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Guide to notation xii

Guide to notation

This section provides a brief overview of the notation in the thesis.

The field of real numbers is denoted as R and its n×m dimensional space as Rn×m.
Vectors are denoted by lowercase bold letters and always refer to column vectors:

y =


y1

y2
...
yn

 .

Matrices are denoted by uppercase bold characters. The first index of the elements refers
to the number of the row, the second index to the number of the column:

X =


x11 . . . x1m
...

. . .
...

xn1 . . . xnm

 .

X ∈ Rn×m denotes a matrix with n rows and m columns and entries from the field of
the real numbers. For partitioned matrices the submatrices are denoted by bold uppercase
characters:

X =

(
X11 X12

X21 X22

)
.

The transpose of a vector y or a matrix X is denoted by y′ and X′.
The inverse of a quadratic, invertible matrix X is denoted by X−1.
For a quadratic matrix X with n rows and columns the trace is denoted by

tr(X) =
n∑
i=1

xii.

For a vector x with n elements the n× n diagonal matrix is defined as

diag(x) =


x1 0

. . .

0 xn

 .

The Euclidean norm of a vector is denoted as

||y|| =
√
y′y.
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The angular frequency is denoted as ω. The equivalent periodicity to a frequency ω is given
by the relation

P =
2π

ω
.

Autoregressive processes of order p are denoted as AR(p).
Autoregressive moving average processes of orders p and q are denoted as ARMA(p,q).
Integrated autoregressive moving average processes of orders p and q and integration order
d are denoted as ARIMA(p, d, q).

{yt}Tt=1 denotes a time series with T elements that start in t = 1 and end in T .

L denotes the backshift operator for time series such that

Lkyt = yt−k.



1 Preface 1

1 Preface

A fundamental conception in economic theory is that time series consist of different, inde-
pendent components, predominantly trend and cycle. This conception is not only basis of a
wide range of scientific fields, but it is furthermore important in many practical disciplines
like economic policy, that essentially depends on a precise evaluation of the current status of
trend and cycle. Business cycle research has a long tradition in economics, where its origins
trace back into the second part of the nineteenth century (Mills 2003 p.1). In this regard
Gabsich/Lorenz (1989 p.7) describe business cycle research by the explanation of observed
up- and downturns in macroeconomic variables (for example the GDP, the inflation rate
or the unemployment rate) as well as the analysis of conditions for periodic fluctuations
in a model economy. Although the estimation of trend and cycle has been an important
field in economics for almost 150 years, it is still a controversial topic today. Meanwhile,
the literature knows several different definitions of trend and cycle, however, there is still
no generally accepted definition (Stamfort 2005 p.7). From a very general point of view,
the trend represents the long run development of a time series, while the cycle contains the
economic activity characterized by booms and recessions and is supposed to exhibit a kind
of sine pattern.

The literature provides three basic technical definitions of the cyclical component, which
are the classical cycle, the growth cycle and the growth rate cycle (Anas/Ferrara 2002).
The classical cycle might be the most widespread conception in economics (Anas/Ferrara
2004 p.90). It characterizes downturns by phases of absolute decline of the time series and
upturns by phases of absolute increase. The growth cycle is described as the deviation of
the observed series from the trend component, which is known as the output gap. Here,
in phases of economic expansions the observed series shows a higher growth rate than the
trend, while it is lower during downturns. Given the definition of the growth cycle, the
trend component describes the output for a normal degree of capacity utilization, or under
full employment in a Keynesian context (cf. Okun 1962, Bundesbank 2014 p.14). Thus,
the growth cycle is a major element in business cycle theory, and is often regarded as the
most important indicator of the cyclical state (Flaig/Plötscher 2001 p.221). A crucial issue
of the growth cycle is the estimation of the trend component, which is the central topic of
this thesis. Finally, the growth rate cycle defines upturns by periods, in which the growth
rate of the observed series with regard to the previous period is positive, while downturns
are phases that exhibit a negative growth rate.

In analogy to the definition of trend and cycle, the literature provides several conceptions
about the reasons and duration of business cycles. Based on Schumpeter (1939) the most
relevant theories about business cycles are summarized in Gabisch/Lorenz (1989). The
Kondratieff Cycle describes cyclical movements due to technological progress and structural
change like the beginning of the industrial electrification or the comprehensive building of
railroads. Its duration is supposed to be between 40 and 60 years.
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The Juglar Cycle explains phases of economic expansion and decline by the life cycle of
investment goods and exhibits a duration between five to eleven years. The investigation
of up- and downturns in the economy usually refers to the Juglar Cycle (Gabisch/Lorenz
1989 p.9).
Another widespread type of business cycle is the Kitchin Cycle. This cycle is supposed to be
generated by random exogenous shocks, which temporarily lead to deviations of economic
variables from their equilibrium level. The duration of the Kitchin Cycle is assumed to be
between two and four years.

Gabisch/Lorenz (1989 p.9) note that it is questionable if these cycles really exist. Further-
more, even if the existence of these cycles is accepted, it is difficult to observe the cyclical
components, as they overlap and generate in sum an ambiguous behaivor (Schumpeter
1939). This fact complicates the isolation of certain cyclical components. As an example,
Figure 1.1 plots the three types of business cycles as well as the series resulting from the
sum of the cyclical components.

0 10 20 30 40 50

−
10

−
5

0
5

10

overlap of business cycles

time in years

se
rie

s

Kondratieff Cycle
Juglar Cycle
Kitchin Cycle
Overlap of cycles

Fig. 1.1: Overlap of different business cycles
c.f. Schumpeter (1939) and Stamfort (2005 p.6)

Figure 1.1 illustrates one of the problems that might arise on the isolation of business cycles.
For example, the resulting time series exhibits phases of upswings, when the Kondratieff
Cycle is in a downturn, or a boom, when the Juglar Cycle is already falling.

To estimate the cyclical component and the trend in the sense of the growth cycle, meanwhile
a wide range of instruments is available. One class of methods aims at smoothing the time
series, thereby eliminating cyclical fluctuations and isolating the trend. The methods in
this class can be summarized as univariate time series filters. Moreover, trend and cycle can
be derived by econometric models like production functions, which are employed by most
international organisations (Bundesbank 2014 p.14). To this point production functions
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model the aggregate output by the factors labour and capital as well as the use of technology.
Nevertheless, production functions require the application of univariate filters to estimate
the input factors (Bundesbank 2014 p.15).

This thesis deals with the challenges in the use of univariate time series filters. There is a
great variety of univariate time series filters. In economics probably the Hodrick-Prescott
filter (Hodrick/Prescott 1997) and the Baxter-King filter (Baxter/King 1999) are the most
prevalent members of this class. More recently, also penalized splines (O’Sullivan 1986)
have become popular tools in economics. These filters smooth an observed time series in
order to extract the trend component. As pointed out, there is no general definition of trend
and cycle in economics. Consequently, there is an ongoing discussion about the adequate
degree of smoothing, when the trend is estimated by univariate linear filters.

The focus of this thesis lies on penalized splines as well as the Hodrick-Prescott filter, which
are closely related methods. The Hodrick-Prescott filter derives the trend by the solution
of a minimization problem, while penalized splines estimate the trend as a function of time
f(t). Both are so called penalized methods, as the outcome predominantly depends on
the choice of a single penalization parameter. This parameter regulates the smoothness
of the estimated trend. High values of the penalization parameter induce a smooth trend,
while low values enable the trend to become very flexible. For the Hodrick-Prescott filter as
the probably most widespread instrument for trend extraction in economics there is a vast
amount of literature about the selection of the penalization parameter. Here, basically two
different point of views can be distinguished that arise from structural time series models
and from spectral analysis.

Structural time series models assume that a time series can be decomposed into unobserved
components, where these components are regarded as independent, stochastic processes
(Flaig 2003 p.258). Assuming that the series can be decomposed into a trend and a cycli-
cal component, and that both are defined by an ARIMA-process, leads to the framework
of the Wiener-Kolmogorov filter (Whittle 1983, Bell 1984). In business cycle theory the
trend is usually described as an integrated process, while the cycle exhibits stationary,
autocorrelated patterns. Given this conception of trend and cycle as ARIMA-processes,
the Wiener-Kolmogorov filter yields the minimum mean squared error linear estimation for
known parameters of the processes for trend and cycle. Hodrick/Prescott (1997) show that
the Hodrick-Prescott filter is equal to the setting of the Wiener-Kolmogorov filter for a
second fold integrated random walk as the trend, a white noise process as the cycle and
when the penalization parameter is equal to the inverse signal to noise ratio. In this case,
the inverse signal to noise ratio is defined as the ratio between the variance of the cycle
and the variance of the second differences of the trend. For the US GDP Hodrick/Prescott
(1997) decide to set the penalization parameter to 1600 for quarterly data, which mean-
while has become an ’industry standard’ in economics (Flaig 2012 p.23). Given the value
of 1600, Ravn/Uhlig (2002) recommend a penalization of 6.25 for yearly data and 129600
for monthly data as equivalent values.
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Even though a penalization of 1600 is selected in most applications, this choice is seen
as controversial in the literature. Danthine/Giradin (1989) criticize the suggestion of Ho-
drick/Prescott as dubious and subjective. Their critique is confirmed by the fact, that the
assumptions about trend and cycle are not necessarily given in real time series. Especially
a white noise business cycle appears to be a misspecification for most economic time se-
ries. Moreover, McCallum (2000) and also Flaig (2012) argue that a penalization of 1600
for quarterly data might be too low. For this value McCallum claims that economic crisis
might misleadingly be attributed to the trend component. Flaig shows that for most series
with an autocorrelated cycle a much higher penalization is required, if the Hodrick-Prescott
filter shall yield comparable results to the Wiener-Kolmogorov filter. As the model param-
eters required for the Wiener-Kolmogorov filter are usually unknown, he suggests to set the
penalization so high that the trend and/or its second differences show no cyclical behaivor
anymore. Since Hodrick/Prescott derive the penalization considering only US variables,
the value of 1600 is also often criticized as not data driven (e.g. Schlicht 2005, Kauermann
et al. 2011). To this point Schlicht (2005) shows that the Hodrick-Prescott filter can be
incorporated into a linear mixed model in order to receive an estimation for the penalization
parameter. This model framework, however, is limited to a white noise error term. Since
the error term represents the cyclical component, this is a restrictive assumption for most
economic time series.

In contrast to the Hodrick-Prescott filter, penalized splines allow a data driven derivation
of the penalization for the case of an autocorrelated residual structure, which represents
the business cycle. Thus, the usually autocorrelated pattern of the cycle can be incorpo-
rated into the model. In this regard, generalized cross validation (Hastie/Tibshirani 1990)
and the mixed model approach (e.g. Brumback et al. 1999) appear to be the most rele-
vant methods to estimate the penalization parameter. Generalized cross validation aims
at facing the tradeoff between minimizing the bias as well as the variance of the estima-
tion, which results in minimizing the mean squared error between the true trend process
and the estimation for f(t). However, the selection of the penalization parameter using
generalized cross validation is often not appropriate for the extraction of the trend com-
ponent, since it yields estimations that fit very closely to the observed data and are thus
too wiggly for most economic time series that contain autocorrelated error terms. This is
already explored by Diggle/Hutchinson (1989), Altman (1990) and Hart (1991). To over-
come this drawback, Kohn et al. (1992) and Wang (1998) extend this method to account
for autocorrelated residual structures. Nevertheless, Opsomer et al. (2001), Proietti (2005)
and also Dagum/Giannerini (2006) demonstrate that this technique is very sensitive to the
assumption about the autocorrelation structure. With regard to the mixed model approach
Krivobokova/Kauermann (2007) show that the results are robust even if the assumed au-
tocorrelation deviates from the true (but unknown) one. This is a clear advantage to
generalized cross validation with autocorrelated errors. Moreover, the mixed model frame-
work yields the best linear unbiased predictors, which allows deriving unbiased confidence
intervals for trend and cycle (e.g. Ruppert at al. 2003). More recently, it is demonstrated
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that the Hodrick-Prescott filter is a special case of a penalized spline (Paige, 2010). It
follows that the mixed model framework of the Hodrick-Prescott filter can be extended to
account for autocorrelated error terms. However, the resulting filter is not the same as the
original Hodrick-Prescott filter.

Another possibility to motivate a reasonable selection of the penalization parameter arises
from spectral analysis. Spectral analysis allows transferring a time series into the super-
position of oscillations with different periodicities. Given the conception that trend and
cycle can be distinguished more or less precisely by their spectral properties, it is possible
to define these components by bandwidths of periodicities. In this sense the trend as the
long run development of the series is attributed to high periodicities, while the cyclical
component is characterized by rather medium and low periodicities. A widespread defini-
tion of the cycle traces back to Burns/Mitchell (1946), who define the cycle by fluctuations
between six and 32 quarters. With regard to business cycle theories like the Kondratieff
Cycle, the Juglar Cycle and the Kitchin Cycle, which all describe the cycle by aspects of
duration, it appears to be straightforward to employ spectral analysis for the derivation
of the penalization parameter. The penalization of the filter can be selected such that the
filter extracts mainly the desired bandwidth of periodicities from a time series, while all
other periodicities are eliminated. Following this argumentation Tödter (2002) recommends
values for the penalization parameter of the Hodrick-Prescott filter between 453 and 3417
for quarterly data, which refer to assumed maximal cyclical durations between six and ten
years. The properties of the Hodrick-Prescott filter in the frequency domain are well ex-
amined, amongst others by King/Rebelo (1993), Harvey/Jaeger (1993) or Cogley/Nason
(1995). King/Rebelo and Harvey/Jaeger demonstrate that the Hodrick-Precott filter might
induce phase shifts as well as spurious cycles, when it is employed for the extraction of the
business cycle. Thus, the filtered series might exhibit cyclical behaviour, even if the ob-
served series contains no cyclical component, and the filtering process might furthermore
change the temporal relation to other series. A detailed overview about the characteristics
of the Hodrick-Prescott filter is also provided by Stamfort (2005).

The estimation of trend and cycle still faces unsolved problems. One challenge arises, if
the trend component shall be extracted for series that contain structural breaks. Struc-
tural breaks are problematic, since techniques like the Hodrick-Prescott filter or penalized
splines are not able to react in time to massive changes in the observed series. Thus, such
breaks distort the estimation of trend and cycle. Amongst others, this problem affects the
estimation of trend and cycle for the German economy due to the reunification in 1990.
This can be seen in Figure 2.2 (page 17), which shows a rapid change of the German GDP
from 1990 to 1991. This break does not permit a reliable estimation of trend and cycle for
the whole series. In order to avoid distortions by structural breaks Razzak/Richard (1995)
and also Pollock (2009) suggest to use a time-varying penalization for the Hodrick-Prescott
filter or penalized splines. They propose to set a very low penalization at the time of the
break, which allows a fast adaptation of the estimated trend to the observed data at this
point in time. Moreover, Schlicht (2008) shows how to include dummy variables into the
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Hodrick-Prescott filter to account for breaks. However, these methods are limited to a priori
selected values for the penalization parameter, and do not allow a data driven choice of the
penalization. To overcome the problem of structural breaks when the penalization parame-
ter shall be estimated, this thesis extends the mixed model framework for penalized splines.
In chapter 2 it is demonstrated how a time-varying penalization can be implemented and
estimated within a mixed model to avoid distortions by structural breaks. This model is
afterwards employed to estimate trend and cycle of the German GDP.

An even more general problem of time series filters is the estimation of trend and cycle
at the margins of a series. Completely symmetric filters like the Baxter-King filter cannot
derive estimations for the first and last periods. Partially symmetric filters like penalized
splines are principally able to yield estimations for the margins of the time series. However,
the reliability of the estimated trend and cycle strongly decreases to the margins. This
decreasing reliability is generated by an asymmetric filter weight structure for estimations
at the beginning and the end. For estimations around the middle the filter weights of
a penalized spline are (almost) symmetric, so that the estimations arise from a weighted
average of past present and future observations. At the end of the series, however, the filter
weights become strongly asymmetric due to a lack of future observations. The increasing
asymmetry of the filter weight structure induces a too high variability of the estimations
at the margins, which is called excess variability. This excess variability is a problem, since
researchers and policy makers are often especially interested in trend and cycle of the most
recent periods. An approach to avoid this excess variability is to attach forecasts to the end
of the series. This allows a more symmetric filter weight structure for the estimations at the
margins. Nevertheless, in most cases a high number of forecasts is required to reduce the
excess variability. As the forecasts exhibit failures that increase with a rising forecasting
horizon, this method appears to be of limited practicability. Instead, chapters 4 and 5
of this thesis offer another approach to deal with the problem of the excess variability,
when trend and cycle are derived by frequency domain considerations. They show how to
employ a time-varying penalization to reduce the excess variability. As the variability of
the estimation undesirably increases to the margins, the penalization is allowed to rise to
the ends. It is demonstrated that this method is capable of strongly reducing the excess
variability at the margins, whereas estimations closer to the middle are hardly affected.

The general outline of this thesis is as follows. The mixed model framework of penalized
splines for series with structural breaks is described in the second chapter of this thesis.
The third chapter shows that penalized splines as mixed models can be integrated into the
framework of the Wiener-Kolmogorov filter. In detail it is demonstrated that under certain
settings of the model parameters, the spline within a mixed model is equal to the Wiener-
Kolmogorov filter, when the trend is a second-fold integrated random walk and the cycle
follows a stationary ARMA-process. This model is employed to estimate trend and cycle of
the German GDP as well as the index of the German industrial production, which is a proxy
for the GDP. The basic result is that there is a very smooth and almost linear development
of the German economy on the long run. The reduction of the excess variability by a time-
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varying penalization is explained in chapters 4 and 5. Finally, in chapter 6 penalized splines
are compared to the Baxter-King filter. The Baxter-King filter is a widespread instrument
for the extraction of trend and cycle in economics. It is motivated by frequency domain
aspects and aims at a precise extraction of frequency bands. Moreover, Baxter/King (1999)
postulate features for an ideal time series filter. Beside a precise extraction of frequency
bands the filter should not induce phase shifts and thus not alter the original relation
between the filtered to other series. Additionally, the estimated cycle should be stationary,
even if the observed series is integrated up to order two or contains a quadratic time
trend. The sixth chapter examines in how far penalized splines meet these requirements.
It is shown that penalized splines approximately do not induce phase shifts and render
stationary cycles, where these features depend on the number of observations and the
selected penalization. Furthermore, the ability of penalized splines to extract frequency
bands is compared to the one of the Baxter-King filter. The basic result is, that penalized
splines are superior when used for trend estimation, but not necessarily for the extraction
of the cyclical component.

In summary, this thesis sheds light on penalized splines as instruments for the estimation
of trend and cycle in economics. It is shown how penalized splines can be modified to get
a handle on problems that arise, when trend and cycle are estimated. The thesis examines
their characteristics with regard to features that are often postulated for time series filters
in economics, compares them to predominantly used methods and integrates them into
economic theory.
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2 Trend Estimation with Penalized Splines as Mixed

Models for Series with Structural Breaks1

Summary

Penalized splines are popular tools for trend estimation, as they offer a data driven deriva-
tion of the penalization parameter by the incorporation into a mixed model framework.
However, this approach might fail to estimate trend and cycle, when time series contain
structural breaks. This chapter shows how the model framework can be extended to get a
reasonable estimation for the penalization parameter, even if the data exhibit break points.
In this regard, the variances of the random effects and thus the penalization, is allowed
to vary at the time of the break. Moreover, it is discussed, which parameter settings are
preferable for this purpose. Finally, the technique is employed to estimate trend and cycle
of the German GDP, which contains a structural break due to the reunification in 1990.
The basic outcome is that there is a linear long run development of the German economy.

1This chapter refers to Blöchl (2014c).
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2.1 Introduction

An important field of economic research is the decomposition of a time series into a trend and
a cyclical component. The trend represents the long run development of the data, whereas
the cycle contains the economic activity characterized by phases of upswings and downturns.
On purpose to estimate trend and cycle, several different methods have been developed.
The probably most popular is the Hodrick-Prescott filter, which traces back to Whittaker
(1923), Henderson (1924) and Leser (1961). The Hodrick-Prescott filter (Hodrick/Prescott
1997) is a linear filter, predominantly depending on the choice of a single penalization
parameter λ that controls the smoothness of the estimated trend. The choice of λ has been
an issue of research, especially since there is no general definition of trend or cycle (Stamfort
2005 p.7). To this point Hodrick/Prescott (1997) suggest a value of λ = 1600 for quarterly
data. Ravn/Uhlig (2002) commend values of 6.25 and 129600 for yearly and monthly data
respective.

Nevertheless, Hodrick/Prescott’s choice of the penalization parameter is often criticized as
arbitrary (Danthine/Giradin 1989), because the derivation of this value can be seen as dubi-
ous concerning economic and statistical aspects. The derivation of λ = 1600 arises from the
equivalence of the Hodrick-Prescott filter to the Wiener-Kolmogorov filter (Whittle 1983,
Bell 1984), when the trend is a twofold integrated random walk and the cycle is white noise
as well as subjective assumptions about the variance of trend and cycle (Hodrick/Prescott
1997). These circumstances are clearly not necessarily given in real time series. Schlicht
(2005) shows how the Hodrick-Prescott filter can be written as a linear mixed model in
order to estimate the penalization. However, this approach is limited to a white noise error
term which is restrictive, as business cycles are usually supposed to be autocorrelated.

In contrast to the Hodrick-Prescott filter penalized splines (O’Sullivan 1986) within a mixed
model framework allow estimating the penalization parameter for an autocorrelated residual
structure. Thus, the usually autocorrelated pattern of business cycles can be incorporated
into the model. A further advantage of this method is that the results are robust with regard
to a misspecification of the residual autocorrelation structure as long as the misspecification
is not too large (Krivobokova/Kauermann 2007). This is a positive feature, since the
true autocorrelation structure is unknown in most cases. Paige (2010) shows that the
Hodrick-Prescott filter is a special case of a penalized spline. Consequently, the mixed model
approach with an autocorrelated residual structure is available for this filter. However, the
resulting filter is not equivalent to the original Hodrick-Prescott filter any more.

Even though the mixed model framework of splines helps to overcome the subjective choice
of the penalization, it fails to estimate trend and cycle when series contain structural breaks.
Such breaks can be due to different reasons, for example the contribution of East Germany
to the German GDP from 1991 onwards, or the abrupt rise in the German population after
the reunification. Such break points lead to undesirable distortions when trend and cycle
are estimated with time series filters like the Hodrick-Prescott filter or penalized splines.
Thus, techniques that allow for a consideration of break points are required. Schlicht (2008)
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suggests extending the Hodrick-Prescott filter by dummy variables to account for structural
breaks. Alternatively Razzak/Richard (1995) and also Pollock (2009) propose not to use
single but different penalization parameters within the Hodrick-Prescott filter. In detail,
they propose to change the penalization parameter at the time of the break point to reduce
the generated distortions. Even if this method allows accounting for breaks, it still suffers
from the shortcoming of the disputed choice of the penalization.

