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QOutline of this thesis

Abbreviations and initial summary which describes the total picture of my PhD
study are provided in the beginning.

The section aim of this thesis briefly shows my objectives.

The introduction addresses the general and methodological background of brain
connectome, the neurobiology and imaging-based evidence of major depression and
preterm birth, my research questions and hypothesizes.

In the main section, in order to uncover brain connectome in major depression and
preterm born individuals at risk for depression for both its topological organization and
underlying white matter connectivity, I have carried out separate rs-fMRI and DTI
studies, which are depicted in separate publications and unpublished manuscripts.

Next, a short summary and further discussion is addressed.

In the end, acknowledgements, affidavit, CV, list of publications, and declaration

of contribution are provided.
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Abbreviations

MRI - Magnetic Resonance Imaging
Tl - T1-weighted MRI

fMRI - Functional MRI

rs-fMRI - resting-state fMRI

DTI - Diffusion Tensor Imaging
BOLD - Blood Oxygen Level Dependent
FC - Functional Connectivity

SC - Structural Connectivity

iFC - intrinsic FC

DMN - Default Mode Network

FA - Fractional Anisotropy

MD - Mean Diffusivity

AD - Axial Diffusivity

RD - Radial Diffusivity

TBSS - Tract-based spatial statistics
AAL - Automated Anatomical Labeling
HOA - Harvard-Oxford cortical and subcortical structural Atlases
MDD - Major Depressive Disorder
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Initial summary

Our brain is a network in which external and internal information is intensively and
continuously processed and transported among structurally and functionally connected
regions. The brain network is complex concerning the brain’s tremendous and subtle
structures and functions. An emerging and promising approach for exploring the brain’s
structural and functional organization is to study the brain’s connectome, which
conceptualizes the brain network comprising the whole set of brain regions and their
interconnections. Over the past decade, connectomics has become a revolution in basic
brain science and put new insight into system-level understanding of fundamental
organizational principles of the brain in health and disease. In the multidisciplinary
research of neuroscience and brain mapping, rapidly developing methods allow the in-
vivo mapping of whole brain connectivity based on anatomical white matter fibers or
neural dynamics in gray matter, fine-tuned constructions of large-scale structural and
functional brain networks, detailed assessments of connectivity profiles, and advanced
network analyses of various topological properties in brain connectome based on graph
theory. Furthermore, the brain connectome, seen as a potentially common intermediate
phenotype, has been contributing to the discovery science of the structural and
functional brain abnormalities associated with different neurological and psychiatric
disorders as well as various risk factors.

MDD is one of the most frequent mental disorders with the disorder course in more

than 50% of cases coupled with recurrent multiple depressive episodes. Preterm birth
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leads to higher neonatal risk and adverse outcomes, associated with persistent
neurodevelopmental deficits, long-term impaired cognition, and significantly increased
risk for mental disorders particularly depression in adulthood. In short, preterm birth is
a risk factor for depression.

The papers of this thesis cover resting-state fMRI and DTI studies of patients with
recurrent major depressive disorder, as well as preterm born adults at risk for depression.
We reported brain connectome methods to analyze functional organization featured by
resting-state functional connectivity and network topology, as well as underlying
structural basis featured by microstructural white matter tracts. Firstly, we investigated
aberrant network topology of global and local functional integration and segregation in
patients with major depressive disorder compared with healthy controls. We revealed
that striatal network topology is associated with the number of episodes independent of
symptom severity, which suggests the potential mechanistic link between brain
connectome and the course of recurrent episodes in major depression. Secondly, we
applied the same approach of functional connectome to preterm born adults who are at
risk for major depressive disorder. We showed that globally comparable but locally
reconfigured topological organizations in preterm born adults compared with term born
controls, which pointed to lesion-like and/or compensation-like associations with
effects of preterm birth and adulthood general cognitive functioning. To sum up, these
findings based on fMRI studies suggest shared and distinct patterns of aberrant
functional connectome in major depression and preterm born individuals at risk for

depression, which might constitute the potential link between at-risk, transient state and
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clinically diagnosis for major depression. Thirdly, in addition to gray matter’s role for
aberrant brain connectome, we investigate the microstructural features of white matter
subserving dysfunctional brain connectome in patients and at-risk individuals for
depression. We reported tract-based methods to assess the fractional anisotropy and
diffusivity of major white matter tracts over whole brain. We showed similar pattern of
widespread microstructural alterations, consistent patterns of reduced fractional
anisotropy and increased diffusivity in both patients with major depression and preterm
born adults at for depression. These findings based on DTI studies demonstrate the
underlying structural basis for disrupted functional organization in brain connectome,
which might contribute to neurobiological and mechanistic understanding of altered
brain connectome in patients with major depressive disorder and individuals at risk for
depression.

Taken together, current results point out the important role of brain connectome in
better understanding neural correlates of major depression and early life risk factor such
as preterm birth. Current work highlights that human brain embeds system-level
complex organization which is robustly detectable in resting-state fMRI and DTI data
via connectome analysis. Both major depression and risk factor of preterm birth can be
attributed to disrupted brain connectome regarding altered functional and structural
connectivity, suggesting a potentially common intermediate phenotype for brain

diseases.
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Aim of this thesis

Connetome analysis of resting-state fMRI data and DTI data using graph theory and
tract-based spatial statistics to investigate
Recurrent major depression and functional connectome as course predictor
Recurrent major depression and structural connectivity as course predictor
Preterm born adults and functional connectome
Preterm born adults and structural connectivity
Link between major depression and preterm birth via the discussion of

overlapping changes
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Introduction

The networked brain: human brain connectome

Connectome and connectomics

Human brain has the nature of a network. According to basic brain research, the human
brain is estimated to have approximately 89 billion neurons and 1000-10000 times as
many synapses at the micro scale (Herculano-Houzel, 2012). Extensive evidence from
cognitive neuroscience demonstrates that functionally specialized and anatomically
segregated areas and circuits are present in the human brain. Since brain connections
and integrative processes are of vital importance for coherent cognitive and behavioral
outcomes, brain function depends on not only specialized local information processing
but also efficient global integration of distributed processing units (Sporns et al., 2005).
Therefore, a simple but system-level conceptualization is that, human brain is a
network of both locally segregated and globally integrated processes. To profile the
characteristics of the networked brain, it is urged to comprehensively map the neural
connections of the entire brain, so-called connectome, which attempts to uncover the
full spectrum of brain connections and the systemic organizational principles of brain
structure and function (Sporns et al., 2005). The term connectome was initially invoked
to describe structural brain connectivity and has been adapted to refer to both structural
and functional interactions between brain regions (Biswal et al., 2010). Connectomics
is the study of connectivity in the brain, including the mapping of both structural and

functional connectome, ranging in the scale from the microscopic (neuronal-level, e.g.
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cytoarchitectonics, myeloarchitectonics, chemoarchitectonics) to the macroscopic
(millimeter, e.g. cerebral lobes, surface landmarks, white matter tracts) (Smith et al.,
2013).

Up to date, the human connectome, which conceptualizes the connection of the
entire human brain at different scales as a complex and dynamic system, has become a
revolution in the basic brain research (Sporns, 2013). Much research in the general
neuroscience field is stimulated to picture and investigate the connectome architecture
at different temporal (from millisecond on) and spatial resolutions (from molecular
level to the macro scale of millimeter), in order to reveal the neural correlates of brain
function as well as the brain-behavior relationship in the perspective of human
connectome. Huge data sets of human brain are currently collected (e.g. the milestone
human connectome project (Van Essen and Ugurbil, 2012). Novel and quantitative
analytical tools have been rapidly translated from multiple fields (such as statistics,
physics, informatics, and computer science) to studies of human connectome in
contemporary multidisciplinary neuroimaging research. As for clinical neuroscience,
neuroimaging and connectome research appear to offer a potentially valuable
perspective, enabling the use of structural and functional brain networks as biomarkers
of neuropsychiatric disorders, for diagnostic and prognostic purposes, and to provide
mechanistic insights on various characteristic factors and heterogeneous behavioral
phenotypes (e.g. heterogeneity in symptoms, disorder course, and early life contributors)

(Castellanos et al., 2013; Filippi et al., 2013; Sporns, 2014).

10
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Macroscopic brain connectome

Magnetic Resonance Imaging (MRI), as the cutting-edge neuroimaging technique,
provides the efficient, whole-brain, in-vivo, and non-invasive mapping for both
structure and function of human brains, with the best trade-off between spatial and
temporal resolutions (millimeters and seconds) at the current stage (Cole et al., 2010;
Kelly et al., 2012; Craddock et al., 2013). Accordingly, MRI has been extensively used
in the general and clinical neuroscience, and also contributed a lot to studies of human
connectome so far. For example, functional MRI (fMRI) and Diffusion Tensor Imaging
(DTI) allow to assess both structural and functional connectivity of large-scale brain
networks, which open up the window to investigate in-vivo macroscopic connectome
of human brain’s structure and function.

The macroscopic brain connectome has played the most important role in
contemporary MRI-based human connectome research. On the one hand, at the macro
scale, which refers to the spatial resolution of millimeter, human brain comprises many
different regions (e.g. lobe, gyrus and sulcus, specific anatomical locations) with many
structural connectivity (e.g. white matter tracts) and coupled dynamic activities (e.g.
interacted neural information in the form of electrical and/or chemical signals). It is
worth mentioning that, anatomically distinct brain regions and inter-regional

connections represents at the macro scale represent currently most feasible

organizational level for exploring human connectome (Sporns et al., 2005), considering:

(i) Neuronal level connections are much more subject to rapid plastic changes such as

synaptic rewiring and dendritic remodeling (Engert and Bonhoeffer, 1999). The

11
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microscopic connectome is supra complex given the huge amount of nodes. In the
contrary, individual brain regions maintain relatively stable connection profiles together
with relatively finite number of nodes (usually 50 - 1000), resulting in contemporarily
computable complexity. (ii) The higher-order representations that directly relate to
regulatory, cognitive and affective functions can be captured at the macro scale
according to numerous task-related and lesion-related studies. Meanwhile, the
interpretation of macroscopic connectome findings can be easily compared with those
from a broad range of other experimental approaches existing at the macro scale such
as dissection, histological staining, axonal tracing (Kobbert et al., 2000). (iii) Currently
in-vivo whole brain imaging is mostly limited to the macro scale resolution. On the
other hand, large data sets on a wide range of complex systems (e.g internet, airline-net,
power grid, social network, neural network) have led to a fundamental consensus that
substantively different complex systems — from societies to brains — often share certain
key organizational principles that display remarkably similar macroscopic behavior
despite profound differences in the microscopic details of the elements of each system
or their mechanisms of interaction (Bullmore and Sporns, 2009). Taken together, it is
substantially important to investigate the macroscopic brain connectome, which can be
quantitatively characterized by MRI and network analysis.

Simple features of macroscopic brain connetome can be assessed by uni- and
bivariate analysis of the brain region and connectivity (see details in next subsections).
More complex features of macroscopic brain connetome, about system-level brain

organization, can be assessed by multivariate analysis, namely network analysis, which

12
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depends largely on graph theory (see details in next subsections). In brief, brain
connectome can be mathematically expressed as a graph with nodes (brain regions) and
edges (brain connections between regions). Topological organization - such as small-
world topology, highly-connected hubs, global integration and local clustering — can be
assessed in macroscopic brain connetome in both structural and functional domains,
which is owing to the complex network nature of brain connectome (Bullmore and
Sporns, 2009).

In addition to the fundamental frameworks of brain connectome, it is crucial to
explore distinct modifications of the macroscopic brain connetome in healthy people
associated with the individual variability, for example, cognitive functioning (Li et al.,
2009; van den Heuvel et al., 2009), emotional and attentional task performance
(Kinnison et al., 2012; Giessing et al., 2013), gender (Gong et al., 2009; Ingalhalikar et
al., 2014), genetic factors (Glahn et al., 2013; Jahanshad et al., 2013), development
(Supekar et al., 2009; Power et al., 2010; Khundrakpam et al., 2013; Cao et al., 2014),
aging (Wen et al., 2011; Zhou et al., 2012), and so on. On the other hand, a rapidly
growing body of studies of the macroscopic brain connetome in neuropsychiatric
patients emerges in the recent decade, highlighting another crucially important
multidisciplinary field that combines brain imaging, clinical neuroscience, and
neuroinformatics for better understanding brain health and diseases (see details in next
subsections).

To sum up, human brain is a complex network. Numerous information is

continuously processed and communicated between structurally and functionally

13
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connected regions based on efficient brain organization. The MRI-based macroscopic
brain connectome provides one of fundamentally important frameworks for
investigating brain organization in both structural and functional domains, and elicits
wide-scope interests with regard to but not limited to cognitive and clinical

neuroscience.

Current arts to explore brain connectome based on MRI

With the help of modern neuroimaging techniques, like electroencephalography (EEG),
magnetoencephalography (MEG), positron emission tomography (PET), and magnetic
resonance imaging (MRI), neuroscientists are able to examine human brain much more
than before. Particularly MRI provides an in vivo, noninvasive, and convenient way to
map the macroscopic whole brain with the best trade-off between spatial and temporal
resolutions at the current stage (i.e. a voxel of millimeters in a time-window of seconds).
Different MRI protocols enable to acquire specific aspect of brain information. For
example, T1-weighted MRI (T1) mainly delineates morphometric features of brain
structure, like tissue identification, regional gray matter’s intensity and volume (see
Figure 1); functional MRI (fMRI) can measure dynamic signals related to neuronal
activity underlying brain function, mainly focusing on gray matter; inside, conventional
task-based fMRI mainly examines the specific functional activity during the
performance of a cognitive task or a designed experiment with specific stimulus, like
detecting which brain regions become active when the task is performed; newly

developed resting-state fMRI (rs-fMRI) focuses on the ongoing spontaneous activity

14
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when the brain is just at rest (see Figure 2), gradually becoming an impacting field of
brain research, like mapping intrinsic functional connectivity, large-scale functional
brain networks and fundamental brain organization; Diffusion-weighted MRI or
Diffusion Tensor Imaging (DTI) mainly measure microstructural features of white
matter pathways in the brain via properties of water diffusion, also playing an important
role in connectome research, like mapping white matter integrity and white matter fiber
connections. Moreover, for the same individual brain, post-analysis of MRI allows
information fusion across different modalities to obtain intact picture and
comprehensive understanding combining brain structure and function. For example,

both rs-fMRI and DTI can be used to infer brain connectivity.

Figure 1. T1-based segmented brain tissues (A — C) (data based on (Meng et al., 2014))

and FSL’s standard T1 template (Jenkinson et al., 2012)

15
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Figure 2. The resting-state fMRI image and preprocessed time series (data based on

(Meng et al., 2014))

After acquiring data of human brain based on MRI, various analytical pipelines can
be employed typically consisting of preprocessing, feature extraction and calculation,
and group-level statistical inference. Firstly, the data preprocessing aims to reduce
noises and artifacts such as induced by movement, and to normalize individual brains
into standardized space if multiple subjects need to be compared with each other or
analyzed all together. Secondly, for the feature in MRI-based data analysis, the measure
can be univariate like voxelwise gray matter volume from T1 (see Figure 1, gray matter
is colored by red), bivariate like Pearson’s correlation of time series from a pair of brain
regions (see Figure 2), multivariate like integrative skeleton-based white matter metrics
or graph-based network metrics (see following subsections). Thirdly, within- or
between-group comparisons are frequently utilized to identify group commonalities or
differences, for example, in discovery science of disease-related brain abnormalities,
cross-sectional design is usually employed for patient and healthy control groups.

Fourthly, obtained brain imaging measures is used to link with other data such as

16
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behavioral measures (e.g. cognitive performance) and clinical characteristics (e.g.
disease symptom) due to detailed research questions.

Specifically, the brain connectome can be constructed based on MRI data like rs-
fMRI and DTI by defining appropriate nodes (e.g brain regions) and links (e.g
functional or structural connectivity). To explore brain connectome, important features

refer to connectivity profile and network topology. This described next.

Measuring brain activity and gray matter s functional connectivity

Brain function depends on large-scale brain networks with respect to brain connectome
(Deco et al., 2011; Bullmore and Sporns, 2012). Functional connectivity (FC) is defined
as the synchronization of neurophysiological activities between spatially remote brain
areas (Friston et al., 1993). Different measures can be related to brain activity of the
physiological function such as blood-oxygen-level-dependent (BOLD), cerebral
blood flow, and glucose metabolism, of which BOLD is the predominantly used in
current fMRI. The brain activity consumes energy, which is provided by the transport
of glucose and hemoglobin-bound oxygen in the blood (Shulman et al., 2004). Because
hemoglobin is diamagnetic in its oxygenated state but paramagnetic in its deoxygenated
state (Pauling and Coryell, 1936), Ogawa et al. firstly demonstrated that by applying
distinct MRI sequences, the level of blood oxygenation could be depicted in image
contrasts (Ogawa et al., 1990) and most importantly it is related to neuronal activity
and change of functional brain states in vivo (Ogawa et al., 1992). Therefore it has been

proved that BOLD-based fMRI can infer the brain function since the returned signal is

17
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an indirect measure of brain activity. Until now BOLD has fascinated numerous studies
in basic and clinical neuroscience.

While conventional task-based fMRI mainly examines synchronous responses to
extrinsic stimulation or tasks in single brain regions, resting-state fMRI (rs-fMRI)
investigates the ongoing spontaneous activity, particularly between-region low-
frequency (0.01 — 0.1 Hz) synchronized activity that defines intrinsic functional
connectivity (iFC) (Biswal et al., 1995; Raichle et al., 2001; Fox et al., 2005). The iFC
represents continuous synchronization among different regions in the brain supporting
brain function as it has been well documented that the brain continuously maintains a

remarkably high level of intrinsic activity and the brain function is continuously active

during the resting state (Snyder and Raichle, 2012; Sadaghiani and Kleinschmidt, 2013).

The baseline metabolism of the human brain measured during resting state represents
about 20% of the total energy consumption of human body, which highlights the rich
and continuously present set of spontaneous, correlated activities in the resting brain
(Raichle, 2006; Smith et al., 2013). For example, the default mode network (DMN) of
the human brain represents a remarkable success of discovery science with functional
connectome (Buckner et al., 2008). This network originally referred to a set of brain
regions including the posterior cingulate, hippocampus, medial prefrontal and inferior
parietal cortex which are functionally connected (Greicius et al., 2003) and reliably
deactivated during most externally focused tasks (Shulman et al., 1997) but exhibits
elevated metabolism during internal cognitive processes (Raichle et al., 2001). The

function of the DMN has been related to self-processing (Qin and Northoff, 2011),

18
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autobiographical memories and introspective self-directed thinking (Catani et al., 2013),
mentalizing and social interaction (Schilbach et al., 2013; Li et al., 2014), mind
wandering (Mason et al., 2007) and various traits (Adelstein et al., 2011; Volkow et al.,
2011). On the other hand, DMN alterations have been widely found in neuropsychiatric
diseases like Major Depressive Disorder (MDD) (Greicius, 2008; Broyd et al., 2009;
Zhu et al., 2012). As for other resting-state networks (RSNs), task-based fMRI and
resting-state fMRI studies have converged on similar definitions of 8 — 10 spatially and
functionally distinct networks such as primary visual, auditory, motor, executive control,
attention, and default mode networks, which suggests that the full repertoire of
functional networks utilized by the brain in action is continuously and dynamically
active even at rest (Smith et al., 2012).

Given the biological and organizational significance of brain activity at rest, rs-
fMRI is emerging as a mainstream approach to construct MRI-based macroscopic brain
connectome for characterizing normal brain functions, behavior-brain associations, and
various mental disorders (Snyder and Raichle, 2012; Castellanos et al., 2013; Smith et
al., 2013). A typical resting-state fMRI dataset can be obtained in 5 — 15 minutes while
the participant is told to lie still in the MRI scanner, keep awake, and think of nothing
in particular. The brain connectome, conceptualized by graph of linked nodes, is
constructed based on rs-fMRI in the following steps. Firstly, the whole brain can be
divided into different brain regions (i.e. nodes, ~ 100 or even more) based on anatomical
landmarks and parcellation, such as Automated Anatomical Labeling (AAL) and

Harvard-Oxford cortical and subcortical structural atlases (HOA) (Stanley et al., 2013).
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There also exist other methods to define nodes based on meta-analysis of task-based
fMRI studies and data-driven approaches like hierarchical clustering, independent
component analysis. Secondly, the link for a pair of nodes can be defined by their
functional connectivity, which is commonly estimated from bivariate tests for statistical
dependency between dynamic activities observed in distributed brain regions (Friston
et al., 1993). The nodal activity is derived from regional mean time series. Some clean-
up approaches are necessary to carry out to remove confounding variation (e.g. time
series of white matter and cerebrospinal fluid, global signal across all gray matter, and
time series related to head motion) (Power et al., 2012). The meaningful low-frequency
time series can be extracted by temporal band-pass filtering or wavelet-based
decomposition (Cordes et al., 2001; Bullmore et al., 2004). Pearson’s correlation is
commonly employed to estimate linear dependence between pairs of time series and
primarily utilized for inferring functional connectivity while other methods are also

used in relevant fields (Zhou et al., 2009). In the end, the brain connectome is

represented by the generated FC matrix that can be visualized as a graph of linked nodes.

20
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Figure 3. The illustration of brain connectome’s construction and analysis. After
preprocessing rs-fMRI data, low-frequency intrinsic functional activity is extracted
(A). The whole brain can be subdivided into a number of regions, which are defined
as nodes (e.g. 112 nodes derived from FSL’s Harvard-Oxford cortical and subcortical
atlases (Jenkinson et al., 2012)) and then provide regional mean time series for each
node (B). The edges are defined by statistical dependence between nodal brain
activities (e.g. Pearson’s correlation coefficient), resulting in individual brain’s
connectivity matrix, which is brain connectome (C). The brain connectome can be
investigated by graph-based network analysis, resulting in quantitative metrics of
network topology, such as degree, hub, shortest path length, clustering coefficient and
so on, which demonstrate global and nodal functional integration and segregation to
evaluate the brain’s complex organization and disease-related changes. The

illustration was based on data of my PhD work.
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Measuring brain structure and white matter s connectivity

It is crucially important to understand the structural basis of brain function in the
context of brain connectome. Both T1 and DTI can measure brain structure,
respectively on gray matter and white matter. The macroscopic structural brain
connectome can be constructed based on the cross-subject gray matter’s covariance by
using T1, or the anatomical connectivity of myelinated nerve fibers corresponding to
white matter tracts by using DTI (Griffa et al., 2013). Up to date, DTI-based white
matter’s connectivity is the most popular approach to explore individual structural brain
connectome.

DTI is a MRI technique that provides a noninvasive, in vivo, and millimeter-
resolution mapping of white matter tracts. By using specified sequence to capture and
trace the diffusive motion of water molecules in the brain, DTI enables to reconstruct
white matter fiber pathways for characterizing microstructural properties, anatomical
connectivity, and brain connectome (Iturria-Medina et al., 2007). In principle, water
diffusion in white matter is restricted in myelinated fibers and occurs primarily along
the path of neuronal axons, while it occurs almost equally in all directions in gray matter
and cerebral spinal fluid. Therefore, such diffusion anisotropy can distinguish white
matter and delineate the tract-based pathways. A typical DTI dataset contains a set of
direction-related gradient images (from 15 to 32 or even more) together with non-
directional reference images (so called B0). Combining BO and gradient images, the
magnitudes of water diffusion in different directions can be estimated at each point of

the whole brain. Via diffusion tensor calculation, the orientations of white matter fibers
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passing through each voxel of white matter can be estimated, which can shape white
matter tracts across voxels. By propagating continuous three-dimensional trajectories
across neighboring voxels, fiber tractography enables to estimate the determinative or
probabilistic distribution of white matter fibers and point-to-point structural
connectivity over the whole brain.

After obtaining the tract-based information of white matter, the microstructural
integrity can be typically profiled by fractional anisotropy (FA) as well as mean, axial,
and radial diffusivity (MD, AD, and RD) of white matter, which is frequently used to
explore the structural basis underlying brain function and to associate with brain
diseases. Furthermore, brain connectome can be constructed using white matter’s

structural connectivity in the same way with gray matter’s functional connectivity.

i \/% (& - 4F +-(;, _.;’Ff (2 - 24F)
2 i+ £+ 2

MW = (A4 +A4 +2)/3

D =2

RD= (4 +2)/2

Figure 4. The illustration of DTI methods. The brain’s white matter tracts/pathways
(A), neuronal axon fiber and modelled diffusion tensor (B) are illustrated (The diagram

of the white matter tracts/pathways and the neuron was from the internet). Based on
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diffusion tensor model and definition formulas, FA, MD, AD and RD maps can be
computed (Basser and Pierpaoli, 1996) (C). To note, the V1 map shows the first
principle directions of diffusion tensors by color and directional lines (the left-right is
colored by red, up-down by blue, and posterior-anterior by green). By using the
tractography, white matter’s connectivity can be estimated for whole brain resulting in

various commissural, projection and association fibers (D).

Characterizing connectivity profiles

Macroscopic brain connectivity is defined by inter-regional correlated functional
activity and/or white matter tracts. Despite single connectivity strength, global
connectivity profiles reflect more integrative information about the brain connectome,
such as global strength, diversity, and integration. The global strength and diversity are
estimated as the mean and variance of connectivity matrix of brain connectome (Lynall
et al., 2010). The global integration is estimated by the ratio of the first eigenvalue to
the sum of all other eigenvalues from principal component analysis on connectivity
matrix (Tononi et al., 1994). Altered global functional connectivity has been identified
in schizophrenia (Lynall et al., 2010), depression (Bohr et al., 2012), and Alzheimer's
disease (Liu et al., 2014).

For DTI and white matter, an integrative approach, tract-based spatial statistics
(TBSS), has been developed to profile whole brain white matter tracts that is the

structural basis of brain connectome. Owing to multifold complexity of various
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direction-sensitive white matter tracts, it is compromised to align individual white
matter maps (e.g. FA) across subjects using any standard registration algorithm and do
subsequent voxelwise analysis. TBSS adopts the nonlinear registration for FA maps,
identifies common skeleton mask at the center of major white matter tracts, integrates
the individual microstructural measures surrounding the skeleton by projecting and
combining them onto the skeleton, and finally provides the alignment-invariant tract
representation, i.e. skeletonized FA, MD, AD, RD maps (Smith et al., 2006) (See Figure
5). After that, TBSS carries out voxelwise permutation-based statistical tests on the
generated skeleton across all subjects, providing estimated P value that is necessarily
corrected for multiple comparison by applying methods preferably like threshold-free
cluster enhancement (TFCE). TFCE uses cluster-based thresholding that is more
sensitive than voxel-wise thresholding, and minimizes the pitfall of arbitrary defining
the initial cluster-forming threshold (Smith and Nichols, 2009) (See Figure 5). To draw
the final result from TBSS analysis, for example, significant FA reductions can be

identified in patients compared with healthy controls (See Figure 5).
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Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
Smith et al. (2006) Neuroimage
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Figure 5. Flowchart of TBSS analysis of DTI data, according to (Smith et al., 2006;

Smith and Nichols, 2009)

Since TBSS analysis remarkably improves the sensitivity, objectivity and
interpretability of analysis of multi-subject DTI studies, it is widely used related to
plastic training (Sampaio-Baptista et al., 2013), development and aging (Ball et al.,
2013; Glahn et al., 2013), and brain diseases such as Major Depressive Disorder

(Korgaonkar et al., 2011) and Schizophrenia (Douaud et al., 2007).

Characterizing network topology

It is important to examine the brain connectome as a network due to its complex
organization including functional segregation and integration. Such brain organization
can be characterized by network topology and graph theory in a quantitative perspective

translated from evaluation of large complex social, physical, and biological systems
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(Bullmore and Sporns, 2009). Graph theory provides a rich repertoire of mathematical
tools and concepts that can be used to characterize diverse topological organization of
the brain connectome (Craddock et al., 2013; Fornito et al., 2013). Using graph theory,
the brain connectome can be mathematically depicted as a binary or weighted,
undirected or directed graph and subsequently assessed for various topological
properties about network topology (Rubinov and Sporns, 2010).

Binary undirected graph is the conventional simplest model, which consists of a
set of nodes (e.g. brain regions) connected by a lot of binary edges. Binary edges denote
the presence or absence of connections between brain regions by applying a weight
threshold on estimated structural or functional connectivity, for example, proportional
thresholding based on network cost (Rubinov and Sporns, 2010). The network cost is
defined by the number of present edges in the graph as a percentage of the maximum
number of possible edges in brain connectome, which reflects the topological wiring
cost of brain connectome related to the economy of the brain network organization
(Bullmore and Sporns, 2012). Additional thresholding can be used to guarantee that all
nodes in the graph are connected even at the lowest cost, for example, minimum
spanning tree algorithm (Alexander-Bloch et al., 2012). For resulting graphs,
topological measures, which is also called network metrics, can be calculated for each
node and whole graph with respect to nodal and global topological properties such as
clustering, shortest path length, centrality, modularity, small-world and rich-club
organization (Sporns, 2014).

