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1 Summary 

Many autoimmune diseases exhibit a relapsing disease course, whereby acute 

inflammatory flares alternate with periods without inflammation. These include 

autoimmune uveitis, which mostly shows a relapsing disease course in humans. 

Autoimmune uveitis is an intraocular inflammation. Due to tissue damage in the 

retina induced by inflammation, visual impairment and blindness can result. To 

investigate autoimmune uveitis animal models of experimental autoimmune uveitis 

(EAU) are used. However, most of these models do not imitate the relapsing disease 

course. Lewis rats develop an acute monophasic or relapsing uveitis depending on 

the antigen peptide used for induction of the disease. While peptide PDSAg from the 

retinal S-Antigen induces monophasic uveitis, peptide R14 from the 

interphotoreceptor retinoid-binding protein can induce relapsing disease. Both types 

of EAU occur after active immunization with autoantigen peptide in complete 

Freund’s adjuvant as well as after adoptive transfer of activated, autoantigen-specific 

T cells. 

In this thesis differences between monophasic and relapsing uveitis were 

investigated. T cell lines specific for both autoantigens were analyzed regarding their 

transcriptomes. Gene array analysis and subsequent qPCR revealed enhanced 

expression of 26 genes in the relapse-inducing R14-specific T cell lines. By contrast, 

no genes were regulated in PDSAg-specific T cells. The upregulated genes were 

associated with certain signal transduction pathways, which result in activation of 

lymphocytes and inhibition of apoptosis. In particular, a central role of IFN-γ could be 

demonstrated. Despite similar mRNA levels for IL-17 there was an increase of IL-17 

protein expression detected in the PDSAg-specific T cells, which induce monophasic 

uveitis. 

Consequently, T cells from monophasic or relapsing uveitis were isolated from rat 

eyes and lymph nodes during different stages of the disease and were analyzed for 

inflammatory cytokines such as IFN-γ and IL-17 as well as for marker proteins of 

regulatory cells (IL-10 and Foxp3). Cell populations simultaneously expressing 

several cytokines were only detected in the eyes and not in the lymph nodes. 

Moreover, combinations of the pro-inflammatory cytokines IFN-γ and IL-17 even 
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coexpressed with the suppressive cytokine IL-10 were discovered. These cell 

populations remained stable or even decreased during the course of relapsing 

uveitis, while they increased during the monophasic disease, implicating a regulatory 

function. The number of cells expressing IFN-γ but none of the other tested cytokines 

increased during relapsing EAU and reached a maximum during the relapses. 

Intraocular injection of recombinant IFN-γ after the resolution of the first attack of 

intraocular inflammation in R14 immunized animals resulted in synchronized 

relapses, which normally occur spontaneously and unpredictably. Thus, IFN-γ 

appears to be the crucial cytokine in relapsing uveitis. In PDSAg-induced, 

monophasic disease the number of IL-10+ cells increased compared to relapsing 

EAU. This suggests an efficient regulatory function of these cells. On the contrary, 

the numbers of Foxp3+ cells were similar during the primary disease course in eyes 

of monophasic and relapsing animals. Only during the late remission without clinical 

signs of inflammation were Foxp3+ cells detectable in higher numbers in the eyes 

from monophasic disease. 

Taken together, T cells from relapsing uveitis express more pro-inflammatory 

cytokines with IFN-γ playing a pivotal role. By contrast, T cells from eyes with 

monophasic disease exhibit a rather anti-inflammatory phenotype with increased 

numbers of IL-10+ cells during resolution and increased numbers of IL-10 as well as 

Foxp3 expressing T cells during late remission. These data provide important 

information on immune mechanisms in relapsing autoimmune diseases like uveitis. 
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2 Zusammenfassung 

Viele Autoimmunkrankheiten weisen einen rezidivierenden Krankheitsverlauf auf, 

wobei sich Entzündungsschübe mit entzündungsfreien Phasen abwechseln. Ein 

Beispiel hierfür ist die autoimmune Uveitis, welche beim Menschen meist 

rezidivierend verläuft. Die autoimmune Uveitis ist eine intraokulare Entzündung, die 

aufgrund von Gewebszerstörungen in der Retina zu Sehbehinderungen bis hin zur 

Erblindung führen kann. Zur Untersuchung der autoimmunen Uveitis werden 

Tiermodelle der experimentellen autoimmunen Uveitis (EAU) verwendet. Die meisten 

dieser Tiermodelle imitieren allerdings nicht den rezidivierenden Krankheitsverlauf. 

Nur in Lewis Ratten kann, abhängig vom induzierenden Antigenpeptid eine akute 

monophasische oder eine rezidivierende Uveitis ausgelöst werden. Während das 

Peptid PDSAg aus dem retinalen S-Antigen eine monophasische Erkrankung 

induziert, kann nach Immunisierung mit dem Peptid R14 vom Interphotorezeptor 

retinolbindenden Protein eine rezidivierende Uveitis beobachtet werden. Die beiden 

EAU-Typen treten sowohl nach aktiver Immunisierung mit dem autoantigenen Peptid 

in komplettem Freund-Adjuvans als auch nach adoptivem Transfer aktivierter, 

autoantigenspezifischer T-Zellen auf. 

Im Rahmen dieser Dissertation wurden Unterschiede zwischen monophasischer und 

rezidivierender Uveitis untersucht. Zunächst wurden T-Zelllinien mit Spezifität für die 

beiden Autoantigene, auf Unterschiede bezüglich ihrer Transkriptome überprüft. 

Gen-Array-Analysen und anschließende qPCR zeigten eine verstärkte Expression 

von 26 Genen in den R14-spezifischen T-Zelllinien, welche Rezidive auslösen 

können. Im Vergleich dazu waren keine Gene in PDSAg-spezifischen T-Zelllinien 

reguliert. Die verstärkt exprimierten Gene konnten bestimmten Signaltransduktions-

wegen, die beispielsweise an der Aktivierung von Lymphozyten oder der Inhibition 

von Apoptose beteiligt waren, zugeordnet werden. Fast alle Signaltransduktionswege 

der regulierten Gene zeigten einen Zusammenhang mit der Expression von IFN-γ. 

Trotz gleicher mRNA-Expression von IL-17 zeigte sich auf Proteinebene eine 

verstärkte IL-17-Produktion in PDSAg-spezifischen T-Zellen der monophasischen 

Uveitis. 
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Daraufhin wurden T-Zellen während verschiedener Stadien der monophasischen 

beziehungsweise der rezidivierenden Uveitis aus Rattenaugen und Lymphknoten 

isoliert und auf die Expression entzündlicher Zytokine wie IFN-γ und IL-17 sowie auf 

Markerproteine regulatorischer Zellen (IL-10 und Foxp3) untersucht. 

Zellpopulationen, die mehrere Zytokine gleichzeitig exprimierten, konnten nur in den 

Augen, nicht aber in den Lymphknoten nachgewiesen werden. Dabei wurden sowohl 

Kombinationen von inflammatorischen Zytokinen wie IFN-γ und IL-17 als auch 

Kombinationen mit dem suppressiven Zytokin IL-10 detektiert. Diese Populationen 

blieben während des Verlaufs der rezidivierenden Uveitis stabil oder nahmen sogar 

ab, während bei der monophasischen Uveitis ein Anstieg beobachtet wurde. Dies 

lässt auf eine mögliche regulatorische Funktion dieser Zellen schließen. Die Zahl der 

IFN-γ+ Zellen stieg bei der rezidivierenden Uveitis während des Krankheitsverlaufs 

an und erreichte ihr Maximum während der Rezidive. Intraokulare Injektion von 

rekombinantem IFN-γ nach Abklingen der ersten Entzündungsphase bei R14-

induzierter Uveitis führte zu synchronisierten Entzündungsschüben der ansonsten 

spontan und unvorhersehbar rezidivierenden EAU. IFN-γ scheint folglich das 

entscheidende Zytokin bei der rezidivierenden Uveitis zu sein. Bei PDSAg-

induzierter, monophasischer Uveitis stieg im Vergleich zur rezidivierenden EAU die 

Zahl der IL-10+ Zellen stark an. Dies deutet auf eine effiziente regulatorische 

Funktion dieser Zellen hin. Foxp3+ Zellen hingegen wurden während der akuten 

Entzündung im Auge in gleichen Mengen bei beiden Uveitistypen detektiert. Erst 

während der späten Remission ohne klinische Entzündungszeichen fanden sich bei 

der monophasischen EAU Foxp3+ T-Zellen in erhöhter Zahl. 

Zusammenfassend zeigen die T-Zellen der rezidivierenden Uveitis eine stärkere 

Ausprägung der pro-inflammatorischen Zytokine, wobei IFN-γ eine zentrale Rolle 

spielt. Im Gegensatz dazu weisen die T-Zellen der monophasischen EAU einen eher 

anti-inflammatorischen Phänotyp auf, mit erhöhter Anzahl an IL-10+ Zellen im 

abklingenden ersten Schub und erhöhten Zahlen an IL-10+ sowie Foxp3+ T-Zellen 

während der späten Remission. Diese Daten tragen wichtige Informationen zu den 

Immunmechanismen bei rezidivierenden Autoimmunerkrankungen wie der Uveitis 

bei. 
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3 Aims of the thesis 

The primary aim was to investigate the immune mechanisms of monophasic and 

relapsing experimental autoimmune uveitis in Lewis rats. From a vast area of 

research, only few animal models, including those for experimental autoimmune 

uveitis, comprise monophasic as well as relapsing disease courses. Consequently, 

little is known about the cells and factors contributing to prevention or emergence of 

relapses. 

Since uveitis is a T helper cell mediated disease and several T helper cell subsets 

are known to be involved in the disease, either as effector or regulatory T cells, there 

should be differences in the T cell subsets participating in monophasic and relapsing 

uveitis, respectively. These differences can be detected at the level of gene and/or 

protein expression. In the Lewis rat model the decision of monophasic or relapsing 

disease course is dependent on the antigen peptide used for the induction of 

experimental autoimmune uveitis (EAU). Uveitogenic T cell lines specific for both 

antigens were thus used for molecular studies to analyze the gene expression profile 

of these T cells. Data gained from these analyses were expected to offer valuable 

clues as to the genes involved in the determination of the disease course. 

Furthermore, we compared T cells from inflamed eyes and peripheral lymph nodes 

during different time points of the disease course with respect to their cytokine 

profiles. Results were compared between monophasic and relapsing disease 

revealing T cells and cytokines, which were related to the induction as well as the 

resolution of the disease. In addition, the impact of cytokine administration on the 

disease course was investigated. 

Understanding the exact immune mechanisms behind relapses could help in the 

development of new or better concepts for the treatment of uveitis patients. 
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4 Introduction 

4.1 Uveitis 

Uveitis is an intraocular inflammatory disease, which affects the retina and/or uvea 

(iris, ciliary body and choroid; see Figure 1). Based on the site of inflammation uveitis 

is classified as anterior, intermediate, posterior or pan uveitis, when all parts of the 

eye are involved (Jabs et al., 2005). Inflammation in the eye is sight threatening and 

can lead to vision impairment and even blindness. Uveitis comprises multiple disease 

entities, which are subdivided into two main groups: uveitis caused directly by 

infectious agents and noninfectious uveitis associated with autoimmunity. 

 

 

Figure 1 Scheme of an eye and an enlarged section of the retina (Caspi, 2010). 
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In the United States of America noninfectious uveitis, referred to as autoimmune 

uveitis or immune-mediated uveitis, has an incidence of 52.4 per 100,000 and a 

prevalence of 114.3 per 100,000 (Gritz and Wong, 2004). Several types of uveitis are 

associated with systemic immune-mediated diseases. Examples of uveitic entities, 

where uveitis is part of a systemic syndrome and thus the eye is only one of several 

affected organs, are HLA-B27 associated uveitis, which is described in combination 

with ankylosing spondylitis, reactive arthritis, psoriatic arthritis and inflammatory 

bowel disease (Suhler et al., 2003), Behçet’s disease, where skin mucosa and other 

tissues are involved (Pineton de Chambrun et al., 2012), Vogt-Koyanagi-Harada 

disease, where the central nervous system and melanocytes of the skin are affected 

(Damico et al., 2009) and sarcoidosis, where all organs may be involved (Papadia et 

al., 2010). In some uveitis patients the eyes are the only affected organs, for instance 

in birdshot retinochoroidopathy (Levinson and Gonzales, 2002) and sympathetic 

ophthalmia (Chang and Young, 2011). 

 

4.2 Autoimmune uveitis 

Autoimmunity was first described by Paul Ehrlich as “Horror Autotoxicus” in the early 

twentieth century. He postulated that the immune system can attack self tissues, 

which results in autoimmune diseases. Autoimmune diseases affect approximately 

5% of the population with a female predominance (Jacobson et al., 1997) and are 

characterized by abnormal activation of immune cells, often caused by genetic 

predispositions in combination with environmental factors. In either case central or 

peripheral tolerance mechanisms (section 4.3) are impaired. Autoreactive T or B cells 

provoke inflammation that results in damage or even complete destruction of the 

affected tissues. 