In this chapter a related approach to deal with structural breaks is developed. It extends
the mixed model framework for penalized splines to account for breaks by a time-varying
penalization. This allows deriving a data driven estimation of trend and cycle, even if the
time series contains a structural break. The chapter is structured as follows. The first
section shortly summarizes penalized splines with a truncated polynomial basis and how
they can be incorporated into a linear mixed model (Brumback et al. 1999). Afterwards it
is shown how the model framework can be extended by a flexible penalization in order to
account for breaks points. Finally, empirical examples are provided, where the focus lies
on estimating the trend of the German GDP.

2.2 The model framework

2.2.1 tp-splines as linear mixed models

This chapter deals with tp-splines. Here, tp-splines denote splines with a truncated polyno-
mial basis that trace back to Brumback et al. (1999). This kind of spline is advantageous
because of its easy implementation and its obvious connection to linear mixed models. Es-
timating the trend component with a tp-spline means the trend function is modelled in
dependence of time t. To this point the time variable t, t = 1, ..., T is divided into m − 1

intervals by setting m knots 1 = κ1 < κ2 < ... < κm = T . The distance between the knots
generally can vary, but usually equidistant knots are selected. In this case the knots are
defined as (e.g. Fahrmeir et al. 2009 p.301-302)

κj = 1 + (j − 1)h, where h =
T − 1

m− 1
.

After setting the knots, a tp-spline of degree l for a time series {yt}Tt=1 can be written as

yt = f(t) + εt = δ1 + δ2t+ δ3t
2 + ...+ δl+1t

l + δl+2(t−κ2)l+ + ...+ δd(t−κm−1)l+ + εt, (2.1)

with (t− κj)l+ =

(t− κj)l , t ≥ κj
0 , else

,

where εt denotes the error term that represents the business cycle and d = m + l − 1.
Writing the model in matrix notation yields:

y = Zδ + ε, (2.2)
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with Z =


1 1 . . . 1l (1− κ2)l+ . . . (1− κm−1)l+
...

... . . .
...

... . . .
...

1 T . . . T l (T − κ2)l+ . . . (T − κm−1)l+

 .

Here, δ = (δ1, ..., δd)
′, ε = (ε1, ..., εT )′ and y = (y1, ..., yT )′. The truncated polynomials

allow a great flexibility of f(t), as they induce that the coefficient of the highest polynomial
changes at every knot. The degree of the change and thus the flexibility of f(t) is determined
by the values of the coefficients δl+2, ..., δd. Consequently, the flexibility of the trend function
can be regulated by controlling the coefficients of the truncated polynomials. This is done
by the penalized least squares criterion (e.g. Fahrmeir et al. 2009 p.308):

PLS(λ) =

T∑
t=1

[yt − f(t)]2 + λ

d∑
j=l+2

δ2j . (2.3)

The second part of PLS(λ) controls the smoothness of the estimated trend function. It is
weighted by a factor λ that is called the penalization parameter. Increasing the value of λ
induces a smoother trend, as the coefficients of the truncated polynomials become absolutely
smaller. Finally, the solution of (2.3) in matrix notation is given to (e.g. Fahrmeir et al.
2009 p.313)

δ̂ = (Z ′Z + λK)−1Z ′y, where K = diag(0, ..., 0︸ ︷︷ ︸
l+1

, 1, ..., 1︸ ︷︷ ︸
m−2

), (2.4)

so that ŷ = Z(Z ′Z + λK)−1Z ′y. (2.5)

To receive an estimator for λ a penalized tp-spline can be interpreted as a linear mixed model
as already shown by Brumback et al. (1999) (for a detailed discussion of mixed models see
Searle et al. 1992, Vonesh/Chinchilli 1997, Pinheiro/Bates 2000 or McCulloch/Searle 2001).
A tp-spline within a mixed model has the form (e.g. Ruppert et al. 2003 p.108)

y = Xβ +Uγ + ε = Zθ + ε, (2.6)

where X =


1 1 . . . 1l

1 2 . . . 2l

...
...

. . .
...

1 T . . . T l

 and U =


(1− κ2)l+ . . . (1− κm−1)l+

...
. . .

...
(T − κ2)l+ . . . (T − κm−1)l+

 .

Consequently, Z = [X,U ], θ′ = [β′,γ ′], β ∈ R(l+1)×1 and γ ∈ R(m−2)×1. Additionally,
it is assumed that ε ∼ N(0,R) and γ ∼ N(0,G). This means an autocorrelated residual
structure can be allowed. A special feature of the representation of the spline as a mixed
model is its interpretation as a hierarchical model (e.g. Fahrmeir et al. 2009 p.261):

y|γ ∼ N(Xβ +Uγ,R) and the marginal distribution γ ∼ N(0,G).
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Moreover, the spline can be seen as a marginal model:

y = Xβ + ε∗ with ε∗ = Uγ + ε.

The distribution of y is then given by y ∼ N(Xβ,V ), where V = R + UGU ′. Given
the hierarchical model of y the parameter vector θ can be estimated by maximizing the
resulting log-likelihood function with respect to θ (e.g. Ruppert et al. 2003 p.100):

logL(θ) = −1

2
(y −Zθ)′R−1(y −Zθ)− 1

2
γ ′G−1γ. (2.7)

If it is further specified that R = σ2Ω and G = diag(τ2) (e.g. Kauermann et al. 2011), i.e.
the error term is autocorrelated with a constant variance σ2 and the autocorrelation matrix
Ω and the parameters in γ are uncorrelated and have the constant variance τ2, then this
is equivalent to minimizing (e.g. Fahrmeir et al. 2009, Kauermann et al. 2011)

min
θ

(y − Zθ)′Ω−1(y −Zθ) + λγ ′γ, (2.8)

where λ =
σ2

τ2
. As G = diag(τ2), the solution of the maximization of formula (2.7) is

(Robinson 1991, Hayes/Haslett 1999, also Ruppert et al. 2003 p.100)

θ̃ =

[
β̃

γ̃

]
= (Z ′R−1Z +

1

τ2
K)−1Z ′R−1y, (2.9)

where the estimators β̃ and γ̃ are the best, linear unbiased predictors (BLUPs) of β and
γ. A remaining problem is that usually the matrices R and G are unknown and have
to be estimated. To this regard both matrices are written in dependence of a vector of
parameters ϑ, where ϑ depends on the assumed correlation structures of ε and γ. Then
the log-likelihood is derived by the interpretation as a marginal model which is given except
of a constant term to (e.g. Ruppert et al. 2003 p.100-101):

l(β,ϑ) = −1

2

[
log(|V (ϑ)|) + (y −Xβ)′V (ϑ)−1(y −Xβ)

]
. (2.10)

Differentiating and solving with respect to β yields

β̃(ϑ) =
[
X ′V (ϑ)−1X

]−1
X ′V (ϑ)−1y. (2.11)

Reinserting into (2.10) finally yields the profile log-likelihood:

lp(ϑ) = −1

2

(
log |V (ϑ)|+ [y −Xβ̃(ϑ)]′V (ϑ)−1[y −Xβ̃(ϑ)]

)
. (2.12)
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Instead of the profile log-likelihood in most applications the restricted log-likelihood (Searle
et al. 1992) is maximized:

lr(ϑ) = lp(ϑ)− 1

2
log |X ′V (ϑ)−1X|. (2.13)

The restricted log-likelihood is more accurate in small samples, since it takes into account
the degrees of freedom for of the fixed effects (Ruppert et al. 2003 p.101). By maximizing
lr(ϑ) with respect to ϑ one receives ϑ̂ and thus also the estimators R̂ and Ĝ. As also σ2

and τ2 are contained in ϑ, immediately λ̂ =
σ̂2

τ̂2
can be calculated. Furthermore, R̂ and τ̂2

can be inserted into (2.9), which yields the estimators β̂ and γ̂ that are called the estimated
BLUPs or EBLUPs of β and γ.

A further issue is the assumption of the residual autocorrelation structure, as the true
autocorrelation is usually unknown. To this regard Krivobokova/Kauermann (2007) show
that the results are robust, even if the assumed autocorrelation structure is not equal to
the real (but unknown) autocorrelation of the cycle. However, the assumed autocorrelation
may not be too different from the true one. A further advantage of the interpretation of
splines as linear mixed models is that the estimations are almost independent of the number
of selected knots as long as it is not too low. Without the interpretation as a mixed model
the flexibility of a penalized tp-spline increases with the number of knots (e.g. Fahrmeir
et al. 2009 p.301). Kauermann/Opsomer (2011) show that the estimation within a mixed
model framework also yields a higher penalization parameter, when the number of knots is
increased. This increase of the penalization just compensates the higher number of knots.

2.2.2 Time-varying penalization parameters

The coefficient of the highest polynomial of a penalized tp-spline can change at every knot.
To this point the penalization parameter controls the extent of the change and thus the
smoothness of the trend. Low values of λ allow rather large changes of the coefficient for
the highest polynomial, which results in a close fit of the trend to the data. However, if the
trend is supposed to be smooth, but there is an abrupt structural break in the series, then
it is not sufficient to choose one single value for the penalization parameter. To achieve a
smooth trend function a high penalization has to be selected, while the adaptation to the
break point would require a low value of λ. This problem can be solved by selecting different
values for the penalization parameter. The product of λ and the ith diagonal element of
the penalty matrix K yields the penalization of the coefficient δi, where the coefficients
δl+2, ..., δd regulate the change of the trend function at the knots κ2, ..., κm−1. It follows
that if the trend shall be smooth in general, but change abruptly at a certain knot, then
the scalar penalization parameter λ can be replaced by a vector of penalization parameters

λ = (0, ..., 0︸ ︷︷ ︸
l+1

, λ1, ..., λm−2︸ ︷︷ ︸
m−2

)′ ∈ Rd×1. (2.14)
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The coefficients δ1, ..., δl+1 do not need to be penalized so that the first l+ 1 elements of λ
are set to zero. From this setting the penalization can be selected separately at each knot,
where λj−1 controls the penalization at the knot κj .

This concept can be transferred to the mixed model framework. This allows estimating
the penalization even when the series contains structural breaks. So far, it is assumed that
the variance of the random effects and thus the penalization is the same at every point in
time. Now, to estimate varying penalization parameters, the variance of the fixed effects is
allowed to change over time. A time-varying variance is already suggested by Crainiceanu
et al. (2005), who model the variance as a function that smoothly changes over time.
But to avoid distortions by structural breaks, it is not useful to model a smoothly varying
penalization parameter. Instead, the penalization parameter shall change abruptly at the
break points. This can be done as follows:

Assume that there is a structural break at time t∗ so that the time series abruptly changes
from period t∗ − 1 to t∗. If equidistant knots are chosen, there will likely be no knots lying
exactly on the points in time t∗ − 1 and t∗. This should be the case in order to account
exactly for the break in the data and to generate a trend function that adapts accurately
to the break. Consequently, knots should be inserted at t∗ − 1 and t∗ in addition to the
equidistant knots. Moreover, it has to be checked if there is a knot lying between t∗ − 1

and t∗. In this case either this knot has to be removed or the number of knots m has to be
changed. If m equidistant knots are chosen, the number of knots extends to m+ 2 so that
the sequence of knots is now given to κ1, κ2, ..., t∗ − 1, t∗, ...κm. One exception arises for
m = T equidistant knots, as then there is a knot exactly at the points in time t = 1, ..., T .
In this case no additional knots have to be inserted.

To achieve a penalization that differs at the break from the one for the rest of the series,
the variance of the random effects is allowed to change at the knots t∗ − 1 and t∗. Thus,
the variance of the random effects at the break is now given to υ2, where the variance is
still τ2 at all other knots. The covariance matrix of the random effects is then given to

G = diag(τ2, ..., τ2︸ ︷︷ ︸
s−1

, υ2, υ2, τ2, ..., τ2︸ ︷︷ ︸
m−s−1

). (2.15)

s is the number of knots before t∗−1. Since there are two different variances of the random
effects, two penalization parameters are obtained

λ1 =
σ2

τ2
and λ2 =

σ2

υ2
.

λ2 regulates the penalization at the knots t∗ and t∗ − 1, while λ1 determines how the
trend function can change at all other knots. This model allows estimating a penalization
at the time of the break that is different from the penalization for the rest of the series.
Thus, the model is able to account for the structural break. Section 2.3 gives empirical
examples and shows that this model indeed yields a penalization that adapts to the break.
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To simplify the maximization of the restricted log-likelihood the variance υ2 can also be
a priori set to very high values, which equivalently yields a low penalization at the break.
The maximization of the restricted log-likelihood yields the estimators R̂ and Ĝ, where
Ĝ = diag(τ̂2, ..., τ̂2, υ̂2, υ̂2, τ̂2..., τ̂2). Then the matrix

B̂ =

(
0 0

0 Ĝ−1

)

is defined. Afterwards the parameters of the penalized tp-spline with the time-varying
penalization can be estimated according to (2.9) by

θ̂ =

[
β̂

γ̂

]
= (Z ′R̂

−1
Z + B̂)−1Z ′R̂

−1
y. (2.16)

A special characteristic of the time-varying penalization is that the estimated trend can
change its slope abruptly after the break. If a very low penalization is estimated at the
knots t∗ − 1 and t∗, then the trend can change abruptly from period t∗ − 1 to t∗ and from
period t∗ to t∗+1. Thus, the growth of the trend in the period after the break can strongly
differ from the one in the period before the break. This is a positive feature, since structural
breaks might influence the long run development of a time series. Moreover, if it is assumed
that a break heavily changes the structural conditions that underlie a time series, then this
approach can also be extended by assuming a specific variance of the random effects after
the break. Consequently, the general structure of the trend would be allowed to change
after the structural break.

2.2.3 The optimal degree of the tp-spline

One remaining question concerns the optimal degree of the spline. The aim is to construct
a trend function, whose estimated slope can change abruptly at a single point in time. The
best way to achieve this feature is to use a tp-spline of degree one. A tp-spline of degree
l is a continuous function that changes the coefficient of the lth polynomial at each knot.
With regard to a tp-spline of degree one this means the estimated trend is just a line that
changes its slope at every knot. The change of the slope is regulated by the penalization
parameter λ. High values of λ induce that the slope can only change slightly, while low
values of λ allow large changes of the slope. If the penalization adopts very low values at
the break, then the slope of the tp-spline of degree one can change abruptly and adapts
to the break. The same is not true for tp-splines of degrees l ≥ 2. As only the coefficient
of the highest polynomial is able to change at each knot, these splines contain coefficients
of lower polynomials that do not change, which hinders an abrupt change of the trend.
This is shown in Figure 2.1, which displays trend estimations for a series that contains a
break. The trend is estimated with tp-splines of degrees one to four using a time-varying
penalization to account for the break point. The tp-spline of degree one changes its slope
accurately at the break, while all others start rising their slopes too soon and are distorted.
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Fig. 2.1: Trend estimation with splines of different degrees for series with a structural break

2.3 Empirical application

2.3.1 German GDP

In this section the described methods are applied to real time series. The German reuni-
fication offers good examples for structural breaks, since most economic variables change
abruptly at the beginning of 1991. To this regard data of the real German GDP from the
first quarter 1970 to the second quarter 2013 are considered2. The data are adjusted for
season and calendar effects.

1970 1980 1990 2000 2010

60
70

80
90

10
0

11
0

German GDP

time

G
er

m
an

 G
D

P

German GDP

Fig. 2.2: Seasonally adjusted real German GDP from 1970-2013

2The data are from the German Federal Statistical Office.
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The analysis of this series is problematic, since it refers only to West Germany before 1991
and contains both East and West Germany afterwards. The German GDP is displayed
in Figure 2.2. Obviously, there is an abrupt fall from the fourth quarter 1990 to the first
quarter 1991. This is due to a change of the base period used for the calculation as well as
the reunification and may not be interpreted as a decline of the German GDP.

However, this fall causes distortions, when the trend of this series is estimated by a fixed
penalization. This is shown in the left plot of Figure 2.3, which displays the estimated
trend of the GDP. The right plot shows the results, when a flexible penalization is used. In
both cases the trend is estimated with a tp-spline of degree one, where the knots are set
at every point in time. Note that this specification is equal to the Hodrick-Prescott filter
(Proietti/Luati 2007, Paige 2010). If this special spline is estimated within a mixed model
assuming that the error term is autocorrelated, then it can be seen as an extended version
of the HP-filter taking into account an autocorrelated cyclical component. In this case the
error term, i.e. the business cycle is assumed to follow an AR(1)-process.
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Fig. 2.3: Trend estimation for the real German GDP with fixed and flexible penalization

Clearly, the spline with the fixed penalization cannot account for the break and is distorted.
The spline with the flexible penalization is able to adapt to the break and yields a much
more reliable estimation for the trend of the German GDP. In both cases the penalization
parameter λ is estimated infinitely high, which results in the (almost) linear shape of
the trend. Moreover, the flexible penalization at the break allows the estimated trend to
abruptly change its slope after the reunification. This is reasonable, as also East Germany
is included in the GDP after the reunification. The slope of the estimated trend changes
after the reunification. While it is 0.49 per quarter before 1991 it is only 0.33 afterwards.
Thus, this model indicates that the trend growth has declined after the reunification.
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To show the effects of another autocorrelation structure of the error term, the trend of the
GDP is again estimated assuming that the business cycle follows an AR(2)-process. The
results are shown in Figure 2.4:
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Fig. 2.4: Trend estimation for the real German GDP with fixed and flexible penalization

There are only slight differences to the case of the AR(1) error term. There might be a
bit more curvature in the trend of the fixed penalization, while for the flexible penalization
the slope before the reunification is with 0.51 per quarter a bit higher and with 0.32 after
the reunification a bit lower than before. Beside the trend component, also the estimated
business cycle is affected by the structural break. This is shown in Figure 2.5, that plots
the estimated business cycles for fixed and flexible penalization in the case of an AR(1)
error term.
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Fig. 2.5: Estimated cyclical component for fixed and flexible penalization
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With the exception of the years 2009-2013 the estimated business cycles deviate. The
largest difference is around the years 1990 and 1991, as the cycle according to the flexible
penalization excludes the break after the reunification. Moreover, the cyclical component
according to the flexible penalization exhibits far higher values than the one of the fixed
penalization during the years 1970-1978 and 1991-2008, while it is lower during the period
1978-1991. This example shows, that it is possible to derive a data driven estimation for
trend and cycle of the German GDP even for time series that start before 1991, without
having distortions by the reunification. To check for the robustness of the assumed au-
tocorrelation structure, finally the autocorrelation- and partial autocorrelation function of
the business cycle according to the flexible penalization of the estimation with the AR(1)
residual structure are considered:
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Fig. 2.6: Autocorrelation- and partial autocorrelation function for the estimated residuals

For the estimation within the mixed model framework the cyclical component is assumed
to follow an AR(1)-process. The autocorrelation function of the resulting cycle exhibits a
damped behavior, while the partial autocorrelation function is only highly significant for
the first lag and there is almost no significance after the second lag. Thus, the assumption
of a cycle that follows an AR(1)-process seems not to be very far away from the resulting
autocorrelation structure of the estimated cycle.
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2.3.2 German employable population

Another example is the employable population3 of Germany from 1959 to 2010.4 The
data exhibit an abrupt rise from the year 1990 to 1991. This is caused by the German
reunification, which raised the employable population abruptly from about 43 million to
more than 55 million. Again the trend is estimated using a penalized tp-spline of order one
and as many knots as observations, where the error term is assumed to follow an AR(1)-
process. The estimation is done with a fixed and a flexible penalization. The resulting
trend of the fixed penalization is shown on the left side of Figure 2.7. Because of the
abrupt rise, the estimated trend is just a straight line. This is obviously far away from the
real trend, since the data suggest an increasing trend before, and a decreasing trend after
the reunification.
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Fig. 2.7: Estimated trend of the employable population with fixed and flexible penalization

The plot on the right side of Figure 2.7 shows the estimated trend for the flexible penal-
ization, where the penalization is allowed to be flexible at the knots 1990 and 1991. Now,
the estimated trend is not a straight line any more, but it adapts to the break after the
reunification. Moreover, the trend increases before the year 1990 and decreases afterwards,
which is in line with the behavior of the expected trend component now.

2.4 Conclusion

This chapter shortly summarizes penalized splines with a truncated polynomial basis and
how they can be incorporated into a mixed model framework. The interpretation as a
linear mixed model allows a data driven derivation of the penalization parameter and helps

3The employable population is the population of age between 15 and 65.
4The data are from the German Federal Statistical Office.
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to overcome the drawback of the subjective choice of the penalization. This approach en-
ables to use an autocorrelated residual structure, which is reasonable, since the cyclical
component is seldom expected to be white noise in economic time series. Beside the pe-
nalization parameter, penalized splines include more model parameters like the degree of
the basis functions, the number of knots and the residual autocorrelation structure. How-
ever, in most cases these parameters only slightly influence the resulting trend estimation
as shown in Ruppert (2002), Krivobokova/Kauermann (2007), Claeskens et al. (2009) and
Kauermann/Opsomer (2011).

Nevertheless, penalized tp-splines within mixed models can fail to estimate trend and cycle,
when time series exhibit structural breaks. It is shown in section 2.3 that such breaks can
cause distortions in the estimation. In this regard, this chapter extends the mixed model
framework of penalized splines to account for structural breaks. The variance of the random
effects is allowed to change at the break and in the period before. This yields a time-varying
penalization that enables the trend function to adapt to the break, where the penalization
can still be estimated by maximum likelihood. Moreover, it is shown that a tp-spline of
degree one is most suitable for estimating the trend of time series containing structural
breaks. tp-splines of higher degrees are not able to change abruptly enough.

The algorithm described in this chapter is demonstrated on empirical examples. The trend
of the real German GDP from 1970-2013 is estimated, where the data exhibit a break in the
year 1991 due to the reunification. While the setting with the fixed penalization is distorted
downwards, the approach with the flexible penalization can account for the break. Given the
assumptions of an error term that follows an AR(1)-, or an AR(2)-process, the estimation
with the flexible penalization yields an infinitely high penalization parameter and a linear
trend. Moreover, the estimated trend growth rate declines after the reunification.

