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1. Einleitung 

1.1. Die Angiopoietine und die Tie Rezeptor Tyrosinkinasen 

Die Angiopoietine stellen eine Gruppe von Wachstumsfaktoren dar, die eine entscheidende 

Rolle in der Regelung der Endothelzellaktivität spielen. Die Familie der Angiopoietine besteht 

aus vier Glykoproteinen: Angiopoietin-1 (Ang-1), Angiopoietin-2 (Ang-2), Angiopoietin-3 

(Ang-3) und Angiopoietin-4 (Ang-4). Bei Ang-3 und Ang-4 handelt es sich um orthologe 

Gene, die in Mäusen (Ang-3) und Menschen (Ang-4) gefunden wurden und, anders als 

andere strukturähnliche Proteine (Ang-x, Ang-y), auch an Tie-2 binden159. Über die Wirkung 

dieser zwei Mitglieder der Angiopoietin Familie ist bisher jedoch wenig bekannt, anders als 

bei Ang-1 und Ang-2, die in den letzten Jahren intensiv untersucht wurden. 

Angiopoietin-1 besteht aus 498 Aminosäuren und ist auf Chromosom 8q22 lokalisiert, 

Aniopoietin-2 besteht aus 496 Aminosäuren und ist auf Chromosom 8q23 lokalisiert. Die 

Aminosäuresequenzen von Ang-1 und Ang-2 besitzen eine Homologie von 60% und einen 

ähnlichen Aufbau: Beide Moleküle bestehen aus einer N-terminalen coiled-coil-Domäne und 

einer C-terminalen fibrinogen-like-Domäne 24, 92. Während Ang-1 von perivaskulären Zellen, 

wie smooth-muscle-cells und Perizyten produziert und sezerniert wird24, wird Ang-2 in den 

Endothelzellen selbst produziert und in sogenannten Weibel-Palade-Körperchen (Weibel-

Palade bodies, WPBs) gespeichert. Durch verschiedene Zytokine (z.B. Histamin und 

Thrombin) kommt es zur raschen Ausschüttung von Angiopoietin-2 aus den Endothelzellen41. 

1.1.1. Die Tie Rezeptor Tyrosinkinasen 

Die Tie-Rezeptor-Kinasen Tie-1 und Tie-2 (Tyrosine kinase with immunglobulin-like and 

EGF-like domains) sind Endothelzell-spezifische Transmembranproteine mit einem 

Molekulargewicht von 135 (Tie-1) bzw. 150 (Tie-2) kDa. Sie werden auf den Endothelzellen 

von Lymph- und Blutgefäßen exprimiert. Tie-1 und Tie-2 sind zu 90% homolog und besitzen 

einen gleichen Aufbau: Der extrazelluläre Teil der Tie-Rezeptoren besteht aus drei zentralen 

„epidermal growth factor-like repeats“ (EGF-like repeats). Sogenannte EGF-Module finden 

sich in vielen Membranproteinen 145 und dienen bei den Tie-Rezeptoren als Angiopoietein-

Bindungsstellen (siehe Abbildung 1). Die EGF-like repeats sind umgeben von drei 

immunglobulinähnlichen (Ig-like) Motiven, zwei in N- und eines in C-terminaler Richtung. 

Daran schließen sich weiter in C-terminaler Richtung drei fibronectin type III Domänen an 33, 

91, 131. Der intrazelluläre Teil beider Rezeptoren besteht aus zwei Tyrosin Kinase Domänen. 



1 Einleitung 

 
2 

 

 

Abbildung 1: Schematische Darstellung der Tie-Rezeptor Tyrosinkinasen mit der extrazellulären Domäne 
bestehend aus EGF- und Ig-like Motiven, fibtonectin type III Domänen und der intrazellulären Domäne mit den 
Tyrosinkinasen Motiven 

1.1.2. Bindung der Angiopoietine an die Tie-Rezeptoren 

Sowohl Ang-1 als auch Ang-2 binden an den Tie-2 Rezeptor, wobei nur die Bindung von 

Ang-1 zur Autophosphorylierung des Rezeptors und somit zur Signaltransduktion führt. Als 

kompetetiver Antagonist von Ang-1 bindet Ang-2 zwar auch an den Tie-2 Rezeptor, führt 

aber in der Regel nicht zu dessen Aktivierung 92. 

Um an den Tie-2 Rezeptor zu binden und ihn zu aktivieren, ist es notwendig, dass Ang-1 

mindestens als Tetramer vorliegt78. Die coiled-coil Struktur von Ang-1 ist hierbei unerlässlich, 

um mehrere Ang-1 Moleküle über Disulfidbrücken zu verbinden, während die fibrinogen-like 

Domäne für die Bindung an den Rezeptor verantwortlich ist 120. An dem Tie-2-Rezeptor 

bindet Ang-1 sowohl an die erste Ig-like-Domäne als auch an die EGF-Repeats, wobei beide 

Domänen einzeln nicht ausreichen, um Ang-1 zu binden39. Durch die Bindung von Ang-1 an 

den Tie-2 Rezeptor wird dieser dimerisiert und es kommt zur Autophosphorylierung des 

Rezeptors. 

Ang-2 formt zwar auch Multimere und bindet an den Tie-2 Rezeptor mit gleicher Affinität wie 

Ang-1, induziert aber in der Regel nicht dessen Autophosphorylierung92. Unter bestimmten 

Bedingungen, wie zum Beispiel in vitro unter hohen Konzentrationen, kann Ang-2 jedoch zu 

einer Autophosphorylierung des Tie-2-Rezeptors führen74. Bisher ist noch nicht bekannt, wo 

die molekulare Grundlage für den agonistischen - im Gegensatz zum antagonistischen - 

Effekt von Ang-2 auf den Tie-2-Rezeptor liegt. Mehrere Faktoren wurden mit der 

unterschiedlichen Wirkung von Ang-2 auf den Tie-2-Rezeptor in Verbindung gebracht. Bei 

dieser Frage spielen Überlegungen bezüglich konzentrationsabhängiger und 

zelltypspezifischer Effekte, der Dauer der Ang-2 Stimulation, der Anwesenheit von 

Corezeptoren und anderer Faktoren eine Rolle 150. 
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Für den Tie-1-Rezeptor fehlt bis heute ein Ligand, wobei eine neuere Arbeit von Saharinen 

et. al. andeutet, dass COMP-Ang-1, eine pentamerische Form von Ang-1, unter bestimmten 

Bedingungen an Tie-1 bindet126. In anderen Studien konnte gezeigt werden, dass Tie-1 mit 

Tie-2 heterodimerisiert97 und die Signaltransduktion von Tie-2 beeinflusst97, 98, 157. Tie-1 bleibt 

dennoch ein Rezeptor, über den wenig bekannt ist und dessen Wirkung und Rolle weiterer 

Aufklärung bedarf. 

1.1.3. Bedeutung der Angiopoietine in Embryogenese und Inflammation 

Tie-2 defiziente Mäuse zeigen eine deutlich gestörte Gefäßmorphologie mit einer geringeren 

Organisierung des Gefäßbaumes und einer Reduktion der Perizytendichte in den 

subendothelialen Schichten der kleinen Gefäße, bei einer embryonalen Letalität am Tag 

E10,532, 129. Ein ähnlicher, wenn auch geringer ausgeprägter Effekt konnte durch einen 

Knockout von Angiopoietin-1 erreicht werden146. Interessanterweise führt auch eine 

(kardiale) Überexpression von Angiopoietin-1 zu schweren Defekten in der Entwicklung von 

Herz und Gefäßsystem. So sterben 90% der Tiere zwischen E12,5 und E15,5 mit 

fehlgeformten Herzen (dünne Herzwände, kardiale Hämorrhagien, vergrößerte Vorhöfe)163. 

Die Überlebensfähigkeit Angiopoietine-2 defizienter Mäuse ist abhängig vom genetischen 

Hintergrund der knockout-Tiere. Grundsätzlich zeigen die Tiere eine Störung der 

Lymphangiogenese mit schwächer ausgeprägten Gefäßabnormalitäten135. Bei der 

Untersuchungen der Linsen Ang-2 defizienter Mäuse konnten Gale et al. zeigen, dass ein 

Knockout von Ang-2 zunächst keine Auffälligkeiten in der Blutversorgung durch die A. 

Hyloidea zur Folge hatte. In der Maus kommt es postnatal zu einer Rückbildung dieser 

Gefäße, welche in den Ang-2 Knockoutmäusen ausblieb. Dass die Veränderungen des 

lymphatischen Systems durch einen Knockin von Angiopoietin-1 in den Ang-2 Lokus 

unterdrückt werden konnten, die vaskulären Defekte aber weiterhin bestanden, deutet auf 

eine kontextabhängige Wirkung von Ang-2 hin45, 150. Zuletzt zeigen transgene Tiere, die 

Angiopoietin-2 überexprimieren, erneut einen vergleichbaren Phänotyp wie Ang-1 und Tie-2 

defiziente Tiere, mit einer noch früheren embryonalen Letalität am Tag E9,5-E10,5 und 

ausgeprägteren Gefäßdefekten92. 

Im adulten Organismus herrscht ein Übergewicht von Ang-1 gegenüber Ang-2. So wird Ang-

1 von mesenchymalen Zellen konstitutiv exprimiert146, während die Ausschüttung von Ang-2 

aus den Endothelzellen eines pathologischen Stimulus bedarf41. Unter physiologischen 

Bedingungen steht also die Aktivierung des Tie-2 Rezeptors und der folgenden Signalwege 

im Vordergrund. So wird im adulten Organismus das Überleben der Endothelzellen über die 

Aktivierung des PI3-Kinase-Akt Signalwegs gefördert80. Die phosphorylierte Akt (Phospho-

AKT) phosphoryliert ihrerseits diverse pro-apoptotische Proteine (z.B. BAD und Procaspase-
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9), welche hierdurch inaktiviert werden16. Phospho-Akt aktiviert des Weiteren den anti-

apoptotisch wirkenden Mediator Survivin115. 

Weiterhin fördert Angiopoietin-1 die Anlagerung von Perizyten/SMCs, wie in den Ko-

Kulturversuchen von Kobayashi et al. demonstriert wurde79. Es konnte ebenfalls gezeigt 

werden, dass die Rekrutierung muraler Zellen durch Ang-1 abhängig ist von den 

Wachstumsfaktoren HB-EGF (heparin binding EGF like growth factor) und HGF (hepatocyte 

growth factor)62, 79. Neben den Effekten von Ang-1 auf das Überleben von Endothelzellen 

und die Anlagerung muraler Zellen stabilisiert Ang-1 zudem die Kontakte zwischen den 

Endothelzellen. Unter anderem hindert Ang-1 die Internalisierung von VE-Cadherin, einem 

Ankermolekül, welches die Verbindung von Endothelzellen untereinander vermittelt und 

parazelluläre Permeabilität verringert25. Dies geschieht über eine RhoA vermittelte 

Inaktivierung von Src, welches die VEGF-vermittelte Phosphorylierung und Internalisierung 

von VE-Cadherinen hemmt46. Die antiinflammatorische Wirkung von Ang-1 wird weiterhin 

über eine ABIN-2 (A20 binding inhibitor of NF-κB activation-2) vermittelte Inhibierung des 

NF-κB Signalings bewirkt (siehe auch 1.4.1)61. 

Durch die Ausschüttung von Ang-2 wird der kompetitive Antagonist Ang-1 von seiner 

Bindungsstelle am Tie-2 Rezeptor verdrängt, wodurch eine Reihe Ang-1 induzierter Effekte 

unterdrückt wird. Ang-1 ist in der Lage, die Gefäße gegen eine LPS-vermittelte 

Hyperpermeabilität zu schützen166, wozu jedoch die Anwesenheit von Perizyten notwendig 

ist44. Auch kann Ang-1 die Expression des Tissue Factor inhibieren, der eine zentrale Rolle in 

der Aktivierung der Gerinnungskaskade spielt und zur disseminierten intravasalen 

Koagulopathie beiträgt77. Die VEGF-vermittelte Induktion der Leukozytenadhäsionsmoleküle 

ICAM-1, VCAM-1 und E-Selectin kann in Zellkulturversuchen von Ang-1 reduziert werden75, 

76. In - durch den plötzlichen Anstieg der Ang-2 Spiegel - aktivierten Endothelzellen kommt es 

zudem zu einer Gefäßregression, wenn kein weiterer Angiogenese fördernder Faktor (z.B. 

VEGF) vorhanden ist58. Abbildung 2 gibt einen Überblick über die verschiedenen Signalwege 

und Effekte des Angiopoietin-Tie-2 Systems. 
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Abbildung 2: Darstellung der Wirkung des Angiopoietin-Tie-2 Systems. Ang-1 wird konstitutiv von Perizyten 
exprimiert und aktiviert den Tie-2 Rezeptor, was das Endothelzellüberleben unterstützt, antiinflammatorische 
Wirkung (über NF-κB) entfaltet und die Zell-Zell Kontakte stabilisiert . Van Meurs et al.

160
 

 

1.2. Perizyten und glatte Muskelzellen 

Perizyten sind Zellen, die sich aus mesenchymalen Stammzellen und Zellen der Neuralleiste 

entwickeln17, 19. Zusammen mit den Endothelzellen sind sie an der Produktion der 

Extrazellulärmatrix beteiligt93. Perizyten liegen nicht nur in der Nähe von Endothelzellen, 

sondern stehen über Gap Junctions, Adhesion Plaques und Peg-and-Socket Kontakte in 

direkter Verbindung mit den Endothelzellen. Bei Gap Junctions handelt es sich um Kontakte, 

über welche ein direkter Austausch zwischen dem Zytoplasma der Endothelzelle und des 

Perizyten erfolgen kann87. Die Adhesion Plaques vermitteln eine Verankerung zwischen 

Endothelzellen und Perizyten, während es sich bei Peg-and-Socket Verbindungen um 

Stellen gegenseitiger Verzahnung handelt56, 125. Über diese Verbindungen kann ein Perizyt 

über seine Zellausläufer Kontakt zu mehreren Endothelzellen aufbauen (siehe Abbildung 

3)165. 
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Abbildung 3: A Phasenkontrastmikroskopische Aufnahme eines Perizyten (Mitte) in Ko-Kultur mit 
Endothelzellen. Der Perizyt steht über lange Zellausläufer (kurze Pfeile) in Verbindung mit mehreren 
Endothelzellen. Endothelzellen in Kontakt mit Perizyten zeigen weniger Fortsätze (lange Pfeile). Maßstab 10 µm, 
modifiziert nach Orlidge und D‘Amore

111
 B Elektronenmikroskopische Aufnahme eines Perizyten, der die 

Oberfläche einer arteriellen Kapillare bedeckt. Die Markierungen 1°, 2° und 3° zeigen auf die Verzweigungen der 
Perizytenfortsätze, N markiert den Perizytennukleus, der Pfeil die darunterliegenden Endothelzelle (aus Shepro 
und Morel

134
). 

Die glatten Muskelzellen der Gefäße (vascular smooth muscle cells, vSMC) umgeben 

größere Gefäße wie Venen und Arterien. Während die Endothelzellschicht der Kapillaren nur 

vereinzelt durch Perizyten besetzt ist, besitzen die großen Gefäße eine smooth-muscle-cell-

Schicht aus mehreren Lagen21. Anders als die Perizyten sind vSMCs nicht in den 

Extrazellulärmatrix eingebettet47. Ob es sich bei beiden Zelltypen um Varianten derselben 

Zellinie handelt oder um unterschiedliche Zelltypen, ist bisher unbekannt11. 

1.2.1. Biologische Funktion von Perizyten 

Obwohl Perizyten bereits zum Ende des 19. Jahrhunderts von Charles Rouget erstmalig 

beschrieben wurden, blieb ihre biologische Relevanz und Funktion lange Zeit unklar. In 

letzter Zeit rückten Perizyten jedoch in den Fokus von wissenschaftlichen Studien. 
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So scheinen Perizyten einen Einfluss auf die vaskuläre Permeabilität auszuüben. Diese 

Vermutung stammt zunächst von der Beobachtung, dass Perizyten in verschiedenen 

Geweben in unterschiedlicher Zahl vorliegen, wobei Gewebe mit wenig bis keinen Perizyten 

(Niere, Knochenmark, Leber) eine hohe Gefäßpermeabilität aufweisen, während z.B. im 

Gehirn ein ausgeprägter Perizytenbesatz vorhanden ist. Dort besteht mit der Blut-Hirn-

Schranke eine Barriere zwischen Gefäßsystem und umgebendem Gewebe28. Weiterhin 

konnten Daneman et al. zeigen, dass Perizyten zusammen mit Endothelzellen essentieller 

Bestandteil der Blut-Hirn-Schranke sind. In ihrer Arbeit konnte anhand von PDGF-Rezeptor 

knockout Mäusen, welche eine gestörte embryonale Entwicklung von Perizyten aufweisen 

(siehe auch 1.3), gezeigt werden, dass eine transkardiale Perfusion mit Biotin zu einer 

deutlich gesteigerten zerebralen Extravasation dieses Markers führt23. 

Weiterhin enthalten Perizyten sowohl Actin- als auch Myosin-Filamente, welche für 

Zellmobilität und Kontraktion essentiell sind65, 161. Diese finden sich in den Perizyten der 

präkapillären Arteriolen und postkapillären Venolen, jedoch nicht im Bereich der Kapillaren 

selbst107. Dies legt die Vermutung nahe, dass Perizyten in der Lage sind, zu kontrahieren, 

was tatsächlich sowohl in vitro als auch in vivo gezeigt werden konnte71, 155. Die Kontraktion 

der Perizyten kann u. a. durch Serotonin und Histamin hervorgerufen werden, 

Stickstoffmonoxid führt zu einer Relaxation der Perizyten52, 72. Perizyten scheinen somit in 

der Lage, den Blutfluss im Bereich der Kapillaren zu beeinflussen. 

Neben der Fähigkeit zu kontrahieren und möglicherweise so den kapillären Blutfluss zu 

regulieren, nehmen Perizyten tiefgreifenden Einfluss auf die assoziierte Endothelzellschicht. 

So unterdrücken Perizyten auf der einen Seite über eine Aktivierung des Transforming 

Growth Factor-β (TGF-β) die Proliferation von Endothelzellen, wozu sie direkten Zell-Zell-

Kontakt zu den Endothelzellen benötigen, wie in Abbildung 3 zu sehen96, 111. Auf der anderen 

Seite produzieren Perizyten Faktoren, die zu Endothezellproliferation und Bildung von neuen 

Gefäßen (tube formation) führen, wie zum Beispiel VEGF (vascular endotheilial growth 

factor) und den bFGF (basic fibroblast growth factor)149, 164. Diese Wachstumsfaktoren haben 

zudem einen ähnlichen Effekt auf die Perizyten selber. So reduziert TGF-β die Proliferation 

von Perizyten169, während VEGF die Proliferationsrate in bovinen retinalen Perizyten 

(BRPCs) erhöht148.  

Perizyten sind demnach essentieller Bestandteil der Kapillaren und haben über die 

Produktion der Extrazellulärmatrix, über die Fähigkeit zur Kontraktion von Gefäßen und über 

die Regulation der Endothelzellproliferation einen tiefgreifenden Einfluss auf die Struktur und 

Aktivität der Endothelzellen im Bereich der Arteriolen, Venolen und Kapillaren. 
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1.3. Familie der Platelet Derived Growth Factors (PDGF) 

Die Familie der Platelet Derived Growth Factors (PDGFs) besteht im Menschen aus fünf 

Proteinen, wobei es sich um Dimere handelt, die durch eine Disulfidbrücke verbunden sind53. 

Es gibt vier verschiedene Polypeptidketten (PDGF-A, PDGF-B, PDGF-C und PDGF-D), die 

sich zu Homodimeren und einem Heterodimer (PDGF-AB) verbinden. Die PDGFs wirken 

über zwei Rezeptor Tyrosin Kinasen: PDGF-Rezeptor α und PDGF-Rezeptor β (PDGFR-α / 

PDGFR-β)3. Hierbei binden die zwei Untereinheiten der PDGFs je einen Rezeptor, wodurch 

dieser dimerisiert, autophosphoryliert und die intrazelluläre Signalkaskade induziert (siehe 

Abbildung 4)13.  

 

Abbildung 4: Schematische Darstellung der Interaktion der PDGFs und deren Rezeptoren. Abb. A zeigt die in 
vitro demonstrierten Interaktionen mit den entstehenden Rezeptordimeren (die gestrichelten Linien zeigen 
schwache Interaktionen oder widersprüchliche Ergebnisse). Abb. B zeigt relevante Interaktionen der PDGFs und 
der Rezeptoren in vitro, modifiziert nach Andrae et al.

3
 

PDGFs werden von einer Reihe verschiedener Zelllinien exprimiert, darunter Fibroblasten116, 

SMCs108, Endothelzellen29, Neuronen128, Makrophagen114 und den (namensgebenden) 

Thrombozyten (Platelets)68. Die PDGFRs werden auf Fibroblasten, Endothelzellen, 

Makrophagen und auf Perizyten und vSMCs exprimiert53. Hierbei werden zwar auf vSMCs 

beide Subtypen des Rezeptors exprimiert, auf Perizyten jedoch nur der PDGF-Rezeptor β10, 

139. Der entsprechende Ligand, PDGF-B, wird hauptsächlich in Megakaryozyten, vSMCs und 

Endothelzellen exprimiert. 

PDGFs lösen über ihre Rezeptoren einen starken Proliferationsreiz aus, welcher über 

verschiedene Signalwege vermittelt werden kann, unter anderem über den Ras-MAP 

Kinase102, den PI3 Kinase60 und den PLC-γ Signalweg85. Weitere Interaktionspartner des 
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PDGF-Rezeptors sind die Integrine, welche über zwischengeschaltete Proteine, z.B. Talin 

und Paxillin171, eine Verbindung zwischen dem Zytoskelett und der Extrazellulärmatrix 

herstellen110. Über das Adaptorprotein NHERF unterstützt die Aktivierung der PDGF-

Rezeptoren die Zellausbreitung und Migration. 

1.3.1. Die Rolle von PDGF-B in Embryogenese und Inflammation 

Sowohl ein Knockout von PDGF-B als auch von PDGFR-β geht mit massiven Hämorrhagien, 

Ödemen und einer embryonalen Letalität einher (Tag E11,5-E19 bei PDGF-B Defizienz, Tag 

E16-18 bei PDGFR-β Defizienz)88, 141. In diesen Tieren wird ein Fehlen von Perizyten und 

vSMCs um die Gefäße herum beobachtet, welches, abhängig von dem jeweiligen Gefäßbett, 

unterschiedlich schwer ausfallen kann47, 82. Auffällig ist hierbei, dass die ersten Schritte der 

Perizytenrekrutierung in der Embryogenese unabhängig von PDGF-B und dessen Rezeptor 

ablaufen und nur die weitere Proliferation und Anlagerung gestört ist. Die initiale 

Rekrutierung scheint über eine TGF-β vermittelte Differenzierung mesenchymaler 

Stammzellen herbeigeführt zu werden18. Die Rolle von PDGF-B in der Initiierung der 

Perizytenproliferation und Migration wird durch die Arbeit von Hellström et al. verdeutlicht. 

Dort konnte gezeigt werden, dass ein PDGF-B Knockout insbesondere im zentralen 

Nervensytem zu einem Verlust der Perizyten führt. Das initial avaskuläre zentrale 

Nervensystem ist hierbei abhängig von einer Ko-Migration der Perizyten zusammen mit 

einwachsenden Gefäßen, wobei dieser Prozess bei PDGF-B defizienten Tieren gestört ist 

(siehe Abbildung 5)54. 

