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Summary 

The genus Legionella consists of environmental bacteria which are the causative agents of 

the severe pneumonia Legionnaires’ disease. L. longbeachae and L. pneumophila are able 

to replicate intracellularly in human alveolar macrophages and aquatic or soil amoebae. In 

order to replicate within host cells the bacteria establish a compartment derived from the 

endoplasmatic reticulum (ER) which is called “Legionella-containing vacuole” (LCV). A 

bacterial intracellular multiplication/defective in organelle transport (Icm/Dot) type IV 

secretion system (T4SS) is essential for the formation of this LCV. The Icm/Dot T4SS 

enables translocation of effector proteins into the host cell. More than 100 effector proteins 

are presumably translocated during an L. longbeachae infection whereas around 300 

translocated effector proteins are known for L. pneumophila. During maturation the LCV 

communicates with vesicles from the endocytic vesicle trafficking pathway, avoids fusion 

with lysosomes and instead fuses with the ER. Phosphoinositides (PI) such as 

phosphatitdylinositol-4-phosphate (PtdIns(4)P) are enriched on the LCV which mediate 

the binding of Icm/Dot translocated effector proteins like SidCLpn (substrate of Icm/Dot 

transporter) as well as its paralogous protein SdcALpn.   

The 73 kDa effector SidM but not the 106 kDa SidCLpn was found in a previous 

phosphoinositide pulldown assay with L. pneumophila lysate to be the major PtdIns(4)P 

binding protein. Using L. longbeachae lysate we showed binding of the 111 kDa SidCLlo to 

PtdIns(4)P in a phosphoinositide pulldown. This result was confirmed by protein-lipid 

overlay assays using “PIP-strips”. In further analysis the P4C (PtdIns(4)P-binding of SidC) 

domain was identified as a 19 kDa domain of SidCLlo located in the amino acid region 609 

to 782. This P4C domain was located in the same region as the 20 kDa SidCLpn_P4C domain 

of L. pneumophila. Both P4C domains can be used as LCV markers. This was shown with 

GST-tagged proteins binding to LCVs in a cell homogenate. The two P4C domains show a 

sequence identity of only 45% and the full-length protein of 40%. Circular dichroism 

measurements revealed that the secondary structure of the two proteins is similar. 

Moreover, isothermal titration calorimetric measurements indicated a 3.4 higher affinity of 

SidCLlo towards PtdIns(4)P compared with SidCLpn. 

In RAW 264.7 macrophages infected with L. longbeachae we showed that endogenous 

SidCLlo as well as heterologously produced SidCLpn is translocated to the LCV in an 



Summary 

 

ix 

 

Icm/Dot-dependent manner. The deletion of the sidCLlo gene led to a reduced recruitment 

of calnexin to the LCV in infected Dictyostelium discoideum. This effect was 

complemented by adding plasmid-encoded SidCLlo, SidCLpn or SdcALpn. The same 

recruitment defect for a L. pneumophila strain lacking the sidCLpn and sdcALpn genes was 

complemented by the production of SidCLlo and SidCLpn as published before. Therefore, 

these effectors play a role for pathogen-host interactions by promoting the recruitment of 

ER to the LCV. L. longbeachae or L. pneumophila wild-type strains outcompeted their 

sidC deletion mutant in a competition assay in Acanthamoeba castellanii. However neither 

of the deletion mutants were impaired in their growth in single strain replication 

experiments. In summary despite of the small sequence identity and the higher binding 

affinity to PtdIns(4)P of SidCLlo compared to SidCLpn both effector proteins seem to have 

similar functions during an infection of Legionella. 

For the characterization of L. longbeachae-containing vacuoles through proteomic 

analysis, LCVs had to be isolated from infected D. discoideum or RAW 264.7 

macrophages. Endogenous SidCLlo or heterologously produced SidCLpn were used as LCV 

markers for the isolation. Pathogen vacuoles harbouring L. longbeachae were isolated by 

immuno-affinity purification using antibodies specifically recognizing SidCLlo or SidCLpn. 

Future investigations aim at optimizing the LCV purification protocol for L. longbeachae 

to determine the proteome composition of the L. longbeachae-containing vacuole. 
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Zusammenfassung 

Die Gattung Legionella besteht aus opportunistischen Pathogenen, die Auslöser für die 

schwere Lungenentzündung Legionärskrankheit sind. Die Legionella-Spezies                              

L. longbeachae sowie L. pneumophila vermehren sich intrazellulär in humanen alveolaren 

Makrophagen sowie in aquatischen oder im Boden lebenden Amöben. Ein vom 

endoplasmatischen Retikulum (ER) abstammendes Kompartiment ist notwendig für die 

intrazelluläre Replikation. Diese Nische wird als „Legionella-containing vacuole“ (LCV) 

bezeichnet. Die Bildung der LCV benötigt ein „intracellular multiplication/defective in 

organelle transport“ (Icm/Dot) Typ IV Sekretionssystem (T4SS), das Effektorproteine in 

die Wirtszelle transportiert. Zurzeit sind über 100 vermutete Effektorproteine für                      

L. longbeachae und etwa 300 Effektorproteine für L. pneumophila beschrieben. Im Verlauf 

eines Reifungsprozesses kommuniziert die LCV mit endosomalen Vesikeln, verhindert 

eine Fusion mit den Lysosomen und fusioniert mit dem ER. Phosphoinositide wie das 

PtdIns(4)P wurden auf der LCV gefunden. Diese dienen als Bindestellen für die durch das 

Icm/Dot translozierten Effektorproteine wie das SidCLpn und sein paraloges Protein 

SdcALpn.  

In einer früheren Studie wurde in einem Phosphoinositid-Pulldown Experiment das              

73 kDa Effektorprotein SidM aber nicht das 106 kDa Protein SidCLpn als Bindepartner von 

PtdIns(4)P nachgewiesen. Wir konnten in einem Phosphoinositid-Pulldown Experiment 

mit L. longbeachae Lysat zeigen, dass das 111 kDa homologe Protein von SidCLpn SidCLlo 

der Bindepartner von L. longbeachae für PtdIns(4)P ist. Ein 19 kDa großes SidCLlo-

Fragment im Bereich der Aminosäuren 609 bis 782 konnte identifiziert werden, das für die 

Bindung von SidCLlo an PtdIns(4)P notwendig ist. Interessanterweise liegt die früher 

beschriebene 20 kDa große P4C Domäne von SidCLpn in der gleichen Region. Durch 

Inkubation von GST-gekoppelten SidCLlo_P4C-Proteinen mit L. pneumophila 

Zellhomogenat konnten wir zeigen, dass SidCLlo_P4C die Vakuole von L. pneumophila 

homogen dekoriert. Daher kann SidCLlo_P4C genauso wie das SidCLpn_P4C als LCV Marker 

benutzt werden. Die P4C Domänen besitzen eine Sequenzhomologie von 45% und SidCLlo 

und SidCLpn zeigen eine Sequenzhomologie von 40%. Mittels zirkularer Dichroismus 

Messung konnte gezeigt werden, dass die beiden Proteine ähnliche Sekundärstrukturen 
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besitzen. Mittels isothermer Titrationskalorimetrie konnten wir zeigen, dass SidCLlo eine 

3.4-fach höhere Bindeaffinität zu PtdIns(4)P besitzt als SidCLpn. 

In infizierten RAW 264.7 Makrophagen konnte wir zeigen, dass L. longbeachae nicht 

nur sein eigenes endogen produzierten SidCLlo sondern auch ein heterolog exprimiertes 

SidCLpn in einer Icm/Dot abhängigen Art und Weise auf die LCV transloziert. Frühere 

Studien zeigten, dass in einer sidC-sdcALpn Deletionsmutante die ER Rekrutierung zu der 

LCV in infizierten D. discoideum Zellen beeinträchtigt ist. Wir konnten zeigen, dass die 

heterologe Produktion von SidCLlo diesen Rekrutierungsfehler komplementieren kann, 

ebenso wie Plasmid-kodiertes SidCLpn oder SdcALpn. Die Deletion vom Gen sidCLlo in                  

L. longbeachae führt ebenfalls zu einer verminderten Rekrutierung von ER-Markern zur 

LCV in infizierten D. discoideum. Dieser Effekt konnte durch eine Produktion von SidCLlo, 

SidCLpn und SdcALpn komplementiert werden. Die SidC Deletionsstämme von                           

L. longbeachae oder L. pneumophila replizierten in Acanthamoeba castellanii wie die 

entsprechenden Wildtyp-Stämme, aber in direkter Konkurrenz wurden die 

Deletionsmutanten von den Wildtyp-Stämmen verdrängt. Insgesamt scheinen trotz der 

geringen Sequenzidentität und der höheren Bindeaffinität von SidCLlo im Vergleich zu 

SidCLpn zu PtdIns(4)P beide Effektorproteine ähnliche Funktionen im Infektionsweg von 

Legionella wahr zu nehmen. 

Für die Charakterisierung von L. longbeachae-enthaltenden Vakuolen in einer 

Proteomanalyse müssen LCVs aus D. discoideum oder RAW 264.7 Makrophagen isoliert 

werden. Endogenes SidCLlo oder heterolog produziertes SidCLpn wurden als Vakuolen-

Marker für die Isolation von L. longbeachae-enthaltenen Vakuolen verwendet.                            

L. longbeachae-enthaltene Vakuolen wurden in einer Immunaffinitätsaufreinigung mit 

Hilfe spezifischer Antikörper gegen SidCLlo oder SidCLpn isoliert. Weitere Studien zielen 

auf die Verbesserung der Vakuolen-Isolation von L. longbeachae, um das Proteom dieser 

LCV zu charakterisieren. 
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1. General introduction 

1.1 Legionella spp. 

Legionella spp. are Gram-negative, obligate aerobe bacteria which live in a broad range of 

natural or man-made aquatic systems [4] or in potting soil [5, 6]. Two major Legionella 

species are L. longbeachae and L. pneumophila which both cause the severe pneumonia 

Legionnaires´ disease through inhalation of aerosols [7, 8]. The first and largest outbreak 

in the US history was in 1976 where American Legion members were infected by                  

L. pneumophila [5]. After this outbreak the genus was termed “Legionella” [5].                        

L. longbeachae serogroup 1 (Sg 1) was isolated for the first time from a patient with 

pneumonia in Long Beach, California, USA in 1981 [9]. In the same year the serogroup 2 

of L. longbeachae was discovered [10].  

 

1.2 Clinical diagnostic and therapy of Legionnaires’ disease 

Legionellosis is divided into two clinical diseases, Legionnaires’ disease, a severe 

pneumonia, and Pontiac fever [5]. Pontiac fever is a flue-like illness which is self-limiting. 

Legionellosis is causing a broad range of symptoms like myalgia, dyspnea, non-productive 

cough, headache, fever, rigors, delirium and diarrhea [11]. However Legionellosis cases 

are known where a person had no symptoms at all [5, 12]. It is not possible to distinguish 

between Legionnaires’ disease and other forms of pneumonia based on the symptoms only 

[5]. Even chest radiographic pictures look identical [13]. Cases are reported where Pontiac 

fever and Legionnaires’ disease were occurring during the same outbreak of Legionellosis 

[14]. 

From more than 50 known Legionella species L. pneumophila is causing around 90% 

and L. longbeachae less than 5% of the Legionellosis cases worldwide. L. longbeachae is 

mainly found in Australia and New Zealand where it accounts for 30% of the Legionellosis 

cases whereas L. pneumophila accounts only for 46% [15]. The diagnosis is based on a 

screen for L. pneumophila and therefore biases the statistic [5]. 15 different serogroups for 

L. pneumophila [5] and two serogroups for L. longbeachae are known. However, the 

serogroup 1 of L. pneumophila and L. longbeachae is mainly found in human infections [8, 

15].  
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L. pneumophila was first cultured on Mueller-Hinton agar which was supplemented 

with haemoglobin and IsoVitaleX (a supplemental mixture consisting primarily of sugars 

and cysteine). Later IsoVitaleX and haemoglobin were replaced by L-cysteine 

hydrochloride and soluble ferric pyrophosphate respectively [16]. Last the medium was 

replaced by a charcoal yeast extract (CYE) agar [17]. Lung tissue, blood and respiratory 

secretions like sputum and stool can be used to isolate Legionella [5]. Legionella can be 

detected by microscopic examination through a direct fluorescent antibody (DFA) but the 

specificity and sensitivity of this method is not optimal [14, 18]. Also a species-specific 

antigen for L. pneumophila is available which detects the serogroups 1 - 8 [19] but a cross-

reaction with Bacillus cereus spores is possible [20]. The antigen used in an urine antigen 

detection assay is only detecting the serogroup 1 of L. pneumophila [5]. 

Erythromycin is the major drug used to cure Legionnaires’ disease [5]. Moreover, 

azithromycin and levofloxacin are licenced through the Food and Drug Administration to 

cure this disease [5]. 

 

1.3 The accidental transfer of Legionella to a human  

L. pneumophila is mainly found in biofilms in water systems like cooling towers [21-25], 

shower heads and in natural sources like rivers and lakes [5, 25]. In 1989 a direct link 

between L. longbeachae and potting soil was found [5, 6] but no cases are known in which 

a person was infected with L. longbeachae through inhalation of aerosols from a water 

system. A human-to-human transmission was not observed for Legionella [23].  

A recently performed genome analysis of L. longbeachae revealed its environmental 

habitats [26]. Several genes for enzymes were found which are associated with plants like 

cellobiohydrolases, ß-glucosidases, glucanases, pectin lyases, endo-1,4-xylanase and 

chitinases. These enzymes could be used for the degradation of cellulose to use it as a 

carbon source. Furthermore, a putative cyanophycin synthase and a putative 

cyanophycinase, which are normally present in cyanobacteria, were found in the genome 

of L. longbeachae. Cyanophycin can be used as a storage compound for carbon, energy 

and nitrogen. L. pneumophila, on the other hand, possesses only genes for one putative ß-

glucosidase, an endo-1,4-glucanase, endo-1,4-xylanase and chitinase. The genomic 
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analysis also indicated a putative capsule-like structure for L. longbeachae NSW150, 

which was validated by electron microscopy and is not present in L. pneumophila [26].  

 

1.4 The infection cycle of Legionella  

In 1980 a L. pneumophila infection of A. castellanii and human monocytes under lab 

conditions was first reported [22, 27]. Legionella spp. are also able to infect and replicate 

in protozoan hosts like D. discoideum [3, 28, 29] and human and murine macrophages [3, 

30-32]. L. longbeachae can also replicate in A. castellanii [26]. Contrary to                                    

L. pneumophila, L. longbeachae can also replicate in C57BL/6 mice [33]. The cytosolic 

flagellin of L. pneumophila, which triggers the activation of Naip5-dependent caspase-1 

followed by a proinflammatory cell death through pyroptosis, seems to be the reason of 

this failure [34-38]. L. longbeachae does not trigger capase-1 activation in C57BL/6 mice 

macrophages and does not possess flagellar biosynthesis genes [26].  

L. pneumophila undergoes a biphasic life cycle in which it switches from a 

transmissive, virulent to a replicative, non-virulent phase [26]. In the post-exponential 

growth phase of a liquid over night culture L. pneumophila is virulent [30, 39].                           

L. pneumophila is using the flagella to reach host cells and is attaching through self-

produced adhesins to the cell surface [24]. The uptake is an Icm/Dot-dependent [40, 41] 

process which can take place as “coiling phagocytosis” [41-43] or macropinocytosis [40, 

44] (Figure 1.1). Non-motile L. longbeachae does not posses such a pronounced biphasic 

life cycle, but a chemotactic system was found in a genome analysis which is missing for 

L. pneumophila [26]. No invasion strategies are known for L. longbeachae. Amoebae are a 

suitable model to study the intracellular life cycle of Legionella since the creation of a 

LCV and the intracellular replication in protozoa and mammalian phagocytes are similar. 

After entering the cell the bacteria is remodelling the phagosome and a LCV is formed. 

The L. pneumophila-containing vacuole acquires components from the mitochondria, fuses 

with vesicles from the ER and communicates with vesicles form the early and late 

endosomal vesicle trafficking pathway (e.g. EEA1 (early endosomal antigen 1)) [45, 46] 

whereas fusion with the lysosome is avoided [43, 45, 47-51] (Figure 1.1). During 

maturation the shape of a L. pneumophila-containing vacuole changes from a tight to a 

spacious vacuole. Only the bacterial poles stay attached to the LCV [52, 53]. 1150 host cell 
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proteins were found on the LCV purified from macrophages [1] and 566 host proteins for 

D. discoideum [54] in a recent proteomics analysis. Only few details are known for the 

host factor composition of the L. longbeachae-containing vacuole. Acquisition of the early 

endosomal marker EEA1 and the late endosomal marker LAMP-2 was observed in U937 

macrophages. Also co-localization with the rough endoplasmatic reticulum (rER) was 

reported. An acquisition of the lysosomal marker Cathepsin D and the lysosomal tracer 

Texas red Ovalbumin (TROV) was not observed for L. longbeachae wild-type but for the 

dotA deletion mutant [30].  

L. pneumophila is switching from the transmissive, virulent to the replicative, non-

virulent phase [26]. During this process the expression of almost half of the genome 

expression is altered upon infection of A. castellanii [55]. L. pneumophila produces over 

300 different effector proteins which are translocated by the Icm/Dot T4SS into the host 

cell [56-58]. These effector proteins play a role in vesicle trafficking pathways and 

communication with host cell compartments. A modulation of the host cell response is 

initiated [59]. L. longbeachae possesses over 110 putative effector proteins [58] and 

replicates intracellularly irrespective of the bacterial growth phase [30] in a vacuole which 

recruits vesicles from the endoplasmatic reticulum [26, 30].  

L. pneumophila upregulates genes during the replicative phase, which are predicted to 

be necessary for the transmission to a new host cell. This includes genes for invasion and 

virulence such as the Icm/Dot T4SS system. The bacteria are preparing themselves for the 

next infection [55]. At the end of the intracellular replication phase the LCV in infected 

amoebae or macrophages is disrupted, a process which is independent of a bacterial pore-

forming activity in macrophages and the bacteria are released in the cytosol of the cell [60, 

61] (Figure 1.1). The pore-forming activity of the bacteria allows the cytolysis of the host 

cell [61-64]. L. pneumophila can also escape from infected A. castellanii in expelled 

vesicles and can survive in this vesicles for months [65]. L. longbeachae seems to escape 

from the cell like L. pneumophila within 24 hours. However, a pore-forming activity is 

missing [30, 66]. 
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Figure 1.1. L. pneumophila replicates in phagocytes. The bacteria invade phagocytes in an Icm/Dot- 
dependent way. A phagosome is built which fuses with endosomes [45, 46], ER-derived vesicles [47, 51] but 
avoids to fuse with lysosomes [67, 68]. The bacteria are replicating in the LCV. After replication the bacteria 
destroy the LCV and the plasma membrane of the cell [61-64]. The figure is based on a scheme published in 
[69]. 

 

1.5 Type II and type IV secretion systems 

L. pneumophila and L. longbeachae both possess a large number of secretion systems. The 

two major secretion systems are called Lsp type II secretion system (T2SS) and the 

Icm/Dot type IVB secretion system (T4BSS). Both secretion systems are necessary for the 

infection [8, 70]. Also, three type IVA secretion systems are present in the genome of                   

L. longbeachae but the Lvh T4ASS of L. pneumophila was not found in the genome [26]. 
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1.5.1 The Lsp type II secretion system (T2SS) 

A functional Lsp type II secretion system was found in the genome of L. pneumophila and 

L. longbeachae [8, 26]. Between 25 and 60 type II secreted proteins are known for                       

L. pneumophila [71]. 45% of the type II secreted substrates of L. pneumophila were 

missing in the genome of L. longbeachae [26]. 