Autoimmune diseases can be classified as systemic or organ-specific autoimmune 

diseases. However, there are also some intermediate types of autoimmunity. For 

example, autoimmune uveitis is an organ-specific autoimmune disease, which can be 

associated with other (systemic) autoimmune diseases, such as rheumatoid arthritis 

(Tugal-Tutkun et al., 1996). 
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The exact mechanisms of autoimmune diseases remain obscure. Genetic 

predispositions, especially variants of major histocompatibility complex (MHC) 

molecules, are involved. For instance, human anterior autoimmune uveitis can be 

associated with HLA-B27 (Brewerton et al., 1973). Furthermore, it is assumed that 

the initiation of autoimmune disease is triggered by a pathogen. In experimental 

autoimmune encephalomyelitis (EAE), a model for human multiple sclerosis, it was 

shown that T cell receptor (TCR) transgenic mice reactive to myelin basic protein 

(MBP) spontaneously developed EAE under conventional rodent housing conditions. 

However, under specific pathogen-free conditions fewer animals developed EAE 

spontaneously, suggesting a pathogen trigger (Goverman, 1999; Goverman et al., 

1993). 

By means of transgenic mouse models it was demonstrated that low-avidity 

autoreactive T cells regularly escape central and peripheral tolerance mechanisms 

(section 4.3) and home to secondary lymphoid organs. These low-avidity T cells have 

the ability to respond to their specific antigen, when it is presented in a high density 

on discrete dendritic cells (DCs) or when it is presented by numerous DCs. As a 

result autoimmune diseases can be induced (Henrickson et al., 2008; Zehn and 

Bevan, 2006). In the peripheral blood of healthy humans, T cells are detectable, 

which have the ability to proliferate in response to self-antigens. This was illustrated 

by the example of MBP (Burns et al., 1983) and retinal soluble antigen (S-Ag) (de 

Smet et al., 1998). 

After activating antigen stimulation T cells change their homing receptors, enter the 

circulation and gain the ability to infiltrate all tissues of the body, preferentially sites of 

inflammation (Masopust et al., 2001; Masopust et al., 2004). This is due to 

upregulation of P- and E-selectin ligands (Austrup et al., 1997). The autoreactive 

effector or memory T cells therefore have an increased risk to access tissues where 

their specific autoantigen is expressed. Even immune privileged organs such as the 

eyes (section 4.3), which express lower amounts of P- and E-selectin, are not 

resistant to infiltration of activated T cells, especially when inflammation of the organ 

has already been initiated (Mrass and Weninger, 2006). 

 

In patients autoimmune uveitis is a group of diseases characterized by inflammation 

of the eye without any known trigger factor for disease induction. Due to the 
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inflammation tissue damage occurs, which can potentially result in blindness. 

Posterior uveitis often has a more severe course, because the retina is affected and 

is unable to regenerate. 

A definitive case of autoimmune uveitis is sympathetic ophthalmia, which is induced 

by a trauma of one eye and followed by an autoimmune inflammation of the other 

(“sympathetic”) non-traumatized eye (Chang and Young, 2011). If autoimmune 

uveitis is not traceable to a trauma from an accident or surgery, it is assumed that an 

infection with a pathogen providing antigens crossreactive with retinal proteins leads 

to activation of lymphocytes. Once activated in the periphery, these cells have the 

ability to induce an autoimmune response in the eye. Microbial antigens can exhibit 

major similarities with autoantigens such as S-Ag and thus induce uveitis in animal 

models (Shinohara et al., 1990; Singh et al., 1992; Wildner and Diedrichs-Moehring, 

2005). It is assumed that T cells play a pivotal role in the pathogenesis of human 

uveitis. This is strongly supported by induction of uveitis after adoptive transfer of T 

cells in animal models (Mochizuki et al., 1985) and by administration of agents that 

directly target T cells, such as Cyclosporin A (Nussenblatt et al., 1983). Furthermore, 

Interleukin 17 (IL-17) as well as T helper 17 (TH17) cells, which have been ascribed 

an important role in autoimmune diseases, were detected in human peripheral blood 

from autoimmune uveitis patients (Amadi-Obi et al., 2007). The same was true for 

systemic autoimmune diseases associated with uveitis, like Vogt-Koyanagi-Harada 

(Chi et al., 2007) and Behçet’s disease (Chi et al., 2008). In patients with 

autoimmune uveitis autoreactive T cells specific for S-Ag, interphotoreceptor retinoid-

binding protein (IRBP) and other intraocular proteins were detected (Adamus and 

Chan, 2002; de Smet et al., 1990; Nussenblatt et al., 1980a). Moreover, experimental 

animal models that can be induced by different retinal autoantigens (Agarwal et al., 

2012) support the participation of retinal autoantigen-specific lymphocytes in human 

uveitis. A further indication of an autoimmune mechanism is the strong association of 

autoimmune uveitis with human leukocyte antigen (HLA) (Pennesi and Caspi, 2002). 

MHC molecules present antigen peptides to T cells and therefore have an important 

role in regulating the immune response. Association of T helper cell mediated 

autoimmune diseases with MHC class I molecules can be explained by presentation 

of peptides from MHC class I on MHC class II molecules. Furthermore, peptides from 

HLA-B showed sequence homology with an uveitogenic peptide from S-Ag (Wildner 
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and Thurau, 1994). Examples for uveitis associated with HLA molecules are HLA-

B27 associated uveitis (Suhler et al., 2003), ocular Behçet’s disease (Piga and 

Mathieu, 2011) and Birdshot chorioretinopathy, which is associated with HLA-A29.2 

although the exact mechanism still remains unknown (Brezin et al., 2011; Tabary et 

al., 1990). Evidence for immune activation in patients with uveitis are increased 

levels of pro-inflammatory cytokines such as IL-1, IL-6, IL-12 and tumor necrosis 

factor (TNF) (de Boer et al., 1992; el-Shabrawi et al., 1998; Wakefield and Lloyd, 

1992). 

In patients the examination of disease mechanisms and therapeutic options 

represent an almost insurmountable difficulty, hence the use of experimental animal 

models of human autoimmune uveitis is indispensable (section 4.4). 

 

4.3 Tolerance mechanisms and the immune privilege of the eye 

Inflammation in the eye is not only prevented by central and peripheral tolerance 

mechanisms but also by the immune privilege, which maintains an inhibitory milieu 

inside the eye. 

 

4.3.1 Tolerance mechanisms 

Self-tolerance is achieved by a combination of central and peripheral tolerance 

mechanisms and prevents immune reactions to self-antigens. 

 

Central Tolerance 

T cells mature and undergo selection in the thymus. First there is positive selection 

that enriches T cells with TCRs that are able to recognize self-peptide-MHC 

complexes. MHC class I and MHC class II molecules are both expressed by cortical 

thymic epithelial cells (cTECs) (Anderson et al., 1994). During this step autoreactive 

T cells are also enriched. That is why negative selection follows to eliminate these 

autoreactive T cells. The so-called clonal deletion removes T cells with high affinities 

for self-antigens by apoptosis (Palmer, 2003). Therefore, the thymus exhibits a 



4 Introduction 

18 

special anatomy as well as special cell types that allow the selection processes. 

Following positive selection in the thymic cortex T cells migrate to the thymic 

medulla, where medullary thymic epithelial cells (mTECs) and DCs, which mediate 

negative selection, are found. Antigens, even tissue-specific antigens, are expressed 

ectopically by mTECs and contribute to the shaping of T cell repertoire (Derbinski et 

al., 2001). The presence of retinal antigens was demonstrated in the thymus of mice 

and rats, and in addition it was shown that their expression correlates with resistance 

to autoimmune diseases (Avichezer et al., 2003; Egwuagu et al., 1997). For example, 

in mice S-Ag is presented on mTECs as well as on cTECs (Derbinski et al., 2001), 

while IRBP is only expressed on mTECs (Kyewski et al., 2002). This could explain 

why mice are susceptible for uveitis induction with IRBP but not with S-Ag. Most, but 

not all antigens in the thymus are expressed with the help of the transcription factor 

AIRE (autoimmune regulator), which is present in mTECs (Anderson et al., 2002). 

DCs of the thymic medulla, which cannot express tissue-specific antigens by 

themselves, can crosspresent antigens synthesized by mTECs and thus also play a 

role in central tolerance (Gallegos and Bevan, 2004). 

In the thymus there is not only negative selection, but also generation of regulatory T 

cells that prevent tissue-specific autoimmunity (Sakaguchi and Sakaguchi, 2005). 

These regulatory T cells are referred to as natural regulatory T cells (nTreg) and are 

characterized by cluster of differentiation (CD) 4, CD25 and forkhead box protein 3 

(Foxp3) expression. The importance of these cells was shown by their depletion with 

anti-CD25 antibodies, which resulted in autoimmune diseases (Sakaguchi et al., 

1995). 

Negative selection does not eliminate all self-reactive T cells, some autoreactive T 

cells escape negative selection and reach the periphery (Gallegos and Bevan, 2006). 

This may be caused by a number of possibilities. Negative selection is dependent on 

the amount of antigen which is presented by thymic cells, and also on the affinity of 

the T cell receptor for the presented antigen. Thus low-avidity autoreactive T cells as 

well as autoreactive T cells having high avidity for an antigen which is not expressed 

in sufficient amounts in the thymus, escape negative selection. In humans 

differences in the amount of retinal antigens expressed in thymus were discovered 

and these amounts correlated with susceptibility for autoimmune reactions (Takase 

et al., 2005). 
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Peripheral Tolerance 

Autoreactive lymphocytes, which have evaded negative selection in the primary 

lymphoid organs (T cells in the thymus and B cells in the bone marrow), can be 

distracted from autoimmune reactions by peripheral tolerance mechanisms. 

One of these mechanisms is the physical sequestration of autoreactive T cells and 

their specific antigens expressed in different tissues. Naïve T cells circulate from the 

blood to secondary lymphoid organs and back to the blood. Thus, they never infiltrate 

other non-lymphoid tissues and therefore cannot recognize their specific antigens 

(Lammermann and Sixt, 2008). 

Another mechanism of peripheral tolerance is the expression of AIRE in certain 

stromal cells of lymph nodes. Consequently, these cells can present tissue restricted 

antigens in a non-immunogenic manner and induce tolerance (Lee et al., 2007). 

Tolerogenic antigen presenting cells (APCs) can also induce peripheral tolerance. 

These incompletely matured DCs do neither upregulate MHC molecules nor 

costimulatory molecules (Hawiger et al., 2001). In the absence of inflammation dead 

or apoptotic cells (not necrotic cells) induce this type of DCs. T cells that recognize 

their specific antigen presented by these DCs do not obtain costimulatory signals and 

thus neither proliferate nor produce cytokines; rather they become anergic, which 

means functionally unresponsive (Liu et al., 2002). 

T cells that chronically recognize self peptide-MHC-complexes in the periphery die by 

apoptosis. The death pathway is triggered by Fas receptor, which transmits 

apoptosis-inducing signals (Marrack and Kappler, 2004; Watanabe-Fukunaga et al., 

1992). 

Regulatory T cells, especially nTreg cells, also contribute to peripheral tolerance. They 

actively inhibit autoreactive T cells. nTreg cells can either suppress T cells and APCs 

directly by cell contact-dependent mechanisms or indirectly by secretion of inhibitory 

cytokines such as IL-10 and transforming growth factor beta (TGF-β) (Shevach, 

2009). Most likely, several inhibitory mechanisms work in a complementary or 

synergistically fashion. One of the cell contact-dependent mechanisms is constitutive 

cytotoxic T lymphocyte antigen 4 (CTLA-4) expression by nTreg cells (Takahashi et 

al., 2000), which seems to be their key regulatory mechanism. Mice deficient for 

CTLA-4 in nTreg cells develop a variety of autoimmune diseases (Wing et al., 2008), 
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because they lack the ability to suppress APCs (Onishi et al., 2008). Once nTreg cells 

are activated via their TCR, they can suppress other cells in an antigen-non-specific 

manner, called bystander suppression. Thus, the nTreg cells and the effector T cells 

do not need to have the same antigen specificity (Tang and Bluestone, 2008). 

Depletion of Treg cells by monoclonal antibodies directed against CD25 resulted in 

enhanced EAU (Grajewski et al., 2006). 

Tissue-specific antigens of the eye are in most cases highly conserved and part of 

the visual signal transduction pathway. That is why they are mostly expressed only in 

the eye. Furthermore, the eye is separated by the blood-retina-barrier from the 

immune system (section 4.3.2). Moreover, autoreactive T cells specific for retinal 

antigens are not affected by peripheral tolerance mechanisms, because they do not 

recognize their specific antigen in the periphery. Thus a high frequency of 

autoreactive, retina-specific T cells can remain in the blood. If retina-specific 

autoantigens are expressed in the periphery, resistance against experimental 

autoimmune uveitis can be induced (Agarwal et al., 2000; McPherson et al., 1999). 

Without peripheral suppression of autoreactive T cells, these cells can be activated 

through cross reactivity in the periphery and can then enter the eye by chance, where 

a small number of autoreactive T cells is sufficient to trigger autoimmune 

inflammation (Prendergast et al., 1998). 

 

4.3.2 Immune privilege of the eye 

In addition to the general tolerance mechanisms to prevent autoimmune 

inflammation, the eye possesses special mechanisms to limit intraocular 

inflammation. 