The brain development and organization is characterized by an optimal balance
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between functional segregation and integration (Tononi et al., 1994; Fair et al., 2007).
On the one hand, functional integration of brain connectome is the ability of efficient
information processing and combining over distributed brain regions, which can be
assessed by nodal centrality metrics (e.g. nodal degree, betweenness, and efficiency)
and global metrics (e.g characteristic path length and network global efficiency of
whole network) (Rubinov and Sporns, 2010). On the other hand, functional segregation
of brain connectome is the ability of local specialized processing within densely
interconnected groups of brain regions, which can be assessed by nodal metric (e.g.
nodal local efficiency) and global metrics (e.g. clustering coefficient and network local
efficiency of whole network) (Rubinov and Sporns, 2010) (See Figure 6).

As for functional integration, degree is defined as the number of edges connected
with the given node. The path between a pair of nodes is the edges in the graph
connecting the two nodes. Shortest path length is defined by the smallest number of
edges that must be passed to connect a pair of nodes. Nodal shortest path length is the
mean length of all shortest paths connecting given node and other nodes. Betweenness
is defined as the fraction of all shortest paths (the smallest number of intermediate edges)
between all other nodes that pass through the given node in the network (Rubinov and
Sporns, 2010). Efficiency is a measure of the capacity for global parallel information
process and transfer, estimated by the inverse of harmonic mean of shortest path lengths
between the given node and all other nodes in the network (Latora and Marchiori, 2001).
So nodal efficiency is inversely related to the path length and a node featured by higher

efficiency will play a more central role in the integrated organization of the network.
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Therefore, degree, betweenness, and efficiency all quantify nodal centrality in a
network. The brain connectome includes a minority of highly connected hub nodes,
which are typically with high centrality, high cost, and high value for network topology
(Crossley et al., 2014).

As for functional segregation, nodal clustering coefficient is defined as the number
of existing connections among the node's neighbors divided by all their possible
connections while nodal local efficiency is a measure of the capacity for local
information exchange between the nearest neighbors of the given node, defined by
averaged efficiency of subgraph comprising neighboring nodes of the given node
(Rubinov and Sporns, 2010). It is worth mentioning, nodal local efficiency is highly
related to nodal clustering coefficient, which implies the extent of segregated
organization (Watts and Strogatz, 1998). So a node featured by higher local efficiency

will contribute more to the cliquish organization of the network (Giessing et al., 2013).
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Figure 6. Illustrations for small-world network and graph-based network metrics by
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examples (Watts and Strogatz, 1998; Rubinov and Sporns, 2010)

As for the global network topology, the characteristic path length of a network is
defined as the average shortest path length between all pairs of nodes in the network
(Watts and Strogatz, 1998). The clustering coefficient of a network is defined as mean
clustering coefficient across all nodes (Watts and Strogatz, 1998). Global efficiency and
local efficiency of a network is computed by averaging efficiency and local efficiency
of all nodes in the network, which is respectively related to characteristic path length
and clustering coefficient, and frequently evaluated for global network topology
(Rubinov and Sporns, 2010). As Watt et al. described the fundamental feature of small-
world organization (See Figure 6), it is also present in brain connection. The small-
worldness is defined as the ratio of clustering coefficient against characteristic path
length of a network compared with random networks with the same number of nodes,
edges and degree distribution, which can describe the small-world property of high
local specialization and high global integration in brain connectome (Watts and Strogatz,
1998). As recent studies revealed the of rich-club organization in brain connectome,
rich-club coefficient is computed as the ratio of connections present between hub nodes
against the maximum of their possible connections, which should be normalized by the
coefficient derived from randomized networks to obtain valid estimation (van den
Heuvel and Sporns, 2011). The brain’s rich-club organiztion demonstrates that high-
degree brain hubs are more densely connected among themselves than other non-hub

nodes, forming a rich club and playing an important role in global communication and
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backbone network of brain connectome.

For the application of network topology in disease-related brain connectome, so far
altered network topology and disrupted brain connectiome has been manifested in
major psychiatric disorders (Filippi et al., 2013; Crossley et al., 2014), such as
schizophrenia (Fornito et al., 2012), depression (Zhang et al., 2011), obsessive
compulsive disorder (Taylor, 2014), ADHD (Wang et al., 2009), autism (Di Martino et
al., 2013), mild cognitive impairment and Alzheimer's disease (Xie and He, 2011). The
emerging and accumulating evidence of brain-connectome-based delineation of
psychiatric disorders links abnormal brain connectome with intermediate phenotype of

psychiatric disorders (Bullmore and Sporns, 2009; Rubinov and Bullmore, 2013).

Mental disorder and risk factors affect brain connectome

Mental disorders are characterized by aberrant thinking, volition, feeling and actions
that reach such a severity that the patient’s social, occupational, and psychological
functioning is severely compromised, resulting in long-term influence on the patient’s
life and adverse burden on the society (American Psychiatric Association, 2000).
According to the World Health Organization (WHO)’s “global burden of disease study
20107, mental disorders are becoming more and more frequent in the modern times
with an increasing population prevalence, currently accounting for 22.7% of years lived
with diseases (YLD), regardless of age, gender, social status or geographical origin (Vos

et al., 2012). Therefore, it is an urgent and critical challenge to understand the neural

31



Brain Connectome in Major Depression and Preterm Born Individuals at Risk for Depression Chun Meng, 2014

underpins of mental disorders including onset, remitted and recurrent course, and risk
factors, in order to develop better intervention and treatment.

With the advance of modern neuroimaging, it has become possible to map the
patient’s brain in an in vivo non-invasive way. Over the past decades, researchers have
applied such as rs-fMRI and DTI to uncover neural correlates regarding the brain’s
structural and functional abnormalities in mental disorders, aiming to find valid
biomarkers for mental disorders such as schizophrenia and depression. The discovery
and validation of biomarkers is central to the development of MRI-based clinical
applications. The biomarker is defined as a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention according to the NIH’s definition
(Atkinson Jr. et al.,, 2001). Therefore imaging-based biomarker should help
determination of the presence or absence of a disease (i.e. diagnosis), staging of a
disease, determination of risk prognosis, or prediction and monitoring of clinical
response to an intervention, where brain connectome is postulated to offer a powerful
discovery framework (Castellanos et al., 2013; Filippi et al., 2013).

Since brain is a system with complex and subtle organization subserving various
functions, mental disorders are commonly attributed to disordered brain organization,
for example to deficits in access, engagement and disengagement of large-scale brain
networks (Menon, 2011). In principle, many disorders like Alzheimer’s disease and
schizophrenia can be described as disconnectivity syndromes, because their symptoms

and clinical manifestations can be related to disrupted integration of spatially
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distributed regions of the brain that are part of large-scale networks subserving specific
functions (Catani and ffytche, 2005). Recent evidence points out that in the context of
disease there exist strong links between disrupted brain network and clinical
consequences (Zhou and Seeley, 2014). For example, loss of small-world network
properties is identified in Alzheimer’s disease and schizophrenia (Lynall et al., 2010;
Liu et al., 2014). Therefore, brain connectome is becoming a common intermediate
phenotype for characterizing patient groups (Bullmore and Sporns, 2009).

On the other hand, though contemporary clinical diagnosis classify mental
disorders into distinct categories, they show clinical overlap (e.g. cognitive impairment,
emotional dysfuntion) and familial co-aggregation (e.g. share genetic risk factors).
According to an examination of genetic data from more than 60,000 people worldwide,
five major mental disorders — schizophrenia, bipolar disorder, major depressive disorder,
attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD) —
appear to share some common genetic risk factors (Smoller et al., 2013). Inside,
moderate but general genetic correlation has been identified in major depressive
disorder with others: between schizophrenia and major depressive disorder (0.43 = 0.06
s.e.), bipolar disorder and major depressive disorder (0.47 £ 0.06 s.e.), ADHD and
major depressive disorder (0.32 + 0.07 s.e.), ASD and major depressive disorder (non-
significant) (Lee et al., 2013). This empirical evidence of shared genetic etiology for
psychiatric disorders encourages the investigation of common pathophysiological
pathways from genotype to clinical phenotype and their interactions with

neurodevelopment, environmental influence, learning, adaptive behaviors, and so on,
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where brain connectome has emerged as the intermediate phenotype to combine with
other biological data in the context of mental disorders (Medland et al., 2014).

To sum up, MRI-based macroscopic brain connectome has opened up a new era in
studying large-scale brain networks and topological organization in healthy subjects,
patients with mental disorders as well as individuals at high psychiatric risk. Brain-
connectome-based methods are changing how researchers conceptualize and explore
brain diseases, with potentially important implications for understanding mental
disorders (Bullmore and Sporns, 2012; Castellanos et al., 2013; Fornito et al., 2013;
Griffa et al., 2013; Menon, 2013; Rubinov and Bullmore, 2013). Therefore, brain
connectome is becoming the intermediate phenotype for studying mental disorders

(Filippi et al., 2013).

Major depression and preterm birth affect brain connectome

Major depressive disorder (MDD) is a disabling mental disorder associated with an
intense negative interpretation of the environment, oneself and one’s own future (Beck,
1967). MDD is a common and globally distributed mental health problem with a
lifetime prevalence of about 16% (Kessler et al., 2003). For detailed symptoms, MDD
is characterized by persistent and pervasive depressed mood, loss of interest or pleasure,
feelings of sadness, guilt, and worthlessness, impaired cognition, vegetative symptoms,
and suicidal tendency, with one or multiple depressive episodes (American Psychiatric

Association, 2000). According to the Global Burden of Disease, Injuries, and Risk
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Factors Study 2010 (GBD 2010), mental disorders were one of the leading causes of
years lived with disability (YLDs) worldwide and MDD accounted for highest burden
in mental disorders, about 2.8 times as anxiety disorders in the second position
(Whiteford et al., 2013). Given both that MDD is becoming the most burdensome
disease in the world in the 21% century and that MDD is often unresponsive to
conventional pharmacologic intervention, it is urged to advance the brain research
underlying MDD of first-episode, recurrent-episode, drug-naive, treatment-resistant,
early-onset, and late life (Lorenzetti et al., 2009; Hasler and Northoff, 2011; Hamilton
etal., 2012).

However it remains yet unclear about the etiopathology of MDD. According to the
diathesis-stress-model of MDD (Monroe and Simons, 1991), it is assumed that distinct
internal and/or external stressors might trigger the onset of MDD against the
background of individual vulnerability, which results from various factors including
genetic factors (Kendler et al., 2006) and early life experiences (Willner et al., 2013).
Recent neuroepigenetics research has shown that genetic disposition, environmental
exposures, and dynamic interplay between genes and experience play important roles
in the development of depression and other mental disorders (Schwahn and Grabe, 2009;
Sweatt, 2013). For example, owing to Gene-by-Environment (GxE) interaction, the
serotonin transporter gene (also known as 5-HTT) stress-sensitivity model suggests that
the serotonin transporter links with polymorphic region (5-HTTLPR), stress sensitivity,
and depression in humans (Caspi et al., 2010). The neurodevelopmental hypothesis

postulates that apart from the influence of risk genes, psychosocial stress during the

35



Brain Connectome in Major Depression and Preterm Born Individuals at Risk for Depression Chun Meng, 2014

perinatal period and following development into adulthood is an important trigger for
MDD (Bale et al., 2010).

In humans, the last trimester of fetal development extending into the first postnatal
month is a critical period of rapid brain development. Gestational age is defined by the
gestational duration before the baby’s delivery. Term birth is associated with the
newborns of gestational age no less than 37 weeks. Preterm birth is defined by delivery
before 37 weeks of gestation are completed, characterized by lower gestational age
higher prematurity and associated risk. Preterm born infants ranging from very preterm
(< 32 complete gestation weeks) to early preterm (< 37 complete gestation weeks) is
susceptible for significant risk of growth failure, higher levels of morbidity and brain
injury (e.g. intraventricular or germinal matrix hemorrhage and periventricular
leukomalacia), impaired neurodevelopment (e.g. cognitive deficits), and psychiatric
diagnosis in adulthood (Milligan, 2010; D'Onofrio et al., 2013; Katz et al., 2013).
Recent historical population-based cohort study has reported that preterm birth is
significantly associated with increased risk of psychiatric hospitalization in young adult
life. Compared with term born adults (gestational age 37 — 41 weeks), preterm born
adults who were born between 32 and 36 weeks were 1.3 (95% CI, 1.1 — 1.7) times
more likely to have depressive disorder, and very preterm born adults (gestational age
<32 weeks) were 2.9 (95% CI, 1.8 —4.6) times more likely to have depressive disorder,
which might suggest a dose-like association between preterm birth and MDD (Nosarti
et al., 2012). Therefore, preterm born individual are at the risk for depression. Taking

into account that the global prevalence of preterm birth is more than 10% (i.e. about 15
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million preterm newborns per year) and the rate keeps increasing in almost all countries
(Blencowe et al., 2012), preterm birth is an inneglectable risk factor for depression.
Given the significant impact of both MDD and preterm birth on global health
burden, relevant brain studies are heavily called to better understand underlying neural
mechanism such as their brains’ functional and structural abnormalities. Given the
potential link between MDD and preterm birth, it is necessary to apply the same
investigation on their underlying neural correlates and link emerging evidence together.
Aberrant brain connectome is present in MDD, featured by widespread structural
and functional brain changes (Greicius et al., 2007; Erk et al., 2010; Sheline et al., 2010;
Aizenstein et al., 2011; Lui et al., 2011; Li et al., 2012; Mwangi et al., 2012; Zeng et
al., 2012), for reviews see (Savitz and Drevets, 2009; Hamilton et al., 2012; Whitfield-
Gabrieli and Ford, 2012). Zhang et al. provided the first evidence about aberrant
network topology of brain connectome in MDD by combining rs-fMRI and graph-
based network analysis. They found lower path length and higher global efficiency as
well as altered nodal centralities in thirty drug-naive, first-episode MDD patients
compared with 63 healthy controls (Zhang et al., 2011). Subsequent study reported
impaired modular organization of brain connectome in first-episode or long-term
therapy resistant MDD by using rs-fMRI (Tao et al., 2013). Using T1 and across-subject
gray-matter-volume-based correlation, Singh et al. constructed structural brain
connectome for 93 patients with first-episode or recurrent-episode MDD and reported
decreased clustering and less efficient organization in MDD (Singh et al., 2013). Very

recently, the first MDD study of DTI-based brain connectome was reported, showing
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altered structural connectivity between nodes of the default mode network and the
frontal-thalamo-caudate regions are core neurobiological features associated with
MDD (Korgaonkar et al., 2014). They found Due to these findings we suggest that
specific changes of intrinsic fenT, particularly those reflecting functional integration
(i.e. efficiency, centrality or modularity), may interact with the course of MDD. Taken
together, emerging evidence highlights that brain connectome is affected by MDD and
links with disorder duration and severity (Zhang et al., 2011). However, it is not yet
known whether aberrant brain connectome underpins the course of MDD featured by
multiple recurrent episodes.

Until very recently brain connectome in preterm born individuals has started to be
investigated. It is reported that, structural and functional brain connectome and human
brain’s fundamental organization emerges and develops during early brain maturation
earlier than 40 gestational weeks (Ball et al., 2014; van den Heuvel et al., 2014).
According to two DTI studies, similar small-world organization is present in brain
connectome of preterm and term born infants (Brown et al., 2014) but longer gestation
is associated with more efficient brain organization in preterm and term born
preadolescent children (Kim et al., 2014). Since brain connectome develops and
reshapes along with the age (Collin and van den Heuvel, 2013; Cao et al., 2014), it is
interesting to explore brain connectome in adults after preterm birth, particularly
considering it might be an important transient state bridging typical/atypical brain
development and mental health/disorder. However, much less is known about adult

brain compared to infant brain with regard to preterm birth, despite altered gray matter’s
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functional connectivity and reduced white matter’s fractional anisotropy in preterm

born adults (Eikenes et al., 2011; White et al., 2014).

Open general questions about the connectome trajectory in major depression

For depression, there might exist an overlapped developmental trajectory for risk- and
disorder- related brain connectome, which remains largely unclear.

Firstly, after the clinical diagnosis of MDD, it remains largely unknown whether
specific brain connectome changes link with the course of major depression. For the
disorder course, MDD is characterized by single or recurrent major depressive episodes
while in 35-85% of cases the course of MDD includes the recurrence of depressive
episodes (Hardeveld et al., 2010; Lewis et al., 2010; Farb et al., 2011). Especially for
recurrent MDD, it is still an open question whether aberrant brain connectome may
underpin the risk of recurrence and predict the number of depressive episodes.

Secondly, there is no clear preclinical state for depression like mild cognitive
impairment (MCI) for Alzheimer’s disease (AD). What we already know is that preterm
born individuals are at risk for depression, who may have been not clinically diagnosed
but with a high risk for lifetime disorder diagnosis, which might provide the potentially
important information about at-risk or preclinical brain state for depression.
Considering the long-term adverse vulnerability of preterm brain, it forms another open
question whether aberrant brain connectome has emerged in preterm born individuals

at risk for major depression and may be associated with MDD’s aberrant pattern to
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some extent.

These two general questions have motivated the following papers in terms of a
research framework. They have been broken up into testable small piece questions as
described above in the section aim of the thesis. In more detail single questions and

corresponding hypotheses are motivated and specified in the beginning of each paper.
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In major depressive disorder, depressive episodes reoccur in ~60% of cases; however, neural mechanisms of depressive relapse
are poorly understood. Depressive episodes are characterized by aberrant topology of the brain’s intrinsic functional connectivity
network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothe-
sized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive
disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of
episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25
depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic
resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise
Pearson’s correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods,
resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently
compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial
correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but
global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional
connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somato-
sensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network
topology was associated with the number of episodes. Results were controlled for effects of total grey matter volume, medi-
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cation, and total disease duration. This finding provides first evidence that in major depressive disorder aberrant topology of the
right putamen’s intrinsic connectivity pattern is associated with the course of depressive episodes, independently of current
symptoms, medication status and disease duration. Data suggest that the reorganization of striatal connectivity may interact
with the course of episodes in depression thereby contributing to depressive relapse risk.

Keywords: major depressive disorder; recurrent episodes; striatum; intrinsic functional connectivity; graph analysis

Abbreviation: HAM-D = Hamilton Rating Scale for Depression

Introduction

Major depressive disorder is one of the most frequent psychiatric
disorders with a lifetime prevalence of ~16% (Kessler et al.,
2003). Major depression is characterized by single or recurrent
major depressive episodes, which include depressed mood,
reduced energy, impaired cognition, vegetative symptoms, and
suicidal tendency with suicide rates of 4% (American Psychiatric
Association, 2000). In 35-85% of cases the course of major de-
pression includes the recurrence of depressive episodes (Hardeveld
et al., 2010; Lewis et al., 2010; Farb et al., 2011). However, our
knowledge about factors and mechanisms contributing to episode
relapse is only fragmentary.

Depressive episodes are associated with widespread structural
and functional brain changes (Greicius et al., 2007; Erk et al.,
2010; Sheline et al., 2010; Aizenstein et al., 2011; Lui et al.,
2011; Li et al., 2012; Mwangi et al., 2012; Zeng et al., 2012;
for review Savitz and Drevets, 2009; Hamilton et al., 2012;
Whitfield-Gabrieli and Ford, 2012). For example, aberrant rest-
ing-state functional connectivity, which has been proved to sep-
arate patients from healthy control subjects by pattern
classification, was found in the default mode network, salience
network, occipital areas, subcortical areas and the cerebellum
(Zeng et al., 2012). Particularly, connectivity changes in the
default mode and salience networks, which are both intrinsic
networks of synchronous ongoing activity (Greicius et al., 2007;
Seeley et al., 2007), have been linked with patients’ impaired
self-focused processing and aberrant emotional reactivity
(Sheline et al., 2010; Hamilton et al., 2011, 2012; Whitfield-
Gabrieli and Ford, 2012). These widespread functional brain
changes, which are detectable even during rest, indicate altered
large-scale organization of intrinsic brain activity in depressive
episodes. Graph-based network analysis allows us to map such
brain organization changes by quantifying topological properties
of functional networks consisting of nodes (i.e. brain regions) and
edges (i.e. functional connectivity between regions) (Bullmore
and Sporns, 2009). Using resting-state functional MRI and
graph-based methods, Zhang et al. (2011) found aberrant
global efficiency of the whole brain intrinsic functional connect-
ivity network as well as changed nodal centrality of specific brain
regions’ connectivity in patients with first depressive episode.
Such aberrant topology of connectivity during episodes is modu-
lated by early life experience such as childhood neglect (Wang
et al., 2013), and its modularity (i.e. the organization in ensem-
bles of regions with strong within-module functional connectivity)
is distinctively changed depending on whether patients suffer

from their first or long-term therapy resistant episode (Tao
et al., 2013). Because of these findings we hypothesized that
specific changes of the topology of intrinsic connectivity, particu-
larly those reflecting functional integration (i.e. efficiency, central-
ity or modularity), may interact with the course of major
depression.

Besides sub-depressive residuals, the number of previous de-
pressive episodes has strongest influence on the course of major
depression (Kendler et al., 2001; Hardeveld et al., 2010; Moylan
et al., 2013). A recent meta-analysis demonstrated the number of
episodes to be one of the best predictors for the episode relapse
risk in major depression (Hardeveld et al., 2010). However, it re-
mains poorly understood which neural mechanisms might contrib-
ute to such relationship (Robinson and Sahakian, 2008). Because
of the course-sensitive aberrant topology of brain connectivity
during episodes, we hypothesized that selective changes of intrin-
sic connectivity, which reflect altered functional integration, inter-
act with the course of episodes in major depression. In more
detail, we aimed to address the question whether and how the
topology of intrinsic functional connectivity is related to the
number of episodes in patients with recurrent major depression,
independently of current symptoms and the total duration of the
disease.

Therefore, patients with recurrent major depression and healthy
control subjects were assessed by resting-state functional MRI and
graph-based analysis. Resting-state blood oxygenation level-
dependent signal fluctuations were used as a surrogate for intrinsic
brain activity (Fox and Raichle, 2007; Raichle, 2010). Graph-based
topological scores were restricted to measures of functional inte-
gration (i.e. estimates reflecting the efficiency of the interaction
between distributed brain areas) and centrality (i.e. degree and
betweenness-centrality both reflecting the importance of nodes
for functional integration) (Rubinov and Sporns, 2010). We used
the Harvard-Oxford brain atlas and functional connectivity across
regions to determine each subject's functional connectivity matrix.
Topological scores were derived from these matrices, compared
across groups and, in patients only, related to the number of de-
pressive episodes and current depressive symptoms by partial cor-
relation analysis. Because of previous findings that demonstrate a
link between structural changes and the course of major depres-
sion (Sheline et al., 1999; MacQueen et al., 2003; Frod| et al.,
2008; Kronmuller et al., 2009), we controlled analyses for struc-
tural changes. In addition, effects of medication, disease duration,
and accumulated stress, which may interact with the course of
depression (Robinson and Sahakian, 2008; Hardeveld et al.,
2010), were controlled.
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Materials and methods
Subjects

Twenty-five patients with recurrent major depression (two to 10 de-
pressive episodes; mean age of 48.8 years; 13 female) and 25 healthy
persons (mean age of 44.0 years; 14 female) participated in this study
(Table 1). All participants provided informed consent in accordance
with the Human Research Committee guidelines of the Klinikum
rechts der Isar, Technische Universitit Minchen. Patients were re-
cruited from the Department of Psychiatry by treating psychiatrists,
healthy control subjects from the area of Munich by word-of-mouth
advertizing. Participants’ examination included medical history, psychi-
atric interview, and psychometric assessment. Psychiatric diagnoses
were based on Diagnostic and Statistical Manual of Mental
Disorders-IV (DSM-IV; American Psychiatric Association, 2000). The
Structured Clinical Interview for DSM-IV (SCID) was used to assess
the presence of psychiatric diagnoses (Spitzer et al., 1992). Severity of
clinical symptoms was measured with the Hamilton Rating Scale for
Depression (HAM-D; Hamilton, 1960). The global level of social, oc-
cupational, and psychological functioning was measured with the
Global Assessment of Functioning Scale (Spitzer et al., 1992).
Psychiatrists D.S. and M.S. performed clinical-psychometric assess-
ment; they have been professionally trained for SCID interviews with
inter-rater reliability for diagnoses and scores of >95%.

Recurrent major depression was the primary diagnosis for all pa-
tients. Patients with recurrent major depression constitute a heteroge-
neous clinical group, varying in severity of current symptoms, age of
disorder onset, duration of the disorder, number of depressive
episodes, family history of major depression, co-morbidity of other
disorders, and type of medication. Since the goal of the present
study was to determine the relationship between the topology of
the brain's functional connectivity network and the course of major
depression common to most patients with recurrent major depression,
we adopted selection criteria from a previous study on recurrent major
depression to obtain a clinically representative patient sample
(Hennings et al., 2009). Recurrence implies the return of an entirely
new episode after clinical recovery. Due to the unreliable self-report in
major depression because of patients’ potential memory problems, the
determination of episode number was based on the review of patients’
medical records. Only patients whose records enabled us to determine
a consistent episode number were included in the study. The number
of episodes of all patients ranged from two to 10 following a continu-
ous distribution (Supplementary Fig. 1). All patients met criteria for a
current depressive episode with an average episode length of 16.6
weeks [standard deviation (SD) 6.6] and an averaged HAM-D score
of 22 (SD 7.1). The average age of major depression onset was 32
years (SD 8), and all patients experienced their first episode before 45
years of age. The average duration of major depression was 16.7 years
(SD 10.2) and on average, patients had experienced five to six epi-
sodes (mean 5.6, SD 2.5). On average 1.7 episodes (SD 1.1) were
triggered by stressful life events; episodes triggered by a stressful life
event were defined as episodes that started within 1 month after a
stressful life event. Four patients had a positive family history of major
depression. Fourteen patients had psychiatric co-morbidities: six gen-
eralized anxiety disorder, three somatization disorder, and five avoi-
dant or dependent personality disorders. Patients with psychotic
symptoms, schizophrenia, schizoaffective disorder, bipolar disorder,
and substance abuse were excluded from this study. Additional exclu-
sion criteria were pregnancy, neurological or severe internal systemic
diseases, and general contraindications for MRI. One patient was free

C. Meng et al.

Table 1 Demographic, clinical and psychometric data

Patients with Healthy P-value
major controls
depression

Subjects [total number] 25 25

Age [years] 48.76 (14.83) 44.08 (14.78) >0.05

Gender 13F/12M 14F/11M >0.05
Number of episodes 5.6 (2.5) NA
Duration of major 16.7 (10.2) NA
depression [years]
Current episode
Duration [weeks] 16.6 (6.6) NA
HAM-D 22 (7.1) 0 <0.001
GAF 50 (10.5) 99.5 (1.1) <0.001

Group comparisons: two-sample t-tests for age, HAM-D, and GAF; x>-test for
gender. Data are presented as mean and SD (in brackets). GAF = Global
Assessment of Functioning.

of any psychotropic medication during MRI assessment. Seven patients
were treated by antidepressant mono-therapy [three cases: citalopram
30mg/d (mean dose); three cases: sertraline 200 mg/d; one case:
mirtazapine 30 mg/d]; 12 patients by dual-therapy (five cases: citalo-
pram 37.5mg/d + mirtazapine 30 mg/d; two cases: citalopram 40 mg/
d + venlafaxine 225 mg/d; one case: citalopram 30 mg/d + quetiapine
200 mg/d; one case: sertraline 200mg/d + mirtazapine 30 mg/d; three
cases: venlafaxine 225 mg/d + mirtazapine 30 mg/d); and five patients
by triple-therapy (two cases: citalopram 30mg/d + venlafaxine
187.5mg/d + amisulprid ~ 200mg/d; two  cases:  citalopram
30mg/d + mirtazapine 30 mg/d + quetiapine 200 mg/d; 1 case: ven-
lafaxine 22 mg/d + mirtazapine 30 mg/d + quetiapine 200 mg/d). All
healthy control subjects were free of any current or past neurological
or psychiatric disorder or psychotropic medication.

Data acquisition and preprocessing

All participants underwent 10 min of resting-state functional MRI with
the instruction to keep their eyes closed and not to fall asleep. We
verified that subjects stayed awake by interrogating via intercom im-
mediately after the resting-state functional MRI scan. No patient
dropped out during the scanning session.

Data acquisition

MRI was performed on a 3 T MR scanner (Achieva, Philips) using an
8-channel phased-array head coil. For co-registration and volumetric
analysis, Tq-weighted anatomical data were obtained by using a MP-
RAGE sequence (echo time =4ms, repetition time =9ms, inversion
time =100 ms, flip angle=5°, field of view =240 x 240 mm?, ma-
trix = 240 x 240, 170 slices, slice thickness =1 mm, and O mm inter-
slice gap, voxel size=1x1 x1 mm?). Functional MRI data were
obtained by using a gradient echo EPI sequence (echo time = 35ms,
repetition time =2000ms, flip angle =82°, field of view =220 x
220mm?, matrix = 80 x 80, 32 slices, slice thickness=4mm, and
0mm interslice gap, voxel size =2.75 x 2.75 x 4mm?; 300 volumes).

