr ' 0.7T0.
For every Wk < Wmax

k , there are two returning trajectories per cycle that only differ in travel
time. Hence, they have been termed “short” and “long” trajectory. In the figure, energies
corresponding to short and long trajectories are indicated by blue and red color, respectively.

acquired in the laser field in a single photon. Hence, the total energy of the emitted
photon

Wν = hν = ~ω = Wk(tr) + UI (3.7)

is given by the sum of this kinetic energy Wk(tr) at the time of recombination and the
released binding energy, which is identical to the ionization potential UI . In Figure 3.2,
the kinetic energy upon return is illustrated as a function of ionization time. The
maximum kinetic energy Wmax

k ' 3.17UP is acquired by the electrons that are ionized at
ti ' 0.05T0 so that the maximum photon energy, the so-called harmonic cutoff energy,
is given by

~ωc = UI + 3.17UP (3.8)

For every Wk except the cutoff energy, there are two trajectories per cycle that return to
the parent ion after different travel times. Therefore, these trajectories have been named
“short” and “long” trajectory. In the Figure 3.2, the return energies corresponding to
short and long trajectories are indicated in blue and red, respectively. Note that although
the atoms are most likely ionized at the peaks of the laser field, the return energy of the
corresponding electrons is zero.

The emission of a single photon during the recombination process of an electron with
its parent ion occurs into a random direction and with a statistically distributed photon
energy. However, since the emission process happens twice per laser period, the spectrum
of the light originating from an atom subject to multiple cycles of the laser field is given
by the Fourier transform of a train of radiation bursts and thus becomes discrete with a
frequency spacing of twice the driving laser frequency ω1. Due to this inherent symmetry
and the anisotropy of the free target atoms, only odd harmonics at frequencies ωq = qω1,
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where q is a positive odd integer, can be observed. However, even harmonics can be
generated if the symmetry of the HHG process is disturbed or broken, e.g. by adding a
weak second harmonic laser field, using few cycle driving pulses, or working with a target
consisting of oriented asymmetric molecules. In addition, real experimental spectra are
the superposition of the emissions of all target atoms and thus include macroscopic effects
as well. These do not only lead to directional emission, but can also significantly alter
the shape of the observed spectra which will be discussed in more detail in Section 3.3.

3.2.1.4 Real cutoff law

According to Equation (3.8), there are several ways to shift the harmonic cutoff towards
higher energies: Since UP ∝ λ2I (cf. (3.2)), one can either resort to a laser with a
longer wavelength or try to increase the peak intensity by, for example, focusing more
tightly. Alternatively, one can choose an atomic target with a larger ionization potential.
While, amongst others, all these measures have been taken to generate extremely short
wavelengths reaching into the water window [79] and beyond [80], scaling the intensity
can generally not be exploited to an arbitrary extent because ground state depletion due
to ionization leads to saturation of harmonic generation at a certain intensity Is(τ) which
depends on the pulse duration and the atomic parameters. Assuming linear polarization,
sech2-pulses, and ionization to dominantly occur in the leading edge of the pulse, one
can find an approximate closed form expression for the saturation intensity from the
ADK rates [72,81] which, when substituted into (3.8), leads to the modified cutoff law

Wmax
ν = ~ωc(Is) = UI +

0.5 U3.5
I λ2[

ln
(

0.86 |Cn∗l∗ |2Glm32n
∗−1UIτ

− ln(1−Λs)

)]2 (3.9)

where both Wmax
ν and UI are in units of eV while τ and λ are in fs and µm, respectively.

Note that the definition of the saturation intensity Is depends on the assumed fraction
of ionization Λs at the pulse peak. The coefficients |Cn∗l∗|2, Glm, n∗ and l∗ can be found
in [72]7. Equation (3.9) reveals that ωc depends nonlinearly on UI via the saturation
intensity which reflects the fact that a laser pulse with the same parameters is less
likely to deplete the ground state of an atom with a larger ionization potential. Note
that macroscopic effects such as, for instance, phase matching or plasma defocusing
have not been considered in the derivation of (3.8) so that the experimentally observed
cutoff may be at lower energies, particularly for tight focusing geometries. Nevertheless,
a comparison of experimental results with the expectations based on (3.9) assuming
Λs = 0.98 shows very good agreement [81].

7For Xe, |Cn∗l∗ |2 = 3.88241, Glm = 3, n∗ = 1.05906 and l∗ = 0.05906.
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3.2.1.5 Achievements and limitations of the simple man’s model

The simple man’s model provides an intuitive picture of HHG and allows to correctly
predict several fundamental properties of the generated radiation despite the strong ap-
proximations involved. Most importantly, it explains the extension of the high harmonic
spectrum up to the cutoff, whose frequency is given by (3.8) and whose spectral inten-
sity, unlike the lowest harmonic orders, cannot be described by a perturbative intensity
scaling Iq ∝ Iq. The three-step model also predicts an intrinsic chirp of the harmonic
radiation originating from the fact that different harmonic frequencies are associated
with different return times of the active electron. The existence of this harmonic chirp
has been confirmed both in experiments and by more advanced theories.

As can be seen from (3.7), the validity of the simple man’s model is restricted to
harmonic orders with photon energies larger than the ionization potential of the atom
because the so-called below-threshold harmonics, for which ~ωq < UI , would require
unphysical negative kinetic energies of the returning electrons. More importantly, the
three-step model falls short of explaining crucial properties like the coherence of the
high harmonic radiation. While the existence of contributions originating from different
trajectories directly emanates from the model, it does not make accurate predictions
about the phases of the trajectories. As will be shown below, this problem is solved by
the quantum mechanical Lewenstein model in which different quantum orbits exhibit a
characteristic intensity-dependent phase.

3.2.2 Exact quantum mechanical model

An exact quantum mechanical description of a process like high harmonic generation
requires solving the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (3.10)

in which Ĥ(t) denotes the Hamiltonian of the respective quantum system and |Ψ(t)〉 is
its time-dependent state vector in Dirac’s bra-ket representation. The formal solution

|Ψ(t)〉 = e
− i

~
∫ t
ti
dτĤ(τ) |ψi〉 (3.11)

fully describes the time evolution of the quantum system from some initial state |ψi〉 =
|Ψ(t = ti)〉 at an initial time ti up to a time t under the influence of the specific Hamilton
operator Ĥ(t). However, analytical solutions exist just for a very limited number of
specific problems so that, in the most general case, finding a practically useful solution
to (3.10) requires numerical calculations.

Depending on the problem to be solved, different partitions of the Hamilton operator
can be useful to reduce the computational efforts. If, for instance, a stationary solution
is known, Ĥ can be partitioned into Ĥ(t) = Ĥ0 + Ĥint(t) where Ĥ0 denotes the stationary
Hamiltonian and Ĥint(t) absorbs the time-dependent interaction so that the (still exact)
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formal solution becomes

|Ψ(t)〉 = e−
i
~ Ĥ0(t−ti) |ψi〉 −

i

~

t∫
ti

dt′e−
i
~
∫ t
t′ dτĤ(τ)Ĥint(t

′)e−
i
~ Ĥ0(t′−ti) |ψi〉 (3.12)

where the first summand guarantees the initial condition |Ψ(t = ti)〉 = |ψi〉. Reading
(3.12) from the right to the left, it is possible to identify the following steps: The system
starts in some initial state |ψi〉 at time ti and evolves freely until time t′ when the
interaction absorbed in Ĥint sets in instantaneously. From this instant until time t, the
system then evolves under the influence of the full Hamiltonian Ĥ(t). Therefore, despite
still being useless in the sense that (3.12) is not any easier to compute than (3.11), the
exact formal solution to the partitioned Hamiltonian yields an intuitive general physical
picture and hence represents a good starting point for reasonable approximations.

In the case of high harmonic generation, the source of the high harmonic emission
from a single atom is its time-dependent laser-induced dipole moment µ(t) = qr(t) that
can be obtained from

µ(t) = 〈Ψ(t)| µ̂ |Ψ(t)〉 (3.13)

where µ̂ is the dipole operator. The spectral response µ(ω) is just the Fourier transform
of (3.13). To calculate |Ψ(t)〉 from (3.12), the Hamiltonian for HHG is required. Ap-
plying the single-active electron approximation, disregarding effective mass effects and
spin, and assuming sufficiently non-relativistic field strengths so that the magnetic field
component can be entirely neglected, the Hamiltonian of a single active electron8 of mass
me bound by an atomic potential V (r) and subject to an external electromagnetic field
reads

Ĥ =
1

2me

(p̂+ eA(r̂, t))2 + V (r̂) + eΦ(r̂, t) (3.14)

where A and Φ are the vector and the scalar potential describing the electric field
according toE(r, t) = −∇Φ−∂A

∂t
and p̂ denotes the operator of the canonical momentum

which is defined as p = mev − eA. As mentioned before, different partitions of the
Hamiltonian in (3.14) can be chosen, for example

Ĥ(t) = Ĥ0 + Ĥint(t) (3.15a)

= ĤGV(t) + ĤV (3.15b)

where (3.15a) represents the choice from above where the field-free stationary and the
laser-interaction Hamiltonian have been separated. In (3.15b), the full Hamiltonian has
been partitioned into the ionic potential ĤV and the Hamiltonian of a free electron in
an electromagnetic field ĤGV, for which Gordon [82] and Volkov [83] derived relativistic
analytical solutions that are commonly referred to as (Gordon-)Volkov states also in the
non-relativistic case considered here.

8Throughout this thesis, the electron charge is qe = −e where e is the (positive) elementary charge.
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3.2.3 Strong field approximation and stationary phase evaluation:
Lewenstein model

The crucial step of the strong field approximation (SFA) is to entirely ignore the effect
of the atomic potential when the laser field is present. This corresponds to replacing the
full Hamiltonian Ĥ(t) in the formal solution (3.12) by the Gordon-Volkov-Hamiltonian

ĤGV(t) =
p̂2

2me

+ Ĥint(t)

=
p̂2

2me

+
e

me

A(r̂, t) · p̂+
e2

2me

A2(r̂, t) = ĤCG
GV (3.16a)

' p̂2

2me

− µ̂ ·E(t) = ĤLG
GV (3.16b)

for which the solutions to the TDSE, the Gordon-Volkov states |χp(t)〉, are known.
Equations (3.16a) and (3.16b) explicitly show the Gordon-Volkov-Hamiltonian in the
so-called Coulomb and length gauge, respectively. To obtain (3.16b), the electric dipole
approximation has been made, that is, the dependence of the vector potential (and thus
the electric field) on the spatial coordinates has been neglected. This approximation is
justified if the field strength is small enough so that non-dipole effects do not matter
and if the typical length scales of the atom are small compared to the wavelength of the
laser so that the atom just sees a spatially homogeneous electric field that varies in time.
Although the choice of gauge has been the topic of ongoing debates [84, 85], the length
gauge is usually employed within the SFA. The important constraint to be aware of is
that the usage of the length gauge is restricted to cases when the dipole approximation
applies while the more general Coulomb gauge also remains valid beyond [85, 86]9. In
the following, the length gauge will be used in accordance with most literature on the
topic.

The eigenstates |χp(t)〉 of the Gordon-Volkov-Hamiltonian are eigenstates of the canon-
ical momentum operator p̂ and form a complete basis of continuum states at every

9Remember that Maxwell’s equations and thus all physical observables are invariant under the gauge
transformation A → A′ = A + ∇χ and Φ → Φ′ = Φ − ∂χ

∂t with an arbitrary real differentiable
function χ(r, t). Since the potentials are not uniquely defined, they can be chosen accordingly to
simplify the TDSE and reduce the computational load. A particular choice is the Coulomb gauge
which is defined by the conditions ∇ ·A = 0 and Φ = 0 in empty space. Note that the resulting
compact form ĤCG

GV of the Gordon-Volkov-Hamiltonian given in (3.16a) can be further simplified
if the dipole approximation is imposed as well and the spatial dependence of the vector potential
is dropped so that ∇ · A = 0 holds automatically. This common combination of Coulomb gauge
and dipole approximation is then referred to as the “velocity gauge” [73, 85]. Within the dipole
approximation, a gauge transformation with χ = −rA(t) yields the length gauge representation
ĤLG

GV of (3.16b).
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instant of time. Their length gauge representation is

|χp(t)〉 = |p+ eA(t)〉 e−
i
~Sχ(p,t,t0) (3.17a)

Sχ(p, t, t0) =
1

2me

t∫
t0

(
p+ eA(τ)

)2
dτ (3.17b)

1 =

∫
p

dp |χp(t)〉〈χp(t)| (3.17c)

In coordinate space, these states correspond to plane electron waves with kinetic mo-
mentum pv(t) = p + eA(t). Since the canonical momentum p is a conserved quantity,
the kinetic momenta at different times t and t′ are strictly related. Using (3.17), the
Gordon-Volkov propagator ÛGV(t, t′), which describes the time evolution of a system
from t′ to t under the influence of ĤLG

GV, can be written down formally as

ÛGV(t, t′) = e−
i
~
∫ t
t′ dτĤGV(τ)

=

∫
p

dp |χp(t)〉 〈χp(t′)|

=

∫
p

dp e−
i
~Sχ(p,t,t′) |p+ eA(t)〉 〈p+ eA(t′)|

(3.18)

It can be seen from (3.18) that the action of ÛGV(t, t′) on a system described by
an initial kinetic momentum state |pv(t′)〉 = |p+ eA(t′)〉 corresponds to the evolu-
tion of the system to a different kinetic momentum state |pv(t)〉 = |p+ eA(t)〉 at
a later time t. During this evolution, the system acquires an additional phase fac-
tor which is determined by the time integral over the instantaneous kinetic energy
Wv(t) = 1

2me
[pv(t

′)− eA(t′) + eA(t)]2 (cf.(3.17b)).
After inserting (3.18) into (3.12), the dipole moment (3.13) can be calculated within

the SFA. The so obtained expression for the dipole moment can be further simplified
if the initial state |ψi〉 is expanded in the basis of bound states, |ψi〉 =

∑
m am(ti) |m〉

and additional assumptions are involved. For low-frequency (~ω1 � UI), low-intensity
(I < Is) driving laser fields, it is justified to assume that the system starts purely in
the ground state, i.e. |ψi〉 = a0(ti) |0〉, and that depletion of the ground state and
possible intermediate contributions of other bound states can be neglected at all times,
i.e. am(t)'δm0 for all t.10 The dipole moment (3.13) then becomes

µ(t) =
i

~

t∫
ti

dt′
∫
p

dp 〈0| µ̂ |p+ eA(t)〉 e−
i
~S(p,t,t′) 〈p+ eA(t′)| µ̂ ·E(t) |0〉+ c.c. (3.19)

where potential continuum-continuum contributions were neglected and the ground state
was assumed to have no dipole moment. The phase factor in (3.19) is determined by

10Here, δmn is the Kronecker delta which takes a value of 1 for m = n and 0 otherwise
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the quasi-classical action

S(p, t, t′) =
1

2me

t∫
t′

(
p+ eA(τ)

)2
dτ + UI(t− t′) (3.20)

where the term “quasi-classical” refers to the fact that, contrary to what is often stated
in the literature, (3.20) is not identical to but only resembles the classical action because
it just contains its energy part and is additionally shifted by the ionization potential of
the atom UI .

Reading (3.19) from the right to the left, the three steps of HHG according to the
simple man’s model can immediately be identified: 〈p+ eA(t′)| µ̂ ·E(t) |0〉 is the prob-
ability amplitude for ionization at time t′, linking the ground state with the continuum
under the influence of the laser field. The propagation in the continuum leads to the
acquistion of a phase factor e−

i
~S(p,t,t′) that has no classical counterpart and strongly

affects the macroscopic properties of the generated high harmonic radiation. Finally,
〈0| µ̂ |p+ eA(t)〉 represents the probability amplitude for recombination in the form of
a dipole transition from a continuum state to the ground state.

To obtain the spectral components of the dipole response of a single atom µ(ω),
the Fourier transform of (3.19), has to be calculated. The evaluation of the multiple
integrals required for that purpose can be significantly simplified because the modified
action S(p, t, t′) is a highly oscillatory function compared to the other factors (as long
as UP � ~ω1 and for short enough excursion times t− t′) so that the well-known saddle
point method can be applied. The latter approximates the integration by the sum over
all dominant contributions which are found at the stationary points of the oscillating
function. Applied to the quasi-classical action with the restriction of positive harmonic
frequencies ωq, this yields the following conditions

∇p

(
S(p, t, t′) + ~ωqt

)
=

1

me

t∫
t′

(
p+ eA(τ)

)2
dτ = r(t)− r(t′) = 0 (3.21a)

− ∂

∂t′

(
S(p, t, t′) + ~ωqt

)
=

1

2me

(
p+ eA(t′)

)2
+ UI = 0 (3.21b)

∂

∂t

(
S(p, t, t′) + ~ωqt

)
=

1

2me

(
p+ eA(t)

)2
+ UI − ~ωq = 0 (3.21c)

which retrieve the complex quantum analogon of the assumptions of the three-step
model: Equation (3.21a) requires the relevant trajectories in the continuum to return to
the parent ion while (3.21c) indicates energy conservation in the recombination process.
The condition given by (3.21b) cannot be met classically because it implies an imaginary
kinetic momentum (which is approximately zero for strong fields UP � UI) at the
beginning of the interaction, hence indicating a quantum mechanical tunnel process.

The analytic quantum mechanical description of HHG highlighted above was first
presented in the seminal paper of Lewenstein et al. [67] and has thus been termed
“Lewenstein model” by the community. While the Lewenstein model fully absorbs the
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semi-classical three-step model, it also possesses several unique distinctive features. In
contrast to the classical trajectories, the quantum paths and all their characteristic
parameters are complex so that trajectories with complex recombination times and thus
harmonic photon energies above the classical single atom cutoff predicted by (3.8) are
allowed. However, their contributions decay exponentially so that the increase in cutoff
energy only amounts to up to 0.32UI [67] and can easily be masked by macroscopic
effects in experiments.

A crucial prognosis of the Lewenstein model is the existence of an additional dipole
phase factor (cf. (3.19)) that is determined by the quasi-classical action (3.20) and causes
strong amplitude-to-phase coupling. The latter becomes obvious from a comparison of
(3.20) and (3.6a) which reveals that the quasi-classical action is proportional to UP (t−t′)
with UP ∝ I. Although the excursion time in the continuum (t − t′) weakly depends
on the harmonic order and thus on the intensity, the dipole phase can be linearized
as ϕ

(j)
I = αjI in good approximation. The phase coefficients αj differ significantly for

different trajectories due to their dependence on the excursion time (cf. Figs. 3.1 and
3.2).

The Lewenstein model includes the possibility of interference between different quan-
tum paths that can be explained in the intuitive framework of Feynman’s path integral
formalism. As shown by Salières and co-workers both theoretically and experimen-
tally [87], the probability amplitude for high harmonic emission at a certain frequency is
obtained by coherently adding the contributions of all possible quantum paths leading
to the same final state. Here, the quasi-classical action determines the weights of the
individual paths of which in general just the two with the shortest travel times are found
to have relevant contributions. The macroscopic manifestations of the distinguishable
phase of the trajectories will be discussed in Section 3.3.

3.2.3.1 Extensions of the Lewenstein model

Despite providing a successful quantum mechanical description of HHG, the Lewenstein
model in its simplest form contains several oversimplifications such as the neglection of
the Coulomb potential in the strong field approximation that, however, can be included
as corrections in extended versions of the theory [86,88]. In this way, inaccuracies of the
prefactors of the SFA transistion rates resulting from the lack of gauge invariance of the
SFA if the Volkov propagator is used in the length gauge can be eliminated [89]. Likewise,
while not included in the SFA, scattering of the returning electron wavepacket off the
ionic core is considered in an extended version known as SFA2 [90] and problems caused
by the overcomplete basis set used in the SFA are resolved in the so-called quantitative
rescattering theory(QRS) [91–93].
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3.3 Macroscopic description

In the previous section, the physical mechanism of HHG was discussed for a single atom.
This microscopic description provides intuitive insight into the physics and is capable
of explaining several typical features that are observed experimentally, for example, the
discrete spectrum and both the existence and, in good approximation, the position of
the cutoff. However, it cannot accurately predict the exact shape of the spectrum and
the relative harmonic intensities because the experimentally observable harmonic yield
depends on the coherent superposition of the contributions from a macroscopic ensemble
of target atoms [94].

Maximizing this yield necessitates carefully balancing several intertwined factors:
While a certain threshold intensity has to be exceeded for the generation of a certain
harmonic order q and the single atom dipole response scales nonlinearly with intensity,
the benefit of increasing the driving intensity to maximize the dipole response is counter-
balanced at a certain level by the simultaneously growing fraction of ionized atoms which
impairs phase-matching of the contributions from as many atoms within the target as
possible. To further scale up the harmonic yield, one can therefore raise the intensity
level at which the optimum balance occurs, for example, by choosing a target medium
with higher ionization potential11. Alternatively, in the case of free focusing geometries,
one can resort to looser focusing conditions for which the number of contributing atoms
is enlarged in the transverse dimension and for which phase-matching is also possible at
a higher level of ionization due to the reduced geometric phase shift.

While guided geometries, i.e. gas-filled waveguides or capillaries, have very success-
fully been employed as targets for HHG, phase-matching of high harmonic radiation will
be reviewed for free focusing geometries in the following section. In these experimental
configurations, the driving laser beam is focused into gas targets consisting of a pressur-
ized gas cell or a freely expanding gas jet produced by a pressurized nozzle. The latter
target design is a particularly suitable choice for the special case of tight focusing ge-
ometries, which are mandatory for driving lasers with low peak powers and thus typical
of HHG at multi-MHz repetition rates. Subsequently, after a brief review of existing
quasi-phase matching techniques for HHG, some general properties of the macroscop-
ically observed high harmonic radiation will be summarized and manifestations of the
microscopic response in the macroscopic signal will be highlighted.

3.3.1 Phase-matching

3.3.1.1 General

The effects of phase-matching in standard HHG experiments, in which a noble gas
is usually employed as the nonlinear medium, can be fully accounted for by solving
Maxwell’s equations non-relativistically for an isotropic, non-magnetic medium. For

11Unfortunately, the recombination cross section and thus the conversion efficiency is lower for the
lighter noble gases with higher ionization energies so that the best choice of medium also depends
on the desired photon energy.
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axially symmetric and not too divergent beams, for which the paraxial approximation
applies, propagation in the generating medium and to a far-field detector can be cal-
culated by solving the coupled wave equations of the fundamental and the high har-
monic fields in dependence of the radial and longitudinal spatial coordinates r and z,
respectively, and time t. The harmonic field originates from the laser-induced polar-
ization Pq(r, z, t) =

∑
µq(r, z, t) which is given by the sum over all contributing dipole

moments. To numerically obtain the latter, the Lewenstein model or other simplified
models are usually employed because the combination of a 3d propagation code and
solving the TDSE increases the required computational time to an unfavorably high and
thus impractial level.

Phase-matching is achieved when the driving field at fundamental frequency ω1 prop-
agates with the same phase velocity as the produced qth harmonic field at frequency
ωq = qω1 so that the contributions at ωq are in phase at all positions within the target
at all times. For an unguided focusing geometry, the degree of phase-matching in the
direction collinear to the driving beam can be quantified by

ξq(r, z, t) =
∂

∂z

[
∆Φq(r, z, t)

]
=

∂

∂z

[
q Φ1(r, z, t)− Φq(r, z, t)

]
=

∂

∂z

[
∆ϕn + ∆ϕp −∆ϕg − ϕI

] (3.22)

where ∆ϕn and ∆ϕp describe the dispersive phase mismatch in the target due to the
neutral atoms and the electron plasma produced by ionization, respectively, while ∆ϕg
results from the difference in Gouy phase of the fundamental and the harmonic fields
and ϕI represents the intensity-dependent dipole phase of the harmonic radiation. Since
ξq indicates the slope of the longitudinal dephasing, it is common to define the so-called
coherence length

Lcoh(q) =
π

|ξq|
(3.23)

which quantifies the length scale on which the contributions of atoms at different posi-
tions within the target to the harmonic field at frequency ωq = qω1 add up constructively.