 

1.5.2 The Icm/Dot type IVB secretion system (T4BSS) 

Many Gram-negative bacteria like Legionella use the type IV secretion system (T4SS) to 

transfer DNA substrates and proteins to the recipient cell [72]. A T4SS type A (T4ASS) 

and B are known. The Icm/Dot T4SS of Legionella spp. is part of the T4BSS which is 

independent of the T4ASS [72]. The secretion system is necessary for the efficient 

formation of a LCV and for the translocation of effector proteins into the host cell [50]. 

The protein identities and organization of the genes is 47% to 92%  similar between             

L. longbeachae and L. pneumophila [8].  

The Icm/Dot T4BSS system of Legionella comprises 27 proteins. Five proteins were 

found to be located in the cytoplasm and 16 proteins are connected with the inner 

membrane of the LCV. Additionally four outer membrane proteins and one periplasmic 

protein were identified. The type 4B secretion system contains nearly twice as many 

proteins as the VirB/D4 type 4A system of Agrobacterium tumefaciens which consists 11 

VirB proteins and a putative ATPase, VirD4 [72]. 

L. pneumophila genes called icm or dot code for proteins which form a membrane 

spanning transport complex. This complex is necessary for substrate translocation [73] and 

for intracellular replication [74-78]. Similarly organized genes were found to code for 

proteins which are related to Icm/Dot components. These DNA elements were located in 

the IncI plasmid colI-P9 and R64 and were necessary for conjugation. It seems as if the 

Dot/Icm system was adapted from a plasmid-encoded conjugal transfer system [79].  

The Icm/Dot T4SS system translocates effector proteins at different time points into the 

host cell. SidCLpn is translocated in an Icm/Dot-dependent way and localizes to the LCV at 

early time points of the infection [3, 80, 81]. The effector proteins LepA and LepB, which 

are important for the evasion of the bacteria from D. discoideum, are probably produced 
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and translocated during the later phases of the infection cycle [73, 82]. Effector proteins 

like LidA seem to be expressed and translocated during all growth phases [83].  

 

1.6 Phosphoinositide-binding Legionella effector proteins 

Today over 110 putative effector proteins are known for L. longbeachae [58]. 300 effector 

proteins are characterized for L. pneumophila [56, 58] which is equal to 10% of the total 

amount of proteins known [8]. Some effector proteins might be functionally redundant. 

After deletion of a single gene only few deletions lead to an intracellular growth defect of 

L. pneumophila [84-86]. The diversity of the Icm/Dot effector proteins might reflect the 

potential to infect different host cells [86]. After translocation of the effector proteins into 

the host cell the proteins decorate the LCV or target organelles or host factors in the host 

cell [50]. L. longbeachae lacks around 66% of the Icm/Dot substrates of L. pneumophila 

but possesses 51 novel putative Icm/Dot substrates [26].  

The first Icm/Dot substrate identified through bioinformatics analysis was RalF 

(Recruitment of Arf to Legionella phagosome) [73]. RalF recruits a member of the small 

GTPase family named ARF (ADP ribosylation factor) to the LCV and catalyzes a GDP-

GTP nucleotide exchange [87]. It was shown for RalF and LidA (Lowered viability in the 

presence of dotA) that the C-terminus of these effector proteins is necessary for the 

translocation of the protein by the Icm/Dot T4SS [84, 88]. A current assumption is that the 

secretion signal in general does not posses distinct amino acids at specific positions. 

Instead it is expected that the physicochemical properties of the amino acids at the last 35 

amino acids of the C-terminus are important [58].  

Several of these effector proteins of L. pneumophila have been mechanistically 

characterized. The effector protein SidK inhibits the vacuolar H+-ATPase [89], the 

autophagy machinery is modified by an effector protein called RavZ [90] and the retromer 

complex [91] or phosphoinositide (PI) lipids are also targeted [50, 92]. 

Many intracellular bacteria target the PI metabolism in order to be able to survive and 

replicate within the host cell [69, 93, 94]. PI lipids play an important role in the vesicle 

trafficking and signal transduction of eukaryotes [95] but the amount of PIs in the cell is 

low. Only around 10% of the total cellular phospholipids are PIs [96]. PI lipids are 

derivatives of phosphatidylinositol (PtdIns) composed of a diacylglycerol (DAG) backbone 
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and one D-myo-inositol 1-phosphate head group. The head group is oriented to the cytosol 

and can be phosphorylated by PI-kinases and dephosphorylated by PI-phosphatases at the 

3’, 4’ or 5’ position [50]. PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,4)P2, PtdIns(3,5)P2 

and PtdIns(3,4,5)P3 can be formed [45, 96].  

The distribution and function of the different PIs in the cell varies. Specific PIs together 

with small GTPases are responsible for the transport between subcellular compartments 

[97]. PI-metabolizing enzymes interconvert theses lipids. PIs have specific localisations 

within the cell and thus serve as organelle markers. PtdIns(3)P is mainly found on 

phagosomes, multivesicular bodies (MVBs) as well as on early endosomes [95-97]. 

PtdIns(4)P has a broad distribution. It is found on the plasma membrane, on secretory 

vesicles, the Golgi apparatus and the ER [95, 97, 98]. In an immunofluorescence analysis 

the localisation of PtdIns(4)P on the LCV was shown by an anti-PtdIns(4)P antibody. 

PtdIns(3,5)P2 is found in the later steps of the endosomal pathway [95]. PtdIns(4,5)P2 is 

enriched at the plasma membrane and together with PtdIns(3,4,5)P3 is located at sites of 

phagocytosis [96]. Proteins interact with PIs through specific PI lipid-binding domains like 

the pleckstrin homology (PH) domain which is known to bind to PtdIns(4)P [96, 99], 

PtdIns(3,4)P2 and PtdIns(3,4,5)P3 [100]. Therefore, a purified eukaryotic PHFAPP1 domain 

coupled to GST can be used as a probe for PtdIns(4)P [80]. A number of effector proteins 

are known which modify PI lipids. LpnE might be important for binding of inositol 

polyphosphate 5-phosphatase OCRL1 (oculocerebrorenal syndrome of Lowe 1) to the LCV 

[50, 101] and SidF is a known PtdIns(3)-phosphatase [102].  

Many T4SS effector proteins of L. pneumophila are characterized to bind to PtdIns(3)P 

or PtdIns(4)P on the LCV. PtdIns(4)P-binding effector proteins are for example SidCLpn, 

its homolog SdcALpn [80, 92, 94, 103] and the GEF (guanine nucleotide exchange 

factor)/AMPylase (adenosine mono-phosphorylase) SidM (also known as DrrA) [45, 56, 

81, 104]. LidA is an example for a PtdIns(3)P-binding effector protein [83, 94].                       

L. pneumophila is interacting with the host cell regulation of PIs to form a replication-

permissive niche. Finally, also Legionella spp. are avoiding the lysosomal or 

autophagosomal pathway through imitating the lipid composition of the host cell 

organelles. This strategy is called “identity theft” [97]. 
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1.6.1 SidC and SdcA 

1.6.1.1 SidCLpn and SdcALpn of L. pneumophila  

The 106 kDa protein SidCLpn (substrate of Icm/Dot transporter) and its paralog SdcALpn are 

known Icm/Dot-dependent effector proteins of L. pneumophila which bind through 

PtdIns(4)P homogenously to the cytoplasmic side of the LCV [80, 84, 101, 103] (Figure 

1.2). SidCLpn and SdcALpn have an identity of 72% [3].. Both effector proteins also bind 

with a much smaller affinity to PtdIns(3)P [103]. The results were confirmed for SidCLpn 

by protein lipid overlay assays [3, 80]. A 20 kDa PtdIns(4)P-binding domain, termed 

SidCLpn_P4C (PtdIns(4)P-binding of SidC), was found to be the binding region for 

PtdIns(4)P. This P4C domain binds with higher affinity to PtdIns(4)P than the full length 

SidCLpn [3, 81]. The P4C domain is unique for prokaryotes and does not show any 

homology to eukaryotic PI domains [103]. A glutamate cluster called E-block in the C-

Terminus is important for the efficient translocation of SidCLpn [105]. 

Until now little is known about how PtdIns(4)P accumulates on the LCV and effector 

proteins like SidCLpn can bind to it [101]. The amoeba PtdIns(4, 5)P2 5-phosphatase Dd5P4 

(Dictyostelium discoideum 5-phosphatase 4) as well at its human homologue OCRL1, 

which hydrolyses PtdIns(4,5)P2 to produce PtdIns(4)P [50, 106], are found on the LCV 

and could be responsible for the production of PtdIns(4)P [101]. In a D. discoideum Dd5P4 

mutant less SidCLpn was found on the LCV. It is known that more SidCLpn binds to the 

LCV in infected D. discoideum if phosphatidylinositol 3-kinase (PI3K) is depleted because 

PI3K converts PtdIns(4)P to PtdIns(3,4)P2 and PtdIns(3,4,5)P3 [80]. In a RNA interference 

assay in Drosophila melanogaster Kc167 phagocytes the depletion of PtdIns 4-kinase IIIß 

(PI4KIIIß), which produces PtdIns(4)P, lowered the amounts of SidCLpn on the LCV. A 

depletion of the isoenzyme PI4KIIIα or PI4KIIα did not affect the SidCLpn binding to the 

LCV [81].  

SidCLpn is competing with SidM for the PtdIns(4)P binding site on the LCV. In a 

phosphoinositide-pulldown assay with PI-coated agarose beads only SidM but not SidCLpn 

was found to bind to PtdIns(4)P. Even in the absence of SidM no SidCLpn was detected 

[81]. Proteolysis of SidC was ruled out and it was found that the affinity of SidM and 

SidCLpn towards PtdIns(4)P is nearly the same. A masking “in cis” by a domain of SidCLpn 

could be the reason for the lack of binding in agreement with the finding that the P4C 
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domain is binding with a higher affinity to PtdIns(4)P than the full length SidCLpn. 

Alternatively, a complexation of SidCLpn with other L. pneumophila proteins could prevent 

the binding of SidCLpn [81]. Putative chaperones like IcmS and IcmW could be interactors 

for SidCLpn [81, 107, 108]. It was shown in an immunofluorescence analysis that in the 

absence of SidM more SidCLpn is binding to the LCV [81]. 

SidCLpn localizes to tight and spacious LCVs [80]. The deletion of the genes sidCLpn and 

sdcALpn in L. pneumophila does not lead to a decreased intracellular replication of the 

bacteria in D. discoideum, A. castellanii or macrophages. However, a slower and less 

pronounced interaction with the ER and a failure of the LCVs to develop from tight to 

spacious LCVs were results of this deletion [80, 103, 106, 109]. Also, the establishment of 

a replication-permissive LCV was delayed [109]. The deletion is causing a reduction of the 

ER markers HDEL and calnexin to the LCV, up to 20% for calnexin. The calnexin 

recruitment defect was complemented by plasmid-encoded SidCLpn or SdcALpn but not by 

plasmid-encoded SidCLpn_P4C. The LCVs of D. discoideum or RAW 264.7 macrophages 

infected with a sidC-sdcALpn deletion mutant were harbouring endosomal but not 

lysosomal markers [103]. The 70 kDa N-terminal domain of SidCLpn was binding ER and 

ER-derived vesicles like the full length SidC. Therefore SidCLpn and SdcALpn facilitate the 

acquisition of ER and ER-derived vesicles (Figure 1.2) through a N-terminal domain to the 

LCV [103]. It was postulated that the amino acids 225 to 323 are important for the 

interaction of SidCLpn with ER-derived vesicles over a host factor [109].  

The genes sidCLpn and sdcALpn are important for the early recruitment of LCV markers 

like ubiquitin and Arf1. The effect was only visible for Arf1 if both effector proteins were 

depleted indicating that the two effector proteins have redundant functions [109]. RalF 

recruits Arf1 to the LCV and RalF is a GEF for Arf1 [87, 110]. SidCLpn/SdcALpn did not 

affect the function of RalF, and therefore, their effect on the Arf1 recruitment seems to be 

indirect [109] (Figure 1.2).  

The absence of the effector proteins SidCLpn and SdcALpn did not result in a decreased 

recruitment of Rab1 to a LCV [103], but the deletion mutant caused a loss of the 

monoubiquitination of Rab1A (Figure 1.2). SidCLpn and SdcALpn had again a redundant 

function and the amino acids 222 to 315 were necessary for the ubiquitination. In liquid 

chromatography-mass spectrometry (LCMS) analysis the ubiquitin was found at lysine 

187. A temporary ubiquitination in the early steps of the infection was shown. Recently, a 
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structural analysis of the N-terminal fragment of SidC (amino acids 1 to 608) was 

published. The length of SidCLpn (around 220 Å) is comparable with other tethering 

proteins. No structural homolog was found [109]. 

Finally, in biochemical and biological assays the P4C domain can be used as a probe for 

PtdIns(4)P on the LCV [3, 103]. The full-length SidCLpn can be used in an immuno-affinity 

separation of LCVs from infected amoebae or macrophages [2, 54].  

 

 
Figure 1.2. The role of SidCLpn and SdcALpn on a L. pneumophila-containing vacuole. SidCLpn and 
SdcALpn are binding through PtdIns(4)P to the L. pneumophila-containing vacuole. Both effector proteins 
interact with the ER [80, 103, 106]. SidCLpn is competing with SidMLpn for PtdIns(4)P [81]. SidCLpn and 
SdcALpn promote the activation of Arf1, which is recruited to the LCV through RalF [87, 109, 110]. Rab1 is 
ubiquitinated by SidCLpn and SdcALpn [109].  

 

1.6.1.2 SidCLlo of L. longbeachae 

A 111 kDa homolog to SidCLpn was found in the genome of L. longbeachae and was 

named also SidC (SidCLlo). SidCLlo is a putative substrate of the Icm/Dot type IV secretion 
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system [26] (Figure 1.3). No sdcA gene was found in the genome of L. longbeachae [26] 

(Figure 1.3). 

 

 
Figure 1.3. The role of SidCLlo on a L. longbeachae-containing vacuole. It is not known if SidCLlo is 
translocated through the Icm/Dot T4SS into the cytosol of the host cell. It is possible that a translocated 
SidCLlo is binding through PtdIns(3)P, PtdIns(4)P or other PI lipids to the LCV. SidCLlo could also be located 
in the cytosol of the host cell. SidM and SdcA are missing in the genome of L. longbeachae [26]. 

 

1.6.2 SidM (alias DrrA) of L. pneumophila 

SidM is a 73 kDa Icm/Dot substrate of L. pneumophila which is translocated through a C-

terminal translocation signal. The effector protein binds through a 12 kDa PtdIns(4)P 

binding domain called P4M (PtdIns(4)P-binding of SidM/DrrA; amino acids 544 to 647) to 

PtdIns(4)P on the LCV during the early stage of infection [81, 111]. The binding affinity 

of the P4M domain for PtdIns(4)P is reduced compared to the full length SidM [81]. The 

structure of a SidM fragment including the P4M domain was analysed. A novel fold of the 

effector protein was found. This SidM fragment possesses a high affinity to PtdIns(4)P 

with a dissociation equilibrium constant (KD) of 30 nM [104]. The P4M binding domain 

has no similarity with the P4C domain of L. pneumophila or the PtdIns(4)P-binding PH 

domain of the adaptor protein phosphatidylinositol (4) phosphate adaptor protein 1 

(FAPP1) of eukaryotic cells. SidM is competing with SidCLpn for binding to PtdIns(4)P on 

the LCV. SidM also weakly binds to the phosphate in position 4 of PtdIns(3,4)P2, 
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PtdIns(4,5)P2 and PtdIns(3,4,5)P3 as well as to PtdIns(3)P [81]. The sidM gene is not 

found in the genome of L. longbeachae [26].  

SidM is a known GEF and GDF (GDI displacement factor) for the small GTPases Rab1, 

Rab8 and Rab14 of the Rho subfamily [54, 59, 81, 112, 113]. Two activation states of Rho 

GTPases are known. GTPases are inactive if they have bound a guanine nucleotide 

dissociation inhibitor (GDI) and GDP. In the active state the GDP is exchanged by a GTP 

through a GEF and the GDI is removed. In this state the GTPases interacts with 

downstream effector proteins such as adaptor proteins, lipid kinases and proteins. GTPases 

of the Rho subfamily play a role in regulation of the actin cytoskeleton and in signal 

transduction pathways of eukaryotes [114].  

SidM binds through its P4M domain [81] to PtdIns(4)P located on the LCV. SidM 

activates Rab1 through its GDF activity [111, 115, 116] and catalyses a GDP-GTP 

exchange [104, 111, 112, 115-118] through its GEF activity in the central part [119]. 

Finally, SidM is bound to Rab1-GTP [45] (Figure 1.4). Rab1 is necessary for the vesicle 

transport from the ER to the Golgi [81].  

The N-terminal part of SidM possesses also an “AMPylation” (adenosine mono-

phosphorylation) activity for the switch II region of Rab1. This switch II region of Rab1 is 

involved in the interaction with GEF, GDI and GAP [109, 119, 120]. The “AMPylation” is 

important for the retention of Rab1 on the LCV [116]. The Icm/Dot-dependent effector 

protein LidA was found to be an Icm/Dot substrate which decorates the LCV [83, 121]. 

LidA is binding to PtdIns(3)P and with lower affinity to PtdIns(4)P [81]. LidA is binding 

to GDI-free Rab1 and therefore facilitates the recruitment of early secretory vesicles to the 

LCV [112, 113, 115, 121]. Through the binding to Rab1 LidA supports the GEF activity of 

SidM [113]. LidA can interact with Rab1 modified by different covalent modifications like 

AMPylation and phosphocholination. It is also able to prohibit the dephosphocholination 

through the effector protein Lem3 or the de-AMPylation of Rab1 through the effector 

protein SidD [122]. Also, an interaction of LidA with small Rab GTPases like Rab6 and 

Rab8 was described (Figure 1.4). 

The effector protein SidD deampylates Rab1-GTP [123, 124]. LepB dephosphorylates 

the GTP of Rab1 and binds to the LCV and Rab1-GDP. Thus, Rab1 is inactivated [116]. 

Therefore LepB is the antagonist of SidM [111]. A GDI binds to Rab1-GDP, removes it 
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from the surface of the LCV and the cycle starts again with the activation of GDI bound 

Rab1-GDP through SidM [104, 111, 112, 115, 117, 118] (Figure 1.4). 

Rab1-GTP bound SidM can also be phosphocholinated by AnkX. This is not required 

for the retention of Rab1 to the LCV [116]. AnkX is inhibiting the formation of a Rab1-

GDP:GDI complex [125]. Lem3 dephosphorylcholinates Rab1, and consequently Rab1 is 

accessible for the effector protein LepB [126].  

 

 
Figure 1.4. Effector proteins compete with SidM for Rab1 on the L. pneumophila-containing vacuole. 

An Icm/Dot T4SS system is necessary for the translocation of effector proteins into the host cell. Some of the 
effector proteins bind through PI lipids (PtdIns(3)P and PtdIns(4)P) to the LCV. Theses effector proteins can 
modifiy the small GTPase Rab1 and possess different activities like a GEF and GDF activity (SidM), GAP 
activity (LepB), de-phosphocholinase (Lem3), phosphocholinase (AnkX) or deampylase (SidD). The figure 
is based on the scheme published in [45]. 
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1.7 Aims of the Ph.D. thesis 

At the onset of this thesis not a single L. longbeachae effector (among more than 100 

candidates) was biochemically characterized. Using PI lipids covalently coupled to agarose 

beads, we thought to identify PI-binding L. longbeachae proteins in an unbiased screen. 

Thus, we identified the L. pneumophila homologue of L. pneumophila SidC as a PI-

binding protein. The genome of L. longbeachae NSW150 was published in the first half of 

2010. A homolog of SidCLpn was identified and the protein corresponding to the gene 

llo3098 was termed SidCLlo [26]. Therefore, we characterized SidCLlo and compared it to 

SidCLpn using genetic, biochemical and cell-biological approaches. Since the available 

SidCLpn antibody did not recognize SidCLlo in a Western blot or in an immunofluorescence 

analysis, a SidCLlo antibody was produced.  

