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1 Summary 

The cytoskeleton in most eukaryotes consists of actin filaments, intermediate filaments, 

microtubules and specific associated proteins. It determines the shape and the polarity of 

a cell and is inevitable for the coordination of cell movement. The regulation of this 

complex structure requires a highly organised and specialised signalling network. Ste20-

like kinases and the regulator protein Mo25 (Morula protein 25) are part of this signalling 

network. The main objective of this work was the functional characterisation of the 

regulator protein Mo25 and the Ste20-like kinases Fray1, Fray2 (Frayed kinase 1/2) and 

DstC (Dictyostelium serine threonine kinase C) in the amoeba Dictyostelium discoideum 

(D. discoideum). An additional project was to map and characterise the actin and actin 

related genes in the genome of the fresh water foraminifer Reticulomyxa filosa (R. filosa).  

Mo25 is a highly conserved 40 kDa scaffolding protein with a 60% identity from amoeba 

to man. The disruption of the mo25 gene in D. discoideum results in very large, 

multinucleated cells which are unable to complete cytokinesis. Growth as well as 

development is severely delayed in the Mo25-minus strain. Furthermore, in phototaxis 

assays performed with multicellular aggregates (slugs), the Mo25-minus slugs were 

unable to migrate towards the light source. These findings imply that Mo25 plays an 

important role in cytokinesis, growth and cell polarity. We could link the Ste 20-like kinase 

SvkA (severin kinase), a homolog of the human Mst3, Mst4 (Mammalian Ste20-like kinase 

3/4) and Ysk1/Sok1 (Yeast Sps1/Ste20-related kinase 1, Suppressor of Kinase 1) kinases to 

Mo25 as a binding partner. To further elucidate the interaction of Mo25 with SvkA as well 

as their role in cytokinesis or polarity signalling, we generated a series of GFP–Mo25 

rescue constructs with distinct point mutations in protein-protein interaction surfaces 

and transformed these into the Mo25-minus background.  

The kinase domains of the Ste20-like kinases, Fray1 and Fray2 in D. discoideum are highly 

homologous to the catalytic domains of OSR1 (Oxidative stress response kinase 1) and 

SPAK (Ste20/SPS1-related proline-alanine-rich protein kinase) in humans and Frayed in 

fruit fly. Here, we generated the knockout clones Fray1-minus, Fray2-minus, and the 

double knockout Fray2Fray1-minus in D. discoideum. In developmental studies, Fray2-

minus did not show an altered phenotype, whereas Fray1-minus and Fray2Fray1-minus 
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developed slightly slower into fruiting bodies. When grown in shaking culture, Fray1-

minus and Fray2Fray1-minus showed a reduced growth rate compared to Fray2-minus 

and the wild type. In addition, by using a GFP-Trap resin we identified a binding partner of 

Fray1, a yet unknown protein that we named FRIP (Fray Interacting Protein). FRIP mainly 

consists of a CBS (Cystathionine beta synthase) domain pair and is 30% identical to the 

gamma subunit of the AMPK (5‘ adenosine mono phosphate-activated protein kinase) 

complex in D. discoideum. The Ste20-like kinase DstC has been described to be a regulator 

of the actin driven process of phagocytosis. The catalytic domain of DstC is most similar to 

the mammalian kinase Mst2 (Mammalian Ste20-like kinase 2) and Hippo 

(“Hippopotamus”-like phenotype) of D. melanogaster. We could map the sorting signal 

that localises DstC to phagocytic cups and acidic vesicles to about 90 amino acids. Here 

we present an array of distinct point mutations for the identification of the exact 

localisation signal. 

R. filosa is a fresh water protist which belongs to the the group of Foraminifera within the 

Rhizaria. The R. filosa genome is the first foraminiferal and only the second rhizarian 

genome to be deciphered. In this bioinformatics project, we could identify, map and 

characterise four new actin genes in addition to the already known actin and about 40 

genes that code for potential actin related proteins of seven different protein classes. 
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2 Zusammenfassung 

Das eukaryotische Zytoskelett besteht in der Regel aus Aktinfilamenten, 

Intermediärfilamenten, Mikrotubuli und spezifischen assoziierten Bindeproteinen. Es 

bestimmt Form und Polarität einer Zelle und ist damit maßgeblich an der Koordination 

der Zellbewegung beteiligt. Die Regulation dieser komplexen Vorgänge erfordert ein hoch 

spezialisiertes und organisiertes Signalsystem. Ein Teil dieses Signalsystems sind die 

Ste20-ähnlichen Kinasen und Mo25 (Morula protein 25), ein struktureller Organisator von 

Kinasen im Zytoskelett. Das Hauptziel dieser Arbeit war die funktionelle Charakterisierung 

des Proteins Mo25 und der Ste20-ähnlichen Kinasen Fray1, Fray2 (Frayed kinase 1/2) und 

DstC (Dictyostelium serine threonine kinase C) der sozialen Amöbe Dictyostelium 

discoideum (D. discoideum). Ein weiteres Projekt war die Kartierung und 

Charakterisierung der Aktine und Aktin verwandten Gene im Genom des Süßwasser 

Foraminiferen Reticulomyxa filosa (R. filosa). 

Das hoch konservierte, 40 kDa große Regulatorprotein Mo25 der Amöbe D. discoideum ist 

zu 60% identisch zu seinem Homolog im Menschen. Durch die Disruption des mo25-Gens 

in D. discoideum bilden sich sehr große, mehrkernige Zellen, welche sich nicht mehr 

normal teilen können. Das Wachstum, wie auch die Vollendung des Entwicklungszyklus 

sind in der Mo25-minus Mutante stark eingeschränkt. Ferner können sich die 

mehrzelligen Aggregate, die sogenannten „slugs“, in Phototaxis Experimenten nicht in 

Richtung einer Lichtquelle bewegen. Diese Ergebnisse weisen darauf hin, dass Mo25 eine 

wichtige Rolle bei Zellteilung, Wachstum und Zellpolarität spielt. Wir konnten die Ste20-

ähnliche Kinase SvkA (Severin kinase), ein Homolog der menschlichen Kinasen Mst3, Mst4 

(Mammalian Ste20-like kinase 3/4) und Ysk1/Sok1 (Yeast Sps1/Ste20-related kinase 1, 

Suppressor of Kinase 1), als einen Bindepartner von Mo25 verifizieren. Um die 

Wechselwirkung von Mo25 mit SvkA näher zu untersuchen, erzeugten wir eine Reihe von 

GFP-Mo25 Konstrukten mit verschiedenen Punktmutationen in den Protein-Protein 

Interaktionsflächen und brachten diese in die Mo25-minus Zelllinie ein. Daraufhin 

untersuchten wir die verschieden Auswirkungen der Punktmutationskonstrukte auf 

Zellteilung und Zellpolarität. 
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Die Kinase-Domänen der Ste20-like-Kinasen, Fray1 und Fray2 der Amöbe D. discoideum 

weisen eine hohe Ähnlichkeit zu den katalytischen Domänen von OSR1 (Oxidative stress 

response kinase 1) und SPAK (Ste20/SPS1-related proline-alanine-rich protein kinase) im 

Menschen und zu Frayed in der Fruchtfliege Drosophila melanogaster (D. melanogaster) 

auf. Die Disruption der Gene fray1, fray2 einzeln und fray2 und fray1 zusammen ergab 

keine Veränderung im Phänotyp von D. discoideum. Auch der Entwicklungszyklus verlief 

im Vergleich zum Wildtyp nahezu unverändert. Lediglich beim Wachstum in 

Schüttelkultur zeigten die Fray1-minus und Fray2Fray1-minus Mutanten eine leicht 

verringerte Wachstumsrate im Vergleich zum Fray2-minus Stamm und dem Wildtyp. 

Zusätzlich konnte ein bisher unbekanntes Protein als Bindungspartner von Fray1 

identifiziert werden, welches wir FRIP (Fray interacting protein) genannt haben. FRIP 

besteht hauptsächlich aus zwei CBS (Cystathionine beta synthase)-Domänen Paaren und 

ist zu 30% identisch zu der gamma-Untereinheit des AMPK (5‘ adenosine mono 

phosphate-activated protein kinase)-Komplexes in D. discoideum. Die Ste20-ähnliche 

Kinase DstC wurde als Regulatorprotein des Aktin-gesteuerten Prozesses der Phagozytose 

beschrieben. Die katalytische Domäne von DstC ist der homologen Domäne der 

Säugerkinase Mst2 (Mammalian Ste20-like kinase 2) und der Kinase Hippo 

(“Hippopotamus”-like phenotype) aus der Fruchtfliege sehr ähnlich. Wir konnten das 

Signal, welches DstC an den Zellmund und an angesäuerte Vesikel in D. discoideum 

lokalisiert, auf etwa 90 Aminosäuren eingrenzen. Hier präsentieren wir eine 

Zusammenstellung verschiedener Punktmutationen zur Veränderung der Aminosäuren, 

welche potentiell für die subzelluläre Lokalisierung des Proteins wichtig sind. 

R. filosa ist ein einzelliger Frischwasser Protist aus der Gruppe der Foraminiferen 

innerhalb der Rhizarien. Das R. filosa Genom ist das erste vollständig sequenzierte Genom 

der Foraminiferengruppe und erst das zweite der Rhizarien. In diesem bioinformatischen 

Projekt war es die Aufgabe, Aktin und Aktin-ähnliche Gene im Genom von R. filosa zu 

finden und zu kartieren. 
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3 Introduction 

 Proteins 3.1

Proteins are an object of investigation since the 18th century and were described in 

various essays by several early chemists amongst them De Frumento Beccari, Henri 

Braconnot and Albrecht Kossel (Beccari, 1745, Braconnot, 1820, Kossel, 1898). They 

examined extracts from specimen such as plant grains, blood and egg white and the main 

observations were the ability to flocculate and coagulate upon the treatment with heat or 

acid. The word protein was coined 1839 by the dutch chemist Gerardus Johannes Mulder 

in a publication on the composition of animal substances (Mulder, 1839). Insulin was the 

first protein that got sequenced by Frederick Sanger in 1949 and John Kendrew and Max 

Perutz solved the first protein structures myoglobin and hemoglobin respectively in the 

late 1950’s (Sanger, 1949, Kendrew et al., 1958, Perutz et al., 1960). In 1955 the 

information carrier DNA could be connected to protein synthesis due to the findings of 

Mahlon Hoagland and Paul Zamecnik together with Francis Crick (Hoagland, 1955, 

Hoagland et al., 1956, Crick, 1957). It was shown that the polypeptide chains of proteins 

are synthesised according to the nucleotide sequence of the DNA. 20 different amino 

acids are the building blocks that can be integrated to become a protein. The information 

encoded in the genes, already determines the size, folding and by that the function and 

field of application of the protein. Furthermore, the characteristics of proteins can be 

altered by post-translational modifications. Thereby, different functional groups such as 

amino acids, acetate, phosphate, lipids or carbohydrates can get attached onto or 

removed from the polypeptide (Burnett and Kennedy, 1954, Sadoul et al., 2008). This 

addition or removal, the so called post-translational modifications, deviates the chemical 

nature of certain amino acids or induces structural changes and primes the protein for its 

purpose. One of the first post-translational modifications is the removal of the N-terminal 

methionine of newly synthesised proteins (Giglione et al., 2004). Other common 

modifications include glycosylation, ubiquitination, nitrosylation, methylation, 

acetylation, lipidation and proteolysis (Walsh, 2006). One frequent and most important 

post-translational modification is the protein phosphorylation. It represents a key tool for 
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activating or inactivating enzymes for the regulation of cellular processes. 

 Kinases, crucial regulators of cellular processes 3.2

Kinases are critical regulation tools in metabolism, cell signalling, protein regulation, 

cellular transport, secretory processes and fundamental cellular pathways such as the cell 

cycle, apoptosis, stress responses, cellular volume sensing and regulation, osmotic 

homeostasis and link cell cycle activities with cell volume. All these meticulous regulations 

are achieved by the precise interplay of phosphorylation and dephosphorylation of 

proteins. Phosphorylated proteins have first been described by the chemist Phoebus 

Levene and his colleague in 1902 (Levene and Alsberg, 1906), but the actual mechanism 

of enzymatic phosphorylation of casein was discovered in 1954 by George Burnett and 

Eugene P. Kennedy (Burnett and Kennedy, 1954).  

Phosphorylation is one of the most important reversible post-translational modifications 

of life. The addition of a phosphate group from the donor molecule ATP or ADP 

(adenosine-tri-phosphate, adenosine-di-phosphate) onto substrates is mediated by 

kinases whereas dephosphorylation is handled by phosphatases (Krebs and Fischer, 

1956). Thereby the phosphate is transferred onto a serine, threonine or tyrosine, in some 

cases also histidine, arginine, lysine and other residues of an acceptor molecule (Cozzone, 

1988). This often results in a conformational change of the target molecule which then 

alters its activity and function. Hence, kinases are an inevitable element of the complex 

signalling cascades in prokaryotes, eukaryotes and archaea (Kyriakis, 2014). The human 

genome comprises about 530 protein kinase genes, which constitutes about 2% of all 

human genes (Manning et al., 2002b). It is thought that up to 30% of all human proteins 

are modified by kinase activity (Cohen, 2002). Furthermore, there are additional kinase 

groups that phosphorylate other substrate classes. This heterogeneous group can be 

classified into three major subgroups, indicating their substrate: carbohydrate kinases, 

lipid kinases and protein kinases. Carbohydrate kinases organise the breakdown of 

carbohydrates to monosaccharides for example in the glycolysis of mammals (Holzer and 

Duntze, 1971). Lipid kinases phosphorylate lipids on the plasma membrane of cells, as 

well as on the membranes of the organelles. Those phosphorylated lipids can change 

their reactivity and localisation in the cell and can as well be used in signal transduction 
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such as in the insulin signalling pathway (Cantley, 2002). The third class constitutes the 

biggest and most diverse kinase subgroup, the protein kinases. Protein kinases 

phosphorylate proteins to modify their function within a signalling cascade. 

Phosphorylation can increase or decrease the activity of a protein, stabilise it or mark it 

for destruction, localise it within a specific cellular compartment, and it can initiate or 

disrupt its interaction with other proteins (Adams, 2001). The protein kinases can be 

further subdivided into at least eight major groups based on their phylogenetic relations 

(Manning et al., 2002b). 

 

 Ste20-like kinases 3.3

One subgroup of the protein kinases are the Ste (from “sterile”) kinases. The ste-genes 

were first discovered during a genetic analysis in the budding yeast Saccharomyces 

cerevisiae (S. cerevisiae). The Ste group is further subcategorised into Ste7, Ste11 and 

Ste20 kinases. Ste20 in particular was identified as a suppressor of mating defects and as 

a dominant activator of the mating response (Ramer and Davis, 1993). Further 

biochemical characterisation demonstrated that ste20 encodes a serine/threonine kinase. 

Hence Ste20 was the prime forerunner of a kinase superfamily. In human, respectively 

amoebae, the Ste20-like kinases comprise 10% and 15% of the kinome and employ a 

broad variety of functions (Manning et al., 2002b). 

Ste20-like kinases exist in two different types according to their domain architecture. In 

the p21 (cyclin-dependent kinase inhibitor 1)-activated kinases (PAKs) the kinase domain 

is located at the C-terminus of the enzyme. Additionally, at the C-terminus a CDC42 (Cell 

division control protein 42)/Rac (similar to RAs-related-C3 botulinum toxin substrate)-

interactive-binding (CRIB) domain is placed that mediates binding to small GTPases for 

activation. The structure of the germinal centre kinases (GCKs) in contrast is characterised 

by the catalytic domain being located more mid to N-terminal and a variable C-terminus 

which is mostly tailored according to the field of application of the kinase. While PAKs are 

grouped into group I and group II (Jaffer and Chernoff, 2002), the GCKs are a much bigger 

and more diverse group that is subdivided into groups GCK-I-VIII (Dan et al., 2001). The 

denominator of all Ste20-like kinases is the highly conserved catalytic domain pattern 
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consisting of the subdomains I-XI (Hanks and Hunter, 1995b). The subdomain VIII with the 

signature amino acid sequence –xGTPxWMAPEx- (x indicates variable amino acids) plays a 

major role in recognition of peptide substrates. 

 

 
 

 

Figure 1: Structure of germinal centre kinases and p21-activated kinases 
(A) The structure of the germinal centre kinases (GCKs) compared to the p21-activated kinases. GCKs are 
characterised by their N-terminal catalytic domain. The catalytic domain of the PAKs is located at the C-
terminus of the protein. Additionally, PAKs possess a CRIB domain which binds small GTPases. (B) Amino 
acid sequence of the catalytic domain of the Ste20-like severin kinase (SvkA). Roman numerals above the 
sequence mark the 12 conserved subdomains of the Ste20-kinase group as described (Hanks and Hunter, 
1995a). The green bar indicates the signature motif of the protein kinases which is implicated in the 
recognition of peptide substrates. The red bar indicates the subdomain in which the Threonine (red 
asterisk) needs to be phosphorylated to activate the kinase. 

