
T H E L A N G U A G E D U R A : A D E C L A R AT I V E E V E N T Q U E RY
L A N G U A G E F O R R E A C T I V E E V E N T P R O C E S S I N G

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von
Diplom-Informatiker

Steffen Hausmann

München, den 7. August 2014

impressum

Copyright: © 2014 Steffen Hausmann
Verlag: epubli GmbH, Berlin, www.epubli.de
ISBN 978-3-7375-1377-7

erstgutachter: Prof. Dr. François Bry
zweitgutachter: Prof. Dr. Adrian Paschke
tag der mündlichen prüfung: 2. Oktober 2014

I may not have gone where I intended to go,
but I think I have ended up where I needed to be.

— Douglas Adams

A B S T R A C T

The development of Complex Event Processing (CEP) towards a ma-
ture and recognized technology has facilitated the implementation
of a wide range of applications in areas like online marketing, logis-
tics, finance, and manufacturing processes. Applications in these do-
mains substantially benefit from the timely detection of higher-level
knowledge that is derived by the continuous evaluation of standing
complex event queries against a volatile stream of incoming event
messages.

Public infrastructures like metro systems and airports are facing
similar requirements, as they are increasingly equipped with vari-
ous sensors and actuators generating a vast amount of events which
need to be interpreted in a timely and continuous manner. However,
due to the physical nature of such infrastructures, the approaches
commonly applied cannot be easily transferred to monitor and con-
trol them. Nevertheless, those infrastructures require more elaborated
and effective technical solutions to support human operators, as their
complexity is approaching the limit that can be reasonably handled
by humans, in particular during unusual incidents such as emergen-
cies.

The work presented in this thesis is devoted to closing the gap
between the requirements of modern Emergency Management (EM)
and the capabilities of current CEP approaches by investigating means
towards more reactive event processing, in particular with respect to
interactions with external actuators.

A major contribution of this work is the design of the declarative
event query language Dura. Dura unifies crucial aspects of EM in a de-
clarative and homogeneous language, which so far have been commonly
considered only independently from each other in CEP, if at all. Dura
provides expressive event queries with support of flexible time win-
dows in addition to versatile grouping and negation capabilities. The
language furthermore integrates support of multiple time lines to lever-
age information provided by external simulations. Moreover, Dura
supplies stateful objects that allow for a notion of states and to track
the conditions of the infrastructure in a non-volatile yet declarative
manner. Even though states are desirable for CEP, not only for EM

applications, they have barely received the attention they deserve in
many Event Query Languages (EQLs).

A second particular contribution of this work is the elaboration and
integration of complex actions into Dura to realize composite reactions
in response to detected situations. Their seamless combination with
queries for events and states facilitates reactions that are dynamically

v

adapting to the evolving situation in contrast to statically defined pro-
cedures from written manuals that are often still used for EM today.

A third major contribution of this work is the elaboration of a prov-
ably correct and complete static temporal analysis for complex actions
that is capable of identifying errors in the specification of complex
actions and of ensuring desirable properties of actions prior to their
execution. To this end, the analysis is built on a formal fixpoint se-
mantics for actions that is suitable for coping with a priori unknown
runtime effects stemming from the execution of actions by means of
external actuators.

The theoretical aspects of this thesis are complemented by a pro-
totypical implementation of Dura and the modeling of EM related use
cases that have been elaborated in the European research project Emer-
gency Management in Large Infrastructures (EMILI) in collaboration with
EM experts and industry partners.

Z U S A M M E N FA S S U N G

Durch die Weiterentwicklung von Complex Event Processing (CEP) zu
einer ausgereiften und anerkannten Technologie konnten zahlreiche
Anwendungen, wie beispielsweise in den Bereichen Online Marke-
ting, Logistik, Finanzen und Produktionsprozessen, ermöglicht wer-
den. Derartige Anwendungen profitieren besonders von der zeitna-
hen Erkennung von höherwertigem Wissen, welches durch die konti-
nuierlich Auswertung von vorgegebenen Anfragen gegen einen flüch-
tigen Ereignisstrom hergeleitet wird.

Öffentliche Infrastrukturen, wie U-Bahn Netze und Flughäfen, sind
ähnlichen Anforderungen ausgesetzt, da sie zunehmend mit verschie-
densten Sensoren und Aktuatoren ausgestattet werden, welche eine
Vielzahl von Einzelereignissen melden, die wiederum zeitnah und
kontinuierlich interpretiert werden müssen. Durch die besonderen
physikalischen Eigenschaften dieser Infrastrukturen können jedoch
die für gewöhnlich angewandten Methoden nicht unmittelbar für
ihre Überwachung und Steuerung übernommen werden. Nichtsde-
stotrotz, brauchen diese Infrastrukturen ausgefeiltere und effektivere
technische Lösungen um menschliche Betriebsleiter zu unterstützen,
da sich ihre Komplexität der Grenze nähert, die noch sinnvoll von
Menschen bewältigt werden kann, insbesondere während ungewöhli-
chen Vorfällen wie beispielsweise Notfällen.

Die in dieser Dissertation vorgestellte Arbeit hat das Ziel die Lücke
zu schließen zwischen den Anforderungen von Emergency Mana-
gement (EM) und den Möglichkeiten von derzeitigen CEP Ansätzen
durch die Untersuchung von Methoden zur besseren Unterstützung
von Reaktivität im Kontext von Ereignisanfragesprachen, insbesonde-
re unter Einbezug von externen Aktuatoren.

vi

Ein wesentlicher Beitrag dieser Arbeit ist die Ausarbeitung der de-
klarativen Ereignissanfragesprache Dura. Dura vereint wichtige As-
pekte von EM in einer deklarativen und homogenen Sprache, welche für
gewöhnlich nur unabhängig voneinander für CEP betrachtet werden:
Dura bietet ausdrucksstarke Eventanfragen, welche flexible Zeitfens-
ter und zusätzlich vielseitigen Negationen und Gruppierungen un-
terstützen. Darüberhinaus unterstützt die Sprache mehrere Zeitachsen,
um beispielsweise Informationen von externen Simulationen geeignet
abbilden zu können. Desweiteren verfügt Dura über Stateful Objects,
welche ein Konzept von Zuständen ermöglichen und die Bedingun-
gen der Infrastruktur in einer nichtflüchtigen aber zugleich deklara-
tiven Art abbilden können. Obwohl Zustände im Allgemeinen für
CEP und nicht nur für EM wünschenswert sind, erfahren sie in vielen
Eventanfragesprachen kaum die angemessene Beachtung.

Ein zweiter wichtiger Beitrag dieser Arbeit ist die Ausarbeitung
und Integration von komplexen Aktionen in Dura, welche zusammen-
gesetzte Reaktionen auf erkannte Situationen ermöglichen. Ihre naht-
lose Einbettung in Event- und Zustandsanfragen ermöglicht Reaktio-
nen, welche sich dynamisch an die sich entwickelnde Situation an-
passen im Gegensatz zu statisch vorgegebenen Abläufen wie sie in
Handbüchern zu finden sind und immer noch häufig für EM einge-
setzt werden.

Ein dritter entscheidender Beitrag dieser Arbeit ist die Ausarbei-
tung einer nachweisbar korrekten und vollständigen statischen Ana-
lyse von komplexen Aktionen, welche Fehler in der Spezifizierung
von komplexen Aktionen erkennt und wünschenswerte Eigenschaf-
ten von Reaktionen vor ihrer Ausführung sicherstellt. Dazu basiert
die Analyse auf einer formalen Fixpunktsemantik für Aktionen, die
für die im Voraus nicht bekannten Laufzeiteffekte geeignet ist, wel-
che durch die Ausführung der Aktionen durch externe Aktuatoren
zustandekommen.

Die theoretischen Aspekte der Arbeit werden durch eine prototypi-
sche Implementierung von Dura und der Modellierung von EM bezo-
genen Anwendungsfällen ergänzt, die im Zuge des europäischen For-
schungsprojekt Emergency Management in Large Infrastructures (EMILI)
in Zusammenarbeit mit Industriepartnern und EM Experten ausgear-
beitet wurden.

vii

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

Steffen Hausmann and François Bry. “Towards Complex Actions for
Complex Event Processing.” In: Proceedings of the International Confer-
ence on Distributed Event Based Systems. DEBS’13. ACM, 2013, pp. 135–
146

Steffen Hausmann, Simon Brodt, Marco Bettelini, and François Bry.
“Dynamic Emergency Management.” In: Fachzeitschrift für Information
Management & Consulting (2 2013): Urban Solutions, pp. 36–47

Simon Brodt, Steffen Hausmann, and François Bry. Refinement of the
Implementation of Event Processing and ECA Rules for SITE. Technical
Report. EMILI Deliverable D4.7. University of Munich, 2012. 76 pp.

Steffen Hausmann, Simon Brodt, and François Bry. Modularization
Mechanisms for Dura. Technical Report. EMILI Deliverable D4.6. Uni-
versity of Munich, 2012. 39 pp.

Simon Brodt, Steffen Hausmann, and François Bry. Implementation.
Technical Report. EMILI Deliverable D4.5. University of Munich, 2011.
57 pp.

Steffen Hausmann. “A Uniform Approach for More Reactivity in
Complex Event Processing.” Ph.D. Workshop Paper at International
Conference on Distributed Event Based Systems. DEBS’11. 2011. 6 pp.

Steffen Hausmann, Simon Brodt, and François Bry. Dura: Concepts
and Examples. Technical Report. EMILI Deliverable D4.3. University
of Munich, 2011. 58 pp.

Michael Eckert, François Bry, Simon Brodt, Olga Poppe, and Steffen
Hausmann. “Two Semantics for CEP, no Double Talk: Complex Event
Relational Algebra and its Application to XChangeEQ.” In: Reasoning
in Event-based Distributed Systems. Vol. 347. Studies in Computational
Intelligence. Springer, 2011, pp. 71–98

Michael Eckert, François Bry, Simon Brodt, Olga Poppe, and Steffen
Hausmann. “A CEP Babelfish: Languages for Complex Event Process-
ing and Querying Surveyed.” In: Reasoning in Event-based Distributed
Systems. Vol. 347. Studies in Computational Intelligence. Springer,
2011, pp. 47–70

ix

Simon Brodt, Steffen Hausmann, and François Bry. Reactive Rules
for Emergency Management. Technical Report. EMILI Deliverable D4.2.
University of Munich, 2010. 51 pp.

Simon Brodt, Steffen Hausmann, François Bry, Olga Poppe, and Mi-
chael Eckert. A Survey on IT-Techniques for a Dynamic Emergency Man-
agement in Large Infrastructures. Technical Report. EMILI Deliverable
D4.1. University of Munich, 2010. 48 pp.

x

A C K N O W L E D G M E N T S

First and foremost, I would like to thank my supervisor François Bry.
He was always open to intense discussions and gladly shared his
knowledge, experience, and advice. Without his encouragement and
support, in particular in difficult times, this thesis would not have
been possible. I also thank Adrian Paschke for being the external
reviewer of this thesis.

Beyond that, I am particular indebted to Norbert Eisinger, who sub-
stantially helped me to express and refine my thoughts in countless
conversations, regardless of how busy his own schedule was. With
his thorough and rigorous character he also helped to improve the de-
scriptions in this thesis. Moreover, I would like to thank Simon Brodt
for the comments and suggestions related to my work in addition to
the patient explanations of his ideas and of the implementation of the
Event-Mill engine.

I enjoyed the friendly atmosphere in the programming and mod-
eling research unit at the University of Munich. The discussions and
exchange with my fellow researchers was often encouraging and pro-
vided new insights. Moreover, I am thankful for the assistance of our
technical staff who did their best to resolve the, sometimes hair-rising,
issues with our administration. I also appreciate working with the
members of the EMILI project that acknowledged and supported our
research. The collaboration and discussion in the project provided
inspiration and guidance which is clearly reflected in this thesis. Fur-
thermore, the students Maximilian Scherr and Michael Mayer deserve
special thanks for working on topics related to my research.

I am furthermore particular grateful for the numerous volunteers
that took care of our daughter, giving me the required freedom to
work on this thesis. Last but not least, I would like to thank my fam-
ily, especially my wife. Getting through the demanding last couple
of months would not have been feasible without their continuous en-
couragement and loving support.

xi

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Contributions 3

1.3 Organization 5

i introduction to emergency management 7

2 emergency management in critical infrastructures 9

2.1 A Vision for Modern Emergency Management 9

2.2 Incidents in Critical Infrastructures 12

2.3 Three Challenging Use Cases 13

3 foundations of dynamic emergency management 15

3.1 Supervisory Control and Data Acquisition 15

3.1.1 Basic Components of SCADA Systems 16

3.1.2 Limitations wrt Emergency Management 17

3.2 Complex Event Processing 18

3.2.1 Composition Operator Based Languages 20

3.2.2 Data Stream Query Languages 22

3.2.3 Production Rules 24

3.2.4 Timed Automata 26

3.2.5 Logic Languages 28

3.2.6 Summary 31

3.3 Means for Reactivity in Event Processing 32

3.3.1 Remote Procedure Calls 32

3.3.2 Integration with Imperative Languages 34

3.3.3 Event-Condition-Action Rules 35

ii the language dura 37

4 foundations and language design 39

4.1 Declarative Rule-based Reasoning over Streams 39

4.1.1 Reasoning with Rules 40

4.1.2 Data Model 41

4.1.3 Pattern-based Queries 42

4.2 Full Acknowledgment of Orthogonal Concepts 43

4.3 Deep Integration in a Uniform Language 44

4.4 Time as a First Class Citizen 45

4.5 Explicit Specification over Implicit Assumptions 45

4.6 Clear Separation of Concerns 46

4.6.1 Dimensions of Complex Events 46

4.6.2 Dimensions of Stateful Objects 47

4.6.3 Dimensions of Complex Actions 48

5 syntax and informal semantics 51

5.1 Complex Events 51

5.1.1 Representation of Events 52

xiii

5.1.2 Atomic Event Queries 54

5.1.3 Composite Event Queries 55

5.1.4 Temporal and other Conditions 58

5.1.5 Data Definition 62

5.1.6 Grouping and Aggregation 63

5.1.7 Existential Queries 65

5.2 Deductive and Reactive Rules 66

5.2.1 Range Restriction of Queries and Rules 67

5.2.2 Deductive Rules 69

5.2.3 Reactive Rules 73

5.2.4 Recursive Rules 74

5.2.5 Progressing Attributes 76

5.3 Stateful Objects 80

5.3.1 Representation of Stateful Objects 81

5.3.2 Atomic Stateful Object Queries 83

5.3.3 Integration with Event Queries 83

5.3.4 Modifying Stateful Objects 87

5.3.5 Creating and Terminating Values 88

5.3.6 Querying State Changes 89

5.3.7 State Based Processing 90

5.3.8 Resolving Simultaneous Updates 91

5.3.9 A Generalization of ECA Rules 93

5.3.10 Processing Static Data 94

5.4 Complex Actions 96

5.4.1 Properties of Physical Actions 96

5.4.2 Representation of Actions 98

5.4.3 Action Invocation 101

5.4.4 Action Composition 101

5.4.5 Temporal Dependencies 102

5.4.6 Execution Status 105

5.4.7 Temporal Assertions 106

5.4.8 Semantic Analysis for Actions 107

5.4.9 Complex Action Rules 108

5.4.10 Conditional Actions 110

5.5 Relations to XChangeEQ
113

6 emergency management use case 117

6.1 Preliminaries 117

6.1.1 Station Layout and Characteristics 117

6.1.2 Representation in Dura 118

6.2 Situation Assessment 120

6.2.1 Enrichment of Basic Events 121

6.2.2 Incident Categorization 122

6.2.3 Alarm Verification 122

6.2.4 Fire Size Estimation 125

6.3 Operation Mode Governance 127

6.3.1 Updating the Operation Mode 127

xiv

6.3.2 Detecting Operation Mode Crossovers 128

6.3.3 Identifying and Adapting the Operation Mode 128

6.3.4 Propagating Operation Modes 129

6.4 Immediate Reactions 130

6.4.1 Elevator Deactivation 131

6.4.2 Announcing Safe Evacuation Routes 132

iii formal semantics and semantic analysis 135

7 semantics of complex actions 137

7.1 Informal Introduction 137

7.1.1 Properties Specific to the Execution of Actions 137

7.1.2 Satisfying Temporal Dependencies 138

7.1.3 Basic Ideas and Approach 140

7.2 Formalization of Complex Actions 140

7.2.1 Formal Representation of Complex Actions 141

7.2.2 Formalization of Domain Knowledge 142

7.2.3 Formalization of Conditional Actions 143

7.3 Fixpoint Theory 144

7.3.1 Preliminaries 144

7.3.2 Fixpoint Iteration 146

7.3.3 Runtime Traces 150

7.3.4 Recapitulation of Notions 151

8 static analysis of complex actions 153

8.1 Requirements and Desirable Properties 153

8.1.1 Undesired Behavior of Complex Actions 153

8.1.2 Desirable Properties of Complex Actions 155

8.1.3 Requirements for the Semantic Analysis 156

8.2 Static Temporal Analysis 157

8.2.1 Preliminaries 158

8.2.2 Basic Ideas and Informal Introduction 159

8.2.3 Analogies to Skolemization 164

8.2.4 Desirable Properties Reconsidered 165

8.3 Analysis Algorithm 165

8.3.1 Pseudocode 166

8.3.2 Correctness and Completeness 167

8.3.3 Compliance Under Incomplete Knowledge 168

8.3.4 Variation for Non-definite Runtime Traces 168

8.3.5 Revision of Prior Work 169

8.4 Temporal Constraint Satisfaction Problems 169

8.4.1 Simple and Disjunctive Temporal Problems 169

8.4.2 Temporal Problems with Uncertainty 170

8.4.3 Temporal Problems with Predicates 170

9 formal proofs 173

9.1 Preliminaries 173

9.2 Properties of Runtime Traces 175

9.3 Properties of Fair Actions 179

xv

9.4 Properties of Compliant Actions 179

iv operational semantics and implementation 185

10 operational semantics of durac 187

10.1 Preliminaries and Informal Introduction 187

10.1.1 Event Streams 187

10.1.2 Representation of Dura Events 187

10.1.3 A Generalization of Relational Algebra 188

10.1.4 The Sub-language DuraC 190

10.1.5 Basic Ideas of the Translation 190

10.2 A Gentle Introduction to TSA 194

10.2.1 Basic Algebra Operators 194

10.2.2 Composite Algebra Operators 196

10.3 Normalization of Queries 197

10.3.1 Eliminating Literals in Query Terms 198

10.3.2 Eliminating Temporal Relations and Functions 198

10.3.3 Eliminating Identifiers in Groupings 200

10.3.4 Adding Value Definitions in Disjunctions 200

10.3.5 Eliminating Variable Definitions 201

10.3.6 Establishing Range Restriction 202

10.3.7 Summary 204

10.4 Translating DuraC to TSA 205

10.4.1 Event Schemata 205

10.4.2 Atomic Queries 206

10.4.3 Terms and Formulas 206

10.4.4 Query Supplements 207

10.4.5 Disjunctive Queries 208

10.4.6 Conjunctive Queries 208

10.4.7 Deductive Rules 209

10.5 Walk Through of an Entire Translation 209

11 translating dura to durac 213

11.1 Actions in DuraC 213

11.1.1 Informal Introduction 213

11.1.2 Representation of Actions 217

11.1.3 Eliminating Anonymous Complex Actions 217

11.1.4 Translating Complex Action Rules 218

11.1.5 Translating Status Queries 220

11.1.6 Illustrative Examples 220

11.1.7 Translating Action Identifier 220

11.1.8 Translating Reactive Rules 222

11.2 Stateful Objects in DuraC 224

11.2.1 Informal Introduction 224

11.2.2 Representing Values of Stateful Objects 229

11.2.3 Translating Stateful Object Queries 230

11.2.4 Translating Reactive Rules 230

11.2.5 Deriving Succeeded Events 235

xvi

11.2.6 Deriving Failed Events 239

11.2.7 Deriving Updated Events 242

11.2.8 Deriving Terminated Events 245

11.2.9 Deriving Created and Initiated Events 245

11.2.10 Concluding Remarks 245

12 implementation prototype 249

12.1 A Pragmatic Module Mechanism 249

12.1.1 Stream Definitions 249

12.1.2 Stream Modifier 250

12.1.3 Modules 252

12.2 The Dura Compiler 252

12.2.1 Source Code Overview 252

12.2.2 Compilation Phases 253

12.2.3 Manual Compilation 255

12.3 Evaluation of Dura Programs 255

12.3.1 Event-Mill Setup 255

12.3.2 Event-Mill Command Line Interface 256

12.3.3 Executing Sample Sessions 259

12.4 The Dura Editor 259

12.5 Current Limitations 261

v conclusion and outlook 263

13 future work and perspectives 265

13.1 Extensions for Event Queries 265

13.2 Extensions for Stateful Objects 267

13.3 Extensions for Complex Actions 270

13.4 Exploiting Temporal Analysis on Events 271

13.5 Introducing a Lightweight Type System 273

13.6 Generic and Reasonable Event Selection 273

13.7 Declarative Semantics for Full Dura 274

13.8 Complexity Classes for Event Processing 274

14 summary and conclusion 275

vi appendix 277

a formal grammar 279

a.1 Xtext Grammar Formalism 279

a.2 Simplified Dura Grammar 279

b translations 287

b.1 Complete Translation of a Complex Action 287

b.2 Complete Translation of a Stateful Object 288

b.3 Translation of Rules Querying a Stateful Object 295

bibliography 299

xvii

A C R O N Y M S

API Application Programming Interface.

AST Abstract Syntax Tree.

CEP Complex Event Processing.

CI Critical Infrastructure.

CQL Continuous Query Language.

CSP Constraint Satisfaction Problem.

CTP Conditional Temporal Problem.

DTP Disjunctive Temporal Problem.

EBNF Extended Backus-Naur Form.

ECA Event-Condition-Action.

EM Emergency Management.

EMILI Emergency Management in Large Infrastructures.

EPS Event Processing System.

EPTS Event Processing Technical Society.

EQL Event Query Language.

ESB Event Service Bus.

FCML Facility Control Markup Language.

HMI Human Machine Interface.

IED Intelligent Electronic Device.

MTU Master Terminal Unit.

PLC Programmable Logic Controller.

RTU Remote Terminal Unit.

SCADA Supervisory Control and Data Acquisition.

SQL Structured Query Language.

xviii

STP Simple Temporal Problem.

STPU Simple Temporal Problem under Uncertainty.

TSA Temporal Stream Algebra.

UML Unified Modeling Language.

XML Extensible Markup Language.

xix

1
I N T R O D U C T I O N

1.1 motivation

Public infrastructures form an essential basis of modern communities
living in large towns or cities. In particular Critical Infrastructures
(CIs), devoted to areas such as water supply, energy generation and
distribution, transportation and shipping, public health, and telecom-
munication, are indispensable to facilitate and sustain communal life
in densely populated urban areas. However, public infrastructures
and especially CIs are facing a steadily increasing utilization, which
drives them towards their capacity limit: Public transportation sys-
tems are chronically overloaded, airports are having difficulties to
cope with ever-increasing passenger and cargo volume, and power
grids are struggling with increased loads, increasing complexity of
the grid, and distributed energy generation by less predictable green
energy sources.

In consequence, CIs are continuously being adjusted in order to im-
prove their efficiency and reliability and at the same time increase
their safety and security by upgrading them with technical equip-
ment that facilitates a better supervision and regulation of the pro-
cesses in the infrastructure. Examples thereof include the deployment
of various sensors, smoke extraction and fire detection systems, mod-
ern public address systems, remotely configurable access control sys-
tems, and video surveillance systems. In addition, such equipment
is being integrated with existing Supervisory Control and Data Ac-
quisition (SCADA) systems that provide means for the operation and
(manual) regulation of distributed infrastructures from a centralized
control room.

In particular Emergency Management (EM) is affected by the chang-
ing conditions in CIs. Although the additional technology introduces
powerful means that improve the operation of CIs, the lack of intel-
ligent control systems prevents an effective utilization of the given
means to substantially increase their safety. The added devices even
cause further issues as they increase the complexity of and interde-
pendency between systems that commonly operate in isolation ac-
cording to rigid procedures, making CIs more sensitive for failures.
Tragic incidents like the Daegu metro fire or the Düsseldorf airport
fire have shown that the assessment of anomalies can massively fail
and how bad decisions and wrongly chosen countermeasures can
quickly evolve critical incidents into severe disasters affecting and
threatening large numbers of individuals.

1

Accordingly, a new generation of control systems designed to sup-
port operators to identify, assess, and counteract emergencies and crit-
ical conditions is highly desirable and indispensable for modern CIs.
Modern EM requires means to support quick and reliable situation as-
sessment based on a holistic and integrated interpretation of relevant
information across the boundaries of single subsystems. Moreover,
modern EM must be based on the integration of simulations to facil-
itate the evaluation and validation of intended strategies and to esti-
mate the evolving conditions within the next minutes. Furthermore,
automatically executed reactions need to become more dynamic and
must adapt to the global conditions instead of being executed by iso-
lated subsystems. In addition, modern EM requires means for the for-
malization and autonomous execution of emergency procedures that
are currently mostly available in written form from emergency man-
uals.

Apparently, EM can substantially benefit from technologies capable
of filtering, enriching, and correlating large amounts of incoming in-
formation and able to execute (semi-)automatic high-level reactions
in response to detected situations and incidents. In particular Com-
plex Event Processing (CEP) appears to be a convenient framework
for improving EM as it is today: Event queries derive higher-level
knowledge in form of complex events by correlating the incoming
information in a continuous and timely fashion. In addition, reactive
rules triggered by complex events facilitate the timely execution of
(semi-)automatic reactions that are tailored to the current conditions.
In this way, CEP can facilitate elaborate situation assessments for EM as
complex events provide a reasonable and concise high-level abstrac-
tion suitable and desirable for the interpretation by human operators.
Moreover, time consuming routine tasks do no longer call for the at-
tention of operators which gives them the required time to focus on
strategic decisions that cannot be made by computers.

However, although CEP seems well suited to improve EM, the char-
acteristics of CIs, in particular their physical character, and the require-
ments of EM introduce new challenges so that commonly applied CEP

approaches cannot be easily transferred to effectively and adequately
monitor and control CIs as it is required for modern EM. One ma-
jor difference to applications that are commonly consulted for CEP is
the physical nature of CIs and the interactions therewith: The partic-
ularities of physical actions executed by means of external actuators
include the formalization of high-level goals for actions, indirect feed-
back on their contingent effect, little control over their execution by
the Event Processing System (EPS), and in general an irreversible ef-
fect. EM is moreover inherently based on a notion of local and global
states that provide the context for the interpretation of incidents and
for the determination of appropriate reactions. However, such states
cannot be conveniently modeled by means of complex events or facts

2

in a data or knowledge base. In addition, effective and reliable situa-
tion assessment by means of complex event queries requires expres-
sive means for the formulation of queries including a generic notion
of time, eg, to conveniently model the different times of events that
are generated by means of external simulations, and versatile means
for the specification of rich event patterns including powerful nega-
tion and aggregation capabilities.

1.2 contributions

This thesis is devoted to closing the gap between the requirements
of modern EM and the capabilities of current Event Query Languages
(EQLs) by investigating means towards more reactive event processing.
Its central research question is:

How can notions of states and of complex actions be properly
integrated into a coherent and uniform EQL that facilitates the
implementation of applications relying on composite reactions
as they are for instance required for EM purposes?

Note, however, that although the work is motivated by EM, the solu-
tions presented in this thesis naturally generalize to a broader range
of application domains that require interactions of computer systems
with the physical world.

full acknowledgment of orthogonal concepts We pro-
pose a model for the three orthogonal concepts events, stateful ob-
jects, and actions that are required to obtain a versatile and sufficient
degree of reactivity. We furthermore argue that a full language level
coverage of all three facets of reactivity in event processing is imper-
ative to obtain an expressive, convenient, and easy to use high-level
language that is adequate to support reactivity in event processing.

In contrast, most existing EQLs are tailored to the detection of com-
plex events and often do not integrate notions capable of modeling
stateful objects or actions. However, approaches that are lacking one
of these concepts are inevitably losing expressiveness and ease of
use: If at all expressible, an equivalent behavior depends on misus-
ing available language constructs, which is error prone, inaccessible
to non-experts, and prevents systematic analysis of programs at com-
pile time.

seamless integration in a uniform language A major
contribution is the elaboration of the high-level EQL Dura that has
been designed to interleave events, stateful objects, and actions in a
uniform and seamless language by providing high-level means for an
integrated language level support of the three concepts.

3

The design of Dura provides a unique and deep integration of all
three facets of reactivity in event processing, facilitating a coherent as-
sociation of concepts that are usually considered in isolation, if at all,
for CEP. Moreover, Dura is based on deductive rules to derive com-
plex events and integrates expressive reactive rules that generalize
conventional Event-Condition-Action (ECA) rules. At the same time,
the design of Dura strives for a clear and unambiguous semantics
that is free of implicit assumptions and is based on a minimum of
language constructs while maintaining a high user friendliness and
ease of use.

clear separation of dimensions As pointed out by Bry and
Eckert [BE08b], a clear separation of query dimensions is highly de-
sirable and even mandatory to obtain a high expressiveness and ease
of use for EQLs. We build our work on this principle and further ex-
tend and adapt the four proposed dimensions of event queries to the
concepts that are not covered by XChangeEQ [BE07; Eck08].

We thoroughly revise the four dimensions of complex events and
complement them with further dimensions that divide aspects that
have not been clearly separated yet. Moreover, in the spirit of the
dimensions of complex events we elaborate dimensions of complex
actions that identify aspects that need to be considered for the ex-
ecution of composite and physical actions and which must not be
combined in single monolithic operators of the language.

model for physical and complex actions Physical actions
are executed by external actuators interacting with the physical world
and thus have particular properties that are in strong contrast to the
properties of (internal) actions that are usually considered in CEP: ac-
tions require versatile means for the formalization of their goals, there
is only indirect feedback about their contingent effect, the EPS has
little control over their execution, and their effect is in general not
reversible.

We propose a model for actions that naturally accommodates the
particularities of actions as they are desirable to formalize composite
workflows in physical environments. Moreover, we elaborate a notion
of complex actions that fully covers the identified dimensions of com-
plex actions, in particular temporal aspects as well as a generic notion
for the status of actions, and promotes their clear separation.

static analysis for actions The clear separation of dimen-
sions of complex actions is desirable to obtain a high expressiveness
and ease of use. However, the liberties that arise from the expressive-
ness facilitate the specification of incorrect or inconsistent actions, a
circumstance that is avoided in other approaches by the syntactic lim-
itations that result from an insufficient separation of dimensions.

4

To avoid the execution of improper actions while maintaining the
expressiveness of complex actions, a provably sound and complete
static analysis is proposed that verifies desirable properties of com-
plex actions at compile time. To this end, we elaborate a fixpoint
semantics for complex actions that accounts for the indefinite inher-
ent properties of physical actions. Moreover, to sufficiently capture
the sparsely available and highly heterogeneous amount of domain
knowledge available on physical actions, the static analysis is de-
signed to scale with available knowledge on actions instead of re-
quiring a complete and precise formalization of their properties and
effects.

language core and operational semantics We elaborate
a rather minimal language core of Dura that is sufficient to express
all high-level constructs of the entire language. This is not only in-
teresting for theoretical aspects as it provides deep insights into rel-
evant components of the language. It also facilitates the transfer of
high-level language constructs of Dura, including stateful objects and
complex actions, to languages that have similar properties and capa-
bilities as the language core of Dura.

Moreover, expressing Dura by means of a minimized language core
simplifies the elaboration of a reliable and sound operational seman-
tics as it suffices to elaborate an operational semantics for the lan-
guage core. This is effectively realized by translation to the Temporal
Stream Algebra (TSA) [BB12a], a variant of relational algebra adapted
to the particularities of streams.

implementation prototype More technically but still worth
mentioning, the theoretical foundations in this thesis are accompa-
nied with a prototypical implementation of a runtime environment
for Dura that is based on the Event-Mill runtime system capable of
evaluating TSA expressions.

The prototype provides a proof of concept implementation that em-
phasizes and demonstrates the practicality of the language design
and the underlying theoretical considerations.

1.3 organization

The rest of this thesis is organized as follows.
We briefly introduce the visions of modern EM in Chapter 2 as

they have been identified by the EMILI project and review information
technologies suitable to support the elaborated visions in Chapter 3.

Afterwards, we motivate and describe the language design of Dura
in Chapter 4 followed by an informal introduction to the language
itself in Chapter 5. The understanding of the language and its appli-

5

cation is subsequently intensified by means of an EM related use case
in Chapter 6.

