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I  Summary 

 

This thesis is composed of three completed research projects, two of which have been 

published, and the third one is currently being submitted for publication.  

 

The Introduction (Chapter II) gives an overview of the role of correlations in sensory processing, 

and shows the need for a framework that would be able to fit, analyze, and simulate the 

activity of populations of sensory neurons. At the end of the introduction we formulate the 

requirements to the model. 

 

In Chapter III “Modeling population spike trains with specified time-varying spike rates, trial-to-

trial variability, and pairwise signal and noise correlations” we develop a basic model based on 

dichotomized Gaussian, that allows us independent manipulation of all the mentioned 

parameters of neuronal activity, including independent manipulation of signal and noise 

correlations. 

 

In Chapter IV “Analysis and modeling of variability and covariability of population spike trains 

across multiple timescales” we investigate the ability of the model to reproduce and 

manipulate temporal correlations, which we introduce by Gaussian conditioning (MacKay, 

2003). This paper also builds a link between our framework and articles that quantify cell 

responses, variability, and signal and noise correlations based on cell firing rates rather than 

probability of their spiking at a certain time during the presentation of the stimulus.  

 

In Chapter V “Nonlinear transfer of signal and noise correlations in cortical networks” we use 

the framework to determine the origin of the correlations observed in extracellular recordings 

in vivo. We show that the transfer of correlations happening in pairs of cells, i.e. the change in 

the magnitude of correlations between input currents and output spike trains is nonlinear, with 

these nonlinearities defined by input current variances and correlations.  
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We show on whole-cell recordings in slices that dichotomized Gaussian framework predicts 

input signal to noise ratio and input signal and noise correlations with high precision based only 

on the observed spike trains. Using this fact we infer input signal to noise ratios and input 

correlations in the inputs to the pairs of cells in the recordings from primary auditory cortex of 

Mongolian gerbils. Finally, we look at the correlation structure observed in responses to the 

sounds with varying location.  

All chapters are given a brief introduction, and the contributions to each of the chapters are 

stated. 
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II  Introduction 

 

 

With the development of new methods of simultaneous data acquisition from populations of 

neurons (O’Keefe & Recce, 1993; Wilson & McNaughton, 1993), and with the advances in 

mathematical and software tools that allow separating responses of individual neurons from a 

recorded population response (K D Harris, Henze, Csicsvari, Hirase, & Buzsáki, 2000), there is a 

known gap in the body of papers on the statistical analysis and modeling of population spike 

trains.  

 

Despite the fact that a large number of works that discuss the implications of population coding 

relies on data from sensory systems (Ohiorhenuan et al., 2010; Pillow et al., 2008), few research 

groups make an accent on the modeling of spiking patterns of specifically sensory neuronal 

populations.          

 

The main feature that distinguishes the activity of populations of sensory neurons in the brain is 

that during active sensory processing it carries information about the external stimulus (Abbott 

& Dayan, 2001)d, whereas the activity of other neuronal populations is to a larger extent 

endogenous.  

 

Because of that, the statistics of the external stimulus is partially reflected in the statistics of 

the sensory neuronal response, and a share of correlations observed in neuronal spiking arises 

as the result of the structure of the stimulus that has correlations in time and feature space.  

 

The part of correlations in neural activity that arises due to the sensory drive is called signal 

correlations. 

 

Correlations in spiking that are caused by any other factors, not related to the stimulus, are 

called noise correlations.  
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There are numerous sources of such stimulus-unrelated correlations, such as the activity of an 

upstream neuron projecting to a pair of the observed cells (Moore, Segundo, Perkel, & Levitan, 

1970), top-down firing rate modulation (Moran & Desimone, 1985), changes in brain state 

(Poulet & Petersen, 2008) or behavior (Bair, Zohary, & Newsome, 2001) and anesthesia 

(Marguet & Harris, 2011). Generally, the relationship between signal and noise correlations 

(that we will be referring to as correlation structure) can be indicative of a particular behavioral 

state or can characterize the ongoing sensory processing.  

 

Currently there is not always a clear understanding of 1) why the changes in correlation 

structure occur in a given behavioral condition, and 2) whether these changes at all matter, 

despite the significant progress in both directions. 

 

Both of these questions are extremely broad. The first one may require understanding the 

mechanisms of sensory processing in all modalities as well as the general principles of 

correlated spiking. The second question requires estimating the efficiency of the neural code in 

behaving animals or animals engaged in sensory processing.  

 

In the next two sections we will briefly touch upon works that analyze the role of signal and 

noise correlations in conjunction with changes in other properties of neural response (firing 

rates, variability), as well as high-level changes, e.g. behavior and learning, and formulate the 

information-theoretic approach that can be used as a zero-assumption framework for the 

analysis of neural code. 

 

At the end of the introduction we will set the goals of current thesis given the scope of these 

two approaches.  
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Significance of signal and noise correlations from the 

information-theoretic perspective 

 

 

The distinction between signal and noise correlations is central from the viewpoint of the 

information theoretic analysis. The relationship between these two kinds of correlations 

ultimately determines the mutual information in the observed population spike trains (Abbott 

& Dayan, 2001), an objective measure of information carried by the responses of any neuronal 

population: 

 

       ∑         (
      

        
)

   

 

 

Specifically, an expression for mutual information contained in the responses of a neuronal 

population to a set of stimuli        can be written out as a sum of four terms (Pola, Thiele, 

Hoffmann, & Panzeri, 2003). 

 

                                       

 

The linear term      gives the amount of information conveyed by all cells had they all been 

independent. The latter three terms depend on the signal and noise correlations: the term 

         arises due to the similarity of signal responses between different cells and is always 

non-positive, the stimulus-independent correlation component          depends on the signal 

similarity and existing correlations when the latter are not modulated by the stimuli, and the 

term          that is always non-negative arises due to the stimulus-dependency of noise 

correlations.  

 

The three latter terms can increase or decrease mutual information depending on the 

correlation structure of the network. Moreover, the sign of the contribution of the third 

component is not defined a priori and will depend on the signs of the signal and noise 
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correlations: both positive or both negative signal and noise correlations for a given pair will 

lead to redundancy and to the loss of information, while the opposite signs of signal and noise 

correlations will lead to synergy and to the increase of information. 

 

Information theoretic analysis requires calculating exact probabilities of spiking in responses to 

a stimulus       , which is feasible when responses to a range of stimuli are sampled 

extensively. Moreover, some approaches like GLM allow one to predict responses to 

unobserved stimuli given that the parameters of GLM for each neuron are estimated accurately 

(Chornoboy, Schramm, & Karr, 1988; Pillow et al., 2008). Even despite possible inconsistencies 

due to often highly nonlinear behavior of neurons and the necessity of sampling responses to a 

wide range of stimuli, the ability to predict responses to novel stimuli is an undisputable 

advantage of GLM. 

 

What GLM is not capable of doing is to directly control the parameters of population spiking, 

including PSTHs of individual cells and signal and noise correlations. Therefore it would be 

impossible to sample spike trains of a pair of cells that would have for example the same PSTHs 

as a pair of cells observed experimentally but different noise correlations.  

However such flexibility in manipulating the statistics of neuronal responses would be desirable 

for a systematic study of the factors affecting mutual information. 

  

In this thesis we will provide the tools for sampling spike trains with desired statistics and for 

modifying the statistics of the spike trains observed experimentally.  

 

Although primary research has been done towards the use of our framework in MI analysis (see 

Discussion), we did not get novel results from that analysis, most likely due to the specifics of 

the data we got from the local populations in A1.  
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Changes in the structure of correlations and neural coding 

 

 

Currently there is an extensive body of works that regard correlations as signatures of particular 

modes of sensory processing and behavior, directed toward the inference of coding principles 

rather than the estimation of total information content in the activity of a neuronal population. 

 

Noise correlations have been shown to change as the result of learning, either reducing overall 

(Gu et al., 2011), or being a target for learning themselves (Jeanne, Sharpee, & Gentner, 2013). 

The balance between signal and noise correlations shifts with attention (Cohen & Maunsell, 

2009; Mitchell, Sundberg, & Reynolds, 2009), as a result of adaptation (Gutnisky & Dragoi, 

2008), and with changes in brain state (Marguet & Harris, 2011).  

Significant progress has been made in finding the potential mechanisms of top-down attention 

and associating them with the emergence of a synchronized state in a local neuronal population 

(Kenneth D Harris & Thiele, 2011; Zagha, Casale, Sachdev, McGinley, & McCormick, 2013).  

The study of these top-down and intra-cortical mechanisms of shaping correlation structure lies 

largely beyond the scope of current work, although we discuss them briefly in the context of 

the results of Chapter V. 

 

Another source of neural noise is periphery. Such noise can carry information about certain 

features of external stimulus and is also important for understanding basic principles of sensory 

coding.  

For example decreasing contrast of a visual stimulus results in temporally imprecise firing of 

LGN and V1 neurons (Desbordes et al., 2008; Sadagopan & Ferster, 2012). Because the relative 

timing of spikes remains relatively precise across the population, such reduced precision of 

absolute timing results in increased noise correlations. 

An even more powerful example is presented in Chapter V where we show a change in spike 

time reliability of A1 neurons without changes in firing rate in case when the position of the 

sound source is altered. In that case again we see simultaneous changes in noise correlations.  
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It is not quite clear however if such changes in the variability of individual neurons would 

necessarily result in changes in correlated noise.  

 

Importantly for the analysis that we carry out in this Thesis, it has been shown that the 

correlations observed also depend on the firing rates of a pair of neurons (de la Rocha, Doiron, 

Shea-Brown, Josić, & Reyes, 2007), even when they are corrected for the change in chance 

correlations. Thus it is not only the activity of the local network, or top-down modulations, but 

also the individual properties of neurons that have to be taken into account when explaining 

the experimentally observed correlations.  

 

Finally, several authors observe both top-down modulations of noise correlations due to 

attention and changes in individual cell variability occurring simultaneously (Cohen & Maunsell, 

2009), and it is not well understood how these two factors interact and shape the observed 

noise correlations in population spike trains.  

 

From these examples it becomes apparent that temporal precision of spiking, or indeed lack 

thereof should be reflected in the measure of neuronal noise.  
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Thesis objectives 

 

 

The main goal of this thesis is to develop a model of a population of sensory neurons, and to 

apply this model to the analysis of the role of pairwise signal and noise correlations in sensory 

coding.  

 

For an effective use of our model, including information theoretic analysis, we should be able to 

sample population spike trains with given parameters and arbitrarily manipulate these 

parameters if necessary. 

 

In order to study coding of sensory features we need to be able to fit model to experimentally 

obtained population spike trains, matching PSTH and trial-to-trial variability of individual cells 

and signal and noise correlations for pairs of cells. As noted before, the degree of variability 

should be estimated based on timing precision. 

 

That way we will cover parameters of population activity that reflect its properties fully 

excluding high order correlations and up or down states. 

 

As pointed out above (Cohen & Maunsell, 2009; de la Rocha et al., 2007), correlations are found 

to depend on or change simultaneously with single cell parameters. Noise correlations are 

often shown to be positively related to signal correlations (Averbeck & Lee, 2003; Bair et al., 

2001; Jung, Qin, Lee, & Mook-Jung, 2000; Kohn & Smith, 2005; Liu, Gu, DeAngelis, & Angelaki, 

2013; Martin & Schröder, 2013). Using our model we would like to look into these 

dependencies and find their mechanisms. 
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III   Modeling Population Spike Trains with 

Specified Time-Varying Spike Rates, Trial-to-Trial 

Variability, and Pairwise Signal and Noise 

Correlations 

 

 

 

In this chapter, we formulate the dichotomized Gaussian (DG) model as a means for the 

generation and analysis of spike trains with particular single cell and pairwise properties. We 

show that PSTHs and firing rates for single cells, and signal and noise correlations for pairs of 

cells are matched exactly to the precision that is allowed by the initial data.  

The model can generate population activity if no experimental data is given a priori, using the 

desired parameters of spike trains: firing rates and trial-to-trial variability of individual cells, and 

signal and noise correlations of pairs of cells. Additionally, we demonstrate how matching 

temporal cross- and auto-correlations is possible in the DG framework.  

 

Sampling multivariate binary vectors with known joint probabilities can be done algorithmically 

using several different methods (e.g. (Devroye, 1986) Inversion method; (Headrick, 2002)). An 

overview of methods for generating correlated binary variables with certain means and 

correlation coefficients is given by (Qaqish, 2003). 

One of these methods, called Dichotomized Gaussian, is of particular interest to us due to its 

analytical tractability (Cox & Wermuth, 2002; Emrich & Piedmonte, 2013; Gutnisky & Josić, 

2010; Macke, Berens, Ecker, Tolias, & Bethge, 2009; Pearson, 1909). Dichotomized Gaussian is a 

generative model that is based on a thresholded (dichotomized) latent Gaussian. By 

manipulating means, variances, and correlations between the components of a multivariate 

Gaussian, as well as thresholds for each component, it is possible to obtain the required values 

of mean and pairwise correlations for the corresponding components of the observed 

multivariate binary variable. 
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Gutnisky and Josic, 2010). There are also a variety of methods for 
capturing precise synchrony between neurons through explicit 
sharing of spikes (Kuhn et al., 2003; Galan et al., 2006; Niebur, 2007; 
Brette, 2009) and several models based on statistical frameworks 
such as maximum entropy (Schneidman et al., 2006; Shlens et al., 
2006; Roudi et al., 2009).

All of the approaches described above are designed to capture 
and/or control the total correlation between spike trains and, as 
such, are of limited utility in the context of early sensory systems 
where it is important to separate internal network correlations 
from those due to the external stimulus. In this paper, we propose a 
framework designed specifically to model spike trains in which the 
total correlation can be separated into signal and noise components. 
If responses to repeated trials of an identical sensory stimulus are 
observed, the signal correlation, which reflects both correlation 
in the stimulus itself and similarities in neurons’ preferred stimu-
lus features, will be evident in the fraction of the response that is 
repeatable from trial-to-trial. Noise correlation, which results from 
the activity of network and intrinsic cellular mechanisms, will be 
evident in the fraction of the response that is variable from trial-
to-trial (note that the term noise correlation is not meant to imply 
that the activity underlying this correlation is unimportant, but 
simply that is not directly dependent on the stimulus).

INTRODUCTION
Correlated spiking activity in neuronal populations has been a sub-
ject of intense theoretical and experimental research over the past 
several decades, and the importance of correlations has been dem-
onstrated in a number of contexts, including plasticity and infor-
mation processing (for a recent review, see Averbeck et al., 2006). 
Recent advances in experimental technology have finally made 
it possible to observe the activity of large neuronal populations 
simultaneously. In order to take full advantage of these advances, 
new methods for the analysis and modeling of population activity 
must also be developed.

A number of methods exist for modeling correlated popula-
tion spike trains in which some fraction of the input driving the 
activity of each neuron is shared with other neurons, including 
integrate-and-fire models and other spiking models with corre-
lated input currents or synaptic conductances (Destexhe and Pare, 
1999; Feng and Brown, 2000; Song and Abbott, 2001; Stroeve and 
Gilen, 2001; Salinas and Sejnowski, 2002; Dorn and Ringach, 2003; 
Gutig et al., 2003; Galan et al., 2006; De La Rocha et al., 2007; 
Shea-Brown et al., 2008; Tchumatchenko et al., 2008), stochastic 
spiking models with correlated rate functions (Galan et al., 2006; 
Brette, 2009; Krumin and Shoham, 2009), and models based on 
a dichotomized Gaussian (DG) framework (Macke et al., 2009; 

Modeling population spike trains with specified time-varying 
spike rates, trial-to-trial variability, and pairwise signal and 
noise correlations
Dmitry R. Lyamzin1†, Jakob H. Macke2,3† and Nicholas A. Lesica1*†

1 Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
2 Computational Vision and Neuroscience Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
3 Werner Reichhardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany

As multi-electrode and imaging technology begin to provide us with simultaneous recordings 
of large neuronal populations, new methods for modeling such data must also be developed. 
Here, we present a model for the type of data commonly recorded in early sensory pathways: 
responses to repeated trials of a sensory stimulus in which each neuron has it own time-varying 
spike rate (as described by its PSTH) and the dependencies between cells are characterized by 
both signal and noise correlations. This model is an extension of previous attempts to model 
population spike trains designed to control only the total correlation between cells. In our model, 
the response of each cell is represented as a binary vector given by the dichotomized sum of 
a deterministic “signal” that is repeated on each trial and a Gaussian random “noise” that is 
different on each trial. This model allows the simulation of population spike trains with PSTHs, 
trial-to-trial variability, and pairwise correlations that match those measured experimentally. 
Furthermore, the model also allows the noise correlations in the spike trains to be manipulated 
independently of the signal correlations and single-cell properties. To demonstrate the utility of 
the model, we use it to simulate and manipulate experimental responses from the mammalian 
auditory and visual systems. We also present a general form of the model in which both the 
signal and noise are Gaussian random processes, allowing the mean spike rate, trial-to-trial 
variability, and pairwise signal and noise correlations to be specified independently. Together, 
these methods for modeling spike trains comprise a potentially powerful set of tools for both 
theorists and experimentalists studying population responses in sensory systems.

Keywords: population, correlation, noise correlation, simulation, model

Edited by:
Klaus R. Pawelzik, University of 
Bremen, Germany

Reviewed by:
Udo Ernst, University of Bremen, 
Germany
Kresimir Josic, University of Houston, 
USA

*Correspondence:
Nicholas A. Lesica, Ear Institute, 
University College London, 332 Gray’s 
Inn Rd., London WC1X 8EE, UK. 
e-mail: n.lesica@ucl.ac.uk
†Current address:
Dmitry R. Lyamzin and  
Nicholas A. Lesica, Ear Institute, 
University College London, London, 
UK.
Jakob H. Macke, Gatsby Computational 
Neuroscience Unit, University College 
London, London, UK.



Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 144 | 2

Lyamzin et al. Modeling correlated spike trains

For modeling the population spike trains of early sensory neu-
rons, another class of methods based on generalized linear models 
(GLMs) has been developed (Chornoboy et al., 1988; Paninski, 
2004; Kulkarni and Paninski, 2007; Paninski et al., 2007; Pillow 
et al., 2008). In its typical formulation, the GLM is parameterized 
by a series of filters that relate the time-varying spike rate in one 
neuron to the sensory stimulus and the responses of other neu-
rons. This formulation has the great strength that once the filter 
parameters have been estimated, the model can be used not only 
to simulate responses that match those measured experimentally, 
but also to simulate responses to novel stimuli. However, this gen-
erality comes at a cost: specifying the filters requires the estima-
tion of a large number of parameters and, thus, a large amount 
of experimental data – much more than is necessary for a model 
designed only to simulate responses to the same stimuli that have 
been tested experimentally. It is possible to formulate alternatives 
to the typical GLM that require less experimental data by forgoing 
the ability to predict responses to novel stimuli and parameterizing 
the time-varying firing rate in response to a particular stimulus 
directly. However, even in this formulation, the GLM lacks a criti-
cal property: it does not enable straightforward specification or 
manipulation of one response property independent of the others 
(Krumin and Shoham, 2009; Toyoizumi et al., 2009).

In the model we present below, the time-varying spike rate, 
trial-to-trial variability, and pairwise signal and noise correlations 
can be matched to those measured experimentally, and the noise 
correlations can be manipulated without changes in the signal cor-
relations or the single-cell properties. The model is an extension of 
previous attempts to model population spike trains as DGs (Emrich 
and Piedmonte, 1991; Cox and Wermuth, 2002; Macke et al., 2009; 
Gutnisky and Josic, 2010). In our model, the response of each cell is 
a binary vector determined by the thresholded sum of two inputs: 
a signal, which is the same for each trial of a given stimulus, and a 
noise, which is different for each trial, both of which can be cor-
related across neurons. In the first part of the paper, we show how 
the model parameters can be estimated from experimental data 
and used to simulate spike trains with properties that match those 
measured experimentally. We also demonstrate how the model 
parameters can be manipulated to obtain spike trains with arbitrary 
pairwise noise correlations without changes in single-cell proper-
ties. In the second part of the paper, we describe a general form 
of the model that can be used model spike trains with arbitrary 
single-cell properties and pairwise correlations.