3.3.1.2 Time-dependence

For a given experimental geometry and realistic (i.e. not temporally square) laser pulses,
all factors in (3.22) are (at least weakly) time-dependent so that phase-matching becomes
a dynamic process and can therefore just be achieved transiently during a finite time
window within the pulse [95,96]. Since the time-dependence originates from the effects of
ionization and from the intensity-dependence of the dipole phase, it is largely mitigated
for short low intensity driving lasers pulses that lead to negligible ionization during the
pulse. In that case, the maximum harmonic emission consequently happens at the peak
of the fundamental pulse and the coherence length remains roughly constant in time. For
a given focusing geometry, phase-matching can then be achieved by adjusting the target
pressure such that the coherence length is maximized [97]. However, as can be derived
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by inserting (3.2) into the cutoff law (3.8), the generation of a certain high harmonic
order q requires the driving intensity to exceed a certain threshold value

Ith(q) =
2mecε0ω

2
1

e2

(q~ω1 − UI)
3.17

(3.24)

that inevitably corresponds to a certain level of (time-dependent) ionization. The latter
is determined by the pulse duration, the fundamental wavelength, and the target atom.
Therefore, as soon as ionization becomes non-negligible, a time-dependent treatment of
phase-matching is required. The time dependence is additionally complicated for repe-
tition rates at the MHz level and above because the gas atoms in the target are not fully
replaced between subsequent pulses. Hence, transient effects of the generated plasma,
whose lifetime exceeds the temporal pulse spacing, have to be taken into account. While
this requires a simultaneous time-resolution on both the fs-scale within the duration of
the pulse and on the ns-scale to include the effects of subsequent pulses in a simulation,
it also means that it is extremely challenging to devise an exhaustive analytic description
of phase-matching. Hence, the following discussions will remain on a qualitative level
for the most part.

3.3.1.3 Phase matching without absorption

It is instructive to discuss phase-matching for three different situations that can be
distinguished by the functional dependence of ξq(r, t, z) and its derivative ∂zξq(r, t, z) on
the longitudinal coordinate z. In order of increasing complexity, these three cases are: i)
perfect phase-matching, i.e. ξq = 0, ii) linear phase evolution, i.e. ξq 6= 0 and ∂zξq = 0,
and iii) nonlinear dephasing, i.e. ξq 6= 0 and ∂zξq(z) 6= 0.

The special case i) of perfect phase-matching (ξq = 0) corresponds to a longitudinally
constant or identically vanishing phase mismatch ∆Φq and thus an infinite coherence
length so that the harmonic field grows linearly with propagation distance in the medium.
Therefore, the harmonic intensity increases quadratically with the target length, or more
specifically, since the number density N of the medium is adjustable, with the density-
length product. This means that the harmonic yield scales with the square of the number
of (coherently) contributing atoms.

In the second case ii), when ξq is constant with respect to z, the fundamental and
the harmonic field dephase completely within a finite distance given by Lcoh(q). Due to
the constant increase of the phase mismatch ∆Φq with the density-length product, the
achievable harmonic yield is strongly reduced compared to the case of perfect phase-
matching. In approximately lossless media, the functional dependence of the harmonic
yield on the density-length product NL becomes ∝ (NL)2 sinc2 (∆Φq(NL)/2). The
resulting oscillatory maxima in the yield are known as Maker fringes [98] from second
harmonic generation in nonlinear crystals and have also been observed in HHG as a
modulation of the harmonic intensity with target pressure at fixed experimental target
length [95,99,100].

In the most general case iii) of nonlinear dephasing, ξq still depends on z so that it
becomes extremely challenging, if not impossible, to obtain an analytical expression to
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predict the harmonic yield. However, the different individual contributions to the phase
mismatch as described in the second line of (3.22) can be discussed qualitatively. Here,
for the sake of simplicity, the discussion is restricted to the symmetry axis, i.e. r = 0,
and potential reshaping of the pulse envelope and few-cylce effects are neglected. The
first two contributions, ∆ϕn and ∆ϕp, are of dispersive nature and simply originate
from the different refractive indices of the target medium for fundamental and harmonic
frequencies. The dispersive effects have been split into the directly related contribu-
tions of neutral atoms and free electrons because either of the two can be dominant at
the expense of the other depending on the experimental conditions. As discussed in
Section 2.1.3, dispersion leads to a frequency-dependent index of refraction which for a
partially ionized gas becomes [72]

nq(ωq, z, t) = 1 + δnn + δnp

≈ 1 +
e2

2ε0me

N
(
1− Λ(z, t)

)
ω2
r − ω2

q

−
ω2
p(z, t)

2ω2
q

(3.25)

where the plasma frequency

ω2
p(z, t) =

NΛ(z, t)e2

ε0me

(3.26)

is much smaller than ωq for all q so that the effect of the plasma is largest for the
fundamental beam. Here, the density of free electrons is given by the product of the
atomic number density N and the fraction of ionization Λ(z, t). The resonance frequency
ωr of the target atom is determined by the energy separation between its ground and
first excited state. For atomic xenon, which was used for all HHG experiments described
in this thesis, ~ωr = 8.32 eV [101]. Using (3.25), the phase mismatch due to the neutral
atom dispersion becomes

∆ϕn(ωq, z, t) = q
ω1

c
δnn(ω1)z − ωq

c
δnn(ωq)z

= q
ω1

c

e2N
(
1− Λ(z, t)

)
2ε0me

(
1

ω2
r − ω2

1

− 1

ω2
r − ω2

q

)
z

(3.27)

whereas the phase mismatch due to the plasma is given by

∆ϕp(ωq, z, t) = q
ω1

c
δnp(ω1)z − ωq

c
δnp(ωq)z

=
ω2
p

2c ω1

(
1− q2

q

)
z

(3.28)

which is the dominant dispersive effect in the case of strong ionization. Note that the
effective degree of ionization and thus the resulting phase mismatch can be higher than
suggested by (3.28) when the temporal pulse separation is smaller than the plasma
lifetime so that there is residual plasma left when a subsequent pulse arrives at the
target. This can be incorporated into (3.28) if Λ(z, t) in (3.26) is modified to account
for the effective ionization fraction.
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Contribution to ξq Sign
z < 0 z > 0

∂z∆ϕn + +
∂z∆ϕp − −
−∂z∆ϕg − −
−∂zϕI − +

Table 3.1: Signs of the longitudinal evolution of the different contributions to the phase
mismatch (see (3.22)).

The focusing that is usually required to reach the threshold intensities for HHG gives
rise to a geometric phase difference on axis

∆ϕg(ωq, z, t) =

(
q arctan

(
2z

n1b

)
− arctan

(
2z

nqb

))
≈ (q − 1) arctan

(
2z

b

) (3.29)

that can be very large and the dominating contribution in (3.22) for low gas densities
or tight focusing geometries.

The intensity-dependent dipole phase ϕI can be linearized in good approximation so
that

ϕI(z, t) =
∑

α(j)
q I(r = 0, z, t) =

∑
α(j)
q

I0(t)

1 +
(

2z
b

)2 (3.30)

where all quantum orbits involved in the generation of the harmonic order q under
consideration contribute with their individual linear phase parameters α

(j)
q . For the

short trajectories, α
(1)
q is on the order of 1 in units of 10−14 cm2/W whereas the phase

parameter of the long trajectory α
(2)
q is on the order of 10 in the same units.

Looking at (3.27), (3.28), (3.29), and (3.30), some general considerations concerning
the interplay of the different contributions to phase-matching on axis within one confocal
parameter according to (3.22) can be made12. The intensity-dependent phase ϕI(z, t)
evolves with z as the on-axis intensity so that the contribution −∂zϕI(z, t) is always
negative for z < 0 and positive for z > 0. Since the geometric phase mismatch ∆ϕg
increases monotonically with z, −∂z∆ϕg is always negative. For the plasma dispersion,
∆ϕp ∝ −Λ(z)z applies for all high harmonic orders q and since Λ(z) is a symmetric
function due to its intensity dependence, ∂z∆ϕp is negative for all |z| < b. Similarly, for
q such that ωq > ωr, the neutral dispersion ∆ϕn is proportional to

(
1− Λ(z)

)
z so that

∂z∆ϕn > 0 holds for |z| < b because the values of Λ(z) range from 0 (no ionization) to
1 (full ionization).

12Note that while the overall sign may be different in some literature due a different definition of the
phase mismatch ∆Φq, the signs of the individual contributions to (3.22) are consistent within this
thesis.
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From these general considerations, whose results are also summarized in Table 3.1, it
can be seen that ∂z∆ϕn is the only positive contribution around the focus (where ∂zϕI ≈
0) and has to compensate for both ∂z∆ϕp and −∂z∆ϕg. This is possible for certain
experimental conditions by adjusting the gas pressure [97]. However, if the gas target is
placed at the focus, the short and the long trajectory are phase-matched simultaneously
which can be unfavorable in an experiment because of their different divergence resulting
from the radial intensity variation (see Section 3.3.1.5 and Section 3.3.3.3). Positioning
the gas target behind the focus (z > 0), where −∂zϕI contributes as an additional
positive term, allows to preferably phase-match the short trajectory whose intensity-
dependent phase varies less strongly than that of the long trajectory. For tight focusing
geometries or strong ionization, a high gas pressure is required for phase-matching.
In order to reduce the demands on the necessary density of atoms in the interaction
region, it is thus at least beneficial to keep ionization at a low level, if not mandatory to
experimentally achieve phase-matching at all [97, 102].

This is especially important because high gas pressures inevitably lead to reabsorption
of the generated harmonic radiation within the target.

3.3.1.4 Phase matching including absorption

To analyze the effect of absorption in more detail, it is again instructive to differentiate
between the three cases from above. When absorption is considered for perfect phase-
matching conditions (ξq = 0), the harmonic yield does not infinitely grow quadratically
with the density-length product anymore, but saturates for propagation distances in
the target medium that are much larger than the absorption length Labs. The latter is
defined as the distance over which 1/e of the harmonic power is transmitted according
to

Labs(q) =
1

Nσq
(3.31)

with absorption cross section σq. The asymptotically achievable harmonic intensity Iabs

is independent of the gas pressure and just depends on the driving laser intensity, the
harmonic frequency, and the gas species. For NL � NLabs, the harmonic yield scales
quadratically with the density-length product as in the absorption-free case. About 99%
of Iabs are reached for a density-length product of 10NLabs [72].

In the case of linear phase evolution (∂zξq = 0), the effect of the finite coherence length
Lcoh(q) has to be taken into account in addition to that of the absorption length. Since
the length of the target does typically not vary at least within a single experimental run,
the harmonic yield for a fixed medium length Lmed becomes [103,104]

Iq(N) =
Iabs

1 + 4π2
(
Labs

Lcoh

)2

(
1 + e

−Lmed
Labs − 2 cos

(
πLmed

Lcoh

)
e
− Lmed

2Labs

)
. (3.32)

Note that (3.32) depends on the (adjustable) gas density N via Labs and Lcoh. Therefore,
similar to the lossless case, the harmonic yield can show oscillations (Maker fringes) as
a function of pressure due to the cosine term in (3.32). To obtain more than 50% of
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the maximum harmonic yield, the conditions Lmed > 3Labs and Lcoh > 5Labs have to be
met as a rule of thumb [103]. Harmonic generation is then said to be absorption-limited.
It is important to note again that (3.32) strictly only applies for ∂zξq = 0, which can
be realized in a loose focusing geometry (b � Lmed) [105], and for ∂tξq ≈ 0. However,
as long as the coherence length fulfills the absorption-limited conditions within a finite
time window during the pulse and the nonlinear contributions to ξq are small enough not
to cause destructive interference, (3.32) can also be used to approximate the harmonic
yield for a larger range of experimental conditions [96,97].

In the most general case that the phase mismatch ∆Φq nonlinearly depends on z,
which is the case for tight focusing geometries (b � Lmed), numerical methods are
usually employed to predict the harmonic yield for certain experimental conditions.
An important step in such a typical numerical procedure is to determine the level of
ionization at each position in the target as a function of time from adequate ionization
models (e.g. [76, 78]) which then allows to evaluate the different contributions to the
(nonlinear) dephasing parameter ξq(r, z, t).

3.3.1.5 Effects of the radial intensity dependence

So far, it has been assumed that the spatial properties of the focused driving laser beam
are those of a Gaussian beam that remains Gaussian at all times. However, due to the
radial variation of the driving beam intensity, ionization leads to a radially decreasing
density of free electrons that acts as a diverging lens. When ionization is strong, the
main consequence of this so-called plasma defocusing is that the fundamental beam just
reaches an effective intensity in the medium that can be significantly lower than its
focused intensity in vacuum [106, 107]. In that case, the single atom dipole response is
lower and both the geometric phase mismatch and the intensity-dependent phase are
strongly altered compared to the situation of low ionization and purely Gaussian spatial
propagation of the fundamental, thereby leading to largely different phase-matching
conditions.

Independent of the level of ionization, the dipole phase as given in (3.30) becomes
approximately parabolic in the radial coordinate r when considering the effect of the
radial intensity profile of the fundamental beam. This parabolic phase variation, which
corresponds to the transfer function of a lens, differs for the contributions from the
short and the long trajectories. As will be detailed in a later section (Section 3.3.3),
the resulting difference in divergence can be observed in the far-field and exploited to
macroscopically separate the contributions from both trajectories.

3.3.2 Quasi phase-matching

As has been discussed in the previous section, efficient phase-matching of high harmonic
radiation is a complex task. For non-vanisihing phase mismatch ∆Φq, linear or nonlinear
dephasing restricts the distance over which the harmonic field can build up constructively
to one coherence length Lcoh(q). In addition, the high level of ionization that unavoidably
accompanies the high threshold intensities required for the generation of the highest
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energy photons limits phase-matching to high harmonic energies below 130 eV [108].
Motivated by the quest to overcome this limit and to extend phase-matched HHG into
the soft x-ray region, the concept of quasi-phase matching (QPM) has been adopted
from frequency conversion in nonlinear crystals and schemes applicable to HHG have
been devised and studied. Since QPM techniques may also be suitable to selectively
enhance the conversion efficiency of a particular harmonic order under the tight focusing
conditions that are currently required for single-pass HHG experiments at repetition
rates on the MHz level, existing concepts shall be briefly mentioned in this section.

The basic idea behind QPM of nonlinear frequency conversion processes is to either
periodically adjust the phase mismatch such that a constructive build-up is possible over
a larger distance in the nonlinear medium or to actively disrupt the nonlinear process
in spatial regions whose contributions would otherwise destructively interfere with the
harmonic wave. Since the target media typically employed for HHG are isotropic, sev-
eral QPM schemes that rely on a spatially periodic modulation of either the medium
density [109] or of the driving laser intensity have been proposed and demonstrated for
HHG. Note that although all of them yield or promise significantly increased conver-
sion efficiencies, the exact definition of the achievable enhancement varies and therefore
makes a direct comparison of the techniques described in the following difficult.

The group of Kapteyn and Murnane in Boulder proposed [110] and later realized [111]
quasi-phase matched HHG in a hollow waveguide with a perdiodically varying inner di-
ameter leading to alternating driving laser intensity along the waveguide. Following
earlier proposals by Birulin and co-workers [112] and Peatross et al. [113], this scheme
was then turned into an all-optical one based on the interaction of the strong driving
laser beam with a weaker counterpropagating pulse train in the waveguide that leads
to suppression of HHG in regions where the pulses overlap [114–116]. Depending on
whether the counterpropagating pulses are parallely or orthogonally polarized with re-
spect to the main driving laser beam, the disruption of the HHG process is caused by the
induced strongly varying phase or by the resulting nonlinear polarization in the regions
of overlap, respectively, where the former has been shown to be more efficient [117]. A
similar approach where mode beating in a capillary partially suppresses HHG has been
demonstrated [118].

In unguided HHG geometries, a variation of the target medium density can be realized
by using several successive gas targets or an array of targets with appropriate spacing
[119, 120]. If the targets are alternatingly supplied with an efficient medium for HHG
and a second, more quickly ionizing gas, the full ionization of the latter during the rising
edge of the fundamental pulse can prevent high harmonic generation completely in this
spatial region [120]. Recent theoretical studies come to the conclusion that the passive
character of the second medium, which was hydrogen in the experimental demonstration
reported in [120], may not purely originate from its lower ionization threshold compared
to the HHG medium (Ar in [120]), but also from a significantly lower recombination
cross section [121].

Yet another theoretically proposed spectrally tunable QPM scheme suitable for free
focusing geometries is based on HHG in the presence of a static electric field with peri-
odically modulated amplitude along the propagation direction of the driving laser beam
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Figure 3.3: Generic high harmonic spectrum.

in the interaction volume [122, 123]. The suggested experimental method to produce
an approximately static electric field is to illuminate a suitable amplitude mask with a
pulsed long-wavelength laser propagating orthogonally to the driving laser beam. The
QPM effect observed in numerical simulations was attributed to phase variations of the
laser-induced dipole moments that are caused by the static field. The peak field strength
of the latter in the simulations was about three orders of magnitude lower than that of
the driving laser.

Interestingly, one of the earliest proposals for QPM already mentioned HHG in a
non-collinear geometry with two driving beams crossing at angles close to 0 or 180◦

as a potential means to increase the conversion efficiency by a partial compensation of
the medium dispersion and to generate angularly resolved high harmonics [112]. Non-
collinear HHG has been the subject of investigations carried out by the author of this
thesis that will be presented in Chapter 4.

3.3.3 Macroscopic properties of high harmonic radiation

Aside from providing the opportunity to access the spectral regions from the VUV
to the XUV and beyond with comparably simple, inexpensive, and versatile table-top
experimental systems, the attractiveness of high harmonic generation originates from the
superior properties of the generated radiation. To name a few, the light produced by
HHG is highly directional, shows a high degree of both spatial and temporal coherence,
and grants access to ultrafast timescales. While an exhaustive review of all aspects
is beyond the scope of this thesis, this section intends to briefly recapitulate the key
properties of high harmonic radiation. Many of these characteristics are interlinked so
that the classification presented below is merely meant to provide some guidance for the
reader.

3.3.3.1 Spectrum

A generic high harmonic spectrum, as it is typically produced by a many-cycle driving
laser, is shown in Figure 3.3. Only odd harmonics of the driving frequency ω1 can be ob-
served. While this feature of the high harmonic spectrum was explained in Section 3.2.1
by the time periodicity of the emission process (twice per fundamental cycle) that leads
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to a 2ω1 spacing of the harmonics in the frequency domain, a different explanation shall
be presented here: For HHG to be a coherent process, the final state has to be identical
to the initial state so that the parity of the wavefunction must not change, i.e. the
number of involved photons has to be even. At the same time, HHG corresponds to the
conversion of q driving laser photons into a single qth harmonic photon so that parity
conservation requires (−1)q+1 = 1. Consequently, q needs to be odd.

The second characteristic of the spectrum is the plateau of equally intense harmonics
that extends up to the cutoff frequency ωc predicted in (3.8) by single atom consider-
ations. The wavelength range covered by high harmonic radiation reaches down into
the biomedically interesting so-called water window [79] between 4.4 nm and 2.34 nm,
where water is transparent so that the radiation can be used for in vivo microscopy, and
up to harmonic orders of ∼ 5000 and keV energies [80]. Unlike the lowest harmonic
orders, which obey the perturbative intensity scaling Iq ∝ Iq, the plateau harmonics
approximately follow an effective power law Iq ∝ Ip with p < q. Different values for the
exponent p have been used in the literature to approximate the harmonic dipole scaling
depending on the harmonic order under consideration (for example, p ≈ 5 was used for
plateau harmonics in [124]) and the values derived from experiments vary as well. Note
that the shape of experimental spectra can significantly differ from the generic spectrum
shown in Figure 3.3 both due to the effects of phase-matching and when generated by
multi-color driving fields or few-cycle driving lasers (see below).

Under the assumption that the time-bandwidth product remains constant in the HHG
process, the spectral width of individual high harmonic orders centered about frequencies
ωq = qω1 is predicted to be ∆ωq =

√
q∆ω1 from lowest order perturbation theory

and reduces to ∆ωq =
√
p∆ω1 in the case of an effective power law. In reality, a

combination of factors can cause deviations of both the spectral width and the center
frequency. For example, the harmonics generated later during the fundamental pulse
are blueshifted because the density of free electrons increases during the pulse and the
resulting refractive index change blueshifts the fundamental frequency. At the same
time, the spectral width of the plateau harmonics is found to increase while that of the
cutoff harmonics remains unaffected. This can be attributed to the spatial variation of
ionization: The same plateau harmonic can be generated both in regions with high and
low ionization and thus with both shifted and unshifted fundamental frequency whereas
the cutoff harmonics can only be generated in the spatially narrow regions of highest
intensity [125–129]. In addition, the intensity-dependent dipole phase leads to spectral
broadening of the generated harmonics via self-phase modulation but does not affect the
center frequency as long as ionization is negligible. For increasing degrees of ionization,
the shape of the harmonic pulse and its corresponding spectrum is successively altered
due to the depletion of the medium, the index variation due to the free electrons, and
eventually also plasma defocusing. Since all of these effects mostly affect the trailing
edge of the harmonic pulse, the harmonic center frequency is blue-shifted. This shift
can be larger than the one caused by the blueshift of the fundamental [95,130].
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3.3.3.2 Pulse duration

The pulse duration of a single harmonic order q has been the subject of detailed theoret-
ical and experimental investigations. From lowest order perturbation theory, a harmonic
pulse duration τq = τ1/

√
q can be expected whereas longer pulse widths τq = τ1/

√
p are

predicted by models based on an effective process nonlinearity p [68]. More elaborate
theoretical analyses show that the harmonic pulse duration strongly depends on param-
eters such as the driving intensity and the position of the gas target with respect to
the focus due to the effects of the intensity-dependent dipole phase and ionization [130].
However, all these predictions agree that the harmonic pulses can be much shorter than
the generating pulses of the driving lasers.

Therefore, advanced experimental schemes are usually necessary to measure the har-
monic pulse duration. Common techniques rely on the detection of photoelecton spec-
tra obtained from cross-correlating the harmonic and the generating pulses in a gas
target [131, 132] while others are based on polarization gating or streaking [133]. Sim-
ilarly, adapting and extending established IR pulse characterization methods has en-
abled frequency-resolved optical gating (FROG) [134] or spectral phase interferometry
for direct electric-field reconstruction (SPIDER) [135] in the EUV. As expected from
theoretical investigations, the measured pulse durations vary significantly depending
on experimental parameters and harmonic orders [132, 136–138]. For instance, a pulse
width of 10 fs was obtained at the 15th harmonic (at ∼ 53 nm) for a 40 fs fundamen-
tal pulse by means of a ponderomotive streaking method [139], which is in excellent
agreement with the pure perturbative expectation. In contrast, an energy-resolved
cross-correlation method yielded rather long 60 fs 5th harmonic pulses in comparison
to the 80 fs driving pulses at 400 nm [140]. Likewise, pulse durations clearly shorter
than perturbatively expected were measured using EUV FROG (10 fs 9th harmonic
pulses from 44 fs pulses) [134] and EUV SPIDER (13 fs 11th harmonic pulses from 40 fs
pulses) [135]. In the latter experiment, the initially chirped 22 fs harmonic pulses were
further compressed using a polarization gating method. Such a (negative) chirp of
the generated harmonic pulse intrinsically results from HHG as a consequence of the
intensity-dependent dipole phase [130]. It has thus been studied in detail along with
potential ways to (pre-)compensate for it [141, 142] which is particularly important for
spectroscopic applications.

3.3.3.3 Divergence and beam quality

Among other properties, the usability of high harmonic radiation crucially depends
on the divergence and the beam quality because they determine the brightness of the
harmonic source according to (2.17). In the typical HHG geometry, the harmonics are
emitted collinearly with the driving beam (see Chapter 4 for an alternative geometry).
While the divergence that can be obtained from a measurement of the far field angular
distribution of the generated light has been found to approach the prediction of lowest
order perturbation theory, i.e. θq = θ1/

√
q, for harmonic orders near the cutoff [143,144],

the plateau harmonics show a nearly constant divergence [143,144] that reasonably agrees
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with the smaller divergence θq =
√
p θ1/q [68] suggested by an effective power law for

the harmonic intensity. Most favorably for experimental applications, the generated
high harmonic radiation can exhibit near diffraction-limited beam quality (M2 ≈ 2
was measured at 55 nm, for example [145]). Additionally, it has been shown that the
experimental parameters resulting from an optimization of the conversion efficiency also
lead to the best harmonic beam quality so that the highest harmonic flux is obtained at
the highest brightness [146].

As mentioned earlier, the radial intensity variation of a Gaussian driving beam causes
self-defocusing of the harmonic radiation on account of the intensity-dependent dipole
phase. The effect is larger for the long trajectory and manifests itself in a far-field beam
profile consisting of a collimated central part from the short trajectory on top of a more
divergent pedestal from the long trajectory [147, 148]. This macroscopically observ-
able difference enables the geometrical post-selection of the contribution from a certain
quantum orbit for applications. Moreover, it also allows the direct experimental deter-
mination of the atomic dipole phase from spatial interferometry [149–151] in contrast to
approaches where the phase is inferred from the chirp rate of the harmonics [141,152].