Immune privileged sites are defined as sites of the body where foreign tissue grafts 

are able to survive for an extended period of time. This is in contrast to the rest of the 

body, where similar tissue grafts are rejected. The phenomenon of immune privilege 

was first described by heterotopic transplantation of skin tissue into the anterior 

chamber of the eye and into the brain of rabbits (Medawar, 1948). In doing so, no 

graft rejections following organ transplantation were observed in the eye and brain, 

whereas grafts in other parts of the body were rejected. Shortly thereafter, the cornea 

was described as an immune privileged tissue (Billingham and Boswell, 1953). 
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Immune privileged tissues are certain tissues, which show a prolonged survival after 

transplantation into normal sites of the body, whereas non-privileged tissues are 

rejected at conventional sites of the body. Besides eye and brain immune privileged 

sites include also ovary, pregnant uterus, testis, adrenal cortex, hair follicles and 

certain tumors (Barker and Billingham, 1977). The immune privilege protects 

especially organs and tissues, which are important for survival and reproduction and 

have limited capacity for regeneration. The immune privilege is established through a 

combination of different factors including anatomical and physiological barriers as 

well as immune-regulatory processes. Together they result in a restricted activity of 

the immune system. However, there is no comprehensive suppression of all immune 

reactions in these areas, but rather a strictly regulated adaptation of the immune 

reaction to suppress a destructive inflammation. Therefore, only a small number of 

innocent bystander cells are hit by the immune reaction and nonetheless a less 

harmful immune reaction is preserved. 

The absence of lymphatic vessels serves as a physiological barrier, which keeps the 

immune privileged tissues separate from the lymphoid system (McLean and 

Scothorne, 1970; Medawar, 1948). Thereby the entrance of immune cells to the 

immune privileged sites is hampered. The blood-retina-barrier is formed by 

endothelial cells with tight junctions and prevents the entry of naïve lymphocytes into 

the immune privileged organ (Cunha-Vaz, 1979). Only activated lymphocytes have 

the ability to cross the blood-retina-barrier and get access to the inner eye 

(Prendergast et al., 1998). In addition to cells, molecules over a size of 376 Dalton 

are also excluded from the eye through these endothelial barriers (Haselton et al., 

1996). 

Another protective mechanism of the immune privileged organs is low expression of 

MHC class I molecules on the surface of cells with no or only little capacity for 

regeneration (Abi-Hanna et al., 1988; Lampson and Fisher, 1984). The absence or 

reduced expression of MHC class I on the surface protects these cells from 

recognition by cytotoxic T lymphocytes (CTL), that would kill them in case of viral 

infections. However, cells without MHC class I are not protected from natural killer 

cells (NK cells), because these cells eliminate MHC class I negative cells (Moretta et 

al., 2002). In order to escape the elimination of NK cells, these cells express non-

classical MHC class Ib molecules (Le Discorde et al., 2003; Niederkorn et al., 1999), 
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which are recognized by inhibitory receptors on NK cells and prevent NK cell 

mediated cell lysis (Lee et al., 1998; Rouas-Freiss et al., 1997). 

Furthermore, cell surface molecules that coat the immune privileged organs maintain 

the immune privilege. In the eye for instance complement regulatory proteins (CRP) 

such as CD46 and CD55 are expressed and protect the body’s own cells from the 

complement cascade (Bora et al., 1993). Fas ligand (CD95L) is widespread 

expressed in the eye as well. It induces apoptosis of activated T cells and neutrophils 

and in this way protects from tissue-damaging immune responses (Griffith et al., 

1995). Another pro-apoptotic molecule is TRAIL (TNF-related apoptosis-inducing 

ligand), a member of the tumor necrosis family (TNF), which leads to apoptosis of 

inflammatory cells and is also expressed in immune privileged organs (Lee et al., 

2002; Phillips et al., 1999). 

Moreover, soluble molecules are also involved in immune privilege. These are for 

example found in the aqueous humor of the eye and induce anti-inflammatory and 

suppressive effects (Taylor, 1999). TGF-β suppresses T cells, NK cells and 

macrophages (Cousins et al., 1991). α-melanocyte stimulating hormone (α-MSH), 

which is also found in the aqueous humor, inhibits T effector cell proliferation and 

activation of macrophages and neutrophils (Taylor et al., 1992). In addition a soluble 

form of Fas ligand can be detected in the aqueous humor, where it confers anti-

inflammatory as well as immune suppressive effects (Sugita et al., 2000). Additional 

immune suppressing factors, which are present in the eye, are: calcitonin gene-

related peptide (CGRP) (Taylor et al., 1998; Wahlestedt et al., 1986), indoleamine 

dioxygenase (IDO) (Malina and Martin, 1993), macrophage migration inhibitory factor 

(MIF) (Apte et al., 1998), somatostatin (SOM) (Taylor and Yee, 2003), vasoactive 

intestinal peptide (VIP) (Taylor et al., 1994; Uddman et al., 1980) and 

thrombospondin-1 (TSP-1) (Zamiri et al., 2005). 

In addition to the mechanisms mentioned above the eye is equipped with another 

mechanism maintaining privilege, namely anterior chamber-associated immune 

deviation (ACAID) (Kaplan and Streilein, 1977). In ACAID, the inhibition of systemic 

immune responses is induced by antigens which were injected into the anterior 

chamber of the eye. A similar reaction can be achieved by positioning the antigens 

into the vitreous (Jiang and Streilein, 1991) or the subretinal space (Wenkel and 

Streilein, 1998). Besides the eye other organs are also involved such as spleen 
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(Streilein and Niederkorn, 1981), thymus (Wang et al., 1997) and the sympathetic 

nervous system (Li et al., 2004). Antigens from the anterior chamber are captured by 

special tolerance inducing APCs that express F4/80 in mice. These cells transport 

the antigens through the vasculature to the thymus and induce regulatory NKT cells 

(CD4-CD8-NK1.1+) (Wang et al., 2001). Via the bloodstream the NKT cells reach the 

spleen, where they participate in the generation of CD8+ T cells, which suppress TH1 

as well as TH2 mediated inflammation (Nakamura et al., 2003). In the development of 

these regulatory cells other cells besides NKT cells are involved such as F4/80+ 

APCs that could migrate to the spleen directly from the eye, CD1d expressing B cells 

(D'Orazio and Niederkorn, 1998; Skelsey et al., 2003; Sonoda and Stein-Streilein, 

2002) and CD8+ T cells. ACAID protects the eye not only from autoimmune diseases 

such as uveitis (Mizuno et al., 1989) but also improves the survival of cornea 

transplants (Niederkorn and Mellon, 1996; She et al., 1990). 

 

4.4 Experimental autoimmune uveitis 

EAU mimics human autoimmune uveitis and has been used to investigate the 

mechanisms of the disease and to develop therapies. Several animal models have 

been developed over the last decades and are now available to investigate different 

aspects of autoimmunity. EAU can be induced with different retinal autoantigens in a 

variety of animal models, for example in rats, mice, and horses. There are also 

several methods to induce EAU. 

The most common method is the immunization with autoantigen in complete 

Freund’s adjuvant (CFA) (Nussenblatt et al., 1980b). CFA contains heat-killed 

mycobacteria tuberculosis, which confer danger signals and thus activate APCs. 

Through innate immune cells a pro-inflammatory milieu arises and induces an 

adaptive immune response. Immunization with uveitogenic antigen in the periphery 

imitates the proposed uveitis induction in patients with the peripheral initiation of the 

autoimmune response. 

Another method to induce experimental autoimmune uveitis is adoptive T cell transfer 

of in vitro activated pathogenic T cells, cultured from autoantigen-immunized donor 
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animals (Mochizuki et al., 1985). The activated T cells reach the eye by chance, 

since activated T cells have the ability to pass the blood-retina-barrier (Prendergast 

et al., 1998). Using GFP+ (green fluorescent protein) R14 (uveitogenic peptide from 

IRBP) specific or ovalbumin-specific activated T cells, it was shown that T cells of 

both specificities enter the eye already 30 minutes after intravenous injection. 

However, only the R14-specific T cells could be detected over an extended period of 

time in the eye. By contrast, the ovalbumin-specific T cells did not find their antigen 

and disappeared from the eye. Furthermore, only animals receiving R14-specific T 

cells developed EAU three days after injection. This led to the assumption that T cells 

have to recognize their antigen in situ and become reactivated to be able to attract 

inflammatory cells and thus induce uveitis (Thurau et al., 2004). 

In addition, there are other variants of EAU used as models for investigating special 

issues of autoimmune uveitis. For instance, EAU can be induced by infusion of FMS-

like-tyrosine-kinase 3 ligand (Flt3L)-mobilized DCs pulsed with autoantigen, which 

were activated with the bacterial endotoxin LPS (lipopolysaccharide) and anti-CD40 

antibody in vitro (Tang et al., 2007). Another special variant of EAU is the 

“humanized” model of experimental autoimmune uveitis using HLA-DR3 transgenic 

mice (Pennesi et al., 2003). 

In addition, there are a few models of spontaneous uveitis which are suggested to be 

more similar to the human situation. However, they mostly develop in genetically 

manipulated mice, which are immunologically highly artificial. One example for 

spontaneous uveitis is a mouse model lacking the transcription factor AIRE 

(Anderson et al., 2002). Naturally occurring uveitis is found in horses, in which uveitis 

can also be induced experimentally, a disease known as equine recurrent uveitis 

(ERU) (Deeg et al., 2001; Deeg et al., 2002). 

Most of the above mentioned models are established in mice. Nevertheless, the 

classical way of inducing EAU by immunization with antigen in CFA and adoptive T 

cell transfer are also well established in rats, which, in contrast to mice, are 

susceptible to many different retinal autoantigens. 

The different methods used for EAU induction result in different disease patterns, 

even when genetically identical animals are used. This could be an explanation for 

the heterogeneous nature of human uveitis, where the initial disease trigger is still 

unknown. 
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Validation of EAU as a model for human autoimmune uveitis was demonstrated by T 

cells isolated from human uveitis patients, which responded to retinal antigens 

(Nussenblatt et al., 1980a) and therapies developed in EAU could often be 

transferred to human uveitis patients (Gomes Bittencourt et al., 2012). 

 

4.4.1 Pathomechanisms of experimental autoimmune uveitis 

EAU is a T cell mediated disease (Figure 2). Initially, the autoantigen-specific T cells 

were identified as CD4+ interferon gamma (IFN-γ) producing TH1 cells (Caspi et al., 

1996). More recently, a new T helper cell subset was discovered, the so-called TH17 

cells, which are distinct from TH1 cells and express IL-17 as their signature cytokine 

(Nakae et al., 2007). Both TH1 and TH17 cells can induce EAU, depending on the 

animal model and on conditions during initial antigen contact (Luger et al., 2008). 

Activation of autoreactive T cells requires additional administration of bacterial 

adjuvants such as CFA that function as a danger signal. This trigger ensures the 

activation of innate immune cells and a pro-inflammatory milieu arises, in which naïve 

T cells get activated and develop to effector T cells. A schematic model of EAU 

induction is shown in Figure 2. 

Activated antigen-specific T effector cells have the ability to cross the blood-retina-

barrier and after recognition of their retinal antigen are reactivated and recruit 

inflammatory cells. However, it has not yet clearly been shown which APCs are 

responsible for T cell activation in the eye. In non-inflamed eyes very few MHC class 

II expressing cells are detectable. Even resident DCs express low levels of MHC 

class II (Jiang et al., 1999). It is possible that the first activated T cells, which reach 

the eye, evoke local MHC class II expression by IFN-γ production (Xu et al., 1997). 

On the other hand, already activated T cells exhibit a lower threshold of avidity for 

their specific antigen and thus can more easily be reactivated compared to naïve T 

cells (Kimachi et al., 2003). They are no longer dependent on costimulation and can 

be activated by different APCs, for example also by resting B cells (Croft et al., 

1994). The importance of APCs in the eye was demonstrated by injection of CD11+ 

DCs into the anterior chamber, which increased the severity of EAU after adoptive T 

cell transfer (Heuss et al., 2012). Furthermore, local conditions inside the eye 
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determine whether APCs display pro- or anti-inflammatory effects (Heuss et al., 

2012). 

 

 

 

Figure 2 Development of autoimmune uveitis. Danger signals from pathogens activate 

dendritic cells (DCs), which subsequently activate naïve T cells in peripheral lymph nodes. 

The recognized pathogen-specific antigens could mimic ocular autoantigens and thus 

autoreactive T cells are activated, which differentiate into TH1 and TH17 effector cells. Once 

activated, T cells have the ability to cross the blood-retina-barrier and enter the eye. 

Recognition of crossreactive autoantigens inside the eye is followed by reactivation and 

proliferation. Subsequently, effector T cells secrete cytokines and chemokines, leading to 

breakdown of immune privilege and thus to recruitment of inflammatory leukocytes 

(macrophages and neutrophils) from the periphery to the eye. The number of antigen 

presenting cells (APCs) in the eye is increased by upregulation of MHC class II inside the 

eye and by recruitment of APCs from the circulation. This results in amplification of the T cell 

response and tissue inflammation (uveitis). 

 

Only few antigen-specific activated T cells are required to induce uveitis. Using 

adoptive T cell transfer and subsequent detection of antigen-specific T cells in the 

eye, it was possible to calculate the number of T cells sufficient for uveitis induction. 

