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1 Einleitung 

1.1 Pankreaskarzinom  

Der häufig genutzte Begriff des Pankreaskarzinoms bezieht sich in der Regel auf das 

duktale Adenokarzinom des Pankreas. Dieses hat einen Anteil an den exokrinen Tumoren 

des Pankreas von ca. 92 % [1]. Weitere exokrine Pankreastumore sind das benigne seröse 

Zystadenom (1 %), die maligne intraduktale papillär-muzinöse Neoplasie (IPMN) (2 %), die 

maligne muzinös-zystische Neoplasie (MCN) (1 %) und das Azinuszellkarzinom (1 %). 

Darüber hinaus gibt es neuroendokrine Tumore des Pankreas (z. B. Insulinome, Gastrinome, 

VIPome, Glukagonome und hormonell inaktive nichtfunktionelle Tumore), die mit einer 

Prävalenz von 1/100.000 sehr selten sind [1]. 

1.1.1 Duktales Adenokarzinom des Pankreas 

1.1.1.1 Epidemiologie 

1.1.1.1.1 Inzidenz und Mortalität 

Das Pankreaskarzinom zählt zu den Karzinomen mit der höchsten Letalität und stellt 

auch heute noch eine schlecht zu therapierende Krankheit dar.  

Im Jahr 2008 lag die geschätzte Zahl der Neuerkrankungen in Europa bei 96.000 und 

die Zahl der Todesfälle durch das Pankreaskarzinom bei 95.200 [2]. Man schätzt, dass allein 

in den USA im Jahr 2010 36.800 Menschen daran gestorben sind und ca. 43.100 neue Fälle 

aufgetreten sind. Dabei sind nur ca. 3 % der neu auftretenden Krebserkrankungen Pankreas-

karzinome und dennoch verantwortlich für ca. 6 % der Todesfälle nach Krebserkrankungen 

bei Männern und ca. 7 % bei Frauen [3]. Bedingt durch die schlechte Prognose ist das 

Pankreaskarzinom für beide Geschlechter die vierthäufigste krebsbedingte Todesursache 

[4].  

Bisher bietet nur die operative Therapie einen kurativen Behandlungsansatz des 

Pankreaskarzinoms. Trotz der Weiterentwicklung in der Chemotherapie, Radiotherapie oder 

der Kombination dieser Möglichkeiten können diese zwar den Verlauf dieser aggressiven 

Neoplasie beeinflussen, bleiben aber in ihrer Intention palliativ. 1930 lag die altersbereinigte 

Sterberate des Pankreaskarzinoms für Männer und Frauen bei ca. 4 aus 100.000 und ist bis 

heute stetig auf ca. 12 aus 100.000 bei Männern und 10 aus 100.000 bei Frauen gestiegen 

[3]. 2008 lag die Sterberate bei 12,1 für Männer und 8,4 für Frauen in Westeuropa und 

deutlich niedriger für Männer und Frauen in Südeuropa mit 10,7 und 7,2 (altersbereinigt auf 

100.000 Personenjahre) [2]. Das Alter mit der höchsten Inzidenz liegt zwischen 60 und 80 

Jahren [5]. 
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1.1.1.1.2 Prognose 

Die Prognose der Patienten mit Pankreaskarzinom ist eine der schlechtesten unter 

allen Karzinomarten. Das ist hauptsächlich auf die Tatsache zurückzuführen, dass weniger 

als 10 % der Pankreaskarzinome in frühen, potentiell heilbaren Stadien diagnostiziert werden 

[4]. Zum Zeitpunkt der Diagnosestellung befinden sich 8 % der Pankreaskarzinome im 

lokalisierten Stadium, 26 % im lokal fortgeschrittenen Stadium und 53 % haben bereits Fern-

metastasen gebildet [6]. Die mittlere 5-Jahres-Überlebensrate für alle Stadien liegt je nach 

Quelle zwischen 1 und 5 % [3, 5] und das mittlere Überleben bei ca. 6 Monaten [7]. Nach 

Stadien aufgeteilt, hat das lokalisierte Stadium ein 5-Jahres-Überleben von 22,5 %, das lokal 

fortgeschrittene Stadium von 8,8 % und das metastasierte Stadium von 1,9 % [6]. 

1.1.1.2 Risikofaktoren 

Es wurden viele Risikofaktoren für die Entwicklung eines Pankreaskarzinoms diskutiert, 

allerdings gibt es nur für den Einfluss des Rauchens eindeutige Beweise [5, 8]. Das Risiko, 

an einem Pankreaskarzinom zu erkranken, ist für Raucher 2,5 bis 3,6-fach höher als für 

Nichtraucher und steigt mit der Menge an konsumiertem Tabak und der Expositionszeit [8]. 

Es wird geschätzt, dass 25 % der Pankreaskarzinomneuerkrankungen mit Zigarettenrauchen 

in Verbindung stehen. Zusätzlich tritt das Pankreaskarzinom bei Rauchern im Mittel 10 Jahre 

früher als bei Nichtrauchern auf. Wie bei anderen Karzinomen, deren Entartungsrisiko durch 

Rauchen erhöht wird (z. B. Blasenkarzinom), obwohl sie auf Grund ihrer Lokalisation nicht 

direkt den inhalierten oder geschluckten Inhaltsstoffen ausgesetzt sind, könnten N-Nitro-

Verbindungen potentiell eine Hyperproliferation der Zellen auslösen und so zu Adeno-

karzinomen führen [5]. 

Die Daten in Bezug auf Alkoholkonsum, Kaffeekonsum und die Nutzung von Aspirin 

weisen keinen statistisch signifikanten Zusammenhang auf [9, 10]. Eine 1981 im New 

England Journal of Medicine veröffentlichte Studie zeigte den Zusammenhang zwischen 

Kaffeekonsum und der Zunahme der Pankreaskarzinominzidenz [11], wurde aber im 

Folgenden mehrfach widerlegt [12, 13].  

Einzelne Studien zeigen ein gesteigerte Inzidenz von Pankreaskarzinomen bei 

Patienten mit Diabetes mellitus oder chronischer Pankreatitis, und es gibt schwache 

Hinweise, dass chronische Leberzirrhose, eine fett- und cholesterinreiche Diät und die 

Entfernung der Gallenblase mit einer höheren Inzidenz assoziiert sind [14-18]. Außerdem 

wurde in neuerer Zeit ein höheres Risiko für Patienten mit Blutgruppe A, B und AB im 

Vergleich zur Blutgruppe 0 beobachtet [18]. 

Zwischen 5 und 10 % der Patienten mit Pankreaskarzinom weisen eine positive 

Familienanamnese für die Erkrankung auf [19]. In Studien, die das familiär gehäufte 

Auftreten von Pankreaskarzinomen untersucht haben, wurde immer wieder gezeigt, dass 

eine positive Familienanamnese für das Pankreaskarzinom ein 2,8 bis 13-fach höheres 
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Risiko im Vergleich zur Kontrollgruppe darstellt. Dies gilt auch dann, wenn man die 

Ergebnisse für Umfeld bedingte Risikofaktoren und Diabetes mellitus bereinigt [20-22]. Bei 

einigen Patienten entwickelt sich ein Pankreaskarzinom als Teil einer definierten genetischen 

Prädisposition, wie z. B. im Rahmen der hereditären Pankreatitis mit PRSS1-Mutation (26 bis 

70-fach erhöhtes Risiko), des hereditären nicht-polypösen Kolonkarzinoms (HNPCC) mit 

Mutationen von hMLH1, hMSH2, hMSH6 und hPMS2 (8,6-fach erhöhtes Risiko), der Ataxia 

telangiectasia mit ATM-Genmutation (2 bis 3-fach erhöhtes Risiko), des Peutz-Jeghers-

Syndroms mit STK11-Mutation (132-fach erhöhtes Risiko), des hereditären Mamma- und 

Ovarialkarzinoms mit BRCA1- oder BRCA2-Mutation (3 bis 10-fach erhöhtes Risiko bei 

Vorliegen einer BRCA2-Genmutation) und des familiären atypischen multiplen Muttermal- 

und Melanom-Pankreaskarzinom-Syndroms (FAMMM-PC-Syndroms) mit CDNK2-Mutation 

(13 bis 22-fach erhöhtes Risiko) [23-25]. 

Alle bekannten Mutationen zusammen genommen machen allerdings nur einen kleinen 

Teil der Patienten mit positiver Familienanamnese aus. Dies zeigt, dass bislang nur ein Teil 

der Gendefekte entdeckt wurde, die eine familiäre Disposition bewirken. 

Als protektiv gilt eine Obst- und Gemüse-reiche Diät [26, 27]. Es wird angenommen, 

dass dieser Effekt mit der Aufnahme von Folsäure und anderen Methylgruppendonoren in 

Verbindung steht [28]. 

1.1.1.3 Pathophysiologie und Molekularbiologie 

Die Entwicklung eines Pankreaskarzinoms aus dysplastischem Epithel über schwere 

Dysplasien zu einem invasiven Karzinom wird parallel begleitet von der schrittweisen 

Akkumulation von Genmutationen, wie z. B. der Aktivierung des K-ras2-Onkogens, der In-

aktivierung des Tumorsuppressorgens CDKN2A/p16, der Inaktivierung des Tumor-

suppressorgens TP53 und der Inaktivierung von DPC4/SMAD4 [29, 30].  

Zu den bekannten Präkanzerosen des Pankreaskarzinoms zählen die pankreatische 

intraepitheliale Neoplasie (PanIN) [31], aber auch weniger gut charakterisierte Läsionen des 

Pankreas wie die muzinös-zystische Neoplasie (MCN) und die intraduktale papillär-muzinöse 

Neoplasie (IPMN) [32]. 

Fast alle Patienten mit einem Pankreaskarzinom tragen mindestens einen von vier 

genetischen Defekten [33]. Über 90 % der Tumore haben eine aktivierende Mutation in dem 

K-ras2-Onkogen. Dabei verursacht die Transkription des mutierten K-ras-Gens ein 

abnormales Ras-Protein, welches sich unabhängig von äußeren Einflüssen im aktivierten 

Zustand befindet und zu einer abnormalen Aktivierung der Proliferations- und 

Überlebenssignalwege führt [34]. 

Ebenso zeigen 95 % der Tumore eine Inaktivierung des CDKN2A/p16-Gens und einen 

daraus resultierenden Verlust des p16-Proteins, welches als Regulator für den Übergang der 
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Zellen von der G1- zur S-Phase dient. Durch den Mangel an p16-Protein könnte es deshalb 

zu einem Anstieg der Zellproliferation kommen [35, 36]. 

TP53 ist in bis zu 85 % der Pankreaskarzinome inaktiviert. TP53 ist ein wichtiger 

Regulator vieler verknüpfter Zellprozesse, wie Apoptose, Zellzyklus und DNS-Reparatur [34]. 

So kommt es beispielsweise als Reaktion auf eine Schädigung der DNS durch TP53 zu einer 

p21-Transkription und über den Cyclin-CDK-Komplex zu einem Zellzyklusarrest. Die 

Inaktivierung von TP53 führt insgesamt zu einer Instabilität der DNS, da sie den Zellen auch 

bei schwerwiegenden DNS-Schäden die Proliferation ermöglicht [37].  

DPC4/SMAD4 ist in 55 % der Pankreaskarzinome inaktiviert [38]. SMAD4 ist ein 

essentieller Bestandteil des TGF-β-Signalwegs. Seine Inaktivierung führt zu einem Verlust 

der TGF-β-induzierten Wachstumshemmung [34] und korreliert mit einer schlechten 

Prognose und ausgeprägten Metastasierung [39]. 

Eine kürzlich durchgeführte umfassende genetische Analyse von 24 Pankreas-

karzinomen hat gezeigt, dass die genetische Basis des Pankreaskarzinoms sehr heterogen 

und vielschichtig ist. Es zeigten sich durchschnittlich 63 genetische Veränderungen pro 

Tumor [40]. Dabei können die Mutationen 12 zellulären Signalwegen zugeordnet werden, die 

in 67 bis 100 % der Fälle verändert waren [40]. 

1.1.1.4 Symptome 

Die Symptome des Patienten hängen stark von der Lokalisation des Tumors und dem 

Stadium der Erkrankung ab. Patienten stellen sich oft mit eher unspezifischen Symptomen 

wie Bauch- oder Rückenschmerzen, unerklärbarem Gewichtsverlust, Ikterus und Pruritus 

vor. 70 % der Patienten haben einen Diabetes mellitus und häufig liegt dessen Diagnose 

weniger als zwei Jahre zurück [41]. Manchmal werden Patienten auch mit akuter 

Pankreatitis, Phlebitis migrans, Maldigestion, Hypoglykämie oder Hyperkalzämie vorstellig 

[42, 43]. 

Die Mehrzahl der Pankreastumore entwickelt sich im Pankreaskopf. In Folge einer 

Tumorobstruktion des Ductus choledochus kann es deshalb zur Cholestase oder durch eine 

Kompression des Pankreasgangs zur Pankreatitis kommen [44]. 

1.1.1.5 Diagnostik 

Die Diagnostik bei Verdacht auf ein Pankreaskarzinom dient der Stadieneinteilung und 

Entscheidungsfindung, ob ein Tumor operabel ist, ob durch eine neoadjuvante Therapie eine 

sekundäre Operabilität erreicht werden könnte oder ob ein palliatives Vorgehen gewählt 

werden muss. 

Bei Vorliegen einer potentiell resektablen, karzinomverdächtigen Raumforderung im 

Pankreas sollte primär die Resektion erfolgen. Eine endosonographisch-gesteuerte Biopsie 
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kann dann durchgeführt werden, wenn Differentialdiagnosen möglich sind, die das Vorgehen 

ändern würden [45]. 

Die Frage der Resektabilität wird mittels bildgebender Diagnostik geklärt, zum Beispiel 

durch Sonographie, Computertomographie, Magnetresonanztomographie, endoskopische 

Ultraschalldiagnostik oder einer Kombination dieser Methoden. 

In der transkutanen Ultraschalluntersuchung des Oberbauches sind eine echoarme 

Raumforderung und eine Dilatation des Ductus pancreaticus und des Ductus choledochus 

communis (double-duct sign) Zeichen eines Pankreastumors [46, 47]. Eine weitere 

Charakterisierung einer verdächtigen Pankreasraumforderung ist mittels Kontrastmittel-

Doppler-Ultraschall ist möglich [46]. Darüber hinaus wird die Diagnostik mittels Kontrast-

mittel-gestützter CT zum lokalen Staging empfohlen, da diese mit 80 bis 90 %iger 

Genauigkeit die Resektabilität des Tumors vorhersagen kann [48]. Allerdings zeigen sich 

einige Schwierigkeiten bei der Identifizierung von Lebermetastasen und von befallenen 

Lymphknoten [49, 50]. 

Zum Ausschluss einer systemischen Metastasierung sollten in jedem Fall ein 

Röntgenthorax und eine Sonographie des gesamten Abdomens erfolgen. Dies kann auch 

durch eine adäquate CT-Diagnostik ersetzt werden [45]. 

 

Vor der Durchführung einer palliativen Chemotherapie muss die Diagnose zytologisch 

oder histologisch gesichert sein, um mögliche Fehlbehandlungen auf Grund anderer 

Differentialdiagnosen auszuschließen [51]. Außerdem sollte dabei immer die am einfachsten 

zugängliche Läsion punktiert werden [45]. 

Es gibt potentielle Serumbiomarker zur Diagnose, Prognose oder Verlaufskontrolle des 

Pankreaskarzinoms [52], von denen allerdings nur CA 19-9 und CEA eine gewisse klinische 

Bedeutung zukommt. So wurde in viele Studien der Nutzen von CA 19-9 zur Therapie-

kontrolle oder als Marker bei einem Rezidiv nachgewiesen [53-55]. Im Gegensatz zu 

CA 19-9 ist die Datenlage bei CEA nicht eindeutig. Es gibt Hinweise, dass CEA als 

prognostischer Marker für Patienten in fortgeschrittenem Stadium gelten kann [56, 57]. 

Allerdings gibt es auch Einschränkungen bei der Nutzung von CA 19-9 (siehe Abschnitt 

Biomarker). 

1.1.1.6 Stadienbestimmung 

Die Klassifikation des Pankreaskarzinoms erfolgt auf der Basis der TNM-Einteilung und 

wird nach der neusten Version der Empfehlungen der Union internationale contre le cancer 

(UICC) und des American Joint Commitee on Cancer (AJCC) in 4 Stadien (siehe Tabelle 1) 

unterteilt [58]. T1, T2 und T3 Tumore werden als potentiell resektabel eingestuft. Dabei 

werden Tumore, welche durch Resektion und ggf. Rekonstruktion von umliegenden 

Strukturen z. B. Vena mesenterica superior, Portalvene oder Vena splenica, vollständig 
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entfernt werden können, als T3 klassifiziert. Tumore, welche großflächig Strukturen 

involvieren, die nicht reseziert werden können, wie z. B. die Arteria mesenterica superior 

oder den Truncus coeliacus gelten als nicht-resektabel und werden damit als T4 klassifiziert. 

 

Stadium 
T-

Status 
N-

Status 
M-

Status 

Mittleres 
Überleben 
[Monaten] 

Merkmale 

IA T1 N0 M0 24,1 
Tumor begrenzt auf das Pankreas 
längster Durchmesser ≤ 2 cm 

IB T2 N0 M0 20,6 
Tumor begrenzt auf das Pankreas 
längster Durchmesser > 2 cm 

IIA T3 N0 M0 15,4 
Ausbreitung des Tumors über das Pankreas, 
keine Infiltration der A. mesenterica sup. 
oder des Truncus cöliacus 

IIB 
T1, T2 
oder T3 

N1 M0 12,7 Regionale Lymphknotenmetastasen 

III T4 
jedes 

N M0 10,6 
Tumor involviert die A. mesenterica sup. 
oder den Truncus cöliacus (nicht-resektabel) 

IV jedes T 
jedes 

N 
M1 4,5 Fernmetastasen 

 

Tab. 1: Stadieneinteilung des Pankreaskarzinoms nach Hidalgo et al. [44]; Daten zum mittleren 

Überleben nach Bilimoria et al. [59] 

1.1.1.7 Management 

Wichtige patientenabhängige Prognosefaktoren für den Erfolg der Behandlung bei 

Erstdiagnose sind Allgemeinzustand, Gewichtsverlust, Schmerzen und laborchemische 

Inflammationszeichen [60]. 

1.1.1.7.1 Resektables, lokalisiertes Stadium 

Die Behandlung der Wahl für Patienten mit lokalisiertem, resektablen Pankreas-

karzinom ist die radikale Operation mit kurativem Ansatz [61]. Ziel der Operation ist eine 

Resektion ohne mikroskopischen Nachweis von Tumorzellen im Schnittrand (R0). Je nach 

Tumorlokalisation wird dazu eine radikale Operation mit Magenresektion und partieller 

Duodenopankreatektomie (klassische Operation nach Kautsch/Whipple), die pylorus-

erhaltende Operation (Operation nach Traverso), die totale Duodenopankreatektomie oder 

eine subtotale Pankreaslinksresektion durchgeführt. Dabei haben Datenbankanalysen 

gezeigt, dass die Mortalität der Operation in Zentren mit hohen Fallzahlen signifikant 

geringer ist als in Krankenhäusern, in denen die Operation nur unregelmäßig durchgeführt 

wird [62].  

Daten zeigen auch, dass eine möglichst radikale Operation die Überlebens-

wahrscheinlichkeit nicht verbessert, jedoch die perioperative Mortalität erhöht. Wichtige 

Prognosefaktoren sind Lymphknotenmetastasen, Differenzierungsgrad des Tumors, 
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Tumorgröße, R1/R2-Resektion und hohe oder nach der Operation nicht fallende 

Serumspiegel von CA 19-9 [54, 63, 64].  

In mehreren Studien wurde der Nutzen adjuvanter (Radio-)Chemotherapie für das 

Überleben der Patienten nachgewiesen. Dabei zeigten die ESPAC-1-Studie und die 

CONKO-001-Studie einen deutlichen Nutzen der adjuvanten Chemotherapie mit 

5-Fluorouracil/Folinsäure bzw. Gemcitabin für das Überleben der Patienten [65, 66].  

1.1.1.7.2 Lokal fortgeschrittenes Stadium 

Bei der Erstdiagnose befinden sich ca. 26 % der Patienten in einem lokal 

fortgeschrittenen Stadium der Erkrankung. Weitere 30 % der Patienten haben ein lokales 

Rezidiv nach Behandlung eines Karzinoms im lokalisierten Stadium [44]. Die aktuellen 

S3-Leitlinien empfehlen für diese Patientengruppe ein sequentielles Behandlungskonzept, 

um in einigen Fällen die Resektabilität des Tumors zu erreichen. Dabei sollte zuerst eine 

Chemotherapie und im Anschluss eine Radiochemotherapie der Patienten erfolgen. Nach 

der Therapie sollte die Frage der sekundären Operabilität beurteilt werden [45]. Der Nutzen 

der kombinierten Radiochemotherapie im Vergleich zur Chemotherapie alleine ist noch nicht 

ausreichend untersucht [67] und sollte deshalb nur im Rahmen von Studien angewendet 

werden [45]. 

1.1.1.7.3 Metastasiertes Stadium 

Die Mehrzahl der Patienten leidet bei Erstdiagnose bereits an einem metastasierten 

Karzinom. Derzeit gibt es für dieses Tumorstadium keinen kurativen Therapieansatz. Das 

mittlere Überleben mit Behandlung liegt bei ca. 5 Monaten. Bisher ist eine Monotherapie mit 

Gemcitabin die Therapie der ersten Wahl [68]. Alle Therapieentscheidungen sollten 

leitliniengerecht durch ein interdisziplinäres Tumorboard erfolgen [45]. 

In neuerer Zeit gibt es viele Studien, die neue Einzel- oder Kombinationstherapien 

untersuchen. Metaanalysen bestätigen die Rolle von Gemcitabin als Standardtherapeutikum, 

allerdings sind auch Kombinationen von Gemcitabin mit Platinanaloga oder 

Fluoropyrimidinen effektiv [69-71].  