Another aim of the thesis was to isolate and purify intact LCVs harbouring                            

L. longbeachae. To this end, a protocol based on immuno-affinity purification, previously 

established for L. pneumophila, was used. The goal was to perform a proteomic analysis of 

the L. longbeachae-containing vacuole. LCV purifications were tried with infected                   

D. discoideum as well as with infected RAW 264.7 macrophages.  

Taken together, this thesis aimed at a better understanding of LCV formation and 

intracellular replication of L. longbeachae. 
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2. Materials and methods 

2.1 Materials 

2.1.1 Bacterial strains 

The bacterial strains listed in table 2.1 were used (Table 2.1). 

 

Table 2.1. Bacterial strains*. 

Strain Property Reference 

E. coli   

TOP10 --- Invitrogen 

BL21 (DE3) --- Novagen 

L. longbeachae   

NSW150 L. longbeachae Serogroup 1 [26] 

∆dotA 

IH02 

NSW150 dotA::KanR (∆dotA) 

NSW150 sidCLlo:KanR (∆sidCLlo) 

[26] 

[3] 

L. pneumophila   

JR23 L. pneumophila Philadelphia strain 1 [127] 

GS3011 JR32 icmT3011::KanR (∆icmT) [128] 

LELA3118 JR32 dotA3118::KanR (∆dotA) [127] 

CR001 JR32 sidC-sdcA:KanR (∆sidC-sdcALpn) [103] 

*Abbreviation: kanamycin (Kan) 

 

2.1.2 Eukaryotic cell lines 

The eukaryotic cell lines listed in table 2.2 were used (Table 2.2). 
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Table 2.2. Eukaryotic cell lines*. 

Cell line Property Reference 

Acanthamoeba 

castellanii 

--- ATCC 30234 

RAW 264.7 

macrophages 

--- ATCC TIB-71 

D. discoideum   

AX3/pCaln-GFP Pact15, calnexinA-RSSSKLK-GFP (S65T), 

G418 

[129] 

*Abbreviation: geneticin sulphate (G418) 

 

2.1.3 Plasmids 

The plasmids listed in table 2.3 were used (Table 2.3). 

 

Table 2.3. Plasmids*. 

Plasmid Property Reference 

pCetLI1 pZT-llo0105-cyaA-C (P7) [58] 

pCR02 pGEX4T-1, GST-sidCLpn (Ptac) [80] 

pCR34 pMMB207-C, M45-sidCLpn (Ptac) [80] 

pCR77 pMMB207-C, dsred (Ptac) [91] 

pCR80 pMMB207-C, dsred (Ptac), sidCLpn (Ptac) [91] 

pET28a(+) N-terminal His6-fusion, KanR (PT7) Novagen 

pGEX4T-1 N-terminal GST-fusion, AmpR (Ptac) Amersham 

pGEX-PH_FAPP1 pGEX4T-1, GST-PH_FAPP1 (Ptac) [130, 131] 

pHP056 pGEX4T-1, GST-sidCLpn_609-776 (Ptac) [103] 

pIH031 pMMB207-C-cyaA-sidCLlo (P7) unpublished 

pIH047 pMMB207-C-RBS-dsredexpress-RBS-sdcA 

(Ptac) 

[3] 
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pIH060 pGEX4T-1, SidCLpn_1-608-Llo_609-969 (Ptac) [3] 

pMH01 pGEX4T-1, sidCLlo_1-608-Lpn_609-917 (Ptac) [3] 

pMMB207-C-M45 pMMB207-C, ∆mobC, M45-(Gly)5, CamR 

(Ptac) 

[80] 

pSD01 pET28a(+); His6-sidCLlo (P7) [3] 

pSD02 pET28a(+); His6-sidCLlo (P7); deletion of 

BamHI and SalI in sidCLlo 

[3] 

pSD03 pGEX4T-1, GST-sidCLlo_609-782 (Ptac) [3] 

pSD04 pGEX4T-1, GST-sidCLlo_1-340 (Ptac) [3] 

pSD05 pGEX4T-1, GST-sidCLlo_341-608 (Ptac) [3] 

pSD06 pGEX4T-1, GST-sidCLlo_783-969 (Ptac) [3] 

pSD07 pGEX4T-1, GST-sidCLlo (Ptac) [3] 

pSD13 pMMB207-C, M45-sidCLlo (Ptac) [3] 

pSD14 pMMB207-C, dsred (Ptac), sidCLlo (Ptac) [3] 

pSH097 pMMB207-C-cyaA (Ptac) [91] 

pSH098 pMMB207-C-cyaA-sidC (Ptac) [91] 

pSW001 pMMB207-C, ∆lacI
q, constitutive dsred (Ptac) [132] 

*Abbreviations: ampicillin (Amp); chloramphenicol (Cam); kanamycin (Kan) 

 

2.1.4 Oligonucleotides 

The oligonucleotides listed in table 2.4 were used (Table 2.4). 

 

Table 2.4. Oligonucleotides [3]. 

Oligo Sequence (5' - 3') 
*
 Comment 

oSD07 TTTTCATATGATGAGAGTCACTAAAATGCCT

AAAGAC 

5' flanking sequence of 

sidCLlo (fo) 

oSD08 TTTTTGCTAGCTTAAGTACGTGAATTAAAAGT

ACGTCC 

3' flanking sequence of 

sidCLlo (re) 
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oSD16 TTTTG GGATCC ATG AGA GTC ACT AAA ATG 

CCT AAA GAC 

5’ of sidCLlo 

oSD17 TTTTTGTCGACTCATCCAGTGATTTTTTCTAC

GTC 

3' of sidCLlo_1-340 (re) 

oSD18 TTTTGGGATCCGCTGCTGTTATTTCCTGGG 5' of sidCLlo_609-782 (fo) 

 

oSD19 

 

TTTTTGTCGACTCATTCATTGAAAAAGTTAAG

CGCTG 

 

3' of sidCLlo_609-782 (re) 

oSD22 GAAAATAATATCAAGGCATGGTCCACTGATC

TTGAAGCAATCG 

Quick Change of 

sidCLlo (SalI) (fo) 

oSD23 CGATTGCTTCAAGATCAGTGGACCATGCCTT

GATATTATTTTC 

Quick Change of 

sidCLlo (SalI) (re) 

oSD24 AAACGCGGATCCGATGAATCACAGCAAAAG

GAAGC 

5' of sidCLlo_341-608 (fo) 

oSD25 AAACGCGTCGACTCAATTTTCTCTATTCACGT

TTGCTGGAG 

3' of sidCLlo_341-608 (re) 

oSD26 AAACGCGGATCCTTGTCTTTACATGAGGTGC

TTAAAGTAGC 

5' of sidCLlo_783-970 (fo) 

oSD27 AAACGCGTCGACTTAAGTACGTGAATTAAAA

GTACGTCC 

3' of sidCLlo_783-970 (re) 

oSD28 GATGAGTTCTTTTTGATGGACCCCAATAGAA

AAGG 

Quick Change of 

sidCLlo (BamHI) (fo) 

oSD29 CCTTTTCTATTGGGGTCCATCAAAAAGAACT

CATC 

Quick Change of 

sidCLlo (BamHI) (re) 

*The restriction sites are underlined. 

 

2.1.5 Lab equipment 

The lab equipments listed in table 2.5 were used (Table 2.5). 
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Table 2.5. Lab equipments. 

Application Name of the lab equipment Supplier 

autoclave STERIMAQUET MAQUET 

Bunsen burner FIREBOY plus INTEGRA Biosciences 

cell culture centrifuge Megafuge 40R Thermo Scientific 

cell homogenizer --- Isobiotech  

centrifuge 3-30K Sigma  

centrifuge Centrifuge 5415R Eppendorf 

centrifuge Sorvall®RC-5B Du Pont  

colony counter Countermat Flash IUL  

confocal fluorescence 

microscope 

Leica Sp5 TCS  Leica 

culture microscope Primo Vert Zeiss  

diaphragm vacuum pump MZ 2C Vacuubbrand  

electrophoresis chamber Mini-Subcell GT/ 

Subcell GT/ 

Mini-Protean 3 

Bio-Rad 

electroporation device GenePulser XCellTM Bio-Rad  

FACS machine FACS CantoTM II BD Bioscience 

French Press SIM-AMINCO Spectronic  

gel imaging system ChemiDoc MP System Bio-Rad  

hot plate magnetic stirrer RCT basic IKA  

ice cube machine AF30 Scotsman  

incubation cabinet Orbital shaker, Forma Thermo Scientific 

incubator Heraeus BR6000/  

Heraeus Function Line 

Thermo Scientific  

incubator IPP400/ IPP500 Memmert 
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magnetic separator MACS multistand Miltenyi Biotec  

medical film processor FPM-100A  FUJIFILM 

mixer Vortex-Genie 2 IKA  

pH-meter Level 1 inoLab  

pipettes pipetman Gilson  

pipettor pipetus Hirschmann  

plate reader FLUO star OPTIMA BMG Labtech GmbH 

power supply PAC100 Bio-Rad  

precision balance BP61-S Sartorius  

precision balance PG2002-S Mettler-Toledo  

protein transfer device MAXI-Semi-Dry-Blotter Roth  

rocking platform  Duomax 1030 Heidolph  

spectrophotometer NanoDrop ND-1000  PeqLab  

spectrophotometer Libra S12 Biochrom 

thermocycler T3 Biometra  

thermomixer  Thermomixer Comfort Eppendorf  

ultracentrifuge OPTIMATM TL Beckham 

UV transilluminator --- Bachofer  

water bath Wasserbad 1005 GFL  

wheel for cups and falcons KABE Mischgerät BM 92 KABE Labortechnik 

 

2.1.6 Software and data bases 

The figures were created with “Microsoft Excel” (Microsoft) and “Corel Draw” (Corel). 

The amino acid alignment was made by “ClustalOmega” alignment (EMBL-EBI 

homepage). 
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2.2 Methods 

2.2.1 Legionella spp. 

2.2.1.1 General growth conditions 

L. longbeachae and L. pneumophila were frozen in glycerol stocks (section 2.2.1.2). This 

stocks were used to inoculate charcoal yeast extract agar (CYE) plates (Table 2.6) [17]. 

The bacteria were grown at 37°C for 3 days and diluted in ACES yeast extract medium 

(AYE) (Table 2.7) [48] to an optical density at 600 nm (OD600) of 0.1. 2 x 109 bacteria ml-1 

correlate to an OD600 of 3.0. The overnight cultures were cultivated for 18 till 21 hours on 

a rotating wheel at 37°C until the culture reached the stationary growth phase. A brown 

colour of the bacterial solution indicated this growth phase. 10 µg ml-1 (L. longbeachae) or 

5 µg ml-1 chloramphenicol (Cam) (L. pneumophila) were added to the overnight culture in 

which the bacteria harboured a plasmid with a Cam resistance. 0.5 mM isopropyl-β-D-

thiogalactopyranoside (IPTG) (Roth) was added to the medium if a gene under the control 

of a Ptac-promotor was to be induced.  

 

Table 2.6. Charcoal yeast extract agar (CYE) [17]*. 

Component Per liter agar Supplier 

ACES 10 g AppliChem 

Bacto yeast extract 10 g BD Biosciences 

activated charcoal 2 g Fluka 

agar 15 g Serva 

L-cysteine 0.4 g in 10 ml dH2O Sigma 

FeN3O9 x 9H2O 0.25 g in 10 ml dH2O Sigma 

*The ACES and Bacto yeast extract were dissolved in dH2O and adjusted to a pH of 6.9.             

10 M KOH (Merck) was used for the adjustment. The solution was added to the activated 

charcoal and agar. A stir bar was added. The agar was autoclaved and cooled down to 

50°C. Filter sterilized (Filter Glass Microfiber Filter, WhatmanTM) L-cysteine solution was 

slowly added to the medium followed by the filter sterilized iron solution. An antibiotic 

was added if needed (5 µg ml-1 of chloramphenicol for L. pneumophila, 10 µg ml-1 of 

chloramphenicol for L. longbeachae, 50 µg ml-1 kanamycin). 
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Table 2.7. ACES yeast extract medium (AYE) [17]*. 

Component Per liter medium Supplier 

ACES 10 g AppliChem 

Bacto yeast extract 10 g BD Biosciences 

L-cysteine 0.4 g in 10 ml dH2O Sigma 

FeN3O9 x 9H2O 0.25 g in 10 ml dH2O Sigma 

*ACES and the Bacto yeast extract were dissolved in dH2O. The dissolved L-cysteine was 

slowly added to the medium followed by the iron solution. The pH was adjusted with 10 M 

KOH to 6.9. The medium was filtered six to eight times through a glass fiber filter 

followed by a filtration step with a filter with a smaller pore size (500 ml Rapid-Flow 

Bottle Top Filter, A. Hartenstein). The medium was stored at 4°C. 

 

2.2.1.2 Glycerol stock 

A single colony was used to inoculate 3 ml AYE in a test tube (section 2.2.1.1). The 

culture was cultured for 18 till 21 hours on a rotating wheel at 37°C until it reached the 

stationary phase. The culture was mixed with glycerol (Roth) to a final glycerol 

concentration of 25%. The mixture was frozen in liquid nitrogen in a cryovial (Thermo 

Scientific) and stored at -80°C.  

 

2.2.1.3. Production of electrocompetent Legionella spp. 

2.2.1.3.1 L. longbeachae 

L. longbeachae were streaked out from a glycerol stock densely on a CYE plate (section 

2.2.1.2). The bacteria lawn was harvest with an inoculating loop and resuspended in sterile 

ice cold dH2O. The suspension was diluted to an OD600 of 2.0. The bacterial mixture was 

washed two times with 10 ml ice cold sterile dH2O (3.350 x g, 10 minutes, 4°C) and one 

time with 10 ml ice cold sterile 10% glycerol. 250 µl of ice cold sterile 10% glycerol were 

used to resuspend the bacterial pellet. This bacterial suspension was used immediately for a 

transformation [133].   
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2.2.1.3.2 L. pneumophila 

L. pneumophila was grown in an overnight culture to pre-stationary phase (section 2.2.1.1). 

1 ml of the overnight culture was added to 30 ml AYE. The culture was grown at 37°C on 

a rotating wheel to an OD600 of 0.3 till 0.5 and cooled down. The bacteria were washed 

three times (5.000 x g, 5 minutes, 4°C) with 10 ml sterile, ice cold 10% glycerol. After the 

last washing step the bacterial pellet was resuspended in 160 µl sterile, ice cold 10% 

glycerol and aliquoted in portions of 25 µl. The aliquots were frozen in liquid nitrogen and 

stored at -80°C.  

 

2.2.1.4 Transformation of electrocompetent Legionella 

2.2.1.4.1 L. longbeachae 

50 µl of the electrocompetent bacteria (section 2.2.1.3.1) were mixed with three to five µg 

of DNA on ice and transferred in a precooled cuvette with a 2 mm electrode gap (Gene 

Pulser Cuvette, Bio-Rad). The cell suspension was electroporated in a GenePulser XCellTM 

Electroporation Systems (Bio-Rad) (2.4 kV, 200 Ω, 0.25 µF). 1 ml AYE medium was 

added to the cell suspension and the bacterial solution was transferred in a test tube. The 

culture was incubated for five hours at 37°C on a rotating wheel. The bacterial solution 

was plated onto CYE plates with the necessary antibiotics. Colonies appeared after four till 

five days [133]. 

 

2.2.1.4.2 L. pneumophila 

One aliquot of the electrocompetent bacteria (section 2.2.1.3.2) were mixed with 100 ng of 

DNA on ice. The bacteria/DNA mixture was transferred to a precooled cuvette with an       

2 mm electrode gap. The bacteria/DNA mixture was electroporated (2.5 kV, 200 Ω,                 

25 µF). The solution was mixed with 450 µl AYE medium and transferred to a test tube. 

The culture was incubated for five hours at 37°C on a rotating wheel. The bacterial 

solution was plated onto a CYE plate with an appropriate antibiotic. 
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2.2.2 Escherichia coli 

2.2.2.1 General growth conditions 

Escherichia coli was streaked out from a glycerol stock (section 2.2.2.2) with an 

inoculating loop on a Luria-Bertani (LB) agar plate (Invitrogen) and cultivated over night 

at 37°C. An overnight culture was inoculated with one E. coli colony. The culture was 

grown in LB broth base (Invitrogen) over night at 37°C on a shaker. Antibiotic was added 

to the LB agar plates and LB broth if necessary (Table 2.8). A gene under Ptac-control was 

induced by adding 0.5 mM IPTG to the LB broth. 

 

Table 2.8. Antibiotics. 

Component MW [g/mol] Final concentration Supplier 

ampicillin (Amp) 371.39 g mol.1 100 µg ml-1 Roth 

chloramphenicol (Cam) 323.13 g mol-1 30 µg ml-1 AppliChem 

kanamycin (Kan) 582.58 g mol-1 50 µg ml-1 Sigma 

 

2.2.2.2 Glycerol stock 

An E. coli overnight culture (section 2.2.2.1) was diluted with glycerol to a final 

concentration of 25%. The mixture was transferred into a cryovial tube, frozen in liquid 

nitrogen and stored at -80°C. 

 

2.2.2.3. Production of chemical competent E. coli 

A small overnight culture of E. coli was inoculated in LB broth medium and cultivated at 

37°C on a shaker (section 2.2.2.1). 100 ml of a fresh LB broth base culture was inoculated 

with 1 ml of the overnight culture. The culture was incubated until the OD600 reached 0.5. 

The following steps were performed on ice. The culture was transferred in a 50 ml test 

tube, cooled down for 15 minutes and washed once with 40 ml ice cold TFB1 (Table 2.9) 

(3.350 x g, 15 minutes, 4°C) and once with 4 ml ice cold TFB2 (Table 2.10). The bacterial 

solution was incubated for 15 minutes on ice. 50 µl aliquots were aliquoted, frozen in 

liquid nitrogen and stored at -80°C.  
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Table 2.9. TFB1*, **. 

Component Concentration Gram Supplier 

KAc 30 mM 1.41 g Roth 

KCl 100 mM 3.73 g Merck 

CaCl2 x 2H2O 10 mM 0.74 g Merck 

MnCl2 50 mM 3.15 g Fluka 

glycerol 15% 150 ml Roth 

*Distilled H2O was added to reach a final volume of one liter. 

**The pH of the solution was adjusted to 5.8 with 0.2 N acetic acid (Roth). The solution 

was filter sterilized and stored in aliquots of 40 ml at -20°C. 

 

Table 2.10. TFB2 *, **. 

Component Concentration Gram Supplier 

MOPS (3-(N-morpholino) 

propanesulfonic acid) 

10 mM 0.105 g Sigma 

CaCl2 x 2H2O 75 mM 0.552 g Merck 

KCl 10 mM 0.037 g Merck 

glycerol 15% 15 ml Roth 

*Distilled H2O was added to reach a final volume of 50 ml. 

**The pH of the solution was adjusted to 6.5 with KOH (Merck), filter sterilized and 

stored in aliquots of 4 ml at -20°C. 

 

2.2.2.4 Transformation of chemical competent E. coli 

The chemical competent bacteria were thawed on ice (section 2.2.2.3). 100 ng of DNA 

were added to the bacteria. The bacteria were incubated on ice for 30 minutes. A heat 

shock was performed at 42°C for one minute. The bacteria were cooled on ice for two 

minutes and transferred with 1 ml LB broth medium in a test tube. The culture was 

incubated at 37°C on a shaker for one hour. The culture was plated onto LB agar plates 

with the appropriate antibiotic. Colonies appeared after one day at 37°C. 
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2.2.3 Dictyostelium discoideum 

2.2.3.1 General growth conditions 

Dictyostelium discoideum strain Ax3 was cultivated axenically in HL-5 medium (Table 

2.11) at 23°C in a 75 cm2 flask (Tissue culture Flask 75, TPP Technic Product Plastics AG) 

[80, 134]. In case D. discoideum harboured a plasmid encoding geneticin sulphate (G418) 

resistance, 20 µg ml-1 G418 (Roth) was added to the medium.  