3.3.3.4 Coherence

The high degree of spatial and temporal coherence of high harmonic radiation is one of
its most important properties because it permits its use for optical frequency metrol-
ogy [51, 153], for diagnostic purposes in the field of EUV lithography, and for time-
resolved microscopy with high spatial resolution. While high harmonic radiation would
naively be expected to be coherent from purely classical considerations due to the coher-
ence of the driving source and the nonlinear conversion process itself, the semi-classical
description of HHG according to the three-step model does not explain the coherence
at all. Although a quantum mechanical description remedies this shortcoming, several
intrinsic details of the HHG process can potentially limit the coherence: Since contri-
butions to a certain harmonic order can originate from different quantum orbits with
different associated intensity-dependent phases and from different half-cycles within a
driving laser pulse, minor amplitude noise of the fundamental laser can cause large am-
plitude and phase noise of the harmonic radiation. At the same time, both spatial and
temporal variations of the experimental conditions such as, for example, a refractive
index change due to the electron plasma caused by ionization or density fluctuations in
the gas target can also be deleterious to the coherence of the harmonic radiation. Several
research groups have thus conducted experiments to study the coherence properties of
high harmonics (see [95] for a review of results).

The spatial coherence has been investigated by analyzing the fringe visibility of the
interference pattern produced by either moving a double slit across the illuminating har-
monic beam [154–156] or by a Fresnel-mirror interferometer [157]. Early experiments
using a free focusing geometry measured high spatial coherence for a large number of
harmonic orders with the general trend of decreasing coherence with increasing order
and intensity [154, 155]. The latter was attributed to ionization and possibly intensity-
dependent phase effects. Later experiments corroborated this hypothesis and addition-
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ally investigated the influence of the target pressure and the focus position with respect
to the target [157], thereby confirming earlier theoretical predictions [130]. An extremely
high degree of spatial coherence surpassing that achieved in free focusing geometries was
found for high harmonic radiation generated under the improved phase-matching con-
ditions provided by a hollow fiber [156].

The temporal coherence of high harmonics has been studied in similar experiments
by measuring the fringe visibility of the intereference pattern produced by two spatially
separated EUV sources whose driving pulse trains originated from the same laser and had
a variable time delay [158–160]. While long coherence times could be deduced from the
centers of the interference patterns in good agreement with the expected harmonic pulse
durations, spatially separable interference structures were observed in the far field for
certain orders. These were attributed to the different contributions from the short and
the long trajectory, of which the former showed a high degree of temporal coherence,
whereas the latter exhibited a very short coherence time. The observed variations of
coherence times as a function of harmonic order and experimental parameters such as
laser intensity and longitudinal target position are in good agreement with theoretical
predictions of the semi-classical model [161–163].

In terms of spectroscopy, HHG provides a method to transfer frequency comb technol-
ogy into the extreme ultraviolet because each harmonic order will contain a frequency
comb centered about the respective harmonic frequency if the driving laser is a frequency
comb and the mutual phase coherence of consecutive pulses is maintained during the gen-
eration process. Since the phase noise power spectral density scales as q2 with harmonic
order, which can eventually lead to the so-called carrier collapse beyond some order q,
proving the comb structure of the generated EUV radiation has been one of the main
challenges since the first realization of table-top high repetition rate EUV sources [8,9].
The comb coherence was confirmed experimentally for the 3rd harmonic [8] and the 7th
harmonic [164] and for the 7th, 13th, and 17th harmonic via direct frequency comb spec-
troscopy of single photon transitions in atomic Xe, Ar, and Ne, respectively [11,12]. More
recently, the first heterodyning of two EUV frequency combs was reported [165,166].

3.3.3.5 Conversion efficiency and wavelength scaling

As was detailed above in the section on phase-matching, the achievable overall conversion
efficiency of HHG is extremely sensitive to the experimental conditions. In numerous
theoretical and experimental studies (e.g. [96, 97, 102, 103, 105, 107, 167–186]), special
attention has therefore been paid to the optimization of the high harmonic yield and its
dependence on parameters such as the focusing geometry, the shape and the pressure
of the target medium, and the beam profile, the pulse duration and the wavelength
of the driving laser. The attainable conversion efficiencies also depend on the spectral
region of interest: The generation of the shortest wavelengths is only possible with
light noble gases due to their higher ionization potential while the recombination cross
section and thus the yield is larger for heavier noble gases. Consequently, the highest
conversion efficiencies into a single harmonic order, reaching 4.3×10−4 [187] for the 11th
harmonic (∼ 73 nm) and about 5× 10−5 [103,187,188] for the 15th harmonic (∼ 53 nm)
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of Ti:sapphire-based sources, have been reported for Xe as a target medium. Higher
energy radiation has been generated with decreasing efficiencies ranging from 3 × 10−5

for the 23rd harmonic (35 nm) [96] and 1.5× 10−5 for the 27th harmonic (29.6 nm) [189]
generated in Ar to 5 × 10−7 for the 59th harmonic (13.5 nm) [190, 191] generated in
Ne. At multi-MHz repetition rates, the largest conversion efficiencies on the order of
10−7 [192,193] have been achieved for the 11th harmonic (∼ 72 nm) using cavity-assisted
HHG.

While both experimental and theoretical studies agree that the harmonic yield varies
strongly with the wavelength λ1 of the driving laser, the extracted scaling law for the
conversion efficiency, ∝ λ

−(5...6)
1 , differs depending on which parameters are fixed in the

comparisons and whether the considered harmonic orders belong to the plateau or to
the cutoff region of the high harmonic spectrum [168, 171, 178, 179, 186, 194–208]. In an
attempt to exploit this favorable scaling with wavelength, a femtosecond enhancement
cavity for intracavity-HHG using a driving laser in the visible was set up in our group.
However, problems arising from a degradation of the cavity mirrors when subjected to
high intracavity power levels in a vacuum environment were found to limit the overall
performance of the system [209]. Efforts to overcome these limitations are currently
under way.

In addition to the general dependences sketched above, the macroscopic harmonic
yield is found to show unexpected modulations as a function of laser intensity under
certain experimental conditions. These can be attributed to so-called quantum path
interferences, which result from a coherent superposition of the contributions of different
quantum paths to the overall harmonic signal [164,210,211].

3.3.3.6 Polarization

When isotropic media like noble gases are employed as the nonlinear medium for HHG,
according to the simple man’s model, the driving laser needs to have linear polarization
for the active electron to return to the nucleus in the recombination step. In that case,
the generated high harmonic radiation is also linearly polarized in the same direction as
the driving field, thereby excluding the possibility to separate fundamental and harmonic
radiation using a polarization-based scheme. Studies of the influence of varying degrees
of ellipticity of the driving laser indeed reveal that the high harmonic yield decreases
substantially for ellipticities on the level of a few percent [194,212–214]. However, several
different schemes based on elliptic driving pulses and proper combinations thereof have
been proposed and realized to generate high harmonic radiation with an adjustable
elliptic polarization (see, for instance, [215] and references therein). In that context, it
was also realized by Corkum and co-workers that the polarization dependence of HHG
can be used as a so-called gating mechanism. Such a polarization gate, implemented by
overlapping two fundamental pulses with elliptic or circular polarization in a suitable
way, limits efficient high harmonic generation to the narrow temporal window in which
the resulting driving polarization is linear. If this temporal window is adjusted to be
shorter than one cycle of the fundamental field, only a single burst of high harmonic
radiation, commonly denoted an isolated attosecond pulse, will be emitted [213]. The
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following section attempts to provide an ultra-brief synopsis of the vast field of attosecond
pulses.

3.3.3.7 Attosecond pulses

Extending an earlier idea of Hänsch [216] who had suggested the Fourier synthesis of
sub-femtosecond pulse trains via nonlinear phase sychronisation of several cw lasers oper-
ating at equidistant frequencies, the intrinsic potential of high harmonic generation and
its periodic spectrum as a means to provide attosecond pulse trains was first realized by
Farkas and Tóth [217] and Harris, Macklin, and Hänsch [218]. Similar to mode-locking
theory, the fundamental requirement is that different harmonic orders have comparable
amplitudes and are locked in phase. While the plateau in the high harmonic spectrum
assures the former in most instances, the latter requirement cannot easily be fulfilled
on a single atom level without trajectory selection [219]. However, it was shown the-
oretically that sufficiently robust experimental conditions for the generation of several
phase-locked harmonics from the contributions of a single trajectory exist [219,220]. The
first experimental observation of a train of attosecond pulses was reported by Paul et
al. [221] who reconstructed 250 as pulses from measured data. The achievable pulse dura-
tion should, in principle, become shorter when the number of contributing phase-locked
harmonics rises. However, there exists an optimum number of contributing harmonic
orders beyond which the duration of the attosecond pulses increases because the chirp
resulting from the HHG process leads to a frequency-dependent phase-difference between
adjacent harmonic orders [222].

The earliest proposed schemes for the generation of isolated attosecond pulses (IAPs)
either relied on polarization gating of many-cycle pulses [213], as mentioned above, or on
selective filtering of the continuous part of the high harmonic spectrum that is produced
near the cutoff when using few-cycle driving pulses [223–225]. It was not until 2001 that
Hentschel and co-workers [226] experimentally demonstrated an isolated 650 as pulse
centered at about 90 eV for the first time. There have been strong experimental efforts
to push the achievable pulse durations towards the atomic unit of time (∼ 24 as) which
seems within reach given the current records for the shortest IAPs (∼ 80 as [227] and
67 fs [228]). To generate IAPs with experimentally less challenging longer fundamental
pulses, different gating mechanisms have been proposed and realized (see [229] for a
review). A recent proposal [230] discussed a scheme that is based on a spatiotemporal
coupling of the fundamental laser beam and should allow to resolve the individual pulses
of the generated attosecond pulse train angularly. This more universal method, termed
“attosecond lighthouse” because of the angular separation of the attosecond pulses, was
recently demonstrated in an experiment involving HHG from a solid target [231]. As
will be discussed briefly in Chapter 4, a non-collinear geometry for the generation of
high harmonics, which was investigated in detail in the course of this thesis, may be
well-suited to implement a similar technique .

Further and more detailed information on attosecond physics can be found in respec-
tive reviews and books [70–73,232,233].
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3.3.3.8 Multi-color driving fields

Since the first observation of HHG, there has been a strong interest in how a multi-
color fundamental field affects the generated high harmonic radiation and in how it can
potentially be used to optimize the harmonic yield (see, e.g., [194,234–238] and references
therein). One striking result of the investigations concerning this matter, which were
mostly done with combinations of commensurate frequencies such as ω1 and 2ω1 due
to experimental convenience, is the occurence of even harmonics of ω1 in the spectrum.
Compared to the case of a single-color driving field, for which the HHG process repeats
itself symmetrically twice per laser period (cf. Section 3.2.1), the addition of a weak
field of different color is sufficient to break this inherent symmetry so that high harmonic
emission can happen only once per cycle. In the frequency domain, this periodicity leads
to a spacing of the harmonic orders by ω1. An attractive effect of a multi-color driving
field is that the conversion efficiency13 can be orders of magnitude larger than in the
single-color case because of an enhanced, but not yet detrimental ionization rate and a
favorable alteration of the contributing trajectories. For example, Kim et al. reported
a conversion efficiency as high as 5× 10−5 for the 38th harmonic (21.6 nm) generated in
He [237] when using a bichromatic driving field.

13The most unambiguous definition of conversion efficiency in the multi-color case is, of course, to relate
the generated high harmonic power to the total driving power incident on the gas target. However,
it is advisable to check the exact definitions used when comparing numbers from the literature.
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3.4 Practical considerations

Due to the limited average power of currently available laser systems providing ultrashort
pulses, high harmonic generation is most commonly driven at pulse repetition frequencies
in the kHz range or below. At these comparably low repetition rates, even moderate
average powers result in pulse energies on the mJ-level and above, which are sufficiently
high to reach the required threshold intensities for HHG (cf. (3.24)) using rather relaxed
focusing conditions. That way, the geometric phase mismatch is minimized while the
confocal parameter and thus the potential interaction volume and the high harmonic
yield are simultaneously maximized.

If the repetiton rate is to be increased by three or more orders of magnitude to the
multi-MHz regime, an according boost in average power will be required to obtain the
same peak power for otherwise unchanged laser parameters so that the same focusing ge-
ometry can be used. However, current laser technology is not capable of providing these
extreme average powers on the order of kW in pulses with extremely short durations
due to the damage thresholds of the employed gain materials.

The emergence of cavity-assisted high harmonic generation, i.e., driving the HHG
process inside a passive external enhancement resonator that can boost the average power
of the driving laser by factors exceeding 1000, has enabled the successful realization of
EUV sources at repetiton rates of more than 100 MHz [8, 9, 164, 209]. Nevertheless,
the achievable fundamental peak powers still necessitate tighter focusing into the gas
target than required at kHz repetition rates. The same is true for the latest state-
of-the-art solid state and fiber laser systems whose output powers are approaching the
kW-level [239,240], however, at the expense of longer pulse durations and not diffraction-
limited beam quality so that tight focusing remains mandatory for HHG.

The following subsections therefore present some practical considerations for the ex-
perimentally realistic case that a certain harmonic order shall be generated efficiently at
a very high repetition rate with a laser system whose peak power makes a comparably
tight focus necessary. Although it is fairly impossible to estimate the harmonic yield in
a simple way because the details of phase-matching cannot be fully captured without a
numerical simulation, some general insight can be gained concerning the required focus-
ing and the associated level of ionization at the resulting intensity as a function of both
the wavelength and the pulse duration of the driving laser and the choice of the target
gas.

3.4.1 Threshold volume

For a Gaussian laser beam with peak power Pp focused to a certain peak intensity I0,
the threshold intensity Ith(q) limits the spatial extent of the interaction region in which
I ≥ Ith(q) so that the respective (non-perturbative) qth harmonic can be generated. On
axis, Ith(q) is reached in the symmetric interval {−0.5Lth(q), 0.5Lth(q)} around the laser
focus with

Lth(q) = b

√
I0

Ith(q)
− 1 (3.33)
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which becomes equal to the confocal parameter b when the peak intensity I0 of the laser
is twice as high as the threshold intensity of the harmonic order under consideration.
The transversal threshold radius

wth(z, q) = w0

√√√√1 + (2z
b

)2

2
ln

(
I0(

1 + (2z
b

)2
)
Ith(q)

)
(3.34)

also depends on the longitudinal distance from the focus and reaches a maximal value

wmax(q) = wth(z = 0, q) = w0

√
1

2
ln

(
I0

Ith(q)

)
(3.35)

at the focus. Using (3.33) and (3.34), the volume in which the laser intensity exceeds the
threshold intensity Ith(q), henceforth denoted threshold volume, can be approximated
from the integration of πw2

th(z, q) over a distance Lth(q) across the laser focus by

Vth(q) '
1

18
λ b2

[√
I0

Ith(q)
− 1

(
5 +

I0

Ith(q)

)
− 6 arctan

(√
I0

Ith(q)
− 1

)]
. (3.36)

Since the maximally available peak power Pp is determined by the usually fixed pulse
energy WP and pulse duration τ of the available laser system, (2.34) yields an upper
limit

bth(q) =
4Pp

λIth(q)
(3.37)

for the experimentally adjustable confocal parameter and hence for the threshold volume.
Note that for a focusing geometry corresponding to a confocal parameter bth(q), the
threshold intensity is just reached at a single point (on-axis at the focus) so that even
tighter focusing is necessary to obtain a finite threshold volume.

Since (3.36) is only valid for b ≤ bth(q), it can be rewritten in terms of the quantity
bq = b/bth(q) to obtain the normalized threshold volume

Vq ∝ b2
q

[√
1

bq
− 1

(
5 +

1

bq

)
− 6 arctan

(√
1

bq
− 1

)]
(3.38)

which is plotted in Figure 3.4 and shows a clear optimum at bq ' 0.363 corresponding to
a peak intensity of I0 ' 2.75Ith(q). It is obvious that lasers with high peak powers allow
weaker focusing and accordingly larger confocal parameters to reach Ith than lasers with
lower peak powers, i.e. the absolute size of the threshold volume depends on the laser
parameters. If those are fixed, the purely geometric considerations presented above yield
a condition to maximize the potential generation volume of a specific harmonic order q.

It is, however, important to realize that while the threshold intensity Ith(q) is a phys-
ically meaningful parameter because the generation of the desired harmonic order can
be expected once the focused peak intensity of the driving laser exceeds it, the physical



52 Theory of high harmonic generation

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bq

V
q

Figure 3.4: Normalized threshold volume Vq as a function of normalized confocal parameter
bq. The maximum value is obtained at bq ' 0.363 which corresponds to a peak intensity of
I0 ' 2.75Ith(q).

significance of the maximum threshold volume is limited. There are two main reasons
for that: Firstly, the spatial intensity distribution of a Gaussian laser beam within
the threshold volume is not homogeneous (and additionally time-dependent) so that a
higher yield may be obtained from a considerably smaller interaction volume than the
maximum threshold volume because of the highly nonlinear intensity-dependence of the
dipole response. Secondly, since phase matching eventually determines the effective in-
teraction volume, the latter can be significantly smaller than the maximum threshold
volume. Therefore, focusing to 2.75Ith(q) should just be considered as a good starting
point for further experimental investigations. In practice, modifications of the focus-
ing conditions can be more easily realized for a single pass than for a cavity-assisted
HHG experiment because a simultaneous readjustment of the resonator is required in
the latter to maintain the enhancement.

Apart from the varying threshold volume, an important consequence of adjusting the
confocal parameter and thus the peak intensity is the change of the level of ionization
that will be discussed in the following.

3.4.2 Ionization in different gases for various laser parameters

As already mentioned before, the generation of a certain harmonic order q is always
connected with an unavoidable degree of ionization which may form a significant con-
tribution to phase matching due to the dispersion of the generated free electrons. It is
therefore instructive to calculate the resulting level of ionization for a variety of laser
parameters under the assumption that harmonic radiation at a certain wavelength is to
be produced in different noble gases.

For obvious reasons, the particular target wavelength chosen for the following discus-
sion is ∼ 60.8 nm, the one required to excite the 1s-2s two-photon transition in He+.
Light at this wavelength can, for example, be generated as the 17th harmonic of an
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547 nm 790 nm 1030 nm IBSI

(q∗ = 9) (q∗ = 13) (q∗ = 17)

Xe 9.3 4.5 2.7 8.7
Kr 7.2 3.5 2.1 15.4
Ar 5.2 2.5 1.5 24.7

Table 3.2: Threshold intensities Ith(q∗) for the generation of ∼ 60.8 nm radiation in different
noble gases from different fundamental wavelengths according to (3.24) in units of 1013 W/cm2.
The barrier suppression intensity IBSI (see Section 3.2.1) is also listed for comparison.

Yb-based laser emitting at a center wavelength of about 1030 nm, as the 13th harmonic
of a Ti:Sapphire laser operating at ∼ 790 nm, or as the 9th harmonic of an optical para-
metric amplifier tuned to ∼ 547 nm. The respective threshold intensities depend both
on the driving laser wavelength and the target gas and are summarized in Table 3.2 for
the above laser systems and the noble gases xenon (Xe), krypton (Kr), and argon (Ar).
While the barrier suppression intensity (see Section 3.2.1) is also listed for comparison,
the noble gas neon (Ne) is omitted in the table because the chosen target wavelength
corresponds to a below-threshold harmonic for which (3.24) and hence the threshold
intensity concept is not valid.14

Since ionization depends on the pulse duration, an intensity range starting at the indi-
vidual threshold intensities is considered for a set of four representative pulse durations,
namely 10 fs, 35 fs, 100 fs, and 680 fs. Pulses of the latter duration are provided by the
Yb:YAG-based Innoslab amplifier that was employed for the single pass HHG experi-
ments presented in Chapter 5. As will be described there, the pulses have been used both
uncompressed and nonlinearly compressed to about 35 fs which explains the choice of
the first two pulse durations. The additional pulse widths considered in the comparison
are picked as complementing examples of typical pulses used in HHG experiments.

The results presented below have been calculated employing the Yudin-Ivanov ion-
ization model [76] because the widely used ADK rate underestimates the degree of
ionization produced in the considered transient intensity regime of Keldysh parameters
γK ≈ 1 that is typical of HHG at multi-MHz repetition rates. Note that in the following
discussion, certain parameters have been fixed to experimentally reasonable values in
order to simplify the presentation.

3.4.2.1 Ionization at fixed intensity and driving wavelength

As a first example, Figure 3.5 depicts a comparison of the fraction of ionization caused
in xenon (solid magenta), krypton (dashed blue), argon (dash-dotted red), and neon
(dotted green) by a single pulse of either 680 fs or 35 fs duration. The results are ob-
tained for pulses with a center wavelength of 1030 nm that are focused to an intensity of

14Ionization rates can also be calculated for the generation of the desired radiation as a below-threshold
harmonic in Ne. However, this does not harm or restrict any of the discussions of general trends
presented here.
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Figure 3.5: Comparison of the fraction of ionization of xenon (solid magenta), krypton (dashed
blue), argon (dash-dotted red), and neon (dotted green) subject to a single (a) 680 fs and a
single (b) 35 fs pulse at the same peak intensity of 7.3× 1013 W/cm2 which corresponds to
2.75Ith for the generation of the 17th harmonic in Xe with a driving wavelength of 1030 nm.
The normalized pulse envelope is shown as a thin solid black line for reference. (a) While Xe is
fully ionized at the pulse peak, the degree of ionization after the passage of the pulse reaches
about 45% in Kr, about 3% in Ar, and practically zero in Ne. (b) The level of ionization is
reduced to less than 40% in Xe, less than 5% in Kr, and about zero for Ar and Ne.

7.3× 1013 W/cm2, which corresponds to 2.75Ith(17) for Xe at 1030 nm. When subject to
the 680 fs pulse (Figure 3.5a), Xe is already fully ionized at the pulse peak whereas the
degree of ionization after the passage of the pulse reaches about 45% in Kr, about 3%
in Ar, and practically zero in Ne. As illustrated in Figure 3.5b, the level of ionization is
significantly reduced to less than 40% in Xe, less than 5% in Kr, and about zero for Ar
and Ne for a 35 fs pulse with the same peak intensity.

Without consideration of the different recombination cross sections of the noble gases,
this comparison for a given focusing geometry and peak intensity emphasizes two things:
(i) It may be advantageous to use shorter pulses and lighter noble gases for HHG because
the lower plasma dispersion from the free electrons can be compensated by the neutral
atom dispersion more easily or at all. (ii) Depletion of the ground state is less significant
for shorter pulses so that there are more neutral atoms left to contribute to HHG,
particularly after the temporal peak of the pulse when the intensity still exceeds the
threshold intensity (as long as plasma defocusing is neglected).

3.4.2.2 Ionization for different driving wavelengths

Figure 3.6 shows the fraction of ionization at 2.75Ith(q
∗), where q∗ denotes the respective

harmonic order required to reach the target wavelength of ∼ 60.8 nm, caused in Xe, Kr,
and Ar by pulses at three different center wavelengths for the same pulse durations as
in Figure 3.5.

As can bee seen in Figure 3.6a, the high threshold intensities at 547 nm result in
complete ionization of all gases directly after the 680 fs pulse. At 790 nm, ionization is
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Figure 3.6: Fraction of ionization caused in Xe, Kr, and Ar by single (a) 680 fs and (b) 35 fs
pulses at three different center wavelengths of 547 nm, 790 nm, and 1030 nm at 2.75 times the
respective threshold intensities for the generation of ∼ 60.8 nm radiation in the different noble
gases. The level of ionization caused by the long pulses (a) is only different from 100% for Kr
and Ar at 1030 nm and for Ar at 790 nm.

only different from 100% in Ar, which has the highest ionization potential of the three
considered noble gases, and amounts to about 5%. At 1030 nm, switching from Xe to
Kr and Ar drastically reduces the corresponding level of ionization from 100% to 10%
and below 0.1%, respectively. The same trend, that is, a lower fraction of ionization for
larger UI and longer λ1 also holds in an even more pronounced way for the 35 fs pulse
as becomes obvious from Figure 3.6b. When a driving laser at 1030 nm is employed, the
per pulse ionizations amount to below 1% except in the case of Xe, for which the ionized
fraction is about 40%. At the Ti:sapphire wavelength, Xe is fully ionized whereas Kr and
Ar exhibit reduced ionization levels of about 20% and 0.3%, respectively. The visible
laser causes complete ionization but in the case of Ar where ionization reaches 40%.

Assuming the same relative peak intensities of 2.75Ith(q
∗), the fraction of ionization

is depicted for Xe (Figure 3.7a), Kr (Figure 3.7b), and Ar (Figure 3.7b) separately for
the same three driving wavelengths and two additional pulse durations. It becomes very
obvious that the generation of 60.8 nm light from the short wavelength driver at this
intensity will be accompanied by full ionization after the pulse if the target medium is
Xe or Kr whereas using Ar leads to less than 50% ionization for the sub-50 fs pulses. A
Ti:sapphire driving laser system will cause strong ionization in Xe while allowing HHG
at ionization levels below 50% for all but the 680 fs pulse in Kr and below 10% in Ar,
thus promising relaxed phase matching conditions for the generation of 60.8 nm light.
As expected, the longest driving wavelength causes the least amount of ionization in all
gases and is thus most promising in terms of phase matching.

