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Zusammenfassung 

Aspergillus fumigatus ist ein opportunistischer Schimmelpilz und als Erreger des 

Krankheitsbildes der invasiven Aspergillose (IA) von großer medizinischer Bedeutung. Diese 

systemische Infektion trifft vor allem abwehrgeschwächte Patienten und weist dabei eine hohe 

Letalität auf. Die Aspergillus-Zellen werden durch eine feste, doch zugleich hochdynamische 

Zellwand vor schädigenden Umwelteinflüssen geschützt. Deshalb stellt diese essentielle und 

pilzspezifische Struktur einen idealen Angriffspunkt für die antimykotische Therapie dar: Alle 

derzeit zur Behandlung von systemischen Pilzinfektionen eingesetzten Medikamente wirken 

auf Zellwand oder Zellmembran. Da auch unter maximaler Therapie ein großer Teil der 

Infektionen tödlich verläuft, wurde in den letzten Jahren nach neuen antimykotischen 

Wirkmechanismen gesucht, woraufhin der CWI (cell wall integrity) Signalweg als ein 

möglicher neuer Ansatzpunkt identifiziert wurde. Diese MAPK (mitogen-activated protein 

kinase)-Kaskade dient der Überwachung und Regulierung der funktionellen Integrität der 

Zellwand und ihres stressbedingten Umbaus. Dazu werden Stressoren detektiert, diese 

Informationen verarbeitet und in den Zellkern weitergeleitet, wo durch eine veränderte 

Genexpression dem Zellwandstress entgegengewirkt werden kann. In dieser Arbeit wurde die 

zentrale Rolle des guanine nucleotide exchange factor (GEF) Rom2 im Rahmen der 

Zellwandstress-Antwort und der Antimykotika-Resistenz untersucht. Es zeigte sich, dass die 

GEF-Funktion essentiell für das Überleben des Pilzes ist. Mit Hilfe einer konditionellen 

rom2-Mutante konnte das Zusammenspiel mit den kürzlich entdeckten CWI-Sensoren Wsc1, 

Wsc3 und MidA untersucht werden. Unter repremierter Genexpression weist die Mutante 

schwere Wachstumsdefekte auf: Wie die ∆midA-Mutante ist sie deutlich empfindlicher gegen 

Hitze, Calcofluor-Weiß und Kongo Rot. Die verminderte Resistenz gegen die klinisch 

bedeutsamen Echinocandin-Antimykotika, wie z.B. Caspofungin, die die β-1,3-Glucan-

Synthese inhibieren, ähnelt dem Phänotyp der ∆wsc1-Mutante. Wie auch die GTPase Rho1, 

mit der eine direkte Interaktion nachgewiesen werden konnte, ist Rom2 in den Hyphenspitzen 

zu lokalisieren. Auf Basis dieser Erkenntnisse konnte Rom2 als wichtige Schaltstelle 

zwischen den Oberflächensensoren und Rho1 einerseits sowie dem downstream gelegenen 

MAPK-Modul identifiziert werden. 

Weiterhin konnte eine neue Methode zur Verstärkung der Echinocandin-Wirkung auf den Pilz 

identifiziert werden. In dieser Arbeit wurden die zwei möglichen Erklärungen für den 

fungistatischen Effekt der Echinocandine gegen den Schimmelpilz untersucht: Das Überleben 

von A. fumigatus beruht entweder auf einer nur unvollständigen Inhibition der β-1,3-Glucan-
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Synthese oder auf der Verzichtbarkeit des β-1,3-Glucans für den Aufbau der Zellwand. Zur 

Untersuchung der Bedeutung der β-1,3-Glucan-Synthase-Untereinheit Fks1 für Überleben, 

Wachstum und Antimykotika-Wirksamkeit wurde eine konditionelle fks1-Mutante generiert. 

Unterdrückte Expression von fks1 führt zu einem Phänotyp, den auch Echinocandine im 

Wildtypstamm hervorrufen. Dies geht mit einer signifikanten Abnahme des β-1,3-Glucans auf 

der Zelloberfläche, einer Abgabe von Galactomannan an die Umgebung und einem 

kompensatorischen Anstieg des Chitin-Gehalts der Zellwand einher. Es konnte gezeigt 

werden, dass Wachstum der konditionellen fks1-Mutante durch Echinocandine nicht komplett 

unterdrückt wird und dass auch eine fks1-Deletionsmutante lebensfähig ist. Diese Ergebnisse 

legen nahe, dass β-1,3-Glucan für A. fumigatus nicht essentiell ist, und erklärt somit die 

eingeschränkte Wirksamkeit der β-1,3-Glucan-Synthase-Inhibitoren. Darüber hinaus wurde 

die Bedeutung von Septen für die Resistenz gegen Echinocandine untersucht. Substanzen, die 

die Bildung von Septen unterbinden, weisen einen signifikanten Synergismus mit dem 

Echinocandin Caspofungin auf. Aus den Erkenntnissen dieser Arbeit folgt, dass die Inhibition 

der Septierung die fungistatische Wirkweise der Echinocandine in eine fungizide überführen 

kann und somit eine vielversprechende Strategie zur Verbesserung der heutigen 

antimykotischen Therapie ist darstellt. 
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Summary 

 Aspergillus fumigatus is a major opportunistic, filamentous fungal pathogen causing invasive 

aspergillosis (IA), a fatal systemic infection in immunocompromised patients with significant 

mortality rate. The fungal cell is protected by a rigid but highly dynamic cellular structure, the 

cell wall that forms the first level of defence against environmental stress. The cell wall being 

an essential and unique structure of the fungus has always been an ideal drug target. The 

major antifungal drugs used currently either target the fungal cell membrane or cell wall. 

However, due to the poor efficacy of current antifungal therapy, the CWI (cell wall integrity) 

pathway has emerged as the focus of research in recent years to discover potential molecular 

drug targets for designing antifungal therapy with novel mode of action. This signaling 

cascade is dedicated to monitoring and maintaining functional integrity of the cell wall, 

remodelling its structure in response to cell surface stress. This MAPK (mitogen activated 

protein kinase) cascade is highly coordinated to transduce the stress signals to the nucleus and 

consequently trigger necessary gene expression to counteract the stress. In this study, we 

explored the pivotal role of guanine nucleotide exchange factor (GEF), Rom2 in cell wall 

stress response and antifungal drug susceptibility. The findings of this work reveal that the 

Rom2 GEF is essential for viability of the pathogen. Additionally, characterization of a 

conditional rom2 mutant functionally links it to the previously identified CWI sensors, 

namely, Wsc1, Wsc3 and MidA in A. fumigatus. The conditional mutant shows severe growth 

defects under repressive conditions such as hyper-susceptibility to heat, Calcofluor white and 

Congo red, similar to the ∆midA mutant. Additionally, similar to the ∆wsc1, the rom2 mutant 

cultured under repressive conditions is increasingly susceptible to the actively used antifungal 

and inhibitor of cell wall β-1,3-glucan synthesis, echinocandin such as caspofungin. 

Furthermore, the Rom2 shows a sub-cellular localization similar to the Rho1 GTPase to 

hyphal tips and also physically interacts with the GTPase. Thus, these relevant findings 

establish the integral role of Rom2 as an intermediate relay molecule acting between the cell 

surface sensors and Rho1 GTPase as well as the downstream MAPK module.  

This study also reports a novel mechanism imparting echinocandin tolerance to the pathogen. 

This work explores two possibilities that may explain the fungistatic nature of echinocandins 

against Aspergillus: one either owing to incomplete inhibiton of β-1,3-glucan synthesis or  

that the cell wall β-1,3-glucan is not essential  for A. fumigatus viability. In order to evaluate 

the role of the β-1,3-glucan synthase subunit, Fks1 in viability, growth and antifungal 

response of the mold, a conditional fks1 mutant was generated. Downregulation of fks1 
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expression results in characteristic growth behaviour which phenocopies the effect of wild 

type treated with echinocandins. The mutant cultured under repressive growth conditions also 

displays significant decrease in cell surface β-1,3-glucan and enhanced galactomannan 

shedding, marked with a compensatory increase in chitin content. Importantly, the growth of 

the conditional fks1 mutant is not completely abolished in presence of echinocandin and an 

fks1 deletion mutant is surprisingly viable. These results strongly reflect that β-1,3-glucan is 

not essential in A. fumigatus, and thereby justifies the limited activity of β-1,3-glucan 

synthesis inhibitor echinocandin on the mold. The novel findings of the work also suggest that 

presence of septa is an essential means of survival for A. fumigatus upon echinocandin 

treatment. Compounds inhibiting septum formation exhibit significant synergism with the 

echinocandin caspofungin. Thus, the present study identifies and proposes that septum 

inhibition is a promising strategy for enhancing echinocandin fungicidal potency and 

improving existing antifungal therapy.                   
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1. Introduction

1.1. Aspergillus spp. 

 

The genus Aspergillus represents a diverse group of filamentous ‘spore-bearing’ fungi 

comprising more than 250 species (Geiser et al., 2007, Sampson and Varga, 2009). 

Aspergillus species are predominantly saprophytic in nature, often inhabiting terrestrial 

habitats. They are commonly found in soil and organic compost, degrading and utilizing it for 

nutrients.  They share the following taxonomy:                                                    

Kingdom- Fungi 

Division-  Ascomycota 

Class-       Eurotiomycetes 

Order-      Eurotiales 

Family-    Trichocomaceae 

Genus-     Aspergillus 

 

The Aspergillus spp. also have a diverse range of clinical, industrial and agricultural relevance 

and challenges. For instance, A. niger is widely used for fermentation processes, particularly 

for production of citric acid and regarded as industrial ‘cell factory’ (Pel et al., 2007); A. 

oryzae and A. sojae are mainly used in the production of sake, miso, vinegar and soy sauce 

(Machida et al., 2008) or A. nidulans that represents an important model organism for 

studying fungal genetics and biology (Galagan et al., 2005). On the other hand, some 

Aspergillus species are known for their pathogenicity and regarded as a threat for plant, 

animal and human life. Some of the common pathogenic species are exemplified by A. 

fumigatus, an opportunist human pathogen causing broad spectrum of infections (Latgé 

1999);  A. flavus and A. parasiticus, the potent hepatocarcinogen aflatoxin-producing species 

which primarily affect crops and also act as opportunist pathogens for both animal and 

humans (Klich 2007;  Horn et al., 2009) or A. sydowii, the pathogen mainly affecting corals 

and a major threat to coral ecosystems (Rypien et al., 2008; Gibbons and Rokas, 2013).       

 

                       .                                                                                                                                                                                                                                                                
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1.2. Aspergillus  fumigatus  

1.2.1. Morphology and life-cycle 

Aspergillus fumigatus is a spore-bearing fungus fungus characterized by green echinate 

conidia (2.5 to 3 micrometer in diameter) produced in chains basipetally from greenish 

phialides (6 to 8 by 2 to 3 micrometer in size). Colonies of Aspergillus fumigatus are dark 

blue-green to grey green on the surface (Figure 1 A and B). Due to the resemblance of its 

microscopic asexual spore-bearing structure to the aspergillum, a liturgical device used to 

sprinkle holywater in Roman Catholic Church, Italian priest and botanist Pier Antonio 

Micheli named these structures ‘Aspergillus’ (Bennett 2010).  

A.                                                B. 

      

    

                                                 

                                                    

 

Figure 1. Morphology of A.  fumigatus (A) Electron micropgraph picture of A. fumigatus 

(http://www.cosmosbiomedical.com/education/mycology/mycology2.shtml) (B) Morphology 

of A. fumigatus colony surface on AMM agar plate after 3 days incubation at 37ºC. 

A. fumigatus is an aerobic filamentous fungus and an ascomycete, capable of reproducing 

both sexually and asexually. In contrast to previous reports, it was recently shown that A. 

fumigatus retains a fully functional sexual reproductive cycle and is able to engage in sexual 

reproduction successfully (O’ Gorman et al., 2009). In the asexual phase, the haploid hyphae 

form foot cells, the tip of which swells to form elongated stalk called conidiophore. The 

conidiophores have conical-shaped terminal vesicles which bear numerous single rows of 

phialides terminating in a chain of haploid spores called conidia formed through a series of 

mitosis (Figure 2 A). These spores disperse and germinate to produce a haploid mycelium 

(Bennett, 1992). On the other hand, the sexual cycle involves fusion of two haploid hyphae by 

a process called plasmogamy to form an elongated sac-like structure, ascus which then leads 

http://www.niaid.nih.gov/dir/labs/lci/aspergillus.gif
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to fusion of nuclei by a process termed as karyogamy. The diploid ascus then divides 

meiotically followed by mitotic divisions to produce four haploid ascospores (n). These 

ascospores are released from the ascocarp, which then grow into haploid mycelia and the 

cycle is repeated (Figure 2 B). 

A.                                B.  

                        

 

 

 

 

 

Figure 2. Conidiophore structure and life cycle of A. fumigatus (A) Asexual strucuture and 

life cycle of Aspergillus conidiophore (Source: Mycoalbum CD by George Barron 

(http://www.uoguelph.ca/)) (B) Schematic presentation of life cycle of ascomycetes 

representing Aspergillus (image from Penn State Universitity).             

1.2.2. Pathogenicity and clinical significance 

Aspergillus fumigatus is known to be the opportunist fungal pathogen with the biggest impact 

on human health, responsible for the the second highest number of fungal infections after 

Candida albicans and highest number of deaths due to fungal infections (Latgé, 1999). This 

pathogenic mold is capable of causing a wide range of ailments depending on the immune 

status of the host, causing asthma and allergies in immunocompetent people to semi-invasive 

and fatal invasive infections in severely immunocompromised patients (Barnes 2006). In 

immunocompromised hosts, A. fumigatus represents a major cause of morbidity and mortality 

causing the life-threatening systemic infection known as invasive aspergillosis (IA). In the 

recent years, this etiologic agent has evolved as the most prevalent cause of mortality in the 

immunocompromised patient population in developed countries. Due to the increasing 

incidence of immunosuppressive therapies and diseases such as the HIV/AIDS, there has been 

a substantial increase in the high risk group patients and the mortality rate due to IA exceeds 

50% in such patients (Hohl and Feldmesser, 2007). 
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Pathogenicity of A. fumigatus is multifactorial, depending upon a combination of traits unique 

to the fungus and the immune status of the host. The virulence of the pathogen largely 

attributes to the small size and hydrophobicity of its conidia which are ideal for infiltrating the 

human pulmonary alveoli and escaping mucociliary clearance in the upper respiratory tract. 

The success of Aspergillus spp. is also well explained by their ability to tolerate harsh, abiotic 

growth conditions including wide range of temperatures (6-55º) and pH (2-12) (Krijgsheld et 

al., 2012). A. fumigatus particularly is quite thermo-tolerant and able to withstand 

temperatures above 50ºC. Several other factors such as its high growth rate and nutritional 

adaptability are other fundamental characteristics that support the intracellular survival and 

virulence of this pathogen (Abad et al. 2010).          

The mode of infection by A. fumigatus is via inhalation of air-borne asexual conidia (spores) 

into the lung alveoli. In a healthy individual, conidia are usually removed by mucociliary 

clearance by lung epithelial cells. The conidia escaping the initial clearance are further 

attacked by the innate immune system consisting of alveolar macrophages and neutrophils 

(Figure 3). However, when such immune responses are compromised as in the case of 

neutropenic patients, conidia germinate and colonize the pulmonary environment. Hyphal 

fragments then disseminate through the bloodstream causing invasive infections in severely 

immunocompromised individuals. 

A.                                                               B. 

                                                                              

 

 

 

 

 

Figure 3. Mode of infection by A. fumigatus. (A) Inhalation of air-borne conidia into human 

lungs, that subsequently reaches alveoli (Source: http://wwwdelivery.superstock.com/WI/223 

/4268/PreviewComp/SuperStock_4268R-13922.jpg). (B) Alveolar macrophages phagocytose 

conidia, while germinating hyphae are attacked by infiltrating neutrophils (Chai et al., 2011). 

http://wwwdelivery.superstock.com/
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The clinical isolate Af293 harbors a 29.4 Mb genome consisting of eight chromosomes 

containing 9,926 predicted genes. The genome analysis has revealed the presence of about 

700 A. fumigatus specific genes, which are reportedly lacking or evolutionarily divergent in 

the closely related species Neosartorya fischeri. These genes have been identified to code for 

enzymes involved in secondary metabolite production, protein kinases, transcriptional 

regulators, metabolic enzymes and other hypothetical proteins (Nierman et al., 2005). This 

suggests that A. fumigatus, being a human pathogen might be more evolved. 

1.2.2.1. Aspergillosis          

The term ‘aspergillosis’ is used to describe the broad spectrum of diseases caused by 

Aspergillus spp. This includes allergic bronchopulmonary aspergillosis (ABPA), a 

hypersensitivity reaction to fungal components and allergic fungal sinusitis which occur 

commonly in cystic fibrosis and asthma patients. Noninvasive aspergillomas or ‘mycelial 

balls’ embedded in a proteinaceous matrix may form in a pre-existing lung cavity following 

exposure to fungus, for instance the lung lesions in tuberculosis patients (Latgé, 1999) (Figure 

4 A). Typically, aspergillomas do not spread to other sites in the body. However, they may 

grow larger, disrupting blood vessels in the cavity and resulting in internal bleeding and 

hemoptysis. The most fatal form of aspergillosis is invasive aspergillosis (IA) (Figure 4 B), 

which is prevalent among severely immunosuppressed people including patients with 

leukemia, AIDS, and transplant recipients. This infection process is characterized by the 

invasion of blood vessels followed by dissemination to other sites such as the bones, eyes, 

kidneys, skin, gastrointestinal tract and even central nervous system (Latgé, 1999; Dagenais 

and Keller, 2009).    

A. 
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B. 

                                

 

 

 

 

 

Figure 4. Different forms of aspergillosis. (A) Diagram showing colonization of a fungal 

mycelial ball ‘aspergilloma’ in a healed lung scar (Source: http://www.nlm.nih.gov/ 

medlineplus/ency/imagepages/17263.htm). (B) Model illustrating invasive aspergillosis that 

occurs via three steps- alveolar infection, angioinvasion and dissemination (Filler and 

Sheppard, 2006). 

1.2.3. Diagnosis 

The high mortality rate associated with IA is mainly due to the difficulty in establishing a 

diagnosis at the early stages of infection. One of the first steps for diagnosis of invasive 

aspergillosis is high-resolution computed tomography (HRCT) (Logan and Müller, 1996). 

High resolution computer tomography (HRCT) scan allows earlier detection of pulmonary 

lesions in high-risk patients. The lesions are characterized by nodules, halo sign (early phase), 

an air crescent sign (usually after recovery from neutropenia) or a cavity (Figure 5).  

                                         

Figure 5. Transverse CT scan of a patient with invasive pulmonary aspergillosis. A large 

nodular mass with a characteristic halo sign (arrow) is seen in the right upper lobe, while a 

http://www.nlm.nih.gov/
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smaller mass (arrowhead) with no well defined halo sign is seen in the lower left lobe (Pinto 

2004). 

Additional techniques to improve timely diagnosis of invasive aspergillosis are focused on the 

detection of circulating antigens such as galactomannan and 1,3-β-D-glucan released by the 

fungus by use of specific antigen tests. Commercial antigen assay kits that are currently used 

for diagnosis, make use of these unique fungal biomarkers to detect Aspergillus infection and 

monitor therapy. For instance, the Platelia Aspergillus assay is a double sandwich ELISA that 

detects galactomannan (GM), a complex sugar found in Aspergillus cell wall.  

PCR detection of Aspergillus fumigatus DNA from body fluids using primers for conserved 

or specific genome sequences is also an additional method used for diagnosis of IA 

(Spreadbury et al., 1993). However, PCR analysis is not yet a part of routine diagnostics. 

With the development of such non-culture based diagnostic tools, early diagnosis of 

aspergillosis is possible at greater accuracy (Verweij et al., 1999).                                  

1.2.4. Antifungal therapy 

The clinically relevant antifungals target fungal components that do not share considerable 

homology with human hosts to ensure elimination of fungal pathogen with minimal toxicity 

to the host.  Currently, the three main classes of antifungal used for treatment against 

Aspergillus infections are polyenes, azoles and echinocandins. 

Polyenes- This class of antifungals remains one of the oldest groups of drugs used for treating 

invasive aspergillosis. These are natural compounds derived from the bacterium 

Streptomyces. Amphotericin B (AmB) is one of the major polyene agents isolated from 

Streptomyces nodosus in 1955 by Gold et al. AmB binds to ergosterol, a functionally vital 

lipid in the fungal cell membrane and in addition leads to membrane permeabilization (Ellis 

2002; Palacios et al., 2011) (Figure 6). Despite its broad spectrum activity, the drug was 

discontinued owing to the reported toxicity due to its affinity for cholesterol, the mammalian 

sterol counterpart (Joly et al., 1992). However, new lipid formulations of amphotericin B such 

as liposomal AmB have minimized these side-effects and are currently part of treatment 

regime (Barrett et al., 2003). 