Thus, based on the ideas of Crainiceanu et al. (2005), who suggest to let the penalization
parameter smoothly change over time, and Razzak/Richard (1995), who use a flexible
penalization within the Hodrick-Prescott filter to account for breaks, this chapter offers a
useful tool to achieve a data driven estimation of trend and cycle for series that exhibit
structural breaks like most German data due to the reunification.
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3 Penalized Splines as Wiener-Kolmogorov Filters

Investigating the long run development of

the German Economy

Summary

For the Hodrick-Prescott filter it is known that it is equal to an optimal Wiener-Kolmogorov
filter, when the trend is a second fold integrated random walk and the cycle is just white
noise. However, the Hodrick-Prescott filter can be extended, when it is written as a penal-
ized spline and transferred into a linear mixed model framework. This chapter shows that
in this case the optimal Wiener-Kolmogorov filter for a second fold integrated random walk
as the trend and a stationary autocorrelated cycle arises. The mixed model framework al-
lows the estimation of the parameters by maximum likelihood. This method is employed to
examine the long run development of the German GDP as well as the industrial production
index. The outcome is that there is a very smooth long run development in the German
economy, which is in line with existing literature like Flaig (2005).
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3.1 Introduction

On purpose to estimate trend and cycle of economic time series, the predominantly used
technique is the Hodrick-Prescott filter (Hodrick/Prescott 1997), which traces back to the
ideas of Whittaker (1923), Henderson (1924) and Leser (1961). The output of this filter
depends on the choice of a penalization parameter λ that controls the smoothness of the
estimated series. There are no general rules how to select a suitable value for λ, especially
as there is no general definition of trend and cycle (Stamfort 2005 p.7). The most com-
monly used value traces back to the suggestion of Hodrick/Prescott (1997), who propose
to use λ = 1600 for quarterly data. Their suggestion is based on the equivalence of the
Hodrick/Prescott filter to an optimal Wiener-Kolmogorov filter (Whittle 1983, Bell 1984)
for a second fold integrated random walk as the trend and a white noise process as the
cyclical component, as well as subjective assumptions about the variance of the growth
rates of trend and cycle. As these assumptions are rather restrictive, the suggestion of Ho-
drick/Prescott is criticized as dubious (Danthine/Giradin 1989). Additionally, the choice
of λ = 1600 might be too low for most economic time series (Mc Callum 2000, Flaig 2012).
Furthermore, the suggestion is criticized as not data driven (Schlicht 2005, Kauermann et
al. 2011).

To this point Schlicht (2005) shows how to write the Hodrick-Prescott filter as a linear
mixed model in order to estimate the penalization parameter. However, this approach is
limited to a white noise residual structure and thus a white noise business cycle, what
is seldom true for economic time series. Nevertheless, this shortcoming can be corrected,
as the Hodrick-Prescott filter belongs to the class of penalized splines (Paige 2010, for
penalized splines see O’Sullivan 1986, Eilers/Marx 1996, Ruppert et al. 2003). Penalized
splines offer the advantage to estimate trend and cycle data driven, where the most common
methods are generalized cross validation (Hastie/Tibshirani 1990, also Ruppert 2002), or the
incorporation into a mixed model framework (e.g. Brumback et al. 1999). Both methods
allow for an autocorrelated residual structure (see Kohn et al. (1992) or Wang (1998) for the
generalized cross validation with correlated errors). But while generalized cross validation
is very sensitive about the specification of the autocorrelation structure (Opsomer et al.
2001, Proietti 2005), the mixed model approach appears to be relatively robust, as long as
the deviation between assumed and true (but unknown) autocorrelation structure is not
too large (Krivobokova/Kauermann 2007). Thus, it immediately follows that the Hodrick-
Prescott filter can also be written as a linear mixed model with an autocorrelated error term.
This chapter shows that in this case the optimal Wiener-Kolmogorov filter for a second fold
integrated random walk as the trend and an autocorrelated cycle arises. The mixed model
framework allows the estimation of the model parameters by maximum likelihood.

A further issue that is summarized in this chapter is the calculation of confidence intervals
for the estimated trend. As penalized splines and the Hodrick-Prescott filter are cases of
the so called ridge regression, they do not yield unbiased estimates (e.g. Ruppert et al.
2003 p.133 et seq.). However, this shortcoming can be avoided when the mixed model
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interpretation of splines and the Hodrick-Prescott filter is employed, which yields a further
advantage of the trend estimation within a mixed model framework.

The first sections of this chapter briefly summarize the Hodrick-Prescott filter and penalized
splines with a truncated polynomial basis (Brumback et al. 1999) and describe the link
between both methods. Moreover, it is explained how penalized splines can be interpreted
as linear mixed models. Furthermore, the basic aspects of the calculation of confidence
intervals for splines are discussed. Afterwards it is shown how these methods fit into the
framework of the Wiener-Kolmogorov filter. Finally, the mixed model framework of the
Hodrick-Prescott filter is used to derive an estimation for the trend component of the
German GDP as well as of the industrial production index.

3.2 Model framework

3.2.1 The Hodrick-Prescott filter

The Hodrick-Prescott filter (henceforth denoted as HP-filter) decomposes a time series
{yt}Tt=1 into two components, i.e. yt = µt + ct. µt is regarded as the trend while ct
represents the rest, usually the sum of cycle and irregular effects. The trend µt is estimated
by solving the following minimization problem:

min
µt

T∑
t=1

(yt − µt)2 + λ
T−1∑
t=2

[(µt+1 − µt)− (µt − µt−1)]2 . (3.1)

The first part of the minimization problem causes a close fit of the estimation to the original
data, while the second part penalizes the volatility of the trend. The parameter λ controls
the smoothness of the trend function. Increasing λ makes the trend component become
less flexible. For λ = 0 the trend is equal to the original series, whereas for λ → ∞ it is
just a straight line (Stamfort 2005 p.25). The solution to the minimization in (3.1) can be
expressed in matrix notation (McElroy 2008, Faig 2012 p.16), which allows a fast and easy
calculation:

µ̂ = (I + λ∆′∆)−1y, (3.2)

where ∆ ∈ R(T−2)×T is a differencing matrix, such that the product of ∆ and y yields the
second differences of y. ∆ is described by formula (3.31) in section 3.3.

Furthermore, for T → ∞ the HP-filter approximatively renders a stationary cyclical com-
ponent, even if the observed series {yt}Tt=1 is integrated up to order four. Disadvantages of
the HP-filer are, that it might induce phase shifts (King/Rebelo 1993) as well as spurious
cycles (Harvey/Jaeger 1993, Cogley/Nason 1995). This means the filter might change the
original temporal relation of the filtered to other series and the component ct might exhibit
cyclical behavior, even if the observed series contains no cycle.
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3.2.2 Penalized tp-splines

This section describes briefly penalized splines. For a detailed discussion see e.g. Fahrmeir
et al. (2009) or Ruppert et al. (2003). Although there are many different types of splines,
it is focused on truncated polynomial splines (Brumback et al. 1999, henceforth denoted
as tp-splines). Even if tp-splines tend to be numerical instable, they are advantageous due
to their relative easy implementation and interpretation as well as their straight link to
linear mixed models and the HP-filter. Estimating the trend component with a tp-spline
means the trend function is modelled in dependence of time t. After dividing the variable t,
t = 1, ..., T , into m− 1 intervals by setting m knots 1 = κ1 < κ2 < ... < κm = T a tp-spline
of degree l for a time series {yt}Tt=1 can be written to:

yt = f(t) + εt = δ1 + δ2t+ ...+ δl+1t
l + δl+2(t− κ2)l+ + ...+ δd(t− κm−1)l+ + εt, (3.3)

with (t− κj)l+ =

(t− κj)l , t ≥ κj
0 , else

,

where εt denotes the error term that represents the business cycle and d = m + l − 1. In
matrix notation the model is defined to:

y = Zδ + ε, (3.4)

with Z =


1 1 . . . 1l (1− κ2)l+ . . . (1− κm−1)l+
...

... . . .
...

... . . .
...

1 T . . . T l (T − κ2)l+ . . . (T − κm−1)l+

 .

Here, δ = (δ1, ..., δd)
′, ε = (ε1, ..., εT )′ and y = (y1, ..., yT )′. tp-splines can be interpreted

as a continuous function of piecewise defined polynomials of degree l. The coefficient of the
highest polynomial changes at every knot because of the truncated polynomials, which al-
lows a high flexibility of f(t). Consequently, the smoothness of the trend can be determined
by controlling the parameters of the truncated polynomials δl+2, ..., δd, since they regulate
the change of the coefficient of the highest polynomial (e.g. Fahrmeir et al. 2009 p.308).
This can be done by estimating the vector of coefficients by minimizing the penalized least
squares criterion.

PLS(λ) =
T∑
t=1

[yt − f(t)]2 + λ
d∑

j=l+2

δ2j . (3.5)

The first part of PLS(λ) aims at a close fit of the trend to the observed series, while the
second part penalizes a too high volatility. This tradeoff is solved by the parameter λ that
puts weight on the second part. Increasing the value for λ reduces the volatility of the
trend. The solution of (3.5) is given to (e.g. Fahrmeir et al. 2009 p.313)

δ̂ = (Z ′Z + λK)−1Z ′y, where K = diag(0, ..., 0︸ ︷︷ ︸
l+1

, 1, ..., 1︸ ︷︷ ︸
m−2

). (3.6)
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so that ŷ = Z(Z ′Z + λK)−1Z ′y. (3.7)

Given formula (3.7) it can be shown that for a certain selection for the parameters m and
l the penalized tp-spline is equal to the HP-filter (Paige 2010). Setting l = 1 and knots
at every point in time t, t = 1, 2, ..., T , implies that the design matrix Z is quadratic and
invertible (c.f. Paige 2010 p.870). In this case it is generally defined as

Z =



1 1 0 0 0 . . . 0 0

1 2 0 0 0 . . . 0 0

1 3 1 0 0 . . . 0 0

1 4 2 1 0 . . . 0 0

1 5 3 2 1 . . . 0 0
...

...
...

...
. . . . . .

...
...

1 T − 1 T − 3 T − 4 T − 5 . . . 1 0

1 T T − 2 T − 3 T − 4 . . . 2 1


∈ RT×T .

Given this special structure of Z, formula (3.7) can also be expressed as (a derivation is
provided in appendix 3.A):

ŷ = (I + λZ ′−1KZ−1)−1y. (3.8)

Taking into account that ŷ = µ̂ and that Z ′−1KZ−1 = ∆′∆ (a proof is given in appendix
3.B), it becomes obvious that the HP-filter is identical to a penalized tp-spline of order one
and with knots at every observed point in time t = 1, ..., T . Note that this formulation is also
equivalent to the so called local linear model (Proietti 2007). The equivalence between tp-
splines and the HP-filter allows a useful interpretation of the HP-filter. The trend generated
by the HP-filter is a continuous connection of lines that can change their slope at the points
in time t = 2, 3, .., T − 1. The penalization parameter λ controls to what extend the slope
of the lines can change at these points in time. Choosing high values for λ means the slope
can change only slightly, which results in a smooth estimated trend. Furthermore, the
equivalence of the HP-filter and a penalized spline implies that the mixed model framework
with an autocorrelated residual structure can also be applied to the HP-filter to derive a
data driven estimation for its penalization parameter.

3.2.3 Splines within a mixed model framework

Penalized tp-splines can be interpreted as a linear mixed model in order to derive a data
driven estimation of λ (for a detailed discussion of mixed models see Searle et al. 1992,
Vonesh/Chinchilli 1997, Pinheiro/Bates 2000 or McCulloch/Searle 2001). A tp-spline
within a mixed model framework is defined to (e.g. Ruppert et al. 2003 p.108)

y = Xβ +Uγ + ε = Zθ + ε, (3.9)
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where X =


1 1 . . . 1

1 2 . . . 2l

...
...

. . .
...

1 T . . . T l

 and U =


(1− κ2)l+ . . . (1− κm−1)l+

...
. . .

...
(T − κ2)l+ . . . (T − κm−1)l+

 .

Consequently, Z = [X,U ], θ′ = [β′,γ ′], β ∈ R(l+1)×1 and γ ∈ R(m−2)×1. Moreover,
it is assumed that ε ∼ N(0,R) and γ ∼ N(0,G), so that in general an autocorrelated
residual structure can be allowed. When the tp-spline is written as a mixed model, it can
equivalently be interpreted as a hierarchical model (e.g. Fahrmeir et al. 2009 p.261):

y|γ ∼ N(Xβ +Uγ,R) and the marginal distribution γ ∼ N(0,G).

Furthermore, the spline can be described by a marginal model:

y = Xβ + ε∗ with ε∗ = Uγ + ε.

The distribution of y is then defined by y ∼ N(Xβ,V ), where V = R + UGU ′. Fur-
thermore, it is assumed that R = σ2Ω and G = diag(τ2) (e.g. Kauermann et al. 2011),
i.e. the error term is autocorrelated with a constant variance σ2 and the autocorrelation
matrix Ω and the parameters γ are uncorrelated and have the constant variance τ2. Given
the hierarchical model of y the parameter vector θ can be estimated by maximizing the
resulting log-likelihood function with respect to θ (e.g. Ruppert et al. 2003 p.100):

logL(θ) = −1

2
(y −Zθ)′R−1(y −Zθ)− 1

2
γ ′G−1γ. (3.10)

This is equivalent to minimizing (e.g. Fahrmeir et al. 2009, Kauermann et al. 2011)

min
θ

(θ) = (y − Zθ)′Ω−1(y −Zθ) + λγ ′γ, (3.11)

where λ =
σ2

τ2
.

AsG = diag(τ2), the solution of the maximization of formula (3.10) is (e.g. Robinson 1991,
Hayes/Haslett 1999, also Ruppert et al. 2003 p.100)

θ̃ =

[
β̃

γ̃

]
= (Z ′R−1Z +

1

τ2
K)−1Z ′R−1y, (3.12)

where the estimators β̃ and γ̃ are the best linear unbiased predictors (BLUPs) of β and γ.
BLUP means for any vectors s,v ∈ RT×1 the predictors β̃ and γ̃ minimize (e.g. Ruppert
et al. 2003 p.99):
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E
[
(s′Xβ̃ + v′Uγ̃)− (s′Xβ + v′Uγ)

]2
subject to

E
[
s′Xβ̃ + v′Uγ̃

]
= E

[
s′Xβ + v′Uγ

]
.

In most situations the covariance matrices R andG are unknown and have to be estimated.
To this regard both matrices are written in dependence of a vector of parameters ϑ, where
ϑ depends on the assumed autocorrelation structure of ε. From this the log-likelihood is
derived by the interpretation as a marginal model. It is given except of a constant term to
(e.g. Ruppert et al. 2003 p.100-101):

l(β,ϑ) = −1

2

[
log(|V (ϑ)|) + (y −Xβ)′V (ϑ)−1(y −Xβ)

]
. (3.13)

Differentiating and solving with respect to β yields

β̃(ϑ) = [X ′V (ϑ)−1X]−1X ′V (ϑ)−1y. (3.14)

Reinserting into (3.13) yields the profile log-likelihood:

lp(ϑ) = −1

2

(
log |V (ϑ)|+ [y −Xβ̃(ϑ)]′V (ϑ)−1[y −Xβ̃(ϑ)]

)
. (3.15)

Instead of the profile log-likelihood in most applications the restricted log-likelihood (e.g.
Searle et al. 1992) is maximized:

lr(ϑ) = lp(ϑ)− 1

2
log |X ′V (ϑ)−1X|. (3.16)

The restricted log-likelihood is more accurate in small samples, because it takes into account
the degrees of freedom for of the fixed effects (Ruppert et al. 2003 p.101). The maximization
of lr(ϑ) with respect to ϑ yields ϑ̂ and thus the estimators R̂ and Ĝ. Because σ2 and τ2

are contained in ϑ also λ̂ =
σ̂2

τ̂2
can be received. The estimators for the autocovariance

matrix R̂ and τ̂2 can be inserted into (3.12) which yields the estimators β̂ and γ̂ that are
called the estimated BLUPs or EBLUPs of β and γ.

An advantage of the estimation of tp-splines within the mixed model framework is that
the results hardly depend on the number of knots. In general the flexibility of the spline
increases when a higher number of knots is selected (e.g. Fahrmeir et al. 2009 p.301).
However, Kauermann/Opsomer (2011) demonstrate that the mixed model framework com-
pensates the higher number of knots by an increase of the penalization. As a consequence,
the number of knots has no significant effect on the results, as long as it is not too low.
Furthermore, Krivobokova/Kauermann (2007) demonstrate that the results are robust with
regard to a misspecification of the residual correlation structure. However, the assumed cor-
relation structure may not be too different from the true (but unknown) one.
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3.2.4 Confidence intervals

The mixed model framework for splines offers a further advantage, when confidence in-
tervals are calculated. To this point, first of all it is explained why it is not useful to
derive confidence intervals from the normal spline model of section 3.2.2. For a vector
t = (1, 2, ..., T )′ the estimated tp-spline can be expressed as ŷ = f̂(t) = Hy, where
H = Z(Z ′Z + λK)−1Z ′. Without loss of generality it is assumed that ε ∼ N(0, σ2I) so
that Cov(Hy) = σ2HH ′. Let ht ∈ RT×1 denote a vector containing the tth row of H,
then it follows that f̂(t) = ht

′y and f̂(t) ∼ N
(
E
[
f̂(t)

]
, σ2||ht||2

)
. From this a variable

with a standard normal distribution can be derived by (e.g. Ruppert at al. 2009 p.136)

f̂(t)− E
[
f̂(t)

]
σ||ht||

∼ N(0, 1). (3.17)

For large datasets σ can be replaced by its estimation σ̂. The confidence intervals are
calculated by

f̂(t)± z
(

1− α

2

)
σ̂||ht||. (3.18)

z
(
1− α

2

)
is the corresponding quantile of the standard normal distribution. However, this

confidence interval refers to E[f̂(t)] and not to f(t) (e.g. Ruppert et al. 2003 p.136). f̂(t)

is estimated by penalized least squares, which is a special case of a ridge regression, that
is biased (e.g. Fahrmeir et al. 2009 p.172). This can be demonstrated easily. While the
ordinary least squares estimator of δ is unbiased, the penalized least squares estimator is
biased because

E(δ̂) = E
[
(Z ′Z + λK)−1Z ′y

]
= (Z ′Z + λK)−1Z ′E(y) = (Z ′Z + λK)−1Z ′Zδ 6= δ.

Thus, also the confidence interval in (3.18) is biased. However, this bias can be corrected by
employing the mixed model interpretation of the penalized spline. As seen in section 3.2.3,
the estimators derived from the maximum likelihood estimation are unbiased, so that it is
better to construct confidence intervals from the mixed model framework. In the mixed
model framework the parameter vector β is fixed, while γ is random. To get information
about the precision of the parameter estimators one calculates the covariance

Cov(θ̃ − θ) = Cov

[(
β̃ − β
γ̃ − γ

)]
= Cov

[(
β̃

γ̃ − γ

)]
. (3.19)

From formula (3.12) for the BLUPs of β and γ (3.19) can be calculated by (e.g. Ruppert
et al. 2003 p.103)

Cov

[(
β̃

γ̃ − γ

)]
= (Z ′R−1Z +

1

τ2
K)−1. (3.20)

This relation can be motivated by the posteriori distribution of the Bayesian mixed model
(see for example Fahrmeir et al. (2009) for a more detailed discussion). Inserting the
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estimated covariance matrices R̂ and Ĝ yields the estimated covariance

Cov

[(
β̂

γ̂ − γ

)]
= (Z ′R̂

−1
Z +

1

τ̂2
K)−1. (3.21)

Finally, to get inference about the precision of f̂(t) one calculates

Cov(Zθ̂ −Zθ) = Z(Z ′R̂
−1
Z +

1

τ̂2
K)−1Z ′. (3.22)

From (3.22) the standard deviation of f̂(t) − f(t) can finally be written as (e.g. Ruppert
et al. 2003 p.140)

ŝt.dev
[
f̂(t)− f(t)

]
= σ̂

[
zt
′
(
Z ′Ω̂Z +

σ̂2

τ̂2
K

)−1
zt

] 1
2

. (3.23)

Ω̂ is the estimated autocorrelation matrix of ε and zt ∈ Rd×1 is a vector containing the tth

row of Z. It follows that
f̂(t)− f(t)

ŝt.dev
[

ˆf(t)− f(t)
] ∼ N(0, 1), (3.24)

so that for a sufficient large sample size, the unbiased 100(1− α)% confidence interval can
be calculated as

f̂(t)± z
(

1− α

2

)
σ̂ŝt.dev

[
f̂(t)− f(t)

]
. (3.25)

3.3 Penalized splines and the Wiener-Kolmogorov filter

It is known that the HP-filter can be integrated into the framework of theWiener-Kolmogorov
filter (Hodrick/Prescott 1997, for the Wiener-Kolmogorov filter see Whittle 1983, Bell 1984
also Harvey 1989 and Kaiser/Maravall 2001). As penalized splines are equal to the HP-
filter under certain values for the parameters (Proietti/Luati 2007, Paige 2010) there is
also a link between penalized splines and the Wiener-Kolmogorov filter. To understand the
relationship between these filters, it is useful to derive their connection from a very general
standpoint. Assume that a time series {yt}Tt=1 can be written as the sum of a trend µt and
a cyclical component ct

yt = µt + ct. (3.26)

This can equivalently be expressed in matrix notation:

y = µ+ c, (3.27)

where y = (y1, ..., yT )′, µ = (µ1, ..., µT )′ and c = (c1, ..., cT )′. If trend and cycle are defined
as ARIMA(p,d,q) models and L denotes the backshift operator such that Lkyt = yt−k, then
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the components can be expressed as:

Φµ(L)µt = Θµ(L)εt and Φc(L)ct = Θc(L)ηt, (3.28)

where Φµ(L) = 1− ϕµ,1L1 − ...− ϕµ,pLp,

and Θµ(L) = 1 + θµ,1L
1 + ...+ θµ,qL

q.

Φc(L) and Θc(L) are defined analogously. Both εt and ηt are independent white noise
variables. If µt and ct are integrated of (arbitrary) order n and r, Φµ(L) and Φc(L) have
characteristic polynomials with n and r roots on the unit circle.
Consequently, (1 − L)nµt = ut and (1 − L)rct = vt are stationary and the vectors u =

(un+1, ..., uT )′ and v = (vr+1, ..., vT )′ have the autocovariance matrices Σu and Σv. By
introducing differencing matrices ∆µ and ∆c of dimension (T − n) × T and (T − r) × T ,
where as an example the product of ∆µ and µ yields the nth first differences of µ, this can
be expressed as:

∆µµ = u and ∆cc = v.