Note that the nearly complete ionization of the more efficient noble gases Xe and Kr
at the end of a single 547 nm pulse does not necessarily prevent the generation of the
desired harmonic order during the pulse as long as there are neutral atoms left before
the threshold intensity is reached. Consequently, since the conversion efficiency of HHG
scales with λ

−(5...6)
1 (cf. Section 3.3.3.5), the overall yield can still be reasonably high for
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Figure 3.7: Fraction of ionization caused in (a) Xe, (b) Kr, and (c) Ar after single 10 fs, 35 fs,
100 fs, and 680 fs pulses at three different center wavelengths of 547 nm, 790 nm, and 1030 nm
at 2.75 times the respective threshold intensities for the generation of ∼ 60.8 nm radiation in
the different noble gases.

a short wavelength driving laser even in the extreme case of full depletion of the target
medium after the pulse as shown by Ditmire et al. by loosely focusing a high energy
laser into neon [171]. However, once the repetition rate reaches the regime in which the
target atoms cannot be replaced efficiently before the next laser pulse is incident, the
yield is expected to drop significantly because there are effectively no neutral atoms left
for HHG.

3.4.2.3 Ionization as a function of intensity

The intensity level that has been considered so far was 2.75Ith(q
∗) which maximizes the

geometric threshold volume. To illustrate the highly nonlinear intensity-dependence,
Figure 3.8 presents the level of ionization in Xe and Kr for a 1030 nm driving laser
and different pulse durations as a function of intensity. Again, Xe is seen to be very
likely ionized with increasing intensity whereas Kr remains almost neutral in the cov-
ered intensity range for all considered pulses but the 680 fs one which cause up to 10%
ionization.
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Figure 3.8: Ionization in (a) Xe and (b) Kr caused by a 1030 nm driving laser with 10 fs,
35 fs, 100 fs and 680 fs pulses at different intensities between (gas-specific) Ith(q = 17) and
2.75Ith(q = 17) (compare Table 3.2). While the fraction of ionization becomes quite significant
in Xe with increasing intensity even for the 10 fs pulse, the degree of ionization in Kr is less
than 2% even at 2.75Ith for all pulses except the 680 fs one which causes 10% ionization.

All ionization levels presented so far were calculated for the passage of a single pulse.
At repetition rates in the multi-MHz regime, additional plasma effects arise because the
target atoms cannot be exchanged at a sufficiently high rate (i.e. within nanoseconds)
so that the same target atom experiences several successive pulses. Consequently, some
residual degree of ionization exceeding the one predicted by single pulse ionization rates
remains on average. This background plasma may cause deleterious phase shifts and
instabilities in femtosecond enhancement cavities used for cavity-assisted HHG [17, 18,
241] and thus severely constrain the achievable enhancement (particularly due to the
reduced spectral overlap of the seed laser and the spectrally blueshifted fundamental
inside the resonator). For single pass HHG, the main effect of the higher plasma density
is that it aggravates phase matching.

From the comparisons of ionization levels presented in this section and the discussion
of phase matching in Section 3.3.1, it can be concluded that higher gas pressures are
required for phase matching when heavier and more efficient noble gases are to be used
as the target medium because they ionize more quickly and hence cause a higher free
electron plasma density at the same laser parameters. Finding the optimum balance
between a strong dipole response, which profits from higher intensity, and good phase
matching, which becomes increasingly difficult at higher levels of ionization and thus
at higher intensities, is a challenging and intricate task for itself. In addition, technical
constraints due to the finite pumping speed of available vacuum pumps may come into
play. From a technical point of view, it is therefore desirable to generate high harmonics
at the lowest possible target pressure to reduce the gas load on the vacuum system.
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3.4.3 Gas target

The necessity of tight focusing geometries for HHG at multi-MHz repetition rates poses
an important constraint on viable gas target designs because the gas distribution has to
be extemely localized to avoid reabsorption of the generated harmonic radiation within
the target, particularly when high phase matching pressures are needed. There are three
different generic designs that have been commonly used in experiments for unguided
HHG: So-called through-nozzles typically consist of a thin, end-sealed metal tube or
glass capillary from which the gas exits along the axis of propagation of the driving
beam through small (often laser-drilled) holes. To minimize this collinear extension
of the target, one can alternatively use metal needles or glass capillaries from which
the target gas freely expands into the vacuum orthogonally to the laser beam. These
nozzles, sometimes denoted “end-fire nozzles” [193, 241], produce transsonic gas jets
with rather localized gas density profiles. Gas cells, which have predominantly been
used in combination with large laser confocal parameters at low repetition rates, form
the third generic design. Since such a cell basically merges into a through nozzle when its
dimensions are adapted to small confocal parameters, this design will not be discussed
here further.

The main advantage of the through-nozzle geometry is that the density distribution
of the target gas inside it is rather homogeneous and allows suitably high interaction
pressures, which are known in good approximation from the backing pressure in the gas
supply line, at low background pressures in the vacuum chamber. While it is comparably
easy to align the through-nozzle because the laser beam has to be guided through it,
the gas effuses from the nozzle in the direction of propagation of the laser. This can be
disadvantageous because it leads to a larger spatial extent of the target and thus higher
absorption of the generated harmonics in it. Furthermore, the gas exchange rate is lower
than for an end-fire nozzle which leads to plasma accumulation near the laser focus and
hence limits the usage of that nozzle type in cavity-assisted HHG [241].

End-fire nozzles are much harder to align in practice but produce very localized gas
jets, thereby minimizing absorption along the laser propagation axis. In addition, since
the gas propagates at trans- and supersonic speed, it is exchanged faster than in a
through nozzle so that the influence of plasma accumulation at repetition rates on the
MHz-level is mitigated. The main disadvantage of the end-fire geometry is that the
density distribution of the freely expanding gas varies strongly as a function of position
which makes it very challenging to estimate actual interaction pressures in an experiment
and requires a much higher gas intake into the vacuum chamber than for a through
nozzle.

The single pass HHG experiments described in Chapter 5 were performed using end-
fire nozzles. Since the gas density seen by the laser beam is an important parameter
for phase matching, the density profiles produced by end-fire nozzles shall be briefly
reviewed in the following. While the full description of a supersonic expansion of a real
compressible gas from a pressurized nozzle into a vacuum chamber requires numerical
methods and simulations that are, for example, available in the field of computational
fluid dynamics (CFD), a lot of general insight can be gained studying the one-dimensional
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adiabatic expansion of an ideal gas into vacuum which can be described analytically. The
ideal gas equation

p = ρRsT (3.39)

links pressure p, (mass) density ρ, and temperature T of the gas via the specific gas
constant Rs = R

mm
, where R and mm are the universal gas constant and the molar mass

of the gas, respectively. It is thus sufficient to know two quantities, e.g. temperature and
pressure, initially to fully characterize the behavior of the gas. The gas flow directly at
the interface between nozzle and vacuum will always be sonic irrespective of the residual
background pressure pb in the vacuum chamber if the ratio of initial pressure p0 to
background pressure pb is larger than ((γ + 1)γ−1)γ(γ−1)−1

where γ = Cp
CV

is given by the
ratio of the (specific) heat capacities at constant pressure and volume, respectively. From
equating the speed of sound cs =

√
γRsT with the speed of the gas U =

√
2Cp(T0 − T )

that can be derived from thermodynamics under the assumption of constant Cp = γ
γ−1

Rs

one gets

T

T0

=

(
1 +

γ − 1

2
M2

)−1

(3.40a)

p

p0

=

(
1 +

γ − 1

2
M2

) γ
γ−1

(3.40b)

ρ

ρ0

=

(
1 +

γ − 1

2
M2

) 1
γ−1

(3.40c)

where the Mach number M = U
cs

has been introduced. Since the flow is underexpanded
due to the pressure difference between nozzle and vacuum chamber, the velocity of the
gas has to increase during the expansion to fulfill the continuity equation ṁ = ρUA that
requires constant mass flow ṁ through unit area A. Consequently, the Mach number M
increases with increasing distance from the nozzle outlet. In good approximation, the
occurrence of shocks in the flow that abruptly terminate the increase in gas velocity to
meet the external pressure conditions can be neglected here because the ratio of nozzle
and background pressure usually amounts to several orders of magnitude in typical
HHG experiments so that the gas reaches the free molecular flow regime after a distance
smaller than that for the Mach disk shock.

As mentioned above, real gas jets require a 3d numerical analysis. However, it is
possible to fit analytical formulas to these results to approximate the behavior of the flow.
Using the closed form approximations given in [242], the pressure drop normalized to the
backing pressure along the centerline of end-fire nozzles with different orifice diameters
is shown in Figure 3.9 as a function of distance from the outlet for monoatomic gases
(γ = 5

3
) such as the noble gases. In agreement with full CFD simulations [193,241], the

figure reveals that at a finite distance from the nozzle orifice, higher gas densities are
reached for larger diameter nozzles. However, moving the driving laser beam very close to
the nozzle to exploit the high gas densities there may lead to irreversible and uncontrolled
damage of the nozzle. Hence, using nozzles with bigger orifices than required to match
the threshold volume is expected to be beneficial as long as the larger spatial extent of
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Figure 3.9: Evolution of ratio between local pressure p and backing pressure p0 as a function of
distance from the nozzle orifice along the centerline of nozzles with different orifice diameters.

the gas jet along the propagation axis of the laser beam remains small enough not to
absorb the generated harmonics. Again, careful experimental optimization of the target
parameters is required.

The high gas intake into the vacuum chamber can be mitigated by additional gas
catch assemblies. If these are located in direct proximity to the target and connected to
a roughing pump, they reduce the load on the (turbomolecular) pumps attached to the
vacuum chamber and hence minimize absorption of the generated harmonic radiation
upon propagation in the chamber. The efficient implementation of such a gas trap has
been reported [243].



4 Non-collinear high harmonic
generation (NCHHG)

This chapter reports on the results of a detailed experimental and numerical investigation
of non-collinear high harmonic generation (NCHHG). In particular, we will show that
the non-collinear geometry allows a time-resolved analysis of how a temporally varying,
spatially modulated driving field affects the spatial emission pattern of the generated
high harmonic radiation. That way, NCHHG provides partial access to the microscopic
high harmonic response. Experimental results will be compared both to a numerical
simulation based on a simple Fraunhofer diffraction dipole model and to a full numerical
simulation within the strong field approximation. The potential application of NCHHG
for the generation of spatially detached isolated attosecond pulses will be discussed.

4.1 Introduction

The experimental geometry that has been used in the majority of high harmonic gener-
ation experiments is the collinear one illustrated in Figure 4.1a: A strong driving laser is
focused into a gas target behind which the unconverted fundamental light and the gen-
erated high harmonic radiation propagate collinearly so that their separation requires
some additional optical element such as a grating or a beam splitter.

In contrast, when adopting the non-collinear geometry depicted in Figure 4.1b for
HHG, collimated emission of high harmonic radiation along the bisector of the two
driving beams overlapping in the generating medium can be expected1. Therefore, non-

1In fact, once the gas target in Figure 4.1b is replaced by a nonlinear crystal, the figure illustrates the
background-free mode of operation of an optical autocorrelator.

(a)

β
θ

(b)

Figure 4.1: Sketch of generic high harmonic generation geometries: (a) collinear HHG, (b)
non-collinear HHG
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collinear high harmonic generation (NCHHG) holds the intrinsic potential to allow the
generation of EUV radiation that is spatially separated from the strong fundamental
beams. For exactly that reason, a very related non-collinear geometry was already
used in HHG experiments with a single fundamental beam whose central part had been
blocked before focusing into the target. Since the intensity distribution of the resulting
annular driving beam has an on-axis maximum at the focus, the generated harmonics
propagate on axis and can be isolated by an aperture placed at the position of the image
of the annular beam block behind the focus [244].

First theoretical studies of NCHHG with two independent driving beams were done
by Birulin and co-workers in 1996 for beams intersecting at angles close to zero and
180◦ [112,245]. Non-collinear HHG geometries, in which the driving beams were focused
to very close, yet spatially separated positions in the target were used to study the
temporal coherence of the generated radiation [159] and to measure the high harmonic
dipole phase [149,150]. To our knowledge, interest in NCHHG with a common focus as
illustrated in Figure 4.1b did not rekindle until 2002, when Fomichev and co-workers [246]
reported results of both a numerical simulation of NCHHG for various non-collinear
angles and an experimental investigation. For the latter, a mask with two narrow slits
was placed in front of the focusing optics to create two non-collinearly interacting, yet
not independently controllable driving beams. From their studies of the far field emission
pattern of the generated high harmonic radiation, the authors of [246] concluded that the
strength and the direction of high harmonic emission was strongly dependent on the non-
collinear angle. Recent experimental work on NCHHG in a two-color experiment focused
on a demonstration of the nonlinear optical wave mixing characteristics of NCHHG and
their description in a pertubative theoretical framework [247].

Our interest in NCHHG was motivated by its potential application as a combined
generation and outcoupling method in cavity-assisted HHG [14]. Stimulated by numer-
ical results obtained by Wu and Zeng, who found that cavity-assisted high harmonic
generation was possible in a non-collinear geometry [248], we started an experimental
investigation of NCHHG with two independently adjustable driving beams produced by
a chirped pulse amplification (CPA) laser system. After the initial proof-of-principle ex-
periments, however, the focus of our work was diverted towards a more detailed analysis
of the NCHHG process itself by the phenomena observed in the course of the studies.

The following section recapitulates the motivation for and the results of our initial
experiments on NCHHG. After that, important aspects of the non-collinear geometry
are emphasized before our experimental setup and the applied methods are introduced.
Subsequently, a detailed investigation of the dependence of the high harmonic spatial far
field emission profile on the delay between the driving pulses is presented and discussed
in comparison with numerical results.
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4.2 Application to cavity-assisted HHG

As sketched in the introduction, typical collinear HHG geometries necessitate the use
of an additional optical element to separate fundamental and the generated harmonics.
The efficient separation, which is required or at least beneficial for applications, can be a
rather challenging task: Typical conversion efficiencies are rather low (∼ 10−6 or below,
see Section 3.3.3.5) so that the power ratio of fundamental and EUV is usually rather
large. In addition, the simplest polarization-based schemes cannot be used because the
directions of polarization of fundamental and harmonic radiation are the same.

In particular, in cavity-assisted high harmonic generation, some mechanism to extract
the generated EUV radiation from the resonator is required because it would otherwise
be absorbed completely by the cavity mirrors. To this end, in the first demonstrations
of cavity-assisted HHG [8, 9, 249], a thin plate made of sapphire was placed inside the
enhancement resonator at Brewster’s angle for the fundamental beam (see Figure 4.1a).
However, while this approach was successful in the sense that a fraction of the generated
high harmonic radiation could be extracted due total external reflection at the Brew-
ster plate, it brings about several limitations: The reflectivity of such a Brewster plate
depends strongly on the material and on the wavelength of the radiation to be outcou-
pled. For highly energetic high harmonic radiation, there are virtually no materials that
exhibit suitable reflectivities. Moreover, inserting the outcoupler into the cavity intro-
duces unwanted additional dispersion, which has to be (pre)compensated by the cavity
mirrors. The strongest limitation of the achievable enhancement and thus the overall
system performance, however, results from the nonlinear response of the material, e.g.
the intensity-dependent group delay dispersion, when subject to the high power intra-
cavity beam [249,250]. Consequently, finding alternative outcoupling methods has since
been the goal of several theoretical and experimental studies [13–15,248,251–254].

Among the discussed potential candidates was the use of a non-collinear high har-
monic generation geometry (see Figure 4.1b). Due to the intrinsic spatial separation
of the generated EUV radiation from the fundamental, NCHHG shows the potential to
overcome all problems associated with the Brewster plate: Since the insertion of addi-
tional material into the cavity becomes unnecessary, the achievable power enhancement
is not limited and the applicability of the method is not restricted to a certain wave-
length region. Additionally, the use of just partially EUV-transmissive filters to block
residual reflections of the fundamental from the outcoupler is not required, resulting in
higher available high harmonic powers.

Our initial experiments were intended to verify the potential of NCHHG as an output
coupling method and thus focused on the favorable geometric separation of fundamental
and high harmonic radiation. To this end, we employed amplified pulses to demonstrate
NCHHG in a proof-of-principle experiment for two different (full) non-collinear angles,
namely 30 mrad and 45 mrad. The latter angle was the largest one to be realized with
our experimental apparatus. The main result is shown in Figure 4.2 for the θ = 30 mrad
case [255]. Collinear HHG was observed when either of the two driving beams was
applied alone (top and bottom panel). In contrast, when both equally intense driving
beams overlapped spatially and temporally, similarly intense high harmonic radiation
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Figure 4.2: Spectrally unresolved far-field spatial profiles of high harmonic radiation generated
in a non-collinear geometry [255]. Collinear HHG is observed with each individual driving
beam alone (top and bottom panel). High harmonic emission occurs non-collinearly when
both driving pulses overlap spatially and temporally.

was emitted purely along the bisector between the driving beams (central panel). Note
that the generated high harmonics were not resolved spectrally in all three cases. This
experimental demonstration confirmed the general potential of NCHHG as a combined
generation and output coupling method for cavity-assisted high harmonic radiation.

However, in view of an experimental implementation of this geometry in a femtosecond
enhancement cavity, a more detailed study of the dependence of NCHHG on experimen-
tal parameters such as the delay between the driving pulses, the intensity balance of the
fundamental beams, and the non-collinear angle was required. Simultaneously, the pos-
sible spectroscopic application of the non-collinearly generated high harmonic radiation
necessitated an analysis of its spectral and spatial properties.

In the course of our additional investigations, we found that it was possible to con-
tinuously alter the direction of emission of the non-collinear high harmonics by tuning
the power balance between the two driving beams, where the extreme case corresponded
to collinear HHG with a single fundamental beam. In addition, we observed that the
spectrally resolved far field emission pattern of the generated EUV radiation can exhibit
a spatial modulation depending on the phase delay between the two driving pulses [256].
The following sections summarize the efforts to scrutinize this intriguing observation in
more detail.
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Figure 4.3: Schematic of the non-collinear geometry and the employed coordinate system(s).
Adapted from [256].

4.3 The non-collinear geometry

In this section, important aspects and consequences of the special geometry of NCHHG
are introduced and discussed.
A sketch of the non-collinear geometry and the employed coordinate system(s) is

shown in Figure 4.3. The two spatially Gaussian driving beams propagate in the y-
z-plane at an angle ±β with respect to the z-axis so that the full non-collinear angle
between the two beams amounts to θ = 2β as indicated in Figure 4.1b. The resulting
fundamental field Ef can be written as

Ef (x, y, z, t) = Ef1 (x, y cos β + z sin β,−y sin β + z cos β, t)

+ Ef2 (x, y cos β − z sin β, y sin β + z cos β, t) ei∆φ
(4.1)

where the phase delay ∆φ = ω1∆t accounts for the time delay between the driving pulses
in the two beams. The fundamental (angular) frequency ω1 is the same for Ef1 and Ef2

since they are generally assumed to originate from the same laser here.
When the delay between the pulses is so large that there is no temporal overlap

between them, the driving field at the focus is simply that of each individual beam. As
soon as the delay ∆t becomes smaller than a couple of pulse widths, the fields of both
driving beams interfere. The resulting temporally varying, spatially modulated intensity
distribution at and around the focus depends on the non-collinear angle and the waist
radii.
The non-collinear intensity distribution in the plane of the driving beams (x = 0) is

shown in Figure 4.4 for a (full) non-collinear angle θ = 30mrad for two distinct temporal
delays of ∆φ = 0 and ∆φ = π. For the plots, the same or at least the estimated
experimental conditions were assumed, i.e. equal power in both beams as well as identical
waist radii of 63µm and a common focus position. The intensity profiles at the focus
along the y-axis, i.e. for x = z = 0, are also shown.



66 Non-collinear high harmonic generation (NCHHG)

(a) Driving intensity near the focus in the x = 0 plane for ∆φ = 0, β = 15 mrad, and
w0 = 63µm
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(b) Intensity profile at x = z = 0 for the above.

(c) Driving intensity near the focus in the x = 0 plane for ∆φ = π, β = 15 mrad, and
w0 = 63µm
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(d) Intensity profile at x = z = 0 for the above.

Figure 4.4: Non-collinear driving intensity distribution near the focus.
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The interference pattern of the two infrared beams exhibits fringes whose spacing
of λ/θ can be easily derived from substituting the product of (2.1) and (2.10) into
(4.1). The positions of the fringes shift continuously for increasing phase delay and are
inverted for ∆φ = π. Consequently, while the driving intensity pattern for ∆φ = 0
is characterized by a strong on-axis fringe (Figure 4.4a and Figure 4.4b), a minimum
is obtained for ∆φ = π (Figure 4.4c and Figure 4.4d). Note that the maximum peak
intensity achieved in this non-collinear geometry is a factor of 4 higher than that of each
individual driving beam alone. The intensity scales of the plots have been normalized
to the single beam intensity, here denoted I0.

High harmonics can only be generated at positions within the interaction region where
the driving intensity exceeds the threshold intensity. Hence, it is obvious that the HHG
process is spatially modulated in the non-collinear geometry because the interference
pattern produced by the two fundamental driving pulses varies periodically during the
passage of the pulses through the gas target.

Since our experimental setup grants us independent control of both driving beams,
we can scan the delay between the fundamental pulses in order to study the effects of
this time-dependent spatial modulation on the observed far field emission profiles of the
generated high harmonic radiation.

4.4 Experimental setup and methods

The experimental setup, which is largely identical to the one used for the proof-of-
principle experiments described above [255, 256], is schematically shown in Figure 4.5.
Seeded by a Ti:sapphire oscillator operating at ∼ 100 MHz, a chirped pulse amplification
(CPA) system (Spectra-Physics Spitfire) provides 120 fs pulses with an average pulse
energy of up to 2.3 mJ at a repetition rate of 1 kHz and a center wavelength of about
823 nm. The output beam of the CPA system is first guided through an adjustable
circular aperture and then split into two equally strong beams with a 50:50-beamsplitter.
Both beams propagate along paths of about equal length and are subsequently focused
non-collinearly into a xenon gas jet inside a vacuum chamber by means of two identical
spherical mirrors (f = 300 mm).

One of the two focusing mirrors is mounted onto a manual translation stage to adjust
the spatial overlap and the position of the foci of the two fundamental beams. The
pathlength from the beamsplitter to the focus is fixed for one of the driving beams,
which is henceforth denoted “direct beam”. In contrast, the path of the other beam
(referred to as “stage beam” in the following) contains a computer-controllable delay
stage and a pair of piezo-actuated fused silica wedges so that the time delay ∆t between
the pulses propagating along the different paths can be precisely adjusted. While the
tuning of the delay with the wedge pair is quasi-continuous, yet in a very limited range,
the delay stage allows us to scan the delay in a large range of up to several picoseconds,
which corresponds to the case where the two driving pulses are no longer overlapping
temporally. We achieve a technical resolution of ∼ 0.25 fs which is determined by the
minimum step size of the delay stage.



68 Non-collinear high harmonic generation (NCHHG)

PAM

M

M

M

M

RV

90º rotated view 90º rotated view 90º rotated view

AF

TG

AF

M

FM

FM

BS

AWPs

Seed

oscillator
CPA

System

Xe

N

�

AA

DS

CCD

TG

CCD

��

Figure 4.5: Setup for spectrally resolved non-collinear high harmonic generation experiments.
The (solid) dashed dark blue lines indicate the generated (non)-collinear high harmonic ra-
diation. To illustrate the spatial and the spectral plane of the experimental geometry, the
insets ¶-¸ depict a 90◦ rotated view of the respective parts. AA: adjustable aperture, BS:
beam splitter, (F)M: (focusing) mirror, DS: delay stage, AWPs: adjustable wedge plates, PAM:
piezo-actuated mirror, N: nozzle, RV: regulating valve, TG: toroidal grating, AF: aluminum
filter, CCD: EUV-sensitive charge-coupled device.

In contrast to the previously reported experiments [255], the gas target is produced
by a self-made tapered glass nozzle with an orifice of ∼ 150µm. Figure 4.6 shows a
microscope image of the nozzle after extensive use in the NCHHG experiments. The
nozzle is arranged such that the gas jet intersects the plane formed by the two laser
beams orthogonally (see inset ¶ in Figure 4.5), thereby avoiding asymmetries that could
potentially arise from positioning the gas jet in the same plane as the laser beams. The
gas flow to the nozzle can be adjusted with a regulating valve (Pfeiffer Vacuum EVR
116) and is set to 2...5× 10−1 mbar · l/s during all the experiments discussed here. After
visual prealignment of the nozzle with respect to the non-collinearly intersecting driving
beams, we use the strongly increased plasma fluorescence as an indication of optimized
spatial overlap when the gas target is operated.