The result was that only 15 antigen-specific T cells are needed inside the eye to 

induce uveitis in mice (Caspi, 2006). Following antigen-recognition these few cells 

proliferate and recruit other leukocytes from the circulation. For EAU induction 
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macrophages and granulocytes are of particular importance. This was demonstrated 

by depletion of these cell types, which resulted in abrogation of EAU (Forrester et al., 

1998; Su et al., 2007). Besides these innate inflammatory effector cells, recruitment 

of antigen-non-specific T cells was also shown to be needed for EAU development. 

Compared to normal rats, athymic rats receiving uveitogenic T cells developed a 

considerably downregulated EAU when IRBP-specific T cells were used and failed to 

develop EAU after transfer of S-Ag-specific T cells (Caspi et al., 1993). 

Since the eye exhibits an inhibitory milieu and despite this effector T cells can induce 

inflammation, they must be able to resist the hostile environment. After inflammation 

occurs in the eye the inhibitory milieu is modified and the immune privilege is 

destroyed (Ohta et al., 1999). MHC class II expression is induced and there is influx 

of APCs from the circulation, because the blood-retina-barrier is damaged 

(Gregerson and Kawashima, 2004). The consequence is that naïve T cells can then 

be activated in the eye recognizing other ocular autoantigens (epitope spreading) 

(Deeg et al., 2002; Diedrichs-Mohring et al., 2008). In the inflamed eye there is a 

cytokine milieu, which favors TH17 development, because TGF-β is present in the 

aqueous humor and IL-6 is released during inflammation. Both cytokines in 

combination can induce TH17 cells in mice (Bettelli et al., 2006; Veldhoen et al., 

2006). 

Termination of autoimmune uveitis is mediated by regulatory mechanisms. After 

recovery from intraocular inflammation regulatory T cells (CD4+CD25+) were detected 

in the spleen, while these cells could not be found in naïve animals. Their 

development is dependent on the eye, because regulatory T cells were not detected 

in enucleated mice and their suppressive function can be transferred to mice 

immunized for EAU-induction resulting in the downregulation of inflammatory 

responses in the eyes (Kitaichi et al., 2005). This suggests that uveitis can induce 

tolerance. Due to T cell plasticity, regulatory T cells can arise from effector T cells 

(section 4.5). The ocular environment even promotes conversion of conventional T 

cells to regulatory T cells (Stein-Streilein and Taylor, 2007). 

Under special conditions other T cell types are also able to induce EAU. In 

immunodeficient hosts it was demonstrated that TH2 cells also have the capacity to 

induce EAU (Kim et al., 2002). Even CD8+ T cells are able to induce EAU, albeit with 

a milder inflammation compared to CD4+ T cells (McPherson et al., 2003; Song et al., 
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2008). CD8+ T cells are not necessary for induction of EAU, because depletion of 

CD8+ T cells did not impair the development of uveitis after immunization with retinal 

antigens (Calder et al., 1993). For CD8+ T cells regulatory functions have also been 

described in EAU (Caspi et al., 1988; Han et al., 2007; Peng et al., 2007b). 

Antibodies play a subordinate role in EAU. After induction of EAU by immunization 

with retinal antigens there are antigen-specific antibodies detectable in the serum (de 

Kozak et al., 1992). However, these antibodies do not have the ability to transfer 

disease to healthy recipients. Antibodies are unable to cross the intact blood-retina-

barrier, due to their molecular size. If uveitogenic T cells already have damaged the 

blood-retina-barrier, antibodies from the circulation can enter the eye and exacerbate 

disease (Pennesi et al., 2003). Furthermore, antibodies are able to enhance EAU 

when injected together with uveitogenic T cells into recipient animals (Pennesi et al., 

2003). 

 

4.5 T cell subsets 

In the thymus two types of TCRs develop. While most of the T cells express a TCR 

with an alpha and a beta chain (αβTCR), a small fraction with gamma and delta chain 

TCRs (γδTCR) also appear. These TCRs are less heterogeneous than the αβTCRs 

and their ligands are not fully elucidated. γδ T cells are part of the innate immune 

system and are basically found in skin and mucosa. They have the ability to respond 

to local inflammations and also contribute to autoimmunity (Shibata, 2012). 

αβ T cells are further subdivided into two major subsets depending on their co-

receptors CD4 and CD8. CD4+ T cells recognize their specific antigen presented on 

MHC class II molecules, while CD8+ T cells bind to antigens in context with MHC 

class I molecules. These two subsets not only express different co-receptors but also 

exhibit different functional activities. After activation CD8+ T cells become CTLs 

(Dennert, 1997) that eliminate abnormal cells like pathogen-infected cells or tumor 

cells. 

CD4+ T cells are also called T helper cells, because they provide help for other cells, 

such as B cells, CTLs and macrophages (Nakayamada et al., 2012). Initially, they 
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were divided into the two subpopulations TH1 and TH2 (Mosmann et al., 1986). The 

distinction was based on cytokine profiles. While TH1 cells mainly produce IFN-γ, TH2 

cells secrete IL-4, IL-5 and IL-13 (Mosmann and Coffman, 1989). TH1 cells enhance 

pro-inflammatory cell-mediated immunity to eliminate intracellular pathogens. By 

contrast, TH2 cells are essential for B cell proliferation and maturation as well as 

eosinophil inflammation to remove extracellular pathogens. TH1 and TH2 cytokines 

antagonize the effector function of each other (Abbas et al., 1996). Naïve T helper 

cells develop their special phenotype during their first antigen contact on DCs, 

mediated by the cytokine milieu provided during this step. While TH1 cells 

differentiate in the presence of IL-12 and IFN-γ, TH2 cells need IL-4. 

Over the years, more and more CD4+ T cell subsets were discovered (Figure 3). 

Studies on autoimmune diseases led to the suggestion that there must be another T 

cell subset, distinct from TH1 participating in autoimmunity. Further experiments have 

finally resulted in the discovery of IL-17-producing cells (TH17) (Cua et al., 2003; 

Langrish et al., 2005). TH17 cells produce mainly IL-17A and IL-17F, but also TNF, 

IL-6 and IL-22 (Langrish et al., 2005; Liang et al., 2006). To develop into TH17 cells 

naïve T cells require the presence of TGF-β and IL-6 in mice (Bettelli et al., 2006; 

Veldhoen et al., 2006) and IL-23 and IL-1β in humans (Louten et al., 2009). The TH17 

hallmark cytokine IL-17 is a potent inflammatory cytokine, which acts pleiotropicly. IL-

17 induces expression of various pro-inflammatory cytokines (for example IL-6 and 

TNF), chemokines and matrix metalloproteases and thus mediates tissue 

inflammation (Kolls and Linden, 2004). Yet another function of IL-17 is induction of 

proliferation, maturation and chemotaxis of neutrophils, which are also involved in 

tissue inflammation (Fossiez et al., 1996). Furthermore, IL-17 augments the 

maturation of DCs and is also involved in the costimulation of T cells (Kolls and 

Linden, 2004). In healthy individuals TH17 cells are crucial for the immune response 

to extracellular bacteria and fungi, mediated by recruitment and activation of 

neutrophils and macrophages to inflamed tissues (Louten et al., 2009). However, IL-

17 also plays an important role in the pathogenesis of various autoimmune diseases, 

such as rheumatoid arthritis, multiple sclerosis and autoimmune uveitis (Amadi-Obi et 

al., 2007; Matusevicius et al., 1999; Shen et al., 2009). The contribution of TH17 cells 

to autoimmune diseases was first demonstrated for EAE (Cua et al., 2003; Langrish 

et al., 2005) and collagen induced arthritis (CIA) (Murphy et al., 2003), both are 
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models for autoimmune diseases induced by immunization with self-antigen in CFA. 

Finally, involvement of TH17 cells was also shown for EAU by neutralization of IL-17 

by the appropriate antibodies (Amadi-Obi et al., 2007) and by adoptive transfer of 

antigen-specific TH17 cells (Peng et al., 2007a). 

 

 

 

Figure 3 Differentiation of CD4+ T cell lineages. After antigen-specific activation in the 

periphery naïve T cells can differentiate into different subsets of effector and regulatory T 

cells, respectively. Lineage commitment is dependent on the cytokine milieu present during 

TCR stimulation. While pro-inflammatory cytokines give rise to TH1, TH2, TH17, TFH, TH9 and 

TH22 cells, anti-inflammatory cytokines lead to regulatory cells, like iTreg, TR1 and TH3. During 

differentiation these cells express special master transcription factors (shown inside the 

cells), which are not yet identified for all T cell subsets. Activated T cells secrete a special set 

of cytokines that ensure their functions contributing to the appropriate immune response. 

However, the differentiated T cell subsets are not always irreversibly determined. Some of 

them show a high plasticity and thus can change their cytokine profiles and even their 

expression of master transcription factors. Natural Treg cells that emerge from CD4+ thymic T 

cell precursors are not depicted. 

 



4 Introduction 

31 

Another subset of T helper cells are T follicular helper cells (TFH). After upregulation 

of B cell lymphoma 6 (Bcl-6) T helper cells adopt the TFH cell phenotype, regardless 

of their origin. They can not only develop from naïve T cells, but also from effector T 

cells like TH1, TH2 and TH17 as well as from nTreg cells. The main task of TFH cells is 

the differentiation of B cells into memory and plasma cells (Ma et al., 2012). Beyond 

that, there are some other CD4+ T cell subsets, such as TH9 and TH22, which have 

been proposed as new CD4+ T cell subsets (Akdis et al., 2012; Tan and Gery, 2012). 

In addition to these effector T cell types, there are also several subsets of regulatory 

CD4+ T cells (Treg) that have the ability to control effector T cell responses 

(Josefowicz et al., 2012; Shevach, 2006). One classification of regulatory T cells can 

be made by their origin. nTreg cells are Foxp3 positive and develop in the thymus, 

whereas all the other regulatory cells are induced from peripheral T helper cell 

precursors by different cytokines (Wan and Flavell, 2006). Induced Treg cells (iTreg) 

express Foxp3 and are generated in the presence of TGF-β and retinoic acid in the 

periphery. They have similar inhibitory functions as the nTreg cells (Dons et al., 2012). 

Additional regulatory T cells are T regulatory 1 (TR1) and TH3 cells that thus far 

cannot be distinguished by means of their surface markers. TR1 cells lack expression 

of Foxp3 and produce IL-10, while TH3 cells are Foxp3+ and secrete TGF-β (Groux et 

al., 1997; Wan and Flavell, 2006; Weiner, 2001). 

 

4.5.1 Plasticity of T helper cells 

With the advent of new T helper cell subsets, evidence for their plasticity in 

phenotype and function has become clear (Murphy and Stockinger, 2010; O'Shea 

and Paul, 2010). This appears to be important to allow adaptation to changing 

circumstances. 

Initially it was assumed that each T cell subset expresses its specific signature 

cytokine and master transcription factor. Examples include TH1 cells with their 

signature cytokine IFN-γ and master transcription factor T-box transcription factor (T-

bet), TH2 with IL-4 and GATA binding protein 3 (GATA3) (Mosmann and Coffman, 

1989), TH17 with IL-17 and retinoid-related orphan receptor gamma t (RORγt) 

(Harrington et al., 2005) and nTreg with Foxp3 (Sakaguchi et al., 2008). 
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Indications of T cell plasticity came from cytokine expression profiles. Only few 

cytokines are selectively produced by distinct T cell subsets, while several cytokines 

are expressed by diverse T cell subsets. For example IL-10 was initially thought to be 

a TH2 cytokine, now it is also identified in TH1, TH17 and Treg cells (Saraiva and 

O'Garra, 2010). Furthermore, master transcription factors can also be expressed by 

more than one T helper cell subset. There are several combinations of these 

transcription factors possible. For instance, some cells coexpress Foxp3 and RORγt. 

These cells produce IL-17 and have inhibitory functions (Voo et al., 2009). Another 

example are T cells coexpressing T-bet and RORγt, which are highly pathogenic in 

EAE (Ghoreschi et al., 2010). Additionally, T helper cells can change their 

phenotype. For TH17 cells it could be shown that they often become IFN-γ producers 

(Lee et al., 2009). Furthermore, TH2 cells can be reprogrammed to IFN-γ expressing 

TH1 cells (Hegazy et al., 2010). Even Treg cells are able to change their phenotype. 

By losing Foxp3 expression, they can acquire pro-inflammatory activities 

(Dominguez-Villar et al., 2011; Oldenhove et al., 2009). However, the subset with the 

highest plasticity are TFH cells, which can convert to TH1, TH2 and TH17 cells. On the 

other hand, they can develop from TH1, TH2, TH17 and Treg cells (Lu et al., 2011; Tsuji 

et al., 2009). 

In conclusion, T helper cell subsets exhibit a high plasticity and thus cannot easily be 

allocated to distinct subsets. Depending on the circumstances they can acquire either 

a rather stable or a rather plastic phenotype. 

