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0. Summary 

The immune response against bacterial, parasitic and viral pathogens can be associated with 

reactivation of hematopoiesis at fetal sites of blood formation, a process termed 

extramedullary hematopoiesis. For example, congenital infection with human 

cytomegalovirus (HCMV) can induce extramedullary hematopoiesis in the skin of neonates 

visible as dark-blue macules – a prominent clinical picture called ‘blueberry muffin baby’. 

Furthermore, acute infection with HCMV can lead to an enlargement of the spleen at all ages. 

The cellular and molecular mechanisms governing extramedullary hematopoiesis after 

infection are poorly understood. Mouse cytomegalovirus (MCMV) is a reliable model for 

HCMV in many regards. Here, MCMV infection was used to study extramedullary 

hematopoiesis in the spleen.  

C57BL/6 mice infected with MCMV developed splenic extramedullary hematopoiesis 

peaking at day 6 post infection. Both natural killer (NK) cells and dendritic cells (DCs) were 

found to play a central role in the modulation of extramedullary hematopoiesis upon infection 

with MCMV.  

NK cells were essential for the establishment of extramedullary hematopoiesis. On the 

molecular level, extramedullary hematopoiesis required recognition of infected cells via the 

activating NK cell receptor Ly49H. Surprisingly, the development of extramedullary 

hematopoiesis was not induced by NK cell-derived cytokines but fully dependent on perforin-

mediated cytotoxicity. In fact, NK cell cytotoxicity became dispensable after infection with 

spread-deficient ΔM94-MCMV, showing that NK mediated control of virus spread to 

secondary target cells is a prerequisite for extramedullary hematopoiesis. Furthermore, virus 

spread to secondary target cells suppressed inflammatory extramedullary hematopoiesis 

induced by CpG-oligodesoxynucleotides (CpG-ODN). Hence, whereas MCMV suppresses 
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inflammation induced extramedullary hematopoiesis, NK cells confine virus spread by direct 

lysis of infected cells, and thus support extramedullary hematopoiesis. 

DCs were identified to be the secondary target cell that becomes a dominant suppressor of 

extramedullary hematopoiesis upon infection. Infection of DCs resulted in profound changes 

in the serum cytokine profile and constriction of stem cell proliferation in the spleen. 

Notably, suppression of extramedullary hematopoiesis upon infection of DCs was not 

restricted to MCMV but was a general phenomenon exploited by DC-tropic viruses and 

bacteria such as lymphocytic choriomeningitis virus (LCMV) and Listeria monocytogenes, 

respectively. 
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0. Zusammenfassung 

Die Immunantwort auf bakterielle, parasitäre und virale Erreger ist zur Reaktivierung der 

Hämatopoiese an fötalen Orten der Blutbildung imstande, der sogenannten extramedullären 

Hämatopoiese. Nach einer kongenitalen Infektion mit dem humanen Zytomegalievirus 

(HCMV) kann extramedulläre Hämatopoiese zum Beispiel in der Haut von Neugeborenen 

auftreten, welche in Form von dunkelblaue Flecken sichtbar wird – ein bekanntes klinisches 

Bild, das ‚blueberry muffin baby‘ genannt wird. Darüber hinaus führt in jedem Lebensalter 

die akute Infektion mit HCMV häufig zu einer Vergrößerung der Milz. 

Die zellulären und molekularen Mechanismen, welche die extramedulläre Hämatopoiese nach 

einer Infektion mit HCMV regulieren, sind bislang kaum verstanden. Das murine 

Zytomegalievirus (MCMV) ist in vielerlei Hinsicht ein geeignetes Modell für die HCMV 

Infektion. In dieser Studie wurde die Infektion mit MCMV genutzt, um die extramedulläre 

Hämatopoiese in der Milz zu untersuchen.  

Nach einer Infektion mit MCMV entwickelten C57BL/6 Mäuse extramedulläre Hämatopoiese 

in der Milz, welche ihren Höhepunkt an Tag 6 erreichte. Natürliche Killerzellen (NK) und 

dendritische Zellen (DCs) spielten eine zentrale Rolle in der Modulation der extramedullären 

Hämatopoiese nach einer Infektion mit MCMV.  

Die extramedulläre Hämatopoiese trat ausschließlich in Anwesenheit von NK Zellen auf. Auf 

der molekularen Ebene erforderte das Auftreten der extramedullären Hämatopoiese die 

Erkennung infizierter Zellen durch den aktivierenden NK Zellrezeptor Ly49H. 

Überraschenderweise wurde die extramedulläre Hämatopoiese nicht durch Zytokine der NK 

Zellen induziert, sondern bedurfte ihrer durch Perforin vermittelten zytotoxischen Funktion. 

Die zytotoxische Funktion wurde jedoch nicht benötigt, wenn die Infektion mit der 

Virusmutante ΔM94-MCMV erfolgte, die nach einmaliger Infektion keine weiteren Zellen 
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infizieren kann. Dies zeigte, dass die Kontrolle der Virusausbreitung durch NK Zellen die 

Voraussetzung für das Auftreten der extramedullären Hämatopoiese ist. Virusausbreitung 

unterdrückte auch extramedulläre Hämatopoiese, die zuvor mit CpG-Oligodesoxynukleotiden 

(CpG-ODN) induziert worden war. Während MCMV also entzündungsbedingte 

extramedulläre Hämaopoiese unterdrückt, besteht die Rolle der NK Zellen darin, die 

Virusausbreitung zu verhindern und so extramedulläre Hämatopoiese zu ermöglichen.  

DCs wurden als diejenige sekundäre Zielzelle identifiziert, welche nach Infektion zum 

dominanten Suppressor der extramedullären Hämatopoiese wird. Die Infektion von DCs 

führte zu tiefgreifenden Veränderungen im Zytokin-Profil des Blutserums und zu einer 

reduzierten Anzahl von Stammzellen in der Milz.  

Die Suppression der extramedullären Hämatopoiese erfolgte nicht nur nach einer Infektion 

mit MCMV, sondern stellte ein generelles Phänomen nach einer Infektion mit DC-tropischen 

Viren und Bakterien dar, wie zum Beispiel dem Lymphozytären Choriomeningitis Virus 

(LCMV) und Listeria monocytogenes. 



1. Introduction  5 
 
 

   

1. Introduction  

1.1 Immune responses alter steady state hematopoiesis 

It is a rather trivial insight that hematopoiesis (from Ancient Greek α�μα = blood and ποιε�ν 

= to make) is fundamental for both innate and adaptive immunity as it constantly generates 

the cellular constituents of the immune system. More interestingly is the fact that the 

generation of new immune cells is regulated by the already existing white blood cells. Upon 

detection of an invading pathogen, activated leukocytes produce a plethora of so-called 

hematopoietins, a group of cytokines active in hematopoiesis including colony-stimulating 

factors (CSF) (e.g. granulocyte-macrophage-CSF), interleukins (e.g. IL-3, IL-4, IL-5, IL-7) 

and chemokines (e.g. CXCL1 / keratinocyte chemoattractant (KC)) resulting in the specific 

production of effector cells adjusted to the nature of the invading pathogen (Silverthorn 2009; 

COPE 2011). Upon bacterial infection, for example, leukocytes secrete cytokines stimulating 

the proliferation of neutrophil granulocytes and monocytes which fight the pathogens by 

phagocytosis. Virus infections, on the contrary, lead to a cytokine profile that often reduces 

the number of neutrophil granulocytes but increases the amount of lymphocytes lysing 

infected cells or producing protective antibodies. Parasites induce the proliferation of 

eosinophil granulocytes that secret anti-microbial mediators (Andreesen and Heimpel 2009). 

Hence, characteristic changes in the absolute numbers of leukocytes as well as the relative 

proportions of the different subgroups of leukocytes circulating with the bloodstream indicate 

the kind of the infectious agent. The differential blood count (differential hemogram) is 

therefore still an important diagnostic tool (Silverthorn 2009).  

1.2 Extramedullary hematopoiesis and the ‘blueberry muffin baby’ 

In the developing embryo, hematopoiesis first occurs in the yolk sac and later in spleen, liver 

and lymph nodes (Palis et al. 2010). In adults, the bone marrow is the main blood forming 
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tissue (medullary hematopoiesis). Interestingly, the immune response against various bacterial 

(MacNamara et al. 2009; Piseddu et al. 2011), parasitic (Villeval et al. 1990; Cotterell et al. 

2000; Giordanengo et al. 2002) and both acute and chronic viral infections (Lucia and Booss 

1981; Costantini et al. 2009) does not only influence the medullary hematopoiesis but can 

also reactivate blood formation at sites of fetal hematopoiesis - a process termed 

extramedullary hematopoiesis. In most cases liver and spleen resume their hematopoietic 

function resulting in a substantial increase in size of these organs (hepato-splenomegaly). In 

addition, extramedullary hematopoiesis can also be observed in lymph nodes, thymus, renal 

capsule, dura and skin.  

For example, intrauterine infection can induce the unusual occurrence of extramedullary 

hematopoiesis in the skin of neonates which results in the characteristic clinical picture of the 

‘blueberry muffin baby’. The newborns exhibit dark blue to purpuric macules or firm, dome-

shaped papules predominantly favoring the trunk, head and neck (Mehta et al. 2008). The 

macules and papules start to resolve soon and are usually cleared by 3 to 6 weeks after birth 

(Mehta et al. 2008). The first virus described to cause the ‘blueberry muffin baby’ was rubella 

virus. In most cases, however, the causative agent is human cytomegalovirus (HCMV) 

(Groark and Jampel 1989; Hodl et al. 2001; Shaffer et al. 2005; Gaffin and Gallagher 2007).  

Figure 1.2 ‚Blueberry muffin baby‘. 
Macules and papules are due to dermal extramedullary 
hematopoiesis upon congenital infection with human 
cytomegalovirus (HCMV) (Mehta et al. 2008). 
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Table 1.3 Human herpesvirus family. 
Human herpesviruses (HHV) are classified in α-, β- and γ-subfamilies. α-Herpesviruses 
preferentially infect neuronal tissue, γ-herpesviruses lymphocytes. β-Herpesviruses can 
infect all kinds of tissue and thus cause various clinical outcomes. Original Roseolovirus was 
found to be two different herpesviruses. Adapted from (Hamprecht and Jahn 2007). 
 

1.3 Cytomegalovirus – history, epidemiology and clinical manifestation 

The occurrence of gigantic, ‘protozoa-like’ cells with characteristic inclusion bodies in 

histologic samples from autopsies of dead children was noted more than 100 years ago 

(Jesionek and Kiolemenoglou 1904; Ribbert 1904). Although already in 1921 Goodpasture 

interpreted these histopathological changes as caused by virus infection (Goodpasture and 

Talbot 1921), the aetiologic agens was not discovered until 1956, when at the same time three 

US-American research groups isolated a herpesvirus of the β-subfamily (Rowe et al. 1956; 

Smith 1956; Weller et al. 1956). One year later, the first detailed German description of the 

pathology of the ‘cytomegalic disease’ was published (Seifert and Oehme 1957). 

Human cytomegalovirus (HCMV; also classified as human herpesvirus 5 (HHV-5)), is highly 

prevalent worldwide and reaches up to an infection rate of 100% in developing countries. In 

the Western World the infection rate depends on the ethnic origin as well as the socio-

economic status: for example 50% to 80% of the adult population are infected in the United 

 Herpesvirus  Disease 

Herpes simplex (HSV-1) HHV-1 cold sore 

Herpes simplex 2 (HSV-2) HHV-2 genital herpes 

α 

Varicella-Zoster-Virus (VZV) HHV-3 chickenpox / herpes zoster 

Cytomegalovirus (CMV) HHV-5 diverse clinical manifestations β 

Reseolovirus HHV-6

HHV-7

‘sixth [childhood] disease’ with rash 

Epstein-Barr-Virus (EBV) HHV-4 infectious mononucleosis            
= ‘Kissing disease’,                 
Burkitt lymphoma 

γ 

Karposi‘s Sarcoma-
associated virus (KSHV) 

HHV-8 Karposi’s Sarcoma 
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States (CDC 2011); in Germany no data are collected, but local studies suggest an infection 

rate of around 50% (Hamprecht and Jahn 2007). 

Of all pathogens, HCMV is the most frequently transmitted virus during pregnancy. In 

Germany, estimated 0.5% of all newborns are already infected at the time of delivery (i.e. 

around 3700 children each year) and 20% of those ultimately suffer from severe neurological 

damages, which can lead to mental retardation and deafness (Hamprecht and Jahn 2007; 

Mosca and Pugni 2007; Grosse et al. 2008). In fact, congenital HCMV infection is the leading 

cause of deafness in Germany (Hamprecht and Jahn 2007). Furthermore, congenital HCMV 

infection is responsible for around 400 deaths of neonates in the United States and estimated 

37 deaths in Germany per year (Hamprecht and Jahn 2007). 

After infection, HCMV establishes lifelong latency. In the case of immunosuppression, as it 

for instance occurs in transplant recipients or patients with Acquired Immune Deficiency 

Syndrome (AIDS), virus replication frequently reactivates and causes severe disease (Britt 

2006; Mocarski et al. 2007). Since virus replication can reactivate in various organs, the 

clinical manifestations of HCMV disease are diverse, including pneumonitis, myocarditis, 

diabetes, enteritis, retinitis, hepatitis, esophagitis, colitis, nephritis, encephalitis and graft loss 

Figure 1.3 Structure of the herpesviruses. 
The icosahedral capsid (100 nm in diameter) contains a double stranded DNA-genome. 
The tegument between capsid and envelope harbors host and viral RNA and proteins.
The lipid envelope is host-derived with embedded viral glycoproteins. A) Electron 
micrograph of a herpesvirus virion (Stannard 1995). B) Schematic representation of a 
HCMV virion (Streblow et al. 2006).  
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(Drew 1992). Retinitis caused by HCMV is the leading cause of blindness in AIDS patients 

(Hamprecht and Jahn 2007). 

Up to date, there is no vaccine available for preventing HCMV disease. The US-American 

Institute of Medicine of the National Academies has ranked the development of a HCMV 

vaccine as highest priority since preventing HCMV-related disabilities would save 

considerable resources for the society otherwise required for lifelong health care (Stratton et 

al. 2000).  

As described above, congenital HCMV infection may result in ‘blueberry muffin babies’ due 

to extramedullary hematopoiesis in the skin. Apart from the characteristic hemorrhagic-

purpuric looking skin eruptions these newborns also present with hepato-splenomegaly 

(Groark and Jampel 1989; Hodl et al. 2001; Shaffer et al. 2005; Gaffin and Gallagher 2007). 

In general, hepato-splenomegaly is one of the distinctive features detectable by ultrasound 

diagnostics that indicate a HCMV infection in utero (Chaoui et al. 2002; Hamprecht and Jahn 

2007). In childhood and in adults, most cases of HCMV infection are subclinical. Only 

occasionally HCMV infection induces a mononucleosis-like syndrome with sore throat, fever, 

malaise, muscle pain (myalgia), lymphadenopathy and also hepato-splenomegaly associated 

with the risk of rupture of the splenic capsule and severe hemorrhage (Rogues et al. 1994; 

Alliot et al. 2001; Duarte et al. 2003; Gorgone et al. 2005; Amathieu et al. 2007). It has not 

been investigated in patient samples, however, whether hepato-splenomegaly can be 

attributed to extramedullary hematopoiesis. To investigate the causative relationship between 

CMV infection, splenic extramedullary hematopoiesis and splenomegaly, an animal model is 

required.  



1. Introduction  10 
 
 

   

1.4 Mouse cytomegalovirus (MCMV) induces extramedullary hematopoiesis 

One common characteristic of the β-herpesviruses is their pronounced species specificity 

(Britt 2006). Mouse cytomegalovirus (MCMV) has an extensive sequence homology with 

HCMV (Rawlinson et al. 1996) and provides a model to study the biology of CMV infection 

in the living host (Mocarski and Kemble 1996; Kern 1999). MCMV resembles its human 

counterpart with respect to organ- and cell tropism, pathogenesis during acute infection, 

establishment of latency, and reactivation after immunosuppression (Mocarski and Kemble 

1996; Reddehase et al. 2002; Krmpotic et al. 2003). Interestingly, as for HCMV, acute 

MCMV infection induces splenomegaly (Loh and Hudson 1981; Loh and Hudson 1982; 

Leung et al. 1991). For MCMV, splenomegaly could be attributed to an enlargement of the 

hematopoietic islands in the red pulp, i.e. to extramedullary hematopoiesis (Lucia and Booss 

1981).  

