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Zusammenfassung

Diese Arbeit befasst sich mit dem Einfluss von Sternen, deren Masse acht Sonnenmassen iiber-
steigt, auf das Interstellare Medium in ihrer Umgebung. Solche massereiche Sterne beenden ihr
Dasein mit einer Supernovaexplosion und verlieren im Laufe ihrer — verglichen mit massearmen
Sternen — raschen Entwicklung einen grof3en Teil ihrer Masse iiber ihre starken Sternwinde. Bei-
spielsweise gibt ein Stern mit 60 Sonnenmassen Anfangsmasse mehr als die doppelte Supernova-
energie liber die kinetische Energie seiner Winde in seine Umgebung ab.

Sterne entstehen in Regionen mit kaltem, dichtem Gas, den sogenannten Molekiilwolken. Beob-
achtungen zeigen, dass diese Gaswolken turbulent sind. Es ist allerdings noch ungeklirt, woher
die beobachtete Turbulenz im Interstellaren Medium ihre Energie bezieht. Die Energieabgabe von
massereichen Sternen ist — neben gro3skaligen gravitativen Instabilititen in der Scheibe der Milch-
strale — eine der moglichen Erkldrungen. Beobachtungen erlauben Riickschliisse auf die einge-
brachte Energiemenge und die Langenskalen des Energie liefernden Prozesses. Daher ist es rele-
vant, zu bestimmen, wie viel kinetische Energie ein massereicher Stern in der ihn umgebenden
Molekiilwolke deponieren kann.

Der Schwerpunkt dieser Arbeit sind hydrodynamische Simulationen, die diese Energieeffizienz
testen. Dazu wurden aktuelle Sternentwicklungsmodelle in die frei zuginglichen Eulerschen Git-
tercodes PLUTO und RAMSES eingebaut. Die Simulationen verwenden das von Eva Ntormousi
erstellte Modul fiir die Berechnung der Heiz- und Kiihlprozesse eines Multiphasenmediums.

Die Modellrechnungen fiihrten zur Erkenntnis, dass in jener Phase der Simulation, in der die raum-
liche Auflosung der Modellrechnung die Eneergieeffizienz stark beeinflusst, der grofite Energie-
verlust durch Strahlung an jener Stelle auftritt, an der das vom Stern ausgestoene Material auf
das aufgesammelte Umgebungsgas trifft. An dieser Kontaktfliche treten Mischungsprozesse auf,
welche die Energieverluste steigern. Somit konnen unsere Simulationen in Kombination mit ei-
ner Abschitzung der Effizienz und Skalenlidnge dieser Mischprozesse eine Aussage treffen, wie
viel Energie massereiche Sterne zur Aufrechterhaltung der Turbulenz beitragen kénnen. Fiir diese
Abschitzung der Mischprozesse liefert die Literatur auf Beobachtungen und numerischen Simula-
tionen basierende Richtwerte.

Als Anwendungsbeispiel wird in dieser Arbeit die Orion-Eridanus Region diskutiert. In dieser Re-
gion wird das radioaktive Isotop 2°Al beobachtet. Dieses Isotop wird vorrangig in massereichen
Sternen gebildet. Es kann daher als Indikator fiir von Sternen ausgestolene Materie verwendet
werden. Interessanterweise zeigen die Beobachtungen dieser Region nur in einem Teil des Gebiets
mit Rontgenemission ein 2°Al Signal. Unsere RAMSES Modelle beriicksichtigen 2°Alund koén-
nen daher auf Gebiete mit (fehlenden) Korrelationen zwischen Rontgenemission und 26 Al Signal
durchsucht werden.



xviii Zusammenfassung




Chapter 1

Motivation

This work simulates the effects of massive stars on their surroundings. Groups of massive stars,
so-called “OB associations”, form in molecular clouds. A nice, illustrative study of massive stars
shaping their environment is the Milky Way Project (Kendrew et al., 2012; Simpson et al., 2012;
Beaumont et al., 2014, http://www.milkywayproject.org), where citizens are asked to help scien-
tists identifying bubbles in observational data from the Spitzer Space Telescope. While we know,
that massive stars have a dramatic effect on their direct surroundings, since they burn fast and
hot and eject much of their material, it is less clear to which extent they are involved in driving
turbulence.

This leads us to the question: “What is turbulence?”. We can loosely describe turbulence as a
highly irregular flow in space and time. Energy is injected at large scales and cascades down to
smaller scales, where it is dissipated. This can also be seen in everyday life. For example, stirring
a glass of caffe latte will mix coffee and milk, nicely illustrating turbulence at work. Of course, as
a physicist, one has to analyze the results of this little experiment. And there even exist computer
simulations of this process: e.g. Volker Springel published a simulation called “stirring a coffee
mug” which makes use of his AREPO code (snapshots can be found e.g. in Fig. 39 in Springel,
2010). In this experiment the large scale motion of the spoon causes many small whirls. When we
analyze our data, turbulence is usually visualized with a Kolmogorov energy spectrum showing
the energy contained in coffee and milk blobs (these elements will be called “eddies” later on)
of different sizes. If turbulence has developed, a characteristic slope of —5/3 is observed in this
spectrum.

Technically, the onset of turbulence can also be parametrized via the Reynolds number (relating
velocity, scale length and viscosity) and the Prandtl number (relating momentum diffusivity and
thermal diffusivity), which are larger than unity in turbulent flows.

So, how does the process in the caffe latte relate to astrophysical fluid flows in the interstellar
medium (ISM) and this thesis? It is obvious, that a spoon created the motions in the caffe latte
experiment. However, in molecular clouds the origin of the energy injection, which creates and
sustains turbulence, is still a matter of debate. Basically, observations of the density and velocity
structure of the ISM can be compared to simulations. This gives a hint on the amount of injected
energy and the energy injection scales.

Possible processes creating turbulence in the ISM are accretion of gas of extragalactic origin,
magneto-rotational instability in the galactic disk, convergent flows of atomic gas triggered by spi-
ral density waves, supernovae (SNe), expanding H II regions, or stellar outflows. These processes
differ by the length scale on which energy is injected.
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2 1. Motivation

Most probably, turbulence is driven by a mixture of all these processes. While the local impact of
supernova explosions is obvious, their impact on galactic turbulence remains an open question. In
this work, we will thus study, how much of the stellar feedback energy can be converted to kinetic
energy of the cold gas in the surroundings of the star. We call this “feedback energy efficiency (¢)”.
Another similarity between the caffe latte and the processes studied in this thesis is, that after
stirring a caffe latte, milk and coffee become well mixed. In this work, we are also interested in
the distribution of heavy elements. The reader might be aware of the fact, that most (about 90% of
the mass) of the chemical elements in a human being were not created in the Big Bang. Thus, the
spreading of heavy elements in the cosmos (sometimes called “chemodynamics” or “the cosmic
matter cycle”) is an interesting process of evident importance for mankind. Our work also touches
this question. For this work, the spatial distribution of the radioactive isotope *°Al, which is created
in massive stars, is of interest. Due to its radioactive decay, it can serve as a tracer to identify matter
that was newly ejected from massive stars. %Al can be used to study the spatial distribution as well
as the velocities of these ejecta.

In the next chapter we will discuss the Orion-Eridanus region, which is a prototypical example
of a region with interactions between young, massive stars and star-forming molecular clouds.
Fortunately, a %Al signal has been observed in this region and — due to a successful INTEGRAL
proposal of R. Diehl — more observational data of 2Alin this region will become available in
the near future. The spread of Al might also help to shed light on the question, if the Orion-
Eridanus Superbubble (OES) is a monolithic bubble of possibly!' peculiar shape (Reynolds and
Ogden, 1979; Burrows et al., 1993; Diehl et al., 2004; Pon et al., 2014a) or a superposition of
individual superbubbles (Boumis et al., 2001; Ryu et al., 2008; Jo et al., 2011) created by the
Orion OB I associations. Presently, the available observational data for the OES (see Sect. 2.4) can
be interpreted in both ways and this question is still under debate. In this work, we will use the
term “OES” for both interpretations of the data from the Orion-Eridanus region.

'Pon et al. (2014a) fit a symmetric model, the other authors assume a less regular shape.



Chapter 2

Background: massive stars and their
surroundings

Our current understanding of astrophysics sees the universe as a constantly evolving very dynamic
system. In computational astrophysics, when we try to simulate the cosmos, we are faced with
the problem that processes on very different length scales seem to be coupled, which makes a
self consistent treatment of a subsystem challenging. An example for such a coupling between
small scales and large scales is chemical enrichment, where heavy elements are produced in stars
and distributed throughout galaxies. Vice versa, also large scales can influence small scales, for
example via turbulence, which cascades energy from large scales down to the smallest scales where
it is dissipated. Another interesting aspect of this system is that many astrophysical processes
appear to be cyclic. For instance, the processes studied in this work are often subsumed under the
concept of the matter cycle of stars. In this cycle, stars form in gas clouds, start nucleosynthesis,
produce heavy elements and finally, when they have consumed their fuel for nucleosynthesis, give
a large fraction of their gas back into the interstellar medium (ISM), possibly triggering the birth
of a new generation of stars. From this plethora of interesting processes we will now pick one —
namely the interaction of massive stars with their environments — and look at it in detail.

The benefit of gaining insight on the influences of stellar feedback onto the surrounding ISM from
small-scale high-resolution studies is twofold: On the one hand we can simulate regions small
enough to treat them in high-resolution and compare our results to observations like data from the
Orion-Eridanus Superbubble (OES) and on the other hand we can try to draw conclusions which
will hopefully be useful for investigations of processes on larger length scales. More precisely,
simulations of galaxies have a hard time resolving stellar feedback. This problem is usually as-
sessed with sub-grid models, and such models can be improved with our findings.

In this section we will discuss some key agents in the problem of stellar feedback energy efficiency
and present the terminology' — for example “ISM” or “superbubble”, which we already used in
the preceding paragraphs — before we delve into the simulations in the next chapters. We will
start with the physics and the composition of the ISM which encompasses — as its name already
indicates — the gas and dust between stars (Sect. 2.1). In this context we will also introduce Giant
Molecular Clouds (GMCs, Sect. 2.5) and discuss observational evidence of the ISM (Sect. 2.4).
Since we are most interested in the Orion-Eridanus region, we will briefly introduce it and focus
on the observational evidence from this region. Obviously the other important topic are massive

To make the text a bit shorter and easier to read, some of the terminology (highlighted in blue in the electronic
version) can also be found in the glossary.
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stars, which will be discussed in Sect. 2.6 including their occurrence in the Orion-Eridanus region.
Since the dynamics of the ISM involve the exchange of mass and energy between the constituents
of the ISM we will briefly mention cooling and heating processes in the ISM in Sect. 2.2.6. The
mixing of newly produced elements into the surrounding GMC gas will be discussed in the rest of
Sect. 2.2.

2.1 Theories of the interstellar medium (ISM)

Our current picture of the interstellar medium (ISM) is that of a complex dynamic mixture of
several gas phases (Cox, 2005; de Avillez and Breitschwerdt, 2005). After reviewing the classic
models of the ISM (Field et al., 1969; McKee and Ostriker, 1977), which can be assumed to be a
zero order approximation, we will proceed to the present day dynamic picture of the ISM.

2.1.1 Classic equilibrium models for the ISM

This class of models of the ISM (Field et al., 1969; McKee and Ostriker, 1977) postulates the
existence of several gas phases in pressure equilibrium. In this context a “phase of the ISM” is
a stable combination of number density and temperature (n, 7") where the heating rate (I') equals
the cooling rate (A, see also Sect. 2.2.6). An important tool in this context is Field’s stability
criterion (Field, 1965), which states that a gas phase is stable, if the slope of the cooling-heating
equilibrium curve (%, see Fig. 2.1) in the p/kg, n diagram is positive. A point in this space
is called stable, if a perturbation in density or temperature leads to a change of the cooling-heating
function, which counteracts this perturbation.

The classic model of Field et al. (1969) applies this concept to two phases: to a cold phase with a
temperature of 100 K and a warm phase with a temperature of 10 000 K. The motivation for this
model was the observed stability of cold HI clouds. This finding can be explained by assuming
that HI clouds are immersed in a hot, rarefied medium, which is heated by cosmic rays and which
is in pressure equilibrium with the H1 regions. In contrast to this model, which emphasizes the
impact of cosmic rays, the equilibrium model of McKee and Ostriker (1977) identifies supernova
explosions as the key agent. These supernovae lead to a third thermal phase: a dilute hot medium.
The general picture presented in the McKee and Ostriker (1977) model consists of three compo-
nents in rough pressure equilibrium. This model predicts that 70% to 80% of the volume are filled
with the hot inter-cloud medium (HIM, T' ~ 5 x 10° K, n ~ 0.003 particles cm~3) produced by
supernovae. The cold neutral medium (CNM, 7' ~ 80 K, n ~ 40 particles cm—3) forms small
dense spheres with average diameters of 3.2 pc, which are embedded in the hot medium and oc-
cupy about 2% to 4% of the volume. The remaining ~ 20% of the volume are filled with the
coronae (T ~ 8000 K, n ~ 0.25 to 0.37 particles cm™2) of the cold clouds. The model expects
two layers in these coronae: an inner layer of warm neutral medium (WNM) and an outer ionized
layer, containing the so-called warm ionized medium (WIM).

An interesting aspect for our study — which focuses on massive stars in molecular clouds — is the
role of molecular clouds in this model. The cloud masses in the McKee and Ostriker (1977) model
are chosen to stay below 10* M, to avoid self gravity of the clouds. McKee (1990) states that
molecular clouds are self-gravitating and thus not in pressure equilibrium with the phases of the
ISM. Consequently, molecular clouds do not form a fourth component of the model.

Nowadays, the three phase model is considered as a zero-order approximation only and numerical
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simulations as well as observations suggest a more dynamic, turbulent ISM. Also the important
role of conduction in the McKee and Ostriker (1977) model has been criticized. Moreover, the
concept of spherical clouds does not fit well to the observed filamentary structure of the ISM.
Therefore, we will move on and discuss the concept of a dynamic ISM.

2.1.2 Dynamic multi-phase ISM

Cox (2005) suggests that dynamics in the ISM have a larger effect on the constituents of the
ISM than the thermal instability, arguing that the time to adjust to the equilibrium is rather long
(Sect. 2.2.6). Also numerical simulations (e.g. Korpi et al., 1999; de Avillez and Breitschwerdt,
2005; Joung and Mac Low, 2006; Hennebelle and Audit, 2007; Koyama and Ostriker, 2009; de
Avillez and Breitschwerdt, 2012; Hill et al., 2012; Gent et al., 2013) show a more dynamic picture
of the ISM: Generally, these models do not find an ISM becoming saturated by SN impacts. Several
studies find volume filling factors of the hot gas much lower than 70% (Joung and Mac Low, 2006;
Hill et al., 2012; Hill et al., 2012; de Avillez and Breitschwerdt, 2012). Recently, de Avillez and
Breitschwerdt (2012) also showed that the assumption of collisional ionization equilibrium (CIE)
below 10° K is problematic, and that non-equilibrium models can find O VI emission at lower
temperatures than previously expected (see Sect. 2.4.4). All models observe a dynamic medium
with large variations in pressure. Turbulence also seems to lead to a tightly interwoven CNM
and WNM with a continuously varying density and temperature structure. Some authors (e.g.
Hennebelle and Audit, 2007) claim that the CNM and WNM are locally in pressure equilibrium
in their simulations. To summarize, whereas also simulations that take turbulent motions of the
ISM into account, find much of the gas mass close to the cooling-heating equilibrium, the gas
phases observed in simulations of a turbulent ISM differ from the two phases formed by thermal
instability. In a dymanic ISM, pressure gradients lead to gas phases in the unstable regime in
Fig. 2.1, where the thermal instability is slowly working on restoring stable phases.

2.2 Mass and energy exchange

In the following, some processes, which lead to an exchange of mass and energy between gas
phases or to a removal of energy from the system, are briefly discussed. The motivation for the
brief excursion into radiative cooling (Sect. 2.2.6) is that a large fraction of the feedback energy
of massive stars (discussed in Sect. 2.7) in GMCs is removed from this environment via radiative
cooling processes (see e.g. Tab. 6.2). The importance of mixing of material of different gas phases
(treated in Sect. 2.2.2 to 2.2.5) for our work is twofold: On the one hand, obviously, the spread
of our trace element 2°Al and all other newly produced heavy elements will be influenced. As
a consequence, also the predicted 2°Al velocities are affected, as motions in the swept-up GMC
material are substantially lower than the velocities observed inside the superbubble. On the other
hand, mixing of gas phases can enhance radiative losses and change the feedback energy efficiency.
More generally speaking, mixing of stellar ejecta with the ambient medium is important for models
of the the cosmic matter cycle. Due to the large range of scales, a hydrodynamical treatment of
these mixing processes is beyond reach in most simulations. Therefore many chemical evolution
models assume an immediate mixing of the SN ejecta in the walls of superbubbles. However, it is
unclear if this is realistic. As pointed out by e.g. Tenorio-Tagle (1996) stellar winds and supernova
explosions lead to a two shock structure with a contact discontinuity (CD) separating the well
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mixed hot material inside the bubble from the swept up, compressed, heated, radiatively cooling
(and thus cold) ambient medium.

The efficiency of mixing across the CD still remains an open question. Presently the mechanism
of mixing via droplets produced in the SN receives most attention (Stasinska et al., 2007; Gounelle
et al., 2009; Gounelle and Meynet, 2012; Boss and Keiser, 2012; Pan et al., 2012).

In the literature the stability of the CD in wind-blown bubbles is debated: Tenorio-Tagle (1996)
reports Rayleigh-Taylor instabilities followed by Kelvin-Helmholtz instabilities due to the collision
of SN ejecta with the wind material in his 2D simulations, whereas Pan et al. (2012) report a stable
CD for isotropic ejecta. However, Pan et al. (2012) note that the omnipresent turbulence in the
ISM will lead to instabilities, which in turn enhance the mixing across the CD by increasing the
CD surface.

In our brief discussion of processes capable of degrading the CD, we will start from kinetic gas
theory, where such degradations are caused by particle motion smearing out a gradient. We can
look at different manifestations of this diffusion process. To do so, we consider two distinct gas
phases in pressure equilibrium that are separated by a CD. After a few words on the mean free
path (\), we will estimate in the rest frame of the CD how many hot particles will flow into the
cold gas and vice versa. This ultimately leads to heat conduction down a temperature gradient
(Sect. 2.2.2). Another manifestation of such mixing processes is molecular diffusion (Sect. 2.2.3).
In this case the CD separates two different gas species and diffusion will try to level a concentration
gradient. Taking a step back from the microscopic level to the macroscopic level, gas blobs can
mix via turbulenceturbulent diffusion (Sect. 2.2.4). And last but not least one can rely on ambipolar
diffusion caused by magnetic fields (Sect. 2.2.5).

2.2.1 Mean free path

A crucial length scale for diffusive processes is the mean free path (\), which denotes the average
distance a particle travels between two scatterings. Processes at the scales of the mean free path
and below have to be modeled taking plasma physics into account. As will be discussed in Sect. 3,
our hydrodynamic simulations are based on the fluid approach, which assumes that A\ is much
smaller than a cell size. In other words, the underlying assumptions of our simulation method
imply a maximal “meaningful” resolution, which is connected to A. The mean free path

A= — (2.1)
on
for elastic scattering of neutral hydrogen with an elastic collision cross section oy_y of 5.7 X
1071% ¢cm? (Godard et al., 2009) becomes larger than a cell size of e.g. 0.01 pc (turbulent diffusion
length scale estimate of Gounelle et al., 2009) if the density falls below 1072¢ g cm™3, which
corresponds to a number density of 0.006 cm~—3. With the mean molecular velocity
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In ionized gases the scattering cross section is the area in which the electrostatic energy becomes
comparable to the relative kinetic energy of the two charged particles. The electron mean free path

0.290 (ksT,)*

Ae neetIn A

(Eq. 5-26 Spitzer, 1956; Shu, 1992, Eq. 1.5) with the thermal velocity of the electrons

kgT.
o2, = o8
and the Coulomb logarithm
3R
~2e3\| 7.

is larger than 0.01 pc for temperatures above 10°3° K for densities below 1072° g cm ™3,

2.2.2 Evaporation due to thermal conduction

In the PLUTO code (Mignone et al., 2007, see also Sect. 5.1.1 of this work), thermal evaporation is
facilitated with an additional divergence term for heat conduction in the energy equation:

OF - .
E + V-[(E+p)77]:—V-FC

Due to the inverse dependence on the particle mass (evident from the mean molecular velocity,
Eq. 2.2), conduction is electron dominated. If the scale length of the temperature gradient

T
VT

ZTE

is much larger than the mean free path of the electrons )., the heat flux conducting heat down the
electron temperature gradient in a plasma is given by

F,=—xVT,
We use a thermal conduction coefficient for a hydrogen plasma of x = 5.6 x 10~77°/2 erg s~!
cm~ ! K~! (Spitzer, 1962) within the PLUTO code (Mignone et al., 2007). The relaxation time

ne, s (Az)? 3 9
K (Az)" = D vrmS/\<Ax)

trelax -

describes how fast heat conduction in the classic heat flux is. For a gas with a density of 10~2¢
g cm™2 and a temperature of 10° K on the scales of Az = 0.01 pc the relaxation time is ~
1.8 x 107 years. For steep temperature gradients with scales shorter than the mean free path the
code switches to the saturated heat flux, estimated to be

Fsat = 5¢pcg,iso [erg S_l Cm_Q]



8 2. Background: massive stars and their surroundings

with ¢ = 0.3 (Balbus and McKee, 1982) and ciiso = kgT'/m, because in this regime the classic
heat flux equation overestimates conduction. In the case of a CD we expect such a very steep
temperature gradient. For a hydrogen gas with p = 1072 g cm™ and 7' = 10° K this flux is
1.1x 1072 erg s~ cm™2, which can be compared to the loss via radiative cooling A ~ 10~%n? erg
s71 ecm3= 1072 erg s7! cm 3 of a slab with a width of 10° cm, which is way below our maximal
resolution. The heat flux is thus not an important agent near the CD in this problem.

In our simulations thermal conduction saturated near the CD. The kinetic feedback energy effi-
ciency is only slightly lowered, if thermal conduction is taken into account (Tab. 6.2, Fig. 6.9),
which is in agreement with the aforementioned order of magnitude estimates.

A more important aspect is the change in particle density, which affects the radiative cooling losses.
Tenorio-Tagle (1996) find 10% of shell mass mixed into the cavity due to thermal evaporation. The

efficiency of mixing of particles of different temperature is discussed in the section below.

2.2.3 Molecular diffusion

Molecular diffusion levels concentration gradients. If a diaphragm between two gaseous species
in pressure equilibrium is removed, random movement of all gas particles starts to mix the two
species. This process is described with the diffusion equation

on 9’n

o~ Paz

with the solution

n(x,t) = exp —x? /4Dt

N
VAar Dt

The diffusion coefficient D ~ v /3, with the thermal velocity v, is the same as for heat conduction.
The diffusion length

Az = V2Dt ~ \/Urms At

is a measure over which physical scales mixing has occurred. This relation can also be used to
estimate the timescale of this process:

(Az)”

Urms )\

tq ~ (2.3)
with the mean free path A (Eq. 2.1) and the rms-velocity v,,s (Eq. 2.2) .

Equation 2.3 shows that molecular diffusion mixes chemical species efficiently in the hot dilute
gas inside the bubble: In a gas withn = 1072 cm™3, T' = 10" K and p ~ 1 g mol~! we find
Vrms ~ D00 km s~ and a time of ~ 33 years for mixing on the scales of Az = 0.01 pc. Diffusion
inside the swept up medium is inefficient (n = 1 cm~3and 7' = 100 K leads to a time of ~ 1.5 Myr
for mixing on the scales of Az = 0.01 pc).

All particles within a mean free path from the CD can penetrate into the other gas phase and
one sixth of them will have a velocity vector appropriate to do so.> For two gas phases with

2The number of particles crossing the CD in the time interval ¢ are thus a sixth of the particles within the volume
Avt where A is the unit area.
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n=001lcm™3 T =10Kandn = 1 cm™3, T = 100 K, respectively, the same number of hot
and cold particles cross the CD. There is no change in density and thus no change in the mean
free path, but there is a change in temperature. The hot particles in the cold medium undergo their
first collision with cold particles after ¢ = Aco1q/vnot = 0.35 yr. This means that after 0.35 years a
region of a length of 6 x 10~ pc (\eo1q) has a mean temperature of Tj,q; /64+5T01a/6 = 1.7 X 10° K.
To estimate how much thermal energy has been carried into the cold medium we find the number of
diffused particles from An = AlcoqNnot /6 = 2.9 x 1011 A cm=2 (with npe; = 0.01 em™3, Aeo1q =
1.7 x 10* cm). The energy transfer caused by particle motion is E = nkgT = npot/6VnotksThot =
3.6 x 1075 erg s~ cm~2. With a cooling rate of A, = 1072202 erg s=! cm™3, the energy flowing
through an area A of the CD would be lost in a cell with a number density of 1 cm~ and a volume
of A x 0.01 pc.

Tenorio-Tagle (1996) reports that 10% of the ambient medium ended up in the bubble via thermal
conduction and dense clumplets originating from the ambient medium penetrating the bubble wall.
From kinetic gas theory, we would expect that in each collision time a sixth of the density in the
first mean free path of the shell is lost into the bubble. In the example given above, the number
of particles was conserved both in the cavity and in the shell, but if the density of the shell is
enhanced, there will be a net flux of particles into the cavity.

2.2.4 Turbulent diffusion

In this process random and chaotic motions mix eddies of size [, with the velocity v,,. The tur-
bulent velocity fields may be created, for example, by steep gradients, the overstability of radiative
shocks (Chevalier and Imamura, 1982), stellar feedback impinging on a clumpy medium or insta-
bilities like the nonlinear thin shell instability (Vishniac, 1994, NTSI). For example, convection
can produce eddies and large scale perturbations that are mixed into a different gas phase. Such
mixing processes do not necessarily lead to a homogeneous mixture. For the turbulent diffusion in
a turbulent ISM, some authors (for a summary see Pan et al., 2012) rather expect an oil-in-water-
like process leading to cold clumps immersed in hot zones, whereas other authors assume that the
gas phases fully mix (e.g. Gounelle et al., 2009). The diffusion coefficient of turbulent mixing is

Dturb = Uturblturb

Diffusion rises linearly below the size of turbulent eddies and saturates due to turn-over as soon as
the eddy size is reached.

The assumed efficiencies of mixing in a SN shell range from a few percent (Boss and Keiser, 2012,
mixing via clumps and RT fingers), over a range from 2% to 70% (Gounelle and Meynet, 2012), to
the full range of few percent to full mixing in the study of Pan et al. (2012, clumplets and turbulent
diffusion).

The estimates for the eddie size range from /i, ~ 0.1 — 1 pc (Stasiniska et al., 2007, dispersion
of metal-rich droplets in a HII region via molecular diffusion and turbulent mixing) to [y, ~
0.01 pc (Gounelle et al., 2009, highly turbulent mixing process with 100% mixing efficiency and
the characteristic length-scale of the thermal instability). Turbulent diffusion is thus likely to act
on length scales comparable to the resolution of our simulations.
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Figure 2.1: Comparison of the cooling—heating equilibrium for solar abundances computed with
the RAMSES code (green) to the equilibrium found by the CLOUDY code (red) [data extracted
from CLOUDY by Ntormousi & Heitsch]. The absence of a maximum in the RAMSES cooling—
heating equilibrium curve (left plot) prevents the existence of two stable ISM phases. In contrast
to this, the CLOUDY cooling heating equilibrium curve allows for a multi-phase medium. This
is caused by multiple regions with positive slopes for the same pressure in the equilibrium curve.
The missing multi-phase problem was fixed artificially by switching off cooling and heating below
100 K in dense regions with a number density larger than 5 particles cm~3 and by applying a similar
procedure at 10 000 K in less dense regions.

2.2.5 Ambipolar diffusion

Ambipolar diffusion is a process that can remove magnetic fields from molecular clouds: The
magnetic fields are tied to the ionized gas component, and this component drifts relative to the
cold, neutral component of the gas, which is accelerated by gravity. E.g. Jijina et al. (1999) noted
that ambipolar diffusion takes place more rapidly than the simple laminar description predicts. For
a dense core with the size r the time scale for ambipolar diffusion is Tap = % with ion-neutral
drift speed vp (Mouschovias, 1987, eq. 81). This can be approximated by

ng L5 30 uG 2 r 2
~ 3 % 10° (—2)
TAD Y 107 e ( B 0.1pc

For a density of 1 cm™ and a magnetic field strength of 10 uG (Crutcher, 2012) this leads to a
time of about three months for 0.01 pc. This process rather acts to separate the gas phases than to
mix them.

2.2.6 Cooling and heating processes in the ISM

For the work presented in this thesis, radiative losses are important, since they substantially lower
the feedback energy efficiency and thus increase the GMC lifetimes. In a medium with solar
metallicity, ~ 100 particles cm 2 and a temperature of ~ 100 K typical energy losses via radiative
cooling amount to about 90% of the feedback energy (see e.g. Tab. 6.2). A similar energy loss was
reported by Thornton et al. (1998).

The default cooling routine in the RAMSES code (see Sect. 5.1.2) uses Sutherland and Dopita
(1993) cooling for all elements except H and He, Compton heating from CMB and Compton
cooling according to Theuns et al. (1998, Tab. B1) with an amplitude of the radiation spectrum
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at the hydrogen Lyman-alpha edge of 5 x 102! ergcm~2?sr~!. For H and He the amount of

(doubly) ionized particles is calculated. Based on the result of this iteration the code calculates
ionization cooling for H and He according to Cen (1992, Eq. 12), recombination cooling for H
and He according to Cen (1992, Eq. 13), dielectric recombination cooling for He according to Cen
(1992, Eq. 14), line cooling for H and He according to Cen (1992, Eq. 15), Bremsstrahlung for H
and He according to Cen (1992, Eq. 16) and radiative heating for H and He according to Theuns
et al. (1998, Tab. B4). In our simulations solar abundances® are assumed.

In our study the existence of two gas phases in pressure equilibrium is desired, because this makes
a “static background model” feasible: Our study is easier to analyze (1) if thermal energy of
the medium, which is not influenced by the stellar feedback, stays constant, and (2) if no mo-
tions arise at the cloud surface, because of a pressure imbalance caused by cooling or heating
processes. Since the standard RAMSES cooling—heating curve (Fig. 2.1) has no maximum that
would allow for the existence of a two-phase region with a stable cold dense phase (1" = 100 K,
p = 1.66 x 10722 gcm™?) and a stable warm phase (T' = 10* K, p = 1.66 x 1072* gcm™3) these
phases are created artificially by switching off cooling and heating below 100 K in regions with a
number density larger than 5 particles cm~3 and by applying a similar procedure at 10 000 K in less
dense regions. In this prescription temperatures below 100 K can only be reached via expansion of
the gas, not via radiative cooling. This is of course a crude approximation to the cooling process.
However, Fig. 7.2 in Sect. 7.3 shows that it leads similar feedback energy efficiencies as the more
elaborate cooling model described in Ntormousi et al. (2011), which uses detailed cooling tables
extracted from CLOUDY.

Cooling time

The definition of the kinetic temperature of atomic gas uses the theorem of equipartition of energy,
which in turn states that in thermal equilibrium on average an equal amount of energy is associated
with each independent degree of freedom of the motion:

3
The change of energy can then be expressed as:
dEl 3 dT
— 1} _
a2 " ae
The cooling time is:
Leool = 2 )
ngA

with the the cooling rate A. After a cooling time, the gas will return to the cooling-heating equilib-
rium. Since cooling times in the low density phase of the ISM can be much longer than the time
between SN events, this was an argument to develop the current dynamic picture of the ISM.

2.3 Multi-Messenger Astronomy

In Sect. 2.2.6 we mentioned large energy losses via radiative cooling. This radiation can help us
gathering observational evidence on the ISM. In Fig. 2.2 we sketch the interaction of massive stars

3X=0.711, pimer = 1.2195 g
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Figure 2.2: Sketch of a superbubble and its messengers. (Temperatures are orders of magnitude.)

with the ISM and label the regions suffering radiative energy losses and the processes leading to
this emission of photons. This is of relevance for our work, since one of the aims of this work is
comparing our numerical models containing gas with a large range of densities and temperatures
to observational data from the Orion-Eridanus region.

The basic idea behind the “Multi-Messenger Astronomy” is to gather information on the same
object — in our case the OES - via different physical processes. The “messengers” can be photons,
but in principle also neutrinos and cosmic ray particles. However, IceCube (IceCube Collabora-
tion et al., 2013) reports no neutrinos from supernova remnant shocks and also in the COMPTEL
(Bloemen et al., 1999) data cosmic ray induced de-excitation lines fell below the significance limit.

We will therefore focus on physical processes leading to the emission of photons. These processes
can be subdivided into sources of line emission and continuum emission. We can further subdivide
the continuous radiation into thermal and non-thermal radiation. Whereas thermal radiation is
characterized via the temperature, since intense interaction leads to an identical energy density of
the radiation and the radiating material, non-thermal radiation results from interaction processes
far from global energy equilibrium.

Processes leading to line radiation or line absorption are intrinsically quantum phenomena. The
quantization of the energy levels in the nucleus and in the shell leads to the emission or absorption
of photons in very narrow wavelength ranges. To measure the velocity of the photon-emitting
gas, one uses lines with small natural line widths and small thermal broadening. In the Orion-
Eridanus region radial velocities are derived from radio data and absorption lines in the spectra
from background stars. Also 2°Al data from INTEGRAL can measure velocities (Kretschmer et al.,
2013) — we are awaiting a result of the ongoing 26 Al observations of the OES in the near future.
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Figure 2.3: Milky Way in Ha. The Orion-Eridanus region is highlighted with a white ellipse. Data
source: http://astrometry.fas.harvard.edu/skymaps/halpha .

2.4 Messengers from the Orion-Eridanus region

We will now move from the multi-phase ISM in simulations to multi-wavelength observations.
For this discussion, the Orion-Eridanus region will serve as an example, since 26Al data from this
region were the motivation for this PhD project. The Orion-Eridanus region extends from the
Galactic coordinates [ = 185° to 210° and b = —16° to —50° and it harbors the Orion-Eridanus
Superbubble (OES). Superbubbles are large cavities filled with hot tenuous gas, which were created
by the combined feedback of several massive stars. In Fig. 2.3, showing the Milky Way in Ha,
the Orion-Eridanus region is highlighted with a white ellipse (this is not to be confused with the
assumed boundaries of the OES). The lower part of this region features two strong filamentary Ho
shells, called “Arc A” and “Arc B” (see also Fig. 2.4 and Sect. 2.4.5). As we will see in this section,
the OES is a particularly good example of a region revealing interactions between young, massive
stars and star-forming molecular clouds. In the following subsections the reader will get a glimpse
on the observational evidence from this well observed region.

Fig. 2.5 shows an interpretation of the observed data and the position of the OES in the Milky
Way. This figure was originally drawn by Burrows et al. (1993) and augmented with 26 Al by Diehl
(2002). Already Reynolds and Ogden (1979) proposed a similar de-projection of the observed data.
For this thesis the distance of the molecular clouds and the locations of the massive stars in this
sketch were adapted to the distances used by Voss et al. (2010). Fig. 2.5 also addresses a possible
interaction of the OES with the local bubble, which makes this zone even more interesting: With
the cloud shadowing technique (presented e.g. in Burrows and Mendenhall, 1991) Burrows et al.
(1993) find the molecular cloud L1569 near the interface of the Local Bubble and the OES. This
view is strengthened by FUV data of Jo et al. (2011). The position of the H 1 layer was derived from
observed filaments. However, Ryu et al. (2008) favor a different geometry of the OES consisting
of two superbubbles both originating in the Orion molecular cloud complex. In this alternative
interpretation “Arc A” is not the back side of a single cavity but the front layer of a second cavity.
This model is sketched in green in Fig. 2.5. A detailed discussion of the nature of “Arc A” can be
found in the appendix of Pon et al. (2014b). Recently the “single cavity”” approach was revived by
Pon (2013); Pon et al. (2014a) who fitted Kompaneets models to the OES.
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Figure 2.4: Ha features in the
OES. The filaments “Arc A” and
“Arc B” are also shown in Fig. 2.5.
The Ha data of Finkbeiner
(2003) was downloaded from
skyview.gsfc.nasa.gov. The image
size (45°) and the image center
(Galactic coordinates [ = 200,
b = —30) are the same as in
Fig. 2.6. Also the same color
bar and the same projection were
used.

Photon flux [Rayleigh]

’ IR/molecular cloud
X~-ray bubble

Galactic Plane SXXHI shell
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Figure 2.5: This sketch of the Orion-Eridanus Superbubble is a variant of the sketch of Burrows
et al. (1993). In this plot the 26 Al distribution (red) was added according to Diehl (2002). Moreover
the shape of the bubble and the locations of the OB associations use the distance estimates com-
piled in Voss et al. (2010). In this model, the Orion-Eridanus Superbubble is an adjacent bubble
of the Local Bubble. It is located from [ = 185° to 210° and b = —16° to —50°. The different
interpretation of Ryu et al. (2008) is shown with green ellipses. In this alternative model, two
separated superbubbles originating from different parts of the Orion GMC complex are assumed.
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Figure 2.6: Multi-wavelength observations of the Orion-Eridanus region. Sorted by wavelength,
from top left: 1% row: 408 MHz, Bonn H I, Dickey and Lockman H 1, 2" row: CO 115 GHz, Planck
353 GHz, Planck 857 GHz, 3" row: IRIS 100 micron, Ho,, ROSAT 0.25 keV, 4" row: ROSAT 0.75
keV, CGRO Comptel 1 — 30 MeV, Fermi 3 — 300 GeV, Data obtained from skyview.gsfc.nasa.gov.
Image size (45°), map projection (“Tan”) and center (I = 200°,0 = —30°) as in Fig. 2.4. For
references and details (e.g. color bar ranges) see text.
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We will now discuss observational evidence for the gas phases in the ISM starting from the data
with the shortest wavelengths and ending with radio data. Fig. 2.4 shows a Ha picture of the
OES with labeled cold gas structures. In Fig. 2.6 the same region of the sky is depicted in various
wavelengths. Labels and coordinates, which are shown in Fig. 2.4, are not shown again in Fig. 2.6.

2.4.1 Cosmic rays: v-ray data

Parizot (1998) reports that the 3—7 MeV maximum likelihood map of CGRO COMPTEL shows a
correlation with the GMCs and might trace the walls of the OES. He argues that the Gamma-ray
emission is induced by the interaction of energetic (cosmic ray) particles from inside the super-
bubble with the Orion molecular cloud complex, thereby causing non-thermal C and O nuclear
de-excitation lines. In Fig. 2.6 we see emission near the GMCs in Band 5 of Fermi (data in Fig. 2.6
from Atwood et al., 2009, band pass 3-300 GeV, color bar: log, values range from 0 to 38 counts).
However, this correlation is not visible in the 3 band maximum likelihood map of COMPTEL (data
in Fig. 2.6 from Strong, 1994, band passes 1-3 MeV, 3—10 MeV, 10-30 MeV, color bar: log, values
range from 2.312 x 107° to 2.46 x 1072 counts s~! cm~2 steradian™'). This is in accordance with
Bloemen et al. (1999), who report that likely a superimposed signal of the instrument caused a
false detection in the data of Parizot (1998). After re-analysis of the data the signal fell below the
significance level.

2.4.2 Nucleosynthesis yields: 2°Al

26 Alis a radioactive trace element for stellar nucleosynthesis and decays approximately a million
years after being ejected from the stars (Project, 2004, 715 ~ 0.72 Myr). The radioactive decay
of 26 Al produces an excited Mg nucleus. The photon produced at the de-excitation of Mg can
be observed in Gamma-rays at 1.809 MeV (Project, 2004). Since 2°Al decays after ejection from
massive stars, 2°Al observations provide information on the time scales of the interaction process
of massive stars and the ISM. For example the spread of ®Alin different hydrodynamic models
can help to understand the potentially peculiar shape (if the model of Burrows et al. (1993) is
correct, see Fig. 2.5) of the OES. Further advantages of this tracer are that extinction is no problem
and that it shows only a weak dependence on the state of the ISM, since the 2 Al -decay is a non-
thermal process. However, via the line-shape velocities of the stellar ejecta can be measured, as
Kretschmer et al. (2013) have shown for the Galactic center.

Existing COMPTEL data (Diehl et al., 2003, 2°Al contours from this publication are overlaid in
Fig. 2.7) of 26Al and successful INTEGRAL proposals of R. Diehl and the Gamma group at MPE
were the main motivation for this thesis. For the interpretation of this data, it is an interesting
question whether 2°Al is more likely found inside the bubble or in the cavity walls (see also Sect. 8).

2.4.3 Hot ISM: X-ray data

The ROSAT soft X-ray background data traces the emission of Bremsstrahlung in hot ionized
medium (HIM): Fig. 2.6 shows X-ray-emitting hot, diffuse plasma detected with ROSAT (Snow-
den et al., 1997). The 0.25 keV emission (ROSAT Band 1; band pass: 0.11-0.284 keV; color bar:
log; values range from -191 to 50290 in units of 10~¢ counts s~!) peaks near 10° K, whereas the
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0.75 keV emission (ROSAT Band 5; band pass: 0.56—1.21 keV; color bar: log; values range from
-49 to 20312 in units of 10~% counts s7!) can trace plasma up to 2 x 10° K.

)

The X-ray emission of the OES was studied by several authors (Burrows et al., 1993; Guo et al.,
1995; Snowden et al., 1995; Guo and Burrows, 1996; Burrows and Guo, 1996; Heiles et al., 1999).
The common interpretation is a cavity-like region, filled with 2 x 10° K plasma glowing in X-rays
due to thermal emission. The energy needed to heat the plasma is believed to originate from winds
of hot stars. These winds can collide and shock-heat gas. The X-ray shadow method (presented
e.g. in Burrows and Mendenhall, 1991) was used to extract information on the relative distances
of the structures visible in different wavebands.

Recent modeling efforts of the X-ray emission of the OES have been published by Krause et al.
(2014); Krause and Diehl (2014).

2.4.4 HotISM: O VI

More evidence for hot gas in the Orion-Eridanus region is found from UV emission lines of high-
stage ions like O VI. Since O VI (five times ionized oxygen) line emission leads to large radiative
losses, a high temperature collisionally ionized plasma would quickly cool upon emission. There-
fore, O VI emission in the diffuse ISM indicates, that hot gas is replenished. E.g. near the con-
tact discontinuity in a superbubble. The lines of O VI are found at 103.193 nm and 103.762 nm.
Kregenow et al. (2006) find that the O VI emission peaks at the thermal interface in “Arc B”. The
estimated gas temperature is 3 x 10° K. However, de Avillez and Breitschwerdt (2012) showed
that in simulations with collisional ionization equilibrium O VI traces higher temperatures than in
non-equilibrium models, where 70% of the O VI mass is found in regions with temperatures below
10° K. In contrast to O VI in regions with temperatures above 10° K, where collisional ionization
dominates, the main production channel of O VI at lower temperatures is photoionization.
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_Skw+ SFD 100 micron

Figure 2.8: 100 micron (Skw+SFD) and the OB
stars considered in Voss et al. (2010). This plot
was created with the ALADIN interactive sky
atlas (Bonnarel et al., 2000). Unfortunately,
the astrometric evidence for Ori OB I is limited,
because the relative velocities of the stars are
mostly directed away from the sun. Thus, de
Zeeuw et al. (1999) could not use the Hippar-
cos parallaxes and velocities to determine the
membership of the stars in the field. 2 2043 x32.0°

2.4.5 Warm ionized interstellar gas: Hao

The warm ionized component of the ISM (~ 10* K) can be traced by Hav. This line at 656.28 nm
is part of the Balmer series and the brightest spectral line of ionized hydrogen in visible light. It
results from the recombination of a proton and an electron to a hydrogen atom. In this process,
the electron cascades to the ground state and can pass the n = 3 to n = 2 transition that leads
to the emission of a Ha photon. Fig. 2.3 shows the Milky Way in Ha. A zoom with labeled Ha
features is shown in Fig. 2.4. Additionally Ha is shown in Fig. 2.6 (data from Finkbeiner, 2003,
band pass: 456.2-457.38 THz; color bar: log; values range from 0.1 to 5134 Rayleighs). Reynolds
and Ogden (1979) already reported an ionized shell with a mass of ~ 8 x 10* M, and a velocity
of 15 km s~!. Since Ha cannot trace column densities (it traces its emission measure N(H")n.),
Reynolds and Ogden (1979) used multi-wavelength data for this result. Boumis et al. (2001) argue
that “Arc B” might be closer to the observer, in a distance of ~ 150 pc, whereas “Arc A” could also
be at ~ 530 pc. Moreover they also discuss the idea that the two arcs might be boundaries of more
than a single hot cavity.

2.4.6 Total number density of warm, cool and cold gas: infrared emission

The 100 micron data (Miville-Deschenes and Lagache, 2008; Miville-Deschénes and Lagache,
2005, band pass: 2.5-3.6 THz; color bar: log; values range from 10° to 2.4358 x 10'° Jansky
steradian—') shown in Fig. 2.6 trace the total number density of H1, H1I and H, via thermal emis-
sion. Therefore we use this data to overlay the positions of the massive stars of the Orion OB I
associations (Fig. 2.8). A more recent all-sky observation of dust is the Planck 857 GHz Survey
(Planck Team, 2013, 857 GHz; color bar: log; values range from 0.4 to 8916 counts (native map
units are in million Jansky per steradian)), also shown in Fig. 2.6.
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2.4.7 Molecular gas: CO and H, fluorescence

In the OES, molecular gas can be found in the Orion A and B molecular clouds (see Sect. 2.5) and
in the filamentary structure called “Arc A” (Ryu et al., 2008).

Whereas cold H, does not have radio emission, CO, the second most abundant molecule after
H,, shows a strong signal from rotational transitions. The physics behind this is that, in contrast
to the homonuclear H, molecule, CO has a small dipole moment and can thus absorb or emit
radiation on vibra-rotational transitions. The CO(1-0) line* at 2.6 mm (115.271 GHz) is shown in
Fig. 2.6 (Dame et al., 2001, band pass: 114.89-115.12 GHz; color bar: log of velocity-integrated
main beam brightness temperature; values range from —32768 to 180 K km s™'). The Planck
filter centered around 353 GHz (Planck Team, 2013, 353 GHz; color bar: log; values range from
—1.2 x 1075 to 1.9 counts (native map units Tcyp)) can trace the CO(3-2) line at 345.796 GHz.
To infer the distribution of Hy from CO observations, the H, to CO ratio has to be calibrated via
UV absorption lines of CO and Hy. The CO to H, conversion factor is still debated. For a recent
review see Bolatto et al. (2013).

In the Orion-Eridanus region Ryu et al. (2006, 2008) have observed Hs fluorescence in far-ultraviolet
(135175 nm) with the SPEAR/FIMS mission. They find a correlation with Ho emission and sug-
gest that UV radiation from the Ori OB I associations might be responsible for both, the fluores-
cence and the recombination emission. They conclude that “Arc A” is likely to be at a distance of
~ 500 pc, whereas “Arc B” could be on the near side of the cavity at ~ 150 pc. In both regions
excitation temperatures can reach up to 1000 K. Ryu et al. (2008) argue that “Arc A” is mostly
associated with molecular and dust components while “Arc B” can be more or less characterized
by atomic origins. Based on these findings, they suggest two unrelated bubbles instead of one
peculiar shaped superbubble. This model is shown with green ellipses in Fig. 2.5.

2.4.8 HI1: 21 cm line

The 21 cm line of neutral hydrogen (1420.4 MHz) results from a transition between the hyperfine
levels of the hydrogen 1s ground state. Since the relative orientation of electron spin and nuclear
spin is causing these energy levels, the 21 cm line traces H1 column density for a wide range of
temperatures. Already Clark (1965) pointed out that the difference between 21 cm absorption and
emission indicates contributions from a cold neutral medium (CNM, optically thick seen in emis-
sion and absorption) and a warm neutral medium (WNM, optically thin, only seen in emission).
These two phases are the two co-existing phases in the cooling-heating equilibrium, which is dis-
cussed in Sect. 2.2.6. In the WNM number densities ny of 0.03 to 1.3 cm™> are observed. The
kinetic temperatures lie between 4000 and 8800 K. Recently, (Murray et al., 2014) measured an
excitation temperature of ~ 720011500 K in their survey of the Galactic WNM. They conclude,
that resonant Lyman-« scattering in addition to collisional excitation leads to this temperature.
The CNM has higher number densities (ny ~ 5 to 120 cm™?) and lower temperatures (kinetic
temperature of the order of 40 — 200 K) than the WNM. In contrast to the diffuse distribution
of the WNM, the CNM has a filamentary structure, possibly originating from turbulence, seen as
absorption peaks in spectra.

In the review of Kalberla and Kerp (2009), a local exponential vertical scale height above the
Galactic plane of ~ 150 pc for the CNM and ~ 400 pc for the WNM is reported.

4CO(1-0) is a transition between the ground state and the first excited level. A rough estimate of the levels can be
found by using the rigid rotor model and solving for the Eigenvalues of the Schrodinger equation.
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In the HT velocity profiles of the THINGS galaxies lanjamasimanana et al. (2012) find a broad
component with a mean velocity dispersion of 16.8 4+ 4.3 km s~! and a narrow component with a
mean velocity dispersion of 6.5 & 1.5 km s~!. They discuss an indication that the narrow compo-
nent is associated with molecular gas, which is in accordance with the theoretical expectation that
atomic gas passes through the CNM phase before turning into molecular gas.

In the vicinity of the OES 21 cm radiation of neutral hydrogen (7" ~ 10? to 10? K) outside the hot
bubble was reported e.g. by Brown et al. (1995) who estimate a H1T shell mass of ~ 2.3 x 105 M,
(combining H1 with 100 micron observations).

The first line of Fig. 2.6 shows two surveys using the 21 cm line of H1: the Bonn 1.4 GHz Survey
(Reich, 1982; Reich and Reich, 1986, band pass: 1418.8-1421.2 MHz; color bar: log; values range
from 0 to 15324 mK) and the Dickey and Lockman H1 map (Dickey and Lockman, 1990, band
pass: 1418.8-1421.2 MHz; color bar: log; values range from 0 to 3.964 x 10?! atoms cm™2).
An alternative approach is used in the “H 1 All-Sky Continuum Survey” (Haslam et al., 1982, band
pass: 406.25—409.75 MHz; color bar: log; values range from 12.5 to 108.3 K), which shows mostly
synchrotron radiation. All of these H 1 surveys show an anti-correlation with X-ray data.

2.5 Giant Molecular Clouds (GMCs)

For our study GMCs are of major importance, since stars form in such cold, dense molecular gas.
Despite the small volume fraction of molecular clouds, about a half of the Milky Way’s ISM mass
inside the orbit of the sun is found in molecular gas (Williams and McKee, 1997).

Typically, molecular clouds with masses above ~ 104 Mg, (Blitz, 1993; Williams et al., 2000) are
called GMCs. The distinct features in the upper part of the CO observations shown in Fig. 2.6 are
Orion’s Giant Molecular Clouds. Distance estimates of Brown et al. (1994) find the near edge of
the Orion A and Orion B molecular clouds at a distance of 320 pc and the far edge at a distance of
500 pc. The properties of the Orion A and Orion B molecular clouds are summarized in Tab. 2.1.
The Milky Way also harbors more massive GMCs than Orion’s GMCs. Williams and McKee
(1997) list GMCs with up to ~ 6 x 10% M, and Murray (2011) finds masses up to ~ 1.3 x 107
M. The diameters of GMCs are in the range of tens of parsecs to a few hundred parsecs (Murray,
2011, up to 210 pc).

For molecular cloud complexes in the Milky Way an average density of 1.7 x 10722 g cm™3 (cor-
responding to ~ 100 my cm ™3 or ¥ ~ 100 M, pc2) can be found from column 14 and 15 in
Table 1 of Murray (2011). Tan et al. (2013) also find that typical, 2CO defined GMCs have a
mass surface density of 3 ~ 100 M pc~2. The median value of the number density of H; in the
Galactic ring survey (Roman-Duval et al., 2010) is 230 & 21 cm~3. However, this survey is likely
biased towards high density regions, since it is based on 40 '*CO contours. Similar techniques led
to a factor of 10 lower densities in Heyer et al. (2009).

As Larson (1981) showed, GMC mass and size correlate with the velocity dispersion. Kritsuk et al.
(2013) conclude that these relations can be interpreted as an empirical signature of supersonic tur-
bulence. Turbulence also leads to a very inhomogeneous, sponge-like self similar density structure
of molecular clouds. Molecular clouds contain clumps that may form star clusters and cores that
may form single stars or binaries (Tan et al., 2013). Dense cores with densities of 10* — 10 parti-
cles cm™3 are considered the most important environment for star formation. Whereas these dense
cores and clumps are gravitationally bound, it is debated whether GMCs are also gravitationally
bound, since kinetic energy in turbulent motions can balance or even outweigh self gravity. For
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Mass Diameter Density Reference

[M] [pe] [gem ]
Orion A GMC 10° 65 < p>~10H, [1]
Orion B GMC 6 x 10% 25 < p>~110Hy [1]
Orion A GMC ~ 107 40 x 2 (29 deg?) P > 10720 2]
Orion B GMC ~ 10° (19 deg?) max. Puax > 1072 [2]
Orion A GMC ~ 10° 110 x 20 (31.5 deg?) (3]
Orion B GMC ~ 8 x 10 ~ 40 (25.7 deg?) [3]
Orion A GMC 8.1 x 10% (4]
Orion B GMC 4.0 x 104 4]
Realistic SPH cloud 2.8 x 10° ~ 40 <9x1072 [5]

> 1.66 x 10724

Homogeneous cloud 1.6 x 10° ~ 50 1.66 x 10722 This work

[1] Larson (1981), [2] Genzel and Stutzki (1989), [3] Wilson et al. (2005),
[4] Okumura et al. (2009), [5] Dobbs et al. (2011)

Table 2.1: Giant Molecular Clouds (GMCs, Sect. 2.5).

example Tan et al. (2013) argue that most GMCs are indeed gravitationally bound whereas Blitz
et al. (2007) claim that GMCs are only marginally stable.

2.5.1 Simulated clouds

Based on these findings, we will use an average number density in the order of ~ 100 cm™
which lies well in the plausible region of average densities in molecular clouds, for the cold, dense
clouds in this work. Tab. 2.1 also contains two toy-models, which we use in our simulations: a
simplified, homogeneous GMCs and a cloud from a large scale simulation of Dobbs et al. (2011).
Both artificial cloud models are of comparable size and mass as Orion’s GMCs.

Due to the masses, the velocity dispersions and the magnetic fields inferred from observations,
GMCs are believed to be self gravitating (Pon et al., 2012; Tan et al., 2013) and supported against
collapse by turbulence and magnetic fields. However, in this work gravity is not considered in the
simulations, since its aforementioned antagonists (turbulence, magnetic fields) are absent. More-
over, the free-fall time (14 = \/37/(32Gp)) is about 5 Myr for n ~ 100 cm™>. Thus, the time-
scales on which self-gravity acts are rather large. The internal velocity dispersion (o) that would
lead to gravitational stability of the homogeneous GMC in Tab. 2.1 can be found from the virial
theorem M, /[1 M) = 1160R/[1 pc](o/[1 km s~1])? to be twice the sound speed in this cloud.
The virial mass M,;, balances the internal motions if external pressure and magnetic fields are not
taken into account.

Another reason not to include gravity is that the focus of this work in not calculating GMC lifetimes
but rather to testing if stellar feedback is efficient enough to play a role in driving turbulence in
GMCs. The advantage of our minimalist toy model is that simple relations between the feedback
energy efficiency and the depth of embedding of the stars or the porosity of the GMC can be seen.
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Group Location Distance Age My, My SN O B
[pc] [Myr] [Mg] [Ms] stars  stars
OBla outside GMC 330 8-12  18.5 13 73 0 16
OBIb Ori B GMC 360 0.5-8 45 40 13 4 10
OBIc Ori AGMC 400 3-6 45 32 15 2 19
OBId Ori A GMC 410 0-2 120 36 0 5 2

Table 2.2: Massive stars in Ori OB I according to Voss et al. (2010).

OB stars @ [pc] long. @ [pc] lat.

OriOBIa 5 9.9 2.7
OriOBIb 27 78.6 36.8
OriOBlc 29 38.2 324

Table 2.3: Massive stars in Ori OB I according to Mel’Nik and Efremov (1995).

2.6 Massive stars

Already the data of the HD catalog showed that OB stars are not homogeneously distributed over
the sky but rather grouped. OB stars form in loose groups — so-called OB associations. These asso-
ciations can be detected kinematically, because they have a very small internal velocity dispersion
of only a few km s~!. Thus, they can be seen as coherent structures in velocity space. Since OB
associations have lower masses than bound star clusters, OB associations disperse within a few
million years and their stars spread over larger diameters (diameters in the Hipparcos sample de
Zeeuw et al. (1999, Fig. 29) and Brown et al. (2000, table 1) are in the order of 50 pc) than clusters
(order of 1 pc). The reader interested in the history of the research on OB associations is referred
to the introduction of de Zeeuw et al. (1999).

2.6.1 Orion’s OB associations

The massive star content of the Orion-Eridanus region has recently been summarized by Voss et al.
(2010). The still existing OB stars in the four sub-groups of the Orion OB I associations are shown
in Fig. 2.8. Their positions are also marked in Fig. 2.5. Tab. 2.2 combines the positions (shown
in Fig. 2.8) of the massive stars with distance and mass estimates of Voss et al. (2010). M, is
the most massive not yet exploded star of the age given in column 4. M,,,, is the most massive
observed star. Column “SN” shows an Initial Mass Function (IMF) based estimate of the number
of already exploded stars. The last two columns list the observed O and B stars.

Unfortunately, the astrometric evidence for Ori OB is limited, because the relative velocities of
the stars are mostly directed away from the sun. Thus, de Zeeuw et al. (1999) could not use the
Hipparcos parallaxes and velocities to determine the membership of the stars in the field. For the
same reason the stellar content discussed in Voss et al. (2010) differs from the massive star content
mentioned in Mel’Nik and Efremov (1995). The latter is listed in Tab. 2.3.
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2.7 Stellar feedback

Basically, we have to distinguish between the feedback of individual stars (discussed in Sect. 2.7.2
to 2.7.4) and the feedback of groups of stars (Sect. 2.7.5). In this work, we are interested in the
feedback of OB associations. We can find the global feedback of the associations by determining
the number of stars in the association and their masses and then adding up the feedback models
for these stars. However, this approach does not treat energy losses e.g. via colliding winds of
individual stars in the group. The reader interested in this aspect is referred to Krause et al. (2012),
where the interaction of the wind-blown bubbles of massive stars has been investigated.

The stellar feedback of OB associations including 2°Al has been modeled e.g. by Voss et al. (2009,
2010) via population synthesis. These models compute a Monte-Carlo sample of stars between
8 and 120 M, from a Salpeter (1955) Initial Mass Function (IMF). For each Monte-Carlo real-
ization stellar wind velocities, stellar evolution models (mass loss rate, surface abundances) and
SN models (remnant mass, trace elements ejected in the SN) are combined. If no stellar evolution
model with the given mass exists, models are interpolated logarithmically. The resulting energy
curve is an average of all Monte-Carlo realizations. Since a few percent of the Monte-Carlo re-
alizations with extremely massive stars influence the average strongly, this average feedback is
stronger than a “typical feedback™ (the median). Moreover, the interpolation of models leads to
unphysical additional discontinuities in the energy injection rate (Fig. 2.9 to 2.12).

Therefore, we took a step back and evaluated the contribution of the individual stars in OB associ-
ations. Unsurprisingly, the most massive still existing star dominates the feedback (Fig. 2.9, details
in Sect. 2.7.5 and Fig. 2.18). Our problem has thus been reduced to finding the mass of the most
massive still existing star in an OB association of given total mass.

A plausible mass of this star can be estimated from the molecular clouds in the Milky Way: Under
the assumption that about 8% (Murray, 2011) of the molecular cloud mass are converted to stars,
we expect a cluster mass of 8 x 103 M, for a molecular cloud of 10° M. In the galactic ring
survey (Roman-Duval et al., 2010) ~ 18% and in the list of Heyer et al. (2009) ~ 31% of the
galactic molecular clouds are estimated to be more massive than 10° M. Weidner et al. (2013)
find a most massive star of ~ 60 My, for a cluster mass of 8 x 10® M, with their polynomial fit to
the observed most massive stars as a function of the cluster mass. This also fits well to the OES:
The most massive star in Ori OB Ib is € Ori A with about 40 M, (Voss et al., 2010). The older
association Ori OB Ia is expected to be more massive than Ori OB Ib and Voss et al. (2010) assume
seven already exploded stars with masses above 18 M. This would lead to a most massive star
with approximately 60 M. Thus, we start with 1D spherically symmetric simulations focusing
on the feedback energy efficiency of a 60 M, star (Sect. 6), since a good fraction of the GMCs
can harbor most massive stars of this mass. The stellar winds in this model play an important role,
since they insert 2.34 times the SN energy into the ambient ISM. This wind-to-SN ratio is larger
than in Voss et al. (2009), since we consider individual massive stars, whereas Voss et al. (2009)
are interested in OB associations. In groups of stars, less massive stars lower the ratio of wind
energy to SN energy if a canonical SN energy of 10°! erg is assumed.

2.7.1 Mass loss rates and surface abundances

The mass loss rates and surface abundances for our wind models for individual stars are taken
from the rotating models of Ekstrom et al. (2012). These surface abundances also supply us with
information on the mass fraction of 2°Alin the wind. Voss et al. (2009, 2010) base their population
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synthesis on the rotating stellar evolution models with solar metallicity (z=0.02) of Palacios et al.
(2005) (= default mode “geneva05”). This is the first set of models in the Geneva grids with
26 Al surface abundances.

The Geneva grids of stellar evolution models cover stellar masses between 0.8 and 120 M, and
metallicities from z=0.001 to 0.1 . A list of the models can be found on-line at
http://obswww.unige.ch/Recherche/evol/Geneva-grids-of-stellar-evolution.

For our work, we compared the following 5 sets of models:

e Meynet et al. (1994) models,
http://cdsarc.u-strasbg.fr/cgi-bin/myqcat3?J/A+AS/103/97
masses between 12 and 120 M, metallicities from z=0.001 to 0.04, mass loss rate increased
by a factor of two during MS and WNL phases

e Meynet and Maeder (2003) models,
http://obswww.unige.ch/Recherche/evol/tables_ WR/
masses between 9 and 120 M, solar metallicity (z=0.02), axial rotational velocity on the
ZAMS?® 0 or 300 km s~ . In the latter models wind anisotropies are taken into account.

e Meynet and Maeder (2005) models,
http://obswww.unige.ch/Recherche/evol/tables_ WR_nosolar/
masses between 9 and 120 M, metallicities from z=0.004 to 0.04, axial rotational velocity

on the ZAMS 0 or 300 km s, also models with metallicity dependent mass loss rates during
the Wolf-Rayet (WR) stage.

e Palacios et al. (2005) models,
http://www.aanda.org/articles/aa/full/2005/02/aal757/aal757 .html
masses between 25 and 120 M, axial rotational velocity on the ZAMS 0 or 300 km s 1,
metallicities 0.004, 0.008, 0.02 and 0.04, 26Al surface abundances. These models are not
available on-line — the stellar feedback data was provided by R. Voss (logarithmically inter-
polated models, which served as raw data for Voss et al. (2009, 2010)).

e Ekstrom et al. (2012) models,
http://obswww.unige.ch/Recherche/evol/tables_grids2011/
http://obswww.unige.ch/Recherche/evol/Grids-of-rotating-stellar-models
masses between 0.8 and 120 M, new solar metallicity (z=0.014), no rotation or v /v =
0.40 [Veyi listed in column 37], 26 Al surface abundances.

Fig. 2.13 compares the time dependent stellar masses of all available models for a 120 M, star and
Fig. 2.14 shows the estimates for the 2° Al content of the winds of such a star. The time dependent
stellar masses of models from 9 to 120 M are compared in Fig. 2.10. Fig. 2.11 shows the mass
loss rates. In both figures the 32 M, model is not shown, since it is only available in Ekstrom et al.
(2012). The raw data for Voss et al. (2009) shows saw tooth like features that are not present in the
Geneva models. These features are artifacts from the interpolation between stellar tracks.

2.7.2 Stellar wind velocities

We estimate the time dependent wind velocity from the surface abundances as summarized in
Table 2 of Voss et al. (2009). The surface abundances are taken from the Geneva models (details

5ZAMS stands for “zero age main sequence” and refers to the start of the hydrogen fusion in the stellar core.
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Type Classification criteria Wind velocity Reference

LBV 3.75 <logTwg < 4.4 200 km s! Leitherer et al. (1999)
M > 10735 M yr

WR log Tog > 4.0

WR type Surface abundances

WNL 0.4 >H; > 0.1 1250 km s~ Niedzielski and Skorzynski (2002)

WNE H, < 0.1 2000 km s=!  Niedzielski and Skorzynski (2002)
Cs/N; < 10

WC6-9 H,; <0.1 1760 km s~ Niedzielski and Skorzynski (2002)
Cs/Ns > 10
(Cs + O;)/Hes < 0.5

WC4-5 H,<0.1 2650 km s=!  Niedzielski and Skorzynski (2002)
Cs/N; > 10
(Cs +O4)/Hes < 1.0

WO H; < 0.1 3000 km s~ Niedzielski and Skorzynski (2002)
Cs/Ng > 100

(Cs + O4)/Hes > 1.0

Outside categories
cool star log T,g < 4.32 Voo = 1.3Vese Lamers et al. (1995)
hot star  logT,g > 4.32 Voo = 2.6Vegc Lamers et al. (1995)

Table 2.4: Classification criteria for stellar winds. This is a modified version of Table 2 in Voss
et al. (2009) for their default mode “wind08”. Stellar types are defined according to Smith and
Maeder (1991); Leitherer et al. (1999). H,, C,, N, and He, are the fractional surface abundances
(mass fraction) of hydrogen, carbon, nitrogen and helium, respectively.

in Sect. 2.7.1). In the default mode “wind08”, Voss et al. (2009, 2010) classify the stellar types
according to Smith and Maeder (1991) and Leitherer et al. (1999). The assumed wind velocities
are listed in Table 2.4. The escape velocity is computed from the effective temperature (column 5
in the Geneva models), the mass (column 3 in the Geneva models) and the luminosity (column 4
in the Geneva models) via

2GM =4mo 4 7’2
Ve = E=rglen™ o G & % . (2.4)

r

The differences between the escape velocities of the Meynet and Maeder (2003) and Ekstrom et al.
(2012) models shown in Fig. 2.12 are mostly due to different effective temperatures. The wind
velocities in the interpolated models for the population synthesis of Voss et al. (2009, 2010) show
similar interpolation artifacts as the mass loss rates.

2.7.3 Computed feedback momentum and Kinetic energy

For our simulations we estimated the wind velocity (as explained in Sect. 2.7.2) for each data point
in the Ekstrom et al. (2012) tables. The time dependent feedback energy and momentum were then
computed on the fly during the hydrodynamic simulations by linear interpolation in these tabulated
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mass loss rates and corresponding wind velocities. Comparing the stellar feedback computed with
the mass loss rates and surface abundances in the models of Ekstrom et al. (2012) and Meynet
and Maeder (2003) to the feedback extracted by Rasmus Voss from Palacios et al. (2005) shows
that the latter has more scatter in the wind velocities and a varying slope of the energy input (see
Fig. 2.9 to 2.12). These effects are probably caused by logarithmic interpolation on a coarse grid.
The expected behavior would be between the rotating models of Ekstrom et al. (2012); Meynet and
Maeder (2003), probably closer to Ekstrom et al. (2012), since — as explained in Voss et al. (2009)
— the code had to be modified to include ?°Al. Since such features will lead to additional shock
waves in the simulation, we decided to stick with the leading order term of the feedback instead of
introducing effects from such features. Fig. 2.9 shows that the leading order term is the feedback
of the most massive still existing star. This will be elaborated in Sect. 2.7.5.

2.7.4 Supernovae

All supernova (SN) energies are estimated to be 10°! erg. The mass loss during the SN is the
difference between the mass at the last point of the stellar evolution model and the remnant mass.
The remnants are assumed to be neutron stars with canonical masses of 1.4 M for stars with
initial masses below 25 M, and black holes with canonical masses of 7 M, for more massive
stars. These estimates are also used by Voss et al. (2009, 2010). Figure 2.15 shows the mass loss
per SN event against time between ZAMS and SN event (which is larger for smaller initial masses).
In Sect. 6 we show that in the ambient densities considered in this work the actual amount mass
loading of the SNe only leads to minor differences in the retained feedback energy.

The amount of radioactive tracers Al and ®°Fe ejected during the SN event is estimated using
Table 2 and 3 in Limongi and Chieffi (2006). This is relatively independent of the mass cut (i.e. the
mass coordinate that separates ejected material from material forming the remnant), since 2°Al and
%0Fe are synthesized close enough to the surface. The SN mass loss and the amounts of released
trace elements for different initial masses are summarized in Fig. 2.16.

2.7.5 Feedback of individual stars in an OB association

In this section we will compare the stellar feedback of individual stars in a typical OB association.
Our approach is to use the cumulative distribution function (CDF) of a group of stars with a power
law® initial mass function (IMF, £(M)) to get the mass distribution of the stars. dN = &(M)dM
quantifies how many stars are expected in a mass interval [M, M + dM]. For the Salpeter IMF
(Salpeter, 1955) the exponent &« = 2.35 for the power law (M) o« M~ was derived from
observations.

Predicting the mass of the most massive star in a cluster of given mass is still an active field of
research, since random sampling from the IMF fails to match the observations. Already Elmegreen
(2000a) discussed the problem of the most massive star for a Salpeter IMF. Basically, the mass
interval for the most massive star contains only a single star

and the cluster mass -
Mcluster = kl/ MTL(M)CZM
M

min

Sor multi part power law
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Figure 2.9: These plots combine the data in Fig. 2.11 and Fig. 2.12. The feedback energy rates
are normalized to supernova energies (Fsy = 10°! erg) per second. The times are normalized
to the end times of the rotating Ekstrom et al. (2012) models (Zy). For better visibility line plots
were used for the tabulated functions. The numbers of points per plot are: 51 points in models of
Meynet et al. (1994), 350 points in models of Meynet and Maeder (2003), 400 points in models of
Ekstrom et al. (2012) and (interpolated) points every 0.1 Myr in the time dependent masses used
for Voss et al. (2009) which are based on stellar models of Palacios et al. (2005). The data points in
the other models are placed non uniformly in time to ease the comparison of the similar evolution
stages in different models. This figure also illustrates, why we focus on massive stars: these stars
evolve faster and have more energetic winds.
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Figure 2.10: Time dependent stellar masses (M) in fractions of the initial mass (Mj). The times
are normalized to the end times of the rotating Ekstrom et al. (2012) models ().



2.7 Stellar feedback 29

My=120 Mg
10=3.56 Myr

2 ‘ 7
) i
N oT L t=1047 Myr N ]
3_7 ------- TF ol T .
M ‘

My=15 M,

My=12 M@ H!‘,iy
!

t0—15 07 Myr 10=20.73 Myr

Tlme / t()
My=9 M,

Voss et al. (2009); Palacios et al. (2005) —
t9=35.46 Myr L, iy . Meynet and Maeder (2003) z20 SO -
sl Meynet and Maeder (2003) z20 S3A -
‘ - - Meynet and Maeder (2003) z20 SSA -
Ekstrom et al. (2012) z14 VO -~
| Ekstrom et al. (2012) z14 V4 -

Figure 2.11: Logarithmic mass loss rates in solar masses per year. As in Fig. 2.10, times are
normalized to the end times of the rotating Ekstrom et al. (2012) models (¢) and a line plot was
used for tabulated functions. Comparing the mass loss rates of Ekstrom et al. (2012); Meynet
and Maeder (2003) to the mass loss rates used for Voss et al. (2009), which are based on stellar
models of Palacios et al. (2005), shows artifacts of the interpolation between models in the latter.
Therefore, we decided to preferentially use the rotating models of Ekstrom et al. (2012).
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Figure 2.12: The terminal wind velocities (v,) shown in this figure were estimated from the
surface abundances in the stellar evolution models with the classification criteria summarized in
Table 2.4. Times were normalized to the end times of the rotating Ekstrom et al. (2012) models
(tp). The interpolated models used for Voss et al. (2009) show effects of interpolation between
stellar tracks.



2.7 Stellar feedback 31

Evolution of a 120 M, star

120 ==
100 +
80
60
40
20 -

Mass [M]

Time [Myr]
Meynet+ 2005 z08 S3 Meynet+ 2005 z40 SO~

Meynet+ 1994 z01 Meynet+ 1994 z20 Meynet+ 2005 z40 S3BMZ -
Meynet+ 1994 z04 +«  Meynet+ 2003 z20 SO - Meynet+ 2005 z40 S3

Voss 2009, 2010

+

[m}

Meynet+ 2005 z04 S3
Meynet+ 1994 z08

Meynet+ 2003 z20 S3A Geneva 2011 z14 VO
Meynet+ 1994 z40 Geneva 2011 z14 V4

Figure 2.13: Evolution of the mass of an 120 M, star in the Geneva models (Sect. 2.7.1) with
different metallicities and rotation velocities compared to the raw data used for Voss et al. (2009,
2010). The feedback of very massive stars plays a crucial role for the feedback of an OB asso-
ciation. Few models with very massive stars (1-2%) have a large influence the average feedback
(factor 2-3).
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Figure 2.14: 26Alfeedback of a 120 M, star. The non-rotating model and the rotating model
with 0.4vg;; were taken from Ekstrom et al. (2012). The model with an initial rotation of 300
km s~ was extracted from Palacios et al. (2005, Fig. 1). This shows that the mass fraction in the
isochrones used in Voss et al. (2009) is relatively unaffected by the interpolation. The differences
in the total output are caused by the problems with the mass loss rate.
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Figure 2.15: Left plot: mass loss per SN event against time between ZAMS and SN event (which is
larger for smaller initial masses). The lines connect the rotating models from the stellar evolution
grids and the dots are SN mass losses from individual Monte-Carlo realizations. The remnant
masses are assumed to be 1.4 M, for stars with initial masses below 25 M, and 7 M for more
massive stars. The right plot shows the interrelation between the initial mass and the final mass or
the remnant mass. The Monte-Carlo data is not displayed in this plot, since the information on the
initial masses of the stars in the Monte-Carlo realization was not stored.

can be obtained by multiplying the number of stars with their mass. Elmegreen did not use an
upper mass limit (i.e. 00”3 = 0 and co™!*> = 0 at the upper boundary of the intervals) and
thus the constant can be eliminated from 1 = k(0 — M_}%°)/(—1.35) and Muster = k1(0 —
M 23%)/(—0.35). This leads to

min

1.35M 0%
Mcluster = S ora17s_13r

0.35M 135

max

This can be rewritten to

M —1.35
Muster ~ 3 % 103 [ —2= M
fuster 7 & ¢ (100M®> ©

This mass limit cannot explain the high mass cut-off seen in observations.

A more recent multi component power law IMF has been published by Kroupa (2001). However,
the most massive stars in clusters are still an unsolved problem (Weidner et al., 2010, 2013). The
polynomial fit of Weidner et al. (2013) shows that for a cluster mass of 2 000 M, derived from a
8% star formation efficiency (Murray, 2011) and the median cloud mass in the Milky Way radio
cloud survey of 2.5 x 10* M, the most massive star is expected to have ~ 60 M.

As explained in Weidner et al. (2013) random sampling of the IMF to find the most massive star
in the association leads to results contradicting the observations. But even if our estimate of mass
of the most massive star in the association would be too high, our conclusions on the individual
contributions of association’s stars to the combined feedback of the association will still stay valid.
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Figure 2.16: SN yields: final masses of the stellar evolution models (M, top left), SN ejecta
(center, left) and times of the SN explosions (tsy, bottom left). The data labeled Ekstrom et al.
(2012) was combined with canonical remnant masses to compute the mass of the SN ejecta. These
models do not include °°Fe and 26 Al produced during the SN explosion. Thus, the amount of trace
elements ejected in the SN (right panels) was taken from Tab. 2 and 3 of Limongi and Chieffi
(2006). The data set “Voss, raw data” was used for the population synthesis models published in
Voss et al. (2009, 2010).

We assume that our association of massive stars contains 10 stars in the mass range [8-120] M.
According to Salpeter (1955) 10 stars in the mass range [8:120] M, have a total initial weight of
194 M:

10

f8120 M—235d )M

120
/ MM ™2%dM = 194 M,
8

Now it is possible to find 10 mass intervals [n;,n,41] withi = 0,1, ...,10 and n, = 8 M, in this
range with the same cumulative distribution function (CDF) F' = 0.1 x (8713% — 120713%) via
n; = (n; ;> — F)~Y/1%5 This is shown in Fig. 2.7.5. These intervals are the so called deciles. The
masses M; in these intervals are:

10 it

— —2.35
= [T ), MM~>%dM

M;

Table 2.5 lists M; for the Salpeter (1955) IMF and the Kroupa (2001) IMF. Since there are only
published Geneva models (Ekstrom et al., 2012) for distinct masses (7, 9, 12, 15, 20, 25, 32, 40, 60,
85 and 120 M) a first guess istouse 3 X9 Mq, 2x 12 Mg, 2x 15 Mg, 1 x20 Mg, 1 x 32 Mg and



34 2. Background: massive stars and their surroundings
o 1 | X//N,/—-ﬁ’/_ﬁ

@ Salpeter (1955) IMF ———

§ 08 1 / _
I3

g

= 06 - _
g

=

fea)

é 04 - _
2

[

2

= 02 _
=

2

O 0 * l 1 1 |

20 40 60 80 100 120
Mass [M¢]

Figure 2.17: Deciles of the cumulative distribution function (CDF) of 10 stars in the mass range
[8:120] M, with a Salpeter (1955) IMF. The vertical arrows indicate the boundaries between the
mass intervals.

1 x 60 Mg. This leads to a total mass of 193 M, instead of the expected 194 M, from a Salpeter
(1955) IMF or the expected 199 M from a Kroupa (2001) IMF. The feedback of this model is
shown in Fig. 2.18. From this figure it becomes evident that the most massive, still existing star
dominates the feedback (e.g. Oey, 2005, also mentions this). Therefore, we conclude that during
the first 4.8 Myr the feedback of a 60 M, star is a good first approximation for the feedback of our
association.

Our first guess model assumes that no star in the association is more massive than 60 M. The
probability for this is
60 3,
M=235dM
_ J8 _

The most energetic feedback for stars with Geneva models and a total mass of approximately
200 My, can be obtained by using two stars: 120 M, and 85 M, (= 205 M), which is, however,
not very likely. The probability that all stars with masses in [8:120] M, are more massive than 85
Mg is

120 —2.35
p = =80 M7mdM =1.6%
f8120 M_2‘35dM
Assuming that all mass is found in stars with 9 M would lead to the weakest feedback. Also this
scenario in not very likely. The probability that all stars are less massive than 9 M, is

B f89 M—2.35dM

p g
f8120 M~-235q M

= 15%
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Figure 2.18: Comparison of the “first guess” model (3 x 9 My, 2x 12 Mg, 2 x 15 Mg, 1 x 20 Mg,
1x32 My and 1 x60 M) to the Voss et al. (2009) feedback model, feedback of individual massive
stars as well as the highest energy model (85 M, and 60 M) and the lowest energy model (all
mass in 9 M, stars). The “simple” model is much less continuous than the Voss et al. (2009)
model. Also a realistic OB association with ~ 10 massive stars is expected to have a feedback that
is strongly varying with time — the number of stars is too low to smooth the winds and there are
peaks when the SN explode (smeared out over 0.1 Myr in the Voss et al. (2009) model).

This corresponds to ~ 21 stars if the expected mass for an IMF with 10 stars above 8 M, is used
or ~ 23 stars if one prefers to use the a similar mass as for the most energetic case.

To summarize, we used the IMF to find a “first guess model”, which can be constructed from the
available data in the Geneva grid of stellar evolution models. Moreover, the feedback in this model
is dominated by the most massive still existing star.

Kolmogorov Smirnov test for the “first guess” model

In the Kolmogorov Smirnov test the maximal deviation of the CDF of a sorted sample (S(M))
from the CDF of the IMF (F(M)) is computed. The result of this test is that our “first guess model”
(Figure 2.18) for the mass distribution is in good agreement with the CDF of the IMF. Table 2.6
shows that the maximal deviation is so small that the null hypothesis cannot be rejected. As a
comparison this test is also shown for the unlikely cases of high mass stars only or low mass stars
only.
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Ms=9.8 M [9.4,10.3] M Ms=9.9 M, [9.4,10.4] M, 9 Mg
M,=109 M, | [10.3,11.5] My || M4=11.0 My | [10.4,11.7] M 12 M,
Ms=12.3 My | [11.5,13.1] My, || Ms=12.5 My | [11.7,13.3] M, 12 M,
Mg=14.2 M, | [13.1,15.3] My || Me=14.4 My, | [13.3,15.7] M, 15 M,
M.=16.9 M, | [15.3,18.7) My || M7=17.3 My | [15.7,19.2] M, 15 M,
Mg=21.3 M, | [18.7,24.5] M, || Mg=21.9 My | [19.2,25.3] M 20 M,
My=30.0 M, | [24.5,37.7) M || My=31.1 My | [25.3,39.2] M 32 Mg
Myp=61.3 My | [37.7,120.0] Mg, || M1p=63.2 M, | [39.2,120.0] M, 60 M,

Table 2.5: Columns 1-4 show the deciles of the IMF. Column 5 lists the “first guess model”.

n M SM) FM) S(nii)— F(ni) S(ng) — F(n;)
1 8 05 0098 -0.98 -0.48
2 120 1.0 1.0 0.00 0.02
1 60 05 096 -0.96 ~0.44
2 120 1.0 1.0 0.00 0.04
1 9 01 0.5 0.15 -0.05
2 9 02 015 -0.05 0.05
39 03 015 0.05 0.15
4 12 04 043 0.13 -0.03
5 12 05 043 -0.03 0.07
6 15 06 059 -0.09 0.01
7 15 0.7 0.59 0.01 0.11
8 20 08 073 -0.03 0.07
9 32 09 087 -0.07 0.03
10 60 1.0 096 -0.06 0.04
1 9 005 0.5 0.15 0.10
20 9 1.00 0.5 -0.85 0.80

Table 2.6: This table shows the results of the Kolmogorov Smirnov tests for the four models
discussed in Sect. 2.7.5. The models are separated by double lines. On top the OB association
consists of a 85 M and a 120 M, star. The second model shows an association with a 60 M, and
a 120 M, star. The next model is the “first guess model” and the last model assumes that the whole
OB association consists of 9 M, stars. The first column is the sort index of the stars by mass. The
second column shows the stellar mass. S(M) is the CDF of a sorted sample and F(M) is the CDF
from the IMF. Column 4 shows the difference between F(M) in the same line and S(M) from the
line above (or zero for the first star). Column 5 contains the differences between S(M) and F(M)
from the same line. The interpretation of this data is that the “first guess model” passed the test
and that the other models (shown as a reference) are quite unlikely (see highlighted values).



Chapter 3

Method: hydrodynamic simulations of the
ISM

In this work we carry out numerical simulations of the interstellar medium (ISM). This approach
is based on several assumptions, which are discussed in this chapter. First of all, when the ISM is
modeled, it is usually treated as a perfect gas — often also called “ideal gas”. This approach ignores
intermolecular forces (i.e. dipole interactions, friction, Van der Waals, Joule-Thomson coefficients,
molecular excitations, ...), which is problematic in high density environments like inside stars or
planets, but which is a good approximation in the ISM, where densities are much lower than in
earth-based laboratories. The best laboratory-vacua (e.g. in the LHC at CERN! or for gravitational
wave interferometers) have of the order of a million particles per cubic centimeter. For comparison,
in our simulations the highest number densities rarely surpass few thousand particles per cubic
centimeter. In the ideal gas approach, the gas consists of individual particles with ballistic motions.
These particles have localized interactions only and thus move on straight lines until they undergo
perfectly elastic two particle collisions.

For our assumption of an ideal gas we have to decide, if the fluid approximation is a valid approach
to facilitate handling areas spanning hundreds of cubic parsecs in space containing a vast numbers
of particles (see Sect. 3.1).