Zusätzlich wurde für die Kombination von Gemcitabin mit Erlotinib, einem selektiven 

Inhibitor der Tyrosinkinase-Domäne des EGF-Rezeptors (Epidermial-Growth-Factor-

Rezeptor), ein kleiner, aber statistisch signifikanter Vorteil im Überleben nachgewiesen [72]. 

Insbesondere haben aber Studien auch gezeigt, dass die Behandlung bei Patienten, die ein 

medikamenten-induziertes Exanthem (Rash) unter Therapie entwickeln, einen deutlich 

größeren Therapieerfolg aufweisen [72, 73]. Allerdings kam es unter Kombinationstherapie 

zu einer höheren Rate an Nebenwirkungen als unter der Monotherapie mit Gemcitabin.  
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Ein deutlicher Fortschritt bei der medikamentösen Behandlung des Pankreaskarzinoms 

wurde durch die Kombination und Weiterentwicklung von etablierten Chemotherapeutika 

erzielt. 

So wurden vielversprechende Daten über die Wirksamkeit von FOLFIRINOX 

veröffentlicht. Dabei zeigt sich ein deutlich verbessertes Überleben im Vergleich zur 

Monotherapie mit Gemcitabin [74]. Allerdings kann dabei eine gewisse Vorselektion der 

Patienten anhand des Allgemeinzustandes nicht sicher ausgeschlossen werden.  

In einer 2013 im NEJM veröffentlichten Studie zeigte sich, bei der 

Kombinationstherapie mit Albumin-gebundenem Paclitaxel (Abraxane) und Gemcitabin ein 

besseres Gesamtüberleben, ein verlängertes progressionsfreies Überleben und eine 

bessere Ansprechrate als bei der Monotherapie mit Gemcitabin bei vertretbar erhöhten 

Nebenwirkungen [75]. 

Für den Fall der Progression der Erkrankung unter Chemotherapie gibt es keine 

einheitlichen Therapieempfehlungen mehr. Für Patienten in einem guten Allgemeinzustand 

(ECOG ≤ 2) kann eine Zweitlinientherapie empfohlen werden [45]. 

Zusätzlich sollten alle Patienten mit einer Erkrankung im fortgeschrittenen Stadium 

durch ein interdisziplinäres Palliativteam betreut werden. Dabei steht die Symptomkontrolle 

von Schmerzen, Kachexie, tumorbedingter Cholestase, Peritonealkarzinose und Aszites im 

Vordergrund. 
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1.2 Biomarker  

Ein Biomarker ist eine Substanz, Struktur oder ein Prozess, welcher im Körper oder 

seinen Produkten gemessen oder in den Zellen und Geweben nachgewiesen werden kann 

und ein Zeichen für einen physiologischen oder pathologischen Prozess oder eine 

Erkrankung ist. Außerdem kann ein Biomarker darüber Auskunft geben, wie gut das 

Ansprechen auf eine Behandlung ist [76, 77]. 

Ein Tumormarker ist ein Molekül, das in Tumorgewebe nachgewiesen werden kann 

oder vom Tumor an das Blut oder andere Körperflüssigkeiten abgegeben wird und dort 

detektiert wird. Tumormarker können diagnostischen, prognostischen oder prädiktiven Wert, 

z.B. für das Therapieansprechen, haben [78]. 

1.2.1 Anforderungen an einen Biomarker 

Damit Biomarker in der klinischen Routine eingesetzt werden können, müssen diese 

verschiedene Kriterien erfüllen. 

Für den Einsatz in der Diagnostik oder als Screeningmethode ist es notwendig, dass 

der Biomarker eine hohe Trennschärfe zwischen Gesunden, Erkrankten und an einer 

anderen Krankheit Erkrankten aufweist. Außerdem muss evaluiert werden, ob ein Biomarker 

überhaupt abbildet, was gemessen werden soll [76]. 

Das Probenmaterial zur Bestimmung des Biomarkers sollte möglichst einfach 

zugänglich sein. Für das Pankreaskarzinom kann bisher auf eine invasive Diagnostik mittels 

Biopsie nicht verzichtet werden. Aus diesem Grund wird in Studien die Untersuchung von 

Blut, Pankreassekret und Stuhl auf Biomarker für die Diagnostik des Pankreaskarzinoms 

evaluiert [79]. 

Ein weiterer kritischer Punkt ist die Standardisierung der Messmethodik eines 

Biomarkers. Um eine hohe Vergleichbarkeit zu erreichen, dürfen die Ergebnisse nicht durch 

Analyseverfahren signifikant beeinflusst und es sollte ein allgemeingültiges Referenzsystem 

etabliert werden [80]. 

1.2.2 Diagnostische Tumormarker 

Diagnostische Tumormarker werden eingesetzt, um aus einer Population die Individuen 

herauszufinden, die an einer Krankheit leiden [78]. Dabei ist es wichtig, dass man die 

Erkrankung eines Patienten aus einer Gruppe ähnlicher Erkrankungen genau differenzieren 

kann. 

Der einzige diagnostische Tumormarker für das Pankreaskarzinom, der bedingt in der 

klinischen Routine eingesetzt wird, ist CA 19-9. In einer Metaanalyse mit insgesamt 2.282 

Patienten wurde gezeigt, dass CA 19-9 eine mittlere Sensitivität von 79 % und eine mittlere 
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Spezifität von 82 % für das Pankreaskarzinom hat [81]. Dabei muss man jedoch betonen, 

dass CA 19-9 derzeit bei der Primärdiagnose nur als zusätzliche Hilfe bei der Differential-

diagnostik gewertet werden kann und nicht als alleiniges Diagnosekriterium [45]. Allerdings 

kann der CA 19-9-Verlauf zur Diagnostik eines Rezidives herangezogen werden [44]. 

Einschränkung in der Nutzung von CA 19-9 als diagnostischer Marker ergeben sich, da 

es auch bei anderen benignen und malignen Erkrankungen des Gastrointestinaltraktes zu 

Erhöhungen der CA 19-9-Blutwerte kommen kann [82]. Außerdem wird CA 19-9, die 

sialysierte Form des Lewis A-Blutgruppenantigen, von Patienten, die genotypisch Lewis-

Antigen a-b-Phenotyp sind (ca. 10 % der Patienten mit Pankreaskarzinom) nicht exprimiert. 

Diese Patientengruppe weist somit auch bei fortgeschrittener Erkrankung keine erhöhten 

Serumspiegel von CA 19-9 auf [44].  

Nach den Richtlinien der “European Group on Tumor Marker” von 2009 kann CA 19-9 

als ergänzender diagnostischer Marker empfohlen werden, wenn ein radiologischer 

Karzinomverdacht besteht, jedoch eine Tumorgröße unter 3 cm und kein Ikterus vorliegt [83]. 

Es wurden auch viele weitere Serumtumormarker, z. B. CA 242, CEA, TPA und K-ras, 

und Analysen von Mucinen und microRNA für das Pankreaskarzinom als potentielle 

diagnostische Tumormarker getestet [84-86]. Bisher hat sich im Vergleich zu CA 19-9 keiner 

der getesteten Biomarker als überlegen erwiesen. Aus diesem Grund werden sie nicht 

routinemäßig eingesetzt [86, 87]. 

1.2.3 Prognostische Tumormarker 

Prognostische Tumormarker sollen helfen, patientenbezogene Aussagen über den 

Verlauf der Erkrankung zu treffen und damit die Entscheidung für die passende 

Behandlungsoption unterstützen [78]. 

Bisher konnte nur für CA 19-9 eine überzeugende Rolle als prognostischer 

Tumormarker für das Pankreaskarzinom belegt werden. Studien zeigen, dass ein 

prätherapeutisch hoher CA 19-9-Serumspiegel mit einer schlechteren Prognose und einem 

schlechteren postoperativen Überleben korreliert [88, 89]. Ähnlich scheint auch der Abfall 

des CA 19-9-Serumspiegel durch eine Operation, eine systemische Chemotherapie oder 

Radiotherapie einen sogar noch stärkeren prognostischen Wert für das weitere 

posttherapeutische Überleben der Patienten zu haben [54, 88]. Darüber hinaus haben 

Studien gezeigt, dass eine regelmäßige Messung von CA 19-9 zur Früherkennung von 

lokalen Rezidiven oder dem Auftreten von Metastasen genutzt werden kann [82]. 

Die Nutzung von K-ras als prognostischer Biomarker kann bisher nicht empfohlen 

werden [87]. In einer großen Metaanalyse konnte auf Grund mangelnder Teststärke, 

Studiendesign und Testmethoden keine einheitliche Aussage gefunden werden [90]. 
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1.2.4 Prädiktive Tumormarker 

Prädiktive Tumormarker dienen dazu, eine Vorhersage über das Ansprechen eines 

Patienten auf eine Therapie zu treffen und können dabei helfen, diese zu individualisieren 

und für den einzelnen Patienten zu optimieren. Ein bestimmter Tumorgenotyp (Mutationen 

oder Polymorphismen) oder ein spezielles Genexpressionsprofil kann dabei ein Hinweis für 

die Chemo- oder Radiosensitivität eines Tumors sein [78]. 

Zur Identifizierung chemotherapeutisch-nutzbarer Angriffspunkte wurden in einer Studie 

24 Pankreaskarzinome sequenziert. Dabei zeigte sich, dass außer den vier vorbekannten, 

häufig mutierten Genen (TP53, K-ras, CDK2NA und SMAD4) kein weiteres der mehr als 200 

neu identifizierten Gene in mehr als 7 % der Tumore mutiert war [40]. 
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1.3 HSP27 

1.3.1 Hitzeschockproteine 

F. Ritossa beschrieb 1962 zum ersten Mal eine Veränderung des Genexpressions-

musters durch Hitzeschock bei Drosophila [91]. In den folgenden Jahren wurden die durch 

Hitze vermehrt exprimierten Gene und die dazugehörigen Proteine identifiziert [92] und der 

Begriff Hitzeschockproteine (HSP) geprägt.  

Die HSPs sind eine Gruppe hochkonservierter Proteine, die nach ihrer Größe in fünf 

Gruppen unterteilt werden. Man unterscheidet HSP110, HSP90, HSP70, HSP60 und die 

kleinen Hitzeschockproteine, zu denen HSP27 gehört [93]. 

Die Hitzeschockproteine fungieren hauptsächlich als Chaperone in Zellen, die Stress, 

z. B. Hitzeschock, ausgesetzt sind. So führen auch Zellstressoren, wie oxidativer Stress, 

Schwermetalle, Ethanol und andere toxische Substanzen zu einer charakteristischen Antwort 

der Zelle [93, 94]. Dabei scheint die Akkumulation von fehlgefalteten Proteinen und nicht die 

Hitze an sich ein Trigger für die Zellen zu sein, Gegenmaßnahmen einzuleiten. Bei Zellstress 

verhindern die Hitzeschockproteine die Fehlfaltung von Proteinen und fördern deren korrekte 

Neufaltung [95].  

Wenn der Hitzestress für die Zellen nicht letal ist, führt er zu einer erhöhten Toleranz 

gegenüber stärkerem Zellstress. Für diesen Effekt sind die erhöhten Expressionslevel der 

HSPs verantwortlich [96]. Interessanterweise konnte man beobachten, dass die Induktion 

der HSPs durch einen Stressor auch zu einer erhöhten Toleranz gegenüber anderen 

Stressoren führt [96]. 

1.3.2 Kleine Hitzschockproteine 

Die kleinen Hitzeschockproteine sind eine heterogene Gruppe von Hitzeschock-

proteinen. Sie kommen in vielen Arten von Lebewesen in sehr unterschiedlichen Formen und 

Größen von 12 bis 43 kDa vor [97]. Allerdings besitzen alle Vertreter dieser Gruppe einen 

gemeinsamen konservierten Bereich, die so genannte α-Crystallin-Domäne [98]. Weniger gut 

konserviert ist die so genannte WDPF-Region im N-terminalen Bereich der Proteine. Beide 

Bereiche scheinen eine Rolle bei der Oligomerisierung und der Anlagerung an Zielproteine 

zu spielen [99].  
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Abb. 1: Heat Shock Protein Beta-1 

 

1.3.3 HSP27 

HSP27 wird in einer Vielzahl von humanen Zellen und Geweben in bestimmten Stadien 

der Differenzierung und auch während der Embryonalentwicklung exprimiert [100]. HSP27 

kann sich zu Oligomeren mit einer Molekülgröße bis zu 800 kDa zusammenlagern und auch 

heteromere Strukturen mit anderen Proteinen bilden. Diese Oligomere werden hauptsächlich 

von unphosphoryliertem HSP27 gebildet [99].  

1.3.3.1 Expression von HSP27 

Die Expression von HSP27 wird stark durch Hitzeschock und verschiedene andere 

physikalische und chemische Zellstressoren, wie z. B. Strahlung, oxidativen Stress und 

verschiedene Chemotherapeutika induziert [93, 101]. Zusätzlich variiert die HSP27-

Expression während der Embryogenese und Differenzierung in manchen Geweben [101]. 

Außerdem ist HSP27 im Zytoplasma mancher normaler Gewebe und in malignen Zellen 

vieler verschiedener Tumorentitäten auch in der Abwesenheit von Zellstress konstitutiv z.T. 

hoch exprimiert. Dabei kann jedoch das basale Expressionsniveau sehr unterschiedlich sein 

[93, 102]. 

1.3.3.2 Funktionen von HSP27 

HSP27 erfüllt eine große Bandbreite an Funktionen in der Zelle. Zytoprotektiv wirkt es 

vor allem durch seine Rolle als molekulares Chaperon, durch seinen direkten Einfluss auf die 

Caspaseaktivität, durch Modulation von oxidativem Stress und durch Regulation des 

Zytoskeletts [103]. 

HSP27 dient als Regulator und Stabilisator des Zytoskeletts, vor allem der 

Aktinfilamente. In Studien wurde nachgewiesen, dass eine Überexpression von HSP27 die 

Stabilität der Aktinfilamente bei Belastung durch Stressoren wie Hyperthermie und 

Oxidanzien erhöht [104, 105] und so die Aggregation der Filamente verhindert.  
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Aggregierte Filamente oder durch Zellstress beschädigte Proteine, welche Aggregate 

bilden, sind für die Zelle ein Signal, die Apoptose einzuleiten. HSP27 hilft, die Aggregation 

der Proteine und damit die Zellapoptose zu verhindern [103], indem es als molekulares 

Chaperon Komplexe mit entfalteten Proteinen bildet und unspezifische Proteinbindungen 

unterbindet. Um die Wiederherstellung der Proteinfaltung zu erreichen, bildet es Komplexe 

mit ATP-abhängigen HSPs, wie z. B. HSP70 [106]. Zusätzlich verlangsamt HSP27 unter 

Stressbedingungen die Proteinsynthese der Zelle, in dem es an den Translations-

initiationsfaktor eIF4G bindet und damit verhindert, dass eIF4G die Translation initiieren kann 

[107].  

HSP27 hat direkten Einfluss auf die Apoptosekaskade der Zelle. Zum Beispiel 

beeinflusst es die Aktivierung von Caspase-9 und Caspase-3 und modelliert dadurch die 

Cytochrom c-Freisetzung aus den Mitochondrien [103]. Außerdem interagiert HSP27 mit 

DAXX, einem Mediator der Fas-Rezeptor-vermittelten Apoptose und kann dessen Kopplung 

sowohl mit dem Rezeptor als auch mit der Ask1-Kinase blockieren [108]. 

Zusätzlich zu den zytoprotektiven Eigenschaften spielt HSP27 eine Rolle bei vielen 

weiteren physiologischen und pathologischen Prozessen in der Zelle. 

1.3.3.3 HSP27-Phosphorylierung 

Der Hauptregulationsmechanismus der HSP27-Aktivität scheint auf Transkriptions-

ebene stattzufinden, dennoch spielt auch die posttranslationale Regulation durch 

Phosphorylierung von HSP27 eine gewisse Rolle [109]. Für das humane HSP27 sind drei 

Phosphorylierungsstellen an Position Ser-15, Ser-78 und Ser-82 bekannt [110]. Es gibt eine 

Vielzahl von Trigger, welche die Phosphorylierung von HSP27 auslösen, darunter 

Hitzeschock, Zytokine, Mitogene, Lipopolysaccharide und viele andere [99]. Die 

Phosphorylierung von HSP27 wird durch verschiedene Kinasen katalysiert. Sowohl die 

MAPKAP-Kinase-2 als auch die MAPKAP-Kinase-3, welche beide durch die p38-MAP-

Kinase aktiviert werden, scheinen HSP27 zu phosphorylieren [111]. Ebenso scheinen PKC, 

PKD, MAPKAP-Kinase-5 und PKG HSP27 direkt oder indirekt über MAPKAP-Kinase-2 zu 

phosphorylieren [99, 112, 113].  

Die Phosphorylierung führt zu einer Konformationsänderung des HSP27-Moleküls und 

dadurch zu einer veränderten Interaktion mit anderen HSP27-Molekülen und zu einer 

vermehrten Dimerisierung von HSP27 [114].  

In der phosphorylierten Form ist HSP27 ein wichtiger Regulator der strukturellen 

Integrität und Membranstabilität der Zelle. Es bewirkt die Aktinpolymerisation, die Formation 

der Intermediärfilamente und Zell-Zell-Kontakte. Außerdem spielt es eine Rolle bei der 

intrazellulären Signaltransduktion, der mRNS-Stabilisierung, der Differenzierung und der 

Apoptose. Dennoch bleibt die genaue Funktion der verschieden phosphorylierten Formen 

nur unvollständig verstanden [99].  
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1.3.3.4 HSP27 in Tumoren 

Die Fähigkeit von HSP27, Zelltod, hervorgerufen durch unterschiedliche Stimuli z. B. 

Chemotherapie, zu verhindern, legt die Theorie nahe, dass HSP27 die Karzinogenität 

steigern und das Ansprechen auf Chemotherapie vermindern kann [115]. In vielen 

Tumorentitäten, z. B. im Mammakarzinom, Prostatakarzinom, Magenkarzinom, Ovarial-

karzinom und im Hodgkin-Lymphom, wurde eine höhere HSP27-Expression als in nicht 

transformierten Zellen nachgewiesen [116-120]. 

Da HSP27 in vielen verschiedenen Karzinomgeweben exprimiert wird, kann es nicht 

zuverlässig als Marker für die Zuordnung von Karzinomgewebe zu seinem Ursprungs-

gewebe genutzt werden. Aus diesem Grund hat HSP27 keine Bedeutung als singulärer 

diagnostischer Marker. Allerdings kann es in manchen Tumorentitäten zur Einschätzung des 

Grades der Entdifferenzierung genutzt werden. So nimmt die Expression von HSP27 im 

Barett-Ösophagus im Vergleich zum Normalgewebe deutlich ab [102]. Ähnlich scheint die 

HSP27-Expression einen Marker für eine erhaltene Differenzierung im Endometrium-

karzinom und Plattenepithelkarzinomen (Uterus, Cervix und Mundhöhle), aber auch einen 

Marker für eine schlechte Differenzierung beim Astrozytom darzustellen [121]. 

Ein ebenso uneinheitliches Bild bietet sich bei der Frage, welche Bedeutung die 

HSP27-Expression als prognostischer Marker in den verschiedenen Tumorentitäten hat. So 

ist beispielsweise eine hohe HSP27-Expression mit einer guten Prognose für Patienten mit 

Adenokarzinom des Endometriums, Ösophaguskarzinom und malignem fibrösem 

Histozytom, aber mit einer schlechten Prognose für Patienten mit Ovarial-, Magen-, Leber- 

und Prostatakarzinom sowie Osteosarkom verbunden [121]. 

Hinsichtlich seiner potentiellen Bedeutung als prädiktiver Marker scheint HSP27 in 

vielen Tumorentitäten eine Resistenz gegenüber Chemotherapie zu vermitteln. Dies wurde 

im Mammakarzinom für die Behandlung mit einer 5-Fluorouracil/Cyclophosphamid-basierten 

Chemotherapie [122], im Ovarialkarzinom für die Behandlung mit Cisplatin/Doxorubicin-

basierter Chemotherapie [123], im Ösophaguskarzinom für die Behandlung mit 5-

Fluorouracil/Cisplatin-basierter Radiochemotherapie [124] und für das Plattenepithel-

karzinom in Behandlung mit Cisplatin [125] gezeigt. Eine prätherapeutische Bestimmung der 

HSP27-Expression könnte somit als prädiktiver Marker hinsichtlich des Therapie-

ansprechens dienen. Allerdings ergibt sich in den verschiedenen Tumorentitäten insgesamt 

ein sehr uneinheitliches Bild. So finden auch viele Studien keinen Zusammenhang zwischen 

der HSP27-Expression und dem Ansprechen auf Chemotherapie. Ebenso ist bislang der 

Einfluss von HSP27-Expression auf die Radiosensitivität nicht ausreichend untersucht [121]. 

1.3.3.5 HSP27 im Pankreas und Pankreaskarzinom 

In vielen Studien wurde die Rolle der Hitzeschockproteine und im Besonderen von 

HSP27 im Pankreas untersucht. Dabei lag der Schwerpunkt jedoch meist auf dessen Rolle 
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bei entzündlichen Prozessen z. B. der akuten Pankreatitis [126-128] und nur wenige und 

teilweise widersprüchliche Ergebnisse wurden über die Rolle von HSP27 im Pankreas-

karzinom veröffentlicht. 

Zum Beispiel zeigten Proteinexpressionsanalysen in neun Patientenproben eine 

deutlich höhere Expression von HSP27 in normalem Pankreasgewebe im Vergleich mit 

Pankreaskarzinomgewebe [129]. Im Gegensatz dazu zeigte eine andere Studie mittels 

Proteinexpressionsanalyse und Immunhistochemie in neun Gewebeproben, dass HSP27 in 

mikrodissektiertem Pankreaskarzinomgewebe im Vergleich zum normalen Pankreasgewebe 

deutlich hoch reguliert war [130]. In einer großen Tissue-Microarray-Analyse mit 86 

Patientenproben konnte gezeigt werden, dass im Pankreaskarzinomgewebe im Vergleich 

zum Normalgewebe signifikant häufiger HSP27 exprimiert wird. Außerdem konnte gezeigt 

werden, dass eine vermehrte HSP27-Expression einen unabhängigen prognostischen Faktor 

für das Überleben der Patienten darstellt und dass Patienten mit einer hohen HSP27-

Expression ein besseres Ansprechen auf eine Therapie mit Gemcitabin zeigen [131]. 