All of the Matlab code required to perform the analyses described 
in this paper is available for download at http://www.ucl.ac.uk/ear/
research/lesicalab.

A MODEL FOR SIMULATING AND MANIPULATING 
EXPERIMENTALLY RECORDED POPULATION SPIKE TRAINS
SINGLE-CELL RESPONSES
To represent a set of spike times from a single cell on a single trial 
i  {1, 2, ,I} of a particular stimulus, we discretize time into n  {1, 
2, ,N} bins of length  and set r

i
[n] = 1 if a spike occurs in bin 

n on trial i, and r
i
[n] = 0 otherwise. In general, we assume that  

is small enough that no more than one spike occurs in any given 
bin. Based on the responses to all trials r (an N  I binary matrix), 
we can define several quantities of interest:

Mean spike rate (scalar)

Time-varying spike rate (PST

r r
n i0 ,

HH) -dimensional vector)

Spike train signal to noise r

r r
i

N(

aatio (scalar)

where is the residu  

SNR
r

r r

i i

i i

var( )

var( )

aal on trial i

Note that we use the notation ·
x
 to represent the expectation 

over all possible values of x, ·
x,y

 to represent the expectation over 
all possible values of x followed by the expectation of all possible 
values of y, and ·

x y
 to represent the expectation over all possible 

combinations of x and y in which their values are not equal. We 
chose to use the above definition of SNR as the measure of trial-
to-trial variability because is it commonly used in early sensory 
systems (Borst and Theunissen, 1999). One important property of 
this measure that should be noted is that its value is dependent on the 
bin size . Thus, all of the computations described below for fitting 
model parameters must be repeated if the bin size is changed.

We model the response as a dichotomized sum of a deterministic 
“signal” and Gaussian “noise”

r n
s n z n

s n z ni
i

i

[ ]
, [ ] [ ]

, [ ] [ ]

1 0

0 0
 

(1)

Where r
i
[n] is the response in time bin N on trial i, s (an 

N-dimensional vector) is the same on every trial and z  N(0, 1) 
(an N-dimensional vector) is different on every trial [note that 
neither s nor z are intended to correspond directly to any intracel-
lular quantities]. Given the experimentally recorded responses of 
a cell, we wish to simulate responses with the same PSTH r . This 
can be done by solving

r n r n s ni i
[ ] [ ] ( [ ], )1

 
(2)

for s[n] in each bin, where (x, 2) is the CDF for a Gaussian 
with zero mean and variance 2 evaluated at x. Equation 2 is easily 
solved numerically, as the function is monotonic and has unique 
level crossings. It is clear from Eq. 2 that the choice of one for the 
variance of z is somewhat arbitrary; for any finite value of the 
variance of z, an s[n] can be found to achieve any desired value of 
r n[ ]. Note that if r n[ ] ,0 1or  then s[n] must be either  or . 
If finite values of s[n] are desired, then r n[ ] can be constrained to 
the interval [1/I, 1  1/I] before solving Eq. 2.

Importantly, since this approach matches r  exactly, it will also 
match the mean spike probability r

0
 and the spike train signal to 

noise ratio SNR, as both can be uniquely defined in terms of the 
PSTH r :

r r

r r

r r

r

r r

n

i i i i

0

SNR
var( )

var

var( )

var

var( )

var( ) var ii i i i
r r2 cov ,

where, because r
i
 is binary,

var ( ) cov , .r r r r r r ri i i i n0 0
2

0
21 and
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for each cell, it will also match the signal correlation between cells. 
To match the noise correlation, it is necessary to find the appropriate 
covariance matrix 

z
. This can be done by solving the equation that 

relates z
pq to the spike train noise correlation noise

pq  numerically for 
each pair of cells (again, the function is monotonic and, because z 
is Gaussian, each z

pq can be solved for independently).
Thus, noise

pq  can be written as

noise total signal
pq pq pq

i
p

i
q

i

i
p

i i
q

r r

r r

cov ,

var var
ii

i
p

j
q

i j

i
p

i i
q

i

r r

r r

cov ,

var var
 

(4)

where, because r
i
 is binary,

var r r ri
p

i

p p
0 01

and, because z is Gaussian,

cov , ,r r
s

s
r ri

p
i
q

i

p

q
z
pq

z
pq

n

p q
2 0 0

1

1
annd

cov , , ,r r s s r ri
p

j
q

i j

p q

n

p q1 1 0 0

where 2( , )x  is the CDF for a two-dimensional Gaussian with 
zero mean and covariance  evaluated at x.

To demonstrate the utility of this approach, we first attempted 
to reproduce the single-cell properties and pairwise correlations 
recorded experimentally from a population of 10 cells in the cat 
lateral geniculate nucleus in response to repeated presentations of a 
natural scene movie. Figure 2A shows the experimental and simu-
lated responses for two cells. As expected, the PSTH, r

0
, and SNR of 

the experimental and simulated responses are closely matched. As 
shown in Figure 2B, the measured and simulated pairwise noise 
correlations in the population are also closely matched.

In addition to matching the experimentally observed responses, 
this approach can also be used to manipulate pairwise correlations 
without disturbing single-cell properties by changing the value of 

noise
pq  on the left side of Eq. 4 before solving for z

pq (note that there 
are a number of constraints on the realizable values of noise

pq  – for 
example, because the covariance matrix 

z
 must be positive semi-

definite, it may be difficult to obtain strong negative correlations; 
see Macke et al., 2009 for a detailed discussion). As a demonstration, 
we attempted to simulate population spike trains in which the noise 
correlations were twice as large as those observed experimentally. 
As shown in Figure 2C, the noise correlations in the simulated data 
match those desired.

EVALUATING GOODNESS OF FIT
Our model is not fit directly to observed spike trains, but rather to the 
PSTHs and pairwise noise correlations that are extracted from them. In 
our framework, any set of PSTHs and noise correlations can be fit with 
a unique set of model parameters, but that does not mean, of course, 
that the model is a good description of the original spike trains. The 
actual goodness of fit of the model is determined by two factors: the 
measurement noise in the PSTHs and noise correlations and the validity 
of the assumption that the spike trains can be described by our model 

Matching r  exactly will also match the mutual information 
transmitted by single spikes (Brenner et al., 2000). Note that if it 
is not necessary to match the bin to bin spike probabilities of the 
experimental response, but only the distribution of overall spike 
counts, a reduced model can be used (Macke et al., 2009).

To demonstrate the utility of this model, we first generated 
responses using Eq. 1 with a variety of different signals, and then 
attempted to reproduce the model responses after estimating s using 
Eq. 2. Typical results are shown in Figure 1A. For uniform random, 
sine wave, and square wave signals, the PSTH and, consequently, 
r

0
 and SNR of the responses simulated with the estimated s closely 

match those of the original model generated data.
Next, we tested the model’s ability to reproduce the single-cell 

properties of experimentally recorded responses. Figure 1B shows 
the responses of neurons in the gerbil inferior colliculus to repeated 
presentations of a variety of sounds. In each case, we estimated s 
from the experimental data using Eq. 2 and were able to simulate 
new responses with PSTH, r

0
, and SNR that match those measured 

experimentally.

POPULATION RESPONSES
As described in the Introduction, correlations between cells in early 
sensory systems can have both signal and noise components: signal 
correlations arise from correlations in the stimulus itself and/or 
similarity in preferred stimulus features (frequency, orientation, 
etc.), while noise correlations arise from shared inputs that con-
tribute to the trial-to-trial variability in responses. In our model, 
we adopt the most common definition of noise correlation, where 

noise
pq , the noise correlation between cells p and q, is given by the 

difference between the total correlation and the signal correlation, 

noise total signal
pq pq pq , and total

pq  and signal
pq  are the correlation coef-

ficients between the responses of cells p and q before and after 
the trial order has been shuffled. The model described above for 
a single cell is easily extended to capture the pairwise signal and 
noise correlations in a population, where the response of cell p  {1, 
2, ,P} is given by

r n
s n z n

s n z n
i
p

p
i
p

p
i
p

[ ]
, [ ] [ ]

, [ ] [ ]

1 0

0 0
 

(3)

where each cell has its own sp that is the same on every trial and zp 
that is different on every trial. In this population model, z  N(0, 

z
) 

is a multivariate (P-dimensional) Gaussian random process with 
covariance matrix

z

z z
P

z

z
P

1

1

1

12 1

21

1

,

where z
pq , which is assumed to be constant across time bins and 

trials, is the pairwise correlation coefficient between z p and z q 
and z

pq
z
qp . Assuming we have the responses of a population 

to repeated trials of a particular stimulus, we can estimate each s p 
separately to match the single-cell properties as described above. 
Because the response is binary and this approach matches r  exactly 
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FIGURE 1 | Simulated responses match the single-cell properties 
of model generated and experimental data. (A) The top row shows 
model generated responses to repeated trials with a variety of 
waveforms for s: a uniform random noise signal in the range [ 0.5 to 0.5]; 
a sinusoidal signal 0.75 sin(n/5)  1; a square wave signal with a 50% duty 
cycle, a period of 20 samples, and the same mean value and peak-to-peak 
amplitude as the sinusoid. The middle row shows simulated responses 
with s estimated from the responses in the top row. The bottom row 
shows the PSTHs of the original model generated (black) and simulated 
(gray) responses. (B) The top row shows experimental responses of a 
cell recorded in the inferior colliculus of an anesthetized gerbil to 

repeated trials of a variety of sounds (experimental methods are described 
in Lesica and Grothe, 2008a,b): a sinusoidally amplitude modulated (SAM) 
tone with a carrier frequency of 6 KHz, a modulation depth of 100%, an 
intensity of 70 dB, and a modulation frequency of 50 Hz; a square wave 
modulated tone with the same carrier frequency, modulation depth, and 
intensity, a 50% duty cycle, and a period of 25 ms; a tone with the same 
carrier frequency and intensity modulated by a signal with power spectra 
matched to that measured from a series of animal vocalizations. The bin 
size  for these responses was 1 ms. The middle and bottom rows show 
the simulated responses simulated and PSTHs presented as 
 in (A).
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framework. The goodness of fit can be measured by separating the 
available spike trains into “training” and “testing” sets, fitting the model 
parameters on the training spike trains, and calculating the (log) likeli-
hood of the testing spike trains from the resulting model. The absolute 
likelihood may be difficult to interpret, but the ratio of the likelihoods 
from two different models can give be an informative measure.

To demonstrate the use of likelihood as a measure of goodness of 
fit, we simulated population spike trains from a known model (see 
figure legend for model parameters), split the spike trains into training 
and testing sets, and estimated the model parameters from the training 
spike trains. To determine whether including noise correlations in the 
estimated model improved the goodness of fit, we then compared the 
likelihood of the testing spike trains from the estimated model with 
and without noise correlations (i.e., with 

z
 estimated as described 

above or set to the identity matrix) for different numbers of training 
trials. The likelihood of a given testing spike train was computed as

L n ni P i z
n

N

r r slog ( [ ] ) [ ],2 1
1  

(5)

where r
i
 is the N  P binary matrix of the responses of a popula-

tion of P cells on a given trial i, r
i
[n] is the vector of the responses 

r ni
p[ ] for each cell, s[n] is the vector of the signals s p[n] for each cell, 

P x( , ) is the CDF for a P-dimensional Gaussian with zero mean 
and covariance  evaluated at x , and · denotes a point-by-point 
vector product. To isolate the effects of the noise correlations on 
the goodness of fit, we set the PSTHs in the estimated model to be 

FIGURE 2 | Simulated responses match the single-cell properties and 
pairwise correlations in experimental data. (A) The top row shows the 
experimental responses of two cells recorded simultaneously in the lateral 
geniculate nucleus of an anesthetized cat to repeated trials of a natural scene 
movie (experimental methods are described in Lesica et al., 2007) with an RMS 
contrast of 0.4. The bin size  for these responses was 4 ms. The middle and 
bottom rows show the simulated responses and PSTHs presented as in 

Figure 1. (B) The image shows the pairwise noise correlations in the 
experimental (lower triangular portion) and simulated (upper triangular portion) 
responses of a population of 10 neurons recorded in the cat LGN. The responses 
of all 10 cells were recorded simultaneously. (C) The image shows the desired 
pairwise noise correlations (lower triangular portion; values are double those 
measured in the original data) and the pairwise noise correlations realized in the 
simulated responses (upper triangular portion).

FIGURE 3 | Model goodness of fit increases with increasing trials. The 
gray circles show the log likelihood (per bin) for the estimated model as a 
function of the number of trials used for fitting z. The likelihood was 
computed for 100 trials not used for fitting the model. The likelihoods for the 
actual model with and without noise correlations are also shown. Spike trains 
were generated using the model described in Eq. 10 with the following 
parameters: N = 500, P = 10, 2

s and  were chosen so that r0  N(0.16, 0.04) 
and SNR  N(0.5, 0.35), and s

pq and z
pq were chosen so that 

signal
pq N ( . , . )0 12 0 03  and noise

pq N ( . , . ).0 07 0 02

the same as those in the actual model and used only the estimated 
noise correlations. As shown in Figure 3, as the number of train-
ing trials increased, the measurement noise in noise correlations 
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where z  N(0, 1) is again a Gaussian random process that is dif-
ferent on every trial, s is a Gaussian random process s sN ( , )0 2  
that is the same on every trial, and the threshold  is allowed to 
take on any value (note that in this case,  cannot simply be set 
to an arbitrary value; in order to achieve any combination of r

0
 

and SNR, 2 degrees of freedom are required). Such a model could 
be used, for example, to simulate spike trains with any mean 
spike rate and trial-to-trial variability. Furthermore, because 
the model is based on Gaussian processes, it may enable certain 
population response properties to be investigated analytically 
or numerically directly from the model parameters, without the 
need for simulations.

decreased, and the likelihood from the estimated model with noise 
correlations approached that of the actual model, reaching the same 
value with I = 80 trials.

NOISE WITH TEMPORAL CORRELATIONS
The model as described above captures both the instantaneous and 
long-term signal correlations between cells by matching their individ-
ual PSTHs, but captures only instantaneous noise correlations because 
z is uncorrelated in time. While instantaneous noise correlations are 
likely to be sufficient to describe population spike trains in early sen-
sory systems, the model can also be extended to capture long-term 
noise correlations if necessary, for example, to capture the high level 
of trial-to-trial variability in higher cortical areas. Long-term noise 
correlations can be captured by adding temporal correlations to z via 
Gaussian conditioning (MacKay, 2003; Macke et al., 2009) so that z in 
each time bin is drawn from a distribution with mean and covariance 
dependent on the values of z in the preceding time bins:

z n n K n CB z n K n
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1

N
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1 2 0

1 2

K

K

K K

KC

kk
z
pp

z
pq

z
qp

z
qq

p

k k

k k

z n K n

z n

[ ] [ ]

[ ] [ ]

[ ,..., ]

[

1
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(6)

and K is the number of preceding time bins to condition on. An 
example of such conditioning is shown in Figure 4. We used a 
known model to generate population spike trains with the noise 
auto- and cross-correlation functions shown by the thick black lines 
(see figure legend for model parameters). We then estimated model 
parameters from those spike trains, including those required for 
conditioning z on the preceding K = 4 time bins. The noise auto- 
and cross-correlation functions for the spike trains simulated from 
the estimated model (shown by the gray circles) closely match those 
of the original spike trains.

A GENERAL MODEL FOR POPULATION SPIKE TRAINS
SINGLE-CELL RESPONSES
When modeling experimental spike trains as described above, the 
noise correlations can be chosen arbitrarily, but the mean spike 
rate, trial-to-trial variability, and signal correlations are depend-
ent on the PSTH. It may also be useful to have a general model 
for population spike trains in which all of the response properties 
can be specified independently. For a single cell, this is achieved 
by replacing the deterministic signal s in the model framework 
described above with a Gaussian random process:

r n
s n z n

s n z ni
i

i

[ ]
, [ ] [ ]

, [ ] [ ]

1

0
 

(7)

FIGURE 4 | Gaussian conditioning captures long-term noise correlations. 
The gray circles show the noise auto- and cross-correlation functions for spike 
trains simulated from the estimated model. Error bars represent the standard 
deviation in the correlation values computed from independent realizations of 
the model. The model parameters were estimated from spike trains simulated 
by the model in Eq. 10, including Gaussian conditioning of z, with the following 
parameters: N = 500, P = 10, 2

s and  were chosen so that r0  N(0.16, 0.04) 
and SNR  N(0.5, 0.35), s

pq 0 5. , and z
pp k[ ] and z

pq k[ ] .0 12 for k  4 and 
zero thereafter. The noise auto- and cross-correlation functions of the original 
spike trains are shown by the thick black lines. Examples of the noise auto- 
and cross-correlation functions of the original spike trains after trial shuffling 
are shown by the thin black lines. The dashed lines indicate the mean 2 
standard deviations of the distribution of the correlation values after shuffling.
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where both s and z are multivariate Gaussian random process 
s  N(0, 

s
) and z  N(0, 

z
) with covariance matrices 

s

s s s s s
P

s s

s s s s

s
P

s s s

P

P P

1 2 1 1

1 2 2

1

2 12 1

21 2

1 2
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z z
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z
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1

1

1

12 1

21

1

.

After determining s
2 and  for each cell based on the desired r

0
 

and SNR as described above, the pairwise correlation coefficients 

s
pq and z

pq required to obtain the desired spike train signal and noise 
correlations signal

pq  and noise
pq  can be found by solving the following 

equations numerically:
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Again, the functions are monotonic and each s
pq and z

pq can be 
solved for independently.

To demonstrate this approach, we generated a random set of pair-
wise signal and noise correlation coefficients signal

pq  and noise
pq , estimated 

the corresponding values of s
pq and z

pq , and simulated population spike 
trains with these values. As shown in Figures 5B,C, the correlations in 
the simulated spike trains closely matched the desired values.

DISCUSSION
We have described a model for simulating population spike trains 
typical of early sensory systems. The model has two forms: the 
first requires the specification of PSTHs and noise correlations and 

To specify the model parameters, the equations for r
0
 and SNR 

can be written in terms of s
2 and  and solved numerically to 

obtain the appropriate values:

r s0
2 1( , )  (8)
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While Eq. 8 is already written in terms of s
2 and , Eq. 9 requires 

some manipulation. The numerator can be written as
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The denominator can be written as
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Note that in these equations, r ri and r
i
·r

j
 denotes point-by-

point vector products, and r 2 denotes point-by-point squaring. 
Thus, for any realizable combination of r

0
 and SNR, appropriate 

s
2 and  can be found (the minimum realizable SNR depends on 

the number of trials, see Appendix). To demonstrate this approach, 
we randomly chose a variety of values for r

0
 and SNR, estimated the 

corresponding values of s
2 and , and generated responses using 

the estimated values. As shown in Figure 5A, r
0
 and SNR of the 

simulated responses closely match the desired values.

POPULATION RESPONSES
The model described above for a single cell is easily extended to a 
population, where the response of cell p  {1, 2, ,P} is given by
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and without noise correlations. The model also provides the ability 
to manipulate noise correlations without affecting the signal cor-
relations or single-cell properties. In the brain, these properties are 
coupled to each other – for example, one can decrease the spike 
rate of visual neurons by decreasing the contrast of the stimulus, 
but this will also likely change the trial-to-trial variability and the 
correlations. Thus, a question such as whether or not changes in 
correlations with changes in contrast are detrimental or beneficial 
to a population code is impossible to answer experimentally. With 
our model, one could compare simulated populations with high 
contrast single-cell properties and correlations to simulated popu-
lations with high contrast single-cell properties and low contrast 
correlations to directly test whether or not the change in correla-
tions is important. A similar example can be used to illustrate the 
utility of the general form of the model: Because the general form of 
the model allows for spike trains with any mean spike rate, trial-to-
trial variability, and pairwise signal and noise correlations (within 
statistical constraints), it could be used to perform a systematic 
investigation of the effects of noise correlations on populations 
with different levels of signal correlations that would be impossible 
to conduct experimentally.