If the fluid approach is valid, we have to choose a discretization scheme (Sect. 3.2) and to consider
the limits of the time step size (Sect. 3.3).

Another approximation we have to make is the choice of the set of conservation laws we will
employ. Our description of nature is always a simple approximation, which — hopefully — covers
the leading order effects. In our case this means to decide which forces have to be taken into
account in the simulation to follow the most important processes. This encompasses the evaluation
if shear forces, magnetic fields or gravity are important agents. All these processes can in principle
be included, however, at considerable computational cost. This is discussed in Sect. 3.4.

Also some numerical pitfalls (e.g. stability of numerical schemes, conservative vs. primitive vari-
ables, ...) are briefly sketched in this chapter.

Isee e.g. http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/components/vacuum.htm
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Figure 3.1: The hydrodynamic approach is based on the statis-
V e / e tical treatment of large numbers of gas particles. This sketch
7 \ /f shows individual particles (small dots) with individual veloci-
'Y '\»\ ties v; (shown as vectors). A fluid approach can be applied if the
particles in a given volume collide often enough to be described

as a homogeneous gas blob with averaged quantities.

Az > )\

—

L

Figure 3.2: Discretization of continuous functions on a grid. The hydrodynamic approach is only
applicable if the mean free path (\) is much smaller than the scale of interest Az and if the scale
of the problem L is resolved with a sufficiently large number of grid cells.

3.1 Fluid approximation

To motivate the necessity of the hydrodynamic approach, we sketch a gas consisting of many
particles with velocities v; in Fig. 3.1. In our numerical hydrodynamic simulations we model large
regions of space (~ 10° pc?®) containing a huge number of gas particles. E.g. a number density of
~ 1 cm™3 leads to > 10°® particles in a box of 10% pc3. Thus, we cannot treat all gas particles
individually. To tackle the evolution of a system with such a vast numbers of particles, we have
to resort to the fluid approximation. This is an idealized concept, in which the gas is described
statistically via averaged quantities, which vary with position (sketched in Fig. 3.2). For example,
with a velocity field ¥ (Z) = (v;) (&), which is the average of the of individual particle velocities in
a given volume, centered around a location ¥ (at a given time). Later on, we will call such regions
with averaged quantities and a length scale Az “cells” or “fluid elements”. The fluid approximation
can only be used if the mean free path (\) —i.e. the average distance a gas particle travels between
two collisions — is much smaller than Ax:

1 s
Az > A= — ~ 10°—([cm] , 3.1
on n
with the number density n and the interaction cross section o.
For example, the mean free path of the warm ISM with a temperature of 7' = 10* K and a number
density of n = 1 cm™ is about A ~ 106%2 = 10 cm. This is several orders of magnitude
below our resolution. An example where the fluid description of the gas should not be used is e.g.
the solar wind near the earth. Assuming a temperature of 77 = 10° K and a number density of
n = 10 cm™3, this leads to a mean free path of A\ ~ 10'® cm (70 AU), which clearly shows that
one should use a plasma description for this problem.
The length scales of the problem L, on which the continuous functions (e.g. density, pressure, ...)
change, have to be even larger than the scales Az, on which these averaged quantities are defined.
To obtain meaningful averages, another important property is the saturation of forces. Forces
which do not saturate e.g. gravity are treated as source terms in hydrodynamical simulations.
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Figure 3.3: Illustration of the difference between the Eulerian (upper sketch) and the
Lagrangian (lower sketch) discretization. The Eulerian view follows the evolution
of averaged fluid quantities at fixed locations. The areas linked to these averaged
quantities are color coded. In contrast, the smooth particle hydrodynamics (SPH)
approach — which is a Lagrangian method — discretizes the initial conditions by
grouping gas particles to fluid elements. During the simulation, it tracks the motions
of these fluid elements. Regions of denser gas will thus be sampled with more fluid
elements than sparse regions. However, this sketch is for illustration only, since
an SPH simulation would set up the initial positions the fluid elements in a more
sophisticated way (e.g. glass configuration).

3.2 Spatial discretization

Basically, there are two ways to follow the evolution of the fluid. The system properties (U), which

are often gathered in a vector containing the information on the density, flow velocity and pressure

of the fluid, can be followed in the Eulerian or Lagrangian picture (sketched in Fig. 3.3).

In the Lagrangian view, which is used in the smooth particle hydrodynamics (SPH) approach where

individual fluid particles represent fluid elements, the observer moves along with the fluid element.

The temporal changes of the system quantities are described by the “convective” or “Lagrangian”
DU

derivative ( oF ) :

DU;/Dt = 8U; /ot +  ©-VU;  with@- VU; = (1,V, + 1,V 4+ v.V.)U;
N—— ~——

Eulerian convective derivative

The advantage of comoving coordinates is the feasibility of tracing the evolution of individual fluid
elements. However, this method has problems with sparse regions, turbulence and artificial surface
tension.

In the Eulerian view, which is the strategy in most grid codes?, the temporal evolution of fluid is
described by time dependent system properties at fixed locations (resp. in fixed volumes). Thus,
temporal changes of the system quantities are followed via the partial time derivative %—(tj. The sim-
ulated region is subdivided into sub-volumes — which will be called “cells” further on. Individual
gas particles can leave or enter such volumes. Technically, they are treated via averaged quantities.
At every time step and at each cell interface, the Riemann problem (see Sect. 3.5) is solved. This
checks, if fluxes across this interface occur and how large they are. Subsequently the averaged
quantities are changed according to these fluxes. In grid codes, the resolution of the simulation can
be either set before starting the simulation by a fixed mesh or it can be adjusted via adaptive mesh
refinement (AMR), which can subdivide or merge cells during the run to better resolve “interesting
areas’— e.g. near strong gradients (see Sect. 3.9).

This work uses grid codes, as we are interested in 26Alin the dilute medium. Since the resolution

in SPH follows the gas density, the SPH method is not well suited for the purpose of this study.

3.2.1 Setting up a grid code simulation

At the start of a grid code simulation, the initial state of the system has to be defined. This state
of the medium is called “initial conditions (IC)” and it will typically be described by continuously

2Grid codes are also sometimes called “mesh codes”. Moving mesh codes do not stick to the Eulerian view.
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varying quantities. Most commonly, the IC are specified with so-called primitive variables: density,
velocity and pressure. In principle, these quantities could also be used to calculate fluxes in the
simulations. However, for the compliance with conservation laws, it is advantageous to use the
conserved quantities (see Sect. 3.4), density, momentum and total energy, to calculate fluxes. This
way, fluxes across cell interfaces will violate the conservation laws only at the level of number
precision, which is much less than errors in fluxes based on primitive variables would violate the
conservation laws. Typically, a grid code working with conservative quantities will convert them
into primitive variables at each time step and for each cell. This is necessary for the treatment of
ISM physics like radiative cooling (where densities and temperatures matter) and also for statistics
like e.g. kinetic and thermal energy fractions. Moreover, the code will try to use units in which the
conservative variables in most of the cells are in the order of unity, since this is advantageous for
the numerics. The conversion factors between these units and cgs or SI units are taken account for
the calculation of gravity or ISM physics like e.g. cooling.

Depicting these quantities on a mesh is called “discretization”. It is connected with the loss of in-
formation, which causes discretization errors. Technically, the simulation will evolve the medium
inside a box of given size and geometry. This volume has to be subdivided into grid cells. Dur-
ing this discretization process, averaged system properties — either conservative or primitive — are
calculated for each cell: density, momentum or velocity, total energy or pressure. Additionally,
it is possible to use so-called passive scalars for properties like metallicity. Passive scalars are
advected across cell boundaries with same velocity as the carrier flow. However, the ratio of the
concentrations of the passive scalar in the two cells can be different from the density ratio. There
are several possible ways how the system quantities can be discretized: in finite difference (FD)
methods, values at grid centers and at grid faces are stored. Typically, a so-called staggered mesh
is employed, which usually stores scalars, like densities and pressures, at the grid cell centers and
quantities containing directional information, like velocities, at the cell interfaces. We will use a
more sophisticated approach, which makes use of the conservation laws: The discretization via
finite volumes (FV) discretizes the conservative equations and stores cell averages. One can also
store terms of the orthogonal series expansion of the velocity. This would then be a so-called finite
element (FE) method. Thus, FV is a very low order FE method.

To specify the treatment of gas at the boundaries of the region, boundary conditions (BCs) have
to be set. Typical choices are reflective boundaries, outflow boundaries or periodic boundaries.
However, some problems might require more sophisticated BCs, e.g. with inflows or fixed states
of boundary cells.

3.2.2 Geometry of grid code simulations

A good choice of the grid can substantially lower the computational cost. Since simulations be-
come more computationally intensive when the number of dimensions in increased, symmetries in
the problem setup can motivate the choice of a cylindrical or a spherical grid instead of a Cartesian
grid. Such symmetries are also exploited in this work: we follow interesting processes first in
spherically symmetric 1D models (if possible), since this way, sampling a large region in parame-
ter space is feasible. Subsequently, interesting regions of parameter space are re-simulated in more
dimensions to take deviations from spherical symmetry into account.

Generally, if very high resolution is required, problems are often treated in 1D, 2D or 2.5D first.
Here, 2.5D means spherical polar coordinates (7, 0, ¢), with reflecting BC at the equator and at the
polar axis. This configuration assumes rotational symmetry around the polar axis. It performs 2D
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gntt Downwind 0, (u)" = (v, —u?) / (Ax
ij+1/2 Atn—l-l/? ( )j ( 7+1 ]) /( )
t" Centered 0, (u)} = (u}, —uj_,) / (2Ax)
! Upwind 0, (u)! = (ur —u? ) / (Axz)
i1 z; Tjt1

Figure 3.4: Finite differencing basics. The columns depict points in space (z;) where the solution
(u}) is evaluated. The rows contain these solutions at different times (¢"). The sketched points
are only a cutout of a larger grid. The full grid contains the initial conditions at the lowest row
and boundary conditions in the first and last column. The sketch shows different discretizations of
derivatives, which are mathematically equivalent in the limit of infinitely small grid spacing.

simulations in the meridional (7, ) plane but 3D simulations in B.

When the number of dimensions is lowered, one has to keep the consequences in mind: e.g.
hydrodynamic instabilities will develop differently and in Cartesian coordinates different numbers
of dimensions will lead to different evolutions of e.g. a Sedov-Taylor blast (since the number of
dimensions is part of the exponent in the formulas for the temporal evolution of radius and velocity,
as shown in Sect. 4.3).

For many simulations an evenly spaced grid is a very good choice. It can, however, become
necessary to better resolve regions with steep gradients if a high resolution of the whole volume
becomes computationally too expensive. Possible solutions are AMR (see Sect. 3.9) or non-evenly
spaced grids with (adaptive) cell sizes depending on gradients of e.g. pressure or density. In this
work, we use evenly spaced grids and introduce — if necessary — evenly spaced meshes inside cells
via AMR by splitting the cell into 2” cells, where v is the number of dimensions.

3.3 Time discretization and von Neumann stability analysis

Figure 3.4 sketches the simulation process: the solution (uj}) at the locations (columns, x;) is
advanced in time (rows, t"). The sketched points are a cutout of a larger net. In the full grid,
the lowest row would contain the initial conditions. Furthermore the solution at the leftmost and
rightmost points in the full grid (first and last column) follows from the boundary conditions.
We now take a step back from finite volumes to finite differences and examine different ways
to calculate derivatives. The colored lines in this sketch show different — in the limit of very
high resolution mathematically equivalent — discretizations of derivatives. The points used in the
derivative form the computational stencil of the method. At the first and last point in the grid,
missing information in the stencil is replenished by the boundary condition. However, not all
these discretizations of the derivative would lead to good results in a simulation. The suitability of
these prescriptions can be checked by applying them to a wave solution. Schemes with growing
amplification factors (|¢| > 1), where (k) is the wave-number dependent amplification factor,
are unstable and thus not suitable for numerical simulations. This is the basic concept of the von
Neumann stability analysis.

For illustration, we will apply this method to two different discretizations: to the forward-time,
centered-space method (blue lines in Fig. 3.4) and the forward-time, upwind scheme (purple line in
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Fig. 3.4). In the von Neumann stability analysis solutions of the type u}} = ¢/*/ariwnat — ¢neikjar
are used. Two single frequency solutions to the 1D wave equation, u (z,t) = cos (kz + wt) and
u (z,t) = sin (kz £ wt) with the wave number k& = w/c, are combined in this complex exponential
form.

The Taylor series for the forward-time, centered-space method (blue lines in Fig. 3.4) leads to
cAt

n+l _ n o

;= gay (W — )

Von Neumann stability analysis shows that this scheme is unconditionally unstable:

£n+1€ikmx _ Sneiksz:c _ ;ﬁi (gneik(j-&-l)Aa& _ gneik(j—l)Aa&)
CAt ikAx —ikAzx
5 = 1- E (6 — € )
At
& = 1-— i2CAx sin (kAx)
At 2
€7 = 1+ (20Ax) sin? (kAx)

The physics behind this is that information should only come from the direction of the flow.
An example for a scheme with stable regions is the forward-time, upwind scheme, where informa-
tion is only allowed to propagate from the nearest upwind neighbors. The Taylor series is

n+1 n CAt n n
uit = — Ax (uff = )
Here von Neumann stability analysis leads to
A )
5 — 1 . CA; (1 o e—ZkAm)
At
& = 1-— 2— (1 — cos (kAx) + isin (kAx))
T
At At 2
1P = 1— 2—CA (1 —cos (kAx)) + <—CA > (1 — 2cos (kAz) + cos® (kAx) + sin? (kAx))
T T

€ = 1-2—— (1 - E) (1 — cos (kAz))

This is stable for 0 < %‘; < 1. This can be rewritten as At < Ax/c, which is the Courant-
Friedrichs-Lewy (CFL) condition (Courant et al.), used for the time step size in all our simulations
in order to stay in the stable regime. The time step A¢ must be less than the time to cross a cell at
speed c. This is necessary to ensure that information from outside the stencil does not have enough
time to reach the point ;. The new solution u;-‘“ must take input from all points at t" within
the domain of dependence of x?“ into account. The CFL also applies to finite volume methods,
where similar arguments based on the domain of dependence can be made — in this case we would
not draw the stencil but rather look at the characteristics (see Fig. 3.5 and its explanation in the
text). However, also this would lead to the CFL and reflect the fact that gas must not cross more
than a whole cell during one time step.

In conclusion, we have seen that schemes, which take the propagation of information properly
into account, can lead to stable solutions. The next question is, which equations can describe the
physics of the problem. We will delve into this problem in Sect. 3.4.
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3.4 Hydrodynamic conservation laws (Euler equations)

The Euler equations® are a set of coupled non-linear hyperbolic* conservation laws, which can be
used as a simplified model to describe the dynamics of compressible fluids. The Euler equations
are only a first approximation. They neglect body forces (body forces — e.g. gravity — have to be
added as source terms to the solution of the hyperbolic PDEs), viscosity (included in the Navier
Stokes equations) or magnetic fields (treated in MHD). The Euler equations support sound waves
and an entropy wave.

The derivation of the hydrodynamic conservation laws (Eq. 3.3 to 3.6) is based on the conservation
of mass, energy and momentum. Using an integration of those quantities over a cell and Gaul3’s
theorem, leads to the differential form of the Euler equations via the vanishing integrands. The
detailed derivations can be found in any book on hydrodynamics, e.g. Shu (1992, Chapter 2 pages
20 to 23 and Chapter 4 pages 45 to 46).

In addition to these hydrodynamic conservation laws, pressure and energy have to be connected
with an equation of state (EOS). This closure relation — i.e. the relation between pressure and
energy — is required to solve the system of hydrodynamic conservation laws, since there are more
unknowns than equations. A possible choice is the adiabatic® EOS of an ideal gas:

Equation of State (EOS): p=(v—1)pen or pV = NkgT ) (3.2)

The adiabatic exponent v = CC—” = % is the ratio of the specific heats (c,, cy/). It is a constant
that depends on the degrees of freedom (f) in the chosen type of gas. In a monoatomic ideal gas
the energy per degree of freedom is kg7'/2. Thus, for increasing the temperature we can write
cy AT = fk/2AT, which has been normalized with the number of particles N. If the volume has
to be adjusted to keep the pressure constant, we find from the EOS that V' is proportional to 7" and
thus pAV = ’%AT = %AT, which leads to ¢, = ¢, + k and Cc—é = % For monoatomic gases
(e.g. atomic hydrogen, H1) the adiabatic exponent attains the value v = g Twoatomic gases and
linear molecules (e.g. gases like air or Hy) have an adiabatic exponent of 7 = % = 1.4. In the
isothermal case (i.e. constant temperature) the pressure is a function of density only P = ¢2p.

e = E/p— 0.5|9?] is the specific internal energy density. In Equation 3.2 e;, has to be multiplied
with the density, since ey, is the internal energy per unit mass and not an internal energy volume
density Eiperm = p€in-

The hydrodynamic equations without gravity and viscosity are:

Jp  Opug

mass pn 9z, =0 3.3)
momentum : 3{5:@ + agL;:k =—(y— 1)8(5;?1 (3.4)
energy ag;Ot + agt;::}k =—(y— 1)ap;xn;vk (3.5)
internal energy ag?n 8/35;;% =—(y— 1)peing—zz (3.6)

3Strictly speaking, only Equation 3.8 is the Euler equation, but many authors call the whole system of partial
differential equations (PDEs) Euler equations.

*A PDE for a function u(x,t) the form Auy; + 2Bu;, + Cuzxx + ... = 0 is called hyperbolic, if AC — B? < 0.
This kind of PDEs behaves like a wave equation and has real Eigenvalues. It describes a phenomenon with finite
propagation speed.

S“adiabatic” means “no heat exchange with the environment”.
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In vector notation and with the EOS (Eq. 3.2), the system of these three conservation laws can be
written as:

Op+V-(pt) = 0 [conservation of mass] 3.7
O (pU) + V- (pt@U)+Vp = 0 [conservation of momentum] (3.8)
O FEwo, +V - [U(Eis +p)] = 0 [conservation of energy] . (3.9

In this system of coupled nonlinear partial differential equations FEi, denotes the total energy
density, p is the pressure, v is the velocity vector, p is the density, J,b = % are partial derivatives
and ® is the tensor product.

The technical terms “diffusive” and “convective” terms, often used in context of hydrodynamical
simulations, refer to parts of such equations: A transport equation for a general flow quantity ®
and a diffusion coefficient I' typically consists of four terms:

Op®+V - (0pP) =V - (TpVO)+ So
~N —— —— =~

time convection diffusion source

The first term on the left side describes the net gain or net loss per unit volume and unit time. The
convective term covers the downstream transport with velocity v. A nonuniform spatial distribution
of ® leads to a diffusive term on the right hand side. All sources and sinks are collected in Sg.
Basically, the flow can be described either with the vector of primitive variables WT = (p, U, P) or
with the vector of conservative variables U7 = (p, pv, E). The latter is favorable for computations
(see Sect. 3.2 where conservative methods like finite volumes are discussed), as it directly uses the
conservation of mass, momentum and total energy.

Generally, a system of conservation laws can be written in a compact form using the flux vectors

F; (U ) , the vector of conservative variables U and Einstein’s summation convention:

F! <ﬁ> = (pv1, pvi + p, pv1vs, pv1vs, vi(E + p))

Fy <(7> = (pva, pv1va, pu3 + p, puavs, va(E + p))

ﬁ:;r <U> = (pvs, pv1vs, puavs, pv3 + p,v3(E + p))
@U+@jﬂﬁ):o . (3.10)

With the Jacobians of the flux functions f, ((7 ) = % it can be rewritten as:

U + J;8,,U =0 (3.11)

This system is hyperbolic if the matrix J has real and distinct Eigenvalues ;. Physically, the
Eigenvalues represent velocities of propagation of information. The same type of system can be
written down for the primitive variables.

An important concept for the numerical solution are the characteristic curves. These curves are
possible trajectories of a signal in the space-time diagram. Fig. 3.5 shows this diagram for a
hyperbolic PDE. The real Eigenvalues of this PDE correspond to wave families with finite speeds.
These signal propagation velocities lead to a domain of dependence and a domain of influence.
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Figure 3.5: Hyperbolic partial differential equations have real Eigenvalues (\) with the physical
interpretation of finite wave speeds of different wave families. The characteristic curves (Cy, C5) —
which are possible wave trajectories (i.e. z(t) = z; + A(t — t,,)) — limit the domain of dependence
and the domain of influence of the point P (z;, t,) in the space-time diagram. The sketch also lists
the Riemann Invariants for two wave families.

Since Eq. 3.11 will lead to a velocity of the wave A(lj ), which will be rather a function of the
solution than constant, compression and expansion of the wave can be observed. For example, if
the velocity increases for larger U, the characteristics in the space-time plane are steeper in a region
with smaller U than in a region with larger U (in this diagram the slope is indirectly proportional
to the velocity). This is shown in Fig. 3.6. Diverging characteristics indicate a rarefaction fan —
shown in Fig. 3.6 in the higher U region. The solution for such waves is discussed in Sect. 4.1.2.
Converging characteristics lead to a shock — shown in Fig. 3.6 in the lower U region. The shock is
a discontinuity and the integral forms of the conservation equations lead to the Rankine Hugoniot
shock jump conditions, as shown in Sect. 4.1.3. If characteristics on both sides of an interface are
parallel, a contact discontinuity can develop (see Sect. 4.1.1).

il

Space Space

Time
Time
Time

Space
(a) P

()
Figure 3.6: The dependence of the Eigenvalues on the vector of conservative variables leads to
non-constant slopes of the characteristics. We assume two constant states. This leads to two sets
of parallel characteristics shown in blue and black. They can interact in three ways: (a) a shock
forms if characteristics of the same wave-type intersect; (b) diverging characteristics produce a
rarefaction fan; (c) finally, regions with parallel characteristics can harbor a contact discontinuity.
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Figure 3.7: The Riemann problem. The top left panel shows the initial conditions of the Sod
shock tube (see Sect. 4.2), which is a Riemann problem: a discontinuity separates a left and a
right state. Pressures are shown in green, densities in blue and velocities in red. Details on the
initial conditions can be found in Fig. 4.3. In the middle left panel the time evolved solution of
the Riemann problem is shown: we see the propagation of a shock and a contact discontinuity
to the right and a rarefaction wave propagating to the left. The dashed lines indicate the location
of the head and the tail of the rarefaction fan (RF), the contact discontinuity (CD) and the shock.
The lowest left panel shows the characteristics for the different waves. The right panel shows the
domain of influence (solid lines) for the point P(x,0) and the domain of dependence (dashed lines)
for the point P(x,t), which is similar to Fig. 3.5.

3.5 Riemann problem

Technically speaking, the Riemann problem (shown in Fig. 3.7) is a Cauchy initial value problem
with piecewise constant initial conditions. This is the typical problem arising at each cell inter-
face at each time step in a hydrodynamic simulation carried out with a grid code: Basically, a
grid code discretizes the density-, pressure- and velocity distribution in the ISM and stores cell
averaged quantities. As a consequence, all cell interfaces separate a constant “left” state from a
constant “right” state. At each time step the gas in the cells has the chance to flow into adjacent
cells. Therefore, the Riemann problem — waves created by the interaction of zones with piecewise
constant values of the before mentioned quantities — has to be solved at every interface between
cells at every time step. Hence, the solution of the Riemann problem is of fundamental importance
for understanding hydrodynamical simulations with grid codes.

3.5.1 Solution of the Riemann problem

Since there is no closed analytic form of the general Riemann problem (not even in 1D), typically
a Newton Raphson method and a specified accuracy are used if a hydrodynamical code claims to
use an “exact Riemann solver”. In this work, however, we will not use exact Riemann solvers,
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Figure 3.8: Characteristics in (approximate) Riemann solvers. It can be seen that the linearization
of the Jacobian in the Roe solver replaces the rarefaction fan by a simple wave: The characteristics
of an exact Riemann solver (left) show a rarefaction wave, which is missing in the characteristics
of the HLL solver (center) and the HLLC solver (right). The HLL solver replaces all waves by
simple waves and just keeps the fastest right moving and the fastest left moving wave of the Roe
solver. The HLLC solver re-inserts the contact discontinuity.

but apply approximate Riemann solvers to reduce the computational cost of the simulations. Ap-
proximately solving the Riemann problem is a valid approach, since the Godunov scheme (see
Sect. 3.6) uses averaged values for the initial conditions. Moreover, in the Godunov algorithm a
full solution of the Riemann problem is not necessary: Since the Godunov algorithm aims to find
fluxes, approximating the Riemann fluxes directly already solves the problem and calculating the
states in the Riemann problem is not necessary. The approximate Riemann solver used for most
of our work is the HLLC solver (Toro et al., 1994). To motivate this choice, we will have a brief
look at the most common Riemann solvers. We already mentioned that Eq. 3.11 is non-linear and
that it tells us that the discontinuity in the Riemann problem will create waves, which will travel at
constant speed.

A well-known approximation, the Roe approximate Riemann solver Roe (1981, 1986), is a lin-
earization of the Jacobian in Eq. 3.11:

U + J(UL, Ug)dp,U =0 | (3.12)

This constant coefficient linear system is then solved exactly instead of the original nonlinear
system. Technically, the Roe algorithm would start by constructing this constant coefficient matrix.
This includes finding Roe’s average states, sound speeds and enthalpies at cell interfaces. Then
it would proceed to create Eigenvectors and Eigenvalues. Next, it would compute wave strengths
and fluxes for all Eigencomponents and apply the flux limiter for all Eigencomponents. Finally,
the interface flux is found by using symmetric fluxes and adding a diffusive flux term again using
the flux limiter. The interface flux is then used to update the state vector.

The difference between the Roe solution and an exact solution is that the Roe solver assumes
simple waves. Thus, the solution will lead to constant states instead of the rarefaction fan shown
e.g. in Fig. 3.8. The HLL (Harten et al., 1983) and the HLLE (Einfeldt, 1988) solver further
simplify this solution by only following the two fastest waves. The HLLC (Harten-Lax-van Leer-
Contact) solver (Toro et al., 1994) restores the missing rarefaction wave. Tests (see Sect. 4.2)
showed that in the RAMSES code (Teyssier, 2002) this solver achieved the best results in the Sod
shock tube test (see Sect. 4.2).
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First order Godunov method
piecewise constant
approximation

Solution of the
Riemann problem

Figure 3.9: Sketch of the first order Godunov method. The averaged quantities in the cells are
piecewise constant functions (black). At each time step the Riemann problem is solved at every
cell interface (blue). The propagation of the different waves at this interface is evaluated and used
to change the averaged quantities. At the end of the time step the averaged quantities are again
represented by (possibly different) piecewise constant functions (green).

3.6 Godunov’s method

Having settled that we are equipped with methods to (approximately) solve the Riemann problem,
we can now discuss the algorithm initially proposed by Godunov®.

Godunov’s algorithm assumes that each computational cell represents a fluid volume with cell
averages for density, velocity and energy. These cell averages are used to reconstruct a piecewise
polynomial function. In the simplest case, the first order Godunov method sketched in Figure 3.9,
the reconstructed function is piecewise constant. In the next step, the Riemann problem is solved
at every cell interface. The solution leads to wave families traveling at constant speed. The time
step in this algorithm is limited by the CFL for the wave family with the highest velocity, since
the similarity solution of the Riemann problem for one interface gets messed up by waves from
neighboring interfaces when the fastest traveling wave has time to cross a grid cell from one face
to another. The propagation of the different wave families (e.g. entropy wave, sound waves and —
in MHD — Alfvén waves) leads to Riemann fluxes, which are used to calculate new cell averages.

Unlike finite differencing algorithms, the first order Godunov algorithm is directly based on the
conservation laws and leads to an exact solution by combining the solutions of the Riemann prob-
lems. Due to the averaging at the end of the step, this method is of first order accuracy. In other
words, the diffusivity of the method depends on the method for calculating the cell averages, which
is defined by the finite volume scheme. High order methods try to overcome this problem by using
higher order reconstruction methods, for example a piecewise linear function that may have slopes.
The first order Godunov method is very stable, but at the price of being very diffusive.

5This is usually cited as “Godunov, S. K. (1959), "A Difference Scheme for Numerical Solution of Discontinuous
Solution of Hydrodynamic Equations", Math. Sbornik, 47, 271-306, translated US Joint Publ. Res. Service, JPRS
7226, 1969 but this reference is not easily accessible via ADS.
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3.7 2" order Godunov schemes:
Total Variation Diminishing (TVD) Advection

Second order Godunov schemes allow for piecewise linear approximations of density, pressure
and velocity instead of piecewise constant functions (see Fig. 3.10). This way, it is possible to
better resolve discontinuities e.g. in the Sod shock tube test. The Godunov theorem states that only
first order linear schemes are monotonicity preserving. Since the reconstruction of the averages
should not create new local extrema, total variation diminishing (TVD) schemes are used. There
are several different choices of flux limiting functions (sometimes also called “slope limiters”, e.g.
in the RAMSES documentation). All these methods are based on monotonicity criteria and will
degenerate to first order at extreme points. Examples of such methods are shown in Fig. 3.10:
The minimum modulus (MinMod) flux limiter (Roe, 1986, Eq. 56) produces a monotonous recon-
structed function by setting the slopes to % = min (4£-% %=4=1) if the signs of both slopes are
the same. Otherwise the MinMod limiter degenerates to first order. The Sweby diagram (Sweby,
1984) in Fig. 3.10 shows that the MinMod limiter is the most diffusive limiting function, since it
applies the maximal possible limiting in 2" order TVD region. The counterpart is the superbee lim-
iter (Roe, 1986, Eq. 58), which applies the minimal possible limiting and has the drawback to get
unstable for most astrophysical problems. The monotonized central-difference limiter (MC limiter
or MonCen limiter) limiter (van Leer, 1977, Eq. 66) lies between these two extrema. Here the right
and left values are bounded by the initial average values: % = min (L1702 GG GGl )
if the signs of all three slopes are the same. Otherwise it also falls back to first order.

The drawback of the second order methods is that they are less stable than the first order method
and can lead to negative densities and negative pressures. Many codes start with the sharpest
limiter (from the three discussed limiters superbee would be the “sharpest” but it is known to
fail in most astrophysical applications) and go to more diffusive limiters if negative densities or
negative pressures occur. The RAMSES code (Teyssier, 2002), however, cannot switch between
limiters on the fly — here the limiting function chosen at the start of the simulation is used for
all solutions of the Riemann problem. For our setup (stellar winds and supernova explosions in
molecular clouds) the MonCen limiter or — if the simulation crashed — the MinMod limiter were
used. As already mentioned, sharp limiters like superbee lead to code crashes in most astrophysical
applications. Restarting any of our simulation with this limiter shows that our problem of stellar

winds and supernovae is no exception.

3.8 Side note: alternatives to Godunov’s method

In this work we will use Godunov’s method for our simulations, but basically a grid code could
also use an artificial viscosity approach. The advantage of this approach is a more accurate internal
energy evolution in regions where % pv? > U. But this comes at the price of smearing out shocks
and applying incorrect Rankine Hugoniot jump conditions. As already mentioned, another draw-
back of the artificial viscosity approach is that finite difference schemes do not directly use the
conservation laws. However, they are easier to code than conservative shock-capturing scheme,
which can be an advantage if one wants to add additional physical processes.

For our project we decided to use a Riemann solver, since it is less diffusive and resolving shocks
and contact discontinuities well is important for the questions we are trying to tackle with our
work (e.g. feedback energy efficiency of massive stars in the ISM). Moreover, with a Godunov
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Figure 3.10: Second order Godunov methods. In contrast to the first order Godunov method, sec-
ond order methods allow for non-zero slopes of the piecewise linear reconstruction. The left lower
panel shows two different slope limiting functions: monotonized central differences (blue) and
minimum modulus (green). The lower diffusivity of the 2" order methods comes at the price that
the method is no longer monotonicity preserving. The creation of new extrema and the increase
of existing extrema can be avoided with Total Variation Diminishing (TVD) schemes. The Sweby
diagram in the lower right panel shows the order of different flux limiting functions. The shaded
area is the part of the TVD region, where second order accuracy is guaranteed and excessive com-
pression of solutions is avoided. On the horizontal axis, we find the ratio of successive gradients
(r). We stop at = 3, since at this point the corresponding value of the flux limiter function (¢(r)),
shown on the vertical axis, reaches its maximum for all depicted limiters and stays at this values
for higher r (i.e. for MonCen and Superbee we find ¢(r > 3) = 2 and for MinMod ¢(r > 3) = 1).
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method shocks can be treated directly and sound waves and moving matter can be treated with the
same precision. As it is a finite volume scheme, it strictly conserves mass, momentum and energy.
However, it might run into problems with the internal energy evolution.

In conclusion we decided that a second order Godunov method is the best tool for our study.

3.9 Adaptive mesh refinement (AMR) and parallelization

In this section we will discuss methods to speed up the simulations. We already mentioned that
the number of dimensions has a large effect on the computational cost of a simulation. In addition
to exploiting the symmetries of the problem (i.e. lowering the number of dimensions) and limiting
the included physical processes (e.g. gravity or radiative cooling are computationally intensive)
run times can be shortened by using several CPUs in parallel. Technically, this is implemented via
MPI in the RAMSES and PLUTO code, which are used for this work. Basically the simplest way of
domain decomposition is sub-dividing the computational volume into parallel slabs. Cells on the
boundary of these slabs are passed to all adjacent CPUs, whereas cells inside the slabs are passed
to a single CPU. In practice in simulations with nonuniform resolution, cells are most commonly
distributed between CPUs using a Peano-Hilbert curve which minimizes the number of cells which
have to be passed to more than a single CPU and distributes the cells evenly among the CPUs. If
some regions of space contain smaller cells, passing parallel slabs of the same volume to all CPUs
could lead to sub-optimal load leveling.

Another way of speeding up mesh simulations is to use lower resolution in areas which are less
interesting. Whereas resolution naturally follows the distribution of mass in an SPH simulation,
this functionality has to be added to grid codes. If it is known beforehand, in which part of the
computational volume high resolution will be desired, it is advantageous to define a fixed non-
uniform grid. In most of our simulations, however, the areas with steep gradients move inside the
box. In such situations adaptive mesh refinement (AMR) is the method of choice. AMR optimizes
the computational cost of a simulation by increasing the resolution in crucial areas and lowering
it in smooth regions. Technically, the RAMSES code’s mesh has several levels: think of the cube
containing the computational domain as level zero: In level one this cube is divided into 2” cells,
where v is the number of dimensions. For level two a cell of level one is again subdivided into
2" cells. The advantage of AMR is that not all cells of a level have to be subdivided but that the
AMR region can follow the interesting regions of the simulation. For example the AMR region in
RAMSES can be computed by checking gradients of the primitive variables or via a geometrical
criterion. E.g. this can be helpful, if one checks for density gradients and the initial conditions in
a part of the volume contain a density jump in pressure equilibrium. In this situation it can help to
exclude a part of the volume from refinement.

In the RAMSES code the interpolation at the borders of regions with different grid levels can be
controlled with the interpol_type variable in the namelist file. Repeating the same simulation
(60 M, infinite cloud, spherical cavity) with interpol_type=0 (no interpolation), 1 (MinMod’)
and 2 (MonCen) showed that the feedback energy efficiency is similar in all three simulations.
This is expected, since the algorithm optimizing the extent and location of highly resolved areas
tries to put the grid borders in areas with small gradients.

In our production runs we used MonCen slope limiting for the Riemann solver (unless it became
unstable and crashed) and MinMod interpolation between grid levels. Simulations with this mix-

7See Sect. 3.7 for a definition of MinMod and MonCen.
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Figure 3.11: Sketch of numerical dif-
fusion. The amount of numerical dif-
fusion in a simulation is not only con-
strained by the choice of Riemann
solver but also by the angle between
the grid axes and the direction of the
flow. Transversal flows, as shown in the
right sketch are prone to higher numer-
ical diffusivity.

ture of slope calculations did not differ significantly form a simulation with the same interpolation
scheme for the Riemann solver and the grid levels, since the grid boundary should be in a smooth
region of the flow anyway.

3.9.1 Pitfalls of AMR

If AMR is uses in a simulation, one has to be aware of its side effects. For example in simulations
with moving AMR regions one can observe shocks seeded by the grid interfaces.

In our simulations we also observed cooling introduced by grid interfaces. The simplest test to
reproduce this behavior is a stellar wind in a homogeneous ambient medium with a geometrical
refinement criterion which limits the highest resolution grid to a cube centered around the feedback
region’s center. In this test also a gradient based refinement criterion is used. If the geometrical
criterion starts to limit the refinement in areas which the gradient based refinement criterion would
refine, the finest grid starts loosing track of the dense shell. Ultimately this results in enhanced
cooling near boundaries of the finest grid. Since the region’s boundaries now can happen be placed
near strong gradients interpol_type=0 makes the simulation stable enough to survive this phase.
This is related to the code crashes with negative temperatures behind the shock! Obviously this
problem is an over oscillation of the interpolation scheme near the edge of the grid levels. Interpo-
lating with scheme 0 made the simulations very stable but diffusive.®

3.9.2 Numerical diffusion

Numerical diffusion’ is a problem arising in grid codes, because the discretized hydrodynamical
equations have truncation errors which tend to make them more diffusive than the differential equa-
tions. This error is smaller for higher order schemes. Also incorrect evaluation of field gradients
(which can be caused by too coarse meshes or bad flux limiting functions) and an angle between
the flow direction and the grid axes increases this problem.

8 A re-run on the server OPTIMAL actually showed that in a 2D cut along z = 0 cooling in cells inside the bubble
occurs. I.e. radiative losses in cells with high temperatures and low densities were found. However, such cells should
not cool. This is e.g. seen at the positive x axis. Affected cells are close to the grid boundary and the problem is
caused by the geometric refinement criterion. The grids loose track of the dense shell. Another pitfall of the geometric
refinement criterion is seen in the velocity. Here, the geometric refinement criterion of the finest grid leads to a cross
like feature in velocity, since the grid boundary is reached first along the grid axes. Type 1 and 2 crash after 177 code
time units (output 12). This is the time when the geometrical refinement strategy already took over. In this phase the
finest grid cannot follow the dense shock any more.

“Numerical diffusion is also known as “artificial” or “false” viscosity, damping or dissipation.
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In the two computational domains shown in Fig. 3.11 density, pressure and velocity are constant.
The conservative passive scalar shown in blue has a step which is parallel to the flow direction
(small black arrow). If the flow is not parallel to the grid, numerical diffusion will smear out the
step in the conservative passive scalar. Numerical diffusion is zero if there is either no gradient of
the passive scalar (x, left sketch) or no velocity component (y, left sketch). Transversal flows (right
sketch) show gradients of the passive scalar and have velocity components in all directions. Hence
the discretization errors will lead to numerical diffusion.
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Chapter 4

Basic building blocks of simulations

The aim of this work is to combine stellar feedback with the physics of the ISM. If such simulations
are carried out with a grid code, this problem can be subdivided into a number of sub-problems
which have to be solved accurately (enough). Many of these simplified problems have an analytic
solution. Thus before putting it all together and looking at the simulations as a whole, we check
how well the code recovers the analytic solutions of these sub-problems and we will discuss how
we technically implement the stellar feedback. Readers not interested in these technical details can
skip this section.

As mentioned in Sect. 3.5, the typical sub-problem arising at every cell interface at every time step
is the Riemann problem. Basically the code subdivides the volume into cells. Each cell has an
average density, an average pressure and average velocities. At each cell face that lies inside the
simulated volume' the cell touches another cell. In 1D one can sketch this problem with a step
function e.g. in a density vs. spatial coordinate diagram. If the averaged velocities in both cells
are zero, this is the initial state of the Sod shock tube test (Sect. 4.2): Two media with possibly
differing gas properties are separated by a diaphragm. As soon as this barrier is removed, gradients
in the gas will lead to waves. In the hydrodynamic case, we will find an entropy wave, a rarefaction
wave and a density wave. The Sod shock tube test is sometimes also called “dam-break-problem”.

As soon as we are convinced that our numerical method can treat individual cell interfaces with
sufficient accuracy, we can proceed to blast waves. The Sedov-Taylor problem, which is a blast
wave without radiative cooling losses, should be recovered (Sect. 4.3).

Another agent in our models are stellar winds. Sect. 5.2 checks the conservation of mass and energy

in our feedback prescription. It also compares the solution to analytic solutions of a constant wind
without radiative cooling.

4.1 Waves, discontinuities and shocks

In the tests described in this chapter, we will come across different kinds of propagating waves.
Thus, we will first introduce the terminology and mention the most important relations (e.g. shock
jump conditions).

1Boundary cells are special cases, discussed in Sect. 3.2.1
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4.1.1 Contact discontinuity (CD)

If two gasses with different temperatures are in pressure equilibrium, one can observe a contact
discontinuity (CD) between them. Contact discontinuities propagate with the characteristic speed
of the media on both sides. Hence, there is no pressure- or velocity gradient across a contact
discontinuity. However, a sudden change in density is observed.

Thus, the EOS (Eq. 3.2), which connects energy and pressure, has to allow for the same pressure at
two different densities. Consequently the aforementioned situation cannot be found in isothermal
simulations, where the pressure is a function of density only. From the adiabatic EOS (Eq. 3.2) it
is obvious that this contact discontinuity is also an entropy wave.

Contact discontinuities can also arise for passive tracers. This kind of contact discontinuities can
also be found in isothermal simulations. For example, think of a jump in metallicity, which might
be caused by stellar yields.

The antagonists of contact discontinuities are diffusive processes, which lead to mixing of the two
media. Such mixing processes are described in Sect. 6. Whether the smearing of the discontinuity
is relevant for the time scales of interest, can be derived from the diffusion coefficients.

4.1.2 Rarefaction wave

Fig. 3.6 shows possible slopes of characteristic curves. Converging characteristics lead to a com-
pression of the wave whereas diverging characteristics form a rarefaction wave?>. The wedge
formed by diverging characteristics of the Euler equations is filled with a fan of characteristics.’
In the following, we will briefly derive the shape of the rarefaction wave’s profiles in the Sod
problem (details on this problem can be found in Sect. 4.2) to illustrate, how solutions can be found
using Riemann invariants. In the Sod shock tube the rarefaction wave is located between a static
medium with velocity uj, = 0, pressure py,, density pr, and sound speed c; 1, and a moving medium
with ug, pr, pr and c; g. From the location z, of the origin of the rarefaction fan, the location of
the head of the expansion fan can be found from the leftmost characteristic as xprp(t) = o — ¢ Lt
The tail of the rarefaction wave is found at zgp(t) = zo + (ur — ¢sr)t. Such rarefaction waves
accelerate the fluid smoothly: The continuous function of the velocity of a rarefaction wave rises
linearly between the left and right value:

0 if x < xRy
o (x—x0)/t+cs 1, _ 2 T—x0 :
uRp(x,t) = mUR =31 (T + Cs,L) if rprr < 7 < TRE 4.1)
UR if v > zrp

Where we used the Riemann invariant u + % to replace the left sound speed in the denominator

with ¢g1, = WT_luR + cgr. In addition to this linear velocity profile the rarefaction wave has an
exponential density profile. To express the density we use that entropy is a Riemann invariant of
the acoustic wave, which means that pp~” is constant. This is plugged into the ratio of the sound
speed to the left sound speed (this will be shown in Eq. 4.55) and leads to

cs(x, t) ) 2/(v-1)

Cs,L

o 1) = o ( (42)

Zrarefaction waves are also called expansion waves
3This solution follows from entropy conservation.
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Figure 4.1: In the upper panel of this sketch of shock formation we see an initially sinusoidal
pressure wave (a) which is distorted by pressure dependent propagation speeds (b). It steepens (c)
and ultimately the crest would overtake the trough (d). But when the state variable would become
multivalued (blue shaded area), a shock (red) forms. The location of shock fronts can be found via
shock fitting. This problem is also sometimes called “slope catastrophe” and can also be visualized
with the crossing of characteristics. The lower panel sketches such characteristics in the spacetime
plot. Higher velocities (e.g. purple line) are depicted with characteristics with lower slopes (a).
The gray areas in the lower panel indicate regions with crossing characteristics. The blue line in
the lower plots indicates the position of the corresponding upper plots in spacetime. In plot (d)
a shock path (red) is sketched in the gray area, where the characteristics cross. This path is also
found via shock fitting.

The Riemann invariant u + % allows us to use ¢s(7, t) = cy1, — L5 u(z, t) which we can combine
with Eq. 4.1 and Eq. 4.2 to find

2 vy—1lxz—x
’7"’1 ’Y+1 CS7Lt

To find the pressure for a given density, we can again use that entropy is a Riemann invariant of
the acoustic wave (i.a. pp~ " is constant) and find

plz,t) = pr ('O(ZL’@)v . 4.4)

If the velocity of the left state is not zero, a derivation of the rarefaction wave’s shape from the
Riemann invariants, can for example be found in LeVeque (2002, Sect. 14.12).

] 2/(v-1)
4.3)

ol 1) = pr, [

4.1.3 Shock wave and shock jump conditions

If characteristics of the same family cross, shocks form. An example is shown in Fig. 4.1. We
start with a sinusoidal wave and check the effect of pressure dependent propagation speeds. As
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Figure 4.2: This sketch shows a discontinuity (dashed line) moving with a velocity u4 into unper-
turbed gas. The notation uses the same indices we will also use for the shock in the Sod shock
tube test: the right unperturbed state (the pre-shock conditions) get the subscript “5”. Since it is
advantageous to use the rest-frame of the shock to find the Rankine Hugoniot jump conditions, the
velocities in this coordinate system e, and Uyighe are also given.

characteristics get closer, the wave profile gets distorted. Ultimately the characteristics cross, the
crest tries to overtake the trough and a shock forms. The curve, which connects the intersection
points of the characteristics in spacetime is called “shock path”.

In contrast to the smooth acceleration we observed in rarefaction waves, the fluid is accelerated
abruptly if it is hit by a shock.

In the section on rarefaction waves we derived the solution using conserved quantities. We will use
a similar procedure to derive the Rankine Hugoniot relations at the discontinuity from the con-
servation laws uy[U] + [F(U)] = 0 for the vector of the conserved quantities U (mass, momentum,
energy).

For this purpose, it is advantageous to express the velocities in terms of velocities in the coordinate
system comoving with the discontinuity: ,;gn: = U5 — ug = —ug and g = Uy — Ug, Where ugq is
the speed of the discontinuity (see also Fig. 4.2). This shock rest frame allows us to get rid of the
time derivatives. We will show it here with the conservation of mass: The first term of the volume
integrated equation of continuity % fv pdV + fv pVudV = 0is zero in the rest frame of the shock®.
Using the GauB3 theorem (also known as Green’s formula) the second term can be transformed into
a surface integral: fv pVudV = [ o PudA. For shocks with @ = (u, 0, 0) only the surface integrals
at the surfaces parallel to the density step are nonzero: f Ay Patiered Ay + f A P5UrightdAs. The
orientation of the surface with respect to the speed gives the sign for the integrals and leads to
Palliefy = P5Uright Where wiege and wygne are one-dimensional rest frame speeds.

In the next step we convert the velocities back to the system with a moving discontinuity. We start
from a coordinate system comoving with the discontinuity mass conservation (Eq. 3.7) and find:

Palllett =  PsUright 4.5)
P4l — PaUg = PsU5 — PsUg

w = uy ) (4.6)
41— Ps

4The flow of plasma can be treated like it was constant in time, because the time the shock needs to cross the step
is too small for significant energy loss through processes like radiation
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The relation from momentum conservation (Eq. 3.8) in a system comoving with the discontinuity

1S:

P+ Paliig
Ps+ P4UZ — 2psugug + p4U§

P4UZ - P5U§ — 2(pauy — psus)ug + (pg — P5)U§

Here p is the gas pressure and pu? is the ram pressure.

= D5t pSU?jght 4.7
= s+ psui — 2psusug + psuy
= P5 — P4 4.8)

We can eliminate the speed of the dis-

continuity w4 from the Rankine Hugoniot relations from mass (Eq. 4.6) and momentum (Eq. 4.8)
conservation and get:

(P4u4 - P5U5)2
P4 — Ps

pauy — psus — = D5 — D4 4.9)

Combining mass conservation (Eq. 4.5) and momentum conservation (Eq. 4.7) in the rest frame of

the shock leads to
9 o5 , 1 1

Wp(—— —)=ps — (4.10)
041&(/)4 p) P5 — P4

5

For energy conservation (Eq. 3.9) we can immediately divide the equation by pjtliese = P5Uright
(Eq. 4.5) from mass conservation and get the specific® internal energy e and the specific kinetic
energy 0.5u? of the fluid. We find:

2

U2 uri
ps 2 Ps 2
2ps + psu’ 2 2
o1 — 5 = 3T PSUnghe  ZPa Pallien i po 47
2ps 2p4
2.1 1
ey —e5 = b5 Ps ZM<___) with Eq. 4.10
2p5  2p4 2 Ps P4
1 1
€4 — €5 = ]#(p— — p_) (Rankine-Hugoniot equation)  (4.11)
5 4

Combining the Rankine Hugoniot equation (Eq. 4.11) with the EOS p = (v — 1)pe (Eq. 3.2) leads
to:

Ps D5 patps, 1 1

=)

Ps  Ps Ps P4
A very common way of expressing the Rankine-Hugoniot jump conditions is as pressure-, density-
or temperature ratios for both sides of the discontinuity. For this purpose it can be combined with
the EOS and expressed with Mach numbers. Since we will not directly use these formulations, we
refer the reader to the text book of Shu (1992, Eq. 15.35 to Eq. 15.37) for ratios with Mach numbers
and just show the density ratio, which we will need for the shock tube test. For this purpose the

Rankine Hugoniot equation (Eq. 4.12) can be rearranged to:

(4.12)

&_’Y%‘F’Y—'—Z—i—l

= (4.13)
ps Yty — B+l

>Specific means “per mass unit”.
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Figure 4.3: Sod shock tube test. This sketch is a variant of Fig. 3.7. The top panel and the
table show the initial conditions of the Sod shock tube. Pressures are shown in green, densities in
blue and velocities in red. The dashed lines in the lower panel separate the five zones of the Sod
similarity solution: (1) the unperturbed state of the denser medium, (2) the rarefaction fan, RF (3)
the contact discontinuity, CD (4) the fast shock wave and (5) the unperturbed state of the tenuous
medium.

4.2 Sod shock tube test

The Sod shock tube is a widely used test for the accuracy of hydrodynamics codes. Sod (1978)
proposed this test case to investigate the typical problems of finite difference schemes such as
oscillations behind shocks and smearing of contact discontinuities. Sod shock tubes are a class
of Riemann problems (see Sect. 3.5) with zero initial velocities. The initial conditions have a
discontinuity in pressure and density placed across the grid. On one side is a cold, low density gas
and on the other side is a hotter, denser gas. At time ¢ = 0 a diaphragm that separates those two
media is removed and waves start propagating. This setup is well suited to test numerical schemes,
since it produces steep gradients and strong shocks. The importance of this test is obvious, since
in a grid code discontinuities can arise at all cell boundaries.

Basically this test problem is one-dimensional, but if the simulation can deal with more dimen-
sions, putting the shock front not perpendicular to the cell faces can help testing how well the
code can deal with flows along cell diagonals (which is prone to numerical diffusion, as we saw in
Sect. 3.9.2).

4.2.1 Analytic solution of the Sod shock tube problem

The similarity solution of this special Riemann problem consists of five distinct zones (sketched in
the lower panel in Fig. 4.3):

1. unperturbed state of denser, high pressure medium (Eiherm 1, D1, P1, U1)
2. rarefaction wave propagating into denser medium (Eiherm 2, P2, P2, U2)
3. slowly moving contact discontinuity towards the less dense medium (Eiherm 3, P3, P3, U3)

4. fast shock wave moving into tenuous medium (Eiperm 4, Pa, P4, Ua)
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5. unperturbed state of tenuous, low pressure medium (Eiperm 5, Ps, P5, Us)

The states of the gas in zone 1 and zone 5 are known from the initial conditions . Also all thermal
energies can be found from the EOS (Eq. 3.2) which relates the thermal energies to the adiabatic
exponents, densities and pressures. Hence there are nine unknowns: ps, po, Ug, P3, P35 U3, P4» P4
and uy. Sect. 4.1.2 tells us that pressure, velocity and density in the rarefaction wave (p», po and
uy) are definite if the states 1 and 3 are known. Basically the rarefaction is a reversible, adiabatic
process and the Riemann invariants lead to the solution. As we saw in Sect. 4.1.1, another unknown
speed and pressure can be removed, since there is no mass flow through the contact discontinuity
and the pressure is continuous at the contact discontinuity. Therefore we define new quantities at
the contact discontinuity: a velocity us = uy =: u, and a pressure ps = ps =: p.. Moreover the
constant entropy in the rarefaction wave allows us to connect the state 3 to the state 1 via

. P3 K
Pec =M p_ . (4.14)
1

From the other Riemann invariant, the sound speed, we find:

2 - 2
e + [P _ L (4.15)
y=1V ps =1V m

Thus, we are left with three unknowns: p.., p4 and u.. The post-shock medium (state 4) is separated
from the pre-shock medium (state 5) by a discontinuity. We can connect these two states with the
Rankine Hugoniot shock jump conditions (Sect. 4.1.3). For pressure and density we can use the
density ratio from the Rankine Hugoniot equation (Eq. 4.13):

Pc Pc
&:717—54—’74—1)—5—1
ps bty -+l

(4.16)

For the post-shock velocity we use Eq. 4.9. Since the pre-shock medium is at rest (us = 0), we
can drop all terms containing w5 and find:

1 1
(pe — ps) <— — —> = u? . 4.17)
Ps P4

combining Eq. 4.14, 4.15, 4.16 and 4.17 leads to

C 2 D 2
w172 _ [1 ~ (&) ] , (4.18)

2
Pesy (1) -1z (-1 n

The solution of Eq. 4.18 can be computed with an iteration scheme. It provides one with p.. To
get ps, this result for p. has to be inserted into Eq. 4.14; p. and Eq. 4.16 lead to p,. Finally the
results for p. and p, are inserted into Eq. 4.17 to get u.. For the commonly used parameters in the
Sod shock tube test (7 = g, % =g, g—i’ = 0.1) the solution is p, = 2.93945p;. It can for example
be found via www.wolframalpha.com by typing

solve R*P*x(x-1)"2/(x*(G+1)-1+G)=2%G/(G-1)"2(1-(P*x)~((G-1)/(2G)))"2
for G=5/3,R=8,P=0.1
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Sod shock tube at t=0.25 for v = g

0.8

04 ~

02

|
0 0.2 04 =z 06 0.8
Density —— Velocity Pressure -~

Figure 4.4: This figure shows the analytic solution of the Sod shock tube as discussed in Sect. 4.2.1.
The vertical dotted lines show the zone boundaries.

The locations of the zone boundaries are found from the characteristics through the point zy, which
is the location of interface between the media at £ = 0. The head of the rarefaction wave travels
with the sound speed of the unperturbed high pressure medium. Thus, it is found at x, rr =
xo — cs,1t. The velocity of the tail of this wave is found by subtracting the sound speed from the
bulk velocity of the adjacent right region. The tail is thus found at z; g = x¢ + (u. — cs3)t. The
location of the contact discontinuity is set by the bulk velocity in this adjacent region, which leads
to zop = xo + u.t and for the shock the velocity can be found from Eq. 4.6): z, = xg + %t.
The solution for this setup at t=0.25 is shown in Fig. 4.4.

4.2.2 Initial conditions of the Sod shock tube test

The typical setup of the Sod shock tube test is summarized in Fig. 4.3. A density (p) and pressure
(p) jump in the middle of the computational volume separates two gas phases with p; =1, p; =1,
ps = 0.125 and p; = 0.1. In this notation subscript 1 denotes the initial state of the higher pressure
gas and subscript 5 the initial state of the lower pressure gas. Subscripts 2 to 4 are reserved for the
intermediate zones which will emerge later on. These zones will be separated by characteristics
(characteristics are discussed in Sect. 3.4). Both gasses are initially at rest (i.e. the velocities are
u; = us = 0). With the adiabatic exponent of a monoatomic gas v = 5/3 and the adiabatic
EOS (Eq. 3.2) this leads to the thermal energies Eiherm1 = €101 = p1/(y — 1) = 1.5 and
Etherm,S = €505 = 0.15.

4.2.3 Results of the RAMSES Sod shock tube test

In our simulations we will focus on the feedback energy efficiency of massive stars in molecular
clouds. Cooling losses of the gas near the contact discontinuity (CD) play an important role for
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Sod shock tube at t=0.25019 for v = g, MonCen flux limiter, HLLC Riemann solver
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Figure 4.5: This figure shows the results of the HLLC Riemann solver with MonCen flux limiting,
which is the preferred choice for our simulations. Lines in the upper panel show the analytic
solutions as presented in Sect. 4.2.1 and Fig. 4.4, the superplotted points are results of a simulation
carried out with the RAMSES code. The lower panel shows the differences between the result of
the simulation and the analytic solution. The residuals for all choices of Riemann solvers and flux
limiters in the RAMSES code are compared in Fig. 4.6.

this study. Additionally we want to trace the products of nucleosynthesis (i.e. 26Aland ®Fe).
Thus, selecting a Riemann solver and a flux limiter that perform well near contact discontinuities
is crucial. Unsurprisingly® it turned out that the acoustic and HLLC Riemann solver achieved the
best results for the contact discontinuity. The results of the HLLC Riemann solver with MonCen
limiting are shown in Fig. 4.5.

This test was carried out with all Riemann solvers implemented in the RAMSES code (for the con-
cepts behind these solvers see Sect. 3.5.1) and the MinMod and MonCen slope limiters (for details
on TVD slope limiting see Sect. 3.7). The results are shown in Fig. 4.6. For these simulations the
hydrodynamic module of the RAMSES code was used and AMR was switched on. The minimal
resolution was set to 2 cells in the computational domain. The maximal resolution was 29 cells
per unit length. The grid was refined whenever the relative variation of density, velocity or pressure

6As discussed in Sect. 3.5.1 the HLLC is a variant of the HLL solver, designed to perform well at contact discon-
tinuities.
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across a cell boundary was larger than 5%. In this case the data for newly refined cells was found
using a MonCen interpolation scheme for the conservative variables. Moreover reflexive boundary
conditions, a CFL of 0.8 (see Sect. 3.3) and the MUSCL scheme were used. The intended time of
the data dump was ¢t = 0.25. To compare simulations with different AMR grid levels, the parame-
ter nsubcycle has to be set accordingly to enforce the time step of the highest resolution grids on
coarser grid to get an output at roughly the same times.

The nsubcycle parameter controls how many sub cycles will be used for the next finer level. The
default value is 2 (in agreement to the dependence of the CFL condition on the grid size: if the
wave can travel half the length it may travel on the coarser grid, the time step size has to be halved
too). However, it is possible to set this parameter to 1. In this case the time step size from the CFL
of the coarsest grid with nsubcycle=2 will be used. For example for “nsubcycle=1,1,2,2” the
coarsest level 1, as well as the finer levels 2 and 3 would all use the CFL of level 3, whereas the
finest grid at level 4 would use its own CFL. Setting nsubcycle=1 slows down the code, which is
not a problem for small scale tests like the Sod shock tube problem, but permits outputs at desired
times.

As a consequence different choices of nsubcycle for the same grid levels in different AMR
setups will change the output times. Data is only dumped at time steps of the coarsest grid.
E.g. if the coarse grid has 23 cells in each direction and refinement up to 2'° is possible and
nsubcycle=3%*1,5%2 are used, the output times will be more sparse and probably differ more
strongly from the desired output times than if the coarsest allowed grid has 2° cells, the finest
possible grid has again 2'° cells and nsubcycle=3%1,3%2 is used. In this simulation the whole
computational box is always refined beyond 2* cells in each direction.

With the default setting for nsubcycle the actual times of the data dumps vary between the sim-
ulations with different slope limiters and Riemann solvers as shown in Fig. 4.7. In comparison in
Fig. 4.6 the time-step of the 2'° grid was also used for all coarser grids.

To avoid problems arising from the difference between the actual and the desired output times, the
analytic solution (Sect. 4.2.1) was calculated for the specific end times of the individual simula-
tions. Obviously the time dependence affects the locations of the zone boundaries. The small time
differences between the data dumps also have a slight effect on the slopes in the rarefaction wave.
A zoom in on the residuals near the contact discontinuity is shown in Fig. 4.6. The MonCen flux
limiter produces a less smeared out contact discontinuity than the MinMod flux limiter but at the
price of over-oscillations. In this test, this can be seen in the residuals for the LLF solver, displayed
in the right upper panel in Fig. 4.6. Under “messier” conditions, like near the aforementioned CD in
stellar winds and supernova bubbles, also the HLLC solver sometimes happens to run into negative
densities and crash the simulations. Hence we used the HLLC solver with MonCen limiting unless
we ran into problems. In this case, we restarted with HLLC and MinMod.

Figure 4.5 shows the result of HLLC and MonCen, which is the most accurate setup in the set
displayed in Fig. 4.6. The purple line depicts the solution for a conservative passive scalar. For our
purposes, it is interesting to check how diffusive the contact discontinuity is in different numerical
schemes, since this diffusivity affects the spatial distribution of our trace elements. Furthermore
mixing across the CD enhances cooling losses, since dense, but cold gas and hot dilute gas will
mix and lead to a dense, warm, efficiently cooling gas phase. In this setup mixing is found in about
15 cells near the contact discontinuity at ¢ = 0.25, as shown in Fig. 4.8.

Since RAMSES can also treat 2D and 3D cases, we have also tested the dependence of the shock
on the orientation of the grid. Therefore in 2D the shock tube test was once set up with the
discontinuity parallel to a grid axis and once with the discontinuity along the grid diagonal. In
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3D these two orientations of the shock and also a discontinuity parallel to the space diagonal were
tested.

The 2D and 3D results for diagonal and parallel shocks (Fig. 4.9 and 4.10) were in good agreement.
However, it is interesting that the diagonal shocks have a steeper contact discontinuity than the
parallel shocks — even though the distance between cell centers along the diagonal is larger than
along the axis (and lower resolution enhances numerical diffusion) and also despite the fact that
diagonal flows also have higher numerical diffusion than parallel flows. This looks like an effect
of the flux limiter.

4.3 Sedov-Taylor blast wave test

The Sedov-Taylor test follows the expansion of a blast wave. The blast wave is created by de-
positing a huge amount of energy in a very small volume in a very short time. In the context
of this thesis the obvious astrophysical application of strong shock waves created in this way are
early phases of supernova (SN) explosions. To be concise, the Sedov-Taylor blast wave describes
the adiabatic expansion phase of the SN remnant in which cooling losses are still irrelevant. This
phase follows the initial free expansion (with a duration of the order of few tens of years, which
ends when the swept up mass equals the ejected mass) and is expected to last of the order of 10*
years.

4.3.1 Analytic solution of the Sedov-Taylor blast wave

The analytical blast wave solution was independently discovered by several authors (Taylor, 1950;
Von Neumann, 1963; Sedov, 1993). The Sedov-Taylor blast wave is a self-similar problem and can
be tackled via dimensional analysis. For this purpose one assumes that the pressure of the ambient
medium is negligible (pyigne = 0) and that the ambient medium is at rest (vyigne = 0). Under these
assumptions the only remaining parameters for an estimate of the time dependent shock radius are
the v-dimensional mass density of the ambient medium (pyighe, With the unit [mass/length”]), the
deposited amount of energy (E, with the unit [mass length?/time?]) and of course time (t). The
dimensions of these quantities are:

[Pright] = ML
[E)] = ML*T?
t =T

where v indicates the number of dimensions. Under the aforementioned assumptions, it is thus
possible to convert distance, density, energy and time into a dimensionless variable \:

1

E,\ T

A=r <—°> tE (4.19)
Po

This dimensionless parameter can now be used to calculate how a change in one of these quantities
influences the others. The equations for gas-dynamic parameters in a shock-front in a gas with the
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Figure 4.6: Density at the contact discontinuity in a Sod shock tube test. The analytic solution at
the time of the data dump was subtracted from the numerical results obtained with the RAMSES
code. Rows show different Riemann solvers and columns show different flux limiters (MinMod
and MonCen). HLLC + MonCen (lower right corner) is the preferred choice for our simulations.
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Figure 4.7: Same as Fig. 4.6 but with the default setting of nsubcycle and thus differing output
times. The differences in the locations of CD (dotted lines) are best seen in the left lower three
plots. This plot motivates, why we went through the analytic Sod solution before this test with the
aim to identify the Riemann solver, which is best suited for our task.
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Sod shock tube at t=0.25019 for v = %, MonCen flux limiter, HLLC Riemann solver
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Figure 4.8: Zoom in on the density near the contact discontinuity of the Sod shock tube test with
the HLLC Riemann solver with MonCen flux limiting. Dotted lines show the analytic solution. At
t = 0.25 the media mix in ~ 15 cells in the vicinity of the CD.

EOS shown in Eq. 3.2 are:

1
FE 24v
Tshock = (j) t%% (420)
0
1
2 Ey \ 2+v y
Ushook = <—° ) R 4.21)
24+ v \apg
2
2/)0 4 EO 24v _ 2
shoc] = t 2+ . 422
Pehock v+1(2+v)? <ap0 (4.22)

To obtain the numerical value of the constant « (of order unity) we need to find the structure of
the solution inside the bubble, since « is found iteratively by integrating the energy in the bubble.
alpha is then adjusted until the desired input energy is reached.

In the scope of this thesis, the internal structure of the solution of the Sedov-Taylor problem is in-
teresting, since it yields the kinetic to thermal energy ratio. With a few changes a similar procedure
can be used to find the thermal to kinetic energy ratio in wind blown bubbles (Sect. 4.4.1).

We will only show the procedure used for the code tests in this thesis. The reader interested in ana-
lytic functions for the structure of the solution inside the bubble is referred to Sedov (1993, chapter
4 and pages 261 to 276). However, also they need to solve a part of the problem numerically.

For the internal structure, we exploit the symmetry of the problem and use the spherically sym-
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Figure 4.9: CD in a 2D Sod shock tube test. See also Fig. 4.6. On uniform grids (bottom panels),
lower resolution (left) enhances numerical diffusion in the parallel shock. However, diagonal
shocks exhibit a steeper CD (i.e. narrower region with nonzero residuals) than parallel shocks —
even though the distance between cell centers along the diagonal is larger than along the axis and

also despite the fact that diagonal flows lead to more numerical diffusion than parallel flows.
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Figure 4.10: 3D Sod shock tube test.

metric Euler equations with an ideal EOS

dp dp ov pv
ov ov 10p
po— 22 = 4.24
ot + Yor + por 0 (4.24)
pp~" | Opp"
5 +v o 0 (4.25)

Next we change the variables from (7, %) to A (Eq. 4.19). Scale-similarity, the ideal EOS (Eq. 3.2)
and the conservation laws in the rest frame of the shock (c.f. Eq. 3.3 to 3.5) permit us to write the
quantities at the location of the shock as:

Pright Ushock =  Pleft (Uleft - Ushock) (426)
prightvghock = Pleft (Uleft - Ushock)z + Dleft (427)
2

2 2 Y Pleft
Vghoc = Vleft — Ushock) + ——F—— . (428)
hock ( ! ) Y= 1 Pleft

Which can be rewritten to:

v+1

Pleft — ﬁpright (429)
2

Vleft = ﬁ Ushock (4.30)
2 2

Dlett = ﬁ Pright Ushock : (4.31)

These values are now used as boundary conditions at the shock. The structure inside the bubble is
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self-similar and can be described with the functions G(\), U(\), P(\):

+1
p(r,t) = G(A)%pﬂgm (4.32)
2
t) = AN— shoc 4.
U(T, ) U( )’y—{—lvh Kk ( 33)
2
p(r,t) = P(A)—,y Hpﬁghtvfhock : (4.34)
These substitutions are then inserted into Eq. 4.23 to 4.25. We use A = 7/7T'shocks % - %—? a% _
—\tiheck & and Qspesk — = Beck and find:
y+1\ 1 9G(\) | dU(N) | 2U(N)
A)—A _
(U( ) > )Gy ox T Tan T 0
2 oUN) _ v y—1 1 9P(\)
——UN) = A | ———=U(\ — 0
<'7+1 ) ) O\ 2 ()+7+1G()\) O\
2 —yP(\) 0G(N) 2 OP())
—vP(A U(A) — A — UN-N) = =0
o)+ (25000 - 2) TN (2 g - 5) 2K

For our Sedov-Taylor tests we used Mathematica to solve this set of three 1st order, coupled linear
differential equations (Code Listing A.1). We iteratively solved for the value of the constant o until
the numerical integration of the energy from Agpocx Where G(Aghock) = U (Ashock) = P(Ashock) = 1
equaled the released energy:

T'shock 2
Ey=(v— 1)27?/ p(r) (5 + UTW) Y~ tdr . (4.35)
0

This is shown in Code Listing A.2. As soon as « is found, also the location of the shock front
(Ashock) and the pressure, density and velocity near the shock are known. The dimensionfree solu-
tion for the pressure, density and velocity inside the bubble is shown in Fig. 4.11. Code Listing A.2
led to o = 0.507566, rgpock (0.688) = 0.986136 for t = 0.688. We checked the Mathematica results
for « for different evolution times and different numbers of dimensions with the code of Haque
(2006) and found no problems.

Thermal energy fraction

The self-similar solution of the Sedov-Taylor expansion in a uniform medium without mass loading
lead to a thermal energy fraction of 71.7% FEj, which is in accordance with Chevalier (1974);
McKee and Ostriker (1977); Ostriker and McKee (1988). This fraction will be used in our setup
of the blast waves.

4.3.2 Initial conditions of the Sedov-Taylor blast wave test

The initial conditions for the Sedov-Taylor explosion consist of a sphere with an internal energy of
10°! erg placed in a homogeneous medium.

As shown in Sect. 4.3.1, the equations for the gas-dynamic parameters in the shock front depend
on the number of dimensions taken into account. Thus, for our 2D RAMSES models, the perfor-
mance of the solvers at the Sedov-Taylor problem was tested with axisymmetric explosions with
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Figure 4.11: Internal pressure, density and velocity structure of the Sedov-Taylor blast’s bubble as
obtained with Code Listing A.1

only one layer of cells plus two layers of ghost cells for the boundary conditions in z-direction.
The simulations start at time ¢t = 3.46 x 10~*[code-time-units]. At the start of the simulation
the internal energy Fi,, = 1 [code-mass-unitcode-length-unit?/code-time-unit?] is assumed to be
stored inside a circular region with radius » = 0.02 [code-length-units] and constant energy density.
The start time ¢ = 3.46 x 10~ [code-time-units] was chosen, because the iterative solution (see
Sect. 4.3.1) carried out with the code of Haque (2006) with dimensionless coordinates and auto-
matically chosen initial « (started from command line using: ./sedov sedov.param.start -v
-auto) yielded o = 0.56 for a two dimensional blast with energy E,; = 1 [code-mass-unit code-
length-unit?/code-time-unit?] in an initially homogeneous ambient medium with p = 1 [code-
mass-unit/code-length-unit”] and adiabatic exponent v = g Hence according to Eq. 4.20 the two

dimensional shock front is at r = {*/g = 0.02 [code-length-units] at this time. The shape, size
and resolution of the region into which the blast energy is inserted have a strong influence on
the results (see also Sect. 5.2.1 and Sect. 5.2.3 on the feedback region). To insert the given total
energy, the volume weighted sum of the energy density inside this region has to be the desired
total energy divided by the volume of the region. Let us assume that all the blast energy would be
stored in just four cells with cell-lengths of 0.02 [code-length-units]. In this case these four cells
get internal energies of Eipem; = 625 [code-mass-unit code-length-unit/code-time-unit?], because
Fiot =1 = Fiherm,i (Ax)” = 4 x 625 x 0.022. Of course this cannot be done in a real sim-
ulation, because the grid would create an x-shaped outflow rather than an axisymmetric outflow.
In the simulations the feedback region radius is at least 8 cell-lengths and the internal energy of
the cells inside the spherical feedback region i8S Fihermi = w; (it;)“z with weights w; that account
for the fact that near the border of the region only a part of the cell : might be inside the feedback
region. The weights are normalized: > w; = 1.

4.3.3 Results of the Sedov-Taylor blast wave test

The Sedov-Taylor test is already relatively close to our production runs without winds. The simpli-
fications (compared to the production runs) are: (1) the Sedov-Taylor test ignores radiative cooling
losses and (2) the ambient pressure is unimportant for Sedov-Taylor blasts. The Sedov-Taylor
test shows us, (1) that our prescription of energy deposits actually manages to insert the desired
amount of energy into the computational box and (2) that energy-, mass- and momentum conser-
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vation works under this conditions (which are already close to the production runs) and (3) the
diffusivity of the numerical schemes. As for the Sod shock tube test, we ran this test with all
solvers and flux limiters. Since initial conditions for this test are distributed both with the PLUTO
and RAMSES code, we do not include the plots here. Basically, the test results reach the same
conclusion (HLLC + MonCen) as the Sod shock tube test.

4.4 Theories of stellar winds

The feedback of a group of stars is dominated by massive stars’. This is, e.g., shown in Fig. 2.18,
where the energy input from the most massive still existing star dominates. However, it is also
obvious if one considers the high luminosity of massive stars, the fast evolution (i.e. rather early
SN) the energy input from SN events (10°! erg) and the kinetic energy and mass loss rates of WR
winds.

Massive stars shape the medium surrounding them via ionizing radiation, stellar winds and SN
explosions. This work will not treat the effects of the ionizing radiation. Although the energy
in the stellar winds is about two orders of magnitude smaller than the radiative energy (e.g. Voss
et al., 2009; Ekstrom et al., 2012), stellar winds are very efficient in heating the surrounding ISM:
whereas the temperature in the Stromgren sphere is of the order of 10000 K, temperatures in the
shocked wind gas and the shocked ISM can be > 107 K (see also Lamers and Cassinelli, 1999,
chapter 12.1, page 357).

Stellar winds are a flow of particles escaping from a star. They are characterized by their mass
loss rate M and the terminal velocity vs, which is the velocity of the wind particles at a large
distance from the star. Winds of massive stars exhibit terminal velocities of the order of 10* km/s
(Lamers et al., 1995; Leitherer et al., 1999; Niedzielski and Skorzynski, 2002, see also Tab. 2.4
and Fig. 2.12). The expected mass loss rates for a 40 M, star are of the order of 107% M, per year
before the WR phases and up to > 104 M, per year during the WR phases (e.g. Meynet et al.,
1994; Meynet and Maeder, 2003; Ekstrom et al., 2012).

Voss et al. (2009) and also Abbott (1982) showed that the total energy input of winds of massive
stars is of the same order as the energy released in the SN event (10°! erg).

4.4.1 Wind theory of Castor et al. (1975)

The wind theory of Castor et al. (1975) describes an idealized spherically symmetric stellar wind,
which starts at ¢ = 0. It is characterized by its constant terminal velocity vyinq and constant mass
loss rate Myinq. When it flows into an ISM with not-negligible uniform density 7, the interaction
of the wind with the ISM creates a two-shock structure.

After the initial free streaming phase, which lasts for about < 100 yr and ends when swept up mass
equals the wind mass, the wind spends of the order of 1000 yr in an adiabatic phase. This phase
ends, when the cooling time equals the evolutionary time. Consequently the stellar wind transits
to the snowplow phase, which lasts longer than the aforementioned phases. Finally dissipation
destroys the wind bubble. For our study we are interested in the snowplow phase, since our aim is
to find out, how much of the feedback energy is lost via radiative cooling.

During the snowplow phase the structure of the wind can be subdivided into 4 zones (see also
Fig. 4.12):

"massive stars are defined as stars with high enough masses to undergo a SN explosion (not type Ia).
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(2-3)

Supersonic free streaming wind

The stellar wind drives a wave into the ISM. In this zone the radius-dependent density is
Pwina (1) = 47r]‘r42“3:?nd , since the mass per shell is constant. Also the temperature 7’ in this
zone is constant and lower than in zone (2). A pressure less gas would move with constant
velocity vying. As shown e.g. in Fig. 4.15, the velocity profile in this region is v(r) oc 1 — Tig

and the motion is supersonic.

The observational data of Gruendl et al. (2000) shows a clear offset between the H v emission
in the free streaming wind in and the O[III] emission in the shocked wind in RCW 58.
This suggests that this region in WR bubbles can indeed span a few parsecs in low density
environments.

Hot layer with shocked wind

The shocked wind layer is separated from the free wind region by the “inward facing shock™®.
During the transition through this reverse shock at the interface of zone (1) and (2) the gas
is heated and compressed. The density p increases by a factor ~ 4, as follows from the
shock-jump-conditions (see Sect. 4.1.3) for high Mach numbers and the velocity decreases
as can be seen from mass conservation: p; : ps = us : u;. The hot shocked wind zone is
almost isobaric and contains also a small fraction of swept up ISM gas besides the heated
wind.

The wind adds energy at rate I/ = %vwnd via a collision-less shock at small radii or via

Coulomb stopping of wind ions inside this zone.

With the mass loss M6 in 1075M/ year the vy009 wind velocity in 2000 km/s and ¢4 time in
Myr Castor et al. (1975) find:

: 6/35

) 8/35

~16/35

37/35
> tg erg/s

— Ly ray = 3.8 x 10%0%/® (M6v§000

Since the sound speed rises with 7' the Mach number in this zone is lower than in the free
wind region. Thus, the flow is subsonic in the hot region (2) and supersonic in zone (1).

Contact discontinuity (CD)

The CD at radius Rcp = 0.86 R separates wind material from swept up ISM. The expansion
velocity Rep is the same on both sides of the CD but a density jump is observed. This zone
is numerically challenging, since the resolution is problematic in this thin shell. However,
this zone is very important for our simulations: on the one hand it contains a large amount
of compressed swept up medium, since p is highest at the CD and on the other hand, energy
losses peak there and 7" at the CD is lowest, since radiative cooling becomes very efficient
at high p.

The hot gas (separated by the CD) expands into region (4) and back into region (1) causing
a two-shock structure.

8The direction of a shock is: hot medium — cold medium. At the interface (1) to (2) this is thus “inward facing”.
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(4) Ambient ISM

(2) Shocked wind

Figure 4.12: Structure of the wind bubble during the snowplow phase: ring structure with (1) free
wind, (2) shocked wind, (3) swept up ISM and (4) ambient medium. The location of the CD (R¢p)
is also indicated.

(3) Hot shocked ISM
The hot layer containing swept up and heated ISM is separated from region (2) through a
contact discontinuity and through a shock, where the ISM is compressed and heated, from
region (4). The gas moves at the same velocity as in zone (2). Analogous to the inward
facing shock, we also find a p jump by a factor 1/4 at the interface (3) to (4). This interface

: 1/5 . 1/5
is located at R, = 0.76 (EPL;S) — 928 <_MGZ§ooo) £ pe.
(4) Undisturbed ISM
The ambient, low temperature medium is assumed to be at rest.

4.4.2 Thin shell approximation

During the snowplow phase the width of the zone containing the shocked ISM is much smaller
than the radius of the bubble. Therefore the thin shell approximation can be used to describe the
evolution of the pressure driven shell.

Since we will need winds in 1D, 2D and 3D, we will use n-spheres for the thin shell approximation.
Basically a v-dimensional sphere with radius r has a surface

oI
Syart = v (4.36)
(%)
and a volume ,
0
Vot = — v (4.37)
vl (%)

where I is the gamma function with I'(3) = /7,I'(1) = 1 and I'(z + 1) = zI'(z). We consider
stellar wind bubbles that are placed in a homogeneous ambient medium with density py. We now
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assume that all mass inside the shell radius R(t) has been swept up into a thin, dense, high pressure
shell. We further assume that the pressure inside the shell is so much larger than the pressure in
the shocked wind region that it can be ignored in the momentum conservation of the compressed
shell (Eq. 4.38). With n-spheres equating the rate change of momentum with the pressure force in
v dimensions can be written as:

dM
dtv = S, 1R 1p (momentum conservation) (4.38)
M = poV, R (mass of swept up medium in shell)
p=(y-1) %  (EOS,Eq.32)
v = % (rate of bubble expansion)
dpoV, Ry 4f
Sl (- 1) S, R P (4.39)

If one assumes that the shell’s radius R and the total thermal energy £y, follow the power laws
Ry(t) o< t* and Ey,(t) o< t°, one can compare the exponents of ¢ in Equation 4.39. This leads to

(va+(a—1)—-1 = (v—1)a—va+b

b+2
= 4.4
v+ 2 (4.40)

and thus Ry(t) oc t®+2/("+2) The cumulative thermal feedback energy FEy(t) turns out to be
a fixed fraction of the cumulative total feedback energy E(t) = Lyinat’. Where the exponent b
discriminates several energy input modes: The energy inserted in a blast of a SN explosion would
be described with b = 0 and hence F(t) = E, = constant. The cumulative feedback energy of
a constant wind with luminosity Ly;,q as described by Castor et al. (1975) is E(t) = Lyinql With
dLg—ti“d = 0. Sequential star formation can be described with E(t) = Lynqt?.

Under the assumption that pdV work is the dominant thermal energy loss, the relation between the
kinetic and the thermal energy can be found from energy conservation. I.e. the increase of the total
energy E equals the change of the kinetic and thermal energy:

dEtotal o dEth +dEkin
e dt dt
dR, v dR 2 dv.
DLuinal’™" = bLywat’ ' — B (v —1) =58 4 g (L8 L 285
d d (7 )det+ i\ 2 e T
(v—=1Drv(b+2) vib+2)+2(b—v)
= —FE Ein
0 th U+2 + k y+2
(y—=1Dv(b+2)
Ein - E
) (v 2)
) —1 2
Lofh — Ethb(V+ )+ (v =1 v (b+2)
b(v+2)
2
Eg = b(v+2) Lowat® . (4.41)

byv +2b+ 2vv — 2v

For a constant energy input (b = 1, £ o t) in 3D with 7 = g this yields Eyy, = %Lwindt and

Eq. 4.40 leads to Ry(t) oc t3/°. In 2D the power law is Ry(t) oc t*/* and the thermal fraction
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is By, = 1Lyinat. Sequential star formation (b = 2, Ey, o t?) leads to Ry(t) oc t¥*2) je. in
2D R(t) o< t and in 3D Ry(t) oc t*/°. For a blast (b = 0, constant £ = El) the Sedov-Taylor
solution Ry(t) oc t*/¥*2 is recovered but the constant thermal energy content of 0.72F, cannot be
found from Eq. 4.41. However, as shown in Sect. 4.3.1, it can be found via an integration of the

density/pressure/velocity structure.

We will now solve for the proportionality constant « using Ry(t) = at»+2 in the equation for
momentum conservation in v dimensions (Eq. 4.39).

)/ (v+2) dt(b+2)/(V+2)

dev(o+2 4~ (6+2)/(v+2) g
v+1 V. dt — -1 V—lE
o PoV a1 (v ) v, th
ot — b(v+27° (-1 Sy—1 Lyina
(D?v + b2 4+ 3bv + 2v + 2b) (byv + 2b+ 2yv —2v) V2 pg
For 3D, v = 2 and constant energy input (b = 1) we get S, V7> = = and o = ¢/ 22222 L;;“d
and thus Ry(t) = 0.76 ¢/ %t:&/ °. The solution for the swept up shell is:
b(v+2)" (y — 1) S5t Lumay (042 e+2)
Ry(t) = (4.42)
(b?v + b2 + 3bv + 2v + 2D) (bfyu —i— 20 + 2yv — 2v)
b(v+2)° (v — 1) Spgt Lanapb=) Yy L
() = v 07 443
us(t) (b2y+b2+BbV—|—2y+2b)(b’yl/—|—2b+2”yy—2u) v+2 (4.43)

Internal structure of the stellar wind bubble

In Sect. 4.3.1 the internal structure of the Sedov-Taylor blast wave has been discussed. For a point
explosion we had a constant total energy F(t) = E, = constant and a constant mass M = M, in
the computational volume. If we consider a stellar wind, we have an energy source that constantly
increases the ISM mass M = M, + Mt and the total energy F = E, + M U1

We can now again use the adiabatic, ideal EOS

D2

€= ——— (3.2)
pism(y — 1)
and the Rankine Hugoniot relations (Eq. 4.6 to 4.11; Lagrangian system of the shock)
2
vy = v
2 S SWB
7+1
P2 = PSWB
v—1
_ 2 2
b2 = T 1PISMUSWB

to define dimensionfree functions
p(r,t) = G(A)po
v(r,t) = UMy
p(r,t) = P(A)pov;
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Figure 4.13: Internal pressure, density and velocity structure between the CD and the unperturbed
medium as obtained with Code Listing A.3. The superplotted points on the lower panel are a
PLUTO model for a wind of a 60 M, star without radiative cooling.

and insert them into the spherlcally symmetric Euler equations. We use A\ = r/ R, 2 = %% =
)\R mand vz — _V Rhll and find:
1 0G(A)  OU(N)  2U(N)
CN=-Nem—an Tan T
ou(N) 2 1 0P\
(UN) = A) o VU()\)+ el ) o 0
4 —P(A) 0G(N) ( )
——P(A U —A = 0
L PO)+ (U0 = X) =E S0 = (U0) =0 =5

We solve again with Mathematica and find the structure of the bubble between the CD and the
shell (Code Listing A.3 and Fig. 4.13). The thermal energy fraction in the 3D constant wind model
with v = 2 1s Etotal as expected from Eq. 4.41.