 

Maximal kinase activity requires the phosphorylation of threonine 197 in subdomain IX. 

Pseudokinases, although members of the Ste20-group, lack these important residues that 

are necessary for activation (Kannan and Taylor, 2008). With the crystallisation of the 

kinase domains of Tao2 (Thousand-and-one amino acids 2) (Zhou et al., 2004), OSR1 

(Oxidative stress response kinase 1) (Lee et al., 2009), Mst1 (Mammalian Ste20-like kinase 
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1) (Hwang et al., 2007) and Mst2 (Mammalian Ste20-like kinase 2) (Liu et al., 2014) the 

structures, binding and activation mechanisms have been revealed. The kinase domains 

consist of α-helices and β-sheets that provide the framework for the conserved kinase 

fold with an ATP-binding cleft and the catalytic loop. The switch from an inactive to an 

active kinase conformation involves the transfer of a phosphate group onto the activation 

site. Pseudokinases however, are not activated by the addition of a phosphate group, but 

upon the binding to a regulator protein like Mo25 (Morula protein 25) (Rajakulendran and 

Sicheri, 2010). The activation modulates and enables the kinase to act on downstream 

targets (Zhou et al., 2004). Ste20-like kinases of groups GCK-I, IV, V, VII and VIII have been 

reported to be key players in the MAP (mitogen-activated protein)-kinase signalling 

pathway, regulating the JNK (c-Jun N-terminal kinases) pathway and the p38 (p38 

mitogen-activated protein kinases)-mediated pathway (Piechotta et al., 2003). GCK-III 

group kinases Mst3 (Mammalian Ste20-like kinase 3), Mst4 (Mammalian Ste20-like kinase 

4) and Ysk1/Sok1 (Yeast Sps1/Ste20-related Kinase 1, Suppressor of Kinase 1), act as 

regulators of apoptosis in human (Radu and Chernoff, 2009). Just recently Mst3 

(Mehellou et al., 2013) and Mst4 (Shi et al., 2013) have been crystallised together with 

the regulator protein Mo25. The direct interaction of the scaffolding protein Mo25 and 

the Ste20-like kinase can amplify kinase activity up to 100-fold (Filippi et al., 2011). 

The genome of D. discoideum harbours about 285 kinase genes, which is around 50% of 

the amount of kinase genes in Homo sapiens (H. sapiens). The Ste20-like kinase group of 

D. discoideum with 17 members is almost as big as in human (24 members). About half of 

the Ste20-like kinases in D. discoideum have homologues in the other eukaryotes whereas 

the other half seems to be social amoebae specific (Goldberg et al., 2006). The generation 

of minus mutants is very simple (Faix et al., 2004) and, in contrast to higher eukaryotes, 

alternative splicing variants are very limited in D. discoideum (Yu et al., 2011). Thus 

D. discoideum proves to be a simple yet effective model organism to study pathways and 

functions of kinases. For example, the GCK-III group kinase SvkA (severin kinase A) of 

D. discoideum has been reported to be essential for the late stages of cytokinesis. SvkA-

minus mutants form big multinucleated cells, sometimes containing more than 30 nuclei 

(Rohlfs et al., 2007). SvkA is also the first Ste20-like kinase that has been discovered in 

D. discoideum due to its ability to phosphorylate the F-actin severing protein severin in 
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vitro (Eichinger et al., 1998). In addition the GCK-II group member KrsA (Kinase responsive 

to stress A) has been described to phosphorylate severin as well, (Arasada et al., 2006) 

and further to be essential for normal development and cAMP relay (Muramoto et al., 

2007). The second Krs kinase, KrsB (Kinase responsive to stress B), possesses four calpain-

III domains and is crucial for establishing cell polarity during chemotaxis in D. discoideum 

(Artemenko et al., 2012). Altogether, twelve Ste20-like germinal centre kinase and four 

p21 activated kinase genes have been detected in in the genome of D. discoideum 

(Goldberg et al., 2006).  

Amongst them are Fray1 (Frayed kinase 1) and Fray2 (Frayed kinase 2), which are 

members of the GCK-VI group. Their kinase domain is 45% and 54% identical to the Ste20-

like kinase Frayed in Drosophila melanogaster (D. melanogaster). Frayed is reported to be 

essential for the normal axonal ensheathment (Leiserson et al., 2000a). Frayed-minus 

mutants in D. melanogaster die early in larval development and have nerves with severe 

swelling and axonal defasciculation. In addition, Frayed in conjunction with Mo25 is 

described to be crucial for asymmetric divisions during neuroblast development 

(Yamamoto et al., 2008). Frayed-minus as well as mo25-minus D. melanogaster mutants 

exhibit an indistinguishable defect in the localisation of cell fate determinant Miranda to 

the basal cortex. In human the closest homologue to Fray1 and Fray2 is the Ste20-like 

kinase OSR1 which together with kinase SPAK (STE20/SPS1-related proline-alanine-rich 

protein kinase) jointly modulates homeostasis (Delpire and Gagnon, 2008).  

The kinase domain of Ste20-like kinase DstC (Dictyostelium Ste20-like kinase C) of the 

GCK-II group from D. discoideum is 49% identical to Hippo (“hippopotamus”-like 

phenotype) in D. melanogaster and 51% identical to Mst2 in humans. In the fruit fly the 

Ste20-like kinase Hippo together with the kinases Salvador and Warts plays a 

fundamental role in connecting the regulation of organ size during eye development 

(Edgar, 2006, Zhao et al., 2008). Hippo-minus mutants display increased rates of cell 

proliferation and cancer. In human Mst2 is known as regulator of various tumour 

suppressors like serine/threonine protein kinases Lats1 (Large Tumour Suppressor 1) and 

Raf-1 (Rapidly Accelerated Fibrosarcoma 1) (Chan et al., 2005, O'Neill et al., 2005) and as 

key player in the Hippo pathway (Avruch et al., 2011). The extensive characterisations of 

Fray1, Fray2 and DstC of D. discoideum are part of this work.  
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 Mo25, the master regulator  3.4

Mo25 is a highly conserved 40 kDa scaffolding protein with 60% identity from amoeba to 

man. It facilitates and activates a complex of a Ste20-like kinase with downstream kinases 

(ten Klooster et al., 2009). In yeast Mo25 is described as essential for cytokinesis and 

polarity and consequently, minus-mutants are not viable (Nozaki et al., 1996). In humans 

Mo25 is part of a complex with the pseudokinase STRAD (Ste20-related adaptor protein) 

and the Ste20-like kinase LKB1 (Liver kinase B1) (Figure 2c) (Zeqiraj et al., 2009a). 

Disruption of this complex causes the inherited disease Peutz-Jeghers-syndrome (Spicer 

et al., 2003). 

Mo25 has first been described as cDNA clone 25 enriched in the mouse morula (Mo) 

during a library screen in 1993 by Hiroshi Miyamoto and his colleagues (Miyamoto et al., 

1993). At first glance, due to its amino acid sequence, it was thought to be a calcium-

binding protein. It turned out that Mo25 is in fact a regulator protein which is highly 

conserved throughout the eukaryotes (Karos and Fischer, 1999, Filippi et al., 2011). 

Crystallisation of the human Mo25 revealed a structure of six α-helical repeats (R1-R6) 

(Figure 2a). Each repeat consists of three α-helices of varying length. Juxtaposed, these six 

triplets form a right-handed helix that exhibits a clamp-like structure with a concave and a 

convex side (Milburn et al., 2004). The N-terminus of the protein begins with two anti-

parallel helices and is not as thoroughly conserved as the C-terminus. At the convex side 

of the protein, a repeat 6 extends a dilated loop caused by the amino acid sequence 284-

NPNKT-288 with the positively charged lysine. This, on the one hand forms the cleft which 

functions as hydrophobic binding pocket (Figure 2b) (M260) for the amino acids 429-WEF-

431 (Trp-Glu-Phe) which represent the binding motif of STRAD. On the other hand, it 

forces further hydrophobic regions of the other five helices at the concave side to the 

protein surface (Figure 2b) (R227), which can thus interact with the N-terminal amino 

acids of STRAD via hydrogen bonds (Zeqiraj et al., 2009b). STRAD is a pseudokinase of the 

Ste20-like kinase family (Ling et al., 2008). As pseudokinases lack the catalytic residues in 

the kinase core, they are catalytically inactive (Kannan and Taylor, 2008). The third very 

important binding site is also located on the concave side of Mo25 (Figure 2b) (R240). 

There the binding of the kinase LKB1 to the Mo25/STRAD-complex occurs and completes 

the trimeric complex (Boudeau et al., 2004).  
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Figure 2: The scaffolding protein Mo25 (CAB39) from H. sapiens 
(A) The ribbon model of human Mo25 (CAB39: calcium binding protein 39) (PDB: 2wtkA) displays the N-
terminal antiparallel helices that transition into six α-helical repeats (R1-R6). (B) The surface model depicts 
the clamp-like scaffolding structure with the convex and the concave sides. The known binding sites of 
STRAD and LKB1 are marked in red. (C) The scaffolding protein Mo25 (CAB39) in complex with the 
pseudokinase STRAD (green) and the serine/threonine kinase LKB1 (red). Only upon formation of this 
trimeric complex LKB1 gets converted into an active kinase state and is translocated from the nucleus into 
the cytosol. 

 

The serine/threonine kinase LKB1 is a tumour suppressor. Unlike other kinases LKB1 is not 

activated by phosphorylation in its activation loop. The scaffolding protein Mo25 together 

with STRAD and ATP bind LKB1-like a “substrate” and thereby induce the active kinase 

fold in LKB1 leading to the phosphorylation of downstream targets (Zeqiraj et al., 2009a). 

Only in the complex with Mo25 and STRAD, LKB1 is exported from the nucleus to the 

cytoplasm and can exert its kinase activity (Baas et al., 2003). The targets regulated by the 

Mo25/STRAD/LKB1-complex are manifold. For example, cell cycle arrest of cells is 

regulated by inducing the cell cycle progression regulator p21 through a p53 (Tumour 

protein 53)-dependent mechanism (Tiainen et al., 2002). Mutations that disrupt the 

Mo25/STRAD/LKB1-complex cause uncontrolled cell proliferation. This leads to an 

autosomal dominant disease called Peutz-Jeghers-syndrome (Boudeau et al., 2003, Baas 

et al., 2003) with a high disposition to develop intestinal cancer very early on in life 

(Jansen et al., 2009). The Mo25/STRAD/LKB1-complex is also responsible for maintaining 

cell polarity in intestinal cells by inducing the remodelling of the actin cytoskeleton in 

order to form apical brush borders (Baas et al., 2004b, Baas et al., 2004a). Furthermore, 

the energy sensor AMP-kinase and at least 12 more kinases of the AMPK (5' Adenosine 

monophosphate-activated protein kinase) subfamily are direct downstream targets 
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regulated by the trimeric complex (Lizcano et al., 2004, Jaleel et al., 2005). The AMPK 

related kinase Par1 (Partitioning defective 1)/MARK3 (Microtubule affinity regulating 

kinase 3) which plays a key role in the Wnt (Wingless-related integration site) signalling 

pathway for polarity is directly phosphorylated by the Mo25/STRAD/LKB1-complex 

(Brajenovic et al., 2004). Additionally, the trimeric complex also regulates the mammalian 

target of rapamycin through the AMPK-TSC2:TSC1 (Tuberous sclerosis 1:2)-complex 

(Orlova et al., 2010) and hence further proves to be a key player in the mTor (Mammalian 

target of rapamycin) pathway. Another example for the control by the 

Mo25/STRAD/LKB1-complex is the regulation of axiogenesis in neurodevelopment. 

Disruption of the trimeric complex prevents the formation of projection axons in the 

cerebral cortex (Veleva-Rotse et al., 2014). In addition, Mo25 does not bind and therefore 

regulates LKB1 exclusively. The Ste20-like kinases SPAK, OSR1, Mst3, Mst4 and Ysk1/Sok1 

(Yeast Sps1/Ste20-related Kinase 1, Suppressor of Kinase 1) are reported to bind to the 

same hydrophobic binding pocket of Mo25 similar to STRAD (Filippi et al., 2011, Mehellou 

et al., 2013). Upon binding to Mo25, Mst4 rotates the αC helix toward its catalytic core 

and, thus allows the Mst4 kinase domain to form a specific homodimer that is required 

for trans-autophosphorylation (Shi et al., 2013). This interaction with Mo25 induces an up 

to 100-fold activation of the kinases, enhancing their ability to phosphorylate 

downstream targets (Filippi et al., 2011). 

In simpler eukaryotic organisms such as Aspergillus nidulans (A. nidulans) for example, the 

disruption of the mo25 homologue gene (hymA, Hypha-like metulae A) leads to a 

developmental phenotype noticeable in hypha-like metulae (Karos and Fischer, 1996). In 

S. cerevisiae the corresponding gene (hym1, Hypha-like metulae 1) is involved in cell 

separation (Dorland et al., 2000), formation of mating projections and apical bud growth 

and facilitates the localisation of the Ndr (Nuclear dbf2-related kinase) family kinase Cbk1 

(Cell wall biosynthesis kinase 1) to the bud neck (Bidlingmaier et al., 2001). Hym1 is part 

of the RAM network where it interacts with the Ste20-like kinase Kic1p (Kinase that 

interacts with Cdc31p) to regulate the transcription factor Ace2p (Activator of CUP1 

expression 2p) -dependent polarised morphogenesis (Nelson et al., 2003). In 

Schizocaccharomyces pombe (S. pombe) a similar complex of Pmo25 (Mo25 family protein 

Pmo25) and the Ste20-like kinase Nak1 (PAK-related kinase Nak1) regulates the 
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localisation and activity of the Ndr-family kinase Orb6 (Serine/threonine protein kinase 

Orb6) that regulates cell polarity and cell division (Kanai et al., 2005, Mendoza et al., 

2005). In addition, another Ste20-like kinase, Ppk11 together with Pmo25, was shown to 

play a supporting role for cell division (Goshima et al., 2010). Mo25 has evolved as a key 

regulator of a certain group of Ste20 kinases and also represents an ancestral mechanism 

of regulating the conformational change of pseudokinases to activate catalytically 

competent protein kinases (Filippi et al., 2011). 

Mo25 of the social amoeba D. discoideum is 60% identical to its homologues in yeast and 

human. Potential downstream targets of Mo25 could be the Ste20-like severin kinase 

(SvkA) which is highly similar to kinases Nak1 (S. pombe), Kic1p (S. cerevisiae) and Mst4 

(H.sapiens) (Eichinger et al., 1998). As there is no solid data on the occurrence of 

pseudokinases and no direct homologue of STRAD exists in D. discoideum, sequence 

comparisons revealed that the kinases Fray1 and Fray2 and SvkA are the closest relatives 

to STRAD. Interestingly, SvkA, Fray1 and Fray2 also contain a WEF (Trp-Glu-Phe), WSF 

(Trp-Ser-Phe) or WIF (Trp-Ile-Phe) sequence motif, respectively, which is implicated in 

facilitating the binding of the pseudokinase STRAD to Mo25 at a similar distance to the 

catalytic domain as in STRAD (Boudeau et al., 2003). This renders them as putative 

interacting partners of Mo25. A deeper insight into the conducts of Mo25 in 

D. discoideum is an integral part of this work.  

 

 Cell division 3.5

Cell division combines the processes of mitosis and cytokinesis. The fundamental 

functions of the reproduction cycle are the duplication of chromosomes and cytoplasmic 

components, the separation of chromosomes during mitosis and the division into two 

independent daughter cells during cytokinesis (Cooper and Hausman, 2013). The 

duplication of the DNA and cytoplasmic components happens during S-phase (Maya-

Mendoza et al., 2009). Mitosis and cytokinesis take place during the so called M-phase 

which can be subdivided into five steps (Blow and Tanaka, 2005). During prophase the 

duplicated nuclear DNA starts to condensate to form a homologous set of chromosomes 

while the spindle apparatus is formed. Additionally the nuclear membrane dissolves in 
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higher eukaryotes (De Souza and Osmani, 2007). Subsequently in metaphase the 

chromosomes are most densely packed and the mitotic spindle is fully formed 

(Mahmoudi et al., 2011). In anaphase, each set of homologous chromosomes gets 

transferred to one of the two spindle poles by microtubules. With the entry into 

telophase the nuclear membrane is re-established around the decondensing 

chromosomes and two new nuclei are set up. Cytokinesis is the final step of cell division 

by which the mother cell is physically divided into two independent daughter cells (Eggert 

et al., 2006). Important insights into the molecular mechanisms of cell division emerged 

from the research with model organisms such as S. cerevisiae (budding yeast) (Sobel, 

1997), S. pombe (fission yeast) (Hayles and Nurse, 1989) and the amoeba D. discoideum 

(Robinson et al., 2002). 