 

Table 2.11. HL5-medium [135]*, **. 

Component Gram Supplier 

D(+)-glucose-monohydrate 11 g Fluka 

BBLTMYeast Extract 5 g BD Biosciences 

bacteriological peptone 5 g BD Biosciences 

Na2HPO4  0.355 g Fluka 

KH2PO4  0.34 g Oxoid 

*Distilled H2O was added to reach a final volume of one liter.  

**The pH of the solution was adjusted to 6.5 with 1 M KOH or 1 M HCl (Roth). The 

medium was autoclaved and stored at 4°C. Geneticin sulphate was added to the medium 

(20 µg ml-1) if necessary. 

 

2.2.3.2 Storage of D. discoideum 

The axenically grown amoebae were cultivated in a 75 cm2 flask (section 2.2.3.1). The 

cells of one confluent flask were centrifuged (500 x g, 10 minutes, room temperature (RT)) 

and resuspended in 9 ml freezing medium (Table 2.12). 1 ml of the cell suspension was 

aliquoted into a cryovial. A freezing box (NalgeneTM Cryo 1°C Freezing Container, 

Nalgene) was filled with isopropanol and precooled at 4°C. The cryovials were transferred 

into the freezing box and frozen at -80°C over night. The cells were stored permanently in 

liquid nitrogen. 
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Table 2.12. Freezing medium. 

Component Percentage [%] Supplier 

HL-5 80% self made (2.2.3.1) 

FCS 10% Gibco 

DMSO 10% Merck 

 

2.2.3.3 Thawing of D. discoideum 

One frozen cryovial was thawed on ice (section 2.2.3.2). The cell solution was washed 

once (500 x g, 5 minutes, RT) with 10 ml HL-5 medium to remove the DMSO. The cells 

were resuspended in 10 ml HL-5 medium and transferred to a 75 cm2 flask. 

 

2.2.4 Acanthamoeba castellanii 

2.2.4.1 General growth conditions 

A. castellanii were cultivated in PYG medium (Table 2.13) at 23°C in a 75 cm2 flask. 

 

Table 2.13. PYG medium*, **. 

Component Concentration (stock, 

in dH2O) 

Gram or 

ml 

Supplier 

bacteriological peptone --- 20 g BD Biosciences 

Bacto Yeast extract --- 1 g BD Biosciences 

MgSO4 x 7H2O 0.4 M 10 ml Merck 

CaCl2 0.05 M 8 ml Merck 

sodium-citrate x 2H2O 1 M 3.4 ml Roth 

Fe(NH4)2(SO4)2 x 6H2O --- 20 mg Fluka 

Na2HPO4 x 7H2O 0.25 M 10 ml Fluka 

KH2PO4 0.25 M 10 ml Oxoid 

*Distilled H2O was added to reach a final volume of one liter.  
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**The pH of the solution was adjusted to 6.5 with HCl. 50 ml of a 2 M glucose dissolved 

in dH2O was added to the medium. The medium was filter sterilized twice with a pore size 

of 0.45 µm and once with a pore size of 0.2 µm. 

 

2.2.4.2 Storage of A. castellanii 

A. castellanii were grown in a 75 cm2 flask (section 2.2.4.1). The cells of one confluent 

flask were centrifuged (500 x g, 10 minutes, RT) and resuspended in 9 ml freezing medium 

(Table 2.14). 1 ml of the cell solution was transferred to a cryovial and stored in a freezing 

box overnight at -80°C. The cryovials were transferred into a liquid nitrogen tank 24 hours 

later. 

 

Table 2.14. Freezing medium. 

Component Percentage [%] Supplier 

PYG 80% self made (2.2.4.1) 

FCS 10% Gibco 

DMSO 10% Merck 

 

2.2.4.3 Thawing of A. castellanii 

One frozen cryovial (section 2.2.4.2) was thawed on ice. The cells were resuspended in                     

10 ml PYG medium to remove the DMSO from the medium. The cells were transferred 

with PYG medium in a 75 cm2 flask and cultivated at 23°C. 

 

2.2.5 RAW 264.7 macrophages 

2.2.5.1 General growth conditions 

RAW 264.7 macrophages were cultivated in RPMI 1640 medium (Gibco). 10% fetal calf 

serum (FCS; Gibco) and 2 mM L-glutamine (Gibco) were added to the medium. The cells 

were cultivated at 37°C with 5% CO2. 1% of a penicillin/streptomycin mixture (Omnilab) 

was added to the medium if needed. 
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2.2.5.2 Storage of RAW 264.7 macrophages 

RAW 264.7 macrophages were grown in RPMI 1640 medium supplemented with                       

L-glutamine and FCS (section 2.2.5.1). The cells of one confluent 75 cm2 flask were 

harvested using a cell scraper. The cells were sedimented (500 x g, 10 minutes, RT) and 

resuspended in 3 to 4 ml of a freezing medium (Table 2.15). 1 ml of the cell suspension 

was transferred to a cryovial, frozen over night in a freezing box at -80°C and stored 

permanently in a liquid nitrogen tank. 

 

Table 2.15. Freezing medium. 

Component Percentage [%] Supplier 

RPMI 1640 45% Gibco 

FCS 45% Gibco 

DMSO 10% Merck 

 

2.2.5.3 Thawing of RAW 264.7 macrophages 

Frozen RAW 264.7 macrophages were thawed on ice (section 2.1.5.2). The DMSO was 

removed by washing the cells once with 10 ml RPMI 1640 medium supplemented with              

L-glutamine and FCS (500 x g, 10 minutes, RT). The cells were transferred to a 75 cm2 

flask and cultivated at 37°C with 5% CO2.  

 

2.2.6 Cell counting 

10 µl of a cell suspension were applied to a “Neubauer counting chamber” 

(Glaswarenfabrik Karl Hecht). The cells were counted under the microscope. The total 

amount (N) of cells per ml solution was calculated with the formula: 

Ncounted cells/quadrant x 104 = Ncells ml-1. 
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2.2.7 Cloning 

The vectors for cloning were bought from Novagen, Amersham or were available in the 

lab (section 2.1.3). The polymerase, restrictions enzymes, ligase and DNA Ladder were 

bought from BioLabs, Fermentas and Thermo Scientifics.  

1% agarose gels were poured with dissolved agarose (Biozym LE Agarose, Biozym) in 

1x TAE agarose running buffer (Table 2.16). Ethidium bromide (Sigma) was added. A 

DNA standard was used (1 kb DNA Ladder, BioLabs).  Plasmid purification and agarose 

gel purification was done using kits from Macherey-Nagel (NucleoSpin ® Plasmid, 

NucleoSpin ® Gel and PCR Clean-up). The plasmids were sequenced by GATC Biotech 

(Konstanz, Germany).  

The gene sequence of sidCLlo was amplified by PCR from the genome of                           

L. longbeachae with the oligonucleotides oSD07 and oSD08 and cut with NdeI and NheI. 

The gene was cloned in a pET28(a)+ vector (Novagen) cut with the same enzymes to 

create a N-terminal His6-fusion. The gene was under the control of a T7 promotor. The 

plasmid was called pSD01. This plasmid was used to insert silent mutations in order to 

remove the restrictions sites BamHI and SalI from the gene sidCLlo 

(QuickChange®Lightning Site-Directed Mutagenesis Kit, Agilent Technologies) (pSD02) 

(sections 2.1.3 and 2.1.4). 

The gene sidCLlo_609-782 was amplified by a PCR using pSD02 as a template and oSD18 

and oSD19 as the oligonucleotides (sections 2.1.3 and 2.1.4). The gene was cut with 

BamHI and SalI and ligated into a pGEX4T-1 (Amersham) vector cut with the same 

enzymes (pSD03) (section 2.1.3) to create a N-terminal GST-fusion. A Ptac promotor 

controlled the expression of the gene.  

The plasmids pSD04 (GST-sidCLlo_1-340, oligonucleotides oSD17 and oSD52), pSD05 

(GST-sidCLlo_341-608, oligonucleotides oSD24 and oSD25), pSD06 (GST-sidCLlo_783-969, 

oligonucleotides oSD26 and oSD27) and pSD07 (GST-sidCLlo, oligonucleotides oSD27 

and oSD52) were cloned by using the same protocol (sections 2.1.3 and 2.1.4). 

The gene sidCLlo was cut with BamHI and SalI from the plasmid pSD07 and ligated into 

a pMMB207-C-M45 vector [80] cut with the same enzymes (pSD13). The same procedure 

was used to ligate sidCLlo into a pCR77 vector [91] (pSD14) (section 2.1.3). 
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Table 2.16. 50x TAE buffer*. 

Component Gram Supplier 

TRIS 242 g MP Biomedical 

acetic acid [100%] 57.1 ml Roth 

ethylendiamintetraacetate 

(EDTA)  

100 ml Roth 

*Dissolved dH2O was used to fill up the buffer to one liter. 

 

2.2.8 Protein analysis 

2.2.8.1 Protein separation by sodium dodecyl sulphate polyacrylamide gel    

electrophoresis (SDS-PAGE) 

5x sodium dodecyl sulphate (SDS) sample buffer (Table 2.17) was added to the protein 

sample. The mixture was boiled for 5 minutes at 95°C. A 10% SDS-polyacrylamide gel 

(Table 2.18) was poured and fixed in an electrophoresis chamber (Mini-Protean ® 3, Bio-

Rad). The chamber was filled with 1x running buffer (Table 2.19). A protein marker (Page 

RulerTM Prestained Protein Ladder, Thermo Scientific) were used. 

 

Table 2.17. 5x SDS sample buffer*. 

Component Concentration Supplier 

TRIS (pH 6.8) 0.2 M MP Biomedical 

SDS 4.3 g Biomol 

bromphenolblue 1 µg Sigma 

glycerol 15 ml Roth 

dH2O 45 ml --- 

ß-mercaptoethanol 8.5 ml AppliChem 

*The SDS sample buffer was frozen in aliquots at -20°C. 
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Table 2.18. SDS gel. 

Component Concentration for 

the stacking gel 

Concentration for 

the running gel 

[10%] 

Supplier 

acrylamide/bis-solution 

[40%] 

2.5 ml 1.25 ml Serva 

dH2O 5 ml 6.15 ml --- 

0.5 M TRIS (pH 6.8) --- 2.5 ml MP Biomedical 

1.5 M TRIS (pH 8.8) 2.5 ml --- MP Biomedical 

20% SDS 50 µl 50 µl Biomol 

10% ammonium 

persulphate (APS) 

30 µl 30 µl Biomol 

N, N, N’, N’ 

tetramethylethylendiamin 

(TEMED) 

15 µl 15 µl Biomol 

 

Table 2.19. 10x running buffer*. 

Component Gram Supplier 

TRIS 30.25 g MP Biomedical 

glycine 144.5 g MP Biomedical 

SDS 10 g Biomol 

*The solution was filled up to one liter with dH2O. 

 

2.2.8.2 Coomassie staining of a SDS gel 

SDS-polyacrylamide gels were stained with a Coomassie staining solution (Table 2.20) to 

visualize proteins. 
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Table 2.20. Coomassie staining and destaining solutions*. 

Component Concentration for 

the Coomassie 

staining solution  

Concentration for 

the Coomassie 

destaining solution  

Supplier 

Coomassie® 

Brilliant Blue R250 

0.25% --- Fluka 

ethanol 40% 40% Roth 

acetic acid 10% 10% Roth 

*Distilled H2O was used to set the volume of the buffer to one liter. 

 

2.2.8.3 Silver staining of a SDS gel 

The SDS-polyacrylamide gel (section 2.2.8.1) was incubated in a fixation solution (one 

hour till overnight). The SDS gel was washed three times with 50% ethanol for 20 minutes 

at RT. Between the washing steps the SDS gel was bathed in dH2O for two to three 

minutes at RT. The SDS gel was pre-treated with 0.13g l-1 sodium thiosulfate (Merck) (in 

dH2O) for one minute at RT and washed three times with dH2O over 20 seconds at RT. 

The SDS gel was incubated over 20 to 30 minutes at RT in fresh made impregnating 

solution (Table 2.21). The gel was washed three times over 20 seconds (RT) in dH2O. The 

SDS gel was incubated in a developing solution (RT) (Table 2.22) until brown bands 

appeared. The SDS gel was washed with 50% methanol (Roth) followed by 50% ethanol 

for one to two minutes at RT. The gel was dried afterwards. 

 

Table 2.21. Impregnating solution*. 

Component Concentration  Supplier 

AgNO3 0.1 g Merck 

37% formaldehyde 37.5 µl Merck 

*The buffer was adjusted with distilled H2O to 50 ml. 
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Table 2.22. Developing solution*. 

Component Concentration  Supplier 

Na2CO3 30 g Merck 

sodium thiosulfate 1.25 mg Merck 

37% formaldehyde 0.25 ml Merck 

*Distilled H2O was used to set the volume of the buffer to 500 ml. 

 

2.2.8.4 Western blot analysis 

The SDS gel (section 2.2.8.1) was laid on a nitrocellulose membrane (A. Hartenstein), 

covered with chromatography paper (A. Hartenstein) from both sides and laid in a protein 

transfer device (MAXI-Semi-Dry-Blotter, Roth). The protein transfer device was 

connected to a power supply (PAC100, Bio-Rad) (200 mA, 2 hours). A transfer blotting 

buffer (Table 2.23) was used to keep the membrane wet. 

 

Table 2.23. 10x transfer blotting buffer. 

Component Concentration (in dH2O) Supplier 

TRIS 250 mM MP Biomedical 

glycine 1.92 M MP Biomedical 

methanol 20% Roth 

 

2.2.8.5 Immune detection 

The nitrocellulose membrane (section 2.2.8.1) was washed with PBS (phosphate buffered 

saline) (Table 2.24) or TBS (TRIS buffered saline) (Table 2.25) and incubated for one hour 

at RT with milk-buffer (4% milk powder in PBS or TBS). The primary antibody (Table 

2.26) was diluted in the milk-buffer. The nitrocellulose membrane was incubated with this 

solution over night at 4°C. The membrane was washed with PBS/0.1% Tween ® 20 (Roth) 

or TBS/1% Tween ® 20 three times for 10 minutes at RT. A horseradish peroxidase 

conjugated secondary antibody (Table 2.27) was diluted in the milk-buffer and the 

nitrocellulose membrane was incubated with this solution for one hour at RT. The 
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nitrocellulose membrane was washed three times for 10 minutes at RT with PBS/0.1% 

Tween ® 20 or TBS/1% Tween ® 20 and twice with PBS or TBS for five minutes at RT. 

Signals from the secondary antibody were detected with the AmershamTM ECLTM Western 

Blotting Analysis System (GE Healthcare Life Sciences). The developing bands were 

analyzed with a gel imaging system (ChemiDoc MP System, Bio-Rad).  

 

Table 2.24. 10x phosphate buffered saline (PBS)*. 

Component Gram Supplier 

NaCl 80 g Roth 

KCl 2 g Merck 

Na2HPO4 14.2 g Fluka 

KH2PO4 2.4 g Oxoid 

*Distilled H2O were used to reach a final volume of one liter.  

 

Table 2.25. 10x TRIS buffered saline (TBS). 

Component Concentration Supplier 

TRIS-HCl (pH 7.4 - 7.6) 500 mM MP Biomedical 

NaCl 1.5 M Roth 

 

Table 2.26. Primary antibodies. 

Primary antibody Origin Dilution Supplier 

anti-GST mouse 1:1.000 Sigma 

anti-M45 mouse 1:1.000 Genovoc AG 

anti-SidCLlo rabbit 1:2.000 affinity purified [3] 

anti-SidCLpn rabbit 1:2.000 affinity purified [80] 
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Table 2.27. Secondary antibodies. 

Secondary antibody Origin Label Dilution Supplier 

anti-mouse IgG  goat HRPO 1:5.000 Sigma 

anti-rabbit IgG  goat HRPO 1:5.000 GE Healthcare 

 

2.2.9 Protein purification 

2.2.9.1 Protein production from E. coli 

A plasmid was transformed into BL21 (DE3) E. coli (sections 2.1.1, 2.2.2.3 and 2.2.2.4). 

LB broth medium harbouring the necessary antibiotic was inoculated with an E. coli 

colony and cultivated over night at 37°C on a shaker. 1 L LB broth medium was inoculated 

with the preparatory culture (OD600 of 0.05). The culture was grown to an OD600 of 0.5 to 

0.8, 1 mM IPTG was added to the medium and the culture was cultivated at 30°C or 37°C 

for two to three hours. The cells were harvested (8.000 x g, 15 minutes, 4°C) and washed 

once with PBS or TBS (3.350 x g, 15 minutes, 4°C). The bacterial pellet was frozen in 

liquid nitrogen and stored at -80°C. 

 

2.2.9.2 Protein purification of His6-conjugated proteins  

The bacterial pellet of BL21 (DE3) E. coli transformed with pSD01 (sections 2.1.1, 2.1.3 

and 2.2.9.1) was thawed on ice. 10 ml lysis buffer (Table 2.28) was used to resuspend the 

bacterial pellet. 1 mg ml-1 lysozyme was added to the solution and incubated for                       

30 minutes. The bacteria were destroyed by passaging through a French Press three times 

with 1000 pound-force per square inch (psi). The suspension was centrifuged (3.350 x g, 

10 minutes, 4°C). 1 ml 50% Ni-NTA-agarose beads (Quiagen) were washed with 10 ml 

washing buffer (Table 2.29) (600 x g, 5 minutes, 4°C). The beads were incubated for one 

hour at 4°C on a rotating wheel with 5 ml of the bacterial supernatant. The beads were 

washed three times with 10 ml washing buffer (600 x g, 5 minutes, 4°C). 0.5 ml of an 

elution buffer (Table 2.30) was incubated for 30 minutes with the beads on a rotating 

wheel at 4°C. The beads were centrifuged (600 x g, 5 minutes, 4°C), the supernatant was 

collected and dialyzed with dialysis buffer (Table 2.31). The protein concentration was 

measured with a spectrophotometer. The samples were frozen in liquid nitrogen and stored 
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at -80°C. Samples of the lysate, washing steps and eluate were boiled with SDS sample 

buffer, separated on a SDS gel and stained with Coomassie Brilliant Blue ® 250 (section 

2.2.8.2).  

 

Table 2.28. Lysis buffer*. 

Component Concentration Supplier 

NaH2PO4 50 mM Merck 

NaCl 300 mM Roth 

imidazole 10 mM Biomol 

*The pH was adjusted with NaOH (Merck) to 8.0. 

 

Table 2.29. Washing puffer*. 

Component Concentration Supplier 

NaH2PO4 50 mM Merck 

NaCl 300 mM Roth 

imidazole 20 mM Biomol 

*The pH was adjusted with NaOH to 8.0. 

 

Table 2.30. Elution buffer*. 

Component Concentration Supplier 

NaH2PO4 50 mM Merck 

NaCl 300 mM Roth 

imidazole 250 mM Biomol 

*The pH was adjusted with NaOH to 8.0. 
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Table 2.31. Dialysis buffer. 

Component Concentration Supplier 

HEPES (pH 7.5) 20 mM Gibco 

NaCl 500 mM Roth 

TRIS(2-carboxyethyl) 

phosphine (TCEP) 

1 mM Roth 

 

2.2.9.3 Protein purification of GST-tagged proteins  

Plasmids expressing GST-SidCLlo (pSD07), GST-SidCLlo_1-340 (pSD04), GST-SidCLlo_341-608 

(pSD05), GST-SidCLlo_609-782 (pSD03), GST-SidCLlo_783-969 (pSD06), GST-SidCLpn 

(pCR02), GST-SidCLpn_P4C (pHP056), GST-PHFAPP1 (pGEX-PH_FAPP1), GST-SidCLlo_1-

608-Lpn_609-917, GST-SidCLpn_1-608-Llo_609-969 or GST (pGEX4T-1) (section 2.1.3) were 

transformed in E. coli BL21 (DE3) (section 2.1.1) and protein production was done as 

described (section 2.2.9.1).  