4.4.3 Steady-state wind of Chevalier and Clegg (1985)

The Chevalier and Clegg (1985) steady-state model basically treats the feedback region like our
code: the source term in the energy conservation equation () = E /V, is the energy loss rate di-
vided by the volume of the spherical feedback region (with radius R) V' = %Ri” and the source
term in the continuity equation ¢ = M /V is the mass loss divided by the feedback region’s vol-
ume. The difference to our simulation is that this model neglects the surrounding ISM and thus
no driven wave develops. The Chevalier and Clegg (1985) solution (Chevalier and Clegg, 1985,
Fig. 1) is similar to the behavior of the free wind zone near the feedback region in our simulations.
Comparing this zone in our simulations to the Chevalier and Clegg (1985) solution is thus a good
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test for our implementation of the stellar feedback. However, the Chevalier and Clegg (1985) so-
lution is not a good model for feedback in regions with not negligible ISM density, since it cannot
describe regions with shocked wind or swept up medium.

The basic equations of the Chevalier and Clegg (1985) model are:

1 d
Continuity equation: 0 (pur2) =q (4.44)
. r2dr
with ¢ = M /V in the feedback region and ¢ = 0 elsewhere.
d dP
Momentum conservation: pu—u = —— —qu (4.45)
dr dr
1d 2 P
Energy conservation: —— | pur? NI S | Q (4.46)
r2dr 2 ~v—=1p

withQ = E /V in the feedback region and ) = 0 elsewhere.

Chevalier and Clegg (1985) assume that the energy is thermalized and hence the flow is subsonic
in the feedback region. The wind speed u reaches the sound speed ¢ = /7% at the radius of

the feedback region (R). Outside the feedback region the flow becomes supersonic. The relation
between the Mach number M = % and the scaled radius r /R, is derived by integrating the above
mentioned conservation laws (Eq. 4.44, 4.45 and 4.46).

These relations are:

3y + 1/M2 —(3y+1)/(57+1) N1+ 2/M2 (v+1)/[2(5v+1] .
143y B =—  (r<R) (4.47)
L+37 L+7 R
B — 1+ 2/M2 (v+1)/[2(v—1] 2
M2/ =1 L A _ (_) R 448

Here we will only briefly show how the relation outside the feedback region (Eq. 4.48) can be
obtained. The relation for the feedback region (Eq. 4.47) can be derived in a similar way but the
algebra is more cumbersome than for the equations without source terms.

First the conservation equations without source terms are used to find the relation between pressure
and density:

d
o (pWQ) — (4.49)
du dP
—_— = 4.
pu dr dr (4.50)
du 4 47
=0 4.51
udr + vy—1dr ( )

. . . u? v P d 2
Eq. 4.51 was simplified by using Eq. 4.49 to remove 5 + 1@ (pur ) =0
T—Lp
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Combining the momentum conservation (Eq. 4.50) with a the energy equation (Eq. 4.51) leads to

1dP ~y d%
— . = 0
pdr ~v—1dr

1dP  ~ 1dP 5 _d;

—_— - _rF — 0
pdr+fy—1pdr v—1 dr
1dP d-
i P2 = 0
p dr 7 dr
vy
d (l> di
The chain rule leads to A )
dr pY~tdr
s P P
the pressure density relationis -~ = 0or — = =0 (4.52)
9
dr P Po

Where the subscript 0 indicates quantities at the center of the feedback region. Integrating the
continuity equation (Eq. 4.49) results in

r2up = R*ugpo . (4.53)

R is the radius of the feedback region. An integral over the momentum conservation (Eq. 4.50)
combined with Eq. 4.52 leads to:

2 1 1 R
d% S / —dP with — = —2—_p~1/
p p Po
1
1 (u2 B u2) B PO/'Y 1 <P1—1/w P1_1/'y)
2 O py 11y \°
1 P, P P
—(u2—u3):L 02 With02:’y—andug:co
2 Yy=1\po »p p
u? 2 c?
2 =i\l a
0 Y 0
u v+1 2 2

Rl _ hl . (4.54)

The relation between pressure and density (Eq. 4.52) can now be used to rewrite the ratio between
the adiabatic sound speeds (c = /7% :

2
P
o7 ]‘;7 " with Eq. 4.52
¢y Plp
2 -1
2 (@) (4.55)
@ \p

For the integral over the energy equation it is convenient to use the adiabatic sound speed c and the
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Mach number M = u/c:

2 P
/<%+L1—>dr=0 with M = &
y—1p c
14 2/M2
/ M2C2%dr=o with M, = 1
/y_
M2C2’7—1+2/M2 6274—1
v—1 Oy —1
14+2/M2 2
1T LR 6 . (4.56)
v+1 c?

We now combine the relations found from the integrals over the conservation equations (Eq. 4.54
to 4.56) to recover the Chevalier and Clegg (1985) solution at large radii (Eq. 4.48). We start by
combining Eq. 4.55 and Eq. 4.56:

L+ 2/a2\ YO
M2/ (1) (7 +2/ ) Sy with Eq. 4.53
y+1 P
14+ 9/M2 1/(v=1) 9
apla-y (1= 142/ - (i> “ with Eq. 4.54
Y + 1 R Uo
14+ 9/M? 1/(v=1) 9 1 92 2
areey (1142 = (%) /1 - =5 with Eq. 456
v+1 R =1 v=1¢
oy (1= L 2/MANYOTY (1)2 y+1 2 y+1
v+ 1 \R y—1 ~y—1M2(y—1+2/M?)
_ 1 a9/ /20 2
Ap2e-y (- L+ 2/ME _ (i) L (448)
v+1 R

The solution for the radius dependent Mach number outside the feedback region (Eq. 4.48) is
shown in Fig. 4.14 together with a subset of our spherically symmetric simulations of stellar winds.
In our simulations the sonic point is outside the feedback region and the density of the surrounding
medium plays an important role. Combining Eq. 4.53, 4.54 and 4.55 leads to the relation between

radius and density:

= ! . (4.57)

2 1
e} okl 2 (p i
po) ~—1 y—1 \ pro

In Fig. 4.16 this expected density distribution for the free wind zone is compared to the inner zones
of our simulations with the rotating 60 M, and 40 M, stellar models (details on the implemen-
tation of the time dependent wind can be found in Sect. 2.7). The free wind zones of the models
seem to follow this trend, but further away from the feedback region, the non-negligible density
of the ambient medium leads to a solution which is better described by the Castor et al. (1975)
models. With Eq. 4.52 the radius-density relation Eq. 4.57 can be converted to a radius-pressure
relation:

r
R

- . (4.58)
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Chevalier and Clegg (1985) — 60M; 2 Myr
| 600N 3 Myr
---- 60M 4 Myr
-------- 40M¢ 2 Myr
——40M¢ 3 Myr

40M¢ 4 Myr

40M¢ 5 Myr

Mach number

r/R

Figure 4.14: Mach number of the Chevalier and Clegg (1985) steady state wind model (black solid
line) compared to our simulations. Our models reach Mach number 1 (dashed line to guide the
eye) outside the feedback region (radius O to R). Generally the Mach number in our models is
lower than predicted by the Chevalier and Clegg (1985) models. This is caused by (1) the driven
wave into the ISM, (2) cooling, (3) varying wind speeds and mass loss rates.

This relation is shown in Fig. 4.17. Again the free wind regions of the simulations can be described
with this model, but beyond the reverse shock Chevalier and Clegg (1985) has to fail. Finally

2 2 -1
Eq. 4.53 and 4.55 can be combined to & = <@R—>7 which in turn combined with Eq. 4.54
0

u T2
leads to the velocity-radius relation:

v oy+1 2 ug B2\

w oy —1 y—1\ur?

r v+l u\"T =1 (T e

LA R A 4.59
R 2 (uo) 2 (uo) ] (4.59)

Fig. 4.18 shows that the velocity structure found near the feedback region in our simulations does
not follow this model. Since the velocities found in the simulation were normalized by the velocity
found at R = 1, which is lower than expected (i.e. the sonic point is found further outside than
expected), the simulated velocities seem to be higher than the model. Actually, this is only due
to the deviations at the point used for the normalization. The summary plot Fig. 4.15 compares
Eq. 4.57, 4.58 and 4.59 to a simulations with a rotating 60 M, stellar model in a dense medium.
Again the velocities show the problem that the velocity at the border of the feedback region is
lower than expected.

4.5 Snowplow phases

The Sedov-Taylor phase (r o< t*/>, v o< t3/5, Eq. 4.20 and 4.21) ends when the cooling time
becomes comparable to the dynamical time. In the subsequent radiative phase a dense shell forms
and the expansion is driven by pdV work in this so-called pressure-driven snowplow phase (r o<
t2/7 v o< t75/7 Eq. 4.61 and 4.62). In this phase, the pressure in the dense shell is the same as
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Figure 4.15: This plot shows normalized density, velocity and pressure profiles for a 60 M, star
immersed in an ISM with a density of 100 particles cm ™2 after 4 Myr. For the normalization the
values of the outermost cell in the feedback region were used. The solution close to the feedback
region is indeed following the trends in Chevalier and Clegg (1985, fig 1) but the free streaming
region is driving a wave into the ISM and thus further out the solution shows the behavior of the 4
zone model of Castor et al. (1975).
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0.01 : e : S
0.1 1 10

Chevalier and Clegg (1985) — /R

Figure 4.16: The Chevalier and Clegg (1985) density function ( £ ~ ¢ (%)72) compared to
simulations. The simulations were normalized by the density value at the edge of the feedback
region.
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Figure 4.17: The Chevalier and Clegg (1985) pressure function ( p% ~ (}%)_10/ 3) compared to
simulations. The pressure at 2 = 1 was used for the normalization.
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Figure 4.18: The Chevalier and Clegg (1985) velocity function ( - — 2) compared to simula-
tions. Fig. 4.14 shows that the simulation is less hypersonic than expected. The velocities in the
simulations seem to be too high, since they were normalized by the (too low) velocity at R = 1.
However, the velocities in all simulations seem to approach the same asymptotic limit in the free
wind zone.
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in the shocked zone. When the pressure in the cavity has decreased enough, the remnant enters
the momentum conserving phase (r o< /4, v o t=3/4, Eq. 4.65 and 4.66) in which the shell’s
momentum leads to further expansion of the bubble. We will briefly show, how these power laws
can be derived.

4.5.1 Adiabatic pressure driven snowplow

In this phase the pressure inside the bubble pushes the shell into the ambient medium. Near the
contact discontinuity a density peak forms. Behind the shock, at the outer side of the bubble’s
shell, a layer of heated, swept up medium at 4-times the ambient density develops. (The maximal
compression of an adiabatic mono-atomic gas leads to a factor 4 in density.) Despite radiative
cooling losses the pressure in the shell gets much larger than the bubble pressure. Material starts to
flow into the cavity and the bubble shell’s density profile becomes symmetric. The largest cooling
losses arise at the CD on the interface between the dilute bubble material and the swept up ambient
medium.

During phases in which the pressure of the adiabatic expansion of the hot dilute (and therefore not
cooling) interior of the bubble pushes the shell (c.f. Ostriker and McKee, 1988; McKee and Os-
triker, 1977), the change of momentum (here written with the v-dimensional sphere from Eq. 4.36
to 4.37)

d(r (1) %5

Vu dt
p i

= S, 1 (1 ()" Poubble (4.38)
N’

bubble surface

can be combined with the law of adiabatic expansion
ubble (¢ O\
Poubbie (1) :(T()> . (4.60)
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This way the exponents of  become

va+(a—1)—1 = (v—1—-v7v)a
a = 2/(2+v7)

For 3D (v = 3) and an adiabatic exponent of 7 = 2 we find @ = 2. Thus dimensional analysis
leads to

r(f) = o) (4.61)

(c.f. Eq. 12 of McKee and Ostriker (1977) for the pressure-driven phase: r (t) = 107932/ %LZSNtQ/ )
which in turn leads to a velocity of

dr (t) = 2¢ v/ (24v) (4.62)
dt 2+ vy
and a kinetic energy of
2
B, = _m2v = 0.5pV,r"v? 12v(1=7)/(2+v) (4.63)

As explained e.g. in Bandiera and Petruk (2004), Eq. 4.42 describes the fully radiative case whereas
Eq. 4.61 can be used in the adiabatic case where no kinetic energy of the incoming flow is radiated
in the outer shock.
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4.5.2 Momentum conserving snowplow

When the pressure inside the bubble has decreased to the ambient pressure, momentum conserva-
tion governs the further expansion of the bubble. Assuming that all ambient medium is swept up
in a thin, dense shell (thin shell approximation), this shell is at radius r (¢) moving with a velocity

dr(t . .
of % at time t. Momentum conservation

d (T (t))l/ d?"(t)
V,——4 =0
P ai
leads to a radius of
r(t)=b""a+ (v+1)t

and a velocity of
dr (t)
dt
which leads to a kinetic energy of
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where a, b and ¢ are constants.
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Chapter 5

Method: codes and code modifications

Our numerical simulations were carried out with well tested, publicly available astrophysical Eu-
lerian hydrodynamics codes. Namely PLUTO (Mignone et al., 2007), RAMSES (Teyssier, 2002)
and ATHENA (Stone et al., 2008, 2010).

Our main modifications of the codes are time dependent stellar feedback, a minimal density to
numerically stabilize the very dilute hot zones inside the bubbles, a cooling-heating prescription as
described in Ntormousi et al. (2011) which allows for a multi-phase ISM and a threshold density
below which radiative cooling is not taken into account. The latter can be used to stabilize cells
near the CD and will be discussed in Sect. 6. Moreover we added a passive scalar to follow the
spread of the radioactive trace element 2°Al in our simulations.

We will start by introducing the codes (Sect. 5.1). After this, in Sect. 5.2, we will then focus on
the implementation of the feedback, we discussed in Sect. 2.7.

5.1 Hydrodynamic codes

Important considerations for the code choice were (in this order) the available Riemann solvers
(Sect. 3.5.1), the implemented grids and physics modules and the available knowledge in the CAST
group'. We decided to use different codes for different aspects of the problem. E.g. the spherical
mesh in PLUTO made this code the best choice for 1D simulation, whereas following the trace
element 26 Al was easier to implement with RAMSES. Finally the impact of radiation transfer was
tested with ATHENA in the scope of the ISIMA summer school, since the GPU radiation transfer
module of RAMSES was not yet publicly available at this time.

5.1.1 The PLUTO code: spherical symmetry

PLUTO (Mignone et al., 2007, 2012) is a modularized mesh code for astrophysical magnetohydro-
dynamics, developed at the Dipartimento di Fisica, Torino University in a joint collaboration with
INAF, Osservatorio Astronomico di Torino and the SCAI Department of CINECA. The code web
page is http://plutocode.ph.unito.it/. Although PLUTO is a freely-distributed software there is no
publicly accessible code repository.

"http://www.usm.uni-muenchen.de/CAST/
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For this work we used version 4.0 of PLUTO. It is MPI parallel and includes Cartesian, cylindrical
or spherical meshes in 1, 2 or 3 dimensions. While the static grid version if entirely written in C,
adaptive mesh refinement (AMR) requires the Chombo library and needs C++ and FORTRAN in
addition to C. We used it for classical hydrodynamics (HD) with thermal condition and optically
thin cooling. Our standard choices were RK3 explicit time-marching algorithm, MinMod piece-
wise interpolation scheme and the HLLC Riemann solver. PLUTO also includes the Two-Shocks,
Roe, HLLD, HLL and Lax-Friedrichs Riemann solvers.

We decided to use this code for our 1D spherically symmetric models. The most important reasons
for this choice were that PLUTO provides this desired mesh, thermal conduction and the HLLC
Riemann solver. The latter is important, since our models require an accurate treatment of the con-
tact discontinuity in the stellar wind bubbles. The PLUTO expertise in the CAST group (members
of the CAST group published Ballone et al., 2013; Schartmann et al., 2012; Burkert et al., 2012;
Schartmann et al., 2011; Junk et al., 2010; Schartmann et al., 2010, 2009, using this code) is also
one of the pros for using the PLUTO code. To adapt PLUTO to our scientific problem, we had to
modify the cooling-heating routine to allow for a multi-phase ISM and to add a source term for
our time dependent stellar feedback.

5.1.2 The RAMSES code: radioactive tracers

RAMSES (Teyssier, 2002) is an astrophysical magnetohydrodynamics mesh code that was orig-
inally developed in Saclay to study large scale structure and galaxy formation. It is free soft-
ware for non-commercial use only and can be downloaded from its bitbucket web-page: https:
//bitbucket.org/rteyssie/ramses. RAMSES is written in Fortran90, uses MPI and provides tree-
based adaptive mesh refinement. The hydrodynamics module comes with five choices for the
Riemann solver: exact, acoustic, LLF, HLL and HLLC. The TVD slope limiters MinMod and
MonCen are implemented. This work uses version 3.10%, which includes a Cartesian grid in 1, 2
or 3 dimensions. The physics modules include gravity, a cooling-heating module (discussed also
in Sect. 2.2.6), star formation and supernova blasts.

In this work RAMSES is used for all simulations using a Cartesian grid. The most important
reasons for this are the large choice of Riemann solvers, the user-friendly implementation of AMR,
the simple implementation of additional passive scalars (which we need to follow our radioactive
trace elements) and source terms (i.e. our stellar winds) and last but not least the RAMSES cooling
module patch of Eva Ntormousi (Ntormousi et al., 2011) to allow for a multi-phase ISM.
Disadvantages — and thus reasons to resort to PLUTO or ATHENA — were that spherical symmetry
was not implemented in version 3.10 and that ionization (on GPUs) was still in development in
this version.

Expertise of the CAST group with this code is documented by papers and theses (Moeckel and
Burkert, 2014; Ntormousi et al., 2011; Behrendt, 2011). Hints on passive scalars by R. Teyssier
during his lectures at the Evora Supercomputing school® are gratefully acknowledged.

2More specifically we used the ramses.tar.gz from July 12 2011 for our patches — also the git version at bitbucket
still calls itself 3.10 although it has major differences e.g. the aton package. Ionization tests were carried out with
the ramses.tar.gz version from December 11t 2011 which is close to the GPU branch of the bitbucket site, which
identifies (still) as version 3.07

3http://www.lca.uevora.pt/supercomputing2009/
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5.1.3 The ATHENA code: the effect of ionization

ATHENA (Gardiner and Stone, 2005, 2008; Stone et al., 2008) is a mesh code for astrophysical
magnetohydrodynamics. It is parallelized with MPI. In contrast to PLUTO and RAMSES, ATHENA
only comes with static (fixed) mesh refinement. The available mesh geometries are Cartesian or
cylindrical.

One advantage of ATHENA is that it was developed for studies of the interstellar medium. Thus,
many groups in the community use it and develop customized versions with additional physics
included. For example, our work on elephant trunks was carried out with the code version of Mark
Krumbholz, which treats ionizing radiation, in the scope of ISIMA 2010*. However, in this thesis
we do not include our work on ionizing radiation. Nevertheless, our future work on massive stars
might use ATHENA simulations. The standard version of ATHENA (v4.2) implements compressible
hydrodynamics (and MHD) in 1D, 2D, and 3D, thermal conduction and optically-thin radiative
cooling. As in RAMSES an arbitrary number of passive scalars can be advected with the flow.
ATHENA can treat gravity.

Further advantages are the comprehensive documentation and test suite available on the code web
page https://trac.princeton.edu/Athena/ as well as the large choice of Riemann solvers (force, two-
shock, exact, HLLE, HLLC, Roe) for hydrodynamics. Up to 3rd order reconstruction (piecewise
parabolic) is implemented.

An example for the expertise of the CAST group with this code 1s Moeckel and Burkert (2014).

5.2 Implementation of mass, momentum and energy feedback

The insertion of the time-dependent stellar feedback® in our simulations can be considered as
a generalization of the Chevalier and Clegg (1985) steady-state wind model (Sect. 4.4.3): in a
spherical region in the simulated volume time-dependent source terms are added to the energy
conservation equation and the continuity equation. We call this zone the feedback region or “the
driver region” since it is driving the bubble expansion. At each time-step the feedback model
yields a mass loss rate and a kinetic energy loss rate. These values are multiplied with the time
step length and divided by the volume of the spherical feedback region. The resulting densities are
added homogeneously to the mass density and the internal energy density in the feedback region.

If the gas in a cell inside the feedback region has a nonzero velocity, the increase of the mass in this
cell due to stellar mass loss will lead to an increase of the kinetic energy. We take this into account
when we add the feedback energy. In most models, we added the remaining feedback energy
as thermal energy. Basically, adding all feedback energy as kinetic energy or using the energy
fractions of a Sedov-Taylor blast (Sect. 4.3) leads to the same result, however, on a Cartesian
mesh, adding kinetic energy leads to more asymmetries than adding thermal energy.

In simulations with spherical symmetry (i.e. in our PLUTO models), the feedback region is placed
in the center of the grid. If a Cartesian grid is used (i.e. in all RAMSES models), the radius of
the feedback region is always resolved with at least three grid cells since smaller feedback regions
produce spikes along the diagonals of the grid. This problem was also discussed in Brighenti
and D’Ercole (1994). On the other hand too large feedback regions lead to oscillations inside

“http://isima.ucsc.edu
>The feedback is also called “the wind” since it is injecting energy and mass into the simulation over a longer time
period than a supernova (SN) burst.
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the feedback region resulting in spikes® along the grid axes. The kinetic energy increase is not
influenced by the feedback region’s size. If the feedback region is small enough to resolve a free
streaming region, the temperature in this zone is lower than the temperature in the wind bubble.
This does not change the bubble evolution but it leads to a higher kinetic energy fraction’ and a
slightly lower feedback energy efficiency.

On a Cartesian grid, spherical feedback regions are produced by weighting cells which are only
partially inside the feedback region by the amount of the overlap of the cell with the feedback
region. To achieve this consistently for all simulations independently of the number of CPUs used,
a mask with weights is calculated for all AMR levels at the start of the simulation. This mask is
only recalculated if the feedback region moves with respect to the grid. We use a Monte-Carlo
method to find the weights: the code randomly generates positions in the cell and checks which
fraction of them is situated inside the feedback region. The typical number of random points per
cell was 100 corresponding to a 10% error in the volume fraction in these cells. This error leads
to slight asymmetries of the feedback region, but does not introduce errors in the total amount of
inserted mass or energy, since the energy and mass input are converted to densities using the actual
volume of the feedback region, which differs from 4?”1”3 due to the Monte-Carlo errors. Since these
volume fractions are only calculated at the start of the simulation and stored in a mask for stars not
moving inside the computational box, the slightly asymmetric shape of the feedback region stays
constant during the simulation.

Sect. 5.2.1 and 5.2.3 give details on our implementation of the stellar feedback in the different
codes. In all of them we find the current mass loss rate and energy injection rate via a table look-
up in the feedback models at the end of each time step of the code. The stellar mass and energy
feedback during the last time step is then added homogeneously as a source term in a designated
feedback region.

5.2.1 PLUTO code modifications

Code Listing B.15 shows a minimal implementation of a constant stellar wind. In this code snippet,
we see two different methods to insert a constant wind with a terminal velocity of 10% cm s~ and
a mass loss rate of 3 x 1075 M, per year. The preprocessor directives (#ifdef-directives) in lines
22-24 switch between no wind (neither THERMALWIND nor INFLOWING_WIND defined),
kinetic or thermal energy input. According to these choices, lines 140-181 either insert the thermal
energy of the wind inside the domain or use the wind’s kinetic energy in an inflow boundary
condition. In the rest of Code Listing B.15 we see the definition of the units (lines 53-55), the
specific heat ratio (line 57) and the initial conditions (a homogeneous cloud, lines 59-63). In the
latter the velocities are not shown, since they are also set to zero in the default template for init.c.

Time dependent stellar feedback

Code Listing B.16 shows the implementation of a time dependent stellar wind with a subsequent
SN explosion in init.c. Again, we define feedback modes (lines 15-22), set the code units and
global parameters (lines 54-62) as well as the initial conditions (lines 78-83) where we added

9Some authors call this phenomenon “artificial jets”.

"The free streaming region is not removed from the efficiency plots. After 1 Myr the free streaming region of a
60 M, starinan ~ 100 cm~3 contains ~ 2% of the kinetic energy. Its share of thermal energy is larger than 2% [no
percentage calculated yet].
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a tracer to monitor energy losses via radiative cooling. Lines 85-97 contain code for tests with
viscosity and SNe with linear velocity profiles. These lines are not used in our “standard models”.
Lines 113-138 take care of reading in old models. The new computational volume is typically
larger than the volume in the read-in simulation. Therefore all cells are initialized with our desired
initial conditions and only the cells present in the old simulation are overwritten with the read-in
data. In the boundary conditions routine (lines 155-390) we use the tabulated wind data. This
routine calculates the feedback region volume (lines 194-214). The kinetic energy feedback (lines
215-236) is similar to the aforementioned constant wind. Lines 241-276 can merge cells, if the
mean free path becomes larger than a grid cell length. This part of the code was only used for
tests, not for production runs. In lines 278-372 we finally find the time dependent stellar feedback.
The routine first checks, if a SN explosion is due (lines 278-280). If this is the case, it either adds
the SN ejecta derived from the Ekstrom et al. (2012) final masses or a canonical value of 3 M,
(lines 292-304). Which one of these two SN models is used, depends on the preprocessor directive
GENEVA. Lines 311-315 reduce the time step length shortly before the SN. If the SN is not due
yet, and the Geneva stellar evolution models (Sect. 2.7.1, data from Ekstrom et al., 2012) are used,
the code interpolates in the table (line 319). In lines 324-329 the code evaluates the cavity size and
adds a SN explosion if a pre-defined bubble size is reached before the time when the SN would
be due. This was used for consistency checks with Tenorio-Tagle et al. (1990) who use a constant
wind and add the SN explosion when a given cavity size is reached. Lines 346-355 add the time
dependent wind and lines 355-367 add a constant wind.

The interpolation routine is shown in lines 391-472. Basically, we read in a table when this in-
terpolation routine is called for the first time (lines 409-430). Then we do a binary search in the
table (lines 439-469) and use the time step length, the code units and the desired feedback region
volume to get mass and energy densities (lines 469-470).

Calls to the feedback routines

The code in boundary.c (Code Listing B.1) checks if there is still a massive star that has not
exploded and calls UserDefBoundary from Code Listing B.16 if it has not been done yet for
this time step. This check is necessary since the predictor corrector scheme would add the stellar
feedback several times (twice for RK2 and three times for RK3) otherwise.

pluto.h (Code Listing B.8) now also contains a global variable for the time of the SN explosion
and the SN routine and the wind table look-up are listed in prototypes.h (Code Listing B.9).

Radiative cooling in a multi-phase ISM

The RAMSES cooling-heating module of Ntormousi et al. (2011), which is discussed in Sect. 5.2.3,
has been ported and merged with the PLUTO cooling table. This is shown in Code Listing B.10 of
radiat.c. However, from Code Listing B.3 it can be seen that we do not use radiative cooling
inside the feedback region and that we have moved the minimal temperature check to Code List-
ing B.10. Moreover we created an artificial equilibrium for the 1 000 K models in the cooling table
Code Listing B.2.

Other patches

The patches in Code Listing B.6 (input_data. c) help us restarting the simulation: Our strategy
is to start with a small box, but before the shock can reach the boundary, we restart the simulation
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and add more cells of unperturbed medium. This increase of the simulation volume is carried out
when a minimal number of unperturbed cells (i.e. cells with zero velocity, initial density and initial
pressure) is reached. This is not visible in the source code since this process is controlled with
a shell script (Code Listing B.20). The minor patch in Code Listing B.11 takes care that after a
restart with a larger volume the output files are still numbered consecutively. Basically, this only
makes post-processing of the data easier. Code Listing B.12 only got some additional debugging
output. Our modifications in Code Listing B.13 avoids outflows from already empty cells. Code
Listing B.7 shows our modification of the minimal pressure and minimal density. This patch was
needed due to the very strong gradients in our models. Code Listing B.14 shows, at which place
the thermal conduction coefficient can be modified. It also shows that we do not use thermal
conduction in the feedback region. Code Listing B.4 indicates at which place the viscosity can be
changed. In Code Listing B.5 we added new units and limits.

Typical code settings for our models are shown in Code Listing B.18. An example of pluto.ini
containing run-time parameters can be found in Code Listing B.17. Code Listing B.19 shows an
example for a post processing routine.

5.2.2 Code tests

We have tested our implementation of the stellar feedback by comparing to the analytic models
(Sect. 4.3, 4.4.1 and 4.4.3), by checking the total energy content in simulations without radiative
cooling and finally by comparing to published simulations (e.g. Thornton et al., 1998; Tenorio-
Tagle et al., 1990). None of these tests showed problems in our implementation [TO DO: add plots
or describe test results].

5.2.3 RAMSES code modifications

Code snippets of our RAMSES patches are found in the appendix. We will briefly discuss the new
modules and the modifications of existing modules.

Stellar model database

The module geneva_models (Code Listing C.2) contains the tabulated mass loss and 26 Al data of
Ekstrom et al. (2012) as well as feedback energies computed as explained in Sect. 2.7.3 and SN
data as described in Sect. 2.7.4. Moreover, it provides a routine to convert all feedback data to the
units used in the simulation, an output routine and a routine for linear interpolation in the feedback
tables which can also add up feedback for several stars.

Feedback region and mask

However, the subroutine read_driver (lines 56-213) in the module driver (Code Listing C.1)
can also read in stellar feedback from an ASCII table and convert it to code units. This is used for
example for the Voss et al. (2009) population synthesis models. The subroutine read_sn (lines
214-291) in this module reads tabulated SN data. The allocated driver arrays can be deallocated
with the subroutines remove_driver (lines 292-309) and remove_sn (lines 310-324). This mod-
ule also comes with a routine for linear interpolation of the read-in tables (interpolate_driver,
lines 325-376). The subroutine add_SN (lines 377-403) searches for SN explosions occurring dur-
ing the present time-step and returns the mass and energy feedback.
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We now need to find the region into which the stellar feedback will be injected. This will be
done with a mask: We define an array that tells us, how much of the cell’s volume lies inside the
feedback region: 0.0 for cells fully outside the feedback region, 1.0 for cells fully contained in the
region and a number between 0.0 and 1.0 for cells partly inside. For the latter case we use the
fraction of randomly generated positions in the cell that lie inside the feedback region. For 1D or
2D we also have a subroutine which calculates the volume fractions analytically.

To flag the feedback region, the subroutine allocate_driver_mask (Code Listing C.1, lines
404-588) uses the FORTRAN derived data type driver_mask (lines 38-51). This object contains
the number of cells along the feedback region radius (plus one), the cell size, the actual volume of
the feedback region found via Monte-Carlo which slightly differs from % and an n-dimensional
mask for a volume containing the feedback region plus approximately one cell in each direction.
The size of the boundary layer is not exactly one cell in each direction, since the center of the
feedback region does not have to be aligned with the grid. Of course, placing the feedback region
center asymmetrically on the grid does not sound like a wise choice for a star in a homogeneous
cloud. However, the idea behind this implementation is that at some point our simulations will
contain multiple stars, represented by the feedback regions, which will have proper motions.

The routine now allocates the array driverl of such objects with as many entries as grid lev-
els and fills it with data. The module contains two functions that read data from this object:
get_driver_volume (lines 589-598) can read the actual volume and get_driver_mask (lines
599-655) can look up how much a given cell overlaps with the feedback region. Since RAM-
SES always loops over the grids by vector sweeps, the subroutine driver_weights_fixed (lines
671-726) does this look up for a whole array of dimension(1:ngrid). Before RAMSES exits,
driver1 has to be deallocated. This is done by the subroutine deallocate_driver_mask (lines
656-670). For moving feedback regions, it might be advantageous to find cells belonging to the
feedback region on the fly. This can be done with subroutine driver_weights (lines 727-857).
If the stellar feedback is inserted as kinetic energy, the subroutine driver_vector (lines 858-981)
finds radial vectors. Finally subroutine print_xyz (lines 982-1061) helps to find out in which cell
the code encounters a problem. The module also contains a routine with analytic weights for 2D
simulations.

Calls to the feedback routines

These two new modules now have to be called by RAMSES. The feedback parameters are stored
in amr_parameters.f90 (Code Listing C.3). These parameters can be set in the namelist and
are read-in by read_params.f90 and read_hydro_params.f90 (Code Listing C.4 and C.5).
The mass and energy injection of the star(s) are taken into account if the run time parameter
nstars in the namelist (an example is shown in Code Listing C.27) is larger than zero. In this
case, the code will add the newly emitted mass (total mass and radioactive tracers) and the internal
energy (unresolved kinetic wind energy, radiation pressure) to the density resp. energy in the feed-
back region. The size and location of this feedback region are set using the run time parameters
r_driver, x_driver, y_driver and z_driver in the namelist. The feedback data is loaded in
init_time.f90 (Code Listing C.6). If the run-time parameter ifgeneva is set to .true. in the
namelist, the model grid, the stellar masses and the star formation times in the run-time parameters
genevayear, mstars and tstars are used. Otherwise the code searches for tabulated feedback
data. The data file names are stored in file_driver (default: wind.dat) and £ile_sn (default:
sn.dat). After every time step, courant_fine.f90 (Code Listing C.7) calls the feedback inter-
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polation routine. It also uses the weights of the mask to identify feedback regions. Moreover, it
takes care of the decay of 26 Al and ®°Fe. If the preprocessor directive CARINA is used, the feed-
back subroutine wind uses sequential star formation. The preprocessor directive EKIN switches
between compiling the code for kinetic energy feedback or code where the feedback is inserted
mainly as thermal energy. The preprocessor directive TMIN ensures that the total energy is al-
ways larger than the kinetic energy. Further preprocessor directives are TMAX, which sets a
maximal temperature (used for tests only), DECAYINTERVAL and KAHANBABUSKA that
avoid problems with number precision in the tracer decay and in large sums, and THII which
sets 7' = 10.000 Kelvin in the feedback region. Finally the feedback arrays are deallocated by
clean_stop in update_time.f90 (Code Listing C.8).

To control the adaptive mesh refinement in the feedback region we patched flag_utils.f90
and hydro_flag.f90 (Code Listing C.9 and C.10). This is advantageous since too low refine-
ment leads to x-shaped outflows whereas very high resolution leads to bouncing waves inside the
feedback region which can be computationally costly.

Radiative cooling in a multi-phase ISM

The standard treatment of cooling and heating processes in RAMSES is discussed in Sect. 2.2.6.
For our simulations we used two modified versions of cooling_module.f90. One version is
shown in Code Listing C.19, the other one has been described by Ntormousi et al. (2011). The
latter contains cooling tables generated with the CLOUDY code. In the version shown in Code List-
ing C.19, the preprocessor directive artificial_ISM (lines 416-447) establishes a warm phase
by using a density dependent temperature floor. We need this, since we want two stable thermal
phases in our simulations: a cold cloud and a warm, dilute ISM. Cells, which are undisturbed by
stellar feedback should neither cool nor heat. For our production runs, we used the version of Ntor-
mousi et al. (2011), but tests with the artificially stable ISM showed that the dense bubble shell
will always loose almost all its thermal energy and cool to the equilibrium temperature (i.e. the
minimum temperature in the artificially stable ISM). Hence the feedback energy efficiency of both
cooling modules was of similar order. It turned out that mixing across the contact discontinuity
has a very strong influence on the feedback energy efficiency.

We patched cooling_fine.f90 (Code Listing C.18) to switch off cooling in the feedback region.
Technically, this is implemented with a mask. All cells inside the feedback region plus a layer with
a width set by coolplus in the driver parameters in the namelist do not suffer radiative cooling
losses.

Since our simulations focus on the feedback energy efficiency, it is important for us to be able to
monitor the energy losses via radiative cooling. We thus store the loss during the last time step
for every cell. Since we do not want this array to be advected like a passive scalar, we store it at
nvar+1. To do this, we increase the array size in init_hydro.£90 (Code Listing C.14). To avoid
loosing the data during memory defragmentation, we also patched load_balance.f90 (Code
Listing C.15). The losses per time step are analyzed in output_hydro.f90 (Code Listing C.16)
and re-set in amr_step.f90 (Code Listing C.17).

Initial conditions

Patches to hydro_parameters.£90 (Code Listing C.11) and init_flow_fine.f90 (Code List-
ing C.12) enabled us to set the initial distribution of radioactive tracers and to read in SPH data.
For this purpose we also wrote the module sph (Code Listing C.13). The preprocessor directive
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JIM uses the settings for the SPH data provided by Jim Dale (ISM structures in the simulations
presented in Dale and Bonnell, 2011). If it is not defined, the data format of the SPH data provided
by Clare Dobbs (molecular clouds in the simulations presented in Dobbs et al., 2011) is used.

Other patches

Additionally we have set default units in amr_commons . £90 (Code Listing C.22). These defaults
can be overwritten by different choices in the namelist. Since some of our simulations (namely
the simulations with stellar feedback into the clouds of Clare Dobbs (Dobbs et al., 2011)) observe
energy flowing out of the computational box, we monitored such energy losses with the new mod-
ule in outflow.£90 (Code Listing C.23). Finally we often re-started our simulations and thus we
patched init_amr.£90 (Code Listing C.20) since RAMSES does not allow to change the initially
chosen output times, which is quite inconvenient for re-simulations when the initial simulation
showed an interesting phase in the model’s evolution that should be analyzed in more detail. Our
version of godunov_utils.f90 (Code Listing C.21) removes outflows from almost empty cells.
It can also ignore almost empty cells when the CFL (sect 3.3) is evaluated. For the HLLC solver,
the preprocessor directive ALUSTOP only allows the radioactive tracers to flow into cells with
temperatures above a temperature threshold.

To stabilize our simulations we also avoid negative internal energies in set_uold (Code List-
ing C.24, godunov_fine.f90). We remove outflows from almost empty cells and reset the
pressures in these cells in subroutine godfinel (Code Listing C.24, godunov_fine.f90) and
subroutine ctoprim (Code Listing C.25, umuscl.£90). godunov_fine.f90 can also be used to
reset the cooling losses.

The Makefile in Code Listing C.26 summarizes the newly defined preprocessor directives.

5.2.4 Code tests: 2°Al feedback

The 2°Al feedback was implemented as passive scalar with a decay law (courant_fine.f90,
Code Listing C.7). Since time steps can be a small fraction of the half life time of 2°Al, the decay
law can also be invoked after a given amount of time instead of being used at every time step. This
helps to ensure that the decay is not lost due to limited numerical precision. However, during most
of the simulations the time steps were large enough that the decay could be calculated at every
time-step for all cells. Figure 5.1 shows the convergence of the approaches in the simulation of
a 60 M, star in a homogeneous medium of 100 particles cm~? after 60 kyr. For all five runs, 8
processors and AMR with grid levels 5 to 7 (i.e. at least 2° cells but up to 27 cells along each axis)
were used.
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Figure 5.1: This figure shows the convergence of different decay routines. The back arrow in-
dicates the location of the border of the feedback region. The turquoise line shows a simulation
without decay. A simulation in which the decay of 26Al is calculated every 50 kyr is shown in blue.
Obviously this line has to overestimate the decay since it assumes that all the 26Alin the cell has
been there since the last calculation of the decay. The simulation with decay at every time step
(green, typical time step ~ 50 yr) coincides with the simulation with 500 yr between decay cal-
culations. Number precision problems are expected if the time steps become of the order of years
or smaller. It is interesting to note that different parallelization methods or a different number of
processors influenced the result (green line and red line). It has to be tested if this is just a problem
of the boundary cells if domain decomposition happens inside the driver region or if this problem
always occurs if AMR is combined with MPL.



Simulations

The main questions addressed in the simulations described in this work are, how long massive star
feedback takes to disrupt a Giant Molecular Cloud (GMC)(GMC) (— molecular cloud lifetimes),
how much of the feedback energy can be converted to kinetic and thermal energy of the GMC gas
(— feedback energy efficiency, energy reservoir for driving of turbulence) and which fraction of
the cold GMC gas is heated (— mass distribution of ISM phases). Another important aspect of
these simulations was to check whether a scaled Voss et al. (2009) feedback model, which is based
on the mean of 100 coeval stars between 8 and 120 M, is a suitable model for the feedback of an
OB association with ~ 10 massive stars. This is of importance for modeling the Orion-Eridanus
Superbubble (OES), because the feedback of Voss et al. (2009) destroys homogeneous GMCs very
efficiently and produces bubbles significantly larger than observed. To assess if the Voss et al.
(2009) prescription is a realistic model for the feedback of a typical® OB association, we compared
its influence onto GMC:s (1) to the influence of the feedback of individual Monte-Carlo realizations
of an OB association with 10 stars between 8 and 120 M, and star formation with a dispersion (o)
of 1 Myr (as described in Voss et al., 2010) and (2) to feedback of individual massive stars.

For all simulations in this work we use a cooling-heating prescription describing a cold neutral
medium (CNM) and not molecular clouds (" ~ 10-30 K and n ~ 1000 particles cm~3). This
prescription does not include ionization, cosmic ray heating, C*, CO, C or HyO cooling.

8We call an OB association “typical” if its stellar mass distribution has a high probability to be drawn from the
assumed IMF.
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Chapter 6

1D: Feedback efficiency in spherical
symmetry

We start to investigate the amount of energy massive stars can convert to kinetic energy of the
surrounding ISM with one-dimensional spherically symmetric models. The big advantage of 1D
simulations is that they make it feasible to search a large region of parameter space in a short time.
The obvious drawback is that non-radial motions (e.g. hydrodynamic instabilities in the bubble’s
shell) cannot be taken into account. We will thus assume that the retained energy in the 1D models
is just an upper limit and re-simulate the most interesting models in more dimensions. The 1D
simulations were carried out with the patched PLUTO code (Sect. 5.2.1) and contain a single,
massive star with 60 M. As we have shown in Sect. 2.7.5, this is a valid first approximation
for feedback in GMCs. The stellar feedback is calculated from the mass loss rate of the rotating
models of Ekstrom et al. (2012) as described in Sect. 2.7.3. The implementation in the code is
discussed in Sect. 5.2.1.

With the 1D models it is possible to study the feedback energy efficiency’s dependence on resolu-
tion. Our simulations use a static mesh with up to 250 cells per parsec. We assume that the star is
placed in an infinite, homogeneous cloud and start with a computational box of 5 pc. During the
simulation, we monitor how many undisturbed cells of ambient medium are left and add another
5 pc of undisturbed medium to the computational box if the number of such cells drops below
100. The standard assumptions for the cloud material in this study are solar metallicity, a density
of pp = 2.2 x 10722 g cm™3 and a pressure of py = 1.48 x 10712 erg cm™3 corresponding to a
temperature of approximately 37 K. This phase of the ISM is in cooling-heating equilibrium if we
use the same cooling model as Ntormousi et al. (2011) (see Fig. 2.1 for the cooling-heating equi-
librium). The cooling-heating equilibrium temperature 7,,(n) depends on the cooling model. We
added an artificially stable gas phase for the initial conditions (ng, 7p) if this ISM phase was not in
cooling-heating equilibrium in the chosen cooling model. The number density (n) of ~ 100 cm™3
resembles the average density of molecular cloud complexes as shown in Sect. 2.5. It is known
that molecular clouds exhibit a fractal structure, which will be addressed in our future work with
models taking more dimensions into account.

Our work extends the published stellar feedback energy efficiency models in two important aspects:

1. Inall simulations shown in this section, we follow the energy content of the simulations from
star formation until several million years after the SN, when peak velocity in the bubble shell
becomes smaller than the sound speed of the ambient medium. At this time the shell is not
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infinitely thin and the highest velocity is found near the highest density. We argue that at
latest at this point turbulent motions will lead to break-up of the shell and very efficient
mixing (and energy deposition) in the ambient medium. Therefore, we follow the evolu-
tion of the models substantially longer than it was done in the work of Tenorio-Tagle et al.
(Tenorio-Tagle et al., 1990, 1991; Tenorio-Tagle, 1996). Thornton et al. (1998) also stop the
simulations after 13 time of maximal luminosity (Zy)s (defined in Sect. 6.1.1), which is in
most models shortly after the transition to the momentum conserving phase (Sect. 4.5.2).

We test how stellar winds and variations of the wind strength affect the feedback energy
efficiency.

Observationally, the impact of the wind of the SN’s progenitor star is illustrated for example
by the shell of the progenitor star around SN 1987A reported by Wampler et al. (1990), the
wind shell of a 25 M, star seen in the SN remnant G296.1-0.5 (Castro et al., 2011) or the
stellar-wind envelope seen in SN 2006aj (Sonbas et al., 2008).

However, in the literature on feedback energy efficiencies stellar winds are either ignored
(e.g. Thornton et al., 1998) or assumed to be constant (e.g. Tenorio-Tagle et al., 1990, 1991;
Tenorio-Tagle, 1996). In our simulations, it turned out that ignoring winds is problematic:
Table 6.2 shows that the amount of mechanical luminosity! that can be converted to shell
motions differs between models, which insert all energy in a blast (a SN) and models where
stellar winds are energy sources over long periods of time. Similar effects were observed
by: Tenorio-Tagle et al. (1990, 1991); Oey and Massey (1994); Oey (1996); Tenorio-Tagle
(1996). The reason for the higher feedback energy efficiencies of continuous energy injection
processes is that WR winds of the progenitor star create a bubble in the ISM. Blast waves
of SN explosions in such cavities undergo an almost loss-less expansion until they hit the
cavity walls. As a consequence, wind-blown bubbles delay the time of maximal luminosity
(defined in Sect. 6.1.1) and increase the amount of retained energy, since such cavities can
act as pressure reservoirs. When the blast hits the cavity walls, so-called catastrophic cooling
in the dense shell of swept-up ambient medium sets in (Tenorio-Tagle et al., 1990; Smith and
Rosen, 2003). This process (strong radiative cooling losses caused by a SN blast wave hitting
a pre-existing shell) is a likely explanation for the X-ray emission in excess of an adiabatic
model in X-ray bright superbubbles (Chu and Mac Low, 1990; Arthur and Henney, 1996;
Oey, 1996).

In the first part of this chapter (Sect. 6.1) we will discuss wind-less reference models and proceed
to time dependent winds in Sect. 6.2.

6.1 SNe without progenitor winds

The models discussed in this sub-section do not take the stellar winds of the SN’s progenitor
star into account. Hence at the time of the SN explosion the ambient ISM in these models is
homogeneous without pre-existing stellar wind bubbles. One of the goals of this section is a
consistency check of our setup with the published feedback energy efficiencies of Thornton et al.
(1998) and Tenorio-Tagle et al. (1990).

"“mechanical luminosity” is the energy input inferred from the mass loss rate and estimated wind velocity.
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6.1.1 Previous work

A very well studied case of a SN explosion in the literature is the deposition of Fgy = 105! erg
(also called 1 FOE) into a homogeneous ambient medium with a number density of ng = 1 cm™3.
The mass of the SN ejecta differs between the studies (e.g. Tenorio-Tagle et al. (1990) use 4 M
and Thornton et al. (1998) use 3 M) but has — as shown in Tab. 6.1 and Sect. 6.1.3 — only a minor
influence on the feedback energy efficiency.

The study of Thornton et al. (1998) also covers ambient densities better matching to GMCs. To
compare models with different ambient densities, they normalized the simulation times with the
time, when the largest energy losses due to radiative cooling occur in the simulation. This time is
called “time of maximal luminosity” (%;). Please note that despite this name it does not correspond
to the maximum in the SN light curve, which is caused by radioactive decays. Thornton et al.
(1998) found a feedback energy efficiency of ~ 10% after 13 ¢, for a wide range of ISM number
densities (n = 0.001 to 1000 cm~?) and metallicities (log (Z/Z,) = —3.0 to 0).

6.1.2 Grid of models

As a parameter study, a large number of simulations was run with ambient densities from 2.2 x
107210 2.2 x 10722 g cm ™3 (see Tab. 6.1) in order to check the influence of the ambient pressure
on the resulting feedback energy efficiency. The temperature of the ambient medium in the study
of Thornton et al. (1998) is 1 000 K. Tab. 6.1 also contains models with 7, (n¢) = 37 K, since this
is the cooling-heating equilibrium temperature for a density of 2.2 x 10722 g cm™? if the cooling
prescription described in Ntormousi et al. (2011) (see Fig. 2.1) is used. A subset of these models
(no stellar wind, ambient density 2.2 x 10722 g cm™?) is also shown in the uppermost part of
Tab. 6.2.

Our reference model for this section is: 7,q(n9) = 37 K ambient medium temperature, ny =2.2x
10722 g cm~3 ambient number density, cooling function as described in Ntormousi et al. (2011)
(Fig. 2.1), 0.32 pc feedback region radius, Sedov-Taylor like energy ratios in the initial conditions
(Sect. 4.3.1) and 11 M mass loss during the SN explosion (Sect. 2.7.4). The influence of the
parameters in the simulation was checked by varying just one of them at a time. Since this leads
to a large grid of models, we only show a selection in Tab. 6.1. The models in this table differ in
more than one parameter from each other.

Low order interpolation functions (i.e. linear interpolation) and the two-shock solver were used to
avoid numerical issues at the sharp discontinuity between the hot bubble and the cold shell. Other-
wise over-oscillations near the contact discontinuity would build up and cause negative pressures
and spurious energy gains.

6.1.3 Findings and discussion

For SN explosions without prior stellar wind bubbles in a homogeneous ambient medium with
2.2 x 10722 g cm™3, solar metallicity and a temperature of 1000 K Thornton et al. (1998) find
a feedback energy efficiency of about 8% after 13 ¢, (times of maximal luminosity, defined in
Sect. 6.1.1). At this time we find similar feedback energy efficiencies for this model and also
for our reference model (Tab. 6.1). However, when the shell velocity has decreased to the sound
speed of the ambient medium just 0.11% of the SN feedback energy are still retained in a model,
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p t t/to  Fyn(shell) Eg,(total) r

[g cm™] [kyr] [10°° erg] ~ [10°° erg]  [pc]

Thornton et al. (1998), 2.2 x 10=%° 122 1 2.14 2.73 55.8
Teq(no) = 1000 K, 1590 13 0.77 0.78 114.3
Az = 0.056 pc, 2.2 x 10724 344 1 2.17 2.74 21.4
re = 1.5 pc, 447 13 0.75 0.84 43.0
3 Mg 2.2 x 1072 9.73 1 2.33 2.67 8.2
126 13 0.84 0.76 16.4

2.2 x 10722 3.06 1 2.35 2.61 3.3

39.8 13 0.76 0.80 6.6

Teq(no) = 1000 K, 2.2 x 107 96.5 1 2.41 2.84 47.5
Az = 0.004 pc, 12455 13 0.82 0.82 106.2
re = 1.5 pc, 2.2 x 1072 28.0 1 2.27 2.77 18.6
3 Mg 364.0 13 0.77 0.78 394
2.2 x 1072 8.0 1 2.18 2.69 7.3

104.0 13 0.72 0.74 15.1

2.2 x 10722 2.5 1 2.84 3.23 3.1
325 13 0.66 0.66 6.0

Teq(no) = 1000 K, 2.2 x107% 100.5 1 2.13 2.68 494
Az = 0.004 pc, 1306.5 13 0.79 0.80 103.5
re = 0.3 pe, 22x 1072 300 1 2.19 2.68 19.1
11 Mg 390.0 13 0.71 0.73 38.3
2.2 x 1072 9.0 1 2.32 2.81 7.5

104.0 0.72 0.72 15.0

117.0 13 0.66 0.66 15.6

2.2 x 10722 3.0 1 3.00 3.03 3.0

39.0 13 0.58 0.59 6.2

Toq(no) = 37K 2.2 % 1022 30 1 2.61 2.96 3.0
Az = 0.004 pc, 32.5 0.68 0.68 59
re = 0.3 pc, 0 Mg 39.0 13 0.59 0.59 6.2
Tq(no) = 37K 22%x10°2 30 1 2.60 2.97 3.0
Az = 0.008 pc, 32.5 0.64 0.66 59
re = 0.3 pc, 0 Mg 39.0 13 0.57 0.58 6.2
T(no) = 37K 22%x10°2 30 1 2.52 2.95 3.0
Az = 0.016 pc, 32.5 0.62 0.63 59
re = 0.3 pc, 0 Mg 39.0 13 0.53 0.55 6.2
To(no) = 37K 2.2 % 1022 25 1 2.59 2.89 28
Az = 0.032 pc, 325 13 0.61 0.61 59
re = 0.3 pc, 0 Mg 39.0 0.52 0.53 6.2

Table 6.1: Retained kinetic energy (Ey;,) of SNe in homogeneous media. For all models 10°! erg
were inserted at ¢t = 0. E);, and the bubble radius (r) were evaluated at the time of maximal lumi-
nosity (%o, defined in Sect. 6.1.1) and after 13 ¢;, which is the end of the simulations in Thornton
et al. (1998). The resolution (Ax) and the state of the ambient medium (7', p) are varied. Since
the bubble pressure at ¢y is much higher than the ambient pressure, the efficiency of the 1 000 K
model is comparable to the 37 K model. 37 K is the equilibrium temperature for a density of
2.2 x 10722 g cm™? in the cooling function described in Ntormousi et al. (2011). For the ambient
medium in the 1 000 K model an artificially stable gas phase had to be created in the cooling table
(Code Listing B.2). t, also depends on the size of the feedback region (r¢) and on the kinetic to
thermal energy ratio. Therefore three SN models with different mass loading (M) are shown.
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Ax SN wind thermal a €(g =c¢) € (wind) ¢ (wind)
[pc] [10°% erg] [2.34 x 10°! erg] conduction [10%t erg]  [10% erg] [10%! erg]

0.032 yes no no 0 0.0011 - -

0.016 yes no no 0 0.0011 - -

0.008 yes no no 0 0.0011 - -

0.032 no yes no 0 0.0213 0.0884 0.4981
0.016 no RW no 0 0.0231 0.0896 0.4981
0.064 yes yes no 0 0.0265 0.1027 0.5422
0.032 yes yes no 0 0.0271 0.0884 0.4981
0.016 yes RW no 0 0.0304 0.0896 0.4981
0.016 yes yes no 0 0.0365 0.1136 0.6019
0.008 yes yes no 0 0.0475 0.1340 0.6859
0.004 yes yes no 0 0.0620 0.1598 0.7756
0.032 yes yes no 1 0.0710 0.1841 0.8286
0.016 yes yes no 1 0.0791 0.1947 0.8696
0.008 yes yes no 1 0.0904 0.2076 0.9113
0.032 yes yes yes 0 0.0244 0.0827 0.4549
0.016 yes yes yes 0 0.0302 0.1014 0.5570
0.032 yes yes extreme 0 0.0094 0.0329 0.1915
0.016 yes yes extreme 0 0.0098 0.0353 0.2211
0.032 yes Cw no 0 0.0293 0.0932 0.2070

Table 6.2: Stellar feedback in an ambient medium with a density of 2.2 x 10722 g cm ™ and a
pressure of 1.47684 x 10~!2 erg cm 3. This ISM phase is in cooling-heating equilibrium at ~ 37 K.
Az is the cell size in the simulation. Despite the lower ambient temperatures the three uppermost
models without winds are comparable to Thornton et al. (1998) (1000 K). For models with a SN
explosion (“yes” in column 3), 10°! erg and 11 M, of ejecta were inserted after 4.859 Myr. For
simulations with stellar winds (“yes” in column 4) the Ekstrom et al. (2012) model for a rotating
60 My, star and the wind velocities summarized in Voss et al. (2009) were used (Sect. 2.7.3). In
total this stellar wind inserts 2.34 x 105! erg. The constant wind model (“CW” in column 4) inserts
the same total wind energy at a constant rate. To check the influence of the resolution on the
energy-efficiency of the SN explosion, simulations with lower resolution were re-sampled directly
before the SN (indicated as “RW” in column 4), since the efficiency during the wind phase also
depends on the resolution. The slightly higher kinetic energy in the rescaled model at the end of the
wind phase is due to smooth interpolation. ¢ lists the kinetic energy in 10° erg when the densest
cell is decelerated to the ambient sound speed. €, and ¢; list the retained kinetic and thermal energy
at the end of the wind phase (in units of 10°! erg). “Extreme” thermal conduction mimics a very
efficient diffusion process by increasing « by 15 orders of magnitude. The parameter a describes
a density threshold, below which radiative cooling is no longer taken into account. This decreases
the energy losses due to mixing of gas across the CD. The density threshold a is normalized to
the density of the ambient medium. The table shows that higher efficiencies are reached for
higher resolutions, thus the higher maximal densities are outweighed by the smaller amount of
mixing across the CD in the higher resolved simulations. Whereas in lower resolved simulations
a decrease of the efficiency with increasing resolution is found, since the cell near the CD is too
large to reach high enough densities or temperatures due to the mixing across the CD to suffer
substantial energy losses at every time-step.
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Figure 6.1: Retained Kinetic energy in units of canonical SN energies (Esy = 10°! erg) of a super-
nova in a homogeneous medium with a temperature of 1 000 K. For this simulation, an artificially
stable ISM phase at the temperature and the density of the ambient medium had to be created (Code
Listing B.2). t, is the time of maximal luminosity (defined in Sect. 6.1.1). In our simulations, a
lower feedback energy efficiency in denser media is observed. The thermal energy fraction was
0.7 Egn, the SN mass loss 11 M, and the feedback region radius 0.3 pc.

which only differs in the initial energy ratios (purely thermal) from our reference model (Fig. 6.2
and Tab. 6.2). Moreover, our models show a slightly stronger density dependence of the feedback
energy efficiency: Fig. 6.1 plots the evolution of the retained kinetic energy as a function of time
in Myr in the left panel and in the right panel normalized to ¢y, which is larger for lower ambient
densities. Tab. 6.2 also shows that wind-less models with different spatial resolutions converge
nicely.

Impact of the feedback model

The SN implementation of Thornton et al. (1998) assumes a mass loss of 3 M and an energy
input (Fgsy) of 10°! erg. They insert 6.9% of the SN energy via thermal energy and the rest via a
linear velocity profile in a region of 1.5 pc radius.

In our preferred SN implementation (Sect. 2.7.4 and 6.1.2), 11 M, of ejecta are initially homo-
geneously distributed over a small sphere with a radius of ry = 0.32 pc. We will refer to this
zone as “feedback region”. Our test simulations show that the size of this feedback region does
not influence the results if it is small enough to be fully contained in the wind bubble, which is
the case for the presented set-ups with stellar winds. If there is no prior stellar wind, the feedback
region size can influence the kinetic to thermal energy ratio after 13 ¢, (called ¢; in Thornton et al.,
1998). For our reference model the size of the feedback region was reduced until the kinetic to
thermal energy ratio in the SN blast changed the retained kinetic energy (e;) at ¢; by less than one
percent (of ¢ (#¢)) in the model with the highest ambient density (Tab. 6.1). Since the bubble size
of a Sedov-Taylor blast is proportional to p~/°, models with higher ambient medium density are
more sensitive to the too large feedback region problem.

Increasing the feedback region radius to 1.5 pc in our reference model (Sect. 6.1.2) decreases the
kinetic energy by ~ 3% and increases the bubble size by ~ 0.5% at 13 ¢,. The variation of the
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Figure 6.2: Retained kinetic energy in units of canonical SN energies (10°! erg) of a SN in a
homogeneous medium with 7, = 37 K and py = 2.2 x 10722 g cm~3. The SN mass loss, leading
to a kinetic energy increase, is 11 My, The rest of the 10! erg was added as thermal energy. The
energy is lost quickly via radiative cooling, but the shell needs more than 5.6 Myr to decelerate to
the ambient sound speed. The lines end when the shell is decelerated to the ambient sound speed.
The lower panel shows the retained kinetic energy of the models divided by the retained kinetic
energy of the model with the lowest resolution at the same time. In these kinetic energy ratios
it can be seen that higher resolution models lose less energy in the pressure driven phase due to
the smaller cooling region at the sides of the shell (in this phase the dashed lines are above the
solid line in the lower panel) but make up in the momentum conserving phase (dashed line below
solid line). The left insert shows a zoom on the pressure driven phase. After a Myr the results for
different resolutions are very well converged. The convergence of the retained energies at different
resolutions can be seen in the right insert and in the lower panel. The model with Az = 0.004 pc
is not shown, since it was stopped after 37 ¢.

feedback region radius is also the leading effect causing the differences between the two 1000 K
models in Tab. 6.1.

The thermal energy fraction of the SN energy in our 1000 K models in Tab. 6.1 is 72% (which
i1s Sedov-Taylor-like, see Sect. 4.3.1). In the 37 K model shown in Tab. 6.1, all SN energy was
inserted via thermal energy. Therefore no mass loss was used. This leads to a slightly different
kinetic to thermal energy ratio before ¢, than the ratio found in models in which the energy fractions
at the SN blast are chosen according to the Sedov-Taylor solution. After 200 kyr, a model that
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Figure 6.3: Zoom of Fig. 6.2. In this plot the highest resolution model is added, which was stopped
after 40 t,.

differs only in the mass loss (3 M) from our reference model (Sect. 6.1.2) still retains a kinetic
energy of 0.01678 x 10°! erg. In contrast, replacing the Sedov-Taylor like energy ratios by purely
thermal energy input in this model results in 0.01684 x 10°! erg at this time. We conclude that for
small enough feedback region radii the energy fractions in the SN blast do not have a significant
impact on the feedback energy efficiency.

Tab. 6.1 shows that ¢, occurs later, if the mass of the SN ejecta is increased from 3 M, to 11 M, (as
in our preferred SN model, which is discussed in Sect. 2.7.4). However, this increase only slightly
lowers the feedback energy efficiency: After 200 kyr our reference model (Sect. 6.1.2) still retains
0.01637 x 10°! erg kinetic energy, whereas, as already mentioned, the same model in which only
the SN mass loss was changed to 3 M, finds 0.01678 x 10°! erg at this time. The unimportance of
the mass of the ejecta is not surprising, since in an ambient medium with n = 2.2 x 1072 gcm™3
the swept-up shell’s mass exceeds 11 M, as soon as the bubble’s radius is larger then 2 pc.

Impact of the ambient pressure

Comparing models with T, (no) = 37 K and T,q(ng) = 1000 K, with ng = 2.2 x 1072 g cm™3,
3 M, mass injection and Sedov-Taylor like energy ratio (Sect. 4.3.1) shows that the ambient pres-
sure only has a minor effect on the feedback energy efficiency: The changes in bubble size (5.93 pc
for both models) and kinetic energy (0.06878 x 105! erg vs. 0.06836 x 10°! erg) after 13 ¢, (32.5 kyr)
are less than a percent and would thus be invisible in Tab. 6.1. As expected, higher ambient pres-
sure leads to a slightly smaller bubble, if the model is followed for a longer time: e.g. after 200 kyr
we find a shell radius of 9.60 pc and a kinetic energy of 0.01678 x 10°! erg in the 37 K model and
9.54 pc and 0.01505 x 10°! erg in the 1000 K model. However, this is a very small effect and is
less important compared to the spatial resolution and the size of the feedback region.

Convergence

The retained kinetic energies at 13 ¢, in the T¢q(n) = 37 K models in Tab. 6.1 indicate a depen-
dence of the feedback energy efficiency on spatial resolution. However, Fig. 6.2 to 6.3 show that
this problem is only found in the first Myr and the retained kinetic energies of the 37 K models
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without wind converge for all resolutions (0.004 to 0.032 pc) as soon as the shell has cooled to
the equilibrium temperature and cooling losses only occur in the newly swept-up compressed and
heated gas at the outside of the shell. The zone, which is suffering cooling losses, is resolved with
several cells. At this time the pressure in the swept-up shell is already larger than the pressure
inside the bubble. For all spatial resolutions a kinetic feedback energy efficiency of 0.11 % is
recovered when the shell speed reaches the ambient sound speed.

Phases of SN bubble evolution

In Sect. 4.3 and 4.5 we explained, which power laws we would expect after a SN explosion. We
will now check, if our simulations behave accordingly.

Simulated pressure driven expansion

During the pressure driven expansion, the largest cooling losses arise near the CD, where a strong
density gradient at the interface between the dilute bubble material and the swept-up ambient
medium is found. The maximum luminosity is reached earlier for simulations with larger cells,
since lower resolution will mix more of the hot gas in the bubble with the swept-up medium and
thus enhance the cooling losses.

Sect. 4.5.1 finds 7 o< t?/7, v o t7%/7 and Eigy, o< t~*7 (Eq. 4.61 to 4.63) for the adiabatic pressure
driven expansion and Sect. 4.4.1 finds r o t*®> and v o< t~3/° (Eq. 4.42 and 4.42) leading to
constant kinetic energy for the fully radiative case. The best fits to the 37 K models for times
between the time of maximal luminosity ¢, (defined in Sect. 6.1.1) and the time when the pressure
inside the bubble has decreased to the ambient pressure (Tab. 6.3, column 5) are 7 o t9272, v
t797 and Ey, o t7%7. These fits rather resemble the behavior of the momentum-conserving
phase (r o< tY/4, v o t73/* and Fi, o t73/4, Eq. 4.65 to 4.67). And indeed, our models show
that the pressure inside the bubble is much lower than the pressure in the shell. In contrast to the
analytic model, the simulated shell is not infinitely thin and resolved with several cells. Column 3-
4 in Tab. 6.3 list the times, when the shell pressure becomes larger than the bubble pressure. These
times mark the end of the purely bubble pressure driven phase and very close to these times (near
8 kyr) a “knee” can be seen in Fig. 6.2 and 6.3. Moreover the best fits for the radius and the velocity
in this short period of time are in agreement with fits of a pressure driven phase. The total kinetic
energy decreases more slowly than a pressure driven fit would predict, since not all the kinetic
energy is stored in the shell.

Tenorio-Tagle et al. (1990) and Tenorio-Tagle (1996) report hot swept-up matter separating the
CD several parsecs from the outer shock for their SN explosion in a homogeneous medium. This
is also seen in our simulation with ny = 1 cm™3, 7T, eq(n0) = 100 K. The CD and the outward
shock are at the same radius as reported by Tenorio-Tagle et al. (1990). In our simulations the
hot material between the CD and the thin dense shell (with a sub-parsec shell width, created by a
sound wave from the reverse shock) is hot shocked swept-up ISM.

Simulated momentum conservation

Comparing the pressure inside the bubble to the pressure of the ambient medium shows that at
13 to (~ 40 kyr) the T,,(n9) = 1000 K model is already in the momentum conserving phase,
whereas the bubble pressure in the 37 K model is still higher than the ambient pressure (but lower
than the shell pressure). The times when the pressure inside the bubble has decreased to the
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Do Ax t t t Exin

lergem™]  [pe] [kyr] [kyr]  [kyr] [10% erg]
peak average bubble

3.99 x 1071 0.032 6.5 7.5 34.5 6.32
1.83 x 10712 0.032 9.5 9.5 118.5 2.58
1.83 x 1072 0.016 8.0 8.0 147.0 2.12
1.83 x 1072 0.008 6.5 6.5 174.0 1.85

Table 6.3: Ends of pressure driven phases. This table lists the times, when pressures in the shell or
the ambient medium (py) become larger than the pressure inside the bubble. In all four models, the
SN without prior winds is placed in a homogeneous ambient medium with a density of 2.2x 1072 g
cm 3. The ambient medium is in cooling-heating equilibrium: at 1 000 K in the first model and at
37 K in the other models. Column 1 (py) lists the ambient pressure, column 2 (Ax) the cell size in
the simulation. Column 3-5 contain the times when the pressure inside the bubble becomes smaller
than the peak pressure in the shell (column 3), the average pressure in the shell (column 4) or py
(column 5). Column 6 lists the retained kinetic energy at the times in column 5.

ambient pressure are listed in Tab. 6.3. Eq. 4.67 was used to fit the kinetic energy evolution of the
simulations after the times listed in column 5 of Tab. 6.3. The fits of the bubble radius, the shell
velocity and the kinetic energy show that the kinetic energy decreases more slowly than Eq. 4.67
predicts (resp. the shell moves faster). The best fit to the bubble radius after the end of the pressure
driven phase is 7 oc 12 (Eq. 4.65 predicts r o< t%2°). The best fits for velocity and kinetic energy
are v o< t %7 and Fyg, o< t7%78 (Bq. 4.66 and 4.67 predict v o< t %7 and Ei, o< t7%7°).

The ratio between the shell’s kinetic energy and the bubble’s kinetic energy as well as the deviations
of the fit from the kinetic energy found in the simulations in Fig. 6.4 indicate that the overpressure
in the cavity wall leads to an expansion of the shell into the cavity. As a consequence, a high
pressure wave starts to run back and forth in the cavity (Fig. 6.5). The impacts onto the shell
increase the shell velocity.

The time when the shell velocity reaches the sound speed can be estimated from the fits by setting
Eq. 4.66 equal to the sound speed. The mass of the swept-up medium can be estimated from the
expected radius and the ambient density and leads to a kinetic energy, when combined with the
sound speed. Since this approximation assumes that all swept-up medium is compressed into an
infinitely thin pressure-less slab, all fits predicted a shorter time and a higher final kinetic energy
than the simulation data. In the simulation, the highest velocity is found near the densest cell. This
cell is only a few cells away from the undisturbed ambient medium. However, the overpressure in
the shell leads to a flow of swept-up medium into the shell. It is observed that the peak density
decreases during the simulation. Since not all swept-up medium is accelerated to the peak velocity,
the shell can travel longer before the peak velocity falls below the ambient sound speed. The lower
than expected kinetic energy is also due to the fact that much of the gas at the inner side of the
shell was already significantly decelerated.

6.2 SN blast in a cavity

Since the progenitor stars of SNe have strong stellar winds, SN explosions always happen inside
wind-blown bubbles. In this section we show that this is not a detail but a very important feature
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Figure 6.4: Fit of a momentum conserving shell to the data. The middle panel shows the deviations
from the fit. It can be seen that the kinetic energy decays more slowly than a momentum conserving
model predicts. This indicates that the widening of the over-pressured shell contributes to the
growth of the cavity. In the lowest panel the kinetic energy of bubble-gas is compared to the
kinetic energy of the dense shell. The oscillations are caused by a wave traveling inside the cavity
(see text).
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Figure 6.5: The position of the densest cell (red) is an indicator of the shock position. The over-
pressure in the swept-up shell causes a wave inside the cavity, which can be tracked by the position
of the maximal absolute value of the velocity (green). The jumps in the green dots are caused by
a second wave, starting in the compressed material at the second reflection of the aforementioned
wave in the center of the cavity.
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of the model, since it strongly influences the feedback energy efficiency.

The stellar winds in the 60 M model based on rotating models of Ekstrom et al. (2012) as de-
scribed in Sect. 2.7.3 insert 2.34 times the SN energy into the ambient ISM. This wind-to-SN ratio
is larger than in Voss et al. (2009), since we consider individual massive stars, whereas Voss et al.
(2009) are interested in OB associations with in the order of 100 members. In groups of stars, less
massive stars lower the ratio of wind energy to SN energy if a canonical SN energy of 10°! erg is
assumed.

The massive star first produces a stellar wind bubble and subsequently undergoes a SN explosion.
The bubble structure contains a contact discontinuity (CD) separating two distinct phases of the
ISM: a hot dilute? phase, of stellar wind gas which cannot cool due to its low density and a cold,
denser® phase, which also does not cool strongly, because its thermal energy is too low to cool
efficiently (the cooling curves e.g. in Sutherland and Dopita (1993) show a strong increase of
A(n,T) above 10000 K).

6.2.1 Comparison to previous work on SNe in pre-existing bubbles

Tenorio-Tagle et al. (1990) study SNe exploding in bubbles blown by a constant WR wind mimick-
ing the feedback of a 40 My, star with a mass loss rate of M = 3 x 10~ M, yr~! and a terminal
velocity of 1000 km s~! into a homogeneous medium with a number density no = 1 cm™3 and a
temperature of 100 K. In their study the wind phase ends as soon as the wind bubble has reached
a predefined radius (7,upb1e). They found feedback energy efficiencies of 50% (7pupble = 4.5 pc,
~ 60 kyr after the SN: Ey;, ~ 3 x 10%0 erg, Fyy, ~ 2 x 10°° erg) to 70% (rpupble = 15 pc, ~ 40 kyr
after the SN: Ey, ~ 3 x 10% erg, Eyy, ~ 4 x 10°° erg). We re-simulated these models with dif-
ferent cooling prescriptions and found that the feedback energy efficiencies were relatively robust
against these changes (Fig. 6.6).

In the case of the 4.5 pc bubble we find feedback energy efficiencies similar to Tenorio-Tagle et al.
(1990). For this model the plots in Tenorio-Tagle et al. (1990) show that the temperature in the
dense shell is below 10® K (interestingly, this minimal temperature in the dense region is more
than a factor 10 lower than the minimal temperature in the referenced cooling table). For this
comparison, we also used the cooling curve in Fig. 1 of Raymond et al. (1976), which provides
a cooling function for temperatures above 10* K. Consequently, this is the minimum temperature
reachable via radiative cooling in our simulations. Fig. 6.7 shows that this temperature floor is
reached in the bubble walls of our 15 pc model. By contrast, Fig. 7 of Tenorio-Tagle et al. (1990)
shows a shell considerably hotter than this minimal temperature. Also, our models show a steep
density decline between the supersonic shock and the ambient medium and a smoother decline of
the density towards the hot bubble. Fig. 7 of Tenorio-Tagle et al. (1990) indicates that they seem to
find a not step-like density increase between the supersonic shock and the ambient medium. This
difference arises, since the PLUTO code treats the shock with a Riemann solver in contrast to the
artificial viscosity treatment in Tenorio-Tagle et al. (1990).

Stellar wind bubble sizes

The bubbles considered in Tenorio-Tagle et al. (1990, 1991) and Rozyczka et al. (1993) have
radii of up to 16 pc at the SN. These bubble sizes seem rather small if the wind model of Voss

2several orders of magnitude below the ambient density, 10°K or hotter
3more than a factor 4 denser than the ambient medium, 10 K
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Figure 6.6: The feedback energy efficiencies of our test simulations of SN explosions inside wind
bubbles in a ng = 1 cm™3, Tyq(ng) = 100 K ambient medium show results similar to Fig. 11
of Tenorio-Tagle et al. (1990) for the 4.5 pc bubble (top panel) and much lower feedback energy
efficiencies for the 15 pc bubble (lower panel). The retained kinetic energies in our models are
relatively insensitive to the cooling table: the lower panel compares simulations with Pluto cooling,
Cloudy cooling (as implemented by Ntormousi et al., 2011) and with the cooling according to
Fig. 1 of Raymond et al. (1976). The disagreement between Tenorio-Tagle et al. (1990) and our
work is caused by differences in the structure of the shock/ambient medium interface (see text).

et al. (2009) is applied to the rotating stellar models of Ekstrom et al. (2012) (Sect. 2.7.3): The
lowest mass star still ending in a SN in this grid of models already produces a bubble with a
radius of 13.6 pc in a 100 times denser medium (ny = 100 cm™2 and 7, = 100 K). Since the
bubble sizes considered in Tenorio-Tagle et al. (1990, 1991) and Rozyczka et al. (1993) were
based on observations, this indicates that higher densities of the ambient medium should be taken
into account. Thus, we put our emphasis on ng = 100 cm™® models instead of np = 1 cm™3
models. The ambient density plays an important role for the feedback energy efficiency: Models
with higher ambient densities have lower feedback energy efficiencies (Fig. 6.1, Tab. 6.1).

Minimal energy bubbles: Is there a dichotomy of SNe in stellar wind bubbles?

Tenorio-Tagle (1996) report a dichotomy of wind-blown bubbles: (1) light bubbles, which are
overrun by the SN-shock and (2) stable bubbles that switch to the radiative phase as soon as they
are hit by the blast. For reference we produced a set of stellar wind bubbles with a constant wind,
consistent with the feedback used by Tenorio-Tagle et al. (1990) and ignited the SN as soon as the
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Figure 6.7: The shell temperature 39 resp. 50 kyr after a SN blast in a 15 pc wind cavity in a
no = 1cm™3, T, (ng) = 100 K ambient medium with the cooling table in Fig. 1 of Raymond et al.
(1976) shows that the dense shell has cooled to the minimum temperature reachable via radiative
losses. It can also be seen that the width of the density step between the ambient medium and the
supersonic shock is in the order of 5 grid cells. Moreover, due to the different shock structure, the
15 pc cavity of Tenorio-Tagle et al. (1990) has the densest cell near 14 pc, whereas our model has
the densest cell near 15 pc, when the SN explodes.
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Figure 6.8: Minimal energy bubbles. In this study SNe exploded at ¢ = 0 in a cavity of given
radius. These cavities were created by a constant wind and the ambient medium has ng = 1 cm ™3,
Teq(no) = 1000 K. The feedback energy efficiency of a SN in a pre-existing bubble depends on
the bubble size, since on the one hand, the bubble can act as a pressure reservoir due to the very
small cooling losses inside the bubble and on the other hand, the dense cavity walls lead to large
radiative losses. It can be seen that bubbles of ~ 7 pc radius have the smallest feedback energy
efficiency. Such bubbles are, however, even too small for the winds of the least massive star ending

in a SN. For larger radii the feedback energy efficiency rises with increasing radius.
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Figure 6.9: Time evolution of the retained kinetic energy. The wind phase ends after 4.859 Myr.
All lines end when the densest cell is decelerated to the ambient sound speed. Simulations with
a supernova without pre-existing wind bubble have a six times lower feedback energy efficiency
than supernovae in pre-existing bubbles [Tab. 6.2: for Az = 0.032 pc the simulation with a super-
nova without wind leads to 0.11 x 10*° erg of kinetic energy compared to the difference between
simulations with wind and with/without supernova: 0.58 x 10%° erg]. t; = 13 t [t, is the time of
max. loss, at ¢ the efficiencies are evaluated.] as defined by Thornton et al. (1998) is 4.8915 Myr
for the model without wind (kinetic shell energy: 0.61 x 10%° erg) and ranges from 4.9955 Myr to
5.0605 Myr for all other simulations.

desired bubble radius was reached. Fig. 6.8 shows that we observed minimal energy bubbles in
between these two cases: The minimal efficiency occurred at “intermediate” cavity sizes of 7 pc
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Figure 6.10: Variant of Fig. 6.9: The retained kinetic energy for the same models is displayed as a
function of the densest cell’s velocity instead of time. The velocities are normalized to the ambient
sound speed (~ 1 km s™1).

inang =1cm3, Toy(ng) = 1000 K medium. This minimum is created by the counteracting
effects of (1) efficient cooling in the denser shells of larger bubbles and (2) the larger cavities with
inefficient cooling serving as pressure reservoirs. However, this minimum is of academic interest
only. Modeling the wind of the lightest star, which still ends in a SN shows that even the stellar
winds of this star can produce a cavity larger than 7 pc before the SN. Thus, our models indicate
that nature does not produce such minimal energy bubbles.
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Wind phase

During the stellar wind phase the models show the structure expected from stellar wind bubble
theory (Pikel’Ner, 1968; Avedisova, 1972; Castor et al., 1975; Weaver et al., 1977; Dyson, 1977,
and Sect. 4.4.1). Obviously, the width of the zones in models affected by radiative cooling losses
have to differ from these simple adiabatic models (e.g. the swept-up shell is thinner, denser and
moves more slowly into the ambient medium). A region of freely expanding wind (mostly kinetic
energy; cold gas, discussed in Sect. 4.4.3) is separated from the thermalized ejecta (mostly thermal
energy; hot dilute plasma) by a reverse shock. The presence of this free expansion zone in our sim-
ulations shows that our feedback region radius is not too large. The pdV work of the thermalized
ejecta sweeps up the ambient medium. This medium forms a thin, efficiently cooling shell, which
is separated from the thermalized ejecta by a contact discontinuity (CD). Due to the absence of
pressure and velocity gradients across this surface, no mixing (except for diffusion) between the
medium inside and outside the CD is expected (see also Tenorio-Tagle, 1996).

Post SN phase

If a SN explodes in the wind bubble of its progenitor, the blast wave expands freely and also
adiabatically in the dilute medium inside the wind bubble. In a pre-existing cavity the Sedov-
Taylor expansion phase (Sect. 4.3) is skipped (see e.g. Tenorio-Tagle et al., 1990). After the free
expansion phase, when the blast wave hits the bubble wall, the evolution continues snowplow-
phase-like (Sect. 4.5).

Since radiative losses start when the wind shell is hit, the time maximal luminosity (¢;) occurs later
than it would have in absence of the wind bubble. In fact, the SN ejecta do not reach the dense
shell of swept-up ambient medium. They rather compress the wind gas and get reflected. Thus —
according to our models — the velocity of the SN-ejecta is expected to be higher than the velocity
of the gas in the bubble wall.

After reflection from the bubble wall the SN blast wave continues to travel back and forth inside the
cavity. These sound waves can be seen as oscillations in the kinetic and thermal energy evolution
(e.g. in Fig. 6.6 and near the kinetic energy peak in Fig. 6.9) as well as in the cooling losses.
The bouncing SN blast wave inside the wind cavity causes double peaks in the loss rate: The
first maximum in the loss is reached when the cavity wall (resp. the wind gas in front of it) is
compressed and kinetic energy is converted to thermal energy and the second (smaller) peak is
found when the wall expands and thermal energy is converted back to kinetic energy. Due to the
reflection of this wave inside the cavity the interaction of the wave and the cavity wall causes
periodic conversions between thermal and kinetic energy with decreasing peak loss values until
the SN wave is damped away.

As in the models without progenitor winds the cold outer shell is accelerated by pdV work from
the hot (SN-) gas inside the bubble. In later stages, when the pressure in the bubble becomes
ineffective, momentum conservation pushes the shell into the ambient medium.

6.2.2 Feedback energy efficiency: winds or SNe?

Fig. 6.9 and 6.10 show the kinetic energy evolution of our models summarized in Tab. 6.2. For
these models time resolved stellar winds of a 60 M, star (Sect. 2.7.3) were blown into a homo-
geneous medium with a density of py = 2.2 x 10722 g cm~3. The ambient medium is in cooling-
heating equilibrium as described by Ntormousi et al. (2011). In cells with densities (p) above apy
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radiative cooling is taken into account (see also section 6.2.3). Less dense cells do not suffer cool-
ing losses. The grid of models spans a = 0 to 1.3 (only the model with @ = 1 and a = 0 are shown
in Fig. 6.9 and 6.10) and the resolutions of 1, 2, 4 or 8 cells per 0.032 pc (= 10*” cm). The time
of the SN explosion is set by the stellar model, thus the wind bubble size can only be influenced
indirectly via the density of the ambient medium and the chosen stellar model. [In contrast to
the constant wind test shown in Fig. 6.8, where the SN explosions occur at a pre-defined bubble
size]. For reference some models in our grid lack the SN explosion or the wind phase. The model
without SN explosion demonstrates the importance of stellar winds: The total energy input into the
wind-only model is 2.34 x 10°! erg, which is ~ 70% of the total energy input of a model with wind
and SN. The kinetic energy of the shell in the wind-only model at the time when it is decelerated
to the ambient sound speed is 79% of the final energy of the model with a SN blast after the wind
phase.

Another indication that continuous energy input is more efficient than blasts is the comparison
between the model with a constant wind (CW) and the model with time dependent wind strengths
(Tab. 6.2). For reference the same total wind energy and wind ejecta mass are inserted at a constant
rate in the CW model. This steady wind has more power at early times, since the energy input of
the WR phase is distributed over time: before the SN (occuring after 4.86 Myr) the mass loss rate
is 8.65 x 1075 M, yr—! (compare to Fig. 2.11) and the energy injection rate is 4.8 x 10** erg yr™!
or 1.53 x 107 Egy s~ (compare to Fig. 2.9). In total both, the constant and the time resolved
model for the 60 M, star’s wind inject 2.34 x 10°! erg into the surroundings during the wind
phase. We find that the steady winds produce larger bubbles than time-resolved winds with the
same total energy input. Since wind-blown bubbles serve as pressure reservoirs after the SN,
higher efficiencies are found for larger bubbles (see also Sect. 6.2.1).