Mechanics of cell division in D. discoideum consist of four distinguishable steps (Wolf et 

al., 1999). During the first step a cleavage plane is established by the orientation of the 

intra nuclear mitotic spindle and the chromosomes are segregated while the nuclear 

membrane stays intact during closed mitosis (Effler et al., 2006). In the second step the 

centrosomes move towards the incipient daughter cells powered by motor proteins on 

microtubules that are linked to the cell cortex (Neujahr et al., 1997). Additionally, actin is 

assembled in an inner ring at the plasma membrane where the cleavage furrow will form. 

This is followed by the localisation of myosin II which will generate the force of 

contraction. After rounding up, the cells elongate in the third step and through the 

contraction of the ring structure the cleavage furrow occurs (Glotzer, 2001). In the final 

fourth step, membrane fusion mediated by the ring structure separates the two daughter 

cells (Robinson and Spudich, 2004). Two unconventional but sometimes frequent ways of 

cell division should be mentioned here as well: the traction mediated cell division and the 

cell division by midwife cells which are attracted chemotactically to the cleavage furrow 

to divide the two daughter cells mechanically by force (Nagasaki et al., 2009). An 

orchestrated array of cytoskeletal proteins is required for successfully completing mitosis 

and cytokinesis (Gerisch et al., 2004, Surcel et al., 2010). For the late stages of cytokinesis 

in D. discoideum, the Ste20-like kinase severin (SvkA) has been described to be essential. 

SvkA-minus cells are unable to separate after mitosis and form big multinucleated cells 

(Rohlfs et al., 2007). The Ste20-like kinase Hippo in D. melanogaster, to which DstC of 
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D. discoideum is very similar, has extensively been described as regulator of organ size 

during eye development (Wu et al., 2003). Hippo-minus mutants exhibit increased rates 

of cell proliferation and cancer (Zhao et al., 2008). In ascomycote A. nidulans the Mo25 

homologue HymA of has been reported to be involved in the production of asexual non 

motile spores. In HymA-minus mutants conidiophore development is blocked, resulting in 

a reproduction defect and indicating a disturbance in mitosis (Karos and Fischer, 1999). 

Also in budding and fission yeast, the minus mutants of the respective Mo25 homologue 

Hym1 have severe problems in forming apical buds and mating projections due to a halt 

in mitosis (Bogomolnaya et al., 2004). All these previous findings strongly suggest that the 

herein investigated kinases Fray1, Fray2 and DstC together with SvkA and the scaffolding 

protein Mo25 of D. discoideum are implicated in cell division. 
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 The model organism D. discoideum 3.6

The amoeboid organism D. discoideum (Figure 3) now has a scientific history of nearly 

150 years since it was first discovered by Julius Oscar Brefeld in the late 60’s of the 19th 

century (Brefeld, 1869). Brefeld already described some of the most fundamental 

features of D. discoideum, including the switch from single cell to multicellular aggregates 

that are formed upon starvation. Over the years further descriptive essays on nutrient 

uptake by Vuillemin (Vuillemin, 1903) and development by Harper (Harper, 1926, Harper, 

1932) were published. But it was not until Kenneth Brian Raper, who discovered the 

progenitor of the D. discoideum strains used in laboratories all over the world today 

(Raper, 1935) transferred D. discoideum as model organism into modern day cell science. 

 

Figure 3: Different life cycle stages of D. discoideum 
(A) Single amoebae (B) Upon starvation approximately 1 x 10

5
 cells form a motile pseudoplasmodium, the 

multicellular slug. Slugs are able to migrate photo- and thermotactically. (C) In the last stage of the 
developmental cycle the multicellular organism differentiates into a fruiting body.  

 

Phylogenetically, D. discoideum belongs to the social amoebae and is positioned right 

between the fungi and plants, but is more distant from plants (Baldauf et al., 2000). Social 

amoebae are characterised by their unique life cycle which proceeds from autonomously 

living amoebae to a multicellular organism with well differentiated tissues (Chisholm and 

Firtel, 2004). With 5-10 microns in diameter, D. discoideum cells are relatively small, but 

still easily accessible by microscope. The common reproduction type of the normally 

haploid D. discoideum is asexual. Nevertheless, a sexual reproduction mode exists where 

two amoebae of different mating types fuse. This fused cell then engulfs all the other cells 

and encapsulates the whole aggregate into the so called macrocyst. The macrocyst is a 
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protective shell consisting of cellulose. Inside the macrocyst, the large diploid cell divides 

first through meiosis, then continues through mitosis. Finally, the new amoebae are 

released (Filosa and Dengler, 1972). Whilst sexual reproduction can be induced under 

laboratory conditions, a successful germination of a D. discoideum macrocyst is very rare. 

High yields of D. discoideum can be obtained by keeping the amoebae on a bacterial lawn 

or in axenic medium (HL5) under constant shaking (Ashworth and Watts, 1970). At 

temperatures between 18 and 22°C, the duplication rate is 8-15 hours. In its natural 

environment D. discoideum thrives on forest soil, decaying leaves and dung and feeds 

mostly on bacteria via phagocytosis (Weijer, 2004). 

 

Figure 4: The life cycle of D. discoideum 
The life cycle of D. discoideum starts with individual, vegetative amoebae that hatch from spores. Upon 
starvation the amoebae aggregate mediated by the chemotaxis towards a cyclic AMP gradient. During this 
process, cells stream towards the central aggregation centre. The aggregation results in the formation of a 
multicellular organism, known as mound. Already in this phase cells sort into so called prestalk and 
prespore cells with an approximate 20%:80% ratio and form a tipped aggregate. As development proceeds, 
the tip extends and an anterior–posterior axis forms, which is maintained through the slug and early 
culminant stages. Culmination, the formation of the fruiting body, completes the D. discoideum life cycle. 
The prestalk cells develop into vacuolated stalk cells and form the stalk and a disc at the basis. The prespore 
cells migrate onto the top of the stalk and form the sorus consisting of several thousand spores. Picture 
taken from (Chisholm and Firtel, 2004). 

 



Introduction 

29 

 

Upon deprivation of nutrients, D. discoideum enters its unique life cycle that is 

characterised by the developmental switch from single cells to multicellular aggregate by 

cAMP-mediated chemotaxis (Figure 4). During this multicellular phase D. discoideum can 

form a mobile intermediate, the so called slug. This intermediate is susceptible to light 

and heat and able to migrate towards the respective source. Further on, during 

culmination the slug rises from the substrate and forms a fruiting body consisting of a 

stalk anchored in a flattened cellular disc and crowned with a globose-to-slightly-citriform 

spore mass (Raper, 1984). 80% of the cells migrate into the sorus and transform into 

spores, whereas the remaining 20% are sacrificed to build the stalk. Completion of one 

entire developmental cycle takes under laboratory conditions about 24 hours from start 

to end. The genome has a size of 33.8 megabases, is organised in 6 chromosomes 

(Urushihara, 2008) and codes for approximately 12.500 proteins (Eichinger et al., 2005). 

Thus, D. discoideum possesses almost as many genes as D. melanogaster and more than 

twice as many as yeast, but only half as many as human (Goldberg et al., 2006). 

Furthermore, due to its haploidity the genome is easily accessible for manipulation by 

recombinative methods (Faix et al., 2004). Regarding all these advantages, D. discoideum 

proves to be a suitable and versatile model organism for regulation of cellular dynamics, 

cell adhesion, phagocytosis, cell polarity, mitosis, cell division and morphogenesis.  

The control of all these processes requires a sophisticated underlying control and 

signalling system. The genome of D. discoideum encodes approximately 285 kinases. 

About half of them have analogues in other eukaryotes and the other half are probably 

social amoeba specific (Goldberg et al., 2006). This relatively large signal network and the 

unique switch from single cell to multicellular organism provides the perfect framework 

for studying the regulation of cell division and cell polarity. 
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 The fresh water foraminifer R. filosa 3.7

The phylum Foraminifera belongs to the eukaryote branch of the Rhizaria. It is one of the 

most diverse groups of amoeboid protists, comprising roughly 5000 living species. For the 

greater part they live in salt water and tens of thousands of fossil taxa exist (Flakowski et 

al., 2005) The test of a foraminifer was first mentioned in a letter to a friend by Antony 

van Leeuwenhoek in 1700 (Dobell, 1932), but it was not until about 130 years later when 

Alcide d’Orbigny first described and named the taxon in 1826, respectively 1840 

(d’Orbigny, 1826, d’Orbigny, 1840). Almost all works on Foraminifera to date dealt with 

their taxonomy and due to the lack of cultivability almost no molecular data were 

available. Therefore, the total sequencing of the genome of the fresh water foraminifer 

R. filosa represents one the first insights into the molecular world of the Rhizaria. R. filosa 

was discovered in a puddle during a walk through New York’s central park by Ruth N. 

Nauss in 1937 (Nauss, 1949). In its natural habitat R. filosa is growing in the detritus of 

fresh water and feeds on cyanobacteria, bacteria, rotifers, green algae and ciliates. The 

clear advantages, in contrast to most other foraminifers, is the cultivability in fresh water, 

even if only in its plasmodial state (Glöckner et al., 2014), and the fact that R. filosa is not 

encapsulated. Under laboratory conditions R. filosa exists as a large syncytium (diameter 

up to 3 cm) with thousands of haploid nuclei. The phenotype is characterised by a central 

area from which hundreds of filamentous reticulopodia protrude into the surroundings 

(Figure 5a). This corona of reticulopodia is responsible for the uptake of nutrients and 

their transport to the cell body via rapid plasma streaming (Travis and Bowser, 1991). 

Facing unfavourable conditions, the plasmodia are set to encystation. In nature, R. filosa 

grows to giant net-like plasmodia with up to 10 cm or more in diameter, consisting of 

numerous central areas that are connected by thick veins and extending slender 

reticulopodia in the periphery. Easily accessible for microscopy due to its transparent 

appearance, the transport of nutrients and organelles in the pseudopodial network can 

be observed. The cargo transport in R. filosa is one of the fastest particle movements 

through cytoplasm within a cell in eukaryotes. Velocities of up to 12.5 microns per second 

have been measured (Ashkin et al., 1990). This feature made R. filosa a first-rate research 

object for the mechanisms of bidirectional cargo transport. 
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Figure 5: The rhizarian foraminifer R. filosa  
(A) A 1-3cm big syncytium with thousands of nuclei. Rapid plasma streams transport nutrients to the cell 
body. (B) Periphery of the central area with thicker strands and filose anastomosing reticulopodia. Bar = 50 
microns. Picture taken from (Glöckner et al., 2014) 

 

Also the assembly and disassembly of microtubules happens with remarkably high speed, 

with elongations of up to 6.5 microns per second versus degradation rates of 19.5 

microns per second (Schliwa et al., 1991). The cytoskeleton consists mainly of 

microtubules, whereas the concentration of actin is relatively low compared to other 

eukaryotes. Also a centrosome is missing as well as the conventional organisation of the 

microtubules (Orokos et al., 2000). Even though there are clear indications for sexual 

reproduction in the genome of R. filosa, only reproduction by a very unique way of cell 

division is known to date. During growth, the nuclear divisions occur synchronised and 

correlate with the mass increase of cytoplasm. The nuclear envelope stays intact during 

the whole process and is only permeable to the spindle microtubules. Also the nucleoli 

attached at the nuclear envelope do not get resolved but being split between the 

resulting daughter nuclei. Next, R. filosa discontinues the bidirectional transport and 

starts to transport degradation products and expendable nutrients unidirectionally to the 

cell surface to get rid of them via exocytosis. Afterwards, all of the cytoplasm, including 

the central area, migrates towards the outer tips of the reticulopodia. There, three to four 

new central areas emerge, that after some growth will merge their filamentous plasmodia 

and so create the net-like appearance (Hülsmann, 2006). The genome of R. filosa is 

extremely repetitive. The large amount of identical sequences is a mechanism to provide 
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more gene copies probably for higher transcriptional activity. Furthermore, this also helps 

to enhance gene diversification in certain gene families, that code for essential key 

proteins, such as the kinesin family for example (Glöckner et al., 2014). The recently 

sequenced genome of R. filosa is only the second rhizarian genome, the other available 

whole genome is from Bigelowiella natans (Curtis et al., 2012). Keeping in mind that the 

supergroup Rhizaria constitutes one of the six, respectively eight major branches of the 

eukaryotes (Adl et al., 2013), the availability of only two whole genomes is rather scarce. 

The R. filosa genome is, therefore, an important step into a better understanding of the 

evolution of the eukaryotes. 

 

 Goals of this project 3.8

Cell division, mitosis, cytokinesis and cell polarity are key points of the reproduction cycle. 

Disturbances of these fundamental processes cause chromosomal aberrations, 

uncontrolled growth and cell division and thus direct contribution to an irate 

development of the cell. 

Ste20-like kinases and their signalling partners have been shown to be regulatory 

elements of cell division, mitosis and cytokinesis (Manning et al., 2002b). Additionally, 

they also control a multitude of different other cellular processes. The removal of these 

regulator proteins should lead to a drastically altered phenotype of the cell.  

The genome of D. discoideum comprises 17 Ste20-like kinases and encodes the regulator 

protein Mo25. It has been reported that Mo25 is a master regulator of a number of 

cellular processes and an avid modulator of kinase activity (Filippi et al., 2011).  

The major aim of this thesis was to investigate Mo25, its interactions and regulatory 

pathways.  

A second goal was the functional characterisation of the Ste20-like kinases Fray1, Fray2 

and DstC of D. discoideum which all have homologues in higher eukaryotes.  

The third endeavour of this thesis was to map and characterise the actin and actin related 

genes in the genome of the recently sequenced fresh water foraminifer R. filosa. 
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4 Materials and Methods 

 Materials 4.1

4.1.1 Instruments 

Balances        Sartorius 

BioDocAnalyze       Biometra 

Fluorescence spectrometer      LS 55 Perkin Elmer 

Gene pulse electroporator Xcell     BioRad 

Gelsystem MiniPROTEAN      BioRad 

PCR-thermocycler Tpersonal      Biometra 

pH-meter pH720        Inolab WTW series 

Power supplies       BioRad, Biometra,  

         Consort 

Protein transfer Transblot Semi-Dry     BioRad 

Protein transfer TF 77XP      Serva 

Real time PCR Opticon III instrument     MJ Research 

Shaker Orbital Incubator SI500     Stuart 

Shaking incubator with temperature control    Memmert 

Shakers for D. discoideum cultures     Kühner 

Sonficator Sonifier250      Banson 

Thermomixer        Eppendorf 

Tabletop film processor Curix 60     Agfa 

Vortex Genie 2       Bender & Hobein 

Waterbath        GFL, Kühner 

 

Microscopes 

Axiovert 25        Carl Zeiss 

Axiovert 200M       Carl Zeiss 

LSM 510 Meta confocal microscope     Carl Zeiss 
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Objectives 

10x A-Plan 0.25 Ph1       Carl Zeiss 

20x LD A-Plan 0.30 Ph1      Carl Zeiss 

40x LD A-Plan 0.50 Ph2      Carl Zeiss 

63x Neofluar 1.4 oil immersion objective    Carl Zeiss 

100x Neofluar 1.3 oil immersion objective    Carl Zeiss 

 

Centrifuges 

GS-6KR         Beckman 

J2-21M/E         Beckman 

J6-HC          Beckman 

Microcentrifuge 5415 D, 5417 R      Eppendorf 

Optima LE-80K        Beckman 

Optima TL ultracentrifuge       Beckman 

 

Rotors 

JA-10, JA-14, JA-20       Beckman 

Ti35, Ti45, Ti70       Beckman 

TLA 100.3        Beckman 

 

4.1.2 Computer Programs 

Adobe CS2   Adobe Systems 

Adobe Acrobat Pro Extended   Adobe Sytems 

ApE plasmid editor v1.10.4      M. Wayne Davis 

AxioVision        Carl Zeiss 

BioDoc Analyze       Biometra 

BioEdit 7.0.9.0        Tom Hall 

ClustalX2   Des Higgins 

CorelDraw 12        Corel Corporation 

EndNote X7        Thomson Reuters 
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ImageJ 1.44p        Wayne Rasband 

LSM 5, 4.2 SP1        Carl Zeiss 

Microsoft Office       Microsoft Corporation 

OpenAstexViewer 3.0       Mike Hartshorn 

TreeView 1.6.6        Roderic D. M. Page 

ZEN         Carl Zeiss 

4.1.3 Online Programs  

DictyBase     www.dictybase.org 

ExPASy     www.expasy.org 

MUSCLE    www.ebi.ac.uk 

NCBI     www.ncbi.nlm.nih.gov 

NetPhosK    www.cbs.dtu.dk/services/NetPhosK/ 

NEB-tools    www. tools.neb.com 

RCSB-PDB     www.rcsb.org 

Reticulomyxa BLAST Server  www.genome.imb-jena.de/reti_blast/BlastReti.cgi 

SMART     www. smart.embl-heidelberg.de 

 

 

4.1.4 Laboratory consumables 

1.5 ml centrifuge tubes       Sarstedt 

Amersham Hyperfilm ECL       GE Healthcare 

Cell culture plates, 24 wells       Starlab Int. 