Thus, MCMV is the model system of choice to get insights into the mechanisms of HCMV 

pathogenesis. In addition, a wide range of genetically engineered mice offers the opportunity 

to study the molecular mechanisms of CMV infection. In this study MCMV was used to 

elucidate virus and host genetic factors that determine extramedullary hematopoiesis in the 

spleen.  

1.5 The role of the spleen during cytomegalovirus infection 

Although the spleen has aroused interest for more than 2000 years now – it is mentioned in 

the Talmud, the Midrash and was already studied by Hippocrates, Plato, Aristotle and Galen - 

its anatomy and physiology are still not completely understood (McClusky et al. 1999). In the 

17th century Marcello Malpighi, the founder of microscopic anatomy, created a 

comprehensive description of the histology of the spleen (McClusky et al. 1999). Yet, it was 

still not clear what purpose the spleen served – and until today there is room for speculations.  
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While aged blood cells are degraded in the red pulp, the white pulp of the spleen is 

compartmentalized in T cell and B cell areas and therefore offers all structural requirements to 

enable efficient interactions between the different cells of the immune system which are 

necessary for a successful immune response (Karrer et al. 1997). Viruses and bacteria that 

have been opsonized by antibodies are cleared in the spleen from the circulation. Therefore, 

the spleen is generally regarded as the most important lymphoid organ for the initiation of an 

immune response against blood-borne antigens. Splenectomized patients, however, present a 

higher susceptibility only to infections with certain encapsulated bacteria, for example 

Klebsiella pneumonia, Streptococcus pneumonia or Haemophilus influenzae (Murphy et al. 

2009), and the definitive role of the spleen during virus infection is still a matter of debate. 

For HCMV it has been reported that splenectomy can facilitate virus infection, increases the 

severity of the systemic (mononucleosis) or localized (for example retinitis) disease and can 

ultimately lead to fatal cases of HCMV infection (Baumgartner et al. 1982; de Gorgolas 

Figure 1.5 Splenomegaly upon 
infection. 

Sketch by German painter Albrecht 
Dürer (1471-1528). Dürer suffered from 
splenomegaly probably due to Malaria 
infection. The text reads: do der gelb 
Fleck is vnd mit dem finger drawf dewt, 
do is mir we (“Where the yellow spot is 
and the finger points, I’m sore”) 
(Kunsthalle Bremen).  
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Hernandez-Mora et al. 2001; Han et al. 2005; Vote et al. 2005; Assy et al. 2007; Han et al. 

2010). Thus, the spleen contributes to the immune response against HCMV and this 

contribution might manifest in the enlargement of the organ.  

Detailed studies of CMV infection in the spleen have been done using MCMV. Endothelial 

cells of the red pulp are the first infected cells (Benedict et al. 2006). Only afterwards, virus 

can be found in the white pulp (Bekiaris et al. 2008; Hsu et al. 2009). Around 72 to 96 hours 

post infection the virus replication in the spleen reaches its peak. At the same time, the 

compartmentalization between the T cell and the B cell areas in the white pulp is dissolved 

(Benedict et al. 2006). This destruction of the microarchitecture of the white pulp can 

particularly be observed in the spleen of mice which are more susceptible for MCMV 

infection due to reduced Natural Killer (NK) cell function. In fact, restoration of NK cell 

function protects the microarchitecture of the splenic white pulp (Bekiaris et al. 2008).  

1.6 Natural Killer (NK) cells in CMV infection 

NK cells are lymphocytes that express only a limited repertoire of germline-encoded receptors 

in contrast to B cells and T cells. Therefore, they are classified to be part of the innate 

immune system. NK cells are important for the early control of virus infection, particularly 

for herpesviruses. They possess cytotoxic function and can - unlike T cells - induce the death 

of infected cells without previous immunization. Furthermore, NK cells are important 

producers of antiviral cytokines including interferon (IFN)-γ and tumor necrosis factor 

(TNF)-α (Vivier et al. 2011). Thereby, NK cells help to shape the adaptive immune response.  

NK cells express surface receptors that can either stimulate (activating receptors) or dampen 

(inhibitory receptors) their activity (Vivier et al. 2004; Bryceson et al. 2006). Inhibitory 

receptors mostly measure major histocompatibility (MHC) class I molecules on target cells. 

MHC class I molecules present intracellular peptides to the outside and are scanned by 
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cytotoxic T cells for non-self determinants. Consequently, down-regulation of MHC class I 

molecules is a mechanism used by many pathogens and tumor cells to evade T cell 

recognition and lysis. Thus, lack of MHC class I expression on the cell surface indicates 

danger and leads to the activation of patrolling NK cells. NK cell activation due to a lack of 

ligation of inhibitory receptors has been named ‘missing self’ recognition (Karre et al. 1986).  

Activating receptors have either cellular partners, as NK group 2D (NKG2D) that binds to 

several surface molecules overexpressed upon cellular distress, or directly recognize virus 

gene products. For example, NKp46 recognizes hemagglutinins from influenza and 

parainfluenza virus (Arnon et al. 2001; Mandelboim et al. 2001). Ly49H which is expressed 

in C57BL/6 mice recognizes the MCMV encoded m157 glycoprotein on the surface of 

infected cells (Arase et al. 2002; Smith et al. 2002; Bubic et al. 2004) leading to specific 

proliferation of Ly49H+ NK cells and perforin-mediated cytotoxicity (Dokun et al. 2001; Hsu 

et al. 2009). Unlike C57BL/6 mice, MCMV susceptible mouse strains lacking the Ly49H 

receptor are unable to mount an effective NK cell control of this virus  (Scalzo et al. 2007).  

In fact, several CMV genes have been identified that interfere with NK cell recognition. 

HCMV UL16 down-regulates the NKG2D ligands MICB, ULBP-1 and ULBP-2 (Dunn et al. 

2003; Rolle et al. 2003; Welte et al. 2003; Wu et al. 2003). MICB is also targeted by the 

HCMV-encoded microRNA hcmv-miR-UL112 (Stern-Ginossar et al. 2007). UL142 affects 

the expression of NKG2D ligand MICA (Chalupny et al. 2006).  

MCMV encodes m04 that escorts specific MHC class I molecules to the surface in order to 

prevent ‘missing self’ recognition (Babic et al. 2010). Furthermore, at least four MCMV 

genes have been found that down-regulate cellular ligands of the activating NKG2D receptor. 

Genes m145, m152 and m155 are responsible for the down-regulation of MULT-1, RAE-1 

and H60, respectively (Krmpotic et al. 2002; Lodoen et al. 2003; Lodoen et al. 2004; Hasan 
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et al. 2005; Krmpotic et al. 2005). In addition, the m138 protein affects the surface expression 

of MULT-1, H60 and RAE-1 isoforms (Lenac et al. 2006; Arapovic et al. 2009).  

Nevertheless, NK cells depend on factors produced by other immune cells to proliferate, 

mature and acquire full effector potential. One of the most important cells for the 

development and activation of NK cells is the dendritic cell (DC) (Walzer et al. 2005; 

Zitvogel et al. 2006; Castillo et al. 2009).  

1.7 Dendritic cells (DCs) and herpesviral immune evasion 

DCs were discovered in 1973 when Ralph M. Steinman and Zanvil A. Cohn “during the 

course of observations on the cells of mouse spleen that adhere to glass and plastic surfaces 

[…] noticed a large stellate cell with distinct properties” (Steinman and Cohn 1973). Up to 

date it has become evident that DCs are specialized for the uptake, transport, processing and 

presentation of antigens to naïve T cells and therefore play a key role for the initiation of 

adaptive immune responses (Kushwah and Hu 2011). Furthermore, DCs are major cytokine 

producers and are thus important for the orchestration of innate immunity. Due to the 

importance of DCs Ralph M. Steinman was awarded with the Nobel Prize in Physiology or 

Medicine for his discovery in 2011. DCs, however, were found to be a very heterogeneous 

Figure 1.7 Dendritic cells. 
A) The first photograph taken of a dendritic cell (Steinman and Cohn 1973). 
B) Dendritic cells in the lymph node identified by CD11c expression (picture 
taken by the author). 
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cell population. At least four DC subsets have been identified in mouse lymphoid organs 

(Henri et al. 2001; Kushwah and Hu 2011). All of these subsets express the surface molecule 

CD11c which is therefore used as a general DC marker. Plasmacytoid DCs (pDCs) are 

defined by the expression of CD45RA (B220) in contrast to conventional DCs (cDCs) that do 

not express this surface marker. cDCs can further be subdivided in subsets by the expression 

of CD8 and CD4.  

Functionally, there are important differences between the DC subtypes.  pDCs, for instance, 

produce high amounts of IFN-α. CD8+ cDCs have the unique ability to cross-present non-self 

antigens on MHC class I molecules (Schulz and Reis e Sousa 2002). In addition, they are the 

major source of IL-12 triggering antiviral Th1 immune responses (Hochrein et al. 2001; 

Shortman and Liu 2002). Hence, these two DC subsets are particularly important during virus 

infection.  

Many bacteria (e.g. Salmonella enterica, Yersinia enterolytica, Helicobacter pylori) (Bedoui 

et al. 2010) and viruses (e.g. Measles virus, Human Immunodeficiency virus (HIV), 

Herpesviruses) (Naniche and Oldstone 2000; Andrews et al. 2001; Raftery et al. 2001) 

specifically target DCs to prevent the initiation of the immune response.  

CMV employs an array of mechanisms to interfere with immune stimulatory DC functions, 

for example the down-modulation of MHC class I and class II complexes or of co-stimulatory 

molecules, the up-regulation of apoptosis-inducing ligands or the alteration of inflammatory 

cytokine secretion profiles. This leads to an overall functional paralysis of the CMV-infected 

DC (Andrews et al. 2001; Raftery et al. 2001; Rolle and Olweus 2009).  
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1.8 Aim of the study 

Ongoing immune reactions have a profound impact on the hematopoietic system leading to 

the specific production of leukocytes according to the kind of pathogen. Furthermore, 

infectious agents can reactivate the blood formation at fetal sites of hematopoiesis, i.e. in 

spleen, liver and skin. The ‘blueberry muffin baby’ is a prominent clinical manifestation of 

unusual postnatal extramedullary hematopoiesis in the skin. In most cases it is caused by 

HCMV infection. 

HCMV is the most frequently transmitted virus during pregnancy. It is highly prevalent 

worldwide and causes severe disease in individuals with immature or compromised immune 

systems. A frequent indication for HCMV disease is the enlargement of liver and spleen, 

which can already be observed in the infected fetus by ultrasound.  

MCMV is a reliable mouse model for HCMV in many regards. Splenomegaly upon MCMV 

infection could be attributed to extramedullary hematopoiesis.  

The mechanisms governing extramedullary hematopoiesis during inflammation or infection, 

however, are poorly understood. As such, the role of the antiviral immune response in the 

induction of extramedullary hematopoiesis and vice-versa has not been studied.  

The aim of this study was the identification of cellular and molecular determinates of 

MCMV-induced extramedullary hematopoiesis in the spleen.  

Here, both NK cells and DCs were identified to play a central role in the modulation of 

extramedullary hematopoiesis. Similar to other inflammatory stimuli, MCMV infection 

induced extramedullary hematopoiesis in the spleen. Surprisingly, establishment of 

extramedullary hematopoiesis required NK cell control of virus spread independent of 

cytokines but dependent on perforin-mediated cytotoxicity. 



1. Introduction  17 
 
 

   

In absence of NK cells, NK cell activation via Ly49H or NK cell cytotoxicity, virus spread 

resulted in suppression of extramedullary hematopoiesis. 

DCs were responsible for the suppression of extramedullary hematopoiesis. Extramedullary 

hematopoiesis was not suppressed after depletion of DCs in addition to NK cells. 

Furthermore, direct transfer of in vitro infected DCs suppressed extramedullary hematopoiesis 

in vivo.  

Notably this suppression of hematopoiesis upon infection of DCs was not restricted to the 

β-herpesvirus model but was also observed after infection with other DC-tropic pathogens. 

Hence, it is conceivable that regulation of extramedullary hematopoiesis is a mechanism of 

immune evasion exploited by DC-tropic pathogens.  
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2. Material and Methods 

2.1 Material 

2.1.1 Equipment 

Device Company 

Analytical balance BP210 D Sartorius, Göttingen 

Balance Kern 470 Kern & Sohn GmbH, Balingen-Frommern 

CantoIITM Becton Dickinson, Heidelberg 

Centrifuge Beckmann Coulter J-20 XP Beckman Coulter, Krefeld 

Centrifuge Beckmann Coulter J-26 XPI Beckman Coulter, Krefeld 

Centrifuge Sorvall Evolution RC Thermo Fisher Scientific Inc., Waltham, USA 

CO2-Incubator HeraCell 150 Thermo Fisher Scientific Inc., Waltham, USA 

Douncer Sartorius, Göttingen 

Eickemeyer NarKoVet Eickemeyer, Tuttlingen 

FACS CaliburTM Becton Dickinson, Heidelberg 

FACSAriaTM Becton Dickinson, Heidelberg 

Freezer Forma -86C, Model 8695 Thermo Fisher Scientific Inc., Waltham, USA 

Fridge “öko plus” Siemens, München 

Fridge easy store Siemens, München 

Fridges (4°C) Liebherr, Ochsenhausen 

Gene PulserTM Bio-Rad, München 

GeneAmp®PCR System 9700 Applied Biosystems, Foster City, USA 

Incubation shaker Certomat®  BS-1 Sartorius, Göttingen 

Incubation shaker ISF-1-W Kühner, Adolf AG, Birsfelden, Switzerland 

Incubator B5060E Heraeus, Hanau 

Incubator B6420 Heraeus, Hanau 
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Infra Red light IR 11 Petra electric, Burgau 

LightCycler 2.0 Roche Diagnostics, Indianapolis, USA 

Magnetic Stirrer RCT basic IKA Labortechnik, Staufen 

Microscope, Axiovert 25 Zeiss, Jena 

Microwave Panasonic, Osaka, Japan 

Midi MACS Magnets and Stand Miltenyi Biotec, Bergisch Gladbach 

Multifuge 3 S-R Hereaus, Hanau 

Multipipette Eppendorf, Hamburg 

Nanodrop®ND-1000 Spectrophotometer Nanodrop, Steinfurt 

OXYMAT®3 Weinmann, Hamburg 

PCR machineTGradient Biometra, Göttingen 

pH meter 430 Corning, Miami, USA 

Pipette Helper Hirschmann Laborgeräte, Eberstadt 

Pipettes Eppendorf, Hamburg 

Pipettes Gilson, Middleton, USA 

Power supply EPS 200 PharmaciaBiotech, Freiburg 

Pulse Controller Bio-Rad, München 

Table centrifuge 5417C Eppendorf, Hamburg 

Table centrifuge 5417R Eppendorf, Hamburg 

Table centrifuge Biofugepico Heraeus, Hanau 

Thermomixer 5436 Eppendorf, Hamburg 

TissueLyser Qiagen, Hilden 

Ultracentrifuge Optima l-80 XP Beckman Coulter, Krefeld 

Universal Hood II Biorad, Segrate, Italy 

UV-cross-linker  Stratagene, Amsterdam, Netherlands 

Vortex Mixer Bender/Hobein, Bruchsal 
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Water bath GFL 1002 GFL, Burgwede 

Water bath GFL 1092 GFL, Burgwede 

2.1.2 Expandable items 

Item Company 

96-well V-bottom dish Nunc, Langenselbold 

Cell culture dishes (15 cm, 10 cm, 6 cm) Becton Dickinson, Heidelberg 

Cell culture well plates (6-, 48-, 96-well) Becton Dickinson, Heidelberg 

Cell scrapers (25 cm, 39 cm) Sarstedt, Nümbrecht 

Cell strainer Becton Dickinson, Heidelberg 

Combitips plus (2.5 ml, 5 ml, 10 ml) Eppendorf, Hamburg 

Cuvettes Brand, Wertheim 

Electroporation cuvettes, 2 mm Bio-Rad, München 

Examination gloves Unigloves, Troisdorf 

Falcons conical tubes (15 ml, 50 ml) Becton Dickinson, Heidelberg 

Inoculationloops Nunc, Langenselbold 

Parafilm Roth, Karlsruhe 

PCR Softstrips Biozym, Oldendorf 

Pipettes (2 ml, 5 ml, 10 ml, 25 ml) Sarstedt, Nümbrecht 

Reaction tubes (0.5 ml, 1.5 ml, 2 ml) Eppendorf, Hamburg 

SafeSeal-Tips® Biozym, Oldendorf 

Sterile injection-needles, MicrolanceTM Becton Dickinson, Heidelberg 

Syringe Injekt® Solo 20 ml  B. Braun Melsungen AG, Melsungen 

Syringe TBC 1 ml Dispomed Witt oHG, Gelnhausen 

Tubes for Ultracentrifugation BeckmanCoulter, Krefeld 

Polysterene round-bottom tube w/ cell strainer cap Becton Dickinson, Heidelberg 
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2.1.3 Chemicals and biochemicals 