 

4.5.2 T helper cells in autoimmunity 

CD4+ T cells play a central role in autoimmunity and any effector T cell has the 

potential to induce autoimmune responses. Initially, TH1 cells were regarded as 

responsible for autoimmunity; however, the discovery of TH17 cells changed this 

perception. For instance, indications for a role of TH1 cells in autoimmunity were 

demonstrated in EAU by cytokine profiles of T cells from affected animals and by 

adoptive T cell transfer (Caspi et al., 1996; Xu et al., 1997). Other experimental 

autoimmune models, such as EAE, showed equivalent results. However, with the 

discovery that animals deficient in TH1 cells are highly susceptible to EAE and EAU, 

these results were questioned (Bettelli et al., 2004; Jones et al., 1997). A surprising 
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revelation was the fact that IL-12, a TH1-polarizing cytokine composed of p35 and 

p40 subunits, shares the p40 subunit with IL-23, which combines p19 and p40 and 

stimulates TH17 development (Oppmann et al., 2000). Subsequently it was 

demonstrated that p19 and p40 promote autoimmune diseases, while p35 does not. 

Thus it was assumed that IL-23, but not IL-12 is necessary for the development of 

autoimmune responses (Cua et al., 2003). Studies with p35-deficient animals led to 

the conclusion that IL-12 has no effect in autoimmune diseases or is even protective 

(Murphy et al., 2003). However, IL-12 is not the only cytokine using the p35 subunit. 

The regulatory cytokine IL-35 consists of p35 and Epstein-Barr-virus-induced gene 3 

(Ebi3), thus the regulatory role of p35 may reflect the activity of IL-35 and not IL-12 

(Collison et al., 2007). From these controversial results one can conclude that both 

TH1 and TH17 cells play a role in autoimmune diseases and may carry out different 

functions. It is suggested that TH17 cells form the first wave of tissue infiltrating T 

cells (Hirota et al., 2007; Reboldi et al., 2009) and later change their phenotype to a 

TH1 profile (Lee et al., 2009). This hypothesis is further supported by our work, which 

revealed many cells expressing both IFN-γ as wells as IL-17 and decreasing 

numbers of IL-17+ cells during the resolution of EAU in rats. 

Besides effector T cells, regulatory T cells also play an important role in 

autoimmunity. Their absence results in a breakdown of self-tolerance and triggers 

various autoimmune diseases (Sakaguchi et al., 1995). Adoptive transfer of Treg cells 

can prevent or even reverse autoimmune responses (Takahashi et al., 1998). It is 

assumed that an imbalance of the immune system causes autoimmunity. When 

effector T cells overpower the regulatory effects of Treg cells, because of a deficiency 

in either frequency or function of Treg cells, it paves the way for autoimmunity 

(Chatenoud et al., 2001). 

 

4.6 Animal models for monophasic and relapsing uveitis 

Since most animal models are either monophasic or chronic, there are only two 

models available for relapsing experimental autoimmune uveitis, namely in horses 

and in rats. ERU is the only spontaneous occurring relapsing uveitis with a high 

prevalence, up to 15% of horses are affected (Rebhun, 1979). Uveitis can also be 
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experimentally induced in horses by immunization with IRBP. Disease outcome of 

experimental uveitis is similar to spontaneous uveitis (Deeg et al., 2002). Like in 

rodent models, T cells are the major infiltrating cell population in the eyes of horses 

(Deeg et al., 2001; Gilger et al., 1999; Romeike et al., 1998). However, due to the 

size of the animals and the lack of reagents and techniques, ERU is less suitable for 

detailed investigations of cytokine and cell profiles in monophasic and relapsing 

uveitis. 

A better animal model for monophasic and relapsing EAU is the Lewis rat model. 

Lewis rats, which are highly susceptible for induction of EAU by a variety of retinal 

autoantigens, are immunologically well characterized and have reasonably sized 

eyes. They develop anterior as well as posterior inflammation during the disease 

course and therefore the investigation of EAU can be made clinically by daily 

examinations with an ophthalmoscope as well as by final histological analysis of the 

eyes (Figure 4). 

 

 

Figure 4 Histology of Lewis rat eyes. A) Healthy eye. B) Eye from an animal with uvetis 

induced with IRBP in CFA. Cryosections were stained for CD4 (red, labels T helper cells and 

monocytes/macrophages). Nuclei were counterstained with hematoxylin (blue). 1: ganglion 

cell layer, 2: inner plexiform layer, 3: inner nuclear layer, 4: outer plexiform layer, 5: outer 

nuclear layer, 6: photoreceptors outer segments, 7: retinal pigment epithelium, 8: choroid, 9: 

sclera. Photographs courtesy of Gerhild Wildner. 

 

Moreover, the rat model has proved to be helpful in different aspects. As rats are 

susceptible to EAU induction by many different autoantigens, they can be used to 

test potentially new autoantigens for uveitis. Additionally, they have been used to 

investigate new therapeutic treatments for uveitis. A successful example is 

Cyclosporin A, an inhibitor of T cells, which was first tested in the rat model and later 
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became available for human therapy (Nussenblatt et al., 1983; Nussenblatt et al., 

1981). Another example is oral tolerance to treat uveitis by inducing antigen-specific 

tolerance. Again the rat model was used to investigate this mechanism. Here either 

retinal S-Antigen (Nussenblatt et al., 1996) or B27PD, a peptide derived from HLA-B, 

was used as oral tolerogen and both could suppress EAU (Wildner and Thurau, 

1994). A therapeutic trial with B27PD in human autoimmune uveitis showed 

promising results (Thurau et al., 1999) and clinical trial is presently underway. 

One major advantage of the Lewis rat model which makes it very attractive is that the 

disease course can either be monophasic or relapsing, depending on the antigen 

used for EAU induction. The relapsing disease was first described after adoptive T 

cell transfer (Shao et al., 2005) and later it was also demonstrated after immunization 

with antigen (Diedrichs-Mohring et al., 2008). S-Ag was the first uveitogenic antigen 

described (de Kozak et al., 1981; Wacker et al., 1977). It is an intracellular protein of 

the photoreceptors. Its most pathogenic peptide in rats is PDSAg (amino acid 342-

354 from bovine S-Ag) (Wildner and Thurau, 1994). Another uveitogenic antigen is 

the IRBP, which transports retinoids between the photoreceptors and the retinal 

pigment epithelium. The major uveitogenic peptides of IRBP are R14 (amino acid 

1169-1191) and R16 (amino acid 1177-1191) (Sanui et al., 1988). In Lewis rats, 

peptide PDSAg from S-Ag induces monophasic EAU, while peptides R14 and R16 

from IRBP induce relapsing EAU (Diedrichs-Mohring et al., 2008; Shao et al., 2005). 

Functional differences between PDSAg- and R14-induced uveitis were discovered by 

applying the chemokine receptor antagonist Met-RANTES (N-terminally 

methionylated form of RANTES (regulated and normal T cell expressed and secreted 

/ CCL5). EAU induced by adoptive transfer of PDSAg-specific T cells was completely 

blocked after Met-RANTES treatment, while EAU induced by adoptive transfer of 

R14-specific T cells was not affected (Diedrichs-Mohring et al., 2005). A further 

difference between monophasic and relapsing EAU is the onset of clinical disease, 

which was delayed by 2-3 days in PDSAg-immunized animals compared to R14-

immunized rats (Diedrichs-Mohring et al., 2008). Moreover, differences in the activity 

of regulatory T cells were discovered between monophasic and relapsing EAU. Treg 

cells isolated from eyes of monophasic EAU showed a stronger inhibition of 

responder T cells and also an increased production of IL-10 compared to Treg cells 

from relapsing EAU after adoptive T cell transfer (Ke et al., 2008). 



4 Introduction 

36 

Since in humans autoimmune uveitis shows a relapsing rather than a monophasic 

course, this animal model strongly resembles the human situation and offers an 

important opportunity to investigate the immunological differences of monophasic 

and relapsing disease. 
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5 Results 

 

 

5.1 Effector T cells driving monophasic vs. relapsing/remitting 

experimental autoimmune uveitis show unique pathway signatures 
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All Primer pairs

Assays designed

Gene ID Gene Symbol Sense (5'->3') Antisense (5'->3') Probe

25712 Ifng AACAGTAAAGCAAAAAAGGATGCATT TTCATTGACAGCTTTGTGCTGG CGCCAAGTTCGAGGTGAACAACCC

SYBR green primers on demand

Gene ID Gene Symbol Assay ID

83502 ECad QT00176288

25166 Casp1 QT00191814

25402 Casp3 QT00186333

25599 Cd74 QT00189049

140589 Gli1 QT001586662

294273 Hla-dmb QT001579648

29146 Jag1 QT00193424

24514 Jak2 QT00189182

SYBR green primers designed

Gene ID Gene Symbol Sense (5'->3') Antisense (5'->3')

25365 Actg2 GGGATCCTGACCCTCAAATAC AGGAGTGGTGCCAGATCTTCT

308113 Cnksr3/Magi CTCTGCGCACTGAATTATGG TGCAGATTATGGGAGGATGC

25423 Ctsc GATCCTAAGGCCCAAACCTG ACGGACGTTTCTCCAGTCC

25425 Ctsh ATAGGCAAGAATGGTCAGTGC CCTCATCATTGAGTGTGATGTTG

317382 Foxp3 GCCACCTGGGATCAATGT GTGTACCTGAGCGTGGGAAG

266704 Gzmg CACTGCACTGGAAGATCAATG AGCCCTTTTCACAGGGATG

25084 Il4r ATCTGCATGGTCAACATCTCC GGGTTCCGTGTAGGTCACAT

25465 Il17 ATTCCATCCATGTGCCTGAT AGTACCGCTGCCTTCACTGT

3627 Ip10/Cxcl10 GCGGTGAGCCAAAGAAG CAGGAGAAACAGGGACAGTTAGG

50658 Mapk9 CCAAGGAATTGTTTGTGCTG TCACGGTAGGCTCTCTTTGC

24314 Nqo1 CATCTCTGGCGTATAAGGAAGG AATGGGAACTGAAATATCACCAG

50645 Rab27a CAGTACACTGATGGGAAGTTCAA TTCGCTCTGTACACCACTCTCT

304887 Ralgps2 AAGTGAGAAGGGCTCTGAATTG CTGACCCGCGTATTCTTCTG

309621 RT1-Ba CCAGCTACCAACAAGGTTCC AAAGCAGATGAGGGTGTTGG

309622 RT1-Bb GTGATCTTCCTCGGGCTTG TGTAGGAGCCCTGCTGGA

294269 RT1-Da GGAAGCACTGGGAGTTTGAA CACAAACAACCCGAGAACAC

294270 RT1-Db1 GTGCTGGGTCTGCTCTTCC AGGAGTCCTGTTGGCTGAAG

56083 Tgm2 GCATGGTCAACTGCAATGAT AGGCCATGGGACTGATACC

282582 Wnt5b GCACTGGGATGGGTTGAG AGCGACCACCAGGAGTTG

Supplement: List of primers
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5.2 Dynamics of intraocular IFN-γ, IL-17 and IL-10-producing cell 

populations during relapsing and monophasic rat experimental 

autoimmune uveitis 
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5.3 Monophasic EAU dominates over relapsing EAU 

To investigate the influence of effector and regulatory T cell populations on the 

disease course we induced EAU by immunization with combinations of the 

uveitogenic peptides in CFA. PDSAg/CFA and R14/CFA were either administered 

separately at contralateral sides (indicated as 1+1) or as a mixture of both (indicated 

as Mix). While none of the Mix-immunized rats had recurrences, contralateral 

administration of both antigens allowed a low frequency of relapses in 12.5% of eyes 

(Figure 5) compared to 75% in animals immunized with the same dose of R14 only. 

There were no differences detected in the uveitis intensities between the particular 

groups. 

 

Figure 5 Percentages of relapsing eyes. Lewis rats were immunized with 25 µg peptide 

PDSAg (bovine S-Ag amino acid (aa) 342-354), R14 (human IRBP aa 1169-1191), Mix 

(combination of 25 µg PDSAg and 25 µg R14) or 1+1 (25 µg PDSAg and 25 µg R14 

administered at contralateral sides) in CFA fortified with Mycobacterium tuberculosis strain 

H37RA (2.5 mg/ml). Time course of uveitis was determined daily with an ophthalmoscope. 

Uveitis was graded as described (de Smet et al., 1993). Relapses were defined as score ≥1 

following a period of complete absence of all clinical signs of inflammation after the first 

attack of disease. Percentage of relapsing eyes is shown from 8-12 animals per group. 