Cell culture dishes, Ø 100 mm x 20 mm     Greiner bio-one 

Dialysis tubings Type 8, 20, 27      Biomol 

Gel-blotting paper 3MM Chr       Whatman 

GFP-Nano-Trap        Chromotek 

High Pure Plasmid Isolation Kit      Roche 

High Pure PCR Product Purification Kit     Roche 

High precision cuvettes 10mm      Hellma 

Nitrocellulose transfer membrane Protran BA85    Whatman 
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PCR tubes Thermo Tube 0.2 ml      Peqlab 

PCR product cloning kit       Qiagen 

Phusion High-Fidelity DNA polymerase     New England Biolabs 

Petri dishes Ø 92 mm x 16 mm      Sarstedt 

Pipettes 10 ml, 25 ml        Sarstedt 

Pipet tips         Biozym, Gilson, Starlab 

Plasmid DNA Purification Maxi Kit      Macherey Nagel 

Quantitect SYBR1 green PCR Kit     Qiagen 

Restriction Enzymes        New England Biolabs 

RNeasy Mini Kit        Qiagen 

Sterile filter, Filtropur S 0.2      Sarstedt 

Transcriptor High Fidelity cDNA Synthesis Kit    Roche 

Tubes 15 ml, 50 ml        Sarstedt 

Ultracentrifuge tubes 1.5 ml       Beckman 

 

4.1.5 Reagents 

Standard laboratory chemicals were mainly purchased from Biomol, Biorad, Fluka, 

Invitrogen, Merck, Peqlab, Roche, Roth, Serva and Sigma-Aldrich and had the degree of 

purity ‘p.a.’ unless otherwise mentioned. Media and buffers used in this study were 

prepared with de-ionised water (Millipore), sterilised either by autoclaving or passing 

through a micro-filter (pore size 0.2 μm). 

 

4.1.6 Antibodies 

Primary antibodies used in this study 

Actin, D. discoideum (Act-1)  monoclonal   Simpson et al (1984) 

GFP (K3-184-2)   monoclonal   Noegel et al (2004) 

GST (268-44-6)   monoclonal   Faix et al (1998) 

Fray1     polyclonal   Andreas Batsios 

Mo25     polyclonal   Susanne Köhler 

SvkA     polyclonal   Ludwig Eichinger 
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Secondary antibodies used in this study 

Goat-anti-mouse IgG Cy3-conjugated     Invitrogen 
Anti-mouse IgG horseradish peroxidase-linked (ECL)   GE Healthcare 

 

4.1.7 Vectors 

pDEX-GFP(g418)-N1        Meino Rohlfs 

pDEX-GFP(g418)-N2        Meino Rohlfs 

pDEX-GFP(g418)-C2        Meino Rohlfs 

pDRIVE         Qiagen 

pGEX-6P-1         GE Healthcare 

pLPBLP         Faix et al (2004) 

 

Constructs generated  

pDEX-GFP(g418)-C2 + Mo25 K17A     present study 

pDEX-GFP(g418)-C2 + Mo25 K34A     present study 

pDEX-GFP(g418)-C2 + Mo25 K34A+K38Q    present study 

pDEX-GFP(g418)-C2 + Mo25 K132A     present study 

pDEX-GFP(g418)-C2 + Mo25 R227A     present study 

pDEX-GFP(g418)-C2 + Mo25 R240A     present study 

pDEX-GFP(g418)-C2 + Mo25 R240A+F243A    present study 

pDEX-GFP(g418)-C2 + Mo25 F258A+M259A    present study 

pDEX-GFP(g418)-C2 + Mo25 M260A     present study 

pGEX-6P-1 + Mo25 K17A      present study 

pGEX-6P-1 + Mo25 K34A      present study 

pGEX-6P-1 + Mo25 K34A+K38Q     present study 

pGEX-6P-1 + Mo25 K132A      present study 

pGEX-6P-1 + Mo25 R227A      present study 

pGEX-6P-1 + Mo25 R240A      present study 

pGEX-6P-1 + Mo25 R240A+F243A     present study 

pGEX-6P-1 + Mo25 F258A+M259A     present study 

pGEX-6P-1 + Mo25 M260A      present study 
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pGEX-6P-1 + Mo25 Mo25 cDNA     present study 

pGEX-6P-1 + Mo25 Dr FISH      present study 

pGEX-6P-1 + Mo25 Hs HUMAN     present study 

pLPBLP Fray1 KO B       present study 

pLPBLP Fray2 KO       present study 

CreLox Fray2        present study 

pDEX-GFP-N1 Fray1       present study 

pLPBLP FRIP        present study 

pDEX-GFP(g418)-N2 DstC S411/T414/S418    present study 

pDEX-GFP(g418)-N2 DstC S411D/T414E/S418D   present study 

pDEX-GFP(g418)-N2 DstC S411A/T414A/S418A   present study 

pDEX-GFP(g418)-N2 DstC Y404     present study 

pDEX-GFP(g418)-N2 DstC Y404E     present study 

pDEX-GFP(g418)-N2 DstC Y404F     present study 

pDEX-GFP(g418)-N2 DstC Y404_s     present study 

pDEX-GFP(g418)-N2 DstC Y404E_s     present study 

pDEX-GFP(g418)-N2 DstC Y404F_s     present study 

 

4.1.8 Bacterial strains 

Klebsiella aerogenes 

E. coli DH5α         Invitrogen 

E. coli DH10Bac        Invitrogen 

E. coli BL21 RIL        Stratagene 

E. coli ArcticExpress RIL       Stratagene 
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4.1.9 D. discoideum strains 

Designation Resistance Constructed by/for 

Ax2 (laboratory wild-type)   

Ax2 GFP G 10 Meino Rohlfs 

Ax2 + Fray1 G 10 Meino Rohlfs 

Fray1 KO B 5 present study 

Fray2 KO B 5 present study 

Fray2 KO Cre/Lox - present study 

Fray2Fray1 KO B 5 present study 

FRIP KO B 5 present study 

Mo25 KO B 5 Susanne Köhler 

Mo25 KO + GFP Mo25 G 10 Susanne Köhler 

Mo25 KO + Mo25 GFP G 10 Susanne Köhler 

Mo25 KO + Mo25 K17A G 10 present study 

Mo25 KO + Mo25 K34A G 10 present study 

Mo25 KO + Mo25 K34A+K38Q G 10 present study 

Mo25 KO + Mo25 K132A G 10 present study 

Mo25 KO + Mo25 R227A G 10 present study 

Mo25 KO + Mo25 R240A G 10 present study 

Mo25 KO + Mo25 R240A+F243A G 10 present study 

Mo25 KO + Mo25 F258A+M259A G 10 present study 

Mo25 KO + Mo25 M260A G 10 present study 

 

 Methods 4.2

4.2.1 Molecular methods 

Standard molecular biology protocols were performed essentially as described (Sambrook 

and Russel, 2001). Genomic DNA from D. discoideum strains was isolated using the LysB 

buffer (10 mM Tris pH 8.0, 50 mM KCl, 2.5 mM MgCl2, 0.45% NP40, 0.45% Tween20, 

0.5 µg/µl Proteinase K) (Charette and Cosson, 2004). Total RNA from D. discoideum 
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strains was purified using the RNeasy Mini Kit (Qiagen), and cDNA was subsequently 

synthesised using the Transcriptor High Fidelity cDNA Synthesis Kit (Roche). Polymerase 

chain reactions (PCRs) were performed with either Taq-Polymerase or Phusion High-

Fidelity DNA Polymerase (New England Biolabs) according to the manufacturer’s manual. 

PCR products were cloned into expression vectors using standard restriction enzyme 

mediated cloning or via the PCR product cloning kit (Qiagen). Plasmid DNA was obtained 

from E. coli by using standard alkaline lysis miniprep or by using the silica-based mini and 

maxiprep kits (Roche, Macherey Nagel). Chemically competent E. coli cells were prepared 

according to the CaCl2 method (Dagert and Ehrlich, 1979). The accuracy of the DNA 

sequences inserted into the respective expression vectors was controlled by sequencing 

using specific primers (Eurofins MWG Operon, Ebersberg). The real time PCR was 

performed essentially as described (Farbrother et al., 2006).  

 

4.2.2 Biochemical Methods 

4.2.2.1 SDS-Polyacrylamide Gel Electrophoresis 

Protein mixtures were separated by standard discontinuous SDS-PAGE (Laemmli, 1970) 

and either stained with Coomassie Brilliant Blue R 250 or transferred onto a nitrocellulose 

membrane via semi-dry Western blotting using a transfer buffer (25 mM Tris pH 8.5, 

190 mM glycine, 20% methanol, 0.02% SDS) essentially as described (Towbin et al., 1979). 

The membranes were blocked with nonfat milk powder in NCP buffer (10 mM Tris pH 7.3, 

150 mM NaCl, 0.05% Tween20), incubated with the particular primary and secondary 

antibodies and developed using the Enhanced Chemiluminescence System. 

 

4.2.2.2  GST-tagged protein expression, purification and pull-down assay 

Constructs in pGEX vectors, inducibly expressing the protein of interest with an N-

terminal GST-tag, were transformed into BL21 RIL or BL21 RIL ArcticExpress E. coli strains. 

Cultures were inoculated and grown overnight in LB medium containing the particular 

antibiotics at 37°C, then diluted 1:20 and grown at 37 °C to an OD600 of 0.4 – 0.8. 

Expression was induced by adding 0.5 mM IPTG to the culture and cells were grown at 
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37°C for 2 hours or at 16°C or 20°C overnight. The bacteria were pelleted and 

resuspended in PBS (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO4, 

pH 7.4) containing 2 mM DTT, 1 mM EDTA, 5 mM benzamidine, 100 µM PMSF and one 

Complete Protease Inhibitor cocktail tablet (Roche) per 50 ml lysis buffer. The cells were 

opened by sonification in the presence of 0.5 mg/ml lysozyme, the lysates were 

centrifuged (35,000 g for 20-30 minutes at 4°C) and the supernatant was incubated with 

the glutathione-sepharose 4B resin at 4°C for 2-3 hours under slight agitation. The matrix 

was washed with 10-20 column volumes of lysis buffer and either kept on ice for 

following protein interaction pull-down assays with D. discoideum cell lysates or eluted 

with TEDAB buffer pH 7.4 containing 30 mM reduced glutathione. The purity and quality 

of the protein in the appropriate fractions were analysed by SDS-PAGE. 

In case a pull-down assay was performed, 5 x 107 – 1 x 108 D. discoideum cells were 

opened in 1 ml homogenisation buffer (30 mM Tris pH 8.0, 4 mM EGTA, 2 mM EDTA, 

2 mM DTT, 30% sucrose, 5 mM benzamidine, 100 µM PMSF, 0.2 mM ATP Na2 salt, one 

Complete Protease Inhibitor cocktail tablet (Roche) per 20 ml buffer) by freezing and 

thawing or by the addition of 1% Triton X-100 to the homogenisation buffer. The whole 

cell lysate was centrifuged at 10,000 g and 4°C for 15-30 minutes and the supernatant 

was used for incubation with the GST-tagged purified protein bound to the sepharose. 

After an incubation of about 90 minutes, the beads were washed with 10-100 column 

volumes of homogenisation buffer and boiled in SDS sample buffer. The interaction of 

proteins was subsequently analysed by SDS-PAGE and Western blotting. 

 

4.2.2.3 Immunoprecipitation 

For the identification of interacting proteins the GFP-Nano-Trap (Chromotek) technique 

was used (Rothbauer et al., 2008). 5 x 107 – 1 x 108 D. discoideum cells overexpressing a 

recombinant GFP-tagged protein were harvested and opened in lysisbuffer (25 mM 

HEPES pH 7.4, 50 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 5 mM benzamidine, 

1 µM PMSF, one Complete Protease Inhibitor cocktail tablet (Roche) per 20 ml buffer, 5% 

Glycerol, 1% Triton X-100). The lysate was centrifuged for 15-30 minutes at 10,000 g and 

4°C and subsequently the supernatant was incubated with 15 – 20 µl GFP-Trap agarose 

beads equilibrated in lysis buffer. After about 60 – 90 minutes incubation at 4°C under 
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gentle end-over-end mixing the beads were washed according to the manufacturer’s 

protocol and the GFP-tagged protein and additional bound proteins were eluted by 

boiling in SDS-sample buffer. Proteins were separated by SDS-PAGE and stained with 

Coomassie Brillant Blue R 250 or with silver stain (O'Connell and Stults, 1997). Bands of 

interest were cut out from the gel and analyzed and identified by MALDI-TOF or Orbitrap 

mass spectrometry (ZfP, LMU Munich). 

 

4.2.2.4 Live-cell microscopy 

Cells were transferred into an open glass-bottomed chamber, and washed twice with 

phosphate buffer (PB, 14.6 mM KH
2
PO

4
, 2 mM Na

2
HPO

4
, pH 6.1). Confocal images were 

taken using an inverted LSM 510 Meta confocal microscope (Zeiss) equipped with a 63x 

Neofluar 1.4 or a 100x Neofluar 1.3 oil immersion objective. For excitation, the 488-nm 

argon ion laser line, the 543-nm and the 633-nm helium neon laser lines were used, and 

emission was collected using 510-525 nm band-pass, 585-615 nm band-pass or a 650 nm 

long pass filter. 

 

4.2.2.5 Immunoflourescence microscopy 

For immunolabeling, Ax2 wild-type or mutant cells settled onto glass coverslips, 

previously washed with 5% HCl, or cells grown on coverslips were fixed in ice-cold 

methanol for 10 min or with paraformaldehyde/picric acid (2% paraformaldehyde, 10 mM 

Pipes, 15% saturated picric acid, pH 6.0) for 20 min and post-fixed with 70% ethanol for 

10 min, followed by PBS/glycine and PBG (0.5% BSA, 0.05% fish gelatine, 1xPBS, passed 

through 0.5 μm filter) followed by three washing steps. Fixed preparations were 

incubated with monoclonal or polyclonal antibodies, washed three times with PBG and 

labelled by fluorescence dye-coupled secondary antibodies. F-actin was stained with 

TRITC-labelled phalloidin. Nuclei were detected with either TO-PRO-3 iodide or DAPI. 

After staining, coverslips were embedded in Gelvatol and analysed via the microscope.  
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4.2.2.6 Confocal microscopy 

Confocal microscopy data were acquired as described (Weber et al., 1999). All pictures 

were taken on an inverted Axiovert LSM 510 Meta confocal microscope (Zeiss) with a 63x 

or 100x oil immersion objective with a numerical aperture of 1.4 and 1.3, respectively. 

Excitation of fluorophores was achieved with the 488 nm argon ion laser line, the 543 nm 

and 633 nm helium neon laser lines, and emission was collected using 510-525 nm band-

pass, 585-615 nm band-pass or 650 nm long-pass filters. When imaging fluorescent 

D. discoideum mutants, cells were transferred into an open glass-bottomed chamber and 

recorded at 10-seconds intervals.  

 

4.2.3 Cell biological methods 

4.2.3.1 D. discoideum cell culture and transformation 

D. discoideum Ax2 (laboratory strain wild-type) and mutant cells derived from Ax2 were 

cultivated axenically (Urushihara, 2006) in sterile HL5 medium (Formedium), either in cell 

culture dishes, in shaking culture at 150 rpm or on lawns of K. aerogenes. For long term 

storage, cells were frozen in D. discoideum storage medium (82% AX-medium, 9% Horse 

Serum, 9% DMSO) or spores were obtained from phosphate agar plates and frozen in 

Soerensen buffer pH 6.0 (14.6 mM KH2PO4, 2 mM Na2HPO4) (Malchow et al., 1972).  

D. discoideum wild type or mutant cells were transformed with the appropriate plasmids 

by electroporation. 2 x 107 cells were extensively washed in cold Soerensen buffer and 

electroporation buffer pH 6.0 (50 mM sucrose, 10 mM KH2PO4), resuspended in 1 ml cold 

electroporation buffer, and then electroporated in the presence of about 25 µg DNA in a 

4 mm electroporation cuvette using a Gene Pulser XCell (Biorad) and the standard 

settings (square wave, V= 1.0 kV, 1 ms pulse length, two pulses, 5 seconds pulse interval). 

Subsequently the cells were transferred to a cell culture dish and after gentle shaking 

(50 rpm, room temperature, 15 minutes) 2 µM CaCl2 and 2 µM MgCl2 were added. After 

another 15 minutes incubation, HL5 medium was added and the cells were allowed to 

recover for about 24 hours before the respective antibiotic (either 10 µg/ml G418 or 

5 µg/ml blasticidin) was added to select the transformants. Single clones were obtained 

by spreader dilution on K. aerogenes lawns. Successfully isolated single clone 
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transformants were checked by microscopy and Western blot analysis using the 

appropriate antibodies. 

