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Zusammenfassung

Diese Arbeit vereinigt eine Reihe wissenschaftlicher Studien, die sich alle Problemen aus
der statistischen Datenanalyse in Radioastronomie und Astrophysik widmen.

Die Radioastronomie, wie auch die Astronomie als Ganzes, hat durch Einführung
neuer Instrumente und Technologien in den letzten zwanzig Jahren eine bemerkenswerte
Entwicklung erlebt. Neue Teleskope, wie das erweiterte VLA, LOFAR, oder das SKA und
seine Pathfinder-Missionen, versprechen bisher unerreichte Messgenauigkeit, die Erkundung
bis heute kaum untersuchter Frequenzbereiche und neuartige Fähigkeiten zur Himmels-
durchmusterung (Garrett 2012). Diese Teleskope haben das Potential die Astrophysik und
Kosmologie bedeutend voran zu bringen, von Sonnen - und Sternenphysik, der Astrophysik
der Milchstraße und kosmischen Magnetfeldern, zur Astrophysik der Galaxienhaufen oder
Signalen aus der Epoche der kosmischen Reionisation (das deutsche SKA-Weißbuch bietet
hier einen hervorragenden wissenschaftlichen Überblick, Aharonian et al. 2013).

Parallel dazu machen auch Radiodatenanalyse und Bildgebungsverfahren eine ähnliche
Phase neuer Entwicklungen durch, in der die Grenzen des Machbaren vorrangetrieben
werden um das Feld an die neuen Instrumente und an das wissenschaftlich Mögliche
anzupassen. Die vorliegende Arbeit trägt zu diesen Entwicklungen in zwei spezifischen
Themengebieten bei: Der Bildgebung in der Radiointerferometrie und der statistischen
Analyse kosmischer Magnetfelder.

Die Methoden zur Datenanalyse, die dabei Im Laufe der Arbeit verwendet werden,
sind zwar durchaus unterschiedlich, können aber allgemein dem Anwendungsbereich der
Inferenzstatistik zugeordnet werden. Unter diesem Begriff findet sich eine Vielfalt an statis-
tischen Methoden, die sich allgemein mit dem Problem befassen, wie Deduktionen auf der
Grundlage unvollständiger Informationen, Messungen, oder Daten vorgenommen werden
können. Diese Arbeit bedient sich dabei speziell der Bayesianischen Statistik, die sich durch
ein subjektive Definition von Wahrscheinlichkeiten auszeichnet, mit der es auch möglich
ist statistische Informationen und Wahrscheinlichkeiten vor einer eigentlichen Messung
festzulegen.

Die Arbeit enthält Anwendungen solcher Techniken aus zwei unterschiedlichen Berei-
chen. Erstens, Situationen in denen ein kompliziertes, nicht exakt lösbares Messproblem
durch ein Verfahren bearbeitet wird, in welchem die gesuchte Messgröße näherungsweise
bestimmt wird, indem für diese eine Priorwahrscheinlichkeit angenommen wird. Probleme
dieser Art finden sich oft in Situationen, in welchen ein Messgerät weniger Daten aufn-
immt als nötig wären um alle Freiheitsgrade des Problems abzudecken. In dieser Arbeit
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ist dies das Messproblem eines Radiointerferometers, welches ein unvollständig gerastertes
Bild der Fourier-transfomierten Radiointensität am Himmel aufnimmt, so dass eine ein-
deutige Bildrekonstruktion unmöglich wird. Der Bildgebungsalgorithmus resolve wird
vorgestellt, der eine optimale Lösung dieses Messproblems für ausgedehnte Radioquellen
erzeugt. Des weiteren wird das Verhalten des Algorithmus in einem ersten Versuch an
echten Daten getestet. Außerdem wird ein neuer Bayesianischer Ansatz zur Multifre-
quenz-Bildgebung mit einem Radiointerferometer eingeführt und in den resolve Algorith-
mus integriert.

Der zweite Anwendungsbereich kommt aus Problemen der Astrophysik, in denen die in-
herente stochastische Natur eines physikalischen Prozesses notwendigerweise eine Beschrei-
bung benötigt, in der physikalische Größen nur statistisch gemessen werden können. Ein
Beispiel sind astrophysikalische Plasmen, die sich oft in einem turbulenten Zustand befinden
und deswegen durch statistische Gesetzesmäßigkeiten der Hydrodynamik bestimmt sind.
Aus diesem bereich werden zwei Studien präsentiert die bespielhaft zeigen, wie die Eigen-
schaften turbulenter Plasmamagnetfelder aus Radiobeobachtungen statistich ermittelt wer-
den können.



Summary

This thesis unifies several studies, which all are dedicated to the subject of statistical data
analysis in radio astronomy and radio astrophysics.

Radio astronomy, like astronomy as a whole, has undergone a remarkable develop-
ment in the past twenty years in introducing new instruments and technologies. New
telescopes like the upgraded VLA, LOFAR, or the SKA and its pathfinder missions of-
fer unprecedented sensitivities, previously uncharted frequency domains and unmatched
survey capabilities (see Garrett 2012). Many of these have the potential to significantly
advance the science of radio astrophysics and cosmology on all scales, from solar and stellar
physics, Galactic astrophysics and cosmic magnetic fields, to Galaxy cluster astrophysics
and signals from the epoch of reionization (see the German SKA white paper for a broad
scientific overview, Aharonian et al. 2013).

Since then, radio data analysis, calibration and imaging techniques have entered a
similar phase of new development to push the boundaries and adapt the field to the new
instruments and scientific opportunities (e.g. Smirnov 2011a). This thesis contributes to
these greater developments in two specific subjects, radio interferometric imaging and
cosmic magnetic field statistics.

Throughout this study, different data analysis techniques are presented and employed
in various settings, but all can be summarized under the broad term of statistical infer-
ence. This subject encompasses a huge variety of statistical techniques, developed to solve
problems in which deductions have to be made from incomplete knowledge, data or mea-
surements (Mood et al. 1974; Jaynes 2003). This study focuses especially on Bayesian
inference methods that make use of a subjective definition of probabilities, allowing for the
expression of probabilities and statistical knowledge prior to an actual measurement (for
an introduction see Jaynes 2003, and Ch. 2).

The thesis contains two different sets of application for such techniques. First, situations
where a complicated, and generally ill-posed measurement problem can be approached by
assuming a statistical signal model prior to infer the desired measured variable. Such
a problem very often is met should the measurement device take less data then needed
to constrain all degrees of freedom of the problem. The principal case investigated in
this thesis is the measurement problem of a radio interferometer, which takes incomplete
samples of the Fourier transformed intensity of the radio emission in the sky, such that it is
impossible to exactly recover the signal. The new imaging algorithm resolve is presented,
optimal for extended radio sources. A first showcase demonstrates the performance of the
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new technique on real data. Further, a new Bayesian approach to multi-frequency radio
interferometric imaging is presented and integrated into resolve.

The second field of application are astrophysical problems, in which the inherent stochas-
tic nature of a physical process demands a description, where properties of physical quanti-
ties can only be statistically estimated. Astrophysical plasmas for instance are very often in
a turbulent state, and thus governed by statistical hydrodynamical laws (see e.g. Ostriker
2006). Two studies are presented that show how properties of turbulent plasma magnetic
fields can be inferred from radio observations.



Chapter 1

Introduction

This introductory chapter covers the two main scientific themes of this thesis, statistical
inference and radio astronomy. Both are introduced in a brief manner since significant
derivations and remarks additionally appear in subsequent chapters of the thesis, as they
are part of published articles.

1.1 Statistical inference

Science relies on experiment, where a measurement device takes data, from which conclu-
sions may be drawn on underlying processes. In many cases, this measurement process
cannot be perfect. The measurement device itself might be flawed or imperfect and thus
can introduce errors or limitations, the process could be inherently subject to random noise
or even of random nature itself, or unwanted events from other sources than the scientific
target might be accidentally recorded.

In general, if these measurement imperfections are unknown to the experimentalist (or
the observer, in astronomy) or introduce inevitable loss of information, the conclusions
that can be drawn from such data cannot be exact. Instead, drawing conclusions from
incomplete knowledge can often only be of statistical nature. In statistics, the technique of
searching a probabilistic solution to an incomplete measurement problem is summarized
in the subject of statistical inference (Mood et al. 1974; Jaynes 2003; Upton et al. 2008)

In astronomy, the measurement process usually includes a telescope observing a celes-
tial object, which very often poses a challenging measurement problem. Telescopes are
complicated devices, for not all of their technical characteristics are generally known ex-
actly1 and their electronics always introduces random measurement noise. Furthermore,
a specific property of astronomical observations is that they usually cannot be repeated
under the exact same conditions. Thus, in astronomy robust data analysis is of special
importance to guarantee the scientific value of conclusions drawn from observations.

1Examples include unknown point spread functions and sky sensitivity patterns, or non-trivial elevation
dependence of the performance of moving dishes.
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In this work, an instrumental measurement problem can be sufficiently described by
the equation

d = R(s) + n (1.1)

where d are the measured data of the original physical signal s, which have been accu-
mulated by a process that incorporates an instrumental response R and a random noise
contribution n. An application of this type of measurement problem to an observation
with a radio interferometer, for which the form of R inherently leads to incomplete data,
can be found in Chs. 2, 3 and 4. Conversely, Ch. 5 introduces a type of inference problem,
where the instrumental measurement problem is considered to be solved and the results
are used to estimate further physical quantities, in this case to constrain magnetic field
properties from radio polarization images.

1.1.1 Bayesian inference

In statistics, two different approaches to inference problems exist. The frequentist school
only allows for probabilities strictly defined as measured frequencies and thus draws con-
clusions in considering the statistical results of the repeated outcomes to measurements
(see e.g. Hogg and Tanis 2006). In contrast, this thesis utilizes a Bayesian approach to
inference, where probabilities are rigorously defined as subjective degrees of belief, which
allows the expression of probabilistic knowledge prior to an actual measurement, and the
meaningful description of statistics from not-repeated measurements (for an exhaustive in-
troduction see Cox 1990; Jaynes 2003). From now on, statistical derivations in this thesis
will always use elements from Bayesian reasoning, even when not explicitly stated.

The cornerstone of Bayesian statistics is Bayes’ theorem

P(s|d) =
P(d|s)P(s)

P(d)
(1.2)

that connects the likelihood distribution P(d|s), the prior distribution P(s) and the ev-
idence P(d) distribution to the posterior distribution P(s|d). In case of a measurement
problem like (1.1), where d and s are defined as data and the physical signal, the posterior
summarizes all important knowledge on the problem. The likelihood describes the mea-
surement process, i.e. the probability that a specific data realization has been taken given
a signal s, while the prior encapsulates all pre-measurement knowledge on the signal2. For
a more thorough introduction to these terms, see Ch. 2 and references therein.

Inferences on the signal can be drawn by calculating an estimator from the posterior.
Typical approaches evaluate a statistic on the posterior, for instance its mean, or its mode
(called Maximum a Posteriori which is used frequently and introduced further in Ch. 2.

Very often, the posterior cannot be calculated analytically. This is especially true,
should the measurement problem (1.1) involve a non-linear response R, or more generally,

2The evidence does not depend on the signal and is thus unimportant for inferences thereof. For this
thesis, it is handled as a normalization factor.
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should the posterior include higher order statistics than a Gaussian distribution. This is
the case for the radio imaging applications in Chs. 2, 3 and 4), where numerical methods
are used to calculate a solution. A similar problem occurs in Ch. 5, where the assumption
of Gaussian magnetic field statistics is only sufficient to solve the problem for restricted
cases. In principle, these problems can be solved using perturbative methods similar to
statistical or quantum field theory as shown by Enßlin et al. (2009), who have developed
information field theory (IFT). Since these approaches are computationally rather complex,
this thesis does not make explicit use of them. However, the mathematical framework used
in the following chapters relies in many cases on the terminology and concepts introduced
by Enßlin et al. (2009).

For many realistic applications, the prior knowledge on the signal is only minimal.
In such a case, the derivations in this thesis rely on an approach of least information
and invoke the maximum entropy principle of statistics to specify a prior distribution(see
Caticha (2008) and App. A). Very often, this justifies the usage of a Gaussian prior with
unknown covariance. This leads to a class of inference problems, where the unknown
signal covariance needs to be inferred together with the signal itself. Such problems have
been solved already for various problem settings, in particular using the framework of IFT
(Enßlin and Frommert 2011; Enßlin and Weig 2010; Oppermann et al. 2011b, 2013). A
similar solution is derived in this thesis for the radio measurement problem in Ch. 2.

1.2 Radio astronomy

Radio astronomy is the part of astronomy concerned with observing objects at wave-
lengths ranging from sub-millimeters to meters. At these wavelengths, observations from
the surface of the earth are possible. At longer wavelengths, radio waves are scattered
and absorbed by the ionosphere, at smaller wavelengths, water vapor from the troposphere
imposes limits on observability. This makes the radio band the only wavelength regime
besides the optical in which earthbound telescopes are feasible for electromagnetic radia-
tion3.

1.2.1 Instruments

Radio telescopes are simply receiving instruments for radio waves, either in the form of
antennas or dishes depending on the wavelength regime that the instrument is constructed
for (Thompson et al. 1986; Wilson et al. 2012). Antennas are much cheaper, but can be
used efficiently only at longest wavelengths, so most radio telescopes are found to be dishes.

The diameter of a dish determines the maximum collecting area of a radio telescope and
therefore its sensitivity and signal-to-noise characteristics. But it also limits the maximum
resolution at which objects, observed with only a single dish, can still be resolved. This
has lead to a second type of radio telescope, interferometers, where an array of single

3Earthbound cosmic ray experiments and neutrino telescopes are possible, which both are observing
other particles than photons.
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telescopes is connected together to significantly improve the maximum resolution (Ryle
and Hewish 1960). A radio interferometer typically has inferior brightness sensitivity than
a single dish, mostly because the individual dishes in an array are usually smaller than for
a single dish telescope. It is also less sensitive to the sky brightness structures on largest
angular scales. So, in reality, there is always a trade-off between the different instruments,
and for many scientific applications data from both single dishes and interferometers are
effectively combined. For an exhaustive treatment and technical details of both classes,
refer to Thompson et al. (1986), Taylor et al. (1999) and Wilson et al. (2012).

At each frequency, the outcome of an observation with a radio telescope is given in
units of flux density Sν , which are [Wm−2Hz−1], where Sν is defined as the integral of
the surface (sky) brightness or intensity Iν , in units of [Wm−2Hz−1Sr−1], of the observed
source over a solid angle Ω on the sky

Sν =

∫
Iν dΩ. (1.3)

A single dish telescope directly observes Sν , since the received power is related to Sν
via antenna gain terms and a telescope beam convolution that both can be determined in
principal (Wilson et al. 2012).

In contrast, for a radio interferometer it can be shown that the telescope array effectively
samples an incomplete portion of the Fourier transformed sky brightness Iν (Thompson
et al. 1986). This means that the data cannot be used to draw absolutely exact conclusions
on the sky brightness, and some sort of imaging algorithm is needed. In the Chs. 2, 3 and
4, a new approach to interferometric imaging of extended radio sources is developed using
techniques of statistical inference.

Important single dish instruments are the Effelsberg telescope in Germany, the Green
Bank Telescope (GBT) and the Arecibo telescope in the US, and recently the Sardinia
Radio Telescope (SRT) in Italy. Known operational radio interferometer facilities in-
clude the Very Large Array (VLA) and the Very Long Baseline Array (VLBA) in the
US, the Giant Metrewave Radio Telescope (GMRT) in India, the Westerbork Synthesis
Radio Telescope (WSRT) in the Netherlands, the Australian Telescope Compact Array
(ATCA) in Australia, the Atacama Large Millimeter Array (ALMA) in Chile, and since
recently the Low Frequency Array (LOFAR) in Europe. The latter is the first large-scale
radio interferometer that operates at very long wavelengths, and it was thus sufficient to
solely construct the telescope with simple antenna fields. Ch. 3 covers an application of
the new imaging algorithm resolve (see Ch. 2) to VLA data.

Recent years have seen an important development, since a number of new era radio
telescopes become operational right now with advancing technology. Of them, LOFAR
(examples for recent results are Wise and The LOFAR Surveys KSP Cluster Working
Group 2014; Heald and LOFAR collaboration 2014), ALMA (ALMA press group 2012)
and an upgraded version of the VLA (Perley et al. 2011) are the first being fully commis-
sioned already. Right now in the planning phase is the Square Kilometer Array (SKA),
an envisaged huge radio interferometer to be build in South Africa, Australia and New
Zealand (e.g SKA press group 2012). Almost online are two precursor instruments that
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serve as pathfinder missions for the SKA, namely the Australian Square Kilometre Array
Pathfinder (ASKAP) in Australia (Schinckel et al. 2012) and MeerKAT in South Africa
(Booth and Jonas 2012). For a deeper overview of future instruments in radio astronomy,
see Garrett (2012).

These instruments pose a challenge for current data analysis methods, first because of
data quantities, which are orders of magnitude larger than previously known, and second
because of data quality, for which current algorithms possibly cannot match the full po-
tential since currently acceptable models and approximations might break down with the
new fidelity.

This development is an important incentive for the studies of this thesis, both because of
the promises of future observation capabilities (see Ch. 5, where radio polarization studies
are introduced that in part only become possible with these new developments) and because
of its challenges (see Chs. 2, 3 and 4 which cover an extensive study on advancing radio
imaging algorithms).

1.2.2 Radio astrophysics

With radio astronomical observations, many different celestial objects are investigated,
connected to a diversity of astrophysical topics. Some of the most important findings in
the history of astronomy and cosmology were made in radio astronomy, most notably the
discoveries of quasars, binary pulsars and of the cosmic microwave background (CMB)
(Wilson et al. 2012).

Typical scientific targets range through all scales encountered in the cosmos, including
planetary and solar science with the Sun and Jupiter as notable radio sources (e.g. Burke
2006; Cook 2011), exoplanet search (e.g. Lecavelier Des Etangs et al. 2011), the interstellar
medium of the Milky Way as a foreground for extragalactic or CMB observations or as
its own target (e.g. Haverkorn and Spangler 2013), supernova remnants (SNR) (e.g. Green
2001) and pulsars (e.g. D’Amico 2005), radio galaxies of various types (e.g. Miley and
De Breuck 2008), SagA*, the source believed to be the central supermassive black hole
of the Milky Way (e.g. Lu et al. 2014), other active galactic nuclei (AGN) and Quasars
(e.g. Hirabayashi 2004), galaxy clusters (e.g. Feretti et al. 2012), signals from the epoch
of re-ionization (e.g. de Bruyn and LOFAR EoR Key Science Project Team 2012) and the
CMB (e.g. Planck Collaboration et al. 2013).

A branch of radio astronomy searches for spectral lines, e.g. of planet atmospheres,
stars, or the 21 cm line from HI regions or the epoch of re-ionization. Another analyzes
continuous emission of thermal or non-thermal origin, like the CMB or synchrotron emission
from environments such as SNR, radio galaxies and jets, AGN or clusters.

A wide range of scientific questions are addressed in these studies, from mapping the
interstellar medium of the Milky Way and tracing the structure of spiral arms of other
galaxies using HI studies, over understanding the complicated physical processes in various
high energetic events like jets, accretion discs of AGN, cluster mergers, resolving distant
and compact objects, to cosmological studies like the search of signals from the epoch of
re-ionization or measuring basic cosmological parameters using the CMB.
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Most important for this work are observations of radio synchrotron sources, which
are generally very well suited for cosmic magnetic field studies4. Synchrotron emissivity
directly depends on the magnetic field strength, and synchrotron polarization on the mag-
netic field orientation (see next section). This makes radio astronomy the prime method
to study magnetic fields for many objects in the sky. Continuous synchrotron emission and
(turbulent) magnetic fields are central topics of this thesis and will be covered in the next
two sections.

1.2.3 Radio synchrotron observations

The radio astronomical data in the focus of this study all result from radio continuum ob-
servations of synchrotron sources. This section briefly provides the necessary background.

Synchrotron radiation is emitted by charged relativistic particles gyrating around mag-
netic field lines, mainly by electrons. Among other quantities, the totally emitted power
of an accelerated charge depends on its Lorentz factor, and on the magnetic field energy
density:

P ∝ γ2B
2

8π
. (1.4)

Synchrotron radiation has a characteristic polarization with a high percentage of linear po-
larization, and a negligible contribution from circular one. Furthermore, due to relativistic
beaming effects, most of the energy is radiated within a narrow cone around the direction
of the moving charge.

Synchrotron radiation is most conveniently described using the Stokes parameters I,
Q, U and V . I corresponds to the total intensity of radiation. In a polarized state, the
field vectors of the electromagnetic wave trace in general an ellipse, and Q and U measure
the orientation of this ellipse relative to an axis defined by one of the vectors. V is a
circularity parameter that measures the ratio of the principal axes of the ellipse and the
handiness of the polarization (V negative usually corresponds to right-handed polarization,
and vice-versa). Q = U = 0 corresponds to a perfectly circular polarization state, while
V = 0 is the condition for linear polarization.

A number of important relations can be derived5 for the Stokes parameters (see Rybicki
and Lightman 1985). For exactly monochromatic radiation, the basic relation is

I2 = Q2 + U2 + V 2, (1.5)

which becomes an inequality in the case of non-monochromatic radiation

I2 ≥ Q2 + U2 + V 2. (1.6)

4Other methods include the use of Zeeman-splitting of spectral lines or the polarization of starlight.
5This can be straight-forwardly done using basic relationships of the Stokes parameters with the electric

(or magnetic) field vector components.
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Since synchrotron emission is mostly linearly polarized (V = 0), this work is not fur-
ther concerned with circular polarization, and V is therefore assumed to be zero for the
remainder of the thesis. Then, the complex polarized intensity can be defined by

P = |P | exp[2iχ] = Q+ iU (1.7)

where χ is the polarization angle. In this way, a rotation of the polarization plane χ −→
χ+ χ′ can be easily included by an extra exponential factor

Prot = P exp[2iχ′] = |P | exp[2i(χ+ χ′)]. (1.8)

The magnitude |P | is identified as

|P | =
√
Q2 + U2. (1.9)

For synchrotron radiation, under a number of standard assumptions, the Stokes pa-
rameters can be directly related to the involved magnetic field in a simple way. The main
assumption is an isotropic distribution and power-law spectrum of the relativistic electrons
with a specific power index of 3. This value is in general not exactly met in nature, but
known to be a good approximation. Typical values for the spectral index of relativistic
electrons in our Galaxy, measured directly by cosmic rays reaching Earth or indirectly via
their induced synchrotron emission are around p ≈ 2.7 (Amsler et al. 2008).

The involved, but standard calculation for the synchrotron emissivity can be found e.g.
in Rybicki and Lightman (1985) and leads to the compact notation:

I =

∫
dz
(
B2
x +B2

y

)
, (1.10)

P =

∫
dz
(
B2
x −B2

y + 2iBxBy

)
, (1.11)

where z denotes the line-of-sight (LOS) of the observation, and complicated fore-factors,
which mainly depend on physical constants, but are unnecessary for this work are sup-
pressed for convenience. It should be noted that these observables are only sensitive to the
magnetic field components perpendicular to the LOS.

A powerful tool for analyzing polarization for the field component parallel to the LOS is
Faraday rotation. The effect stands for the rotation of the polarization plane of a linearly
polarized wave in a medium with a non-scalar dielectric constant due to a magnetic field
component along the direction of the traveling wave. In such an environment, the dielectric
constant ε differs for left and right circular polarization (Rybicki and Lightman 1985)

ε = 1−
ω2
p

ω(ω ± ωp)
, (1.12)

where ω is the frequency of the transversing wave, and ωp = eB/mc is the cyclotron fre-
quency. The ± signs discriminate between right and left circular polarization. If a linearly
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polarized wave is described as a superposition of a wave with right circular polarization
and a wave with left circular polarization, the polarization plane will not remain constant
during the traverse of such a medium.

Including Faraday rotation, the total polarization angle χ at the location of the observer
is given by

χ(x) = χ0(x) + λ2φ(x). (1.13)

Here χ0 denotes the polarization angle at the origin of emission, and the Faraday depth
φ(x) is defined as

φ(x) = a0

∫
dz neBz, (1.14)

where the fore-factor a0 = e3/2πm2
ec

4 will be suppressed for the remainder of this thesis,
as well as the thermal electron density ne along the LOS, which is assumed constant6 if
not stated otherwise.

The Faraday depth φ(x) describes the phase angle through which the electric vector
rotates due to Faraday rotation. If the rotating medium is not emitting itself, (1.13) can
be used to directly fit for φ(x) (and the magnetic field) by using observations at different
wavelengths. In this context, the inferred Faraday depth is referred to as rotation measure
(RM)7. In a more complex situation, (1.13) becomes a superposition of many differently ro-
tating processes and a more elaborate Fourier-technique called Rotation Measure Synthesis
(RM-Synthesis) is needed which will be the subject of Sec. 5.1.

1.2.4 Turbulence, dynamo theory and Gaussian magnetic fields

The second part of this thesis (see Ch. 5) presents two inference problems to deduce
properties of turbulent magnetic fields from radio synchrotron polarization measurements.
This section introduces the necessary physical background to turbulent magnetic field
statistics.