On purpose to estimate the trend component µ McElroy (2008) shows that the minimum
mean squared error linear estimate of µ is given by:

µ̂ = (∆c
′Σv

−1∆c + ∆µ
′Σu

−1∆µ)−1∆c
′Σv

−1∆cy. (3.29)

This is the matrix formulation of the Wiener-Kolmogorov filter. The autocovariance ma-
trices of u and v can equivalently be written as Σu = Γuσ

2
u and Σv = Γvσ

2
v , where Γu

and Γv are the autocorrelation matrices of u and v, while σ2u and σ2v are the respective
variances. Consequently, µ̂ can also be expressed by:

µ̂ = (∆c
′Γv
−1∆c +

σ2v
σ2u

∆µ
′Γu
−1∆µ)−1∆c

′Γv
−1∆cy. (3.30)

Now, consider the special case, where the trend is a second order integrated random walk
and the cyclical component is a white noise process. Then the model above simplifies to:

(1− L)2µt = εt,

ct = ηt.

This implies that Γu = Γv = I as well as ∆c = I. The differencing matrix ∆µ ∈ R(T−2)×T

is defined as:

∆µ =


1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1

 . (3.31)
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Thus, the minimum mean squared error estimation of the trend component reduces to
(Flaig 2012 p.16):

µ̂ = (I +
σ2v
σ2u

∆′µ∆µ)−1y, (3.32)

what is the matrix formula for the Hodrick-Prescott filter, when λ is equal to the inverse
signal to noise ratio σ2

v
σ2
u
. This makes obvious that the HP-filter is minimizing the mean

squared error, when the trend is a two-fold integrated random walk and the cycle is just
white noise. From this Hodrick/Prescott (1997) suggest to set σv = 5 and σu = 1/8 for
quarterly data, which results in a penalization of λ = 1600, that has meanwhile become an
"industry standard" in economics (Flaig 2012 p.23).

When the HP-filter is written as a penalized spline and incorporated into a mixed model,
then usually an autocorrelated residual structure R is assumed. It can be shown that the
formulation of the HP-filter as a mixed model according to (3.12) is a special case of the
Wiener-Kolmogorov filter in (3.29) or (3.30). Assume that the trend component is just
like before a second order integrated random walk, but the cycle is now an autocorrelated
stationary process with the autocorrelation structure Γv and variance σ2v . Then it follows
that Γu = I and ∆c = I, while ∆µ is still defined like in (3.31). For these assumptions
the Wiener-Kolmogorov filter is defined as

µ̂ = (Γv
−1 +

σ2v
σ2u

∆µ
′∆µ)−1Γv

−1y. (3.33)

When the setting of the tp-spline is such that it is equal to the HP-filter, i.e. T equidistant
knots are chosen and l = 1 is selected, then Z is generally defined like in section 3.2.2.
Using this, the mixed model representation of the HP-filter from (3.12) can be written as
(the derivation is equivalent to appendix 3.A).

ŷ = Z(Z ′R−1Z +
1

τ2
K)−1Z ′R−1y = Z(Z′Ω−1Z +

σ2

τ2
K)−1Z ′Ω−1y =

= (Ω−1 +
σ2

τ2
Z ′−1KZ−1)−1Ω−1y. (3.34)

Noting that Z ′−1KZ−1 = ∆µ
′∆µ then it immediately follows that

ŷ = (Ω−1 +
σ2

τ2
∆µ

′∆µ)−1Ω−1y. (3.35)

As Ω = Γv and λ =
σ2

τ2
=
σ2v
σ2u

it becomes obvious that the HP-filter within the mixed model

framework is equal to the Wiener-Kolmogorov filter when the trend is a two-fold integrated
random walk and the cycle is a stationary autocorrelated process. It follows for this setting
that the Wiener-Kolmogorov filter can be estimated by maximum likelihood estimation.
Moreover, in this setting a penalized tp-spline within a mixed model is the mean squared
error minimizing filter for T equidistant knots and l = 1.
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3.4 Empirical application

In this section the HP-filter is used to estimate the trend component of the quarterly
real GDP of Germany, which is adjusted for seasonal and calendar effects. Moreover, the
long run development of the German industrial production index is investigated. The
HP-filter is written as a penalized tp-spline within a mixed model framework in order to
derive an estimator for the penalization parameter λ. Although this setting is special, the
results can be seen as general for penalized splines and the mixed model interpretation.
Kauermann/Opsomer (2011) show that the results are almost independent of the number
of knots m, as long as m is not too low. Furthermore, Claeskens et al. (2009) show that the
estimations are hardly influenced by the selected spline basis, which is also demonstrated
by Ruppert (2002).

An important question concerns the assumed autocorrelation structure of the error term.
According to Krivobokova/Kauermann (2007) the results of the maximum likelihood es-
timation are robust to a misspecification of the autocorrelation structure, as long as the
assumed autocorrelation doesn’t deviate too much from the true autocorrelation structure.
However, it is worth to consider that different additive time series models require different
assumptions about the error term. If it is assumed that the series can be decomposed
simply in

y = trend + cycle,

then it might be sufficient to choose an AR(p)-process for the residual structure. Here, the
trend is represented by the estimated spline and the cycle by an AR(p)-process. However,
especially the industrial production index contains short term fluctuations, i.e. a noise
component (Flaig 2005 p.419). Thus, in addition the (more likely) decomposition

y = trend + cycle + noise,

should be considered. In this case it is not sufficient to choose an AR(p)-process for the
residual correlation structure. This is because an AR(p)-process cannot capture the noise
in the residual component. For such a decomposition of the time series an ARMA(p,q)-
process has to be used for the autocorrelation structure, because it allows including the
irregular noise in the error term. If the cycle is assumed to follow an AR(p)-process and
the noise is expressed by a white noise variable, then the sum of cycle and noise is given
by an ARMA(p,p)-process (e.g. Schlittgen/Streitenberg 2001 p.133). Consequently, an
ARMA(p,p)-process is necessary in this situation. To check for both cases of time series
models, the estimation is done for AR(1) and AR(4) as well as ARMA(1,1) and ARMA(4,4)
residual structures.

As a further robustness check the trend of the real German industrial production5 is es-
timated. This offers a higher robustness of the estimation, as the index of the industrial

5The data of the GDP and the industrial production are from the German Federal Statistical Office.
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production is published monthly, so that compared to quarterly data a three times larger
data basis is available. Although the industrial production covers only about one fourth of
the German GDP (Flaig 2005 p.419), it is a good proxy for the economic activity, since it
is highly correlated with the GDP and a main factor that drives the economic development
(Langmantel 1999, Abberger/Nierhaus 2008).

First of all the trend estimation for the German GDP is considered.67 The results are
shown in Figure 3.1.
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Fig. 3.1: Estimated trend of the real German GDP for different residual autocorrelation
structures

Independent of the selected autocorrelation structure for the error term an infinitely high
value for λ is estimated. This implies a linear trend in every of the four situations. Neverthe-
less, the different assumptions about the residual autocorrelation structure yield different
estimations for σ2, which results in varying confidence intervals. The estimations are almost
similar. There are only very slight differences with regard to the intercept and the slope.
For the case of the AR(1) error term the slope is 1.25 per year, while it is 1.28 per year
in the case of the ARMA(4,4) error term. Furthermore, the confidence intervals become
smaller for higher autocorrelation structures of the error term, since the estimated variance
σ̂2 strongly decreases.

Figure 3.2 shows the estimated business cycle resulting from the ARMA(4,4) error term. It
is smoothed with a HP-filter in the mixed model framework, where a white noise structure
for the error term is assumed. To this point a penalization parameter of λ̂ = 0.31 is
estimated.

6For the optimization the R routine ’nlminb’ was used.
7The starting values for the optimization were selected according to appendix 3.C.
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Fig. 3.2: Estimated cyclical component of the real German GDP

To check for the robustness of the assumptions about the error term, the autocorrelation
and partial autocorrelation function of the estimated residuals of the estimation with the
ARMA(4,4) autocorrelation structure are calculated. These are shown in Figure 3.3:
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Fig. 3.3: Empirical autocorrelation- and partial autocorrelation functions

While the autocorrelation function is damped and slowly converges to zero, the partial auto-
correlation function is only significant to the first, second and fourth lag. This implies that
the assumed ARMA(4,4) autocorrelation structure seems to be no massive misspecification.
However, even if an AR(2)-process would be used for the estimation, the shape of the trend
would deviate only slightly. Just the confidence intervals would differ from the ARMA(4,4)
case, because of different estimated parameters for the autocorrelation structure.

The results of the estimation for the industrial production index are shown in Figure 3.4.
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Fig. 3.4: Trend of the German industrial production index for different residual autocorre-
lation structures

Also for the industrial production index the penalization is estimated (almost) infinitely
high, which results in the linear shape of the trend functions. Figure 3.4 shows that there
are differences between the trend estimations, although they are rather small. While the
trend is linear for all residual autocorrelation structures there are differences in the intercept
and the slope, especially when the results of the AR(1) and ARMA(1,1) error terms are
compared to those of the AR(4) and ARMA(4,4) error terms. In detail the slope for the
AR(1) case is 0.975 per year, whereas it is 1.025 in the case of an ARMA(4,4) error term.
To check for the robustness of the assumed autocorrelation structure Figure 3.5 displays
the empirical autocorrelation- and partial autocorrelation functions for the residuals of the
AR(1) and ARMA(4,4) estimation:
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Fig. 3.5: Empirical autocorrelation and partial autocorrelation functions
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The empirical autocorrelation and partial autocorrelation functions are almost equal for
both cases. The empirical autocorrelation is damped and converges slowly to zero. The
empirical partial autocorrelation adopts higher and clearly significant values for the first
and fourth lag. Thus, higher autocorrelation structures rather than an AR(1)-process might
be adequate, so that the results of the AR(4) or ARMA(4,4) cases appear to be preferable.

The analysis of the trend of the German economy by the HP-filter within a mixed model
framework suggests that there is a very smooth and constant development on the long run.
The estimation for the real GDP turns out to be very robust with regard to the assumed
autocorrelation structure of the error term. In every case an infinitely high penalization is
estimated, which is far above the commonly used penalization of λ = 1600 for quarterly
data. The estimation yields a linear trend function with a slope of 1.28 per year. More-
over, the empirical autocorrelation and partial autocorrelation functions indicate, that the
assumed autocorrelation structure for the error term is no massive misspecification.
The trend estimation of the real industrial production as an alternative measure for the
economic development shows a very similar picture. For every assumed residual autocorre-
lation structure a linear trend is estimated. These results are quite similar to those of Flaig
(2005), who uses unobserved components models to examine the long run development of
the German industrial production index, where the trend from 1991 to 2005 also shows a
very smooth shape.

3.5 Conclusion

This chapter reviews basic theory about penalized splines with a truncated polynomial basis
as well as their link to linear mixed models. This link is advantageous, as it can be employed
to derive an estimation for the penalization parameter λ. Moreover, it is focused on the
calculation of confidence intervals, which is an interesting topic, since penalized splines
as special cases of the ridge regression are biased, which is a drawback when confidence
intervals are derived. To this regard the mixed model interpretation of penalized splines
offers a further advantage for calculating confidence intervals, as they yield the best linear
unbiased predictors.

Afterwards it is focused on the link between the HP-filter, penalized tp-splines and the
Wiener-Kolmogorov filter. As the HP-filter is equal to a penalized tp-spline under cer-
tain settings of the parameters it can be incorporated into a mixed model framework. It
is shown that for an autocorrelated error term the resulting model is equivalent to the
Wiener-Kolmogorov filter where the trend is a second fold integrated random walk and the
cycle follows a stationary autocorrelated process. The estimation within the mixed model
framework by maximum likelihood furthermore offers the advantage that it yields unbiased
estimators and thus also correct confidence intervals.

The possibility to incorporate the Hodrick-Prescott filter into a mixed model framework is
used to estimate the trend component of the real German GDP. As a robustness check, also
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the trend component of the industrial production is estimated, as it is highly correlated
with the real GDP and offers a wider data basis, because it is published monthly. Although
studies indicate that the exact assumption about the autocorrelation structure of the er-
ror term is of subordinate importance as long as the assumed structure doesn’t deviate
too strong from the true one, the estimation is done for different residual autocorrelation
structures. It turns out that the results are hardly affected by the assumed autocorrelation.
In every case a very high penalization is estimated inducing for both series a linear trend.
Moreover, the empirical residual autocorrelation structures do not deviate strongly from
the assumed one, so that there is unlikely a massive misspecification of the error term.

As a result this chapter employs the Hodrick-Prescott filter within a mixed model framework
in order to derive the trend component of the real German GDP. This analysis indicates
that there is a very smooth a linear long run development of the German economy which
is in line with existing literature like Flaig (2005).
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Appendix

3.A Derivation of formula 3.8

First, recall that for two invertible matrices A and B (e.g. Fahrmeir et al. 2009 p.450)

(AB)−1 = B−1A−1.

This is used to derive

Z(Z ′Z + λK)−1Z ′y =
[
(Z ′Z + λK)Z−1

]−1
Z ′y =

= (Z ′ZZ−1 + λKZ−1)−1Z ′y = (Z ′ + λKZ−1)−1Z ′y =

=
[
Z ′−1(Z ′ + λKZ−1)

]−1
y = (Z ′−1Z ′ + λZ ′−1KZ−1)−1y =

= (I + λZ ′−1KZ−1)−1y.

3.B Proof that (Z ′)−1KZ−1 = ∆µ
′∆µ

Given the special form of Z for l = 1 and T equidistant knots, the inverse of Z is in general
given to (see also Paige 2010 p.870):

Z−1 =



2 −1 0 0 0 . . . 0 0 0 0

−1 1 0 0 0 . . . 0 0 0 0

1 −2 1 0 0 . . . 0 0 0 0

0 1 −2 1 0 . . . 0 0 0 0

0 0 1 −2 1 . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 . . . 1 −2 1 0

0 0 0 0 0 . . . 0 1 −2 1


.

Then the product of the transpose of Z−1 and K yields:

(Z−1)′K =



0 0 1 0 0 0 . . . 0 0 0

0 0 −2 1 0 0 . . . 0 0 0

0 0 1 −2 1 0 . . . 0 0 0

0 0 0 1 −2 1 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 0 . . . 1 −2 1

0 0 0 0 0 0 . . . 0 1 −2

0 0 0 0 0 0 . . . 0 0 1


,
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where the product of the two matrices has the dimension T × T . This product can be
decomposed in two matrices E1 = 0 ∈ RT×2 and E2 ∈ RT×T−2 so that (Z−1)′K =

(E1,E2). Having a closer look on E2 it becomes clear that E2 = ∆µ
′. Consequently,

the product (Z−1)′K = (0,∆µ
′). Moreover, Z−1 is partitioned into (Z1

′,Z2
′)
′, with

Z1 ∈ R2×T and Z2 ∈ RT−2×T . Taking into consideration that Z2 = ∆µ it can finally be
written:

(Z−1)′KZ−1 =
(
0,∆′µ

)(Z1

∆µ

)
= 0Z1 + ∆µ

′∆µ = ∆µ
′∆µ

3.C Selection of the starting values for the optimization of the restricted log-likelihood

As mentioned in section 3.4 for the optimization of the restricted log-likelihood function
the R routine ’nlminb’ is used, which requires an initial set of starting values of the model
parameters. Thus, it shall be described shortly, how starting values were found. To this
point the decomposition

yt = µt + ct

is chosen, where yt is the original time series, µt is the trend and ct is the cycle. In a first
step, a Hodrick-Prescott filter with penalization λ is applied, in order to get an initial guess
of trend and cycle. Thus:

µ̂t = HPλ(yt),

ĉt = yt − µ̂t.

The cycle is supposed to follow an (stationary) ARMA(p,q)-process. Consequently, the
starting values for the parameters of the residual correlation structure are gained by esti-
mating ct as the selected ARMA(p,q)-process. According to the theory of the ideal Wiener-
Kolmogorov filter, the trend is supposed to be an integrated process of order n.

(1− L)nµt = ηt,

where ηt is stationary. As the penalization parameter of the ideal Wiener-Kolmogorov filter
(Whittle 1983, Bell 1984, Kaiser/Maravall 2001) is given by the ratio of the variances σ2

c
σ2
η
,

the starting value for the variance of the error term is simply the empirical variance of ĉt.
To get a starting value for the variance of the random effects, the first differences of µ̂t are
calculated so many times, until they render a stationary process, which yields η̂t. Then
the empirical variance of η̂t is used as starting value. Using this procedure, different sets
of starting values can be obtained by selecting different values for the penalization of the
Hodrick-Prescott filter in the first step.
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4 Penalized Splines as Frequency Selective Filters

Reducing the Excess Variability at the Margins8

Summary

The outcome of penalized splines as instruments for trend estimation predominantly de-
pends on the selection of the penalization parameter. This chapter derives the penalization
by frequency domain aspects and points out their link to rational square wave filters. As a
novel contribution it focuses on the so called excess variability at the margins. This excess
variability describes the insufficient suppression of high frequencies at the ends of the se-
ries, which induces an undesired increase of the variability for estimations at the margins.
It is shown that the too high volatility at the margins can be reduced considerably by a
time-varying penalization, increasing the precision of the estimations for the most recent
periods.

8This chapter refers to Blöchl (2014b).
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4.1 Introduction

A fundamental challenge in economics, especially in business cycle research, is to decompose
a time series into trend and cycle. There exists a wide range of instruments to estimate these
components, where penalized splines (O’Sullivan 1986, Eilers/Marx 1996) are among the
most popular tools. There are strong similarities between penalized splines and the Hodrick-
Prescott filter (Hodrick/Prescott 1997), which might be the most widespread instrument
for trend estimation in economics and Paige (2010) shows that the Hodrick-Prescott filter
indeed is a special case of a penalized spline. The decisive feature of these instruments
is that the estimated trend predominantly depends on the choice of a single penalization
parameter λ that determines the smoothness of the trend.

In most applications of the Hodrick-Prescott filter λ is set to 1600 for quarterly data. This
traces back to Hodrick/Prescott (1997), who derive this value by interpreting the filter as an
optimal Wiener-Kolmogorov filter (Whittle 1983, Bell 1984). Since this derivation is based
on rather unrealistic assumptions, the choice of λ = 1600 is often criticized as dubious
(Danthine/Giradin 1989). Furthermore, it is criticized as too low for most economic time
series (McCallum 2000, Flaig 2012) and not data driven (e.g. Schlicht 2005, Kauermann
et al. 2011). Data driven methods like generalized cross validation (Hastie/Tibshirani
1990) and the incorporation of the Hodrick-Prescott filter or penalized splines into a linear
mixed model help to overcome this problem. Generalized cross validation induces a too
wiggly trend estimation for most series with autocorrelated errors (Diggle/Hutchinson 1989,
Altman 1990, Hart 1991), but it can be extended to account for an autocorrelated residual
structure (Kohn et al. 1992, Wang 1998). Nevertheless, Opsomer et al. (2001), Proietti
(2005) and also Dagum/Giannerini (2006) demonstrate that this technique is very sensitive
to the assumptions about the residual autocorrelation structure. To this point the mixed
model approach is advantageous, as it is relatively robust with regard to a misspecification
of the residual autocorrelation structure (Krivobokova/Kauermann 2007).

In economics the separation of trend and cycle is often motivated by the conception that
these components are characterized by distinguishable spectral properties. In this sense
the trend as the long run development of the series is described by fluctuations with high
periodicities and the cyclical component by medium and low periodicities. This allows
defining trend and cycle by bandwidths of frequencies. A very common definition traces
back to Burns/Mitchell (1946), who describe the cycle by periodicities between six and 32
quarters. From this point of view the penalization can be selected such that the filters
mainly extract the desired frequencies. Such a method is demonstrated by Tödter (2002)
for the Hodrick-Prescott filter. This chapter shows a related approach for penalized splines,
where splines based on a truncated polynomial basis are considered. This type of splines is
interesting, as it is closely related to the Hodrick-Prescott filter. Moreover, Proietti (2007)
describes the link between these splines and square wave filters (Pollock 2000, 2003).
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The extraction of frequency bands by linear filters like penalized splines exhibits unsolved
problems. One massive problem is that linear filters loose the ability to suppress high
frequencies for estimations at the ends of the series. This is due to the increasing asymmetry
of the filter weights for estimations at the margins and leads to an undesirable increase of the
volatility of the estimations for the first and last periods. This increasing volatility at the
margins is called excess variability. Especially as researchers are predominantly interested
in the trend of the most recent periods this excess variability turns out to be a serious
problem, since it heavily affects the reliability of the estimations at the ends of the series.
An existing method to overcome this problem is to attach forecasts to the end of the series.
However, as it is also shown in this chapter, a high number of forecasts is required so that
this approach is of limited practicability. Instead, this chapter describes another approach to
get a handle on the excess variability. It is shown that the excess variability can be reduced
considerably by a time-varying penalization, where the penalization is allowed to increase to
the margins. A time-varying penalization is already suggested by Razzak/Richard (1995)
and Pollock (2009) in order to account for structural breaks and also Crainiceanu et al.
(2005) introduce a time-varying penalization for splines within a mixed model framework.
Moreover, Bruchez (2003) offers an ad-hoc approach to reduce the excess variability by a
time-varying penalization.

This chapter is structured as follows. In the first section penalized splines with a truncated
polynomial basis are discussed briefly. Then it is shown how to choose the penalization
to extract certain frequency bands. Afterwards it is explained how spectral analysis and a
time-varying penalization can be employed to tackle the problem of the excess variability
at the margins. The next section describes the effects of the time-varying penalization and
also compares the properties of different splines in the frequency domain. Finally, section
4.4 provides an empirical example.

4.2 Penalized splines

A popular instrument to estimate the trend component of a series {yt}Tt=1 are penalized
splines with a truncated polynomial basis (Brumback et al. 1999, also Ruppert et al. 2003),
following denoted as tp-splines. In a first step the explanatory variable time t, t = 1, ..., T ,
is divided into m − 1 intervals by setting m knots 1 = κ1 < κ2 < ... < κm−1 < κm = T .
The distance between the knots generally can vary, but in this chapter always equidistant
knots are used. If εt denotes the error term, a tp-spline of degree l, henceforth denoted as
tp(l), is defined as:

yt = f(t) + εt = β1 + β2t+ ...+ βl+1t
l + βl+2(t− κ2)l+ + ...+ βd(t− κm−1)l+ + εt, (4.1)

with (t− κj)l+ =

(t− κj)l , t ≥ κj
0 , else

,
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where d = m+ l− 1. In this sense f(t) represents the trend and εt the cycle. The first part
is a polynomial of degree l, while the second part consists of truncated polynomials that
enable f(t) to become very flexible. In matrix notation the tp-spline is defined to:

y = Zβ + ε, (4.2)

with Z =


1 1 . . . 1l (1− κ2)l+ . . . (1− κm−1)l+
...