Overexpression mutants were transformed with constructs for the expression of 

fluorescently labelled proteins (with C- or N-terminal GFP tags). All GFP-constructs were 

expressed under the actin15 promoter. To generate knock-out mutants, gene 

replacement constructs with a blasticidin resistance cassette were transformed and 

successful transformants were checked by PCR analysis. 

 

4.2.3.2 Growth curve 

Routinely 2x105 cells were seeded in 30 ml of HL5 medium in a 100 ml flask and incubated 

at 21°C and 150 rpm on a shaker. The number of cells was determined using a Neubauer 

chamber at least once a day for the next 1-2 weeks. For each cell type, three independent 

cultures were counted in parallel. 

 

4.2.3.3 Analysis of cell development 

To induce development, cells were washed twice in Soerensen buffer pH 6.0 and adjusted 

to a density of 107 
cells per ml in the buffer. Subsequently the cells were transferred to 

nutrient-free phosphate agar plates. Developmental stages were documented by time-

lapse photography. 

Lysates of cells were taken every three hours over a period of 24 h to determine protein 

expression during development by Western blot analysis employing specific antibodies.  

 

4.2.3.4 Phototaxis assay 

Phototactic behaviour of wild type and mutants was tested as described previously (Darcy 

et al., 1994) with minor modifications. Cells from the edges of colonies growing on 

K. aerogenes lawns were transferred with a sterile inoculation loop to water agar plates 

to form slugs. The plates were transferred into a dark box with a 2 mm wide opening for 

the entry of light. Plates were incubated at 21°C for at least 48 h. To visualise the slugs 

and their tracks, cells were transferred onto a nitrocellulose membrane and were stained 
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with 0.1% amidoblack in 25% 2-propanol and 10% acidic acid for 10 min and destained in 

water. 

 

4.2.3.5 Immunofluorescence 

To study subcellular localisation of proteins within the cell, indirect immunofluorescence 

was performed. Exponentially growing cells were applied on coverslips which were 

previously washed with 3.6% HCl and rinsed with H2O. After allowing the cells to settle on 

the coverslips the medium was removed and the cells were fixed with -20°C methanol 

unless otherwise noted. After a 10-15 minute incubation at -20°C, the coverslips were 

washed several times with PBS (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM 

KH2PO4, pH 7.4) supplemented with 100 mM glycin. Subsequently, the fixed samples were 

washed with PBG (PBS + 0.5% BSA, 0.045% fish gelatin) and incubated with the primary 

monoclonal antibody overnight at 4°C. The fixed preparations were washed with PBG and 

incubated for 60 minutes with the appropriate secondary antibody (goat-anti-mouse IgG 

Cy3-conjugated, unless otherwise mentioned). DNA was stained with either TO-PRO-3 

iodide or DAPI. The stained samples were quickly rinsed with ddH2O, embedded in 

gelvatol and stored in the dark at 4°C (Hagedorn et al., 2006).  

 

4.2.3.6 Osmotic shock and determination of cell survival 

D. discoideum cells were grown to a density of 3 – 4 × 106 cells/ml in Erlenmeyer flasks. 

The cells were centrifuged, and washed in cold Soerensen. Subsequently, the cells were 

starved in Soerensen under constant shaking at 22°C. 2M sorbitol was added to the 

culture for a final concentration of 0.8 M sorbitol. One sample was collected before, the 

other samples were collected after treatment with sorbitol at time points 0, 20, 40, 60 

and 120 min. To measure cell survival, a serial dilution was performed and approximately 

100 D. discoideum cells were plated onto SM agar plates with a non-pathogenic 

K. aerogenes strain. D. discoideum plaques were counted after 2 – 3 days of incubation at 

21°C (Na et al., 2007).  
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5 Results 

 Ste20-like kinase signalling and cytoskeletal proteins in D. discoideum 5.1

and R. filosa 

Ste20-like kinases are a group of serine/threonine-kinases that are ubiquitous in all 

eukaryotic species (Arasada et al., 2006). The name is derived from the Ste20 kinase in 

S. cerevisiae. Ste20-like kinases play an important role in many pathways, for instance the 

MAP-kinase signal transduction pathways. Other Ste20-like kinases are involved in 

processes such as apoptosis and morphogenesis (Dan et al., 2002), and can also interact 

with cytoskeletal proteins. The Ste20-like kinome of D. discoideum comprises a total of 

17 kinases. These are divided into two subfamilies, the germinal centre kinases (GCK; 

13 members) and the p21-activated kinases (PAK; 4 members) (Figure 9). The investigated 

kinases Fray1, Fray2 and DstC from D. discoideum and the newly discovered Ste20 from 

R. filosa all belong to the GCK-family (Figure 6).  

 

Figure 6: The Ste20-like kinases of this work compared to SvkA from D. discoideum 
Position and percent identity of the serine/threonine-kinase domains in the investigated kinases Fray1 
(Dd_Fray1), Fray2 (Dd_Fray2), DstC (Dd_DstC) from D. discoideum and the Ste20-like kinase (Rf_Ste20) from 
R. filosa are depicted in comparison to severin kinase (Dd_SvkA). SvkA was the first Ste20-like kinase that 
was described in D. discoideum. The catalytic domain is highlighted in red and the white numbers display 
the identity of the catalytic sites to SvkA. 

Severin kinase (SvkA) was the first member of the Ste20-like kinases to be described in 

D. discoideum. In vitro, SvkA phosphorylates the actin binding protein severin (Eichinger 
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et al., 1998). Further on, SvkA is an important regulator for the late stages of cytokinesis 

(Rohlfs et al., 2007). By using a GFP-Trap resin we identified a novel binding partner of 

SvkA, the 40 kDa protein Mo25 (morula protein 25) (personal communication, Susanne 

Köhler). In human Mo25 is known to form a trimeric complex with a pseudokinase and a 

Ste20-like kinase. Disruption of this complex causes the inherited disease Peutz-Jeghers 

syndrome (Baas et al., 2003, Boudeau et al., 2004).  

We investigated this Ste20-like kinase interacting protein in D. discoideum in depth due to 

its high conservation throughout the eukaryotes (Figure 7). 

 

Figure 7: Comparison of the D. discoideum Mo25 to other species  
Comparison of the full length Mo25 of D. discoideum with the corresponding proteins in the other species, 
namely H. sapiens (Hs_CAB39), S. pombe (Sp_Pmo25), Neurospora crassa (N. crassa) (Nc_HymA) and 
S. cerevisiae (Sc_Hym1). The white numbers indicate the identity compared to D. discoideum Mo25. 

 

In D. melanogaster the Frayed knockout causes severe swelling of neuronal tissue and 

axonal defasciculation of the nerves (Leiserson et al., 2000a). The kinase domains of the 

D. discoideum Fray1 and Fray2 are 45% and 54% identical to their equivalents Frayed in 

D. melanogaster and OSR1 in H. sapiens (Figure 19). Here, we generated the knockout 

clones Fray1-minus, Fray2-minus, and the double knockout Fray2Fray1-minus in 

D. discoideum for phenotypical investigation.  

GFP-constructs of the Ste20-like kinase DstC in D. discoideum have been described to 

localise to actin rich phagocytic cups during uptake of yeast particles (Gergana Gateva, 

personal communication). Additionally, these GFP-constructs also localise to acidic 

vesicles in the cell. Here we constructed an array of point mutation constructs that either 

mimic permanent phosphorylation or cannot be phosphorylated at all, to analyse the 

localisation of GFP-DstC in further detail. 
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Figure 8: Sequence alignment of the Ste20-like kinases of this work  
The Ste20-like kinases Fray1 (Dd_Fray1), Fray2 (Dd_Fray2), DstC (Dd_DstC) and SvkA (Dd_SvkA) of 
D. discoideum and Ste20 (Rf_Ste20) of R. filosa are aligned. Roman numerals above the alignment mark the 
12 conserved subdomains of the Ste20-kinase group as described (Hanks and Hunter, 1995a). Identical 
residues have a black, conserved residues a grey background. The green bar indicates the signature motif of 
the protein kinases which is implicated in recognition of peptide substrates. The red bar indicates the 
subdomain in which the Threonine (red asterisk) needs to be phosphorylated to activate the kinases. The 
high level of similarity of the kinase domains is evident. 

 

Recently the whole genome of the fresh water Foraminifera R. filosa was totally 

sequenced. It is the first foraminiferal genome to be deciphered (Glöckner et al., 2014). 

In this bioinformatics project, it was the aim to identify, map and characterise potential 

actin and cytoskeleton-related proteins from the total sequence data. In Figure 8 a 

sequence alignment of the catalytic domains of the analysed Ste20-like kinases Fray1, 

Fray2 and DstC from D. discoideum and the Ste20-like kinase from R. filosa is depicted. 

The high conservation of the kinase fold and the phosphorylation site (threonine) is 

apparent. 
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 The protein Mo25 in D. discoideum 5.2

5.2.1 Mo25 regulates cytokinesis in D. discoideum 

In D. discoideum the mo25 (DDB_G0284307) gene on chromosome 4, codes for the Mo25 

protein with 363 amino acids and a size of 42 kDa. Sequence comparison using MUSCLE 

showed a very high conservation throughout the eukaryotes. The phylogenetic analysis 

revealed a 60% identity of Mo25 from amoeba to the calcium-binding protein 39 (CAB39) 

from human (Figure 10). D. discoideum Mo25 modelled with Swiss model to CAB39 of 

H. sapiens (PDB: 2wtkA) exhibited the typical six helical repeats and the clamp-like 

structure of the protein (Figure 15).  
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Figure 10: Sequence alignment of Mo25 with other Mo25 proteins 
Sequence alignment of Mo25 from D. discoideum (Dd) with the corresponding proteins from H. sapiens 
(Hs), Danio rerio, (Dr), C. elegans (Ce), S. pombe (Sp), S. cerevisiae (Sc) and N. crassa (Nc). The coloured 
asterisks mark the positions of the D. discoideum Mo25 in which point mutations were introduced. Identical 
residues have a black, conserved residues a grey background. The high level of conservation throughout the 
eukaryotes is apparent. 

 

5.2.2 Generation of Mo25-minus cells  

To analyse the function of Mo25, Ax2 wild type cells were transformed with a gene 

replacement construct. The mo25 gene was disrupted by replacing the core region with a 

blasticidin-S-resistance cassette by homologous recombination (Figure 11). Two 

independent Mo25-minus clones were generated (personal communication, Susanne 

Köhler).  

The Mo25-minus clones were identified by polymerase chain reaction (PCR).  
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Figure 11: Generation of Mo25-minus mutants  
(A) To disrupt the mo25 gene, a 5’-prime and a 3’-prime fragment were amplified by PCR from genomic 
DNA and cloned into a blasticidin-S-resistance cassette containing pLPBLP vector (Faix et al., 2004). (B) The 
resulting construct was transformed into wild type cells. (C) The disruption of the gene was achieved 
through homologous recombination. The successful recombination events were verified by PCR and later 
confirmed by the absence of Mo25 in Western blots. 

 

5.2.3 Mo25-minus cells exhibited a severe cytokinesis defect and an altered 

developmental phenotype 

The initial characterisation of the phenotype of the Mo25-minus cells was carried out by 

Susanne Köhler during her diploma thesis in the institute (Diploma thesis, Susanne Köhler, 

2009). Flourescence images showed that Mo25-minus cells were drastically larger than 

wild type cells (Figure 12).  
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Figure 12: Mo25-minus cells exhibited a severe phenotype  
Mo25-minus and wild type cells expressing GFP (green) were mixed, fixed with -30°C methanol and stained 
with anti-actin (red) and the DNA stain ToPro-3 (blue). The Mo25-minus cell was 10 fold bigger and multi-
nucleated as compared to wild type cells (bar = 10 µm). 

 

The quantification of nuclei showed that in Mo25-minus cells 60% of all nuclei were in 

cells with more than four nuclei. In contrast, in wild type cells nearly all nuclei were in 

cells with only one or two nuclei. Expression of the Mo25-GFP construct rescued this 

phenotype completely. When grown in shaking culture the Mo25-minus cells grew slower 

and to a lower density compared to the wild type. Also the growth rate on a bacterial 

lawn was delayed and colony sizes were much smaller. The starvation-induced 

development was delayed in cells lacking Mo25, whereas the wild type streamed and 

aggregated. During the developmental cycle D. discoideum forms an intermediate, the so 

called slug, comprised of several thousand cells that can move towards light, before 

continuing with the formation of fruiting bodies. The Mo25-minus cells were able to form 

these slugs, but they were largely immobile compared to the wild type.  
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Figure 13: Mo25-minus revealed a loss of slug movement 
The red arrows indicate the maximum run length of the slugs. The Mo25-minus strain was able to form 
slugs but they were unable to move towards the light source (black asterisks). The rescue construct with the 
GFP at the N-terminus was not able to revert the phenotype completely to wild type, whereas the the 
construct with the GFP at the C-terminus rescued the defect completely (bar = 1cm) 

 

Interestingly, rescue experiments with GFP constructs of Mo25 showed that the N-

terminal fusion could only partially rescue the slug motility defect, indicating that the GFP 

hindered the function of Mo25 in slug movement. On the other hand, a Mo25 construct 

with a C-terminal GFP tag fully rescued this motility defect (Figure 13). 

 

5.2.4 Interaction of Mo25 with SvKA 

As mentioned before, Mo25 was identified as interacting partner of the Ste20-like kinase 

SvkA. The structure of Mo25 seems to be so conserved, that E. coli expressed GST-tagged 

Mo25 constructs from H. sapiens, Danio rerio and D. discoideum interacted with SvkA 

from D. discoideum (Figure 14). This shows the tremendous conservation of the 

Mo25/Ste20-like kinase interface in evolution.  
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Figure 14: Mo25 from H. sapiens, D. rerio and D. discoideum interacted with SvkA  
(A) E.coli expressed GST-tagged Mo25 constructs from H. sapiens (Hs), D. rerio (Dr) and D. discoideum (Dd) 
were incubated with lysate from wild type  D. discoideum cells, separated by SDS-PAGE and stained with 
Coomassie Brilliant Blue. (B) Western blot analyses of the pulldown experiment using an anti-SvkA antibody. 
All GST-tagged Mo25 constructs were able to pull down SvkA from D. discoideum wild type lysate. GST was 
used as a control. 

 

5.2.5 Generation of Mo25 point mutations  

In order to further investigate the interaction of Mo25 and SvkA, we generated several 

Mo25-GFP rescue constructs with distinct point mutations. These mutations cover 

sequence areas already known to be essential for binding (Boudeau et al., 2003) as well as 

putative binding areas that were obtained from sequence and structural data analysis 

(Figure 15). We calculated a model of D. discoideum Mo25, using the three dimensional 

structures of human Mo25 (CAB39) co-crystallised with the Ste20-like kinases STRAD and 

LKB1. Areas outside the Mo25/Ste20-like kinase interface were considered as potential 

binding sites for so yet unknown interacting proteins and integrated into the mutational 

screens.  
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Figure 15: Mutational screen of D. discoideum Mo25  
(A) A 3D-structure of human CAB39 paired with the two interacting proteins STRAD and LKB1. (B) The 
D. discoideum Mo25 modelled to human CAB39 (PDB: 2wtkA) exhibited the characteristic six helical 
repeats. (C) D. discoideum Mo25 could be modelled into the distinct clamp like structure with a convex and 
a concave side. (D) Based on the known binding sites from published sequence and structural data analyses, 
distinct point mutations were introduced into the Mo25 sequence. 

 

We introduced eight different point mutation constructs, each one containing one or two 

distinct point mutations as summarised in Figure 15 and Figure 16. 

In human Mo25 R227 and M260 are known to be key players for the binding of the 

pseudokinase STRAD whereas R240 and F243 are needed to bind the kinase LKB1.  

As the rescue construct of Mo25 with GFP tag at the N-terminus of the protein was not 

able to revert the abnormal phenotype, we expected the GFP to block potential binding 

sites. Therefore, amino acids K17, K34 and K38 were chosen because of their prominent 

exposure at the N-terminus. The residue K132 was selected for being a very conserved 

positively charged island on the convex side of the protein amidst an otherwise negatively 

charged surface. 

The mutations F258A and M259A, also located on the surface of the Mo25 protein, were 

chosen randomly as an internal control mutation to test whether a mutation itself affects 

the properties of the protein (Figure 16). All chosen amino acid sites were mutated to 

nonpolar, alanine or to polar glutamine. Every point mutation construct was introduced 

into a GFP expression vector (pDex-GFP-C2) with a C-terminal GFP tag and subsequently 

transformed into a Mo25-minus background. 
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Figure 16: Location and function of the point mutations introduced into Mo25 
List of the point mutations introduced into Mo25. The first three mutations (red) are the known STRAD and 
LKB1 binding sites. The second batch of mutations (green) on the N-terminal end of the protein was chosen 
from structural analyses of the protein. The only mutation (yellow) on the convex side of Mo25 was 
introduced due to the fact that this site is highly conserved and has an exposed position as a positively 
charged island amidst an otherwise negatively charged surface. Another random mutation (black) was 
introduced to check if a mutation in principle affected the function of the protein.  