During the experiments, the output beam from the CPA system is apertured down
using the adjustable iris to maximize the observed HHG signal [105]. In order to be able
to estimate the resulting peak intensities, the beam profiles of a single driving beam
at the focus were recorded for different aperture settings in a separate measurement
at strongly attenuated power. Figure 4.7 depicts the measured profile for the typical
aperture setting used in the experiments, i.e. an aperture radius resulting in a power
transmission of ∼ 50%. In this case, the waist radius at the focus is extracted to be
w0 ≈ 63µm. This corresponds to an estimated peak intensity of up to 6× 1013 W/cm2

for each individual driving beam.
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Figure 4.6: Microscope image of home-built glass nozzle (top view) after operation in the
NCHHG experiments. It can be seen that the nozzle tip was partially melted by the driving
beam.

The largest modification of the setup compared to [255] is the implementation of a
scanning toroidal grating monochromator (Jobin Yvon LHT 30) into the beamline which
makes a spectral characterization of the generated EUV radiation possible [256]. The
monochromator is set up such that the spectral diffraction is in a plane orthogonal to the
one formed by the two IR driving beams and the collinearly generated high harmonic
radiation in order to decouple the spatial and the spectral features of the non-collinear
HHG geometry as well as possible (see insets · and ¸ in Figure 4.5). Behind the
monochromator, two consecutive aluminum filters (200 nm thickness each, Lebow 0.2Al-
0-L3.0) block the residual IR stray light. Due to the aluminum filters, harmonic radiation
above 70 nm (orders q < 11) is strongly suppressed and can thus not be detected.

The spatial profiles of the generated EUV radiation are both monitored and recorded
with a back-illuminated CCD (Princeton Instruments PIXIS XO-100B, 1340× 100 pix-
els, pixel size 20× 20µm) that is cooled to -10◦C to reduce the background signal. The
spatial field of view covered by the long edge of the CCD is limited to an angle of
∼ 40 mrad by the geometry of our experimental setup. Spatial and spectral information
overlap in the direction along the short edge of the CCD chip. A limited spectral range
of ∼ 2 nm can be monitored or recorded simultaneously for a certain grating position.
In our experiments, however, the spatial information dominates over the spectral infor-
mation. Spatially, the CCD covers an angle of about 3 mrad in the plane orthogonal to
that of the non-collinear driving beams.

Since the CCD camera allows live-montoring of the generated EUV signal, we maxi-
mize the observed harmonic signal by adjusting several experimental parameters: The
fundamental beam is apertured down with the adjustable iris (see above), the chirp
of the driving pulses emitted by the CPA system is tuned by moving the compressor
grating, and the nozzle position and the gas flow are adjusted. The pressure in the
interaction chamber is in the 10−6 mbar range without operation of the gas target and
rises to a steady-state pressure of about 1.4× 10−2 mbar with gas load.

Several important experimental parameters such as the angle of the monochromator
grating, the position of the delay stage, and the gas flow to the glass nozzle are con-
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Figure 4.7: Measured beam profile of single IR driving beam at focus for typical aperture
setting of ∼ 50% power transmission that was found to optimize the beam profile and the
intensity of the non-collinearly generated high harmonics. The extracted IR beam radius is
w0 ≈ 63µm.

trolled from a personal computer using a commercial software environment (National
Instruments LabView). Likewise, the data acquisition from the CCD camera during the
experiments is fully automated. All plots of experimental data that will be discussed
in the following sections are based on a series of image frames acquired from the CCD
that show the far-field spatial intensity distribution of the generated EUV radiation. In
each series, either the monochromator grating angle or the position of the delay stage
is varied between consecutive frames so that every frame corresponds to, for example, a
certain delay between the driving pulses. A characteristic image frame recorded at the
wavelength of the 17th harmonic order for a phase delay of ∆φ = ω1∆t = π between
the pulses is shown in Figure 4.8. In order to be able to illustrate the dependence of the
observed spatial high harmonic intensity distribution on the altered experimental param-
eter, all image frames from a certain series are post-processed during data evaluation.
After subtraction of the individual background, each frame is converted into a harmonic
intensity profile by integration of the image data along the spatio-spectral axis of the
image, i.e. along the short edge of the CCD field of view. Figure 4.9 shows the intensity
profile resulting from the image frame shown in Figure 4.8. The so obtained intensity
profiles of the high harmonic emission pattern are then stitched together to obtain a
2d plot in which the EUV intensity is color-coded (see Figure 4.10 and Figure 4.12, for
example).
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Figure 4.8: Typical recorded full frame CCD image showing non-collinearly emitted EUV
radiation at the 17th harmonic wavelength for a phase delay ∆φ = ω1∆t = π between the
fundamental pulses. The emission angle lies in the plane of the two non-collinear driving
beams. Spectral and spatial information overlap in the orthogonal plane, for which the spatial
labeling has been chosen here.
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Figure 4.9: Spatial intensity profile for a phase delay ∆φ = π resulting from integration of the
full CCD frame shown in Figure 4.8 along the axis labeled “divergence”.
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Figure 4.10: Spectrally resolved non-collinear high harmonic far-field emission pattern. Data
was recorded with a CCD camera behind two consecutive aluminum filters and then post-
processed (see text for details). The dashed black lines indicate the range of directions that
were considered for the spectrum shown in Figure 4.11.

4.5 Experimental results

Since our initial proof-of-principle experiments [255] lacked spectral resolution, we em-
ployed the improved experimental setup to both confirm our earlier findings and spec-
trally characterize the non-collinearly generated high harmonic radiation. The majority
of experimental data was then taken to investigate the dependence of the produced EUV
radiation on the delay between the fundamental pulses. To this end, we investigated the
dependence of the far-field spatial intensity distribution of the generated high harmonic
radiation on the delay for all high harmonic orders that our setup could efficiently detect.

4.5.1 Non-collinear high harmonic spectrum

Figure 4.10 shows the spectrally resolved non-collinear high harmonic emission pattern
that has been obtained from the CCD frames recorded during a wavelength scan of the
monochromator in the way described in the previous section. EUV radiation ranging
from the 13th (63.3 nm) up to the 19th (43.3 nm) order can be clearly identified. Lower
harmonic orders with wavelengths longer than 70 nm are strongly suppressed by the
two consecutive Al filters in our beamline and thus not shown. The signal between
30 nm and 40 nm is likely to originate mostly from stray light caused by the zeroth
diffraction order of the monochromator grating hitting the walls of the vacuum chamber.
This suspicion is corroborated by the fact that no spatial structure is observed in this
wavelength range, whereas the high harmonic orders 13 to 19 exhibit a pronounced
spatially modulated emission pattern. Note that the modulation period clearly varies
with harmonic order so that the spectral content of the EUV radiation depends on the
direction of emission. As expected from our previous investigations [255, 256] and as
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Figure 4.11: Non-collinear high harmonic spectrum obtained by summation of data within
angular range indicated by black dashed lines in Figure 4.10. Note that the data has been
corrected for the spectral sensitivity of the CCD and the transmission of the Al filters. Dashed
green lines show the spectral positions of the high harmonic orders calculated from the central
wavelength of the driving laser. The increasing signal between 40 nm and 30 nm is most prob-
ably caused by stray light that originates from the 0th diffraction order of the monochromator
grating bouncing off the walls of the vacuum chamber.

already apparent from Figure 4.8 and Figure 4.9, the non-collinear emission pattern
is centered about the bisector of the driving beams, where also most of the power is
concentrated. However, the lower intensity wings of the far-field pattern extend up to
emission angles of ±12 mrad. A possible explanation for this observation will be given
in Section 4.6.4.

In order to analyze the spectral properties of the high harmonic radiation emitted in
the narrow angular region close to the bisectrix of the fundamental beams, all contri-
butions from the range indicated by the dashed black lines in Figure 4.10 are summed
up. The resulting non-collinear high harmonic spectrum is shown in Figure 4.11. The
green dashed lines indicate the expected spectral positions of the high harmonic orders
calculated from the central wavelength of the driving laser (λ1 = 823 nm). Using these
expected spectral positions of the harmonic orders, the absolute wavelength of the data
obtained from the monochromator can be re-calibrated with the observed spectrum.
Note that the data has been corrected for the spectral sensitivity of the CCD and the
transmission of the two aluminum filters, but not for the unknown, yet most likely
approximately constant spectral efficiency of the monochromator grating. Among the
clearly identified harmonic orders, the 17th is the strongest and the 13th is the weakest
with about an order of magnitude lower measured intensity. Therefore, the exposure
times of the images recorded during the delay scans that are presented in the following
sections have been individually adjusted for each harmonic order to maximize the signal
level.
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4.5.2 Delay scans for individual harmonic orders

To investigate the effects of the delay between the fundamental pulses on the spatial
emission pattern of the generated high harmonic radiation in detail, several series of
measurements were performed for all clearly observable harmonic orders, i.e. for the
13th to 19th order (compare the spectrum in Figure 4.11). In each of these series,
the pulse delay was scanned in various temporal ranges and with different (technical)
temporal resolutions determined by the step size of the computer-controlled delay stage.

4.5.2.1 Large range delay scans

The result of a typical delay scan with a large scan range of about 2 ps and a temporal
resolution of 1 fs is shown in Figure 4.12 for the 17th harmonic. The delay axis is
encoded by ∆t = tstage − tdirect where tstage and tdirect correspond to the times2 when
the pulses from the stage beam and the pulses from the direct beam pass through the
center of the gas target (cf. Figure 4.5). This means that for ∆t > 0, the pulses from
the direct beam arrive at the gas target before those from the stage beam and vice versa
for ∆t < 0. The origin of the delay axis (∆t = 0), which corresponds to maximum
temporal overlap between the pulses from both paths, cannot be determined accurately
neither in the experiment nor from the data. Therefore, since high harmonic emission
along the bisector of the driving beams is just expected when the pulses fully overlap in
time, the delay axis of the long range scan data is moderately adjusted so that ∆t = 0
best coincides with the detection of EUV signal at an emission angle of 0 mrad.

Figure 4.12 reveals that our experiment corresponds to collinear high harmonic gener-
ation with each individual driving beam for very large positive or negative delays since
the pulses do not overlap temporally in that case. The harmonic signal is thus detected
under an emission angle of ∼ |14|mrad simultaneously. This observation agrees with
the expectations from our analysis of the non-collinear geometry in Section 4.3.

Several interesting phenomena can be observed in the time window from ∆t ' −150 fs
to ∆t ' 150 fs when the pulses from the two arms at least partially overlap in the gas
jet temporally: The direction of EUV emission changes continuously from the direc-
tion of the stage beam (14 mrad) towards the bisector of the driving beams and further
to the direction of the direct beam (−14 mrad). In this time window, collinear har-
monic radiation is not detected. Interestingly, the change in the direction of emission is
asymmetric, i.e. even though both individual beams create harmonic radiation for large
enough delays, the directions of emission are only continuously linked for the pulses that
reach the gas jet first, i.e. those from the stage beam for negative delays and those from
the direct beam for positive delays. This results in an “anti-crossing”-like shape of the
spatio-temporal emission profile shown in Figure 4.12. This effect most likely originates
from the fact that the first pulse generates harmonics, primarily at its leading edge,
but also significantly ionizes the medium while crossing through the gas jet. Since the
medium cannot be exchanged quickly enough before the immediately following second
pulse passes through the jet, no harmonics are generated.

2As long as these times are referenced to a common time axis, its origin does not matter here.
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Figure 4.12: Delay scan for the 17th harmonic with 1 fs temporal resolution in the range of
±1 ps delay between the driving pulses.
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Figure 4.13: Beam profile of non-collinear high harmonic radiation for phase delay ∆φ = 0.

For delays outside the temporal window of non-collinear EUV emission, the angle un-
der which the high harmonic signal is detected shows several and in part rather strong
deviations from the two collinear directions. Although our experimental system is not
stabilized in any way during the experiments so that fluctuations in beam pointing cer-
tainly affect the observed signal, they can be excluded as the main origin of the angular
deviations because these exhibit a two-fold unequivocal point symmetry about zero pulse
delay. Hence, we believe that the additional angular structure for large delays is caused
by a fundamental pulse shape that contains weak satellite pulses. Satellite structures
before and after both the leading and the trailing edge of the pulse, respectively, will
temporally overlap with the main pulse at certain times. Likewise, the satellite pulses
can also overlap at a larger delay between the peaks of the pulse envelopes. In that
sense, the spatio-temporal information of Figure 4.12 encodes information about the
shape and the duration of the fundamental pulse. Similar to frequency-resolved optical
gating, NCHHG can thus be considered an extension of the auto-correlator technique.

4.5.2.2 High resolution delay scans

An interesting phenomenon that can be observed during the delay scans with higher
temporal resolution is the recurring appearance of spatially modulated far field emission
profiles. Depending on the delay, modulation patterns with two distinct periods appear.
A typical image frame exemplifying the spatial modulation in the 17th harmonic emission
profile for a phase delay3 of ∆φ = π was already shown in Figure 4.8. The emission
pattern of the same harmonic for a phase delay of ∆φ = 0 is depicted in Figure 4.13
while the corresponding integrated spatial intensity profile is shown in Figure 4.14. The
angular spacing of the observed far field fringes is half of that seen for a delay of ∆φ = π.

We did not observe any spatial modulation in our initial experiments [255], which is
likely to be due to the lack of spectral resolution at that time. First spectrally resolved
investigations [256] showed far field fringes only for certain delays around ∆φ = π but
none at all for ∆φ = 0. However, as the temporal resolution of the delay scans was not
high enough at that time, the patterns around ∆φ = 0 with a lower fringe spacing were
probably washed out by instabilities of the experimental system.

3All phase delays discussed here are modulo π.
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Figure 4.14: Spatial intensity profile of non-collinear high harmonic radiation for phase delay
∆φ = 0 obtained from CCD frame shown in Figure 4.13.

In order to gain more insight into the observed delay dependence, we reduced the scan
range to about ±25 fs around ∆t ≈ 0 and recorded delay scans with a higher temporal
resolution of 0.5 fs for the 13th to 19th harmonic. The results are depicted in Figure 4.15.

Most strinkingly, the high resolution delay scans yield very regular far field patterns
for all four harmonic orders under scrutiny. The two observed spatial fringe periodicities
are different for each harmonic order and alternate regularly with the delay. Note that
no active stabilization was employed in the experimental system which both emphasizes
the robust nature of the underlying effect and provides a possible explanation for the
irregularities in Figure 4.15. The latter are most obvious in the case of the 19th harmonic.
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(a) 13th harmonic
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(b) 15th harmonic
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(c) 17th harmonic
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(d) 19th harmonic

Figure 4.15: Precision delay scans (0.5 fs temporal resolution) for (a) 13th, (b) 15th, (c)
17th, and (d) 19th harmonic order around zero delay between the driving pulses. Regular
fringe patterns can be observed for all four depicted orders. Exposure times were different for
different harmonic orders (3s, 2s, 1s, 2s) to compensate for their varying signal strengths.
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4.6 Numerical simulations based on a simplified model

In order to gain a qualitative understanding of the observed high harmonic far field
profiles, we have set up a numerical simulation of NCHHG based on a simplified model
of the microscopic harmonic dipole response4. The simulation is a refined version of the
one already described and used in [256] that has been adapted to better reproduce the
latest experimental data.

4.6.1 Theoretical description

As mentioned in Chapter 3, a full numerical simulation of the macroscopic high harmonic
response is a computationally involved task, especially in a not rotationally symmetric
geometry like the one employed in our case. Therefore, our code neither solves the
time-dependent Schrödinger equation nor resorts to the Lewenstein model to calculate
the high harmonic dipole moment but just assumes a simple power law scaling. This
is justified because the intensity of a harmonic order q in the plateau has been seen to
follow a modified power law Iq ∝ Ip1 with an exponent p < q in good approximation (cf.
Section 3.3.3).

Since we are particularly interested in phase effects, we describe the harmonic dipole
moment at frequency ωq = qω1 by a power law for the fundamental field with exponent
pf according to

D(r, t) ∝ |Ef (r, t)|pf ei(q φf+ϕI)
(

1 +
|Es|s

|Ef (r, t)|s
)pf/s

(4.2)

where r = (x, y, z) has been used and φf and ϕI denote the phase of the fundamental
field and the atomic dipole phase, respectively. The latter depends on the squared
modulus of the fundamental field, as discussed in Section 3.2.3. The last factor in (4.2)
is a heuristic saturation term, where |Es| and s denote the saturation field strength and
the saturation exponent, respectively. This saturation term was not included in the code
used previously [256]. As will be detailed below, we found the inclusion of a saturation
factor to be necessary to reproduce our experimental observations.

To obtain the high harmonic far field emission profiles as recorded by the CCD in the
experiment, the contributions from all gas atoms in the target have to be calculated.
These contributions are then propagated to a virtual screen and summed up coherently
(compare Figure 4.3). In particular, radiation emitted from the target at time τe at
a position r arrives at a position R = (X, Y, z) on the screen at time l/c + τe where
l is the distance between r and R. Since the screen is located a large distance away
from the emission region, the Fraunhofer approximation can be employed. The angular
distribution of the qth harmonic is then proportional to

U(αx, αy, τe) =

∫∫∫
D(r, t = τe + z/c)eiqk(xαx+yαy)dxdydz (4.3)

4The numerical implementation and testing was done in C++ by Igor Gotlibovych.
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where the angular coordinates (αx, αy) have been introduced. The overall harmonic
emission pattern recorded by the CCD can be calculated from

U(αx, αy) =

∫
|U(αx, αy, τe)|2dτe (4.4)

where integration is performed over a time span covering the interaction of the driving
field with the gas target, which corresponds to the passage of both pulses through the
gas jet in our case.

4.6.2 Simple analogy to NCHHG

Before moving on to the discussion of the simulation results, a simple analogy of NCHHG
to a well-known problem shall be highlighted. If we neglect the heuristic saturation term
in (4.2) for a moment, the dipole moment scales as the pf th power of the field. The
distribution of the harmonic dipole moment |D(r, t)| resulting from the non-collinear
driving field discussed in Section 4.3 is shown in Figure 4.16 in the plane of the non-
collinear driving beams (x = 0) for the two typical pulse delays ∆φ = 0 and ∆φ = π
and for pf = 8. The latter value is the approximate number of fundamental photons
that it takes to overcome the ionization potential of Xe.

Since the harmonic dipole moment |D| peaks around the field maxima, we can see that
the emission region is structured into a three-dimensional array of equidistant emitters
of varying strength. According to Babinet’s principle, we can expect the high harmonic
far field pattern to resemble that of a triple slit for a delay of ∆φ = 0 (see Figure 4.16b)
and that of a double slit for a delay of ∆φ = π (Figure 4.16b), respectively.

When not considering the intensity-dependent dipole phase ϕI , the phases of the
individual “slits” are simply given by the phases of the respective interference fringes
of the fundamental field and consequently change by a factor of π between subsequent
peaks because q is odd (cf. (4.2)). For ∆φ = π, the two dominant peaks have equal
strength and their phase differs by π. Depending on the considered harmonic order q, we
thus expect the far field pattern to exhibit fringes with an angular spacing of θ/q, where
θ = 2β is the full non-collinear angle, and a minimum along the bisector of the driving
beams. For ∆φ = 0, there are three distinct peaks of different intensities. From the
triple slit analogy, we anticipate a set of principal maxima in the far field with the same
periodicity of θ/q as the one derived for the double slit case. Since it is well known that
the diffraction pattern of m slits will additionally exhibit (m − 2) subsidiary maxima
between principal maxima, one such subsidiary maximum between each pair of principal
maxima is expected in our case. In the following discussions of experimental data, the
principal maxima are called “primary fringes” while the subsidiary maxima are denoted
“secondary fringes”.

The fringe periodicity of a double slit diffraction pattern is given by its Fourier trans-
form and will thus contain a strong peak at an angular frequency of q/θ. Likewise,
the occurrence of subsidiary maxima (i.e. secondary fringes) in the case of a triple slit
corresponds to an additional peak in the Fourier space at twice the frequency, i.e. 2q/θ.
The spatial fringe periods that could be extracted from the experimental delay scan data
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(a) Harmonic dipole moment near the focus in the x = 0 plane for ∆φ = 0, β = 15 mrad, and
w0 = 63µm
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(b) Profile of harmonic dipole moment distribution in (a)
at x = z = 0.

(c) Harmonic dipole moment near the focus in the x = 0 plane for ∆φ = π, β = 15 mrad, and
w0 = 63µm
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(d) Profile of harmonic dipole moment distibution in (c)
at x = z = 0.

Figure 4.16: Non-collinear dipole moment distribution near the focus.
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Figure 4.17: Fringe periodicities extracted from Fourier transforms of several experimental
delay scan datasets for different harmonic orders. The circles correspond to the inverse fringe
periods obtained for both ∆φ = π and ∆φ = 0, the squares indicate the additional Fourier
frequencies for ∆φ = 0. The solid lines are the analytical predictions q/θ and 2q/θ described
in the text.

with high enough resolution and fringe contrast are shown Figure 4.17 for the different
harmonic orders. The average fringe periodicities extracted from several individual ex-
perimental datasets for different harmonic orders are shown as separate points. Most
experimental data were taken for the 17th harmonic, hence there are more datasets avail-
able. The solid lines are the predictions resulting from the simple geometric predictions.
The agreement is very good.

So far, we neglected the influence of the intensity-dependent dipole phase ϕI on the
far-field patterns. For ∆φ = π, the two main generating peaks have the same intensity
(Figure 4.16d) and will thus acquire no relative phase. The far field fringes should
therefore remain unaffected but the overall emission profile is expected to broaden due
to phase variations within each harmonic dipole “slit”. For ∆φ = 0, however, the two
weaker side peaks (Figure 4.16b) will acquire an additional phase difference ∆ϕI relative
to the strong central “slit” which is determined by the intensity difference between the
central and the neighboring fundamental fringes, i.e. ∆ϕI ∝ ∆ |Ef |2. It can thus be
expected that the appearance of secondary fringes in the observed high harmonic far
field pattern for phase delays ∆φ = 0 is affected by the intensity-dependent phase. In
particular, the secondary fringes should be sensitive to different quantum trajectories
for which the magnitude of the resulting phase shift ∆ϕI between the central and the
side “slits”differs.

As we shall see, the fringe patterns produced by our numerical simulation are very
sensitive to the intensity-dependent dipole phase. A comparison between experimental
data and simulation thus shows the potential to gain some qualitative insight about the
intensity-dependence of the harmonic phase.
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4.6.3 Simulation details and limitations

This section provides some more details about the implementation of our numerical
simulation. Identical Gaussian beams with a moving temporal envelope function are
inserted into (4.1) to compute the the fundamental driving field. The spatial integration
in (4.3) can be performed efficiently using a fast-Fourier transform (FFT) routine. Here,
the interaction region and thus the spatial integration is limited to a cylindrical region
y2 + z2 ≤ L2

med, i.e. we simply approximate the gas density distribution by a uniform
target via a step function. In addition, since the gas density is not explicitly included,
we neglect refraction and dispersion of both the incident and the harmonic beams in
the target. This means that ionization is neglected as well which is not necessarily a
good approximation for the driving pulse durations, intensities, and the gas used in the
experiment (Xe). Indeed, saturation of the high harmonic emission was observed for an
experiment in a collinear geometry at comparable intensities. Since we could not repro-
duce the results of the experimental precision delay scan data with our code numerically
at the beginning, the last factor in (4.2) was included heuristically to account for sat-
uration effects. Systematic studies of the parameter space spanned by the saturation
field strength |Es| and the saturation exponent s revealed that the obtained numerical
results showed only a weak dependence on the exact implementation of saturation in the
code. For the data presented here, a saturation intensity Is = cε0

2
E2
s ≈ 5× 1013 W/cm2

and s = −3 were used.
To investigate the predicted effects of the intensity-dependent dipole phase, we em-

ployed the linearized model ϕ
(i)
I (q) = α

(i)
q

cε0
2
|Ef |2 (cf. (3.30)) and used the phase coef-

ficient α
(i)
q as a free parameter to match experimental and simulated results. Note that

the current version of our code can only simulate the harmonic far field pattern as a
function of one phase coefficient at a time and for one harmonic order at a time. In
the experiment, the observed harmonic profiles can contain contributions from many
quantum trajectories, predominantly the short and the long one, and quantum path
interferences between these trajectories are possible [210]. With our current code, we
can just add up the contributions of different trajectories in the far field incoherently,
i.e. we can only add intensities.
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Figure 4.18: Comparison of experimental (black) and numerically simulated (red, dashed blue)
high harmonic far field profiles for the 17th harmonic at a phase delay of ∆φ = 0. (a) Best
visual agreement of relative intensities of fringes at the center of the emission pattern obtained

after manual adjustment of phase coefficient to α
(1)
17 = 2.1 (b) Same for larger emission angles,

obtained for α
(2)
17 = 5.1. See text for details.

4.6.4 Discussion of results

As already became obvious from the description of our numerical simulation in the
previous Section 4.6.3, the simulation results can only be compared qualitatively to the
experimental data. The following discussion concentrates on the 17th harmonic which
is the strongest harmonic order observed experimentally.