Azoles- These are synthetic cyclic organic compounds that target the ergosterol biosynthesis 

pathway in fungi. They inhibit the fungal cytochrome P450 dependent enzyme called 

lanosterol demethylase, encoded by the ERG11 gene that catalyzes synthesis of ergosterol 
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from its precursor lanosterol. Inhibtion of this enzyme leads to depletion of ergosterol in the 

fungal cell membrane and accumulation of toxic sterol intermediates that affect membrane 

integrity and other vital functions, resulting in fungal death (Sheehan et al., 1999) (Figure 6). 

The triazoles represented by voriconazole, posaconazole and ravuconazole are associated with 

minimized drug-drug interactions and show enhanced activity, particularly against Aspergillus 

spp. (Maertens 2004). Currently, voriconazole is recommended as the first-line treatment for 

invasive aspergillosis (Walsh et al., 2008). Although, ravuconazole is yet to be approved for 

use by the FDA, it has reportedly promising fungicidal activity (Watt et al., 2013).                         

Echinocandins- These are a group of recently available antifungals including caspofungin, 

micafungin and anidulafungin. These are synthetic lipopeptides that inhibit the β-1,3-glucan 

synthase, an enzyme catalyzing the conversion of UDP into β-1,3-glucan which is an essential 

component of the fungal cell wall (Figure 6). Inhibition of β-(1,3)-glucan synthase activity 

leads to cell wall destabilization and osmotic lysis, resulting in cell death. Although 

echinocandins have a broad spectrum antifungal activity and are known to be fungicidal 

against Candida, they are mostly fungistatic towards Aspergillus (Espinel-Ingroff 1998; 

Ingham and Schneeberger, 2012).   

                     

Figure 6. Mode of action of antifungals. Three classes of antifungals (polyenes, azoles and 

echinocandins) exert antifungal activity via distinct mechansims. Polyenes such as 

amphotericin B (AMB) simply bind to the plasma membrane-bound lipid, ergosterol and 
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inhibit its vital functions and also causes membrane permeabilization. Azoles such as 

itraconazole (ITZ) inhibit ergosterol biosynthesis by targeting the enzyme 14-alpha-

demethylase leading to membrane instability. Echinocandin drugs such as caspofungin 

specifically inhibit the β-(1,3)-glucan synthase, thereby causing cell lysis (adapted from 

Ashley et al., 2006).   

1.3. The fungal cell wall and its importance 

The fungal cell is protected by a rigid but highly dynamic cellular structure known as the cell 

wall that is pivotal for its growth, survival and morphogenesis. The cell wall provides osmotic 

protection against hostile environmental stress such as temperature changes, pH, oxidative 

stress, nutrient limitations and other mechanical stresses (Bowman and Free, 2006). The cell 

wall also governs the interactions between the fungus and its host, modulating host immune 

reactions during infections. Additionally, it also mediates adhesive properties critical for 

colonization and invasion of host tissues as well as biofilm formation (Free, 2013). Thus, the 

fungal cell wall is not only crucial for maintain structural integrity in the face of extracellular 

stress, but also for pathogenicity. Since pathogenic fungi share a common biology with their 

mammalian hosts, finding molecular drug targets for antifungal therapy is challenging. Since 

the fungal cell wall is a unique cellular structure lacking in mammalian hosts and biologically 

important for the fungus, it has emerged as an attractive target for the development of 

antifungal drugs (Bowman and Free, 2006). 

1.3.1. Cell wall organization and biosynthesis in A. fumigatus. 

In general, the fungal cell wall constitutes a three-dimensional network of different polymers 

including chitin, glucans and mannoproteins. The central core of the cell wall of most fungi is 

fibrillar (alkali-insoluble) consisting of a lattice of β-glucans cross-linked to chitin. This 

glucan-chitin complex is covalently bound to other polysaccharides (α-glucans, mannans) 

forming the amorphous matrix (alkali-soluble). The amorphous composition of the cell wall 

varies specifically with the species (Latgé, 2010). For instance in A. fumigatus, it is composed 

of galactomannan and β-1,3/1,4-glucan, whereas in C. albicans it is mainly composed of β-

1,6-glucan. Fibrillar components are usually located close to the plasma membrane, while 

amorphous polysaccharides are distributed especially on the outer side of the cell wall (Latgé 

2010). 

The cell wall of A. fumigatus is mainly composed of polysaccharides (∽ 90%) and proteins. 
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The major polysaccharides in the A. fumigatus cell wall include α-(1-3)-glucans (35-46%), β-

(1,3)-glucans (20-35%), β-(1,3/1,4)-glucans (10%), chitins and galactomannans (20-25%) 

(Figure 7) (Abad et al., 2010). 

Glucans- In A. fumigatus, the α-(1-3)-glucans are mostly part of amorphous cell wall 

polysaccharides (Henry et al., 2012). The α-(1-3)-glucans biosynthesis is mediated by three α-

(1-3)-glucan synthase genes, namely ags1, ags2 and ags3 (Beauvais et al., 2005; Maubon et 

al., 2006). The β-(1,3)-glucans are synthesized by a plasma membrane bound β-1,3-glucan 

synthase complex. The catalytic subunit of the glucan synthase complex is encoded by the 

fks1 gene, while its putative regulatory subunit is most likely encoded by rho1 (Beauvais et 

al., 2001). The β-(1,3)-glucan synthase uses UDP–glucose as a substrate and extrudes nascent 

linear chain through the membrane, which on reaching the cell space are processed and cross-

linked to form a scaffold for other polysaccharides (Gastebois et al., 2010). Besides, β-1,3-

glucan also serves as an immunomodulatory molecule that is recognized by the innate 

immune pattern recognition receptor Dectin-1 on macrophages (Brown et al., 2002). 

Chitin- It is a homopolymer of β-1,4-linked N-acetylglucosamine (GlcNAc) residues and an 

essential component of the fungal cell wall conferring shape and rigidity. Chitin synthesis 

occurs at the plasma membrane and then the nascent chitin chains are extruded into the cell 

wall space (Jiménez-Ortigosa et al., 2012). The chitin content is much higher is in the A. 

fumigatus mycelial cell wall than in yeast. The genome of A. fumigatus harbours at least eight 

chitin synthase genes (chs) namely, chsA, chsB, chsC, chsD, chsE (also called as csmA), chsF, 

chsG and csmB (Mellado et al., 1995; Mellado et al., 1996; Jiménez-Ortigosa et al., 2012). 

Galactomannan- Another unique polysaccharide in the A. fumigatus cell wall is 

galactomannan. The galactomannans consist of a backbone of α-mannan chains with the side 

chain linked to β-galactofuranose residues. Therefore, galactomannan synthesis requires both 

mannosyl- and galactosyl-transferases (Nakajima and Ichishima, 1994).  The synthesis of 

alpha-1,6-linked mannans in Sachharomyces cerevisae is initiated by α-1,6-

mannosyltransferase encoded by the ScOCH1 (stands for outer chain glycans) gene. In the A. 

fumigatus genome, four orthologues of ScOCH1gene have been identified. However, deletion 

of these mannosyl transferase orthologues did not show any marked phenotype different from 

the wild type, and only A. fumigatus Afoch1 complemented the growth defects of ScOCH1 

deletion (Lambou et al., 2010). In S. cerevisae, an additional family of 3 genes: ScMNN9, 

ScVAN1 and ScANP1 encode a complex of type II membrane proteins termed as mannan 
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polymerase complex 1, which is responsible for elongation of the α-1,6-mannan chains 

(Jungmann and Munro, 1998). Comparative genome analysis has revealed that orthologues of 

these genes are conserved in A. fumigatus. However, the exact subcellular location for 

mannan synthesis and its mechanism of transfer to glucan chains remains uncharacterized 

(Latgé et al., 2005).  

Galactomannan biosynthesis is regulated by galactofuranose metabolism which begins with 

the isomerization of UDP-galactopyranose to UDP-galactofuranose, the substrate for 

galactofuran synthesis. This process is catalyzed by the enzyme UDP galactopyranose mutase, 

encoded by the glfA gene in A. fumigatus. The ΔglfA mutant in A. fumigatus lacked 

galactofuranose and had thinner cell wall. The mutant also showed increased susceptibility to 

various antifungals and attenuated virulence in murine model of IA (Schmalhorst et al., 

2008), suggesting the pivotal role of galactomannan in A. fumigatus. 

GPI-anchored proteins- In A. fumigatus, the cell wall contains proteins linked with glycosyl 

phosphatidylinositol (GPI) moieties known as GPI anchors. The GPI anchor is a conserved 

post-translational modification found in eukaryotic cell surface proteins such as enzymes, 

receptors and adhesion molecules that serves to link these proteins to the plasma membrane 

(Li et al., 2007). The A. fumigatus genome harbours 115 putative GPI-anchored proteins, 

while the yeast genome encodes 88 GPI proteins (Cao et al., 2009).  These are either found in 

the plasma membrane or the cell wall and accordingly have different biological functions. The 

plasma membrane anchored GPI proteins have enzymatic activities required for cell wall 

biogenesis, while the cell wall associated GPI proteins serve as anchors for linking cell wall 

polysaccharides (De Sampaïo et al., 1999; Klis et al., 2002). The first step of GPI anchor 

synthesis is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to 

phosphatidylinositol (PI), which is catalysed by GPI–N-acetyl-glucosaminyltransferase (GPI–

GnT) complex. In A. fumigatus, the gene Afpig-a is a homologue of ScPIG-A/GPI3 which 

encodes for the UDP-glycosyltransferase subunit of the GPI-GnT complex, and is involved in 

GPI anchor biosynthesis.  Surprisingly, deletion analysis of the Afpig-a gene reveals that the 

GPI anchor is not required for viability, but plays a role in morphogenesis, cell wall integrity 

and virulence of the pathogen (Li et al., 2007). 
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Figure 7. Schematic structure of the A. fumigatus cell wall. The A. fumigatus cell wall 

structure consists of a lattice of polysaccharides arranged in fibrillar and amorphous layers 

(Abad et al., 2010). 

1.3.2. Cell wall remodelling: role of CWI Pathway 

The fungus encounters a vast spectrum of stress conditions during its growth and 

morphogenesis. The cell surface stress acts as a stimulus for the cell wall which responds by 

remodelling its organization to counteract the extracellular stress (Levin 2005; Levin 2011). 

Besides environmental factors such as high temperature, pH and osmotic conditions, certain 

chemicals and drugs are known to trigger cell wall stress. Several chemical agents are known 

to perturb cell wall synthesisor inhibit protein glycosylation that affect linkages between 

major cell wall components (Hill et al., 2006). Some major wall-compromising agents include 

polysaccharide-binding agents (Congo red and Calcofluor white), echinocandin and SDS. The 

anionic detergent SDS disrupts membrane stabilizaion and rather than affecting cell wall 

directly. Therefore, it can be used to reveal cell wall defects that result in increased 
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accessibility of the detergent to plasma membrane (de Groot et al., 2001; Hill et al., 2006). 

Anionic dyes such as Congo red (CR) and Calcofluor white (CFW) have high affinity for 

nascent chitin chains and cellulose (Roncero and Durán et al., 1985; Herth, 1980). However, 

CR has a greater binding affinity towards β-1,3-glucans ( Kopecká and Gabriel, 1992; Levin 

2005). In vitro, both CR and CFW bind to nascent polysaccharide chains and thereby inhibit 

microfibril assembly in growing cells, resulting in cell wall weakening and lysis of hyphal tips 

(Ram and Klis, 2006).  

The fungal cell employs the so-called cell wall integrity (CWI) signaling cascade that enables 

it to orchestrate changes in the cell wall composition in order to mount an appropriate stress 

response. This signaling pathway is best characterized in the model yeast S. cerevisae (Levin, 

2005; Levin 2011). Briefly, this pathway comprises five transmembrane sensor proteins 

embedded in the cell surface, namely, ScWsc1-3 (Wall Stress Component), ScMidA and 

ScMtl1, guanine nucleotide exchange factors (GEFs) ScRom1/2, Rho1 GTPase, protein 

kinase C (ScPkc1) and a mitogen-activated protein (MAP) kinase module. The sensors are 

type I transmembrane proteins which act as mechanosensors probing the cell surface. They all 

contain a serine-threonine rich extracellular domain, a hydrophobic transmembrane domain 

and a short cytosolic tail (Levin 2005; Levin 2011). Additionally, the ScWsc family sensors 

harbour an N-terminal cysteine-rich residue, termed as the Wsc domain which is lacking in 

the ScMidA sensor (Ketela et al., 1999). Activation of the CWI pathway is initiated at the cell 

surface in response to stressors that are sensed by transmembrane sensors. These sensors then 

relay the signal downstream with the help of GEFs, which in turn stimulate nucleotide 

exchange on the ScRho1 GTPase. The activated GTPase then stimulates several downstream 

effectors involved in cell wall biogenesis. One of its primary effectors is ScPkc1, which 

regulates the MAPK cascade via ScBck1 (MAPKKK) and ScMkk1/2 (MAPKKs) and 

ultimately activate the end kinase ScMpk1 by dual phosphorylation of conserved threonine 

and tyrosine residues (Lee et al., 1993; Martin et al., 2000). Finally, the activated ScMpk1, 

via its repertoire of transcription factors, triggers the transcription of genes that regulate cell 

wall biogenesis (Levin, 2005; Levin 2011) (Figure 8).  

 

http://link.springer.com/search?facet-author=%22Marie+Kopeck%C3%A1%22
http://link.springer.com/search?facet-author=%22Miroslav+Gabriel%22
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Figure 8. Model of CWI signalling in S. cerevisae. The sensors located in the plasma 

membrane (Wsc1-3p, Mid2p and Mtl1p) transduce the signal through the GEFs Rom1/2p to 

the central Rho1 GTPase, which then activates the Pkc1-dependent MAPK cascade consisting 

of Bck1, Mkk1/2 and Mpk1 (Heinisch et al., 2010). 

1.3.2.1. CWI Signaling in Aspergillus spp. 

Recently, it has become evident that the central signalling components of the CWI pathway 

are conserved from S. cerevisae to several filamentous fungal species including Aspergillus 

(Kwon et al., 2011; Dichtl et al., 2012; Futagami et al., 2011). Dichtl et al. have identified 

and characterized four potential cell wall stress sensors in A. fumigatus, namely AfWsc1, 

AfWsc2, AfWsc3 and AfMidA (Figure 9). These sensors appear to respond to different types 

of stimuli or stress as indicated by the differential sensitivity exhibited by the mutant strains. 

For instance, in A. fumigatus, the ∆midA is hypersensitive to thermal stress and the cell wall 

inhibitors Congo red and Calcofluor white, while ∆wsc1 is sensitive to caspofungin (Dichtl et 

al., 2012). Similarly, in A. nidulans, the WscA and WscB have been identified as the 

homologues of the S.cerevisae Wsc family of sensors that activate CWI under hypo-osmotic 

and acidic pH conditions (Goto et al., 2009; Futagami et al., 2011).  

In budding yeast, the cell wall stress signal is transduced via sensors to the downstream 

central regulatory component, Rho1 GTPase that belongs to a family of highly conserved 
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small, monomeric GTPases. The genome of A. fumigatus encodes six Rho-GTPases, namely 

AfRho1-4, AfCdc42 and AfRacA. Among these, only AfRho1, AfRho2 and AfRho4 have 

been characterized and implicated in cell wall maintenance and modulation (Dichtl et al., 

2012). In A. fumigatus, the Afrho1 gene has been shown to be essential for viability through 

doxycycline driven expression. While the AfRho4 GTPase is primarily involved in septum 

formation, the AfRho2, on the other hand, apparently exhibits functional redundancy with 

AfRho1 (Dichtl et al., 2012). The ScRho1 and ScPkc1 homologues in A. nidulans, 

represented by RhoA and PkcA respectively, are also shown to be involved in establishing 

polarity and cell wall integrity (Guest et al., 2004; Ronen et al., 2007; Teepe et al., 2007). 

Similarly, the AnRhoA and AnRhoB GTPases in A. niger are involved in viability as well as 

polar growth and cell wall maintenance respectively (Kwon et al., 2011). Furthermore, the 

tripartite MAPK module of the canonical CWI pathway in S. cerevisae is also conserved in A. 

fumigatus and represented by three protein kinases: AfBck1, AfMkk2 and AfMpkA (Valiante 

et al., 2008; Valiante et al., 2009; Dirr et al., 2010). The ScMkk1/2 homologue AfMkk2 is 

shown to be involved in cell wall integrity and virulence of the pathogen A. fumigatus (Dirr et 

al., 2010).  The AfMpkA, on the other hand contributes to other cellular functions such as 

oxidative stress response, secondary metabolism and siderophore biosynthesis, besides 

regulating cell wall remodelling (Jain et al., 2011). Despite its role for stress resistance and 

growth in A. fumigatus, a mutant lacking AfmpkA function is not attenuated in virulence in a 

murine infection model in A. fumigatus (Valiante et al., 2008). In agreement with AfMpkA 

role, the MAPK homologue in A. nidulans is also involved in germination of spores and 

polarized growth. The mutant growth defects are mostly remedied upon osmotic stabilization 

suggesting that the mutant is impaired in CWI (Bussink and Osmani, 1999).  
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Figure 9. Domain structure of S. cerevisae CWI sensors and A. fumigatus orthologues. A. 

Members of the Wsc family of sensors possess a characteristic N-terminal Wsc domain 

followed by a serine/threonine region, a short transmembrane domain and cytosolic tail 

(absent in AfWsc2). B. Sensors not belonging to the Wsc family lack the N-terminal domain. 

N, N-terminus; PM, plasma membrane; TMH, transmembrane helix (Dichtl et al., 2012).  

1.4. GEFs as activators of Rho GTPases 

The Rho (Ras homologous) GTPases belong to the Ras superfamily of small guanosine 

triphosphatases (GTPases) and remain highly conserved among eukaryotes (Rossman et al., 

2005). They function as molecular switches and adopt different conformational states in 

response to binding of GDP or GTP. When bound to GDP, they remain inactive and 

sequestered in cytoplasm. Upon binding to GTP, they become active, associate with plasma 

membrane and interact with several downstream effectors to regulate array of cellular 

functions such as organization of actin cytoskeleton, cell cycle progression and expression of 

various genes (Rossman et al., 2005). Cycling between theses two states is primarily 

regulated by two classes of molecules: GEFs (guanine-nucleotide exchange factors) and 

GAPs (GTPase-activating proteins). GEFs catalyze exchange of GDP for GTP and positively 

regulate Rho activity, while GAPs promote the intrinsic GTPase activity of Rho proteins, 

thereby acting as downregulators of Rho GTPases. In principle, activation of a Rho GTPase 

could occur through stimulation of a GEF or inhibition of a GAP (Schmidt and Hall, 2002). A 

third group of regulatory proteins called GDIs (guanine-nucleotide dissociation inhibitors) 

inhibit the GDP/GTP exchange reaction and maintain inactive pools of Rho GTPases in the 

cytosol (Dransart et al., 2005) (Figure 10).    
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Figure 10.  Regulation of Rho-GTPase activity. Rho GTPases are functional when bound to 

GTP and remain non-functional when bound to GDP. GTPase activating proteins (GAPs) 

stimulate intrinsic GTP hydrolysis activity and the release of terminal inorganic phosphate, Pi. 

Guanine nucleotide-dissociation inhibitors (GDIs) bind to the C-terminal isoprenyl chain 

(orange wavy line) and sequester them in cytosol. Gunanine-nucleotide exchange factors 

(GEFs) stabilize Rho-GTPases and stimulate exchange of GDP for GTP. Once activated, the 

Rho GTPases bind their effectors (E) (Rossman et al., 2005). 

Interestingly, most of the Rho GEFs harbor a conserved domain structure characterized by the 

presence of a ~200 residue Dbl homology (DH) domain and an adjacent ~100 residue 

Pleckstrin homology (PH) domain. The DH domain, also known as the Rho GEF domain 

constitutes the catalytic domain responsible for exchange of GDP to GTP. The DH domains 

bind to switch regions of Rho GTPase and alter its nucleotide binding pocket. In contrast, the 

PH domain has been shown to bind phosphoinositides and probably mediates membrane 

localization of GEF proteins (Rossman et al., 2005) (Figure 11). 

                    

 

 

 

 

Figure 11. Model showing interactions between Rho GTPase and DH-PH domain of 

GEF. Interaction between membrane phosphoinositides and the PH domain allows binding of 

DH domain to Rho GTPase followed by dissociation of GDP and loading of GTP (adapted 

from Rossman et al., 2005). GDP- guanine dinucleotide phosphate; GTP, guanine nucleotide 

triphosphate; DH, Dbl homology; PH, Pleckstrin homology. 