Interessanterweise ist der Perizytenverlust bei PDGF-B Defizienz durch eine Steigerung der 

Ang-1 Spiegel reversibel. So konnten Uemura et al. in einem Modell der retinalen 

Angiogenese zeigen, dass die Blockierung des PDGFR-β durch einen Antikörper (APB5) 

einen ähnlichen Phänotyp wie eine Tie-2 oder Ang-1 Defizienz hervorruft, wobei die 

Applikation von Ang-1 zu einer deutlichen Stabilisierung der Gefäßstruktur führte. Die 

intravitreale Injektion von rekomnbinantem Ang-1 führte zu einer fast vollständigen 

Normalisierung der Gefäßdichte, des Radius des Gefäßnetzwerkes und der Durchmesser 

von Arterien, Venen und Kapillaren, wobei der APB5 vermittelte Verlust muraler Zellen nicht 

beeinflusst wurde158. Weiterhin erscheinen die Veränderungen in Ang-1 oder Tie-2 

defizienten Mäusen zu einem früheren Zeitpunkt der Entwicklung als in PDGF-B defizienten 

Mäusen, sodass davon auszugehen ist, dass es sich um zwei unterschiedliche, wenn auch 

eng verknüpfte Systeme handelt32, 88, 128, 139, 144. 
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Abbildung 5: Darstellung der Induktion, Proliferation und Migration von SMCs während der Embryogenese. Die 
mesenchymalen Stammzellen (grau) differenzieren, u. a. durch Wirkung von TGF-β, zu glatten 
Gefäßmuskelzellen (rot), die die Endothelzellen (gelb) zunächst primitiver Gefäße umgeben. Endotheliales 
PDGF-B treibt eine Proliferation der SMCs und eine Ko-Migration an sprossenden Gefäßen an. Dieser Effekt wird 
durch einen Knockout von PDGF-B und dessen Rezeptor (PDGFR-β) gestört. Hellström et al.

54
 

Fuxe et al. konnten in einer kürzlich erschienenen Publikation zeigen, dass es während der 

Frühphase einer akuten Inflammation zu einer zahlenmäßigen Reduktion des 

Perizytenbesatzes der Kapillaren kommt und die verbleibenden Perizyten eine veränderte 

Morphologie mit einem plumpen Zellkörper und wenigen Zellfortsätzen im Vergleich zum 

ruhenden Zustand (dort liegen die Perizyten eng an mit einer Vielzahl von Ausläufern) 

zeigen44. Dies ging einher mit einer Reduktion der PDGF-B Expression. Die Blockierung von 

PDGF-B verstärkt den Verlust der Perizyten, zudem nahm die Expression von M. pulmonis 

Genen (welche in dem benutzen Modell als Pathogen dienten) unter PDGF-B Inhibition zu, 

einer Verschlechterung der Infektsituation entsprechend44. 

1.4. Die Sepsis 

Bei der Sepsis handelt es sich um eine systemische inflammatorische Reaktion des Körpers 

auf eine Infektion. Es besteht ein fließender Übergang von einer Sepsis über die schwere 

Sepsis bis hin zum septischen Schock als maximale Ausprägung. Definiert wird die Sepsis 
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über eine Reihe von Laborparametern, Vitalparametern, hämodynamischen Daten und 

Parametern zur Bestimmung einzelner Organfunktionen. Um die Diagnose einer Sepsis 

stellen zu können, müssen laut Leitlinien der Deutschen Sepsis-Gesellschaft e.V. und 

Deutschen interdisziplinären Vereinigung für Intensiv- und Notfallmedizin e.V. folgende 

Kriterien erfüllt sein66: 

 I Nachweis der Infektion: 

 Durch mikrobiologischen Nachweis oder klinische Kriterien 

 II Severe inflammatory response syndrome (mind. 2 Kriterien): 

 Fieber (≥ 38 °C) oder Hypothermie (≤ 36 °C) 

 Tachykardie ≥ 90/min 

 Tachypnoe (≥ 20/min) oder Hyperventilation (pCO2 ≤ 33 mmHg) 

 Leukozytose (≥ 12.000/mm3) oder –penie (≤ 4.000/mm3) oder unreife 

Neutrophile im Differentialblutbild 

Wenn die Diagnose einer Sepsis besteht und zusätzlich zu den oben genannten Kriterien 

Zeichen der Organdysfunktion bestehen, so spricht man vom Bild einer schweren Sepsis. 

Zeichen der Organdysfunktion sind hierbei: 

 Akute Enzephalopathie (eingeschränkte Vigilanz, Desorientiertheit, Unruhe, Delirium) 

 Relative oder absolute Thrombozytopenie: Abfall der Thrombozyten um mehr als 

30% innerhalb von 24 Stunden oder Thrombozytenzahl ≤ 100.000/mm3. 

 Arterielle Hypoxämie: PaO2 ≤ 75 mmHg unter Raumluft oder ein PaO2/FiO2-Verhältnis 

von ≤ 250 mmHg unter Sauerstoffapplikation. 

 Renale Dysfunktion: Eine Diurese von ≤0.5 ml/kg/h für wenigstens 2 Stunden trotz 

ausreichender Volumensubstitution und/oder ein 

 Anstieg des Serumkreatinins > 2× oberhalb des Referenzbereiches. 

 Metabolische Azidose: Base Excess ≤ -5 mmol/l oder eine Laktatkonzentration > 1,5x 

oberhalb des Referenzbereiches.  

Von einem septischen Schock spricht man, wenn die Kriterien einer Sepsis erfüllt sind und 

zusätzlich trotz einer adäquaten Volumensubstitution eine systemische Hypotonie mit einem 

systolischen Blutdruck ≤ 90 mmHg / mittlerem arteriellen Blutdruck ≤ 65 mmHg besteht oder 

der Einsatz von Vasopressoren notwendig ist, um einen Blutdruck über diesen Werten zu 

halten. 
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1.4.1. Epidemiologie der Sepsis 

Die Sepsis stellt eine der führenden Todesursachen weltweit dar, wobei die Inzidenz der 

Sepsis zunimmt. Lag diese in den Vereinigten Staaten von Amerika im Jahr 1979 bei 82,7 

Fällen pro 100.000 Einwohnern, so erkrankten im Jahr 2000 bereits 240,4 von 100.000 

Einwohnern, die Inzidenz hatte sich somit in diesem Zeitraum fast verdreifacht99. In einer 

weiteren Studie von Angus et al. wurde u. a. untersucht, wie häufig die schwere Sepsis zu 

einer Hospitalisierung führt. Es konnte gezeigt werden, dass die schwere Sepsis für 2,1% – 

4,3% aller Aufnahmen in die untersuchten Krankenhäuser und 11% aller Verlegungen auf 

eine Intensivstation verantwortlich war4. Ähnliche Zahlen existieren für Deutschland: In einer 

Studie, die 2007 publiziert wurde, untersuchten Engel et al. die Prävalenz und Mortalität der 

Sepsis und schweren Sepsis in 454 deutschen Intensivstationen. Die Prävalenz der Sepsis 

lag hier bei 12,4% bzw. 11% für die schwere Sepsis. Von den untersuchten 415 Patienten 

lagen für 382 adäquate Informationen zum weiteren Verlauf vor. Von dieser Patientengruppe 

starben 48,4% auf der Intensivstation und weitere 6,8% auf der Normalstation35. 

Die Sepsis stellt somit ein Krankheitsbild mit hoher Inzidenz und Mortalität dar. Obwohl in 

den letzten Jahren große Fortschritte im Bereich der Sepsis-Forschung erzielt wurden, bleibt 

die Mortalität des Krankheitsbildes weiterhin sehr hoch. 

1.4.2. Pathophysiologie 

Am Anfang einer systemischen Entzündungsreaktion steht die Infektion des Körpers mit 

einem Erreger. Dies können Bakterien und Viren sein, aber auch Pilze und Parasiten. Die 

initiale Immunantwort auf Bestandteile der Erreger (pathogen-associated molecular patterns, 

PAMPs) wird durch eine Gruppe von Rezeptoren vermittelt (pattern recognition receptors, 

PRRs). Eine Untergruppe dieser PRRs stellen die Toll-like Rezeptoren (TLRs) dar. Die 

meisten TLRs sind auf der Zellmembran von Makrophagen und dendritischen Zellen 

lokalisiert, wobei einzelne TLRs bestimmte Bestandteile der Erreger als Liganden besitzen. 

So dienen Peptidoglykane (Bestandteile grampositiver Bakterien) als Liganden für den TLR2, 

Lipopolysaccharide (Bestandteile gramnegativer Bakterien) als Liganden für den TLR4 und 

doppelsträngige DNA, welche im Lebenszyklus von RNA-Viren entstehen, als Liganden für 

den TLR3168. Durch die Aktivierung der TLRs kommt es zur Produktion proinflammatorischer 

Zytokine. Hierbei können zwei getrennte Signalkaskaden unterschieden werden (siehe 

Abbildung 6). Über den MyD88 (myeloid differentiation protein 88)-abhängigen Signalweg 

kommt es zu einer NF-κB vermittelten Produktion von Zytokinen wie TNF-α, IL-6 und IL-1248, 

147. Über einen MyD88-unabhängigen Signalweg kommt es zur Induktion von Interferon-

abhängigen Genen67, 70. 
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Abbildung 6: Darstellung der MyD88-abhängigen und -unabhängigen Aktivierung von inflammatorischen 
Zytokinen nach Ligandenbindung an Toll-like Rezeptoren (Yamamoto et al.

168
) 

Eine weitere Gruppe von PRRs besteht aus den nucleotide oligomerization domain 

Rezeptoren, zum Beispiel NOD1 und NOD249, deren Liganden die Peptidoglykane sind. Eine 

dritte Gruppe von PRRs stellen die peptidoglykan recognition Proteine (PGRPs). Diese 

Familie besteht aus den membrangebundenen Proteinen PGRP-1α, PGRP-1β und PGRP-L 

sowie dem löslichen PGRP-S5. 

Neben den oben beschriebenen, proinflammatorischen Stimuli kommt es im Rahmen einer 

Sepsis auch zur Aktivierung antiinflammatorischer Prozesse. So kann es in septischen 

Patienten zu einer Apoptose immunkompetenter Zellen kommen59. Weiterhin zeigen 

neutrophile Granulozyten und Monozyten eine reduzierte Zytokinproduktion nach Stimulation 

mit Lipopolysacchariden95, 101, 106. 

Während der Sepsis kommt es zu einer Reihe von Veränderungen der Funktion von 

Endothelzellen und des kardiovaskulären Systems. Zum Beispiel wird im Rahmen einer 

Sepsis die Expression des Tissue Factors31, 112 auf zirkulierenden Monozyten gesteigert, was 

zu einer disseminierten intravasalen Koagulopathie (disseminated intravascular coagluation, 

DIC) führt117. 

Eine weitere Beeinträchtigung der kardiovaskulären Funktion besteht in der septischen 

Kardiomyopathie. Verschiedene Zytokine, wie z.B. TNF-α und Interleukin-1β, besitzen selbst 

ein kardiodepressives Potential82. Neben der Verschlechterung der kardialen Funktion durch 
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Zytokine wird außerdem die Produktion von Stickstoffmonoxid (NO) gesteigert, welches 

ebenfalls die myokardiale Funktion stört105. NO ist weiterhin ein potenter Vasodilatator, 

welcher zu einer systemischen Hypotension führt118. Eine letzte schwere Beeinflussung der 

Kreislauffunktion besteht in der Entwicklung eines Kapillarlecks. Im Rahmen der Sepsis 

kommt es zur vermehrten Expression von Leukozytenadhäsionsmolekülen wie ICAM-1 

(intercellular adhesion molecule 1), VCAM-1 (vascular cell adhesion molecule 1) und E-

Selectin, welche durch TNF-α über den NF-κB Signalweg vermittelt wird121. Diese führen zu 

einer Aktivierung von Leukozyten, welche eine Reihe zytotoxischer Substanzen, unter 

anderem Sauerstoffradikale, freisetzen133. Weiterhin kann ein Kapillarleck im Rahmen einer 

Sepsis bereits durch die Erreger selbst hervorgerufen werden. So sind Lipopolysaccharide in 

der Lage, eine Endothelzellapoptose zu induzieren2. Durch den entstehenden 

Endothelzellschaden kommt es zur Ausbildung eines Kapillarlecks und einer 

Flüssigkeitsverschiebung in das Intersititum. 

Neben den hier beschriebenen Zytokinen kommt es im Rahmen einer Sepsis ebenfalls zu 

einer Ausschüttung von Angiopoietin-2. Durch inflammatorische Stimuli wird Angiopoietin-2 

aus den Weibel-Palade-Körperchen der Endothelzellen freigesetzt41. Dementsprechend 

steigen die Blutspiegel von Ang-2 im Rahmen einer Sepsis an. So konnte ein Anstieg der 

Ang-2 Spiegel in gesunden Probanden durch eine Injektion von Lipopolysacchariden 

provoziert werden84. Weiterhin gehen erhöhte Ang-2 Spiegel mit einer deutlich erhöhten 

Mortalität in septischen Patienten einher (siehe Abbildung 7)83. Die zentrale Rolle von Ang-2 

bei der Auslösung einer inflammatorischen Antwort wird durch die Beobachtung unterstützt, 

dass Ang-2 defiziente Tiere nicht in der Lage sind, eine Reaktion auf inflammatorische 

Stimuli (Thioglycolat, Staph. aureus) zu generieren40. 

 

Abbildung 7: Abb. A zeigt den Verlauf des Anstiegs von Ang-2 und anderen Zytokinen nach i.v. Applikation von 
Lipopolysacchariden (4 ng/kg KG). Abb. B demonstriert die Steigerung der Mortalität, welche mit erhöhten Ang-2 
Spiegeln in septischen Patienten einhergeht. Modifiziert nach Kümpers et al.

83, 84
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1.4.3. Aktuelle Therapiekonzepte der Sepsis 

Bei der Therapie der Sepsis muss die kausale von der supportiven Therapie unterschieden 

werden. 

Die kausale Therapie konzentriert sich auf die Beseitigung der Sepsisursache. Hierbei steht 

neben der Sanierung eines möglichen Infektfokus (Wunde, Implantate, Abszesse) die 

antimikrobielle Therapie im Vordergrund, die (abhängig vom Erreger) aus Antibiotika, 

Virustatika oder Antimykotika besteht. 

Bei der supportiven Therapie spielt die Aufrechterhaltung der hämodynamischen und 

respiratorischen Funktion eine Schlüsselrolle. Die wichtigste Maßnahme zur 

hämodynamischen Stabilisierung stellt die ausreichende Volumensubstitution dar, 

insbesondere durch kristalloide Lösungen (NaCl-Lösung, Ringer-Lösung). Sollte trotz der 

Volumensubstitution keine Stabilisierung eintreten, so kann eine Therapie mit vasoaktiven 

Substanzen (insb. Dobutamin) begonnen werden. Eine frühzeitige Beatmung wird 

empfohlen. Weitere Maßnahmen zur unterstützenden Behandlung bestehen aus der 

Durchführung von Nierenersatzverfahren (kontinuierliche venovenöse Hämofiltration, CVVH / 

intermittierende Hämodialyse, IHD), einer Thromboseprophylaxe, einer Ulkusprophylaxe und 

Transfusion von Erythrozytenkonzentraten bei Bedarf66. 

Durch die Volumensubstitution und Gabe von vasoaktiven Substanzen wird bereits die 

Problematik der systemischen Hypotension adressiert, eine Behandlungsmöglichkeit der 

kapillären Leckage besteht aktuell nicht, da die Wirkungsmechanismen nicht ausreichend 

verstanden sind. 

1.5. Charakterisierung adenoassoziierter Viren 

Um die Genexpression in den EC-Ang2-on Tieren und C57BL/6 Mäusen zu verändern, 

wurden in der vorliegenden Arbeit adenoassoziierte Viren (AAVs) verwendet. Hierbei handelt 

es sich um eine Gruppe von Viren, die der Familie der Parvoviridae (Gattung der 

Dependoviren) angehören und von welcher aktuell 14 verschiedenen Serotypen bekannt 

sind15. Entdeckt wurden diese initial als Verunreinigung von Adenovirus-Isolaten8, 100. Das 

Genom adenoassoziierter Viren besteht aus einer Einzelstrang DNA mit 4,7 Kilobasen143. 

Das Genom des Virus ist in einer Hülle aus drei verschiedenen Proteinen, die sich zu einem 

Partikel bestehend aus 60 Untereinheiten zusammensetzen, eingeschlossen. Die drei Hüll-

Proteine (Vp1, Vp2 und Vp3) werden aus einem Gen durch alternatives Splicen und 

unterschiedliche Start-Codons hergestellt127. Adenoassoziierte Viren (AAVs) sind nicht 

eigenständig replikationsfähig, sondern benötigen Helferviren, in der Regel Adenoviren. 

AAVs sind aber auch in der Lage, sich unter einer Koinfektion mit Herpesviren und humanen 
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Papillomaviren zu vermehren8, 152, 162. Darüber hinaus besitzen AAVs eine deutlich geringere 

Immunogenität und Toxizität und führen, im Gegensatz zu Adenoviren, zu einer deutlich 

geringeren Immunantwort172, 173. Zirka eine Woche nach Injektion von adenoassoziierten 

Viren erreicht die Expression des eingebrachten Transgens ein stabiles Niveau, welches 

über einen langen Zeitraum (Monate bis Jahre) hinweg gehalten werden kann73, 140. Aufgrund 

der positiven Eigenschaften bezüglich Effizienz (Transduktion proliferierender und ruhender 

Zellen, Expression des Zielgens über einen langen Zeitraum) und Sicherheit (geringe 

Immunogenität, nicht replikationsfähig) wurde in den letzten Jahren begonnen, 

adenoassoziierte Viren im Rahmen klinischer Studien einzusetzen. Aktuell wird ein AAV-

vermittelter Gen-Transfer in 105 klinischen Studien (bis Phase II) zur Behandlung diverser 

Krankheiten eingesetzt, u. a. Hämophilie B94, Lebersche Kongenitale Amaurose138, Alpha-1-

Antitrypsin-Mangel42 und zuletzt im Rahmen der CUPID-Studie bei fortgeschrittener 

Herzinsuffizienz64. 

Die in der vorliegenden Arbeit verwendeten adenoassoziierten Viren basieren auf dem AAV 

Serotyp 2. Die Einzelstrang-DNA dieses Virus besitzt zwei ORFs (open reading frame), 

welche für die Proteine rep (Replikation) und cap (Kapsid) codieren, sowie für zwei „ITR“ 

genannte Sequenzen, welche diese an beiden Seiten abschließen27. Bei den rekombinanten 

adenoassoziierten Viren werden die zwei ORFs durch eine Kasette ersetzt, die für das 

Zielgen und einen Promoter (hier ein CMV-Promoter) codiert, sodass von dem 

ursprünglichen Genom lediglich die ITR-Sequenzen verbleiben. 

1.6. Zielsetzung 

Ziel der vorliegenden Arbeit war es, die Rolle von Angiopoietin-2 für das Herz-

Kreislaufsystem zu untersuchen. Hierzu wurden transgene Mausstämme untersucht, die eine 

endotheliale, induzierbare oder aber eine kardiospezifische Ang-2 Expression aufwiesen. 

Zur Bestimmung der kardiovaskulären Dysregulation wurden die Herzfunktion und 

Herzmorphologie untersucht. Weiterhin wurden Veränderungen der vaskulären Permeabilität 

ermittelt und der Status der Mikrogefäße histologisch beurteilt. 

In einem weiteren Ansatz wurde untersucht, ob eine zusätzliche AAV-vermittelte 

Transduktion mit Angiopoietin-1 (kompetetiver Antagonist von Ang-2) oder PDGF-B 

(Perizyten-rekrutierender Wachstumsfaktor) in transgenen Ang-2 überepxrimierenden Tieren 

einen Effekt auf Perizytenzahl, Kreislauffunktion und Herzmorphologie hat. 

Zuletzt wurde in Pilotexperimenten untersucht, ob eine Blockade von endogenem 

Angiopoietin-2 mittels eines Ang-2 Antikörpers eine Reduktion der Mortalität im Rahmen 

einer LPS-induzierten Sepsis bewirken kann. 
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2. Material und Methoden 

2.1. Versuchstiere 

Für die Untersuchung der Angiopoietin-2 Wirkung wurden teils transgene Mausstämme 

verwendet. 

Bei den Tieren, die Angiopoietin-2 endothelzellspezifisch und induzierbar überexprimieren, 

handelt es sich um einen transgenen Mausstamm mit einem C57BL/6 Hintergrund. Dieser 

wurde freundlicherweise von Urban Deutsch aus dem Theodor Kocher Institut der Universität 

Bern zur Verfügung gestellt. Dort wurden auch die im Folgenden beschriebenen Konstrukte 

generiert und die Tiere verpaart und genotypisiert. Zunächst wurden zwei transgene 

Mausstämme durch Mikroinjektion eines Aktivatorkonstrukts oder eines 

Responderkonstrukts in befruchtete Eizellen von C57BL/6 Mäusen generiert57, 130. Für das 

Aktivatorkonstrukt wurde ein Tetrazyklin-abhängiger Transaktivator zwischen ein 2,1 kB 

großes Tie-2 Promoterfragment und das darauf folgende erste Intron des Tie-2 Gens kloniert 

(Tie-2 tTA)26. Das Responderkonstrukt enthält zunächst ein Tetrazyklin-response-element 

(TRE) bestehend aus sieben Wiederholungen der E. coli tet-operator sequence, flankiert von 

zwei 30 Basenpaar großen Fragmenten des CMV immediate early minimal promoter. Auf 

diese folgt wiederum zum einen der open reading frame von humanem Angiopoietin-2 und 

GFP (fusioniert mit dem ORF für die Neomycin Phosphotransferase). Zu beiden Seiten wird 

das Konstrukt abgeschlossen von poly(A) Signal des bovinen Wachstumshormons und zwei 

Wiederholungen der HS4 insulator Sequence des chicken β-Globulin (TRE-hAng2, siehe 

Abbildung 8 A)26. Durch Paarung beider Mausstämme wurden im Anschluss 

doppeltransgene Mäuse generiert, welche sowohl das Aktivator- als auch das 

Responderkonstrukt tragen. Hierdurch kommt es durch das Aktivatorkonstrukt zu einer 

Expression des Tetrazyklin-Transaktivators, wobei durch die Kopplung an den Tie-2 

Promoter der Transaktivator nur in Endothelzellen exprimiert wird. Dieser bindet an das TRE, 

wodurch die CMV-Promoter vermittelte Expression des humanen Angiopoietin-2 gestartet 

wird. Werden die Tiere mit Doxyzyklin-haltigem Futter gefüttert, so bindet das Doxyzyklin an 

den tTA, wodurch dieser vom Tetrazyklin-response element dissoziiert, was zu einer 

Beendigung der Überexpression führt (siehe Abbildung 8 B). Da eine Angiopoietin-2 

Überexpression zu einer embryonalen Letalität führt92, wurden die Weibchen während der 

Schwangerschaft mit Doxyzyklin behandelt. Bei dem Nachwuchs der Verpaarung wurden 

Gewebeproben entnommen, um mittels PCR die Anwesenheit der Transgene zu überprüfen 

(hANG2 FW3, hANG2 REV3, tTA-FW2, tTA-REV1, für Primer-Sequenzen siehe Kapitel 

2.11.9). Zur Geburt wurde Doxyzyklin abgesetzt, wodurch die Ang-2 Expression gestartet 

wurde. Mittels ELISA wurden die zirkulierenden hAng-2 Spiegel gemessen, wobei sich eine 
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progrediente Steigerung der Ang-2 Expression darstellte, die wie erwartet durch Gabe von 

Doxyzyklin auf normale Werte reduziert werden konnte (siehe Abbildung 8 C). 

 

Abbildung 8: A Schematische Darstellung des Responderkonstrukts. E. coli tet-operator sequence (hellgraue 
Kreise), CMV immediate early minimal promoter (blaue Dreiecke). hAng-2 open reading frame (pink), GFP open 
reading frame (grün), bovine growth hormone poly(A) (rosa), HS4 insulator sequences (dunkelgrau). Abb. B 
beschreibt die Wirkung der Konstrukte im doppeltransgenen Tier. So führt die Gabe von Doxyzyklin zu einer 
Dissoziation des Tetrazyklin-abhängigen Transaktivators von dem korrespondierenden Response Element (TRE) 
und somit zu einer Beendigung der transgenen Überexpression von hAng-2 C ELISA von Maus Serum in EC-
Ang2-on Tieren und Kontrollen. Es zeigt sich eine progrediente Überexpression von hAng-2 in EC-Ang2-on 
Tieren, welche durch Gabe von Doxyzyklin beendet werden kann. 

In einem weiteren transgenen Mausstamm, welcher eine auf Kardiomyozyten restringierte 

Überexpression aufwies, stand die Expression des Tetrazyklin-Transaktivators nicht unter 

der Kontrolle eines Tie-2 Promoters, sondern unter der Kontrolle eines α-MHC Promoters. 