There are several ways in which the formulation of our model 
described here could potentially be improved. For example, the 
assumption that no more than one spike can occur in any time 

can be used to match and manipulate experimental data, and the 
second is more general and allows for population spike trains with 
any mean spike rates, trial-to-trial variabilities, signal correlations, 
and noise correlations. Both forms of the model are easily imple-
mented as parameter fitting requires simply finding the level cross-
ings of monotonic functions and correlations can be determined 
independently for each pair of cells. The Matlab code required to 
fit the model parameters is available for download at http://www.
ucl.ac.uk/ear/research/lesicalab.

Our model improves on the existing methods for generating 
population spike trains described in the Introduction in several 
important ways. First, the model framework is explicitly designed 
around the response properties that are important for early sensory 
neurons: time-varying spike rate (PSTH), trial-to-trial variability, 
and signal and noise correlations. Second, the model allows inde-
pendent and straightforward manipulation of one response prop-
erty without changes in the other properties. One can imagine a 
number of potential uses for a model with these properties. The fact 
that the model matches the single-cell properties and correlations 
observed experimentally is in itself of some utility, such as providing 
a simple framework for computing the likelihood of observed spike 
trains given only pairwise interactions. These likelihoods could be 
used to, for example, test how important noise correlations are in 
determining population spike patterns by comparing models with 

FIGURE 5 | Simulated population responses with specified single-cell 
properties and pairwise correlations. (A) The top row shows the 
simulated responses for two cells with specified r0 and SNR. (B) The 
image shows the desired pairwise signal correlations (lower triangular 

portion) and the pairwise signal correlations realized in the simulated 
responses (upper triangular portion) for a population of 10 cells. (C) The desired 
and realized pairwise noise correlations for a population of 10 cells presented as 
in (B).
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the current necessary to achieve a desired set of correlations in a 
stimulation experiment. With further effort, however, it may be 
possible to extend some of the desirable properties of our model 
into a more realistic framework such as an integrate-and-fire model 
(Paninski et al., 2004). Another limitation of the model that may 
be difficult to overcome is that in estimating a single value for each 
parameter across all trials, it implicitly assumes that the population 
is stationary. Certain types of non-stationarities, such as trial-to-
trial fluctuations in the PSTH, may be captured by introducing 
long-term noise correlations via Gaussian conditioning, but others 
may require integrating the model into an adaptive framework 
(Eden et al., 2004).

There are also certain limitations of the model that are inherent 
in its underlying statistical framework. For example, it is difficult 
to generate spike trains with very low SNRs with a small number 
of trials – even if the variance of the internal signal in the model 

s
2 0, because the spikes are generated stochastically, the PSTH 

computed from a small number of trials will not have zero variance, 

and, thus, the SNR will not be zero. There are also constraints on 
the values of signal and noise correlations that can be achieved. 
Because the model is based on multivariate Gaussian processes 
which must have positive semi-definite covariance matrices, it is 
difficult, for example, to generate spike trains with strong negative 
correlations. Finally, while the model can be specified and fit to a 
population of any size, it is only guaranteed to capture second-order 
correlations. As with any model that includes only pairwise interac-
tions, our model’s ability to capture the higher-order structure in 
population spike trains will depend on the nature of the population 
(Schneidman et al., 2006; Shlens et al., 2006; Roudi et al., 2009; 
Ohiorhenuan et al., 2010).
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APPENDIX
MINIMUM ACHIEVABLE SNR
For any binary response r with N time bins and I trials, the minimum 
realizable SNR depends only on the number of trials. Recalling the 
definition of SNR
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Simplifying the resulting expression gives the minimum realiz-
able SNR:
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IV  Analysis and modelling of variability and 

covariability of population spike trains across 

multiple time scales 

 

 

 

In this chapter we further explore the capability of DG model to fit experimental data and 

modify its properties. In particular we add auto- and cross-correlations between neurons in the 

time domain. For this purpose we use Gaussian conditioning algorithm (MacKay, 2003; Macke 

et al., 2009) to create correlations in the underlying Gaussian processes, and then find 

expressions for the correlations in the observed binary spike trains.  

We show that controlling noise correlations this way allows one to arbitrarily change the Fano 

factors, ISI distributions of individual cells, and count correlations between pairs of cells.  
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Abstract:  

As multi-electrode and imaging technology begin to provide us with simultaneous 
recordings of large neuronal populations, new methods for modeling such data must 
also be developed. We present a model of responses to repeated trials of a sensory 
stimulus based on thresholded Gaussian processes that allows for analysis and 
modeling of variability and covariability of population spike trains across multiple time 
scales. The model framework can be used to specify the values of many 
different variability measures including spike timing precision across trials, coefficient 
of variation of the interspike interval distribution, and Fano factor of spike counts for 
individual neurons, as well as signal and noise correlations and correlations of spike 
counts across multiple neurons. Using both simulated data and data from different 
stages of the mammalian auditory pathway, we demonstrate the range of possible 
independent manipulations of different variability measures, and explore how this 
range depends on the sensory stimulus. The model provides a powerful framework for 
the study of experimental and surrogate data and for analyzing dependencies between 
different statistical properties of neuronal populations. 

 

Keywords: dichotomized Gaussian, noise correlations, population coding, Fano factor  
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1. Introduction 

In sensory systems repeated presentations of identical stimuli can evoke different spike 
patterns, with variability typically increasing from the periphery to more central brain 
areas (Kara et al. 2000). The importance of considering variability and covariability (or 
correlation) of spiking on different time scales has been stressed in a number of studies 
(Vaadia et al. 1995; Ratnam & Nelson 2000; Bair et al. 2001; Smith & Kohn 2008). For 
single neurons, the impact of variable spiking on stimulus coding has been studied on 
several time scales, from millisecond spike time jitter and phase-locking in early 
sensory pathways, to the scale of inter-spike intervals (ISIs) and spike counts across 
seconds in cortical areas (Softky & Koch 1993; Shadlen & Newsome 1998). Whether 
such variability is beneficial or detrimental for coding depends on the assumptions 
about the nature of the neural code and its significant parameters (Mainen & Sejnowski 
1995; Schneidman et al. 1998; Manwani et al. 2002). When neuronal populations are 
considered, the same question arises with respect to the covariability of spiking of 
individual neurons (Zohary et al. 1994; Abbott & Dayan 1999; Romo et al. 2003; 
Schneidman et al. 2003; Latham & Nirenberg 2005; Averbeck et al. 2006). For 
populations of neurons, both spike synchrony on fine time scales and correlations in 
spike counts across longer time scales can result in synergistic or redundant coding 
depending, for example, on the similarity of the tuning curves of the neurons in the 
population (Zohary et al. 1994; Dan et al. 1998; Puchalla et al. 2005; Smith & Kohn 
2008). 
 
Taking this background into consideration, it is clear that tools enabling the analysis 
and modeling of the different types of variability in population spike trains should be 
developed. Previous research has shown that certain types of variability and 
covariability can be directly related to the spike train auto- and crosscorrelation 
functions (Bair et al. 2001; Nawrot 2010; Tchumatchenko et al. 2010). While existing 
models for the analysis of population spike trains allow specification of auto- and 
crosscorrelation functions (Krumin & Shoham 2009; Macke et al. 2009; Lyamzin et al. 
2010; Gutnisky & Josić 2010) the parameters of these models have not yet been 
explicitly linked to the different measures of variability and covariability described 
above. Modeling spike trains with specified variability and covariability across multiple 
time scales, each of which could be independently manipulated, would provide a 
systematic way to study their impact on coding. 
 
In this paper, we present further analysis of a model that we previously developed to 
capture instantaneous response properties of neuronal populations (Lyamzin et al. 
2010). We show how the model can capture variability and covariability across a range 
of time scales, including signal to noise ratio, coefficient of variation (CV) of the ISI 
distribution, and Fano factor of spike counts for single neurons, and spike synchrony 
and correlation coefficient of spike counts for populations. Within the framework of our 
model, each of the variability and covariability measures can be expressed in terms of 
internal model parameters in closed form, and in particular, in terms of the auto- and 
crosscorrelation functions. Given experimental data, the model enables the simulation 
of spike trains with the same statistics, as well as manipulation of individual response 
properties. Furthermore, given a set of desired statistics, the model can be used to 
generate population spike trains de novo. Importantly, because the model is based on a 
dichotomized Gaussian framework, it enables not only simulation of spike trains, but 
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also direct analysis of the relationship between different types of variability and 
covariability, and the impact of different response properties on population coding. 
Matlab code implementing the model will be made available at 
www.ucl.ac.uk/ear/research/lesicalab. 

2. Modeling experimental spike trains 

2.1 Model framework 

The basic framework of our model is described in our previous paper (Lyamzin et al. 
2010). We represent spike trains as binary vectors of length N where each element 
corresponds to a time bin with a value of 1 if there is a spike and 0 otherwise. We 
assume the width of a time bin is small enough so that no more than one spike occurs in 
any time bin. Each stimulus is presented I times, so that for each cell a response to a 
single stimulus is a binary N x I matrix. We model a population of P cells, with binary 
vectors  for each cell p on each trial i obtained by thresholding a sum of Gaussian noise 

 that is different on each trial and a deterministic component  that is the same on 

each trial. Thresholding is done in each time bin . 

 

 

 
where i = 1…I, n = 1…N, and p = 1…P. A schematic illustration of the model for single 
cells is shown in Fig. 1. 
 

The free parameters of this model are the values of , which must be fit for each cell in 
each time bin, and the correlations in the Gaussian process z across both cells and time 
(the component of z corresponding to each cell is constrained to have unit variance 
across time). 
 

The values of are determined by the PSTH of each cell. From experimental data, one 

can calculate the PSTH ( ) and then find  by solving equation (1) numerically in 

every time bin 
 

  (1)          

 
where  is the Gaussian cumulative distribution function with zero mean and 

variance  evaluated at .  
 
The correlations in z are determined by measuring the noise correlations in the spike 
trains. Correlations in the spike trains of sensory neurons have both signal and noise 
components, with signal correlations reflecting covariability in the stimulus-driven 
component of the response that is repeatable from trial to trial, and noise correlations 
reflecting covariability in the component of the response that is different from trial to 
trial. We assume that signal and noise correlations are additive, and thus define noise 
correlations between two spike trains as a difference between total correlations and 
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signal correlations. Note that, although the dichotomized Gaussian framework can 
capture certain higher order statistical properties of spike trains (Macke et al. 2011, Yu 
et al. 2012), we assume for our purposes that only second order correlations are 
matched. 
 
To set the correlations in the components of z corresponding to cells p and q at time lag 
k, , one first measures the corresponding noise correlations from the given set of 

spike trains: 
 

[ ] [ ] [ ]pq pq pq

noise total signalk k k     

 
which can be rewritten as  
 

cov( , ( ))cov( , ( ))
[ ]
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i ji i i jpq i
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p q p q

i i i ii i i i
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


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where  denotes the  expected value of the covariance of two quantities on the same 

trial,  denotes the expected value of the covariance of two quantities on different 

trials,  and  is the vector shifted by k time bins. Then one finds the 

corresponding by substituting (3) into (2) and solving numerically 

 

      (3)  

 

2.2 Variability of single cells on short time scales: Signal to noise ratio 

In our previous paper, we specified the trial-to-trial variability of each cell as the signal 
to noise ratio 
 

 

 
Because SNR is calculated for a single neuron, we omit cell indices for simplicity. We 
showed that, because the response is binary, if the PSTH is known, it uniquely defines 
SNR. This measure of variability is commonly used in the study of early sensory 
systems; it describes the reliability and precision of spiking across trials with respect to 
the stimulus. A cell with no noise, SNR = ∞, would spike on every trial in some bins, and 
never spike in the others. As the cell becomes less reliable, i.e. spikes are missed on 
some trials, or less precise, i.e. jitter moves spikes from one bin to the next, the SNR 
decreases. For a cell driven entirely by noise, i.e. a cell with a flat PSTH, the SNR is zero. 
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2.3 Variability of populations on short time scales: instantaneous signal and noise 
correlations 

As described above, correlations in the spike trains of sensory neurons have both signal 
and noise components. In our previous paper, we specified the instantaneous signal and 
noise correlations, i.e. the correlations on the scale of a single time bin with zero lag 

 and . We showed that, because the responses are binary and the 

underlying noise process is Gaussian, matching the PSTH and signal to noise ratio of 
individual cells in the population will also match the instantaneous signal correlations 
between each pair. To match the instantaneous noise correlations between each pair of 

cells, the parameters  that define the instantaneous correlations of z must be fit 

as described above. 
 

2.4 Variability of single cells on long time scales: Fano Factor 

The purpose of this paper is to analyze the relationship between the parameters of the 
Gaussian processes that underlie our model framework and experimentally relevant 
properties of spike trains that depend on temporal correlations – CV of the ISI 
distribution, Fano factor of spike counts, and correlation coefficient of spike counts for 
populations. For this purpose, one follows the fitting process described in Section 2.1 to 
find the values of the covariance matrix of z not only with zero lag, but at all lags k that 
correspond to significant noise correlations. To sample from the model and simulate 
spike trains, the correlated process z can be generated by using Gaussian conditioning 
(MacKay 2003; Macke et al. 2009; Lyamzin et al. 2010), or by using other methods, such 
as the multivariate autoregressive process described in (Gutnisky & Josić 2010). 
 
Fano factor, the ratio of spike count variance to mean spike count across trials, has often 
been used as a measure of variability of spiking (Softky & Koch 1993; Berry et al. 1997; 
Shadlen & Newsome 1998; Kara et al. 2000). Fano factor is an obvious choice when 
neuronal activity is considered from the perspective of rate coding, and it has been used 
extensively to quantify variability in cortical cells, and, less commonly, cells of early 
sensory pathways. (Tolhurst et al. 1983; Sestokas & Lehmkuhle 1988; Hartveit & 
Heggelund 1994; Berry et al. 1997; Gur et al. 1997; Gershon et al. 1998; Buracas et al. 
1998; Oram et al. 1999; Kara et al. 2000). A spike count distribution with a Fano factor 
equal to one has variability that is similar to that of a Poisson process, while neurons 
with Fano factors smaller than one are more reliable and those with high Fano factors 
are more variable.  
 
Within the framework of our model, Fano factor can be expressed in terms of the 
correlation coefficients of z. Previous studies have shown that Fano factor depends on 
the integral of the spike train autocorrelation function, with Fano factor being bigger 
than one if the integral is positive, and less than one if the integral is negative (Macke et 
al. 2009). In our model, Fano factor depends not only on the integral of the 
autocorrelation function, but also, because the spike rate is not assumed to be 
stationary, on the value of s in every time bin. 
 
The expression for Fano factor in terms of autocorrelations of the Gaussian process and 
signal can be written as (intermediate steps can be found in Appendix A):  

[0]pq

signal [0]pq

noise

[0]pq
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Thus, given s in every time bin, when the autocorrelation function of a spike train is 
matched during the model fitting process, Fano factor is also matched. Modifying Fano 
factor will require changing the spike train correlation structure. Generally speaking, it 
can be changed arbitrarily, and in many cases simple scaling of correlation coefficients 
in  for all k is a valid method (note that not all Fano factors are realizable, as the 

covariance matrix of the underlying Gaussian process must remain valid; this limitation 
is discussed in detail in Section 4.1).  In the case of scaling, (4) can be converted into an 
equation in terms of the unknown scaling factor and solved numerically. The correlation 
matrix will then be parameterized by the scaling factor α, 
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(5)  

 
Thus, as long as the necessary scaling factor corresponds to a realizable autocorrelation 
function, one can create a new Gaussian random process that would produce spike 
trains with the desired Fano factor. 
 
To demonstrate the ability of our model to both match and manipulate the Fano factor 
in experimental spike trains, we fit our model to responses from a single neuron in 
mouse auditory cortex. Spike trains were recorded during the presentation of a 100 
repeated trials of a 1 second segment of an amplitude modulated broadband noise 
sound. Fig. 2A shows a raster plot of the experimental responses. 
 
Sampling spike trains (with the same trial length) from the fitted model resulted in 
responses with a Fano factor that matched the Fano factor in the original data, as shown 
in red in Fig. 2B (dashed line is the line of equality, error bars denote two standard 
deviations of the values obtained by repeated bootstrap sampling). To demonstrate the 
ability of the model to manipulate the Fano factor in experimental data, we used 
equation (5) to calculate a scaling factor for the autocorrelations of z such that the spike 
trains sampled from the model would have a different, predefined Fano factor. The 
responses of the model with scaled correlations accurately matched seven arbitrary 
values of Fano factor, including bigger and smaller values, as shown in black in Fig. 2B. 
 

[ ]z k
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Fig. 2C shows histograms of spike counts for the two extreme cases of Fano factor 
modification shown in Fig. 2B. The distribution of spike counts for FF = 0.8, the least 
variable example, is shown in blue bars. Spike counts are relatively tightly clustered 
around the mean count. The distribution of spike counts for the most variable example, 
FF = 2.0, is shown in white bars. The distribution is considerably wider and contains 
many more extreme values.  
 
The effects of the change in Fano factor can be seen by eye in the corresponding raster 
plots. Figs. 2D and 2E show the model responses with FF = 0.8 and FF = 2.0, 
respectively. The spike trains shown in Fig. 2D are much more regular than those shown 
in Fig. 2E, where one can see that a considerable proportion of spikes comes in bursts. 
Note that by design, instantaneous variability as measured by SNR is not affected by the 
manipulation of Fano factor: the SNR of the original data was 0.036, whereas the SNR of 
the manipulated data was 0.039 for FF =0.8 and 0.032  for FF =2.0. Similarly, the mean 
spike rate and PSTH are also unaffected. 
 

2.5 Variability of single cells on short time scales: ISI distributions 

Another important statistical property of the spike trains of individual cells is the 
distribution of ISIs. For the case of stationary spike rates, which is most commonly 
considered in the studies of ISI measures, ISI distributions are regularly shaped and are 
approximated well by gamma distributions (Nawrot et al. 2008; Shimokawa et al. 2010). 
The parameters of the gamma distribution in this case are defined by the 
autocorrelation function of the cell. Positive autocorrelations result in less regular 
spiking with ISI distributions that decrease monotonically with time. Negative 
autocorrelations result in more regular spiking, with the ISI distribution increasing with 
time for short ISIs, and then monotonically decreasing one once the peak has been 
passed.   
 
A useful landmark in the family of ISI distributions of cells with stationary spike rates is 
the distribution associated with Poisson spiking. In this case the distribution of ISIs is 
exponential with decay speed depending on the spike rate. In terms of coefficient of 
variation (CV), which is the ratio of standard deviation of a distribution to its mean, 
these spike trains, with CV equal to one, lie between positively autocorrelated, irregular, 
spike trains (CV>1), and negatively correlated, regular, spike trains (CV<1). 
   
When spike rate is non-stationary, as generally the case for sensory neurons, ISI 
distributions can be quite complex. An obvious example would be phase-locked spiking, 
where an ISI distribution can have several peaks at the ISIs that are multiples of the 
period of stimulus modulation. However, autocorrelations still have their own 
contribution in addition to the shape of the ISI distributions defined by the stimulus 
modulation. For example, as in the stationary spike rate case, negative autocorrelations 
due to refractoriness decrease the probability of short ISIs while increasing the 
probability of long ISIs, thus resulting in more regular spiking patterns (Berry et al. 
1997).  
 