... . . .
...

... . . .
...

1 T . . . T l (T − κ2)l+ . . . (T − κm−1)l+

 ,

where β = (β1, ..., βd)
′, ε = (ε1, ..., εT )′ and y = (y1, ..., yT )′. tp-splines can be interpreted

as a continuous function of piecewise defined polynomials of degree l. Due to the truncated
polynomials the coefficient of the highest polynomial changes at every knot, which allows
the spline to become very flexible. To regulate the flexibility of tp-splines and to receive a
smoother function the concept of penalization is used. As the coefficients βl+2, ..., βd drive
the flexibility of the tp-spline, the volatility of the estimated function can be determined
by controlling the absolute values of these coefficients. For a given parameter λ the vector
β(λ) is estimated by minimizing the penalized least squares criterion (e.g. Fahrmeir et al.
2009 p.308).

min
β
PLS(λ) =

T∑
t=1

[yt − f(t)]2 + λ
d∑

j=l+2

β2j . (4.3)

The solution of this minimization is (e.g. Fahrmeir et al. 2009 p.313):

β̂(λ) = (Z ′Z + λK)−1Z ′y where Kd×d = diag(0, ..., 0︸ ︷︷ ︸
l+1

, 1, ..., 1︸ ︷︷ ︸
m−2

). (4.4)

The fitted values for a given λ are defined by:

ŷ(λ) = Z(Z ′Z + λK)−1Z ′︸ ︷︷ ︸
H(λ)

y. (4.5)

H(λ) is the hat matrix of the spline that contains the filter weights. The penalized least
squares criterion describes a tradeoff between a close fit of the trend to the observed data and
a smooth trend function. The smoothness of the trend can be regulated by the penalization
parameter λ, where high values of λ induce a smooth trend. An interesting feature of tp-
splines is their link to the Wiener-Kolmogorov filter (see also Harvey 1989, Kaiser/Maravall
2001, McElroy 2008) and square wave filters (Pollock 2000, 2003). For T equidistant knots
Proietti (2007) describes a tp-spline of degree l as a time series model where the trend is a
l+ 1-fold integrated random walk and the cycle is white noise. Thus, tp-splines are closely
connected to square wave filters that are related to the model framework of the Wiener-
Kolmogorov filter. Moreover, Paige (2010) shows that for l = 1 and knots at every point in
time t = 1, 2, ..., T , the spline is equal to the Hodrick-Prescott filter.
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4.3 The optimal penalization

4.3.1 The penalization by frequency domain aspects

The conception that trend and cycle are characterized by their spectral properties can be
employed to derive the penalization of splines. For a detailed discussion of spectral analysis
see Granger/Hatanaka (1964), Harvey (1993), Hamilton (1994) or Mills (2003). In general
spectral analysis allows decomposing a series {yt}Tt=1 into oscillations of different frequencies.
This is utilized to define trend and cycle by certain bandwidths of frequencies. The trend
represents the long run development of the time series and is supposed to be smooth so
that it is described by oscillations with low frequencies, i.e. high periodicities. The cycle
contains economic activity characterized by booms and recessions and is more volatile over
time, since it reflects the development in the medium and short run. Consequently, it is
defined by a bandwidth of medium and high frequencies. Extracting the trend by frequency
domain aspects implies that oscillations with higher frequencies are suppressed, while those
with lower frequencies are left unchanged.

To this point the gain function provides information about the impact of an instrument for
trend estimation on the original series in the frequency domain. Using the matrix notation
of a penalized tp-spline ŷ(λ) = H(λ)y, where hij is the jth element in the ith row ofH(λ),
it is obvious that the spline defines a linear filter ŷt =

∑T
j=1 htjyj (e.g. Harvey 1993 p.189).

The gain function of a spline for estimation ŷt and a frequency ω is given to (e.g. Mills
2003 p.80):

gt(ω, λ) =

√√√√√
 T−t∑
j=1−t

ht,j+t cos(ωj)

2

+

 T−t∑
j=1−t

ht,j+t sin(ωj)

2

. (4.6)

The gain can be interpreted as the factor by which an oscillation of frequency ω is damped
or amplified, when a linear filter is applied. For an ideal instrument in order to extract the
trend component the gain function should be one for low frequencies up to a certain cut-
off frequency ωcf , and zero for higher frequencies. This would imply that low frequencies
are not affected by the filter, while higher frequencies are completely eliminated. Such an
instrument is called lowpass filter. The gain function of an ideal lowpass filter can be used
to define trend and cycle in the frequency domain and to construct a selection criterion
for the penalization parameter of splines. Such approaches were made by Baxter/King
(1999) for the Baxter-King filter or Tödter (2002) for the Hodrick-Prescott filter, who aim
to minimize the deviation between the gain function of the filter and the ideal gain function.

As an example Figure 4.1 shows an ideal gain function with a cut-off frequency of ωcf = 0.5.
It adopts a value of one for frequencies in the interval [0, 0.5]. For all higher frequencies the
ideal gain function has a value of zero.
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Fig. 4.1: Examples for an ideal gain function and a real gain function

The ideal gain function is opposed to a real gain function of a tp(2) with λ = 250 and 140
equidistant knots that is applied to a series with 140 observations. The gain function of
the tp(2) refers to the 70th estimation. Now, the approach in this chapter aims to minimize
the squared deviation between the real gain function of a penalized spline form an ideal
gain function by the selection of the penalization parameter λ. Note that it is not possible
to completely realize an ideal gain function, since this would require an infinite number
of filter weights (Oppenheim/Schafer 1989). Let the gain of the spline for estimation ŷt,
parameter λ and frequency ω be denoted as gt(ω, λ) and the ideal gain as g∗(ω), then a so
called loss lt(λ) can be defined:

lt(λ) =

π∫
0

[g∗(ω)− gt(ω, λ)]2dω. (4.7)

The loss is the squared deviation of the real gain function from the ideal one in the interval
[0, π]. Now, λ is selected such that lt(λ) is minimized. Since the minimization of lt(λ) is
numerically complicated for continuous values of ω, it is approximated by a sufficient high
number of discrete frequencies. If ω ∈ Rn×1 denotes a vector of frequencies from zero to π
in very small steps, e.g. ω = (0, 0.001, 0.002, ..., π)′, then lt(λ) can be written for discrete
values:

lt(λ) =
n∑
i=1

[g∗(ωi)− gt(ωi, λ)]2 · δ, (4.8)

where n is the number of elements in ω and δ is the distance between the elements in ω, i.e.
δ = ωj − ωj−1. The minimization can be done by algorithms like Newton-Raphson, fisher
scoring or a grid search. If a grid search is used, then a fast and stable implementation of
penalized splines is required, which is for example described in the appendix of Ruppert et
al. (2003).
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4.3.2 Accounting for a time-varying gain function

Before the penalization is selected by defining an ideal gain function and minimizing the
loss, it has to be focused on the problem that the gain functions of estimations for different
periods might not be equal. This is due to a changing structure of the filter weights,
especially at the margins of the series. As an example Figure 4.2 displays the filter weights
for a tp(1) that is applied to a series with 100 observations with λ = 1000 and 100 equidistant
knots. The left plot of Figure 4.2 shows the filter weights for estimations near the middle of
the data. Clearly, they have a very similar and almost symmetric structure. In contrast the
right plot displays the weights for estimations close to the margin. The weight structure
increasingly changes for estimations closer to the end of the series.
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Fig. 4.2: Filter weights for different estimations

This change of the filter weight structure affects the gain. Figure 4.3 shows the gain
functions of estimations for different periods, which refer to the tp(1) of the example above:
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Fig. 4.3: Gain functions of the tp(1) for estimations around the middle and at the margin
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The gain functions for the 50th and 60th estimation look very similar. Both are good
approximations of an ideal gain function and effectively eliminate high frequencies. This
is different for estimations for periods at the margins. The gain functions for the 95th and
100th estimation adopt values greater than one for certain frequency bands and are not
able to eliminate high frequencies. This insufficient suppression of high frequencies induces
a too volatile trend estimation at the ends of the series.

Figures 4.2 and 4.3 motivate the reasons for the excess variability at the margins. However,
the gain function or the filter weigh structure are not appropriate in order to describe this
excess variability, as it is at least costly to consider the gain function or the filter weights
for the estimations of all periods. It is much more practicable to regard the loss over the
estimations for all periods, as this allows representing the excess variability by one single
graph. This is denoted as the loss function. As an example the left plot of Figure 4.4
shows the loss function for the tp(1) with λ = 1000 and T = m = 100. For the ideal gain
function a cut-off frequency of ωcf = 0.196 is chosen, which implies a periodicity of eight
years in the case of quarterly data. Furthermore, the right plot of Figure 4.4 displays for
every ŷt, t = 1, ...T , that value of λ that minimizes the loss for this specific estimation.
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Fig. 4.4: loss function and optimal values for λ

The left plot of Figure 4.4 shows that the loss is rather low and similar for most estimations
around the middle. However, for the estimations for about the first and last ten periods the
loss starts to increase. This illustrates that the excess variability mainly affects the margins
of the series. Moreover, the right plot shows that except of the margins all estimations would
require almost the same penalization to minimize the loss. At the margins the required
penalization heavily increases and is up to 180 times higher than in the middle.

In order to develop methods to reduce the volatility at the margins it is useful to be aware
of the factors that determine the excess variability. Beside the degree of the spline, which is
examined in detail later, two remaining potential factors are the value of the penalization
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parameter and the length of the series. To examine the influence of the length of the time
series, Figure 4.5 shows the loss functions of a tp(1) with λ = 1600 that is applied to series
with varying length. To avoid any influence of the number of knots m was set equal to the
number of observations T in every case.
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Fig. 4.5: loss functions of a tp(1) for series of different length

Figure 4.5 shows that independent of the number of observations about the first and last
ten estimations are affected by the excess variability. Thus, the length of the series seems
to have no effect on the excess variability. This is different for the value of λ. Figure 4.6
displays the loss functions of a tp(1) with different values of λ that is applied to a series
with 100 observations. In every case m was set equal to T .
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Fig. 4.6: loss function of a tp(1) for different values of λ

Clearly, the number of estimations that is affected by the excess variability depends on the
value of λ. For λ = 10 only the first and last three estimations show an increased loss.
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However, for λ = 10000 about the first and last 20 estimations are affected by the excess
variability. The number of estimations that exhibit an increased loss to the margins rises
with higher values of the penalization. It follows from Figures 4.5 and 4.6 that the excess
variability depends on the penalization, but not on the number of observations.

4.3.3 The time-varying penalization and the number of knots

The previous section describes the undesired increase of the volatility to the margins. This
and the next section show how the excess variability can be reduced by a time-varying
penalization that is allowed to increase to the margins. Recall the matrix formula of a
penalized tp-spline from section 4.2, where the penalization was defined by the product of
λ and the penalty matrix K = diag(0, ..., 0, 1, ..., 1). The product of λ and the ith diagonal
element of K gives the degree of penalization for the coefficient βi. To achieve a flexible
penalization the scalar λ has to be replaced by a vector λ = (0, ..., 0, λ1, λ2, ..., λm−2)

′ ∈
Rd×1 and the penalty matrix is defined as K̃ = diag(λ). The penalized spline with a
time-varying penalization can then be written in matrix notation as

ŷ(λ) = Z(Z ′Z + K̃)−1Z ′y. (4.9)

The change of the coefficient of the highest polynomial at each knot is determined by
the penalization parameter, which now is able to vary over time. Given the vector λ,
λi determines the change at the knot κi+1, so that a specific penalization can be set at
each knot. Figure 4.4 shows that the penalization needs to increase to the ends, while all
other estimations require about the same degree of penalization. Consequently, it seems
appropriate to let the values of λ rise to the ends of the series to reduce the excess variability.

The basic purpose of the time-varying penalization is to set a higher penalization at the
margins of the series in order to reduce the excess variability. To this point it has to be
considered how the penalization shall rise to the margins. Figure 4.4 suggests that a linear
increase of the penalization might be appropriate so that the first and last j penalization
parameters increase to the margins by a linear function. Then the last j values of λ can be
expressed as

λm−2−j+i = α0 + α1 · i, i = 1, ..., j. (4.10)

The first j λ’s are defined just conversely, i.e.

λ1 = λm−2, λ2 = λm−3, ..., λj = λm−1−j . (4.11)

α0 is the value for the λ’s closer to the middle which do not need to rise. As seen in Figure 4.4
the majority of estimations around the middle require about the same penalization. Thus,
it is sufficient to choose for α0 that value of λ that minimizes the loss for the estimation in
the middle of the series. As a consequence the first and last j λ’s are defined according to
(4.10) and (4.11), while all other λ’s are set to α0.
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A further condition for the time-varying penalization is that it shall reduce the excess
variability at the margins without increasing the loss of estimations for periods closer to
the middle. A criterion that is able to fulfil this condition is to minimize the cumulative
loss of the estimations for all periods (see also Blöchl 2014a)

L(λ) =

T∑
t=1

lt(λ), (4.12)

by the time-varying penalization. As it turns out in the next section this criterion is suitable
to reduce the variability at the margins without strongly affecting all other estimations. The
minimization of the cumulative loss is reasonable, as the focus usually not lies on a single
estimation, but on the trend of the whole time series. Given the condition of a linear
increase, the cumulative loss L(λ) is minimized subject to (4.10) and (4.11). This can be
done by algorithms like Newton Raphson, fisher scoring or a grid search. Because α0 is
fixed, the two remaining parameters are α1 and j. It has to be considered that j is an
integer, so L(λ) is minimized over α1 for different, fixed values of j. Finally, this value for
j is selected that yields to the lowest cumulative loss.

Beside the flexible penalization secondly, a value for the number of knotsm has to be chosen.
In general a higher number of knots allows a greater flexibility for the trend function. As
Ruppert (2002) shows, there is a minimum number of knots that is necessary to achieve a
reasonable fit of the trend function, but there are hardly changes if the number is further
increased. Moreover, a higher number of knots can slightly increase the mean squared error
(Ruppert 2002). However, in order to reduce the excess variability at the margins it is
preferable to select a high number of knots, as it allows an accurate determination of the
flexible penalization at the margins. As seen in Figure 4.4, the estimations for the first and
last periods require different values of the penalization parameter. If the number of knots
is too low, then it might be not possible to set appropriate values of the penalization for
all estimations at the margins. Thus, the number of knots should generally be set as high
as possible. In this chapter for the tp(1) m is always set equal to T . As equidistant knots
are chosen this setting is identical to the Hodrick-Precott filter. Splines of higher degrees
can become numerical instable, when the number of knots is too high (e.g. Fahrmeir et al.
2009 p.303). Hence, for splines of higher degrees the number of knots should be set to a
high value that still allows a numerical stable estimation.

4.3.4 Effects of the time-varying penalization

The previous sections showed methods how to select the penalization of splines by frequency
domain aspects and how to describe the increasing variability to the margins. It was argued
that a time-varying penalization can help to reduce this undesired increase of the variability,
where the penalization shall rise to the margins. In order to show the effects of this time-
varying penalization it is applied to a simulated time series. To this point a cut-off frequency
of ωcf = 0.196 is selected. Assuming that the exemplary data are quarterly this implies a
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cut-off periodicity of eight years, which is in line with Burns/Mitchell (1946) or Baxter/King
(1999). The simulated series contains 140 observations, which might be not unrealistic for
most quarterly economic time series. Table 4.1 shows the resulting parameters for tp-splines
of degrees one, two and three.

spline m α0 α1 j

tp(1) 140 821 654 21
tp(2) 140 79678 112500 28
tp(3) 140 18.7 · 106 40.6 · 106 35

Tab. 4.1: Optimal parameters for ωcf = 0.196

For example, according to Table 4.1, the last j values of λ for the tp(1) are defined by
λm−2−j+i = 821 + 654 · i, i = 1, ..., 21. The first 21 values of the penalization λ1, ..., λ21

are defined analogously to (4.11). The remaining parameters λ22, ..., λ117 do not require
an increased penalization and are set to 821. Table 4.1 shows that tp-splines of higher
degrees require a larger increase of the penalization, where the increase also has to start
closer to the middle. For the tp(1) it is sufficient to increase the penalization for the first
and last 21 values, while for the tp(3) the first and last 35 penalization parameters need
to increase. Table 4.2 shows the basic results of the different types of splines for fixed and
flexible penalization. For the fixed penalization the penalization parameter λ is set to the
value of α0 and the spline is calculated according to formula (4.5):

spline penalization 70th estimation 140th estimation L(λ)

tp(1)
fixed 0.019 0.320 4.706

flexible 0.019 0.144 4.035

tp(2)
fixed 0.013 0.602 5.259

flexible 0.013 0.330 4.264

tp(3)
fixed 0.009 0.886 6.232

flexible 0.010 0.552 4.911

Tab. 4.2: loss for a cut-off periodicity of ωcf = 0.196

Consider the results for the fixed penalization at first. Splines of higher degrees yield a
lower loss in the middle, but a much higher loss at the margins. The loss of the tp(1) in
the middle is with 0.019 almost two times higher than the one of the tp(3). However, the
loss of the tp(3) at the margin is almost three times higher than the one of the tp(1). The
different results of the splines also become obvious when their gain functions are considered.
These are shown in Figure 4.7 that displays the gain functions for the splines in the middle
(70th estimation) and at the margin (140th estimation). In the middle clearly tp-splines
with a higher degree can extract frequency bands more precisely. The frequency band for
the transition of the gain function from one to zero gets smaller, when the degree of the
spline is increased.
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Fig. 4.7: Gain functions in the middle and at the margin

This also shows the link of penalized tp-splines and rational square wave filters that is
described in Proietti (2007). The degree of the spline controls the transition of the gain
function from one to zero, while the penalization parameter determines the approximate
cut-off frequency. At the margin splines of higher degrees increasingly loose the ability to
suppress high frequencies inducing a much higher excess variability.

The results for the flexible penalization in Table 4.2 show that the loss at the margins
is reduced strongly in every case by around 38-55 percent, while the loss in the middle is
hardly affected. Moreover, the cumulative loss is decreased for every spline. To demonstrate
the effects of the flexible penalization for the whole time series, Figure 4.8 displays the loss
functions for both the fixed and the flexible penalization.
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Fig. 4.8: loss functions for fixed and flexible penalization
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Obviously, the tp(1) exhibits the lowest excess variability at the margins. Moreover, for the
tp(2) and tp(3) more estimations are affected by the excess variability than for the tp(1).
The most important result of Figure 4.8 is that in every case the loss at the margins can
be reduced considerably by the flexible penalization, while it is increased only slightly for
some estimations closer to the middle. As the cumulative loss decreases for every spline,
the reduction of the loss at the margins clearly outweighs these slight increases. Especially
for the tp(2) and tp(3) the flexible penalization induces hardly any notable increases of the
loss and clearly improves the results at the margins. Consequently, Figure 4.8 shows that
the flexible penalization is able to reduce the excess variability at the margins and to yield
more precise estimations for the most recent periods. Another important result is that
there is clearly a tradeoff between a good approximation of an ideal gain function for most
estimations around the middle and a low excess variability at the margins. Splines of higher
degrees yield a better adaptation to an ideal gain function for the majority of estimations,
but also exhibit a far higher excess variability at the margins.

An existing method to overcome the problem of the excess variability at the margins is to
attach forecasts to the end of the series. As Figure 4.8 shows, in this case at least forecasts
for the next 15 periods are required. For quarterly data this implies that data for the next
four years have to be predicted. As the prediction errors are likely to be large for such a
distance, the approach to add forecasts seems to be of limited practicability.

Finally, to get a better understanding of the effects of this time-varying penalization it is
worth considering the filter weights. Figure 4.9 plots the weights of the tp(1) with the fixed
and the flexible penalization of the example above in the middle (70th estimation) and at
the margin (140th estimation).
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Fig. 4.9: Filter weights for fixed and flexible penalization

The left plot of Figure 4.9 shows the weights for the estimation in the middle. There are
almost no differences between fixed and flexible penalization. The weights are symmetric
where the highest weight is about 0.07. This is different for the estimation at the margin.
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As seen in Figure 4.2, the weight structure at the margin is not symmetric and the weights
for the last few observations are very high. Consequently, the estimation for the last period
is predominantly influenced by few observations at the end of the series, especially by the
last one. This causes the excess variability and deters the estimations for the periods at
the margin to the value of the last observation. The time-varying penalization dampens
this behavior of the weights at the margin. The right plot shows that the time-varying
penalization reduced the weights that are attached to the last five observations, while
others closer to the middle are increased in absolute values. Due to this declined influence
of the last few observations the distortion of the trend estimation for periods at the margin
to the value of the last observations is reduced.

4.4 Empirical application

To demonstrate the effect of the time-varying penalization on real time series, the trend
component of the seasonally adjusted quarterly real GDP of Switzerland is estimated.9

The data start in the first quarter 1980 and end in the third quarter 2013 so that there
are 135 observations. The trend shall be defined by a cut-off periodicity of eight years and
is estimated with a tp(1). The resulting optimal values for the flexible penalization are
α0=821, α1 = 845 and j = 21, where m = 135.
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Fig. 4.10: Trend estimation of the real Swiss GDP and first differences of the trend

The left plot of Figure 4.10 shows the Swiss GDP as well as the estimated trend resulting
from the fixed and the flexible penalization. Especially at the end of the series, there are
clear differences between the estimations. In both cases the trend growth rate declines

9The data are from the Swiss Secretariat of Economic Affairs, http://www.seco.admin.ch.
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after 2008, but the decline is larger for the fixed penalization. The trend according to
the flexible penalization exhibits much larger growth rates and lies above the one of the
fixed penalization for the most recent periods. The right plot of Figure 4.10 shows the first
differences of both trend estimations. Also the first differences only deviate at the margins
of the series. In both cases the first differences have decreased since about 2008, but the
growth rate of the trend according to the time-varying penalization has stabilized on a
higher level.

It is also interesting to consider the effects of the time-varying penalization on the business
cycle. This is shown in Figure 4.11.
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Fig. 4.11: Estimated business cycle for fixed and flexible penalization

The same pattern can be observed: The flexible penalization affects the margins of the
series, while it has no effect in the middle. Predominantly the output gap at the end of
the series is much larger in the case of the time-varying penalization. As seen in Figures
4.2 and 4.9, for the estimations close to the end of the series the last observation is the
most influential, which causes the excess variability. Thus, in most cases the output gap is
distorted to zero at the end of the series, as the last estimations tend to the value of the
last observation. The flexible penalization reduces this distortion, which results in a much
larger output gap at the margin in this example.

