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1..Einleitung.
$

1.1.Reaktive.Sauerstoffspezies.(ROS).

1.1.1.Klassifikation.der.ROS.

Der$ Begriff$ „Reaktive$ Sauerstoffspezies“$ (engl.$ ROS$ =$ reactive$ oxygen$ species)$
bezeichnet$eine$Gruppe$chemischer$Moleküle,$die$bei$der$ inkompletten$Reduktion$von$
Sauerstoff$ entstehen.$ Zu$ ihnen$ zählen$ die$ sogenannten$ „Reaktiven$
Sauerstoffintermediate“$(ROI$=$reactive$oxygen$intermediates)$wie$das$SuperoxidAAnion$
(O2A),$Wasserstoffperoxid$ (H2O2)$und$das$HydroxylARadikal$ (⋅OH).$Die$Gruppe$der$ROS$
wird$ vervollständigt$ durch$ Ozon$ (O3)$ und$ Singulett$ Sauerstoff$ (1O2).$ Aufgrund$ des$
Vorkommens$ungepaarter$Valenzelektronen$sind$sie$chemisch$hochreaktiv1,2.$

$

1.1.2.Quelle.der.ROS.

Im$ Organismus$ gibt$ es$ drei$ wesentliche$ Quellen$ für$ reaktive$ Sauerstoffspezies.$ Die$
mitochondriale$oxidative$Phosphorylierung$(OXPHOS)$im$Rahmen$der$mitochondrialen$
Atmungskette$ stellt$ bei$ der$ Mehrzahl$ eukaryoter$ Zelltypen$ die$ quantitativ$ wichtigste$$
dar1.$Bei$diesem$Prozess$passieren$Elektronen$die$ innere$Mitochondrienmembran$und$
werden$ durch$ Komplex$ I$ und$ III$ der$ Atmungskette$ direkt$ auf$molekularen$ Sauerstoff$
transferiert.$ Hierbei$ entsteht$ das$ hochreaktive$ Superoxid$ (O2A),$ das$ zum$ größten$ Teil$
direkt$ im$ Anschluss$ von$ MnSOD$ (engl.$ manganese$ superoxide$ dismutase,$ siehe$ Abb.$
1.1.1)$ in$ der$ Mitochondrienmatrix$ und$ Cu,ZnSOD$ (engl.' copper$ zinc$ superoxide$
dismutase,$ siehe$ Abb.$ 1.1.1)$ im$ mitochondrialen$ Intermembranraum$ zu$ H2O2$
umgewandelt$ wird.$ Die$ Enzyme$ Katalase,$ ThioredoxinAPeroxidase$ und$ GlutathionA
Peroxidase$sorgen$ für$die$Verstoffwechselung$von$H2O2$ in$seine$Bestandteile$H2O$und$
O2$ 3,4.$ Ein$ bis$ zwei$ Prozent$ des$ Superoxids$ (O2A)$ jedoch$ werden$ durch$ Lecks$ in$ der$
mitochondrialen$Atmungskette$frei,$welche$deswegen$nicht$abgebaut$werden$können1,5.$

$
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$

Neben$ der$ ROSAFreisetzung$ im$ Rahmen$ der$ mitochondrialen$ oxidativen$
Phosphorylierung$ werden$ ROS$ auch$ im$ $ Endoplasmatischen$ Retikulum$ durch$ das$
Flavoenzym$ Ero1$ sezerniert1.$ Die$ Sekretion$ erhöht$ sich$ beim$ Überschuss$ an$
ungefalteten$Proteinen$sowie$beim$intrazellulären$Ca2+AAnstieg1.$

Die$ dritte$ wesentliche$ ROSAProduktionsquelle$ sind$ sieben$ NADPHAOxidasen$ (NOXs).$
NOXs$ werden$ durch$ rezeptorvermittelte$ Stimulation$ aktiviert,$ wie$ z.B.$ NOX2$ in$
Phagozyten$durch$Aktivierung$von$Rezeptoren$ für$FcγAAntikörper$oder$ in$ $ aktivierten$
neutrophilen$Granulozyten$durch$Aktivierung$von$Rezeptoren$für$Integrine$und$lösliche$
Agonisten$ wie$ TNF,$ Formylpeptide,$ Komplement$ C5a,$ Wachstumsfaktoren$ und$
MakrophagenAEntzündungsprotein1.$ Auch$ konnte$ gezeigt$ werden,$ dass$ adulte$
hippocampale$ StammA$ und$ Progenitorzellen$ über$ NOX2$ H2O2$ produzieren,$ um$

$
Abb.31.1.1$ Die$ Abbildung$ zeigt$ schematisch$ die$ wichtigsten$ Schritte$ der$ mitochondrialen$
Atmungskette$und$ROSAProduktion$durch$Komplex$I$und$III.$Ferner$illustriert$sie$die$Verstoffwechselung$
des$entstehenden$SuperoxidAAnions$O2A$durch$Cu,ZnSOD$sowie$MnSOD$zu$H2O2$sowie$dessen$Abbau$durch$
die$ Enzyme$ Katalase,$ ThioredoxinAPeroxidase$ und$ GlutathionAPeroxidase.$ (Abbildung$ modifiziert$ nach$
Kowaltowski$et$al.$20095)$
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intrazelluläre$ Wachstumssignalwege$ zu$ aktivieren,$ über$ welche$ wiederum$ die$
natürliche$Zellproliferation$gefördert$wird6.$

Weitere$ROSAQuellen$sind$γAStrahlung,$welche$ ⋅OH$produziert,$sowie$UVALicht,$welches$
1O2$erzeugen$kann.$Zigarettenrauch$und$Umweltschadstoffe$enthalten$ROS$und$andere$
organische$ Radikale.$ Einige$ Autakoide$ wie$ z.B.$ Dopamin$ durchlaufen$ eine$
Autooxidation,$bei$der$sie$ROS$erzeugen1.$

$

1.1.3.ROSBHomöostase.

Besonders$ interessant$ ist$ die$ Doppelrolle$ der$ reaktiven$ Sauerstoffspezies$ im$
Organismus.$Einerseits$ fungieren$sie$ in$biomolekularen$Pfaden$als$Signalmoleküle,$die$
sich$insbesondere$durch$ihre$chemische$Reaktionsfähigkeit,$eine$bestimmte$HalbwertsA$
und$ somit$ Funktionszeit$ sowie$ Lipidlöslichkeit$ auszeichnen$ und$ so$ von$ anderen$
Signalmolekülen$unterscheiden2,7.$Anderseits$kann$ein$Überschuss$an$ROS$toxisch$sein.$
ROS$sind$ in$der$Lage,$Lipide,$Proteine$und$DNA$direkt$zu$oxidieren$und$so$Zellen$und$
Gewebe$ zu$ schädigen$ und$ zu$ zerstören8.$ Dieses$ biologische$ Paradoxon$ erfordert$
komplexe$ Mechanismen,$ die$ eine$ ROSAHomöostase$ gewährleisten,$ da$ ein$
Ungleichgewicht$ zwischen$ ROSAProduktion$ und$ antioxidanter$ Abwehr,$ welche$ Zellen$
vor$ toxischen$ Effekten$ schützt,$ zahlreiche$ Erkrankungen$ bedingen$ kann9.$ Oxidativer$
Stress$spielt$eine$wichtige$Schlüsselrolle$in$Alterungsprozessen$und$bei$der$Pathogenese$
vieler$neurologischer,$kardiovaskulärer$und$inflammatorischer$Krankheiten10A13.$$

In$Säugetieren$wird$die$ROSAspezifische$Antwort$durch$den$Transkriptionsfaktor$FOXO,$
das$ Tumorsuppressorgen$ p53,$ das$ Onkogen$ cAMyc$ sowie$ den$ die$ mitochondriale$
Biogenese$ stimulierenden$ PRARAcoactivatorA1$ (PGCA1)$ kontrolliert.$ Beispielsweise$
verhindert$ p53$ durch$ die$ Regulierung$ von$ GPX1$ und$ Sestrinen$ eine$ Toxizität$ bei$
vermehrter$H2O2AAkkumulation2.$
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1.2.Mitochondrien.

Mitochondrien$kommen$in$den$meisten$eukaryoten$Zellen$zu$hunderten$bis$tausenden$
vor14.$Im$Allgemeinen$wird$angenommen,$dass$ihr$Ursprung$in$der$endosymbiotischen$
Assoziation$ von$ oxidativen$ Bakterien$ und$ glykolytischen$ protoAeukaryotischen$ Zellen$
liegt.$ Diese$ sog.$ Endosymbiontentheorie$ wird$ u.a.$ durch$ die$ Tatsache$ gestützt,$ dass$
Mitochondrien$eine$Doppelmembran$besitzen$und$über$eine$eigene$DNA$(mtDNA)$mit$
bakteriellen$Eigenschaften$verfügen15.$

$

1.2.1.Mitochondriale.Funktion.

Die$ wichtigste$ Funktion$ der$ Mitochondrien$ im$ menschlichen$ Organismus$ ist$ die$
Bereitstellung$ von$ Energie$ in$ Form$ von$ ATP.$ Dieses$ wird$ im$ Rahmen$ der$ oxidativen$
Phosphorylierung$ (OXPHOS)$ der$ Atmungskette$ gewonnen16.$ Ferner$ finden$ in$
Mitochondrien$ verschiedene$ Stoffwechselwege$ (wie$ z.B.$ Zitratzyklus,$ βAOxidation)$
statt17,$ sie$ sind$ an$ Signalwegen$ der$ Apoptose$ beteiligt18,19,$ stellen$ einen$ wichtigen$
Faktor$ bei$ der$ zellulären$ CalciumAHomöostase20$ dar$ und$ synthetisieren$
überlebenswichtige$ EisenASchwefelACluster,$ die$ u.a.$ von$ vielen$ Enzymen$ der$
Atmungskette$benötigt$werden21.$

$

1.2.2.Mitochondriales.Genom.

Die$mitochondriale$DNA$besteht$aus$16.569$Basenpaaren$und$37$Genen.$Sie$kodiert$für$
13$ Polypeptide$ der$ Atmungskette$ sowie$ rRNAs$ und$ tRNAs,$ die$ für$ die$
intramitochondriale$ Proteinsynthese$ notwendig$ sind11.$ Die$ mitochondriale$ DNA$ wird$
ausschließlich$maternal$vererbt,$da$die$mtDNA$des$Spermiums$nach$der$Befruchtung$in$
der$Zygote$nicht$mehr$persistiert11,22.$

$

1.2.3.Mitochondriale.Dysfunktion.und.Pathologie.

Die$mitochondriale$DNA$macht$etwa$1%$der$gesamten$zellulären$DNA$aus;$Mutationen$
kommen$aber$wesentlich$häufiger$bei$ der$mitochondrialen$DNA$als$bei$ der$ zellulären$
DNA$ vor.$ Da$ den$ Mitochondrien$ eine$ wichtige$ Rolle$ im$ oxidativen$ Stoffwechsel$
praktisch$aller$Gewebe$zukommt23,$können$Mutationen$der$mitochondrialen$DNA$eine$
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große$ Zahl$ von$ Erkrankungen$ hervorrufen.$ Durch$ Funktionsstörungen$ der$
Mitochondrien$ entstehen$ sogenannte$ Mitochondriopathien$ wie$ z.B.$ das$ MELASA
Syndrom,$ die$ Leber’sche$ Opticusatrophie$ oder$ das$ KearnsASayreASyndrom$
hervorgerufen$werden.$Bei$Mitochondriopathien$kann$es$zu$einer$Beteiligung$mehrerer$
Organsysteme$ kommen,$ wie$ z.B.$ dem$ HerzAKreislaufASystem$ (z.B.$ in$ Form$ von$
Kardiomyopathien),$ dem$ endokrinen$ System$ (z.B.$ durch$Manifestation$ eines$ Diabetes$
mellitus)$ oder$ dem$ Blutbildungssystem$ (z.B.$ Entwicklung$ einer$ Anämie$ oder$
Panzytopenie).$Ferner$kommt$einer$mitochondrialen$Funktionsstörung$auch$Bedeutung$
in$der$Entstehung$von$neurodegenerativen$Erkrankungen11$(z.B.$Morbus$Parkinson12,24,$
Morbus$Alzheimer25,$Amyotrophe$Lateralsklerose26$oder$der$Chorea$Huntington27A29)$zu.$

1.2.4.ROS.&.neuronale.Schädigung.

Die$mitochondriale$Atmungskette$ist$die$wesentliche$Quelle$reaktiver$Sauerstoffspezies$
in$ eukaryoten$ Zellen$ (s.o.).$ Gleichzeitig$ sind$ Mitochondrien$ besonders$ empfindlich$
gegenüber$oxidativem$Stress,$da$dieser$mtDNAAMutationen$verursachen$kann30.$Durch$
diese$ in$ Folge$ von$ Mutationen$ bedingten$ Enzymdysfunktionen$ kommt$ es$ zu$ einer$
Zunahme$der$mitochondrialen$ROSAProduktion$und$somit$zu$einer$weiteren$Schädigung$
des$Mitochondrions31.$

In$ Hinblick$ auf$ die$ entscheidende$ Funktion$ von$ Mitochondrien$ bei$ bioenergetischen$
Prozessen,$ CalciumAPufferung$ und$ Apoptose32,$ hat$ ein$ solcher$ „Circulus$ vitiosus“$
verheerende$ Folgen$ für$ die$ gesamte$ Zelle11.$ Neuronen$ scheinen$ mit$ ihrem$ hohen$
Energiebedarf$ und$ ihrer$ komplexen$ Morphologie$ besonders$ anfällig$ für$ solche$
schädigende$Ereignisse$zu$sein.$Tatsächlich$spielt$die$mitochondriale$Schädigung$durch$
mtDNAAMutationen$ und$ oxidativen$ Stress$ eine$ tragende$ Rolle$ bei$ akuter$ neuronaler$
Schädigung$ wie$ z.B.$ nach$ traumatischen$ oder$ inflammatorischen$ Läsionen33A35,$ aber$
auch$ bei$ chronischen$ neurodegenerativen$ Erkrankungen$ wie$ z.B.$ der$ Amyotrophen$
Lateralsklerose$(ALS),$Morbus$Alzheimer$oder$Morbus$Parkinson11,12,24,36A38.$

In$ der$ vorliegenden$ Arbeit$ wurde$ der$ Redoxstatus$ sowie$ morphologische$
mitochondriale$Veränderungen$unter$pathologischen$Bedingungen$untersucht.$Hierfür$
verwendeten$wir$ein$Mausmodell$der$ALS,$die$SOD1G93AAMaus.$Daher$wird$im$Folgenden$
das$Krankheitsbild$der$Amyotrophen$Lateralsklerose$besprochen.$

$
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1.3.Amyotrophe.Lateralsklerose.(ALS).

$

Die$ ALS$ ist$ eine$ seltene$ degenerative$ Erkrankung,$ die$ sowohl$ die$ ersten$motorischen$
Neurone$ der$ motorischen$ Hirnrinde$ (motorischer$ Kortex)$ als$ auch$ die$ als$ zweite$
motorische$ Neurone$ bezeichneten$ Vorderhornzellen$ des$ Rückenmarks$ betrifft.$ Der$
französische$ Neurologe$ JeanAMartin$ Charcot$ beschrieb$ 1874$ erstmals$ die$ klinischen$
Zeichen$ der$ALS39.$ Die$ Erkrankung$ kann$ sowohl$ zu$ spastischen$ Symptomen$ (in$ Folge$
der$Schädigung$des$1.$Motoneurons)$als$auch$zu$atrophischen$Paresen$ (in$Folge$einer$
Schädigung$ des$ 2.$ Motoneurons)$ führen.$ Pathologisch$ ist$ die$ ALS$ durch$ eine$
Degeneration$ der$ Vorderhörner,$ der$ kaudalen$motorischen$ Hirnnervenkerne$ und$ der$
motorischen$Hirnrinde$ charakterisiert40.$Man$unterscheidet$ zwischen$ einer$ familiären$
(FALS)$ und$ einer$ sporadischen$ (SALS)$ Form$ der$ ALS.$ Die$ Ätiologie$ und$ genaue$
Pathogenese$der$ALS$sind$bis$heute$nicht$komplett$verstanden.$Die$ALS$ist$durch$einen$
progredienten,$klinischen$Verlauf$mit$schlechter,$infauster$Prognose$gekennzeichnet.$

$

1.3.1.Epidemiologie.

Epidemiologische$ Studien$ werden$ durch$ verschiedene$ Faktoren$ erschwert.$
Beispielsweise$ gestaltet$ es$ sich$ schwierig,$ einen$ spezifischen$ Krankheitsbeginn$
festzulegen,$ da$ die$ Zeitspanne$ zwischen$ pathologischen$ Veränderungen$ und$ ersten$
klinischen$ Symptomen$ variabel$ lang$ sein$ kann41.$ Populationsbezogene$
epidemiologische$ Studien$ zeigen,$ dass$ die$ Inzidenz$ der$ ALS$ in$ Europa$ etwa$ 2,16$ pro$
100.000$ Einwohner$ pro$ Jahr$ beträgt42.$ Auch$ wenn$ die$ ALS$ eine$ Erkrankung$ ist,$ die$
weltweit$ auftritt,$ ist$ eine$ genaue$ Inzidenz$ nicht$ bekannt.$ Sie$ variiert$ stark$ zwischen$
verschiedenen$ ethnischen$ Gruppen43.$ Die$ sporadische$ Form$ der$ Erkrankung$ tritt$ bei$
Männern$häufiger$auf$als$bei$Frauen$(3,0$vs.$2,4$pro$100.000$Einwohner$pro$Jahr),$bei$
der$ familiären$ Form$ ist$ die$ Inzidenz$ bei$ beiden$ Geschlechtern$ etwa$ gleich41.$ Der$
Erkrankungsgipfel$ für$die$sporadische$Variante$der$Erkrankung$liegt$bei$58A63$Jahren,$
der$für$die$familiäre$Variante$der$Erkrankung$liegt$zwischen$47$und$52$Jahren44.$Die$ALS$
ist$ mit$ einer$ Punktprävalenz$ von$ 4,91$ pro$ 100.000$ Einwohnern43$ die$ häufigste$
motorische$Systemkrankheit45.$

$
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$

1.3.2.Molekulargenetik.

Die$familiäre$Form$der$ALS$(FALS)$macht$etwa$5A10%$aller$ALSAFälle$aus.$Die$FALS$folgt$
einem$ autosomal$ dominanten$ Vererbungsmuster46.$ Die$ restlichen$ 90A95%$ aller$ ALSA
Fälle$werden$als$sporadische$Form$der$ALS$(SALS)$zusammengefasst.$Bis$ jetzt$wurden$
13$Genloci$identifiziert47,48.$Von$diesen$ist$bekannt,$dass$Mutationen$in$SOD1$(kodiert$für$
Kupfer/Zink$ IonenAbindende$SuperoxidADismutase),$TARDBP$ (TDPC43,$ kodiert$ für$TAR$
DNA$ Bindungsprotein),$ FUS$ (kodiert$ für$ Fusion$ beim$ Sarkom),$ ANG$ (kodiert$ für$
Angiogenin,$Ribonuclease,$RNAse$A$Familie,$5)$und$OPTN$(kodiert$für$Optineurin)$einen$
klinischen$Phänotyp$verursachen41.$

In$ 20%$ der$ Fälle$ der$ FALS$ und$ 3%$ der$ SALS$werden$ SOD1AMutationen$ entdeckt49,50.$
Andere$Mutationen$kommen$seltener$vor:$TDPC4346$und$FUS51,52,$zwei$multifunktionale$
Proteine,$die$an$Mechanismen$der$Genexpression$und$ Aregulation$beteiligt$ sind,$ findet$
man$in$etwa$5%$der$FALSAFälle,$ANGAMutationen$nur$in$etwa$1%.$

1.3.3.Pathogenese.