For sensory systems, it is important to model spike trains with both refractoriness and 
flexible ISI variability in general. To characterize the regularity of spiking, we measure it 
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with the squared coefficient of variation (CV2) of the ISI distribution.  Because of the 
generally non-stationary spike rate, CV2 cannot be used to compare spiking regularity of 
different cells, but it is useful to measure the changes in spiking regularity of the same 
cell. The absolute value of CV2 can also provide some guidelines on the statistics of a 
spike train, and choosing this measure is partially motivated by the ability to reference 
its values in limiting cases. For example, in addition to the Poisson case noted above, CV2 
is also a useful measure for comparing spike trains to renewal processes, for which CV2 
equals the Fano factor of spike counts.  
 
In our model, we can derive explicit expressions for the probability of an ISI given s in 
every time bin and the autocorrelation function of the spike trains (assuming that the 
ISI distribution is completely determined by second order statistics). The probability of 
an ISI of length m time bins is the mean probability of this ISI length over all time bins n. 
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 
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(6)  

 
Thus, the probability distribution of ISIs, and hence its coefficient of variation, is 
matched as long as the autocorrelation function of the spike trains is matched, to the 
extent that the ISI distribution depends only on the second order statistics of the 
intrinsic noise. 
  
Modifying the CV2 of an ISI distribution is done by manipulating the correlation 
coefficients of z. As in the case of Fano factor, this can be done by arbitrary changes of 
correlation structure, but often works with scaling: all correlation coefficients in the 
covariance matrix of z are multiplied by a parameter.  
 

( ) ( [ ] )
n

P ISI m P ISI n m  
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and the probability of an ISI of length m at a given time bin n with a spike is 
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Once the desired value of CV2 is specified, the value of the scaling factor can be found 
numerically from the following formula. 
   

 
  

 

2

2

var P
CV

P





       (7)  

 
Where P(α) is the probability distribution of ISIs as a function of the scaling parameter 
α.  
 
Obviously, for independent manipulation of CV2 and FF, modification of the correlations 
of z via simple scaling is not suitable. In this case, one has to use modifications of the 
correlations of z that have two free parameters. One such example is discussed in 
Section 3.5. 
 
To demonstrate the ability of our model to match and manipulate the ISI distribution of 
experimental data, we fit our model to a set of spike trains from a single cell in mouse 
inferior colliculus (IC). Spike trains were recorded during the presentation of 100 
repeated trials of a 1 second segment of amplitude modulated broadband noise sounds 
(see raster in Fig. 3A).  
 
With the assumption of ISI distribution being defined by second order statistics, we 
match the signal component and autocorrelation function and thus the ISI distribution. 
The ISI distribution of the original data and the data sampled from the fitted model are 
shown in Fig. 3B. The original distribution of ISIs is shown in blue bars, and the 
distribution of ISIs sampled from the fitted model is shown by the black and white line. 
The CV2 of the original data is 0.40 and CV2 of the data sampled from the fitted model is 
0.38. 
 
Fig. 3C demonstrates how scaling of the autocorrelations can change the CV2 of the spike 
trains. We found the scaling factor of the autocorrelation function that would produce 
spike trains with CV2 of 0.3 and 1.0, thus increasing and decreasing spiking regularity 
respectively. The resulting distributions of ISIs are compared with the original in Fig. 
3C. (Note that depending on the length of a trial in time bins, the use of sampling in the 
numerical search for the parameter value in the equation (7) can be computationally 
more efficient than calculation of the ISI probability distribution by using the equations 
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(6). The results shown in Fig. 3C were obtained by sampling the spike trains with scaled 
correlation coefficients and calculating the ISI probability distribution directly from 
these spike trains.) 

 
The effects of changes in the CV2 of the ISI distribution can be seen on the raster plots in 
Fig. 3D and 3E. In the case of CV2 of 1.0, there is no observed refractoriness and spiking 
often occurs in bursts due to strong positive autocorrelations, as can be seen in the inset 
in Fig. 3D. For CV2=0.3, spiking becomes more refractory, as can be seen in the inset in 
Fig. 3E; almost every spike has a period of silence of one or more time bins, which is the 
result of increased negative noise autocorrelations.  
 

2.6 Variability of populations on long time scales: Count correlations 

The effects of noise correlations on population coding can be studied across multiple 
time scales (Bair et al. 2001; Averbeck et al. 2006; Smith & Kohn 2008). In our previous 
work (Lyamzin et al. 2010), we mainly addressed instantaneous correlations that are 
related to spiking synchrony between two cells. One can also consider correlations that 
are calculated from larger time bins or whole trials. Correlations in spike counts across 
seconds have the capacity to both increase and decrease the information carried by a 
population depending on the correlation structure across the population, and the 
prospective from which their effect is studied (Abbott & Dayan 1999).  
 
As with the variability measures for individual cells described above, the pairwise count 
correlations for a population of cells can be related to the covariance matrix of the noise 
process z.  
 
Count correlations are defined as  
 

1 1 1 11 1

1 1 1 1
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       

    

   

 

 
First, we expand the product of spike counts: 
 

1 1

[ ] [ ] [1] [1] [1] [2] [ ] [ ] [ ] [ ]
N N

p q p q p q p q p q

n m

r n r m r r r r r n r m r N r N
 

      
 

 

and express each of the [ ] [ ]p qr n r m  products in terms of cumulative distributions: 

 

 

2

1 1 1 1

[ ]
[ ] [ ] , [ ]

[ ]

pN N N N
p q

zq
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s n
r n r m m n
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 
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N N

p p
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The formula for count correlations can then be rewritten as 
 

   2
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1 1

[ ]
, [ ] [ ],1 [ ],1
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    (8)  

 
where assuming symmetry of correlations 
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and 
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[ ]
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As you can see, count correlations depend only on s and the crosscorrelation function 
between two cells. Thus, when the crosscorrelation function between two neurons is 
matched during the model fitting process, the count correlations are also matched.   
 
As in the case of the single cell properties described above, manipulation of count 
correlations can often be achieved by finding a scaling factor for the crosscorrelations of 
z that will result in spike trains with the desired count correlations. The covariance 
matrix in this case is rewritten as  
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where  is the scaling factor, and the variance of spike counts can be rewritten as 
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so that count correlation value from (8) now depends on the scaling factor  
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   (9)  

 
 
Equation (9) can be solved for α numerically.  
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When the scaling factor of the crosscorrelation function is found, one can create a new 
Gaussian random process z that would produce spike trains with the required value of 
count correlations. 
 
To demonstrate the ability of our model to both match and manipulate pairwise count 
correlations in experimental spike trains, we fit our model to responses from a pair of 
neurons in gerbil auditory cortex. Spike trains were recorded during the presentation of 
a 100 repeated trials of a 200 ms segment of an amplitude modulated broadband noise 
sound (see raster plots in Fig. 4A).  
 
Sampling spike trains (with the same trial length) from the fitted model resulted in 
responses with a count correlation coefficient that matched the count correlation 
coefficient in the original data, as shown in red in Fig. 4B. We also used equation (9) to 
calculate the scaling factor for the autocorrelations of z such that the result of sampling 
from the model would have a different, predefined count correlation coefficient. The 
responses of the model with scaled correlations accurately matched four arbitrary 
values of correlation coefficient, including bigger and smaller values, as shown in black 
in Fig. 4B.  
 
The difference between the two extreme simulated cases (count correlation of 0.4 and 
0.7) can be seen from the plot of the joint spike count distributions in Figs. 4C and 4D 
(colored contours represent levels of equal probability, points within red contours 
correspond to the most frequently occurring pairs of spike count values, and points 
within blue contours correspond to less frequently occurring pairs of spike count 
values). The distribution of spike counts for spike trains with CC = 0.7 shown in Fig. 4C 
is more elongated along the diagonal than the distribution for spike trains with CC = 0.4 
shown in Fig. 4D. 
 

3. Simulating spike trains de novo 

3.1 Model framework 

In addition to matching and manipulating a particular set of experimental data, the 
model can also be used to generate a new spike trains with a desired set of statistics. 
Unlike the data-based model in which the PSTH of each neuron and several associated 
quantities are constrained to match those observed experimentally, the de novo version 
of the model provides a fully flexible framework in which to investigate the interaction 
of variability and covariability on different time scales. 
 
In recent studies (De La Rocha et al. 2007) it has been shown, both theoretically and 
experimentally, that correlations between two cells depend on their spike rates. Within 
our the dichotomized Gaussian framework, this dependency also holds (Macke et al. 
2011). The advantage of our model is that similar relationships can be observed for a 
wider range of parameters, e.g. SNR, signal correlations, Fano factors etc. Additionally, 
our model can also be used to study how values of a given parameter constrain the 
possible range of the others.  
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The model used for simulation of spike trains de novo is a modification of the one 
described above. A version of this model with specified instantaneous variability and 
covariability was described in detail in our previous work (Lyamzin et al. 2010). As 
before, spike trains are generated as binary matrices by thresholding a sum of a signal s 
that is the same on every trial and a noise z that is different on every trial.  
 

 

 
where i = 1…I, n = 1…N, and p = 1…P.  
 
The PSTH of each cell is no longer constrained by the experimental responses, but must 
be defined in another way. One can simply choose an arbitrary deterministic signal to 
create a pseudo-experimental situation, or choose a parametric stochastic signal to 
allow precise control of the relevant spike train parameters.  For the latter case, we set s 
to be a Gaussian process with variance  that is a free parameter for each cell. In this 

case, as both the mean spike rate r0 and the SNR are no longer constrained by the PSTH, 

a second free parameter is required in the form of a variable threshold . Both SNR 

and r0 can be expressed in terms of  and  (Lyamzin et al. 2010) and the required 

values solved for numerically. 
 
Because instantaneous signal correlations are also no longer defined by the PSTHs of  

the two cells,  becomes a free parameter of the spike trains, which can be 

manipulated by changing the corresponding , the correlation coefficient between the 

different components of s.  In the previous paper, we showed that for Gaussian s,   

and  can be expressed in terms of  and . Hence, given the desired values of 

 and , one can generate the correlated s and z processes that would give spike 

trains with desired correlations after thresholding. 
 

3.2 Fano factor of de novo spike trains 

If we assume the signal s is Gaussian, we can write closed form expressions for the same 
measures of variability and covariability presented in the section 2. Fano factor can be 
written out as 
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The correlation matrix of the two-dimensional Gaussian now contains correlation 
coefficients of s and z, as well as the variance of s. For derivation and details, see 
Appendix B. Using this formula for cases when s can be assumed Gaussian can 
dramatically decrease calculation times.  

1, ( [ ] [ ])
[ ]

0, ( [ ] [ ])

p p p

p i

i p p p

i

s n z n
r n

s n z n





  
 

 

2
ps



p
2

ps


p

pq

signal

pq

s

pq

signal

pq

noise pq

s
pq

z

pq

signal
pq

noise



14 

 

3.3 ISI distribution of de novo spike trains 

In case of de novo generation of spike trains with Gaussian s, we can write out the 
probability of finding an ISI of a certain length m analogous to Section 3.2 (again 
assuming that the ISI distribution is determined only by second order statistics) 
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When the probability distribution is found for all ISI lengths, its coefficient of variation 

is calculated as  

 

3.4. Count correlations of de novo spike trains 

Spike count correlation coefficient by definition is  
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where similarly to the analogous formula for Fano factor 
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and 
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where, in turn, assuming symmetry of correlations 
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This formula can be used to analyze the dependencies of count correlation on single cell 
and pairwise parameters. For example, because the variances of spike counts in the 
denominator of the expression for count correlations depend only on autocorrelations, 
but not on cross correlations, one can see that an increase in autocorrelations (which 
leads to an increase in Fano factor) decreases count correlations when 
crosscorrelations and other parameters are fixed.  
 

3.5 Independent manipulation of CV2 and FF 

In section 2, we showed how, by using the version of the dichotomized Gaussian model 
with temporal correlations, one can match and manipulate different parameters of 
variability and covariability in experimental responses. In those examples, the different 
measures of variability and covariability were considered independently of each other, 
though all may be affected by changes in the auto- and cross correlation functions of the 
spike trains. However, independent manipulation of different types of variability is also 
possible if the correlation functions are parameterized by multiple parameters.  
 
For example, both Fano factor and CV2 are influenced by autocorrelations, but do not 
necessarily determine each other. For example, in the case of a homogeneous binary 
process (the case of a constant s in our model), the relationship between Fano factor 
and CV2 of the ISI distribution is expressed as (Cox & Lewis 1966). 
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Serial correlations ( )serial k  are, in turn, functions of autocorrelations of z and their sum 

will depend on the shape of the autocorrelation functions. Hence, in this simple case one 
can potentially manipulate CV2 and Fano factor independently of one another by 
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changing the sum of the serial correlation coefficients by changing the autocorrelation 
functions. 
 
To provide a more complex example of the independent manipulation of Fano factor 
and CV2 of the ISI distribution in our model, we parameterized autocorrelation functions 
with a family of functions with two free parameters  that model both refractory 

spiking and burstiness:  
 

, 
0
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k

k


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The sum of exponents allows for different positive overshoots after a refractory period, 
which in turn will make it possible to have several different values of Fano factor for a 
given value of CV2.   
 
First, we investigated how FF and CV2 change with the changing parameters of the 
autocorrelation functions, and then investigated how FF changes along the lines on the 

 plane where the CV2 stays constant. This analysis demonstrates the degree to 

which Fano factor and CV2 can be manipulated independently. For this purpose, we 
created two examples – one in which s is a Gaussian process as in the de novo 
framework described above, and another one in which s is an arbitrary deterministic 
signal in the form of a sine wave (see figure legend for details).  
 
Fig. 5A shows the values of CV2 for a range of parameters of the described family of 
functions in the case of sine wave s. For certain combinations of parameters , the 

autocorrelation functions result in covariance matrices of z that are not positive-
definite, and thus the process is not realizable. This region of parameter space is shown 
in white. For all the other possible combinations of parameter values within the range 
selected for this illustration (α between 0 and 2, and beta between 0 and 5), different 
values of CV2 are shown in different colors from blue for the lowest values to red for the 
highest. We chose three values of interest: CV2 = 5.5, CV2 = 5.7, CV2 = 5.9 and plotted the 
lines along which the values of CV2 were equal to these values (shown in red). At the 
ends of the lines of equality we plotted the autocorrelations of z that correspond to the 
combination of parameters at the given end. From these plots, one can see that the same 
values of CV2 can be achieved for different autocorrelation functions. Next, as shown in 
Fig. 5B, we calculated the Fano factors along each iso-CV2 curve. The insets show 
autocorrelation functions for the corresponding set of parameters at both ends of the 
curves (marked with black circles). Fig. 5B shows that Fano factor changes considerably 
along the iso-CV2 curves and, thus, there is a room for independent manipulation of CV2 
and Fano factor.  However, when we chose s to be a Gaussian random process rather 
than a sine wave and performed the same analysis as above, the results were somewhat 
different. As shown in Fig. 5C, even though the autocorrelation functions change along 
the lines of equality for CV2, the range of Fano factors is less that in the case of sinusoidal 
s. Thus, in this case, there is less room for independent manipulation of CV2 and Fano 
factor.  
 
The results in figure 5 suggest a strong influence of the signal itself on the statistics of 
the resulting spike trains. To investigate this issue in more detail, we chose one 
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particular correlation function from the family of functions described above (with α = 
0.3 and β = 1.5), and varied the frequency of the sinusoidal signal and its amplitude 
relative to the intrinsic noise.  
 
In the stimulus driven case (high signal amplitude), the CV2 values changed substantially 
with changing frequency. As expected, in the noise driven case (with low signal 
amplitude), changes in frequency had no significant effect on the ISI distributions and 
hence the CV2 values. The figure shows that similar values of CV2 can be achieved 
through different combinations of signal and noise parameters, and through different 
ISI distributions. We did the same analysis for several other, qualitatively different 
functions from the same family, and found that the behavior of the curves is similar for 
all of them. 
 
These examples demonstrate that, although our framework can be used to vary 
different measures of variability and covariability independently, the extent to which 
this is possible can depend strongly on the stimulus. 
 

4. Limitations of the model 

We have shown how our model can be applied to spike trains with a range of different 
statistical properties. However the dichotomized Gaussian framework has limitations as 
well, as have been noted before (Macke et al. 2009; Gutnisky & Josić 2010), most of 
which stem from the fact that the covariance matrices of Gaussian processes must be 
positive-definite. This constraint imposes limitations on the allowed auto- and 
crosscorrelation functions that can be used in our model.  
 
In particular, one strong limitation of the model is that only weak negative correlations 
can be reproduced (Macke et al. 2009; Gutnisky & Josić 2010).  The ability of our model 
to capture weak negative correlations has been illustrated in section 2.5, where we 
reproduced the refractory period of experimental spike trains, and then increased it, 
such that the spiking became even more regular. However, as shown in Fig. 7A, the 
model is incapable of generating spike trains with strong negative correlations.  
 
The red line shows the values of the autocorrelations of z that would be required to 
match the autocorrelations in a set of spike trains with a strong refractory period 
recorded from the IC. The covariance matrix corresponding to these values is not 
positive definite, and thus the process is not realizable. We scaled the values and 
weakened the negative autocorrelations until we obtained a realizable process, 
resulting in the values shown in black.  
 
When a process is close to unrealizable, the strongest realizable correlations, and the 
behavior of the process that is generated, depend on the maximum lag at which the 
correlations are specified. In the example in Fig. 7A, we only specified the 
autocorrelation function of z at lags 1 to 4. However, when we then used our model to 
generate a set of spike trains, the resulting spike trains contained significant positive 
autocorrelations at lag 5, as shown in black in Fig. 7B.  If one deliberately sets a zero 
correlation coefficient for z at lag 5, the positive autocorrelations in the spike trains are 
simply delayed to lag 6. This procedure, of explicitly setting zero correlation coefficients 
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at successively larger lags, ultimately leads to a non-positive definite covariance matrix 
for z, and thus an unrealizable process (note that this artifact is present not only in the 
spike train correlations, but also in the z process itself). This example illustrates the 
importance of choosing the range of autocorrelations carefully, and verifying that the 
corresponding model is realizable and can generate spike trains with the desired 
statistics. 
 
Because of the limitations on the negative autocorrelation functions, values of Fano 
factor cannot be arbitrarily small. Similarly, ISI distribution that require a strong 
refractory period may not be realizable. 
 

5. Discussion 

The variability of single neurons and the covariability of neuronal populations can be 
measured on multiple time scales from synchrony in precise spike timing to 
correlations in spike count over a period of seconds. In previous work, we 
demonstrated the ability of a dichotomized Gaussian framework to reproduce the 
instantaneous variability in single neurons, and the instantaneous signal and noise 
correlations (i.e. synchrony) in neuronal populations (Lyamzin et al. 2010). In this 
study, we have shown how the dichotomized Gaussian model can capture variability 
and covariability on multiple time scales, and demonstrated its success in capturing the 
Fano factor, ISI distributions, and count correlations in experimental spike trains.  
 
Our main motivation for developing the model was to enable the systematic study of 
different response properties of neuronal populations that cannot be easily decoupled 
experimentally. For example, to determine the time scales at which variability is 
important for coding a particular stimulus parameter, it is helpful to be able to 
manipulate the variability on different time scales independently. While this 
manipulation may be difficult to achieve experimentally (any change in the spike train 
autocorrelation function is likely to affect variability on multiple timescales),  it may be 
achievable within our model framework with appropriate parameterization. For 
example, as shown in section 3.5, Fano factor and CV2 of the interspike interval 
distribution can be manipulated independently under certain conditions.  
 