Bei dem letzten transgenen Tierstamm, in welchem die Wirkung einer Angiopoietin-2 

Transduktion auf den Perizytenbesatz untersucht wurde, handelte es sich um den X-LacZ-4 

Mausstamm (zur Verfügung gestellt von Urban Deutsch, Theodor Kocher Institut Bern). Bei 

der Generierung dieser Mauslinie wurde das nsLacZ Reportergen in das Adipozyten-

spezifische Gen adipocyte P2 (aP2) kloniert. Das Expressionsmuster in verschiedenen 

transgenen Mauslinien folgte jedoch keinem einheitlichen Muster, weshalb von einer 

zufälligen Integration in das Mausgenom ausgegangen wird. Wie die Expression des 

Konstrukts in den hier benutzten Tieren reguliert wird, ist aktuell unbekannt. In der Arbeit von 

Tidhar et al. wurde dennoch das LacZ-Expressionmuster im Rahmen der Embryogenese und 

im adulten Organismus untersucht. Hierbei stellte sich heraus, dass LacZ während der 

Embryogenese zunächst im Bereich des ventro-lateralen Dermatomyotom exprimiert, in der 

adulten Maus wird LacZ von glatten Muskelzellen und Perizyten kleinerer Gefäße produziert, 
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weshalb sich dieser Mausstamm zur Untersuchung von Perizyten eignet und in dieser Studie 

Verwendung fand50, 153. 

Die Tiere wurden in Gruppen von 2-4 Tieren in Makrolon-Käfigen (Type II L) gehalten, bei 

freiem Zugang zu Wasser und Standardfutter unter kontrolliertem Tag-Nacht-Zyklus. 

2.2. Versuchsablauf 

Der Versuchsablauf für die EC-Ang2-on Tiere und deren Kontrollen wird in der Abbildung 9 

dargestellt. Im Alter von zwölf Wochen begannen die Versuche zunächst mit einer Messung 

des linksventrikulären enddiastolischen Durchmessers mittels Echokardiographie (siehe 

2.5.4) und des systemischen Blutdrucks (siehe 2.5.3). Am Folgetag dieser Messungen 

wurden die Ang-2 überexprimierenden Tiere in fünf Gruppen eingeteilt. Während ein Teil der 

Tiere unbehandelt blieb und somit weiterhin eine endotheliale Überexpression von Ang-2 

aufwies, wurde ein Teil der Tiere mit Doxyzyklin-Futter gefüttert, wodurch in dem Tet-Off-

Promotersystem die endotheliale Ang-2 Überexpression ausgeschaltet werden konnte („EC-

Ang2-off“). 

Ein weiterer Teil der EC-Ang2-on Tiere wurde nach Durchführung der initialen Messungen im 

Alter von zwölf Wochen mit L-NAME behandelt. Dies wurde dem Trinkwasser zugefügt 

(1mg/ml) und, aufgrund der geringen Haltbarkeit von L-NAME, jeden Tag ersetzt (EC-Ang2-

on + L-NAME). In zwei weiteren Gruppen wurde eine Transduktion mittels eines 

adenoassoziierten Virus, welcher das Gen für Ang-1 oder PDGF-B enthielt, durchgeführt 

(„EC-Ang2-on + Ang1“ / „EC-Ang2-on + PDGF-B“). Hierzu wurden 5 x 1012 Partikel des AAV 

2/9 CMV Ang-1 oder AAV 2/9 CMV PDGF-B in die Schwanzvene der Tiere injiziert.  

Im Alter von 18 Wochen wurde eine erneute Echokardiographie und Blutdruckmessung 

durchgeführt. Zu diesem Zeitpunkt wurde zudem die Messung der Gefäßpermeabilität 

durchgeführt (siehe 2.5.2). Im Alter von 24 Wochen wurde nach einer erneuten Durchführung 

der Echokardiographie und Blutdruckmessung die invasive Hämodynamikmessung 

durchgeführt (siehe 2.5.5), im Anschluss wurden die Organe entnommen und der Versuch 

beendet (siehe 2.6). 
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Abbildung 9: Darstellung des Versuchsablaufes für Versuchstiere mit endothelialer Angiopoietin-2 
Überexpression. Nach einer initialen Messung des Blutdruckes und des linksventrikulären enddiastolischen 
Durchmessers wurden die Ang-2 überexprimierenden Tiere in vier Gruppen aufgeteilt. Eine Gruppe wurde 
unbehandelt weiter beobachtet (EC-Ang-2-on), während in einer zweiten Gruppe die Überexpression durch Gabe 
doxyzyklinhaltigen Futters ausgesetzt wurde (EC-Ang2-off). Neben der Abschaltung der Überexpression wurde 
ein Teil der Tiere mit L-Name behandelt, in zwei weiteren Gruppen wurden die Gene für Angiopoietin-1 und 
PDGF-B mithilfe eines rekombinanten adenoassoziierten Virus eingebracht (EC-Ang2-on + Behandlung). Die 
Tiere wurden einer erneuten Blutdruckmessung und einer Messung der Gefäßpermeabilität im Alter von 18 
Wochen unterzogen, gefolgt von einer letzten Messung des LvEDD, des Blutdruckes und einer invasiven 
Hämodynamik-Messung. Im Anschluss wurden die Organe der Tiere entnommen. 

Der Versuchsablauf für die Tiere mit myokardialer Ang-2 Überexpression wurde analog zu 

dem vorher beschriebenen Ablauf gestaltet. Hierbei entfielen jedoch die Messung der 

Gefäßpermeabilität und die Behandlung nach zwölf Wochen. In einer weiteren Reihe von 

Versuchen wurden C57BL/6 Mäuse mit Ang-2 codierenden Viren transduziert. Zum einen 

wurde der Sub-Serotyp AAV2/7 in einer Konzentration von 5 x 1012 Viruspartikel verwendet 

(rAAV2/7.Ang2), zum anderen der Sub-Serotyp AAV2/9 in einer Konzentration von 1 x 1012 

(rAAV-CM-Ang2). Die Transduktion wurde ebenfalls nach der ersten Messung durchgeführt, 

verglichen wurden Ang-2 transduzierte Tiere mit ihren LacZ transduzierten Kontrollen 

(rAAV2/7.LacZ, bzw. rAAV-CM-LacZ). 

2.3. Mausmodell der LPS-induzierten Sepsis 

Um den Effekt von Angiopoietin-2 im Rahmen einer LPS-induzierten Sepsis zu untersuchen, 

wurde zum einen eine systemische Inflammation durch intraperitoneale Injektion von 

Lipopolysacchariden aus E. coli (20 mg/kg KG) in EC-Ang2-on und EC-Control Tieren 
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ausgelöst. Zum anderen wurden C57BL/6 Mäuse mit einem Kontrollantikörper (AP112, 20 

mg/kg KG) oder einem Angiopoietin-2 Antikörper vorbehandelt. Der hier verwendete 

Angiopoietin-2 Antikörper (LC10, RO5485202, 20 mg/kg KG) wurde von Markus Thomas 

(Fa. Roche) zur Verfügung gestellt. 24 Stunden nach der Antikörperbehandlung wurden 

ebenfalls Lipopolysaccharide injiziert. Zu Beginn der Sepsis und alle zwölf Stunden im 

folgenden Beobachtungszeitraum wurde den Tieren zur Analgesie Buprenorphin i.p. 

verabreicht. Nach Beginn der Sepsis wurden die Tiere alle zwölf Stunden untersucht, um die 

Schwere der Sepsis zu beurteilen. Hierzu wurde ein Punktesystem verwendet, welches die 

Parameter Gewicht, Verhalten, Schmerz, Dyspnoe und Aszites beinhaltete. Die 

Punktevergabe für die einzelnen Kategorien ist in Tabelle 1 aufgeführt. Wenn ein Tier eine 

Gesamtpunktzahl von 20 oder mehr erreicht hatte, so wurde der Versuch beendet und das 

Tier wurde als verstorben registriert. 

 0 5 10 20 

     

Verhalten 

Maus bewegt sich 

normal, Fluchtreflexe 

vorhanden 

Maus verlangsamt, 

bewegt sich von allein 

keine spontane 

Bewegung, nur nach 

Antippen 

Maus 

regungslos, 

komatös 

Gewichtsverlust 0-5% 5-10% 10-15% >15% 

Aszites kein mild moderat schwer 

Dyspnoe kein mild moderat schwer 

Schmerz 
keine Anzeichen von 

Schmerz 

gekrümmter Rücken, 

eingeschränktes 

Putzverhalten 

verändertes 

Gangbild, Zittern 
schwer 

Tabelle 1: Zur Beurteilung der Sepsisschwere wurde ein Punktesystem verwendet, in dem in 
fünf Kategorien zwischen 0 und 20 Punkte vergeben wurden. Ab einer Punktzahl von 20 oder 
mehr wurde der Versuch abgebrochen.  

2.4. Virenproduktion und Transduktion 

2.4.1. Tripletransfektion von HEK293-Zellen 

Zur Herstellung adenoassoziierter Viren wurden HEK293-Zellen mit drei Plasmiden 

transfiziert (siehe Abbildung 10). Zunächst benötigt man ein Plasmid, welches die genetische 

Information des Helfervirus codiert (Adenovirus Helferplasmid). Dies ist notwendig, da 

adenoassoziierte Viren an sich nicht replikationsfähig sind. Hierbei handelt es sich um 
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adenovirale Gene zur Vervollständigung des späteren Virus. Weiterhin wird ein sogenanntes 

Transplasmid benötigt, welches die nötigen AAV-Anteile, inklusive der Rep- und Cap-

Strukturen, codiert. Das letzte Plasmid codiert für das Transgen (in diesem Fall Angiopoietin-

1, Angiopoietin-2, PDGF-B, LacZ und GFP), den für die Transkription benötigten Promoter 

und die Inverted Terminal Repeat Sequenzen (ITRs), welche für die DNA Replikation und 

Enkapsulierung essentiell sind51, 176.  

 

Abbildung 10: graphische Darstellung der Tripple-Transfektion zur Herstellung rekombinanter adenoassoziierter 
Viren in HEK293-Zellen. 

Bei den Zellen zur Virenproduktion handelte es sich um Human Embryonic Kidney Zellen 

(HEK293). Diese wurden in Kulturmedium bestehend aus Dulbecco’s Modified Eagle 

Medium mit 10 % FCS und 1% Penicillin / Streptomycin in Zellkulturflaschen kultiviert. Zum 

Splitten der Zellen wurde das Kulturmedium abgesaugt, die Zellen wurden mit einem 1 ml 

PBS gewaschen, im Anschluss wurden die Zellen bei 37 °C ca. zwei Minuten in 1 ml Trypsin 

inkubiert, wodurch sich die Zellen von der Kulturflasche lösten. Das Gemisch aus Trypsin 

und den Zellen wurde in Falcon Tubes überführt und mit 8 ml Kulturmedium aufgefüllt. Nach 

einer Zentrifugation für fünf Minuten bei 2000 rpm wurde der Überstand verworfen und das 

Zellpellet im Kulturmedium resuspendiert und in eine neue Zellkulturflasche überführt und 

erneut im Brutschrank bei 37 °C kultiviert. 

Die HEK293-Zellen wurden zunächst aus den Zellkulturflaschen in Zellkulturschalen 

überführt (147,8 cm2) und im Verlauf gesplittet und auf weitere Schalen verteilt, bis in 50 

Zellkulturschalen eine Konfluenz von 70-80 % erreicht wurde. Das Medium wurde abgesaugt 
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und durch frisches, serumfreies Medium ersetzt. Nach einer Wartezeit von zwei Stunden 

wurde die Transfektionslösung hinzugegeben. Diese wurde wie folgt hergestellt: Für 50 

Platten wurde zunächst 40 ml serumfreies Medium in einem 50 ml Falcon bereitgestellt. Dem 

Medium wurden 1300 µg des Adenovirus Helferplasmids (pA ∆ F6), 650 µg des 

Transplasmids (p600) und 650 µg des Cisplasmids hinzugegeben und durch Vortexen 

vermischt. Die sich ergebende Lösung wurde auf vier Falcons verteilt (je 10 ml), 15 ml des 

serumfreien Mediums wurden in jedes Falcon hinzugegeben. In jedes der vier Falcon-Tubes 

wurden 1300 µg Polyethylenimin (PEI) pipettiert. Bei PEI handelt es sich um ein Polymer, 

welches positiv geladene DNA-Partikel umgibt und die Endozytose durch die negativ 

geladene Zellmembran erleichtert14. Nach erneutem Vortexen und einer 15-minütigen 

Inkubation bei Raumtemperatur wurden 2,1 ml der Lösung auf jede der Platten verteilt. Nach 

einer Wartezeit von vier Stunden im Inkubator wurde zu dem Medium 5 ml DMEM mit 50% 

FBS und 1% Pen/Strep hinzugefügt. 

2.4.2. Ernte und Aufreinigung von AAV-Vektoren über Caesiumchloridgradienten 

24 Stunden nach Beginn der Transfektion wurde das Zellmedium gewechselt, 72 Stunden 

nach Beginn der Transfektion konnten die Viren geerntet werden. Hierzu wurde zunächst 

das Medium abgesaugt und die Zellen mit einem Zellschaber abgelöst und in ein Falcon-

Tube überführt. Das nach einer Zentrifugation bei 4000 rpm für 15 Minuten entstanden Pallet 

wurde über Nacht bei -80 °C gefroren. 

Zur weiteren Verarbeitung wurden die Pellets bei 37 °C für zehn Minuten aufgetaut. Im 

Anschluss wurden die Pallets in 27 ml TMN-Puffer resuspendiert, auf ein Endvolumen von 

35 ml aufgefüllt und auf Eis gelegt. Zur Lösung der Zellen wurde die Zellsuspension 3 x 30 

Sekunden im Eiswasserbad sonifiziert. Zum Abbau freier RNA und DNA wurden 

anschließend 3 µl Benzonase zum Erreichen einer Endkonzentration von 25 U/ml 

hinzugefügt und die Suspension für 20 Minuten bei 37 °C inkubiert. Währenddessen wurden 

die Lysate alle fünf Minuten gewendet. Im Anschluss wurde 1,25 ml Desoxycholsäure (10 %) 

zum Aufschluss der Zellen hinzugefügt und zunächst zehn Minuten bei 37 °C und darauf 15 

Minuten auf Eis inkubiert. Der Inkubation folgte eine Zentrifugation bei 4000 rpm für 15 

Minuten bei 4 °C zur Reinigung des Lysats. Der Überstand wurde in ein frisches Falcon-

Tube überführt. Zur Aufreinigung der Viruspartikel wurde eine Ultrazentrifugation und 

Dichtebestimmung über einen Caesiumchloridgradienten durchgeführt. Hierfür wurde 

zunächst Caesiumchlorid (CsCl) in die zuvor abpipettierten Überstände hinzugefügt 

(0,454g/ml Überstand / Endvolumen 32-34 ml). Als Nächstes wurde ein 2-Phasen 

Caesiumchloridgradient hergestellt. Hierzu wurden zunächst 9 ml einer CsCl-Lösung mit 

einer Dichte von 1,41 ρ in 2 SW-28 Tubes pipettiert. Eine weitere Schicht aus 9 ml einer 
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CsCl-Lösung mit der Dichte 1,61 ρ wurde vorsichtig unter die erste Schicht pipettiert. Im 

Anschluss wurden je 16-17 ml des Zellysats hinzugegeben, ohne den hergestellten 

Dichtegradienten zu zerstören. Die durchschnittliche Dichte des CsCl-Gradienten entspricht 

bei diesem Ansatz der Dichte der Viruspartikel. Diese Mischung wurde nun für 18-20 

Stunden bei 15 °C und 25.000 rpm zentrifugiert, wobei die Viruspartikel nach unten sinken. 

Nach der Zentrifugation wurde jeder Ansatz in 1 ml Schritten auf Eppendorf-Tubes verteilt. 

Um zu bestimmen, welche Tubes AAV-Partikel enthalten, wurde aus 5 µl jedes Tubes der 

Refraktionsindex mittels eines Refraktometers bestimmt. Befanden sich AAVs in den Proben, 

so lag dieser bei 1,362 – 1,373. Nur Fraktionen in diesem Zielbereich wurden für die 

folgenden Schritte verwendet, der übrige Anteil der Proben wurde verworfen. Fraktionen im 

Zielbereich wurden zunächst vereinigt, in zwei 70 Ti-quick-seal Röhrchen gegeben und bei 

Bedarf mit CsCl 1,41 ρ aufgefüllt. Die Röhrchen wurden verschlossen und bei 60.000 rpm für 

20-24 Stunden bei 15 °C ultrazentrifugiert. 

Nach der Zentrifugation wurden die verschlossenen Tubes mit einer 16G Nadel punktiert, 1 

ml der Lösung wurde abgezogen und auf zwei Eppendorf-Tubes verteilt. Im Anschluss 

wurden die Tubes eröffnet, der Inhalt wurde in Fraktionen von 500 µl auf Eppendorf-Tubes 

verteilt. Aus diesen Proben wurde erneut der Refraktionsindex bestimmt, wobei erneut 

Proben außerhalb des Refraktionsindex verworfen wurden. Es folgte eine erneute 

Ultrazentrifugation, im Anschluss wurden die Proben erneut in 500 µl Fraktionen unterteilt. 

Der Brechungsindex wurde ein letztes Mal bestimmt und Proben, die außerhalb des 

Brechungsindex lagen, wurden verworfen. Für die letzte Messung des Brechungsindexes lag 

der Zielbereich bei 1,364 – 1,371. 

Als letzten Schritt der Virenaufreinigung musste nun das Caesiumchlorid aus der Lösung 

entfernt werden. Hierfür kamen Zentrifugationsfilter zum Einsatz (Amicon Ultra-15). Diese 

wurden zunächst mit PBS angefeuchtet, gefolgt von 4-5 ml PBS und der Viruslösung. So 

entstand ein Endvolumen von ca. 12 ml, welches bei 3000 rpm für 15 Minuten zentrifugiert 

wurde. Das resultierende Konzentrat wurde weitere 12-mal mit PBS gewaschen und zuletzt 

auf ein Endvolumen von 2 ml eingestellt.  

2.4.3. Konzentrationsbestimmung mittel qPCR 

Zur Bestimmung der Virenkonzentration in der Lösung wurde eine quantitative real-time PCR 

durchgeführt.  

Zunächst wurde eine DNAse Verdau der Viruslösungen durchgeführt, wozu das DNAse 

Amplification Grade Kit verwendet wurde. Eine Mischung aus 10 µl Probe, 4 µl DNAse, 10 µl 

DNAse-Puffer und 76 µl dH2O wurde hergestellt, welche 15 Minuten bei Raumtemperatur 
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inkubierte. Zur Inaktivierung der DNAse wurden 2 µl 25 mM EDTA hinzugegeben, die 

Mischung wurde bei 65 °C für zehn Minuten inkubiert und im Anschluss auf Eis gelegt. Für 

die PCR wurde eine Standardserie aus einem CMV-Vektor Plasmid erstellt, welche aus vier 

seriellen Verdünnungen von 0,001 ng bis 1 ng bestand. Der Standard und die Proben 

wurden mit dem TaqMan-Mix und Primern für das virusspezifische bGH-Gen in die PCR-

Gefäße pipettiert. Durch einen Vergleich der PCR-Kurven der Proben mit den Standard-

Kurven konnte die Viruskonzentration bestimmt werden. Im Anschluss wurden die Viren bei 

4 °C bis zu ihrer Benutzung gelagert. 

2.5. Messung der Funktionsdaten 

2.5.1. Narkotisierung und Antagonisierung 

Zur Narkotisierung der Tiere wurde eine Mischung aus Midazolam, Medetomidin und 

Fentanyl verwendet („MMF“). Die Zusammensetzung der Narkosemischung ist in der unten 

dargestellten Tabelle zusammengefasst. Nach dem Wiegen der Tiere wurde die 

entsprechende Menge intraperitoneal injiziert. 

MMF    

Wirkstoff 

Medetomidin 

(Dorbene vet.®) 

Midazolam 

(Midazolam-ratiopharm®) 

Fentanyl 

(Fentanyl-Janssen®) 

    

mg/ml 1 1 0,05 

ml 0,5 5 1 

mg/kg KG 0,5 0,05 0,005 

    

 

Nach Durchführung der Echokardiographie / Blutdruckmessung und der 

Permeabiltätsmessung wurde die Wirkung der MMF-Narkose durch eine gewichtsadaptierte 

Injektion des Antagonisten aufgehoben. Da die Halbwertszeit der Narkosemittel höher ist als 

die der Antagonisten wurden 2/3 der Menge intraperitoneal und 1/3 subkutan injiziert. 
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Antagonist    

Wirkstoff 

Atipamezol 

(Revertor®) 

Flumazenil 

(Anexate®) 

Naloxon 

(Naloxon Inresa®) 

    

mg/ml 5 0,1 0,4 

ml 0,5 5 3 

mg/kg KG 2,5 0,5 1,2 

    

 

2.5.2. Messung der Gefäßpermeabilität 

2.5.2.1. Die Multi Photonen Laser Scanning Mikroskopie 

Bei der Fluoreszenzmikroskopie werden sogenannte Fluorophore verwendet, bei denen es 

sich um Moleküle handelt, die nach Anregung mit Licht einer bestimmten Wellenlänge, 

typischerweise zwischen 300 und 800 nm, Licht einer anderen Wellenlänge emitieren. Das 

Licht für die Anregung der Fluorophore stammt in der Regel aus Quecksilberdampflampen 

oder Lasern. 

Bei der 2-Photonen-Mikroskopie werden die Fluorophore nicht durch Licht angeregt, welches 

im Exitationsmaximum des Fluorophors liegt, sondern durch Photonen, deren Wellenlänge 

im infraroten Bereich liegt (bis 1000 nm). Um mit diesen Photonen, die energieärmer sind als 

Photonen mit geringerer Wellenlänge, die Fluorophore anzuregen, müssen zwei dieser 

Photonen im Abstand weniger Femtosekunden auf das Fluorophor treffen. Dies geschieht 

nur in einem Fokuspunkt, in dem die Photonendichte hoch genug ist. Die 2-Photonen-

Mikroskopie erlaubt eine um vielfaches größere Eindringtiefe in das Gewebe, des Weiteren 

ist die Phototoxizität für das Gewebe geringer und Fluorophore, die nicht in der Fokusebene 

liegen, werden nur sehr begrenzt angeregt. 

2.5.2.2. Durchführung der Permeabilitätsmessung 

Die Mäuse wurden mittels intraperitonealer Injektion der MMF-Lösung zunächst narkotisiert 

(siehe 2.5.1). Ein Polyethylen-Schlauch (Innendurchmesser 0,28 mm) wurde an beiden 
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Enden mit einer 30G-Kanüle versehen, mit isotoner Kochsalzlösung gefüllt und in der 

Schwanzvene der Maus platziert und fixiert. Danach wurde das Mausohr flach unter das 2-

Photonen-Mikroskop gelegt und eine beispielhafte Gefäßregion wurde aufgesucht. Angeregt 

wurde mit einer Wellenlänge von 860 nm, wodurch unter Benutzung eines 580/60 nm Filters 

das Fluoreszenzmolekül TRITC dargestellt werden konnte. Weiterhin kommt es bei 

Anregung mit hohen Wellenlängen zu dem Effekt der Frequenzverdopplung (second 

harmonics generation). Durch diesen Effekt gelingt die Darstellung von Kollagenfasern unter 

Benutzung eines 447/60 nm Filters ohne die Zugabe weiterer Fluorophore. Das zu 

untersuchende Areal wurde zunächst mithilfe der Autofluoreszenz aufgesucht und genauer 

durch die Benutzung von SHG festgelegt. Ein Bildausschnitt von 200 x 200 µm wurde in 

zehn Ebenen mit 4 µm Abstand aufgenommen. Dies wurde alle 15 Sekunden für insgesamt 

zehn Minuten durchgeführt (siehe Abbildung 11). Durch die Anfertigung dieser 

Schichtaufnahmen (Stacks) konnte der gewählte Bildausschnitt über den gesamten Zeitraum 

trotz der Atembewegungen des narkotisierten Tieres nachverfolgt werden. Nach der 

Anfertigung der ersten Aufnahme (Leeraufnahme), wurden 150 µl einer Mischung aus 4 kDa 

Dextran gelabelt mit TRITC und sterilem PBS (50mg/ml) in die Schwanzvene der Maus 

injiziert. Im Anschluss wurde die Narkose durch Gabe des Antagonisten beendet. 