2.1.3.1 Chemicals 

Chemical Company 

Agarose Invitrogen, Karlsruhe 

Ammonium chloride (NH4Cl) Sigma-Aldrich, Taufkirchen 

Ammonium sulphate ((NH4)2SO4) Baker, Deventer, Netherlands 

Boric acid (H3BO3) Roth, Karlsruhe 

Bromphenol blue Sigma-Aldrich, Taufkirchen 

Carboxymethylcelullose Sigma-Aldrich, Taufkirchen 

D-(+)-Galactose Sigma-Aldrich, Taufkirchen 

D-(+)-Saccharose Merck, Darmstadt 

D-Biotine Sigma-Aldrich, Taufkirchen 

DMSO (Dimethyl sulfoxide) Merck, Darmstadt 

DOG (2-deoxy-galactose) Sigma-Aldrich, Taufkirchen 

EDTA (Ethylenediaminetetraacetic acid) Sigma-Aldrich, Taufkirchen 

Ethanol  Merck, Darmstadt 

Ethidiumbromide Roth, Karlsruhe 

FTY720 (Fingilimod) Merck, Darmstadt 

Glutamate Invitrogen, Karlsruhe 

Glycerol Roth, Karlsruhe 

Hydrochloric acid (HCl) Roth, Karlsruhe 

Iron(II) sulfate (FeSO4 * 7H2O) Sigma-Aldrich, Taufkirchen 

Isopropanol Merck, Darmstadt 

Korsolex® Bode Chemie, Hamburg 

L-Leucin Sigma-Aldrich, Taufkirchen 

Magnesium sulfate (MgSO4 * 7H2O) Merck, Darmstadt 
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Methanol Roth, Karlsruhe 

Orange G Sigma-Aldrich, Taufkirchen 

Potassium bicarbonate (KHCO3) Sigma-Aldrich, Taufkirchen 

Potassium chloride (KCl) Sigma-Aldrich, Taufkirchen 

Potassium dihydrogenphosphate (KH2PO4) Merck, Darmstadt 

Potassium hydroxid (KOH) Merck, Darmstadt 

Roti®-Phenol/C/I 
(Phenol/Chloroform/Isoamylalcohol 25/24/1) 

Roth, Karlsruhe 

Sodium bicarbonate (NaHCO3) Pan Biotech GmbH, Aidenbach 

Sodium chloride (NaCl) Merck, Darmstadt 

Sodium hydrogenphosphate (Na2HPO4) Merck, Darmstadt 

Tris-HCl (Tris-(hydroxymethyl)-aminomethane) Roth, Karlsruhe 

β-Mercaptoethanol Pan Biotech GmbH, Aidenbach 

2.1.3.2 Biochemicals 

Biochemical Company 

1 kb ladder GeneRulerTM Fermentas, St. Leonroth 

6x Agarose gel loading buffer Fermentas, St. Leonroth 

Ampicillin Sigma-Aldrich, Taufkirchen 

Bacillol AF Bode Chemie, Hamburg 

Bacto™ YeastExtract Becton Dickinson, Heidelberg 

Bacto™Agar Becton Dickinson, Heidelberg 

Bacto™Tryptone Becton Dickinson, Heidelberg 

BSA (albumin from bovine serum) Sigma-Aldrich, Taufkirchen 

Chloramphenicol Sigma-Aldrich, Taufkirchen 

Difco MacConkey Agar Base Becton Dickinson, Heidelberg 

Diphteria toxin (DT) Merck, Darmstadt  
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dNTPs, Roti-Mix® PCR3 Roth, Karlsruhe 

Gentamycin Invitrogen, Karlsruhe 

Granulocyte / macrophage colony stimulating 
factor (GM-CSF) 

PeproTech, Hamburg 

Isofluran CP CP Pharma, Burgdorf 

Kanamycin Sigma-Aldrich, Taufkirchen 

Pertussis toxin (PTX) Sigma-Aldrich, Taufkirchen 

Stem cell factor (SCF) PeproTech, Hamburg 

RNAlater® Sigma-Aldrich, Taufkirchen 

SuperFect® Qiagen, Hilden 

Trypan blue Sigma-Aldrich, Taufkirchen 

Trypsin/EDTA Invitrogen, Karlsruhe 

2.3.1.3 Enzymes 

Enzyme Company 

ApaLI NEB, Ipswich, USA 

AseI NEB, Ipswich, USA 

BamHI NEB, Ipswich, USA 

DNaseI Roche Diagnostics, USA 

DpnI NEB, Ipswich, USA 

EcoRI NEB, Ipswich, USA 

EcoRV NEB, Ipswich, USA 

HindIII NEB, Ipswich, USA 

NcoI NEB, Ipswich, USA 

PvuII NEB, Ipswich, USA 

RNase Sigma-Aldrich, Taufkirchen 

SalI NEB, Ipswich, USA 
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ScaI NEB, Ipswich, USA 

SuperScript® III Reverse Transcriptase Invitrogen, Karlsruhe 

Taq DNA Polymerase High Fidelity Roche Diagnostics, Grenzach-Wyhlen 

2.1.4 Buffer and media 

2.1.4.1 Buffer 

DPBS (Dulbecco’s phosphate buffered saline) was purchased from Invitrogen, Karlsruhe. 

10x DNA running buffer: 50 mg Bromphenol blue 

 3 ml 150 mM Tris pH 7.6 

 60 ml Glycerol 

 7  ml H2Odd 

  

FACS-buffer: 1 % FCS in DPBS 

  

10x Orange G running buffer: 50 mg Orange G 

 500 µl 1 M Tris 

 15 ml Glycerol 

 35 ml H2Odd 

  

Red Blood Cell Lysis Buffer: 4.14 g Ammonium chloride (NH4Cl) 

 0.5 g Potassium bicarbonate (KHCO3) 

 0.1 ml 0.5 M EDTA, pH 8.0 

 1 N Hydrochloric acid (HCl) for adjusting to 
pH 7.2-7.4 

ad 500 ml H2O 

  

50x TAE: 42 g Tris-HCl 
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 100 ml 0.5 M EDTA, pH 8.0 

ad 1 l H2O 

  

1x TBE 10.8 g Tris-HCl 

 5.5 g Boric acid (H3BO3) 

 0.7 g EDTA, pH 8.0 

ad 1 l H2O 

  

10x TE-Buffer: 10 ml 1M Tris-HCl, pH 7.5  

 2 ml 0.5 M EDTA, pH 8.0 

ad 1 l H2O 

  

1x Virusstock-buffer: 6.055 g Tris-HCl 

 0.895 g Potassium chloride (KCl) 

 1.86 g EDTA 

 1 N Hydrochloric acid (HCl) for adjusting to 
pH 7.8 

ad 1 l H2O 

  

1x Virusstock-Buffer  

15% Succrose:  

75 g

500 ml

D-(+)-Saccharose  

Virusstock-buffer 

 

2.1.4.2 Media for the culture of prokaryotic cells 

LB-medium: 10 g BactoTMTryptone 

 5 g BactoTMYeastExtract 

 10 g Sodium chloride (NaCl) 

ad 1 l H2Odd 
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M9 medium: 6 g Sodium hydrogenphosphate (Na2HPO4) 

 3 g Potassium dihydrogenphosphate (KH2PO4) 

 1 g Ammonium chloride (NH4Cl) 

 0.5 g Sodium chloride (NaCl) 

ad 1 l H2O 

  

5x M63 salts: 10 g Ammonium sulphate ((NH4)2SO4) 

 68 g Potassium dihydrogenphosphate (KH2PO4) 

 2.5 mg Iron(III) sulphate (FeSO4 * 7H2O) 

 Potassium hydroxide (KOH) for adjusting to pH 7 

ad 1 l H2O 

  

LB-agar plates: 1 l LB-medium 

 15 g BactoTMAgar 

  

MacConkey plates: 10 g Difco MacConkey agar base 

 225 ml H2Odd 

 25 ml 10% Galactose 

  

M63 minimal plates: 4 g BactoTMAgar 

 200 ml H2Odd 

 50 ml 5x M63 salts 

 0.5 ml 1 M Magnesium sulphate (MgSO4) 

 1.25 ml 0.2 mg / ml D-Biotine 

 1.1 ml 10 mg / ml L-Leucine 

 5 ml 10% Glycerol 
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 5 ml 10% DOG (2-deoxy-galactose) 

Liquid medium as well as plates were stored at 4°C. 

Plates and media containing antibiotics were prepared by diluting the antibiotics to final 

concentrations as listed below: 

Antibiotic stock concentration final concentration 

Ampicillin 100 mg / ml 100 µg / ml 

Chloramphenicol 25 mg / ml 25 µg / ml 

Kanamycin 100 mg / ml 50 µg / ml 

2.1.4.3 Media for the culture of eukaryotic cells 

RPMI 1640 medium, DMEM medium, Fetal Calf Serum (FCS), Penicillin / Streptomycin, 

10x Minimal essential medium (10x MEM) and 10x Non-essential amino acids (10x NEAA) 

were purchased from Invitrogen, Karlsruhe. Media were prepared as follows: 

RPMI++: 500 ml RPMI 1640 

 50 ml FCS 

 5 ml Penicillin / Streptomycin 

  

RPMI++++: 500 ml RPMI 1640 

 50 ml FCS 

 5 ml Penicillin / Streptomycin 

 5 ml Glutamate 

 500 µl β-Mercaptoethanol 

  

DMEM++: 500 ml DMEM 

 50 ml FCS 
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 5 ml Penicillin / Streptomycin 

  

Methylcellulose medium: 3.75 g Carboxymethylcellulose 

 388 ml H2Odd 

 25 ml FCS 

 50 ml 10x Minimal essential medium (10x MEM) 

 5 ml Glutamine 

 2.5 ml 10x Non-essential amino acids (10x NEAA) 

 5 ml Penicillin / Streptomycin 

 24.7 ml Sodium bicarbonate (NaHCO3) 

2.1.5 Kits 

Name Company 

Expand High Fidelity PCR System Roche Diagnostics, Grenzach-Wyhlen 

GFX PCR DNA and Gel Band Purification Kit GE Healthcare, Freiburg 

Mouse erythrocyte lysing kit R&D systems, Minneapolis, USA 

NK cell isolation kit Miltenyi Biotech, Bergisch Gladbach 

NucleoBondTMXtra Midi Kit Macherey-Nagel, Düren 

QuantiTect SYBR Green PCR Kit Qiagen, Hilden 

QuantiTect SYBR Green PCR Master Mix Qiagen, Hilden 

Quick Ligation™ Kit NEB, Ipswich, USA 

RNeasy Mini Kit Qiagen, Hilden 

Venor®GeM – Mycoplasma detection kit Minerva biolabs, Berlin 

2.1.6 Bacterial artificial chromosomes (BACs) and vectors 

The vector pgalK-Kn was present in the laboratory (EMBL Acc. number FR832405).  
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All MCMV mutants were generated on the basis of BAC pSM3fr originally published by 

Messerle and colleagues (Messerle et al. 1997). 

2.1.7 Primer and oligonucleotides 

All primers and oligonucleotides were purchased from ‘Metabion international AG’, 

Planegg-Martinsried. 

2.1.7.1 Primer and oligonucleotides for generation of the BAC targeting construct 

Name Sequence 

P-5’-Oligo-Hm157 5’-TCGACTGGCCACACACGTGGTCAAGCCGGTCGTGTTG
TACCAGAACTCGACTTCGGTCGCGTTGATATCAAGCGGC
CGCGTCAAGAGGTACTGAATATCGGGGTACACTTTCTCA
AATATCGGGGTTCAGCTGG-3’ 

P-3’-Oligo-Hm157   5’-GATTCCCAGCTGAACCCCGATATTTGAGAAAGTGTAC
CCCGATATTCAGTACCTCTTGACGCGGCCGCTTGATATC
AACGCGACCGAAGTCGAGTTCGTGTACAACACGACCGG
CTTGACCACGTGTGTGGCCAG-3’ 

P-5’-Oligo-m157-loxP 5’-ATCAATAACTTCGTATAGCATACATTATACGAAGTTAT
TATCAACCATGGATAACTTCGTATAGCATACATTATACG
AAGTTATGC-3’ 

P-3’-Oligo-m157-loxP 5’-GGCCGCATAACTTCGTATAATGTATGCTATACGAAGT
TATCCATGGTTGATAATAACTTCGTATAATGTATGCTATA
CGAAGTTATTGAT-3’ 

P-5’-m157ampl 5’-TAAGTACTCCATGGTCAAACGACCAGACGCATAAA-3’ 

P-3’-m157ampl 5’-AGGATCCCCATGGATGGTCATCGTCCCCCTAGT-3’ 

P-5’-Cterm-m157 5’-TAAGTACTCAGCTGCCGAAGTCACGACCGTCAGT-3’ 

P-3’-Cterm-m157 5’-AGATATCAACGCGACCGAAGTCGAGTT-3’ 

P-5’-not recombined 5’-CGAACTGACATCCGGACAG-3’ 

P-5’-recombined 5‘-TTGCCGGGAAGCTAGAGTAA-3‘ 
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P-3’-universal 5’-ATGGCTCATAACACCCCTTG-3’ 

2.1.7.2 Primer for BAC targeting 

Complementary sequences for the GalK-kan cassette are italicized. 

Name Sequence 

P-5’-m156/157-GalK 

 

5‘-CCATTATCACCAAGATAGTTCCCACCATAATTCCCATC
GTCACTAGAGTCCCTGTTGACAATTAATCATCGGCA-3‘ 

P-3’-Δm157-GalK 

 

5’-CCCGATATTTGAGAAAGTGTACCCCGATATTCAGTAC
CTCTTGACTAAGCCAGTGTTACAACCAATTAACC-3’ 

P-5‘-m157sequ 5’-AGATAGTTCCCACCATAATT-3’ 

P-3‘-m157sequ 5’-GTGTGAAACGCAGGAGAATC-3’ 

2.1.7.3 Primer for quantitative RT-PCR 

Name Sequence 

Cxcl12_fwd 5’-CGCCAAGGTCGTCGCCG-3‘ 

Cxcl12_rev 5‘-TTGGCTCTGGCGATGTGGC-3‘ 

Kitl_fwd  5‘-CCCTGAAGACTCGGGCCTA-3‘ 

Kitl_rev  5’-CAATTACAAGCGAAATGAGAGCC-3‘ 

Vcam1_fwd  5‘-GACCTGTTCCAGCGAGGGTCTA-3’ 

Vcam1_rev  5‘-CTTCCATCCTCATAGCAATTAAGGTG-3‘ 

LBR_for  5'-GGAAGTTTGTTGAGGGTGAAGTGGT-3' 

LBR_rev  5'-CCAGTTCGGTGCCATCTTTGTATTT-3' 

S1PL_for 5’-TCTGCTGATAGTCTGGGTGTATGAG-3’ 

S1PL_rev 5’-CCAATAAATGGCATCTTCCTGATA-3’ 
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S1PR-for 5’-CGGTGTAGACCCAGAGTCCT-3’ 

S1PR-rev 5’-AGCTTTTCCTTGGCTGGAG-3’ 

2.1.7.4 Immunostimulatory oligonucleotides 

Immunostimulatory oligonucleotides were purchased as thioates from TIB MOLBIOL, 

Berlin. CpG motifs marked in bold. 