Our model can also be used to systematically investigate the dependencies between 
different properties of spike trains. For example, our model framework captures the 
dependency of correlations on spike rate demonstrated in (De La Rocha et al. 2007) and 
analyzed in-depth in (Macke et al. 2011). Because our model captures the full second 
order structure of population spike trains, it should prove to be a useful tool for 
studying a wide range of such dependencies, as well as for determining how the value of 
a given response property constrains the possible range of possible values of others. For 
example, if one assumes that only second order correlations and stimulus affect the 
values of Fano factor and CV2, our model provides a way to investigate the dependencies 
between them. Another example would be the inverse dependency of count correlations 
on the temporal autocorrelations of individual neurons, when pairwise correlations 
remain fixed, as noted in Section 3.4. 
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We have also shown that the framework has significant limitations, the most important 
of which is the inability to generate or model spike trains with strong negative 
correlations. This limitation arises from the requirement that the covariance matrix of 
the multivariate Gaussian process z is positive definite. Note that this limitation is 
inherent to the model framework, and is independent of the specific method used to 
generate the Gaussian process when simulating spike trains (Gutnisky & Josić 2010). 
Because of this limitation, the model is better suited to modeling spike trains from 
cortical areas where correlations are typically positive (Bair et al. 2001; Smith & Kohn 
2008) than subcortical areas where strong negative correlations due to refractory 
effects may be prominent. 
 
Another limitation of our model is that it is only designed to capture the first and second 
order statistical properties of spike trains and may not accurately reflect higher order 
properties, such as the dependencies between successive ISIs or correlations among 
groups of neurons that are not predictable from second order statistics. This limitation 
may be important for certain brain areas where higher order correlations carry 
significant information (Ohiorhenuan et al. 2010, Farkhooi et al. 2009, 
Nesse et al. 2010). One should note that even though the dichotomized Gaussian does 
not allow for explicit control of higher-order correlations, it still produces them as a 
result of the thresholding process (Macke et al., 2011). Interestingly, the higher-order 
correlations produced by the Gaussian model correspond well to the higher-order 
correlations found in cortex (Yu et al. 2012). These results suggest that models based on 
the dichotomized Gaussian framework are potentially promising for research into the 
effects of higher-order correlations on coding, although further experimental study of 
this issue is needed. 
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Figure 1. Schematic diagram of dichotomized Gaussian model for a single cell. The 
response of a cell to a single stimulus presentation is assumed to be represented by a 
binary vector r of length n, in which 1 corresponds to a time bin with a spike, and 0 
corresponds to a time bin without a spike. The same stimulus is presented I times and 
the response of a cell on a particular trial in a particular time bin is denoted  ri[n]. Spikes 
are generated based on a Gaussian random ‘noise’ process z with unit variance, whose 
mean is different from time bin to time bin as specified by the value of a ‘signal’ s. In 
each time bin n, the probability of observing a spike across all trials (i.e. the PSTH) is 
given by the cumulative Gaussian distribution function evaluated at s[n]. 
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Figure 2. A. Raster plot of spike trains in mouse auditory cortex. The vertical axis 
specifies trial number, the horizontal axis specifies time since stimulus onset, and each 
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dot on the plot represents a spike. The data were collected during the presentation of a 
100 repeated trials of a 1 second segment of a sinusoidally modulated broadband noise 
sound. For model fitting, the data were binned in 5 ms time bins. B. Values of Fano 
factor from a simulated dataset versus desired value of Fano factor. We fitted our model 
to experimental data shown in Fig. 2A, simulated spike trains with the same properties, 
and calculated Fano factor of the original and simulated data. The corresponding point 
is plotted in red. We set 7 other arbitrary values (from 0.8 to 2.0), solved for the scaling 
factor of each, simulated spike trains for every autocorrelation found, and plotted the 
Fano factor calculated from the simulated spike trains versus the desired Fano factor (in 
black). C. Spread of spike counts for the simulated datasets with FF = 0.8 and FF = 2.0. 
Blue bars show the distribution of spike counts for the simulated data with FF = 0.8, 
transparent bars with black edges show the distribution of spike counts for the 
simulated data with FF = 2.0. D. Raster plot of the simulated dataset where th e 
autocorrelation function was scaled to match Fano factor value of 0.8. A magnified part 
of this raster plot is shown to the right. E. Raster plot of the simulated dataset where 
autocorrelation function was scaled to match Fano factor value of 2.0, presented as in D. 
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Figure 3. A. Raster plot of spike trains in mouse inferior colliculus. The data were 
collected during the presentation of a 100 repeated trials of a 1 second segment of a 
sinusoidally modulated broadband noise sound. For model fitting, the data were binned 
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in 1 ms time bins. B. ISI distribution of original data (blue bars), and ISI distribution of 
spike trains sampled from the model fitted to the original data (black and white line). C. 
ISI distribution of original data (blue bars), and ISI distribution of manipulated data 
(black and white, red and white lines). Given the parameters of the fitted model, we 
solved for the scaling coefficient of autocorrelation function that would give us the 
desired value of CV2 of the ISI distribution: 0.3 and 1.0, with CV2 calculated for the same 
range of time bins where the autocorrelations are significant (k = 10). D. Raster plot of 
the simulated dataset where autocorrelation function was scaled to match CV2 value of 
1.0. E. Raster plot of the simulated dataset where autocorrelation function was scaled to 
match CV2 value of 0.3.  
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Figure 4. A Raster plot of the spike trains from a pair of cells in gerbil auditory cortex. 
The data were collected during the presentation of 100 repeated trials of a 200 second 
segment of a sinusoidally modulated broadband noise sound. The data were binned in 5 
ms time bins. B. Matching the desired values of count correlations. The horizontal axis 
shows the desired value of count correlation coefficient and vertical axis shows the 
count correlation coefficient of the simulated spike trains. We fitted our model to the 
original data and sampled spike trains from the fitted model. The count correlation of 
the simulated spike trains is plotted versus the count correlation coefficient of the 
original spike train in red. We set four other arbitrary values from 0.4 to 0.7 and solved 
for the scaling coefficient of the autocorrelation function that would yield the desired 
count correlation in the simulated spike trains. The count correlations calculated from 
the simulated spike trains are plotted versus the desired values of correlations in black. 
Dashed line is the line of equality C,D. Contour plots of the distributions of spike counts 
of two cells. For the count correlations of 0.7 (C) and 0.4 (D) we created two-
dimensional histograms of the spike counts of both cells with spike count of cell one on 
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the horizontal axis, and spike count of cell 2 on the vertical axis. C and D show these 
histograms as contour plots, where each line denotes a level of constant probability of 
falling inside the contour.  
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Figure 5. Map of values of CV2 in space of parameters of autocorrelation function of z. 
The family of functions that we model autocorrelation functions with is described in 
section 5. The parameters α and β were varied between 0 and 2, and 0 and 5 
correspondingly. Colorbar to the right of the map shows the actual values of CV2 for the 
corresponding color. Red lines on the map show lines of equality for CV2 of 5.5, 5.7, and 
5.9. Sample autocorrelation functions are plotted next to the ends of isolines as insets 
(the corresponding ends are marked with black dots and arrows). The map is created by 
sampling from a model in which s is a sine wave with frequency of 1.6 Hz, amplitude of 
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1, and zero mean. The threshold was chosen such that the average firing rate was 60 
spikes per second. The simulations were 1 second long, binned on 1000 time bins each 
and had 1000 trials for every autocorrelation function. B. Range of changes in Fano 
factor along the lines of equality of CV2. Using the map of CV2 values in two-parameter 
space (A), we calculated Fano factor for all the pairs of parameters (in the given range) 
where CV2 is constant and equal to 5.5, 5.7, and 5.9. The horizontal axis shows the index 
of the pair of parameters (that increases as the values of parameters α and β decrease), 
and the vertical axis shows the value of Fano factor for this combination of parameters. 
Insets show plots of the autocorrelation functions on the corresponding ends of curves 
(marked with dots and arrows). C. Range of changes in Fano factor along the lines of 
equality of CV2. We created a map analogous to the one shown on A (not shown here) 
but with the s component in the generative process being a Gaussian process without 
temporal correlations and with variance of 0.4. We chose to consider the range of 
changes in Fano factor for the isolines with CV2 equal to 1.5, 1.6, and 1.7. The plot shows 
three corresponding curves with increasing values CV2 of from bottom to top. As in B, 
the horizontal axis shows index of the pair of parameters (that increases as the values of 
parameters α and β decrease), and the vertical axis shows the value of Fano factor for 
this combination of parameters. Insets show plots of the autocorrelation functions on 
the corresponding ends of curves (marked with dots and arrows). 
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Figure 6. CV2 of the ISI distribution as a function of amplitude and frequency of the 
sinusoidal signal. We varied the amplitude of signal from 0.1 to 10 with the amplitude of 
noise always being 1. The frequency was varied between 0.16 and 40 Hz (note that the 
frequency axis has logarithmic scale). Simulations were done in 200 trials for each 
point, were 1 second long and binned on 1000 time bins. All the curves are plotted for 
the same autocorrelation function chosen from the family described in Section 5 with α 
= 0.3 and β = 1.5, which corresponds to a positive non-monotonically decreasing 
function. Dashed line shows the case when signal is completely absent. Histograms in 
the smaller insets show the ISI distributions for the marked points on the curves. The 
horizontal axis shows the length of ISIs in ms, and the vertical axis shows the number of 
occurrences of an ISI of a given length. With the wide range of relative amplitudes of 
signal one can see the behavior of the model in signal driven (high amplitude) and noise 
driven (low amplitude) cases. In the signal driven cases ISI histograms are defined by 
the structure of the signal (see the histograms on top and on the right having the 
periodic features of the corresponding signals), and in the noise driven cases, changes in 
signal frequency do not affect the ISI distribution in any significant way. The figure also 
illustrates that similar CV2 values can be achieved in both signal and noise driven 
regimes and have qualitatively different underlying ISI distributions (compare the two 
lower histograms). Note that curves are plotted in logarithmic axes. 
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Figure 7. Effects of positive definite requirement on the covariance matrix of z. A. 
Example of the autocorrelation function of z calculated from the experimental data 
(red), and the closest realizable autocorrelation function (black). B. The attempt to 
reproduce strong negative correlations also leads to an artifact in the resulting spike 
trains. We simulated spike trains with correlations in time extending to the time bin 4 
(no significant correlations beyond that limit in the original data), the simulated dataset 
had an artifact of significant positive correlations in time bin 5. When zero-padded (we 
deliberately added zero correlations to the time bin 5 in the correlation function of z), 
the artifact peak shifted to the next time bin. Further zero-padding resulted in a process 
that was unrealizable. 
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Appendix A 
 
By definition, Fano factor is the ratio of spike count variance and mean spike count 
across the trials. 
 

 

 
(because Fano factor is a single cell quantity,  cell indices are omitted for simplicity). We 
expand the square of the spike count to deal with the expected values of the elements of 
this expansion. 
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Appendix B 
 
Fano factor by definition is 
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(because Fano factor is a single cell quantity,  cell indices are omitted for simplicity). 
Expanding the first term in the numerator we get 

 

Where each r[n]r[n] term equals r[n] because r is a binary vector. 
 

 

 
For all the other products r[n]r[m] where n  m  
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Where 2 is a two-dimensional Gaussian cumulative distribution function, and we 
define s+z as  
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Hence the final formula for Fano factor is (assuming symmetry of correlations) 
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V  Nonlinear transfer of signal and noise 

correlations in cortical networks 

 

 

 

In this chapter we use the DG framework to study the mechanisms by which the signal and 

noise correlations observed in vivo are created. 

We find that thresholding as a model for spike generation imposes nonlinear transfer functions 

between input current signal and noise correlations and spike train correlations. In vitro 

recordings from neurons in mouse V1 show that these nonlinearities indeed exist in pyramidal 

cells.  

Using DG we find to what extent correlation transfer nonlinearities are responsible for the 

correlation structure observed in vivo. We analyze spike trains obtained in vivo in response to 

diotically presented sounds, and sounds that are presented ipsilaterally to the recording site 

and contralaterally. 

Using the results of our analysis we show how different relationships between signal and noise 

correlations can arise due to the effects of correlation transfer nonlinearities or dependencies 

existing in input currents. 

Note that in this chapter instead of fixing the variance of noise at one, we let it take on arbitrary 

values and fix threshold at one instead.   
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Nonlinear transfer of signal and noise correlations in cortical networks 

Dmitry R Lyamzin, Samuel J Barnes, Tara Keck, and Nicholas A Lesica 

 

Summary 

Correlated spiking is a prominent feature of cortical activity. During sensory processing, information transmission is 

controlled by the balance of signal and noise correlations, and their structure across a network is an important signature of 

its organization and function. Studies of the relationship between signal and noise correlations typically report a positive 

dependency, with variations due to changes in stimulus properties and behavioral context, but the factors that establish 

and modify correlations are not well understood. Here we show that the correlation structure in cortical networks is 

controlled by correlation transfer nonlinearities with complex dependencies on the properties of signal and noise inputs. 

We find that a change in the strength or correlation of either signal or noise inputs can affect both spike train signal and 

noise correlations. We first demonstrate these effects directly using whole-cell recordings of responses to injected currents 

and show that they are reproduced within an analytical framework based on a simple threshold nonlinearity. We then 

analyze the correlation structure of spike trains recorded in vivo and show that correlation transfer nonlinearities impose a 

variety of dependencies between signal and noise correlations across populations of neurons in auditory cortex, and that 

these effects underlie changes in correlation structure that result from changes in sound location. Our results demonstrate 

that correlation transfer nonlinearities can shape the correlation structure of cortical networks, even imposing a negative 

dependency between signal and noise correlations under certain conditions. It is likely that the correlation transfer 

nonlinearities that we observe operate across sensory systems and, thus, our results are a critical step toward a general 

understanding of how correlated spiking relates to the function of cortical networks. 

 

Introduction 

What are the factors that govern the structure of signal and noise correlations in cortical networks during sensory 

processing? Signal and noise correlations play an important role in cortical function by setting the balance between 

synergy and redundancy in the spike trains of neuronal populations (Averbeck & Lee, 2006; Oram, Földiák, Perrett, & 

Sengpiel, 1998; Panzeri, Schultz, Treves, & Rolls, 1999) and provide a window into network organization and dynamics over 

multiple timescales (Cohen & Kohn, 2011). Studies of the structure of signal and noise correlations across cortical areas 

typically report a positive dependency, i.e. noise correlation tends to increase with increasing signal correlation (Averbeck 

& Lee, 2003; Bair, Zohary, & Newsome, 2001; Kohn & Smith, 2005), but recent studies have shown that the this structure is 

dynamic and can be modulated by changes in stimulus properties (Kohn & Smith, 2005), task-dependent modulation 

(Cohen & Maunsell, 2009; Gutnisky & Dragoi, 2008; Mitchell, Sundberg, & Reynolds, 2009) and learning (Gu et al., 2011; 

Jeanne, Sharpee, & Gentner, 2013). It is generally assumed that the positive dependency between signal and noise 

correlations is a consequence of signal and noise being transmitted through the same shared inputs and recurrent 

connections, and that modulation of spike train signal and noise correlations reflects modulation of the correlations in 

these inputs. However, because of the thresholding associated with spike generation, the transfer of input correlations to 

spike train correlations is highly nonlinear (Binder & Powers, 2001; de la Rocha, Doiron, Shea-Brown, Josić, & Reyes, 2007; 

Dorn & Ringach, 2003; Shea-Brown, Josić, de la Rocha, & Doiron, 2008; Tchumatchenko, Malyshev, Geisel, Volgushev, & 

Wolf, 2010). For example, even when input correlations are constant, spike train correlations can vary with changes in 



input strength, and it has been shown that this correlation transfer nonlinearity can impose a positive dependency 

between the mean spike rate and total correlation in cortical spike trains (de la Rocha et al., 2007). Understanding the 

effects of such correlation transfer nonlinearities is critical, as the relationship of spike train signal and noise correlations to 

network structure and function depends on whether they reflect the corresponding input correlations or arise as a 

consequence of a nonlinearity that is dependent on another input property. The effects of correlation transfer 

nonlinearities in the context of signal and noise correlations have not yet been studied, but the range of factors that 

modulate signal and noise correlations and the observation that spike train signal and noise correlations can covary with 

other spike train properties (for example, trial-to-trial variability (Cohen & Maunsell, 2009; Mitchell et al., 2009)) suggest 

that they may play an important role. 

 

Results 

To characterize how correlation transfer nonlinearities shape signal and noise correlations during sensory processing, we 

analyzed the structure of spike train signal and noise correlations in cortical networks. Figure 1a shows the spike trains for 

a typical population of cells in primary auditory cortex (A1) of  an anesthetized gerbil recorded with a multi-tetrode array in 

response to repeated trials of a 2.5 second segment of speech presented from a speaker directed at the contralateral ear 

(figure 1A). We measured the correlation between the responses of pairs of neurons for spike counts in 50 ms bins and 

defined the signal correlation   
   

 as the correlation that remained after shuffling the trial order, and the noise correlation 

as the difference between the total correlation and the signal correlation,   
           

   
. Overall, there was a positive 

dependency between signal and noise correlations across the population (r = 0.41, p < 0.001; figure 1B), as is typically 

observed for studies of cortical spike trains (Averbeck & Lee, 2003; Bair et al., 2001; Kohn & Smith, 2005). One possible 

explanation for the positive dependency between spike train signal and noise correlations is that it reflects a corresponding 

dependency between input signal and noise correlations. However, there were also clear covariations of spike train signal 

and noise correlations with mean spike rate (figure 1C) and trial-to-trial variability (figure 1D; defined as signal-to-noise 

ratio (SNR), the ratio of the variance of the PSTH to the average variance of the deviation of each trial from the PSTH). 

These covariations suggest that the positive dependency between signal and noise correlations could also arise from the 

effects of correlation transfer nonlinearities dependent on the input strength or SNR, but the task of isolating the effects of 

correlation transfer nonlinearities on spike train correlations is complicated by the fact that multiple input properties can 

vary simultaneously during sensory processing. Our approach to characterizing the contribution of correlation transfer 

nonlinearities to the structure of signal and noise correlations was as follows: 1) we first made whole-cell recordings in 

vitro to investigate directly how systematic changes in individual input properties affect spike train correlations and to 

validate a method for inferring input properties from spike trains, 2) we next examined different changes in spike train 

signal and noise correlations during sensory processing in vivo and determined the extent to which each reflected changes 

in input correlations and/or the effects of correlation transfer nonlinearities. 

 

To examine how changes in different input properties affect the transfer of signal and noise correlations from inputs to 

spike trains, we injected Gaussian white noise currents with specified variances and correlations into layer 2/3 pyramidal 

cells in mouse visual cortex and compared the resulting membrane potential correlations and spike train correlations 

between pairs (figure 2A). Figures 2B and 2C show two fundamental properties of correlation transfer that underlie the 

various dependencies between membrane potential and spike train signal and noise correlations that we will describe 



below. The first of these fundamental properties, which we will call ‘variance gain’, is that the spike train correlation    

increases with the membrane potential total variance   
 , even when the membrane potential total correlation    is held 

constant. As shown in figure 2B, the spike train correlation     increases sublinearly with the membrane potential 

variance   
 , i.e. each incremental increase in membrane potential variance results in a successively smaller increase in 

spike train correlation. The second fundamental property of correlation transfer, which we will call ‘correlation gain’, is 

that spike train total correlation    increases supralinearly with membrane potential total correlation     when all other 

membrane potential properties are held constant. Figure 2C shows the membrane potential and spike train correlations 

that result from injecting currents with varying correlation and constant variance. The spike train correlation    increases 

supralinearly with the membrane potential correlation   , i.e. each incremental increase in membrane potential 

correlation results in a successively larger increase in spike train correlation (for further explanation of the causes of these 

variance gain and correlation gain effects, see Supplementary Figure 1). 