 

Abbildung 11: Darstellung der Fluoreszenz im Fluoreszenzbereich von TRITC, Second Harmonic Generation um 
Überlagerung beider Kanäle im Mausohr vor Injektion mit TRITC-Dextran, nach 15 Sekunden und drei Minuten. 
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Zur Analyse der Farbintensität wurde die Bildanalysesoftware ImageJ verwendet (W.S. 

Rasband, U. S. National Institutes of Health, Bethesda, Md, USA, http://imagej.nih.gov/ij/, 

1997–2012). Analysiert wurden die mittleren Grauwerte (mean grey value / MGV) in drei 

repräsentativen, ca. 100 µm2 großen Arealen in direkter Nachbarschaft zum dargestellten 

Gefäß. Als Referenzpunkt diente die extravasale Fluoreszenz zum Zeitpunkt der maximalen 

intravasalen Fluoreszenz nach Injektion von TRITC-Dextran (in der Regel nach 15-45 

Sekunden). Dieser MGV wurde als 100% extravasale Fluoreszenz definiert, die folgenden 

Werte wurden als Prozent des Startwertes berechnet. 

2.5.3. Nicht-invasive Blutdruckmessung 

Zu Beginn der Messungen wurden die Mäuse narkotisiert (siehe 2.5.1) und auf eine 

Wärmeplatte gelegt. Die nicht-invasive Blutdruckmessung erfolgte mithilfe eines 

Messsystems für Nagetiere. Zuerst wurde ein sog. Occlusion-Cuff (O-Cuff) über den 

Schwanz der Maus bis zur Schwanzwurzel gestreift, gefolgt von einem Volume-Pressure-

Recording Cuff (VPR-Cuff). Bei der Messung wird im Occlusion-Cuff Druck aufgebaut und 

schrittweise wieder abgelassen. Mithilfe des VPR-Cuffs wird die wieder einsetzende 

Durchblutung des Schwanzes gemessen. Mithilfe der Systemsoftware konnte so der 

systolische Blutdruck, diastolische Blutdruck und Mitteldruck bestimmt werden (siehe 

Abbildung 12). Auf die Blutdruckmessung folgte die echokardiographische Vermessung des 

linken Ventrikels. 

 

Abbildung 12: Darstellung einer Messung des Blutdrucks mithilfe des Coda Systems. 

2.5.4. Echokardiographie 

Die Vermessung des Herzens mittels Ultraschall erfolgte direkt nach der nicht-invasiven 

Blutdruckmessung, also bei noch narkotisierten Tieren. Die Mäuse wurden auf einer 

Wärmeplatte fixiert, wobei sie leicht auf die linke Seite gedreht wurden und der linke 
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Vorderlauf über dem Kopf fixiert wurde, um so die Rippen auseinander zu spreizen. Bei der 

so fixierten Maus wurden die Haare des linken Brustkorbs mit einer Enthaarungscreme 

entfernt. An das Echo-Gerät wurde ein 15 Mhz Schallkopf angeschlossen, welcher eine hohe 

Auflösung bei geringer Eindringtiefe erlaubt. Der Schallkopf mit dem Ultraschallgel wurde 

zuerst auf den Brustkorb aufgesetzt, um eine Querschnittsaufnahme des linken Ventrikels zu 

erhalten. Nachdem der linke Ventrikel so eingestellt war, dass er möglichst rund und in der 

Ebene der Papillarmuskeln zu sehen war, wurde ein Video von ca. drei Sek. aufgenommen 

und drei M-Mode Aufnahmen durch den linken Ventrikel. Danach wurde der Schallkopf um 

90° gedreht, um einen Längsschnitt durch den linken Ventrikel zu erhalten, wovon dann auch 

ein ca. drei Sekunden langes Video aufgenommen wurde. Die Narkose der Maus wurde 

nach Beendigung der Aufnahmen antagonisiert (siehe 2.5.1). Bei einer späteren Auswertung 

konnte der linksventrikuläre enddiastolische Durchmesser in den gespeicherten Aufnahmen 

mithilfe der Systemsoftware ausgemessen werden. 

2.5.5. Invasive Hämodynamikmessung 

Nach dem Beobachtungszeitraum von sechs Monaten wurden die Herzfunktionen mittels 

invasiver linksventrikulärer Druckmessung bestimmt. Hierzu wurden die Mäuse gewogen, 

narkotisiert (siehe 2.5.1) und auf einer Wärmeplatte fixiert. Außerdem wurde den Mäusen 

eine Temperatursonde rektal eingeführt, um die Körperkerntemperatur konstant bei 37°C zu 

halten. Nach einem Hautschnitt etwas rechts der Trachea wurde diese frei präpariert. Ein 

Knoten wurde am kaudalen Ende der Trachea vorgelegt und ein PE-Schlauch wurde nach 

Einschnitt der Bänder in die Trachea vorgeschoben und mit dem vorgelegten Knoten fixiert, 

um die Atmung zu erleichtern. Darauf folgte die Freilegung der rechten A. carotis. Nach 

vorsichtiger Trennung der A. carotis vom N. vagus wurde die A. carotis kranial mit einem 

Faden ligiert und unter leichten Zug gebracht. Kaudal wurde eine Schlaufe um die Arterie 

gelegt und unter Zug gebracht, bis der Blutfluss in die Arterie versiegte. Außerdem wurde ein 

weiterer Knoten vorgelegt. Nach einer kleinen Inzision im kranialen Drittel wurde ein 1,4 

french Millar Tip Pressure-Transducer mithilfe einer abgebogenen Kanüle in die A. carotis 

eingeführt. Nach Fixierung mit dem vorgelegten Knoten wurde der Zug von der distalen 

Schlaufe genommen und der Katheter in den linken Ventrikel vorgeschoben. Der richtige Sitz 

des Katheters konnte durch Überwachung der Druckkurve überprüft werden (siehe 

Abbildung 13 A). Der Messkatheter war über eine Transducer Control Unit (Model Tc-510) 

an einen Signalverstärker (DC Bridge Amplifier, Type 660) angeschlossen, von dem das 

Signal über einen BNC-Connectorblock (BNC Connector Block) und eine A/D-Wandler-

Messkarte (DT301) auf einen Messrechner übertragen und aufgezeichnet werden konnte. 

Zur Darstellung und Analyse des Signals wurde das Programm DASYLAB verwendet. 

Mithilfe dieser Software konnte der linksventrikulär entwickelte Druck (als Differenz zwischen 
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maximalem systolischen und dem enddiastolischen Druck), die Anstiegsgeschwindigkeit 

(dP/dTmax und dP/dTmin) als Parameter für die globale Kontraktilität und Relaxation des 

Myokards und der linksventrikuläre enddiastolische Druck gemessen werden. Im Anschluss 

an die Messung dieser Parameter unter Ruhe wurde die rechte V. jugularis kanüliert. Die 

Vorbereitung der Vene wurde genauso vorgenommen wie schon bei der A. carotis. Nach 

Inzision der V. jugularis wurde eine Venenverweilkanüle in die Vene eingeführt, 

vorgeschoben und fixiert, welche vorher an der Spitze gekürzt und mit 0,9% NaCl gefüllt 

wurde. Nun wurde mittels einer Mikroliterspritze 10 µl einer Noradrenalin-Lösung in den 

Konzentrationen 10 ng, 25 ng, 50 ng und 100 ng injiziert, um neben der Baseline-Messung 

auch die Reservekapazität zu überprüfen (siehe Abbildung 13 B). Nach den Messungen 

wurde zur Beendigung des Versuchs über den Jugulariskatheter eine Kalium-Chlorid-Lösung 

appliziert. Die Messung des Herzzeitvolumens erfolgte bei gleicher Operationstechnik (ohne 

Stimulation) unter Verwendung des Millar Aria Pressure Volume Conductance Systems. 

 

Abbildung 13: A Vergrößerung des Übergangs zwischen Aortendruckkurve und Druckkurve des linken 
Ventrikels. Die Beschriftung zeigt an, an welcher Stelle die Parameter gemessen wurden. Der entwickelte Druck 
(dP) ist hierbei die Differenz zwischen LvEDP und P max. B Beispiel einer Stimulation mit Noradrenalin nach 
Platzierung des Katheters im linken Ventrikel mit aufsteigenden Dosen (10 ng, 25 ng, 50 ng, 100 ng). 
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2.6. Organentnahme und Aufbereitung 

Nach der Durchführung der invasiven Hämodynamikmessung wurden bei den Tieren Herz 

und Schwanz entnommen, zum Zwecke des Virusnachweises bei den transfizierten Tieren 

und deren Kontrollen auch Leber, Milz, Niere und der M. quadriceps femoris. Die Organe 

wurden entnommen, gewogen und je nach weiterem Vorgehen entweder in Tissue Tek 

eingebettet und sofort auf Trockeneis gelegt, um Cryoschnitte anzufertigen, oder in 2 ml 

Eppendorf-Tubes überführt und auf Trockeneis gelagert, um für die PCR zur Verfügung zu 

stehen. Danach wurden alle Organe in einem Gefrierschrank bei -80°C bis zu ihrer 

Verwendung gelagert. 

Die für die Histologie bestimmten Organe wurden mit einem Gefriermikrotom in 7 µm dicke 

Präparate geschnitten und auf Objektträger aufgebracht. Bis zu ihrer Verwendung wurden 

sie in Objektträgerboxen bei -40°C gelagert. 

2.7. Histologie 

2.7.1. PECAM-1/NG2 Doppelfärbung 

Durch immunhistochemische Färbungen ist es möglich, durch Anfärbung von 

zellreihenspezifischen Antigenen diese in einem histologischen Präparat darzustellen. In der 

vorliegenden Arbeit wurden Färbungen für die Antigene PECAM-1 und NG2 durchgeführt. 

Bei PECAM-1 (Platelete endotheliale cell adhesion molecule-1, auch CD31) handelt es sich 

um ein Endothelzellmarker, bei NG2 (neuron-glial antigen 2, auch Chondroitinsulfat 

Proteoglykan) um einen Marker für Perizyten. 

Zur Anfärbung von Endothelzellen und Perizyten wurden die gefrorenen Präparate zunächst 

aufgetaut und im Anschluss 15 Minuten in Aceton bei -15 °C fixiert. Im Anschluss wurden die 

Schnitte in PBS gewaschen (3 x 5 Minuten). Um eine unspezifische Bindung der Antikörper 

zu verhindern, wurden die Schnitte 30 Minuten bei Raumtemperatur in Antibody Diluent 

geblockt. Dieser wurde durch Abklopfen entfernt, der PECAM-1 Antikörper, verdünnt in 

Antibody Diluent, wurde auf die Schnitte gegeben. Nach Inkubation über Nacht bei 4 °C 

(mindestens acht Stunden) wurde der erste Primärantikörper durch Waschen mit PBS 

entfernt. Im Anschluss wurden die Präparate in dem Cy3-markiertem Sekundärantikörper 

zwei Stunden bei Raumluft inkubiert. Nach einem erneuten Waschschritt mit PBS (3 x 5 

Minuten) wurde mit dem NG2 ebenso verfahren. Der Primärantikörper wurde über Nacht bei 

4 °C inkubiert, der zweite Sekundärantikörper (Alexa 488 markiert) zwei Stunden bei 

Raumluft. Nach einem letzten Waschschritt wurden die Schnitte getrocknet und in einem 

Mounting Medium, welches den blauen Kernfarbstoff DAPI enthält, unter einem Deckglas 

eingebettet. 
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2.7.2. X-Gal Färbung 

Die X-Gal Färbung dient als Nachweis einer Transduktion mit dem Reportergen LacZ, 

welches für das Enzym β-Galaktosidase codiert. Durch die Spaltung von X-Gal entsteht 

Galaktose und 5-bromo-4-chloro-3-hydroxyindol, welches dimerisiert und zu 5,5‘-dibromo-

4,4‘-dichloro-indigo oxydiert, einem blauen Farbstoff. 

Proben von LacZ-transduzierten Tieren und den X-LacZ-4 Tieren wurden aufgetaut und in 

einer 0,5%-igen Glutaraldehydlösung für zehn Minuten bei Raumtemperatur fixiert. Im 

Anschluss wurde die Fixierlösung durch Waschen (3 x 5 Minuten in PBS) entfernt. Die 

filtersterilisierte X-Gal Färbelösung wurde im Anschluss auf die Objektträger pipettiert und 

über Nacht bei 37 °C inkubiert. Die Objektträger wurden im Anschluss gewaschen und 

luftgetrocknet. 

2.7.3. Masson Trichrom Färbung 

Nachdem die Schnitte aufgetaut waren, wurden sie zunächst zehn Minuten bei 37 °C in 

Bouins-Lösung fixiert. Im Anschluss wurden die Schnitte unter fließendem Leitungswasser 

gewaschen, bis die Gelbfärbung nachließ. Im Anschluss folgte eine Färbung mit Weigerts 

Eisen-Hämatoxylin-Lösung für 3-4 Minuten. Nach einer erneuten Waschung unter 

Leitungswasser für fünf Minuten, gefolgt von einer Spülung in deionisiertem Wasser, folgte 

ein weiterer Färbeschritt in Biebrich-Scharlachrot-Säurefuchsin-Lösung für 15 Sekunden, 

gefolgt von einer erneuten Spülung in deionisiertem Wasser. Als nächsten Schritt wurden die 

Schnitte zehn Minuten in Phosphowolfram-/Phosphomolybdänsäure-Lösung inkubiert, im 

Anschluss wurden die Schnitte in Anilinblau-Lösung für 15 Sekunden gefärbt. Nach einem 

Inkubationsschritt in 1%-iger Essigsäure für fünf Minuten und einer erneuten Spülung in 

deonisiertem Wasser erfolgte die Dehydrierung in einer aufsteigenden Alkohollösung. 

Zunächst für fünf Minuten in 70%-igem Alkohol, gefolgt von einer Minute in 90%-igem 

Alkohol. Nach dem letzten Schritt (eine Minute in reinem Alkohol) wurden die Schnitte in 

Xylol geklärt, fixiert und getrocknet. 

2.8. Mikroskopie 

Die Aufnahmen der X-Gal und Masson Trichrom Färbung wurden an einem Axiovert 100 

Mikroskop angefertig, an welches eine Axiocam-Kamera angeschlossen war. Die 

Bildverarbeitung wurde an der systemeigenen Software (Axiovision) durchgeführt. 

Für die Ablichtung der immunhistochemischen Aufnahmen wurde ein Axiovert 200M 

Mikroskop gekoppelt an das LSM510 META System verwendet. Die Bearbeitung der Bilder 

wurde in der Software LSM Image Browser durchgeführt. 
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Das verwendete System zur Durchführung der Permeabilitätsmessung besteht aus einem 

TriMScope, aufgebaut um ein Olympus BX 51 Mikroskop, ausgestattet mit einem 

einstellbaren Ultra II Titan : Saphir-Laser und einem optischen parametrischen Oszillator 

(typische Pulsbreite 200 fs, Repetitionsrate 80 MHz)122. 

2.9. Angiogenese-Assay 

Zur Untersuchung der Interaktion von Endothelzellen und Perizyten in vitro wurden 

Endothelzellen (mouse brain endothelial cells, bEnd3) und murine mesenchymale Zellen 

(ATCC-CCL-226) in einer Kokultur auf einer simulierten Extrazellulärmatrix, bestehend aus 

Laminin, Kollagen IV, Heparansulfat Proteoglykan und Entactin, kultiviert (BD Matrigel®). 

Bis zu ihrer Verwendung wurden die bEnd3-Zellen in Zellkulturflaschen in DMEM-Medium 

kultiviert, welches mit 10 % FCS und 1% Penicillin / Streptomycin versetzt wurde. Die ATCC-

CCL-226 Zellen wurden in Gibco Basal Medium Eagle (BME) mit 1% Penicillin / 

Streptomycin und 10% FCS kultiviert. 

Zu Beginn des Experiments wurden zunächst die bEnd3-Zellen auf eine 6-Well Platte 

ausplattiert und kultiviert, bis eine 70-80%-ige Bedeckung des Bodens erreicht wurde (in der 

Regel über Nacht). Im Anschluss wurden die Zellen mit Plasmiden transfiziert, welche das 

Gen für Ang-1, Ang-2 oder PDGF-B unter der Kontrolle eines CMV-Promoters enthielten. Als 

Kontrolltransfektion wurde pcDNA verwendet. Für jede Transfektion wurden 3 µl 

SatisFection® in 100 µl DMEM ohne FCS und ohne Antibiotikazumischung gelöst. In einem 

weiteren Ansatz wurden 2 µg der entsprechenden Plasmid-DNA ebenfalls in DMEM ohne 

FCS / Antbiotika gelöst. Beide Mischungen wurden zusammengeführt und inkubierten 15 

Minuten bei Raumtemperatur. Im Anschluss wurde das Gemisch auf die Zellen verteilt (ein 

Ansatz pro Well), die Zellen wurden zurückgestellt in den Brutschrank und verblieben dort für 

weitere 24 Stunden. 

Vor der Ausplattierung der Endothelzellen wurden die Angiogenese µ-Slides vorbereitet. 

Hierzu wurden 12 µl Matrigel / Well von Angiogenese µ-Slides pipettiert. Im Anschluss 

wurden die Slides im Brutschrank inkubiert. Bevor die Zellen auf das Matrigel ausplattiert 

werden konnten, wurde das Medium abpipettiert und die Zellen wurden nach einem 

Waschschritt in sterilem PBS durch Trypsinierung (2 ml) von den Platten gelöst. Nach einer 

Resuspension des Trypsin / Zellen-Gemisches in 8 ml Endothelial Growth Medium (EGM) 

wurden die Zellen zunächst bei 2000 rpm für fünf Minuten zentrifugiert und in 1 ml EGM 

resuspendiert. Im Anschluss wurde zur Färbung der Zellen DiD (5µl/ml) hinzugegeben. 

Dieser lipophile Fluoreszenzmarker bindet an die Zellmembran und liegt im roten 

Fluoreszenzbereich. Nach einer Inkubation von 20 Minuten wurde das übrige DiD durch 3-
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malige Zentrifugation (2000 rpm / fünf Minuten) und Resuspendierung in 1 ml EGM 

ausgewaschen. Die gefärbten Zellen wurden gezählt und 10.000 Zellen pro Well auf die µ-

Slides pipettiert.  

Nachdem die Endothelzellen im Matrigel Ringe geformt hatten (in der Regel nach 18 bis 22 

Stunden), wurden die mesenchymalen Zellen hinzugegeben. Die Markierung mit dem grünen 

Fluoreszenzfarbstoff DiO erfolgte wie für die Endothelzellen beschrieben. Im Anschluss 

wurden 2500 Zellen / Well zu den Endothelzellen hinzupipettiert. Nach 24 Stunden wurden 

Bilder angefertigt und im Anschluss ausgewertet. Für die Quantifizierung wurden die 

Perizyten pro Ring ausgezählt. 

2.10. PCR 

Die PCR diente in der vorliegenden Studie zur Bestätigung der Virustransduktion. Hierfür 

wurden C57BL/6 Tiere mit dem entsprechenden Virus transduziert (Ang-1, Ang-2, PDGF-B) 

und die Organe wurden 14 Tage nach der Transduktion entnommen. Als Kontrolle dienten 

Tiere, die LacZ transduziert wurden. 

2.10.1. Probenaufbereitung 

Zur Aufreinigung von RNA aus den Gewebeproben wurde die RNA Isolations Reagenz Tri 

Reagent der Firma Sigma-Aldrich verwendet, welche sich an der Methode nach 

Chomczynski und Sacchi orientiert20. Von den für die PCR bestimmten Proben wurden 

zunächst 100 mg abgewogen, in Tri Reagent gelöst und durch einen Ultra-Turrax 

homogenisiert. Das im Tri Reagent enthaltenen Guanidiniumthiocyanat führt hierbei zu einer 

Lyse der Zellen und Inaktivierung von Enzymen, insbesondere RNAsen. Das im Tri Reagent 

enthaltene Phenol löst Proteine und DNA. In dieser Lösung inkubierte die Probe fünf Minuten 

bei Raumtemperatur. Zur Phasentrennung wurde 200 µl Chloroform hinzugegeben, gemischt 

und 2-3 Minuten bei Raumtemperatur inkubiert, gefolgt von einer Zentrifugation des 

Gemisches bei 4 °C und 12.000 g für 15 Minuten. Der Überstand wurde abpipettiert und in 

500 µl Isopropanol überführt. Eine Inkubation von zehn Minuten bei Raumtemperatur diente 

der Präzipitation der RNA, gefolgt von einer weiteren Zentrifugation bei 4 °C und 12.000 g für 

zehn Minuten. Der nun entstandene Überstand wurde verworfen, das Pellet wurde mit 1 ml 

75%-igem Ethanol gewaschen, getrocknet und in 50-100 µl resuspendiert.  

Im Anschluss konnte der RNA-Gehalt der Mischung durch Photometrie bestimmt werden. 

Hierzu wurden 5 µl RNA-Gemisch in 95µl H2O verdünnt und in eine Küvette pipettiert. Die 

Absorption wurde bei 260 nm bestimmt und in ein Verhältnis mit der bei 280 nm 

gemessenen Proteinmenge gesetzt. Wenn das Verhältnis zwischen 1,9 und 2,1 lag, wurde 

die bestimmte RNA Menge mit vier multipliziert, auf 1 µg/µl eingestellt und erneut gemessen. 
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Vor dem Umschreiben der RNA in cDNA musste die noch in dem Gemisch enthaltene DNA 

zunächst verdaut werden. Hierzu wurde eine DNAse verwendet. 1 µl der Probe wurde mit 1 

µl DNAse Puffer, 1 µl DNAse und 7 µl destilliertem Wasser vermischt. Die Probe wurde 30 

Minuten bei 37 °C inkubiert. Im Anschluss wurde die Reaktion durch Zugabe von EDTA 

gestoppt (1 µl 25 mM EDTA). Zur Vorbereitung auf die Umschreibung der RNA in cDNA 

wurde die Probe zehn Minuten bei 70 °C inkubiert und im Anschluss auf Eis gelegt.  

2.10.2. Herstellung der cDNA 

Zur Umschreibung der RNA in cDNA wurde eine reverse Transkriptase der Firma Promega 

verwendet. Hierzu wurden folgende Bestandteile in ein Reaktionsgefäß pipettiert: 

 Menge 

MgCl2 25 mM 4 µl 

Reverse Transkriptase 10x Puffer 2 µl 

dNTO Mischung 10 mM 2 µl 

Recombinant RNasin Ribonuklease Inhibitor 0,5 µl 

AMV Reverse Transkriptase 0,5 µl 

Primer 0,5 µg 

RNA 1 µg 

 

Diese Mischung wurde für 45 Minuten bei 42 °C inkubiert, für fünf Minuten auf 95 °C erhitzt 

und zuletzt fünf Minuten auf Eis gelegt. Die hieraus entstandene cDNA Lösung konnte bei -

20 °C bis zur Durchführung der PCR gelagert werden. 

2.10.3. rtPCR 

Für die PCR wurde folgender Ansatz pro PCR-Tube pipettiert: 
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 Menge 

cDNA 2 µl 

Primer forward 1µl 

Primer reverse 1 µl 

Aqua dest. 6 µl 

Farbstoff SYBR Green® 10 µl 

 

Bei der quantitativen realtime PCR wird eine reguläre PCR durchgeführt, wobei sich der 

hinzugefügte Farbstoff mit doppelsträngiger DNA interkaliert. Bei dem Farbstoff SYBR 

Green® handelt es sich um einen asymmetrischen Cyanin-Farbstoff, welcher nach Bindung 

an DNA blaues Licht absorbiert (λ 494 nm) und grünes Licht der Wellenlänge λ = 521 nm 

emittiert. In jedem Zyklus der PCR nimmt somit die Fluoreszenz des SYBR Green® zu, die 

Menge an PCR Produkten wurde als relatives Expressionslevel des Zielgens im Vergleich zu 

dem housekeeping-Gen GAPDH gemessen. 

Für die Durchführung der PCR wurde das My IQ single color real-time PCR detection system 

der Firma Biorad verwendet. 