Die$ pathophysiologischen$ Mechanismen$ bei$ der$ Entwicklung$ der$ ALS$ sind$
multifaktoriell$ und$ unterliegen$ der$ komplexen$ Interaktion$ verschiedener$ genetischer$
und$ molekularer$ Signalwege53,54.$ Bis$ heute$ sind$ sie$ nicht$ komplett$ verstanden.$ Eine$
Assoziation$ mit$ zahlreichen$ Umweltfaktoren$ wird$ diskutiert,$ darunter$ exzessives$
Sporttreiben55$ (eine$ retrospektive$ Studie$ von$ Fußballspielern$ in$ der$ italienischen$
Profiliga$zeigte$ein$erhöhtes$Risiko$für$die$Entwicklung$einer$ALS56),$aktiver$Dienst$beim$
Militär$(eine$Studie$unter$USAamerikanischen$Soldaten$zeigte$ein$erhöhtes$Risiko$für$die$
Entwicklung$einer$ALS57)$oder$Zigarettenrauchen58.$Die$Überfunktion$der$SOD1$bei$der$
SOD1AMutation$scheint$oft$eine$Funktionsverstärkung$des$Enzyms$mit$Freisetzung$freier$
Sauerstoffradikale$zu$verursachen,$welche$zur$Zellschädigung$und$zum$Zelltod$führt59,60$
(weitere$Mechanismen$der$Schädigung$durch$SOD1AÜberxpression$siehe$Abb.$1.3.1).$Ein$
weiterer$ pathogenetisch$ relevanter$ Faktor$ ist$ die$ durch$ Glutamat$ vermittelte$
Exzitotoxizität$ (exzessive$ Aktivierung$ postsynaptischer$ Glutamatrezeptoren).$ Diese$
bedingt$eine$Aktivierung$von$CalciumAabhängigen$enzymatischen$Signalwegen$und$die$
Freisetzung$freier$Radikale,$welche$zum$neuronalen$Schaden$führen$können$61A63.$Ferner$
scheinen$mitochondriale$Strukturdefekte,$Funktionsstörungen$der$Na+/K+APumpe$sowie$
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Störungen$des$axonalen$Transports$eine$Rolle$bei$der$Pathogenese$der$ALS$zu$spielen64A
66.$

$
Abb.31.3.1$ Die$ SOD1AMutation$ beeinträchtigt$ diverse$ Zellfunktionen.$ Die$ Toxizität$ der$ mutierten$
Superoxid$ Dismutase$ (SOD1)$ ist$ multifaktoriell$ und$ wirkt$ über$ viele,$ miteinander$ verknüpfte$ Pfade.$
Innerhalb$ des$ Motoneurons$ beeinträchtigt$ die$ mutierte$ SOD1$ den$ DNA/RNA$ Metabolismus,$
Mitochondrien$(Abnahme$der$ATPAProduktion$und$der$Calcium$Pufferung,$verstärkte$Freisetzung$freien$
Calciums),$ Neurofilamente$ und$ axonalen$ Transport,$ die$ Funktion$ des$ Endoplasmatischen$ Retikulums$
(ER),$den$GolgiAApparat$und$Proteasomen$(Abbildung$verändert$nach$Kiernan$et$al.$201141)$

$

1.3.4.Klinik.und.Verlauf.

Kennzeichen$der$ALS$ ist$die$Beeinträchtigung$ sowohl$des$ersten$als$ auch$des$ zweiten$
Motoneurons67.$ Die$ klinischen$ Zeichen$ sind$ anfänglich$ oft$ sehr$ variabel,$ je$ nach$
Lokalisation$der$Schädigung$$der$motorischen$Bahn$(bulbär,$zervikal,$thorakal,$lumbal)$
kommt$es$zur$Funktionseinschränkung$der$oberen$oder$unteren$Extremitäten,$der$von$
Hirnnerven$ versorgten$ (bulbären)$ Muskulatur$ sowie$ der$ Rumpfmuskulatur68.$ Die$
Schädigung$ des$ ersten$ Motoneurons$ hat$ spastische$ Paresen$ zur$ Folge.$ Der$ erhöhte$
Muskeltonus$führt$u.a.$zu$einem$spastischen,$verlangsamten$und$unsicherem$Gangbild.$
Die$Beteiligung$von$motorischen$Hirnnervenkernen$kann$zu$bulbären$Symptomen$(z.B.$
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Schluckstörung,$Zungenatrophie,$Dysarthrie)$führen.$Atrophische,$schlaffe$Paresen$sind$
Folge$ einer$ Schädigung$des$ zweiten$Motoneurons.$ Ferner$ sind$ aufgrund$der$ erhöhten$
Erregbarkeit$ typischerweise$ Faszikulationen$ und$ schmerzhafte$ Muskelkrämpfe$
(Crampi)$der$Extremitätenmuskeln$zu$beobachten69.$

$$

$

Abb.31.3.2$ Linksbetonte$
Zungenatrophie$ (links)$ und$
Atrophie$ der$ kleinen$
Handmuskulatur$ (InterosseiA
Muskeln)$ (rechts)$ bei$ einer$
ALSAPatientin$

$

Die$fortschreitende$Muskelschwäche$ist$die$Hauptbeschwerde$der$Patienten.$Anfänglich$
zeigt$ sich$ diese$ typischerweise$ unilateral$ und$ nur$ in$ einem$ Segment.$ Im$
Krankheitsverlauf$kommt$es$ zur$ zunehmenden$Schwäche$und$Ausbreitung$auf$ andere$
Segmente.$ Eine$ Beteiligung$ der$ Atemmuskulatur$ führt$ zu$ Belastungsdyspnoe,$
Orthopnoe$ und$ Hypoventilation$ mit$ daraus$ resultierender$ Hyperkapnie$ und$
frühmorgendlichen$ Kopfschmerzen70.$ Die$ Progredienz$ der$ Dyspnoe$ bis$ hin$ zur$
Ruhedyspnoe$gilt$als$Beginn$der$terminalen$Phase$der$Erkrankung41.$

$

1.3.5.Diagnose.

Da$ es$ keinen$ eindeutigen$ diagnostischen$ Test$ für$ die$ ALS$ gibt,$ stützt$ sich$ die$
Diagnosefindung$ der$ ALS$ derzeit$ hauptsächlich$ auf$ die$ Beurteilung$ der$ Symptome,$
welche$durch$die$Schädigung$des$ersten$und$zweiten$Motoneurons$verursacht$werden.$
Entsprechende$ Differentialdiagnosen$ müssen$ ausgeschlossen$ werden.$ Hierfür$ stehen$
die$ 1998$ revidierten$ ElCEscorialAKriterien71$ zur$ Verfügung.$ Diese$ gewichten$ die$
klinischen$ Zeichen$ der$ Schädigung$ der$ beiden$ Motoneurone$ und$ die$ betroffenen$
Regionen,$ um$ einen$ bestimmten$ Grad$ der$ Diagnosesicherheit$ zu$ erreichen.$ Trotz$ der$
Spezifität$der$ElCEscorialAKriterien$weisen$sie$insbesondere$bei$der$Diagnosefindung$in$
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sehr$frühen$Stadien$eine$sehr$geringe$Sensitivität$auf72.$Es$gibt$zahlreiche$Bestrebungen,$
Tests$mit$hoher$Sensitivität$zu$entwickeln.$Momentan$befinden$sich$die$AwajiAKriterien$
in$klinischer$Prüfung.$Diese$zielen$auf$eine$Gleichwertigkeit$elektrodiagnostischer$und$
klinischer$Befunde$ab73.$

$

Abb.31.3.3$ DiagnoseA
stellung$ nach$ den$ „ElAEscorialA$
Kriterien“$

$

In$ der$ technischen$ Zusatzdiagnostik$ ist$ die$ Durchführung$ eines$ Elektromyogramms$
(EMG)$ obligat.$ In$ dieser$ Untersuchung$ kann$ der$ generalisierte$ Befall$ des$ zweiten$
Motoneurons$ nachgewiesen$werden74.$Wesentlich$ in$ der$ Diagnosefindung$ der$ ALS$ ist$
der$ differentialdiagnostische$ Ausschluss$ anderer$ Erkrankungen$ mit$ ähnlichen$
Symptomen.$ Aus$ diesem$ Grunde$ sind$ eine$ Laboruntersuchung$ (im$ Hinblick$ auf$ eine$
Myasthenie$oder$Myopathie),$ eine$Elektroneurografie$ sowie$eine$MRTABildgebung$des$
Schädels$und$gegebenenfalls$des$Rückenmarks$zwingend$erforderlich69.$

$

1.3.6.Therapie.

Neuroprotektive$ Therapieansätze$ nutzen$ den$ GlutamatAAntagonisten$ Riluzol,$ um$ den$
Untergang$ motorischer$ Nervenzellen$ zu$ hemmen75.$ In$ randomisiertAkontrollierten$
Studien$ konnte$ das$ Überleben$ um$ 3A6$ Monate$ verlängert$ werden75A77.$ Riluzol$ ist$ das$
einzige$ bisher$ bekannte$ Therapeutikum$ bei$ der$ ALS$ mit$ lebensverlängernder$
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Wirkung78.$ Symptomatische$ Therapieansätze$ stehen$ bei$ der$ ALS$ nach$ wie$ vor$ im$
Vordergrund$der$Behandlungsstrategie.$Zu$zahlreichen$Optionen$zählen$unter$anderem$
Physiotherapie,$ $ Sprachtherapie,$ psychologische$ Betreuung$ sowie$ supportive$
medikamentöse$Therapie$bei$Symptomverschlechterung$(z.B.$Morphin,$Baclofen,$SSRIs,$
u.v.m.)$sowie$gegebenenfalls$eine$Heimbeatmung70.$

$

1.3.7.Prognose.

Die$Prognose$der$Amyotrophen$Lateralsklerose$ ist$ insgesamt$ schlecht$und$hängt$ vom$
Subtyp$ ab41.$ Patienten$ mit$ initial$ bulbärer$ Symptomatik$ haben$ die$ schlechteste$
Prognose$ (mittleres$ Überleben$ 2$ bis$ 2,5$ Jahre).$ Das$ mediane$ Überleben$ der$ übrigen$
ALSAFälle$ beträgt$ 3A5$ Jahre.$ Lediglich$ bei$ etwa$ 10A15%$ ist$ das$ Überleben$ im$ Mittel$
länger$(>$10$Jahre).$

$

1.3.8.Mausmodelle.

Mäuse$ mit$ Mutationen$ der$ SOD1$ sind$ das$ am$ häufigsten$ verwendete$ transgene$
Tiermodell$ in$ der$ ALSAForschung.$ Da$ sie$ aber$ auf$ dem$ therapeutischen$ Sektor$ bisher$
noch$keinen$Durchbruch$ermöglicht$haben,$wird$fortlaufend$an$der$Entwicklung$neuer$
Tiermodelle$geforscht.$Die$kürzliche$Entdeckung$der$Mutationen$in$Genen,$die$für$TDPC
43$ und$ FUS$ kodieren$ (siehe$ Absatz$ Molekulargenetik),$ haben$ dazu$ geführt,$ neue$
Mausmodelle$ mit$ diesen$ Mutationen$ zu$ entwickeln.$ Momentan$ sind$ allerdings$ noch$
keine$ derartigen$Mausmodelle$ verfügbar79.$ Aus$ diesem$ Grund$ bleibt$ das$Mausmodell$
mit$einer$Überexpression$der$mutierten$SOD1,$zu$denen$die$Variante$SOD1G93A$zählt,$das$
aktuell$beste$Modell,$um$die$Pathogenese$der$ALS$zu$erforschen79.$
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1.4.Biomolekulare.RedoxBSensoren.und.ratiometrische.Messverfahren.

Voraussetzung$ für$ das$ Verständnis$ der$ Pathogenese$ vieler$ Erkrankungen$ ist$ die$
Untersuchung$ des$ RedoxASystems.$ Bis$ vor$ kurzem$ war$ die$ dynamische$ Analyse$ der$
RedoxAProzesse$in$lebenden$Zellen$nicht$möglich,$da$passende$RedoxABiosensoren$nicht$
verfügbar$ waren10.$ Der$ Einsatz$ herkömmlicher$ Sensoren$ wie$ RedoxAsensitiver$ GFPs$
(engl.' reductionCoxidation' sensitive' green' fluorescent' proteins,' roGFPs)$ war$ durch$
Spezifitätsprobleme$und$$ihre$nur$sehr$langsame$Kinetik$limitiert10.$RoGFPs$haben$zwei$
fluoreszente$Exzitationsmaxima$bei$ungefähr$400$und$490nm80,$deren$Intensität$sich$in$
Abhängigkeit$ des$ Redoxstatus$ verändert.$ Aus$ den$ beiden$ Messwerten$ lässt$ sich$ ein$
Quotient$ berechnen,$ der$ Aufschluss$ über$ den$ Redoxstatus$ gibt.$ Bei$ dieser$ Methode$
handelt$es$sich$um$ein$ratiometrisches$Messverfahren$(λARatiometrie)80.$

Herkömmliche$ Messungen,$ welche$ auf$ der$ Intensität$ von$ fluoreszenten$ Signalen$
basieren,$ werden$ leicht$ durch$ die$ optischen$ Eigenschaften$ der$ beim$ Experiment$
verwendeten$ Flüssigkeit,$ die$ Konzentration$ des$ Fluoreszenzfarbstoffs$ und$ andere$
experimentelle$ oder$ instrumentelle$ Faktoren$ beeinflusst$ (z.B.$ Messplatz,$ Lichtquelle,$
Bleichen,$ Expressionslevel)81.$ Die$ λARatiometrie,$ bei$ der$ nach$ dem$ Messen$ zweier$
Emissionsmaxima$ eine$ Intensitätsratio$ berechnet$wird,$ $ vermeidet$ die$meisten$ dieser$
Interferenzen82.$

$

Abb.31.4.1$

A#HyperASensor$
B#roGFP/rxYFP$
C#Fusion$mit$Grx$

Abbildung$
modifiziert$nach$
Lukyanov$et$al.83$

$

$

Innerhalb$der$letzten$Jahre$seit$ihrer$Einführung$haben$genetisch$kodierte$fluoreszente$
Indikatoren$ (engl.' genetically' encoded' redox' indicators,' GERIs)$ wie$ HyPer,$ redoxA
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sensitive$gelbe$Fluoreszenzproteine$(rxYFP)$und$neue$redoxAsensitive$GFPs$(roGFPs)$ein$
enormes$ Interesse$ geweckt,$ da$ sie$ das$ dynamische$ Monitoring$ von$ RedoxA
Veränderungen$ in' vivo$ ermöglichen84.$ Redoxsensoren,$ die$ auf$ Fluoreszenzproteinen$
basieren,$ sind$ spezifisch$ für$ bestimmte$ Redoxpaare$ und$ bieten$ die$ Möglichkeit$ der$
Transgenese$und$des$feinen$subzellulären$Targetings83.$Der$H2O2ASensor$HyPer$auf$der$
einen$ Seite$ besteht$ aus$ einem$ gelben$ Fluoreszenzprotein$ (cpYFP),$ das$ in$ die$
regulatorische$ Domäne$ des$ prokaryoten$ H2O2ASensorAProteins$ OxyRCRD$ integriert$
wurde85$ (siehe$ Abbildung$ 1.4.1A).$RxYFP$ und$ roGFPs$ auf$ der$ anderen$ Seite$ enthalten$
Paare$ von$ CysteinAResiduen,$ durch$ welche$ der$ aktuelle$ GSH/GSSGARedoxstatus$
widergespiegelt$wird.$Der$Redoxstatus$von$Cystein$äquilibriert$mit$der$$GSH/GSSGARatio$
mit$ Hilfe$ von$ ThiolADisulfidAAustauschAEnzymen.$ Intrazellulär$ wird$ die$ Äquilibration$
mit$der$GSH/GSSGARatio$durch$das$AustauschAEnzym$Glutaredoxin$(Grx)$katalysiert$und$
geht$nur$ langsam$von$statten83$ (siehe$Abbildung$1.4.1B).$Durch$Fusion$von$rxYFP$und$
roGFP2$ mit$ Grx$ konnte$ eine$ sehr$ schnelle$ Äquilibration$ der$ RedoxAGEFIs$ erreicht$
werden$–$unabhängig$vom$natürlichen$GrxAVorkommen$(siehe$Abbildung$1.4.1C).$

$
Abb.31.4.2$ HeLa$ Zellen$ mit$ Grx1CroGFP2AExprimierung$ wurden$ mit$ 408/488nm$ Lasern$ angeregt,$
die$ Emissionsratio$ wurde$ berechnet.$ Nach$ 50s$ exogene$ Zugabe$ von$ 50µm$ H2O2,$ später$ Zugabe$ von$
0.5mM$DTT$(aus$Gutscher$et$al.$200810)$

$

Die$Fusion$des$roGFP2$mit$GlutaredoxinA1$(GrxC1)$bietet$zwei$wesentliche$Vorteile:$Zum$
einen$ eine$ spezifische$ Sensorantwort$ auf$ den$ GlutathionARedoxstatus$ sowie$ zum$
anderen$ eine$ schnellere$ zeitliche$ Auflösung$ (siehe$ Abb.$ 1.4.2$ im$Vergleich$ zu$ roGFP2,$
welches$ bei$ gleichzeitiger$ H2O2AApplikation$ mit$ deutlicher$ Latenz$ reagiert,$ steigt$ die$
Grx1CroGFP2ARatio$unmittelbar$an).$

Für$ die$ modellspezifische$ Auswahl$ des$ richtigen$ Biosensors$ ist$ es$ wichtig,$ deren$
Funktionsweise$und$ speziellen$Eigenschaften$ zu$kennen$und$ zu$verstehen.$Die$ größte$
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Herausforderung$ bei$ der$Arbeit$mit$ dem$HyPerASensor$ als$ auch$ dem$ rxYFPASensor$ ist$
deren$ pHASensitivität.$ Aus$ diesem$ Grund$ müssen$ adäquate$ Kontrollen$ verwendet$
werden,$ um$ potentielle$ pHAabhängige$ Schwankungen$ zu$ erfassen83,86,87.$ Während$ die$
pHASensitivität$ beim$ HyPerA$ und$ rxYFPASensor$ eine$ adäquate$ Kontrolle$ des$ pHs$
notwendig$macht,$ bietet$ das$ Arbeiten$mit$ roGFPASensoren$ diesbezüglich$ einen$ klaren$
Vorteil:$RoGFPs$ sind$nicht$pHAabhängig88.$Ferner$gibt$es$neue$roGFPAVarianten,$die$die$
roGFPAFunktionalität$weiter$verbesserten.$Beispielsweise$konvertiert$der$Austausch$von$
Grx$ durch$ die$ Orp1APeroxidase$ –$ ein$ H2O2ASensorprotein$ –$ in$ Fusion$ mit$ dem$
redoxsensitiven$grünen$Fluoreszenzprotein$2$(roGFP2)$den$Sensor$ in$den$H2O2ASensor$
roGFP2COrp183,89.$ RoGFP2COrp1$ (und$ auch$ HyPer)$ sind$ Sensoren,$ welche$ spezifisch$
Wasserstoffperoxid$ (H2O2)$ detektieren,$während$ rxYFP,$ roGFP1/2$ und$ das$ in$ unseren$
Versuchen$genutzte$Grx1CroGFP2'spezifisch$den$Redoxstatus$des$oxidierten/reduzierten$
GlutathionARedoxAPaars$GSSG/GSH$messen$(EGSH)83,90,91.$$

Ferner$sei$bei$der$Arbeit$mit$Redoxsensoren$noch$auf$weitere$potentielle$Effekte$auf$das$
Versuchssystem$ hingewiesen.$ HyPer$ beispielsweise$ hat$ eine$ sehr$ hohe$
Reaktionsgeschwindigkeit$mit$Wasserstoffperoxid$(105$M−1$s−1)$und$führt$zur$Reduktion$
von$H2O292.$Daraus$könnte$man$folgern,$dass$HyPer$eine$antioxidante$Aktivität$aufweist,$
welche$allerdings$abhängig$von$der$Reduktionsaktivität$ von$Grx$ und$Trx$ ist.$Während$
die$Oxidation$von$HyPer$ in$ Sekunden$von$ statten$ geht,$ dauert$die$Reduktion$mehrere$
Minuten85,92,93.$ Insofern$ kann$ HyPer$ nicht$ als$ effektives$ Antioxidans$ eingeschätzt$
werden83.$Auf$der$anderen$Seite$stellt$die$Überexpression$von$Grx1CroGFP2$zusätzliche$
GrxAAktivität$zur$Verfügung,$welche$einen$Effekt$auf$Thiole$und$andere$Proteine$haben$
könnte.$Weitere$Studien$könnten$zum$Ziel$haben,$diese$Effekte$näher$zu$beleuchten.$
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2..Ziele.der.Arbeit.

2.1.Charakterisierung.der.Sensorexpression.in.Thy1%Grx1%roGFP2%Mauslinien.

Mittels$ konfokaler$ Mikroskopie$ wollten$ wir$ eine$ histologische$ Charakterisierung$ des$
Expressionsmusters$ des$ fluoreszenten$ Grx1CroGFP2ASensorproteins$ in$ drei$
verschiedenen$ Mauslinien$ (Thy1CGrx1CroGFP2CMauslinien$ im' Folgenden' „MitoROSC
Mäuse“'genannt)$durchführen.$Hierfür$sollten$Schnitte$von$Gehirn,$Rückenmark,$Retina$
und$Muskel$hergestellt$und$gegengefärbt$werden.$

$

2.2.Kalibrierung.des.Sensorproteins.Grx1%roGFP2.