Following this, we address the possibilities of inconsistent specifi-
cations that may arise due to the expressiveness of Dura. To this end,
a semantics of complex actions is elaborated in Chapter 7 that forms
the basis of the static analysis of actions in Chapter 8. The correct-
ness and completeness of the applied analysis is formally verified in
Chapter 9.

Eventually, we provide an operational semantics for a particular
language core of Dura in Chapter 10 and subsequently extend the
operational semantics to Dura in Chapter 11 by elaborating transfor-
mations that express Dura programs with the means available in the
language core. In addition, we briefly address the prototypical imple-
mentation of Dura and illustrate its usage in Chapter 12.

Finally, we discuss future work and research perspectives in Chap-
ter 13 and close with a conclusion in Chapter 14 that summarizes our
findings.

6

Part I

I N T R O D U C T I O N T O E M E R G E N C Y
M A N A G E M E N T

2
E M E R G E N C Y M A N A G E M E N T I N C R I T I C A L
I N F R A S T R U C T U R E S

Emergency Management (EM) is devoted to the coordination and in-
tegration of activities necessary to build, sustain, and improve the ca-
pability to mitigate against, prepare for, respond to, and recover from
threatened or actual natural disasters, acts of terrorism, or other man-
made disasters [IAE07]. Accordingly, EM aims at the prevention and
control of emergencies at different phases which can be roughly clas-
sified into mitigation, preparedness, response, and recovery [SBR11a]:
mitigation to minimize the effects of potential emergencies by means
of appropriate technical and structural adaptations made to infras-
tructures; preparedness by training operators and personnel in ad-
dition to the development of elaborate emergency plans; response
in form of immediate reactions to incidents; and the recovery from
emergencies and transition back into normal operation.

2.1 a vision for modern emergency management

The European research project Emergency Management in Large Infras-
tructures (EMILI) [EMI] strived to improve the preparedness and re-
sponse phase of EM in Critical Infrastructures (CIs) by leveraging and
extending state of the art technology currently not adequately consid-
ered or not fully exploited for EM. Thereby the efforts were focused
on the elaboration of an advanced simulation and training environ-
ment intended for thorough and realistic training of staff and on the
creation of a new generation of control systems that improves the
assistance of operators in critical and emergency situations.

The vision of the EMILI project includes the elaboration of fast com-
putable simulations, the creation of an advanced training environ-
ment providing versatile and tailored user interfaces, and using Com-
plex Event Processing (CEP) technologies to improve EM as it is ap-
plied today.

basic emergency management principles Seifert, Bettelini,
and Rigert [SBR11b] thoroughly describe how to effectively approach
and counteract fire incidents in CIs which serves as the basis for the
EMILI use cases.

Initially, potential anomalies need to be reliably identified based
on the incoming information and false alarms need to be effectively
detected and eliminated. To this end, uncertain alarms indicating po-
tential anomalies, such as suspiciously high temperature readings,

9

may need to be manually verified. Then, in a first response, rather
generic reactions are executed that prepare the affected area for the
emerging incident, for instance by increasing the fresh air supply on
certain platforms, but do not require detailed information about the
incident or substantially interfere with the operation of the infrastruc-
ture. Thereafter, the relevant characteristics of the incident need to be
assessed, eg, the exact location and size of the fire, to provide a sound
basis for the decision of subsequent steps. Moreover, the operation
mode of the station and affected areas needs to be adapted appropri-
ately. When the specific characteristics on the location and the size
of the fire are available, simulations are carried out and eventually
specific actions are carried out, eg, to implement a certain ventilation
or smoke extraction strategy, that are tailored to the detected incident
and its characteristics.

In the course of the incident all these steps are continuously re-
peated to integrate newly obtained information and to adapt to the
potentially changing conditions in the infrastructure. However, some
of the reactions, for instance the adaptation of the ventilation regime,
can hardly be reversed or adapted once a certain strategy has been
settled upon.

physical models amenable to fast computations Simu-
lations based on physical models are commonly used in the design
and design verification phase of, eg, railroad and train tunnels, allow-
ing for better performance, enhanced safety, and lower operational
costs [Bet01; Bet08]. To this end, simulation tools are used to de-
termine an optimal deployment and positioning of technical equip-
ment, such as, ventilators, fire dampers, and smoke extraction sys-
tems. Moreover, they facilitate the elaboration, comparison, and veri-
fication of different evacuation strategies.

Three dimensional Computational Fluid Dynamics [Wen09; ANS;
McG+13] is applied for the simulation of smoke development and
propagation. It is based on numerical models for liquids and gases
and provide very accurate results and insights at the cost of substan-
tial preprocessing and postprocessing efforts for building three di-
mensional models of the infrastructures and of computational costs
required to carry out the simulation [Hau+13].

In addition, microscopic egress models [IST; Tra] are applied to
simulate different evacuation strategies by individually describing
the movements of single persons taking their particular properties
and behavior, eg, body size, walking speed, and reaction times, into
account [KSM05].

Although successfully applied for the elaboration of safety con-
cepts for infrastructures, the approaches described above are carried
out in the design and verification phase. The underlying computa-
tions are too time consuming to be carried out in an online fashion

10

when the actual boundary conditions of an emerging emergency are
available. In contrast, Seifert, Bettelini, and Rigert [SBR11c] envision
for EMILI the integration of fast computable simulations into the situa-
tion assessment and decision support carried out while the emergency
takes place based on actually measured boundary conditions. To this
end, they elaborate simplified graph-based models for smoke propa-
gation and evacuation simulation that are optimized for speed rather
than generality and accuracy. To provide sufficiently meaningful re-
sults the models are subsequently calibrated for individual infrastruc-
tures based on conventional simulation models and tools [Hau+13;
BRS13].

simulation and training environment Training is an inte-
gral part of EM in EMILI and of EM in general. The lack of sufficient
training has actually been identified as one of several causes leading
to undesirable and evitable escalation of incidents caused by inappro-
priate reactions [SB10b].

The simulation and training environment envisioned for EMILI facil-
itates the training and evaluation of operators by modeling infrastruc-
tures and simulating related EM scenarios. To this end, the simulation
and training environment integrates simulators capable of emulating
the low level events emitted by the corresponding Supervisory Con-
trol and Data Acquisition (SCADA) systems as well as an appropri-
ate Event Processing System (EPS) to emulate a realistic behavior of
the training environment. By those means, it is possible to elaborate
realistic training scenarios that evolve similar to actual emergencies
and take the actions applied by trainees into account. Moreover, the
scenarios can be dynamically adapted by supervisors to introduce
further challenges.

advanced user interface Moreover, the simulation and train-
ing environment integrates an advanced and highly sophisticated
user interface intended to support human decision makers by visual-
izing the status and relevant events and incidents of the infrastructure.
In addition, the interface accepts commands from operators interact-
ing with the devices in the infrastructure.

The user interface is furthermore not only conceived for training
purposes but also to complement or replace the interfaces of currently
used SCADA systems.

complex event processing Situation assessment forms the ba-
sis for the determination and implementation of appropriate and ef-
fective strategies and measures to manage emergency situations and
to prevent casualties and damage to the infrastructure.

To this end, the EMILI project envisions the integration of CEP tech-
nologies into EM to facilitate automatic, quick, and reliable situation

11

assessment by means of complex event queries that realize the combi-
nation and correlation of information provided by individually oper-
ating sub-systems. In addition, expressive reactive rules beyond the
state of the art are intended to specify high-level reactions that are
capable to adapt to the observed conditions in the infrastructure and
are executed by the EPS.

2.2 incidents in critical infrastructures

Tragic incidents in critical infrastructures have shown how inappro-
priate reactions in combination with technical and human failures can
escalate to severe incidents with many fatalities [Fri10]. Interestingly,
Fridolf [Fri10] finds that incidents can seldom be explained by one
single critical event leading to the severe consequences.

The following two incidents have substantially influenced the use
cases that are considered by the EMILI project which serve as an inspi-
ration for the design of the Event Query Language (EQL) Dura. Both
incidents illustrate some of the causes related to human failure that
could have easily been prevented by better training and by means
of proper situation assessment and more adequate and immediate
reactions.

düsseldorf airport fire On 11 April 1996 a fire in a passenger
terminal of the Düsseldorf airport killed 17 people and injured 62

[Vra+10].
The fire was caused by welding works on expansion joints of a road

igniting the insulation in the ceiling of the arrival hall located directly
below the road. Despite reports of sparks falling from the ceiling the
called fire fighters initially struggled to determine the cause and exis-
tence of the fire and suspected an electrical failure instead. Eventually,
the fire spread through the ceiling in an explosive manner developing
a large volume of toxic smoke to the terminal. Seven people died in
elevators that remained functional despite of the fire alarm and tragi-
cally moved and opened into the fire area. Nine people were trapped
and died in a lounge insufficiently informed of the fire and of avail-
able evacuation routes because of absent staff and problems with the
communication system [Vra+10; NFP].

daegu metro fire On 18 February 2003 an arsonist set fire in
a metro train in the Korean city of Daegu killing 197 people and
injuring around 150 people [BSB11].

Right before the metro train entered a station the arsonist ignited
a flammable liquid he carried in two milk packages. The fire spread
quickly due to the lacking flame-retardant of the floor and the seat
cushions. The burning train stopped in the station where many pas-
sengers were able to escape from the train. However, although the

12

control center was aware of smoke in the station, another train, ap-
proaching from the opposite direction, stopped alongside the burn-
ing train. Shortly after its arrival the power supply of both trains was
automatically shut down preventing the intact train from leaving the
station. In addition, the train driver left the intact train while keeping
its doors closed effectively trapping the people in this train leading to
a high number of fatalities when the fire eventually spread over from
the burning train [BSB11; Wik14].

2.3 three challenging use cases

The developments in EMILI are motivated and driven by three use
cases described in [SB10b; SBR11a], which have been elaborated by in-
dustry partners in collaboration with safety experts and are inspired
by actual incidents as the ones described above. The use cases can be
roughly classified into public CIs and technical CIs: Public CIs include
metro stations and airports and involve a great number of persons
that are directly threatened by critical and emergency situations and
therefore the corresponding use cases focus on the detection of emer-
gencies and support of the early self-rescue phase of passengers. In
contrast, technical CIs include power grids and focus on the fast de-
tection of incidents and the automatic determination of their actual
cause giving the chance of accurate and right reactions.

The following descriptions summarize the main scenarios of the
use cases from [SB10b; SBR11a] which envision how intelligent con-
trol systems can support and improve conventional EM. These scenar-
ios have substantially influenced and inspired the design of Dura.

airport The main scenario of the airport use case considers a fire
that affects the terminal of a mid-size airport [SBR11a; Vra+10]:

A fire breaks out in a baggage sorting room located in the basement
of the airport terminal. The detection of the fire by means of the cor-
relation of several fire detector sensor signals causes the automatic
execution of immediate reactions intended to suppress the fire and
prevent its spread. However, despite these efforts the fire eventually
spreads through the ceiling to the ground floor where the passport
control filled with passengers and personnel is located. It is inferred
from the available sensor data that one predetermined evacuation
route leading from the ground floor through the basement is already
blocked by smoke and thus cannot be used for evacuation. Moreover,
the data obtained by the smoke simulation reveals that the second
evacuation route is likely to be blocked by smoke within the next
minute. Therefore, an alternative route needs to be determined and
announced to the persons within the airport. Eventually, a suitable
evacuation route leading through the restricted areas of the airport is
proposed by the system. By unlocking some of the doors of restricted

13

areas the alternative route is established and announced by means of
the public address systems and emergency lighting directing people
to the alternative route.

Variations of this scenario include the manual confirmation of the
fire by sending guards to the respective area and the malfunctioning
of doors that render further evacuation routes unavailable.

metro The main scenario of the metro use case considers a train
on fire stopping in a metro station consisting of two platforms and a
mezzanine level [SBR11a; SBR11b]:

Fire breaks out in the rear part of a metro train approaching a
station. When the fire is first detected and confirmed, the evacua-
tion of the platform the train is heading to is prepared by immedi-
ate reactions and the operation mode of the station and platform is
updated to exceptional and emergency, respectively. Meanwhile the
main characteristics of the fire are determined, that is, its exact loca-
tion, size, and smoke generation, by correlating the information from
adjacent sensors. Based on the gathered information, simulations on
the likely smoke propagation and passenger evacuation are carried
out to choose an adequate ventilation strategy and to determine safe
evacuation routes which are subsequently announced through the
public displays in the station.

Variations of the scenario include evacuation routes that are un-
available due to maintenance works and additional high passenger
volumes caused by a soccer match.

power grid The power grid use case focuses on the detection of
the exact origin of technical failures and is thus quite different from
the preceding use cases as it does not directly involve the threat of
humans or automatic reactions [SBR11a; Esp10]:

In power grids, technical failure, eg, short circuits, easily spread
and affect large parts of the grid and can substantially damage ex-
pensive and hard to replace technical equipment. So in case of anoma-
lies, the equipment is protected by disconnecting it from the network.
However, the protection is easily triggered and also reacts to distur-
bance of remote equipment to be on the safe side. Moreover, the pro-
tection can fail, making it actually necessary that remote protections
isolate the defective area. Therefore, the main challenge of this use
case is to analyze the alarm messages to draw conclusions of the
actual origin of the anomaly so that a small defective area can be
isolated from the grid and the greatest possible portion of the power
grid remains fully functional.

Variations of this scenario include falsely issued alarm messages
and the malfunction of protective devices.

14

3
F O U N D AT I O N S O F D Y N A M I C E M E R G E N C Y
M A N A G E M E N T

Emergency Management (EM) as it is envisioned in the EMILI project
is based on the execution of dynamic reactions based on the detection
on certain situation. To this end, characteristic variables and informa-
tion need to be collected and processed from physical sensors and
actuators located in the infrastructure and eventually communicated
to the central control room for further processing by means of com-
plex event queries.

The following introduction to Supervisory Control and Data Acqui-
sition (SCADA) systems, Complex Event Processing (CEP), and reactiv-
ity in event processing gives an overview of the basic technologies
that provide the foundations for the approach towards more reac-
tivity in event processing as it is subject of this thesis. In particular
Section 3.2 is based on joint work previously presented in [Eck+11b;
Bro+10; BHB10] of which the author of this thesis is coauthor.

3.1 supervisory control and data acquisition

SCADA systems [BW03; SFS12] are industrial control systems specif-
ically designed to monitor and control the processes in large and
distributed industrial and public facilities from a centralized control
center. They are in particular used in public transportation systems,
such as, metro systems and airports, as well as in power distribu-
tion networks as they are considered within the EMILI project [SB10b;
SBR11a]. In simplified terms, a SCADA system automatically controls
the processes in the infrastructure on a local level by means of pre-
defined procedures and provides interfaces for human operators to
monitor and regulate the applied procedures.

From an event processing perspective a SCADA system roughly cor-
responds to a specialized Event Service Bus (ESB) that can be deployed
to monitor and control industrial and public facilities and provides
specialized equipment that is appropriate for the particular prevail-
ing ambient conditions.

From an application level perspective the main purposes of SCADA

systems are the acquisition of data including basic preprocessing and
conversion of raw signals in addition to the exchange of information
and commands between devices in the field and the control center;
the local regulation of processes by means of predefined procedures lo-
cally carried out by appropriate devices connected to the deployed
sensors and actuators; and the facilitation of supervision and control

15

of the infrastructure by humans operators in the control center on
the basis of appropriate visualizations and analytical capabilities as
well as interfaces for the application of manual interventions in the
automatically executed procedures.

3.1.1 Basic Components of SCADA Systems

According to Stouffer, Falco, and Scarfone [SFS12] the basic compo-
nents of a SCADA system typically include:

Remote Terminal Units (RTUs) and Programmable Logic Controllers
(PLCs) that provide physical interfaces to sensors and actuators lo-
cated in the infrastructure. Their purpose is to acquire, convert, and
process the (analog) signals of sensors and to exchange commands
with actuators. In particular PLCs are furthermore intended to locally
monitor and control the processes of the connected equipment accord-
ing to predetermined static procedures. Although RTUs serve similar
purposes, PLCs are in general more versatile and flexible than special-
purpose RTUs [SFS12].

Intelligent Electronic Devices (IEDs) which correspond to particular
actuators with integrated sensors that operate independently and pro-
vide similar processing and communication capabilities as PLCs. IEDs

are in particular directly integrated with the communication infras-
tructure of the SCADA system.

A Master Terminal Units (MTUs) in the control center, also referred
to as SCADA server, which integrates the communication infrastruc-
ture of the SCADA system with user interfaces and a database storing
historical data. It receives and processes the signals provided by the
available RTUs, PLCs and IEDs and in exchange passes (automatically
or manually) issued commands to them.

A communication infrastructure, classified into fieldbus networks and
control networks. Fieldbus networks connect the sensors and actua-
tors in the field with RTUs and PLCs which are in turn connected to the
MTU by means of the control network. To this end, various landlines
and proprietary protocols are available [BW03; GH13] whereas mod-
ern systems increasingly rely on standard Internet technologies and
XML-based protocols, such as, the Facility Control Markup Language
(FCML) [Bry+08].

A Human Machine Interface (HMI) which provides an interface be-
tween human operators in the control center and the technical equip-
ment in the infrastructure. It displays the current condition of the
entire infrastructure in a suited graphical manner and furthermore
facilitates the exploration and investigation of issues related to cer-
tain components or incidents. Moreover, the HMI facilitates operators
to manually enter commands and to intervene into the predefined
procedures executed by means of PLCs and IEDs.

16

3.1.2 Limitations with respect to Emergency Management

SCADA systems are crucial components of any sufficiently large infras-
tructures. Public infrastructures as they are considered in the EMILI

project are experiencing a continuously increasing load, eg, in terms
of passenger volume [SB10a]. To compensate for the higher demands
and to increase their efficiency and safety the infrastructures are con-
tinuously extended and the facilities gradually are upgraded with
(intelligent) technical equipment including various sensors. However,
the additional equipment drastically increases the amount of informa-
tion that needs to be processes, both, by computers and humans. As
a consequence, the capabilities of conventional SCADA systems do no
longer seem to be sufficient and appropriate to adequately monitor
and control modern critical infrastructures, in particular during emer-
gency situations. They are often not meant to process and display the
amount of information in a way that is suitable for the interpretation
by humans.

Seifert and Bettelini [SB10b] analyze conventional SCADA systems
that are currently applied to monitor and control Critical Infrastruc-
ture (CI) with respect to their limitations for EM which include:

Heterogeneous Infrastructure: Devices from different manufacturers
require different communication protocols that are expensive to inte-
grate and to maintain. Moreover, due to the heterogeneity of devices,
the representation of information on measured physical values may
differ in terms of structure and applied measuring units and thus
require additional efforts to gain a homogeneous representation.

Insufficient Integration of Systems: The acquisition of data and regula-
tion of devices is merely carried out locally by means of more or less
isolated PLCs and IEDs whereas insights that could be gained from a
holistic integration and correlation of relevant information from dif-
ferent sub-systems do barely affect the automatic regulation of de-
vices. As a consequence, the algorithms deployed on PLCs and IEDs

regulating the local processed can be considered as mostly static in
the sense that they have only very limited capabilities to automati-
cally adapt to the global conditions of the infrastructure.

Limited Situation Assessment: Due to their limited capabilities in
terms of processing power and the poor integration of systems on
a local level, the capabilities of local components to correlate informa-
tion and adapt to the condition of other sub-systems is very limited.
However, even in the control center where all information flows to-
gether there are often only very basic means to correlate events from
different subsystems and to automatically identify the actual cause
of an incident: Anticipated alarm messages often require manual in-
terpretation by human operators what tends to be time consuming
and prone to failure, in particular when a high number of alarms is

17

anticipated. As a consequence, important messages can easily get lost
in a cluttered log of highly redundant and cascaded alarm messages.

Limited Decision Support: Emergency procedures are only available
in written manuals and are hence difficult to assess by humans, in
particular in emergency situations where quick and at the same time
well-considered reactions are required to prevent harm from passen-
gers, personnel, and the infrastructure itself. Moreover, the implica-
tion and effectiveness of intended steps needs to be assessed based
on the experience of the operator without proper software support,
such as, appropriate simulations capable of estimating the likely de-
velopment of the conditions within the infrastructure in the near fu-
ture and of assessing the implication of anticipated reactions before
they are actually carried out.

3.2 complex event processing

CEP is a technology devoted to the timely derivation of higher-level
knowledge from a high-volume stream of volatile events. Thereby,
CEP differs from conventional database technology in the way infor-
mation is represented and queries are evaluated: In conventional da-
tabases information is stored in persistent relations that are queried
in a sudden ad-hoc manner. In contrast, in CEP systems information
is communicated in form of volatile event messages and queries are
persisted and continuously evaluated facilitating a timely detection
of query answers in form of complex events.

The core of CEP form complex event queries that specify event pat-
terns to filter, enrich, and correlate events of the volatile and high-
volume stream of incoming events. To this end, complex events, cor-
responding to situations that can only be recognized as patterns of
several events emerging in the event stream, are specified by means
of Event Query Languages (EQLs) specifically designed for the conve-
nient and effective specification of complex events.

In [Eck+11a] we have elaborated five language styles by distinguish-
ing different categories of EQLs based on the general concepts that are
applied for the specification of complex events, namely, composition
operator based languages, data stream query languages, production
rules, timed automata, and logic languages. Based on these five lan-
guage styles we have surveyed different EQLs by classifying them into
the identified language styles and by discussing the general ideas for
the specification of each style. It follows a survey and comparison of
EQLs based on joint work presented in [Bro+10; BHB10; Eck+11a] that
is thoroughly revised and further extended.

For a related overview that focuses on the elaboration of a common
model that is applicable for all kinds of EQLs and compares different
languages and systems individually according to properties of the

18

model, such as, their underlying data and time model and supported
operators, refer to [CM12b].

common notions and concepts To provide a common ba-
sis for the comparison of different EQLs, we will briefly introduce
some of the most common concepts related to complex events and
complex event queries which are particular relevant for the following
overview of EQLs. For a more thorough and comprehensive introduc-
tion of various notions related to CEP refer to the event processing
glossary [LS11] assembled by the Event Processing Technical Society
(EPTS).

Each event has a type and carries a payload of application dependent
data. In the following, we restrict the payload of the events to flat at-
tribute value pairs which can be represented as flat tuples. Moreover,
with few exceptions, events are commonly associated with a time in-
terval that degenerates to a time point in case of basic events and
comprises the times of all events that contributed to the detection of
a composite event otherwise.

Variables specified in atomic event queries are commonly used to
bind or extract values from the payload of events. Furthermore, event
identifiers preceding atomic (and sometimes even composite) event
queries are often used to refer to the time of matched event instances.

In addition, EQLs often provide a notion of relative timer events to
define a time window relative to the time of a previously matched
event. They are in particular desirable as they facilitate the accumula-
tion of events over a time window, as it is required for negation and
aggregation.

Finally, the term garbage collection is commonly used to refer to the
automatic discarding of events that are no longer relevant for the
evaluation of queries in a way that remains transparent for the pro-
grammer.

illustrative example The following four example queries are
subsequently used to illustrate and compare the basic properties of
each language style:

Q1: detect a fire when smoke and high temperature occur in the
same area within one minute

Q2: detect a fire when smoke occurs followed by the detection of
high temperature in the same area within one minute

Q3: detect a sensor failure when the latest temperature reading of a
sensor occurred more than 12 seconds ago

Q4: when a temperature reading is detected compute the average
temperature reported by this sensor within the last minute

In the following, these queries are formulated by means of query
languages representative for each respective language style based on

19

occurrence of the three events smoke, temp, and hightemp. Thereby,
the payload of all given events contains an area attribute referring
to the location of the respective sensor. In addition, the payload of
temp events contains a sensor and a value attribute providing a key
uniquely identifying the sensor and the measured temperature, re-
spectively.

3.2.1 Composition Operator Based Languages

Composition operator based languages, or event algebras as they are
sometimes called [PK09], have their origin in active databases [PD99]
where they are specified in the event part of Event-Condition-Action
(ECA) rules to determine when rules are triggered.

In this domain, composite event queries are specified by means of
composition operators that combine several atomic or composite sub-
queries. To this end a myriad of operators is available whereby the
most common ones are the n-ary conjunction and sequence opera-
tors and the ternary negation operator. Conjunctions and sequences
simply specify that certain (complex) events need to occur in any
and a particular order, respectively, often in addition with a dura-
tion that constrains the time interval between the occurrence of the
events. In contrast, negations specify that a certain event must not
occur between two events. Other, less common operators include pe-
riodic and aperiodic operators [Cha+94] or at least n and at most n
operators [AE04]. However, despite the variety of available operators,
the aggregation of events is not supported by means of composition
operators.

Composition operator based languages often provide several event
selection and consumption policies [GD94; ZU99; AE04] which deter-
mine which one out of a set of matching events contribute to a query,
eg, the first or last one, and if events can be matched by multiple rules
or multiple times by the same rule.

illustrative example The language GEM [MS97] is used in Fig-
ure 3.1 to implement the example queries described above. GEM ap-
plies an interval based time semantics for events and runs indepen-
dently from a database system.

In GEM composite queries specifying complex events are build from
the following operators: e1 & e2 matching whenever the events e1 and
e2 occur in any order, e1 ; e2 matching whenever e1 occurs before
e2, e1 | e2 matching whenever e1 or e2 occurs, {e1 ; e2} ! e3 match-
ing whenever e1 is followed by e2 with no interleaving e3, and e + d

matching d time units after e occurs. Moreover, identifiers preced-
ing atomic or composite sub-queries are used in combination with
so-called guards that are specified in a supplemental when part of a
query to determine conditions on the values of attributes and the time

20

Q1: x:(s:smoke & t:hightemp)

when (s.area == t.area) && (@x - |@x) < [1*min]

Q2: (s:smoke ; t:hightemp ; s+[1*min]) when (s.area == t.area)

Q3: { t1:temp ; t1+[12*sec] } ! t2:temp when (t1.sensor == t2.sensor)

Figure 3.1: Running Example in GEM

of matching events. Thereby @ and |@ are used in combination with
an identifier to access the begin and end of an event.

Query Q1 is implemented by means of a conjunction operator (&)
and queries for smoke and hightemp events in combination with a
guard constraining the area and the time window of matching events.
To this end, the duration of the time interval of x, which comprises
the time of matched smoke and hightemp events, is restricted to one
minute by means of the condition (@x - |@x) < [1*min]. Similarly, Q2 is
realized by a sequence operator (;) in combination with a guard, but
in contrast to Q1, the temporal restriction is specified by means of the
relative timer event s+[1*min], which is matching one minute after the
occurrence of the referred smoke event. In case of query Q3 a negation
operator (!) is applied to match temp events that that are not followed
by an appropriate temp event within 12 seconds. As mentioned before,
aggregation is not supported by means of composition operators and
thus Q4 is missing from Figure 3.1.

languages and systems Languages based on composition op-
erators have their roots primarily in active databases [PD99]. This
class of languages includes the COMPOSE language of the Ode ac-
tive database [GJS92b; GJS92a; GJS93], the composite event detection
language of the SAMOS active database [GD93; GD94], and Snoop
[Cha+94]. However, these early event algebras apply a point based
time semantic for events which suffers from severe shortcoming with
respect to the semantics of composite queries as it is pointed out, eg,
by [GA02]: Under point based time semantics the query b ; (a ; c)

counter-intuitively matches event instances a, b, and c occurring in
this particular order, as the time point of the composite event match-
ing (a ; c) coincides with the time point of c. Moreover, these early
approaches merely considered events without any payload.

In contrast, more recent composition operator based languages,
usually apply interval based time semantics for events, which avoids
the aforementioned anomalies. Moreover, they support events carry-
ing a user defined payload and often run independently from a da-
tabase. Those kind of languages include, eg, SnoopIB [AC05; AC06],
CEDR [BC06], ruleCore [SB05], GEM [MS97], Amit [AE04], the SASE

event language [WDR06], and the original event specification lan-
guage of XChange [Pat05; BEP06b].

21

3.2.2 Data Stream Query Languages

Data stream query languages have been developed in the context of
relational stream management systems. The specification of continu-
ous queries resembles the specification of queries in SQL using the
common SELECT, FROM, WHERE, and GROUP BY clauses. In addition those
languages extend conventional SQL queries with temporal constructs
to select relevant portions of streams, eg, all events that occurred
within the last minute or the last n events of a stream with respect to
the current time.

Data stream query languages are very suitable for aggregation of
event data and usually offer a good integration with databases, shar-
ing in particular the common basis of SQL. They are, however, not
focused on detecting complex patterns of events in a stream.

illustrative example The Continuous Query Language (CQL)
[ABW06] is used in Figure 3.2 to implement the example queries. In
CQL streams and (time-varying) relations are clearly distinguished. To
integrate both notions CQL provides three different classes of opera-
tors, namely, relation-to-relation, stream-to-relation, and relation-to-
stream operators, that either apply to relations or to streams.

A CQL query commonly consists of the following three components.
To begin with, streams are converted to relations by means of stream-
to-relation operators, that is, window-based operators selecting rele-
vant portions of the stream. The core of the queries is expressed by
relation-to-relation operators which are derived from the traditional
SQL queries operating on relations. Eventually, the resulting relation
is converted back to a stream by means of a relation-to-stream oper-
ator. Conceptually, this process is done at every point of time which
implies a discrete time axis.

There are three different kinds of stream-to-relation operators that
are used to convert streams to finite relations by selecting the latest
porting of a stream: Time-based sliding windows, such as, [Range 1
Minue] and [Now], to select the events obtained within the last minute
or the current instant, tuple-based windows, such as, [Rows N], to se-
lect the latest N events in the stream, and partitioned windows, such
as, [Partition By A1, ..., Ak Rows N], to partition the stream according
to the attributes Ai and to apply a tuple-based window of size N to
each partition. Note that the content of a relation obtained by means
of a stream-to-relation operator actually depends on the instant at
which the operator is applied.

CQL comes with three relation-to-stream operators, namely, Istream,
Dstream, and Rstream, that are applied to convert time-varying rela-
tions back to streams: Istream(R) and Dstream(R) correspond to the
positive and negative delta of a relation R, that is, the resulting stream
contains events that have been added and removed, respectively, from

22

Q1: SELECT Istream(s.area)

FROM smoke [Range 1 Minute] s, hightemp [Range 1 Minute] t

WHERE s.area = t.area

Q2: SELECT Istream(s.area)

FROM smoke [Range 1 Minute] s, hightemp [Now] t

WHERE s.area = t.area

Q4: SELECT Istream(t1.sensor, avg(t1.value))

FROM temp [Range 1 Minute] t1, temp [Now] t2

WHERE t1.sensor = t2.sensor

GROUP BY t1.sensor

Figure 3.2: Running example in CQL

the relation R with respect to its state in the preceding instant. In ad-
dition, Rstream(R) simply contains each tuple that is contained in the
relation R at any past instant, and thus, if applied to a relation ob-
tained by means of a time window other than Now, may contain many
duplicates.

In Figure 3.2 query Q1 is realized by a join between the streams
smoke and hightemp over the attribute area. To match events that oc-
curred within one minute, only the last minute of each stream is
considered for the conversion to a relation by means of the sliding
window operator [Range 1 Minute]. Q2 is realized similarly, but note
that the operator applied to the hightemp stream is adapted to Now in
order to accomplish that matching hightemp events occur after smoke

events. To implement query Q4 a grouping is applied to determine the
average of the temperature of matching events within the last minute.
Note that temporal windows realized by means of stream-to-relation
operators are always backward directed and that the time of events
is not explicitly contained in the schema of events. As a consequence,
the following CQL query does not formalize the intension of the query
Q3 in an appropriate manner:

SELECT Istream(t1.sensor)

FROM temp [Now] t1

WHERE NOT EXISTS (SELECT *
FROM temp [Range 12 Seconds] t2

WHERE t1.sensor = t2.sensor)

The given query matches if there is a temperature event and 12 sec-
onds before its occurrence no corresponding temperature event oc-
curred, ie, if an intermediate temperature event is missing. However,
if a sensor breaks, it suddenly stops sending signals and thus the
query does not match because until then, at least every 12 seconds a
temperature event is sent by the sensor.

languages and systems A typical example of a data stream
query language is the previously introduced CQL [ABW06] of the

23

STREAM systems. The general ideas behind CQL apply to a number
of open-source and commercial languages and systems including Es-
per [Esp], the CEP and continuous query component of the Oracle Fu-
sion middleware [Orab], Microsoft StreamInsight [Mic; KGR12], and
SAP Sybase Event Stream Processor [SAP; SAP13], formerly known as
Coral8.

In addition, there are further SQL dialects that have been tailored to
CEP, eg, [KS09], [Dem+07] and [KLG07; LGI09], which merely provide
stream-to-stream operators and thus spare the conversion between
relations and streams.