Preprocessing

The first three functional images of each subject's data set were dis-
carded because of magnetization effects. The remaining resting-state
functional MRI data were preprocessed by SPM8 (Wellcome
Department of Cognitive Neurology, London) including head motion
correction, spatial normalization into the standard stereotactic space of
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the Montreal Neurological Institute with isotropic voxel of
3x3x3mm? and spatial smoothing with a 6 x 6 x 6mm?
Gaussian kernel to reduce spatial noise. To ensure data quality, par-
ticularly concerning motion-induced artefacts, temporal signal-to-noise
ratio and point-to-point head motion were estimated for each subject
(Murphy et al., 2007; Van Dijk et al., 2012). Excessive head motion
(cumulative motion translation or rotation >3 mm or 3° and mean
point-to-point translation or rotation >0.15mm or 0.1°) was applied
as an exclusion criterion. Point-to-point motion was defined as the
absolute displacement of each brain volume compared with its previ-
ous volume. None of the participants had to be excluded. Two-sample
t-tests yielded no significant differences between groups regarding
mean point-to-point translation or rotation of any direction
(P>0.10) as well as temporal signal-to-noise ratio (P> 0.50).
Further control for head motion effects was carried out in the network
construction procedure.

Topological analysis of whole brain
functional connectivity network

Network construction

For each subject, the whole brain functional connectivity network was
constructed from preprocessed resting-state functional MRI data. We
defined 112 nodes by anatomical parcellation of the whole brain using
Harvard-Oxford atlas (Supplementary Table 1; FSL, Oxford
University). Time series of functional MRI signal were extracted
from each voxel and subsequently averaged within each region of
interest. The regional time courses were then regressed against con-
founding covariates (comprising six time courses of head motion and
signals derived from whole grey matter, white matter and CSF).
Maximal overlap discrete wavelet transform was applied to decom-
pose the residual regional time series into the following four frequency
scales: scale 1 (0.125-0.250Hz), scale 2 (0.060-0.125Hz), scale 3
(0.030-0.060Hz) and scale 4 (0.015-0.030Hz) (Percival and
Walden, 2000). Absolute wavelet correlation coefficients at the low-
frequency scale 2 (0.060-0.125Hz) were used for further analysis
according to previous studies (Lynall et al., 2010; Alexander-Bloch
et al., 2012). Finally, a 112 x 112 connectivity matrix representing
individual whole brain functional connectivity network was obtained
for each subject.

Network analysis

To prepare graph-based topological analysis of the functional connect-
ivity network, binary networks were generated for the cost range from
0.05-0.50 (with intervals of 0.01) using Prim’s algorithm of minimum
spanning tree in-line with previous work (Alexander-Bloch et al.,
2012). The cost of a network is defined as the number of existing
edges divided by the number of all possible edges and serves as a
basic ‘economical’ constraint on brain networks (Bullmore and Sporns,
2012). Cost range 0.05-0.5 was selected because networks with cost
<0.05 are too sparse to obtain stable network topology and those
with cost >0.50 become increasingly random and lose their small-
world property that is characteristic for human brains (Humphries
et al., 2006; Lynall et al., 2010). In addition, to investigate the
impact of costs on network topology, four arbitrary quasi-equidistant
cost sub-ranges (i.e. 0.05-0.14, 0.15-0.24, 0.25-0.34 and 0.35-0.50)
were defined.

Graph analysis of binary networks was carried out in Matlab using
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Global
topological properties of characteristic path length, global efficiency,
and global betweenness-centrality (all reflecting functional integration;
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Rubinov and Sporns, 2010), and clustering coefficient and small-
worldness (reflecting functional segregation and its relation to func-
tional integration; Rubinov and Sporns, 2010) were calculated
(Supplementary Methods) and averaged across costs for each subject.
Group comparison was carried out for each cost sub-range by permu-
tation test (100000 iterations; P < 0.05) controlling for age, gender
and total grey matter volume (Supplementary Methods, grey matter
volume was provided by structural voxel-based morphometry ana-
lysis). Correspondingly, to analyse the topology of nodal connectivity,
nodal efficiency and centrality (represented by nodal degree and
betweenness-centrality; Rubinov and Sporns, 2010) were calculated
and compared across groups (permutation test, 100000 iterations,
P < 0.05). One should note that, although efficiency, degree and
betweenness-centrality reflect different aspects of functional integra-
tion, they are not completely independent among each other (i.e. they
correlate significantly for specific nodes (Valente et al., 2008; Lynall
et al., 2010; Bassett et al., 2012; Zuo et al., 2012). Nodal analysis was
restricted to scores of centrality and efficiency within the low cost sub-
range (0.05-0.14) due to results of global property analysis. After
previous studies, false positive correction for N-node statistical com-
parison was applied using 1 / (amount of nodes) =1 / 112 =0.009 as
significance threshold (Lynall et al., 2010).

Partial correlation analysis for topology scores, number
of depressive episodes and current symptoms

To analyse the relationship of both the course of major depression and
current depressive symptoms with topological properties of nodal con-
nectivity independently of each other, we calculated the partial correl-
ation coefficients between topological scores and both the number of
depressive episodes and HAM-D scores in patients (P < 0.009, false
positive correction); partial correlation analysis was controlled for sev-
eral variables including particularly structural changes, medication and
disease duration (see below). Partial correlation analysis was used be-
cause it allows for measuring the degree of association between two
random variables (i.e. topological score and number of episodes), with
the effect of controlling variables removed (e.g. current symptoms
reflected by HAM-D). In more detail, the partial correlation between
a given topological score and the number of depressive episodes given
controlling variables Z=(HAM-D, age, gender, grey matter volume,
duration, medication), written as p(Top score, Number of depressive
episodes;-Z), is the correlation between the residuals R(Top score) and
R(Number of depressive episodes) resulting from the linear regression
of Top score with Z and of Number of depressive episodes with Z,
respectively. Therefore, a partial correlation-based approach enables
the analysis of the relationship between a topological property and
the course of major depression while controlling for the effect of cur-
rent symptoms and vice versa.

To control for potential confounding effects, we included age,
gender, grey matter volume, medication, accumulated stress, and dis-
ease duration as covariates-of-no-interest into our partial correlation
approach. First, the functional connectivity of intrinsic brain networks
depends on widespread structural integrity of polysynaptic pathways
(Lu et al., 2011). As we focus on changes of functional integration
among the whole brain network that are independent of structural
changes (MacQueen et al., 2003; Frodl et al.,, 2008; Kronmuller
et al., 2009), we included total grey matter volume scores as covari-
ate-of-no-interest in the above mentioned functional connectivity ana-
lyses to control for this influence of structural variations (for structural
changes in patients see voxel-based morphometry analysis in the
Supplementary Methods). Second, patients of our study were treated
by antidepressant medication, which has been demonstrated to affect
intrinsic functional connectivity (Delaveau et al., 2011). Therefore,

55

$102 ‘97 ISNSNy U0 USYOUINA YOYJOI[qIGSIIRIISIOATUN J& /F10°s[ewnolpioyxo-ureiq//:d)y woiy papeojumo



602 | Brain 2014: 137; 598-609

control for medication effects is necessary. Different from antipsych-
otic drugs, which can be compared by chlorpromazine equivalents, no
comparable approach exists currently for antidepressants. We de-
veloped two ways to control for antidepressant effects and evaluated
them among each other and with previous findings: (i) we divided
applied antidepressants and augmentation medication into four classes
(selective serotonin reuptake inhibitor, serotonin-norepinephrine reup-
take inhibitor, noradrenergic and specific serotonergic antidepressants,
and atypical antipsychotics); then we defined a medication covariate
by the number of different classes a patient received in the partial
correlation analysis; (i) in a validation analysis, we defined four cov-
ariates (i.e. one for each medication class) with numbers 1 or O: 1
means the patient was treated by this medication class whereas O
means they were not. Third, as we were interested in the relationship
between nodal connectivity topology and number of episodes inde-
pendent of disease duration and accumulated stress, we included dis-
ease duration and the number of episodes triggered by stressful life
events as additional covariates. Thereby we assume that the number
of such stress-triggered episodes reflects patient’s accumulated stress
relevant for depression course.

Results

Global and regional atrophy in patients

Patients’ total grey matter volume was reduced; regional brain
volume reduction was found in the anterior cingulate cortex,
dorsal prefrontal cortex, and hippocampus amongst other areas
(Supplementary Fig. 2 and Supplementary Table 2). This result is
in line with previous findings (Savitz and Drevets, 2009).

Aberrant global functional integration in
patients

For the first cost-sub-range from 0.05 to 0.14, all subjects had
small-worldness scores >1.22, demonstrating for all subjects
brain networks with small-world property (Supplementary Table
3). Across groups, small-worldness and global clustering coefficient
did not differ significantly (Fig. 1 and Table 2). In patients, global
efficiency was reduced, global betweenness-centrality and charac-
teristic path length were increased (Fig. 1 and Table 2). Cost range
analysis revealed that changes of global topological scores were
mainly driven by the low-cost sub-range (0.05-0.14), i.e. by con-
nections of strong functional connectivity (Fig. 1).

Aberrant nodal efficiency and centrality
in patients

Altered nodal centrality and efficiency of node-centred con-
nectivity was found for several regions in patients (Fig. 2 and
Table 3). In the striatum, patients had increased nodal between-
ness-centrality in the right putamen and decreased nodal degree
and efficiency in the caudate. In the frontal cortex, patients
had decreased nodal degree in the inferior frontal gyrus pars
triangularis and decreased nodal efficiency in the orbital gyrus.
Furthermore, patients had increased nodal degree in the

C. Meng et al.

occipito-temporal cortex and decreased nodal betweenness-cen-
trality in the postcentral gyrus.

Depressive symptoms were associated
with the nodal connectivity topology of
areas known to be part of the salience
and default mode networks

To investigate the relationship among connectivity topology, dis-
ease course and depressive symptoms, we applied partial correl-
ation analysis of corresponding scores with additional covariates of
age, gender, grey matter volume, medication, accumulated stress
and disease duration. To control for medication effects, we used
two different ways to model medication influences; as results of
both models differed only marginally, we report only results of the
first model in which the number of medication classes adminis-
tered to the patient constituted the medication covariate. To fa-
cilitate comprehensive evaluation of partial correlation results, we
first examined the relationship among covariates by Pearson’s cor-
relation: HAM-D and the number of depressive episodes were not
correlated (r=0.041, P =0.844); number of depressive episodes
was correlated with disease duration (r=0.784, P < 0.001), and
HAM-D with the number of medication classes administered to
the patient (r=0.569, P=0.003). No further covariate showed
significant correlation with number of depressive episodes or
HAM-D (P > 0.05). Additionally, total grey matter volume was
significantly correlated with age (r= —0.649, P = 0.0004) and dis-
ease duration was also correlated with age (r=0.459, P =0.021).
For partial correlation results regarding connectivity topology, crit-
ically, we found that patients’ HAM-D scores were negatively
correlated with nodal degree of the inferior frontal gyrus and posi-
tively correlated with nodal betweenness-centrality of the posterior
supramarginal gyrus (Table 4). The inferior frontal gyrus is a hub
of the salience network, and the posterior supramarginal gyrus of
the default mode network.

The number of depressive episodes is
associated with aberrant topology of
striatal connectivity independently of
current symptoms

In patients’ right putamen, the number of depressive episodes was
positively correlated with nodal efficiency of connectivity, inde-
pendently of current symptoms, medication status, disease dur-
ation and additional covariates (Fig. 3 and Table 4). In addition,
significant association between nodal degree of the nucleus
accumbens' connectivity and number of depressive episodes was
found (Fig. 3 and Table 4).

Discussion

To analyse how the topology of the brain’s intrinsic functional con-
nectivity network is linked with the course of depressive episodes in
major depression, we applied resting-state functional MRI and
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Figure 1 Global network topology in recurrent major depression. Group comparisons were based on permutation tests controlled for age,
gender, and grey matter, P < 0.05, 100000 permutations. (A) For both groups of healthy control subjects (HC) and patients with
recurrent major depression (MDD), whole brain intrinsic functional connectivity networks had small-world architecture (> 1.22) for the
investigated cost range (0.05-0.50). Small-world properties decrease with increasing network costs. At the cost of 0.14, averaged small-
worldness was 1.77 in major depression and 1.83 in control subjects. (B and C) Small-worldness and global clustering coefficient were not
significantly different across groups. (D-F) Significant group differences were found for characteristic path length (P = 0.029), global
efficiency (P = 0.029), and global betweenness-centrality (P = 0.029) for the cost sub-range (0.05-0.14) (i.e. for networks of spatially
sparse but strong functional connectivity). *Significant group difference.

Table 2 Global topological network properties in recurrent major depression

Healthy controls Patients with MDD P-Value
Small-worldness 2.344 £+ 0.407 2.271 £ 0.570 0.300
Global clustering coefficient 0.412 £+ 0.044 0.431 £ 0.037 0.055
Characteristic path length 2.923 +0.244 3.049 +0.215 0.029*
Global efficiency 0.423 +£0.018 0.414 £ 0.014 0.029*
Global betweenness-centrality 213.492 + 27.086 227.438 + 23.841 0.029*

Group comparisons: permutation tests (100 000 permutations); *Significant result for P < 0.05; group comparisons were controlled for age, gender, and total grey matter
volume. Global network scores are reported as mean and SD for cost sub-range 0.05-0.14. MDD = major depressive disorder.

graph-based network analysis in patients with recurrent major de-
pression, and healthy control subjects. We found selective
association between aberrant topology of the right putamen’s con-
nectivity and patients’ number of depressive episodes, independ-
ently of current depressive symptoms, medication status,
accumulated stress and disease duration. This result provides first
evidence that intrinsic functional network organization is linked with
the course of major depression, more specifically that the aberrant
topology of striatal connectivity is associated with the number of
episodes in depression. Data suggest that striatum’s connectivity

may interact with the course of depressive episodes, potentially
contributing to depressive relapse risk in major depression.

Aberrant topology of striatal
connectivity is associated with the
course of major depression

Topology of striatal connectivity was found to be associated with
the course of depressive episodes in patients with recurrent major
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depression (Fig. 3, Tables 3 and 4). Specifically, we found a posi-
tive correlation between the number of episodes of major depres-
sion and nodal efficiency of right putamen intrinsic connectivity in
patients (Fig. 3 and Table 4). Right putamen’s centrality was sig-
nificantly increased in patients (Fig. 2 and Table 3), i.e. the stron-
ger the putamen’s hubness, the more depressive episodes. Both
efficiency and centrality (the latter comprising degree and
betweenness-centrality) reflect functional integration in the brain

Figure 2 Brain regions with aberrant nodal efficiency and cen-
trality in recurrent major depression. Group comparisons were
based on permutation tests controlled for age, gender and grey
matter volume, P < 0.009 based on false positive correction for
multiple testing, 100000 permutations. Coloured regions indi-
cate significantly changed nodal intrinsic functional connectivity
network topology (i.e. nodal efficiency or centrality) in patients.
Blue/red indicates decrease/increase of a topological property in
patients. For more details see Table 3. L = left; R = right. This
figure was visualized with the BrainNet Viewer (http://www.
nitrc.org/projects/bnv/).

Table 3 Nodal network topology in recurrent major depression

C. Meng et al.

i.e. the ability to rapidly combine information from distributed
brain regions (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). Furthermore, we found correspondent results for the ven-
tral striatum (Fig. 3 and Table 4) (i.e. we found a positive correl-
ation between nucleus accumbens’ centrality and the number of
depressive episodes), suggesting that the topology of whole stri-
atum’s connectivity is associated with the course of episodes in
major depression. Findings were not explained by age, gender,
medication effects or total grey matter changes, for which we
controlled statistically. Findings were also controlled for total dis-
ease duration and number of episodes triggered by stressful life
events, suggesting that specifically the number of episodes and
not disease duration or accumulated stress is linked with the top-
ology of striatal connectivity. Importantly, results were also con-
trolled for the degree of current symptoms, indicating that the
topology of striatal connectivity reflects major depression's
course rather than its symptoms.

Between-group differences of nodal network topology included
bilateral caudate and right putamen (Fig. 2 and Table 3).
Putamen'’s intrinsic functional connectivity pattern is preferentially
linked with the insula and anterior cingulate cortex, i.e. with key
regions of the salience network, whereas the caudate’s connect-
ivity links more with areas of the default mode network (such as
the medial prefrontal and posterior cingulate cortex) (Di Martino
et al., 2008). Both salience and default mode networks are
strongly involved in major depression (Greicius et al., 2007;
Sheline et al., 2010; Hamilton et al., 2011; for review Whitfield-
Gabrieli and Ford, 2012; Hamilton et al., 2013). A previous study
reported increased putamen and caudate centrality/efficiency in
first-episode major depression patients (Zhang et al., 2011).
Concerning putamen we found consistent results in patients with
recurrent major depression, and concerning caudate we found
reduced centrality and efficiency in patients with recurrent major
depression. It might be that within the dorsal striatum, network
topology of sub-areas (like putamen and caudate) develops dis-
tinctively in the course of recurrent major depression potentially
because of a specific intrinsic connectivity pattern (see further

Lobe Node / Region of Side Mode Healthy controls Patients with MDD P-Value
interest

Patients with MDD > Healthy controls
Subcortical Putamen R BC 175.898 £+ 126.037 346.133 £ 230.110 <0.001
Occipital Intracalcarine cortex R Deg 7.672 £ 4.071 11.031 £ 4.838 0.006
L Deg 7.615 £ 4.095 12.446 £5.376 <0.001
Lingual gyrus R Deg 8.649 + 4.593 12.801 £ 6.334 0.005

Patients with MDD < Healthy controls
Subcortical Caudate R B 0.390 + 0.071 0.319 £+ 0.088 0.002
L Deg 9.162 + 5.632 5.071 £ 4.237 0.002
Enodal 0.402 + 0.074 0.325 + 0.081 0.001
Frontal Frontal orbital cortex L Enodal 0.462 + 0.048 0.417 £ 0.059 0.003
Inferior frontal gyrus, R Deg 10.010 £ 5.859 6.158 £+ 3.543 0.003

pars triangularis
Sensorimotor Postcentral gyrus R BC 234.044 £ 154.870 138.132 4+ 78.231 0.004

Group comparisons: permutation tests (100 000 permutations); reported results are significant for P < 0.009 based on false positive correction for multiple testing; group
comparisons were controlled for age, gender and total grey matter volume. Nodal network scores are reported for cost sub-range 0.05-0.14 as mean and SD. MDD = major
depressive disorder; R = right; L = left; BC = nodal betweenness-centrality; Deg = nodal degree; Enoqa = nodal efficiency.

58

$102 ‘97 ISNSNy U0 USYOUINA YOYJOI[qIGSIIRIISIOATUN J& /F10°s[ewnolpioyxo-ureiq//:d)y woiy papeojumo



Striatum’s connectivity in depression

Brain 2014: 137; 598-609 | 605

Table 4 Nodal network topology: partial correlation with depressive symptoms (HAM-D) and major depression course

(number of depressive episodes), respectively

Lobe Node / Region of interest Side Mode r-Value P-value

Association between nodal network topology and depressive symptoms

Frontal Inferior frontal gyrus, pars triangularis R Deg —0.614 0.005

Parietal Supramarginal gyrus, posterior division R BC 0.688 0.001

Association between nodal network topology and number of depressive episodes

Subcortical Putamen R e 0.588 0.008
Accumbens R Deg 0.586 0.008

Partial correlation analyses were corrected for age, gender, total grey matter volume, disease duration, and medication effects; reported results are significant for P < 0.009
based on false positive correction for multiple comparison. Regional network scores are based on cost sub-range 0.05-0.14. R =right; L = left; Deg = nodal degree;

Enodal = Nodal efficiency; BC = nodal betweenness-centrality.
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Figure 3 Association between striatal connectivity topology and number of depressive episodes in patients with recurrent major de-
pression, independently of current symptoms and disease duration. Partial correlation analysis of nodal topological scores and number of
depressive episodes, including additional covariates of current symptoms, age, gender, grey matter brain volume, medication effects and
disease duration, P < 0.009 based on false positive correction for multiple testing. Scatter plots reflect significant correlations between
different striatal network scores and the number of depressive episodes in patients with recurrent major depression.

support for this argument below). However, we cannot exclude
the potential influence of methodological differences between the
previous and our study [e.g. Zhang et al. (2011) applied a brain
atlas different from that of our study; such atlas-based parcellation
change may shift the network topology result; Wang et al.
(2009)]. Future studies, which should be designed to study expli-
citly data of both first and recurrent episode major depression, are
necessary to compare directly network topology changes within
one methodological framework.

Two lines of research highlight the importance of the striatum
(particularly of the right putamen) for major depression: (i)
Impaired emotion processing in major depression: a recent meta-
analysis in major depression, which integrated PET-based meta-
bolic resting-state findings with functional MRI data of emotional
stimulation, found that patients’ aberrant striatal activity might
prevent critically the regulatory impact of the prefrontal cortex
on increased emotional processing in limbic-insular areas

(Hamilton et al., 2012). The authors suggest that changes of stri-
atal connectivity (particularly of the dorsal striatum) may contrib-
ute to this regulatory deficit, potentially because of lowered striatal
dopamine levels (Hamilton et al., 2012). Our result is consistent
with this idea, highlighting explicitly the important role of increas-
ingly changed topology of striatal connectivity for the course of
major depression; and (i) Impaired emotional learning in major
depression: furthermore, dopamine-dependent striatal activity is
essential for reinforcement learning (Lilieholm and O'Doherty,
2012). This type of learning is impaired in major depression
(Eshel and Roiser, 2010). For example, during reversal learning,
right putamen responses for unexpected reward were selectively
reduced in patients with major depression (Robinson et al., 2012).
The authors suggest that a reward-related dysfunction of the right
putamen within a striatum-centred prefrontal-limbic circuit may
inhibit the learning of appreciating and enjoying positive life ex-
perience; such positive experience, in turn, is critical for depressive
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recovery. Our result is consistent with this idea, specifying that
right putamen’s connectivity topology might be relevant for such
adaptive processes in major depression. In summary, aberrant top-
ology of striatal connectivity and its link with the course of de-
pressive episodes are consistent with models of impaired emotion
regulation and dopamine-dependent reward learning in major
depression.

Aberrant topology of striatal
connectivity and depressive relapse risk

Aberrant topology of striatal connectivity might be a potential
mechanism to mediate the relapse risk in major depression.
Depressive episodes are associated with both the change of net-
work topology (Figs 1 and 2) and the increase of episode relapse
risk (Hardeveld et al., 2010). Here we found that the amount of
episodes is specifically linked with aberrant topology of striatal
connectivity (Fig. 3). This link suggests striatal topology as
neural correlate for the course of episodes in major depression,
and therefore of episode relapse. This argument makes topology
of striatal connectivity a potential biomarker to evaluate depressive
recurrence risk.

Aberrant nodal network topology in
areas of the salience network is
associated with current depressive
symptoms

Beyond the striatum, aberrant nodal centrality and efficiency was
found in the inferior frontal gyrus, the orbitofrontal cortex as well
as in the occipital and somatosensory cortex (Fig. 2 and Table 3).
This finding was not influenced by age, gender, medication status,
or total grey matter reduction. With respect to affected regions,
our result matches perfectly previous findings in first-episode
major depression (Zhang et al., 2011); as mentioned above for
the caudate, the direction of changes was different for some re-
gions (e.g. patients' lingual or calcarine centrality was reduced in
the previous but increased in our study). Nodal degree and
efficiency of inferior frontal gyrus' and posterior supramarginal
gyrus' connectivity, respectively, was specifically associated with
depressive symptoms measured by the HAM-D (Table 4). These
areas are key regions of the salience and default mode network,
which both are critically involved in depressive symptoms such as
rumination or aberrant emotional reactivity (Greicius et al., 2007,
Sheline et al., 2010; Hamilton et al., 2011, 2013; Whitfield-
Gabrieli and Ford, 2012). Aberrant network topology and the as-
sociation of network topology with depressive symptom severity
overlapped in the inferior frontal gyrus of the salience network
(Tables 3 and 4). This result suggests that topological changes
of the cortical salience network reflect major depression symp-
toms, whereas those of the subcortical striatum are associated
with the course of major depression. This finding is in line with
the more general idea about cortex-basal-ganglia (including stri-
atum)-thalamus-cortex loops, where the cortex itself initially gen-
erates action/cognition/affective candidates, between which the
basal ganglia then arbitrate (likely based on their learned

C. Meng et al.

reinforcement probabilities) to facilitate (gate) the ‘best’ one (for
review see Maia and Frank, 2011).

Aberrant global network topology in
recurrent major depression: impact on
the backbone network

Concerning global topology of functional connectivity, we found
selectively aberrant functional integration (decreased global effi-
ciency and increased global betweenness-centrality) in patients,
whereas other topological properties (small-worldness and cluster-
ing coefficient) were not significantly different across groups
(Fig. 1 and Table 2). In general, global topological scores are
derived from correspondent nodal scores by different forms of
averaging. Because of the correspondence of decreased global
efficiency/decreased caudate efficiency and increased global
betweenness-centrality/increased putamen betweenness-central-
ity, selective reorganization of global functional integration
seems to depend mainly on the reorganization of striatal connect-
ivity in major depression, emphasizing the prominent role of stri-
atal connectivity in recurrent major depression.

Furthermore, changes of global network topology are driven by
low-cost networks i.e. by networks that include edges of particu-
larly strong intrinsic functional connectivity. Across investigated
cost-sub-ranges, significant group differences of network topology
focus on the cost-sub-range of 0.05-0.14, which is related to
sparse networks and strong connectivity (Fig. 1). This means
that recurrent major depression is selectively associated with
changes in widespread (whole brain) strong (top 14%) functional
connections, which are supposed to constitute the backbone of
the brain network. Previous studies found that backbone networks
consist mainly of both network hubs and strong long-distance
edges (Serrano et al.,, 2009; van den Heuvel et al., 2012,
Markov et al., 2013). Correspondingly, we found global and
nodal centrality, which are both related to such hubness, to be
altered in patients. Taken together, these data indicate that major
depression is particularly associated with changes in the brain's
backbone network.

Methodological issues and limitations

To evaluate results of the current study appropriately, some meth-
odological issues have to be considered. Issues concerning patient
sample and chosen graph approach are discussed below and,
issues concerning study design and imaging data analysis are dis-
cussed in the Supplementary Discussion.

Medication

Patients in our study were treated by antidepressant medication.
Although recent studies suggest that antidepressants normalize
brain function (Anand et al., 2005; Fu et al., 2007; Heller et al.,
2013), the impact of antidepressants on intrinsic functional con-
nectivity is so far incompletely understood (Bruhl et al., 2010;
Delaveau et al., 2011). To control for potential impact of medi-
cation, we modelled medication effects and added corresponding
covariates into statistical analyses. As no canonical way to account
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for antidepressants effects is available, we tested two different
models, which yielded almost identical results. Further, we found
that medication status was associated with the degree of current
symptoms but not with the number of episodes, suggesting that at
least during a current episode the amount of applied antidepres-
sants is independent of the previous disorder course but depend-
ent on symptom severity. In summary, these findings and the
coherence of our results with previous studies (Zhang et al.,
2011; Wang et al., 2013), suggest that medication may not crit-
ically influence results of our study. Nevertheless, data should be
interpreted carefully because of potential medication confounds.
Future studies in non-medicated patients are necessary; however,
such studies in drug-free patients of recurrent major depression
might implicate strong practical and ethical problems.

Binary graph approach

In this study, instead of weighted graphs, the binary undirected
graph-based framework was used to analyse the brain's intrinsic
functional connectivity network. Binary undirected graphs are
defined by edges of either 1 or O (i.e. they reflect the presence
or absence of connections due to a given threshold), whereas
weighted graphs reflect connection strengths by continuous
edge scores (Rubinov and Sporns, 2010). The binary approach
was chosen for the following reasons: (i) Backbone network and
weaker connection analysis: in contrast to weighted graph
approaches (Rubinov and Sporns, 2011), binary approaches
enable a cost analysis (i.e. an edge density analysis) to evaluate
separately the brain's backbone network (defined by strongest
edges for all nodes) and the influence of weaker connections
(i.e. edges of weaker connectivity strength) on network topology.
In particular, we found that major depression is associated with
changes in the backbone network; (i) Comparability between
binary and weighted graph approaches: cost integration within
binary approaches (i.e. averaging of graph metrics across costs)
provides results that are comparable with those derived from
weighted graph approaches (Ginestet et al., 2011); and (ii)
Comparability with other studies: previous studies of brain net-
work topology in major depression relied on binary undirected
graphs (Jin et al., 2011; Zhang et al., 2011; Tao et al., 2013).
We used the same framework to enable comparisons among
studies. Nevertheless, it should be noted that weighted
approaches conserve more information about the whole distribu-
tion of edge weights than binary approaches do. Future comple-
mentary studies using weighted graphs might be helpful to
understand more comprehensively brain organization changes in
major depression.