Mittels$ eines$ NervAMuskelAExplantats$ wollten$ wir$ ex' vivo$ den$ mitochondrialen$
GlutathionARedoxstatus$ in$ mitoROSAMauslinien$ quantifizieren.$ Die$ Anforderungen$ an$
den$ Sensor$ waren$ Spezifität$ für$ ROS,$ gute$ zeitliche$ und$ räumliche$ Auflösung,$ sowie$
Stabilität,$ Reliabilität$ und$ Validität$ der$ Messungen.$ Eine$ Kalibrierung$ des$
Sensorproteins$ mit$ Erstellung$ einer$ DosisAAntwortAKurve$ sollte$ die$ Funktion$ des$
Sensors$in$den$mitoROSAMauslinien$bestätigen$und$dokumentieren.$

$

2.3. Untersuchung. des. mitochondrialen. Redoxstatus. unter. physiologischen.

Bedingungen.

Bei$den$Untersuchungen$der$Physiologie$wollten$wir$den$mitochondrialen$Redoxstatus$
in$Abhängigkeit$von$Dynamik$und$Lokalisation$der$Mitochondrien$in$unterschiedlichen$
Nervenzellpopulationen$messen.$

$

2.4. Untersuchung. des. mitochondrialen. Redoxstatus. unter. pathologischen.

Bedingungen.

Pathologische$ Veränderungen$ des$ mitochondrialen$ Redoxstatus$ wollten$ wir$ im$
Tiermodell$ der$ ALS$ untersuchen.$ Dazu$ kreuzten$ wir$mitoROSC$ mit$ SOD1G93ACMäusen.$
Besonderes$Augenmerk$ lag$hierbei$ auf$der$Messung$des$mitochondrialen$Redoxstatus$
und$dessen$Relation$zu$morphologischen$Veränderungen$der$Mitochondrien.$
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3..Material.
Das$ in$ der$Arbeit$ verwendete$Material$ (Chemikalien,$ Geräte,$ Verbrauchsmaterial$ etc.)$
sowie$ die$ eingesetzten$ Mausstämme$ sind$ in$ den$ nachfolgenden$ Tabellen$
zusammengefasst.$

3.1.Mausexperimente.

Um$ selektiv$ den$ Grx1AroGFP2ARedoxsensor$ in$ neuronalen$ Mitochondrien$ zu$
exprimieren,$nutzten$wir$eine$modifizierte$Version$des$Thy1APromotors.$Die$Konstrukte$
wurden$gemäß$Standardprozeduren$kloniert94$und$die$Parentalgeneration$wurde$durch$
Pronuklearinjektion$ generiert.$Wir$ haben$ insgesamt$11$Mauslinien$ auf$ die$Expression$
des$fluoreszenten$Sensorproteins$Grx1AroGFP2$untersucht,$von$denen$drei$(Linien$676,$
690,$ 920)$ näher$ charakterisiert$ wurden.$ SODG93AAMäuse$ (Tg(SOD1*G93A)1Gur/J;$ The$
Jackson$ Laboratory)95$ wurden$ mit$ Thy1AmitoAGrx1AroGFP2$ Tieren$ gekreuzt.$ Wir$
nutzten$männliche$und$weibliche$Tiere$ für$unsere$Experimente.$Alle$Experimente$mit$
Tieren$ erfüllten$ institutionelle$ Richtlinien$ und$ wurden$ vom$ Tierversuchskomitee$ der$
Regierung$von$Oberbayern$genehmigt.$

3.2.Färbungen.

Material3 Spezifikation3 Bestell%Nr.3 Bezugsquelle3

Phalloidin$647$ Alexa$Fluor®$647$Phalloidin$ A22287$ Molecular$Probes®,$Custom$
Laboratory$Services,$Invitrogen$
Corporation,$Grand$Island,$NY$
14072$USA$
http://www.invitrogen.com/$

Bungarotoxin$594$ αABungarotoxin,$ Alexa$
Fluor®$594$Conjugate$

BA13423$ Molecular$Probes®,$Custom$
Laboratory$Services,$Invitrogen$
Corporation,$Grand$Island,$NY$
14072$USA$
http://www.invitrogen.com/$

Neurotrace$640/660$ NeuroTrace®$640⁄660$
deepAred$fluorescent$Nissl$
stain$A$solution$in$DMSO$
$

NA21483$ Molecular$Probes®,$Custom$
Laboratory$Services,$Invitrogen$
Corporation,$Grand$Island,$NY$
14072$USA$
http://www.invitrogen.com/$

$
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3.3.Chemikalien,.Lösungen.und.Kits.

Material3 Spezifikation3 Bestell%Nr.3 Bezugsquelle3

Agarose$ Agarose$500g$ 840004$ Biozym$Scientific$GmbH,$31840$
Hessisch$Oldendorf,$Deutschland$
http://www.biozym.com/$

AgaroseALösung$2%$ $ $ siehe'Protokoll'

DTT$ Electran,$1,4ADithiothreitol,$
molecular$biology$grade,$5g$

AMREM109A
5$

VWR®$International$LLC,$
Pennsylvania,$USA$
http://www.vwr.com/$

Ethanol$ Vergällt$70%,$5l$ 64A17A5$ CLN$GmbH,$85416$
Niederhummel,$Deutschland$
http://www.clnAfreising.de/$

NaCl$ Natriumchlorid,$SigmaUltra,$
min.$99.5%$

S7653A1KG$ SigmaAAldrich®$Chemie$GmbH,$
82024$Taufkirchen,$Deutschland$
http://www.sigmaaldrich.com/$

Na2HPO4$ NatriumdihydrogenphosphatA$
Monohydrat$

1063461000$ Merck$KGaA,$64271$Darmstadt,$
Deutschland$
http://www.merck.de$

NaOH$ Natronlauge,$BioXtra,$≥98%$ S8045A500G$ SigmaAAldrich®$Chemie$GmbH,$
82024$Taufkirchen,$Deutschland$
http://www.sigmaaldrich.com/$

Natural$Ringer$ $ $ Siehe'Protokoll'

Paraformalaldehyd$ Paraformalaldehyd,$kristallin,$
1kg$

P6148A1KG$ SigmaAAldrich®$Chemie$GmbH,$
82024$Taufkirchen,$Deutschland$
http://www.sigmaaldrich.com/$

PBS$ $ $ Siehe'Protokoll'

PFAALösung$4%$ Paraformalaldehyd$4%$ $ Nach'Protokoll'hergestellt'

Phosphatpuffer$ PB$0.2M$ $ Im$Hause$hergestellt,$Institut$für$
Klinische$Neuroimmunologie,$
LMU,$München,$Deutschland'

TissueATek$ TissueATek®$O.C.TTM$
Compound$

4583$ Sakura$Finetek$Europe$B.V.,$The$
Netherlands$
http://www.sakuraeu.com/$

Triton$ Triton®$XA100,$SigmaUltra$ X100A100ML$ SigmaAAldrich®$Chemie$GmbH,$
82024$Taufkirchen,$Deutschland$
http://www.sigmaaldrich.com/$

Vectashield$ VECTASHIELD®$Mounting$
Medium,$10ml$

HA1000$ Vector$Labs,$Burlingame,$CA$
94010$
http://www.vectorlabs.com$
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Wasserstoffperoxid$ Hydrogen$peroxide$solution$
30%,$puriss.,$stabilized,$0,5l$

18312A
500ML$

SigmaAAldrich®$Chemie$GmbH,$
82024$Taufkirchen,$Deutschland$
http://www.sigmaaldrich.com/$

Wasserstoffperoxid$ Hydrogen$peroxide$solution$
30%,$puriss.,$stabilized,$1l$

18312A1L$ SigmaAAldrich®$Chemie$GmbH,$
82024$Taufkirchen,$Deutschland$
http://www.sigmaaldrich.com/$

$

3.4.Verbrauchsmaterial.

Material3 Spezifikation3 Bestell%Nr.3 Bezugsquelle3

Alufolie$ $ $ $
Deckgläser$ MenzelAGläser,$24$x$24mm,$

24$x$32mm,$24$x$50mm,$
100$Deckgläser$

BB024024A1$
BB022032A1$
BB024050A1$

Gerhard$Menzel$GmbH,$38116$
Braunschweig,$Deutschland$
http://www.menzel.de/$

Falcon$Röhrchen$ BD$Falcon$15ml,$50ml$ 352096$
352070$

BD$Biosciences,$Franklin$Lakes,$NJ$
USA$07417$
http://www.bdbiosciences.com/$

Nagellack$ LACURA$Beauty$12ml$ $ Premium$Cosmetics,$GmbH,$
73054$Eislingen,$Deutschland$
http://premiumAcosmetics.com/$

Objektträger$ MenzelAGläser,$Größen$76$x$
26mm,$50$Stück$

AG00000112E$ Gerhard$Menzel$GmbH,$38116$
Braunschweig,$Deutschland$
http://www.menzel.de/$

Petrischalen$ Cell$Culture$Disk$100mm$x$
20mm$Style$

430293$ Corning$Inc.,$Corning,$NY$14831,$
USA$
http://www.corning.com/$

Pipettenspitzen$ epT.I.P.S.10/200/1000$µl$ $ Eppendorf,$Hamburg,$Deutschland$
http://www.eppendorf.com/$

Präparierbesteck$ Pinzetten,$Scheren$ $ Fine$Science$Tools$GmbH,$69121$
Heidelberg,$Deutschland$
http://www.finescience.de/$

Schutzhandschuhe$ PehaAsoft$satin$L$ 942726$ Paul$Hartmann$AG,$89522$
Heidenheim,$Deutschland$
http://de.hartmann.info/$

Sekundenkleber$ UHU$Sekunden$Alleskleber$
geruchsfrei$EASY,$3g$

474A742629$ UHU$GmbH$&$Co.$KG,$77815$
Bühl/Baden,$Deutschland$
http://www.uhu.com/$

SlygardASchalen$ $ $ Im$Hause$hergestellt,$Institut$für$
Neuronale$Zellbiologie,$TUM,$
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München,$Deutschland$
Zellkultur$Platten$$ Multiwell,$6ALoch,$24ALoch$ 353504$ BD$Biosciences,$Franklin$Lakes,$NJ$

USA$07417$
http://www.bdbiosciences.com/$

$

3.5.Geräte.

Material3 Spezifikation3 Bestell%Nr.3 Bezugsquelle3

Becherglas$ 250ml$Schott$Duran$ $ DURAN$Group$GmbH,$97877$
Wertheim/Main,$Deutschland$
http://www.duranAgroup.com$

Heizplatte$/$
Magnetrührer$

Heidolph$MR$3001$K$ 5041010000$ Heidolph$Instruments$GmbH$&$Co.$
KG,$93309$Kelheim,$Deutschland$
http://www.heidolph.com/$

Kryostat$ Cryo3®$100/115$V,$50/60$
Hz$A$Basic$

5800$ Sakura$Finetek$Europe$B.V.,$The$
Netherlands$
http://www.sakuraeu.com/$

Pipetten$ 10,$100,$200,$1000$µl$ $ Eppendorf,$Hamburg,$Deutschland$
http://www.eppendorf.com/$

Rührfisch$ Magnetrührstäbchen$
StandardASatz$

6A1999$ neoLab,$69123$Heidelberg,$
Deutschland$
http://www.neolab.de/$

Rüttler$ Vortex$Genie$2$ SIA0256$ Scientific$Industries$Inc.,$Bohemia,$
NY$11716$USA$
http://www.scientificindustries.com/$

Shaker$ PMRA30$Compact$FixedA
Angle$Platform$Rocker$

444A0341DE$
(VWR)$

Grant$Instruments,$Hillsborough,$
NJ$08844$USA$
http://www.grantinstruments.com/$

Thermometer$ Standard$Thermometer$
Celsius$

2A9800$ neoLab,$69123$Heidelberg,$
Deutschland$
http://www.neolab.de/$

Vibratom$ Vibratome$1000$Plus$
Sectioning$System$

064026$ The$Vibratome$Company,$St.$Louis,$
MO$63134$USA$
http://www.vibratome.com/$

Zentrifuge$ Centrifuge$5415$R$ 5426000.018$ Eppendorf,$Hamburg,$Deutschland$
http://www.eppendorf.com/$

$
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3.6.Mikroskopie.

Material3 Spezifikation3 Bestell%Nr.3 Bezugsquelle3

Konfokales$Mikroskop$ FluoView$FV1000$Confocal$
Microscope$

$ Olympus$Life$and$Material$
Science$Europa$GmbH,$20034$
Hamburg,$Deutschland$
http://www.olympus.de/$

Dissektionsmikroskop$ Zoom$stereo$microscope$
SZ51$

N1197800$ Olympus$Life$and$Material$
Science$Europa$GmbH,$20034$
Hamburg,$Deutschland$
http://www.olympus.de/$

Weitfeldmikroskop$ BX51WI,$Research$system$
microscope,$BX2WI$series$

038628$ Olympus$Life$and$Material$
Science$Europa$GmbH,$20034$
Hamburg,$Deutschland$
http://www.olympus.de/$

Wasserobjektiv$20x$ UMPLFL20xW/0.50$ 037588$ Olympus$Life$and$Material$
Science$Europa$GmbH,$20034$
Hamburg,$Deutschland$
http://www.olympus.de/$

Wasserobjektiv$100x$ LUMPLFL100xW/1.00$ 037595$ Olympus$Life$and$Material$
Science$Europa$GmbH,$20034$
Hamburg,$Deutschland$
http://www.olympus.de/$

Polychromator$$ Polychrome$V$
monochromator$
$

$ TILL$Photonics$GmbH,$82166$
Gräfelfing,$Deutschland$
http://www.tillAphotonics.com/$

Kamera$ Sensicam$qe,$cooled$digital$
12$bit$CCD$camera$system$

$ pco.$Imaging$AG,$93309$Kelheim,$
Deutschland$
http://www.pco.de/$

$

3.7.Software.

Material3 Spezifikation3 Bestell%Nr.3 Bezugsquelle3

Adobe$Photoshop$CS5$ $ B003FSSLVY$ San$Jose,$Kalifornien,$USA$
http://www.adobe.com/$

Fiji$ $ $ General$Public$License$
http://fiji.sc/$

Graphpad$Prism$v5.0$ $ $ GraphPad$Software,$Inc.m,$La$
Jolla,$CA$92037$USA$

http://www.graphpad.com/$
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scientificAsoftware/prism/$
Tillvision$ Tillvision$Software$ $ TILL$Photonics$GmbH,$82166$

Gräfelfing,$Deutschland$
http://www.tillAphotonics.com/$

Word$&$PowerPoint$ Microsoft$Office$2008$Mac$
Home$and$Student$

B0010QTCKM$ http://www.microsoft.com/$

Olympus$Fluoview$
Software$

$ $ Olympus$Life$and$Material$
Science$Europa$GmbH,$20034$
Hamburg,$Deutschland$
http://www.olympus.de/$
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4..Methoden.

4.1.Zucht.transgener.mitoROSBMäuse.

4.1.1.Generierung.der.mitoROSBMauslinien.

Um$ Mitochondrien$ selektiv$ zu$ kennzeichnen,$ nutzten$ wir$ den$ bereits$ etablierten$
neuronalen$Promotor$Thy196,$um$eine$Expression$des$Grx1CroGFP210$Sensormoleküls$in$
allen$neuronalen$Mitochondrien$ zu$erreichen.$Das$Konstrukt$mitoAGrx1CroGFP2$wurde$
in$ThyC1$(9188bp)$zwischen$Exon$II6205$und$Exon$IV6244$eingefügt.$Die$Klonierung$wurde$
von$ F.$ Bareyre$ und$ M.$ Breckwoldt$ am$ Institut' für' Klinische' Neuroimmunologie$ (LMU,$
München)$ durchgeführt.$ Die$ Pronuklearinjektion$ des$ Konstrukts$ in$ C57/BL6AMäuse$
erfolgte$am$MPI$in$Dresden$durch$R.$Naumann$(Transgenic'Core'Facility).$Es$wurden$elf$
mitoROS$Mauslinien$angesetzt,$von$denen$drei$vollständig$charakterisiert$wurden$(676,$
690,$ 920).$ Das$ Screening$ der$ gezüchteten$ Mauslinien$ wurde$ von$ T.$ Misgeld,$ M.$
Kerschensteiner$ und$ M.$ Schumacher$ (Institut' für' Klinische' Neuroimmunologie;$ LMU,$
München)$durchgeführt.$$

$

Abb.34.1.1$ Insertion$ des$ Konstrukts$
mitoCGrx1CroGFP2$ zwischen$ Exon$ II6205$ und$
Exon$ IV6244$ (Abbildung$ erstellt$ von$ T.$
Misgeld,$ Institut' für' Neuronale' Zellbiologie,$
TU,$München)#

.

4.1.2.Kreuzung.der.Linie.mitoROS.920.mit.SOD1G93A.

Tiere$mit$SOD1G93AAÜberexpression$(Tg(SOD1*G93A)1Gur/J;$The$Jackson$Laboratory)95$
wurden$ mit$ mitoROSAMäusen$ der$ Linie$ 920$ gekreuzt.$ Nach$ PCRAIdentifikation$ der$
Genotypen$ [mitoROS+/A$ x$ SOD1G93A$ tg/wt]$ und$ [mitoROS+/A$ x$ SOD1G93A$wt/wt]$wurden$
die$Versuchstiere$in$die$Gruppen$„Erkrankte$Tiere“$$sowie$„Kontrollen“$eingeteilt.$
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$

4.2. Charakterisierung. der. Grx1BroGFP2BProteinexpression. in. mitoROSB

Mauslinien.

Wir$ haben$ die$ Grx1CroGFP2AGenexpression$ in$ verschiedenen$ Geweben$ der$ mitoROS$
Mauslinien$ 676,$ 690$ und$ 920$ mittels$ konfokaler$ Mikroskopie$ histologisch$
charakterisiert.$ Die$ histologischen$Präparate$ der$ Linie$ 690$wurden$ zusätzlich$mit$ der$
NisslAFärbung$NeuroTrace$640/660$gegengefärbt.$

$

4.2.1.Gewebeaufbereitung.

Gewebe$ von$ mitoROSAMäusen$ wurde$ über$ transkardiale$ Perfusion$ mit$ 4%$
Paraformalaldehyd$(in$PhosphatAgepufferter$Saline,$PBS)$ fixiert.$Dazu$wurde$die$Maus$
mit$ Isofluran$ betäubt$ und$ auf$ einer$ Styroporunterlage$ mit$ Pins$ an$ allen$ vier$
Extremitäten$ fixiert.$ Der$ Thorax$ der$ Maus$ (Sternum$ und$ Rippen)$ wurde$ ohne$ das$
anteilige$ Segment$ der$Wirbelsäule$ frei$ präpariert$ und$ separat$ für$ 24h$ in$ 4%$PFA,$ im$
Anschluss$in$PBSAAzid$konserviert.$

Eine$Infusionsspritze$wurde$in$den$linken$Ventrikel$gelegt.$Der$rechte$Vorhof$wurde$mit$
einem$ Skalpell$ eröffnet.$ In$ das$ linke$ Herz$ wurde$ über$ die$ Infusionsspritze$ bis$ zur$
Entfärbung$ der$ Leber$ PBS$ und$ im$ Anschluss$ etwa$ 20ml$ 4%$ PFA$ injiziert.$ Daraufhin$
wurde$ das$ fixierte$ Gewebe$ von$ der$ Haut$ befreit,$ gewaschen$ und$ in$ einem$ Röhrchen$
(„FalconATube“)$in$4%$PFA$konserviert.$

Das$ Gehirn$ wurde$ von$ der$ Schädelkalotte$ getrennt$ und$ im$ Ganzen$ freipräpariert.$
Ebenso$wurden$die$Augen$inkl.$dem$N.$opticus$konserviert.$Die$Medulla$spinalis$wurde$
in$ihrem$zervikalen$Bereich$unter$Erhaltung$der$Hinterwurzelganglia$(engl.$Dorsal$Root$
Ganglion;$DRG)$sorgfältig$von$den$Wirbelkörpern$getrennt.$

$

4.2.2.Histologie.