Name Sequence 

CpG-ODN 1826 5’-TCC ATG ACG TTC CTG ACG TT-3’ 

2.1.8 Antibodies 

2.1.8.1 Antibodies for flow cytometry 

Antigen Recognized 
species 

Isotype Hybridoma Conjugate Dilution 
used 

Company 

B220 Mouse / 
human 

Rat IgG2a, κ RA3-6B2 FITC 1:200 eBioscience

B220 Mouse / 
human 

Rat IgG2a, κ RA3-6B2 PE 1:200 eBioscience

CD117 mouse Rat IgG2b, κ 2B8 PerCP-
eFluor710 

1:200 eBioscience

CD11b mouse Rat IgG2b, κ M1/70 FITC 1:200 eBioscience

CD11c mouse Armenian 
Hamster IgG 

N418 APC 1:500 eBioscience

CD19 mouse Rat IgG2b, κ eBio1D3 FITC 1:200 eBioscience

CD3e mouse Armenian 
Hamster IgG 

145-2C11 FITC 1:200 eBioscience

CD8a mouse Rat IgG2b, κ 53-6.7 PerCP-
Cy5.5 

1:200 eBioscience
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FcRII/III mouse Rat IgG2b, κ 2.4G2 

 

Fc-Block 1:100 BD 
Pharmingen

Gr-1 mouse Rat IgG2b, κ RB6-8C5 FITC 1:200 eBioscience

keyhole 
limpet 
hemo-
cyanin 

nil Isotype-
control rat 

IgG2a 

 PE 1:200 eBioscience

keyhole 
limpet 
hemo-
cyanin 

nil Isotype-
control rat 
IgG2b, κ 

 PE 1:200 eBioscience

MHC 
class II 

mouse Rat IgG2b, κ M5/114.15.
2 

FITC 1:200 eBioscience

NK1.1 mouse Mouse 
IgG2a, κ 

PK136 PE 1:200 eBioscience

Sca-1 mouse Rat IgG2b, κ D7 APC 1:200 eBioscience

TER119 mouse Rat IgG2b, κ TER119 PE 1:200 eBioscience

2.1.8.2 Antibodies for in vivo treatments 

Name Company 

Anti-asialo GM1 Wako Chemicals, Neuss 

Enbrel (Etanercept) Wyeth Pharma, Münster 

2.1.9 Organisms and viruses 

2.1.9.1 Bacteria 

Engineering of BACs was performed in E. coli strain SW102 (Warming et al. 2005).  

Listeria monocytogenes strain EGD and Listeria monocytogenes ΔactA were a kind gift of 

Werner Göbel, Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München. 
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2.1.9.2 Cells 

For reconstitution of virus particles murine embryonal fibroblasts (MEFs) of BALB/c mice 

were transfected (Serrano et al. 1997). 

For further virusstock preparation the cell line M2-10B4 (bone marrow stromal cells) from 

(C57BL/6J x C3H/HeJ) F1 mice was used (ATCC® number: CRL-1972, LGC Standards 

GmbH, Wesel). 

The M94-complementing cell line NT/M94-7 was used to propagate ΔM94-MCMV (Mohr et 

al. 2010). 

All cells were grown at 37°C, 7% CO2. 

2.1.9.3 Mice 

Female C57BL/6 mice were purchased from Elevage Janvier (Le Genest Saint Isle, France). 

Cre-transgenic strains Tie2-cre (Constien et al. 2001), Alb-cre (Postic et al. 1999), CD19-cre 

(Rickert et al. 1997) and CD11c-cre (Caton et al. 2007),  as well as IFNGR-/- animals (Huang 

et al. 1993) were bred at the Max von Pettenkofer-Institute, ∆DC mice (Ohnmacht et al. 

2009) at the Institute for Immunology (Ludwig-Maximilians-Universität München), SCID 

and Prf1-/- mice (Kagi et al. 1994) at the Department for Histology and Embryology 

(University of Rijeka). NKp46-DTR  C57BL/6 bone marrow chimeras were generated at 

the Centre d'Immunologie de Marseille-Luminy (Université de la Méditerranée). 

All transgenic and knockout mice were maintained on the C57BL/6 background, except 

IFNGR-/- mice that were bred on 129 background. 
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2.1.9.4 Viruses  

The construction of Δm157-MCMV and ΔM94-MCMV mutants as well as pSM3fr with a 

restored full-length MCK-2/m129 open reading frame (ORF) (3.3) was described elsewhere 

(Bubic et al. 2004; Mohr et al. 2010; Jordan et al. 2011). 

Lymphocytic choriomeningitis virus (LCMV) strain WE and murine herpesvirus 68 

(MHV-68) were obtained from David Voehringer, University of Erlangen, and Heiko Adler, 

Helmholtz Center Munich, respectively (Lehmann-Grube 1971; Flach et al. 2009).  

2.1.10 Computer Software 

Software Company 

BD CellQuest ProTM BD Bioscience, Heidelberg 

BD FACSDivaTM BD Bioscience, Heidelberg 

EndNote X4  Thomson Reuters, New York City, USA 

Flow Jo Tree Star Inc., Ashland, USA 

Microsoft Office  Microsoft, Unterschleißheim 

Prism 5  GraphPad Software, La Jolla, USA 

Vector NTI Suite 8 Invitrogen, Karlsruhe 

2.2 Methods 

2.2.1 Molecular Biology 

2.2.1.1 Basic tools for molecular genetic approaches 

DNA-purifications were performed using the kits from GE Healthcare or Macherey-Nagel 

following the manufacturer’s instructions. The DNA concentration of plasmid vector and 

BAC preparations was determined with a Nanodrop®ND-1000 spectrophotometer. 
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2.2.1.2 Generation of conditional virus mutant MCMV-floxed-m157 and control 

MCMV-recΔm157 

MCMV open reading frames (ORFs) m157 and m156 are partly overlapping and promoter 

elements of m156 are probably located within ORF m157. To preserve the expression of 

m156, 200 bp of the C-terminus of m157 were doubled and two loxP-sites flanking the ORF 

were introduced in direct orientation to allow cre-mediated excision of m157. Cre-

recombination of the MCMV-floxed-m157 virus genome would therefore result in deletion of 

m157, except its C-terminal coding region (Figure 2.2) (Sacher et al. 2008a).  

2.2.1.2.1 Generation of constructs for BAC targeting 

Synthetic oligonucleotides P-5’-Oligo-Hm157 and P-3’-Oligo-Hm157 containing 50 bp 

homology each upstream and downstream of the m157-sequence to be replaced were annealed 

and inserted between the ScaI and BamHI sites of vector pgalK-Kn giving rise to vector pGK-

Hm157. pGK-Hm157 was digested with NotI and EcoRV and two loxP-sites in direct 

Figure 2.2 Scheme of the genetic constructs generated for BAC targeting. 
ORF m157 was flanked with two loxP-sites in direct orientation. The C-terminus of m157 was doubled 
since it probably contains promoter elements of ORF m156. Cre-mediated recombination results in 
deletion of m157 except the C-terminus. 3’-Hom = sequence homology 3’ of m157 for homologous BAC 
recombination. 
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orientation were introduced using the synthetic oligonucleotides P-5’-Oligo-m157-loxP and 

P-3’-Oligo-m157-loxP resulting in the vector pGK-Hm157-loxP-loxP.  

ORF m157 was amplified from BAC pSM3fr using the primers P-5’-m157ampl and 

P-3’-m157ampl containing the restriction sites for NcoI. The 990 bp fragment was inserted 

into the corresponding site of pGK-Hm157-loxP-loxP (pGK-Hm157-loxP-m157-loxP). 

Finally, a 995 bp fragment encompassing 200 bp of the C-terminus of m157 was amplified 

using the primers P-5’-Cterm-m157 and P-3’-Cterm-m157 and cloned into pGK-Hm157-

loxP-m157-loxP via ScaI and EcoRV, resulting in the vector pGK-Hm157-loxP-m157-loxP-

C-term-m157. To generate the already recombined construct for MCMV-recΔm157, pGK-

Hm157-loxP-m157-loxP-C-term-m157 was incubated with cre-recombinase. Bacterial 

colonies after transformation were checked by PCR with primers P-3’-universal, P-5’-not 

recombined (product 460 bp) and P-5’-recombined (product 979 bp) for successful 

cre-recombination (pGK-Hm157-loxP-C-term-m157). 

Vectors pGK-Hm157-loxP-m157-loxP-C-term-m157 and pGK-Hm157-loxP-C-term-m157 

were both digested with PvuII to generate the targeting constructs. 

2.2.1.2.2 BAC targeting 

BAC targeting was performed with a modified method based on homologous BAC 

recombination (Warming et al. 2005).  

In a first step, endogenous ORF m157 had to be replaced by a GalK-kan cassette. Therefore, a 

2197 bp GalK-kan sequence was amplified from pgalK-Kn with primers P-5’-m156/157-

GalK and P-3’-Δm157-GalK using the following touchdown PCR conditions: 
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1. 94°C 5 min. 

2. 94°C 1 min. 

3. 62°C 2 min.   18x, every cycle the temperature in step 3 decreased by 1°C 

4. 68°C 1.5 min. 

5. 95°C 1 min. 

6. 45°C 2 min.   16x 

7. 68°C 1.5 min. 

8. 68°C 10 min. 

9. 4°C  

The PCR-product was purified and digested with DpnI for at least 2 hours at 37°C to remove 

template vector sequences. 

Prior to BAC targeting, safety pipet tips, double destilled water, 2 ml reaction tubes and 

electroporation cuvettes were precooled at 4°C. 500 µl of an overnight culture were used to 

inoculate 25 ml LB-medium containing chloramphenicol with SW102 bacteria harbouring 

BAC pSM3fr. The culture was grown at 32°C to an OD600 0.55-0.6. Then, 10 ml culture was 

transferred into a new flask and incubated at 42°C in a shaking water bath for 15 minutes to 

induce expression of the recombinase. Afterwards, the culture was immediately cooled on ice 

and all following steps were performed at 4°C. 2 ml of bacteria were pelletized at 5,500xg for 

5 minutes, the supernatant was discarded and the step repeated. Next, the bacteria were 

carefully re-suspended in 1 ml ice-cold water by snapping against the tube. 1 ml water was 

added and the bacteria were pelletized again. This washing step was performed 3 times. 

Finally, the bacterial pellet was taken up in 60 µl water and the precooled GalK-kan 

PCR-product was added. The mixture was transferred to an electroporation cuvette and pulsed 

with a 2.5 kV, 200 Ω and 25 µF electric shock. The bacteria were transferred into 1 ml LB-

medium and grown for 1 hour at 32°C. 100 µl and 10 µl of the culture were then plated on 

agar plates containing chloramphenicol and kanamycin. Growing colonies were used to 

inoculate 10 ml LB-medium containing chloramphenicol and kanamycin. The BAC-DNA was 

prepared and successful recombination and BAC-integrity were checked by restriction 
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enzyme digestion with AseI and analysis on a 0.8% agarose gel in TBE buffer. The whole 

procedure gave rise to BAC pSM3fr-Δm157-GalK-kan. 

In a second step, the GalK-kan cassette was replaced by the 1624 bp and 634 bp PvuII 

fragments of pGK-Hm157-loxP-m157-loxP-C-term-m157 and pGK-Hm157-loxP-C-term-

m157, respectively. To this aim, the same protocol as for the introduction of the GalK-kan 

cassette was used. After washing the electrocompetent bacteria, 1.5 µg of the purified 

restriction enzyme digests of the targeting constructs were added, the bacteria pulsed and 

grown in 10 ml LB-medium in a 50 ml flask for 4.5 hours at 32°C. 1 ml culture was pelletized 

at 14,000xg for 15 seconds, the supernatant was carefully removed by pipetting and the pellet 

washed twice in 1 ml M9 Medium. Serial dilutions were plated on M63 minimal dishes and 

incubated at 32°C for 3 to 4 days. Colonies were then streaked on MacConkey agar plates and 

incubated for at least 2 days. White colonies, i.e. GalK-negative clones, were streaked on LB-

agar plates to remove passenger colonies. This step was repeated at least twice. Then, 10 ml 

LB-cultures were inoculated to check for replacement of the GalK-kan cassette with the 

targeting constructs by restriction digestion. Finally, the successful construction of pSM3fr-

Hm157-loxP-m157-loxP-C-term-m157 (= MCMV-floxed-m157) and pSM3fr-Hm157-loxP-

C-term-m157 (= MCMV-recΔm157) was confirmed by sequencing with primers P5’-

m157sequ and P3’-m157sequ. 

2.2.1.2 RNA isolation, reverse transcription and quantitative RT-PCR 

Immediately after removal of the spleen from the animal a small piece was cut and stored in 

RNAlater at 4°C until RNA preparation was performed. Prior to RNA preparation, the piece 

of spleen was removed from RNAlater® and disrupted using a TissueLyser device. RNA was 

extracted from spleens using the RNeasy mini kit according to the manufacturer´s instruction. 

500 ng of total RNA was reverse transcribed using SuperScript III and oligo-dT primers 
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following the manufacturer´s instructions. PCR was performed on a LightCycler. Each 

reaction was carried out using 5 μl of cDNA (1:10 dilution), 15 μl reaction mixtures of 

Quantitect SYBR Green PCR master mix and primers at a concentration of 0.5 μM. PCRs 

were subjected to 10 minutes of 95°C hot-start and Sybr Green incorporation was monitored 

for 45 cycles of 95°C denaturation for 10 seconds, 58°C annealing for 3 seconds, and 72°C 

elongation for 10 seconds. The data was analyzed using the ΔΔCt method and laminin B 

receptor (LBR) as an endogenous reference, and the mock-infected sample as a calibrator. 

2.2.2 Microbiology 

2.2.2.1 Bacteriology 

2.2.2.1.1 Culture of Listeria monocytogenes for in vitro and in vivo infection 

20 ml BHI medium were inoculated with 400 µl overnight culture and bacteria were grown to 

an OD600 1.0. Cells were pelletized at 7,000xg for 10 minutes and washed twice with ice-cold 

DPBS. Finally, the bacteria were re-suspended in DPBS with 20% glycerol, aliquoted and 

frozen at -80°C. To determine the colony forming units (CFU) / ml, a serial dilution was 

prepared and 100 µl of each dilution was streaked in duplicates on BHI-plates. Plates were 

incubated overnight at 37°C. CFU were calculated from plates with more than 100 colonies.  

2.2.2.2 Virology 

2.2.2.2.1 Virus reconstitution from BACs 

Mouse embryo fibroblasts (MEFs) were transfected with pSM3fr-Hm157-loxP-m157-loxP-C-

term-m157 and pSM3fr-Hm157-loxP-C-term-m157 to reconstitute MCMV-floxed-m157 and 

MCMV-recΔm157. MEF cells from a 10 cm dish were split onto six 6 cm dishes one day 

prior to transfection. All safety-tips were cut to avoid shearing of the BAC DNA. 1,500 ng 

BAC DNA were added to 150 µl DMEM (without FCS and Penicillin / Streptomycin) and 
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mixed carefully. 10 µl ice-cold SuperFect® were added and the mixture was incubated for 10 

to 15 minutes at room temperature. Meanwhile, MEF cells were washed with 3 ml DPBS. 

1 ml DMEM++ was added to the transfection mix and distributed on the MEF cells. The cells 

were grown for 2.5 h at 37°C. Afterwards, the transfection medium was replaced by fresh 

DMEM++. 3 days after transfection the cells were split onto 10 cm dishes. Thereafter, the 

culture was split every three days until complete lysis due to virus replication. 

2.2.2.2.2 Preparation of virusstocks 

10 ml supernatant from virus reconstitution were mixed with M2-10B4 cells and plated on a 

15 cm dish. After lysis of the cells, the supernatant was harvested and titrated.  

For virusstock production, 108 M2-10B4 cells were infected with an MOI 0.1. After 4 days 

remaining cells and supernatant were harvested on ice and centrifuged for 15 minutes at 

5,500xg, 4°C. The supernatant was stored on ice and an aliquot was taken to test for 

contamination with mycoplasma by PCR. The pellet was re-suspended in 2 ml of the stored 

supernatant and three freeze-thaw cycles were performed. Afterwards, this fraction was 

centrifuged at 12,000 rpm for 10 minutes. Both virus particle containing supernatants were 

combined and centrifuged for 3.5 to 4 hours at 20,000xg and 4°C. The supernatant was 

discarded and the pellet re-suspended in 2 ml virusstock-buffer using a douncer. After further 

virus purification over a 15%-Sucrose cushion at 20,000 rpm for 1:20 hours, the pellet was 

covered with 400 µl virusstock-buffer and stored over night at 4°C. The next day, the pellet 

was re-suspended again using a douncer and remaining cell debris was removed by repeated 

centrifugation at 3,500 rpm for 2 minutes. The virus suspension was aliquoted and stored at 

-80°C. 
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2.2.2.2.3 Virus quantification by standard plaque titration assay 

To determine the virus titer, MEF cells were plated on a 48-well dish one day prior to the 

assay. The virus samples were diluted serially (10-1to 10-6) in DMEM++ on 48-well plates in 

quadruplicades and 200 µl of each dilution was transferred onto the MEFs. After incubation 

for one hour at 37°C the medium were removed and the MEFs were covered with 500 µl 

methylcellulose medium. Plaques were counted 4 days later and viral titer was calculated: 

dilutionvirusofvolume
factordilution  x plaques counted)(PFUml titer Virus 1 =−  (Dulbecco and Vogt 1953). 

2.2.2.2.4 UV inactivation of viruses 

Virus was inactivated by exposure to 1.5 kJ/cm2 UV-light at a distance of 5 cm in a 

UV-cross-linker at 4°C. Inactivation was controlled by titration on MEFs. 