1.4.1. Role of Rho1 specific GEFs in CWI signaling 

The ScRho1, the central regulator of CWI signaling is a homologue of the mammalian rhoA 

gene and shown to be essential in S. cerevisae (Madaule et al., 1987). In response to cell wall 

stress, the ScRho1 is activated by sensors via two GEFs ScRom1 and ScRom2. The 

homologous genes, ScROM1 and ScROM2 (RHO1 multicopy suppressor) were isolated as 
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multicopy suppressors of temperature-sensitive, dominant negative mutant allele of ScRHO1 

The ScRom1 and ScRom2 share overlapping functions and deletion of both GEFs is lethal. 

While the deletion of ScROM1 resulted in wild type-like growth, ScROM2 deletion showed 

temperature-sensitive growth that was partially suppressed by osmotic stabilization. 

Interestingly, a ∆Scrom1∆Scrom2 mutant strain expressing ROM2 under the control of GAL1 

promoter exhibited cell lysis and temperature-sensitive growth under restrictive growth 

conditions i.e. in the absence of GAL1 driven ScROM2 expression (Ozaki et al., 1996). 

Similar phenotypes have been reported for a temperature-sensitive Scrho1-104 mutant allele 

grown at restrictive temperature (Yamochi et al., 1994). Besides ScROM1 and ScROM2, 

another GEF, ScTUS1 is also implicated in regulating cell wall integrity in S. cerevisae via 

ScRHO1. Deletion of Sctus1 also results in temperature-sensitive growth which is restored by 

osmotic stabilization. Furthermore, the growth defect of Sctus1 deletion strain was suppressed 

by overexpression of ScROM2, ScRHO1, ScRHO2 and ScPKC1 (Schmelzle et al., 2002). 

Similarly, the homologues of ScRom1 and ScRom2 in Schizosaccharomyces pombe 

constituted by SpRgf1 and SpRgf2 respectively, are also implicated as SpRho1 GEFs 

involved in CWI signaling (Mutoh et al., 2005; Garcia et al., 2009). These studies also 

demonstrate that loss of GEF function mostly phenocopies the effects of loss of Rho1 and its 

downstream effector functions. In contrast to S. cerevisae and S. pombe, the Candida albicans 

genome contains only one ScRom1/ScRom2 homologue (orf19.906) which though remains 

uncharacterized, but is reported to be essential (personal communication of Aaron P. Mitchell 

to Candida genome database (CGD), 2009). Surprisingly, deletion of the Cryptococcus 

neoformans homologue ORF CNI04280 was not lethal. However, the ΔCnrom2 mutant 

showed abnormal morphology at restrictive growth temperature and attenuated virulence in a 

murine infection model (Tang et al., 2005; Fuchs et al., 2007). Similarly in filamentous fungi, 

NcRgf1 has been described as the specific GEF for NcRho1 in Neurospora crassa 

(Richthammer et al., 2012). According to these models, the GEFs act as functional links to 

transduce signal from various known and potentially unknown sensors to the Rho1 GTPase 

and therefore constitute the upstream activators of the CWI pathway in both yeasts and molds. 

Several recent studies have elucidated the components of the CWI pathway in Aspergillus 

spp. including A. fumigatus, which indicates a similar signal transduction mechanism might 

exist in A. fumigatus (Guest et al., 2004; Kwon et al., 2011; Dichtl et al., 2012). This also 

pointed towards the existence of a relay molecule integrating signals from the A. fumigatus 

CWI sensors to activate the downstream MAPK cascade. Genome analysis of A. fumigatus 
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revealed a single homologue of ScRom1/Rom2, named as Afrom2 (AFUA_5G08550). 

Characterization of AfRom2 and its role in stress response of the pathogen is one of the major 

topics of this study. 

1.5. Echinocandin tolerance in A. fumigatus 

When a fungal pathogen is exposed to an antifungal drug, the cells try to overcome growth 

inhibition by developing various resistance mechanisms leading to growth at higher drug 

concentrations and subsequent clinical resistance. In other cases, the fungal pathogen employs 

different factors such as altered metabolism or stress response pathways to withstand the 

killing effects of the drug, thereby determining its fungicidal or fungistatic status. Tolerance 

to a given drug is usually described as the phenomenon where an organism is able to survive 

the minimal inhibitory concentration (MIC) of the drug even though its growth is inhibited, 

thereby rendering it static (Sanglard 2003; Anderson 2005). However, if the tolerance 

mechanisms are compromised, the fungistatic effect of the drug is reversed and its efficacy is 

enhanced. For instance, the azoles are known to have fungistatic activity against C. albicans.  

However, in combination with the calcineurin inhibitor cyclosporine A (CsA), it exerts a 

potent fungicidal effect in vitro and shows increased efficacy with significantly reduced 

fungal burden in a rat model of endocarditis (Marchetti et al., 2000; Marchetti et al., 2003). 

1.5.1. Fks1: the putative catalytic subunit of the β-1,3-D-glucan synthase complex and 

echinocandin target. 

The echinocandins are non-competitive inhibitors of the conserved transmembrane enzyme 

complex, β-1,3-glucan synthase complex that production of β-1,3-glucan which constitutes an 

essential biopolymer responsible for structural integrity of the fungal cell wall. In S cerevisae, 

this enzyme complex consists of a catalytic and a regulatory subunit. The catalytic subunit is 

encoded by a pair of functionally redundant genes, ScFKS1 and ScFKS2 (for FK506 

sensitive). The deletion of ScFKS2 results in reduced glucan level which is compensated by 

upregulating ScFKS2 expression. This is further supported by the lethality induced upon 

deletion of both ScFKS1 and ScFKS2 (Douglas et al., 1994; Mazur et al., 1995). Another 

homologue of the β-1,3-glucan synthase subunit is encoded by the ScFKS3 which is 

reportedly involved in the spore wall assembly (Ishihara et al., 2007). The genome of C. 

albicans encodes three homologues for ScFks1/Fks2, namely CaGsc1, Gsl1 and Gsl2, among 

which CaFKS1/GSC1 is essential and encodes the β-1,3-glucan synthase subunit (Douglas et 
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al., 1997; Mio et al., 1997). In contrast, Aspergillus spp. harbour only a single copy encoding 

the ScFks1 homologue. In A. nidulans, the glucan synthase subunit is encoded by the fksA 

gene which is reportedly involved in glucan synthesis (Kelly et al., 1996). The A. fumigatus 

homologue, AfFks1 is also an integral transmembrane protein and shares 90% identity with A. 

nidulans FksA. Additionally, the AfFks1 localizes primarily to hyphal tips and forms a 

complex with the AfRho1 GTPase (Beauvais et al., 2001). These findings are in agreement 

with the proposed model in budding yeast whereby ScRho1 regulates glucan synthesis via its 

effector ScFks1 (Levin, 2005). Although it is believed that echinocandins act via interaction 

with the enzyme subunit Fks1, the exact nature of binding remains unknown and the direct 

evidence supporting this interaction is still lacking (Walker et al., 2010).  

Although the echinocandins exert fungicidal effect against Candida spp., they are largely 

fungistatic against Aspergillus spp. Treatment of A. fumigatus with caspofungin and 

anidulafungin leads to lysis of growing hyphal tips due to inhibition of glucan synthesis at the 

tips of hyphae (Walker et al., 2010; Beauvis et al., 2001; Ingham and Schneeberger, 2012). 

Although higher doses of respective echinocandins limited microcolony growth, there was 

reduced hyphal lysis and incomplete growth inhibition. Staining of caspofungin-treated A. 

fumigatus hyphae revealed that hyphal tips and sub-apical compartments are more vulnerable 

to echinocandin-mediated damage, while the remaining interior compartments are mostly 

viable, even under prolonged incubation up to 72 h with the drug (Bowman et al., 2002). 

Although in contrast to C. albicans, clinical resistance to echinocandins has not yet been 

reported in A. fumigatus. However, the mechanism conferring in vitro echinocandin resistance 

is mostly attributed to the point mutations in the AfFks1 subunit (Gardiner et al., 2005; Rocha 

et al., 2007).  The fungistatic activity of echinocandins is rather surprising, considering that β-

1,3-D-glucan is a principal component of the Aspergillus cell wall. In this context, 

understanding the importance of the β-1,3-glucan subunit Fks1 for viability, growth and 

antifungal response in A. fumigatus is highly imperative. Characterization of AfFks1 is also 

crucial to achieve greater insights into the echinocandin tolerance of the pathogen, and 

therefore, forms an important focus of this study.                         
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2. Aims of the study 

The mold A. fumigatus is able to colonize diverse habitats and is often challenged with 

extreme growth conditions. These stresses may arise either from natural environment or the 

host immune system in response to fungal infections or even antifungal drug activity. The 

fungal cell employs the cell wall integrity (CWI), a complex signalling cascade to remodel the 

structure of its cell wall to withstand such cell surface stress. Additionally, the cellular 

structure of this filamentous fungal pathogen is divided into distinct hyphal segments, which 

renders further protection. The septal walls successfully block any local damage caused by 

injuries to one or more hyphal compartments, while the successive compartments remain 

viable thereby promoting the survival of the pathogen. These defence mechanisms promote 

the survival of the pathogen and pose a challenge for existing antifungal arsenal used for 

treating invasive aspergillosis. Undoubtedly, compromising such mechanisms that boost the 

viability of this pathogen would be of utmost significance. The focus of this study is to gain 

further insight into such molecular mechanisms aiding viability, growth and antifungal 

resistance of this pathogen, with the sole objective to unravel molecular drug targets for 

developing effective antifungal therapy.  

2.1. Characterization of rom2 in A. fumigatus. 

The A. fumigatus genome harbors a single homologue for ScRom1/2 which acts as a link 

between the upstream CWI sensors and ScRho1 GTPase in the CWI pathway. Based on the 

above literature and role of Rom2 homologues in other fungal species, we speculated a similar 

role for AfRom2. The AfRom2 being the sole homologue is assumed to articulate the 

phenotypes of the A. fumigatus CWI sensors and putative Rho GTPase(s). Therefore, the 

functional characterization of the putative GEF Rom2 is attempted to elucidate the role of 

AfRom2 in cell wall stress response, including antifungal resistance and establish its link to 

the previously identied CWI components in A. fumigatus.  

 

2.2. Characterization of fks1 in A. fumigatus. 

The second part of this study aims to evaluate the significance of the echinocandin drug 

target, β-1,3-glucan synthase subunit Fks1 for viability, cell wall composition and antifungal 

tolerance of A. fumigatus. The echinocandins are fungistatic to Aspergillus. Therefore, it was 

hypothesized that either the cell wall component β-1,3-glucan is not essential for A. fumigatus 

viability or the echinocandins do not induce complete inhibition of β-1,3-glucan synthesis. 
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This has been addressed by studying the effects of downregulation of the fks1 gene on A. 

fumigatus viability and growth phenotypes. Additionally, this study also emphasizes on the 

possible compensatory mechanisms that contribute to echinocandin tolerance in the pathogen, 

a theoretical concern for echinocandin therapy. 
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3. Materials and methods 

3.1. Media and growth conditions 

E. coli strain was grown at 37°C in LB medium containing 1% bacto-tryptone, 0.5% yeast 

extract and 1% NaCl pH 7.5 and for solid medium 1.5% bacto agar (214030; BD) was added 

(modified from Bertani 1951). For selection, LB was supplemented with 100 µg ml
-1 

ampicillin (171254; Calbiochem, Merck Chemicals, Germany). 

A. fumigatus strains were grown on liquid and solid (supplemented with 2% bacto-agar) 

Aspergillus minimal media (AMM) containing salt solution, MgSO4.7H2O, trace elements 

(TE) and 1% (w/v) D-glucose (Hill and Kaffer, 2001). For growth on complete media, yeast 

glucose (YG) medium contained 0.5% (w/v) yeast extract (103303; M.P. Biomedicals, Irvine, 

CA) and 2% (w/v) D-glucose was used and pH was adjusted to either 6.0 or 7.0 as per 

requirement. For agar plates, medium was supplemented with 2% (w/v) bacto-agar (214030;  

BD, Franklin Lakes, NJ). Commercially available potato-dextrose agar (213400; Difco) and 

saboraud agar (210950; Difco) were used as such, while manually prepared saboraud 

dextrose agar (pH adjusted to 5.6) contained 0.5% tryptone/casein (8952.4; Carl Roth GmbH) 

as a substitute for pancreatic digest of casein, 0.5% peptic digest of animal tissue or peptone 

A (7181A; Neogen), 4% D-glucose and 1.5% bacto-agar (media composition adapted from 

Difco; 221988) while the liquid saboraud consisted of 0.5% tryptone/casein , 0.5% peptic 

digest of animal tissue or peptone A and 2% D-glucose (media composition adapted from 

Difco; 221014). For growth of mutants, media was supplemented with 0.5 µg ml
-1 

doxycycline (631311; Clonetech, Mountain View, CA) and 0.1 µg ml
-1 

pyrithiamine (sc-

236525A; Santa Cruz Biotechnologies, CA) or 200 µg ml
-1 

hygromycin B (p21-014; PAA 

Laboratories, Pasching, Austria). Caspofungin diacetate (SML0425), calcofluor white 

(F3543), congo red (60910) and hydroxyurea (H86271) were obtained from Sigma-Aldrich 

(Taufkirchen, Germany). Sodium dodecyl sulphate (A3950) was obtained from AppliChem 

(Darmstadt, Germany).  

3.2. Strain and Plasmid construction 

E.coli strain DH5α (genotype F ф80d, lacZ ΔM15, endA1, recA1, hsdR17 (rK-mK-), 

supE44,thi-1, λ-, gyrA96, relA, Δ(lacZYA-, argF)U169) was used for cloning and plasmid 

propagation (Hanahan 1983). 

 

The A. fumigatus strain Afs35 which is a derivative of strain D141 and lacks the homologous  
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end-joining component AkuA was used as wild-type in this study (Krappmann et al., 2006). 

The conditional rom2tetOn and fks1tetOn strains were constructed essentially as described 

recently (Dichtl et al., 2012). Briefly, the endogenous promoter of rom2 (AFUA_5G08550) 

and fks1 (AFUA_ 6G12400) were replaced by the 
p
gpdA and 

p
oliC doxycycline-regulated 

promoter cassettes respectively as described previously (Dichtl et al., 2012; Helmschrott et 

al., 2013). Approximately, 1 kb fragment of the 5’- flanking region located upstream of the 

rom2 and fks1 ORFs (amplified with primer pairs Prom2-5g08550-5-fwd and Prom2-

5g08550-5-rev and Fks1-6g12400-5-fwd and Fks1-6g12400-5-rev respectively) and 

approximately 1 kb fragment of 3’-flanking region beginning with the start codon of ORFs of 

respective genes (amplified by primer pairs Prom2-5g08550-5-fwd and Prom2-5g08550-5-

rev and PFks1-6g12400-3-fwd and PFks1-6g12400-3-rev respectively) were fused to the 

pyrithiamine-tetOn cassettes acquired by SfiI digestion of pJW123 and pJW128 respectively 

and transformed in strain AfS35. The C-terminally green fluorescent protein (GFP)-tagged 

Rom2 (rom2-GFPgpdA) was expressed by cloning rom2 (PCR amplified with primers Rom2-

5g08550-fwd and Rom2-5g08550-fu-rev with chromosomal template DNA) into the PmeI 

site of pJW103 and transforming the resulting vector pSS001 in strain AfS35. The strain with 

the inducible expression of rho1
G14V

 (rho1
G14V

tetOn) was constructed by transforming 

pCH003-G14V in AfS35. pCH003-G14V is a derivative of pCH003 that was created by site-

directed mutagenesis using the mutagenesis primer Rho1-G14V-SphI and the Change-IT 

multiple mutation site-directed mutagenesis kit (USB Corporation, Cleveland, OH). pCH003 

was constructed by cloning rho1 (PCR amplified with primers Rho1-6g06900fufnew and 

Rho1-6g06900-rev) in pJW121. pJW121 was constructed by cloning the tetracycline-

dependent transactivator, the crgA terminator and the tetO7::Pmin (a blunt-end fragment 

derived from pVG2.2 after digestion with EcoRI and PmeI) into the PmeI site of pSK379 

(Meyer et al., 2011). pJW103 and pSK379 were described previously (Dichtl et al., 2010).  

Strains for the doxycycline-inducible expression of the C-terminally 6X His-tagged full-

length Rom2 and N-terminally hemagglutinin (HA)-tagged Rom2 with aminoacids 733 to 

1199 [HA-Rom2(733-1199)] were generated by PCR amplifying full-length Rom2 with 

primers Rom2-5g08550-fwd and His-Rom2-5g08550-rev and Rom2 (733-1199) with the 

primers HA-Rom2GEF-5g08550-f and Rom2-5g08550-rev and cloning the respective PCR 

products in pSS005, yielding pSS006 and pSS009. pSS006 and pSS009 were subsequently 

transformed in strain AfS35. pSS005 is a derivative of pJW121 where the pyrithiamine 

resistance cassette was exchanged with a hygromycin B resistance cassette. To perform the 
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co-immunoprecipitation experiment, pSS009 [N-terminally HA-tagged Rom2 (733-1199)] 

was transformed in D141 strains constitutively expressing N-terminally GFP-tagged Rho1 or 

Rho3, which were previously described (Dichtl et al., 2010). Strains encoding the C-terminal 

GFP-tagged rom2 at the endogenous locus were constructed by transforming pSS011 in the 

respective parental strains (AfS35and rom2tetOn strain), yielding the rom2-GFP and rom2-

GFPtetOn strains. pSS011 was cloned by digesting pSS001 with BstBI and pSS005 with BglII 

followed by blunt ending and further digestion with Acc65I. A pSS001 fragment harbouring 

the coding sequences of GFP and the C-terminal region of Rom2 was ligated to a pSS005 

fragment harbouring the hygromycin B resistance cassette.  

In order to downregulate fks1 in ∆hexA and ∆rho4 starins, the endogenous fks1 promoter was 

of respective parental strains were replaced by 
p
oliC promoter cassette as described above.  

The ∆rho4 and ∆hexA deletion strains have been described previously (Dichtl et al., 2012; 

Beck et al., 2013). The deletion strain ∆fks1 was generated by replacing the full-length ORF 

by a pyrithiamine-resistance (ptrA) cassette.  Approximately 1 kb fragments flanking both 

upstream and downstream regions of fks1 ORF were amplified from chromosomal DNA 

using primer pairs Fks1-6g12400-5-fwd and Fks1-6g12400-5-rev as well as Fks1-6g12400-3-

fwd and Fks1-6g12400-3-rev which harboured incompatible SfiI sites. After digestion with 

SfiI, these fragments were ligated with pyrithiamine cassette and the resulting deletion 

deletion cassette was then transformed into AfS35. For each mutant strain, at least three 

independent clones were isolated and verified by PCR as well as phenotypic analysis.  

Table 1. All the oligonucleotide primers used in this study are listed in Table 1 (Part I and II). 

I. AfRom2 characterization: 

  Primer                                   Sequence

 

  Rom2-5g08550-5-fwd          TTGCGGCCGCTCCTTAGGCGCGTGACGG 

  Rom2-5g08550-5-rev           CGGGCCATCTAGGCCGCTTCTACCTCTGACAG 

  Prom2-5g08550-3-fwd         GTGGCCTGAGTGGCCATGGCCGATCTCGGTGGCC 

  Prom2-5g08550-3-rev          TTGCGGCCGCCGACCCGTGAGAGCAGGGC 

  Rom2-5g08550-fwd             ATGGCCGATCTCGGTGGCC 
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  Rom2-5g08550-fu-rev         GCCGCCGCTTGTTGTTGTTGGGGCTTGTTC 

  Rho1-6g06900fufnew          AGGCGGCATGGCTGAAATCCGCCGCAAG 

  Rho1-6g06900-rev               TTACAAAATAGTGCACTTGCCCTTC 

  Rho1-G14V-SphI                 GTCATCGTTGGCGATGTCGCATGcGGTAAGACTTGTC 

                                                TTC 

  His-Rom2-5g08550 rev        TCAGTGGTGGTGGTGGTGGTGGGAGCCGCGGCCGCCT 

 TGTTGTTGTTGGGGCTTGTTC              

  HA-Rom2GEF-5g08550-f   ATGTACCCATACGATGTTCCAGATTACGCTGCCAGC 

 CTTCACGGCGATG 

  Rom2-5g08550-rev              TCATTGTTGTTGTTGGGGCTTG 

  Rom2-5g08550-3-cast          GACATTGACCGTCTATTCACG 

  Rom2-5g08550-pro-cast       CTTTGAGCTCAAGACCAGTG 

  ptrA-3-fwd                            GTCCCGTATGTAACGGTGG 

  seq-tetOn-fwd                       AAGTGAAAGTCGAGCTCC

 
 

II. AfFks1 characterization:

Primer                                  Sequence

Fks1-6g12400-5-fwd           TTGCGGCCGCCTAACTGCAACCGCATAGCG 

Fks1-6g12400-5-rev            CGGGCCATCTAGGCCAGATGAACGAAGGTAGGGAGG 

PFks1-6g12400-3-fwd         GTGGCCTGAGTGGCCATGTCGGGATATCAACAAGGG 

PFks1-6g12400-3-rev          TTGCGGCCGCAAGAACAGTGCCAGTTGGCG 

PFks1-6g12400-5-cast         GTCTCATTACGAGCCATGCAG 

PFks1-6g12400-3-cast         CGGACCTGGTTGGCTTCG 

ptrA-3-fwd                         GTCCCGTATGTAACGGTGG 
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tetOn-rtTA-fwd                   CACCATGTCTAGACTGGACAAG 

Fks1-6g12400-int-fwd         GGATGCATGGCTGTCCAGGAACTGACAG 

Fks1-6g12400-fu-rev           GCCGCCGCGCTCGTTGCAGTAGCCACGC 

ptrA-5-rev                          CGTTACCAATGGGATCCCG

 

 

Table 2. A. fumigatus strains used in this study 

 

Strain                        Relevant gene modification       Parental strain            Reference 

                                  or plasmid         

 

 AfS35                                      akuA::loxP                          D141                    Krappmann et al. 