Darüber hinaus wurde HSP27 als Serumtumormarker für das Pankreaskarzinom 

vorgeschlagen, da in einer Studie mit 35 Fällen mit einer Sensitivität von 100 % und einer 

Spezifität von 84 % zwischen gesunden Kontrollen und Patienten mit Pankreaskarzinom 

differenziert werden konnte [130]. Allerdings scheint der Serumspiegel von HSP27 nicht 

zwischen Patienten mit Pankreaskarzinom und Patienten mit chronischer Pankreatitis zu 

differenzieren, da der HSP27-Serumspiegel bei der chronischen Pankreatitis ähnlich ansteigt 

wie im Pankreaskarzinom [132].  

Darüber hinaus gibt es Proteinexpressionsanalysen, die die Rolle von HSP27 als 

Modulator der Chemosensitivität gegenüber Gemcitabin im Pankreaskarzinom unterstützen, 

dabei allerdings zeigen, dass HSP27 eine Gemcitabinresistenz der Zellen bedingt [133-135]. 

Diese Daten stehen im Gegensatz zu der oben angeführten Publikation von Schaefer et al., 

welche zeigt, dass eine vermehrte HSP27-Expression zu einer Sensitivierung gegenüber der 

Behandlung mit Gemcitabin führt [131]. 
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1.4 Fragestellung  

 

Als Ziel der vorliegenden Arbeit wurde aufgrund dieser diskrepanten Befunde die 

Etablierung eines geeigneten HSP27-Überexpressionsmodells humaner Pankreaskarzinom-

zellen sowie die konsekutive Charakterisierung des Einflusses von HSP27 auf das 

Therapieansprechen hinsichtlich Chemo- und Radiotherapie im Pankreaskarzinom definiert. 

 

Diese Fragestellung wurde mittels folgender Teilschritte bearbeitet: 

 

 

• Etablierung eines geeigneten humanen in vitro Tumorzellmodells zur 

 

• Untersuchung des Einflusses von (p-)HSP27 auf die Chemo- und 

Radiosensitivität von Pankreaskarzinomzellen in vitro. 

 

• mechanistischen Charakterisierung der identifizierten Effekte. 
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2 Material und Methoden 

2.1 Material  

2.1.1 Chemikalien 

 

Chemikalie       Firma 

 

Acrylamid/Bisacrylamid Mix (30 %)    Bio-Rad (München) 

Agarose       Roth (Karlsruhe)   

Ampicillin       Sigma-Aldrich (Deisenhofen) 

APS         Sigma-Aldrich (Deisenhofen) 

Blotting grade Blocker Non-fat Dry Milk (Milchpulver) Bio-Rad (München) 

Bromphenolblau       Sigma-Aldrich (Deisenhofen) 

BSA         Sigma-Aldrich (Deisenhofen) 

Crystal Violet       Implen gmbH (München) 

Dinatriumhydrogenphosphat     Sigma-Aldrich (Deisenhofen) 

DMSO        Roth (Karlsruhe) 

EDTA         Sigma-Aldrich (Deisenhofen) 

EGTA        Merck (Darmstadt) 

Essigsäure        Merck (Darmstadt) 

Ethanol (96 %)      Merck (Darmstadt) 

Ethidiumbromid       Merck (Darmstadt) 

Formaldehyd (37 %)      Roth (Karlsruhe) 

Glukose        Sigma-Aldrich (Deisenhofen) 

Glycin         Merck (Darmstadt) 

Hefeextrakt (Select Yeast Extract)    Voigt (Lawrence, KS)  

HEPES       Sigma-Aldrich (Deisenhofen) 

Hoechst 33342       Sigma-Aldrich (Deisenhofen) 

IPEGAL CA-630      Sigma-Aldrich (Deisenhofen) 

Isopropanol       Merck (Darmstadt) 

Kaliumacetat       Roth (Karlsruhe) 

Kaliumchlorid       Sigma-Aldrich (Deisenhofen) 

Kaliumdihydrogenphosphat     Merck (Darmstadt) 

LB Both Base powder     Invitrogen (Karlsruhe) 

Leupeptin       Sigma-Aldrich (Deisenhofen) 

Lithiumchlorid       Sigma-Aldrich (Deisenhofen) 
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Magnesiumchlorid      Sigma-Aldrich (Deisenhofen) 

Magnesiumsulfat      Sigma-Aldrich (Deisenhofen) 

Methanol (99 %)      Roth (Karlsruhe) 

Natriumchlorid      Roth (Karlsruhe) 

Natriumhydroxid      Sigma-Aldrich (Deisenhofen) 

Natronlauge        Sigma-Aldrich (Deisenhofen) 

PMSF        Sigma-Aldrich (Deisenhofen) 

Saccharose       Merck (Darmstadt) 

Salzsäure (37 %)      Roth (Karlsruhe) 

SDS        Sigma-Aldrich (Deisenhofen) 

TEMED        Bio-Rad (München) 

Tris-Base        Sigma-Aldrich (Deisenhofen) 

Tris-HCl       Applichem (Darmstadt) 

Triton X-100        Roth (Karlsruhe) 

Trypton       Sigma-Aldrich (Deisenhofen) 

Tween 20       Sigma-Aldrich (Deisenhofen) 

Vectashield Fluoromount     Biozol (Echingen) 

2.1.2 Reaktionslösungen und Enzyme 

 

Alexa Fluor 546 phalloidin   Molecular Probes (Leiden, Niederlande) 

Bradford Reagenz    Bio-Rad (München) 

Benzonase     Roche (Mannheim) 

ECL-Westernblot Substrat   Fischer Scientific (Schwerte) 

Proteinase-Inhibitor-Cocktail Set I  Merck (Darmstadt) 

SYBR Green I nucleir acid    Roche (Mannheim) 

6x DNA Loading Dye    Fermentas (St. Leon-Rot) 
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2.1.3 Antikörper 

 

Antikörper Für WB Für IF Hersteller 

anti-HSP27 SPA-800 oder SPA-803 1:1.000 1:100 Stressgen/Enzo (Lörrach) 

anti-phospho-Ser78 HSP27 SPA-523 1:1.000 1:100 Stressgen/Enzo (Lörrach) 

anti-ß-ACTIN antibody AC-15 1:10.000  Sigma-Aldrich (Deisenhofen) 

anti-mouse HRP-conjugated antibody 1:10.000  GE Healthcare (Freiburg) 

anti-rabbit HRP-conjugated antibody 1:10.000  GE Healthcare (Freiburg) 

Alexa 488 goat anti-rabbit IgG secondary 

antibody 

 1:200 Invitrogen (Karlsruhe) 

 

Tab. 2: Übersicht über die Verwendeten Antikörper und deren Konzentrationen 

2.1.4 Verbrauchsartikel 

 

Material       Hersteller 

Pipettenspitzen (1 µl, 200 µl, 1000 µl)   Sarstedt (Nümbrecht) 

Glaspipetten (2 ml, 5 ml, 10 ml, 25 ml)   Corning Incorporated (Corning, NY, USA) 

Mehrkanalpipettenspitzen    Mettler-Toledo (Gießen) 

Reaktionsgefäße (1,5 ml, 2 ml)   Sarstedt (Nümbrecht) 

Reagenzgefäße (15 ml, 50 ml)   B&D (Heidelberg) 

10 cm-Zellkulturschalen    B&D (Heidelberg) 

Wellplatten für Zellkultur    B&D (Heidelberg) 

T10-Zellkulturflaschen    B&D (Heidelberg) 

Zellschaber      Sarstedt (Nümbrecht) 

Einfrierröhrchen     Greiner bio-one (Frickenhausen) 

PVDF-Membran     Millipore (Schwalbach) 

Röntgenfilm      Fischer Scientific (Schwerte) 

Polystyrol Küvetten     Sarstedt (Nümbrecht) 

Deckgläschen      Menzel-Gläser (Braunschweig) 

Super Frost Objektträger    Menzel-Gläser (Braunschweig) 

Ultrazentrifugenröhrchen    Beckman Coulter (Krefeld) 
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2.1.5 Geräte, Ausstattung 

 
 Bezeichnung Hersteller 

„semi-dry-blot“-Kammer  Peqlab (Erlangen) 

Cäsium 137-

Gammabestrahlungsanlage 

HWM-D 2000 Wälischmiller Engineering (Markdorf) 

Fluoreszenz-Mikroskop  

   mit Digitalkamera 

Zeiss Axiovert 135  

   Axio Cam MRm 

Carl Zeiss (Jena)  

   Carl Zeiss (Jena) 

Fluorometer Cytofluor Series 4000 AB (Darmstadt) 

Gammabestrahler Gammacell 40 Exactor MDS Nordion (Ontario, Kanada) 

Gelelektrophoresekammer  Bio-Rad (München) 

Inkubator Hera Cell 240 Heraeus (Hanau) 

Lichtmikroskop Olympus CK2  Olympus (Hamburg) 

Mehrkanalpipetten Rainin Mettler-Toledo (Gießen) 

Milli-Q Advance  Millipore (Schwalbach) 

Neubauer-Zählkammer neubauer improved Labor Optik (Friedrichsdorf) 

Photometer  Ultrospec 3100 pro GE Healthcare (Freiburg) 

Sterilbank Herasafe Heraeus (Hanau) 

Tischwaage  SPO52 Scaltech (Göttingen) 

Wasserbad medinger P-D (Wilsdruff) 

Kühlzentrifuge Centrifuge 5417R Eppendorf (Hamburg) 

Ultrazentrifuge Airfuge  Beckman Coulter (Krefeld) 

Zellzentrifuge  Rotanta/S Hettich (Tuttlingen) 

Zentrifuge Allegra 25R Centrifuge Beckman Coulter (Krefeld) 

 

Tab. 3: Übersicht über die verwendeten Geräte 

2.1.6 Zytostatika und Medikamente 

Hersteller 

5-Fluoruracil      TEVA (Mörfelden-Walldorf) 

cis-Diammineplatinum(II)-dichloride   Sigma-Aldrich (Deisenhofen) 

Gemcitabin      Lilly (Homburg) 

Paclitaxel      Sigma-Aldrich (Deisenhofen) 

TRAIL       Roche (Mannheim) 
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2.1.7 Zellkulturmedien, Zusätze und Lösungen 

 

DMEM (Dulbecco's Modified Eagle Medium mit    PAA (Cölbe) 

4,5 g/l Glucose, L-Glutamin)  

DMSO-Lösung (20 %)       Roth (Karlsruhe) 

Dulbecco’s PBS       PAA (Cölbe) 

FCS Gold         PAA (Cölbe) 

100 x PS (10000 U/ml Penicillin; 10 mg/ml Streptomycin)  PAA (Cölbe) 

Trypanblau (4 %)       Sigma-Aldrich (Deisenhofen) 

Trypsin-EDTA        PAA (Cölbe) 

OptiMem        Invitrogen (Karlsruhe) 

G-418 (Geniticin)       Roth (Karlsruhe) 

L-PEI 22 (linear-polyethylenimine 22 kDa)  PD Dr. Manfred Ogris,  

         Department of Pharmacy 

Pharmaceutical 

Biotechnology 

LMU München [136] 

Lipofectamin 2000       Invitrogen (Karlsruhe) 

 

2.1.8 Plasmide 

eGFP (pEGFP-N1-Vektor)   PD Dr. Manfred Ogris,  

Department of Pharmacy 

Pharmaceutical Biotechnology 

LMU München  
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Abb. 2: Vektorkarte des Plasmid pEGFP-N1 

 

pEGFP-N1 kodiert für das Enhanced Grün Fluoreszierende Protein (eGFP). Das Gen 

für eGFP steht unter der Kontrolle des CMV-Promoters und wird daher in eukaryoten Zellen 

konstitutiv exprimiert. Wenn GFP optisch angeregt wird, fluoresziert es grün. Das Protein 

wird für nahezu alle eukaryoten Zellen als nicht-toxisch eingestuft und eignet sich daher für 

in vitro Studien. eGFP fluoresziert mit einer kürzeren Wellenlänge als GFP und wird von den 

Zellen stärker exprimiert. 

2.1.8.1 HSP27-Konstrukte 

Alle HSP27-Konstrukte wurden in den Vektor pcDNA3.1 kloniert. Dieser kodiert darüber 

hinaus für ein Protein, das Neomycin-Geneticin-Resistenz vermittelt. Diese Fähigkeit wurde 

bei der Erzeugung stabil-transfizierter Klone zur Selektion der transfizierten Zellen 

verwendet. 

 



Material und Methoden 
   

 - 24 - 

 
Abb. 3: Vektorkarte des Plasmids pcDNA3.1(+) 

 

Die in dieser Arbeit verwendeten Mutanten von HSP27 wurden ebenfalls über den 

Vektor pcDNA3.1 unter der Kontrolle des CMV-Promoters exprimiert. Verglichen wurden 

HSP27 Wildtyp (hu) oder Mutanten, bei denen Serin 15, 78 und 82 entweder durch Alanin 

(3A) oder durch Aspartat (3D) ersetzt wurden. Die Mutante 3A stellt die nicht-

phosphorylierbare Form von HSP27 dar, während die negativ-geladenen Aspartat-Ketten in 

der 3D-Mutante eine dauerhaft phosphorylierte Form von HSP27 imitieren [137, 138]. Die 

Alanin- und Aspartat-Reste wurden durch direkte Mutagenese der Oligonukleotide erzeugt 

[139]. Diese Plasmide wurden dankenswerterweise von Prof. Dr. Lee Weber (University of 

Nevada, Reno) zur Verfügung gestellt. Um eine Kontrollzelllinie zu erzeugen, wurden die 

Zellen mit dem unveränderten pcDNA3.1-Vektor transfiziert (empty vector, EV). 

2.1.9 Zelllinien 

Folgende humane Pankreaskarzinomzelllinien wurden verwendet: AsPC-1; BxPC-3; 

Capan-1; Capan-2; CFPAC-1; MIA PaCa-2; Panc-1; PL5; PL11; Su.86.86.  

Die Zellenlinien PL5 und PL11 wurden dankenswerterweise von S.E. Kern (Johns 

Hopkins University, Baltimore, Maryland) zur Verfügung gestellt. Die verbleibenden Zelllinien 

wurden entweder von der „European Collection of Cell Cultures“ (Sigma-Aldrich, 

Deisenhofen) oder der „American Type Culture Collection“ (LGC Standards, Wesel) 

erworben.  

Zusätzlich wurde eine kurzzeit-kultivierte Primärtumorzelllinie aus einem humanen 

Pankreaskarzinom (PPC) verwendet. Diese wenig passagierte Zelllinie entspricht besser als 

langzeitkultivierte, etablierte Pankreaskarzinomzelllinien den Tumorzellen im menschlichen 
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Körper. Die Gewinnung dieser Zellen aus Pankreaskarzinomgewebe wurde im eigenen 

Labor etabliert. 

2.1.10 Software 

1. ImageJ: plattformunabhängiges Bildbearbeitungs- und Bildverarbeitungs-

programm, Entwickler: Wayne Rasband und weitere Mitarbeiter des National Institutes of 

Health [140]. 

 

2. AxiovisionSoftware 3.1: Analyseprogramm für Immunfluoreszenzmikroskopie, 

Hersteller: Carl Zeiss AG (Jena) 
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2.2 Methoden  

2.2.1 Zellkultur 

Alle Zellen wurden bei 37°C und 5 % CO2 und 95 % Luftfeuchtigkeit kultiviert. Alle 

Zellen wurden, wenn nicht anders angegeben, in DMEM (10 % FCS v/v; 100 U/ml Penicillin; 

100 µl/ml Streptomycin (P/S)) kultiviert. 

Bei Erreichen von ca. 95 % Konfluenz wurden die Zellen passagiert. Zum Passagieren 

wurde das Medium von den Zellen abgesaugt, die Zellen mit 10 ml PBS gewaschen und 

anschließend mit Trypsin-EDTA überschichtet. Sobald sich die Zellen vom Boden der 

Petrischale abgelöst hatten, wurden sie in Medium aufgenommen und in ein Reagenzgefäß 

überführt. Das Medium wurde bei 1.200 U/min für 5 min abzentrifugiert und die Zellen in 

neuem Medium resuspendiert. Anschließend standen die Zellen für Versuche zur Verfügung 

oder wurden in der gewünschten Menge wieder in Petrischalen ausplattiert und das Medium 

auf 10 ml ergänzt. 

2.2.1.1 Auftauen und Einfrieren von Zellen 

Die Zellen wurden in Medium + 5 % DMSO v/v in flüssigem Stickstoff gelagert. Zum 

Auftauen der Zellen wurden diese aus dem Flüssigstickstoff in ein Wasserbad bei 37°C 

überführt und erwärmt. Anschließend wurden die Zellen mit dem Einfriermedium in ein 

Reagenzgefäß mit 5 ml DMEM unter sterilen Bedingungen überführt. Die Zellen wurden bei 

1.200 U/min für 2 min abzentrifugiert. Das überstehende Medium wurde abgesaugt und die 

Zellen in 10 ml Medium resuspendiert und in eine Zellkulturschale ausplattiert. Nach dem 

Adhärieren der Zellen wurde das Medium abgesaugt, die Zellen mit PBS gewaschen und 

neues Medium auf die Zellen gegeben.  

Zum Einfrieren wurden die Zellen nach dem Zentrifugieren in der adäquaten Menge 

Medium + 5 % DMSO v/v aufgenommen und in Einfrierröhrchen verteilt. Anschließend 

wurden die Zellen bei - 80°C um 1°C pro min abgekühlt und zum Lagern in flüssigen 

Stickstoff überführt. 

2.2.1.2 Zellzählung 

Die Zellen wurden wie oben beschrieben von der Petrischale gelöst, zentrifugiert und in 

Medium aufgenommen. Anschließend wurden sie in einer 96-Wellplatte mit Trypanblau im 

Verhältnis 1:1 gemischt, zwischen Deckglas und Neubauer-Zählkammer gegeben und für 

kurze Zeit inkubiert. Anschließend wurden 4 Großquadrate ausgezählt. Tote Zellen wurden 

durch die Trypanblaufärbung identifiziert und von der Zählung ausgeschlossen. Die 

Ergebnisse wurden gemittelt und die Zellzahl pro Mikroliter daraus wie folgt berechnet: 
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Zellen / µl = Mittelwert aus den Großquadraten x 2 (aus der Verdünnung mit 

Trypanblau) x 10 (aus dem Volumen der Zählkammer) 

2.2.1.3 Herstellung von Zelllysaten 

2.2.1.3.1 Herstellung von Gesamtzelllysaten für Westernblot 

 
Zur Herstellung der Lysate für Westernblots wurden die Zellen wie oben beschrieben 

geerntet oder abgeschabt, anschließend mit PBS-Puffer gewaschen und erneut zentrifugiert 

(1200 U/min für 2 min). Der PBS-Puffer wurde vorsichtig abgesaugt und das Zellpellet in 

100 µl RIPA-Puffer + 1 µl Proteinase-Inhibitor-Cocktail durch kurzes Vortexen aufgelöst. Die 

Lösung wurde dann in ein Reaktionsgefäß überführt und auf Eis gestellt. Um die Viskosität 

zu verringern, wurden 0,5 µl Benzonase pro Lysat hinzugegeben und durch kurzes Vortexen 

in der Probe verteilt. Die Benzonase ist eine rekombinate Endonuklease, die sowohl 

doppelsträngige als auch einzelsträngige RNS und DNS spaltet. Durch die DNS-Degradation 

wird die Viskosität der Proben herabsetzt. Nach 10 min Inkubation wurden die restlichen 

Zelltrümmer abzentrifugiert. 

 

Ripa-Puffer: 150 mM NaCl 

 1 % IPEGAL 

 0,1 % SDS 

 50 mM TRIS 

2.2.1.3.2 Trennung der Zellkompartimente mittels Extraktion-Lysaten 

PL5-Zellen wurden in 6-Wellplatten ausgesät und am folgenden Tag bei 80 % 

Konfluenz mit Gemcitabin behandelt (0 nM, 3 nM, 6 nM). Die Behandlungszeit betrug 24 h. 

Anschließend wurde das Medium entfernt und die Zellen mit Krebs-Henseleit-Puffer (4°C) 

gewaschen. Pro Well wurde dann 200 µl Lysispuffer zugegeben, die Proben kurz auf Eis 

inkubiert und anschließend die Zellen in dem Lysispuffer vorsichtig mit einem Zellkratzer 

abgelöst und in ein Eppendorfgefäß überführt. 

Der erste Zentrifugierschritt trennt die nukleäre Fraktion (Pellet) vom Überstand. Dieser 

wurde bei 1.000 g und 4°C für 5 min ausgeführt. Das Pellet wurde für die spätere 

Weiterverarbeitung bei - 20°C aufbewahrt. 

Der Überstand wurde im zweiten Zentrifugierschritt weiter aufgetrennt. Dazu wurde der 

Überstand in ein spezielles Ultrazentrifugenröhrchen überführt und in einer Ultrazentrifuge 

bei 100.000 g und RT für 8 min zentrifugiert. Nach der Zentrifugierung befindet sich die 

triton-lösliche Phase (membrangebundene HSP27-Fraktion) oben und die triton-unlösliche 
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Phase (lösliches HSP27-Fraktion) unten. Die obere Phase konnte mit einer Pipette von der 

unteren Phase abgehoben werden. 

Anschließend wurde die Probe mit der triton-löslichen Phase wie die Zelllysate für den 

Westernblot weiterverarbeitet. Die nukleäre Phase und die triton-unlösliche Phase wurden in 

adäquater Menge mit Lämmli-Puffer vermischt, durch Erhitzen auf 95°C für 5 min denaturiert 

und bis zur Weiterverarbeitung auf Eis gestellt.  

Anschließend wurden alle Proben wie oben beschrieben durch Westernblot analysiert. 