Conclusion

In recurrent major depression aberrant topology of striatal con-
nectivity is associated with the course of depressive episodes in-
dependently of current symptoms, medication status, accumulated
stress, and disease duration. Therefore, the topology of striatum's
intrinsic connectivity may have the potential to predict episode
relapse risk in major depression.
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Supplementary Methods:

Voxel-based morphometry (VBM) analysis.

The functional connectivity of intrinsic brain activity depends on widespread
structural integrity of polysynaptic pathways (Lu et al., 2011). Since we focus on
changes of intrinsic functional connectivity within the whole brain functional network,
we included total grey matter volume as covariate-of-no-interest in functional
network analyses to control for the influence of structural variations. As described
recently (Sorg et al., 2013), we used the VBMS toolbox
(http://dbm.neuro.uni-jena.de/vbm.html) to analyze brain structure. T1-weighted
images were corrected for bias-field inhomogeneity, registered using linear
(12-parameter affine) and nonlinear transformations, and tissue-classified into grey
matter (GM), white matter, and cerebrospinal fluid within the same generative model.
The resulting GM images were modulated to account for volume changes resulting
from the normalization process. Here, we only considered non-linear volume changes
so that further analyses did not have to account for differences in head size. Finally
images were smoothed with a Gaussian kernel of 8mm (FWHM). For group
comparisons, voxel-wise two-sample t-tests were performed (p<0.001, cluster extent
50) controlling for age and gender. Total grey matter volume GMV was derived from
the first segmentation process, normalized by total brain size, and compared across

groups by two-sample t-tests (p<0.05).

Definition of network topology scores.
A brain network consists of nodes and edges. A node is specified by a brain region.
An edge 1s the connection between two nodes (i.e. here intrinsic functional

connectivity). In binary undirected networks, edges are either 1 or 0, indicating
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whether a connection exists or not (due to a specific threshold). In the current study
both global and nodal network topology scores were calculated for binary undirected

networks at each cost in line with previous literature (Rubinov and Sporns, 2010).

The clustering coefficient (C) of a node is defined as the fraction of the given node's
neighbors that are also neighbors of each other, indicating the extent of functional
segregation in brain network. Globally, clustering coefficient of the network is
defined as mean clustering coefficient across all nodes (Watts and Strogatz, 1998;

Rubinov and Sporns, 2010).

The characteristic path length (L) of a network is defined as the average shortest path
length between all pairs of nodes in the network, indicating the extent of functional
integration of specialized information from distributed brain regions (Watts and

Strogatz, 1998; Rubinov and Sporns, 2010).

The global efficiency of a network is defined as the average inverse shortest path
length between all pairs of nodes, representing a further measure of information
integration in brain networks. Global efficiency is proportional to path length in form
of a hyperbolic curve. In general, global efficiency is primarily influenced by
short-range paths while characteristic path length by long-range paths (Rubinov and

Sporns, 2010).

A brain network with small-world property (i.e. a highly segregated and integrated

network) should be more clustered (i.e. larger clustering coefficient) than random

networks and its characteristic path length should be comparable with those of
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random networks (Watts and Strogatz, 1998). Small-worldness (S) is defined to
delineate such feature:

S = (C/Crand) / (L/Lrand)
where Crand and Lrang are the clustering coefficient and the characteristic path length,

respectively, of corresponding random networks. Small-world networks are

characterized by S > 1(Watts and Strogatz, 1998; Rubinov and Sporns, 2010).

Nodal centrality refers to nodal degree and betweenness-centrality in this study.
Nodal degree is defined as the number of edges connected with the given node while
betweenness-centrality of a node is defined as the fraction of all shortest paths
between all other nodes that pass through the given node in the network (Rubinov and
Sporns, 2010). Global betweenness-centrality is defined as averaged

betweenness-centrality across all nodes.

Nodal efficiency is defined as average inverse shortest path length between the given

node and all other nodes (Zhang et al., 2011).
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Supplementary Discussion:

Methodological issues and limitations.

Study design. Our study’s hypothesis was that specific changes of the brain’s intrinsic
connectivity (as measured by connectivity topology) interact with the course of
episodes (as measured by the number of episodes) in recurrent depressive disorder.
Concerning basic study design, at least two ways are possible to address this
hypothesis. One way might be to investigate brain connectivity in remitted patients
and to link connectivity topology scores with the number of previous episodes. An
advantage of this approach is that results are largely independent of confounding
effects of current symptoms. A potential result might represent changed topology of
intrinsic connectivity that is associated with the amount of episodes the patient has
suffered from. However, for such type of result, it remains unclear whether observed
changes somehow “stem from” brain changes that occur during an episode or in other
words: whether specific intrinsic connectivity changes of an episode are relevant for
the course of the disorder i.e. for depressive relapse. Therefore, we chose an
alternative way to address our hypothesis: we investigated patients during a current
episode and linked connectivity topology with episode numbers while controlling
statistically for effects of current symptoms. This approach enabled us to identify
episode-associated connectivity changes that are relevant for the course of the
disorder and thereby to get some ideas about a potential pathophysiology relevant for
relapse risk. However, by doing so, we are not able to decide whether such
course-relevant changes are also present when patients are remitted. To overcome
these limitations, future longitudinal studies in remitted and acute patients with
recurrent major depression are necessary.

The current study focused on the relationship between aberrant functional

68



integration of intrinsic brain activity and the number of episodes in major depression.
Previous studies investigating neural correlates of depressive relapse found a
dependence of regional brain volume changes mainly in limbic areas on the course of
major depression; in these studies, major depression course was represented by either
the number of depressive episodes (Kronmuller et al., 2009), the number of
hospitalizations (Frodl et al., 2008) or the estimated total duration of illness
(MacQueen et al., 2003). These findings implicated several consequences for the
current study’s design: (i) Due to the potential impact of structural changes on both
major depression’s course and functional connectivity in general (Lu et al., 2011), we
controlled for such structural effects on topological scores and their relationship with
episodes; since topological scores are based on connectivity among the whole brain’s
grey matter, we used total grey matter volumes as corresponding
covariate-of-no-interest. (ii) We focused on episode number for two reasons: the
number of depressive episodes was found to be the best predictor for the episode
recurrence risk in major depression (Hardeveld et al., 2010); observed network
topology changes in major depression refer to changes during episodes; both findings
together suggest an interaction between the course of episodes and changed brain
network topology, basically representing the objective of our study. (iii) Since the
number of episodes was related to the total disease duration, we controlled for disease
duration effects to specify our result with respect to depressive episodes and their
number.

Spatial smoothing. In the current study we performed spatial smoothing during
preprocessing of fMRI data. In graph-based brain network analysis, the application of
spatial smoothing is extensively discussed. On the one hand, smoothing increases

inter-voxel dependency of signals which may confound local connectivity strength
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(especially when using small ROIs like voxel-based parcellation) (van den Heuvel et
al., 2008; Hayasaka and Laurienti, 2010); on the other hand, smoothing is an
important step in fMRI data preprocessing to reduce the influence of spatial noise and
misregistrations of anatomical neighbor regions during spatial normalization.
Correspondent with this trade-off, several previous graph-based studies applied
spatial smoothing (e.g. Lynall et al., 2010; Liu et al., 2013) while others did not (e.g.
Achard et al., 2006; Zhang et al., 2011). When using spatial smoothing, the use of
Gaussian kernels to smooth the data provided high reliability for topological scores
(Guo et al., 2012). Based on these data and the fact that brain atlas regions we used
are rather large compared to voxel-wise resolution, we decided to apply spatial
smoothing based on modest Gaussian kernel of 6mm, which was equal to the size of 2

voxels (Guo et al., 2012).
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Supplementary Figures:

Figure S1. Distribution of number of episodes in patients with recurrent major
depression.

Amount of patients

0 1 2 3 4 o G 7 &3 9 10 1
Number of depressive episodes

Figure S1. The bar plot reflects the frequency distribution of the number of
depressive episodes across current study’s patients of recurrent major depression. A
bar represents the amount of patients (y-axis), who have suffered from a given

number of depressive episodes.
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Figure S2. Regional grey matter volume reduction in patients with recurrent major
depression.

Figure S2. Colored brain regions showed significantly reduced voxel-based
morphometry in patients with major depression (two-sample t-test, p<0.001, cluster

extent threshold 50). For details see Tab. S2.
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Supplementary Tables:

Table S1. Regions of Interest (ROIs) derived from Harvard-Oxford brain atlas

Index * Brain regions Index * Brain regions*
1 Frontal Pole 29 Cingulate Gyrus, anterior division
2 Insular Cortex 30 Cingulate Gyrus, posterior division
3 Superior Frontal Gyrus 31 Precuneous Cortex
4 Middle Frontal Gyrus 32 Cuneal Cortex
5 Inferior Frontal Gyrus, pars triangularis | 33 Frontal Orbital Cortex
6 Inferior Frontal Gyrus, pars opercularis | 34 Parahippocampal Gyrus, anterior division
7 Precentral Gyrus 35 Parahippocampal Gyrus, posterior division
8 Temporal Pole 36 Lingual Gyrus
9 Superior Temporal Gyrus, anterior 37 Temporal Fusiform Cortex, anterior
division division
10 Superior Temporal Gyrus, posterior 38 Temporal Fusiform Cortex, posterior
division division
11 Mlddle Temporal Gyrus, anterior 39 Temporal Occipital Fusiform Cortex
division
12 Mic.ld.le Temporal Gyrus, posterior 40 Occipital Fusiform Gyrus
division
13 Middle Tempgral Gyrus, 41 Frontal Operculum Cortex
temporooccipital part
14 Ir'lft;r@or Temporal Gyrus, anterior 42 Central Opercular Cortex
division
15 h.lff.:r%or Temporal Gyrus, posterior 43 Parietal Operculum Cortex
division
16 Inferior Temppral Gyrus, 44 Planum Polare
temporooccipital part
17 Postcentral Gyrus 45 Heschl's Gyrus (includes H1 and H2)
18 Superior Parietal Lobule 46 Planum Temporale
19 Supramarginal Gyrus, anterior division | 47 Supracalcarine Cortex
20 Supramarginal Gyrus, posterior division | 48 Occipital Pole
21 Angular Gyrus 49 Amygdala
29 L.at.er.al Occipital Cortex, superior 50 Hippocampus
division
23 L_at_er_al Occipital Cortex, inferior 51 Caudate
division
24 Intracalcarine Cortex 52 Putamen
25 Frontal Medial Cortex 53 Pallidum
Juxtapositional Lobule Cortex
26 (formerly Supplementary Motor 54 Thalamus
Cortex)
27 Subcallosal Cortex 55 N. accumbens
28 Paracingulate Gyrus 56 Brainstem

® The order of ROIs is consistent with Harvard-Oxford Atlas indices
(HarvardOxford-cort-maxprob-thr25-2mm). Subcortical ROIs are added at the end. Left and right
hemispheres have the same set of ROIs so that finally 112 ROIs were involved in this study.
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Table S2. Regional VBM reduction in patients with recurrent major depression
(refers to Fig. S1).

MNI coordinates
Lobe L/R Region ((j‘}::;:;; (mm) VaTue
X y z
L | Superior Frontal Gyrus 110 -15 -1.5 | 735 | 4.124
L | Middle Frontal Gyrus 781 -31.5 33 19.5 | 4.321
L | Inferior Frontal Gyrus, Pars triangularis
L | Inferior Frontal Gyrus, Pars opercularis 430 -55.5 | 10.5 15 4.292
L | Inferior Frontal Gyrus, Pars triangularis
R | Inferior Frontal Gyrus, Pars opercularis 548 57 10.5 18 4.561
R | Precentral Gyrus
R | Rolandic Operculum
R | Inferior Frontal Gyrus, Pars triangularis 286 435 | 345 | 135 | 4.134
R | Middle Frontal Gyrus
Frontal .
L | Medial Frontal Gyrus 663 -1.5 | 375 | 225 | 5.169
L | Anterior Cingulate Gyrus
R | Anterior Cingulate Gyrus
R | Middle Cingulate Gyrus 100 13.5 1.5 39 4.03
L | Medial Frontal Gyrus 137 -10.5 21 375 | 4.057
L | Middle Cingulate Gyrus
L | Supplementary Motor Area
L | Medial Orbital Frontal Gyrus 277 -3 465 | -7.5 4.102
R | Anterior Cingulate Gyrus
L | Anterior Cingulate Gyrus
L | Superior Temporal Gyrus 278 -48 -7.5 | -10.5 | 4.177
L | Insula
L | Middle Temporal Gyrus 279 -64.5 | -16.5 | -7.5 4.38
Temporal -
L | Middle Temporal Pole 176 -58.5 18 -27 3.826
L | Fusiform Gyrus 75 -36 | 495 | -18 3.82
L | Hippocampus 222 -37.5 | 255 -6 3.858
Parietal R | Superior Parietal Lobule 96 30 -55.5 | 585 | 4.286
L/R | Cerebellar vermis 128 3 =72 | -28.5 | 4.001

Group comparison: two-sample t-test, p<0.001, cluster extent 50.




Table S3. Small-worldness range for all subjects referring to different cost ranges

Cost range 0.05-0.50 0.05-0.14
HC 1.024543 - 4.691944 1.380449 - 4.691944
MDD 1.026928 - 5.784881 1.222477 - 5.784881

HC healthy controls; MDD major depressive disorder.
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Altered white matter integrity in depression

Abstract:

The number of recurrent episodes in major depressive disorder (MDD) has been
shown to be associated with a disrupted topology of striatum’s whole-brain functional
connectivity. This result suggests the re-organization of functional connectivity as
factor of depressive relapse; however, little is known about the underlying structural
basis. In this study we tested the hypothesis that white matter (WM) microstructure
relates to the number of episodes in MDD.

We examined diffusion tensor imaging (DTI) correlates of WM structural
connectivity in 24 patients with MDD (2 — 10 episodes) and 25 demographically
similar healthy controls. Tract-based spatial statistics (TBSS) was applied to uncover
voxel-level changes in fractional anisotropy (FA), and mean (MD), axial (AD) and
radial (RD) diffusivity in major WM pathways in MDD patients compared with
controls. Subsequently, for affected WM tracts and within MDD group, partial
correlation analysis was employed to assess the relationships between WM alterations
and the number of depressive episodes as well as symptom severity of current
episode.

MDD group showed widespread significant FA reductions in corpus callosum,
superior and inferior longitudinal fasciculus, inferior fronto-occipital fasciculus,
cingulum and corticospinal tracts (P < 0.05, TFCE corrected). MDD group also
showed similarly extensive patterns of increased MD and RD. Across MDD patients,
partial correlation relationships were found between FA and the number of depressive

episodes independent of depressive symptom severity of current episode in affected
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WM tracts connecting frontal, occipital, and temporal cortices while other tracts
demonstrated associations with symptom severity (P < 0.005, uncorrected).

Results provide first evidence that altered white matter connectivity is
associated with the course of depressive episodes in MDD, independently of current
symptoms. Our findings imply that differential re-organization of structural
connectivity in fronto-occipital and fronto-temopral circuits may contribute to

depressive relapse risk.

Key words:

Major depressive disorder, recurrent episodes, DTI, TBSS
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Introduction:

Major depressive disorder (MDD) is one of the most frequent psychiatric disorders
with a lifetime prevalence of about 16% (Kessler et al., 2003). MDD is characterized
by single or recurrent major depressive episodes, which include depressed mood,
reduced energy, impaired cognition, vegetative symptoms, and suicidal tendency with
suicide rates of about 4% (American Psychiatric Association, 2000). In 35-85% of
cases the course of major depression includes the recurrence of depressive episodes
(Hardeveld et al., 2010; Lewis et al., 2010; Farb et al., 2011). However, detailed
neurobiological pathway of the episode relapse remains poorly understood.

Over past decades, accumulative evidences of in-vivo imaging research in MDD
have shown that depressive episodes are associated with altered brain structure and
function regarding both gray and white matter ((Greicius et al., 2007; Erk et al., 2010;
Sheline et al., 2010; Aizenstein et al., 2011; Korgaonkar et al., 2011; Lui et al., 2011;
Lietal., 2012; Mwangi et al., 2012; Zeng et al., 2012; Grieve et al., 2013); for
reviews (Savitz and Drevets, 2009; Murphy and Frodl, 2011; Hamilton et al., 2012;
Whitfield-Gabrieli and Ford, 2012)). Particularly, depressive symptoms and durations
are reported to associate with aberrant patterns of gray matter’s functional
connectivity (Zhang et al., 2011) and white matter’s structural connectivity
(Henderson et al., 2013). On the other hand, recent study has started to examine the
link between aberrant functional brain network and the course of recurrent episodes
(Meng et al., 2014). Besides sub-depressive residuals, the number of previous

depressive episodes has strongest influence on the course of major depression
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(Kendler et al., 2001; Hardeveld et al., 2010; Moylan et al., 2012). The number of
episodes is suggested as one of the best predictors for the episode relapse risk in
major depression (Hardeveld et al., 2010). Our prior work showed that striatal
functional connectivity and network topology associated with the number of
depressive episodes independent of symptom severity in recurrent MDD, which
provide new insight into the specific mechanistic link between MDD-realted brain
changes and relapsed risk of depressive episodes (Meng et al., 2014). However, it
remains unclear about the structural basis underlying such mechanistic associations.
To our best knowledge, no previous study has used Diffusion Tensor Imaging (DTI) to
map the characteristic alterations of white matter tracts in relation to the course of
MDD featured by the number of depressive episodes.

The goal of the present study was to map the white matter microstructural
changes specifically linked with the course of depressive episdoes in MDD.
Therefore, patients with recurrent major depression and healthy controls were
assessed by DTT and Tract-Based Spatial Statistics (TBSS). White matter integrity
scores were derived from the major white matter tracts, compared across groups, and
related to the number of depressive episodes and current depressive symptoms by

within-MDD-group partial correlation analysis.
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Methods and Materials:
Subjects.

Twenty-four patients with recurrent major depression (mean age of 48.04 years;
11 males) and twenty-five healthy persons (mean age of 44.08 years; 11 males) were
analyzed in this study (Table 1). One patient from the same cohort in our prior fMRI
study dropped out of the DTI scan (Meng et al., 2014). All participants provided
informed consent in accordance with the Human Research Committee guidelines of
the Klinikum rechts der Isar, Technische Universitidt Miinchen. Patients were recruited
from the Department of Psychiatry, healthy controls from the area of Munich by
word-of-mouth advertising. Participants’ examination included medical history,
psychiatric interview, and psychometric assessment. Psychiatric diagnoses were based
on DSM-IV (American Psychiatric Association, 2000). The Structured Clinical
Interview for DSM-IV (SCID) was used to assess the presence of psychiatric
diagnoses (Spitzer et al., 1992). Severity of clinical symptoms was measured with the
Hamilton Rating Scale for Depression (HAM-D) (Hamilton, 1960). The global level
of social, occupational, and psychological functioning was measured with the Global
Assessment of Functioning Scale (Spitzer et al., 1992). Psychiatrists D.S. and M.S.
performed clinical-psychometric assessment; they have been professionally trained
for SCID interviews with inter-rater reliability for diagnoses and scores of more than
95%.

Recurrent major depression was the primary diagnosis for all patients. Patients

with recurrent major depression constitute a heterogeneous clinical group, varying in
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severity of current symptoms, age of disorder onset, duration of the disorder, number
of depressive episodes, family history of major depression, co-morbidity of other
disorders, and type of medication. Since the goal of the present study was to
determine the relationship between the topology of the brain’s functional connectivity
network and the course of major depression common to most patients with recurrent
major depression, we adopted selection criteria from a prior work on recurrent major
depression in order to obtain a clinically representative patient sample (Hennings et
al., 2009). Recurrence implies the return of an entirely new episode after clinical
recovery. Due to the unreliable self-report in major depression because of patients’
potential memory problems, the determination of episode number was based on the
review of patients’ medical records. Only patients whose records enabled us to
determine a consistent episode number were included in the study. The number of
episodes of all patients ranged from two to ten following a continuous distribution.
All patients met criteria for a current depressive episode with an average episode
length of 16.5 weeks (SD 6.8) and an averaged HAM-D score of 22.3 (SD 7.2). The
average age of major depression onset was 32.1 years (SD 13.9). The average
duration of major depression was 16.0 years (SD 9.7) and on average, patients had
experienced 5-6 episodes (mean 5.5, SD 2.5). Four patients had a positive family
history of major depression. Fourteen patients had psychiatric co-morbidities: six
generalized anxiety disorder, three somatization disorder, and five avoidant or
dependent personality disorders. Patients with psychotic symptoms, schizophrenia,

schizoaffective disorder, bipolar disorder, and substance abuse were already excluded
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from this study. Additional exclusion criteria were pregnancy, neurological or severe
internal systemic diseases, and general contraindications for MRI.
Data acquisition and preprocessing.

Whole brain T1-weighted MRI and DTI data were acquired on a 3 T MR scanner (Achieva,
Philips, Netherland) using an 8-channel phased-array head coil. Diffusion images were acquired
using a single-shot spin-echo echo-planar imaging sequence, resulting in one non-diffusion
weighted image (b = 0 s/mm?2) and 15 diffusion weighted images (b = 800 s/mm2, 15 non-colinear
gradient directions) covering whole brain with: echo time (TE) = 60 ms, repetition time (TR) =
6516 ms, flip angle = 90°, field of view = 224 x 224 mm?, matrix = 128 x 128, 75 transverse
slices, slice thickness = 2 mm, and 0 mm interslice gap, voxel size = 1.75 x 1.75 x 2 mm?. A
whole-head, high-resolution T1-weighted image was acquired using a magnetization-prepared
rapid acquisition gradient echo sequence following parameters: echo time (TE) = 4 ms, repetition
time (TR) = 9 ms, flip angle = 5°, field of view = 240 x 240 mm?, matrix = 240 x 240, 170 sagittal
slices, slice thickness = 1 mm, and 0 mm interslice gap, voxel size =1 x 1 x 1 mm?. All acquired
MRI images were visually inspected for excessive head motion, apparent or aberrant artifacts and
excluding subjects with poor data quality.

White matter tract-based spatial statistics (TBSS)

DTI data was preprocessed using FSL’s FDT toolbox
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT, Version 5.0.3). First, brain mask was generated by
removing skull and non-brain tissue to extract only brain tissues. Eddy-current distortion and head
motion were corrected by aligning all diffusion-weighted images to reference image (b0).

Secondly, diffusion tensors were estimated in each voxel of the whole brain, which models the
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distribution of the water molecule diffusion. Based on diffusion tensor model, fractional
anisotropy (FA), and mean (MD), axial (AD), and radial (RD) diffusivity were computed, as the
surrogate measure for white matter microstructural features. Thirdly, Tract-Based Spatial Statistics
(Smith et al., 2006), was carried out for voxelwise statistical analysis of white matter
microstructure following: (i) nonlinear alignment of each participant’s FA image to the standard
Montreal Neurological Institute (MNI152) space template; (ii) calculation of the mean of all
aligned FA images; (iii) generation of the across-all mean FA skeleton which represents centers of
white matter tracts common to all subjects, considered as the group-specific template; (iv)
projection of each subject’s aligned FA image onto the mean FA skeleton using the threshold

(FA > 0.2), to obtain individual maps. Individual mean, axial, and radial diffusivity (MD, AD, and
RD) maps were further obtained by using the same mean FA skeleton and tbss_non_FA script.
Over whole brain white matter, the general linear model and nonparametric inference (5000
random permutations) was adopted to perform statistical analyses on FA as well as MD, AD, and
RD between different participant groups by using FSL’s randomize script

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/randomise/) (Anderson and Robinson, 2001). By using

contrast setting, covariate effects of age and sex were ruled out from group comparisons based on
the permutation test. The statistical threshold was set as Prwe < 0.05 with multiple comparison
correction by threshold-free cluster enhancement (TFCE) (Smith and Nichols, 2009). In addition
to group-generated white matter skeleton mask, FSL’s standard FA skeleton was employed in
validation analysis of between-group differences.

Gray matter voxel-based morphometry (VBM)

As described recently (Meng et al., 2014), we used the VBMS toolbox
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(http://dbm.neuro.uni-jena.de/vbm.html) to analyze brain structure via voxel-based

morphometry. T1-weighted images were corrected for bias-field inhomogeneity,
registered using linear (12-parameter affine) and nonlinear transformations, and
tissue-classified into gray matter, white matter, and cerebrospinal fluid within the
same generative model. The segmented and normalized images were modulated to
account for structural changes resulting from the normalization process, indicating
gray matter volume. Here, we only considered non-linear changes so that further
analyses did not have to account for differences in head size. Finally images were
smoothed with a Gaussian kernel of 8§mm (FWHM).

Correlation analysis

Within MDD group, linear relationships between white matter FA values and variables of
interest were investigated in affected white matter tracts of reduced FA, including: (i) the course of
recurrent episodes in MDD, indexed by the number of depressive episodes; (ii) the symptom
severity of current depressive episode, indexed by HAM-D. To test the specific association with
variables of interest independent of each other, partial correlation was utilized. For example, for
associations between FA and the number of depressive episodes, the HAM-D score was controlled
as the covariate of no interest.

Firstly we adopted voxelwise permutation-based correlation analysis by using the same
approach as for group comparisons based on white matter tract skeleton (Prwe < 0.05, TFCE
corrected). Secondly, we carried out ROI analysis by using 20 anatomically defined tracts
according to JHU white matter atlas. Mean FA value of each tract was derived for each patient and
correlated with one of variables of interest independent of another one (P < 0.05, Bonferroni
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correction). Finally we examined the result based on threshold (Puncorrea < 0.005, with cluster

size > 20 voxels).

Results:
Widely distributed changes of WM integrity in MDD patients.

To investigate group differences of white matter integrity between MDD and control groups,
major white matter tracts were identified by TBSS analysis, providing a consistent whole brain
WM skeleton of 134,152 voxels across all subjects. In this skeleton, MDD patients showed
significant extensive FA reduction (Prwe < 0.05, TFCE corrected), which included: (1) association
tracts such as bilateral superior and inferior longitudinal, inferior fronto-occipital, uncinate
fasciculi and cingulum tracts; (2) projection fibers encompassing right corticospinal tracts and
bilateral anterior thalamic radiations; (3) commissural fibers including the genu, body and
splenium of the corpus callosum (Table 2 and Figure 1). For MD and RD, overlapped and even
larger patterns of affected tracts were found with significant increases in MDD group. For AD, no
significant group difference was identified (Figure S1).

Depressive symptoms and episodes were differentially associated with affected white
matter tracts.

To investigate the relationship between white matter integrity, recurrent episodes,
and depressive symptoms, we applied partial correlation analysis of corresponding
scores (e.g. FA, number of episodes, HAM-D). To note, HAM-D and the number of
depressive episodes were not correlated (r = 0.041, p = 0.844). In MDD group,
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reduced FA was found negatively associated with number of episodes independent of
HAM-D in left inferior fronto-occipital fasciculus and right temporal tract (P < 0.005,
cluster extent > 20 voxels; Table 3 and Figure 2). Furthermore, reduced FA was
associated with HAM-D independent of number of episodes, including positive
correlation in right anterior thalamic radiation and negative correlation in right

temporal tract (Table 3 and Figure 3).

Discussion:

To analyze how white matter integrity is linked with the course of depressive
episodes in major depression, we applied DTI and TBSS in patients with recurrent
major depression and healthy controls. We found significant FA reductions and
MD/RD increases in widespread white matter tracts in MDD group. No significant
association was identified between white matter alterations and patients’ number of
depressive episodes or current depressive symptoms. However, it was hinted at the
liberal threshold that FA in affected frontal, occipital, and temporal tracts was linked
with patients’ number of depressive episodes independent of current depressive
symptoms. Our findings suggest potential structural basis linked with depressive
relapse risk in major depression.

White matter changes in MDD consistent with other reports

In this study, TBSS was employed to investigate tract-based microstructural changes in MDD
compared to healthy controls (Figure 1). Significant FA reductions were identified at the threshold
of P <0.05 with TFCE-based multiple comparison correction, referring to corpus callosum and
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white matter tracts connecting frontal, parietal, temporal, occipital and limbic regions. These
findings were in line with previously reported reduced FA over WM regions associated with the
limbic system, prefrontal cortex, thalamic projection fibers, corpus callosum, and other association
fibers (Korgaonkar et al., 2011; Henderson et al., 2013). The smaller FA was robustly reported
across affective disorders with most reproducible abnormalities in frontal and temporal regions
(Sexton et al., 2009). Earlier postmortem studies showed pathological white matter in prefrontal
region like decreased oligodendrocyte density and so on (Tham et al., 2011). The frontal-limbic
system is critical in affective processing and emotion regulation, which is disrupted underpinning
dysfunctional brain in MDD (Clark et al., 2009). Moreover, previous studies using meta-analysis
of MDD abnormalities showed smaller FA in the superior longitudinal fasciculus which connects
frontal, temporal and parietal regions as well as occipital regions (Murphy and Frodl, 2011; Liao
et al., 2013). In addition, other imaging approaches also demonstrated widespread regional
changes of gray matter and hyper/hypo-functional connectivity in MDD (Drevets et al., 2008;
Lorenzetti et al., 2009).