3.2.3 Production Rules

Production rules and production systems have their origin in the do-
main of artificial intelligence where they are used to infer knowledge
by applying a set of rules to a given knowledge base, also referred
to as working memory. Each rule consists of two parts specifying a
condition and action, respectively. Whenever the conditions of a rule
apply for the current state of the working memory, the (update) ac-
tion of the rule is triggered which alters the working memory and
may in turn trigger further rules.

when «condition» then «action»

Production rules are often well integrated with existing programming
languages, such as, Java, and are thus very flexible and highly adapt-
able. For a deeper introduction to production rules in general refer to
[Ber+07].

As production rules are applicable to large knowledge bases and
incremental evaluation, eg, by means of the Rete [For82] algorithm
and its successors TREAT [Mir87] and LEAPS [Bat94], they are also con-
venient to realize CEP in a very flexible way, although they are no
proper EQLs in a narrower sense. To this end, events are represented
by means of facts in the working memory and event queries are rep-
resented by means of rules that specify conditions for these facts and
insert detected complex events into the working memory by means
of appropriate actions. In this way, the programmer has much free-
dom but little guideline as it entails working on a low abstraction
level that is somewhat different from other EQLs because it is primar-
ily state and not event oriented. Moreover, depending on the system,
the user needs to manually implement garbage collection on events
that cannot contribute to queries anymore or needs to actively trigger
the evaluation of rules, issues that are usually automatically taken
care of by Event Processing Systems (EPSs). See however, eg, [WBG08;
WGB08] for work on automatic garbage collection for production sys-
tems.

24

Q1: when

$s: Smoke() over window:time(1m)

HighTemp(area == $s.area) over window:time(1m)

then

insert(new Alarm($s.area));

Q2: when

$s: Smoke()

HighTemp(this after[1m] $s && area == $s.area)

then

insert(new Alarm($s.area));

Q3: when

$t: Temp()

not(Temp(this after[12s] $t && sensor == $s.sensor))

then

insert(new Failure($t.sensor));

Q4: when

$t: Temp()

$avg: Number() from accumulate(

Temp(this during[-1m, 0s] $t &&

sensor == $t.sensor && $val : value),

average($val))

then

insert(new AvgTemp($t.sensor, $avg));

Figure 3.3: Running Example in Drools Fusion

illustrative example Figure 3.3 illustrates how to implement
the example queries by means of Drools Fusion [Drob], a production
system tailored to CEP. In Drools all events are represented as Java
objects. Every event that arrives at the EPS is converted into a Java
object and inserted into the working memory.

As already mentioned, production rules consist of two parts spec-
ifying a condition and an action, respectively. The condition in the
when part of rules combines the specification of event types to be
matched with instances in the working memory with conventional
Java expressions. A rule triggers whenever the specified event types
can be matched with instances in the working memory satisfying the
conditions on their attributes and all specified boolean expressions
evaluate to true.

The actions in the then part are composed from Java expressions.
Thereby, the particular system functions insert, retract, and update

are available to alter the working memory, eg, to insert detected com-
plex events into the working memory. However, the then part can as
well specify method invocations facilitating arbitrary computations.
Accordingly, the specification of reactions is very flexible and can in-
fluence the derivation of events on a very low level. Therefore, pro-
grammers needs to pay close attention as, eg, inadvertent updates

25

and retractions of events can severely impact the desired semantics
of rules.

Query Q1 is implemented by matching Smoke and HighTemp events
in the working memory with coinciding area attributes occurring
within one minute. To this end, the identifier s is used in the query for
HighTemp events to constrain the value of the area attribute. Moreover,
the time window window:time(1m) is applied to both event queries to
match only events that occurred within the last minute. Likewise, Q2
is realized by matching Smoke and HighTemp events, but in contrast to
Q1, the occurrence of HighTemp events is constrained to be at most one
minute before the occurrence of Smoke events by means of the con-
dition this after[1m] $s. Q3 queries the absence of Temp events which
is realized by means of a not operator that matches if the respective
event is not contained in the working memory. Note that thereby the
temporal condition this after[12s] $s causes a deferral of the query
evaluation which is required for the sound evaluation of the nega-
tion. The accumulation of events required to for query Q4 is realized
by means of the operators accumulate and average in addition to the
appropriate (temporal) conditions on the queried events.

languages and systems The first successful production rule
engine is OPS [FM77], in particular in the incarnation OPS5 [For81].
Since then, many others have been developed in the research commu-
nity and industry, including systems like Drools Expert [Droa], Jess
[San], and IBM Operational Decision Manager [IBM], formally known
as ILOG JRules.

Besides their use in business rule management systems not focused
on events, production rules are also an integral part of the CEP prod-
ucts TIBCO Business Events [TIB] and Drools Fusion [Drob], which
offer more CEP-specific features such as integrated support for tem-
poral aspects or automatic garbage collection of events.

3.2.4 Timed Automata

Finite automata are convenient to model the behavior of a stateful
system that reacts to events. In particular their advancement towards
timed automata are applied for the modeling and verification of real-
time systems [AD90] and more recently also for CEP [Pop+13].

Timed automata are based on finite automata, which correspond
to directed graphs whereby nodes determine states and edges de-
termine transitions between states. Thereby, the labels of edges spec-
ify event types to be matched and conditions on the occurrence of
events including temporal conditions formalized by means of vari-
ables modeling clocks. Accordingly, states, in particular accepting
states, in timed automata are reached by traversing a particular se-

26

Q1:

s:smoke(area(A*))

t:hightemp(area(A)),

t.end-s.begin <= 1min

t:hightemp(area(A*)) s:smoke(area(A)),

s.end-t.begin <= 1min

Q2: s:smoke(area(A*))

t:hightemp(area(A)),

t.end-s.begin <= 1min

Q3: t1:temp(sensor(S*))

now-t1.end > 12sec

t2:temp(sensor(S)),

t2.end-t1.end <= 12sec

Figure 3.4: Running Example in HIT

quence of multiple events occurring over time and therefore timed
automata implicitly specify complex events queries.

illustrative example Figure 3.4 illustrates how to implement
the example queries by means of Hierarchical Instantiating Timed
Automaton (HIT) [Pop+13], a substantial extension of timed automata
towards complex event processing.

In HIT states are modeled by means of (potentially nested) timed
automata and application workflows, implicitly describing complex
event queries, are captured by means of different states and event-
driven transitions between them. To this end, finite automation are
extended so as to support edge labels that contain, in addition to
the specification of event types, conditions on the payload of events
formalized by means of variables that are not limited to merely model
clocks.

The implementation of query Q1 requires two different branches
in the automaton. To match smoke followed by hightemp events, the
edges of the upper branch are labeled with s:smoke(area(A*)) and
t:hightemp(area(A)), whereby A* denotes a variable definition that is
subsequently referenced by A. In addition, the temporal conditions
t.end - s.begin <= 1min and s.end - t.begin <= 1min constrain the tem-
poral distance between matching events to one minute. As the order
of smoke and hightemp events is irrelevant for Q1, a second branch is
required that specifies smoke and hightemp events in reversed order.
The implementation of Q2 simply corresponds to the upper branch of
the implementation obtained for Q1, as in Q2 smoke must occur before
hightemp. The negation of Q3 is realized by means of an error state that

27

prevents the automaton from accepting a sequence of events where
consecutive temp events arrive on time. To this end, the label of the
edge leading to the accepting state does not specify an event but
merely contains the condition now - t1.end > 12sec that refers to the
current time by means of the particular variable now and thus matches
when the sufficient amount of time exceeded. Event accumulation, as
it is required for Q4, cannot be expressed by means of HIT automa-
ton but instead needs to be realized by means of an integrated rule
language which is not presented here.

languages and systems Timed Büchi Automata (TBA) [AD90]
are an early attempt to extend automata with temporal aspects to
model real-time systems. Representatives of this language style have
often been developed to achieve a particular task or solve a problem
that is specific to real-time distributed systems. Examples include the
timed abstract state machine language for real-time system engineer-
ing [OL08], a timed automata approach to real time distributed sys-
tem verification [Kra+04], timed-constrained automata for reasoning
about time in concurrent systems [MMT91], and regular real-time
languages [HRS98]. Recently, timed automata have been specifically
tailored towards the requirements of CEP, such as, HIT [Pop+13] intro-
duced above.

Further related languages of this language style include UML activ-
ity diagrams [OMG11b] and the Business Process Model and Nota-
tion (BPMN) [OMG11a].

3.2.5 Logic Languages

Logic languages express event queries in logic-style formulas where-
by events are represented as facts or terms. Complex event queries
are specified by means of deductive rules deriving higher level events
based on the occurrence of events in the stream:

event← query

Deductive rules are incrementally evaluated to fit the volatile na-
ture of event streams, ie, new events are gradually derived according
to the specification in the rule head and added to the event stream.
Hence, deductive rules correspond to materialized views from data-
base systems. However, note that in spite of the resemblance with
production rules, deductive rules do not specify (imperative) actions
that alter some kind of working memory but instead derive events in
a declarative manner.

illustrative example The language XChangeEQ [BE07; Eck08]
adopts ideas from event calculus-like approaches [KS86], but extends
and tailors them to the needs of an expressive high-level event query

28

Q1: DETECT

fire{ area{var A} }

ON

and{

event s: smoke{{ area{var A} }},

event t: hightemp{{ area{var A} }}

} where { {s,t} within 1min }

END

Q2: DETECT

fire{ area{var A} }

ON

and{

event s: smoke{{ area{var A} }},

event t: hightemp{{ area{var A} }}

} where { s before t, {s,t} within 1min }

END

Q3: DETECT

failure{ sensor{var S} }

ON

and{

event t: temp{{ sensor{var S} }},

event i: timer:from-end[event t, 12sec],

while i: not temp{{ sensor{var S} }}

}

END

Q4: DETECT

avgtemp{ sensor{var S}, value{ avg(all var T) } }

ON

and{

event t: temp{{ sensor{var S} }},

event i: timer:from-end-backward[event t, 1min],

while i: collect temp{{ sensor{var S}, value{var T} }}

}

END

Figure 3.5: Running Example in XChangeEQ

language. Moreover, XChangeEQ adopts the pattern based query ap-
proach from [BS02; FBS07] to facilitate queries of events that carry a
payload of semi-structured data.

In XChangeEQ, events are represented as data terms which corre-
spond to XML messages. Atomic event queries are specified by means
of an incomplete query pattern preceded by the keyword event and
an event identifier that refers to the time of matched event instances.
Event queries are composed from the operators and and or in addi-
tion to supplemental where parts containing temporal and other rela-
tionships between events. Negation and accumulation is realized by
means of relative timer events, which specify convex time windows
relative to a queried event, in combination with the operators while,
not, and collect.

29

Complex events are specified by means of deductive rules consist-
ing of two distinct parts, the rule head and the rule body, that share
commonly named variables and are denoted

DETECT «event» ON «query» END

In Figure 3.5, the rule corresponding to query Q1 queries atomic
events by means of the two query patterns smoke{{ area{var A} }} and
hightemp{{ area{var A} }}. Thereby, the doubled curly brackets denote
that the pattern is incompletely specified, that is, the payload of the
two events may contain additional attributes. The queries are further-
more connected by means of a conjunction whereby the recurring
definition of the variable A entails a join condition. In addition, the
temporal condition {s,t} within 1 min in the separate where part con-
strains the time of matching events. Note how in this way of formulat-
ing a query a clear separation of the complementary dimensions of
event queries, namely, data extraction, event composition, temporal
(and other) relationships between events, and event accumulation, is
established. The implementation of Q2 almost exactly coincides with
the one of Q1, only the condition s before t is added to the where part.
The negation required for Q3 is realized by means of while and not

in combination with the relative time event timer:from-end[event t,

12sec], which specifies a time window for the negation. The aggre-
gation of events in Q4 is realized similarly: collect is used instead of
not to collect matching events specified within a time window deter-
mined by means of a relative timer event and avg(all var T) is used in
the query head to determine the average of all collected temperature
values.

languages and systems An early representative of this lan-
guage style is the event calculus [KS86]. While event calculus is not
an event query language per se, it has been used to model event
querying and reasoning tasks in logic programming languages such
as Prolog [CM03] and Prova [Koz+06]. More recently, variants of the
event calculus have been proposed that extend the event calculus to
be better suited for CEP, eg, the interval based event calculus [Pas06;
PKB07] and the event calculus for runtime reasoning (RTEC) [ASP12;
Art+12].

The previously introduced rule based language XChangeEQ [BE07;
Eck08] strives for high-level language constructs tailored to the re-
quirements of CEP and a clear separation of orthogonal dimensions
of complex events. Further examples of this language style include
Reaction RuleML [Pas+12], which combines derivation rules, reac-
tion rules, and other rule types such as integrity constraints into the
general framework of logic programming, the rule language TESLA

[CM10; CM12a] which, although being declarative, provides versatile
event consumption capabilities, and the unnamed language proposed
in [Ani+10; Ani+12b; Ani+12a].

30

3.2.6 Summary

Composition operators allow an intuitive specification of event pat-
terns. Particularly temporal relationships and negation are well-sup-
ported. Event instance selection and consumption are features that
are not very common in other approaches. However, composition op-
erator based languages have very limited aggregation capabilities and
often are tightly coupled to databases.

Data stream query languages are very suitable for aggregation of
event data and offer a good integration with databases. However,
specifying complex event patterns that rely on negation and expres-
sive temporal windows is often cumbersome or even impossible. Due
to their similarity to the well-known language SQL, data stream lan-
guages, with substantial extensions compensating for the mentioned
shortcomings, are often popular in commercial and open-source CEP

products.
Production systems offer a very flexible way to accomplish complex

event processing and are very well integrated with existing program-
ming languages. However, the great flexibility comes at the price of
working on a low abstraction level as production systems are not pri-
marily intended for CEP. Thus, although successfully applied in the
industry, working with production system requires expert knowledge
and careful authoring of rules.

Though timed automata provide an intuitive visualization of com-
plex events their expressiveness is limited. They do not directly sup-
port aggregation. Negation and even composition of events is cum-
bersome. To overcome these deficiencies timed automata are usually
integrated with languages of other styles.

Logic languages have strong formal foundations, allow an intuitive
and convenient specification of complex temporal conditions and ac-
count for event data. Moreover, rule based languages can be naturally
integrated with conventional reasoning capabilities, eg, to facilitate
semantic extensions based on ontologies [Sto+11; TRP12].

Combination of different language styles in one approach allows
to benefit from their strengths. This is the main reason why hybrid
approaches are most successful in the industry. Hybrid approaches
include the introduction of pattern matching into data stream query
languages as in Oracle CEP [Orab] and Esper [Esp], the use of com-
position operators on top of data stream queries [GAC06; CA08], the
addition of composition operators to production rules [WBG08], and
the combination of production rules and state machines, eg, in TIBCO

Business Events [TIB].

31

3.3 means for reactivity in event processing

One of the main benefits of CEP over conventional database technol-
ogy is the continuous evaluation of queries and the resulting timely
detection of valuable situations by means of complex events. In this
way, CEP contributes to substantially improve the reaction time to ap-
plication relevant incidents and thus facilitates the implementation of
event driven applications that rely on time critical reactions. The de-
sire to further increase the effectiveness of time critical reactions and
to seize opportunities by mitigating or eliminating undesired future
events has even lead to the development of proactive event processing
models [EE11; EEF12].

Despite the benefits of the timely execution of reactions based on
the detection of complex events, the actual execution of actions is of-
ten neglected in current EQLs. The dominant event processing model
does not directly include a notion of actions [EN10; CM12b]. Instead,
event sinks are used to model actuators executing actions on the re-
ception of certain events that are derived by the EPS and forwarded to
them by means of an event based communication infrastructure, such
as, an ESB. This is an effective and in many cases sufficient model fa-
cilitating many relevant applications that are bases on rather simple
reactions or reactions that are merely triggered by events and are ex-
ecuted by dedicated systems not relying on a deep integration with
event queries. Another benefit of this model is the abstract view on
actions that excludes issues not directly related to the efficient detec-
tion of complex events which is still one of the main interests in the
community. However, the model effectively prevents the desirable in-
tegration of events and actions required to obtain complex actions as
they are desirable for EM.

Nevertheless, some EQL provide further means to model actions
that interleave the detection of events and the specification of actions
more directly, for instance, by incorporating remote procedure calls or
by providing an integration of EQLs with general purpose languages.
However, in particular in research, these features are less commonly
considered for EQL.

3.3.1 Remote Procedure Calls

A pragmatic and straight forward way to integrate reactions into EQL

is realized by facilitating the specification of remote procedure calls.
This can either be realized by integrating the specification of method
invocations directly into the EQL, eg, by means of reactive rules spec-
ifying the respective method in their head, or by means of an appro-
priate configuration of the EPSs that is external to the applied query
language.

32

By means of method calls or procedure calls, respectively, it is
merely specified which method is invoked when certain events occur
but the reaction is specified in a different (often imperative) host lan-
guage and the actual execution is delegated to another process either
on the same or on a remote machine. In addition to the invocation
of methods of an imperative language it is also feasible to integrate
other (Web based) protocols that enable for instance support of Web
services [PKB07; Esp14].

Accordingly, event queries initiating the reaction and programs
specifying the reaction are strictly separated and all information that
is relevant for the execution of the reaction needs to be passed to the
corresponding method on its invocation. And although the basic idea
applies to all kinds of languages styles, the specific shape slightly
differs.

data stream languages SQL based EQLs can facilitate the spec-
ification of procedures in the SELECT part of continuous queries with
the semantics that the corresponding procedures are invoked when-
ever the respective query matches.

For instance, the continuous query language provided by Esper
[Esp] facilitates the specification of static Java methods in the SELECT

part of queries.1

SELECT Reactions.immediateAlarm(area) FROM alarm

Whenever an alarm event occurs, the query calls the static Java
method immeditateAlarm and injects the area attribute of the matched
event as a parameter to the method.

production rules Production systems used for CEP are often
well integrated with conventional general purpose languages (see Sec-
tion 3.2.3). In addition to the methods intended to alter the working
memory, further user defined methods can be included in the head
of production rules. This even facilitates the direct specification of
simple sequences of actions in the EQL.

For instance, Drools Fusion [Drob] is based on Java and thus facili-
tates the invocation of user defined static Java methods. Thereby, Java
objects stored in the working memory as well as particular attributes
can be passed to the invoked procedures.

when

$a: Alarm()

then

Reactions.immediateAlarm($a.area)

1 We assume here and in the following examples that the corresponding method is
initially properly imported.

33

Whenever an Alarm is added to the working memory the static Java
method immeditateAlarm is invoked with the corresponding value of
the area attribute from the Alarm object as its formal parameter.

logic languages The rule based nature of logic languages nice-
ly integrates with reactive rules specifying method calls in their head.
In particular in the domain of active databases, so called ECA rules are
used to obtain reactive behavior and are introduced in more detail in
Section 3.3.3.

For instance, XChangeEQ [Eck08] integrates reactive rules denoted
RAISE «message and recipient» ON «event query» END. The recipient, spec-
ified by means of the keyword to, also determines the transport mech-
anism which includes calling Java methods and issuing SOAP message
requests [W3C07] via HTTP [IET14].

RAISE

to(recipient="Reactions.immediateAlarm", transport="java") {

area{ var A }

}

ON

event e: alarm{{ area{var A} }}

END

Whenever an alarm occurs, the XML document or node, respec-
tively, constructed in the rule head is forwarded to the recipient which
causes the invocation of the static Java method immediateAlarm in this
example.

3.3.2 Integration with Imperative Languages

Another way to couple event queries with general purpose languages
is to integrate event queries into general purpose languages by means
of appropriate APIs that facilitate the specification of queries and the
reception of query answers in a suited manner. The basic idea is that
event queries are directly specified in the source code and answers
are provided by means of (infinite) collections that can be iterated
over or by subscribing a callback function that is invoked when new
events to the corresponding event queries are available. In this way,
event queries and the actual reaction, not just the invoked methods,
are specified in conjunction and are not distributed over several files
or even systems.

A generic interface that facilitates the integration of (database) que-
ries with languages that are based on the .NET framework, is provided
by LINQ [PR07]. It is in particular suited to integrate event queries
from StreamInsight with C# [KGR12].

34

var query = from e in alarm select e.area;

foreach (long area in query) {

...

}

Other EQLs and EPSs, eg, Esper [Esp], provide proprietary APIs that
facilitate a similar integration of queries and programs. However, in
any case, the lack of a deep integration remains as the information
that is available to influence the behavior of the reaction only com-
prises the information that is stored in the payload of the event.

3.3.3 Event-Condition-Action Rules

ECA rules originate from active databases where they are used to an-
ticipate and react to changes of the database. They consist of three
distinct parts, whereby the action is executed when the event query
matches and in the same instant the condition specified by means of
a database query holds.

ON «event query» IF «database query» DO «action»

Due to their origin in databases the action of ECA rules is often
concerned with (composite) updates of database relations by means
of nested transactions [DHL91; BN09]. However, ECA rules have been
successfully applied to model composite workflows by means of rules
[KEP00; Bry+06].

Several extensions of ECA rules have been proposed facilitating the
specification of more flexible rules. Knolmayer, Endl, and Pfahrer
[KEP00] propose ECAA rules that specify additional alternative ac-
tions that are executed when the condition in the C part does not
hold. Moreover, ECA-LP [PKB07; Pas06] provides an extension of ECA

rules by preconditions, postconditions, and alternative actions which
are homogeneously integrated with derivation rules in addition to
constructs facilitating the asynchronous communication of event mes-
sages. Furthermore, in [Beh+06] the process algebra CCS [Mil82], an
abstraction of communication between different agents or processes,
is incorporated into the action part of ECA rules to facilitate reasoning
and verification of reactions formulated by means of CCS.

In addition, database updates specified in the action part of ECA

rules have been recently adapted to the requirements of streams by
means of a stream-oriented transactional model [WRE11]. Further-
more, generalizations of ECA rules towards reactive rules for the Web
have been proposed, for instance by the language XChange [BEP06a;
BEP06b], to facilitate updates to data on the Web as a reaction to
composite events that are exchanged between interacting Web-based
applications.

35

Besides their relevance for reactivity in event processing, reactive
rules, in particular ECA rules, have been extensively studied in the
database community. For a more thorough introduction of reactive
rules in general and reaction rules on the Web refer to [PK09] and
[Ber+07], respectively.

36

Part II

T H E L A N G U A G E D U R A

4
F O U N D AT I O N S A N D L A N G U A G E D E S I G N

Before we introduce Dura in Chapter 5, we elaborate a high-level
overview of its main building blocks and summarize the basic ideas
of its underlying concepts.

Dura is conceived as a uniform and declarative language with a
clear separation of dimensions, a lightweight set of well aligned lan-
guage constructs, and a deep integration of events, stateful objects,
and actions. To this end, the language applies a rule-based language
paradigm that is well suited for the formalization of complex event
queries and naturally integrates with reactive rules to facilitate re-
actions to detected events. Moreover, Dura uses a pattern based ap-
proach for querying and constructing of (complex) events by means
of declarative rules.

Dura uniformly integrates the orthogonal concepts events, stateful
objects, and actions on a common language level to realize expres-
sive complex event queries and versatile reactive behavior. Moreover,
the language design establishes a clear separation of dimensions, an
aspect of Event Query Languages (EQLs) that has been prominently
identified by Bry and Eckert [BE07]. The design of Dura furthermore
avoids implicit assumptions that are hard coded into core language
constructs but instead strives for lightweight and orthogonal oper-
ators that can be combined in a convenient and flexible manner. It
furthermore recognizes time as a first class citizen and facilitates the
specification of multiple user defined time lines and versatile tempo-
ral constraints that are specified by generic formulas rather than a
limited set of temporal operators.

Dura is built on the foundations of the EQL XChangeEQ [BE07;
Eck08] and consequently some of the fundamental aspects that have
proven beneficial for the design of XChangeEQ, in particular its rule
based nature and the clear separation of dimensions, are adopted and
integrated into the design of Dura.

An early draft of Dura is presented in [HBB11] and various as-
pects related to Dura and its design are discussed in [BHB11; HBB12;
BHB12] of which the author of this thesis is either lead author or
coauthor.

4.1 declarative rule-based reasoning over streams

Rule-based languages have their origin in mathematical logic and
were applied in artificial intelligence and logic programming before
they have been adopted to facilitate reasoning over a stream of events.

39

Rule-based languages provide an expressive and convenient foun-
dation for EQLs as they promote formal declarative semantics, inte-
grate reasoning capabilities, enable support of ontologies, and facili-
tate the natural integration with reactive rules [CM10; Ani+10; BE07].

4.1.1 Reasoning with Rules

Logic programming is based on the formalism of mathematical logic
which has been adopted by general and special purpose languages,
such as the well known rule-based language Prolog [CM03] and the
related database query language Datalog [CGT89].

A logic program is a set of logical clauses that are classified into
facts and deductive rules [CGT89]: Facts are asserting some kind of
application knowledge by means of predicates and (composite) terms
whereas rules correspond to generic statements formalizing logical
consequences that can be drawn from the available knowledge. De-
ductive rules consist of two parts, the rule body specifying a propo-
sition by means of a (often conjunctive) formula and the rule head
specifying the inferences that can be made in terms of derived facts
when the proposition in the body holds:

head← body

Thereby, the conclusions made by several rules are chained together,
that is, the predicate specified in the head of a rule can occur in the
body of another (or even the same) rule, to enable a better abstraction
between rules and to facilitate recursive programs.

Rules can be interpreted as logical clauses reading “if body then
head” which entails a natural and convenient declarative semantics
of logic programs. There are, however, other equivalent but substan-
tially different approaches to define the semantics of logic programs
[AHV95], which is considered as a very elegant property of logic pro-
gramming in general.

example The following program computes the reachability rela-
tion t of a graph r, also referred to as transitive closure of r.1

t(X,Y) ← r(X,Y)

t(X,Z) ← t(X,Y) ∧ t(Y,Z)

The first rule formalizes that Y is reachable from X if there is an
edge from X to Y in the graph. Moreover, the second rule states that Z
is reachable from X, if Y is reachable from X and Z is reachable from Y.
Note how the second rule is recursive as it uses rule chaining to query
predicates in its body that also occur in its head. Given the additional
set of facts

1 We apply the conventions of Prolog here, which distinguish relations and terms by
a small first letter and variables by a capital first letter.

40

r(a,b)

r(b,c)

r(c,d)

formalizing a graph by means of the binary relation symbol r and the
constants a, b, c, and d, the program from above determines that d is
reachable from b, that is, t(b,d) holds: According to the first rule c is
reachable from b and d is reachable from c, that is, t(b,c) and t(c,d)

hold. Thus, according to the second rule, d is reachable from b, that
is, t(b,d) holds.

relevance for event processing By applying incremental
evaluation on top of a dynamic knowledge base, logic programming
is in principle suited for Complex Event Processing (CEP): Informally
speaking, facts can be used to model events that are subsequently
added to the knowledge base and rules can be used to specify com-
plex event queries that derive complex events whenever their body is
satisfied.

Note, however, that this just illustrates the basic idea. Rule-based
languages for CEP furthermore need to integrate sufficient support of
temporal aspects and the evaluation of queries needs to be substan-
tially adapted to the volatile, continuous, and unbounded nature of
streams.

4.1.2 Data Model

Depending on the origin and purpose of specific EQLs, the expressive-
ness of the underlying data model can substantially differ [CM12b].
Events considered by early approaches from active databases do not
carry any additional data whereas modern high-level languages sup-
port events carrying XML data. In between there are approaches that
support tuples and key/value pairs, respectively, and records that
have an inherent structure but are not capable of modeling graphs or
generic trees.

The data that is relevant in the domain of Emergency Management
(EM) is rather simple as it mostly comprises physical parameters pro-
vided by sensors and actuators. The structure of the payload of rele-
vant events thus mainly resembles flat tuples [SB10b; SBR11a]. Never-
theless, it is highly desirable for programmers to support some kind
of structure in the payload of events, in particular for the specification
of derived events. To this end, we strive for a pragmatic compromise
between the generic self-describing structure of XML that is desirable
for humans and the simplicity of flat tuples that facilitates an efficient
storage of events in a database.

Events are represented in Dura by means of Xcerpt terms [BS02]
that have were proven to be effective for rule based event query lan-
guages, such as, XChange [BEP06b] and XChangeEQ [BE07]. The syn-

41

tactical representation of Xcerpt terms is similar to the one used in
mathematical logic: a prefix written label followed by a list of child
nodes enclosed with brackets.

graph{

edge{ from{a}, to{b} },

edge{ from{b}, to{c} },

edge{ from{c}, to{d} }

} �
Figure 4.1: An Xcerpt data term

However, data terms that are considered for Dura are restricted to
a proper subset of valid Xcerpt data terms. In particular data terms
representing graph based semi-structured data, such as XML data,
are omitted as they are not further required for the representation
of events as discussed above: Data terms that are considered for Dura
need to adhere to a fixed schema that is limited in width and depth,
so that data terms correspond in their expressiveness to records rather
than to generic graphs. Moreover, equally labeled siblings are not per-
mitted and ordered sub-terms (distinguished by square brackets in
Xcerpt) cannot be specified.

4.1.3 Pattern-based Queries

Xcerpt applies a pattern-based approach to query data terms. Xcerpt
query terms specify patterns that resemble the respective queried
data terms that are furthermore enriched with variables indicating
where data should be extracted. This way of querying data resembles
the query-by-example paradigm introduced for the equally named
query language QBE [Zlo77].

Consider for instance the following Xcerpt query term

graph{{ edge{ from{var F}, to{var T} } }}

which resembles the data term from Figure 4.1. The given query term
contains the variables F and T to extract the values at the respective
positions and uses double curled brackets to specify that the query is
incomplete in width, that is, it matches graph terms with at least one
edge child term instead of exactly one edge child term. Accordingly,
the given query term matches the data term from Figure 4.1 three
times, once for each edge, yielding three different bindings for the
two variables F and T, namely, {F 7→ a, T 7→ b}, {F 7→ b, T 7→ c}, and
{F 7→ c, T 7→ d}.

Xcerpt query terms can include further advanced query constructs
that are specifically designed to cope with the semi-structured and

42

graph based nature of data terms. This includes for instance con-
structs to formulate queries that are incomplete in depth, to facilitate
negated sub-term queries, or to specify restrictions on the values that
are to be bound by variables. For a thorough introduction of those
and further constructs refer to [BS02; Sch04].

However, because only a subset of Xcerpt data terms is considered
for Dura, constructs that are related to the rich and semi-structured
nature of data terms are omitted form Dura query terms. In result,
query terms merely correspond to data terms that are enriched with
variables. Other constructs are not required and thus not supported,
in particular the order of sub-terms cannot be qualified and queries
are always considered to be incomplete in width.

In this way, the desirable pattern based nature of queries is main-
tained and backward compatibility to Xcerpt is (almost completely)
ensured while data terms can be efficiently mapped to tuples of a
relational database.2

4.2 full acknowledgment of orthogonal concepts

Dura is designed to combine aspects that are related to complex event
queries with the specification of reactions that are realized by means
of external actuators. To this end, Dura provides uniform integration
of the three orthogonal concepts events, stateful objects, and actions:
volatile events communicate observed changes of relevant parame-
ters; stateful objects are the persistent counterpart to volatile events
that facilitate a notion of state; and actions realize interactions with
external components.

Thereby, the integration of all three notions is desirable to obtain
a convenient model for reactivity in event processing. This has been
similarly found by Schmidt, Anicic, and Stühmer [SAS08] who pro-
pose contexts as an convenient abstraction for programmers to specify
reactions that are tailored to a certain situation.

events Events are commonly conceived as indication of incidents
or changes of parameters that are relevant for some application logic
[LS11]. In particular the detection of complex events corresponds to
the recognition of relevant high-level situations that are of interest
for the considered application that cannot be identified by looking at
single events in isolation.

stateful objects Stateful objects are intended to persist infor-
mation in a non-volatile manner as it is desirable to model states. To
this end, stateful objects represent data that can be updated in a non-
destructive manner. Thereby, queries against stateful objects yield an

2 Merely double curled brackets need to be substituted for single curled brackets to
transform a Dura query term into an equivalent Xcerpt query term.

43

answer immediately after the corresponding data begins to be valid
whereas event queries yield an answer after the corresponding event
is detected, that is, after it ended.

actions Actions are executed in response to the detection of a
complex event and with respect to the current situation that is repre-
sented by means of stateful objects. Thereby, they intentionally cause
observable side effects either by means of external actuators that af-
fect physical values or by internally changing the values of stateful
objects.

4.3 deep integration in a uniform language

Events, states, and actions are clearly intended for different purposes
and it is thus desirable to keep them separate on a language level.
Yet, adequate and expressive event detection and reactions can only
be realized by means of a combination of all three concepts: The ap-
propriate detection of events and the execution of suitable reactions
depends on the current context represented by means of stateful ob-
jects; in turn, updates of stateful objects are caused by the detection
of events and realized by means of internal actions; events queries
are required for the specification of composite actions to determine
whether their intended high-level goal has been achieved; and alterna-
tive execution branches in composite reactions are guarded by queries
for events and stateful objects.