Cosmic magnetic fields are often embedded into physically active environments and
dragged along with turbulent plasma flows. In an ideal plasma, because of the large
number of free charge carriers, no electric field of significance can develop and the electric
resistivity is very low. Conversely, this implies that magnetic fields must be abundant. Such
a physical situation is well described by magneto-hydrodynamics (MHD), which describes
the kinematics of a magnetized plasma flow through the mutual interaction of the magnetic
fields and the plasma. Ideal MHD includes the effect of flux-freezing, where the magnetic
field is totally confined within a turbulent plasma flux tube (see e.g. Ostriker 2006). This
leads to a description of the magnetic field as a turbulent quantity on its own. Turbulent
MHD usually directly transfers concepts from classical hydrodynamics to magnetic fields,

6This can be interpreted as using magnetic field strength units, which have absorbed these quantities.
7Correctly this term should exclusively describe the experimental factor between the rotation angle

and λ2, obtained through an observational fit, not the physical quantity Faraday depth φ.
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such as magnetic Reynolds numbers (Ostriker 2006) or Kolmogorov-turbulence spectra
(Kolmogorov 1941). In single cases, the latter have indeed been observed for magnetic
fields in turbulent environments like the inter-stellar medium (Armstrong et al. 1981) or
in galaxy clusters (Kuchar and Enßlin 2011). Despite successes this is still an active and
somewhat experimental field of research, for a review of the current state see Schekochihin
and Cowley (2007).

Of particular importance for contemporary cosmic magnetic field research are helical
magnetic fields. Magnetic helicity is defined as the integral over a volume of space of the
scalar product of the magnetic field vector with the magnetic vector potential

H =

∫
V

A ·B dx3. (1.15)

It can be interpreted as a topological measure of how much the magnetic field spirals
within some given region of space. In ideal MHD, magnetic helicity is a conserved quantity
(Ostriker 2006; Schnack 2009). This property earns helicity a key role in modern magnetic
field astrophysics.

There, a major topic is to understand the origin of magnetic fields in the universe. Two
scenarios are discussed: either the fields are of primordial origin, or have evolved through
some physical mechanism (Widrow 2002). Currently, it is assumed that dynamo processes
could be responsible for the second scenario. In an astrophysical setting, a dynamo is a
physical mechanism that transforms kinetic energy into magnetic energy. For magnetic
fields on small scales and of random orientation, a scenario seems feasible in which the dy-
namo is fueled by the kinetic energy of a turbulent plasma (Brandenburg and Subramanian
2005). But, to generate ordered, large scale magnetic fields different processes are needed,
and many dynamo scenarios are proposed, most of which belong to the framework of mag-
netic mean field theory (Brandenburg and Subramanian 2005). Theory and simulations
indicate that such dynamos need a net transfer of magnetic helicity between small and large
magnetic field scales in order amplify large scale magnetic fields while conserving magnetic
helicity. To prove and discern these theories, it is thus very important to test available
data for helical magnetic field structures in turbulent environments as unambiguously as
possible. The second part of Ch. 5 is dedicated to a study of how to use radio polarization
data for a statistical measurement of magnetic helicity.

In general, the turbulent nature of a significant portion of cosmic magnetic field struc-
tures makes a statistical description inevitable. The exact statistics of turbulent magnetic
fields can be very complicated and are, in fact, not very well known in general. But since
all but the smallest scale magnetic fields are coherent over some spatial region, they can
be expected to be spatially correlated. In this case, without any further detailed informa-
tion on higher order statistics, the principle of maximum entropy (see App. A) enforces a
choice of Gaussian statistics as the simplest statistical description of spatially correlated
fields. Furthermore, the Gaussian statistical model is the mathematical basis for imple-
menting more complicated statistics in form of higher order corrections, and thus embodies
a natural starting point for any statistical estimator.
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Thus, for this work, the magnetic field statistics is generally assumed Gaussian

G(B,M) =
1√

2π det(M)
exp[−1

2
B+M−1B] (1.16)

where B is the three-dimensional magnetic field vector, and M its covariance.
Moreover, the assumption of statistical homogeneity and isotropy, also used later in

Ch. 2 for the development of resolve, is very common in MHD magnetic field turbulence.
With this assumption, the covariance Mij(x,x

′) = 〈Bi(x)Bj(x
′)〉 of the Gaussian magnetic

field can be expressed as the magnetic autocorrelation tensor (see e.g. Subramanian 1999)

Mij(r) = MN(r)δij +
(
ML(r)−MN(r)

)rirj
r2

+MH(r)εijmrm, (1.17)

or in Fourier space using the solenoidal condition ∇ ·B = 0

M̂ij(k) = M̂N(k)(δij −
kikj
k2

)− iεijmĤ(k)
km
k
. (1.18)

Here, r and k are defined as the magnitude of the full three dimensional vectors r and k.
In (1.18), the degrees of freedom of the the magnetic correlation has been reduced to

a normal and a helical part of the spectrum, M̂N(k) and Ĥ(k). Drawing inferences on
the properties of the turbulent magnetic field often involves the statistical estimation of
properties of these functions. Both methods presented later in this chapter use different
observational relations to constrain properties of (1.18). For instance, it can be shown that
M̂N(k) and Ĥ(k) are closely related to the normal and helical 1D-energy densities εB(k)
and εH(k) of the magnetic field

εB(k) =
k2M̂N(k)

8π3
, εH(k) = −k

3Ĥ(k)

π2
. (1.19)

For this derivation and all further details on the magnetic autocorrelation tensor, especially
in the context of the work presented in Ch. 5, the reader is referred to Junklewitz and Enßlin
(2011)8

1.3 Outline

The first part of the thesis ranges from Ch. 2 to Ch. 4 and presents a study of the problem
of imaging extended radio emission with a radio interferometer. In Ch. 2 the new imaging
algorithm resolve is presented and shown to outperform standard algorithms on simu-
lated data. In addition, the chapter contains further introductions to Bayesian inference

8Only parts of this paper that were not reproduced in the author’s diploma thesis are reported in this
PhD thesis.
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and interferometry in the context of radio astronomy. This chapter has been submitted
as an independent publication to the journal Astronomy & Astrophysics (for the arXiv
print see Junklewitz et al. 2013). The following chapter 3 presents first results from an
application of resolve to real data in form of an observation of the galaxy cluster Abell
2256 with the VLA in its D-configuration at 1369 GHz. Ch. 4 introduces a new Bayesian
approach to multi-frequency radio interferometric imaging and also offers a brief introduc-
tion to classical multi-frequency imaging techniques, where not only the total intensity, but
also the spectral index is imaged. Furthermore, an extended, multi-frequency version of
resolve is presented together with a set of simulated tests showing that the new approach
is superior to classical multi-frequency imaging techniques within the testing parameters.
This chapter has been submitted as an independent publication to the journal Astronomy
& Astrophysics (for the arXiv print see Junklewitz et al. 2014).

The second part of the thesis comprises Ch. 5. It offers two applications of magnetic field
statistics to different settings of radio polarization observations, and shows how statistical
properties of the magnetic fields can be inferred from them. It also briefly introduces the
astrophysics of turbulent magnetic fields and radio polarization observations. Sections of
the chapter have been published in Astronomy & Astrophysics as part of accepted papers
(Junklewitz and Enßlin 2011; Bell et al. 2011).
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Chapter 2

RESOLVE: A new algorithm for
aperture synthesis imaging
of extended emission in radio
astronomy1

2.1 Introduction

Aperture synthesis techniques using large interferometers have a long and successful his-
tory in radio astronomy (Ryle and Hewish 1960; Thompson et al. 1986; Finley and Goss
2000). While enabling observers to achieve very high resolutions, data processing is con-
siderably more complicated than with a single dish instrument. A radio interferometer
effectively measures the Fourier transformation of the sky brightness (see e.g. Thompson
et al. 1986). Unfortunately, inverting this relationship to achieve an estimate of the de-
sired source brightness is a non-trivial task since an interferometer only samples a fraction
of the Fourier plane, effectively convolving the true image brightness with an observation-
dependent point-spread function. A crucial part in data reduction is therefore the imaging,
i.e. estimating the sky brightness distribution from the observed data.

To date the most successful and widely used imaging algorithm in radio astronomy
is CLEAN (Högbom 1974). It assumes the image to be comprised of uncorrelated point
sources and iteratively approximates the true image with a large set of delta functions.
CLEAN has been demonstrated to be very accurate for observations of point source domi-
nated fields (Thompson et al. 1986; Taylor et al. 1999; Sault and Oosterloo 2007) and over
time many variants and more elaborate extensions have been developed to improve various
aspects of its performance (Clark 1980; Schwab 1984; Cornwell 2008; Sault and Wieringa
1994; Rau and Cornwell 2011).

However, there are drawbacks with the CLEAN algorithm. Since it effectively assumes
the image to be a large superposition of point sources, its performance is naturally non-

1Note: This chapter has been submitted as a paper for publishing in Astronomy & Astrophysics.
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optimal for highly resolved, extended and diffuse sources (Sault and Oosterloo 2007). Some
of the newest enhancements of CLEAN try to address this problem using a multiscale
approach, assuming differently scaled kernel functions like Gaussians instead of sharp delta
peaks (Cornwell 2008; Rau and Cornwell 2011), but it is still not clear how to properly
choose the scales. Another important drawback of CLEAN is that it is not known how
to appropriately propagate measurement uncertainty (e.g. Thompson et al. 1986; Taylor
et al. 1999) and thus, no reliable uncertainty estimates are available.

There are other approaches than CLEAN that try to address the problem of imaging
extended sources. Among them are the Maximum Entropy Method (MEM) (Cornwell and
Evans 1985), the non-negative-least-squares (NNLS) approach, which has been shown to
improve over CLEAN on mildly extended sources (Briggs 1995a; Sault and Oosterloo 2007),
and, approaches using wavelets within the framework of Compressed Sensing (Wiaux et al.
2009; Carrillo et al. 2012, 2013). We will come back to these in Sec. 2.6.2.

In this paper, we introduce resolve (Radio Extended SOurces Lognormal decon-
Volution Estimator), a novel algorithm for the imaging of diffuse and extended radio
sources in total intensity. A new approach to the problem is taken, using Bayesian statistics
in the framework of Information Field Theory (Enßlin et al. 2009) and based on clearly
formulated mathematical principles. resolve is designed to fulfill two main requirements:

1. It should be optimal for extended and diffuse radio sources.

2. It should include reliable uncertainty propagation and provide an error estimate
together with an image reconstruction.

An important incentive for the development of resolve are recent advances in radio as-
tronomical instrumentation. The new generation of radio telescopes, such as the upgraded
VLA, LOFAR, the SKA pathfinder missions or ultimately the SKA itself, are opening new
horizons in radio astronomy (see e.g. Garrett 2012). Their unprecedented capabilities of
simultaneous, broadband frequency coverage including previously unexplored wavelength
regimes, sensitivity, and wide fields of view, while still being sensitive to a large range of
spatial frequencies, will almost certainly advance astrophysical and cosmological sciences
(see e.g. the German SKA white paper, Aharonian et al. 2013). At the same time, new
developments in signal processing and data analysis will be required to exploit these new
capabilities. For instance, as yet unreached levels of sensitivity allow in principle for more
detailed detection of structures in diffuse emission. resolve takes advantage of this and
uses the rich correlation structure prominently present in such high sensitivity data to
guide itself toward an optimal reconstruction of extended sources.

The main astrophysical focus of resolve is by definition on extended and diffuse radio
sources. Among those are galaxy clusters with their weak diffuse halos and strong extended
relic structures, lobes of radio galaxies, giant radio galaxies, supernova remnants, galactic
radio halos, and the radio emission from the Milky Way.

Ultimately, with this paper, we do not only aim to present a new algorithm but we
also propose and discuss a statistical framework (see Sec. 2.2) that, we believe, will be
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advantageous to formulate and solve upcoming and more complex imaging problems in
radio data analysis. Among these could be for instance multi-frequency techniques for
GHz - broadband data, direction-dependent calibration problems, unknown beam recon-
structions, polarization imaging, and many more. We will come back to an outlook in Sec.
2.7.

2.2 The algorithm

2.2.1 Aperture Synthesis

In aperture synthesis, we try to connect an array of telescopes in such a way that we can
effectively synthesize a combined instrument with a much larger aperture and therefore
resolution. Using the van Zittert-Cernike theorem from the theory of optical coherence
(Born and Wolf 1999), it can be shown that such a radio interferometer takes incomplete
samples of the Fourier transformed brightness distribution in the sky (Thompson et al.
1986). We would like to measure a signal, the sky brightness distribution I, which is
a real, continuous function of position in the sky. In the most basic model, taking an
observation of the signal I translates into

V (u, v, w) = W (u, v, w)

∫
dl dm

I(l,m)√
1− l2 −m2

e−2πi(ul+vm+w
√

1−l2−m2). (2.1)

The quantity V (u, v, w) is the visibility function following classical terminology of op-
tical interferometry. The coordinates u, v, and w are vector components describing the
distance between a pair of antennas in an interferometric array, where this distance is
usually referred to as a baseline. They are given in numbers of wavelengths, with u and
v usually parallel to geographic east-west and north-south, respectively, and w pointing
in the direction of the center of the image plane (i.e. the phase center). The coordinates
l and m are a measure of the angular distance from the phase center along axes parallel
to u and v, respectively. W (u, v, w) is a sampling function defined by the layout of the
interferometric array. It is zero throughout most of the u, v, w-space, apart from where
measurements have been made where it is taken to be unity.

For simplicity, we now restrict ourselves to the common approximation of measur-
ing the sky as flat in a plane tangent to the phase center of the observation, such that
w
√

1− l2 −m2 ≈ 0. Nevertheless, we note that this is not a necessary requirement of our
formalism (see Sec. 2.2.2).

With this assumption, (2.1) simplifies approximatively to a two-dimensional Fourier
transformation

V (u, v) ≈ W (u, v)

∫
dl dm I(l,m) e−2πi(ul+vm). (2.2)
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The visibility function is what our instrument measures, but we are actually interested
in the brightness distribution of the source in the sky. This means that we ideally want
to invert the relationship (2.2). Unfortunately, this is not possible, since we have lost all
information on the Fourier modes that have not been measured due to the incomplete
sampling of the Fourier plane. Thus, an inversion of (2.2) gives us not the true brightness
distribution, but its convolution with the inverse Fourier transform of the sampling func-
tion, better known as the point spread function (psf) or, in common radio astronomical
terminology, the dirty beam Idb = F−1W :

ID = F−1V = F−1WFI = Idb ∗ I. (2.3)

Here, we have introduced a symbolic Fourier operator F to be strictly defined later, the
common notation ID, dirty image, for the simple Fourier inversion of the visibilities, and
the symbol ∗ to denote a convolution operation.

Reconstructing the real brightness distribution is therefore an ill-posed inverse problem.
In principle, infinitely many signal realizations could have led to the measured visibility
function and we have no way to exactly discriminate between them. However, we can find
a statistical description that may produce the most probable signal given the measured
visibility function.

2.2.2 Signal Inference in Radio Astronomy

In the following, we develop a statistical solution to the inverse problem (2.2) using Bayesian
inference techniques. Later, under the condition of a spatially extended source brightness
distribution, this will lead us to the formulation of resolve. Our derivation relies on
notation and methods developed within the framework of information field theory (Enßlin
et al. 2009; Enßlin 2013).

To start, we condense our mathematical notation considerably by rewriting all equations
using indexed quantities. If we properly define the Fourier operator in (2.3) as Fkx =
exp(−i(ul + vm)) with x = (l,m) and k = (u, v), (2.2) becomes

Vk = Wk

∫
dx FkxIx

= WFI. (2.4)

We have now translated our functions and operations on them into a notation that
allows us to interpret them as vectors and operators defined on an arbitrary-dimensional
functional vector space. For the sake of brevity, we will often even drop the indices and
use a notation as in the second line of (2.4). We can do that if we define the inner product
between vectors and operators appropriately for discrete and continuous spaces:
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discrete space : a†b :=
∑
x

Vx ax bx

continuous space : a†b :=

∫
dx a(x) b(x) dx (2.5)

where the † symbol stands for a transposing operation (and a possible complex con-
jugation in case of a complex field). In contrast, where needed explicitly, the · symbol
will denote component-wise multiplication, so that (a · b)x = a(x) b(x). The symbol Vx
indicates the possible need for a volume factor in the sum, if the inner product actually
is just a discretized version of a continuous one. In practice, this is unavoidable, since all
quantities effectively become discrete when finally calculated on a computer (for details
see Selig et al. 2013).

That way, we now can effortlessly combine discrete and continuous quantities in our
notation. This is important, since, in real observations, the visibility Vk is always a function
defined over a discrete, complex Fourier space, spanned by nd measurements, whereas the
sky brightness Ix is in principle a continuous function, defined over an infinitely large, real
space.

Following the notation of Enßlin et al. (2009), we define two fundamental quantities,
the signal s and the data d. The signal is the ideal, true physical quantity we would like to
investigate with our observation. The data is what our measurement device has delivered
us. In this radio astronomical application, the signal is the true brightness distribution
in the sky s := I(l,m) and the data is our visibility function d := V (u, v) including
measurement noise. From now on, we will use this definition, but will occasionally translate
equations into traditional radio astronomical notation for a more transparent presentation.

If we know how to translate the actions of our measurement device into mathematical
operations, we can write down a fundamental data model, connecting signal s and data d
with a response operator R

d = Rs. (2.6)

ignoring measurement noise for a moment.
This is basically equation (2.4), if we identify the response operator with

R = WF , (2.7)

We can add more terms to this response operator, slowly introducing more complex-
ity. An inevitable addition is to consider a gridding and degridding operation within the
sampling W ′ = WG. This is not a feature of the instrument itself, but is needed in its
computational representation for purely numerical reasons to put the visibilities onto a
regularly spaced grid, in order to apply the Fast Fourier Transform algorithm (Cooley and
Tukey 1965; Bracewell 1965), improving computational speed enormously:

R = W ′F (2.8)
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Henceforth, if not explicitly shown, we drop the prime and consider G to be contained in
the sampling operator W .

An important extension might be to introduce a mathematical representation of the
antenna sensitivity pattern on the sky, usually called primary beam A:

R = WFA. (2.9)

Even more sophisticated instrumental effects like beam smearing or directional de-
pendent sampling could as well be included here. Also an extension of the response to
non-coplanar baselines, and thus allowing for a non-negligible w - term in Eq. (2.1), could
be directly incorporated without fundamental complication, e.g. in similar form to the w
- projection algorithm (Cornwell et al. 2008).

Another relevant extension is to include multi-frequency synthesis by adding a new di-

mension to signal and data using e.g. a common spectral model I(x, ν) = I(x, ν0)
(
ν
ν0

)−α(x)

:

Vk′ =

∫
dx RkxIxν

= Wk

∫
dx Fkx Ax Ixν0

(
ν

ν0

)−αx
(2.10)

with k′ = kν.
Going a step further, a full approach using all four Stokes polarizations is conceivable.

In that case, the response representation can in principle be expanded into a full RIME
(radio interferometer measurement equation) description, as presented e.g. by Smirnov
(2011a,b).

However, both, multi-frequency and polarization imaging, are outside the scope of the
present work.

In a real observation, our data is always corrupted by measurement noise. This means
we have to add such a noise contribution n to our data model:

d = Rs+ n. (2.11)

As already noted, even without noise, we cannot exactly invert this relationship. We
thus instead seek for the optimal statistical solution for the signal s given our data d. To
find the optimal reconstruction, we regard the signal as a random field following certain
statistics and being constrained by the data. In probabilistic terms, we look for an ex-
pression of the posterior distribution P(s|d) of the signal s given the data d. It expresses
how the data constrain the space of possible signal realizations by quantifying probabili-
ties for each of them. It comprises all the information we might have obtained through a
measurement.

With the posterior probability, we can in principle estimate the real signal by calculating
for instance its posterior mean 〈s〉P(s|d), equivalent to minimizing the posterior-averaged L2

- norm of the quadratic reconstruction error argminm 〈‖(s−m)‖L2〉P (s|d) (see e.g. Enßlin
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et al. 2009). This is exactly the type of solution to the ill-posed inverse problem (2.11)
that we want.

Probability theory shows that we can calculate P(s|d) if we have expressions for the
likelihood distribution P(d|s), describing our model of the measurement process and the
noise statistics, and for the statistics of the signal alone, the prior distribution P(s). The
renowned Bayes’ theorem states this as

P(s|d) =
P(d|s)P(s)

P(d)
(2.12)

where P(d) is called the evidence distribution. It effectively acts as a normalization
factor since it does not depend on s and thus is unimportant for statistical inferences on
the signal.

To specify the likelihood for a radio interferometer observation, we only need a good
model for the measurement process. With (2.11), we see that this involves detailed knowl-
edge of the instrument response R and the statistical properties of the measurement noise
n.

Throughout this work we will assume the response representation (2.9) to be exact,
or expressed differently, the data to be fully calibrated. On the perspective of combining
calibration and imaging into one inference step see Sec. 2.7.

As for the thermal noise of a radio interferometer, it is fair to assume Gaussian statistics,
mainly induced by the antenna electronics and independent between measurements at
different time steps of the observation (Thompson et al. 1986). Henceforth, the noise field
n will be assumed to be drawn from a multivariate, zero mean Gaussian distribution of
dimension nd:

P(n) = G(n,N)

:=
1

det(2πN)1/2
exp

(
−1

2
n†N−1n

)
. (2.13)

The assumption of uncorrelated Gaussian noise leads to a diagonal covariance matrix
Nkk′ = δkk′σ

2
k. For this work, we will assume the noise variance σ2

k to be known.
We can now derive an expression for the likelihood by marginalizing over the noise field:

P(d|s) =

∫
Dn P(d|s, n) P(n)

=

∫
Dn P(d|s, n) G(n,N)

=

∫
Dn δ(n− (d−Rs)) G(n,N) (2.14)

= G(d−Rs,N), (2.15)
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where the integral is meant to be taken over the infinite space of all possible noise real-
izations. By inserting the delta function in (2.14) we have stated the implicit assumption
that our response (2.9) is exact.

We are left with the crucial question of how to statistically represent our signal. Until
now, the derivation was kept general and we effectively formulated an inference framework
for aperture synthesis imaging. Now, we need to specify a prior P(s), depending on the
type of signal field to which the statistical estimation should be optimal.

In the next section, we present a solution to the inference problem with a signal prior
chosen to represent the properties of extended and diffuse emission.

2.2.3 RESOLVE: Radio Extended Sources Lognormal
Deconvolution Estimator

To specify the prior distribution, we choose to follow an approach of least information. The
question is: What is the most fundamental, minimal state of knowledge we have about the
signal, prior to the measurement and without introducing any specific biases?

In this work, we want to focus on diffuse and extended sources in total intensity. Stating
this alone enables us to give a few central assumptions we want to be reflected in the prior
distribution:

1. An extended source exhibits a certain, a priori translationally and rotationally in-
variant (but usually unknown) spatial correlation structure.

2. The signal field must be strictly positive, since it should represent a physical intensity.

3. Typically, signal fields in radio astronomy show high variation in structures across the
observed field of view, with a few strong components surrounded by weak extended
structure, going over to large regions basically dominated by noise, usually spanning
many orders of magnitude in intensity.

Apart from these statements, we assume that we know nothing more specific about our
signal, and the prior should be chosen accordingly. For instance, we do not want to include
specific source shapes or intensity profiles.

The assumption of translational and rotational invariance is very common and useful in
signal inference, where it translates into homogeneity and isotropy of the prior statistics.
Given our just stated, restricted prior assumptions, there is no reason, in general, to
assume a priori that the correlation of the signal should change under spatial translation
or rotation2. We thus keep this assumption as valid throughout this paper.

The first constraint (1.) urges us to consider how to include the fact that the signal
exhibits a spatial correlation of unknown structure. First we might argue just to use an

2It should be emphasized that this a priori assumption is not in contradiction with an a posteriori
solution not exhibiting homogeneity and isotropy. Ultimately, if the combination of data and measurement
noise allow for a specific source shape, the likelihood will dominate the prior and drive the reconstruction
in this direction.
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uninformative prior, not favoring any particular configuration. But, in fact, we do know
something, namely that there is a spatial correlation, although its exact structure is obscure
to us. Thus, we search for the statistics of a random field about whose correlation we know
the least possible, i. e. only the two-point correlation function, equivalent to the second
moment of the statistics. Now, the maximum entropy principle of statistics (see App. A)
states that if we search for such a probability distribution, it must be Gaussian. Of course,
a priori, we might even have no information about the two-point correlation. Nevertheless,
the data itself yields such information, which we can extract during the inference procedure.

For the problem of reconstructing a Gaussian signal field with unknown covariance, an
optimal solution to the inference problem (2.11) can actually be found analytically or at
least approximatively in calculating the posterior mean 〈s〉P(s|d) of the signal. A number of
methods have been derived to do this, e.g. the critical filter and variants thereof (Enßlin
and Weig 2010; Enßlin and Frommert 2011; Oppermann et al. 2011b, 2013) or approaches
using the method of Gibbs sampling (Jasche et al. 2010; Sutter et al. 2012; Karakci et al.
2013).

Unfortunately, if we consider the second (2.) and third (3.) constraints from above
more closely, we must come to the conclusion that Gaussian signal fields are inappropriate
for our problem since they are neither positive definite nor strongly fluctuative over orders
of magnitude in strength.

We consider instead that the logarithm of our signal field is Gaussian. If s is a Gaussian
field, I = es exhibits all the desired properties (1-3). It is known as a log-normal field. If
we adapt the data model (2.11)

d = RI + n = RI0es + n (2.16)

we are now faced with a considerably more complicated, non-linear problem. The factor I0

can be set to account for the right units, w.l.o.g., we set it to one for the rest of this work.
The likelihood P(d|s) and the signal prior P(s) take the following form

P(d|s) = G(d−Res, N)

=
1

det(2πN)1/2
e−

1
2

(d−Res)†N−1(d−Res), (2.17)

P(s) = G(s, S)

=
1

det(2πS)1/2
e−

1
2
s†S−1s. (2.18)

Then, the posterior of s

P(s|d) ∝ G(d−Res, N) G(s, S) (2.19)

possibly becomes highly non-Gaussian due to the non-linearity introduced by (2.16).
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Indeed, the resulting problem cannot be solved analytically. A possible approach would
be to separate the quadratic and higher terms in (2.19)

P(s|d) ∝ e
−1/2 s†(S−1+M)s + s†j +

∞∑
n=3

Λnx1···xnsx1 ···xn (2.20)

where Λn is a rank – n tensor, and

j = R†N−1d (2.21)

M = R†N−1R. (2.22)

The higher order terms could be handled either by invoking perturbative methods as known
in statistical or quantum field theory (Huang 1963; Peskin and Schroeder 1995), and already
further developed for statistical inference (e.g. Enßlin et al. 2009), or by using a Monte
Carlo Gibbs sampling method (Hastings 1970; Geman and Geman 1984; Neal 1993). Since
these methods are computationally very expensive for this log-normal ansatz and the high
dimensionality of the problem, we do not follow them any further in this work.