 

Krebs-Henseleit-Puffer: 110 mM NaCl  

 2,6 mM KCl 

 1,2 mM H2PO4 

 1,2 mM MgSO4 

 11 mM Glukose 

 10 mM HEPES 

 pH 7,4 

 

Lysispuffer: 10 mM TRIS 

 250 mM Saccharose 

 0,1 mM PMSF in Methanol 

 1 µM  Leupeptin 

 1 %  Triton X-100 w/w 

2.2.2 Behandlung von Zellen mit verschiedenen Thera pieverfahren 

2.2.2.1 Zellbehandlung mit diversen Chemotherapeutika für Westernblot 

Die Zellen wurden in 6-Wellplatten ausgesät (1,5 ml Medium) und am folgenden Tag 

bei einer Konfluenz von ca. 80 % mit Chemotherapeutika behandelt. 

 

Paclitaxel:  1 nM und 2 nM 

Gemcitabin 3 nM und 6 nM 

 

Die Behandlungszeit betrug jeweils 24 h. Anschließend wurden die Zellen lysiert und 

mittels Westernblot analysiert oder für die Immunfluorenzmikroskopie weiterverarbeitet. 

2.2.2.2 Behandlung der Zellen mit Chemotherapie und Chemosensitivitätsmessung mittels 

Zellproliferationstest 

Die Konzentration der jeweiligen Chemotherapeutika wurde in Vorversuchen ermittelt 

und so gewählt, dass der Überlebensbereich zwischen 0 % und 100 % abgedeckt war. 
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Die Zellen wurden wie oben beschrieben geerntet, gezählt und 800 – 1500 Zellen pro 

Well in einer 96-Well-Platte ausgesät. Dabei wurden die Wells am Rand der Platte nicht 

verwendet, um ungenaue Messwerte auf Grund der stärkeren Evaporation in diesem Bereich 

zu vermeiden. Die Zellen wurden in 100 µl Medium für 24 h kultiviert. Anschließend wurden 

die Zellen in aufsteigender Konzentration mit Chemotherapeutika (Gemcitabin/Paclitaxel/5-

Fluorouracil/Cisplatin) behandelt.  

 

Chemo-

therapeutikum 

1. 

Reihe 

2. 

Reihe 

3. 

Reihe 

4. 

Reihe 

5. 

Reihe 

6. 

Reihe 

7. 

Reihe 

8. 

Reihe 

 

Gemcitabin 0 0,78 1,56 3,13 6,25 12,5 25 50 [nM] 

Paclitaxel 0 1,56 3,13 6,25 12,5 25 50 100 [nM] 

5-Fluorouracil 0 0,41 1,23 3,70 11,1 33,3 100 300 [µM] 

Cisplatin 0 0,08 0,16 0,31 0,63 1,25 2,5 5 [µM] 

 

Tab. 4: Schema der Behandlung mit Chemotherapeutika und deren Konzentrationen 

 

Nach 6 Tagen kontinuierlicher Behandlung wurden die Zellen mit PBS gewaschen und 

anschließend mit 100 µl H2O pro Well lysiert. Danach wurde SYBR Green in einer 

Endkonzentration von 0,5 % hinzugefügt. SYBR Green interkaliert mit doppelsträngiger DNS. 

Die gemessene Fluoreszenz entspricht der Menge an DNS in der Probe und diese wiederum 

korreliert direkt mit der Anzahl der lebendigen Zellen vor der Lyse. Das Extinktionsmaximum 

des SYBR Green/DNS-Komplexes liegt bei 485 nm, das Emissionsmaximum bei 535 nm. 

Die Fluoreszenz wurde gemessen und die Messwerte mit denen der unbehandelten 

Kontrollen verglichen. Jeder Datenpunkt berechnet sich aus einem Triplikat. Es wurden 

mindestens drei unabhängige Experimente durchgeführt. Die Fehlerbalken repräsentieren 

den Standardfehler von je drei Experimenten. 

Vor jedem Experiment wurde die HSP27-Expression der verwendeten Zellen 

quantitativ mittels Westernblot nachgewiesen. 

Als Vergleichszellen für die Versuche wurden entweder die parietale polyklonale 

Population der PL5-Zellen oder monoklonale Leervektor-Zellklone herangezogen. 

Zur Klonierung der Leervektor-Zellen wurden die parietalen Zellen mit dem 

unveränderten pcDNA3.1-Vektor transfiziert, selektiert und zu Einzelzellklonen 

herangezogen. Dabei wurden monoklonale Zellpopulationen verwendet, um eine klonale 

Variabilität auszuschließen. Ein Leervektor wurde transfiziert, um Artefakte auszuschließen, 

die allein durch die Transfektion des pcDNA3.1-Plasmides entstehen. 

In den Experimenten, die mit beiden Kontrollzellverfahren durchgeführt wurden, 

verhielten sich die klonal expandierten Zellen genauso wie die parietalen Kontrollzellen.  
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2.2.2.3 Behandlung der Zellen mit γ-Strahlung und Messung der Radiosensitivität mittels 

Koloniebildungstest 

Die PL5-Zellen wurden gezählt und entsprechend ihrer Strahlungssensitivität, welche in 

Vorversuchen ermittelt wurde, in adäquater Menge ausgesät. Dabei betrug die Zellzahl pro 

6-Well zwischen 20 und 100 Zellen bei 0 Gy, 100 und 300 bei 2 Gy, 2000 und 5000 bei 4 Gy, 

5000 und 15000 bei 6 Gy, 50.000 und 100.000 bei 8 Gy. Nach 24 h wurden die Zellen mit 

137C-Gamma-Strahlung (Dosis: 0,604 Gy/min) behandelt und dann für 12 Tage im Inkubator 

kultiviert. Während dieser Zeit wurde das Medium gewechselt, sobald sich eine Verfärbung 

und damit eine Änderung des pH-Wertes zeigte. Zur Auswertung wurden die Zellen mit PBS 

gewaschen und mit Crystal Violet Lösung bedeckt. Nach 15 min wurde die Lösung 

abgesaugt und die Platten vorsichtig mit Leitungswasser gewaschen. Nach dem Trocknen 

der Platten, wurden die Kolonien gezählt. Alle Variationen der Zellzahl und 

Bestrahlungsintensität wurden im Duplikat durchgeführt und gemittelt. Es wurden mindestens 

drei unabhängige Experimente durchgeführt.  

 

Crystal Violet-Lösung: 0,1 g Crystal Violet 

100 ml H2O 

10 % Formaldehyd 

2.2.2.4 Behandlung der Zellen mit Hitzeschock 

PL5-Zellen, PL11-Zellen und die neu etablierte Zelllinie aus einem primärem Pankreas-

karzinom (PPC) wurden in T10-Zellkulturflaschen ausgesät. Nachdem die Zellen ca. 80 % 

Konfluenz erreicht hatten, wurden die Flaschen luftdicht verschlossen und die Zellen der 

Pankreaskarzinomzelllinien für 1 h, die PPC für 2 h in einem Wasserbad bei 39°C oder 41°C 

inkubiert. Die Kontrollzellen wurden keinem Hitzeschock unterzogen und währenddessen im 

Inkubator bei 37°C belassen. Nach dem Hitzeschock wurden die Zellen für weitere 3 h, 6 h 

oder 9 h im Inkubator belassen. Anschließend wurden die Zellen geerntet, wie oben 

beschrieben lysiert und mittels Westernblot die HSP27- und die phospho-HSP27-Protein-

konzentration bestimmt.  

2.2.3 Plasmidamplifikation und -präparation 

Zur Replikation der Plasmidkonstrukte wurden diese in Bakterien transformiert, dort 

vermehrt und anschließend mittels Maxipräparation aufgereinigt. 

2.2.3.1 Transformation von kompetenten Bakterien 

E.coli DB3.1λpir wurden nach der Methode von Mandel und Higa durch Behandlung 

mit eiskalter CaCl2-Lösung chemisch kompetent gemacht [141]. Erfolgreich transformierte 

Bakterien wurden mittels der durch das Plasmid übertragenen Resistenz selektiert. 
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500 µl kompetente DB3.1λpir Bakterien wurden vorsichtig auf Eis aufgetaut. Direkt 

nach dem Auftauen wurde 1 µg Plasmid in die Bakterienlösung gegeben. Während des 

gesamten Prozesses wurde eine Kontrolle ohne DNS mitgeführt, um eine Kontamination 

ausschließen zu können. Die Bakterien wurden dann für 30 min auf Eis inkubiert und 

anschließend einem Hitzeschock ausgesetzt. Dazu wurden sie für 1 min in einem 

Wasserbad bei 42°C inkubiert und anschließend für 2 min auf Eis gestellt. Dann wurde zu 

jeder Probe 500 µl SOC-Medium hinzugegeben und die Bakterien für 1 h unter 

kontinuierlichem Schütteln bei 37°C kultiviert. Anschließend wurden die Bakterien auf eine 

Agarplatte mit 100 µg/ml Ampicillin ausplattiert und über Nacht in einen Inkubator bei 37°C 

gestellt. 

 

SOC-Medium: 5 % w/v Hefeextrakt 

 2 % w/v Trypton 

 10 mM  NaCl 

 2,5 mM  KCl 

 20 mM  Glukose  

 10 mM  MgCl  \ wurde erst nach dem  

10 mM MgSO4  / Autoklavieren hinzugegeben 

2.2.3.2 Amplifikation 

Am nächsten Tag wurde die Vorkultur unter sterilen Bedingungen mit einer der 

Kolonien von der Agarplatte angeimpft. Die Vorkultur enthielt 5 ml LB-Medium (aus LB Both 

Base powder nach Angaben des Herstellers) und Ampicillin (100 µg/ml) und wurde über 

Nacht bei 37°C unter ständigem Schütteln inkubiert. Am folgenden Tag wurde die Vorkultur 

in eine Hauptkultur mit 400 ml LB-Medium und Ampicillin (100 µg/ml) überführt und über 

Nacht bei 37°C unter ständigem Schütteln inkubiert. 

2.2.3.3 Plasmidisolierung aus Bakterien 

Zur Isolation der Plasmide aus DB3.1λpir Bakterien wurde eine Methode, basierend auf 

dem Prinzip der alkalischen Lyse in Anlehnung an Birnboim und Doly 1979, durchgeführt 

[142]. 

Die Bakterien wurden in einer Kühlzentrifuge bei 5.000 U/min und 4°C für 10 min 

zentrifugiert. Der Überstand wurde verworfen und das Bakterienpellet in 12,5 ml GTE-Puffer 

resuspendiert. Um die Bakterien zu lysieren wurden nun 25 ml NaOH/SDS-Lösung 

dazugegeben. Zum Ausfällen des SDS wurde 12,5 ml KAc/HAc-Lösung zugegeben und 

dann die Probe für 5 min auf Eis inkubiert. Anschließend wurde die Probe für 15 min bei 

5.000 U/min zentrifugiert und der Überstand in ein neues Reagenzgefäß überführt. Nun 

wurde die DNS mittels Zugabe von 20 ml Isopropanol gevortext und durch anschließendes 
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Kühlen bei -20°C für 20 min, gefällt. Die Probe wurde dann bei 10.000 U/min für 15 min 

zentrifugiert. Der Überstand wurde verworfen und das Pellet in 4,5 ml TE-Puffer gelöst. Um 

die RNA aus der Probe zu entfernen, wurden 5 ml 5 M Lithiumchloridlösung zugegeben, die 

Probe gevortext und 10 min auf Eis gestellt. Anschließend wurde die Probe bei 10.000 U/min 

für 15 min zentrifugiert und der Überstand in ein neues Reaktionsgefäß überführt. Um die 

Probe weiter aufzureinigen, wurde nun 20 ml 100 %iges Ethanol zugesetzt, das Ganze kurz 

gevortext, 10 min bei -20°C gekühlt und anschließend für 10 min bei 10.000 U/min und 4°C 

zentrifugiert. Der Überstand wurde verworfen und das Pellet vorsichtig mit 5 ml Ethanol 70 % 

gewaschen. Nun wurde das Pellet getrocknet und dann in 0,8 - 1 ml TE-Puffer resuspendiert. 

 

GTE-Puffer: 50 mM Glukose 

 10 mM EDTA 

 25 mM Tris-HCl 

 

NaOH/SDS-Lösung: 1 % SDS w/v 

 0,2 M NaOH 

  

KAc/HAc-Lösung: 3 M Kaliumacetat 

 2 M Essigsäure 

   

TE-Puffer: 10 mM Tris-HCl (pH 7,5) 

 1 mM EDTA 

2.2.3.4 DNS-Quantifizierung und Qualitätsbestimmung 

Die Bestimmung der DNS-Konzentration wurde mittels Photometer bei einer 

Wellenlänge von 260 nm vorgenommen. Eine Extinktion bei 260 nm von 1,0, bestimmt in 

einer Quarzküvette von 1 cm Schichtdicke, entspricht einer Konzentration an doppel-

strängiger DNS von ca. 50 µg/ml. Durch Berechnung des Quotienten OD260 / OD280 wurde 

die Reinheit der Probe bestimmt. Reine DNS hat einen Extinktionsquotienten von 1,8. Durch 

Protein-Beimischung sinkt der Wert Richtung 0. RNS erhöht den Wert Richtung 2. Bei 

Werten, die mehr als ein Zehntel vom Sollwert abweichen, wurde die Probe erneut 

aufgereinigt. 

2.2.3.5 DNS-Agarosegelelektrophorese 

DNS-Fragmente können entsprechend ihrer Größe in einer Agarosematrix im 

elektrischen Feld getrennt werden. Die durch das Zucker-Phosphat-Gerüst im basischen 

Milieu negativ geladene DNS wandert dabei in Richtung der Anode. Detaillierte 

Informationen zur Methode wurden aus Sambrook et al. entnommen [143]. 
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Die DNS-Fragmente wurden in 1 %igem Agarose-Gel der Größe nach getrennt. Dem 

Gel wurde 0,003 % Ethidiumbromid zugefügt. 20 µl der DNS-Proben wurden mit 4 µl des 

6-fach Ladepuffer verdünnt und in das Gel aufgetragen. Die Elektrophorese erfolgte in TAE-

Puffer bei einer konstanten Spannung von 100 V für ca. 30 min. Als Größenstandard wurde 

der O’Gene Ruler 1kb DNA Ladder Plus (Fermentas, St. Leon-Rot) verwendet. Anschließend 

konnten die DNS-Fragmente durch Anregung der Ethidiumbromidfluoreszenz mittels UV-

Licht sichtbar gemacht und fotographisch festgehalten werden. 

 

TAE-Puffer: 40 mM Tris-Base 

 10 mM EDTA 

 1 % Essigsäure v/vmi 

2.2.4 Transfektion 

Wie in eigenen Vorversuchen bestätigt, zeigte die Transfektion mittels Polykationen 

(L-PEI 22 und Lipofectamin 2000) eine geringe Zellschädigung bei guter Transfektions-

effizienz und wurde deshalb als Standardmethode gewählt. Diese wurde erstmals von 

Felgner et al. 1987 beschrieben und beruht auf der Bildung von DNS-Liposomen-Komplexen 

und deren Aufnahme in die Zellen durch Endozytose [144]. Die Weiterentwicklung dieses 

Prinzips ist die Transfektion mittels Polyethylenimin, das vor allem für die Anwendung in vivo 

entwickelt wurde, aber auch sehr gute Transfektionseigenschaften in vitro zeigt [145]. 

Für die Transfektion wurde L-PEI 22 verwendet. Dieses lineare Polyethylenimin hat 

eine hohe Spezifität für Tumorzellen bei der Transfektion in vivo [136]. Eine gute 

Transfektionseffizienz bestätigte sich in unseren in vitro Vorversuchen. Falls damit keine 

ausreichende Transfektionseffizienz zu erreichen war, wurde auf das zelltoxischere 

Lipofectamin 2000 zurückgegriffen. 

2.2.4.1 Transiente Transfektion zur Transfektionsoptimierung 

Die Zellen wurden in 12-Wellplatten ausgesät, sodass sie am folgenden Tag eine 

Konfluenz von ca. 70 % erreicht hatten. 24 h nach dem Aussäen wurde das Medium der 

Zellen gewechselt (1 ml Medium pro Well) und die Zellen transfiziert.  

 

Nach der Transfektion wurden die Zellen unter dem Fluoreszenzmikroskop analysiert. 

Um die Toxizität des Verfahrens zu beurteilen, wurden die Zellen anschließend weiter im 

Inkubator kultiviert und nach 72 h erneut unter dem Fluoreszenzmikroskop analysiert. 
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2.2.4.1.1 Transfektion mit L-PEI 22 

2.2.4.1.1.1 Austestung des optimalen Puffers und der Transfektionszeit 

Dazu wurde 1 µg DNS (EGFP) und 0,78 µg L-PEI 22 in jeweils 100 µl Puffer 

vorverdünnt und anschließend sofort durch auf- und abpipettieren miteinander vermischt. Um 

die Komplexbildung zwischen L-PEI 22 und der DNS zu fördern, wurde die Mischung 

anschließend für 30 min bei Raumtemperatur inkubiert. Dann wurde die Lösung tropfenweise 

unter Schwenken in das Medium gegeben. Die Transfektionszeit betrug 4 h oder 24 h. 

   

Puffer: HBS-Puffer: 20 mM HEPES, 145 mM NaCl, pH 7,4 

  HBG-Puffer: 20 mM HEPES, 5 % Glukose w/v, pH 7,4 

  OptiMem 

2.2.4.1.1.2 DNS-Konzentrationsbestimmung 

Dazu wurden 1 µg, 2 µg oder 3 µg DNS (eGFP) und die jeweils adäquate Menge 

L-PEI 22 (0,78 µg, 1,56 µg, 2,34 µg) in jeweils 100 µl HBS-Puffer verdünnt und anschließend 

sofort durch Auf- und Abpipettieren miteinander vermischt. Um die Komplexbildung zwischen 

L-PEI 22 und der DNS zu fördern, wurde die Mischung anschließend für 30 min bei 

Raumtemperatur inkubiert. Dann wurde die Lösung tropfenweise in das Medium gegeben. 

Die Transfektionszeit betrug 4 h. 

2.2.4.1.2 Transfektion mit Lipofectamin 2000 

Zur Transfektion mit Lipofectamin 2000 wurde Medium ohne P/S verwendet. Die 2 µg 

DNS und 2 µg, 4 µg, 6 µg, oder 8 µg Lipofectamin wurden in je 100 µl OptiMem verdünnt, 

anschließend durch auf- und abpipettieren vermischt und für 20 min bei RT inkubiert. Dann 

wurde die Lösung tropfenweise zu den Zellen gegeben. Nach einer Transfektionszeit von 4 h 

wurde das Medium (+P/S) gewechselt. 

2.2.4.2 Stabile Transfektion 

2.2.4.2.1 Austesten der Dosis-Letalitäts-Kurve für Geniticin 

Um während der Selektion die Toxizität für die Zellen durch Geniticin zu minimieren, 

wurde vor der stabilen Transfektion die minimalnotwendige Konzentration von Geniticin, bei 

der nicht-resistente Zellen sterben, ermittelt.  

Dazu wurden die Zellen in 6-Wellplatten (2 ml Medium pro Well) 70 % konfluent 

ausgesät. Am folgenden Tag wurde das Medium gewechselt und aufsteigende 

Konzentrationen Geniticin (200, 400, 600, 800 und 1000 µg/ml) zugegeben. Über 14 Tage 
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wurden die Zellen unter dem Lichtmikroskop analysiert. Für die Selektion wurde die 

niedrigste Konzentration gewählt, bei der alle Zellen gestorben waren. 

2.2.4.2.2 Vorgehen bei der stabilen Transfektion 

Die Zellen wurden in einer Zellkulturschale in einer Konfluenz von ca. 50 % ausgesät. 

Nach 24 h wurde das Medium der Zellen gewechselt und die Zellen transfiziert.  

Dazu wurden für die PL5 und die Panc-1 Zellen 24 µg DNS und 18,72 µg L-PEI 22 in 

jeweils 1,5 ml HBS-Puffer verdünnt und anschließend sofort durch auf- und abpipettieren 

miteinander vermischt. Um die Komplexbildung zwischen L-PEI 22 und der DNS zu fördern, 

wurde die Mischung anschließend für 30 min bei Raumtemperatur inkubiert. Dann wurde die 

Lösung tropfenweise in das Medium gegeben. 

Die SU.86.86-Zellen wurden mit Lipofectamin 2000 transfiziert. Dazu wurde das 

Medium direkt vor der Transfektion gewechselt und Medium ohne P/S verwendet. 24 µg 

DNS und 48 µg Lipofectamin wurden in je 1,5 ml OptiMem vorverdünnt, anschließend durch 

auf- und abpipettieren vermischt und für 20 min bei RT inkubiert. Dann wurde die Lösung 

tropfenweise zu den Zellen gegeben. 

Die Transfektionszeit betrug bei allen Zelllinien 4 h. Nach dieser Zeit wurde das 

Medium (+ P/S) gewechselt. 24 h nach der Transfektion wurden 0,4 bzw. 0,6 mg/ml Geniticin 

als Selektionslösung hinzugegeben und die Zellen unter ständiger Selektion für 4 Wochen 

kultiviert.  

2.2.4.3 Generieren von Einzelzellklonen mittels Endpunkttitration 

Zur Generierung von Einzelzellklonen wurden die stabil-transfizierten Zellen 

aufgenommen und gezählt, auf eine Dichte von 15, 5 und 1,5 Zellen pro ml verdünnt und je 

200 µl pro Well in einer 96-Wellplatte ausplattiert. Nach einer Woche wurden die Platten 

lichtmikroskopisch evaluiert. Nach weiteren zwei Wochen konnten die Einzelklone 

identifiziert, in größere Kulturschalen überführt und im Folgenden analysiert und eingefroren 

werden.  

Die Testung der Zellen auf HSP27-Expression erfolgte mittels Westernblot. Die Klone 

mit der stärksten Expression von HSP27 hu, 3A und 3D und die Kontrollzellen wurden 

entsprechend benannt (PL5/hu16, hu18, hu20, PL5/3A, PL5/3D und PL5/EV) und für die 

weiteren Versuche verwendet. 

 

Die Zellen wurden am Anfang kontinuierlich, später intermittierend unter Selektion mit 

0,4 mg/ml bzw. 0,6 mg/ml Geniticin gehalten. Beim Auftauen und Einfrieren wurde wie oben 

beschrieben vorgegangen. 
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2.2.5 Proteinchemische Methoden 

2.2.5.1 Quantifizierung von Proteinen 

Die Proteinmenge in Zelllysaten wurde mittels der Bradford-Methode photometrisch 

bestimmt [146]. Dieses Verfahren beruht auf dem Farbstoff CBBG, der in saurer Lösung mit 

unpolaren Seitenketten von Proteinen Komplexe bildet. Die ungebundene Form des 

Farbstoffes hat bei der photometrischen Bestimmung ein Absorptionsmaximum von 470 nm. 