Overall it can be seen that wind-bubbles enhance the feedback energy efficiency. For example,
the models with a resolution of 0.032 pc without progenitor wind retain 1.1 x 10*® erg of 10°! erg
(0.11%), whereas models with preexisting bubbles retain more than 4.7 x 1049 erg of 3.34 x 105! erg
(1.5%).

6.2.3 Zones with enhanced radiative losses
The largest cooling losses of the models are
e at the CD during pressure driven phases.
e in the dense shell during momentum conserving phases.

High resolution simulations are more efficient in the wind phase (and other pressure driven phases),
because

e in all simulations in this grid Az is small enough that a strongly mixing, cooling cell exists
at every time-step.

e the volume of the strongly cooling layer gets smaller at higher resolutions.

e smaller cells lead to a better separation of the media and mimic a gas with less efficient
mixing processes.

The deviations from the heating-cooling equilibrium and the cooling losses are shown in Fig. 6.11.
In this figure the evolution of the gas phases in the a = 0, Az = 0.016 pc model are visualized. The
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Figure 6.11: Gas phases in the a = 0, Az = 0.016 pc model: The densest cells approach the
heating-cooling equilibrium (solid line). The fill color of the dots carries information on the radia-
tive losses. The dark colors of the rightmost points on the curves show cooling losses in the dense,
swept-up shell. Bright points on the equilibrium curve depict the ambient medium. The lines con-
necting dots should guide the eye and link gas from adjacent cells. The dark dots in the center show
the cooling losses near the CD. The plot compares the location of the cooling losses at different
stages of the evolution. When the mass loss rate peaks, cooling losses of dense gas are found near
the feedback region. Typical pressure driven phases (start of the WR phase at 3.457 Myr, end of
the wind phase at 4.4975 Myr, time of maximal luminosity at 4.8695 Myr) show cooling losses
near the CD, whereas losses in the dense shell dominate during momentum driven phases (in the
plot the start of the momentum driven phase at 9.7595 Myr and the end of the simulation (v, = ¢5)
at 23.3975 Myr are shown).

solid line shows the cooling-heating equilibrium curve. The ambient medium would be represented
by a very bright dot (no losses) on the equilibrium curve. The gas properties in the swept-up shell
and inside the bubble are shown by dots linked with lines connecting adjacent cells. The color
of the dots contains information on the radiative losses. It can be seen that there are two regions
with enhanced cooling losses: the CD (center) and the dense part of the shell (bottom right). The
cooling-heating phase space plot (Fig. 6.11) shows seven distinct snapshots of the model:

1. 3.457 Myr at the start of the WR phase the shell is pressure driven and we find cooling losses
near the CD and in the shell.

2. The mass loss rate of the winds peaks at 4.4975 Myr and leads to dense, cooling gas near the
feedback region.

3. At the end of the wind phase at 4.859 Myr radiative cooling is effective in the shell and near
the CD.

4. As soon as the SN explosion has taken place (4.8695 Myr), again dense material is found
near the feedback region.
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5. At the time of maximal luminosity (4.8695 Myr), when the SN blast wave hits the cavity
wall, cooling near the CD is very important.

6. When the model has transited to the momentum driven phase (9.7595 Myr) cooling in the
dense, swept-up shell dominates. At this stage models of different spatial resolution con-
verge.

7. Also at the end of the simulation (23.3975 Myr), when the shell has decelerated to the ambi-
ent sound speed, cooling is only effective in the dense shell.

Comparing cooling losses in these snapshots shows that the energy losses in or near the CD cell get
unimportant after the end of the pressure driven phase. At this point models with different spatial
resolutions start to converge.

Artificial mixing across the contact discontinuity

Numerical simulations find large radiative cooling losses near the contact discontinuity (CD) sep-
arating the dilute, extremely hot shocked wind gas and the dense swept-up medium (see also
Sect. 6.2.3). In the literature this is sometimes called “catastrophic cooling” (Tenorio-Tagle et al.,
1990; Smith and Rosen, 2003). These losses arise, because the code mixes two media, which
should be separated by a CD and the cell with the mixture of the two gas phases efficiently cools,
acting like a valve, considerably reducing the feedback energy efficiency. If the mixing scale of
the gas phases (see Sect. 2.2) is not resolved numerically, this process could lead to artificially high
radiative losses.

In this work we also test the importance of this effect by regulating the radiative energy loss of the
critical cell near the CD, which acts as the dominant energy sink. Numerically there are basically
two strategies to prevent extreme cooling losses in cells at a CD where the two media mix:

(1) Strictly enforcing the separation of these two gas phases: The simplest way to avoid cooling
losses in the hot, dilute cells in which shell material and wind material can be found, is to increase
the density threshold of the cooling function. Our cooling function is tabulated for number densi-
ties ni > 0.01 cm~3. To avoid cooling losses at the CD, in the models with “density thresholds”
radiative cooling is switched off if the cell’s density is below a times the ambient density py. For
example, in runs with ¢ = 1 radiative cooling is switched off at all densities below the ambient
density. By doing this, we mimic a sub-grid model with two nicely separated ISM components in
the cell: the gas is either to cold or not dense enough to cool and no strongly cooling intermediate
gas phase is produced. Or in other words, at densities below ap, the simulation becomes adiabatic.

(2) Postulating a strong mixing process, which smears out the temperature and density slope near
the CD: This leads to low temperatures in regions, which are dense enough to cool. Efficiently
mixing gas across the CD can be achieved e.g. via heat conduction (which we show to be too
inefficient in Fig. 6.9), hydrodynamic instabilities or other mixing processes (e.g. molecular diffu-
sion through the shell walls or ablation of clouds and clumps). The radiative cooling losses are a
function of temperature and density. Lowering the density and the temperature by enhancing the
mixing at the discontinuity can limit the energy losses via radiative cooling by producing cells,
which are already too cold to cool efficiently.
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6.2.4 Convergence of the retained kinetic energy

In our simulations cooling losses occur in two distinct regions of the models: in the dense, swept-
up shell and near the CD (see Sect. 6.2.3). Our models converge if cooling losses in the newly
swept-up medium dominate. This is the case in momentum driven bubbles (i.e. in all our models
for SNe without progenitor-winds and at late phases of the other models), whereas our models can
not converge when the cooling losses caused by mixing across the CD dominate in the pressure
driven bubbles (e.g. during the wind phases and in the early post-SN phase). This convergence
issue can, however, be solved by working out, on which scales the ISM mixes (Sect. 2.2.2 to
2.2.4). The spatial resolution of the numerical simulation governs the mixing of gas phases across
the CD (the PLUTO code allows for one gas phase per cell) and thus implies a length scale, on
which diffusive processes occur. Thus, the feedback energy efficiencies of our simulations with
different resolutions can be interpreted as solutions for different efficiencies and scale lengths of
turbulent diffusion. If the assumed length scale of the mixing processes is below our resolution,
the efficiencies in Tab. 6.2 are lower limits.

Spatial resolution

Tab. 6.2 and the top right panel of Fig. 6.9 show that resampling the wind bubble to twice the
resolution at the SN leads to an increase of the retained kinetic energy. If the model is resampled
as soon as the oscillations (back and forth conversion of energy) due to the evanescent SN wave are
damped away (at 6 Myr) to twice the resolution, also a higher efficiency is found in the rescaled
model. Restarting at the end of pressure driven phase (9 Myr) with twice the resolution does not
change the efficiency. This is consistent with the SN model without wind, which retained 0.11%
of the inserted energy when the shell speed reached the ambient sound speed independently of the
resolution.

In simulations with lower spatial resolutions than the models shown in Tab. 6.2, the swept-up shell
becomes unresolved. Thus, increasing the resolution reduces the feedback energy efficiency, since
it causes higher peak densities in the swept-up shells and the cooling losses rise with number den-
sity squared. At higher spatial resolutions mixing across the CD starts to produce strongly cooling
cells: such strongly cooling cells arise if enough energy from the hot phase is mixed with enough
density from the cold phase. At low resolution this occurs only every n-th time step. In the models
shown in Tab. 6.2 strongly cooling cells are created at every time-step. If this is the case, the feed-
back energy efficiency starts to rise again with increasing resolution.

The cooling losses are proportional to the volume of the cooling region, time and density squared.
We did not find a dependence of the feedback energy efficiencies on the CFL factors used (see
“temporal resolution” paragraph below). The density in the mixing cell also does not depend
strongly on the resolution, since the flux of hot gas into the CD cell is set by the shell velocity. Due
to the CFL using smaller cell sizes also reduces the time step. In other words, % is set by the peak
velocity and the CFL. The number density of the gas mixture in the strongly cooling cell is given
by: Naverage = nhotvshell% + (1 - Ushell%) Tcold OF Maverage = (nhot - ncold) Ushell% + Neold- The
shell velocity to peak velocity ratio (Usheu%) differs less than 10% between the models with dif-
ferent resolutions. Our simulations showed lower densities in the strongly cooling cell for higher

resolutions.
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The reason for the increase of the feedback energy efficiency with spatial resolution is the reduc-
tion of the strongly cooling zone’s volume. The volume of this one-cell-wide shell located close to
the CD is affected by two counteracting effects: (1) changing the (cell-) width of a shell reduces
the volume by a factor 2—2 (i.e. 0.5 for doubling the cell number) but (2) at the same simulation-
time, simulations with higher resolution and thus higher efficiency have already produced larger
bubbles. This makes the volume ratio at the same simulation-time larger than 2—2 ie. > 0.5 for
doubling the cell number.

From Tab. 6.2 we find that the retained kinetic energy of the shell when the shell has been decel-
erated to the sound speed seems to rise like £y x (1.3)" for a = 0 and like £y x (1.1)" fora = 1,
where n is the number of cells per unit length and Fj is a proportionality constant. The lower
factor for a = 1 strengthens the assumption that this treatment of the CD reduces the importance
of radiative losses near the CD in this model.

The comparison of these factors and the fact that resampling the model when the losses in the
newly swept-up medium start to dominate to higher resolution does not influence the feedback
energy efficiency show that the treatment of the CD and the assumed mixing processes are most
important during the wind phases and the pressure driven post-SN phase.

To avoid energy losses at the reverse shock, the spatial interpolation scheme should be as sharp
as possible in this region. The scheme “WENO03”, which is suited for smooth data, led to a lower
efficiency and stronger oscillations in the shocked wind region than the “LINEAR” scheme. Also
“WENO03” produces acell with a sharp local density minimum on the inside of the shell, which
leads to code crashes.

Temporal resolution

In our simulations the time-step is limited by the CFL condition (Sect. 3.3), which ensures that gas
cannot travel more than a cell length per time-step. Thus, we can reduce the time-step via reducing

the cell size (%) or via reducing the factor in the CFL condition (@) L.e. the time-step for a

simulation with CFL=0.3 is similar to the time-step in a simulation v?/ith CFL=0.6 and twice the
number of cells per parsec. The time-steps of these two simulations differ a little, since variations
in the velocities caused by the spatial resolution are a second order effect on the time-step size. The
maximal velocities at a given time in the different simulations vary by less than 10%. The location
of the cell, which limits the time-step depends on the evolution of the model: after 1 Myr the gas
velocity in the outermost cell of the free streaming wind region limits the time-step, whereas after
4 Myr the sound speed in the shocked wind region near the bubble wall limits the time-step size.
The two-shock Riemann solver’s efficiency is independent of the time-step size (varied via the CFL
and by changing the time-marching algorithm from Runga-Kutta II to Runga-Kutta III), whereas
the Roe solver gets more efficient for larger time-steps, since the energy loss at the reverse shock
occurs less often.

Riemann solver

In the simulations* with initial densities of py = 2.2 x 10722 g cm~3, pressures of py = 1.47683 x
1072 erg cm—3, resolutions of Az = 0.032 pc and extreme mass loss (500 M, which is much
too high but was used for tests of the kinetic energy fraction) in the SN, the two-shock solver

4This is a different set from the simulations in Tab. 6.2
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Figure 6.12: Oscillations near the reverse shock after 2 Myr in simulations using the two-shock
solver.

(1.8 x 10% erg when the shell speed reaches the sound speed) is more efficient than the Roe solver
(1.5 x 10* erg) and less efficient than the HLLC solver (2.2 x 10% erg). This is the expected
behavior, since the HLLC solver is the most diffusive of the three solvers and hence the density
and temperature slopes at the contact discontinuity are shallower and thus the temperature in the
first cell, which is dense enough to cool is smaller than in simulations with the two-shock solver.
On the other hand, the Roe solver has problems with energy losses at the slowly moving reverse
shock. This can be seen as damped oscillations in the shocked wind.

Actually all solvers produce oscillations inside the shocked wind region. A test with a constant
wind showed that these oscillations are not caused by changes of the wind power, since they are
also observed in a simulation with a constant wind (Fig. 6.12).

Influence of the feedback region size

The standard radius of the feedback regions in our 1D simulations is 7 = 0.32 pc (Sect. 6.1.3).
To test the influence of the number of cells in the feedback region onto the energy content of the
simulation, models with different resolutions (Ax from 0.008 pc to 0.032 pc) and diameters of the
feedback region (r¢ from 0.32 pc to 0.64 pc) were compared.

Also these models follow the general trend that simulations with higher spatial resolution find
higher feedback energy efficiencies. Comparing the free streaming region to the solution of Cheva-
lier and Clegg (1985) (see Sect. 4.4.3) showed good agreement for all models: The density profile
was ~ ﬁ for all Az and all r¢. Also the kinetic energy profiles for all Az and all r; were similar
to those in Chevalier and Clegg (1985). Since the pressure in the top hat distribution in the feed-
back region is proportional to 7 2, the pressure is larger for larger ;. All models showed a decay
like p oc 271%/3, as expected.

The kinetic and thermal energy increase starts later for Az = 0.016 pc and r; = 0.64 pc than for
r¢ = 0.32 pc at the same resolution, since the initial top hat structure has to evolve into a wind
structure, which takes longer for larger regions. The energy uptake rate is the same. As a result
increasing r¢ leads to slightly smaller bubbles. However, if the spatial resolution is decreased to
Ax = 0.032 pc, the energy increase also starts later for larger r; but after 0.1 Myr the energy uptake
rate becomes higher for larger r¢, leading to larger bubbles for larger ;. Doubling the feedback
region radius thus led to an increased feedback energy efficiency for the lowest resolution. For
Az = 0.016 pc, however, the region diameter did not change the efficiency any more. Strangely
for Az = 0.032 pc the radiative losses (A) for smaller feedback regions (r = 0.32 pc) are smaller
than for larger feedback regions (s = 0.64 pc), but less energy is stored in the simulation. The
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time-step size in the early phases is smaller for smaller feedback regions, since outermost free
streaming cell limits the time-step size.

6.2.5 Retained Kkinetic energy

The kinetic feedback energy efficiencies listed in Tab. 6.2 were evaluated at the moment, when the
densest cell was decelerated to the ambient sound speed. This is also the time when the lines in
Fig. 6.9, showing the time evolution of the retained kinetic energy, end. In the left upper panel
of Fig. 6.9 the reference models without SN explosions or without winds are shown. The 60 Mg
model explodes in a SN after 4.8915 Myr. Simulations of models without wind phases are started
at this time. The dependence of the models on the resolution during the pressure driven phase
(right upper panel, see discussion in Sect. 6.2.4) leads to more efficient stellar feedback in higher
resolved simulations. Also rescaling directly after the wind phase leads to an increased efficiency,
whereas rescaling during the momentum driven phase (~ 9 Myr) does not change the efficiency
(not shown in the plot, since the lines would be on top of each other). In the lower left panel
the CD is artificially enforced via a. The dependence on the resolution in these models is less
pronounced than in the standard case (right upper panel) but still exists, since the treatment with a
reduces the losses near the CD but cannot prevent mixing of the two gas phases. The right lower
panel shows the second approach to limit the losses near the CD: A mixing process smears out
the CD and thus prevents that high temperature gas mixes with dense gas at the CD (by producing
intermediate temperature gas and intermediate density gas). Thermal conduction leads to a 10%
(Azx = 0.032 pc) or 18% (Ax = 0.016 pc) lower efficiencies. In this panel of Fig. 6.9 and 6.10 we
also show a 14 orders of magnitude higher diffusion coefficient to mimic a very efficient mixing
process. This model is converged for all resolutions. In Fig. 6.10 the retained kinetic energy of all
these models is depicted as a function of the shell velocity. The phase, when the shell velocity has
decreased to the ambient sound speed occurs later, at larger radii and at higher kinetic energies for
higher a and higher resolutions.

The influence of «

If radiative cooling is applied for all densities in the cooling table (e = 0, Tab. 6.2, Fig. 6.9 right
upper panel), the kinetic energy at the end of the wind phase is a factor 1.3 higher in simulations
with a cell size of Az = 0.008 pc than in simulations with Az = 0.016 pc. The latter simulation’s
kinetic energy during the wind phase is a factor 1.2 higher than in a simulation with Az = 0.032 pc.
The feedback energy efficiency when the bubble shell has decelerated to the ambient sound speed
rises by a factor 1.3 if the number of cells is doubled.

If there is no density threshold for radiative cooling (¢ = 0), also the SN shell can cool. More
than 70% of the energy is lost via radiative cooling when the SN blast hits the bubble wall. All the
kinetic energy in the reflected wave is lost at the origin, since the reflected wave sweeps up the gas
and creates an efficiently cooling density peak at the origin. Again losses are higher in simulations
with larger cells.

Limiting the mixing processes across the CD by applying radiative cooling only to cells with
densities above the ambient density, leads to a feedback energy efficiency of approximately 7% for
a cell size of Az = 0.032 pc. If all cells with densities below the ambient density are considered to
contain not radiatively cooling hot gas (a = 1.0, Tab. 6.2, Fig. 6.9 left lower panel), halving the cell
size increases the kinetic energy when the bubble shell has decelerated to the ambient sound speed
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or the kinetic energy at the end of the wind phase by a factor of 1.1. If the cellsize is reduced, the
oscillations between kinetic and thermal energy caused by the SN are less damped. The radiative
energy losses are largest when thermal energy is converted to kinetic energy (every second time,
when the wave enhances the pressure near the bubble wall, strong radiative cooling losses arise
in cells, which are dense and hot enough to cool. Since no density peak (as high as the ambient
medium) is found at the origin no additional losses occur when the SN wave is reflected at the
origin. The losses are larger if the cells are larger).

Wind-only models

Comparing the kinetic energies at the end of the wind phase of models that differ only by spatial
resolution (Tab. 6.2) show that we find an increase of the retained kinetic energy by a factor ~ 1.1
for models with @ = 1 and a factor ~ 1.3 for models with a = 0. For the model without SN
and a = 0, which was resampled at the end of the wind phase, we find an increase of the retained
kinetic energy by a factor ~ 1.1 against the not resampled model. No energy is added to this model
after resampling, but the higher resolved model can retain more kinetic energy, since it loses less
energy at the CD.

The influence of mixing processes

The dependence of the feedback energy efficiency on the spatial resolution decreases, if thermal
conduction is taken into account. For extreme conduction the differences between the simulations
with different resolutions essentially vanish. As mentioned in Sect. 6.2.4, our spatial resolution
defines a scale length on which gases are mixed with 100% efficiency. Since our resolution has
reached or even gone below the proposed length scale of turbulent mixing (Sect. 2.2.4) we con-
clude that the dependence of the feedback energy efficiency on the spatial resolution depicts the
dependence of the radiative losses on the efficiency and the length scale of turbulent mixing across
the CD.

6.3 Conclusions

We investigated the efficiency of stellar energy deposition in the ISM. For this study we compared
the feedback energy efficiency of SNe in different environments. Our main results are:

e If a simulation with 100 particles per cm? refers to Thornton et al. (1998) and uses a feedback
energy efficiency of 10% as a sub-grid model, a time-step of 33 kyr has to be resolved. A
short time later the efficiency drops far below 10% (Fig. 6.2 and 6.3).

e Without the stellar wind of the progenitor star, the feedback energy efficiency of a massive
star, which is placed in a dense medium, is much (here a factor 6) smaller than if the wind is
taken into account (Tab. 6.2).

e The cumulative feedback energy of the stellar wind of a 60 M, star is 2.34 Egn. The impact
of the stellar wind can be seen from a comparison between a model with no SN blast at the
end of the wind phase and a model with both progenitor wind and SN blast. The energy
difference when the shell reaches the sound speed (Tab. 6.2) is 2.13 x 10*® erg in a model
without SN compared to 2.71 x 10%® erg in a model with SN and wind. This differs from
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the ratio of the total energy inputs (2.34 x 10°! erg and 3.34 x 10°! erg). Thus, steady stellar
feedback is more efficient than a blast.

The feedback energy efficiency of a constant wind with the same net energy input is slightly
higher than for the time-resolved wind (Tab. 6.2). Averaging the WR phase over the whole
stellar lifetime makes the constant wind stronger than the time resolved wind in early phases
and allows it to create a larger bubble at early times, which serves as a pressure reservoir
for the bubble expansion later on. At the time when SN explosion happens, the bubble
size and the retained kinetic energy of the constant wind model are larger than in the time
resolved model, whereas the thermal energy is smaller, since the time resolved models boost
the thermal energy during the WR phase directly before the SN.

The time of maximal luminosity (¢,, defined in Sect. 6.1.1) occurs later, if stellar wind bub-
bles are taken into account. In this case, the blast expands adiabatically until it impacts onto
the cavity wall. Subsequently, the SN blast wave bounces inside the bubble and as a result
the luminosity peaks are periodic events and occur whenever the SN shock-wave hits the
cavity wall (more precisely, it does not directly hit the cavity wall but compress the wind
gas in front of the cavity wall) and kinetic energy is converted to thermal energy (and vice
versa). The losses show a double peak at times when the conversion rates are largest.

Mixing processes across the CD are important during pressure driven phases. In these phase
the resolution mimics the scale of mixing and thus has an effect on the feedback energy
efficiency. In the subsequent momentum driven phase radiative cooling in the swept-up,
compressed and thus heated medium is the dominant energy sink.

Comparing the constant wind models at different resolutions (which mimic the length scale
of the mixing processes in the ISM) shows that the 0.032 pc model has a higher efficiency
than expected. Low resolution models can find a higher efficiency, if they underestimate the
density in the shell. In this case the efficiently cooling temperature-density combination is
not found at every time-step in the 0.032 pc model, whereas later on this gas phase is always
present. In higher resolved models the efficiently cooling layer near the CD has a smaller
volume: At the same time of the simulation it is found at larger radii in higher resolved
simulations but it is only a single cell wide. Simulations with a resolution of 0.001 pc
showed cooling losses of the same order of magnitude in the compressed swept-up medium
and near the CD. At even higher resolutions the cooling layer will at some point become
irrelevant.

The feedback energy efficiency in 1D simulation is expected to be an upper limit for multi-
dimensional simulations, since (non-radial) instabilities, which arise in more dimensions,
increase the surface of the CD and enhance mixing between the hot and cold gas phase. In
our work these mixing processes are treated indirectly via the mixing length-scale (i.e. by
the resolution or via diffusion coefficients).

During the wind phase the density threshold in the cooling function (e.g. a = 1) reduces
the dependence of the feedback energy efficiency on the resolution (Tab. 6.2). However, the
differences between the feedback energy efficiencies for different resolutions at the end of
the simulations are not significantly reduced if the threshold @ = 1 is used instead of a = 0.
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e If the coefficient x of heat conduction is strongly increased, the models converge, since the
gradients at the CD, which were sensitive to spatial resolution, get smeared out. However,
the total feedback energy efficiency is drastically lowered by this treatment.



126 6. 1D: Feedback efficiency in spherical symmetry




Chapter 7
3D: Porosity and depth of embedding

With our 3D simulations, we study the influences of the position of the massive stars inside the
GMCs and the “porosity” of the cloud onto the feedback energy efficiency. Porosity in this context
describes the sum of the cross-section areas of all holes in the GMC allowing stellar feedback
material to escape from the GMC into the warm phase of the ISM (phases of the ISM are discussed
in Sect. 2.1). We now move on from infinite clouds to semi infinite clouds.

7.1 Setup of the 3D models

The hydrodynamic simulations discussed in this section were carried out with the Eulerian grid
code RAMSES (Teyssier, 2002, discussed in Sect. 5.1.2) on a Cartesian mesh. The simulations
take advantage of AMR and reach a resolution of 0.13 pc. The grid is refined near large pressure
and density gradients. If nothing other is mentioned, a HLLC solver and MinMod flux limiting
are used. Our modifications of the code (cooling-heating equilibrium and stellar feedback) are
described in Sect. 5.2.3. Tests showing that our numerical solution for stellar feedback in an infinite
homogeneous cloud without radiative cooling approaches the wind theory of Castor et al. (1975),
which describes an idealized spherically symmetric stellar wind, are presented in Sect. 4.4.1.

-15pc Opc 10pc

Warm interstellar medium
p2 ~ 1 particle cm~3
T ~ 10000 K

Ad Semi-infinite cloud

p1 ~ 100 particles cm ™3
T~ 100K

Az 0 Feedback region

radius (r.) 0 to 4 pc

distance Az =10 to 20 pc
“Chimney”

cross section (Ad)? = 0 to 12.2 pc?

P1 P2

Density step

Figure 7.1: Components of the toy model: The feedback region is immersed in a semi-infinite
cloud. It is connected to the ambient ISM by a “chimney” in the cloud.
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The basic setup for the models discussed in this chapter is sketched in Fig. 7.1. The feedback re-
gion can be placed in a pre-existing spherical cavity mimicking a Strémgren sphere'. This helps to
avoid losing the newly inserted energy in this zone immediately. Alternatively we can also turn off
energy losses via radiative cooling in the feedback region. But, since the ionizing radiation of the
massive star will create a Stromgren sphere, the assumption of a small pre-existing cavity is less
artificial than a non-cooling dense part of the cloud. As a reference we also present models without
pre-existing cavities. In these models, cooling losses can occur inside the feedback region. The
smallest initial cavity in our set of models is approximately one cell larger than the feedback region
(re = 0.64 pc, rg, = 0.49 pc). That it cannot be exactly one cell larger is an implication of the im-
plementation of this spherical region on a Cartesian grid (see Sect. 5.2.3). The largest pre-existing
cavities we tested have a radius of r, = 4 pc. For the chosen cloud density of 100 my cm™3, this
bubble radius would be well inside the Stromgren radius of a 60 M, star. For example Sternberg
et al. (2003, Fig. 5 and Tab. 1) find 3 x 10*° ionizing photons per second for an O5 main sequence
star with similar mass, luminosity and effective temperature as found in the initial phases of the
stellar evolution model we use for this study (Ekstrom et al., 2012, rotating 60 M, star). For a
Hydrogen number density of ny ~ 71 cm™3, this leads to a Stromgren radius of ~ 5.44 pc.

The pre-existing cavity contains gas with the same density and temperature as the ambient medium
and can be connected to the ambient medium via a cuboidal “chimney”. Since no friction or
viscosity are taken into account, the shape of the “chimney” is irrelevant and even if there is a
single hole or if there are several holes is a second order effect. The leading order term is the total
cross-sectional area of all holes. Therefore, our setup uses a single “chimney” with a quadratic
cross-section, since this shape of the “chimney” is more convenient than a cylindrical hole on a
Cartesian grid.

The GMC gas is assumed to have a proto-solar chemical composition according to Lodders (2003)
to calculate cooling and heating. This leads to a hydrogen mass fraction of X = 0.711. The
assumed density of 100my cm™2 = 1.66 x 10722 g cm™3 thus corresponds to ny~ 71 cm™~3,
which is slightly below the densities in the 1D models>. However, also this density leads to a
cooling-heating model dependent equilibrium temperature in the order of 100 K (see Fig. 2.1).
Our models now also contain a warm dilute phase of the ISM which is in pressure equilibrium
with the dense phase. We use a density of 1.66 x 1072* g cm~3 and a temperature in the order of
10000 K. Both phases are in cooling-heating equilibrium.

7.2 Grid of models

In the sensitivity analysis the impact of (1) the distance of the feedback region from the cloud edge,
mimicking the position of the OB associations inside a GMC and (2) the “porosity” via the cross
section of the “chimney”, parametrizing the density structure of the cold ISM, onto the feedback
energy efficiency are studied.

A typical setup of our grid of models is sketched in Fig. 7.1: The distance Az of a 60 M, star
from the edge of a semi-infinite cloud is either 10 pc or 20 pc. As described in Sect. 5.2, the best

'The gas in a Stromgren sphere would also have a temperature of ~ 10000 K, however, the gas density would be
higher than in the 10 000 K gas phase we use for the cavity. We fill the pre-existing cavity with ambient medium, since
only in this way we can set up static IC.

%in 1D: 2.2 x 10722 gcm™3, or 133 my cm™2 with a molar mass of 0.5 or 1.33 g mol 1.
in 3D: 1.66 x 10722 g cm~3, Hydrogen mass fraction X = 1 or n. < 100 Lodders (2003): molar mass X = 0.7110,
Y =0.2741, and Z = 0.0149.
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Figure 7.2: Cooling-heating model dependence of the feedback energy efficiency of the wind of a
60 M, star inside a homogeneous cloud with a density of 1.66 x 10722 g cm™3. The graph shows
the fraction of retained wind energy (in thermal and kinetic energy) during 0.05 Myr (symbols) and
the total energy injection efficiency computed at each coarse grid time step (lines). The models
have a resolution of 0.13 pc and differ in the cooling-heating model and in the size of a pre-existing
cavity at the onset of the wind. The model without cavity can also be found in Fig. 7.7(a).

radius of the feedback region (0.5 pc) follows from the chosen resolution.

The tested cross sections of the “chimneys” (Ad)? are 12.2 pc?, 3.5 pc? and 1.2 pc?. The initial
cavity in the cold phase is either absent or has a radius of 0.64 pc, which is slightly larger than the
feedback region, or 4 pc, which is of the order of the initial Stromgren radius (see Sect. 7.1).
Presently, only the early wind phases have been modeled with a resolution much below the reso-
lution in the 1D work. However, a comparison between models that differ only in the “chimney”
size already led to a few interesting results, which will be discussed in the rest of this chapter. In
our future work we plan to follow up with higher resolution 3D models that will be monitored until
the shell has reached the ambient sound speed, as in the 1D work.

7.3 Impact of the cooling-heating model

As in our 1D models, our simulations use detailed cooling tables. We compare the results of
two cooling models: (1) cooling tables extracted from CLOUDY and implemented in RAMSES
by Eva Ntormousi as described in Ntormousi et al. (2011); (2) an artificial two-phase medium
(see Sect. 2.2.6 and 5.2.3) based on the RAMSES cooling table. For the latter, the equilibrium
temperature of the dense phase is higher than in the CLOUDY tables, as can be seen in Fig. 2.1.
As the RAMSES cooling table does not create a two-phase medium, an artificially stable hot phase,
which is in pressure equilibrium with the cold phase, is added. For both models artificially stable
phases for the two gas phases in the initial conditions (IC) are implemented and can be switched
on or off at compile-time. However, tests showed that the gas phases in the IC are close enough to
stable phases in the CLOUDY cooling model that the presence or absence of the artificial equilibria
for the IC did not have a huge impact on the simulation. Moreover, this artificial equilibrium
is unstable: Tiny density changes, which can be created e.g. by sonic waves caused by stellar
feedback, will make the gas temperature evolve towards the cooling-heating equilibrium curve
value.



ing

Porosity and depth of embedd

7.3D

130

-20

[od] A

[wo/819] d O130]

N < \O
Q 2 2

[2d] A

[wo/319] d 91507

N <t \O
ﬁu. 2 2

-20

oo O o0
I I I

©O = N M <t 1 O N~ © - N M < 1N O~ ©
O - N M T 1 © I~ O
g o g g g g g g g o g g 8 g q & A N g g g g g g
T T [ | T o
T T T T T T o
o ] =
r 7 [ —
m 4
5] ]
o
()] i
=
oy 1
2 1 r =
= ]
c ]
] ]
k)
T ]
D o
o 0T —
] ;
_,,,,,_,,,,,_,_,w TS S T S Y T T S T T O O O S B ,_,,,_,,,,,___,_wo
| | 1 | | 1 L L | ﬁi
Q =] o = e o o o o o o o o o
N - T 8 &8 A ~ ~N - N

[od] A

[wo/319] d V1807

N < \O

AR RR IR RN TR N NARRNNNANNN NN

NNNNSANNNNNANNNNNNNNNNNNNNNNNNY,

RN
A AAIIININNNNNNNNNNNNNNNNNNNNNNN

NAATTITINUNNNNNNNN NN NN N NN NN

A N Y

A NN NN

A NN

T = ¥

A A A AR NN RN RN NN SN NN

NSNS NNNNNNNNNNANNNNNNNNNNNNNNNNY

RN
A A AN TN UNNUNNUNNNNNNNNNNNNNNNNY

AU LTI A UNN NN NN N NN N NN NN N NN NN

124747 A7 7 7F 7|

A Y

R R R R

ANNNYANNNNN NN N NNNNNNNNNNNNNNNNN

NN NN NN NN N NN N NN N NN NN NN NN N NN NN NN NN N NN NN NN Y

NNNNNNANNNNNNNNNNNANNNNNNNNANNY,

*/////////////////////////////////////////

NNNNNNINNNNNNNNNNNNNNNNNNNNNNNNY,

RN
AANANNNNNNNNNNNNNNNNNNNNNNNNNAN

NAANINNNNNNNNNNNNNNNNNNNN NN NN

NAATIINNINNNNNNN NN N NN N NN N NN N NN

- A NN

A NN

NI NNNNNNNNNNNNNNNNNNNNNNNNANN N

NN NNNNNNNNNNNNNNNNNNNNNNNNANY N

fRaangarvdaagagmnmyaad :22;

- *///////////////////////////////

#//////////////////////////////////////%

N AN
ANNANNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNAY

LN NN ]
L RN R NN

N

R R

X N N NN N NN NN NN NN N NN NN NN NN NN NN NN NN NN

- +/////////////////////////////////////%4

*////////////////////////////////////4

nnNNay
NN N

[ R RN

*/////////////////////////////////////aw

Y
ANATUNAUNNUNNNNNNNNNNNNNNNNNNN NN

(25X NN

[ NSNS

T JSEN =

% A A VTR RN RN AN RN NN NN B ANRANAY]

R

3]m

RN TR
ANANUNNNNNNNNNNNNNNNNNN N NN SN NN
]
PUNAANNNNANNNNNNNNNNANNNANN NN ON NN

14

log;, p [erg/cm

AR Ay

A N NN NN

A NN RN

R R ARy

A ey

N NNNANNANNNNNANNNNNNNNANNNNRAANANAN]

NN T Kea)
—

NN TR
ANNNNNNNNNNNNNNNNNNNNNNNNNNENNNNY

L N N
LI R N TR Q

R R R R R

N T T T R ey

R R N
- L R N TS

7//////////////////////////*//l/l/l/

I Y
ANNNNNNNNNNNNANNANNNNNANNANN NN NN

[ Y TR

[ NN NN

0 >~ O n <t n A

] .z °FSor

0 >~ O N <t on A

1] .z °FSor

0 >~ O N T n A

1] .z °F8or

x [pcl

(b) Cut through the dens

istribution

ity d

(a) Temperature and density distribution of the cells
-axis

along the x

homogeneous cloud are shown

in a
lemented in the same way as

th an initial cavity (radius 7.) i

ions wi

lat

r. = 0.64 pc, CLOUDY cool

The simu

after 1 Myr. Top

Figure 7.3

Ntormousi

m

imp

(

ing

ing.

r. = 4 pc, modified RAMSES cool
the wind shell

bottom

The lower two plots exhibits a two peak shell structure in the swept-up shell

ing,
ran into the walls of dense gas surrounding the pre-existing cavity.

r. = 4 pc, CLOUDY cool

etal., 2011), center

, since



7.3 Impact of the cooling-heating model 131

Density [g/cm?] after 1 Myr

1072 x x
10-22
10-23
10-24
10-25
10-26
10-27
10-28

T T [Ty,
3 *y

I
+ RAMSES *
Feedback region CLOoUDY +

Density [g/cm?]

1 1 1 1 1 1
0 2 4 6 8 10 12 14

Radius [pc]

Figure 7.4: Averaged radial bins of the 3D simulations on a Cartesian grid. The plot compares
simulations with an initial cavity radius of 4 pc and different cooling models. These simulations
are also shown in Fig. 7.2 and 7.3. Despite the larger ambient pressure, the model with RAMSES
cooling seems to produce slightly larger bubbles. Also the average pressure in the shell of the
model with CLOUDY cooling is lower than in the model with RAMSES cooling (this can be inferred
from Fig. 7.3).
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Figure 7.5: Numerical tests agree well with a kinetic energy fraction of 45.6% in the shell and a 5:6
energy ratio between bubble and shell. This leads to a total kinetic to thermal energy ratio of 0.331
as found in the simulations without cooling losses. Since the initial density in the feedback region
is treated like wind gas, the kinetic energy fraction is initially overestimated. The red data shows
the effect of the presence of a pre-existing cavity: the swept-up shell contains less mass and hence,
less kinetic energy. This effect is also seen in the simulation without cavity (shown in green). Here
it is caused by the mass of the feedback region (rg, = 1.5 x 10'® cm) ending up “on the wrong side
of the contact discontinuity”. The evolution of the energy ratios towards an equilibrium value was
fitted with an increasing exponential decay form (1 —e™"). The presence of an initial cavity leads to
an initially lower kinetic energy fraction, since (1) the bubble is larger due to the faster expansion in
the initial cavity than a bubble forming in a homogeneous dense medium and (2) the swept-up mass

at a swept-up shell radius rgen 18 (47/3)7r2, o Paverage = (47/3) (13 e1Peold — (Peold — Pwarm) T2).
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Figure 7.6: Without cooling, we expect a ratio of 0.547 between the kinetic energy in the shell
and the thermal energy in the cavity from the Weaver et al. (1977) wind theory. The open symbols
indicate the ratio of the kinetic energy of the cold medium (7' < 10* K) to the thermal energy in
the bubble (T" > 10* K). The crosses use the difference between the thermal energy of the initial
conditions and the current thermal energy as a proxy for the thermal energy of the bubble and the
shell. In the plot the energy content after every 3™ coarse time step is shown. In our simulations
the ratio of the total kinetic energy and the thermal energy increase is 0.6. The kinetic energy of
the shell over the thermal energy of the hot medium is closer to the aforementioned expected ratio.

A comparison of simulations with the CLOUDY and RAMSES cooling-heating treatments (Fig. 7.2)
shows that the feedback energy efficiency is of the same order for both cooling models. This is
consistent with the findings in 1D (Fig. 6.6). Fig. 7.2 contains four models that differ in the cooling-
heating model and/or in the initial cavity size. The simulation with modified RAMSES cooling and
no pre-existing cavity shows very low feedback energy efficiencies until a wind bubble has been
established (~ 0.6 Myr). Adding a small cavity (that might represent an initial Stromgren sphere)
helps to reach a roughly constant energy uptake per time step (of ~ 8%, shown with symbols) and
the expected wind structure inside the bubble earlier. Comparing this plot to the 1D models in the
last section (first 1.5 Myr in Fig. 6.9), one has to take the dependence of the retained energy on the
resolution and the lower ambient density of the 3D models into account.

The dense swept-up shell and the ambient medium (if not artificially stabilized at the IC pressure
and density) reach the temperature of the cooling-heating equilibrium (see Fig. 2.1 for the equi-
librium), which is lower in the CLOUDY cooling prescription. Consequently, the cooling-heating
implementation of Ntormousi et al. (2011) leads to a lower ambient pressure (without artificial
equilibrium for the IC the pressure is 7.2 X 10713 erg cm ™3 instead of 3.2 x 107!2 erg cm™3). After
1 Myr slightly larger bubble radii (Fig. 7.3) in the cut along the x-axis are observed in the simula-
tion with CLOUDY cooling than in the run with the modified RAMSES cooling with an artificially
stable second phase. The latter, however, leads to slightly larger averaged bubbles (Fig. 7.4).

The total feedback energy efficiency is set by the pressure in the hot wind-blown bubble. Without
cooling the ratio between the energy in the cavity and the energy in the shell can be found from the
pressure driven expansion (see Weaver et al., 1977, Sect. III and Sect. 4.4.2 in this thesis). Eq. 4.41
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predicts for a constant wind (in 3D):

5 6
— Lt FEagen = e—Lyt
11 hell €

Ecavity+shell = CLWt, Ecavity =€ 11

With the kinetic wind luminosity L,, = 0.5M v2, where v, is the terminal wind velocity and M is
the mass loss rate. € is the feedback energy efficiency.

Weaver et al. (1977) predict that 40% of the energy in the swept-up shell (Fge1) are kinetic energy.
Actually checking the numerical integration described Weaver et al. (1977) with MATHEMATICA
showed that 45.6% of the shell’s energy is kinetic. The kinetic energy fraction of F,yity 1s negli-
gible. This leads to a total kinetic to thermal energy ratio of 0.33, which is in excellent agreement
with our numerical tests (Fig. 7.5).

7.4 Impact of pre-existing cavities

Fig. 7.5 also illustrates the effect of an initial cavity onto the energy ratios. The size of the pre-
existing cavity influences the early phase of the bubble expansion (~ 0.4 Myr): The wind bubble
expansion slows down with increasing ambient density. In our setup, the wind bubble first sweeps
up the lower density medium in the cavity. We find a fast expansion with almost no cooling
losses before the cavity wall is reached (visible e.g. via the similarity of the leftmost red crosses
in Fig. 7.5 and the leftmost blue crosses in Fig. 7.6). When the shell starts to sweep up the dense
cloud material, the expansion slows down and the cooling losses rise. The mass in Eq. 4.38 can no
longer use a constant ambient density and becomes peoaVor%on — (Peold — Pwarm) Virs. Eq. 4.40

holds only for repen > 7.¢/1 — %. A larger exponent @ in Eq. 4.40 would lead to a lower

kinetic energy fraction in Eq. 4.41. This is also observed in our simulations (Fig. 7.5 and 7.6). The
bubble evolution can be approximated with two asymptotic expansion laws. One of them describes
the expansion before the shock impinges on the dense cloud material and the other one is recovered
when the second term in the aforementioned swept-up mass becomes negligible. These laws can
be obtained from the Weaver et al. (1977) wind theory (see Sect. 4.4.1). The transition between
the bubble expansion in the cavity and the expansion into the homogeneous surrounding medium
leads to a decay-law-like evolution of the energy ratios®.

We will now assume that all thermal energy of the shell is lost via radiative cooling. Without
cooling, the expected ratio between the kinetic energy of the cold gas and the thermal energy of
the hot bubble is 0.547*. In Fig. 7.6 we see that the total kinetic energy in simulations where
radiative cooling is taken into account contains a contribution from gas above 10* K (compare blue
open squares to blue open circles). The crosses and the fits in Fig. 7.6 use the total kinetic energy —
which is dominated by the cold phase (as the tests each 50 kyr show). The thermal energy is found
from the difference between the total thermal energy and the total thermal energy of the initial
conditions. It is thus lower than the thermal energy of the bubble and the shell, since the initial
thermal energy in this zone is subtracted. Every 50 kyr we evaluated the energy of the bubble in
detail. The open symbols in Fig. 7.6 show the ratio of kinetic energy of gas with temperatures

3The convergence of the energy ratios looks a bit like the temporal evolution until an equilibrium concentration of
reactants in a second order chemical reaction is established. See e.g. "A Second-Order Chemical Reaction" from the
Wolfram Demonstrations Project http://demonstrations.wolfram.com/ASecondOrderChemicalReaction/

46/5 x 0.456 = 0.547, where 6/5 are taken from Eq. 4.41 and 45.6% were found via numerical integration of
Fig. 4.13.
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below 10* K and thermal energies of cells with temperatures above 10* K (i.e. we do not subtract
the energy of the initial conditions here). 10* K is used as limiting temperature, since it is the
initial temperature of the cavity.

If all kinetic energy is used, the ratio seems to converge to Fiin shell : Liherm ~ 0.6. If we only take
the kinetic energy of cold gas into account, the ratio comes closer to the expected ratio of 0.547.
The initially higher ratio in simulations with pre-existing cavities is also influenced by the kinetic
energy of the free streaming wind.

7.5 Homogeneous infinite cloud

As a limiting case of a very narrow and very long “chimney” a homogeneous infinite cloud is used.
The total feedback energy efficiency in this setup is the lowest in the whole sample, since the gas
cannot escape the cloud and the dense swept-up shell leads to large cooling losses (Fig. 7.7(a)).
However, for all models with a resolution of 0.13 pc (purple lines in Fig. 7.7(b)) the kinetic feed-
back energy efficiency in the gas below the initial temperature in the warm medium (i.e. < 10* K)
seems to converge to ~ 3% during the wind-phase. However, we will need more simulations to
find out, whether this is a coincidence. Fig. 7.2 indicates that the radiative losses lead to a feed-
back energy efficiency factor ¢ ~ 8% for the total retained energy F(t) = €Lyinat. The largest
radiative losses occur at the interface between the hot bubble and the shell (Fig. 7.8). When this
constant energy uptake rate is observed, the dense shell cools to the temperature of the cooling-
heating equilibrium for this density, as can be seen in Fig. 2.1, 7.3(a) and 7.9. Fig. 7.9 also shows
a small indication of a temperature rise in the shock — however, our simulations do not resolve this
feature. Increasing the significance by averaging over concentric shells does not help here, since
we would average over the Vishniac instability and get a smeared out shell. As already discussed
in Sect. 7.4 — a kinetic to internal energy ratio close to 0.547 (Fig. 7.6) is found. In accordance
with the predictions of Weaver et al. (1977), most of the kinetic energy is found in the swept-up
shell.

The time dependent cavity volume® (Fig. 7.10) exhibits the V' o< t5 behavior expected for an
almost constant wind from Eq. 4.42 and Castor et al. (1975, Eq. 6).

Since the IC of the models presented in Fig. 7.7 do not use an analytical sub-grid model for a wind
shell in the feedback region or a pre-existing cavity to mimic a Stromgren sphere, these simulations
show an artificially extended free expansion phase, caused by the homogeneous density in the
feedback region: The simulation treats mass inside the feedback region like wind gas and the end
of the free expansion phase is reached when the swept-up mass exceeds the wind mass. This
artifact can be minimized by keeping the feedback region on the highest AMR level (which makes
it smaller, since the optimal size of this region follows from an optimal number of grid cells therein)
or by the assumption of a pre-existing cavity filled with ionized gas around the star. Placing the
feedback region directly in the cold dense medium results in efficient cooling inside the bubble.
If the feedback region is large enough to lead to oscillations inside it (i.e. in this case it contains
more than the optimal number of cells), also the formation of tiny strongly cooling clumplets near
the boundary of the feedback region is observed.

>We compare volumes instead of radii, since the simulations with “chimneys” are not spherically symmetric.
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(b) Kinetic feedback energy efficiency for different temperature ranges

Figure 7.7: Panel (a) shows the total feedback energy efficiency in six different setups. There
is no pre-existing cavity in these simulations and all of them use the modified RAMSES cooling
implementation. The efficiency of two 60 M, stars in an infinite cloud is similar to the efficiency of
a single 60 M, star (crosses and pluses). A higher “porosity” increases the efficiency of the energy
input: the retained energy rises with rising “chimney” diameter (filled symbols [triangle, box,
circle]). This is expected, since a stellar wind bubble in the tenuous medium can grow faster and
suffers less cooling losses than a stellar wind bubble in the dense medium. The cooling losses occur
in the dense shell surrounding the not-cooling hot pressure reservoir. The length of the “chimney”
only influences the kinetic energy via the size of the superbubble (filled and open boxes). In all
models about 90% of the stellar feedback are immediately lost via radiative cooling. In contrast
to panel (a) panel (b) shows only the kinetic feedback energy efficiency. The colors indicate the
temperature range of the moving gas: total retained kinetic energy (red), kinetic energy in cells
with temperatures below 10 K (light blue), 10* K (purple), 10° K (green) or 10° K (dark blue).
All simulations seem to converge to ~ 3% retained kinetic energy in gas below 10* K.
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Figure 7.8: Similar to Fig. 7.3(a). In (a) the cooling loss distribution is shown instead of the

density. (b) shows the 2D density cut. Cooling was switched off at densities below the ambient

medium density. The temperature in the bubble (~ 10® K) is set by the energy injection rate [see

also Fig. 7.9]. The highest cooling losses are found near the interface of the wind blown bubble

and the shell.
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7.5.1 Doubling the feedback

In our simulations, inserting two stars at the same place in the infinite cloud is roughly as efficient
(total feedback energy efficiency ~ 8%, Fig. 7.7) as inserting two stars at the same time at infinite
distance. A small difference in the total feedback energy efficiency — which is seen e.g. in the
thermal energy in Fig. 7.7(a) and in the total energy in Fig. 7.11 — is a relic of the early phase
of the bubble evolution. In simulations without pre-existing bubbles (e.g. shown in Fig. 7.7(a))
the different amounts of retained energy result from the phase before the wind bubble manages to
excavate a dilute (almost) not cooling region, which is shorter for stronger feedback. Consequently,
feedback from isolated stars is slightly less efficient under these conditions. In contrast, the energy
differences in simulations with pre-exisiting cavities (Fig. 7.11) reflect the time it takes the wind
shell to reach the edge of a pre-existing initial cavity. In this phase (almost) no cooling losses occur.
The end of this phase is best seen in the total energy in Fig. 7.11, which starts to deviate from the
feedback energy when radiative losses set in. This phase ends earlier if the stars are placed in
the same feedback region: Castor et al. (1975) wind theory predicts that the wind bubble’s radius
increases with 7(¢) o pe/°E'/5¢3/5. Hence, a simulation with isolated stars reaches the cavity
edges a factor /2 later than a simulation with two stars in the same feedback region. Which
is exacly the factor we find when we compare the simulations with different densities inside the
cavity or different numbers of stars in Fig. 7.11: In the model with two stars at the same location,
a RAMSES cooling function and a density of p, = 0.92 x 10~2* g cm~3 in the cavity, we find that
the total amount of retained energy is larger after 11.6 kyr than after the next time-step (which is

3/166
9 later

(at ~ 14.1 kyr), if the density in the pre-ecisting cavity is increased to 1.66 x 1072* g cm~3. For

5 /332
92

(~ 17.5 kyr) is expected if both, the density and the number of stars are changed. In our simulations
we find a snapshot with these properties at 13.5 kyr for two stars and p. = 1.66 x 1072* g cm™3,
14.5 kyr for one star and p, = 0.99x 1072 g cm~3 and 16.6 kyr for one star and p. = 1.66x10"%* g
cm 3. This is in good agreement with the expectations, since the time between snapshots is ~ 1
kyr.

In simulations with a pre-existing cavity, the longer duration of the almost lossless early phase
makes feedback from isolated stars slightly more efficient. However, in both setups (with or with-
out cavity), correcting for this initial phase leads to similar efficiencies for these extreme cases
(infinite separation or same position) mimicking concentrated and loose star groups. Shell interac-
tions are not taken into account, but also Krause et al. (2012), who study the effect of stellar wind
bubble shell interactions, do not find significant differences in the feedback energy efficiency of
isolated stars or star groups during the wind phase.

at 12.5 kyr). Therefore, we predict that the same evolution stage is reached a factor

infinitely separated stars, we expect a factor v/2 (leading to ~ 14.6 kyr). Finally, a factor

7.6 Homogeneous semi-infinite cloud with ‘“‘chimney”

An other means — besides bubble expansion and radiative cooling — to release pressure from the
star forming region inside the dense gas cloud is connecting this region with a “chimney” to the
ambient medium. In such channels we will first observe a shock wave, clearing the path. After
the shock wave has passed, an isentropic flow sets in. This flow will try to establish a pressure
balance of both parts of the wind blown bubble — the one inside the GMC and the one outside.
However, the sonic flow can have a too small flux to accomplish this, since the sound speed limits
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Figure 7.9: Cut along the x-axis of a 60 M, model placed in a homogeneous cloud without initial
cavity after 1.25 Myr. The modified RAMSES cooling model was used. The zoomed region shows
an indication of a temperature rise in the shock. The dense swept-up gas cools to the cooling
heating equilibrium temperature (100 K). 2° Al peaks near the cavity wall.

Figure 7.10: Evolution
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Figure 7.11: Initial almost loss-less expansion before the edge of the initial cavity is reached. Lines
show the cumulative feedback energy, symbols indicate the energy increase in the simulation. The
time at which the feedback energy efficiency drops rapidly, shows that the edge of the initial
cavity is reached. Comparing the turn-off times of models that differ in the amount of feedback
or in the density of the dilute medium, confirms that the wind-blown bubble expands with r(¢) o
pe /P E1/5¢3/5 The duration of this phase impacts the feedback energy efficiency and can be seen
as a (small) offset at later times.
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(a) Maximal outflow. (b) Isentropic flow through a “chimney”.

Figure 7.12: Sketch for the assessment of the critical “chimney” radius. The maximal flux in
the “chimney” is set by the sound speed, the density and the cross section. For technical reasons
(Iess artifacts) it can be helpful to include a pre-existing cavity which is slightly larger than the
feedback region to ensure that also cells partially inside the feedback region lie fully inside the
dilute medium.
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Figure 7.13: Speed of sound (lines) and density (symbols) in the “chimney”. This is a cut along
the x-axis. The dashes indicate the position of the feedback region center (0 pc) and the cloud edge
(10 pc). All “chimneys” have a length of 10 pc, but they differ in diameter. It can be seen that
the flows in the two narrower “chimneys” (1.1 and 1.9 pc initial width) show a density maximum
lagging behind the density maximum in the “chimney” with 3.5 pc initial width.
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Figure 7.14: Retained kinetic energy in the cloud region compared to the stellar feedback. In

contrast to Fig. 7.7(a) this plot shows the energy uptake in the region where the dense cloud was
located in the initial conditions.
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Figure 7.15: The plots show the minimal cross section along the “chimney”: they display averaged
density (in g cm™?) as seen from the star looking along the “chimney” axis. We stop integrating
~ 15 pc outside the cloud’s surface to exclude the receding shell. The minimal cross section
areas are ~ 25 pc? in both setups. The pixel size in the plots corresponds to the pixel size in the
simulations.

the propagation speed in the “chimney”. The flow will work towards lowering the density in the
overpressured cavity in the cloud. As a lower limit, we can calculate the minimal “chimney”
diameter that is necessary to remove all the newly inserted stellar ejecta M. As can be seen
from Fig. 7.12(a), the minimal “chimney” diameter to remove all newly injected stellar yields is
Agit = M / Cs chimney/ Pechimney- 10 Fig. 7.12(a) the maximal mass flow rate out of the cavity is
visualized with a cylinder. The length of this cylinder is set by the sound speed in the “chimney”.
The colors show the initial density distribution. At the start, the whole computational box is in
pressure equilibrium at pressure py. The cold cloud has a density (p;) of 100 particles per cubic
centimeter corresponding to a temperature of about 100 K and the surroundings have a density (ps)
of one particle per cubic centimeter. Stellar feedback will enhance the pressure (p.) and the gas
flow resulting from this will lower the density (p,) in the feedback region. To find the critical cross
section A of the “chimney”, we sketch the pressure and density distribution in the problem at a
later time of the evolution in Fig. 7.12(b). For a setup like this, we expect an isentropic flow® from
the feedback region (p., p.) through a “chimney” (Pchimney, Pehimney) With a cross section A into a
region that sweeps up ambient medium:

1

* - 1 B . .
P <1 + VT]\/F) ! isentropic flow. (7.1)

Pchimney

The simulations indeed find an isentropic flow with constant pp~” in the “chimney” and in the free
flowing zone downstream. The sonic point is reached near the downstream end of the “chimney”,

%The equations for an isentropic flow can be found e.g. at http:/www.grc.nasa.gov/WWW/k-
12/airplane/isentrop.html
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which is also where we find the smallest cross section. The “chimney” cross section decreases
downstream, since the shock wave reaches this region later and in the mean time the pressure al-
ready had time to act on other parts of the “chimney” surface. If the cross section of the “chimney”
is below the critical value (A < A, ) for free flow, we observe a choked flow. In this case, the flux
through the “chimney” is no longer influenced by the downstream pressure (p,) if it is lower than
(%)7/ ”‘”pchimney. For an adiabatic exponent of v = g, this is 0.487 Pchimney- In this case — and
if the bubble would not change its volume by expanding into the cold cloud — the pressure in the
bubble would rise until the “chimney” cross section gets large enough that no choked flow occurs
any more. In reality, we see a superposition of these two effects, leading to delayed pressure loss.
Fig. 7.13 shows the profiles of the density in the “chimney” (pchimney ~ 8 X 1072 g cm™?) and
the speed of sound (¢ chimney ~ 2 X 10® cm s~1) 0.1 Myr and 0.2 Myr after the onset of the wind.
The mass loss rate is ~ 2 x 107¢ My, per year or 1.26 x 10?° g s=!. This leads to a lower limit
of Acrie ~ 322 x 1027278 ~ 8.3 pc? or Adey; ~ 2.9 pc. A comparison of the time evolution
of models with different “chimney” cross sections shows a faster pressure drop in the part of the
wind-blown bubble that is inside the cloud as soon as this critical cross section is passed.

The lower limit for the critical “chimney” cross section A, can also be found from the conditions

inside the feedback region via the isentropic flow:

177;\/
Cochimney  _ ( P > (Eq. 4.55 or 4.2)
Cs,x Pchimney
s,chimne = 1 7%
Cschimney ~ M=1 (_7; ) (from Eq. 4.55 and 7.1) (7.2)
Cs,x

M < Acs,chimney Pchimney

1 1
) 1\ "2t5—1
M < ACS,*p* (%) with Cs = 72
V 'p

3=y
. 1 _
M < A/yp«p« <%> = 0.97A\/Pps (7.3)

231
The initial values are p, = 1.38 ><.10_12 gemts?, p, = 1.66x10"2* gem 2 and M = 1.26 x 102
g s~ 1. This leads to A.y; = #}Tp* ~ 8.6 x 103" cm? = 9 pc? or Ad.; ~ 3 pe. This is larger
than two of the three tested cross sections. Our test runs used’ Ad = {3.5,1.9, 1.1} pc. Due to the
overpressure of the hot wind gas, the diameter of “chimney” grows with time. After 0.4 Myr e.g.
the “chimney” with an initial diameter of 1.1 pc already grew by a factor 5 in diameter.

7.6.1 The “chimney” width

Since cold gas is found in the swept-up cloud gas as well as in the shell of swept-up ambient
medium, we also evaluated the kinetic energy at the initial location of the cold cloud (Fig. 7.14).
This way we can monitor how much energy is found in the (remainders) of the cloud. This estimate
is useful, since we need the energy inside the cloud to drive turbulence there.

We see that the kinetic feedback energy efficiency in the cloud material below 103 K stops rising
at 0.2 Myr if the initial “chimney” width was 3.5 pc whereas the model with an initial width of

"The plan was to use Ad = {1,0.5,0.25} x 10 cm, resp. {3.2, 1.6, 0.8} pc, but the IC routine added one cell at
each side of the region.
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1.1 pc needs twice as long to reach this phase. Fig. 7.15 shows that this evolution phase in the two
setups with different initial “chimney” width are reached when comparable cross section areas are
observed: In both setups the cross section at this time is roughly 25 pc?.

The models in this sensitivity analysis do not have pre-existing cavities. This leads to a gas phase
with 10? < T < 10* created by the part of the feedback region that does not overlap with the
initial “chimney” zone. The peak of the kinetic energy in such gas with 103 < 7' < 10* inside the
cloud zone, is reached at break-out at ~ 0.1 Myr for the model with Ad = 3.5 pc. The model with
Ad = 1.9 pc reaches this phase at 0.2 Myr, when the cross section has increased to 11.14 pc? from
7.3 pc? at 0.15 Myr. And finally, the model with Ad = 1.1 pc reaches this phase after 0.25 Myr at
a cross section of 9.7 pc?. Again we find a similar evolution phase at compareable cross sections.
To summarize, Fig. 7.7 shows a higher total feedback energy efficiency for wider “chimneys”. We
also find a higher total kinetic feedback energy efficiency in the simulations with wider “chim-
neys”. This can be understood, since — due to the aforementioned choked flow problem — larger
“chimneys” can transport more energy out of the cloud and build up larger not cooling pressure
reservoirs. However, for the same reason, the kinetic feedback energy efficiency in the cold cloud
material is lower for wider “chimneys”, as can be seen in Fig. 7.14.

7.6.2 The ‘“chimney” length

The “chimney” length influences the amount of energy, which is deposited in the cloud, via the
break-out time. If we double the length of the 10 x 1.9 x 1.9 pc “chimney”, the first snap-shot
showing break-out is found at 0.165 Myr instead of 0.1 Myr. L.e.in Fig. 7.7 at 0.1 Myr and 0.15 Myr
the shock front of the 10 x 1.9 x 1.9 pc model has already passed the end of the “‘chimney”, whereas
it is still stuck therein in the 20 x 1.9 x 1.9 pc model. We see in Fig. 7.7 and 7.14, that during this
time the longer “chimney” (open squares) leads to more retained energy inside the cloud and less
(i.e. none) outside than the shorter “chimney” (filled squares), since with the longer “chimney” the
stellar yields have not yet found their way out of the cloud.

7.7 Convergence

In the same way as discussed in the chapter on our 1D work, we also checked the influence of
free parameters in our 3D models by varying them one by one. Among the parameters tested
were the feedback model (e.g. stars of different masses, groups of stars), the implementation of
the feedback (kinetic or thermal energy input, feedback region size, treatment of cooling in the
feedback region, pre-existing cavities, treatment of cells partly inside the feedback region), the
cooling model, the spatial and temporal resolution and the numerical method (Riemann solver
type, flux limiting scheme, number precision).

The conclusions from these tests are similar to what we see in 1D: Whereas the results are quite
robust against changes in temporal resolution and the choice of the cooling function, they show
a dependence on spatial resolution and the diffusivity of the Riemann solver. Interestingly, the
number precision only has a minor effect on the feedback energy efficiency (open symbols in
Fig. 7.16).

Our interpretation of these results is that the treatment of the CD is very important for the feedback
energy efficiency. This can be seen e.g. in Fig. 7.16 (crosses), where the acoustic Riemann solver,
which ignores the CD, finds a lower feedback energy efficiency than the HLL.C Godunov scheme.
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Figure 7.16: Variants of the 10 x 1.9 x 1.9 pc “chimney” model. A comparison of models with pre-
existing cavities (crosses) and models without, shows that the influence of the pre-existing cavity
is overcome at ~ (.55 Myr. In this regime, increasing the spatial resolution lowers the feedback
energy efficiency. Changing the number precision did not have a significant effect on the feedback
energy efficiency. A more diffusive Riemann solver lowered the feedback energy efficiency.

The explanation for this behavior is that this change does not alter the width of the swept-up shell
or the maximum density significantly. However, not treating the CD accurately results in more
mixing across the CD. This mixing of “too-cold-to-cool” swept up material and “too-dilute-to-
cool” wind material in turn leads to enhanced radiative losses near the CD.

Since we do not reach the resolutions of our 1D work with the 3D models yet, the convergence
behavior of the feedback energy efficiency between the studies differs. Basically, in 1D the feed-
back energy efficiency rises with increasing resolution since the mixing across the CD, which is
the most important energy loss channel, decreases with increasing resolution. At low resolution,
the CD is smeared out and energy losses due to mixing across the CD become less important than
the cooling at the peak density, which rises with density squared. In this regime higher resolution
leads to higher peak densities and thus lower feedback energy efficiency (Fig. 7.16).

As a consequence, simulations find a minimal efficiency, if the resolution starts to be high enough
to produce a strongly cooling cell at the CD at every time step. If the resolution is lower than
this, strongly cooling cells at the CD are created less frequently. At higher resolutions (than in the
simulation with minimal feedback energy efficiency), the zone with the high energy losses is found
near the CD and gets smaller with increasing resolution. Thus, the feedback energy efficiency rises.

7.8 Conclusions from the 3D ‘““chimney” models

Our 3D simulations show that > 90% of the stellar feedback energy leave the cloud immediately
via radiative losses. Convergence tests (Sect. 7.7) at resolutions near 0.13 pc indicate that sim-
ulations with this resolution are still in a regime where the feedback energy efficiency decreases
with increasing resolution. As discussed in the last chapter, we argue that at higher resolution the
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efficiency of mixing across the CD strongly influences the feedback energy efficiency. In our 1D
work we further argued that one needs to identify the most efficient mechanism for mixing across
the CD. With this information, one can extract the feedback energy efficiency from a simulation
with mixing of similar strength caused by our numerical methods.

Consequently — as the 3D simulations do not reach the resolutions necessary for this — the predic-
tive power of our present 3D data lies in a comparison of models which differ in only one aspect,
1.e. the existence, width and length of a “chimney”, which can be understood as a proxy for the
cloud’s density structure.

If the star forming region is connected to the ambient medium via a “chimney”, obviously the
depth of embedding (in this case parametrized via the “chimney” length) will change the break-
out-time. The stellar feedback creates a shock traveling through the “chimney”. When this shock
wave reaches the ambient medium, it depends on the cross section of the “chimney”, how fast
the pressure can escape from the cloud. If the speed of sound at the smallest cross section of the
“chimney” limits the flow, we call this a choked flow. In this case, the downstream pressure in
the part of the bubble that is outside the cloud cannot influence the pressure in the cavity and the
“chimney”. Therefore, during a choked flow more energy can be deposited in the cloud, than in
the presence of a wide enough “chimney” to establish a homogeneous pressure in all parts of the
bubble filled with stellar feedback. In our simulations we find indeed an isentropic flow in the
“chimney” with a sonic point near the smallest cross section.

To summarize, we expect higher kinetic feedback energy efficiencies in the cloud material and
lower total feedback energy efficiencies for deeper embedded stars. The deeper the stars are em-
bedded, the longer the pressure is confined in the cloud, which leads to more acceleration of the
cold swept-up cloud gas. Less embedded stars manage to channel more energy to the ambient
medium. Radiative losses peak in the bubble shell. Thus, less embedded stars can build up pres-
sure reservoirs outside the cloud. Also a higher porosity leads to a faster loss of pressure to the
bubble parts outside the cloud. Fig. 7.7 and Fig. 7.14 agree with the expected trends, how the
length and the width of the “chimney” are expected to influence the amount of kinetic energy that
is deposited in the cloud material.

For our re-simulations we will start with pre-existing cavities one cell larger than the feedback
region, since otherwise the “chimney” will lower the density in a part of the feedback region (up
to 50%). Starting with the same initial density in all feedback regions makes interpreting the
results in the early phase easier. The lower initial density in this region also reduces the artificial
prolongation of the free expansion phase, since the initial mass in the feedback region will end
up “on the wrong side of the CD”. We will use the cooling-heating function of (Ntormousi et al.,
2011), since it provides us with two thermal phases in pressure equilibrium and contains more
physics than setting up artificial equilibria. For the dense gas in the IC we will use the same
density as in the 1D models and the temperature corresponding to the cooling-heating equilibrium
for this density. For the warm component, we will use the same pressure. Therefore, the density
follows from the cooling-heating equilibrium. Finally, we will extend our grid to test smaller
“chimney” cross sections and take care that the IC routine does not add a layer of cells around the
“chimney”. In our set of models, we had the fully embedded stars as limiting cases. The other
extreme case, a feedback region at the cloud’s surface, will be part of our future work. Acutally a
model of this type will be shown as reference model in the next chapter. It has, however, a lower
resolution (~ 0.5 pc) than the models presented in this chapter. Anyway, it is interesting to note
that choked flows also occur in the models presented in the next chapter. They are visible via the
slight overpressure in the region inside the dense cloud and the sonic point near the cloud’s surface.
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Chapter 8

3D: Feedback in non-homogeneous clouds

The aim of this chapter is to motivate future work on the 2°Al distribution. The model presented
here is a test run' for future, better resolved models of this kind. It places stellar feedback in the
densest part of a GMC with non-homogeneous density. The IC for this cloud are taken from large
scale simulations of Dobbs et al. (2011). We will use this model to explain, how we create artifi-
cial Al observations from our simulations, since it illustrates the spread of 2 Alin less artificial
environments than presented in Sect. 6 and 7. In the reference models, which use a cloud with
a homogeneous density of 1.66 x 10722 gcm ™2, a radius of 25.1 pc and a temperature of 100 K,
the feedback region is placed in the cloud center or 1 pc below the surface. The ambient medium
is in pressure equilibrium with the cloud and has a temperature of ~ 10000 K. In contrast to the
infinite clouds in Sect. 6 and the semi-infinite clouds in Sect. 7, the clouds discussed here have a
finite size. The properties of both cloud models can be found in Tab. 2.1. Their size and mass are
comparable to the properties of the Orion A and B molecular clouds. The initial column densities
for both models are shown in Fig. 8.1.

In contrast to Sect. 6 and 7, we will now use the stellar feedback from the population synthesis of
Voss et al. (2009) instead of a single star. The motivation for this is that we had observed that this
kind of feedback has a quite disruptive effect on homogeneous clouds. We were thus interested, if
non-homogeneous clouds were able to dump the feedback energy in their surroundings.

8.1 Simulation Setup

For the simulations shown in this chapter, we used the RAMSES code (Teyssier, 2002) with the
modifications discussed in Sect. 5.2.3 and 7. The standard code settings for RAMSES include
an adiabatic exponent of v = g a Courant factor of 0.5 and outflow (zero gradient) boundary
conditions. In contrast to Sect. 7, we use the the MinMod slope limiter and the acoustic Riemann
solver for these simulations, since this is the most robust method. The cubic computational box
has a length of 68.9 pc. The resolution of the 3D simulations was 128 x 128 x 128 cells or 0.54 pc.

The radius of the feedback region is 2.43 pc (or ~ 4.5 cells).

'The main benefit of these tests was an optimization of the output of the simulation. Since the snapshots of our
simulations are quite memory intensive, we had to test which quantities we want to analyze on the fly and how often
we need to store a snapshot. Moreover we tested different energy injection techniques or feedback region radii.
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Figure 8.1: Initial conditions. The figures show logarithmic average densities in the computational
box in gcm ™3 . The properties of the homogeneous spherical cloud (left) and the SPH cloud taken
from (Dobbs et al., 2011) can also be found in Tab. 2.1.

8.2 Results

The feedback energy efficiency of the population synthesis feedback based on Voss et al. (2009)
in homogeneous and realistic clouds (Fig. 8.2) is in agreement with our findings in Sect. 6 and 7,
where we used feedback of a single, massive star. As in Fig. 7.7(a), also in Fig. 8.2 > 90% of
the stellar feedback was immediately radiated away. After break-out of the bubble from the GMC
the radiative losses decreased, since radiative losses peak in the compressed shell. Interestingly,
as in the break-out at the end of a “chimney”, also the model in which the feedback region was
placed only 1 pc below the cloud’s surface seems to show a flow inside the superbubble that is
limited by the speed of sound. Since the resulting superbubble shape has similarities with the
shape observed in Sect. 7, we will now also denote the point at which the superbubble diameter
suddenly changes as “end of the “chimney””. In Fig. 8.3, which shows the simulation after 2 Myr,
we see the sonic point near the end of the “‘chimney” and observe a slight overpressure in the part
of the superbubble that is bounded by the GMC material. As in Sect. 7 also here the kinetic energy
rises after break-out from the GMC.

8.3 Artificial observations of 20Al

The simulations also follow the radioactive isotope 2°Al (see Sect. 2.4.2, 2.7.1 and 5.2.4) to trace
mixing processes of stellar ejecta with the ISM. Considering 2 Alin the numerical simulations
should explore interpretational views for the measurements of 2°Alemission from the Orion-
Eridanus region, since the simulations predict whether 26 Al should be detected predominantly in
the narrow shell or in the inside of the superbubble.

In our present set of models the 2°Aldistribution peaks near the cavity walls (Fig. 7.9(b), 8.3
and 8.6. We now briefly present the tools we developed to produce artificial observations of the
26 Al velocity in our simulations.
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Figure 8.2: Feedback energy efficiency. These graphs show the effect of the density structure of the
surrounding medium onto the fraction of the feedback energy from the Voss et al. (2009) model that
can be converted into kinetic energy of the ISM. Left: homogeneous cloud with different distances
Az between the surface of the feedback region and cloud surface. The feedback energy efficiency
is only followed until the bubble breaks out of the computational box. Right: structured cloud. The
OB association is assumed to move with the same velocity as the GMC. Since the cooling—heating
function in the SPH simulation differs from the RAMSES cooling—heating function, the behavior
of a cloud without stellar feedback is subtracted (red points). As a comparison the green points
show the same data with only the initial kinetic energy of the cloud subtracted.

In Fig. 8.3 we see a 3D simulation of a homogeneous cloud with an off-center OB association. This
snapshot will be used as an example to discuss the method. The observer is placed at (0,0,+400 pc)
with respect to the center of the feedback region and we place a “target point” in the center of the
feedback region. Vedrenne et al. (2003) report an angular resolution of 2.5 for SPI (Spectrom-
eter on INTEGRAL). They mention that sources can be localised better, depending on the source
intensity. R. Diehl (private comm.) estimates an angular resolution of 29°¢ for the Orion-Eridanus
region. Thus, to take the resolution of the instrument into account, we select all cells in our sim-
ulation that are within the viewing angle of one degree (i.e. angle target — observer — cell center).
This way, we get all cells within a cone with an opening angle of 2 degrees. If we decide that a
certain column density leads to optically thick gas, we can further limit the number of cells taken
into account. However, extinction is not a problem for the 26 Al observations, since the absorption
depth (decrease of the signal to 1/e) for 26Alis reached at a column density of the order of a few
grams per cm? (page 12 Schonfelder, 2001; Diehl, 2014, report an estimate of the order of 3 gcm ™2
found from balloon missions). For material of solar metallicity and an average density of the order
of 100 particles cm—3 a column density of 1 gcm~2 is reached after ~ 2 kpc, which is much larger
than the assumed distance to the OES and the spatial extent of our whole simulation. Thus, even if
our whole computational box would be filled with GMC material, ~-radiation from 26 Al could still
penetrate it.

For the selected cells, we store the velocity and — as a quantity mimicking the intensity — p/d?,
where d is the distance of the cell from the observer. We then subdivide the range of 0 to 100
km s~! into 1 km s™! bins and sum p/d? in these bins (Fig. 8.4).

The natural line width of the y-line is negligible (*Mg?* has a half life of 476 fs leading to a line
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Figure 8.3: This figure shows xy cuts through the simulation data cube used for the artificial
observations of 2°Alin a simulation with a homogeneous cloud. In the bottom row the intensity of
the 26 Alin the sight angle of the observer and the velocities in this viewing angle are shown.



8.3 Artificial observations of 26Al 151

Time = 2 [Myr] Time = 2 [Myr]
_ B d 6)001 fm —
olro 4e-36 I ) 001 m, sigma
2. I
7 535 | I
= 2 - I
5 2¢-36 g B l
o - l| |
= & \
QU — [ %
0 | T A WY I [ Y P AR i T
-40  -20 0 20 40 109 06 109.08 109.1 109 12109 14
vr[km/s] A [fm]
Time = 2 [Myr] Time = 2 [Myr]
8e-35
! = 01001 fm —— | FWHMA3 keV
dl=0. 001 fm,\51gma 1.2e-33
66'35 I | | -
2 - B 4 =z
£ de-35 | || 4 g
g | ]1 \\ | g 6e-34
2e-35 | |
- | / % _
0 -w/H—H"f"Hﬂ ++‘f"’"~w+/ | E‘\f‘h-w sl et O | L !
1.8088 1.8090 1.8092 1.8 1.805 1.81 1.815
Energy [MeV] Energy [MeV]

Figure 8.4: Work flow of an artificial observation (1) integrated intensity in radial velocity bins,
(2) line without instrument profile (fm), (3) line without instrument profile (MeV), (4) line with
instrument profile (MeV)

width of 0.7 meV).Thus, we can start with a single energy We then calculate the Doppler shift
AN of the 1809.63 keV line (”g—c‘“ = % with Ao = 155563 80963 MeV = 109 fm and hc = 197.33 MeV
fm) and take the instrumental profile (R. Diehl (private comm.) assumes a Gaussian with 3 keV
FWHM at 1.80963 MeV, Vedrenne et al. (2003); Roques et al. (2003) report an energy resolution of
2.5 keV at 1.3 MeV, which degrades with time and which gets largere for higher energies. Roques
et al. (2003) find a mean energy resolution of 2.9 keV at 1764 keV.) into account. For the latter we
use a discretized Gaussian of given FWHM and center it in the energy bin. We then multiply our
proxy for the intensity with the Gaussian and sum over the Gaussians for all bins.

As aresult the initial skewness of the profile in Fig. 8.4 is no longer seen, since it is smeared out. To
conclude, there are several reasons why this result should not be interpreted as a negative prognosis
for the observability of velocities in 26Al: First of all, we used a very badly resolved simulation
of a quite artificial setup for these tests. Also we did not optimize the time of the snapshot or the
viewing angle to get a maximal effect. Fig. 8.5 shows that after 5 Myr a redshifted component
becomes visible in 26Al .



152 8. 3D: Feedback in non-homogeneous clouds

Time = 2 [Myr]

I I
126-33 1.6e-33 - FWHM 5 keV —— |
2 2
= =
5 e Eosen
0 0
1.8 1.805 1.81 1.815 1.8 1.805 1.81 1.815
Energy [MeV] Energy [MeV]
Time = 2 [Myr] Time = 2 [Myr]
" FWHMpg3keV —— " FWHMpa3keV ——
3e-32 —
2e-32 —
> | >
o 2e-32 ~ = 7
5 5
= 7] = le-32 =
™ le-32 4 -
0 | | 0 | |
1.8 1.805 1.81 1.815 1.8 1.805 1.81 1.815
Energy [MeV] Energy [MeV]

Figure 8.5: Line with instrument profile (MeV). The viewing angle is 0 degrees in the left plots
and 45 degrees in the right plots. The snapshots in the top row were taken after 2 Myr. In the
bottom row snapshots after 5 Myr are displayed.
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Figure 8.6: These plots show a cut through the SPH cloud, 5 Myr after the stellar feedback started.
We see the sonic point at the smallest “chimney” cross section. This leads to an overpressure in
the cavity. Also some the flux of 26 Al out of the cavity is limited by the speed of sound. The online
material contains a movie of artificial observations of this model.
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Chapter 9

Discussion and Conclusions

The motivation for this work were the puzzling 2°Al data from the Orion-Eridanus region. The fa-
vored de-projection of the observational evidence back in 2008 was based on the model suggested
by Burrows et al. (1993) for the Orion-Eridanus Superbubble. A version, which was slightly
adapted to new observational evidence, is shown in Fig. 2.5. It was unclear, why a banana-shaped
superbubble like the one suggested for the OES would form and why ?°Alis only observed in a
part of the region with X-ray emission (Fig. 2.6 and 2.7). Actually, numerical studies like the
simulations of de Avillez and Breitschwerdt (2005) show, that superbubbles can come in a num-
ber of peculiar shapes. In non-quiescent surroundings the bubble shape follows the density and
pressure gradients the superbubble shell encounters. However, the spread of 2°Al was a real puzzle
since the gas velocities inside the superbubbles should be high enough to spread 2°Al allover the
superbubble. The question was, whether the shape of the OES can be a real quirk of nature. In the
mean time, the region has been successfully modeled by Pon et al. (2014a), using models based
on Kompaneets (1960) assuming a stratified, but quiescent ambient medium. However, it is still
debated, if a single bubble model or a two bubble model is to be preferred for the OES.

It turned out, that there is no simple explanation, how the assumed peculiar shape of the OES
follows naturally from the stellar feedback of the Orion OB I associations in a quiescent ambient
medium. Our simulations used stellar feedback based on population synthesis models, which Voss
et al. (2010) tuned to the Orion OB associations. These OB associations are expected to have
formed one after the other with a few million years delay and are expected to have participated in
forming the OES. The Voss et al. (2010) feedback model, based on observed stars plus an estimate
of the exploded stars via the IMF, turned out to be so disruptive that molecular clouds of sizes
as they are found in GMC surveys (see Sect. 2.5) were quite efficiently destroyed by the first OB
association already. We were thus faced with the problem, that we either need extremely massive
GMC:s or an efficient energy sink for the stellar feedback. Otherwise the problem can only be
solved with four generations of GMCs: Individual, newly formed GMCs for each of the four OB
associations.

We thus decided to take a step back and to start from simple, homogeneous toy models and gradu-
ally add complexity. Since our GMCs had a hard time to survive the stellar feedback, we decided
that we had to understand the feedback energy efficiency first. Since we need cold, dense GMC
gas for the later episodes of star formation, we also checked, how the stellar feedback affects
the mass fractions in the ISM. This is interesting, since GMC lifetimes are debated. Whereas
the detection of inter-arm GMCs (e.g. Scoville et al., 1979; Koda et al., 2009, inter-arm crossing
times ~ 100 Myr) and observations of extragalactic GMCs seem to point to GMC lifetimes of
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20 — 30 Myr (Kawamura et al., 2009) of which 7 Myr are after the onset of stellar evolution, the
lifetimes of local GMCs is expected to be much shorter (e.g. Elmegreen, 2000b; Hartmann et al.,
2001, expect immediate star formation and GMC lifetimes < 10 Myr). In comparison, stellar
feedback from the Orion OB I associations is assumed to be ongoing since 8 — 12 Myr (Voss et al.,
2010). Our simulations favor the scenario of transient GMCs that are reshuffled by stellar feedback
and form again in zones of colliding flows (for recent work on the formation of molecular gas via
converging flows see Micic et al., 2013; Ntormousi et al., 2011, and references therein).

One of the conclusions from our spherically symmetric models is, that stellar feedback indeed
reshuffles the cold gas. In our models the total thermal energy when the shock velocity has decel-
erated to the ambient sound speed towards the end of the simulations is lower than in the initial
conditions. The net-effect of the stellar feedback is acceleration and compression of the surround-
ing cloud material. The latter leads to radiative losses.

The other conclusions from the spherically symmetric models are shown in Fig. 6.9 and 6.10: We
identify mixing processes across the contact discontinuity as an efficient energy sink. In numerical
simulations, we can choose a Riemann solver, which treats the contact discontinuity accurately.
But, in the end, the spatial resolution will always lead to mixing of the ambient medium and the
stellar ejecta. If the simulation does not take any physical process that leads to stronger mixing than
the mixing due to the grid cell size into account, the spatial resolution governs the energy loss at
the contact discontinuity. Or to put it the other way around, since we only have a single gas phase
per cell, the resolution of our simulations can be interpreted as a proxy for the length scale of the
most efficient mixing process. Assuming a mixing length now enables us to find a feedback energy
efficiency from Tab. 6.2, Fig. 6.9 or Fig. 6.10. The latter shows the evolution of the feedback energy
efficiency as a function of the peak velocity in the swept-up shell. The simulations end when it
falls below the ambient sound speed. Thus, if one assumes that the dissipation of the kinetic energy
of the shell already happens at higher shell velocities than the ambient sound speed, Fig. 6.10 can
be used to find the feedback energy efficiency. If we assume that turbulent mixing acts on scales
of 0.004 pc, (which is smaller than the assumed eddy sizes in Gounelle et al., 2009) we find a
feedback energy efficiency of roughly two percent. This is less than the often-used value of 10%
reported by Thornton et al. (1998, i.e. 10°° erg). However, due to the stellar wind, in our case the
total energy input is 3.34 x 10°! erg instead of 10°! erg, which brings the net amount of retained
kinetic energy again closer the often-used value of 10°° erg (Thornton et al., 1998).

In our 3D models we explore a different possibility to make the GMCs exist longer: Since the tur-
bulent structure of the ISM produces GMCs that have a sponge like self-similar density structure,
we connect the feedback region inside the GMC with a “chimney” to the ambient medium. We
show, that this lowers the energy deposition in the GMC (Fig. 7.7 and 7.14). But, since the sound
speed limits the flow out of the GMC, the parts of the superbubble inside the cloud can have a
higher pressure than the rest of the bubble. In our simulations we see an isentropic flow through
the “chimney” that reaches the sonic point at smallest cross section of the “chimney”, outside the
dense cloud the flow of ejecta continues like an over-expanded flow until it hits the bubble wall
and is turned around, leading to a mushroom like bubble shape.