2.11. Verwendete Materialien 

2.11.1. Chemikalien 

Aceton Carl Roth GmbH & Co KG, Karlsruhe, DE 

Benzonase, Nuclease Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Bupernorphin (Temgesic®) Essex Pharma GmbH, München, DE 

Caesiumchlorid Carl Roth GmbH & Co KG, Karlsruhe, DE 

Chloroform Carl Roth GmbH & Co KG, Karlsruhe, DE 

Desoxycholsäure Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

EDTA Carl Roth GmbH & Co KG, Karlsruhe, DE 

Eisessig Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Ethanol ≥99,5% Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Formaldehyd 37% Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Isopropranol Merck KGaA, Darmstadt, DE 
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Kaliumhexacyanidoferrat(II) Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Kaliumhexacyanidoferrat(III) Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

KCl Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

KH2PO4 Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

L-NAME Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

LPS aus E. coli Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Magnesiumchlorid Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Na2HPO4 Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

NaCl Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Pikrinsäure Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Polyethylenimin Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Trizma® base Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Xylol Carl Roth GmbH & Co KG, Karlsruhe, DE 

 

2.11.2. Histologie 

5-bromo-4-chloro-3-indolylphosphat-p-

toluidin Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Acrodisc® Filter Pall, Dreieich, DE 

Antibody Diluent Dako Cytomation, Hamburg, DE 

Deckgläser Gerhard Menzel, Braunschweig, DE 

Glutaraldehyd, 25 % in H2O Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Vecta Shield Mounting Medium with DAPI Vector Laboratories, Burlingame, USA 

 

2.11.3. Operationszubehör / Tierhaltung 

1M Kaliumchlorid Baxter, Unterschleißheim, DE 

4kDa TRITC-Dextran Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Anexate® Roche, Mannheim, DE 

Dorbene Vet® Pfizer Tiergesundheit, Berlin, DE 

Durapore Pflaster 1,25 cm 3M Deutschland GmbH, Neuss, DE 

Fentanyl Janssen-Cilag, Neuss, DE 

Futter Dox S8031-P001 PS M-Z ssniff Spezialdiäten GmbH, Soest, DE 

Futter Standard Mäuse ssniff Spezialdiäten GmbH, Soest, DE 

Käfig Eurostandard Type II L Tecniplast S.p.A., Buguggiate, IT 

Lignocel Einstreu J. Rettenmaier & Söhne, Rosenberg, DE 

Midazolam Ratiopharm, Ulm, DE 
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Mikroliterspritze 710N Hamilton, Reno, USA 

Millar Tip Pressure-Transducer Millar Instruments, Huston, USA 

Millar Aria Pressure-Volume 

Conductance System Millar Instruments, Huston, USA 

NaCl 0,9% B. Braun Melsungen AG, Melsungen, DE 

Naloxon Inresa, Freiburg, DE 

Noradrenalin (Arterenol®) Sanofi-Aventis Deutschland GmbH, Frankfurt, DE 

Pilca Med ASID BONZ, Herrenberg, DE 

Portex® Fine Bore Polythene Tubing Smiths Medical, Grasbrunn, DE 

Revertor® CP-Pharma, Burgdorf, DE 

Sonosid Ultraschallgel ASID BONZ, Herrenberg, DE 

Sterican® 30 G x ½ B. Braun Melsungen AG, Melsungen, DE 

Tissue Tek Einbettmedium Sakure Fintek Europe, Zoeterwoude, NL 

Vialon 22G Kanüle BD Becton Dickinson GmbH, Heidelberg, DE 

 

2.11.4. Geräte 

15L8 Schallkopf Siemens, München, DE 

Acuson Sequoia 512 Siemens, München, DE 

Axiocam HRc Carl Zeiss, Jena, DE 

Axiovert 100 Carl Zeiss, Jena, DE 

Axiovert 200M Carl Zeiss, Jena, DE 

BNC Connector Block HSE, Hugstetten, DE 

BX 51 Mikroskop Olympus, Hamburg, DE 

CODA 2 Blutdruckgerät Kent Scientific Corporation, Torrington, USA 

DC Bridge Amplifier HSE, Hugstetten, DE 

DT301 A/D-Wandler-Messkarte Data Translation, Bietigheim Bissingen, DE 

Flow MSC.12 Jouan GmbH, Unterhaching, DE 

Heizblock Perkin Elmer, Überlingen, DE 

Inkubator Binder CB150 Binder GmbH, Tuttlingen, DE 

Inkubator EB55 Jouan GmbH, Unterhaching, DE 

Laboport Vakuumpumpe KNF Neuberger GmbH, Freiburg, DE 

Leica Cryostat 3050 Leica Microsystems, Wetzlar, DE 

LSM510 META Carl Zeiss, Jena, DE 

My IQ real-time PCR detection system Biorad Laboraties GmbH, München, DE 

OPO Chameleon Oszillator APE, Berlin, DE 



2 Material und Methoden 

 
39 

 

Optima ® L-80XP Ultrazentrifuge Beckman Coulter GmbH, Krefeld, DE 

Refraktometer PCE Instruments, Meschede, DE 

Rotor Ti 70 Beckman Coulter GmbH, Krefeld, DE 

Superfrost Plus Objektträger Thermo Fisher Scientific, Waltham, DE 

SW-28 Rotor Beckman Coulter GmbH, Krefeld, DE 

Tiefkühlschrank (-80) Colora UF80 450-S Colora Messtechnik GmbH, Lorch, DE 

Transducer Control Unit Millar Instruments, Huston, USA 

TriMScope LaVision Biotec, Bielefeld, DE 

Ultra II Titan : Saphir-Laser Coherent, Dieburg, DE 

Ultraschallbad ( Sonorex TK52H) Bandelin electronic, Berlin, DE 

Vortex-Genie 2 Bender & Hobein AG, Zürich, CH 

Waage Scout Ohaus Europa, Nänikon, CH 

Wärmeplatte FMI Föhr Medical Instruments, Seeheim, DE 

Zentrifuge: Rotina 420 R Andreas Hettich GmbH & Co, Tuttlingen, DE 

 

2.11.5. Software 

DASYLAB National Instruments Germany GmbH, München, DE 

ImageJ U. S. National Institutes of Health, Bethesda, USA 

LSM 5 Image Browser Carl Zeiss, Jena, DE 

MyIQ exe. Version: 1.0.410  Biorad Laboraties GmbH, München, DE 

Software Axiovision Version 4.7 Carl Zeiss, Jena, DE 

  

 

2.11.6. Lösungen 

 

20x KC Menge 

K3Fe(Cn)6 0,5M 250 µl 

K4Fe(Cn)6 0,5M 250 µl 

PBS 25 ml 

 

Bouins-Lösung Menge 

Formaldehyd 37% 25 ml 

Pikrinsäure 75 ml 

Eisessig 5 ml 
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PBS Menge 

NaCl 8 g 

Na2HPO4 1,44 g 

KCl 0,2 g 

KH2PO4 0,24 g 

dH2O auf 1000ml 

pH 7,4 

 

PBS + Menge 

MgCl2 1M 100 µl 

PBS 100 ml 

 

TMN-Puffer Menge 

MgCl 1 mM 

Tris 50 mM 

pH 7,4 

 

X-Gal Lösung Menge 

PBS + 20 ml 

X-Gal 40 mg/ml 500 µl 

20x KC 1 ml 

  

 

2.11.7. Kits 

Deoxyribonuclease I, Amplification Grade Invitrogen GmbH, Karlsruhe, DE 

GoScript® Reverse Transcriptase Promega GmbH, Mannheim, DE 

Masson Trichrom Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

RNAeasy Mini Kit 50 Qiagen GmbH, Hilden, DE 

SYBR Green® Biorad Laboraties GmbH, München, DE 

TaqMan Mix Roche Diagnostics GmbH, Mannheim, DE 
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2.11.8. Zellkultur 

µ-Slide, Angiogenesis Ibidi, München, DE 

Amicon Ultra-15, Zentrifugationsfilter Millipore GmbH, Schwalbach, DE 

BD Matrigel® BD Becton Dickinson GmbH, Heidelberg, DE 

Eppendorf Tubes 1,5 ml Sigma-Aldrich Biochemie GmbH, Hamburg, DE 

Falcon Blue Max 15 ml BD Becton Dickinson GmbH, Heidelberg, DE 

Falcon Blue Max 50 ml BD Becton Dickinson GmbH, Heidelberg, DE 

Fetal calf serum Biochrom AG, Berlin, DE 

Gibco®  DMEM Medium Biochrom AG, Berlin, DE 

Gibco® BME Medium Life Technologies GmbH, Darmstadt, DE 

Penicillin / Streptomycin Biochrom AG, Berlin, DE 

Satisfection® Transfection Reagent TPP AG, Trasadingen, CH 

Sterican 16G Kanüle B. Braun Melsungen GmbH, Melsungen, DE 

SW28 Ultrazentrifugations-Tubes Beckman Coulter GmbH, Krefeld, DE 

Ti 70 Ultrazentrifugations-Tubes Beckman Coulter GmbH, Krefeld, DE 

Trypsin / EDTA 0,05% / 0,02% Biochrom AG, Berlin, DE 

Vibrant DiD Invitrogen GmbH, Karlsruhe, DE 

Vibrant DiO Invitrogen GmbH, Karlsruhe, DE 

Zellkulturflaschen 25 cm2 Biochrom AG, Berlin, DE 

Zellkulturplatten, 6-well Biochrom AG, Berlin, DE 

Zellkulturschalen 147,8 cm2 Biochrom AG, Berlin, DE 

Zellschaber, 25cm, Klinge 17cm Sarstedt AG & Co, Nürnbrecht, DE 

 

2.11.9. Primer 

Ang1 fw 5′GGCCACAAGCATCAAACCAC 

Ang1 rev 5′AATGGACTGGGAAGGGAACC 

Ang2 fw 5′TAGCATCAGCCAACCAGGAA 

Ang2 rev 5′TAGTACTGTCCATTCAAGTT 

bGH fw 5′TCTAGTTGCCAGCCATCTGTTGT 

bGH rev 5′TGGGAGTGGCACCTTCA 

GAPDH fw 5′ACCAGGAAATGAGCTTGACA 

GAPDH rev 5′TCTTGGGCTACACTGAGGAC 

hANG2 FW3 5′TGCCACGGTGAATAATTCAG 

hANG2 REV3 5′TTCTTCTTTAGCAACAGTGGG 

PDGF-B fw 5′CCTCATAGACCGCACCAA 
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PDGF-B rev 5′CGCACAATCTCGATCTTTCT 

tTA-FW2 5′GACGCCTTAGCCATTGAGATG 

tTA-REV2 5′CAGTAGTAGGTGTTTCCCTTTCTTC 

 

2.11.10. Antikörper 

Antikörper Bestell-Nr Hersteller 

Goat Anti-Rabbit Alexa 488 A11008 Invitrogen GmbH, Karlsruhe, DE 

Cy3 Donkey Anti-Rat 712-165-153 Jackson ImmunoResearch, West Grove, USA 

Kontrollantikörper AP112 Merck Millipore, Billerica, USA 

LC10 RO5485202 Roche Diagnostics GmbH, Penzberg, DE 

NG2  AB5320 Merck Millipore, Billerica, USA 

PECAM-1 BM4086 Acris, Herford, DE 

 

2.12. Statistik  

Alle Ergebnisse sind dargestellt als Mittelwert ± Standardfehler (standard error of the mean, 

SEM). Zur Berechnung der statistischen Signifikanz wurden ungepaarte t-tests, ANOVA-

Analysen und Bonferroni-Tests durchgeführt. Als Grenzwert für die Signifikanz wurde ein p-

Wert von <0,05 gewählt (markiert mit *), hochsignifikante Unterschiede (p<0,001) wurden mit 

** markiert. 
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3. Ergebnisse 

3.1. Charakterisierung der mikrozirkulatorischen Veränderungen und 

kardiovaskulären Funktion in EC-Ang2-on Tieren 

3.1.1. Makroskopische Auffälligkeiten in EC-Ang2-on Tieren 

Die hier verwendeten, Ang-2 überexprimierenden EC-Ang2-on Tiere zeigten eine 

ausgeprägte Ödemneigung, welche insbesondere im Bereich der Schnauze und der Lider 

deutlich wurde (Abbildung 14 A und C oberes Panel). Hierbei war auch das Körpergewicht 

signifikant höher im Vergleich zu den Kontrolltieren (EC-Ang2-on: 30,0 ± 1,8 vs. EC-Control: 

25,8 ± 1,0 g, Abbildung 14 B). Die EC-Ang2-on Mäuse wiesen weiterhin 

Gefäßabnormalitäten auf, die in Abbildung 14 C dargestellt werden. So waren die Gefäße im 

Bereich der Ohren vergrößert im Vergleich zu EC-Control Tieren und demonstrierten eine 

geschlängelte Konfiguration. 

 

Abbildung 14: A / B EC-Ang-2 on Mäuse zeigten im Alter von 24 Wochen eine deutliche Zunahme der 
Körpergröße und des Körpergewichts. Abb. C demonstriert die ödematöse Aufschwemmung im Bereich der Nase 
von EC-Ang2-on Mäusen und die vergrößerten und geschlängelten Gefäße der Ohren im Vergleich zu 
Kontrolltieren (Maßstab in A: 1 cm, Maßstab in C: 200 µm, * p<0,05, n = 18 für EC-Control, n = 12 für EC-Ang2-
on). 

3.1.2. Kapillar- und Perizytendichte in EC-Ang2-on Tieren 

Auf der Suche nach einem histologischen Korrelat der makroskopischen 

Gefäßveränderungen wurden Färbungen für PECAM-1 (Endothelzellen) und NG2 

(Perizyten) durchgeführt. In den EC-Ang2-on Mäusen zeigte sich hierbei eine signifikante 

Reduktion der Perizytenzahl im Bereich kleiner Kapillaren (EC-Ang2-on: 1482 ± 391 vs. EC-

Control: 4936 ± 748 NG2-pos. Zellen/mm2, Abbildung 15, Abbildung 16), bei gleichzeitiger 

Reduktion der Endothelzelldichte (EC-Ang2-on: 3825 ± 645 vs. EC-Control: 6088 ± 561 

PECAM-1-pos. Zellen/mm2). 
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Abbildung 15: Beispielbilder einer PECAM/NG2 Doppelfärbung von Kryoschnitten des Herzens. In Abb. A zeigt 
sich in der 40-fachen Vergrößerung eine Abnahme der Perizytendichte in EC-Ang2-on Tieren, welche sich durch 
die Beendigung der Überexpression von Ang-2 im Alter von zwölf Wochen normalisierte. In Abb. B werden 
Vergrößerungen aus den Übersichtsaufnahmen dargestellt, in denen ein verminderter Perizytenbesatz in EC-
Ang2-on Tieren im Vergleich zu den EC-Ang2-off und EC-Control Tieren deutlich wird. 

Perizytenbesatz und Dichte der Endothelzellen konnte durch eine Behandlung mit 

Doxyzyklin und somit einer Beendigung der Überexpression von Ang-2 ab dem Alter von 

zwölf Wochen wiederhergestellt werden (EC-Ang2-on: 1482 ± 391 vs. EC-Ang2-off: 4884 ± 

215 NG2-pos. Zellen/mm2 / EC-Ang2-on: 3825 ± 645 vs. EC-Ang2-off: 7277 ± 135 PECAM-

1-pos. Zellen/mm2, Abbildung 15, Abbildung 16). 

 

Abbildung 16: Die Quantifizierung der PECAM/NG2 Färbung zeigt eine signifikante Reduktion der 
Perizytenanzahl pro mm

2
 in EC-Ang2-on Tieren bei weiterhin signifikanter Reduktion der Endothelzelldichte. In 

den EC-Ang2-off Tieren gelang eine Wiederherstellung sowohl des Perizytenbesatzes als auch der 
Endothelzelldichte (* p < 0,05 vs. EC-Ang2-on, n = 5 für EC-Control + EC-Ang2-on, n = 4 für EC-Ang2-off). 
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3.1.3. Perizytenverlust in X-LacZ-4 Tieren nach Ang2 Transduktion 

In einem weiteren Versuch wurden X-LacZ-4 Mäuse, welche das Reportergen LacZ in 

Perizyten exprimieren (siehe 2.1), mit einem adenoassoziierten Virus (AAV-2/9) transduziert, 

der entweder für Ang-2 oder das Reportergen GFP codiert. Nach vier Wochen wurden die 

Diaphragmen der Tiere entnommen und es wurde eine LacZ-Färbung des gesamten 

Diaphragmas (whole-mount) durchgeführt. 

 

Abbildung 17: Whole-Mount Färbung von Diaphragmen transduzierter X-LacZ-4 Tiere. Bereits Abb. A zeigt eine 
deutliche Reduktion angefärbter Zellen in rAAV.Ang2 Tieren, sowohl in 10x, als auch in 40x Vergrößerung. Die 
Quantifizierung (als Perizyten pro 50 µm Gefäß) in Abb. B bestätigt eine signifikante Reduktion der 
Perizytendichte (* p<0,001, ausgezählt wurden je zehn Schnitte von drei Tieren pro Gruppe). 

In den Färbungen der Diaphragmen zeigte sich eine deutliche Reduktion in der Beschichtung 

der Endothelzellen mit Perizyten in den Ang-2 transduzierten Tieren (rAAV.Ang2: 43,09 ± 1,3 

vs. rAAV.GFP: 53,06 ± 1,7 Perizyten / 50 µm, Abbildung 17). 

3.1.4. Gefäßpermeabilität in EC-Ang2-on Tieren 

Zur Bestimmung der Gefäßpermeabilität wurde Dextran, welches mit dem 

Fluoreszenzfarbstoff TRITC markiert war, i.v. appliziert und die Veränderung der 

extravasalen Fluoreszenzintensität im Vergleich zu einem vorher definierten Nullwert mittels 

MPLSM untersucht. Hierbei zeigte sich zunächst, wie bereits im Kapitel 3.1.1 beschrieben, 

eine Vergrößerung der Gefäße in EC-Ang2-on Mäusen. Nach Beginn der Messung war die 

extravasale Fluoreszenz in EC-Ang2-on Tieren im Vergleich mit Kontrolltieren signifikant 

höher (180 Sekunden: EC-Ang-2 on: 191,6 ± 24,0 vs. EC-Control: 116,6 ± 5,8 Prozent des 

Nullwerts, Abbildung 18). 
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Abbildung 18: Abb. A Beispielbilder der Fluoreszenzmessung im Mausohr zum Zeitpunkt 0 (Zeitpunkt der 
maximalen Anflutung des Fluoreszenzfarbstoffes) und drei Minuten mit deutlichem Anstieg der extravasalen 
Fluoreszenz in EC-Ang2-on Tieren. Abb. B zeigt den signifikanten Anstieg der extravasalen Fluoreszenz im 
Vergleich zu Kontrolltieren (* p<0,05 vs. EC-Control, ** p<0,001 vs. EC-Control, n = 4 pro Gruppe). 

3.1.5. Änderung der kardiovaskulären Funktion in EC-Ang2-on Tieren 

Zur Charakterisierung der hämodynamischen Funktion in EC-Ang2-on Mäusen wurden eine 

Reihe hämodynamischer Parameter erhoben, nämlich der nicht-invasiv gemessene arterielle 

Mitteldruck (MAP), die Druckänderung pro Zeiteinheit als Maß für die myokardiale Relaxation 

(dP/dT min), der linksventrikulär entwickelte Druck (dP), der linksventriukäre enddiastolische 

Druck (LvEDP), das Herzzeitvolumen (CO) und der linksventrikuläre enddiastolische 

Durchmesser (LVEDD). 

3.1.5.1. Nicht-invasiver Blutdruck 

Die nicht-invasiven Blutdruckmessungen ergaben, dass die EC-Ang2-on Tiere im Alter von 

zwölf Wochen eine Tendenz zu einem niedrigeren arteriellen Mitteldruck (mean arterial 

pressure, MAP) zeigten (EC-Ang2-on: 95,16 ± 4,1 vs. EC-Control: 100,9 ± 4,3 mmHg). 

Während die EC-Control Tiere nach 24 Wochen ein vergleichbares Mitteldurckniveau zu 12 

Wochen aufwiesen, nahm der MAP in EC-Ang2-on Tieren im Verlauf ab (EC-Ang2-on: 84,1 ± 

2,7 vs. EC-Control: 101,6 ± 3,7 mmHg, siehe Abbildung 19). 
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Abbildung 19: Die Bestimmung des arteriellen Mitteldrucks (mean arterial pressure / MAP) zeigt eine 
systemische Hypotension der EC-Ang2-on Tiere im Alter von 24 Wochen (* p<0,05, n = 18 für EC-Control, n = 12 
für EC-Ang2-on). 

3.1.5.2. Linksventrikulär entwickelte Drücke und Cardiac Output 

In der invasiven linksventrikulären Druckmessung im Alter von 24 Wochen wurden die 

Parameter entwickelter Druck (developed pressure / dP), Relaxationsgeschwindigkeit 

(Druckveränderung pro Sekunde / dP/dT min in mmHg/sek) und linksventrikulärer 

enddiastolischer Druck (left ventricular enddiastolic Pressure / LvEDP) gemessen. Diese 

Parameter wurden in Ruhe und unter Stimulation mit steigenden Dosen Noradrenalin 

bestimmt, um die Reservekapazität der Herzen zu testen. Hier waren EC-Ang-2 on Tiere 

weder in Ruhe, noch unter Stimulation mit steigenden Dosen Noradrenalin in der Lage, 

vergleichbare Drücke aufzubauen, wie die EC-Control Tiere. Weiterhin resultierte das 

Aussetzen der Ang-2 Überexpression in den EC-Ang2-off Tieren in einer Normalisierung der 

entwickelten Drücke mit einem angedeuteten Defizit in der Reservekapazität (Baseline: EC-

Ang2-on: 87,35 ± 3,2 vs. EC-Ang2- off: 107,12 ± 1,9 vs. EC-Control: 98,24 ± 2,9 mmHg, 

100ng Noradrenalin: EC-Ang2-on: 126,39 ± 5,4 vs. EC-Ang2-off: 143,5 ± 2,5 vs. EC-Control: 

161,2 ± 5,5 mmHg, siehe Abbildung 20 A). Darüber hinaus zeigte sich tendenziell eine 

verminderte Relaxationsgeschwindigkeit in EC-Ang2-on Tieren im Vergleich zu Kontroll- und 

EC-Ang2-off Tieren, welche unter Gabe von 10, 25 und 50 ng Noradrenalin statistisch 

signifikant war (Baseline: EC-Ang2-on: -8097,9 ± 699 vs. EC-Ang2- off: -9531,1 ± 701 vs. 

EC-Control: -10338,8 ± 596 mmHg/Sec, 50ng Noradrenalin: EC-Ang2-on: -11028,2 ± 953 vs. 

EC-Ang2-off: -14860 ± 1830 vs. EC-Control: -14514 ± 792 mmHg/Sec, siehe Abbildung 20 

B). 
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Abbildung 20: Abb A zeigt den linksventrikulär entwickelten Druck (developed pressure / dP) in Ruhe (Baseline) 
und unter Stimulation mit steigenden Dosen Noradrenalin. Hierbei entwickeln EC-Ang2-on Tiere einen signifikant 
niedrigeren Druck als EC-Control und EC-Ang2-off Tiere. Ebenso zeigt sich eine Reduktion der 
Relaxationsfähigkeit in EC-Ang2-on Tieren, zumindest im Rahmen der Stimulation mit Noradrenalin (Abb B) (* 
p<0,05 vs EC-Control & EC-Ang2-off, **p<0,05 vs. EC-Control, n = 18 für EC-Control, n = 10 für EC-Ang2-on, n = 
5 für EC-Ang2-off). 

Trotz der deutlichen Einschränkung in der Entwicklung linksventrikulärer Drücke und der 

linksventrikulären Relaxationsstörung zeigten die EC-Ang2-on Tiere keine Steigerung des 

linksventrikulären enddiastolischen Druckes unter Stimulation mit Noradrenalin (Abbildung 

21 A). Weiterhin entwickelten die EC-Ang2-on Tiere ein deutlich gesteigertes 

Herzminutenvolumen (cardiac output) im Vergleich zu ihren Kontrolltieren (EC-Ang2-on: 6,6 

± 1,2 vs. EC-Control: 3,3 ± 0,3 ml/min). 