 

During the course of uveitis the cytokine pattern of intraocular T cells from the 

differently immunized rats was investigated. In the animals immunized with both 

antigens the cytokine pattern of intraocular cells looked similar, irrespective of the 

mode of application (Mix or 1+1), but differed from the pattern of the rats that were 

immunized with PDSAg or R14 only. Rats immunized with both antigens showed an 

R14-like cytokine pattern at onset of EAU with higher numbers of IL-17+ and lower 

numbers of IFN-γ+ cells, and a PDSAg-like cytokine expression at resolution of EAU 

with increased IL-17+ and IL-10+ populations (Figure 6). 
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Figure 6 Cytokine pattern of intraocular cells. Lewis rats were immunized as described 

in Figure 5. Intraocular cells were isolated at indicated time points during EAU and pooled 

from three animals. After preparing single cell suspensions, cells were stimulated with 50 

ng/ml Phorbol 12-Myristate 13-Acetate, 1 µg/ml Ionomycin and 1 µg/ml Brefeldin A for four 

hours and stained for IFN-γ, IL-17 and IL-10 with respective antibodies conjugated with FITC, 

PE or Alexa647. Flow cytometry was performed with a FACS Calibur and lymphocytes were 

gated based on forward and side scatter. Data were analyzed with FlowJo software. White 

bars: PDSAg, black bars: R14, grey bars: Mix, and hatched bars: 1+1. The y-axis shows % 

of lymphocytes with cytokine expression as specifically indicated. 
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In conclusion, the disease course and cytokine pattern of intraocular cells from rats 

immunized with both antigens confirmed a dominant role of the monophasic, PDSAg-

specific immune response at the resolution phase of EAU. This observation was also 

represented by the decreased frequency (1+1 immunization) or completely 

abrogation (Mix immunization) of relapses. Increased populations of Foxp3+ cells 

were observed in all groups during resolution (data not shown). As previously 

detected in monophasic uveitis, increasing numbers of T cells expressing IL-10 may 

be responsible for the prevention of relapses in animals immunized with 

combinations of PDSAg and R14. 
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6 Discussion 

Many human autoimmune diseases are characterized by relapsing rather than 

monophasic disease courses, whereas the exact mechanisms for relapses are not 

understood. However, most animal models lack the possibility to investigate 

relapsing disease courses and spontaneous relapsing disease is even more rare. An 

exception is experimental autoimmune uveitis in Lewis rats, which can exhibit 

monophasic as well as spontaneously relapsing and even reinducible disease 

(Diedrichs-Mohring et al., 2008), depending on the antigen-specificity of the 

pathogenic T cells. On the basis of this model we were able to investigate 

mechanisms underlying recurrent disease courses. 

Recurrent intraocular inflammation appeared not only after immunization with IRBP-

peptide R14 in CFA, but also after adoptive transfer of R14-specific T cells. The 

onset of EAU is about 4-5 days after the transfer of activated, autoantigen-specific T 

cells in naïve rats. Intraocular inflammation is resolved about 5 days later, suggesting 

that there is not much time for the generation of regulatory cells. Consequently, it 

was proposed that there is an autonomous program within the effector T cells 

resulting in different disease courses. We therefore decided to investigate differences 

in the transcriptomes of T cells specific for PDSAg and R14. 

 

6.1 Transcriptomic profile of monophasic and relapsing T cell lines 

Transcriptomic analyses offer a wide-ranging insight to gene activity based on mRNA 

expression levels. By means of oligonucleotides any desired mRNA can be detected 

among the mRNA pool that includes all mRNA transcripts of the cells. However, the 

mRNA levels do not always correlate with the amount of protein synthesized. There 

are many regulatory mechanisms between mRNA and protein at the 

posttranscriptional level. For instance, microRNAs (miRNAs), which are small non-

coding RNAs, can bind by base pairing to mRNAs and thereby repress protein 

synthesis (Ross et al., 2007). Proteins may also be retained in the ER and are thus 
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biologically inactive. That is why mRNA expression should be confirmed by protein 

expression. 

 

6.1.1 Upregulated genes in T cell lines inducing relapsing EAU 

We have the advantage to be able to induce monophasic and relapsing uveitis in the 

same strain of rats by the same immunization method, the only difference being the 

antigen peptide. Thus, T cells from both disease courses can easily be compared. 

Since it is almost impossible to obtain rat T cell clones we used highly specific T cell 

lines after at least two restimulations in vitro with the respective peptides. These cell 

lines consist of more than 90% CD4+ T cells. mRNA from three different T cell lines 

of each antigen specificity were separately analyzed by microarrays, followed by 

quantitative real time polymerase chain reaction (qPCR) confirmation with another 6-

8 different T cell lines of each specificity. 

Microarray and qPCR revealed upregulation of several genes in R14-specific T cells 

inducing relapsing disease. Only gene expression of at least twofold change 

compared to PDSAg-specific T cells was considered for the analysis. Surprisingly, 

there was no downregulation of genes detected in R14-specific T cells inducing 

relapsing EAU compared to PDSAg-specific T cells inducing monophasic EAU. Most 

of the upregulated genes are involved in mechanisms that lead to prolonged survival 

and activation of T cells. This indicates that T cells from monophasic and relapsing 

disease are basically equipped with the same features, but T cells inducing relapsing 

disease show a stronger expression of genes associated with regulatory pathways of 

antigen presentation and activation as well as the WNT/Hedgehog (HH) pathways. 

We could define 26 upregulated genes in R14-specific T cell lines, belonging to 

different signaling pathways that are connected with each other (Figure 7). 
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Figure 7 Signal transduction pathways of regulated genes in R14-specific T cells. 

Transcriptomic profiling of PDSAg- and R14-specific T cells resulted in the detection of 

upregulated genes in R14-specific T cells. These genes participate in different intracellular 

signaling pathways such as WNT, Hedgehog (HH), mitogen-activated protein kinase (MAPK) 

and antigen presentation pathway. * indicates significantly upregulated genes. (Courtesy of 

Gerhild Wildner). 

 

WNT/HH signaling pathways 

Many of the significantly upregulated genes contribute to the WNT and to the HH 

signaling pathway, which are as well interconnected. Both signaling pathways are 

evolutionarily conserved and use several related or even identical factors. They do 

not only play important roles in embryogenesis, but also contribute to proliferation, 

cell polarity, cell movement and survival of cells, which also explains their 

participation in cancer (Logan and Nusse, 2004; Lum and Beachy, 2004). WNT 

signaling is involved in induction of long-lived self-renewing populations of memory T 

cells (Zhao et al., 2010). In autoimmune responses, memory T cells play a central 

role. Among the significantly upregulated genes in R14-specific T cells E-cadherin, 

connector enhancer of kinase suppressor of ras 3 / membrane-associated guanylate 
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kinase-interacting protein-like 1, glioma-associated oncogene homolog 1 and 

caspase 3 (Ecad, Cnksr3/Magi1, Gli1 and Casp3) contribute to the WNT and HH 

pathways. E-cadherin is a transmembrane protein and is important for cell adhesion. 

Its cytoplasmic domain is linked via β-catenin to CNKRS3/MAGI1, which is also 

significantly increased in R14-specific T cells. The cleavage of E-cadherin or 

CNKRS3/MAGI1 by caspase 3, which is also upregulated in R14-specific T cells, 

leads to the release of β-catenin that can translocate to the nucleus and act as a 

transcription factor. Another transcription factor Gli1, which is significantly increased 

in R14-specific T cells, is part of the HH signaling pathway that suppresses apoptosis 

and induces proliferation of activated CD4+ T cells (Lowrey et al., 2002). The 

upregulation of these genes in T cells capable of inducing relapsing disease could be 

one explanation for their prolonged survival in the eye, even after resolution of the 

first attack of disease and their ability to become reactivated and induce relapses. By 

contrast, PDSAg-specific T cells that induce monophasic disease show no 

upregulation of genes involved in WNT and HH signaling pathways and could not be 

detected in high numbers in the eyes after resolution of EAU. 

 

Antigen presentation 

A further group of upregulated genes including RT1 class II locus DA, CD74, 

cathepsin H and MHC class II DM beta (Rt1.Da, Cd74, Ctsh and Hla-dmb) could be 

grouped together as they are related to antigen presentation. Rt1.Da is a rat MHC 

class II molecule, equivalent to human HLA-DR and mouse I-E, and is additionally 

the restriction element of R14-specific T cells. CD74, CTSH and HLA-DMB are 

involved in peptide loading onto MHC class II molecules. Initially, it seems 

uncommon that T cells upregulate genes important for antigen presentation. 

However, this phenomenon was already observed in humans as well as in rats and is 

associated with T cell activation (Gansbacher and Zier, 1989; Taams et al., 1999). In 

addition, it could be demonstrated that T cells expressing MHC class II molecules 

acquire B7 costimulatory molecules from APCs and can therefore act as antigen 

presenting cells (Sabzevari et al., 2001). This mechanism may be important for the 

amplification of the specific immune response. In case of the R14-specific T cell line, 

this could be a mechanism allowing long-lasting immune responses and could 

probably be important for reactivation of T cells during relapses. However, memory T 
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cells, which acquire B7 costimulatory molecules, die by apoptosis (Sabzevari et al., 

2001). Moreover, expression of MHC class II molecules on T cells is also associated 

with T cell anergy. If T cells are activated by antigen presenting T cells, they cannot 

be restimulated by professional APCs and become anergic (Taams et al., 1999). This 

could lead to the termination of the immune response and to the resolution of 

disease. In case of MHC class II expressing R14-specific T cells one could speculate 

that they may present antigen to regulatory T cells and subsequently anergize them, 

thus escaping from regulation. On the other hand, it is also possible that anergic 

effector T cells become reactivated and induce relapses. 

CD74 has dual roles in the immune response. Besides its role as invariant chain (Ii), 

which blocks the peptide binding groove of MHC class II molecules to prevent 

peptide binding in the ER, CD74 can also be expressed on the surface of T cells and 

act as a receptor for MIF. In the latter function it induces the expression of pro-

inflammatory genes and is involved in proliferation and inhibition of apoptosis (Leng 

et al., 2003). This emphasizes the pro-inflammatory role of R14-specific cells in 

relapsing disease as well. 

 

IFN-γ signaling pathway 

Another gene possibly contributing to the pro-inflammatory status of R14-specific T 

cells is Casp1. The protease Caspase-1 processes IL-1β and IL-18 from their 

inactive pro-cytokines. IL-18 was originally discovered as an IFN-γ inducing factor 

(Okamura et al., 1995); however, it has pleiotropic effects and can also induce TH2 

(Nakanishi et al., 2001) and TH17 responses (Lalor et al., 2011). 

IFN-γ, which is upregulated in R14-specific T cells on the mRNA as well as protein 

level, is the signature cytokine of TH1 cells. It induces interferon gamma-induced 

protein 10 / interferon-inducible cytokine 10 (IP-10/CXCL10) that is also increased in 

R14-specific T cells and functions as a chemoattractant for monocytes/macrophages, 

T cells and NK cells. It also promotes T cell adhesion to endothelial cells and thus 

may facilitate the traffic through the blood-retina-barrier, potentially explaining the 

earlier onset of R14-induced as compared to PDSAg-mediated EAU. IP10/CXCL10 

acts via Janus Kinase 2 (JAK2), which is upregulated in R14-specific T cells and is 

an important component of the JAK/STAT (signal transducer and activator of 
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transcription) pathway. JAK2 is critical for IL-12 signal transduction and TH1 cell 

differentiation (O'Shea and Plenge, 2012). 

 

Foxp3 expression 

Most of the upregulated genes are closely connected with inflammation or 

proliferation. An exception is Foxp3, which is the master transcription factor of 

regulatory T cells (Fontenot et al., 2003). However, in addition to its expression in 

regulatory T cells, Foxp3 is also expressed in activated T effector cells in humans, 

but only transiently and at a lower level than in regulatory T cells (Allan et al., 2007). 

The expression of Foxp3 in R14-specific T cells lines could thus rather represent the 

activated status of the T cells and thus do not necessarily indicate a regulatory 

phenotype. 

 

Regulated genes with unexplained functions 

Some of the upregulated genes are involved in the release of cytotoxic granules, 

such as granzyme G, cathepsine C and ras-related protein 27A (Gzmg, Ctsc and 

Rab27a). However, their exact functions in T helper cells have not been completely 

elucidated. 

 

In principle, all of the upregulated genes support the pro-inflammatory role of R14-

specific T cells and are probably the determining factors for induction of relapses in 

R14-induced EAU, in contrast to the monophasic EAU-inducing PDSAg-specific T 

cells, where these genes were not upregulated. 

 

 

6.1.2 Comparison of transcriptomic and protein analyses 

As mentioned above, mRNA levels do not always reflect protein levels. For a few 

genes, the corresponding protein levels were analyzed with the help of specific 

antibodies directed against rat and mouse proteins. Unfortunately, several of the 
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mouse-specific antibodies, which were purchased as being crossreactive with rat 

proteins, did not bind the respective rat targets. 

In case of rat MHC class II RT1.B and RT1.D increased gene expression in R14-

specific T cells was confirmed by flow cytometry. Upregulation of the IFN-γ gene 

could be confirmed by cytokine secretion assays and intracellular cytokine detection. 

Both methods showed an upregulation of IFN-γ in R14-specific T cells compared to 

PDSAg-specific T cells. A discrepancy was detected with respect to IL-17. Although 

there was no verifiable difference in the mRNA levels of IL-17 between PDSAg- and 

R14-specific T cell lines, there was an increase in intracellular and secreted IL-17 

protein amounts in PDSAg-specific T cells detected. For the determination of 

secreted cytokines cell culture supernatants were collected daily, pooled and 

analyzed in order to detect early as well as late secreted cytokines. The detection of 

cytokines in culture supernatants represents the difference between the amount of 

secreted cytokines and those used by the cells. Accordingly, the analysis of 

intracellular cytokine expression seems to be a useful method to obtain better 

information about the status of single T cells and cell populations. Thus, this method 

was used in further experiments to determine T cell profiles ex vivo. 

As IFN-γ and IL-17 were detected in PDSAg- as well as in R14-specific T cell lines, 

both consist of TH1 and TH17 cells. Nevertheless, according to the cytokine profile 

detected in cell supernatants and intracellularly, R14-specific T cells display rather a 

TH1 profile and PDSAg-specific T cells may be predominantly TH17 cells. 