2.2.3 Immunology 

2.2.3.1 Cellular Immunology 

2.2.3.1.1 Generation of bone marrow derived dendritic cells (BMDC) 

Bone marrow-derived dendritic cells (BMDC) were prepared on the basis of a protocol by 

Lutz and colleagues (Lutz et al. 1999). Mice were sacrificed by cervical dislocation, femora 

and tibiae were removed and cleaned of muscle tissue, disinfected for 3 minutes in 70% 

ethanol and then rinsed with DPBS. The bones were cut with scissors at the epiphyses and the 

marrow was flushed with DPBS using a sterile 27-gauge needle. After passing the marrow 

through a cell strainer, cells were pelletized at 1,300 rpm for 7 minutes and erythrocytes lysed 

with sterile Red Blood Cell Lysing Buffer for one minute at room temperature. The cells were 

washed once and plated at a density of 5x105 cells / ml in 10 ml RPMI++++ supported with 

200 U / ml GM-CSF on 10 cm diameter Petri dishes. At day 3 of culture another 10 ml 
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medium with 200 U / ml GM-CSF were added. After six days 10 ml of cell culture were 

removed, cells pelletized at 1,300 rpm for 7 minutes, re-suspended in 10 ml fresh medium 

containing 200 U / ml GM-CSF and retransferred to the remaining culture. At day 7 cells 

were usually used for further experiments. Successful generation of BMDC was controlled by 

staining for CD11c and MHC class II expression and subsequent flow cytometry 

(Fluorescence Activated Cell Sorting, FACS). 

2.2.3.1.2 In vitro infection of BMDC with Listeria monocytogenes 

BMDC were infected with Listeria monocytogenes following a protocol by Neuenhahn and 

colleagues (Neuenhahn et al. 2006). BMDC were harvested and washed extensively by three 

times repeated centrifugation and re-suspension in antibiotic-free RPMI++++. Subsequently, 

the cells were incubated for another 4 to 5 hours in antibiotic-free RPMI++++ before they 

were infected for 60 minutes with Listeria monocytogenes ΔactA at an MOI 10. Afterwards, 

infected BMDC were washed and incubated for another hour in medium containing 

Gentamycin (50 mg / ml) in order to kill remaining extracellular bacteria. Then, cells were 

washed twice in DPBS and 2x106 infected BMDC were injected per mouse. Uninfected 

control BMDC were treated as BMDCs to be infected, but DPBS was added instead of 

bacteria. 

2.2.3.1.3 Analysis of cell surface antigens by flow cytometry 

Cell populations in the murine spleen were identified on the basis of surface marker 

expression by FACS. Cells were kept at 4°C unless indicated otherwise. Single cell solutions 

were prepared by passing the spleen through a 100 µm cell strainer and washing the strainer 

with 5 ml DPBS. For surface staining, 75 µl cell suspension were transferred to a 96-well V-

bottom plate and pelletized. Red blood cells were removed by re-suspending each cell pellet 
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in 100 µl red blood cell lysis buffer followed by incubation for 3 minutes at room 

temperature. Remaining cells were collected at 1,300xg for 2 minutes in FACS-buffer. Fcγ-

receptors were blocked with anti-FcRII/III monoclonal antibodies for at least 10 minutes to 

avoid unspecific binding of the staining antibodies. Afterwards, cells were washed and re-

suspended in 100 µl FACS-buffer containing the specific fluorochrome-conjugated antibodies 

(see 2.1.8.1) at the respective dilution and incubated for 20 minutes in the dark. Finally, cells 

were washed twice and re-suspended in 200 µl FACS-Buffer. FACS acquisition was 

performed on Becton Dickinson flow cytometers FACSCaliburTM and CantoIITM using the 

CellQuest ProTM and the FACSDivaTM software, respectively, for immediate detection and 

compensation. The obtained FACS-data were analysed using the FlowJo software. 

2.2.4 In vivo methods 

2.2.4.1 Animal housing 

Mice were purchased at the age of 7 weeks. They were housed at the animal facility of the 

Max von Pettenkofer-Institute (Ludwig-Maximilians-Universität München) for at least one 

week before the experiments.  

Wild-type, cre-transgenic and knockout animals were kept under specified-pathogen-free 

conditions in air-conditioned rooms (45-50% air humidity, 20-22°C) with a 12 hours 

day-night rhythm. They were housed in individually ventilated cages (IVC) with autoclaved 

litter and free access to extruded phyto-oestrogen-low germfree feed and autoclaved water. 

Microbiologic examinations according to the Federation of Laboratory Animal Science 

Associations (FELASA)-guidelines ensured hygienic standards. 

Experiments were performed with sex- and age-matched groups. Animal experiments were 

approved by the State of Bavaria or by the Ethics Committee of the respective universities.  
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2.2.4.2 Infection of mice 

If not indicated otherwise, infections with MCMV and MCMV mutants were performed with 

105 PFU, LCMV with 200 PFU, MHV-68 with 5x104 PFU and Listeria monocytogenes strain 

EGD as well as Listeria monocytogenes ΔactA with 5x103 CFU injected into the tail vein. 

2.2.4.3 CpG-ODN treatment of mice 

10 nmol / mouse of CpG-ODN 1826 were dissolved in a volume of 25 µl PBS and injected 

subcutaneously after anesthesia with isofluran. 

2.2.4.4 In vivo application of antibodies, toxins and small molecules  

NK cells were depleted in C57BL/6 mice by i.p. application of 25 µg anti-asialo GM1 

antibody 24 hours before and 3 days after infection. In NKp46-DTR bone marrow chimeras 

NK cells were depleted by i.p. application of 1 µg diphtheria toxin (DT) one day before and 3 

days after infection.  

TNF-α was depleted by i.p application of 300 µg Enbrel (Etanercept) 2 hours before and 3 

days after infection as described (Plater-Zyberk et al. 2009). 

Egress of stem cells from the spleen was examined by i.p. application of 1 µg Pertussis toxin 

(PTX) at day one p.i. or 20 µg FTY720 at days 1, 2 and 3 p.i. (Matloubian et al. 2004; 

Massberg et al. 2007). 

1 µg stem cell factor (SCF) was applied two times a day i.p. at days 1, 2 and 3.  
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2.2.4.5 Adoptive transfer of cells 

For adoptive transfer of NK cells, spleens from mice infected for 48 hours were harvested and 

homogenized. Splenocytes were enriched in NK cells up to 80% using an NK cell isolation kit 

according to the manufacturer’s instructions. 106 NK cells were transferred at 48 hours p.i.  

For adoptive transfer of Listeria monocytogenes infected BMDC 2x106 cells were used. 

2.2.4.6 Organ harvest 

Mice were euthanized in a vessel containing a saturated CO2 atmosphere. Afterwards, spleens 

were removed and stored in 1 ml ice-cold PBS for following preparation steps. For 

quantitative RT-PCR analysis, a small part of the spleen was cut immediately after removal of 

the spleen and stored in RNAlater® at 4°C until RNA preparation.  

2.2.5 Statistical analysis 

Statistical analyses were done using Prism 5. For all experiments, the mean values and the 

standard deviations were calculated. To test for significance either a two-tailed Student’s t-test 

or ANOVA with Bonferroni’s test were used according to the data set. 
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3. Results 

3.1 The cytotoxic function of NK cells is required for extramedullary hematopoiesis 

3.1.1 MCMV induces extramedullary hematopoiesis in the spleen - experimental 

conditions 

Already in 1981 Lucia and colleagues described extramedullary hematopoiesis in the spleen 

of mice upon MCMV infection (Lucia and Booss 1981). The animals used in their study, 

however, were hybrids of the strains C3H/HeJ and DBA/2. To circumvent the breeding of F1 

hybrids for this study, it was tested whether extramedullary hematopoiesis occurs in the 

commonly used C57BL/6 strain as well. Furthermore, studying extramedullary hematopoiesis 

Figure 3.1.1 MCMV induces extramedullary hematopoiesis in C57BL/6 mice. 
(A) TER119 expression on splenocytes at day 7 post infection (p.i.) with 106 PFU MCMV injected 
into the footpad, intraperitoneally (i.p.) and intravenously (i.v.). Dot plot of the animal 
representing the median of n=5 animals is shown. (B) Percentage of TER119+ splenocytes in 
mock, footpad, i.p. and i.v. infected animals at day 7 p.i. Each dot represents an individual animal. 
Horizontal bar = mean value. (C) Percentage of TER119+ splenocytes in mice infected with 
indicated doses of MCMV i.v. at day 7 p.i. (D) Kinetics of extramedullary hematopoiesis in 
C57BL/6 mice infected with MCMV i.v. Asterisks indicate significant values, * = p < 0.05, ** = p 
< 0.03, *** = p < 0.001, ns = not significant (one-way ANOVA with Bonferroni’s test). 
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in C57BL/6 mice would allow the use of genetic tools generated on this background.  

The appearance of TER119+ cells in the spleen is a characteristic hallmark of extramedullary 

hematopoiesis in the mouse model (MacNamara et al. 2009; Jackson et al. 2010). TER119 is 

a marker commonly found on the surface of late stages of the erythroid lineage from early 

proerythroblasts to mature erythrocytes (Kina et al. 2000). The extent of extramedullary 

hematopoiesis in the spleen could therefore be measured by quantification of TER119+ 

splenocytes after MCMV infection using flow cytometry.  

C57BL/6 mice were probed for extramedullary hematopoiesis upon MCMV infection using 

different routes of virus application. MCMV was applied into the footpad, intraperitoneally 

and intravenously. Intraperitoneal and intravenous infection expanded the TER119+ 

compartment in the spleen while the infection via the footpad did not lead to a significant 

increase in the proportion of TER119+ cells (Figure 3.1.1A, B). The highest increase in the 

percentage of TER119+ cells was observed after intravenous infection. Next, intravenous 

infections with 1 to 106 PFU MCMV were performed. At low infection doses (1 to 104 PFU) 

no significant increase in TER119+ cells could be detected at day 7 post infection (p.i.) 

(Figure 3.1.1C). At high doses (105 to 106 PFU), however, the proportion of TER119+ cells in 

the spleen increased remarkably. Then, the proportion of TER119+ cells in the spleen was 

followed over time after low dose (103 PFU) or high dose (105 PFU) infection with MCMV. 

After low dose infection, no significant increase in TER119+ cells in the spleen could be 

detected (Figure 3.1.1D). After high dose infection a rapid induction of TER119+ cells 

between day 4 and day 5 and a peak around day 6 was seen which contracted after 10 days. In 

summary, MCMV infection induced extramedullary hematopoiesis in C57BL/6 mice in a 

route-, dose- and time-dependent manner. In subsequent experiments intravenous (i.v.) 

infection with 105 PFU MCMV was carried out and the analysis of splenocytes was done at 

day 6 p.i. unless indicated otherwise. 
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3.1.2 The virus’ ability to replicate in the salivary gland is not associated with enhanced 

extramedullary hematopoiesis 

Virus derived from BAC pSM3fr shows a selective growth defect the in salivary gland due to 

a frameshift mutation within ORF MCK-2/m129 that results in a truncated MCK-2 protein 

(Jordan et al. 2011). MCK-2 is a viral CC(β) chemokine homologue which is thought to be 

involved in the recruitment of leukocyte subsets that serve as vehicles for viral dissemination 

(Fleming et al. 1999; MacDonald et al. 1999; Saederup et al. 2001).  

To investigate whether this organ-specific growth defect affects extramedullary 

hematopoiesis, a BAC-derived MCMV mutant with a restored MCK-2/m129 ORF was used 

to infect mice (BAC 3.3) (Figure 3.1.2). Both viruses derived from BAC pSM3fr and BAC 

3.3 induced extramedullary hematopoiesis to the same extent. Therefore, restoration of virus 

growth in the salivary gland does not enhance extramedullary hematopoiesis. Since most virus 

mutants available were generated on the pSM3fr background, this BAC-derived virus was 

used in further experiments. The use of pSM3fr as ‘wild-type’ is further justified by the fact 

that the MCMV strain Smith preparation commercially available compromises a mixture of 

Figure 3.1.2 Virus growth in the salivary gland does not 
enhance extramedullary hematopoiesis. 

Percentage of TER119+ cells in the spleen after infection with 
MCMV derived from BAC pSM3fr (pSM3fr) with a truncated 
and BAC 3.3 (3.3) with a restored MCK-2 ORF, respectively. 
Each dot represents an individual animal. Horizontal bar = mean 
value, ns = not significant (t-test). 
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both virus populations with an full-length and shortened MCK-2/m129 ORF (Jordan et al. 

2011). 

3.1.3 NK cells are essential for extramedullary hematopoiesis upon MCMV infection 

During the adaptive immune response against MCMV, T cells proliferate with a peak around 

day 6 p.i. (Mohr et al. 2010). Remarkably, the kinetics of extramedullary hematopoiesis after 

MCMV infection parallels the expansion and contraction of T cells (Figure 3.1.1D). In 

addition, cells of the adaptive immune system produce many cytokines with hematopoietic 

activity. For example, IL-10 produced by B cells has been shown to at least partially account 

Figure 3.1.3 NK cells are required for extramedullary hematopoiesis. 
Percentage of TER119+ splenocytes after infection with MCMV in  
(A) SCID mice, (B) C57BL/6 mice depleted of NK cells (α-NK),  
(C) C57BL/6 mice infected with MCMV and Δm157-MCMV (Δm157), 
(D) NKp46-DTR bone marrow chimeras after depletion of NK cells (DT) 
and transfer of splenocytes enriched in NK cells (NK). Each dot 
represents an individual animal. Horizontal bar = mean value. Asterisks 
indicate significant values, * = p < 0.05, ** = p < 0.03, *** = p < 0.001, 
ns = not significant (t-test (A, C, D), one-way ANOVA with Bonferroni’s 
test (B)). 
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for the splenomegaly observed after injection of immunostimulatory CpG-

oligodeoxynucleotides (CpG-ODN) (Miyazaki et al. 2009). Therefore, it was tested whether T 

or B cells are required for the induction of extramedullary hematopoiesis. Upon infection of 

severe combined immunodeficiency (SCID) mice that lack T and B cells, a robust increase of 

TER119+ splenocytes was observed (Figure 3.1.3A) indicating that cells of the adaptive 

immune response are dispensable for the induction of extramedullary hematopoiesis 

following MCMV infection.  

In the acute phase of an MCMV infection, innate immunity, in particular the NK cell 

response, is important for the containment of virus replication (Vivier et al. 2011). To 

examine whether NK cells contribute to the regulation of extramedullary hematopoiesis, NK 

cells were depleted using anti-asialo GM1-antibody. Surprisingly, depletion of NK cells 

completely abolished the expansion of TER119+ cells after MCMV infection (Figure 3.1.3B).  

In C57BL/6 mice, the Ly49H+ subset of NK cells is able to directly recognize MCMV 

infected cells due to expression of the viral m157 protein on the cell surface (Arase et al. 

2002; Smith et al. 2002; Bubic et al. 2004). To investigate whether NK cell activation via 

Ly49H is important for the development of extramedullary hematopoiesis, an m157-deletion 

virus (Δm157-MCMV) was used (Bubic et al. 2004). Indeed, the proportion of TER119+ cells 

was significantly reduced after infection with Δm157-MCMV compared to wild-type MCMV 

(Figure 3.1.3C). These data demonstrated that recognition of infected cells and activation of 

NK cells via m157-Ly49H-interaction was essential to establish extramedullary 

hematopoiesis.  

To formally prove that NK cells were required for the establishment of EMH, we performed 

adoptive transfer of splenocytes enriched in NK cells into NK cell-depleted mice. In order to 

selectively deplete host NK cells but leave the transferred NK cells unaffected, we generated 
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bone marrow chimeras using a graft from NKp46-DTR mice (Walzer et al. 2007). After bone 

marrow reconstitution, NK cells in these mice express the human diphtheria toxin receptor 

(DTR) and can be selectively depleted by injection of diphtheria toxin (DT). Of note, higher 

percentages of TER119+ cells were already present in mock-infected chimeras irrespective of  

DT-treatment, most likely due to a higher background level of extramedullary hematopoiesis 

during the reconstitution phase of the hematopoietic system following bone marrow transfer 

(Figure 3.1.3D) (Hodek et al. 2008). Nevertheless, NK cell depletion by DT-injection 

decreased the number of MCMV-induced TER119+ cells in these mice. Splenocytes enriched 

in NK cells from MCMV infected wild-type mice were then transferred into infected and 

NKp46-DTR depleted chimeric mice. Consequently, this transfer restored TER119+ cell 

expansion.  

In summary, these data revealed an unsuspected, crucial role of NK cells in the establishment 

of extramedullary hematopoiesis after MCMV infection. 