Durch die Komplexbildung verschiebt sich dieses Absorptionsmaximum auf 595 nm. Diese 

Verschiebung des Absorptionsmaximums wurde zur quantitativen Bestimmung der 

Proteinmenge genutzt. 

Die Kalibriergerade wurde mit definierten BSA-Standards (0,2 – 0,8 mg/ml) angefertigt. 

Die Proteinlysate wurden vor der Messung 1:10 in H2O verdünnt. Anschließend wurden 10 µl 

der Proteinlösung mit 990 µl Bradford-Reagenz versetzt, 10 min bei RT inkubiert und die 

Absorption bei 595 nm gemessen. 

2.2.5.2 SDS-PAGE 

Die Methode der SDS-PAGE erlaubt die Trennung der Proteine nach Größe. Dazu 

werden die sekundären Proteinstrukturen durch Erhitzen unter denaturierenden und 

reduzierenden Bedingungen aufgebrochen. Die so linearisierten Proteine werden mit SDS 

beladen, wobei eine zur Molekülgröße proportionale negative Ladung entsteht. Diese können 

dann mittels Elektrophorese in der Gelmatrix getrennt werden, da sie in Richtung der 

positiven Ladung wandern. Dabei richtet sich die Wanderungsgeschwindigkeit der Proteine 

vor allem nach der Dichte der Gelmatrix. Bei dieser Methode werden Polyacrylamid-Gele 

verwendet.  

Um die Proben für die Gelelektrophorese vorzubereiten, wurde die Proteinmenge auf 

1 mg/ml eingestellt. Die Denaturierung der Proteine und die Auftrennung der Disulfidbrücken 

erfolgten nach der Methode von Laemmli [147]. Dazu wurden die Proben mit Laemmli-Puffer 

versetzt und anschließend auf 95°C für 5 min erhitzt und auf Eis wieder abgekühlt. 

 

Laemmli-Puffer: 2,5 ml 0,5 M Tris-Base pH 6,8  

2,5 ml  2-Mercaptoethanol 

1 g  SDS 

5 ml  Glycerol 

10 mg  Bromphenolblau 

auf 10 ml mit H2O auffüllen  

 

Bei der Herstellung der SDS-PAGE-Gele wurde wie folgt vorgegangen: 
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Es wurde das SDS-PAGE-System von BioRad verwendet und die Gelkassette nach 

Angaben des Herstellers staubfrei zusammengebaut. Dann wurde die Trenngellösung 

vorbereitet. 

Für ein 10 %iges Trenngel wurden 3,25 ml Trenngelpuffer + 1,7 ml Acrylamid / 

Bisacrylamid-Mix + 50 µl 10 % APS + 10 µl TEMED in einem Reagenzgefäß vermischt. Auf 

Grund der Bildung freier Radikale von APS in wässriger Lösung wird durch dessen Zugabe 

die Vernetzungsreaktion gestartet. Die Reaktion wird durch den Zusatz von TEMED 

katalysiert. Die Trenngellösung wurde blasenfrei bis zur gewünschten Höhe zwischen die 

Glasscheiben der Elektrophoreseapparatur gegossen und mit Methanol überschichtet. Die 

Polymerisation erfolgte für etwa 1 h bei RT. Nach Erstarren des Trenngels wurde das 

Methanol abgesaugt und das Sammelgel darüber gegossen. Dazu wurden 1,6 ml 

Sammelgelpuffer + 335 µl Acrylamid/Bisacrylamid-Mix + 20 µl APS + 3 µl TEMED vermischt, 

blasenfrei in die Kassette gegossen und nach Einsetzen des Kamms die Polymerisation 

abgewartet.  

 

Trenngelpuffer: 90,8 g TRIS Base 

 1 g SDS 

auf 500 ml mit H2O auffüllen 

pH 8,8  

 

Sammelgelpuffer: 45,4 g TRIS Base 

 1 g SDS 

auf 250 ml mit H2O auffüllen 

pH 6,8  

 

Die SDS-PAGE wurde in die Elektrophoresekammer eingesetzt und diese mit SDS-

Laufpuffer gefüllt. Auf jede Probentasche wurde die gleiche Menge Protein (5 mg) der 

verschiedenen Proben aufgetragen. Zum Einlaufen der Proben in das Gel wurde eine 

Spannung mit 100 V für 15 min angelegt und anschließend auf 200 V für 45 min erhöht. Als 

Größenmarker wurden 3 µl Precision Plus Protein Standards (Bio-Rad, München) 

verwendet. 

 

10x SDS-Laufpuffer-Stammlösung: 

 30,3 g TRIS Base 

 144,1 g Glycin 

 10 g SDS  

 auf 1000 ml mit H2O auffüllen 
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Für SDS-Laufpuffer die Stammlösung 1:10 mit H2O verdünnen. 

2.2.5.3 Westernblot 

Die Methode des Westernblot wurde 1979 von Towbin et al. eingeführt [148]. Bei dieser 

Methode werden zuvor in einem Gel aufgetrennte Proteine entweder über Kapillartransfer 

oder über Elektrotransfer auf einer Nitrozellulosemembran immobilisiert, um bestimmte 

Proteine mittels Immundetektion in den Proben nachweisen zu können. 

Zum Übertragen der Proteine aus der SDS-PAGE auf eine PVDF-Membran wurde die 

„semi-dry-blot“-Methode gewählt [149]. Die Membran wurde in Methanol aktiviert, mit H2O 

gewaschen und in Transferpuffer äquilibriert. Anschließend wurde die PVDF-Membran 

luftblasenfrei auf die SDS-PAGE gelegt und in transferpuffergetränktes Whatman-Papier 

eingebettet (s. Abb. 3). Es wurde für 45 min eine Stromstärke von 50 mA pro Membran 

angelegt. 

 

 

 

Abb. 3: Aufbau des semi-dry-Blots 

Aufbau von Anode zu Katode: 3 Lagen Transferpuffer getränktes Whatman-Papier, SDS-PAGE-

Gel, kalibrierte PVDF-Membran, 3 Lagen Transferpuffer getränktes Whatman-Papier 

 

Transferpuffer-Puffer: 10 ml Transferpuffer-Stammlösung 

 20 ml Methanol 

 70 ml H2O 

 

Transferpuffer-Stammlösung: 30,0 g TRIS Base 

 144,1 g Glycin 

 30 g SDS 

 auf 1000 ml mit H2O auffüllen 

Elektophoresekammer Katode 

Elektophoresekammer Anode  

Whatman-Papier 

Whatman-Papier  

PVDF-Membran 
SDS-PAGE-Gel  
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2.2.5.4 Immundetektion und Auswertung 

Der Nachweis der Proteine erfolgte über die spezifische Antikörper-Epitop-Bindung des 

Primärantikörpers mit dem Protein. Anschließend wird der Primärantikörper mit einem 

Sekundärantikörper auf der Membran lokalisiert. An diesen Sekundärantikörper ist ein 

Reporter gekoppelt, welcher die Detektion des primären Antikörpers erlaubt und die 

Signalstärke amplifiziert. Der Nachweis des Antikörperkomplexes auf der Membran erfolgt 

durch die lokale Umsetzung eines Substrates durch die Reporterenzyme, welche mittels 

Chemilumineszenz auf einem Röntgenfilm detektiert werden kann. 

Wenn nicht gesondert aufgeführt, wurden alle Schritte bei RT unter ständigem 

Schütteln durchgeführt. 

 

Nach dem Blotten wurde die PVDF-Membran für 30 min in Blockierlösung inkubiert, um 

ein Binden der Antikörper direkt auf der Membran zu verhindern. Anschließend wurde die 

Membran mit den primären Antikörpern (verdünnt in Blockierlösung) über Nacht bei 4°C 

inkubiert. Am nächsten Tag wurde die Membran mit TBST-Puffer gewaschen und 

anschließend die sekundären Antikörper (verdünnt in Blockierlösung) hinzugegeben und die 

Membran darin für 1,5 h inkubiert. Vor dem Auswerten wurde die Membran gründlich mit 

TBST-Puffer gewaschen. 

Zur Detektion wurde das ECL-System nach Angaben des Herstellers verwendet. Durch 

die chemolumineszente Reaktion wurde ein Röntgenfilm belichtet, sodass die Banden 

dargestellt werden konnten. Die so erhaltenen Bilder wurden mit ImageJ quantitativ 

analysiert. 

Zum Nachweis von p-HSP27 wurde ein Antikörper gegen HSP27 mit einer 

Phosphorylierung an Position Serin 78 verwendet. Um die HSP27 und die p-HSP27-

Expression in Bezug zur Gesamtproteinmenge der Zellen setzen zu können, wurde für alle 

Proben in demselben Blot zusätzlich β-Actin nachgewiesen.  

 

Blockierlösung: 2 % Milchpulver in TBST-Puffer 

  

TBST-Puffer: 2,41 g TRIS Base 

 8,0 g NaCl 

 auf 1000 ml mit H2O auffüllen 

 pH 7,6 

 1 ml Tween 20 
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2.2.6 Immunfluoreszenzmikroskopie 

Die Zellen wurden in 6-Wellplatten auf mit UV-Licht sterilisierten Deckgläschen 

ausgesät. Nachdem sie ca. 80 % Konfluenz erreicht hatten, wurden sie mit Gemcitabin 

(0 nM, 3 nM, 6 nM) für 24 h behandelt.  

Für die Fixierung der Zellen wurde das Medium abgesaugt, die Zellen vorsichtig mit 

PBS gewaschen, anschließend mit Fixierlösung überschichtet und für 10 min bei RT 

inkubiert. Die Fixierlösung wurde anschließend abgesaugt und die Zellen erneut mit PBS 

gewaschen.  

Die Zellen wurden nun für 5 min mit Permeabilisierungslösung überschichtet und 

anschließend mit Blockierlösung für 20 min bei RT inkubiert. Dann wurde die Probe mit 

Phalloidin-Lösung überschichtet und für 20 min bei RT im Dunkeln inkubiert. Alle danach 

durchgeführten Inkubationsschritte wurden im Dunkeln durchgeführt. 

Die Probe wurde mit PBS gewaschen und für 10 min mit Permeabilisierungslösung 2 

(PL 2) behandelt. Zum Blocken für die Immunfärbung wurde die Probe mit Blockierlösung 2 

für 30 min bei RT inkubiert. Anschließend wurde der Primärantikörper in Blockierlösung 2 

zugegeben und über Nacht bei 4°C inkubiert. Am nächsten Tag wurde die Probe mit PBS 

gewaschen, mit dem Sekundärantikörper in Blockierlösung überschichtet und für 2 h bei RT 

inkubiert.  

Nach einem weiteren Waschschritt mit PL 2, wurde die DNS der Zellkerne mit 

Hoechst 33342 eingefärbt. Dazu wurde 0,1 % Hoechst 33342 in PL 2 gelöst, auf die Zellen 

gegeben und 5 min inkubiert.  

Anschließend wurden die Zellen vorsichtig mit PL 2 gewaschen, mit Vectashield 

bedeckt und auf Objektträgern fixiert. Die Zellen wurden dann mit dem Fluoreszenz-

Mikroskop und der Axiovision-Software analysiert. Dabei wurden die Bilder in drei 

Frequenzbereichen aufgenommen. 

 

Farbstoff  gebunden an Absorptions- 

maximum [nm] 

Emissions- 

maximum [nm] 

Farbe 

Alexa 488 Sekundärantikörper 495 519 grün 

Hoechst 33342  350 461 blau 

Alexa 546 Phalloidin 556 573 gelb 

 

Tab. 5: Übersicht der verwendeten Farbstoffe und deren Spezifikationen 

 

Die Bilder wurden mit der Axio Cam MRm aufgenommen. Die Belichtungszeit und die 

Software-Einstellungen wurden für alle Aufnahmen eines Experimentes konstant gehalten.  
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Fixierlösung: 3,7 % Formaldehyd-Lösung in PBS (methanolfrei) 

Permeabilisierungslösung: 0,1 % Triton X-100 in PBS 

Blockierlösung: 1 % BSA in PBS 

Phalloidin-Lösung: Rhodamin-Phalloidin 5 U/ml in 1 % BSA in PBS 

Permeabilisierungslösung 2 (PL 2): 0,5 % Triton X-100 in TBS 

Blockierlösung 2: 2 % BSA in TBS-Triton X-100 
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3 Ergebnisse 

3.1 Quantitative und qualitative Expression von HSP 27 und p-HSP27 in 

Pankreaskarzinomzelllinien  

Frühere Studien in multiplen Tumorentitäten berichten von differentieller HSP27-

Expression zwischen Karzinomgeweben und Normalgewebe. Dabei zeigte sich in einigen 

Tumorentitäten eine Überexpression von HSP27 und phospho-HSP27 im Vergleich zum 

Normalgewebe [122, 125]. Allerdings liegen noch keine hinreichenden Daten zur HSP27-

Expression im Pankreasgewebe und im Pankreaskarzinom vor. Deshalb wurde die 

Proteinexpression und Verteilung von HSP27 und p-HSP27 in einem Panel etablierter 

Pankreaskarzinomlinien betrachtet. Dabei wurden sowohl die quantitative Expression mittels 

Westernblot sowie die qualitative Expression und die räumliche Verteilung mittels 

Fluoreszenzmikroskopie untersucht. 

3.1.1 Western Blotting zum quantitativen Nachweis v on HSP27- und p-HSP27 in 

Pankreaskarzinomlinien 

Die quantitative Proteinexpression von HSP27 und p-HSP27 wurde mittels Westernblot 

bestimmt. Für alle Westernblots diente β-Actin als Ladekontrolle. 

Alle Zelllinien exprimierten HSP27 konstitutiv. Allerdings zeigte sich zwischen den 

verschiedenen Zelllinien eine unterschiedliche HSP27-Expression. Eine geringe konstitutive 

Expression von HSP27 zeigten die Zelllinien PL5, PL11 und CFPAC-1. Die Zelllinien 

Capan-1, Capan-2, AsPC-1, MIA PaCa-2 und BxPC-3 zeigten eine hohe konstitutive 

Expression von HSP27, während Panc-1 und Su.86.86 eine mittelstarke Expression zeigten 

(Abb. 4). 

Im Gegensatz zur konstitutiven Expression von HSP27 in allen untersuchten Zelllinien 

wurde p-HSP27 nur von Capan-1 und Capan-2 konstitutiv exprimiert (Abb. 4).  
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Abb. 4: Quantifizierung der (p-)HSP27-Expression in verschiedenen Pankreaskarzinomzell-

linien, Repräsentative Ergebnisse eines Experiments (n=3) 

 

Zum Ausschluss potentieller Artefakte im Rahmen der Zellkultur wie Kultur-

bedingungen, Zellzyklusphasen und Splitting wurde das Experiment viermal zu 

unterschiedlichen Zeitpunkten wiederholt. 

Wie bereits beschrieben, stellt eine hohe Konfluenz Zellstress dar und kann zu einer 

höheren Expression von HSPs führen [150]. Entsprechend wurde die HSP27 Expression 

zwischen 100% konfluenten und nicht konfluenten Linien verglichen. Es konnte gezeigt 

werden, dass die beobachtete unterschiedliche HSP27- und p-HSP27-Expression in den 

verschiedenen getesteten Linien nicht auf Konfluenz-Unterschiede zurückzuführen war 

(Abb. 5). 

 

 
 

Abb. 5: Quantitative Messung der HSP27-Expression in verschiedenen Pankreaskarzinomzell-

linien im konfluenten (CC) und nicht-konfluenten (NC) Zustand, Repräsentative Ergebnisse eines 

Experiments (n=3). 

P
L1

1 

A
sP

C
-1

 

B
xP

C
-3

 

M
IA

 P
aC

a-
2 

C
fP

ac
1 

C
ap

an
-1

 

C
ap

an
-2

 

P
L5

 

S
U

.8
6.

86
 

HSP27 

β-Actin 

p-HSP27 

P
an

c-
1 

HSP27 

P
an

c-
1 

N
C

 

P
an

c-
1 

C
C

 

P
L5

 N
C

 

P
L5

 C
C

 

C
ap

an
-1

 N
C

 

C
ap

an
-1

 C
C

 

C
ap

an
-2

 N
C

 

C
ap

an
-2

 C
C

 

β-Actin 



Ergebnisse 
   

 - 44 - 

3.1.2 Immunfluoreszenz zum Nachweis der räumlichen Verteilung von Gesamt-

HSP27 und p-HSP27 in Pankreaskarzinomzelllinien 

Zum besseren Verständnis der Rolle und Funktion von HSP27 wurde die intrazelluläre 

Verteilung und Phosphorylierung dieser Proteine mittels Immunfluoreszenz-Mikroskopie in 

den Pankreaskarzinomzelllinien MIA PaCa-2, Capan-1, Capan-2, Panc-1 und PL5 näher 

untersucht. Dazu wurden die Zellen fixiert und HSP27 oder p-HSP27 mittels entsprechender 

Antikörper durch Immunfluoreszenz detektiert. Die Zellkerne wurden zusätzlich mit 

Hoechst 33342 angefärbt. Anschließend wurden die Zellen unter dem Immunfluoreszenz-

mikroskop analysiert und repräsentative Bilder aufgenommen. 

Alle Zellen zeigten eine überwiegend zytoplasmatische Lokalisation von HSP27, 

während p-HSP27 sowohl im Zytoplasma als auch im Zellkern detektiert werden konnte. 

Zusätzlich war eine Akzentuierung des nukleären Expressionsmusters während der Mitose 

zu beobachten. Dieses Muster zeigte sich in allen Zelllinien (Abb. 6 und Daten nicht gezeigt). 

 

 
 

Abb. 6: IHC-Analyse des intrazellulären Verteilungsmusters von (p-)HSP27 in MIA PaCa-2, 

Capan-1, Capan-2, Panc-1, und PL5, Repräsentative Ergebnisse eines Experiments (n=3) 

3.2 Etablierung stabil HSP27-transfizierter PL5-Zel lklone  

In Vorversuchen im nicht-isogenen Modell mit unterschiedlichen Pankreaskarzinom-

zelllinien konnten keine eindeutigen Zusammenhänge zwischen HSP27-Expression und 

Chemosensitivität gefunden werden (Daten nicht gezeigt). Diese Daten bestätigten unsere 

Erwartung, dass die Expression von HSP27 und p-HSP27 nicht die Hauptdeterminante für 

das unterschiedliche Ansprechen auf verschiedene Chemotherapeutika ist. 

Um die multiplen molekularen Unterschiede zwischen den nicht-isogenen Zelllinien zu 

umgehen, wurde für die weiteren Versuche ein isogenes Zellmodell etabliert. Dieses bietet 

MIA PaCa-2 Capan-1 Capan-2 Panc-1 PL5 

p-HSP27 

HSP27 
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den Vorteil, dass Zelllinien-spezifische Unterschiede minimiert werden. Dazu wurde mittels 

stabiler Transfektion eine Modellzelllinie erzeugt. 

Das isogene Zellmodell wurde etabliert, indem das Gen für humanes HSP27 

(hu-HSP27) oder eine mutierte Form des Gens stabil in die PL5-Zelllinie transfiziert wurde. In 

den mutierten Formen waren die Serin-Reste an den Positionen 15, 78 und 82 entweder zu 

Aspartat verändert, wodurch die pseudo-phosphorylierte Form von HSP27 entsteht, welche 

die aktivierte Form von HSP27 imitiert oder zu Alanin, wodurch eine nicht-phosphorylierbare 

und damit nicht aktivierbare Form von HSP27 entsteht. Die entsprechenden Plasmide 

wurden von Prof. Dr. Lee Weber (University of Nevada, Reno) zur Verfügung gestellt. 

Für die stabile Transfektion wurden die Zelllinien PL5, Panc-1 und Su.86.86 

ausgewählt, da diese eine relative niedrige konstitutive HSP27-Expression aufweisen 

(vgl. Abb. 4) und folglich zu erwarten war, dass durch die Überexpression der Transgene ein 

deutlicher Unterschied zu den nativen Zellen erzeugt werden kann. Außerdem zeigten diese 

Zelllinien in Vorversuchen eine gute Transfektionseffizienz. 

3.2.1 Etablierung und Optimierung der Transfektions bedingungen 

In Vorversuchen wurden die Transfektionsbedingungen mittels transienter Transfektion 

des pEGFP-N1-Plasmides optimiert. Dieses Plasmid enthält ein Gen, welches für eGFP 

(enhanced Green Fluorescent Protein) kodiert und unter der Kontrolle des CMV-Promoters 

konstitutiv exprimiert wird. Das Protein emitiert grünes Licht in einer Wellenlänge von 

509 nm, wenn es mit einer Wellenlänge von 488 nm optisch angeregt wird, und ermöglicht 

dadurch eine Evaluation der Proteinexpression und dadurch mittelbar der Transfektions-

effizienz. 

 

 
Transfektionsreagenz 

Konzentration 
Transfektionspuffer 

DNS-

Konzentration 
Transfektionszeit 

PL5 

L-PEI 22 

1,56 µg/ml  > 

0,78 µg/ml 

HBS > OptiMem > 

HBG 

2 µg/ml  > 1, 3, 

4 µg/ml 
4h = 24h 

Panc-1 
L-PEI 22 

1,56 µg/ml 

HBS = OptiMem > 

HBG 
2 µg/ml 4h 

Su.86.86 

Lipofectamin 2000 

4 µg/ml  > 2, 5, 6, 8 

µg/ml 

Lipofectamin immer 

in OptiMem  
2 µg/ml 4h 

 

Tab. 6: Übersicht zur Austestung der optimalen Zelllinien-spezifischen Transfektions-

bedingungen.  
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3.2.2 Zelllinien-spezifische Geniticin-Sensitivität stestung 

Zur Selektion der transfizierten Zellen wurde die durch das pcDNA3.1-Plasmid 

vermittelte Neomycin-Geneticin-Resistenz genutzt. Dafür wurde in Vorversuchen die 

niedrigste nötige Geniticin-Konzentration zur sicheren Selektion der transfizierten Zellen 

ermittelt. Anschließend wurden die Zellen mit aufsteigenden Konzentrationen von Geniticin 

behandelt und über 14 Tage mittels Lichtmikroskop deren Viabilität beurteilt. 