We also placed the stellar feedback in a GMC created in the large scale SPH simulation of Dobbs
et al. (2011). As expected, the asymmetries in the initial conditions also produced a peculiar
shaped bubble. The first simulations tell us, that 26Alis found near the superbubble’s shell in all
our models. We did not yet observe bubbles partly filled with 26 Alin our grid of simulations. One
could thus interpret our results as an indication that there might be some kind of shell between the
parts of the OES containing %Al and the parts which do not. However, we will need a larger set
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of models to find fully conclusive evidence for this. Our main reservation in this respect is that
averaging in the population synthesis feedback according to Voss et al. (2010), which was used for
the models with inhomogeneous SPH clouds, smears out distinct SN events. In our future work
we will thus also test models for individual OB associations instead of “averaged OB association”
from population synthesis.

To conclude, we found a way to relate the feedback energy efficiency of our spherically symmetric
models to a length scale of mixing across the contact discontinuity. To tackle asymmetries in the
GMCs, we need to add more dimensions. Our present 3D models are on the edge of reaching
realistic estimates of mixing scales (e.g. Stasiiska et al., 2007, estimate 1-0.1 pc, which would
be resolved in our models) and to be used to estimate feedback energy efficiencies. Moreover,
they are not yet customized for the OES. In our future work we plan improve on this and to test
turbulent clouds.
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Glossary

AMR (adaptive mesh refinement) is a strategy to optimize the resolution and the computational
cost during a numerical simulation. If the refinement criteria are fulfilled (e.g. strong density
gradient), a cell is subdivided into 2¥ cells, where v is the number of dimensions in the
simulation. 39, 41, 51, 52, 63, 64, 88, 90, 94-96, 127, 134

CFL (Courant-Friedrichs-Lewy condition) maximal stable time-step-size in a hydrodynamical
simulation (Sect. 3.3) which ensures that gas cannot travel more than a cell length per time-
step. 42, 48, 64, 95, 119, 120

“chimney” toy model for dilute areas connecting a stellar wind bubble or SN remnant, located
inside a structured GMC, to the ambient medium. 127-129, 134, 135, 137-145, 148, 153,
156, 167

choked flow situation, in which the sound speed limits the flux through a bottleneck. 142, 143,
145, 167

contact discontinuity (CD) interface between two media with different density but no pressure
and velocity gradients across this surface. 5, 6, 8, 9, 17, 45, 46, 49, 56, 60-69, 74, 75, 78,
85, 87, 88,94, 101, 103, 107, 110, 115-125, 131, 143-145, 156, 157

de-projection converts 2D observational data into a 3D model. 13, 155

downstream direction with respect to the flow. The other direction is called upstream. If we sit on
a fluid particle, we have already passed points upstream and will move on to points located
downstream. 44, 141, 142, 145

feedback energy energy input into the ISM via stellar winds and SN explosions. 2, 5, 10, 25, 26,
73,76, 89, 92,97, 101, 123, 137, 139, 144, 147, 149

feedback energy efficiency (¢) describes how much of the energy input via stellar winds and SN
explosions can be retained by the ISM (as kinetic energy of a shell). Without cooling: € = 1.
2, 3,5,8, 10, 11, 21, 23, 49, 51, 62, 90, 94, 97, 99-101, 104, 106, 107, 110-113, 116,
118-125, 127-129, 132-135, 137, 139, 142145, 148, 149, 155-157, 167

feedback region (also driver region) part of the computational box in which source terms for
stellar mass loss and stellar energy feedback are evaluated. 52, 72, 78-83, 89-94, 96, 101,
102, 104-106, 115, 117, 121, 122, 127-129, 131, 134, 137-143, 145, 147-149, 156, 168,
310-312, 316
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fluid element (also fluid particle) volume small compared to the box size but large with respect to
intermolecular distances. Macroscopic fluid properties like local density, local velocity are
defined over a fluid particle. 38, 39

FORTRAN derived data type an object that can group data of different types. It can be handled
like any other variable. Elements of derived data types can be accessed with the % operator.
93

GMC (Giant Molecular Cloud) dense phase of the ISM (described in Sect. 2.1). 3-5, 10, 12, 14,
16, 20-23, 97,99, 101, 127, 128, 137, 147-149, 155-157, 163, 164

IC (initial conditions) setup at the start of a numerical simulation. 3941, 46, 47, 60, 61, 71, 73,
90, 91, 99, 101, 128, 129, 132-134, 140, 142, 145, 147, 148, 156

IMF (Initial Mass Function) empirical function describing the initial distribution of stellar masses.
22,23, 26, 32-36,97, 155

ISM (Interstellar Medium) gas and dust between stars (described in Sect. 2.1). 1, 3—6, 9-13, 16—
18, 20, 23, 37, 38, 40, 46, 49, 55, 73-75, 77-79, 82, 83, 87-89, 94, 95, 97, 99-101, 103,
104, 107, 110, 118, 119, 123, 124, 127, 128, 148, 149, 155, 156, 163-165

mass cut the mass coordinate that separates ejected material from material forming the remnant.
26

mean free path ()\) average distance a particle travels before colliding with an other particle [see
kinetic theory of gas, e.g. Kennard (1938)]. 6-9, 38, 91, 167

namelist file containing all run-time parameters for a RAMSES simulation. 51, 93-95

OES (Orion-Eridanus Superbubble) a well observed, relatively close by region, which is very well
suited to study the interaction of massive stars and the ISM. 2, 3, 12-14, 16, 17, 19, 20, 23,
97, 149, 155-157

pluto.ini file containing all run-time parameters for a PLUTO simulation. 92

porosity in the context of Sect. 7 describes the sum of the cross-sectional areas of all holes in the
GMC allowing stellar feedback material to escape from the GMC into the warm phase of the
ISM. 21, 127, 128, 135, 145

preprocessor directive contains information on which parts of the code should be compiled. We
use e.g. #define EKIN 1 to compile source code parts inserting the feedback via kinetic
energy instead of code parts using thermal feedback energy. Definitions can be removed
with #undef. Source code parts can be enclosed between constructs like #ifdef EKIN,
#telse and #tendif. 90, 91, 94, 95, 165

Stromgren sphere ionized hydrogen around a massive star. The Stromgren radius can be found

3 i NLycx 3

from Rg ~ el 15,z om, with the number density n in units of cm™
of Lyman continuum photons Ny, per second. 12, 73, 128, 129, 132, 134

and the number
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superbubble cavity in the ISM created by the combined feedback of several massive stars. 2, 3,
5,12-14, 16, 17, 19, 100, 135, 148, 155, 156

supernova (SN) stellar explosion. In the context of this work we focus on core collapse SNe.
These occur when nuclear fusion fails to balance gravity in the core of massive stars. We
do not take SN Ia explosions into account in this work, since we do not follow the evolution
of the stellar content of our cloud long enough to obtain white dwarfs, which in turn could
undergo a SN Ia explosion. x, xiii, 1, 2,4-6, 9, 11, 12, 22, 23, 26, 27, 32, 33, 35, 49, 64, 65,
73, 76, 88-92, 99-108, 110-120, 122-124, 157, 163, 165-167

time of maximal luminosity (Z,) time, when the largest energy losses due to radiative cooling
occur in the simulation. Please note that despite this name it does not correspond to the
maximum in the SN light curve, which is caused by radioactive decays. 100-102, 104-107,
113,115, 124

vector sweep contains a part of the simulation data. RAMSES allows to control the maximal
memory allocation within each MPI process. Since the simulation can be too large to fit
into the memory at once, the user can specify a vector size with the preprocessor directive
NVECTOR and the data will be subdivided into arrays of dimension(1:nvector). The
default setting is NVECTOR=500. Only one of these arrays is loaded into the memory at a
time. 93

WR the Wolf-Rayet phase is the last phase in the evolution of a massive star. During this phase
the star undergoes extreme mass losses due to very strong winds. 24, 73, 74, 100, 110, 116,
117, 124
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Symbols and Units

Units

List of frequently used units.

distance

AU Astronomical Unit, 149597870700 m
cm 1072 m

km 103 m

m meter

micron 107 m

pc parsec, 3.08567758 x 10'® m
energy

FOE 10°! erg, canonical supernova energy
GeV 1.6021765710719 Joule

MeV 1.6021765710713 Joule

eV 1.60217657107Y Joule

erg 1077 Joule

keV 1.602176571071¢ Joule

meV 1.6021765710~22 Joule

flux

Jy Jansky, 10** W m—2 Hz!

R Rayleigh, 10'° photons m~2 s~ *
frequency

Hz Hertz, s !

GHz 10° Hertz

THz 10'2 Hertz

mass

g gram

M, solar mass, 1.9891 x 10% g
(number) density

cm? particles cm~3, number density
gcm™  mass density

temperature

K Kelvin

mK 103K

time

fs 10~1% seconds

S second

yr year

kyr 103 years

Myr 106 years

velocity

cms ! 0.01 meter per second

km st kilometer per second

pc Myr—!

parsec per million years (~ 0.978 km s~1)
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Symbols
List of frequently used symbols.
) diameter
a factor for the cooling floor (at apy) or exponent a in Eq. 4.40
A Ccross section
At critical cross section for choked flows
B magnetic field
b Galactic latitude
c wave speed
cp,cy  specific heat capacity (per particle)
Cs speed of sound
Cs,iso isothermal speed of sound
D diffusion coefficient or total derivative
Ad “chimney” diameter (used in Sect. 7)
At time step size
Ax cell size or “chimney” length
E energy loss/gain
E energy
Esn supernova energy input (10°! erg)
Eiin kinetic energy
Eiperm  thermal energy
e electron charge
€in internal energy
€ feedback energy efficiency
€k kinetic feedback energy efficiency
€t thermal feedback energy efficiency
f degree of freedom
F flux
F, heat flux
Fo saturated heat flux
F(U)  flux vector
vy adiabatic exponent
r Gamma function (in Sect. 4.4.1), diffusion coefficient (in Sect. 3.4) or heating rate (all other Sect.)
J Jacobian
k wave number
k or kg Boltzmann constant (1.3806488(13) x 107'¢ erg K™1)
K heat conduction coefficient
A Coulomb logarithm (in Sect. 2.2.1) or cooling rate (all other Sect.)
A mean free path
Y i Eigenvalue
L scale length
lr scale length of the temperature gradient
Ly kinetic wind luminosity Ly, = 0.5Mv2
[ Galactic longitude
M mass loss rate
M Mach number or Mass
M, solar mass, 1.9891 x 1033 g
my hydrogen mass

molar mass

=
8
o
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n

n number density (unit: cm~?3)

N number of particles in the EOS

ng number density of the ambient medium

ny hydrogen number density

v number of dimensions

w angular frequency

P pressure

) angle

P general flow quantity

R gas constant 8.314 x 107 erg K~ 'mol~! or radius

r radial coordinate or radius

Te cavity radius

7 OF T'gp feedback region radius

Tshell shell radius

R shell velocity (i.e. bubble radius change)

p density

Po ambient density

Y surface density

o standard deviation, velocity dispersion or cross section
So source terms

S, coefficients for the surface of an v dimensional sphere
T temperature

Teq temperature of the cooling-heating equilibrium for a given number density
1o temperature of the ambient medium

t, T time

T1/2 half life time

0 angle

to time of maximal luminosity (see page 101)

u velocity or component of the vector of system properties
U system properties (e.g. density, flow velocity and pressure)
U vector of conservative variables (p,pv,E)

v average velocity

VUrms rms-velocity

vorv velocity

Voo terminal wind velocity

V volume

V, coefficients for the volume of an v dimensional sphere
dv volume change

W vector of primitive variables (p,v,P)

&(k) amplification factor

rorx position

X Hydrogen mass fraction

Y Helium mass fraction

A metallicity, mass fraction of all elements except Hand He (Z =1 - X —Y)

Za solar metallicity
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Appendix A

Mathematica source code listings

Listing A.1: Solve for the internal structure of the Sedov-Taylor bubble with Mathematica

r0O = 0.01;(xinner boundary, zero leads to crashesx)
= 1;(xouter boundary, location of the shockx)

g = 5/3;(xheat capacity ratio )
3; (xnumber of dimensionsx)

Sedov = NDSolve[{(2/(g + 1)xu[x] — x)*xu’'[x] — n/2xu[x] + (g — 1)/(g + 1)xp’'[x]/d[x
] == 0, (u[x] — xx(g + 1)/2)xd’[x]/d[x] + u’[x] + 2xu[x]/x == 0, (2/(g + 1)xu]
x] — x)*xp’[x] — 5/3xp[x] (2/(g + 1)*xu[x] — x)*xd’[x]/d[x] — nxp[x] == 0, p[rsh]
== 1, d[rsh] == 1, u[rsh] == 1}, {p, d, u}, {x, r0, rsh}]

Export["sedov.csv", Table[Flatten[{t, p[x], u[x], d[x]} /. Sedov], {x, rO, rsh,
0.001}11;

Listing A.2: Iterative solution for o with Mathematica

alpha0 = 0.507565;(xproportionality constant, initial valuex)

t 0.688;(xevolution time for which the solution is computedzx)

g 5/3;(xheat capacity ratio x)

n 3; (xnumber of dimensionsx)

rs[alpha_, t_, n_] := alpha?{-0.2}*«t"{2/(2 + n)}; (xshock front radiusx)

ps[alpha_, t_, n_, g ] := alpha?{—0.4}%2/(g + 1)*4/(2 + n)"2«tM—-2xn/(2 + n)}; (*
shock front pressure x)

vs[alpha_, t_, n_, g_] = (2/(g + 1))=*alpha*{—-0.2}x2/(2 + n)*t*"—-n/(2 + n)},; (x
shock front expansion velocity x)

Etotal[alpha_, t_, n_, g_] := 4xPix(Nlntegrate[{(x/rs[alpha, t, n][[1]])"2% p[x/rs
[alpha, t, n][[1]]]*ps[alpha, t, n, g][[1]1]/(g — 1) /. Sedov}, {x, 0, rs[alpha
, t, n]1[[1]1}] + Nintegrate[{(x/rs[alpha, t, n][[1]])"2%x0.5«d[x/rs[alpha, t,
n][[1]]1]1x(g + 1)/(g — 1)xu[x/rs[alpha, t, n][[1]]]*vs[alpha, t, n, g][[1]]*u[x
/rs[alpha, t, n][[1]]]*vs[alpha, t, n, g][[1]] /. Sedov }, {x, 0, rs[alpha, t,
n][[11]1}]); (xtotal energyx)

Eth[alpha_, t_, n_, g_] := Nintegrate[{(x/rs[alpha, t, n][[1]])"2«p[x/rs[alpha, t,
n][[11]1]*« pslalpha, t, n, gl[[1]]/(g — 1) /. Sedov}, {x, 0, rs[alpha, t,n
11[111}]1/( NiIntegrate [{(x/rs[alpha, t, n][[1]])"2«xp[x/rs[alpha, t, n][[1]]]*psS]
alpha, t, n, g][[1]]/(g — 1) /. Sedov}, {x, 0, rs[alpha, t, n][[1]]}] +
NIntegrate [{(x/rs[alpha, t, n][[1]]) *2%0.5xd[x/rs[alpha, t, n][[1]]1]1*(g + 1)/(
g — 1)xu[x/rs[alpha, t, n][[1]]]*vs[alpha, t, n, g][[1]]*xu[x/rs[alpha, t, n
1[[11]11*vs[alpha, t, n, g][[1]] /. Sedov }, {x, 0, rs[alpha, t, n][[1]1]1}]); (%
thermal energy fraction x)

newAlpha = FindRoot[ Etotal[alpha, t, n, g] == 1, {alpha, alphaO}, Evaluated —
False][[1, 2]] (xiterative solution for the proportionality constantx)
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‘FIatten[Eth[newAIpha, t, n, gll[[1]] (xoutput of the thermal energy fraction x)

Listing A.3: Solve for the structure between CD and shell with Mathematica

rcd = 0.85839;

Weaver77 =

(xlocation of the CD, inner boundary x)
NDSolve[{3*(u[x] — x)*xu’[x] — 2xu[x] + 3xp’'[x]/g[x] ==

1, 0.001}]];

, (u[x] = x)x*g
"[x]/g[x] + u’[x] + 2xu[x]/x == 0, 3x(u[x] — x)*p’[x] — 3x5/3xp[x]

(ufx] — x)*

g'[x]/g[x] — 4xp[x] == 0, p[1] == 0.75, g[1] == 4, u[1] == 0.75}, {p, g, u},
{x, rcd, 1}]
Export["weaver77.csv", Table[Flatten[{t, p[x], u[x], d[x]} /. Weaver77], {x, rcd,




32
33
34
35
36
65
93
94

95
96
97
98

226
227
228
229

35
36
37

38
39
40
41
42
106

Appendix B

Pluto source code listings

The listings in this section show the differences between the code used for this work and the
standard version of PLUTO 4.0 (Mignone et al., 2007, 2012). The latter version can be obtained at
http://plutocode.ph.unito.it/.

Listing B.1: Modifications in boundary.c

NN NN
/« Modifications K. Fierlinger:
call UserDefBoundary for SN explosions (defined in init.c)

and store time of last SN event lines 65 and 93-98 x/
NN NN NNV Y
static double last _time = —1.0; //time of the last SN event

if ( g_time—g_dt <= g_supernova && g_time > last_time){
/l'insert all feedback at once — predictor/corrector scheme would otherwise
make energy input unpredictable (to 10%)
UserDefBoundary (d, NULL, 0, grid);
[/ printf ("time %g %g\n",g_time,last_time);
}

last_time=g_time;

Listing B.2: Modifications in cooltable.dat to create an artificial equilibrium

1.057800e+03 9.560100e—-25
1.079900e+03 0.0
1.102600e+03 0.0
1.125600e+03 9.736300e—-25

Listing B.3: Modifications in cooling_source.c

#define RHOMIN 0.09
#undef RHOMIN
L LLLLETETEEEEELErr i i rrrrrrrrn o«
/+ Modifications K. Fierlinger:
RHOMIN can be used to switch off cooling below this density: line 1-2, 106—109,

222227
no cooling losses in feedback region: line 111—-112, 158
store cooling losses for analysis: line 113
g_minCoolingTemp is ignored: line 196

x/
RN NN NN NN Y
#ifdef RHOMIN
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107

108
109
111

112
113
196
222
223
224
225
226
227

NN A

27

100
101
102
109
110
117

34
35
36

37

38
195
206
242
268
469
470
471
472
473
474
475
476
477
478
479

184 B. Pluto source code listings

/lprint ("! CoolingSource %f %f \n", g_inputParam[RHO_MIN] , g_inputParam[RHO_IN
1)
if (VO[RHO] > g_inputParam[RHO_MIN] * g_inputParam[RHO_INT]) {
#endif
if (GXYZ[IDIR].x[i] < g_inputParam[R_DRIVER]) {vO[TRC]=0.0;} //no cooling losses
inside feedback region
else { Radiat(v0, k1);}
d—Vc[TRC][k][j1[i]=vO[TRC]; //save cooling loss in tracer
/1 if (T1 < g_minCoolingTemp && TO > g_minCoolingTemp)
#ifdef RHOMIN
}else
{vO[TRC]=0.0;
d—Vc[TRC][k][j1[i]=vO[TRC]; //save cooling loss in tracer

}
#tendif

Listing B.4: Modifications in eta_visc.c

NN NN NN N Y
/« Modifications K. Fierlinger:

custom value of eta2_visc in line 27 x/
N NSNSV
xeta2 visc = 5.5e-38;

Listing B.5: Modifications in globals.h

double g_unitDensity
double g_unitLength
double g_unitVelocity =

1.e—22; /+x< Unit density in gr/cm”3. x/
1.e19; /xx< Unit Legnth in cm. x/
1

.e8; /+x< Unit velocity in cm/sec. x/

double g_smallDensity 1.e—7; /xx< Small value for density fix. x/
double g_smallPressure 1.e—7; /+x< Small value for pressure fix. x/
double g_supernova = 500.; /xx< The latest time when the SN goes off. %/

Listing B.6: Modifications in input_data.c

L LLLTLEEEEEEEEErrr i i i i i i rrrrrgy
/%« Modifications K. Fierlinger:
InputDataRead loop over nv removed. nv is now input parameter lines 195, 206,
242, 268
New interpolation function: void InputDataExpandid (double xvs, double x1) x/
L LLLLLEEEEEEEEEEEr i i i rrrrrrr o«
void InputDataRead (char xdata_fname, int nv)

int i, j, k;
//for (nv = 0; nv < id_nvar; nv++){
11}
void InputDataExpandid (double xvs, double x1)
/%]
x Perform bi— or tri—linear interpolation on external
x dataset to compute vs[] at the given point {x1,x2,x3}.
k
* \param [in] vs interpolated value
% \param [in] x1 coordinate point at which at interpolates are desired
% \param [in] x2 coordinate point at which at interpolates are desired
* \param [in] x3 coordinate point at which at interpolates are desired
* \return This function has no return value.
*




480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

21
22
23
24
25

26

27

28

58

59
116
117
118
119
120
121
122
123
124
125

185

*+ The function performs the following tasks.
ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ks ok ok ok sk ok ok ok ko ok sk ok ok ok ok ok ok sk kR sk ok ok ok ok ok skokokokok ok ok sk ok ok ok /

{
int nv, inv, ii=0 ;
double **x%V;
/ * x/
/%! — Make sure point (x1,x2,x3) does not fall outside input grid range.
Limit to input grid edge otherwise. x/
/ x/
if (x1 >= id_x1[0] && x1 <= id_x1[id_nx1—-1]) {
ii = 0;
while (x1 > id_x1[ii] &% ii<id_nx1—1){
ii4++;
}
[t (i >2){ii —=2;};
for (nv = 0; nv < id_nvar; nv++) {
inv = id_var_indx[nv];
V = Vin[nv];
vs[inv] = V[O][O][ii];
}
1
else{

vs[RHO] = g_inputParam[RHO_IN]; /x 1e—22 g/cm3 x/
vs[VX1] = 0.0; /«initial Vx arrayx*/

vs[VX2] = 0.0; /«initial Vy array=x/

vs[VX3] = 0.0; /«initial Vz array=x/

vs[PRS] = g_inputParam[PRS_IN]; /x 1e—6 erg/cm3 x/
vs[TRC] = 0.0;

Listing B.7: Modifications in mappers.c

L LLLLLEEEEEEEEEEEEL i i i i rrrrrrn o«
/%« Pluto 4.0 only sets a minimal density, if negative densities are found.
Modifications K. Fierlinger:
(1) don’t let density drop below minimal density: ... lines 58—59 and 116—132
(2) use maximum of g_smallPressure or mean value of left+ right cell (to avoid
new pressure mimina)
if due to the new pressure the thermal energy is now larger than the total
energy, remove kinetic energy.
otherwise reduce kinetic energy by scaling velocities. ... lines 178—182 and
191-209 «/
I LLLLLEEEEEELETEEEr i i i i i i i rrrrrrrrr o«
rho=MAX(g_smallDensity , rho);
/1l if (rho < 0.0){print("rho<0");}
if (u[RHO] < g_smallDensity) {
#ifdef WARNMINRHO
print("!_ConsToPrim:_too_low_density _(%8.2e),.,", u[RHO]) ;
print("_old_pressure: (%8.2¢e),.", u[PRS]);
#endif
/1 constant temperature (p/nV)=kT
//u[PRS] = MAX(g_smallPressure,g_smallDensityxu[PRS]/u[RHO]) ;
/! constant internal energy E(intermal) = p/(gamma—1)
u[PRS] = MAX(g_smallPressure ,u[PRS]) ;
/] constant total energy: E = p/(gamma—1)+ 0.5 rho v*2
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127
128
129
130
131
132
178
179
180
182
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192

193

194
195

196
197
198
199
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201
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208
209
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//u[PRS] = MAX(g_smallPressure ,u[PRS]+0.5%(g_gamma—1.0)*«m2x(1./u[RHO] —1./
g_smallDensity));
u[RHO] = g_smallDensity;
#ifdef WARNMINRHO

print (" _new_density_(%8.2¢e),.", u[RHO]) ;

print (" _new_pressure_(%8.2e),._", u[PRS]);

Where (i, NULL);

#endif
EXPAND(v[VX1] = 0.0; ,
v[VX2] = 0.0; ,
v[VX3] = 0.0;)
u[ENG] = g_smallPressure/gmmi;

// use maximum of g_smallPressure or mean value of left+ right cell (to
avoid new pressure mimina)

v[PRS] = MAX(g_smallPressure ,0.5x(uprim[i —1][PRS]+uprim[i+1][PRS]));
// warning: uprim[i+1][PRS] not yet updated

print("! . negative_p(left)_(%8.2e)_p. . (%8.2e)_p(right)_(%8.2e),_\n",
uprim[i —1][PRS],v[PRS], uprim[i+1][PRS]) ;

if (UW[ENG] <= v[PRS]/gmmi){

// if due to the new pressure the thermal energy is now larger than the
total energy, remove kinetic energy.

v[PRS] = U[ENG]*gmmi;
EXPAND(v[VX1] = 0.0; ,
v[VX2] = 0.0; ,

v[VX3] = 0.0;)
}else{
/] otherwise reduce kinetic energy by scaling velocities.
//corr_e = sqrt(E_kin(new) / E_kin(old)) = v(new)/v(old)
corr_e = sqrt ((u[ENG]—v[PRS]/gmm1)/kin) ;
print("!__negative_p(E)_v(new)/v(old)_(%8.2e),_\n", corr_e);
//kin = 0.5%+m2/u[RHO];
EXPAND(v[VX1] = v[VX1]xcorr_e; |,

v[VX2] = v[VX2]xcorr_e; ,

v[VX3] = v[VX3]xcorr_e;)

Listing B.8: Modifications in pluto.h

extern double g_time, g_dt,g_supernova;

Listing B.9: Modifications in prototypes.h

void InputDataRead (char *, int );
void Wind (double,double xe, double xm);

Listing B.10: Modifications in radiat.c

#include "pluto.h"

#define mass_ X 0.7519 /% = hydrogen mass fraction , mean molar mass 1.33 like
Thornton =/

//#define mass_X 0.732 /% = hydrogen mass fraction, frac_H = 0.917,
(1.008+4.004%0.082+0.03)=1.366 =x/

//#define frac_Z 1.e-8 /« = N(Z) / N(H), fractional number density of metals
(2)

/1l with respect to hydrogen (H) x/
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//#define frac_He 0.082 /% = N(Z) / N(H), fractional number density of helium
(He)

/1l with respect to hydrogen (H) x/

//#define A_Z 30.0 /% mean atomic weight of heavy elements %/

//#define A _He 4.004 /% atomic weight of Helium x/

//#define A H 1.008 /% atomic weight of Hydrogen x/

#undef OUTPUT_EQUILIBRIUM

#undef COOLING_SUBSTEP

#define artificial _ISM

#undef artificial _ISM

#undef EVA_table

#define EVA_table 1 // use the table of Eva Ntormousi et al. 2011 ApJ 731, 13
the CLOUDY part (>25000 K) includes grains, the lower part takes ionization
into account.

#undef TAB_table

#define TAB_table 1 // use Pluto’s CLOUDY table too [NOT good below 25000 K]

/>)< sk skosk sk sk sk sk skoskosk sk sk sk sk skoskosk sk sk sk sk sk skosk sk sk sk sk skoskosk sk sk sk sk skoskosk sk sk sk sk skoskosk sk sk sk sk skoskosk sk sk sk sk skoskoskosk sk sk skoskosk >k/

/% Modifications K. Fierlinger:
Modes: write equilibrium data to file line 10
Modes: make several cooling time steps per hydro time step line 11
Modes: add cooling as in Ntormousi et al. 2011 ApJ 731, 13 lines 12—13
Modes: use Pluto’s table above 25000 K line 14

*/

L LLLLLEEEEEEEEEEEEL i i i rrrrrrr o«

void Radiat (real xv, real xrhs)

[ *
* NAME Radiat
+ PURPOSE Provide r.h.s. for tabulated cooling.

*

Sk 3k >k sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk skosk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk sk skosk sk sk sk sk sk sk sk skosk sk sk skosk sk sk skoskosk sk >|</
#ifdef EVA_table
/%

Read tabulated cooling function:

This code is based on the f90 version of E. Ntormousi. See Ntormousi et al

2011 ApJ 731, 13. It reads cooling and heating rates from a file created

by the program cooleq.pro (F. Heitsch) for the Interstellar Medium

This fixed table includes heating and cooling rates, as well as their

derivatives with respect to temperature

x/

static double xn1_tab, xn2_tab, *T1_tab, xT2_tab; // 1d Arrays for hydrogen
number density nH [1/cm3] or temperature [K]

static double xxcool1_tab, *xheati_tab; // 2d Arrays for Lambda(n,T) —
heating and cooling from table1

static double xxcooliprime_tab, xxheatiprime_tab; // 2d Arrays for Lambda’(n,T)
— heating and cooling derivatives just present in tablel

static double xxcool2_tab, xxheat2_tab; // 2d Arrays for Lambda(n,T) —
heating and cooling from table2

FILE xfcooll; // filepointer to the binary
files

size_t testresult;

//real smallnum_cooling= 1e—13; // avoid numerical problems

real nH_min_fix = 0.01 ; //minimum density [nH in 1/cm3]
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real nH_max_fix = 1.e5 ; //maximum density [nH in 1/cm3]
real T_min_fix_1 = 10. ; //minimum temperature [K] for cooling table 1
real T_max_fix_1 = 2.5e4 ; //maximum temperature [K] for cooling table 1
real T_min_fix_2 = 2.5e4 ; //minimum temperature [K] for cooling table 2
real T_max_fix_2 = 9.999e6; //maximum temperature [K] for cooling table 2
int nbin_T_1=500; //table 1 resolution in temperature
int nbin_T_2=9975; //table 2 resolution in temperature
int nbin_n_1=500; //table 1 resolution in density
int nbin_n_2=8; //table 2 resolution in density
double nH; /! Hydrogen number density nH [1/cm3]
double log10n, log10T; // log10 of the hydrogen number density nH [1/cm3] or
temperature [K]
double dlog_nH_1,dlog T _1,h_1, h2_1, h3_1; // first table: equidistant step size
in log10(nH) and log10(T)
double dlog_ nH_2,d_T_2; // second table: equidistant step size in log10(nH) and
T [NOT log10(T)]
int i_nH_1,i_nH_2,i_T; // position of the lower interval boundary
double wiH_1,wiH_2,w2H_1,w2H 2; // weights for lower/upper part of the interval
in density ... the density is between two values in the logarithmically
equidistant density table
#endif
#if !defined(EVA_table) || defined(TAB_table)
int klo, khi, kmid; //table element number for binary search
static int ntab; //table size
static real xL_tab, xT_tab; //1d Arrays for the cooling function and temperature
[K]
real scrh; //'interpolate L_Tab [erg cm3 / s]
real Tmid, dT; //T at center of interval, temperature difference
FILE «fcool; // filepointer to the cooling table
#endif
real mu, T, lambda;
static real E_cost; //converts erg / cm3 / s to code units
#ifdef artificial _ISM
real TO;
#endif
[/l if (x1 < g_inputParam[R_DRIVER]) {rhs[PRS] = 0.0; v[TRC]=0.0; return; }

/%
/%

Load Table
x/

/I nH = v[RHO]*g_unitDensity /CONST_mp;
#ifdef EVA_table
nH = v[RHO]* g_unitDensityxmass_X/CONST_mp;
log10n=log10 (nH) ;
/%

Read tabulated cooling function
x/

if (T1_tab == NULL){
print1 ("_>_Reading_table_1_from_disk...\n");
fcool1 = fopen("cooling_table_n_—2 5 T 10_25000.dat","rb");
if (fcooll == NULL){
print1 ("!_cooling_table_n_—-2_5 T 10_25000.dat_does_not_exist.\n");
QUIT_PLUTO(1) ;
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1

ni_tab ARRAY_1D(nbin_n_1, double);

T1_tab = ARRAY_1D(nbin_T_1, double);

heat1_tab = ARRAY_2D(nbin_n_1,nbin_T_1, double);
cool1_tab ARRAY_2D(nbin_n_1,nbin_T_1, double);
)
)

heatiprime_tab ARRAY_2D(nbin_n_1,nbin_T_1, double
cool1prime_tab = ARRAY_2D(nbin_n_1,nbin_T_1, double

P

// file1l contains binary reak kind=8 (8 byte): heating rates,
// cooling rates, d(heating)/dT, d(cooling)/dT in this order.

double a;

char tmp[8];

testresult=fread (tmp,1,4,fcooll);

int i,j;

for(i=0; i<nbin_n_1; i++){//populate ni1_tab
testresult=fread(&ni1_tab[i],sizeof(a),1,fcooll);
/[l printf (" ! n[%d]= %12.6e \n",i,n1_tab[i]);

}

testresult=fread(&a, sizeof(a),1,fcooll1);
for(i=0; i<nbin_T_1; i++){//populate T1_tab
testresult=fread(&T1_tab[i],sizeof(a),1,fcooll);
[l printf (" | T[%d]= %12.6e \n",i,T1_tab[i]);

}

testresult=fread(&a, sizeof(a),1,fcooll1);

for(i=0; i<nbin_T_1; i++){

for(j=0;j<nbin_n_1; j++){//populate heati_tab
testresult=fread(&heat1_tab[j][i],sizeof(a),1,fcooll);
}

}

testresult=fread(&a, sizeof(a),1,fcooll);

for(i=0; i<nbin_T_1; i++){

for(j=0;j<nbin_n_1; j++){//populate cooll1_tab
testresult=fread(&cool1_tab[j][i],sizeof(a),1,fcooll);
}

}

testresult=fread(&a, sizeof(a),1,fcooll);

for(i=0; i<nbin_T_1; i++){

for(j=0;j<nbin_n_1; j++){//populate heatiprime_tab
testresult=fread(&heatiprime_tab[j][i],sizeof(a),1,fcooll);
}

}

for(i=0; i<nbin_T_1; i++){

for(j=0;j<nbin_n_1; j++){//populate cooliprime_tab
testresult=fread(&cooliprime_tab[j][i],sizeof(a),1,fcooll);
}

}

fclose (fcool1);

print1 ("_>_Reading_table_2_from_disk...\n");
fcooll = fopen("cooling_table_n_—-2 5 T 25000_107.dat","rb");
if (fcooll == NULL){

print1 ("!_cooling_table_n_—-2_5 T 25000_107.dat_does_not_exist.\n");
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157 QUIT_PLUTO(1) ;

158 }

159 n2_tab = ARRAY_1D(nbin_n_2, double);

160 T2 _tab = ARRAY_1D(nbin_T_2, double);

161 heat2_tab = ARRAY_2D(nbin_n_2 ,nbin_T_2, double);

162 cool2_tab = ARRAY_2D(nbin_n_2 ,nbin_T_2, double);

164

164 testresult=fread (tmp,1,4,fcooll);

165 for(i=0; i<nbin_n_2; i++){//populate n2_tab

166 testresult=fread(&n2_tab[i],sizeof(a),1,fcooll);

167 }

168 testresult=fread(&a, sizeof(a) ,1,fcooll1);

169 for(i=0; i<nbin_T_2; i++){//populate T2_tab

170 testresult=fread(&T2_tab[i], sizeof(a),1,fcooll);

171 }

173

173 testresult=fread(&a, sizeof(a),1,fcooll);

174 for(i=0; i<nbin_T_2; i++){

175 for(j=0;j<nbin_n_2; j++){//populate cool2_tab

176 testresult=fread(&cool2_tab[j][i],sizeof(a),1,fcooll);

177 cool2_tab[j][i] = log10(cool2_tab[j][i]);

178 //cool2_tab[j][i] = log10(cool2_tab[j][i]) —(2.xn2_tab[j]);

179 }

180 }

181 /1 'heat/cool swapped. Heating always >> cooling

182 testresult=fread(&a, sizeof(a),1,fcooll1);

183 for(i=0; i<nbin_T_2; i++){

184 for(j=0;j<nbin_n_2; j++){//populate heat2_tab

185 testresult=fread(&heat2_tab[j][i],sizeof(a),1,fcooll);

186 heat2_tab[j][i] = log10(heat2_tab[j][i]);

187 }

188 }

189 fclose (fcool1);

190 |#ifdef OUTPUT_EQUILIBRIUM

191 / * x/

192 // output cooling heating equilibrium

193 double xT=0.0;

194 double dL=1e11;

195 double xdL,Lsign;

196 for(i=1; i<nbin_T_1; i++){

197 dL=1el11;

198 for(j=0;j<nbin_n_1; j++){

199 Lsign=(cool1_tab[j][i]—heat1_tab[j][i]) *(cool1_tab[j][i—1]—heatl1_tab[j][i
—11);

200 [l printf (" %12.6e %12.6e %12.6e %12.6e %12.6e \n",cooll_tab[j][i],
heat1_tab[j][i],pow(10.,cool1_tab[j][i]) ,pow(10.,heat1_tab[j][i]) ,xdL);

201 if (Lsign < 0.0)

202 {

203 xT=n1_tab[j—1]+(n1_tab[j—1]—n1_tab[j]) *x(cool1_tab[j][i—1]-heat1_tab[j][i

—1])/(cool1_tab[j][i—1]—heat1_tab[j][i—1]—cool1_tab[j][i]+heatl_tab][]j
10i]) 5

204 };

205 }

206 printf ("_%12.6e_%12.6e_\n" ,xT,T1_tab[i]);

207 /[l printf (" %12.6e %12.6e %12.6e \n",xT,T1 _tab[i],Lsign);
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/%

!
QUIT PLUTO(1);

*/

#endif

#ifdef TAB_table

/%

*

sk
//output cooling function
dlog_nH_1 = (double) (nbin_n_1—-1)/(n1_tab[nbin_n_1—-1]—-n1_tab[0]); // 1 / delta
(log10 nH)
for(j=0;j<nbin_n_2; j++){
i_nH_1 = MIN(MAX((int)floor (((double)(j—2)-n1_tab[0])=*dlog_nH_1),0),nbin_n_1
—2); // left index in nH
printf (" \n \n # log10(nH[%d])= %12.6e [nH/cm3], log10(nH[%d])= %12.6e [nH/
cm3] , log10(nH[%d])= %12.6e [nH/cm3]\n",j,n2_tab[j],i_nH_1,n1_tab[i_nH_1
],i_nH_1+1,n1_tab[i_nH_1+1]);
for(i=0; i<nbin_T_1; i++){
printf (" %12.6e %12.6e %12.6e %12.6e %12.6e \n",pow(10.,T1_tab[i]),
cool1_tab[i_nH_1][i], heati_tab[i_nH_1][i], cooll_tab[i_nH_1+1][i],
heat1_tab[i_nH_1+1][i]);
}
for(i=0; i<nbin_T_2; i++){
printf (" %12.6e %12.6e %12.6e \n",T2_tab[i], cool2_tab[j][i], heat2_tab[j]][
i1);
}

}
QUIT_PLUTO(1) ;

*/

}

//add this "}" if you want to use both tables

#endif
#endif
#if ldefined(EVA_table) || defined(TAB_table)
/% x/
if (T_tab == NULL) {
print1 ("_>_Reading_table_from_disk...\n");
fcool = fopen("cooltable.dat","r");
if (fcool == NULL){
print1 ("!_cooltable.dat_does_not_exist.\n");
QUIT_PLUTO(1) ;
}
L_tab = ARRAY_1D(20000, double);
T_tab = ARRAY_1D(20000, double);
ntab = 0;
while (fscanf(fcool, "%If_ %If\n", T_tab + ntab,
L_tab + ntab)!=EOF) {
ntab++;
}
/% x/
#endif
E_cost = g_unitLength/g_unitDensity/pow(g_unitVelocity, 3.0); //converts
erg / cm3 / s to code units
}
/%

Get temperature
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x/

if (V[PRS] < 0.0) v[PRS] = g_smallPressure;
/* mean molecular weight x/
if (v[PRS]/v[RHO]*KELVIN < 1e4){mu=1.33;} //mu=1.33 like in Thornton
else {mu = MeanMolecularWeight(v) ;}; //fully ionized
T = v[PRS]/v[RHO]*KELVINxmu;
if (T 1= T){
printf ("_!_Nan_found_in_radiat_\n");
#ifdef EVA_table
printf ("_!_rho_=_%12.6e_[1/cm3],_pr_=_%12.6e_[1e—6_erg/cm3]\n" ,nH, v[PRS]) ;
#else
printf ("_!_rho_=_%12.6e_[1e—22_g/cm3],_pr_=_%12.6e_[1e—6_erg/cm3]\n",v[RHO],
V[PRS]) ;
#endif
QUIT_PLUTO(1) ;

}

#ifdef artificial _ISM
TO=g_inputParam[PRS_IN]/g_inputParam [RHO_IN]*xKELVINxmu;
if (T >T0-0.02 & T < T0+0.02) { // artificial equilibrium at initial conditions
rhs[PRS] = 0.0;
v[TRC]=0.0;
return;

}
#endif

if (T < g_minCoolingTemp) {
rhs[PRS] = 0.0;
v[TRC]=0.0;
return;

!
/ *

Table lookup

x/
#ifdef EVA_table
#ifdef TAB_table
if (T > MAX(T_max_fix_2,T tab[ntab—1]) || T < T_min_fix_1 || nH < nH_min_fix ||
nH > nH_max_fix) {
/!l use both cooling functions — useful if high temperature end of the cooling
table should be included
//— if you want this, the "usual table" has to be included ("ifdef TAB_table"
must be true) x/

#else
if (T > T_max_fix_2 || T < T_min_fix_1 || nH < nH_min_fix || nH > nH_max_fix) {
//avoid extrapolation
#endif
rhs [PRS] = 0.0;
v[TRC]=0.0;
return;

}

// first table
dlog_nH_1 = (double) (nbin_n_1—-1)/(n1_tab[nbin_n_1—-1]—-n1_tab[0]); // 1 / delta (
log10 nH)




304

305
306
307
309
309
310

311
312

315
315
315
316
317

318

319
321
321
322

323

324
326
326
327

329
329
331
331

332
333

334
335
336
338
338

339

340

341

342

344
344

193

dlog_T_1 = (double) (nbin_T_1-1)/(T1_tab[nbin_T_1-1]-T1_tab[0]); // 1 / delta (
log10 T)

h_ 1 = 1.0/dlog_T_1; // delta (log10 T)

h2_1 = h_1xh_1; /1 (delta (log10 T))"2

h3_1 = h2_1xh_1; /1 (delta (log10 T))"83

//second table
dlog_nH_2 = (double)(nbin_n_2—1)/(n2_tab[nbin_n_2—-1]-n2_tab[0]); // 1 / delta (

log10 nH)
//WARNING this table is equidistant in T NOT in log1i0 T
d_T 2 = (double)(nbin_T_2-1)/(T2_tab[nbin_T_2—-1]—-T2_tab[0]) ; // 1 ] delta (T

)

//both tables are equidistant in log10(rho)
// first table

i_nH_1 = MIN(MAX((int)floor ((log10n—n1_tab[0])*dlog_nH_1) ,0) ,nbin_n_1-2); //
left index in nH

wiH_1 = (n1_tab[i_nH_1+1]—log10n)x*dlog_nH_1; // left weight in nH (smaller
distance — higher weight)

w2H_1 = (log10n—n1_tab[i_nH_11])x*dlog_nH_1; // right weight in nH

//second table

i_nH_2 = MIN(MAX((int)floor ((log10n—n2_tab[0]) *xdlog_nH_2) ,0) ,nbin_n_2-2);//
left index in nH

wiH_2 = (n2_tab[i_nH_2+1]—log10n)xdlog_nH_2; // left weight in nH (smaller
distance — higher weight)

w2H_2 = (log10n—n2_tab[i_nH_2]) «dlog_nH_2; // right weight in nH

if (T<T_min_fix_2){

double yy,yy2,yy3,fa,fb,fprima,fprimb,h fbfa ,h beta,gammal, cool,cool_prime, heat,
heat_prime;

log10T=log10(T) ;

/[l printf (" | T1[0]=%12.6e, T1[%d]=%12.6e \n",T1_tab[0], nbin_T_1—-1, T1_tab[

nbin_T_1—-1]);

/[l printf (" ! log10(T)=%12.6e, dlog T _1=%12.6e \n",log10T, dlog T_1);

i_ T = MIN(MAX((int)floor ((log10T—T1_tab[0])=dlog_T_1),0),nbin_T_1-2); // left
index in T

yy = log10T-T1_tab[i_T]; // (log10 T — log10 T_grid)

Yyy2 = yyxyy; /1 (log10 T — log10 T_grid)"2

yy3 = yy2xyy; /1 (log10 T — log10 T_grid)"3

fa = cool1_tab[i_nH_1][i_T]*xwiH_1 + cooll_tab[i_nH_1+1][i_T]xw2H_1; /1
interpolate left T in nH

fb = cool1_tab[i_nH_1][i_T+1]*wilH_1 + cooli_tab[i_nH_1+1][i_T+1]xw2H_1; //

interpolate right T in nH

fprima = cooliprime_tab[i_nH_1]1[i_TJ]xwiH_1 + cooliprime_tab[i_nH_1+1][i_T]1x
w2H_1; /1l interpolate left dT in nH

fprimb = cooliprime_tab[i_nH_1][i_T+1]xwiH_1 + coollprime_tab[i_nH_1+1][i_T+1]x
w2H_1; // interpolate right dT in nH

fbfa = (fb—fa);

real smallnum_cooling= 1e—13; // avoid numerical problems
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if (abs(fbfa/fb)<smallnum_cooling){fbfa=0.0;}

beta = 3.0x(fbfa)/h2_1—(2.0«xfprima+fprimb)/h_1;

gammaf = (fprima+fprimb)/h2_1—-2.0«(fbfa)/h3_1;

cool = pow(10.0,fa+fprimaxyy+betaxyy2+gammalxyy3) ;

fa = heatt1_tab[i_nH_1][i_T]xwiH_1 + heat1_tab[i_nH_1+1][i_T]*w2H_1; /1
interpolate left T in nH

fb = heat1_tab[i_nH_1][i_T+1]xwiH_1 + heat1_tab[i_nH_1+1][i_T+1]xw2H_1; //

interpolate right T in nH

fprima = heatiprime_tab[i_nH_1]1[i_TJ]xwiH_1 + heatiprime_tab[i_nH_1+1][i_T]1x
w2H_1; /l interpolate left dT in nH

fprimb = heatiprime_tab[i_nH_1][i_T+1]xwlH_1 + heatiprime_tab[i_nH_1+1][i_T+1]x
w2H_1; // interpolate right dT in nH

fbfa = (fb—fa);

if (abs(fbfa/fb)<smallnum_cooling){fbfa=0.0;}

beta 3.0x(fbfa)/h2_1—(2.0xfprima+fprimb)/h_1;
gammaf (fprima+fprimb)/h2_1—-2.0«(fbfa)/h3_1;

heat = pow(10.0,fa+fprimaxyy+betaxyy2+gammalxyy3) ;
lambda cool—heat;//in [erg/ cm3 / s]

#ifdef COOLING_SUBSTEP
// time until next lower tabulated temperature is reached (if cooling — not
heating — dominates)
if (lambda>0.0){
/! cooling time: thermal energy above nect T_i divided by loss
double dt1 = (v[PRS]—pow(10.0,T1_tab[i_T])x*v[RHO]/mu/KELVIN)/((g_gamma — 1.0)x
lambdaxE_cost) ;
//recompute lambda if next lower tabulated temperature is reached:
if (dt1>g_dt){
double dt=dt1;
double avg_lam=0.0;
avg_lam+=dt1xlambda;
while (dt<g_dt) {

i T—;

fa = cool1_tab[i_nH_1][i_T]*wiH_1 + cool1_tab[i_nH_1+1][i_T]xw2H_1;
// interpolate left T in nH

cool = pow(10.0,fa) ;

fa = heati1_tab[i_nH_1][i_T]*wiH_1 + heat1_tab[i_nH_1+1][i_T]xw2H_1;
// interpolate left T in nH

heat = pow(10.0,fa) ;

lambda = (cool—heat);
dt1=MIN (((pow(10.0,T1_tab[i_T+1])—pow(10.0,T1_tab[i_T]))=*v[RHO]/mu/KELVIN)
/((g_gamma — 1.0)x*lambda*E_cost),g_dt—dt);

dt+=dt1;
avg_lam+=dt1xlambda;

}

lambda=avg_lam/dt;

}
}
#endif

}
#ifndef TAB_table
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else if (T<T_max_fix_2)
{
double yy,fa,fb,cool,heat,wliT,w2T;
i_ T = MIN(MAX((int)floor ((T-T2_tab[0])*d_T_2),0),nbin_T_2-2); // left index in

T

yy = T-T2_tab[i_T];// (T — T_grid)

w2T = yyxd_T_2; // right weight (smaller distance — higher weight)

wiT = 1.0—w1T; // left weight

fa = cool2_tab[i_nH_2][i_T]xwiH_2 + cool2_tab[i_nH_2+1][i_T]xw2H_2; /1
interpolate left T in nH

fb = cool2_tab[i_nH_2][i_T+1]*wiH_2 + cool2_tab[i_nH_2+1][i_T+1]xw2H_2; //

interpolate right T in nH
cool = pow(10.0,fa)*wiT+pow(10.0,fb)=*w2T;

fa = heat2_tab[i_nH_2][i_T]*wiH_2 + heat2_tab[i_nH_2+1][i_T]xw2H_2; /1
interpolate left T in nH
fb = heat2_tab[i_nH_2][i_T+1]xwiH 2 + heat2_tab[i_nH_2+1][i_T+1]xw2H_2; //

interpolate right T in nH
heat = pow(10.0,fa)*wi1T+pow(10.0,fb)*w2T;
lambda = cool—heat; //in [erg/ cm3 / s]
}
#endif
else
#endif
// use both cooling functions — useful if high temperature end of the cooling
table should be included
//— if you want this, the "usual table" has to be included (remove all "ifdef
Eva_table" lines)
#if !defined(EVA_table) || defined(TAB_table)

/%
Table lookup by binary search
*/
klo = 0;
khi = ntab — 1;
#if ldefined(EVA_table)
if (T > T_tab[khi] || T < T_tab[klo] ){
rhs[PRS] = 0.0;
v[TRC]=0.0;
return;
!
else{
#endif

while (klo != (khi — 1)){

kmid = (klo + khi)/2;
Tmid = T_tab[kmid];
if (T <= Tmid){
khi = kmid;
}else if (T > Tmid){
klo = kmid;

}
}
#if ldefined (EVA_table)

!
#endif
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dT = T_tab[khi] — T_tab[klo];
scrh = L_tab[klo]*(T_tab[khi] — T)/dT + L_tab[khi]«(T — T_tab[klo])/dT; //
in [erg cm3 / s]
#ifdef EVA_table
lambda=scrhxnHxnH; //in [erg cm3 / s]

#else
//use PLUTO coolingtable between T_tab[khi] and T_min_fix_1
lambda = scrhxv[RHO]xv[RHO]*g_unitDensityxg_unitDensity /(CONST_mp+CONST_mp) ;
#endif

#ifdef COOLING_SUBSTEP
// time until next lower tabulated temperature is reached (if cooling — not
heating — dominates)
if (lambda>0.0){
/! cooling time: thermal energy above nect T_i divided by loss
double dt1 = (v[PRS]-T_tab[klo]*v[RHO]/mu/KELVIN)/((g_gamma — 1.0)=xlambdax
E_cost);
//recompute lambda if next lower tabulated temperature is reached:
if (dt1>g_dt){
double dt=dt1;
double avg_lam=0.0;
avg_lam+=dt1xlambda;
while (dt<g_dt) {
klo —;
khi——;
lambda=L_tab [ klo]*v[RHO]*xv[RHO]* g_unitDensityxg_unitDensity /(CONST_mpx
CONST_mp) ;
dt1=MIN(((T_tab[khi]—T_tab[klo])«v[RHO]/mu/KELVIN) /((g_gamma — 1.0)xlambdax
E_cost) ,g_dt—dt);
dt+=dt1;
avg_lam+=dt1xlambda;
}
lambda=avg_lam/dt;
}

1
#endif

#ifdef EVA_table
!

#endif
#endif
v[TRC]=lambda;
rhs [PRS] = —(g_gamma — 1.0)xlambda;//already in [erg / cm3 / s] // *v[RHO]xv]|

RHO]* g_unitDensityxg_unitDensity /(CONST_mp+CONST_mp) ;
rhs [PRS] x= E_cost;
/* x/

}
#undef T_MIN

[ sk skok sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk Kk sk sk sk sk sk 3k sk sk sk K ok sk sk 5k ok sk sk Kk sk sk sk sk sk sk ok sk sk Kk sk ok Kok sk sk ok ok sk kok sk sk kok ok sk /
double MeanMolecularWeight (real *V)

{
return (0.5); //fully ionized
/%
return ( (A_H + frac_HexA_He + frac_ZxA Z) /
(2.0 + frac_He + 2.0xfrac_Z — 0.0))
// (1+0.082%4.004+30e—3)/(2+0.082+2e—3)=0.65

)
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/]
x/

(1+0.082%4.004+30e—3)=1.35

Listing B.11: Modifications in set_output.c

/%
/%

/%

NN Y
Modifications K. Fierlinger:

start numbering outputfiles after g_inputParam[READIN] (lines 59) */
NN Y
output—nfile = —1+(int)g_inputParam[READIN]; //output—nfile = —1;

Listing B.12: Modifications in startup.c

/%
/%

/%

Y
Modifications K. Fierlinger: added value of negative density/pressure to output
lines 209 and 214 x/
NN Y
print ("!_Startup:_density_is_negative,_zone [%f, %f, %f_ ] %f\n", x1,x2,x3,
us [RHOJ) ;
print ("!_Startup:_pressure_is_negative,_zone_[%f, %f, %f] %f\n" ,x1,x2,x3,
us[PRS]) ;

Listing B.13: Modifications in sweep.c

/ *
/ *

/%

NN Y
Modifications K. Fierlinger: no outflow from empty cells (lines 170, 221, 223,
276) x/
NN
if (u[in][RHO]+state.rhs[in][RHO]<0.0){state.rhs[in][nv]=0.0;}
if (u[in][RHO]+state.rhs[in][RHO]<0.0){state.rhs[in][nv]=0.0;}
if (u[in][RHO]<0.0){print("rho_u[in][RHO=%g_\n_state.rhs[in][RHOI=%g. . .\n_
3.xUU[xKk][*j][*i][RHOI=%g_\n",u[in][RHO], state.rhs[in][RHO],u[in ][RHO]—
state.rhs[in ][RHO],3.xUU[xk][*j][*i][RHO]) ;
if (u[in][RHO]+state.rhs[in][RHO]<0.0){state.rhs[in][nv]=0.0;}

Listing B.14: Modifications in tc_kappa.c

[ *
/ *

/%

NN Y
Modifications K. Fierlinger: no thermal conduction in the feedback region
lines 44—47 and 61 x/
NN
if (x1<g_inputParam[R_DRIVER]) {

xkpar = 0.0;

xknor = 0.0;
}else(

}

Listing B.15: init.c for a constant wind

/%
/*

NN Y
Modifications:

re—define code units lines 53-55

gamma, density and pressure from pluto.ini lines 57, 59 and 63
feedback (mass+pressure) into sphere inside domain lines 22,23,142—-158
feedback (mass+velocity) into sphere near inner BC lines 24,166—181
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*/
I LLLLLEEEEEEEELEEEL i i i i i i rrrrrrrr o«/
#define THERMALWIND 1
#undef THERMALWIND
#define INFLOWING_WIND 1
g_unitDensity = 1.e—22; /+ reference density (\rho _0) in units of gr/cmEE3 x/
g_unitVelocity = 1.e8; /+ reference velocity (v_0) in units of cm/sec x/
g_unitLength = 1.e19; /x reference length (L_0) in cm x/
g_gamma = g_inputParam [GAMMA]; /+ calls the auxillary parameter GAMMAx/
v [RHO] g_inputParam[RHO_IN]; /« 1e—22 g/cm3 x/
v[PRS] g_inputParam[PRS_IN]; /« 1e—6 erg/cm3 x/
if (side == 0) { /+ — check solution inside domain — x/
DOM LOOP(k,j ,i){
#ifdef THERMALWIND
// Add mass and pressure
/1
/" wind: v = 1e8 cm/s
/" wind: 3e—5 Msun/yr = 5.9673e28 g/yr = 18.9e20 g/s= 18.9e—4 1e35g/1elis
//  injected mass in 1e35g per time step (g_dt in 1el1s) — 18.9e—4xg_dt
/] Feedback into sphere — region volume = math.pi/0.75e—57 % r_driver=x3
/! wind density: 18.9e—4x0.75/pi/r_driverxx3 =0.0004512/r_driverxx3
/1 if(pow(x1[i],2) <= pow(g_inputParam[R_DRIVER],2)){ // driver radius, if x1[i

] <0
if(x1[i] <= g_inputParam[R_DRIVER]) { [/ driver radius
d—Vc[RHO][K][j][i] += g_dt*0.00045120426366552326/pow (g_inputParam[R_DRIVER

1,3); /« 1e—22 g/cm3 for a wind with 3e—5 Msun/yr x/
/1
// kinetic energy density = 0.5 density v*"2 = 0.5 e—22 1e16 — 0.5e—6
// pressure = (gamma — 1) % energydensity

d—>Vc[PRS][Kk][j][i] += (g_gamma—1.0)*xg_dt*0.5%0.00045120426366552326/pow (
g_inputParam[R_DRIVER],3); /« 1e—6 erg/cm3 for a wind with 3e—5 Msun/yr
*/

1
#endif
1
}

if (side == X1_BEG){ /+x — X1_BEG boundary — x/
BOX_LOOP(box ,k,j,i){
#ifdef INFLOWING_WIND
// Add mass and velocity
/1
/" wind: v = 1e8 cm/s
/" wind: 3e-5 Msun/yr = 5.9673e28 g/yr = 18.9e20 g/s= 18.9e—4 1e35g/1elis
/" injected mass in 1e35g per time step (g_dt in 1elils) — 18.9e—4xg_dt
/!l ALL feedback into a sphere:
// boundary cell size 0.0 to g_inputParam[R_DRIVER]
!/l —> region volume = math.pi/0.75e—57 xpow(g_inputParam[R_DRIVER],3)
/1 wind density: 18.9e—4x0.75/pi/r_driver*x3 =0.0004512/r_driverxx3 for a
wind with 3e—5 Msun/yr
d—Vc[RHOI[k][jl[i] = g_dt«x0.00045/pow(g_inputParam[R_DRIVER],3); /+« 1e—-22 g
/ecm3, 3e—5 Msun/yr x/
EXPAND (d—>Vc[VXTI[K]I[jI[i]
d—>Ve[VX2][K][j][i]
d—>Ve[VX3][K][j]I[i]

1.0; , /%« [1e8 cm/s] = [1e3 km/s] x/
0.0; ,
0.0;)
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d—Vc[PRS][k][j1[i] = g_inputParam[PRS_IN]; /x 1e—6 erg/cm3 x/
#endif
}
}

Listing B.16: init.c as used for our 1D simulations

#include "pluto.h"

#define READINTRUE 88000

#define VISCOSITYRUN 1

#undef VISCOSITYRUN

#undef GENEVA

#define GENEVA 60 //use 60 Msun model from the Geneva grid

#undef SN_linear_vel // rather use internal boundary than linear velocity profile.

#define MeanFreePath 1e—4 // merge cells below mean free path

#undef MeanFreePath

/* >k >k koskosk sk skosk sk skoskosk sk sk skosk skoskosk sk sk skosk sk skosko sk sk skosk skoskosk sk sk skosk skoskosk sk sk skskosk sk sk sk sk skosk skokeoskosk sk skosk sk skoskosko sk skoskokokokosk >l</

void Init (double xv, double x1, double x2, double x3)

{

#if defined(SN_linear_vel) || defined (VISCOSITYRUN)
double dr, vol, r, dx;

#endif
g_unitDensity
g_unitVelocity
g_unitLength =
g_minCoolingTemp

1.e—22; /+ reference density (\rho_0) in units of gr/cmEE3 x/
1.e8; /% reference velocity (v_0) in units of cm/sec x/
1

.e19; /x reference length (L_0) in cm x/
g_inputParam[TMIN]; /x lowest temperature in Kelvin x/

g gamma = g_inputParam[GAMMA]; /x calls the auxillary parameter GAVMMAx/
g_supernova = g_inputParam[SN]; /x read latest SN time %/

g_smallPressure = MIN(g_smallPressure, g_inputParam[PRS_IN]x0.01);
#if defined(SN_linear_vel) || defined (VISCOSITYRUN)

dx = x1[2] — x1[1]; //mesh spacing

/Ixr[i] = x1[i] + 0.5 % dx; //cell centers

/%

dr is the size of the initial energy deposition
region: 2 ghost zones.

x/

//dr = 2.0%(g_domEnd[IDIR]—g_domBeg[IDIR]) /(double)NX1;

// convert to full cells

dr = (round((g_inputParam[R _DRIVER] — g domBeg[IDIR])/dx) ) % dx + g domBeg[IDIR

I;

/%
compute region volume
*/
vol = 4.0/3.0«CONST_PIx(pow(dr,3)—pow(g_domBeg[IDIR],3));
#endif
v[RHO] = g_inputParam[RHO_IN]; /« 1e—22 g/cm3 =/

v[VX1] = 0.0; /«initial Vx arrayx*/

v[VX2] = 0.0; /«initial Vy arraysx/

v[VX3] = 0.0; /«initial Vz arrayx/

V[PRS] = g_inputParam[PRS_IN]; /« 1e—6 erg/cm3 =x/
v[TRC] = 0.0;

/! v[FNEUT] = 1.0; // for SNEq cooling
#ifdef VISCOSITYRUN
if ( x1 <=dr ) {




87
88
89
90
91
92
93
94

95

96

97
113
114
115
116
117
118
119
120
121
122
123
124
125
127
127
128
129
130
131
132
134
134
135
136
137
138
139
140
141
142
143
144
145
146
155
175
176
177
178
179
189
190

200 B. Pluto source code listings

v[RHO] = g_inputParam[ETH]xg_inputParam[RHO_IN]; //lower density by a factor

}s

#endif

#ifdef SN_linear_vel
if (x1 <= dr ) {

printf ("%g._%g.\n", x1,x1/drx150.);

v[PRS] = (g.gamma — 1.0)xg_inputParam[ETH]/vol;

v[RHO] 0.059673/vol+g_inputParam[RHO_IN]; //3 solar masses are 0.059673e35
g

v[VX1] = sqrt(g_inputParam[EK]/0.3/(0.059673+volxg_inputParam[RHO_IN]) )xx1/dr
; // linear velocity profile

}s
#endif
#ifdef READINTRUE
if (g_inputParam[READIN]>0.0) {
static int first_call = 1;
char fname[512];
if (first_call){
g_time=g_inputParam [READIN]*0.1578;
int k, input_var[6];
for (k = 0; k < 5; k++) input_var[k] = —1;
input_var[0] = RHO;
input_var[1] = VX1;
input_var[2]= PRS;
sprintf (fname, "grid.%04d.out", (int)g_inputParam[READIN]) ;
InputDataSet (fname, input_var);

sprintf (fname, "rho.%04d.dbl", (int)g_inputParam[READIN]) ;
InputDataRead (fname,0) ;
sprintf (fname, "vx1.%04d.dbl", (int)g_inputParam[READIN]) ;
InputDataRead (fname,1);
sprintf (fname, "prs.%04d.dbl", (int)g_inputParam[READIN]) ;
InputDataRead (fname,2) ;

first_call = 0;
}
//InputDataExpandid(v ,x1);
InputDatalnterpolate (v ,x1,x2,x3);
}
#endif
}
[ 5k skok sk sk sk ok sk sk sk sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk Kk sk sk sk sk sk sk ok sk sk ok ok sk ok Kok sk kokok sk kok sk sk okok sk /
void Analysis (const Data xd, Grid =grid)
ES!
* Perform runtime data analysis.
*
% \param [in] d the PLUTO Data structure
void UserDefBoundary (const Data xd, RBox xbox, int side, Grid xgrid)
{
int i, j, k, nv;
double *x1, *x2, %*x3;
double dr, dx, vol, r, de, dm, ekin_help;
x1 grid[IDIR].x;
X2 grid [JDIR]. x;




191
193
193
194
195
196
197
198
199
200
201
202
203
204
205

206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
239
239

240

201

x3 = grid[KDIR].x;

#ifndef VISCOSITYRUN
/%

cell size ... dx

*/
//without MPI dx = (g_domEnd[IDIR]—g_domBeg[IDIR]) /(double)NX1;
dx=x1[2]—x1[1];

/%

feedback region ... dr
x/

/" convert to full cells

[Ixr[i] = x1[i] + 0.5 % dx;

//dr = (floor ((g_inputParam[R_DRIVER] — x1[1])/dx) + 0.5) % dx + x1[1];

dr = (round((g_inputParam[R _DRIVER] — g domBeg[IDIR])/dx) ) % dx + g domBeg[IDIR
I;

if (g_time<2e—4)printf("time: _%g_radius_of_the_feedback_region:_ %g_x_1e19_cm._
Actual _radius %9, ,. %9., %g.\n",g_time, g_inputParam[R_DRIVER], dr, dx,
g_domBeg[IDIR] );

/%

SN region ... dr
x/

if (g_time >= g_supernova) {dr = g_inputParam[R_SN];};
/%

compute region volume
*/
vol = 4.0/3.0+«CONST_PIx(pow(dr,3)—pow(g _domBeg[IDIR],3));
#ifdef INFLOWING_WIND
if (side == X1_BEG){ /« — X1_BEG boundary — x/
if (box—vpos == CENTER) ({
BOX_LOOP(box ,k,j,i){
/" wind: v = 1e8 cm/s
/" wind: 3e—5 Msun/yr = 5.9673e28 g/yr = 18.9e20 g/s
/" wind density: 18.9e—4x0.75/pi/r_driverxx3 =0.0004512/r_driverxx3

d—Vc[VX3][ k][]
d—>Vc[PRS][k][j1[i] =

/! inflow BC
d—>Vc[RHO][K][j1[i] = 9g_dtx0.00045/pow(dr,3); /x 1e—22 g/cm3, 3e—5 Msun/yr
*/
EXPAND (d—>Vc[VX1][k]I[j1[i] = 1.0; , /*« [1e8 cm/s] = [1e3 km/s] x/
d—Vc[VX2][k][j1[i] = 0.0; ,
[i] = 0.03)
g_inputParam[PRS_IN]; /+ 1e—6 erg/cm3 x/

}

lelse if (box—svpos == X1FACE) {
BOX_LOOP(box,k,j,i){ 1}

lelse if (box—>vpos == X2FACE) {
BOX_LOOP(box,k,j,i){ }

lelse if (box—vpos == X3FACE) {
BOX_LOOP(box,k,j,i){ 1}

}

}
#endif

// THIS ROUTINE WOULD BE CALLED MORE THAN ONCE: twice for RK2 three times for
RK8 — prevent this in boundary.c
if (side == 0) { /+ — check solution inside domain — x/
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#ifdef MeanFreePath
// merge cells with inner cell if the hydrogen mean free path is larger than
the cellsize
double gnmm1 = g_gamma — 1.0;
DOM LOOP(k,j ,i){
if (x1[i] > dr+dx && d—>Vc[RHO][k][j1[i] < 1.e—4xdx%200){ //don’t merge
feedback cells.
double etherm1i,etherm2,ekini,ekin2; // energy
//printf ("%g dx < mean free path, i=%d , rho = %g [g/cm3]",dx, i,d—>Vc]
RHOJ[KI[jI[i]x1.e—22);
//energy conservation
etherm1=d—Vc[PRS][k][]j][i]/gmm1i;
ekin1=0.5xd—>Vc[RHO][k][j ][ i]*xpow(d—>Vc[VX1][k][j1[i],2);
etherm2=d—Vc[PRS][K][j][i—5]/gmm1;
ekin2=0.5xd—>Vc[RHO][K][j ][ i —5]xpow(d—>Vc[VXT][K][j1[i—1],2);
if (ekin1<etherm1 && ekin2<etherm2) { //don’t mix in free streaming zone
or 5 point interface region
double V1, V2, V3; // Volumes of spheres for weighting the densities
double w1, w2; // weights
double etotal; // energy
etherm2=d—Vc[PRS][k][]j]1[i —1]/gmmi;
ekin2=0.5xd—>Vc[RHO][ k][ j][i—1]xpow(d—>Vc[VXT][K][j][i—1],2);
/1 x[i] ... cell center coordinate
Vi=pow (x1[i]+0.5%dx,3);
V2=pow (x1[i]—0.5%dx,3) ;
V3=pow (x1[i]—1.5%dx,3);
wl = (V1-V2)/(V1-V3);
w2 = 1.0 — wi;
etotal = (wlx(etherm1+ekini)+w2x(etherm2+ekin2));
d—Vc[RHO][kI1[j1[i] = wixd—>Vc[RHO][KkI[j1[i] + w2xd—>Vc[RHO][ k][ j]1[i
—1]; /% 1e—22 g/cm3 x/
d—Vc[PRS][k][j1[i] = wixd—>VCc[PRS][k][j1[i] + w2xd—>Vc[PRS][k][j][i
—1]; /* 1e—6 erg/cm3 x/
d—>Ve[RHOI[KI[j1[i—1] = d—>Vc[RHOI[KI[j1[i];
d—>Vc[PRS][K][j][i—1] = d—=>Vc[PRS][K][j][i];

etotal —= d—>Vc[PRS][k][j][i]/gmmi;// kinetic energy
d—>Ve[VX1][k][j1[i] = sqrt(2.0xetotal/d—>Vc[RHOJ[KkI[j1[i]); //x1
velocity

d—Ve[VXT1[kI[j1li—1] = d—=Ve[VX11[KkI[j1li];
}
}
}
#endif
/[l printf ("time %g dt %9 x0 %g \n",g_time, g_dt, g _domBeg[IDIR]) ;
if (g_time — g_dt < g_supernova)
{
if (g_time >= g_supernova) {
/1 SN
dr = g_inputParam[R_SN];
/lprintf ("radius of the SN %g x 1e19 cm. supernova went off at %g x 1elf
s. \n",g_inputParam[R_SN],g_time );
DOM LOOP(k,j ,i){
if ( x1[i] <= dr){// radius of the feedback zone
if (i==5){printf("radius_of_the SN %g, x_1e19_cm._supernova_went_off
at_%10.4e_x_1ell1_s._%10.4e_\n",g_inputParam[R_SN],g_time,g_dt )
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'}
/%

add SN energy and mass
*/
[l printf("p: %9 + %9 €: %9 x: Y%g\n",d—>Vc[PRS][k][j]1[i], (g_gamma
—1.0)xg_inputParam[ETH]/ vol ,g_inputParam [ETH] ,x1[i]) ;
// THIS ROUTINE COULD BE CALLED MORE THAN ONCE (Predictor, Corrector
..) — prevent this in boundary.c

#ifdef GENEVA
if (g_inputParam[ETH]<0.5%g_inputParam[M SN]xpow (d—Vc[VXT][ k][] ][
1,2)) //added energy smaller than increase of kinetic energy
{
printf ("%d_SN_energy: %g_ [FOE],_kinetic_energy %g. . \n",i,
g_inputParam [ETH],0.5xg_inputParam [M_SN]xpow (d—Vc[VX1][ k][ j
11i1,2));
//ek=0.5(m v"2)+de=0.5((m+dm)ur2 — 2de/(m+dm) + m/(m+dm) v/ 2 =
unh2
d—Vc[VX1][k][j1[i]=MAX(0.0 ,pow(2.x(g_inputParam[ETH]/vol) /(
g_inputParam[M_SN]/vol+d—Vc[RHO][k][j ][ i])+pow(d—>Vc[VX1][k
11i10i1,2))*xd—>Vc[RHO][K][j1[i]1/(g_inputParam[M SN]/vol+d—
Vc[RHO][kI1[j1[i]) ,0.5));//reduce velocity
}
d—Vc[PRS][k][j1[i] += ((g.gamma — 1.0)=x(g_inputParam[ETH]—0.5x
g_inputParam [M_SN]xpow(d—Vc[VX1][k][jI[i].,2)))/vol; /« 1e—6 erg
/cm3 x/
d—Vc[RHO][Kk][j1[i] += g_inputParam[M_SN]/vol; //10.9807 solar
masses in 1e35 g (10.9807 solar masses = 2.18417104e34 g )

#else //Can lead to negative pressures if added energy is smaller than
increase of kinetic energy (since energy difference added/subtracted to/from
pressure)

d—Vc[PRS][K][j1[i] += ((g_gamma — 1.0)*(g_inputParam[ETH
]—0.5%0.059673«pow (d—Vc[VXT1][k][]j1[i],2)))/vol; /«x 1e—6 erg/cm3
*/

d—Vc[RHO][k][j1[i] += 0.059673/vol; //3 solar masses in 1e35 g (3
solar masses = 0.059673e35 g )
#endif
/1d—>Ve[VXT][Kk][j1[i] += sqrt(2.xg_inputParam[EK]/vol/d—>Vc[RHO][k]]
j1lil); // for density variations ... constant energy density
//d—>Ve[VXT][Kk][j]1[i] += sqrt(g_inputParam[EK]/0.3/(volxd—>Vc[RHO][k
1[j10i1))*x1[i]l/dr; // linear velocity profile ... for constant
density !
}
g_supernova=0.0;
}
lelse{
if (g_time + g_dt >= g_supernova) {
g_dt = 0.0001xg_dt;
g_supernova=g_time+0.9xg_dt;
printf("reached_given_SN_time__of_%12.6e_x_1el11_s._supernova_will_go
off_at_%12.6e_x_1ell1_s._\n",g_inputParam[SN],g_supernova );
}
//check bubble size and start SN
if (g_supernova >= g_inputParam[SN]) {
#ifdef GENEVA
Wind (vol ,&de,&dm) ;
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/1if(g_time<0.3 && g_dt > 2.e—4){g_dt = 0.1xg_dt; printf ("g_dt=%g,
g_time=%g \n",g_dt,g_time) ;}
#endif
//volumecheck=0.0;
DOM LOOP(k,j,i){
if (x1[i] >= g_inputParam[R BUBBLE] && d—>Vc[RHO][k][j]l[i] <= 0.5%
g_inputParam[RHO_IN] )
{
g_dt = 0.0001xg_dt; //reduce time step size shortly before SN
g_supernova=g_time+0.9xg_dt;
printf("reached_given_cavity_size_of _%g_x_1e19_cm._supernova_
will _go_off_at_%10.4e_x_1el11_s._\n",g_inputParam[R_BUBBLE],
g_supernova );

!
/%

add wind energy and mass

*/

// Geneva 60 Msun: T_SN = 4.85966398974075e6 [years]

/1l massloss_ SN = Geneva2011V4(1:n_models)%
masslossSN = 10.9807 ! [solar masses]

/1l

// mass loss: 3e—5 Msun/yr = 5.9673e28 g/yr = 1.89e21 g/s = 0.00189
e35 g / 1ell s

//—>g_dt in 1ells

// rho in 1e35 g / 1e57cm”3

/! Feedback into sphere with radius = g_inputParam[R_DRIVER] in 1e19

cm

//—> region volume = math.pi/0.75e—-57 * pow(g_inputParam[R_DRIVER
1,3); in cm3

//0.00189/(math.pi/0.75)=0.0004512042636655233

/1
/[1if(x1[i] <= dr && x1[i]>g_domBeg[IDIR]){ // radius of the
feedback zone

if(x1[i] <= dr){ // radius of the feedback zone
/] printf ("d0 %g dm %g p0 %g de %g \n", d—=Vc[RHO][kI[jI[i] ,
0.5%dm, d—>Vc[PRS][k][j]I[i] , 0.5%x(g_gamma—1.0)xde) ;

#ifdef GENEVA
[Tif(i<4){ printf ("i %d t %g d %g \n",i,g time,d—>Vc[RHO][K][jI[i
1)}
d—>Vc[RHO][k][j1[i] += dm;
ekin_help=dm=0.5xpow (d—Vc[VX1][k][j]1[i],2);// kinetic energy
increase due to added mass
if( de >= ekin_help){//added energy larger than increase of
kinetic energy
d—Vc[PRS]1[k]1[j1[i] += (g_gamma—1.0)*(de—ekin_help);//add
remaining energy to thermal energy
lelse{ // ek=0.5(m v*2)+de=0.5((m+dm)u”2 —> m/(m+dm) v*2 + 2de/(m+
dm) = u”2
d—Ve[VX11[k]1[jllil=sqrt ((d—>Vc[RHOI[ k][] ][ i]—dm)/d—Vc[RHO][ k]|
i10i].0xpow(d—>Ve[VXT][k][j1[i],2)+2.xde/d—>Vc[RHO][K][j][i
1.0) ;//reduce velocity

}

// THIS ROUTINE COULD BE CALLED MORE THAN ONCE if it is not
prevented in boundary.c

#else
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d—Vc[RHO][k][j][i] += g_dt«0.00189/vol; /* 1e—22 g/cm3 ... added
3e—5 Msun/year =/
//EXPAND (d—>Ve [VXT][K]I[j1[i]

1.0; , /* v=1 [1e8 cm/s] = [1e3 km

/s] x/
/1 d—Vec[VX2][k][j1[i] = 0.0; ,
/1 d—Vc[VX3][k][j1[i] = 0.0;)

//7/0.5 m v"2 (gamma—1) = 0.5 e—22 1e16 — 0.5e—6

/l'//energy input: mv"2 %x0.5 = (3e—5 2e33) 10e16 x 0.5 erg / year
= 3e44 erg/year

/1]l pressure = (gamma — 1) x internal energy density

// Can lead to negative pressures for high d—=Vc[VXT][k][j]1[i]
since difference

// between kinetic energy increase and added wind energy taken
from pressure

d—Vc[PRS][k]1[j1[i] += (g_gamma—1.0)xg_dt*0.5%x0.00189x(1.0 —pow(d—>
Ve[VX1][kI[jl[i].,2))/vol; /«+ 1e—6 erg/cm3 ... added 3e—5 Msun/
year x/

#endif

//volumecheck += pow(x1[i]+0.5%dx,3)—pow(x1[i]—0.5%xdx,3);

[Tprintf ("i %d x1 %g v %9 sum v %g \n", i,x1[i],(pow(x1[i]+0.5%xdx
,3)—pow (x1[i]—0.5%xdx,3)) «4.«CONST_PI/3., 4.«xCONST_PI/3.x
volumecheck) ;

}
}

!
/[l printf ("vol: %g, volumcheck: %g",vol,vol —4.«xCONST_PI/3.xvolumecheck) ;
//QUIT_PLUTO(1) ;
#ifdef PARALLEL
double g_supernova_local = g_supernova;
MPI_Allreduce (&g_supernova_local, &g_supernova, 1, MPI_DOUBLE, MPI_MIN,
MPI_COMM _WORLD) ;
g_supernova_local = g_dt;
MPI_Allreduce (&g_supernova_local, &g _dt, 1, MPL.DOUBLE, MPI_MIN,
MPI_COMM_WORLD) ;
#endif

!
#endif

}

#define year_to_seconds 31556926.0 /x seconds per year x/
#define msun_to_g 1.9891e33 /* g per solar mass x/
#define msunYear_to_gs 6.30321217e25 /« converts Msun/yr to g/s x/
/>)< sk sk sk sk sk sk sk sk skoskosk sk sk sk skoskosk sk sk sk sk skoskosk sk skosk skoskoskosk sk sk sk sk skoskosk sk sk sk sk skoskosk sk skosk skoskoskosk sk sk sk sk skoskoskosk sk koskoskok >i</
void Wind (double vol, double xe, double xm)
/%
+ NAME Wind
x+ PURPOSE Provide wind mass and energy input (tabulated 60 Msun model).
k
>k 3k skoskosk sk >k sk skoskosk sk sk sk sk skoskosk sk sk >k sk skoskoskosk sk sk sk skoskosk sk sk sk sk sk skoskosk sk sk sk sk skoskosk sk sk sk skoskoskosk sk sk >k sk skoskosk sk sk koskoskok >k/
{
int klo, khi, kmid; //table element number for binary search
static int ntab=400; //table size
static real xt_tab, sm_tab, xe_tab; // years, solar masses per year, 1e—30 erg/s
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static double convertE ,converiM;
double t,Tmid, dT;
FILE xfcool;

[/l printf("vol %g dm %g de %g \n", vol , xm, xe);

[ *

Load Table
%/

if

(t_tab == NULL){

print1 ("_>_ Reading_Geneva_table_from_disk...\n");
fcool = fopen("Geneva2011V4.dat","r");

}

f (fcool == NULL){
print1 ("!_wind_table_does_not_exist\n");
QUIT_PLUTO(1) ;

t_tab = ARRAY_1D(400, double);

e_tab

ARRAY_1D(400, double);

m_tab = ARRAY_1D(400, double);

ntab = 0;
while (fscanf(fcool, "%If_ %If %If_\n", t_tab + ntab,

}

m_tab + ntab, e_tab + ntab)!=EOF) {
ntab++;

printf("ntab: %d,_tmax: %g._years_\n", ntab,t_tab[ntab—-1]);
/% */
//erg to code unit: 1.0/pow(g_unitLength, 3.0)/g_unitDensity/pow(

g_unitVelocity , 2.0);

convertE=1.e30/pow(g_unitLength ,2.0)/g_unitDensity/pow(g_unitVelocity, 3.0);

/l [1e30 erg / s] x code time step to code energy units

convertM=msunYear_to_gs/g_unitVelocity /pow(g_unitLength, 2.0)/g_unitDensity;

!
[ *

/*

/1 [Msun / yr] x code time step to code mass units
Get time
*/
t= g_timexg_unitLength/g_unitVelocity/year_to_seconds; //converts code units
to years

klo
khi
if

Table lookup by binary search
*/

0;
ntab — 1;
(t < t_tab[klo] ){

xe = e_tab[klo];
*m = m_tab[klo];

}

else if (t > t_tab[khi]){

xe = 0.0;
sm = 0.0;
return;

1

else{

while (klo != (khi — 1)){

kmid = (klo + khi)/2;
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Tmid = t_tab[kmid];
if (t <= Tmid){

khi = kmid;
lelse if (t > Tmid){
klo = kmid;
}
}
dT = t_tab[khi] — t_tab[klo];

// interpolation: find
// to get trapezoidal
compute rise

rate at given time and use rectangles to integrate.
numerical integration better use klo and khi value and

sm = 0.5%x(m_tab[klo]+ m_tab[khi]); //in [Msun / s]
xe = 0.5x(e_tab[klo]+ e_tab[khi]); //in [Msun / s]
}
[/l printf ("T:%g [years] M:%g [Msun/year] E:%g [1e30erg/s] \n", t,xm,xe);
//printf ("convertM %g 1./vol %g g_dt %9 \n", convertM, 1./vol, g_dt);
//printf ("convertE %g 1./vol %g g_dt %9 \n", convertE, 1./vol, g_dt);
("T:%g [code] M:%g [code] E:%g [code] \n", g_time ,msconvertM,exconvertE

//printf
);

xm x= g_dtxconvertM/vol;

xe x= ¢_dtxconvertE/vol;

return;
}
Listing B.17: example of pluto.ini
[Grid]
X1—grid 1 0.01 2400 u 6.01
X2—grid 1 0.0 1 u 1.0
X3—grid 1 0.0 1 u 1.0

[Chombo Refinement]

Levels

Ref _ratio
Regrid_interval
Refine_thresh
Tag_buffer_size
Block factor
Max_grid_size
Fill _ratio

WM
NN
NN

N

ogoowomm-h

]
o

[Time]
CFL 0
CFL_max_var 1.
tstop 1
first_dt 1
[Solver]

Solver roe

[Boundary]
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X1-beg reflective
X1—end outflow

X2—beg reflective
X2—end reflective
X3—beg reflective
X3—end reflective

[ Static Grid Output]

uservar 0
dbl 0.1578 —1 multiple_files
flt -1.0 -1 single_file

vtk -1.0 —1 single_file
tab -1.0 -1
ppm -1.0 -1
png -1.0 -1
log 100
analysis —-1.0 -1
[Chombo HDF5 output]
Checkpoint_interval —-1.0 0
Plot_interval 1.0 0
[Parameters]
RHO_IN 0.022
PRS_IN 3.9889e—7
GAVIVA 1.66666666667
R_DRIVER 0.1
ETH 1.0
EK 0.0
R _BUBBLE 1.22
SN 7.0
R SN 0.15
TMIN 50.0
M_SN 0
RHO_MIN 0
READIN 0
Listing B.18: customized definitions.h
#define PHYSICS HD
#define DIMENSIONS 1
#define COMPONENTS 1
#define GEOMETRY SPHERICAL
#define BODY_FORCE NO
#define COOLING TABULATED
#define INTERPOLATION LINEAR
#define TIME_STEPPING RK2
#define DIMENSIONAL_SPLITTING YES
#define NTRACER 1
#define USER DEF PARAMETERS 13
/+ — physics dependent declarations — x/
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#define EOS IDEAL
#define ENTROPY_SWITCH NO
#define THERMAL_CONDUCTION NO
#define VISCOSITY NO
#define ROTATING_FRAME NO

/+ — pointers to user—def parameters — x/

#define RHO_IN
#define PRS_IN
#define GAMMA
#define R _DRIVER
#define ETH
#define EK
#define R _BUBBLE
#define SN
#define R SN
#define TMIN

ONO O~ WN—=O

©

#define M_SN 10
#define RHO_MIN 11
#define READIN 12

/+ — supplementary constants (user editable) — x/

#define INITIAL_SMOOTHING NO

#define WARNING _MESSAGES YES
#define PRINT_TO_FILE NO

#define INTERNAL BOUNDARY YES
#define SHOCK_FLATTENING ONED
#define ARTIFICIAL_VISCOSITY NO

#define CHAR_LIMITING YES
#define LIMITER MINMOD_LIM

Listing B.19: post processing routine

#include <stdio.h> /« required for file operations x/
#include <math.h> /% required for pow(n,3) =/

FILE xft ,«fr ,xfp,xfv; /+ declare the file pointer x/

main( int argc, char xargv[] )

{

int n;

char bytes[8];

char filenamet[128],filenamer[128],filenamep[128],filenamev[128];

double m,t,ek,et, ekintot,ethermtot,ezero;

double rhomax=0.0, trhomax=0.0, vshell=0.0, rho0=0.23, shellmass=0.0,
=0.0;

int nrhomax=0, shellwidth=0,supersonic=0;

//60e19 cm 24000 cells

double dV = 3.14159/400./400./400./0.75, dVi;

/] debug: printf("%s\n",argv[1]);

sprintf (filenamet, "tr1.%s.dbl", argv[1]);
sprintf (filenamer, "rho.%s.dbl", argv[1]);

shellv
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/1
/1
/1
/1
/1
/1

sprintf (filenamep, "prs.%s.dbl", argv[1]);
sprintf (filenamev, "vx1.%s.dbl", argv[1]);

//debug: printf("%s %s %s",filenamer ,filenamep ,filenamev) ;

ft = fopen (filenamet, "r"); /« open the file for reading =/
fr = fopen (filenamer, "r"); /+ open the file for reading =/
fp = fopen (filenamep, "r"); /x open the file for reading =/
fv = fopen (filenamev, "r"); /x open the file for reading =/

ezero=0.0; // initial thermal energy

ekintot=0.0;

ethermtot=0.0;

n=0;

m=0.0;

printf("#(1)_cell_number_\n");

printf ("#(2)_density_[1e—22_g/cm3]\n");

printf ("#(3)_pressure_[1e—6_erg/cm3]\n");
printf ("#(4)_velocity_[1e8_cm/s]\n");

printf ("#(5)_temperature_[K]\n");
printf("#(6)_thermal_energy_[1e—6_erg/cm3]\n");
printf ("#(7)_kinetic_energy_[1e—6_erg/cm3]\n");
printf ("#(8)_cumulative_mass_[1e35_g]_\n");
printf ("#(9)_cooling_loss_[erg/cm3/s]_\n");
while (n<10000)

{

fread(&bytes, 8, 1, ft);

double tr = x((doublex)bytes);//erg cm3/s
fread (&bytes, 8, 1, fr);

double d = x((doublex)bytes); //1e—22 g/cm3
fread(&bytes, 8, 1, fp);

double p = *((doublex)bytes); //1e—6 erg/cm3
fread(&bytes, 8, 1, fv);

double v = x((doublex)bytes); //1e3 km/s

// inner boundary: 0.01 — 400 = 0.01 = 4
dV1=dVx(double) (pow ((n+5),3)—pow((n+4),3));
// cell centered radii

/1dV1=dVx(pow (((double) (n)+4.5) ,3)—pow (((double) (n)+3.5),3));
n++;

CONST_amu 1.66053886e—24 /*x< Atomic mass unit. */
CONST_kB 1.3806505e—16 /xx< Boltzmann constant. */
KELVIN (g_unitVelocityxg_unitVelocity *CONST_amu/CONST kB)

KELVIN (1e16x%1.66053886e—24/1.3806505e—16)

KELVIN (1e16%1.66053886e—8/1.3806505)

KELVIN (1.66053886e8/1.3806505)=120272209.