 

6.1.3 Increased stability of T cells inducing relapsing EAU in vivo 

To correlate the data from the transcriptomic profiling with the in vivo situation 

adoptive transfer studies with GFP+ PDSAg- or R14-specific T cells were performed. 

These studies revealed prolonged survival of R14-specific T cells in the eyes of 

animals with relapsing uveitis. Although PDSAg-specific T cells were also detectable 

in the eyes of animals after resolution of monophasic uveitis, only low numbers of 

PDSAg-specific T cells were found. By contrast, clusters of GFP+ R14-specific T cells 

were detected in eyes during relapses. These results suggest that R14-specific 

pathogenic T cells have an extended survival in the target organ of the autoimmune 
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disease and thus have a better chance to induce relapses by reactivation and 

proliferation. 

We therefore decided to look at intraocular T cells at different stages of both types of 

EAU with respect to the expression of cytokines and Foxp3 as a potential marker of 

Treg cells. 

 

6.2 Cytokine expression profile of monophasic and relapsing 

intraocular T cells 

The cytokine expression profile of T cells gives some indication of their function 

during autoimmune responses, especially when analyzed ex vivo, without additional 

cell culture steps that could distort cytokine expression. Of particular interest are T 

cells from the target organ of the autoimmune reaction, namely the eye. 

However, it should be considered that the intracellular cytokine expression is not 

always congruent with the effective secretion of cytokines. Nevertheless, the data 

from intracellular cytokine analysis are sufficient to determine the T cell status and 

their potential contribution to immune reactions. 

 

6.2.1 High frequency of cytokine producing cells in inflamed eyes, but not in 

peripheral lymph nodes 

After induction of EAU by immunization with the autoantigen peptides PDSAg or R14 

in CFA, cells from eyes and peripheral lymph nodes were isolated at several time 

points during the disease course (onset, peak, resolution and relapse). Ex vivo 

staining of these cells for intracellular cytokine expression revealed high frequencies 

of cytokine-producing cells only in the eyes but not in the lymph nodes draining the 

site of immunization. These observations were found in both, monophasic as well as 

relapsing disease. Consequently, the investigation of the target organ is absolutely 

necessary to obtain information about ongoing immune reactions and participating 

inflammatory cells. Ex vivo data from lymphoid organs in the periphery only are not 

representative for inflammation in the target organ and differences during the disease 
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course would not be recognized. However, after several restimulations with the 

respective antigen in vitro, cells from draining lymph nodes can be enriched for 

antigen-specific T cells, resulting in T cell lines that produce high amounts of 

inflammatory cytokines. Such T cells were used for the transcriptomic analysis and 

gave the first hint on differences with respect to the cytokine profiles of the T cells 

inducing monophasic and relapsing EAU. 

Moreover, high frequencies of IFN-γ IL-17 double positive cells were only detected in 

the eye but not in the peripheral lymph nodes. This suggests that the ocular 

environment influences the plasticity of invading T cell populations. Once 

inflammation occurs in the eye, the anti-inflammatory milieu of healthy eyes is 

displaced by a pro-inflammatory milieu. IL-12 and IL-23, which are pro-inflammatory 

cytokines, can lead to conversion of IL-17-producing cells into IFN-γ-secreting TH17 

cells in the absence of TGF-β (Lee et al., 2009). Induction of TH17 cells is different in 

mice and humans, but nothing is known about rats. Since TH17 cells exhibit a higher 

plasticity than TH1 cells (Lee et al., 2009), more double positive cells are found in 

monophasic EAU, where also more TH17 cells were present. In addition, the double 

positive cells increased over time in monophasic EAU (section 6.2.4). 

 

6.2.2 Antigen specificity of intraocular cytokine-producing T cells 

The lymphocyte population isolated from inflamed eyes consisted mainly of T cells 

expressing the αβTCR. A very small population (about 2%) of γδTCR positive T cells 

was also detected, but they did not express inflammatory cytokines such as IFN-γ or 

IL-17. Thus they seem to play a minor role in uveitis in the rat model. This is in 

contrast to a mouse model of EAU, where higher numbers of γδ T cells were 

identified. These γδ T cells showed pro-inflammatory properties and could enhance 

EAU in mice (Nian et al., 2011). 

To determine the antigen specificity of intraocular T cells, they were stimulated with 

their corresponding peptides in vitro and cytokine expression was measured. 

Unfortunately, antigen specificity of intraocular cells could not clearly be detected by 

this method. The presence of antigens from the eye could not entirely be excluded 

from the single cell suspension of intraocular cells, which included APCs. Since MHC 
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tetramer staining is not available for the rat antigens, which were used here, it is 

difficult to determine the antigen specificity of intraocular T cells. 

 

6.2.3 Different MHC class II restriction of PDSAg- and R14-specific T cells 

PDSAg- and R14-specific T cells induce different disease courses and hence have to 

possess different characteristics. One of them is the different MHC class II restriction 

of the T cell lines. While PDSAg-specific T cells recognize their antigen presented on 

RT1.B, which is the rat equivalent of HLA-DQ, R14-specific T cells recognize their 

antigen in context with RT1.D, the equivalent to HLA-DR. 

The primary contact of naïve T cells with MHC/peptide on APCs is a very important 

step for the T cell lineage commitment. The presenting MHC molecule determines 

not only the CD4+ or CD8+ phenotype of the T cell, but the subtype of the presenting 

MHC class II molecule also influences T cell subset. The APC receives different 

signals depending on the MHC class II molecule bound by the T cell receptor, which, 

in turn results in different T cell activation. In human monocytes it was demonstrated 

that binding of specific antibodies to different MHC class II molecules results in 

transmission of distinct signals, activation of different mitogen-activated protein 

kinases (MAPK) and release of different cytokines. Binding of HLA-DQ (equivalent of 

RT1.B, presenting for PDSAg-specific T cells) induced rather anti-inflammatory 

cytokines, while binding of HLA-DR (equivalent of RT1.D, presenting for R14-specific 

T cells) resulted in release of more pro-inflammatory cytokines. These different 

cytokines may affect T cell development during the first antigen contact (Matsuoka et 

al., 2001). Therefore, R14-specific T cells that recognize their antigen presented on 

RT1.D may become activated in a more pro-inflammatory milieu and preferably 

produce IFN-γ, in contrast to PDSAg-specific T cells that recognize their antigen on 

RT1.B and are activated in a rather anti-inflammatory milieu. It is possible that the 

R14-specific T cells are more pro-inflammatory and can therefore induce relapses, 

while the PDSAg-specific T cells do not get a strong pro-inflammatory signal and 

therefore are not able to promote recurrent disease. Differences during the first 

contact with activating antigen may play a pivotal role in the life of T cells and may 

finally determine the course of uveitis. 
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6.2.4 Differences in expression of IFN-γ and IL-17 in monophasic and 

relapsing disease 

Since TH1 and TH17 cells play key roles in T cell-mediated autoimmunity, both TH1 

and TH17 cells are also involved in EAU, and the signature cytokines IFN-γ and IL-17 

are of particular importance in mice (Luger et al., 2008). Their influence in 

monophasic and relapsing disease is not yet completely elucidated and may be 

important for the decision of a monophasic or relapsing disease outcome. Therefore, 

we analyzed the expression pattern of the cytokines IFN-γ and IL-17 during the 

disease course of monophasic and relapsing EAU. Surprisingly, not only IFN-γ+IL-17− 

and IL-17+IFN-γ− cells were detected, but also IFN-γ+IL-17+ cells were found in 

inflamed eyes. These double positive T cells probably emerge from TH17 cells, 

because they exhibit high plasticity (Muranski and Restifo, 2013). The switch from 

TH17 to TH1 was previously demonstrated for EAU in mice (Shi et al., 2008). A 

conversion from TH1 to TH17 cells would also be conceivable under certain 

circumstances, which was demonstrated by epigenetic modifications (Wei et al., 

2009). In our model, the numbers of T cells expressing both IFN-γ and IL-17 

increased during the disease course of monophasic EAU, while only few of these 

cells were detectable during relapsing EAU. Due to the fact that numbers of these 

cells did not increase during relapses, it seems that they are not crucial for the 

induction of relapses and may rather play an inhibitory role in monophasic EAU. An 

anti-inflammatory role of IL-17 was described previously in EAU in rats. 

Administration of IL-17 increased the number and regulatory activity of Foxp3+ Treg 

cells and subsequently decreased the number of relapses (Ke et al., 2009). In our 

model further experiments revealed the expression of IL-10 in some of the IFN-γ+IL-

17+ cells, which supports their potential suppressive role in EAU. 

We showed that IFN-γ+IL-17− as well as IL-17+IFN-γ− populations remained stable 

during monophasic EAU, while in relapsing EAU dynamic changes were detected. 

The numbers of IFN-γ+IL-17− cells continuously increased during the disease course 

of relapsing EAU in contrast to the IL-17+IFN-γ− cell population, which decreased. It 

can therefore be speculated that IL-17 may play an important role during disease 

induction, but is not involved in relapses. The suggestion that TH17 cells form the first 

wave of T cell infiltration was already proposed for EAE (Reboldi et al., 2009) and 

could also hold true for EAU. Treatment of rats with anti-IL-17 antibodies before and 



6 Discussion 

81 

during onset of EAU resulted in a delayed onset and attenuation of EAU (Zhang et 

al., 2009). IFN-γ+ cells, which we found in highest numbers during relapses, seem to 

be responsible for the induction of recurrences in relapsing rat disease. This was 

further supported by the intraocular administration of recombinant rat IFN-γ after the 

resolution of the first attack of EAU, which subsequently induced relapses in R14-

induced EAU (section 6.2.5). 

 

6.2.5 Enhanced frequency of relapses after intraocular administration of 

recombinant IFN-γ in relapsing uveitis 

To confirm our hypothesis that IFN-γ is the crucial cytokine for induction of relapses 

we have injected recombinant rat IFN-γ intraperitoneally or into the eyes of animals 

after the first attack of disease had subsided. Three days after receiving intraocular 

IFN-γ the rats showed synchronized relapses of uveitis. Moreover, the intensity of the 

relapses was higher compared to the control group receiving intraocular phosphate 

buffered saline (PBS) only. Intraperitoneal injection of IFN-γ had no influence on the 

relapses. We speculate that resting effector T cells in the eye can be locally 

reactivated by intraocular application of IFN-γ and thus induce relapses by recruiting 

inflammatory cells. 

 

6.2.6 Foxp3+ T cells in monophasic and relapsing disease 

Besides an autonomous regulatory program within T cells inducing uveitis, which we 

proposed for T cell lines examined in the gene arrays, there may also be regulatory T 

cells contributing to the resolution of uveitis. In the following we further investigated 

the role of regulatory T cells in EAU. However, the regulatory function of Foxp3+ T 

cells can only be assumed, because activated effector T cells also transiently 

express Foxp3 in rats. However, from protein expression data alone we cannot 

determine whether Foxp3 has a regulatory function or not, since the phosphorylation 

of the molecule plays an important role. Only phosphorylated Foxp3 is functioning as 

a regulator in Treg cells in humans (Nie et al., 2013). 

Since regulatory T cells are crucial to control autoimmunity (Jager and Kuchroo, 

2010), they may also play a role in the remission of monophasic experimental 
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autoimmune uveitis. When we investigated the Foxp3 expression of intraocular T 

cells during the course of disease, an increase in the number of Foxp3+ T cells was 

found at the resolution of monophasic EAU. However, similar observations were 

made for relapsing uveitis, where also an increase of Foxp3+ T cells was detectable 

during the resolution. Furthermore, despite these high numbers of Foxp3+ T cells 

relapses occurred in R14-induced EAU. There are several explanations for the 

detection of Foxp3+ cells in both, monophasic as well as relapsing uveitis. As shown 

by the results from the gene arrays, Foxp3 was also upregulated in activated R14-

specific T cell lines. Similar observations are known from humans, where activated T 

cells transiently express Foxp3 (Allan et al., 2007). However, in our case, cytokine 

analysis of Foxp3+ cells revealed no coexpression of inflammatory cytokines like IFN-

γ or IL-17, which makes an activated effector T cell phenotype unlikely. It is possible 

that the Foxp3+ cells in eyes of relapsing EAU exhibit a weaker inhibitory function 

compared to Foxp3+ cells from monophasic EAU, as previously speculated for the 

Lewis rat model of EAU (Ke et al., 2008). Similar findings were observed in EAE. 

Foxp3+ regulatory T cells isolated from the CNS of animals suffering from EAE could 

only inhibit naïve autoantigen-specific T cells, but failed to suppress effector 

autoantigen-specific T cells isolated from the CNS. These cells secreted IL-6 and 

TNF that impaired the function of regulatory T cells (Korn et al., 2007). It is therefore 

possible that Foxp3+ T cells in relapsing EAU are not strong enough to inhibit the 

highly activated R14-specific effector T cells. By contrast, Foxp3+ T cells of 

monophasic EAU seem to have a higher regulatory potential and can probably 

suppress PDSAg-specific effector T cells to resolve uveitis. On the other hand, 

increased numbers of Foxp3+ T cells were identified during late remission of 

monophasic EAU, where the eyes showed no signs of clinical inflammation over an 

extended period of time. In relapsing EAU significantly lower numbers of Foxp3+ T 

cells were discovered during late remission, maybe allowing for the emergence of 

relapses (section 6.2.8). 