 The pellets were thawed on ice, resuspended in 10 ml TBS and incubated with                  

1 mg ml-1 lysozyme for 30 minutes at 4°C. The bacteria were destroyed using a French 

Press three times with 1000 psi. The suspension was spun down (3.350 x g, 10 minutes, 

4°C). The Glutathione SepharoseTM 4B beads (GE Healthcare) were washed three times 

with 1 ml TBS to remove the ethanol in the sample (600 x g, 5 minutes, 4°C). 1 ml of the 

beads were mixed with the bacterial supernatant and incubated on a rotating wheel at 4°C 

for two hours. The beads were washed three times with TBS. 1 ml elution buffer (Table 

2.32) was added to the beads and incubated for 30 minutes on a rotating wheel at 4°C. The 

beads were spun down (600 x g, 5 minutes, 4°C) and the supernatant was collected. The 

protein amount was measured with a spectrophotometer. The samples were frozen in liquid 

nitrogen and stored at -80°C. The purity of the samples were analysed on a Coomassie 

stained SDS gel (section 2.2.8.2). 

 

 

 

 



2. Materials and methods 

 

40 

 

Table 2.32. Elution buffer*. 

Component Concentration Supplier 

TRIS (pH 8.0) 700 µl MP Biomedical 

glutathione 15 mM Fluka 

*The final volume was adjusted with dH2O to 10 ml.  

 

2.2.10 Production of a SidCLlo antibody 

His6-SidCLlo was produced (section 2.2.9.2) and lyophilized (Alpha1-4, Christ®). 6 mg 

protein was send to the company SeqLab (Goettingen, Germany) and was used to produce 

an antibody against SidCLlo in two rabbits. The final bleeding of the two rabbits was pooled 

and affinity purified. The antibody was tested in a Western blot and an 

immunofluorescence assay. 

 

2.2.11 Phosphoinositide-pulldown 

Legionella was grown in AYE medium (section 2.2.1.1). A 10 ml overnight culture was 

inoculated with an OD600 of 0.1, grown overnight and used to inoculate a 200 ml overnight 

culture. The culture was grown overnight and harvested (8.000 x g, 10 minutes, 4°C). The 

following steps were performed on ice. The bacteria were washed in 10 ml ice cold 

washing buffer (3.350 x g, 5 minutes, 4°C) and 1 mM phenylmethylsulfonyl fluorid 

(PMSF) (Sigma) was added. The bacteria were lysed with a French Press three times with 

1000 psi. The cell solution was centrifuged with low speed (3.350 x g, 10 minutes, 4°C) 

and high speed (86.000 x g, 1 hour, 4°C). 1 ml of the supernatant was mixed with 50 µl of 

PI-coated agarose beads (PIP-BeadTM Sample Pack, Echelon Biosciences Inc., USA)                 

(10 pM PtdIns µl-1 slurry) and incubated overnight at 4°C on a rotating wheel in the dark. 

The beads were washed five times (600 x g, 5 minutes, 4°C) with washing buffer (Table 

2.33). The bound proteins were eluted with 20 µl SDS sample buffer [81]. The protein 

samples were separated by their size over an SDS gel and stained with Coomassie solution 

(section 2.2.8.2). After destaining the SDS gel with a Coomassie destaining solution the 

dominant bands were cut out and send to MALDI-TOF analysis (matrix-assisted laser 
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desorption/ionization-time of flight). In parallel a SDS gel was stained with silver (section 

2.2.8.3). 

 

Table 2.33. Washing solution. 

Component Concentration Supplier 

HEPES (pH 7.4) 10 mM Gibco 

NaCl 150 mM Roth 

 

2.2.12 Protein lipid overlay assay with PIP-strips and PIP-arrays 

“PIP-strips” and “PIP-arrays” (Echelon Biosciences Inc., USA) are nitrocellulose 

membranes on which different PtdIns, PIs and other lipids are bound at 100 pmol/spot 

(“PIP-strips”) or at a two-fold serial dilution (1.56–100 pmol/spot) (“PIP-arrays”). A GST-

tagged protein was diluted in milk-buffer (120 pmol ml-1 milk-buffer) (4% milk powder 

(Roth) and 0.1% Tween ® 20 in TBS) and added to the nitrocellulose membrane. The 

sample was incubated overnight at 4°C on a shaker. The nitrocellulose membrane was 

washed three times for 30 minutes with milk-buffer and incubated afterwards with the 

primary monoclonal anti-GST antibody (Sigma) (section 2.2.8.5) diluted in the same 

buffer. As a secondary antibody a goat anti-mouse peroxidase-labelled antibody (GE 

Healthcare) was used (section 2.2.8.5). The Western blot analysis was done as described 

previously (section 2.2.8.4) [80, 81, 103, 136]. Only the washing time was increased from 

three times 10 minutes to three times 30 minutes to reduce the background signal of the 

antibody. An ECL detection kit was used to visualize the binding of the GST-tagged 

proteins to the samples (section 2.2.8.5). 

 

2.2.13 Infection of phagocytes 

Amoebae or macrophages were seeded in the adequate medium 24 hours before the 

infection took place (section 2.2.3, 2.2.4 and 2.2.5). The medium was exchanged prior to 

the infection in the case the medium contained an antibiotic. The cells were infected with a 

bacterial overnight culture with a specific multiplicity of infection (MOI) (section 2.2.1.1). 

To this end, the bacteria were added to the cells and spun down on the cells (3.350 x g,          
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10 minutes, RT). The cells were incubated at 25°C for D. discoideum, 30°C for                       

A. castellanii and 37°C with 5% CO2 for RAW 264.7 macrophages.  

 

2.2.14 Immunofluorescence 

Cells were seeded (sections 2.2.3, 2.2.4 and 2.2.5) on coverslips (Menzelglaser) coated 

with poly-L-lysine (Sigma) and infected with an overnight culture (section 2.2.1.1). All 

steps were performed at RT except the fixation step. The cells were washed twice with 

SorC (Sörensen phosphate buffer) (Table 2.34) (D. dictyostelium) or PBS (RAW 264.7 

macrophages). The cells were fixed with 250 µl 4% paraformaldehyde (PFA) (Sigma) for 

15 minutes (D. discoideum) or 250 µl methanol for five minutes at -20°C (RAW 264.7 

macrophages). The cells were permeabilized with 0.1% Triton X-100 (Merck) in PBS or 

SorC for 10 minutes. The cells were washed twice with 1% bovine serum albumin (BSA) 

(Albumin fraction V, Roth) in SorC or PBS. The cells were blocked over 30 minutes with 

1% BSA in SorC or PBS and incubated with the primary antibody (Table 2.35) diluted in 

50 µl of the same buffer for one hour. The chamber was kept wet with a nitrocellulose 

membrane bathed in water. The cells were washed three times with 1% BSA in SorC or 

PBS and blocked with the same buffer for 10 minutes. The secondary antibody (Table 

2.36) was diluted in 1% BSA in SorC or PBS and the cells were incubated with the 

solution for 45 minutes. The cells were washed three times with 1% BSA in SorC or PBS 

and three times with SorC or PBS alone. The cover slips were mounted upside down on 

object slides (A. Hartenstein) with 3 µl “Vectashield mounting medium for fluorescence” 

(Vector Laboratories, Inc.). The cover slips were fixed using nail polish. The object slides 

were dried and stored at 4°C in the dark. Images were produced using a Leica SP5 TCS 

confocal laser fluorescence microscope. 

 

Table 2.34. Sörensen phosphate buffer (SorC) [137]*, **. 

Component Concentration Supplier 

Na2HPO4 2 mM Fluka 

KH2PO4 15 mM Oxoid 

CaCl2 x 2H2O 50 µM Merck 

*The final volume was set to one liter with dH2O.  
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**The pH was adjusted with 1M KOH or 1M HCl to 6.0. The solution was autoclaved and 

stored at room temperature. 

 

Table 2.35. Primary antibodies. 

Primary antibody Origin Dilution Supplier 

anti-GST mouse 1:100 Sigma 

anti-SidCLlo rabbit 1:100 affinity purified [3] 

anti-SidCLpn rabbit 1:100 affinity purified [80] 

 

Table 2.36. Secondary antibodies. 

Secondary 

antibody 

Origin Label Dilution Supplier 

anti-mouse IgG  goat Cy5 1:200 Jackson 

anti-rabbit IgG goat Cy5 1:200 Invitrogen 

 

2.2.15 Detection of PtdIns(4)P on the LCV 

Calnexin-GFP producing D. discoideum Ax3 were infected with the indicated MOI for                

1 hour with red fluorescent L. pneumophila (section 2.1.3) at 25°C. The cells were washed 

with SorC and homogenized with a ball homogenizer [80, 103]. The samples were spun 

down (500 x g, 10 minutes, RT) and fixed with 4% PFA on cover slips coated with poly-L-

lysine. The samples were incubated with purified GST-SidCLlo_P4C (pSD03), GST-SidCLpn-

_P4C (pHP056), GST-PHFAPP1 (pGEX-PH_FAPP1) or GST (pGEX4T-1) (sections 2.1.3 and 

2.2.9.3) for 15 minutes at RT. An immunofluorescence staining was performed with an 

anti-GST antibody (Sigma) (section 2.2.14). As a secondary antibody a Cy5-coupled anti-

mouse antibody (Jackson) was used (section 2.2.14). Pictures were acquired using a Leica 

SP5 TCS confocal laser fluorescence microscope. 
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2.2.16 Intracellular replication assay 

2.2.16.1 D. discoideum 

The cells were seeded in a 96well plate in SorC with 105 cells per well (section 2.2.3). The 

Legionella culture was diluted in MB-medium (Table 2.37) and the cells were infected 

with a MOI of 0.01 (section 2.2.13). The bacteria were spun down (3.350 x g, 10 minutes, 

RT) and incubated for 10 minutes at 25°C. Input-controls were plated out in triplicates on 

CYE plates. 10 minutes, two days, four days and six days post infection the supernatants of 

the cells were collected, diluted in dH2O and plated on CYE plates in triplicate. Colonies 

were counted after three days of incubation at 37°C. 

 

Table 2.37. MB medium [138]*, **. 

Component Gram  Supplier 

Bacto yeast extract 7 g BD Biosciences 

bacteriological peptone 14 g BD Biosciences 

MES sodium salt 4.26 g Sigma 

*The final volume of one liter was reached through adding dH2O.  

**The pH was adjusted with 1 M KOH or 1 M HCl to 6.9. The solution was autoclaved 

and stored at 4°C. 

 

2.2.16.2 A. castellanii 

A. castellanii were seeded in 96well plates (5 x 104
 per well) in PYG medium (section 

2.2.4.1) and incubated for one hour at 23°C. The medium was exchanged against Ac buffer 

(Table 2.38). The Legionella overnight culture was diluted in Ac buffer. The cells were 

infected with an MOI of 0.1. The bacteria were spun down (3.350 x g, 10 minutes, RT) and 

incubated for 20 minutes at 30°C. Input controls were plated out on CYE plates in 

triplicate. For the time point zero (20 minutes post infection), one day, two days and three 

days the supernatants of the cells were collected, diluted in Ac buffer and plated on CYE 

plates in triplicate. Colonies were counted after three days incubation at 37°C. 
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Table 2.38. Ac buffer*. 

Component Concentration Supplier 

MgSO4 x 7H2O [0.4 M] 1 ml Merck 

CaCl2 [0.05 M] 0.8 ml Merck 

sodium citrate x 2H2O [1 M] 0.34 ml Roth 

Fe(NH4)2(SO4)2 x 6H2O 2 mg Fluka 

Na2HPO4 x 7H2O [0.25 M] 1 ml Fluka 

KH2PO4 [0.25 M] 1 ml Oxoid 

dH2O 95 ml --- 

*The pH was adjusted to 6.5 with HCl (Roth). The buffer was autoclaved and stored at 

4°C. 

 

2.2.16.3 RAW 264.7 macrophages 

RAW 264.7 macrophages (2 x 104
 per well) were seeded in RPMI 1640 medium 

supplemented with 10% FCS and L-glutamine in a 96well plate one day prior to the 

infection (section 2.2.5.1). The Legionella overnight cultures were diluted in RPMI 1640 

medium. The cells were infected (MOI of 0.1) and the bacteria were spun down (3.350 x g, 

10 minutes, RT) on the cells (section 2.2.13). The cells were incubated at 37°C with 5% 

CO2. Input-controls were plated out in triplicate on CYE plates. At time point zero (10 

minutes post infection), one day, two days and three days the supernatants of the cells were 

collected, diluted in dH2O and plated out in triplicate on CYE plates. Colonies were 

counted after three days of incubation at 37°C. 

 

2.2.17 Amoebae competition assay 

The assay was performed as described before [139]. Briefly, A. castellanii were seeded in a 

96well plate one hour prior to the experiment and incubated at 30°C. For each bacterium 

three wells were seeded for each time point. The medium was exchanged against Ac 

buffer. Legionella overnight cultures were diluted in Ac buffer and used to infect the cells 

(MOI of 0.05) (section 2.2.13). The cells were incubated at 30°C for one hour. The Ac 
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buffer was exchanged. Input controls were plated out on CYE plates with and without 

antibiotics in duplicate. Three days after infection the supernatant of the infected cells was 

collected. The cells were lysed with 0.8% saponin (Sigma) for 10 minutes. The supernatant 

and the homogenate were mixed. The solution was diluted 1:1.000 in Ac buffer and 50 µl 

were used to infect freshly seeded amoebae. The remaining solution was diluted in Ac 

buffer and plated out in duplicates with and without antibiotics. The colony forming units 

(cfu) were counted after an incubation time of three days at 37°C. 

 

2.2.18 Translocation assay 

2.5 x 105 RAW 264.7 macrophages were seeded in 24well plates one day prior to the 

experiment (section 2.2.5.1). The cells were infected with a bacterial overnight culture with 

a MOI of 50 in RMPI 1640 medium supplemented with L-glutamine and FCS (section 

2.2.13). The cells were incubated for one hour at 37°C wit 5% CO2. The medium was 

discarded and the cells were lysed with 110 µl dH2O or with the lysis buffer offered by the 

company (Amersham cAMP Biotrak Enzymeimmunoassay (EIA) System, GE Healthcare 

Life Sciences). The assay was performed as described in the manual of the detection kit. 

The final reaction was measured in a plate reader at 450 nm.  

 

2.2.19 LCV purification 

The LCV purification from phagocytes has been done as published previously [2, 54, 140, 

141]. Briefly, calnexin-GFP producing D. discoideum or RAW 264.7 macrophages were 

grown to approximately 80% confluence in a 75 cm² flask (sections 2.2.3.1 and 2.2.5.1). 

The cells were infected with an overnight culture of a Dsred expressing bacteria (section 

2.2.13). The cells were incubated at 25°C for D. discoideum or 37°C with 5% CO2 for 

RAW 264.7 macrophages for one hour. For each purification three flasks were needed. The 

cells were washed three times with SorC for D. discoideum or PBS for RAW 264.7 

macrophages and were resuspended in 3 ml HB-buffer (Table 2.39) using a cell scraper. 

The washing step for D. discoideum was omitted in later experiments. The cells were 

homogenized with a ball homogenizer using an exclusion size of 8 µm. 2% FCS were used 

to block the cell homogenate for 30 minutes at 4°C on a rocking platform. The cell 

suspension was incubated with an anti-SidCLpn or anti-SidCLlo antibody (dilution 1:3.000) 
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for one hour at 4°C on a rocking platform (“homogenate” sample). The suspension was 

centrifuged (2.700 x g, 15 minutes, 4°C) and the pellet was resuspended in HB-buffer 

(“pellet” sample). MACS anti-rabbit antibodies were added to the suspension and 

incubated with the suspension for 30 minutes at 4°C. A MACS-MS separation column 

(Miltenyi Biotec) was put on a magnetic separator MACS Multistand (Miltenyi Biotec) 

and the column was equilibrated with HB-buffer. The sample was applied to the MACS 

columns (“flow through” sample) and the column was washed three times with HB-buffer. 

The MACS columns were removed from the magnetic separator MACS Multistand and the 

probe were eluted with HB-buffer by squirting (“eluate” sample). A density gradient was 

produced with 5.5 ml of 35% Histodenz (Sigma) (in PBS) coated with 5.5 ml of 10% 

Histodenz (in PBS) in a 15 ml tube. The tube was carefully laid down for one hour to allow 

an establishing of the gradient. The sample from the column was added slowly to the 

gradient. The gradient was centrifuged (3.350 x g, 1 hour, 4°C). Eight 1.5 ml fractions 

were taken with a long Pasteur pipette beginning from the bottom (“fraction 1”). The 

fractions were pipetted on a cover slide coated with poly-L-lysine and were centrifuged 

(3.350 x g, 10 minutes, 4°C). The samples were fixed and analyzed by immuno-

fluorescence labeling with an anti-SidCLlo or anti-SidCLpn primary antibody (section 

2.2.14). 

 

Table 2.39. HB buffer*. 

Component Concentration Supplier 

HEPES 20 mM Gibco 

sucrose 250 mM Sigma 

ethylenglycol-bis(aminoethylether)-N, 

N, N’, N’-tetra acetic acid (EGTA) 

0.5 mM AppliChem 

*The pH was set to 7.2 with 1 M NaOH or 1 M HCl. The buffer was sterile filtered and 

stored at 4°C. 
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2.2.20 Cytotoxicity assay 

D. discoideum Ax3 were seeded in a 24well plate (2 x 105
 cells per well) one day prior to 

the infection (section 2.2.3.1). The cells were infected with a bacterial overnight culture 

and incubated for 1 hour at 25°C (section 2.2.13). The cells were detached with pipetting 

up and down with a blue tip of a pipette for 10 times. The cell suspension was centrifuged 

(500 x g, 3 minutes, RT) and the supernatant was discarded. The cells were resuspended in 

SorC and 2.5 µg ml-1 propidium iodide was added. The propidium iodide staining was 

measured with a FACS machine. 
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3. Results  

3.1 The L. longbeachae Icm/Dot substrate SidCLlo 

The putative Icm/Dot substrate SidCLlo was identified in the genome of L. longbeachae 

NSW150 as one of the 44% of Icm/Dot substrates which L. longbeachae shares with                

L. pneumophila [26]. This study aimed at investigating the role of SidCLlo in the infection 

of L. longbeachae. 

SidCLpn is an Icm/Dot-dependent effector protein and binds with a P4C domain to 

PtdIns(4)P and to a lower extent to PtdIns(3)P [80, 84, 101]. Other effector proteins like 

SidM compete with SidCLpn for binding to PtdIns(4)P [81]. SidCLpn has a paralog called 

SdcALpn which shares a sequence identity with SidCLpn of 72% [50]. SidCLpn and SdcALpn 

are necessary for the acquisition of ER-derived vesicles [103]. No gene for sdcA was found 

in the genome of L. longbeachae [26]. 

 

3.1.1 The L. longbeachae effector SidCLlo is the major PtdIns(4)P binding protein 

In a previous study L. pneumophila lysate was incubated with agarose beads coupled to 

different PIs. Only the Icm/Dot-dependent effector SidM but not SidCLpn was found to bind 

to PtdIns(4)P [81]. To identify a putative L. longbeachae protein which binds to PtdIns or 

a PI lipid, the phosphoinositide-pulldown assay (section 2.2.11) was adopted. In the 

phosphoinositide-pulldown five dominant protein bands appeared in a Coomassie stained 

gel (Figure 3.1C) and were cut out. The samples were analysed by MALDI TOF mass 

spectrometry (MS). As a control experiment L. pneumophila lysate was incubated with 

PtdIns- or PtdIns(4)P-coupled beads. A band at the size of SidM was detected (Figure 3.B 

and D).  