To account for those kinds of dependencies, the design of Dura
strives for a deep integration of all three concepts in a uniform lan-
guage: Event queries can naturally integrate queries for stateful ob-
jects and complex actions can use event queries to specify the status
of their execution and to facilitate conditions for different execution
branches beyond temporal dependencies. In this way, the different
aspects of events, stateful objects, and actions can effectively be com-
bined to realize expressive complex event queries and complex ac-
tions. In addition, the integration of queries for events and stateful
objects gives rise to a natural extension of Event-Condition-Action
(ECA) rules that eliminates the inflexible separation of the event and
condition part not adequate for queries to dynamic stateful objects.

In contrast, approaches lacking a deep integration of events, states,
and actions loose expressiveness. If, for instance, reactions are real-
ized by means of remote procedure calls, the information gathered
by the Event Processing System (EPS) in form of complex events and
stateful objects is not directly accessible to the entity executing the ac-
tion. As a consequence, the status of the execution of actions formal-
ized by means of complex event queries cannot be easily incorporated
into the execution of composite reactions.

44

4.4 time as a first class citizen

Another fundamental basis for the design of Dura is to avoid hard
coded defaults that cannot be adapted by programmers according to
their specific needs. This most prominently includes an adjustable
time of events that is furthermore included in their payload. By con-
trast, in many other languages, the time of events is an extrinsic part
of events that is solely governed by the EPS and not accessible to ex-
ternal components.

In Dura, the time of events is stored as an attribute in the pay-
load of events. As a consequence, the time of derived events, which
is for convenience implicitly determined by the EPS, can be adjusted
to the requirements of the programmers by providing an alternative
more suited value. Moreover, events are not limited to carry a single
time in their payload and thus events can be associated with multiple
times representing different time lines. This is in particular useful to
incorporate events generated by simulators that need to distinguish
multiple times, eg, the reception time of the event by the EPS and
the simulation time indicating when the event is deemed to occur
according to the simulation. In addition, the time of events is natu-
rally available for external components that receive derived complex
events.

4.5 explicit specification over implicit assumptions

The design of Dura favors explicit specifications over implicit assump-
tions to obtain a clear and accessible semantics for queries and rules,
respectively. However, this results in the deliberate omission of lan-
guage constructs that are prominently featured in other approaches.

Some EQLs, such as the rule-based language TESLA [CM10], pro-
vide constructs for event selection, eg, to select the most recent event
matching some kind of condition. Although this seems convenient to
realize particular use cases, it is often neglected that events, in partic-
ular derived events, may occur at the exactly same instant and that
there is hence no unique last or first event. This problem is circum-
vented in TESLA by additional conditions that select the events with
the highest key in case of ambiguities. This, however, substantially
jeopardizes the considerable formal semantics of TESLA, as the deter-
mination of the key is subject to runtime effects that are abstracted
away in the formal semantics.

Note that the functionality of selecting the most recent event match-
ing some kind of conditions can indeed be realized by means of
appropriate rules in Dura. However, instead of providing syntactic
sugar with integrated implicit assumptions, programmers are delib-
erately forced to explicitly specify the intended behavior by means of
appropriate conditions and rules.

45

4.6 clear separation of concerns

In the work on XChangeEQ [BE07; BE08b; Eck08] different aspects of
EQL, so-called dimensions, have been identified that need to be ad-
equately covered to facilitate the specification of complex events by
means of expressive query patterns. Those dimensions are data ex-
traction, event composition, temporal and other dependencies, and
event accumulation. Moreover, Bry and Eckert [BE08b] stress that be-
yond a clear coverage of the identified dimensions, a clear separa-
tion of the dimensions is inevitable to obtain a high expressiveness
and ease of use that cannot be accomplished by monolithic operators
combining aspects of different dimensions.

In the spirit of their work, the clear separation of concerns is re-
tained for the design of Dura. To this end, the language model of
XChangeEQ is substantially extended to additionally distinguish state-
ful objects and complex actions that are not acknowledgment and in-
tegrated as crucial concepts in XChangeEQ. Moreover, the four identi-
fied dimensions of event queries are thoroughly revised and extended
to a total of six dimensions separating aspects that are combined in
the primal four dimensions more clearly.

4.6.1 Dimensions of Complex Events

The dimensions of complex events cover different aspects relevant for
the specification of complex events by means of complex event que-
ries. The six dimensions that are retained for Dura are data extraction,
event composition, temporal and other dependencies, grouping and
aggregation, value definition, and event construction.

data extraction Events carry a payload of data that provides
application dependent information. Naturally, the derivation of com-
plex events and the initiation of actions greatly depends on the car-
ried data.

Accordingly, relevant portions of the carried data need to be ex-
tracted from the event and bound to variables to facilitate the specifi-
cations of appropriate conditions, eg, by relating the extracted values
to values obtained from other events.

event composition Although the occurrence of single events ar-
guably provides relevant information, it usually takes the occurrence
or absence of multiple events that are in some way related to de-
scribe a valuable high-level situation. Accordingly, means to compose
higher-level events from patterns of multiple events are a mandatory
integral part of versatile EQLs.

Note, however, that if a clear separation of dimensions is granted,
three operators for conjunction, disjunction, and negation of events

46

are sufficient for the specification of arbitrary event patterns. Other
common operators, eg, operators specifying sequences of events, are
realized by means of additional temporal conditions that are orthog-
onal to the composition of events.

temporal and other dependencies Time is an important as-
pect of stream based applications. Due to the volatile and unbounded
nature of streams, the occurrence of events within a composite query
pattern is often sensitive to timing and order and thus the temporal
dimension of complex events deserves particular attention.

Accordingly, in addition to the composition of several events within
one query, EQLs require means to establish temporal dependencies be-
tween events contributing to the detection of a complex event. More-
over, dependencies on the payload of events are required to specify
filters or to correlate several events.

grouping and aggregation It is highly desirable to provide
means that facilitate the derivation of an abstracted and concise sum-
mary encompassing the information of multiple events of the same
type. To this end, events need to be separated into different groups,
eg, according to their time, so that the values of events of each group
can be cumulated into a single aggregated value.

Aggregation is orthogonal to event composition as it is intended
to combine the information of multiple events into a single aggre-
gated value whereas using event composition each matching event
contributes to one particular query answer.

event construction The evaluation of event queries eventu-
ally leads to the detection of complex events which entails the con-
struction of a (potentially virtual) complex event. To this end, the
attributes of derived events need to be determined by means of fixed
values, ie, literals, or derived values.

value definition Derived values determined by means of ex-
pressions composed from variables are required for the construction
of higher-level knowledge that combines multiple values in a non-
trivial manner.

To facilitate the specification of expressive sub-queries the defini-
tion of derived values based on the attributes of queried events needs
to be clearly separated from other dimensions. This also applies for
the determination of aggregated values.

4.6.2 Dimensions of Stateful Objects

As it is subsequently elaborated in Section 5.3, it is highly desirable
to abandon the strict separation of reactive rules, in particular ECA

47

rules, into a separate event and condition part. Instead it is desirable
to deeply integrate queries for events and stateful objects in a uniform
manner.

Due to the uniform representation of events and stateful objects in
Dura and the integration of queries thereof, the dimensions of com-
plex events and stateful objects are almost identical and do not re-
quire any further adaptations. Merely the construction of events does
not have an equivalent representation for stateful objects as views on
stateful objects are currently not considered in Dura.

4.6.3 Dimensions of Complex Actions

Naturally, the dimensions of declarative event queries and imperative
complex actions substantially differ. There are at least five dimen-
sions of complex actions that are based on physical actions executed
by external actuators, namely, action invocation, action composition,
temporal dependencies, temporal assertions, and execution status.

To obtain complex actions that are tailored to physical actions and
provide a high expressiveness and ease of use, a good coverage of
these dimensions is desirable. Moreover, the observations that sug-
gest a clear separation of dimensions of complex events apply like-
wise for complex actions.

action invocation Action invocation is the counterpart to data
extractions for events. However, instead of querying events and ex-
tracting relevant data from their payload, values that have been pre-
viously bound to variables need to be injected to actions to determine
their formal parameters.

action composition High-level reactions are implemented by
means of (atomic or complex) sub-actions that are executed in combi-
nation to achieve a certain higher level goal that cannot be achieved
by single and more basic actions. The composition of actions is there-
fore crucial to obtain useful reactions that exceed the capabilities of
single actuators.

Similar to the composition of events, the composition of actions
requires merely a few constructs. In fact, provided that a clear sepa-
ration of concerns is implemented, only one construct for the basic
collection of several actions is required to sufficiently cover this di-
mension. Other operators, such as, operators specifying a sequence
of actions, are realized in Dura by means of a combination of compo-
sition and temporal dependencies.

temporal dependencies Temporal dependencies are crucial to
specify the timing between several physical actions that are executed
in combination. In contrast to internal actions, composite actions that

48

are intended to realize a certain effect in the physical world often re-
quire a certain and precise timing entailing a particular order between
actions as otherwise unintended side effects may occur.

To be suitable for external actions with contingent results, tempo-
ral dependencies must furthermore discriminate between success and
failure of actions to allow different reactions based on the result of
preceding actions.

temporal assertions Temporal assertions state temporal con-
ditions between actions that are expected to be satisfied when the
action is actually executed according to its temporal dependencies.
However, in contrast to temporal dependencies, these conditions have
no effect on the execution of the composite action. It is merely verified
at compile time that the conditions will be satisfied when the action
is executed

The separation of temporal dependencies and temporal assertions
strongly contrasts with approaches that specify constraints on actions
that should be satisfied by an intelligent scheduling of actions.

execution status Physical actions are means to an end that are
executed to indirectly affect some physical properties. However, feed-
back on their success often cannot be inferred from the feedback that
is provided by the corresponding actuator, in particular in case of
complex actions that are intended to achieve some high-level goal. In-
stead, the achievement of their goal needs to be verified by means of
sensors that are capable of measuring whether the desired effect has
been achieved.

Accordingly, means for the specification of the status of actions
must be expressive enough to specify generic event patterns that infer
the status of actions from related sensor messages.

49

5
S Y N TA X A N D I N F O R M A L S E M A N T I C S

The language model of Dura is based on the three orthogonal con-
cepts events, stateful object, and actions that are clearly distinguished
in the language: volatile events to model changes of parameters, state-
ful objects to model persistent data that is modified in a declarative
non-destructive manner, and actions to realize intended side effects.
At the heart of Dura are declarative composite event queries inte-
grating queries for events and stateful objects and imperative action
specifications integrating event queries and actions.

The design of Dura strives for a clear separation of concerns which
manifests in expressive sub-queries that are composed from well con-
ceived orthogonal operators covering the relevant aspects of event
queries. Moreover, the systematic separation of concerns promotes
expressive sub-actions that integrate composite event queries so that
the specification of complex actions becomes independent from reac-
tive rules which are merely required to trigger actions.

In addition, Dura applies deductive rules to specify complex events
that are derived based on composite queries matching the stream of
events. They serve as an convenient and natural abstraction mecha-
nism, eg, to facilitate hierarchies of events. Moreover, Dura applies
reactive rules to initiate (complex) actions in response to detected
events. They mark the transition between the declarative world of
events and stateful objects and the imperative world of actions.

This chapter elaborates the syntax and semantics of Dura by means
of informal examples. A formally precise grammar of Dura is con-
tained in Appendix A.

5.1 complex events

According to Luckham and Schulte [LS11], an event is anything that
happens or is contemplated as happening and hence events are ubiq-
uitous in modern critical infrastructures. Events are generated for in-
stance by various physical sensors and actuators scattered through-
out the entire infrastructure so as to observe and control it. Moreover,
events are caused by humans, eg, by operators who enter informa-
tion they observe into the system and by passengers over emergency
phones, and by fast computable simulations that generate simula-
tion events which estimate the likely development of the conditions
within the next couple of minutes.

Events are a substantial foundation for Emergency Management
(EM) as they describe the current conditions of the infrastructure and

51

thus serve as an important basis for reactions and decisions. However,
the sheer number of raw events that are caused by the equipment of
the infrastructure has reached the limit that can be reasonably han-
dled by humans, in particular during emergencies. Operators need
concise and reliable interpretations of the current situation in the in-
frastructure that is derived from the incoming sensor readings and
can be captured without having to consider all events that actually oc-
curred. Therefore, modern EM needs means that filter, correlate, and
interpret the incoming data to derive a representation of the ongoings
in a way that is suitable for human operators.

Accordingly, Complex Event Processing (CEP) can substantially im-
prove EM as it is today, as it provides means to detect high level sit-
uations within the incoming stream of events by means of complex
event queries that are evaluated in a continuous and timely fashion.

5.1.1 Representation of Events

Each event has a unique type, carries a payload of data, and is associ-
ated with a key uniquely identifying each event instance and a time
interval over a continuous time domain, the so-called reception time.
Moreover, each event type is characterized by a schema describing
the type and structure of its payload.

The payload of events resembles records which can be efficiently
stored and processed inside conventional databases but yet provide
the desirable flexibility to structure the data in a way suited for EM

purposes. Although other Event Query Languages (EQLs) are capa-
ble of querying semi-structured data provided by generic XML mes-
sages, it is not mandatory to cover the full flexibility of XML to suite
the events considered by EM [SB10b; Vra+10; SB10a]. The structure
of those events is much more basic than events that are typically ob-
served, eg, in distributed and loosely coupled web applications that
provide content which exploits the expressiveness of XML.

Nevertheless, events and event queries are expressed in Dura by
means of Xcerpt terms as they have been proposed in [BS02] to rep-
resent and query semi-structured data. However, as the structure of
events considered in Dura is restricted to records as it is discussed in
Section 4.1.2, constructs that account for the rich structure of generic
terms are omitted. In this way, a pattern-based query approach that
is proven for rule [BS02; BEP06b] and event query languages [BE07]
is suitable for Dura while an efficient representation of events is pre-
served.

example For convenience, events are represented in a linearized
form that is similar to the representation of terms in mathematical
logic or logic programming. The label of a node is written prefix fol-
lowed by a (unordered) list of its children enclosed with curly braces.

52

temp{ area{31}, value{12.7}, sensor-id{8191} }

The preceding data term represents an event reporting about the
temperature within a certain area. The event is of type temp and has
the three atomic attributes area, value, and sensor-id.

times of events By default, each event is associated with a time
interval over a continuous time domain, the so-called reception time.

The reception time of basic events corresponds to the instant the
event is received by the Event Processing System (EPS). Accordingly,
the reception time has the same begin and end and thus degenerates
to a time point. For derived events, the reception time comprises the
reception time intervals of all events that contributed to its detection,
that is, the begin and end of derived events corresponds to the least
beginning and largest ending of all positively queried events, respec-
tively.

In addition to the reception time which is implicitly added to all
events, events can carry any number of application dependent, user
defined, times. Other relevant times are for instance the detection
time and the simulation time. The detection time corresponds to the
instant an event is actually derived and thus becomes visible for ex-
ternal subscribers whereas the simulation time describes when a sim-
ulation event is deemed to occur according to the simulation. How
to incorporate user defined times into the schema of events and how
to adapt the default values for existing times is further elaborated in
Section 5.2.5.

event schema The event schema specifies for each event type
the structure and fashion of their payload.

Listing 5.1: Schema of temp Events

temp{ area{long}, value{double}, sensor-id{long} } �
Naturally, the schema is specified by means of terms that contain

types in place where the actual data of the event will be located
and resemble tree-like structures. The leaves of a schema term cor-
respond to basic types and the internal nodes specify labels that de-
scribe the data they contain. Thereby, labels of siblings need to re-
main distinct. There are nine different basic types available in Dura,
namely int, long, float, double, boolean, string, duration, timestamp,
and identifier.

As already mentioned, this representation corresponds to the rep-
resentation of Xcerpt terms [FBS07; BS02]. But in contrast to generic
Xcerpt terms that resembles a graph structure, references to nodes as
well as equally labeled or ordered siblings are not permitted in Dura.

53

Accordingly, events and their schemas are represented by terms that
correspond to trees with a fixed width and depth.

implicit attributes Each event is associated with a unique key
and its reception time. To be easily accessible by common event que-
ries and external components that operate on derived events, both
properties are represented in the payload of events. To this end, the
schema of events is implicitly extended with two attributes, namely,
the atomic attribute id{identifier} for its key and the composite at-
tribute reception-time{ begin{timestamp}, end{timestamp} } for its re-
ception time.

Accordingly, the schema of the temperature event from above ac-
tually corresponds to the schema in Listing 5.2 which additionally
contains the implicit attributes of the event.

Listing 5.2: Schema of temp Events with Implicit Attributes

temp{

id{identifier},

reception-time{ begin{timestamp}, end{timestamp} },

area{long}, value{double}, sensor-id{long}

} �
Note that the values for the key and the reception time attribute are

implicitly determined by the EPS, unless they are explicitly specified
by the programmer as it is discussed in Section 5.2.2. Moreover, for
the sake of simplicity, implicit attributes are often omitted from the
following examples.

5.1.2 Atomic Event Queries

Events are queried by means of a pattern based approach known
from existing query languages, that is, the query pattern resembles
the data of the event and variables are specified in the pattern where
data should be extracted. To this end, event queries are expressed by
means of simplified Xcerpt query terms [FBS07] that do not contain
formulas such as negation or optionality.

Event queries are specified by means of query patterns which are
preceded by the keyword event followed by an alphanumeric name,
the so-called event identifier. The event identifier is often used in com-
posite queries to concisely refer, eg, to the reception time of the que-
ried event. Query patterns do not need to be completely specified,
that is, attributes that are not relevant for a certain query can be omit-
ted. Moreover, attributes in the query pattern can be specified in an
arbitrary order that does not need to correspond to the positioning of
the attributes in the schema.

54

example The query in Listing 5.3 matches temperature events and
extracts the values of the area and the temperature from their pay-
load.

Listing 5.3: An Atomic Event Query

event e: temp{ value{var T}, area{var A} } �
When applied to a stream consisting of the temperature event

temp{ area{31}, value{12.7}, sensor-id{8191} }

the given query yields a single substitution binding A to 31 and T to
12.7.

identifying events There are actually three different ways to
identify or refer to events which must not be confused: The type,
eg, temp, corresponds to a name that identifies a class of events. The
alphanumeric identifier, eg, e, identifies instances of matched events
within the lexical context of a query. And finally, the key identifies
event instances within the entire event stream.

Accordingly, an identifier corresponds to a static reference whereas
a key corresponds to a dynamic reference. Note that hence two (syn-
tactically) different event identifiers, eg, e and f, may actually refer to
the same event instance at runtime.

referring to attributes of events The attributes of events
can be referenced in two different manners: either by means of vari-
able definitions specified in the query term of an atomic event query
or by means of a path that combines an event identifier with labels
separated by periods pointing to the respective attribute.

For instance, in Listing 5.3 the attribute value of the temp event can
either be referred by means of the variable T or by means of the path
e.value. Accordingly, the notions variables and paths are also referred
to as references.

Note that due to the restrictions that apply for the structure of
events, all attributes are actually distinguished by a unique path.
Therefore, advanced path query languages, such as, XPath [W3C10],
are not required here.

5.1.3 Composite Event Queries

In general, the main goal of CEP is to extract higher level knowledge
from a stream of basic events that cannot be recognized by just look-
ing at single basic events. To this end, the occurrence or absence of
several events in the stream needs to be correlated to recognize valu-
able situations or events. Accordingly, the capability to relate several
queries in a composite query is crucial for every EQL.

55

Several event queries are combined by means of the operators and,
or, and not. Due to a clear separation of query dimensions which has
been proposed in [BE07; Eck08], these operators are merely combin-
ing several queries into a composite query. They do not, however,
specify temporal and other dependencies between events and the
data they carry, as such dependencies can only be specified in a sep-
arate where part that supplements composite and simple queries.

conjunctions Conjunctive event queries are specified in Dura
like in XChangeEQ by means of the n-ary operator and that contains
multiple simple or composite event queries. They resemble joins from
traditional databases that are incrementally evaluated and generate
new variable bindings whenever further matching events occur in
the event stream.

A conjunctive query matches whenever all contained event queries
match the stream of events. Thereby, variable definitions that occur
in different sub-queries and specify the same name imply a join be-
tween the attributes they refer to. Event queries in Dura are further-
more purely declarative and there is no consumption or absorbance
of events that are matched by a query. In consequence, one event of
the stream can be matched by multiple queries and beyond that it can
be matched in several different manners by a same composite query.

Conjunctive event queries in Dura may be temporally unrestricted,
as opposed to many other EQLs which require that all matching events
occur in a predefined and finite time window. Although the evalu-
ation of temporally unrestricted queries may require an indefinite
amount of memory which may cause problems at runtime, they have
shown to be valuable if applied carefully. For instance, queries that
aggregate values between the occurrence of two events, eg, the begin
and end of an emergency, can hardly be restricted by a finite time
window, as the duration of the emergency is unknown in advance.
Furthermore, queries that determine stateful information usually also
cannot be restricted in such a manner, which is thoroughly elaborated
in Section 11.2.

Listing 5.4: A Conjunctive Event Query

and{

event e: temp{ area{var A}, value{var T} }

event f: smoke{ area{var A}, conc{var C} }

} �
The query in Listing 5.4 is a valid conjunctive query, although it

does not relate the time of the contributing sub-queries. It matches
whenever a temperature and a smoke event occur in the same area.
Notice the join between the area attribute of both events which is
caused by the use of the variable A in both sub-queries.

56

Note that, due to the temporally unrestricted nature of the given
query, temperature and smoke events that occurred apart for any
length of time, eg, several days or weeks, will still match the query.
This seems undesirable for this particular kind of query as one is only
interested in events that occur in quick succession. However, due to
the clear separation of query dimensions, the conjunction specifies
merely the composition of events but does not imply any temporal
dependencies between events which is further addressed in the next
Section 5.1.4.

disjunctions On a syntactical level, disjunctive queries closely
resemble conjunctive queries. They are specified by means of the
n-ary operator or and are as well subject to incremental evaluation.
But in contrast to conjunctive queries, disjunctive queries match the
stream of events whenever a single sub-query matches the stream.
Accordingly, the sub-queries of disjunctive queries are independent
from each other and in consequence commonly named variables do
not specify a join condition.

Listing 5.5: A Disjunctive Event Query

or{

event e: uncertain-fire-alarm{ area{var A} },

event f: potential-overcrowding{ area{var A} },

event g: sos-telephone-call{ area{var A} }

} �
The query from Listing 5.5 matches when an uncertain-fire-alarm,

potential-overcrowding, or sos-telephone-call event occurs.

negation Negated queries are applied to query the absence of
events in the stream and are specified by means of the not operator.
They are always used in conjunction with conjunctive queries and
thus resemble anti-semi-joins known from traditional database sys-
tems [AHV95]. Accordingly, the negations that are specified with this
operator does not correspond to the classical negation, but instead
it corresponds to negation as failure [She85] which is commonly ap-
plied in logic programming and deductive databases.

Negated queries are always specified as part of a conjunctive query,
whereby the conjunctive query only matches when its non-negated
sub-queries match and at the same time its negated sub-queries do
not match. Similar to conjunctive queries without negations, variable
definitions specifying the same name imply a join condition so that
the values of the attributes they refer to need to be equal in order to
result in a valid match of the entire query. Note that composite even
queries composed from conjunctions and disjunctions can be negated.

57

Listing 5.6: A (Non-Evaluable) Negated Event Query

and{

event e: uncertain-fire-alarm{ area{var A} },

not event f: fire-alarm{ area{var A} }

} �
The query in Listing 5.6 contains a negated query for fire alarms.

It matches uncertain fire alarms that did not eventually evolve into a
proper fire alarm. As, by design, the composition operators of Dura
do not constraint the time of matching events, the negated query
matches fire alarms that occur at an arbitrary time.

However, due to the conceptually infinite streams, temporally un-
bounded negated queries, as the one from Listing 5.6, cannot be eval-
uated correctly in finite time, as at any point only a finite prefix of
the entire stream has been obtained by the EPS. This issue can be re-
solved by adding appropriate temporal conditions to the query which
is further discussed in Section 5.1.4 and Section 5.2.5.

5.1.4 Temporal and other Conditions

Due to the volatile and temporal nature of events and the conceptu-
ally unbounded event streams, temporal conditions have a specific
role for complex event queries. Queries are usually only interested in
current portions of an event stream to derive valuable insights in an
event driven manner. As a consequence, event queries need means
to restrict the time of events to match only situations that consider
current events.

Temporal conditions between events are specified by means of ge-
neric formulas built from potentially nested conjunctions, disjunc-
tions, and negations of inequations that relate time points of events
in a temporal fashion. This allows to specify arbitrary temporal de-
pendencies between events and the programmer is not restricted to
a set of predefined and hard coded operators. Of cause, there is also
syntactic sugar in Dura to specify often used relations in a concise
manner. However, all of those relations can be equally specified by
means of conventional formulas.

Conditions on the data are specified in a similar manner but instead
of time points the values extracted by means of variables are related.
In this way, the values of several events can be correlated or events
can be filtered according to the data they carry.

All (temporal and other) conditions that are relevant for a cer-
tain (composite) query are specified in a separate where part that
is amended to the query. Thereby the collection of the where, let,
and group by parts, which will be subsequently introduced, associated
with a query is also referred to as query supplement.

58

example Temporal and other conditions are specified in Dura by
means of (in)equations in a separate where part that is associated ei-
ther with an atomic or a composite event query.

Listing 5.7: Conditions of a Query

and{

event e: temp{ area{var A}, value{var T} }

event f: smoke{ area{var A}, conc{var C} }

} where {

end(e) <= end(f) + 2min, end(f) <= end(e) + 2min,

or{ var T > 400, var C > 0.2 }

} �
The conditions in Listing 5.7 constrain the values of the variables

T and C to exceed 400 degrees or 20 percent. Moreover, they specify
that matching temperature and smoke events must occur within two
minutes.

atomic expressions Atomic expressions are built from literals,
such as, strings ("celsius"), numbers (23, 42.5), durations (5ms, 1min
17sec), constants (const n), paths (e.value), and variables and identi-
fiers (var A, event e). For the sake of readability, the prefixes of con-
stants, variables, and identifiers can be omitted in Dura expressions.

Moreover, the functions system-time.now() and sequence.next() are
available which yield the current time at their evaluation and the
value of a monotonically increasing sequence of long values, respec-
tively.

interval expressions Time intervals are specified by means of
the value constructor [«expression»,«expression»] which takes as an
argument two expressions of type timestamp. Moreover, time inter-
vals can be obtained by means of the function time which takes as
an argument an event identifier and returns the reception time of the
corresponding event.

The functions begin and end operate on time intervals and return
their corresponding upper and lower boundaries. For convenience,
both functions can also be applied to event identifiers whereby they
return the begin and end of the reception time of the correspond-
ing event. This convenience notation was actually already used in
Listing 5.7. In addition, Dura provides functions on intervals that re-
semble the operators that are used to construct relative timer events
in XChangeEQ [Eck+11b; Eck08; BE07]. These functions, specified in
Table 5.1, take as parameter a duration and a time interval or an event
identifier and compute a new time interval. However, in Dura these
functions are just syntactic sugar for more basic expressions and can
thus be omitted from the language, whereas the corresponding oper-
ators of XChangeEQ are a fundamental part of the language.

59

extend(e, d) ≡ [begin(e), end(e) + d]

shorten(e, d) ≡ [begin(e), end(e) - d]

extend-begin(e, d) ≡ [begin(e) - d, end(e)]

shorten-begin(e, d) ≡ [begin(e) + d, end(e)]

shift-forward(e, d) ≡ [begin(e) + d, end(e) + d]

shift-backward(e, d) ≡ [begin(e) - d, end(e) - d]

from-end(e, d) ≡ [end(e), end(e) + d]

from-end-backward(e, d) ≡ [end(e) - d, end(e)]

from-begin(e, d) ≡ [begin(e), begin(e) + d]

from-begin-backward(e, d) ≡ [begin(e) - d, begin(e)]

Table 5.1: Translation of Interval Functions to Expressions

composite expressions Composite expressions are built by ap-
plying arithmetic functions, such as, the binary and infix written func-
tions +, -, *, /, and ** or the n-ary functions least and greatest, to
atomic or composite expressions.

Moreover, Dura provides the binary functions floor and ceil which
take as arguments a timestamp and a duration and yield a timestamp
that is rounded to the nearest value above or below the given one ac-
cording to the precision specified by the given duration. For instance,
the expression floor(ts, 1min) omits the seconds and milliseconds
from the timestamp ts.

In addition, the type of expressions can be adapted by means of
unary prefix written cast functions whose name corresponds to the
type the expression should be cast to. Eg, the expression long("1729")

yields the long value 1729.
Other than those functions, in particular user defined functions,

cannot be used in Dura to form (composite) expressions. Moreover,
expressions are statically typed and their correct typing is verified at
compile time.

formulas Formulas are build from (composite) expressions by
means of the relations !=, <, <=, =, >, and >=. Furthermore, compos-
ite formulas are obtained by composing several formulas by means
of the n-ary sentential connectives and and or and the unary connec-
tive not. Note that thereby the negation corresponds to the classical
negation from mathematical logic in contrast to the negation used
in event queries which corresponds to negation as failure from logic
programming.

Formulas are specified in the where part of queries that is either
associated with atomic queries or with composite queries. For conve-
nience, the keyword and can be omitted from the outer most formula.

60

qualitative temporal relations Allen’s thirteen relations
[All83] identify thirteen distinct relations on temporal intervals that
are convenient for domains where temporal information is imprecise
and relative. They are commonly used in EQLs to specify qualitative
temporal dependencies between events.

Allen’s relations are usually specified in conjunction with event
identifiers to constrain the time of the corresponding events. They are,
however, only syntactic sugar for composite formulas built from more
basic inequations. Table 5.2 contains Allen’s relations and their cor-
responding representation as basic formulas. However, the inverses
of the given relations, namely, after, contains, overlapped-by, met-by,
started-by, and finished-by, are omitted as they are directly related
to the given relations, eg, e after f corresponds to f before e.

e before f ≡ end(e) < begin(f)

e meets f ≡ end(e) = begin(f)

e overlaps f ≡ and{ begin(e) < begin(f),

begin(f) < end(e), end(e) < end(f) }

e during f ≡ and{ begin(f) < begin(e), end(e) < end(f) }

e starts f ≡ and{ begin(e) = begin(f), end(e) < end(f) }

e finishes f ≡ and{ end(e) = end(f), begin(e) < begin(f) }

e equals f ≡ and{ begin(e) = begin(f), end(e) = end(f) }

Table 5.2: Translation of Allen’s Relations to Formulas

Note that the relations can be used in arbitrary combination of
other relations and sentential connectives. In particular, even disjunc-
tions of relations can be specified in Dura.

quantitative temporal relations Besides the qualitative re-
lations from above, Dura provides two quantitative relations that re-
strict the time window in which matching events may occur, namely,
within and apart-by. Within is an (n + 1)-ary relation taking as ar-
guments n > 1 event identifiers and a duration. It specifies that the
given events occur within a given time window denoted by means of
a non-negative duration. Apart is a ternary relation that takes as ar-
guments two events and a durations. It specifies that the given events
occur at least the given duration apart from each other.

Similar to Allen’s relations, the quantitative relations are just syn-
tactic sugar, that is, the relation {e1, ..., en} within d translates to

greatest(end(e1), ..., end(en))

- least(begin(e1), ..., begin(en)) <= d

and {e, f} apart-by d translates to

or{ begin(f) - end(e) >= d, begin(e) - end(f) >= d }

61

flexibility of temporal conditions Because temporal con-
ditions are specified by means of generic expressions and formulas
that incorporate the time of queried events, Dura provides a great
flexibility for the specification of temporal conditions. Temporal con-
ditions can, for instance, specify time windows that lie in the future

where { e during shift-forward(f, 2min) }

are non-convex

where {

e during extend(f, 2min),

not{ e during from-end(f, 1min) }

}

or are defined relative to multiple events

where { end(f)-1min < begin(e), end(e) < end(g)+2min }

In addition, temporal conditions cover all thirteen of Allen’s rela-
tions and beyond that they can also specify arbitrary combinations
thereof by means of conjunctions, disjunctions, and negations.

5.1.5 Data Definition

Besides the filtering of values in the where part of queries, new values
can be defined in a distinct let part that is associated with queries.
Thereby, multiple where and let parts can be associated with the same
query to realize a filtering of newly derived values.