 

6.2.7 Expression of IL-10 alone and in combination with other cytokines 

Not all regulatory T cells express the transcription factor Foxp3. Therefore, we have 

also looked for cells expressing the regulatory cytokine IL-10. Surprisingly, IL-10 

expression was also found in T cell subsets with an otherwise effector phenotype. 
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Combinations with IFN-γ and/or IL-17 were detected. This unusual cytokine 

combination can be explained by the plasticity of T helper cell subsets (Zhu and Paul, 

2010) and was demonstrated for TH1 (Anderson et al., 2007; Jankovic et al., 2007) 

and TH17 cells (McGeachy et al., 2007). Under certain circumstances, such T cells 

can also produce an inhibitory cytokine like IL-10 in addition to their effector cytokine. 

For example, TH17 cells that were generated in the presence of TGF-β and IL-6 can 

coexpress IL-17 and IL-10, equipping them with regulatory functions (McGeachy et 

al., 2007). Moreover, a cell intrinsic regulatory mechanism seems to be reasonable to 

reduce inflammatory responses and protect against tissue damage. This so-called 

negative feedback loop can also dampen autoimmunity. In case of TH1 cells it was 

demonstrated that these IFN-γ-producing cells themselves are the main source of IL-

10, which prevents immunopathology (O'Garra and Vieira, 2007). 

A regulatory role for IL-10 in autoimmunity, especially in EAU, was already identified 

some years ago (Rizzo et al., 1998). As our results demonstrate, the sources of IL-10 

are in part effector cells expressing IFN-γ and IL-17. Both IFN-γ+IL-10+ as well as IL-

17+IL-10+ populations increased during monophasic EAU and decreased during 

relapsing EAU. The significant difference in IL-10-expressing cells between 

monophasic and relapsing uveitis is probably the reason why relapses are restrained 

in PDSAg-mediated EAU and why they can occur in R14-induced EAU. In addition, 

combination of inhibitory and effector cytokines could result in a synergistic effect. 

For IFN-γ it was previously shown that it could increase the regulatory effect of IL-10 

(Yanagawa et al., 2009). The same could probably be true for IL-17 in combination 

with IL-10. 

Signals that induce IL-10 production in TH1 cells were recently described. Essential 

factors are high antigen dose and consequently strong TCR triggering, in the 

presence of endogenous IL-12 (Gabrysova et al., 2009; Saraiva et al., 2009). 

Additionally, the transcription factors STAT4 and extracellular signal-regulated kinase 

(ERK) that induce expression of IL-10 are necessary (Saraiva et al., 2009). Notch 

signaling has also the ability to induce IL-10 via STAT4 in TH1 cells (Rutz et al., 

2008). For IL-10 expression by TH17 cells STAT3 and c-Maf as well as ERK seem to 

be the crucial transcription factors (Stumhofer et al., 2007; Xu et al., 2009). ERK is 

negatively regulated by Cnksr3/Magi1 (Ziera et al., 2009). As our results from the 

transcriptomic analyses showed a 9.4 fold increase of Cnksr3/Magi1 in R14-specific 
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compared to PDSAg-specific T cells, the lower IL-10 expression in relapsing disease 

could be explained. 

In addition to the effector T cells, which co-produce IL-10, there are also IL-10+ T 

cells coexpressing neither IFN-γ nor IL-17. Since these cells are Foxp3-negative, 

they could be TR1 cells that are characterized by secretion of IL-10 and lack of Foxp3 

expression. However, no lineage-specific surface marker or transcription factor for 

clear identification of TR1 cells is so far known. Thus, these cells could not be 

definitely assigned to TR1 cells. Nevertheless, the immunosuppressive function of 

TR1 cells in autoimmunity has been demonstrated in many cases (Carter et al., 2012; 

Groux et al., 1997; Pot et al., 2011). 

IL-10 is a pleiotropic cytokine and exhibits different immunoregulatory functions. 

Many regulatory effects of IL-10 on T cells are indirect via monocytes/macrophages 

or DCs. Nevertheless, IL-10 can act directly on T cells and inhibit proliferation and 

cytokine production by inducing anergy (Joss et al., 2000). Due to the lack of the 

availability of other cytokine-specific antibodies for intracellular staining we were not 

able to investigate other cytokines coexpressed with IFN-γ, IL-17 and/or IL-10. Since 

activated rat T cells express CD4 and CD25 like natural Treg cells (Stephens et al., 

2004; Thurau et al., 2004), we abstained from using these markers for the 

characterization of potential Treg cells. 

 

6.2.8 Increased numbers of regulatory T cells during late remission of 

monophasic uveitis in the eye 

During late remission, which was defined as the time point after subsidence of 

intraocular inflammation, when the eyes did not show any signs of inflammation over 

an extended period, intraocular cells were investigated for regulatory T cell markers. 

In monophasic EAU the numbers of both Foxp3+ as well as IL-10+ expressing T cells 

were increased compared to relapsing EAU, where only low amounts of both T cell 

types were detected. The fact that increased numbers of potential regulatory T cells 

are present in eyes without relapses could be a hint for the prevention of relapses. 

Furthermore, the lack of high numbers of regulatory T cells in the eye, like in R14-

induced EAU, may allow relapses. 
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6.2.9 Contradictory effects of inflammatory cytokines 

For both IFN-γ and IL-17, pro-inflammatory as well as anti-inflammatory effects in 

autoimmunity have been described. The pathogenic or protective functions are 

dependent on the model of uveitis and on the stage of disease during which they are 

expressed. Early production of IFN-γ, induced by IL-12 administration, prevented the 

development of uveitis in mice (Tarrant et al., 1999). Later IL-12 treatment had no 

regulatory effect. As shown by intraocular application in our model IFN-γ has a pro-

inflammatory role promoting the induction of relapses, which are late events during 

disease. A regulatory role for IL-17 in rat EAU was demonstrated by others through 

the treatment of animals with recombinant IL-17 after immunization for uveitis 

induction. In this case, IL-17 inhibited IFN-γ-producing effector T cells and thus EAU 

was suppressed in these animals (Ke et al., 2009). These findings match our results 

that also suggest a regulatory role for IL-17 in monophasic disease, while on the 

other hand high numbers of IL-17+ cells in the early phase of relapsing uveitis 

suggests promotion of the invasion of autoreactive T cells. The increasing levels of 

IL-17 during the resolution of the disease, may counter-regulate IFN-γ-expressing T 

cells and thereby prevent relapses. 

Due to the contradictory roles of IFN-γ and IL-17 it is difficult to develop therapies for 

uveitis patients using these cytokines. Until now there are no anti-IFN-γ therapies 

available for uveitis patients. In multiple sclerosis a clinical trail that was aimed at the 

protective effects of IFN-γ, resulted in exacerbation of disease and had to be 

terminated (Panitch et al., 1987). Blocking IFN-γ will result in a profound impairment 

of the immune defense against bacteria, viruses as well as tumor cells and thus 

should be avoided. Currently, clinical trails with an anti-IL-17 antibody (AIN457) for 

the treatment of non-infectious uveitis patients are ongoing, however with moderate 

effects (http://clinicaltrials.gov/ct2/show/NCT00685399). 

 

6.2.10 The role of regulatory T cells in EAU 

Based on the brief time span between adoptive transfer of uveitogenic effector T cells 

and the resolution of disease, we have proposed an autonomous program within the 

effector T cells, resulting in intrinsic regulatory functions of these cells rather than 

generation of regulatory T cells during the inflammation. However, data gained from 

http://clinicaltrials.gov/ct2/show/NCT00685399
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gene arrays did not reveal an upregulation of suppressive molecules in PDSAg- 

compared to R14-specific T cell lines. Later investigations on the protein level namely 

intracellular cytokine analysis demonstrated coexpression of IL-10 and effector 

cytokines such as IFN-γ and IL-17. This points to an intrinsic program of effector T 

cells that protects against tissue damage due to a negative feedback loop. On the 

other hand, Foxp3-expressing T cells were detected in monophasic as well as in 

relapsing EAU. An increase of Foxp3+ cells was detected in monophasic disease 

during late remission and the percentage of these cells was significantly different 

compared to relapsing EAU, where only low numbers of Foxp3+ cells were 

detectable. We defined these cells as regulatory T cells, because these Foxp3+ T 

cells did neither express IFN-γ nor IL-17 and thus a conversion from effector T cells 

seems to be unlikely. 

Consequently, our data favor a model, which combines an autonomous regulatory 

program in effector T cells and the generation or recruitment of regulatory T cells to 

resolve inflammation in EAU. 

 

 

6.3 Outlook 

Our data demonstrate that monophasic and relapsing uveitis in Lewis rats differ with 

respect to the gene expression profile of the initiating effector T cells and the cytokine 

pattern of the intraocular T cell populations during the course of the disease. Both 

types of analysis have revealed that IFN-γ plays a pivotal role in the induction of 

relapses. Although we detected increased levels of IFN-γ in relapsing disease and 

could induce synchronized relapses after administration of recombinant rat IFN-γ, a 

definite proof is still missing. 

To dissect the role of IFN-γ- and IL-17-producing autoantigen-specific T cells it would 

be desirable to separate them and investigate their pathogenic capacity and the 

disease course after adoptive transfer into naïve rats. Cell separation may be 

achieved by cytokine capture assays that would allow separation of cells dependent 

on their release of distinct cytokines. However, so far we could not obtain reliable 

results with this method. Probably because the amount of secreted cytokines by 
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single cells is unpredictable and thus result in binding to non-secreting neighboring 

cells. Separation of TH17 cells due to surface markers also failed in the rat model. 

The surface markers described for human IL-17-producing cells are CD161 (NK 

receptor P1A) (Maggi et al., 2010) and CCR6, the receptor for CCL20 (Singh et al., 

2008). IL-17-producing cells in the rat do not express these molecules. Moreover, 

since we have considerable populations of cells coexpressing both cytokines (IFN-γ 

and IL-17), isolation of either cell type would always result in the contamination of the 

population with cells coproducing the other cytokine. Due to the dynamics of T cell 

populations we will not know whether and how fast any TH1 or TH17 population would 

change its phenotype. 

The exact contributions of cytokines in EAU could be further determined by 

neutralization with antibodies or administration of recombinant cytokines during 

different stages of disease. For instance, neutralization of IL-10 in monophasic EAU 

may lead to the induction of relapses by impairing the anti-inflammatory milieu. 

Otherwise, administration of recombinant IL-10 could probably prevent relapses in 

animals immunized for relapsing EAU. However, the only available cytokines are 

recombinant proteins produced in Escherichia coli. These proteins contain an N-

terminal methionine and some even lack several N-terminal amino acids (for 

example: recombinant rat IL-10 from R&D comprises only the sequence from Ser19-

Asn178). According to experiments with N-terminally methionylated RANTES (Met-

RANTES) in rat EAU (Diedrichs-Mohring et al., 2005) the function of these in 

Escherichia coli produced cytokines may be unpredictable or contradictory in vivo 

and in vitro. 

Investigations of regulatory T cells revealed Foxp3+ as well as IL-10+ T cells. 

Numbers of Foxp3+ T cells were similar during acute inflammation in monophasic 

and relapsing disease, while populations of IL-10+ T cells were increased in 

monophasic EAU. The regulatory potential of Foxp3+ as well as of IL-10+ T cells 

could further be analyzed by in vitro assays, measuring the impact of regulatory T 

cells on responder cells. Another way to determine the regulatory potential would be 

adoptive transfer of regulatory T cells into animals immunized for uveitis induction. 

Their effect could be directly measured by the clinical score of uveitis and additionally 

by alterations in number and cytokine profile of effector T cells. Thus, difference 

between regulatory T cells from monophasic and relapsing disease could be 
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revealed. Separation of IL-10-expressing T cells could be achieved by cytokine 

capture assay (described above for IFN-γ and IL-17), while for Foxp3 separation 

transgenic animals expressing GFP in Foxp3+ cells are needed. 

To address the question whether regulatory T cells are reprogrammed effector T 

cells or whether they are generated and recruited in response to the inflammation, 

one could use GFP+ effector T cells and adoptively transfer them into naïve animals. 

Isolation of cells from the inflamed eyes and analysis of changes in Foxp3- and IL-

10-expression in GFP+ as well as in GFP− cells could reveal their origin. If the 

regulatory T cells are GFP+, they would have been reprogrammed effector cells and 

if the regulatory T cells are GFP−, they have been generated in the recipient animal 

and are recruited to the inflamed eye. 

To better characterize the different T helper cell subsets, expression of master 

transcription factors such as T-bet in TH1 cells and RORγt in TH17 cells should be 

analyzed in combination with the signature cytokines. Thereby, T helper cell subsets 

responsible for relapses could be better determined and in addition T helper cell 

origin of cells producing multiple cytokines could be detected. This could also give 

hints to T cell plasticity and phenotype switch of T helper cells. However, one has to 

be careful with the detection of the master transcription factors, because they are not 

completely specific for their T helper cell subset. For instance, RORγt expression 

was detected in Foxp3+ cells in mice (Lochner et al., 2008). Therefore, cells should 

be stained simultaneously for different markers to better characterize them. 

Due to the limits in terms of reagents and transgenic or knockout rats we could to 

date not investigate all aspects of the immune responses in monophasic and 

relapsing EAU. 
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