Despite FA reduction we found significantly increased MD and RD but unchanged AD in
MDD by TBSS analysis. The animal models of axonal disease have shown that an increase in RD
is sensitive to demyelination (Song et al., 2002). Taken together, in the majority of affected white
matter tracts with FA reductions, largely overlapped patterns with increased MD and RD were
identified (Table S2). Our data suggest possibly decreased myelination or other degeneration
change in extensive white matter tracts in MDD, which is consistent with other reports

(Korgaonkar et al., 2011; Mettenburg et al., 2012; Hemanth Kumar et al., 2014).
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Associations with number of depressive episodes and HAM-D

Within MDD group, we tested the partial correlations of FA in affected WM tracts with
number of depressive episodes and symptom severity of current episode indexed by HAM-D,
resulting in no significant results using Ptrce < 0.05. The liberal threshold was used to explore
potential trend. For patients with recurrent depressive episodes, negative associations (Puncorr <
0.005 and cluster extent > 20 voxels) were identified between FA and number of depressive
episodes independent of HAM-D in left inferior fronto-occipital fasciculus and right temporal tract
(Table 3 and Figure 2). Previously we found in MDD that right striatal functional network
topology linked with number of depressive episodes independent of HAM-D (Meng et al., 2014).
The subcortical regions like striatum and thalamus constitute a loop with cortical layers to support
higher-order function like cognitive and emotional processing which is impaired in MDD
(Hamilton et al., 2012). Current findings on WM tracts might imply potential structural basis for
the association between disrupted functional network and disorder course of recurrent MDD
however the interpretation must be careful due to the weak statistical significance and effect size.
As for the partial correlation between FA in affected WM tracts and HAM-D
independent of number of depressive episodes, positive association (Puncorr < 0.005
and cluster extent > 20 voxels) was identified in right anterior thalamic radiation and
negative association in right temporal tract (Table 3 and Figure 3). The anterior
thalamic radiation forms thalamic-cortical connections and links to prefrontal lobe,
which is dysfunctional in MDD, and probably links with disrupted frontal-limbic-
thalamic circuit (Lui et al., 2011). Previous study reported that white matter
abnormalities linked with illness severity in MDD (Cole et al., 2012; Henderson et al.,
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2013; de Diego-Adelino et al., 2014). Interestingly, our prior work based on the same
cohort and resting-state functional connectivity found significant association between
HAM-D and network centrality in inferior frontal gyrus and supermarginal gyrus in
right hemisphere, which supported current findings in underlying right anterior

thalamic radiation and temporal tract (Meng et al., 2014).

Conclusion.

The extensive microstructural WM FA reductions and RD increases are present in
recurrent MDD, supporting prior hypothesis of WM demyelination underlying
dysfunctional brain in MDD. No significant associations of white matter changes
were identified with the course of depressive episodes and current symptoms despite

some hints for potential trend of associations.
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Tables:

Table 1. Demographic and clinical data

. L. MDD grou Control grou
Characteristic N =g2 4 P N = §5 P P value
Age [year] 48.04 (14.70) | 44.08 (14.78) 0.352
Sex, female/male 13/11 14/11 0.897
Number of episodes 5.46 (2.47) NA
Duration of major depression 15.96 (9.68) NA
[years]

Age at onset [year] 32.08 (13.90) NA

Current episode
HAM-D 22.29 (7.16) 0 <0.001*
GAF 49.33 (10.49) 99.5 (1.1) <0.001*
Duration [weeks] 16.54 (6.76) NA

Current medication
Number of medications 1.75 (0.74) NA
Types, 1/2/3/4 10/10/4/0 NA
SSRI/SNRI/NL/Alpha-2 17/7/5/13 NA

Group comparisons: two-sample t-tests for age, HAM-D, GAF; y*-test for sex. Data
are presented as mean and standard deviation like mean (SD). MDD Major
Depressive Disorder; HAM-D Hamilton Rating Scale for Depression; GAF Global
Assessment of Functioning; SSRI Selective serotonin reuptake inhibitor; SNRI
Serotonin-norepinephrine reuptake inhibitor; NL neuroleptics; alpha-2 alpha-2

receptor modulator

*Data shown indicate statistical significance (P < 0.05)

Table S1 Overall volumetric results revealed by VBM

MDD grou Control grou
Measures N =g2 4 P N = ng P ip value
TIV (mm3) | 1448.69 (124.88) | 1398.25 (142.21) | 0.194
GMV/TIV 0.44 (0.02) 0.46 (0.02) 0.001*
WMV/TIV 0.37 (0.02) 0.37 (0.02) 0.201
CSFV/TIV 0.19 (0.03) 0.18 (0.02) 0.055

Age and sex were included as covariates for comparisons of whole brain volume and
GM, WM, and CSF percentage. MDD Major Depressive Disorder; GM gray matter;
WM white matter; CSF cerebrospinal fluid.

*Data shown indicate statistical significance (P < 0.05)
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Table S2 Overall skeleton-based results revealed by TBSS

Measures Voxels
Group-generated skeleton 134152
Standard skeleton 137832
Reduced FA in MDD 18545
Increased MD in MDD 42981
Increased RD in MDD 42090
Overlap of results

FA and MD overlap 11237
FA and RD overlap 16189
RD and MD overlap 31017
All 3 overlap 11196

Table 2. TBSS results: reduced FA, increased MD and RD in MDD

FA MD RD
JHU-atlas-defined white matter | Voxe Mean Voxe Mean Voxe Mean
a proba proba proba
fracts Is | bilitie | 5, | bilitie | o>, | bilitie
O R IO L Rl IO L
Anterior thalamic radiation L 1.360 | 0.724 | 1.350 | 0.695 | 1.450 | 0.731
Anterior thalamic radiation R 0.440 | 0.155 ] 0910 | 0.441 | 0.340 | 0.130
Corticospinal tract L 1.170 | 0.452 | 0.970 | 0.387
Corticospinal tract R 0.870 | 0.407 | 0.680 | 0.290 | 0.550 | 0.248
Cingulum (cingulate gyrus) L 0.070 | 0.021 | 0.160 | 0.058 | 0.020 | 0.006
Cingulum (cingulate gyrus) R 0.020 | 0.005 | 0.080 | 0.025 | 0.240 | 0.082
Cingulum (hippocampus) L 0.010 | 0.003
Cingulum (hippocampus) R
Forceps major 0.390 | 0.132 | 0.970 | 0.313 | 0.950 | 0.306
11.30
Forceps minor 0] 6.297 | 5.580 | 3.015 | 5.990 | 3.288
Inferior fronto-occipital
fasciculus L 2.340 | 0.871 | 2.430 | 0.908 | 2.480 | 0.915
Inferior fronto-occipital
fasciculus R 4.260 | 1.630 | 2.350 | 0.891 | 2.820 | 1.067
Inferior longitudinal fasciculus
L 1.530 | 0.535 | 2.800 | 1.095 | 2.440 | 0.946
Inferior longitudinal fasciculus
R 3.120 | 1.254 | 1.020 | 0.394 | 1.670 | 0.657
Superior longitudinal fasciculus
L 2.600 | 1.439 | 2.430 | 1.206 | 1.870 | 0.965
Superior longitudinal fasciculus
R 1.960 | 0.978 | 0.830 | 0.334 | 1.050 | 0.469
Uncinate fasciculus L 0.110 | 0.033 | 0.290 | 0.112 | 0.280 | 0.107
Uncinate fasciculus R 0.490 | 0.173 | 0.270 | 0.087 | 0.310 | 0.104
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Superior longitudinal fasciculus
(temporal part) L 1.450 | 0.565 | 1.040 | 0.386 | 0.930 | 0.361
Superior longitudinal fasciculus
(temporal part) R 0.830 | 0.299 | 0.250 | 0.082 | 0.480 | 0.163

Group comparison of skeletonized white matter measures was carried out by
nonparametric t-test (5000 permutations) using randomize in FSL, with age and sex as
covariates of no interest. Statistical significance was set at P < 0.05, FWE (familywise
error rate) corrected, by using threshold-free cluster enhancement (TFCE). Resulted
group difference map was converted to binary mask in order to locate and identify
white matter tracts in the result mask by using atlasquery in FSL. MDD Major
Depressive Disorder; FA: fractional anisotropy; MD: mean diffusivity; RD: radial
diffusivity.

*White matter tracts according to JHU white matter tractography atlas.

bPercentage of voxels of the considered tract within the result mask.

‘Mean probabilities of the considered tract within the result mask.

L/R: left/right.

Table 3. Correspondences with HAM-D and number of episodes in MDD

MNI coordinates
Si Cluster of peak voxel
White matter tracts size p r p
de (voxel) (mm)
X | Y] z
Association between FA and number of episodes
Inferlorf afsr((:)ir;tlj)l-uoscmpltal L 20 34 | 80| 21
- — -0.821 | <0.001
Superior longitudinal R 12 50 | 25| 25
fasciculus (temporal part)
Association between FA and depressive symptom
. . . 38 22 7 18
Anterior thalamic radiation | R 25 19 120 0 0.680 | <0.001
Superior longitudinal | p | 5, 35 | -19| 27 | -0.705 | <0.001
fasciculus (temporal part)

The relationships between white matter FA and number of episodes as well as
depressive symptom indexed by HAM-D was evaluated by nonparametric t-test (5000
permutations) using randomize in FSL. Positive and negative correlations between FA
and number of episodes independently of HAM-D, and between FA and HAM-D
independently of number of episodes, were identified (voxelwise Puncorr < 0.005,
cluster size > 10 voxels). Overall correlation coefficients and p values of mean FA
values of resulting clusters were reported. White matter tracts of resulting clusters
were reported according to JHU white matter tractography atlas. L/R: left/right; MDD
Major Depressive Disorder; FA: fractional anisotropy; HAM-D Hamilton Rating
Scale for Depression.
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Figure Legends:

Fractional anisotropy (FA): MDD < HC -005 skeleton wem
p<0.

(28, -50, -8) (35, -60, -2) (-35, -9, 13) (9, -14, 25) (0, -6, 30)

Figure 1. Whole brain white matter changes in MDD. Coronal, axial, and sagittal
views illustrated significant group difference of white matter fractional anisotropy
(FA) between MDD and control groups, superimposed on the T1-weighted brain
image of MNI152 structural standard template and group-generated white matter
skeleton. Green color indicated the common skeleton over MDD and control groups.
Blue color indicated reduced FA in MDD (permutation test, P < 0.05, FWE
corrected). Significant between-group difference was displayed using the tbss_fill
script, which dilates resulted clusters in the white matter skeleton for better

visualization. MNI coordinates were provided at the bottom.
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MD RD

Z=-19 mm Z=139 mm Z=-13 mm Z=1Y mm
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1 ¥

Figure S1. Whole brain white matter changes in MDD. Axial views illustrated
significantly reduced fractional anisotropy (FA, colored by blue), increased mean
diffusivity (MD, colored by red), and increased radial diffusivity (RD, colored by
yellow) in MDD patients (permutation test, P < 0.05, FWE corrected). The affected
tracts were superimposed on the T1-weighted brain image of MNI152 structural
standard template and group-generated white matter skeleton (colored by green). The
affected tracts were displayed using the thss_fill script, which dilates resulted clusters

in the white matter skeleton for better visualization.
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r=-0.821, p<0.001 |

MNI coordinate
(-34, -80, 21) mm

L

4 5 &
Number of episodes

Figure 2. Correspondence between affected white matter and number of episodes
in MDD patients. In the left panel, coronal, axial, and sagittal views illustrated
significant negative correlation between FA and number of episodes, independently of
HAM-D, within MDD group. In the right panel for visualization, number of episodes

and averaged FA of related white matter tracts were illustrated in the scatter plot.
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r=-0.705, p<0.001

MNI coordinate
(22,7, 18) mm

r=0.680, p<0.001

MNI coordinate

(35,-19,-27) mm
|

Figure 3. Correspondence between affected white matter and severity of
depressive symptom in MDD patients. In the left panel, coronal, axial, and sagittal
views illustrated associations between FA and severity of depressive symptom
indexed by HAM-D, independently of number of episodes, within MDD group. In the
right panel for visualization, HAM-D and averaged FA of related white matter tracts
were illustrated in the scatter plot. The upper row displayed positive correlation result

while the lower row displayed negative correlation result.
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Abstract:

Humans are highly susceptible to adverse long-term consequences of very preterm
birth (< 32 weeks of gestation), ranging from growth failure to disturbed brain
development and compromised cognition. The macroscopic brain connectome in very
preterm newborns shows aberrant subcortical connectivity with a relative increase of
cortico-cortical connectivity despite largely unchanged overall architecture. Yet little
is known about adult connectome after very preterm birth. We hypothesized that
altered connectome may persist in very preterm born adults, with differential
potentials for compensatory adaption in subcortical and cortical changes. Thus,
resting-state fMRI, graph-based network analysis, and cognitive testing were used to
investigate the functional brain connectome and general cognitive performance in 64
very preterm and 72 full-term born adults.

While global network metrics such as small-world organization were unchanged
in very preterm born adults, local network metrics were altered in cortical and
subcortical regions regarding functional integration and segregation. Associated with
early prematurity and adulthood cognition, subcortical and primary cortical regions
(such as caudate, hippocampus or auditory cortex) showed lesion-like alterations of
network topology (e.g. the more caudate nodal efficiency is reduced the worse
cognitive performance), whereas associative cortical regions (such as inferior frontal
gyrus (IFG) and superior parietal cortex) displayed compensation-like alterations (e.g.
the more IFG nodal efficiency is increased the better cognitive performance).

Results provide first evidence for the altered functional brain connectome in
very preterm born adults with both lesion-like and compensation-like reorganizations.
Data suggest specific developmental trajectory of human connectome after preterm

delivery.
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Introduction:

In humans, very preterm birth (< 32 weeks of gestation) is associated with potentially
lasting adverse consequences that range from an increased risk for neuropsychiatric
disorders to lowered cognitive performance or socio-economic status (Nosarti et al.,
2012; D'Onofrio et al., 2013). The current study focuses on potential alterations in
macroscopic brain organization in very preterm born adults and their functional
relevance.

Brain function depends on both specialized local information processing (i.e.
functional segregation) and efficient global integration of distributed regions (i.e.
functional integration) within a network of neural interactions called the human
connectome (Sporns et al., 2005). Graph-based network analysis combined with
diffusion-weighted imaging and resting-state fMRI allows for in-vivo characterization
of the macroscopic connectome (Bullmore and Bassett, 2011). The macroscopic
functional connectome comprises both brain regions (i.e. nodes of the graph) and
functional connections of synchronized spontaneous activities (i.e. edges between
nodes), which is characterized by network metrics such as local clustering (i.e.
segregation of functional modules) and global efficiency (i.e. integration of local
modules) (Rubinov and Sporns, 2010).

The human macroscopic connectome emerges and gets modified during early
brain maturation (Ball et al., 2014; van den Heuvel et al., 2014), development (Collin
and van den Heuvel, 2013; Cao et al., 2014), and aging (Filippi et al., 2013).
Hallmarks of the adult connectome such as so-called small-world and rich-club
organization are already present in very preterm newborns with both increasing
capacity of global integration and increasing coupling of structural and functional

connectivity during early postnatal development to week 40 (Ball et al., 2014; van den
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Heuvel et al., 2014). However, while the fundamental connectome architecture is
present in preterm newborns, particularly subcortico-cortical connectivity appears to
be altered compared to term-born newborns, with a relative increase of
cortico-cortical connectivity and cortical local clustering (Ball et al., 2014). Recently
widespread altered functional connectivity has been reported in preterm born adults
(White et al., 2014; Bauml et al., 2014). These findings suggest an altered
developmental trajectory for the connectome of preterm born individuals and
potentially distinctive functional relevance for subcortico-cortical and cortico-cortical
connectivity in such process. For example, subcortical changes of intrinsic functional
connectivity in preterm born adults link with persistent subcortical gray matter
disruptions in a lesion-like way (i.e. the lower gestational age at birth the stronger
connectivity changes) (Bduml et al., 2014), and cortical processes in preterm born
adults appear to show compensatory reorganization during cognitive tasks
(Narberhaus et al., 2009).

Therefore, we hypothesized: (i) the basic global organization of human functional
connectome may be preserved into adulthood after preterm birth; (ii) divergent
regional, specifically cortical and subcortical, topological organization may account
for long-term detrimental effect of preterm birth as well as potential compensatory
adaption, featured by lesion-like or compensation-like mode of changes in preterm
adults. Here we applied connectome analysis combining resting-state fMRI and graph
theory to examine the topological organization of functional connectome in very
preterm born adults and potential associations with early prematurity and adulthood

cognitive ability.
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Materials and Methods:

Overview. Sixty-four very preterm (VPT, defined by the birth with less than 32
gestational weeks; 38 males) and 72 full-term (FT, defined by birth after 36
gestational weeks; 48 males) born adults at the age of about 26y were assessed by
both resting-state functional MRI (rs-fMRI) and cognitive testing to define
topological properties of the functional connectome and general cognitive
performance. Outcome measures were global and regional network metrics of
functional segregation (e.g. local clustering) and functional integration (e.g. path
length), prematurity (i.e. gestational age and birth weight), neonatal medical risk, and
full-scale intelligence quotient (IQ). For hypothesized lesion-like mode of network
changes, it indicates the more the prematurity (or the higher the neonatal medical risk,
or the lower the 1Q) the more the network changes. Complementarily,
compensation-like mode indicates the less the prematurity (or the lower the neonatal
medical risk, or the higher the IQ) the more the network changes.

Participants

Sample. Participants were recruited as part of the prospective Bavarian Longitudinal
Study (BLS) (Riegel et al., 1995; Wolke and Meyer, 1999). The BLS investigates a
geographically defined whole-population sample of neonatal at-risk children and
healthy controls. Born between February 1985 and March 1986 in southern Bavaria,
all infants who required admission to neonatal units in 17 children’s hospitals within
the first ten days of life, comprised the target sample. A total of 7505 infants (10.6%
of all live births) were classified neonatal at-risk, including 560 VPT infants (0.8% of
all live births). During the same period, 705 healthy FT infants (> 36 weeks gestation;
normal postnatal care) born in the same hospital centres were recruited as control

infants. Over the following years, subjects of both groups were repeatedly assessed
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with neurological and psychological test batteries, and parental interviews to monitor
their development. Full eligible sample details of the follow-up are provided
elsewhere (Wolke and Meyer, 1999; Gutbrod et al., 2000). At the age of 26, 205 VPT
and 229 FT subjects were eligible for a follow-up assessment. Of them, 64 VPT and
72 FT adults (aged 25 to 27 years) underwent MRI assessments (Table 1). MRI was
carried out at two different sites: The Department of Neuroradiology, Klinikum
Rechts der Isar, Technische Universitidt Miinchen, Germany (N=89), and the
Department of Radiology, University Hospital Bonn, Germany (N=47). The study was
approved by the local ethics committees of the Klinikum rechts der Isar and
University Hospital Bonn. All participants gave written informed consent and
received travel expenses and a payment for attendance.

Birth-related variables. Gestational age (GA) was estimated from maternal reports of
the last menstrual period and serial ultrasounds during pregnancy. In cases where the
two measures differed by more than two weeks, clinical assessment with the
Dubowitz method was applied (Dubowitz et al., 1970). Maternal age and birth weight
(BW) was obtained from obstetric records. We use the term prematurity to refer both
GA and BW. To assess neonatal medical risk, the duration of intensive neonatal
treatment Index (DINTI) was computed as the number of days until VPT infants
reached a stable clinical state (Gutbrod et al., 2000). Family socio-economic status
(SES) at birth was collected through structured parental interviews within 10 days of
child birth. It was computed as a weighted composite score based on the profession of
the self-identified head of each family together with the highest educational

qualification held by either parent (Bauer, 1988).

Cognitive assessment
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To estimate cognitive functioning in adulthood, participants was assessed at age of 26
years by trained psychologists with the Wechsler Adult Intelligence scale-III
(WAIS-III) (Von Aster et al., 2006) , which provided full-scale 1Q representing

general cognitive ability.

Imaging data acquisition and preprocessing

Acquisition. MRI scans were acquired on MR scanners in Munich and Bonn, for
which we controlled by the use of covariates of no-interest: 3T Philips Achieva TX (in
Munich center coded as [0 0 1]: VPT=40, FT=49, total=89; in Bonn center coded as
[100]: VPT=4, FT=9, total=13) and 3T Philips Ingenia (in Bonn center coded as [0 1
0]: VPT=20, FT=14, total=34), with an 8-channel head coil, applying consistent
sequences and parameter settings. For co-registration and volumetric analysis,
T1-weighted anatomical data were obtained by using a magnetization-prepared rapid
acquisition gradient echo sequence (echo time = 3.9 ms, repetition time = 7.6 ms, flip
angle = 15°, field of view =256 x 256 mm?, matrix = 256 x 256, 180 sagittal slices,
slice thickness = 1 mm, and 0 mm interslice gap, voxel size = 1 x 1 x 1 mm?). For
resting-state functional MRI scans, subjects were instructed to keep their eyes closed,
lie still and relax, but not to fall asleep, which was verified by the intercom.
Functional data were acquired by using a gradient echo EPI sequence (echo time = 35
ms, repetition time = 2608 ms, flip angle = 90°, field of view = 230 x 230 mm?,
matrix = 64 x 64, 41 axial slices, slice thickness = 3.6 mm, and 0 mm interslice gap,
voxel size = 3.6 x 3.6 x 3.6 mm?; 255 volumes).

Preprocessing. For each subject, resting-state fMRI data preprocessing was
performed by using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and AFNI

(http://afni.nimh.nih.gov/atni/) comprising following steps. First, the first five
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volumes were discarded for equivalence of magnetization effect. Second, remained
brain images were corrected for head motion by spatially realigning them to the first
volume. Moreover, temporal signal-to-noise ratio and point-to-point head motion
were estimated to ensure data quality as described in previous studies (Murphy et al.,
2007; Van Dijk et al., 2012; Meng et al., 2014). Third, functional images were
spatially aligned with individual anatomical image by co-registration, then normalized
into MNI standard space (Montreal Neurological Institute; http://www.mni.mcgill.ca/)
following segmentation of anatomical image, resulted in isotropic voxel of 3 mm.
Fourth, data was spatially smoothed using an isotropic Gaussian kernel with 6 mm
FWHM to reduce spatial noise, and temporally despiked via censoring
high-motion-contaminated volumes (using 3dDespike for neighboring interpolation)
to limit the impact of statistical outliers on signal intensity (Alexander-Bloch et al.,
2013; Siegel et al., 2014). Regarding recent findings about biased influence of micro
head motion on functional connectivity, average of root-mean-square motion was
calculated in VPT group (mean [SD], 0.040 [0.015] mm) and FT group (mean [SD],
0.035[0.018] mm) (Van Dijk et al., 2012). Mean framewise displacement was also
calculated in VPT group (mean [SD], 0.151 [0.057] mm) and FT group (mean [SD],
0.134 [0.058] mm) (Power et al., 2012). Two-sample t-tests yielded no significant
between-group difference regarding evaluated head motions (p > 0.08) as well as
temporal signal-to-noise ratio (p > 0.29).

Accounting for structural changes. In this study, we focused on the functional
connectome, which depends on the structural integrity of polysynaptic pathways (Lu
etal., 2011). To control for the influence of potential structural variations, we
included total gray matter volume as covariate-of-no-interest in functional network

analyses based on our recent work (Sorg et al., 2013; Meng et al., 2014). Standard
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voxel-based morphometry (VBM) analysis was performed on T1-weighted images by

the VBMS toolbox (http://dbm.neuro.uni-jena.de/vbm.html) to analyze brain structure,

resulting in macroscopic estimates of gross structural variation including total gray
matter, white matter, cerebrospinal fluid, and brain volumes. To note, modulated gray
matter images were generated by accounting for non-linear volume changes during
normalization process, which ruled out differences of head size (for more details see

elsewhere (Meng et al., 2014)).

Network construction of the functional connectome

The functional connectome was defined at the macro scale based on whole-brain
resting-state functional connectivity networks. Here we describe the analysis pipeline
in brief as the methodological details can be found elsewhere (Meng et al., 2014). For
each subject, the brain network, with nodes representing brain regions and edges
representing between-node connections, was constructed from preprocessed
resting-state fMRI data. First, the whole brain was divided into cortical and
subcortical nodes (N = 112) by anatomical parcellation according to Harvard-Oxford
atlas (FSL, Oxford University). Second, 112 regional mean time series were extracted
regarding node-specific functional signal. To account for spurious signal changes
attributable to head movements or physiological confounds, each regional mean time
series was regressed on six head motion parameters estimated from realignment and
three averaged time series derived from whole gray matter, white matter and
cerebrospinal fluid according to recent literatures (Craddock et al., 2013; Smith et al.,
2013; Power et al., 2014). Third, to identify between-node connection, each regional
time series was band-pass filtered into four wavelet scales corresponding to different

frequency intervals using the maximal overlap discrete wavelet transform, and
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Pearson’s correlation of wavelet coefficients (at scale 2 of 0.048-0.096 Hz for low
frequency of intrinsic functional connectivity) were computed between each pair of
regional time series, resulting in 112 by 112 association matrices based on functional
connectivity (Percival and Walden, 2006; Lynall et al., 2010). The sensitive frequency
scale was selected according to our prior study (Meng et al., 2014) and recent
literature (Giessing et al., 2013). Fourth, absolute correlation coefficients at the
low-frequency scale 2 were used to denote the individual functional connectome in

line with previous studies (Alexander-Bloch et al., 2012; Meng et al., 2014).

Network analysis of the functional connectome

Analysis of global functional connectivity properties. To analyze simple global
properties of functional connectivity, global strength and diversity of functional
connectivity were estimated simply as the mean and variance of each individual
functional connectivity matrix (Lynall et al., 2010). In addition, performing principal
component analysis on each matrix, the global integration was estimated by the ratio
of the first eigenvalue to the sum of all other eigenvalues (Tononi et al., 1994; Friston,
1996). Next, graph-based network analysis was performed to characterize network
topology of the individual functional connectome.

Analysis of global and local network topology. Binary-graph-based network analysis
was conducted using Matlab-based in-house scripts and Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). Networks were constructed at 41 different connection
densities in the range 5 — 50%, providing sparser or less densely connected adjacency
matrices of costs from 0.05 to 0.50 at the interval of 0.01 (Meng et al., 2014).
Network cost is defined as the number of edges in the graph as a percentage of the

maximum possible number of edges (N*N-N)/2 = 6212. A thresholding algorithm
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based on minimum spanning tree was used to enable that all regional nodes were
connected even at the lowest cost (Alexander-Bloch et al., 2012; Giessing et al., 2013;
Meng et al., 2014). For each cost threshold and corresponding graph, key topological
measures were calculated for each node and network. More specifically, nodal and
global topological properties quantify comprehensively the topology of the functional
connectome regarding both functional integration and functional segregation.
Functional integration in the brain is the ability of fast information processing and
combining over distributed brain regions, and — here - reflected by three nodal
centrality metrics (i.e. degree, betweenness, and efficiency) and two global metrics
(i.e. characteristic path length and network global efficiency of whole network)
(Rubinov and Sporns, 2010). Functional segregation in the brain is the ability of local
specialized processing within densely interconnected groups of brain regions, and —
here - reflected by one nodal metric (i.e. nodal local efficiency) and two global
metrics (i.e. clustering coefficient and network local efficiency of whole network)
(Rubinov and Sporns, 2010).

Nodal properties. Concerning nodal functional integration: degree is defined as the
number of edges connected with the given node and betweenness-centrality is defined
as the fraction of all shortest paths (the smallest number of intermediate edges)
between all other nodes that pass through the given node in the network, which both
quantify nodal centrality in a network (Rubinov and Sporns, 2010). Efficiency is a
measure of the capacity for global parallel information process and transfer, estimated
by the inverse of harmonic mean of shortest path lengths between the given node and
all other nodes in the network (Latora and Marchiori, 2001). So nodal efficiency is
inversely related to the path length and a node featured by higher efficiency will play

a more central role in the integrated organization of the network. Concerning nodal
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functional segregation: Nodal local efficiency is a measure of the capacity for local
information exchange between the nearest neighbors of the given node, defined by
averaged efficiency of subgraph comprising neighboring nodes of the given node
(Rubinov and Sporns, 2010). It is worth mentioning, nodal local efficiency is highly
related to the clustering coefficient, which implys the extent of segregated
organization (Watts and Strogatz, 1998). So a node featured by higher local efficency
will contribute more to the cliquish organization of the network (Giessing et al.,
2013).