The let part contains one or more variable definitions and has the
following structure

let { «variable» = «expression», ... }

whereby the names of newly defined variables must be unused.

example In the query in Listing 5.8 the temperature readings pro-
vide the temperature in degrees Fahrenheit instead of degrees Celsius.
To filter events that report about a temperature above 400 degrees Cel-
sius, the provided value is first of all converted to degrees Celsius and
bound to the variable Tcel by means of a let part and subsequently
filtered to match only values above 400 degrees Celsius.

Listing 5.8: Data Definition

event e: temp-value{ area{var A}, value{var Tfah} }

let { var Tcel = (var Tfah - 32)/1.8 }

where { var Tcel > 400 } �
Note that in this particular example the query can be simplified by

omitting the let part and by adapting the formula in its where part to

62

(var Tfah - 32)/1.8 > 400. However, in more elaborated examples defin-
ing new variables is desirable, as the bound values can be reused in
various parts of the query, eg, in the where part of other sub-queries
and in the query head.

5.1.6 Grouping and Aggregation

Grouping and aggregation are highly desirable for EM and for CEP

in general. By their means, values obtained from several events col-
lected, eg, in a certain time window, can be combined using aggre-
gation functions such as average, minimum, maximum, etc. This is
particularly useful to realize a smoothing of noisy sensor readings
and to obtain concise and abstract indicators for the conditions of
the infrastructure, eg, the moving average of the temperature within
the last couple of minutes, that is suitable for the interpretation by
humans in contrast to the vast number of individual events which
contributed to the average value.

group by { «variable, identifier, or path», ... }

aggregate { «variable» = «aggregation expression», ... }

The aggregation of events is realized by means of group by and
aggregate clauses that are amended to a conjunctive query. Thereby,
the aggregate is optional whereas it can only be specified in conjunc-
tion with a group by. The group by specifies how the matching events
are separated into groups and the aggregate specifies how the values
of events contained in one group are aggregated into a single value.
To this end, expressions in the aggregate part can contain the addi-
tional aggregation functions min, max, avg, sum, and count.

Similar to negations, grouping is not monotonic and requires fur-
ther temporal restrictions that are restricting the occurrence of the
queried events prior to their grouping to obtain a valid query. To this
end, it is sufficient to bound above the end of the reception time of
all events whose event identifier or reception time is not specified in
the group by clause. Note that this criterion covers the most common
case, whereas further and more generic criteria, in particular those
with respect to user defined times, are discussed in Section 5.2.5.

example Consider the following query in Listing 5.9. When an
alarm occurs, the query determines the average temperature Tavg

within the last minute before the alarm. Note that thereby the end of
the reception time of temperature events is bounded above, namely,
relative to the end of the reception time of the alarm event.

To this end, alarm events are joined with temperature events that
occurred one minute before the alarm. Subsequently, the events are
grouped by the alarm event, that is, for each individual alarm event
there is one group that contains all temperature events which joined

63

Listing 5.9: Grouping and Aggregation of Events

and{

event e: alarm{ area{var A} },

event f: temp{ area{var A}, value{var T} }

} where { f during from-end-backward(e, 1min) }

group by { event e } aggregate { var Tavg = avg(var T) } �
with the alarm. And finally, the temperature values within each group
are aggregated to a single value, namely, the average temperature.

Without the grouping in the query of Listing 5.9, each pair of alarm
and temperature events would result in a match of the composite
query. However, because of the grouping over alarm events, the query
matches only once for each alarm event independent of the number
of matching temperature events.

having clauses for groupings Groupings can be arbitrarily
combined with conditions and data definitions as long as the visi-
bility of variables is respected, which is further formalized in Sec-
tion 5.2.1. In this way, conditions can constrain aggregated values and
thus resembles the having clause of the query language for relational
databases SQL.

Listing 5.10: Realizing a Having Clause

and{

event e: alarm{ area{var A} },

event f: temp{ area{var A}, value{var T} }

} where { f during from-end-backward(e, 1min) }

group by { event e } aggregate { var Tavg = avg(var T) }

where{ var Tavg > 100 } �
The grouping in Listing 5.9 is already preceded by a where part,

which specifies a temporal condition on temperature events. More-
over, the grouping can also be followed by arbitrary many where and
let parts. With the given adaptations, the query from Listing 5.10

matches only alarm events that occur in an area with an average tem-
perature Tavg that exceeds 100 degrees.

grouping over times rather than events The group by
clause is not restricted to event identifiers but can also contain vari-
ables. In addition, recall that for valid groupings it is sufficient to
bound above the reception time of all events whose event identifier
or reception time is not specified in the group by clause.

These circumstances can be exploited in combination to obtain a
grouping over a tumbling window in a rather unique way, which
does not rely on a separate language construct for tumbling windows.
Consider the query in Listing 5.11. As it is composed only from the

64

atomic query for temp events and the group by clause contains the
variable Min which depends on the reception time of the queried temp

event, the grouping is indeed valid.

Listing 5.11: Realizing a Tumbling Window

event e: temp{ area{var A}, value{var T} }

let { var Min = ceil(end(e), 1min) }

group by { var Min, var A } aggregate { var Tavg = avg(T) } �
Because of the grouping over the variables Min and A the average

temperature Tavg is determined for all temperature events that oc-
curred in the same minute and in the same area. Accordingly, the
grouping over Min has the same effect as a grouping over a tumbling
window with the size of one minute.

applying multiple groupings The ability to combine group-
ings with conditions and data definitions even includes the possibility
to specify multiple groupings for one conjunctive query. At least as
long as the visibility of variables and the temporal restrictions for
groupings are respected. This is a powerful means to concisely for-
mulate sophisticated queries.

Note, however, that the visibility of variables need to be respected.
As a consequence, the sets specified after different group by parts are
commonly in a subset relationship.

Listing 5.12: Query with Multiple Groupings

and{

event e: alarm{},

event f: temp{ area{var A}, value{var T} }

} where { f during from-end(e, 1min) }

group by { event e, var A } aggregate { var Tavg = avg(T) }

where { var Tavg > 100 }

group by { event e } aggregate { var Acount = count(var A) } �
When an alarm occurs, the query from Listing 5.12 determines the

number of areas Acount where the average temperature exceeds the
threshold of 50 degrees within the next minute. To this end, the aver-
age temperature of each area is determined by means of a grouping
and subsequently the number of areas that exceed the threshold of 50

degrees is obtained by means of another grouping.

5.1.7 Existential Queries

By design of Dura, events are not consumed or absorbed during the
evaluation of Dura queries and thus in a conjunctive query one event
can be joined with several other events generating as many answers

65

as there are matching partners. For some queries, however, it is only
important to determine whether there is at least one matching partner
for an event whereas the exact number of matching events is irrele-
vant.

Querying the existence of events is realized in Dura by means of
a group by without an aggregate part. Thereby the grouping is used
to accumulate several events instead of generating a match of the
conjunctive query for every pair of matching events.

example To roughly estimate the characteristics of a fire it is rea-
sonable to observe how quickly the temperature rises in a certain area
after the detection of the fire alarm. To this end, it is sufficient to de-
termine whether the temperature exceeded a certain threshold within
a given time.

Listing 5.13: An Existential Query

and{

event e: fire-alarm{ area{var A} }

event f: temp{ area{var A}, value{var T} }

} where { f during from-end(e, 2min), var T > 400 }

group by { event e } �
The query in Listing 5.13 determines whether the temperature ex-

ceeded 400 degrees within 2 minutes after a fire alarm. It matches,
however, at most once for every fire alarm, as the query is grouped
by the fire alarm. In this way, it only matters whether there are any
temperature events but it is irrelevant how many there actually are.
Thus, by means of the grouping the query for temperature events can
be considered to be existentially quantified.

5.2 deductive and reactive rules

Deductive and reactive rules form the foundation for the specification
of complex events and for the initiation of reactions based on the
occurrence of events.

Deductive rules specify a complex event in their head that is de-
rived whenever the event query in their body matches the stream
of events. They hence correspond to views known from database sys-
tems and are free of side effects. Deductive rules provide a convenient
and natural abstraction mechanism for the definition of higher-level
complex events. By contrast, reactive rules specify a (complex) action
in their head that is executed whenever the event query in their body
matches. Accordingly, reactive rules make the transition from purely
declarative deductive rules and event queries to imperative actions
that intentionally entail side effects that can in turn be observed by
means of event queries.

66

However, similar to rules applied in logic programming, some re-
strictions apply to the formalization of rules. First of all, rules (and
interestingly even queries) need to be range restricted to guarantee
a sound evaluation. Second of all, for the incremental evaluation of
deductive rules over a unbounded stream of events further tempo-
ral conditions on queries containing non-monotonic operators, such
as, negation and aggregation, need to be satisfied. Finally, there ap-
ply restrictions on user-defined reception times of derived events, in
particular on events that are derived by recursive rules.

5.2.1 Range Restriction of Queries and Rules

To obtain sound queries and rules, variables used in the supplement
of queries and in rule heads need to be properly defined so as to
provide concrete values during the evaluation of queries at runtime.
The intuition behind “properly defined” variables is formalized in
the following by means of the notions polarity and range restriction.

Obviously, both notions have been inspired by the respective no-
tions used in mathematical logic [Bry+07]. However, be aware that
they substantially differ in some aspects due to the additional con-
structs that are available in Dura.

polarity of references The polarity of references in Dura que-
ries is inductively defined as follows. A variable V, identifier i, or path
p has positive polarity in the query

event e: t if i coincides with e, the prefix of p coincides with e,
or V occurs in the query term t

q where c if it has positive polarity in the sub-query q

q let l if it has positive polarity in the sub-query q or occurs
on the left hand side of an assignment in l

q group by g

aggregate a

if it occurs in g or on the left hand side of an assign-
ment in a

and{q1,...,qk} if it has positive polarity in any sub-query qi

or{q1,...,qk} if it has positive polarity in all sub-queries q1,. . . ,qk

Note that the operator not does intentionally not occur in the in-
ductive definition of polarity. As a consequence, in contrast to the
polarity as it is defined for variables in mathematical logic, variables
that are nested in multiple negations cannot have positive polarity.
This particular deviation between the two notions is because Dura
applies negation as failure whereas mathematical logic applies classi-
cal negation.

67

range restriction of queries The range restriction of queries
is defined inductively as follows. The query

event e: t is range restricted (RR)

q where c is RR if q is RR and all references of c have positive
polarity in q

q let l is RR if q is RR and all references on the right hand
side of assignments in l have positive polarity in q

q group by g

aggregate a

is RR if q is RR and references on the right hand side of
assignments in a and in g have positive polarity in q

not{ q } where c is RR if q is RR and each reference of c has positive
polarity in its comprising query or in q

and{q1,...,qk} is RR if all sub-queries q1, . . . , qk are RR

or{q1,...,qk} is RR if all sub-queries q1, . . . , qk are RR

range restriction of rules In anticipation of the notions, de-
ductive and reactive rules

DETECT c ON q END and ON q DO a END

are range restricted, if all references that occur in the construct term c

or the action a, respectively, have positive polarity in q and if further-
more the query q is range restricted.

Interestingly, the range restriction of rules depends, in addition to
the polarity of variables in the rule head, on the range restriction
of the query in the body. This discrepancy to range restriction as
it is usually defined for rules considered in mathematical logic and
logic programming is required to cover the constructs that are only
available in Dura.

example In Listing 5.14, the variable A and the identifier f have
positive polarity in the atomic sub-query of the negation whereas
thereof only the variable A has positive polarity in the conjunctive
query. In addition, the identifier e has positive polarity in the disjunc-
tive and conjunctive query, respectively.

The rule is, however, not range restricted, because the condition
{e,f} within 30 contains the identifier f which does not have positive
polarity in the conjunctive query.

weak range restriction For convenience, it seems desirable
to apply a slightly more liberal variation of range restriction, which
facilitates a more unrestricted replacement of conditions referring to
negated queries. The following definition of weak range restriction
generalizes the one from above and enables, eg, to specify conditions
referring to negated queries not only in the supplement of the nega-

68

Listing 5.14: Polarity and Range Restiction

DETECT

pre-alarm{ area{var A} }

ON

and{

or{

event e: temp{ area{var A}, value{var T} }

event e: smoke{ area{var A}, conc{var C} }

}

not event f: alarm{ id{var Id}, area{var A} }

} where { var T > 100, var C > 0.1, {e,f} within 1min }

END �
tion but also in the supplement of queries containing the negation. It
does not increase the expressiveness of Dura, though. In fact, weakly
range restricted rules can be converted to semantically equivalent
range restricted rules. For details refer to Section 10.3.6.

A reference has weak positive polarity in the query

not{ q } if it has positive polarity in q

and{q1,...,qk} if it has (weak) positive polarity in any sub-query qi

or{q1,...,qk} if it has positive polarity in one sub-query qi or weak
positive polarity in all sub-queries q1, . . . , qk

Except for the different term, the definition of range restriction and
weak range restriction for queries and rules only differs in one case that
applies for the range restriction for queries. The query

q where c is weakly RR if q is weakly RR and all references of a
conjunct of c with weak positive polarity in q refer to
the same atomic query

example In Listing 5.14, the variables T, C, and Id as well as the
identifier f have weak positive polarity but no positive polarity in
the conjunctive query. Moreover, the rule and accordingly all of its
sub-queries are weakly range restricted.

Note that in the following it is sufficient if rules and queries are
weakly range restricted. Obtaining rules that are range restricted in
the strict sense is only relevant for the normalization of rules de-
scribed in Section 10.3.

5.2.2 Deductive Rules

Deductive rules derive higher level events based on the occurrence
of events in the stream. They consist of two distinct parts, the rule
head and the rule body, or consequent and antecedent as they are

69

also called [Bry+07], that share commonly named variables and are
denoted

DETECT «event» ON «query» END

whereby the body contains an event query and the head specifies
a complex event by means of a construct term. Note that the strict
separation between body and head contributes to the separation of
concerns as it separates the querying of events from the construction
of new events, two aspects that are indeed clearly orthogonal.

Deductive rules are incrementally evaluated to fit the volatile na-
ture of event streams, that is, new events are gradually derived ac-
cording to the specification in the rule head and added to the event
stream while events matching the query in the body of the rule oc-
cur. Hence, deductive rules correspond to materialized views from
database systems. As the name suggests, those kind of rules are de-
clarative and thus queried events are not subject to consumption or
absorbance. Moreover, rules are evaluated in a monotonic fashion and
thus events that have been derived cannot be updated and there is no
notion of premature events that corresponds to preliminary results
and may need to be reverted if further events arrive in the system.

reception time of derived events The reception time of de-
rived events is implicitly determined by the EPS unless the reception
time is explicitly adapted by the programmer as described below.

By default, the reception time of derived events is determined be
the smallest interval that comprises the reception time of all posi-
tively queried atomic events, that is, all atomic events whose event
identifier have positive polarity in the query in the body of the rule.
More formally, the begin and end of the reception time is determined
by least(begin(e1,...,ek)) and greatest(begin(e1,...,ek)), respec-
tively, whereby e1, . . . , ek are the identifiers with positive polarity in
the query of the rule body.

example Among other things, deductive rules are convenient for
schema mediation and the enrichment of basic events. In Listing 5.15

the first rule derives temp events from generic sensor-msg events which
describe their content by means of a rather unintuitive number in
their payload instead of a meaningful event type and provide the
temperature in degrees Kelvin. The second rule transforms temper-
ature readings from temp-value events carrying the temperature in
degrees Fahrenheit into temp events that specify the temperature in
degrees Celsius.

Naturally, in large infrastructures, there are several different kinds
of temperature sensors with different message formats and different
properties they provide. Therefore, a homogeneous representation is
highly desirable as rules can rely on one single event type to obtain

70

Listing 5.15: Schema Mediation

CONST TEMP_SENSOR_ID = 29

CONST SMOKE_SENSOR_ID = 59

DETECT

temp{ area{var A}, value{Tkel-273.15}, sensor-id{var S} }

ON

event e: sensor-msg{

type{const TEMP_SENSOR_ID},

area{var A}, value{var Tkel}, sensor{var S}

}

END

DETECT

temp{ area{var A}, value{var Tcel}, sensor-id{var S} }

ON

event e: temp-value{ aid{var A}, val{var Tfah}, sid{var S} }

let { var Tcel = (var Tfah - 32)/1.8 }

END �
the temperature and do not need to be aware of all different event
types and formats that are available. Moreover, using a homogeneous
representation improves the maintainability of rules, as new sensors
with different formats can be easily integrated by simply adding a
rule that transforms events of the new format into temp events.

example Deductive rules can also be used to define a hierarchy of
events to obtain various representations of the same event with differ-
ent levels of abstraction. The rules in Listing 5.16, for instance, specify
that uncertain fire alarms, potential overcrowding, and calls made by
emergency telephones are all a kind of uncertain alarm whereas un-
certain alarms and certain alarms are alarms.

Note that the event identifier of all atomic queries intentionally
coincides with e. Therefore, e is positive with in the disjunctive query
and the reception time can be determined as described above.

Depending on the requirements, programmers can thus write very
generic rules that are just querying alarms, or, if desired, query more
specific events to formulate more rules that apply only in the specific
situation.

adapting the reception time of events By default, derived
events are associated with a reception time that depends on the times
of the events it has been derived from. More precisely, the default
reception time of derived events corresponds to the smallest time in-
terval comprising all time intervals of positively queried events that
contributed to its derivation, that is, the begin and end of derived
events corresponds to the least beginning and largest ending of all
positively queried events, respectively.

71

Listing 5.16: A Hierarchy of Events

DETECT

uncertain-alarm{ area{var A} }

ON

or{

event e: uncertain-fire-alarm{ area{var A} },

event e: potential-overcrowding{ area{var A} },

event e: sos-telephone-call{ area{var A} }

}

END

DETECT

alarm{ area{var A} }

ON

or{

event e: uncertain-alarm{ area{var A} },

event e: certain-alarm{ area{var A} }

}

END �
Although the reception time of events is implicitly determined by

the system, programmers can specify an alternative definition as long
as the preconditions discussed in Section 5.2.5 are satisfied. In very
simplified terms, it is sufficient if the adapted time is specified relative
to the end of all reception times of events positively queried in the
body of the rule.

example One situation where adapting the time of derived events
seems desirable is the following. Temperature sensors usually emit
temperature values in regular intervals, eg, every 15 seconds. Thus, if
more than one minute has passed after the last temp event has been
obtained by the system one can conclude that the corresponding sen-
sor is broken. However, although the default time determined by the
EPS is usually sensible for derived events, in this particular case it
seems desirable to adapt the time for broken-temp-sensor events to
corresponds to the first time a temp event remains absent. This is real-
ized in Listing 5.17 by explicitly overwriting the end of the reception
time with end(e) + 15sec.

structure of rules Recall that CEP is indeed about the detec-
tion of higher level events in a continuous and timely fashion and not
about expressing arbitrary computations. Accordingly, EQLs are com-
monly restriction to hierarchical programs [Cla78; She85] to obtain
an efficient incremental evaluation of queries that suits the character-
istics of unbounded streams.

In addition to commonly applied hierarchical rules, Dura even sup-
ports some limited form of recursive rules. Recursive rules are valid
if they ensure that recursively derived events make some kind of tem-

72

Listing 5.17: User Defined Reception Time

DETECT

broken-temp-sensor{

sensor-id{var S},

reception-time{ end{ end(e)+15sec } }

}

ON

and{

event e: temp{ sensor-id{var S} }

not event f: temp{ sensor-id{var S} }

} where { f during from-end(e, 1min) }

END �
poral progress, that is, if the end of the reception time of derived
events exceeds the end of the reception time of the recursively que-
ried events by a constant duration. However, be aware that recursive
rules are intended for very specific purposes, eg, to internally realize
updates of stateful data which leads to cyclic dependencies between
rules, and it is usually sufficient for programmers to rely on hierar-
chical rules in Dura. Nevertheless, further details on recursive rules
are discussed in Section 5.2.4.

5.2.3 Reactive Rules

The execution of reactions to detected situations is realized in Dura by
means of reactive rules. Reactive rules make the transition from the
purely declarative world of events and stateful objects the imperative
world of actions.

Similar to deductive rules, reactive rules consist of a distinct head
and body part. Their body contains an event query specifying when
the rule triggers whereas their head contains a potentially composite
action specifying the corresponding reaction to the queried events. In
Dura reactive rules are denoted

ON «event query» DO «action» END

Whenever the event query in the body matches, the action in the head
is initiated. Thereby, the execution of so-called internal and external
actions is discriminated which is further described in Section 5.4.

Be aware that, although reactive rules of Dura resemble produc-
tions used in production and expert systems [BFC86; Wat85; DK75],
in particular if they alter stateful objects which is further addressed
in Section 5.3, there is no automatic conflict resolution between rules.
Accordingly, the action in the rule head is executed as often as the
event query in the body matches the stream of events.

example When an alarm occurs, eg, due to the outbreak of a fire,
there are various actions that need to be taken. Some of them are spe-

73

cific for certain situations and need approval of the human operator
whereas others are very generic, eg, the shutdown of the heat and
ventilation system, and can thus be triggered by the system without
further approval. This behavior is implemented by the reactive rule in
Listing 5.18. Whenever an alarm occurs, the immediate actions which
can be executed without further approval, are initiated by the system.

Listing 5.18: A Reactive Rule

ON

event e: alarm{ area{var A} }

DO

action a: immediate-actions{ area{var A} }

END �
Note that if there are several alarms for the same area, eg, if there

are multiple justifications that lead to the derivation of several alarm
events within a short amount of time, the immediate actions are ex-
ecuted multiple times. It is thus desirable to adapt the rule, eg, by
means of negated or existentially quantified queries, to prevent the
repeated execution of immediate actions.

request time of triggered actions Naturally, the time an
action is requested for execution by the EPS depends on the time the
event query in the body of the reactive rule matches. More precisely,
it corresponds to the end of the reception time that would be deter-
mined in case of a declarative rule.

Accordingly, in Listing 5.18 the time the immediate-actions action is
requested by the system simply corresponds to the end of the recep-
tion time of the alarm event. Note, however, that in case of physical
actions which are executed by external actuators the actual begin of
the action may be deferred because of system inherent latency effects.
This aspect of physical actions is elaborated in detail in Section 5.4
which comprehensively covers various aspects of complex actions in
Dura.

5.2.4 Recursive Rules

Dura supports a limited form of recursive rules. However, be aware
that Dura is an event query language intended for complex event pro-
cessing. Therefore, recursive rules are, by design, not intended to pro-
vide means for carrying out arbitrary computations as it is desirable
for general purpose languages like, for instance, Java and C#. In fact,
the EM use cases described in [SB10b; SBR11a] can be sufficiently mod-
eled by means of the recursion capabilities that are provided by Dura.

For rules that derive an event that is (directly or indirectly) queried
in their body, it must be satisfied that the end of the reception time of

74

the derived event exceeds the end of the reception time of the recur-
sively queried event by an arbitrary small but predetermined constant
duration. In other words, the reception time of events derived by re-
cursive rules needs to make temporal progress with respect to the
queried event whereby the amount of the temporal progress needs
to be deducible from the temporal conditions of the query. Note that
this condition relates to the stratification of rules [ABW88] and can
be seen as temporal stratification.

example The capabilities of recursive rules are exploited in List-
ing 5.19 to count the number of persons within a room based on enter

and exit events that report in regular intervals how many persons
have entered and exited an area.

Listing 5.19: A Recursive Rule

DETECT

person-count{

area{var A}, count{var Cnew},

reception-time{ end{ end(e)+10min } }

}

ON

and{

event e: person-count{ area{var A}, count{var C} },

event f: enter{ area{var A}, amount{var In} },

event g: exit{ area{var A}, amount{var Out} }

} where { f during from-end(e, 10min),

g during from-end(e, 10min) }

group by { event e, var C, var A }

aggregate { var Cin = sum(In), var Cout = sum(Out) }

let { var Cnew = var C + var Cin - var Cout }

END �
The basic idea is the following, a new person-count event is derived

every 10 minutes by collecting enter and exit events within this time-
span and by adding their cumulated values to the previous known
amount of persons in the area obtained by the (recursive) query to
person-count events. Note that the end of the reception time of the
derived person-count event is determined by end(e)+10min, thus the
time difference between two successive person-count events that have
been derived by this rule amounts to 10 minutes and therefore the
conditions for recursive rules are satisfied.

Note that for the sake of simplicity, we made the implicit assump-
tion that enter and exit events are issued at least once every 10 min-
utes. If there is not at least one enter and one exit event within every
10 minutes, the query in the body of the rule of Listing 5.19 does
not match and thus the rule does not detect any further events. For
a more robust implementation, which does not suffer from this issue,
three further rules need to be added to the program which cover the
cases when either an enter or an exit event occurs or none of them oc-

75

curs. An extension that resolves this issue more elegantly is suggested
in Chapter 13, though.

example Recursive rules are not restricted to positive event que-
ries but also allow for “recursion through negation” as long as the
temporal requirements on derived events are satisfied. This ability is
used in Listing 5.20 to imply smoke from the presence of high tem-
perature readings. However, the given examples is elaborated for di-
dactic reasons and has arguable relevance for the considered EM use
cases.

Listing 5.20: A Recursive Rule with Negation

DETECT

smoke{ ... }

ON

and{

event e: temp{ area{var A}, value{var T} }

not event f: smoke{ area{var A} }

} where {

var T > 400,

f during shorten(from-end-backward(e, 2min), 5sec)

}

END �
Note how the interval function shorten causes the required tempo-

ral distance between the reception times of queried and derived smoke

events: Unless the reception time of derived smoke events is manually
adapted it coincides with the reception time of the queried temp event.
Moreover, the temporal condition entails end(f) < end(e) - 5sec. It is
hence satisfied that the end of the reception time of derived smoke

events exceeds the end of the reception time of queried smoke events
by at least five seconds. Accordingly, the temporal requirements on
recursively derived events are satisfied.

If, however, the temporal condition of the rule is instead adapted
to f during from-end-backward(e, 2min) it merely entails end(f) < end(e)

and thus the end of the reception time of derived and queried temp

events can become arbitrary close. Therefore, there is no predeter-
mined temporal distance and thus the adapted conditions do not sat-
isfy the temporal requirements on recursively derived events.

5.2.5 Progressing Attributes: A Generalization of Time

The incremental evaluation of Dura queries is based on the Temporal
Stream Algebra (TSA) which has been proposed by Brodt and Bry
[BB12a]. In the following, we will informally summarize aspects of
TSA that are relevant for the specification of correct Dura rules by
means of informal examples. For the formal details refer to [BB12a].

76

progressing attributes Brodt and Bry [BB12a] propose a gen-
eralization of time called progressing attributes. Progressing attrib-
utes are specific attributes of event streams. In simplified terms, for a
progressing attribute a holds that for any upper bound b on the val-
ues of the attribute a there is a time p so that the values of all future
events exceed the bound in this attribute.

By interpreting the values of a and the bound b as functions a(t)
and b(t), respectively, the notion of progressing attributes can be
equivalently formulated by means of the Landau notation [Cor+01]:
a is a progressing attribute if for all constant functions b(t) holds
a(t) ∈ Ω(b(t)).

t

a

b

p

Figure 5.1: Illustration of a Progressing Attribute

The reception time of basic events is an example for a progressing
attribute: As time advances the reception time of newly obtained ba-
sic events grows and eventually all future events will be associated
with a reception time that exceeds any predetermined time bound
b. Be aware that the notion of progressing attributes does not require
that the values are monotonically increasing, as Figure 5.1 illustrates.1

progressing attributes in dura Each progressing attribute
of an event can be interpreted as an independent time line or time
model. Accordingly events can be associated with an arbitrary num-
ber of independent time lines. Note, however, that it is statically ver-
ified whether attributes distinguished as progressing attributes are
determined by suited values as it is described in the following.

Programmers can distinguish attributes as progressing attributes
in the schema of events by means of the predicate progressing spec-
ified in a where part amended to the schema as it is illustrated in
Listing 5.21. In addition to the designation of progressing attributes,

1 Note that the representation of the graph is rather simplified as it would be discrete
with realistic data.

77

the where part can also contain constraints that restrict the values of
attributes.

Listing 5.21: A Schema of Events with Progressing Attributes

temp{

id{identifier},

reception-time{ begin{timestamp}, end{timestamp} },

area{long}, value{double}, sensor-id{long}

} where {

progressing(id), progressing(reception-time.end),

reception-time.begin <= reception-time.end

} �
By default, the attributes id and reception-time.end, which are im-

plicit associated with every event, are distinguished as progressing
attributes. Moreover, the begin of the reception time is constrained
to be lower or equal to its end by means of the temporal formula
reception-time.begin <= reception-time.end. In the schema of temper-
ature events in Listing 5.21 these implicit properties and conditions
on attributes are explicitly specified.

progress information For the evaluation of rules by means of
TSA, it is not sufficient to know that there exists a point in time p from
which on all subsequent events exceed a given bound b in a certain
attribute. In addition, suited progress information is required that
facilitates to determine whether the time p has actually passed. Ac-
cordingly, expressions determining values of progressing attributes
need to provide progress information.

With respect to the rule

DETECT e ON q END

an expression provides progress information for a progressing at-
tribute of e, if it maintains progress information from sequence.next()

or system-time.now() or if it maintains progress information from all
events queried in q. Thereby, maintaining progress information is de-
fined inductively as follows. Let t, t1, . . . , tn determine expressions
and d a duration, then

1. t coinciding with a reference maintains progress information if
it refers to a progressing attributes of an event queried by q,

2. t + d maintains progress information of t,

3. greatest(t1,...,tn) maintains progress information of all terms
t1, . . . , tn, and

4. floor(t, d) and ceil(t, d) maintain progress information of t.

78

In addition, if the condition t1 θ t2 with θ ∈ {<, <=, =} is satisfied for
the expressions t1 and t2, eg, if it is explicitly specified in the where

part of q or in the schema of an event queried by q, then t2 maintains
progress information of t1 and of t2.

incremental evaluation and garbage collection Incre-
mental evaluation and garbage collection are two crucial properties
of CEP. Event streams are conceptually unbounded and therefore que-
ries can only be evaluated in an incremental fashion, as the stream is
never completely obtained. Moreover, the unbounded stream cannot
be completely persisted and thus any machine will run short of stor-
age without appropriate garbage collection of obsolete events. Natu-
rally, TSA supports both, at least if certain conditions on progressing
attributes are met.

To facilitate the incremental evaluation of a rule

DETECT e ON q END

an expression determining a progressing attribute of e needs to estab-
lish an upper bound for a progressing attribute of each event queried
in q. Similarly, to facilitate garbage collection of an event queried in q

an expression determining a progressing attribute of e needs to estab-
lish a lower bound for a progressing attribute of the queried event.

Note that conditions that enable the incremental evaluation of rules
are mandatory. By contrast, garbage collection of queried events is op-
tional and thus conditions enabling garbage collection may be omit-
ted.2 Rules not facilitating garbage collection on an event should be
used as rarely as possible and with extreme caution, though.

example Consider the rule deriving ce events in Listing 5.22. By
default, the id attribute of derived ce events is implicitly determined
by sequence.next() and the end of the reception time of derived ce

events is implicitly determined by greatest(end(e), end(f)).

Listing 5.22: Simplified Rule with Negation

DETECT

ce{ ... }

ON

and{

event e: ...,

event f: ...,

not event g: ...

}

END �
2 Note that in some cases such kind of conditions simply do not exists, eg, for nega-

tions over finite but arbitrarily large time windows.

79

Note that hence, the rule cannot be incrementally evaluated, as
none of the progressing attributes of ce is determined by an expres-
sion that maintains progress information from all queried events, that
is, maintains progress information from e, f, and g. This issue is com-
monly resolved for rules with negation by adding a temporal con-
straint to the where part that specifies an upper bound on the end of
the negatively queried event which is relative to a positively queried
event, eg, g during from-end(e, 20sec).

And indeed, this condition is equivalent to

and{ end(e) < begin(g), end(g) < end(e) + 20sec }

which furthermore entails

end(g) - 20sec < greatest(end(e), end(f))

Therefore, the expression greatest(end(e), end(f)) now also main-
tains progress information of g and furthermore specifies an upper
bound on a progressing attribute of every queried event so that the
query can be incrementally evaluated.

If furthermore the temporal condition {e,f} within 1min is added to
the where part of the query, then garbage collection of all three events
becomes feasible. The temporal condition is equivalent to

greatest(end(e), end(f)) - least(begin(e),begin(f)) <= 1min

as the condition reception-time.begin <= reception-time.end implicit
added to the schema of every event, it furthermore entails

and{ greatest(end(e), end(f)) <= end(e) + 1min,

greatest(end(e), end(f)) <= end(f) + 1min }

In combination with the condition g during from-end(e, 20sec) from
above it even entails

greatest(end(e), end(f)) < end(g) + 1min

and thus the expression greatest(end(e), end(f)) maintains progress
information of all queried events and entails a lower bound on pro-
gressing attributes of all queried events, thus garbage collection for e,
f, and g events is feasible.