A comparison of typical experimental and numerically simulated 17th harmonic in-
tegrated far field profiles for the two significant phase delays ∆φ = 0 and ∆φ = π is
shown in Figure 4.18 and Figure 4.19, respectively. Since the phase coefficients αq are
continuous free parameters in the simulation, the far field patterns of the 17th harmonic
at fixed phase delays ∆φ = π and ∆φ = 0 are numerically simulated for values5 of α17

in the range of α17 = 0...60. It turns out that the experimentally observed secondary
fringes6 for ∆φ = 0 cannot be reproduced for α17 = 0. This statement also remains true
when other simulation parameters such as the driving intensity, the size of the focus,
and the size of the gas target are varied. When saturation is not included, the secondary
fringes are not reproduced either. In fact, without taking into account saturation in the
simulation, there is no phase coefficient for which the agreement between experiment
and simulation is as good as with saturation.

When including saturation, we find that the secondary fringes can be reproduced for
certain narrow ranges of values for α17. This is exemplified by Figure 4.18. Within the
value ranges of α17 that produce secondary fringes, visual selection is used to determine
the α

(i)
17 that lead to the best agreement between the experimental data and the simu-

5From here on, all discussed values of αq are given in units of 10−14 cm2/W.
6In Figure 4.18a and similar plots for a phase delay of ∆φ = 0, we consider “secondary fringes” the

signal observed at emission angles of about ±1 mrad, ±3 mrad etc. The stronger signal at 0 mrad,
±2 mrad is denoted “primary fringes”.
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Figure 4.19: Comparison of experimental (black) and numerically simulated (red, dashed
blue) high harmonic far field profiles for the 17th harmonic at a phase delay of ∆φ = π.

(a) Simulation for phase coefficient α
(1)
17 = 2.1 that was determined from the comparison for

∆φ = π (Figure 4.18a) (b) Same for α
(2)
17 = 5.1 (Figure 4.18b). See text for details.

lation in terms of the intensity ratio between the primary and the secondary fringes at
the center of the emission pattern.

The two smallest phase coefficients extracted from that comparison are α
(1)
17 = 2.1 and

α
(2)
17 = 5.1. As we can see from Figure 4.18a, the intensity ratio of the fringes is repro-

duced very well with α
(1)
17 for small divergence angles, whereas the profile simulated with

the larger α
(2)
17 shows acceptable agreement for larger divergence angles (Figure 4.18b).

Figure 4.19 shows a comparison of experimental and simulated data for a phase delay
∆φ = 0. The phase coefficients used in these simulation are the same as those extracted
from the data for ∆φ = π where the numerical reproduction of the secondary fringes
was seen to be very sensitive to α

(i)
17 . We can see that the position of the fringes is very

well reproduced for both α
(i)
17 and that the relative fringe intensities are also reproduced

fairly well.

In general, the profiles simulated with α
(1)
17 are less divergent than those simulated

with α
(2)
17 . It is interesting to note that both contributions seem to be necessary to

approximately reproduce the full experimental emission pattern for both phase delays,
that is, the more collimated central part in the angular range within about ±5 mrad and
the weaker and more divergent part for larger divergence angles. This is reminiscent of
the long and the short quantum trajectories of which the long one leads to more divergent
emission. Note, however, that the absolute values of the phase coefficients extracted from
our visual comparison do not have any significance since their exact values depend on
the simulation parameters of which some, e.g. the driving intensity, are not known
precisely enough. In addition, without including our heuristic saturation model, there
is no phase coefficient for which the agreement between experiment and simulation is
as good as with saturation included. In the latter case, the absolute value of the α17

yielding the best agreement depends on the saturation parameters. Therefore, although
our simulation is capable of reproducing the shape of the emission pattern remarkably
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Figure 4.20: Comparison between experimental data (black) and incoherently added simula-
tion results (green) for a phase delay of ∆φ = 0. Simulation runs with different phase coeffi-

cients α
(1)
17 = 1.94 and α

(2)
17 = 5.46 were added according to S(α

(1)
17 ) + rS(α

(2)
17 ) where r = 1.48

and the obtained sum was normalized. Note that the phase coefficients in the incoherent sum
are slightly different from the parameter values in Figure 4.18a.

well, it does not allow to unequivocally identify contributions from the short and the
long trajectory or to differentiate between them. Both extracted values for the phase
coefficients are in good agreement with typical literature values for the short trajectory
(αs ≈ 1, cf. [161,257]).

Although contributions from different quantum trajectories have to be added phase-
coherently, which is currently not possible with our numerical simulation, it is still
interesting to see the result of an incoherent sum. The result of incoherently adding two
numerically simulated far field profiles (i.e. intensities) for a phase delay of ∆φ = 0 is

illustrated in Figure 4.20. The green curve depicts the normalized sum S(α
(1)
17 )+rS(α

(2)
17 ),

where S(α
(i)
17 ) is the result of a simulation run using α

(i)
17 as a phase coefficient and

r is a scaling factor. The phase coefficients have been slightly varied compared to
those determined in Figure 4.18 for better overall agreement. It can be seen that the
experimental profile is reproduced well and better than by the contribution of a single
phase coefficient alone.

Using the phase coefficients α
(1)
17 and α

(2)
17 extracted from the comparison with typical

experimental data for the characteristic delay ∆φ = 0, we numerically simulated the far
field emission profiles of the 17th harmonic for a large range of delays around maximum
temporal overlap. Subsequently, the profiles were combined into delay scans for compar-
ison with experimental data. Note again that the results for α

(1)
17 and α

(2)
17 are obtained

in independent runs of the simulation.

Figure 4.21 shows both experimental and numerical delay scans. Precision delay scans
covering a delay range of ±2 fundamental periods about maximum temporal overlap are
shown in Figures 4.21a, 4.21c, and 4.21e. In contrast, the range of the delay scans
shown in Figures 4.21b, 4.21d, and 4.21f is large enough to fully cover the temporal
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Figure 4.21: Comparison of experimental (a, b) and simulated (c, d, e, f) delay scans for the
17th harmonic for delays around maximum temporal overlap (a, c, e) and for the full range of

delays for which the pulses overlap (b, d, f). Simulations shown in (c) and (d) used α
(1)
17 = 2.1,

those shown in (e) and (f) were simulated for α
(2)
17 = 5.1. See text for details.
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evolution from collinear HHG via NCHHG to collinear HHG again. In both scan ranges,
experiment and simulation are in good agreement.

In particular, the spatio-temporal patterns of the simulated precision delay scans (Fig-
ures 4.21c and 4.21e) exhibit both a similar divergence and a similar regular alteration
with delay compared to the experimental one (Figure 4.21a). The smaller divergence

of the spatial emission pattern simulated with α
(1)
17 = 2.1 compared to that simulated

with α
(2)
17 = 5.1 could be expected from the above discussions of the integrated far field

profiles. In addition, however, the fringes in the underlying far field profiles simulated
with α

(1)
17 move at different angular speeds for the same phase advance ∆φ than those

simulated with α
(2)
17 , i.e. the “slopes” of the spatio-temporal patterns in Figures 4.21c

and 4.21e are different. In the experimental precision delay scan shown in Figure 4.21a,
the slope of the spatio-temporal pattern is similar to that of Figure 4.21c for small
emission angles. With increasing angles, the slope seems to decrease continuously and
becomes more similar to that of Figure 4.21e. We think that this is another indication
that contributions from more than a single α

(i)
17 are required to explain our experimental

results.
In contrast to the precision delay scans, both simulated large range delay scans (Fig-

ures 4.21d and 4.21f) show obvious deviations from the experimentally observed spatio-
temporal pattern (Figure 4.21b) in the region of temporal overlap. In particular, while
the intensity of the generated radiation in the experiment is about equally strong and
collimated in the temporal window in which the direction of emission changes contin-
uously, the simulation with α

(1)
17 predicts a strong and collimated signal just along the

bisectrix of the driving beams. Both simulated delay patterns share the asymmetry
with their experimental counterpart. Since the pulses in our code are not subject to any
asymmetry, we cannot explain the origin of this agreement at this moment.
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4.7 Work in progress: further numerical investigations

Based on a simplified description of the high harmonic dipole response, our numerical
simulation can qualitatively reproduce several important features of the experimental
data. At the same time, it is interesting to compare our experimental and simulation re-
sults to a more advanced numerical simulation, which may also allow a more quantitative
understanding of NCHHG.

We thus started a collaboration with Carlos Hernández-Garćıa from the group of
Luis Plaja at the University of Salamanca who adapted his numerical code to simulate
non-collinear HHG in Xe. Details of the numerical approach are described in reference
[258]. In brief, the single atom response is calculated using an extended version of the
commonly used strong field approximation (see Section 3.2.3) that has been termed
SFA+ [203]. The far field emission pattern is then obtained within the so-called discrete
dipole approximation, i.e. the target volume is discretized into cells of macroscopic
size that are subsequently treated as point-like dipoles for which analytical solutions of
Maxwell’s equations exist.

On the following pages, first results of ongoing systematic investigations of NCHHG
for varying parameters are shown to exemplify general dependences. Unless stated oth-
erwise, all results have been obtained for two Gaussian driving beams and sin2 pulse
envelopes7 with a FWHM duration of 16 fs. The beams are non-collinearly focused at
an angle of θ = 30 mrad to a common focus of w0 = 60 nm in a Xe target with a Gaussian
gas distribution (Lmed = 140µm). The single beam peak intensity is 2.2× 1013 W/cm2,
and both ionization and neutral dispersion are taken into account. Compared to the
experiment, shorter pulses and lower intensities were used for our first investigations to
reduce computational time and to avoid potential inaccuracies due to the implemented
ionization model (ADK) near the barrier suppression regime of Xe (cf. Section 3.2.1),
respectively.

7Using a pulse envelope of this form is computationally easier than both Gaussian and hyberbolic
secant pulse envelopes since the latter only asymptotically decay to zero.
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(a) 15th (b) 17th (c) 19th

Figure 4.22: Simulated far field profiles for the (a) 15th, (b) 17th, and (c) 19th harmonic
order for different single beam driving intensities of, from top to bottom, 2.2× 1013 W/cm2,
3.2× 1013 W/cm2, and 4.3× 1013 W/cm2 at a phase delay of ∆φ = 0. Note that individual
color scales corresponding to the respective intensities in atomic units are used in each plot.

4.7.1 Dependence on driving intensity

Figure 4.22 shows the simulated far field profiles of the strongest harmonic orders ob-
served in our experiment (15th, 17th, and 19th) for a phase delay of ∆φ = 0 and three
different (single beam) driving intensities, namely 2.2× 1013 W/cm2, 3.2× 1013 W/cm2,
and 4.3× 1013 W/cm2.

In agreement with our experimental results, the profiles of the 15th and 17th harmonic
orders show two groups of fringes at each of the simulated intensities. However, the
relative strengths of the fringes are seen to change with intensity so that it is no longer
unambiguous to use the differentiation into “primary” and “secondary” fringes. This is
particularly obvious for the 19th harmonic, where on-axis emission and only one group
of fringes are observed at the lowest intensity. In contrast, a second group of fringes
appears quite prominently at the two other intensities and only weak and spectrally
shifted on-axis emission can be observed. A similar spectral offset was also visible in
our experiments (cf. Figure 4.13). As a first conclusion, we note that the non-collinear
emission profile is very sensitive to the intensity of the driving beams.
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(a) 15th (b) 17th (c) 19th

Figure 4.23: Simulated far field profiles at a phase delay of ∆φ = 0 for (a) 15th, (b) 17th, and
(c) 19th harmonic order for different waists of, from top to bottom, 55µm, 60µm, 65µm, and
70µm. Note that individual color scales corresponding to the respective intensities in atomic
units are used in each plot.

4.7.2 Dependence on waist

Figure 4.23 shows the simulated far field profiles of the 15th, 17th, and 19th harmonic
for a phase delay of ∆φ = 0 and four different waists, from top to bottom, 55µm, 60µm,
65µm, and 70µm.

The simulation results indicate that the size of the waist is a crucial parameter for
the observation of high harmonic emission along the bisector of the driving beams.
While strong on-axis emission is present at the smallest waist for the 17th and the 19th
harmonic, the on-axis contribution continuously decreases with increasing waist. The
15th harmonic profile does not vary strongly for the simulated waists and does only show
very weak emission along the bisectrix.

As a conclusion, we note that the simulated profiles are extremely sensitive to com-
parably small variations of the driving beam waist. The latter should thus be precisely
measured and controlled in an experiment.
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Figure 4.24: Simulated non-collinear spectrum for a phase delay of ∆φ = 0. The logarithmic
color scale represents the intensity in atomic units.

4.7.3 Non-collinear spectrum

Figure 4.24 shows the simulated non-collinear spectrum for a phase delay of ∆φ = 0.
In agreement with the measured spectrum shown in Figure 4.10, different harmonic
orders exhibit a different fringe spacing so that the spectral content of the observed
high harmonic radiation varies with the angle of emission. Since the divergence of the
harmonic radiation decreases with order, the highest orders can only be detected close to
the bisector of the driving beams. These aspects are further exemplified in Figure 4.25,
which compares the emission angles 0 mrad and 1 mrad with regard to their spectral
content, the corresponding temporal domain description (i.e. the generated attosecond
pulse trains), and a time-frequency (wavelet) analysis.
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(a)

(b)

Figure 4.25: Spectrum (top panel), corresponding temporal domain description (center panel),
and time-frequency analysis (bottom panel) for emission angles of (a) 0 mrad and (b) 1 mrad.
All data shown in atomic units. Compare Figure 4.24.
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4.8 Conclusion and outlook

Detailed experimental and numerical investigations of non-collinear high harmonic gen-
eration (NCHHG) were performed with amplified laser pulses. The potential of NCHHG
as a combined generation and outcoupling method for cavity-assisted high harmonic gen-
eration had been verified in initial, spectrally not resolved experiments. In view of this
application, the spectrally resolved far field profiles of the non-collinearly generated radi-
ation and their dependence on the delay between the driving pulses were measured and
analyzed. Strong spatial modulations of the harmonic emission patterns were observed
for all detected harmonic orders. The appearance of the modulations, their spatial peri-
ods, and the delay dependence of the far field profilees could be reproduced qualitatively
by a numerical simulation based on a simplified description of the high harmonic dipole
response when a linearly intensity-dependent phase and saturation of the harmonic emis-
sion were considered. The agreement suggests that the far field profiles can be generally
seen as the Fraunhofer diffraction pattern of the time-dependent spatially modulated
interference structure created by the two non-collinear driving beams. However, first re-
sults of additional, more sophisticated numerical simulations reveal that the particular
appearance of the emission pattern shows a high sensitivity to the specific experimental
parameters used. Further investigations are under way.

The theoretical and experimental investigations presented in this chapter confirm that
NCHHG is a wavelength-independent outcoupling method with high efficiency. However,
challenges arise from its nature as an intereference phenomenon. For conceivable angles,
the far-field intensity patterns are spatially modulated so that in some applications only
a certain fraction of the generated light can be used. In addition, the requirements on
beam quality and pointing stability are high. But we expect that a realization using e.g.
two crossed bowtie cavities provides sufficient spatial filtering and enhanced stability.
At the same time, since the direction of emission depends on the delay, chirped or
broadband driving pulses may still cause angular chromatic dispersion within a single
harmonic order. In that case, a spatially filtered beam could still suffer from spectral
modulations across its profile.

An interesting option offered by NCHHG may be to experimentally determine the lin-
ear phase coefficients of the intensity-dependent atomic dipole phase. Although the latter
can crucially influence the macroscopic properties of the observed high harmonic radia-
tion, there have been only few attempts to measure it experimentally [134,141,149,150].
In one of those, using a setup similar to ours, information about the phase coefficients
could be extracted from the observation of shifts in high harmonic interference patterns,
which were produced by two closely spaced sources, as a function of intensity [149,150].
Such an investigation may also be possible in a refined version of the experiments pre-
sented here.

Independent control of the two driving beams allows to study a large number of
interesting combinations of experimental parameters and their effects on the spatial,
spectral, and temporal characteristics of the non-collinearly generated radiation. Among
others, the fundamental wavelength could be different for the two beams. Bertrand and
co-workers studied the wave-mixing characteristics of NCHHG by focusing a strong
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fundamental beam and its weak second harmonic into a gas target at an angle [247].
Considering momentum conservation, they could clearly attribute emission observed
under a certain angle to a specific number of contributing photons from each beam.

An important application of NCHHG may arise from the spatio-temporal mapping
that can be achieved by scanning the delay between the driving pulses. This mapping
could be used as a high order autocorrelation method to determine the pulse duration
and the pulse shape of the fundamental. It was recently shown that under suitable
conditions, the non-collinear geometry can also be used for an all-optical space-time
characterization of attosecond pulses [259]. In fact, as pointed out by Vasily Strelkov
[260], the spatio-temporal mapping may be exploited for the production of isolated
attosecond pulses if two pulses with different pulse durations and intensities are used.
Consider NCHHG driven by a weak short pulse and an intense long pulse. The temporal
window in which non-collinear emission can be observed is defined by the duration of
the shorter pulse. If the weak pulse consists of just a few optical cycles, the harmonic
radiation will be emitted mainly in the direction of the beam of the intense longer pulse
except for the narrow temporal window when the short pulse beam contributes to the
high harmonic generation process. The prerequisite for this gate to work is that the
angular separation of the non-collinearly emitted radiation from the collinear radiation
is large enough to be resolved. That way, it may be feasible to realize a “digital” version
of the recently demonstrated “attosecond lighthouse” [230, 231, 261], i.e. emission of
an angularly separated isolated attosecond pulse in a defined direction. It may also
be possible to use identical driving pulses or to combine the non-collinear generation
geometry with polarization or ionization gating techniques to produce angularly resolved
isolated attosecond pulses.

While an implementation of NCHHG in an enhancement cavity brings about severe
technical challenges, the advent of high power solid state and fiber amplifiers may enable
the realization of NCHHG and potentially a non-collinear gating scheme at unprece-
dented repetition rates of several MHz. The first demonstration of (collinear) single
pass high harmonic generation experiments at multi-MHz repetition rates is the topic
of the following chapter.





5 Single pass high harmonic generation
at multi-MHz repetition rate

In this chapter, the first successful realizations of single pass high harmonic generation at
repetition rates exceeding 10 MHz with a state-of-the-art high power amplifier system are
reported. Technical constraints still limit the achievable performance in our experiments
and the generated EUV power levels are not comparable yet to those currently achievable
through cavity-assisted HHG. However, our proof-of-principle demonstrations show that
multi-MHz EUV radiation can now be produced using more versatile table-top setups
than before, thus paving the way for a wide range of applications.

5.1 Introduction

Currently, the only routinely available coherent EUV sources are based on laser-driven
high harmonic generation (HHG). These have enabled the generation of coherent radi-
ation with photon energies well into the soft x-ray range [80] as well as the production
and usage of EUV pulses on the attosecond time scale [71].

However, although desirable for many applications, table-top sources that provide
coherent EUV radiation at repetition rates in the MHz regime have remained scarce so
far. The main reason for that is that the extremely nonlinear HHG process shows a
threshold behavior. Since the required peak intensities exceeding 1013 W/cm2 cannot
be attained routinely with the output of a typical femtosecond oscillator, the commonly
used approach is based on reducing the repetition rate of the laser system to the kHz
regime in order to concentrate the achievable average power in fewer, but more intense
driving pulses. Using such laser systems, which usually take advantage of the chirped
pulse amplification (CPA) technique [7], high harmonic radiation can then be generated
in a simple single pass geometry. For typically achieved peak powers on the order of
1010 W, weak focusing conditions are sufficient to reach the required threshold intensities
so that comparably high conversion efficiencies and high harmonic yields are obtained
(cf. Section 3.3.3.5).

Scaling the repetition rate of laser systems suitable for single pass HHG into the
MHz regime is very challenging even when CPA is used. Increasing the repetition rate
of a typical 1 kHz CPA system by a factor of ∼ 103 requires a simultaneous increase
of the same order in average power to keep the pulse energy constant. Aside from a
lack of suitable high brightness pump sources in many cases, the resulting high average
and peak powers are on the order of the surface and bulk damage thresholds of the
employed gain materials and optical components. So far, progress in fiber amplifier
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technology has enabled HHG at up to 500 kHz [262] and 1 MHz [263] with amplified
pulses. Direct HHG with the output of a long-cavity Ti:sapphire oscillator operating at
a repetition rate of 4 MHz was reported only recently [264]. At the same time, advances
in thin disk laser technology [265], where output powers approaching ∼ 300 W at a
repetition rate of 16.3 MHz and a pulse duration of ∼ 600 fs directly from the oscillator
are now achievable [266], have brought oscillator-driven single pass HHG at repetition
rates exceeding 5 MHz into reach.

The generation of usable coherent EUV radiation at repetition rates higher than
∼ 10 MHz has so far only been possible with cavity-assisted HHG1. Since its first demon-
stration [8, 9], the cavity approach has matured significantly. Systems generating EUV
power levels of ∼ 100µW in a single harmonic order [10] and EUV radiation with photon
energies exceeding 100 eV [15] have been reported, and first spectroscopic experiments
employing a cavity-assisted EUV source have been performed [11,12]. However, the at-
tainable average intracavity driving powers are currently limited to below 10 kW because
of ionization dynamics in the intracavity gas target and both damage and nonlinear re-
sponses of the cavity mirrors [10, 16–18]. As long as the level of ionization is the main
factor preventing a further increase of the intracavity power, the obvious choice to im-
prove the yield for a certain harmonic order is to resort to looser focusing conditions.
This, of course, requires a modification of the resonator and is not easily possible with-
out reducing the spot sizes on the cavity mirrors. To address the problem of mirror
damage, an enhancement cavity design with larger spot sizes on the cavity mirrors has
been proposed and realized [268]. Although this design has enabled the demonstration of
unprecedented average power levels of almost 200 kW in an empty resonator with 200 ps
pulses [269], further improvements of the cavity-concept under conditions suitable for
efficient HHG become increasingly challenging.

In contrast, the realization of single pass HHG at multi-MHz repetition rates primar-
ily relies on the (commercial) availability of a high power laser system and can take
advantage of existing techniques from the kHz domain. It may depend on the applica-
tion whether the omission of an actively stabilized high finesse enhancement cavity in
a HHG setup at the expense of a probably equally complex high power laser system is
advantageous. It is unquestionable, however, that HHG at moderate repetition rates of
∼ 10 MHz can be realized more easily in a single pass geometry than with a cavity with
impractically large dimensions. In addition, the single pass approach promises several
general advantages both in terms of versatility and usability that shall be summarized
in the following.

The single pass geometry is not as sensitive to nonlinear phase shifts as an enhance-
ment cavity, where the phase shifts can significantly limit the achievable enhancement
and thus the EUV output power. Possible sources for such phase shifts are nonlinear
responses of the cavity mirrors, ionization dynamics in the gas target, and the method
that is used to separate the generated EUV radiation from the fundamental, e.g. a

1A demonstration of multi-MHz HHG with a standard Ti:sapphire oscillator relying on plasmonic
field enhancement in nanostructures [267] is not considered here since the long-term stability and
the beam quality of this EUV source are still to be proven.
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grating mirror [13]. This reduced sensitivity also leads to relaxed requirements on the
separation of fundamental and EUV radiation in single pass HHG systems compared
to cavity-assisted EUV sources. Furthermore, multi-color HHG and other well-known
quasi-phase-matching techniques can be employed to improve the conversion efficiency,
which is currently not conceivable in an enhancement cavity. In general, more com-
plex HHG schemes are more difficult to realize with an enhancement cavity than in a
single pass geometry. For example, polarization gating cannot readily be extended to
cavity-assisted HHG. The latter does not permit a fully independent adjustment of the
repetition rate and the carrier-envelope offset frequency either. In terms of flexibility,
only minor adjustments to a single pass HHG setup are required for a large range of
repetition rates and focusing conditions while major modifications to the enhancement
cavity become necessary when the repetition rate or the focusing conditions are to be
varied.

In this chapter, we report on the first experimental realization of single pass HHG
at multi-MHz repetition rates. These proof-of-principle demonstrations were rendered
possible by the use of a high power solid state amplifier system of the latest generation.

5.2 Laser system

A master oscillator power amplifier (MOPA) system was used for the experiments de-
scribed in this chapter. In all cases, an Yb:YAG-based Innoslab power amplifier stage
formed the key element of the laser system. Innoslab amplifiers are particularly well-
suited for multi-MHz repetition rate experiments at high average powers such as the
single pass HHG experiments described in the following sections because no CPA is in-
volved above repetition rates of about 10 MHz, which is a rather unique feature among
the available high brightness laser sources. A more exhaustive review of the Innoslab
concept along with a detailed comparison to other available power amplifier technologies
can be found in the literature [239,270]. The basics of the Innoslab concept are described
in the following.