Instead, we seek an approximate solution in the signal field that maximizes the poste-
rior:

〈s〉P(s|d) ≈ argmaxsP(s|d). (2.23)

This method is known as Maximum a posteriori (MAP) in statistical inference3. For the
present problem it leads to a non-linear optimization problem of a gradient equation for the
posterior. With this approach, it is further possible to calculate a consistent uncertainty
estimate. In principle, the uncertainty of a signal reconstruction can be estimated by the
width of the posterior. In this case, we use the inverse curvature of the posterior at its
maximum to approximate the relative uncertainty D (see App. 2.3 for details).

In this context, we still need to specify how to deal with the unknown correlation
structure, i.e. the Gaussian signal covariance S =

〈
ss†
〉
. As mentioned earlier, the problem

of reconstructing a Gaussian random field with unknown covariance has been solved already
(Jasche et al. 2010; Enßlin and Weig 2010; Enßlin and Frommert 2011; Oppermann et al.
2011b; Sutter et al. 2012), and even the respective problem for a log-normal random field
has been partly solved before (Oppermann et al. 2013). Unfortunately, none of these
methods can be readily applied to the inference problem at hand, since they require the
signal response to have a diagonal representation in signal space. This is not necessarily
fulfilled for the Fourier-response (2.9). We therefore develop a different approach, which
nevertheless closely follows the previously mentioned works.

3The maximum a posteriori approach can also be interpreted as an approximation to the posterior mean
〈s〉P(s|d), but is not guaranteed to yield a close result, especially not for highly non-Gaussian posterior
shapes. Alternatively, it can be derived by minimizing an L∞-norm error measure instead of the L2

minimization underlying the posterior mean approach.
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Crucially, as explained above, our prior knowledge signal statistics is homogeneous and
isotropic. This implies that the unknown signal covariance becomes diagonal in its conju-
gate Fourier space and can be expressed by its power spectrum Ps(|k|) (see the Wiener-
Kinchin theorem in Bracewell 1965)

S(k, k′) =
〈
s(k)s(k′)†

〉
= (2π)nsδ(k − k′)Ps(|k|) (2.24)

where Ps(|k|) is just the Fourier transformation of the homogeneous and isotropic autocor-
relation function C(r) = S(|x− y|)

Ps(|k|) =

∫
dr C(r) exp(ikr). (2.25)

We note that due to the assumption of isotropy, the power spectrum only depends on the
length |k| of the Fourier vector k. It is therefore sensitive to scales but not to full modes in
Fourier space. Where the distinction is needed, we will make it explicit using the notation
|k|.

We now parameterize the unknown covariance S as a decomposition into spectral pa-
rameters pi and positive, disjoint projection operators S(i) onto a number of spectral bands
such that the bands fill the complete Fourier domain

S =
∑
i

piS
(i). (2.26)

These parameters can be introduced into the inference problem as a second set of fields to
infer.

We therefore add a second MAP algorithm to the signal MAP, solving for these un-
known parameters pi. We then iterate between both solvers until convergence is achieved.
The algorithm produces a signal estimate m, an approximation to the reconstruction un-
certainty D, and a power spectrum estimate parameter set pi. The equations to be solved
iteratively are

S−1
p m+ em ·Mem − j · em = 0 (2.27)

(D)xy = S−1
p xy + emxMxye

my + emy
∫
dz M(x, z) em(z)

−jx · esx δxy (2.28)

pi =
qi + 1

2
tr
[
(mm† +D)S(i)

]
αi − 1 + %i

2
+ (Tp)i

. (2.29)

A detailed derivation can be found in App. 2.3. The two quantities j and M are defined as
above, q and α are parameters of a power spectrum parameter prior, % is a measure for the
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number of degrees of freedom of each Fourier band, and T is an operator, which enforces
a smooth solution of the power spectrum pi. A thorough explanation of all these terms
can be found in App. 2.3. Eq. (4.18) is the fix point equation that needs to be solved
numerically to find a Maximum a Posteriori signal estimate m for the current iteration.
The second equation (4.19) results from calculating the second derivative of the posterior
for the signal estimate m, its inverse serves as an approximation to the signal uncertainty D
at each iteration step. The last equation (4.20) represents an estimate for the signal power
spectrum (and therefore its autocorrelation function), using the signal uncertainty D to
correct for missing signal power in the current estimate m. The iteration is stopped after
a suitable convergence criterion is met (see App. 2.4). The whole algorithm is visualized
in a flow chart in Fig. 2.1.

It should be noted that solving these equations can be relatively time-consuming com-
pared to e.g. MS-CLEAN, depending on the complexity of the problem at hand, since it
involves a non-linear optimization scheme (4.18) and the numerical inversion and random
probing of an implicitly defined matrix (4.19)4 (for details, see App. 2.4).

We call the combined algorithm resolve (Radio Extended SOurces Lognormal de-
conVolution Estimator).

Since the most severe problem in radio imaging is effectively how to extrapolate into
unmeasured regions in uv-space to deconvolve the dirty beam from the dirty image (see
Eq. 2.3), an explanation is in order of how resolve achieves this deconvolution.

In the fix-point equation (4.18) to calculate the signal estimate m, the multiplicative
term em acts as an effective convolution beam in Fourier space. Regions, where it has a
significant value require only little modifications through the iterations in order to explain
features in the data entering the equation via j. In contrast, regions where m is very
negative require a drastic modification to capture data features. Therefore, sidelobe struc-
tures of the dirty image are more comfortably accounted for by restructuring the existing
stronger emission regions than by enforcing weaker sidelobes structures in the final signal
estimate. By concentrating the resolved structures into the strong emission regions, the
lognormal model extrapolates information in uv-space. The multiplicative em term acts as
a convolution kernel in Fourier space, enforcing some amount of smoothness in the visibil-
ity structures. This smoothness is exploited by resolve for extrapolating the measured
visibilities into the regions of uv-space without direct measurements. In this way, resolve
is also capable of achieving some degree of superresolution by extrapolating beyond the
largest visibilities.

4The overall computational costs go roughly with NglobalNprO(
√
nsnd) in the limit of a large number

of visibility measurements nd. The ns are the number of pixels in image space, Npr is the number of used
random probing vectors to estimate matrix traces, and Nglobal is the global number of iterations resolve
needs to converge (see App. 2.4)
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Visibilities, s0 and P0
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break? p
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Figure 2.1: Flow chart, illustrating the basic workflow of the resolve algorithm
.

2.3 Mathematical derivation of RESOLVE5

For a complete derivation of resolve, we first give some general remarks, and then divide
the rest into two parts, where we derive a Maximum a Posteriori solution for the signal
field and for its power spectrum, respectively.

From Sec. 2.2, we recall the basic premises of the inference problem to be solved. We
want to find the statistically optimal reconstruction of the total intensity signal I given a
data model

d = RI + n = Res + n, (2.30)

under the assumptions that

- I follows log-normal statistics, such that s = log I follows Gaussian statistics,

- the noise n follows Gaussian statistics as well,

- and R models the linear response of a radio interferometer (see Eq. (2.9) in Sec. 2.2).

Under these assumptions the likelihood P(d|s) and the signal prior P(s) take the following
form as was shown in (2.15)

5Note: This section was originally part of the appendix of Junklewitz et al. (2013) and has been shifted
into the main body of the thesis for clarity.
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P(d|s) = G(d−Res, N)

=
1

det(2πN)1/2
e−1/2 ((d−Res)†N−1(d−Res)), (2.31)

P(s) = G(s, S)

=
1

det(2πS)1/2
e−1/2 (s†S−1s). (2.32)

Then, the posterior of s

P(s|d) ∝ G(d−Res, N) G(s, S) (2.33)

can become highly non-Gaussian due to the non-linearity introduced by (2.30).
As a further complication, we have to assume a priori that the signal covariance S =〈

ss†
〉

is unknown. Assuming statistical homogeneity and isotropy for the signal statistics,
we parameterize its power spectrum P (k) as a decomposition into spectral parameters pi
and positive projection operators S(i) onto a number of spectral bands such that the bands
fill the complete Fourier domain

S =
∑
i

piS
(i). (2.34)

resolve consists of two inference steps to solve the main problem (2.16) iteratively for
s and all pi. We fully describe both steps individually in the following subsections.

2.3.1 Reconstruction of the signal field s

For the reconstruction of the signal field s, we assume the power spectrum parameters pi to
be known from a previous inference step. This can formally be expressed by marginalizing
over them while assuming a delta distribution for the known parameters p∗

P(s|d, p∗) =

∫
Dp P(s|d, p) P(p|p∗)

=

∫
Dp P(s|d, p) δ(p− p∗). (2.35)

For convenience, we rewrite our notation to work with the Hamiltonian H(s, d) instead
of the posterior P (s|d)

P(s|d) :=
e−H(d,s)

Z
(2.36)

with Z := P(d). This effectively expresses our problem in more familiar terms of statistical
physics, while the Hamiltonian H(s, d) = − log (P (d|s)P (s)) still comprises all important
signal-dependent terms and is usually easier to handle than the posterior.
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The Hamiltonian of problem (2.33) reads

H(s, d) = − log (G(d−Res, N) G(s, S))

=
1

2
s†S−1

p∗ s+
1

2
(es)†Mes − j†es +H0 (2.37)

where j = R†N−1d, M = R†N−1R and H0 summarizes all terms which are not dependent
on the signal s.

Using the Gibbs free energy ansatz of Enßlin and Weig (2010), Oppermann et al.
(2013) have shown that it is possible to re-derive the critical filter for this Hamiltonian.
However, in practice, it is only solvable under the assumption of a diagonal M in signal
space. Otherwise we would be forced to explicitly compute arbitrary components of the
very large matrix of size n2

s, representing the operatorM , which is computational infeasible.
Unfortunately, for the response under consideration here (2.9), with non-complete sampling
of the Fourier plane in data space, M will not be diagonal in general.

Thus, we instead use the MAP principle to solve the inference problem for s. Maximizing
the posterior readily translates to minimizing the Hamiltonian (2.36). If we take the deriva-
tive of the Hamiltonian (2.37) with respect to the signal field s and set it to zero, we get

δH(s)

δs
= S−1

p∗ s+ es ·Mes − j · es = 0. (2.38)

This is a high dimensional, non-linear equation, which can be solved numerically using
an iterative optimization algorithm, in our case a steepest descent method. We call the
solution of this equation m = argmaxsP(s|d).

The solution m is an estimate for the Gaussian field s. To calculate a signal estimate
Î for the original log-normal signal I = es, we just take the exponential of m

Î = em. (2.39)

2.3.2 Uncertainty of the signal reconstruction

A full statistical analysis involves accounting for the uncertainty of the signal estimate.
For this, we use the information encoded in the second posterior moment (or covariance)
D = 〈(s−m)(s−m)†〉 as a measure of the expected uncertainty of the signal reconstruction.
Within the MAP approach, we approximate the inverse posterior covariance D−1 with the
second derivative of the Hamiltonian

D−1 ≈ − δ
2H(s)

δsx δsy
|s=m = S−1

p∗ xy + esxMxye
sy + esy

∫
dz Mxz esz − jx · esx δxy, (2.40)

which needs to be inverted numerically in practice. In this way, we effectively assume that
the real signal posterior is approximated with a Gaussian G(m,D). Unfortunately, D only
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approximates the posterior covariance of the Gaussian field m. We need to translate this
into a posterior covariance for the full estimate Î = em.

If the signal posterior were exactly Gaussian, we could just assume our posterior esti-
mate to be of exact log-normal statistics, solve for the mean and variance analytically and
thus write

〈esx〉G(m,D) = emx+ 1
2
Dxx (2.41)

〈(esx)2〉G(m,D) − 〈esx〉2G(m,D) = e2mx+Dxx
[
eDxx − 1

]
(2.42)

using the definitions for the mean and variance of a log-normal distribution (see e.g. Mood
et al. 1974). But since the posterior is not Gaussian in general, we cannot solve Eqs. (2.41,
2.42) analytically. This was, in the first place, the reason why resolve uses the MAP
approach (see Sec. 2.2.3). Nevertheless, since we effectively approximate the full posterior
with a Gaussian G(m,D) when using Eq. (2.40) as the posterior covariance, one might be
tempted to just use Eqs.(2.41, 2.42) anyhow.

However, in practice, it turns out that within the MAP approach this procedure is
prone to overestimating signal estimate and its uncertainty. This is because usually the
maximum of a log-normal distribution lies above its mean (for details see Greiner 2013).
We thus drop the extra terms of D in the argument of the exponentials in Eqs. (2.41, 2.42),
keep (2.39), and write

Îx = emx ±
√

e2mx [eDxx − 1] (2.43)

if we want to account for the uncertainty in the reconstruction.

2.3.3 Reconstruction of the power spectrum parameters p

In the second step of resolve, we assume to have a solution for m and D from the last
iteration and estimate the unknown spectral parameters p from the signal-marginalized
probability of data and power spectrum P(p, d):

P(p, d) =

∫
Ds P(s, d|p) P(p)

=

∫
Ds G(d−Res, N) G(s, Sp) P(p) (2.44)

This approach was first derived in Oppermann et al. (2013) for Gaussian signal fields.
We closely follow their argument and show its approximate validity also for log-normal
fields.

In order to do this, we first need to define a prior for the power spectrum parameters p.
In this, we follow Enßlin and Frommert (2011), Enßlin and Weig (2010) and Oppermann
et al. (2013), and choose independent inverse-gamma distributions for each spectral pa-
rameter pi
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P(p) =
∏
i

PIG(pi) =
∏
i

1

qiΓ(αi − 1)

(
pi
qi

)−αi
exp

(
− qi
Pi

)
. (2.45)

where Γ(·) denotes the gamma function, qi defines an exponential cutoff in the prior for low
values of pi, and αi is the slope of the power-law decay for large values of pi. In principle,
by tuning these parameters, the prior can be adapted according to the a priori knowledge
about the power spectrum. Usually, we use the limits of qk → 0 and αk → 1 for all k.
This turns the inverse-gamma prior into Jeffreys prior (Jaynes 2003), which is flat on a
logarithmic scale. In some tests though, we have allowed for non-unity αk parameters to
suppress unmeasured Fourier modes.

During the reconstruction of the power spectrum, we additionally introduce a smooth-
ness prior as developed by Oppermann et al. (2013) to punish most probably unphysical
and numerically unwanted random fluctuations in the power spectrum. In that prescrip-
tion, the inverse-gamma prior (2.45) is augmented with a probability distribution that
enforces smoothness of the power spectrum

P(p) = Psm(p)
∏
k

PIG(pk). (2.46)

The spectral smoothness prior can be written as a Gaussian distribution in τ = log p:

Psm(p) ∝ exp

(
− 1

2σ2
p

∫
d(log k)

(
∂2 log pk

∂ (log k)2

)2
)

∝ exp

(
−1

2
τ †Tτ

)
, (2.47)

where the differential operator T includes the second derivative of τ = log p and a scaling
constant σ2

p that determines how strict the smoothness should be enforced. This particular
form of the prior favors smooth power-law spectra. For all details we refer to (Oppermann
et al. 2013).

As was shown there, the corresponding inverse-gamma prior for the τ parameters can
easily be derived from the conservation of probability under transformations

P(τ) = P(p)

∣∣∣∣dpdτ

∣∣∣∣ =
∏
i

qαi−1
i

Γ(αi − 1)
e−[(αi−1)τi+qie

−τi ]. (2.48)

With this prior, we can calculate the signal-marginalized joint probability (2.44) if we
apply one crucial approximation. Since P(s, d|τ) in (2.44) is non-Gaussian due to the
high non-linearity of the e(d−Res) - terms, we cannot just move on analytically. We instead
use a saddle point method and approximate the argument of the exponential occurring
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in P(s, d|τ), which can be written as e−H(s,d) using (2.36). To perform the saddle point
approximation, we replace H(s, d) with its Taylor expansion up to second order around the
maximum of the Posterior m, derived in the previous iteration of the signal reconstruction:

e−H(s,d) ∝ e(− 1
2

(d−Res)†N−1(d−Res)− 1
2
s†S−1

τ s)

≈ e(H(m)+ 1
2

(s−m)†D(m)−1(s−m)) (2.49)

This effectively approximates the non-Gaussian signal posterior P(s, d|τ) with a Gaussian
with mean m and covariance D. We note that this procedure is similar to a mean field
approximation in statistical physics (Huang 1963).

With this approximation, we can solve the marginalization integral in (2.44) and cal-
culate P(τ, d), or alternatively the Hamiltonian

H(d, τ) = − logP(d, τ)

= − log

∫
DsG(d−Res, N)G(s, S)P(p)

≈ 1

2
tr (logSτ )−

1

2
tr (logDτ ) +H(m, τ)

+
∑
i

(
(αi − 1) τi + qie

−τi
)

+
1

2
τ †Tτ

+H0 (2.50)

where we have used the matrix theorem log |S| = tr (log S), and have collected all terms
not depending on τ into a constant H0.

Taking the derivative of (2.50) with respect to one parameter τi and replacing pi = eτi ,
we find

pi =
qi + 1

2
tr
(
(mm† +D)S(i)

)
αi − 1 + %i

2
+ (T log p)i

. (2.51)

With this equation we can update the power spectrum parameters for each iteration
using the current m and D.

This is in perfect accordance with previous findings (Enßlin and Frommert 2011; Enßlin
and Weig 2010; Oppermann et al. 2013) and shows effectively that we can re-discover the
critical filter for a pure MAP approach if we accept the approximation (2.49) as valid.
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2.4 Implementation of RESOLVE6

2.4.1 General implementation

We have implemented resolve in Python, where crucial parts have been translated into
more efficient C code using Cython7 . The actual implementation of the algorithm makes
heavy use of the versatile inference library NIFTy (Selig et al. 2013).

To perform the gridding and degridding operations needed in radio astronomical ap-
plications, we use the generalized Fast Fourier transformations package gfft 8. The grid
convolution is performed using a Kaiser-Bessel kernel following Beatty et al. (2005).

For numerical optimization, we use a self-written steepest descent solver and in some
cases the conjugate gradient routine provided by the SciPy package.

The algorithm is controlled by a number of numerical procedures and parameters,
governing the grade of convergence and the degree of accuracy. Apart from standard
parameters, such as the maximum number of iterations or the accuracy of the steepest
descent, the most important are:

- Different starting guesses for s and p might have strong impact on the performance
or the solution of resolve. In non-linear optimization, there is, for instance, always
the danger to only converge to a local minimum. Experience showed that in most
cases, it is optimal to use constant fields and simple generic power spectra as starting
guesses to prevent any biases. But other options are available, e.g. a CLEAN or a
dirty map, and/or their respective empirical power spectra, in some cases allowing
for an improvement in computation time.

- To calculate D for (2.51), we have to numerically invert D−1 and statistically probe
the needed matrix entries (Selig et al. 2012) using an implicit representation of the
operator as a coded function. For this, we employ a conjugate gradient routine
whose convergence and accuracy parameters must be set. This numerical inversion is
usually the most serious bottleneck in computation time (see Sec. 2.4.2). Especially
calculating D for an estimate of the signal uncertainty can be a time consuming task,
depending on the accuracy needed.

- For observations with rather poor uv-coverage, problems might occur with the in-
version of the operator D, which sometimes tends to be numerically non-positive
definite during early iterations. In that case, we have implemented a solution where
a diagonal matrix with a user-defined positive constant M0 gets added to D−1 to
ensure positive-definiteness. While the solution is slowly converging over the global
iterations, M0 is constantly decreased. This is a standard approach in numerical
optimization, see for instance Transtrum and Sethna (2012).

6Note: This section was originally part of the appendix of Junklewitz et al. (2013) and has been shifted
into the main body of the thesis for clarity.

7See http://docs.cython.org/.
8See https://github.com/mrbell/gfft
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- For large data sets, it is sometimes of high advantage to bin the power spectrum
instead of mapping it over all possibly allowed modes set by the user defined image
size. Otherwise, the calculation might take prohibitively long.

2.4.2 Analysis of algorithmic efficiency

As visualized in Fig. 2.1, resolve mainly consists of two parts, a signal estimator, and a
power spectrum estimator. They are iterated Nglobal times, until convergence is achieved,
while both the maximum number of iterations and the exact convergence criteria can be set
by the user. The signal estimator utilizes a steepest descent algorithm to solve Eq. (4.18),
which needs Nsd internal iterations. The power spectrum is estimated with Eq. (4.20),
where the trace of the inverse operator given by Eq. (4.19) needs to be calculated. Since
the operator is only given implicitly, its diagonal entries need to be probed Npr - times
using random vectors (Selig et al. 2012), where, for each probe, the operator equation
(4.19) has to be inverted using a conjugate gradient algorithm.

The steepest descent iterations are dominated by the operations needed to calcu-
late M (see Eq. (4.18)), which involves the response operator R with a FFT and a
subsequent Gridding operation. Therefore, its computational cost goes roughly with
Nsd (O(nd) +O(ns log(ns))), where nd is the total number of visibilities, and ns the number
of pixels in image space.

The conjugate gradient is dominated by the need to compute the same operation, only,
at least some fraction of ns times, and for each probe individually. Usually a maximum of√
ns iterations of the conjugate gradient are performed. This leads to a total computational

cost of roughly Npr

(
O(
√
nsnd) +O(

√
nsns log(ns))

)
.

A realistic assessment of the asymptotic overall algorithmic efficiency is complicated, be-
cause all of the iteration numbers, Nglobal, Nsd, and Npr can in principle vary strongly from
case to case. Although Nsd usually will be larger than Npr

9, the conjugate gradient term
will likely dominate the algorithmic costs. In realistic applications, nd will usually be larger
than ns, because, for modern instrument data sets, the number of visibilities can reach the
millions. In that case, the algorithmic efficiency probably tends to NglobalNprO(

√
nsnd).

In addition, this analysis shows that calculating an estimate for the uncertainty of the
signal reconstruction is very costly. To accurately compute the diagonal of D, a large
number of probes is needed so that Npr can easily exceed the thousands.

On our development machine, with up to 8 used CPUs and a maximum of 64GB working
memory, the non-optimized code produced the results presented in Sec. 2.6.1 in roughly a
couple of hours for the low noise case, and a couple of days for the high noise case. For the
relatively small size of the simulated VLA snapshot data sets, we never used more than a
few percent of the memory but this would most likely change for larger data sets.

9At least empirically taken from the simulations, the number of probes can be kept well below a couple
of hundreds.
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2.5 A signal inference view on visibility weighting10

In radio astronomy, the imaging step of aperture synthesis is usually combined with a
weighting scheme that is included in the Fourier inversion of the visibilities. Essentially,
the term W in (2.3), defining the dirty image ID, can be expanded to hold more factors
than the mere sampling function

ID = F−1(T ·B · w · S · FI) (2.52)

with W = T · B · w · S, where T is a possible tapering of outer visibilities, B is a user-
defined baseline weighting, w are the statistical noise weights obtained from an analysis
off the thermal noise, and S is the sampling function.

Historically, mainly two weighting schemes have been employed. Natural weighting just
multiplies every visibility point with the inverse thermal noise variance for the particular
baseline and is therefore a simple, noise-dependent down-weighting mechanism. Uniform
weighting ensures that the weight per gridded visibility cell is constant and, hence, effec-
tively gives higher weight to outer baselines, where usually less visibility points are found
in a grid cell.

In a seminal work (Briggs 1995b), Briggs has shown that natural weighting can be
obtained under the constraint that the sample variance of the image should be minimized.
In contrast, uniform weighting can be shown to reduce sidelobe levels, but actually down-
grades sensitivity at the same time.

In the same work, a new weighting scheme was devised that interpolates between these
two extremes, called robust weighting. The robust weights are determined as

W (k) ∝ 1

1 + σ2(k)/s2
p(k)

(2.53)

where σ2 is the thermal noise variance, and s2
p is some parameter that originally was derived

having in mind some measure of the source power at the given visibility (Briggs 1995b).
In practice, s2

p is usually adjusted by hand to meet the needs of the astronomer for having
a trade-off between sensitivity and resolution.

This form of weighting can be explained within the presented Bayesian framework,
and, furthermore, we will show that an algorithm like resolve automatically chooses the
optimal weighting parameters according to the ratio of estimated noise and signal power.

For this, we consider the negative logarithm of the posterior (2.19), i.e. the Hamiltonian
of our inference problem (see Eq. (2.33) in App. 2.3 for details)

H(s, d) =
1

2
s†S−1s+

1

2
(es)†Mes − j†es +H0. (2.54)

10Note: This section was originally part of the appendix of Junklewitz et al. (2013) and has been shifted
into the main body of the thesis for clarity.



34
2. RESOLVE: A new algorithm for aperture synthesis imaging

of extended emission in radio astronomy

We can expand the exponents in a Taylor series and separate the quadratic from the
higher orders in s as we have done in (2.20):

H(s, d) =
1

2
s†
(
S−1 +M

)
s − s†j +H0

+
∞∑
k=3

1

k!
Λ(M, j)kx1···xksx1 · · · sxk . (2.55)

If we now apply the MAP principle and set the derivative with respect to s to zero, we
find

(
S−1 +M

)
s − j + ∆(M, j, s) = 0 (2.56)

where we have defined ∆(M, j, s) = δ
δs

∞∑
k=3

1
k!