 

These correlation transfer nonlinearities can have complex consequences in the context of sensory processing, where 

correlations have both signal and noise components. In this context, variance gain and correlation gain impose a variety of 

interdependencies on the strength, SNR, and signal and noise correlations of membrane potential and spike trains. To 

examine these interdependencies, we injected currents with a signal component (same on each trial) and a noise 

component (different on each trial) that had specified variances and correlations. We calculated the membrane potential 

signal variance   
  and correlation    from the mean membrane potential across trials and the membrane potential noise 

variance   
  and correlation    from the deviations from the mean on each trial. First, to examine the effects of variance 

gain on signal and noise correlations, we injected currents with fixed signal and noise correlations and varied the signal 

and/or noise variance. Figure 2D shows the relationship between the membrane potential signal variance   
  and the spike 

train signal and noise correlations    
   

 and   
      that result from injecting currents with different signal variances and 

constant noise variance, signal correlation, and noise correlation. As the membrane potential signal variance   
  increases, 

the spike train signal correlation   
   

  also increases, as might be expected from the variance gain effects described in 

figure 2B. More surprisingly, the spike train noise correlation   
      decreases with increasing membrane potential signal 

variance   
 , even though the membrane potential noise variance and noise correlation remain constant. This relationship 

between membrane potential signal variance and spike train noise correlation is also due to variance gain, though the 

cause is more subtle: because of the sublinearity of variance gain, an increase in the membrane potential signal 

variance    
  increases the membrane potential total variance    

    
    

  by the same amount, but, because the total 

variance is larger than the signal variance and the effects of variance gain are sublinear, the relative increase in the transfer 

of correlation due to the increase in variance is larger for the signal correlation   
   

 than for the total correlation   , and, 

thus, the noise correlation   
     =    -   

   
decreases. The effects of membrane potential noise variance on the spike train 

correlations mirror those of membrane potential signal variance: an increase in the membrane potential noise variance   
  

causes an increase in the spike train noise correlation   
      and a decrease in the spike train signal correlation   

   
 (see 

Supplementary Figure S2). These effects of changes in membrane potential signal and noise variance combine to produce 

the relationship between membrane potential SNR and spike train signal and noise correlations shown in figure 2E. As the 

membrane potential SNR   
    

  is increased (with the total input variance    
    

    
  held constant), the spike train 

signal correlation   
   

 is increased and the spike train noise correlation   
      is decreased due to opposing variance gain 

effects. 

 



Next, to examine the effects of correlation gain on signal and noise correlations, we injected currents with fixed signal and 

noise variances and varied either the signal or noise correlation. As shown in figure 2F, when the membrane potential 

variances are constant, an increase in the membrane potential signal correlation    causes an increase in both the spike 

train signal and noise correlations   
   

 and   
     , even when the membrane potential noise correlation    is held 

constant. This dependency of spike train noise correlation   
      on the membrane potential signal correlation    arises 

from the supralinearity of correlation gain: an increase in the membrane potential signal correlation     increases the 

membrane potential total correlation            by the same amount, but, because the total correlation is larger than 

the signal correlation and the effects of correlation gain are supralinear, the relative change in the transfer of correlation is 

larger for the total correlation    than for the signal correlation   
   

, and, thus, the noise correlation   
     =    -   

   
 

increases. This crossover of correlation gain between signal and noise correlations does not occur when only the input 

noise correlation    is changed; increasing the input noise correlation    results in an increase in the spike train noise 

correlation   
     , but has no impact on the spike train signal correlation   

   
 (because noise correlations are removed by 

shuffling the trial order to compute signal correlations; see Supplementary Figure 2). To summarize the effects of variance 

gain and correlation gain on signal and noise correlations observed in vitro, we replotted the results in figures 2E and 2F to 

visualize explicitly how changes in membrane potential SNR and signal correlation affect the relationship between spike 

train signal and noise correlations. As shown in figure 2G, variance gain imposes a negative dependency between spike 

train signal and noise correlations with changes in input SNR, and, as shown in figure 2H, correlation gain imposes a 

positive dependency between spike train signal and noise correlations with changes in membrane potential signal 

correlation. 

 

During sensory processing in vivo, the different correlation transfer nonlinearities described above will act together with 

the potential to significantly transform the correlation structure in the network. However, from extracellular recordings, it 

is impossible to determine the extent to which the correlations between the spike trains of a neuronal population are 

dependent on correlation transfer nonlinearities without a method for isolating their effects. We have previously 

developed a method to determine the input variances and correlations required to generate spike trains with specified 

signal and noise correlations using a dichotomized Gaussian (DG) framework (Lyamzin, Garcia-Lazaro, & Lesica, 2012; 

Lyamzin, Macke, & Lesica, 2010; Macke, Berens, Ecker, Tolias, & Bethge, 2009). We assume that spike trains are generated 

by thresholding a Gaussian process with signal and noise components that have specified variances and correlations (figure 

3A): 

 ( )  {
  i   ( )   ( )   
  else

 

with signal input      (    
 ) assumed to be the same on each trial, noise input      (    

 ) assumed to be different on 

each trial, and correlations    and    between the signal and noise inputs for each pair of cells. For every cell, there is a 

unique set of input parameters {  
    

 } that correspond to the observed mean spike rate and spike train SNR, and for 

every pair of cells, there is a unique set of input parameters {     } that correspond to the observed set of spike train 

signal and noise correlations. The DG input parameters can be estimated from spike trains and, while the results do not 

allow for inference of actual membrane potential values, they do provide an accurate reflection of its SNR, signal, and 

noise correlations. To test how well membrane potential statistics could be estimated from spike trains using the DG 

framework, we applied it to the whole-cell recordings described above. As shown in figure 3B, there was an excellent 

correspondence between the DG input parameters and the statistics of the actual membrane potentials, with correlation 



coefficients of 0.97 for SNR, 0.91 for signal correlations, and 0.93 for noise correlations. There are two details regarding the 

inference of membrane potential properties using the DG framework that are worth noting: 1) to obtain accurate 

estimates of the absolute values of the signal and noise variances   
  and   

 , knowledge of the actual value of the spike 

threshold relative to baseline is required; however, as the analyses below require only knowledge of the input SNR   
    

 , 

choosing an arbitrary value for the threshold is sufficient, and 2) the estimated noise inputs consistently have higher 

variance and lower correlation than the actual membrane potentials (due to variability in spike threshold that is not 

included in the DG framework, see Supplementary Figure 3), but these differences do not impact the analyses below for 

which the linear relationships between the estimated inputs and the actual membrane potential statistics implied by the 

high correlation coefficients are sufficient. The close correspondence between the DG input parameters and the actual 

membrane potential statistics across a wide range of input variances and correlations implies that a simple threshold 

nonlinearity is sufficient to capture the effects of correlation transfer nonlinearities in actual neurons. Indeed, as shown in 

figures 3C, 3D, and 3E, spike trains generated using the DG framework exhibited the same variance gain and correlation 

gain effects on spike train signal and noise correlations that we observed experimentally. 

 

Having characterized the different correlation transfer nonlinearities that can operate during sensory processing and 

verified our ability to estimate membrane potential statistics from population spike trains using the DG framework, we 

returned to the analysis of spike train signal and noise correlations observed in vivo. We first continued our analysis of the 

A1 responses to speech shown in figure 1 for which there was a positive dependency between signal and noise 

correlations. However, as this sample includes pairs with a wide range of input variances, SNRs, and signal and noise 

correlations, the extent to which this dependency in the spike trains reflects a corresponding dependency between input 

signal and noise correlations and/or the effects of correlation transfer nonlinearities that are dependent on each of the 

different input properties is unclear. Estimation of membrane potential properties for these pairs using the DG framework 

revealed a positive dependency between input signal and noise correlations (r = 0.24, p < 0.001; figure 4A), but visualizing 

the gradients corresponding to changes in total input variance (figure 4B), input SNR (figure 4C), and input signal 

correlation (figure 4D), suggests that correlation transfer nonlinearities dependent on each of these properties may also 

play a role. As a first step toward isolating the effects of each input property, we restricted our analysis to pairs with similar 

total input variance (and, thus, mean spike rates), since the effects of changes in total input variance on spike train 

correlations have been studied in detail previously (de la Rocha et al., 2007). For a restricted subset of pairs with similar 

total input variance, the dependency between spike train signal and noise correlations was weak (r = 0.01, p = 0.86; figure 

4E), as was the dependency between input signal and noise correlations (r = 0.01, p = 0.84; figure 4F), suggesting that a 

substantial fraction of the positive dependency observed for all pairs was due to variance gain effects dependent on total 

input variance, consistent with the results of previous studies (this result was robust across a wide range of total input 

variances, see Supplementary Figure 4). However, this weak dependency for pairs with similar total input variance does not 

necessarily imply that other input properties have no effect on spike train signal and noise correlations; the opposing 

gradients corresponding to changes in input SNR and input signal correlation shown above in figures 2G and 2H suggest 

that their effects may offset each other. Indeed, further restricting our analysis to pairs with similar input signal 

correlations revealed a negative dependency (r = -0.4, p < 0.001; figure 4G), while restricting to pairs with similar input 

SNRs revealed a positive dependency between signal and noise correlations (r = 0.53, p < 0.001; figure 4H). These 

dependencies were robust across a wide range of input signal correlations and SNRs (see Supplementary Figure 4). 

 



For each of these restricted samples, we used the DG framework to determine the extent to which the observed 

dependency in the spike trains reflected a corresponding input dependency and/or the effects of a correlation transfer 

nonlinearity. First, we analysed the negative dependency between spike train signal and noise correlations for pairs with 

similar total input variance and input signal correlation shown in figure 4G. Because the pairs in this restricted subset all 

have similar total input variance and input signal correlation, the spread of spike train signal correlations and, thus, the 

dependency between spike train signal and noise correlations, must be due at least in part to variations in input SNR. As 

shown above in figure 2G, variance gain can impose a negative dependency between spike train signal and noise 

correlations with changes in input SNR. If the observed dependency between signal and noise correlations in the spike 

trains were due solely to these variance gain effects, then destroying any dependencies between input signal and noise 

correlations would not affect the dependency in the spike trains. However, after randomizing the pairing of signal and 

noise inputs across pairs and using the DG framework to generate new spike trains, the dependency between the spike 

train signal and noise correlations disappeared (r = 0.02, p = 0.83; figure 4I). This result suggests that negative dependency 

between spike train signal and noise correlations reflect a dependency in the input; however, as this subset is restricted to 

pairs with similar input signal correlation, the dependency cannot be between input signal and noise correlations, but 

rather must be between input SNR and noise correlation. Indeed, as shown in figure 4J, there was a negative dependency 

between input SNR and noise correlations for this sample of pairs (r = -0.34, p < 0.001). This analysis suggests that the 

negative dependency between the spike train signal and noise correlations for pairs with similar total input variance and 

input signal correlation arises from the combination of a dependency between SNR and noise correlations in the input and 

a dependency between SNR and signal correlations imposed by variance gain (the lack of variance gain effects on noise 

correlations is due to the sublinearity of variance gain, as discussed in detail below). 

 

Next, we analysed the positive dependency between spike train signal and noise correlations for pairs with similar input 

total variance and SNR shown in figure 4H. This dependency must arise from either a corresponding dependency between 

input signal and noise correlations or the crossover of the correlation gain effects of changes in input signal correlation on 

spike train noise correlation shown above in figure 2F. As shown in figure 4K, there was a positive dependency between 

input signal and noise correlations for this sample of pairs (r = 0.46, p < 0.001). However, the existence (or, indeed, the 

strength) of this input dependency does not necessarily imply that it is the source of the observed dependency in the spike 

trains. To quantify the relative contributions of this input dependency and the crossover of correlation gain to the observed 

dependency in the spike trains, we must again determine how the spike train dependency changes when the input 

dependency is destroyed. Figure 4L shows the relationship between the spike train signal and noise correlations after 

removing the network structure, i.e. randomizing the pairing of signal and noise inputs across pairs, and using the DG 

framework to generate new spike trains for each pair of cells. Without any dependency between input signal and noise 

correlations, the dependency between the spike train signal and noise correlations persists, but its strength is substantially 

reduced (r = 0.29, p < 0.001). This analysis suggests that the positive dependency between the spike train signal and noise 

correlations for pairs with similar total input variance and SNR is due to a dependency between input signal and noise 

correlations that is strengthened by correlation gain. 

 

 

Our analysis thus far suggests that correlation transfer nonlinearities play an important role in shaping the structure of 

spike train signal and noise correlations across a population for a given stimulus. It has also been shown that the spike train 

correlations for a given pair of cells can vary with changes in stimulus properties (Kohn & Smith, 2005). However, it is again 



difficult to determine the extent to which any observed changes in spike train correlations reflect a corresponding change 

in input correlations due to the change in the stimulus and/or a change in the effects of correlation transfer nonlinearities. 

We compared A1 responses to speech presented from either side in virtual acoustic space (figure 5A). On average, as 

shown in figure 5B, changing the location of the speech from the side ipsilateral to the recording site to the side 

contralateral to the recording site did not change the mean spike rate (median change = -0.4%, p = 0.82), but caused a 

significant increase in the SNR of the spike trains (median change = 36.1%, p < 0.001). This increase in spike train SNR was 

accompanied by an increase in the spike train signal correlations and a decrease in the spike train noise correlations 

(median changes 48.8% and -13.1%, p < 0.001; figures 5D and 5E, black histograms). We first examined the extent to which 

the decrease in spike train signal correlation reflected a corresponding decrease in input signal correlation and/or the 

effects of correlation transfer nonlinearities dependent on input SNR and input signal correlation. As shown in figure 5C, 

there was a small decrease in input signal correlation when the sound was moved from the contralateral to the ipsilateral 

side (median change = 5.7%, p < 0.001). We used the DG framework to generate spike trains for each pair while changing 

the values for each input property from those estimated from responses to speech on the ipsilateral side to those 

estimated from responses to speech on the contralateral side. As shown in figure 5D, changing only input signal correlation 

had no impact on spike train signal correlations, while changing only input SNR resulted in changes in spike train signal 

correlations that were similar those observed in the experimental responses. This result suggests that the observed 

changes in spike train signal correlations with changing sound location are due primarily to variance gain effects dependent 

on input SNR. 

 

We next performed a similar analysis for noise correlations. As shown in figure 5C, there was a small decrease in input 

noise correlation when the sound was moved from the contralateral to the ipsilateral side (median change = -9.2%, p < 

0.001). We again used the DG framework to generate spike trains for each pair while changing the values for each input 

property and found that changing only input SNR or input signal correlation had no impact on the spike train noise 

correlations, while changing only input noise correlation resulted in changes in spike train noise correlations that were 

similar to those observed in the experimental responses. These results suggest that the observed changes in spike train 

noise correlations with changing sound location are due primarily to changes in input noise correlation. 

 

Discussion 

Taken together, our results demonstrate that the correlation structure in cortical networks can be shaped by correlation 

transfer nonlinearities in a number of complex ways. We have shown that correlation transfer nonlinearities dependent on 

the strength or correlation of either signal or noise inputs can potentially affect both spike train signal and noise 

correlations, imposing dependencies in correlations both across a population under fixed conditions and for a given pair of 

neurons under changing conditions. Our results also suggest that the degree to which changes in any particular input 

property will impact spike train correlations is predictable from the sublinearity of variance gain and the supralinearity of 

correlation gain, with large variance gain effects for inputs with small variances and large correlation gain effects for inputs 

with large correlations. For example, our analysis of population spike trains in A1 showed that changes in input SNR - either 

across a population in response to a sound at a fixed location, or for a given pair of neurons in response to sounds at 

different locations – impacted spike train signal correlations, but not spike train noise correlations. This is consistent with 

the sublinearity of variance gain; our data were recorded under anesthesia with the cortex in a synchronized state in which 

input signal variance is small and input noise variance is large (see estimated input SNRs in figure 4J), so a change in input 



variance affects signal correlations, but not noise correlations. It is likely that in a desynchronized state in which input SNR 

is increased (for example, with attention (Cohen & Maunsell, 2009; Mitchell et al., 2009)) the effects of variance gain would 

shift from signal correlations to noise correlations (thus rendering the transfer of signal correlations robust to changes in 

variance when direct analysis of sensory inputs is a priority). The diversity of effects that we observed suggests that the 

precise role of correlation transfer nonlinearities in shaping the correlation structure of cortical networks may vary strongly 

across brain states and stimulus conditions. 

 

Many of the covariations in spike train properties that we observed have also been observed in other studies. Most studies 

of the structure of signal and noise correlations across cortical areas report a positive dependency, i.e. noise correlation 

tends to increase with increasing signal correlation (Averbeck & Lee, 2003; Bair et al., 2001; Kohn & Smith, 2005) and, while 

it is generally assumed that this dependency reflects a corresponding dependency in input signal and noise correlations, 

our results demonstrate that this is not necessarily the case. We observed a positive dependency between spike train 

signal and noise correlations across our entire sample of pairs in auditory cortex, but this dependency disappeared when 

we considered only subsets of pairs with similar input variance (or mean spike rate), suggesting that the dependency was 

at least in part imposed by variance gain effects (de la Rocha et al., 2007). When we further restricted our analysis to pairs 

with similar total input variance and SNR, the positive dependency between spike train signal and noise correlations 

returned, but our analysis suggests that this was not due to a corresponding dependency in input correlations, but rather 

arose through the interplay between variance gain effects on spike train signal correlation that were dependent on input 

SNR and a dependency between input SNR and noise correlation. While some studies of dependencies between spike train 

signal and noise correlations have assessed the role of correlation transfer nonlinearities dependent on total input variance 

(by analyzing pairs with similar spike rates (Cohen & Maunsell, 2009; Gu et al., 2011; Jeanne et al., 2013)), few have 

considered the other effects that we have described here. Several studies have reported phenomena that are consistent 

with the effects that we observed: for example, increases in spike train SNR and decreases in spike train noise correlation 

have been observed with changes in attention in V4 (Cohen & Maunsell, 2009; Mitchell et al., 2009) and changes in 

contrast in V1 (Kohn & Smith, 2005). Without detailed analysis, it is impossible to determine the source of these changes in 

spike train noise correlations (though recent work suggests that noise correlations in inputs to V1 from LGN do not vary 

with contrast (Sadagopan & Ferster, 2012)), but our results (including that fact that our in vitro data are from V1) indicate 

that correlation transfer nonlinearities may play a significant role and that their ability to shape correlation structure may 

be a general principle of network function. 



Methods 

In vitro recordings 

Deeply anaesthetized C57BL6 mice (P30 – 40) were transcardially perfused with 10 ml of ice cold (4 deg. C) dissection 

artificial cerebral spinal fluid (dASCF; in mM,  108 choline-Cl, 3 KCL, 26 NaHCO3 1.25 NaHPO4, 25 D-glucose, 3 Na pyruvate, 

2 CaCl, and 1 MgCl2 bubbled with 95%O2/5%CO2). Coronal brain slices 300 µm thick were cut (Vibratome 3000 Leica, 

Wetzlar Germany) from V1. Slices were incubated for 30 minutes in a holding chamber and then recordings were made at 

room temperature (24 ºC) in recording ASCF (in mM, 120 NaCl, 3 KCL, 23 NaHCO3, 1.25 NaHPO4 , 10 D-glucose, 2 CaCl2 

and 1 MgCl2 bubbled with 95%O2/5%CO2). Recordings were targeted to V1m based on coordinates from the Paxinos 

mouse brain atlas (2004).  We made whole-cell recordings from L2/3 on a custom built microscope under differential 

interference contrast microscopy. L2/3 pyramidal neurons were recorded (based on spiking properties and pyramidal 

shaped soma) in current clamp mode (Multiclamp 700B, Molecular Devices, Sunnyvale, CA). The data was acquired using 

Ephus freeware (Janelia Farm, Svoboda Lab). All recordings were low-pass filtered at 3 kHz and digitized at 10 kHz. Patch 

pipettes (4 – 7 MΩ) contained the  ollowing in mM: 130 KMeSO4, 8 NaCl, 2 KH2PO4, 2 D-glucose and 10 HEPES. Recordings 

were discarded if the series resistance varied by ± 15% or the resting membrane potential or input resistance varied by ± 

10 % across the recording period.  