 

Folgende Konzentrationen wurden in zwei unabhängigen Versuchen als optimale 

Selektionskonzentrationen ermittelt: 

PL5  400 µg/ml  

Panc-1  600 µg/ml  

Su.86.86 600 µg/ml  

3.2.3 Stabile Transfektion und Selektion resistente r Klone 

Die Zellen wurden nun in einer Zellkulturschale mit dem für die jeweilige Zelllinie 

etablierten Protokoll (s. Abschnitt 3.2.1) transfiziert und anschließend mit der jeweils 

benötigten Konzentration von Geniticin (s. Abschnitt 3.2.2) behandelt. Nach vier Wochen 

unter Selektion wurden die entstandenen Kolonien der stabilen Transfektanten gepoolt, auf 

HSP27-Expression getestet und für spätere Versuche eingefroren. Die gepoolten 

Populationen zeigten bei der Testung eine sehr unterschiedliche Expression von HSP27 

(Abb. 7 (A)). 
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Abb. 7: Herstellung monoklonaler Einzelzellklone am Beispiel von PL5: (A) Westernblot mit 

Nachweis der HSP27-Expression der polyklonalen stabil transfizierten PL5-Zellen, (B) Westernblot mit 

Nachweis der HSP27-Expression in den HSP27-3A-exprimierenden Einzelzellklonen nach Endpunk-

ttitration, (C) Westernblot zum Nachweis der HSP27- und p-HSP27-Expression in den ausgewählten 

Klonen. 
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3.2.4 Endpunkttitration zur Identifikation HSP27-ho chexprimierender Einzelklone 

Da nicht alle polyklonalen Varianten der Zelllinien eine eindeutige Überexpression von 

HSP27 zeigten, wurden im nächsten Schritt aus den polyklonalen Zelllinienvarianten 

monoklonale Zellklone herangezogen. Als Ziel wurde eine mindestens 3-fach höhere 

HSP27-Expression als die Ausgangszelllinie festgelegt. 

Um die Einzelzellklone herzustellen, wurden die PL5-Zellen in einer theoretischen 

Zellzahl von einer Zelle pro Well in 96-Wellplatten ausgesät. Die entstehenden 

Einzelkolonien wurden dann weiterkultiviert. 

10 – 20 Zellklone je Konstrukt wurden mittels Westernblot auf ihre HSP27-Expression 

hin getestet. Dabei wurden für alle Varianten (hu, 3D, 3A) deutlich überexprimierende Klone 

gefunden.  

Die Klone mit der stärksten Expression von HSP27 hu, 3A und 3D und die 

Kontrollzellen wurden entsprechend benannt (siehe Tab. 7) und für die weiteren Versuche 

verwendet (Abb. 7). 

 

Beschreibung Bezeichnung 
Selektierte Einzelzellklone transfiziert mit Gen für humanes HSP27 PL5 hu16, 

PL5 hu18, 
PL5 hu20 

Selektierter Einzelzellklon transfiziert mit Gen für 3D-Variante von HSP27 PL5 3D 
Selektierter Einzelzellklon transfiziert mit Gen für 3A-Variante von HSP27 PL5 3A 
Polyklonale Ursprungszelllinie PL5 mit niedriger konstitutiver HSP27-
Expression 

PL5 KO 

Selektierter Einzelzellklon transfiziert mit pcDNA3.1-Vektor-Leervektor PL5 LV 
 

Tab. 7: Selektierte Klone und deren Nomenklatur 

 

Einzelzellklone wurden auch für Panc-1-Zellen selektiert. Dabei wurden allerdings nicht 

für alle Varianten ausreichend HSP27-überexprimierende Klone gefunden (Daten nicht 

gezeigt). 

3.3 Einfluss stabiler HSP27- und p-HSP27-Überexpres sion auf die zelluläre 

Sensitivität gegenüber verschiedenen Chemotherapeut ika 

Da frühere Studien gezeigt haben, dass HSP27 Einfluss auf die Chemosensitivität von 

Zellen hat [122-124], wurden mit den PL5-Klonen Chemosensitivitätsstudien mittels Zell-

proliferationstests durchgeführt. 

Dazu wurden die Zellen in aufsteigender Konzentration mit den Chemotherapeutika 

behandelt. Nach 6 Tagen wurden die abgestorbenen und somit nicht mehr adhärenten 

Zellen durch waschen entfernt, die verbleibenden Zellen lysiert und die DNS mittels SYBR 

Green angefärbt. Anschließend wurde photometrisch die Menge an DNS bestimmt und 

dadurch die Menge der lebenden Zellen nach Behandlung abgeschätzt. 
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Als Versuchskontrolle wurden entweder die parietale, polyklonale Population der PL5-

Zellen oder monoklonale Leervektor-Zellklone verwendet. In den Versuchen, die mit beiden 

Kontrollzellverfahren durchgeführt wurden, verhielten sich die klonal expandierten Zellen 

genauso wie die parietalen Kontrollzellen.  

3.3.1 Gemcitabin/Paclitaxel/5-Fluorouracil/Cisplati n 

Um den Einfluss der unterschiedlichen HSP27- und p-HSP27-Expression auf das 

Überleben der Zellen bei Behandlung mit den beim Pankreaskarzinom gebräuchlichsten 

Chemotherapeutika (Gemcitabin/Paclitaxel/5-Fluorouracil/Cisplatin) zu testen, wurden 

Zellproliferationstests durchgeführt. Das mittlere Überleben wurde mittels IC50 abgeschätzt. 

Diese beschreibt die mittlere Konzentration eines Therapeutikums bei der die halbmaximale 

Wachstumshemmung erreicht wird. Wenn man diese Größe für verschiedene Zellen in 

Bezug setzt, wird dies als IC50-Ratio bezeichnet. 

Unter der Behandlung mit Gemcitabin zeigten die Kontrollzellen ein besseres 

Überleben als die HSP27-überexprimierenden Zellen. Die mittlere benötigte Konzentration, 

um eine Wachstumshemmung von 50% herbeizuführen (IC50), war um das 25-fache höher 

als die IC50 in den drei HSP27-überexprimierenden Klonen. Der Phosphorylierungsstatus von 

HSP27 hatte dabei keinen Einfluss auf die IC50 der Zellen. Sowohl die nicht-

phosphorylierbare Variante (3A) als auch die pseudo-phosphorylierte Variante (3D) zeigten 

die gleiche Chemosensitivität wie die Varianten, die das unveränderte humane HSP27 (hu) 

überexprimieren. Diese Daten legen nahe, dass die Sensitivitätssteigerung der Zellen auf 

Behandlung mit Gemcitabin abhängig von der Menge an exprimiertem HSP27, jedoch nicht 

vom Phosphorylierungsstatus des HSP27, ist. 

Im Gegensatz dazu zeigten sich bei der Behandlung mit Paclitaxel, 5-Fluorouracil und 

Cisplatin keine Unterschiede in der Chemosensititvität (Abb. 8). 
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Abb. 8: Einfluss von (p-)HSP27 auf die Chemosensitivität: Deutlich erhöhte Sensitivität aller 

HSP27-überexprimierenden Klone auf Gemcitabin. Daten gemittelt aus n=3 unabhängigen 

Experimenten 

3.3.2 Ausschluss klonaler Variabilität 

Um die Sensitivierung auf die Behandlung mit Gemcitabin durch hohe HSP27-

Expression zu bestätigen, wurde der Zellproliferationstest mit zwei anderen hu-HSP27 über-

exprimierenden PL5-Klonen wiederholt. Zusätzlich diente dieser Versuch dazu, Artefakte 

auszuschließen, die durch klonale Variabilität entstehen können. 
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Alle drei hu-HSP27-überexprimierenden Klone zeigten eine deutlich höhere Sensitivität 

auf die Behandlung mit Gemcitabin als die Kontrollzellen. Auch in diesem Versuch ließ sich 

eine eindeutige Verminderung der IC50 feststellen (Abb. 9). 

 

 
 

Abb. 9: (A) Quantifizierung der HSP27-Überexpression in selektierten, deutlich über-

exprimierenden Klonen der huHSP27-Variante. (B) Chemosensitivitätstestung: Deutlich erhöhte 

Sensitivität aller HSP27-überexprimierenden Klone auf Gemcitabin. Daten gemittelt aus n=3 

unabhängigen Experimenten 

3.3.3 Reversibilität der HSP27-bedingten Gemcitabin -Sensitivität 

Der Kausalzusammenhang zwischen der HSP27-Expression und der erhöhten 

Chemosensitivität gegenüber Gemcitabin konnte durch die Reversibilität der Sensitivität 

gezeigt werden. Dazu wurde der Zellproliferationstest mit einem Klon wiederholt, der 

während der Kultivierung seine Fähigkeit HSP27 zu überexprimieren aufgrund fehlender 

kontinuierlicher Selektion und konsekutivem Verlust der HSP27-Überexpression, z. B. durch 

Methylierung des exogenen HSP27-Konstrukts, verloren hatte. 

Im Vergleich mit einem überexprimierenden Klon und den nicht-transfizierten 

Kontrollzellen zeigte dieser Klon die gleiche Sensitivität gegenüber Gemcitabin wie die 

Kontrollzellen (Abb. 10). Dies belegt weiter die Abhängigkeit der Gemcitabin-Sensitivität von 

der HSP27-Expressionsstärke in diesem Modell.  
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Abb. 10: (A) Quantifizierung der HSP27-Expression in Kontrollen, überexprimierendem Klon 

PL5 3A und PL5 3D(-) (nach Verlust der Überexpression). (B) Chemosensitivitätstestung: 

Reversibilität der Chemosensitivität durch Verlust der HSP27-Überexpression im Klon PL5 3D(-). 

Daten gemittelt aus n=3 unabhängigen Experimenten 

3.4 Einfluss stabiler HSP27- bzw. p-HSP27-Überexpre ssion auf die zelluläre 

Sensitivität gegenüber γ-Bestrahlung  

Eine weitere Behandlungsmöglichkeit beim Pankreaskarzinom stellt die Bestrahlung 

dar. Aus diesem Grund wurde getestet, ob die unterschiedlichen Klone ein unterschiedliches 

Ansprechen auf γ-Bestrahlung zeigen. 

Zur Überprüfung der Strahlungssensitivität wurden die Zellen in 6-Wellplatten ausgesät 

und am nächsten Tag mit aufsteigenden Strahlungsdosen behandelt. Anschließend wurden 

die Zellen für weitere 12 Tage kultiviert. In dieser Zeit konnten die überlebenden Zellen 

Kolonien bilden. Nach dieser Zeit wurden die Zellen fixiert, mit Crystal Violet angefärbt und 

die Kolonien gezählt. Jeder Versuch wurde im Duplikat durchgeführt.  

Im Vergleich zum Zellproliferationstest misst der Koloniebildungstest nicht nur die 

Menge an lebenden Zellen, sondern die Fraktion der Tumorzellen, die im Anschluss an die 

Behandlung noch die Fähigkeit zur Proliferation aufweisen. Dabei hat der Zelltod-auslösende 

Mechanismus keinen Einfluss auf den Test oder seine Auswertung [151]. 

Es ergaben sich keine signifikanten Unterschiede im Überleben der Zellen nach 

γ-Bestrahlung zwischen den Klonen HSP27-hu, HSP27-3A, HSP27-3D und den nicht-

transfizierten Kontrollzellen (Abb. 11). Somit scheinen in unserem Modell weder die Höhe 

der HSP27-Expression noch der Phosphorylierungsstatus von HSP27 bei Pankreas-

karzinomzellen einen Einfluss auf das Überleben nach γ-Bestrahlung zu haben.  
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Abb. 11: Einfluss von (p-)HSP27 auf die Bestrahlungssensitivität. Es zeigt sich kein Unterschied 

in der Bestrahlungssensitivität. Daten gemittelt aus n=3 unabhängigen Experimenten 

3.5 Induzierbarkeit der HSP27-Expression durch Hitz eschock  

Zur Evaluation möglicher klinischer Implikationen der erhaltenen Daten, insbesondere 

hinsichtlich klinischer Therapieregime mit Hyperthermie als Chemosensitivierung, wurde 

überprüft, ob es prinzipiell möglich ist, eine HSP27-Überexpression mittels Hitzeschock in 

dem etablierten HSP27-Zellmodell zu erzeugen. Dieser Effekt wurde bereits für 

unterschiedliche Zellsysteme vorbeschrieben [152, 153], jedoch noch nicht für das hier 

etablierte Zellsystem validiert. Außerdem könnte die Induktion von HSP27 mittels 

Hyperthermie als Grundlage für zukünftige mechanistische Studien dienen. 

Dabei wurden Zellen der Pankreaskarzinomzelllinien PL5 und PL11 und PCC-Zellen für 

1 h bzw. 2 h in einem Wasserbad bei 39°C oder 41°C inkubiert. Nach dem Hitzeschock 

wurden sie für 3 h, 6 h oder 9 h im Inkubator kultiviert, bevor sie lysiert und mittels 

Westernblot analysiert wurden. Zur Kontrolle wurden unbehandelte Zellen verwendet. 

3.5.1 Induzierbarkeit der HSP27-Expression durch Hi tzeschock in PL5 und PL11 

PL5-Zellen und PL11-Zellen zeigten beide einen starken Anstieg der HSP27-

Expression durch den Hitzeschock. Sowohl nach 3 h und 6 h konnte ein Anstieg der HSP27-

Konzentration bei 39°C und noch deutlicher bei 41°C beobachtet werden. Nach 9 h 

Inkubation nahm die HSP27-Konzentration in den Zellen bereits wieder ab (Abb. 12 (A)). 
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Abb. 12: HSP27-Expression nach Hitzeschockbehandlung 

(A) Quantitative Messung der HSP27-Expression in Pankreaskarzinomzelllinien (PL5 und PL11) 

nach Hitzeschockbehandlung (2 h bei 39°C/41°C) und nach 3 h, 6 h und 9 h. (B) Quantitative 

Messung der HSP27-Expression in kurzzeitkultivierten primären Pankreaskarzinomzellen (PCC) nach 

Hitzeschockbehandlung (2 h bei 39°C/41°C) und nach 3 h und 6 h. (C) Densitometrische Messung der 

HSP27-Expression in PCC  
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3.5.2 Induzierbarkeit der HSP27-Expression durch Hi tzeschock in neu etablierten 

kurzzeitkultivierten Pankreaskarzinomlinien  

Um zu überprüfen, ob der in Pankreaszelllinien beobachtete Effekt auch generalisierbar 

ist, wurde der Versuch mit einer kurzzeitkultivierten Primärtumorzelllinie aus einem humanen 

Pankreaskarzinom (PPC) durchgeführt. 

Auch die neu etablierten Zellen zeigten einen starken Anstieg der HSP27-Expression 

nach Hitzeschock. Ebenso wie in den Versuchen mit den Pankreaskarzinomzelllinien PL5 

und PL11 war die Reaktion auf einen Hitzeschock mit 41°C effektiver als mit 39°C. Auch in 

den PPC war eine Abnahme der Konzentration nach 9 h zu beobachten (Abb. 12 (B+C)). 

3.6 Mechanistische Untersuchungen zur HSP27-modulie rten Gemcitabin-Sensitivität 

in PL5 Zellen  

Ziel der nachfolgenden Untersuchungen war die Identifikation potentieller 

mechanistischer Zusammenhänge zwischen der beobachteten HSP27-abhängigen 

Gemcitabin-Sensitivierung und den gut charakterisieren Hauptfunktionen von HSP27.  

3.6.1 Einfluss der Behandlung mit Chemotherapeutika  auf die (p-)HSP27-Expression  

Wie in den vorangegangen Versuchen gezeigt wurde, kann die HSP27-Expression die 

Wirkung von Chemotherapeutika beeinflussen. Umgekehrt legen die Ergebnisse von Tanaka 

et al. nahe, dass die Expression von HSP27 von der Behandlung mit zytotoxischen 

Medikamenten beeinflusst wird [154]. Deshalb wurde die Menge der (p-)HSP27-Expression 

nach der Behandlung mit Gemcitabin quantifiziert.  

Dazu wurden die Zellen mit Gemcitabin für 24 h behandelt und anschließend die 

HSP27 und p-HSP27-Expression mittels Westerblot analysiert. 

Es wurde nach der Behandlung mit Gemcitabin kein Unterschied in der Expression von 

HSP27 oder p-HSP27 nachgewiesen (Abb. 13). 
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Abb. 13: Quantitative Messung der HSP27- und p-HSP27-Expression nach Behandlung der 

Zellen mit Chemotherapie. Repräsentative Ergebnisse eines Experiments (n=3). 

3.6.2 Einfluss von Gemcitabin auf die räumliche Ver teilung von (p-)HSP27 und die 

Beziehung zum Aktinskelett 

Die Stabilisierung der Aktinfilamente stellt eine der Hauptaufgaben von HSP27 dar. 

Veränderungen dieser Interaktion durch Chemotherapeutika und die Verlagerung von 

HSP27 in andere Zellkompartimente könnten zu einer Destabilisierung der Zellintegrität und 

zur Apoptose führen. Da sich der Wirkmechanismus verschiedener Chemotherapeutika 

komplett unterscheidet, ist anzunehmen, dass diese auch einen unterschiedlichen Einfluss 

auf das komplexe Zusammenspiel der Zellfilamente und deren Interaktionspartner, wie 

HSP27, haben. Dies könnte ein Grund für die HSP27-abhängige Sensitivitätsänderung der 

Zellen spezifisch auf Gemcitabin sein.  

3.6.2.1 Darstellung der räumliche Korrelation zwischen Gesamt-HSP27 und p-HSP27, Aktin 

mittels Immunfluoreszenzmikroskopie 

Die Verteilung und Phosphorylierung von HSP27 und die Veränderung der 

Aktinfilamente nach Behandlung mit Gemcitabin wurden mittels Immunfluoreszenzmikro-

skopie untersucht. 
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Dazu wurden die Zellen mit 0 nM, 3 nM oder 6 nM Gemcitabin für 24 h behandelt und 

anschließend das Aktinskeletts, HSP27 und p-HSP27 über spezifische Bindungen gefärbt. 

Zur Identifizierung des zytoplasmatischen und des nukleären Kompartiments der Zellen 

wurde die doppelsträngige DNS mit Hoechst 33342 markiert.  

Wie auch schon für die Pankreaskarzinomzelllinien MIA PaCa-2, Capan-1, Capan-2, 

Panc-1 und PL5 konnte für die unbehandelten Klone und die unbehandelten Kontrollzellen 

fast ausschließlich eine diffuse zytoplasmatische HSP27-Expression festgestellt werden 

(Abb. 14, 1. Spalte). Durch die Behandlung mit Gemcitabin veränderte sich das räumliche 

Expressionsmuster von HSP27. Es zeigte sich vermehrt eine nukleäre HSP27-Expression 

(Abb. 14, 2 + 3. Spalte). Dieses Muster war sowohl bei den Kontrollzellen als auch bei den 

drei verschiedenen Klonen zu beobachten (Abb. 14). 

Im Gegensatz zu HSP27 lag p-HSP27 in den unbehandelten Zellen sowohl im Kern als 

auch im Zytoplasma vor (Abb. 15, 1. Spalte). In den klonalen HSP27-überexprimierenden 

Zelllinien dominierte jedoch die p-HSP27-Expression im Zellkern. Im Zytoplasma zeigte sich 

eine körnige Verteilungsstruktur. Durch die Behandlung mit Chemotherapeutika änderte sich 

in allen Zelllinien das Verteilungsmuster nur unwesentlich (Abb. 15, 2. + 3. Spalte). 

Die Behandlung mit Gemcitabin und anderen Chemotherapeutika stellt für die Zellen 

eine Form des Zellstress dar. Entsprechend reagierten alle Zellen mit unspezifischen 

Anzeichen des Zellstress (Stressfasern, Stachel der äußeren Zellmembran und vermehrte 

Membrananfärbung). Diese stressinduzierten Zellveränderungen zeigten sich 

konzentrationsabhängig. Darüber hinaus zeigte sich durch die Behandlung mit Gemcitabin 

kein spezieller Einfluss auf das Aktinskelett. Trotz der unterschiedlichen Quantität und des 

unterschiedlichen Phosphorylierungsstatus hatte die HSP27-Expression keinen signifikanten 

Einfluss auf die beschriebenen Veränderungen des Aktinskeletts (Abb. 16). 
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Abb. 14: Immunfluoreszenzmikroskopische Analyse der HSP27-Verteilung nach Behandlung mit 

Gemcitabin. Repräsentative Ergebnisse eines Experiments (n=3). 
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Abb. 15: Immunfluoreszenzmikroskopische Analyse der phospho-HSP27-Verteilung nach 

Behandlung mit Gemcitabin. Repräsentative Ergebnisse eines Experiments (n=3). 
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Abb. 16: Immunfluoreszenzmikroskopische Analyse des Aktin-Zytoskeletts nach Behandlung mit 

Gemcitabin. Repräsentative Ergebnisse eines Experiments (n=3). 

3.6.2.2 Phasenauftrennung zur quantitativen Analyse der HSP27-Verteilung mittels 

Westernblot 

Da Immunfluoreszenzmikroskopie eine qualitative Analyse der HSP27- und p-HSP27-

Verteilung zulässt, allerdings keine klare Quantifizierung ermöglicht, wurde im Folgenden die 

Expression von (p-)HSP27 in den verschiedenen Zellkompartimenten quantitativ mittels 

Westernblot bestimmt.  

Dazu wurden die Lysate aus Gemcitabin-behandelten und unbehandelten Zellen durch 

Verwendung eines Triton X-haltigen Lysepuffers in verschiedenen Zentrifugationsschritten in 
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eine Triton-lösliche Phase (membrangebundene HSP27-Fraktion), eine Triton-unlösliche 

Phase (lösliches HSP27-Fraktion) und eine nukleäre Phase aufgetrennt. 