MALDI TOF analysis revealed that SidCLlo was the major PtdIns(4)P binding protein of                   

L. longbeachae (Figure 3.1A and C, marked with * or 2). SidM was not found in the 

phosphoinositide-pulldown with L. longbeachae (Figure 3.1A and C), in agreement with 

the finding that SidM is missing in the genome of L. longbeachae [26]. Also two acyl CoA 

carboxylases were found which bind to the beads and PtdIns(3,4,5)P3 (Figure 3.1C, 

marked with 1, 5). A heat shock protein 90 and an elongation factor Tu were pulled down 

with PtdIns(4,5)P2 (Figure 3.1C, marked with 3 and 4). In the control experiment a protein 
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of the size of SidM was pulled down with L. pneumophila lysate (Figure 3.1B and D, 

marked with * or 6).  

 

 
Figure 3.1. SidCLlo is the major PtdIns(4)P binding protein of L. longbeachae. Bacterial lysate from                
L. longbeachae (A, C) and L. pneumophila (B, D) wild-type strains were incubated with agarose beads 
coated with PtdIns or various PIs. The beads were washed and the proteins were separated by SDS-PAGE. 
The SDS gels were stained with silver (A, B) or Coomassie (C, D). In a mass spectrometry analysis the               
111 kDa L. longbeachae SidCLlo was identified to bind to PtdIns(4)P (*, 2). Acyl CoA carboxylase (1, 5), 
heat shock protein 90 (3) and elongation factor Tu (4) were also identified. In the control experiment with                               
L. pneumophila lysate a band in the size of 73 kDa appeared. This could be SidM (*, 6).The experiment has 
been done in triplicate [3].  
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3.1.2 SidCLlo is binding through a P4C domain to PtdIns(4)P 

In the next step we analysed the binding domain of SidCLlo. To this end, GST was coupled 

to the N-terminus of SidCLlo, SidCLlo_1-340, SidCLlo_341-608, SidCLlo_609-782 and SidCLlo_783-969 

(Figure 3.2A). The proteins were produced in E. coli, purified and incubated with 

commercially available “PIP-strips” as described previously [80, 81, 103, 136] (Figure 

3.2B) (section 2.2.12). “PIP-strips” are nitrocellulose membranes on which PtdIns, PIs or 

other lipids are bound (100 pmol/spot). The full-length GST-SidCLlo and the GST-

SidCLlo_609-782 fragment bound to PtdIns(4)P (Figure 3.2B). Thus, the PtdIns(4)P binding 

domain of SidCLlo was narrowed down to the amino acids 609 to 782. The previously 

found PtdIns(4)P-binding domain of SidCLpn_P4C is located in the amino acid region of 609 

to 776 [103]. Therefore, we termed the PtdIns(4)P-binding domain of SidCLlo SidCLlo_P4C.   

In the next step the binding affinity of SidCLlo, SidCLlo_P4C, SidCLpn and SidCLpn_P4C 

were compared in an assay using “PIP-arrays” in which PtdIns or PIs are spotted in two-

fold serial dilution on a nitrocellulose membrane. SidCLlo as well as SidCLlo_P4C bound 

strongly to PtdIns(4)P and weakly to PtdIns(3)P. The binding affinity of SidCLlo_P4C to 

PtdIns(4)P appeared higher than the binding affinity of the full length SidCLlo (Figure 

3.2C). In contrast, SidCLpn bound only weakly to PtdIns(4)P. In previously published 

experiments SidCLpn bound to PtdIns(4)P and to a lower extent also to PtdIns(3)P [80, 

103]. In this assay we used harsher washing conditions to reduce the background signal. 

This reduced the amount of SidCLpn bound to PtdIns(4)P and PtdIns(3)P. SidCLpn_P4C 

bound with seemingly higher affinity to PtdIns(4)P than SidCLlo_P4C. The P4C domain of 

SidCLpn also bound weakly to PtdIns(3)P (Figure 3.2C).  

Afterwards the influence of the first 608 amino acids on the binding affinity of the P4C 

domains of L. longbeachae and L. pneumophila were tested. To this end chimera proteins 

consisting of the first 608 amino acids of L. longbeachae and the amino acids 609 to 917 of 

L. pneumophila were purified (SidCLlo_N-Lpn_C). Also chimera proteins consisting of the 

first 608 amino acids of L. pneumophila fused to the amino acids 609 to 969 of                          

L. longbeachae were purified (SidCLpn_N-Llo_C). The two chimera proteins were compared 

with SidCLlo and SidCLpn using PIP-strips (Figure 3.2D) and PIP-arrays (Figure 3.2E). The  

SidCLlo_N-Lpn_C chimera protein and SidCLlo bound equally with high affinity to PtdIns(4)P. 

The binding affinity of SidCLpn_N-Llo_C to PtdIns(4)P was slightly lower compared to 

SidCLlo_N-Lpn_C and SidCLlo (Figures 3.2D and E). Both chimera proteins and SidCLlo bound 
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with low affinity to PtdIns(3)P. A binding of SidCLpn to PtdIns(3)P or PtdIns(4)P was not 

detected (Figures 3.2C and D). 

In summary, SidCLlo was identified as the first PtdIns(4)P-binding protein of                              

L. longbeachae. The P4C domain of this protein is located in a similar C-terminal region as 

SidCLpn_P4C [3]. 

An alignment of SidCLlo, SidCLpn and its paralogous protein SdcALpn was made (Figure 

3.3) to analyse if the amino acid composition could be the reason for the different apparent 

binding affinities of SidCLlo and SidCLpn to PtdIns(4)P. SidCLpn and SdcALpn showed a 

sequence identity of 72%. SidCLpn as well as SdcALpn showed a sequence identity of only 

40% to SidCLlo. The P4C domains of SidCLlo and SidCLpn are located nearly in the same 

amino acid region but the sequence identity of these two P4C domains was only 45%. 

Therefore, the difference in the amino acid composition could be the reason for the 

differences in the binding affinity of SidCLlo and SidCLpn to PtdIns(4)P. 

Despite of a sequence identity of 40% (Figure 3.3) between SidCLlo and SidCLpn, we 

were not able to detect SidCLlo in a Western blot analysis (Figure 3.4) nor in an 

immunofluorescence assay (data not shown) with a polyclonal anti-SidCLpn antibody [80].  

Therefore, a polyclonal anti-SidCLlo antibody using His6-SidCLlo was produced by a 

company (SeqLab). The antibody recognized endogenous SidCLlo in L. longbeachae wild-

type NSW150 as well as SidCLlo produced in L. pneumophila JR32. The anti-SidCLpn 

antibody only recognized endogenous SidCLpn and SidCLpn produced in L. longbeachae 

wild-type. No cross reaction was visible (Figure 3.4) [3].  
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Figure 3.2. SidCLlo binds in vitro through a P4C domain to PtdIns(4)P. Fragments of the 111 kDa SidCLlo 
and the 106 kDa SidCLpn were fused to a GST-tag (A) [103]. The binding affinities of purified GST-SidCLlo 
protein, GST-SidCLlo fragments, GST-SidCLlo_N-Lpn_C and GST-SidCLpn_N-Llo_C (B, D) to PtdIns, PIs or 
different lipids (100 pmol/spot) were analysed in protein-lipid overlay assays. The binding of the GST-
coupled proteins were analysed using an anti-GST antibody. In the left row lysophosphatidic acid (LPA), 
lysophosphocholine (LPC), phosphatidylinositol (PtdIns), phosphatidylethanolamine (PE) and 
phosphatidylcholine (PC) are visible. The right row shows sphingosine-1-phosphate (S1P), 
phosphatidylinositol (PtdIns), phosphatidic acid (PA), phosphatidylserine (PS) and a blank spot (Blank). The 
binding affinities of GST-SidCLlo, GST-SidCLlo_P4C, GST-SidCLpn, GST-SidCLpn_P4C, GST-SidCLlo_N-Lpn_C and 
GST-SidCLpn_N-Llo_C were compared using protein-lipid overlay assays with a two-fold serial dilution (1.56–
100 pmol/spot) (C, E). In two or three independent experiments similar results were achieved [3].  
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Figure 3.3. Comparison of the primary sequence of SidCLlo, SidCLpn and SdcALpn. SidCLlo, SidCLpn and 
SdcALpn were aligned using the amino acid sequence and a ClustalOmega algorithm. SidCLlo is 40% identical 
to SidCLpn or SdcALpn. The P4C domains of SidCLlo (red) and SidCLpn (blue) share 45% identity. SidCLpn and 
SdcALpn are 72% identical. Similar (grey) or identical (black) amino acids are labelled. The figure is adapted 
from a scheme published in [3]. 
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Figure 3.4. Anti-SidCLlo and anti-SidCLpn antibodies recognize only their cognate proteins.                        
L. longbeachae wild-type and L. pneumophila wild-type were grown in overnight cultures. M45-SidCLlo 
(pSD13) or M45-SidCLpn (pCR34) were transformed and induced in L. pneumophila or L. longbeachae. The 
same amount of bacteria was boiled in SDS sample buffer. The proteins were separated by SDS-PAGE and 
visualized by Western blot using specific polyclonal rabbit anti-SidCLlo and anti-SidCLpn antibodies. The 
experiment was repeated three times with the same results [3].  

 

3.1.3 The Icm/Dot substrate SidCLlo localizes to LCVs  

To test the Icm/Dot-dependent translocation of SidCLlo an enzyme immunoassay kit 

(Amersham cAMP Biotrak Enzymeimmunoassay (EIA) System, GE Healthcare Life 

Sciences) was used. In this assay, the calmodulin-dependent production of cAMP by 

adenylate cyclase (CyaA) in the host cell cytoplasma is assessed. L. longbeachae [30] as 

well as L. pneumophila [48] are able to infect macrophages. Therefore, RAW 264.7 

macrophages were infected with L. longbeachae or L. pneumophila harbouring plasmid-

encoded CyaA, CyaA-SidCLlo or CyaA-SidCLpn. CyaA as well as dotA deletion mutants of 

L. longbeachae and L. pneumophila were used as negative controls. CyaA was not 

translocated in all strains. All proteins were not translocated in the dotA deletion mutants 

of both strains. We used CyaA-SidCLpn as a positive control. SidCLpn was translocated in  

L. pneumophila, but no translocation was visible in L. longbeachae. SidCLlo was neither 

translocated by L. longbeachae nor by L. pneumophila (Figure 3.5A). Therefore, the 

protein production was analyzed. The endogenous SidCLpn and the ~145 kDa CyaA-

SidCLpn were produced in L. pneumophila. The ~151 kDa CyaA-SidCLlo was produced 

with the expected size in L. pneumophila. A small band in the size of SidCLlo alone was 

also detected. In the L. longbeachae samples it seemed as if parts of the CyaA or the whole 

CyaA were cleaved from SidCLlo or SidCLpn because the detected bands were between the 

expected size for the CyaA-coupled proteins and the full-length proteins (Figure 3.5B).  
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Next, a published L. longbeachae effector protein was used as a positive control. CyaA-

CetLI1 (C-terminal signal for effector translocation of L. longbeachae 1) was previously 

published to be translocated in an Icm/Dot-dependent way in HL-60-derived human 

macrophages when overexpressed in L. pneumophila [58]. Therefore, we transformed 

CyaA-CetLI1 [58] into L. longbeachae and L. pneumophila. DotA deletion mutants were 

used as negative controls. Yet, CyaA-CetLI1 was only translocated in L. pneumophila 

wild-type but not in wild-type L. longbeachae (Figure 3.5C). Changing the amount of cells 

and the lysis method used for this assay had no effect on the detection of translocation. 

Therefore, we decided to use an immunofluorescence approach to analyze if SidCLlo is 

translocated in an Icm/Dot-dependent manner. 

 

 
Figure 3.5. Measurement of translocation of SidCLlo. RAW 264.7 macrophages were infected with                    
L. longbeachae or L. pneumophila wild-type as well as with a dotA mutant expressing CyaA (pSH097), 
CyaA-SidCLpn (pSH098) or CyaA-SidCLlo (pIH031). The translocation of the proteins was measured by the 
cAMP level. Means and standard deviations were calculated from two independent samples. The experiment 
has been done once (A). Overnight cultures were boiled, separated by SDS-PAGE and the proteins were 
visualized by specific anti-SidC antibodies. Between one and three overnight cultures were analyzed per 
sample (B). The cAMP translocation of CetLI1 in a wild-type or a dotA mutant of L. longbeachae and                  
L. pneumophila was analyzed three times with different lysis methods. Means and standard deviations were 
calculated from two independent samples (C). 



3. Results 

 

57 

 

RAW 264.7 macrophages were infected with L. longbeachae wild-type or a ∆dotA 

mutant harbouring a Dsred-producing plasmid or a plasmid coding for Dsred and SidCLpn. 

Endogenous SidCLlo and overproduced SidCLpn were visualized using specific anti-SidC 

antibodies. An immunofluorescence analysis of the infected macrophages showed a 

localization of SidCLlo and SidCLpn on the LCV membrane (Figure 3.6A). 48% of the 

endogenous SidCLlo and 56% of the overexpressed SidCLpn co-localized to the LCV 

membrane. Only less than 1% of the LCVs infected with a dotA deletion mutant were 

positive for SidCLlo or SidCLpn (Figure 3.6B). Therefore, the translocation of SidCLlo and 

SidCLpn to the surface of the L. longbeachae-containing vacuole is Icm/Dot-dependent. It 

seems as if the L. longbeachae T4SS translocates both SidC proteins with similar 

efficiencies. 

 

 

Figure 3.6. SidCLlo is an 

Icm/Dot-dependent 

effector protein which 

localizes to the LCV. 

RAW 264.7 macrophages 
were infected (MOI 50,               
1 hour) with wild-type or a 
dotA deletion mutant of               
L. longbeachae harbouring 
a Dsred-encoding plasmid 
(pCR77) or a plasmid-
encoding Dsred and SidCLpn 
(pCR80). The endogenous 
SidCLlo and the over-
expressed SidCLpn were 
stained with a specific anti-
SidC antibody (light blue). 
The nucleus was stained 
with DAPI (dark blue) (bar 
=  5µm) (A). The SidCLlo 
and SidCLpn positive LCVs 
were counted. The mean 
and standard deviations 
were calculated from three 
independent experiments 
with 50 LCV each (** 
p<0.01) (B) [3].  
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3.1.4 The ∆sidCLlo and ∆sidC-sdcALpn deletion mutants are outcompeted by the wild-

type strains in competition assays 

The role of SidCLlo on the intracellular replication of L. longbeachae in infected amoebae 

or macrophages was analysed. To this end, a defined sidCLlo deletion mutant was used 

(strain IH02) [3].  

We infected A. castellanii or RAW 264.7 macrophages with wild-type L. longbeachae 

(NSW150), a dotA and a sidCLlo deletion strain. L. longbeachae wild-type as well as the 

sidCLlo deletion mutant grew equally. Over 3 days of infection both strains grew with 

similar rates, producing two (Figure 3.7B) or three (Figure 3.7A) orders of magnitude more 

bacteria. The L. longbeachae dotA deletion mutant was not able to grow intracellularly in 

A. castellanii or RAW 264.7 macrophages, as published before (Figure 3.7) [26]. 

Therefore, SidCLlo is not necessary for the intracellular growth of L. longbeachae in                  

A. castellanii or RAW 264.7 macrophages. 

 

 
Figure 3.7. L. longbeachae lacking sidCLlo grows normally in RAW 264.7 macrophages and                           

A. castellanii. A. castellanii (A) or RAW 264.7 macrophages (B) were infected (MOI 0.1) with                             
L. longbeachae wild-type NSW150, a dotA or a sidCLlo deletion mutant. Supernatants of the infected cells 
were taken shortly after infection (time point 0) and 1 day, 2 days and 3 days after the infection and plated on 
CYE plates. The colony forming units (cfus) were counted [3].  

 

In an alternative approach, A. castellanii were co-infected with L. longbeachae wild-

type and the sidCLlo deletion mutant, or with L. pneumophila and the sidC-sdcALpn deletion 

mutant. The sidCLlo deletion mutant disappeared in direct competition with its wild-type 

strain within 24 days (Figure 3.8A). In parallel, the normal growth of both strains alone in                      

A. castellanii was confirmed (Figure 3.8C). The sidC-sdcALpn deletion strain died already 

within 12 days in direct competition with its wild-type strain (Figure 3.8B). In a single 

strain infection assay both strains grew normally (Figure 3.8D). Taken together, in direct 
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competition the wild-type strains of L. longbeachae and L. pneumophila outcompete the 

corresponding sidC mutant strains in A. castellanii.  

 

 
Figure 3.8. L. longbeachae and L. pneumophila wild-type strains outcompete the ∆sidCLlo and ∆sidC-
sdcALpn strains. A. castellanii were co-infected (MOI 0.01) with L. longbeachae wild-type and a ∆sidCLlo 

deletion mutant (A) or with L. pneumophila wild-type and a ∆sidC-sdcALpn deletion mutant (B). The infected 
amoebae and the supernatant was diluted 1:1.000 every third day and a newly seeded layer of amoeba was 
infected. The colony forming units were counted at the time points indicated. In parallel A. castellanii were 
infected alone with L. longbeachae (C) or L. pneumophila strains (D). The experiment was done in triplicate. 
The standard deviations were calculated from three independent infections plated in duplicate [3]. 

 

3.1.5  SidCLlo and SidCLpn promote ER recruitment to the LCV 

The ability of L. longbeachae to infect D. discoideum Ax3 was tested. To this end, we 

infected the cells with L. longbeachae wild-type or a dotA deletion mutant. The 

corresponding strains of L. pneumophila were used as a control (Figure 3.9).                                

L. longbeachae replicated less efficiently in D. discoideum than L. pneumophila within 6 

days. Both dotA deletion mutants were not able to grow intracellularly. L. longbeachae is 

infecting D. discoideum but grows slower in D. discoideum than L. pneumophila. 
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Next, the role of SidCLlo in the ER recruitment to the L. longbeachae-containing 

vacuole was analysed. Calnexin-GFP D. discoideum rounded up and detached right after 

the infection with L. longbeachae wild-type. Therefore, the infected cells were lost during 

the infection and immunofluorescence labelling was difficult.  

To analyse this phenomenon in more detail, calnexin-GFP producing D. discoideum 

were infected with L. longbeachae wild-type and a dotA deletion mutant producing Dsred. 

The bacteria were spun onto the cells, infected for 1 hour and the cells were fixed without 

previously washing. After infection with wild-type L. longbeachae, many calnexin-GFP      

D. discoideum were lost compared to an infection with a dotA deletion mutant of                        

L. longbeachae. Therefore, this effect is Icm/Dot-dependent (Figure 3.10).  

 

 
 

The change in D. discoideum morphology could be due to a cytotoxic effect of                      

L. longbeachae. Therefore, the cytotoxicity of L. longbeachae towards D. discoideum was 

tested. D. discoideum were infected with L. longbeachae and L. pneumophila wild-type 

and a corresponding dotA deletion mutant. Cytotoxicity of wild-type L. longbeachae or 

wild-type L. pneumophila was low (< 8%) and the dotA mutants of L. longbeachae and               

L. pneumophila had no cytotoxic effect on D. discoideum. The cytotoxic effect of                     

Figure 3.9. Intracellular replication of     

L. longbeachae and L. pneumophila in                    

D. discoideum.  D. discoideum Ax3 were 
infected (MOI 0.01) with L. longbeachae or                
L. pneumophila wild-type or a corresponding 
dotA deletion mutant at 25.5°C. The supernatant 
of the cells was collected every second day and 
plated on CYE plates. The cfus were counted. 
The means and standard deviations of infections 
done in triplicate are shown. The experiment 
was done three times. 