Current stimuli 

For in vitro experiments, a constant current was injected into the soma to achieve a holding potential close to the action 

potential threshold (typically -55 mV) and zero mean signal and noise currents were injected to study the transfer of 

correlations. Signal and noise currents were Gaussian white noise initially created with a sampling rate of 200 Hz (to match 

the 5 ms time bins used for all initial analyses) and upsampled to 10 kHz with spline interpolation. Currents with a given set 

of variances and correlations were presented in blocks of 100 trials, with the signal current the same on each trial, and the 

noise current different on each trial. Currents were delivered in 1 s segments with a 1 s pause between each segment. All 

pairs of cells included in the analysis were recorded non-simultaneously to ensure the only correlations were those in the 

injected currents.  

In vivo recordings 

Adult male gerbils (70-90 g, P60-120) were anesthetized for surgery with an initial injection of a mix of ketamine, xylazine, 

and saline, and the same solution was infused continuously during recording. A small metal rod was mounted on the skull 

and used to secure the head of the animal in a stereotaxic device in a sound-attenuated chamber. A craniotomy was made 

over the primary auditory cortex between 2 mm and 4.5 mm anterior to lambda spanning the dorsoventral extent of the 

squamosal plate. An incision was made in the dura mater and a multi-tetrode array (figure 1A; Neuronexus) was inserted 

into the brain at a site approximately 0.8 mm medial from most lateral point of the exposed cortical surface and 

approximately 3 mm anterior to lambda, with variations due to surface vasculature. The electrode was advanced along the 

dorsoventral axis with the shanks oriented rostrocaudally and lowered into layer V/VI of A1 (between 1 mm and 1.5 mm). 

A1 was distinguished from other fields based on the direction of the tonotopic gradient (Thomas, Tillein, Heil, & Scheich, 

1993). Recording sites were located in the low frequency area of A1 with preferred frequencies for most sites between 1 

and 2 kHz.  



Spike sorting 

For in vivo experiments, the procedure for the isolation of single-unit spikes consisted of 1) bandpass filtering each channel 

between 500 and 5000 Hz, 2) whitening each tetrode, i.e. projecting the signals from the 4 channels into a space in which 

they are uncorrelated, 3) identifying potential spikes as snippets with energy (Choi, Jung, & Kim, 2006) that exceeded a 

threshold (with a minimum of 0.7 ms between potential spikes), 4) projecting each of the snippets into the space defined 

by the first three principal components for each channel, 5) identifying clusters of snippets within this space using 

KlustaKwik (http://klustakwik.sourceforge.net) and Klusters (Hazan, Zugaro, & Buzsáki, 2006), and 6) quantifying the 

likelihood that each cluster represented a single unit using isolation distance (Schmitzer-Torbert, Jackson, Henze, Harris, & 

Redish, 2005). Isolation distance assumes that each cluster forms a multi-dimensional Gaussian cloud in feature space and 

measures, in terms of the standard deviation of the original cluster, the increase in the size of the cluster required to 

double the number o  snippets within it. The number o  snippets in the ‘noise’ cluster (non-isolated multi-unit activity) for 

each tetrode was always at least as large as the number of spikes in any single-unit cluster. Only single-unit clusters with an 

isolation distance greater than 20 were analyzed.  

Auditory stimuli 

For in vivo experiments, sounds were generated with a 48 kHz sampling rate, attenuated, and delivered to speakers. In 

some experiments, a free-field speaker (TDT MF1) was positioned 10 cm from the ear contralateral to the recording site. In 

these experiments, sounds were filtered such that the effective frequency response of the speaker measured at the 

location of the ear was flat (  5 dB SPL) between 0.5 and 20 kHz. In other experiments, speakers (Etymotic ER2) coupled 

to tubes were inserted into both ear canals for diotic sound presentation along with microphones for calibration. The 

frequency response of these speakers measured at the entrance of the ear canal was flat (   5 dB SPL) between 0.2 and 5 

kHz. At each recording site, a sequence of tones with different frequencies and intensities with 5 ms cosine on and off 

ramps were presented to characterize basic response properties. In free-field experiments, a 2.5 second segment of female 

speech from the UCL SCRIBE database (http://www.phon.ucl.ac.uk/resource/scribe) was presented 512 times. In closed-

field experiments, a 3 second segment of speech from the same database was presented 120 times with an interaural time 

- -90 deg. in virtual 

acoustic space (interaural level differences for gerbils are negligible at frequencies below 5 kHz(Maki & Furukawa, 2005)).  

Calculation of spike train SNR and correlations 

The analyses of spike trains shown in all figures were performed as follows: Spike trains were initially considered as binary 

vectors   with   
 
( ) = 1 if cell   fired an action potential in time bin   on trial   (and   

 
( ) = 0 otherwise) with 5 ms time 

bins. The spike train signal-to-noise ratio (SNR) was computed as 

    
   ( ̅)

〈   (    ̅)〉 
 

where  ̅ is the average of the spike trains across trials (the PSTH). Spike train correlations for 5 ms bins were computed 

directly from the binary spike trains (figures 3 and 5). Spike train correlations for 50 ms bins were computed after 

converting binary spike trains to spike count vectors by summing the spikes from non-overlapping groups of 10 successive 

bins (figures 1, 2, and 4). For both the binary spike trains and the spike count vectors, the total spike train correlation 



between the spike trains of two cells p and q was calculated as the correlation coefficient between spike trains on the 

same trials: 

   
〈   (  

 
   
 
)〉 

√〈   (  
 
)〉 〈   (  

 
)〉 

 

The spike train signal correlation between spike trains of two cells p and q was calculated as the correlation between spike 

trains on different trials: 
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The spike train noise correlation was calculated as the difference between total and signal correlations: 
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Calculation of membrane potential variances and correlations 

The analyses of membrane potentials recorded in vitro shown in figure 2 were performed as follows: The membrane 

potential for cell   on trial   in each 5 ms time bin  ,   
 
( ), was obtained by first removing action potentials and then 

downsampling from 10 kHz by computing the mean value in each time bin. The total membrane potential variance for each 

cell p was computed as the average variance of these signals across trials, 〈   (  
 
)〉   and the total membrane potential 

correlation between two cells p and q was calculated as the correlation coefficient between membrane potentials on the 

same trials: 
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The signal component of the membrane potential was estimated from the mean membrane potential averaged across all 

trials. The membrane potential signal variance for each cell p was computed as the variance of the signal component 

   (〈  
 〉 ) and the membrane potential signal correlation between two cells p and q was calculated as the correlation 

coefficient between signal components: 

   
   (〈  

 〉  〈  
 〉 )

√   (〈  
 〉 )   (〈  

 〉 )

 

The noise component of the membrane potential was estimated from the deviation of the membrane potential on each 

trial from the mean averaged across all trials. The membrane potential noise variance for each cell p was computed as the 

average variance of these noise components across trials 〈   (  
 
 〈  

 〉 )〉  and membrane potential noise correlation 

between two cells p and q was calculated as the correlation coefficient between these noise components: 
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A Dichotomized Gaussian framework for spike trains 

We have previously developed a Dichotomized Gaussian framework to generate spike train with specified second-order 

statistics (Lyamzin et al., 2012, 2010). Within this framework, there are a unique set of input parameters that correspond 

to the mean spike rates, spike train SNRs, and spike train signal and noise correlations for any pair of cells, and these input 

parameters can be estimated from the spike trains. For a pair of cells   and  , we assume that binary spike trains are 

generated for each cell on each trial   by thresholding the sum of signal and noise inputs in each time bin  : 

  
 ( )  {

  i    ( )    
 ( )   

  else
    and      

 ( )  {
  i    ( )    

 ( )   

  else
    

The signal input   was assumed to be the same on each trial for each cell and the noise input   was assumed to be 

different on each trial for each cell.  

DG version 1: For analyses of correlations in binary spike trains with 5 ms time bins that required separate estimates of 

input signal variance and input signal correlation, the signal was assumed to be Gaussian       (    ) with covariance 

   [
   
         

           
 ] and the noise was assumed to be Gaussian       (    ) with covariance 

   [
   
         

           
 ]. 

DG version 2: For analyses of correlations in spike count vectors with 50 ms time bins that required matching correlations 

across multiple 5 ms time bins in the binary spike trains, the signal input was assumed to be an arbitrary deterministic 

function and the noise was assumed to be Gaussian       (    ) with covariance    [
   
   

], with the correlation    

specified for lags up to 6 time bins (30 ms), which was sufficient to match the spike train correlations with 50 ms bins. 

When generating spike trains with DG version 2, the noise process was generated by a multivariate autoregressive 

process(Gutnisky & Josić, 2010). 

Our methods for inferring the input signal and noise parameters from spike trains are described below. For further details, 

see (Lyamzin et al., 2012, 2010). 

Estimation of input SNR from spike trains 

The estimates of input SNR from spike trains used in the analyses in figures 3, 4, and 5 were obtained as follows: we 

assumed that binary spike trains with 5 ms time bins were generated by a dichotomized Gaussian process with Gaussian 

signal and noise inputs as described above (DG version 1). Within this framework, the mean spike rate    can be written in 

terms of the input signal and noise variances as 

    (     
    

 ) 



where  (    ) is the cumulative distribution function (CDF) for a Gaussian with zero mean and variance    evaluated at 

 . The spike train SNR can also be written in terms of the input signal and noise variances. The numerator of the equation 

spike train SNR given above can be rewritten as 
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where   (   ) is the CDF for a 2-D Gaussian with zero mean and covariance   evaluated at  . The denominator of the 

equation spike train SNR given above can be rewritten as 

〈   (    ̅)〉     ( ̅)  〈   (  )〉   〈   ( ̅   )〉  
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The values of   
  and   

  that satisfied these equations for a given mean spike rate    and spike train SNR were determined 

numerically. The estimated input SNR was   
    

 . 

Estimation of input signal and noise correlations from spike trains 

The estimates of input signal and noise correlations were computed in two different ways depending on whether spike 

train correlations were measured from binary vectors with 5 ms time bins or spike count vectors with 50 ms time bins. 

Estimates of input signal and noise correlations corresponding to spike train correlations in 5 ms time bins (figures 3 and 5) 

were obtained as follows: we assumed that binary spike trains with 5 ms time bins were generated by a dichotomized 

Gaussian process with Gaussian signal and noise inputs as described above (DG version 1). Within this framework, the spike 

train total and signal correlations can be written in terms of the input signal and noise variances and correlations.  
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The covariance terms in the numerators of the equations for the spike train correlations can be written as  
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where   and    are Gaussian CDFs as described above. The variance terms in the denominators of the equations for the 

spike train correlations can be written as   

   (  
 
)   (      

     
 )(   (      

     
 )). 

The values of    and    that satisfied these equations were determined numerically. 

Estimates of input signal and noise correlations corresponding to spike train correlations in 50 ms time bins (figures 3 and 

5) were obtained as follows: we assumed that binary spike trains with 5 ms time bins were generated by a dichotomized 

Gaussian process with deterministic signal input and Gaussian noise input as described above (DG version 2). Within this 

framework, the value of the deterministic signal input for each cell in each time bin can be estimated from the PSTH: 

 ̅( )  〈  ( )〉   ( ( )  ) 

The values of   that satisfied this equation in each time bin were determined numerically. The input signal correlation for 

each pair of cells was estimated as the correlation coefficient between signal inputs after downsampling by averaging 

values from non-overlapping groups of 10 successive bins. The noise correlations can be written in terms of the input signal 

and noise variances and correlations as 
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The covariance terms in the numerator of the equations for the spike train correlations can be written as  
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where   and    are Gaussian CDFs as described above. The variance terms in the denominators of the equation for the 

spike train correlations can be written as   

   (  
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The values of    that satisfied these equations were determined numerically for lags up to 6 time bins (30 ms), which was 

sufficient to match the spike train correlations with 50 ms bins. The input signal correlation for each pair of cells was 

estimated by summing the values of    across time bins. 
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Figure 1: Signal and noise correlations in A1 responses to speech 

A) Spike trains were recorded from primary auditory cortex (A1) in anesthetized gerbils with a multi-

tetrode array in response to repeated trials of a segment of speech presented from a speaker directed at the 

contralateral ear. The raster plots show the spike trains of the population on three successive trials. B) The 

spike train signal and noise correlations   
   

 and   
      in A1 responses to speech. Correlations were 

computed for spike counts in 50 ms time bins from responses to 512 repeated trials of a 2.5 s segment of 

speech. C,D) The same correlations as in B, with the dots colored according to the geometric mean of the 

mean spike rates or spike train SNRs for each pair.  

  



 

Figure 2: Nonlinear transfer of signal and noise correlations in vitro 

A) Gaussian white noise currents with specified signal and noise variances and correlations were injected 

into layer 2/3 pyramidal cells in mouse V1 in vitro and the resulting membrane potential correlations and 

spike train correlations between pairs were compared. Spike train correlations were computed for spike 

counts in 50 ms time bins. Membrane potential statistics were computed for 5 ms time bins. Membrane 

potential variances for a pair of cells were computed as the geometric mean of the variances for each cell. B-

F) The spike train correlations for pairs of cells with the specified membrane potential variances and 

correlations. For each plot, pairs were grouped by the value of the membrane potential statistic that was 

varied as indicated on the horizontal axes. The number of pairs in each group is indicated. Vertical and 

horizontal error bars indicate SEMs. The mean values of the membrane potential statistics that were not 

varied are shown. G, H) The data from E and F replotted to show the relationship between spike train signal 

and noise correlations. Dots are colored by membrane potential SNR or signal correlation with low values in 

red and high values in yellow.  

  



 

Figure 3: A dichotomized Gaussian (DG) framework for analysis of correlation transfer 

A) Schematic diagrams illustrating the DG framework; see Methods for a detailed description. B) The values 

of input SNR, signal correlation, and noise correlation estimated from spike trains as a function of the actual 

values for pairs recorded in vitro as described in figure 2. The correlation coefficients between the 

estimated and actual values are shown. C-E) The spike train signal correlations (top panels) and noise 

correlations (bottom panels) for pairs of spike trains generated by the DG framework with the specified 

input variances and correlations.  

  



 

Figure 4: Analysis of spike train signal and noise correlations in A1 response to speech 

A) The estimated input signal and noise correlations corresponding to the spike train signal and noise 

correlations in the A1 responses to speech in figure 1B.  B-D) The same spike train signal and noise 

correlations as in figure 1B, with the dots colored according to the geometric mean of the estimated total 

input variances, the geometric mean of the estimated input SNRs, or the estimated input signal correlations 

for each pair. E) The spike train signal and noise correlations in A1 responses to speech for a subset of pairs 

with estimated total input variance between 0.5 and 0.6. G) The spike train signal and noise correlations in 



A1 responses to speech for a subset of pairs with estimated total input variance between 0.5 and 0.6 and 

estimated input signal correlation between 0.6 and 0.7. The dots are colored according to the geometric 

mean of the estimated input SNRs for each pair. H) The spike train signal and noise correlations in A1 

responses to speech for a subset of pairs with estimated total input variance between 0.5 and 0.6 and 

estimated input SNR between 0.35 and 0.45. The dots are colored according to the estimated input signal 

correlation for each pair. I) The signal and noise correlations in spike trains generated by the DG framework 

after randomizing the pairing of signal and noise inputs for the subset of pairs in G. J) The estimated input 

SNR and noise correlations for the subset of pairs in G.  K) The estimated input signal and noise correlations 

for the subset of pairs in H. L) The signal and noise correlations in spike trains generated by the DG 

framework after randomizing the pairing of signal and noise inputs for the subset of pairs in H. 

  



 

Figure 5: Analysis of changes in spike train signal and noise correlations in A1 responses to speech 

at different locations 

A) Spike trains were recorded in response to repeated trials of a segment of speech presented from a 

location either contralateral or ipsilateral to the recording site in virtual acoustic space. The raster plots 

show the spike trains of typical cell across repeated trials. B) Histograms of the % change in the mean spike 

rate and spike train SNR for individual cells in responses to speech presented contralaterally with respect to 

speech presented ipsilaterally. C) Histograms of the % change in the input signal and noise correlations for 

pairs of cells estimated from responses to speech presented contralaterally with respect to speech 

presented ipsilaterally. D,E) The spike train signal and noise correlations for pairs of cells for actual 

responses to speech presented contralaterally (black) and simulated responses with input SNRs, signal 

correlations, and noise correlations estimated from responses to speech presented either ipsilaterally or 

contralaterally (colored lines). Histograms show % change with respect to the correlations in the actual 

responses to speech presented ipsilaterally. Correlations were computed for binary spike trains in 5 ms 

time bins from responses to 100 repeated trials of a 3 s segment of speech. 

 



 

Supplementary Figure 1: Understanding correlation gain and variance gain within a dichotomized 

Gaussian framework 

This figure is intended to provide intuition into the nonlinear variance gain and correlation gain effects 

on the transfer of correlations from membrane potential to spiking.  

We assume binary output spike trains for a pair of neurons are generated within a dichotomized 

Gaussian (DG) framework: 

 ( )  {
      ( )   
      

 

with Gaussian input      (    
 ) for each cell, correlation    between the inputs for the pair, and 

threshold   = 1 (see schematic diagrams in figure S1A).  

As shown in figure S1B, assuming positive correlations, the correlation    in the spike trains increases 

supralinearly as input correlation    is increased, even when input strength   
  is constant. 

We refer to this effect as ‘correlation gain’ and we can gain insight into its origin by analyzing the factors 

that determine the transfer of correlation from input to output within the DG framework.  



If we consider two cells   and   with identical input variance   
  and positive input correlation   , the 

output correlation    can be specified in terms of Gaussian cumulative distribution functions (CDFs) 
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with input covariance matrix    [
  
   

   
  
     

 ]  

  and    are the values of univariate and bivariate cumulative distribution functions (CDFs) for 

Gaussians with zero mean and the specified (co)variances evaluated at –  . 

The supralinear correlation gain results from the fact that each increase in    results in successively 

more central parts of the bivariate Gaussian (and thus successively larger fractions of probability 

density) crossing threshold in the    term of equation 2, as illustrated in figure S1C (note that the 

fraction of density above threshold in the    term reflects the probability of the cells firing together, 

but does not reflect the mean spike rate of each cell, which is controlled by the input variance   
  and is 

independent of the input correlation   ). 

A second important correlation transfer nonlinearity, which we will call ‘variance gain’, is shown in figure 

S1D: the spike train correlation    increases as the input variance   
  is increased, even when the input 

correlation    is constant. 

Variance gain can also be understood by comparing the    and   terms in equation 2. 

As illustrated in figure S1E, variance gain results from the fact that a change in   
  has a larger impact on 

the    term than on the   terms (a positive correlation shifts probability density into the quadrant 

containing the threshold for the bivariate process and, thus, the same increase in variance results in 

more probability density crossing threshold for the bivariate process than for the univariate one). 

Note that variance gain is sublinear: each successive increase in input variance causes a smaller increase 

in output correlation.  

 

  



 

Supplementary Figure 2: Effects of input noise variance and input noise correlation on spike train 

signal and noise correlations 

This figure shows the effects of correlation transfer nonlinearities dependent on the two input 

properties that are not shown in the main text: input noise variance and input noise correlation. 

We generated spike trains using the dichotomized Gaussian (DG) framework described in the main text: 

 ( )  {
      ( )   ( )   
      

 

with signal input      (    
 ) assumed to be the same on each trial, noise input      (    

 ) 

assumed to be different on each trial, and correlations    and    between the signal and noise inputs 

for each pair of cells. 

Figure S2A shows the effects of increasing input noise variance on spike train signal and noise 

correlations: an increase in the input noise variance   
  causes a decrease in the spike train signal 

correlations   
   

 and an increase in the spike train noise correlations   
     , even when the input signal 

variance and all input correlations are constant. 