Für$ die$ histologische$ Charakterisierung$ wurden$ in$ Abhängigkeit$ vom$ untersuchten$
Gewebe$drei$verschiedene$Protokolle$verwendet.$

Vibratomschnitte:$ Am$ Vibratom$ wurden$ SagittalA$ und$ Koronarschnitte$ des$ Gehirns$
angefertigt.$Für$die$Sagittalschnitte$wurde$eine$gesamte$Hemisphäre$verwendet,$für$die$
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Koronarschnitte$ ein$ Gewebeblock$ aus$ dem$Hippocampusbereich.$ Die$ Gewebe$wurden$
mittels$ vorher$ erwärmter$ (120s,$Mikrowelle$ bei$ 600W),$ flüssiger$ 2%iger$ Agarose$ $ in$
einer$entsprechend$großen$Plastikmulde$platziert$und$durch$Erkalten$der$Agarose$dort$
fixiert.$ Der$ AgaroseAGewebeABlock$ wurde$ mit$ Sekundenkleber$ auf$ der$ VibratomA
Schneideplattform$ befestigt.$ Anschließend$ wurden$ 100µm$ dicke$ KoronarA,$ sowie$
200µm$ dicke$ Sagittalschnitte$ angefertigt$ und$ mithilfe$ des$ Mediums$ Vectashield$ auf$
einem$ Objektträger$ aufgebracht.$ Dieses$ schützt$ die$ Fluoreszenz$ des$ Präparats$ vor$
Bleichen.$

Kryostatschnitte:# Am$ Kryostat$ wurden$ Sagittalschnitte$ der$ Retina$ sowie$
Transversalschnitte$ des$ zervikalen$ Rückenmarks$ inkl.$ der$ DRGs$ angefertigt.$ Nach$
Kryoprotektion$ in$ SucroseALösung$ wurde$ das$ Gewebe$ unter$ Verwendung$ von$
Trockeneis$ gefroren.$ Das$ entsprechende$ Gewebe$ wurde$ auf$ dem$ KryostatA
Schneidesockel$ platziert$ und$ mit$ O.C.T.$ (visköse$ Flüssigkeit$ für$ die$ Anfertigung$ von$
Kryostatschnitten$ zur$ Gewebefixierung$ im$ Sockel)$ bedeckt.$ Anschließend$ wurde$ der$
Block$ in$ einer$ Metallschüssel,$ welche$ sich$ in$ einer$ Box$ voll$ Trockeneis$ befand$ und$
Isopentan$ enthielt,$ schockgefroren.$ Von$ der$ Retina$ wurden$ 25µm$ dicke,$ vom$
Rückenmark$inkl.$DRGs$30µm$dicke$Schnitte$angefertigt.$Diese$wurden$im$Anschluss$auf$
einem$Objektträger$fixiert.$

M.#triangluaris#sterni#(MTS)=Präparation:$ Nach$ PBSAAzidAKonservierung$ des$
Mausthorax$ (ohne$ anteilige$ Wirbelsäule$ und$ Organe;$ s.o.)$ wurde$ der$ MTS$ von$ der$
Innenseite$ des$ Rippenbogens$ mit$ Hilfe$ einer$ spitzen$ Kanüle$ abgelöst.$ Nach$ der$
Färbeprozedur$ wurde$ der$ Muskel$ auf$ einem$ Objektträger$ fixiert.$ Als$ Medium$ wurde$
Vectashield$verwendet.$

$

4.2.3.Färbung.

Schnitte$ verschiedener$ Gewebe$ der$mitoROSALinie$ 690$ wurden$ mit$ der$ Nisslfärbung$
Neurotrace$ 640/660$ gegengefärbt.$ Die$ MTSAPräparate$ wurden$ mit$ einem$
fluoreszenzmarkierten$ Bungarotoxin$ 594$ gefärbt,$ um$ nikotinerge$
Acetylcholinrezeptoren$der$postsynaptischen$Membran$sichtbar$zu$machen.$Zusätzlich$
wurde$Phalloidin$635$verwendet,$um$die$Aktinfilamente$des$Muskels$darzustellen.$

Die$Färbungen$wurden$nach$folgenden$Protokollen$durchgeführt:$
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Protokoll$Phalloidin$647$

1. Spülung$der$Schnitte$in$PBS$3x$5min$(Shaker)$

2. Färbung$der$Schnitte$in$Phalloidin$(Verdünnung$1:50$in$PBS)$

3. über$Nacht$im$Shaker$bei$4°C$

4. Spülung$der$Schnitte$in$PBS$mindestens$3A4$mal,$jeweils$5min$

5. Fixierung$auf$Objektträger$(Coverslip$mit$Vectashield)$

6. Fixierung$des$Deckglases$mit$Hilfe$eines$Magneten$auf$einer$Metallplatte$

$

Protokoll$Bungarotoxin$594$

1. Spülung$der$Schnitte$in$PBS$3x$5min$(Shaker)$

2. Färbung$der$Schnitte$in$Bungarotoxin$(Verdünnung$1:20$in$PBS)$

3. über$Nacht$im$Shaker$bei$4°C$

4. Spülung$der$Schnitte$in$PBS$mindestens$3A4$mal,$jeweils$5min$

5. Fixierung$auf$Objektträger$(Coverslip$mit$Vectashield)$

6. Fixierung$des$Deckglases$mit$Hilfe$eines$Magneten$auf$einer$Metallplatte$

$

Protokoll$Neurotrace$640/660$

1. Spülung$der$Schnitte$in$PBS$3x$5min$(Shaker)$

2. Färbung$der$Schnitte$in$Neurotrace$(Verdünnung$1:500$in$1%$TritonAX100/PBS)$

3. für$2A3h$im$Shaker$

4. Spülung$der$Schnitte$in$PBS$mindestens$3A4$mal,$jeweils$5min$

5. Fixierung$auf$Objektträger$(Coverslip$mit$Vectashield)$

$

4.2.4.Konfokale.Mikroskopie.

Konfokale$ Bilder/Bildstapel$ wurden$ an$ einem$ Olympus$ FV1000$ Confocal$ Microscopy$
System$ aufgenommen.$ Dieses$ ist$ ausgestattet$ mit$ einem$ x20/0.8$ N.A.$ und$ einem$
x60/1.42$N.A.$ÖlAImmersionsobjektiv.$

Die$verschiedenen$Präparate$wurden$folgendermaßen$dokumentiert:$
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Objekt#(Schnitt)# Färbung(en)# Objektiv#

Retina$(sag.)$ *$ x10$

Retina$(flatmount)$ $ x10/$20/60$

Rückenmark$inkl.$DRG$ *$ x10$

Gehirn$(sagittal)$ *$ x4$

Gehirn$(koronar)$ *$ x4$

Kortex$(sagittal)$ *$ x10$

Cerebellum$(sagittal)$ *$ x10$

Hippocampus$(sagittal)$ *$ x10$

MTS$ BTX$+$Phalloidin$ x20$

Synapsen$ BTX$+$Phalloidin$ x60$
*$Gegenfärbung$der$Linie$mitoROS$690$mit$Neurotrace$640/660$

.

4.2.5.Verwendete.Software.

Olympus#Software:$Steuerung$des$FV1000$Confocal$Microscopy$System,$automatisches$
Stitching$$

Fiji/ImageJ:# $ Bildbearbeitung;$yAProjektion$von$Stacks$

Photoshop#CS5:$ ImageAProcessing,$manuelles$Stitching$

$

4.3.Kalibrierung.des.Sensorproteins.Grx1BroGFP2.in.mitoROSBMäusen.

Experimente$ zur$ Kalibrierung$ des$ Sensorproteins$ wurden$ mittels$ eines$
Weitfeldmikroskops$ durchgeführt.$ Der$ Thorax$ der$ Maus$ wurde$ ohne$ intrathorakale$
Organe$und$anteilige$Wirbelsäule$explantiert,$um$anschließend$den$auf$der$ Innenseite$
des$ Thorax$ lokalisierten$ M.$ triangularis$ sterni$ mikroskopisch$ zu$ untersuchen.$ Dieser$
sehr$ dünne$ Muskel$ bietet$ den$ Vorteil,$ dass$ einzelne$ Muskelfasern$ leichter$ zu$
visualisieren$sind.$Auch$ist$es$möglich,$sehr$oberflächliche$neuromuskuläre$Endplatten$
zu$ erfassen.$ Der$ Fokus$ bei$ den$ in$ dieser$ Arbeit$ vorgestellten$ Experimenten$ lag$
hauptsächlich$ auf$ der$ Visualisierung$ der$ Mitochondrien$ in$ Interkostalnerven$ und$
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motorischen$Endplatten.$ Für$ die$ Experimente$wurden$mitoROSAMäuse$ der$ Linien$ 690$
und$920$verwendet.$

$

4.3.1.ExplantatBPräparation.

Die$ Mäuse$ wurden$ mit$ einer$ Überdosis$ des$ Inhalationsnarkotikums$ Isofluran$ (etwa$
1,5ml)$getötet.$Im$Anschluss$wurde$das$Thoraxexplantat$entnommen.$Diese$Technik$ist$
in$Kerschensteiner$et$al.$200897$detailliert$beschrieben.$

Nach$einem$thorakalen$LängsAHautschnitt$(kranial$der$apikalen$Seite$des$Sternums$bis$
kaudal$bis$zur$Mitte$des$Abdomens)$wurde$durch$Querschnitte$der$Haut$auf$Höhe$der$
Klavikula$ sowie$ des$ Diaphragmas$ die$ Haut$ zur$ Seite$ geklappt.$ Es$ folgte$ eine$
Abpräparation$ der$ parietal$ gelegenen,$ das$ Sternum$ und$ den$ Thorax$ bedeckenden$
Muskeln.$Anschließend$wurde$das$Diaphragma$mit$einer$spitzen$Pinzette$punktiert,$um$
einen$ künstlichen$ Pneumothorax$ zu$ erzeugen$ und$ eine$ feine$ Abpräparation$ des$ nun$
gespannten$ Diaphragmas$ zu$ ermöglichen.$ Ferner$ wurden$ die$ das$ Herz$ fixierenden$
Bänder$ durchschnitten$ und$ der$ Thymus$ abpräpariert.$ Im$ nächsten$ Schritt$ wurden$$
beidseits$ entlang$ der$ 5.$ oder$ 6.$ Rippe$ bis$ zur$ Columna$ vertebralis$ die$
Interkostalmuskeln$ durchtrennt.$ Schließlich$ wurde$ der$ Thorax$ durch$ beidseitige$
Schnitte$ paravertebral$ und$ einen$ Schnitt$ oberhalb$ der$ beiden$ ersten$ Rippen$ und$ des$
Sternums$entnommen.$Im$nächsten$Schritt$wurde$das$Explantat$in$eine$mit$oxygenierter$
(95%$ O2,$ 5%$ CO2)$ Ringerlösung$ gefüllte$ Petrischale$ gelegt,$ um$ unter$ einem$
Präparationsmikroskop$ mit$ entsprechender$ Beleuchtung$ eine$ Feinpräparation$ der$
Sternummuskulatur$und$Entfernung$nicht$benötigter$Gewebeanteile$zu$ermöglichen.$Im$
letzten$ Schritt$ wurde$ das$ Explantat$ in$ eine$ kleine$ (ebenso$ mit$ oxygenierter$
Ringerlösung$gefüllte)$Petrischale$mit$SlygardAGelboden$gelegt.$Ziel$der$Vorgehensweise$
war$ es,$ das$ Explantat$ mit$ Hilfe$ acht$ bis$ zehn$ kleiner$ Pins$ möglichst$ flach$ (wichtige$
Voraussetzung$ für$ späteres$ Imaging$ der$ Synapsen$ und$ Interkostalnerven)$ auf$ dem$
Gelboden$ zu$ fixieren.$ Es$ hat$ sich$ die$ Befestigung$ des$ Sternums$ mit$ zwei$ Pins,$ die$
Befestigung$ der$ Rippen$ 1$ und$ 5$ beidseits$ am$ äußeren$ Ende$ des$ zum$ Trapez$
aufgespannten$Explantats$mit$insgesamt$vier$Pins$bewährt.$Ferner$empfahl$es$sich,$das$
Präparat$ noch$ weiter$ zu$ ebnen,$ indem$ man$ die$ verbleibenden$ Pins$ mittels$
Hebelmechanismus$neben$die$Rippen$eins$(dort$infracostal)$und$fünf$(dort$supracostal)$
steckte.$ Anschließend$ wurden$ die$ Rippen$ durch$ Biegen$ der$ Pins$ nach$ kranial$ bzw.$
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kaudal$ weiter$ auseinandergespreizt,$ um$ somit$ eine$ Auffächerung$ des$ Muskels$ zu$
bewirken.$

$

Abb.34.3.1$ Aus$ der$ Maus$
explantiertes$ MTSAPräparat$ &$
fluoreszenzmikroskopische$ Darstellung$
der$ Interkostalnerven$ sowie$ des$
motorischen$ Endplattenbandes$
(modifiziert$ aus$ Kerschensteiner$ et$ al.$
200897)3

$

Die$ Visualisierung$ des$mitochondrialen$Redoxstatus$war$ bis$ zu$ vier$ Stunden$möglich,$
bevor$der$Muskel$anfing,$spontan$zu$kontrahieren$und$Messungen$erschwert$wurden.$

$

4.3.2.Ausstattung.des.Messplatzes.

Alle$ Experimente$ wurden$ an$ einem$ Weitfeldmikroskop$ (BX51WI,$ Olympus)$
durchgeführt.$Dieses$war$ausgestattet$mit$zwei$WasserAImmersionsobjektiven$(x20$und$
x100),$ einem$ Filterrad$ mit$ Shutter,$ einem$ Polychromator$ und$ einer$ gekühlten$ CCDA
Kamera,$gesteuert$mit$der$Software$„Tillvision“.$Es$wurde$ein$dichroitischer$Filter$(D/F$
500$DCXR$ET$525/36)$verwendet.$Die$Bilder$wurden$bei$Belichtungszeiten$von$150ms$
für$408nm$und$30ms$für$488nm$Exzitationslicht$aufgenommen.$

Eine$ angepasste$ Mulde$ mit$ Heizring$ und$ Thermometer$ gewährleistete$ eine$ fixierte$
Position$ der$ Petrischale$ auf$ dem$ Objekttisch$ sowie$ eine$ konstante$ Temperatur$ des$
Explantats$ zwischen$ 34°C$ und$ 37°C.$ Das$ Präparat$ war$ umgeben$ von$ NaturalARingerA
Lösung$ (NR),$ oxygeniert$ mit$ 95%$ O2$ und$ 5%$ CO2,$ welche$ über$ ein$ ZuA$ und$
Abflusssystem$(Aquariumpumpe)$ständig$erneuert$wurde.$
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$
Abb.34.3.2$ Ausstattung$des$Messplatzes$für$exCvivoAExperimente;$links$Olympus$BX51WI$Mikroskop;$
rechts$ Objekttisch$mit$Heizring,$ Thermometer$ und$ ZuA/Abflusssystem$ (mod.$ aus$ Kerschensteiner$ et$ al.$
200897)$

$

4.3.3.Experimente.DosisBAntwortBKurve.

Nach$ Anfertigung$ des$ Präparats$ wurde$ dieses$ zunächst$ bis$ 60min$ nach$
Präparationsbeginn$ in$ oxygenierter$ NaturalARingerALösung$ (NR)$ aufbewahrt,$ um$ sich$
von$ potentiellem$ oxidativen$ Stress$ durch$ die$ Präparation$ zu$ erholen.$ In$ der$
Zwischenzeit$wurde$eine$Verdünnungsreihe$von$H2O2$hergestellt$(siehe$Protokoll$S.$40).$
Zum$ Schutze$ des$ H2O2$ vor$ UVALicht$ wurden$ die$ Bechergläser$ mit$ den$
Verdünnungslösungen$ in$ Alufolie$ verpackt.$ Zusätzlich$ wurde$ eine$ 500µM$
Dithiothreitol(DTT)ALösung$hergestellt.$

Versuchsablauf:$ Zur$ Messung$ der$ DosisAAntwortAKurve$ wurden$ exogen$ sowohl$
oxidierende$ (H2O2$ in$ verschiedenen$ Verdünnungen)$ als$ auch$ reduzierende$ (DTT)$
Substanzen$ in$die$Petrischale$appliziert$und$konsekutiv$der$Redoxstatus$ in$einer$oder$
mehrerer$ Synapsen$ des$ motorischen$ Endplattenbandes$ des$ MTS$ gemessen.$ Als$
Basiswert$ diente$ eine$ Messung$ in$ Natural$ Ringer,$ einer$ Lösung,$ welche$ ein$
physiologisches$Milieu$simulieren$soll.$
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Aufgrund$der$unterschiedlich$guten$Penetration$des$H2O2$in$das$Gewebe$war$es$wichtig,$
ausschließlich$ Synapsen$ zu$ visualisieren,$ welche$ sich$ oberflächlich$ befanden.$ Pro$
Messstufe$ wurden$ zwischen$ einer$ und$ etwa$ zehn$ Synapsen$ gemessen.$ Bei$ allen$
Messungen$wurde$in$jedem$Kanal$–$sowohl$408nmA$als$auch$488nmAWellenlänge$–$ein$
Bild$(im$folgenden$Frame)$gemessen.$

Bei$ 60min$ nach$ Präparationsbeginn$wurde$ die$ erste$Messung$ des$ Redoxstatus$ in$ NR$
durchgeführt.$ Anschließend$wurde$ der$ Sensor$mit$ 500µM$DTT$ reduziert$ und$weitere$
Messungen$ durchgeführt.$ Im$ 5minAAbstand$ wurde$ jeweils$ H2O2$ in$ aufsteigender$
Konzentration$ appliziert$ (6,25µM,$ 12,5µM,$ 25µM,$ 50µM,$ 100µM,$ 200µM,$ 400µM$ und$
800M)$und$jeweils$eine$Messung$pro$Synapse$vorgenommen.$Am$Ende$des$Experiments$
wurde$der$Sensor$noch$einmal$mit$500µM$DTT$reduziert.$

In$späteren$Experimenten$wurden$zum$Teil$manche$H2O2AStufen$ausgelassen,$um$gezielt$
mehr$Werte$für$bestimmte$Stufen$zu$generieren.$Die$Grundreduktion$des$Sensors$durch$
anfängliche$500µM$DTTAApplikation$wurde$bei$allen$Experimenten$durchgeführt.$

$

4.4. Untersuchung. des. mitochondrialen. Redoxstatus. unter. physiologischen.

Bedingungen.

Bei$ dieser$ Versuchsreihe$ ging$ es$ um$ die$ Untersuchung$ physiologischer$ Vorgänge.$
Hierfür$ wurden$ Mitochondrien$ in$ neuromuskulären$ Endplatten$ des$ MTS$ sowie$ der$
Interkostalnerven$ II$ bis$ IV$ beidseits$ untersucht.$ Das$ Medium$ zur$ Simulation$ eines$
physiologischen$Zustandes$war$bei$(1)$und$(2)$NaturalARingerALösung.$

Versuchsablauf:$ Das$Präparat$wurde$wie$in$4.3.1$beschrieben$angefertigt.$$

(1)$Ab$dem$Zeitpunkt$60min$nach$Präparationsbeginn$wurden$etwa$zehn$bis$ zwanzig$
Synapsen$ des$ neuromuskulären$ Endplattenbandes$wie$ im$DosisAAntwortAVersuch$mit$
Einzelbildern$ (je$ ein$ Bild$ 408/488nm$ Exzitation)$ visualisiert.$ Die$ oberflächliche$ Lage$
der$Synapsen$war$(anders$als$im$DosisAAntwortAVersuch)$bei$diesem$Experiment$nicht$
zwingend$erforderlich,$da$exogen$keine$Substanzen$zugeführt$wurden.$

(2)$ Anschließend$ wurden$ Mitochondrien$ in$ Interkostalnerven$ untersucht.$ Um$ später$
einen$Zusammenhang$zwischen$sich$bewegenden$Mitochondrien$und$dem$Redoxstatus$
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herstellen$zu$können,$wurden$etwa$300s$lange$Filme$mit$einer$Bildrate$zwischen$1$und$
3$Hz$von$Mitochondrien$in$Interkostalnerven$aufgenommen.$

(3)$ Um$ der$ Frage$ nachzugehen,$ ob$ physiologische$ Phänomene$ in$ reduziertem$ oder$
oxidiertem$Milieu$seltener$oder$häufiger$auftreten,$wurde$das$Präparat$mit$200mM$DTT$
und$ 50mM$ H2O2$ behandelt.$ Es$ wurden$ etwa$ 300s$ lange$ Filme$ mit$ einer$ Bildrate$
zwischen$ 1$ und$ 3$ Hz$ aufgenommen$ und$ das$ Auftreten$ physiologischer$ Phänomene$
(Kontraktionen)$ in$ Relation$ zum$ Produkt$ aus$ Einzelbildern$ und$ aufgenommener$
Bildfläche$ berechnet.$ Dieser$ $ Experimentschritt$ wurde$ in$ Zusammenarbeit$ mit$ M.$
Breckwoldt$durchgeführt.$

$

4.5. Untersuchung. des. mitochondrialen. Redoxstatus. unter. pathologischen.

Bedingungen.