Global properties. To assess global functional network topology, global topological
properties were computed for the whole network of all nodes across costs, including
clustering coefficient, characteristic path length, small-worldness, network global and
local efficiency (Rubinov and Sporns, 2010).The characteristic path length of a
network is defined as the average shortest path length between all pairs of nodes in the
network (Watts and Strogatz, 1998). The clustering coefficient of a node is defined as
the fraction of the given node's neighbors that are also neighbors of each other. The
clustering coefficient of a network is defined as mean clustering coefficient across all
nodes (Watts and Strogatz, 1998). The small-worldness is defined as the ratio of
clustering coefficient against characteristic path length of a network compared with
random networks with the same number of nodes, edges and degree distribution,
describing the small-world property of high local specialization and high global
integration (Watts and Strogatz, 1998; Rubinov and Sporns, 2010). In this study, 100
corresponding random networks were generated for each comparison in line with
previous studies (Maslov and Sneppen, 2002; Meng et al., 2014). Global efficiency
and local efficiency of a network is computed by averaging efficiency and local

efficiency of all nodes in the network, which is respectively related to characteristic
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path length and clustering coefficient, and frequently evaluated for global network

topology (Cao et al., 2013).

Statistical analysis

Group comparisons. Two-sample t-tests and Chi-square tests were used for
descriptive group comparisons of neonatal and clinical data. For network metrics,
each metric was averaged over the prior defined cost range (5-50%) to avoid multiple
comparisons due to the individual density sampling and to reduce the dependency of
any significant differences in network topology on the arbitrary choice of a single cost
(Ginestet et al., 2011; Giessing et al., 2013; Meng et al., 2014). To identify group
differences in network metrics of functional connectome, statistical comparisons were
carried out between VPT and FT groups using permutation testing (van den Heuvel et
al., 2013). For each network metric (i.e. clustering coefficient, characteristic path
length, small-worldness, network global and local efficiency; nodal degree,
betweenness, efficiency, and local efficiency), confounding factors of MRI center,
gender, and total gray matter volume were firstly ruled out by multiple regression.
Then the difference between the two group means was calculated. Next, 100, 000
permutations were employed to generate the null model of the group difference
occurring by chance, which finally yielded a p value for the original group difference
that reflects the statistical significance. Significance thresholds were set for global
topological properties (p < 0.05) and nodal topological properties (p < 0.009, using
False Positive Correction according to the number of nodes, 1/N~=0.009) in
agreement with previous studies on functional brain topology (Lynall et al., 2010;

Meng et al., 2014).
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Association between network topology, VPT-related variables, adulthood 1Q. To
analyze the separate relationship of VPT effect and cognitive performance with
topological properties of aberrant nodal connectivity in VPT adults, we calculated the
partial correlation coefficients of network metrics with birth-related variables (i.e. GA,
BW, DINTI) independent of adult cognitive functioning (i.e. full-scale 1Q), and vice
versa. Additional common covariates (i.e. gender, center, SES, and total gray matter
volume) were also controlled in partial correlation analyses. Partial correlation
analysis was used because it allows for measuring the degree of association between
two interested variables (e.g. network metric and gestational age), with controlling
other variables (e.g. cognitive performance reflected by full-scale 1Q). Such type of
control is relevant, since previous studies demonstrated significant relationships
between prematurity level and cognitive performance (Isaacs et al., 2004; Eikenes et
al., 2011). In more detail, the partial correlation between the network metric and
gestational age given controlling variables Z = (IQ, gender, center, SES, and total
gray matter volume), written as p(METRIC, GA;.Z), is the correlation between the
residuals R(METRIC) and R(GA) resulting from the linear regression of METRIC
with Z and of GA with Z, respectively. Therefore, partial correlation analysis allows
for testing the relationship between network topology and VPT-related variables

independent of adulthood IQ and vice versa.
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Results:
Cognitive performance and global brain structure in VPT adults
Descriptive results of VPT and FT groups are reported (Table 1). Both groups had a
mean age of 26.3 years at scan and were gender-, SES-, and MRI-center-matched (p >
0.05). The VPT group had significantly lower 1Qs compared with the FT group (p <
0.0001).

Volumetric analysis revealed significantly smaller total brain volume and white
matter volume as well as larger cerebrospinal fluid volume in VPT adults (p < 0.05;
Table 2), whereas the group difference of total gray matter volume was not significant

(p>0.05).

Unchanged global functional connectivity and network topology in VPT adults
Concerning global properties of functional connectome, no significant group
differences were found between VPT and FT adults in global functional connectivity
(global strength, diversity, and integration) and global network topology
(small-worldness, local clustering coefficient, characteristic path length, global and

local efficiency) (for all tests p > 0.05; Table 2).

Altered nodal functional integration and segregation in VPT adults

Concerning regional properties of network topology (Figure 1 and Table 3), we
assessed nodal network metrics by performing permutation tests for nodal functional
integration (i.e. degree, betweenness, and efficiency) and nodal functional segregation
(i.e. local efficiency). Compared to FT adults, significant changes of nodal network
metrics were found in VPT adults across frontal, temporal, parietal, occipital, and

subcortical regions (Figure 1 A).
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Specifically for nodal functional integration (Figure 1 B), the VPT group
exhibited increased nodal degree and efficiency primarily in the pars triangularis and
opercularis of left inferior frontal gyrus, posterior division of left inferior temporal
gyrus, and left amygdala. Decreased degree, betweenness, and efficiency were found
primarily in the bilateral supplementary motor cortex, temporoocicipital part of left
inferior temporal gyrus, right temporal regions including planum temporale and
Heschl’s gyrus, left lingual and occipital fusiform gyrus, right caudate and right
thalamus (p < 0.009; Table 3, Figure 1 B).

For nodal functional segregation (Figure 1 C), the VPT group exhibted
significantly higher nodal local efficiency primarily in the posterior division of left
inferior temporal gyrus, left superior parietal lobule, and right hippocampus, and
lower nodal local efficiency primarily in the bilateral supplementary motor cortex,
inferior division of left lateral occipital cortex, and right caudate (p < 0.009; Table 3,

Figure 1 C).

Altered nodal network topology is associated with preterm birth and 1Q in a
lesion-like way in subcortical and primary cortical regions while in a
compensation-like way in associative cortical areas

To uncover the long-term effect of VPT birth on altered network topology with
respect to functional relevance, we carried out partial correlation analysis between
prematurity and neonatal medical risk scores, 1Q, and altered network topology of the
functional connectome within the VPT group, by controlling for gender, MRI center,
SES, and total gray matter volume (p < 0.05; Table 4; Figure 2). In general, we found
lesion-like connectome changes in subcortical and primary cortical areas (Figures 2

and 3, see non-gray marked panels; Table 4), while compensation-like connectome
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changes were present in associative cortical areas (Figures 2 and 3, see gray marked
panels; Table 4). In Figure 4, these results are summarized with red and green nodes
representing brain regions of lesion- and compensation-like altered network topology.

In more detail, results concerning the relationship between very preterm birth and
altered regional functional connectome properties are shown in Figure 2 and Table 4:
For altered lesion-like functional integration, right Heschl’s gyrus showed positive
correlation with gestational age and posterior division of left inferior temporal gyrus
showed positive correlation with neonatal medical risk (i.e. DINTI); right planum
temporale showed negative correlation with DINTI. For altered compensation-like
functional integration, pars triangularis of left inferior frontal gyrus correlated
positively with birth weight and negatively with DINTI. For altered lesion-like
functional segregation, left supplementary motor cortex showed positive correlation
with gestational age. For altered compensation-like functional segregation, left
superior parietal lobule was associated with gestational age and DINTI.

Results concerning the relationship between 1Q and altered regional functional
connectome properties are shown in Figure 3 and Table 4: potential
compensation-like result was identified in pars triangularis of left inferior frontal
gyrus with positively associated IQ and nodal efficiency. Potential lesion-like
associations were found in amygdala, hippocampus, as well as caudate between 1Q

and nodal functional integration/segregation.
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Discussion:

The objective of our study was to test the hypothesis that in very preterm born adults,
global functional connectome properties are preserved while regional connectome
properties are changed with a differential potential for compensatory adaption in
subcortical and cortical connectivity patterns. 64 VPT and 72 FT adults of age 26
years were assessed by cognitive testing and resting-state fMRI combined with
graph-based network analysis. While global connectome properties such as
small-worldness and global efficiency were preserved in the VPT group, subcortical
and cortical regions showed altered functional segregation and integration.
Particularly, subcortical and primary cortical connectome changes displayed a
lesion-like association with early prematurity and adulthood IQ (e.g. the more caudate
nodal efficiency was reduced the worse cognitive performance), while changes in
associative cortical regions such as the inferior frontal gyrus (IFG) had a
compensation-like pattern (e.g. the more IFG nodal efficiency was increased the better
cognitive performance). Results provide first evidence for an altered functional
connectome in VPT adults with some hints for compensation-like cortical
connectivity changes. Data suggest that preterm birth modifies the developmental

trajectory of human connectome in a lasting and adaptive way.

After preterm birth, basic global properties of the adult connectome are
preserved but nodal connectivity is altered in subcortical and cortical regions.
In VPT adults, we found preserved small-world organization, clustering coefficient,
and global efficiency of the functional connectome (Table 2), while nodal
connectivity was changed regarding both functional segregation and integration

properties in subcortical and cortical areas (Table 3; Figure 1). For example, thalamus’
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degree and caudate’s degree and efficiency were reduced in VTP born adults
compared with FT adults, suggesting less optimal functional integration of
information processing in these subcortical regions in VPT adults. On the other hand,
nodal degree, betweenness-centrality, and efficiency of the inferior frontal gyrus were
consistently increased in VPT adults, suggesting increased functional integration
capacity for this cortical region. Such complex pattern of both increased and reduced
properties of functional connectivity topology matches our previous finding about
increased and reduced functional connectivity in intrinsic brain networks of preterm
born adults (Bduml et al., 2014); particularly, we found altered connectivity in
thalamus and caudate that was associated with lasting gray matter disruptions and the
degree of prematurity. Recent studies reported optimal small-world architecture was
preserved in the structural connectome of preterm newborns while subcortical-cortical
connectivity was disrupted with a relative increase of cortico-cortical connectivity
(Ball et al., 2014; van den Heuvel et al., 2014). Together with current evidences that
demonstrate widespread lasting effects of preterm birth in brain structure and function
of infants (Fischi-Gomez et al., 2014), children (Constable 2008), adolescents
(Gimenez et al., 2006; Nosarti et al., 2008; Gozzo et al., 2009; Mullen et al., 2011; de
Kieviet et al., 2012; Nosarti, 2013), and adults (Eikenes et al., 2011; Bauml et al.,
2014; White et al., 2014), our findings further suggest that preterm birth induce a
specific developmental trajectory for the human connectome with a complex pattern

of regional connectivity changes.

Lesion-like connectome changes in subcortical and primary cortical areas versus
compensation-like changes in associative cortical areas.

With respect to the complexity of regional connectivity changes in the VPT group, we
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found lesion-like connectome changes primarily in subcortical and primary cortical
areas (Table 4; Figure 2 and 3). For example, the lower the gestational age of VPT
adults, the lower the nodal degree of the Heschl’s gyrus, which was reduced in VPT;
the lower the local efficiency of the caudate, which was reduced in VPT, the more 1Q
is reduced. Concerning subcortical areas, Ball and colleagues demonstrated explicitly
subcortical-cortical connectivity disruptions for preterm newborns and infants (Ball et
al., 2012; Ball et al., 2013; Pandit et al., 2013b; Ball et al., 2014). Subcortical white
and gray matter, which underlies subcortical-cortical connectivity, is known to be
prominently affected by preterm birth (Inder et al., 2005; Srinivasan et al., 2007,
Zubiaurre-Elorza et al., 2011; Ball et al., 2012; Ball et al., 2013; Pandit et al., 2013a).
Since these changes persist at least partly into adolescence (Nosarti et al., 2008;
Northam et al., 2012), subcortical gray and white matter changes likely represent
lasting brain lesions of preterm birth, being in line with our findings. For primary
cortical areas, auditory, motor, or visual cortices show specifically higher levels of
adult-like connectivity organization than associative cortical areas at birth, which
reach an adult-like connectivity pattern later in the brain development (Fransson et al.,
2011; Gao et al., 2011). Moreover high degree of connectivity is present between
primary cortical and subcortical areas such as thalamus. So our finding of lesion-like
changes specifically in subcortical and primary cortical areas in VPT adults may
suggest adverse subcortical and primary cortical connectome changes after very
preterm delivery endure along development.

On the other hand, we found compensation-like connectome changes in VPT
adults in associative cortical areas (Table 4; Figure 2 and 3). For example, the higher
IFG nodal efficiency and degree, which were abnormally increased in preterm born

adults, the higher IQ; the lower gestational age and the more neonatal medical risk the
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lower the local efficiency of the superior parietal lobule, which was abnormally
increased in VPT adults. Inferior frontal gyrus and superior parietal lobule (SPL) are
key regions of the salience and central executive network (Seeley et al., 2007).
Salience and central executive network are both essentially involved in cognitive
control processes (Dosenbach et al., 2007; Fair et al., 2007). In contrast to primary
cortical networks such as the sensorimotor network, connectivity of these networks
reaches an adult-like connectivity pattern at later stage of neurodevelopment,
suggesting longer flexible development trajectories (Dosenbach et al., 2010; Fransson
et al., 2011; Collin and van den Heuvel, 2013). Due to both cognitive control function
and longer developmental trajectory of salience and executive control network, IFG
and SPL might be candidates for potential compensatory adaptions during
development in response to birth-related lesions. This argument is in line with
relatively increased cortico-cortical and reduced subcortico-cortical connectivity in
preterm newborns, suggesting distinctive developmental trajectories for subcortical
and cortical connectome (Ball et al., 2014). Our finding of compensation-like
connectome changes in IFG and SPL in very preterm born adults may indicate such
distinct developmental trajectory with compensatory cortical adaptions after preterm
delivery.

Taken together our data show different developmental outcomes for the
subcortical and cortical connectome with distinctive functional relevance: while
subcortical connectivity may represent a more lasting lesion-like pattern induced by
preterm birth, cortical connectivity may represent a more resilient pattern, which has
some potential to adapt in a compensatory way. Interestingly, cortical upper layers 1-3
subserve mainly cortico-cortical connectivity, while lower layers 4-6 subserve

cortico-subcortical connectivity (Swanson, 2000; Douglas and Martin, 2004). One
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might speculate that upper and lower layer connectivity patterns may follow distinct
developmental trajectories with respect to functional relevance in terms of lesion and
compensation potential. While previous data support aberrant cortical microstructure
due to preterm birth in general (Ball et al., 2013; Dean et al., 2013; Vinall et al., 2013),
to the best of our knowledge no data about layer specific development changes after
preterm birth are available at current stage. Future study with new technologies (e.g.

high-tesla MRI to map cortical layers) might address such open issues.

Methodological issues.

Some points should be taken into account when interpreting our results. First, the
current sample consisted of VPT adults with lower neonatal complications and higher
IQ. Individuals with more complications or severe impairments in the initial BLS
sample were more likely to be excluded in initial screening for MRI or reject MRI
scanning. Thus here reported differences in the functional connectome between VPT
and FT adults are conservative estimates of true differences. Second, current sample
size is large (n=64), enhancing the generalizability power of our findings. Third, our
findings were not confounded by brain structural variance since we controlled total
gray matter volume. Given potential gender effect on long-term neurodevelopmental
outcome (Mayoral et al., 2009), we also controlled for gender in this study. Family
SES at birth was also ruled out to limit potential confounding influence on brain
development affected by preterm birth (Wong and Edwards, 2013). Fourth, in this
study, we used Harvard-Oxford-atlas-based brain parcellation and undirected binary
graph approach, which is substantially valid framework for brain connectome analysis
and largely comparable with other human connectome studies (Bullmore and Bassett,

2011; Sporns, 2014).
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Conclusion.
Results demonstrate an altered functional connectome in very preterm born adults,
with both lesion-like connectivity changes in subcortical and primary cortical regions

and compensation-like changes in associative cortices.
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Tables:

Table 1. Birth-related and adult neuropsychological data.

Very preterm

Full-term (FT)

(VPT) N=64 N=72 p-value
Neonatal characteristics at birth
Gender (m/f) 38/26 48/24 0.379
. 29.64 +1.26 40.00 + 0.77 %
Gestational age (week) (26 - 31) (39 - 42) <0.0001
. . 1294.53 + 349.93 3440.68 +491.48 %
Birth weight (gram) (630 - 2070) (1950 - 4200) <0.0001
Neonatal medical risk 59.10 +£29.85 Not anplicable
(DINTI) (11 - 149) PP
Family socioeconomic
status (SES) 1.98£0.75 (1 - 3) 1.97 +0.73 (1- 3) 0.924
Adulthood characteristics at scan
26.34 +0.52 26.35+0.42
Age (year) (25.51 - 27.55) (25.56 - 27.69) 0.890
92.94 4+ 13.03 102.54 +£ 12.72 %
Full-scale IQ (64 - 131) (77 - 130) <0.0001
Location (MUC/BN) 40/24 49/23 0.497
MRI center
MUC 40 49 0.497
BNI1 4 9 0.216
BN2 20 14 0.1125

Group comparisons: two-sample t-tests for gestational age, birth weight, DINTI, socioeconomic status,
term age, and 1Q; y>-test for gender, location and detailed MRI centers. Data are presented as mean +
standard deviation as well as the range (in brackets). VPT very preterm group; FT full-term group;
DINTI Duration of Intensive Neonatal Treatment Index; MUC Munich, referring to the MRI scanner in
Munich; BN Bonn; BN1 referring to 1%t scanner in Bonn and BN2 referring to 2" scanner in Bonn. To
note, one VPT (MUC) had no recording for IQ and another VPT (BN) for DINTI. 1Q, intelligence

quotient.
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Table 2. Global structural, functional connectivity and network topology.

Measures VP FT p-value

Global structural volume

Gray matter 0.440 £ 0.023 0.443 +0.019 0.1754

White matter 0.403 £0.018 0.411+0.017 0.0153*

Cerebrospinal fluid 0.157 +£0.021 0.146 +0.013 0.0005*

Total brain 1369.703 £ 130.009 | 1467.757 + 145.723 | <0.0001*
Global functional connectivity

Global strength 0.218 +0.047 0.209 + 0.036 0.3244

Global diversity 0.025 £ 0.007 0.024 + 0.005 0.3082

Global integration 0.221 £0.050 0.214 £0.041 0.4288
Global functional network topology

Characteristic path length | 2.103 = 0.139 2.080+0.114 0.3269

Clustering coefficient 0.513 £0.043 0.508 +0.033 0.4217

Small-worldness 1.426 +0.232 1.437 +0.208 0.4066

Global efficiency 0.593 £0.012 0.595 +0.010 0.3495

Local efficiency 0.706 £ 0.018 0.706 +0.018 0.3982

Data are presented as mean + standard deviation. Total gray matter, white matter, and cerebrospinal
fluid volumes were corrected for individual variability of brain size by dividing total brain volume.
Network topology metrics were averaged over whole range of costs (0.05-0.5). Group comparisons of
global measures were carried out by permutation tests with 100,000 iterations. For global structural
changes, covariates of gender and MRI center were ruled out from group comparisons of global
structural volumes. For global functional changes, covariates of gender, MRI center, and total gray
matter volume were controlled for group comparisons of global functional connectivity and network
topology. * denotes significant group difference (p < 0.05). Abbreviations: VP very preterm group; FT

full-term group.
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Table 3. Group differences of nodal network topology between VP and FT.

Lobe Region | Side | 10Pological VP FT p-value
measure
Functional integration
VP> FT
IFG, pars | L Deg 27.89£11.00 |22.81+7.17 0.0008
triangularis Enodal 0.58 £ 0.07 0.56 £ 0.05 0.002
Frontal Deg 31.12+£9.75 27.44 + 8.99 0.004
IFG,  pars |y - g 142.24 +98.05 | 108.86 = 67.89 | 0.005
opercularis
Enodal 0.60 £ 0.06 0.58 £ 0.06 0.003
ITG, Deg 25.69 £16.22 18.03 £12.89 0.003
Temporal | posterior | L p 0.56£0.10 | 0.51+0.08 0.002
. Deg 29.18 £ 12.03 | 24.79£9.51 0.006
Subcortical | Amygdala | L 7 0.58£0.07 | 0.56+0.06 0.006
VP<FT
L Deg 27.38+£12.50 | 32.63+9.49 0.006
Enodal 0.57 £ 0.09 0.61 £0.06 0.005
Frontal SMA © |Dez 2705+ 1349 |33.75<10.09 | 0.002
Enodal 0.57 £ 0.09 0.62 £0.06 0.001
ITG,
temporo-occi | L BC 84.19 £ 65.31 | 121.97+100.16 | 0.002
pital part
Heschl's Deg 29.62 +9.79 34.64 +£7.75 0.001
Temporal Gyrus R BC 63.25+53.68 | 87.27+62.28 0.005
(includes HI1
and H2) Enodal 0.59+0.07 | 0.62+0.04 0.001
Planum R Deg 35.87 £9.67 39.60 + 8.98 0.005
Temporale Enodal 0.63 +0.06 0.65 +0.05 0.004
Lingual L | Eo 0.61£0.07 | 0.64=0.05 0.004
Gyrus
Occipital Occipital Deg 33.02 £9.67 37.56 £ 9.87 0.003
Fusiform L BC 125.85+83.53 | 185.20 £ 143.91 | 0.002
Gyrus Enodat 0.61 +£0.06 0.64 +0.06 0.004
Deg 18.24 £9.34 23.32+10.89 0.004
Subcortical Caudate R 0.51+ 0.08 0.55 + 0.08 0.004
Thalamus R Deg 22.49 £10.61 27.13+12.04 0.008
BC 82.25 + 66.73 116.60 £ 99.24 0.007
Functional segregation
VP> FT
ITG,
Temporal posterior L Enodalloc 0.66 +0.16 0.57+0.18 0.002
division
Parietal SPL L Enodalloc 0.71+0.12 0.66+0.10 0.002
Subcortical | Hippocampus | R Enodatloc 0.71 £0.10 0.67+0.13 0.003
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VP < FT

L | Buodaioc 070 +0.12 0.77 + 0.08 <0.0001

Frontal SMA R | Enodalioc 0.69+0.13 0.76 = 0.07 <0.0001

Occipital | SO Iferior |y g e 0.72+£0.10 | 0.76 +0.06 0.003
division

Subcortical | Caudate R | Brodallc 059+ 0.17 0.67+0.12 0.005

Permutation tests with 100,000 iterations were used for group comparison of nodal network topology.

Reported group differences of functional integration and segregation were significant for p<0.009

based on False Positive Correction for multiple comparison. Group comparisons were controlled for
gender, MRI center, and total gray matter volume. Nodal network scores were averaged over cost range

0.05-0.50 and reported as mean + SD. VP very preterm group; FT full-term group; R right; L left;

Functional integration was reflected by nodal betweenness-centrality (BC), nodal degree (Deg), and

nodal efficiency (Enodal). Functional segregation was reflected by nodal local efficiency (Enodaioc)-

Inferior Frontal Gyrus (IFG), Inferior Temporal Gyrus (ITG), Supplementary Motor Cortex (SMA),

Superior Parietal Lobule (SPL), Lateral Occipital Cortex (LOC)
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858  Table 4. Altered nodal network topology separately associated with preterm birth

859  and cognitive outcome in adulthood.

Topological

Lobe Region/node | Side
measure

Parameters r p-value

Association with preterm birth

Frontal | IFG, pars | L Deg Birth weight 0.3939 0.0024
triangularis DINTI -0.3162 0.0176
Enodal Birth weight 0.3902 0.0027
DINTI -0.3382 0.0108
SMA L Enodalloc Gestational age 0.3027 0.0221
Tempor | Heschl's Gyrus | R Deg Gestational age 0.2843 0.0321
al (includes HI1
and H2)
Planum R Deg DINTI -0.3552 0.0072
Temporale Enodal DINTI -0.3254 0.0144
ITG, posterior | L Enodal DINTI 0.2667 0.0469
division
Parietal | SPL L Enodalioc Gestational age 0.3056 0.0208
DINTI -0.2994 0.025

Association with cognitive outcome in adulthood

Frontal | IFG, pars L Deg 1Q 0.2497 0.0587
triangularis Enodal IQ 0.2879 0.0299
Subcort | Amygdala L Deg 1Q -0.4086 0.0016
ical Enodal 1Q -0.397 0.0022
Hippocampus | R Enodalloc 1Q -0.3675 0.0049
Caudate R Enodalloc 1Q 0.2673 0.0464

860

861 Partial correlation analyses were applied within very preterm group between altered nodal topological
862 measures, neonatal variables (i.e. gestational age, birth weight, and neonatal medical risk), and IQ in
863 adulthood. Confounding influence of covariates was ruled out, including gender, imaging center, total
864 gray matter volume, socioeconomic status. P values of significant linear dependence were in bold when
865 p < 0.05. Gray colored results refer to compensation-like mode of network metric change. R right; L
866 left; Deg nodal Degree; Enoga nodal efficiency; Enodaloc nodal local efficiency; DINTI Duration of
867 Neonatal Treatment Index. Inferior Frontal Gyrus (IFG), Inferior Temporal Gyrus (ITG),
868 Supplementary Motor Cortex (SMA), Superior Parietal Lobule (SPL).

869
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Figures and legends:

A Altered network topology

</

Figure 1. Altered nodal network topology in VPT adults. (A) Group comparisons
between VPT and FT adults were performed for each node and each network

topology metric reflecting functional integration and segregation by the use of
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permutation tests (n=100,000) controlling for gender, center, SES, and total gray

matter volume (p<0.009 based on False Positive Correction for multiple comparisons).

Brain regions of significant group difference were colored in yellow and visually
illustrated on both node-edge view and surface view by using BrainNet Viewer and on
axial slice view with MNI standard structural image from fslview. (B, C) Group
differences of functional integration (i.e. degree, betweenness, and efficiency) and
segregation (i.e. nodal local efficiency) were shown separately. Blue/red colors

indicate decreased/increased nodal network metrics in VPT adults.
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Figure 2. Correlation between altered nodal network metrics and birth-related
parameters in VPT adults. Within VPT adults, linear relationships between altered
nodal network metrics and birth-related variables were studied by the use of partial
correlation analysis (p < 0.05), specifically for gestational age (A), birth weight (B),

and neonatal medical risk (C). Analysis was controlled for gender, MRI center, total
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gray matter volume, SES, and 1Q. For visualization, scatter plots show data of the
VPT group (circles slightly jittered according to x axis for better visualization), and
fitting lines illustrate positive or negative correlations between nodal network metrics
and birth-related parameters. Gray-colored headlines indicate a compensation-like

mode of network metric change.
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Figure 3. Correlation between altered nodal network metrics and general
cognitive performance in VPT adults. Within VPT adults, linear relationships
between altered nodal network metrics and IQ were studied by the use of partial
correlation analysis (p < 0.05). Analysis was controlled for gender, MRI center, total
gray matter volume, SES, and birth-related parameters. For visualization, scatter plots
show data of the VPT group (circles slightly jittered according to x axis for better

visualization), and fitting lines illustrate positive or negative correlations between
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nodal network metrics and IQ. Gray-colored headlines indicate a compensation-like

mode of network metric change.

Figure 4. Nodes of the functional connectome with lesion- or compensation-like
altered network metric in VPT adults. Summary figure for results of Figures 2 and
3 with respect to lesion-like (in red) and compensation-like (in green) mode of altered
network metric. For increased network metrics in VPT adults in comparison with FT
adults, a lesion-like mode of network change was proposed when the more the
network metric is increased the more prematurity (or the more neonatal medical risk
or the less IQ). Complementary, for increased network metrics a compensation-like
mode of change was proposed when the more the metric is increased the less
prematurity (or the less neonatal medical risk or the higher IQ). For decreased
network metrics, lesion- and compensation-like mode of change were analogously
specified but with inverse relationships between metric decrease and prematurity (or

neonatal medical risk, or 1Q).
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Abstract:

Preterm birth is a leading cause for impaired neurocognitive development with an
increased risk for persistent cognitive deficits in adulthood. In newborns, preterm
birth is associated with interrelated white matter (WM) alterations and deep gray
(GM) matter loss; however, little is known about persistence and relevance of these
subcortical brain changes. We tested the hypothesis that the pattern of correspondent
subcortical WM and GM changes is present in preterm born adults and has a lesion-
like nature i.e. it predicts lowered general cognitive performance.

Eighty-five preterm and 69 matched term born adults were assessed by diffusion-
and T1-weighted MRI and cognitive testing. Main outcome measures were fractional
anisotropy of water diffusion to map WM integrity, GM volume to map GM integrity,
and full-scale total 1Q to measure cognitive performance.

In preterm born adults reduced fractional anisotropy was widely distributed
ranging from cerebellum to brainstem to hemispheres. GM volume was reduced in the
thalamus, striatum, temporal cortices, and increased in the cingulate cortices.
Fractional anisotropy reductions were associated with GM loss in thalamus and
striatum, with correlation patterns for both regions extensively overlapping in the
white matter of brainstem and hemispheres. For overlap regions, fractional anisotropy
was positively related with both gestational age and total 1Q.