                                                                                                                           (2006) 

rom2tetOn                                   Prom2::ptrA-tetOn             AfS35                   This study 

rho1
G14V

tetOn                             pCH003-G14V                    AfS35                   This study 

rom2-HistetOn                            pSS006                                AfS35                   This study 

HA-rom2(733-1199)tetOn          pSS009                                AfS35                   This study 

rom2-GFP                                pSS011                                AfS35                   This study 

rom2-GFPtetOn                          pSS011                                rom2tetOn               This study 

rom2-GFPgpdA                          pSS001                                 AfS35                  This study 

GFP-rho1gpdA                           pJW103-Rho1                      D141                    Dichtl et al. 

                                                                                                                            (2010) 

GFP-rho3gpdA                           pJW103-Rho3                      D141                    Dichtl et al. 

                                                                                                                            (2010) 

GFP-rho1gpdA HA-rom2           pSS009                                GFP-rho1gpdA        This study 

(733-1199)tetOn                       

GFP-rho3gpdA HA-rom2           pSS009                                GFP-rho3gpdA       This study 

(733-1199)tetOn   

AfS35-GFP                               pJW656-sGFP-phleo           AfS35                  This study 

fks1tetOn                                            fks1(p)::ptrA-oliC-tetOn      AfS35                  This study 

Δfks1                                         fks1::ptrA                             AfS35                  This study 

  ΔhexA                                       hexA:: loxP-hygro
R
/tk          AfS35                   Beck & Ebel    

(2013) 
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ΔhexA+ hexA                           pSK379-hexA(p)-hexA          ΔhexA                  Beck & Ebel 

(2013) 

ΔhexA-GFP                              pJW656-sGFP-phleo            ΔhexA                  This study 

ΔhexA-fks1tetOn                             fks1(p)::ptrA-oliC-tetOn       ΔhexA                  This study 

Δrho4                                       rho4::loxP-hygro
R
/tk            AfS35                   Dichtl et al.     

(2012) 

Δrho4 + rho4                           pSK379-rho4(p)-rho4           Δrho4                   Dichtl et al.     

(2012) 

Δrho4 –GFP                             pJW656-sGFP-phleo            Δrho4                    This study 

Δrho4-fks1tetOn                          fks1(p)::ptrA-oliC-tetOn      Δrho4                    This study 

  

3.3. General molecular biological methods 

3.3.1. Genomic DNA isolation from A. fumigatus 

A. fumigatus condia were grown in liquid AMM at 37ºC on a 180 rpm shaker for 

approximately 16-24 h and harvested using sterile filter paper. Approximately 20 mg of 

mycelia was added into a sterile 2ml lysing matrix A tubes (116910050; MP Biomedicals) 

containing a ceramic bead and 0.25ml chemically inert quartz (107536; Merck, Darmstadt, 

Germany). For each reaction, 225 µl of yeast cell lysis solution (MPY80200; Epicentre 

Biotechnologies) was added and homogenized using FastPrep-24 at a speed of 6 m/s for 40 

seconds. This was followed by incubation at 65ºC for 30 minutes and then on ice for 5 

minutes. Then 112.5 µl of MPC Protein precipitation reagent (MPY80200; Epicentre 

Biotechnologies) was added and the tube was centrifuged at 10,000 rpm for 10 minutes. The 

supernatant was transferred to a fresh sterile microcentrifuge tube and mixed with 375 µl 

isopropanol. This was followed by centrifugation at 13,000 rpm for 15 minutes. The pellet 

was washed with 500 µl 70% EtOH at 13,000 rpm for 15 minutes at 4ºC. The pellet 

containing genomic DNA was dried at 55ºC and finally dissolved with ddH2O containing 

RNase. The DNA concentration was measured using Nanodrop spectrophotometer and 

analyzed on 1% agarose gel. 

3.3.2. PCR  

Pfu-DNA polymerase (EP0502; Fermentas) was used for preparative PCR reactions 

according to manufacturer’s protocol. Alternatively, control PCRs and colony PCRs were 
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 performed with Taq-polymerase (EP0401; Fermentas). LongAmp™ Taq DNA polymerase 

(M0323S; NEB) was used to amplify fragments ≥ 5 kb. Customized oligonucleotides were 

ordered from GATC Biotech. A standard PCR reaction consisted of an initial denaturation 

step over two minutes at 95°C, 30 cycles with each cycle consisting of 30 s denaturation at 

95°C, 30 s primer annealing at 50-60°C (depending on primer pair composition) and 1-6 min 

DNA elongation at 72°C (elongation time depended on the length of the amplified fragment), 

and a final elongation step  at 72°C over 10 min. Usually, genomic DNA or in case of colony 

PCRs E. coli transformants were used as template for the reactions.  

3.3.3. Restriction digestion, phosphorylation, dephosphorylation and ligation 

Ligation reactions were performed with T4 DNA ligase (EL0011, Fermentas) and incubated 

at 16ºC overnight or using rapid DNA ligation kit (K1422, Fermentas) for 5 minutes at room 

temperature. For dephosphorylation of vectors and phosphorylation of PCR products Fast AP 

alkaline phosphatase (EF0651; Fermentas) and T4 polynucleotide kinase (EK0031; 

Fermentas) were used respectively. Dephosphorylation of vector was performed by 

incubating with enzyme at 37⁰C for 20 minutes followed by heat inactivation at 75⁰C for 5 

minutes. Phosphorylation of PCR fragments was performed by incubating at 37⁰C for 45 

minutes followed by heat inactivation at 75⁰C for 10 minutes. Restriction enzymes were 

ordered from Fermentas and digestions were performed as per instructions manual. 

3.3.4. Transformation in E. coli 

Chemically competent E. coli cells were prepared and DNA transformation was performed as 

described (Inoue et al., 1990). Briefly, the recombinant plasmid was added to E.coli DH5α 

competent cells aliquot and incubated on ice for 30 minutes. This was followed by a brief 

heat shock at 42ºC for 90 seconds and further incubation on ice for 2 minutes. Then 1 ml of 

LB media was added to the aliquot and incubated for atleast 45 minutes followed by 

centrifugation at 13,000 rpm for 2 minutes. The pellet was dissolved in 100 µl supernatant 

and plated out on LB agar plate supplemented with 100 µg ml
-1 

ampicillin. 

3.3.5. Plasmid Isolation 

Plasmid DNA was isolated from E. coli DH5α competent cells with the PureYieldTM 

plasmid midiprep system (Promega). Briefly, a bacterial colony was grown overnight in 60-

100 ml LB media supplemented with ampicillin and the cells were collected by centrifugation 
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at 5,000xg for 10 minutes. The pellet was resuspended in 3ml cell resuspension solution and 

mixed with 3ml of cell lysis solution and incubated at room temperature for 3 minutes. The 

lysate was mixed with 5 ml cold neutralization solution and centrifuged at 11,000 x g for 15 

minutes. The supernatant was transferred into the spin column assembly placed on a vacuum 

manifold port and allowed to pass through the column assembly. The clearing column was 

removed and 5 ml endotoxin removal wash solution was added to the binding column and 

allowed to pass through by applying vacuum. This was followed by addition of 20 ml column 

wash solution which was allowed to pass through and the binding membrane was dried for 

30-60 seconds. The column was removed from vacuum port and placed in a 50 ml falcon 

tube. The plasmid DNA was eluted with 600 µl of nuclease-free water that was added onto 

the membrane and incubated for 5 minutes at room temperature. The plasmid was collected 

by centrifugation at 2,000 x g for 5 minutes. 

3.3.6. Transformation in A. fumigatus 

The protocol for A. fumigatus transformation was adapted from Punt et al., 1987 with slight 

modifications. A. fumigatus conidia were grown for 16-24 h in liquid AMM at 180 rpm 

shaker at 37ºC and harvested by filtration through sterile Miracloth (Calbiochem, CA). The 

mycelia was washed with citrate buffer (pH 5.5) containing 150 mM KCl, 580 mM NaCl and 

50 mM sodium citrate dehydrate and digested with 30 ml enzyme solution containg either 30 

mg/ml Novozyme 234 solution or 66 mg/ml Vinotaste®Pro (Novozymes) in citrate buffer for 

45 minutes. The digest was then filtered through Miracloth to generate protoplasts. The 

protoplast suspension was incubated with STC 1700 buffer (1.2 M sorbitol, 10 mM Tris pH 

5.5, 50 mM CaCl2 and 35 mM NaCl) on ice and washed twice at 1700 x g for 12 minutes 

each at 4ºC. The supernatant was discarded and protoplast pellet was resuspended in 

remaining 500 µl buffer. 30 µl DNA was added to the aliquots containing 200 µl protoplast 

suspension and incubated on ice for 30 minutes. Fusion was accomplished by addition of 

PEG 4000 mix containing 60% PEG 4000, 50 mM CaCl2 and 50 mM Tris-HCl pH 7.5. 

Following transformation, the fused protoplasts were concentrated by centrifugation at 1700 

x g for 12 minutes at 4 ºC and added to aliquots of molten soft agar containing 1.2 M sorbitol, 

mixed well and overlaid on AMM agar plates supplemented with 1.2 M sorbitol with or with- 

out 0.5 µg ml
-1

 doxycycline and appropriate selection marker.  

3.4. Microbiological methods 
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3.4.1. Growth tests and susceptibility assays 

To evaluate the doxycyline dependent growth, 1.5 × 10³ conidia were added at the center of 

each well containing 2 ml of AMM agar supplemented with varying concentration of 

doxycycline as indicated in 24-well plates and incubated for 36 h at 37°C. Radial growth 

assay was performed by inoculating 1.5 × 10³ conidia at the centre of AMM agar plate with 

or without 0.5 and 5 μg/ml doxycycline, incubated for at least 3 days at 37°C and colony 

diameter was measured every 24 h. 

Drop dilution assays were performed in a series of 10-fold dilutions derived from a starting 

suspension of 5 × 10
6
 conidia ml

−1
. Aliquots of 3 µl were spotted onto agar plates. Media was 

supplemented with or without doxycycline and cell wall perturbing agents such as CR, CFW 

as indicated. For antifungal E-tests, 25 x 10
3 

conidia were spread on a plate and Etest strips 

were overlaid and the plate was incubated for 48 h at 37°C. E-test strips were obtained from 

bioMérieux (Marcyl'Etoile, France). 

 

3.5. Biochemical methods 

3.5.1. Colorimetric alkaline phosphatise assay 

 This assay was performed as described previously (Cabib and Duran, 1975; Paravicini et al., 

1992) with slight modifications. Conidia suspension containing 1.5 x 10
3
 conidia was spotted 

on AMM agar plate and incubated for 36 h at 37ºC and then shifted to 48ºC for 6 h. The plate 

was then overlaid with soft agar containing 1% agar supplemented with alkaline buffer 

(containing 1 M glycine (pH 10.0), 1 M MgCl2 and 250 mM ZnCl2) and 10 mM chromogenic 

substrate BCIP (5-bromo-4-chloro-3-indolyl-phosphate) and incubated at 48ºC for further 2 

h. Mutant colony with lysed cells appeared blue within 30-45 min, whereas wild-type colony 

remained unstained even after 2h. 

3.5.2. Protein extraction and Western blot  

Freshly harvested conidia were inoculated in 10 ml of AMM  supplemented with 0.5 µg ml
-1 

doxycycline if required, and cultured in a tube rotator at 37ºC for 24 h. 100 µg ml
-1 

calcofluor 

white was added to respective cultures and further incubated for 30 minutes. Mycelium was 

harvested and resuspended in prewarmed 2X Laemmli buffer [95ºC; 2% (w/v) SDS, 5% (v/v) 

mercaptoethanol, 60 mM Tris/HCl (pH 6.8), 10% (v/v) glycerol, 0.02 (w/v) bromophenol 

blue  and extracted using a FastPrep-24 (M.P. Biomedical, Irvine, CA) with a speed of 5.5 
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ms
-1

 for 40 s followed by heat denaturation at 98ºC for 5 min. Samples were separated using 

12% or 7.5% SDS-PAGE as indicated and transferred to nitrocellulose membrane (Whatman, 

Germany) at 200 mA for 2 h at room temperature. Blots were blocked in 5% milk in TBS-T 

and analyzed with the anti-phospho-p44/42 MAPK rabbit monoclonal antibody (1:2000) 

(Cell Signaling Technologies, Boston, MA; 4370) or a polyclonal rabbit anti-GFP antibody (a 

kind gift from Carsten Bornhӧvd, Munich, Germany). Monoclonal antibodies directed against 

mitochondrial manganese superoxide dismutase MnSOD (AFUA_4G11580) or asf22 

(AFUA_6G06770) was used as loading control (kind gifts from Frank Ebel). The membranes 

was washed with 1X TBS-T and reprobed with goat polyclonal secondary antibodies against 

rabbit (1:10000) and mouse (1:10000) (Bio Rad, Hercules, CA). Immunodetection was 

accomplished using the ECL detection kit (Milipore). 

3.5.3. Relative quantification of phosphorylated MpkA 

Developed Super RXX-rayfilms (Fujifilm, Tokyo, Japan) were scanned with a GS-800 

calibrated densitometer and analyzed with Quantity One 4.5.0 (Bio-Rad, Hercules, CA). The 

relative signal intensity (percentage of total adjusted volume of all phosphorylated MpkA 

signals) and respective standard deviations were calculated for each sample. 

3.5.4. Coimmunoprecipitation with HA-Rom2 (733-1199) 

Conidia of the D141 strain expressing the N-terminally GFP-tagged Rho1 and Rho3 and 

harbouring the doxycycline-inducible HA-tagged Rom2 (733-1199) construct were 

inoculated in AMM (5 x 10
5 

conidia ml
-1

) and cultured in a shaker at 37°C. After 24 h, either 

no or 50 µg ml
-1

 doxycycline was added, and the cultures were incubated for another 4 h at 

37°C. Mycelium was harvested and washed twice with washing buffer (50 mM Tris-HCl 

[pH7.6], 20 mM NaCl, 1 mM phenylmethylsulfonyl fluoride [PMSF]). Five hundred 

milligrams of mycelium was added to 0.85 ml lysis buffer (50 mM Tris-HCl [pH7.6], 20 mM 

NaCl, 1 mM NaF, 2 mM MgCl2, 1% [v/v] Triton X-100, 10% [v/v] glycerol, 1µg ml
-1 

complete EDTA-free protease inhibitor (04693159001; Roche Diagnostics, Risch, 

Switzerland) in a Lysing Matrix C tube and lysed with a FastPrep-24 (M.P.Biomedical; 

Irvine,CA) for 10 times at 5.5 ms
-1 

for 40 s. The samples were centrifuged for 15 mins at 

21,000 x g at 4°C, and 2 ml supernatant was added to 20 µl anti-HAagarose (26180; Thermo 

FisherScientific, Rockford, IL) and incubated in an end-over-end mixer at 4°C. After 5 h, the 

agarose was transferred to a spin column and washed two times with 0.5 ml agarose washing 
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buffer (25mM Tris-HCl [pH7.2], 0.15 M NaCl, 1mM NaF, 2mM MgCl2, 0.05% [v/v] Tween 

20, 1X complete EDTA-free protease inhibitor). The agarose was heated at 95°C for 5 mins 

in 25 µl non-reducing sample buffer (26180; ThermoFisherScientific, Rockford, IL). The 

eluate was supplemented with 1.5µl 2-mercaptoethanol and 1 µl of a 100X complete EDTA-

free protease inhibitor stock solution. The supernatant (2.5 µl per lane) and eluate (7.5 µl per 

lane) were analyzed on 12% SDS-PAGE by Western blot. Primary antibodies directed 

against the HA tag (monoclonal antibody) (H9658; Sigma-Aldrich, St.Louis, MO) or GFP 

(polyclonal antibody, rabbit; a kind gift from Carsten Bornhövd, Munich, Germany) were 

used. 

3.5.5. Immunostaining 

To prepare samples for galactomannan and β-glucan staining, conidia from wild type and 

mutant strains were co-incubated on glass cover slips in 1 ml of AMM for 14 h at 37°C. 

Coverslips were then fixed with 3.7 % formaldehyde in PBS and washed thrice in PBS. 

Samples were subsequently blocked with 1 % goat serum in PBS (supplemented with 0.1 % 

Tween-20 when indicated) for 30 min followed by three washes with PBS/T. The 

galactomannan-specific mAb (L10-1; diluted 1:50 in PBS/T) and β-glucan-specific mAb 

(2G8; diluted 1:10 in PBS/T) that have been described previously (Heesemann et al., 2011 

and Torosantucci et al., 2005 respectively) were used as primary antibodies. Samples were 

incubated with the primary monoclonal antibody (mAb) in a humid chamber for 30 min and 

washed thrice with PBS/T, followed by a staining with Cy3-labelled anti-mouse secondary 

antibody (Dianova, Hamburg, Germany) or Alexa Fluor 488 conjugated goat anti-mouse IgG 

(A-11001, Life Technologies, Darmstadt, Germany) diluted 1:50 and 1:200 in PBS/T 

respectively. The coverslips were then washed thrice with PBS/T and mounted with Vecta 

Shield mounting medium (Vector Laboratories, Burlingame, USA) for fluorescence 

microscopy.  

3.5.6. Galactomannan quantification assay 

The Platelia Aspergillus Ag Kit (62794; Bio-Rad Laboratories, Hercules, U.S.A.) was used to 

determine the galactomannan concentration in culture supernatants. Briefly, 3 x 10
4
 conidia 

from respective strains were incubated in 1 ml AMM at 37⁰C. After 10.5 h, 80 % of the 

medium was replaced with fresh medium and incubated for additional 35 h at 37⁰C. 

Subsequently, supernatants were collected and centrifuged at 13,000 rpm for 15 min to 

eliminate residual soluble components. Samples were diluted 1:500 in ddH2O prior to 
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galactomannan quantification according to manufacturer’s instructions. The viability of the 

overnight grown cultures was measured using PrestoBlue cell viability reagent (A-13261; 

Life Technologies, Darmstadt, Germany), diluted 10 % in AMM and incubated for further 

2.5 h at 37⁰C. The change in coloration of supernatant was quantified using a FLUOstar 

Optima fluorescence plate reader (BMG Labtech, Ortenberg, Germany) with optimized 

settings (excitation filter 550 nm, emission filter 590 nm and gain value 1100). Samples were 

used in triplicates. 

3.6. Sequence analysis and bioinformatic tools 

The sequences were derived from the following genome databases: the Aspergillus 

genomedatabase (http://aspergillusgenome.org), the Saccharomyces GenomeDatabase  

(http:// www.yeastgenome.org),  and the Central Aspergillus DataRepository (CADRE) 

(http://www. cadre-genomes.org.uk). Conserved protein sequence signatures were predicted 

using InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan). The Pfam database 

(http://pfam. sanger.ac.uk) was used to identify proteins with functional domains in 

A.fumigatus. Multiple sequence alignments and phylogenetic trees were generated with 

MAFFT (http://www.ebi.ac. uk/Tools/msa/mafft/). The phylogenetic tree was visualized with 

TreeVector (http://supfam. cs.bris.ac.uk/TreeVector/). Identities and similarities of MAFFT 

alignments were calculated with Sequences Identities And Similarities (SIAS) 

(http://imed.med.ucm.es/Tools/sias.html).  

3.7. Microscopy 

3.7.1. Microscopic examination of hyphal growth and morphology 

Representative microscopic bright-field images of hyphal growth and morphology were taken 

with an Axiovert 25 inverted microscope (Carl Zeiss Microimaging, Gӧttingen, Germany). 

Briefly, 5 x 10
3
 conidia were inoculated in 24-well plates in 1ml AMM supplemented with 

the indicated amount of doxycycline and caspofungin. Images were taken with a Canon EOS 

600D camera (Tokyo,Japan). 