Erkrankte$Tiere$(mitoROS+/A$x$SOD1G93A$tg/wt)$sowie$Kontrollen$(mitoROS+/A$x$SOD1G93A$
wt/wt)$ aus$ gleichen$Würfen$ wurden$ jeweils$ an$ zwei$ verschiedenen$ Zeitpunkten$ (90$
Tage$und$135$Tage$postnatal)$untersucht.$

Versuchsablauf:$ Der$Fokus$des$Imaging$lag$auf$Mitochondrien$im$Interkostalnerven.$
Da$ bei$ den$ Versuchen$ weniger$ die$ Dynamik$ der$ Mitochondrien,$ mehr$ jedoch$ die$
Morphologie$ und$ der$ Redoxstatus$ von$ Interesse$waren,$wurden$ keine$ Filme,$ sondern$
lediglich$Einzelbildaufnahmen$gemacht.$Dies$hatte$den$Vorteil,$dass$pro$Experiment$bis$
zu$60$Bilder$aufgenommen$und$ausgewertet$werden$konnten.$

$

4.6.Quantitative.und.statistische.Analyse.

4.6.1.Messung.des.Redoxstatus.

Fiji:$ Notwendige$ Voraussetzung$ für$ die$ Messung$ des$ Redoxstatus$ war$ immer$ ein$
Bildpaar$ 408/488nm.$ Dieses$ wurde$ in$ die$ Software$ Fiji$ importiert.$ In$ jedem$ Bild$
wurden$je$eine$Region$of$interest$(ROI)$für$eine$Hintergrundsfläche$(BG)$sowie$für$ein$
zu$ messendes$ Mitochondrion$ (in$ der$ Synapse$ ein$ Mitochondrienverband)$ definiert.$
Mittlere$ Intensitätswerte$ dieser$ beiden$ ROIs$ wurden$ sowohl$ im$ 408nm$ als$ auch$ im$
488nm$Kanal$gemessen$(insgesamt$vier$Messwerte:$I408nm,$I488nm,$BG408nm,$BG488nm).$Das$
Ergebnis$dieser$Messung$wurde$in$die$Software$Microsoft$Office$Excel$2008$geladen.$
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Excel#2008:$ Nach$Abzug$des$Hintergrundwertes$in$beiden$Kanälen$408nm$und$488nm$

ΔI408nm$=$I408nm$–$BG408nm$

sowie$

ΔI488nm$=$I488nm$–$BG488nm$

wurde$ im$ nächsten$ Schritt$ die$ Ratio$ des$ Redoxstatus$ berechnet.$ Hierfür$ wurde$ der$
Quotient$der$beiden$Werte$I408nm$und$I488nm$kalkuliert.$

R0=$ΔI408nm/ΔI488nm$

Anschließend$wurden$die$Messergebnisse$ normalisiert,$ indem$die$Ratio$R0$ durch$ den$
durchschnittlichen$DTTARatiowert$RDTT=0,29$geteilt$wurde.$

RN$=$R0/RDTT$

4.6.2.Messung.des.ShapeBFactors.

Fiji:$ Um$ die$ Morphologie$ der$ untersuchten$ Mitochondrien$ in$ Interkostalnerven$ zu$
beschreiben,$wurde$ in$Fiji$ sowohl$die$Länge$ als$ auch$die$Breite$ eines$Mitochondrions$
gemessen.$

Excel# 2008:$ Der$ ShapeAFactor$ ist$ ein$ Maß,$ welches$ die$ Morphologie$ eines$ einzelnen$
Mitochondrions$ quantifiziert.$ Er$ ist$ der$ Quotient$ aus$ Länge$ und$ Breite$ eines$
Mitochonrions.$

SFM$=$lengthM/widthM$

Per$definitionem$gibt$es$keinen$ShapeAFactor$<$1.$

$

4.6.3.Berechnung.von.Standardabweichung,.Standardfehler,.Signifikanzniveau.und.pBWert.

Die$ Ergebnisse$ wurden$ in$ Excel$ 2008$ mithilfe$ zweiseitiger$ tATests$ auf$ statistische$
Signifikanz$untersucht.$PAWerte$<$0.05$wurden$als$statistisch$signifikant$angesehen$und$
in$ den$ Graphen$ entsprechend$ gekennzeichnet.$ Die$ Graphen$ zeigen$ die$
Abweichungsfunktion$±$ S.E.M.$ (standard$ error$ of$ the$mean),$welcher$ als$Quotient$ der$
Standardabweichung$σ$und$der$Wurzel$der$Stichprobengröße$n$kalkuliert$wurde.$Dieser$
ist$in$den$Diagrammen$als$Abweichungsfunktion$angegeben.$
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4.6.4.Graphische.Darstellung.der.Daten.

Excel#2008/Graph#Pad#PRISM#5:$Für$ die$ graphische$ Darstellung$ wurden$ PunktA$ und$
Balkendiagramme$ in$ Microsoft$ Office$ Excel$ Office$ 2008$ erstellt.$ Die$ Trendlinie$ der$
DosisAAntwortAKurve$ wurde$ in$ Graph$ Pad$ Prism$ 5$ unter$ der$ Annahme$ einer$
sigmoidalen$DosisAAntwortASättigungsAKinetik$berechnet.$

Für$ die$ Darstellung$ der$ Daten$ aus$ SOD1G93AAExperimenten$ wurde$ das$ Feld$ zwischen$
Ordinate$(RN)$ $und$Abszisse$(SF)$in$vier$Quadranten$geteilt,$um$somit$vier$Gruppen$zu$
bilden$(beginnend$rechts$unten,$gegen$den$Uhrzeigersinn).$

(I)$RN$physiologisch$–$SF$physiologisch$

(II)$RN$physiologisch$–$SF$pathologisch$

(III)$RN$pathologisch$–$SF$pathologisch$

(IV)$RN$pathologisch$–$SF$physiologisch$

Berechnung$ der$ Grenzwerte:$ !Grenzwert$ für$ SF$ (=Definition$ von$ verkürzten$
Mitochondrien)$ [meanASF$ (oxidierte$ Mitochondrien$ p90$ &$ p135)$ +$ 2σ]:$ SF$ =$ 3.38;$
!Grenzwert$ für$ Redoxstatus$ (=Definition$ von$ oxidierten$ Mitochondrien)$ [meanARN$
(Kontrolle)$+$2σ]$:$RN$=$1.60$

$

4.7.Bildbearbeitung.der.aufgenommenen.PrimärdatenBBilder.

Fiji/Adobe# Photoshop# CS5:$ Um$ farbkodierte$ Bilder$ zu$ erstellen,$ welche$ den$
Redoxstatus$ einzelner$ Mitochondrien$ in$ Synapsen$ und$ Interkostalnervaxonen$
darstellen,$wurde$in$Fiji$die$„Pseudocolor“AFunktion$verwendet.$Hierfür$wurde$die$ROI$
mit$einer$ThreshholdAMaske$versehen,$in$ein$binäres$(1/0)$Bild$umgewandelt$und$dann$
mit$der$Bildfläche$multipliziert,$bevor$anschließend$die$beiden$Kanäle$408/488$dividiert$
wurden.$Ebenso$wurde$in$Fiji$eine$Skala$entwickelt,$welche$ROSALevel$von$1A3$in$Farben$
kodiert$(tools/calibration$bar).$Dunkelblau$ist$dabei$ein$maximal$reduzierter,$weiß$ein$
maximal$oxidierter$Zustand$des$Redoxstatus.$Die$Bilder$wurden$anschließend$in$Adobe$
Photoshop$CS5$weiter$bearbeitet.$

Adobe#Photoshop#CS5:$Großformatige$konfokale$Bilder$wurden$mit$Adobe$Photoshop$
zusammengefügt$ („Stitching“).$ Ferner$ wurden$ die$ Bilder$ entsprechend$ angefärbt.$
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Phalloidin$ erscheint$ in$ lila,$ Bungarotoxin$ in$ rot,$ Neurotrace$ ebenfalls$ in$ rot$ und$ die$
Expression$von$Grx1CroGFP2$in$grün$bzw.$weiß.$

$

4.8.Protokolle.

Agarose$2%$

1. Lösen$von$2g$Agarose$in$100ml$PBS$

2. Erhitzen$in$der$Mikrowelle$bis$zum$einmaligen$Aufkochen$(600W,$ca.$3min)$

3. dann$Abkühlen$lassen$

$

PFA$4%$

1. 8%$PFA$in$dH20$

2. Erhitzen$auf$55°C,$max.$60°C,$mit$Rührfisch$

3. wenn$trüb,$~500μl$1M$NaOH$hinzufügen$

4. weitere$10min$mit$Rührfisch$rühren$

5. Filtrieren$

6. 500ml$PFA$mit$500$ml$0.2$M$PB$mischen$

7. pH$adjustieren$(7.2$–$7.8)$

$

PBS$1x$

1. Für$1l$PBS$10x$(pH$7,2/7,4)$

a. 2,6g$NaH2PO4$(M=137.99$g/mol)$

b. 14,4g$Na2HPO4x2H2O$(M=177,99g/mol)$

c. 87,5g$NaCl$

gelöst$in$dH2O$

2. Verdünnung$auf$1x$PBS:$100ml$10x$PBS$+$900ml$H2O$dest.$

$

Natural$Ringer$1x$

1. Für$1l$Natural$Ringer$10x$

a. 21.84g$NaHCO3$(M=84.01$g/mol)$
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b. 14,4g$NaH2PO4xH2O$(M=138g/mol)$

c. 1,86g$KCl$(M=74,56g/mol)$

d. 73,05g$NaCl$(M=58,44g/mol)$

gelöst$in$dH2O$

2. Verdünnung$auf$1x$PBS:$100ml$10x$Natural$Ringer$+$900ml$H2O$dest.$

$

DTT$500µM$

1. Auf$der$Feinwaage$3,85mg$DTT$wiegen$

2. Verdünnung$des$DTT$in$50ml$NR$

$

H2O2AVerdünnungen$

1. Herstellung$ einer$ 8mM$ Stocklösung$ durch$ Verdünnung$ von$ 82µl$ 30%$
Wasserstoffperoxid$auf$100ml$NR$

2. Herstellung$einer$Verdünnungsreihe:$

a. 800µM$H2O2Lösung:$10ml$Stock$8mM$in$90ml$NR$

b. 400µM$H2O2Lösung:$50ml$800µM$H2O2in$50ml$NR$

c. 200µM$H2O2Lösung:$50ml$400µM$H2O2in$50ml$NR$

d. 100µM$H2O2Lösung:$50ml$200µM$H2O2in$50ml$NR$

e. 50µM$H2O2Lösung:$50ml$100µM$H2O2in$50ml$NR$

f. 25µM$H2O2Lösung:$50ml$50µM$H2O2in$50ml$NR$

g. 12,5µM$H2O2Lösung:$50ml$25µM$H2O2in$50ml$NR$

h. 6,25µM$H2O2Lösung:$50ml$12,5µM$H2O2in$50ml$NR$



$ 41$

5..Ergebnisse.

5.1.Charakterisierung.der.Grx1%roGFP2BExpression.in.mitoROSBMauslinien.

Insgesamt$ züchteten$ wir$ 11$ Mauslinien$ $ mit$ verschiedenen$ Expressionsmustern,$ von$
denen$ 7$ für$ Experimente$ genutzt$ wurden.$ Wir$ bezeichnen$ die$ Mauslinien$ mit$ dem$
Konstrukt$ Thy1CmitoGrx1CroGFP2$ als$ “mitoROSAMäuse”.$ Die$ Expression$ des$
Sensorproteins$ wurde$ in$ den$ Linien$ 676,$ 690$ und$ 920$ charakterisiert.$ In$ den$
Experimenten$ dieser$ Arbeit$ wurden$ die$ Mauslinien$ 690$ und$ 920$ verwendet,$ da$ bei$
diesen$ in$~80A90%$der$ axonalen$Neurone$das$ Sensormolekül$Grx1CroGFP2$ exprimiert$
ist.$

3

Abb.35.1.1$ Grx1CroGFP2AExpression$ in$ verschiedenen$ Geweben$ der$ verwendeten$ Mauslinien$ 920,$
676$ und$ 690;$ +:$ Expression$ in$ den$ meisten$ Zellen;$ Subset:$ Expression$ in$ <80%$ der$ Zellen$
AC:$ Amakrinzellen;$ BC:$ Bipolarzellen;$ CA:$ Cornu$ Ammonis;$ DG:$ Gyrus$ dentatus;$ DRG:$
Hinterwurzelganglion;$ GC:$ Körnerzellen;$ MF:$ Moosfasern;$ MN:$ Motorneurone;$ PC:$ Purkinjezellen;$ RG:$
Retinale$Ganglionzellen;$Abbildung$modifiziert$nach$Breckwoldt$et$al.$98$

$

Jede$Bilderreihe$ zeigt$ einen$ Sagittalschnitt$ durch$ den$Kortex,$ vergrößerte$Aufnahmen$
der$ Kortexschichten,$ des$ Cerebellums,$ des$ Hippocampus$ und$ der$ Retina$ sowie$ einen$
Transversalschnitt$des$Rückenmarks.$Ferner$wurde$eine$Übersichtsaufnahme$des$MTS$
samt$ motorischem$ Endplattenband$ sowie$ eine$ einzelne$ Synapse$ aufgenommen.$
Nachfolgend$wird$ beispielhaft$ für$ jede$ Region$ ein$ Bild$ einer$ der$ untersuchten$ Linien$
gezeigt.$
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$

Abb.35.1.4$ Konfokales$ Bild$ eines$ Sagittalschnittes$ eines$ Gehirns$ der$ mitoROS$ Linie$ 690,$
Vergrößerung$des$Cerebellums$–$Gegenfärbung$mit$Neurotrace$640/660$(rot),$Expression$Grx1CroGFP2$in$
grün$

$
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$

Abb.35.1.5$ Konfokales$ Bild$ eines$ Sagittalschnittes$ eines$ Gehirns$ der$ mitoROS$ Linie$ 690,$
Vergrößerung$ der$ Kortexschichten$ –$ Gegenfärbung$ mit$ Neurotrace$ 640/660$ (rot),$ Expression$ Grx1C
roGFP2$in$grün$

$

$$
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$

Abb.35.1.6$ Konfokales$ Bild$ eines$ Sagittalschnitts$ der$ Retina$ der$mitoROS$ Linie$ 690$ –$ Expression$
Grx1CroGFP2$ in$weiß;$GCL'Ganglionzellschicht;' IPL'Innere'plexiforme'Schicht;' INL'Innere'nukleäre'Schicht;'
OPL'Äußere'plexiforme'Schicht;'ONL'Äußere'Nukleäre'Schicht;'PE'Pigmentepithel$

$
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$

Abb.35.1.73 $Konfokales$ Bild$ eines$ Transversalschnitts$ des$ zervikalen$ Rückenmarks$ mit$ Anschnitt$
eines$Dorsal$Root$Ganglions$(DRG)$eines$Tieres$der$mitoROS$Linie$920$–$Expression$Grx1CroGFP2$in$weiß3

$
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$

Abb.35.1.8$ Konfokales$ Bild$ eines$
Präparates$ des$ M.$ triangularis$ sterni$ der$
mitoROS$ Linie$ 690$ –$ Gegenfärbung$ der$
Aktinfilamente$ der$ Muskelfasern$ mit$
Phalloidin$ 635$ (lila)$ und$ der$ nikotinergen$
Acetylcholinrezeptoren$ der$
postsynaptischen$ Membran$ mit$
Bungarotoxin$ 594$ (rot);$ Grx1CroGFP2$ in$
weiß$

$

$

Abb.35.1.9$ Konfokales$ Bild$ eines$
Präparates$ des$ M.$ triangularis$ sterni$ der$
mitoROS$ Linie$ 920,$ Vergrößerung$ einer$
neuromuskulären$Endplatte$–$Gegenfärbung$
der$ Aktinfilamente$ der$ Muskelfasern$ mit$
Phalloidin$ 635$ (lila)$ und$ der$ nikotinergen$
Acetylcholinrezeptoren$ der$
postsynaptischen$ Membran$ mit$
Bungarotoxin$ 594$ (rot);$ Grx1CroGFP2$ in$
weiß3

$
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5.2.Kalibrierung.des.Sensorproteins.Grx1BroGFP2.

Für$ die$ DosisAAntwortAKurve$ wurden$ pro$ Stufe$ jeweils$ mindestens$ 15$ Synapsen$ aus$
mindestens$ 3$ verschiedenen$ Tieren$ gemessen.$ Es$ ergab$ sich$ ein$mittlerer$maximaler$
DTTAReduktionswert$ von$ RDTT=0,29.$ Eine$ maximale$ Oxidation$ des$ Sensors$ war$ bei$
diesem$experimentellen$Aufbau$nach$Applikation$von$400A800µM$H2O2$zu$beobachten.$$

Abb.35.2.1$ Farbkodierte$ Darstellung$ der$ RedoxstatusAÄnderung$ in$ immer$ derselben$ Synapse$ nach$
exogener$Applikation$von$DTT$und$H2O2$(blau$=$max.$reduziert;$weiß$=$max.$oxidiert);$wie$veröffentlicht$
in$Breckwoldt$et$al.$98$

$

Nach$Zusammenstellung$aller$Daten$ließ$sich$eine$DosisAAntwortAKurve$in$sigmoidaler$
Form$darstellen.$

$

Abb.35.2.2$ Darstellung$ der$ DosisA
AntwortAKurve$ bei$ der$ Messung$ in$
neuromuskulären$ Endplatten$ (Abszisse:$
Konzentrationen$ der$ exogen$ applizierten$
Substanzen;$ Ordinate:$ RN);$ n=14$ Synapsen$
(4$Mäuse);$ (Hinweis:' SEM'oft' nicht' sichtbar,'
da' kleiner' als' Messpunkte);$ wie$
veröffentlicht$in$Breckwoldt$et$al.$983

$
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5.3. Untersuchung. des. mitochondrialen. Redoxstatus. unter. physiologischen.

Bedingungen.

5.3.1.Redoxstatus.in.Mitochondrien.neuromuskulärer.Endplatten.

Das$Redoxstatus$von$Mitochondrien$in$neuromuskulären$Endplatten$(im$Folgenden$gibt$
n$die$Anzahl$der$neuromuskulären$Endplatten$an)$wurde$ in$Natural$Ringer$gemessen,$
um$ein$physiologisches$Milieu$zu$simulieren.$Es$betrug$im$Mittel$

RN(NMJ)$ $ $ =$1,46$(SD=0,12;$SEM=0,022;$n=30$Synapsen)$

3

$

Abb.35.3.1$ Visualisierung$des$Redoxstatus$in$Mitochondrien$
einer$(a)$neuromuskulären$Endplatte$sowie$(b)$eines$
Interkostalnervaxons;$die$grauen$Werte$im$Hintergrund$
veranschaulichen$die$Mitochondrienmorphologie$(a)$in$der$
neuromuskulären$Endplatte$bzw.$(b)$im$Interkostalnerven;$wie$
veröffentlicht$in$Breckwoldt$et$al.$983

$

5.3.2.Redoxstatus.in.Mitochondrien.der.Interkostalnervaxone.