 

5.2.6 Mutated constructs of Mo25 have an effect on cytokinesis and slug motility 

To test the effect of the point mutations on directional slug movement and cytokinesis, 

we performed slug motility assays and quantified the number of nuclei per cell of every 

mutant strain with the point-mutated construct. If one of the selected residues was 

necessary for either slug motility or cytokinesis or both, the Mo25-minus phenotype 

should not be rescued by the respective mutated construct. Whereas, if the selected 

residue was neither crucial for the regulation of slug motility nor cytokinesis, the 

introduced point mutation construct should revert the Mo25-minus phenotype to wild 

type behaviour. As expected, Mo25 and M260A were essential for slug dynamics and 

cytokinesis. Surprisingly, R227A had almost no effect on slug motility but only a severe 

impact on cytokinesis. The mutations R240A and F243A had no effect on cytokinesis and 

only a moderate influence on slug motility. All other mutations had milder effects on 

cytokinesis as well as on slug motility (Figure 17). 
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Figure 17: The different Mo25 point mutation constructs had effects on slug motility 
and cytokinesis 
(A) Compared to the wild type, in Mo25-minus slug motility was completely abolished. Mo25 is essential for 
slug motility. The Mo25-rescue construct restored slug motility almost completely. Whereas M260 was 
absolutely crucial for Mo25 mediated slug motility, R240 & F243 and R227 played a less important role. K17, 
K34, K34 & K38 and K132 also had a smaller function in slug motility. The control mutations E258 & L259 did 
not affect directed slug motility. (B) Multicoloured bars indicate the percentage of nuclei in cells with one or 
two nuclei, whereas orange coloured bars depict the percentage nuclei in cells with three or more nuclei. 
Mo25 is essential for cytokinesis. In wild type 90% of the nuclei were in cells with one or two nuclei whereas 
in Mo25-minus only 40% of the nuclei were in mono- or di-nucleic cells and 60% of the nuclei were in multi-
nucleic cells. Mo25-rescue restored the minus phenotype completely. R227 and M260 exhibited a 
phenotype comparable to the Mo25-minus, contrary to R240 & F243 which did not affect cell division at all. 
The sites K17, K34 and K34 & K38 also affected cytokinesis but with less impact. The modification of K132 as 
well as L258 & M259 did not hinder the separation of cells in any case. 

 



Results 

59 

 

5.2.7 Interaction of Mo25-point mutated constructs with SvkA 

To further investigate the interaction of the Mo25 point mutated proteins with SvkA we 

performed glutathion-S-transferase pulldowns. Therefore, all point mutations were 

cloned into a GST-tag expression vector. The expressed proteins were incubated with wild 

type lysates. All GST-point mutation constructs interacted with Svka (Figure 18). 

 

Figure 18: Recombinant expressed Mo25 point mutation constructs were able to pull 
down SvkA 
(A) E. coli expressed GST-tagged Mo25 point mutation constructs were incubated with total cell lysate from 
wild type D. discoideum cells, separated by SDS-PAGE and stained with Coomassie Brilliant Blue. (B) The pull 
down of SvkA from D. discoideum wild type lysate with different Mo25 point mutation constructs subjected 
to Western blot analyses. SvkA was detected using an anti-SvkA antibody. All Mo25 point mutation 
constructs were able to pull down SvkA. GST was used as a control. 

 

 The Ste20-like kinases Fray1 and Fray2 of D. discoideum 5.3

5.3.1 Fray1 and Fray2 in D. discoideum 

The fray1 (DDB_G0278863) gene is located on chromosome 3, while the gene for fray2 

(DDB_G0276577) is located on chromosome 2 of the D. discoideum genome. These genes 

code for the serine/threonine kinases Fray1 with 574 aa (64 kDa) and Fray2 with 1,028 aa 

(116 kDa). The kinase domains of Fray1 (amino acid residue 95 to 358) and Fray2 (amino 

acid residue 69 to 331) contain the characteristic Ste20 group subdomains I to XI (Figure 

8) as described (Hanks and Hunter, 1995a). Furthermore, they are highly homologous to 

the kinase domains of Frayed in D. melanogaster and OSR1 and SPAK (Ste20-related 
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proline-alanine-rich kinase) in H. sapiens (Delpire and Gagnon, 2008) which are known to 

be key players in the regulation of ion homeostasis and volume control. Identities were 

determined employing BLASTp (Figure 19).  
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Figure 19: Kinase domains of the D. discoideum Fray1 and Fray2 are very similar to the 
corresponding domains in other species  
(A) Sequence alignment of the catalytic domain of Fray1 and Fray2 from D. discoideum (Dd) with the 
corresponding proteins from H. sapiens (Hs), C. elegans (Ce), D. melanogaster (Dm), S. cerevisiae (Sc), 
S. pombe (Sp) and N. crassa (Nc). Identical residues have a black, conserved residues a grey background. 
The sequences are highly conserved. (B) Comparison of the catalytic site of Fray1 of D. discoideum with the 
corresponding proteins from other species. The white numbers indicate the identity of the domains 
compared to D. discoideum Fray1. (C) The catalytic domain of Fray2 compared to Fray analogues in different 
species.  

 

5.3.2 Generation of Fray1 and Fray2-minus cells 

In order to investigate the function of Fray1 and Fray2, minus mutants were generated 

using the procedure described in 3.2.2 (Figure 11). Thus, translation of the fray1-mRNA 

should terminate before kinase subdomain I and the fray2-mRNA between the 

subdomains VIb and VII. By this method we obtained the knockout clones Fray1-minus, 

Fray2-minus and the double knockout Fray2Fray1-minus. Additionally, we generated a 

Fray1-overexpression strain by introducing a fray1-DNA-construct into the pDex-GFP-N1 

GFP-expression vector and subsequently transformed it into a wild type background. 

However, most likely due to the length of fray2, the construction of a GFP-fray2 fusion 

was not successful. The different gene disruption events were validated using PCR (Figure 

20). 
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Figure 20: Generation of Fray1-, Fray2- and Fray2Fray1-minus mutants 
(A) The scheme shows the fray1 and fray2 gene with the primer combinations used for the verification of 
the minus mutants. The coloured numbers in circles indicate the different primer combinations used. (B) 
Expected sizes of PCR fragments for the primer combination  were 1.5 kbp in the fray1-minus and no 
amplification in the wild type. For the amplification of the primer pair  2.3 kbp in the fray1-minus and 1.1 
kbp in the wild type were predicted. For the primer of  an amplification of 1.8 kbp in the fray1-minus and 
the wild type and 2.5 kbp for the fray2-minus was expected. For primer pair , a PCR-product with 1.25 
kbp was calculated for the fray2-minus and none in the wild type. With primer combination  an 
amplification band in the 1.6 kbp region for fray2-minus should have appeared and none for the wild type. 
With the primer pair  no product was expected in the fray2-minus and a of 3.0 kbp PCR product in the 
wild type. (C) The knockout cells exhibited no phenotype that was significantly different from the wild type. 

(a) wild type, (b) Fray1-minus, (c) Fray2-minus and (d) Fray2Fray1-minus (bars = 20µm). 

 

5.3.3 Fray1-GFP was distributed throughout the whole cell 

To check a possible localisation of Fray1, the GFP-Fray1-overexpression strain was mixed 

1:1 with the wild type. The cells were fixed with methanol and stained with polyclonal 

antibodies against Fray1 (red) and actin (blue). Confocal images show that Fray1 fusion 
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protein was distributed throughout the whole cell but could not be traced in the nucleus 

(Figure 21). Whereas the Fray1 overexpression construct could be stained by the 

antibody, an endogenous protein was not visible.  

 

Figure 21: Fray1-GFP did not localise to distinct subcellular regions 
Confocal images of a 1:1 dilution of wild type cells and a Fray1-GFP overexpressing wild type strain revealed 
that GFP-Fray1 (green) was distributed throughout the whole cell. Cells were fixed with -30°C methanol and 
stained with anti-Fray1 (red) and anti-Actin (blue) (bars = 10µm).  

 

5.3.4 Development of Fray1, Fray2 and Fray1Fray2-minus cells was normal 

In developmental studies, Fray2-minus did not show an altered phenotype, whereas 

Fray1-minus and Fray2Fray1-minus developed slightly slower compared to the 

development of wild type (Figure 22). Also the average run length of phototactic slugs of 

wild type, Fray1-minus, Fray2-minus and Fray2Fray1-minus was comparable (data not 

shown). 

By using real time-PCR the mRNA transcription levels of fray1 and fray2 were evaluated 

(Figure 23). RNA samples from a 24 hour developmental time course of D. discoideum 

were taken and analysed. As presented in Figure 23, fray1 and fray2 had both very low 

transcription levels throughout the whole D. discoideum life cycle. Only at time point 24 

hours, which represents the very last stage of development, the transcription level was 

slightly increased. This essay was performed in collaboration with the group of Prof. Dr. 

Angelika Noegel (Universität zu Köln, Germany). 
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Figure 22: Development of Fray1-, Fray2- and Fray2Fray1-minus cells was normal 
Wild type and Fray1-, Fray2- and Fray2Fray1-minus cells were recorded during different stages of 
development on phosphate agar plates. Fray2-minus cells developed comparable to the wild type, whereas 
Fray1- and Fray2Fray1-minus cells developed slightly slower (bars = 1cm) 

 

 

Figure 23: Transcription rate of the fray 1 and fray2 genes throughout the development 
of D. discoideum 
Real-time -PCR of total RNA samples from defined time points during development revealed that the 
transcription of fray1 and fray2 was very low throughout. Nevertheless, transcription increased in the later 
stages of development.  
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5.3.5 Growth of Fray1, Fray2 and Fray2Fray1-minus 

When grown in shaking culture, the Fray mutants reached higher densities compared to 

the wild type. The Fray2Fray1-minus showed a slight growth defect as it grew slower than 

the other cell lines but reached comparable densities (Figure 24A). Growth on bacterial 

lawn was not affected by the absence of Fray1, Fray2 or both (Figure 24B). 

 

Figure 24: Deletion of Fray1, Fray2 or both did not affect growth  
(A) Growth rates of wild type, Fray1-, Fray2-, and Fray2Fray1-minus cells in HL5 medium under shaking 
conditions. The growth of the minus strains was almost equivalent to the wild type. Although the minus 
strains grew to a higher density than the wild type. (B) Growth of wild type, Fray1-, Fray2-, and Fray2Fray1-
minus cells on lawns of non-pathogenic K. aerogenes. The diameter of the different D. discoideum strains 
were measured and colony sizes were calculated. All tested strains reached almost identical sizes. 

 

5.3.6 Osmotic shock survival 

To further examine the function of the Fray proteins the minus mutants were treated 

with osmotic shock. Briefly, cells in shaking culture were starved for one hour and 

subsequently exposed to hypertonic conditions (0.8 M sorbitol). Samples were taken at 

defined time points and plated onto bacterial lawn, a sudden disappearance of osmotic 

pressure. The emerging single colonies represented the surviving cells and were counted 

(Figure 25). 

While the wild type cells were not affected by the exposure to osmotic shock, the survival 

of knockout strains Fray1-minus, Fray2-minus and Fray2Fray1-minus was reduced. 
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Figure 25: Osmotic shock affected Fray1-, Fray2- and Fray2Fray1-minus 
Survival of wild type, Fray1-, Fray2-, and Fray2Fray1-minus cells when exposed to osmotic shock. Cells were 
subjected to a hypertonic environment and samples were taken every 20 minutes and plated on lawns of 
non-pathogenic K. aerogenes. Appearing colonies were counted.  

 

5.3.7 Fray1 interacting partner FRIP  

By using a GFP-Trap resin we identified a binding partner of Fray1, a yet unknown protein 

that we named FRIP (Fray Interacting Protein) (Figure 27). The frip (DDB_G0288201) gene 

is found on chromosome 5 in D. discoideum and codes for a 313 aa (35 kDa) protein. FRIP 

mainly consists of two CBS (cystathionine-beta-synthase) domain pairs (Figure 26) and is 

30% identical to the non-catalytic gamma subunit (AMP-prkag) of the AMPK complex in 

D. discoideum. 
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Figure 26: The structure of D. discoideum FRIP is conserved  
(A) MUSCLE Sequence alignment of CBS domain pairs of FRIP and AMP-prkag from D. discoideum (Dd) with 
corresponding proteins from H. sapiens (Hs), C. elegans (Ce), D. melanogaster (Dm), S. cerevisiae (Sc) and 
S. pombe (Sp). The red bars indicate the CBS-domains. Identical residues have a black, conserved residues a 
grey background. The domain structure is conserved throughout the eukaryotes. (B) D. discoideum FRIP 
with the four CBS domains that form the distinct CBS module. (C) The CBS domains of FRIP and AMP-prkag 
from D. discoideum compared in length and identity to CBS modules from different species. The CBS 
domains are depicted in red and the white numbers display the identity to FRIP of D. discoideum. 

 

A frip-minus construct was designed and transformed into wild type cells and a FRIP-

minus mutant strain was obtained and verified using PCR. 

The phenotype of the FRIP-minus cell line was comparable in size, shape and behaviour to 

the wild type. When tested for growth in shaken suspension the FRIP-minus only showed 

a slight retardation in growth and did not grow to the same density like the wild type. 

When grown on bacterial lawn, the expansion of the FRIP-minus strain colonies was 

reduced compared to the wild type as well as the survival rate when exposed to 

hypertonic conditions (0.8 M sorbitol). 
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Figure 27: Characterisation of the Fray1-interacting protein FRIP 
(A) To identify putative interacting proteins of Fray1 a GFP-Trap pulldown was performed. Lysates of wild 
type GFP and wild type Fray1-GFP strains were incubated with GFP-Trap beads and separated by SDS-PAGE, 
stained with Coomassie Brilliant Blue and analysed by MALDI-TOF mass spectrometry. The identified 
proteins are indicated on the right.  = 14-3-3-like protein (DDB_G0269138),  = conventional actin 
(DDB_G0269234),  = acetylornithine deacetylase (DDB_G0267380),  = myosin II heavy chain 
(DDB_G0286355) (B) The amino acid sequence of FRIP modelled to the γ-subunit of AMPK from H. sapiens 
(PDB: 4cfhE). The ribbon and the surface model both exhibit the characteristic parallel CBS module 
structure. (C) Growth rates of wild type and FRIP-minus cells in HL5 medium under shaking conditions. The 
FRIP-minus grew a little bit slower and not to the density of the wild type. (D) Growth of wild type and FRIP-
minus cells on lawns of non-pathogenic K. aerogenes. The diameter of both strains were measured and 
colony sizes were calculated. The FRIP-minus strain grew slower and to smaller colony sizes than the wild 
type. (E) Survival of wild type and FRIP-minus cells after exposition to hypertonic environment. The cells 
were subjected to a 0.8 M sorbitol containing medium. Samples were taken every 20 minutes and plated on 
lawns of non-pathogenic K. aerogenes. Appearing colonies were counted.  
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 The Ste20-like kinase DstC of D. discoideum 5.4

5.4.1 DstC of D. discoideum 

Located on chromosome 6 the dstc (DDB_G0291267) gene codes for the 562 aa and 

62 kDa protein DstC. The catalytic domain of DstC is most similar to the mammalian 

kinase Mst2 and Hippo in D. melanogaster (Figure 28) which were shown to modulate cell 

proliferation and apoptosis (Chan et al., 2005, Wu et al., 2003). Compared to the other 

Ste20-like kinases of D. discoideum, DstC has an unusual insertion in the N-terminal 

region of the kinase domain. The tail region exhibits a proline rich region which is 

followed by an acidic tail.  
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Figure 28: The catalytic domain of DstC from D. discoideum is conserved throughout the 
eukaryotes  
(A) The structure of DstC. Compared to the other Ste20-like kinases of D. discoideum, DstC has an unusual 
insertion in the kinase domain. The tail region exhibits a proline rich region followed by an acidic tail. (B) 
Sequence alignment of the catalytic domain of DstC from D. discoideum (Dd) with the corresponding 
proteins from H. sapiens (Hs), C. elegans (Ce), D. melanogaster (Dm), S. pombe (Sp) and S. cerevisiae (Sc). 
Identical residues have a black, conserved residues a grey background. The sequences are highly conserved. 
(C) Comparison of the catalytic site of DstC of D. discoideum with corresponding Ste20-like kinases from 
other species. The white numbers indicate the identity of the domains compared to D. discoideum DstC. 