3.7.2. Live cell imaging 

To determine the localization of Rom2-GFP, the strain was cultured in an eight well- 

chambered μ-Slide (80826; Ibidi, Martinsried, Germany) containing 5 x 10
2
 conidia in 300 µl 

of AMM in each well. Live cell images were taken after approximately 15 h of incubation at 

http://aspergillusgenome.org/
http://imed.med.ucm.es/Tools/sias.html
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37°C. Living hyphae were analyzed with UltraView LCI spinning disc confocal system 

(PerkinElmer; Waltham, MA) fitted on an Eclipse TE300 microscope (Nikon, Tokyo, Japan) 

in a temperature-controlled chamber. Images were taken with a black/white ORCA ER 

camera (Hamamatsu, Hamamatsu City, Japan). 

3.7.3. Fluorescence microscopy 

To quantify the effect of septa on caspofungin-mediated killing, conidia of the indicated 

strains expressing cytosolic GFP were cultured on glass cover slips in 24-well plates in 1 ml 

media at 37°C. After 12 h incubation, 50% of the medium was replaced with fresh medium 

containing caspofungin diacetate (0.1 µg ml
-1

 final concentration). After additional 2 h 

incubation, the samples were fixed and stained with calcofluor white to detect presence of 

septa. Experiments were performed in either AMM or YG as indicated. When required, YG 

was supplemented with 0.025 % (v/v) diepoxyoctane (DEO) or 9 mM hydroxyurea (HU). 

Samples were quantified using a Leica DMLB fluorescence microscope (Leica 

Microsystems, Wetzlar, Germany). The hyphae were counted as alive when showing GFP 

fluorescence throughout or partially alive if GFP fluorescence was detected in at least one 

hyphal compartment or dead when showing no GFP fluorescence at all.  

For calcofluor white staining, samples were fixed with 3.7% formaldehyde and washed with 

1X PBS in formaldehyde. Coverslips were overlayed with 1 mg ml
−1

 CFW in ddH2O for 3 

min. Coverslips were subsequently washed with 1X PBS in formaldehyde and mounted on 

glass slides with Vectashield Mounting Medium (H-1000; Vector, Burlingame, U.S.A.). 

Images were taken with a Leica SP5 confocal laser-scanning microscope (Leica Microsy 

stems, Wetzlar, Germany). Analysis of fluorescence intensity was performed using the LAS 

AF Software provided by Leica. A vector was drawn perpendicular to the hyphal surface and 

the average of all values of signal intensity between the base and peak of the curve was 

calculated. The mean fluorescence instensity of atleast 60 cell wall intersections each of both 

wild type and fks1tetOn was quantified.                     
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4. Results

4.1. Characterization of Rom2 GEF in cell wall integrity of A. fumigatus. 

4.1.1. Identification of ScRom1/Rom2 homologue in A. fumigatus and domain analysis. 

In order to identify the homologue of ScRom1/Rom2 in A. fumigatus genome, a BLASTP 

search using the query sequence was performed in the genome database of A. fumigatus 

(Arnaud et al., 2010). The search resulted in only one homologue (AFUA_5G08550) with a 

length of 1,199 amino acids which has an identity and similarity of 28% and 41% with 

ScRom1 and 31% and 43% with ScRom2, respectively. Therefore, the protein sequence 

encoded by AFUA_5G08550 was named Rom2. 

Next, the domain architecture of Rom2 was determined using InterProScan (Zdobnov and 

Apweiler, 2001). As expected, the Rom2 harboured conserved domains similar to 

ScRom1/Rom2- a dishevelled, Egl-10, and pleckstrin (DEP) domain (PF00610), followed by 

a Rho GEF domain (PF00621) and a citron homology (CNH) domain (PF00780) from the N 

terminus to C terminus respectively. The PH domain if present is not annotated (Table 3). A 

PFAM search for proteins containing the Rho GEF domain (PF00621) in A. fumigatus listed 

six proteins, including Rom2 (Figure 12). However, none of the other GEF domain proteins 

contained a DEP domain, and only one, AFUA_5G07430, harbored a CNH domain. 

AFUA_5G07430 is similar to the GEFs SpRgf3 (S. pombe Rho gef3) and NcRGF3 (N. crassa 

RGF3) of S. pombe and N. crassa, respectively. SpRgf3 is a GEF of SpRho1 and controls β-

(1,3)-D-glucan biosynthesis and cytokinesis (Mutoh et al., 2005; Tajadura et al., 2004), while 

NcRgf3 of the filamentous fungus N. crassa was shown to be a specific GEF for NcRho4 and 

implicated in septum formation (Justa-Schuch et al., 2010). 

Table 3. Domains annotated in A. fumigatus Rom2 protein as revealed by InterProScan 

analysis.

           Protein domain                 Position 

                         DEP                       334-403 

            RhoGEF/ DH                   503-689 

                 CNH                                                                                882-1169 
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Figure 12. Sequence alignment of the putative Rho1 GEF in A. fumigatus with other 

fungal homologues. Phylogenetic tree of Rho GEF domain (PF00621)-containing proteins of 

S. cerevisiae (Sc), S. pombe (Sp), N. crassa (Nc), and A. fumigatus with similarity to 

ScRom1/2. The protein sequences of the respective genes were aligned, and the guided tree 

was generated with MAFFT and visualized with TreeVector. The known interacting Rho 

GTPases for each GEF and the conserved protein domain structures are listed.  

 4.1.2. Generation of a conditional rom2 mutant. 

In S. cerevisae, a double deletion of ScROM1 and ScROM2 is lethal. The same is true for a 

double deletion of rgf1
+
 and rgf2

+
 in S. pombe. Despite several attempts to create a deletion 

mutant of rom2 in A. fumigatus, a viable clone harboring the respective mutation could not be 

isolated. This suggested that similar to its other orthologues, rom2 is also an essential gene in 

A. fumigatus. Therefore, a conditional rom2 mutant (rom2tetOn) was constructed by replacing 

the endogenous rom2 promoter with a doxycycline-inducible promoter (Figure 13 A and B).  

Surprisingly, the conditional rom2 mutant was viable under repressive conditions on minimal 

medium. The addition of 0.25 to 0.5 µg ml
-1

 doxycycline reconstituted wildtype-like growth 

on solid medium, while the addition of higher doxycycline concentrations significantly 

repressed sporulation (Figure 14 A). However, in absence of doxycycline, the radial growth of 

the mutant was strikingly impaired and sporulation was completely abolished. Overexpression 

of rom2 slightly reduced radial growth, while sporulation was significantly reduced compared 

to the wild type (Figure 14 B and D). Further, it was speculated that if Rom2 acts as a putative 

GEF for Rho1, overexpression of rom2 would phenocopy the constitutive activation of rho1. 
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To test this hypothesis, a strain expressing a constitutive active allele (rho1
G14V

tetOn) under a 

doxycycline-inducible promoter was constructed.  The expression of the constitutive active 

rho1
G14V 

resulted in a slightly reduced radial growth compared to the wild type. Sporulation 

was also drastically reduced, but the colony morphology appeared less compact compared to 

the strains overexpressing rom2 (Figure 14 C and E).  
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Figure 13. Generation of a conditional rom2 mutant and PCR verification of mutant 

clone. (A) The promoter of rom2 was replaced by homologous recombination with a 

doxycycline-inducible promoter system. The 5’- and 3’- flanking regions were ligated to the 

doxycycline-inducible promoter system using the indicated SfiI restriction sites. (B) Graph 

showing the promoter locus in wild-type (wt) and rom2tetOn mutant. Primer binding sites and 

length of respective amplicons are indicated. PCR amplifications correspond to regions 

indicated by PCR 1-3. 

A.       

 

 

 

 

B.  

                                                                              C. 

 

 

 

 

 

 

  4.0 

    3.5 

1.2 

1.0 

 6.0 

  5.0 

kb 

PCR 1 

PCR 2 

PCR 3 

 wt rom2tetOn 
 

 wt 

rom2tetOn 

Doxy 

(µg/ml) 
 

 

     0         0.01       0.05     0.075       0.1       0.25        0.5       0.75        5           15 

 wt rom2tetOn rom2tetOn rho1
G14V

tetOn rho1
G14V

tetOn 

+ 5 µg/ml Doxy + 5 µg/ml Doxy 



                                                                                                                                          Results 

    

40 
 

D.                                                               E.                   

          

Figure 14. Doxycycline-dependent growth phenotypes of the conditional rom2tetOn 

mutant. (A to C) A total of 1.5x10
3 

conidia of the indicated strains were spotted on AMM 

agar supplemented with the indicated amount of doxycycline (Doxy) and incubated for 36h 

(A), 72h (B), or 96h (C) at 37°C. (D and E) Mean radial colony diameter of strain AfS35 

(black symbols and lines in panel D) and rom2tetOn strain with and without 5 µg/ml 

doxycycline (dark and light gray symbols and lines, respectively in panel D) and rho1
G14V

tetOn 

strain   with and without 5 µg/ml doxycycline (light gray and black symbols and lines, 

respectively in panel E) measured after indicated time periods. The AMM agar was 

additionally supplemented with pyrithiamine to avoid loss of rho1
G14V

tetOn construct (C). Error 

bars indicate standard deviation. wt, wild type. 

4.1.3. Evaluation of rom2 expression levels in the conditional rom2tetOn mutant.  

In order to evaluate the expression levels of rom2tetOn under basal, optimal and 

overexpression conditions, the sequence expressing a C-terminal GFP tag was integrated at 

the endogenous rom2 loci in the wild type and conditional rom2tetOn mutant. These strains 

named the rom2-GFP and rom2-GFPtetOn strains respectively, were analyzed by fluorescence 

microscopy and Western blotting (Figure 15). The growth and conidiation of both wild type 

and induced rom2-GFP strains were identical, suggesting that the GFP-tagged Rom2 was 

fully functional. As expected, the ~160 kDa Rom2-GFP band was not detected in the parental 

wild type or non-induced rom2-GFPtetOn strain. The endogenous expression of Rom2-GFP in 

the rom2-GFP strain appeared to be equivalent to the expression induced by 0.1 µg ml
-1

 

doxycycline in in the rom2-GFPtetOn strain in liquid medium (Figure 15). In agreement, the 

fluorescence of Rom2-GFP driven by its endogenous promoter was also too weak to detect 

with a conventional fluorescence microscope, thereby suggesting that endogenous expression   
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  of rom2 is rather weak.             

                  

 

 

   

 

Figure 15. Relative induced expression levels of Rom2. Conidia of indicated strains (10
6 

conidia ml-
1
)
 
was cultured at 37°C for 20 h. Protein extracts were analyzed by western blot 

with antibodies directed agaisnt GFP (top panel) and Aspf22 (loading control; bottol panel). 

The arrow indicates Rom2-GFP, while the asterisk (*) indicates an unspecific band. 

4.1.4. Downregulation of rom2 expression results in hypersusceptibility to cell wall-

perturbing agents. 

To evaluate the importance of rom2 in CWI of A. fumigatus, the sensitivity of the conditional 

rom2 strain under repressive growth conditions was analyzed in presence of cell wall 

perturbing agents such as Congo red, Calcofluor white and SDS. As shown in Figure 16 A, 

repression of rom2 resulted in an increased sensitivity to these agents compared to the wild 

type. These growth defects were overcome by supplementing the medium with 5 µg ml
-1

 

doxycycline. The mutant growth was also tested in presence of other drugs such as farnesol 

(1 mM) that was previously shown to interfere with CWI signaling (Dichtl et al., 2010) and 

the N-glycosylation inhibitor, tunicamycin (10 µg ml
-1

) that is presumed to contribute to cell 

wall weakening by preventing the incorporation of glycosylated proteins (de Groot et al., 

2005). In contrast to other agents, the rom2tetOn mutant was not affected by farnesol or 

tunicamycin under repressive conditions (Figure 16 A). 

 

While the wild type could grow at high temperatures, the repressed mutant strain showed 

severe temperature sensitivity at 48°C. This growth defect was partially rescued by the 

addition of an osmotic stabilizer (1.2 M sorbitol), suggesting that the growth inhibition is 

associated with impaired CWI (Figure 16 B). In agreement with this result and in contrast to 

the wild type, the repressed rom2tetOn strain stained positive in a colorimetric alkaline  
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phosphatase assay suggesting leakage of cytoplasm when exposed to elevated temperature 

(Figure 16 C). 

A. 

                        

 

                        

 

                                                    

                                        

 

                                    

 

Figure 16. Repression of rom2 results in increased susceptibility to cell wall perturbing 

agents and heat stress induced cytoplasmic leakage. (A) 3 µl conidia suspension from a 
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10-fold series dilution starting with 5x10
6 

conidia ml
-1 

of the indicated strains were spotted 

onto AMM agar plate supplemented with 8 µg ml
-1

 Congo red (CR), 40 µg ml
-1 

Calcofluor 

white (CFW), 1 mM farnesol [control 50 µl 100% ethanol (EtOH)], 0.005% SDS and 10 µg 

ml
-1 

tunicamycin [control 250 µl DMSO)] or doxycycline (Doxy). Plates were incubated at 

37°C for 36 h.  (B)  To test heat sensitivity, AMM agar plates were incubated at 48°C for 48 

h with and without 1.2 M sorbitol (Sorb). (C) Colorimetric alkaline phosphatase assay 

indicating cytoplasmic leakage in rom2tetOn mutant. 1.5x10
3
 conidia were spotted on AMM 

agar plate and incubated at 37°C for 36 h and then shifted to 48°C for 6 h. The agar plate was 

then overlaid with soft agar supplemented with 5-bromo-4-chloro-3-indolylphosphate and 

incubated for another 30min at 48°C. Cell lysis (enzymatic activity) is visualized by blue 

coloration. 

4.1.5. Reduced expression of rom2 impairs growth on complete media. 

Surprisingly, the rom2tetOn mutant failed to grow on complete media such as yeast glucose 

(YG), saboraud dextrose and or potato dextrose agar (Figure 17 A). However, supplementing 

the media with doxycycline reconstituted wild type- like growth. Additionally, supplementing 

complete media with 1.2 M sorbitol partially rescued growth, suggesting this phenotype to be 

associated with lack of CWI (Figure 17 A). The major difference between minimal medium 

and complete medium such as yeast extract is the inclusion of reduced nitrogen sources. 

Since the yeast extract composition is not well defined, several possible reduced nitrogen 

sources were tested for growth inhibition of the mutant. Therefore, the growth of rom2tetOn 

mutant was analyzed on minimal media lacking nitrogen source (in this case NaNO3) and 

supplemented with equimolar concentrations of different reduced nitrogen sources like 

ammonium salt (chloride) and free amino acids such as L-arginine under both repressive and 

inducing conditions. Interestingly, the mutant did not grow in presence of these nitrogen 

sources, indicating these sources to be responsible for the mutant growth failure on complete 

media (Figure 17 B). Additionally, microscopic analysis of the mutant growth in liquid 

culture revealed that the presence of rich nitrogen sources such as NH4Cl or yeast extract 

significantly inhibits hyphal germination (data not shown).  

                                                                                  

               YG                            Potato  Dextrose             Saboraud  Dextrose 

      wt  

   rom2tetOn 
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B. 

                               

                                                                                                                                                             

                                                                                 

 

Figure 17. Downregulation of rom2 expression results in impaired growth on complete 

media. (A and B)  In a series of 10-fold dilutions derived from a starting suspension of 5x 

10
6
 conidia ml

-1
 of the indicated strains, aliquots of 3µl were spotted onto agar plates. (A) 

Aliquots were spotted onto YG, potato dextrose or saboraud dextrose agar supplemented with 

doxycycline and sorbitol as indicated. (B) 3 µl drops were spotted on AMM agar 

supplemented with or without reduced nitrogen source such as NH4Cl and L-arginine in 

presence and absence of 0.5 µg ml
-1

 doxycycline (Doxy).                                                                                                                                                   

4.1.6. Effects of repression or overexpression of rom2 on hyphal growth and 

development.          

In order to examine the effects of rom2 on the germination and hyphal growth under induced 

and repressed conditions, the mutant strain was cultured without and with 0.5 and 5 µg ml
-1 

doxycycline for microscopic examination. As shown in Figure 18 A, repression of rom2 

resulted in slightly delayed germination and growth, while overexpression of rom2 with 5 

µg/ml doxycycline restored wild type-like growth. On shifting the mutant strain to 48°C, the 

swollen conidia and germ tubes of rom2 cultured without doxycycline rapidly ruptured. On 

the contrary, induction of rom2 in presence of 0.5 µg ml
-1 

doxycycline exhibited wild type-

like growth without any cell lysis. Surprisingly, overexpression of rom2 delayed growth and 

     wt  
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                           AMM                              +NH4Cl                          +L-arginine 

           + 0.5 µg/ml Doxy               + NH4Cl + Doxy             + L-arginine + Doxy                
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      wt  
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resulted in a ‘hyperbranching’ phenotype only when shifted to 48°C (Figure 18 B; lower 

panel). However, this overexpression phenotype was not observed in the culture grown at 

standard growth temperature i.e. 37°C for the same amount of time (Figure 18 A). Expression 

of the constitutively active rho1
G14V

 allele that is deficient in GTP hydrolysis also 

significantly delayed germination and hyphal development which was already visible at 37°C 

(Figure 18 A).  
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B.  

                   

                                                                   

 

  

 

 

Figure 18. Defects in germination and hyphal growth incduced by repression or over 

expression of rom2 and expression of constitutively active rho1 mutant allele. (A and B) 
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5x10
3 

conidia ml
-1 

from indicated strains were inoculated in well plates in liquid AMM 

supplemented with 0, 0.5 or 5 µg ml
-1

 of doxycycline (Doxy) as mentioned. (A) The well 

plate was incubated at 37°C for 16 h. Bar 250 µm. (B) The plate was incubated at 37°C for 

12h and then shifted to 48°C for 4 h. Bar 100 µm. 

4.1.7. Rom2 is required for caspofungin resistance but dispensable for azole tolerance. 

Previously, it has been demonstrated that the CWI signaling is required for antifungal drug 

tolerance and disrupting the signaling components increases sensitivity to azoles and 

echinocandins (Dirr et al., 2010, Dichtl et al., 2012). In S. cereviase, the stress sensor Wsc1 

mediates tolerance to echinocandin by activating CWI via Rom2 (Philip and Levin, 2001). To 

examine the effects of rom2 repression and overexpression on antifungal resistance, 

commercially available epsilometer (E-test) strips for echinocandin (caspofungin () and azole 

(posaconazole and voriconazole) were used. The E-test is a well established method for 

assessing antimicrobial resistance. A predefined gradient of antibiotic concentrations on a 

plastic strip is used to determine the Minimum Inhibitory Concentration (MIC) of the 

respective agent. Repression of rom2 resulted in a significantly increased susceptibility to 

caspofungin as compared to wild type, as evident from the reduced MIC (Figure 19 A). 

However, the sensitivity of the mutant to posaconazole and voriconazole remained unaltered 

(Figure 19 B and data not shown). Interestingly, overexpression of rom2 did not further 

increase the resistance to caspofungin. In agreement with this result, expression of rho1
G14V 

also did not affect caspofungin sensitivity (Figure 19 A). 
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B.  

                 

 

Figure 19. Rom2 is required for echinocandin but not azole tolerance. A total of 2.5x10
4
 

conidia of the indicated strains were spread on AMM agar plates supplemented with or without 

5 µg ml
-1

 doxycycline (Doxy), as indicated. (A) Caspofungin or (B) posaconazole E-strips 

were applied and plates were incubated for 48h at 37°C. The agar plates for rho1
G14V

tetOn were 

additionally supplemented with 0.1 µg ml-1 pyrithiamine to avoid loss of construct. 

 

4.1.8. Rom2 localizes to hyphal tips and newly formed septa but is not essential for 

septum formation. 

It was previously shown that GFP-tagged Rho1 preferentially localizes to hyphal tips (Dichtl 

et al., 2010). Therefore, it was assumed that if Rom2 was a putative GEF and interaction 

partner of Rho1, it should show a similar localization pattern. To visualize the sub-cellular 

localization of Rom2, a C-terminally GFP-tagged Rom2 driven by the strong constitutively 

                           rho1
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tetOn               rho1
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active gpdA promoter was expressed and named as rom2-GFPgpdA. The GFP positive clones 

isolated showed reduced sporulation, corresponding to the overexpression phenotype of 

Rom2 and had weak GFP fluorescence.  Rom2-GFP clearly localized to cell membrane and 

preferentially to hyphal tips (Figure 20 A). Interestingly, Rom2-GFP also concentrated at the 

sites of newly formed septa (Figure 20 B), suggesting its role in septum formation. If this was 

true, then mutant lacking Rom2 activity would have no septa. Therefore, the presence of 

septa in the rom2tetOn strain cultured under repressive condition was examined. But, it was 

found that the mutant possessed multiple septa which dismissed the direct involvement of 

Rom2 in septum formation (Figure 20 C).  
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C.          

               

 

 

 

 

 

 

Figure 20. GFP-tagged Rom2 localizes to the hyphal tips and septa. (A and B) 5x10
2
 

conidia of a wild-type strain expressing a C-terminally GFP-tagged Rom2 were inoculated in 

AMM and cultured at 37°C for approximately 15 h. Fluorescence and bright-field images 

were taken with a spinning disc confocal microscope and represent one optical section of 

living hyphae. (B) The timelapse pictures of the forming septum were taken after 0, 1, and 2 

min as indicated. Bar, 5 µm. (C) Bright-field microscopy images of repressed rom2tetOn (left) 

and ∆rho4 (right) showing presence and absence of septa (indicated by white arrows) 

respectively. Bar, 10 µm. 