Dabei fand sich in allen Zellen der Hauptteil der HSP27-Proteine in der Triton-löslichen 

Phase. Durch die Behandlung mit Gemcitabin veränderte sich die nachgewiesene Menge 

von HSP27 in keiner der Zelllinien. 

In der Triton-unlöslichen Phase war in allen Zelllinien nur wenig HSP27, mit geringen 

Schwankungen, z. B. im Rahmen methodischer Ungenauigkeiten, nachweisbar. 

Auch die HSP27-Proteinmenge in der nukleären Phase war in allen Zelllinien vor und 

nach der Behandlung mit Gemcitabin praktisch konstant. 

Zusammenfassend war HSP27 hauptsächlich in der Triton-löslichen Phase und nur in 

sehr kleinen Anteilen in der Triton-unlöslichen oder der nukleären Phase nachweisbar. Auch 

durch die Behandlung mit Gemcitabin war keine mit dieser Methode nachweisbare 

Veränderung der HSP27-Expression nachzuweisen (Abb. 17). 

P-HSP27 konnte gar nicht oder nur in sehr kleinen Mengen nachgewiesen werden. Die 

Ergebnisse waren nicht ausreichend, um eine fundierte Aussage über die p-HSP27-

Expression zu treffen (Daten nicht gezeigt). 

 

 
 

Abb. 17: Quantitative Messung der HSP27-Expression nach Gemcitabinbehandlung und 

Phasenauftrennung. Repräsentative Ergebnisse eines Experiments (n=3). 
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4 Diskussion 

In dieser Arbeit wurde der Einfluss der HSP27- und p-HSP27-Proteinexpression auf die 

Chemo- und Radiosensitivität von Pankreaskarzinomzellen anhand von Pankreaskarzinom-

zelllinien in einem neu-etablierten stabilen Tranksfektionsmodell untersucht. 

4.1 Das nicht-isogene HSP27-Pankreaskarzinommodell  

Im ersten Schritt wurden dazu verschiedene Pankreaskarzinomzelllinien auf ihre 

quantitative und qualitative HSP27- und p-HSP27-Expression untersucht. Die Pankreas-

karzinomzelllinien zeigten zwar eine konstitutive Expression von HSP27, diese war aber in 

den verschieden Zelllinien unterschiedlich ausgeprägt. P-HSP27 wurde nur von zwei der 

getesteten Zelllinien (Capan-1, Capan-2) konstitutiv exprimiert. 

Es hat sich gezeigt, dass die HSP27-Expression in vielen verschiedenen menschlichen 

Karzinomentitäten erhöht ist. Eine Übersicht über die diagnostische Bedeutung von HSP27 

in verschiedenen Tumorentitäten bietet Tab. 8.  

Bisher gibt es nur wenige und teilweise widersprüchliche Untersuchungen zur HSP27-

Expression im Pankreaskarzinom im Vergleich mit normalem Pankreasgewebe. Lu et al. 

zeigten eine signifikant höhere Expression von HSP27 in normalem Pankreasgewebe im 

Vergleich zum Karzinomgewebe [129], während Melle et al. eine niedriger Expression im 

Normalgewebe zeigten [130]. Die deutlich differenten Ergebnisse trotz ähnlicher Heran-

gehensweise könnte unter anderem auf die unterschiedlichen Karzinomproben 

(mikrodisseziertes / gesamtes Karzinomgewebe) zurückzuführen sein. 

Wir konnten in einem TMA an 86 Patientenproben bei 49 % der Pankreaskarzinome 

eine Expression vorn HSP27 nachweisen. Die Expression von p-HSP27 war in 48 % der 

Karzinomproben positiv. Das korrespondierende Normalgewebe zeigte in 71 % eine HSP27-

Expression und in 66 % eine p-HSP27-Expression [131]. Baylot et al. zeigten in einer 

aktuellen Studie aus dem Jahr 2011 in einem TMA an 181 Patientenproben, dass die 

Intensität der HSP27- und die phospho-HSP27-Färbung mit steigendem Malignitätsgrad 

zunimmt [155]. 

Es konnten keine Studien gefunden werden, welche auf die konstitutive Expression von 

p-HSP27 in Karzinomzellen eingehen. Die p-HSP27-Expression von Capan-1 und Capan-2 

stellt allerdings einen interessanten Sachverhalt dar, welche in zukünftigen Studien weiter zu 

untersuchen sein wird. 

Diese Studien zeichnen ein sehr uneinheitliches Bild der Expression von HSP27 in 

unterschiedlichen Karzinomentitäten, aber auch innerhalb der untersuchten Karzinomproben. 

Dies wird durch unsere Beobachtungen aus den nicht-isogenen Pankreaskarzinomzelllinien 

ergänzt, die ebenfalls sehr heterogene Expressionsmuster von HSP27 und p-HSP27 

aufwiesen. Aus diesen Gründen erschien das nicht isogene Modell zur kontrollierten 
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Untersuchung des HSP27-Einflusses auf die Therapiesensitivität als suboptimal. Um 

kontrollierbare Versuchsbedingungen zu schaffen, wurde daher im nächsten Schritt mittels 

stabiler HSP27-Überexpression ein isogenes Pankreaszellmodell etabliert. 

 

 Diagnose Prognose 

   Quellen  Quellen 

Bronchialkarzinom 0 [156] 0/+ 
Adenokarzinom [156] / 

NSCLC [157] 

Endometriumkarzinom - [158, 159] + [160, 161] 

Hepatozelluläres Karzinom + [162-165] 0/- [163, 166] / [167] 

Kolonrektales Karzinom + [168, 169] - [168-170] 

Leukämie + [171, 172] 0/- 
[173] / In Kombination 

[174] 

Lymphom 0 [120] ?  

Mammakarzinom + [175-177] 0 [178-182] 

Nierenzellkarzinom + [183-185] 0/+ [185] / [186] 

Ösophaguskarzinom - [102, 187] + 
PEC [188, 189], 

Adenokarzinom [190] 

Ovarialkarzinom + [119, 191] -/0/+ 
[119, 161, 192] / [123] / 

[193, 194] 

Pankreaskarzinom -/+ 
[129] / [130, 131, 

155] 
+ [131] 

Prostatakarzinom 0/+ [195] / [196] - [117, 186, 196] 

Urothelkarzinom +/- [195] / [197] 0 [195] 

ZNS-Tumore -/0/+ 
[198] / [199, 200] 

/ [201] 
0 [199] 

 

Tab. 8: HSP27 und seine diagnostische und prognostische Bedeutung nach Ciocca et al [121, 

202] und eigener Recherche,  

Diagnose: mehr (+), gleiche (0), weniger (-) HSP27-Expression im Vergleich zum 

Normalgewebe; Prognose: positive (+), negative (-), keine (0) Korrelation der HSP27-Expression mit 

der Prognose; Keine Studien (?), widersprüchliche Daten (+/-), PEC – Plattenepithelkarzinom, NSCLC 

- Nicht kleinzelliges Bronchialkarzinom 

4.2 Das isogene HSP27-Pankreaskarzinommodell  

In verschiedenen Vorversuchen wurden PL5-Zellen aufgrund der niedrigen 

konstitutiven HSP27- und p-HSP27-Expression und der guten Transfizierbarkeit für die 
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Etablierung eines stabil-HSP27-überexprimierenden Pankreaskarzinommodells ausgewählt. 

Außerdem wurden unterschiedliche HSP27-Varianten in den PL5-Zellen überexprimiert.  

Die PL5-Zellen wurden entweder mit der humanen Wildtyp-Variante des HSP27-Gens, 

mit der mutanten, nicht-phosphorylierbaren Form oder der pseudo-phosphorylierten Form 

von HSP27 transfiziert [137, 138]. So konnte ein Modell erzeugt werden, das eine selektive 

und spezifische Aussage über den Einfluss von HSP27 und p-HSP27 Überexpression auf 

Pankreaskarzinomzellen zulässt. 

4.2.1 Evaluation des gewählten Zellmodells 

Ein in vitro-Zellmodell bietet im Vergleich zu anderen Versuchsanordnungen die 

Möglichkeit, den Einfluss vieler unkontrollierbarer Nebeneinflüsse auszuschließen. In vitro-

kultivierte Zellen unterliegen im Vergleich zu Zellen in Gewebsverbänden nur geringen 

interzellulären Einflussfaktoren, wie z. B. Wachstumshemmung durch Konfluenz oder 

interzellulärer Signaltransduktion und auch nicht dem Einfluss des umliegenden Gewebes in 

Form der Tumor-Stroma-Interaktion. Aus diesem Grund ist es in einem klonalen Zellmodell 

möglich, genau ein Merkmal der Zellen spezifisch unter Minimierung von Störeinflüssen zu 

untersuchen. 

Veränderungen der Genexpression in Zellen können entweder über natürliche 

Selektion oder sogenanntes Zell-Engineering erzeugt werden. Bei der Entwicklung eines 

isogenen Zelllinienmodells bewirkt die artifizielle Manipulation von nur einem Gen, dass man 

spezifisch dieses Gen und nicht eine Fülle von Veränderungen untersucht [203]. Im 

Gegensatz dazu erzeugt die Genveränderung über Selektion, wie sie in mehreren anderen 

Veröffentlichungen zu diesem Thema verwendet wurde [133-135, 204], potentiell eine 

Vielzahl von verschiedenen, teilweise unkontrollierten sogenannten Passenger-Mutationen 

sowie potentiell auch epigenetische Veränderungen. Diese können im Folgenden zu einer 

Reduktion oder Erhöhung der zellulären Fitness führen [203], welche in unkontrollierter 

Weise die nachfolgenden Untersuchungen beeinflussen. 

Beim Zell-Engineering werden gezielt einzelne Gene und damit die entsprechenden 

Protein-Expressionsmuster von Zellen verändert. Die drei gängigsten Methoden sind stabile 

Überexpression einzelner Gene, gezielte RNA-Interferenz mittels siRNS, oder spezifischer 

Gen-Knock-Out. In dieser Arbeit wurde ein Modell mittels stabiler Transfektion gewählt, da 

es für pharmakologische Studien ein stabiles Modellsystemen bietet. 

RNS-Interferenz mittels siRNS ist eine transiente Methode bei der die physiologische 

Genexpression mit einer reduzierten Genexpression unmittelbar verglichen werden kann. 

Für pharmakologische Studien zeigen sie den Nachteil, dass es auf Grund häufiger 

Nebeneffekte der siRNS schwer möglich ist, geeignete Kontrollen zu entwickeln [205]. Diese 

Nebeneffekte sind sowohl schlecht reproduzierbar als auch schwer mittels passender siRNS 

zu validieren. Außerdem scheinen häufig toxische Nebeneffekte zu entstehen [206], welche 
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bei pharmakologischen Überlebensstudien mit den eigentlichen Effekten interferieren 

können. 

Der gezielte Gen-Knock-Out stellt heute für viele in vitro Versuche die Standard-

methode dar. Allerdings kann das akute künstliche Ausschalten der Genaktivität in ca. 30% 

der Gene zu einer deutlichen Reduktion der Zellfitness führen. 

Stabile Transfektion erzeugt ein Zellmodell mit konstanten Zellveränderungen und 

Kontrollmöglichkeiten bei geringer Reduktion der zellulären Fitness. Allerdings können durch 

den zufälligen Einbau der Fremd-DNS in das Genom der Zellen während der stabilen 

Transfektion sogenannte Transfektionsartefakte, also z. B. Veränderungen in der 

Proteinexpression entstehen, welche durch entsprechende Kontrollen (z.B. Etablierung 

mehrerer unabhängiger Einzelklone) ausgeschlossen werden müssen. Des Weiteren kommt 

es per definitionem zu einem unphysiologisch hohen Expressionsniveau der entsprechenden 

Gene [203], welche außerdem im Gegensatz zur physiologischen Regulierung konstitutiv 

und nicht-regulierbar exprimiert werden.  

Ein Nachteil aller in vitro-Zellmodellen liegt im Verlust von natürlichen, gewebe-

spezifischen Einflüssen auf die Tumorzellen. Aus diesem Grund ist es notwendig, die in in 

vitro-Versuchen gewonnenen Daten in weiteren Studien in anderen Modellsystemen (z.B. in 

vivo-Systemen) zu validieren. 

4.3 Einfluss von HSP27 auf die Therapiesensitivität  

4.3.1 Einfluss von HSP27 auf die Sensitivität gegen über konventionellen 

Chemotherapeutika 

In dieser Arbeit konnte gezeigt werden, dass Pankreaskarzinomzellen, die HSP27 

konstitutiv überexprimieren, eine 25-fach niedrigeren IC50 bei der Behandlung mit Gemcitabin 

haben, als solche die HSP27 nicht überexprimieren. Dieser Effekt war spezifisch für die 

Behandlung mit Gemcitabin und konnte bei keinem weiteren untersuchten Chemo-

therapeutikum (5-Fluoruracil, Cisplatin, Paclitaxel) beobachtet werden. Des Weiteren wurde 

gezeigt, dass dieser Effekt reversibel ist. So konnte anhand des Klons PL5 3D(-) gezeigt 

werden, dass der Verlust der Überexpression, nach Absetzen des Selektionsdrucks mit 

konsekutiver Hypermethylierung des HSP27-überexprimierenden Konstrukts, auch zu einem 

Verlust der Sensitivität gegenüber Gemcitabin führt. Zusätzlich zeigten in den Versuchen 

sowohl die nicht-phosphorylierbare Form (3A) als auch die pseudo-phosphorylierte Form 

(3D) die gleiche Reaktionsweise wie die Wildtyp-Variante von HSP27. Daraus folgt, dass die 

Sensitivitätssteigerung gegenüber Gemcitabin unabhängig vom HSP27-Phosphorylierungs-

status war. 

Verschiedene Studien beschreiben den Einfluss von HSP27 auf die Sensitivität 

gegenüber der Behandlung mit Chemotherapeutika. So berichten Studien über eine erhöhte 
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Resistenz gegenüber Chemotherapeutika, zum Beispiel von Mammakarzinomzellen 

gegenüber Doxorubicin, Prostatakarzinomzellen gegenüber Etoposid und Neuroblastom-

zellen gegenüber Etoposid [207-209]. Eine weitere Übersicht über die prädiktive Bedeutung 

der HSP27-Expression in einige ausgewählte Tumorentitäten bietet Tab. 9.  

 

 Prädiktion 

  Quellen 

Bronchialkarzinom - [210] 

Endometriumkarzinom ?  

Hepatozelluläres Karzinom - [211] 

Kolonrektales Karzinom - [212] 

Leukämie - [213] 

Lymphom - [214] 

Mammakarzinom 0 [178, 215] 

Nierenzellkarzinom ?  

Ösophaguskarzinom -/+ PEC [124, 197] / Adenokarzinom [216] 

Ovarialkarzinom -/0 [119, 191] / [217] 

Pankreaskarzinom - [133, 135, 155, 218] 

Prostatakarzinom ?  

Urothelkarzinom - [219] / [220] 

ZNS-Tumore 0 [221] 

 

Tab. 9: HSP27 und seine prädiktive Bedeutung nach Ciocca et al [121, 202] und eigener 

Recherche  

HSP27-Expression hat positiven (+), negativen (–), keinen (0) prädiktiven Einfluss auf die 

Therapie, Keine Studien (?), widersprüchliche Daten (+/-), 

 

Zur Klärung des Einflusses von HSP27 auf das Tumortherapie-Ansprechen spezifisch 

gegenüber Gemcitabin ist die Datenlage bislang unzureichend. 

Hsu et al. untersuchten die Unterschiede in der Gemcitabinsensitivität zwischen einer 

Lungenkarzinomzelllinie und einer mit Stammzellen angereicherten Zellpopulation und 

fanden dabei einen höhere HSP27-Expression und Phosphorylierung in den Gemcitabin-

resistenten Stammzellen [222]. Der Versuchsaufbau von Hsu et al. und anderen Studien 

(siehe unten) besteht aus einer Erst-Selektion und anschließender Identifizierung von 

Expressionsveränderungen, wie zum Beispiel einer HSP27-Überexpression. Diese Reihen-

folge in der Herangehensweise birgt das Risiko, dass durch die Selektion nicht nur die 

gewünschten, sondern auch viele unkontrollierte molekulare Veränderungen stattfinden, 
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welche die Funktionalität der Zellen beeinflussen. Es bietet somit nicht die Möglichkeit, 

gezielt den Einfluss einer HSP27-Überexpression in einem Zellmodell zu untersuchen. 

Zur Evaluation des Einflusses von HSP27 auf die Chemosensitivität des Pankreas-

karzinoms gibt es bisher nur sehr wenige Studien [133, 155, 218]. 

Baylot et al. zeigten in einer Studie, dass durch den Einsatz eines spezifischen  

HSP27-antisense Oligonukleotids der zytoplasmatische Gehalt von HSP27 gesenkt werden 

kann und dies mit einer Gemcitabinsensibilisierung einhergeht. Außerdem konnte 

nachgewiesen werden, dass der Einsatz der ASO im Tiermodell mit Nacktmäusen und darin 

erzeugten MiaPaCa-2-Tumoren einen Überlebensvorteil in der mit OGX-427 behandelten 

Gruppe erbringt [155]. 

Auch eine Studie von Heinrichs et al. arbeitete mit einem small molecule, welches in 

der Lage ist, HSP27 zu binden und damit dessen zytoplasmatischen Gehalt zu reduzieren. 

Allerdings zeigten die beschriebenen Experimente nicht, welche anderen zellulären Effekte 

RP101 hat. Eine kombinierte Therapie mit RP101 und MMC erwies sich in einem in vitro-

Experiment mit BxPC-3-Pankreaskarzinomzellen als effektiver als eine MMC-Monotherapie. 

Der zugrundeliegende Mechanismus konnte allerdings nicht geklärt werden. In einer ersten 

Phase II-Studie zeigte sich vor allem wegen Gemcitabin-Nebenwirkungen aufgrund von 

Medikamentenüberdosierung ein besseres Überleben der Placebo + Gemcitabin-Gruppe im 

Vergleich zu der RP101 + Gemcitabin-Gruppe [218]. 

Zur Identifizierung von Proteinen, welche zu einer Resistenz des Pankreaskarzinoms 

bei der Behandlung mit Gemcitabin führen könnten, wurde in der Studie von Mori-Iwamoto et 

al. eine Gemcitabin-resistente Zelllinie etabliert. Dazu wurde aus einer Gemcitabin-sensitiven 

Zelllinie über kontinuierliche Selektion mit Gemcitabin eine Gemcitabin-resistente Zelllinie 

erzeugt und mit der sensiblen Kontrollzelllinie mittels Proteinexpressionsanalyse verglichen. 

Dabei zeigte sich, dass HSP27 in der Gemcitabin-resistenten Zelllinie im Vergleich zur 

Gemcitabin-sensitiven Zelllinie überexprimiert war. Ein Herabregulieren der HSP27-

Expression in der Gemcitabin-resistenten Zelllinie mittels siRNA stellte die Gemcitabin-

sensitivität wieder her [133]. Aufbauend auf demselben Zellmodell wurden von dieser 

Arbeitgruppe weitere Studien veröffentlicht [134, 204, 223]. Die Unterschiede der beiden 

Modelle wurden bereits weiter oben diskutiert. Taba et al. konnte an demselben Zellmodell 

zeigen, dass es nicht nur zu einer erhöhten Expression von HSP27 sondern auch von p-

HSP27 (ser78, ser82) kommt [135]. Bei unseren Untersuchungen konnten wir nicht 

nachweisen, dass der Phosphorylierungsstatus einen Einfluss auf die Chemosensibilisierung 

gegenüber Gemcitabin hat. So zeigten sowohl die humane Variante von HSP27, als auch die 

pseudo-phosphorylierte und nicht-phosphorylierbare Varianten von HSP27, das gleiche 

Ansprechen auf die Behandlung mit Gemcitabin. Somit änderte in unseren Versuchen nur 
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die Quantität der HSP27-Expression und nicht der Phosphorylierungsstatus die Sensitivität 

auf Gemcitabin.  

Eine Studie aus unserer Arbeitsgruppe konnte durch einen TMA, durchgeführt an 86 

Patientenproben aus Pankreaskarzinomen, zeigen, dass eine signifikante, positive 

Korrelation zwischen der Expression von HSP27 und dem Überleben unter der Therapie mit 

Gemcitabin besteht [131].  

Im Literaturkontext kann man sagen, dass somit teilweise widersprüchliche Daten zum 

Einfluss von HSP27 auf die Chemosensitivität im Pankreaskarzinom existieren. Allerdings ist 

die Studienlage im Moment noch zu schwach, um diesen Zusammenhang endgültig 

entscheiden zu können. Vorstellbar wäre auch, dass das Pankreaskarzinom keine 

einheitliche Entität darstellt, sondern in Subgruppen gemäß der HSP27-Expression 

analysiert werden muss, um eventuelle Unterschiede im Therapieansprechen bei der 

Behandlung mit Gemcitabin genauer differenzieren zu können. 

4.3.2 Einfluss von HSP27 auf die Radiosensitivität 

Neben der Chemotherapie stellt auch die Radiochemotherapie eine etablierte 

Therapieform bei der Behandlung von regional-fortgeschrittenen Pankreaskarzinomen dar. 

Aus diesem Grund wurde getestet, ob die Expression von HSP27 einen Einfluss auf die 

Radiosensitivität von Pankreaskarzinomzellen hat. 

Dabei zeigten sowohl die parentalen PL5-Zellen wie auch die HSP27-über-

exprimierenden Zellklonvarianten in unserem Zellmodell das gleiche Ansprechen auf die 

Therapie mit γ-Strahlung. Der Phosphorylierungsstatus von HSP27 hatte keinen Einfluss auf 

das Verhalten der Zellen unter Bestrahlung. 

Der Einfluss von HSP27 auf die Radiosensitivität wurde in verschiedenen 

Tumorentitäten bereits untersucht. Fortin et al. arbeiteten an einem Modell mit human-

HSP27-überexprimierenden O23-Zellen, einem tumorigenen Subklon der Chinese Hamster 

Lungenfibroblastenzelllinie CCL39. Nach Applikation therapeutischer Dosen γ-Strahlung 

konnten sie keinen Unterschied im Ansprechen im Vergleich zur Kontrolle beobachten [125]. 