In$ Interkostalnerven$wurden$ sowohl$Redoxstatus$ von$ ruhenden,$ als$ auch$ sich$ anteroA$
bzw.$retrograd$bewegenden$Mitochondrien$gemessen.$Für$jede$Gruppe$wurden$3$Tiere$
gemessen.$n$gibt$die$Anzahl$der$gemessenen$Mitochondrien$an.$

RN(ICNresting)$ $ $ =$1,33$(SD=0,16;'SEM=0,014;'n=126'Synapsen,'3'Tiere)'

RN(ICNmoving)$ $ $ =$1,36$(SD=0,17;'SEM=0,015;'n=132'Synapsen,'3'Tiere)$

!$RN(ICNantero)$ =$1,36$(SD=0,17;'SEM=0,018;'n=88'Synapsen,'3'Tiere)$

!$RN(ICNretro)$ =$1,36$(SD=0,18;'SEM=0,026;'n=44'Synapsen,'3'Tiere)'

Der$Unterschied$zwischen$RN(ICNresting)$und$RN(ICNmoving)$ sowie$zwischen$RN(ICNantero)$
und$ RN(ICNretro)$ war$ nicht$ signifikant.$ Der$ Unterschied$ zwischen$ RN(NMJ)$ und$
RN(ICNresting)$war$hoch$signifikant.$
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$

Abb.35.3.2$ normalisierter$ Redoxstatus$
RN$ der$ Mitochondrien$ in$$
Interkostalnervaxonen$ sowie$ in$
neuromuskulären$Endplatten$

Abszisse:$ I)$Axon$ –$ ruhende$Mitochondrien;$
II)$ Axon$ –$ sich$ bewegende$ Mitochondrien;$
III)$ Axon$ –$ anterograd$ $ transportierte$
Mitochondrien;$ IV)$ Axon$ –$ retrograd$
transportierte$ Mitochondrien;$ V)$
Mitochondrien$ in$ neuromuskulären$
Endplatten;$Ordinate:$ RN;$wie$ veröffentlicht$
in$Breckwoldt$et$al.$983

$

5.3.3.Kontraktionen.

Hinweis:$ Die$ Experimente$ in$ diesem$ Abschnitt$ wurden$ in$ Kollaboration$ mit$ M.$
Breckwoldt$ durchgeführt.$Während$der$Untersuchung$physiologischer$Veränderungen$
in$ Triangularisexplantaten$ wurde$ beobachtet,$ wie$ einige$ Mitochondrien$ eine$
morphologische$ Veränderung$ erleben,$ bei$ der$ es$ zu$ einer$ Dickenzunahme$ sowie$ zu$
einer$Längenabnahme$kommt$(siehe$Abbildung).$Diese$Art$der$Kontraktion$dauert$etwa$
50A200s,$ bevor$ die$ ursprüngliche$ Morphologie$ des$ Mitochondrions$ wieder$ erreicht$
wird.$ Mit$ Hilfe$ der$ SFAMessung$ setzten$ wir$ die$ Formveränderung$ in$ Relation$ zur$
Änderung$ des$ Redoxstatus.$ Die$ Kontraktionsfrequenz$ pro$ Mitochondrion$ betrug$ im$
Mittel$0,6$+/A$0,1Amal$pro$Stunde$ $bei$ insgesamt$594$beobachteten$Mitochondrien$(14$
Aufnahmen,$3$Mäuse).$
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$

Abb.35.3.3$ Kontraktion$ eines$ ICNA
Mitochondrions;$ rechts$ farbkodierte$
Darstellung$ mit$ Veränderung$ des$
Redoxstatus;$ wie$ veröffentlicht$ in$
Breckwoldt$et$al.$98$

$

$

Abb.35.3.4$ Graphische$Darstellung$ der$
Kontraktion$ eines$ Mitochondrions;$ n=9$
Kontraktionen,$5$Mäuse$

Abszisse:$ Zeit$ in$ s;$ Ordinate:$ schwarz:$ RN;$
blau:$ Relativer$ ShapeAFactor$ (zum$
Ausgangswert);$ wie$ veröffentlicht$ in$
Breckwoldt$et$al.$98$

$
Aufgrund$ des$ Zusammenhangs$ zwischen$ Redoxstatus$ und$ Kontraktion$ wurde$ durch$
exogene$Applikation$ von$DTT$ und$ 50mM$H2O2$ versucht,$ die$ Kontraktionsfrequenz$ zu$
beeinflussen$ (jeweils$ drei$ Experimente$ für$ DTT,$ NR$ und$ H2O2).$ Im$ Vergleich$ zu$ NR$
fanden$in$200mM$DTT$0,54A$und$in$50mM$H2O2$2,29Amal$so$viele$Kontraktionen$statt.$
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$

Abb.35.3.5$ Relative$ Anzahl$ an$
Kontraktionen$ bei$ exogener$ Zufuhr$
verschiedener$ Medien$ (200mM$ DTT;$ NR;$
50mM$H2O2);$n=13$Aufnahmen,$3$Mäuse$pro$
Gruppe;$die$Anzahl$an$Kontraktionen$wurde$
normalisiert$ in$ Bezug$ zur$ KontraktionsA
frequenz$ in$ Natural$ RingerALösung;$ wie$
veröffentlicht$in$Breckwoldt$et$al.$98$

5.4. Untersuchung. des. mitochondrialen. Redoxstatus. unter. pathologischen.

Bedingungen.an.mitoROS.x.SOD1G93ABMäusen.

Um$ der$ Frage$ des$ Zusammenhangs$ zwischen$ mitochondrialer$ Oxidation,$
Formveränderung$ und$ mitochondrialer$ Pathologie$ nachzugehen,$ wurde$ in$
Experimenten$der$Kreuzung$mitoROS$x$SOD1G93A$der$Redoxstatus$in$Mitochondrien$von$
Interkostalnerven$in$zwei$Gruppen$zu$zwei$unterschiedlichen$Zeitpunkten$nach$Geburt$
(p90$ und$ p135)$ untersucht.$ Zum$ Zeitpunkt$ p90$ ist$ der$ Phänotyp$ der$ Pathologie$
erfahrungsgemäß$ noch$ nicht$ ausgeprägt,$ es$ kann$ lediglich$ ein$ Motoneuronverlust$
nachgewiesen$ werden99,$ während$ zum$ Zeitpunkt$ p135$ der$ Phänotyp$ der$ Pathologie$
eindeutig$nachvollziehbar$ist100.$

(1)$p90$ mitoROS+/A$x$SOD1G93A$tg/wt$

(2)$p90$ mitoROS+/A$x$SOD1G93A$wt/wt$ Kontrolle$

(3)$p135$ mitoROS+/A$x$SOD1G93A$tg/wt$

(4)$p135$ mitoROS+/A$x$SOD1G93A$wt/wt$ Kontrolle$

Es$ wurde$ beobachtet,$ dass$ mit$ der$ Progression$ der$ Krankheit$ die$ Form$ der$
Mitochondrien$ rundlicher$ wurde$ (SF$ nahm$ ab).$ Gleichzeitig$ ließ$ sich$ ein$ Anstieg$ des$
Redoxstatus$ beobachten$ (RN$ stieg$ an).$ Die$ beiden$ Kontrollgruppen$ zeigten$
untereinander$ wie$ erwartet$ keinen$ Unterschied$ und$ wurden$ deswegen$ in$ den$
Diagrammen$zusammengefasst.$
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$
Abb.35.4.1$ Die$ Abbildung$ zeigt$ die$ Progression$ der$ Krankheit$ in$ ICNAMitochondrien$ aus$ 3$
verschiedenen$Tieren:$links$–$Kontrolle;$Mitte$–$p90$SOD1G93A;$rechts$–$p135$SOD1G93A;$wie$veröffentlicht$
in$Breckwoldt$et$al.$98$

$

Es$ wurde$ der$ mitochondriale$ ShapeAFactor$ in$ Relation$ zum$ Redoxstatus$ gesetzt.$ Die$
Auswertung$der$vier$Gruppen$wurde$sowohl$auf$MitochondrienA$als$auch$auf$Axonebene$
durchgeführt.$Das$Diagrammfeld$wurde$in$vier$Quadranten$geteilt$(siehe$Methoden).$

Es$war$zu$beobachten,$dass$die$Morphologie$von$Mitochondrien$innerhalb$eines$Axons$
relativ$ homogen$ war,$ wir$ fanden$ kein$ „SalzAundAPfeffer“ABild$ (heterogenes$ Bild)$ vor.$
Diese$Annahme$wird$von$der$Darstellung$auf$Axonebene$(Abb.$5.4.3)$gestützt.$

Kontrollen:$ Bei$den$Kontrollen$(p90$und$p135)$lag$der$durchschnittliche$ShapeAFactor$
bei$ SF(ctrl)$ =$ 7,24$ (SD=3,81;' SEM=0,240;' n=252' Mitochondrien,' 3' Tiere)$ und$ der$
durchschnittliche$ Redoxstatus$ bei$ RN$ (ctrl)$ =$ 1,28$ (SD=0,16;' SEM=0,010;' n=252'
Mitochondrien,'3'Tiere).$In$(I)$befanden$sich$86%$der$Mitochondrien,$in$(II)$12%,$in$(III)$
0%$und$in$(IV)$2%.$

ALS=Tiere:$ Bei$den$kranken$Tieren$lag$bei$p90$der$durchschnittliche$ShapeAFactor$bei$
SF(p90)$ =$ 4,07$ (SD=2,40;' SEM=0,150;' n=255' Mitochondrien,' 3' Tiere)$ und$ der$
durchschnittliche$ Redoxstatus$ bei$ RN$ (p90)$ =$ 1,27$ (SD=0,36;' SEM=0,022;' n=255'
Mitochondrien,'3'Tiere).$In$(I)$befanden$sich$47%$der$Mitochondrien,$in$(II)$36%,$in$(III)$
8%$und$in$(IV)$8%.$$

Bei$ p135$ lag$ der$ durchschnittliche$ ShapeAFactor$ bei$ SF(p135)$ =$ 3,24$ (SD=2,54;'
SEM=0,153;'n=276'Mitochondrien,'3'Tiere)$und$der$durchschnittliche$Redoxstatus$bei$RN$
(p135)$=$1,36$(SD=0,35;'SEM=0,021;'n=276'Mitochondrien,'3'Tiere).$In$(I)$befanden$sich$
29%$der$Mitochondrien,$in$(II)$46%,$in$(III)$21%$und$in$(IV)$4%.$
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$
Abb.35.4.2$ Einzelmitochondrienebene:$ ShapeAFactor$ vs.$ Redoxstatus$ RN$ in$ Kontrollen$ (grau)$ und$
ALSATieren$(farbig,$p90$blau,$p135$grün);$

graue'Quadrate:$prozentuale$Verteilung$der$Gruppen$ in$den$vier$Quadranten;$Abszisse:$mitochondrialer$
ShapeAFactor;$Ordinate:$RN;$wie$veröffentlicht$in$Breckwoldt$et$al.$98$

Hinweis:'Bezeichnung$der$Quadranten$ $

3

$

Abb.35.4.3$ Axonebene:$ ShapeAFactor$
vs.$ Redoxstatus$ in$ Kontrollen$ (grau)$ und$
ALSATieren$(farbig,$p90$blau,$p135$grün)$

Abszisse:$ mitochondrialer$ ShapeAFactor;$
Ordinate:$ RN;$ wie$ veröffentlicht$ in$
Breckwoldt$et$al.$98$
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6..Diskussion.
$

Die$ neuronale$ Funktionsfähigkeit$ und$ die$ interneuronale$ Informationsübertragung$
werden$ im$ Zytosol$ eines$ Neurons$ durch$ zahlreiche$ komplexe$ Signalwege$ reguliert.$
Diese$Prozesse$sind$abhängig$vom$zeitlichen$Profil,$dem$räumlichen$Verteilungsmuster$
sowie$der$Konzentration$der$verschiedenen$beteiligten$Mediatoren.$Eine$Störung$dieser$
Signalwege$ äußert$ sich$ als$ neuronale$ Dysfunktion$ und$ verursacht$ eine$ neurologische$
Symptomatik$ bzw.$ Erkrankung.$ Einen$ der$ wichtigsten$ Mediatoren$ dieser$
Signalwegsysteme$stellt$der$Second$Messenger$Calcium$dar.$Um$intrazelluläres$Calcium$
zu$detektieren$und$ zu$quantifizieren,$ stehen$bereits$ in' vivo$ etablierte$ sog.$ „genetically$
encoded$ calcium$ indicators“$ (GECIs)$ zur$ Verfügung101.$ Neben$ Calcium$ fungieren$ auch$
reaktive$ Sauerstoffspezies$ (ROS)$ als$ wichtige$ Signalüberträger.$ Mehr$ und$ mehr$ wird$
ihre$ Rolle$ in$ physiologischen$ und$ pathologischen$ Prozessen$ klarer,$ nicht$ zuletzt$
aufgrund$ der$ Fortschritte$ und$ Einsatzmöglichkeiten$ neuer$ sog.$ „genetically$ encoded$
redox$indicators“$(GERIs).$Vor$der$Verfügbarkeit$der$ersten$GERIs$war$das$dynamische$
Monitoring$ des$ Redoxstatus$ nicht$ möglich83.$ Während$ intrazelluläre$ Färbungen$
unspezifisch$waren,$konnten$extrazelluläre$Färbungen$lediglich$gemittelte$Signale$vieler$
verschiedener$ Zellen$ erfassen83.$ GERIs$ erlauben$ erstmals$ Messungen$ auf$
Einzelzellebene$und$überdies$–$aufgrund$ihrer$Proteinstruktur$–$sogar$in$verschiedenen$
intrazellulären$Kompartimenten$wie$beispielsweise$Mitochondrien,$dem$Zellkern,$dem$
Zytoplasma$ oder$ dem$ Endoplasmatischen$ Retikulum.$ Sie$ ermöglichen$ somit$ einen$
Informationsgewinn$über$physiologische$und$pathologische$Prozesse$in$Echtzeit.$

Der$ H2O2ASensor$ HyPer$ wurde$ erfolgreich$ in$ zahlreichen$ Studien$ eingesetzt,$ die$ die$
H2O2AProduktion$als$Antwort$auf$EGF102,103,$PDGF93,$NGF85,$elektrischer$HochfrequenzA
Stimulation$ von$ Neuronen104,$ Insulin105$ und$ anderen$ Stimuli$ nachweisen.$ Die$ direkte$
Adressierung$ von$ HyPer$ an$ Organellen$ ermöglichte$ die$ Messung$ von$ H2O2A
Veränderungen$ in$ Mitochondrien85,106A109$ und$ Peroxisomen106,110,111.$ Ferner$ kann$ der$
HyPerASensor$an$spezifische$Proteine$der$zytoplasmatischen$Seite$der$Plasmamembran,$
Endosomen$oder$der$Membran$des$Endoplasmatischen$Retikulums$gebunden$werden,$
um$ dort$ lokale$ H2O2AProduktion$ und$ die$ Aktivierung$ von$ TyrosinAKinaseARezeptoren$
wie$ EGFR$ oder$ PDGFR$ zu$ visualisieren83.$ Niethammer$ et$ al.112$ untersuchten$ die$
Bedeutung$von$H2O2$bei$der$Wundheilung$im$Zebrafisch$mithilfe$des$HyPerASensors.$Am$
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Wundrand$ konnte$ ein$ sich$ ins$ gesunde$ Gewebe$ ausbreitender$ H2O2AGradient$
nachgewiesen$werden.$Dieser$wird$ von$der$ dualen$Oxidase$ (Duox)$ generiert,$ erreicht$
nach$ zwanzig$ Minuten$ sein$ Maximum$ und$ sorgt$ für$ die$ schnelle$ Rekrutierung$ von$
Leukozyten.$ In$ dieser$ Studie$ konnte$ somit$ das$ erste$Mal$ die$ Bedeutung$ von$ H2O2$ als$
Signalüberträger$ auf$ Leukozyten$ im$ Gewebe$ gezeigt$ werden.$ Ferner$ ist$ die$ ROSA
Produktion$ ein$ wichtiger$ Regulator$ der$ Geweberegeneration,$ beispielsweise$ für$ den$
Wnt/βCCateninASignalweg113.$ Später$ wird$ der$ H2O2AGradient$ durch$ das$ Enzym$
Myeloperoxidase$ wieder$ abgebaut114.$ Die$ HyPerAProteinstruktur$ macht$ den$ Sensor$
leicht$ durch$ biologische$ Membranen$ diffundabel,$ was$ Probleme$ bei$ der$ genauen$
Lokalisierung$ der$ H2O2AQuelle$ erschwert83.$ Ferner$ ist$ der$ Einsatz$ des$ HyPerASensors$
durch$die$ starke$pHAAbhängigkeit87,115A117$ limitiert.$Diese$bedarf$adäquater$Kontrollen,$
beispielsweise$mit$BCECFAAM85.$

Mit$ der$ Entwicklung$ von$ redoxAsensitiven$ GFPs$ (roGFPs)$ durch$ Tsien$ et$ al.118$war$ es$
möglich,$die$selektive$Vulnerabilität$von$neuronalen$Subtypen$bei$neurodegenerativen$
Erkrankungen$nachzuweisen.$Guzman$ et$ al.12$ untersuchten$den$Verlust$ dopaminerger$
Neurone$ in$ der$ Substantia$ nigra,$ für$ den$ weitestgehend$ mitochondrialer$ oxidativer$
Stress$ verantwortlich$ gemacht$ wird.$ Um$ in$ dieser$ Arbeit$ oxidativen$ Stress$ zu$
quantifizieren,$ generierten$ die$ Wissenschaftler$ transgene$ Mäuse$ mit$ einem$ roGFP2C
Konstrukt,$ welches$ einen$ TyrosinhydroxylaseAPromotor$ und$ eine$ mitochondriale$
MatrixAtargetingASequenz$ enthielt.$ Um$ die$ Bandbreite$ zwischen$ „voll$ reduziert“$ und$
„voll$ oxidiert“$ zu$ bestimmen,$wurden$ die$ Chemikalien$DTT$ und$Aldrithiol$ verwendet.$
Ebenso$mit$einem$roGFP2AKonstrukt,$welches$über$Pyruvate$Dehydrogenase$MTS$(engl.$
mitochondria$ or$ matrix$ targeting$ signal)$ in$ DrosophilaAFliegen$ exprimiert$ wurde,$
arbeitete$ eine$ Forschergruppe$ aus$ Pittsburgh,$ USA.$ Liu$ et$ al.119$ veröffentlichten$ ihre$
Studie$ über$ RedoxASensing$ bei$ der$ Pathogenese$ degenerativer$ und$ mitochondrialer$
Erkrankungen.$ Um$ den$ Sensor$ zu$ reduzieren,$ nutzten$ die$ Wissenschaftler$ DTT,$ eine$
Oxidation$ wurde$ mit$ H2O2$ erzielt.$ Um$ Veränderungen$ des$ Redoxstatus$ in$
pathologischen$ Situationen$ zu$ untersuchen,$ wurden$ einerseits$ Kreuzungen$ mit$ dem$
NeurodegenerationsAModell$ ATPalpha$ (kodiert$ für$ die$ katalytische$ Untereinheit$ der$
Na+/K+AATPase)$ verwendet.$ Andererseits$ konnte$ im$ EnzephalomyopathieA
Krankheitsmodell$ATP6$ein$veränderter$Redoxstatus$gezeigt$werden.$

Allerdings$ waren$ die$ Visualisierungsmöglichkeiten$ der$ GERIs$ erster$ Generation$
aufgrund$der$Spektraleigenschaften,$Antwortkinetiken$und$chemischen$Spezifität$für$inC
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vivoAStudien$ in$ Säugetieren$ bisher$ nicht$ ausreichend.$ RoGFPs$ sind$ zwar$ weniger$
empfindlich$ gegenüber$ Änderungen$ des$ pHs88$ als$ cpYFPAbasierte$ RedoxASensoren,$
verfügen$allerdings$nur$über$eine$langsame$Antwortkinetik$und$sind$nicht$spezifisch$für$
ein$ bestimmtes$ RedoxAEquilibrium,$ da$ sie$ vom$ endogenen$ GlutaredoxinAVorkommen$
abhängig$ sind84.$ Um$ diese$ Limitationen$ zu$ umgehen,$ wurde$ in$ der$ hier$ vorliegenden$
Dissertationsschrift$ der$ von$ Gutscher$ et$ al.10$ weiterentwickelte$ roGFP2ARedoxASensor$
Grx1CroGFP2'verwendet;$ seine$ Vorteile$ bestehen$ einerseits$ in$ der$ Beschleunigung$ der$
roGFP2AAntwort$ und$ andererseits$ in$ der$ Unabhängigkeit$ von$ endogenen$
Enzymaktivitäten.$ Ferner$ ist$ Grx1CroGFP2' im$ Vergleich$ zu$ cpYFPAbasierten$
Redoxsensoren$weitestgehend$unempfindlich$gegenüber$Änderungen$des$pHs.$ Sowohl$
der$EGSHAspezifische$Sensor$Grx1CroGFP2'als$ auch$der$H2O2Aspezifische$Sensor$ roGFP2C
Orp1$ wurden$ in$ einer$ Studie$ der$ Gruppe$ um$ Tobias$ Dick$ (Deutschen$
Krebsforschungszentrum,$ Heidelberg)$ jeweils$ im$ Mitochondrion$ und$ im$ Zytosol$
exprimiert,$um$in$DrosophilaAFliegen$Redoxveränderungen$in'vivo$zu$erfassen7.$

6.1.Ex.vivo/in.vivo.Messung.des.mitochondrialen.Redoxstatus..