 

Abbildung 21: Abb. A stellt vergleichbare linksventrikuläre enddiastolische Drücke bei EC-Ang2-on, EC-Ang2-off 
und EC-Control Mäusen dar. Abb. B zeigt das signifikant erhöhte Cardiac Output in EC-Ang2-on Tieren im 
Vergleich zur Kontrolle (* p<0,05 vs. EC-Control, n = 18 für EC-Control, n=12 für EC-Ang2-on, n = 5 für EC-Ang2-
off in Abb. A, n = 7 pro Gruppe in Abb. B). 
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3.1.5.3. Echokardiographie 

Zu Beginn des Untersuchungszeitraumes (im Alter von zwölf Wochen) zeigten die zwei 

Gruppen mit Ang-2 Überexpression (EC-Ang2-on, EC-Ang2-off) bereits eine deutliche 

Dilatation des linken Ventrikels im Vergleich zu Kontrolltieren. Nach der initialen Messung 

wurden die EC-Ang2-off Tiere mit Doxyzyklin behandelt, um die endotheliale Ang-2 

Überexpression zu beenden. Während die EC-Ang2-on Mäuse mit fortgesetzter Ang-2 

Überexpression eine weitere Dilatation boten, normalisierten sich die Durchmesser der 

linken Ventrikel in EC-Ang2-off Tieren im Verlauf der nächsten zwölf Wochen auf 

Kontrollniveau (12 Wochen: EC-Ang2-on: 0,41 ± 0,017 vs. EC-Ang2- off: 0,43 ± 0,016 vs. 

EC-Control: 0,36 ± 0,004 cm, 24 Wochen: EC-Ang2-on: 0,47 ± 0,025 vs. EC-Ang2-off: 0,39 ± 

0,011 vs. EC-Control: 0,38 ± 0,005 cm, siehe Abbildung 22). 

 

Abbildung 22: Abb. A Echokardiographische Beispielbilder eines Querschnittes (parasternal, kurze Achse) 
durch den linken Ventrikel in EC-Ang2-on und EC-Control Tieren. Abb. B Die Auswertung des linksventrikulären 
enddiastolischen Durchmessers zeigt bereits initial eine Vergrößerung der linken Ventrikel in EC-Ang2-on und 
EC-Ang2-off Tieren. Im Verlauf dilatieren die linken Ventrikel der EC-Ang2-on Tiere weiter, während eine 
Aussetzung der Ang-2 Überexpression nach der initialen Messung in den EC-Ang2-off Tieren zu einer 
Normalisierung des LvEDD führt (** p<0,001 für EC-Ang2-on vs. EC-Control / * p<0,001 für EC-Ang2-off vs. EC-
Ang2-off und EC.Control, n = 18 für EC-Control, n=12 für EC-Ang2-on, n = 5 für EC-Ang2-off). 

3.1.6. Myokardiale Hypertrophie in EC-Ang2-on Tieren 

In der folgenden histologischen Analyse des Myokards zeigte sich ebenfalls eine Dilatation 

des linken Ventrikels, wie in Abbildung 23 A zu sehen ist. Weiterhin führte die kontinuierliche 

Ang-2 Überexpression über einen Zeitraum von 24 Wochen zu einer merklichen 

linksventrikulären Fibrosierung (EC-Ang2-on: 8,6 ± 1,1 vs. EC-Control: 3,2 ± 0,8 % 

fibrotisches Areal des linken Ventrikels, Abbildung 23 B). Dieser Effekt trat in den Tieren, die 

Ang-2 nur die ersten zwölf Lebenswochen überexprimierten, nicht auf. Die Vergrößerung der 

linken Ventrikel in EC-Ang2-on Tieren schlug sich auch in einer deutlichen Zunahme des 

Herzgewichts (normalisiert auf das Körpergewicht, heart weight / body weight ratio in mg/g) 
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nieder. Die Beendigung der Ang-2 Überexpression in EC-Ang2-off Tieren normalisierte das 

Herzgewicht zwar in der Tendenz, jedoch nicht signifikant (EC-Ang2-on: 7,0 ± 0,7 vs. EC-

Ang2- off: 5,5 ± 0,7 vs. EC-Control: 4,5 ± 0,2 mg/g, Abbildung 23 C). 

 

Abbildung 23: Abb. A Masson Trichrom Färbungen von histologischen Präparaten der Mäuseherzen zeigen die 
bereits echokardiographisch bestimmte linksventrikuläre Dilatation und weiterhin eine myokardiale Fibrosierung in 
EC-Ang2-on Tieren, die nicht in EC-Ang2-off Tieren beobachtet wurde, was auch die Quantifizierung des 
Fibroseareals in Abb. B bestätigt. Abb. C EC-Ang2-on Tiere entwickeln, neben der linksventrikulären Dilatation, 
eine Zunahme des Herzgewichts (*p<0,05 vs. EC-Control / Maßstab Abb. A: Lupe = 1000 µm, 10x = 200 µm, 40x 
= 50 µm, n = 4 für EC-Control, n=5 für EC-Ang2-on, n = 5 für Abb. B, n = 18 für EC-Control, n=12 für EC-Ang2-
on, n = 5 für EC-Ang2-off für Abb. C). 

 

3.2. Effekt einer myokardial restringierten Ang2 Überexpression 

Neben den Mäusen mit panendothelialer Ang-2 Überexpression wurden auch Tiere 

untersucht, in welchen die Überexpression von Ang-2 auf das Myokard beschränkt war. 

Hierzu wurde ein weiterer transgener Mausstamm verwendet, in dem Ang-2 unter der 

Kontrolle eines α-myosin heavy chain promoters im Rahmen eines Tet-Off Promotersystems 

exprimiert wurde. Es wurden Ang-2 überexprimierende Tiere (CM-Ang2-on) mit den 

entsprechenden Kontrolltieren verglichen (CM-Control). Weiterhin wurde eine myokardiale 

Überexpression durch AAV2/9 vermittelte Ang-2 Transduktion erreicht (1x1012 Viruspartikel). 

Diese Tiere wurden mit ihren Kontrolltieren (AAV2/9.LacZ transduzierte Tiere) verglichen. 

3.2.1. Kapillar- und Perizytendichte in CM-Ang2-on Tieren 

Analog zu den Tieren mit endothelialer Ang-2 Überexpression wurden zunächst 

histologische Schnitte angefertigt, um den Besatz der Endothelzellen mit Perizyten zu 

untersuchen. In den CM-Ang2-on Tieren zeigte sich hierbei eine Reduktion des 
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Verhältnisses zwischen Perizyten und Endothelzellen (NG2/PECAM-1 ratio) im Herzen im 

Vergleich zu den Kontrolltieren (CM-Ang2-on: 0,22 ± 0,04 vs. CM-Control: 0,46 ± 0,02 

NG2/PECAM-1, Abbildung 24 B). Dieser Verlust von Perizyten konnte jedoch nicht in 

peripheren Muskeln demonstriert werden (CM-Ang2-on: 0,59 ± 0,04 vs. CM-Control: 0,66 ± 

0,1 NG2/PECAM-1, Abbildung 24 C). 

 

Abbildung 24: Abb. A Beispielbilder einer PECAM-1/NG2 Färbung histologischer Schnitte (Herz) von CM-Ang2-
on und CM-Control Tieren. Abb. B NG2/PECAM-1 ratio im Herz zeigt eine Reduktion der Perizytendeckung in 
CM-Ang2-on Tieren im Vergleich zu CM-Control Tieren, während keine Veränderung der Ratio im peripheren 
Muskel (M. quadriceps femoris) vorliegt (Abb. C). (*p<0,001 vs. CM-Control, n.s. = nicht signifikant, n=5). 

3.2.2. Änderung der kardiovaskulären Funktion bei transgener myokardialer Ang-2 

Überexpression 

Wie bereits bei den EC-Ang2-on Tieren beschrieben, wurden auch in CM-Ang2-on Tieren 

und deren Kontrollen eine Reihe hämodynamischer Parameter bestimmt. 

3.2.2.1. Entwickelte Drücke 

In der nicht-invasiven Blutdruckmessung zeigten die CM-Ang2-on Tiere trotz der 

histologischen Veränderungen keine Unterschiede bezüglich des arteriellen Mitteldrucks im 

Vergleich zu den Kontrolltieren (24 Wochen: CM-Ang2-on: 117,60 ± 6,0 vs. CM-Control: 

116,0 ± 4,6 mmHg, Abbildung 25 A). Dieser Befund bestätigte sich in der invasiven 

linksventrikulären Druckmessung: CM-Ang2-on Tiere waren hierbei in der Lage, mit den 

Kontrolltieren vergleichbare Drücke aufzubauen und zeigten auch unter Ausreizung der 

Reservekapazität keine Einschränkung der linksventrikulären Funktion (Abbildung 25 B). 
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Abbildung 25: Abb. A Der arterielle Mitteldruck in CM-Ang2-on Tieren zeigt im Alter von 24 Wochen keinen 
Unterschied zu den Kontrolltieren (CM-Ang2-on vs. CM-Control, nicht signifikant). Abb. B Ebenso zeigt sich keine 
Veränderung des linksventrikulär entwickelten Drucks in Ruhe und unter Stimulation mit Noradrenalin (n.s. = nicht 
signifikant, n = 8 für CM-Control, n = 6 für CM-Ang2-on). 

3.2.2.2. Echokardiographie 

Zur Bestimmung des linksventrikulären enddiastolischen Durchmessers wurden auch in den 

CM-Ang2-on Tieren und ihren Kontrolltieren echokardiographische Aufnahmen im Alter von 

12, 18 und 24 Wochen angefertigt. Hierbei ergab sich kein Hinweis auf eine linksventrikuläre 

Dilatation. Weder zu Beginn der Messungen noch im weiteren Verlauf entwickelten die CM-

Ang2-on Tiere eine linksventrikuläre Dilatation, wie sie in den EC-Ang2-on Tieren beobachtet 

wurde. 

 

Abbildung 26: Linksventrikulärer enddiastolischer Durchmesser (LvEDD) bestimmt durch echokardiographischen 
Analyse im Alter von 12, 18 und 24 Wochen. In den CM-Ang2-on Tieren ergab sich kein Anhalt für eine 
linksventrikuläre Dilatation (n = 8 für CM-Control, n = 6 für CM-Ang2-on). 
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3.2.3. Herzmorphologie bei kardialer Angiopoietin-2 Überexpression 

Zuletzt wurden von den CM-Ang2-on Tieren ebenfalls Masson Trichrom Färbungen 

angefertigt, um eine mögliche myokardiale Fibrosierung zu visualisieren. Wie in Abbildung 27 

A zu sehen ist, entwickelten die Tiere bis zum Alter von 24 Wochen eine dezente 

myokardiale Fibrose, jedoch ohne signifikante linksventrikuläre Dilatation. Es ergab sich 

hierbei kein Unterschied im Grad der Fibrose zwischen CM-Ang2-on Tieren und deren 

Kontrolle (CM-Ang2-on: 6,5 ± 0,6 vs. CM-Control: 4,5 ± 0,8 % fibrotisches Areal des linken 

Ventrikels, Abbildung 27 B). Auch das Herzgewicht war im Vergleich zu den CM-Control 

Tieren nur in der Tendenz angestiegen (CM-Ang2-on: 5,2 ± 0,2 vs. CM-Control: 4,5 ± 0,2 

mg/g, Abbildung 27 C). 

 

Abbildung 27: Abb. A Masson Trichrom Färbung von Herzschnitten der CM-Ang2-on Tiere und deren Kontrollen 
zeigen eine geringe Fibrosierung des Myokards, welche in der Quantifizierung des fibrotischen Areals (Abb. B) 
keine Unterschiede zwischen den Gruppen aufwies. Abb. C die Zunahme des auf das Körpergewicht 
normalisierten Herzgewichts in CM-Ang2-on Tieren war ohne statistische Signifikanz (Maßstab Abb. A: Lupe = 
200 µm, 10x = 100 µm, 40x = 50 µm, n.s. = nicht signifikant, n = 6 für CM-Control, n = 9 für CM-Ang2-on für Abb. 
B, n = 6 für CM-Control, n = 6 für CM-Ang2-on für Abb. C). 

3.2.4. Expressionsmuster in rAAV-CM Tieren 

In einem zweiten Ansatz wurde eine auf das Herz beschränkte Überexpression durch eine 

AAV-vermittelte Transduktion mit Ang-2 oder dem Kontrollgen LacZ herbeigeführt (je 1 x 1012 

Viruspartikel / Maus). Ein Teil der rAAV-CM-LacZ Tiere wurde nach zwei Wochen geopfert, 

um zur Bestimmung der Expressionverteilung, X-Gal Färbungen durchzuführen. Hierbei 

zeigte sich eine deutliche Färbung im Bereich des Myokards, welche in den übrigen Organen 

(Milz, Niere, Muskel) nicht demonstriert werden konnte, wie in Abbildung 28 A zu sehen ist. 

Die PCR zeigte vergleichbare Ergebnisse mit gesteigerter Expression von Angiopoietin-2 im 

Herzen von rAAV-CM-Ang2 transfizierten Tieren (rAAV-CM-Ang2: 12 x 10-4 ± 4,8 x 10-4 vs. 
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rAAV-CM-LacZ: 1,1 x 10-4 ± 13 x 10-4 ΔΔCT Ang2), jedoch ohne Expression im peripheren 

Muskel in Vergleich zu kontrolltransfizierten Tieren (rAAV-CM-Ang2: 8,7 x 10-6 ± 9 x 10-11 vs. 

rAAV-CM-LacZ: 12,1 x 10-6 ± 2,7 x 10-6 ΔΔCT Ang2, siehe Abbildung 28 B). 

 

Abbildung 28: Abb. A Die X-Gal Färbung 14 Tage nach Transduktion von C57BL/6 Mäusen mit 1 x 10
12

 
Viruspartikeln des rAAV2/9.LacZ Virus zeigt eine deutliche Färbung im Myokard, jedoch nur eine sehr geringe 
Färbung im Bereich der übrigen Organe. Abb. B Die PCR für Angiopoietin-2 demonstriert gesteigerte Ang-2 
mRNA Level im Herzen, ohne Änderung der Ang-2 Spiegel im peripheren Muskel (* p<0,05, n.s. = nicht 
signifikant, n = 4). 

3.2.5. Entwicklung systemischer und linksventrikulärer Drücke bei herzspezifischer 

AAV-Ang-2 Überexpression 

Analog zu den Versuchen in CM-Ang2-on Tieren erzeugte eine virusvermittelte myokardiale 

Überexpression von Ang-2 keine systemische Hypotension in der nicht-invasiven 

Blutdruckmessung (rAAV-CM-Ang2: 106,9 ± 8,5 vs. rAAV-CM-LacZ: 108,6 ± 6,6 mmHg, 

Abbildung 29 A). Dieser Befund konnte in der invasiven linksventrikulären Druckmessung 

bestätigt werden. So zeigten die rAAV-CM-Ang2 Tiere eine normale Entwicklung des 

linksventrikulären Druckes im Alter von 24 Wochen (zwölf Wochen nach Virustransduktion) 

in Ruhe und unter Stimulation mit steigenden Dosen Noradrenalin (Baseline: rAAV-CM-

Ang2: 98,7 ±  vs. rAAV-CM-LacZ: 98,3 ± 3,4 mmHg, 100ng Noradrenalin: rAAV-CM-Ang2: 

137,0 ± 4,0 vs. rAAV-CM-LacZ: 139,2 ± 3,0 mmHg, Abbildung 29 B). 
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Abbildung 29: Abb. A zeigt den nicht-invasiv gemessenen Blutdruck. Hierbei ergab sich keine Reduktion des 
arteriellen Mitteldrucks in rAAV-CM-Ang2 Tieren im Vergleich zu den Kontrolltieren. Abb. B zeigt den 
linksventrikulär entwickelten Druck im Alter von 24 Wochen. Die Ang-2 transduzierten Tieren entwickeln 
vergleichbare Drücke in Ruhe und unter Stimulation mit Noradrenalin wie die rAAV-CM-LacZ Tiere (n.s. = nicht 
signifikant, n = 7 für rAAV-CM-LacZ, n = 6 für rAAV-CM-Ang2). 

3.2.6. Linksventrikulärer enddiastolischer Durchmesser bei herzspezifischer AAV-

Ang-2 Überexpression 

Im Alter von zwölf Wochen (vor Transduktion) zeigten sich erwartungsgemäß keine 

Unterschiede im linksventrikulären enddiastolischen Durchmesser (rAAV-CM-Ang2: 0,43 ± 

0,01 vs. rAAV-CM-LacZ: 0,44 ± 0,01 cm). Auch zwölf Wochen nach Transduktion kam es in 

rAAV-CM-Ang2 Tieren nicht zu einer linksventrikulären Dilatation (rAAV-CM-Ang2: 0,40 ± 

0,01 vs. rAAV-CM-LacZ: 0,40 ± 0,01 cm, Abbildung 30). 

 

Abbildung 30: Die echokardiographische Auswertung des linksventrikulären enddiastolischen Durchmessers 
zeigt keinen Unterschied zwischen den rAAV-CM-Ang2 Tieren und deren Kontrollen zwölf Wochen nach 
Transduktion (n.s. = nicht signifikant, n = 7 für rAAV-CM-LacZ, n = 6 für rAAV-CM-Ang2 bei 12 Wochen, n = 7 für 
rAAV-CM-LacZ, n = 5 für rAAV-CM-Ang2 bei 24 Wochen). 
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3.3. Kardiovaskuläre Funktion in Tieren mit peripherer Ang2 Überexpression 

3.3.1. Verteilungsmuster der Expression in rAAV2/7 transduzierten Tieren 

Um den Effekt einer peripheren Ang-2 Überexpression zu untersuchen, wurden C57BL/6 

Tiere mittels eines rekombinanten adenoassoziierten Virus, welcher entweder das Gen für 

Ang-2 (rAAV2/7.Ang2) oder LacZ (rAAV2/7.LacZ) enthielt, transduziert. Aus den 

histologischen Präparaten der LacZ transduzierten Tiere wurde zunächst eine X-Gal 

Färbung durchgeführt, um das Verteilungsmuster der Transduktion zu überprüfen. Hierbei 

zeigte sich eine lediglich geringe myokardiale Expression bei einer deutlich höheren 

Expression in Milz und Niere. Die Transduktion peripherer Muskel (M. quadriceps femoris) 

war ebenfalls nur gering. 

 

Abbildung 31: Die X-Gal Färbung von histologischen Präparaten der rAAV2/7.LacZ Tiere zeigte eine geringe 
myokardiale Expression bei einer deutlichen Anfärbung von Milz und Niere.  

3.3.2. Linksventrikulärer enddiastolischer Durchmesser und entwickelter Druck in 

rAAV2/7.Ang2 Tieren 

Der linksventrikulär entwickelte Druck, welcher im Alter von 24 Wochen mittels invasiver 

linksventrikulärer Druckmessung gemessen wurde, zeigte bereits unter Ruhebedingungen 

deutlich niedrigere Werte als in den rAAV2/7.Ang2 Tieren (Baseline: rAAV2/7.Ang2: 107,9 ± 
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2,8 vs. rAAV2/7.LacZ 128,9 ± 2,9 mmHg). Dieser Unterschied nahm unter Stimulation mit 

Noradrenalin noch zu (100 ng Noradrenalin: rAAV2/7.Ang2: 134,7 ± 5,8 vs. rAAV2/7.LacZ 

164,5 ± 5,6 mmHg, Abbildung 32 A). 

Die echokardiographischen Bestimmungen des linksventrikulären enddiastolischen 

Durchmessers ergaben im Alter von zwölf Wochen, also vor Virustransduktion, keine 

Unterschiede (12 Wochen: rAAV2/7.Ang2: 0,35 ± 0,01 vs. rAAV2/7.LacZ 0,36 ± 0,01 cm). Im 

weiteren Verlauf entwickelten die Ang-2 überexprimierenden Tiere eine progrediente 

linksventrikuläre Dilatation (24 Wochen: rAAV2/7.Ang2: 0,38 ± 0,01 vs. rAAV2/7.LacZ 0,34 ± 

0,01 cm, Abbildung 32 B). 

 

Abbildung 32: Abb. A zeigt den linksventrikulär entwickelten Druck in Tieren mit peripherer Ang-2 
Überexpression, wobei sich sowohl in Ruhe als auch unter Stimulation mit Noradrenalin erniedrigte Drücke in den 
rAAV2/7-.Ang2 Tieren zeigten. In Abb. B stellte sich der linksventrikuläre enddiastolische Duchmesser in Ang-2 
überexprimierenden Tieren im Alter von zwölf Wochen unverändert zu den Kontrolltieren dar. Nach Injektion der 
Viren entwickelte sich eine progrediente linksventrikuläre Dilatation (*p<0,05 vs. rAAV2/7.LacZ / **p<0,001 vs. 
rAAV2/7.LacZ, n = 7 pro Gruppe). 

3.4. Antagonisierung der endothelialen Angiopoietin-2 Überexpression durch 

Ang-1 und PDGF-B 

3.4.1. Expressionsmuster in rAAV2/9 transduzierten Tieren 

Eine X-Gal Färbung 14 Tage nach Transduktion von C57BL/6 Tieren mit 5x1012 

Viruspartikeln eines rAAV2/9, welcher das LacZ-Reportergen trug, zeigte eine deutliche 

Anfärbung in Herz, Niere und Milz bei geringerer Farbintensität im peripheren Muskel (siehe 

Abbildung 33 A). Die globale Expression von Angiopoietin-1 und PDGF-B konnte auf Ebene 

der mRNA bestätigt werden. So zeigte sich eine signifikante Steigerung sowohl der Ang-1 

Expression (Herz: rAAV-Ang1: 150 x 10-5 ± 47 x 10-5 vs. rAAV-LacZ: 8,2 x 10-5 ± 6,3 x 10-5, 

Muskel: rAAV-Ang1: 96 x 10-6 ± 45 x 10-6 vs. rAAV-LacZ: 6,7 x 10-6 ± 2,1 x 10-6 ΔΔCT Ang1, 

siehe Abbildung 33 B) als auch der PDGF-B Expression in Herz und peripherem Muskel im 
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Vergleich zu kontrolltransduzierten Tieren (Herz: rAAV-PDGF-B: 110 x 10-5 ± 230 x 10-6 vs. 

rAAV-LacZ: 1,3 x 10-5 ± 4,7 x 10-6, Muskel: rAAV-PDGF-B: 1300 x 10-7 ± 4,2 x 10-5 vs. rAAV-

LacZ: 8,4 x 10-7 ± 2,5 x 10-8 ΔΔCT PDGF-B, siehe Abbildung 33 C). 

 

Abbildung 33: Abb. A X-Gal-Färbungen von histologischen Präparaten LacZ-transduzierter C57BL/6 Tiere 
(rAAV-2/9.LacZ, 5x10

12
 Viruspartikel). Es zeigt sich eine deutliche Anreicherung der LacZ-Expression im Herzen 

und etwas geringer in Milz, Niere und Muskel. Abb. B und C Die Steigerung der Angiopoietin-1 und PDGF-B 
mRNA Spiegel konnte mittels PCR nach Transduktion mittels eines adenoassoziierten Virus, welcher für Ang-1 
oder PDGF-B codiert, gezeigt werden (* p<0,05 vs rAAV-LacZ, n = 4). 

3.4.2. Kapillar- und Perizytendichte 

Durch eine rAAV-vermittelte Transduktion der EC-Ang-2-on Tiere mit Ang-1 oder PDGF-B 

konnte der Perizytenbesatz der Endothelzellen wiederhergestellt werden. Dies wird zum 

einen in den Beispielbildern in Abbildung 34 A deutlich, in denen eine deutliche Zunahme der 

Perizytendeckung einzelner Gefäße in EC-Ang2-on + Ang1 und EC-Ang2-on + PDGF-B 

Tieren zu beobachten ist. Die Quantifizierung der PECAM-1 und NG2 positiven Zellen in 

Herzschnitten verdeutlicht diese Zunahme in der Perizytenzahl (EC-Ang2-on 1493 ± 346 vs. 