Results provide evidence for extensive, interrelated, and adverse white and gray
matter subcortical changes in preterm born adults. Data suggest persistent lesion-like

changes of subcortical-cortical connectivity after preterm delivery, which may reflect
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the specifically altered developmental trajectory of brain organization in preterm born

persons.

Key words:

Preterm born adults, diffusion MRI, white matter, voxel-based morphometry, gray

matter, 1Q
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Introduction

Preterm birth is defined by delivery before 37 weeks of gestation are completed. The
global prevalence of preterm birth is more than 10% (i.e. about 15 million preterm
newborns per year), with increasing rates in almost all countries due to medical
progress, the increased number of births to mothers over 35y and other factors
(Blencowe et al. 2012). Preterm born individuals have an increased risk for growth
failure, higher levels of morbidity, impaired neurocognitive development, and adverse
psychiatric, cognitive, academic, and socio-economic outcomes, featured by
increasing deficits with lower gestational age (D'Onofrio et al. 2013; Jaekel et al.
2013; Katz et al. 2013; Milligan 2010; Nosarti et al. 2012). Therefore, it is highly
important to better understand mechanistic effects of premature birth on the brain,
their developmental trajectories and outcomes, in order to specify focused prevention
and treatment. Since subcortical brain changes stand out in preterm born newborns
(Ball et al. 2013a; Ball et al. 2012; Boardman et al. 2010; Inder et al. 2005; Pierson et
al. 2007; Srinivasan et al. 2007; Zubiaurre-Elorza et al. 2011), the current study
focuses on the potential persistence of such subcortical changes into adulthood, and
asks for their functional relevance.

According to neurobiological research in animal models, premature birth leads to
disturbed brain maturation primarily by both impaired maturation of GABAergic
interneurons and aberrant development of oligodendro- and astrocytes, with the latter
being critical for white matter myelination (Dean et al. 2013; Komitova et al. 2013;

Ritter et al. 2013) (for the review see (Deng 2010; Salmaso et al. 2014)).
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Neuropathological and in-vivo imaging studies in preterm newborns have
demonstrated that most prominent changes concern distributed white matter (WM)
alterations that — when strong enough - coincide with gray matter (GM) alterations in
the ventral brain, particularly in subcortical structures such as thalamus and striatum,
following the pattern “the more WM changes the more GM changes” (Ball et al.
2013a; Ball et al. 2012; Boardman et al. 2010; Inder et al. 2005; Pierson et al. 2007;
Srinivasan et al. 2007; Zubiaurre-Elorza et al. 2011). For example, studies using
immunocytochemical approaches revealed specific impairments in white matter axons
and subplate neurons that guide thalamo-cortical neuronal development (Haynes et al.
2008; Kinney et al. 2012; Robinson et al. 2006), while studies using in-vivo T1- and
diffusion-weighted MRI found thalamus volume reductions being linked with
impaired WM microstructure (Ball et al. 2013a; Ball et al. 2012).

These findings indicate a substantial effect of preterm birth on the subcortical
brain and therefore on subcortical-cortical connectivity, i.e. the connectivity pattern
among deep brain subcortical nuclei and the isocortex with strong focus on lower
cortical layers 4-6, which realize cortical in- and output functions (Douglas and
Martin 2004; Swanson 2000). While the evidence for a specific impact of preterm
birth on the subcortical brain in newborns is definitive, less is known about the long-
term trajectory of these subcortical changes and their functional relevance in terms of
general cognitive outcome. The current study hypothesized that the pattern of
correspondent subcortical white and gray matter changes, which reflects the general

impact of preterm delivery on subcortical-cortical connectivity, persists into adulthood
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and has a lesion-like nature i.e. it is associated with lowered general cognitive
performance. Initial support for this hypothesis is given by separate findings of either
subcortical white or gray matter alterations in preterm born children (Constable et al.
2008; Counsell et al. 2008; Fischi-Gomez et al. 2014), adolescents (Mullen et al.
2011; Northam et al. 2012; Nosarti et al. 2008; Skranes et al. 2007), and young adults
(Allin et al. 2011; Eikenes et al. 2011).

To test our hypothesis of correspondent, persistent, and adverse WM and GM
alterations after preterm birth, we used diffusion- and T1-weighted MRI and cognitive
testing in a sample of 85 preterm and 69 matched term-born adults at the age of 26. To
estimate white matter microstructural integrity, fractional anisotropy (FA) of water
diffusion was investigated by tract-based spatial statistics; to estimate gray matter
integrity, gray matter volume (GMV) was examined by voxel-based morphometry.
Regional GMV, prematurity at birth, and full-scale IQ representing general cognitive

capabilities were explored in relation to white matter FA values.
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Materials and methods

Participants

Participants were recruited as part of the prospective Bavarian Longitudinal Study
(BLS) (Riegel et al. 1995; Wolke and Meyer 1999). The BLS investigates a
geographically defined whole-population sample of neonatal at-risk children and
healthy term controls. All live-birth infants that were born between January 1985 and
March 1986 in southern Bavaria and required admission to neonatal units in 17
children’s hospitals within the first ten days of life, comprised the target sample
(Wolke and Meyer 1999). A total of 7505 children (10.6% of all live births) were
classified as neonatal at-risk children, whereupon 2759 children were born before 37
weeks of gestation (Riegel et al. 1995). During the same period, 916 healthy term
infants (>36 weeks gestation; normal postnatal care) born in the same hospitals were
recruited as control infants. Over the following years, subjects of both groups were
repeatedly assessed with neurological and psychological test batteries, and parental
interviews to monitor development. Full eligible sample details of the follow-up are
provided elsewhere (Gutbrod et al. 2000; Wolke and Meyer 1999). At 26 years of age
and based on the study design of preterm population versus reference population, 435
preterm born and 329 control subjects were invited for a follow-up assessment,
selected to be similar regarding the overall distribution of gender, family
socioeconomic status (SES), and maternal age. Of this sample, 183 subjects
underwent structural T1- and Diffusion-weighted MRI before May 2012. MRI

assessments were carried out at two different sites: The Department of
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Neuroradiology, Klinikum Rechts der Isar, Technische Universitdt Miinchen,
Germany (N=96), and the Department of Radiology, University Hospital Bonn,
Germany (N=58). The study was approved by the local ethics committees of the
Klinikum rechts der Isar and University Hospital Bonn. All study participants gave
written informed consent and received travel expenses and a payment for attendance.
Only participants free from medication and from psychiatric or neurological diseases
at the assessment or qualitative signs of brain injury (such as vetriculomegaly or
polymicrogyria) were included in the study. Individual MRI images were carefully
examined by visual inspection to exclude subjects with apparent or aberrant artifacts.
Finally, 85 preterm subjects (PT; born before 37 week of gestation) and 69 term-born
subjects (FT; aged 25 to 27 years) entered the following analysis. For more details,
see Table 1.

Birth-related variables. Gestational age (GA) was estimated from maternal reports of
the last menstrual period and serial ultrasounds during pregnancy. In cases where the
two measures differed by more than two weeks, clinical assessment with the
Dubowitz method was applied (Dubowitz et al. 1970). Maternal age and birth weight
(BW) was obtained from obstetric records. Neonatal medical complications were
assessed with a standardized optimality scoring system (OPTN, neonatal optimality)
including 21 items (e.g. ventilation or intubation, sepsis, neonatal seizures, cerebral
haemorrhage) (Prechtl 1967; Wolke and Meyer 1999). Items were coded as 1 (non-

optimal) or 0 (optimal) with the higher value being less optimal, and summarized.
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Cognitive assessment

Cognitive assessment was carried out by independent trained psychologists using the
German version of the Wechsler Adult Intelligence scale-I11 (WAIS-III) (Von Aster et
al. 2006). The assessors were blind to group membership. Three preterm participants
who had missing 1Q data were not included in IQ-related analysis. In this study, full-
scale IQ was utilized in the following analysis to represent global cognitive

functioning at the average age of 26 years.

Imaging data acquisition

Whole brain T1- and diffusion-weighted imaging data were acquired on 3T Philips
scanners in Munich and Bonn with standard 8 channel head coils by using consistent
sequences and parameter settings across scanners. To account for different scanners in
data analyses, additional covariates, namely MRI center, were defined for across
subject analysis: (i) Achieva TX in Munich center, coded as MUC = [0 0 1]; (ii)
Achieva TX in Bonn center, coded as BN1 =[1 0 0]; (iii) Ingenia in Bonn center,
coded as BN2 = [0 1 0]. Diffusion images were acquired using a single-shot spin-echo
echo-planar imaging sequence, resulting in one non-diffusion weighted image (b =0
s/mm?) and 32 diffusion weighted images (b = 1000 s/mm?, 32 non-colinear gradient
directions) covering whole brain with: echo time (TE) = 47 ms, repetition time (TR) =
20150 ms, flip angle = 90°, field of view = 224 x 224 mm?, matrix = 112 x 112, 75
transverse slices, slice thickness =2 mm, and 0 mm interslice gap, voxel size =2 x 2
x 2 mm®. A whole-head, high-resolution T1-weighted image was acquired using a
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magnetization-prepared rapid acquisition gradient echo sequence following
parameters: echo time (TE) = 3.9 ms, repetition time (TR) = 7.7 ms, flip angle = 15°,
field of view = 256 x 256 mm?, matrix = 256 x 256, 180 sagittal slices, slice thickness
= 1 mm, and 0 mm interslice gap, voxel size = 1 x 1 x 1 mm?. All acquired MRI
images were visually inspected for excessive head motion, apparent or aberrant
artifacts and excluding subjects with poor data quality. In addition, T2 images were
examined to exclude potential lesions and white matter abnormalities by experienced

radiologists.

White matter tract-based spatial statistics (TBSS)

Diffusion data was preprocessed using FSL’s FDT toolbox
(http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT, Version 5.0.3). First, brain-tissue extraction
was carried out by removing skull and non-brain tissue. Eddy-current distortion and
head motion were corrected by coregistrating all diffusion-weighted images to b0
image. Secondly, after voxel-by-voxel diffusion tensors were estimated, fractional
anisotropy (FA), which is a measure of the directional coherence for white matter
tracts was calculated for each voxel of the whole brain. Thirdly, Tract-Based Spatial
Statistics (Smith et al. 2006), was carried out for voxelwise statistical analysis of
white matter microstructure following: (i) nonlinear alignment of each participant’s
FA image to the standard Montreal Neurological Institute (MNI152) space template;
(i1) calculation of the mean of all aligned FA images; (iii) generation of the across-all
mean FA skeleton which represents centers of white matter tracts common to all
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subjects, considered as the group-specific template; (iv) projection of each subject’s
aligned FA image onto the mean FA skeleton using the threshold (FA > 0.2), to obtain
individual maps. Individual mean, axial, and radical diffusivity (MD, AD, and RD)
maps were further obtained by using the same mean FA skeleton and tbss_non_FA
script. Over whole brain white matter, the general linear model and nonparametric
inference (5000 random permutations) was adopted to perform statistical analyses on
FA as well as MD, AD, and RD between different participant groups by using FSL’s

randomize script (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/randomise/) (Anderson and

Robinson 2001). By using contrast setting, covariate effects of gender and MRI center
were ruled out from group comparisons based on the permutation test. The statistical
threshold was set as Prwe < 0.05 with multiple comparison correction by threshold-
free cluster enhancement (TFCE) (Smith and Nichols 2009). In addition to group-
generated white matter skeleton mask, FSL’s standard FA skeleton was employed in

validation analysis of between-group differences.

Gray matter voxel-based morphometry (VBM)
As described recently (Meng et al. 2013), we used the VBMS toolbox

(http://dbm.neuro.uni-jena.de/vbm.html) to analyze brain structure via voxel-based

morphometry. T1-weighted images were corrected for bias-field inhomogeneity,
registered using linear (12-parameter affine) and nonlinear transformations, and
tissue-classified into gray matter, white matter, and cerebrospinal fluid within the
same generative model. The segmented and normalized images were modulated to
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account for structural changes resulting from the normalization process, indicating
gray matter volume. Here, we only considered non-linear changes so that further
analyses did not have to account for differences in head size. Finally images were
smoothed with a Gaussian kernel of 8mm (FWHM). For group comparisons, voxel-
wise two-sample t-tests were performed (p < 0.05 FWE-corrected, cluster extent 30)
controlling for gender and MRI center. Group comparisons resulted in discrete
clusters of gray matter locating in different anatomical structures, which were used as

regions-of-interest (ROI) for following correlation analysis (for details see Tab. S2).

Correlation analysis

Across preterm born adults only, linear relationships between white matter FA values
and variables of interest were investigated in affected white matter tracts of reduced
FA (see Fig. 1) based on voxelwise correlation analysis. Three types of variables of
interest were analyzed respectively in correlation analysis: (1) mean gray matter
volumes of affected gray matter areas derived from volumetric analysis (see Fig. 2
and Tab. S2), in order to test the hypothesis of correspondent subcortical white and
gray matter changes in preterm born adults; (ii) variables representing the degree of
prematurity, indexed by gestational age, birth weight, and OPTN, in order to link
directly observed FA changes, which were linked with subcortical gray matter
changes, with preterm birth; (iii) general cognitive performance, indexed by full-scale
IQ, in order to test for the lesion-like nature of white matter changes that were linked
with subcortical gray matter changes. The last correlation analysis was controlled for
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gestational age to be independent of confounding effects of prematurity on cognitive
performance and white matter integrity. The statistical significance was tested by
permutation tests using the same approach as for group comparisons based on white
matter tract skeleton (Prwg < 0.05, TFCE corrected). The influence of gender and

MRI center was always ruled out as covariates of no interest in correlation analysis.
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Results:

Lowered general cognitive performance in preterm born adults.

To investigate general cognitive outcomes after preterm birth in adulthood, 85 preterm

born adults and 69 term born controls, who were matched for age, gender, maternal
age, and family socio-economic status, were assessed by full-scale 1Q testing (Table

1). Significantly reduced IQ was found in preterm born adults (P < 0.005).

Widely distributed changes of WM integrity in preterm born adults.

To investigate white matter integrity after preterm birth, TBSS analysis of diffusion-
weighted MRI data was performed in preterm and term born adults. The analysis
revealed a consistent whole brain WM skeleton of 133,223 voxels across all subjects.
In this skeleton, preterm born adults had widely distributed FA reduction (Prwg <
0.05, TFCE corrected), regarding 34.01% of skeleton voxels and all main white
matter tracts due to FSL’s JHU white matter tractography atlas (Fig. 1; Tab. S1A).
Reduced FA was identified in a large contiguous cluster (45192 voxels, maxima at -
26, -79, 0 mm of MNI coordinates) and a smaller cluster (112 voxels, maxima at -7,

22, -6 mm of MNI coordinates), which included: (1) association tracts such as

bilateral cingulum bundles, superior and inferior longitudinal, inferior fronto-occipital

and uncinate fasciculi; (2) projection fibers encompassing bilateral corticospinal tracts

and anterior thalamic radiations; (3) commissural fibers including the genu, body and

splenium of the corpus callosum.
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To test whether FA changes reflect consistent impairments in WM integrity in
preterm born adults, further aspects of diffusivity were analyzed. We found
widespread changes in mean, axial, and radial diffusivity that were consistent with the
pattern of reduced FA, indicating substantial WM integrity reductions in preterm born
adults (Tab. S1B). More specifically, widespread changes of MD, AD, and RD were
identified largely overlapping with altered FA, with affected voxels in 20.33%,
16.84%, and 26.38%, respectively, of the whole WM skeleton (Tab. S1B). Results of
the validation analysis employing standard skeleton mask from FSL toolbox indicated

consistent WM tract changes in preterm born adults.

Aberrant subcortical and cortical GM volume in preterm born adults.
To investigate global and regional brain volumes including GM volumes, VBM of T1-
weighted MRI was used. Concerning global brain volumes of different brain tissues,
we found for preterm//term born adults the following measurements: mean total
intracranial volume (TIV) [SD], 1385[145] /1464 [146] mm?>; mean WM/TIV-ratio
[SD], 0.40 [0.02] // 0.41 [0.02]; mean CSF/TIV-ratio [SD], 0.15 [0.02] // 0.15 [0.01];
mean GM/TIV-ratio [SD], 0.44 [0.02] // 0.44 [0.02]. Concerning group differences,
TIV and WM/TIV-ratio were reduced, CSF/TIV-ratio was increased (two-sample t-
test, P < 0.05, Bonferroni corrected), and GM/TIV-ratio was unchanged (Puncorr > 0.6)
in preterm born adults.

Concerning regional gray matter volumes, preterm born adults had decreased GM
volume in bilateral thalamus, striatum (putamen and caudate), middle temporal gyrus
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extending to superior and inferior temporal gyrus, right superior occipital gyrus,
fusiform gyrus, and hippocampus (Prwe < 0.05 and cluster size over 30 voxels).
Increased GM volume was found in bilateral posterior and anterior cingulate, left
temporal pole and right lower fusiform gyrus (Fig. 2; Tab. S2).

One should note that these clusters of aberrant GM volume were used to define
GM ROIs for further voxelwise correlation analysis between GM volume changes and
FA changes in preterm born adults. Homologue clusters next to brain midline (for
example thalamus or cingulate cortex) were integrated within one ROI, respectively,
while lateral cortical clusters were used to define separate ROIs. Correlation analyses
for thalamus and striatum GMYV were used to test the study’s hypothesis, while
correlation analyses for cortical GMVs were used to test specificity of interrelated

aberrant subcortical GM and WM integrity.

Interrelated impaired WM and GM integrity in the subcortical brain of preterm
born adults.

In preterm born adults, widely distributed FA reductions were positively correlated
with GM volume reductions for subcortical gray matter regions (i.e. largely
overlapping correlation patterns for both thalamus and striatum GMV) (Prwe < 0.05,
TFCE corrected) (Fig. 3; Tab. S3). In detail, 35.05% of FA alterations were linked
with mean GM volume of bilateral thalamus in preterm born adults, specifically in
white matter tracts of the right inferior fronto-occipital fasciculus, bilateral anterior
thalamic radiation, right corticospinal tract, and the body and splenium of the corpus
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callosum. Similarly, 44.55% of FA alterations were correlated with mean GM volume
of bilateral striatum in preterm born adults, specifically in the left inferior fronto-
occipital fasciculus, right inferior fronto-occipital fasciculus, bilateral anterior
thalamic radiation and right corticospinal tract, and the body and splenium of the
corpus callosum (Fig. 3; Tab. S3). For other cortical regions with altered GM volume,
reduced GMV of temporal cortices was linked with reduced FA in the corpus
callosum and thalamus radiation (Fig. S3)

To test whether FA reductions in preterm born adults, which were significantly
associated with thalamus and striatum GMV reductions, were directly linked with
preterm birth, voxelwise correlation analyses between FA and prematurity indices
were performed but limited to those WM tracts that were associated with deep gray
matter nuclei in preterm adults. Specifically we tested whether observed WM integrity
changes were linked with gestational age, birth weight, and OPTN. In preterm born
adults, reduced FA was positively correlated with lower gestational age ranging from
25 to 36 weeks (Prwe < 0.05, TFCE corrected), in tracts of the inferior fronto-
occipital fasciculus, anterior thalamic radiation and the corpus callosum (Fig. 4; Tab.
S4). Birth weight was positively correlated with FA in left anterior thalamic radiation,
right inferior fronto-occipital, inferior longitudinal, and uncinate fasciculi (Fig. S1;
Tab. S4). Concerning neonatal medical complications, OPTN was significantly
negatively correlated with FA in tracts of the inferior fronto-occipital fasciculus,

anterior thalamic radiation and the corpus callosum (Fig. S2; Tab. S4).
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Correspondent subcortical WM impairments were associated with lowered
general cognitive performance in preterm born adults.

Next we tested whether WM changes, which were linked with subcortical GM
volume reductions, have a lesion-like nature. We found that in preterm born adults,
impaired white matter integrity, which was interrelated with striatal and thalamus GM
volume reduction, was positively correlated with lowered adult general cognitive
performance (i.e. full-scale 1Q) controlled for gestational age; such positive
correlation was present in the right inferior fronto-occipital, inferior longitudinal and
uncinate fasciculi, right anterior thalamic radiation and corticospinal tract (Prwe <

0.05, TFCE corrected; Fig. 5; Tab. S5).
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Discussion:

To test the hypothesis of interrelated and lesion-like subcortical white and gray matter
changes in preterm born adults, we assessed 85 pre- and 69 term born adults of about
26 years with diffusion- and T1-weighted MRI and cognitive testing. Extensive
reduced WM integrity in cerebellum, brainstem, and both hemispheres was found in
preterm born adults, which was significantly related with reduced striatal and thalamic
GM volume. The degree of reduced tract integrity of correspondent WM changes was
associated with lowered full-scale IQ of preterm born adults, confirming a lesion-like
nature of correspondent subcortical changes. Data provide first evidence for
extensive, interrelated and adverse white and gray matter subcortical changes in
preterm born adults. Results suggest lasting impairments of subcortical-cortical

connectivity after preterm delivery.

Extensive and interrelated subcortical WM and GM impairments in preterm
born adults.

In preterm born adults, we found positive correlations between FA and GM volume
reductions, particularly for the striatum and thalamus (Fig. 3; Tab. S3). More
specifically, reduced FA was found in large parts of WM in cerebellum, brainstem,
and both hemispheres (Fig. 1; Tab. S1), in line with findings in preterm newborns
(Anjari et al. 2007), children (Constable et al. 2008), adolescents (Skranes et al.
2007), and young adults (i.e. 19y) (Allin et al. 2011; Eikenes et al. 2011). Aberrant
GM volume was found in subcortical thalamus and striatum and in temporal and

cingulate cortex (Fig. 2; Tab. S2), in line with findings in preterm newborns (Padilla
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et al. 2014; Srinivasan et al. 2007), children (Peterson et al. 2000), and adolescents
(Nagy et al. 2009; Nosarti et al. 2008), and young adults (i.e. 19y) (Nosarti et al.
2009). Interrelated reduced FA and reduced GMV for both thalamus and striatum
covered large parts of hemispheric WM (Fig. 3). Most of these FA changes
overlapped with changes in other aspects of diffusivity such as mean diffusivity (Tab.
S1), demonstrating impaired WM tract integrity. Variance of reduced FA in WM
regions, whose tract integrity was related to reduced subcortical GM volume, was
linearly associated with gestational age and neonatal medical complications (Fig. 4,
S2; Tab. S4), demonstrating that the observed effect of correspondent subcortical
changes is likely due to preterm birth. Notably, patterns of positive FA-GMV
correlation for both striatum and thalamus overlapped extensively in the two
hemispheres and the brainstem. The significant link between subcortical WM and GM
changes indicates that a large part of WM changes is systematically linked to
subcortical GM changes, suggesting that subcortical-cortical connectivity (i.e. the
striato/thalamo-cortical connectivity system) is substantially and persistently affected
by preterm birth. This finding is complementary to our previous finding in preterm
born adults of correspondently altered GM intrinsic functional connectivity and
structural integrity specifically for thalamus and striatum (Bauml et al. 2014). It
matches findings in preterm newborns of impaired structural connectivity between
thalamus and several cortical regions (Ball et al. 2013a; Ball et al. 2012; Pandit et al.
2013). In summary, our result provides evidence that extensive and interrelated
disruptions of subcortical white and gray matter are present in preterm born adults,
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suggesting that observed changes of the thalamo/striato-cortical system in preterm
newborns are of lasting nature.

From a cellular point of view, translational research in animal models of preterm
birth suggests that prematurity affects primarily GABAergic interneurons and
myelination based on oligodendrocytes and astroglia (for review (Salmaso et al.
2014)). Both regulating interneurons and WM myelination is critical for development
and functioning of fine-tuned connectivity (Bartos et al. 2007; Huang et al. 2007), and
both are impaired after preterm birth (Kinney et al. 2012; Salmaso et al. 2014). In
particular, our data suggest that impaired myelination of WM tracts supporting
subcortical-cortical connectivity is persistently impaired after preterm birth (Fig. 3, 4).
Furthermore, since mainly cortical layers 4 - 6 realize cortical in- and output from or
to subcortical structures (i.e. layer 4 receives most thalamic input while in layers 5
and 6, larger pyramidal output cells are located) (Douglas and Martin 2004; Swanson
2000), we speculate that correspondently altered WM changes are linked with altered
organization of lower cortical layers (Ball et al. 2013b; Dean et al. 2013).

On the other hand, our finding does not exclude effects of preterm birth on
cortical development of all cortical layers. For example, Dean and colleagues found
aberrant dendritic arborization and synaptic density for whole cortical columns due to
ischemia after preterm birth (Dean et al. 2013); in-vivo imaging of cortical diffusivity
in newborns suggests that microstructure of the whole cortical system strongly
depends on gestational age less than 38 weeks and is related with neurodevelopmental
outcomes at age of 2y (Ball et al. 2013b). Our result adds to these findings by
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demonstrating that some part of these microstructural cortical changes might link
specifically and persistently with altered subcortical-cortical connectivity. Future
studies (maybe e.g. applying advanced high-tesla MRI to reveal cortical layers) are
necessary to test a potential link between correspondent subcortical WM/GM changes
and lower layer cortical microstructure alterations after preterm birth. In particular, it
would be of interest to test whether upper and lower cortical layer connectivity might
have different developmental trajectories after preterm birth, possibly with different
adaptive or compensatory potentials for cortical-cortical and cortical-subcortical

connectivity.

Correspondent subcortical WM/GM changes after preterm birth have a lesion-
like nature.

We found that reduced integrity of WM, which is correspondent with subcortical GM
changes, is associated with lower full-scale IQ scores in preterm born adults,
independent of gestational age (Fig. 5; Tab. S5). According to the neural basis of
normal human intelligence, white matter integrity and general cognitive ability have
been shown to be related with each other (Deary et al. 2006; Deary et al. 2010).
Premature gestational age is well known to affect general cognitive abilities (Poulsen
et al. 2013; Serenius et al. 2013), and recent study showed that reduced FA is
positively correlated with IQ in young preterm adults of about 19 years, in line with
our finding (Allin et al. 2011; Eikenes et al. 2011). Our result of the more WM
integrity is reduced in regions, whose integrity is linked with subcortical GM
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integrity, the less general cognitive performance, indicates the lesion-like nature of
correspondent subcortical white and gray matter changes after preterm birth.
Accounting for similar interrelated GM-WM changes in preterm newborns (Ball et al.
2013a; Ball et al. 2012; Boardman et al. 2010; Inder et al. 2005; Pierson et al. 2007;
Srinivasan et al. 2007; Zubiaurre-Elorza et al. 2011), we suggest that particularly
subcortical connectivity changes after preterm birth may contribute to the individual
risk for adverse neurodevelopmental outcomes. This idea has two implications. On
the one hand, subcortical changes after preterm delivery may serve as marker for at-
risk cognitive outcomes. On the other hand and in line with the finding that in preterm
newborns, cortical-subcortical connectivity is reduced compared to term-born infants
while cortical-cortical connectivity is relatively increased (Ball et al. 2014), cortical-
cortical connectivity may have a differential developmental trajectory in comparison
with subcortical connectivity with some potential for compensatory adaption. Future

longitudinal studies are necessary to test both suggestions.

Methodological issues.

First, the current sample that participated in this MRI study consisted of preterm born
adults with lower neonatal complications and higher IQ. Individuals with more
complications or severe impairments in the initial BLS sample were more likely to be
excluded in initial screening for MRI or declined to participate in MRI scanning. Thus
the reported differences compared to term born controls are conservative estimates of
the true differences in subcortical WM integrity in preterm born adults. Second, the
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current sample size is large (n = 154), covers a wide range of gestational ages in
preterm and term born adults (25 — 36 and 37 — 42 weeks), and has a long follow-up
period, which may enhance the generalization power and robustness of our findings.
Third, other evidence for correspondent WM/GM changes after preterm birth, e.g.
using direct region-to-region connectivity, is missing in the present study. Such
spatially more focused approach is based on tractography and was beyond the current
study’s aim. Fourth, we chose general cognitive performance assessed by full-scale
IQ as the measure for general cognitive outcome. The integrative nature of such
general cognitive outcome measure prevents detailed analysis of more specific
cognitive long-term effects of preterm birth and its subcortical correlates. However,
full-scale 1Q shows high ecological validity for predicting life time academic and

€conomic success.

Conclusion

The current study provides evidence for the persistence of extensive and interrelated
subcortical white and gray matter disruptions in preterm born adults that predict lower
general cognitive outcome. Data implicate that primarily subcortical indices at birth

may help to evaluate the extent of adverse consequences of preterm birth.
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Tables:

Table 1. Neonatal and adulthood data.