Λ(M, j)kx1···xksx1 · · · sxk . We can partly solve

this equation for s:

s =
(
S−1 +M

)−1
j −

(
S−1 +M

)−1
∆(M, j, s). (2.57)

The first term is the analytic solution to the quadratic part of the full log-normal
Hamiltonian. It was shown to be equivalent to a Wiener Filter applied to the data d
(Enßlin et al. 2009), which would be the optimal solution for a purely Gaussian signal
field.

Using (2.24) for the covariance matrices S and N and j = R†N−1d, we can write the
Wiener Filter operator in (2.57), F = (S−1 +M)

−1
R†N−1, in Fourier space:

F (k) =
1

1 + P g
n(k)/Ps(k)

(2.58)

where P g
n = GkuPn(u) is the noise power spectrum on the regular grid, defined by the

gridding operator G from (2.8).
This has the exact same form as the definition of the robust weights (2.53), and even

the original premise is fulfilled that the factor s2
p in (2.53) should be connected to the source

power. The great difference is that the Wiener Filter automatically weights each mode in
Fourier space differently, given that the signal power spectrum Ps(k) is known.

We conclude that the classical robust weighting can be theoretically understood as the
optimal solution to a signal reconstruction problem of a Gaussian signal field, equivalent to
a Wiener Filter operation. In fact, this similarity between the robust weights and Wiener
Filtering was already mentioned by Briggs himself (Briggs 1995b), although in that work,
no clear explanation of the connection was given.

In common practice, of course, the weights are set manually, as only the knowledge
of the signal power spectrum would allow for an automatic assignment. Since resolve
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reconstructs this power spectrum, it does implicitly assign these weights. Of course, re-
solve solves (2.57) iteratively, and only the converged solution will give optimal weights
for the log-normal inference problem. No simple and direct equivalence can be given be-
tween these effective weights and robust weighting. It is even unclear how to write them
down explicitly since the sum in ∆(M, j, s) in principle extends infinitely.

2.6 Test Simulations

In what follows, we present a range of tests of resolve using simulated data. We have
implemented the algorithm11 in Python using the versatile signal inference library NIFTy
(Selig et al. 2013). For all details of the implementation, we refer the reader to Sec. 2.2 and
App. 2.4. We also show comparisons to CLEAN and MEM to benchmark the performance
and fidelity of our algorithm.

For all tests, we constructed simulated observations with the tool makems12 using a
realistic uv-coverage from a VLA observation in its A-Configuration. The VLA samples
the uv-plane non-uniformly at irregular intervals, and the response includes thereby a
convolutional gridding and degridding operator using a Kaiser-Bessel kernel (for details see
Eq. 2.8 and App. 2.4). We simulated observations at a single frequency, approximatively
20 minutes snapshot observation with a total of 42 120 visibility measurements at a central
frequency of 1 GHz (see Fig. 4.1). This setting leads to an especially sparse sampling of the
uv-plane. For ease of code development and testing, we have not used longer observations.
On the other hand, if we can solve the more demanding cases of sparse uv-coverage, we
certainly can handle better suited data.

Through all simulations, we varied thermal visibility noise levels and input signals.

For the next two sections (2.6.1 and 2.6.2), the signals were drawn from a log-normal
distribution, exactly meeting our prior assumptions. In Sec. 2.6.3, we go beyond that and
illustrate the validity of our statistical model by using a signal derived from a CLEAN
image of a real source.

The complex, Gaussian input noise in uv-space is defined by a user-defined variance,
equal for all visibilities. The code does not require equal noise variances and can in principle
handle varying variances as well. Always in the following, low noise refers to σ2

ln = 10−3Jy2,
whereas high noise denotes σ2

hn = 105Jy2 13. These numbers are of course somewhat
arbitrary, only chosen for demonstrational reasons. They are not intended to necessarily
reflect realistic visibility noise values in every possible aspect, but to serve as examples for
particularly low or high noise cases.

To give a quantitative account of the accuracy of the reconstructions, we use a relative

11To get access to the code prior to its envisaged public release, please contact henrikju@mpa-
garching.mpg.de or ensslin@mpa-garching.mpg.de.

12See http://www.lofar.org/wiki/lib/exe/fetch.php
?media=software:makems.pdf.

13The unit Jy was used here for convenience. Effectively, it stands for whatever units the simulated
signal is interpreted to be given in.
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(a) uv-coverage in units of # of wavelengths.

(b) Point spread function.

Figure 2.2: uv-coverage and point spread function for the simulated 20 minutes snapshot
observation in VLA-a configuration. The image of the point spread function is 1002 pixels
large, the pixel size corresponds to roughly 0.2 arcsec.
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L2 - norm measure of the difference of signal to map:

δ =

√√√√(∑ (es − em)2∑
(es)2

)
(2.59)

where the sums are taken over all pixels of the reconstruction. This choice is motivated by
the fact that the inference approach underlying resolve approximates a reconstruction
that is optimal in the sense of minimizing this error measure (see Sec. 2.2 and Eq. 4.16
therein).

In Secs. 2.6.1 - 2.6.3, we focus exclusively on the reconstruction of the signal, i.e.
the sky brightness distribution. The reconstruction of the power spectrum is discussed
separately in Sec. 2.6.5.

2.6.1 Main Test Results

Here, we describe the main test results for the reconstruction of a simulated signal using
resolve.

In Fig. 2.3, an artificial log-normal signal is shown alongside with the results from
resolve for observations with low and high noise. The error measures are δln = 0.12 and
δhn = 0.3 for the low and high noise case respectively.

We see that we can recover all the structures of the original surface brightness, down
to even very small features in the low noise case and at least all main features in the high
noise case. All strong effects of the point spread function have been successfully removed,
thus showing that resolve is effective in deconvolving the dirty image.

In fact, the reconstruction is expected to be smoothed out on the smaller scales and
lose overall power due to noise in the observation. This is simply because all information
in the power spectrum gets lost for powers comparable to the noise variance (see Sec. 2.6.5
for details). Effectively, resolve performs an automatic visibility weighting by comparing
noise and signal power for all Fourier modes, much in the way robust weighting originally
was conceived (Briggs 1995b,a). For a detailed discussion of this topic see App. 2.5.

2.6.2 Comparison to standard imaging methods

In this section, we give a short introduction to common imaging algorithms in radio inter-
ferometry and show comparisons to resolve. We focus on two of them, MS-CLEAN and
MEM, which are probably the most widespread methods to date.

In addition, we should mention recent developments in the application of Compressed
Sensing (CS) (Candes et al. 2006; Donoho 2006) to radio imaging, most notably the devel-
opment of the imaging algorithm SARA (Carrillo et al. 2012). Another approach was taken
recently to apply Gibbs sampling methods to imaging in radio interferometry (Sutter et al.
2013), also within the framework of Bayesian inference, but restricted to pure Gaussian
priors. A direct comparison of resolve to either SARA or Gibbs Sampling methods is
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(a) Signal. (b) Dirty Image.

(c) resolve image with low noise. (d) Absolute error |es − em|.

(e) resolve image with high noise. (f) Absolute error |es − em|.

Figure 2.3: Reconstruction of a log-normal signal field, observed with a sparse uv-coverage
from a VLA-A-configuration and different noise levels. The images are 1002 pixels large,
the pixel size corresponds to roughly 0.2 arcsec. The brightness units are in Jy/px. The
ridge-like structures in the difference maps simply stem from taking the absolute value and
mark zero-crossings between positive and negative errors. First row left : Signal field. First
row right : Dirty map. Second row left resolve reconstruction with low noise. Second row
right : Absolute per-pixel difference between the signal and the resolve reconstruction
with low noise. Third row left : resolve reconstruction with high noise. Third row right :
Absolute per-pixel difference between the signal and the resolve reconstruction with high
noise.
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out of the scope of this work, but we will discuss possible ways to include the CS approach
into our Bayesian framework in the conclusions (see Sec. 2.7).

Standard imaging methods almost always use an additional visibility weighting that
is manually set by the observer. We do not include such weights explicitly in resolve
(i.e. we set them to one). However, as already mentioned, an algorithm like resolve
automatically chooses optimal weights according to the ratio of reconstructed source power
to noise power. A detailed derivation can be found in App. 2.5. For CLEAN, we compare
to different weighting schemes in order to be as unbiased as possible.

For both CLEAN and MEM we used the implementation in the radio astronomical
software package CASA (Reid and CASA Team 2010).

Comparison to CLEAN

CLEAN was first presented by (Högbom 1974) and is surely the most widely used decon-
volution algorithm in radio astronomy. It works around the major assumption that the
image is comprised of point sources. In its simplest variant, it iteratively finds the highest
peak in the dirty map, subtracts a psf-convolved fraction of a delta function fitted to the
peak, and saves the delta components in a separate image. After some noise threshold is
reached, the algorithm stops and re-convolves the components with a so called clean beam,
usually the main lobe of the point spread function or a broader version of it to downgrade
resolution.

Over time, many variants of CLEAN have been developed, most notably Clark CLEAN
(Clark 1980), Cotton-Schwab CLEAN (Schwab 1984), multifrequency CLEAN (Sault and
Wieringa 1994) and multiscale CLEAN (MS-CLEAN) (Cornwell 2008). The latter was
constructed to better reflect extended emission by subtracting Gaussians of various shapes
instead of pure point sources. We will thus compare the results of resolve to MS-CLEAN.

It has been proved in the framework of compressed sensing that CLEAN is in fact a
variant of a matching pursuit algorithm (Lannes et al. 1997). This class of algorithms can
be shown to be optimal for signals that are sparse in some basis (like a point source signal
on the sky). It can be understood as minimizing the L1-norm of the signal field and can
therefore be cast into the assumption of a Laplacian prior distribution, which would allow
in principle a representation of CLEAN in a Bayesian inference framework (see Wiaux
et al. 2009, and references therein).

In Figs. 2.4 and 2.5, a comparison is shown between the results of resolve and MS-
CLEAN as implemented in the radio astronomical software package CASA. For this test,
the same simulated low noise data were used as in Sec. 2.6.1. We compare to three different
CLEAN reconstructions with natural, uniform and robust weighting (robust parameter
r = 0, which gives an intermediate result between the other two schemes). We used a very
small noise threshold and a standard gain factor of 0.1. In total, we choose to run the
algorithm interactively for around 1000 iterations. We used around ten different scales for
the multi-scale settings, ranging from a few pixels to enough to roughly match the scales
found in the signal. Together with the reconstructions, we show maps of the squared error
(es −m)2 for each of them. The L2 - error measures are shown in Table 2.1.



40
2. RESOLVE: A new algorithm for aperture synthesis imaging

of extended emission in radio astronomy

Algorithm δ
resolve 0.12
MS-CLEAN, natural 1.46
MS-CLEAN, uniform 0.67
MS-CLEAN, robust 0.69
MEM 1.07

Table 2.1: L2 error measures for resolve, MS-CLEAN and MEM for the low-noise simu-
lation and the reconstruction shown in Figs. 2.4, 2.5 and 2.6.

Both quantitative analysis and visual comparison show that resolve clearly outper-
forms MS-CLEAN in this case. Its result is closer to the signal in the L2 error measure
sense and it is clearly superior in reconstructing the detailed extended structure of the sur-
face brightness signal. Especially the very weak emission around all the brighter sources
is much better resolved and denoised than in the MS-CLEAN images. The reconstruction
with natural weighting is overestimating the flux scales considerably, while uniform and
robust weighting roughly find the same correct solution as resolve. However, it should
be noted that, at least for natural weighting, this is a somewhat biased comparison, since
the natural weighting scheme is by construction enhancing point-source sensitivity while
preserving larger side-lobe structures (Briggs 1995b) and thus not the optimal choice for
resolving extended emission.

Comparison to the Maximum Entropy Method (MEM)

The maximum entropy method (MEM) is an imaging algorithm introduced into radio
astronomy by (Cornwell and Evans 1985). It actually goes back to earlier developments in
statistical inference, connected to the broad field of entropic priors (Gull and Daniell 1979;
Skilling et al. 1979). It should not been confused with the maximum entropy principle of
statistics (see App. A that describes how to update probability distributions when new
information has to be included.

MEM aims to maximize a quantity called image entropy Sim, which is defined for strictly
positive signal images s as

Sim = −
∫
dx s(x) log (s(x)/m(x)) (2.60)

where m(x) is a model image of the observed signal, thus allowing to introduce some kind
of prior information into the problem. The data enter this formalism as a constraint for
the maximization problem. Usually, one adds a term to (2.60) that measures the closeness
of the entropic signal reconstruction to the data in the form of a χ2(d,Rs) distribution,
which is nothing else but the log-likelihood of (2.15):
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(a) resolve reconstruction. (b) Absolute error |es − em|.

(c) CLEAN map with natural weighting. (d) Absolute error |es −mnatural|.

Figure 2.4: Comparison of resolve with MS-CLEAN for the simulated low noise observa-
tion of Sec. 2.6.1. The images are 1002 pixels large, the pixel size corresponds to roughly 0.2
arcsec. The brightness units are in Jy/px. The ridge-like structures simply stem from tak-
ing the absolute value and mark zero-crossings between positive and negative errors. First
row left : resolve reconstruction. First row right : Absolute per-pixel difference between
the signal and the resolve reconstruction with. Second row left : MS-CLEAN recon-
struction with natural weighting using the radio astronomical software package CASA.
Second row right : Absolute per-pixel difference between the signal and the MS-CLEAN
reconstruction with natural weighting.
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(a) CLEAN map with uniform weighting. (b) Absolute error |es −muniform|.

(c) CLEAN map with robust weighting. (d) Absolute error |es −mrobust|.

Figure 2.5: Comparison of resolve with MS-CLEAN for the simulated low noise observa-
tion of Sec. 2.6.1. The images are 1002 pixels large, the pixel size corresponds to roughly 0.2
arcsec. The brightness units are in Jy/px. The ridge-like structures simply stem from tak-
ing the absolute value and mark zero-crossings between positive and negative errors. First
row left : MS-CLEAN reconstruction with uniform weighting using the radio astronomical
software package CASA.First row right : Absolute per-pixel difference between the signal
and the MS-CLEAN reconstruction with uniform weighting. Second row left : MS-CLEAN
reconstruction with robust (r = 0) weighting using the radio astronomical software pack-
age CASA. Second row right : Absolute per-pixel difference between the signal and the
MS-CLEAN reconstruction with uniform weighting.
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1

2
χ2(d,Rs) =

1

2
(d−Rs)†N−1(d−Rs)

= − log(P (d|s)) + const. (2.61)

With (2.60) and (2.61), MEM achieves a solution by extremizing

J(d, s) = − logP (d|s)− µSim (2.62)

for s. The multiplier µ is usually adjusted during the extremization to meet numerical
constraints (see Cornwell and Evans 1985, for details).

We now repeat a short section from (Enßlin and Weig 2010), analyzing the assumptions
of this approach from the viewpoint of Bayesian signal inference.

As we have identified (2.15) as the log-likelihood, it is also possible to re-identify the
prior distribution. If we interpret J(d, s) as a Hamiltonian H(d, s), than the entropy term
can be understood as a log-prior

µSIm(s) = logP(s). (2.63)

With this, we can read off the underlying prior distribution implicitly assumed in MEM

P(s) = exp

[
−µ
∫

dxs(x) log

(
s(x)

m(x)

)]
=
∏
x

(
s(x)

m(x)

)−µs(x)

. (2.64)

This prior is very specific. It extremely suppresses strong pixel values and thereby fa-
vors to smooth out emission over all pixels in the image while sharp peaks are heavily
down-weighted. It implicitly assumes no correlation between pixels, and a more than ex-
ponentially falling brightness distribution. In the case of the model m(x) being a close
approximation to real signal, the prior becomes effectively flat and MEM turns basically
into a Maximum Likelihood fit.

In Fig. 2.6, a comparison is shown between the results of resolve and MEM as im-
plemented in the radio astronomical software package CASA. Again, the same simulated
low noise data were used as in Sec. 2.6.1. As a model image, we used an MS-CLEAN re-
construction with uniform weighting. We again show maps of the squared error (es −m)2

for the reconstruction with resolve and MEM respectively. The L2 error measures are
shown in Table 2.1.

It can be clearly seen that resolve also outperforms MEM. There is much more false
structure in the MEM reconstruction, as reflected by the `2 - norm analysis. Partly,
this might be due to the specific MEM prior that enforces to smooth out the signal over
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all pixels, partly, it seems to be due to badly deconvoled remnants of the point spread
function. However, we note that the MEM implementation in CASA still is considered
to be somewhat experimental, and that a more stable code or a longer time of parameter
adjustment and fine-tuning might improve these results.

2.6.3 Comparison with a real signal

So far we have only shown reconstructions of signals that were drawn from log-normal
statistics, using the exact assumptions hat we use to specify the prior distribution. To
some degree, it is expected that resolve should be optimal for these simulated signals.

To further demonstrate the validity of our assumptions, we have conducted a test where
we did not use a signal drawn from log-normal statistics. Instead, we took an MS-CLEAN
image, obtained from real data of the galaxy cluster Abell 2256 (Clarke and Enßlin 2006),
and reused this as a signal for the simulated observation using the same VLA configuration
as before. The original data were taken with the VLA at 1.369 GHz in D-configuration.
The surface brightness values are not in the original range but chosen arbitrarily in our
simulation, effectively given in Jy/px. The signal (i.e. the adapted CLEAN image of Abell
2256) and the reconstruction from resolve are shown in Fig. 2.8.

Although this time we have at no point introduced log-normal statistics into the simu-
lation process, the prior assumption still seems to be valid and leads to results comparable
in exactness to the tests using explicit log-normal signals.

2.6.4 Signal Uncertainty

As already stated in Sec. 2.2.3, resolve provides also an estimate of the uncertainty of
the signal reconstruction. The algorithm uses the inverse second derivative D of the poste-
rior, evaluated at the specific signal estimate m, to approximate the posterior covariance.
In App. 2.3.2, it is shown that a full signal estimate taking into account approximative
uncertainty leads to

I ≈ emx ±
√

e2mx [eDxx − 1]. (2.65)

In Fig. 2.7, we present an example of the approximated relative uncertainty√√√√〈(esx)2〉G(m,D) − 〈esx〉2G(m,D)

〈esx〉2G(m,D)

=
√

[eDxx − 1] (2.66)

for the low noise reconstruction of Sec. 2.6.1, together with the signal estimate, and absolute
and relative difference map between signal and estimate. The subscripts indicate that our
approach effectively involves to approximate the full posterior with a Gaussian G(m,D)
centered on the signal estimate and with a covariance of D (see App. 2.3.2).

Fig. 2.7 shows that the uncertainty follows the structure of the reconstruction. Where
the signal is strong, the relative uncertainty is much lower than in regions that are mainly
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(a) resolve reconstruction. (b) Absolute error |es − em|.

(c) MEM map. (d) Absolute error |es −mMEM|.

Figure 2.6: Comparison of resolve with MEM for the simulated low noise observation of
Sec. 2.6.1. The images are 1002 pixels large, the pixel size corresponds to roughly 0.2 arcsec.
The brightness units are in Jy/px. The ridge-like structures simply stem from taking the
absolute value and mark zero-crossings between positive and negative errors. First row
left : resolve reconstruction. First row right : Absolute per-pixel difference between the
signal and the resolve reconstruction. Second row left : MEM reconstruction using the
radio astronomical software package CASA. Second row right : Absolute per-pixel difference
between the signal and the MEM reconstruction.
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(a) resolve reconstruction. (b) Absolute error |es − em|.

(c) Relative uncertainty map. (d) Relative difference map |es − em| /es

Figure 2.7: First row left : resolve reconstruction for the low noise reconstruction of
Sec. 2.6.1. First row right : Absolute per-pixel difference between the signal and the re-
solve reconstruction. The ridge-like structures simply stem from taking the absolute value
and mark zero-crossings between positive and negative errors. Second row left : Relative
Uncertainty map derived from the resolve reconstruction. Second row right : Relative
difference map between signal and resolve reconstruction.
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(a) Signal. (b) resolve reconstruction.

Figure 2.8: Reconstruction of a signal field that was obtained from a CLEAN image of the
real extended emission of Galaxy cluster Abell 2256. For the simulation, the same setup
with low noise was used as in Sec. 2.6.1.

dominated by noise. A comparison between the estimated relative uncertainty and the real
relative difference map shows the approximative nature of the theoretical estimate. While
both maps agree nicely in structure, they do not fully match in terms of values. Overall,
the theoretical uncertainty underestimates the real relative difference. However, it should
be noted that the deviations between both maps are much stronger in the outer regions,
where the signal is only weak. In the center of the map, where the source mainly is located,
both agree relatively well.

If we further use (2.65) to calculate the absolute uncertainty for the low noise recon-
struction of Sec. 2.6.1, we find that roughly 40 % of the original signal values lie within a
1− σ region, and roughly 70 % within a 2− σ region. Although this result deviates from
pure Gaussian expectations, this is a reasonable outcome. Since the posterior is in general
non-Gaussian, the assumption of posterior Gaussianity needed to exactly define (2.65) can
only result in an approximation.

Calculating the uncertainty to a very high precision is computationally expensive14

. It involves the probing of an implicitly defined matrix and a numerical algorithm to
invert this matrix (see App. 2.4). In this case, we have stopped the stochastic probing
of D at some point for computational reasons and smoothed the outcome a bit to obtain
Fig. 2.7. This might add to the deviations from pure Gaussian expectations on the absolute

14The estimation of the uncertainty goes roughly with Npr

(
O(
√
nsnd) +O(

√
nsns log(ns))

)
, where Npr

is the number of probes, nd the number of visibility measurements, and ns the number of pixels in image
space (see App. 2.4)
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uncertainty, mentioned earlier. Nevertheless, since the theoretical matrix representation
of D must be smooth, this procedure should be acceptable as long as this example simply
serves as a showcase to fundamentally demonstrate how to obtain an uncertainty estimate
with resolve.

2.6.5 Power Spectrum Reconstructions

Until now, we have focused entirely on the reconstruction of signal maps. Now we discuss
the reconstruction of the signal power spectrum that resolve achieves automatically in
order to infer the best signal solution. The signal power spectrum is defined as the Fourier
transformation of the autocorrelation function of the signal, assuming translationally and
rotationally invariant statistics:

P (|k|) =

∫
dr C(r) exp(ikr). (2.67)

(for more details, see Sec. 2.2.3).
Qualitatively, it can be understood as decomposing the signal autocorrelation into

its different contributions from various scales. High power on low Fourier modes means
strong correlations on larger scales and high power on high Fourier modes means strong
correlations on smaller scales.

In the first row of Fig. 2.9, we show the reconstruction of power spectra for the low
and high noise reconstructions of Sec. 2.6.1. The figure shows the original power spectrum,
which defines the correlation structure of the signal field, and the final results of resolve
after 6 iterations in the low, and 80 iterations in the high noise case. It can be seen that,
with more noise, the reconstruction looses sensitivity for the smaller scales. This is reflected
in the high noise map reconstruction in Fig. 2.3, where the smallest scales are smoothed
out by the algorithm.

The second row of Fig. 2.9 serves as an example for the actual reconstruction process,
where all of the 80 iterations for the high noise power spectrum are shown, together with
the starting guess, which was a simple and generic power law Psg ∝ k−2. The power
spectrum first dropped, to slowly rise up again. This is a consequence of a numerical
procedure to ensure the convergence of the underlying non-linear optimization routines,
where a constant diagonal is first added to the uncertainty estimate D−1 used in the
power spectrum reconstruction, and then suppressed again with converging iterations (see
App. 2.4).

We emphasize that an accurate power spectrum reconstruction can be a scientific result
on its own and should not only be regarded as a mere by-product. Since this is a rather
unusual topic for observations of radio total intensity, it might be in place to explain a
little further its meaning and to outline possible scientific merits.

The most typical physical source of extended emission in radio astronomy is synchrotron
radiation. By spelling the power spectrum of the total intensity from some astronomical
synchrotron source we effectively measure its correlation structure. Since synchrotron
intensity is in part determined by the magnetic field strength (Rybicki and Lightman 1985)
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Figure 2.9: First row : Power spectrum reconstruction for the simulated low noise and high
noise observations of Sec. 2.6.1. Second Row : Evolution of the high noise power spectrum
reconstruction over 80 iterations. The iteration process is indicated from transparent to
full green.

in the source, we automatically gather valuable scientific information on the magnetic field
statistics as well:

CI(r) = 〈I(x)I(x+ r)〉 ∝
〈
B(x)2B(x+ r)2

〉
. (2.68)

Detailed derivations of this and related statistical quantities, together with many discus-
sions on its scientific use, mostly in the context of analyzing turbulent magnetic fields, can
be found in a series of astrophysical papers (e.g. Spangler 1982, 1983; Eilek 1989; Waelkens
et al. 2009; Junklewitz and Enßlin 2011; Oppermann et al. 2011a; Lazarian and Pogosyan
2012)

For future observations, it might be especially interesting to use these results from
resolve to compare data of specific astrophysical synchrotron sources, e.g. supernova
remnants or radio halos of galaxies and clusters, to simulations thereof. In simulations,
the inputs are under control, and (2.68) can actually be calculated and compared with real
data.

2.7 Conclusions

In this paper we presented a new approach to signal inference and imaging in radio astron-
omy and especially radio interferometry. The inference algorithm resolve is targeted to
be optimal for the imaging of extended and diffuse radio sources in total intensity. In sim-
ulations, resolve demonstrated to produce high fidelity reconstructions of such extended
signals, drawn from pure log-normal statistics or from real data. Comparisons showed that
resolve can outperform current imaging algorithms in these tasks.
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Furthermore, resolve is capable of producing an approximative uncertainty estimate
for the inferred image through consistent propagation of measurement uncertainty. This
is not possible with current imaging algorithms.

In addition to the inferred signal reconstruction, resolve also estimates the power
spectrum of the signal, i.e. its two-point correlation structure. The power spectrum is
used for the signal reconstruction, but can be regarded as a new scientific outcome by
itself. For instance, it opens opportunities to study the statistical properties of magnetic
fields that lead to observed synchrotron emission. At the same time it offers a unique tool
to compare simulations of turbulent, magneto-ionic media in extended radio sources to
observations.