5.3 stateful objects

Stateful objects are data terms that can be altered over time. They
resemble facts in a knowledge base or tuples in a database with
the difference that updates of their values are carried out in a non-
destructive and declarative way. To this end, updates merely mark
the redundant values of stateful objects as obsolete so that they re-
main in the system and can be obtained by appropriate queries. In

80

this way, queries for stateful objects are not limited to obtain the most
recent value, but can also refer to former values of stateful objects.

Stateful objects are particularly useful to model the varying prop-
erties of (physical) objects in a non-volatile manner. This includes, eg,
the global operation mode of the infrastructure as well as the cur-
rent status of external devices. Moreover, static information, such as,
topology information, can be represented by means of static stateful
objects, that is, stateful objects that cannot be modified at runtime.

Stateful objects are carefully designed to complement the volatile
nature of events and at the same time suit the temporal aspects of
event processing. Other EQLs often lack a notion that is capable of
modeling stateful information or merely provide an integration with
common databases or knowledge bases, which lack a notion of time.

5.3.1 Representation of Stateful Objects

The representation of stateful objects closely resembles the represen-
tation of events, at least at the language level that is visible to pro-
grammers. Each stateful object has a type and a user defined payload
that is specified by means of Xcerpt terms conforming to the Dura
specific restrictions.

example A particularly relevant stateful object represents the op-
eration mode that specifies the conditions of each area, ie, whether it
is in normal, exceptional, or emergency condition. According to the cur-
rent operation mode, the reactions to certain events may substantially
differ as, eg, the emerging overcrowding of a metro station requires
immediate actions in case of emergencies whereas no or at least other
actions are taken when the station is in normal operation mode dur-
ing rush hour.

Listing 5.23: Schema of a Stateful Object

operation-mode{ area{long}, mode{int} } �
Throughout the following examples we presume that the constants

OPM_NORMAL = 0, OPM_EXCEPTIONAL = 1, and OPM_EMERGENCY = 2 are available.
In this way, the mode is efficiently represented as an attribute of type
int whereas the name of the constants are convenient for program-
mers. Moreover, operation modes obtain a natural order and can thus
be conveniently compared by means of inequations.

internal representation of stateful objects Whenever
a stateful object is modified, its current value is not overwritten but
instead merely marked as obsolete and remains, at least conceptually,
in the system. To this end, a stateful object is actually determined by

81

a series of successive values whereby each value is associated with
a unique key and only valid within a certain time interval. However,
be aware that the upper bound of the time interval remains undeter-
mined until the moment the corresponding value becomes obsolete.3

Accordingly, the representation of values, which in combination de-
termine a stateful object, resembles the representation of fluents from
the event calculus [MS02; Sha99]. Fluents are properties in a logic
based formalism that are true if they have been initiated by an action
and remain true until they have been terminated by another action.
In fact, the same idea is used to internally represent stateful objects.
But despite the close resemblance of fluents and stateful objects, the
focus of the event calculus and Dura substantially differs. The event
calculus aims at reasoning about temporal properties of (temporal)
systems whereas Dura is an event query language which aims at de-
tecting and reacting to high level situations that emerge at runtime.

static stateful objects Stateful objects are particularly use-
ful to model varying properties that describe the state of the infras-
tructure. However, some information, such as runtime independent
domain knowledge is only rarely updated or does not need to be
updated at runtime at all. This kind of information is represented
in Dura by means of static or constant stateful objects, that is, state-
ful objects whose values are initiated once and cannot be updated at
runtime. Accordingly, the initial values of a stateful object are always
valid and thus queries can be formulated more concisely as temporal
restrictions are not required.

Listing 5.24: Schema of a Static Stateful Object

static

sensor{ sensor-id{long}, area{long}, type{long} } �
Static stateful objects are distinguished in their schema by means of

the keyword static. Listing 5.24 describes, for instance, the schema of
the static stateful object sensor which represents a mapping between
the unique identifiers specified in the payload of raw sensor events
and the areas the sensors are actually located in.

initial values of stateful objects Initial values of stateful
objects can be provided during the initialization phase of the EPS. This
is in particular necessary for, but not limited to, the initialization of
static stateful objects that cannot be modified at runtime.

The initialization of stateful objects is further illustrated in Sec-
tion 12.3.

3 As a consequence of this representation and in contrast to events, the valid time is
not explicitly represented in the schema of stateful objects.

82

5.3.2 Atomic Stateful Object Queries

Stateful objects are queried in a way that resembles atomic event que-
ries, that is, by means of query patterns with variables in place of the
pattern where relevant data should be extracted.

Each pattern is preceded by the keyword state and an alphanu-
meric identifier that is subsequently used to constrain the time of que-
ried stateful objects, more precisely, to constrain the time of matching
values determining a stateful object.

As the payload of stateful objects can be modified, it is indeed im-
portant to restrict the time of the query, as it otherwise matches all
values of the stateful object regardless of when they have been valid.
Note that this also includes future values of the stateful object, but
similar to temporally unrestricted joins of events, the query naturally
does not produce answers until the data of the stateful object actually
becomes available.

example The atomic query in Listing 5.25 matches the values of
the stateful object operation-mode and binds the variables A and M to
the area and its corresponding operation mode. By design, this query
matches the values of the stateful object regardless of when they are
valid, unless the time of the query is restricted appropriately. As a
consequence, the query may indeed match repeatedly and provide
multiple bindings for the operation mode which are valid at different
times.

Listing 5.25: An Atomic State Query

state s: operation-mode{ area{var A}, mode{var M} } �
Be aware that a query of a stateful object can result in multiple

variable bindings, even if the query time is restricted to a single in-
stant. For instance, in Listing 5.25 the stateful object operation-mode is
queried and as there are usually several areas in a metro station and
each area has its own operation mode, the query of the stateful object
results in multiple bindings, one for each area.

5.3.3 Integration with Event Queries

A major advantage of Dura over many other EQLs is its deep inte-
gration of queries for events and stateful objects. Other EQLs often
provide either a notion of events or a notion similar to stateful objects
but do not integrate the two of them into a homogeneous language.
EQLs based on the event calculus [ASP12; Pas05], for instance use flu-
ents to emulate events whereas EQLs based on production systems
[Drob; TIB] use updates to the knowledge base to emulate events.

83

However, we argue that the two notions should be kept separate as
they cover different aspects of CEP. Accordingly, the notions of events
and stateful objects are clearly separated in Dura. As a consequence,
queries for stateful objects, which merely obtain the value of a state-
ful object at a certain time, need to be specified in conjunction with
event queries in the body of rules because deductive and reactive
rules are intended to detect or react to observable changes which are
represented in Dura solely by means of events.

This contrasts with production systems where queries for facts are
specified in the body of rules and rules are triggered when the query
matches the facts that are currently available in the knowledge base.
However, production systems do not have a notion of events and thus
do not need to distinguish events from facts.

example Listing 5.26 contains a composite query integrating que-
ries for events and stateful objects. As with pure composite event que-
ries, shared variables are implicitly joined and variables with positive
polarity can be specified in the supplement of a query or in the head
of a rule. Accordingly, the query matches when an alarm occurs and
whenever the corresponding area is in emergency operation mode.

Listing 5.26: A Composite Query with Stateful Objects

and{

event e: alarm{ area{var A} },

state s: operation-mode{ area{var A}, mode{OPM_EMERGENCY} }

} �
Note that the join between the event and the stateful object is

temporally unbounded and thus the query for the operation mode
matches not only areas that are currently, that is, when the alarm
event occurs, in emergency mode, but matches whenever the opera-
tion mode of an area is emergency. Consequently, the composite query
matches whenever the operation mode has been emergency in the
past and it matches again when the operation mode is updated to
emergency in the future.

constraining the query time To obtain the values of a state-
ful object at a certain time, the query time of the stateful object needs
to be restricted appropriately. To this end, the identifier introduced
in a query of stateful objects is used in the where part of composite
queries to constrain the time when the values of stateful objects are
actually queried.

There are two predicates that are intended to be used with stateful
objects, namely, valid-at and valid-during. The predicate valid-at

constrains the query time of a stateful object to a certain time point
whereas the predicate valid-during is used to obtain values that have

84

been valid for some time during a given time interval. Both predicates
are actually syntactic sugar for the formulas from Table 5.3 whereby

s valid-at tp ≡ and{cre(s) < tp, tp <= term(s)}

s valid-during ti ≡ and{cre(s) < end(ti), begin(ti) <= term(s)}

Table 5.3: Translation of Relations for Stateful Objects to Formulas

cre refers to the time a matching value of a stateful object became
valid and term refers to the time the value has been marked as invalid
again. Note that, cre and term are short for created and terminated
which is related to the objects that are used to internally represent
values of stateful objects.

example Usually the time constraining the values of a stateful
objects refers to the past. However, it is also sound to refer to times
in the future. In that case the evaluation of the composite query is,
similar to the evaluation of negation and grouping, deferred until the
given time has passed and the requested data is actually available
and the query can be evaluated correctly.

Listing 5.27: Constrained Stateful Object Query Time

and{

event e: alarm{ area{var A} },

state s: operation-mode{ area{var A}, mode{OPM_EMERGENCY} }

} where { s valid-during from-end-backward(e, 2min) } �
The query in Listing 5.27 matches whenever an alert is detected and

the operation mode of the corresponding area has been emergency
during the last two minutes before the end of the alarm. Note that
whenever the alarm occurs, the composite query is instantaneously
evaluated, as the query for the stateful object refers to values that
have been valid two minutes before the occurrence of the event, that
is, to values that are already known to the EPS.

However, the given query can indeed be modified so that the state-
ful object is queried after the detection of the event, eg, by adapting
its where part to

where { s valid-during from-end(e, 2min) }

In that case, the query cannot be answered immediately after the
detection of the alarm event anymore, as it depends on the values of
the stateful objects within two minutes after the detection of the event.
Therefore, the evaluation of the query of the stateful object, and hence
of the complete composite query, is deferred until the values of the
stateful object are determined and the query of the stateful object can
be correctly answered.

85

negation of queries Queries of stateful objects can be negated,
though similar restrictions as for negated event queries apply. When-
ever the query of a stateful object is negated, the query time of the
stateful object needs to be bounded above with respect to a progress-
ing attribute of a query that has positive polarity in the common
comprising query, eg, with respect to the reception time of a posi-
tively queried event. Recall that this restriction is mandatory as tem-
porally unrestricted negated queries over streams conceptually can-
not be evaluated in an incremental fashion. It is not a restriction that
is specific for Dura.

Listing 5.28: A Negated Stateful Object Query

and{

event e: alarm{ area{var A} },

not state s: operation-mode{ area{var A}, mode{OPM_EMERGENCY} }

} where { s valid-during from-end-backward(e, 2min) } �
The query in Listing 5.28 matches whenever an alarm occurs and

within two minutes before the end of the alarm the operation mode
of the corresponding area has never been set to emergency. Note that
the validity of matching stateful objects is temporally bound above by
the end of the reception time associated with the alarm event. Hence,
the negation of the stateful object is sound and the query can be
evaluated right after the detection of the alarm.

impact on the reception time of events By default, the
reception time of events derived by declarative rules depends on the
times of event that have positive polarity in the rule body. In presence
of queries for stateful objects, the reception time of derived events ad-
ditionally incorporates the query time of stateful objects that have
positive polarity in the rule body. More precisely, the end of the re-
ception time is at least as large as the point in time when a query for
a stateful object matches. For instance, the end of the reception time
of events derived by means of the query from Listing 5.27 is at least
as large as greatest(cre(s), end(e)-2min).

Note however, that the valid time of queried stateful objects is not
incorporated into the reception time of derived events. The end of
the valid time may be undetermined when a query for a stateful
object matches or is arbitrary large in case of static stateful objects,
which cannot be terminated or updated. Accordingly, incorporating
the valid time of stateful objects into the reception time of derived
events would cause rather undesirable effects that are not compatible
with the volatile nature of events.

86

5.3.4 Modifying Stateful Objects

Stateful objects are modified by means of internal actions that are
triggered by reactive rules. For each stateful object there are internal
update actions available that are implicitly provided by the definition
of the stateful object. However, as Dura does not support the retrac-
tion of already derived events, only currently valid values of stateful
objects can be modified. More precisely, values of a stateful objects
can be updated only if they are valid when the corresponding action
is requested by means of a reactive rule.

Naturally, unless a reactive rule triggers the modification of a state-
ful object its values remain unchanged, although this circumstance is
not explicitly indicated by means of rules. This aspect relates to the so-
called frame problem [Sha99], but Dura is, in contrast to approaches
like the event calculus [KS86], not intended to perform reasoning on
the effect of actions.

action schema The type and the schema of the corresponding
actions are derived from the type and the schema of the stateful ob-
jects they are related to.

«name»$update{

query{identifier},

set{ «explicit attributes» }

}

The update action of a stateful object has the name «name»$update

and two attributes query and set. The query attribute refers to a key
that identifies the currently valid value of the stateful object that
should be updated. The set attribute is a composite attribute con-
taining all explicit attributes of the stateful object, which specifies the
substitute values.

example The body of reactive rules that are intended to update a
stateful object usually includes a query of the corresponding stateful
object. The query is required to determine the key that identifies the
currently valid values and which need to be specified in the query

attribute of the update action.
The reactive rule in Listing 5.29 updates the operation mode of an

area to exceptional whenever a pre-alarm is detected in this area and
the operation mode is not already set to exceptional or to a higher
mode. Recall that the mode is of type long and that OPM_EXCEPTIONAL is
a constant associated with the value 2.

Note that by constraining the time of the stateful object query to
end(e), the time the update is requested coincides with the time the
values of the stateful object are queried. As a consequence, matched
values that are distinguished with the key id(s) are guaranteed to

87

Listing 5.29: Updating a Stateful Object

ON

and{

event e: pre-alarm{ area{var A} },

state s: operation-mode{ area{var A}, mode{var M} }

} where { s valid-at end(e), var M < OPM_EXCEPTIONAL }

DO

action a: operation-mode$update{

query{id(s)}, set{ area{var A}, mode{OPM_EXCEPTIONAL} }

}

END �
be valid at the time the update is requested and therefore updates
triggered by this rule are always successful.

simultaneous updates During runtime it may happen that the
values of a stateful object are modified in the same instant, eg, when
events representing different justifications of the same incident trig-
ger a reactive rule. In Dura this kind of race condition is resolved by
considering all updates requested in the same instance as successful.
As a consequence, multiple updated values are concurrently valid.

Although this approach is direct and straight forward from an op-
erational point of view, note that at least no information is lost and no
kind of undetermined state arises, its implications seem quite unde-
sirable in practice. Eg, an area that is in normal and emergency mode
at the same time is not really meaningful. Details on how to handle
this kine of ambiguity are described in Section 5.3.8.

5.3.5 Creating and Terminating Values

Besides updating values of a stateful objects, new values can be cre-
ated and the validity of existing values can be terminated by means
of the actions «name»$create and «name»$terminate.

The schema of the «name»$create action coincides with the explicit
attributes of the corresponding stateful object. Whenever it is exe-
cuted, a new value, carrying parameters specified for the action in its
payload, becomes a valid representation of the corresponding state-
ful object. The opposed effect is achieved by means of the action
«name»$terminate which expects as parameter a key that refers to a
currently valid value of a stateful object. When successfully executed,
the referenced values is rendered invalid.

example Although rarely necessary, areas can be added to and
removed from the stateful object operation mode at runtime by means
of the following actions:

88

operation-mode$create{ area{long}, mode{long} }

operation-mode$terminate{ query{identifier} }

The definition of these actions is implicitly entailed by definition of
the stateful object operation mode and can be used just like regular
user defined actions.

5.3.6 Querying State Changes

Detecting and reacting to updates of stateful objects is as important as
querying the current state. For instance, the update of the operation
mode to emergency entails various immediate reactions that need to
be timely carried out. However, by design, the body of a rule always
needs to contain at least one event query and cannot solely be com-
posed from (one or several) queries of stateful objects. Consequently,
querying changes of stateful objects in a manner that resembles que-
ries in production system, where facts are specified in the body of
rules and rules are eventually triggered when the given queries match
the knowledge base, is not possible.

In Dura, state changes are indicated by means of special events
that are automatically derived by the system. Whenever a stateful
object has been successfully updated, created, or terminated an event
referring to the affected values of the stateful object is derived by the
system. Similar to actions on stateful objects, the name and schema of
these kind of events is related to the stateful object they report about.

event schemas For each stateful object, there are three events re-
lated to its modification, namely «name»$updated, «name»$created, and
«name»$terminated, with the following schemas:

«name»$created{ payload{ «attributes» } }

«name»$terminated{ payload{ «attributes» } }

«name»$updated{

old-payload{ «attributes» }, new-payload{ «attributes» }

}

Thereby «attributes» includes the explicit attributes of the stateful ob-
ject «name» in addition to the attribute id{identifier}, which contains
the key that identifies the value that has been created, terminated, or
updated.

example The event query in Listing 5.30 matches whenever the
operation mode of an area is escalated.

Note that this query can be effectively used to specify a filter on
alarm events. When a fire breaks out, there are usually various jus-
tifications, observed by independent sensors, that lead to multiple
detections of basically the same alarm. Accordingly, there are several
alarm events that are basically caused by the same origin. And thus,

89

Listing 5.30: Querying State Changes

event e: operation-mode$updated{

new-payload{ area{var A}, operation-mode{var Mnew} }

old-payload{ area{var A}, operation-mode{var Mold} }

} where { var Mnew > var Mold } �
executing immediate actions for each of them is undesirable and can
cause severe consequences as the actions may interfere in an unin-
tended manner.

By contrast, the operation mode is only rarely escalated. In particu-
larly, it is only escalated to emergency once, regardless of the number
of derived alarm events. Accordingly, triggering the immediate ac-
tions merely on the escalation of the operation mode, eg, to emergency,
prevents the repeated execution of immediate actions.

5.3.7 State Based Processing

Stateful objects are well suited to model states. Instead of modeling
the varying properties of concrete physical objects they can as well
model properties of abstract objects, eg, the state of an entire metro
station.

Moreover, the possibility to integrate queries of events and stateful
objects in rules that derive events and trigger reactions enables some
kind of state based processing. For instance, composite queries con-
sidering the state of the infrastructure can be used for the derivation
of higher level events that are specific for the current situation, an
aspect that is highly desirable for EM. In addition, queries in the body
of reactive rules may also refer to the values of stateful objects. Thus,
the system may propose or initiate different reactions depending on
the current state and hence provide more appropriate and specific
reactions.

Recall that queries of stateful objects are not limited to query the
current state but can also obtain values of past states. Accordingly,
rules are not limited to incorporate the current state, but can also
refer to the values of past states to derive appropriate events.

example Recall the rule from Listing 5.29. Whenever a pre-alarm
is detected, the operation mode of the corresponding area is set to
exceptional. Although this behavior seems sound, it may be further
elaborated to provide better results in border cases.

During emergencies, areas in exceptional operation mode may be
easily overlooked or ignored by operators as they have to focus on
those areas with major problems. As a result, a pre-alarm and its
implications may not be noticed by the operators. This is sound as
long as the pre-alarm does not eventually evolve into a proper alarm.

90

However, if the operation mode of the corresponding area has shown
other problems in the past, that is, its operation mode has not been
normal within the last, eg, two minutes, it is likely that there is indeed
a serious issue in the corresponding area. And thus the operation
mode of the area needs to be escalated to emergency.

Listing 5.31: A State Dependent Query

ON

and{

event e: pre-alarm{ area{var A} },

state s: operation-mode{ area{var A}, mode{var M} }

not state t: operation-mode{ area{var A}, mode{OPM_NORMAL} }

} where { s valid-at end(e), M < OPM_EMERGENCY,

t valid-during from-end-backward(e, 2min) }

DO

action a: operation-mode$update{

query{id(s)}, set{ area{var A}, mode{OPM_EMERGENCY} }

}

END �
Accordingly, the rule from Listing 5.29 is supplemented with the

one contained in Listing 5.31. It controls, in addition to the current op-
eration mode, whether the operation mode of the corresponding area
has not been normal up until two minutes before the occurrence of
the pre-alarm, and, if so, escalates the operation mode to emergency
directly. In this way, pre-alarms are treated more seriously depending
on the values of past states.

Note that the rules in Listing 5.29 and Listing 5.31 are conflicting
in the sense that they may simultaneously trigger and cause two up-
dates of the operation mode which eventually results in the operation
modes exceptional and emergency being valid for the same area at the
same time which is clearly undesirable. This aspect of stateful objects
and means to avoid it are covered in more detail in the following.

5.3.8 Resolving Simultaneous Updates

When two reactive rules are requesting updates of the same stateful
object in the same instant, both updates are successful and as a result
both updated values are valid at the same time. For instance, updat-
ing the operation mode for an area in the same moment may render
the area in normal and emergency mode at the same time. Although
this behavior provides a clear and robust semantic from an opera-
tional point of view, note that no information is lost and no kind of
undetermined unforeseeable state arises, the unusual implications on
a semantical level need to be taken care of.

91

There are basically two different ways in which this issue can be
addressed, namely avoiding conflicting updates and specifying selec-
tion criterion that choose a suited result from the conflicting values.

avoiding conflicting queries The queries in the body of
conflicting rules can always be adapted so that simultaneous updates
of the same stateful object are semantically impossible. This approach
is not specific for Dura and applies also for other languages.

Listing 5.32: Adapted Query from Listing 5.29

and{

event e: pre-alarm{ area{var A} },

state s: operation-mode{ area{var A}, mode{var M} }

state t: operation-mode{ area{var A}, mode{OPM_NORMAL} }

} where { s valid-at end(e), var M < OPM_EXCEPTIONAL,

t valid-during from-end-backward(e, 2min) } �
Listing 5.32 shows one possibility of how to resolve the conflict

between the rules of Listing 5.31 and Listing 5.29. This is achieved
by extending the query from Listing 5.29 with a positive query for
a normal operation mode. Note that the two composite queries only
differ in whether the query for the stateful object t is negated or not
and therefore it is guaranteed that only one of them matches.

Although this is a very generic way to resolve conflicts, it requires
complete knowledge of the entire program and is not very robust
with respect to modifications of the program. When rules are adapted
or new rules are added to a program, new conflicts may be intro-
duced that need to be resolved again. In particular for large programs
this can be a very challenging and error prone task. Moreover, pro-
grammers can easily introduce errors to the rules that unintentionally
alter the semantics of the program or do not completely eliminate the
possibility of simultaneous updates.

choosing among conflicting values Conflicting updates
can also be resolved by looking at the parameters of all conflicting
updates and selecting the most suited one according to its parame-
ters. For instance, when multiple updates of the operation mode are
concurrently requested, it seems reasonable from an EM perspective
to determine the result by the highest mode that is specified among
all conflicting updates. To this end, the schema of stateful objects can
be associated with a on conflict select part that specifies a selection
criterion that applies in case of conflicting updates to the respective
stateful object.

When an operation-mode$update action is requested, the attributes
of the updated value, including its implicit key, are determined by
the parameters of the update action. In case of the stateful object
operation-mode the update action determines the attributes area, mode,

92

and id of the updated value. The on conflict select part then specifies
which update prevails in case multiple update actions are concurrently
issued. To this end, it it refers to the attributes that are determined
by the update action and specifies an order among update actions by
means of the operators max and min.

Listing 5.33: Stateful Object Schema with Conflict Resolution

operation-mode{ area{long}, mode{long} }

on conflict select { max mode, min id } �
The selection criteria in Listing 5.33 specifies that the update that

determines the highest mode prevails. Moreover, if there are several
concurrent actions updating the stateful object to the same mode the
one that determines the highest id prevails. As the id is unique, it is
guaranteed that only one action is actually successful and thus that
merely a single updated value is created.

Be aware that the id attribute is more or less arbitrarily determined.
But as the selection criterion ensures that all conflicting update actions
determine the same mode it is not further relevant which of them is
actually successful as, except for the id, their result does not differ.

Using the actual data to resolve conflicts has turned out to be both
practical and convenient to resolve conflicting updates. In fact, we
learned from the EMILI use cases [SB10b; SBR11a] that in general a
conservative assessment of the current situation is preferred over a
too optimistic situation assessment in the domain of EM. Accordingly,
choosing the highest of all conflicting operation modes is a suitable
approach to obtain an unambiguous operation mode for each area.

5.3.9 A Generalization of ECA Rules

Event-Condition-Action (ECA) rules have been introduced in the con-
text of active databases [PD99] where they are commonly applied to
anticipate and react to changes of the database. Conventional ECA

rules consists of three distinct parts, namely an event, condition, and
action part.

ON «event» IF «condition» DO «action»

The specified action is executed when the event query matches and
in the same instant the condition holds. Thereby, shared variables
are used to exchange variable bindings between the different parts
of the rule. However, each rule part is evaluated independently from
the others and there are no means to couple the distinct parts more
closely and to affect the time of their evaluation.

93

Composite queries and reactive rules in Dura are convenient to ex-
press ECA rules. And due to the homogeneous integration of queries
of events and stateful objects, reactive rules offer more flexibility and
expressiveness over traditional ECA rules.

eca rules in dura ECA rules are expressed by means of reactive
rules. The event and condition part of ECA rules are formulated by
means of a composite query containing queries of events and state-
ful objects, respectively. As a consequence, the event and condition
part are no longer separated and hence the resulting rules are more
flexible and expressive than common ECA rules as, eg, temporal condi-
tions on stateful objects can be specified relative to the time of queried
events.

Listing 5.34: An ECA Rule Equivalent in Dura

ON

and{

event e: alert{ area{var A} },

state s: operation-mode{ area{var A}, mode{OPM_EMERGENCY} }

} where { s valid-at end(e) }

DO

action a: ...

END �
The reactive rule from Listing 5.34 resembles a conventional ECA

rule that executes an action a if an alert occurs and the operation
mode of the corresponding area is set to emergency in the instance
the alert is observed. Note that the time of the queried stateful object
is constrained in the where part of the query to correspond to the end
of the alert event. Thus, the valid time of matched values corresponds
to the time the condition of a conventional ECA rule is evaluated.

a generalization of eca rules The temporal conditions on
stateful objects offer substantial control over the time when stateful
objects are queried. Hence, the time of the evaluation of the condition
part can be adapted to the needs of the programmer and is not fixed
to the time the event query matches as in case of ECA rules. Moreover,
multiple stateful objects can be queried that are related to the time of
different events.

The rule in Listing 5.35 triggers an action whenever an alarm event
occurs and the operation mode of the corresponding area has been
emergency some time during the two minutes before the alarm.

5.3.10 Processing Static Data

Static data is desirable to represent information that is known in ad-
vance and does not change at runtime. This includes static domain

94

Listing 5.35: A Generalized ECA Rule

ON

and{

event e: alert{ area{var A} },

state s: operation-mode{ area{var A}, mode{OPM_EMERGENCY} }

} where { s valid-during from-end-backward(e, 2min) }

DO

action a: ...

END �
knowledge that does not need to be updated, or at least only rarely
needs updates during certain maintenance periods. Common exam-
ples from the use cases described in [SB10b; SBR11a] are, for instance,
topology information such as the structure of metro stations or the
topology of a power distribution network, and mappings that asso-
ciate the identifier of a sensor with its type and position in the infras-
tructure, etc.

example Static data is valuable, for instance, to enrich the infor-
mation provided by raw events directly received from sensors. The
rule in Listing 5.36 uses the domain knowledge contained in the static
object sensor to convert a raw sensor event carrying only an identifier
and a value into a higher-level event with a proper and meaningful
type that also reports the area the corresponding sensor is located in.

Listing 5.36: A Query of a Static Stateful Object

DETECT

temp{ area{var A}, value{var T}, sensor-id{var S} }

ON

and{

event e: value-update{ sensor{var S}, value{var T} },

state s: sensor{ sensor-id{var S}, area{var A}, type{29} }

}

END �
As the stateful object is static, there is no need to constrain the valid

time for matching values. In fact, constraining the valid time is not
possible for static stateful objects at all.

negation and grouping of static data As static stateful
objects cannot be modified, the “history” of their values is always
completely determined at runtime. In consequence, negated queries
of stateful objects or queries containing grouping over stateful objects
do not need to be temporally bounded as queries do not need to be
deferred because all their values are completely known by the EPS

and thus even unbounded queries can be completely and correctly
evaluated.

95

5.4 complex actions

Complex actions are a central notion to realize composite high-level
reactions in Dura. They are intended to specify composite reactions
based on physical actions executed by external actuators. To this end,
they aim to specify the desired interactions between different actu-
ators in a way that is suitable for the physical nature of actions as
it is required for EM purposes. They are, however, not meant to im-
plement arbitrary computations as they are realized, eg, by means of
imperative procedures in general purpose languages.

Complex actions are composed from basic actions by means of tem-
poral dependencies and specifications of their execution result More-
over, complex actions benefit from a homogeneous integration into
the event query language Dura that provides convenient access to
high level event queries and queries for stateful objects.

5.4.1 Properties of Physical Actions

Physical infrastructures are equipped with various actuators that are
scattered over the entire infrastructure and operated from a central
control room. To this end, the actuators are attached to a Supervi-
sory Control and Data Acquisition (SCADA) system that connects the
actuators and the control room so that commands and information
can be exchanged. SCADA systems are very specialized systems that
are optimized for the operation of technical facilities [DS99; Boy09].
On a more abstract level, they resemble a specialized Event Service
Bus (ESB) that establishes a communication between physical sensors
and actuators and a central control room. Beyond that, modern SCADA

systems provide limited filtering and automation capabilities and use
open XML based protocols, such as the Facility Control Markup Lan-
guage (FCML) [Bry+08].

The execution of physical actions is a very basic requirement for
the supervision and operation of physical infrastructures. However,
physical actions are not directly executed by the EPS but instead their
execution is merely requested by the system and the actual execution
is realized by external actuators. To this end, request messages are
derived by the system and subsequently delivered to the actuators by
means of a SCADA or ESB where the corresponding action is actually
executed. This particularity implies some rather unusual properties
of physical actions that are accounted for in Dura to obtain a suitable
and convenient model of actions in the language.

times of actions Physical actions are executed by external actu-
ators and thus the time an action is requested within the EPS and the
time it is actually executed by the actuator may substantially differ.

96

Likewise, the time an action is completed and the time the according
information is available in the EPS may differ as well.

For instance, when the query of a rule triggering an external action
is satisfied, firstly the corresponding action request needs to be de-
rived by the system. Subsequently, the request needs to be delivered
to the actuator and finally the actuator needs to trigger the execution
of the corresponding action. All three steps introduce a certain de-
lay to the execution of the action and thus contribute to the latency
which represents the time difference between the first moment the
action can be initiated according to the specification of the query in
the body of the reactive rule and the moment the action is actually
initiated by the actuator.

To reduce the impact of latency and network delays, it seems fur-
thermore desirable that the time of external actions is determined
within the actuator and not by the system. Note that this adheres to
the approach to prefer application over system time for the time of
events. Employing application time for events means that the time of
events is determined at the sensors and not by the system. Likewise,
the initiation of the action is carried out by the actuator and thus
the time for the initiation on the action should be determined by the
actuator as well.

indirect feedback Physical actions are requested within the
EPS and executed by external actuators. As a consequence, the system
has inherently no general knowledge on the progress of requested ac-
tions. It has no information when the action is initiated and when it
is completed. Therefore, it depends on the feedback that is provided
by the corresponding actuators to determine the current status of run-
ning actions. However, due to the heterogeneity of actuators in large
infrastructures, the quality of feedback may vary substantially. For in-
stance, not every actuator can provide the feedback that is desired to
determine when and if an action was actually successful, some even
cannot provide any feedback at all.

As a consequence, it is often mandatory to rely on indirect feed-
back from related sensors that allows inferences on the execution
status of actions. For instance, when no direct feedback on the suc-
cessful activation of a ventilator is provided by the actuator, one can
use the information on the current airflow measured by an adjacent
anemometer to derive this information indirectly. If even no indirect
feedback is available, domain knowledge can be used to specify, for
instance, that the activation of the ventilator is successful 20 seconds
after the request was emitted by the EPS. Note that although feasible,
the last alternative only rarely results in a valuable representation of
the action.

In summary, it is desirable to obtain the feedback on the execution
of actions directly from the actuator, but due to technical limitations

97

the feedback may need to be inferred from other sources including
very generic information provided by the EPS itself.