A conceptual schematic of the Innoslab amplifier is shown in Figure 5.1. The ampli-
fication crystal is a small slab (1× 10× 10 mm3 of Yb:YAG in our case). Both large
facets of the slab are soldered to a water-cooled heat sink (not shown in the figure)
which allows for an efficient overall thermal management. Two commercially available
high power diode stacks (Jenoptik JOLD-720-HSC-4L) produce up to ∼ 660 W each at
a wavelength of 940 nm to longitudinally pump the Yb:YAG slab from both sides. The
pump radiation is shaped by a planar waveguide and subsequently focused such that
it homogeneously illuminates a ∼ 0.2× 10× 10 mm3 volume at the center of the slab.
Taking advantage of the polarization of the pump light, the overall pump absorption can
be boosted to ∼ 90 % by telecentric refolding of the pump radiation that is not absorbed
during its first passage of the slab.

As illustrated in Figure 5.1, a confocal cavity arrangement of just 35 mm length con-
sisting of two cylindrical end mirrors and two dichroic plane folding mirrors allows to
guide the seed radiation (shown in red) through the slab several times to multiply the
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Figure 5.1: Schematic of Innoslab amplifier concept. Figure adopted from [271] by courtesy
of P. Russbueldt.

moderate single pass gain (2–10). Apart from the compactness and ruggedness of the
technical design, the key advantage of the refolding configuration is that the Innoslab
amplifier effectively operates as a single pass amplifier since the seed beam traverses a
different part of the gain volume during each pass. The beam parameter of the seed
beam is reproduced along the fast axis of the slab (y-axis in Figure 5.1) by the resonator
and the cylindrical thermal lens, which is formed due to the one-dimensional heat flow.
At the same time, the cavity has a magnification of M = 1.4 along the slow axis (x-axis)
so that the beam is continuously expanded during amplification. That way, damages
due to the increase in power can be avoided and nonlinear phase shifts due to the optical
Kerr effect are kept low. The latter are quantified by the so-called B-integral (cf. (2.25))
which is therefore small for an Innoslab amplifier.

For the employed slab size, an average power of more than 550 W can be achieved after
amplification. A typical amplifier slope, i.e. a plot of output power vs. pump power (here
parameterized by the pump diode current as the experimentally accessible parameter),
is depicted in Figure 5.2 (blue circles). In practice, however, a severe technical limitation
in the setup behind the Innoslab amplifier reduced the amount of usable power to around
200 W at the time when the experiments were conducted: The only then commercially
available optical isolator for such high powers (Jenoptik 6-P1030-HP1) was just specified
and usable for up to 200 W of polarized radiation. At higher powers, both the reduced
isolation due to thermally induced double refraction in the isolator crystal and the
significant deterioration of the beam quality due to strong thermal aberrations of the
induced thermal lens are detrimental for the experiments2. Operation without an optical
isolator is, of course, possible, yet not recommended if avoidable since any small amount
of light that gets reflected back into the amplifier will get amplified to very high power
and may damage or even destroy both optical components and the seed oscillator. We

2In the meantime, our collaborators from the Fraunhofer ILT in Aachen have solved this problem by
developing an optical isolator design that does not suffer from these problems even at powers of
up to 1 kW. A commercial product based on this design is available from the Fraunhofer spin-off
company Amphos GmbH.
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Figure 5.2: Amplifier output power as a function of pump power, here parameterized by pump
diode current. Blue dots show typical amplifier performance. Red squares indicate performance
at the time of the measurement. See text for details.

experienced such a scenario during one of our initial frequency doubling experiments
with the Innoslab amplifier: Since the full output power of the amplifier was needed for
efficient doubling at the high repetition rate of 584 MHz and the isolator thus had to be
omitted, an optically induced defect in the doubling crystal caused enough backscattering
into the amplifier to lead to the destruction of the seeding fiber oscillator used at that
time.

The red squares in Figure 5.2 indicate the amplifier performance at the time of our first
single pass HHG experiments with short pulses that will be described in the following
Section 5.3.1. While the maximum output power of the amplifier was not used due to
the optical isolator, the different threshold behavior and the offset compared to the slope
formed by the blue circles originate from a minor damage of the joint between the slab
crystal and the heat sink which led to different amplifier characteristics at low pump
power but did not hamper our experiments.

The Fourier-limited output pulse duration of our Innoslab amplifier is ∼ 680 fs inde-
pendent of the potentially broader spectral bandwidth of the seed source due to gain
narrowing in the amplifier when a gain material with a comparably small emission band-
width such as, in our case, Yb:YAG is used for the slab crystal. The choice of Yb:YAG
over other potential gain materials with larger emission bandwidth is mainly based on
its very favorable properties (e.g. high emission cross section, low saturation intensity,
large heat conductivity) and the availability of crystals of high optical quality in the
required size. Further development is under way in the laboratories of our collaborators
with slab materials such as Yb:KGW or Yb:Lu2O3 that have a larger emission band-
width and would thus allow shorter amplifier output pulses but are technically more
demanding to use due to their mechanical and thermal properties.

One of the favorable features of the Innoslab concept is the almost diffraction-limited
output beam quality of the amplifier. As we have seen in Section 2.1.2.2, a source
of high brightness is particularly important for the tight focusing geometries that are
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Figure 5.3: Measured caustic for the sub-50 fs experiments.

usually required for single pass HHG at multi-MHz repetition rates. Figure 5.3 shows
a typical caustic of the amplifier output that was measured behind the optical isolator
with a beam propagation analyzer (Spiricon M2-200FW) during the sub-50 fs single
pass HHG experiments (see Section 5.3.1). The measured beam quality factor is M2 =
1.08 × 1.22 (fast × slow axis) with a slightly astigmatic and elliptic focus. While the
slightly suboptimal ellipticity and astigmatism originate from inevitable day-to-day drifts
of alignment and can easily be optimized again, further improvement of the currently
achievable beam quality factors is extremely challenging. Therefore, the brightness of
the Innoslab amplifier is ∼ 25 % lower than that of an enhancement cavity providing
the same average power in a perfectly Gaussian cavity mode according to (2.17). In
general, the Innoslab concept permits even higher amplifier output powers than used
here by simply scaling the dimensions of the slab such that the efficient heat removal is
not compromised. To this end, high brightness pump diodes and high quality crystals
are required.

A picture of the Innoslab amplifier used for the experiments presented in the following
sections is shown in Figure 5.4.

5.3 Experiments

Two different single pass HHG experiments at multi-MHz repetition rates were con-
ducted. While most of the experimental layout and the experimental parameters just
varied insignificantly, the main and most crucial difference between those experiments
was the duration of the IR pulses used for HHG. In the following, we will first describe
the initial proof-of-principle experiment with externally compressed sub-50 fs pulses at
strongly reduced amplifier output power and then present the results of an experiment
with the uncompressed sub-ps amplifier pulses at about 50% of the overall available
power.
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Figure 5.4: Picture of the Innoslab amplifier used in the single pass HHG experiments de-
scribed in this chapter.

5.3.1 Sub-50fs pulses

Figure 5.5 shows a schematic of the experimental setup. A commercial passively mode-
locked Yb:KGW seed oscillator (HighQ femtoTrain) delivers 300 fs pulses with an average
power of 2.2 W at a center wavelength of 1030 nm to the Yb:YAG Innoslab power ampli-
fier that has been described in detail in the previous section. At the oscillator repetition
rate of 20.8 MHz, nine passes through the slab crystal are used for optimum amplifica-
tion of the seed radiation. When operating the pump diodes at 2× 110 A, the amplified
output (P ≈ 175 W) has almost diffraction limited beam quality (M2 = 1.08×1.22, mea-
sured with Spiricon M-200FW) while the output pulse duration is limited to ∼ 680 fs by
the gain bandwidth of the Yb:YAG crystal. The amplified pulses are thus unfavorably
long for efficient HHG in a rare gas, particularly the most efficient Xe, due to ionization
of the medium as has been discussed in Section 3.4.2. Therefore, an additional non-
linear pulse compression stage was implemented in which the pulses are first spectrally
broadened and then temporally compressed.

5.3.1.1 Spectral broadening and pulse compression

As discussed in Section 2.1.4.2, many of the commonly used spectral broadening schemes
are not feasible or at least very challenging to realize technically for the relatively long
∼ 10µJ-pulses that our amplifier provides. We chose self-phase modulation (SPM) in a
large mode area (LMA) photonic crystal fiber (PCF) as the nonlinear spectral broad-
ening scheme based on the results of detailed studies that were carried out by our
collaborators [43]. In these investigations, one of the employed fibers (NKT Photonics
LMA-35) had been identified as the most promising in terms of spectral broadening and
mode quality. Unfortunately, however, this fiber was reproducably damaged at pulse en-
ergies above ∼ 2µJ. Consequently, the input power to the nonlinear pulse compression
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Figure 5.5: Schematic of experimental setup. HPOI: high power optical isolator, (M)W:
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mirror, N: nozzle, RV: regulating valve, GIS: grazing incidence spectrometer, CEM: channel
electron multiplier. See text for further details.
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Figure 5.6: Picture of the assembly used to hold the PCF. The fiber is held by the two glass
cylinders located at the ends of the copper block and is not in direct contact with the latter.

stage had to be limited to about 40 W (of the available ∼ 200 W) in all our experiments
which turned out to be the main limitation of this setup.

As depicted in Figure 5.5, the power sent to the PCF can be adjusted using a
polarization-based attenuator consisting of a half-wave plate and a polarizing beam
splitter cube. The PCF is held above a V-shaped groove in a copper block by two
notched glass cylinders located at both ends of the groove. A picture of the assembly
is shown in Figure 5.6. In order to minimize potential heating effects of the power not
coupled into the fiber, the copper block is actively water-cooled. An anti-reflection (AR)
coated focusing lens (f = 60 mm) mounted to a 3d precision positioning stage (Thorlabs
NanoMax) is used to couple the light into the PCF. When angled with respect to the di-
rection of propagation by a goniometer, a 20 mm thick AR coated fused silica window in
front of the focusing lens causes a parallel shift of the beam and thus allows to adjust the
coupling angle in combination with the lens. That way, it is possible to compensate for
fiber cleave angles of up to 5 ◦. Coupling to the PCF can be further optimized through
matching the input beam diameter to the fiber by means of a zoom telescope (1–3x,
Sill Optics S6ASS5310/328). The spectrally broadened beam is recollimated behind
the fiber by an achromatic focusing lens (f = 60 mm) held by an identical 3d precision
positioning stage and then sent to a chirped mirror compressor. Two λ/4-plates are
installed to convert the linearly polarized amplifier output into circularly polarized light
for the nonlinear spectral broadening setup and to recover the linear polarization after-
wards. This procedure is advantageous because the electric field amplitude of circularly
polarized light is a factor of

√
2 smaller than that of linearly polarized light of the same

average power so that the same spectral broadening can be achieved at higher average
power without damaging the fiber.

Diagnostics is implemented at different points of the nonlinear pulse compression
stage. A permanently installed wedge sampling the spectrally broadened main beam
allows to image the near field of the fiber exit onto an actively water-cooled iris whose
diameter is chosen such that the cladding modes of the fiber are clipped. Behind the
iris, the power coupled into the core of the PCF can thus be determined reliably with
a temporarily installed power meter. Without the latter, the light goes to an optical
spectrum analyzer (OSA) which monitors the broadened spectrum. Alternatively, the
spatial mode of the fiber-coupled light can be assessed by imaging the end facet of
the fiber to a CMOS camera using an additional wedge in the beampath (insets · in
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Figure 5.7: Measured infrared spectrum after broadening due to self-phase modulation in a
7.1 cm long piece of LMA-35 PCF. The width of the broadened spectrum is ∆λ ' 80 nm. For
comparison, the spectrally broadened spectrum calculated using the experimental parameters
according to (2.29) in Section 2.1.4.2 is shown as a thin red line.

Figure 5.5). Behind the chirped mirror compressor, a wedge and a broadband high
reflector on flip mounts allow us to measure the autocorrelation and the average power
of the compressed pulses, respectively. In combination with additional (not permanently
installed) power measurements at specific points along the beam path (indicated as ¬ –
± in Figure 5.5), the overall performance of the nonlinear pulse compression stage can
be monitored and controlled.

For the experiment, we launched about 40 W of the available amplifier output into
a PCF of 7.1 cm length. At that input power, the amplifier output spectrum broadens
to a FWHM of ∆λ ' 80 nm. A broadened spectrum is shown in black in Figure 5.7.
The additional thin red line in the figure corresponds to the SPM-broadened spectrum
calculated via (2.29) using the experimental parameters (cf. Section 2.1.4.2) and shows
very good agreement with the measured spectrum in terms of both modulation and
spectral width. The coupling efficiency to the fiber was found to be above 80 %. The
amount of the input power that is coupled into the core of the fiber and thus determines
the amount of self-phase modulation can be obtained from measuring the power both
in front of and behind the iris in the diagnostics beam (i.e. at the positions ­ and ® in
Figure 5.5). We found that it reproducably amounts to > 80 % with minor differences
depending on both alignment and the individual fiber pieces used.

After spectral broadening, the pulses are compressed in the chirped mirror compres-
sor. We found a multi-pass configuration with one high reflector and three custom-
made chirped mirrors introducing 13 bounces with a nominal group delay dispersion
of approximately −450 fs2 per bounce to best compress the pulses. Both the measured
autocorrelation trace (red) and the autocorrelation trace calculated from the spectrum
assuming a flat spectral phase (blue, dashed) are shown in Figure 5.8. Since the exact
pulse shape corresponding to the broadened spectrum is not known, we retrieved the
FWHM pulse duration from the measured autocorrelation using the following method:
In a first step, the FWHM of the pulse calculated from the spectrum under the assump-
tion of a flat spectral phase is determined. This calculated pulse is then mathematically
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Figure 5.8: Measured (red, solid) and calculated (blue, dashed) autocorrelation trace. The
retrieved FWHM pulse duration is τp = 35 fs.

autocorrelated to obtain the FWHM of the autocorrelation trace. Comparison of these
two FWHM’s then yields a retrieval factor that enables us to estimate the pulse duration
from the experimental autocorrelation data. Using this method, we obtained τp = 35 fs
from the measured autocorrelation trace. The more prominent side lobes in the mea-
sured autocorrelation trace compared to the calculated one probably indicate that higher
order dispersion is not efficiently compensated for by the mirrors used. At a compression
factor of ∼20, the overall transmission of the whole nonlinear pulse compression stage
is about 60%, resulting in an average power of up to 23 W available for HHG after com-
pression (± in Figure 5.5). However, taking the shape of the measured autocorrelation
into account, we can estimate that just about 60% of this power is concentrated around
the temporal center of the underlying pulse while the wings contain the remaining 40%.
Thus, the achieveable peak intensity is about a factor of 2 lower than it could be with
ideally compressed pulses.

5.3.1.2 Vacuum system and HHG setup

Since the pulse energy after compression was limited to ∼ 1µJ in our setup, tight focus-
ing was required to reach a peak intensity sufficient for HHG. Therefore, we magnified
the IR beam with a 1:2-telescope consisting of two fused silica lenses with a broadband
AR coating that are mounted on translation stages for fine adjustment of the telescope.
The spot size (1/e2 intensity radius) of the magnified beam is w = 2.4 mm. After magni-
fication, the beam is guided into the main experimental chamber which can be evacuated
to a pressure of ∼ 6× 10−6 mbar without additional gas load.

Inside the vacuum chamber, a gold-coated 90◦ off-axis parabolic mirror (OAPM) with
an effective focal length of 20 mm focuses the pulses to a waist radius of w0 = 4.6µm
(see Figure 5.9a). Since the quality of the focus and thus the achievable peak intensity
critically depend on the incidence angle of the beam on the OAPM, we replaced two
high reflectors in front of the OAPM by wedges to be able to analyze and optimize
the beam profile at the focus before evacuation. However, since the pixel size of the
CCD-based beam profiler (DataRay WinCamD) was too large to adequately determine
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Figure 5.9: (a) Picture of gold-coated off-axis parabolic mirror and Laval gas nozzle with
bright violet plasma created from Xe gas. (b) Measured beam profile at the focus from which
w0 = 4.6µm is determined.

the spot size, we had to image the focus by means of a magnifying microscope objective.
The required pre-calibration of the whole assembly was done by imaging the lines of a
transmission grating with 200 lines per mm. Figure 5.9b shows the recorded beam profile
at the focus after first optimization. It can be seen that the beam is still slightly elliptic
as a consequence of astigmatism introduced by the OAPM. However, pre-alignment
turned out to be good enough to observe plasma generation in air after switching back
to the high reflectors. The brightness of the generated plasma proved to be a sensitive
indicator of the focus quality and can thus be exploited for further optimization of
the alignment. For the measured spot size and the achieved laser parameters, a peak
intensity of 4× 1013 W/cm2 at the focus can be estimated.

Once the experimental chamber is evacuated, high harmonic radiation is generated in
a continuous Xe gas jet that is produced in the vicinity of the focus by a Laval nozzle
(orifice Lmed ' 150µm). The position of the nozzle is pre-aligned using the plasma spot
generated in air before evacuation and can be precisely adjusted with motorized transla-
tion stages to optimize the harmonic yield under vacuum conditions. When the nozzle is
operated at a Xe backing pressure of 2 bar and a flow rate of ∼ 3× 10−1 mbar · l/s set by
a manual gas dosing valve (Pfeiffer EVN 116), the pressure in the experimental chamber
stabilizes at around 1× 10−3 mbar. Absoption of the generated harmonic radiation on
the way to the detection system is thus negligible.

5.3.1.3 Detection system and data analysis

The harmonic radiation generated in the noble gas target propagates into a differentially
pumped grazing incidence EUV monochromator (McPherson Model 248/310), which is
separated from the interaction chamber by a 2 mm diameter pinhole located 244 mm
downstream of the gas jet. The pinhole also serves as a partial beam block for the
fundamental beam which diverges more strongly than the generated harmonic radiation
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Figure 5.10: Typical event signature obtained with the CEM detector. The trigger level of
−2 mV used for post-processing of the acquired data is indicated by a dashed red line. At that
trigger level, the pulse duration is about 30 ns.

(cf. Section 3.3.3.3). The monochromator is equipped with a 133.6 grooves/mm grating
and a solar blind channel electron multiplier (CEM) in pulse counting mode so that
computer-controlled movement of the CEM along the Rowland circle enables the detec-
tion of the spectrally resolved harmonic radiation with virtually no background from
residual (scattered) fundamental radiation. Since differential pumping ensures that the
pressure at the CEM remains at a level of ∼ 1× 10−5 mbar with the gas load in the
experimental chamber, the detector can be operated at a voltage of 2.9 kV without risk
of breakthrough. During the wavelength scan, the signal from the CEM is acquired with
a fast oscilloscope (LeCroy WavePro 7300A) as a trace of pulse counts versus time. The
typical signature of a single detection event, i.e. the voltage signal resulting from the
electron avalanche created by a single harmonic photon incident on the CEM, is shown
in Figure 5.10.

For the evaluation of the recorded time trace, background noise and unavoidable
ringing of the detector itself after a previous event have to be discriminated from real
events by setting an appropriate threshold level. We found a threshold value of −2 mV
to yield reliable results when post-selecting the data. The typical event duration at this
threshold level is about 30 ns. From the dataset of the post-selected signal events, we
calculate a photon count rate as a function of time. Using the scanning parameters
of the monochromator, this data can be synchronized with the counter values of the
monochromator. Those correspond to the mechanical movement of the detector along
the Rowland circle during data acquisition and are thus directly related to the wavelength
of the observed photons. To obtain a smooth spectrum, a moving Gaussian window
function is applied to the data before the final conversion into a spectrally resolved
photon count rate. Note that the spectral resolution is limited to about 3 nm by this
data acquisition and evaluation technique.
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Figure 5.11: Measured high harmonic spectrum in (a) linear and (b) logarithmic scale. The red
dashed lines indicate odd harmonics of the fundamental. The green line marks the background.
The strong peak near 70 nm corresponds to the 15th harmonic.

5.3.1.4 Results and discussion

The resulting spectrum is shown in Figs. 5.11a and 5.11b in linear and logarithmic
scale, respectively. The red dashed lines indicate the 11th to 19th harmonic order of the
fundamental. High harmonic radiation ranging from the 11th (93.6 nm) up to the 17th
order (60.6 nm) can be identified in Figure 5.11b and there are strong indications that
the 19th order (54.2 nm) was generated as well. Those are supported by the fact that the
single atom cutoff lies between the 19th and the 21st harmonic order for the estimated
experimental peak intensity of ∼ 4× 1013 W/cm2. The strongest observed peak with an
about one order of magnitude higher count rate than the other harmonics corresponds
to the 15th harmonic (68.7 nm).

Since systematic investigations in this setup were hampered by the unexpected tem-
porary unavailability of a seed laser, the huge difference in yield between the observed
harmonic orders cannot be explained in a conclusive way. While we can hence not gen-
erally exclude beam pointing instabilities and fluctuations in the overall performance of
the laser system during the acquisition of the spectrum, we did not observe such fluc-
tuations while setting up the experiment. We also consider it unlikely that the spectral
diffraction efficiency of the monochromator grating, which is only theoretically known,
strongly affected the detectable intensities of neighboring harmonic orders in the ex-
periment. However, since the conditions for phase matching can differ significantly for
different harmonic orders in tight focusing geometries (cf. Section 3.3.1), the observed
relative intensities can at least partly be attributed to phase matching effects. For the
experimental parameters, the level of ionization caused by a single pulse is below 3 %
(see Figure 3.8a) and thus negligible. Since the gas jet is located very close to the focus,
where the contribution of the intensity-dependent phase can be neglected as well, the
neutral dispersion of the target gas has to compensate for the geometric phase mismatch.
This can typically not be realized equally well for all harmonics at the same time or may
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not be possible at all at experimentally feasible pressures [102].
The absolute high harmonic output power that can be obtained with our system is

limited in both a general and a technical way by the extremely tight focusing geometry
that is necessary because of the limited peak power of the system when including the
spectral broadening unit:

The obvious general limitation originates from the small interaction volume and phase
matching. For the realized focusing conditions, the threshold length defined by (3.33) is
Lth(15) ' 150µm for the 15th harmonic. However, according to (3.29), the geometrical
phase lag induced by focusing accumulates to π for a harmonic order q after a distance

Lgeo
q '

πb

2(q − 1)
(5.1)

so that the high harmonic yield in a gas target of length Lmed is limited by the re-
duced effective source volume due to phase matching when Lgeo

q . Lmed [272]. For our
experimental conditions, this applies for all observed harmonic orders. In particular,
Lgeo

15 ' 15µm� Lth(15) ' Lmed.
The technical limitation of the achievable EUV output power due to tight focusing

is the reduced geometric transmission of the generated light through the experimental
apparatus. The divergence of the generated harmonic radiation, while always lower than
that of the fundamental, increases for tighter focusing of the latter. In our setup, if we
consider the divergence model θq =

√
p θ1/q discussed in Section 3.3.3.3 with p = 6,

∼ 90 % of the EUV is geometrically clipped by the 425µm wide entrance slit of the
monochromator, which is located about 670 mm downstream of the noble gas target.
Therefore, if the harmonic radiation produced in a tight focusing geometry is to be
delivered to an experiment, great care has to be taken in the design of the setup to
minimize geometrical losses.

To evaluate the system performance independent of the specific setup behind the gas
target (e.g. apertures and diagnostic elements), it is common practice to calculate the
amount of EUV generated in the target from the detected power by correcting it for all
power-reducing factors along the way from the target to the detector.

In our case, the generated power in the 15th harmonic is estimated according to the
following equation

PEUV(q) = q
hc

λ1

·Nν χs χc χm χg (5.2)

where Nν is the total number of detected photons per second in harmonic order q and
the factors χg, χm, χc, and χs account for the geometric transmission through the exper-
imental apparatus, the efficiency of the monochromator grating, the quantum efficiency
of the CEM, and the undersampling of the oscilloscope, respectively. The latter is the
result of recording a time trace of 64 s with average sampling intervals of 4µs with the
oscilloscope during the wavelength scan of the monochromator. Since the typical event
duration at the employed trigger level of −2 mV was ∼ 30 ns as shown in Figure 5.10,
χs ≈ 133. Assuming χ−1

m . 30 % and χ−1
c . 40 % based on the (calculated) values pro-

vided by the manufacturers and taking into account χ−1
g ≈ 10 %, we can thus give a
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conservative estimate of ∼ 1 nW for the total generated power in the 15th harmonic
order.

This power is about three to five orders of magnitude lower than the EUV powers now
routinely provided by cavity-assisted HHG [10–12,15], which emphasizes the impressive
level of maturity that these systems have reached since the first proof-of-principle demon-
strations. It is therefore quite interesting to compare our results with those achieved
with the first and second generation enhancement cavity systems.