 

5.4.2 Generation of DstC point mutation constructs 

As GFP-DstC constructs were reported to localise to phagocytic cups and acidic vesicles in 

D. discoideum (Poster, Gergana Gateva, 2009) we wanted to explore this accumulation in 

further detail. We could narrow down the localisation signal to about 90 aa. Hence, to 

pinpoint the exact binding site, an array of defined shortened DstC point mutation 

constructs was designed. These constructs are centred around amino acids Y404, S411, 

T414 and S418 which have been predicted as possible phosphorylation sites at the 

NetPhosK server. Two sets of constructs were generated. One set of Y404E, S411D T414E 

and S418D that mimicked permanent phosphorylation and a second one where 

phosphorylation was deleted due to a conversion of all sites to alanine or phenylalanine 

respectively (Table 1). When brought into a DstC-minus background, the point mutation 

constructs will help to pinpoint the exact localisation signal. 
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Table 1: DstC point mutations  

Two different sets of constructs of DstC were designed. One set imitated the permanent phosphorylation of 
serine, threonine and tyrosine while the other set abolished phosphorylation completely.  

 

 

 Bioinformatical characterisation of cytoskeletal proteins in R. filosa  5.5

An in silico study was carried out to find, characterise and map the actin and actin related 

genes in the genome of R. filosa which was totally sequenced just recently. R. filosa is a 

fresh water foraminifer which belongs to the Rhizaria within the eukaryotes. In nature 

R. filosa has a very unique life cycle whereas in culture it only exists as plasmodium 

(Glöckner et al., 2014). 
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Figure 29: Solexa1552564_1.f1.exp_8 of R. filosa is a Ste20-like kinase  
Comparison of the catalytic site of Ste20 of R. filosa with Ste20-like kinases from D. discoideum (Dd), 
H. sapiens (Hs), D. melanogaster (Dm), C. elegans (Ce), S. pombe (Sp) and S. cerevisiae (Sc). The white 
numbers indicate the identity of the domains compared to R. filosa Ste20. (C) The catalytic domain of Fray2 
compared to Fray analogues in different species. 

 

The potential genes coding for cytoskeletal proteins were searched via BLAST search on 

the Reticulomyxa BLAST server. cDNA sequences as well as protein sequences from 

already sequenced organisms (D. discoideum, H. sapiens, Arabidopsis thaliana) were used 

as search templates. The hits of every search were first analysed if the gene was complete 

and subsequently for gene type specific domains and subdomains. Furthermore, the 

introns were separated from the exons to obtain a DNA array that could be translated 

into a protein sequence (Figure 30). Additionally, the sequences were tested using 

multiple alignments and, if templates were available, protein models were generated 

using a structure homology-modelling server.  
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Figure 30: Bioinformatical characterisation of a Ste20-like kinase of R. filosa  
(A) The 12 Ste20 kinase group subdomains as described (Hanks and Hunter, 1995a). Potential start and stop 
codons are marked in red and all the subdomains in different colours. (B) The colours of the different kinase 
sub domains applied to the contig solexa1552564_1.f1.exp_8 from the total sequence data of R. filosa. Light 
grey marks the 5’ and 3’ untranslated region. Dark grey distinguishes the introns from the exons. (C) To 
verify if the constructed DNA sequence was correct, it was translated into a protein sequence. Subsequently 
the obtained sequence was BLASTed. 

 

Incomplete hits that could not be supplemented with a complement from the sequence 

data were categorised as pseudogenes, incomplete sequences that were identical to 

already identified genes as sequencing failures.  

Applying these methods we could identify about 40 potential cytoskeletal proteins of 

seven different protein classes in R. filosa (Table 2).  

Notably, we discovered 4 new actin genes in addition to the already known actin in 

R. filosa (Flakowski et al., 2005). 
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Table 2: Identified actin cytoskeleton proteins in R. filosa 

Applying the afore mentioned techniques, around 40 cytoskeletal proteins could be identified. 
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6 Discussion 

The major goal of this study was to investigate the scaffolding protein Mo25, its 

interactions and regulatory pathways. We could verify the Ste20-like kinase SvkA (severin 

kinase) as interacting partner and proved that the interaction is apparently highly 

conserved throughout evolution. Additionally, we introduced several point mutations into 

the sequence of Mo25 and investigated the influence on cytokinesis and slug motility.  

Another goal was the functional characterisation of the Ste20-like kinases Fray1 and 

Fray2. We were able to detect a yet unknown protein as interacting partner of Fray1, 

which we named FRIP (Fray interacting protein).  

Furthermore, we constructed several point mutation constructs of the Ste20-like kinase 

DstC to pinpoint the exact localisation signal to phagocytic cups and acidic vesicles. 

In addition, we successfully mapped and characterised the actin and actin related genes 

in the genome of the recently sequenced fresh water foraminifer R. filosa. 

 

 Mo25, the highly conserved master regulator 6.1

The goal of this work was to investigate the role of the highly conserved eukaryotic 

scaffolding protein Mo25 in D. discoideum. In human, Mo25 facilitates and activates a 

trimeric complex together with the pseudokinase STRAD and the Ste20-like kinase LKB1 

to act on downstream kinases. Thus, it is a master regulator of major pathways such as 

the mTor (Orlova et al., 2010) and the AMPK-signalling pathway (Hawley et al., 2003). 

Additionally, Mo25 also binds to other Ste20-like kinases like SPAK, OSR1, Mst3, Mst4 and 

Ysk1/Sok1 to modulate their ability to phosphorylate downstream targets (Shi et al., 

2013, Filippi et al., 2011). Point mutations in the amino acid sequence of Mo25 cause the 

disruption of the trimeric complex and can cause in the hereditary disease Peutz-Jeghers-

Syndrome (Baas et al., 2003, Boudeau et al., 2003). In organisms like yeast, fruit fly and 

nematode Mo25 has been described to be involved in cell polarity and cytokinesis 

(Boudeau et al., 2004, Kanai et al., 2005). The Mo25-minus D. discoideum strain exhibited 

a very drastic change of phenotype with a severe defect in cytokinesis and cell division. 

Mo25-minus cells seem to be unable to separate after chromatin duplication and 
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therefore accumulate dozens of nuclei in one cell. Cells with sometimes more than 

60 nuclei have been observed both in shaking cultures as well as in attached cells. 

Additionally, Mo25-minus cells seem to be unable to produce or to follow a 

cAMP gradient which is essential for aggregation (Strmecki et al., 2005). Subsequently, 

the development also results in smaller fruiting bodies, and a disturbed ratio of spore 

mass to stalk cells. However, the Mo25-minus strain is able to develop into the motile 

intermediate slug-state, but the slugs are not able to migrate towards a light source. This 

resembles the AMPK over expression phenotype of D. discoideum, which does not have 

an impaired cytokinesis but exhibits a very pronounced defect in slug motility and 

development, very similar to Mo25-minus mutants (Bokko et al., 2007, Annesley et al., 

2011). This might hint at an overlapping role for Mo25 in the regulation of 

AMPK signalling. Moreover, the Mo25-rescue construct with a GFP-tag at the N-terminal 

end was not able to cure the phenotype. Only with the GFP-tag on the C-terminal end the 

phenotype could be reverted to normal. This might indicate that the GFP moiety at the N-

terminus blocks a necessary interaction surface for a potential interacting partner. To 

screen for potential interacting partners of Mo25, we coupled the GFP-tagged rescue 

protein to a GFP-trap resin. Employing this technique, we could verify severin kinase 

(SvkA) as interacting partner of Mo25. Severin kinase of D. discoideum is about 32% 

similar to STRAD and 26% similar to LKB1 from H. sapiens. Furthermore, SvkA additionally 

contains a WEF sequence motif at a similar distance to the catalytic domain as in STRAD. 

The WEF motif is, together with the hydrophobic VANPKT surface of the kinase domain, 

essential in facilitating the binding of the pseudokinase STRAD to Mo25 (Boudeau et al., 

2003). This interaction of Mo25 with kinases from the Ste20-like family seems to be so 

conserved, that SvkA from D. discoideum is able to interact with Mo25 from H. sapiens 

and D. rerio in GST-pulldown experiments. The interaction of SvkA with Mo25 from 

different species clearly indicates a binding mechanism which is preserved throughout the 

eukaryotes. This is also emphasised by the close resemblance of the amino acid 

sequences of Mo25 from D. discoideum, H. sapiens and D. rerio, respectively. High 

conservations of proteins always signify the necessity of the process in which they are 

involved. Since the rescue construct with the GFP-tag at the N-terminus was not able to 

cure the Mo25-minus phenotype, we suspected that the N-terminal end of the protein 
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might be required for potential binding partners. Therefore, we designed an array of eight 

different point mutation constructs to elucidate the binding mechanisms of Mo25 in 

D. discoideum. All point mutations were inserted with the purpose to block interaction 

with known or unknown binding partners. Amino acids R227 and M260 are essential to 

bind the pseudokinase STRAD. In addition R240 and F243 are needed to bind the kinase 

LKB1 in human (Zeqiraj et al., 2009a). As the Mo25-rescue construct with the N-terminal 

GFP-tag was not able to cure the phenotype, we chose amino acids K17, K34 and K38 due 

to their prominent exposure at the N-terminus. Amino acid K132 is a highly conserved 

positively charged spot on the convex side of the protein surrounded by an otherwise 

negatively charged surface. To test if a mutation per se affects the behaviour of Mo25, 

the mutations F258A and M259A were introduced as control (Figure 16). All point 

mutation constructs have the GFP-tag on the C-terminus and the chosen amino acid sites 

converted either to nonpolar, alanine (A) or to polar uncharged glutamine (Q). 

Subsequently, the mutation constructs were transfected into a Mo25-minus background 

and tested for cytokinesis and motility. Therefore, we quantified the nuclei of every strain 

and performed slug motility assays. Mo25-minus and M260A are both essential for 

cytokinesis and slug motility, whereas R227A is also very important for cytokinesis but not 

for slug motility. Residues R240A & F243A seem also to play a role for slug motility but 

not for cytokinesis. Of the N-terminal residues only K17A seems to have a profound 

impact on motility and cytokinesis whereas K34A and K38Q both only have a moderate 

effect. Located on the convex side of Mo25, K132A also seems to impair slug motility to a 

certain degree but has no effect on cytokinesis. The negative control F258A & M259A is 

behaving almost like wild type. Taken together, two of the already known binding sites, 

M260 and R227, and one to date unknown K17 at the N-terminal region seem to play a 

role both in slug motility and cytokinesis. By contrast the sites R240 & F243 and K132 

exclusively play a role in slug motility. All the other mutations seem to have milder to 

none effects on cytokinesis and on slug motility. 
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Figure 31: Hypothetic model of possible interacting partners of Mo25 
Possible scenarios for interacting partners of Mo25 in D. discoideum. Slug movement towards a light source 
is impaired due to over expression of the α-subunit of AMPK (Bokko et al., 2007). Analogue, Mo25-minus 
mutants were not able to migrate towards a light source as well. This might indicate a potential interplay 
between AMPK and Mo25, mediated by a yet unknown protein. After reduction of LKB1 using RNAi-
knockdown constructs, formation of stalk and sorus is heavily disturbed. LKB1 phosphorylates AMPK upon 
stress induction (Veeranki et al., 2011). In our experiments, Mo25-minus cells exhibited a quite similar 
disturbance in fruiting body formation. Nevertheless, we could only verify an interaction of Mo25 and SvkA. 
The exact interplay of Mo25, AMPK and LKB1 in D. discoideum is still unknown to date. 

 

In human, residues R227 and M260 are essential to bind the pseudokinase STRAD (Ste20-

related adapter protein) while amino acids R240 & F243 are binding partners for the 

Ste20-like kinase LKB1 (Zeqiraj et al., 2009a). Only, upon the assembly of these three 

players the Mo25/STRAD/LKB1-complex can act on downstream targets (Milburn et al., 

2004). Additionally, Mo25 also regulates the activity of other Ste20-like kinases, but these 

bind to the adapter protein in a STRAD-like fashion (Shi et al., 2013, Filippi et al., 2011). 

However, the present results imply that the situation in D. discoideum is somewhat 

different compared to the human Mo25/STRAD/LKB1-complex. Intriguingly, a LKB1 

homologue in D. discoideum exists. It has been shown that LKB1 RNAi-knockdowns in 

D. discoideum displayed severe reduction in prespore cell differentiation and early 

appearance of prestalk cells (Veeranki et al., 2011). It could be shown that LKB1 is the 

regulator of the serine/threonine kinase GSK3. GSK3 is involved in cell specification and 
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coordinates prespore- and prestalk-signalling. Additionally, upon stress induction, LKB1 

gets activated and phosphorylates AMPK (Veeranki et al., 2011). It has also been shown 

that in D. discoideum cells which are disturbed in their AMPK-signalling cascade due to 

over expression of the α-subunit of AMPK, slug motility towards a light source is severely 

impaired (Bokko et al., 2007, Annesley et al., 2011). Both phenotypes resemble the 

characteristics of the here presented Mo25-minus. This led us to the most reasonable 

theory of an interaction of Mo25 with AMPK and LKB1, mediated by a yet unknown 

protein. Nevertheless, to date neither an interaction of AMPK nor of LKB1 with Mo25 in 

D. discoideum could be observed. Besides, the interaction of Mo25 and SvkA without a 

third protein could be sufficient for efficient cytokinesis, as mutations in the postulated 

Mo25/SvkA binding interface (R227A & M260A) were the only mutations that affected 

cytokinesis. Mutations in Mo25 that would affect the binding of a second kinase (R240A & 

F243A) analogue to the human Mo25/STRAD/LKB1-complex did not affect cytokinesis. So 

it seems that Mo25 and SvkA can jointly regulate cell division. Four findings support this 

notion: First, whereas human STRAD is only a pseudokinase, SvkA possesses a catalytic 

domain and is able to autophosphorylate, which means that SvkA can directly 

phosphorylate a downstream target or kinase and does not need to induce a 

conformational change or physical impulse as is described for STRAD and its downstream 

kinase LKB1 (Boudeau et al., 2003). The second reason is that we could show that Mo25 

and SvkA bind to each other and that the binding mechanism is highly conserved 

throughout the evolution. The third argument is that the phenotype of Mo25-minus and 

SvkA-minus (Rohlfs et al., 2007) is of the same nature indicating a direct involvement in 

the same pathway. And fourth, considering the first three findings, it was not surprising 

that we were not able to detect any other potential interacting partner for Mo25 than 

SvkA. On the other hand, the need for a free NT of Mo25 and the involvement of the N-

terminal residue K17 for the regulation of cytokinesis in D. discoideum as well as of slug 

motility, might indicate that there is a third interaction partner needed although at a 

completely different binding site. This would be a novel mode of Mo25 forming a scaffold 

in signalling and different to the Mo25/STRAD/LKB1-complex in human. Another surprise 

is the fact that the highly conserved residues R240 & F243 are not involved in the 

regulation of cytokinesis, they rather seem to affect slug motility, but to a somewhat 
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minor extent. The second residue that seems to be necessary for slug motility only is K132 

on the convex side of Mo25. This discovery implies that for efficient slug motility Mo25 

probably interacts with so far unknown signalling proteins that use the convex side of 

Mo25, together with binding of SvkA to its concave side. This adds to the findings from 

the mammalian system, where Mo25 is a connector and nodal point for several different 

pathways (Filippi et al., 2011). Concluding, these results suggest that slug motility and 

cytokinesis are probably regulated by two different mechanisms which overlap in certain 

points and are connected by Mo25. Following these findings we wanted to test if point 

mutation constructs of Mo25 are still able to pull down SvkA. Therefore, we used the 

eight Mo25 point mutations in GST-pulldown assays and tested for binding to proteins 

from D. discoideum wild type lysates. Notably, all eight point mutation constructs were 

able to pull down SvkA from wild type lysate. This is rather surprising, as it is described in 

the literature, that the point mutations of the binding sites for STRAD and LKB1 abolish 

the attachment of both kinases to Mo25. Taken together, we could show that of Mo25 of 

D. discoideum binds to the Ste20-like kinase SvkA. We could verify this binding 

mechanism and show that it is highly conserved throughout the eukaryotes, as Mo25 

from fish and human is also able to pull down SvkA from amoeba. We could undertake 

the first steps to elucidate the different pathways that are connected through the central 

regulator Mo25. Nonetheless, further studies are necessary to completely unveil all the 

different pathways in D. discoideum that are regulated by the master regulator Mo25. 
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 Ste20-like kinases Fray1, Fray2 and their partner FRIP 6.2

Ste20-like kinases are important players involved in the regulation of the cell cycle, 

apoptosis, stress responses, cellular volume sensing and regulation, osmotic homeostasis 

and link cell cycle events with cell volume (Delpire, 2009). The goal of this part was the 

characterisation of the Fray family kinases which belong to the Ste20-like group within 

the kinome of D. discoideum. The genome of D. discoideum encodes two Fray family 

kinases, Fray1 and Fray2 (Eichinger et al., 2005, Goldberg et al., 2006). Their kinase 

domains are 51% identical. Sequence alignments with the kinase domains of 

corresponding Fray homologues in yeast, worm, fruit fly and human reveal a very high 

conservation throughout the eukaryotes (Figure 19). Whereas the Ste20-like kinases of 

S. cerevisiae (STE20) and S. pombe (PpK11) cannot be mapped to the Fray family 

exclusively and the genomes of C. elegans (GCK-3) and D. melanogaster (Frayed) encode 

for only one kinase respectively, D. discoideum with two kinases of the Fray family is 

equivalently equipped like H. sapiens (Delpire, 2009). The structure of Fray1 and Fray2 

reveals the typical GCK (germinal centre kinase) structure with the highly conserved N-

terminal kinase domain and the less conserved C-terminal tail (Kyriakis, 1999). The tail 

region of Fray2 is with 698 aa remarkably longer than the one of Fray1, which makes 

Fray2 one of the largest Ste20-like kinases in D. discoideum. To investigate the function of 

the Ste20-like kinases Fray1 and Fray2, we isolated Fray1-minus and Fray2-minus strains. 