5.4.2 Representation of Actions

Actions are formalized in a way similar to the representation of events
and stateful objects. Each action has a type and carries a payload
of data, namely its parameters. Actions are represented by means of
Xcerpt construct terms that conforms to the Dura specific restrictions.

payload The payload of an action contains its concrete parame-
ters that are determined by the rule that triggers its execution. More-
over, each action instance is associated with a key uniquely iden-
tifying each action instance and with provenance information that
is determined by the rule that triggers the action. The two values
are represented in the payload by means of the atomic attributes
id{identifier} and ref{identifier}, respectively, and are implicitly
added to the schema of each action.4

Both attributes are determined by the EPS and do not need to be
specified by the programmer.

times associated with actions Each action is related to three
times, namely, the initiation time, the time it is successful and the time
it fails. Naturally, actions either succeed or fail and thus it is reason-
able that only one of the latter two time values is actually determined
at runtime.

As it has been discussed above, the times associated with actions
should be determined by the actuators. However, on the other hand,
actuators may unfortunately not be capable of reporting the desired
feedback so that indirect feedback needs to be used to derive the sta-
tus and hence the values of the corresponding times. Accordingly, the
means for the specification of the status and times of actions need to
be generic enough to cover the complete spectrum of required speci-
fications.

To this end, the initiation, success and failure of actions is specified
in Dura by means of event queries. As all observable information that
is available to the EPS is, by design, represented by means of events,
event queries are a suitable and expressive way for the specification
of those properties. The corresponding queries are associated with
the schema of the action in a distinct initiates on, succeeds on, and
fails on part.

4 Note however, that the times of actions are, in contrast to the times of events, not
explicitly represented in their payloads.

98

«action schema»

initiates on «event query»

succeeds on «event query»

fails on «event query»

Either of the three parts is optional and for convenience, the initia-
tion of an action defaults to the time the action is requested in case the
initiates on part is omitted. In contrast, actions without a succeeds on

or fails on part never succeed and never fail, respectively. Thus, refer-
encing times for the success and failure of actions that have not been
specified in their schema by means of event queries causes an error
in the syntactic analysis at compile time.

Be aware that an action initiates, succeeds, and fails whenever the
respective event query matches. Therefore, the programmer is respon-
sible for the specification of appropriate queries, ie, queries for the
success and failure that are mutually exclusive and match only once.
And extension of Dura that avoids these issues is discussed in Chap-
ter 13, though.

referencing the times of actions Similar to the key and
the time of events which can be concisely referenced in the where part
of event queries by means of the functions id, begin, and end, the
time of actions can be concisely referenced by means of the null-ary
functions req and init in the schema of actions. Thereby, init can
only be specified in a succeeds on or fails on part.

As the schema of action specifies the properties of a single action,
the functions unambiguously reference the respective time of the ac-
tion and are thus specified without further parameters. However, be
aware that the same functions are reused for composite actions where
they expect an action identifier as parameter.

example In the following Listing 5.37, the schema of the activate
lights action is elaborated. This action turns on the ceiling lighting
within a certain area.

Listing 5.37: Specifying Success of a Physical Action

activate-em-light{ light{long} }

succeeds on and{

event e: action-confirmation{ instance{id()} }

} where { end(e) <= init() + 10sec }

fails on not{

event e: action-confirmation{ instance{id()} }

} where { end(e) <= init() + 10sec } �
However, the corresponding actuator is only capable of acknowl-

edging the reception of the action request but not the initiation and
the success of the action. As the action is not very likely to fail and be-
cause of the lack of other means that are capable to indirectly confirm

99

the success of the action, the acknowledgment is indeed interpreted
as the success of the action. Note that the specification for the initia-
tion of the action is omitted from the schema. As a consequence the
initiation of the action defaults to the time the action is request by the
system.

events entailed by actions The execution of actions entails,
similar to the modification of stateful objects, events that can be con-
tained in the queries of rules to react to their initiation, success, or
failure.

The name and the payload of the events is derived from the schema
of the corresponding actions. For each action there are four different
events, namely, «name»$requested, «name»$initiated, «name»$succeeded,
and «name»$failed. Thereby the end of the reception time of the events
refers to the corresponding time of the action. For instance, the end of
the reception time of the «name»$initiated event refers to the initiation
time of the respective action instance.

The described events of an action share a common schema that
contains the composite attribute payload consisting of the attributes of
the action, including the implicit attributes id referring to a key that
uniquely identifies the action instance, and the implicit attribute ref

containing the provenance information on the action that is required
for internal purposes. Accordingly, the concrete parameters of each
action instance can be obtained from each of these events.

Listing 5.38: Schema of activate-em-light$initiated Events

activate-em-light$initiated{

id{identifier},

reception-time{ begin{timestamp}, end{timestamp} },

payload{ id{identifier}, ref{identifier}, light{long} }

} �
Listing 5.38 describes the schema of events representing the initia-

tion of the activate-em-light action from Listing 5.37. Mind the dif-
ferent between the two id attributes. The id contained in the payload

attribute corresponds to the key of the action whereas the id directly
contained in the event type corresponds to the key of the event re-
porting about the action instance.

representation of domain knowledge In addition to the
specification of the initiation and success of actions, the schema of
actions can also specify domain knowledge, eg, on the duration of
actions, that is known to apply for all instances of the corresponding
action.

100

Listing 5.39: Specifying Domain Knowledge

activate-em-light{ light{long} }

where{ init() + 2sec <= succ(), init() + 2sec <= fail() } �
The domain knowledge of actions is specified by means of a con-

junction of inequations in a where part associated to their schema.5

For instance, the domain knowledge specified in Listing 5.39 denotes
that the execution of activate-em-light takes at least two seconds.

5.4.3 Action Invocation

The syntax for the initiation of actions resembles the syntax for que-
ries of events and stateful objects. The keyword action is succeeded
by an alphanumeric identifier and a construct term determining the
name and the parameters of the action.

Listing 5.40: An Atomic Action Invocation

action a: adapt-ventilation{ area{var A} } �
Instead of extracting values from the pattern, as in case of event

queries, the values bound to the variables are injected to the corre-
sponding actions as parameters. Accordingly, the specification of the
action resembles a construct term and therefore generic expressions
can be specified. However, the applied variables and identifiers need
to be positively bound with respect to the query in the body of the
corresponding reactive rule.

For the sake of simplicity, the action type and its identifier will be
used interchangeably. For instance, the identifier a will be used as an
abbreviation for the action adapt-ventilation.

5.4.4 Action Composition

The composition of actions is crucial to obtain useful reactions that
cannot be realized by means of the execution of single atomic actions.
In fact, one of the main advantages of using a central EPS is the in-
tegration of different subsystems that are controlled by independent
sub-systems. In this way, the provided information and capabilities
can be combined to realize more powerful and appropriate reactions
that are based on the execution of compositions of actions.

Composition of complex actions is expressed in a manner similar
to the composition of event queries. Several actions are grouped to-

5 Be aware that the keyword where is used in the schema as well as for the composition
of actions with different semantics, namely, to specify domain knowledge of and
temporal dependencies between actions, respectively.

101

gether by means of the compound operator. At runtime, the given ac-
tions are then executed concurrently. Note that the compound opera-
tor does not specify any temporal dependencies between actions nor
does it determine when the composite action is deemed successful or
failed as these are different aspects that should be kept separate in
order to obtain a clear separation of concerns.

example The action in Listing 5.41 represents a composition of
the actions open-fire-damper and activate-ventilators. When it is
executed, both sub-actions are executed concurrently and the value
bound to the variable A is injected as parameter to of both actions.

Listing 5.41: A Composite Action

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} �
separation of dimensions Due to the clear separation of or-
thogonal dimensions, compound is the only available operator that is
required for the composition of actions. It just specifies the actions
that are intended to be executed concurrently and provides concrete
values for their parameters by means of variables, but does not intro-
duce further, eg, temporal dependencies between actions.

Other approaches often introduce composition operators that com-
bine several independent dimensions of actions into a single mono-
lithic operator. For instance, a sequence operator actually combines
specification of the composition and temporal dependencies of an ac-
tion in a single operator. Although monolithic operators seem conve-
nient at first sight, previous research has shown that languages build
on monolithic operators loose expressiveness compared to languages
with a clear separation of dimensions [BE08b]. Even though this ob-
servation has been made for event query languages, it still holds for
actions as it is further discussed in the next section.

Note that, in contrast to event queries, even conjunctions and dis-
junctions of actions actually represent a combination of several di-
mensions. As, for instance, a conjunction of actions combines the
specification of a composition with the specification of temporal de-
pendencies and the execution result of the composite action.

5.4.5 Temporal Dependencies

The composition of physical actions, in contrast to internal actions,
often requires a certain timing between sub-actions as the effect of
initiating actions too early or too late may result in unintended be-

102

havior that does not achieve the intended goal. Therefore, complex
actions require means to specify temporal dependencies between dif-
ferent actions.

Temporal dependencies between actions are specified in the where

part of complex actions. They refer to the actions from the separate
compound part by means of the action identifiers and specify a cer-
tain timing of actions that needs to be satisfied by the EPS at runtime.
Temporal dependencies are specified by means of conjunctions of in-
equations, similar to the specification of temporal conditions between
events, that determine lower bounds for the initiation of actions. To
this end, action identifiers are used in combination with init, succ,
and fail to distinguish between the different time-points that are
associated with the actions. Thereby, referencing a time that is not
specified in the schema of the corresponding action by means of an
event query causes an error in the syntactic analysis.

For other applications it seems appropriate to furthermore support
disjunctions of temporal dependencies that enable non-deterministic
actions. However, for EM applications the determinism of actions is a
crucial requirement and as a consequence, disjunctive dependencies
are not further considered here although they can be integrated in
our approach (see Section 13.3).

example The complex action in Listing 5.42 uses temporal depen-
dencies to specify that the ventilators should only be activated after
the fire dampers have been successfully opened. Note that this be-
havior corresponds to a simple sequence of actions that can also be
expressed by many other approaches with a notion of composite ac-
tions.

Listing 5.42: A Sequence of Actions in Dura

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} where { succ(a) <= init(b) } �
Although the clear separation of dimensions seems cumbersome

and longish, it enables the elaboration of more sophisticated depen-
dencies that cannot be expressed with monolithic sequence operators.
Consider, for instance, the composite action in Listing 5.43. The com-
plex action from above is complemented by a third sub-action that
warns persons close to the outlet of the ventilation system of the im-
minent emission of smoke. To be effective, a time delay of 20 seconds
between the issue of the warning and the actual emission of smoke is
added to the temporal dependencies of the action.

The same action cannot be expressed by formalisms relying solely
on monolithic sequence operators as they mix the invocation of ac-

103

Listing 5.43: An Action with Sophisticated Dependencies

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} },

action c: warn-of-smoke-emission{ area{var A} }

} where { succ(a) <= init(b),

init(c) + 20sec <= init(b) } �
tions and the specification of temporal dependencies. As a conse-
quence, those formalisms can specify that a and c are executed con-
currently 20 seconds before the initiation of c but they cannot enforce
independent dependencies between a and b and between c and b, as
they are for instance specified in Listing 5.43.

satisfying temporal dependencies At runtime complex ac-
tions are actually executed by the EPS according to their temporal
dependencies. To this end, the system defers actions whose initiation
is explicitly specified in the right hand side of temporal dependen-
cies until the lower bound specified by the left hand side is exceeded.
In this way, the system can guarantee that the temporal dependen-
cies are actually satisfied at runtime independent from any, a priori
unknown, runtime effects.

The execution of complex actions can be understood as some kind
of feedback loop. The EPS requests the execution of actions which
eventually results in the observation of their success or failure. This,
in turn, determines the lower bounds for the initiation of further ac-
tions which will be eventually exceeded and thus these actions will
be requested for execution and so forth.

where { succ(a) <= init(b) }

To satisfy the preceding temporal dependency, which is taken from
Listing 5.42, the system simply defers the initiation of b until the suc-
cess of a has been observed. When several dependencies for the initia-
tion of an action are specified, the system simply defers its execution
until all of them are satisfied. By contrast, the inequation succ(a) <=

succ(b) does not constrain the initiation of actions and can hence only
be observed at runtime. Accordingly, this type of dependencies cov-
ers another aspect of actions as they rather specify the success of the
action which is determined after the action is initiated. Therefore, the
given constraints cannot be specified in the where part of actions.

In summary, temporal dependencies specify lower bounds for the
initiation of actions that need to be exceeded before the action is re-
quested by the system. Although the available constraints seem rather
limited, we will determine that due to requirements on complex ac-
tions and the inherent properties of physical actions other inequations
cannot be satisfied in general.

104

relations to scheduling and planning In general, implic-
it assumptions are avoided in our approach as they influence the
semantics of actions in a way that can easily be overlooked by pro-
grammers. Accordingly, the system may not implicitly assume de-
pendencies that are not explicitly specified by the user. This contrasts
strongly with approaches concerned with the planning and schedul-
ing of the execution of actions [TVP03; VF99] which try to determine
strategies of executing actions by adapting the execution strategy in
accordance with the given temporal dependencies and are thus not
further considered in the scope of this thesis.

For instance, some of these approaches derive succ(a) <= init(b)

from the in Dura invalid dependencies succ(a) <= succ(b). When the
derived dependencies are interpreted as the temporal dependencies

where { succ(a) <= init(b) }

it is indeed guarantee that succ(a) <= succ(b) is always satisfied at
runtime. However, the derived temporal dependencies introduce an
implicit relation between the success of a and the initiation of b which,
if missed by the programmer, can cause unintended effects and is
therefore undesirable for EM purposes.

Note that, the analysis of complex actions in Dura can actually ver-
ify that succ(a) <= succ(b) is always satisfies if the action is executed
according to the dependencies succ(a) <= init(b). However, to obtain
a clear separation of these different aspects of actions, the two types
of formulas are clearly separated and specified in two different parts
which contain either temporal dependencies that specify how to exe-
cute actions or temporal assertions that follow from the given tempo-
ral dependencies.

5.4.6 Execution Status

Complex actions usually try to achieve a higher level goal that can-
not be realized by individual actions. Naturally, the success of the
action depends on the achievement of this goal which often cannot
be inferred from the raw success of the sub-actions. As a consequence,
Dura employs versatile event queries to specify the success of actions
beyond the success of their sub-actions.

Like the specification of the execution status of physical actions,
the success and failure of complex actions is specified in dedicated
succeeds on and fails on parts by means of event queries. Thereby,
the where part of the event query specifying the success of the action
may refer to the time-points of sub-actions by means of the action
identifiers specified in the composite action.

example The action from Listing 5.42 is intended to extract smoke
from a certain area. Accordingly the action is deemed successful if the

105

smoke concentration drops below 10% in the respective area within
two minutes from the beginning of its execution and fails otherwise.

Listing 5.44: Specifying the Success of Complex Actions

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} where { succ(a) <= init(b) }

succeeds on and{

event e: smoke{ area{var A}, amount{var C} }

} where { C < 0.1, init(a) < end(e), end(e) < init(a)+2min } �
Note that the where part of the complex action and the where part

of the query in the succeeds on part are both referring to the action
open-fire-damper by means of the identifier a.

initiation time As composite actions are executed by the EPS

their initiation time defaults to the moment they are requested by
the system. However, this behavior can be adapted to the needs of
the programmer by explicitly specifying the desired time-point in an
initiates on part associated with the composite action.

5.4.7 Temporal Assertions

Temporal assertions are formulas that specify properties of actions
that should hold at runtime but do not directly specify an execution
order between actions and are statically verified at compile time. They
are intended as a means for programmers to statically verify whether
the specified assertions which they expect to be satisfied at runtime
are actually satisfied at runtime. Moreover, temporal assertions con-
tribute to a clear separation of dimensions, as they separate temporal
dependencies that influence the execution order of actions and are
specified in the where part of actions from inequations that are merely
the consequence of the given execution order.

Temporal assertions are specified in the hence part of complex ac-
tions. They are denoted by means of inequations that resemble the
specification of temporal dependencies but are not limited to specify
merely lower bounds for the initiation of actions. Assertions that do
not follow from the temporal dependencies of an action and thus do
not necessarily hold at runtime are statically detected during compile
time and result in compilation errors.

example The assertions in Listing 5.45 specifies that the sequen-
tial execution of the open-fire-dampers and activate-ventilators ac-
tions takes at least 20 seconds if the execution of both actions is suc-
cessful and at least one minute if a is successful and b fails.

106

Recall that assertions do not influence the execution of actions and
are just verified at compile time. Accordingly, it is admissible that
both formulas specify an upper bound for the initialization of a.

Listing 5.45: A Complex Action with Assertions

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} where { succ(a) <= init(b) }

hence { succ(b)-init(a) > 20sec, fail(b)-init(a) > 1min } �
Note that these assertions do not immediately follow from the tem-

poral conditions in the where part. To actually verify this particular
assertion, reliable information on the duration of both actions needs
to be available, eg, in the schema of the corresponding actions.

5.4.8 Semantic Analysis for Actions

The clear separation of concerns and a good coverage of the four
orthogonal dimensions of actions is clearly desirable for complex ac-
tions, in particular for complex actions in EM. However, due to the sep-
aration of dimensions and the specification of temporal dependencies
and assertions by means of generic formulas, the programmer is able
of specifying actions that are syntactically correct but either cannot
be executed due to inconsistencies in the temporal dependencies or
contain temporal assertions that simply do not follow from the spec-
ified temporal dependencies and thus are not guaranteed to hold at
runtime.

As a consequence, a static analysis capable of rejecting incorrect
and faulty actions is highly desirable to prevent errors that would
arise during the execution of actions at runtime. Therefore the se-
mantic analysis of complex actions should cover at least the three
following aspects.

viability Atomic temporal dependencies need to be viable in the
sense that they can be actually satisfied by the system at runtime.
As the referred time-points of actions can only be affected indirectly,
arbitrary temporal dependencies between actions may not necessarily
be satisfiable at runtime.

For instance, due to inherent runtime effects, it is impossible for the
system to guarantee that two actions are actually initiated at the same
time, because the distribution of the action request to the actuator is
subject to latency. Note that this still holds if the initiation refers to
the time the request is emitted by the system as the derivation of the
request is also subject to latency.

107

fairness Using action identifiers and generic relations to specify
temporal dependencies between actions seems desirable. In fact, it is
even mandatory to facilitate the integration of multiple independent
dimensions without losing expressiveness.

However, the flexibility of temporal dependencies may result in in-
consistent specifications, for instance in cyclic dependencies between
actions, that prevent sub-actions from being executed. Accordingly,
the semantic analysis must verify at compile time whether the tempo-
ral dependencies allow that all sub-actions can actually be executed
at runtime and that there is no “orphan code” that contains actions
which will never be executed.

compliance Specifying temporal assertions is only meaningful if
it is verified during compile time that the corresponding assertions of
an action will actually be satisfied at runtime, that is, that the complex
action complies with its assertions.

However, the verification often requires domain knowledge that
might not be available for all kinds of physical actions. Accordingly,
it is mandatory that the semantic analysis scales with the available
knowledge about actions. The analysis must be able to verify basic
properties without further action specific knowledge but at the same
time needs to be able to incorporate domain knowledge, e.g., speci-
fied in the schema of actions, if it is available.

5.4.9 Complex Action Rules

For large programs it is desirable to minimize redundancy among
rules to obtain reusable and clear code that can be easily maintained
and adapted. In case of events, this requirement is realized by de-
ductive rules that derive higher level events which can be queried by
multiple rules. Likewise, composite actions can be made reusable by
means of so-called complex action rules.

Complex action rules assign names to (anonymous) complex ac-
tions in a way that resembles procedures that assign names to certain
fragments of code. They are denoted

FOR «name»{ «parameters» } DO «action» END

Thereby, the parameters are specified by terms that contain variables
which are to be injected when the corresponding action is initiated.

example A complex action rule is used in Listing 5.46 to assign
the name adapt-ventilation to the anonymous complex action that
has been elaborated in previous examples. Accordingly, the complex
action in the head of the rule can be executed by referring to its name
adapt-ventilation rather than by repeating the entire code wherever
the respective behavior is required.

108

Listing 5.46: A Complex Action Rule

FOR

adapt-ventilation{ area{var A} }

DO

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} where { succ(a) <= init(b) }

succeeds on and{

event e: smoke{ area{var A}, amount{var C} }

} where { C < 0.1, init(a) < end(e), end(e) < init(a)+2min }

END �
Note that variables that occur in the body of the complex action

rule, that is, the parameters of the action, are bound when the com-
plex action is invoked. Therefore, these variables can be used as pa-
rameters for the sub-actions specified in the head of the complex ac-
tion rule and in the event queries determining its success and failure
of the complex action.

action identifier for complex actions For the specifica-
tion of complex action rules it is sometimes desirable to reference the
initiation time or the key of the complex action, eg, to specify tem-
poral constraints for its sub-actions or in the queries determining its
success and failure, respectively.

To this end, an action identifier can be specified in the body of a
complex action rule to refer to the initiation of the respective complex
action. The identifier can subsequently be used in the supplement of
a complex action in combination with init, but not with succ or fail,
in the where part of a event query determining the success or failure
of the complex action. Moreover, the identifier can also be specified
in the group by part of an event query.

Listing 5.47: A Complex Action Rule with Unique Success

FOR

action v: adapt-ventilation{ area{var A} }

DO

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} where { succ(a) <= init(b) }

succeeds on and{

event e: smoke{ area{var A}, amount{var C} }

} where { C < 0.1, init(v) < end(e), end(e) < init(v)+2min }

group by { v }

END �

109

The identifier v is used in Listing 5.47 in the where and group by

part of the event query to refer to the initiation of the complex action
adapt-ventilation. By means of the grouping it is guaranteed that the
action is only successful once, whereas the action in Listing 5.46 is as
often successful as the smoke concentration drops below 10% within
one minute from the initiation of the open-fire-dampers actions, which
seems rather undesirable as it may happen multiple times. Note, how-
ever, that in this particular case, the same behavior can be obtained
by omitting action v from the rule body and by substituting a for v

everywhere else.

implicit provenance information Each sub-action is linked
to the instance of the complex action that caused its initiation. More
precisely, the key identifying the complex action instance is reference
by the ref attribute in the payload of each initiated sub-action.

Listing 5.48: Specifying Success Dependent on Sub-actions

FOR

action v: adapt-ventilation{ area{var A} }

DO

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} where { succ(a) <= init(b) }

succeeds on and{

event e: activate-ventilators$succeeded{ payload{ ref{id(v)} } }

} where { end(e) <= init(v) + 1min }

END �
For instance, when initiated by the complex action in Listing 5.48,

the ref attribute of the open-fire-dampers and activate-ventilators

actions refers to the id of the corresponding adapt-ventilation in-
stance that caused their initiation. This property is utilized in the
succeeds on part of the adapt-ventilation action to specify its suc-
cess relative to the success of the activat-ventilators actions that has
been initiated by the respective complex action. To this end, the ex-
pression id(v) is specified in the event query in the succeeds on part.
Note that without this restriction, the query would match arbitrary
activate-ventilator instances, in particular those that are not related
to the complex actions and were by chance executed concurrently.

In this particular case, the same effect can be achieved by substitut-
ing id{id(b)} for ref{id(v)}, though.

5.4.10 Conditional Actions

Temporal dependencies of complex actions specify the execution or-
der of actions relative to their initiation, success, and failure. However,

110

in some situations it may be more suitable to specify the execution of
actions in relation to the current state of the infrastructure, static data,
or the occurrence of certain events instead of referring to the initiation
and success of preceding actions.

Conditional actions realize this requirement by providing a deep in-
tegration between actions and queries for events and stateful objects.
They are denoted

IF «query» THEN «action»

The IF part specifies a condition that constraints the execution of the
actions in the THEN part: Whenever the composite action containing
the conditional action is initiated and the query in the IF part matches,
the action in the THEN part are executed. Thereby, «query» corresponds
to a conventional event query or to a query for stateful objects.

Be aware that the query in the IF part may indeed match multiple
times and that hence the corresponding actions are initiated multiples
times as well. This can be avoided by constraining the query appropri-
ately, eg, by constraining the time in which the condition is evaluated
or by applying grouping. To this end, the event query can refer to
sub-actions, in particular to their times, of the composite action the
query is contained in.

By means of conditional actions generic conditions for the execu-
tion of actions, which are exceeding the capabilities of merely tempo-
ral dependencies, are specified by event queries. Similar to reactive
rules, conditional actions aim at a tight integration between the pure
declarative world of events and stateful objects and the imperative
world of actions by combining both notions in the specification of
conditional actions. Naturally, conditional actions can be specified in
composite actions. Moreover, they are a means to obtain a hierarchi-
cal composition of actions as it is often required for the specification
of composite processes.

Note that the functionality of conditional actions can as well be
realized by several reactive rules. However, using one single complex
actions to specify composite processes is clearly preferable over a set
of (more or less) independent rules that may be scattered over a large
program, as it is for instance proposed in [KEP00; Bry+06].

example To obtain permission for the execution of an action that
requires the confirmation of a human operator prior to its execution,
a request-operator-confirmation action is executed which eventually
displays a corresponding message in the graphical user interface used
by operators in the control room. When the operator accepts the pro-
posed action and confirms its execution, a request-confirmed event is
sent from the user interface back to the EPS and the proposed action
is subsequently initiated.

This behavior is implemented by means of the composite action
in Listing 5.49. To this end, a conditional action is used to defer

111

Listing 5.49: A Simplified Conditional Action

compound{

action a: request-operator-confirmation{ ... }

IF event e: request-confirmed{ req-id{id(a)} }

where { end(e)-init(a) <= 20sec }

THEN action b: ...

} �
the execution of the proposed action b until its execution is actu-
ally confirmed by the operator by means of a corresponding request
confirmed event that needs to be issued within 20 seconds after the
initiation of the request action.

Note how the event query in the IF part of the conditional action
refers to the request-operator-confirmation action of the complex ac-
tion. In the where part of the event query the expression init(a) is
used to constrain the time window in which confirmations are ac-
cepted. Moreover, the expression id(a) is used in the query term of
the event query to match the key of the action instance with the key
that is referred by the confirmation event issued by the operator.

temporal dependencies of sub-actions The incorporation
of conditional actions into composite actions introduces a nesting
structure into actions. Naturally, the execution of sub-actions that are
nested inside a complex action depends on the execution of actions
directly contained in the complex action. Eg, in Listing 5.49 the exe-
cution of b indirectly depends on the action a, as the occurrence of
the confirmation message is triggered by the execution of a.

As a consequence, the temporal dependencies need to reflect the
causality between actions contained in the complex action and nested
sub-action. Therefore, the times of sub-actions may not be used to
specify lower bounds on the initiation of actions contained in the
complex action. However, the times of actions contained in a com-
plex action may be used to specify lower bounds on the initiation
of sub-actions. Accordingly, with respect to Listing 5.49 the tempo-
ral dependencies init(a) + 30sec <= init(b) are valid, as a determines
a lower bound on the nested action b whereas succ(b) must not be
used in a lower bound for, eg, the initiation of a.

status queries of comprising actions Actions specified in
the THEN part of a conditional action are only executed when the query
in the IF part matches. Accordingly, actions in the THEN part may not
be executed at all and therefore the respective action identifiers can
only be used in temporal conditions and event queries that are nested
in the THEN part. They cannot be used in event queries that determine
the status of any comprising action.

112

For instance, in Listing 5.49 the action identifier a can be used in
event queries to specify the success or failure of the outermost com-
plex action, whereas the action identifier b cannot be used for this
purpose.

dependencies beyond the execution status Many physi-
cal actions have several meaningful interpretations for their success
or failure which depend on the context the action is used in and their
concrete purpose within the context.

One example is, for instance, the activation of ventilators in an area.
From a technical point of view, the activation is successful when the
ventilator sends a positive confirmation of its activation. However,
from a more abstract point of view, the ventilator is activated success-
ful when it actually generates the desired airflow. Both interpretations
are meaningful for certain purposes but they are not compatible with
each other. However, the success of the action can only be specified
by either of the two alternatives and thus the programmer needs to
pick one of them.

Conditional actions are particularly useful in this kind of situation
to deal with the various notions of success required for different situ-
ations. They can specify dependencies beyond the success and failure
of actions in a generic manner that is specific for the context they are
used in and are not limited to rely on the notion of success that has
been chosen for the used actions.

5.5 relations to xchange
eq

Dura is based on the foundation of the high-level EQL XChangeEQ.
As a natural consequence, the design and basic ideas of Dura have
been substantially influenced by previous work on XChangeEQ, such
as, [BE07; BE08b; Eck08]. In particular, the rule based declarative lan-
guage paradigm, the dimensions of complex events, and the clear
separation of concerns that is considered for the design of Dura is
inspired by XChangeEQ. The correspondence of the two languages
is also reflected in the syntax of Dura that has been adopted from
XChangeEQ.

But although XChangeEQ and Dura seem remarkably similar on the
first sight, substantial changes and extensions have been incorporated
into Dura which affect the fundamental basics as well as many details
of the language.

representation of events XChangeEQ integrates the pattern
based query approach from Xcerpt to query and construct events and
is thus capable to handle event messages providing a payload of XML

data. By contrast, Dura applies a simplified version of the pattern
based query approach that is (almost) backward compatible to the

113

one used for Xcerpt and XChangeEQ but not capable to query and
construct generic XML messages.

In addition Dura represents all properties of events, in particu-
lar their reception time and key, directly in their payload whereas
XChangeEQ considers these properties as meta-data. However, inte-
grating this kind of data into the payload of event is highly desirable
as it becomes available to external entities receiving derived events
from the EPS and facilitates direct access and versatile application in
rules, including the specification of user-defined times for derived
events.

times of events In XChangeEQ, events are by default associated
with a single time with fixed semantics that cannot be adapted by
programmers.

By contrast, events in Dura can be associated with an arbitrary
number of independent and user defined times and time lines, re-
spectively. Accordingly, programmers gain the flexibility to introduce
the most appropriate time line or time lines for different kinds of
events. Moreover, the reception time of events, which is for conve-
nience implicitly determined with a natural default time interval, can
be adapted to the requirements of programmers.

structure of rules To obtain a meaningful semantics and to fa-
cilitate an efficient evaluation XChangeEQ rules need to be stratifiable
[Eck08] and furthermore rules need to be free of cycles and recur-
sion. Yet, Eckert [Eck08] proposes to apply well-founded semantics
for XChangeEQ to circumvent this restriction.

In Dura rules need to be stratifiable, although well-founded se-
mantics are an option for future research as well. But in contrast to
XChangeEQ, Dura facilitates recursive rules, if certain conditions on
the time of derived events are met.

elimination of relative timer events In XChangeEQ, time
windows for event accumulation are inevitably specified by means
of events, often by means of so-called relative timer events which
determine a time window relative to the time of an event. This entails
some drawbacks with respect to the expressiveness and ease of use
of negations and aggregations in XChangeEQ. Using events to specify
time windows is in many cases rather cumbersome. In addition the
time window for event accumulation is restricted to a closed convex
time interval.

By contrast, Dura uses temporal dependencies to specify time win-
dows for negation and grouping instead and thus does not require
a notion of relative timer events. In this way, the same mechanism is
used to specify both, temporal conditions between events and time
intervals for negation and grouping. In addition, time intervals are

114

no longer restricted to be closed or convex, as the formulas to spec-
ify temporal conditions include negations and disjunctions and time
points obtained from different events can be used to specify time win-
dows for negations and groupings.

dimensions of complex events The intrinsic language model
of XChangeEQ identifies four dimensions of complex events, namely,
data extraction, event composition, temporal and other dependen-
cies, event accumulation, and elaborates language operators that are
merely devoted to a single dimension in order to obtain a clear sepa-
ration of concerns.

The general idea of a clear separation of concerns and different
dimensions of complex events is acquired from XChangeEQ but the
applied dimensions are further refined and separated in Dura. In par-
ticular event accumulation is further refined into grouping and ag-
gregation and separated from the head of declarative rules to obtain
more expressive sub-queries, including queries corresponding to the
HAVING clause of SQL.

negation and aggregation Negation and aggregation is in
XChangeEQ restricted to atomic event queries. Accordingly, negation
and aggregation over composite queries cannot be directly specified
but must be expressed by means of auxiliary rules instead, which
might not always be possible and seems rather cumbersome.

By contrast, Dura facilitates negation and aggregation of compos-
ite sub-queries and hence supports multiple cascaded groupings and
composite queries with nested negations.

access to non-volatile data The applied language model of
XChangeEQ is purely event based and does not integrate queries for
persistent data. Yet, at least queries for static relations seem to be easy
to integrated into XChangeEQ.

By contrast, Dura directly integrates access to static and dynamic
data by means of (static and non-static) stateful objects and queries
thereof. In this way, Dura facilitates queries for static database tables
and queries for persistent stateful data that can be modified by means
of appropriate actions.

state based processing Event queries in Dura integrate que-
ries for stateful objects and therefore the derivation of events and the
initiation of actions may be contingent upon the current values of
stateful objects. Thus, Dura facilitates state based processing which is
not directly supported in XChangeEQ.

complex actions Only Dura provides a notion of complex ac-
tions. However, XChangeEQ facilitates the execution of remote proce-

115

dure calls in a very flexible way by means of reactive rules which
is not directly supported by Dura but can be easily borrowed from
XChangeEQ and integrated into Dura, if desired.