It was shown that instead of using classical visibility weights directly, resolve chooses
these internally, according to the ratio of reconstructed signal power to noise power. This
is much in the spirit in which the robust weighting approach was originally conceived by
Briggs (Briggs 1995b,a).

It should be noted, however, that obtaining all results with extremely high accuracy,
especially to produce the uncertainty map, can be more time consuming than traditional
imaging methods because of the complicated numerical procedures necessarily involved to
solve Eqs. (4.18,4.19).

In this paper, only simulated data was analyzed and the fundamental principles un-
derlying resolve were reviewed. To simplify the analysis, some typical complexities of
radio interferometers have been omitted. However, the response operator R (see Eq. 2.9),
describing the act of observation, can easily be expanded to cover more effects, thereby
adapting to the needs of the actual observational situation.

It is most straight-forward to include the effects of a primary beam, as long as it is
known accurately for the instrument in question. Also a direction- or time-dependent point
spread function can be included without any further fundamental complicacy, although
computational complexity would be considerably higher.

Furthermore, it should be highlighted that the inclusion of single dish data is almost
readily possible. A radio interferometer is not sensitive to the largest scales of the sky
brightness because it cannot measure at arbitrarily small uv-points, leaving a gap in the
center of the uv-plane. This problem can in principle be overcome by combining the radio
interferometric data with single dish observations on the same source. Always, when using
CLEAN-derived imaging algorithms, there is a problem with the choice of the correct
restoring beam, since it is not possible to just trivially use the point spread function of the
radio interferometer for the combined data. There is no such problem with the imaging
approach presented in this work.

The extension to multi-frequency synthesis (see Eq. 2.10) and polarization imaging is
already being worked on and will be the subject of upcoming publications.

Another future topic is the possible inclusion of calibration into the framework. A first
step could be to include the calibrational errors into the error budget and use an approach
similar to the extended critical filter (Oppermann et al. 2011b), where the noise covariance
is subject to the inference itself. In principle, calibration itself can be understood as a
reconstruction problem for which the presented methods could be useful. In the long run,
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the distinction between calibration and imaging is somewhat artificial and should ideally
be merged into one step of complete reconstruction (see also Smirnov 2011a,b).

Finally, a future goal should be to extend the imaging algorithm resolve to a broader
approach that can handle diffuse emission and point sources simultaneously (see e.g. Selig
and Enßlin 2013, for an example from photon count imaging). It could be worthwhile
to think about merging the approaches of compressed sensing, where optimal imaging
strategies for sparse signals are already known, with the presented Bayesian approach into
which they could be included in form of a Laplacian prior.
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Chapter 3

A first application of RESOLVE:
The galaxy cluster Abell 2256

3.1 Introduction: Galaxy clusters as an optimal field

of application for RESOLVE

resolve is optimized for the imaging of extended radio sources. This chapter focuses on
an application on radio observations of galaxy clusters, in particular on diffuse non-thermal
radio emission found in the inter-cluster medium (ICM). First results of resolve on the
galaxy cluster Abell 2256 are presented in Sec. 3.2.

Typical radio astronomical applications include such different objects as diffuse emission
from the Milky Way, supernova remnants, galactic radio halos, lobes of radio galaxies and
galaxy clusters.

Some galaxy clusters are known to host very distinct extended non-thermal radio struc-
tures that cannot unambiguously be ascribed to single member galaxies and are thus iden-
tified with the ICM. This extended emission is mainly divided into two different types1,
called radio halos and radio relics. The former are roughly spherical regions of weak diffuse
synchrotron emission, usually centered on the gravitational center of clusters, whereas the
latter are distinct, often elongated sources of stronger synchrotron emission found at the
edges of clusters. The exact physical origins of these sources are still debated, especially
for the halos. The theoretical paradigm explains them to be the results of cluster merger
activities, but with different origins. Relics are widely accepted to trace shock fronts of
former cluster merger collisions. Halos are less well understood, they must be the result
of some kind of reheating or injection mechanism of relativistic electrons in the ICM, but
this is still subject to ongoing research and scientific debate (for a review see Feretti et al.
2012). By far not all observed galaxy clusters are also known to host halos and relics.
But since in particular the halo emission usually is of low surface brightness compared to
other bright compact or point sources in cluster fields, very sensitive observations with

1Further subclassifications exists, which are of minor importance for this work.
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high resolutions and exact data analysis are needed to detect and accurately image diffuse
cluster emission. In many cases, high fidelity observations on clusters have only become
accessible recently, mainly through the new, upgraded VLA, which is considered to be the
best instrument for this kind of science in the moment (see Feretti et al. 2012). It is thus
far from clear, whether halos and relics really only occur in particular environments, or are
common to many more clusters but are below our to-date detection capabilities.

This is an optimal field of application for resolve2, since weak diffuse structure is know
to be a problem for the classical imaging method CLEAN, and resolve is constructed to
be optimal for this type of sources.

3.1.1 The galaxy cluster Abell 2256

In this chapter, a first application of resolve on real data is presented. The chosen target
is the galaxy cluster Abell 2256. The data is from a VLA observation in its D-configuration
at 1.369 GHz, taken in 2006 (Clarke and Enßlin 2006). The courtesy of all data goes to T.A.
Clarke to whom the author expresses his thanks. Two CLEAN images of the cluster using
the same data set are shown in Fig. 3.1. The first shows the full cluster field, the second
only the diffuse emission after careful subtraction of point sources and cluster galaxies. In
these images, the cluster hosts a prominent relic structure to the north-west of the image
center, and a relatively small and weak halo roughly centered a bit to the south-east of
the cluster center (better visible in the second image without the other stronger point-like
structures in the field). The images cover a region of roughly 2.6 × 2.5 Mpc. The pixel
size is 15 arcseconds in both images, but the resolution is slightly degraded for the diffuse
emission image.

3.2 Results

Fig. 3.2 shows an image of Abell 2256 obtained with resolve in its first iteration cy-
cle, using the data from Clarke and Enßlin (2006). The reconstruction was conducted
only using the visibilities corresponding to the diffuse emission image shown in Fig. 3.1.
Since resolve is only optimal for extended emission, strong point sources in the field can
significantly degrade the quality of the reconstruction with resolve. For comparison, a
MS-CLEAN image is shown as well, obtained for the exact same settings. For the CLEAN
image, the full set of visibilities was used, since experiences showed that this leads to a
reconstruction with less subtraction artifacts. The stronger point-like emission has been
clipped away so that only the emission on comparable flux scales is shown. The back-
ground of the CLEAN image is reduced to a minimal, very small threshold to suppress
typical reconstruction artifacts, like regions of negative flux. No such procedure needed to
be applied to the resolve image. The pixel size in both images is roughly 7.2 arcseconds.

Currently, these are only preliminary results. In practice, the proper estimation of the
signal power spectrum proves to be numerically more complicated than in the simulated

2Regardless of whether new high-quality data is at hand or older data sets are re-analyzed.
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(a) Full CLEAN image. (b) CLEAN image only with diffuse emission.

Figure 3.1: CLEAN images of Abell 2256 from an observation taken with the VLA in D-
configuration at 1369 GHz. The pixel size is 15 arcseconds. The first image shows the full
cluster field, the second only the diffuse emission after subtraction of point and foreground
sources. Image courtesy goes to T. A Clarke.

test cases shown in Ch. 2. To estimate the power spectrum, an implicit inversion of the

operator D−1 ≈ δ2H(s)
δsx δsy

|s=m needs to be calculated with a conjugate gradient algorithm

(see Ch. 2 for details). This is not guaranteed to work always stably in a non-linear
regime. Fig. 3.2 thus only shows the first iteration cycle before the first intermediate
power spectrum reconstruction,

Nevertheless, this comparison clearly indicates that resolve can outperform MS-
CLEAN also in a real data application. In the presented case, resolve is capable to
reveal structures on smaller scales than the CLEAN image. In a first simple estimation,
it also detects more overall total flux in the halo. Within roughly the same circular halo
region as defined by Clarke and Enßlin (2006) while replacing the stronger relic emission
with the mean value from the rest of the halo region, resolve finds total flux values of
the order of 160 mJy in comparison to 103.4 ± 1.1 mJy, as found by Clarke and Enßlin
(2006) for the same data. This hints toward a possibly important result, since it could
mean that the weak halo of Abell 2256 is actually much stronger (and possibly larger) at
1.369 GHz than previously thought 3. This would also change the halo spectrum, with
possible implications for different halo formation scenarios (Feretti et al. 2012). However,
to confirm this, of course, more solid results using resolve are needed.

3Which could be true also for other clusters.
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(a) resolve image.

(b) CLEAN image.

Figure 3.2: Comparison between the first iteration cycle reconstruction of Abell 2256 from
resolve (top) and MS-CLEAN (bottom) for the data presented in Sec 3.1.1. The pixel
size is roughly 7.2 arcseconds. Note that resolve was run on point-source subtracted
data.



Chapter 4

A new approach to multi-frequency
synthesis
in radio interferometry1

4.1 Introduction

In radio astronomy, multi-frequency observations are widely used for many different pur-
poses. Examples include the investigation of spectral line emission, analyzing continuous
synchrotron spectra of radio sources, the determination of Faraday rotation in polarization
imaging, correlating brightness structures at largely different wavelengths or improving the
sensitivity and coverage of an interferometer without introducing more antennas into the
array (for a review see e.g. Taylor et al. 1999). Most of these only become possible with
observations that span over many frequencies and data analysis methods that can handle
this kind of observations.

For the remainder of this work, we focus entirely on multi-wavelength radio continuum
studies in total intensity. Neither spectral line observations, polarization imaging, nor
wavelengths studies beyond pure radio observations will be a direct topic. In Sec. 4.5, we
will comment on possible extensions of the presented work into other domains of multi-
frequency radio astronomy.

Historically in radio interferometry, the term multi-frequency synthesis is mainly used to
denote techniques that focus on the direct combination of single-instrument observations at
different frequencies to improve the resolution and sensitivity of a radio interferometer (see
Conway et al. (1990) and references therein). For this purpose, a number of methods have
been devised, most notably double deconvolution (Conway et al. 1990) and multi-frequency
CLEAN (Sault and Wieringa 1994). These methods usually work by Taylor-expanding a
spectral model function around a reference frequency. We will comment on these methods
in more detail in Sec. 4.2.1.

Conversely, investigating the spectral behavior of a radio synchrotron source on its own

1Note: This chapter has been submitted as a paper to Astronomy and Astrophysics
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usually is achieved through totally independent standard imaging of the surface brightness
in the sky at a number of frequencies. Resolution is kept uniform over all frequencies
to correctly recombine the images at individual frequencies. Subsequently, the spectral
parameters are determined by fitting a function through all the single frequency images,
usually assuming a power-law shaped spectral evolution.

Only recently, implementations of MF-CLEAN also make it possible to constrain the
spectral properties (see Reid and CASA Team 2010), effectively starting to merge both
multi-frequency high resolution imaging and spectral analysis into one algorithm. It is this
combined notion, how we like to understand and use the term multi-frequency synthesis.

Further development of multi-frequency imaging techniques is paramount for being
able to fully exploit the data from the new generation of radio telescopes, such as the
upgraded VLA, LOFAR, the SKA pathfinder missions or ultimately the SKA itself (see
e.g. Garrett 2012). Their unprecedented, broadband frequency coverages of many GHz of
possible bandwidths and previously unknown frequency regimes offer many advances in
astrophysical and cosmological sciences. But at the same time, they are a challenge for
current data analysis methods (see Sec. 4.2.1). One part of the challenge rises from the
fact that current algorithms might not meet the expected sensitivity or fidelity because
previously acceptable models and approximations break down with the quality and quantity
of data now available. The other side is that the huge quantities in which new data sets
come, represent a huge computational challenge on their own, regardless of the algorithms
used. It should be emphasized that this study focuses entirely on the first part of the
challenge (for this topic, see also Sec. 4.5).

In this paper, we present a new approach that uses Bayesian statistical inference tech-
niques to combine a simultaneous statistical estimation of the sky brightness and the spec-
tral behavior with the benefits in resolution and sensitivity of classical multi-frequency
synthesis. Conceptually, this new approach has a number of advantages over standard
methods. In principle, the full bandwidth of the observation is used for maximum theoret-
ical sensitivity. No subsequent imaging at all single frequencies is employed and, thereby,
less reconstruction artifacts are introduced and no artificial downgrading of resolution
is necessary. Our model for the spectral behavior is not approximated through Taylor-
expansions around a frequency, and in the moment only is limited by possible higher order
effects like spectral curvature. In this way, our approach is conceptually very similar to
the new method of Faraday Synthesis (Bell and Enßlin 2012) in polarization imaging (see
Sec. 4.2.2 for more details). Furthermore, the spatial correlation of the parameters de-
scribing the spectral behavior is used to constrain and improve the estimation of spectral
properties, and can further be viewed as a new scientific result on its own. Finally, it is pos-
sible to approximate the statistical uncertainty of the spectral index estimate in addition
to that of the total intensity.

To demonstrate the viability of our new approach, we present a multi-frequency ex-
tension to the radio extended emission imager resolve (see Ch. 2 and Junklewitz et al.
(2013)) as an alternative to multi-scale-multi-frequency CLEAN (Rau and Cornwell 2011),
the standard method for wide-band multi-frequency synthesis of extended radio sources.

For our derivations, we will often refer to the work presented in Ch. 2 and Junklewitz
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et al. (2013).

4.2 Theory & Algorithm

In this section, we first briefly review the current status of multi-frequency synthesis tech-
niques (Sec. 4.2.1), then develop the new approach (Sec. 4.2.2) based on information field
theory (Enßlin et al. 2009) and the inference framework presented in Ch. 2. We further
present a multi-frequency-extension to the imaging algorithm resolve (see Ch. 2) using
the developed framework (Sec. 4.2.2).

4.2.1 Multi-frequency aperture synthesis and spectral index re-
construction

Aperture synthesis is the technique of connecting an array of telescopes in such a way
that we can effectively synthesize a combined instrument with a much larger aperture and
therefore resolution (Ryle and Hewish 1960; Thompson et al. 1986). It can be shown that
for observations at a single frequency ν0, and under the assumption of measuring the sky
as flat in a plane tangent to the phase center of the observation, such a radio interfer-
ometer approximatively takes incomplete samples of the Fourier transformed brightness
distribution in the sky (Thompson et al. 1986):

V (u, v, ν0) ≈ W (u, v, ν0)

∫
dl dm I0(l,m, ν0) e−2πi(ul+vm). (4.1)

For our purposes, working under this assumption suffices for the analysis undertaken in this
paper. For a detailed derivation of (4.1) consider (Thompson et al. 1986). The quantity
V (u, v) is called the visibility function. The coordinates u and v are vector components
describing the distance between a pair of antennas in an interferometric array, where this
distance is usually referred to as a baseline. They are given in numbers of wavelengths,
with u and v usually parallel to geographic east-west and north-south, respectively. The
coordinates l and m are a measure of the angular distance from the phase center along
axes parallel to u and v, respectively. W (u, v) is a sampling function defined by the layout
of the interferometric array. It is zero throughout most of the u, v-space, apart from where
measurements have been made where it is taken to be unity.

The visibility function is what our instrument measures, but we are actually interested
in the brightness distribution of the source in the sky. Unfortunately, an inversion of (4.1)
gives us not the true brightness distribution, but its convolution with the inverse Fourier
transform of the sampling function, better known as the dirty beam Idb = F−1W :

ID = F−1V = F−1WFI = Idb ∗ I. (4.2)
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Here, we have introduced a symbolic Fourier operator Fkx = exp(−i(ul + vm)) with x =
(l,m) and k = (u, v), the common notation ID, dirty image, for the simple Fourier inversion
of the visibilities, and the symbol ∗ to denote a convolution operation.

For imaging at a single frequency, one usually proceeds using a deconvolution algorithm
aiming to solve (4.2) approximatively. The most common algorithm is CLEAN (Högbom
1974), or one of its many variants (Clark 1980; Schwab 1984; Sault and Wieringa 1994;
Cornwell 2008; Rau and Cornwell 2011), which basically model the sky brightness to be
a collection of delta peak point sources that are iteratively assigned by searching for the
peak values in the dirty image. But alternatives exist, especially for imaging extended
emission, like the Maximum Entropy Method (Cornwell and Evans 1985), Adaptive Scale
Pixel decomposition (Bhatnagar and Cornwell 2004) or the recently published Bayesian
extended emission imager resolve (see Ch. 2), which will be used in this paper in an
expanded multi-frequency version (see Secs. 4.2.2 and 4.4).

Originally, radio telescopes observed with relatively narrow bandwidths and at only a
few different frequencies. The standard approach for imaging the spectral properties of a
source since then is to take single frequency observations, or observations averaged over
close channels for higher sensitivity, image them separately, and then fit a spectral model
to the observations. Since continuous synchrotron emission is known to show a power-law
spectrum (Rybicki and Lightman 1985), for many astrophysical purposes such a model is
sufficient:

I(l,m, ν) = I0(l,m, ν0)

(
ν

ν0

)−α
. (4.3)

Sometimes, higher order spectral deviations are modeled with a second term in the
exponential of (4.3):

I(l,m, ν) = I0(l,m, ν0)

(
ν

ν0

)(−α+log ν/ν0 β)

, (4.4)

effectively enhancing the linear function in log I vs. log ν space (4.3) to a quadratic poly-
nomial. This model is referred to as spectral curvature.

Simultaneous multi-frequency imaging at different frequencies has been introduced to
radio astronomy upon the realization that observations at many frequencies, if stacked to-
gether appropriately, can improve the sampling in the uv-plane (see Conway et al. (1990)
and references therein). That way, the sensitivity of a radio interferometric observation
can be enhanced considerably. Because the uv-coordinates are measured in numbers of
wavelengths, the same interferometer samples different parts of the Fourier space at differ-
ent frequencies. An interferometer includes N(N − 1)/2 baselines and therefore uv points,
where N is the number of antennas. In theory, observing at a number of frequencies
Nf enhances the measured baselines to NfN(N − 1)/2, which is the equivalent effect of
introducing roughly

√
Nf extra antennas (Conway et al. 1990).

This approach was first developed by Conway et al. (1990) for mid-sized fractional
bandwidths of around ±10%, together with the method of double deconvolution to mitigate



4.2 Theory & Algorithm 61

spectral errors when using CLEAN for a spectrally combined data set. Later, double de-
convolution was developed into the more advanced multi-frequency CLEAN (MF-CLEAN)
(Sault and Wieringa 1994) and multi-frequency multi-scale CLEAN (MF-MS-CLEAN)
(Rau and Cornwell 2011).

All these methods assume the spectral dependence to be a power-law, like Eqs. (4.3) or
(4.4) and propose to approximate it during the CLEAN-like-deconvolution process with a
Taylor-expansion. To our knowledge, current implementations use a few terms of a Taylor-
expansion in ν or log ν around a reference frequency ν0. In Rau and Cornwell (2011) it is
discussed that a direct decomposition into one or two terms of a polynomial in log I vs. log ν
would actually be the most accurate representation2, but for current implementations this
is discarded by the authors because of numerical instabilities.

During the CLEAN deconvolution process, the iteratively updated sky model is used
to also update the coefficients of the spectral Taylor expansion. In this way, spectral index
or even spectral curvature can be constrained by these coefficients. Care must be taken,
since this expansion is usually stopped after a few terms and might not be valid over large
bandwidths. Because of this, the only implementation of MF-MS CLEAN known to the
authors to date, within the radio astronomical software package CASA (Reid and CASA
Team 2010), is considered to be experimental and on a shared-risk basis with regard to the
spectral reconstructions with a higher number of terms.

For modern wide-band data sets from the new generation of instruments, spanning sev-
eral GHz of bandwidths, this means that probably even more emphasis must be put onto
the handling of the spectral effects, either by invoking higher order terms in the expan-
sions (see Sault and Wieringa 1994; Rau and Cornwell 2011) or by shifting to a different
approach, where the sky brightness and its spectral properties are fully considered simul-
taneously, and estimated to fit the entire data using some global minimization function.
This last approach was actually mentioned by Conway et al. (1990), but found to be un-
necessarily complicated and computationally expensive for the typically modest fractional
bandwidths at the time.

We will now consider the latter approach and present a statistical solution.

4.2.2 A multi-frequency extension to the RESOLVE algorithm

In the course of this section, we often refer to the detailed derivations layed out in Sec. 2
of Ch. 2 that form the basis from which we derive our multi-frequency algorithm.

We start by summarizing (4.1) and (4.3) into a multi-frequency measurement model:

d(k, ν) = W (k, ν)

∫
dx F(k, x)I(x, ν) + n(k, ν) (4.5)

where again x = (l,m) and k = (u, v), the term n(k, ν) introduces measurement noise,
the data d(k, ν) has been introduced, which is basically the visibility function with mea-

2Actually, for the spectral model (4.4), this would be no approximation at all since it simply is a
quadratic polynomial in log I vs. log ν space.
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surement noise, and the spectral dependence of the source I(x, ν) is kept general for the
moment.

In order to simplify notation and to identify (4.5) as a general inverse inference problem
as analyzed in Ch. 2, we henceforth drop all explicit dependence on k and x and combine
all known instrumental effects into a response function Rν := W (k, ν)F , leading to

dν = RνIν + nν . (4.6)

There are many instrumental effects beyond the sampling in the uv-plane given by W (k, ν)
like an antenna sensitivity pattern or an direction dependent, variable sampling. For
this work, we stay with the basic definition Rν := W (k, ν)F and refer the reader to
Ch. 2 concerning the possibility of including other effects within this framework. We
just emphasize that, without loss of generality, most of these effects can be in principle
included3. We also assume the instrument to be fully calibrated, and thus the response Rν

to be known.
In accordance with standard radio interferometric literature (Thompson et al. 1986),

we assume Gaussian noise statistics, mainly induced by the antenna electronics and inde-
pendent between measurements at different frequencies and time steps of the observation
(Thompson et al. 1986). Henceforth, the noise nν will be assumed to be drawn from a
multivariate, zero mean Gaussian distribution of dimension nd:

P(n) = G(n,N)

:=
1

det(2πNν)1/2
exp

(
−1

2
n†νN

−1
ν nν

)
. (4.7)

Solving (4.6) exactly for Iν is not possible, since all information is lost on the Fourier
modes not sampled by Rν . This is just a different way of stating that a direct Fourier
inversion of (4.1) yields the dirty image and not an exact representation of the sky bright-
ness.

Instead, the aim is to find a statistical estimate for the most probable sky brightness
signal, given all observational and noise constraints. In Ch. 2, it was shown in detail how
this can be done in a Bayesian statistical framework for a radio astronomical data model
like (4.1). We briefly repeat the main points, and otherwise refer the reader to Ch. 2.

To find an optimal statistical estimate for the sky brightness signal Iν , we regard it as a
random field with certain a priori statistical properties expressed in the prior distribution
P (I), but fully constrained by the data through the statistics of the likelihood distribu-
tion P (d|I). The likelihood distribution summarizes how the data are obtained with a
measurement of the true sky brightness signal, and for our problem can be expressed as

P(d|I) = G(dν −RνIν , Nν), (4.8)

3In principle this approach can be extended into a full RIME (Radio Interferometer Measurement
Equation), considering all Stokes parameters and instrumental gains (Smirnov 2011a,b).
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which is a Gaussian over dν −RνIν with the covariance structure of the uncorrelated noise
Nkk′ν = δkk′σ

2
kν .

Prior and likelihood statistics can be combined into the posterior distribution P (I|d) ∝
P (d|I)P (I) that holds the important information of how much the sky brightness signal
is statistically constrained by the data. From there, an estimate for the signal can be
obtained by calculating a suitable statistic of the posterior, most prominently its mean or
its mode, corresponding to the minimization of different error norm measures between the
signal and its estimate (see Ch. 2; or Jaynes (2003), Caticha (2008) and Lemm (1999),
Enßlin et al. (2009) for a comprehensive review of Bayesian statistics or inference on fields
respectively).

The exact choice of an appropriate inference algorithm at this stage largely depends
on the complexity of the problem (i.e. the posterior). For the problem at hand, since the
likelihood is already known (4.8), this comes down to the question of the prior statistics of
Iν .

The most general way conceivable would be not to explicitly model the spectral depen-
dence of I(x, ν) at all, as for instance in (4.3) or (4.4). Instead, I(x, ν) can be interpreted
as a three dimensional continuous field and should be inferred as a whole from the entire
data. In general, let us assume not only point-like but also extended emission in the sky,
and some kind of extended structure in spectral space as well. In such a setting, I(x, ν)
could be set a priori as a statistical field with an unknown and probably non-isotropic
cross-correlation structure in the combined sky and spectral space. Such a complex, un-
known cross-correlation structure at the one hand complicates the problem enormously,
but could also be used to guide the reconstruction, if correctly estimated with the field
itself.

A number of statistical methods have already been developed to handle simpler prob-
lems of signal reconstructions with unknown but isotropic correlation structure, many of
them solving the problem for Gaussian fields using information field theory (Enßlin and
Frommert 2011; Enßlin and Weig 2010) or Gibbs-Sampling Monte-Carlo methods (Sutter
et al. 2012; Karakci et al. 2013), or recently also for log-normal fields (Enßlin and Frommert
2011; Enßlin and Weig 2010; Oppermann et al. 2013; Greiner 2013; Selig and Enßlin 2013).
Most notably this method was also used to create resolve (see Ch. 2). A full combined
spatial and spectral reconstrcution as outlined above, would require substantial further
development and is outside of the scope of this work.