//mu=0.5

/1 X=1-0.082—1e—3=0.917

t=120272209.xp/d*0.5%0.917;

if (d>rhomax) {trhomax=t ;nrhomax=n; rhomax = d; vshell=v;}

if (d>rho0){shellwidth+=1;shellmass+=dV1xd;shellv+=dV1xdxv;if (v>pow(1.666667xp/
d,0.5)){supersonic+=1;}}

ek=0.5*xdxvx*V;

//one over gamma—1: 1.5 = 1./(5./3.—-1.) =1 / (gamma — 1)

et=1.5xp;

//thermal energy of initial conditions: 1.5%xp0 = 1.5%x7.30974e—7
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if(p < 7.30973e—7 || p > 7.30975e—7){

ezero +=1.096461e—06xdV1;

ethermtot+=et*xdV1;

}

ekintot+=ekxdV1;

m+=d=xdV1;

printf ("%d %9, %9 %9 %9 %9 %9 .99 %9 . Yg\n" ,n,d,p,v,t,et,ek,m, tr ,dxdV1);
}

fclose(fr); /x close the file prior to exiting the routine x/

fclose(fp); /x close the file prior to exiting the routine x/

fclose(fv); /x close the file prior to exiting the routine x/

[l printf ("# %s+13111 %9 %9 %g t[0.5kyr] Ekin Etherm Etot [FOE] rhomax %d %g %g
%g ezero %g shell %d %9 %g %d \n",argv[1],ekintot, ethermtot, ekintot+
ethermtot, nrhomax, rhomax, trhomax, vshell, ezero, shellwidth, shellv/
shellmass , shellmass , supersonic) ;

printf ("# %d %9, %9 %g9.t[0.5kyr]_Ekin_Etherm_Etot_[FOE] _rhomax %d _%g %g %g_ezero
Yg.shell 9d %9 %9 %d_\n", 6 atoi(argv[1])+13111,ekintot, ethermtot, ekintot+
ethermtot, nrhomax, rhomax, trhomax, vshell, ezero, shellwidth, shellv/
shellmass , shellmass , supersonic) ;

} /xof mainx/

Listing B.20: shell script with automatic expansion of the volume

#!/bin/bash
ZAHL=0 #factor for cooling threshold: ${ZAHL}.${COUNTER}
COUNTER=0
NMAX=10
PLUSMYR=2 #duration of individual simulations
OLDAMBIENT=0 # grid point where the undisturbed medium starts in the last
simulation + buffer
#while [ $ZAHL —It 2 ]; do
# let COUNTER=2—2xZAHL
# let COUNTER=1—ZAHL
# while [ $COUNTER —It $NMAX ]; do
echo The ratio is ${ZAHL}.${COUNTER}
# Control will enter here if $DIRECTORY exists.
if [ —d "${ZAHL}p${COUNTER}/nh100" 1; then
#find output with highest number
STARTFILE=$(Is ${ZAHL}p${COUNTER}/nh100/rho.?????.dbl | tail —n 1 | sed —e ’s
/™[0 —9]p[0 —9]\/nh100\/rho\) \(\.\) \([0 —9]%\) .%x/\3/")
#write zero if no file is found
let STARTFILE=STARTFILE
grep ghosts ${ZAHL}p${COUNTER}/nh100/job* | awk 'BEGIN{max=800}{if ($6>max) {max
=$6}; print $0}END{print max}’
AMBIENT=$ (grep ghosts ${ZAHL}p${COUNTER}/nh100/jobx | awk 'BEGIN{max=800}{if (
$6>max) {max=$6} }END{ print max}’)
gcc —cpp —DXMAX=$ (expr ${AMBIENT} / 100 ) —o writeascii asciiTe4.c —Im
else
if [ ! —d "${ZAHL}p${COUNTER}" ]; then
mkdir ${ZAHL}p${COUNTER}
fi
mkdir ${ZAHL}p${COUNTER}/nh100
STARTFILE=0
OLDAMBIENT=0
AMBIENT=800




29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54

55
56
57

58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

212 B. Pluto source code listings

fi
echo Startfile $STARTFILE
REWND=0
while [ $STARTFILE —It 60000 ]; do
if [ $STARTFILE —gt 0 ]; then
cd ${ZAHL}p${COUNTER}/nh100
#copy output with highest number and ini file
cp pluto.ini pluto${STARTFILE}. ini
cp *.$3{STARTFILE}.dbl ../..
cp dbl.out dbl.${STARTFILE}. out
cp dbl.${STARTFILE}.out ../../dbl.out
cp grid.out grid.${STARTFILE}. out
cp grid.${STARTFILE}.out ../..
cp restart.out restart.${STARTFILE}. out
MYR=$ (bc <<<"scale=2;${STARTFILE}_/_2000_")
../../ writeascii ${STARTFILE} > ${MYR}Myr. txt
echo ${MYR}Myr. txt
if [ SREWND —eq 0 ]; then
let OLDAMBIENT=AMBIENT

#OLDAMBIENT=$ (awk °'BEGIN{n=0}{n++;if ( n>12 && $1 != "#" && $5 != "—nan" ){
ambient2=$1}}END{ print ambient2}’ ${MYR}Myr. txt)

else

REWND=0

fi

if [ $STARTFILE —gt 16000 ]; then

# ensure 200 to 300 points of ambient medium @ right box side @ restart

AMBIENT=$ (awk ’'BEGIN{rho0=2.2;ambient=0;ambient2=0}{if ($2>rho0 && $1 != "#")
{ambient=$1}; if ($2==rho0 && ( $4 != 0 ) & ( $5 != "—nan") ){ambient2=$1
}JEND{ print ambient2—ambient2%100+300}" ${MYR}Myr. txt)

elif [ $STARTFILE —gt 9999 ]; then

# ensure 400 to 500 points of ambient medium @ right box side @ restart

AMBIENT=$ (awk 'BEGIN{rho0=2.2;ambient=0;ambient2=0}{if ($2>rho0 && $1 != "#")
{ambient=$1}; if ($2==rho0 && ( $4 != 0 ) && ( $5 != "—nan") ){ambient2=%1
}JEND{ print ambient2—ambient2%100+500}’ ${MYR}Myr. txt)

else

# ensure 200 to 300 points of ambient medium @ right box side @ restart

AMBIENT=$ (awk 'BEGIN{rho0=2.2;ambient=0;ambient2=0}{if ($2>rho0 && $1 != "#")
{ambient=$1}; if ($2==rho0 && ( $4 != 0 ) & ( $5 != "—nan") ){ambient2=$1

}JEND{ print ambient2—ambient2%100+300}" ${MYR}Myr. txt)
fi
echo $OLDAMBIENT $AMBIENT $MYR $STARTFILE
if [ $OLDAMBIENT —gt $AMBIENT ]; then

cd ../..

echo "shell_left_box"

#Rewind until a snapshot where stell is still in the box is reached
REWND=1;

#exit 2

else

if [ —f pluto.ini 1; then

cp pluto.ini pluto${STARTFILE}. ini
fi

cd ../..

fi

fi

if [ $REWND —eq 0 ]; then
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awk —v restart="${STARTFILE}" —v points="${AMBIENT}" —v n="${ZAHL}.${COUNTER}
" —v myr="${PLUSMYR} " ’{
if ($1=="X1—grid"){$4=points ;$6=points x0.01+0.01;};
if ($1=="tstop"){$2=(myr+restart«x0.0005)*315.61;};
if ($1=="RHO_MIN") {$2=n};
if ($1=="READIN") {$2=restart};
print $0}’ pluto2.init > pluto.ini
nohup nice —n 19 mpirun —np 4 ../MyCode/pluto_RHO_COOL_MIN > job${STARTFILE}.
${ZAHL} p$ {COUNTER} . out
gcc —cpp —DXMAX=$ (expr ${AMBIENT} / 100 ) —o writeascii asciiTe4.c —Im
./ ascii.shell $STARTFILE $(expr 2000 \x ${PLUSMYR} + $STARTFILE )
sed 's/\# //g’ energy.txt >> ${ZAHL}p${COUNTER}/nh100/energy. txt
rm energy. txt
./writeascii $(expr 2000 \x ${PLUSMYR} + $STARTFILE ) > $(bc <<<"scale=2;_${
STARTFILE}_/_2000_+ ${PLUSMYR} " )Myr. txt
mv xtxt xini xdbl xout ${ZAHL}p${COUNTER}/nh100
let STARTFILE=2000«PLUSMYR+STARTFILE
else
let STARTFILE=STARTFILE-REWND
fi
done
# let COUNTER=COUNTER+1
# done
# let ZAHL=ZAHL+1
# NMAX=4
#done
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Appendix C

Ramses source code listings

The listings in this section contain patches for RAMSES version 3.10 git commit 792ce06 (first
seven digits)
from August, 27" 2014 at https://bitbucket.org/rteyssie/ramses

Listing C.1: New module with a feedback routine for Ramses: driver.f90

I> \short reads and interpolates driver data; calculates weights for a homogeneous

, circular driver region
|

I> \version 1.5

I> \author Katharina M. Fierlinger

I> \date last modification 27.01.2012
|
I> \details PURPOSE:

I> \n read and interpolate:

I> \n x driver mass loss (per time unit)

I> \n x driver energy production (per time unit)

I> \n x driver wind speed

I> \n file_driver ... name of driver file

I> \n assume that the driver data are stored in a file called "file_driver"
I> that is stored in the local directory

I> \n dp ... precision

I> \n file_driver ... name of driver file

|

I> ifdef SMOOTH DRIVER EDGE ... calculate weights for cells partly inside the

driver region
I> This definition should be made at compile time. You can also hard—code it here.
I> #define SMOOTH_DRIVER EDGE 1
> #undef SMOOTH DRIVER EDGE
module driver
use amr_parameters, only: dp, file_driver, file_sn
implicit none
save ! retain the value of the variables from one call to the next

integer , parameter :: i9 = selected_int_kind(r=9) !< integer type definition

real (dp), private :: endtimedriver = 0.0_dp !< for times later than this no
driver data exists (time in code units)

real (dp), dimension(:), allocatable, private :: timedriver !< array containing
times (code—time—units) at which driver data is available

real (dp), dimension(:), allocatable, private :: eidriver l< array containing

energy output per unit time (in code—energy—units per code—time—unit) at
times stored in timedriver
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real (dp), dimension(:), allocatable, private :: dMdriver l< array containing
mass output per unit time (in code—mass—units per code—time—units) at times
stored in timedriver

real (dp), dimension(:), allocatable, private :: veldriver < array containing
wind speeds (in code—length—units per code—time—units) at times stored in
timedriver

real (dp), dimension(:), allocatable, private :: al26driver !< array containing \
f$r{26}{\rm AI}\f$ (in code—mass—units per code—time—units) at times stored
in timedriver

real (dp), dimension(:), allocatable, private :: fe60Odriver !< array containing \
f$A{60}{\rm Fe}\f$ (in code—mass—units per code—time—units) at times stored
in timedriver

real (dp), dimension(:), allocatable, private :: timeSN !< array containing times
(code—time—units) when SN explode

real (dp), dimension(:), allocatable, private :: eSN !< array containing SN
energies (in code—energy—units) at times stored in timeSN

real(dp), dimension(:), allocatable, private :: mSN !< array containing SN mass
loss (in code—mass—units) at times stored in timeSN

type driver_mask
integer :: halfsize
real (dp) :: dx
real (dp) :: volume

#if NDIM==
real (dp) ,dimension (:) ,allocatable :: weights

#endif

#if NDIM==2
real (dp) ,dimension (:,:) ,allocatable :: weights

#endif

#if NDIM==3
real (dp) ,dimension(:,:,:) ,allocatable ::weights

#endif

end type driver_mask

type (driver_mask), dimension(:), allocatable :: drivert

contains

I subroutine read_driver(ntime)

I> \short reads driver data

I> \param ntime ... read first ntime lines of driver data from a file called "
file_driver" in the local dir

|

I> \version 1.6

I> \author Katharina M. Fierlinger

I> \date last modification 10.08.2011

|

I> \details PURPOSE:

I> \n read first "ntime" lines of driver data from a file called "file_driver" in
the local dir

I> \n file_driver ... name of driver file

I> \n change on 03—03—2009: driver file has an additional column for 26—Al yields

I> \n change on 10—12—2009: driver file has an additional column for 60—Fe yields

I> \n change on 10—-08—-2011: "zero energy" now possible

|

!> \n driver file contents:
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I> \n column
I> \n column
I> \n column
I> \n column
I> \n column
I> \n column
I> \n column
I> \n column
!
subroutine read_driver (ntime)

time from starformation (in years)
cumulative output of 26Al (in Msol)
cumulative output of 60Fe (in Msol)

UV radiation (photons/s)

energy emitted in winds (log(erg/s))
energy emitted in supernovae (log(erg/s))
mass ejected by supernova (Msol/year)
mass ejected in winds (Msol/year)

ONO O WN =

implicit none
integer(i9), intent(in), optional :: ntime !< ntime ... read first ntime lines of
driver data from a file called "file_driver" in the local dir
integer (i9) nlines = 0_i9 !< number of lines read from driver file
integer (i9) :: i = 1_i9 !< for do loop
integer (i9) ifEOF = 0_i9 !< checks when the end of the file is reached
integer (i9) error_alloc !< checks if memory allocation works
real (dp) :: scale_l,scale_t,scale_d,scale_v,scale_nH,scale_T2 !< conversion
factors between cgs and user units (subroutine units in units.f90)
real (dp) :: scale_energy, scale_m, scale_dm !< conversion factors between cgs and
user units
real (dp) :: timestep !< time interval between the current line and the last line
in in years
real (dp) :: old26Al,old60Fe,0ldtime=0.0_dp !< stores values from the last line (
to convert cumulative data to fluxes)
real (dp) :: sumenergy,summass,sum26Al,sum60Fe,sum !< mean yields (averaged over
tsum)
real (dp) :: coll,col2,co0l3,cold4,col5,col6,col7,col8 !< reads data from the 8
columns in the input file
real(dp) :: tsum=1.d7 !< timeinterval for mean yields in years
real (dp), parameter :: YearToSeconds = 31556926. dp !< convert years to seconds;
1 year = 31556926 seconds
real (dp), parameter :: SolarMass = 1.98892e33_dp !< solar mass in [g]
open (1,file=TRIM(file_driver),form="formatted’)
printx,"Reading_driver_data_from_>>", TRIM(file_driver), "<<_."
if (present(ntime)) then
nlines = ntime
printx,"searching_for_",nlines, "_lines_in_driver_file"
else
nlines = 0_i9
ifEOF = 0_i9
do
read(1,*,IOSTAT=IfEOF) endtimedriver, endtimedriver, endtimedriver, &
& endtimedriver , endtimedriver, endtimedriver, &
& endtimedriver , endtimedriver
if (fEOF.I1t.0_i9) then
exit | eof is reached, jump out of the do—loop
end if
nlines=nlines+1
end do
rewind (1)
print,"found_",nlines, "_lines_in_driver_file"
end if
allocate (timedriver (1:nlines+2),stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then
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119 stop ’exiting:_allocation_of_memory_for_driver_data_did_not_work’

120 | end if

121 allocate (eidriver (1:nlines+2),stat=error_alloc) I in code—energy—units per code
—time—unit

122 if (error_alloc /= 0) then

123 stop ’exiting:_allocation_of_memory_for_driver_data_did_not_work’

124 | end if

125 | allocate (dMdriver(1:nlines+2),stat=error_alloc) l in code—mass—units per code—
time—unit

126 if (error_alloc /= 0) then

127 stop ’exiting:_allocation_of_memory_for_driver_data_did_not_work’

128 | end if

129 | allocate(veldriver(1:nlines+2),stat=error_alloc) ! in code—length—units per code
—time—unit

130 if (error_alloc /= 0) then

131 stop ’exiting: _allocation_of_memory_for_driver_data_did_not_work’

132 | end if

133 allocate (al26driver (1:nlines+2),stat=error_alloc) ! in code—mass—units per code—
time—unit

134 if (error_alloc /= 0) then

135 stop ’exiting: _allocation_of_memory_for_driver_data_did_not_work’

136 | end if

137 allocate (fe60driver (1:nlines+2),stat=error_alloc) ! in code—mass—units per code—
time—unit

138 if (error_alloc /= 0) then

139 stop ’exiting:_allocation_of_memory_for_driver_data_did_not_work’

140 | end if

141 ifEOF = 0_i9

142 | old26AIl=0.0_dp
143 | old60Fe=0.0_dp
144 | oldtime=0.0_dp
145 | sumenergy=0.0_dp
146 | summass=0.0_dp
147 | sum26Al=0.0_dp
148 | sum60Fe=0.0_dp
149 | sum=0.0_dp

150 | timestep=0.0_dp
152
152 call units(scale_Il,scale_t,scale_d,scale_v,scale_nH,scale_T2)
153 | scale_m=scale_dxscale_I*x3 110"(+35)

154 | !1 year = 31556926 seconds

155 Imass loss = 1 solar mass / year
156 Imass loss = \f$ \frac{1.98892 \times 107{33}}{31556926} \frac{\rm [g]}{\rm [s]}
\f$

157 Imass loss = 63.e+24 g/s
158 | scale_dm=SolarMass/YearToSecondsxscale_t/scale_m

159 Ikinetic luminosity: erg/s = g cm"2 / s”3

160 11 erg/s = 10M(—35—2%19+3x11) code—mass units code length units”2/code—time—units
"3

161 !1 erg/s = 10*(—40) code—mass units code length units”*2/code—time—units”"3

162 | scale_energy=scale_t/scale_m/scale_v=*x2 |10"(—40)

163 | do i=1,nlines

164 read(1,x*,IOSTAT=IifEOF) col1,col2,col3,col4,col5,col6,col7,col8
165 timedriver (i)=col1xYearToSeconds/scale_t

166 dMdriver (i)=(col7+col8)xscale_dm
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if (col5.gt.0.
eidriver (i
else
eidriver (i)=0.0_dp
end if
if (col6.gt.0.0)then
eidriver(i)=eidriver(i)+(10.0_dpx*x(col6))xscale_energy
end if
timestep=col1—oldtime
if (timestep.le.0.0_dp)then
al26driver (i)=0.0_dp
fe60driver(i)=0.0_dp
else
al2édriver (i)=(col2—old26Al)/timestepx*scale_dm
fe60driver(i)=(col3—o0ld60Fe)/timestepxscale_dm

0)then
)=(10.0_dpx*=x(col5))*scale_energy

end if
old26Al=col2
old60Fe=col3

oldtime=col1
if (coll.le.tsum)then
sumenergy=sumenergy+eidriver (i)
summass=summass+dMdriver (i)
sum26Al=sum26Al+al26driver (i)
sum60Fe=sum60Fe+fe60driver (i)
sum=sum+1._dp
end if
if (fEOF.gt.0_i9) then
print«, 'Something_went_wrong_during_read_in_of_the_driver_data.’
else if (ifEOF.It.0_i9) then
printx, 'End_of_file_reached_at _line_ ', i
end if
end do
close (1)
timedriver(nlines+1)=timedriver(nlines)*10.0_dp
dMdriver(nlines+1) =dMdriver(nlines)
eidriver(nlines+1) =eidriver(nlines)
al26driver(nlines+1)=al26driver(nlines)
fe60driver(nlines+1)=fe60driver(nlines)
timedriver(nlines+2)=timedriver(nlines)*100.0_dp
dMdriver(nlines+2) =summass/sum
eidriver(nlines+2) =sumenergy/sum
al26driver(nlines +2)=sum26Al/sum
fe60driver(nlines +2)=sum60Fe/sum
Ino velocities in analyt.dat
veldriver (:)=0.0_dp
endtimedriver = timedriver(nlines)
end subroutine read_driver
I subroutine read_sn(ntime)
I> \short reads driver SN data
I> \param ntime ... read first ntime lines of driver data from a file called
file_sn" in the local dir
|
I> \version 1.0
I> \author Katharina M. Fierlinger
I> \date last modification 10.08.2011
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[

I> \details PURPOSE:

I> \n read first "ntime" lines of driver data from a file called "file_sn" in the
local dir

I> \n file_sn ... name of driver supernova file

[

I> \n driver file contents:

I> \n column 1: time from starformation (in years)

I> \n column 6: energy emitted in supernovae (in 1e51 erg)

I> \n column 7: mass ejected by supernova (in Msol)

|

subroutine read_sn(ntime)

implicit none

integer(i9), intent(in), optional :: ntime !< ntime ... read first ntime lines of

driver data from a file called "file _driver" in the local dir

integer (i9) nlines = 0_i9 !< number of lines read from driver file

integer (i9) i = 1_i9 !< for do loop

integer (i9) :: ifEOF = 0_i9 !< checks when the end of the file is reached

integer (i9) error_alloc l< checks if memory allocation works

real (dp) :: scale_Il,scale_t,scale_d,scale_v,scale_nH,scale_T2 !< conversion
factors between cgs and user units (subroutine units in units.f90)

real (dp) :: scale_energy, scale_m, scale_dm !< conversion factors between cgs and
user units

real (dp) :: coll,col2,col3 !< reads data from the 3 columns in the input file

real (dp), parameter :: YearToSeconds = 31556926. dp !< convert years to seconds;
1 year = 31556926 seconds

real (dp), parameter :: SolarMass = 1.98892e33_dp !< solar mass in [g]

open (1,file=TRIM(file_sn) ,form="formatted’)
printx,"Reading_driver_data_from_>>", TRIM(file_sn), "<<_."
if (present(ntime)) then

nlines = ntime

printx,"searching_for_",nlines, "_lines_in_driver_file"

—

else
nlines = 0_i9
ifEOF = 0_i9
do

read(1,*,IOSTAT=IfEOF) col1, col2, col3
if (fEOF.1t.0_i9) then
exit | eof is reached, jump out of the do—loop

end if
nlines=nlines+1
end do
rewind (1)
print«,"found_",nlines, " _lines_in_SN_file"
end if
allocate (timeSN(1:nlines+2),stat=error_alloc) ! in code—time—units

if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_driver_sn_data_did_not_work’

end if

allocate (eSN(1:nlines+2),stat=error_alloc) I in code—energy—units per code—time
—unit

if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_driver_sn_data_did_not_work’

end if

allocate (mSN(1:nlines+2),stat=error_alloc) I in code—mass—units per code—time—
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unit
if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory for_driver_sn_data_did_not_work’
end if

call units(scale_l,scale_t,scale_d,scale_v,scale_nH,scale_T2)
scale_m=scale_dxscale_I*x3 !convert mass in g to code—mass—units
Imass loss = 1 solar mass
Imass loss = \f$ 1.98892 \times 107{33} \rm [g] \f$
scale_dm=SolarMass/scale_ m | solar masses to code—mass—units
ISN energy: erg = g cm*2 / s”2
1 erg = 10"(—35—2%19+2%x11) code—mass—units code—length—units*2/code—time—units"2
scale_energy=10._dp=*x*(51.0_dp—log10 (scale_m)—2xlog10(scale_v)) !FOE to code—
energy—units
do i=1,nlines
read (1,x*,IOSTAT=IfEOF) col1,col2,col3
timeSN (i)=col1xYearToSeconds/scale_t
eSN(i)=col2xscale_energy ! convert energy in FOE into code—energy—units
mSN(i)=col3xscale_dm I convert mass in solar masses to code—mass—units
prints, "SN_(",i,"):_at",timeSN(i),"code—time—units ,_mass" ,mSN(i) ,"code—mass—
units ,_energy:",eSN(i),"code—energy—units"
prints, "SN_(",i,"):_at",coll, "years, _mass",col3,"solar_masses,_energy:",col2,"
FOE"
end do
close (1)
end subroutine read_sn
I subroutine remove_driver

I> \short deallocates driver data vectors
|

—

I> \version 1.2

I> \author Katharina M. Fierlinger

I> \date last modification 10.12.2009
I

I> \details PURPOSE: deallocate driver data vectors
|

subroutine remove_driver

implicit none

deallocate (timedriver)

deallocate (eidriver)

deallocate (dMdriver)

deallocate (veldriver)

deallocate (al26driver)

deallocate (fe60driver)

end subroutine remove_driver

I subroutine remove_sn

I> \short deallocates driver sn data vectors
I
I> \version 1.0

I> \author Katharina M. Fierlinger

I> \date last modification 10.08.2011
|

I> \details PURPOSE: deallocate driver sn data vectors
!
subroutine remove_sn
implicit none
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deallocate (timeSN)

deallocate (eSN)

deallocate (mSN)

end subroutine remove_sn

I subroutine interpolate_driver (age,edriver ,rhodriver ,aldriver ,h fedriver)
I> \short interpolates driver data

I> \param age ... age of the OB association (code units)

I> \param edriver ... energy output of the OB association (code units) at time "
agell

I> \param rhodriver ... mass output of the OB association (code units) at time "
age"

I> \param aldriver ... 26Al fraction of the mass output of the OB association at
time "age"

I> \param fedriver ... 60Fe fraction of the mass output of the OB association at
time "age"

I> \version 1.4

I> \author Katharina M. Fierlinger

I> \date last modification 04.02.2010
!
I> \details PURPOSE: linear interpolation of driver data
!
subroutine interpolate_driver (age,edriver ,rhodriver b aldriver ,h fedriver)
implicit none

real (dp), intent(in) :: age
real (dp), intent(out) :: edriver, rhodriver, aldriver, fedriver
integer (i9) :: i

if (age.lt.endtimedriver) then
i=1
do while (timedriver(i).It.age)

i=i+1
end do
if (i<2) then

rhodriver=dMdriver (1

edriver = eidriver (1

aldriver=al26driver (1)
(

)
)
1
1)

fedriver=fe60driver

else

edriver = eidriver (i—1)+ &
& (age—timedriver (i—1))/(timedriver (i)—timedriver (i—1))=* &
& (eidriver(i)—eidriver (i—1))

rhodriver=dMdriver (i —1)+ &
& (age—timedriver (i—1))/(timedriver(i)—timedriver (i —1))=* &
& (dMdriver (i )—dMdriver (i —1))

aldriver=al26driver (i —1)+ &
& (age—timedriver (i—1))/(timedriver (i)—timedriver(i—1))=* &
& (al26driver (i)—al26driver (i —1))

fedriver=fe60driver (i —1)+ &
& (age—timedriver (i—1))/(timedriver(i)—timedriver (i —1))=* &
& (fe60driver(i)—fe60driver(i—1))

end if
else

printx, ’'time:_ ', age
printx, "no_driver_data_for_time_>_", endtimedriver
edriver = 0.0_dp
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rhodriver= 0.0_dp
aldriver = 0.0_dp
fedriver = 0.0_dp
end if

end subroutine interpolate_driver
l'subroutine add_SN

I> \short checks is SN explosions occurred during this timestep
|

I> \version 1.0
I> \author Katharina M. Fierlinger
I> \date last modification 10.08.2011

I> \details PURPOSE: Add SN mass+energy loss if any SN exploded.
|

subroutine add_SN(age, deltat, m_sn, e_sn)
implicit none

real (dp), intent(in) :: age, deltat
real (dp), intent(out) :: m_sn, e_sn
integer (i9) :: i

m_sn=0.0_dp

e_sn=0.0_dp

do i=1,SIZE(timeSN)

if ((timeSN(i).gt.age).and.(timeSN(i).le.age+deltat))then
m_sn=m_sn+mSN( i)
e_sn=e_sn+eSN(i)
print *, "SN", timeSN(i) ,mSN(i),eSN(i),m _sn,e_sn

end if

end do

l'if (m_sn.le.0.0_dp) then

I printx, "no SN"

lend if

end subroutine add SN

[

I> \short calculates Monte Carlo weights for a spherical driver region
|

I> \version 1.0
I> \author Katharina M. Fierlinger
I> \date last modification 27.01.2012

I> \details PURPOSE: Monte Carlo weights for a spherical driver region.
I> If a cell is partly inside the driver region, randgridsize random

I> positions in this cells are computed. The percentage of random points
I> that lie inside the driver region is asumed to be equal to the

I> percentage of cell volume that is inside the driver region.
|

subroutine allocate_driver_mask

use amr_parameters, only: r_driver ,x_driver,y_driver,z_driver, &

& boxlen,levelmin ,h nlevelmax
#ifndef WITHOUTMPI

use amr_commons, only: myid
#endif

use random

implicit none

integer ::ii ,iix ,iiy ,iiz ,ix,iy,iz !< loop variables
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integer :: halfsize !<half size of driver region
integer:: randgridsize = 100000 !< number of points in random subgrid
integer:: nn = 0 !< counter for Monte Carlo Volume

integer ,dimension( IRandNumSize ) :: &
& localseed = (/ 3281, 4041, 595, 2376 /)
integer(i9) :: error_alloc !< checks if memory allocation works

real (dp) ,parameter :: pi = DACOS(—1.D0)
real (dp) :: minx=0.0_dp,maxx=0.0_dp
real (dp) :: help_low,r_driver_scaled ,help1,help2, help3,dx
real (kind=8) :: help_k8
#if NDIM>1
real (dp) :: miny=0.0_dp,maxy=0.0_dp
#endif
#if NDIM>2
real (dp) :: minz=0.0_dp,maxz=0.0_dp
#endif

lallocate array of pointers (1..nlevelmax—levelmin+1)
allocate (driver1 (1:nlevelmax—levelmin+1),stat=error_alloc)
if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_driver_data_(driver1)_did_not_work’
end if

Idriver1 contains for each level
I %weights (ndim x ndim array) allocatable

I %volume

I Yedx

do ii=levelmin, nlevelmax
dx=boxlen*0.5_dpx*=(ii) l< cell size [boxlen units]
driver1 (ii —levelmin+1)%dx=dx !< cell size [boxlen units]

I check how many grid cells are along the driver diagonal on each grid
I level add 2 cells since the driver center may not be on a cell face
r_driver_scaled=r_driver/dx
halfsize=CEILING(r_driver_scaled)+1
driver1 (ii—levelmin+1)%halfsize=halfsize
lallocate an array for the weights
I%weights points to a ndim array of 2xceiling (r_driver/dx_level(1))

allocate (driver1 (ii —levelmin+1)%weights(1:2x halfsize &
#if NDIM>1
& ,1:2xhalfsize &
#endif
#if NDIM>2
& ,1:2x halfsize &
#endif

& ),stat=error_alloc)
if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_driver_data_(driveri%weights)_did_not_
work’
end if
I cell number = FLOOR((x—xc)/dx) + halfsize
|

lcalculate the location of the driver center with respect to the grid
!

help_low=(x_driver/boxlen+0.5_dp) /(0.5 _dp=*x(ii)) ! driver location in cells
minx=help_low—dble (FLOOR(help_low)) !'non integer value ... space between driver
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grid and next (lower) grid point
minx=(—minx—dble (halfsize))
maxx=minx
I printx,"cells along radius:",r_driver_scaled
|

lget the weights
!

do iix=1,2xhalfsize

#if NDIM>1
help_low=(y_driver/boxlen+0.5_dp)/(0.5_dp=*x(ii)) ! driver location in cells
miny=help_low—dble (FLOOR(help_low)) 'non integer value ... space between driver

grid and next (lower) grid point
miny=(—miny—dble (halfsize))
maxy=miny
do iiy=1,2«xhalfsize
#endif
#if NDIM>2
help_low=(z_driver/boxlen+0.5_dp)/(0.5_dp=x*(ii)) ! driver location in cells
minz=help_low—dble (FLOOR(help_low))
minz=(—minz—dble (halfsize))

maxz=minz
do iiz=1,2«xhalfsize
#endif

if ((maxx*x2+maxy*+2+maxz**2). |t .(r_driver_scaled)*x2) then !fully inside
#if NDIM==
driver1 (ii —levelmin+1)%weights(iix) = 1.0_dp

#endif
#if NDIM==2

driver1 (ii —levelmin+1)%weights (iix ,iiy) = 1.0_dp
#endif
#if NDIM>2

driver1 (ii —levelmin+1)%weights (iix ,iiy ,iiz) = 1.0_dp
#endif

else if (((abs(maxx)—1._dp)=**x2+(abs(maxy)—1._dp)**2+(abs(maxz)—1._dp)=*x2).gt
.(r_driver_scaled)*x2)then !fully outside
#if NDIM==
driver1 (ii—levelmin+1)%weights(iix) = 0.0_dp
#endif
#if NDIM==2
driver1 (ii—levelmin+1)%weights (iix ,iiy) = 0.0_dp
#endif
#if NDIM>2
driver1 (ii—levelmin+1)%weights (iix ,iiy ,iiz) = 0.0_dp
#endif
else !partly inside
nn=0
#ifdef SMOOTH_DRIVER EDGE
help1=0._dp
help2=0._dp
help3=0._dp
do ix=1,randgridsize
call ranf(localseed , help_k8)
help1=minx+dble (help_k8)
#if NDIM>1
call ranf(localseed,h help_k8)
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help2=miny+dble (help_k8)
#endif
#if NDIM>2
call ranf(localseed , help_k8)
help3=minz+dble (help_k8)
#endif
if ((help1*x2+help2«x2+help3x*x2).1t.(r_driver_scaled)*x2)then
nn=nn+1
end if
end do
#endif
#if NDIM==
driver1 (ii—levelmin+1)%weights(iix) = dble(nn)/dble(randgridsize)
#endif
#if NDIM==2
driver1 (ii —levelmin+1)%weights(iix ,iiy) = dble(nn)/dble(randgridsize)
#endif
#if NDIM>2
driver1 (ii—levelmin+1)%weights (iix ,iiy ,iiz) = dble(nn)/dble(randgridsize)
#endif
end if
#if NDIM>2
minz=minz+1._dp
maxz=max (abs(minz) ,abs(minz+1.0))
end do
#endif
#if NDIM>1
miny=miny+1._dp
maxy=max (abs (miny) ,abs(miny+1.0))
end do
#endif
minx=minx+1._dp
maxx=max (abs (minx) ,abs(minx+1.0))
end do

Isum the weights to check if the weighting with a sphere is okay for each grid
[level
#if NDIM==
driver1 (ii —levelmin+1)%volume=sum(driveri (ii —levelmin+1)%weights (:) )*dx
#endif
#if NDIM==2
driver1 (ii —levelmin+1)%volume=sum(driver1 (ii —levelmin+1)%weights (:,:) )*dxxdx
#endif
#if NDIM>2
driver1 (ii —levelmin+1)%volume=sum(driver1 (ii —levelmin+1)%weights (:,:,:) )*dx*dxx*
dx
#endif
#ifndef WITHOUTMPI
if (myid==1)then
#endif
printx,"level"  ii ,"size",2xhalfsize ,"driver_radius_[cells]",r_driver_scaled
printx,"Volume" ,driver1 (ii —levelmin+1)%volume, "expected_Volume", 4.xpi/3.x
r_driver*x3
print=,"Volume_ratio" ,driver1 (ii —levelmin+1)%volume/4./pi*3./r_driver**3
#ifndef WITHOUTMPI
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end if
#endif
end do
end subroutine allocate_driver_mask
REAL(dp) function get_driver_volume(currentlevel)
I

I> \details PURPOSE: look up Monte Carlo Volume that slightly differs
I> from 4 pi/3 r"3

|
use amr_parameters, only: levelmin ,nlevelmax
implicit none
integer, intent(in) :: currentlevel
get_driver_volume = driver1 (currentlevel—levelmin+1)%volume
end function get_driver_volume

I'function get_driver_mask
I

I> \details PURPOSE: look up the volume fraction of ‘‘feedback region’

I> in a cell with given coordinates
|

#if NDIM==1

REAL(dp) function get_driver_mask(currentlevel ,x)
#endif

#if NDIM==2

REAL(dp) function get_driver_mask(currentlevel ,x,y)
#endif

#if NDIM==3

REAL(dp) function get_driver_mask(currentlevel ,x,y,z)
#endif

use amr_parameters, only: x_driver,y_driver,z_driver,
& levelmin ,nlevelmax

implicit none

integer, intent(in) :: currentlevel

real (dp),intent(in) :: x
#if NDIM>1

real (dp),intent(in) :: vy
#endif
#if NDIM>2

real (dp),intent(in) :: z
#endif

integer :: ix=1

integer :: iy=1

integer :: iz=1

integer level_integer

level_integer=currentlevel—levelmin+1
I lowest point: —minx—dble (halfsize) with minx e [0:1[ should get grid
I cell number = CEILING (([xyz]—[xyz]_driver)/dx) + halfsize

ix=CEILING ((x—x_driver)/driver1 (level_integer )%dx
& +dble (driver1 (level_integer)%halfsize))
#if NDIM>1

iy=CEILING ((y—y_driver)/driver1 (level_integer )%dx
& +dble (driver1 (level_integer)%halfsize))
#endif
#if NDIM>2

iz=CEILING ((z—z_driver)/driver1 (level_integer )%dx
& +dble (driver1 (level_integer)%halfsize))

index 1

&
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#endif
if ((min(ix,iy,iz).It.1) &
& .or.(max(ix,iy,iz).gt.2xdriver1 (level_integer)%halfsize))then
get_driver_mask = 0.0_dp
else
#if NDIM==
get_driver_mask = driveri (level_integer)%weights(ix)
#endif
#if NDIM==2
get_driver_mask = driver1 (level_integer)%weights (ix,iy)
#endif
#if NDIM>2
get_driver_mask = driver1 (level_integer)%weights(ix,iy,iz)
#endif
end if

end function get_driver_mask
subroutine deallocate_driver_mask
[

I> \details PURPOSE: free memory allocated for drivert
!

use amr_parameters, only: levelmin ,h nlevelmax
I integer, intent(in) :: levelmin ,h nlevelmax
integer::ii !< loop variable

do ii=levelmin  nlevelmax
deallocate (driver1 (ii —levelmin+1)%weights)
end do

deallocate (driver1)

end subroutine deallocate_driver_mask
subroutine driver_weights_fixed (ind,ilevel ,igrid ,ngrid ,dx, driverweight)
use amr_commons, only : active, xg !< index array, coordinates (values in
interval [0.5,2.5]
use amr_parameters, only : boxlen, dp, icoarse_max, icoarse_min, jcoarse_min,
kcoarse_min !< floating point type, lower [xyz] coarse grid boundaries
implicit none

integer, intent(in) ind l< position of new grids
integer, intent(in) :: ilevel !< AVR level
integer, intent(in) :: igrid !< grid index
integer, intent(in) :: ngrid !< grid size

real (dp),intent(in) :: dx !< cell size
real (dp), dimension(1:ngrid),intent(out) :: driverweight !< fraction of the cell
volume that is inside the driver area

integer:: i,ix,iy,iz,ind_grid !< loop variable, position in coordinate array
real (dp), dimension(1:3) :: skip_loc !< grid boundaries
real (dp), dimension(1:3) :: xc !< center of new grid

real(dp):: x,y,z , boxscale!< lower boundary of grid cell coordinates
driverweight (:)=0.0_dp
lind=1,2xxndim

l2d: ind=1,4
13d: ind=1,8
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I Set new grids position
iz=(ind—-1)/4 I integer division — 0 or 1
iy=(ind—1—4xiz)/2 I integer division — 0 or 1
ix=(ind—1-2«iy —4xiz) ! integer division — 0 or 1
skip_loc=(/0.0_dp,0.0_dp,0.0_dp/)
xc(1)=(dble(ix)—0.5_dp)*dx ! —0.5D0 or +0.5D0
skip_loc (1)=dble(icoarse_min)

#if NDIM>1
xc(2)=(dble(iy)—0.5_dp)*dx ! —0.5D0 or +0.5D0
skip_loc (2)=dble (jcoarse_min)

#endif

#if NDIM>2
xc(3)=(dble(iz)—0.5_dp)*dx ! —0.5D0 or +0.5D0
skip_loc (3)=dble (kcoarse_min)

#endif
boxscale=boxlen/dble (icoarse_max—icoarse_min+1)
Ixg(:,1)—1.5 ... values in interval [—1,1]
do i=1,ngrid

ind_grid=active (ilevel)%igrid (igrid+i—1)
Ixg(ind_grid(i),1) .. x coordinate of the center of the subgrid
Ix ... lower boundary
x=(xg(ind_grid ,1)+xc(1)—skip_loc(1)—0.5_dp+0.5_dpx*dx)=«boxscale
#if NDIM==
driverweight(i)=get_driver_mask (ilevel ,x)
#else
y=(xg(ind_grid ,2)+xc(2)—skip_loc(2)—0.5_dp+0.5_dp*dx)=*boxscale
#if NDIM==2
driverweight (i)=get_driver_mask(ilevel ,x,y)
#else
z=(xg(ind_grid ,3)+xc(3)—skip_loc(3)—0.5_dp+0.5_dp=*dx)*boxscale
driverweight(i)=get_driver_mask(ilevel ,x,y,z)
#endif
#endif
end do
end subroutine driver_weights_fixed
I subroutine driver_weights(ind,ilevel ,igrid ,ngrid ,dx,rdriver_scaled, xdriver,
ydriver , zdriver ,driverweight)

I> \short calculates Monte Carlo weights for a spherical driver region
|

I> \version 1.6

I> \author Katharina M. Fierlinger

I> \date last modification 07.06.2010
|
I> \details PURPOSE: Monte Carlo weights for a spherical driver region.

I> This routine is better suited for moving feedback regions than

I> driver_weights_fixed if they do not move by integer numbers of grid cells.
I> If a cell is partly inside the driver region, randgridsize random

I> positions in this cells are computed. The percentage of random points

I> that lie inside the driver region is asumed to be equal to the percentage

I> of cell volume that is inside the driver region.
|

subroutine driver_weights(ind,ilevel ,igrid ,ngrid ,dx, rdriver_scaled, &
& xdriver , &
#if NDIM>1

& ydriver , &
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746 |#endif

747 |#if NDIM>2

748 | & zdriver , &

749 |#endif

750 | & driverweight)

752

752 use amr_commons, only : active, xg !< index array, coordinates (values in
interval [0.5,2.5]

753 use amr_parameters, only : dp, icoarse_min, jcoarse_min, kcoarse_min !< floating

point type, lower [xyz] coarse grid boundaries
754 use random

755 implicit none

756 integer, intent(i ind l< position of new grids
757 integer, intent (i ilevel < AVR level

758 integer, intent (i igrid l< grid index

760 real (dp),intent dx l< cell size

761 real (dp),intent rdriver_scaled !< driver radius in coarse grid cells
762 real (dp),intent xdriver l!< driver [xyz] coordinate

763 |#if NDIM>1

(in)
(in)
(in) ::
759 integer, intent(in) :: ngrid l< grid size
(in)
(in)

764 real (dp),intent(in) :: ydriver !< driver [xyz] coordinate

765 |#endif

766 |#if NDIM>2

767 real(dp),intent(in) :: zdriver !< driver [xyz] coordinate

768 |#endif

769 real (dp), dimension(1:ngrid),intent(out) :: driverweight !< fraction of the cell
volume that is inside the driver area

771

771 integer:: i,ind_grid,ix,iy,iz,nn !< loop variable, position in coordinate array,
new grid [xyz] index, random numbers inside driver

772 integer :: randgridsize = 100 l< number of points in random subgrid

773 real (dp) :: r2 l< squared driver radius (in coarse grid cells)

774 real (dp) :: xmin,ymin,zmin,xmax,ymax,zmax !< boundaries of new grid cells

775 real (kind=8) :: help_k8 l< random coordinates [0:1]

776 real(dp):: help1, help2, help3 l< random coordinates [0:1]

777 real (dp), dimension(1:3) :: skip_loc !< grid boundaries

778 real (dp), dimension(1:3) :: xc I< center of new grid

779 integer ,dimension( IRandNumSize ) :: &

780 & localseed = (/ 3281, 4041, 595, 2376 /)

782

782 driverweight (:)=0.0_dp

783 r2=rdriver_scaled*x2

785

785 lind=1,2xxndim

786 l2d: ind=1,4

787 13d: ind=1,8

788 I Set new grids position

789 iz=(ind—1)/4 I integer division — 0 or 1

790 iy=(ind—1—-4xiz)/2 I integer division — 0 or 1

791 ix=(ind—1-2«iy —4xiz) ! integer division — 0 or 1

792 skip_loc=(/0.0_dp,0.0_dp,0.0_dp/)

793 xc(1)=(dble(ix)—0.5_dp)*dx ! —0.5D0 or +0.5D0
794 skip_loc (1)=dble(icoarse_min)

795 |#if NDIM>1

796 xc(2)=(dble(iy)—0.5_dp)*dx ! —0.5D0 or +0.5D0
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skip_loc (2)=dble (jcoarse_min)

#endif

#if NDIM>2
xc(3)=(dble(iz)—0.5_dp)*dx ! —0.5D0 or +0.5D0
skip_loc (3)=dble (kcoarse_min)

#endif
Ixg(:,1)—1.5 ... values in interval [—1,1]
do i=1,ngrid

ind_grid=active (ilevel)%igrid (igrid+i—1)
Ixg(ind_grid(i),1) .. x coordinate of the center of the subgrid
xmax=abs (xg(ind_grid ,1)+xc(1)—skip_loc(1)—-0.5_dp—xdriver)+0.5_dpxdx ! minimum:
0.5_dpx*dx
xmin=xmax—dx ! can get < 0, minimum: —0.5_dpxdx, but abs(xmin)<abs(xmax)
#if NDIM>1
ymax=abs (xg(ind_grid ,2)+xc(2)—skip_loc(2) —0.5_dp—ydriver)+0.5_dpxdx ! minimum:
0.5_dpx*dx
ymin=ymax—dx ! can get < 0, minimum: —0.5_dpxdx, but abs(ymin)<abs(ymax)
#else
ymax=0.0_dp
ymin=0.0_dp
#endif
#if NDIM>2
zmax=abs (xg(ind_grid ,3)+xc(3)—skip_loc (3) —0.5_dp—zdriver)+0.5_dp+dx | minimum:
0.5_dp=*dx
zmin=zmax—dx ! can get < 0, minimum: —0.5_dpxdx, but abs(zmin)<abs(zmax)
#else
zmax=0.0_dp
zmin=0.0_dp
#endif
if ((xminxx2+yminxx2+zminxx2).1t.r2)then
Ipart of cell inside driver region
if ((xmaxsx2+ymaxxx2+zmax**2). It .r2)then
lcell fully inside driver region
driverweight(i)=1.0_dp
#ifdef SMOOTH_DRIVER_EDGE
else
nn=0
help1=0._dp
help2=0._dp
help3=0._dp
do ix=1,randgridsize
call ranf(localseed,h help_k8)
help1=xmin+dble (help_k8)xdx
#if NDIM>1
call ranf(localseed,h help_k8)
help2=ymin+dble (help_k8)xdx

#endif
#if NDIM>2
call ranf(localseed ,h help_k8)
help3=zmin+dble (help_k8)*dx
#endif
if ((help1xx2+help2*x2+help3%x2).|t.r2)then
nn=nn+1
end if
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849 end do

850 driverweight (i) = dble(nn)/dble(randgridsize)

851 |#endif

852 end if

853 else

854 driverweight(i)=0.0_dp

855 end if

856 end do

857 |end subroutine driver_weights

858 | ! subroutine driver_vector(ind,ilevel ,igrid ,ngrid,dx,rdriver_scaled, &

859 | 1& xdriver ,ydriver , zdriver, &

860 | & driverweightvx ,driverweightvy ,driverweightvz)

861 | !> \short calculates a radial vector for a spherical driver region

862 | |

863 | !> \version 1.1

864 | !> based on driver_vector version 1.6

865 | !> \author Katharina M. Fierlinger

866 | !> \date last modification 20.01.2011

867 | |

868 | I> \details PURPOSE: For a spherical driver region radial, normalized

869 | !> x and y, z velocity vectors are computed if a cell is partly inside

870 | !> the driver region. Nothing to be done in 1d.

871 ||

872 |subroutine driver_vector(ind,ilevel ,igrid ,ngrid,dx,rdriver_scaled, &

873 | & xdriver &

874 |#if NDIM>1

875 | & ,ydriver &

876 |#endif

877 |#if NDIM>2

878 | & ,zdriver &

879 |#endif

880 |#if NDIM>1

881 |& ,drivervectorx ,drivervectory &

882 |#endif

883 |#if NDIM>2

884 |& ,drivervectorz &

885 |#endif

886 | & )

888

888 use amr_commons, only active, xg !< index array, coordinates (values in
interval [0.5,2.5]

889 use amr_parameters, only : dp, icoarse_min, jcoarse_min, kcoarse_min !< floating
point type, lower [xyz] coarse grid boundaries

890 use random

891 implicit none

892 integer, intent(in) ind l< position of new grids

893 integer, intent(in) ilevel l< AMR level

894 integer, intent(in) igrid l< grid index

895 integer, intent(in) ngrid l< grid size

896 real (dp),intent(in) dx l< cell size

897 real (dp),intent(in) rdriver_scaled !< driver radius in coarse grid cells

898 real (dp),intent(in) xdriver l< driver [xyz] coordinate

899 |#if NDIM>1

900 real (dp),intent(in) :: ydriver l< driver [xyz] coordinate

901 real (dp), dimension(1:ngrid),intent(out) drivervectorx , drivervectory I<
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radial vector

#endif
#if NDIM>2
real (dp),intent(in) :: zdriver l< driver [xyz] coordinate
real (dp), dimension(1:ngrid),intent(out) :: drivervectorz I<
radial vector
#endif
integer:: i,ind_grid ,ix ,iy,iz,nn !< loop variable, position in coordinate array,
new grid [xyz] index, random numbers inside driver
real (dp):: r2 l< squared driver radius (in coarse grid cells)
real (dp) :: xmin l< boundaries of new grid cells
#if NDIM>1
real (dp) :: xx,yy,rr l< auxiliary variables (radial vector)
real (dp) :: ymin l< boundaries of new grid cells
#endif
#if NDIM>2
real (dp):: zz l< auxiliary variables (radial vector)
real (dp) :: zmin l< boundaries of new grid cells
#endif
real (dp), dimension(1:3) :: skip_loc !< grid boundaries
real (dp), dimension(1:3) :: xc !< center of new grid
#if NDIM>1

drivervectorx (:)=0.0_dp

drivervectory (:)=0.0_dp
#if NDIM>2

drivervectorz (:)=0.0_dp
#endif

r2=rdriver_scaled %2

lind=1,2%xndim

12d: ind=1,4

13d: ind=1,8

I Set new grids position

iz=(ind—-1)/4 I integer division — 0 or 1
iy=(ind—1—4xiz)/2 I integer division — 0 or 1

iXx=(ind—1-2«iy —4xiz) ! integer division — 0 or 1
skip_loc=(/0.0_dp,0.0_dp,0.0_dp/)
xc(1)=(dble(ix)—0.5_dp)=*dx ! —0.5_dp or +0.5_dp
skip_loc (1)=dble (icoarse_min)
xc(2)=(dble(iy)—0.5_dp)*dx ! —0.5_dp or +0.5_dp
skip_loc (2)=dble (jcoarse_min)
#if NDIM>2

xc(3)=(dble(iz)—-0.5_dp)*dx ! —0.5_dp or +0.5_dp
skip_loc (3)=dble (kcoarse_min)

#endif
Ixg(:,1)—1.5 ... values in interval [—1,1]
do i=1,ngrid

ind_grid=active (ilevel)%igrid (igrid+i—1)

Ixg(ind_grid(i),1) .. x coordinate of the center of the subgrid

xmin=abs(xg(ind_grid ,1)+xc(1)—skip_loc (1) —0.5_dp—xdriver)—0.5_dp*dx ! minimum:
0.5_dp=*dx

ymin=abs(xg(ind_grid ,2)+xc(2)—skip_loc (2)—0.5_dp—ydriver)—0.5_dp*dx ! minimum:
0.5_dpx*dx
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#if NDIM>2
zmin=abs(xg(ind_grid ,3)+xc(3)—skip_loc(3)—0.5_dp—zdriver)—0.5_dp*dx | minimum:
0.5_dpx*dx
#endif
if ((xmin*x*x2 +yminxx2 &
#if NDIM>2
& +zZmins**2 &
#endif
& ). lt.r2)then

Ipart of cell inside driver region
xx=xg (ind_grid ,1)+xc(1)—skip_loc(1)—0.5_dp—xdriver
yy=xg(ind_grid ,2)+xc(2)—skip_loc (2) —0.5_dp—ydriver
#if NDIM>2
zz=xg(ind_grid ,3)+xc(3)—skip_loc(3)—0.5_dp—zdriver
#endif
#if NDIM==2
rr=sqrt (Xx«Xx+yy=*yy)
#endif
#if NDIM==3
rr=sqrt (XX«XX+yy*yy+zz+zz)
#endif
drivervectorx (i)=xx/rr
drivervectory (i)=yy/rr
#if NDIM>2
drivervectorz (i)=zz/rr
#endif
end if
end do
#endif
re=1
end subroutine driver_vector
I'subroutine print_xyz(ind,ilevel ,igrid ,ngrid,dx,i)

I> \short output of the xyz coordinates of a given cell
|

I> \version 1.0

I> \author Katharina M. Fierlinger
I> \date last modification 14.03.2011
!
I> \details PURPOSE:

I> \n for debugging

I> \n helps to find out in which cell the code encounters a problem.
!
subroutine print_xyz(ind,ilevel ,igrid ,ngrid,dx, i)

use amr_commons, only : active, xg !< index array, coordinates (values in
interval [0.5,2.5]

use amr_parameters, only : dp, icoarse_min, jcoarse_min, kcoarse_min !< floating
point type, lower [xyz] coarse grid boundaries

use random

implicit none

integer, intent(in) ind l< position of new grids
integer, intent(in) :: ilevel !< AVMR level
integer, intent(in) :: igrid !< grid index
integer, intent(in) :: ngrid !< grid size
real (dp),intent(in) dx l< cell size
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1004 integer, intent(in) :: i l< 1..ngrid

1006

1006 integer:: ind_grid,ix ,iy,iz,nn !< loop variable, position in coordinate array,
new grid [xyz] index, random numbers inside driver

1007 real (dp) :: xmin,ymin,zmin,xmax,ymax,zmax !< boundaries of new grid cells

1008 real (dp), dimension(1:3) :: skip_loc l< grid boundaries

1009 real (dp), dimension(1:3) :: xc l< center of new grid

1012

1012

1012 lind=1,2xxndim

1013 l2d: ind=1,4

1014 13d: ind=1,8

1015 I Set new grids position

1016 iz=(ind—1)/4 I integer division — 0 or 1

1017 iy=(ind—1—4xiz)/2 I integer division — 0 or 1

1018 ix=(ind—1-2«iy —4xiz) ! integer division — 0 or 1

1019 skip_loc=(/0.0_dp,0.0_dp,0.0_dp/)

1020 xc(1)=(dble(ix)—0.5_dp)*dx ! —0.5_dp or +0.5_dp
1021 skip_loc (1)=dble (icoarse_min)

1022 |#if NDIM>1

1023 xc(2)=(dble (iy)—0.5_dp)*dx ! —0.5_dp or +0.5 dp
1024 skip_loc (2)=dble(jcoarse_min)

1025 |#endif

1026 |#if NDIM>2

1027 xc(3)=(dble(iz)—-0.5_dp)*dx ! —0.5_dp or +0.5_dp
1028 skip_loc (3)=dble (kcoarse_min)

1029 |#endif

1031

1031 Ixg(:,1)—1.5 ... values in interval [—1,1]

1032 ind_grid=active (ilevel)%igrid (igrid+i—1)

1033 Ixg(ind_grid(i),1) .. x coordinate of the center of the subgrid

1034 xmax=(xg (ind_grid ,1)+xc(1)—skip_loc(1)—0.5_dp)+0.5_dpxdx ! minimum: 0.5_dpx*dx

1035 xmin=xmax—dx ! can get < 0, minimum: —0.5_dpxdx, but abs(xmin)<abs(xmax)

1036 |#if NDIM>1

1037 ymax=(xg(ind_grid ,2)+xc(2)—skip_loc (2) —0.5_dp)+0.5_dpxdx ! minimum: 0.5_dpx
dx

1038 ymin=ymax—dx ! can get < 0, minimum: —0.5_dpx*dx, but abs(ymin)<abs(ymax)

1039 |#else

1040 ymax=0.0_dp

1041 ymin=0.0_dp

1042 | #endif

1043 |#if NDIM>2

1044 zmax=(xg (ind_grid ,3)+xc(3)—skip_loc (3)—0.5_dp)+0.5_dpxdx ! minimum: 0.5_dpx
dx

1045 zmin=zmax—dx ! can get < 0, minimum: —0.5_dpxdx, but abs(zmin)<abs(zmax)

1046 |#else

1047 zmax=0.0_dp

1048 zmin=0.0_dp

1049 |#endif

1050 printsx,"dx=",dx

1051 printx,"xmin=",xmin,xmin/dx

1052 printx,"xmax=",xmax,xmax/dx

1053 |#if NDIM>1

1054 printx,"ymin=",ymin,ymin/dx

1055 printx,"ymax=",ymax,ymax/dx
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#endif

#if NDIM>2
printx,"zmin=",zmin
printx,"zmax=",zmax

#endif

end subroutine print_xyz
|

I subroutine driver_weights_analyt(ind,ilevel ,igrid ,ngrid ,dx,rdriver_scaled,
xdriver ,ydriver ,zdriver ,driverweight)

I> \short calculates weights for a spherical driver region

|

I> \version 1.5

I> \author Katharina M. Fierlinger

I> \date last modification 04.06.2010

|

I> \details PURPOSE:

I> \n 2d:

I> \n produce weights for a cylindrical driver region and store them in

I> (allocated) array driver_geom.

I> these weights are for pseudo—2d simulations with nz=1

> use 1st quadrant’s weights — number representation causes 4—symmetry

I> \n 3d:

I> \n Monte Carlo weights for a spherical driver regionMonte Carlo weights for a
spherical driver region

I>\latexonly

I> \section{Driver region}

I> The size and location of the driver region are set in the namelist:
I> \begin{verbatim}

> &DRIVER_PARAMS

I> file_driver="analyt.dat’ | driver file name (relative to working directory)

I> r_driver=0.83_dp I driver radius in code units

I> x_driver=(—5.64453125_dp) ! driver x coordinate in code units

I> y_driver=0.0_dp I driver y coordinate in code units

I> z_driver=0.0_dp I driver z coordinate in code units

I> coolplus=0.5_dp I the driver is not cooled, coolplus is the
difference

I> | between the driver radius and the radius of the not cooled region in code
units

I> n_stars=20._dp I the data in "file_driver" contains yields per star.

I> In_stars is the number of stars in the driver

I> /

I> \end{verbatim}

I> To include this additional namelist in the code the files {\tt read\_params.f90
} and {\tt amr\_parameters.f90} have tp be patched too. After {\tt ramses.f90}
has read in the parameters, they can be accessed via \\\

I> {\tt use amr\_parameters, only: r\_driver ,x\_driver ,y\_driver ,z\_driver ,n\
_stars, file\_driver ,coolplus}

I>

I> A driver module {\tt driver.f90} provides arrays to store the data from the
driver file , reads and interpolates driver data and calculates weights for a
homogeneous, circular driver region. It uses {\tt units.f90} to convert from
driver file units to code units. The expected units in the driver file are:

>

I> \begin{verbatim}
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I> column 1: time from starformation (in years)

I> column 2: cumulative output of 26Al (in Msol)

I> column 3: cumulative output of 60Fe (in Msol)

I> column 4: UV radiation (photons/s)

I> column 5: energy emitted in winds (log(erg/s))

I> column 6: energy emitted in supernovae (log(erg/s))
I> column 7: mass ejected by supernova (Msol/year)

I> column 8: mass ejected in winds (Msol/year)

I> \end{verbatim}

>

I> The file containing the driver data is read in the subroutine {\tt init\_time.
f90} which is called (once) by the subroutine {\tt adaptive\_loop.f90}.

>

I> The file {\tt courant\_fine.f90} was patched to include mass and energy
injection of the driver.

>

I> Before starting the loop over active grids by vector sweeps, the stellar winds
and SN yields are insertef using the new subroutine {\tt wind\_fine} in the
same file. This new subroutine loops over all cells of the given gridlevel and
checks if a part of the cell is inside the driver region.

>

I> If this is the case, the code will add the newly emitted mass (total mass and
radioactive tracers (nvar in {\tt hydro\_parameters.f90} is changed to get
larger {\tt uold} and {\tt unew} arrays and thus {\tt output\_hydro.f90} had
to be adapted)) and the internal energy (unresolved kinetic wind energy,
radiation pressure) to the density resp. energy in the driver region.

!>°/o

I> The driver energy and mass are homogeneously distributed over a sphere of given
radius ({\tt r\_driver}). Then the corresponding energy density and number
density are computed. For each cell in the computational box, this value is
scaled with the percentage of the cell volume that is inside the driver region
(e.g. weight = 0.0 : cell lies fully outside, weight = 1.0 : cell fully
inside) .

!>°/o

I> In 2d the percentage of the cell volume that is inside the driver region can be
calculated analytically. To set the integration limits, the driver routine
checks how many of the corners of the cell are inside the driver region. The
routine uses the absolute values of the $x$, $y$ and $z$ distances of the cell
corners to reduce the number of different cases.\\\

I> \begin{tikzpicture }[scale=2.0]

I> \filldraw[color=blue!50,thin, fill=blue, fill opacity=0.50] (—0.5,-0.5) — (
0.5,-0.5) — (0.5,0.5) (—0.5,0.5) cycle ;

I> \filldraw [color=blue!50,thin, fill=blue, fill opacity=0.50] (1,-0.5) — (2,-0.5)
— (2,0.0) arc (30:48:2cm) (1.5,0.5) — (1,0.5) — cycle ;

I> \filldraw [color=blue!50,thin, fill=blue, fill opacity=0.50] (2.5,0) — (3.5,0)
— (8.5,0.2) arc (70:89.5:3cm) — cycle ;

I> \filldraw[color=blue!50,thin, fill=blue, fill opacity=0.50] ( 2.5,—1.1) — (
3.3,—-1.1) arc (15:36:3cm) — (2.8,—-0.1) — (2.5,—-0.1) — cycle ;

I> \filldraw[color=blue!50,thin, fill=blue, fill opacity=0.50] ( 4.0,—0.5) — (
4.5,-0.5) arc (46:55:4cm) — (4.0,—-0.1) — cycle ;

!> \draw[-] (-0.5,-0.5) — (-0.5,0.5) — (0.5,0.5) — (0.5,-0.5) — (0.0,—-0.5)

node[below] {all corners} — cycle ;
I> \draw[-] ( 1.0,-0.5) — ( 1.0,0.5) (2.0,0.5) — (2.0,—-0.5) — (1.5,-0.5)
node[below] {3 corners} — cycle ;

I> \draw[-] ( 2.5,-0) — ( 2.5,1) — (3.5,1) — (3.5,0) — cycle ;
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\draw[-] ( 2.5,—-1.1) — ( 2.5,-0.1) — (3.5,-0.1) — (38.5,—1.1) — (3.0,—1.1)
node[below] {2 corners} — cycle ;

\draw[-] ( 4.0,-0.5) — ( 4.0,0.5) — (5.0,0.5) — (5.0,—-0.5) — (4.5,-0.5)
node[below] {1 corner} — cycle ;

\draw[—-] ( 5.5,—-0.5) — ( 5.5,0.5) — (6.5,0.5) — (6.5,—-0.5) — (6.0,—0.5)
node[below] {no corner} — cycle ;

\end{tikzpicture }\\\

I

The cases ‘‘no corner’’ and
AN

The code looks up the $x$ and $y$ coordinates of the cell center with respect
to the driver center. Negative coordinates are changed to positive ones. If
the driver’s $x$ or $y$ axis lies inside the cell (one coordinate is smaller
than half a grid cell length) the integrals should use the area between the
curve and the other axis. If both axis lie in a cell that is not fully inside
the driver, the code stops and asks for a larger driver radius — the driver
should use more than 4 cells anyway.

all corners’’ are trivial (0\% or 100\% inside)

% and the other three cases will be discussed in the following subsubsections.
\parbox{120mm}{In the 2d case with only the corner $\left (x_{\rm min}|y_{\rm
min} \right)$ inside the driver region, the fraction the cell volume inside
the driver region ($p_{\rm driver}$) can be calculated with:

\begin{eqgnarray}

p_{\rm driver}&=&\frac {\int_{x_{\rm min}}*{x_{1}}{\rm d}x\int_{y_{\rm min}}"{\
sqrt{r*2—x"2}}{\rm d}y}{V_{\rm cell}} \nonumber \\\

&=&\frac {\int_{x_{\rm min}}*{x_{1}} \sqgrt{r*2—x"2} {\rm d}x — y_{\rm min}\left(
x_{1}—x_{\rm min}\right) }{(\Delta x)”"2} \nonumber \\\

&=&\frac {\frac {1}{2}\left (x\sqrt{r*2—x"2}+r"2 \arcsin \frac{x}{r} \right)_{x_{\
rm min}}M{x_{1}} — y_{\rm min}\left (x_{1}—x_{\rm min}\right) }{(\Delta x)"2}\
nonumber \\\

&=&\frac{x_{\rm min}y_{\rm min}— \frac{x_{\rm min}y_{1}}{2} —\frac{x_{1}y_{\rm
min}}{2}

+\frac{rr2}{2}\left( \arcsin \frac{x_{1}}{r} — \arcsin \frac{x_{\rm min}}{r} \
right)

H(\ Delta x)”*2}\nonumber \label{2d:1corner}

\end{eqnarray} }

\parbox[t]{40mm}{

\begin{tikzpicture }[scale=2.0]

\filldraw [color=blue!50,thin, fill=blue, fill opacity=0.50] ( 0.0,—-0.5) — (
0.5,-0.5) arc (46:55:4cm) — (0.0,—0.1) — cycle ;

\draw[-] ( 0.0,—-0.5) — ( 0.0,0.1) — (0.6,0.1) — (0.6,—0.5) — cycle ;
\filldraw (0.0,—0.5) circle (0.3mm) node[left] {$\left(x_{\rm min}|y_{\rm min}

\right)$};

\filldraw (0.0,—0.1) circle (0.3mm) node[left] {$\left(x_{\rm min}|y_{1}
\right)$};

\filldraw (0.5,—0.5) circle (0.3mm) node[right] {$\,\,\left (x_{1} ly_{\rm

min}\right)$};

\end{tikzpicture }}

%\subsubsection{2 corners}

\parbox{120mm}{ If there are two corners of the 2d cell inside the driver region
, these corners are $\left (x_{\rm min}|y_{\rm min} \right)$ and $\left (x_{\rm
max}|y_{\rm min} \right)$ or $\left(x_{\rm min}|y_{\rm max} \right)$. In the
case $x_{\rm min}>y_ {\rm min}$ the x and y coordinates are swapped to get an
$x$—integral. The fraction the cell volume inside the driver region ($p_{\rm
driver}$) can be calculated with:

\begin{eqgnarray}
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p_{\rm driver}&=&\frac {\int_{x_{\rm min}}*{x_{\rm max}}{\rm d}x\int_{y_{\rm min
PIM{\sart{r*2—x"2}}{\rm d}y}{V_{\rm cell}} \nonumber \\\

&=&\frac {\int_{x_{\rm min}}*{x_{\rm max}} \sqrt{r"2—x"2} {\rm d}x — y_{\rm min}
\Delta x }{(\Delta x)"2} \nonumber \\\

&=&\frac {\frac{1}{2}\left (x\sqrt{r*2—x"2}+r"2 \arcsin \frac{x}{r} \right)_{x_{\
rm min}}M{x_{\rm max}} — y_{\rm min}\Delta x }{(\Delta x)”*2}\nonumber \\\

&=&\frac {\frac{x_{\rm max}y_{2}}{2} —\frac{x_{\rm min}y_{1}}{2}

+\frac{rr2}{2}\left( \arcsin \frac{x_{\rm max}}{r} — \arcsin \frac{x_{\rm min
Hr} \right) — y_{\rm min}\Delta x

H(\ Delta x)”"2}\nonumber \label{2d:2corners}

\end{eqnarray} }

\parbox[t]{40mm}{

\begin{tikzpicture }[scale=2.0]

\filldraw [color=blue!50,thin, fill=blue, fill opacity=0.50](0,0.2) — (1,0.2)
arc (70:89.5:3cm) — cycle ;

\filldraw [color=blue!50,thin, fill=blue, fill opacity=0.25](0,0) — ( 1,0) —
(1,0.2) — (0,0.2) — cycle ;

\draw[-] (0,0) — (0,1) — (1,1) — (1,0) — cycle ;

\draw[—] (0,0.2) — (1,0.2);

\filldraw (0,0) circle (0.3mm) node[left] {$\left(x_{\rm min}|y_{\rm min} \
right)$};

\filldraw (0,0.4) circle (0.3mm) node[left] {$\left(x_{\rm min}|y_ {1} \
right)$};
\filldraw (1,0.2) circle (0.3mm) node[right] {$\left (x_{\rm max}|y_{2} \
right)$};

\end{tikzpicture }}

%\subsubsection{3 corners}

\parbox{140mm}{ If only the corner $\left (x_{\rm max}|y_{\rm max} \right)$ lies
outside the driver region, $p_{\rm driver}$ can be calculated with:
\begin{eqgnarray}

p_{\rm driver}&=&\frac {\int_{x_{1}}*{x_{\rm max}}{\rm d}x\int_{y_{\rm min}}*{\
sqrt{rr2—x"2}}{\rm d}y+(x_{1}—x_{\rm min})\Delta x}{V_{\rm cell}} \nonumber
W\

&=&\frac {\int_{x_{1}}"{x_{\rm max}} \sqgrt{r*2—x"2} {\rm d}x — y_{\rm min}\left(
x_{\rm max}—x_{1}\right) +(x_{1}—x_{\rm min})\Delta x}{(\Delta x)”*2} \nonumber
W\

&=&\frac {\frac{1}{2}\left (x\sqrt{r*2—x"2}+r"2 \arcsin \frac{x}{r} \right)_{x_
{11M{x_{\rm max}} — y_{\rm min}\left (x_{\rm max}—x_{1}\right) +(x_{1}—x_{\rm
min})\Delta x}{(\Delta x)*2}\nonumber \\\

&=&\frac {\frac{x_{\rm max}y_{1}}{2} —\frac{x_{1}y_{\rm max}}{2}
+\frac{rr2}{2}\left( \arcsin \frac{x_{\rm max}}{r} — \arcsin \frac{x_{1}}{r} \
right) — y_{\rm min}\left (x_{\rm max}—x_{1}\right)+(x_{1}—x_{\rm min})\Delta x
H(\ Delta x)”"2}\nonumber \label{2d:3corners}

\end{eqnarray}}

\parbox[t]{20mm}{

\begin{tikzpicture }[scale=2.0]

\filldraw [color=blue!50,thin, fill=blue, fill opacity=0.75] (0,0) — (0.6,0) —
(0.6,1) — (0,1) — cycle
\filldraw [color=blue!50,thin, fill=blue, fill opacity=0.50] (0.6,0.5) — (1,0.5)
arc (30:48:2cm) — (0.6,1) — cycle ;

\filldraw [color=blue!50,thin, fill=blue, fill opacity=0.25] (0.6,0) — (1,0) —
(1,0.5) — (0.6,0.5) — cycle ;

\draw[—] (0,0) (0,1) — (1,1) — (1,0) — cycle ;

\filldraw (0.6,1) circle (0.3mm) node[above] {$\left(x_{1}|y_{\rm max} \right)$
b

y_
{r
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1193 | !> \filldraw (1,0.5) circle (0.3mm) node[right] {$\left (x_{\rm max}|y_{1} \right)$
b

1194 | !> \filldraw (0.6,0) circle (0.3mm) node[below] {$\left(x_{1}|y_{\rm min} \right)$
b

1195 | I> \end{tikzpicture }}\\\

1196 | !> In 3d or in the subroutine {\tt driver\_weights} the percentage of the cell
inside the driver area is calculated with Monte Carlo if it is not a trivial
case (0\% or 100\%). For all three directions $n$ random variables are
calculated. The fraction the cell volume inside the driver region $p_{\rm
driver}$ is the number of random points inside the driver region ($|(x_i|y_i]|
z_i)|<r$) divided by the total number of random points $n$.

1197 | I >\endlatexonly

1198 | subroutine driver_weights_analyt(ind, & !< position of new grids

1199 |& ilevel , & < AVR level

1200 | & igrid & !< grid index

1201 | & ngrid , & l< grid size

1202 | & dx, & < cell size

1203 | & rdriver_scaled, & !< driver radius in coarse grid cells

1204 |& xdriver , & !< driver [xyz] coordinate

1205 |& ydriver , & !< driver [xyz] coordinate

1206 | & zdriver, & !< driver [xyz] coordinate

1207 | & driverweight) l< fraction of the cell volume that is
inside the driver area

1208 use amr_commons, only : active, xg

1209 use amr_parameters, only : dp, icoarse_min, jcoarse_min, kcoarse_min, &

1210 |& verbose_patches

1211 use random

1212 implicit none

1213 integer, intent(in) ind l< position of new grids

1214 integer, intent(in) ilevel l< AVR level

1215 integer, intent(in) igrid l< grid index

1216 integer, intent(in) ngrid l< grid size

1217 real (dp),intent(in) :: dx l< cell size

1218 real (dp),intent(in) :: rdriver_scaled !< driver radius in coarse grid cells

1219 real (dp),intent(in) :: xdriver l< driver [xyz] coordinate

1220 real (dp),intent(in) ydriver l< driver [xyz] coordinate

1221 real (dp),intent(in) zdriver l< driver [xyz] coordinate

1222 real (dp), d|men3|on(1 ngrid),intent(out) :: driverweight !< fraction of the cell

volume that is inside the driver area
1224
1224 integer:: i,ind_grid,ix ,iy,iz ,nn

1225 | ! integer:: subgridsize = 10 ! 3d subgrid
1226 integer:: randgridsize = 100 ! 3d random subgrid
1227 real (dp) :: dx2,r2,rr!,rd

1228 real (dp) :: xmin,ymin,zmin, xmax,ymax,zmax

1229 real (kind=8) :: help_k8

1230 real (dp) :: help1, help2, help3, help4, help5
1231 real (dp), dimension(1:3) :: skip_loc

1232 real (dp), dimension(1:3) :: xc

1233 integer ,dimension( IRandNumSize ) :: &

1234 & localseed = (/ 3281, 4041, 595, 2376 /)
1236

1236 driverweight (:)=0.0_dp

1237 r2=rdriver_scaledxx2

1238 rr=(rdriver_scaled —0.01_dp=dx) %2
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dx2=dx**2
lind=1,2xxndim
l12d: ind=1,4
13d: ind=1,8
I Set new grids position
iz=(ind—-1)/4 I integer division — 0 or 1
iy=(ind—1—4xiz)/2 I integer division — 0 or 1
ix=(ind—1-2xiy —4xiz) ! integer division — 0 or 1
xc(1)=(dble(ix)—0.5_dp)*dx ! —0.5_dp or +0.5_dp
#if NDIM>1
xc(2)=(dble(iy)—0.5_dp)*dx ! —0.5_dp or +0.5_dp
#endif
#if NDIM>2
xc(3)=(dble(iz)—-0.5_dp)*dx ! —0.5_dp or +0.5_dp
#endif
skip_loc=(/0.0_dp,0.0_dp,0.0_dp/)
skip_loc (1)=dble (icoarse_min)
#if NDIM>1
skip_loc (2)=dble(jcoarse_min)
#endif
#if NDIM>2
skip_loc (3)=dble (kcoarse_min)
#endif
Ixg(:,1)—1.5 ... values in interval [—1,1]
do i=1,ngrid
ind_grid=active (ilevel)%igrid (igrid+i—1)
Ixg(ind_grid(i),1) .. x coordinate of the center of the subgrid
xmax=abs (xg (ind_grid ,1)+xc(1)—skip_loc (1) —0.5_dp—xdriver)+0.5_dpxdx ! minimum:
0.5_dp=*dx
xmin=xmax—dx !xmax—dx can get < 0, minimum: —0.5_dpxdx, but abs(zmin)<abs(zmax
)
#if NDIM>1
ymax=abs (xg(ind_grid ,2)+xc(2)—skip_loc(2) —0.5_dp—ydriver)+0.5_dpxdx ! minimum:
0.5_dp=*dx
ymin=ymax—dx !ymax—dx can get < 0, minimum: —0.5_dpxdx, but abs(zmin)<abs(zmax
)
#else
ymax=0.0_dp
ymin=0.0_dp
#endif
#if NDIM>2
zmax=abs (xg(ind_grid ,3)+xc(3)—skip_loc(3) —0.5_dp—zdriver)+0.5_dpxdx ! minimum:
0.5_dpx*dx
zmin=zmax—dx !zmax—dx can get < 0, minimum: —0.5_dpxdx, but abs(zmin)<abs(zmax
)
#else
zmax=0.0_dp
zmin=0.0_dp
#endif
if ((xminxx2+yminxx2+zminxx2). [t .rr)then
Ipart of cell inside driver region
if ((xmaxxx2+ymaxxx2+zmax*2). It .rr)then
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lcell fully inside driver region
driverweight(i)=1.0_dp
else
#if NDIM==
I 1d
lif (xmin.gt.0.0_dp)then: (r—|xmin]|) ... part of r inside interval
Pif (xmin.1t.0.0_dp)then: (r+|xmin|) ... part of r inside positive part of
interval plus negative part of interval
lin both cases: (r—xmin)
driverweight(i)=(rdriver_scaled—xmin) /dx
#endif
#if NDIM==2
I 2d
if (max(xminxx2,ymin**x2)+min(xmax,ymax) **2. 1t .rr) then lat least two
corners inside central region
if (min(xmin*x%2,yminx*2)+max(xmax,ymax) «x2.gt.rr) then !two corners
inside central region
if ((ymin.1t.0.0_dp).and.(xmin.It.0.0_dp))then
printx,"xmin_AND_ymin_negative: _use_a_larger_driver_radius!"
prints,"xmin=",xmin, "xmax=",xmax
prints,"ymin=",ymin, "ymax=",ymax
stop
end if
help1=min(xmin,ymin)/rdriver_scaled ! lower boundary of the integral
help2=sqrt(1.0_dp—help1 xx2) I surface of sphere @ lower
boundary of the integral
help3=min(xmax,ymax)/rdriver_scaled ! upper boundary of the integral
help4=sqrt(1.0_dp—help3xx2) I surface of sphere @ upper
boundary of the integral
! help5: subtract rectangle between x—axis (if xmin < ymin, otherwise y—
axis) and ymin (if xmin < ymin, otherwise xmin) and integral boundaries
help5=(—max(xmin,ymin)*dx/r2)
else !three corners inside central region, ymax/xmax corner outside
lokay for (ymin.I[t.0.0_dp.and.xmin.[t.0.0_dp)
help2=ymax/rdriver_scaled | surface of sphere @ lower boundary of the
integral
help1=sqrt(1.0_dp—help2x%2) ! lower boundary of the integral
help3=xmax/rdriver_scaled | upper boundary of the integral
help4=sqrt (1.0_dp—help3«x2) ! surface of sphere @ upper boundary of the
integral
! help5: subtract rectangle between (x—axis and ymin) and integral
boundaries
! for ymin<0 add rectangle between (x—axis and ymin) and integral
boundaries
! help5: add rectangle between (xmin and help1) and (ymin and ymax) (okay
for xmin<0)
help5=(—(help3—help1))+*ymin/rdriver_scaled+ &
& (help1—xmin/rdriver_scaled)*dx/rdriver_scaled
end if
else lone corner inside central region
if ((ymin.1t.0.0_dp).and.(xmin.It.0.0_dp))then
prints,"xmin_AND_ymin_negative: _use_a_larger_driver_radius!"
printx,"xmin=",xmin, "xmax=",xmax
prints,"ymin=",ymin, "ymax=",ymax
stop
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end if
help1=min(ymin,xmin)/rdriver_scaled | lower boundary of the integral
help2=sqrt (1.0_dp—help1 xx2) I surface of sphere @ lower
boundary of the integral
help4=max(xmin,ymin)/rdriver_scaled | surface of sphere @ upper
boundary of the integral
help3=sqrt(1.0_dp—help4xx2) I upper boundary of the integral
! if (ymin.I1t.0.0_dp) help5: subtract rectangle between (y—axis and xmin)
and integral boundaries
! else help5: subtract rectangle between (x—axis and ymin)
and integral boundaries
help5=(—(help3—help1))xhelp4 ! also ok if helpl < 0
end if
! weight:
! (r2% ...) : lower and upper boundary of (see e.g. Netz, 7th.edition
integral 113) \int_{xmin}*"{x @ ymin}\sqrt(1—(x/r)"2)dx = 0.5%(xy+arcsin(x))
! help5: subtract rectangle between x—axis and lowest y
! help5: add rectangle between xmin and the lower boundary of the integral
driverweight(i) = (0.5_dp=(help3xhelp4+asin(help3)— &
& help1xhelp2—asin(help1))+help5)*r2/dx2
if (driverweight(i).gt.1._dp)then
if (verbose_patches) printx,"driverweight(i)", driverweight (i)
if (verbose_patches) printx,"xmin,ymin" ,xmin,ymin
if (verbose_patches) printsx,"xmax,ymax" ,xmax,ymax
if (verbose_patches) prints,"rr",rr
driverweight(i)=0._dp
stop ’exiting: _driverweight_>_1_’
else if(driverweight(i).It.0._dp)then
if (verbose_patches) printx,"driverweight(i)", driverweight(i)
if (verbose_patches) printx,"xmin,ymin",xmin,ymin
if (verbose_patches) printx,"xmax,ymax" ,xmax,ymax
if (verbose_patches) printx,"rr" rr
driverweight(i)=0._dp
stop ’exiting:_driverweight_< 0’
end if
#endif
#if NDIM==3
I 3d Monte Carlo
nn=0
do ix=1,randgridsize
call ranf(localseed ,h help_k8)
help1=xmin+dble (help_k8)*dx
call ranf(localseed , help_k8)
help2=ymin+dble (help_k8)xdx
call ranf(localseed, help_k8)
help3=zmin+dble (help_k8)*dx
if ((help1*x2+help2xx2+help3x*x2).1t.r2)then
nn=nn+1
end if
end do
driverweight(i) = dble(nn)/dble(randgridsize)
#endif
end if
else
driverweight (i)=0.0_dp
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end if
end do
end subroutine driver_weights_analyt
end module driver

Listing C.2: New module with tabulated stellar models for Ramses: geneva_models.f90

module geneva_models

use amr_parameters, only: dp,ifgeneva,hgenevarotating,genevayear, mstars,&
& tstars ,n_stars
Stellar feedback

integer ,parameter : :MAXSTARS=100

real(dp) :: n_stars = 10.0_dp ! number of OB stars inside the driver region
logical ::ifgeneva=.false. I use geneva models — ignore/overwrite
file_driver and file_sn

logical ::genevarotating=.true. ! use rotating geneva models

integer ::genevayear=2011 I chose geneva grid

real (dp) ,dimension (1:MAXSTARS) :: mstars=9.0_dp ! mass of the stars
real (dp) ,dimension (1:MAXSTARS) :: tstars=0.0_dp ! formation of the stars at this
time

implicit none

save | retain the value of the variables from one call to the next

integer , parameter :: i9 = selected_int_kind(r=9) !< integer type definition
I integer ,parameter::dp=kind (1.0E0) ! real type definition

integer , parameter :: n_points = 400

integer , parameter :: n_models = 11

type sn_matrix

#if NPRE==4
real (kind=8) ::timeSN lyr
real (kind=8) :: masslossSN Imsun
real (kind=8) :: AIl26SN Imsun
real (kind=8) ::energySN lerg
#else
real (dp) ::timeSN lyr
real (dp) :: masslossSN Imsun
real (dp) :: Al26SN Imsun
real (dp) ::energySN lerg
#endif

end type sn_matrix

type driver_matrix

#if NPRE==4
real (kind=8) ::timeSN lyr
real (kind=8) :: masslossSN I'msun
real (kind=8) ::energySN lerg
real (kind=8) ,dimension (1:n_points) ::time lyr
real (kind=8),dimension(1:n_points) :: massloss !msun/yr
real (kind=8),dimension(1:n_points) ::velocity !km/s
real (kind=8) ,dimension (1:n_points) ::energy 11e30 erg/s
real (kind=8) ,dimension(1:n_points) :: Al26 Imsun/yr
#else
real (dp) ::timeSN lyr
real (dp) :: masslossSN Imsun
real (dp) ::energySN lerg
real (dp) ,dimension(1:n_points) ::time Lyr
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real (dp) ,dimension(1:n_points) :: massloss Imsun/yr
real (dp) ,dimension(1:n_points) ::velocity lkm/s
real (dp) ,dimension(1:n_points) ::energy 11e30 erg/s
real (dp) ,dimension(1:n_points) :: Al26 Imsun/yr
#endif
I real(dp),dimension(1:n_points)::z Imass fraction (1—H-He)
end type driver_matrix
integer ,parameter,dimension (1:n_models) ::initialmass = &
& (/7,9,12,15,20,25,32,40,60,85,120/)

type(driver_matrix) ,dimension (1:n_models) :: Geneva2011V4
type (SN_matrix) ,dimension (1:n_models) :: VossGenevaAl
contains
subroutine create_VossGenevaAl

#if NPRE==4

VossGenevaAl(1:n_models)%timeSN = (/ 0e0_8, 3.685e+07_8, 2.195e+07_8,
& 1.555e+07_8, 11.05e+06_8, 8.65e+06_8, 6.95e+06_8, 5.95e+06_8,
& 4.65e+06_8, 3.85e+06_8, 3.45e6_8 /) ! [years]

VossGenevaAl (1:n_models)%masslossSN = (/ 0e0_8, 7.06781_8, 9.1462_38,
& 9.0551_8, 10.4174_8, 10.6538_8, 3.9536_8, 3.4385_8, 5.5983_8,
& 9.8102_8, 4.4746_8 /) | [solar masses]

VossGenevaAl (1:n_models)%AI26SN = (/ 0e0_8, 0.556278e—05_8,
& 1.94186e—-05 8, 12.7075e—05_8, 5.4382336e—05_8, 9.77063e—05_8,
& 9.41636e—05 8, 10.3988e—05_8, 18.3466e—05 8, 29.5453e—05_8,

& 0.063e—05 8 /) ! [solar masses]

#else

VossGenevaAl (1:n_models)%timeSN = (/ 0e0_dp, 3.685e+07_dp,

& 2.195e+07_dp, 1.555e+07_dp, 11.05e+06_dp, 8.65e+06_dp, 6.95e+06_dp,
& 5.95e+06_dp, 4.65e+06_dp, 3.85e+06_dp, 3.45e6_dp /) ! [years]

VossGenevaAl (1:n_models)%masslossSN = (/ 0e0_dp, 7.06781_dp,
& 9.1462_dp, 9.0551_dp, 10.4174_dp, 10.6538_dp, 3.9536_dp,
& 3.4385_dp, 5.5983_dp, 9.8102_dp, 4.4746_dp /) ! [solar masses]

VossGenevaAl (1:n_models)%AI26SN = (/ 0e0_dp, 0.556278e—05_dp,

& 1.94186e—05_dp, 12.7075e—05_dp, 5.4382336e—-05_dp, 9.77063e—05_dp,
& 9.41636e—05_dp, 10.3988e—05_dp, 18.3466e—05 dp, 29.5453e—-05_dp,
& 0.063e—05_dp /) ! [solar masses]

#endif

#if NPRE==4

VossGenevaAl (1:n_models)%energySN
#else

VossGenevaAl (1:n_models)%energySN
#endif

end subroutine create_VossGenevaAl
!