Teimourian et al. konnten in einer humanen Prostatakarzinomzelllinie mittels Transfektion 

der Anti-sense-cDNA für humanes HSP27 eine HSP27-unterexprimierende Form der 

Zelllinie erzeugen. Diese Zelllinie wies in weiteren Untersuchungen eine deutlich höhere 

Radiosensitivität im Vergleich zu der Kontrollzelllinie auf [224]. Aloy et al zeigten in zwei 

humanen T-Zell-Leukämiezelllinien, in denen eine stabile Überexpression von HSP27 

erzeugt wurde, dass HSP27 protektiv gegenüber der Behandlung mit γ-Strahlung wirkt. Dies 

bestätigten sie durch Herabregulieren der HSP27-Expression mittels interferierender RNA in 

der Glioblastomzelllinie U87, der Prostatakarzinomzelllinie PC3 und einer neu etablierten 

Plattenepithelkarzinomzelllinie [225]. In Karzinomzelllinien, etabliert aus humanen Kopf-Hals-

Tumoren, konnten Proteinvergleichsanalysen zwischen einer radiosensitiven und einer 
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radioresistenten Zelllinie zeigen, dass die radioresistente Zelllinie neben vier anderen 

Proteinen auch HSP27 deutlich überexprimiert [226]. Diese Ergebnisse für Kopf-Hals-

Karzinome wurden durch Hadchity et al bestätigt. Sie konnten sowohl in vitro als auch in vivo 

mittels Xenografttumoren in Mäusen zeigen, dass eine Unterdrückung der HSP27-

Expression mithilfe von OGX-427, einem Anti-sense-Oligonukleotid, eine erhöhte 

Radiosensitivität hervorruft [227]. 

Zusammenfassend kann man aus diesen Studien an unterschiedlichen Tumorentitäten 

schlussfolgern, dass eine hohe HSP27-Expression entweder keinen Einfluss auf die 

Sensitivität der Zellen gegenüber γ-Strahlung hat oder eine Sensitivitätsminderung 

hervorruft. Jedoch ist die Datenlage für eine differenzierte Aussage über den 

Zusammenhang von HSP27-Expression und Strahlungssensitivität unzureichend. Zusätzlich 

scheint es deutliche Unterschiede zwischen den verschiedenen Tumorentitäten zu geben.  

Für das Pankreaskarzinom gab es bislang noch keine Studie, die den Zusammenhang 

zwischen HSP27 und Radiosensitivität untersuchte. Die in dieser Arbeit gewonnen 

Ergebnisse legen nahe, dass HSP27 im Pankreaskarzinom keinen Einfluss auf die 

Radiosensitivität hat. Darüber hinaus scheint auch der Phosphorylierungsstatus von HSP27 

keinen Unterschied im Ansprechen der Zellen auf die Behandlung mit γ-Strahlung zu 

verursachen. 

4.4 Induzierbarkeit der HSP27-Expression  

Es ist seit Langem belegt, dass Hitzeschockproteine durch Wärmeapplikation induziert 

werden können [91, 92]. In dieser Arbeit konnte gezeigt werden, dass dies auch auf HSP27 

in Pankreaskarzinomzellen zutrifft. Durch eine Behandlung mit Hitzeschock konnte sowohl in 

etablierten Zelllinien als auch in einer kurzzeitkultivierten Primärtumorzelllinie aus einem 

humanen Pankreaskarzinom (PPC) HSP27 signifikant überexprimiert werden.  

Durch die Kombination aus Induktion von HSP27 mittels Hyperthermie und der daraus 

resultierenden erhöhten Sensitivität der Zellen gegenüber Gemcitabin ergibt sich somit ein 

neues Therapiekonzept.  

Dieses Konzept wird auch durch die in vitro Studie von Adachi et al. bestätigt, welche 

für die Pankreaskarzinomzelllinien AsPC-1 und MIAPaCa-2 zeigte, dass die Kombination 

von Gemcitabin mit einer Hitzeschockbehandlung eine höhere Zytotoxizität verursacht [228]. 

Als möglicher Mechanismus wurde gezeigt, dass die Expression von HSP70 nach der 

Hitzebehandlung erhöht waren. Die Expression von HSP27 wurde nicht untersucht, könnte 

aber, wie aus unseren Daten hervorgeht, ebenso einen plausiblen Mechanismus darstellen. 

Zusätzlich wird unsere Theorie von einer kürzlich erschienenen klinischen Studie 

gestützt. Ohguri et al. zeigten, dass das progressionsfreie Überleben und das Gesamt-

überleben von Patienten mit lokal fortgeschrittenem Pankreaskarzinom signifikant verlängert 
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waren, wenn zusätzlich zu der Kombination aus Gemcitabin und Radiotherapie regionale 

Hyperthermie angewendet wurde [229]. 

Auch Tschoep-Lechner et al. zeigten für Patienten mit fortgeschrittenem Pankreas-

karzinom, welche unter der Therapie mit Gemcitabin einen Progress gezeigt hatte, dass 

durch eine kombinierte Therapie mit Cisplatin/Gemcitabin und regionaler Hyperthermie eine 

erneute Tumorkontrolle von 4,3 Monaten und ein Gesamtüberleben von 12,9 Monaten 

erreicht werden kann [230]. 

Insgesamt bilden unsere experimentellen Daten eine grundlagenwissenschaftliche 

Basis für klinische Studien zur Kombination von regionaler Hyperthermie (mit konsekutiv 

gesteigerter HSP27-Expression im Tumor) und Gemcitabin-Behandlung für Pankreas-

karzinompatienten. Dieses Konzept wird auch bereits durch erste vielversprechende 

klinische Daten zur Effektivität von Hyperthermie plus Gemcitabin unterstützt [229, 230]. 

4.5 Mechanismus der Gemcitabinsensitivität  

Bei der Auswahl der untersuchten Mechanismen haben wir uns vor allem den 

Hauptaufgaben von HSP27 und Untersuchungen bezüglich des Verteilungsmusters von 

HSP27, des Phosphorylierungsstatus und der Aktin-HSP27-Interaktion gewidmet. Dabei 

konnte gezeigt werden, dass die Änderung der Gemcitabinsensitivität unabhängig vom 

HSP27-Verteilungsmuster und auch dessen Phosphorylierungsstatus ist. Ebenso zeigte sich 

auch bei der Untersuchung der Aktin-HSP27-Interaktion kein klarer Zusammenhang 

zwischen Gemcitabinsensitivierung und der Verteilung von HSP27 und den Aktinfilamenten.  

4.5.1 Verteilungsstruktur von HSP27 

Bei der Immunfluoreszenzfärbung von HSP27 und p-HSP27 zeigte sich in allen 

untersuchten Zellen eine vermehrt zytoplasmatische Expression von HSP27, während 

p-HSP27 vermehrt im Zellkern lokalisiert war. Weiter konnte gezeigt werden, dass eine 

Behandlung mit Gemcitabin unabhängig vom HSP27-Phosphorylierungsstatus zu einer 

Umverteilung von HSP27 in den Zellkern führt.  

Zu diesen Beobachtungen gibt es weiteren Studien an anderen Modellsystemen und 

mit unterschiedlichen Stressoren. Diese haben gezeigt, dass UVB-Strahlung und Zellstress 

durch Hyperthermie zu einer Phosphorylierung und Umverteilung von HSP27 in das nukleäre 

Kompartiment von Keratinozyten führt [231, 232]. Die Beobachtungen hinsichtlich der 

intrazellulären Verteilung und der Dominanz der zytoplasmatischen Anfärbung stimmen 

ebenfalls mit den Ergebnissen der oben genannten Studien überein.  

Insgesamt kann man anhand dieser Untersuchungen zwar auf eine gewisse 

Stressreaktion der Zellen, jedoch nicht auf ein Gemcitabin-spezifisches Reaktionsmuster 

schließen. 
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4.5.2 Interaktion von HSP27 mit dem Aktinfilament 

Die enge Beziehung zwischen HSP27 und Aktinfilamenten ist schon seit Anfang der 

90er Jahre bekannt [233]. HSP27 erhöht die Stabilität der Aktinfilamente und verhindert 

dadurch deren Degradation. Diese Funktion scheint hauptsächlich von der phosphorylierten 

HSP27-Variante ausgeübt zu werden [105].  

Durch eine Zerstörung der Aktinfilamente kommt es über einen noch nicht vollständig 

geklärten Weg (vermutlich durch Integrine) zu einer Bid-Aktivierung und Umverteilung und 

dadurch zu einer Cytochrom c-Freisetzung und zur Apoptose der Zellen [234]. Die 

Bid-abhängige Freisetzung von Cytochrom c aus den Mitochondrien wird durch Bcl-2 

antagonisiert [235]. 

Zu untersuchen bleibt, ob eine konstitutive Expression von HSP27 und eine zusätzliche 

Belastung der Zellen durch die Behandlung mit Gemcitabin, die Fluidität der Aktinfilamente 

hemmt und so die Apoptose der Zellen auslösen kann. 

Allerdings zeigte sich bei unseren Untersuchungen der HSP27-Funktion in Pankreas-

karzinomzellen keine direkte Verbindung zwischen HSP27 oder p-HSP27 und dem 

Aktinskelett der Zellen. So ließ sich zwar eine räumlich enge Beziehung zwischen HSP27 

bzw. p-HSP27 und Aktin nachweisen, diese zeigte sich jedoch unabhängig vom HSP27-

Phosphorylierungssatus und von der Gemcitabinbehandlung.  

4.6 HSP27 als Tumormarker  

Die Expression von HSP27 ist in einer Vielzahl von humanen Tumorentitäten erhöht 

und war deshalb Anlass zu vielen Studien, die HSP27 als Tumormarker evaluiert haben 

(siehe auch Tab. 8, Tab. 9 und [121]). Tumormarker können in drei Gruppen eingeteilt 

werden. Diagnostische Tumormarker können zur Diagnosefindung, der Differenzierung 

einzelner Erkrankungen und auch zur Stadieneinteilung der Erkrankung genutzt werden. 

Prognostische Tumormarker geben einen Anhalt über den zukünftigen Verlauf der 

Erkrankung. Prädiktive Tumormarker dienen der Einschätzung über den Nutzen oder 

Schaden einer geplanten Therapiemöglichkeit. 

 

Der Nutzen von HSP27 als diagnostischer Tumormarker muss in den einzelnen 

Tumorentitäten differenziert betrachtet werden. So gibt es in einigen Tumorentititäten wie 

z. B. Mammakarzinom, Nierenzellkarzinom, Kolonkarzinom und Hepatozellulärem Karzinom 

deutliche Hinweise für den Nutzen von HSP27 als Tumormarker. Allerdings zeigen sich in 

anderen Entitäten widersprüchliche Ergebnisse, z. B. Prostatakarzinom, Urothelkarzinom 

und ZNS-Tumore. Auch für das Pankreaskarzinom gibt es bisher nur wenige Studien, welche 

zu unterschiedlichen Ergebnissen kommen. 

So konnten Lu et al. mittels 2-D-Westerblot zeigen, dass HSP27 eine signifikant 

verminderte Expression im Pankreaskarzinom im Vergleich zu Normalgewebe aufwies [129]. 
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Melle et al, Baylot et al und auch eine Studie aus unserer Arbeitsgruppe zeigten 

dagegen mittels Immunhistochemie, 2-D-Westerblotting und TMA eine Zunahme der HSP27-

Expression im Karzinomgewebe im Vergleich zum Normalgewebe [130, 131, 155]. 

Jedoch scheint HSP27 als diagnostischer Tumormarker für das Pankreaskarzinom nur 

von nachrangiger Bedeutung zu sein. Grund dafür ist die Expression von HSP27 in sehr 

unterschiedlichen Erkrankungen, wie zum Beispiel der chronischen Pankreatitis und daraus 

resultierend keiner Möglichkeit der Differenzierung zwischen den verschiedenen 

Erkrankungen durch die Messung der HSP27-Expression. Außerdem ist der Expressions-

unterschied in den meisten Entitäten zu klein und kann daher nicht als diskriminativer Marker 

zwischen Tumorgewebe und Normalgewebe herangezogen werden.  

 

Betrachtet man die Rolle von HSP27 als prognostischem Tumormarker, so stellt man 

fest, dass die Ergebnisse stark von der untersuchten Tumorentität abhängen. Zum Beispiel 

ist eine hohe HSP27-Expression mit einer schlechten Prognose in Osteosarkomen [236], 

Hepatozellulären Karzinomen [167] und Prostatakarzinomen [117, 196] assoziiert, während 

eine hohe HSP27-Expression für eine gute Prognose bei Adenokarzinomen des 

Endometriums [160], Plattenepithelkarzinomen des Ösophagus [188] und bei malignen 

fibrösen Histiozytomen [237] spricht. Im Gegensatz dazu wurde berichtet, dass HSP27 

keinen Effekt auf die Prognose in Kopf-Hals-Plattenepithelkarzinomen [238], Harnblasen-

karzinom [195] oder Nierenzellkarzinom [184] hat. Bei oralen Plattenepithelkarzinomen [239-

242], Magenkarzinomen [243-245] und Ovarialkarzinomen [119, 123, 192, 194, 246, 247] ist 

die Datenlage nicht eindeutig. Ausreichende Studien zum Pankreaskarzinom fehlen noch.  

Ein Tissue-Microarray aus unserer Arbeitsgruppe zeigt nun [131, 248], dass HSP27-

Expression als unabhängigen Prognosefaktor für das Überleben der Patienten mit 

Pankreaskarzinom gewertet werden muss. Die Implikationen der HSP27-Expression auf die 

Prognose scheint allerdings, je nach untersuchter Tumorentität, sehr unterschiedlich zu sein 

und gibt damit Anlass zu der Annahme, dass der Einfluss der HSP27-Expression stark von 

weiteren Tumor-spezifischen Eigenschaften [121] abhängt, wie zum Beispiel vom 

Tumormilieu, genetischen und epigenetischen Veränderungen, Mutationsstatus und Protein-

expressionsprofil (z. B. Rezeptorstatus).  

 

Zusätzlich zu seiner Funktion als prognostischer Marker, könnte HSP27 auch als 

prädiktiver Marker eine Rolle spielen, um in bestimmten Tumoren das Ansprechen auf 

Radio-, Radiochemo- oder Chemotherapie prospektiv evaluieren zu können [121, 249]. Zu 

den Tumorentitäten, in denen der prädiktive Nutzen von HSP27 postuliert wird, gehören das 

Harnblasenkarzinom [219], das Mammakarzinom [122, 250], das Ösophaguskarzinom [124, 

216], das Ovarialkarzinom [119, 123] und das Prostatakarzinom [251]. In anderen Studien für 
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unterschiedliche Tumorentitäten findet sich kein signifikanter Zusammenhang zwischen 

HSP27 und dem Therapieansprechen [125, 178, 215, 217, 237, 252, 253].  

Für das Pankreaskarzinom fehlen Studien, welche die Rolle von HSP27 als prädiktiver 

Marker für die Chemosensitivität in vivo evaluieren.  

Zur Untersuchung der prädiktiven Bedeutung von HSP27 wurde von Mori-Iwamoto et 

al. ein in vitro-Zellmodell etabliert. Basierend auf diesem Zellmodell wurden drei Studien 

veröffentlicht, die den Einfluss von HSP27 auf die Chemosensitivität auf Gemcitabin mittels 

Proteinexpressionsanalysen untersucht haben. In diesen Studien ließ sich eine vermehrte 

Expression von HSP27 und phosphoryliertem HSP27 in der Gemcitabin-resistenten 

Pankreaskarzinomzelllinie KLM1-R im Vergleich zu der Gemcitabin-sensitiven Kontroll-

zelllinie KLM1 nachweisen [133, 135]. Außerdem zeigte sich durch eine Interferon-γ-

induzierte Verringerung der HSP27-Expression eine erhöhte Zytotoxizität bei der 

Behandlung mit Gemcitabin [134]. Da alle drei Studien allerdings am selben Zellmodell 

durchgeführt wurden, erscheinen zusätzliche Untersuchungen in einem unabhängigen 

Zellmodell zur Validierung dieser Daten nötig. Außerdem lässt sich für die ersten beiden 

Studien sagen, dass sie zwar die Schlussfolgerung zulassen, dass HSP27 bei 

Chemoresistenz vermehrt exprimiert wird, nicht jedoch, dass diese Expression ursächlich für 

die Chemoresistenz der Zellen ist. 

Zusammenfassend konnte in dem hier etablierten in vitro HSP27-Überexpressions-

modell gezeigt werden, dass eine hohe Expression von HSP27 mit einer hohen 

Gemcitabinsensitivität einhergeht. Dem entsprechend fungiert HSP27 in unserem in vitro-

Modell als prädiktiver Marker für die Behandlung mit Gemcitabin. 

4.7 Ausblick  

In Zukunft könnte die Kombination aus Hyperthermie und damit der Induktion von 

HSP27 und eine Gemcitabin-basierte Chemotherapie eine zusätzliche Therapieoption in der 

Behandlung des Pankreaskarzinoms darstellen.  

Durch die in Abschnitt 3.5 dieser Arbeit beschriebene Induzierbarkeit von HSP27 

mittels Hitzeschock könnte es möglich sein, eine Gemcitabin-Sensitivierung von Tumorzellen 

zu bewirken. Eine Erhöhung der HSP27-Expression mittels Hyperthermie könnte somit ein 

besseres Ansprechen der Patienten auf die nachfolgende systemische Behandlung mit 

Gemcitabin bewirken.  

Der Nutzen von Hyperthermie bei der Behandlung des Pankreaskarzinoms wurde von 

zwei Studien bereits untersucht. So zeigten Tschoep et al. in einer Studie, dass regionale 

Hyperthermie in Kombination mit Gemcitabin und Cisplatin sogar auch als Zweitlinien-

therapie in Gemcitabin-refraktären Tumoren eine signifikante zytotoxische Aktivität aufweist 

[254]. Außerdem konnten Ohguri et al. zeigen, dass das progressionsfreie Überleben und 

das Gesamtüberleben bei Patienten mit lokal-fortgeschrittenem Pankreaskarzinom 
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signifikant besser war, wenn eine Hyperthermiebehandlung in Kombination mit einer 

Gemcitabin-basierten Radiochemotherapie durchgeführt wurde [229]. 

Allerdings gibt es noch keine Studien, die den direkten Zusammenhang zwischen 

HSP27-Expression und Gemcitabinsensitivierung, der in dieser Arbeit in vitro untersucht 

wurde, auch in vivo belegen.  

Darüber hinaus belegen unsere Daten, dass eine hohe HSP27-Expression, zumindest 

in unserem in vitro-Modell, mit einer gesteigerten Gemcitabinsensitivität einhergeht. Falls 

diese Daten in anderen Modellsystemen und anderen Zelllinien in zukünftigen 

Untersuchungen reproduzierbar und damit generalisierbar wären, erscheint eine klinische 

Implementation von HSP27 als prädiktivem Marker für das Ansprechen auf eine Gemcitabin-

basierte Therapie im Sinne einer Patientenstratifizierung anhand der HSP27-Expression im 

Pankreaskarzinom vielversprechend. 
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5 Zusammenfassung 

Das Pankreaskarzinom ist die vierthäufigste krebsassoziierte Todesursache in der 

westlichen Welt. Auf Grund der späten Diagnose und der begrenzten Therapiemöglichkeiten 

liegt die Prognose bei Erstdiagnose bei durchschnittlich sechs Monaten. Bisher gibt es für 

das Pankreaskarzinom wenig verlässliche Biomarker. In der klinischen Routine wird vor 

allem CA 19-9 sowohl als diagnostischer als auch als prognostischer Biomarker eingesetzt 

[81, 88, 89]. 

Wir konnten in einem Tissue-Microarray an 86 Patientenproben zeigen, dass eine hohe 

HSP27-Expression eine positive prognostische Bedeutung im Pankreaskarzinom hat. 

Aufbauend darauf sollte nun untersucht werden, ob HSP27 auch als prädiktiver Biomarker 

zur Abschätzung der Wirksamkeit definierter Therapieoptionen vor Behandlungsbeginn 

dienen könnte. Dazu wurde in der vorliegenden Arbeit mittels stabiler Transfektion 

unterschiedlicher HSP27-Konstrukte ein Zellmodell HSP27-überexprimierender Pankreas-

karzinomzellen erzeugt und konsekutiv in Chemo- und Radiosensitivitätsstudien 

charakterisiert.  

Es konnte gezeigt werden, dass eine konstitutive HSP27-Überexpression spezifisch die 

Chemosensitivität gegenüber Gemcitabin, nicht aber gegenüber anderen Chemo-

therapeutika oder Bestrahlung erhöhen kann. Diese Chemosensitivierung war unabhängig 

vom HSP27-Phosphorylierungsstatus. Im Rahmen mechanistischer Zusatzuntersuchungen 

im etablierten HSP27-Modellsystem konnten multiple Mechanismen, insbesondere die 

HSP27-abhängige Integrität des Aktin-Zytoskeletts, als Ursache für die beobachteten Effekte 

ausgeschlossen werden. Die zugrunde liegende Ursache wird derzeit in weiterführenden 

Analysen eingehend untersucht. 

Des Weiteren konnte in mehreren etablierten Pankreaskarzinomzellinien (PL5 und 

PL11) sowie auch in kurzzeitkultivierten Primärkulturen von Pankreaskarzinomzellen gezeigt 

werden, dass Hyperthermiebehandlung die Expression von HSP27 auch in Pankreas-

karzinomzellen induziert und damit diese Zellen auf die Behandlung mit Gemcitabin 

sensibilisieren könnte. Die daraus ableitbare Hypothese, dass eine Kombinationstherapie 

aus HSP27-induzierender Hyperthermiebehandlung und Gemcitabin auch im klinischen 

Setting eine vielversprechende Behandlungsmöglichkeit für Patienten mit Pankreaskarzinom 

darstellen könnte, wird bereits durch mehrere klinische Arbeiten unterstützt.  

Schließlich könnten unsere Daten, falls sie sich in zukünftigen Studien in anderen 

Modellsystemen reproduzieren und damit generalisieren ließen, im klinischen Setting zu 

einer Patientenstratifizierung entsprechend des HSP27-Expressionsstatus führen und 

HSP27 somit als prädiktiven Biomarker für das Ansprechen auf eine Chemotherapie mit 

Gemcitabin definieren. 
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