4.1.9. Repression of rom2 results in increased basal activation of MpkA. 

In A. fumigatus, the MAP kinase MpkA is shown to be phosphorylated and activated by cell 

wall stress (Dirr et al., 2010; Dichtl et al. 2012). Similar observations have been made in 

other fungal species (Martín et al., 2000; Madrid et al., 2006).  In agreement, previously it 

has been shown that the cell wall stressor CFW induces MpkA activation in both wildtype 

and Δwsc1. However, this activation is reduced in ΔmidA supporting that MidA is required 

for calcofluor white induced stress tolerance (Dichtl et al. 2012). Therefore, in order to assess 

the effect of downregulation of rom2 on the downstream MpkA activation, the basal and 

induced phosphorylation of MpkA were evaluated in rom2tetOn strain under repressive growth 

conditions and wild type. Interestingly, repression of rom2 resulted in a significant basal 

MpkA phosphorylation under the uninduced condition in contrast to wild type. This 

phosphorylation level was not further increased by CFW induction in rom2tetOn strain, while 

the wild type showed drastic increase in MpkA phosphorylation in response to CFW (Figure 

21 A and B). The phosphorylation of another MAP kinase, MpkB has also been reported 



                                                                                                                                          Results 

    

50 
 

under cell wall stress conditions (Dirr et al., 2010). Interestingly, the MpkB phosphorylation 

was also observed in the rom2tetOn strain under basal conditions which was further enhanced 

upon calcofluor white-induced stress. In contrast, MpkB phosphorylation was only induced 

by CFW in the wild type, suggesting activation of MpkB is also triggered by cell wall stress 

(Figure 21 A). 
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Figure 21. Basal and induced phosphorylation of MpkA in rom2tetOn under repressive 

growth condition. (A and B) Conidia of the wild type (wt) and rom2tetOn strain were 

inoculated in triplicate in AMM (10
5 

conidia ml
-1

) and cultured at 37°C in a tube rotator. 

After 24 h, 100 µg ml
-1

Calcofluor white (CFW) was added to samples (indicated by ‘+’ sign) 

and incubated for 30 min. Protein extracts were analyzed by SDS-PAGE and Western 

blotting with antiphospho-p44/42 MAPK antibodies directed against phosphorylated MpkA 

(p-MpkA) and phosphorylated MpkB (p-MpkB). Antibodies directed against the 

mitochondrial MnSOD were used for a loading control. (B) The relative quantity of 

phosphorylated MpkA expressed as a percentage of all signals (listed in Table 4) is indicated. 
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Error bars indicated the standard deviations of triplicate samples.  

 

Table 6.  Relative quantification of MpkA phosphorylation bands in wild type and rom2tetOn. 

 

 Sample      Volume OD*mm
2         

Adjusted Volume OD*mm
2 

        %Adj. Vol.      Average 

 

Wild type       10.44718331                      3.330593249                     13.94            14.31 

    (+)              6.734824046                      2.656263151                    11.12 

                       8.797934319                     4.269195189                    17.87 

 

Wild type         2.472840306                     0.019773277                      0.08              0.46 

    (-)               2.496519801                     0.036713577                      0.15 

                       2.761131894                     0.273021050                      1.14 

 

rom2tetOn          6.841793766                      3.283498735                    13.75             9.52 

    (+)              4.960110943                      2.085170299                      8.73 

                       4.623325785                      1.457251911                     6.10 

 

rom2tetOn          7.158953891                      2.913260957                    12.20             9.03       

     (-)              6.138127549                      2.446396454                    10.24 

                       5.078288147                      1.115641408                     4.67 

 

4.1.10. Effects of N-terminal truncated Rom2 overexpression on hyphal growth and     

sporulation. 

 

While this Rom2 study was in progress, the group of Stephan Seiler showed that NcRgf1, a 

homologue of ScRom2 in Neurospora crassa is a specific GEF for NcRho1. They also 

reported that in vitro, the N-terminal part of NcRgf1 containing the DEP domain negatively 

regulates its GEF activity. They validated through yeast two-hybrid data as well as GEF 

activity that the GEF domain of NcRGF1 could induce nucleotide exchange on NcRHO1 

only if the N-terminal part harbouring the DEP domain was not included in the construct. 

(Richthammer et al., 2012). This prompted the speculation if AfRom2 exerts a similar self-

inhibitory mechanism in A. fumigatus. According to this model, the overexpression of 
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truncated Rom2 lacking the N-terminal DEP domain would exert more severe effects on 

hyphal growth and development than the full-length protein. In order to test this hypothesis, 

two mutant strains that ectopically expressed the full-length protein (C-terminally His tagged) 

and N-terminally HA-tagged Rom2 (733-1199) lacking the N-terminal part including the 

DEP domain under a doxycycline-inducible promoter, repectively, were generated. As 

expected, overexpression of the full-length Rom2 yielded growth phenotypes that 

phenocopied the overexpression of the conditional rom2 mutant i.e. strikingly reduced 

sporulation and slightly reduced radial growth (Figure 22 A). In contrast, overexpression of 

the HA-Rom2 (733-1199) resulted in a significantly more severe growth phenotype with 

drastically reduced radial growth and absence of sporulation (Figure 22 A). Additionally, 

overexpression of Rom2 (733-1199) also had more drastic effects on germination and hyphal 

growth compared to the overexpression of the full-length Rom2 in liquid media (Figure 22 

B).  
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Figure 22. Differential growth effects of HA-Rom2 (733-1199) and full-length Rom2. (A) 

Aliuots of 3 µl conidial suspension in a series of ten-fold dilution starting from 5x10
6 

were 

spotted on agar plates supplemented with 0 or 5 µg ml
-1

 doxycycline (Doxy) and 100 µg ml
-1

 

hygromycin to avoid loss of respective constructs. Plates were incubated at 37°C for 48 h. (B) 

Total 5x10
3 

conidia ml
-1 

from indicated strains were incubated for 16 h at 37°C in liquid 

AMM supplemented with no doxycycline (upper panel) or 5 µg ml-1 doxycycline (lower 

panel). Bar, 250 µm.  

 4.1.11. Interaction of Rom2 with Rho1. 

In order to confirm that Rom2 interacts with Rho1, a Co-IP assay was performed and 

analysed if Rho1 was pulled down by the active HA-Rom2 (733-1199) protein lacking the N-

terminal part of Rom2. Furthermore, in order to assess that Rom2 is a Rho1-specific GEF, 

constitutively expressing GFP-tagged Rho1 and Rho3 strains which previously showed 

similar subcellular localization were used (Dichtl et al., 2010). These strains were 

transformed with the construct expressing doxycycline inducible HA-Rom2 (733-1199) 

ectopically. As expected, GFP-Rho1and not GFP-Rho3 was co-immunoprecipitated with 

HA-Rom2 (733-1199) when induced with doxycycline for 4 h. In absence of doxycycline, 

HA-Rom2 (733-1199) was not expressed and hence GFP-Rho1 was not pulled down (Figure 

23).  

 

 

         

                                

   

Figure 23. Interaction of HA-Rom2 (733-1199) with GFP-Rho1. Conidia of strains 

constitutively expressing GFP-Rho1 or GFP-Rho3 and conditionally expressing HA-Rom2 

(733-1199) were inoculated in AMM and incubated on a rotary shaker at 37°C. After 24 h, 

HA-Rom2 (733-1199) expression was induced with 50 µg ml
-1

 doxycycline (+) or not (-) and 

the cultures were incubated for another 4 h at 37°C. The soluble fractions (S) of mycelium 
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extracts were subjected to anti-HA agarose. After two wash steps, bound protein was eluted 

(E). Portions (0.125%) of the soluble fraction (S) and 30% of the elution (E) were analyzed 

by SDS-PAGE and Western blotting with anti-HA (α-HA) and anti-GFP (α-GFP) antibodies. 

 

4.1. Characterization of the β-1,3-glucan synthase subunit Fks1 of A. 

fumigatus. 

 

4.2.1. Generation and growth of conditional fks1 mutant. 

The genome of A. fumigatus contains a single copy of gene encoding the β-1,3-glucan 

synthase, fks1 (AFUA_ 6G12400) which has been previously described to be essential (Firon 

et al., 2002). Therefore, in order to further investigate the role of fks1 and downregulate its 

expression, a conditional fks1 mutant was constructed. For this approach, an improved 

version of the doxycyline-inducible ‘TetOn’ promoter system as described previously was 

employed (Helmschrott et al., 2013). The endogenous promoter of fks1 was replaced with 

this conditional promoter, resulting in a doxycycline-regulated fks1
tetOn

 mutant (Figure 24 A). 

The fks1tetOn mutant was though viable under repressive conditions, but highly impaired in 

sporulation and radial growth as compared to wild type. The mutant was very slow-growing 

under repressive conditions, but wild type-like growth rate was reconstituted upon addition of 

≥ 0.5 µg ml
-1 

doxycycline (Figure 24 B and C).  
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D.                                                                    E. 

 

Figure 24. Generation and doxyxyline-dependent growth phenotype of conditional 

fks1tetOn mutant. (A) Graph showing the promoter locus in wild-type (wt) and fks1tetOn 

mutant. The native promoter of fks1 was replaced by homologous recombination with a 

doxycycline-inducible promoter system. Primer binding sites and length of respective 

amplicons verifying the tetOn promoter integration are indicated by PCR 1-3. (B) 1.5 x 10
3
 

conidia of the indicated strains were spotted on AMM agar supplemented with the indicated 

amount of doxycycline (Doxy) and incubated at 37 °C for 36 h. (C, D and E) 1.5 x 10
3
 

conidia of the indicated strains were spotted at the center of AMM agar plates supplemented 

without or 0.5 µg/ml doxycycline (Doxy) and incubated at 37 °C for 72 h. (D and E) Mean 

radial growth diameter of wild type (in dark gray lines and symbols) and fks1tetOn (in light 

gray lines and symbols) strains without (D) and with 0.5 µg/ml doxycycline (E). 

4.2.2. Downregulation of fks1 mimics echinocandin effect on wild type. 

The fks1 gene encodes the β-1,3-glucan synthase in A. fumigatus which is also the known 

target of the echinocandin class of antifungals. Therefore, the growth morphology upon fks1 

repression was analyzed to assess if it phenocopies the growth inhibition induced by 

echinocandins on wild type. Microscopic examination of the fks1tetOn strain under repressive 

conditions revealed irregular, slowly growing and frequently branching hyphae. Additionally, 

the mutant colonies showed frequent lysed hyphal tips. Importantly, these growth alterations 

caused by reduced fks1 expression strikingly resembled those of wild type exposed to 

echinocandins, which also resulted in delayed growth, more frequent branching and cell lysis. 

On the other hand, these growth defects were not observed in the fks1tetOn mutant upon 

addition of doxycycline (Figure 25). 
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Figure 25. Cellular morphology of fks1tetOn repressed mutant phenocopies the effect of 

echinocandins. Distinct similarities in morphology (320X) were observed between 

caspofungin-treated and untreated wild type (wt) and fks1tetOn mutant strains cultured under 

repressed and induced conditions respectively. Conidia (5 x 10
3
/
 
ml) from the indicated 

strains were inoculated in liquid AMM and incubated at 37 °C for 18 h. Media was 

supplemented with 1 µg/ml caspofungin (Caspo) or 0.5 µg/ml doxycycline (Doxy) as 

mentioned. The arrows indicate lysed hyphal tips and cytoplasmic leakage. 

4.2.3. Effect of fks1 downregulation on cell wall integrity and antifungal resistance. 

Fks1 is reportedly required for synthesis of the cell wall component β-1,3-glucan in A. 

fumigatus, which is also important for structural integrity of the cell wall (Beauvais et al., 

2001). In order to ascertain the importance of β-1,3-glucan for cell wall integrity, growth of 

the fks1tetOn mutant was analyzed under repressive growth conditions and in presence of cell 

wall perturbing agents. As shown in Figure 26 A, repression of fks1 resulted in increased 

susceptibility to SDS and Calcofluor white. Interestingly, susceptibility to other cell wall 

perturbing conditions, i.e., Congo red and heat were not significantly altered (Figure 26 A 

and B).  

   wt fks1tetOn 
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Next, the effect of the loss of Fks1 activity on antifungal drug resistance was also assessed. 

The minimal inhibitory concentration (MIC) of echinocandins and azoles, respectively, were 

analyzed with commercial Epsilometer tests (Etests). Reduced fks1 expression did not 

significantly alter the MIC to the azole antifungals (Figure 27; lower panel).  Interestingly, 

the growth of the repressed fks1tetOn mutant was not affected at all by caspofungin in contrast 

to wild type which showed a distinct MIC. But when induced with doxycycline, the mutant 

showed a MIC similar to wild type (Figure 27; upper panel). 
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Figure 26. Susceptibility of the repressed fks1tetOn mutant to cell wall perturbing 

conditions. (A and B) Aliquots of 3 µl conidia suspension derived from a series of ten-fold 

dilution with a starting suspension of  5 x 10
7
 conidia/ml were spotted onto AMM agar plates. 

The plates were supplemented with sodium dodecyl sulfate (SDS; 0.005 % (w/v)), Congo red 
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(CR; 8 µg/ml), Calcofluor white (CFW; 40 µg/ml), or doxycycline (Doxy; 0.5 µg/ml). (A) 

The plates were incubated for 36 h at 37⁰C except for CFW supplemented plate which was 

incubated for 48 h. (B) The agar plates were incubated at 37 °C for 36 h or at 48 °C for 48 h. 

 

                   

 

                      

Figure 27.  Downregulation of fks1 renders the mutant resistant to echinocandin, while 

invariant to azole. A total of 2.5 x 10
5 

conidia from indicated strains were spread on AMM 

agar plates supplemented with no or 0.5 µg/ml doxycyline (Doxy). Caspofungin (CS; upper 

panel) or voriconazole (VO; lower panel) E-test strips were applied and the agar plates were 

incubated at 37 °C. Representative photos were taken after 43 h. 

4.2.4. Effect of repression of fks1 on cell wall organization. 

β-1,3-glucan is not only an essential cell wall component, but also acts as a scaffold for 

otherpolysaccharides, for e.g. galactomannan  which is covalently bound to the glucans 

 wt wt + Doxy fks1tetOn fks1tetOn+ Doxy 
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(Fontaine et al., 2000). Therefore, it was speculated that a reduced β-1,3-glucan could also 

influence the cell surface galactomannan integration. In order to investigate the effects of 

downregulating fks1 on cell wall composition, a β-glucan-specific monoclonal antibody 

(mAb, 2G8) was used to immunostain cell wall β-1,3-glucan (Torosantucci et al., 2005) 

(performed in close collaboration with Dr. med. Karl Dichtl). Conidia of the fks1tetOn strain 

together with wild type conidia were inoculated on cover slips in liquid media under 

repressive conditions (no doxycycline). Clear morphologic differences allowed 

discrimination between wild type and fks1tetOn hyphae. As expected, the wild type but not 

fks1tetOn hyphae were stained with the 2G8 mAb, suggesting that reduced fks1 expression 

results in a decrease in β-1,3-glucan in the cell wall (Figure 28 A). Next, a galactomannan-

specific mAb (L10-1) was used to stain Aspergillus hyphae cultured under similar conditions 

(Heesemann et al., 2011) (performed in close collaboration with Dr. med. Karl Dichtl). As 

shown in Figure 28 B, in contrast to wild type hyphae which showed an even galactomannan 

staining pattern throughout the cell surface, the fks1tetOn hyphae were weakly stained with the 

L10-1 mAb. This suggested that the mutant was affected in integrating galactomannan into 

the cell wall. Interestingly, the fks1tetOn hyphae showed diffused galactomannan staining 

marked by halos around the mutant hyphae (Figure 28 B), pointing towards elevated 

galactomannan release by the mutant. Additionally, it has been shown previously that 

echinocandin treatment induces a compensatory increase in chitin content of fungal cell wall 

including A. fumigatus to mediate cell wall integrity (Fortwendel et al., 2010; Walker et al., 

2008). Similar to the echinocandin-induced effect, the fks1tetOn mutant showed significantly 

increased cell wall chitin under repressive growth conditions as compared to wild type 

(Figure 28 C). 
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Figure 28. Reduced β-1,3-glucan and galactomannan but increased chitin staining 

observed for repressed fks1tetOn mutant. Conidia of wild type and fks1tetOn were inoculated 

in AMM on cover slips and cultured at 37 °C for 14 h. Cells were subsequently fixed, stained 

and analyzed with a confocal laser scanning microscope. (A and B) Representative bright 

field (left panels) and immunofluorescent images (right panels) of hyphae stained with β-

glucan-specific 2G8 mAb (A) and galactomannan-specific L10 mAb (B). (C) Representative 

image of hyphae stained with chitin-specific calcofluor white dye (left panel) and the relative 

mean fluorescence intensity quantified from 60 cell wall intersections of wild type and 

fks1tetOn hyphae (right panel). Bar, 20 µm.  
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4.2.5. Downregulation of fks1 induces increased galactomannan shedding. 

Detection of the biomarker galactomannan in body fluids is relevant for clinical diagnosis of 

invasive aspergillosis (Kousha et al., 2011). The galactomannan staining of the fks1 mutant 

demonstrated that inhibition of β-1,3-glucan reduces integration of galactomannan into the 

cell wall. This raised an obvious question about the consequent galactomannan release into 

the medium i.e. if it is decreased due to reduced synthesis or degaradation within the cell or 

increased due to the failure of being covalently linked to the cell wall in absence of β-1,3-

glucan. Hence, the commercially available Platelia
TM

 Aspergillus ELISA kit was employed to 

measure the galactomannan released into cell culture supernatants of wild type and the 

conditional fks1tetOn strain cultured under repressive and induced conditions. The metabolic 

activity was also quantified as an index of viability of the strains by a resazurin-based assay. 

As expected, the growth and metabolic activity of the wild type and the induced fks1tetOn 

strain significantly surpassed the fks1tetOn strain cultured under repressive conditions (Figure 

29 A and B). Despite significant showing low metabolic activity and fungal biomass, higher 

galactomannan concentration was detected in the repressed fks1tetOn culture supernatant as 

compared to other strains (Figure 29 C). This suggests that inhibition of β-1,3-glucan 

synthesis results in increased galactomannan shedding. 
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Figure 29. Reduced fks1 expression triggers increased galactomannan shedding. (A-C) 3 

x 10
4
 conidia/ml from indicated strains were inoculated in triplicates in well plates at 37⁰C. 

When indicated, medium was supplemented with 0.5 µg/ml doxycycline (Doxy). 

Supernatants were collected and analyzed with a commercial galactomannan antigen test as 

described in Materials and methods. (A) Representative microscopic images of wild type (wt) 

and fks1tetOn strains cultured under repressed and induced conditions were taken after 46 h 

incubation at 37⁰C. (B) The viability of the strains measured by a resazurin-based dye. (C) 

Galactomannan index quantified from culture supernatants of indicated strains. (B and C) 

Error bars indicate standard deviations. Medium (AMM) and medium supplemented with 0.5 

µg/ml doxycycline (AMM + Doxy) were used as negative controls. 
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4.2.6. The β-1,3-glucan synthase is dispensable for A. fumigatus viability. 

As shown in Figure 27 (upper panel), growth of fks1tetOn mutant was not impaired at all by the 

echinocandin caspofungin. A possible explanation for this phenomenon could be that the β-

1,3-glucan synthase is not essential in A. fumigatus in contrast to previous reports. To test this 

hypothesis, an A. fumigatus fks1 deletion mutant was generated and cultured (performed in 

close collaboration with Dr. med. Karl Dichtl). For this, an fks1 deletion cassette harboring a 

pyrithiamine resistance marker was generated (Figure 30 A) and surprisingly, the 

transformation yielded only wild type-like clones. Interestingly, when the conidia of the 

clones were subsequently streaked on agar plates under selective and non-selective condition, 

a differential heterokaryotic phenotype was observed under respective conditions. Several of 

these transformants yielded tiny and slowly growing white colonies without conidiation when 

raised specifically under selective conditions (Figure 30 B left panel). This growth phenotype 

was very similar to that of the fks1tetOn strain cultured under repressive growth conditions. In 

contrast, when raised under non-selective conditions i.e. in absence of pyrithiamine, these 

clones showed a wild type-like growth thereby suggesting that these transformants were 

heterokaryotic progenitors (Figure 30 B right panel). Similar heterokaryotic clones were 

isolated from several independent transformations and the gene replacement cassette was 

validated with PCR (Figure 30 A). Upon prolonged incubation on agar plates under selective 

conditions, the tiny white clones grew into huge swollen colonies with a popcorn-like 

appearance. These colonies were covered with caramel-colored droplets, probably due to 

continuous cytoplasmic bleeding (Figure 30 C).   