1.0_.8 ! [erg]

1.0_dp ! [erg]

R0 Qo

R0 Qo Qo

R0 Qo Qo

subroutine create_Geneva2011V4
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I SN data
|

lgrep "400 " M???7Z14V4.dat | grep ":400 " > SN. txt

l#col. 1: line number and initial mass

l#col. 2: age [yr]

l#col. 3: mass [Msol]

lawk ’{split($1,help1 ,"M");split(help1[2],help2,"Z");sub(/p/, ".", help2[1]);

initialmass=help2[1]; mass=$3; age=$2; if (initialmass <25){remanentmass=1.4}
else{remanentmass=7.0};if (initialmass >6){print initialmass , age, mass,
remanentmass, mass—remanentmass}}’ SN. txt

I
#if NPRE==4

Geneva2011V4 (1:n_models)%timeSN = (/ 5.89825423207157e7_8,

& 3.54627289784629e7_8, 2.07324437587086e7_8, 1.50658661141411e7_8,

& 1.04749575317549e7_8, 8.60585058063150e6_8, 7.22426176827787¢e6_8,

& 6.17506476706730e6_8, 4.85966398974075e6_8, 4.06404560769163e6_8,

& 3.55717089269368e6_8 /) ! [years]

Geneva2011V4(1:n_models )%masslossSN = (/5.46839_8,7.11747_8,

& 8.82398_8,9.67124_8,5.77851_8,2.68962_8,3.12489_8,5.33227_8,

& 10.9807_8,19.3934_8,12.0444_8/) ! [solar masses]

Geneva2011V4 (1:n_models)%energySN = 1.0_8 | [erg]

#else

Geneva2011V4 (1:n_models)%timeSN = (/ 5.89825423207157e7_dp,

& 3.54627289784629e7_dp, 2.07324437587086e7_dp, 1.50658661141411e7_dp,
& 1.04749575317549e7_dp, 8.60585058063150e6_dp, 7.22426176827787¢e6_dp,
& 6.17506476706730e6_dp, 4.85966398974075e6_dp, 4.06404560769163e6_dp,
& 3.55717089269368e6_dp /) ! [years]

Geneva2011V4 (1:n_models)%masslossSN = (/5.46839_dp,7.11747_dp,

& 8.82398_dp,9.67124_dp,5.77851_dp,2.68962_dp,3.12489_dp,5.33227_dp,
& 10.9807_dp,19.3934_dp,12.0444_dp/) ! [solar masses]

Geneva2011V4 (1:n_models)%energySN = 1.0 _dp ! [erg]

#endif
|

R0 Q0 Qo Qo

R0 Qo

Wind 120 solar masses

awk {print $2 }’ M007Z14V4.dat

I Geneva2011V4 (1:n_models)%time lyr

I Geneva2011V4(1:n_models)%massloss !msun/yr

I Geneva2011V4 (1:n_models)%velocity !'km/s

I Geneva2011V4(1:n_models)%energy 11e30 erg/s

I Geneva2011V4 (1:n_models)%Al26 Imsun/yr

I Geneva2011V4 (1:n_models )%z Imass fraction (1—H-He)

Geneva2011V4(11)%time = (/0.188397310560790E+05, 0.243588632933556E+05, &

Geneva2011V4(1)%Al26 = 0.0

Geneva2011V4(1)%velocity = (/2.43448e+08, 1.21021e+08, 1.20297e+08, 1.19599e+08,
&

end subroutine create_Geneva2011V4

subroutine scale_Geneva2011V4

implicit none

integer::ii,jj

real (dp) :: scale_l,scale_t,scale_d,scale_v,scale_nH,scale_T2 !< conversion
factors between cgs and user units (subroutine units in units.f90)
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#if NPRE==4
real (kind=8) :: scale_energy, scale_m, scale_dm,scale_e !< conversion factors
between cgs and user units
real (kind=8), parameter :: YearToSeconds = 31556926. 8 !< convert years to
seconds; 1 year = 31556926 seconds
real (kind=8), parameter :: SolarMass = 1.98892e33_8 l< solar mass in [g]
#else
real (dp) :: scale_energy, scale_m, scale_dm,scale_e !< conversion factors between
cgs and user units
real (dp), parameter :: YearToSeconds = 31556926. dp !< convert years to seconds;
1 year = 31556926 seconds
real (dp), parameter :: SolarMass = 1.98892e33_dp l< solar mass in [g]
#endif
call units(scale_I,scale_t,scale_d,scale_v,scale_nH,scale_T2)
scale_e=51.0—(log10(scale_d)+3.xlog10(scale_I)+2.xlog10(scale_v)) ! 0O
scale_m=scale_dxscale_|%x3 107 (+35)
1 year = 31556926 seconds
Imass loss = 1 solar mass / year
Imass loss = \f$ \frac{1.98892 \times 107{33}}{31556926} \frac{\rm [g]}{\rm [s]}
\f$
Imass loss = 63.e+24 g/s
scale_dm=SolarMass/YearToSecondsxscale_t/scale_m
I'kinetic luminosity: erg/s = g cm"2 / s”3
1 erg/s = 10M(—35—-2%19+3x11) code—mass units code length units”2/code—time—units
A3
1 erg/s = 107(—40) code—mass units code length units”*2/code—time—units”3
scale_energy=scale_t/scale_m/scale_v*x2 1107(—40)
do ii=1,SIZE (Geneva2011V4)
Geneva2011V4 (ii )%timeSN = Geneva2011V4(ii )%timeSN=+YearToSeconds/ &
& scale_t lyr to code units
Geneva2011V4 (ii )%masslossSN = Geneva2011V4( ii )%masslossSN«SolarMass/ &
& scale.m Imsun to code units
Geneva2011V4(ii )%energySN = Geneva2011V4(ii )%energySNx*10.xxscale_e !erg to
code units
do jj=1,SIZE(Geneva2011V4(1)%time)
Geneva2011V4 (ii )%time (jj) = &
& Geneva2011V4 (ii )%time (jj)*YearToSeconds/scale_t lyr to code units
Geneva2011V4 (ii )%massloss(jj) = &
& Geneva2011V4(ii )%massloss( jj)=*scale_dm Imsun/yr to code units
Geneva2011V4 (ii )%AI26(jj) =&
& Geneva2011V4 (i )%AI26 (jj)*scale_dm Imsun/yr to code units
Geneva2011V4(ii)%energy (jj) = &
#if NPRE==4
& Geneva2011V4(ii )%energy(jj)+1e30_8x«scale_energy lerg/s to code units

#else
& Geneva2011V4 (ii )%energy(jj)+1e30_dpxscale_energy l!erg/s to code units
#endif
Geneva2011V4 (ii )%velocity (jj) = Geneva2011V4(ii)%velocity (jj)/scale_v !'km/s to
code units

end do

end do
end subroutine scale_Geneva2011V4
subroutine print_Geneva2011V4

use amr_commons, only: myid,ncpu

implicit none
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integer (i9) :: i,j,ii,jj,ilun

ilun=ncpu+myid+10

open(unit=ilun, file="Geneva. txt" ,form="formatted )

write (ilun,’ ("#time_[yr],_energy _loss_[erg/s],_mass_loss _[msun/yr], ",&
& "wind_velocity _[cm/s],_26AL_[Msun/yr],_stars",14)’) int(n_stars)

do j=1,int(n_stars)
do jj=1,11
printx,initialmass(jj),mstars(j)
if(int(initialmass(jj)).eq.int(mstars(j)))then
ii=jj ! compute number of the model of this mass
end if
end do
write (%, ("#_star_",l14,1X,"formation_time_[yr]",G14.5E4,, &
& ... ".initial_mass_[Msun]" ,G14.5E4) ')j,tstars(j),mstars(j)
write (ilun ,’ ("#_star_",14,1X,"formation_time_[yr]",G14.5E4_, . . .......&
& ... initial_mass_[Msun]" ,G14.5E4) ")j,tstars(j),mstars(j)
do i=1,n_points
lenergy in tables is 1e30 erg/s
write (ilun,’(5(2x,G14.5E4)) ') Geneva2011V4(ii )%time (i)+tstars(j), &
& Geneva2011V4(ii)%energy(i)=x1e30_dp, Geneva2011V4(ii)%massloss(i), &
&  Geneva2011V4(ii)%velocity (i), Geneva2011V4 (i )%AI26 (i)

end do
write (ilun,’ ("SN_at_t=_",G14.5E4) ’)Geneva2011V4 (ii )%timeSN+tstars (j)
write (ilun,’ ("SN_energy_[erg]_=.",G14.5E4) ') Geneva2011V4(ii )%energySN
write (ilun,’ ("SN_mass_loss_[Msun]_=_",G14.5E4)’) Geneva2011V4(ii )%masslossSN
write (ilun,’("26Al_fraction=_",G14.5E4) ') &
&  Geneva2011V4(ii )%AL26(n_points)/Geneva2011V4(ii )%massloss(n_points) ! too high
— surface mass fraction not mass fraction in ejecta
end do
close(ilun)
end subroutine print_Geneva2011V4
subroutine interpolate_Geneva2011V4 (age,dt,edriver,rhodriver ,aldriver)

implicit none
real (dp), intent(in) :: age ! simulation time
real (dp), intent(in) :: dt | time step size (for SN)
real (dp), intent(out) :: edriver, rhodriver, aldriver
integer (i9) :: i,j,ii,jj
real (dp) ::scaled_age ! simulation time corrected for star formation time
edriver = 0.0_dp
rhodriver = 0.0_dp
aldriver = 0.0_dp
do j=1,int(n_stars)
do jj=1,11
if (initialmass(jj).eq.mstars(j))then
ii=jj ! search for the number of the model for this mass
end if
end do
scaled_age = age — tstars(j)
if ((scaled_age.It.Geneva2011V4(ii)%timeSN).and. &
& (scaled_age.ge.Geneva2011V4(ii )%time (1))) then
i=1
do while (scaled_age.gt.Geneva2011V4(ii)%time(i))
i=i+1
end do
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5165 edriver = edriver + Geneva2011V4(ii)%energy (i —1)+ &

5166 |& (scaled_age—Geneva2011V4(ii)%time(i—1))/ &

5167 |& (Geneva2011V4(ii )%time (i)—Geneva2011V4(ii)%time (i—1))x* &

5168 |& (Geneva2011V4(ii)%energy (i)—Geneva2011V4(ii)%energy(i—1))

5169 rhodriver=rhodriver+Geneva2011V4(ii )J%massloss (i —1)+ &

5170 |& (scaled_age—Geneva2011V4(ii)%time (i—1))/ &

5171 |& (Geneva2011V4(ii )%time (i)—Geneva2011V4(ii)%time (i—1))x* &

5172 |& (Geneva2011V4(ii)%massloss(i)—Geneva2011V4(ii)%massloss(i—1))

5173 aldriver=aldriver+Geneva2011V4 (ii )%AI26 (i —1)+ &

5174 |& (scaled_age—Geneva2011V4(ii)%time(i—1))/ &

5175 |& (Geneva2011V4(ii )%time (i)—Geneva2011V4(ii)%time (i—1))x* &

5176 |& (Geneva2011V4(ii)%AI126(i)—Geneva2011V4(ii )%AI26(i—1))

5177 else if ((scaled_age.gt.Geneva2011V4(ii )%timeSN).and. &

5178 |& (scaled_age—dt.le.Geneva2011V4(ii )%timeSN)) then

5179 printx, ’time:_’, scaled_age

5180 printx, "SN_at_t=_", Geneva2011V4(ii )%timeSN

5181 printx, "SN_energy_[erg]l_=.", Geneva2011V4(ii )%energySN

5182 printx, "SN_mass_loss_[Msun]_=", Geneva2011V4(ii )%masslossSN

5183 printx, "26Al_fraction=_", &

5184 |&  Geneva2011V4(ii)%AL26(n_points)/Geneva2011V4(ii )%massloss(n_points)

5185 edriver = edriver + Geneva2011V4( ii )%energySN/dt

5186 rhodriver= rhodriver + Geneva2011V4(ii )%masslossSN/dt

5187 aldriver = aldriver + Geneva2011V4(ii )%masslossSN/dt =« &

5188 |&  Geneva2011V4(ii )%AL26(n_points)/Geneva2011V4(ii)%massloss(n_points) ! too high
— surface mass fraction not mass fraction in ejecta

5189 end if

5190 | end do

5191 |end subroutine interpolate_Geneva2011V4

5192 |end module geneva_models

Listing C.3: Stellar feedback control: amr_parameters.f90

68 I Stellar feedback control
69 integer ,parameter : : MAXSTARS=100
70 character (LEN=128) :: file_driver = 'wind.dat’ | file with wind data

71 character (LEN=128) :: file_sn = ’sn.dat’ I file with SN data

72 character (LEN=128) :: file_sph = ’cloudi_ka_new’ | SPH particles for initial
conditions

73 real(dp) :: r_driver = 0.75_dp ! driver radius (in user length units)

74 real(dp) :: x_driver = 0.0_dp ! x coordinate of the driver center (in user
length units)

75 real(dp) :: y_driver = 0.0_dp ! y coordinate of the driver center (in user
length units)

76 real(dp) :: z_driver = 0.0_dp ! z coordinate of the driver center (in user
length units)

77 real (dp) :: coolplus = 0.0_dp ! space between cooling region and driver region
(in user length units)

78 real(dp) :: n_stars = 1.0_dp ! number of OB stars inside the driver region

79 integer :: max_driver_grid = 7 | amr: refinement of driver region

80 logical ::ifgeneva=.false. | use geneva models — ignore/overwrite
file_driver and file_sn

81 logical ::genevarotating=.true. ! use rotating geneva models

82 integer ::genevayear=2011 I chose geneva grid

83 real (dp) ,dimension (1:MAXSTARS) :: mstars=9.0_dp ! mass of the stars
84 real (dp) ,dimension (1:MAXSTARS) :: tstars=0.0_dp ! formation of the stars at this
time
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real (dp) :: T_min_fix=1.e—2_dp !minimum temperature for cooling table

Listing C.4: Read feedback parameters: read_params.f90

25
26
27
66
67
68
69
70
71
126
127
128
129
130
131
132
133
134
135

namelist/driver_params/file_driver ,file_sn ,file_sph ,r_driver,
& x_driver ,y_driver ,z_driver ,coolplus ,n_stars,max_driver_grid,
& ifgeneva, genevarotating, genevayear, mstars, tstars

Write (% ,%) i sosaeeas Version 3. 10 L oG i
write (x,x)’____https :// bitbucket.org/rteyssie/ramses_August_5th 2014
write (*,%)’_ .. git_commit_5a2d93b83d13bb48f21077c61cfda275256d8aea,
write (*,%) ' .._.written_by_Romain_Teyssier_ (CEA/DSM/IRFU/SAP) . ...
write (,%) "o ssssnsos (€) LCEA 1999 —-2007 s
write (*,%) .. ...With_stellar_feedback_patches_of_K.M. Fierlinger__,

max_driver_grid=levelmax

read (1 ,NML=driver_params)

|

I Max star number checks

|

if ((ifgeneva).and.(n_stars>MAXSTARS) )then
write (*x,x) ’Error:_n_stars >5SMAXSTARS’
call clean_stop

end if

rewind (1)

&
&

[T
[T
[T
[T
[T

[ESTERTENTRNTRN

Listing C.5: Read-in of feedback parameters: read_hydro_params.f90

19
20
21
22
23
24
25
26
27
39

namelist/init_params/filetype ,initfile ,multiple ,nregion,region_type
& ,x_center,y_center,z_center,aexp_ini &
& ,length_x,length_y ,length_z ,exp_region &
#if NENER>O
& ,prad_region &
#endif
& ,d_region,u_region,v_region,w_region,p_region,al_region
lvar_region, that initializes the passive scalars is always zero!
namelist/hydro_params/gamma, courant_factor ,smallr ,smallc, larget
namelist/physics_params/cooling , T_min_fix , haardt_madau, metal

&

Listing C.6: Allocate feedback data: init_time.f90

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

I Initialize wind table
if (ifgeneva)then
call create_Geneva2011V4
#ifndef WITHOUTMPI
if (myid==1)then
#endif
printx, "Geneva_2011_V4_models_z=0.014"
call print_Geneva2011V4
#ifndef WITHOUTMPI

end if
#endif
call scale_Geneva2011V4
else

call read_driver
call read_sn
end if
call allocate_driver_mask
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82
83
84
85
251
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253
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end subroutine init_time

Listing C.7: Insert feedback: courant_fine.f90

I Insert stellar wind
if (n_stars.gt.0.0_dp)then
call wind_fine(ilevel)

end if
subroutine wind_fine(ilevel)
|
I> \version "sn+wind": thermal energy and mass loss read in from sn.dat and wind.

dat
I> \author Katharina M. Fierlinger
I> \date last modification 13.09.2011
|
I use amr_commons, only: active, dtold, ncoarse, numbtot, xg

use driver

use geneva_models

use amr_commons, only: active, dtold, ncoarse, numbtot, t , T_min_fix

use amr_parameters, only: r_driver ,x_driver,y_driver,z_driver ,n_stars, &
& ifgeneva,genevarotating ,genevayear, mstars, tstars

use hydro_commons, only: uold, nvar, gamma, smallr, i26al, i60fe

use poisson_parameters, only : dp, icoarse_max, icoarse_min, boxlen, &
& verbose, verbose_patches, nvector, ndim, ngridmax, twotondim

I'this subroutine uses make_virtual_fine_dp

implicit none

integer ::ilevel

integer ::igrid ,ncache,i,ind,iskip ,ngrid

integer ::ivar ,ind_grid ,ind_cell
#ifdef DECAYINTERVAL

real (dp) ,parameter :: decay_interval = 0.1578_dp
#endif

real (dp), dimension(1:nvector) :: weight
#ifdef EKIN
#if NDIM>1
real (dp), dimension(1:nvector) :: weightx
real (dp), dimension(1:nvector) :: weighty

#endif
#if NDIM>2
real (dp), dimension(1:nvector) :: weightz
#endif
#endif
real (dp) mdriver = 0.0_dp ! 5.76015d-5
real (dp) :: edriver = 0.0_dp ! 1.57015d—4
real (dp) :: driver26Al = 0.0_dp
real (dp) :: driver60Fe = 0.0_dp
#if DEBUG==2
real(dp) :: driverTest = 0.0_dp
#endif
#if DEBUG==3
|
! check if kinetic energy is still smaller than total energy

real (dp) :: OLD_rho, OLD_Etot, OLD_mx, OLD_Ekin_help
real (dp) ::OLD_my, OLD_mz
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#endif
#ifdef CARINA
real (dp) :: edriver_help ,mdriver_help,driver26Al_help ,driver60Fe_help
lreal(dp) :: star_formation_periode = 1893.41556_dp !code time unit: 1.d11s=
3.16887646 kyr , 6 Myr = 1.89341556e14 s = 1893.41556 ctu
real (dp) :: star_formation_periode = 946.70778_dp !code time unit: 1.d11s=
3.16887646 kyr , 3 Myr = 9.4670778e13 s = 946.70778 ctu

real (dp) :: star_formation_interval

integer ::existing_stars , ii
#endif

real (dp), parameter :: pi = acos(—1.0_dp)
#ifdef THII

real (dp), parameter :: T_HIl = 1.0e4_dp
#endif
#ifdef TMAX

real (dp), parameter :: T_max = 5.0e6_dp
#endif

[

I logical :: debug = .true.

I real(dp) ::xx

I real(dp) ::r2

[

real (dp) xdriver = 0.0_dp

real(dp) :: ydriver = 0.0_dp

real (dp) zdriver = 0.0_dp

real (dp) :: rdriver_scaled
I real(dp)::r3

real (dp) ::dx,one_over_boxscale
#ifdef EKIN

real (dp) :: momentum_help
#endif

#if defined (EKIN) || defined (THIlI) || defined (TMAX) || defined (TMIN)
real (dp) :: Ekin_help
#endif
#if defined (THIlI) || defined (TMAX) || defined (TMIN)
real (dp) :: T_help
#endif
real (dp) ::de,dm,d26Al ,d60Fe
real (dp) :: deltat ,one_over_v_sphere
#ifdef CARINA
real (dp) :: DtV
real (dp) ::eSN_help, mSN_help
#else
real (dp) :: starsDtV
#endif
126 Al settings
Ihalf life time of 26Al; (7.17e5 \pm 0.24e5) years
I Dr. Jagdish K. Tuli Nuclear Wallet Cards 2005 7th Edition
I http ://www.nndc.bnl.gov/wallet/wc7. html
I'half life time of 26Al; (7.16e5 \pm 0.32e5) years
Ireal (dp), parameter :: thalf26Al = 7.16d12 % 3.1556926_dp ! [seconds]
real (dp), parameter :: thalf26Al = 2.2594759e13 _dp! [seconds]
160 Fe settings
I'half life time of 60Fe; (2.62e6 \pm 0.04e6) years
'Rugel et al., Phys. Rev. Lett. 103, 072502 (2009)
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(dp), parameter :: thalf60Fe = 2.62d13 * 3.1556926_dp ! [seconds]
(dp) ::scale_nH,scale_T2,scale_|,scale_d,scale_t,scale_v

real(dp) ::eSN = 0.0_dp
(dp)

#if DEBUG==2

driverTest = 0.0_dp

if (verbose_patches)write (x,116) sum(uold (:,ndim+2))
#endif

if (numbtot(1,ilevel)==0)return
if (verbose)write(x,111)ilevel

I Mesh spacing at that level
one_over_boxscale=dble (icoarse_max—icoarse_min+1)/boxlen
Iscaled box:

dx = 0.5_dpxx(ilevel)

Ibox in code units
ldx=0.5_dp=xxilevelxboxscale

Ivol=dxs**ndim

Ir2=rdriver*x*2

Ir3=r_driverx3

xdriver = one_over_boxscalexx_driver
ydriver = one_over_boxscalexy_driver
zdriver = one_over_boxscalexz_driver
rdriver_scaled = one_over_boxscalexr_driver

Iprintx, "Driver coordinates", xdriver, ydriver

Iprintx, "driver radius" , r_driver

I'printx, "scaled driver radius (boxsize: [0:1])" , rdriver_scaled, r2
Iprintx, "scaled grid spacing (boxsize: [0:1])", dx

Iprintx, "box length", boxlen

Iprintx, "box scale", boxscale

I size of last timestep
if (dtold(ilevel).gt.0.0_dp)then
deltat=dtold (ilevel)
I'lcheck if you already called read_driver in init_time (amr/init_time.f90)
if (ifgeneva)then
call interpolate_Geneva2011V4(t,deltat,edriver ,mdriver,driver26Al)
driver60Fe=0.0_dp
eSN=0.0_dp
mSN=0.0_dp
else
call interpolate_driver (t,edriver,mdriver,driver26Al ,driver60Fe)
call add SN (t,deltat ,eSN,mSN)
end if
#ifdef CARINA
star_formation_interval = t/star_formation_periode
existing_stars=max(1,min(70,int(70.0_dpxstar_formation_interval)))
if (existing_stars.gt.1)then
do ii=2,existing_stars
l'if (verbose_patches)write (x,114)ii ,t—real(ii)xstar_formation_interval
write (x,114)ii ,t—real (ii)xstar_formation_interval
if (ifgeneva)then
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call interpolate_Geneva2011V4 (t—real(ii)xstar_formation_interval , &
deltat ,edriver_help ,mdriver_help ,driver26Al_help)
I scale since the interpolation used all stars
driver26Al_help=driver26Al_help/real (n_stars)
edriver_help =edriver_help/real (n_stars)
mdriver_help =mdriver_help/real (n_stars)
driver60Fe_help=0.0_dp
eSN_help=0.0_dp
mSN_help=0.0_dp
else
call interpolate_driver (t—real(ii)*xstar_formation_interval, &
edriver_help ,mdriver_help ,driver26Al_help ,driver60Fe_help)
call add SN (t—real(ii)xstar_formation_interval ,deltat, &
eSN_help, mSN_help)
end if
edriver= edriver +edriver_help
mdriver= mdriver +mdriver_help
driver26Al=driver26Al+driver26Al_help
driver60Fe=driver60Fe+driver60Fe_help
eSN= eSN+eSN_help
mSN= mSN+mSN_help
end do
end if

#endif

I'ldont forget to call remove_driver in clean_stop (amr/update_time.f90)
else
eSN=0.0_dp
mSN=0.0_dp
deltat=1.e—4 _dp
mdriver = 0.0_dp ! 5.76015d—5«n_stars
edriver = 0.0_dp ! 1.57015d—4«n_stars
driver26Al = 0.0_dp
driver60Fe = 0.0_dp
if (ifgeneva)then
call interpolate_Geneva2011V4 (t,deltat,edriver ,mdriver,driver26Al)
else
call interpolate_driver (t,edriver,mdriver,driver26Al ,driver60Fe)
end if
if (verbose_patches) then
write (x,112)int (rdriver_scaled/dx)
one_over_v_sphere=0.75_dp/r3/pi
one_over_v_sphere=1._dp/get_driver_volume (ilevel)
write (x,117)one_over_v_sphere
end if
end if
I=> energy per driver region is distributed over cells
I V_sphere = pi*xr_driver=%3/0.75
one_over_v_sphere=0.75_dp/r3/pi
one_over_v_sphere=1._dp/get_driver_volume (ilevel)
le=mv*2/2 —> 2e /m
one_over_v_shell=0.75_dp/pi/(r3—(r_driver—deltatxsqrt(edriver«2.0_dp/mdriver)
) %%3)
I injection of the wind of a given number of stars into V_sphere during the last
timestep

#ifdef CARINA
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DtV=deltatxone_over_v_sphere
de =edriver xDtV + eSNxone_over_v_sphere
dm  =mdriver xDtV + mSNxone_over_v_sphere
d26Al=driver26Al«DtV
d60Fe=driver60FexDtV

#else
if (ifgeneva)then

starsDtV=deltatxone_over_v_sphere

de =edriver xstarsDtV | [code—energy/code—length 23]
dm =mdriver xstarsDtV
else
starsDtV=n_starsxdeltatxone_over_v_sphere
de =edriver xstarsDtV + eSNxn_starsxone_over_v_sphere ! [code—energy/code—
length 23]
dm =mdriver xstarsDtV + mSNxn_starsxone_over_v_sphere
end if

d26Al=driver26AlxstarsDtV
d60Fe=driver60FexstarsDtV
#endif
#if DEBUG==2
printx, "dm", dm, "de", de
if (verbose_patches) write (x,114)de
I if (verbose_patches) write (x,113)driver26Alxn_starsxdeltat
#endif
call units(scale_I|,scale_t,scale_d,scale_v,scale_nH,scale_T2)
I Loop over active grids by vector sweeps
ncache=active (ilevel)%ngrid
I if (debug)xx=0.0_dp
do igrid=1,ncache,nvector
ngrid=MIN(nvector ,ncache—igrid+1)
I Loop over cells
do ind=1,twotondim
iskip=ncoarse+(ind —1)xngridmax
weight (:)=0.0_dp
#ifdef EKIN
#if NDIM==2
weightx (:)=0.0_dp
weighty (:)=0.0_dp
call driver_vector(ind,ilevel ,igrid ,ngrid,dx,rdriver_scaled, &

& xdriver ,ydriver ,weightx (1:ngrid) ,weighty (1:ngrid))
#endif
#if NDIM==3

weightx (:)=0.0_dp
weighty (:) =0.0_dp
weightz (:)=0.0_dp
call driver_vector(ind,ilevel ,igrid ,ngrid,dx,rdriver_scaled, &

& xdriver ,ydriver , zdriver , &
& weightx (1:ngrid) ,weighty (1:ngrid) ,weightz (1:ngrid))
#endif
#endif

call driver_weights_fixed(ind,ilevel ,igrid ,ngrid ,dx,weight(1:ngrid))
! call driver_weights (ind,ilevel ,igrid ,ngrid ,dx,rdriver_scaled, &
& xdriver , &
I#if NDIM>1

| & ydriver , &
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l#endif

I#if NDIM>2

& zdriver , &
I#endif

& weight (1:ngrid))

! if (debug)xx=xx+sum(weight(1:ngrid))
do i=1,ngrid
ind_grid=active (ilevel)%igrid (igrid+i—1)
ind_cell=iskip+ind_grid
! decay of 26Al and 60Fe
#ifdef DECAYINTERVAL
I'(use larger timesteps to avoid subtracting a tiny number from a huge number)
if (floor(t/decay_interval).ne.floor ((t+deltat)/decay_interval))then !
decay_interval ends during this time step
! decay of 26Al

uold(ind_cell ,i26al)=uold(ind_cell ,i26al) &
& x2.0_dp*x(—decay_intervalxscale_t/thalf26Al)
! decay of 60Fe
uold(ind_cell ,i60fe)=uold(ind_cell ,i60fe) &
& x2.0_dp*x(—decay_intervalxscale_t/thalf60Fe)
end if
#else
! decay of 26Al
uold(ind_cell ,i26al)=uold(ind_cell ,i26al) &
& x2.0_dp*x(—deltat«(scale_t/thalf26Al))
! decay of 60Fe
uold(ind_cell ,i60fe)=uold(ind_cell ,i60fe) &
& x2.0_dp*x(—deltat«(scale_t/thalf60Fe))
#endif

IDriver region only
!

if (weight(i).gt.0.0_dp)then

! mass
uold(ind_cell ,1)=max(uold(ind_cell ,1)+dmxweight(i),smallr)
#ifdef EKIN
' dE = (dM v)*2 / (2 dM)
I (dM v) = sqrt (dE 2 dM)
I'l pure kinetic energy input (higher momentum)
I momentum_help=sqrt ((dexweight (i)+Ekin_help)*2.0_dpxuold(ind_cell ,1))
I'l use driver—momentum

'l — gas mixture will put unresolved kinetic energy into E_therm
momentum_help=sqrt (de*2.0_dpxdm)xweight (i)
#if DEBUG==2

printx,"wind_speed", momentum_help/dm/weight(i)*xscale_v, "[cm/s]"
#endif
I uold = rho % vx
I (Medm)v_new= M v_old + dM v_new
#if NDIM==
! VX
uold(ind_cell ,2)=uold (ind_cell ,2)+momentum_help
#endif
#if NDIM>1
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! VX
uold(ind_cell ,2)=uold(ind_cell ,2)+weightx (i)+*momentum_help
! vy
uold(ind_cell ,3)=uold(ind_cell ,3)+weighty (i )*momentum_help
#endif
#if NDIM==3
uold(ind_cell ,4)=uold(ind_cell ,4)+weightz (i )x*momentum_help
#endif
#endif
! total energy density
uold(ind_cell ,ndim+2)=uold (ind_cell ,ndim+2)+dexweight (i)
! old energydensity + driver energy density
! don’t subtract E—kin
! uold (,ndim+2) contains e_int+e_Kkin
! uold (ind_cell ,ndim+2)=uold (ind_cell ,ndim+2)+ &
& weight (i)*max(0.0_dp,de—dm/uold(ind_cell ,1)*%x2x0.5_dp= &
& (uold(ind_cell ,2)**x2+uold (ind_cell ,3) xx2))
! 26 Al
uold(ind_cell ,i26al)=uold(ind_cell ;i26al)+d26Alxweight(i)
! 60Fe

uold(ind_cell ,i60fe)=uold(ind_cell ,i60fe )+d60Fexweight (i)
#if defined (THIl) || defined (TMAX) || defined (TMIN)
! Compute T/mu in Kelvin

Ekin_help=(uold(ind_cell ,2)%x2 &
#if NDIM>1
& +uold (ind_cell ,3) xx2 &
#endif
#if NDIM>2
& +uold(ind_cell ,4)xx2 &
#endif
& )*x0.5_dp/uold(ind_cell ,1)
T_help=scale_T2x(gamma—1.0_dp)/uold(ind_cell ,1)
I
#if DEBUG==3
I
! check if kinetic energy is still smaller than total energy
if (Ekin_help.gt.uold(ind_cell ,ndim+2))then
OLD_rho=uold (ind_cell ,1)—dm«weight (i)
OLD_Etot=uold(ind_cell ,ndim+2)—dexweight (i)
OLD_Ekin_help=Ekin_helpxuold (ind_cell ,1)/0OLD_rho
prints,"with_wind:_ekin,etot:" ,Ekin_help, uold(ind_cell ,ndim+2)
prints,"without_wind:_ekin,etot:",OLD_Ekin_help, OLD_Etot
if (OLD_Ekin_help.gt.OLD_Etot)then
uold(ind_cell ,ndim+2)=Ekin_help+T_min_fix/T_help
else
uold (ind_cell ,ndim+2)=0LD_Etot—OLD_Ekin_help+Ekin_help
end if
end if
I
#endif
#ifdef TMIN
! Set Tmin

if ((uold(ind_cell ,ndim+2)—Ekin_help).It.T_min_fix/T_help)then
uold(ind_cell ,ndim+2)=Ekin_help+T_min_fix/T_help
end if
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#endif
#ifdef TMAX
! Set Tmax
if ((uold(ind_cell ,ndim+2)—Ekin_help).gt.T_max/T_help)then
uold(ind_cell ,ndim+2)=Ekin_help+T_max/T_help
end if
#endif
! Set T(driver) to 10.000 K
#ifdef THII
if ((uold(ind_cell ,ndim+2)—Ekin_help).I1t.T_HII/T_help)then
uold(ind_cell ,ndim+2)=Ekin_help+T_HII/T_help
end if
#endif
#endif
#if defined (TMAX) || defined (TMIN)
else
! Compute T/mu in Kelvin
Ekin_help=(uold(ind_cell ,2)*%2 &
#if NDIM>1
& +uold(ind_cell ,3) xx2 &
#endif
#if NDIM>2
& +uold(ind_cell ,4)xx2 &
#endif
& )*0.5_dp/uold(ind_cell ,1)
T_help=scale_T2x(gamma—1.0_dp)/uold(ind_cell ,1)
#if DEBUG==3
|
! check if kinetic energy is still smaller than total energy
if (Ekin_help.gt.uold(ind_cell ,ndim+2))then
print=,"without_wind:_ekin,etot:",Ekin_help, uold(ind_cell ,ndim+2)
uold(ind_cell ,ndim+2)=Ekin_help+T_min_fix/T_help
end if
|
#endif
#ifdef TMIN
! Set Tmin
if ((uold(ind_cell ,ndim+2)—Ekin_help).It.T_min_fix/T_help)then
uold(ind_cell ,ndim+2)=Ekin_help+T_min_fix/T_help
end if
#endif
#ifdef TMAX
! Set Tmax
if ((uold(ind_cell ,ndim+2)—Ekin_help).gt.T_max/T_help)then
uold(ind_cell ,ndim+2)=Ekin_help+T_max/T_help
end if
#endif
#endif
#ifdef EKIN
#if DEBUG==3

if (uold(ind_cell ,ndim+2).1t.Ekin_help)then
printx, "WARNING:_negative_pressure!!" uold(ind_cell ,ndim+2),
Ekin_help
call print_xyz(ind,ilevel ,igrid ,ngrid, dx,i)
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end if
#endif

#endif
!

end if

end do
#if DEBUG==2
driverTest = driverTest+ sum(weight(1:ngrid))=de
#endif
end do
end do
#if DEBUG==2
if (verbose_patches)write(x,115) driverTest, deltat,driverTest/deltat«(0.083
e19_dpxx3)x1.e—17_dp
if (verbose_patches)write (x,116) sum(uold (:,ndim+2))

l'if (debug) print=, "sum of all weights = ", xx

l'if (debug) printx, "pix(r/dx)*4/3 = ", pix(rdriver_scaled/dx)*%3/0.75
lif (debug) prints, "pix(r/dx)*x2 = ", pix(rdriver_scaled/dx)**2

l'if (debug) print=,rdriver_scaled, dx,rdriver_scaled/dx

#endif

I Update boundaries
do ivar=1,nvar
call make_virtual_fine_dp (uold(1,ivar),ilevel)

end do
111 format(’___Entering_wind_fine_for_level_’,12)
112 format(’___Number_of_cells_along_driver_radius: ', 12)
113 format(’__ . New26Al: ', G14.5E4)

115 format(’__ Edriver:_ ', G14.5E4, "dt", G14.5E4, "dE/dt_[erg/s]", Gi14.5E4)
116 format

117 format(’___driver_volume_[1e57_cm3]_:., , G14.5E4)

(

(

(
114 format(’ dE: ', G14.5E4)

(

(’ sum_E: ', G14.5E4)
end subroutine wind_fine

[T

Listing C.8: De-allocation of feedback arrays: update_time.f90

subroutine clean_stop
use amr_parameters, only: n_stars
use amr_commons
use driver
implicit none
#ifndef WITHOUTMPI
include ’'mpif.h’
#endif
integer ::info
#ifndef WITHOUTMPI
call MPI_FINALIZE(info)
#endif
if (n_stars.gt.0.0) then
if (.NOT.ifgeneva)then
call remove_driver
call remove_sn

end if
call deallocate_driver_mask
end if
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stop
end subroutine clean_stop

Listing C.9: Control refinement in the feedback region: flag_utils.f90

#ifdef MAXDRIVERGRID
call geometry_refine(xx,ind_cell ,ok,ngrid ,ilevel ,dx_loc)

#else
call geometry_refine(xx,ind_cell ,ok,ngrid,ilevel)
#endif
#if defined POISSON && ( POISSON > 0 )
end if
#endif

end subroutine poisson_refine

R e
R R R
VSRR
e e e
#ifdef MAXDRIVERGRID

subroutine geometry_refine(xx,ind_cell ,ok, ncell ,ilevel ,dxloc)
use amr_parameters, only: r_driver ,max_driver_grid

#else

subroutine geometry_refine(xx,ind_cell ,ok,ncell ,ilevel)

#endif

#ifdef MAXDRIVERGRID
real (dp) ::dxloc
#endif
if (er<10)then
r=(xnsxer+ynksxer+znxxer)xx(1.0/er)
else
#ifdef IGNOREX
lignore xn to refine only close to x axis
r=max(yn,zn) !don’t refine outside this region
#else
r=max(xn,yn,zn)
#endif
end if
#ifdef MAXDRIVERGRID
I'lrefine at the cloud surface to highest level
lok(i)=ok(i).or.((r < 1.0 + dxloc/rr).and.(r > 1.0 — dxloc/rr)) !cloud
surface
ldriver surface
if(ilevel.le.max_driver_grid)then
ok(i)=ok(i).or.(r < (r_driver + dxloc)/rr)
lelse
I ldon’t refine driver region beyond max_driver grid
I if (r < (r_driver + dxloc)/rr) ok(i)=.false.
end if
#endif
ok(i)=ok(i).and.(r < 1.0) !Don’t refine outside the region. Only refine
inside if also another refinement criterium is met.

Listing C.10: Control the refinement in the feedback region: hydro_flag.f90

#ifdef MAXDRIVERGRID
call geometry_refine(xx,ind_cell ,ok,ngrid,ilevel ,dx_loc)
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#else
call geometry_refine (xx,ind_cell ,ok,ngrid,ilevel)
#endif

Listing C.11: Passive scalars and initial conditions for 26 Al and ®°Fe: hydro_parameters.f90

#ifndef NVAR
integer ,parameter ::nvar=ndim+2+nener+2 | add two passive scalars for 26Al and 60
Fe
#else
integer ,parameter::nvar=NVAR+2 | add two passive scalars for 26Al and 60Fe
#endif
real (dp) ,dimension (1:MAXREGION) :: al_region=0.
real (dp) ::larget=0.1_dp ! largest time step in coarsest grid .. in each smaller
grid factor 0.5 smaller
integer ::i26al=ndim+3
integer ::i60fe=ndim+4
integer ::iloss=ndim+5

Listing C.12: Initial conditions: SPH data, 26 A1 data, triangles: init_flow_fine.f90

#ifdef SPH
use sph, ONLY: read_sph, erase_sph
#endif

#ifdef SPH
integer ::k
#endif
integer::i,icell ,igrid ,ncache,iskip ,ngrid,ilun
#ifdef SPH
logical ::ifsph=.false.
#endif
#ifdef SPH
do k=1,nregion
if (region_type(k) .eq. ’sph’)then
ifsph=.true.
call read_sph(length_x(k),x_center(k),u_region (k) &
#if NDIM>1
& ,length_y (k) ,y_center(k),v_region (k) &
#endif
#if NDIM>2
& ,length_z (k) ,z_center (k) ,w_region (k) &
#endif
& )
end if
end do
#endif
#ifdef SPH
call erase_sph
#endif
VHHHHHHH A A
subroutine region_condinit(x,q,dx,nn)
use amr_parameters
use hydro_parameters
#ifdef SPH
use sph, ONLY: interpolate_sph
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#endif
use random
implicit none
integer ::nn
real (dp) ::dx
real (dp) ,dimension (1:nvector ,1:nvar) ::q
real (dp) ,dimension (1:nvector ,1:ndim) ::x

integer::i,ix,ivar ,k,n_weight
real (dp) ::vol,r,xn,yn,zn,en
real (dp) ::ro,xno,yno,zno, weight, scale

(
real (kind=8) :: help_k8
real (dp) :: help1,help2,help3 !< random coordinates [0:1]
real (dp) :: help4 ,help5
real (dp) ::scale_nH,scale_T2,scale_I|,scale_d,scale_t,scale_v
real (dp) ,parameter :: T_minimum=10._dp
integer ,dimension( IRandNumSize ) :: &

& localseed = (/ 3281, 4041, 595, 2376 /)
integer :: randgridsize = 10000 !< number of points in random subgrid
I regions are overwritten by regions with higher "region index"
I only "point" regions are an overlay
I and (now) edges of "square" regions apply weights if the
I cells are partly inside (parameters of regions with
I lower "region index" are used)
I Set some (tiny) default values in case n_region=0
q(1:nn,1)=smallr
q(1:nn,2)=0.0d0
#if NDIM>1
q(1:nn,3)=0.0d0
#endif
#if NDIM>2
q(1:nn,4)=0.0d0
#endif
g(1:nn,ndim+2)=smallrxsmallc **2/gamma
#if NVAR > NDIM + 2
do ivar=ndim+3,nvar
q(1:nn,ivar)=0.0d0
end do
#endif

! Loop over initial conditions regions
do k=1,nregion
I For "alu" regions only:
if (region_type(k) .eq. ’alu’)then ! region square,en=10
print*,"reading_alu,region=",k
region_type (k) "square"
exp_region(k) = 10

u_region (k) =0.0_dp
#if NDIM>1

v_region (k) =0.0_dp
#endif
#if NDIM>2

w_region (k) =0.0_dp
#endif
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554 var_region(k,i26al-ndim—2) = al_region (k)

555 end if

556 I For "driver" regions only:

557 if (region_type(k) .eq. ’driver’)then ! region square,en=10
558 printx,"reading_alu,region=",k

559 region_type (k) = "square"

560 exp_region(k) =2

561 u_region (k) =0.0_dp

562 |#if NDIM>1

563 v_region (k) =0.0_dp

564 |#endif

565 |#if NDIM>2

566 w_region (k) =0.0_dp

567 |#endif

568 var_region(k,i26al-ndim—2) = al_region (k)

569 end if

570 I For "square" regions only:

571 if (region_type(k) .eq. ’square’) then

572 I Overlap of regions is not checked.

573 ! the second region in the inputfile

574 I will overwrite the first etc...

575 I Exponent of choosen norm

576 en=exp_region (k)

577 if (en<10)then

578 I Conversion factor from user units to cgs units

579 call units(scale_Il,scale_t,scale_d,scale_v,scale_nH,scale_T2)
580 end if

581 do i=1,nn

582 I Compute position in normalized coordinates

583 xn=0.0d0; yn=0.0d0; zn=0.0d0

584 | Inew:

585 | !ro ... distance between the center of the region and the innermost
586 | ! corner of the cell if the ro computed this way is smaller than 1,
587 || but r is larger than 1, the cell lies partly inside the region
588 | ! for cells partly inside the region weights are computed
589 [ !r ... distance between the center of the region and the outermost
590 | ! corner if the r computed this way is larger than 1,

591 | ! the cell lies fully outside the region

592 | !

593 | lold:

594 | Ir distance between the center of the region and the center of
595 || the cell. cells are considdered as either completely

596 | ! inside or completely outside the region

597 ||

598 weights for cells partly inside circular region

|

599 I normalize to r=1 using a factor 2
!
[

600 because length_[xyz] read in is the diameter, not the radius
601 I => xno = (distance to region center + dx/2 )/ region radius
602 scale=2.0d0xdx/length_x (k)

603 xno=(2.0d0xabs(x(i,1)—x_center(k))+dx)/length_x (k)

604 | | xn=(2.0d0xabs(x(i,1)—x_center(k))—dx)/length_x (k)

605 xn=xno—scale

606 if (xn<0.d0.and.xno<0.d0)then

607 help1=abs(xn)

608 xn=abs (xno)
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609 xno=help1

610 end if

611 |#if NDIM>1

612 yno=(2.0d0xabs(x (i ,2)—y_center(k))+dx)/length_y (k)
613 | ! yn=(2.0d0xabs(x(i,2)—y_center(k))—dx)/length_y (k)
614 yn=yno—2.0d0xdx/length_y (k)

615 if (yn<0.d0.and.yno<0.d0)then

616 help1=abs(yn)

617 yn=abs(yno)

618 yno=help1

619 end if

620 |#endif

621 |#if NDIM>2

622 zno=(2.0d0xabs(x(i,3)—z_center(k))+dx)/length_z (k)
623 || zn=(2.0d0xabs(x(i,3)—z_center(k))—dx)/length_z (k)
624 zn=zno—2.0d0xdx/length_z (k)

625 if (zn<0.d0.and.zno<0.d0)then

626 help1=abs(zn)

627 zn=abs(zno)

628 zno=help1

629 end if

630 |#endif

631 I Compute cell "radius" relative to region center
632 if (en<10)then

633 | lnew:

634 | lro ... distance between the center of the region

635 || and the innermost corner of the cell

636 | ! for cells partly inside the regiong weights are computed
637 | !r ... distance between the center of the region

638 | ! and the outermost corner

639 | !

640 | lold:

641 |!r ... distance between the center of the region

642 || and the center of the cell

643 | | cells are considdered as either completely

644 | | inside or completely outside the region

645 ro=(xnkkxen+ynsken+znxxen) xx(1.0/en)

646 r =(xnoxxen+ynoxkxen+znoxxen) xx(1.0/en)

647 else

648 r=max(xn,yn,zn)

649 ro=1.1d0

650 end if

651 I If cell lies within region,

652 I REPLACE primitive variables by region values
653 |#ifdef RANDZELLEN

654 if(r.1t.1.0)then

655 |#else

656 | ! if(ro.le.1.0)then

657 if (((en<10).and.(ro.le.1.0)).or. &
658 | & ((en.ge.10).and.(r.le.1.0)))then

659 |#endif

660 if (en<10)then

661 |! r>ro; 1/r*2 undefined @ r=0

662 q(i,1)=d_region (k)

663 || p/rho = T / scale_T2
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if (p_region(k).It.q(i,1)*T_minimum/scale_T2)then

printx, "init_flow_fine:_ " ,T_minimum
printx, "init_flow_fine:_ ",p_region(k),
& q(i,1)*T_minimum/scale_T2
end if
q(i,ndim+2)=max(p_region (k) ,q(i,1)*T_minimum/scale_T2)

else
q(i,1)=d_region (k)
q(i,ndim+2)=p_region (k)
end if
q(i,2)=u_region (k)

#if NDIM>1
q(i,3)=v_region (k)
#endif
#if NDIM>2
q(i,4)=w_region (k)
#endif
#if NENER>0
do ivar=1,nener
q(i,ndim+2+ivar)=prad_region(k,ivar)
enddo
#endif

#if NVAR>NDIM+2+NENER
! q(i,i26al)=al_region (k)
do ivar=ndim+3+nener,nvar
q(i,ivar)=var_region(k,ivar—ndim—2—nener)
end do
#endif
#ifdef RANDZELLEN
else if((ro.le.1.0).and.(r.gt.1.0))then
I weights for cells partly inside circular region)
n_weight=0
help1=0._dp
help2=0._dp
help3=0._dp
do ix=1,randgridsize
call ranf(localseed,h help_k8)
I => xno = (distance to region center + dx/2 )/ region radius
I radius_x = length_x(k) / 2._dp
help1=xn+dble (help_k8) x2._dpx*dx/length_x (k)

#if NDIM>1
call ranf(localseed , help_k8)
help2=yn+dble (help_k8) xx2._dp=*dx/length_y (k)
#endif
#if NDIM>2
call ranf(localseed ,h help_k8)
help3=zn+dble (help_k8) x2._dp=*dx/length_z (k)
#endif
if ((help1xx2+help2*x2+help3%x2).1t.1.0)then
n_weight=n_weight+1
end if
end do
weight = dble(n_weight)/dble(randgridsize)
#if DEBUG==2

! prints,"weight",weight
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! if (en<10)then

if (weight.gt.1.0)then
if (verbose_patches) printx,"weight=",weight
weight=1.0_dp

end if

if (weight.le.0.0)then
if (verbose_patches)printx,"weight=",weight
weight=0.0_dp

end if
#endif
q(i,1)=q(i,1)*(1.d0—weight)+weightxd_region (k)
if (p_region(k).It.q(i,1)*«T_minimum/scale_T2)then
printx, "init_flow_fine: " ,T_minimum
printx, "init_flow_fine:_ ",p_region(k), &
& q(i,1)*T_minimum/scale_T2
end if
q(i,ndim+2)=q(i,ndim+2)*(1.d0—weight)+weightx &
& max(p_region(k) ,q(i,1)*T_minimum/scale_T2/(gamma—1.0))

lelse cannot enter this part of the loop ro=1.1>1
Ioq(i,1)=q(i,1)=*(1.doO—weight)+weightxd_region (k)
' q(i,ndim+2)=q(i,ndim+2)x*(1.d0—weight)+weightxp_region (k)

lend if
q(i,2)=q(i,2)*(1.do—weight)+weightxu_region (k)
#if NDIM>1
q(i,3)=q(i,3)*(1.d0—weight)+weightxv_region (k)
#endif
#if NDIM>2
q(i,4)=q(i,4)*(1.do—weight)+weightxw_region (k)
#endif
#endif
#if NENER>0
do ivar=1,nener
q(i,ndim+2+ivar)=q(i,ndim+2+ivar) *(1.d0—weight) &
& +weightxprad_region(k,ivar)
enddo
#endif

#if NVAR>NDIM+2+NENER
do ivar=ndim+3+nener,nvar
q(i,ivar)=q(i,ivar)*(1.d0—weight) &
& +weightxvar_region (k, ivar—ndim—2—nener)
end do
#endif
end if
end do
end if
I For "point" regions only:
if (region_type(k) .eq. ’point’)then
I Volume elements
vol=dxxxndim
I Compute CIC weights relative to region center
do i=1,nn
xn=1.0; yn=1.0; zn=1.0
xn=max(1.0—abs(x(i,1)—x_center(k))/dx,0.0_dp)
#if NDIM>1
yn=max(1.0—abs(x(i,2)—y_center(k))/dx,0.0_dp)
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#endif
#if NDIM>2
zn=max(1.0—abs(x (i ,3)—z_center(k))/dx,0.0_dp)
#endif
r=xnxynzn
I If cell lies within CIC cloud,
! ADD to primitive variables the region values
q(i,1)=q(i,1)+d_region(k)x*r/vol
a(i,2)=q(i,2)+u_region(k)=r
#if NDIM>1
aq(i,3)=q(i,3)+v_region(k)=*r
#endif
#if NDIM>2
q(i,4)=q(i,4)+w_region(k)=*r
#endif
q(i,ndim+2)=q(i,ndim+2)+p_region(k)x*r/vol
#if NENER>O
do ivar=1,nener
q(i,ndim+2+ivar)=q(i,ndim+2+ivar)+prad_region(k,ivar)xr/vol
enddo
#endif
#if NVAR>NDIM+2+NENER
do ivar=ndim+3+nener,nvar
q(i,ivar)=var_region (k,ivar—ndim—2—nener)
end do
#endif
end do
end if
#ifdef SPH
I For "sph" regions only:
if (region_type(k) .eq. ’sph’)then
call interpolate_sph(x,q,dx,nn,d_region(k),p_region(k))
end if
#endif
I For "triangle" regions only:
if (region_type(k) .eq. ’triangle ’)then
do i=1,nn
xn=0.0d0; yn=0.0d0; zn=0.0d0
xno=(2.0d0xabs(x(i,1)—x_center(k))+dx)/length_x (k)
xn=xno—2.0d0xdx/length_x (k)
#if NDIM>1
yno=(2.0d0xabs(x (i ,2)—y_center(k))+dx)/length_y (k)
yn=yno—2.0d0xdx/length_y (k)

#endif

#if NDIM>2
zno=(2.0d0xabs(x (i ,3)—z_center(k))+dx)/length_z (k)
zn=zno—2.0d0xdx/length_z (k)

#endif

#if NDIM==
if(xn.le.0.0d0)then

#endif

#if NDIM==2
if (yn.le.xn)then

#endif

#if NDIM==3
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829 if (2.0d0xzn.le.xn+yn)then

830 |#endif

831 q(i,1)=d_region (k)

832 q(i,2)=u_region (k)

833 |#if NDIM>1

834 q(i,3)=v_region (k)

835 |#endif

836 |#if NDIM>2

837 q(i,4)=w_region (k)

838 |#endif

839 q(i,ndim+2)=p_region (k)
840 |#if NENER>O

841 do ivar=1,nener

842 q(i,ndim+2+ivar)=prad_region(k,ivar)
843 enddo

844 |#endif

845 q(i,i26al)=al_region (k)
846 | 1#if NVAR>NDIM+2+NENER

847 || do ivar=ndim+3+nener,nvar
848 || q(i,ivar)=var_region(k,ivar—ndim—2—nener)
849 || end do

850 | l#endif

851 end if

852 end do

853 end if

854 end do

855 return

856 |end subroutine region_condinit

Listing C.13: New module to read-in SPH data: sph.f90

1 |#undef CLARE

2 |#define JIM 1

3 |!> \short read + interpolate sph initial conditions

4 |1

5 |#ifdef JIM

6 | !> \version 1.2 Jim’s initial conditions

7 |#else

8 | I> \version 1.2 Clare’s initial conditions

9 |#endif

10 | !> \author Katharina M. Fierlinger

11 | !> \date last modification 26.03.2011

12 | !

13 | !> \details PURPOSE:

14 | !> \n file_sph ... name of sph initial conditions file

15 | !> \n read the sph initial conditions from a file called "file_sph" in the local
dir

16 | !

17 | !> \n sph file contents:
18 |#ifdef JIM

19 | !> \n column 1: x (0.1 pc)
20 [ !> \n column 2: y (0.1 pc)
21 | !> \n column 3: z (0.1 pc)
22 | !> \n column 4: vx (2.0748E+04 cm/s)
23 | !> \n column 5: vy (2.0748E+04 cm/s)
24 | !> \n column 6: vz (2.0748E+04 cm/s)
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I> \n column 7: density (6.7746E—20 g/cm”3)
I> \n column 8: temperature (K)
I> \n column 9: smoothing length (0.1 pc)
#else
I> \n column 1: x (kpc)
I> \n column 2: y (kpc)
I> \n column 3: z (kpc)
I> \n column 4: vx (km/s)
I> \n column 5: vy (km/s)
I> \n column 6: vz (km/s)
I> \n column 7: density (10"—24 cm-3)
I> \n column 8: temperature (K)
I> \n column 9: smoothing length (kpc)
#endif
|
module sph
use amr_parameters, only : dp, file_sph
implicit none
save ! retain the value of the variables from one call to the next
integer , parameter :: i9 = selected_int_kind(r=9) !< integer type definition
integer(i9) :: nsph = 0_i9 !< number of sph particles where part of the
smoothing length is inside the box
real (dp), dimension(:), allocatable, private :: x_sph I< array
containing sph x coordinate [code units]
real(dp), dimension(:), allocatable, private :: vx_sph l< array
containing sph x velocity [code units]
#if NDIM>1
real (dp), dimension(:), allocatable, private :: y_sph I< array
containing sph y coordinate [code units]
real(dp), dimension(:), allocatable, private :: vy_sph l< array
containing sph y velocity [code units]
#endif
#if NDIM>2
real (dp), dimension(:), allocatable, private :: z_sph l< array
containing sph z coordinate [code units]
real(dp), dimension(:), allocatable, private :: vz_sph l< array
containing sph z velocity [code units]
#endif
real (dp), dimension(:), allocatable, private :: T_sph I< array
containing sph temperature [code units]
real (dp), dimension(:), allocatable, private :: rho_sph l< array
containing sph density [code units]
real (dp), dimension(:), allocatable, private :: smoothing_sph !< array
containing sph smoothing length [code units]
contains
I subroutine read_sph
I> \short read sph initial conditions
|
I> \version 1.0
I> \author Katharina M. Fierlinger
I> \date last modification 26.03.2011
|
!> \details PURPOSE:
I> \n file_sph ... name of sph initial conditions file
I> \n read the sph initial conditions from a file called "file_sph" in the local
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dir

I> \n sph file contents:
#ifdef JIM

I> \n column 1: x (0.1 pc)

I> \n column 2: y (0.1 pc)

I> \n column 3: z (0.1 pc)

I> \n column 4: vx (2.0748E+04 cm/s)

I> \n column 5: vy (2.0748E+04 cm/s)

I> \n column 6: vz (2.0748E+04 cm/s)

I> \n column 7: density (6.7746E—20 g/cm”3)
I> \n column 8: temperature (K)

I> \n column 9: smoothing length (0.1 pc)
#else

I> \n column 1: x (kpc)

I> \n column 2: y (kpc)

I> \n column 3: z (kpc)

I> \n column 4: vx (km/s)

I> \n column 5: vy (km/s)

I> \n column 6: vz (km/s)

I> \n column 7: density (10*"—24 cm—3)

I> \n column 8: temperature (K)

I> \n column 9: smoothing length (kpc)

#endif

|
I subroutine read_sph_claresmooth(x_length ,x_center,vx_center
subroutine read_sph(x_length,x_center,vx_center
#if NDIM>1
& ,¥_length ,y_center,vy_center
#endif
#if NDIM>2
& ,z_length ,z_center,vz_center
#endif
& )
implicit none
> region size, location and bulk velocity
real (dp), intent(in)::x_length I< region width
real (dp), intent(in)::x_center I< region center
real (dp), intent(in)::vx_center !< bulk speed
#if NDIM>1
real(dp), intent(in)::y_length I< region width
real (dp), intent(in)::y_center I< region center
real (dp), intent(in)::vy_center !< bulk speed
#endif
#if NDIM>2
real(dp), intent(in)::z_length I!< region width
real (dp), intent(in)::z_center !< region center
real (dp), intent(in)::vz_center !< bulk speed
#endif
I> counters + error handling

integer(i9) :: nlines = 0_i9 !< number of lines read from driver
integer (i9) :: ii = 1_i9 !< for do loop
integer(i9) :: ifEOF = 0_i9 !< checks when the end of the file

I> units + conversion factors
real (dp) :: scale_dist, scale_dens, scale_vel

file

is reached
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real (dp) :: scale_l,scale_t,scale_d,scale_v,scale_nH,scale_T2 !< conversion
factors between cgs and user units (subroutine units in units.f90)
real (dp) :: coll,col2,col3,col4,col5,col6,col7,col8,col9 !< reads data from
the 9 columns in the input file
#ifdef JIM
real (dp), parameter :: DeciPcToCm = 3.08568025e17_dp !< convert 0.1 pc to cm;
1 pc = 3.08568025e18 cm
real (dp), parameter :: VelocityToCgs = 2.0748e4_dp l< convert to cm/s
real (dp), parameter :: DensToCgs = 6.7746e—20_dp l< convert to g/cm3
#else
real (dp), parameter :: KpcToCm = 3.08568025e21_dp !< convert kpc to cm; 1 kpc
= 3.08568025e21 cm

real(dp), parameter :: KmToCm = 1e5_dp l< convert km to cm
real (dp), parameter :: DensToCgs = 1e—24_dp l< convert 10"—24 g/cm3 to g
/cm3

#endif

I> local variables: test if sph particle is close enough to the region to be
relevant
real(dp) :: x_help, x_max, smoothing_length

#if NDIM>1
real (dp) :: y_help, y_max

#endif

#if NDIM>2
real(dp) :: z_help, z_max

#endif

call units(scale_l,scale_t,scale_d,scale_v,scale_nH,scale_T2)
#ifdef JIM
scale_dist=DeciPcToCm/scale_|
scale_vel=VelocityToCgs/scale_v
#else
scale_dist=KpcToCm/scale_|
scale_vel=KmToCm/scale_v
#endif
scale_dens=DensToCgs/scale_d
open (1,file=TRIM(file_sph) ,form="formatted’)
printx,"Reading_sph_data_from_>>", TRIM(file_sph), "<<,."

—

nsph = 0_i9

nlines = 0_i9

ifEOF = 0_i9

x_max = 0.5_dp=*x_length
#if NDIM>1

y_max = 0.5_dpx*y_length
#endif
#if NDIM>2

z max = 0.5_dpxz_length
#endif

do

read(1,*,IOSTAT=ifEOF) col1,col2,co0l3,col4,col5,col6,col7,col8,col9
smoothing_length=col9xscale_dist
x_help=abs(col1xscale_dist+x_center—x_max)—smoothing_length

#if NDIM>1
y_help=abs(col2xscale_dist+y_center—y_max)—smoothing_length

#endif

#if NDIM>2
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z_help=abs(col3xscale_dist+z_center—z_max)—smoothing_length
#endif
lhelp ... box contains values in [—xyz_max:xyz_max]
if (fEOF.I1t.0_i9) then
exit ! eof is reached, jump out of the do—loop
end if
nlines=nlines+1
if (x_help.le.x_max) then
! if (abs(x_help).le.x_length) then
#if NDIM>1
if (y_help.le.y _max) then
! if (abs(y_help).le.y_length) then
#endif

#if NDIM>2
if (z_help.le.z_max) then
! if (abs(z_help).le.z_length) then
#endif
nsph=nsph+1
#if NDIM>2
! else
! printx, z_help, z_length
end if
#endif
#if NDIM>1
! else
! printx, y_help, y_length
end if
#endif
! else
! printx, x_help, x_length
end if
end do

print«,"found_",nlines, "_lines_in_sph_file"
printx,"selected_" ,nsph, "_particles"
rewind (1)
call allocate_sph
ifEOF = 0_i9
nsph = 0_i9
do ii=1,nlines
read (1,x*,IOSTAT=ifEOF) col1,col2,col3,col4,col5,co0l6,col7,col8,col9
smoothing_length=col9xscale_dist
x_help=abs(col1xscale_dist+x_center—x_max)—smoothing_length
#if NDIM>1
y_help=abs(col2xscale_dist+y_center—y_max)—smoothing_length
#endif
#if NDIM>2
z_help=abs(col3xscale_dist+z_center—z_max)—smoothing_length
#endif
if (fEOF.1t.0_i9) then
exit ! eof is reached, jump out of the do—loop
end if
nlines=nlines+1
if (x_help.le.x_max) then
! if (abs(x_help).le.x_length) then
#if NDIM>1
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if (y_help.le.y _max) then
! if (abs(y_help).le.y_length) then
#endif

#if NDIM>2
if (z_help.le.z_max) then

! if (abs(z_help).le.z_length) then

#endif
nsph=nsph+1
smoothing_sph(nsph)=col9xscale_dist
x_sph(nsph)=col1xscale_dist+x_center
vx_sph(nsph)=(col4—vx_center)xscale_vel
T_sph(nsph)=col8/scale_T2
rho_sph(nsph)=col7xscale_dens

#if NDIM>1
y_sph(nsph)=col2xscale_dist+y_center
vy_sph(nsph)=(col5—vy_center)xscale_vel

#endif

#if NDIM>2
z_sph(nsph)=col3xscale_dist+z_center
vz_sph(nsph)=(col6—vz_center)xscale_vel

#endif

#if NDIM>2

end if
#endif
#if NDIM>1
end if
#endif
end if
end do
close (1)

printx,"selected_" ,nsph, "_particles"
end subroutine read_sph
I end subroutine read_sph_claresmooth
I subroutine read_sph_anysmooth

I> \short read sph initial conditions; user defined smoothing length
!

I> \version 1.0
I> \author Katharina M. Fierlinger

I> \date last modification 26.03.2011
|

!> \details PURPOSE:

I> \n file_sph ... name of sph initial conditions file
I> \n read the sph initial conditions from a file called "file_sph"
dir

in the

I> \n sph file contents:
#ifdef JIM

I> \n column x (0.1 pc)
I> \n column y (0.1 pc)
I> \n column z (0.1 pc)
I> \n column vx (2.0748E+04 cm/s)

I> \n column
I> \n column
I> \n column
I> \n column

(
vy (2.0748E+04 cm/s)
vz (2.0748E+04 cm/s)
density (6.7746E—20 g/cm”3)
temperature (K)

ONO O WN =

local
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I> \n column 9: smoothing length (0.1 pc)

#else

I> \n column 1: x (kpc)

I> \n column 2: y (kpc)

I> \n column 3: z (kpc)

I> \n column 4: vx (km/s)

I> \n column 5: vy (km/s)

I> \n column 6: vz (km/s)

I> \n column 7: density (10"—24 cm-3)

I> \n column 8: temperature (K)

I> \n column 9: smoothing length (kpc)

#endif

|

I subroutine read_sph(x_length ,x_center,vx_center &
subroutine read_sph_anysmooth(x_length,x_center,vx_center &

#if NDIM>1

& ,y_length ,y_center,vy_center &

#endif

#if NDIM>2

& ,z_length ,z_center,vz_center &

#endif

& )

implicit none
I> region size, location and bulk velocity
real (dp), intent(in)::x_length < region width
real (dp), intent(in)::x_center I< region center
real (dp), intent(in)::vx_center !< bulk speed
#if NDIM>1
real (dp), intent(in)::y_length !< region width
real (dp), intent(in)::y_center !< region center
real (dp), intent(in)::vy_center !< bulk speed
#endif
#if NDIM>2
real (dp), intent(in)::z_length !< region width
real(dp), intent(in)::z_center I< region center
real (dp), intent(in)::vz_center !< bulk speed

#endif
I> counters + error handling
integer(i9) :: nlines = 0_i9 !< number of lines read from driver file
integer (i9) :: i = 1_i9 !< for do loop
integer(i9) :: ifEOF = 0_i9 !< checks when the end of the file is reached
I> units + conversion factors
real (dp) :: scale_dist, scale_dens, scale_vel
real (dp) :: scale_l,scale_t,scale_d,scale_v,scale_nH,scale_T2 !< conversion
factors between cgs and user units (subroutine units in units.f90)
real (dp) :: coll,col2,col3,col4,col5,col6,col7,col8,col9 !< reads data from
the 8 columns in the input file
#ifdef JIM

real (dp), parameter :: DeciPcToCm = 3.08568025e17_dp !< convert 0.1 pc to cm;
1 pc = 3.08568025e18 cm
real (dp), parameter :: VelocityToCgs = 2.0748e4_dp l< convert to cm/s
real (dp), parameter :: DensToCgs = 6.7746e—20_dp l< convert to g/cm3
#else
real (dp), parameter :: KpcToCm = 3.08568025e21_dp !< convert kpc to cm; 1 kpc
= 3.08568025e21 cm
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real (dp), parameter :: KmToCm = 1e5_dp l< convert km to cm
real(dp), parameter :: DensToCgs = 1e—24 dp l< convert 10"—24 g/cm3 to ¢
/cm3

#endif

I> local variables: test if sph particle is close enough to the region to be
relevant
real (dp) :: x_help, smoothing_length ,x_max

#if NDIM>1
real(dp) :: y_help,y_max

#endif

#if NDIM>2
real (dp) :: z_help,z_max

#endif

call units(scale_I,scale_t,scale_d,scale_v,scale_nH,scale_T2)
#ifdef JIM
scale_dist=DeciPcToCm/scale_|
scale_vel=VelocityToCgs/scale_v
#else
scale_dist=KpcToCm/scale_|
scale_vel=KmToCm/scale_v
#endif
scale_dens=DensToCgs/scale_d
open (1,file=TRIM(file_sph),form="formatted’)
print x,"Reading_sph_data_from_>>", TRIM(file_sph), "<<_."

—

nsph = 0_i9

nlines = 0_i9

ifEOF = 0_i9

x_max = 0.5_dpxx_length
#if NDIM>1

y_max = 0.5_dpxy_length
#endif
#if NDIM>2

z_max = 0.5_dpxz_length
#endif

do ! count number of lines inside the file
read(1,x*,lIOSTAT=IifEOF) col1,col2,col3,col4,col5,col6,col7,col8,col9
if (IfEOF.I1t.0_i9) then
exit ! eof is reached, jump out of the do—loop

end if
nlines=nlines+1
end do

nsph=nlines

printx,"found_",nlines, " _lines_in_sph_file"

printx,"selected_" ,nsph, "_particles"”

rewind (1)

call allocate_sph

ifEOF = 0_i9

nsph = 0_i9

do ii=1,nlines
read (1,x*,IOSTAT=ifEOF) col1,col2,col3,col4,col5,co0l6,col7,col8,col9
smoothing_length=col9xscale_dist
x_help=abs(col1xscale_dist+x_center—x_max)—smoothing_length

#if NDIM>1

y_help=abs(col2xscale_dist+y_center—y_max)—smoothing_length
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#endif
#if NDIM>2
z_help=abs(col3xscale_dist+z_center—z_max)—smoothing_length
#endif
if (fEOF.1t.0_i9) then
exit ! eof is reached, jump out of the do—loop
end if
nlines=nlines+1
nsph=nsph+1
smoothing_sph(nsph)=col9xscale_dist
x_sph(nsph)=col1xscale_dist+x_center
vx_sph(nsph)=(col4—vx_center)xscale_vel
T_sph(nsph)=col8/scale_T2
rho_sph(nsph)=col7xscale_dens
#if NDIM>1
y_sph(nsph)=col2xscale_dist+y_center
vy_sph(nsph)=(col5—vy_center)xscale_vel

#endif
#if NDIM>2
z_sph(nsph)=col3xscale_dist+z_center
vz_sph(nsph)=(col6—vz_center)xscale_vel
#endif
end do
close (1)

printx,"selected_" ,nsph, "_particles"
printx,"calling_calc_smoothing_length"

#if NDIM==

call calc_smoothing_length(x_max,0.5_dp,0.5_dp)
#endif
#if NDIM==2

call calc_smoothing_length (x_max,y max,0.5_dp)
#endif
#if NDIM==3

call calc_smoothing_length (x_max,y_max,z_max)
#endif

lend subroutine read_sph

end subroutine read_sph_anysmooth
I subroutine allocate_sph
I> \short allocates sph arrays
!
I> \version 1.0
I> \author Katharina M. Fierlinger
I> \date last modification 26.03.2011
|
I> \details PURPOSE:

I> \n allocate sph arrays
!

subroutine allocate_sph

implicit none

I> error handling
integer(i9) :: error_alloc !< checks if memory allocation works
allocate (x_sph(1:nsph) ,stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then

stop ’exiting: _allocation_of_memory_for_x_sph_did_not_work’

end if
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allocate (vx_sph(1:nsph),stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then

stop ’exiting:_allocation_of_memory_for_vx_sph_did_not_work
end if

#if NDIM>1
allocate (y_sph(1:nsph),stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_y_sph_did_not_work’
end if
allocate (vy_sph(1:nsph),stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_vy_sph_did_not_work’
end if
#endif
#if NDIM>2
allocate (z_sph(1:nsph),stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_z_sph_did_not_work’
end if
allocate (vz_sph(1:nsph),stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then
stop ’exiting:_allocation_of_memory_for_vz_sph_did_not_work’
end if
#endif

allocate (T_sph(1:nsph) ,stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then

stop ’exiting:_allocation_of_memory_for_T_sph_did_not_work’
end if
allocate (rho_sph(1:nsph),stat=error_alloc) ! in code—time—units
if (error_alloc /= 0) then

stop ’'exiting:_allocation_of_memory_for_rho_sph_did_not_work’
end if

allocate (smoothing_sph (1:nsph),stat=error_alloc) ! in code—time—units

if (error_alloc /= 0) then

stop ’'exiting:_allocation_of_memory for_smoothing_sph_did_not_work’

end if

end subroutine allocate_sph
I subroutine erase

>
!

\short deallocates sph arrays

>
>
I>
!

\version 1.0
\author Katharina M. Fierlinger
\date last modification 26.03.2011

>
>
!