Figure 3.10. L. longbeachae wild-type alters the 

cell adherence of calnexin-GFP producing                
D. discoideum. Calnexin-GFP producing                      

D. discoideum (green) were infected (MOI 50) with 
L. longbeachae harbouring a Dsred (red) encoding 
plasmid for 1 hour. The cells were fixed and 
analyzed with a confocal microscope. The 
experiment was done in duplicate (bar = 10 µm). 
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L. longbeachae does not increase with higher MOIs (Figure 3.11). Together,                            

L. longbeachae seems to have no cytotoxic effect on D. discoideum. 

 

 
Figure 3.11. L. longbeachae shows no cytotoxic effect on D. discoideum. D. discoideum were infected 
(MOI 10 and 100) with L. longbeachae wild-type and a dotA mutant as well as with the corresponding                    
L. pneumophila strains for 1 hour. The cells were harvested and the dead cells were stained with propidium 
iodide. The amount of absorbed propidium iodide was measured with a FACS machine. Uninfected cells 
were used as a negative control. Mean and standard deviations of three independent experiments are 
indicated. The experiment was done three times.  

 

Previously published data demonstrated the recruitment of ER to the L. pneumophila-

containing vacuole in calnexin-GFP producing D. discoideum [53, 80, 103, 142]. The ER 

marker calnexin was recruited to a LCV containing L. pneumophila wild-type but not to an 

icmT deletion mutant. Also, the loss of the genes sidCLpn and sdcALpn led to a decreased 

recruitment of calnexin to the LCV. The effect occurred within 1 hour and remained at 

least for four hours. The loss of the ER recruitment was complemented by adding plasmid-

encoded SidCLpn or SdcALpn, but not with adding the C-terminal part of SidCLpn [103]. 

We wanted to test if this effect could be complemented by SidCLlo as well. Therefore, 

we infected calnexin-GFP producing D. discoideum with wild-type, an icmT or a sidC-

sdcALpn deletion mutant of L. pneumophila harbouring the red fluorescent dye Dsred or a 

plasmid-encoding Dsred and SidCLpn or SidCLlo (Figure 3.12A). In 72% of the cases 

calnexin-GFP was recruited to a LCV harbouring wild-type L. pneumophila. After an 

infection with an icmT deletion mutant only 1% of the LCVs were calnexin-GFP positive. 

Also the loss of sidCLpn and sdcALpn led to a decrease in the recruitment of calnexin-GFP to 

the LCV (19%) (Figure 3.12B) as published before [103]. A complementation of this 

decreased calnexin recruitment to the LCV was only possible with SidCLpn as published 

before (78%) [103] but not with overexpressed SidCLlo (14%). Between one and four hours 
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after the infection the calnexin-GFP recruitment did not alter for a L. pneumophila sidC-

sdcALpn deletion mutant which expressed SidCLlo (Figure 3.12C). Noteworthy, these 

immunofluorescence experiments were performed with formaldehyde-fixed cells. 

 

 
Figure 3.12. The calnexin-GFP recruitment to a LCV harbouring a sidC-sdcALpn deletion mutant of           

L. pneumophila is not complemented by SidCLlo. Calnexin-GFP producing D. discoideum were infected 
(MOI 50) with L. pneumophila wild-type, an icmT or a sidC-sdcALpn deletion mutant. The bacteria were 
harbouring a Dsred (pCR77), a Dsred and SidCLpn (pCR80) or a Dsred and SidCLlo (pSD14) expressing 
plasmid. The cells were infected for 1 hour, fixed with paraformaldehyde and analysed with a confocal 
microscope (A) (bar = 5 µm) (Caln. = calnexin). 100 LCVs were counted in three independent experiments 
(*** P<0.001) (B). The calnexin-GFP recruitment was analysed over time (C). 
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To test whether the fixation of the cell affects the calnexin-GFP signal, the same set of           

L. pneumophila strains was analysed with living cells (Figure 3.13). The results for                    

L. pneumophila wild-type, ∆icmT, ∆sidC-sdcALpn and the complementation strain with 

SidCLpn did not alter (Figures 3.12 and 3.13). In contrast, in living cells a complementation 

of the calnexin recruitment defect of a ∆sidC-sdcALpn strain with SidCLlo was visible (64%) 

(Figure 3.12). Thus, the fixation process apparently interfered with the signal 

accumulation. Taken together, the impaired ER recruitment to the L. pneumophila-

containing vacuole can be complemented by the production of SidCLpn, SdcALpn and 

SidCLlo.  

Finally, we used living D. discoideum to analyse the calnexin-GFP recruitment to a                 

L. longbeachae-containing vacuole. A pre-test demonstrated that the calnexin-GFP 

recruitment to the L. longbeachae LCV reaches its saturation after 2 hours post infection. 

Therefore, calnexin-GFP producing D. discoideum were infected for 2 hours with wild-

type, a dotA and a sidCLlo deletion mutant harbouring a Dsred-expressing plasmid. For 

complementation experiments, a sidCLlo deletion mutant was used, which harboured a 

plasmid-encoding for Dsred and SidCLlo, SidCLpn or SdcALpn (Figure 3.14). 82% of the 

LCVs containing wild-type L. longbeachae were calnexin-GFP positive. An infection with 

a dotA deletion mutant produced only 2% calnexin-GFP positive LCVs. This indicates that 

the recruitment of ER derived vesicles to the L. longbeachae-containing vacuole is 

Icm/Dot-dependent. The deletion of the sidCLlo gene led to a decreased calnexin-GFP 

recruitment to the LCV of around 20%. This effect was complemented by adding plasmid-

encoded SidCLlo (80%), SidCLpn (83%) or SdcALpn (74%) (Figure 3.14B).  
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Figure 3.13. The decreased ER recruitment 

to the L. pneumophila ∆sidC-sdcALpn 

containing vacuole in D. discoideum is 

complemented by SidCLlo. Calnexin-GFP                  
D. discoideum were infected (MOI 20, 1 hour) 
with L. pneumophila wild-type, an icmT or a 
sidC-sdcALpn deletion mutant. The strains 
harboured a Dsred (pCR77) or a plasmid 
which produced Dsred and SidCLlo (pSD14) or 
SidCLpn (pCR80). Live cells were imaged with 
a confocal microscope (bar = 5 µm) (A). The 
calnexin-GFP signal of 100 L. longbeachae-
containing vacuoles were counted in two 
independent experiments (* P<0.05) (B) [3].  
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Figure 3.14. L. longbeachae 

SidCLlo is necessary for the ER 

recruitment to the LCV.                    
L. longbeachae wild-type, a dotA or 
a sidCLlo deletion mutant har-
bouring a Dsred expressing plasmid 
(pCR77) were used to infect (MOI 
20) calnexin-GFP producing D. 

discoideum for 2 hours. The sidCLlo 
deletion mutant was complemented 
with a plasmid encoding for Dsred 
and SidCLlo (pSD14), SidCLpn 
(pCR80) or SdcALpn (pIH047). The 
cells were imaged with a confocal 
microscope (bar = 5 µm) (A). The 
calnexin-GFP signal of 100 L. 

longbeachae-containing vacuoles 
were counted in two separate 
experiments (* P<0.05) (B) [3].  
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In summary, we found that the ER recruitment to the LCV of L. longbeachae and                   

L. pneumophila is Icm/Dot-dependent. The loss of the genes sidCLlo as well as sidC-

sdcALpn decreased the ER recruitment to the LCV. These effects can be complemented by 

adding plasmid-encoded SidCLlo, SidCLpn as well as SdcALpn. Therefore, the function of 

SidCLlo, SidCLpn and SdcALpn are redundant. Overall, the amount of calnexin-GFP on the 

LCV is comparable for L. longbeachae as well as L. pneumophila wild-type strains (Figure 

3.13 and 3.14) [103].  

 

3.1.6 SidCLlo_P4C and SidCLpn_P4C are binding to PtdIns(4)P on  the LCV 

We were interested if SidCLlo_P4C and SidCLpn_P4C are localizing to the LCV. Therefore, 

Calnexin-GFP D. discoideum were infected with red fluorescent L. pneumophila for                   

1 hour. The cells were homogenized and incubated with purified GST fusion proteins 

(Figure 3.15A). Less than 1% of the LCVs incubated with the negative control, GST, were 

GST positive. 82% of the LCVs were covered with GST-SidCLlo_P4C. A quantification 

revealed that 88% of the L. pneumophila-containing vacuoles were GST-SidCLpn_P4C 

positive. For the positive control GST-PHFAPP1 77% of the LCVs were GST-PHFAPP1 

positive (Fig. 3.15B). Similar results were published previously for GST-PHFAPP1 [80]. 

Therefore, GST-SidCLlo_P4C binds to LCVs to a similar extent as GST-SidCLpn_P4C and 

GST-PHFAPP1. These findings indicate that both P4C domains can be used as PtdIns(4)P 

binding probes for L. longbeachae or L. pneumophila in all biological experiments. 
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Figure 3.15. SidCLlo_P4C and SidCLpn_P4C binds through PtdIns(4)P to the LCV. Calnexin-GFP producing                   
D. discoideum were infected with red fluorescent L. pneumophila (MOI 100, 1h). The cells were 
homogenised, fixed and the samples were incubated with GST-tagged proteins. An anti-GST antibody was 
used. Images were taken with a confocal microscope (bar = 1 µm) (A). Means and standard deviations from 
three independent experiments are shown, in which 100 LCVs each were counted (** P<0.01, *** P<0.001) 
(B) [3]. 

 

3.2. Purification of LCVs from L. longbeachae   

A protocol for the isolation of L. pneumophila-containing vacuoles from infected                               

D. discoideum was previously published [143]. In this protocol calnexin-GFP producing  

D. discoideum were infected with Dsred expressing L. pneumophila. A cell-free 

homogenate was incubated with an anti-SidCLpn antibody followed by a secondary 

antibody, which was coupled to magnetic beads. The homogenate was run through a 

magnetic separator (Figure 3.16), followed by a density centrifugation step [143].  

 

 

Figure 3.16. Purification of L. pneumophila-
containing vacuoles. Cells were infected with 
Dsred expressing L. pneumophila (red). SidCLpn 
(blue) was translocated through the Icm/Dot T4SS 
(light green) to the surface of the LCV (dark 
green). The LCVs were incubated with an anti-
SidCLpn antibody (black) followed by a secondary 
antibody coupled with a magnetic bead (brown). 
The LCVs were isolated over a magnet (gray). The 
scheme is based on the model previously 
published [1, 2]. 
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Liquid chromatography coupled to tandem mass spectrometry (MS/MS)  was done with 

purified LCVs of L. pneumophila and over 560 host proteins of D. discoideum were 

identified including lipid phosphatases and kinases [143]. A purification method was 

established to purify LCVs from infected RAW 264.7 macrophages. The protocol was 

similar to the protocol used for D. discoideum [2]. Mass spectrometry analysis identified 

over 1150 host proteins on the LCVs of macrophages including members of the Rab family 

[2]. 

These protocols were used as a starting point for the purification of L. longbeachae- 

containing vacuoles from D. discoideum or RAW 264.7 macrophages. To this end, SidCLpn 

was overexpressed in L. longbeachae and an anti-SidCLpn antibody was used for the 

purification. With the newly raised SidCLlo antibody a purification with the endogenous 

SidCLlo and the corresponding SidCLlo antibody was tried as well. The goal was to obtain 

enough purified LCVs from both cell lines to perform a proteome analysis of the                       

L. longbeachae-containing vacuole. 

 

3.2.1 Purification of L. longbeachae-containing vacuoles from D. discoideum with an     

anti-SidCLpn antibody  

For proteomic analysis purified L. longbeachae LCVs were needed. At the beginning of 

this work no specific SidCLlo antibody or any other L. longbeachae specific antibody was 

available which detects a marker of the L. longbeachae-containing vacuole. 

We showed that the anti-SidCLpn antibody [80] does not recognize endogenous SidCLlo 

on the L. longbeachae-containing vacuole in D. discoideum, but after overexpression of 

SidCLpn in L. longbeachae, the antibody recognized SidCLpn on the LCV (Figure 3.17). 

Therefore, we decided to use a L. longbeachae strain harbouring a plasmid coding for 

Dsred and SidCLpn for the LCV purification.  
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Figure 3.17. Overexpressed SidCLpn is covering a L. longbeachae-containing vacuole in infected                      

D. discoideum. D. discoideum were infected (MOI 50) with wild-type L. longbeachae harbouring a Dsred 
encoding plasmid (pSW001) or a plasmid-encoding Dsred and SidCLpn (pCR80) for one hour. The cells were 
fixed and stained with an anti-SidCLpn antibody followed by an anti-rabbit IgG (Cy5) secondary antibody (bar 
= 5 µm). The experiment was performed  twice. 

 

 As a positive control D. discoideum producing calnexin-GFP were infected with Dsred 

expressing L. pneumophila (pSW001) (Figure 3.18). Many calnexin-GFP positive LCVs 

were visible in the homogenate and in the pellet. Bacteria which had not infected the cells 

were not binding to the column and were appearing in the flow through sample. The LCVs 

were collected in the eluate sample. After the Histodenz gradient most of the LCVs were 

found in fraction 4 and some LCVs in fraction 3 (Figure 3.18).  

 D. discoideum Ax3 or calnexin-GFP producing D. discoideum were infected with                 

L. longbeachae producing Dsred and SidCLpn (pCR80) (Figure 3.19). After infection with 

L. longbeachae producing Dsred and SidCLpn the cells detached right after the infection 

(Figure 3.10). Since many cells were lost during the washing step of the infected cells, the 

washing step was omitted in further experiments. The infected cells were homogenized and 

the binding to the column was mediated through an anti-SidCLpn antibody followed by the 

secondary MACS anti-rabbit antibody. LCVs were visible in the homogenate and in the 

pellet sample. After adding the sample to the MACS column it took in most of the 

experiments much longer for the sample to flow through the column than we have seen 

before for the L. pneumophila samples. The flow through contained free bacteria (Figure 

3.19). In the eluate LCVs were found. After the separation step through the Histodenz 

gradient some LCVs were found in fraction 3, 4 and 5. The major amount of LCVs was 
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found in fraction 4 (Figure 3.19) which is comparable with the distribution of LCVs in the 

Histodenz gradient of L. pneumophila [2, 54, 140, 141].  

Throughout this work the yield of isolated LCVs was too small for further proteomic 

analysis. This problem was not solved by omitting the first washing step of the cells or 

through increasing the MOI. Also, a lot of cell debris were left in fraction 4 (Figure 3.19). 

 

 
Figure 3.18. Purification of L. pneumophila-containing vacuoles from D. discoideum. Calnexin-GFP 
producing D. discoideum Ax3 (green) were infected (MOI 50, 1h) with L. pneumophila harbouring Dsred 
(red) on a plasmid (pSW001) at 25°C. The infected cells were homogenized (homogenate), centrifuged 
(pellet) and incubated with an anti-SidCLpn antibody followed by a MACS anti-rabbit antibody. The cell 
suspension was added to the column (flow through) and was eluted with HB-buffer (eluate). The eluate was 
added on a Histodenz gradient, centrifuged and eight fractions were analyzed starting from the bottom of the 
column (fraction 1 to 8). SidCLpn was stained with an anti-SidCLpn antibody (blue). The bar in the large 
pictures denote 10 µm and in the smaller picture 2 µm. The experiment has been done with calnexin-GFP 
producing or unlabeled D. discoideum Ax3 three times. 
 

 



3. Results 

 

71 

 

 
Figure 3.19. Purification of L. longbeachae-containing vacuoles from calnexin-GFP producing                      
D. discoideum. Calnexin-GFP producing D. discoideum Ax3 (green) were infected (MOI 50, 1h) with                   
L. longbeachae harbouring Dsred (red) and SidCLpn on a plasmid (pCR80) at 25°C. A homogenate was 
prepared and the cell suspension was centrifuged (pellet). The cell solution was incubated with an anti-
SidCLpn antibody followed by a MACS anti-rabbit antibody. The LCVs were separated from free bacteria 
with a column (flow through and eluate). A further separation step was done with a Histodenz gradient 
(fraction 1 to 8). All samples were centrifuged on coverslips coated with poly-L-lysine. The overexpressed 
SidCLpn was stained with an anti-SidCLpn antibody (blue). The bar of the big pictures denote 10 µm and of the 
smaller picture 2 µm. The experiment was done twice with wild-type D. discoideum Ax3 or calnexin-GFP 
producing D. discoideum. 

 

3.2.2 Purification of L. longbeachae-containing vacuoles from RAW 264.7 

macrophages  

After realizing that the purification of a L. longbeachae-containing vacuole from                       

D. discoideum does not seem to be possible without extensive alterations of the protocol 

we decided to try to isolate the LCVs from RAW 264.7 macrophages. 
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3.2.2.1 Purification of L. longbeachae-containing vacuoles from RAW 264.7 

macrophages with an anti-SidCLpn antibody  

To this end, we infected RAW 264.7 macrophages with L. longbeachae harbouring a 

plasmid encoding Dsred and SidCLpn. Again as a control experiment RAW 264.7 

macrophages were infected with Dsred expressing L. pneumophila (Figure 3.20).                        

L. pneumophila-containing vacuoles covered by SidCLpn were visible in the homogenate 

and the amount of LCVs was enriched in the pellet. In the flow through no LCVs were 

visible. Small amounts of LCVs were detected in the eluate and in fraction 4 (Figure 3.20). 

 

 
Figure 3.20. Purification of L. pneumophila-containing vacuoles from RAW 264.7 macrophages. Dsred 
expressing L. pneumophila (pSW001) (red) were used to infect RAW 264.7 macrophages (MOI 50) for                   
1 hour at 37°C with 5% CO2. The cells were homogenized. The cell suspension was concentrated by 
centrifugation and was resuspended in a smaller volume of buffer (pellet). An anti-SidCLpn antibody followed 
by a MACS anti-rabbit antibody was used to incubate the cell suspension. This suspension was applied to the 
column (flow through) and was eluted with HB-buffer (eluate). A further separation step was performed with 
a Histodenz gradient. Eight fractions were taken from the gradient starting from the bottom of the column 
(fraction 1 to 8). The samples were fixed on coverslips and the endogenous SidCLpn was stained with an anti-
SidCLpn antibody. The bar of the big pictures denote 10 µm and of the smaller picture 2 µm. The experiment 
was done two times. 

 

After infecting RAW 264.7 macrophages with L. longbeachae harbouring a Dsred- and 

SidCLpn-encoding plasmid the amount of LCVs in the homogenate and the pellet were 

comparable with the amount of LCVs in the L. pneumophila control (Figures 3.20 and 

3.21). Again we observed that the sample applied to the column took much longer to rinse 

through the column than the L. pneumophila samples did before. In the flow through 
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bacteria were visible and in the eluate few LCVs were found. Most of the bacteria 

appeared in fraction four and five whereas the LCVs were located in fraction four. 

However, only few L. longbeachae-containing vacuoles were observed (Figure 3.21). 

 

 
Figure 3.21. Purification of L. longbeachae-containing vacuoles from 264.7 macrophages with an anti-

SidCLpn antibody. RAW 264.7 macrophages were infected (MOI 50, 1h) with L. longbeachae harbouring 
plasmid-encoded Dsred and SidCLpn (pCR80) at 37°C with 5% CO2. After homogenization the cells were 
centrifuged (pellet). The cell suspension was incubated with an anti-SidCLpn antibody followed by a MACS 
anti-rabbit antibody. The cell suspension was run through a column (flow through). The bound sample was 
eluted with HB-buffer (eluate). The eluate was separated with a Histodenz gradient. An analysis of eight 
fractions starting from the bottom of the column (fraction 1 to 8) was performed (bar = 10 µm). After fixing 
the samples on coverslips the samples were stained with an anti-SidCLpn antibody. The bar of the big pictures 
denote 10 µm and of the smaller picture 2 µm. The experiment was done four times. 

 

3.2.2.2 Purification of L. longbeachae-containing vacuoles from RAW 264.7 

macrophages with an anti-SidCLlo antibody  

After generating the new anti-SidCLlo antibody (section 2.2.10) a purification of                   

L. longbeachae-containing vacuoles from infected RAW 264.7 macrophages was tried 
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using wild-type L. longbeachae harbouring a Dsred producing plasmid. The previously 

published protocol for the LCV purification from RAW 264.7 macrophages [2] was not 

changed, other than using the anti-SidCLlo antibody instead of the anti-SidCLpn antibody.  