We can choose a more direct strategy, still residing within our approach of statistical
inference, but fix a spectral model and infer instead the spectral index (or curvature) as a
field on its own. For the rest of the paper, we will choose the model (4.3) for the simplicity
of the approach, and for a functional similarity with the algorithm resolve that makes it
very natural to include into a combined method.

resolve works under the assumption that the extended surface brightness at a single
frequency is a priori assumed as a random field drawn from log-normal statistics (see
Ch. 2). For our multi-frequency problem, this basically turns (4.6) into
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dν = RνIν + nν

= Rν

[
I0(l,m, ν0)

(
ν

ν0

)−α]
+ nν

= Rν

[
ρ0 es(l,m)

(
ν

ν0

)−α]
+ nν , (4.9)

where s is a Gaussian random field (such that the logarithm of es is a Gaussian random
field again), and ρ0 is a constant to e.g. normalize the system to the right units. Although,
the frequency dependence of s was not explicitly shown in Ch. 2, the derivation of resolve
implicitly assumed the algorithm to work for a single frequency in the way presented here.
resolve assumes the spatial correlation of an extended source in the sky to be reflected
by the covariance of the Gaussian random field s, which is unknown a priori, and thus
estimated from the data itself together with the sky brightness. The covariance S of a
Gaussian field is equivalent to its two-point correlation function S(l,m) = 〈s(l)s(m)†〉 and
is handled as such by resolve in form of the power spectrum S(k, k′) = 〈s(k)s(k′)†〉,
which is the Fourier transformation of the correlation function4. A deeper analysis of this
can be found in Ch. 2.

We now make the central assumption that the spectral index α can be modeled a priori
as a Gaussian random field with its own spatial correlation structure in the sky. At least
for an extended source, we have every reason to assume that the spectral index should be
a field with spatial extension itself. Observational constraints strongly imply that typical
extended radio structures show as well extended and smooth spectral index structures, for
instance radio halos and relics of galaxy clusters (Feretti et al. 2012), radio galaxy lobes
(Kassim et al. 2005), or supernova remnants (Green 2001).

In Ch. 2, we argued extensively that a Gaussian random field would be the ideal choice
for a signal prior of an extended field with a priori unknown correlation structure, as long
as the field is not assumed to vary strongly on orders of magnitude and not necessarily
needs to be positive definite. Both constraints apply very well to known spectral index
maps, where variations usually do not reach even one order of magnitude, and nothing
prevents the spectral index in principle to change the sign. For details of these arguments
see Ch. 2, we now proceed under this assumption.

If we rewrite (4.3) only slightly,

I(l,m, ν) = I0(l,m, ν0)

(
ν

ν0

)−α
= I0(l,m, ν0) e− ln (ν/ν0)α, (4.10)

4We actually assume the spatial correlation to be a priori rotationally and translationally invariant,
and thus the power spectrum to be diagonal S(k, k′) =

〈
s(k)s(k′)†

〉
= (2π)nsδ(k − k′)Ps(|k|). However,

this does not imply that the correlation structure must be invariant under any transformation a posteriori
as well. A more detailed discussion can be found in Ch. 2.
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it reveals that, if α has a Gaussian prior, (4.10) naturally turns into a model for a log-
normal prior, only different in shape (and more complicated) from (4.9) because of the
term − ln (ν/ν0).

It is important to note that we have not specified I0(l,m, ν0) yet. Thus, at this point,
our inference approach to multi-frequency synthesis is in principle compatible with any
method that reconstructs and deconvolves the surface brightness I0(l,m, ν0) at a single
reference frequency ν. At least as long as it seems consistent with the source of interest to
assume that the spectral index is an extended and spatially correlated field. In an extreme
case, like single, unresolved point sources, this method probably will not yield optimal
results.

For this paper, we take the choice to combine (4.9) and (4.10) into one single method,
where we assume our double log-normal measurement model to be

dν = Rν

[
ρ0 es(l,m)−ln (ν/ν0)α(l,m)

]
+ nν , (4.11)

with ρ0 again a constant, from now on set to one w.l.o.g., and the signal fields s and α
having Gaussian prior distributions P (s) and P (α):

P(s) = G(s, S)

=
1

det(2πS)1/2
e−

1
2
s†S−1s, (4.12)

P(α) = G(α,A)

=
1

det(2πA)1/2
e−

1
2
α†A−1α. (4.13)

We now write down a posterior distribution for each signal field, while the other field
(and its covariance) is assumed to be known, held constant and regarded as part of two dis-
tinct versions of the response operatorRν , henceforth calledR(s) = W (k, ν)F

(
e− ln (ν/ν0)α ◦

)
and R(α) = W (k, ν)F

(
es(l,m) ◦

)
(where the symbol ◦ denotes where the field needs to be

inserted that the operator acts on):

P(s|d) ∝ G(d−R(s)e
s, N) G(s, S), (4.14)

P(α|d) ∝ G(d−R(α)e
− ln (ν/ν0)α, N) G(α,A). (4.15)

As in Ch. 2, it is not possible to calculate the posterior mean for either of the two
signal fields s or α without invoking complicated or expensive perturbation or sampling
methods (see Ch. 2). We therefore continue to use the procedure already presented there,
and calculate the posterior maximum to estimate both signals
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ms = argmaxsP(s|d),

mα = argmaxαP(α|d). (4.16)

In signal inference, this procedure is called Maximum A Posteriori (MAP) (Jaynes 2003).
The resulting fix-point equations from Eqs. (4.16) need to be solved numerically using a
non-linear optimization scheme. For this, we resort to the same implementations as in
Ch. 2.

With this choice, we basically extend resolve to a multi-frequency algorithm by in-
tegrating a second complete resolve step for the spectral index into the method, and
iterating between the statistical estimation of s with its covariance S, and α with its co-
variance A. As outlined above, we always hold one of the fields (and their respective
covariances) as constant and regard them as part of the response during this process.

It should be emphasized again that the resolve step for the spectral index could
in principle be combined with any other method to reconstruct I0(l,m, ν0) at a single
frequency ν0.

The exact equations that need to be solved to calculate (4.16) for either of the two fields
and estimate their power spectra (i.e. their correlation structure in form of their Gaussian
covariances, see above) are layed out in App. 4.3 and derived rigorously in Ch. 2.

4.3 Details of the algorithm

In this section, we repeat some of the basic derivations from Ch. 2, and derive the de-
tails of how reconstructing the spectral index using resolve differs from the standard
procedure presented there. In principle, many of the original derivations are still valid
for multi-frequency resolve, estimating s and α. The derivations for power spectrum
reconstructions and uncertainty calculations stay especially close to the equations already
presented in Ch. 2, and we do not repeat them explicitly here.

4.3.1 Reconstruction of the sky brightness signal field s

The estimation of the sky brightness at a reference frequency I0(l,m, ν0) = ρ0es(l,m) can
mostly be conducted with the standard single-frequency resolve.

The only difference is the more complex response operatorR(s) = W (k, ν)F
(
e− ln (ν/ν0)α ◦

)
.

Dropping the explicit signal index for a moment and writing the specific measurement
model (4.11) for the signal s with explicit operator and field indices

dkν = Rkνx (ρ0 es)x + nkν , (4.17)
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reveals that the operator Rkνx actually spans the single-frequency Fourier transform over
all observed frequencies into a large, many-frequency data space5. Conversely, the adjoint
response R† now includes a sum over all frequencies to collapse everything back into the
two dimensional sky at reference frequency. Since both operations are used in resolve, it
is by this procedure that the multi-frequency resolve effectively uses uv-information at
all frequencies to constrain the estimation of s. Of course, the quality of this reconstruction
depends on the accuracy of the current estimation for α, used in the reconstruction step
for s to define R(s).

4.3.2 Reconstruction of the spectral index α

The log-normal model for the spectral index, e− ln (ν/ν0)α, only differs in the term b =
− ln (ν/ν0) from the model used for the sky brightness signal. This slightly complicates the
calculations for the signal estimation with MAP and the power spectrum reconstruction
and eventual uncertainty calculation. For both, derivatives of the posterior (4.15) with
respect to α are needed (see Ch. 2), and this will add extra b-terms into the equations.
The results of this are summarized in Sec. 4.3.3.

As for the sky brightness signal s (see App. 4.3.1), the response operator for the α
reconstructions R(α) = W (k, ν)F

(
es(l,m) ◦

)
is more complex. Effectively, the b-term in the

basic log-normal model e− ln (ν/ν0)α would prevent us from just defining our signal space to
be the two-dimensional sky since R(α) acts on e− ln (ν/ν0)α. In the actual implementation
of the multi-frequency resolve algorithm, we circumvent this problem by assuming that
R(α) acts on α and all other terms, including the exponential operation of the log-normal

model, are part of the operator6. In this way, R(α) and R†(α) can be understood to act in

the same way as their respective counterparts for s do (i.e. they also span up and collapse
into the full frequency data space).

4.3.3 Combined algorithm

Using our findings in Ch. 2 and in the previous subsections, multi-frequency resolve
comes down to solving iteratively two only slightly different, subsequent sets of equations:

Estimation of s

S−1
p ms + ems ·Mse

ms − js · ems = 0 (4.18)

(Ds)xy = S−1
p xy + e(ms)x (Ms)xy e(ms)y + e(ms)y

∫
dz Ms(x, z) e(ms)z

− (js)x · e(ms)x δxy (4.19)

5As a reminder: In (4.17) we use an implicit convention to sum or taking the integral over repeated
discrete or continuous indices, see Ch. 2 for details.

6This actually renders R(α) a non-linear operator.
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psi =

(
qsi + 1

2
tr
(
(msms

† +Ds)S
(i)
))(

α
(s−pr)
i − 1 + %i

2
+ (Tp)i

) (4.20)

Estimation of α

A−1
p mα + b ebmα ·Mαebmα − jα · b ebmα = 0 (4.21)

(Dα)xy = A−1
p xy + b2 eb(mα)x (Mα)xy eb(mα)y + b2 eb(mα)x

∫
dz Mα(x, z) eb(mα)z

− (jα)x · e(mα)x δxy (4.22)

pαi =

(
qαi + 1

2
tr
(
(mαmα

† +Dα)A(i)
))(

α
(α−pr)
i − 1 + %i

2
+ (Tp)i

) (4.23)

A rigorous derivation for all equations can be found in Ch. 2. The two sets of equations
only differ in form by the b = − ln (ν/ν0) - terms that show up in the spectral index
reconstruction because of the derivatives used in order to calculate the MAP estimate.
The quantities js, Ms and jα, Mα are defined as

js = R†sN
−1d, (4.24)

Ms = R†sN
−1Rs, (4.25)

jα = R†αN
−1d, (4.26)

Mα = R†αN
−1Rα. (4.27)

S(i), or A(i) are projection operators onto a band of Fourier modes denoted by the index
i, while pi are parameters to model the unknown power spectrum into a number of such
bands S =

∑
i piS

(i), or A =
∑

i piA
(i) (see Ch. 2 for details). The quantities q, α(pr) and

% are parameters of a power spectrum prior for the signal or the spectral index, and T is
an operator, which enforces a smooth solution of the power spectrum pi.

Eqs. (4.18) and (4.21) are the fix point equations that need to be solved numerically
to find a MAP signal estimate ms or mα for the current iteration. The second equations
(4.19) and (4.22) result from calculating the second derivative of the respective posteriors
for the signal estimates ms or mα, their inverses serve as an approximation to the signal
uncertainty Ds = 〈(s−ms)(s−ms)

†〉 or Dα = 〈(α−mα)(α−mα)†〉 at each iteration step.
The last equations (4.20) and (4.23) represent an estimate for the signal power spectra
(and therefore their autocorrelation functions), using the signal uncertainties Ds or Dα

to correct for missing signal power in the current estimates ms or mα . The iteration is
stopped after a suitable convergence criterion is met (see Ch. 2).
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4.4 Tests

We have integrated multi-frequency capability into the existing implementation of resolve
and tested the algorithm using simulated data7. The code is written in Python using the
signal inference library NIFTy (Selig et al. 2013), for details of the implementation we
refer the reader to Ch. 2.

As in Ch. 2, we constructed simulated observations with the tool makems8 using a re-
alistic uv-coverage from a VLA observation in its A-Configuration. The VLA samples the
uv-plane non-uniformly at irregular intervals, and the response includes thereby a convolu-
tional gridding and degridding operator using a Kaiser-Bessel kernel (for details see Ch. 2).
We simulated observations over a range of 2 GHz, with 20 separate frequency channels.
The observations are short snapshots of approximatively 20 minutes per frequency, with
a total of 42 120 visibility measurements at each frequency channel (see Fig. 4.1). This
setting leads to an especially sparse sampling of the uv-plane at a single frequency, but to
a much better coverage for the combined multi-frequency data (see Fig. 4.1).

(a) Single frequency uv-coverage in units of # of wave-
lengths.

(b) Full multi-frequency uv-coverage in units of # of
wavelengths.

Figure 4.1: Single-frequency and full-frequency uv-coverage from all frequencies of a sim-
ulated 20 minutes snapshot observation in VLA-a configuration.

For all tests, the signal s is drawn from a Gaussian distribution, finally entering the
formalism as an exact log-normal field9

In order to use a spectral index signal with some correlation to the brightness signal,
we model the spatial source dependence of the spectral index in an ad hoc fashion.

7To get access to the preliminary code prior to its envisaged public release, please contact
henrikju@mpa-garching.mpg.de or ensslin@mpa-garching.mpg.de.

8See http://www.lofar.org/wiki/lib/exe/fetch.php
?media=software:makems.pdf.

9In Ch. 2 it was demonstrated that resolve also works beyond that on realistic signals drawn from
real CLEAN maps.
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For the spectral index signal α, we use a sum of two Gaussian fields (see Sec. 4.4.1),
one being independently drawn, while the second is the surface brightness signal s itself,
down-weighted with a suitable factor. This is done in order to introduce a spectral index
signal with some correlation to the surface brightness signal, at least in an ad-hoc fashion.
Typically, extended sources in radio astrophysics show a spatial cross-correlation between
both, which is a result of different physical processes underlying the structure and formation
of these sources. A notable example are radio halos and relics in galaxy clusters (Feretti
et al. 2012). Of course, our model is only an ad-hoc approximation for the proof of concept
undertaken in this work. We also emphasize that such a cross-correlation between α and
s is not exploited by resolve (see Sec. 4.2.2 for an outlook).

The complex, Gaussian input noise variance in uv-space is equal for all visibilities and
frequencies. As with single-frequency resolve, the algorithm does not require equal noise
variances and can in principle handle varying variances. The noise variance was set to a
low10 value of σ2 = 10−3Jy2.

In continuation with Ch. 2, we use a relative L2 - norm measure of the difference in
the signal to the reconstruction to measure the accuracy of the estimate of both brightness
and spectral reconstructions:

δs =

√√√√(∑ (es − em)2∑
(es)2

)
, (4.28)

δα =

√√√√(∑ (α−mα)2∑
(α)2

)
, (4.29)

where the sums are taken over all pixels of the reconstruction. For the motivation behind
this choice see Sec. 3 in Ch. 2.

In Sec. 4.4.1 we focus exclusively on the reconstruction of the two signals s and α.
Then, in Sec. 4.4.2, we compare the results from multi-frequency resolve with standard
imaging procedures. The reconstruction of the signal power spectra is discussed separately
in Sec. 4.4.3.

4.4.1 Main test results

We start by showing the reconstruction of the presented simulated observations using
multi-frequency resolve. In Fig. 4.3, a surface brightness and a spectral index signal are
shown, together with the respective reconstructions obtained with resolve and absolute
difference maps of both signals to their reconstructions. We show the spectral index maps
in full, and over-layed with a mask that focuses on the part of the observed field that

10In comparison to the signal strength in Fourier space, the chosen value ensures a high signal to noise
ratio. The unit Jy was used here for convenience. Effectively, it stands for whatever units the simulated
signal is interpreted to be given in.
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contains the brightest part of the surface brightness signal. Later, in Fig. 4.4, we show
the reconstruction for different masks (along with a comparison to other methods, see
Sec. 4.4.2). We choose the three different masks mainly qualitatively by visual comparison
to show only the parts of the sky with a surface brightness signal above a certain threshold.
The actual threshold values for the surface brightness were 2 Jy/px, 4 Jy/px, and 6 Jy/px.
In Fig. 4.3, the second conservative mask is used. The error measures are δI = 0.13 for the
surface brightness, and δα = 0.35 for the spectral index.

It can be seen that resolve recovers very accurately the original surface brightness. For
this particular choice of relative low noise, the algorithm succeeds in reconstructing even
small scale features of the signal. The effects of the instrumental point spread function
are successfully deconvolved. These findings are in perfect agreement with the results
presented on single-frequency resolve in Ch. 2.

The general structure of the spectral index is well reconstructed, even for outer regions
where the brightness signal is very weak. Overall, small scale features are much better
recovered in the inner regions, where the main brightness sources are located, as can be seen
by comparison between the full and the masked images in Fig. 4.3. It is expected that the
quality of the spectral index reconstruction depends on the strength of the observed surface
brightness, as is illustrated by the poor performance of standard methods in recovering any
structures outside the strong source regions, presented in the next section (see Fig. 4.4).
In most real applications, the outer parts of the observed fields should therefore usually be
not a focus of the investigation. We thus choose the relatively conservative mask in Fig. 4.3
to highlight this important part of the reconstruction. Nevertheless, it should be noted
that – at least for this low noise example with relatively high sensitivity due to the broad
bandwidth – resolve is able to reliably extrapolate its estimation also into the weaker
regions around the main sources.

In addition, with resolve, an uncertainty of the spectral index reconstruction can
be estimated. As for the single frequency reconstructions presented in Ch. 2, the second
derivative of the posterior is used to approximate its covariance Dα (for details, see App. 4.3
and Ch. 2). This way, the full estimate for the spectral index signal becomes

αx ≈ (mα)x ±
(√

Dα

)
xx
. (4.30)

For the given set of simulated data, roughly 60 % of the original signal values within
the unmasked regions in Fig. 4.3 lie within a 1 − σ interval , but only roughly 20 % lie
within a 1 − σ interval for the full spectral index image. Due to the non-linear nature of
the inference problem (4.16), it is expected that the uncertainty estimate is not exactly
what would be expected from a pure Gaussian covariance (i.e. 68 % in the 1− σ interval),
the MAP estimate is not guaranteed to lie very close to the real posterior covariance (see
Ch. 2 for this problem). It is no surprise that the estimate worsens for all the outer regions
with only very weak brightness structures present, which explains the poor performance
on the whole spectral index map. Furthermore, as discussed in Ch. 2, the calculation of
an uncertainty estimate is computationally costly. Due to a lack of accessible computer
power only for testing purposes, we stopped the calculations at some point and smoothed
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Algorithm \Mask liberal mask medium mask conservative mask
resolve 0.34 0.33 0.32
power-law fit 132.79 0.94 0.48
MS-MF CLEAN 3.07 1.89 1.84

Table 4.1: L2 error measures for resolve, the power law fit, and MS-MF CLEAN for the
simulation and the reconstruction observation of Sec. 4.4.1 and the three different masks
defined in Sec. 4.4.1.

the outcome. This should not be a great problem, since the uncertainty is expected to be
smooth and we are mainly interested in a proof of concept at this point.

4.4.2 Comparison to standard methods

In this section, we compare the results of multi-frequency resolve with two standard
methods: A straight forward power-law fit for (4.3) using single-frequency CLEAN images,
and a MF-MS-CLEAN reconstruction for the surface brightness and the spectral index.
The reconstructions were performed on the same simulated observation as in Sec. 4.4.1.
All results were obtained using the radio-astronomical software package CASA (Reid and
CASA Team 2010). The MF-MS-CLEAN reconstructions were obtained using 1500 itera-
tions, a small gain factor of 0.1, uniform weighting and ten different multi-scales ranging
from a single pixel to moderately large structures. We further used two terms for the
Taylor expansion in ν (see Sec. 4.2.1) and only half the available bandwidth, since a larger
frequency range seems to lie outside the convergence radius of the Taylor-expansion (see
Sec. 4.2.1 used in the implementation of CASA.

In Fig. 4.4, a comparison is shown between resolve, a power-law fit, and MF-CLEAN
results for the spectral index and differently strong masks. The full field is not shown, be-
cause neither the power-law fit nor the CLEAN reconstruction could recover any structures
in the remaining regions. The error measures are listed in Tab. 4.1. It can be seen that for
this example resolve overall outperforms the other methods. The advantage of resolve
is more pronounced in the outer regions, where the surface brightness signal is weak, but
resolve still gives the best result even for the most central parts of the reconstruction
(see also the full reconstruction in Fig. 4.3).

Fig. 4.5 shows a comparison of multi-frequency surface brightness reconstructions with
resolve and MS-MF-CLEAN for the simulated observation of Sec. 4.4.1. For this simu-
lation, resolve is more successful in reconstructing the overall structure, and especially
recovers more of the small scales. It should be noted that this particular CLEAN image
was achieved using the full bandwidth and coverage (other than for the spectral index
images, as stated at the beginning of the section).
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4.4.3 Power spectrum reconstructions

The power spectrum of the spectral index is reconstructed together with the field itself. It
represents the spatial correlation of the spectral index over the observed sky. As explained
in Sec. 4.2.2, we expect the typical spectral index structure of an extended (i.e. spatially
correlated) radio source to be spatially correlated to itself. For all the details on power
spectrum reconstructions we refer the reader to Ch. 2, since almost all derivations for
standard single-frequency resolve power spectrum reconstructions are valid as well for
the spectral index.

In this section we only discuss the spectral index power spectrum, since the reconstruc-
tions for the brightness power spectra are identical to the ones already presented in Ch. 2.
We simply note that, in principle, a multi-frequency reconstruction recovers structure on
smaller scales, and thus, it is expected that multi-frequency resolve should be able to
map spatial power spectra up to higher Fourier modes (i.e smaller correlation structures).

A typical result from multi-frequency resolve is illustrated in Fig. 4.2. It shows the
original spectral index power spectrum of the Gaussian signal field, used in the simulated
observations of Sec. 4.4.1, and its reconstruction that belongs to the same iteration step as
the presented signal reconstructions earlier. The power spectrum is reconstructed relatively
well, no power is lost on high modes (i.e. small scales), which is just a consequence of the
fact that the simulated observation was conducted with low noise.

As for the brightness reconstructions in Ch. 2, we emphasize that the power spectrum
should not only be viewed as a by-product of the algorithm in order to accurately estimate
the spectral index signal. For instance, some astronomical objects show very distinct
spectral index structures and can even be classified after this criterion. A prominent
example might be radio halos and relics of galaxy clusters, both of which typically show
steep spectral indices that evolve spatially roughly like the source itself (Feretti et al.
2012). Measuring the spatial power spectra of these objects might lead to a more exact
and quantitative classification scheme. Another application might lie in the investigation
of different physical processes within a single source that lead to spectrally very different
regions. Estimating the spectral correlation structure over such regions offers a new way
of quantitative analysis of the interplay of these processes.

4.5 Conclusion

We presented a multi-frequency extension to the imaging algorithm resolve (Junklewitz
et al. 2013). The combined algorithm is optimal for multi-frequency imaging of extended
radio sources. It simultaneously estimates the surface brightness at a reference frequency,
and the spectral index of the source. Within the assumption of a spectral index model, no
further expansions or parameter-dependent modeling is used in the reconstruction. Multi-
frequency resolve is thus capable of exploiting the full bandwidth of a modern radio
observation for maximum sensitivity and resolution, only limited by higher order spectral
effects like spectral curvature.
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(a) Spectral power spectrum reconstruction

Figure 4.2: Power spectrum reconstruction of the spectral index α for the reconstruction
shown in Sec. 4.4.1 using multi-frequency resolve.

Multi-frequency resolve has been tested successfully using simulated observations of
the VLA in its A-configuration. For the presented tests, the algorithm can outperform
standard imaging methods in both surface brightness and spectral index estimations.

The algorithm uses a Gaussian prior and an effective log-normal model for the spectral
index. This approach is not necessarily restricted to a combination with single-frequency
resolve, and can in principle be combined with any other imaging or deconvolution
method for the surface brightness reconstruction.

For the sake of feasibility, many details of radio interferometric observations have been
left out of the analysis. The response might realistically contain a number of additional
effects, for instance an instrumental primary beam or wide-field and direction dependent
effects. We refer the reader to Junklewitz et al. (2013), where many of these problems
already have been discussed in the outlook.

In its current form, the presented algorithm has relatively high computational costs and
numerical demands (for an analysis of algorithmic efficiency, see Junklewitz et al. 2013).
In general, this is true for most Bayesian statistical inference algorithms. This could pose
an obstacle for day-to-day applicability, since especially modern broad band data sets tend
to be very large, and therefore are already a numerically challenge on their own. Since this
study was centered on fundamental algorithmic development, numerical efficiency was not
a focus. Future work might be needed to obtain a more efficient implementation of the
algorithm.

For the future, it seems to be desirable to refrain completely from an explicit spec-
tral model, and try to infer a full, non-parametric, three dimensional spectral intensity
I(l,m, ν). Possibly, such a development could benefit greatly from reconstructing a full
cross-correlation structure between the sky and spectral space. We leave this more com-
plete approach for a future publication.
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(a) Surface brightness signal es. (b) Masked spectral index signal α (c) Spectral index signal α

(d) resolve surface brightness recon-
struction ems .

(e) Masked resolve spectral index re-
construction mα.

(f) resolve spectral index reconstruc-
tion mα.

(g) Absolute error |es − ems |. (h) Masked absolute error |α−mα|. (i) Absolute error |α−mα|.