These effects can be understood as follows: 1) The total correlation in the spike trains    increases with 

increasing input noise variance   
  due to variance gain effects. 2) The spike train signal correlation   

   
 

decreases with increasing input noise variance   
  because the increase in   

  increases the variance of 

the trial-shuffled spike trains used to calculate   
   

, but does not increase their covariance, so the 

correlation between them, which is ratio of the covariance to the variance, decreases. 3) The spike train 

noise correlation   
      increases with increasing input noise variance   

  because    increases and   
   

 

decreases, so the difference between them   
     =    -   

   
 increases. 



Figure S2B shows the effects of increasing input noise correlation on spike train signal and noise 

correlations: an increase in the input noise correlation    causes an increase in the spike train signal 

correlations   
     , but has no effect on the spike train signal correlations   

   
. 

The reason for the independence of the spike train signal correlation   
   

 and the input noise 

correlation    is straightforward: a change in    does not affect either the variance or covariance of the 

trial-shuffled spike trains used to calculate   
   
  

 

 

  



 

Supplementary Figure 3: Effects of variable spike threshold on estimates of input noise variance and 

input noise correlation 

This figure shows the effects of a variable spike threshold on estimates of input noise variance and input 

noise correlation in the dichotomized Gaussian (DG) framework.  

We generated spike trains using the dichotomized Gaussian (DG) framework as described in the main 

text, but with a variable threshold: 

 ( )  {
      ( )   ( )     ( )
      

 

with signal input   and noise input   defined as in the main text, and threshold noise  ( )    (    
 ) 

assumed to be different on each trial. 

We then estimated the input parameters from the spike trains assuming the DG framework described in 

the main text with a fixed threshold: 

 ( )  {
      ( )   ( )   
      

 

The variable spike threshold is an additional source of noise that is uncorrelated between cells.  

Because the standard DG framework does not include a variable threshold, it attributes this additional 

noise to the noise input  , thus overestimating the input noise variance   
  and underestimating the 

input noise correlation   , as shown in figures S3A. 



However, the effect of the variable threshold on the estimated input properties is only a linear 

transformation and does not affect the correlation between the actual and estimated values, as shown 

in figure S3B. 

 

 

Supplementary Figure 4: Dependencies between spike train signal and noise correlations in vivo 

persist across a wide range of subpopulations 



This figure shows that the dependencies between spike train signal and noise correlations in A1 persist 

across a wide range of subpopulations. 

Figure S4A shows the correlation coefficient between the spike train signal and noise correlations for 

different subsets of pairs of A1 cells with similar total input variance.  

The subsets were formed by sorting all pairs in order of increasing total input variance and taking groups 

of 100 consecutive pairs starting with every tenth pair.  

Only the significant correlations (p < 0.001) marked in red are shown with their actual values; 

insignificant correlations are marked in black with a value of zero. 

Spike train signal and noise correlations were uncorrelated for subsets including pairs with the lowest 

81% of total input variances, and were negatively correlated for subsets including pairs with highest 19% 

of total input variances.  

Figure S4B shows the correlation coefficient between the spike train signal and noise correlations for 

different subsets of pairs of A1 cells with similar total input variance and SNR.  

The subsets were formed by selecting only those pairs with total input variance between 0.5 and 0.6, 

sorting them in order of increasing input SNR, and taking groups of 100 consecutive pairs starting with 

every tenth pair.  

Spike train signal and noise correlations were positively correlated for subsets including pairs with the 

lowest 83% of total input variances and uncorrelated for subsets including pairs with highest 17% of 

total input variances. 

Figure S4C shows the correlation coefficient between the spike train signal and noise correlations for 

different subsets of pairs of A1 cells with similar total input variance and input signal correlation.  

The subsets were formed by selecting only those pairs with total input variance between 0.5 and 0.6, 

sorting them in order of increasing input signal correlation, and taking groups of 100 consecutive pairs 

starting with every tenth pair.  

Spike train signal and noise correlations were negatively correlated for nearly all subsets of pairs. 
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VI  Discussion 

 

 

 

In this thesis we have developed a framework based on dichotomized Gaussian that operates 

on spike trains of populations of neurons obtained in response to repeated presentations of 

sensory stimuli. The framework is designed to operate on binary matrices, although certain 

quantities (e.g. signal and noise correlations) can be calculated for larger time bins and 

therefore arbitrary sets of values, as shown in Chapter V.  

Dichotomized Gaussian (DG) process has been proposed over a century ago (Pearson, 1909), 

and its properties have been studied in detail (Cox & Wermuth, 2002; Emrich & Piedmonte, 

2013), including its applications to the modeling of the activity of neuronal populations 

(Gutnisky & Josić, 2010; Macke et al., 2009) in which the binary matrices generated as the 

output of DG correspond to spike trains of individual cells in response to repeated 

presentations of a stimulus. 

  

As follows from the name DG is based on a discrete-time Gaussian process that is thresholded 

at every point in time. The value of the output of DG at a given time bin equals to one if the 

value of the Gaussian in that time bin is larger than the threshold value, and equals to zero 

otherwise. The desired rate of ones (or spike rate in case of neural modeling) is achieved by 

manipulating mean of the Gaussian, its variance, and threshold. The desired pairwise 

correlations between binary output matrices are fitted by setting correlation coefficients 

between the components of the Gaussian process to the appropriate value. As shown in 

(Macke et al., 2009), DG can be successfully fitted to the spike train data, accurately replicating 

firing rates and correlations between pairs of neurons. 
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In the first paper we extended the existing DG framework by representing the latent Gaussian 

process as a sum of two components: signal and noise. We set the signal component to be the 

part of the latent Gaussian that was the same on every trial and therefore resulted in different 

threshold crossing probabilities at different time bins.  

The noise component of the Gaussian was different on every trial, although the mean, variance, 

and correlation coefficients between its components were the same for a given stimulus and a 

given pair of cells.  

Having augmented the existing DG model this way, we found expressions for signal and noise 

correlations of the resulting binary spike trains.  

The first paper illustrates applications of the model: fitting the responses of the experimentally 

observed pairs of neurons, arbitrarily changing their response properties, and generating 

population responses with arbitrary statistics.  

 

An important feature of the model that was not stressed in Chapter III, but has been exploited 

throughout this thesis and in Chapter V in particular, was that all of the single cell parameters 

and pairwise correlations of the spike trains were linked with each other through internal 

model parameters, which means that given a change in one of parameters of spike trains, the 

resulting changes in the others could be calculated numerically, without sampling from the 

model. 

 

 

In the second paper we used the ability of the model to reproduce temporal correlations and 

found expressions for Fano factors, coefficients of variation of the ISI distributions and count 

correlations of pairs of neurons, depending on the auto- and cross-correlation functions of the 

latent Gaussians.  

We showed among other things that it is possible to have different configurations of ISI 

distributions for a given variability of counts across trials, even though both these values are 

defined by the autocorrelation functions of the Gaussian process corresponding to the neuron. 

 



99 
 

 

In the third, unpublished work, we focused on the relationships between all parameters of the 

model that arise due to the nonlinear mechanism of spike generation - thresholding. 

We showed that fitting the parameters of spike trains using DG imposes nonlinear relationships 

between the spike train correlations and input (Gaussian process) correlations.  

In particular, increasing input variance led to the increase in spike train correlations, even when 

the input correlations were kept constant, as observed previously by (de la Rocha et al., 2007). 

We called this effect variance gain and found it to be sublinear: for equal increments of 

variance the respective changes in spike train correlations were decreasing.  

The other fundamental effect that we found was by analogy called correlation gain (Binder & 

Powers, 2001), and it manifested itself in ever increasing spike train correlations when input 

correlations were incremented by a fixed amount. Thus, correlation gain was found to be 

supralinear.  

According to the existing literature (de la Rocha et al., 2007) the variance gain effect that DG 

produces is also observed in whole-cell recordings in slice preparations, and therefore 

represents an actual effect in neurons.  

We too found that 1) correlation gain was manifested in the activity of neurons in slice 

preparations 2) both effects take place for signal and noise components of the input currents 3) 

these nonlinearities are partially responsible for the dependencies between spike train signal 

and noise correlations that we observe in the in vivo A1 data.  

 

The nonlinear relationships between spike train correlations and input correlations were found 

to qualitatively replicate the predictions of DG. In the cases of input SNR and input signal and 

noise correlations that were of particular interest to us, the predictions of DG model were 

highly correlated with the results we obtained from whole-cell recordings in slices. 

 

We used the latter finding to decouple the effects of the spike generating nonlinearities from 

the relationships between correlations and variances already existing in the inputs. To stress 

this point in particular, the third manuscript shows that some dependencies observed 
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experimentally e.g. the positive relationship between signal and noise correlations are not 

exclusively a reflection of the dependencies existing in the network, but also are the result of 

thresholding.  

We show estimate to what extent the observed dependencies are due to inputs or due to the 

correlation transfer nonlinearities.  

 

In Chapter V we were particularly interested in the dependencies between spike train signal 

and noise correlations when input SNR or input signal correlations were changing. 

We found that in our data input noise correlations are inversely related to input SNR for groups 

of cells with similar firing rates and input signal correlations. In other words, we found that if 

two cells get more noise in their inputs, this noise is likely to be correlated. Similarly, we found 

that for pairs of cells with fixed input firing rates and fixed input SNRs, input signal and noise 

correlations are positively related. In both of these cases however nonlinearities strengthen the 

relationships present in the inputs.  

 

Finally we used DG framework for the analysis of population responses to stimuli with varying 

ITD in the cortex.  

We found that 1) with the change in location of the sound from the side contralateral to 

ipsilateral firing rate does not change while SNR decreases 2) signal correlations decrease 3) 

noise correlations increase 4) the decrease in signal correlations is predominantly explained by 

the change in SNR 5) the increase in noise correlations is predominantly explained by the 

change in input noise correlations.  

Summing up these results, with the change of the location of the sound source from 

contralateral to ipsilateral side, the responses of a population of neurons becomes less 

temporally precise, however the spiking remains correlated across the population, which is 

manifested in the increase in input noise correlations.  
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Variance gain curve in synchronized state 

 

 

Possibly no less important than understanding how particular correlation structures arise in 

responses to particular classes of stimuli, the DG framework can give an intuition of how the 

correlation transfer nonlinearities might ultimately affect behavior through shaping population 

activity. 

 

As mentioned before, the extent to which the spiking response of a population of sensory 

neurons carries signal, depends not only on how tuning properties of this population are 

related to the stimulus features, but also on the brain state, and in some cases may be 

completely defined by the ongoing cortical activity (Marguet & Harris, 2011). Such ongoing 

cortical activity constitutes in our terminology noise, which at rest or during sleep bears most of 

the power.  

 

In one of such states due to the sublinearity of variance gain a change in input noise variance 

will not change the extent to which noise is correlated across the local population significantly. 

On the other hand a similar change of input signal variance will result in a significant increase of 

signal correlations across the population, which during sleep or rest of an animal will mean an 

instantaneous forced engagement of the brain in sensory processing. 

Such a rapid shift in the correlation structure of the neural activity may lead to 

desynchronization of local population activity, and could be a mechanism of a bottom-up 

analogue of attention, saliency. Indeed, salient stimuli are known to involuntarily attract 

attention, and in case of an idle animal, a sudden appearance of a sensory input can be 

behaviorally relevant and require immediate reaction. It is also known that punctuate stimuli 

(Kenneth D Harris & Thiele, 2011) produce larger instantaneous responses in a synchronized 

state, in contrast to sustained stimuli the power of response to which is normally higher in 

desynchronized state. 
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This consideration is of course speculative, as it is not exactly clear how an animal would 

benefit from the correlation transfer nonlinearities in desynchronized state. 

In case of desynchronized state the input variance of noise is close to zero, input variance of 

signal is high and its changes won’t affect output signal correlations significantly.  

One can speculate that in such state a slight increase in noise variance may be beneficial to 

noise correlations that arise due to the spiking that is jittered in time, and therefore carries 

information about suboptimal stimuli (low contrast or ipsilateral ITD) therefore enhancing their 

coding across the population. Or variance gain can amplify the neural oscillations emerging 

when an animal is going to sleep or rest, i.e. when a broad correlated engagement of the cortex 

is necessary. However this argumentation is of course very speculative. 

  

Both correlation and variance gain curves, as shown in Chapter V, depend on the firing 

properties of a particular neuron and can be steeper or shallower, saturate or reach zero for 

different values of input correlations. Therefore, the variance gain and correlation gain may 

have quite different effects from case to case. 

 

The situation is complicated by the fact that DG can obtain good estimates of input correlations 

of signal and noise, but not input variances. The estimation of variances will require finding an 

appropriate model for input currents and for the transformation of these currents by cell 

membrane.  

This task goes beyond the scope of current thesis, although it might be a promising direction for 

future research. 
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The analogy between visual contrast and ITD processing 

 

 

Another curious finding that DG helped uncover is a seeming analogy of the ITD processing in 

A1 and processing of contrast in V1.  

In Chapter V we found that when the sound source was moved from the side contralateral to 

the hemisphere we recorded from to the ipsilateral side, the precision of spikes from individual 

cells reduced significantly, which resulted in smaller spike train SNR. We also found that noise 

correlations increased and signal correlations decreased at the same time. At least partially the 

change in the relative magnitude of signal and noise correlations can be explained by the 

redistribution of spikes between signal and noise: once the position of the sound source 

became suboptimal, the spiking events across the population lost their absolute temporal 

precision and became noise spikes according to our definition, but didn’t lose timing precision 

relative to the rest of the population and remained correlated.  

Similar effect was observed in LGN (Desbordes et al., 2008) and V1 (Lampl, Reichova, & Ferster, 

1999; Sadagopan & Ferster, 2012), in the latter case cross-correlation functions being steeper 

for high contrast stimuli not only for spike trains, but also for membrane potential fluctuations. 

This mechanism could also be at play in (Kohn & Smith, 2005) where spike train cross-

correlations were shown to be shallower for low contrast stimuli and the synchrony was 

admittedly lower. Although the observed large timescale correlations that resulted in high 

count correlations were probably due to the synchronous ongoing cortical activity characteristic 

of the ketamine anesthesia.  

Interestingly, suppression of the ongoing cortical activity by a high contrast (salient) stimulus 

happened even in the case where the neurons were tuned to the orthogonal orientation. In 

that case the neurons didn’t fire any spikes and cross-correlations were flat.  

 

The degraded temporal precision of population response can therefore carry information on 

the ITD and contrast itself that could be extracted had the cortical neurons had the access to 

the absolute time of their spikes. 
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Of course, the behavior is based on a single presentation of a stimulus, and given that the 

degraded temporal precision is correlated across the population it can’t therefore be averaged 

out across the population either.  

However it is possible that the information about absolute timing could be extracted when 

comparing the spike timing to the neurons with stereotyped responses (Brasselet, Panzeri, 

Logothetis, & Kayser, 2012), or to the spike timing of the other hemisphere.   

 

 

Measures adopted in this Thesis and in other studies 

 
 

Our definition of noise correlations is in a slight contrast with works that define noise 

correlations as fluctuations of mean firing rate or spike count across trials (Bair et al., 2001; 

Jung et al., 2000; Kohn & Smith, 2005; Lee, Port, Kruse, & Georgopoulos, 1998; Liu et al., 2013). 

We call these count correlations and show the link between count correlations and noise 

correlations in Chapter II.  

Similarly, studies that characterize neuronal responses with firing rates, normally use Fano 

factor as a measure of trial-to-trial variability (Cohen & Maunsell, 2009; Kara, Reinagel, & Reid, 

2000). Our measure of trial to trial variability, SNR (Borst & Theunissen, 1999) is more 

appropriate for the peripheral sensory neurons and neurons of primary sensory cortices. 

Signal correlations in these cases are often characterized as correlations of the average firing 

rates of two cells across stimulus conditions, or analogously, correlations between their tuning 

curves (Bair et al., 2001; Kohn & Smith, 2005). Unlike this approach, we get one value of signal 

correlation per stimulus condition per pair of cells.  

 

The principal difference between measures adopted here and other common measures may 

seem insignificant. Indeed, any complex naturalistic stimulus can be represented as a series of 

time bins with certain firing probabilities and certain variability, and can effectively be regarded 

as a set of stimuli.  
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However in our definition noise spikes for example can occur due to jitter from the PSTH peak, 

as discussed before, and thus also have the property of time, and differ for the spike trains with 

equal numbers of spikes on every trial, but different temporal precision. 

This quality is particularly useful if a feature is encoded in timing rather than firing rate, which, 

as we will see further, is indeed the case for certain classes of stimuli in vision and audition. As 

an outcome of such temporally-resolved approach, we get that both signal and noise 

correlations take on a certain value for one stimulus, which makes it possible to compare 

changes in both signal and noise correlations with changes in stimulus.  

 

Importantly, the measures of signal and noise correlations used in this work represent the 

comparison of signal and noise correlations both across pairs and across stimuli as equivalent, 

which might make sense from a certain perspective: for the activity of a neuronal population in 

response to a sequence of N different stimuli, one can find N subpopulations of neurons that 

would produce the same set of N responses to one stimulus, provided that the population of 

neurons is sufficiently heterogeneous. 

 

 

Mutual information and the specifics of auditory data in local 

cortical populations 

 

 

The development of DG framework was partially motivated by its potential use in information 

theoretic analysis. We did preliminary calculations of the effects that signal and noise 

correlations have on mutual information in the population of neurons in primary auditory 

cortex.  

In responses of local populations of A1 neurons to diotically presented sounds we found that 

mutual information measured in one time bin words did not change significantly with a change 

in noise correlations.  
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It is quite likely therefore that most of the information at the level of A1 is carried in signal. 

However, given the inverse relationship between signal and noise correlations found for stimuli 

varying in their ITD in Chapter V, it could be possible that mutual information will behave 

differently for that class of stimuli.  

Another possible avenue for the information theoretic analysis is taking into account cells with 

OFF tuning curves found in layer 5 in A1 (Zhou et al., 2010), that way signal correlation between 

a pair of ON- and OFF-cells will be negative which may ultimately be beneficial for coding 

(Averbeck & Lee, 2006; Romo, Hernández, Zainos, & Salinas, 2003).   

These results have not been published or presented in any form.  

 

Looking at whether changes in correlations affect mutual information is meant to clarify if these 

changes play a role in sensory processing. However answering this is not always possible 

primarily because we don’t always know the decoding principles of the brain (Latham & 

Nirenberg, 2005; Sheila Nirenberg & Latham, 2003; Schneidman, Bialek, & Berry, 2003). The 

approach of measuring mutual information while being numerically accurate and free of any 

assumptions about the identity of the neural code is not always effective in understanding the 

coding principles, and should be used in conjunction with other methods when the criteria of 

optimality are not clear.  

 

In sensory periphery where the primary goal of the neural circuit is to convey information about 

stimulus features with highest possible precision, the amount of mutual information contained 

in the population response is a good measure of the optimality of neural code. 

As the sensory information travels more centrally, the brain makes use of it for more complex 

computations, e.g. to calculate higher-order features, to integrate it with the information from 

other sensory modalities, or to guide the behavior. In these conditions it is sometimes more 

efficient to adjust population spiking to these computations, even, if necessary, at the expense 

of losing mutual information.  
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Ironically, noise correlations in sensory periphery are close to negligible (S Nirenberg, Carcieri, 

Jacobs, & Latham, 2001) and their contribution to mutual information becomes significant only 

in the cortex, where the results obtained with information theoretic approach are harder to 

interpret.  

 

In this respect, the intermediate stages of sensory processing may be of particular interest: 

while preserving most of the information about the stimulus, neurons in primary sensory areas 

are the first to adapt the incoming sensory inputs to the ongoing processing of information in 

the brain. 
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