EC-Ang2-on + Ang1 4036 ± 358 vs. EC-Ang2-on + PDGF-B 3967 ± 170 NG2 pos. Zellen / 

mm2). Neben der Zunahme der Perizytenzahl wurde sowohl in der Ang-1, als auch in der 

PDGF-B transduzierten Gruppe ein signifikanter Anstieg der Endothelzelldichte festgestellt 

(EC-Ang2-on 3875 ± 555 vs. EC-Ang2-on + Ang1 7534 ± 367 vs. EC-Ang2-on + PDGF-B 

7622 ± 179 PECAM-1 pos. Zellen / mm2). 
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Abbildung 34: Die PECAM/NG2-Doppelfärbung zeigt in den Beispielbildern (Abb. A) und der Quantifizierung 
(Abb. B) eine signifikante Zunahme Perizytenanzahl im Gewebe (Herz). Im Übrigen demonstriert die Auszählung 
der Endothelzelldichte eine signifikante Zunahme im Vergleich zu den EC-Ang2-on Tieren (*p<0,05 vs. EC-Ang2-
on, n = 6 für EC-Ang2-on, n = 6 für EC-Ang2-on + Ang1, n = 4 für EC-Ang2-on + PDGF-B). 

3.4.3. Gefäßpermeabilität 

In der Permeabilitätsmessung zeigt sich eine erhöhte Permeabilität in den EC-Ang2-on 

Tieren, welche durch eine rAAV2/9 vermittelte Transduktion der Ang-1 oder PDGF-B Gene 

normalisiert werden konnte (180 Sekunden: EC-Ang2-on 191,6 ± 24 vs. EC-Ang2-on + Ang1 

107,7 ± 2,3 vs. EC-Ang2-on + PDGF-B 123,8 ± 6 Prozent des Nullwerts). 

 

Abbildung 35: In Abb. A sind Beispielbilder der Permeabilitätsmessung drei Minuten nach Injektion von 4 kD 
TRITC-Dextran dargestellt, die bereits eine geringere Extravasation des Dextrans demonstrieren. In der 
Quantifizierung (Abb. B) bestätigt sich die signifikante Reduktion der Permeabilität nach Transduktion Ang-1 und 
PDGF-B (*p<0,05 vs. EC-Ang2-on, **p<0,001 vs. EC-Ang2- on). 
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3.4.4. Linksventrikulärer enddiastolischer Durchmesser 

Sowohl die EC-Ang2-on + Ang1 Tiere, als auch die PDGF-B transduzierten Mäuse 

entwickelten im Verlauf nicht die linksventrikuläre Dilatation, die in EC-Ang2-on Tieren 

beobachtet wurde, wie die linksventrikulären enddiastolischen Durchmesser im Alter von 24 

Wochen demonstrieren (24 Wochen: EC-Ang2-on 0,53 ± 0,04 vs. EC-Ang2-on + Ang1 0,37 ± 

0,02 vs. EC-Ang2-on + PDGF-B 0,35 ± 0,01 cm). 

 

Abbildung 36: Linksventrikulärer enddiastolischer Durchmesser im Alter von 24 Wochen. Es zeigt sich eine 
signifikante Reduktion des Durchmessers in EC-Ang2-on + Ang1 und EC-Ang2-on + PDGF-B Tieren im Vergleich 
zu den EC-Ang2-on Tieren (*p<0,05 vs. EC-Ang2-on, n = 6 für EC-Ang2-on, n = 6 für EC-Ang2-on + Ang1, n = 4 
für EC-Ang2-on + PDGF-B). 

3.5. Einfluss einer Inhibierung der Stickoxid-Bildung in EC-Ang2-on Mäusen 

Zur Untersuchung des Effekts von Stickstoffmonoxid (NO) im transgenen Mausmodell der 

endothelialen Ang-2 Überexpression wurden EC-Ang2-on Tiere mit L-NAME, einem 

unselektiven Inhibitor aller Stickoxidsynthasen, im Alter von zwölf Wochen behandelt. Bereits 

im Alter von 18 Wochen zeigte sich in den so behandelten Tieren eine Normalisierung der 

Gefäßpermeabilität (180 Sekunden: EC-Ang2-on: 191,6 ± 24 vs. EC-Ang2-on + L-NAME: 

112,4 ± 4,3 Prozent des Nullwertes, Abbildung 37 A). Weiterhin konnte die systemische 

Hypotension der EC-Ang2-on Tiere, die sich im Verlauf des Beobachtungszeitraumes 

entwickelte, durch eine Inhibierung der NOS verhindert werden (24 Wochen: EC-Ang2-on: 

84,1 ± 2,8 vs. EC-Ang2-on + L-NAME: 108,3 ± 12,9 mmHg, Abbildung 37 B). 
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Abbildung 37: Abb. A zeigt den Verlauf der TRITC-Dextran Extravasation mit einer reduzierten 
Gefäßpermeabilität in L-NAME behandelten Tieren. Abb. B stellt den arteriellen Mitteldruck in EC-Ang2-on Tieren 
und L-NAME behandelten Tieren dar. Es zeigt sich ein signifikant reduzierter arterieller Mitteldruck (*p<0,05 vs. 
EC-Ang2-on, **p<0,001 vs. EC-Ang2-on). 

Auch konnte in den L-NAME behandelten Ang-2 überexprimierenden Tieren die Dilatation 

des linken Ventrikels im Vergleich zu den unbehandelten EC-Ang2-on Mäusen verhindert 

werden. So zeigten diese Tiere einen niedrigeren linksventrikulären enddiastolischen 

Durchmesser (EC-Ang2-on: 0,47 ± 0,03 vs. EC-Ang2-on + L-NAME: 0,33 ± 0,01 cm, 

Abbildung 38 A) und eine Reduktion des auf das Körpergewicht normalisierten Herzgewichts 

(EC-Ang2-on: 7,2 ± 1,1 vs. EC-Ang2-on + L-NAME: 4,8 ± 0,14 mg/g, Abbildung 38 B). 

 

Abbildung 38: Abb. A Der linksventrikuläre enddiastolische Durchmesser ist in L-NAME behandelten EC-Ang2-
on Tieren nach 24 Wochen nicht erhöht im Vergleich zu unbehandelten Ang-2 überexprimierenden Tieren. Abb. 
B Weiterhin ist das auf das Körpergewicht normalisierte Herzgewicht niedriger (*p<0,05 vs. EC-Ang2-on). 
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3.6. Effekt von Ang-2 auf die Perizytenanlagerung in vitro 

In den Ko-Kulturversuchen von murinen Endothelzellen (mouse brain endothelial cells, 

bEnd3) mit Perizyten (ATCC-CCL-226) auf Matrigel wurde die Anzahl von Perizyten pro 

Endothelzellring bestimmt. Hierbei zeigte sich nach 24 Stunden eine Verringerung der 

Perizytenzahl pro Endothelzellring (Ang2: 3,4 ± 0,39 vs. pcDNA: 7,0 ± 0,39 Perizyten / Ring). 

Durch eine gleichzeitige Transfektion der Endothelzellen mit Ang-2 und entweder Ang-1 oder 

PDGF-B konnte die Reduktion der Perizytenanlagerung, welche in Ang-2 transfizierten 

Zellen vorlag, aufgehoben werden (Ang-2: 15,3 ± 0,4 vs. Ang2 + Ang-1: 24,4 ± 0,9 vs. Ang2 

+ PDGF-B: 28,0 ± 3,4 vs. pcDNA: 24,2 ± 1,7 Perizyten / Ring, Abbildung 39). 

 

Abbildung 39: Abb. A zeigt Beispielbilder der Perizyten und Endothelzellen acht Stunden nach Zugabe der 
Perizyten. Die Quantifizierung in Abb. B demonstriert eine signifikante Reduktion der Perizyten in Ang-2 
behandelten Ansätzen im Vergleich zu den pcDNA behandelten Zellen sowohl nach acht als auch nach 24 
Stunden. Dieser Effekt wurde durch die Zugabe von Batimastat aufgehoben (*p<0,05). 

3.7. Angiopoietin-2 im Mausmodell der LPS-induzierten Sepsis 

Nach Induktion einer systemischen Inflammation mittels intraperitonealer Injektion von 

Lipopolysacchariden (LPS) wurde das Überleben in EC-Ang2-on Tieren und deren 

Kontrollen untersucht. Hierbei zeigte sich insbesondere in der Frühphase der Sepsis eine 

deutlich höhere Sterblichkeit in EC-Ang2-on Tieren im Vergleich zu EC-Control Tieren (EC-

Ang2-on: 12,5% vs. EC-Control: 62,5% Überleben nach 24 Stunden, siehe Abbildung 40 A). 

Weiterhin wurden, um den Effekt einer Ang-2 Antikörperbehandlung im Rahmen einer LPS-

induzierten Sepsis zu untersuchen, C57BL/6 Tiere nach Injektion mit einem Ang-2 Antikörper 

(LC10) oder einem Kontrollantikörper Lipopolysaccharide intraperitoneal injiziert. Hierbei 

zeigte sich 36 Stunden nach Beginn der Sepsis eine Reduktion der Mortalität in Ang-2 

Antikörper behandelten Tieren im Vergleich zu Kontrollantikörper behandelten Tieren (LC10: 

50% vs. Kontroll-Ak: 17% Überleben, siehe Abbildung 40 B). 
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Abbildung 40: A EC-Ang2-on Tiere zeigen nach Sepsisinduktion eine erhöhte Sterblichkeit im Vergleich zu 
Kontrolltiere (n=8) B Die Behandlung mit einem Ang-2 Antikörper reduziert die Mortalität in der LPS-induzierten 
Sepsis im Vergleich zu Kontrolltieren nach 36 Stunden (n=6). 
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4. Diskussion 

Obwohl das System aus den Angiopoietinen 1 und 2 und ihrem Rezeptor Tie-2 nunmehr seit 

fast 20 Jahren erforscht wird, in denen die zentrale Rolle von Angiopoietinen in der 

Regulation des endothelialen Aktivitätszustandes und der embryonalen Vaskulogenese gut 

demonstriert werden konnte, wurde bisher noch nicht untersucht, welchen Einfluss 

Angiopoietin-2 auf die kardiovaskuläre Funktion im adulten Organismus ausübt. Der Grund 

hierfür lag hauptsächlich in der hohen embryonalen Letalität in Ang-2 überexprimierenden 

Tieren. Durch die Verwendung eines transgenen Mausmodells mit induzibler Ang-2 

Überexpression bietet sich nun die Möglichkeit, diesen Einfluss zu untersuchen. 

4.1. Veränderungen der Gefäßstruktur und Funktion unter moderater 

endothelialer Ang-2 Überexpression 

In der vorliegenden Arbeit konnte gezeigt werden, dass eine auf das Endothel beschränkte, 

moderate Überexpression von Angiopoietin-2 zu einer Reihe von Gefäßabnormalitäten führt. 

So zeigten die Tiere bereits makroskopisch vergrößerte und geschlängelt konfigurierte 

Gefäße. Dieser Befund bestätigte sich auch in der in vivo Fluoreszenzangiographie 

(Abbildung 14 C, Abbildung 18 A). Gefäßabnormalitäten in Tieren mit Ang-2 Überexpression 

wurden bereits in der Arbeit von Maisonpierre et al. aus dem Jahr 1997 beschrieben92. Die 

konstitutive endotheliale Überexpression führte embryonal zur Ausbildung eines lediglich 

rudimentären Gefäßbaums mit zahlreichen Gefäßabbrüchen. Adulte Mäuse wurden in dieser 

Studie aufgrund der embryonalen Letalität nicht untersucht. In der hier vorliegenden Studie 

konnte somit zum ersten Mal der Effekt einer chronischen, moderaten Ang-2 Überexpression 

auf die Gefäßmorphologie im adulten Organismus untersucht werden. Neben den 

makroskopischen Veränderungen zeigte sich ein Verlust der Perizyten und eine Rarifizierung 

der Gefäße (demonstriert an der reduzierten Endothelzellzahl), wie in Abbildung 15 und der 

dazugehörigen Quantifizierung (Abbildung 16) zu sehen ist. Interessanterweise konnte der 

Ang-2 vermittelte Verlust an Perizyten durch ein Aussetzen der Überexpression im Alter von 

zwölf Wochen komplett aufgehoben werden. 

Da es sich bei Perizyten um Zellen handelt, die eine große Variabilität in ihrer Morphologie 

und der Expression ihrer Marker aufweisen6, wurde zur Bestätigung des Perizytenverlustes 

in der PECAM/NG2 Färbung ein weiterer Versuch durchgeführt, um den Effekt von Ang-2 auf 

Perizyten zu überprüfen. In den Ang-2 transfizierten X-LacZ-4 Reportermäusen kam es 

analog zu den Versuchen in transgenen EC-Ang2-on Tieren zu einer signifikanten Reduktion 

des Perizytenbesatzes im Bereich des Diaphragmas (siehe Abbildung 17). 
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Der Verlust von Perizyten durch Ang-2 wurde bereits in anderen Publikationen beschrieben. 

So zeigten z.B. Feng et al. in einem Modell der sauerstoffinduzierten Retinopathie (oxygen 

induced retinopathy / OIR) einen Verlust an Perizyten in Tieren mit einer retinalen Ang-2 

Überexpression38. Über den Verbleib der Perizyten unter Ang-2 Stimulation ist bisher wenig 

bekannt. Zum einen konnten Zehendner et al. zeigen, dass sowohl die Induktion einer 

inflammatorischen Reaktion durch IL-1β als auch eine moderate Hypoxie im Modell einer 

zerebralen Gewebskultur zur Aktivierung von Caspase-3 in Perizyten führt174. Bei Caspase-3 

handelt es sich um einen Bestandteil der Signalkaskade, über die der Cytochrom c induzierte 

programierte Zelltot (Apoptose) vermittelt wird22. Für beide pathologischen Zustände – 

Hypoxie und Inflammation – wurde eine Steigerung der Angiopoietin-2 Expression gezeigt84, 

137, sodass der hier beschriebene Ang-2 vermittelte Perizytenverlust eventuell auf einer 

Apoptose der Perizyten beruht. Andererseits demonstrierten Pfister et al., dass es im 

Mausmodell der diabetischen Retinopathie zu einer Zunahme der Perizytenmigration kommt, 

welche in Angiopoietin-2 defizienten Mäusen ausblieb119. Ein weiteres mögliches Schicksal 

der Perizyten unter Ang-2 Stimulation könnte zudem in der Dedifferenzierung liegen. Diese 

Möglichkeit wurde bislang für Perizyten nicht gezeigt, in primären vaskulären glatten 

Muskelzellen jedoch wurde durch Behandlung mit Matrix-Metalloprotease-1 (MMP-1) eine 

Dedifferenzierung induziert9, welche durch einen Verlust vSMC spezifischer Marker und 

einer Reduktion des kontraktilen Phänotyps gekennzeichnet war. Bei MMP-1 handelt es sich 

um eine Protease, deren Expression durch Ang-2 (im Zusammenspiel mit VEGF) 

angestossen werden kann36. Diese mögliche Ang-2 vermittelte Dedifferenzierung – über eine 

Aktivierung der MMP-1 – könnte insbesondere unter Berücksichtigung der nahen 

Verwandschaft zwischen vSMCs und Perizyten verantwortlich für den hier demonstrierten 

Perizytenverlust sein. Über welchen der hier diskutierten Wege (Migration, 

Dedifferenzierung, Apoptose) der Perizytenverlust vermittelt wird, oder ob mehrere 

Mechanismen verantwortlich sind, bleibt jedoch weiterhin ungeklärt. 

Erhöhte Angiopoietin-2 Spiegel und ein Verlust an Perizyten sind in früheren Arbeiten mit 

einer gesteigerten Gefäßpermeabilität assoziiert worden44, 124. Darüber hinaus wurde eine 

starke Ödemneigung in EC-Ang2-on Tieren beobachtet, als Hinweis auf eine gesteigerte 

Gefäßpermeabilität. Um zu untersuchen, ob die makroskopischen und histologischen 

Veränderungen in diesem transgenen Mausmodell der endothelialen Überexpression 

ebenfalls einen Einfluss auf die Gefäßpermeabilität ausüben, wurden im Alter von 18 

Wochen Permeabilitätsmessungen durchgeführt, in denen sich tatsächlich eine signifikante 

Steigerung der Extravasation TRITC-markierter Dextranmoleküle fand (Abbildung 18). Die 

Zunahme der Gefäßpermeabilität ist zum einen durch eine Destabilisierung der Adherens 

Junctions erklärbar. Die Verschiebung des Ang-1/Ang-2 Gleichgewichts zu Gunsten von 
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Angiopoietin-2 reduziert die Ang-1 abhängige Stabilisierung von VE-Cadherin an der 

Zelloberfläche, wodurch der parazelluläre Übertritt von Flüssigkeit begünstigt wird25. Ein 

weiterer möglicher Mechanismus besteht im Ang-2 vermittelten Abbau der 

Extrazellulärmatrix. So ist Ang-2 in der Lage, die Expression diverser Matrix-

Metalloproteasen zu induzieren, darunter MMP-2 und MMP-9, welche zunächst einen Abbau 

der Extrazellulärmatrix bewirken. Weiterhin sind diese MMPs in der Lage über einen Abbau 

von Talin (durch MMP-2) die Aktivität von Integrinen zu reduzieren90, 142, 175, die die 

Verankerung von Zellen mit der Extrazellulärmatrix vermitteln. In Perizyten spielt hierbei 

hauptsächlich das Integrin Heterodimer α5β1 (Fibronectin-Rezeptor) eine Rolle154, für welche 

die Aktivierung durch Talin gut dokumentiert ist104. 

Wie der genaue Mechanismus des Ang-2 vermittelten Perizytenverlusts verläuft, wird in 

zukünftigen Studien geklärt werden. 

4.2. Einfluss der Ang-2 vermittelten Gefäßdestabilisierung auf die 

kardiovaskuläre Funktion 

Da eine Zunahme des Herzgewichts in den hier verwendeten EC-Ang2-on Tieren 

beschrieben ist132 und sich die oben dargelegten vaskulären Auffälligkeiten zeigten, wurde in 

einem weiteren Schritt die hämodynamische Funktion der EC-Ang2-on Tiere untersucht. 

In der nicht-invasiven Blutdruckmessung zeigte sich hierbei eine im Alter von 24 Wochen 

signifikante systemische Hypotension. Dieser Befund bestätigte sich in der invasiven 

linksventrikulären Druckmessung im Anschluss an den letzten Messzeitpunkt. Sowohl in 

Ruhe, als auch unter Stimulation mit steigenden Dosen Noradrenalin, demonstrierten die 

EC-Ang2-on Tiere die Unfähigkeit, Drücke - vergleichbar mit den Kontrolltieren - zu 

entwickeln. Weiterhin war die Relaxation in EC-Ang2-on Mäusen gestört. Sowohl die 

systemische Hypotension als auch die gestörte Relaxation konnte durch ein Aussetzen der 

Ang-2 Überexpression im Alter von zwölf Wochen zumindest teilweise verhindert werden. 

Eine Beeinflussung der Blutdruckregulation über die Kontraktion von Perizyten konnte 

bereits in den 1980er Jahren erstmalig beschrieben werden71, 155 So konnte z.B. von 

Haefliger et al. gezeigt werden, dass Perizyten in der Lage sind, zu kontrahieren und zu 

relaxieren52, 72, was einen Einfluss von Perizyten auf die Regulation des Blutflusses im 

Bereich der Kapillaren möglich macht. 

Der Großteil der Blutdruckregulation findet jedoch im Bereich der Arterien und präkapillären 

Arteriolen statt, durch Kontraktion der in der Tunica media befindlichen glatten Muskelzellen. 

Die Wirkung von Ang-2 auf glatte Muskelzellen der Gefäße und den Vasotonus ist in letzter 
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Zeit in den Fokus der Forschung gerückt. So konnte von Molnar und Siemann gezeigt 

werden, dass Angiopoietin-2 in vitro zu einer Loslösung von Endothelzellen und glatten 

Muskelzellen führt103. Auch in vivo konnte ein Einfluss von Ang-2 auf die glatten Muskelzellen 

der Gefäße demonstriert werden. In einem Modell der Hinterlaufischämie führte eine 

Überexpression von Ang-2 zu einer Reduktion der Kollateralbildung und 

Hinterlaufdurchblutung bei einem Defizit in der Anlagerung von glatten Muskelzellen123. Ein 

möglicher Einfluss von Ang-2 auf das Gefäßremodelling während einer Hypertension wurde 

in 2012 von Korff et al. nahegelegt81. In dieser Studie konnte gezeigt werden, dass in 

Mäusen eine Hypertensionsinduktion eine kalziumvermittelten Ausschüttung von Ang-2 aus 

den Endothelzellen bewirkte, wobei eine Behandlung isolierter Arterien mit Ang-1 diese 

Ausschüttung unter erhöhten Drücken verhindern konnte. 

Zusammengenommen legen die Ergebnisse dieser Studie den Schluss nahe, dass 

Angiopoietin-2 zum einen über eine Destabilisierung der Mikrozirkulation gefolgt von einer 

gesteigerten Gefäßpermeabilität zu dem hier gezeigten linksventrikulären Pumpversagen 

führt. Zum anderen deuten die hier besprochenen Befunde darauf hin, dass Ang-2 in der 

Lage ist, neben den Perizyten der Mikrogefäße auch die Funktion von glatten Muskelzellen 

zu beeinflussen, wobei dieser Ang-2 Effekt bisher nicht eindeutig nachgewiesen werden 

konnte. 

Das klinische Bild der Herzinsuffizienz lässt sich anhand des Herzzeitvolumens in zwei 

Kategorien unterteilen: Das Low-output-failure, zum Beispiel im Rahmen einer ischämischen 

oder dilatativen Kardiomyopathie und das High-output-failure, welches durch ein hohes 

Herzzeitvolumen gekennzeichnet ist55. Üblicherweise geht eine systolische Funktionsstörung 

des Herzens im Rahmen eines Low-output-failures mit einer Steigerung des 

linksventrikulären enddiastolischen Druckes einher. Durch fibrotische Umbauprozesse im 

Herzen nimmt die Dehnbarkeit (Compliance) des Myokards ab, sodass die Drücke im linken 

Ventrikel zum Ende der Diastole ansteigen136. EC-Ang2-on Tiere zeigten jedoch keinen 

Anstieg des linksventrikulären enddiastolischen Druckes im Alter von 24 Wochen. Weiterhin 

führte die endotheliale Ang-2 Überexpression zu einer signifikanten Steigerung des 

Herzzeitvolumens. 

Eine moderate Angiopoietin-2 Überexpression führt demnach, neben den Veränderungen in 

Aufbau und Funktion der Kapillaren, bedingt durch einen Verlust der Perizyten, zu einer 

systemischen Hypotension mit folgender linksventrikulärer Dilatation und einem kardialen 

Remodelling im Verlauf des Beobachtungszeitraumes. 
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4.3. Vergleich der kardiovaskulären Veränderungen in Mäusen mit 

herzspezifischer und herzaussparender Ang-2 Überexpression 

Um zu überprüfen, ob die hämodynamischen Veränderungen auf einer Anpassung an eine 

Ang-2 vermittelte periphere Gefäßdestabilisierung beruhen, oder ob es sich um einen 

direkten Effekt von Ang-2 auf das Myokard handelt, wurde ein zweiter transgener 

Mausstamm untersucht. Hier stand Ang-2 in einem Tet-Off Promotersystem unter der 

Kontrolle eines α-MHC Promoter. Hierdurch konnte die Ang-2 Überexpression auf das 

Myokard beschränkt werden. Die überexprimierenden Tiere („CM-Ang2-on“) wurden mit 

ihren singletransgenen Geschwistern („CM-Control“) verglichen. 

Wie in Abbildung 25 und Abbildung 26 gezeigt, fand sich keine hämodynamische 

Veränderung in den CM-Ang2-on Mäusen. Durch Injektion von 1x1012 Viruspartikeln 

(AAV2.9), welche für Ang-2 codierten konnte in C57BL/6 Mäusen ebenfalls eine kardial 

beschränkte Ang-2 Expression herbeigeführt werden. Auch in diesem Modell der 

myokardialen Ang-2 Überepxression entwickelte sich keine Herzinsuffizienz (siehe 3.2.5 und 

3.2.6). 