3.1.4 NK cell-mediated cytotoxicity is essential for extramedullary hematopoiesis 

Next, the mechanism by which activated NK cells expand TER119+ cells was examined. NK 

cells are important producers of pro-inflammatory cytokines, for example IFN-γ and TNF-α, 

which might induce extramedullary hematopoiesis. In fact, it was reported that IFN-γ can 

activate quiescent hematopoietic stem cells during infection (Baldridge et al. 2010). TER119+ 

cells, however, also expanded after infection of IFNGR-/- mice indicating that IFN-γ-

signalling is dispensable for induction of extramedullary hematopoiesis (Figure 3.1.4A). 

TNF-α has also been shown to act on hematopoietic stem cells after bone marrow 

transplantation (Pearl-Yafe et al. 2010). Yet, depletion of TNF-α had no effect on MCMV-

induced extramedullary hematopoiesis (Figure 3.1.4B).  
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Besides cytokine production, perforin-mediated cytotoxicity is the most prominent function of 

NK cells. Therefore, perforin-knockout mice (Prf1-/-) lacking NK cell-mediated cytotoxicity 

were tested (Kagi et al. 1994). Remarkably, expansion of TER119+ cells was completely 

abrogated in Prf1-/- mice after MCMV infection (Figure 3.1.4C). Hence, it is the cytotoxic 

function of NK cells rather than cytokine production which is required for the establishment 

of extramedullary hematopoiesis. This demonstrated that NK cell-mediated killing of MCMV 

infected cells and thus control of MCMV infected targets was required for the establishment 

of EMH. 

Figure 3.1.4 NK cell-mediated containment of virus spread is 
required for MCMV-induced extramedullary hematopoiesis. 

Percentage of TER119+ splenocytes after infection with MCMV in  
(A) IFNGR-/- mice, (B) C57BL/6 mice after depletion of TNF-α 
(α-TNFα), (C) Prf1-/- mice, (D) C57BL/6 mice infected with MCMV, 
ΔM94-MCMV (ΔM94) or UV-irradiated ΔM94-MCMV (UVΔM94) 
after depletion of NK cells (α-NK) and Prf1-/- mice infected with 
ΔM94-MCMV. Each dot represents an individual animal. Horizontal 
bar = mean value. Asterisks indicate significant values, * = p < 0.05, 
*** = p < 0.001, ns = not significant (t-test (A,C), one-way ANOVA 
with Bonferroni’s test (B, D)). (C) Data were pooled from two 
experiments.  
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NK cell-mediated cytotoxicity results in the elimination of infected cells and thereby control 

of virus replication and spread. To dissect whether virus replication in first target cells or 

spread to secondary target cells affects the development of extramedullary hematopoiesis, 

mice were infected with ΔM94-MCMV. This virus can fully replicate in cells but virus 

morphogenesis is interrupted at the stage of secondary envelopment which blocks virion 

export from cells and spread (Mohr et al. 2010; Maninger et al. 2011). 

Interestingly, infection with ΔM94-MCMV resulted in expansion of TER119+ cells to a 

similar extent as seen for the wild-type virus (Figure 3.1.4D). Yet, in contrast to wild-type 

virus infection, NK cell-depletion following infection with ΔM94-MCMV did not abrogate 

the expansion of TER119+ cells. Also, in Prf1-/- mice infected with ΔM94-MCMV the 

expansion of TER119+ cells was not reduced. Hence, NK cell-mediated cytotoxicity is 

required to restrict MCMV spread in order to allow for extramedullary hematopoiesis. 

3.1.5 CpG-ODN induced extramedullary hematopoiesis is suppressed by virus spread 

The previous data indicated that virus spread in absence of NK cell control might suppress 

extramedullary hematopoiesis. To formally proof this hypothesis, mice were treated with 

synthetic CpG-motif containing oligodesoxynucleotide (CpG-ODN). CpG-ODN is a TLR9 

agonist which activates cells of the adaptive and the innate immune system, and also strongly 

induces inflammatory extramedullary hematopoiesis (Sparwasser et al. 1999). CpG-ODN pre-

treated mice were infected with wild-type MCMV, UV-irradiated wild-type MCMV, spread-

deficient ΔM94-MCMV or Δm157-MCMV. Interestingly, infection with Δm157-MCMV 

completely abrogated CpG-ODN-induced expansion of TER119+ cells (Figure 3.1.5A), 

demonstrating that MCMV escaping NK cell control suppresses inflammation-induced 

extramedullary hematopoiesis. It is important to note that infection with wild-type MCMV 

also led to a lesser, but nevertheless significant suppression of CpG-ODN-induced expansion 
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of TER119+ cells. After infection with non-replicating UV-irradiated wild-type MCMV or 

spread-deficient ΔM94-MCMV neither additional expansion nor contraction of TER119+ 

cells could be observed, providing further evidence that suppression of inflammatory 

extramedullary hematopoiesis depends on viral spread.  

In addition, it was tested whether virus with a restored MCK-2/m129 ORF and therefore 

enhanced virus dissemination to the salivary gland has an increased suppression capacity 

(Figure 3.1.5B). But also in this assay no MCK-2 related differences could be observed.  

These data indicated two consequences of an acute MCMV infection with regard to 

extramedullary hematopoiesis. On the one hand, the inflammation associated with acute 

MCMV infection induced extramedullary hematopoiesis in a similar fashion as treatment with 

TLR-agonists like CpG-ODN. On the other hand, the virus was able to suppress this 

inflammation-induced extramedullary hematopoiesis. This suppressive effect was dependent 

on virus spread and was controlled by efficient NK cell killing. 

Figure 3.1.5 MCMV spread suppresses CpG-ODN-induced extramedullary 
hematopoiesis. 

(A) Percentage of TER119+ splenocytes in mice pre-treated with CpG-ODN and 
infected with MCMV, UV-irradiated MCMV (UV-MCMV), ΔM94-MCMV (ΔM94) or 
Δm157-MCMV (Δm157). Data were pooled from two experiments. (B) Percentage of 
TER119+ splenocytes in mice treated with CpG-ODN and infected with virus derived 
from BAC pSM3fr (pSM3fr) used as wild-type virus in this study and virus derived 
from BAC 3.3 with a restored MCK-2/m129 ORF (3.3). (C) Percentage of TER119+ 
splenocytes in mice infected with105 PFU MCMV and 105 PFU MCMV + 105 PFU 
Δm157-MCMV. Each dot represents an individual animal. Horizontal bar = mean 
value. Asterisks indicate significant values, *** = p < 0.001, ns = not significant (one-
way ANOVA with Bonferroni’s test (A), t-test (B, C)).  
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To formally clarify the interplay between induction and suppression of extramedullary 

hematopoiesis by MCMV double infections with MCMV and Δm157-MCMV were 

performed (Figure 3.1.5C). As seen for CpG-ODN-induced extramedullary hematopoiesis, 

Δm157-MCMV efficiently suppressed wild-type MCMV-induced expansion of TER119+ 

cells demonstrating that suppression of extramedullary hematopoiesis is the dominant 

phenotype. Hence, MCMV suppresses inflammatory extramedullary hematopoiesis and NK 

cells limit this property.  
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3.2 Dendritic cells suppress extramedullary hematopoiesis 

3.2.1 Identification of DCs as the suppressive cell type in extramedullary hematopoiesis 

Figure 3.2.1 DCs are dominant suppressors of extramedullary hematopoiesis. 
(A) Schematic representation of the m156, m157 and m158 gene locus (arrows) and principle of 
conditional m157-gene deletion by cre-recombination from virus MCMV-floxed-m157 (flox) 
resulting in MCMV-recΔm157 (rec). The C-terminus of m157 was doubled and two loxP-sites were 
inserted (◄). Cre-mediated recombination resulted in deletion of the m157-sequence between both 
loxP-sites while the m156 locus is maintained. (B) Successful generation of the BACs pSM3fr-
Hm157-loxP-m157-loxP-C-term-m157 (= MCMV-floxed-m157 [A]) and pSM3fr-Hm157-loxP-C-
term-m157 (= MCMV-recΔm157 [B]) was verified by restriction enzyme digestion. Arrows mark 
expected losses and gains of fragments in the EcoRV restriction pattern. (C) Percentage of TER119+ 
splenocytes after infection with MCMV-floxed-m157 (flox) and MCMV-recΔm157 (rec) in 
C57BL/6, Tie2-cre (Tie2), CD11c-cre (CD11c), albumin-cre (Alb) and CD19-cre (CD19) mice. (D) 
Percentage of TER119+ splenocytes after infection with MCMV in C57BL/6 and ΔDC mice depleted 
of NK cells (α-NK). Each dot represents an individual animal. Horizontal bar = mean value. 
Asterisks indicate significant values, ** = p < 0.03, *** = p < 0.001, ns = not significant (one-way 
ANOVA with Bonferroni’s test). 
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In order to identify the cell type which suppresses inflammation-induced extramedullary 

hematopoiesis upon MCMV infection, a conditional virus mutant was created which escapes 

NK cell control after replication in a certain cell type. To this end, we flanked the m157 gene 

in the viral genome with loxP-sites (MCMV-floxed-m157). Accordingly, if this virus infects a 

cell that expresses cre-recombinase the m157 gene will be deleted from the genome (Figure 

3.2.1A). Thus, infection of cre-transgenic mice with MCMV-floxed-m157 virus should result 

in a cell type-specific deletion of m157 and subsequent uncontrolled replication and spread, 

since the recombined genome is stably maintained in the virus progeny (Sacher et al. 2008a; 

Sacher et al. 2008b). Also, a control virus with an already inactivated m157 locus (MCMV-

recΔm157) was generated (Figure 3.2.1B). Both viruses were tested in C57BL/6 mice. As 

expected, infection with MCMV-floxed-m157 induced the NK cell response and TER119+ 

cells expanded, whereas MCMV-recΔm157 did not activate the Ly49H+ NK cell subset 

resulting in suppression of extramedullary hematopoiesis (Figure 3.2.1C). Then, mice were 

infected that selectively expressed cre-recombinase in either hepatocytes (Alb-cre), B cells 

(CD19-cre), endothelial cells (Tie2-cre) or DCs (CD11c-cre). In both Alb-cre and CD19-cre 

mice cre-mediated deletion of m157 did not result in the suppression of TER119+ cells. B 

cells are not infected by MCMV and thus CD19-cre mice served as negative controls. 

Hepatocytes, however, are important targets for MCMV and produce the majority (55%) of 

the individual’s whole body virus load during the first three days of infection (Sacher et al. 

2008b). Nevertheless, potent virus replication within liver left the expansion of TER119+ cells 

in the spleen unaffected. Our group has recently reported that hepatocyte-derived virus is not 

able to disseminate from liver to other organs even under conditions of severe 

immunosuppression, e.g. NK cell depletion (Sacher et al. 2008b). Obviously, uncontrolled 

virus replication of MCMV only in liver is not sufficient to suppress extramedullary 

hematopoiesis in spleen.  
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In contrast, infection of Tie2-cre and CD11c-cre mice resulted in reduced expansion of 

TER119+ cells. Tie2+ endothelial cells are efficiently infected and represent the dominant and 

ubiquitous cell type infected first by MCMV (Benedict et al. 2006; Sacher et al. 2008b; Hsu 

et al. 2009). Thus, it is likely that endothelial cells are only indirectly related to the 

suppression of extramedullary hematopoiesis because endothelial cell-derived virus progeny 

spreads and infects another cell type that suppresses extramedullary hematopoiesis.  

DCs are secondary targets during MCMV infection (Hsu et al. 2009). Regarding the data 

obtained in CD11c-cre mice, the most plausible cells responsible for suppression of 

extramedullary hematopoiesis were CD11c+ DCs. Therefore, ΔDC mice which are devoid of 

DCs by constitutive expression of DT in CD11c+ cells (Ohnmacht et al. 2009) were infected 

with wild-type MCMV. In ΔDC mice expansion of TER119+ cells was not different from 

wild-type mice (Figure 3.2.1D). In contrast to what is observed in C57BL/6 mice, after 

depletion of NK cells in ΔDC mice TER119+ cells still expanded. These data implicate DCs 

in the suppression of extramedullary hematopoiesis during MCMV-induced inflammation, 

since suppression of extramedullary hematopoiesis upon uncontrolled virus spread only 

occurred in presence of DCs.  
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3.2.2 Viral and bacterial DC-tropic pathogens induce suppression of extramedullary 

hematopoiesis  

Suppression of extramedullary hematopoiesis by MCMV could be either a hallmark of 

MCMV pathogenesis or may characterise those pathogens in general which infect the DC 

compartment. To address this question, mice were infected with other DC-tropic pathogens. 

First, lymphocytic choriomeningitis virus (LCMV), a DC-tropic arenavirus with an RNA-

genome, was tested. Interestingly, similar to the DNA-virus MCMV, LCMV infection 

actively suppressed CpG-ODN-induced extramedullary hematopoiesis (Figure 3.2.2A).  

Next, infection with the intracellular bacteria Listeria monocytogenes was tested. Also 

Listeria monocytogenes efficiently suppressed the CpG-ODN-induced expansion of TER119+ 

cells (Figure 3.2.2B). Notably, the ability of Listeria monocytogenes to move within the 

cytosol of infected cells and to spread cell-to-cell depends on interaction of the bacterial actA 

protein with the host’s actin microfilaments (Domann et al. 1992). This opens the opportunity 

to study the role of pathogen spread, similar to the situation in MCMV. Remarkably, just as 

the spread-deficient mutant ΔM94-MCMV, the in vivo spread-deficient actA null mutant of 

Listeria monocytogenes lost the ability to suppress the expansion of TER119+ cells, too. To 

prove formally that infection of DCs is sufficient for suppression of extramedullary 

hematopoiesis one could take advantage of the ability of the spread-deficient mutant to 

efficiently infect DCs in vitro. Accordingly, ΔactA Listeria monocytogenes infected DCs 

were transferred into CpG-ODN-stimulated mice. While transfer of uninfected DCs did not 

reduce the proportion of TER119+ cells, there was a complete suppression of TER119+ cells 

upon transfer of DCs infected with ΔactA Listeria monocytogenes (Figure 3.2.2C, D).  

β–herpesviruses like MCMV are able to infect many different cell types including DCs, while 

the closely related γ-herpesviruses preferentially infect lymphocytes and epithelial cells  
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(Barton et al. 2011). MHV-68 is the mouse model for γ-herpesvirus infection. As expected 

and in contrast to infection with the more DC-tropic pathogens, infection with MHV-68 did 

not significantly suppress CpG-ODN-induced expansion of TER119+ cells (Figure 3.2.2E).  

Figure 3.2.2 DC-tropic pathogens suppress extramedullary 
hematopoiesis. 

Percentage of TER119+ splenocytes in mice stimulated with CpG-
ODN and infected with (A) LCMV, (B) Listeria monocytogenes 
(L.m.wt) and actA-deficient Listeria monocytogenes (L.m.ΔactA).  
(C) and (D) TER119+ splenocytes after transfer of DCs not infected 
(DC) or infected with Listeria monocytogenes-ΔactA (DC ΔactA) into 
CpG-ODN-stimulated mice. (C) Dot plot of the animal representing 
the median of n=5 animals is shown, (D) percentage of TER119+ 
splenocytes. (E) Percentage of TER119+ splenocytes in mice 
stimulated with CpG-ODN and infected with MHV-68 (MHV-68).  
Each dot represents an individual animal. Horizontal bar = mean 
value. Asterisks indicate significant values, ** = p < 0.03, *** = p < 
0.001, ns = not significant (t-test (A, E), one-way ANOVA with 
Bonferroni’s test (B, D)).  
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Taken together, these data demonstrated that - with respect to the examples provided - only 

infection of DCs by DC-tropic pathogens suppresses inflammation-induced extramedullary 

hematopoiesis.  