Figure 4.3: Multi-frequency reconstruction of the two signal fields es and α, observed with
a sparse uv-coverage from a VLA-A-configuration (see Fig. 4.1). The images are 1002 pixels
large, the pixel size corresponds to roughly 0.1 arcsec. The brightness units are in Jy/px.
The ridge-like structures in the difference maps simply stem from taking the absolute value
and mark zero-crossings between positive and negative errors.
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(a) Signal (b) resolve (c) Power-law fit (d) MS-MF-CLEAN

(e) Signal (f) resolve (g) Power-law fit (h) MS-MF-CLEAN

(i) Signal (j) resolve (k) Power-law fit (l) MS-MF-CLEAN

Figure 4.4: Comparison of different methods for spectral index reconstruction with differ-
ently strong masks. The images are 1002 pixels large, the pixel size corresponds to roughly
0.1 arcsec. First column: Signal. Second column: resolve reconstruction. Third column
Power-law fit. Fourth column: MS-MF-CLEAN.
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(a) resolve brightness reconstruction ems (b) MS-MF CLEAN brightness reconstruction

(c) Absolute error |es − ems | (d) Absolute error |es −mclean|

Figure 4.5: Comparison of multi-frequency resolve and MS-MF-CLEAN surface bright-
ness reconstructions. The images are 1002 pixels large, the pixel size corresponds to roughly
0.2 arcsec. The brightness units are in Jy/px. The ridge-like structures in the difference
maps simply stem from taking the absolute value and mark zero-crossings between positive
and negative errors. First row left : resolve reconstruction . First row right : MS-MF
CLEAN reconstruction. Second row left Absolute per-pixel difference between the signal
and the resolve reconstruction Second row right : Absolute per-pixel difference between
the signal and the MS-MF CLEAN reconstruction.
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Chapter 5

Magnetic field statistics

A strong incentive for the developments in the previous chapters has been to meet some of
the challenges of modern radio data analysis. Ultimately, it is scientific interest that drives
these efforts, since advances in radio astrophysics rely on new developments in observing
and imaging techniques. This chapter presents two works from magnetic field astrophysics,
which both crucially depend on a careful, high fidelity imaging analysis. Both engage in
studies of turbulent magnetic fields, whose stochastic nature prevents a direct analysis. In
two different settings, it is presented how magnetic field properties still can be measured
using statistical analysis tools. In this, the chapter continues to make use of inference
techniques very similar to the ones previously presented in the thesis.

Both studies were originally presented as parts of recently published works. The first is
a statistical assessment of the occurrence of specific features that are expected to be found
in rotation measure synthesis analysis (see Sec. 1.2.3), called Faraday Caustics and was
presented as part of Bell et al. (2011). The second presents the mathematical derivation of
a previously ad-hoc devised magnetic helicity estimator using the imprint of magnetic field
statistics on radio polarimetry, called LITMUS and was presented as part of Junklewitz
and Enßlin (2011).

5.1 Faraday Caustics

The first method presented in this chapter involves the analysis of Faraday Caustics. These
are characteristic, asymmetrical structures that indicate magnetic field reversals. They are
predicted to be present in images of polarized radio emission, generated using the technique
of RM synthesis (Bell et al. 2011).

This technique rests on the work of Burn (1966). He showed that the complex polarized
intensity P , introduced in Sec. 1.2.3, as a function of wavelength-squared λ2 is related to
the intrinsic complex polarized intensity F as a function of Faraday depth φ1, called the

1In this work, any explicit spectral dependence of F (φ) on λ2 itself is not considered (see Bell et al.
(2011) for details).
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Faraday spectrum2, by a Fourier transformation

P (λ2) =

∫ ∞
−∞

F (φ)e2iφλ2dφ. (5.1)

The Faraday spectrum can in principle be reconstructed by inverting Eq. (5.1). The
technique is used when the Faraday rotating and synchrotron radiating media along the
LOS are intermixed to discern the complex structure of polarization plane rotations into
F (φ) (see also Sec. 1.2.3).

This is in general not possible due to our inability to completely sample P at all values
of λ2, since no observation can cover a continuous band of frequencies and furthermore,
negative frequencies cannot be measured by principle. This is in complete analogy to
the imaging problem with radio-interferometers (see Ch. 2 or Thompson et al. (1986) for
comparison). However, good imaging results of Eq. (5.1) can be achieved using the RM
synthesis technique, developed by Brentjens and de Bruyn (2005), in which the inversion is
treated much the same way as in aperture synthesis imaging in radio astronomy (Thompson
et al. 1986). Even further, both techniques, aperture synthesis and RM synthesis can be
combined into a single approach, Faraday synthesis (Bell and Enßlin 2012).

Bell et al. (2011) predicted asymmetric spike-like features in the Faraday spectrum, the
Faraday caustics. They arise when the LOS magnetic field changes sign (i.e. direction),
causing a pile-up of emission at a single Faraday depth. This can be understood directly
in a qualitative way. A volume filled with magnetic fields and a plasma of thermal and
relativistic electrons in general emits synchrotron radiation and rotates the plane of polar-
ization of traversing radiation. Along a LOS of an observation, the polarized emission from
each point maps in general to a different location in φ - space. However, when the mag-
netic field along the LOS becomes very small and approaches zero, according to Eq. (1.14)
the emission from a whole region gets mapped to a single φ value and will create a spiky
feature in the Faraday spectrum. This means that Faraday caustics indicate magnetic
field reversals along the LOS, which renders them a possible tool to study the magnetic
field, especially in a turbulent environment, where many such reversals are expected to be
present.

In Bell et al. (2011) it was shown that the Faraday spectrum for such a field reversal
follows

F (φ) =
D Θ[(φ− φ0)B′3(0)]√

φ− φ0

, (5.2)

where D = 2as|B⊥(0)|2√
a1B′3(0)

, Θ is the Heaviside function, B3 the magnetic field component along

the LOS parallel to the z-axis, B′3 = ∂B3/∂z, and the position z = 0 is identified with the
location of the caustic.

It can be further shown that the integrated intensity over a range δφ, roughly identical
to a resolution element of the observation, and centered on a Faraday caustic structure,

2Usually it is also referred to as the Faraday dispersion function (see Burn 1966).
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gives

F =
∣∣∣2D√δφ

∣∣∣ = 4as |B⊥(0)|2
√

δφ

a1B′3(0)
, (5.3)

where as is a parameter that summarizes all important constants from synchrotron physics,
unimportant for this study and exactly defined in Bell et al. (2011).

This way the more realistic setting of a finite instrument resolution is accounted for,
where probably many caustics will be smeared out in the actual observed Faraday spectrum.
It can be seen that small values of B′3(0), corresponding to locations where the magnetic
field is small and does not change rapidly along the LOS, result in strong caustics. This
also shows that measuring the flux of a Faraday caustic in principle provides a way to
investigate the LOS magnetic field.

5.1.1 Distribution of Faraday caustics in a Gaussian random
magnetic field3

We have just shown how Faraday caustics can provide information about the structure of
the LOS magnetic field. It is variation and turbulence in the magnetic field that leads to
caustics; after all, a purely uniform magnetic field would not produce such signatures. It
may be possible to recover information about the statistical properties of the underlying
magnetic field in a source by studying the distribution of caustics within its Faraday
spectrum. We therefore investigate Faraday caustics generated by a Gaussian random
magnetic field and calculate their probability distribution as a function of strength, i.e.
their luminosity function.

The probability distribution for caustics

We derive the probability of measuring a spike with an integrated intensity F given that
the spike is due to a caustic (i.e. B3 = 0) and the magnetic field has a covariance M . We
limit our discussion to the regime where Eq. (5.3) adequately describes the integrated flux
of the caustic.

In Bell et al. (2011), we found that the integrated polarized intensity of a caustic
is F = 4as

√
δφ |B⊥(0)|2 /

√
B′3(0)a1. We assume a Gaussian magnetic field distribution,

G(B,M). The probability distribution of integrated intensities F , given that B3 = 0 and
the magnetic correlation tensor is M is

P (F|caustic,M) =
P (F , caustic|M)

P (caustic|M)
. (5.4)

3Note: This section was published in Astronomy and Astrophysics as part of Bell et al. (2011) as
Section 4 and Appendix A therein. Section and Appendix have been merged and slightly rewritten for better
clarity in the context of this thesis. These sections include the main contributions of this thesis’ author to
the paper.
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The denominator, which is the probability that a caustic occurs in a Gaussian random
magnetic field, is relatively straightforward to compute. We impose the condition that
B3(0) = 0 using a delta function in order to compute the probability

P (caustic|M) =

∫
DB δ(B3(0)) G(B,M), (5.5)

where the integral is a path-integral over all possible realizations of the magnetic field. We
then replace the delta function using the Fourier transform

P (caustic|M) =
1√
|2πM |

∫
DB

∫
dη e2πiηB3 e−

1
2
B†M−1B. (5.6)

We now replace ηB3 with ηδi3 ~B and after completing the square we have

P (caustic|M) =
1√
|2πM |

∫
DB

∫
dη exp

[
−1

2

(
B − J†M

)†
M−1

(
B − J†M

)
+

1

2
J†MJ

]
,

(5.7)

where J† = 2πiηδizδ(z). The ~B integral is the integral of a Gaussian function, which gives
a factor of

√
|2πM |. The η integral is also a Gaussian integral. After integration, the

result is

P (caustic|M) =

√
2π

M33(0)
. (5.8)

The calculation of the numerator of Eq. (5.4) is more complicated. We again start by
imposing our conditions using delta functions

P (F , caustic|M) =

∫
DB√
|2πM |

δ(B3(0))δ

(
F− as

√
δφB2

⊥(0)√
B′3(0)a1

)
exp

[
− 1

2
B†M−1B

]
. (5.9)

We rewrite the second delta function in terms of B3

δ

(
F − 4asB

2
⊥(0)
√
δφ√

B′3(0)a1

)
= 4K

B4
⊥
F3

δ

(
B′3(0)−KB4

⊥(0)

F2

)
, (5.10)

where K = 16a2
sδφ/a1.

Inserting this into Eq. (5.9), we now proceed with the calculation using the Fourier
representation of the delta function∫

DB√
|2πM |

δ(B3(0)) 2K
δφ2B4

⊥
a2

1F3
δ

(
B′3(0)−KB4

⊥(0)

F2

)
exp

[
− 1

2
B†M−1B

]
=

2Kδφ2

a2
1F3

∫
DB√
|2πM |

∫
dµ

2π

∫
dη

2π
B4
⊥(0) exp

[
− 1

2
B†M−1B

]
exp[iηB3(0)]

exp

[
iµ

(
B′3(0)− KB4

⊥(0)

F2

)]
. (5.11)
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We introduce two generalized fields µ′ = δi3 δ(x − x0) δ(y − y0) µ and η′ = δi3 δ(x −
x0) δ(y − y0) η that permit us to work with the total magnetic field B(z) rather than the
LOS-component B3(z) in Eq. (5.11):

4K

F3

∫
DB√
|2πM |

∫
dµ

2π

∫
dη

2π
B4
⊥(0) exp

[
− iµ

(
KB4

⊥(0)

F2

)]
exp

[
− 1

2
B†M−1B + i(η′ + µ′∂3)†B

]
. (5.12)

The functional integral over DB cannot be solved analytically because of the B4
⊥(z)-term

in the exponential. In general, we need to employ diagrammatic perturbation theory in
order to proceed.

If we restrict our attention to strong caustics, we can proceed analytically. This is a
reasonable restriction because it will be the strong caustics that are the most likely features
to be observed. We note that a strong caustic can occur when either B⊥ is large or B′3 is
small. Strong caustics caused by an exceptionally large sky plane magnetic field are unlikely
because of our assumption of Gaussian statistics, and therefore we concentrate on caustics
with large F owing to a slowly changing LOS magnetic field. For these caustics, we can
neglect the B4

⊥(z)/F4-term and solve the remaining problem by introducing a generating
functional J and repeatedly applying the Gaussian integrations

4K

F3

∫
DB√
|2πM |

∫
dµ

2π

∫
dη

2π

(
B2

1(0) +B2
2(0)

)2
exp

[
− 1

2
B†M−1B + i(η′ + µ′∂3)†B

]

=
4K

F3

∫
DB√
|2πM |

∫
dµ

2π

∫
dη

2π

[(
δ

δJ1(z)

)2

+

(
δ

δJ2(z)

)2]2

exp

[
− 1

2
B†M−1B + (iη′ + iµ′∂3 + J)†B

]∣∣∣∣
J=0

=
4K

F3

[(
δ

δJ1(z)

)2

+

(
δ

δJ2(z)

)2
]2 ∫

dµ

2π

∫
dη

2π

exp

[
1

2
(iη′ + iµ′∂3 + J)†M(iη′ + iµ′∂3 + J)

]∣∣∣∣
J=0

=
4K

F3

[(
δ

δJ1(z)

)2

+

(
δ

δJ2(z)

)2
]2 ∫

dµ

2π

∫
dη

2π

exp

[
− 1

2
η′†Mη′ − 1

2
(µ′∂3)†M(µ′∂3) +

1

2
J†MJ

+
(
− 1

2
(η′ + J)†M(µ′∂3)− 1

2
(µ′∂3)†M(η′ + J)

)
︸ ︷︷ ︸

=0,because M33(z,z′) is at its maximum for z,z′=0

+iη′†MJ

]∣∣∣∣
J=0
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=
4K

F3

1√
2π|M ′′

33(0)|

[(
δ

δJ1(z)

)2

+

(
δ

δJ2(z)

)2
]2 ∫

dη

2π

exp

[
− 1

2
η2M33(0) + iη

∫
dz′JiMi3(z′, 0)︸ ︷︷ ︸

=I

+
1

2
J†MJ

]∣∣∣∣
J=0

=
4K

F3

1√
2π|M33(0)|

1√
2π|M ′′

33(0)|

[(
δ

δJ1(z)

)2

+

(
δ

δJ2(z)

)2
]2

exp

[
1

2
J†MJ − 1

2

I2

M33(0)

]∣∣∣∣
J=0

=
4K

F3

1√
2π|M33(0)|

1√
2π|M ′′

33(0)|

[
3
(
M2

11(0) +M2
22(0)

)
+M22(0)M11(0)

+
1

M2
33(0)

(
M4

13(0) +M4
23(0) + 2M2

23(0)M2
13(0)

)︸ ︷︷ ︸
=0

]
=

28K

F3

1√
2π|M33(0)|

1√
2π|M ′′

33(0)|
M2

N

=
28K

F3

1√
2π|M33(0)|

1√
2π|M ′′

33(0)|

[∫
dk3

(2π)3
M̂N(k)

]2

=
28K

F3

1√
2π|M33(0)|

1√
2π|M ′′

33(0)|

[∫
dk3 εB(k)

k2

]2

. (5.13)

In the last step, we identified the covariance matrix M with the magnetic correlation tensor
given by Eqs. 1.18. We used the property Mij(0) = MN(0) δij. Finally, from this result
and Eq. (5.8), we conclude that in the bright caustic limit

P (F|caustic,M) =
P (F , caustic|M)

P (caustic|M)
=

448a2
sδφ

2

F3a1

M2
N(0)√

2π|M ′′
33(0)|

=
448a2

sδφ
3

F3a2
1

√
2π|M ′′

33(0)|

[∫
dk3 εB(k)

k2

]2

=
448a2

sδφ
3

F3a2
1

√
2π

[∫
dk3 εB(k)

k2

]2

[∫
dk3εB(k)

]1/2 .
(5.14)

Physical consequences

We have just found that, over a limited range in F , the distribution of the integrated flux
of caustics will be proportional to F−3:

P (F|caustic,M) =
448a2

sδφ
3

a2
1

M2
N(0)√

2π |M ′′
33(0)|

1

F3
. (5.15)
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We note that this indicates that the number of caustics per logarithmic interval of F is
∝ F−2 and thus that the Faraday caustic flux per logarithmic interval of F goes as F−1,
which is finite as F →∞.

The fore-factors in Eq. (5.15) depend on the properties of the magnetic field and the
turbulent flow of the fluid in which they are situated. The term MN(0) is simply the total
magnetic energy density. We also introduce the Taylor micro-scale, lT , which is defined by

d2C(z)

dz2

∣∣∣∣
z=0

=
2

l2T
(5.16)

(see e.g. Tennekes and Lumley 1972, sec. 6.4), where C(z) is the covariance in z normalized
to unity at z = 0. This length scale represents the largest scale on which dissipation is
important in a turbulent flow. The second derivative of the LOS component of the magnetic
correlation tensor, M ′′

33(0), is proportional to εB/l
2
T . We can therefore rewrite Eq. (5.15)

as

P (F|caustic,M) =
448a2

sδφ
3

a2
1

ε
3/2
B lT√

4π

1

F3
, (5.17)

where εB is the total magnetic energy density.
By measuring the luminosity function of Faraday caustics in the F−3 regime, we can

see that one is in principle able to measure the Taylor micro-scale in a turbulent medium.
Fletcher and Shukurov (2007) show that this length scale is also measurable by observing
the mean separation between so-called “depolarization canals,” which are lines of zero
polarized intensity in a diffuse polarized field. These canals have been observed in maps of
diffuse polarized Galactic emission by, e.g. Uyaniker et al. (1998), Haverkorn et al. (2000),
Gaensler et al. (2001), and Reich et al. (2004). Observations of depolarization canals and
Faraday caustics in tandem may be a powerful tool for studying the turbulent properties
in, e.g. the ISM.

A rather important caveat, applicable to both Faraday caustics and depolarization
canals, is that without sufficiently high resolution one will not be able to measure this
scale. In the case of caustics, as discussed in the previous section, the effect of small-scale
fluctuations is to split a single Faraday caustic into a tight bundle of spikes. Without
enough resolution, an observer may simply count such a bundle as one large spike. This
has the effect of altering the normalization of the number distribution of caustics in F ,
which would lead to an incorrect measurement of lT . In principle, the same effect applies
to depolarization canals, where what appears to be a single canal of net zero polarized
intensity may be a fine network of such canals. As described previously, the effect of
finite resolution is to smooth the quantity being measured, e.g. the LOS magnetic field
distribution in the case of Faraday caustics, thereby throwing away information on any
smaller scales. If the Taylor micro-scale is smaller than the smoothing scale set by our
experimental resolution, then it will not be measurable. We suspect that this may be the
reason why the Taylor scale of the Milky Way is measured to be much larger than expected
in the example presented by Fletcher and Shukurov (2007).
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The result given in Eq. (5.17) is valid for strong spikes, i.e. when B′3(0) is small, but
we expect that below some value of F = Flow the distribution will flatten. This is required
to ensure that the integral of P (F|caustic,M) is finite for F → 0, but we can also see that
this will be the case by considering the approximation applied during our derivation.

To permit us to compute the probability analytically, we neglect an exponential term in
Eq. (5.12). This term is exp(−µKB4

⊥/F), where K = 16a2
sδφ/a1. This is, of course, only

valid if the argument of the exponent is much less than one. The approximation breaks
down when this term approaches unity, which leads to the condition for Flow

Flow ≈
〈
B2
⊥
〉√ K

〈B′3〉
(5.18)

≈ K
1
2 ε

3
4
Bλ
− 1

2
B , (5.19)

where

εB =

∫ ∞
0

dkεB(k) (5.20)

is the average magnetic energy density, εB(k) is the 1D magnetic power spectrum, and

λB =
π
∫∞

0
dkεB(k)/k∫∞

0
dkεB(k)

(5.21)

is the magnetic correlation length.

If we wish to evaluate Eq. (5.12) in all regimes, we can no longer neglect this term.
While this full calculation is beyond the scope of this study, we can consider what effects
the inclusion of this term might have on the result. To proceed without approximations,
we would use a pertubative expansion in Feynman diagrams as it is used in quantum field
theory. The first term in such an expansion would be negative and ∝ F−2, the second
positive and ∝ F−1, and so on. The summation of these terms results in a turnover of the
spectrum near Flow.

We also expect the distribution to steepen at larger values of F because of depolar-
ization. As discussed above, large values of F imply that the LOS magnetic field changes
over long distances. As this happens, it is increasingly more likely that the position angle
of the polarized emission at the values of z that contribute to the polarized intensity at a
single value of φ will be uncorrelated resulting in a reduction in the integrated intensity
because of depolarization. This reduces the number of caustic features at high values of
F .

To investigate the conditions for a steepening of the probability distribution of caustics,
we consider the correlation of the sky plane magnetic field as a function of LOS distance

R =
〈B⊥(z)B⊥(−z)〉
〈B2
⊥(0)〉

, (5.22)
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where the average is over all possible field configurations. The procedure for computing
these expectation values is similar to that used in Sec. 5.1.1 to compute P (F|caustic,M)
and therefore not included here. The result is

R =
3MN(2z)

10MN(0)
+

7M2
N(z)

10M2
N(0)

. (5.23)

A small value of R indicates that, on average, the sky plane magnetic fields are uncorre-
lated. When this is true, the luminosity function is steeper than F−3.

As an example of estimating Flow and R, we model the magnetic power spectrum as a
broken power law

εB(k) = ε0

(
k

k0

)b [
1 +

(
k

k0

)2
]−(a+b

2
)

. (5.24)

For such a power spectrum, the luminosity function turns over at

Flow = π2
√
K

(
ε0k

5/3
0

2

) 3
4

B
(
a− 1

2
,
b+ 1

2

) 5
4

B
(
a

2
,
b

2

)− 1
2

, (5.25)

where B(x) is the Beta function.
We can also compute R because

MN(z) =

∫
dkM̂N(k)e−ikz (5.26)

and

M̂N(k) =
8π3εB(k)

k2
. (5.27)

The resulting form of R(k0z) is shown for a few representative values of a in Fig. 5.1. For
a Kolmogorov spectrum, a = 5/3. In each case, b = 2. We note that R is independent of
the parameter ε0.

A calculation of the precise shape of the distribution for low and high values of F is
beyond the scope of this paper. A sketch summarizing the expected shape of the probability
distribution, represented as the number of caustics per logarithmic scale of F as a function
of log F , is shown in Fig. 5.2. The F−2 regime is valid given the assumptions outlined above
for sufficiently strong caustics and until depolarization becomes important, as described
above. We expect that the exact shape of the distribution at and below Flow will be more
strongly dependent on the magnetic field statistics because weak caustic features depend
more strongly on |B⊥(0)|.

In summary, we have calculated the probability density function of caustics with a
particular strength in a Gaussian random magnetic field. This result illustrates the type of
analysis that is possible and represents the simplest reference case for future observations
of the luminosity function. We caution that the result has a limited scope for several
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Figure 5.1: The normalized correlation of the sky plane magnetic field as a function of
k0z for a few values of the power law index a. Dashed red a = 4/3, solid black a = 5/3,
dot-dashed blue a = 7/3.

Figure 5.2: A sketch of the number distribution of caustic spikes per logarithmic interval
of F showing the limits to the F−2 regime and the rough shape of the distribution beyond
these limits. At high values of F , the distribution steepens owing to depolarization effects,
while at lower F values the distribution turns over because the total number of caustics is
finite. We refer to the text for more details.
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reasons. For one, we have assumed an unrealistic magnetic field distribution. This was
done for simplicity, but also because if one is unaware of any statistical properties of the
magnetic field other than the two point correlation, the assumption of a Gaussian field is
the most appropriate starting point. Any further knowledge would always be included by
expanding around the Gaussian case. While we expect our result in the F−3 regime to be
only weakly dependent on the magnetic field statistics, realistic magnetic field distributions
are likely to be significantly non-Gaussian. We have not investigated the degree to which
this will effect our results. Secondly, the result in Eq. (5.17) is only valid over a limited
range of F values. The precise extent of this range is unclear at the moment, although we
have presented some estimates. It is possible that the flattening and steepening regimes
that we describe are near one another or even overlapping. A more detailed investigation
into the flattening regime, for example, would require much more complicated calculations
and, because this regime depends strongly on the magnetic field statistics, a more realistic
model.

Lastly, Eq. (5.17) is truly only valid for very high resolution observations or simulated
data. As discussed above, the result will change depending on φ-space resolution. In our
treatment, we simply count the number of zero-point crossings of the LOS magnetic field.
In observations, two or more of these events in physical space may occur at nearly the
same φ location and may therefore be counted as a single caustic. This would have the
effect of changing the overall normalization of the distribution (the total number of caustics
would be reduced), but the F−3 prediction should still be valid. Some additional analysis
of simulations would be helpful in assessing the extent of this effect.

5.2 The LITMUS test4

In Junklewitz and Enßlin (2011), a number of correlation functions between the three radio
observables I, P , and φ (see Sec. 1.2.3) have been derived and revisited in order to find
a statistical estimator for magnetic helicity. Under the assumption of Gaussian magnetic
fields and isotropic turbulence (see Sec. 1.2.4), it has been found that the correlation
function

〈P (k⊥)φ(k′⊥)φ(k′′⊥)〉B = 2Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)

Ĥ(u)Ĥ(v)/uv
((
u1v1 − u2v2

)
+ i
(
u1v2 + u2v1

))
(5.28)

solely depends on the helical part Ĥ(u) of the magnetic correlation tensor (see Sec. 1.2.4).
The vectors u,v are defined as u = (k′′⊥, 0), v = (k′⊥, 0), the quantities u, v denote their
magnitudes.

4Note: Parts of this section and the complete following subsection were published in Junklewitz and
Enßlin (2011) in Astronomy & Astrophysics. Only parts of the publication that were not in the author’s
diploma thesis are reported here.
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Using this result, Junklewitz and Enßlin (2011) devised a simple helicity estimator only
by using heuristic arguments, the LITMUS test (Local Inference Test for Magnetic fields
which Uncovers heliceS). The test simply operates on images of polarized intensity P , and
of the gradient of the Faraday depth G = ∇φ. Its rationale is that in the presence of
helical fields, the average of the scalar product G∗P over all pixels of a G∗P -map should
have a real value significantly larger than 0. Whereas in the case of non-helical fields, the
alignment of G and P should be changing randomly from pixel to pixel so that we would
expect the average over G∗P to be zero. The quantity G is defined as

G = |G|2 exp[2iα] with α = arctan
Gy

Gx

. (5.29)

In short mathematical notation this is stated as〈
G∗P

〉
helicity

> 0 and real, (5.30)〈
G∗P

〉
no helicity

= 0, (5.31)

where the ensemble average over helical or non-helical fields is in practice replaced by an
average over all pixels of a G∗P -map.