Die$ Expression$ des$ ROSASensormoleküls$ Grx1CroGFP2$ in$ neuronalen$ Mitochondrien$
ermöglicht$ es$ uns,$ ex' vivo$ sowie$ in' vivo'über$ die$Messung$ des$ Equilibriums$ EGSH$ von$
oxidiertem$(GSSG)$und$reduziertem$Glutathion$(GSH)10$

1. Veränderungen$des$mitochondrialen$Redoxstatus$in$Echtzeit$zu$detektieren$und$
zu$quantifizieren,$

2. auch$auf$EinzelmitochondrienAEbene$Messungen$durchzuführen,$

3. konsekutiv$ eine$ Relation$ zwischen$ momentanem$ Redoxstatus$ und$
Mitochondrienmorphologie$(Shape$Factor)$herzustellen$und$$

4. wichtige$Voraussetzungen$ für$die$Untersuchung$pathogenetischer$Vorgänge$bei$
neurodegenerativen$Erkrankungen$zu$schaffen.$

Nach$der$histologischen$Charakterisierung$des$Expressionsmusters$des$Sensormoleküls$
Grx1CroGFP2$ in$ den$ verschiedenen$ Mauslinien$ ging$ es$ bei$ den$ nachfolgenden$
Experimenten$zum$einen$um$die$Untersuchung$physiologischer$Prozesse,$zum$anderen$
um$ das$ Verständnis$ pathologischer$ Vorgänge$ (am$ Beispiel$ der$ ALS).$ Die$
Funktionsfähigkeit$ des$ Sensormoleküls$ Grx1CroGFP2$ in$ den$ von$ uns$ gezüchteten$
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mitoROSAMäusen$ wurde$ sowohl$ ex' vivo$ (in$ einem$ Präparatmodell$ des$ M.$ triangularis$
sterni)$ als$ auch$ in' vivo$ (für$ Messungen$ in$ Mitochondrien$ spinaler$ Neurone;$
durchgeführt$ von$ Michael$ Breckwoldt$ am$ Institut' für' Neuronale' Zellbiologie;' TU,$
München)$ getestet.$ Die$ Versuchsanordnung$ erwies$ sich$ als$ stabil;$ die$
Reproduzierbarkeit$ der$ Versuchsergebnisse$ wurde$ durch$ das$ mindestens$ dreimalige$
Wiederholen$aller$Versuche$in$allen$Versuchsgruppen$bestätigt.$Bei$den$in$dieser$Arbeit$
vorgestellten$ exCvivoAExperimenten$ war$ die$ Stabilität$ der$ Messungen$ und$
Versuchsbedingungen$für$mindestens$vier$Stunden$(maximal$getestete$Versuchsdauer)$
gewährleistet.$ Physiologische$ und$ pathologische$ Phänomene$ wurden$ einheitlich$ 1$
Stunde$nach$Präparationsbeginn$untersucht.$$

Bei$den$Experimenten$ traten$ initial$ Schwierigkeiten$auf,$ die$ folgendermaßen$behoben$
wurden:$

(1)$ Anfänglich$ kam$ es$ bei$ den$ Versuchen$ sowohl$ zu$ DriftAArtefakten$ (während$ der$
Aufnahme$ eines$ 5Aminütigen$ Filmes$ wich$ die$ ROI$ aus$ dem$ Aufnahmebereich$ der$
Kamera)$ als$ auch$ zur$ Instabilität$ des$ Präparates$ durch$ Zuckungen$ einzelner$
Muskelfasern.$Dem$Drift$ konnte$durch$ eine$ feste$ Fixierung$der$ SlygardAPetrischale$ im$
Heizring$ und$ Vermeiden$ des$ Überlaufens$ von$ NR$ aus$ der$ SlygardAPetrischale$
entgegengewirkt$werden.$Der$nun$deutlich$ reduzierte$Drift$ konnte$ im$Nachhinein$mit$
einem$ AlignierungsAPlugin$ (StackAReg)$ der$ Software$ Fiji$ ausgeglichen$ werden.$ Das$
Problem$ der$ Instabilität$ des$ M.AtriangularisAsterniAPräparats$ bei$ den$ Messungen$
(bedingt$durch$ spontane$Kontraktionen$der$Muskeln$des$Präparats)$ konnte$ einerseits$
durch$ gute$ PinAFixierung$ des$ Präparats$ auf$ der$ GelbodenAUnterfläche,$ andererseits$
durch$sorgfältige$Abpräparation$der$parietal$gelegenen$Muskeln$beseitigt$werden.$

(2)$Durch$ lange$Expositionsdauer$oder$hohe$ Intensität$der$Fluoreszenz$kam$es$ in$den$
untersuchten$ Arealen$ zu$ BleichAPhänomenen$ (engl.' Bleeching);$ d.h.$ das$ fluoreszente$
Sensormolekül$ verlor$ an$ Fluoreszenzintensität$ während$ der$ Messung.$ Diese$
erschwerten$ initial$ die$ Untersuchung$ derselben$ Synapse$ oder$ desselben$ Areals$ im$
Interkostalnerven,$ da$ die$ Messwerte$ näher$ an$ die$ Werte$ des$ Hintergrundsignals$
rückten.$ Obwohl$ es$ sich$ um$ ein$ ratiometrisches$ Messverfahren$ handelt,$ welches$
derartige$ Artefakte$weitgehend$ vermeiden$ kann,$ kam$ es$ insbesondere$ bei$Mauslinien$
mit$geringerer$Fluoreszenzintensität$und$bei$Einsatz$hoher$LichtA/Laserintensitäten$zur$
Verfälschung$ der$ Werte,$ da$ das$ Bleeching$ beide$ Kanäle$ (408/488nm)$ betragsmäßig$
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gleich$ betraf$ und$ somit$ nach$ Abzug$ des$ Hintergrundwertes$ in$ Einzelfällen$ zu$ einer$
signifikanten$Veränderung$der$Ratio$führte.$Dieses$Problem$ließ$sich$recht$einfach$lösen,$
indem$wir$ zum$ einen$ die$ Lichtintensität$ und$Belichtungsdauer$ in$ beiden$Kanälen$ um$
denselben$ Faktor$ verringerten.$ Zum$ anderen$ haben$ wir$ versucht,$ soweit$ es$ die$
interessierende$ Fragestellung$ zuließ,$ anstelle$ von$ Videos$ Einzelbildaufnahmen$
anzufertigen,$ um$ die$ Zeit$ der$ Lichtexposition$ so$ gering$ wie$ möglich$ zu$ halten.$ Das$
Bleeching$spielte$dann$nur$noch$eine$vernachlässigbare$Rolle$und$die$Reliabilität$sowie$
Validität$der$Messungen$waren$somit$gewährleistet.$

(3)$ Bei$ der$ exogenen$ Applikation$ von$ H2O2$ im$ Rahmen$ der$ DosisAAntwortAKurveA
Experimente$war$die$gleichmäßig$tiefe$Penetration$der$Chemikalie$ins$Gewebe$schlecht$
steuerbar.$Je$oberflächlicher$eine$Synapse$des$motorischen$Endplattenbandes$lag,$umso$
stärker$ war$ die$ oxidierende$ Wirkung$ der$ Substanz$ und$ somit$ auch$ die$ Ratio$
entsprechend$ höher.$ Um$ Fehlmessungen$ zu$ vermeiden,$ wurden$ deswegen$ bei$ den$
DosisAAntwortAKurveAExperimenten$ nur$ oberflächliche$ Synapsen$ gemessen.$ Bei$ der$
Untersuchung$ der$ Physiologie$ in$ Synapsen$ ohne$ exogene$H2O2AApplikation$war$ keine$
Selektion$oberflächlicher$Synapsen$erforderlich.$

$

6.2. Veränderungen. des.mitochondrialen. Redoxstatus. unter. physiologischen.

Bedingungen.

Der$ intrazelluläre$Transport$von$Zellorganellen$entlang$eines$Axons$ ist$wesentlich$ für$
die$ Funktion$ und$ die$ Aufrechterhaltung$ eines$ Neurons.$ Anterograder$ Transport$
versorgt$die$distale$Synapse$mit$Proteinen,$Lipiden$und$Mitochondrien,$um$den$lokalen$
Energiebedarf$ zu$ decken.$ Retrograder$ Transport$ gewährleistet$ den$ Abtransport$
fehlgefalteter$ oder$ aggregierter$ Proteine$ vom$Axon$ ins$ Soma120.$ In$ der$ Literatur$wird$
die$ Frage$ kontrovers$ diskutiert,$ inwieweit$ sich$ der$ Redoxstatus$ in$ retrograd$ und$
anterograd$ transportierten$Mitochondrien$ unterscheidet121,122.$ InCvitroCMessungen$ der$
Membranpotentiale$in$neuronalen$Mitochondrien$ergaben$uneinheitliche$Ergebnisse.$In$
der$ Fachliteratur$ wurden$ einerseits$ Arbeiten$ über$ erhöhte$ Potentiale$ in$ retrograd$
transportierten$Mitochondrien,$welche$durch$eine$höhere$Stoffwechselaktivität$erklärt$
wurden122,$ diskutiert.$ In$ einer$ anderen$ Arbeit$ konnte$ kein$ Potentialunterschied$
zwischen$ anterograd$ und$ retrograd$ transportierten$Mitochondrien$ gezeigt$werden121.$
In$ unseren$ Experimenten$ zeigte$ sich$ bei$ Untersuchungen$ in$ einer$ großen$ Zahl$ von$
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Mitochondrien$ im$ Mittel$ kein$ signifikanter$ Unterschied$ des$ Redoxstatus$ in$ retrograd$
bzw.$ anterograd$ transportierten$ Mitochondrien.$ Ebenso$ konnten$ wir$ keinen$
signifikanten$ Unterschied$ des$ Redoxstatus$ in$ sich$ bewegenden$ vs.$ ruhenden$$
Mitochondrien$ messen.$ Beim$ Vergleich$ des$ Redoxstatus$ in$ Axonen$ und$ Synapsen$
konnten$wir$einen$hochsignifikanten$Unterschied$quantifizieren,$aus$dem$sich$eine$ im$
Vergleich$ zum$ Axon$ erhöhte$ Stoffwechselaktivität$ in$ der$ motorischen$ Endplatte$
vermuten$ lässt.$ Ferner$ entdeckten$ wir$ bei$ unseren$ Untersuchungen$ physiologischer$
Prozesse$ neuronaler$ Mitochondrien$ –$ ohne$ exogene$ Applikation$ bestimmter$
Chemikalien$ –$ einen$ spontanen$ Anstieg$ des$ Redoxlevels$ in$ einzelnen$ Mitochondrien.$
Zusätzlich$ ließ$ sich$ zum$ deutlichen$ Spontananstieg$ des$ mitochondrialen$ Redoxstatus$
eine$ zeitlich$ korrelierte$ Formveränderung$ des$ entsprechenden$ Mitochondriums$$
beobachten.$ Dieses$ Phänomen,$ das$ wir$ als$ „spontane$ mitochondriale$ Kontraktion“$
beschrieben,$zeigte$sich$als$Verkürzung$des$Mitochondriums$binnen$Sekunden$und$ließ$
sich$ als$ Verringerung$ des$ ShapeAFactors$ quantifizieren.$ $ Sogenannte$ „Superoxide'
Flashes“$(mSOF)$wurden$in$der$Literatur$bereits$zuvor$als$frühe$mitochondriale$Signale$
für$durch$oxidativen$Stress$induzierte$Apoptose$beschrieben123A126.$Bei$diesem$Vorgang$
kommt$es$zur$spontanen$Freisetzung$von$Superoxid.$Superoxide$flashes$treten$zufällig$
sowie$zeitlich$und$örtlich$unabhängig$auf$und$ folgen$dem$AllesAoderANichtsAPrinzip125.$
Es$ wird$ vermutet,$ dass$ das$ Auftreten$ von$ Superoxide$ Flashes$ einen$ nützlichen$
Biomarker$für$zahlreiche$ROSAvermittelte$Krankheiten$darstellt125.$

$

Abb.36.2.13 RedoxAVerlauf$ eines$
Superoxide$Flash$ (Abb.$6.1$ aus$Wang$et$ al.,$
2008125)$

$

In$ einer$ neueren$ Studie$wurde$ gezeigt,$ dass$ Superoxide$ Flashes$ durch$ die$ temporäre$
Öffnung$ der$mitochondrial' Permeability' Transition' Pore$ (mPTP)$ zustande$ kommen127.$
Diese$ mPTPAÖffnung$ wird$ über$ das$ gleichzeitige$ Eindringen$ von$ Ca2+$ über$ den$ Ca2+A
Uniporter$(mCU$–$verantwortlich$für$die$größte$Ca2+AAufnahme$ins$Mitochondrium128)$
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und$ eine$ basale$ ROSAErhöhung$ synergistisch$ reguliert.$ Der$ Superoxide$ Flash$ ist$
demnach$ein$Detektor$des$koinzidenten$Auftretens$von$mitochondrialen$Ca2+A$und$ROSA
Signalen129.$In$einer$weiterführenden$Arbeit$von$Schwarzländer$et$al.$wird$die$Annahme$
getroffen,$ dass$ es$ sich$ bei$ den$ Superoxide$ Flashes$ tatsächlich$ um$pHAFlashes$ handelt,$
bedingt$ durch$ die$ Alkalisierung$ der$mitochondrialen$Matrix$ und$ gemessen$ durch$ die$
pHAAbhängigkeit$ des$ cpYFP130.$ PHASchwankungen$ können$ als$ Signale$ in$ einzelnen$
Mitochondrien$fungieren$und$am$dynamischen$Remodelling$der$Atmungskette$und$dem$
Wiederaufbau$des$elektrochemischen$Gradienten$teilnehmen130.$Eventuell$könnte$auch$
den$in$unseren$Experimenten$beobachteten$spontanen$mitochondrialen$Kontraktionen,$
welche$ mit$ einem$ ROSAAnstieg$ einhergehen,$ eine$ Rolle$ bei$ der$ Äquilibration$ einer$
etwaigen$Dysbalance$der$Redoxregulation$$zukommen.$$Um$die$mögliche$Rolle$von$H2O2,$
Ca2+$und$pHAVeränderungen$bei$der$Entstehung$dieser$morphologischen$Phänomene$zu$
untersuchen,$ wurde$ in$ Folgeexperimenten$ (durchgeführt$ von$ mit$ M.$ Breckwoldt;$
veröffentlicht$ in$ Nature$ Medicine98)$ zu$ Beginn$ der$ Kontraktion$ mithilfe$ von$ TMRM$
zunächst$ der$ Abfall$ des$ Membranpotentials$ dokumentiert$ (siehe$ Abb.$ 6.2.).$ Später$
konnten$wir$mithilfe$von$rAAVCmitoCSypHer$eine$plötzliche$Alkalisierung$messen,$welche$
von$ einer$ langsamen$ Azidifizierung$ der$ Matrix$ gefolgt$ wurde$ (siehe$ Abb.$ 6.2.).$
Messungen$ mit$ RAGECO1$ ergaben$ eine$ weitestgehende$ Stabilität$ der$ Ca2+AWerte$ im$
Verlauf$der$Kontraktionen$(siehe$Abb.$6.2.).$
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$

Abb.36.2.23 Verlauf$ während$ einer$ Kontraktion:$ oben$ Messung$ des$ Membranpotentials$ mittels$
TMRM;$mittig$Messung$des$pHs$mittels$ SypHer;$ unten$Messung$des$ intrazellulären$Calciums$mittels$RA
GECO1$(veröffentlicht$in$Breckwoldt$et$al.98)$

Um$die$molekularen$Mechanismen$ hinter$ diesen$Veränderungen$ besser$ zu$ verstehen,$
wurde$in$Kooperation$mit$M.$Breckwoldt$(s.o.)$in$pharmakologischen$Experimenten$die$
Bedeutung$ der$ proAoxidativen$ Veränderungen$ als$ Grundlage$ für$ Kontraktionen$
untersucht.$ Der$ KomplexAIAInhibitor$ Rotenon$ senkte$ die$ Frequenz$ der$ Kontraktionen$
dosisabhängig,$ wohingegen$ die$ Inhibition$ des$ Ca2+AUniporters$ durch$ RuA360$ die$
Kontraktionsfrequenz$nicht$signifikant$senkte.$Überdies$ließ$sich$die$Frequenz$durch$die$
Zugabe$ von$ oxidierenden$ (H2O2)$ bzw.$ reduzierenden$ (DTT)$ Substanzen$ signifikant$
steigern$bzw.$senken.$Diese$Ergebnisse$legen$nahe,$dass$mitochondriale$Kontraktionen$
eine$ Stressreaktion$ darstellen.$ Diese$ Formveränderung$ ist$ primär$ reversibel;$ in$
physiologischen$Situationen$bildet$sie$sich$nach$Erholung$vom$oxidativen$Stress$wieder$
zurück.$Bei$Entkopplung$oder$Fehlfunktion$der$RedoxARegulation$kommt$es$ jedoch$zu$
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einem$ weiteren$ Anstieg$ des$ oxidativen$ Stresses.$ Dieser$ bewirkt$ schließlich$ –$ in$
Abhängigkeit$ seines$ Ausmaßes$ –$ eine$ irreversible$ Degeneration$ des$Mitochondriums,$
welche$sich$in$seiner$rundlichen$Form$widerspiegelt.$

6.3. Veränderungen. des. mitochondrialen. Redoxstatus. unter. pathologischen.

Bedingungen.

Die$vermutete$Relation$zwischen$neurodegenerativen$Prozessen$(wie$z.B.$bei$der$ALS)$
und$ irreversibler$ mitochondrialer$ Schädigung$ durch$ oxidativen$ Stress$ wird$ durch$
unsere$Untersuchungen$pathologischer$Situationen$gestützt.$Mitochondrien$waren$und$
sind$Gegenstand$zahlreicher$Studien$ in$der$Erforschung$der$Pathogenese$der$ALS.$ $Sie$
spielen$eine$wesentliche$Rolle$bei$der$RedoxARegulation$und$sind$auf$der$anderen$Seite$
sehr$empfindlich$gegenüber$oxidativem$Stress131,132.$Bereits$in$früheren$Studien$konnte$
ein$erhöhtes$Vorkommen$von$ROS$im$Liquor$von$ALSAPatienten133$sowie$H2O2$in$SOD1A
Mäusen134$beobachtet$werden.$Tatsächlich$werden$in$Rückenmarksneuronen$von$ALSA
Patienten$ degenerierte$ Mitochondrien$ gefunden64,135.$ $ Bei$ unseren$ Versuchen$ mit$
mitoROSAMäusen,$welche$wir$mit$Mäusen$der$SOD1G93AAMutante$kreuzten,$konnten$wir$
beobachten,$ dass$ die$ Krankheit$ –$wie$ erwartet136$ –$ nach$ etwa$ 3A4$Monaten$ ausbrach$
und$sich$über$einen$Zeitraum$von$etwa$1A2$Monaten$progredient$entwickelte.$Mit$dem$
Fortschreiten$ der$ Erkrankung$ beobachteten$ wir$ eine$ erhöhte$ mitochondriale$
Kontraktionsfrequenz$ (gemessen$ von$ M.$ Breckwoldt)$ sowie$ zunehmende$
mitochondriale$ Oxidation$ –$ einhergehend$mit$ einer$ Abrundung$ der$Mitochondrien$ in$
der$präterminalen$Phase.$ In$der$Terminalphase$der$Erkrankung$waren$Mitochondrien$
irreversibel$ geschädigt,$ oxidiert$ und$ abgerundet.$ Die$ degenerierten$ Mitochondrien$
zeigten$die$Tendenz,$sich$in$Clustern$zu$gruppieren.$Bereits$zuvor$wurden$degenerierte$
oder$ abnormale$ Mitochondrien$ in$ Mausmodellen137,138,$ neuronalen$ Zellkulturen139,140$
und$ ALSAPatienten140,141$ beschrieben.$ Das$ zeitliche$ Profil$ des$ Redoxstatus$ und$ der$
Formveränderung$ spricht$ dafür,$ dass$ sich$ Mitochondrien$ zunächst$ verkürzen,$ bevor$
anschließend$ der$ oxidative$ Stress$ zunimmt$ und$ die$ Mitochondrien$ endgültig$
degenerieren.$Dies$wiederum$legt$den$Schluss$nahe,$dass$der$oxidative$Stress$zumindest$
in$ der$ frühen$ Phase$ der$ Erkrankung$ nicht$ die$ alleinige$ Ursache$ für$ die$
Formveränderung$ und$ schließlich$ Degeneration$ der$ Mitochondrien$ darstellt;$
beispielsweise$könnte$ an$diesem$Prozess$ intrazelluläres$Calcium$beteiligt$ sein.$ Ferner$
war$ zu$ beobachten,$ dass$ die$ Morphologie$ von$ Mitochondrien$ innerhalb$ eines$ Axons$
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relativ$ homogen$war,$wir$ fanden$ kein$ „SalzAundAPfeffer“ABild$ vor.$ Diesem$ homogenen$
Schädigungsmuster$ zufolge$ nehmen$ wir$ an,$ dass$ die$ Pathologie$ auf$ Axonebene$
stattfindet.$

$

6.4.Ausblick.