3.2.3 Inflammation-induced expansion of stem cells in the spleen is constricted after 

DC-infection 

Figure 3.2.3 Constricted stem cell numbers in the spleen upon infection of DCs. 
lineage-Sca-1+c-kit+ (LSK) cells in mice infected with MCMV or Δm157-MCMV (Δm157) at the 
indicated time points  in the spleen (A) Dot plot of the animal representing the median of n=5 animals 
is shown, (B) percentage of LSK cells. Asterisks indicate significant values, * = p < 0.05, *** = p < 
0.001 (one-way ANOVA with Bonferroni’s test). (C) Expansion of LSK cells in the spleen of mice 
stimulated with CpG-ODN and infected with Δm157-MCMV (Δm157) or after transfer of DCs (DC) 
and Listeria monocytogenes ΔactA infected DCs (DC ΔactA). Dot plot of the animal representing the 
median of n=5 animals is shown. 
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Finally, the mechanism of DC-mediated suppression of extramedullary hematopoiesis was 

investigated. Since all hematopoietic lineages descend from lineage-Sca-1+c-kit+ (LSK) stem 

cells, LSK cells in the spleen following infection with MCMV and Δm157-MCMV were 

examined (Figure 3.2.3A, B). The proportion of LSK cells was increased after MCMV 

infection with a peak at day 4 p.i. followed by a rapid decrease. Interestingly, after infection 

with Δm157-MCMV no increase of LSK cells in the spleen could be observed. Decreased 

LSK cell numbers in the spleen were also seen after previous induction of extramedullary 

hematopoiesis with CpG-ODN and subsequent infection with Δm157-MCMV or transfer of 

Listeria monocytogenes ΔactA infected DCs (Figure 3.2.3C), i.e in the situation of suppressed 

extramedullary hematopoiesis.  

3.2.4 Constriction of stem cells in the spleen is not due to diminished recruitment or 

enhanced egress 

The spleen, as other peripheral organs, satisfies an increased demand of hematopoietic stem 

cells either by local expansion of organ-resident stem cells or by recruiting bone marrow-

derived stem cells from the blood (Massberg et al. 2007; Schulz et al. 2009; Morita et al. 

2011). Induction of inflammation using CpG-ODN increased the number of LSK cells in the 

blood (Figure 3.2.4A). The numbers of circulating stem cells, however, were also increased 

after CpG-ODN stimulation and subsequent Δm157-MCMV infection. Therefore, lower stem 

cell numbers in the spleen in the situation of suppressed extramedullary hematopoiesis could 

not be linked to diminished supply by the bone marrow. Nevertheless, spleen intrinsic 

mechanisms regulating the recruitment of stem cells from the blood might account for the 

difference in stem cell numbers. The chemokine CXCL12 (SDF-1) is the major 

chemoattractant for hematopoietic stem cells and recruits stem cells to the spleen via binding 

to CXCR4 (Zhao et al. 2010; Magnon et al. 2011). The cell adhesion molecule VCAM-1 can  
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also recruit stem cells to the spleen (Papayannopoulou et al. 1995). Using quantitative 

RT-PCR the expression of Cxcl12 and Vcam1 mRNA at day 2 p.i. was analysed and groups of 

mice with extramedullary hematopoiesis (MCMV, CpG-ODN) and suppressed 

extramedullary hematopoiesis (Δm157-MCMV, CpG-ODN + Δm157-MCMV) were 

compared side by side (Figure 3.2.4B). Cxcl12 and Vcam1, however, were both not 

Figure 3.2.4 Constriction of stem cells in the spleen is not due to diminished 
recruitment or egress. 

(A) LSK cells in the blood of mice stimulated with CpG-ODN and infected with 
Δm157-MCMV (Δm157). Each dot represents an individual animal. Horizontal bar = 
mean value. (B) Relative expression of Cxcl12 and Vcam1 in the spleen compared to 
uninfected mice. (C) Relative expression of Sphingosine-1-phosphat lyase (Sgpl1) and 
S1P1 (S1pr1) in the spleen compared to uninfected mice. (D) Percentage of LSK cells in 
spleens of mice stimulated with CpG-ODN, infected with Δm157-MCMV (Δm157) and 
treated with pertussis toxin (PTX) or FTY720. Each dot represents an individual animal. 
Horizontal bar = mean value. 
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differentially expressed in the spleen in groups with extramedullary hematopoiesis and 

suppressed extramedullary hematopoiesis. Therefore, differences in stem cell numbers in the 

spleen might not be due to differential recruitment from the blood. 

Once migratory stem cells are recruited to extramedullary tissues, they must be precluded 

from leaving the organ to the draining lymphatic vasculature (Massberg et al. 2007; Schulz et 

al. 2009). Thus, inhibition of stem cell egress could account for the observed accumulation of 

stem cells. Similar to lymphocytes, circulating stem cells are attracted into the draining 

lymphatics by following gradients of Sphingosine-1-phosphate (S1P) (Massberg et al. 2007). 

In contrast to blood and lymph, S1P concentrations in lymphoid and non-lymphoid tissues are 

low due to rapid degradation by S1P lyase (Schwab et al. 2005). Stem cell sensing of S1P and 

migration are mediated mainly by S1P1, a Gαi-coupled receptor that has been shown to be 

down-regulated upon inflammatory stimuli leading to accumulation of stem cells in peripheral 

tissues (Massberg et al. 2007). To investigate whether reduced expression of S1P lyase or 

S1P1 might play a role in accumulation of stem cells in the spleen during inflammation, we 

performed quantitative RT-PCR (Figure 3.2.4C). However, no differential expression of 

Sgpl1 (S1P lyase) and S1pr1 (S1P1) in groups of mice with extramedullary hematopoiesis and 

suppressed extramedullary hematopoiesis could be detected at day 2 p.i..  

On the other hand, stem cell numbers could also be reduced due to enhanced egress from the 

spleen. Egress can pharmacologically be blocked by either inhibiting Gαi-coupled receptor 

signaling using pertussis toxin (PTX) or by blocking S1P receptors specifically using the 

immunosuppressant drug FTY720 (Papayannopoulou et al. 2003) that sequesters lymphocytes 

in secondary lymphoid organs (Chiba et al. 1998; Mandala et al. 2002; Matloubian et al. 

2004). However, no significant increase of stem cells in the pharmacologically treated groups 

could be observed (Figure 3.2.4D). Altogether, neither diminished expression of factors 

regulating accumulation of stem cells during extramedullary hematopoiesis nor enhanced 
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egress of stem cells from the spleen when extramedullary hematopoiesis was suppressed 

could account for differences in splenic stem cell numbers.  

3.2.5 Expression of stem cell factor (SCF) is reduced upon virus spread 

Since a significant role of stem cell recruitment or egress for the number of stem cells in the 

spleen upon infection could not be found, further experiments focused on factors regulating 

organ-resident stem cell proliferation and differentiation. One of the most prominent factors 

regulating stem cell proliferation is stem cell factor (SCF; also steel, KIT ligand).  Notably, 

quantitative RT-PCR revealed that scf expression in the spleen was enhanced upon MCMV 

infection or CpG-ODN stimulation (Figure 3.2.5A). Interestingly, the expression of SCF in 

groups infected with Δm157-MCMV was reduced. Therefore, injection of SCF in mice 

stimulated with CpG-ODN and infected with Δm157-MCMV should restore the proliferation 

Figure 3.2.5 Expression of stem cell factor is reduced upon 
infection with Δm157-MCMV. 

(A) Relative expression of scf in the spleen compared to 
uninfected mice. (B) LSK cells in the spleen of mice stimulated 
with CpG-ODN, infected with Δm157-MCMV (Δm157) and 
injected with SCF every day until analysis at day 4 p.i. Each dot 
represents an individual animal. Horizontal bar = mean value. 
Asterisks indicate significant values, * = p < 0.05, ns = not 
significant (t-test). 
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of stem cells. However, restoration of stem cell proliferation was not observed (Figure 

3.2.5B). 

3.2.6 Infection of DCs causes profound changes in the serum hematopoietin profile 

Application of SCF alone was not sufficient to restore stem cell proliferation in mice 

stimulated with CpG-ODN and infected with Δm157-MCMV. It is conceivable that more 

factors with hematopoietic activity are affected upon infection of DCs. To get a global view 

on the hematopoietins present in the serum of mice under condition of extramedullary 

hematopoiesis (MCMV, CpG-ODN, CpG-ODN + DCs) or suppressed extramedullary 

hematopoiesis (Δm157-MCMV, CpG-ODN + Δm157-MCMV, CpG-ODN + infected DCs) 

multi cytokine profiling was performed (Figure 3.2.6). A total of 13 growth factors, 

interleukins and chemokines with hematopoietic activity were assayed, including factors with 

lineage differentiating (IL-3, IL-5, GM-CSF, M-CSF), stem cell mobilizing (CXCL1, G-CSF) 

and hematopoiesis inhibiting (CXCL2, CCL2, CCL3, LIF, FGF-2)  activities, as well as 

factors previously implicated in the occurrence of extramedullary hematopoiesis (VEGF, 

PDGF) (Ghinassi et al. 2010). IL-3, GM-CSF, M-CSF, LIF, FGF-2 and VEGF did not show 

consistent differences between groups with extramedullary hematopoiesis and suppression of 

extramedullary hematopoiesis at any time point. However, some chemokines with known 

inhibitory functions on hematopoiesis, i.e CXCL2 (MIP-2), CCL2 (MCP-1) and CCL3 

(Mip-1α) (Broxmeyer 2001), displayed selectively elevated serum levels in groups with 

suppressed extramedullary hematopoiesis particularly at day 2 p.i.. Interestingly, also factors 

with stem cell mobilizing (CXCL1 / KC and G-CSF (Nardini et al. 2005)) and lineage 

differentiating (IL-5) capacity were dramatically increased when extramedullary 

hematopoiesis was suppressed. PDGF, which supports hematopoiesis by maintaining stromal 
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Figure 3.2.6 Infection of DCs results in alterations of the serum hematopoietin profile. 
Multi cytokine profiling of mouse blood sera. Mice were either infected with MCMV (MCMV), Δm157-
MCMV (Δm157), stimulated with CpG-ODN (CpG), transferred with DCs (DC), Listeria monocytogenes 
ΔactA infected DCs (DC ΔactA) or treatments were combined as indicated. (A) Factors that do not show 
differences between groups of mice with extramedullary hematopoiesis and with suppressed extramedullary 
hematopoiesis.  (B) Factors with known suppressive function on hematopoiesis that show differences between 
groups of mice with extramedullary hematopoiesis and with suppressed extramedullary hematopoiesis. (C) 
Factors with stem cell mobilizing or differentiating or hematopoiesis supporting function that show 
differences between groups of mice with extramedullary hematopoiesis and with suppressed extramedullary 
hematopoiesis. Asterisks indicate significant values, * = p < 0.05, ** = p < 0.03, *** = p < 0.001, ns = not 
significant (column pairs were compared by t-test). 
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 microenvironments (Duhrsen et al. 2001), was the only factor examined that showed reduced 

levels in groups with suppressed extramedullary hematopoiesis at day 4. Hence, infection of 

DCs resulted in profound alterations of the serum hematopoietin profile creating a suppressive 

environment for hematopoiesis in extramedullary tissues. 
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4. Discussion 

Extramedullary hematopoiesis during the course of acute or chronic infections is a widely 

recognized phenomenon. The underlying mechanisms, however, have been enigmatic. In this 

study, the cellular and molecular determinants of extramedullary hematopoiesis after CMV 

infection were investigated. Both NK cells and DCs were found to play an unexpected role in 

the modulation of extramedullary hematopoiesis. 

The immune system adjusts hematopoiesis to the optimal cellular response against a specific 

invading pathogen. Inflammatory stimuli can also reactivate hematopoiesis at extramedullary 

sites of fetal blood formation, mainly in liver, spleen and skin. Congenital HCMV infection 

can result in the clinical presentation of the ‘blueberry muffin baby’ due to dermal 

extramedullary hematopoiesis. One indication for intrauterine infection with HCMV is the 

enlargement of liver and spleen which can be detected by ultrasound (Chaoui et al. 2002). 

Splenomegaly also occurs in 30-50% of symptomatic HCMV infections in adults (Britt 2006) 

and can lead to severe complications as for example rupture of the splenic capsule (Rogues et 

al. 1994; Alliot et al. 2001; Duarte et al. 2003; Gorgone et al. 2005; Amathieu et al. 2007). 

Dermal extramedullary hematopoiesis in the ‘blueberry muffin baby’ suggests that the 

enlargement of the spleen in infected fetuses or adults is also due to extramedullary 

hematopoiesis. However, this has not yet been examined in patient samples.  

MCMV is a reliable model for HCMV with regard to organ- and cell tropism, pathogenesis 

during acute infection, establishment of latency, and reactivation after immunosuppression 

(Mocarski and Kemble 1996; Reddehase et al. 2002; Krmpotic et al. 2003). It is known since 

the early 1980s that splenomegaly in the murine model is due to extramedullary 

hematopoiesis (Lucia and Booss 1981). The mechanisms that regulate extramedullary 

hematopoiesis, however, have not been investigated.  
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Here it was observed that the kinetics of extramedullary hematopoiesis developed in parallel 

to the adaptive immune response, although B and T cells were dispensable for the 

establishment of ectopic blood formation. Instead, a striking dependence of extramedullary 

hematopoiesis on NK cells became apparent. Both depletion of NK cells with anti-Asialo 

GM1 antibody in wild-type mice or with DT in NKp46-DTR bone marrow chimeras led to the 

reduction of extramedullary hematopoiesis during infection. This excludes the possibility that 

any other cell population, which might also be depleted by anti-Asialo GM1 antibody (Slifka 

et al. 2000), can be responsible for the induction of extramedullary hematopoiesis. In 

addition, transfer of splenocytes enriched in NK cells into NK cell depleted NKp46-DTR 

bone marrow chimeras reconstituted extramedullary hematopoiesis. 

Cytokines produced by NK cells were proposed to have an effect on hematopoiesis 

(Trinchieri 1995; Murphy and Longo 1996). NK cell-derived IFN-γ and TNF-α for example 

act directly on hematopoietic stem cells (Baldridge et al. 2010; Pearl-Yafe et al. 2010). Yet, 

MCMV-induced extramedullary hematopoiesis, however, did not depend on these cytokines 

but on perforin-mediated cytotoxicity. This demonstrates a specific role of a defined NK cell 

effector function, namely cytolysis, in this reaction. 

Why was perforin-mediated lysis of infected cells required? Cell lysis eliminates infected 

target cells and thereby prevents viral spread to secondary targets. Using ΔM94-MCMV, it 

was possible to dissect whether virus replication in the first target or virus spread affects 

extramedullary hematopoiesis since ΔM94-MCMV’s intracellular replication capacity is 

comparable to wild-type virus but this mutant is not able to spread (Mohr et al. 2010; 

Maninger et al. 2011). It is important to note that ΔM94-MCMV induced extramedullary 

hematopoiesis to the same extent as wild-type MCMV. In contrast, the presence of NK cells 

or NK cell-mediated cytotoxicity was no longer required, showing that it is virus spread that 
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impairs the development of extramedullary hematopoiesis. This is the first demonstration that 

virus spread per se has a systemic consequence.    

Stimulation with the immunostimulatory TLR9 agonist CpG-ODN induces a potent 

extramedullary hematopoiesis response (Sparwasser et al. 1999). Virus infection after CpG-

ODN pre-stimulation demonstrated that MCMV infection, in particular in absence of NK cell 

control of virus spread, indeed results in suppression of extramedullary hematopoiesis.  

Interestingly, in mice deficient for Natural Killer T (NKT) cells or NKT cell-activation 

hematopoiesis has been reported to be suppressed upon MCMV infection and adoptive 

transfer of NKT cells lifted suppression (Broxmeyer et al. 2007). Besides their production of 

hematopoietic growth factors (Leite-de-Moraes et al. 2002; Kotsianidis et al. 2006), it is 

known that NKT cells help NK cells to limit MCMV infection particularly at later time points 

of infection (van Dommelen et al. 2003). Yet, it remains to be elucidated whether cytokine 

production or also cell lysis is the NKT cell effector function that preserves hematopoiesis 

upon MCMV infection.   

In C57BL/6 mice, Ly49H+ NK cells govern the early immune response against MCMV 

(Vivier et al. 2011) as they are able to directly recognize the viral m157 protein on the surface 

of infected cells. Recognition of m157 leads to specific proliferation of Ly49H+ NK cells 

(Dokun et al. 2001) which reduce of the total viral load and preserve of the microarchitecture 

of the splenic white pulp (Benedict et al. 2006; Bekiaris et al. 2008).  

Recognition of infected cells via the m157/Ly49H interaction was critical also for the 

development of MCMV-induced extramedullary hematopoiesis in C57BL/6 mice. Upon 

infection with Δm157-MCMV that escapes activation and control of Ly49H+ NK cells 

extramedullary hematopoiesis was suppressed. Therefore, the role of Ly49H for promotion of 

NK cell activation and extramedullary hematopoiesis was not redundant in C57BL/6 mice. 
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This is because MCMV is able to evade all the other mechanisms that could have contributed 

to NK cell recognition, such as NKG2D engagement by cellular stress molecules like RAE-

ligands, MULT-1 or H60, or ‚missing self‘ recognition.  Gene products m145, m152 and 

m155 down-regulate MULT-1, RAE-1 and H60, respectively (Krmpotic et al. 2002; Lodoen 

et al. 2003; Lodoen et al. 2004; Hasan et al. 2005; Krmpotic et al. 2005) and m138 affects the 

expression of MULT-1, H60 and RAE-1 isoforms (Lenac et al. 2006; Arapovic et al. 2009). 