The microscopic examination of the Δfks1 hyphae revealed that they were morphologically 

similar to wild type cultured in the presence of echinocandins or the fks1tetOn strain cultured 

under repressive conditions i.e. characterized by slow growth, frequent branching and hyphal 

tip lysis (Figure 31 A). Additionally, in contrast to wild type, the Δfks1 hyphae were not 

immunostained with 2G8 mAb, suggesting the strain lacked β-1,3-glucan in the cell wall 

(Figure 31 B). Taken together, these results demonstrated that the β-1,3-glucan synthase is 

not essential in A. fumigatus. 
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Figure 30. Construction of ∆fks1 mutant. (A) An fks1 deletion mutant was generated by 

replacing the respective ORF with a pyrithiamine resistance marker (ptrA) and validated with 

PCR. (B) Conidia of a heterokaryon Δfks1 transformant were streaked on AMM agar plates 

supplemented with no or 0.1 µg/ml pyrithiamine hydrobromide (Pyr). The plates 

supplemented without and with pyrithiamine were incubated at 37 °C for 36h and 48 h 

respectively. (C) ∆fks1 isolates incubated on a Saboraud dextrose agar plate at 37⁰C for 30 

days exhibiting cytoplasmic bleeding phenotype (inset). 

 A.                                                          B.  

                   

 

 

 

 

 

Figure 31. Phenotypic characterization of ∆fks1 mutant. (A) Microscopic morphology of 

a heterokaryon ∆fks1 cultured in AMM supplemented with 0.1 µg/ml pyrithiamine 

hydrobromide at 37⁰C for 22 h. The black arrow heads indicate wild type conidia. (B) 

Conidia of a heterokaryon Δfks1 transformant cultured in AMM on coverslip for 22 h at 37⁰C 

and immunostained with a β-glucan-specific mAb 2G8. Bar, 20 µm. 

4.2.7. Septa and sealing of septal pores promote survival of Aspergillus microcolonies 

exposed to echinocandins. 
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As shown in Figure 27, Aspergillus is still able to grow at echinocandin concentrations above 

the MIC. This phenomenon is called ‘trailing growth’. Interestingly, a Δrho4 mutant which is 

lacking the GTPase Rho4 shows no trailing growth (Dichtl et al., 2012). Therefore, it was 

speculated that the striking fungicidal effect of echinocandins on the Δrho4 mutant might be 

attributed to the lack of Rho4 GTPase activity and its importance for septum formation (Si et 

al., 2010; Dichtl et al., 2012). To investigate the significance of septa for echinocandin 

tolerance, the activity of caspofungin on microcolonies of wild type and the Δrho4 mutant 

was analyzed. Furthermore, for microscopic analysis of caspofungin mediated lysis, strains 

constitutively expressing GFP to discriminate between lysed and intact hyphae were used. 

The presence of septa in respective strains was detected by chitin-specific Calcofluor white 

staining. As shown by GFP fluorescence in caspofungin treated and untreated samples 

(Figure 32 A and B), the wild type hyphae harbored mostly intact hyphal compartments 

(sGFP-positive) that were clearly separated from the dead hyphal compartments (sGFP-

negative) even after 2 h of caspofungin treatment. In contrast, the Δrho4 hyphae treated with 

caspofungin lacked septa and were completely dead (sGFP-negative). These results were in 

agreement with the quantitative analysis of hyphal lysis which revealed about 90 % of the 

wild type microcolonies to be fully or partially viable and about 95 % of the Δrho4 

microcolonies that were completely dead after 2 h of caspofungin treatment (Figure 32 C). 

Due to the absence of septa, no partially viable Δrho4 microcolonies were found. Notably, 

approximately 5 % of the Δrho4 microcolonies survived caspofungin treatment. This is in a 

similar range as the number of fully intact wild type microcolonies after caspofungin 

treatment. We additionally analyzed the susceptibility of a ∆hexA strain to caspofungin. This 

strain although harbors septa, but lacks septal “plugs” known as Woronin bodies that function 

to seal the septal pores in response to cellular damage (Beck and Ebel, 2013; Beck et al., 

2013). Compared to wild type, about 75 % of ∆hexA microcolonies were viable after 

caspofungin treatment and several partially intact hyphae were observed similar to wild type 

(Figure 32 C and D). In absence of caspofungin treatment, the frequency of completely dead 

microcolonies of wild type, ∆rho4 and ∆hexA strains was below 4 % (Figure 32 D).  

In agreement with the above results, the Δrho4 and ΔhexA strains also showed abolished or 

reduced growth in presence of caspofungin, as compared to wild type and complemented 

strains (Figure 33 A). To further validate that the increased susceptibility of the Δrho4 and 

ΔhexA strains to caspofungin is specifically attributed to inhibition of β-1,3-glucan synthesis, 

Δrho4 fks1tetOn and ΔhexA fks1tetOn double mutant strains were generated and analyzed under 
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induced and repressive conditions (performed in close collaboration with Dr. med. Karl 

Dichtl). As shown in Figure 33 B, repression of fks1 expression in a Δrho4 or ΔhexA 

background resulted in growth inhibition similar to the effects observed under caspofungin 

treatment. Thus, these results demonstrated an important role for Aspergillus hyphae for 

echinocandin tolerance and also suggested a model whereby the absence of β-1,3-glucan 

synthesis and subsequent lysis is partially compensated by septa. 
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Figure 32. Lack of functional septa results in increased susceptibility to echinocandin. 

(A-D) Conidia of the indicated sGFP-expressing strains were inoculated in AMM on cover 

slips and cultured at 37 °C. After 11 h, 0.1 µg/ml caspofungin (Caspo) was added when 

indicated. After additional 2 h incubation, cells were fixed and analyzed. (A and B) 

Representative confocal microscopy images of indicated strains untreated (B) and treated 

with 0.1 µg/ml caspofungin (A). Left panel, cytoplasmic sGFP; right panel, Calcofluor white 

staining of the cell wall. Arrows indicate septa. Bar, 50 µm. (C and D) Quantification of fully 

(black) and partially (gray) viable microcolonies. For each strain, at least 3 x 100 

microcolonies were analyzed. 
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 Figure 33. Survival of β-1,3-glucan depleted Aspergillus relies on functional septa. (A 

and B) Aliquots of 3 µl derived from a starting suspension of 5 x 10
6
 conidia/ml of the 

indicated strains were spotted onto AMM agar. When indicated, AMM was supplemented 

with 0.1 µg/ml caspofungin (Caspo) or 0.5 µg/ml doxycycline (Doxy). Agar plates were 

incubated at 37 °C for 36 h (A, with caspofungin) or 48 h (B, with doxycycline). 

4.2.8. Echinocandins exhibit synergistic activity with septum formation inhibitors. 

Since it was observed that septal blockade is important to survive the echinocandin effect in 

Aspergillus, the effect of pharmacologic inhibition of septum formation on the efficacy of 

echinocandin antifungals became relevant to probe. Previously, it has been shown that the 

DNA-damaging agents diepoxyoctane (DEO) and hydroxyurea (HU) inhibit septum 

formation in A. nidulans (Harris and Kraus, 1998). According to the model proposed above, 

such inhibitors should enhance the fungicidal effect of echinocandins against Aspergillus. 

Therefore, in order to validate this speculation, the synergistic effect of these two compounds 
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with the echinocandin caspofungin was evaluated (performed in close collaboration with Dr. 

med. Karl Dichtl). In agreement with the results obtained with A. nidulans, the wild type 

hyphae rarely formed septa in presence of sublethal doses of DEO or HU (data not shown). 

Consequently, both inhibitors significantly reduced the number of viable microcolonies upon 

caspofungin treatment as compared to the agents used alone (Figure 33 A and B). In 

congruence, there was a marked dose-dependent reduction in the trailing growth as well was 

MIC of wild type observed on caspofungin E-tests with DEO (Figure 33 C). 
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Figure 33. Synergistic activity of septum formation inhibitors with echinocandins. (A 

and B) Conidia of the sGFP-expressing wild type (wtsGFP) were inoculated on cover slips in 

YG and incubated at 37⁰C. When indicated, AMM was supplemented with 0.025 % (v/v) 

DEO (A) or 9 mM HU (B). After 12 h incubation, 0.1 µg/ml caspofungin was added when 

indicated (Caspo). After additional 2 h incubation, cells were fixed and the number of viable 

microcolonies was quantified. For each condition 3 x 100 microcolonies were analyzed. (C) 

A total of 2.5 x 10
5
 conidia of wild type were spread on YG agar plates and caspofungin Etest 

strips were applied.  When indicated, YG was supplemented with 0.015 or 0.025 % (v/v) 

diepoxyoctane (DEO) and the agar plates were incubated at 37 °C. Representative photos 

were taken after 38 h (red arrows indicate respective MIC). 
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5. Discussion 

5.1. Characterization of Rom2 in cell wall stress response signalling 

The cell wall integrity signalling pathway is shown to be essential for cell wall biosynthesis 

and stress response, with the central signalling components conserved in several fungi, 

including Aspergillus fumigatus. This pathway is well characterized in S. cerevisae, whereby 

the CWI model consists of a family of cell surface sensors (Wsc1-3, MidA and Mtl1) that 

transduce the stress signal to guanine nucleotide exchange factors (GEFs) ScRom1/2 to 

activate downstream ScRho1 GTPase and its effector protein kinase C (ScPkc1). This 

ultimately leads to the activation of the linear tripartite MAPK module via ScBck1 

(MAPKKK), ScMkk1/2 (MAPKK) and the end kinase, ScMpkA which triggers transcription 

of several genes regulating cell wall biogenesis (Levin, 2005). According to the CWI model 

derived from S. cerevisae, the Rho GEFs ScRom1/2 function as a connecting link between the 

upstream sensors and the downstream Rho GTPase (Figure 8). Recently, the sensors and Rho 

GTPases involved in CWI in A. fumigatus have been identified and characterized (Dichtl et 

al., 2012). Since A. fumigatus genome harbours a single homologue of the partially redundant 

GEFs ScRom1/2, it was intriguing to probe if AfRom2 acts as an upstream regulator in the 

CWI pathway and integrates combination of phenotypes of the CWI sensors as well as its 

interacting Rho GTPase. Therefore, an in-depth characterization of AfRom2 was attempted in 

order to understand its link to the CWI pathway as well as its significance in antifungal sress 

response in A. fumigatus. The findings of this work establish the fundamental role of Rom2 as 

a GEF, placing it between the cell surface sensors and Rho1 and its downstream effectors. 

5.1.1. The apparent role of Rom2 in cell wall stress response and its correlation with 

CWI sensors. 

According to previous reports, the CWI pathway in A. fumigatus is mainly mediated by the 

three sensors, namely Wsc1, Wsc2 and MidA (Dichtl et al., 2012). The rom2tetOn mutant 

under repressive conditions shares several phenotypes with the deletion mutants of these three 

CWI sensors (Dichtl et al., 2012). Downregulation of rom2 resulted in significantly reduced 

radial growth and sporulation. This result is in agreement with the drastically impaired radial 

growth and sporulation observed in the Δwsc1Δwsc3ΔmidA triple mutant as well as the 

downstream MAPK module mutant strains Δmkk2 and ΔmpkA, as previously reported (Dichtl 

et al., 2012;  Dirr et al., 2010). On the contrary, none of the single deletions of wsc1, wsc3 

and midA significantly reduced radial growth or sporulation, while the double deletion of 
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Δwsc1 and Δwsc3 only slightly reduced radial growth and sporulation as compared to wild 

type (Dichtl et al., 2012, Dirr et al., 2010).  These results indicate that the partial growth 

redundancy of the three sensors is most likely incorporated in the single homologue of Rom2.  

 

Repression of rom2 resulted in an increasing susceptibility to β-1,3-D-glucan synthase 

inhibitor caspofungin. While Wsc3 and MidA are dispensable for caspofungin tolerance, 

deletion of wsc1 exhibited a significant decrease in MIC with caspofungin (Dichtl et al., 

2012). Similarly, the rom2tetOn mutant under repressive conditions exhibits increased 

sensitivity to cell wall perturbing agents such as Congo red, Calcofluor white and elevated 

temperature and the temperature-sensitive growth defect is partially osmoremediable. 

Additionally, the phosphorylation of MpkA was not further induced in presence of CFW in 

the repressed rom2tetOn mutant. Among the CWI sensors, MidA but not Wsc1 or Wsc3 

showed a very similar sensitivity to CR, CFW and heat. In agreement with the role of MidA 

as a stress sensor for these agents, the CFW-induced MpkA phosphorylation was reduced in a 

mutant lacking midA activity (Dichtl et al., 2012). Remarkably, the rom2tetOn mutant did not 

show any altered sensitivity to farnesol which is in agreement with the previous data on CWI 

sensor mutants in A. fumigatus. In contrast, the Δmkk2 and ΔmpkA mutants showed increased 

susceptibility to this agent, which has been shown to inhibit prenylation of proteins such as 

Rho GTPases and interferes with their function (Dichtl et al., 2010, Dichtl et al., 2012). In 

agreement with the previous results, it is evident that the CWI signaling inhibition by farnesol 

is strictly restricted to the Rho GTPases and downstream components, and therefore, does not 

alter the sensitivity of upstream CWI sensors and GEF. Taken together, these data suggest 

that the function of the three sensors and Rom2 is congruent with the model whereby Rom2 

acts as a downstream signaling molecule that relays and integrates the signals of these sensors 

(Figure 34).  
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Figure 34. Schematic presentation of CWI models in S. cerevisae and A. fumigatus. In 

response to stress, the cell surface sensors activate the Rho1-GTPase by stimulating 

nucleotide exchange via GEF. Hypothetical signal transduction and components are indicated 

by gray arrows and proteins. 

5.1.2. Growth inhibition of rom2tetOn on complete media.  

Remarkably, the rom2tetOn mutant failed to grow on complete medium such as yeast glucose, 

saboraud dextrose and potato dextrose under repressive conditions. However, the growth is 

restored when overexpressed with doxycycline. Further, addition of sorbitol partially rescued 

growth which possibly suggests that this growth defect is partly due to lack of CWI and 

hence, partially compensated by osmotic stabilization. Since yeast extract composition is not 

completely defined, the exact nature of this growth inhibition on complete media aroused 

further interest. Interestingly, supplementing the minimal media with rich nitrogen sources 

phenocopies the growth inhibition effect. Apparently, the presence of reduced nitrogen 

sources delays germination of the mutant, potentially suggesting that Rom2 activity is 

essential for utilizing reduced nitrogen sources. These peculiar phenotypes point towards the 

role of Rom2 in nutrient or nitrogen sensing, but its underlying mechanism or possible link 

with other nutrient-sensing pathways is not clear. Notably, in S. cerevisae, the ScTOR1/2 

(Target-of-Rapamycin) proteins, a pair of conserved Ser/Thr kinases are implicated in 

regulating cell cycle progression in response to nutrients (mainly nitrogen) in addition to actin 

     S. cerevisae  A. fumigatus 
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cytoskeleton regulation, a function unique to ScTOR2 which is mediated via the ScRom2 

GEF (Barbet et al., 1996; Schmidt et al., 1997). Although, the TOR proteins are widely 

conserved among fungal species (Crespo and Hall, 2002), the exact role of A. fumigatus TOR 

homologs is not yet characterized. Nevertheless, this speculative role of Rom2 in nutrients 

sensing and TOR signaling in A. fumigatus requires further investigation, which is beyond the 

scope of this study. 

5.1.3. Increased basal MpkA phosphorylation of the repressed rom2tetOn mutant. 

Importantly, the dual phosphorylation and activation of the MAPK ScMpkA in S. cerevisae is 

suggestive of an active CWI signaling. ScMpk1 is activated by phosphorylation of 

neighboring threonyl and tyrosyl residues within its activation loop, analogous to 

Thr202/Tyr204 of mammalian p44/p42 MAP kinase (Erk) which can be detected by 

commercially available antibodies against phospho-p42/p44. Activation of ScMpkA is 

induced by agents causing cell wall stress such as Calcofluor white, Congo red and other lytic 

enzymes. Alternatively, mutants with impaired cell wall are also known to result in ScMpkA 

activation (Martin et al., 2000; Levin, 2005). Therefore, activation of ScMpkA indicates 

impaired cell wall integrity irrespective of the nature of cell wall stress, which also holds true 

for other fungi. 

The rom2tetOn mutant cultured under repressed growth conditions shows significantly 

enhanced basal MpkA phosphorylation as compared to wild type. This obviously suggests 

that the repressed rom2 conditional mutant has a weakened cell wall. However, this is indeed 

surprising, since Rom2 is an upstream activator of the CWI cascade. Therefore, one would 

expect reduced MpkA phosphorylation and activation upon abolishing Rom2 activity. 

However, similar observations have been made previously with Rom2 homologues in S. 

cerevisae and N. crassa. The deletion of ScROM2 results in an increased basal 

phosphorylation of ScMpk1 (Lorberg et al., 2001). Likewise, a heterokaryon deletion of 

Ncrgf-1 (encoding N. crassa Rom2 homologue) also results in increased basal 

phosphorylation of the MpkA homologue NcMak1 (Richthammer et al., 2012). One possible 

explanation to this can be that there exist alternative lateral signaling influxes similar to S. 

cerevisae which potentially activate CWI MAPK module either through ScMkk1/2 or 

ScMpk1 directly. Interestingly, as previously reported by Harrison and colleagues, a notable 

increase in the activation of ScMpk1 was observed upon heat shock in strains lacking 

ScPKC1 (harboring a constitutively active ScBCK1-20 allele) and ScBCK1 (harboring a 
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constitutively active ScMKK1
DD

 allele) (Harrison et al., 2004). This may well explain the 

significant activation of AfMpkA in the absence of rom2 function which results in cell lysis 

and generates chronic cell wall stress, possibly triggering such a lateral cross-talk event rather 

than acting in a linear, hypothetical manner via Rom2-Rho1-MAPK. 

5.1.4. Rom2 specifically interacts with Rho1 GTPase. 

Among the six Rho GTPases in Aspergillus, only Rho1, Rho2 and Rho4 homologues are 

relevant for maintaining cell wall integrity (Kwon et al., 2011; Dichtl et al., 2012). In A. 

fumigatus, while deletion of rho2 and rho4 did not result in significant growth defects other 

than slightly reduced radial growth and sporulation, deletion of rho1 was lethal and 

conditional downregulation of rho1 resulted in cell lysis and cytoplasmic leakage (Dichtl et 

al., 2012). Interestingly, Afrom2 is also essential for A. fumigatus and repression of rom2 also 

results in dramatic growth defects such as absence of sporulation and radial growth on 

minimal media (AMM) and cell lysis on complete media. Secondly, in this study we have 

shown that Rom2-GFP localizes preferentially to hyphal tips. A similar localization pattern 

has been previously observed for GFP-Rho1 and GFP-Rho3 in A. fumigatus (Dichtl et al., 

2012). However, the pull down assay result demonstrates that Rho1 and not Rho3 is co-

immunoprecipitated with Rom2, thereby proving specific interaction module between Rom2 

and Rho1 in A. fumigatus. This is in good agreement with the findings from N. crassa 

whereby, the GEF NcRgf1 specifically promotes nucleotide exchange in vitro on the ScRho1 

homologue NcRho1 and not any other Rho GTPases (Richthammer et al., 2012). These 

results together suggest specificity of ScRom1/Rom2 homologues for the cognate Rho 

GTPase is well conserved from yeasts to filamentous fungi. 

Interestingly, the localization pattern of GFP-tagged Rom2 to newly formed septa is similar to 

GFP-Rho4 (Dichtl et al., 2012). These findings suggest possible interaction of these proteins 

which could either point towards the involvement of Rom2 in septum formation or an 

additional role for Rho4 in regulating CWI. However, Rho4 is specifically involved in septum 

formation in Aspergillus and a ∆rho4 mutant lacks septa (Si et al., 2010; Kwon et al., 2011; 

Dichtl et al., 2012). In contrast, the rom2tetOn mutant under repressive conditions shows 

several septa. Furthermore, it has been previously reported that in A. nidulans, AnBud3 acts a 

GEF for AnRho4 to regulate septum formation (Si et al., 2010). Likewise, in N. crassa GEFs 

NcBud3 and NcRgf3 have been identified as two non-redundant GEFs of NcRho4 (Justa-

Schuch et al., 2010). Therefore, it is more likely that the GEF activity on AfRho4 in A. 
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fumigatus may also be regulated by the orthologues of Bud3 (AFUA_5G11890) or Rgf3 

(AFUA_5G07430). Additionally, the role of Rho4 in mediating CWI is rather speculative, 

since the MpkA phosphorylation induced by Calcofluor white is not reduced in the ∆rho4 

mutant, even though the mutant is shown to be increasingly susceptible to the agent (Dichtl et 

al., 2012). Although the localization of AfRom2 to septa is puzzling, it possibly reflects a 

potential role for Rho1 in contractile actomyosin ring (CAR) assembly during septum 

formation or cytokinesis. The CAR is an actin band that acts as a landmark for deposition of 

septal wall material and the CAR assembly therefore, precedes the process of septation (Si et 

al., 2010; Harris 2001). Increasing evidences reveal that the CAR assembly requires a 

network of protein kinases that constitute the septum initiation network (SIN) and other 

regulatory proteins such as septins and formins (Harris 2001). This reportedly requires Rho1 

activation and recruitment to the sites of newly forming septa, a process mediated via its GEF, 

as evident in S. cerevisae and S. pombe (Perez and Rincón, 2010; Yoshida et al., 2009; Mutoh 

et al., 2005). Without the recruitment of Rho1 GEF to the division site, the Rho1 GTPase is 

never activated and concentrated at the division site (Yoshida et al., 2009; García et al., 

2006). Interestingly, the role of Rho1 in CAR assembly is further supported by its interaction 

with the actin regulator or formin, Bni1 in both S. cerevisae and N. crassa (Kohno et al., 

1996; Richthammer et al., 2012). Based on the above observations and localization pattern of 

Rom2-GFP, it appears that AfRom2 is involved in Rho1 recruitment during CAR assembly. 