5.2.1 Mathematical derivation

It can be shown that the heuristics were right and that this test actually depends directly on
〈P (k)φ(k′)φ(k′′)〉 which was the initial starting point. The full condition for the LITMUS
test reads:〈(
G∗(x)P (x)

)〉
=

〈 [(
∂φ(x)

∂x

)2

+

(
∂φ(x)

∂y

)2]
exp

[
−2i arctanGy/Gx

]
P (x)

〉
. (5.32)

Using trigonometrical theorems it is easy to show that(
G2
x +G2

y

)
exp

[
− 2i arctanGy/Gx

]
=
(
Gx − iGy

)2

. (5.33)

We now apply a Fourier transformation to our observables P (x) and φ(x) and rewrite the
whole expression:

〈
G∗(x)P (x)

〉
=

〈[
∂φ(x)

∂x1

− i∂φ(x)

∂x2

]2

P (x)

〉

=

〈([
∂

∂x1

− i ∂
∂x2

]
φ(x)

) ([
∂

∂x1

− i ∂
∂x2

]
φ(x)

)
P (x)

〉
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=

〈∫
dk2

(2π)2

∫
dk2′

(2π)2

∫
dk2′′

(2π)2

[
k′1 − ik′2

][
k′′1 − ik′′2

]
exp

[
ix
(
k + k′ + k′′

)]
P
(
k
)
φ
(
k′
)
φ
(
k′′
)〉

=

∫
dk2

(2π)2
...

∫
dk2′′

(2π)2

[
k′1 − ik′2

][
k′′1 − ik′′2

]
exp

[
ix
(
k + k′ + k′′

)]
〈
P
(
k
)
φ
(
k′
)
φ
(
k′′
)〉

(5.34)

We assumed again that the average over all pixels of a G∗P -map is equivalent to an en-
semble average over the magnetic field statistics. Now we insert our result (5.28) for

〈P (k)φ(k′)φ(k′′)〉 and see the dependence of
〈
G(x)P ∗(x)

〉
on the helical spectra Ĥ(k′)Ĥ(k′′):

〈
G(x)P ∗(x)

〉
= 2Lz(2π)2

∫
dk2

(2π)2
...

∫
dk2′′

(2π)2
δ2(k + k′ + k′′)

[
k′1 − ik′2

][
k′′1 − ik′′2

]
exp

[
ix
(
k + k′ + k′′

)][(
k′1k

′′
1 − k′2k′′2

)
+ i(k′1k

′′
2 + k′2k

′′
1

)] Ĥ(k′)Ĥ(k′′)

k′k′′

= 2Lz(2π)2

∫
dk2′

(2π)2

∫
dk2′′

(2π)2

[
k′1 − ik′2

][
k′′1 − ik′′2

]
[(
k′1k

′′
1 − k′2k′′2

)
+ i(k′1k

′′
2 + k′2k

′′
1

)]Ĥ(k′)Ĥ(k′′)

k′k′′
(5.35)

= 2Lz(2π)2

∫
dk2′

(2π)2

∫
dk2′′

(2π)2

[
k2′

1 + k2′

2

] [
k2′′

1 + k2′′

2

] Ĥ(k′)Ĥ(k′′)

k′k′′

= 2Lz(2π)2

∫
dk2′

(2π)2

∫
dk2′′

(2π)2
k′ k′′ Ĥ(k′)Ĥ(k′′)

= 2Lz

[∫ ∞
0

dk k2Ĥ(k)

]2

= 2Lzπ
4

[∫ ∞
0

dk
εH(k)

k

]2

(5.36)

In (5.35) we assumed w. l. of g. that x = 0 and in the last line, Ĥ(k) was substituted
with the helical energy density εH , much as was shown for the normal magnetic energy
density in Sec. 1.2.4. The details can be found in Junklewitz and Enßlin (2011). It can be

seen that
〈
G(x)P ∗(x)

〉
is a direct and clear estimator which measures the square of the

k-space integrated helicity spectrum, giving more weight to the large scales. Therefore, it
can be concluded that, except maybe from pathological or fine tuned situations in which
the k-weighted helicities at different k-scales cancel each other (since Ĥ(k) might change
sign), we can expect the LITMUS test to be able to reveal the presence of magnetic helicity.
This is demonstrated in numerical tests on simulated data conducted by Oppermann et al.
(2011a). The same work also contains an application on real data of our own galaxy and
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a thorough analysis thereof.5

5.3 Conclusions

The presented magnetic field estimators demonstrate how statistical properties of turbulent
cosmic magnetic fields can be inferred from radio polarization data. In Sec. 5.1 it was shown
how the distribution of Faraday caustics, as expected to be found in Faraday spectra,
could be used to constrain the Taylor microscale of the underlying turbulent magnetic
fields. However, that requires a sufficiently high Faraday resolution of the observational
setup. Sec. 5.2 presented a rigorous derivation of the magnetic helicity estimator LITMUS.
Detecting magnetic helicity unambiguously in astrophysical settings other than the sun
would be an important step forward in evaluating dynamo theories of magnetic evolution.

Of course, this type of analysis can be taken further in principle. Usage of the LITMUS
test is currently fundamentally restricted to cases where the thermal electron density is
known (set to be constant in this study), which is in fact not the case for many astro-
nomical sources of interest (e.g. the ISM as in Oppermann et al. (2011a)). New and more
polarization data of high quality are needed to further advance the field.

For both methods, Faraday caustic statistics and the LITMUS test, higher order mag-
netic field statistics could be explicitly involved using perturbative methods as developed
for statistical inference by Enßlin et al. (2009). But as long as the general knowledge on
actual magnetic field distributions remains scarce, such an approach would only be useful
if these higher statistical moments could be inferred self-consistently from the analyzed
data. Either way, this requires high quality radio data.

However, it should be noted that all derivations in this chapter implicitly assume that
the used data has been imaged with highest fidelity, or at least that imaging artifacts are
negligibly small. Thus, advances are likely to be expected not only from new data6 alone,
but from a combination with novel developments in imaging methods.

5Unfortunately, it seems that a straightforward application of this test can be hampered by a too large
spatial variance in the electron density, which we assumed to be constant in this work (see Oppermann
et al. 2011a).

6As for instance from the upcoming generation of radio telescopes (see Sec. 1.2.1).
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Conclusions

As demonstrated throughout the chapters of this thesis, astrophysical research can benefit
greatly from the interaction with statistics. This study has presented successful cases of
the application of statistical inference tools with a special focus to radio astronomy and
magnetic field astrophysics.

Much of this work represents of course only a part of a broader research program, and
an outlook is in order on problems and possible further developments.

In Ch. 2 a new approach to signal inference and imaging in radio astronomy and espe-
cially radio interferometry was presented. The Bayesian inference algorithm resolve was
developed, targeted to be optimal for the imaging of extended and diffuse radio sources in
total intensity. Comparisons in simulations showed that resolve can outperform current
imaging algorithms like Multi-scale-CLEAN and the Maximum Entropy Method in these
tasks.

resolve estimates the surface brightness in the sky in total intensity together with its
spatial correlation structure, which is used to guide the algorithm to an optimal reconstruc-
tion of extended and diffuse sources. For a radio interferometer, it succeeds in deconvolving
the instrumental point spread function during the process. Furthermore, resolve provides
statistical uncertainty propagation in the form of an approximated uncertainty map. This
is not possible with other current imaging algorithms. Also, with resolve, a reviewed
approach to robust visibility weighting is introduced that allows for an automated assign-
ment of statistically optimal weights in the imaging process, in contrast to the standard
practice of setting these weights manually.

A first application of resolve to VLA data of the galaxy cluster Abell 2256 was pre-
sented in Ch. 3. As for the current status, results are only preliminary since further numer-
ical complications of processing the real data are not yet fully under control. Nevertheless,
the outcomes indicate that resolve can outperform classical imaging algorithms also in
a real data application.

An extension of this work to multi-frequency imaging was presented in Ch. 4, where
also a multi-frequency version of resolve was developed. The combined algorithm is
optimal for broad-band imaging of extended sources. It simultaneously estimates the sur-
face brightness at a reference frequency and the spectral index across the source. Within
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the assumption of pure power law spectra, no further expansions or parameter-dependent
modeling is used in the reconstruction. Multi-frequency resolve is thus capable of ex-
ploiting the full bandwidth from a modern radio observation for maximum sensitivity and
resolution, only limited by higher order spectral effects like spectral curvature.

Multi-frequency resolve has been tested successfully using simulated observations.
For the presented tests, the algorithm can outperform standard imaging methods for both
surface brightness and spectral index.

The combined algorithm uses a Gaussian prior for the spectral index and a log-normal
model for the intensity.

To simplify the analysis in Chs. 2 and 4, some typical complexities of radio interferome-
ters have been omitted for all simulations. However, the response operator R (see Eq. 2.9),
describing the act of observation, can easily be expanded to cover more effects, thereby
adapting to the needs of the actual observational situation. This includes a primary beam
correction, a direction-dependent point spread function or the inclusion of single dish data
on the same target source.

Further developments, beyond the scope of this thesis, include several topics. An ex-
tension to polarization imaging is already being worked on and will be the subject of
upcoming publications. Another future topic is the possible inclusion of calibration into
the framework. In the long run, the distinction between calibration and imaging is some-
what artificial and should ideally be merged into one step of complete reconstruction (see
also Smirnov 2011a,b; Enßlin et al. 2013). Finally, a further goal should be to extend
resolve to a broader approach that can handle diffuse emission and point sources simul-
taneously (see Selig and Enßlin 2013, for an example from photon count imaging). It could
be worthwhile to think about merging the approaches of compressed sensing, where opti-
mal imaging strategies for sparse signals are already known, with the presented Bayesian
approach into which they could be included in form of a Laplacian prior.

In Ch. 5, two studies on turbulent magnetic field statistics were presented. First, on
the statistical analysis of Faraday caustics, spiky features that are predicted to occur in
radio polarization imaging. Second, on the estimation of magnetic helicity from radio
polarization data. Both works demonstrated how properties of turbulent magnetic fields
can be inferred from radio polarization data.

Of course, this type of statistical magnetic field analysis can be taken further in prin-
ciple. However, as discussed in Ch. 5, further advances crucially depend on high quality
radio images, and therefore on developments in telescope technology and data analysis
methods.

A joint reflection of the outcome of the different studies of Chs. 2 and 4 and Ch. 5
leads to some more general remarks. A common theme is that using elaborate statistical
methods inevitably increases the complexity of the data analysis. This is true both for the
mathematical effort and (usually even more important) for the computational costs. Even
more so for Bayesian methods, which deal with the complicated posterior statistics and
usually have a strong demand on numerical resources and complexity, as evidenced by the
findings of Chs. 2, 3 and 4. Going beyond Gaussian statistics in any statistical estimation
process often poses an extreme challenge and usually leads to mathematical equations,
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which are not analytically solvable any more. This has lead to the need for non-linear
numerical solvers for resolve, and to a necessary restriction of the findings in Ch. 5 to
a certain valid regime for the Faraday caustics statistics. One might agree that there is
always a balance to be found between the potential benefits of more exact methods versus
problem complexity.

That being said, computational costs or numerical complexity should not hinder new
developments in data analysis1. Much of the work in this study has necessarily the char-
acter of a proof of concept, which is the case for new developments in any field. In the
first step of fundamental algorithmic development, the focus is naturally not on numer-
ical efficiency. But even more importantly, many of the developments presented in this
thesis should be viewed as high fidelity methods, which to use might increase complexity
and computing time, but should be justified always when the accuracy is needed for the
anticipated scientific results.

1As a side-remark, the available data in science is not only getting better with technological advances
but also growing significantly larger in size, especially in astronomy. Thus, using larger computational
resources becomes more and more necessary (and common) anyhow.
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Appendix A

The maximum entropy principle

To solve an inference problem, a suitable prior distribution needs to be chosen. This
decision process is a fundamental part of all presented studies. Both the development of
resolve and the validity of the magnetic field estimators presented in Ch. 5 crucially
depend on the choice of prior statistics for the total intensity signal, the spectral index and
the magnetic fields.

In inference, probabilities are used to reflect states of incomplete knowledge. In this
study, the preferred method to assign these probabilities according to the available infor-
mation is the Maximum Entropy Principle (MEP) (Jaynes 1982, 2003). The basic idea
is that a state of knowledge should be reflected by a probability distribution such that
the probability expresses all the available information but is maximally ignorant about
everything else. Since in statistics, ignorance is measured with an entropy function, the
MEP consists of maximizing a suitable entropy, subject to the constraints of all known
information1.

The exact functional form of this entropy is fully determined by three basic requirements
(see Jaynes 2003; Caticha 2008), namely that local information only should have local
effects, that the entropy is invariant under coordinate system transformations, and that
independent systems of knowledge can equally well be treated together or seperately.

This analysis results in the functional2

S(P|Q) = −
∫
Dφ P(φ) log

(
P(φ)

Q(φ)

)
, (A.1)

where P(φ) is a probability distribution for a field φ about which the state of information
should be evaluated (for example the signal field s), Q(φ) denotes a probability distribution
reflecting a possible a priori state of knowledge, and

∫
Dφ is a phase space integral over

all possible configurations of the field φ.

1This is the same principle that is applied in statistical physics to derive the basic Boltzmann distri-
butions (Huang 1963).

2In information theory, this functional is also known as the Kullback-Leibler divergence, used to measure
the distance of the probability distributions P and Q (see Caticha 2008).
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Any available information usually is expressed in form of statistical quantities like the
mean or higher moments of P(φ), and gets incorporated into the assignment using Lagrange
multipliers to constrain the maximization.

Under the MEP, the claim (see Secs. 1.1.1, 1.2.4 and 2.2.3) can be verified that a priori
knowledge of only the zeroth moment (normalization), first moment (mean) ϕ, and second
moment Φ +ϕϕ†, with a flat prior Q chosen to be constant, enforce a choice of a Gaussian
probability distribution for P(φ). Maximizing (A.1) under the three constraints

〈1〉 = 1,

〈φ〉 = ϕ,

〈φφ†〉 = Φ + ϕϕ†, (A.2)

yields P(φ) = G(φ− ϕ|Φ) (see e.g. Caticha 2008).
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Solanki, S., Tuffs, R., Vetter, M., Weber, E., Weller, J., Wex, N., Wucknitz, O., and
Zwaan, M. (2013). Pathway to the Square Kilometre Array - The German White Paper
-. ArXiv e-prints.

ALMA press group (2012). Press Review: The world lays its eyes on ALMA/ A hundred
media glances about early science. ALMA Newsletter, 9:35.

Amsler, C., Doser, M., Antonelli, M., Asner, D., Babu, K., Baer, H., Band, H., Barnett,
R., Bergren, E., Beringer, J., Bernardi, G., Bertl, W., Bichsel, H., Biebel, O., Bloch,
P., Blucher, E., Blusk, S., Cahn, R., Carena, M., Caso, C., Ceccucci, A., Chakraborty,
D., Chen, M.-C., Chivukula, R., Cowan, G., Dahl, O., D’Ambrosio, G., Damour, T.,
de Gouva, A., DeGrand, T., Dobrescu, B., Drees, M., Edwards, D., Eidelman, S., Elvira,
V., Erler, J., Ezhela, V., Feng, J., Fetscher, W., Fields, B., Foster, B., Gaisser, T.,
Garren, L., Gerber, H.-J., Gerbier, G., Gherghetta, T., Giudice, G., Goodman, M., Grab,
C., Gritsan, A., Grivaz, J.-F., Groom, D., Grnewald, M., Gurtu, A., Gutsche, T., Haber,
H., Hagiwara, K., Hagmann, C., Hayes, K., Hernndez-Rey, J., Hikasa, K., Hinchliffe, I.,
Hcker, A., Huston, J., Igo-Kemenes, P., Jackson, J., Johnson, K., Junk, T., Karlen,
D., Kayser, B., Kirkby, D., Klein, S., Knowles, I., Kolda, C., Kowalewski, R., Kreitz,
P., Krusche, B., Kuyanov, Y., Kwon, Y., Lahav, O., Langacker, P., Liddle, A., Ligeti,
Z., Lin, C.-J., Liss, T., Littenberg, L., Liu, J., Lugovsky, K., Lugovsky, S., Mahlke,
H., Mangano, M., Mannel, T., Manohar, A., Marciano, W., Martin, A., Masoni, A.,
Milstead, D., Miquel, R., Mnig, K., Murayama, H., Nakamura, K., Narain, M., Nason,
P., Navas, S., Nevski, P., Nir, Y., Olive, K., Pape, L., Patrignani, C., Peacock, J., Piepke,
A., Punzi, G., Quadt, A., Raby, S., Raffelt, G., Ratcliff, B., Renk, B., Richardson, P.,



100 BIBLIOGRAPHY

Roesler, S., Rolli, S., Romaniouk, A., Rosenberg, L., Rosner, J., Sachrajda, C., Sakai,
Y., Sarkar, S., Sauli, F., Schneider, O., Scott, D., Seligman, W., Shaevitz, M., Sjstrand,
T., Smith, J., Smoot, G., Spanier, S., Spieler, H., Stahl, A., Stanev, T., Stone, S.,
Sumiyoshi, T., Tanabashi, M., Terning, J., Titov, M., Tkachenko, N., Trnqvist, N.,
Tovey, D., Trilling, G., Trippe, T., Valencia, G., van Bibber, K., Vincter, M., Vogel,
P., Ward, D., Watari, T., Webber, B., Weiglein, G., Wells, J., Whalley, M., Wheeler,
A., Wohl, C., Wolfenstein, L., Womersley, J., Woody, C., Workman, R., Yamamoto,
A., Yao, W.-M., Zenin, O., Zhang, J., Zhu, R.-Y., Zyla, P., Harper, G., Lugovsky, V.,
and Schaffner, P. (2008). Review of particle physics. Physics Letters B, 667(15):1 – 6.
¡ce:title¿Review of Particle Physics¡/ce:title¿.

Armstrong, J. W., Cordes, J. M., and Rickett, B. J. (1981). Density power spectrum in
the local interstellar medium. Nature, 291:561–564.

Beatty, P. J., Nishimura, D. J., and Pauly, J. M. (2005). Rapid gridding reconstruction
with a minimal oversampling ration. IEEE Trans Med Imaging.

Bell, M. R. and Enßlin, T. A. (2012). Faraday synthesis. The synergy of aperture and
rotation measure synthesis. A&A, 540:A80.

Bell, M. R., Junklewitz, H., and Enßlin, T. A. (2011). Faraday caustics. Singularities in
the Faraday spectrum and their utility as probes of magnetic field properties. A&A,
535:A85.

Bhatnagar, S. and Cornwell, T. J. (2004). Scale sensitive deconvolution of interferometric
images. I. Adaptive Scale Pixel (Asp) decomposition. A&A, 426:747–754.

Booth, R. S. and Jonas, J. L. (2012). An Overview of the MeerKAT Project. African
Skies, 16:101.

Born, M. and Wolf, E. (1999). Principles of Optics.

Bracewell, R. (1965). The Fourier Transform and its applications.

Brandenburg, A. and Subramanian, K. (2005). Astrophysical magnetic fields and nonlinear
dynamo theory. Phys. Rep., 417:1–209.

Brentjens, M. A. and de Bruyn, A. G. (2005). Faraday rotation measure synthesis. A&A,
441:1217–1228.

Briggs, D. S. (1995a). High Fidelity Interferometric Imaging: Robust Weighting and
NNLS Deconvolution. In American Astronomical Society Meeting Abstracts, volume 27
of Bulletin of the American Astronomical Society, page 112.02.

Briggs, D. S. (1995b). Phd thesis.



BIBLIOGRAPHY 101

Burke, B. F. (2006). Planetary Radio Astronomy, Fifty Years Ago and Fifty Years Hence.
In Rucker, H. O., Kurth, W., and Mann, G., editors, Planetary Radio Emissions VI,
page 1.

Burn, B. J. (1966). On the depolarization of discrete radio sources by Faraday dispersion.
MNRAS, 133:67.

Candes, E. J., Romberg, J. K., and Tao, T. (2006). Stable signal recovery from incomplete
and inaccurate measurements. Comm. Pure Appl. Math., 59:1207–1223.

Carrillo, R. E., McEwen, J. D., and Wiaux, Y. (2012). Sparsity Averaging Reweighted
Analysis (SARA): a novel algorithm for radio-interferometric imaging. MNRAS,
426:1223–1234.

Carrillo, R. E., McEwen, J. D., and Wiaux, Y. (2013). Why CLEAN when you can
PURIFY? ArXiv e-prints.

Caticha, A. (2008). Lectures on Probability, Entropy, and Statistical Physics. ArXiv
e-prints.

Clark, B. G. (1980). An efficient implementation of the algorithm ’CLEAN’. A&A, 89:377.

Clarke, T. E. and Enßlin, T. A. (2006). Deep 1.4 GHz Very Large Array Observations of
the Radio Halo and Relic in Abell 2256. AJ, 131:2900–2912.

Conway, J. E., Cornwell, T. J., and Wilkinson, P. N. (1990). Multi-Frequency Synthesis -
a New Technique in Radio Interferometric Imaging. MNRAS, 246:490.

Cook, J. (2011). An introduction to solar radio astronomy. Journal of the British
Astronomical Association, 121:241–243.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of
complex Fourier series. Math. Comp., 19:297 – 301.

Cornwell, T. J. (2008). Multiscale CLEAN Deconvolution of Radio Synthesis Images. IEEE
Journal of Selected Topics in Signal Processing, 2:793–801.

Cornwell, T. J. and Evans, K. F. (1985). A simple maximum entropy deconvolution algo-
rithm. A&A, 143:77–83.

Cornwell, T. J., Golap, K., and Bhatnagar, S. (2008). The Noncoplanar Baselines Effect in
Radio Interferometry: The W-Projection Algorithm. IEEE Journal of Selected Topics
in Signal Processing, 2:647–657.

Cox, R. T. (1990). Probability, frequency and reasonable expectation. pages 353–365.



102 BIBLIOGRAPHY

D’Amico, N. (2005). Observations of Radio Pulsars. In Baykal, A., Yerli, S. K., Inam,
S. C., and Grebenev, S., editors, NATO ASIB Proc. 210: The Electromagnetic Spectrum
of Neutron Stars, page 147.

de Bruyn, A. G. and LOFAR EoR Key Science Project Team (2012). Lofar Deep Imaging
And Prospects For Detecting The Eor. In American Astronomical Society Meeting
Abstracts 219, volume 219 of American Astronomical Society Meeting Abstracts, page
214.05.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions of Information Theory,
52:1289–1306.

Eilek, J. A. (1989). Magnetic fields in clusters of galaxies. Bulletin of the American Physical
Society, 34:1286.

Enßlin, T. (2013). Information field theory. In von Toussaint, U., editor, American Institute
of Physics Conference Series, volume 1553 of American Institute of Physics Conference
Series, pages 184–191.

Enßlin, T. A. and Frommert, M. (2011). Reconstruction of signals with unknown spectra
in information field theory with parameter uncertainty. Phys. Rev. D, 83(10):105014.

Enßlin, T. A., Frommert, M., and Kitaura, F. S. (2009). Information field theory for
cosmological perturbation reconstruction and nonlinear signal analysis. Phys. Rev. D,
80(10):105005.

Enßlin, T. A., Junklewitz, H., Winderling, L., and Selig, M. (2013). Art and theory of
self-calibration. ArXiv e-prints.

Enßlin, T. A. and Weig, C. (2010). Inference with minimal Gibbs free energy in information
field theory. Phys. Rev. E, 82(5):051112.

Feretti, L., Giovannini, G., Govoni, F., and Murgia, M. (2012). Clusters of galaxies:
observational properties of the diffuse radio emission. A&A Rev., 20:54.

Finley, D. G. and Goss, W. M., editors (2000). Radio interferometry : the saga and the
science.

Fletcher, A. and Shukurov, A. (2007). Depolarization canals and interstellar turbulence. In
Miville-Deschênes, M.-A. and Boulanger, F., editors, EAS Publications Series, volume 23
of EAS Publications Series, pages 109–128.

Gaensler, B. M., Dickey, J. M., McClure-Griffiths, N. M., Green, A. J., Wieringa, M. H.,
and Haynes, R. F. (2001). Radio Polarization from the Inner Galaxy at Arcminute
Resolution. ApJ, 549:959–978.



BIBLIOGRAPHY 103

Garrett, M. A. (2012). Radio Astronomy Transformed: Aperture Arrays - Past, Present
Future. In From Antikythera to the Square Kilometre Array: Lessons from the Ancients.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Green, D. A. (2001). Galactic Supernova Remnants: An overview of their radio properties.
In Aharonian, F. A. and Völk, H. J., editors, American Institute of Physics Conference
Series, volume 558 of American Institute of Physics Conference Series, pages 59–70.

Greiner, M. (2013). The galactic free electron density: A bayesian reconstruction, master
thesis.

Gull, S. F. and Daniell, G. J. (1979). The Maximum Entropy Method (invited Paper).
In van Schooneveld, C., editor, IAU Colloq. 49: Image Formation from Coherence
Functions in Astronomy, volume 76 of Astrophysics and Space Science Library, page
219.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57:97 – 109.

Haverkorn, M., Katgert, P., and de Bruyn, A. G. (2000). Structure in the local Galactic
ISM on scales down to 1 pc, from multi-band radio polarization observations. A&A,
356:L13–L16.

Haverkorn, M. and Spangler, S. R. (2013). Plasma Diagnostics of the Interstellar Medium
with Radio Astronomy. Space Sci. Rev., 178:483–511.

Heald, G. and LOFAR collaboration (2014). The LOFAR Multifrequency Snapshot
Sky Survey (MSSS): Status and Results. In American Astronomical Society Meeting
Abstracts, volume 223 of American Astronomical Society Meeting Abstracts, page 236.07.

Hirabayashi, H. (2004). High Resolution Radio Observations of AGN. Progress of
Theoretical Physics Supplement, 155:178–185.
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