Mit$der$ in$meiner$Arbeit$vorgestellten$Methodik$ ist$es$nun$erstmals$möglich,$mit$Hilfe$
des$ROSABiosensors$Grx1CroGFP2' sowohl$ ex' vivo$ als$ auch$ in' vivo$ den$mitochondrialen$
Redoxstatus$ in$ Neuronen$ ' zu$ detektieren$ und$ zu$ quantifizieren.$ Wir$ haben$ dies$ in$
neuromuskulären$Endplatten,$Interkostalnerven$und$spinalen$Neuronen$untersucht$und$
nachgewiesen.$ Ferner$ sind$ die$ von$ uns$ generierten$ mitoROSAMäuse$ $ geeignet,$ um$
pathophysiologische$Mechanismen$ in$ Krankheitsmodellen$ eines$ neuronalen$ Schadens$
(z.B.$ Tiermodell$ der$ Multiplen$ Sklerose$ oder$ RückenmarksAVerletzungsAModell)$ zu$
untersuchen.$ So$wurden$mitoROSAMäuse$ bereits$ bei$ Untersuchungen$ in$ einem$Modell$
der$ RückenmarksAVerletzung$ (Experimente$ durchgeführt$ von$ M.$ Breckwoldt)$
eingesetzt.$Interessant$bleibt$die$Frage$nach$der$Untersuchung$weiterer$ROSASpezies$mit$
Hilfe$ neuer$ RedoxAPaare,$ um$ die$ genauen$ molekularen$ Mechanismen$ bei$
physiologischen$und$pathologischen$Vorgängen$genauer$zu$verstehen.$Während$cpYFPA
Sensoren$ wie$ HyPer' oder$ rxYFP$ spezifisch$ H2O2$ messen,$ ermöglichen$ die$ roGFPA
Varianten$eine$Messung$des$Redoxstatus$des$oxidierten/reduzierten$GlutathionARedoxA
Paars$ GSSG/GSH$ (EGSH).$ Um$ andere$ reaktive$ Sauerstoffspezies$ zu$ erfassen,$ müssen$
weitere$ Sensorsysteme$ entwickelt$ werden.$ Momentan$ ist$ beispielsweise$ noch$ kein$
Superoxid(O2A)Aspezifischer$ Sensor$ verfügbar,$ doch$ es$ gibt$ bereits$ vielversprechende$
Ansätze,$ beispielsweise$ die$ Verwendung$ von$ SoxR142$ oder$ Aconitase143A145.$ Diese$
Proteine$enthalten$FeSACluster,$welche$die$primären$Ziele$von$Superoxid$sind83.$Ferner$
ist$die$Erforschung$von$reaktiven$Stickstoffspezies$$(engl.'RNS,'reactive'nitrogen'species)$
z.B.$bei$der$Pathogenese$der$ALS$von$großer$Bedeutung146.$Hierfür$steht$neuerdings$der$
Sensor$pnGFP$für$die$selektive$Messung$von$Peroxynitrit$zur$Verfügung147.$Wegweisend$
in$ der$ Erforschung$ reaktiver$ Sauerstoffspezies$ war$ auch$ die$ Erstbeschreibung$ des$
physiologischen$ Redoxsensors$ Lyn,$ eine$ Src' Family' Kinase' (SFK),$ und$ damit$ die$
Beantwortung$ der$ Frage,$ wie$ vom$ Organismus$ ROS$ detektiert$ werden$ können148.$
Mitochondrien$ spielen$ eine$ Schlüsselrolle$ als$ Regulatoren$ bioenergetischer$ Prozesse$
sowie$ der$ ROSA$ und$ Ca2+AHomöostase,$ da$ sie$ das$ zytoplasmatische$ Vorkommen$ von$
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Ca2+,$ ATP$ und$ ROS$ regulieren.$ Deren$ Signalwege$ sind$ über$ verschiedene$
Rückkopplungsmechanismen$ verbunden149.$ Sollte$ durch$ verschiedene$ Stimuli$ dieses$
Gleichgewicht$ ins$Wanken$geraten$und$keine$neue$Homöostase$erreicht$werden,$wird$
kein$ ATP$ mehr$ produziert,$ wohingegen$ die$ intrazellulären$ Ca2+A$ und$ ROSALevel$
ansteigen,$ welche$ zur$ Zerstörung$ des$ Axons$ beitragen150.$ Insbesondere$ die$
Entschlüsselung$der$ Signalwege$und$ Interaktionen$ zwischen$Ca2+$ und$ROS$ im$Zytosol$
eines$ Neurons$ sowie$ die$ Wechselwirkungen$ mit$ anderen$ Mediatoren$ könnten$ zum$
besseren$ Verständnis$ neurodegenerativer$ Prozesse$ beitragen.$ Die$ tiefer$ gehende$
Erforschung$ der$ Bedeutung$ dieser$ Ca2+A$ und$ ROSASignalwege$ wird$ zukünftig$
zweifelsohne$ eine$ große$ Rolle$ bei$ der$ Entwicklung$ neuer$ Therapiestrategien$
neurodegenerativer$Erkrankungen$darstellen150.$
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7..Zusammenfassung.
$

Reaktive$ Sauerstoffspezies$ (ROS,$ sog.$ reactive$ oxygen$ species)$ wie$ beispielsweise$
Superoxid$ (O2A)$ oder$ Wasserstoffperoxid$ (H2O2)$ sind$ wichtige$ Signalmoleküle$ und$
spielen$beispielsweise$bei$Entzündungsprozessen$und$der$Wirtsabwehr$ eine$ tragende$
Rolle1,151.$Allerdings$kann$eine$überschießende$Bildung$von$ROS$toxisch$wirken,$da$sie$
in$ der$ Lage$ sind,$ Lipide,$ Proteine$ und$ DNA$ direkt$ zu$ oxidieren$ und$ so$ Zellen$ bzw.$
Gewebe$ zu$ schädigen$ und$ zu$ zerstören8.$ Neuronen$ scheinen$ mit$ ihrem$ hohen$
Energiebedarf$ und$ ihrer$ komplexen$ Morphologie$ besonders$ anfällig$ für$ solche$
schädigende$ Ereignisse$ zu$ sein.$ Es$ gibt$ Hinweise$ darauf,$ dass$ die$ durch$ oxidativen$
Stress$verursachte$mitochondriale$Schädigung$eine$wichtige$Rolle$bei$akuter$neuronaler$
Schädigung$ wie$ z.B.$ nach$ traumatischen$ oder$ inflammatorischen$ Läsionen33A35,$ aber$
auch$ bei$ chronischen$ neurodegenerativen$ Erkrankungen$ wie$ z.B.$ der$ Amyotrophen$
Lateralsklerose$(ALS),$Morbus$Alzheimer$oder$Morbus$Parkinson$spielt$11,12,24,36A38.$

Bisher$gab$es$keine$Möglichkeit,$in'vivo$die$Bedeutung$der$ROS$in$der$Pathophysiologie$
der$mitochondrialen$Schädigung$in$Neuronen$zu$untersuchen.$Aus$diesem$Grund$$war$es$
ein$ wesentliches$ Ziel$ dieser$ Arbeit,$ eine$ transgene$ Mauslinie$ namens$ mitoROS' zu$
generieren,$ die$ das$ redoxsensitive$ fluoreszente$ Protein$ Grx1CroGFP210$ in$ neuronalen$
Mitochondrien$ exprimiert.$ Dieses$ haben$ wir$ über$ den$ neuronspezifischen$ Thy1A
Promotor$ in$ das$ mitochondriale$ Genom$ eingefügt96$ und$ mit$ Hilfe$ der$ konfokalen$
Mikroskopie$ die$ histologischen$ Expressionsmuster$ in$ verschiedenen$ neuronalen$
Geweben$charakterisiert.$Der$ratiometrische$Sensor$Grx1CroGFP2$erlaubt$es,$in$Echtzeit$
(„live“)$ (1)$ den$ mitochondrialen$ Redoxstatus$ und$ gleichzeitig$ (2)$ morphologische$
mitochondriale$ Veränderungen$ (Shape$ Factor)$ $ zu$ überwachen$ und$ aufzuzeichnen,$
wodurch$ es$möglich$ ist,$ beide$Parameter$ in$direkte$Korrelation$ zueinander$ zu$ setzen.$
Die$ Untersuchungen$ wurden$ unter$ physiologischen$ sowie$ pathologischen$ (SOD1A
Mutante$G93A)$Bedingungen$durchgeführt.$

In$ unseren$ Studien$ mit$ mitoROSAMäusen$ unter$ physiologischen$ Verhältnissen$$
untersuchten$ wir$ mit$ Hilfe$ eines$ Weitfeldmikroskops$ Mitochondrien$ in$
neuromuskulären$Endplatten$des$M.$ triangluaris$ sterni,$welcher$ aufgrund$ seiner$ Lage$
(Innenseite$des$Brustkorbs)$und$speziellen$Eigenschaften$(dünn$aufgrund$nur$weniger$
Muskelfasern,$ gut$ präparierbar,$ gute$ Darstellbarkeit$ neuromuskulärer$ Endplatten)$
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besonders$ gut$ zur$ Visualisierung$ motorischer$ Synapsen$ geeignet$ ist.$ Darüber$ hinaus$
wurden$auch$Mitochondrien$in$Interkostalnerven$untersucht.$Bezüglich$des$Redoxstatus$
zeigte$sich$kein$Unterschied$zwischen$sich$bewegenden$und$ruhenden$Mitochondrien$in$
Interkostalnerven.$Zusätzlich$wiesen$anteroA$bzw.$retrograd$bewegende$Mitochondrien$
keinen$ Redoxstatusunterschied$ auf.$ Interessanterweise$ konnten$ wir$ einen$
hochsignifikanten$ Unterschied$ zwischen$ dem$ Redoxstatus$ in$ Mitochondrien$
neuromuskulärer$ Endplatten$ und$ Interkostalnerven$ messen,$ welchen$ wir$ als$ evtl.$
höhere$Stoffwechselaktivität$in$motorischen$Synapsen$interpretierten.$

Ferner$ entdeckten$ wir$ –$ ohne$ exogene$ Applikation$ bestimmter$ Chemikalien$ –$ ein$
morphologisches$ Phänomen,$ das$ wir$ als$ „spontane$ mitochondriale$ Kontraktion“$
beschrieben;$ diese$ zeigte$ sich$ als$ Verkürzung$ des$ Mitochondrions$ (ShapeAFactorA
Abnahme),$ welche$ mit$ einem$ zeitlich$ korrelierten,$ deutlichen$ Spontananstieg$ des$
mitochondrialen$Redoxstatus$einherging.$Um$einen$möglichen$kausalen$und$zeitlichen$
Zusammenhang$ zwischen$ ROSAAnstieg$ und$ Kontraktion$ zu$ untersuchen,$ wurde$ in$
Folgeexperimenten$(durchgeführt$von$M.$Breckwoldt)$zunächst$exogen$H2O2$appliziert;$
dies$ führte$ zu$ einem$ signifikant$ häufigeren$Auftreten$des$Phänomens$ im$Vergleich$ zu$
NRA$und$DTTAMilieu.$Ferner$wurde$ in$RückenmarksverletzungsAStudien,$ in$denen$sich$
eine$Erhöhung$des$Redoxstatus$sowie$eine$Abrundung$der$degenerierten$Mitochondrien$
zeigte,$ eine$ Zunahme$ der$ Frequenz$ der$ mitochondrialen$ Kontraktionen$ gemessen.$
Ähnlich$verhielten$sich$Mitochondrien$auch$in$einer$Kreuzung$unserer$mitoROSAMäuse$
mit$ Mäusen,$ die$ als$ Krankheitsmodell$ der$ Amyotrophen$ Lateralsklerose$ (ALS)$
eingesetzt$werden$(mutierte$SOD1G93A).$In$der$Frühphase$der$Erkrankung$fand$sich$eine$
diskrete,$ aber$ signifikante$ mitochondriale$ Abrundung$ und$ Redoxstatuserhöhung$ im$
Vergleich$ zur$ Kontrolle.$ Mit$ der$ Progredienz$ der$ Erkrankung$ nahm$ die$
Kontraktionsfrequenz$zu$bis$die$oxidierten$Mitochondrien$letztendlich$eine$irreversible$
Abrundung$ aufwiesen.$ Aufgrund$ dieser$ beobachteten$ Veränderungen$ im$ zeitlichen$
Verlauf$liegt$der$Schluss$nahe,$dass$(a)$ROS$eine$wichtige$pathophysiologische$Rolle$der$
mitochondrialen$Schädigung$im$ALSAModell$spielen$und$(b)$$noch$weitere$Faktoren$bzw.$
Signalwege$ (in$ Betracht$ kommt$ z.B.$ eine$ Veränderung$ im$ Ca2+AStoffwechsel)$ eine$
Bedeutung$ haben.$ Wir$ gehen$ davon$ aus,$ dass$ die$ Formveränderung$ im$ Sinne$ einer$
Kontraktion$primär$reversibel$ist$und$sich$in$physiologischen$Situationen$nach$Erholung$
von$ oxidativem$ Stress$ wieder$ zurückbildet.$ Bei$ Entkopplung$ oder$ Fehlfunktion$ der$
RedoxARegulation$kommt$es$jedoch$zu$einem$weiteren$Anstieg$des$oxidativen$Stresses,$
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welcher$schließlich$eine$irreversible$Degeneration$des$Mitochondrions$bewirkt,$welche$
sich$in$seiner$rundlichen$Form$widerspiegelt.$

Zusammenfassend$ist$es$uns$im$Rahmen$dieses$Projekts$erstmals$gelungen,$zuverlässige$
ReporterCMäuse$ des$ mitochondrialen$ Redoxstatus$ zu$ generieren.$ Nach$ erfolgreicher$
Kalibrierung$des$Sensorproteins$Grx1CroGFP2$und$Versuchen$unter$physiologischen$und$
pathologischen$ Bedingungen$ bietet$ die$ Mauslinie$ mitoROS$ zahlreiche$
Einsatzmöglichkeiten$für$in'vivoC$und$ex'vivoC'Untersuchungen.$Dieses$Modell$erlaubt$es,$
Veränderungen$ des$mitochondrialen$ Redoxstatus$ und$ der$Mitochondrienmorphologie$
zu$ erfassen$ und$ kann$ damit$ zu$ einem$ besseren$ Verständnis$ der$ komplexen$
Pathophysiologie$ verschiedener$ neurologischer$ Erkrankungen$ (beispielsweise$
neuroinflammatorischer$ Erkrankungen$ wie$ Multipler$ Sklerose$ oder$ weiterer$
neurodegenerativer$ Erkrankungen$ wie$ der$ AlzheimerADemenz)$ beitragen.$ So$ wurden$
mitoROSAMäuse$ bereits$ bei$ Untersuchungen$ in$ einem$ Modell$ der$
Rückenmarksverletzung$(Experimente$durchgeführt$von$M.$Breckwoldt)$eingesetzt.$
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9..Verzeichnis.der.verwendeten.Abkürzungen.
$

ALS$ $ $ $ Amyotrophe$Lateralsklerose$

ANG$ $ $ $ Angiogenin$

BTX$ $ $ $ Bungarotoxin$

BG$ $ $ $ engl.$Background$(Hintergrund)$

Ca2+$ $ $ $ Calcium$

CO2$ $ $ $ Kohlenstoffdioxid$

cpYFP$ engl.$Circularly$permuted$yellow$fluorescent$protein$
(kreisförmig$permutiertes$gelbes$Fluoreszenzprotein)$

Cu,ZnSOD$ $ $ KupferAZinkASuperoxiddismutase$

ctrl$ $ $ $ engl.$control$(Kontrolle)$

DTT$ $ $ $ Dithiothreitol$

DNA$ $ $ $ engl.$Desoxyribonucleic$acid$(Desoxyribonukleinsäure)$

DRG$ $ $ $ engl.'Dorsal$Root$Ganglion$(Hinterwurzelganglion)$

EAE$ engl.'Experimental$autoimmune$encephalomyelitis$
(Experimentelle$autoimmune$Enzephalomyelitis)$

EMG$ $ $ $ Elektromyographie$

FALS$ $ $ $ Familiäre$Form$der$ALS$

GECI$ engl.'genetically$encoded$calcium$indicators$(genetisch$
kodierte$CalciumASensoren)$

GERI$ engl.'genetically$encoded$redox$indicators$(genetisch$
kodierte$RedoxASensoren)$

GFP$ engl.$Green$fluorescent$protein$(grünes$Fluoreszenzprotein)$
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GRX$ $ $ $ Glutaredoxin$

GSH$ $ $ $ Glutathion$in$reduziertem$Zustand$

GSSG$ $ $ $ Glutathion$in$oxidiertem$Zustand$

HeLa$ menschliche$Zellen$eines$Zervixkarzinoms$der$Patientin$
Henrietta$Lacks$

H2O2$ $ $ $ Wasserstoffperoxid$

ICN$ $ $ $ engl.$Intercostal$nerve$(Interkostalnerv)$

K+$ Kalium$

MELAS$ engl.'Mitochondrial$encephalomyopathy,$lactic$acidosis$&$
strokeAlike$episodes$(Mitochondriale$Enzephalomyopathie,$
Laktatazidose$und$SchlaganfallAähnliche$Episoden)$

MN$ $ $ $ Motoneuron$

MnSOD$ $ $ engl.$Manganese$Superoxide$Dismutase$

mtDNA$ $ $ mitochondriale$DNA$

MRT$ $ $ $ Magnetresonanztomographie$

MS$ $ $ $ Multiple$Sklerose$

MTS$ $ $ $ Musculus$triangularis$sterni$

n$ $ $ $ Anzahl$

Na+$ $ $ $ Natrium$

NADPH$ $ $ Nicotinamidadenindinukleotidphosphat$

NMJ$ $ $ $ engl.$Neuromuscular$junction$(neuromuskuläre$Endplatte)$

NOX$ $ $ $ NADPHAOxidase$

NR$ $ $ $ engl.'Natural$Ringer$(natürliche$RingerALösung)$

1O2$ $ $ $ Singulett$Sauerstoff$$
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⋅OH$ $ $ $ HydroxylARadikal$

O2$ $ $ $ Sauerstoff$

O2A$ $ $ $ SuperoxidAAnion$

O3$ $ $ $ Ozon$

OXPHOS$ $ $ Oxidative$Phosphorylierung$

PBS$ engl.'Phosphate$buffered$saline$(phosphatgepufferte$
Salzlösung)$

PCR$ engl.$Polymerase$Chain$Reaction$(PolymeraseA
Kettenreaktion)$

PFA$ Paraformaldehyd$

R$ $ $ $ Ratio$

ROI$ $ $ $ (1)$engl.$Region$of$interest$(interessierende$Region)$

(2)$engl.$Reactive$oxygen$intermediates$(reaktive$
Sauerstoffintermediate)$

roGFP$ engl.$reductionAoxidation$sensitive$green$fluorescent$protein$
(redoxsensitives$grünes$Fluoreszenzprotein)$

RNA$ $ $ $ engl.$Ribonucleic$acid$(Ribonukleinsäure)$

ROS$ $ $ $ engl.$Reactive$oxygen$species$(reaktive$Sauerstoffspezies)$

SALS$ $ $ $ Sporadische$Form$der$ALS$

SD$ $ $ $ engl.$Standard$deviation$(Standardabweichung)$

S.E.M.$ $ $ $ engl.$Standard$error$of$the$mean$(Standardfehler)$

SF$ $ $ $ engl.$$Shape$Factor$

SOD$ $ $ $ Superoxiddismutase$

SSRI$ engl.$Selective$serotinin$reuptake$inhibitor$(Selektiver$
SerotoninAWiederaufnahmeAHemmer)$
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TARDBP$ $ $ TAR$DNAABindungsprotein$43$

ThyA1$ $ $ $ Thymozyten$DifferenzierungsAAntigen$1$

YFP$ engl.$Yellow$fluorescent$protein$(gelbes$Fluoreszenzprotein)$

$
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