Thus, MCMV tightly prevents the activation of NK cells in C57BL/6 mice, with the exception 

of Ly49H-dependend activation. In fact, in most field isolates of MCMV m157 evades 

Ly49H-dependend recognition and passage of MCMV through Ly49H+ mouse strains under 

laboratory conditions leads to the emergence of crippling mutations in m157 (Voigt et al. 

2003), demonstrating the selection pressure executed by Ly49H recognition on the virus.  

Nevertheless, it would be interesting to delete MCMV genes known to prevent NK cell 

recognition, for example m145, m152, m155 and m138, on a Δm157 background, infect 

C57BL/6 mice with these viruses and assay for extramedullary hematopoiesis. This would 

elude on the role of NKG2D regulation for virus spread. Furthermore, this would help to 

clarify whether MULT-1, H60 and RAE-1 isoforms have redundant functions in NK cell 

recognition in vivo.  

The MCMV genome harbours about 170 ORFs (Rawlinson et al. 1996). Large deletions in 

the MCMV genome proved 101 ORFs not to be essential for replication (Brune et al. 2006; 

Mohr et al. 2008). These genes, however, are probably involved in the modulation of the 

host’s immune response. As discussed above, NK cell recognition in C57BL/6 mice depends 

exclusively on Ly49H-m157 interaction because recognition via other activating mechanisms 

or ‘missing self’ recognition is tightly blocked by MCMV. Therefore, Δm157-MCMV 

disseminates uncontrolled by the early NK cell activation and suppresses extramedullary 

hematopoiesis. Any defect in genes regulating NK cell recognition or any other gene defect 
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limiting virus spread in Δm157-MCMV should therefore result in restoration of 

extramedullary hematopoiesis. Thus, generation of additional gene knockout mutants on a 

Δm157 background and examination of extramedullary hematopoiesis in C57BL/6 mice 

should be a promising method to identify genes with immune modulatory function in vivo in 

the future. Previous in vivo assays were limited to the identification of genes with immune-

modulatory function based on attenuated virus growth in different organs as indicator 

phenotype. Notably, identification on the basis of the development of extramedullary 

hematopoiesis is independent of virus titer but dependent on the ability of the virus to spread. 

For example, the application of increasing doses of controlled wild-type virus leads to 

enhanced extramedullary hematopoiesis, while spreading Δm157-MCMV suppresses 

extramedullary hematopoiesis. Hence, the suppression of extramedullary hematopoiesis may 

turn out to be a better indication for viral immune escape than virus titer in the organs. 

Until today the capacity of CMV to regulate the host’s immune system has hampered the 

development of a vaccine. Altogether, the in vivo assay for uncontrolled virus spread based on 

the suppression of extramedullary hematopoiesis could contribute to the identification of 

immune-regulatory genes and therefore help to generate safe and immunogenic CMV-vaccine 

vectors.  

 

In order to elucidate the cellular mechanisms of suppression of extramedullary hematopoiesis 

an approach based on the Cre / loxP-system was chosen. The Cre / loxP-system is the most 

frequently used recombination system for the activation or silencing of genes in vivo (Feil and 

Metzger 2007). Previously, our group has applied it to identify and to quantify viral 

productivity of selected cell types (Sacher et al. 2008a; Sacher et al. 2008b). Here, the 

approach was applied to disrupt NK cell control of virus replication and spread in a cell type- 
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and organ-specific manner. Gene m157 was flanked by loxP-sites and infection of a cre-

expressing cell type would result in excision of m157 from the viral genome. Virus replication 

in this cell type as well as virus spread from this cell cannot be controlled any more by NK 

cells.  

Although hepatocytes produce ~55% of the total body virus load until day 3 p.i., elimination 

of NK cell control of hepatocyte-derived virus did not result in suppression of extramedullary 

hematopoiesis. Our group has demonstrated that hepatocyte-derived virus is not able to 

disseminate to other organs (Sacher et al. 2008b). Obviously, intra-hepatic spread of MCMV 

is not sufficient to suppress extramedullary hematopoiesis in the spleen. This concept is 

supported by the fact that enhanced MCK-2/m129-dependent virus dissemination to the 

salivary gland also does not affect extramedullary hematopoiesis (Jordan et al. 2011). 

In contrast to hepatocytes, uncontrolled virus replication in two cell types was found to be 

particularly suppressive for extramedullary hematopoiesis: endothelial cells and DCs. 

Endothelial cells have been found to be among the first targets of MCMV (Benedict et al. 

2006; Hsu et al. 2009) and are important virus distributors (Sacher et al. 2008b). Since 

endothelial cells are infected by ΔM94-MCMV (Mohr et al. 2010) which is not suppressive 

for extramedullary hematopoiesis, however, it is unlikely that endothelial cells represent the 

suppressive cell type. Endothelial cell-derived virus that escapes NK cell control rather 

spreads to the cell that suppresses extramedullary hematopoiesis upon infection. DCs are also 

permissive for virus infection (Andrews et al. 2001; Mathys et al. 2003). Furthermore, in vivo 

data demonstrated that MCMV first infects cells in the marginal zone and the red pulp of the 

spleen and then spreads to the white pulp, where infected DCs can be detected earliest at 48 

hours post infection (Hsu et al. 2009). These data suggest that DCs are secondary targets of 

CMV in vivo. Since suppression of extramedullary hematopoiesis depended on virus spread, 

further investigations focused on DCs. 
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In fact, two sets of experiments confirmed that MCMV infected DCs were responsible for the 

suppression of extramedullary hematopoiesis. First, MCMV infection was not suppressive in 

ΔDC mice irrespective of the presence of NK cells. Most importantly, the transfer of infected 

DCs into CpG-ODN-stimulated mice was sufficient to install their suppressive effects on 

CpG-ODN-induced extramedullary hematopoiesis. These findings identify a central role for 

DCs in the regulation of inflammation-induced extramedullary hematopoiesis.  

CMV employs an array of mechanisms to interfere with immune stimulatory DC-functions, 

for example the down-modulation of MHC class I and class II complexes or of co-stimulatory 

molecules, the up-regulation of apoptosis-inducing ligands or the alteration of inflammatory 

cytokine secretion profiles leading to an overall functional paralysis (Andrews et al. 2001; 

Raftery et al. 2001; Rolle and Olweus 2009). This study shows that CMV also renders DCs 

into active suppressors of extramedullary hematopoiesis which is conceptually different from 

the hitherto described functional paralysis of DCs upon CMV infection. 

The role of DCs in active suppression of extramedullary hematopoiesis is supported by the 

finding of Birnberg and colleagues showing that depletion of DCs in healthy animals results 

in a myeloproliferative syndrome associated with a remarkable increase of TER119+ cells in 

the spleen (Birnberg et al. 2008). This argues that suppression of hematopoiesis including 

extramedullary hematopoiesis is an intrinsic property of DCs even in the steady state.  

This study suggests that DC-mediated alterations of the serum hematopoietin profile lead to 

suppression of extramedullary hematopoiesis by inhibiting stem cell proliferation at 

extramedullary sites. Preceding the peak of extramedullary hematopoiesis at day 6 p.i, 

increasing stem cell numbers in the spleen were found until day 4 p.i. with MCMV or 

stimulation with CpG-ODN. Infection of DCs, however, restricted the increase of stem cells 

in the spleen. Diminished recruitment of stem cells from the blood via CXCR4 / CXCL12 
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interaction as well as enhanced S1P-mediated egress could be excluded to be responsible for 

the constriction of stem cell numbers (Matloubian et al. 2004; Massberg et al. 2007; Schulz et 

al. 2009) leading to the conclusion that inhibition of stem cell proliferation is most likely the 

cause.  Proliferation of stem cells is controlled by SCF, and SCF expression was reduced in 

experimental groups showing uncontrolled virus spread. Substitution of SCF, however, could 

not restore stem cell proliferation. Therefore, further factors must be involved in the 

regulation of stem cells in the spleen. 

In fact, the serum hematopoietin profile was profoundly altered upon DC-infection. Levels of 

chemokines that negatively regulate hematopoiesis, i.e. CXCL2, CCL2 and CCL3 

(Broxmeyer 2001), were elevated as early as day 2 p.i. These chemokines have been found to 

be produced by DCs upon infection with bacteria and viruses (Piqueras et al. 2006; Zaharik et 

al. 2007; Lin et al. 2008; Guerrero-Plata et al. 2009) and, remarkably, are also produced by 

DCs in vitro in the steady state but the production is abrogated upon DC-maturation (Heufler 

et al. 1992). For example the infection with MCMV or stimulation with CpG-ODN led to a 

reduction of CCL3 serum levels compared to uninfected animals in vivo, but not if the virus 

escaped NK control or after transfer of infected DCs. The chemokines tested here, however, 

are only a representative selection of a plethora of hematopoiesis suppressing factors, which 

perhaps must synergize or require certain combinations to exert suppressive functions 

(Broxmeyer 2001; Broxmeyer et al. 2006). Interestingly, stem cell mobilizing (G-CSF, 

CXCL1) and differentiating (IL-5) factors were also increased in blood samples of animals 

with suppressed extramedullary hematopoiesis upon DC-infection. This is probably due to 

existing negative feedback loops between stem cell proliferation and mobilizing as well as 

differentiating factors.  

In summary, it is conceivable that induction and suppression of extramedullary hematopoiesis 

is regulated by a complex network of stimulating and inhibiting factors (Figure 4). In the  
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steady state, DCs suppress extramedullary hematopoiesis (Figure 4A). Upon infection 

(MCMV) or sterile inflammation (CpG-ODN) extramedullary hematopoiesis is induced 

(Lucia and Booss 1981; Sparwasser et al. 1999) (Figure 4B). The induction is independent of 

NK cells and DCs, since extramedullary hematopoiesis occurred in NK cell-depleted ΔDC 

mice. MCMV and also CpG-ODN are recognized by Pattern Recognition Receptors (PRRs) 

which leads to activation of NFκB (Krug et al. 2004; Zucchini et al. 2008). Interestingly, 

constitutive activation of NFκB is already sufficient for induction of extramedullary 

Figure 4 Modell of virus-induced extramedullary hematopoiesis and  
DC-mediated suppression. 

A) In the steady state, DCs suppress extramedullary hematopoiesis (Birnberg et 
al. 2008). B) Virus infection induces extramedullary hematopoiesis through 
Pattern Recogniton Receptor (PRR) signaling. A yet unknown signal (?) might 
relieve the DC-mediated suppression. Expression of SCF leads to proliferation 
of hematopoietic stem cells (HSC) which differentiate into TER119+ cells 
(TER+). This is supported by PDGF. NK cells prevent virus spread to DCs via 
perforin-1-mediated cytotoxicity (Prf1). C) Virus spread to DCs abrogates stem 
cell proliferation via inhibition of SCF and PDGF expression and shifs the 
serum hematopoietin profil to chemokines suppressive for hematopoiesis. 
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hematopoiesis (Kool et al. 2011). Therefore, it is plausible that innate immune recognition 

mechanisms are responsible for the induction of extramedullary hematopoiesis upon MCMV-

infection, maybe by delivering a signal to the DCs that relieves the suppressive function. 

Upon infection, DCs become dominant suppressors of extramedullary hematopoiesis, which 

in this respect, might simply boost their steady state suppressive function (Figure 4C). NK 

cells are probably required to eliminate MCMV-infected DCs or prevent virus spread to DCs 

in order to maintain a permissive environment for the development of extramedullary 

hematopoiesis upon an inflammatory stimulus.  

In contrast to extramedullary hematopoiesis, the effect of MCMV infection on medullary 

hematopoiesis has been investigated extensively (Mutter et al. 1988; Reddehase et al. 1992; 

Mayer et al. 1997; Mori et al. 1999). Furthermore, bone marrow failure due to HCMV 

infection is a dreaded complication after allogeneic bone marrow transplantation and HCMV 

has long been associated with suppression of hematopoiesis (Torok-Storb et al. 1992; 

Lagneaux et al. 1993; Sing and Ruscetti 1995; Randolph-Habecker et al. 2002). In vitro, this 

was attributed either to the direct infection of early hematopoietic progenitors (Sing and 

Ruscetti 1990; Maciejewski and St Jeor 1999; Sindre et al. 2000; Goodrum et al. 2004) or of 

the supportive microenvironment (Apperley et al. 1989; Simmons et al. 1990; MacKintosh et 

al. 1993; Steinberg et al. 1993; Lagneaux et al. 1996; Smirnov et al. 2007). In vivo studies 

showed that NKT cells could prevent suppression of medullary hematopoiesis (Broxmeyer et 

al. 2007). The role of NK cells and DCs for medullary hematopoiesis, however, has not been 

studied so far. Therefore, it is worth to investigate whether the here identified cellular 

mechanisms also apply to medullary hematopoiesis. It is possible that the immunosuppressive 

regimen before the bone marrow transplantation leads to uncontrolled virus spread and 

infection of DCs which might in fact inhibit the reconstitution of the hematopoietic system. 



4. Discussion  79 
 
 

   

Further studies are needed to examine whether deletion of DCs previous to transplantation 

could prevent severe and possibly lethal complications due to bone marrow failure. 

Containment of virus spread is a prerequisite for extramedullary hematopoiesis. Thus, if the 

results can be translated to man, the ‘blueberry muffin baby’ represents an immunopathology 

that still indicates a certain functionality of the NK cell responses in the affected patients.  

Immune reactions can reactivate blood formation at ectopic sites. The contribution of this 

phenomenon to antigen-specific immunity, however, is not known. Here, the expansion of the 

TER119+ red blood cell lineage was used as an indicator for extramedullary hematopoiesis. It 

remains to be elucidated whether extramedullary hematopoiesis also expands other cell 

lineages including antiviral leukocytes. Nevertheless, the contribution of extramedullary 

hematopoiesis to the production of functional leukocytes during an antiviral immune response 

is conceivable. MCMV-induced suppression of extramedullary hematopoiesis by DCs, 

therefore, may constitute a new layer in the virus-host interaction. In this respect it is 

important to consider that suppression of extramedullary hematopoiesis is not restricted to 

MCMV, but was also observed upon infection with DC-tropic LCMV and Listeria 

monocytogenes. The effect of pathogen-induced suppression of extramedullary hematopoiesis 

on the course of these infections remains to be elucidated. Yet, it is tempting to speculate that 

it represents a common way of immune evasion by DC-tropic pathogens. 
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6. Abbreviations 

AIDS Acquired Immune Deficiency Syndrome  

BAC Bacterial artificial chromosome 

BMDC Bone marrow-derived dendritic cells 

BSA Bovine serum albumine 

CD Cluster of differentiation 

cDC Conventional dendritic cell 

CMV Cytomegalovirus 

CPE Cytopathic effect 

CpG-ODN CpG-oligodeoxynucleotide 

CSF Colony-stimulating factor 

DBPS Dulbecco´s phosphate-buffered saline 

DC Dendritic cell 

dd Double distilled 

DT Diphtheria toxin 

DTR Diphtheria toxin receptor 

EBV Epstein-Barr virus 

FELASA Federation of Laboratory Animal Science Associations 

GM-CSF Granulocyte / macrophage-colony stimulating factor 

HCMV Human cytomegalovirus 

HHV Human herpesvirus  

HIV Human Immunodeficiency virus  

HSV-1 Herpes simplex virus 1 

HSV-2 Herpes simplex virus 2 

i.p. Intraperitoneal 

i.v. Intravenously 

IFN-α Interferon-α 

IFN-γ Interferon-γ 

IL Interleukin 

KC Keratinocyte chemoattractant 

KSHV Kaposi-sarcoma associated virus 

LCMV Lymphocytic choriomeningitis virus  

MCMV Mouse cytomegalovirus 
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MEF Murine embryonic fibroblasts 

MHC Major histocompabitility complex 

MHV-68 Murine herpesvirus 68 

MOI Multiplicity of infection 

NK  Natural killer (cell) 

NKT Natural killer T (cell) 

ODN Oligonucleotide 

ORF Open reading frame 

p.i.  Post infection 

PCR Polymerase chain reaction 

pDC Plasmacytoid dendritic cell 

PFU Plaque forming units 

PTX Pertussis toxin 

s.c. Subcutaneously  

S1P Sphingosine-1-phosphate 

S1P1 Spingosinge-1-phosphate receptor 1 

SCF Stem cell factor 

SCID Severe combined immunodeficiency 

TNF-α Tumor necrosis factor-α 

VZV Varicella-Zoster-Virus 
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