In the first demonstration of cavity-assisted HHG by Gohle et al. [8,273], a generated
power of ∼ 0.82 nW in the 11th harmonic of a Ti:sapphire system with an intracavity
peak power of Pp = 2.1× 107 W was reported. Both the peak power and the generated
power of this system are comparable to the respective parameters of the single pass
experiments presented in this section. In a second generation enhancement cavity sys-
tem [249, 256], the generated EUV power could be increased by about three orders of
magnitude. This achievement was mainly enabled by the 10 times higher available peak
power which allowed looser focusing.

With our amplifier system, at least an order of magnitude more peak power should
be available for HHG when using a more robust spectral broadening scheme, e.g. the
one introduced in reference [26] or a method similar to the one realized by Nurhuda et.
al [34, 35]3. Therefore, power levels on the order of several µW and beyond seem quite
feasible for the next generation multi-MHz single pass EUV sources.

5.3.2 Sub-ps pulses

The single pass HHG experiment with externally compressed pulses described in the
previous section was mainly limited by the nonlinear pulse compression stage, which
capped the usable driving power. Therefore, ignoring the unfavorable effects of ionization
for a moment, it seems a somewhat logical choice to entirely omit that bottleneck in the
setup.

However, according to (2.31), if the 680 fs pulses provided by the Innoslab amplifier
shall be used for HHG without compression, the pulse energy will have to be scaled
up by a factor of ∼ 20 to keep the peak power constant. Fortunately, our amplifier
allows scaling the driving power by a factor of up to 10 compared with the short pulse
experiments before the aforementioned disadvantageous effects of the high power optical
isolator set in. The remaining factor of 2 required for peak power equivalence can be
realized by using a seed oscillator with a reduced repetition rate of 10 MHz.

The effects of ionization can be addressed in the following way: According to Fig-
ure 3.8a, a fraction of ionization exceeding 30 % is expected in Xe for a single 680 fs
pulse with the same peak intensity as in the short pulse case. While ionization may thus
limit the overall yield in Xe, Figure 3.8a predicts a strongly reduced level of ionization
at the same peak intensity in Kr. This trend continues for Ar (cf. Figure 3.6a) so that

3In fact, a scheme to which the author contributed the first and still very vague idea has recently
been demonstrated by our collaborators. Details cannot be disclosed here due to a pending patent
application.
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Figure 5.12: Schematic of experimental setup for single pass HHG with long pulses. HPOI:
high power optical isolator, (M)W: (movable) wedge, M: mirror, HWP: half-wave plate, PBS:
polarizing beam splitter, L: lens, PM: power meter, ZT: zoom telescope, N: nozzle, RV: regu-
lating valve, I: iris, TGM: toroidal grating monochromator, CEM: channel electron multiplier.
See text for further details.

we devised a set of experiments exploiting the versatility of the single pass geometry to
investigate the achievable yield in different target gases for different focusing conditions.
However, before we could obtain conclusive data, the main amplifier was scheduled to
be used in a joint experiment with our collaborators (see Section 5.4). Therefore, just
the results of our very first experiments in Xe can be reported in the following.

Figure 5.12 shows a schematic of the experimental setup. Apart from the omission of
the nonlinear pulse compression stage, the schematic reveals three important alterations
compared to the sub-50 fs experiment: (i) the exchange of the seed oscillator, (ii) the use
of different focusing optics, and (iii) the implementation of a fully computer-controlled
data acquisition in conjunction with a different EUV monochromator. The 20.8 MHz
solid state seed oscillator was replaced by a customized commercial Yb-doped fiber laser
system (MenloSystems Orange A) which provides 600 fs pulses with an average power
of up to 3 W at a center wavelength of 1030 nm. The fundamental repetition rate of
100 MHz can be reduced by integer divisors with an intracavity electro-optic modulator
(EOM). For the experiments detailed here, the repetition rate of the oscillator was
set to 10 MHz. After amplification of the seed radiation in seven passes through the
slab crystal of the Innoslab amplifier, 680 fs pulses with pulse energies exceeding 21µJ
at an M2 factor of about 1.35 × 1.65 are available. The considerably reduced beam
quality compared to our first single pass experiments at multi-MHz repetition rate (cf.
Section 5.3.1) can partially be attributed to the onset of thermal aberrations caused by
the high power optical isolator above ∼ 200 W. However, it is also a consequence of
degraded amplifier performance due to suboptimal alignment that could not be fixed at
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Figure 5.13: Measured beam profiles at focus with estimated waist radii of (a) w0 ≈ 7.1µm
and (b) w0 ≈ 11µm. Note that the scale of the plots is different.

the time of the experiment.

5.3.2.1 Vacuum system and HHG setup

A polarization-based attenuation unit behind the high power optical isolator allows to
send pulses of variable energy into the vacuum chamber. In general, the requirements on
the focusing optics are less demanding due to the long pulse duration and the correspond-
ing narrow spectral bandwidth. However, to reach peak intensities above 1013 W/cm2,
tight focusing is still mandatory. Therefore, the beam is magnified with a fused silica
zoom beam expander (1–3x, Sill Optics S6ASS5310/328) before being focused by a single
AR-coated fused silica lens (f = 50 mm) whose position can be varied with a translation
stage. In contrast to our experiments with sub-50 fs pulses, all optics are located outside
the vacuum chamber, thus facilitating alignment or exchange. The gas target is the only
remaining element inside the chamber and consists of a motorized 3d translation stage
that can be equipped with custom-made end-fire glas nozzles of various orifice diameters
between 10µm and 200µm (Hilgenberg GmbH).

Before attempting single pass HHG, a pre-calibrated assembly consisting of a micro-
scope objective and a beam profiler (DataRay WinCamD) was positioned in the open
vacuum chamber to analyze the focus for different magnification settings of the beam
expander and for different powers. For that purpose, a 45 ◦ high reflector placed in the
beam path behind the zoom telescope temporarily directed most of the IR into a beam
dump while the small fraction of transmitted light could be used for the measurement.

Figure 5.13 shows two beam profiles at the focus that were measured at different times
for slightly altered experimental parameters. While the profile depicted in Figure 5.13a
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was recorded at ∼ 215 W, M2 = 1.11 × 1.36, and a magnification of 2.0, Figure 5.13b
shows the profile for ∼ 215 W, M2 = 1.32× 1.66, and a magnification of 2.5 at the time
the HHG experiments were conducted. The former profile is that of a slightly elliptic
Gaussian beam with a waist of w0 ≈ 7.1µm. The waist radius of the distorted profile of
the latter can be estimated to be about 11µm despite the stronger magnification of the
IR beam before focusing that should theoretically compensate the effect of the higher
M2 value. From the measured waist radius, a peak intensity of up to 4× 1013 W/cm2

at the focus can be inferred.
While it was rather straightforward to identify the deteriorating output beam quality

of the amplifier as an obviously detrimental factor for the beam quality at the focus, mea-
surements at different times during an experimental day clearly revealed that thermal
effects occuring on a slow time scale were also involved. The latter, primarily suspected
to originate from thermal lensing in the beam expander, not only led to an increased spot
size at the (additionally shifted) focus, but also further deteriorated the beam quality.
Unexpected at the time of the experiments, these observations illustrate that both an
amplifier with high brilliance and careful selection and thermal management of all op-
tical elements along the beam path are mandatory requirements for efficient and stable
operation of such a single pass EUV source.

Before evacuation of the chamber for the main experiment, plasma generation in air is
exploited to pre-align and optimize the position of the nozzle with respect to the focused
IR beam. Under vacuum conditions, the latter generates high harmonic radiation in the
continuous gas jet that is produced by supplying xenon to the nozzle at a backing
pressure of 2.5 bar and alternable flow rates controlled by a motorized gas regulating
valve (Pfeiffer EVR 116). With the additional gas load from the target, the pressure in
the interaction chamber rises from around 9× 10−6 mbar to stable values ranging from
about 1.5× 10−2 mbar to ∼ 6× 10−2 mbar depending on the respective flow rates. At
these pressure levels, the reabsorption of the harmonic radiation by the Xe background
becomes relevant as will be discussed later.

5.3.2.2 Detection system and data analysis

A water-cooled pinhole with a diameter of 1 mm, which is located about 20 cm down-
stream of the gas jet, separates the interaction chamber from a differentially pumped
EUV monochromator (Jobin Yvon LHT-30) with fixed entrance and exit slits (1 mm
width). The incident EUV radiation is spectrally resolved by computer-controlled rota-
tion of the toroidal monochromator grating (550 grooves/mm) and subsequently detected
with a solar-blind channel-electron multiplier (Photonis CEM4839), which is operated
in current mode at a voltage of 2.3 kV. As a consequence of differential pumping, the
pressure at the detector remains at a level of ∼ 4× 10−5 mbar throughout the experi-
ments. The current from the detector is measured with a multimeter (Keithley 2001)
as the voltage over a properly dimensioned resistor (100 MΩ for all data presented here)
and recorded with a computer using the GPIB interface of the multimeter. A software
interface based on the LabVIEW environment unites the control of both the regulating
valve and the monochromator grating rotation and the data acquisition from the CEM
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Figure 5.14: Measured high harmonic spectra obtained for (a) ∼ 24µJ pulses, a Xe gas flow
of 6× 10−1 mbar · l/s, and a chamber pressure of 1.5× 10−2 mbar and (b) ∼ 26µJ pulses, a
Xe gas flow of 8× 10−1 mbar · l/s, and a chamber pressure of 6.3× 10−2 mbar. Odd harmonics
of the fundamental are indicated by red dashed lines. The transmission spectra of Xe at the
respective pressure levels for a 21 cm path are shown as a brown line.

via the multimeter.
Since the employed EUV monochromator is not absolutely calibrated, the acquired

data is shifted in wavelength such that the observed harmonic spectrum coincides best
with the expected spectral positions of the high harmonics of the fundamental radiation.
The shifted data is then averaged with a 1 nm wide moving Gaussian window function.

5.3.2.3 Results and discussion

Two experimental high harmonic spectra recorded at slightly altered experimental pa-
rameters are shown in Figure 5.14. The spectral positions of the odd harmonics of
the fundamental are shown as red dashed lines. After the correctional wavelength shift
of the data mentioned in the previous section, high harmonics ranging from the 19th
(54.2 nm) to the 7th (147.1 nm) order can be identified unequivocally in both cases4.
Lower harmonics cannot be detected because the CEM is not sensitive above ∼ 150 nm.

The spectrum depicted in Figure 5.14a was obtained during our first experimental
single pass HHG attempt with long pulses for a pulse energy of about 24µJ at a Xe
gas flow of 6× 10−1 mbar · l/s. With the additional gas load from the target, the pres-
sure in the interaction chamber stabilized at 1.5× 10−2 mbar. At that pressure level,
reabsorption of the generated EUV radiation in Xe begins to matter and influences the
observed spectrum. The brown line in Figure 5.14a illustrates the spectrally resolved
transmission of EUV radiation for approximately the experimental conditions, i.e. a
21 cm path through Xe gas at a pressure of 1.5× 10−2 mbar5. As one can see, less than

4The signal detected below 50 nm in Figure 5.14b may partially be caused by high harmonic radiation
but could not be clearly identified as such.

5Note that a constant and pure Xe background is assumed here, ignoring the gas distribution in the
vicinity of the target. Since neither the pressure nor the absorptive beam path are known precisely,
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90 % are transmitted between 50 nm and 100 nm with a minimum reaching below 65 %
around 85 nm. This absorption window coincides with the observed harmonic orders 11
to 21, of which the 11–17th are affected the strongest.

Despite more than 30 % absorption losses on the way from the gas jet to the monochro-
mator, the detected signal strength of the 11th order (93.6 nm) is more than a factor of 2
higher than that of the other observed orders. Since the intensity ratios between different
harmonics remain largely the same even after taking into account the Xe transmission
for all orders in the spectrum and the decreasing detection efficiency of the CEM for
wavelengths above ∼ 100 nm, the pronounced signal strength of the 11th order is likely
to be caused by favorable phase matching conditions for that specific order. Further
support for that explanation arises from the fact that during the first experiments, the
optimization of the nozzle position and the gas flow was not performed for a single order,
but for the overall harmonic signal by maximizing the yield in zeroth diffraction order
of the grating. Although this approach is favorable because of the up to two orders of
magnitude stronger signal-to-noise ratio in zeroth order, it excludes the deliberate max-
imization of the signal of a specific harmonic order before a spectrum has been recorded.
Therefore, phase matching will determine the strongest observed harmonic for certain
experimental conditions.

The spectrum shown in Figure 5.14b was recorded with minimally higher pulse energy
(∼ 26µJ) and at a slightly higher setpoint of Xe gas flow (8× 10−1 mbar · l/s) whereas
the other experimental parameters remained unchanged compared to Figure 5.14a. De-
spite the intended moderate change in gas flow, the plasma generated in the gas jet
seemed disproportionately brighter than before upon visual inspection, indicating an
even higher gas flow. This suspicion was partially corroborated by a concurrent increase
of the background pressure in the interaction chamber to up to 6.3× 10−2 mbar. Al-
though the latter may also be caused by the limited pumping speed of the employed
turbomolecular pump, it can be suspected that the regulating valve was not working
properly at the time6.

Figure 5.14b exemplifies the particular sensitivity of HHG in a tight focusing geometry
to the experimental conditions. While causing stronger reabsorption between 50 nm and
100 nm on the one hand, the higher pressure in the gas jet leads to a much larger
19th harmonic signal on the other hand. The calculated single atom cutoff is almost
identical with that of Figure 5.14a so that the increased conversion efficiency of the
19th harmonic can be attributed to better phase matching because of the higher gas
pressure [102]. Notably, the 17th and 19th harmonic appear to be much stronger than the
11th harmonic judging from the detected spectrum. However, looking at the spectrally
resolved transmission of a 21 cm path in Xe at a pressure of 6.3× 10−2 mbar which
is shown as a brown line in Figure 5.14b reveals that about 80 % of the 11th and 13th
harmonic radiation is absorbed before detection. Transmission is higher for higher orders
so that a correction of the measured spectrum for the estimated absorption in the Xe

the pressure indicated by the employed pressure gauge has not been corrected for Xe.
6This was a recurring issue for this device. In most cases, a simple restart of the valve controller

restored reasonable operation.
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background results in a high harmonic spectrum with a plateau of almost equally intense
harmonics between the 11th and the 19th order (not shown).

The system performance is evaluated in the same way as for the sub-50 fs experiments,
i.e. the power of the EUV radiation generated in the target is estimated from the de-
tected signal. For that purpose, the latter has to be corrected for the efficiency and the
transmission of all elements between the gas target and the detector. Since the CEM
is operated in the current mode, we first have to convert the voltage measured with
the multimeter into the corresponding number of detected photons. To this end, the
average charge Q̄ created in the CEM at the operating voltage by a single incident har-
monic photon, i.e. the average area of the pulses caused by a detected EUV photon (see
Figure 5.10) has to be estimated. Here, we use Q̄ = 3.7 pAs from a previous characteri-
zation of the same CEM [274]. The number of detected photons can then be calculated
with the known load resistance (R = 100 MΩ in our case). For the conversion into the
number of generated photons, the quantum efficiceny of the CEM (∼ 10 %), the spec-
ified spectral reflectivity of the monochromator grating in the relevant spectral region
(only ∼ 4 % because the available monochromator grating was designed for lower wave-
lengths), the absorption by the Xe background, and the geometric transmission have to
be considered. The last two factors strongly depend on the harmonic order. With the
estimated Xe transmission shown in Figure 5.14b and assuming a minimal divergence
∝ 1/q (corresponding to a geometric transmission of ∼ 62 %), we very conservatively
estimate a generated power of about 3 pW for the 17th harmonic at a wavelength of
60.6 nm. This power level is about two orders of magnitude lower than that estimated
for the 15th harmonic in the short pulse experiment. Among other factors, the higher
level of ionization caused in Xe by the long driving pulses can be assumed to contribute
strongly to this reduction of the generated power.

Although the planned systematic investigations of ionization effects were not possible,
important experiences for the design and the operation of a single pass HHG setup could
be gained. In particular, the employed gas flow rates, about a factor of 2 higher than
in the short pulse experiment, were found to result in a limited transmission of the
generated EUV radiation because of a higher background pressure. The use of a gas
catch assembly (see Section 3.4.3) may thus be considered for future experiments.

5.4 Conclusions and outlook

Using an Innoslab solid state amplifier system, single pass HHG in xenon with ampli-
fied laser pulses was demonstrated in two proof-of-principle experiments at multi-MHz
repetition rates. These demonstrations constitute the highest repetition rate single pass
HHG experiments reported with an infrared amplifier system so far. In the first experi-
ment at a repetition rate of 20.8 MHz, pulses with an energy of ∼ 1µJ and a duration of
∼ 35 fs after external compression were employed to generate harmonics of up to the 17th
order (60.6 nm) with an estimated power of ∼ 1 nW in the 15th harmonic (68.7 nm). In
the second experiment, high harmonic radiation at wavelengths down to 54.2 nm (19th
harmonic) could be generated at a reduced repetition rate of 10 MHz using the uncom-
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pressed amplifier pulses of 680 fs duration directly.

Technical constraints limited the usable amplifier and hence the achievable EUV power
in both experiments. The limiting factors that we identified were the low damage thresh-
old of the employed spectral broadening scheme and the thermal aberrations caused by
the only commercially available high power optical isolator. Both of these limitations
have been addressed and partially overcome in the meantime: Our collaborators at the
Fraunhofer Institute of Laser Technology developed an isolator that did not deteriorate
the measured beam quality at power levels of up to 1 kW7. Joint experimental efforts to
realize single pass HHG with two successive Innoslab amplifiers at the full usable average
power of ∼ 1 kW and a repetition rate of 10 MHz did not reach the stage of generating
EUV radiation before this thesis was compiled. Addressing the second limitation, a
scheme to realize spectral broadening at the full amplifier output power is currently also
investigated in detail by our collaborators.

In the course of the experiments presented here, the single pass approach could not yet
be exploited to its full extent. Our results are thus by far not competitive with cavity-
assisted HHG in terms of generated power. Nevertheless, based on the experiences gained
during the experiments and extrapolating from the rapid progress in amplifier develop-
ment, we believe that single pass HHG will quickly mature into a versatile and easy to
operate table-top high repetition rate EUV source. In particular, Innoslab amplifiers
with the same parameters as the still provisional one employed in our experiments have
become available as a commercial product so that HHG at multi-MHz repetition rates
is now, at least in principle, accessible to all people in the community.

A possible next step apart from repeating the first experiments at improved laser
parameters is the implementation of quasi-phase matching techniques, e.g. specially
designed gas targets, to improve the conversion efficieny. In addition, experiments at
different repetition rates, under varying focusing conditions, and for different target gases
could be performed to investigate the influence of ionization on the high harmonic yield.
These studies may contribute to the current understanding of the effects of residual
ionization that arise at repetition rates in the MHz-regime because the target gas is not
exchanged completely before the next driving pulse is incident.

A favorable property of the single pass approach compared to cavity-assisted HHG is
its reduced sensitivity to nonlinear responses or changes in reflectivity of the employed
mirrors. In a cavity-assisted HHG system with a visible driving laser that has been
set up in our group to exploit the favorable wavelength scaling of the high harmonic
yield (cf. Section 3.3.3.5), detrimental mirror degradations are observed under vacuum
conditions and currently limit the performance of the cavity [209, 274]. Performing a
similar experiment in a single pass geometry promises to be affected less by similar
effects. Hence, the author of this thesis was among the initiators of single pass HHG
experiments with the frequency-doubled output of an Innoslab amplifier that were then
performed in the research group of Matthias Kling. At an average driving power of
250 W and a repetition rate of 50 MHz, the generation of the 5th (103.0 nm) and the
7th harmonic (73.6 nm) in Xe was demonstrated at estimated power levels of 5 nW and

7A commerical product based on this isolator design is now available from Amphos GmbH.
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20 pW, respectively [275]. The observed 5th harmonic power is about two orders of
magnitude lower than that estimated for the cavity-generated light. This cannot be
explained in a fully conclusive way so that further investigations may be scheduled.

Last, but not least, once single pass HHG at multi-MHz repetition rates generates
sufficiently strong high harmonic radiation, all applications that can leverage high rep-
etition rate EUV sources come into reach.



Bibliography

[1] T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, 493 (1960).

[2] T. Udem, R. Holzwarth, and T. W. Hänsch, “Femtosecond optical frequency
combs,” Eur. Phys. J. Spec. Top. 172, 69 (2009).

[3] S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27,
B51 (2010).

[4] O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev,
G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission
electron microscopy,” Appl. Phys. B 74, 223 (2002).

[5] M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond
nanoplasmonic-field microscope,” Nature Photon. 1, 539 (2007).

[6] J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt, and H. Schmidt-
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[42] R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings
for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201 (1994).

[43] T. Sartorius, “Spektrale Verbreiterung ultrakurzer Laserpulse hoher mittlerer Leis-
tung in Glasfasern,” Diplomarbeit, Rheinisch-Westfälische Technische Hochschule
Aachen (2010).

[44] S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev.
Mod. Phys. 75, 325 (2003).
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M. B. Gaarde, K. J. Schafer, U. Keller, C.-G. Wahlström, and A. L’Huillier,
“Time-Frequency Characterization of Femtosecond Extreme Ultraviolet Pulses,”
Phys. Rev. Lett. 88, 193901 (2002).
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A. Zäır, M. Holler, A. Guandalini, F. Schapper, J. Biegert, L. Gallmann, and
U. Keller, “Theoretical and experimental analysis of quantum path interferences in
high-order harmonic generation,” Phys. Rev. A 80, 033817 (2009).

[212] K. S. Budil, P. Salières, A. L’Huillier, T. Ditmire, and M. D. Perry, “Influence of
ellipticity on harmonic generation,” Phys. Rev. A 48, R3437 (1993).

[213] P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, “Subfemtosecond pulses,” Opt.
Lett. 19, 1870 (1994).

[214] P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic gener-
ation and correlated two-electron multiphoton ionization with elliptically polarized
light,” Phys. Rev. A 50, R3585 (1994).

[215] A. Fleischer, P. Sidorenko, and O. Cohen, “Generation of high-order harmonics
with controllable elliptical polarization,” Opt. Lett. 38, 223 (2013).
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[217] G. Farkas and C. Tóth, “Proposal for attosecond light pulse generation using laser
induced multiple-harmonic conversion processes in rare gases,” Phys. Lett. A 168,
447 (1992).

[218] S. E. Harris, J. J. Macklin, and T. W. Hänsch, “Atomic scale temporal structure
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P. Salières, “Attosecond Synchronization of High-Harmonic Soft X-rays,” Science
302, 1540 (2003).

http://dx.doi.org/10.1103/PhysRevLett.100.143902
http://dx.doi.org/10.1103/PhysRevLett.100.143902
http://dx.doi.org/10.1103/PhysRevA.80.033817
http://dx.doi.org/10.1103/PhysRevA.80.033817
http://dx.doi.org/10.1103/PhysRevA.48.R3437
http://dx.doi.org/10.1103/PhysRevA.48.R3437
http://dx.doi.org/10.1364/OL.19.001870
http://dx.doi.org/10.1364/OL.19.001870
http://dx.doi.org/10.1103/PhysRevA.50.R3585
http://dx.doi.org/10.1103/PhysRevA.50.R3585
http://dx.doi.org/10.1364/OL.38.000223
http://dx.doi.org/10.1364/OL.38.000223
http://dx.doi.org/http://dx.doi.org/10.1016/0030-4018(90)90509-R
http://dx.doi.org/http://dx.doi.org/10.1016/0030-4018(90)90509-R
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(92)90534-S
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(92)90534-S
http://dx.doi.org/http://dx.doi.org/10.1016/0030-4018(93)90250-9
http://dx.doi.org/http://dx.doi.org/10.1016/0030-4018(93)90250-9
http://dx.doi.org/10.1103/PhysRevLett.77.1234
http://dx.doi.org/10.1103/PhysRevLett.77.1234
http://dx.doi.org/10.1103/PhysRevA.65.031406
http://dx.doi.org/10.1103/PhysRevA.65.031406
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1126/science.1090277
http://dx.doi.org/10.1126/science.1090277


Bibliography 139

[223] K. J. Schafer and K. C. Kulander, “High Harmonic Generation from Ultrafast
Pump Lasers,” Phys. Rev. Lett. 78, 638 (1997).

[224] I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-Harmonic Generation
of Attosecond Pulses in the ”Single-Cycle” Regime,” Phys. Rev. Lett. 78, 1251
(1997).
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K. Beil, C. Kränkel, M. Golling, T. Südmeyer, and U. Keller, “Cutting-Edge High-
Power Ultrafast Thin Disk Oscillators,” Appl. Sci. 3, 355 (2013).

[266] C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber,
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die Wiesn sowie der bestmögliche Reisepartner für gemeinsame Erkundungen und Aben-
teuer in Dubai und Tokio war.

Mit Maximilian Herrmann und Guido Saathoff verbinden mich seit dem Tag, an dem
sie mich in D0.27 unter ihre Fittiche genommen haben, eine Vielzahl gemeinsamer Inter-
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