4.5 Conclusion

One of the unsolved problems of trend estimation is to get precise results for the most recent
periods. Due to the increasing asymmetry of the filter weights the volatility of estimations
at the margins undesirably increases, which is known as the excess variability. The approach
of this chapter uses penalized splines to estimate the trend component. The penalization
is selected such that the gain function of the spline shows a minimal deviation from an
ideal gain function. On the basis of this approach it is demonstrated that the deviation of
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the ideal gain function increases strongly for estimations at the margins. This behavior is
described and visualized by the loss function that shows the deviation between real and
ideal gain function over all periods.

The increasing variability of estimations at the margins is tackled by a time-varying penal-
ization. In detail, the penalization is increased linearly to the margins, where the increase
is such that the cumulative loss is minimized. It is shown that this criterion is capable
of reducing the excess variability without strongly affecting other estimations closer to the
middle of the series.

Moreover, this chapter shows that the degree of the spline strongly influences its properties
in the frequency domain and points out the link between penalized tp-splines and rational
square wave filters. The degree of the spline controls the transition of the gain function
from one to zero, while the penalization parameter determines the approximate cut-off
frequency. Splines of higher degrees exhibit a more rapid transition so that they are better
approximations of an ideal gain function. However, splines of higher degrees also suffer
from a far higher excess variability at the margins. Thus, there is a tradeoff between a
precise gain function of the estimations for most periods and a low excess variability at the
margins.

Finally, this chapter demonstrates the effects of this time-varying penalization for a real
time series. To this point the trend of the Swiss GDP is estimated. There are clear
differences between the trend according to the time-varying penalization and the trend of
the "standard approach" with a fixed penalization. In detail, the time-varying penalization
shows higher trend growth rates over the last five years as well as a far higher output gap
for the most recent periods.

The approach of this chapter cannot completely eliminate the undesired volatility at the
margins. Nevertheless, it can be shown that it is possible to improve the precision of the
estimation to the ends of the series. Thus, this time-varying penalization might be a useful
instrument for researchers, especially when the focus lies on the most recent periods.
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5 Reducing the Excess Variability of the

Hodrick-Prescott Filter by Flexible Penalization10

Summary

In most applications of the Hodrick-Prescott filter for quarterly data a penalization of 1600
is selected. Although this value is often criticized, it can be justified by frequency domain
considerations, as it describes the trend by periodicities above nine to ten years. Given
this penalization, this chapter aims at reducing the excess variability at the margins by a
time-varying penalization. The previous chapter focuses on approximating an ideal gain
function, so that it is assumed that trend and cycle can be strictly separated by a certain
cut-off frequency. However, as there is no general, precise definition of the duration of
business cycles, it can be argued that the abrupt transition of an ideal gain function from
one to zero is not necessary (Pollock 2000 p.318). As a consequence, this chapter does not
regard an ideal gain function as optimal, but the gain function of the Hodrick-Prescott
filter in the middle of the series, in particular as it exhibits no abrupt transition from one
to zero. Thus, the major difference to chapter 4 is the reference to the gain function in the
middle of the series instead of an fictive, ideal gain function.

10This chapter refers to Blöchl (2014a).
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5.1 Introduction

The Hodrick-Prescott filter (Hodrick/Prescott 1997) is one of the most popular tools for
trend estimation in economics (Flaig/Wollmershäuser 2007 p.17). Its advantages are clearly
an easy and numerical fast and stable implementation, while the shape of the estimated
trend completely depends on the choice of a single penalization parameter λ. In most appli-
cations λ is set to 1600 for quarterly data according to the suggestion of Hodrick/Prescott
(1997), which can be seen as an "industry standard" (Flaig 2012 p.23) for economic trend
estimation. However, this choice is often criticized in the literature as dubious (Dan-
thine/Giradin 1989), not data driven (e.g. Schlicht 2005, Kauermann et al. 2011) and
too low for most economic time series (Mc Callum 2000, Flaig 2012). As an alternative
Schlicht (2005) describes how the Hodrick-Prescott filter can be incorporated into a mixed
model framework to derive a data driven estimation of λ. This approach is based on the
assumption of a white noise business cycle, but it was shown that it can be extended to
account for autocorrelated residuals (e.g. Proietti 2007, Paige 2010). Another possibility
to choose λ is suggested by Flaig (2012), who proposes to select λ such high, that the
trend component doesn’t feature any cyclical behavior any more. Nevertheless, the choice
of λ = 1600 can be justified by frequency domain considerations. Using quarterly data
this selection implies that the trend approximately consists of oscillations with periodicities
above nine to ten years (Tödter 2002, Maravall/del Rio 2001), which is reasonable according
to economic conceptions of trend and cycle (e.g. Burns/Mitchell 1946, Baxter/King 1999).

The estimation of trend and cycle with the Hodrick-Prescott filter by frequency domain
aspects exhibits unsolved problems. One massive problem is the increasing variability of
the trend estimation to the margins, called excess variability. A rising excess variability
means the filter cannot suppress high frequencies for the first and last couple of estimations
any more. This induces an increasing volatility of the estimated trend at the margins
compared to the rest of the series, making the trend estimations for the first and last periods
more volatile than desired, which heavily reduces their reliability. This is a drawback, as
researchers and politicians are mainly interested in the trend of the most recent periods
that is deterred by the excess variability.

An often applied approach to solve the problem of the excess variability is to use ARIMA
models. ARIMA models are employed to derive forecasts that are attached to the time
series. This way the original margin of the series moves closer to the middle of the data and is
thus less affected by the excess variability. However, this method exhibits the drawback that
the forecasts feature failures that rise with an increasing forecast horizon. Consequently,
also the estimated trend is subject to this uncertainty.

This chapter tackles the problem of the excess variability using a time-varying penalization
and spectral analysis. A time-varying penalization is introduced for the HP-filter by Raz-
zak/Richard (1995) to account for structural breaks and by Crainiceanu et al. (2005) for
penalized splines (O’Sullivan 1986) within a mixed model framework. It is shown in this
chapter that the volatility at the margins can be reduced by letting λ increase to the ends of
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the series. Given that the estimation of trend and cycle is motivated by frequency domain
considerations, the gain function of the Hodrick-Prescott filter in the middle of the series
is regarded as optimal. The flexible penalization is selected such that the gain function for
the estimations at the margins is adjusted to the one in the middle.

This chapter does not discuss the selection of λ in general. Instead, it sticks to the standard
choice of λ = 1600 and shows how the excess variability can be reduced for this selection.
The first section of this chapter briefly reviews the Hodrick-Prescott filter. Afterwards the
features of the filter in the frequency domain are examined, especially its characteristics
at the margins. Then it is shown how the gain function can be used as a measure for the
excess variability and how flexible penalization can reduce the increasing volatility at the
margins. Finally, this chapter gives some empirical examples and points out the different
implications between the results of the flexible penalization and the standard approach.

5.2 The Hodrick-Prescott filter

5.2.1 General framework

The Hodrick-Prescott filter (HP-filter) decomposes a time series {yt}Tt=1 into two compo-
nents

yt = µt + ct, (5.1)

where µt is the trend and ct is the rest, usually the sum of cycle and irregular effects. µt is
estimated by solving the following minimization problem:

min
µt

T∑
t=1

(yt − µt)2 + λ

T−1∑
t=2

[(µt+1 − µt)− (µt − µt−1)]2. (5.2)

The minimization problem consists of two parts. The first one is the squared deviation of
the trend from the original series. Minimizing the first part yields a trend that is identical
to {yt}Tt=1. The second part consists of the squared second differences and is a measure for
the volatility of the trend. Minimizing the second part yields a linear trend. Obviously,
there is a tradeoff between both parts. This tradeoff is solved by the penalization parameter
λ that puts weight on the second part. Thus, the smoothness of the estimated trend can
be completely regulated by the selection of λ. A low value of λ generates a flexible trend,
whereas high values induce a smooth trend.

Solving the minimization problem in (5.2) yields the filter in matrix notation (Mc Elroy
2008, Flaig 2012 p.16):

µ̂ = (I − λ∆′∆)−1y, (5.3)
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with µ̂ = (µ̂1, ..., µ̂T )′ and y = (y1, ..., yT )′. ∆ is a (T − 2)× T differencing matrix,

∆ =


1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1

 ,

where the product of ∆ and y yields the second differences of y.

5.2.2 The Hodrick-Prescott filter in the frequency domain

To examine the characteristics of the HP-filter in the frequency domain, it is reasonable to
consider the structure of its filter weights at first. Given formula (5.3) the filter weights are
contained in the matrix (I−λ∆′∆)−1=̂H(λ) ∈ RT×T , where the tth row ofH(λ) contains
the weights for the estimation µ̂t, i.e.

µ̂t =
T∑
j=1

htjyj . (5.4)

htj is the jth element of the tth row of H(λ). An important feature of this weight matrix
is that the filter weights have a very similar, (almost) symmetric structure for estimations
in the middle of the data, while this structure changes to the margins. This can be seen
in Figure 5.1 that plots the weights for different estimations for a HP-filter with λ = 1600

that is applied to a series with 100 observations.
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Fig. 5.1: Filter weights in the middle and at the margin
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The filter weights in the middle look similar and converge symmetrically to zero. To the
margins the filter weights become more and more asymmetric. Furthermore, the highest
weight of the estimations at the margins is far above of those around the middle. This
means the estimations at the margins are much more affected by single observations than
those closer to the middle of the data. This behavior of the filter weight structure causes the
excess variability at the margins, as a single observation can heavily influence the estimated
trend.
The change in the weight structure to the margins also becomes obvious, when the HP-
filter is considered in the frequency domain. In the frequency domain a time series is
interpreted as the superposition of oscillations with different frequencies (for a detailed
discussion see Harvey (1993), Hamilton (1994) or Mills (2003)), where the trend as the
long run development of a series is supposed to consist of those oscillations with a high
periodicity. The HP-filter as a tool for trend estimation extracts oscillations with high
periodicities and eliminates those with lower periodicities. This behavior can be described
by the gain function. Given the filter weights htj that arise for a certain value of λ, the
gain for estimation µ̂t and frequency ω can be calculated as (e.g. Mills 2003 p.80)

gt(ω, λ) =

√√√√√
 T−t∑
j=1−t

ht,j+t cos(ωj)

2

+

 T−t∑
j=1−t

ht,j+t sin(ωj)

2

. (5.5)

The gain is interpreted as the factor by which the amplitude of an oscillation with a certain
frequency is damped or amplified by a filter. To show the effects of the changing filter
weight structure, Figure 5.2 displays the gain functions for different estimations.
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Fig. 5.2: Gain functions for different estimations

For the 50th and 75th estimation the gain functions are very similar, since they are induced
by an almost equal weight structure. However, with a decreasing distance to the margins
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the gain function starts to change like for the 95th and 100th estimation. For the estimations
at the margins high frequencies cannot be completely eliminated any more, which causes an
increasing volatility of the resulting trend function. This increase of the volatility is known
as the excess variability. To examine the excess variability it is not practicable to consider
the gain functions for all estimations of the time series. It is much more practicable to
consider the deviation of the gain function of a certain estimation µ̂t from the one of the
estimation in the middle of the series. Let gm(ω, λ) denote the gain for frequency ω for the
middle estimation µ̂m, where m = T/2, or the next integer if T is odd, and gt(ω, λ) the one
for estimation µ̂t, then a loss can be defined:

l(t, λ) =

π∫
0

[gm(ω, λ)− gt(ω, λ)]2dω. (5.6)

l(t, λ) is the squared deviation of the gain for estimation µ̂t from the one for the middle
estimation in the interval [0, π]. The calculation of (5.6) for continuous frequencies is
difficult, however it can be easily approximated by a sufficient high number of discrete
frequencies, e.g. for ω = (0, 0.001, 0.002, ..., π)′ ∈ Rn×1:

l(t, λ) =
n∑
i=1

[gm(ωi, λ)− gt(ωi, λ)]2 · δ. (5.7)

n is the number of elements in ω and δ is the distance between the elements, i.e. δ =

ωj−ωj−1. Calculating the loss for all t = 1, ..., T gives an overview of which estimations are
affected by the increase of the variability. An important question is which factors influence
the excess variability. To shed light on this issue first of all a HP-filter with λ = 1600 is
applied to time series of length 50, 100, 150 and 200. Then the loss is calculated for each
element of these series, which is henceforth denoted as the loss function.
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Fig. 5.3: loss function for different numbers of observations
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Figure 5.3 shows that the loss is very similar and almost zero for the estimations around
the middle of the data and starts to increase abruptly at the margins, which is in line
with Figures 5.1 and 5.2 that indicate that the gain of the HP-filter only changes for the
estimations close to the ends of the series. Independent of the number of observations the
first and last ten or eleven estimations exhibit a rise in the loss. Consequently, the excess
variability does not depend on the number of observations.

However, it can be shown that the number of affected estimations depends on the value
of λ. To this regard Figure 5.4 displays the loss functions for different values of λ and a
series with 100 observations:
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Fig. 5.4: loss function for different values of λ

In contrast to the length of the series, the value of λ affects the number of estimations that
show an increased excess variability. This number rises with the value of λ. For λ = 10

about the first and last three estimations are affected, for λ = 500 about the first and last
eight estimations, and for λ = 10000 more than the first and last 20 estimations show an
increased loss. But while the number of affected estimations rises with increasing values
of λ, the degree of the excess variability is worse for lower values of λ. For λ = 10000 the
loss of the last estimation is about 0.15, while for λ = 10 it is about 0.6. However, the fact
that the excess variability depends on λ is of subordinate importance here, as this chapter
only focuses on the standard case of λ = 1600.
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5.3 Reducing the excess variability

5.3.1 Introducing a flexible penalization

Given the loss function it is possible to quantify and describe the excess variability. The
next step is to find techniques to reduce this variability. To this point a time-varying
penalization for the HP-filter is introduced that allows selecting different values of λ at
different points in time. According to Figure 5.3, the first and last ten or eleven estimations
show an increased loss, when a HP-filter with λ = 1600 is applied. Consequently, the
penalization should rise for the estimations at the margins of the series. This can be done
easily by changing the model framework of the HP-filter slightly. Given formula (5.3) the
scalar λ has to be replaced by a vector λ ∈ R(T−2)×1, where λ′ = (λ1, ..., λT−2) and the
matrix K = diag(λ) is constructed. Then the HP-filter with a flexible penalization can be
written as

µ̂ = (I −∆′K∆)−1y. (5.8)

As the HP-filter is equal to a penalized spline of order one with a truncated polynomial
basis and knots at every point in time t = 1, ..., T (Paige 2010), it can be interpreted as a
continuous connection of lines, where the slope of the lines changes at the points in time
t = 2, 3, ..., T − 1. To this regard the penalization regulates to what extend the slope can
change at these points in time. High values of λ let the slope only change slightly, which
results in a smooth trend estimation, whereas low values for the penalization allow large
changes of the slope, inducing a flexible trend function. λ1 regulates the degree to what
the slope of the trend function can change at t = 2 and λT−2 determines the change of the
slope at the point in time T −1. In general λt regulates the change of the slope at the point
in time t+ 1. In order to reduce the excess variability the values of λ are increased to the
margins. This is explained in detail in the next sections.

5.3.2 Direct method

A question that arises is how the penalization should increase to the margins. The general
aim is to reduce the loss at the margins without increasing it in the middle of the data. To
this point a criterion is defined, which will turn out to be suitable for this purpose. The
penalization at the margins is increased such that the cumulative loss of all estimations
is minimized. This is reasonable as one is usually not just interested in the trend in the
middle, but in the whole series. Moreover, this section shows that this criterion leads to a
reduced excess variability at the margins without strongly affecting the estimations in the
middle of the series. Defining the cumulative loss in dependence of λ as L(λ) yields:

L(λ) =
T∑
t=1

l(t,λ), (5.9)
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where l(t,λ) =

n∑
i=1

[gm(ωi, λ)− gt(ωi,λ)]2 · δ. (5.10)

Here, gt(ωi,λ) is the gain of the tth estimation for frequency ωi using the flexible penal-
ization and gm(ωi, λ) is the gain for the estimation in the middle of the series, when a
single, fixed penalization parameter is used. This criterion is subject to the conditions that
the penalization is 1600 in the middle and that it rises to the margins. Considering the
loss function over all estimations suggests that a linear increase of the penalization to the
margins might be appropriate. As a consequence the last k values of λ rise by

λT−2−k+j = 1600 + αj, j = 1, ..., k. (5.11)

The intercept can be seen as given, since λ is set to 1600 for the estimations in the middle.
As the penalization needs to increase to both margins the first k values of the penalization
are defined as

λ1 = λT−2, λ2 = λT−3, ..., λk = λT−1−k. (5.12)

Consequently, the first and last k values of λ are defined by (5.11) and (5.12), while all
others are still set to 1600. Beside a linear increase of the penalization also other functions
like a quadratic or cubic increase or a polynomial of degree two could be assumed. However,
the results would hardly change, but especially the polynomial function would make the
calculation much more expensive. Minimizing (5.9) with respect to (5.11) and (5.12) can
be done by algorithms like fisher scoring or Newton-Raphson. However, the minimization
by these algorithms can only be done for α as k is an integer. Thus, L(λ) is minimized for
different values of k and that value is selected that yields the lowest value of L(λ).

Applying this algorithm to a simulated time series with 100 observations yields k = 27

and α = 1294.72. The penalization parameter for the last 27 λ’s then rises by λ71+j =

1600 + 1294.72 · j, j = 1, ..., 27, while λ1, ..., λ27 are defined according to (5.12) (This
chapter focuses on the case of λ = 1600, but a table with corresponding values for k and
α for other values of λ is provided in appendix 5.A). Table 5.1 shows the loss for the fixed
and the flexible penalization for the middle of the data and the margin (50th and 100th

estimation) as well as L(λ).

penalization 50thestimation 100thestimation L(λ)

fixed 0 0.23956 1.76382
flexible 0.00015 0.09078 1.16872

Tab. 5.1: loss and cumulative loss for fixed and flexible penalization

Table 5.1 shows that the flexible penalization reduces the loss for the 100th estimation as
well as L(λ), while it increases the one for the 50th estimation only slightly. L(λ) can
be reduced by around 34 percent and for the 100th estimation the loss even declines by
62 percent. This indicates that the excess variability can be reduced without affecting
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the estimations in the middle of the data. To get a complete picture of how the flexible
penalization changes the gain functions of all estimations Figure 5.5 displays the loss for
the whole series for the fixed and the flexible penalization.
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Fig. 5.5: loss function for a fixed and a flexible penalization

Clearly, the loss strongly decreases for about the first and last six estimations. While the
loss is strongly reduced at the margins, it is slightly increased by the flexible penalization
for about the estimations 10-20 and 80-90. However, the decrease at the margins outweighs
this slight increase, which results in the strong decrease of the cumulative loss. Thus, the
time-varying penalization offers a tool to reduce the excess variability without strongly
affecting the trend in the middle of the data (note that Bruchez (2003) suggests an ad-hoc
approach to reduce the excess variability of the HP-filter). Section 5.4 applies this method
to real time series and shortly discusses the implications that arise, when the time-varying
penalization instead of the fixed one is used.

5.3.3 Indirect method

The direct method focuses directly on the gain function. As this approach requires the
calculation of a high number of gain functions within the optimization, it can become
numerical expensive, especially for long time series. A numerical much cheaper way of
implementing the flexible penalization is the indirect method that focuses on the filter
weights instead of the gain function. An often used measure for the degree of fit of linear
smoothers is df(λ) = tr [H(λ)] (e.g. Ruppert et al. 2003 p.81). A low value of df indicates
a high degree of smoothing. This can be explained by the behavior of the filter weights
with respect to the value of λ. For linear smoothers like the HP-filter the filter weights htj
for an estimation µ̂t symmetrically decrease to zero as |t − j| → ∞, where the rate of the
convergence depends on the value of λ (Dagum/Luati 2004). For high values of λ the rate
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is rather slow, which induces a smooth trend estimation, while for low values of λ the rate
of the convergence is fast. This can be seen in Figure 5.6, which plots the filter weights of
a HP-filter with different values of λ that is applied to a series with 100 observations.
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Fig. 5.6: Filter weights of a HP-filter for different values of λ

The filter weights in Figure 5.6 refer to the 50th estimation. For λ = 100 the filter weights
decrease much faster to zero than for λ = 5000. Since the filter weights of the HP-filter
furthermore sum up to one (Eubank 1983) the middle weights htt are rather high for low
values of λ and rather low for high values of λ. Consequently the filter weight htt can be
seen as a measure for the degree of smoothing of estimation µ̂t and thus as an indicator for
its gain function.

The indirect approach uses this fact for a numerical faster implementation. In the direct
method the gain function of every estimation µ̂t is compared to the one of the estimation
in the middle µ̂m and the cumulative squared deviation is calculated. Now, a numerical
much cheaper approach can be implemented. According to the notation in this chapter
hmm is the middle weight of the estimation µ̂m. In the ideal case where there is no excess
variability at the margins all weights htt, t = 1, ..., T should be equal to hmm. This implies
that in the ideal case df∗(λ) = T · hmm(λ).

Now, the indirect approach approximates this ideal measure to the real degree of smoothing
df . In this sense the increase of the flexible penalization is such that the deviation between
df∗ and df(λ) = tr [H(λ)] is minimized. Here, hmm(λ) refers to the HP-filter with a fixed
value of λ, while H(λ) is the hat matrix of the HP-filter with a flexible penalization. To
put higher weight on larger deviations the squared diagonal elements of the hat matrix can
be used for the calculation, i.e. dfsq(λ) = tr

[
H(λ)2

]
and df∗sq(λ) = T · hmm(λ)2. The
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minimization problem of the indirect approach is finally given to:

min
λ
|df∗sq(λ)− dfsq(λ)|, (5.13)

subject to λT−2−k+j = 1600 + αj, j = 1, ..., k,

and λ1 = λT−2, λ2 = λT−3, ..., λk = λT−1−k.

The deviation of the cumulative loss between the direct and the indirect method is in most
cases lower than 0.1 percent. However, the time for the optimization is reduced immensely
by the indirect method, which is helpful as the optimization has to be done for different
values of k in order to find the ideal increase of the filter weights.