Compared to a LCV isolation from RAW 264.7 macrophages infected with                                

L. pneumophila using a SidCLpn specific antibody (Figure 3.20), the amount of bacteria and 

also the amount of LCVs in the homogenate and pellet were low. This did not change with 

increasing MOI. In the flow through bacteria were visible. Unfortunately, only bacteria 

without a SidCLlo staining were found in the eluate. Subsequently, the bacteria were found 

in fraction three and four. Taken together, it seems that the purification of a                                 

L. longbeachae-containing vacuole with endogenous SidCLlo is not possible with this 

protocol (Figure 3.22). 

 

 
Figure 3.22. Purification of L. longbeachae-containing vacuoles from RAW 264.7 macrophages with an 

anti-SidCLlo antibody. The cells were infected (MOI 10, 1h) with L. longbeachae harbouring a Dsred-
encoding plasmid (pSW001) at 37°C with 5% CO2. The infected cells were homogenized and the cell 
suspension was centrifuged (pellet). The cell suspension was incubated with an anti-SidCLlo antibody 
followed by a MACS anti-rabbit antibody. The sample was added to a MACS column and the flow through 
was collected (flow through). The sample bound to the MACS column was eluted with HB-buffer. A 
Histodenz gradient was used to further separate the eluate into eight fractions. The fractions were collected 
starting from the bottom of the column (fraction 1 to 8). The samples were fixed on coverslips coated with 
poly-L-lysine and stained with an anti-SidCLlo antibody. The bar of the big pictures denote 10 µm and of the 
smaller picture 2 µm. The experiment was done two times with different MOIs. 
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4. Discussions 

4.1 The L. longbeachae Icm/Dot substrate SidCLlo 

L. longbeachae and L. pneumophila are the causative agents of the Legionnaire’s disease. 

L. pneumophila is well characterized regarding ecological habitat, transmission, 

physiology and effector proteins. In contrast, only little is known about L. longbeachae. 

The aim of this part of the PhD thesis was to analyze the first effector protein, SidCLlo, of 

L. longbeachae. To this end, biochemical and genetic analysis were used. In an unbiased 

phosphoinositide-pulldown L. longbeachae lysate was incubated with PtdIns or different 

PIs. SidCLlo coupled to agarose beads was found to be the major PtdIns(4)P binding protein 

of L. longbeachae. No other effector protein was found, which bound to PtdIns or any PI 

lipid [3]. In the case of L. pneumophila among over 300 known effector proteins [56, 57] 

many are binding in an Icm/Dot-dependent manner to PI lipids. The Rab1 GEF/AMPylase 

SidM (also known as DrrA) [45, 56, 81, 104, 144], SidCLpn and its paralogous protein 

SdcALpn [80, 103] are binding to PtdIns(4)P, and the retromer interactor RidL [91] is 

known to bind to PtdIns(3)P. In the analogous experiment using L. pneumophila lysate, 

SidM and not SidCLpn was previously found to bind with high affinity to PtdIns(4)P [81, 

145]. It was previously shown that the amino acids 340 to 647 of SidM, which contain the 

GEF domain and the P4M domain, had a higher binding affinity to PtdIns(4)P                          

(KD = 30 nM) [104] than SidCLpn has (KD = 243 nM) [3]. The low binding affinity of 

SidCLpn to PtdIns(4)P could be the reason why SidCLpn was not even detected in the 

absence of SidM [81]. SidCLlo, however, had a KD of 71 nM and thus a 3.4 fold higher 

binding affinity to PtdIns(4)P than SidCLpn as measured by isothermal calorimetry 

measurement (ITC) [3]. Therefore, this assay does not seem to detect binding partners with 

a low affinity to PtdIns or the different PIs. Other L. longbeachae proteins could also form 

complexes with PtdIns or PI binding proteins of L. longbeachae and thus prohibit the 

pulldown. Chaperones like DnaK could be possible interaction partners.  

The P4C domain of SidCLlo was found in an assay using “PIP-strips” to localize to the 

amino acid region 609 to 769 (Figure 3.2B) [3]. This region is analogous to the P4C 

domain of SidCLpn which is localized in the amino acid region 609 to 776 [103]. The 

binding affinity of SidCLlo to PtdIns(4)P was also in this case much higher than the affinity 

of SidCLpn to PtdIns(4)P analyzed with “PIP-arrays” (Figure 3.2C) [3]. This result was 
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supported by the ITC measurement mentioned before [3]. SidCLpn_P4C is binding stronger to 

PtdIns(4)P than SidCLlo_P4C (Figure 3.2C) [3]. It could be that amino acids outside the 

SidCLlo_P4C domain support the binding and are missing in this assay. Unfortunately, due to 

an insolubility of the P4C domains of the proteins at the high concentrations needed for the 

ITC measurements it was not possible to further quantify the binding affinities of the two 

P4C domains. The influences of the N-terminal domains of SidCLlo and SidCLpn on the P4C 

domain of L. pneumophila and L. longbeachae were tested using PIP-strips and -arrays. 

The chimera proteins showed nearly the same binding affinity towards PtdIns(4)P like the 

corresponding P4C domains (Figures 3.2C, D and E). This result can be due to a missing 

effect of the N-terminal part of SidCLlo or SidCLpn on the binding affinity of the P4C 

domains of L. pneumophila or L. longbeachae to PtdIns(4)P or due to a miss folding of the 

protein. Therefore we cannot say, if the N-terminal domain of SidCLlo and SidCLpn has an 

effect on the binding affinity of the P4C domains of SidCLpn and SidCLlo to PtdIns(4)P. 

Certainly the P4C domains of L. longbeachae and L. pneumophila are the major 

PtdIns(4)P binding part of SidCLlo and SidCLpn. It was shown that despite of their different 

binding affinity to PtdIns(4)P, SidCLlo and SidCLpn share similar secondary structure 

compositions [3], whereas the sequence identity of these two proteins is only 40% (Figure 

3.3) [3]. Also the P4C domains of SidCLlo and SidCLpn consist only of 45% of the same 

amino acids (Figure 3.3)[3]. Therefore, the difference in the sequences could be a reason 

for the differences in the binding affinity. An amino acid exchanges in the P4C domain of 

SidCLlo and SidCLpn might play a role in the different binding affinities to PtdIns(4)P. The 

Icm/Dot-dependent translocation of SidCLlo was analyzed using plasmid-encoded CyaA-

SidCLlo transformed into wild-type and a dotA deletion mutant of L. longbeachae and L. 

pneumophila. Unfortunately, the only Icm/Dot-dependent translocation was shown for the 

positive control CyaA-SidCLpn translocated from L. pneumophila wild-type but not from 

the dotA deletion mutant (Figure 3.5A). In a Western blot analysis using specific anti-SidC 

antibodies it was obvious that only L. pneumophila but not L. longbeachae is producing 

CyaA-SidCLpn and CyaA-SidCLlo (Figure 3.5B). No CyaA specific antibody was available. 

Therefore, it was not possible to show whether the CyaA-tag of CyaA-SidCLpn and CyaA-

SidCLlo produced in L. longbeachae was cut off, or if the fusion proteins are produced at 

all. Even a change in the duration of the induction did not change the results seen in the 

Western blot analysis (data not shown). In a further attempt a plasmid with the                           
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L. longbeachae effector protein CetLI1 coupled to CyaA was obtained from the group of 

Gil Segal to test if a translocation of a L. longbeachae effector protein could be shown at 

all. CetLI1 was published to be translocated when overexpressed in L. pneumophila [58]. 

After transformation of the CyaA-CetLI1-producing plasmid into wild-type and a dotA 

deletion mutant of L. longbeachae and L. pneumophila, a cAMP assay was performed. In 

repeated attempts using different lysis methods, the protein CetLI1 was only translocated 

by L. pneumophila wild-type but not by L. longbeachae wild-type (Figure 3.5C). This 

ruled out that the change of the cell line from HL-60-derived human macrophages used 

from the group of Gil Segal [58] to RAW 264.7 macrophages used in this experiment 

could be the reason for the failure to observe translocation in the case of L. longbeachae 

wild-type. Maybe the capsule of L. longbeachae prevents the detection of translocation in 

this assay. In another attempt the new SidCLlo antibody was used in an 

immunofluorescence assay using RAW 264.7 macrophages to verify if SidCLlo is 

translocated in an Icm/Dot-dependent manner. Around 50% of the LCVs harbouring wild-

type L. longbeachae were positive for endogenous SidCLlo whereas the translocation of 

SidCLpn was slightly more efficient. This could be due to the higher amount of SidCLpn 

produced compared to the endogenously produced SidCLlo. Nearly no SidCLlo or SidCLpn 

localization was visible on a LCV harbouring the dotA deletion mutant of L. longbeachae 

(Figure 3.6). Therefore SidCLlo is translocated in an Icm/Dot-dependent manner. 

In the next step the role of SidCLlo in the intracellular replication of L. longbeachae in 

RAW 264.7 macrophages and A. castellanii was characterized more closely. To this end, a 

sidCLlo deletion strain [3] was used. The infection rates were similar for the wild-type and 

the sidCLlo deletion strain, whereas the dotA deletion mutant did not grow (Figure 3.7) [3]. 

The wild-type strain of L. longbeachae outcompeted the sidCLlo deletion strain in a direct 

competition assay within 24 days of A. castellanii infection (Figure 3.8A). Both strains 

grew equally alone in A. castellanii (Figure 3.8C). In the case of a wild-type                                

L. pneumophila strain compared to a sidC-sdcALpn deletion mutant the wild-type won the 

competition within 12 days (Figure 3.8B). Again both strains grew equally alone in                      

A. castellanii (Figure 3.8D) [3]. Therefore, SidCLlo seems to be less important for the 

infection of A. castellanii than SidCLpn and SdcALpn. The reason remains unclear. A similar 

competition defect was previously observed for the Icm/Dot-translocated protein LegG1, a 

Ran GTPase activating effector [84, 146]. 
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We analyzed the effect of SidCLlo in the ER recruitment to the LCV in D. discoideum 

infected with L. longbeachae. The cells rounded up right after the infection and were lost 

during the washing steps of the immunofluorescence labeling. In a direct comparison 

between a wild-type and a dotA deletion mutant of L. longbeachae it was shown that the 

effect was Icm/Dot-dependent (Figure 3.10). A cytotoxic effect of L. longbeachae on                  

D. discoideum could be ruled out (Figure 3.11). The cell surface seems to get modified and 

therefore the cell is not able to attach to the surface any longer. Effector proteins are 

known for L. pneumophila, which modulate the cytoskeleton. For example the Icm/Dot-

dependent L. pneumophila effector protein LegG1 activates the small GTPase Ran and 

promotes the migration of D. discoideum [146, 147]. LegG1 is missing in the genome of  

L. longbeachae [26]. Other Icm/Dot-dependent effector proteins of L. longbeachae could 

interfere with the cytoskeleton. A lack of these effector proteins could result in a cell which 

rounds up. 

Calnexin recruitment to the LCV in infected D. discoideum was impaired due to the loss 

of the L. pneumophila genes sidCLpn and sdcALpn. The decreased calnexin recruitment can 

be complemented by overexpressing SidCLpn or SdcALpn [103]. Calnexin-GFP                        

D. discoideum were infected with a L. pneumophila sidC-sdcALpn deletion strain 

harbouring a plasmid encoding for SidCLlo and the cells were fixed with paraformaldehyde. 

Only few LCVs were covered with calnexin-GFP (Figures 3.12A and B). This result did 

not alter in an infection from one till four hours (Figure 3.12C).  

In a next step, life cell imaging was used to assay the ER recruitment with                            

L. pneumophila infected D. discoideum (Figure 3.13). Using this approach a 

complementation of the loss of the calnexin recruitment to the LCV in cells infected with 

L. pneumophila lacking the sidC-sdcALpn genes with SidCLlo was observed (Figure 3.13) 

[3]. Therefore, the fixation of the cells seemed to affect the calnexin-GFP signal on the 

LCV. Why this influenced only the calnexin-GFP recruitment in the complementation 

assay with SidCLlo remains unclear. Afterward we analyzed the ER recruitment with L. 

longbeachae infected D. discoideum with life cell imaging (Figure 3.14). LCVs harbouring 

wild-type L. longbeachae were calnexin-GFP positive. The dotA and sidCLlo gens were 

necessary for the calnexin recruitment to the LCV infected with L. longbeachae. A 

complementation of the loss of the calnexin recruitment to the LCV was possible through 
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overexpression of SidCLlo, SidCLpn and SdcALpn (Figure 3.14) [3]. Despite of a sequence 

identity of only 40% both SidC effectors proteins seem to be functionally redundant.   

The PHFAPP1 domain binds through PtdIns(4)P to the LCV [80]. Also SidCLlo_P4C and 

SidCLpn_P4C bind to the L. pneumophila-containing vacuole with nearly the same efficiency 

as the PHFAPP1 domain [3]. Therefore, SidCLlo_P4C and SidCLpn_P4C can be used as LCV 

markers (Figure 3.15). 

The results of this study pave the way for further analysis of the role of SidCLlo in the 

ER recruitment to LCVs. Also, the first antibody against a L. longbeachae effector is now 

available to characterize the L. longbeachae-containing vacuole more closely. 

 

4.2 Purification of LCVs from L. longbeachae 

At the onset of this project no antibody was available which recognized any known              

L. longbeachae effector protein covering the LCV. Yet, the translocation of SidCLpn to the                    

L. longbeachae-containing vacuole was observed in infected D. discoideum cells, and 

SidCLpn covered the whole LCV (Figure 3.17). Hence a purification of a L. longbeachae-

containing vacuole was tried using L. longbeachae harbouring a plasmid coding for a 

Dsred protein and SidCLpn (Figure 3.19). LCV purification with L. pneumophila producing 

Dsred was done as a control (Figure 3.18). The previously published protocols were used 

for the LCV purification [2, 54, 140, 141]. Many cells were lost during the washing step 

due to the fact that the D. discoideum cells detached from the flask within minutes after 

adding L. longbeachae. Therefore, a protocol without washing was used in further 

experiments (Figure 3.19). An enrichment of the LCVs in the eluate was visible and the 

amount of LCVs was comparable to the amount of LCVs obtained in the control 

experiment with L. pneumophila wild-type. A Histodenz gradient was used to get rid of 

extracellular bacteria and cell debris. Unfortunately, the amount of LCVs decreased 

significantly and much cell debris remained. Nevertheless most of the LCVs were found in 

fraction 4 (Figure 3.19). The amount and purity of the LCVs was not enough for a 

proteome analysis of L. longbeachae-containing vacuoles. The purification step with the 

Histodenz gradient seems not to be optimal for the purification of L. longbeachae-

containing vacuoles. An alternative purification step should be tried. Therefore, other 

gradients like “OptiPrepTM Density Gradient Medium” (Sigma) could be tried. 
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A purification of L. longbeachae-containing vacuoles from infected RAW 264.7 

macrophages was tried. Again a purification of L. pneumophila-containing vacuoles was 

performed as a positive control (Figure 3.20). After infection of the RAW 264.7 

macrophages with L. longbeachae harbouring a plasmid coding for Dsred and SidCLpn the 

cells did not detach from the flask like D. discoideum. Few LCVs were found in the eluate 

and in fraction 4. A separation of the LCVs from extracellular bacteria and cell debris was 

obtained but the number of LCVs visible in fraction 4 was much too low for a proteomic 

analysis (Figure 3.21).  

During this work a SidCLlo antibody was raised. Therefore, a purification of                          

L. longbeachae-containing vacuoles from RAW 264.7 macrophages using endogenous 

SidCLlo and the corresponding antibody was tried. Unfortunately, the yield of LCVs was 

from the beginning much lower than in the experiments with overexpressed SidCLpn 

(Figures 3.20 and 3.22). The few LCVs were lost during the enrichment process in the cell 

suspension and upon running the sample through the MACS column. Therefore, only 

extracellular bacteria were found in fraction 3 and 4 (Figure 3.22). We have noticed that 

the sample took much longer to rinse through the column than the L. pneumophila samples. 

Maybe the column was clogged and the LCVs were retained by the column. The reason for 

this remains unclear. 

In all preparations SidCLpn or SidCLlo rarely cover the LCV completely. If SidCLpn was 

overexpressed the amount of SidCLpn translocated to the LCV membrane was much higher 

than the amount of SidCLlo which is produced endogenously. Therefore, recognition of 

LCVs in the samples and binding of the LCVs to the MACS column was enhanced. As a 

consequence, the purification of L. longbeachae-containing vacuoles from RAW 264.7 

macrophages could be more efficient with a strain overexpressing SidCLpn than with the 

endogenous produced SidCLlo (Figures 3.20 till 3.22). Also an increased cell number could 

be tried. However, further cellular analysis of the influence of SidCLpn on the protein 

composition of L. longbeachae-containing vacuoles need to be done, if a L. longbeachae 

strain harbouring Dsred and SidCLpn is used to obtain LCVs for a proteomic analysis. 

Alternatively, other L. longbeachae effector proteins which cover the LCV completely and 

an antibody against this protein could be used. Thus, the amount of purified LCVs 

harbouring L. longbeachae might be increased.  
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5. General conclusions and outlook 

In my Ph.D. thesis I have analyzed the first Icm/Dot-dependent effector protein of                       

L. longbeachae, SidCLlo. SidCLlo binds with a distinct P4C domain to PtdIns(4)P located on 

the LCV. This P4C domain can be used as a LCV marker in immunofluorescence assays. 

The binding affinity of SidCLlo to PtdIns(4)P is much higher compared to SidCLpn. Just as 

SidCLpn SidCLlo is also important for ER recruitment to the LCV, and therefore, plays a 

pivotal role in the pathogen-host interaction. Interestingly, this effect could be 

complemented by adding plasmid-encoded SidCLlo or SidCLpn in reciprocal assays. Both 

proteins seem to improve the intracellular replication of L. longbeachae and                       

L. pneumophila in infected A. castellanii. Despite of a small sequence identity and the 

difference in the binding affinities to PtdIns(4)P both proteins seem to play similar roles in 

the intracellular replication of L. longbeachae. 

 

 

 
Figure 4.1. The Icm/Dot-dependent effector protein SidCLlo is binding through PtdIns(4)P to                                

L. longbeachae-containing vacuoles and interacts with the ER. SidCLlo is translocated by the Icm/Dot 
T4SS into the host cell cytoplasm and binds through PtdIns(4)P to the L. longbeachae-containing vacuole. 
The effector protein SidCLlo interacts with the ER [3]. SidM and SdcA are missing in the genome of L. 

longbeachae [26]. 

 

We started to isolate L. longbeachae-containing vacuoles from D. discoideum or RAW 

264.7 macrophages with protocols previously published [2, 54, 140, 141]. To this end, we 
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overexpressed SidCLpn in L. longbeachae and used an anti-SidCLpn antibody for the 

purification. The isolation from LCVs from D. discoideum worked much better than the 

isolation from RAW 264.7 macrophages. We raised the first known antibody against a           

L. longbeachae effector protein, which recognizes only SidCLlo but not SidCLpn. This 

antibody was used to isolate L. longbeachae-containing vacuoles from infected RAW 

264.7 macrophages. Unfortunately, this attempt failed. Further investigations need to be 

done to optimize the existing protocols for a purification of L. longbeachae-containing 

vacuoles. Thus, it should be possible to isolate L. longbeachae-containing vacuoles at least 

from infected D. discoideum in an appropriate yield and purity to analyse their proteome. 
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6. List of abbreviations 

Amp  ampicillin 

AMPylation adenosine mono-phosphorylation 

APS ammonium persulphate 

ARF ADP ribosylation factor 

AYE  ACES yeast extract 

BSA bovine serum albumin  

Caln calnexin 

Cam  chloramphenicol 

CetLI C-terminal signal for effector translocation of L. longbeachae 

cfu  colony forming units 

CYE  charcoal yeast extract 

DAG diacylglycerol  

Dd5P4  Dictyostelium discoideum 5-phosphatase 4 
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