Astoundingly, neither in the Fray1-minus nor in the Fray2-minus cell line a significantly 

altered phenotype could be observed. We were unable to find any actin-based process 

which was affected by the removal of Fray1 or Fray2. Cell motility, chemotaxis, growth in 

liquid shaking culture, solid surface and on bacterial lawn, culmination to fruiting bodies 

and phototaxis at the slug stage were all principally unchanged compared to wild type 

cells. To avoid that either Fray1 or Fray2 substitute for each other in the respective knock 

out cell line, we generated a Fray2Fray1-minus strain. Also there, however no dissimilarity 

in any of the performed assays could be observed. The only mild phenotype we could 

detect in these minus mutants is a slight difference during growth in shaking culture 

where the minus strains always grow to higher densities than the wild type control. The 

initial kick off for the investigation of the Ste20-like kinases Fray1 and Fray2 in D. 

discoideum was a publication by William M. Leiserson where the serine/threonine kinase 
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Frayed of D. melanogaster was described to be essential for axonal ensheathment 

(Leiserson et al., 2000b). D. melanogaster Frayed-minus mutants have nerves with severe 

swelling and axonal defasciculation and die early in larval development. Moreover, the 

closest relatives to Fray1 and Fray2 in human are the kinases OSR1 and SPAK (Delpire, 

2009). OSR1 regulates organ size during development (Zhang et al., 2011) and 

additionally, together with SPAK jointly regulates homeostasis in human upon stress 

response (Delpire and Gagnon, 2008). Hence, the blistering of the nerves in Frayed-minus 

clones in D. melanogaster and the regulation of homeostasis by SPAK/OSR1 in H. sapiens 

led us to the assumption Fray1 and Fray2 might be implicated in the regulation of cell 

volume. Therefore, we tested the survival of the Fray-minus strains after exposure to 

osmotic shock. The cells were exposed to hypertonic medium, cell samples were taken at 

certain time points and plated on a bacterial lawn. Subsequently, appearing plaques were 

counted one and two days after the start of the experiment. Unfortunately, the outcome 

of these experiments was extremely variable and we obtained very inconsistent data. 

Nevertheless, it was only during the osmotic shock survival experiment to detect a hint of 

a difference between the strains Fray1-minus, Fray2-minus and Fray2Fray1-minus and 

wild type cells. One reason, that the removal of Fray1 and Fray2 was not affecting the 

behaviour of the cells, might be that the kinases are probably needed in a different life 

stage or are regulators of responses to environmental changes of D. discoideum. Many of 

these conditions are not reproduced in the laboratory and subsequently were omitted 

during research. Possibly the kinases get activated by conditions only present in the 

natural environment of D. discoideum, for example in defence against predators or in the 

sexual reproduction cycle (Hilbi et al., 2007, O'Day and Keszei, 2012). A hint that the life 

cycle studied in a lab represents the wrong time frame respectively the wrong 

environment, are the results of the real time PCR which reveal a very low transcription 

level of fray1 and fray2 throughout. However, our results may provide first hints towards 

further investigations of the Fray-family kinases in D. discoideum. In addition, by using a 

GFP-trap resin we could identify a so far undescribed 35 kDa protein (DDB_G0288201) as 

interacting partner of Fray1, which we termed FRIP (Fray1 interacting protein). The 

cytoskeletal protein FRIP consists of two CBS (cystathionine-beta-synthase) domain pairs 

(Bateman, 1997). The structural and biophysical characterisation of CBS domain-
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containing proteins is an emerging field which has recently gained much interest (Ereño-

Orbea et al., 2013). The CBS domain is evolutionarily highly conserved from archaea to 

prokaryotes and eukaryotes (Bateman, 1997, Scott et al., 2004). In humans, CBS domains 

have a medical relevance as point mutations in their amino acid sequence are closely 

linked to hereditary diseases such as homocystinuria (Shan et al., 2001), retinitis 

pigmentosa (Kennan et al., 2002), hypertrophic cardiomyopathy (Blair et al., 2001), 

osteopetrosis (Kornak et al., 2001) and congenital myotonia (Pusch, 2002) to name a few. 

Moreover, CBS domains are found in a wide variety of proteins such as in the inosine 

monophosphate dehydrogenase (Labesse et al., 2013), voltage gated ion channels (Carr et 

al., 2003) and as subunits of the AMP-activated protein kinase (AMPK) (Amodeo et al., 

2007). CBS domains regulate a wide variety of processes which are apparently all involved 

in the response to changes in Mg2+-ion transport (Hattori et al., 2009), osmoregulation 

(Biemans-Oldehinkel et al., 2006), trafficking of chloride channels (Carr et al., 2003), 

nitrate transport (De Angeli et al., 2009) or pyrophosphatase activity (Jämsen et al., 

2010). To date, 52 different ligands are known to bind CBS domains with AMP, ADP and 

ATP being the primary binding partners. FRIP of D. discoideum mainly consists of the four 

distinct CBS-domains with one pair forming a so called Bateman domain (Baykov et al., 

2011) each. This arrangement of four CBS-domains arranged into two connected 

Bateman domains which gives the protein a disc like structure is called a CBS module 

(Mahmood et al., 2009). In principle three structures of the CBS modules do exist, 

“parallel” (~95%), “antiparallel” (~5%) and “v-shaped” (<1%) (Ereño-Orbea et al., 2013) 

depending on the structural organisation of the protein. The binding of a ligand causes a 

rearrangement of the amino acid side chains or a shift in the orientation of secondary 

structure elements of the protein. Upon these alterations the CBS modules adopt an 

“open”, “closed” or “bent” structure, which probably affects the regulatory mechanism of 

the protein (Tuominen et al., 2010). FRIP of D. discoideum seems to be a “parallel” CBS 

module, due to its clear head-to-head organisation of the CBS-domains to each other 

when modelled to the γ-subunit of the human AMP-kinase (PDB: 4cfhE) (Figure 27). We 

produced a FRIP-minus strain to further investigate the function of FRIP. Unfortunately, 

similar to its interaction partner Fray1, no significant phenotype upon the removal of FRIP 

could be detected in D. discoideum. We could only observe a slight growth defect in liquid 
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shaking culture, as the FRIP-minus strain grows slower and to lower densities compared 

to the wild type. Also when cultivated on bacterial lawns, FRIP-minus cells grow to smaller 

colony sizes than the wild type. The reduction in growth might imply an implementation 

of FRIP in the regulation of the energy household of the cell. Therefore, we compared 

FRIP to the proteins of the AMPK complex of D. discoideum via BLAST analysis, where FRIP 

is 30% identical to the non-catalytic gamma subunit (AMP-prkag). The binding of AMP to 

the CBS domain of the AMPK gamma subunit accounts for the energy sensing properties 

of the AMPK complex. Thus, an interaction of Fray1 and the CBS-module FRIP might link 

the Ste20-like kinases to energy homeostasis. Moreover, when exposed to a hypertonic 

environment, the survival rate of FRIP-minus cells drops corresponding to Fray1-minus, 

Fray2-minus and Fray2Fray1-minus. This also might be a further indication for the 

connection of the Ste20-like kinases and FRIP to the regulation of cell volume and 

homeostasis in D. discoideum. Further projects should include a detection of the ligands 

which activate FRIP, possible protein interactions, a clarification of the interplay of the 

Ste20-like kinases and FRIP, and in which pathway they are involved.  
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 Ste20-like kinase DstC  6.3

The Ste20-like kinase DstC is one of the 17 members of the D. discoideum kinome 

(Goldberg et al., 2006). Its kinase domain contains an unusual insertion of seven basic 

amino acids between the Hanks and Hunter subdomains I and II. The kinase domain is 

49% identical to Hippo of D. melanogaster and 51% identical to Mst2 of H. sapiens. Hippo 

is known to be a key player in the regulation of cell size during eye development in fruit 

fly (Ryoo and Steller, 2003) and Mst2 is implicated in the Hippo pathway where it 

regulates the tumour suppressors Lats1 and Raf-1 in human (Guo et al., 2007). However, 

sequence alignments of DstC from D. discoideum with other social amoebae indicate a 

very strong conservation, even outside of the kinase domain, suggesting that it is adapted 

to the specialised life style of the amoebae. Studies on DstC carried out by Gergana 

Gateva during her Diploma thesis revealed that this Ste20-like kinase plays an important 

role in the phagocytosis mechanism of D. discoideum. Whilst observing pinocytosis no 

localisation signal could be detected. During the uptake of bacteria, DstC seems to 

localise to the actin rich structures, but disappears as soon as the prey is enclosed. Only 

during the uptake of larger particles like yeast, GFP-constructs of DstC strongly localise to 

the phagocytic cup. However, upon closure of the phagocytic cup, the localisation signal 

disappears within seconds from the engulfed particle. The reason why DstC does not 

localise during pinocytosis and the intake of bacteria is unknown to date, but it might be 

due to size of the prey and uptake mechanism. A possible theory could be, that the 

uptake of liquid and smaller nutrients utilises a different import machinery in contrast to 

bigger particles. So far it is known that absorption of bigger particles is marked by a 

procedure of distinct steps: Recognition of the particle, engulfment with the membrane 

still in direct contact with the particle surface, sealing off the cup and finally transporting 

and acidifying the particle in a vesicle inside the cell (Neuhaus et al., 2002). Additionally, 

DstC GFP-constructs were also observed localising to acidic vesicles in the cell. During 

random cell movement GFP-DstC localises to the dynamic actin cortex. The minimal 

localisation signal of DstC could be mapped to the C-terminal region, which contains 

proline rich sequences. Poly-proline containing sites have been shown to be interaction 

domains in cytoskeleton related proteins. For example, ForminB, Abi2 (similar to Abelson 
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tyrosine kinase Interacting protein 2) and Abp1 (actin binding protein 1) of D. discoideum 

all contain poly-proline motifs which are implicated in binding. (Dieckmann et al., 2010, 

Wang and O'Halloran, 2006). The potential localisation sites in DstC have been narrowed 

down to two sequence motifs with 52 and 66 aa, overlapping in 27 aa. To further 

investigate the localisation signal and to pinpoint the actual binding sequence, we fed the 

two overlapping sequences into the NetPhosK server which predicted four 

phosphorylation sites which might be implicated in a potential binding site. According to 

this prediction, we constructed two different arrays of shortened point mutation 

constructs. The first set of constructs is designed to mimic a permanent phosphorylated 

state whereas in the second set all phosphorylation sites are removed due to a 

conversion to alanine. With these point mutation constructs we hope to have pinpointed 

the localisation signal. The permanent phosphorylated version of DstC should stick to the 

phagocytic cup and acidic vesicles whereas the constructs that are blinded for 

phosphorylation should not localise anywhere at all.  
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 Unveiling the members of the actin cytoskeleton of R. filosa 6.4

The fresh water protist R. filosa belongs to the Foraminifera within the branch of the 

Rhizaria. The supergroup Rhizaria constitutes one of the six, respectively eight major 

groups of the eukaryote tree of life (Glöckner et al., 2014). However, the availability of 

molecular data for this main group is very sparse. Prior to the total sequencing of the 

genome of R. filosa, only the genome of the chlorarachniophyte alga B. natans was 

available for genomic studies (Curtis et al., 2012). This is due to the lack of cultivability of 

most of the organisms of this phylum. The clear advantage of R. filosa is that it can be 

kept it in culture and so it is possible to obtain high yields for sequencing. Thus, the 

genome of R. filosa will provide deeper insights into the molecular world of the Rhizaria 

and serve as a model for this eukayote crown group. Of the 320 Mb genome with 

approximately 40.443 protein coding genes, only 103 Mb could be assembled. Long-range 

amplifications and tandem repeats make it almost impossible to completely compile the 

genome. Albeit, the assembled segment represents the protein coding part very well as 

93% of the ESTs (expressed sequence tags) and 99.5% of the RNA-sequencing data could 

be mapped to the genome assembly (Glöckner et al., 2014). Its structure is very diffuse 

and overflows with short repeats and pseudogenes. The complex organisation of multiple 

gene copies followed by pseudogenisation might be a way to procure sufficient 

expression for certain key genes. For example the genes for motor proteins and 

microtubules are present in multiple copies. Also members of the actin cytoskeleton 

family seem to be amplified. We could detect five different actin genes in R. filosa, which 

are about half as many as in B. natans and only one more than in human. In contrast, in 

D. discoideum, 41 copies of actin exist of which 17 are identical proteins from 17 different 

genes (Joseph et al., 2008). The number of actin genes of R. filosa clearly reflects the 

demands of the environment which it inhabits. In its natural habitat, R. filosa mainly exists 

as acellular syncytium with thousands of nuclei, forming giant net-like plasmodia. The 

thicker centre part of the plasmodium is mostly hidden in the ground, whereas the 

pseudopodia spread over the substrate (Hülsmann, 2006). Compared to D. discoideum, 

R. filosa does not exert rapid movements, directional changes or does undergo a 

morphological change from single cell to a multicellular stadium. As almost stationary 

organism, the processes where actin is crucial are confined to cortex stability, 
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reproduction and cell division, growth of filopodia, uptake of nutrients and encystation 

upon starvation (Schleicher and Jockusch, 2008, Joseph et al., 2008). Additionally, during 

our search for potential actin genes, we discovered quite a number of genes which were 

very similar to actin, but did in a calculated structure not exhibit the ATP-binding pocket. 

The putative gene products were subsequently classified as actin-related-proteins (Arp). 

Nevertheless, in silico studies can reveal directions but are not capable to reflect reality 

completely. Furthermore, considering the assembly limitations of the genome it cannot 

be excluded that duplications and therefore amplifications of the actin family exist. The 

genes for the other cytoskeletal proteins could also be detected, like the true actin-

related proteins (Arp), Cap1/2, fimbrin and formin, also amplified by repeats and 

extensive pseudogenisation. Interestingly the Ste20-like kinase group is greatly 

underrepresented. The genome of R. filosa encodes one Ste20-like kinase, with a domain 

highly identical to kinases Fray1 and Fray2 of D. discoideum, Frayed of D. melanogaster 

and OSR1 of H. sapiens. Albeit, compared to 14 Ste20-like kinases in yeast, 17 in 

D. discoideum and 24 members in H. sapiens, only one Ste20-like kinase in R. filosa is very 

scarce (Goldberg et al., 2006, Manning et al., 2002a, Manning et al., 2002b). Also 

considering that in these organisms an orchestrated array of Ste20-like kinases regulates 

diverse cellular processes, such as budding and formation of mating projections in 

budding yeast (Ramer and Davis, 1993), cell division in fission yeast (Tang et al., 2003), 

development, cell polarity and cytokinesis in D. discoideum (Artemenko et al., 2012, 

Arasada et al., 2006, Rohlfs et al., 2007) and complex pathways like homeostasis and 

energy sensing in human (Strange et al., 2006) the lack of these kinases in in R. filosa is 

surprising. One reason for such sparse equipment might be that the simple life cycle of 

R. filosa does not require meticulous phosphorylation cascades. It could also be a 

documentation of evolution from one kinase to many, as the genome of B. natans too 

only harbours one Ste20-like kinase (Curtis et al., 2012). Nevertheless, it cannot be 

excluded that additional Ste20-like kinase genes are hidden in the genome of R. filosa. 

One indication for this theory might be that we found numerous bits and pieces of Ste20-

like kinase domains at various positions in the genome. Due to the fact that only one third 

of the genome can be mapped to date, there is still a lot to discover. Also the 

circumstance that 93% of the ESTs (expressed sequence tags) have been be mapped to 
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the sequenced data does not exclude that the other two thirds of the genome are 

expressed in other possible life-stage of R. filosa, not considered in this study. Actually, 

findings in the genome suggest a second sexual flagellated state of R. filosa which has not 

been observed in culture or natural environment yet (Glöckner et al., 2014). Nonetheless, 

all the obtained in silico data of R. filosa will have to be verified by extensive biochemical 

and cell biological research. 
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