5.4 Empirical application

In this section the flexible penalization is applied to empirical time series to point out
how the results might change, when a flexible instead of a fixed penalization is employed.
First of all the seasonally adjusted quarterly real GDP of Switzerland is considered11. The
data start in the first quarter 1980 and end in the third quarter 2013 so that there are
135 observations. The minimization of the cumulative loss L(λ) with respect to α and k
yields α = 1304.22 and k = 27. The trend is also estimated by a HP-filter with a fixed
penalization of λ = 1600. The results are shown in Figure 5.7:
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Fig. 5.7: Estimated trend for the Swiss real GDP and first differences of the trend

The growth of the trend according to the fixed penalization has strongly decreased since
about 2007. The trend of the flexible penalization exhibits only a slight decline of its growth

11The data are from the Swiss State Secretariat of Economic Affairs, http://www.seco.admin.ch.
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since 2007 and its growth rate is clearly above the case of the fixed penalization for the
last three years. This can also be seen, when the first differences on the right plot are
considered. Furthermore, the trend of the flexible penalization is clearly above the one
of the fixed penalization for the most recent years. A further interesting feature of the
flexible penalization becomes obvious, when the resulting estimates of the business cycle
are considered.
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Fig. 5.8: Estimated business cycles for fixed and flexible penalization

Figure 5.8 shows that the output gap at the end of the series is much smaller for the fixed
penalization. This smaller output gap is a direct consequence of the excess variability. As
Figure 5.1 shows, the filter weights for estimations at the margins are very high for the last
observation. Thus, the last observation is the most influential for these estimations, which
induces that the estimations at the margin are deterred to the value of the last observation.
As a result in this example the excess variability in trend leads to a rather too low output
gap at the margin of the series. The cyclical component of the flexible penalization instead
shows a far larger output gap at the end of the series due to the reduced excess variability.

Next, the seasonally adjusted quarterly real GDP of Denmark is considered12. The data
start in the first quarter 1991 and end in the third quarter 2013 so that there are 91
observations in this series. Minimizing the cumulative loss L(λ) yields α = 1242.48 and
k = 27. The trend of the real GDP is estimated using both the flexible and a fixed
penalization. The results are shown in the left plot of Figure 5.9.

12The data are from the national census bureau of Denmark, http://www.statbank.dk.
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Fig. 5.9: Estimated trend for the Danish real GDP and first differences of the trend

There are clear differences between the estimations. In both cases the growth rate of the
trend decreases from about 2005, but the decline is much larger for the fixed penalization.
The right plot of Figure 5.9 shows the first differences of the trend estimations. Here,
the differences become even more obvious. According to the fixed penalization the growth
of the trend even turns negative for the years 2008-2012. In contrast the trend growth
rate according to the flexible penalization declines from the year 2005, but seems to have
stabilized on a lower level during the last three years.

5.5 Conclusion

The Hodrick-Prescott filter is the probably most widespread instrument for trend estimation
in economics. Compared to the competing Baxter-King filter (Baxter/King 1999) it offers
the advantage of yielding estimates for the most recent periods. However, the fact that
the filter weights strongly change at the margins leads to an increased excess variability for
these periods. This means compared to the estimation in the middle of the data the trend
at the margins is too volatile. Especially as researchers are predominantly interested in the
most recent periods, the excess variability turns out to be a serious problem of the Hodrick-
Prescott filter. An existing method to overcome this problem is to use ARIMA models
in order to prolong the time series by adding forecasts at the margins. Nevertheless, the
predictions exhibit failures that increase with a rising forecast horizon. As for λ = 1600 more
than ten periods have to be predicted, this method seems to be of limited practicability.

This chapter combines spectral analysis with a flexible penalization in order to reduce the
excess variability at the margins. To this point the loss, i.e. the squared deviation of the
gain function from the one in the middle of the series is employed as a measure to describe
and quantify the excess variability. To reduce the increased volatility of the estimations at
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the ends of the series the penalization is allowed to increase linearly to the margins. The
exact rise of the penalization is determined such that the cumulative loss is minimized. In
this regard it is shown that this criterion not only leads to a lower cumulative loss, but that
it reduces the excess variability at the margins without strongly affecting the estimations
closer to the middle of the series.

To show the empirical implications that can arise when the flexible penalization is used
instead of a fixed one the HP-filter with a flexible penalization is applied to estimate the
trend of the real GDP of Switzerland and Denmark. It is shown that in both cases the
estimated trend according to the flexible penalization considerably differs from the trend
estimation with the fixed penalization. Especially the estimation for Switzerland using
the flexible penalization shows that the current data of the Swiss real GDP do not allow
concluding that the trend growth rate has decreased immensely since 2007, like the HP-filter
with the fixed penalization suggests.

This chapter offers an approach to improve the precision of the estimations at the margins.
Although the excess variability cannot be completely eliminated it is reduced by more than
62 percent for the last estimation. As the empirical examples show, the results of the
flexible penalization can strongly differ from the standard approach with a fixed λ of 1600.
Given these results, the flexible penalization might be an interesting tool for researchers,
since it increases the precision of the estimations for the most recent periods.
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Appendix

5.A Parameters of the time-varying penalization for different values of λ

The following table provides the corresponding values of k and α for different values of λ.
Please note that the values can vary slightly for series of different length. The table also
shows the length of the series to which the values refer, which is denoted as Tref . However,
in most cases the results only change slightly, when these values are used for series with a
length that deviates from the reference length in this table as long as the series are not too
short.

λ k α Tref λ k α Tref

5 5 19 100 1000 24 880 125
10 6 44 100 1250 25 1165 150
20 8 47 100 1500 26 1414 150
30 9 66 100 1750 27 1617 150
40 10 72 100 2000 27 2279 150
50 10 126 100 2500 28 3198 150
60 10 210 100 3000 29 4073 150
70 12 99 100 3500 31 3713 150
80 12 134 100 4000 32 4207 150
90 12 179 100 4500 33 4606 150
100 13 144 100 5000 34 4904 150
200 15 325 100 6000 38 3617 200
300 17 403 100 8000 41 4452 200
400 19 412 100 10000 43 5611 200
500 20 513 100 12000 46 5673 200
600 21 590 125 14000 47 7133 250
700 21 853 125 16000 50 6660 250
800 22 881 125 18000 51 7752 250
900 23 887 125 20000 52 8796 250

Tab. 5.2: Values for k and α for different values of λ
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6 Penalized Splines in the Light of Baxter/King

Summary

This chapter opposes penalized splines with a truncated polynomial basis to the so called
Baxter-King filter, which is a widespread instrument for the estimation of trend and cycle
in economics. It is investigated, whether penalized splines meet the requirements for an
ideal time series filter formulated by Baxter/King (1999). This chapter especially focuses
on the ability of penalized splines to extract frequency bands and points out their link to
rational square wave filters. In this regard it is shown that penalized splines can be regarded
as superior to the Baxter-King filter, when they are used as lowpass filters, but that the
Baxter-King filter exhibits advantageous properties as a bandpass filter.
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6.1 Introduction

The decomposition of time series into trend and cycle plays an important role in macroeco-
nomics. Here, the conception that trend and cycle exhibit characteristic spectral properties
often motivates a reasonable derivation of these components. Given this conception, spec-
tral analysis has become an important tool in economics as it enables to transfer a time
series into the frequency domain and to represent it by the superposition of oscillations
with different periodicities. It allows describing the business cycle, which is supposed to
show a kind of sine pattern, by fluctuations within a certain bandwidth of periodicities. For
example Burns/Mitchell (1946) find evidence that the cycle of the U.S. economy exhibits a
duration between six and 32 quarters. The trend component as the long run development
of the series is usually characterized by fluctuations with high periodicities.

One of the most widespread tools in economics for the extraction of trend and cycle by
frequency domain aspects is the so called Baxter-King filter (Baxter/King 1999). To this
point Baxter/King (1999) formulate ideal properties for a time series filter in the frequency
domain, which are the accurate extraction of frequency bands, the elimination of unit
roots and the absence of phase shifts. They develop the Baxter-King filter as a tool that
meets these requirements. Nevertheless, this filter still suffers from diverse shortcomings.
A massive one is that the filter is not able to render estimates for the most recent periods,
which are often the most important for researchers.

In this regard penalized splines (O’Sullivan 1986, Eilers/Marx 1996) as asymmetric filters
are generally able to yield estimations for the most recent periods. They are closely related
to the Hodrick-Prescott filter (Hodrick/Prescott 1997, Paige 2010), where the outcome
predominantly depends on the selection of a single penalization parameter λ. Penalized
splines have become popular tools for trend estimation in economics, since they allow a
data-driven estimation of trend and cycle by generalized cross validation (Hasti/Tibshirani
1990, also Kohn et al. 1992, Wang 1998), or the incorporation into a mixed model framework
(Brumback et al. 1999, also Ruppert et al. 2003). This chapter focuses on penalized
splines in the frequency domain and investigates, whether they meet the requirements of
Baxter/King. To this point splines with a truncated polynomial basis (Brumback et al.
1999) are used due to their fast and easy implementation as well as their link to rational
square wave filters (Pollock 2000, 2003). It is shown that these splines asymptotically meet
the requirements of Baxter/King and exhibit advantageous features as time series filters for
trend estimation.

The chapter is structured as follows. The first section summarizes theory about time series
filters in the frequency domain. Afterwards the Baxter-King filter as well as penalized
splines with a truncated polynomial basis are explained briefly. The next sections discuss in
how far penalized splines meet the requirements for ideal filters formulated by Baxter/King
(1999). Finally, the ability of splines to extract frequency bands is compared to the one of
the Baxter-King filter.
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6.2 Ideal filters in the frequency domain

Given the conception that trend and cycle can be distinguished by their spectral char-
acteristics, spectral analysis is a helpful device for the construction of time series filters.
For a detailed discussion of spectral analysis see Granger/Hatanaka (1964), Harvey (1993),
Hamilton (1994) or Mills (2003). The basic idea of spectral analysis is to transfer a time
series {yt}Tt=1 into the superposition of oscillation with different frequencies. From this it is
possible to evaluate the effects of an instrument for the estimation of trend and cycle on the
time series in the frequency domain. There are basically two effects characterized by the
gain and the phase. The gain can be interpreted as the factor by which the amplitude of an
oscillation is weighted, when an instrument for the extraction of trend or cycle is applied.
Given the notation of such an instrument as a linear filter (e.g. Harvey 1993 p.189)

xt =
s∑

j=−q
hjyt−j , (6.1)

it is calculated for given filter weights hj and a frequency ω as (e.g. Mills 2003 p.80)

g(ω) =

√√√√√
 s∑
j=−q

hj cos(ωj)

2

+

 s∑
j=−q

hj sin(ωj)

2

. (6.2)

A gain of zero induces that a frequency ω is completely suppressed and a gain of one implies
that it is not affected by the filter. Beside the change of the amplitude of certain oscillations
linear filters can induce phase shifts. This means the peaks and bottoms of an oscillation
are shifted along the time axis. The phase is given as (e.g. Mills 2003 p.81)

θ(ω) = tan−1
∑
hj sin(ωj)∑
hj cos(ωj)

. (6.3)

Figure 6.1 exemplary shows the effects of a filter on a time series in the frequency domain:
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Fig. 6.1: Effects of linear filters in the frequency domain
(c.f. King/Rebelo 1993 p.215)
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Considering the gain function, i.e. the gain over a bandwidth of frequencies, usually [0, π],
gives information about what frequencies are extracted by the filter. An ideal instrument for
trend estimation suppresses oscillations with high frequencies, while it does not affect those
with lower frequencies. Because it leaves low frequencies unchanged it is called lowpass
filter. Two further ideal filter types are the highpass filter and the bandpass filter. The
highpass filter completely suppresses low frequencies and leaves all others unchanged so that
it eliminates the trend. The bandpass filter completely suppresses high and low frequencies
and is applied to extract the cyclical component. Figure 6.2 shows examples for the gain
functions of the ideal filter types (c.f. Schlittgen/Streitenberg 2001 p.173):
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Fig. 6.2: Gain functions of ideal filters

Given the effects of linear filters on series in the frequency domain, Baxter/King (1999)
postulate features for time series filters. The first one is that time series filters should
exhibit a gain function similar to an ideal gain function. It is not possible to completely
realize an ideal gain function for finite time series (Oppenheim/Schafer 1989). In this regard
Baxter/King urge that a lowpass filter should at least exhibit a gain of one for ω = 0. This

condition holds for the lowpass filter, if the filter weights sum up to one so that
s∑
j=q

hj = 1

(Baxter/King 1999). The highpass filter should at least fulfil g(0) = 0, which is the case, if

the weights sum up to zero, i.e.
s∑
j=q

hj = 0.

A further condition for a time series filter is that it should not induce phase shifts, as this
might change the original relation between the filtered and other series. To this point a
linear filter does not induce phase shifts, if its filter weights are symmetric (e.g. Mills 2003
p.81). Thus, the filter must fulfil q = s as well as hj = h−j ∀ j = 1, 2, 3, ....

Finally, the series has to be stationary after the trend component is removed, even if the
original series is not stationary, i.e. includes a deterministic time trend or unit roots. It
can be shown that linear filters eliminate quadratic time trends as well as stochastic trends
of order two, if they are symmetric and their filter weights sum up to zero (Osborn 1995,
Baxter/King 1999).
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Based on these conditions Baxter/King (1999) develop the widespread Baxter/King-filter,
which is summarized in the next section. Afterwards it is examined in how far penalized
splines meet these requirements for time series filters.

6.3 Lowpass filters

6.3.1 The Baxter-King filter

One of the most popular filters in economics is the so called Baxter-King filter (Baxter/King
1999, henceforth denoted as BK-filter). The basic idea is to construct a linear filter

xt =

∞∑
j=−∞

bjyt−j,, (6.4)

that has a gain function with minimal deviation to an ideal gain function of a lowpass filter
with a certain cut-off frequency ωcf . The filter shall further be symmetric in order to avoid
phase shifts. Let g∗(ω) be the ideal gain for frequency ω and g(ω) the one of the filter, then
the BK-filter shall minimize

π∫
0

[g∗(ω)− g(ω)]2 dω, (6.5)

subject to
bj = b−j ∀ j = 1, 2, ... .

Thus, the BK-filter minimizes the squared deviation between ideal and real gain function.
In the case of an ideal infinite filter the filter weights are derived by the inverse Fourier
transformation of the ideal gain function (c.f. Baxter/King 1999 p.577 and 592-593).

b0 =
ωcf

π
and bj =

sin(jωcf )

jπ
, ∀ j = 1, 2, ... .

Of course an infinite linear filter is not practicable so that the length of the filter weights has
to be limited to N = 2n+ 1. It can be shown that for a real finite filter the weights aj are
equal to the ideal weights bj (Baxter/King 1999, Sargent 1987). Baxter/King furthermore

demand that the gain of the filter is one for ω = 0. This implies that
n∑

j=−n
aj = 1, which

finally results in

a∗j = aj + η, where η =

1−
n∑

j=−n
aj

2n+ 1
. (6.6)

The decisive feature of the BK-filter is the selection of n. A high value of n results in a good
approximation of the ideal gain function. However, the BK-filter cannot yield estimations
for the first and last n periods of the series. This is a drawback, as researchers often are
predominantly interested in the most recent periods. Thus, there is a tradeoff between a
good approximation of the ideal gain function and receiving estimates for the most recent
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periods. To this regard Baxter/King (1999) suggest to use n = 12 for quarterly data, as
this value would yield a sufficient gain function without losing too much periods.

6.3.2 Penalized splines

This chapter describes briefly the most important facts about penalized splines. It is focused
on tp-splines that denote splines with a truncated polynomial basis, which trace back to
Brumback et al. (1999). For a detailed discussed see also Ruppert et al. (2003). Even if
tp-splines tend to be numerical instable (Fahrmeir et al. 2009 p.303), they are advantageous
due to their relative easy implementation and straight interpretation. Estimating the trend
component for a time series {yt}Tt=1 with a tp-spline means the trend function is modelled
in dependence of time t, t = 1, ..., T . After dividing the variable t into m − 1 intervals by
setting m knots 1 = κ1 < κ2 < ... < κm = T , a tp-spline of degree l, henceforth denoted as
tp(l), is defined to:

yt = f(t) + εt = β1 + β2t+ ...+ βl+1t
l + βl+2(t− κ2)l+ + ...+ βd(t− κm−1)l+ + εt, (6.7)

with (t− κj)l+ =

(t− κj)l , t ≥ κj
0 , else

,

where εt is the error term and d = m+ l − 1. Writing f(t) in matrix notation yields:

y = Zβ + ε, (6.8)

with Z =


1 1 . . . 1l (1− κ2)l+ . . . (1− κm−1)l+
...

... . . .
...

... . . .
...

1 T . . . T l (T − κ2)l+ . . . (T − κm−1)l+

 .

Here, β = (β1, ..., βd)
′, ε = (ε1, ..., εT )′ and y = (y1, ..., yT )′. tp-splines can be interpreted as

a continuous function of piecewise defined polynomials of degree l. Because of the truncated
polynomials the coefficient of the highest polynomial changes at every knot, which enables
f(t) to become very flexible. The parameters of the truncated polynomials determine to
what degree the coefficient of the highest polynomial can change at the knots. Absolute
high values of βl+2, ..., βd allow a great flexibility of the trend function. To regulate the
smoothness of the trend, the absolute values of these parameters have to be controlled. This
is done by estimating the vector of coefficients by minimizing the penalized least squares
criterion

min
β

PLS(λ) =
T∑
t=1

[yt − f(t)]2 + λ
d∑

j=l+2

β2j . (6.9)

The second part of PLS(λ) controls the smoothness of the estimated trend function. It is
weighted by the penalization parameter λ. Increasing the value of λ induces a smoother
trend, as the estimated coefficients of the truncated polynomials become absolutely smaller.
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The solution of (6.9) in matrix notation is given by:

ŷ(λ) = Z(Z ′Z + λK)−1Z ′y, (6.10)

where K = diag(0, .., 0︸ ︷︷ ︸
l+1

, 1, ..., 1︸ ︷︷ ︸
m−2

) ∈ Rd×d.

6.4 Penalized splines and ideal filters

6.4.1 The gain function

In this section it is investigated in how far penalized tp-splines can approximate ideal
gain functions. A good lowpass filter at least should have a gain of one for oscillations
with zero frequency. This is fulfilled if the filter weights sum up to one. From formula
(6.10) a penalized tp-spline can be easily expressed as a linear filter. Defining H(λ) =

Z(Z ′Z + λK)−1Z ′ allows to write the tp-spline as

ŷ(λ) = H(λ)y. (6.11)

The tth row of H(λ) contains the filter weights for estimation ŷt. Let hij define the jth

element in the ith row of H(λ), then ŷt is defined as

ŷt =

T∑
j=1

htjyj . (6.12)

For this notation the gain of the tp-spline for an estimation ŷt and a certain frequency ω
can be calculated as:

gt(ω, λ) =

√√√√√
 T−t∑
j=1−t

ht,j+t cos(ωj)

2

+

 T−t∑
j=1−t

ht,j+t sin(ωj)

2

. (6.13)

A gain of one for frequency ω = 0 is given for every estimation ŷt, t = 1, ..., T , if the filter
weights sum up to one for every row of H(λ), i.e.

H(λ)1 = 1.

This condition holds for any penalized spline in general as long as an intercept is included
(Eubank 1983).13 Thus, penalized tp-splines have a gain of one for ω = 0. The spline can
easily be formulated as a highpass filter:

ε̂ = y −H(λ)y = [I −H(λ)]y.

13A specific proof for penalized tp-splines is provided in appendix 6.A.
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It follows immediately that g(0) = 0 holds for all estimations of the highpass filter, as
[I −H(λ)]1 = 0. Consequently, the basic requirements for low- and highpass filters are
fulfilled. Moreover, Figure 6.3 shows the gain functions for splines of different degrees that
aim to approximate an ideal gain function with a cut-off frequency of ωcf = 0.785 in the
case of a lowpass filter. The gain functions refer to the 51th estimation of a series with 101
observations.
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Fig. 6.3: Gain functions for splines of different degrees

All splines approximate the ideal gain function. The approximation becomes more accurate
for higher degrees of the splines. This shows the connection of penalized tp-splines and
rational square wave filters (Pollock 2000, 2003). For knots at every point in time Proietti
(2007) describes a tp(l) as a trend plus noise model, where the trend is a l+1-fold integrated
random walk, which is a special case of the Wiener-Kolmogorov filter (Whittle 1983, Bell
1984, also Harvey 1989, Kaiser/Maravall 2001). Since rational square wave filters are closely
related to the framework of the Wiener-Kolmogorov filter penalized tp-splines can be linked
to the class of square wave filters. In detail the degree of the spline regulates the bandwidth
for the transition of the gain function from one to zero, and the penalization parameters
controls the approximate cut-off frequency.

One advantage of penalized splines to the BK-filter is that they yield a trend estimation for
the whole time series, while the BK-filter cannot estimate trend or cycle for the first and
last n periods. However, one has to be aware that the estimation of splines heavily loses its
reliability to the margins of the series. This is caused by the problem that the filter weight
structure cannot be symmetric for the first and last estimations. This asymmetry induces
far too volatile estimations for periods at the margins. To this point Figure 6.4 shows the
gain functions of the tp(3) of the example above for different periods:
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Fig. 6.4: Gain functions for different periods

The gain function of the 51th and 60th estimation are good approximations of an ideal gain
function. However, for estimations closer to the margins the spline is not able to suppress
higher frequencies any more, which is shown by the gain functions for the 95th and 101th

estimation. The insufficient suppression of high frequencies heavily affects the reliability
at the margins, which is called excess variability. For a detailed discussion of the excess
variability of splines to the margins see Blöchl (2014b). The number of elements that show
an increased variability at the margins depends on the value of the penalization and the
degree of the spline. A higher penalization as well as a higher degree of the spline ceteris
paribus increases the number of estimations that are affected by the excess variability.

6.4.2 Phase shifts and the elimination of unit roots

It is reasonable to examine the induction of phase shifts and the elimination of unit roots
together, as both are based on similar conditions. Linear filters do not induce phase shifts
when they are symmetric and they are able to turn time series that are integrated of order
one or two into stationary series, if furthermore their filter weights sum up to zero (Osborn
1995, Baxter/King 1999).

It is already shown in section 6.4.1 that the filter weights of a penalized spline sum up to
zero, when it is used as a highpass filter. The condition of symmetry would be fulfilled if
the entries of the hat matrix H(λ) are symmetric around the weights hii. Of course, for a
finite time series this condition can never hold for all estimations, especially at the margins.
As an example Figure 6.5 displays the filter weights for a penalized tp-spline of degree two,
25 knots and λ=100 that is applied to a series containing 101 observations:
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Fig. 6.5: Filter weights of a tp-spline for different estimations

Although the filter weights refer to the tp-spline as a lowpass filter, they are also representa-
tive for the case of a highpass filter, as the weights of the corresponding highpass filter just
arise from I −H(λ). Observation 51 is the middle of the data. Obviously, the correspond-
ing weights are symmetric. With an increasing distance to the middle the weights become
more asymmetric, which is a drawback to completely symmetric filters like the Baxter-King
filter.