However, the presence of septa in the repressed rom2tetOn strain may contradict the GEF-

dependent process. Surprisingly, a ∆Scmyo1 mutant strain in S. cerevisae lacking the myosin 

heavy chain and a functional contractile ring is still able to complete cytokinesis and septum 

formation via GEF-independent localized cell wall chitin synthesis (Bi et al., 1998). In 

contrast, a strain lacking ScCHS3 (mostly responsible for salvage septum synthesis) and 

ScMYO1, but not ScCHS2 and ScMYO1, has severe growth defects suggesting secondary 

septum formation compensates cytokinesis in absence of CAR assembly (Schmidt et al., 

2002). 

5.1.5. Autoinhibitory effect of DEP domain of Rom2 in A. fumigatus 

Comparison of AfRom2 to its homologues in yeasts and another filamentous fungus N. crassa 

revealed a conserved domain structure of the GEFs. They possess a catalytic DH domain 

flanked by an N-terminal DEP and a C-terminal CNH (Citron Homology) domain (Figure 

12). The CNH domain is a regulatory motif implicated in binding exclusively to the GTP-
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bound active forms of Rho and Rac GTPases (Madaule et al., 1995). The DEP domains, on 

the other hand, are mostly found in G-protein signaling proteins and regulate intramolecular 

interactions between proteins, as in case of G-protein-coupled receptor signalling in yeast 

(Ballon et al., 2006).  

Interestingly, the N-terminal DEP domain of NcRGF1 was shown to exert a self-inhibitory 

effect on its GEF activity in N. crassa. It was observed that in vitro the GEF domain of 

NcRGF1 can induce nucleotide exchange on NcRHO1 only if the N-terminal part harbouring 

the DEP domain was not included in the construct. According to the proposed model (Figure 

35), the N-terminal region of NcRGF1 interacts with the NcWsc1 sensor under cell wall stress 

conditions. This, in turn, relieves the auto-inhibitory effect of the DEP domain on the GEF 

domain possibly via conformational change and allows activation of NcRHO1 via the GEF 

domain (Richthammer et al., 2012). Similarly, in this study, it is demonstrated that in contrast 

to the overexpression of full-length AfRom2, the overexpression of a truncated Rom2 

construct lacking the N-terminus region including the DEP domain, induces a strikingly 

stronger growth phenotype. Additionally, the overexpression of the truncated AfRom2, but 

not the full-length GEF results in significant hyphal growth inhibition that mimics the 

constitutive activation of AfRho1. Taken together, these findings suggest that the auto-

inhibitory model of the DEP domain also applies to A. fumigatus. 
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Figure 35. Model illustrating the self-inhibitory effect of DEP domain on GEF activity. 

The DEP domain of Rho1 GEF inhibits GEF activity possibly through intra-molecular 

interaction and prevents nucleotide exchange on Rho1 GTPase. However, in presence of cell 

wall stress, the N-terminal part of the GEF interacts with the sensor and this relieves the 

autoinhibiton on GEF domain, thereby, activating Rho1 and CWI pathway (adapted from 

Richthammer et al., 2012).       

5.2. Characterizing the echinocandin tolerance of A. fumigatus. 

Echinocandins are clinically significant antifungals and constitute a part of the current 

treatment module for invasive aspergillosis, besides azoles and polyenes. However, these 

drugs are generally fungistatic to A. fumigatus in contrast to the other two classes of 

antifungals. Therefore, the β-1,3-glucan synthase subunit and echinocandin drug target, Fks1 

was characterized in greater detail in order to understand and redress the static effect of 

echinocandins against Aspergillus. Importantly, these drugs inhibit the enzyme β-1,3-glucan 

synthase, resulting in depletion of β-1,3-glucan which constitutes an important component of 

the fungal cell wall. This is clearly evident in S. cerevisae, whereby, the deletion of two fks 

homologues ScFKS1 and ScFKS2 is lethal. Similarly, the CaFKS1 in C. albicans is shown to 

be essential (Douglas et al., 1997; Mio et al., 1997). Therefore, to elucidate the significance of 

the only fks1 homologue for growth and antifungal resistance of A. fumigatus, a conditional 

fks1tetOn is employed.  

5.2.1. The β-1,3-glucan synthase is not essential in A. fumigatus. 

The echinocandin class of antifungals is known to be mostly fungistatic against Aspergillus.  

This limited activity of echinocandins can be explained by either of the two plausible 

arguments, the first being that β-1,3-glucan is not essential for A. fumigatus viability and the 

other may be due to incomplete inhibition of β-1,3-glucan synthesis. This point of conflict is 

well explained with the growth phenotype of a conditional fks1tetOn under repressive 

conditions. As expected, the growth of the fks1tetOn mutant in absence of doxycycline 

resembled that of A. fumigatus wild type treated with caspofungin, and was characterized by 

slow and stunted hyphal growth, frequent branching and cell lysis. Additionally, the co-

immunostaining of wild type and conditional fks1 mutant cultured under repressive growth 

conditions with the β-1,3-glucan-specific mAb, 2G8 revealed a differential staining pattern. 

While the wild type hypha showed an even distribution of β-1,3-glucan on the cell surface, 



                                                                                                                                     Discussion 

    

81 
 

the conditional fks1 mutant remained unstained, suggesting the lack of cell wall β-1,3-glucan 

in the mutant. Further, the growth of the fks1 mutant is not inhibited even at higher 

concentrations of echinocandin caspofungin as shown with the E-tests. These results confirm 

that the mutant lacked any residual β-1,3-glucan synthase activity and the viability of the 

mutant is not driven by basal fks1 expression. In agreement, the generation of a viable fks1 

deletion mutant further justifies that the limited efficacy of echinocandins against A. 

fumigatus is not based on incomplete inhibiton of β-1,3-glucan synthesis, but instead reveals 

that β-1,3-glucan synthase is not essential, which is in contrast to previous report (Firon et al., 

2002).        

 5.2.2. Implication of echinocandin treatment on Platelia-galactomannan index. 

The β-1,3-glucan also acts as a scaffold matrix for other cell wall components such as 

galactomannan which remain covalently linked to the glucans (Fontaine et al., 2000). 

Galactomannan is a distinct polysaccharide component of the Aspergillus cell wall and its 

quantification serves as a surrogate marker for evaluating fungal burden (Musher et al., 2004). 

The detection of serum galactomannan with the PlateliaAspergillus EIA, the galactomannan 

index (GMI) has been adopted as a criterion in the diagnosis of IA and also considered 

significant for monitoring the response to treatment (De Pauw et al., 2008; Marr 2008). 

Decreasing levels of galactomannan have been observed in infection models as well as in 

patients successfully treated with amphotericin B or azoles (Maertens et al., 2001; Olson et 

al., 2010; Jeans et al., 2012).  In contrast, a paradoxical increase in the serum galactomannan 

index was observed in a patient undergoing caspofungin monotherapy (Klont et al., 2006).  In 

agreement, caspofungin treatment in animal models of invasive aspergillosis also revealed 

higher galactomannan indices as compared to untreated controls despite a significant 

reduction in fungal burden (Scotter et al., 2005; Calvo et al., 2011).  

Immunostaining of the fks1tetOn mutant hypha cultured under repressive conditions with the 

galactomannan-specific mAb also revealed a diffused staining pattern in contrast to wild type 

hypha which showed a distinct cell surface distribution of galactomannan. This also suggests 

that galactomannan integration into the cell wall is decreased when β-1,3-glucan synthesis is 

compromised. Interestingly, in contrast to less cell wall galactomannan, higher galactomannan 

index was observed in cell culture supernatants of the mutant. These results altogether suggest 

that in absence of β-1,3-glucan, galactomannan is no longer covalently bound in the cell wall 

and consequently released into circulation, resulting in increased galactomannan index. The 
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findings of the present study, jointly in agreement with the results proposed by Klont et al., 

conclude that echinocandin treatment indeed results in increased circulating galactomannan 

levels. These observations also point towards the necessary optimization of galactomannan-

based Aspergillus antigen tests for evaluating the progress of echinocandin therapy. 

5.2.3. Mechanisms promoting echinocandin tolerance in A. fumigatus.         

The results of this work demonstrate that A. fumigatus is viable even when lacking cell wall 

β-1,3-glucan. These results also reflect potential mechanisms driving the viability of the 

fungus when fks1 expression is downregulated. This is indeed of fundamental interest, since 

compromising such mechanisms will alleviate echinocandin tolerance of the pathogen and 

significantly enhance the efficacy of echinocandins. First, the fks1tetOn mutant cultured under 

repressive growth conditions shows a significantly increased chitin content, suggesting a 

compensatory role for cell wall chitin. This is further supported by the increased susceptibility 

of the mutant to the chitin-binding agent Calcofluor white. These results are in good 

agreement with previously reported increase in expression of chitin synthase genes induced 

by high concentrations of caspofungin (Fortwendel et al., 2010). On the other hand, the 

increased resistance of the fks1tetOn mutant to Congo red (CR), which has a similar mode of 

action as Calcofluor white (CFW) may argue against the compensatory chitin increase. A 

possible explanation to the differential phenotypes with CFW and CR may be rendered due to 

the different structures of these compounds, as well as their reportedly differential affinity for 

β-1,3-glucan (Hill et al., 2006). The CR is known for its strong affinity for β-1,3-glucan as the 

dye forms a complex with glucan chains, which is also evident in S. cerevisae (Wood, 1980; 

Kopecká and Gabriel, 1992). In such a situation, the fks1tetOn mutant with reduced β-1,3-

glucan exhibits increased resistance to CR, which further confirms its glucan-binding affinity. 

Second, echinocandin treatment results in frequent lysis at hyphal tips leading to cytoplasmic 

leakage. The ability of the fungus to survive such physical damage is facilitated by 

compartmentalisation of hyphae by septa that serve as a blockade to restrict cytoplasmic loss 

and damage to a few hyphal compartments. In Aspergillus, such efficient barrier function is 

exclusively mediated by the septa and septal plugs (Woronin bodies) that significantly 

contribute to echinocandin tolerance. It is shown that the respective mutants are further 

impaired in growth on additional loss of β-1,3-glucan, suggesting that septal sealing partially 

compensates loss of β-1,3-glucan. Congruently, inhibition of septum formation by 

hydroxyurea and diepoxyoctane strikingly enhances the fungicidal potency of caspofungin. 
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However, these compounds are toxic and therefore not suitable for clinical applications. Since 

the process of septum formation and the septum itself is lacking in mammalian host and 

unique to the fungus, the development of specific septum formation inhibitors could be a 

promising strategy for improving efficacy of current echinocandin therapy. 

 

5.3. Future perspectives 

 

 Invasive aspergillosis is a lethal infection manifested with discernible mortality. Despite 

drastic improvements in diagnosis and drug formulations, the mortality rate remains high, 

thereby, compelling the need for novel and effective antifungals (Lin et al., 2001). In such a 

scenario, the fungistatic effect of echinocandins appears to be a major concern for treating 

invasive aspergillosis. Although the present study brings into light several relevant findings 

that explain the nature of echinocandin tolerance in Aspergillus, several aspects deserve 

further intensive research for the purpose of new antifungal drug screening. For instance, the 

increased echinocandin sensitivity of the GEF Rom2 and the CWI sensor Wsc1 emphasizes 

the substantial role of CWI pathway for echinocandin tolerance in the pathogen. A 

comprehensive approach of genome-wide expression profiling of the fungus challenged with 

echinoandin would provide a unique opportunity to unravel the repertoire of effector genes 

and other antifungal resistance pathways. Next, the phenomenon of reduced susceptibility of 

the fungal cell with elevated chitin upon exposure to sub-MIC echinocandin doses, observed 

in vitro, requires further investigation to validate it clinically in infected patients treated with 

similar doses of echinocandin. Finally, it appears that functional septa largely attribute to the 

static effect of echinocandins on A. fumigatus. Although CAR is a key constituent of the 

cytokinetic machinery in fungi, the precise mechanism of CAR formation in filamentous 

fungi and role of regulatory proteins remain to be characterized (Berepiki et al., 2011). In N. 

crassa and A. nidulans, the Rho4-Bud3 module is highly implicated in regulating CAR 

assembly (Justa-Schuch et al., 2010; Si et al., 2010). Similarly, the formin genes, sepA and 

bni-1 are essential for viability of A. nidulans and N. crassa respectively (Sharpless et al., 

2002; Justa-Schuch et al., 2010). In C. albicans, a ΔCabni1 mutant shows morphological 

defects and attenuated virulence in a murine systemic candidiasis infection model (Li et al., 

2005). A more complete understanding of the CAR dynamics in filamentous fungi and the 

elucidation of regulatory proteins will be crucial to bridge the connecting links between 

antifungal tolerance and cytokinetic dynamics. Research advances in these areas could 
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potentially strengthen the effectiveness of clinically relevant drugs and help optimize the 

future antifungal design.          
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7. Abbreviations 

 

α                       Anti 

Ab                    Antibody  

AIDS                Acquired immunodeficiency syndrome 

AMM               Aspergillus minimal medium 

Amp                 Ampicillin 

AP                    Alkaline phosphatise 

APS                  Ammonium persulphate 

ATP                  Adenosine triphosphate  

BCIP                5-bromo-4-chloro-3-indolyl-phosphate 

BLAST-P         Basic Local Alignment Search Tool for protein sequences 

β-ME                Beta Mercaptoethanol  

BSA                  Bovine serum albumin 

C-terminus        Carboxy terminus  

CFW                 Calcofluor white 

CNH                 Citron Homology 

CR                    Congo Red 

CS                     Caspofungin 

ddH2O               Double-distilled water 

DEO                  1,2:7,8-Diepoxyoctane 

DEP                  Dishevelled, Egl-10 and Pleckstrin  

DH                    Dbl Homology 

DMSO              Dimethyl Sulfoxide 

DNA                 Deoxyribonucleic acid  

dNTP                Deoxynucleotide triphosphate 

EDTA               Ethylene diamine tetra-acetate  

EtOH                 Ethanol 

et al.                  el alteri 

g                        Gravitational force 

GEF                  Guanine-nucleotide exchange factor 

GDP                  Guanosine diphosphate 

GTP                  Guanosine triphosphate 

GFP                  Green fluorescence protein 

GPI                   Glycophophatidyl inositol 

h                        Hour 

HIV                   Human immuno-deficiency virus  

HU                    Hydroxyurea 

Hyg                   Hygromycin 

kb                      Kilobase 

kDa                   Kilodalton 

LB                     Lysogeny Broth 

mAb                  Monoclonal antibody 



                                                                                                                                Abbreviations 

    

101 
 

MIC                   Minimal inhibitory concentration 

Mb                     Megabase 

MEC                  Minimum effective concentration 

PAGE                Polyacrylamide gel electrophoresis    

PCR                   Polymerase chain reaction 

pH                      potential Hygrogenii              

PI                       Protease inhibitor  

PMSF                Phenyl methyl sulfonyl fluoride  

PBS/T                Phosphate buffer saline/Tween 

ptrA                    Pyrithiamine 

rpm                     revolutions per minute 

RT                      Room temperature 

s                         Second 

SDS                    Sodium dodecyl sulphate   

SOD                   Superoxide dismutase 

TBS                    Tris-buffered saline 

TEMED             N,N,N',N' tetramethyl-ethylenediamine  

Tris                    Tris (hydroxymethyl) amino methane  

w/v                     weight per volume  

U                        units  

VO                     Voriconazole 

v/v                      volume per volume 

 

Units: 

µg                       microgram  

mg                      milligram 

µl                        microliter 

ml                       milliliter   

µM                     micromolar  

mM                    millimolar 

m/s                     meter per second 

ng                       nanogram 
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8. Appendix                        

8.1.  PCR verification of additional mutants 

Verification of HA-rom2(733-1199)tetOn :

 

 

Verification of rho1
G14V

tetOn: 
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Verification of rom2-HistetOn: 

 

Verification of rom2-GFPtetOn and rom2-GFP: 
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8.2. Composition of buffers used: 

20X Salt Mix: 

For 1000 ml, 

NaNO3             120 g 

KCl                  10.4 g 

KH2PO4          16.3 g 

K2HPO4           20.9 g 

 

Dissolve in 800 ml ddH2O and make up volume to 1000 ml. 

200X MgSO4.7H2O:               

0.4 M MgSO4.7H2O    52 g                   

Dissolve in 500 ml ddH2O and autoclave. 

1000X Trace elements:   

ZnSO47H2O (Zinc sulphate)                                         2.2 g 

H3BO3 (Boric acid)                                                       1.1 g 

MnCl2 · 4H2O (Manganous chloride)                           0.5 g 

FeSO4 · 7H2O (Ferrous sulphate)                                  0.5g 

CoCl2 · 6H2O (Cobaltous chloride)                            0.16 g 

CuSO4 · 5H2O (Cupric sulphate)                                0.16 g 

(NH4)6Mo7O24 · 4H2O (Ammonium molybdate)        0.11g 

Na4EDTA · 4H2O (EDTA, tetrasodium salt)                 6.0g 

Dissolve these salts in 80 ml ddH20 and make up final volume to 100 ml. The unadjusted pH 

will be about 6.5. 
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Citrate Buffer: 

For 2000 ml, 

KCl                                      22.36 g 

NaCl                                    67.78 g 

Sodium citrate dihydrate    29.4   g 
 
Adjust pH to 5.5 with HCl. 

STC 1700: 

1.2 M Sorbitol 

10mM Tris pH 5.5          

50mM CaCl2 

35mM NaCl 
 

PEG 4000 Mix: 

10mM Tris pH 7.5 

50Mm CaCl2 

60 % (w/v) PEG 4000 

 

Top agar: 

 

1% D- Glucose             

0.7% Agar                  

1.2M Sorbitol 

Dissolve in half volume ddH2O and autoclave. Then add 1X Salt mix, MgSO4.7H2O and trace 

elements and mix well before use. 

25X TBS: 

For 2000 ml, 

Tris           121 g 

NaCl     399.5 g 

 

Adjust pH to 7.6.  

 

1X TBS-T: 

 

For 1000 ml,  

 

TBS (1X)      1000 ml 

Tween-20      1 ml 

 

50X TAE:                                                                     

 

For 1000 ml,                                                                 
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Tris                       242 g                                               

Acetic acid           57.1 g                                               

EDTA                  18.6 g                                                          

                                                                                      

10X PBS: 

                                                                                      

NaCl               80 g 

KCl                   2 g                                                       

Na2HPO4   14.4 g                                                        

  

Adjust pH to 7.4. and make up volume to 1000 ml. 

 

2X Lämmli buffer: 

 

4 % SDS                             

10% (w/v) β- Mercaptoethanol    

0.125 M Tris-HCl (pH 6.8) 

20% (v/v) Glycerol 

0.004% (w/v) Bromophenolblue 

 

10X SDS Electrophoresis buffer: 

 

1% SDS            

0.025 M Tris 

0.192 M Glycine     
 

Coomassie staining solution: 

 

Methanol                     500ml  

Acetic acid                  100ml  

Water                          400ml  

0.25%Coomasie Brilliant blue R   

 

Destaining solution:    

 

For 500 ml, 

 

Acetic acid                  50 ml 

Methanol                   200 ml 

Water                         250 ml 

 

1X Blotting buffer: 

 

For 2000 ml, 

 

Tris                 11.6 g     

Glycine            5.8 g 

SDS                 0.37 % 

Methanol        600 ml 

1X Tank blot buffer: 
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25mM   Tris 

192mM Glycine 

KH2PO4        2.4 g              

20% Methanol 

                                          

Ponceau-S solution: 

 

0.25 % Ponceau-S        

40 % Methanol        

15% Acetic acid     
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 Application of tet-On (doxycycline regulated) conditional promoter system 

 Site-directed mutagenesis & Epitope tagging 

 

Biochemistry: 

 Electrophoresis   

 Western blot (Semi-dry, Tank blot), Protein purification (column chromatography), 
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