\details PURPOSE:
\n deallocate sph arrays

subroutine erase_sph

implicit none

deallocate (x_sph) l< array containing sph x coordinate [code

deallocate (vx_sph) l< array containing sph x velocity [code
#if NDIM>1

deallocate (y_sph) l< array containing sph y coordinate [code

deallocate (vy_sph) l< array containing sph y velocity [code
#endif

units]
units]

units ]
units ]
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#if NDIM>2
deallocate (z_sph) l< array containing sph z coordinate [code units]
deallocate (vz_sph) l< array containing sph z velocity [code units]
#endif
deallocate (T_sph) l< array containing sph temperature [code units]
deallocate (rho_sph) l< array containing sph density [code units]

deallocate (smoothing_sph) !< array containing sph smoothing length [code units

]

end subroutine erase_sph

I subroutine interpolate_sph

I> \short interpolates sph initial conditions onto grid
|

I> \version 1.0

I> \author Katharina M. Fierlinger

I> \date last modification 26.03.2011

I

I> \details PURPOSE:

I> \n interpolate sph initial conditions onto grid

I> e.g. velocities are interpolated like

I> \f$v_j=\sum_i v_i \frac{m_i w\left (\left |[\vec{r}_{i}—\vec{r} {j}\right]|,h_i\
right) }{\rho_i}\{$

I> with

I> \f$h\f$ ... smoothing length

I> \f$\vec{r}_i, \vec{r}_j\f$ ... location of SPH particles

I> \f$m_i\f$ ... mass of the SPH particle (here 2500 solar masses)

I> \f$\rho_i\f$ ... density of the SPH particle

I> \f$w\left (\left [\vec{r_i}—\vec{r_j}\right|,h_i\right)\f$ ... kernel function

I> \f$w\left (\left |[\vec{r_i}—\vec{r_j}\right|,h_i\right)=\left\{\begin{array}{cl}
\frac{4 — 6 v*2 + 3 v*3}{4 \pi h_i"3}, & \mbox{for }\left|\vec{r_i}—\vec{r_j}\
right|<h_i\\ \frac{\left(2—v\right)*3}{4 \pi h_i"3}, & \mbox{for }h_i \le \
left |\vec{r_i}—\vec{r_j}\right|<2 h_i \\ 0, & \mbox{else} \end{array}\right. \
f$

subroutine interpolate_sph(x,q,dx,nn,d_region,p_region)
use poisson_parameters, only : ndim
use hydro_parameters, only : nvar, nvector
implicit none
integer , intent(in
real(dp), intent(in

)::nn l< size of vector sweep
) ::dx < cell size
real (dp) ,dimension (1:nvector ,1:nvar), intent(inout)::q !< primitive variables
real (dp) ,dimension (1:nvector,1:ndim), intent(in)::x l< coordinates
real (dp), intent(in)::d_region !< background density (hot medium)
)

)
)
)
) n
real (dp), intent(in)::p_region !< background pressure (hot medium)
(
(
)
)

integer(i9) :: ii = 1_i9 !< for do loop
integer(i9) :: jj = 1_i9 I< for do loop
real (dp vx_help, x_help, rho_help, p_help, T_help, r, ufac
real (dp r_smooth, kernel_weight ,smoothing_length ,smoothing_length3pi
#if NDIM>1
real (dp) :: vy_help, y_help
#endif
#if NDIM>2
real (dp) :: vz_help,z_help
#endif

real (dp) :: scale_l,scale_t,scale_d,scale_v,6scale_nH,scale_T2 !< conversion
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factors between cgs and user units (subroutine units in units.f90)

545 real (dp), parameter :: pi = DACOS(—1.D0)

546 |#ifdef JIM

547 real (dp) ,parameter :: m_part_g = 2e—3 dpx1.98892e33 dp ! m_sph_particle in g

548 |#else

549 real (dp) ,parameter :: m_part_g = 2500._dpx*1.98892e33_dp ! m_sph_particle in g

550 |#endif

551 real(dp) :: m_part,rho_part | m_sph_particle in g

553

553 call units(scale_I,scale_t,scale_d,scale_v,scale_nH,scale_T2)

554 m_part=m_part_g/scale_d/scale_I««x3 | m_sph_particle in code units

555 rho_part=m_part/dxxx3 | density corresponding to a single m_sph_particle a
cell in code units

556 | ! q(:,1)=d_region

557 do ii=1,nsph

558 smoothing_length3pi=1._dp/(smoothing_sph(ii)*x3)/pi

559 if (smoothing_sph(ii).lt.0.5%xdx)then

560 gloop: do jj=1,nn

561 if (abs(x(jj,1)—x_sph(ii)).It.0.5%dx)then

562 |#if NDIM>1

563 if (abs(x(jj,2)—y_sph(ii)).It.0.5xdx)then

564 |#endif

565 |#if NDIM>2

566 if (abs(x(jj,3)—z_sph(ii)).It.0.5%xdx)then

567 |#endif

568 vx_help=vx_sph(ii)

569 |#if NDIM>1

570 vy_help=vy_sph(ii)

571 |#endif

572 |#if NDIM>2

573 vz_help=vz_sph(ii)

574 |#endif

575 I> \var scale_T2 ... converts (P/rho) in user unit into (T/mu) in

Kelvin (mu: molar mass)

576 p_help=T_sph(ii)*rho_part

577 I ADD to primitive variables the region values

578 I mass weighted velocity (momentum conservation)

579 a(jj ,2)=q(jj ,2)*q(jj ,1)+vx_helpxrho_part

580 |#if NDIM>1

581 q(jj »3)=q(jj ,3)*q(jj ,1)+vy_helpxrho_part

582 |#endif

583 |#if NDIM>2

584 a(jj ,4)=q(jj ,4)=*q(jj ,1)+vz_helpxrho_part

585 |#endif

586 | pressure

587 if ((q(jj ,ndim+2).1t.p_region*1.000001_dp).and.(q(jj,1).I1t.d_region

x1.000001_dp) ) then

588 q(jj ;ndim+2)=max(p_help,p_region)

589 else

590 q(jj ,ndim+2)=q(jj ,ndim+2)+p_help

591 end if

592 q(jj ,1)=q(jj ,1)+rho_part

593 a(ij,2)=a(jj.2)/a(jj 1)

594 |#if NDIM>1

595 a(jj,3)=a(jj.3)7a(jj.1)
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#endif
#if NDIM>2
a(jj.4)=a(jj.4)/a(jj.1)
#endif
#if DEBUG==2
printx, "density,_pressure", rho_part, p_help
prints, "x,_vx", x_sph(ii), vx_help
#if NDIM>1
prints, "y, vy", vy _sph(ii), vy_help
#endif
#if NDIM>2
printx, "z, vz", z_sph(ii), vz_help
#endif
#endif
exit qgloop
#if NDIM>1
end if
#endif
#if NDIM>2
end if
#endif
end if
end do qgloop
else
do jj=1,nn
r=abs(x(jj ,1)—x_sph(ii))
#ifdef JIM
if(r.It.2.0xsmoothing_sph(ii))then
#else
Pif(r.1t.2.0xsmoothing_sph(ii))then
#endif
#if NDIM>1
r=rxr+((x(jj,2)=y_sph(ii))x*xx2)
#endif
#if NDIM>2
r=r+((x(jj,3)—z_sph(ii))x*%x2)
#endif
#if NDIM>1
r=sqrt(r)
#endif

r_smooth=r/smoothing_sph(ii)
if ((r_smooth.gt.2).and.(r.le.0.5xdx))print*, r, smoothing_sph(ii),
r_smooth,0.5xdx
if (r_smooth.It.2._dp)then
ISPH kernel
if (r_smooth.It.1._dp)then
kernel_weight=(1._dp—1.5_dpxr_smoothxr_smooth+
&
& 0.75_dpxr_smoothxr_smoothxr_smooth)x
smoothing_length3pi
else if (r_smooth.It.2._dp)then
kernel_weight=0.25_dp*((2._dp—r_smooth) *x3)xsmoothing_length3pi
end if
rho_help=kernel_weightxm_part
ufac=rho_help/rho_sph(ii)
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I'printx, kernel_weight,ufac,rho_help,rho_sph(ii)
I'stop
vx_help=ufac*vx_sph(ii)

#if NDIM>1
vy_help=ufacxvy_sph(ii)
#endif
#if NDIM>2
vz_help=ufacx*vz_sph(ii)
#endif
I> \var scale_T2 ... converts (P/rho) in user unit into (T/mu) in
Kelvin (mu: molar mass)
p_help=T_sph(ii)*rho_help
| ADD to primitive variables the region values
I mass weighted velocity (momentum conservation)
q(ij .2)=q(jj ,2)*q(jj ,1)+vx_helpxrho_help
#if NDIM>1
a(jj.3)=a(jj,3)*a(jj,1)+vy_helpxrho_help
#endif
#if NDIM>2
q(jj .4)=q(jj ,4)*q(jj ,1)+vz_helpxrho_help
#endif
| pressure
if ((q(jj,ndim+2).1t.p_regionx1.000001_dp).and.(q(jj,1).It.d_region
x1.000001_dp) ) then
q(jj ,ndim+2)=max(p_help,p_region)
else
q(jj ,ndim+2)=q(jj ,ndim+2)+p_help
end if
a(jj.1)=a(jj,1)+rho_help
a(ii.2)=a(jj.2)/a(jj 1)
#if NDIM>1
a(ij.3)=a(jj.3)/a(jji.1)
#endif
#if NDIM>2
a(ii.4)=a(jj ,4)/a(jj 1)
#endif
#if DEBUG==2
printx, "density,_pressure", rho_help, p_help
printx, "x,_vx", x_sph(ii), vx_help
#if NDIM>1
printx, "y, vy", y_sph(ii), vy_help
#endif
#if NDIM>2
printx, "z, vz", z_sph(ii), vz_help
#endif
#endif
#ifdef JIM
end if
#else
lend if
#endif
end if
end do
end if
end do
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end subroutine interpolate_sph

I subroutine sum_sph

I> \'short sums sph particles per grid cell. no smoothing.

|

I> \version 1.0

I> \author Katharina M. Fierlinger

I> \date last modification 26.03.2011

|

I> \details PURPOSE:

I> \n interpolate sph initial conditions onto grid

I> e.g. velocities are interpolated like

I> \f$v_j=\sum_i v_i \frac{m_i w\left (\left|\vec{r}_{i}—\vec{r}_{j}\right]|,h_i\
right) }{\rho_i}\{$

I> with

I> \f$h\f$ ... smoothing length

I> \f$\vec{r} i, \vec{r}_j\f$ ... location of SPH particles

I> \f$m_i\f$ ... mass of the SPH particle (here 2500 solar masses)

I> \f$\rho_i\f$ ... density of the SPH particle

I> \f$w\ left (\left [\vec{r_i}—\vec{r_j}\right|,h_i\right)\f$ ... kernel function

I> \f$w\left (\left |\vec{r_i}—\vec{r_j}\right|,h_i\right)=\left\{\begin{array}{cl}
\frac{4 — 6 v*2 + 3 v*3}{4 \pi h_i"3}, & \mbox{for }\left|\vec{r_i}—\vec{r_j}\
right|<h_i\\ \frac{\left(2—v\right)"3}{4 \pi h_i*"3}, & \mbox{for }h_i \le \
left |[\vec{r_i}—\vec{r_j}\right|<2 h_i \\ 0, & \mbox{else} \end{array}\right. \
f$

subroutine sum_sph(x,q,dx,nn,d_region,p_region)
use poisson_parameters, only : ndim
use hydro_parameters, only : nvar, nvector
implicit none
integer , intent(in)::nn l< size of vector sweep

real (dp), intent(in)::dx !< cell size
real (dp) ,dimension (1:nvector ,1:nvar), intent(inout)::q !< primitive variables
real (dp) ,dimension (1:nvector ,1:ndim), intent(in) ::x l< coordinates
real (dp), intent(in)::d_region !< background density (hot medium)
real (dp), intent(in)::p_region !< background pressure (hot medium)
integer(i9) :: ii = 1_i9 I< for do loop
integer(i9) :: jj = 1_i9 !< for do loop
real (dp) :: vx_help, x_help, rho_part, p_help, T_help, r, ufac
real (dp) r_smooth, kernel_weight ,smoothing_length ,smoothing_length3pi
#if NDIM>1
real(dp) :: vy_help, y_help
#endif
#if NDIM>2
real (dp) :: vz_help,z_help
#endif
real (dp) :: scale_Il,scale_t,scale_d,scale_v,scale_nH,scale_T2 !< conversion

factors between cgs and user units (subroutine units in units.f90)
real (dp), parameter :: pi = DACOS(—1.D0)
real (dp), parameter :: m_part_g = 2e—3 dpx1.98892e33_dp ! m_sph_particle in g
real(dp) :: m_part | m_sph_particle in g

call units(scale_l,scale_t,scale_d,scale_v,scale_nH,scale_T2)
! q(:,1)=d_region
rho_part=m_part_g/scale_d/scale_I|*x3/dxxx3 | m_sph_particle in code units
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do ii=1,nsph
smoothing_length3pi=1._dp/(smoothing_sph(ii)*x3)/pi
gloop: do jj=1,nn
if (abs(x(jj,1)—x_sph(ii)).lt.0.5xdx)then

into (T/mu) in

#if NDIM>1
if (abs(x(jj,2)—y_sph(ii)).It.0.5%xdx)then
#endif
#if NDIM>2
if (abs(x(jj,3)—z_sph(ii)).It.0.5xdx)then
#endif
vx_help=vx_sph(ii)
#if NDIM>1
vy_help=vy_sph(ii)
#endif
#if NDIM>2
vz_help=vz_sph(ii)
#endif
I> \var scale_T2 ... converts (P/rho) in user unit
Kelvin (mu: molar mass)
p_help=T_sph(ii)*rho_part
I ADD to primitive variables the region values
I mass weighted velocity (momentum conservation)
q(ji,2)=q(jj ,2)*q(jj ,1)+vx_help*xrho_part
#if NDIM>1
a(ji.3)=a(jj .3)*q(jj ,1)+vy_helpxrho_part
#endif
#if NDIM>2
q(jj ,4)=q(jj ,4)*q(jj ,1)+vz_help*xrho_part
#endif
| pressure
if ((q(jj,ndim+2).1t.p_region*1.000001_dp).and.(q(jj,1).1t.d_region
%1.000001_dp) ) then
q(jj ,ndim+2)=max(p_help,p_region)
else
q(jj ,ndim+2)=q(jj ,ndim+2)+p_help
end if
a(jj,1)=a(jj ,1)+rho_part
a(jj,2)=a(jj.2)/a(jj,1)
#if NDIM>1
a(ji,3)=a(jj.3)/a(jj 1)
#endif
#if NDIM>2
a(jj.4)=a(jj .4)/a(jj 1)
#endif
#if DEBUG==2
printx, "density, _pressure", rho_part, p_help
prints, "x,_vx", x_sph(ii), vx_help
#if NDIM>1
prints, "y, vy", y_sph(ii), vy_help
#endif
#if NDIM>2
print, "z, vz", z_sph(ii), vz_help
#endif
#endif

exit qloop
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#if NDIM>1
end if
#endif
#if NDIM>2
end if
#endif
end if
end do qgloop
end do
end subroutine sum_sph

I> \short calculates how many neighbours can be found inside a given smoothing
length

!

I> \version 1.0

I> \author Katharina M. Fierlinger

I> \date last modification 27.03.2011

|

I> \details PURPOSE:

I> \n calculates how many neighbours can be found inside a given smoothing length
!

subroutine count_neighbours(x_max,y_max,z_max)
implicit none

integer (i9) :: ii = 1_i9 I< for do loop: loop over particles
integer(i9) :: jj = 1_i9 I< for do loop: loop over neighbours
integer(i9) :: n_neighbour_ii = 1_i9 !< particles inside the smoothing length
of particle ii
real(dp) :: r < distance between SPH particle ii and jj
real (dp) :: x_max,y_max,z_max
#if DEBUG==2
printx, "counting_neighbours"
#endif
do ii=1,nsph ! loop over SPH particles

n_neighbour_ii = 0_i9
if (abs(x_sph(ii)).le.x_max)then
if (abs(y_sph(ii)).le.y _max)then

#if NDIM>2
if (abs(z_sph(ii)).le.z_max)then
#endif
do jj=1,nsph ! loop over neighbours
r=abs(x_sph(jj)—x_sph(ii))
#if NDIM>1
r=rxr+((y_sph(jj)—y_sph(ii))*x2)
#endif
#if NDIM>2
r=r+((z_sph(jj)—z_sph(ii))==*2)
#endif
#if NDIM>1
r=sqrt(r)
#endif

if(r.le.smoothing_sph(ii))then ! found a particle inside
current smoothing length
n_neighbour_ii = n_neighbour_ii + 1_i9
end if
end do
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I> write neighbours for all particles inside the grid code box to

the screen
if (rho_sph(ii).gt.10.)then
printx, ii, n_neighbour_ii ,smoothing_sph(ii) ,rho_sph(ii)
end if
#if NDIM>2
end if
#endif
end if
end if
end do

end subroutine count_neighbours

I> \short calculates radius inside which N neighbours can be found
!
I> \version 1.0

I> \author Katharina M. Fierlinger
I> \date last modification 27.03.2011
|
I> \details PURPOSE:

I> \n calculates radius inside which N neighbours can be found
!

subroutine calc_smoothing_length (x_max,y_max,z_max)
implicit none

integer (i9) :: ii = 1_i9 !< for do loop: loop over particles
integer(i9) :: jj = 1_i9 I< for do loop: loop over neighbours
integer(i9) :: n_neighbour_ii = 1_i9 !< particles inside the smoothing length
of particle ii
integer (i9) ,parameter :: n_neighbour = 50_i9 !< number of neighbours inside
smoothing length
real (dp) :: smoothing_length !< radius inside which you can find N particles
real(dp) :: r I< distance between SPH particle ii and jj
real (dp) :: dr !< increment/decrement of the smoothing length (for iterative
process)
real (dp) :: x_max,y_max,z_max
#if DEBUG==2
integer(i9) :: n_loop = 0_i9 !< loop counter
real(dp) :: sum !< deviations from Clare’s smoothing length
sum=0._dp
printx, "calculating_smoothing _length. _N=_", n_neighbour
#endif
do ii=1,nsph ! loop over SPH particles
smoothing_length=1.0_dp
dr=0.01_dp
#if DEBUG==2
n_loop=0_i9
#endif
do
n_neighbour_ii = 0_i9
do jj=1,nsph | loop over neighbours
r=abs (x_sph(jj)—x_sph(ii))
#if NDIM>1
r=rxr+((y_sph(jj)—y_sph(ii))*x2)
#endif
#if NDIM>2
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r=r+((z_sph(jj)—z_sph(ii))=x2)
#endif
#if NDIM>1
r=sqrt(r)
#endif
if (r.le.smoothing_length)then ! found a particle inside current
smoothing length
n_neighbour_ii = n_neighbour_ii + 1_i9
end if
end do
if (n_neighbour_ii.eq.n_neighbour) then
exit ! right number of neighbours, jump out of the do—loop
else if (n_neighbour_ii.lt.n_neighbour) then
I too low number of neighbours — increase smoothing length
if (dr.It.0_dp)then
I now changing from decrease to increase — change sign and step
size
dr=(—0.2_dp)*dr
end if
smoothing_length=smoothing_length+dr
else
! too high number of neighbours — decrease smoothing length
if (dr.gt.0_dp)then
I now changing from increase to decrease — change sign and step
size
dr=(—0.2_dp)*dr
end if
smoothing_length=smoothing_length+dr
end if
#if DEBUG==2
n_loop=n_loop+1_i9
#endif
end do
I write all particles inside the grid code box to the screen
if (abs(x_sph(ii)).le.x_max)then
#if NDIM>1
if (abs(y_sph(ii)).le.y _max)then

#endif
#if NDIM>2
if (abs(z_sph(ii)).le.z_max)then
#endif
#if DEBUG==2
I'printx, ii,n_loop,(smoothing_length—smoothing_sph(ii))/dr,
smoothing_length ,smoothing_sph(ii)
print, ii,smoothing_length,2.0_dpxsmoothing_sph(ii)
sum=sum+abs (smoothing_length —2.0_dp*smoothing_sph (ii))
#endif
smoothing_sph(ii )=smoothing_length
#if NDIM>2
end if
#endif
#if NDIM>1
end if
#endif

end if
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end do
#if DEBUG==2
printx, sum
stop
#endif
end subroutine calc_smoothing_length

end module sph
!

Listing C.14: Store energy losses via radiative cooling: init_hydro.f90

allocate (uold (1:ncell ,1:nvar+1))
allocate (unew(1:ncell ,1:nvar+1))
do ivar=1,(nvar+1)
read (ilun)xx
if (ivar==1)then
else if (ivar>=2.and.ivar<=ndim+1)then
else if (ivar>=ndim+3.and.ivar<=ndim+2+nener)then
else if (ivar==ndim+2)then
else
I Read passive scalars
do i=1,ncache
uold (ind_grid (i)+iskip ,ivar)=xx(i)xuold(ind_grid(i)+
iskip,1)
end do
end if

Listing C.15: Include the radiative cooling loss data, when defragmenting the main memory in
subroutine “defrag”: load_balance.f90

do ivar=1,nvar+1

Listing C.16: Output of energy losses via radiative cooling: output_hydro.f90

ivar=nvar+1 | Cooling (energy loss), tracer density
do i=1,ncache
xdp(i)=uold(ind_grid(i)+iskip ,ivar)
Pif (xdp(i).gt.0.0)printx, xdp(i)
end do
write (ilun)xdp

Listing C.17: Reset energy losses via radiative cooling: amr_step.f90

I reset energy loss

I ... do it here if you want to sum over a main step
I ... otherwise the set uold routine can be used
uold (:,nvar+1)=0.0

unew (:,nvar+1)=0.0

Listing C.18: Add a mask for regions that may cool to cooling_fine.f90. L.e. exclude the feedback
region. Therefore igrid in coolfinel needed for driver_weights

#if COOLINGWEIGHTS > 0
call coolfinel (ind_grid ,ngrid,igrid ,ilevel) | "igrid" used for driver_weights
#else
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call coolfinet (ind_grid ,ngrid,ilevel)
#endif
#if COOLINGWEIGHTS > 0
subroutine coolfinel (ind_grid ,ngrid ,igrid ,ilevel)
#else
subroutine coolfinel (ind_grid ,ngrid,ilevel)
#endif
use amr_commons, only: active, dtnew, ncoarse, son, t
use hydro_commons, only: uold, cooling, isothermal, dp, icoarse_max, &
& icoarse_min, boxlen, nvector, ndim, ngridmax, twotondim, smallr, &
& gamma, nvar, imetal, ixion
use cooling_module
#if COOLINGWEIGHTS > 0
#if COOLINGWEIGHTS > 1
use amr_parameters, only: r_driver ,x_driver ,y_driver ,z_driver ,hcoolplus
#endif
use driver
#endif
integer::ilevel ,ngrid
#if COOLINGWEIGHTS > 0
integer::igrid
#endif
integer ,dimension (1:nvector) ::ind_grid
|
!

integer::i,ind,iskip,idim, nleaf,nnleaf
real (dp) ::scale_nH,fscale_T2,scale_I|,scale_d,scale_t,scale_v
real (kind=8) ::dtcool ,dE_help
I real (kind=8) ::nISM,nCOM, damp_factor,cooling_switch ,t_blast
I real(dp) :: polytropic_constant
integer ,dimension(1:nvector) ,save::ind_cell ,ind_leaf
real (kind=8) ,dimension (1:nvector) ,save::nH,T2,delta_T2,ekk

real (kind=8) ,dimension (1:nvector) ,save::err Inew
real (kind=8) ,dimension (1:nvector) ,save::T2min, Zsolar Inew
#if COOLINGWEIGHTS > 0
real (dp) :: dx
real (dp), dimension(1:nvector) :: weight
#if COOLINGWEIGHTS > 1
real (dp) :: rscaled,one_over_boxscale
real (dp) xdriver = 0.0_dp
real (dp) :: ydriver = 0.0_dp
real (dp) zdriver = 0.0_dp
#endif
#endif
#ifdef artificial _ISM
real(dp) :: density_crit | critical density: 5 Hydrogen atoms per cm”"3
#endif

I Conversion factor from user units to cgs units

call units(scale_Il,scale_t,scale_d,scale_v,scale_nH,scale_T2)
I scale_nH converts rho in user units into nH in H/cc
#ifdef artificial _ISM

density_crit=5._dp/scale_nH !!critical density in user units
#endif
#if COOLINGWEIGHTS > 0
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Iscaled box:
dx=0.5_dpxxilevel
#if COOLINGWEIGHTS > 1
one_over_boxscale=dble (icoarse_max—icoarse_min+1)/boxlen
xdriver = one_over_boxscalexx_driver
ydriver = one_over_boxscalexy_driver
zdriver = one_over_boxscalexz_ driver
rscaled = one_over_boxscalex(r_driver+coolplus) !For driver_weights ()
#endif
#endif
I Loop over cells
do ind=1,twotondim
#if COOLINGWEIGHTS > 0
#if COOLINGWEIGHTS > 1
if (cooling)then
if (coolplus.It.0.0_dp) then
weight (:)=1._dp
else if (coolplus.eq.0.0_dp) then
weight (:)=0._dp

call driver_weights_fixed(ind,ilevel ,igrid ,ngrid ,dx, &
& weight (1:ngrid))

weight (1:ngrid)=1._dp—weight(1:ngrid)

else

weight (:)=0._dp

call driver_weights(ind,ilevel ,igrid ,ngrid,dx,rscaled, &
& xdriver , &
#if NDIM>1
& ydriver , &
#endif
#if NDIM>2
& zdriver , &
#endif
& weight (1:ngrid))

I'l weights: sum of all weights = pixr_driver*x2/(boxscalexdx)**2
I'l 0.0_dp .le. weight(i) .le. 1._dp
weight (1:ngrid)=1._dp—weight(1:ngrid)
end if
end if
#else
weight (:)=0._dp
call driver_weights_fixed (ind,ilevel ,igrid ,ngrid ,dx,weight(1:ngrid))
weight (1:ngrid)=1._dp—weight(1:ngrid)

#endif

#endif
iskip=ncoarse+(ind —1)xngridmax
do i=1,ngrid

ind_cell(i)=iskip+ind_grid (i)

end do
I Gather leaf cells
nleaf=0
do i=1,ngrid

#if COOLINGWEIGHTS > 0
if ((son(ind_cell(i))==0).and.(weight(i).gt.0.0_dp))then
#else
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do i=1,nleaf
T2min(i) = T_min_fix
end do

! if (cooling)then

I Compute thermal temperature by subtracting polytrope
! do i=1,nleaf
l T2(i) = max(T2(i)-T2min(i),T2_min_fix)
! end do
! endif
! if (cooling.and..not.neq_chem)then

if (cooling)then
I Compute "thermal" temperature by subtracting polytrope
do i=1,nleaf
T2(i)=MAX(T2(i),T_min_fix,T2_min_fix)

! T2(i)=MAX(T2(i),T2min(i),T2_min_fix)

end do
! call solve_cooling (nH,T2,Zsolar ,boost,dtcool ,delta_T2, nleaf)

call solve_cooling (nH,T2,Zsolar ,dtcool ,delta_T2, nleaf)
#if DEBUG >3

do i=1,nleaf

if ((T2(i).gt.1.e7).or.(nH(i).I1t.0.01)) then
if (delta_T2(i).gt.0.0) then
printx*,"COOLING_in_non—cooling_regime:" ,T2(i),nH(i) ,delta_T2 (i)

STOP
end if
end if
end do
#endif
end if

I Compute net energy sink (user units)
| delta_ T := T _new — T_old
! if (cooling.or.neq_chem)then
if (cooling)then
do i=1,nleaf
#ifdef artificial _ISM
Iphotoionization keeps the warm phase from cooling below 10.000 K
if (T2(i)+delta_T2(i).le.1.e4_dp)then
Itest if there are more than 5 particles per cubic centimeter
if (uold(ind_leaf(i),1).It.density_crit)then
l'if the density is below density_crit
lcall it the warm phase and keep it at 10.000K
if(T2(i).gt.1.e4 _dp)then
delta_T2(i) = 1.e4_dp—T2(i) !don’t cool below to 10.000K
T2min(i) = 1.e4_dp Imake sure cooling weights don’t
interfere
else
delta_T2(i)=max(0.0_dp,delta_T2(i)) !don’t cool. Keep heeting
terms. But don’t heat to 10.000K
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delta_T2(i)=0.0_dp ldon’t cool but also don’t
heat to 100K
T2min(i) = T_min_fix !keep low temperatures
T2min (i) T2_min_fix lkeep low temperatures
end if
else
l'if there are more than 5 particles per cubic centimeter
Icall it the cold phase and keep it at T_min_fix
if(T2(i)+delta_T2(i).le.T_min_fix)then !cooling+heating would
lead to a too small temperature
if(T2(i).gt.T_min_fix«*1.01_dp)then !the initial state was "
warm enough”
delta_T2(i)=T_min_fix—T2(i) !don’t cool below 100K
T2min(i) = T_min_fix !make sure cooling weights don’t
interfere
else | The initial temperature was too small too
delta_T2(i)=0.0_dp ! don’t cool but also don’t heat to 100K
T2min(i) = T_min_fix !don’t keep low temperatures
T2min(i) = T2_min_fix !keep low temperatures ... T2_min fix
is set in cooling_module

end if
end if
end if
end if
#endif
ldelta_T2 ... Kelvin
Iscale_T2 ... g/erg Kelvin (cm/s code—time/code—length)”2 = Kelvin (
code—time/code—length) "2
'nH (code—mass/code—length *3)

delta_T2 (i) = delta_T2(i)*nH(i)/scale_T2/(gamma—1.0) ![code—energy—unit
/code—length—unit *3]
end do
Turn off cooling in blast wave regions
if (delayed_cooling)then
do i=1,nleaf
cooling_switch = uold(ind_leaf(i),idelay)/uold(ind_leaf (i) ,1)
if (cooling_switch > 1d—3)then
delta_T2 (i) = MAX(delta_T2(i),real(0,kind=dp))
endif
end do
endif
end if

I Compute minimal total energy from polytrope
do i=1,nleaf

T2min(i) = T2min(i)=*nH(i)/scale_T2/(gamma—1.0) + ekk(i) + err(i)
end do

I Update total fluid energy
if (isothermal)then
do i=1,nleaf
uold(ind_leaf(i),ndim+2) = T2min(i)
end do
else
do i=1,nleaf
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T2(i) = uold(ind_leaf(i),ndim+2)
end do
if (cooling)then
#if COOLINGWEIGHTS > 0
nnleaf=0
do i=1,ngrid
if ((son(ind_cell(i))==0).and.(weight(i).gt.0.0_dp))then
nnleaf=nnleaf+1
dE_help=delta_T2 (nnleaf)xweight(i)
T2(nnleaf) = T2(nnleaf)+dE_help
uold(ind_leaf(nnleaf) ,nvar+1)=(—dE_help/dtcool) ! energy lost by
radiative cooling
I [code—energy—unit/code—length—unit*3/code—time—unit ]
end if
end do
#else
do i=1,nleaf
dE_help=delta_T2 (i)
T2(i) = T2(i)+dE_help
uold(ind_leaf(i),nvar+1)=(—dE_help/dtcool) ! energy lost by
radiative cooling
I [code—energy—unit/code—length—unit*3/code—time—unit]

end do
#endif
end if
do i=1,nleaf
if (T2(i).1t.T2min(i))then
uold(ind_leaf(i),ndim+2) = T2min(i)
I'subtract the re—added energy from the loss
uold(ind_leaf(nleaf),nvar+1)=uold(ind_leaf(nleaf),nvar+1)+(T2(i)—
T2min(i))/dtcool
else
uold (ind_leaf(i),ndim+2) = T2(i)
end if
end do
end if

Listing C.19: Local ISM values for XY, minimal temperature in the tables: cooling_module.f90

real (kind=8) ,parameter ::X
real (kind=8) ,parameter ::Y

|

! 0.76_dp

! 0.24_dp

I real(kind=8),parameter ::mu_mol = 1.2195_dp
' X =076 ,Y=0.24 ,Z=0.0

|

|

|

1/mu_mol = X/X_x + Y/A_y + Z/A

atomic H : X x =1
' Ay =4
I>>> 1./(0.76+0.24%0.25)
11.2195121951219512
' real(kind=8),parameter ::mu_mol
|
! Lodders 2003

real (kind=8) ,parameter ::X 0.7110_dp

real (kind=8) ,parameter ::Y = 0.2741_dp

real (kind=8) ,parameter ::mu_mol 1.2812524863014476_dp
I X =0.7110 , Y = 0.2741 , Z = 0.0149

1.2812524863014476_dp
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' 1/mu_mol = X/X x + Y/A_y + Z/A

I atomic H : X x =1

I'Ay =4

' A= 15.5 (mean solar composition)
' 1./(0.711+0.2741%0.25+0.0149/15.5)
I 1.2812524863014476

I

integer ,parameter o nbin_ T fix=91 Iresolution in temperature
integer ,parameter 20 nbin_T_fix=81 Iresolution in temperature
integer ,parameter i nbin_n_fix=141 Iresolution in density

real (kind=8) ,parameter:: nH_min_fix=1.e—8_dp !minimum density smallr=1e—7
real (kind=8) ,parameter:: nH_max_fix=1.e+6_dp !maximum density

I real (kind=8),parameter:: T2_min_fix=1.e+1_dp !minimum temperature for cooling

table

real (kind=8),parameter:: T2_min_fix=1.e+2_dp !minimum temperature for cooling

table
real (kind=8),parameter:: T2_max_fix=1.e+10_dp !maximum temperature for cooling
table
subroutine set_model(Nmodel, J0in_in ,JOmin_in,alpha_in,normfacd0_in, zreioniz_in, &
& correct_cooling ,realistic_ne , &
& h,omegab,omegal,omegal, astart_sim ,T2_sim)

#ifndef CLOUDY
if (Nmodel /= —1) then
end if

#endif

subroutine set_table (aexp)

implicit none
real (kind=8) :: aexp
integer :: nbin_n,nbin_T
real (kind=8) :: nH_min,nH_max,T2_min,T2_max
nH_min=nH_min_fix
nH_max=nH_max_fix
T2_min=max(T_min_fix , T2_min_fix)
T2 _max=T2_max_fix
nbin_n=nbin_n_fix
nbin_T=nbin_T_fix
call cmp_table (nH_min,nH_max, T2_min,T2_max, nbin_n ,nbin_T ,aexp)
end subroutine set_table
Isubroutine solve_cooling(nH,T2,zsolar ,boost,dt,deltaT2,ncell)
subroutine solve_cooling (nH,T2, zsolar ,dt ,deltaT2, ncell)
use hydro_commons, only : gamma
real (kind=8) ::lambda, lambda_prime ,logT2max, logT2min
real (kind=8)::fa,fb,fprimea, fprimeb,alphal ,hbetal,gammail
real (kind=8) ::reduce_cooling=1.0_dp ! artificially increase cooling time
logT2max=log10(T2_max_fix)*1.01_dp
logT2min=log10(T2_min_fix)*0.99_dp
precoeff= Xx(gamma—1.0_dp)/kB | =2. dp*X/(3._dp=kB)
! facH (i )=MIN(MAX(log10(nH(i)/boost(i)),tableYnH(1)) ,tableYnH(table%nl))
facH (i )=MIN(MAX(log10(nH(i)) ,tableYnH (1)) ,table%nH(tableY%n1))
if ((facT.le.logT2max) .and.(facT.ge.logT2min))then
lambda=lambdaxreduce_cooling lartificially increase
cooling time
lambda_prime=lambda_primexreduce_cooling !artificially increase
cooling time
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I'1/wcool ... cooling_step size ... limits cooling step size

lvarmax decreases step size

Ireduce_cooling increases step size

wcool=MAX(abs (lambda) /tau (ind (i) )=*varmax,wmax(ind(i)),—lambda_primesx
varmax)

tau_old (ind (i))=tau(ind(i))
IT = TO (1 + lambda_prime dt — lambda/TO dt)/( 1 + lambda_prime dt)

lvarmax ... decreases step size ... smaller change in T per
step
Ireduce_cooling ... increases step size and decreases lambda(prime)
same change in T per step if the step size is not limited by wmax
less steps ... smaller change in T (overall)

tau(ind (i))=tau(ind(i))=(1._dp+lambda_prime/wcool—-lambda/tau(ind(i))/
wcool) /(1._dp+lambda_prime/wcool)

time_old (ind (i) )=time(ind(i))

time(ind(i))=time(ind(i))+1._dp/wcool

if (DEBUG.gt.0) then
if ((lambda.It.0.0).and.(tau_old(ind(i)).gt.101.0)) then
write (x, ' (8(1X,E12.5))’) lambda,lambda_prime, wcool, tau_old(ind(i))
, tau(ind(i)), time_old(ind(i)), time(ind(i)), time_max(ind(i))
end if
end if

else
time (ind (i))=time_max(ind(i))

end if
I Compute exact time solution
do i=1,ncell
I time_old < time_max < time ... density scaled cooling time
if (time(i).gt.time_max(i))then
tau(i)=tau(i)=(time_max(i)—time_old(i))/(time(i)—time_old(i)) & ! "right
weight" % new temperature

& +tau_old (i) *(time(i)—time_max(i))/(time(i)—time_old(i)) I "left
weight" x old temperature
end if
end do

I Compute delta T
do i=1,ncell
lavoid problems caused by number precision
if ((tau_ini(i).gt.T2_max_fix) &
& .or.(tau_ini(i).le.T2_min_fixx1.1_dp) &
& .or.(nH(i).I1t.nH_min_fix) ) then
#if DEBUG==3
! if (deltaT2(i).1t.0.0_dp) then
! print«,"Tini:",tau_ini(i),"deltat",deltaT2(i) ,"fraction",deltaT2(i)/
tau_ini (i) ,time (i), ,tau(i)
! STOP
! end if
l#endif
deltaT2(i)=0.0_dp
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else
deltaT2(i)=tau(i)—tau_ini(i)
end if
end do

end subroutine solve_cooling

Listing C.20: Allow changes to the output times for restarted simulations: init_amr.f90

& (ngrid_current>ngridmax) )then
! & (ngrid_current>ngridmax) .or.(noutput2>noutput) )then

do ii=1,noutput

iii=ii lii ... index of the 1st output after restart

if (tout(ii).gt.t) exit
end do
Inoutout is the index of the last output after restart
iout=iout2 ! number of previous outputs
tout2 (1:iout)=t

tout2 (iout+1:iout+noutput—iii+1)=tout(iii :noutput)
tout2 (iout+noutput—iii +2:noutput)=0.0
noutput=iout+noutput—iii+1

print«,"output_files_will_be_generated_at_t="
printx, tout2(iout:noutput)

tout=tout2

I'tout (1:noutput2)=tout2 (1:noutput2)

laout (1:noutput2)=aout2(1:noutput2)
ifout=ifout2

read(ilun)dtold (1:nlevelmax2)

Listing C.21: Ignore velocities in almost empty cells, remove outflows from empty cells,
“Alustop”: in HLLC tracer-flux only if accepting cell is warm enough: godunov_utils.f90

real (dp) :: dtcell ,smallp ,help_EK
integer ::k,idim

#if NENER>O
integer ::irad

#endif

I'smallc= 1.e—10
I'smallr= 1.e—8
smallp = smallc*x2/gamma | 1.e—20/gamma

I Convert to primitive variables

if ((verbose_patches).and.(minval(uu(1:ncell ,1)).le.smallr))then

printx, "godunov_utils :_lowest_density:" ,minval(uu(1:ncell 1)) &
& ,"_hightest_density: ", maxval(uu(1:ncell 1))

printx,"godunov_utils :_lowest_pressure:" ,minval(uu(1:ncell ,ndim+2)) &
& ,"_hightest_pressure: ", maxval(uu(1:ncell ,ndim+2))

end if

do k = 1,ncell

uu(k,1)=max(uu(k,1),smallr)

[ I’

end do

I Velocity

do idim = 1,ndim
do k = 1, ncell
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52 uu(k,idim+1) = uu(k,idim+1)/uu(k,1)

53 end do

54 end do

55 I Internal energy

56 do idim = 1,ndim

57 do k =1, ncell

58 uu(k,ndim+2) = uu(k,ndim+2)—halfxuu(k,1)*uu(k,idim+1)x*x*2

59 end do

60 end do

61 |#if NENER>O

62 do irad = 1,nener

63 do k = 1, ncell

64 uu(k,ndim+2) = uu(k,ndim+2)—uu(k,ndim+2+irad)

65 end do

66 end do

67 |#endif

70

70

70 ! Debug

71 if (debug)then

72 do k = 1, ncell

73 |#ifdef KMFCLEAN

74 I KMF patch: cells with density = min. density are allowed

75 if (uu(k,ndim+2).le.smallp.or.uu(k,1).I1t.smallr)then

76 |#else

77 if (uu(k,ndim+2).le.smallp.or.uu(k,1).le.smallr)then

78 |#endif

79 write (x,x) "stop_in_cmpdt’

80 luse driver call print_xyz(ind,ilevel ,igrid ,ngrid,dx,i)

81 write (*,x) "dx_=",dx

82 write (x,x) "k=",k

83 write (*, *)’ncell— nceII

84 write (*,%) 'rho_,_, uu(k,1)

85 write (*,%) 'rho_ m|n =’,smallr

86 write (*,x) P_ m|n ,smallp

87 write (x,%) 'P uu(k,ndim+2)

88 write (x )’veI “,uu(k,2:ndim+1)

89 heIp_EK 0.0_dp

90 do idim = 1, ndim

91 help_EK = help_EK + halfxuu(k,1)*uu(k,idim+1)**x2

92 end do

93 write (*,%) "Etot_=’,uu(k,ndim+2)+help_EK

94 write (x,x) "Ekin_=",help_EK

95 ! write (x,%) "Eloss =",uu(k,nvar+1)!would be empty since it is reset after the
output in amr_step

96 call dump_all

97 stop

98 end if

99 end do

100 end if

102

102 I Compute maximum time step for each authorized cell

103 dt = courant_factorxdx/smallc

105

105 do k = 1, ncell
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I Compute pressure
uu(k,ndim+2) = max((gamma-one)*uu(k,ndim+2),uu(k,1)*xsmallp)
#if NENER>O
do irad = 1,nener
uu(k,ndim+2+irad) = (gamma_rad(irad)—one)=xuu(k,ndim+2+irad)
end do
#endif
I Compute sound speed
uu(k,ndim+2) = gammaxuu(k,ndim+2)
#if NENER>O
do irad = 1,nener
uu(k,ndim+2) = uu(k,ndim+2) + gamma_rad(irad)=*uu(k,ndim+2+irad)
end do
#endif
uu(k,ndim+2)=sqrt (uu(k,ndim+2)/uu(k,1))
I Compute wave speed
uu(k,ndim+2) = dble(ndim)xuu(k,ndim+2)
do idim = 1,ndim
uu(k,ndim+2)=uu(k,ndim+2)+abs(uu(k,idim+1))
end do
#ifdef KMFCLEAN
I> KMF patch: ignore time steps from almost empty cells
if (uu(k,1).gt.smallr)then | density
#endif
uu(k,1)=zero
I Compute gravity strength ratio
do idim = 1,ndim
uu(k,1)=uu(k,1)+abs(gg(k,idim))
end do
uu(k,1)=uu(k,1)*dx/uu(k,ndim+2)x**2
uu(k,1)=MAX(uu(k,1),0.0001_dp)
dtcell=dx/uu(k,ndim+2)*(sqrt (one+twoxcourant_factorxuu(k,1))—one)/uu(k,1)
Idtcell=dxxcourant_factor/uu(k,ndim+2)
l'if (dtcell.1t.0.01)then
I printx, dtcell, uu(k—1,1:ndim+2), k—1 , helpdt(k—1,1:ndim+2)
I printx, dtcell, uu(k ,1:ndim+2), k , helpdt(k,1:ndim+2)
' printx, dtcell, uu(k+1,1:ndim+2), k+1 , helpdt(k+1,1:ndim+2)
I stop
lend if
dt = min(larget ,dt, dtcell)
#ifdef KMFCLEAN
I> KMF patch: ignore time steps from almost empty cells
end if
#endif
end do
end subroutine cmpdt
#if defined (REFINE_BUBBLE) && ( REFINE_BUBBLE > 0 )
ok(k) = ok(k) .or. error > err_grad_d .or. dm < 0.01xd_region(1) ! refine
all cells inside the wind blown bubble
#else
ok(k) = ok(k) .or. error > err_grad_d
#endif
INTEGER ::ivar, i
#if defined ALUSTOP && ( ALUSTOP > 0 )
REAL(dp) :: Tcell ,scale_nH,scale_T2,scale_I,scale_d,scale_t,scale_v
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1114 REAL(dp), parameter :: Tmin26Al = 1.e6_dp K
1115 |#endif
1117
1117 |#if defined ALUSTOP && ( ALUSTOP > 0 )
1118 call units(scale_Il,scale_t,scale_d,scale_v,scale_nH,scale_T2)
1119 |#endif
1299 |#if defined ALUSTOP && ( ALUSTOP > 0 )
1300 |#if NVAR > 2+NDIM+NENER
1301 I'flux only if accepting cell is warm enough.
1302 if (ustar>0)then
1303 Tcell=pr/rrxscale_T2
1304 if (Tcell.lt.Tmin26Al)then
1305 fgdnv (i ,3+ndim+nener:4+ndim+nener) = 0.0_dp
1306 else
1307 fgdnv (i ,3+ndim+nener:4+ndim+nener) = roxuox &
1308 | & gleft (i,3+ndim+nener:4+ndim+nener)
1309 end if
1310 else
1311 Tcell=pl/rlxscale_T2
1312 if (Tcell.lt.Tmin26Al)then
1313 fgdnv (i ,3+ndim+nener:4+ndim+nener) = 0.0_dp
1314 else
1315 fgdnv (i ,3+ndim+nener:4+ndim+nener) = roxuox &
1316 | & gright (i ,3+ndim+nener:4+ndim+nener)
1317 end if
1318 endif
1319 |#endif
1320 |#if NVAR > 2+NDIM+NENER+2
1321 do ivar = 3+ndim+nener+2,nvar
1322 if (ustar>0)then
1323 fgdnv (i ,ivar) = roxuoxqleft (i,ivar)
1324 else
1325 fgdnv (i,ivar) = roxuoxqright(i,ivar)
1326 endif
1327 end do
1328 |#endif
1329 |#else
1330 |#if NVAR > 2+NDIM+NENER
1331 do ivar = 3+ndim+nener+2,nvar
1332 if (ustar>0)then
1333 fgdnv (i ,ivar) = roxuoxqleft (i,ivar)
1334 else
1335 fgdnv (i,ivar) = roxuoxqright(i,ivar)
1336 endif
1337 end do
1338 |#endif
1339 |#endif
Listing C.22: Default units: amr_commons.f90
127 real (dp) ::units_density=1.e—22_dp ! [g/cm”"3]
128 real (dp) ::units_time =1.e11_dp | [seconds]
129 real (dp) ::units_length =1.e19_dp ! [cm]

Listing C.23: Check energy losses due to outflow of the computational domain: outflow.f90
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module outflow

use amr_parameters, only: dp

implicit none

contains

I subroutine outflow1(ind,ilevel ,ind_grid,ind_cell ,deltax ,summass, sumekin,sumeth)

I> \short Print mass flux across grid boundaries
|

I> \version 1.0

I> \author Katharina M. Fierlinger

I> \date last modification 15.12.2010
|

I> \details PURPOSE: Print mass flux across grid boundaries
|

subroutine outflow1 (ind,ilevel ,ind_grid,ind_cell ,deltax &
& ,summass, sumekin,sumeth) luold
use hydro_commons, only : uold, gamma
use amr_commons, only : active, xg, dtold !< index array, coordinates (values
in interval [0.5,2.5]
use amr_parameters, only : dp, icoarse_min, jcoarse_min, kcoarse_min !< floating
point type, lower [xyz] coarse grid boundaries
use poisson_parameters, only : ndim
implicit none

integer, intent(in) :: ind, ilevel l< position of new grids

integer ,dimension (:), intent(in):: ind_grid, ind_cell

real (dp), intent(in):: deltax l< converts cell size

real (dp), intent(inout), dimension(1:10) :: summass !< total mass loss per
timestep

real (dp), intent(inout), dimension(1:10) :: sumekin !< total kinetic energy
loss per timestep

real (dp), intent(inout), dimension(1:10) :: sumeth l< total thtermal energy
loss per timestep

real (dp) :: dx l< cell size (if boxlen = 1)

integer :: ii,i,ix,iy,iz,nn !< loop variable, position in coordinate array, new
grid [xyz] index, random numbers inside driver

integer :: ngrid l< grid size

real (dp) :: vx,vy,vz l< velocities

real (dp) :: xcoord,ycoord,zcoord l< coordinates

real (dp) :: temperature,oflux ,massflux,ek_help, eth_help

real (dp), dimension(1:3) :: skip_loc l< grid boundaries

real (dp), dimension(1:3) :: xc l< center of new grid

real (dp), parameter :: minvel=1.e—8 dp !< minimum outflow speed below which mass
/energy loss is ignored

real (dp) :: gmik l< (gamma—1._dp)/8.3e—9 dp

gmik=(gamma—1._dp)/8.3e—9 dp ! in Kelvin
ngrid = size(ind_grid)
dx=0.5_dp*xdble(ilevel)

I'print flux over cell boundaries
lind=1,2xxndim

12d: ind=1,4

13d: ind=1,8

I Set new grids position

iz=(ind—-1)/4 I integer division — 0 or 1
iy=(ind—1—4xiz)/2 | integer division — 0 or 1

ix=(ind—1-2xiy —4xiz) ! integer division — 0 or 1
skip_loc=(/0.0_dp,0.0_dp,0.0_dp/)
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xc(1)=(dble(ix)—0.5_dp)*dx !
skip_loc (1)=dble(icoarse_min)
#if NDIM>1

—0.5D0 or +0.5D0

xc(2)=(dble(iy)—0.5_dp)*dx ! —0.5D0 or +0.5D0
skip_loc (2)=dble (jcoarse_min)
#endif
#if NDIM>2
xc(3)=(dble(iz)—0.5_dp)*dx ! —0.5D0 or +0.5D0
skip_loc (3)=dble (kcoarse_min)
#endif
do i=1,ngrid
Ixg(:,1)—-1.5 values in interval [—1,1]
xcoord=xg(ind_grid (i) ,1)+xc(1)—skip_loc (1)
if ((xcoord. It.dx).or.(xcoord.gt.1._dp—dx))then !boundary layer cell
if (xcoord. It .dx)then
I'for outflow vx < 0
vx=(—1._dp)=*uold(ind_cell(i),2)/uold(ind_cell(i),1)
else
I'for outflow vx > 0
vx=uold (ind_cell (i) ,2)/uold(ind_cell (i), 1)
end if
if (vx.gt.minvel)then
ek_help=(uold(ind_cell (i) ,2)*x*2 &
#if NDIM>1
& +uold (ind_cell (i) ,3)*x2 &
#endif
#if NDIM>2
& +uold(ind_cell (i) ,4)*x2 &
#endif
& )*x0.5_dp/uold(ind_cell (i) ,1)
eth_help=(uold(ind_cell (i) ,ndim+2)—ek_help)
temperature=gmikxeth_help/uold (ind_cell(i),1) ! in Kelvin
ii=max(min(floor(log10(temperature)+1.0),10),1)
Imassflux = dxxdxxvsdtxrho
oflux=dtold (ilevel)x(deltax)**x2xvx
summass( ii )=summass(ii )+ofluxxuold(ind_cell (i) ,1)
sumekin (ii)=sumekin(ii)+ofluxxek_help
sumeth (ii)=sumeth(ii)+ofluxxeth_help
I don’t "cycle" since corner cells can have xyz fluxes
end if
end if
#if NDIM>1
ycoord=xg(ind_grid (i) ,2)+xc(2)—skip_loc(2)
if ((ycoord.It.dx).or.(ycoord.gt.1._dp—dx))then !boundary layer cell
if (ycoord. It .dx)then
I'for outflow vy < 0
vy=(—1._dp)=uold(ind_cell(i),3)/uold(ind_cell(i),1)
else
I'for outflow vy > 0
vy=uold(ind_cell (i) ,3)/uold(ind_cell (i), 1)
end if
if (vy.gt.minvel)then
ek_help=(uold(ind_cell (i) ,2)*x*2 &
& +uold(ind_cell (i) ,3)*x2 &

#if NDIM>2
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& +uold (ind_cell (i) ,4)*x2 &
#endif
& )*x0.5_dp/uold(ind_cell (i) ,1)
eth_help=(uold(ind_cell (i) ,ndim+2)—ek_help)
temperature=gmikxeth_help/uold (ind_cell(i),1) ! in Kelvin

ii=max(min(floor(log10(temperature)+1.0),10),1)
Imassflux = dxxdxxvsdtxrho
oflux=dtold (ilevel)x(deltax)**2xvy
summass( ii )=summass(ii )+ofluxxuold(ind_cell (i) ,1)
sumekin(ii)=sumekin(ii)+ofluxxek_help
sumeth (ii)=sumeth(ii)+ofluxxeth_help
I don’t "cycle" since corner cells can have xyz fluxes
end if
end if
#endif
#if NDIM>2
zcoord=xg(ind_grid (i) ,3)+xc(3)—skip_loc(3)
if ((zcoord. |t.dx).or.(zcoord.gt.1._dp—dx))then !boundary layer cell
if (zcoord. It.dx)then
I'for outflow vz < 0
vz=(—1._dp)=xuold(ind_cell (i) ,4)/uold(ind_cell (i) ,1)
else
I'for outflow vz > 0
vz=uold(ind_cell (i) ,4)/uold(ind_cell(i), 1)

end if
if (vz.gt.minvel)then
ek_help=(uold(ind_cell (i) ,2)**2+uold(ind_cell (i) ,3)*x2 &
& +uold(ind_cell (i) ,4)*%2)x0.5_dp/uold(ind_cell (i) ,1)

eth_help=(uold(ind_cell (i) ,ndim+2)—ek_help)
temperature=gmikxeth_help/uold (ind_cell(i),1) ! in Kelvin
ii=max(min(floor (log10(temperature)+1.0),10),1)
Imassflux = dxxdxxvsdtxrho
oflux=dtold (ilevel)x(deltax)**2xvz
summass( ii )=summass(ii )+ofluxxuold(ind_cell (i) ,1)
sumekin(ii)=sumekin(ii)+ofluxxek_help
sumeth (ii)=sumeth(ii)+ofluxxeth_help
end if
end if
#endif
end do
end subroutine outflow1
end module outflow

Listing C.24: Reset cooling losses and avoid negative internal energies in set_uold and remove
outflows from almost empty cells in godfinel: godunov_fine.f90

I> preprocessor: ifdef ETOT ... increase total energy
I> preprocessor: ifndef ETOT ... reduce speeds
I> preprocessor: ifdef VMAX ... set speed limit

I Set uold to unew for myid cells
do ind=1,twotondim
iskip=ncoarse+(ind —1)xngridmax
do ivar=1,nvar
do i=1,active(ilevel)%ngrid
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uold (active (ilevel)%igrid (i)+iskip ,ivar) = unew(active(ilevel)%igrid (i)
+iskip ,ivar)
end do
end do
I ... reset cooling losses here if you do not want to sum over a main step
do i=1,active(ilevel)%ngrid
ind_cell=active (ilevel)%igrid (i)+iskip
uold(ind_cell ,nvar+1) = 0.0_dp
unew(ind_cell ,nvar+1) 0.0_dp
end do
if (pressure_fix)then
I Correct total energy if internal energy is too small
do i=1,active(ilevel)%ngrid
ind_cell=active (ilevel)%igrid (i)+iskip
d=uold(ind_cell ,1)
u=uold(ind_cell ,2)/d
#ifdef VMAX
if (usvmax)then
printx, "usvmax", u, vmax
uold(ind_cell ,2)= min(vmaxxd,uold(ind_cell ,2))
u=uold(ind_cell ,2)/d

end if
#endif
#if NDIM>1
v=uold(ind_cell ,3)/d
#ifdef VMAX
if (v>vmax)then
printx, "vsvmax", v, vmax
uold(ind_cell ,3)= min(vmaxxd,uold (ind_cell ,3))
v=uold(ind_cell ,3)/d
end if
#endif
#else
v=0.0_dp
#endif
#if NDIM>2
w=uold (ind_cell ,4)/d
#ifdef VMAX
if (wsvmax)then
printsx, "wsvmax", w, vmax
uold(ind_cell ,4)= min(vmaxxd,uold(ind_cell ,4))
w=uold (ind_cell ,4)/d
end if
#endif
#else
w=0.0_dp
#endif

e_Kkin=0.5%xd* (U**x2+V*x2+Wk*x2)
#if NENER>0

do irad=1,nener

e_kin=e_kin+uold(ind_cell ,ndim+2+irad)

end do
#endif

e_cons=uold(ind_cell ,ndim+2)—e_kin
#ifndef ETOT
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&

&

#if NDIM>1
#else
#endif

#if NDIM>2
#else
#endif
#endif
#ifdef ETOT
&

&

&

&

&

#if NDIM>1
#else

if (e_cons.le.0.0)then
if (verbose_patches)then
printx, "PATCH:_e_cons_is_too_small:_e_cons=_", e_cons
printx, "uold(,ndim+2)= ",uold(ind_cell ,ndim+2)
printx, "PATCH:_reduce_speeds_to_", &
0.99 _dp=xuold(ind_cell ,ndim+2)/e_kin," _x_old_speed"
end if
| decrease speeds
uold(ind_cell ,2:ndim+1)=0.99_dpx*uold(ind_cell ,2:ndim+1)x &
uold(ind_cell ,ndim+2)/e_kin
I use new speeds to get new energies
u=uold(ind_cell ,2)/d

v=uold(ind_cell ,3)/d

v=0.0_dp

w=uold (ind_cell ,4)/d
w=0.0_dp

e_kin=0.5xd* (Ux*x2+V**x2+Wx*x2)
e_cons=uold (ind_cell ,ndim+2)—e_kin
if (verbose_patches)then
prints, "new_(smaller)_velocities:",uold(ind_cell ,2:ndim+1)
printx, "e_cons=", e_cons, "e_kin=", e_kin
end if
end if

I Note: here divu=(—div.u)xdt
div=abs(divu (ind_cell))*dx/dtnew (ilevel)
e_trunc=beta_fixxd«max(div ,3.0*xhexp*dx) %2
if (e_cons<e_trunc)then
e_prim=enew(ind_cell)
if (e_prim.gt.0.0)then
if (verbose_patches)printx, "PATCH_in_set_uold:_pressure_fix"
uold(ind_cell ,ndim+2)=e_prim+e_kin
else

uold(ind_cell ,2:ndim+1)=0.99_dpx*uold(ind_cell ,2:ndim+1)* &
uold (ind_cell ,ndim+2)/e_kin
if (verbose_patches)then

print«, "PATCH_in_set_uold:_e_prim_is_zero: ", &
"e_prim=", e_prim, "e_kin=", e_kin, "e_cons=", e_cons, &
"e_tot=",uold(ind_cell ,ndim+2)

prints, "PATCH_in_set_uold:_reduce_speeds _to_ ", &
0.99 _dpxuold(ind_cell ,ndim+2)/e_kin,"x_old_speed"

print«, "PATCH_in_set_uold_new_speeds:", &

uold(ind_cell ,2:ndim+1)
u=uold(ind_cell ,2)/d

v=uold(ind_cell ,3)/d

v=0.0_dp
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#endif
#if NDIM>2
w=uold (ind_cell ,4)/d
#else
w=0.0_dp
#endif
e_kin=0.5_dpxdx(Ux*x2+V*x2+Wx*2)
e_cons=uold (ind_cell ,ndim+2)—e_kin
print«, "e_cons=", e_cons, "e_kin=", e_kin
end if
#endif
if (verbose_patches)printx, "PATCH:_e_prim_is_zero:", &
& "e_prim=", e_prim, "e_kin=", e_kin, "e_cons=", e_cons
end if
end if
end do
end if
end do

subroutine godfine1 (ind_grid ,ncache,ilevel)

if (unew(ind_cell(i),1).le.smallr)then
if (verbose_patches)write(x,112) unew(ind_cell (i) ,1:nvar)
Iset density
unew(ind_cell (i) ,1)=smallr
Iset velocities
unew(ind_cell (i) ,2:ndim+1)=0.0_dp
Iset pressure
unew(ind_cell (i) ,ndim+2)=min(1e—20_dp,unew(ind_cell(i),ndim+2)) !

smallp

Iremove outflow

flux (i,i3 ,Jj3 ,k3 ,1:nvar,idim)=max(0.0_dp, &
& flux (i,i3 ,Jj3 ,k3 ,1:nvar,idim)) ! inflow

flux (i,i3+i0,j3+j0 ,k3+k0,1:nvar,idim)=min(0.0_dp, &
& flux (i,i3+i0,j3+j0,k3+k0,1:nvar,idim)) ! outflow
end if

Listing C.25: Remove outflows from almost empty cells and use average pressure of adjacent cells
in subroutine ctoprim: umuscl.f90

subroutine ctoprim (uin,q,c,gravin,dt,ngrid)
real (dp) ,dimension (:), allocatable :: ghelp
integer ::i, j, k, |, n, idim, nqghelp
I remove outflows from q, set velocity zero
I and use average pressures of adjacent cells
if (uin(l,i,j,k,1).le.smallr)then
if (verbose_patches)then
printx, "PATCH:_ctoprim:_detected _too_small_density"

printx, "rho(uin)", uin(l,i,j,k,1),"<",smallr
end if
Iset velocities
lq(l,i,j,k,2:ndim+1) = uin(l,i,j,k,2:ndim+1)xoneoverrho

q(l,i,j,k,2:ndim+1)=0.0_dp

Iremove outflows from empty cells and set pressure
allocate (ghelp(1:2%ndim))

ghelp=0.0_dp

nghelp=0

if(i.gt.iu1)then !this g was already written
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905 q(l,i—1,j,k,2)=max(q(l,i—1,j,k,2),0.0_dp)

906 ghelp(1)= q(l,i—1,j,k,ndim+2)

907 nghelp=nghelp+1

908 end if

909 if (i.lt.iu2)then !qg not yet written

910 uin(l,i+1,j,k,2)=min(uin(l,i+1,j,k,2),0.0_dp)

911 ghelp (2) =(gamma—one)«uin (I ,i+1,j ,k,1)* &
912 |& MAX(smalle ,uin (1l ,i+1,j,k,ndim+2)/uin(l,i+1,j,k,1)—halfx&
913 |& sum((uin(l,i+1,j,k,2:ndim+1)/uin(l,i+1,j,k,1))=*%x2))

914 nghelp=nghelp+1

915 end if

916 |#if NDIM>1

917 if(j.gt.jul)then

918 q(l,i,j—1,k,3)=max(q(l,i,j—1,k,3),0.0_dp)

919 ghelp (3)= q(!,i,j—1,k,ndim+2)

920 nghelp=nghelp+1

921 end if

922 if(j.It.ju2)then

923 uin(l,i,j+1,k,3)=min(uin(l,i,j+1,k,3),0.0_dp)

924 ghelp (4) =(gamma—one)«uin (I ,i,j+1,k,1)* &
925 |& MAX(smalle ,uin(l,i,j+1,k,ndim+2)/uin(l,i,j+1,k,1)—halfx&
926 |& sum((uin(l,i,j+1,k,2:ndim+1)/uin(l,i,j+1,k,1))*x2))

927 nghelp=nghelp+1

928 end if

929 |#if NDIM>2

930 if (k.gt.kul)then

931 q(l,i,j,k—1,4)=max(q(!,i,j,k—1,4),0.0_dp)

932 ghelp (5)= q(l,i,j,k—=1,ndim+2)

933 nghelp=nghelp+1

934 end if

935 if (k.It.ku2)then

936 uin(l,i,j,k+1,4)=min(uin(l,i,j,k+1,4),0.0_dp)

937 ghelp (6) =(gamma—one) xuin (1 ,i,j ,k+1,1)* &
938 |& MAX(smalle ,uin(l,i,j,k+1,ndim+2)/uin(l,i,j,k+1,1)—halfx&
939 |& sum((uin(l,i,j,k+1,2:ndim+1)/uin(l,i,j,k+1,1))*%x2))

940 nghelp=nghelp+1

941 end if

942 |#endif

943 |#endif

944 Imean

945 q(l,i,j,k,ndim+2) = max(smallp ,sum(ghelp)/real(nghelp))
946 I 'median

947 'l 1d: minval

948 I'l 2d: 3rd largest value (from 4)

949 I'l 3d: 4th largest value (from 6)

950 ldo ihelp=1,ndim

951 I ghelp(maxloc(ghelp))=0.0_dp

952 lend do

953 lq(l,i,j,k,ndim+2) = maxval(qghelp)

954 deallocate (ghelp)

955 |#if NENER>0

956 I Compute thermal pressure

957 eint = MAX(q(!,i,]j,k,ndim+2)/(gamma—one)*xoneoverrho—erad, smalle)
958 |#endif

959 else
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Listing C.26: Makefile

HHH
# |f you have problems with this makefile, contact Romain.Teyssier@cea. fr
e
# Compilation time parameters

NVECTOR = 500 # ... default: NVECTOR = 500

NDIM = 3

NPRE = 8

NVAR = 7 #... default: NVAR = NDIM+2+2+1 (rho, vx, vy, vz, ui, 26Al, 60Fe, aton)
NENER = 0

SOLVER = hydro

#undef WITHOUTMPI ... for single processor runs

#undef QUADHILBERT

#undef SOLVERmhd ... use MHD

#define NOSYSTEM 1 ... avoid system calls

HHHH R R
# Katharina’s_compilation_time_parameters

#define DEBUG_2_ . .......!..._debugging_output
#define DEBUG_3_. . . .....!..._more_debugging,_output
#define DEBUG_O_ . . ......!..._no_debugging _output
DEBUG_=_0

#

#define _CLOUDY_1

[ W N T TR T RN TR M Gy}

ApJ_731,_13)

use_CLOUDY_cooling_implemented_by_Eva_Ntormousi_(2011,

CLOUDY_=_,1

#define COOLINGWEIGHTS_0_!... _use_unweighted_cooling_losses_in_all_cells

#define COOLINGWEIGHTS_ 2 ,!... _use_user_defined_coolplus_from_namelist,_reduce_
cooling _near_feedback_region

#define COOLINGWEIGHTS_1_!... _use_coolplus_=_0,_use_mask_,_no_coolingin_cells_with
_feedback

COOLINGWEIGHTS_=_,0

#

#define DEBUGCOOLING_1_.. . !..._debugging_output_if_smallnum_cooling_condition_is,
violated

DEBUGCOOLING_ =1

#define KAHANBABUSKA_ 1_ .. !..._check_if_the_calculating _the_sum_of_all_densities_

runs_into_problems
KAHANBABUSKA =1
#define KMFCLEAN_1_ .. ....!..._cells_with_minimal_density _(uu(k,1).eq.smallr)_are
allowed, _time_steps_from_almost_empty_cells_are_ignored
KMFCLEAN_ =_ 1
#
#define MAXDRIVERGRID_1_ . ...
MAXDRIVERGRID_=_ 1
#define SMOOTH_DRIVER EDGE_1_!... _calculate_weights_for_cells_partly_inside _the_
driver_region
SMOOTH_DRIVER_EDGE_= 1
#define ZEROREDSHIFT_1_ . .....! ignore_redshifts_in_cooling_module.
ZEROREDSHIFT _=_1
#undef REFINE_BUBBLE_!... _refine_all_cells_with_densities _below_0.01xd_region(1)
REFINE_BUBBLE_ = 1
#undef_CARINA__ . ....."'..._sequential_star_formation
#undef_ DECAYINTERVAL_ !... set_lower_limit_for_the_time_interval_for_the_26Al_decay
|
I

I..._enhance_refinement_in_feedback_region

#undef EKIN__ . . ........!'..._insert_kinetic_energy, _not_thermal_energy
#undef_ ETOT, .._increase_total_energy, _don’t reduce speeds

[ T T TR TR TR TR T
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#undef IGNOREX
#undef MASSFLUX 1

ignore xn to refine only close to x axis
print mass flux

|
I,
#undef MHD I, use MHD in FromangTeyssier2006/init_flow_fine .f90
#undef RANDZELLEN I, interpolate partly filled cells of spherical regions
#undef SPH . read SPH data
#undef THII I, set T = 10.000 Kelvin in driver region
#undef TMAX . don’t allow temperatures above 5.0e6 Kelvin
#undef TMIN I, check if the total energy is larger than the Kinetic
energy
#undef VMAX ... set speed limit in ramses_wind_cleanlowdens_patches/
godunov_fine.f90
#undef WITHTURB I for maclow _eva/init_flow_fine.f90
HHAAH AR A R

#PATCHO =../mypatch/aton

#PATCH1 =../mypatch/ramses_wind_ISM_phases

#PATCH1 =../mypatch/cooling_module_eva

PATCH2 =../mypatch/ramses_wind_cleanlowdens_patches

PATCH3 =../mypatch/ramses_wind_standard_patches

EXEC = ramsesWind_

#PROFILER = —pg —fno—inline —functions

#ATON_FLAGS = -DATON # Uncomment to enable ATON.

HUH AR A

COMPILEPARS = —DNVECTOR=$ (NVECTOR) —DNVAR=$(NVAR) —DNDIM=$(NDIM) —DNPRE=$ (NPRE) —
DNENER=$ (NENER) —DSOLVER$(SOLVER) —DDEBUG=$ (DEBUG) —DCOOLINGWEIGHTS=$ (
COOLINGWEIGHTS) —DDEBUGCOOLING=$ (DEBUGCOOLING) —DCLOUDY=$ (CLOUDY) —
DKAHANBABUSKA=$ (KAHANBABUSKA) —DKMFCLEAN=$ (KMFCLEAN) —DMAXDRIVERGRID=$ (
MAXDRIVERGRID) —DSMOOTH_DRIVER EDGE=$ (SMOOTH_DRIVER EDGE) —DZEROREDSHIFT=$ (
ZEROREDSHIFT) —DREFINE_BUBBLE=$ (REFINE_BUBBLE) $(ATON_FLAGS)

R e e e e e b e i i g

# Fortran compiler options and directives

# — No MPI, ifort
#F90 = /home/katharina/intel/bin/ifort # optimal.universe—cluster.de
#F90 = /opt/intel/bin/ifort # 10.155.59.244 # 10.155.59.15

#F90 = /opt/intel/Compiler/11.1/069/bin/intel64/ifort # 10.155.59.237
#F90 = /opt/intel/Compiler/11.1/046/bin/ia32/ifort # 10.155.59.82
#FFLAGS = —-0O0 —Warn —g —traceback —fpe0 —ftrapuv —cpp —DNOSYSTEM # for debugging

only
#FFLAGS = —O3 —cpp —DWITHOUTMPI —DNOSYSTEM
#FFLAGS = —cpp —DWITHOUTMPI —DNOSYSTEM #default
# — MPI, ifort syntax

#F90 = /usr/bin/mpif90 #10.155.59.244, optimal.universe—cluster.de (default: ifort
)

#F90 /usr/local/OpenMPl—-intel /bin/mpif90 #10.155.59.237 (default: ifort)

#F90 /usr/local/mpich2—-1.0/bin/mpif90 —f90=ifort #10.155.59.237

#F90 = /usr/bin/mpif90 —g —traceback

#FFLAGS = —0O0 —cpp —DNOSYSTEM

#FFLAGS = —02 —cpp —DNOSYSTEM

#FFLAGS = —O3 —cpp —DNOSYSTEM

#FFLAGS = —cpp —fast —DNOSYSTEM #default

# — No MPI, gfortran
F90 = gfortran —O3 —frecord—marker=4 —fbacktrace —ffree—line—length—none —g
FFLAGS = —x f95—cpp—input —DWITHOUTMPI
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# —— MPI, gfortran syntax
#F90 = mpif90 —O3
#FFLAGS = —x f95—cpp—input

HH T H AR RS S S R R S A A
MOD = mod

H R A SRR R R S R R S R S S H R S R A
# MPI librairies

#LIBMPl = —Impi_cxx
#LIBMPI = —Ifmpi —Impi —lelan
# —— CUDA libraries , for Titane —

#LIBCUDA = —L/usr/local/cuda/lib64 —Im —Icuda —lcudart
#LIBCUDA = —L/opt/cuda/lib —Im —Icuda —lcudart

LIBS = $(LIBMPI)

HUHHHH AR H RS AR AR R R

# Sources directories are searched in this exact order

VPATH = $(PATCHO) : $ (PATCH1) : $ (PATCH2) : $ (PATCH3) :../$(SOLVER) :../aton:../hydro:../
pm:../poisson:../amr

HUH AR A

# All objects

MODOBJ = amr_parameters.o amr_commons.o random.o pm_parameters.o pm_commons.o
poisson_parameters.o poisson_commons.o hydro_parameters.o hydro_commons.o
cooling_module.o bisection.o sparse_mat.o clfind_commons.o gadgetreadfile.o
driver.o geneva_models.o maclow.o outflow.o sph.o

AMROBJ = read_params.o init_amr.o init_time.o init_refine.o adaptive_loop.o
amr_step.o update_time.o output_amr.o flag_utils.o physical_boundaries.o
virtual _boundaries.o refine_utils.o nbors_utils.o hilbert.o load_balance.o
title .o sort.o cooling_fine.o units.o light_cone.o movie.o

# Particle —-Mesh objects

PMOBJ = init_part.o output_part.o rho_fine.o synchro_fine.o move_fine.o newdt_fine
.0 particle_tree.o add_list.o remove_list.o star_formation.o sink_particle.o
feedback.o clump_finder.o clump_merger.o flag_formation_sites.o

# Poisson solver objects

POISSONOBJ = init_poisson.o phi_fine_cg.o interpol_phi.o force_fine.o
multigrid_coarse.o multigrid_fine_commons.o multigrid_fine_fine.o
multigrid_fine_coarse .o gravana.o boundary_potential.o rho_ana.o
output_poisson.o

# Hydro objects

HYDROOBJ = init_hydro.o init_flow_fine .o write_screen.o output_hydro.o
courant_fine.o godunov_fine.o uplmde.o umuscl.o interpol_hydro.o godunov_utils
.0 condinit.o hydro_flag.o hydro_boundary.o boundana.o read_hydro_params.o
synchro_hydro_fine.o

# All objects

AMRLIB = $(AMROBJ) $(HYDROOBJ) $(PMOBJ) $(POISSONOBJ)

# ATON objects

ATON_MODOBJ = timing.o radiation_commons.o rad_step.o

ATON_OBJ = observe.o init_radiation.o rad_init.o rad_boundary.o rad_stars.o
rad_backup.o ../mypatch/aton/atonlib/libaton.a

HURHHH AR R FH AR R AR AR AR AR AR R

ramses: $(MODOBJ) $(AMRLIB) ramses.o

$(F90) $(MODOBJ) $(AMRLIB) ramses.o —o $(EXEC)$(NDIM)d $(LIBS)
# $(F90) $(PROFILER) $(AMRLIB) ramses.o —o $(EXEC)$(NDIM)d $(LIBS)
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ramses_aton: $(MODOBJ) $(ATON MODOBJ) $(AMRLIB) $(ATON _OBJ) ramses.o

$(F90) $(MODOBJ) $(ATON MODOBJ) $(AMRLIB) $(ATON OBJ) ramses.o —o $(EXEC)$

(NDIM)d $(LIBS) $(LIBCUDA)

e e e g
%.0:%.f90

$(F90) $(FFLAGS) $(COMPILEPARS) —c $" —o $@
# $(F90) $(PROFILER) $(FFLAGS) $(COMPILEPARS) —c $* —o $@
HHHHHBHBHBHHAHBHBHBHHHHBHBHBHBHHBHBHBHBHHBHBHBHBH A HBHBHBH RS HBHBHBHHAHEHBHBHH
clean

rm x.0 *.$(MOD)
I

Listing C.27: Example of a namelist: IC_snwind_3d.nml

This namelist contains various input parameters for RAMSES runs

&DRIVER_PARAMS
file_driver="wind.dat’
file_sn='sn.dat’
r_driver=0.75d0
x_driver=0.0d0
y_driver=0.0d0

z _driver=0.0d0
coolplus=0.0d0
n_stars=1.0d0

/

&RUN_PARAMS
hydro=.true.
debug=.true.
ncontrol=10
nsubcycle=2

nremap=10

nrestart=0
verbose_patches=.true.
/

8AMR PARAMS
levelmin=7
levelmax=7
ngridmax=340000
boxlen=21.25

/

&BOUNDARY PARAMS

nboundary = 6

bound_type= 2, 2, 2, 2, 2, 2
ibound_min=—1, 1
ibound_max=-—1, 1
jbound_min= 0, 0
jpound_max= 0, 0, —1,
kbound_min= 0, 0
kbound_max= 0, 0

/

&INIT_PARAMS
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nregion=2

region_type (1)="square
region_type (2)="square’
x_center=10.625,10.625
y_center=10.625,10.625
z_center=10.625,10.625
length_x=21.25,15.5
length_y=21.25,15.5
length_z=21.25,15.5
exp_region=10.0,2.0
d_region=0.0166,1.66
u_region=0.0,0.0
v_region=0.0,0.0
w_region=0.0,0.0
p_region=1.38e—6,1.38e—6
/

)

&OUTPUT _PARAMS
tend=1262.43
delta_tout=15.78
/

&HYDRO PARAMS
gamma=1.66667
courant_factor=0.8
slope_type=1
scheme="muscl’
riemann="acoustic’
pressure_fix=.true.
beta_ fix=0.d0
smallr=1.e-7

/

&PHYSICS PARAMS
cooling=.true.
T_min_fix=100.
metal=.false.
z_ave=1.0d0

T2 star=0.0

/

&REFINE_PARAMS
interpol_var=0
interpol_type=2
err_grad_d=0.1
err_grad_p=0.1
/

C.1 Analytic formulas for the feedback region volume

For (pseudo) 2D simulations (nz=1) the stellar feedback energy and mass is homogeneously dis-
tributed over the feedback region, which is a cylinder of given radius (rdriver) and scaled with
the ratio of the volume of a one cell high cylinder with this radius to the volume of a sphere of the
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) 2 A
same radius (525° = im
=S T T'fb

). In 3D runs the newly inserted energy and mass are homogeneously

distributed over a sphere of given radius (rdriver). In 2D the percentage of the cell volume that is
inside the feedback region can be calculated analytically. To set the integration limits, the feedback
routine checks how many of the corners of the cell are inside the feedback region. The routine uses
the absolute values of the z, y and z distances of the cell corners to reduce the number of different
cases.

1 T

all corners 3 corners 1 corner no corner

2 corners

The cases “no corner” and “all corners” are trivial (0% or 100% inside).

C.1.1 2D: one corner inside the feedback region

In the 2D case with only the corner (i, |ymin) inside the feedback region, the fraction the cell
volume inside the feedback region (pg,) can be calculated with:

7 dx [V dy

ZLmin min

P =
Veell

B f;;m \/’/"2 — :L'le' — Ymin (1‘1 — ':Emin)
E (Ar)?

eV =22 +r%arcsin2)”  — yuin (¥1 — Tnin)
= xmln

(B)?
TminYomin — SR Zlmin 4 7 (aregin 2 — arcsin Dus)

(Az)?

(Tmin|y1) Q
(xmin|ymin) (ml |ymin)

C.1.2 2D: 2 corners inside the feedback region

If there are two corners of the 2D cell inside the feedback region, these corners are (Zyin|Ymin) and
(Zmax|Ymin) OF (Zmin|Ymax)- In the case Tmin > Ymin the x and y coordinates are swapped to get an
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x-integral. The fraction the cell volume inside the feedback region (pg,) can be calculated with:

P

(Tmin|y1)

($min|ymin)

A

Zmin min

Veell
f;:“:x Vr? — 22dz — ymin Az
(Az)?
% (at\/m + r? arcsin i—”) e

Lmin

— Ymin AT

(Az)?

2

2
Tmax¥y2 _  Tmin¥Y1l T ( 1 Tmax __
e 9 + ) arcsin Y

.
arcsin %) — Ymin AT

(Ba)?

r (Zmax|Y2)

C.1.3 2D: 3 corners inside the feedback region

If only the corner (Zyax|ymax) lies outside the feedback region, pg, can be calculated with:

Tmax .. (VP2
Jo " da |

min

dy + (21 — Tin) Az

P =
‘/cell
fzmax \/Wdl' — Ymin (J;max - l'1> + (‘Tl - xmin)AI
(Az)?

5 (VP P aresind) M — Yin (Zmax = 71) + (21— Tanin) Az

- (Az)?

_ xmanyl _ xly% + § (arcsin zm_rax — arcsin %) — Ymin (ZEmax - 1]1) + (Z‘l - ZL’min)AJ]

(Az)?

($1 |ymax)

(‘Tllymin>

» (xmax‘yl)

In 3D the percentage of the cell inside the feedback region is calculated with Monte-Carlo if it is
not a trivial case (0% or 100%). For all three directions v random variables are calculated. The
fraction the cell volume inside the feedback region py, is the number of random points inside the
feedback region (|(z;|y;|z;)| < r) divided by the total number of random points 7.
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C.1.4 Integral for 3D feedback region boundary cells

_ — 2 2 2
r = [xmim :Cmax]v Tmax = \/R — Ymin — “min

y = [ymim ymax]7 Ymax = \/R2 — % — Zﬁqin

z = [Zmim Zmax]a Zmax — V R? — 22 — y2

Tmax Ymax Zmax
P = / / / dzdydx
Zmin Ymin Zmin

Tmax Ymax
= / \/R2 — 2?2 —y? - zmin> dydz

Ymin

1
with Integral 113 in Netz (1986) / Va2 — 22dx = 5 (a:\/ a2 — 22 + a” arcsin E)
a

Tmax 1 y Ymax
_ - 2 _ 2 .2 2 _ .2 ; _ .
— /I | <2 (y R? — 2?2 — y?2 + (R* — z°) arcsin = xz) zmm) dx

Ymin
1 e 2 2 2 2 2 2 2 2 2 2 2
P = 5 \/R -z _Zmin\/R —2* =R +x +Zmin_ymin\/R — X7 — Ymin
R2 — 2 — 22 y
+ R* — z?) arcsin v min _(R2 _ 22) arcsin ——amt
- 2Zmin \/R2 - xZ - mln + 2Zmlnym1n>
Zmi 2 Zmi Z

with arcsin4/1 — (\/ﬁ) = arccos m for (m > 0)

1 Tmax o y .
= — R? — 42 (arccos — " _ arcsin $>
2\/xmin (( ) VRQ_ZBZ VRQ_:EQ
— ymin\/ R? — 22 — y2. — Zmin \/ R? — 22 — 22, + 2zminymin> dx

Wolfram Mathematica online integrator ( http://integrals.wolfram.com/index.jsp ):

/ (R* —?) (arccos \/7 — arcsin \/7) dr =

r(3R?* — x?) ( : )
—— 7 | arcsin ————— — arccos ——
3 VR VR
R3 Ty 2R Tz
+—— arctan + arctan
3 R\/R?—2%2—y? 3 RVR? — 2% — 22
% R2 — ZL'Q — y2 — %(3R2 + y2> arcsin RQ—_yZ
Tz T

_F R2 — 31?2 — 22 — §(3R2 —+ Z2> arcsin m


http://integrals.wolfram.com/index.jsp
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Zmin
m)

1 Yri
= — [ —22(3R? — 2?) | arcsin —=——_ — arccos
+4R? arctan TYmin + 4R? arctan L Zmin
R\/R2 - 1.2 - yanin R\/R2 - 1’2 - Zr2nin

_ . 2 2 a2 o 2 2 o
xymln\/R X ymln ymm(?)R +ym1n) arcsin \/m

_ ) 2 a2 N2 2 2 in___*
xzmm\/ R? — 22 — 22— Zzmin(3R™ + 27;,) arcsin T (C.1)
_ . 2 2 a2 . 2 _ .2 oL
3$ym1n \/R x Ymin 3ym1n(R ymln) arcsi \/m
— 3% Zmin \/ R? — 22 — 22, — 3z (R* — 22,) arcsin
R? — ZIQnin
+ 122minyminx)
S —21(3R* — 2°) ( arcsin _ Ymin arecos ——min
12 VR2 = 12 VR — 22
+4R? arctan T Ymin + 4R? arctan L min
R\/R2 — 2?2 — yrznin R\/R2 — % — Zr2nin
_ ) 2 2 a2 o 2 _ 9.2 .
4*Tymln \/R x ymm ymln(GR 2ym1n) arcsin \/W (C2)
—4T2min \/R2 — 22— 22— 2uin(6R? — 222, ) arcsin U
RZ_ .2

min
Tmax
+ 1 2Zminyminx>

Zmin
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1 Zmin . min

= —\/ R2 — 2. — 22 (2R* + 42, + 22, | arccos ———2—— — arcsin S
6 V yrznin + zrznin yr2nin + 212nin
R3 ymin\/R2 - y2~ - 22' R3 Zmin\/R2 - y2. - ZQ'
3 RZmin 3 Rymin

Ymin
) \/R2 — Yoin — Ziain \/ R? — (R? — y2in — Zoin) — Yiin
R2 _ 2. _ -2
(3R?* — 32, ) arcsin \/ Ymin — “min
6 min R2 — yr2nln
Zn?zin \/R2 - y12nin - "7’1'2nin \/R2 - (R2 - y1211in - Zr2nin) - Zr2nin

2 _ .2 2
Zmin . R — Ymin — Pmi
— 2R (3R? — 22,) arcsin v min___min
2 _ 2
6 R? — 2

min

2 2 2
+ymin2min \/R ~ Ymin ~ Pmin

Ymin

Lmi . Ymi Zmin
+ 2R (3R? — 22, ) | arcsin ————— — arccos ——————
6 min R2 2 R2 2
V ~ Lnin V — Lnin
R3 T 3 o
xmlnymln xmlnzmln
3 arctan 5 > = 3 arctan 5 > >
R\/R ~ Lmin — Ymin R\/R ~ Lhmin ~ Pmin
LminYmin 9 2 2 Ymin 2 2 . Lmin
min
Lmin”min Zmin . Lmin
G TR R — a2 — 22+ TER(3R? — 22, arcsin ——e—
3 6 R2 — 22,
min

—ZminYminLmin

(C.3)
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1 z . y .
o 2 2 2 2 2 2 min . min
=3 \/ R = yiin = Zanin 2R + Yoo + Zinin) | ATCCOS — e — arcsin —————
ymin + Zmin ymin + Zmin
R3 Ymin R? — 3/2 in — 22' R3 Zmin R? — y2 in — 22'
_"__ arctan \/ min min + _ arctan \/ min min
3 Rzmin 3 Rymin
3 3
R xminymin R Lmin<min
—? arctan 5 — ? arctan 5
2 2
R\/R2 — Thin — Ymin R\/R2 — Lipin — Amin
L . Ymi Zmi
+ 2R (3R — 22, ) | arcsin ————— — arccos ————m———
6 /R2 — 2 /R2 — 12
min min
y . . x . Z .
—i——zm (3R* —y2..) | arcsin — — — — arccos —Qmm :
\/R ~ Ymin \/R ~ Ymin
z . . l’ . y .
+ 2R (3R* — 22, | arcsin ————— — arccos —————
6 VR?— 22, VR? - 22,
min min

min<min ZLminYmin Lmin<min
+y—\/R2 —y2 =22+ Ty\/RQ — 2 —yfnin—f——\/RQ — a2, =22

3 min min 3 min min

—ZminYminLmin

(C4)

The wind speeds at the borders of the feedback region are expected to be too small to be resolved —
hence the kinetic wind energy (0.5v%dm [code-mass-unit/code-length-unit/code-time-unit*] with
density increase dm [code-mass-unit/code-length-unit®]) is treated as unresolved kinetic energy
and hence added to the internal energy (see Code Listing C.1).

If mass loss 1s used, it is assumed that this gas moves with the bulk speed. Thus, inserting mass usu-
ally creates kinetic energy, since the bulk speed in the feedback region is almost always nonzero.
To insert the fixed amount of stellar feedback energy the code subtracts this additional kinetic en-
ergy (that corresponds to the bulk speed of the cell inside the feedback region and the mass that
has been newly inserted into this cell) from the newly inserted internal energy in this cell.

The name of the variable rhodriver used in Code Listing C.1 might be misleading — it is used
for the density increase due to the mass ejection caused by stellar feedback. The module driver
(stored in the file driver.f90) provides arrays and subroutines to handle the feedback. It is
shown in Code Listing C.1 and reads data from a file called “driver” that is located in the local
directory. This file has five entries per line that are separated by blanks: time, internal energy
gain (per time unit and for the whole feedback region), mass loss (per time unit and for the whole
feedback region), wind speed and 2°Al yields (percentage of mass loss). The number of lines in the
driver file can either be specified or determined by the code at run-time. As already mentioned, the
code has two ways of adding internal energy: internal energy (column 2 in the driver file) that is
not connected to mass loss of the feedback region and unresolved kinetic energy (computed from
column 3 and 4 in the driver file) that takes mass feeding into account.

The shape (slightly asymmetric feedback regions, 4-symmetric feedback regions) and scaling
of the stellar feedback (energy, mass) is explained in Sect. 4.3 on Sedov-Taylor blasts and in
Sect. 4.4.1 on constant winds.
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