To this point Dagum/Luati (2004) note that H(λ) is centroysmmetric, which means hij =

hT+1−i,T+1−j . This implies that for an odd number of observations the filter weights for
the estimation in the middle of the data are symmetric. Furthermore, linear smoothers
generate filter weights that symmetrically decrease to zero with a growing distance to the
middle weight (Dagum/Luati 2004). This means hij → 0 as |i − j| → ∞. Consequently,
for an infinite series the filter weights would be symmetric for every estimation. As a result
penalized splines asymptotically do not induce phase shifts and are able to eliminate unit
roots, when T →∞.

Moreover, the decrease of the filter weights for growing |i − j| depends on the selected
penalization. For low values of λ the filter weights converge very fast to zero. This results
in a rather wiggly trend, as only the nearest observations are influential for the estimation.
A high value of λ induces a slow decline of the weights. Thus, for a given estimation also
observations far away play a significant role. This leads to a rather smooth trend estimation.
Figure 6.6 shows this fact for a tp-spline with l = 1 and T equidistant knots, that is applied
to a series with 101 observations. The weight structures refer to the middle of the series.
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Fig. 6.6: Filter weights for a tp(1) with low and high penalization

The left plot shows the filter weights for the case of a low penalization. Here, only the
nearest twelve observations have a notable influence on the estimation. This is different for
the case of λ = 10000, where almost all observations have a weight that is different from
zero and where the convergence to zero would require much more than the length of the
time series. As a consequence, the induction of phase shifts and the approximative ability
of splines to eliminate unit roots is rather given in cases of a low penalization. The effect of
the number of observations and the penalization on the ability of splines to eliminate unit
roots can easily be demonstrated. To this point a penalized tp-spline with varying values
of λ is applied to simulated time series with different numbers of observations. The series
are simulated as the sum of a r-fold integrated random walk as the trend component and
a stationary AR(1)-process as the cyclical component, i.e. yt = µt + ct where

(1− L)rµt = ηt, (6.14)

ct = ϕct−1 + ut. (6.15)

ηt and ut are independent white noise variables with variances σ2η and σ2u. For the simulation
the parameters are set to r = 1, ϕ = 0.5 and σ2η = σ2u = 1. The simulated time series
contain 50, 100 and 250 observations, while for each case 500 series are generated. The
trend component of the series is estimated by a tp-spline of order one and knots at every
point in time t, t = 1, 2, ..., T . Note that this setting is equal to the Hodrick-Prescott
filter (Paige 2010). Finally, a Dickey-Fuller test (Dickey/Fuller 1979) is used to test, if the
resulting residual components are stationary, where a constant term and a linear trend are
included into the test equation. Table 6.1 shows the resulting average p-values of the tests:
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length λ = 10 λ = 102 λ = 103 λ = 104 λ = 105 λ = 106

T = 50 0.011 0.035 0.159 0.334 0.438 0.457
T = 100 ≤0.01 ≤0.01 0.018 0.101 0.278 0.429
T = 250 ≤0.01 ≤0.01 ≤0.01 0.010 0.034 0.178

Tab. 6.1: Average p-values of the Dickey-Fuller test

Low p-values indicate that on average the unit root has been eliminated. The p-values
increase for higher values of λ, while they decrease, when the number of observations rises.
Furthermore, note that the results would be similar for splines of higher degrees, when the
penalization is set to an equivalent level. The results also do not basically change, if a
higher signal to noise ration is selected, or if the value for ϕ is changed.
To show the practical relevance of this issue a probably more realistic example is con-
structed. Consider data for the quarterly German GDP that are at the moment consistently
available form the first quarter 1991 to the third quarter 2013, which makes 91 observations.
To this regard 1000 time series with 91 observations are simulated by the same process as
before, but this time the parameters are set to r = 2, ϕ = 0.9, ση = 0.25 and σu = 10 so that
the inverse signal to noise ratio is σ2

u
σ2
η
is 1600. This might be not unrealistic for quarterly

data (Hodrick/Prescott 1997). Just like before the trend is estimated by a tp(1) with knots
at every point in time, which is equal to the Hodrick-Prescott filter (Paige 2010). Defining
the trend component by fluctuations with periodicities above six, eight or ten years implies
values for λ of 453, 1410 and 3417, if the deviation between real and ideal gain function is
minimized (Tödter 2002). Again the Dickey-Fuller test is applied to each residual compo-
nent. Figure 6.7 shows the empirical cumulative density functions of the p-values for each
value of λ:
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Fig. 6.7: p-values of the Dickey-Fuller test for different values of λ

The empirical cumulative density function is shifted to the right as λ increases. While for
λ = 453 about 95 percent of the p-values are smaller than 0.05, this is only the case for
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about 60 percent of the p-values for λ = 3417. The average p-value for λ = 3417 is 0.073,
while it is 0.037 for λ = 1410 and 0.016 for λ = 453. This demonstrates that the ability of
splines to eliminate unit roots decreases for higher values of λ.

6.5 Comparison to the Baxter-King filter

6.5.1 Lowpass filters

In this section the ability of penalized tp-splines to extract certain frequency bands is
compared to the one of the BK-filter. To this point the penalization of splines is selected
such that the gain function of the spline shows a minimal squared deviation to an ideal
gain function with a certain cut-off frequency ωcf , which is identical to the criterion of
the BK-filter. Let g∗(ω) define the ideal gain for frequency ω, and gt(ω, λ) the gain of the
tp-spline for estimation ŷt, frequency ω and a certain value of λ, then the penalization is
selected such that it minimizes:

l(t, λ) =

π∫
0

[g∗(ω)− gt(ω, λ)]2 dω. (6.16)

l(t, λ) is the squared deviation between real and ideal gain function in the interval [0, π] and
henceforth denoted as loss. The calculation can easily be simplified by a sufficient large
number of discrete frequencies.

l(t, λ) depends on the period of the estimation, for which the loss is minimized. As seen in
Figure 6.4, the gain functions are not equal for estimations for different periods. However,
as it is also shown later, the gain functions of the splines are almost equal for the majority of
estimations except of the margins. Thus, the penalization is selected such that it minimizes
l(t, λ) for the estimation in the middle of the series, i.e. for t = T/2, or its next integer if T
is odd. Most other estimations require almost the same degree of penalization in order to
minimize the loss (Blöchl 2014b). Furthermore, the number of knots has to be selected. As
a low number of knots might be restrictive and hindering to achieve a precise gain function,
it is always set as high as possible.

The BK-filter is opposed to penalized tp-splines for the case of a lowpass filter. To this
regard two different cut-off frequencies are considered that are set to ωcfh = 0.785 and
ωcfl = 0.196. Both imply a cut-off periodicity of eight years for the cases of yearly data
(ωcfh ) and quarterly data (ωcfl ). As the degree of the tp-spline affects its properties in the
frequency domain (Blöchl 2014b), the BK-filter is opposed to a tp(1) as well as a tp(3). For
quarterly data Baxter/King (1999) suggest to set n = 12, as this would yield a sufficient
tradeoff between a good adaptation to an ideal gain function and a low number of dropped
observations at the margins. Consequently, n is set to 12 for the case of ωcfl so that for
quarterly data the first and last three years are lost. For the case of ωcfh a value of n = 3 is
selected, as this implies the loss of three years at the ends for yearly data. Table 6.2 shows
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the results for the BK-filter and splines for the case of a time series with 130 observations.
The loss refers to the estimation in the middle (65th estimation). Furthermore, Table 6.2
shows the minimal value of n that is necessary to achieve better results than penalized
tp-splines.

ωcfl ωcfh
BK-
filter

n=12 0.0228 n=3 0.0890
n=36 0.0095 n=9 0.0357

spline tp(1) 0.0191 tp(1) 0.0814
tp(3) 0.0095 tp(3) 0.0379

Tab. 6.2: loss for the BK-filter and tp-splines

For both n = 3 and n = 12 the BK-filter exhibits a worse adaptation to the ideal gain
function than penalized tp-splines. In the case of ωcfl the loss of the BK-filter is about 20
percent higher than the one of the tp(1) and even 2.4 times higher than the loss of the
tp(3). For ωcfh the deviation between the loss of the BK-filter and the tp-splines is about the
same degree. Moreover, to achieve comparable results to the tp(3), in both cases at least a
three times higher value for n has to be selected. This would imply that nine years at each
margin are lost. To show the differences between the BK-filter and the tp-splines, Figure
6.8 plots the gain functions of the tp(3) and the BK-filter for both cut-off frequencies. The
gain function of the tp(3) refers to the 65th estimation.
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Fig. 6.8: Gain functions of the BK-filter and the tp(3)

In both cases the gain function of the tp(3) clearly exhibits preferable characteristics. The
BK-filter is not able to completely suppress high frequencies, which is already explored by
Goldrian (2005) for low cut-off frequencies. For ωcfh a certain bandwidth of frequencies
is even amplified. However, so far the analysis is incomplete as the gain functions of the
splines might not be equal for estimations for different periods. The gain functions of the
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splines change especially to the margins so that the loss for the estimations of all periods,
henceforth denoted as the loss function, should be compared. Figures 6.9 and 6.10 display
the loss functions for ωcfh for the tp(1) and the tp(3) and oppose them to the BK-filter.
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Fig. 6.9: loss functions of the BK-filter and the tp(1) for ωcfh
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Fig. 6.10: loss functions of the BK-filter and the tp(3) for ωcfh

Figures 6.9 and 6.10 show that the loss of the splines is almost equal for the majority of
estimations and increases only for few estimations at the margins of the series. The loss
of the BK-filter is equal for the estimations of every period, since the filter weights are the
same for all periods. This, however, is paid by the loss of n estimations at the margins. The
loss of the tp(1) as well as the tp(3) is clearly lower than the one of the BK-filter for almost
all estimations. Just one estimation at each margin of the series exhibits a loss above the
one of the BK-filter. Figures 6.11 and 6.12 display the loss functions for the case of ωcfl :
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Fig. 6.11: loss functions of the BK-filter and the tp(1) for ωcfl
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Fig. 6.12: loss functions of the BK-filter and the tp(3) for ωcfl

The situation of ωcfl is similar to the case of ωcfh . For the tp(1) the estimations for almost
all periods exhibit a lower loss than the BK-filter. Only for few estimations at the margins
there is no notable difference between the filters. The tp(3) suffers from a far higher vari-
ability at the ends than the tp(1). There are four estimations at each margin that notably
show a higher loss than the BK-filter. However, for the majority of estimations the tp(3)

clearly yields better results.

The analysis shows that, compared to the BK-filter, penalized tp-splines have advantageous
features as lowpass filters. The accuracy of the gain function can be controlled by the
degree of the spline, while there is a tradeoff between a good approximation of an ideal
gain function for the majority of estimations and a low increase of the variability at the
margins. Although tp-splines suffer from an increasing variability at the margins they yield
for (almost) all estimations better results than the BK-filter for the standard selection of
n=12 for quarterly, and n=3 for yearly data. To achieve comparable results to splines a
much higher loss of estimations at the margins would have to be accepted for the BK-filter.
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Moreover, the excess variability of penalized splines at the margins can be reduced notably
by a time-varying penalization (Blöchl 2014b).

6.5.2 Bandpass filters

The previous comparison demonstrates that penalized tp-splines appear to be the preferable
choice as lowpass filters. This is also true for the case of highpass filters, as highpass filters
directly arise from the lowpass filter. However, it is worth comparing penalized tp-splines
and the BK-filter as bandpass filters. The bandpass filter is constructed from two lowpass
filters with a high and a low cut-off frequency ωcfh and ωcfl . Let Hh and Hl denote the
hat matrices that contain the weights of the lowpass filters, then the weight matrix of the
bandpass filter is defined to Hh −Hl (c.f. Baxter/King 1999 p.578). For this comparison
the cut-off frequencies are set to ωcfl = 0.196 and ωcfh = 1.048. This implies for quarterly
data that the cycle is defined by periodicities between six and 32 quarters. Table 6.3 shows
the basic results for a series with 130 observations. For the BK-filter n was set to twelve.

filter loss (65th estimation)
tp(1) 0.136
tp(3) 0.060

BK-filter (n=12) 0.046

Tab. 6.3: loss for the BK-filter and tp-splines

The values in Table 6.3 refer to the estimation in the middle of the series. In the case of
a bandpass filter the BK-filter exhibits a lower loss than the tp(1) and the tp(3). To this
regard Figure 6.13 displays the corresponding gain functions:
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Fig. 6.13: Gain functions of the BK-filter and penalized splines
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Figure 6.13 shows the reasons for the better results of the BK-filter. While both splines
exhibit a slightly better adaptation to the ideal gain function at the low cut-off frequency,
the BK-filter yields a much better adaptation at the high cut-off frequency. To get a
complete overview about the performances of the filters, Figures 6.14 and 6.15 display the
loss functions:
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Fig. 6.14: loss functions of the tp(1) and the BK-filter
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Fig. 6.15: loss functions of the tp(3) and the BK-filter

Figures 6.14 and 6.15 show that the BK-filter exhibits a lower loss for all estimations.
In this setting it cannot yield estimations for the first and last twelve periods. However,
for the tp(3) about an equivalent number of estimations is strongly affected by the excess
variability. The tp(1) exhibits only five estimations that are strongly affected by the excess
variability at each margin. Nevertheless, the BK-filter would yield better results than the
tp(1), even if n would be set to five.



6 Penalized Splines in the Light of Baxter/King 95

6.6 Conclusion

The characterization of trend and cycle by their spectral properties is a widespread and
helpful conception for a reasonable separation of these components in economics. In this
regard the BK-filter is one of the most popular tools to derive trend and cycle by frequency
domain aspects. It arises from the postulations of Baxter/King for an ideal time series
filter. The aim of this chapter is to shed light on in how far penalized splines meet these
requirements. It summarizes theory about time series filters in the frequency domain,
penalized splines with a truncated polynomial basis as well as the BK-filter, and analyzes
the properties of penalized splines with regard to the extraction of frequency bands, the
elimination of unit roots and the induction of phase shifts. Furthermore, the ability of
penalized splines to extract frequency bands is compared to the one of the BK-filter.

This chapter shows that the filter weights of penalized tp-splines sum up to one for every
estimation so that one basic condition of Baxter/King is fulfilled. It ensures that the gain
of a penalized tp-spline is one for a frequency of zero. Moreover, this chapter demonstrates
that the gain function of a penalized spline strongly depends on its degree. A higher degree
allows a more precise extraction of frequency bands as the transition of the gain function
from one to zero becomes faster. This behavior points out the link of penalized tp-splines
and rational square wave filters. The degree of the spline controls the transition of the gain
function, while the penalization parameter determines the approximate cut-off frequency.

A basic advantage of the BK-filter is that it renders symmetric filter weights for every
estimation. This filter weight structure does not induce phase shifts and yields an identical
gain function for every estimation. However, the condition of completely symmetric filter
weights does not permit to estimate the trend component for the first and last n periods,
which is a major drawback of this filter. Penalized tp-splines as asymmetric filters generally
are able to derive estimations for all periods. This property is paid by an change in the
filter weights structure that becomes increasingly asymmetric to the margins of the series.

The change of the filter weight structure induces phase shifts and affects the gain func-
tions of penalized tp-splines. The gain functions are good approximations of an ideal gain
function for most estimations. However, penalized tp-splines increasingly lose the ability to
suppress high frequencies to the margins of the series, which results in a too volatile trend
estimation at the margins. The filter weights of a penalized tp-spline are centrosymmet-
ric. In detail, they decrease symmetrically to zero from the weight hii of the hat matrix
H(λ), which means hij → 0 as |i− j| → ∞. The speed of the convergence depends on the
penalization parameter λ, which becomes slower for high values of λ. Thus, the ability of
penalized splines to eliminate unit roots or quadratic time trends as well as to avoid phase
shifts depends on the value of the penalization and the number of observations, which is
demonstrated in section 6.4.2.

In the last section the ability of both filters to extract frequency bands is compared. This
is done for the case of lowpass filters for the fictive situations of quarterly and yearly data
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at first. To this point a cut-off periodicity of eight years is assumed. It is shown that
penalized tp-splines clearly yield more precise gain functions than the BK-filter, when the
standard setting of n = 12 for quarterly and n = 3 for yearly data is considered. To achieve
comparable results to penalized splines at least three times higher values of n have to be
selected. This comparison also accounts for the excess variability of penalized tp-splines to
the margins. It is shown that penalized splines yield better results for the estimation of all
periods except of the margins. Nevertheless, the number of estimations at the margins that
are lost by the BK-filter is above the number of estimations that are affected by the excess
variability.
Afterwards the filters are compared for the case of bandpass filters, where the cut-off pe-
riodicities are set to six and 32 quarters. Here, the situation turns out to be different. It
is shown that the BK-filter with n = 12 yields better results than penalized tp-splines.
Moreover, the number of estimations that are strongly affected by the excess variability,
when the cycle is estimated by penalized tp-splines, is about as high as the number of
estimations lost at each margin, when the BK-filter is applied. Consequently, for quarterly
data penalized splines appear to be superior as lowpass filters, but the BK-filter seems to
have advantageous properties, when it is employed as a bandpass filter.
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Appendix

6.A Proof that filter weights of a penalized tp-spline sum up to one

The hat matrix of a penalized tp-spline is defined as:

H = Z(Z′Z + λK)−1Z′.

As an intercept is included, the design matrix Z ∈ RT×d has only ones as the first column.
Z is divided into

Z = (Z1,Z2),

where Z1 = 1 ∈ RT×1 and Z2 ∈ RT×(d−1). Furthermore, λK can be portioned into:

K =

(
K1 K2

K3 K4

)
,

with the portioned matricesK1 = 0 ∈ R1×1, K2 = 0 ∈ R1×(d−1), K3 = 0 ∈ R(T−1)×1 and
K4 ∈ R(T−1)×(d−1). This yields:

(Z′Z+λK)−1 =

((
Z′1
Z′2

)
(Z1 Z2) + λK

)−1
=

((
Z′1Z1 Z′1Z2

Z′2Z1 Z′2Z2

)
+ λ

(
K1 K2

K3 K4

))−1
=

((
Z′1Z1 Z′1Z2

Z′2Z1 Z′2Z2

)
+ λ

(
0 0

0 K4

))−1
=

((
Z′1Z1 Z′1Z2

Z′2Z1 Z′2Z2 + λK4

))−1
=

(
J1 J2

J3 J4

)

Partial inversion general (e.g. Fahrmeir et al. 2009 p.451):

A =

(
E F

G L

)

A−1 =

(
E−1(I + FD−1GE−1) −E−1FD−1

−D−1GE−1 D−1

)
,

where D = L−GE−1F . This implies that:

D = Z′2Z2 + λK4 −Z′2Z1(Z′1Z1)−1Z′1Z2 = λK4 +Z′2(I −H1)Z2,

with H1 = Z1(Z′1Z1)−1Z′1.

Consequently J1,J2,J3 and J4 can be written to:

J1 = (Z′1Z1)−1(I +Z′1Z2(λK4 +Z′2(I −H1)Z2)−1Z′2Z1(Z′1Z1)−1),
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J2 = −(Z′1Z1)−1Z′1Z2(λK4 +Z′2(I −H1)Z2)−1,

J3 = −(λK4 +Z′2(I −H1)Z2)−1Z′2Z1(Z′1Z1)−1,

J4 = (λK4 +Z′2(I −H1)Z2)−1.

Calculating the hat matrix of the penalized tp-spline yields:

H = Z(Z′Z)−1Z′ = (Z1Z2)

(
J1 J2

J3 J4

)(
Z′1
Z′2

)
=

Z1(Z′1Z1)−1Z′1 +Z1(Z′1Z1)−1Z′1Z2(λK4 +Z′2(I −H1)Z2)−1Z′2Z1(Z′1Z1)−1Z′1−

−Z1(Z′1Z1)−1Z′1Z2(λK4 +Z′2(I −H1)Z2)−1Z′2−

−Z2(λK4 +Z′2(I −H1)Z2)−1Z′2Z1(Z′1Z1)−1Z′1+

+Z2(λK4 +Z′2(I −H1)Z2)−1Z′2 =

= H1 +H1Z2(λK4 +Z′2(I −H1)Z2)−1Z′2H1−

−H1Z2(λK4 +Z′2(I −H1)Z2)−1Z′2−

−Z2(λK4 +Z′2(I −H1)Z2)−1Z′2H1+

+Z2(λK4 +Z′2(I −H1)Z2)−1Z′2.

Rearranging terms finally yields:

H = H1 + (I −H1)Z2(λK4 +Z′2(I −H1)Z2)−1Z′2(I −H1).

Since H1 = Z1(Z′1Z1)−1Z′1 and Z1 = 1 this is equivalent to:

H =
11′

T
+ (I −H1)Z2(λK4 +Z′2(I −H1)Z2)−1Z′2(I −H1).

Let p = d− 1 then furthermore (I −H1)Z2 can be written to:

(I −H1)Z2 =

(
I − 11′

T

)
Z2 = Z2 −

11′

T
Z2 = Z2 − 1

(
1

T
1′Z2

)
=

= Z2 −

1

T∑
i=1

z1i

T
, ...,1

T∑
i=1

zpi

T

 =

= Z2 − (1z̄1, ...,1z̄p) =

= (z1 − z̄1, ...,zp − z̄p) = Z̃.
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zi is the ith column of the matrix Z2 and z̄i is a T × 1 vector containing the mean of zi.
Thus Z̃ is the matrix of the deviations from the mean for every variable zi, i = 1, ..., p. As
a consequence Z̃′1 = 0 since:

Z̃′1 =

z1 − z̄1

. . .

zp − z̄p

1 =


T∑
i=1

(z1i − z̄1)

. . .
T∑
i=1

(zpi − z̄p)

 =


T∑
i=1

z1i − T z̄1

. . .
T∑
i=1

zpi − T z̄p

 =


T

T∑
i=1

1
T z1i − T z̄1

. . .

T
T∑
i=1

1
T zpi − T z̄p

 =

=

T z̄1 − T z̄1. . .

T z̄p − T z̄p

 = 0

Considering that (I−H1) is symmetric, it can bee seen quickly thatH1 = 1, which means
that the rows of H sum up to one:

H1 =
11′

T
1 + (I −H1)Z2(λK4 +Z′2(I −H1)Z2)−1Z′2(I −H1)1 =

=
11′

T
1 + (I −H1)Z2(λK4 +Z′2(I −H1)Z2)−1((I −H1)Z2)′1 =

11′

T
1 + (I −H1)Z2(λK4 +Z′2(I −H1)Z2)−1Z̃′1 =

=
11′

T
1 =

1

T
1′1 =

1

T
T = 1.
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