Adul
dults born Adults born term (FT)
preterm (PT) N=69 p-value
N=85
26.45 +0.53 26.35+0.43
A 0.186
ge (year) (25.55-2757) | (25.56 - 27.69)
Gender (m/f) 47/38 44/25 0.288
29.73 £4.67 29.30 £5.02
M 1 irth .
aternal age at birt (16 - 41) (18 - 42) 0.588
Family SES 1.99+0.75 1.91+0.72 0.765
30.67+2.44 39.77 £0.96
ional k <0.0001*
Gestational age (week) (25 - 36) (37 - 42) 0.000
1355.76 +£378.29 | 3402.01 £465.37
Birth weigh <0.0001*
irth weight (gram) (630 - 2700) (1950 - 4200) 0.000
8.84+2.44 0.42 +£0.86
PT <0. 1*
OPTN - 14) ©0-5) 0.000
95.34 +13.87 102.54 +£12.08
Full-scale I <0.002%*
ull-scale 1Q (64— 132) (77 — 130) 0.00
90.50 + 13.73 98.93 +£10.20
< %
Performance 1Q (61— 118) (70— 123) 0.0001
100.17 = 14.99 106.00 + 14.81
Verbal | 0.03*
erbal IQ (62— 141) (77 — 136)
MRI Center
MUC 50 46 0.318
BNI1 4 10 0.036%*
BN2 31 13 0.016*

Group comparisons: two-sample t-tests for age, maternal age, family SES, gestational
age, birth weight, OPTN, and 1Q; y*-test for gender and MRI centers (first and second
MRI scanner in Bonn as well as the scanner in Munich, respectively coded as BN1,
BN2, MUC). Data are presented as mean =+ standard deviation as well as the range (in
brackets). For data missing, 3 PT and 1 FT were not able to join IQ assessment. SES:
socioeconomic status; OPTN: neonatal optimality score; 1Q: intelligence quotient.
*indicates significant group differences
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Figures and legends:

Fractional anisotropy (FA): PT <FT 1005 skeleton mmm
p<0.

(28, -50, -8) (35, -60, -2) (-35, -9, 13)

Figure 1. Whole brain white matter changes in preterm born adults. Coronal,
axial, and sagittal views illustrated significant group difference of white matter
fractional anisotropy (FA) between groups of preterm (PT) and term (FT) born adults,
superimposed on the T1-weighted brain image of MNI152 structural standard
template and group-generated white matter skeleton. Green color indicated the
common skeleton over PT and FT groups. Blue color indicated reduced FA in preterm
born adults (permutation test, P < 0.05, FWE corrected). Significant between-group
difference was displayed using the thss_fill script, which dilates resulted clusters in
the white matter skeleton for better visualization. MNI coordinates were provided at
the bottom.
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Grey matter volume (GMV): PT < FT "\ PT > [T -

5<t<20

p—

Ak da b

r - A ¢
(59, -19, -1) (11, -32,9) (-3,-21,19) (3,-73, 30)

Figure 2. Whole brain gray matter changes in preterm born adults. Coronal,
axial, and sagittal views illustrated significant group difference of gray matter volume
(GMV) between groups of preterm (PT) and term (FT) born adults, superimposed on
the T1-wegihted brain image of MNI152 structural standard template. Red-to-yellow
color indicated increased GMV while blue-to-light-blue indicated reduced decreased
GMV in preterm born adults (two-sample t-test, P < 0.05, FWE corrected). MNI

coordinates were provided at the bottom.
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PT: reduced FA oc reduced GMV
only Thalamus mmonly Striatum mmBoth

(28, -50, -8) (35, -60, -2) (-35, -9, 13) (9, -14, 25) (0, -6, 30)

Figure 3. Correspondence between white matter changes and gray matter
changes within preterm born adults. Coronal, axial, and sagittal views illustrated
affected white matter tracts, in which decreasing fractional anisotropy (FA) was
positively correlated with decreasing gray matter volume (GMV) in thalamus (and/or
striatum) across preterm born adults (PT). Significant white matter results were
dilated for better visualization and superimposed on the T1-wegihted brain image of
MNI152 structural standard template. Green color indicated the common skeleton
over preterm (PT) and term groups. Yellow color showed the common white matter
tracts significantly associated with both thalamic and striatal GMV (permutation test,
P <0.05, FWE corrected). Red and pink color illustrated distinct white matter tracts
significantly associated with thalamic and striatal GMV respectively. MNI
coordinates were provided at the bottom.
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PT: reduced FA o reduced Gestation Age
mm positive correlation mm mask mm skeleton

8 30 32
Gestational age

(28, -50, -8) (35, -60, -2) (-35, -9, 13)

Figure 4. Correspondence between white matter changes and gestational age
within preterm born adults. In the left panel, coronal, axial, and sagittal views
illustrated significant positive correlation between decreasing fractional anisotropy
(FA) and decreasing gestational age. Green color indicated the common skeleton over
preterm (PT) and term groups. Yellow color showed affected white matter tracts with
significantly reduced FA in PT group (permutation test, P < 0.05, FWE corrected).
Red illustrated related white matter tracts where gestational age predicted FA in
preterm born adults. MNI coordinates were provided at the bottom. In the right panel
for visualization, in preterm born adults, gestational age and averaged FA of related

white matter tracts were illustrated in the scatter plot.
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PT: reduced FA oc reduced total 1Q
mm positive correlation mm mask mm skeleton

0.55 0.6
mean FA

(28, -50, -8) (35, -60, -2)

Figure 5. Correspondence between white matter changes and full-scale 1Q within
preterm born adults. In the left panel, coronal, axial, and sagittal views illustrated
significant positive correlation between fractional anisotropy (FA) and full-scale 1Q
independent of gestational age. Green color indicated the common skeleton over
preterm (PT) and term groups. Yellow color showed affected white matter tracts with
significantly reduced FA in PT group (permutation test, P < 0.05, FWE corrected).
Red illustrated related white matter tracts where decreasing FA was significantly
positively correlated with decreasing full-scale IQ in preterm born adults controlled
for gestational age. MNI coordinates were provided at the bottom. In the right panel
for visualization, in preterm born adults, full-scale IQ and averaged FA of related

white matter tracts were illustrated in scatter plot.
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Supplementary Tables:

Table S1A. TBSS results: reduced FA in preterm born adults

Index JHU-atlas-defined white matter tracts® Voxels (%)® | Mean probabilities®
1 Anterior thalamic radiation L 8.01 1.1070
2 Anterior thalamic radiation R 8.26 1.3571
3 Corticospinal tract L 2.29 0.3353
4 Corticospinal tract R 5.35 0.8485
5 Cingulum (cingulate gyrus) L 2.70 0.1264
6 Cingulum (cingulate gyrus) R 2.27 0.2662
7 Cingulum (hippocampus) L 1.90 0.2366
8 Cingulum (hippocampus) R 2.31 0.3008
9 Forceps major 9.14 1.3491
10 | Forceps minor 1.95 0.5493
11 Inferior fronto-occipital fasciculus L 9.98 1.4036
12 Inferior fronto-occipital fasciculus R 11.42 1.6211
13 Inferior longitudinal fasciculus L 10.90 1.1801
14 | Inferior longitudinal fasciculus R 8.62 0.7870
15 Superior longitudinal fasciculus L 8.39 0.7737
16 | Superior longitudinal fasciculus R 11.33 1.1276
17 | Uncinate fasciculus L 2.76 0.4613
18 | Uncinate fasciculus R 2.07 0.2704
19 | Superior longitudinal fasciculus (temporal part) L 4.60 0.3782
20 | Superior longitudinal fasciculus (temporal part) R 5.90 0.4542

Group comparison of skeletonized white matter measures was carried out by nonparametric t-test (5000
permutations) using randomize in FSL, with gender and MRI center as covariates of no interest.
Statistical significance was set at P <0.05, FWE (familywise error rate) corrected, by using threshold-
free cluster enhancement (TFCE). Resulted group difference map was converted to binary mask in
order to locate and identify white matter tracts in the result mask by using atlasquery in FSL.

*White matter tracts according to JHU white matter tractography atlas.

"Percentage of voxels of the considered tract within the result mask.

“Mean probabilities of the considered tract within the result mask.

L/R: left/right.
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Table S1B. TBSS results: reduced FA, increased MD, aberrant AD, and increased
RD in preterm born adults

FA: PT<FT MD: PT > FT AD: PT<FT AD: PT>FT RD: PT>FT
Tract index®
(%)° | MeanP® | (%)° | MeanP® | (%)* | MeanP® | (%)® | MeanP® | (%) | Mean P®

1 8.01 | 1.107 6.79 | 0.8926 9.09 0.2987 12.93 | 2.2759 7.80 | 1.0444
2 8.26 | 1.3571 7.60 | 0.7705 10.31 | 0.9656 7.92 | 1.1424
3 2.29 | 0.3353 3.38 | 0.6673 4.82 | 1.0458 1.42 | 0.2356
4 5.35 | 0.8485 741 | 13238 546 | 1.1386 6.28 | 1.1888
5 2.70 | 0.1264 2.99 | 0.2329 3.65 | 0.227 391 | 0.5827
6 2.27 | 0.2662 1.92 | 0.092 1.56 | 0.0699 345 | 03921
7 1.90 | 0.2366 1.28 | 0.0755 0.23 | 0.0069 1.64 | 0.1497
8 2.31 | 0.3008 2.58 | 0.1811 1.94 | 0.089 3.01 | 0.3472
9 9.14 | 1.3491 11.50 | 1.9212 1.82 0.0545 492 | 0.7417 I1.11 | 1.7031

10 1.95 | 0.5493 6.87 | 3.0127 9.66 | 4.3052 4.21 | 1.581
11 9.98 | 1.4036 8.99 | 1.3432 34.29 | 6.3403 6.34 | 09175 10.62 | 1.6066
12 11.42 | 1.6211 14.53 | 2.4849 13.24 | 2.2963 12.77 | 2.0291
13 10.90 | 1.1801 5.50 | 0.52 38.96 | 7.9688 1.88 | 0.1807 8.64 | 0.9563
14 8.62 | 0.787 8.14 | 0.7688 6.71 | 1.1087 9.54 | 0.8971
15 8.39 | 0.7737 6.61 | 0.9918 96.88 | 17.9584 | 10.22 | 2.2875 444 | 0.2534
16 11.33 | 1.1276 12.11 | 1.6956 12.74 | 2.7437 9.94 | 0.8137
17 2.76 | 0.4613 3.77 | 0.584 4.51 | 0.5215 3.12 | 0.5442
18 2.07 | 0.2704 2.98 | 0.2912 4.25 | 0.3051 2.38 | 0.3298

19 4.60 | 0.3782 3.19 | 0.4044 95.58 | 15.5506 5.06 | 0.9632 2.20 | 0.106
20 5.90 | 0.4542 6.41 | 0.5659 6.41 | 0.8985 5.20 | 0.2963

Group comparison of skeletonized white matter measures was carried out by nonparametric t-test (5000

permutations) using randomize in FSL, with gender and MRI center as covariates of no interest.

Statistical significance was set at P <0.05, FWE (familywise error rate) corrected, by using threshold-

free cluster enhancement (TFCE). Resulted group difference map was converted to binary mask in
order to locate and identify white matter tracts in the result mask by using atlasquery in FSL. PT:

preterm born adults; FT: full-term born adults; FA: fractional anisotropy; AD: axial diffusivity; RD:

radial diffusivity.

*White matter tracts according to JHU white matter tractography atlas.

"Percentage of voxels of the considered tract within the result mask.

“Mean probabilities of the considered tract within the result mask.
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Table S2. VBM results: altered gray matter volumes in preterm born adults

MNI coordinates of peak voxel
Side Gray matter area Cluster size (voxel) BA
X ‘ Y Z | T value | p-value
PT<FT
L/R | Thalamus 3927 NA -13.5 | =315 15 8.09 0
R 604 NA 195 | 19.5 | 45 5.77 0.001
Striatum®*
L 246 NA -18 22.5 | -10.5 5.22 0.009
R 3840 20,21, 22 57 -1.5 -18 9.69 0
Middle Temporal Gyrus
L 889 21 -55.5 -6 -16.5 6.84 0
L Superior Temporal Gyrus 45 21 -46.5 | -28.5 0 5.74 0.001
R Hippocampus 72 35 225 | -195 | -15 5.37 0.005
R Superior Occipital Gyrus 358 19 27 -66 24 5.88 0.001
R Fusiform Gyrus 270 37 49.5 | 495 | -12 6.14 0
PT>FT
L/R | PCC 143 23 3 2225 | 375 5.42 0.004
L/R | ACC 136 32 6 42 16.5 6.08 0
L Temporal Pole 58 38 -31.5 21 -33 5.27 0.007
R Fusiform Gyrus 38 37 36 -51 | -19.5 5.04 0.018

Group comparison of regional gray matter volume was carried out by independent two-sample t-test

using SPM8. Mean gray matter image (threshold > 0.2) was applied as explicit mask and potential

confounding factors of gender and MRI center was controlled using covariates in GLM model

estimation. For multiple comparison correction, significance level was set at Prwe < 0.05 and cluster

size K > 30. NA: not applicable; L/R: left/right; MNI: Montreal Neurological Institute; PCC: posterior

cingulate cortex; ACC: anterior cingulate cortex; PT: preterm born adults; FT: full-term born adults.

Striatum areas comprising putamen and caudate.
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Table S3. Reduced FA associated with subcortical GMV in preterm born adults

Striatum Thalamus
Index JHU-atlas-defined white matter tracts® Voxels Mean Voxels Mean
(%)° probabilities® (%)° probabilities®

1 Anterior thalamic radiation L 10.02 1.5302 10.25 1.6767
2 Anterior thalamic radiation R 10.59 2.0611 11.24 1.9411
3 Corticospinal tract L 1.21 0.2884 0.40 0.0194
4 Corticospinal tract R 7.47 1.5001 7.58 1.5776
5 Cingulum (cingulate gyrus) L 3.25 0.1633 3.05 0.1615
6 Cingulum (cingulate gyrus) R 0.52 0.0216 0.77 0.0308
7 Cingulum (hippocampus) L 2.68 0.4082 1.72 0.1452
8 Cingulum (hippocampus) R 3.40 0.5164 342 0.3881
9 Forceps major 14.06 2.3014 19.74 3.219
10 Forceps minor 3.19 1.0142 3.96 1.2966
11 Inferior fronto-occipital fasciculus L 13.18 2.1593 10.81 1.417
12 Inferior fronto-occipital fasciculus R 13.45 2.4599 15.40 2.7984
13 Inferior longitudinal fasciculus L 9.30 1.0203 10.55 1.3103
14 Inferior longitudinal fasciculus R 10.08 1.0157 11.97 1.1486
15 Superior longitudinal fasciculus L 7.61 0.7733 5.60 0.5093
16 Superior longitudinal fasciculus R 4.05 0.2013 4.16 0.2039
17 Uncinate fasciculus L 4.86 0.8666 0.02 0.0006
18 Uncinate fasciculus R 3.26 0.5247 1.59 0.2066
19 Superior longitudinal fasciculus (temporal part) L 4.19 0.3686 2.46 0.1706
20 Superior longitudinal fasciculus (temporal part) R 1.74 0.0773 1.48 0.0706

Statistical dependent relationship between white matter FA and gray matter volume in striatum and

thalamus was evaluated by nonparametric t-test (5000 permutations) using randomize in FSL, with

gender and MRI center as covariates of no interest. Statistical significance was set at P <0.05, FWE

(familywise error rate) corrected, by using threshold-free cluster enhancement (TFCE). Significantly

correlation map was converted to binary mask in order to locate and identify white matter tracts in the

result mask by using atlasquery in FSL. L/R: left/right.

*White matter tracts according to JHU white matter tractography atlas.

"Percentage of voxels of the considered tract within the result mask.

“Mean probabilities of the considered tract within the result mask.
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Table S4. Reduced FA associated with the degree of prematurity in preterm born
adults

FA o= GA FA o= BW FA °< Non-OPTN
Index JHU-atlas-defined white matter tracts®
(%)° | MeanP°® | (%)* | MeanP® | (%)° Mean P°

1 Anterior thalamic radiation L 24.79 | 4.3398 64.89 | 5.7713 15.10 | 2.1121
2 Anterior thalamic radiation R 1433 | 1.3113 1.06 0.0319 12.05 | 1.8771
3 Corticospinal tract L 0.28 | 0.0106 0.39 | 0.0228
4 Corticospinal tract R 0.06 | 0.0018 2.93 | 0.905
5 Cingulum (cingulate gyrus) L 0.94 | 0.0303 5.45 | 0.2507
6 Cingulum (cingulate gyrus) R 0.62 | 0.0187 0.90 | 0.0269
7 Cingulum (hippocampus) L 0.22 | 0.0066 0.15 | 0.0045
8 Cingulum (hippocampus) R 1.12 | 0.0337 1.22 | 0.0366
9 Forceps major 6.04 | 0.5761 12.77 | 2.2553 11.57 | 1.7574
10 Forceps minor 436 | 1.3543 4.07 | 1.4901
11 Inferior fronto-occipital fasciculus L 9.01 | 1.3495 0.53 0.016 12.18 | 1.8431
12 Inferior fronto-occipital fasciculus R 8.79 | 1.4841 18.62 | 2.016 9.86 | 1.0945
13 Inferior longitudinal fasciculus L 5.88 | 0.7509 426 | 0.1915 6.82 | 0.4547
14 Inferior longitudinal fasciculus R 3.59 | 0.1433 13.83 | 0.5585 485 | 0.1974
15 Superior longitudinal fasciculus L 5.80 | 0.447 4.83 | 0.3243
16 Superior longitudinal fasciculus R 2.79 | 0.1046 4.26 0.1277 2.86 | 0.0973
17 Uncinate fasciculus L 249 | 0.3661 5.35 | 1.0081
18 Uncinate fasciculus R 0.24 | 0.0134 10.11 | 0.5904 0.12 | 0.0096
19 Superior longitudinal fasciculus (temporal part) L 3.89 | 0.2206 2.36 | 0.1303
20 Superior longitudinal fasciculus (temporal part) R 1.53 | 0.05 0.53 0.016 0.72 | 0.022

Statistical dependent relationship between white matter FA and the prematurity degree at birth was
evaluated by nonparametric t-test (5000 permutations) using randomize in FSL, with gender and MRI
center as covariates of no interest. Non-OPTN is defined by OPTN x (-1). Statistical significance was
set at P < 0.05, FWE (familywise error rate) corrected, by using threshold-free cluster enhancement
(TFCE). Significantly correlation map was converted to binary mask in order to locate and identify
white matter tracts in the result mask by using atlasquery in FSL. L/R: left/right; FA: fractional
anisotropy; GA: gestational age; BW: birth weight; OPTN: neonatal optimality.

*White matter tracts according to JHU white matter tractography atlas.

"Percentage of voxels of the considered tract within the result mask.

“Mean probabilities of the considered tract within the result mask.
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Table S5. Reduced FA associated with total 1Q in preterm born adults

1Q
Inde Voxels Mean
JHU-atlas-defined white matter tracts®

X (%)° probabilities*®
1 Anterior thalamic radiation L 1.50 0.0469
2 Anterior thalamic radiation R 19.95 4.5223
3 Corticospinal tract L 1.20 0.0512
4 Corticospinal tract R 10.89 2.8377
5 Cingulum (cingulate gyrus) L 1.41 0.0497
6 Cingulum (cingulate gyrus) R 0.77 0.0237
7 Cingulum (hippocampus) L
8 Cingulum (hippocampus) R 0.12 0.0036
9 Forceps major 0.67 0.088
10 Forceps minor 2.55 0.2203
11 Inferior fronto-occipital fasciculus L
12 Inferior fronto-occipital fasciculus R 13.69 2.539
13 Inferior longitudinal fasciculus L
14 Inferior longitudinal fasciculus R 8.07 0.7114
15 Superior longitudinal fasciculus L 0.12 0.0036
16 Superior longitudinal fasciculus R 4.37 0.2645
17 Uncinate fasciculus L
18 Uncinate fasciculus R 6.31 1.0695
19 Superior longitudinal fasciculus (temporal part) L 0.05 0.0015
20 Superior longitudinal fasciculus (temporal part) R 291 0.1231

Statistical dependent relationship between white matter FA and total 1Q in adulthood was evaluated by
nonparametric t-test (5000 permutations) using randomize in FSL, with gestational age, gender and
MRI center as covariates of no interest. Statistical significance was set at P < 0.05, FWE (familywise
error rate) corrected, by using threshold-free cluster enhancement (TFCE). Significantly correlation
map was converted to binary mask in order to locate and identify white matter tracts in the result mask
by using atlasquery in FSL. L/R: left/right; FA: fractional anisotropy; IQ: Intelligence Quotient.
*White matter tracts according to JHU white matter tractography atlas.

"Percentage of voxels of the considered tract within the result mask.

“Mean probabilities of the considered tract within the result mask.
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Supplemental Figures:

PT: reduced FA oc reduced Birth Weight
B positive correlation = mask mm skeleton

=\

~:l:°' A -

(28, -50, -8) (35, -60, -2) (-35, -9, 13)

Figure S1. Correspondence between white matter changes and birth weight
within preterm born adults. Coronal, axial, and sagittal views illustrated significant
positive correlation between decreasing fractional (FA) and decreasing birth weight in
preterm born adults (PT). Green color indicated the common skeleton over PT and
term born adults. Yellow color showed affected white matter tracts with significantly
reduced FA in PT group (permutation test, P < 0.05, FWE corrected). Red illustrated
related white matter tracts where birth weight predicted FA in preterm born adults.
MNI coordinates were provided at the bottom. For more details see Table S4.
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Figure S2. Correspondence between white matter changes and neonatal medical
complications within preterm born adults. Coronal, axial, and sagittal views
illustrated significant positive correlation between reduced fractional anisotropy (FA)
and lower score of Non-OPTN. OPTN reflects neonatal medical complications. Non-
OPTN is defined by OPTN x (-1), with the lower Non-OPTN the worse neonatal
medical complications. Green color indicated the common skeleton over PT and term
born adults. Yellow color showed affected white matter tracts with significantly
reduced FA in PT group (permutation test, P < 0.05, FWE corrected). Red illustrated
related white matter tracts where Non-OPTN predicted FA in preterm born adults.
MNI coordinates were provided at the bottom. For more details see Table S4.
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MNI coordinates: -17, 34, 14 mm

Figure S3. Correspondence between white matter changes and temporal gray
matter changes within preterm born adults. Coronal, axial, and sagittal views
illustrated affected white matter tracts in preterm born adult (PT) group, where
decreasing fractional anisotropy (FA) was positively correlated with decreasing gray
matter volume (GMV) in bilateral middle temporal areas across preterm born adults,
colored by blue (permutation test, P < 0.05, FWE corrected). For better visualization,
significant white matter results were dilated and superimposed on the T1-wegihted
brain image of MNI152 structural standard template. Yellow color indicated results
that left middle temporal gray matter volume was correlated with the body and genu
of bilateral corpus callosum. Red color indicated results that right middle temporal
gray matter volume was correlated with bilateral anterior thalamic radiation. For the
common skeleton over PT and term born adults, it was colored by green. MNI
coordinates were provided at the bottom.
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Summary and discussion

To address my research questions including whether aberrant functional connectome
that was presented in patients with major depressive disorder can predict the course of
recurrent depressive episodes, whether aberrant white matter micro-structural integrity
was presented in the same patients underlying the disrupted functional connectome,
whether aberrant functional connectome was presented in preterm born adults who
were at risk for depression together with underlying aberrant white matter
microstructural integrity, I have conducted rs-fMRI and DTI studies in patients with
major depression and preterm born adults at risk for depression, and provided relevant

answers.

Brain connectome is altered in MDD, linked with depressive episodes and

symptom severity

MDD patients demonstrate aberrant functional brain connectome featured by impaired
efficiency and centrality in functional integration compared with healthy controls.
Altered brain connectome was associated with symptom severity of current episode in
MDD patients. More importantly, MDD-related abnormalities, specifically striatal
network topology, is linked with the number of depressive episode independently of
symptom severity of current episode in MDD patients, which might suggest a predictor
for disorder course and relapse risk of MDD.

White matter fiber connections constitute the structural basis underlying brain

connectome, providing biological communication pathways. The structural basis
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indexed by white matter integrity of FA and RD exhibit significant impairments of
white matter tracts in MDD. FA-based association with number of episodes provided
some hints for the disorder course prediction.

As revealed by the two studies in this thesis, human brain connectome is important
for understanding MDD as significant predictor for disorder severity and relapse risk.
Current work contributes to biomarker identification and intermediate phenotype in

MDD.

Brain connectome is altered in preterm born adults, linked with lesion and

compensation

It is a basic challenge in neuroscience to uncover developmental trajectory of human
brain as well as disturbed brain development such as affected by preterm birth. Given
emerging evidence about reconfigured brain organization in preterm newborns and
early development, it becomes important to figure out later outcomes. The 3™ and 4"
studies in this thesis provide new evidence about aberrant functional brain connectome
and underlying gray and white matter features in preterm born adults.

The optimal small-world organization is preserved in preterm born adults due to
comparable global topological properties between preterm and term groups. However,
regional alterations of network topology are present in the preterm’s brain and linked
with the preterm’s gestational age, birth weight, neonatal risk factor, and adulthood IQ.
Very interestingly, subcortical and primary cortical regions like caudate, hippocampus
and auditory cortex, have potentially adverse alterations of network topology which

link with higher prematurity at birth and/or lower 1Q in adulthood, whereas associative
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cortical regions in frontal and parietal cortex display potentially beneficial changes
linked with lower prematurity at birth and higher/or IQ in adulthood. As for the white
matter, extensive FA reductions are present in preterm born adults. White matter
changes keeps the same pace with subcortical gray matter changes like thalamus and
striatum. Similar patterns of associations with prematurity and IQ are identified in FA
of affected white matter tracts.

These findings suggest that, subcortical brain impairments like thalamus and white
matter injury found in infants can persist into adulthood, but during the long-term
development, some adaptive reconfigurations in response to early lesion and adverse

impact may somehow compete with brain dysfunction.

MDD and preterm born adults show overlap in subcortical regions

By applying the same approach, aberrant functional brain connectome and underlying
white matter microstructure are identified in both major depression and preterm born
adults at risk for depression. Not surprisingly, brain connetome approach shows more
significant results than tract-based approach, for example, altered network topology
predicts MDD course and the preterm’s risk factor (e.g. gestational age), whereas
altered white matter FA predicts the preterm’s risk factor but not for MDD course. It
may be because brain connectome is an important intermediate phenotype for brain
organization (Bullmore and Sporns, 2009; Filippi et al., 2013).

As for the aberrant patterns, both MDD and preterm born adults show disrupted

subcortical network topology like thalamus and striatum. The subcortico-cortical loop
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is critical for brain functions like motivation, emotion processing and its regulation and
executive control (Hamilton et al., 2012). Thalamus, striatum, and primary cortical
connectivity seems to be “earlier” developed compared to multimodal associative
neocortex (Collin and van den Heuvel, 2013) and vulnerable for prematurity-dependent
injuries like hypoxia and inflammation (Salmaso et al., 2014). In brain organization,
striatum and thalamus has been found as important hub connectors in rich club
organization (van den Heuvel and Sporns, 2011). Therefore, disorganization of these
regions’ connectivity linked with preterm birth and MDD might hint how preterm birth
may link with an increased risk for MDD.

From the view of white matter’s connectivity, white matter tracts play an important
role in brain connectome as the structural basis. Similar pattern of extensively reduced
FA and increased RD are present in both MDD and preterm born adults. The FA
reduction and RD increases with unchanged AD is usually associated with
demyelination/degeneration in white matter fibers which leads to disconnectivity.
Therefore extensive structural alterations provide another overlap between major
depression and preterm born adults. In the future, DTI-based structural connectome can
be examined and compared with rs-fMRI-based functional connectome, in order to
explore structure-function-combined mechanistic link between MDD and preterm born
individuals.

To interpret the preterm born individuals at risk for depression as the transient state
of preclinical major depression, two lines must be drawn. Firstly, epidemic evidence

highlights that preterm birth has been found significantly associated with increased risk
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of psychiatric hospitalization in adulthood in a monotonic manner across a range of
psychiatric disorders including MDD (Nosarti et al., 2012). Some of emerged brain
abnormalities in preterm born adults may be shared by MDD, which can contribute to
better understanding the etiology of MDD. Secondly, recent development of Gene-by-
Environment interactions studies highlight that interacted genes and experience play
important roles in the development of depression. In line with this, evidence based on
animal models indicates that perinatal stress like preterm birth is an important trigger
for major depression (Meyer et al., 2001; Schmitz et al., 2002; Nabeshima and Kim,
2013; Stepanichev et al., 2014). Future longitudinal study may be needed to track
preterm born individuals before and after psychiatric diagnosis in order to refine the

biomarker identification.

Overall conclusion

Our findings about aberrant functional connectome and reshaped structural basis in
recureent major depression and preterm birth can shed new light on neurobiological
pathway of major depressive disorder, particularly with respect to disorder course and
potential link between major depressive disorder and adverse consequences of preterm
birth as a risk factor for depression. Moreover, human brain organization at the macro
scale still shows the nature of complex network. The MRI-based macroscopic brain
connectome provide a fundamental and powerful framework to explore organizational

principles in human brain. Brain connectome research might hopefully point out a
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common pathway for better understanding mental disorders and developing future

diagnosis and treatment.
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