Zuletzt wurden die Veränderungen im Rahmen einer herzaussparenden Angiopoietin-2 

Überexpression untersucht. Hierzu wurden erneut C57BL/6 Mäuse im Alter von zwölf 

Wochen mit einem LacZ und einem Ang-2 codierenden Virus transduziert. Um die 

systemische, aber herzaussparende, Überexpression zu gewährleisten, wurde der AAV-

Serotyp 2/7 verwendet. Bereits von Bish et al. konnte eine gute extrakardiale Transduktion 

gezeigt werden12, die hier durch eine LacZ Färbung der Kontrolltiere bestätigt wurde (siehe 

Abbildung 31). In der linksventrikulären Druckmessung zeigten die Ang-2 transduzierten 

Tiere (rAAV2/7.Ang2) eine Hypotension mit eingeschränkter Reservekapazität (unter 

Stimulation mit Noradrenalin) und eine progrediente Vergrößerung des linken Ventrikels im 

Vergleich zu den Kontrolltieren (rAAV2/7.LacZ, siehe Abbildung 32). 

Diese Befunde unterstreichen die Vermutung, dass die Ang-2 vermittelte Herzinsuffizienz auf 

einer Anpassung an eine veränderte hämodynamische Situation beruht und nicht auf einem 

primären Effekt von Ang-2 auf das Myokard oder die myokardiale Durchblutung. 

4.4. Effekt einer Antagonisierung der Ang-2 Überexpression durch rAAV2/9 

vermittelte Ang-1 und PDGF-B Transduktion 

Um die Interaktionen zwischen Ang-2, dem kompetetiven Antagonisten Ang-1 und dem 

Wachstumsfaktor PDGF-B zu untersuchen, wurden EC-Ang2-on Tiere nach Durchführung 

der ersten Messung im Alter von zwölf Wochen mithilfe eines AAV2/9, welcher das Gen für 

entweder Ang-1 oder PDGF-B enthielt, transduziert. Der AAV Serotyp 2/9 in hoher 
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Dosierung (5x1012 Viruspartikel pro Tier) wurde im Rahmen dieser Versuche ausgewählt, 

weil dieser eine breite Transduktion verschiedener Gewebe mit einer hohen Effektivität 

erlaubt, um der systemischen Ang-2 Überexpression effektiv entgegen zu wirken178. 

Die Ang-1 Transduktion war in dem Modell der endothelialen Ang-2 Überexpression in der 

Lage, sowohl den Perizytenverlust und die gesteigerte Gefäßpermeabilität, als auch die 

progrediente linksventrikuläre Dilatation unter Ang-2 Überexpression zu verhindern. Diese 

Ergebnisse legen den Schluss nahe, dass nicht die absolute Menge an Ang-1 oder Ang-2 

entscheidend für die Stabilität der Gefäße ist, sondern dass insbesondere das Verhältnis der 

beiden Wachstumsfaktoren zueinander über die Stabilität der Gefäße entscheidet. 

Um die zentrale Rolle von Perizyten in der Stabilisierung der Gefäße zu demonstrieren, 

wurden in einem weiteren Versuch EC-Ang2-on Tiere mit dem perizytenrekrutierenden 

Faktor PDGF-B transduziert. Für PDGF-B zeigten die Arbeiten von Lindblom et al. und 

Nystro et al, dass eine Deletion des PDGF-B retention motifs, welches die Bindung von 

Perizyten an die Extrazellulärmatrix vermittelt, in einem transgenen Mausstamm (PDGF-

Bret/ret) zu ähnlichen Veränderungen führt, wie sie hier für die EC-Ang2-on Tiere demonstriert 

wurden. So zeigten die PDGF-Bret/ret Tiere einen Perizytenverlust und eine Rarifizierung der 

Kapillaren, gefolgt von einem Anstieg des Herzzeitvolumens und des Herzgewichts89, 109. In 

Übereinstimmung mit diesen Befunden verhinderte eine PDGF-B Transduktion in EC-Ang2-

on Tieren die Perizytenrarifizierung, die Hyperpermeabilität und letztlich die Ausbildung der 

linksventrikulären Dilatation, welche für die EC-Ang2-on Tiere demonstriert werden konnte. 

Die im Tiermodell erhobenen Befunde konnten ebenso im Rahmen eines in vitro 

Experiments bestätigt werden. Hierzu wurden Endothelzellen (bEnd3) und Perizyten (ATCC-

CCL-26) auf einer simulierten Extrazellulärmatrix kokultiviert. In diesem Versuch führte eine 

Transfektion von bEnd3 Endothelzellen mit Angiopoietin-2 zu einer Reduktion der 

Perizytenzahl pro Endothelzellring. Dieser Effekt konnte analog zu den Versuchen in 

transgenen Tieren durch eine zusätzliche Transfektion mit Ang-1 oder PDGF-B verhindert 

werden. 

Zusammengenommen lassen die hier dargelegten Befunde folgende Schlussfolgerung zu: In 

ruhenden Gefäßen besteht, durch eine konstante Freisetzung von Ang-1 aus den Perizyten, 

ein Übergewicht von Ang-1 gegenüber Ang-2. Hieraus resultiert eine stabile Aktivierung des 

Tie-2 Rezeptors, wodurch eine weitere Rekrutierung muraler Zellen (unter anderem über die 

Wachstumsfaktoren HB-EGF und HGF62, 79) gefördert wird. Im Rahmen von z.B. 

Inflammation, Hypoxie und Neoplasie kommt es zu einer rapiden Ausschüttung von Ang-2 

aus den Endothelzellen41, wodurch Ang-1 von dem gemeinsamen Rezeptor verdrängt wird. 
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Die Signaltransduktion am Tie-2 Rezeptor wird unterbrochen und es kommt zu einer 

Loslösung der Perizyten und einer Destabilisierung der Gefäßstruktur. Durch die folgende 

Hyperpermeabilität entwicket sich im Verlauf eine linksventrikuläte Dilatation mit kardialem 

Remodelling im Rahmen eines High-output-failure. Eine zusätzliche Überexpression von 

Angiopoietin-1 verschiebt das Gleichgewicht zwischen Ang-1 und Ang-2 zugunsten von 

Ang-1. Weiterhin ist PDGF-B in dieser Situation in der Lage, Perizyten zu rekrutieren, welche 

durch ihre Ausschüttung von Ang-1 in der Lage sind, das Ang-1/Ang-2 Verhältnis in Richtung 

von Ang-1 zu verschieben. Beide Faktoren erhöhen somit das vorhandene Angiopoietin-1, 

wodurch eine Stabilisierung der Gefäße und eine Minderung der Ang-2 vermittelten 

Desintegration bewirkt wird. Diese Stabilisierung verhindert im Verlauf das durch die 

Hyperzirkulation bedingte Linksherzversagen (siehe Abbildung 41). 

 

Abbildung 41: Im ruhenden Zustand besteht ein Übergewicht von Ang-1, welches in EC-Ang2-on Tieren 
zugunsten von Ang-2 verschoben wird. Dies führt nach einer Loslösung der Perizyten zu einer Steigerung der 
Gefäßpermeabilität, was letztlich in einer Reduktion des systemischen Blutdrucks und zu einem High-Output 
Heartfailure führt. Wird in diesem Zustand Ang-1 überexprimiert, so verdrängt dieses vermehrt Ang-2 vom 
gemeinsamen Rezeptor; es kommt zu einer Rekrutierung von Perizyten und einer Stabilisierung die Gefäße. 
Durch die zusätzliche Expression von PDGF-B werden vermehrt Perizyten rekrutiert, die ihrerseits Ang-1 
produzieren, was das Ang-1/Ang-2 Gleichgewicht in Richtung Ang-1 verschiebt. Hierdurch normalisiert sich die 
hämodynamische Situation und die Ausbildung des Linksherzversagens bleibt aus. 
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4.5. Hemmung der Stickstoffmonoxid Synthase im Mausmodell der 

endothelialen Ang-2 Überexpression 

Da es sich bei Stickstoffmonoxid um einen starken Vasodilatator handelt43, der zudem ein 

Teil der Signalkaskade ist, über welche der Vascular Endothelial Growth Factor (VEGF) die 

Gefäßpermeabilität steigert167, wurde in der vorliegenden Studie der Einfluss einer Hemmung 

der NO-Synthase (NOS) in EC-Ang2-on Tieren durch den NOS Inhibitor L-NAME untersucht. 

Die Behandlung der EC-Ang2-on Tiere mit L-NAME begann im Alter von zwölf Wochen. 

Bereits sechs Wochen später zeigte sich erwartungsgemäß eine Normalisierung der 

Gefäßpermeabilität. Weiterhin stieg der nicht-invasiv gemessene Blutdruck bis zum Alter von 

24 Wochen an im Vergleich zu unbehandelten EC-Ang2-on Tieren. Diese Normalisierung 

von Gefäßpermeabilität und Blutdruck konnte auch die Ausbildung der linksventrikulären 

Dilatation und myokardialen Hypertrophie verhindern (siehe 3.5). 

Diese Ergebnisse legen die Vermutung nahe, dass Angiopoietin-2 und Stickstoffmonoxid 

funktionelle Ähnlichkeiten besitzen und evtl. über dieselben Signalwege wirken. Zudem 

konnten Ahmed et al. zeigen, dass die adenovirale Transduktion von Angiopoietin-2 in  

Apoe-/- Mäusen, welche mit Tiernahrung gefüttert wurden, die einen hohen Anteil an Fett und 

Cholesterin enthält, die Ausbildung einer Arteriosklerose abmildert, und dass dieser Effekt 

durch Blockierung der NO Synthese gehemmt werden kann1. Andererseits ist die 

Rekrutierung muraler Zellen im Mausmodell der Hinterlaufischämie abhängig von 

Stickstoffmonoxid170, während Angiopoietin-2 in der vorliegenden Studie zu einem 

Perizytenverlust führt. Folglich scheinen die Effekte und Signalwege von Angiopoietin-2 und 

NO nicht identisch zu sein, obwohl eine gegenseitige Beeinflussung nicht auszuschließen ist. 

4.6. Angiopoietin-2 im Mausmodell der LPS-induzierten Sepsis und klinischer 

Ausblick 

In der vorliegenden Studie wurde bisher der Effekt einer chronischen Angiopoietin-2 

Überexpression auf das kardiovaskuläre System besprochen. Im Menschen sind eine Reihe 

chronischer Krankheiten beschrieben, die mit einer Erhöhung der Angiopoietin-2 Spiegel 

assoziiert sind. So zeigen Patienten mit rheumatoider Arthritis (RA)37 und Psoriasis86 eine 

erhöhte Expression von Angiopoietin-2. Im Falle der Psoriasis zeigte sich jedoch keine 

Veränderung in der Inzidenz einer Herzinsuffizienz30. Bei der rheumatoiden Arthritis wurde 

eine erhöhte Inzidenz der Herzinsuffizienz festgestellt, wobei RA Patienten keine 

systemische Hypotension boten, sondern eine signifikant höhere Inzidenz von arteriellem 

Hypertonus, sodass in den Fällen von Herzinsuffizienz im Rahmen einer rheumatoiden 

Arthritis am ehesten von einem Low-Output Heartfailure auszugehen ist156. 
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Eine linksventrikuläre Dilatation und myokardiale Hypertrophie im Rahmen einer chronischen 

Volumenbelastung des Herzens wurde bisher in Tiermodellen beschrieben, zeigt sich aber 

auch als Folge einer Reihe von Krankheiten, welche mit einer Reduktion des 

Gefäßwiderstandes einhergehen. So konnten Ozek et al. in einem Rattenmodell durch End-

zu-Seit-Anastomosierung der Femoralarterie an die Femoralvene eine linksventrikuläre 

Dilatation und eine Zunahme der linksventrikulären Wanddicken induzieren113. Zu den 

chronischen Zuständen, die mit einer Reduktion des systemischen Widerstandes 

einhergehen, zählen vor allem solche, die zu einer Bildung von arteriovenösen Fisteln 

führen. Diese können kongenital (Osteodystrophia deformans, Morbus Osler, Klippel-

Trénaunay-Weber-Syndrom) oder iatrogen sein (Cimino-Brescia-Shunt zur Hämodialyse) 

und im Rahmen von Traumen entstehen. Bei großen arteriovenösen Fisteln wurde bereits 

die Entstehung einer linksventrikulären Dilatation/Kardiomegalie und ein erhöhtes 

Herzzeitvolumen beschrieben7, 63. Für keine dieser Erkrankungen konnte jedoch bisher eine 

Assoziation mit Angiopoietin-2 hergestellt werden. Somit kann zum aktuellen Zeitpunkt keine 

chronische Krankheit identifiziert werden, die dem hier präsentierten Phänotyp bei 

prolongierter Ang-2 Überexpression entspricht. 

Die Sepsis jedoch, als akute, selbstlimitierende Erkrankung, stellt ein Krankheitsbild dar, in 

welchem ein Großteil der hier beschriebenen Veränderungen vorhanden sind. So kann es im 

Rahmen systemischer Inflammationen zur Ausbildung eines Kapillarlecks2, 124, einer 

systemische Hypotension59, 110 und einem linksventrikulären Pumpversagen im Rahmen 

eines High-Output Heartfailure kommen. Weiterhin zeigten Kümpers et al. eine Steigerung 

der Ang-2 Spiegel im Rahmen einer Sepsis, wobei die Höhe der Spiegel mit der Mortalität 

korreliert83, 84. Umgekehrt konnten Witzenbichler et al. zeigen, dass eine Angiopoietin-1 

Behandlung im Rahmen einer LPS-induzierten Sepsis die Hyperpermeabilität und Mortalität 

im Mausmodell senken konnte166. 

Um die Rolle von Angiopoietin-2 in der Sepsis zu untersuchen wurde in EC-Ang2-on Tieren 

und deren Kontrollen eine Sepsis induziert. Hierbei zeigte sich eine Steigerung der Mortalität 

in EC-Ang2-on Tieren, insbesondere in der frühen Phase der Sepsis. Durch eine Blockade 

von Ang-2 mithilfe eines Angiopietin-2 Antikörpers konnte das Überleben in C57BL/6 Tieren 

im Vergleich zu Kontrollantikörper behandelten Tieren deutlich gesteigert werden, wie in 

Abbildung 40 zu sehen ist. 

Zusammenfassend lässt sich feststellen, dass eine Behandlung mit Ang-2 Antikörpern zu 

einer Reduktion des Perizytenverlusts und der sepsisinduzierten Hyperpermeabilität, zu 

einer Normalisierung des Blutdrucks und zu einer Verbesserung des Überlebens führt177. 
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Insbesondere in den letzten Jahren ist die Hemmung von Angiopoietin-2 vermehrt in den 

Fokus klinischer Studien gerückt. Der Schwerpunkt dieser Studien liegt jedoch auf der 

Hemmung von Angiopoietin-2 in Kombination mit einer herkömmlichen Chemotherapie bei 

Patienten mit soliden Tumoren. Bei AMG386 (Trebananib) handelt es sich zum Beispiel um 

einen Antikörper gegen Angiopoietin-1 und -2, welcher im Rahmen klinischer Studien bei 

metastasierten gastro-ösophagealen Karzinomen und im Rahmen von Rezidiven bei 

Ovarialkarzinomen eingesetzt wird34, 69. Neben einigen Antikörpern, die mehrere 

angiogenetische Signalwege angreifen, wie z.B. CVX-241 (Angiopoietin-2/VEGF), stehen 

auch eine Reihe von Ang-2 spezifischen Antikörpern zur Verfügung, wie z.B. der Antikörper 

CVX-060 und der kürzlich erstbeschriebene Antikörper LC06151. Bisher wurden keine 

klinischen Studien zu Untersuchung einer antikörpervermittelten Inhibierung von Ang-2 im 

Rahmen inflammatorischer Prozesse durchgeführt. 

Die hier besprochenen Ergebnisse legen den Schluss nahe, dass Angiopoietin-2 eine 

mögliche Rolle in der Entstehung und Aufrechterhaltung einer septischen Hyperzirkulation 

spielt. Weiterhin konnte in einem Pilotversuch demonstriert werden, dass eine Hemmung von 

Angiopoietin-2 durch einen Angiopoietin-2 Antikörper zu einer Verbesserung des Überlebens 

im Rahmen einer LPS-induzierten Sepsis im Mausmodell führt. Zusammengenommen 

identifizieren diese Befunde Angiopoietin-2 als mögliches therapeutisches Ziel in der 

Behandlung der Sepsis / des septischen Schocks. 
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5. Zusammenfassung 

In einer Vielzahl von Publikationen der letzten Jahre wurden die Angiopoietine als zentrale 

Regulatoren des endothelialen Aktivitätszustandes charakterisiert. Die kompetetiven 

Antagonisten Angiopoietin-1 und Angiopoietin-2 spielen eine wichtige Rolle in diversen 

pathologischen Prozessen, wie Angiogenese, Tumorangiogenese und Inflammation. 

Während Ang-1 zusammengefasst stabilisierend auf die Struktur der Gefäße und der 

umgebenden muralen Zellen wirkt, führt die rapide Ausschüttung von Ang-2 zu einer 

Destabilisierung. 

In der vorliegenden Arbeit konnte gezeigt werden, dass eine moderate endotheliale Ang-2 

Überexpression (EC-Ang2-on) zunächst zu einem Verlust von Perizyten im Bereich der 

kleinen Gefäße führt. Dieser Verlust hat eine deutliche Steigerung der Gefäßpermeabilität 

zur Folge, wodurch sich im Verlauf des prolongierten Beobachtungszeitraums eine 

systemische Hypotension entwickelt. Diese konnte sowohl nicht-invasiv, als auch invasiv 

gemessen werden. Interessanterweise zeigten die Angiopoietin-2 überexprimierenden 

Mäuse ein erhöhtes Herzzeitvolumen, wobei der linksventrikuläre enddiastolische Druck 

unverändert blieb, sodass von dem Vorliegen eines High-Output Heartfailure auszugehen ist. 

Letztlich bildeten EC-Ang2-on Tiere eine progrediente linksventrikuläre Dilatation mit 

myokardialer Hypertrophie und Fibrose aus. Da dieser Phänotyp durch eine periphere Ang-2 

Überexpression (rAAV2/7-Ang2) kopiert werden konnte, eine auf das Myokard beschränkte 

Überexpression (CM-Ang2-on, rAAV-CM-Ang2) jedoch keinen Einfluss auf Funktion und 

Morphologie des Herzens ausübte, ist bei den Herzveränderungen von einem sekundären 

Anpassungsprozess an eine hyperzirkulatorische Hypotension auszugehen. Weiterhin 

konnte die mikrovaskuläre Desintegration, gefolgt von Hypotension und Linksherzversagen, 

durch gleichzeitige Überexpression von sowohl Angiopoietin-1, als auch dem 

perizytenrekrutierenden Faktor PDGF-B verhindert werden. Da der Phänotyp der EC-Ang2-

on Tiere (Hyperpermeabilität, Hypotension, Hyperzirkulation) den pathologischen 

Veränderungen im Rahmen einer Sepsis ähnelt und da ein Zusammenhang zwischen 

erhöhten Angiopoietin-2 Spiegeln und der Schwere einer Sepsis bereits demonstriert werden 

konnte, wurde in einem Pilotversuch der Effekt einer antikörpervermittelten Blockierung von 

Angiopoietin-2 im Mausmodell einer LPS-induzierten Sepsis untersucht. Hierbei konnte 

demonstriert werden, dass eine Behandlung mit Angiopoietin-2 Antikörpern einen positiven 

Einfluss auf das Überleben im Rahmen einer LPS-induzierten Sepsis ausübt. 

Eine Angiopoietin-2 Überexpression führt demnach zu einer Hyperzirkulation mit 

progredientem Linksherzversagen auf dem Boden einer mikrovaskulären Destabilisierung, 

charakterisiert durch Perizytenverlust und gesteigerte Gefäßpermeabilität. Diese 
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Veränderungen, die in der Sepsis zusammen mit erhöhten Ang-2 Spiegeln vorliegen, können 

durch eine Ang-2 Antikörperbehandlung im Tierversuch zumindest partiell antagonisiert 

werden. Die Ergebnisse dieser Expreimente legen den Schluss nahe, dass die 

Antagonisierung von Ang-2 ein akttraktives therapeutisches Ziel in der beginnenden Sepsis 

darstellt. 
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Abkürzungsverzeichnis 

AAV Adeno-assoziierter Virus 

ABIN-2 A20 binding inhibitor of NF-κB activation 2 

AdV Adenovirus 

Akt Proteinkinase B 

Ang Angiopoietin 

ATTC-CCL-226 Murine mesenchymale Zelllinie 

BAD Bcl-2-associated death promoter 

BRCP Bovine retinal pericyte 

bEnd3 Murine Endothelzelllinie, mouse brain endothelial cells 

bFGF Basic fibroblast growth factor 

BRPC Bovine retinal pericyte 

C57BL/6 Wildtyp Mausstamm 

CMV Cytomegalievirus 

CO Cardiac output, Herzzeitvolumen 

COMP-Ang-1 Cartilage oligomeric matrix protein Angiopoietin-1 

CRP C-Reaktives Protein 

CVVH Kontinuierliche venovenöse Hämofiltration 

DAPI 4',6-diamidino-2-phenylindole 

DIC Disseminated intravascular coagulation 

DMEM Dulbecco‘s Modified Eagle Medium 

DNA Desoxyribonucleinsäure 

dP Entwickelter Druck 

EDTA Ethylendiamintetraessigsäure 



Abkürzungsverzeichnis 

 
77 

 

EGF Epidermal growth factor 

EGM Endothelial Growth Medium 

FCS Fetal calf serum 

GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase 

GFP Grün fluoreszierendes Protein 

HB-EGF Heparin binding EGF like growth factor 

HEK293 Human embryonic kidney Zellen 

HGF Hepatocyte growth factor 

HMEC Humam Mammary Epithelial Cell 

ICAM Intercellular adhesion molecule 

IHD Intermittierende Hämodialyse 

IL-12 Interleukin-12 

IL-1β Interleukin-1β 

IL-6 Interleukin-6 

IL-8 Interleukin-8 

ITR Inverted terminal repeat sequence 

kDa Kilodalton 

KG Körpergewicht 

LacZ Lactose-operon Z 

L-NAME Nω-Nitro-L-arginine methyl ester hydrochloride 

LPS Lipopolysaccharide 

LvEDD Linksventrikulärer enddiastolischer Durchmesser 

LvEDP Linksventrikulärer enddiastolischer Druck 

MAP Mean arterial pressure, arterieller Mitteldruck 
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MGV Mean grey value 

Mhz Megaherz 

MMP Matrix-Metalloprotease 

MPLSM Multi photon laser scanning Mikroskopie 

mRNA Messenger Ribonucleinsäure 

MyD88 Myeloid differentiation protein 88 

NF-κB Nuclear factor-κB 

NG2 Neuron-glial antigen-2 

NHERF Na+/H+ exchanger regulatory factor 

NO Stickstoffmonoxid 

NOD1 Nucleotide oligomerization domain Rezeptor 1 

NOD2 Nucleotide oligomerization domain Rezeptor 2 

OIR Oxygen induced retionpathy 

ORF Open reading frame 

PAMP Pathogen-associated molecular pattern 

PBS Phosphate buffer saline 

pCO2 Kohlenstoffdioxid-Partialdruck 

PCR Polymerasekettenreaktion 

PDGF Platelet-derived growth factor 

PDGFR Platelet-derived growth factor receptor 

PE Polyethylen 

PECAM-1 Platelet endothelial cell adhesion molecule-1 

PEI Polyethylenemin 

PGRP Peptidoglykan recognition Protein 
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PI3-Kinase Phosphatidylinositide 3-kinase 

PLC-γ Phospholipase C-γ 

pO2 Sauerstoffpartialdruck 

PRR Pattern recognition receptor 

rAAV rekombinanter adenoassoziierter Virus 

RhoA Ras homolog gene family member A 

RNA Ribonucleinsäure 

SHG Second harmonics generation 

SMC Smooth muscle cell 

Src Proto-oncogene tyrosine-protein kinase Src 

TGF-β Transforming growth factor 

Tie Tyrosine kinase with immunglobulin-like and EGF-like domains 

TLR Toll-like receptor 

TNF-α Tumor necrosis factor α 

TRITC Tetramethylrhodamine-Isothiocyanat 

VCAM Vascular cell adhesion molecule 

VEGF Vascular endothelial growth factor 

Vp1-3 Hüllproteine des AAV 

WPB Weibel-Palade Körperchen 

α-MHC α-myosine heavy chain 
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