116

6
E M E R G E N C Y M A N A G E M E N T U S E C A S E

To further illustrate the language Dura and to strengthen and deepen
the understanding of its basic principles, we elaborate a coherent and
consecutive example rule set that is related to an Emergency Manage-
ment (EM) scenario. To this end, we combine aspects of the EMILI use
cases into a single scenario that is concerned with the outbreak of a
fire in a metro station.

The rules which are elaborated in the following are based on the
textual descriptions and flowcharts of the EM scenarios contained in
[SBR11a; SBR11b; Vra+10]. In particular the layout and the available
equipment of the considered metro station is adopted from these de-
scriptions. Moreover, the EM principles outlined in Section 2.1 are
incorporated as a basic principle for the elaborated methods and ac-
tions.

6.1 preliminaries

Before we elaborate the rules that address a fire scenario in a metro
station, we briefly introduce the characteristic of the considered sta-
tion and its representation in Dura.

6.1.1 Station Layout and Characteristics

The station is a mid-sized station connecting the metro lines Line A
and Line B. The station consists of a mezzanine with small shops
and maintenance rooms for technical staff and two central platforms
serving as stops for the metro lines Line A and Line B, respectively.
The platforms and the mezzanine are each connected by several ele-
vators, escalators, and stairs. Moreover, each platform is connected by
single-track railway tunnels to other stations, which are not further
represented in the model considered for the use case. The geometric
layout of the station is depicted in Figure 6.1.

The different regions of the station are separated into areas and
subareas of different size and shape, according to their relevance for
EM purposes: The entire station, the tunnels, the mezzanine level and
each platform correspond to an area. Moreover, the mezzanine level
and the platforms are subdivided into several subareas as it is de-
picted by means of boxes in Figure 6.2 for the platform of Line A.

The station contains various EM related technical devices including
smoke and temperature sensors scattered throughout the entire sta-
tion, anemometers in the tunnels, portable fire extinguishers on the

117

Figure 6.1: Geometric Overview of the Station (from [SBR11a])

Figure 6.2: Areas of the Platform of Line A (from [SBR11a])

platforms and mezzanine level, several escalators and elevators on
each platform, lighting system controlling emergency lights leading
the way out of the station, surveillance cameras on the platforms and
entrance area, exhaust dampers, air conditioning systems for fresh air
supply in the station, and smoke extraction systems with several fans
in the tunnels.

Some of those devices, for instance, temperature sensors, regularly
communicate status information to the control center whereas others
only generate events on particular occasions, eg, fire extinguishers
only generate an event when the extinguisher is removed from its
retainer. In addition, the actuators are capable to carry out commands
that are issued in the control center, eg, elevators can be directed to a
certain level and emergency lights can be turned on and off.

6.1.2 Representation in Dura

To facilitate the elaboration of rules, the metro station and its equip-
ment are represented in Dura by means of events, stateful objects, and
actions. To this end, the information provided by sensors and actua-
tors is directly mapped to events in Dura. Likewise, the commands
that can be executed by actuators are represented in Dura by means
of external actions. Moreover, topology information and further char-
acteristics of the station are modeled by means of stateful objects.

118

The representation of the metro station by means of events, stateful
objects, and actions is in the majority of cases straight forward. We
will thus only address the representation of the most relevant ones in
the following.

station topology Each area is identified by means of a unique
key: the entire station is associated with the key 1; the mezzanine
and the two platforms are associated with the key 10, 11, and 12,
respectively; and the subareas of platform 11, which are depicted in
Figure 6.2, are associated from left to right with the keys 110 to 117.

Listing 6.1: Representation of Topology Information

static

station-area{ station{long}, area{long} }

static

area-subarea{ area{long}, subarea{long} }

static

related-areas{ area1{long}, area2{long} } �
Topology information about the station and its areas is most no-

tably represented by means of the static stateful objects from List-
ing 6.1. The first two stateful objects station-area and area-subarea

identify the areas of a station and the subareas of an area, respectively.
The latter stateful object related-areas corresponds to a symmetric re-
lation interrelating all subareas of an area and all areas of a station.
For instance, 10, 11, and 12 are related areas as well as the areas 110

to 117.

operation mode The operation mode is a central notion of EM

that summarizes the conditions of the station and its areas. As in the
examples from the previous chapter, the operation mode of each area,
including the area representing the station and all subareas, is repre-
sented by the stateful object operation-mode specified in Listing 6.2.

Listing 6.2: Operation Mode Schema

operation-mode{ area{long}, mode{int} }

on conflict select { max mode, min id } �
Thereby, the conflict resolution of the stateful object ensures that

in case of concurrent updates to the operation mode of an area, the
largest operation mode prevails.

119

application of constant definitions Dura does not pro-
vide a notion of enumerations and therefore constants are used in the
following to achieve a similar effect.

For instance, the attribute mode of the stateful object operation-mode
is represented by means of integer values. To facilitate a representa-
tion of operation modes that is convenient for humans, the following
constant definitions are provided whose values imply a natural order
of operation modes, eg, OPM_NORMAL < OPM_EXCEPTIONAL.

Listing 6.3: Constant Definitions Representing Operation Modes

CONST OPM_NORMAL = 0

CONST OPM_EXCEPTIONAL = 1

CONST OPM_EMERGENCY = 2

CONST OPM_EMERGENCY_MAJOR = 3 �
The same scheme is retained in many similar situations in the fol-

lowing. However, most often the actual values assigned to the con-
stants are not relevant for the semantics and thus the definitions are
often omitted.

simulation events The result of external simulators is repre-
sented in Dura by means of events. Thereby, the corresponding events
are associated with an additional time, the so-called, semantic time.
The semantic time of a simulation event indicates when the event is
deemed to occur according to the simulation whereas its reception
time indicates when the event has been received by the Event Pro-
cessing System (EPS).

Listing 6.4: Smoke Simulation Schema

smoke-simulation{

sensor{long}, subarea{long}, conc{double},

semantic-time{ begin{timestamp}, end{timestamp} }

} where { reception-time.end + 3min <= semantic-time.end } �
Note the additional temporal constraint for smoke-simulation events

in Listing 6.4. It formalizes the domain knowledge that the smoke
simulation looks at least three minutes ahead.

6.2 situation assessment

Situation assessment is a crucial part for EM. It includes the identifica-
tion of emerging incidents, the verification of alarm messages and the
elimination of false alarms, the estimation of different characteristics
of (emerging) incidents, and the classification of incidents in different
categories according to their type and severity.

120

Situation assessment forms the basis for operators to choose appro-
priate strategies to counteract upon incidents and furthermore facil-
itates the automatic execution of immediate reactions. Thereby, situ-
ation assessment is a reoccurring task that needs to be continuously
repeated to recognize the development of an incident, eg, the rise of
its severity, and to include further and more precise information that
becomes available in the course of the incident.

6.2.1 Enrichment of Basic Events

To begin with, basic events that are received by the EPS are enriched
with information relevant for the elaboration of subsequent rules and
their representation is homogenized to facilitate more generic rules.

The representation of temperature events from sensors of different
manufacturers is homogenized by means of the deductive rule in List-
ing 6.5, which derives temp events from temp-value events and from
sensor-msg events that contain temperature information. In addition,
the location of the sensor emitting the temperature value, that is, the
subarea the sensor is directly contained in, is determined by means
of a query to the static stateful object sensor.

Listing 6.5: Schema Mediation of Temperature Readings

DETECT

temp{ sensor{var I}, value{var Tcel}, subarea{var S} }

ON

and{

or{

event e: temp-value{

val{var Tfah}, sid{var I}

} let { var Tcel = (Tfah - 32)/1.8 }

event e: sensor-msg{

type{TYPE_TEMP_SENSOR}, value{var Tkel}, sensor-id{var I}

} let { var Tcel = Tkel - 273.15 }

}

state s: sensor{ sensor{var I}, subarea{var S} }

}

END �
Furthermore, temperature sensors must be identified that suddenly

stop to emit events and are thus considered broken. Temperature sen-
sors are regularly emitting temperature readings in intervals between
ten and 30 seconds. This domain knowledge is exploited by the rule in
Listing 6.6 to derive temp-sensor-failure events by inferring the fail-
ure of a temperature sensor from missing temperature values. Note
that this is not always sound as the respective sensor may be func-

121

tional whereas the communication infrastructure is malfunctioning
but this aspect is not further distinguished here.

Listing 6.6: Sensor Failure Detection

DETECT

temp-sensor-failure{ sensor{var I}, subarea{var S} }

ON

and{

event e: temp{ sensor{var I}, subarea{var S} }

not event f: temp{ sensor{var I} }

} where { f during from-end(e, 1min) }

END �
6.2.2 Incident Categorization

To enable the reactions that are suited for and tailored to a certain
incident, it is mandatory to determine the type of an incident, such
as, overcrowding or fire, and to asses whether it is a proper alarm
that needs immediate reaction or just a potential incident that may
evolve into an alarm but requires further manual clarification.

In addition to temp and smoke events, temperature and smoke sen-
sors are emitting pre-alarm and full-alarm events if certain thresholds
for the temperature and smoke concentration are exceeded. However,
the occurrence of a pre-alarm does not necessarily indicate a relevant
incident. For instance, temp-pre-alarms may be cause by a developing
fire, but they can likewise be caused by the air conditioning system of
a train exhausting hot air into the direction of a temperature sensor.
However, the threshold for full alarms is selected in a way that consid-
erably reduces the risk of false alarms and thus full alarms represent
serious incidents that need to be reacted upon.

Based on these and further events, including temp-sensor-failure

events derived by the rule from above, the rules in Listing 6.7 derive
certain-fire-alarm and uncertain-fire-alarm events. Both rules focus
on fire incidents, yet similar rules for other kinds of incidents can be
easily elaborated.

6.2.3 Alarm Verification

Uncertain alarms need to be further investigated to determine wheth-
er they represent false alarms, caused by malfunctioning equipment
or inaccurate and indirect measurements, or if they are caused by inci-
dents that will eventually evolve into proper alarms and thus require
appropriate reactions. Therefore, uncertain alarms are manually veri-
fied either by local staff that is sent to the affected area or by operators
in the control center by means of images from surveillance cameras.

122

Listing 6.7: Incident Categorization

DETECT

uncertain-fire-alarm{ subarea{var S} }

ON

or{

event e: fire-extinguisher-removal{ subarea{var S} }

event e: smoke-pre-alarm{ subarea{var S} }

event e: temp-pre-alarm{ subarea{var S} }

event e: temp-sensor-failure{ subarea{var S} }

}

END

DETECT

certain-fire-alarm{ subarea{var S} }

ON

or{

event e: smoke-full-alarm{ subarea{var S} }

event e: temp-full-alarm{ subarea{var S} }

}

END �
However, false alarms occur on a regular basis and thus the manual
verification cannot be issued for every uncertain alarm. In particular
in critical situations, the manual verification can only be requested
if there are other uncertain alarms detected in the same area which
increases the likelihood for the presence of an actual alarm.

The basic idea for the verification of uncertain alarms is as follows.
Unless the area affected by the alarm is not already in emergency
mode, a warden responsible for the respective area is requested to in-
vestigate the situation. However, as guards may be unavailable for var-
ious reasons, they need to confirm the verification request by sending
a request-confirmation event back to the EPS within 20 seconds. If the
confirmation holds off, a verification request is sent to the operators
in the control center. In any case, the result of the manual verification
is communicated back to the EPS by means of an alarm-verification

event.
The desired behavior is realized by means of the rules in Listing 6.8

to Listing 6.10.
The rule in Listing 6.8 evaluates whether an uncertain alarm occur-

ring in a subarea that is not already in emergency mode needs to be
verified and, if so, requests its manual verification by means of the
complex action fire-alarm-verification. To this end, the static state-
ful object related-areas is queried in addition to uncertain-fire-alarm

events to determine the number of further uncertain alarms that oc-
curred on the same platform within the last minute. Note that due to
the condition f during from-end-backward(e, 1min) an uncertain alarm
matching the sub-query e cannot simultaneously match the sub-query

123

Listing 6.8: Detect Required Alarm Verification

ON

and{

event e: uncertain-fire-alarm{ subarea{var S} }

state s: operation-mode{ area{var S}, mode{var M} }

where{ var M < OPM_EMERGENCY }

event f: uncertain-fire-alarm{ subarea{var S’} }

state t: related-areas{ area1{var S’}, area2{var S} }

} where { s valid-at end(e), f during from-end-backward(e, 1min) }

group by { e } aggregate { var NumAlarms = count(f) }

where { var NumAlarms >= 2 }

DO

action a: fire-alarm-verification{ subarea{var S} }

END �
Listing 6.9: Alarm Verification Action

FOR

action v: fire-alarm-verification{ subarea{var S} }

DO

compound{

IF

state s: responsibility{ subarea{var S}, warden{var W} }

where { s valid-at init(v) }

THEN

compound{

action a: request-warden-verification{

warden{var W}, subarea{var S}

}

IF

not event e: request-confirmation{ request-id{id(v)} }

where { end(e) - init(a) <= 20sec }

THEN

action b: request-cc-verification{ subarea{var S} }

}

} succeeds on and{

event f: verification-result{ request-id{id(v)} }

} where { end(f) - init(v) <= 3min }

END �
Listing 6.10: Verification Result Processing

DETECT

certain-fire-alarm{ subarea{var S} }

ON

event e: alarm-verification{ subarea{var S}, confirmation{true} }

END �

124

f and thus that action is initiated if there are at least three, not two,
uncertain alarms in the same area.

The request for alarm verification in Listing 6.9 is based on the
external request-warden-verification and request-cc-verification ac-
tions which request the investigation of the respective area from a
warden and the operator in the control center, respectively. Initially, a
warden responsible for the respective subarea is determined by query-
ing the stateful object responsibility and subsequently the warden is
requested to verify the alarm in the respective area. Unless the request
is confirmed by the warden within 20 seconds, the operator in the con-
trol center is requested to verify the alarm. To clearly distinguish sev-
eral concurrently issued confirmation requests request-confirmation

and alarm-verification events, need to reference the unique key of
the fire-alarm-verification action, which is contained in the payload
of request-warden-confirmation and request-cc-confirmation actions.

Finally, the rule in Listing 6.10 derives certain-fire-alarm events on
the reception of alarm-verification events that confirm the presence
of a certain alarm.

6.2.4 Fire Size Estimation

Once a certain fire alarm is detected, the next step is to determine
some characteristic values of the fire from the received events which
allow the estimation of the fire size and the determination of the
initial conditions for fast computable simulations

To this end, mean values of the temperature values and smoke con-
centration within the last two minutes are computed which allow in-
ferences on the current size of the fire. Naturally, this provides only a
rough and momentary estimation that gradually becomes more pre-
cise when more information becomes available in the course of the
fire. However, to obtain reliable characteristics, larger smoke and tem-
perature values need to be given stronger weights in the mean and
therefore the power mean [Bul03] determined by

Mp(a1, . . . ,an) =

(
1

n

n∑
k=1

a
p
k

) 1
p

with a sufficiently large p is applied instead of the arithmetic mean.1

Based on the fire characteristics, the current size of the fire is es-
timated by means of two thresholds for the mean temperature and
smoke concentration, respectively: If both of the mean values are be-
low their lower threshold the fire size is rated as small fire; if one
of the mean values exceeds its lower threshold but both values fall
below their upper threshold the fire is rated as significant fire; and in
the remaining case the fire is rated as large fire.

1 Note that for p = 1 the power mean actually coincides with the arithmetic mean.

125

Listing 6.11: Determining Fire Characteristics

DETECT

fire-characteristics{

subarea{var S}, temp{var TempMean}, smoke{var SmokeMean}

}

ON

and{

event e: certain-fire-alarm{ subarea{var S} }

let { var Window = from-end-backward(e, 1min) }

event f: temp{ subarea{var S}, value{var Temp} }

let { var TempP = Temp ** P }

event g: smoke{ subarea{var S}, conc{var Smoke} }

let { var SmokeP = Smoke ** P }

} where { f during Window, g during Window }

group by { e }

aggregate {

var TempSum = sum(TempP), var TempSize = count(f),

var SmokeSum = sum(SmokeP), var SmokeSize = count(g)

} let {

var TempMean = ((1.0/TempSize)*TempSum) ** (1.0/P),

var SmokeMean = ((1.0/SmokeSize)*SmokeSum) ** (1.0/P)

}

END �
Listing 6.12: Fire Size Estimation

DETECT

fire-size{ subarea{var S}, size{FIRE_SIZE_LARGE} }

ON

event e: fire-characteristics{

subarea{var S}, temp{var Temp}, smoke{var Smoke}

} where and{ TEMP_LIMIT_2 < Temp, SMOKE_LIMIT_2 < Smoke }

END

DETECT

fire-size{ subarea{var S}, size{FIRE_SIZE_SIGNIFICANT} }

ON

event e: fire-characteristics{

subarea{var S}, temp{var Temp}, smoke{var Smoke}

} where and{

or{ TEMP_LIMIT_1 >= Temp, SMOKE_LIMIT_1 >= Smoke },

Temp < TEMP_LIMIT_2, Smoke < SMOKE_LIMIT_2

}

END

DETECT

fire-size{ subarea{var S}, size{FIRE_SIZE_SMALL} }

ON

event e: fire-characteristics{

subarea{var S}, temp{var Temp}, smoke{var Smoke}

} where or{ Temp < TEMP_LIMIT_1, Smoke < SMOKE_LIMIT_1 }

END �

126

The corresponding behavior is implemented by the rules in List-
ing 6.11 and Listing 6.12, respectively. For these rules the values of
the constants are determined as follows: P = 25.0, TEMP_LIMIT_1 = 100,
TEMP_LIMIT_2 = 400, SMOKE_LIMIT_1 = 0.1, and SMOKE_LIMIT_2 = 0.2.

6.3 operation mode governance

The operation mode of an area is an important property that signifi-
cantly affects EM related procedures and decisions. Accordingly, it is
mandatory to correctly determine the operation mode for each area
and to continuously adapt it to the evolving situation. Moreover, the
operation mode must not only be correctly identified, but also needs
to be appropriately propagated between areas, eg, from a subarea to
its comprising area.

6.3.1 Updating the Operation Mode

Emergency managers are very conservative with respect to the evac-
uation of a station. When in doubt, they prefer to be on the save side
and evacuate a station once too often rather than to risk the lives of
passengers and personnel by mistakenly delaying the evacuation of a
station.

As the operation mode substantially influences various EM related
decisions, emergency managers are rather conservative in the deter-
mination of the operation mode as well, in particular if it is automat-
ically realized by means of rules. Therefore, the operation mode of
an area may be automatically increased but it must only be manually
decreased. To this end, an auxiliary action is specified in Listing 6.13

that facilitates the adaptation of the operation mode of an area and
implicitly discards undesirable automatic decreases.

Listing 6.13: Auxiliary Update Action

FOR

action i: increase-opm{ area{var A}, mode{var Mnew} }

DO

compound{

IF

state s: operation-mode{ area{var A}, mode{var Mold} }

where { s valid-at init(i), var Mold < var Mnew }

THEN

action a: operation-mode$update{

query{id(s)}, set{ area{var A}, mode{var Mnew} }

}

} succeeds on and{

state t: operation-mode{ area{var A}, mode{var Mactual} }

} where { t valid-at init(i), var Mactual >= var Mnew }

END �

127

In the following, the operation mode is only adapted by means of
this auxiliary action. In this way it is ensured that the operation mode
is increased but never decreased.

6.3.2 Detecting Operation Mode Crossovers

In addition to its general relevance for EM, modeling the operation
mode by means of a stateful object facilitates the prevention of alarm
avalanches of redundant alarms. For instance, redundant fire-alarm

events may be caused based on different observations of the same
incident by different sensors or from different justifications leading
to the derivation of multiple similar events. But although there may
be different justifications and observations resulting in redundant
fire-alarm events, the operation mode of the corresponding area is
only raised once.

Listing 6.14: Operation Mode Escalation

DETECT

operation-mode-escalation{ area{var A}, mode{var Mnew} }

ON

event e: operation-mode$updated{

old-payload{ area{var A}, mode{var Mold} },

new-payload{ area{var A}, mode{var Mnew} }

} where { var Mold < var Mnew }

END �
This is exploited by the rule in Listing 6.14. Based on detected op-

eration mode updates operation-mode-escalation events are derived
that are significantly less frequent than fire-alarm events. In this way,
the rule effectively realizes a filter for alarm events, as operators can
focus on the derived escalation events which are easier to recognize
and assess than the larger amount of redundant alarm events.

6.3.3 Identifying and Adapting the Operation Mode

The operation mode needs to be continuously adapted to the current
conditions in the metro station which is identified by means of com-
plex events.

When a certain fire alarm is detected, the operation mode of the
corresponding area needs to be immediately adapted to emergency.
Moreover, if there have already been issues up to five minutes prior
to the detection of the certain alarm, that is, the operation mode has
already been above critical and dropped back to or below critical, the
operation mode needs to be updated to emergency major as this indi-
cates severe problems that require special attention.

128

In addition, the fire size also affects the operation mode of an area:
When the fire size increases to significant or large the operation mode
of the respective area is adapted to emergency major.

Listing 6.15: Adapting Operation Modes

ON

event e: certain-fire-alarm{ subarea{var S} }

DO

compound{

action a: increase-opm{ area{var S}, mode{OPM_EMERGENCY} }

IF

and{

state s: operation-mode{ area{var S}, mode{var M} }

state s’: operation-mode{ area{var S}, mode{var M’} }

} where {

var M > OPM_EXCEPTIONAL, var M’ <= OPM_EXCEPTIONAL,

s valid-during from-end-backward(e, 2min),

s’ valid-at end(e)

}

THEN

action b: increase-opm{ area{var S}, mode{OPM_EMERGENCY_MAJOR} }

}

END

ON

event e: fire-size{ subarea{var S}, size{var F} }

where { var F >= FIRE_SIZE_SIGNIFICANT }

DO

action a: increase-opm{ area{var S}, mode{OPM_EMERGENCY_MAJOR} }

END �
This behavior is realized by means of the rules in Listing 6.15. Note

that in the first rule, the operation mode is initially updated to emer-
gency by means of the action a, even if the condition of the conditional
action is satisfied and the operation is thus updated to emergency ma-
jor as well. However, both updates are issued simultaneously and
therefore the conflict resolution specified for the stateful object oper-
ation mode in Listing 6.2 only accepts emergency major as the definite
operation mode of the respective area.

6.3.4 Propagating Operation Modes

After determining the operation mode for subareas, the identified
mode needs to be propagated to the operation mode of the station
and of the platform or mezzanine containing the affected subarea.
More precisely, the operation mode is directly propagated from a sub-
area to its comprising area. Moreover, the operation mode of an area
propagates with reduced severity, that is, with exceptional instead of

129

emergency and with emergency instead of emergency major, to its related
areas and to the station itself.

Listing 6.16: Propagation of Operation Modes

ON

and{

event e: operation-mode-escalation{ area{var S}, mode{var M} }

state s: area-subarea{ area{var A}, subarea{var S} }

}

DO

action a: increase-opm{ area{var A}, mode{var M} }

END

ON

and{

event e: operation-mode-escalation{ area{var A}, mode{var M} }

state s: station-area{ station{var T}, area{var A} }

} where { var M >= OPM_EMERGENCY }

let { var Mprop = var M - 1 }

DO

compound{

action a: increase-opm{ area{var T}, mode{var Mprop} }

IF

state u: related-areas{ area1{var A}, area2{var A’} }

THEN

action b: increase-opm{ area{var A’}, mode{var Mprop} }

}

END �
This behavior is realized by the rules in Listing 6.16 by means of

the static stateful objects station-area and area-subarea. As the name
suggests, the stateful object station-area associates each area with
its comprising station and the stateful object area-subarea associates
each subareas with its comprising area.

6.4 immediate reactions

Immediate reactions can be classified into unspecific and specific im-
mediate reactions. Unspecific reactions, such as the release movement
of elevators, are executed in a very early phase of the emergency
and thus do not require specific details on the fire size and future
smoke propagation determined by simulations. In contrast, specific
reactions, such as, the determination of the evacuation routes, require
some or even detailed knowledge of the emergency specifics. As the
characteristics may change in the course of the emergency it may be
furthermore required to execute the specific reactions multiple times
to adapt their effect to the new situation.

130

6.4.1 Elevator Deactivation

When a fire is detected, elevators in the station are directed to perform
a so-called release movement, which moves each elevator car without
further stops to a safe floor, open the car’s door, and then deactivates
the elevator.

Elevators are represented in Dura by means of the static stateful
object elevator which identifies the floor, more precisely, the subarea,
each elevator opens into and a priority that orders the floors of each
elevator according to their suitability as a destination for the release
movement. Accordingly, to pick a suited destination, each elevator
needs to be directed to the floor with the highest priority that is
currently not directly affected by the fire and thus currently not in
emergency mode.2

Listing 6.17: Elevator Release Movement Action

FOR

action r: elevator-release-movement{ elevator{var E} }

DO

compound{

IF

and{

state s: elevator{ elev{var E}, floor{var F}, prio{var P} }

not state t: operation-mode{ area{var F}, mode{var M} }

where { var M > OPM_EXCEPTIONAL, t valid-at init(r) }

not and{

state s’: elevator{ elev{var E}, floor{var F’}, prio{var P’} }

not state t’: operation-mode{ area{var F’}, mode{var M’} }

where { var M’ > OPM_EXCEPTIONAL, t’ valid-at init(r’) }

event r’: elevator-release-movement$initiated{ id{id(r)} }

}

} where { var P’ > var P }

THEN

compound{

action a: move-car-to{ elevator{var E}, dest{var F} }

action b: deactivate-elevator{ elevator{var E} }

} where { succ(a) <= init(b) }

} succeeds on and{

event e: move-car-to$success{ payload{ ref{id(r)} } }

} where { e during [init(r), init(r) + 1min] }

END �
The corresponding behavior is realized by means of the complex

action rule in Listing 6.17. To obtain the floor with the highest pri-
ority, we use a conditional action to query the floor F with priority
P so that no other floor F’ has a priority higher than P. In addition,

2 Note that this issue is much more relevant for airports, as in case of metro stations
the best suited floor is almost always the one located on the surface.

131

both floors F and F’ are constrained not to be in emergency mode by
means of queries to the stateful object operation-mode. The respective
elevator is then instructed to move its car to the floor F and to open its
doors by means of the action move-car-to. Subsequently, the elevator
is temporarily deactivated to prevent its further usage by passengers.

Note that the sub-query for elevator-release-movement$initiated

is actually required to obtain a correct query. The identifier r has
positive polarity only in the outermost conjunctive query. As a con-
sequence, omitting the event query and substituting r for r’ in the
temporal condition t’ valid-at init(r’) results in a query that is not
weakly range restricted. This workaround is somewhat inconvenient
but necessary. It may be avoided by a more liberal from of range re-
striction in future extensions of the language definition, though.

6.4.2 Announcing Safe Evacuation Routes

When an emergency situation is detected the station needs to be
evacuated as quickly as possible. To this end, passengers need to be
guided through the station on safe evacuation routes, that is, routes
that do not cross subareas known to be directly affected by the emer-
gency and are thus in emergency mode or subareas known to contain
a significant amount of smoke within the next several minutes.

The emergency lights considered in the following are rather sim-
ple and just point in a certain direction. Therefore, emergency lights
need to be activated so that one light points to the next light, ef-
fectively describing a route that leads out of the station. Thus, each
emergency light can be thought of as the starting point of one or sev-
eral (partly overlapping) evacuation routes. Accordingly, evacuation
lights are represented in Dura by the static stateful object em-light

which identifies location of each light and all evacuation routes that
start at the respective light when it is turned on. Evacuation routes
are in turn represented by the static stateful object evacuation-route

which identifies all subareas that are part of or crossed by the partic-
ular route.

Both static stateful objects are used by the complex action rule in
Listing 6.18 to realize the adaptation of the emergency lighting in sub-
areas. The query in the IF part matches all lights L that are the starting
point of at least one evacuation route R which satisfies that none of
the subareas it crosses is in emergency mode or expected to contain
more than ten percent smoke within the next three minutes. As an
emergency light may be the starting point of several routes, a group-
ing is applied to execute the action in the THEN part only once per
light. The complex actions fails unless there is at least one emergency
light in the area that is activated and thus points in the direction of a
safe evacuation route.

132

Listing 6.18: Adapt Emergency Lighting

FOR

action l: adapt-em-lighting{ subarea{var A} }

DO

compound{

IF

and{

state s: em-light{

subarea{var A}, light{var L}, route{var R}

}

not{

state u: evacuation-route{ route{var R}, segment{var S} }

state v: operation-mode{ area{var S}, mode{var M} }

} where { v valid-at init(l), var M > OPM_EXCEPTIONAL }

not{

state w: evacuation-route{ route{var R}, segment{var S’} }

event e: smoke-simulation{ subarea{var S’}, conc{var C} }

} where { e.semantic-time.end <= init(l)+3min, var C > 0.1 }

} group by { l, var L }

THEN

action a: activate-em-light{ light{var L} }

} fails on not{

event e: activate-em-light$succeeded{ payload{ ref{id(l)} } }

} where { end(f) = init(l) }

END �
Note how the second negated sub-query queries the result of a

simulation that is carried out based on the determined characteristics
of the detected fire. Because of the constraints on the semantic time,
specified in Listing 6.4, it is actually sufficient for the negation to
bound above the semantic-time instead of the reception-time.

Be aware that if this action is executed multiple times, eg, in case
of changing conditions, people may get lost as the emergency light
they have been directed to turns out and they hence cannot determine
where to go next. To account for this issue, another action is required
that deactivates lights in a manner that prevents passengers currently
using a certain route from getting lost.

133

Part III

F O R M A L S E M A N T I C S A N D S E M A N T I C
A N A LY S I S

7
S E M A N T I C S O F C O M P L E X A C T I O N S

The ambition of this and the following chapters is the elaboration
of a static semantic analysis for complex actions that is capable of
verifying desirable properties of complex action and that is if further-
more provably sound and complete. But without a formally precise
semantics of complex actions the evidence of the soundness and com-
pleteness can neither be provided in a formally precise and credible
way. Therefore, this chapter is devoted to the elaboration of a formal
semantics for complex actions that is sufficiently precise to prove the
desired properties of the static analysis for complex actions and is at
the same time appropriate for the particularities of external actions,
in particular by their contingent duration and effect.

The semantics of complex action and the static analysis presented
in this and the following chapters are an extension and revision of
work previously presented in [HB13].

7.1 informal introduction

To begin with, the particular properties of complex actions that are
substantially affecting their formal semantics are recapitulated. More-
over, basic idea for the formalization of the execution of actions even-
tually resulting in a formal semantics of complex actions is informally
motivated.

7.1.1 Properties Specific to the Execution of Actions

Compared to imperative procedures, physical actions have some par-
ticular properties that substantially impact the way in which com-
plex actions are executed. Most notably, physical actions are subject
to latency, have an uncertain duration and result, and are merely re-
quested by rather than directly executed by the Event Processing Sys-
tem (EPS).

Naturally, these properties also need to be considered for the static
analysis of complex actions which is intended to verify properties
that are related to the execution of complex action at runtime and
hence must be suited to deal with them appropriately.

subject to latency Physical actions are merely requested by
the EPS and actually executed by external actuators. As a consequence,
the distribution of requests generated by the EPS to the corresponding
actuator may require a substantial amount of time. Thus, the initia-

137

tion of actions is subject to latency which can hardly be estimated in
advance.

uncertain duration and result The duration and result of
physical actions can hardly be predetermined as physical actions al-
ter and affect physical processes that can hardly be formalized in a
sufficiently precise and reliable manner. Consequently, their duration
and result, ie, whether they succeed or fail, is contingent until the ac-
tion is actually executed. Yet, sometimes the duration of actions can
be at least bounded below by means of available domain knowledge.

affected and observed time-points From a very abstract
point of view, executing a complex action resembles the determina-
tion of time-points for the corresponding sub-actions in accordance
with their temporal dependencies. However, due to the aforemen-
tioned properties of physical actions, their time-points cannot be de-
termined in an arbitrary fashion as physical actions are merely re-
quested by the EPS and the execution is subject to runtime effects.

For instance, the initiation time of actions cannot be precisely deter-
mined due to the system inherent latency. However, at least a lower
bound for the initiation of actions can be affected by the EPS because
actions are only initiated after they have been requested and thus
lower bounds on the request of actions entail lower bounds for their
initialization. In contrast, the duration and result of actions cannot
be affected at all by the EPS because it cannot determine, eg, whether
and when an action is successful as this is subject to the outcome of
the corresponding physical processes.

Accordingly, the initiation of actions may be affected in the sense
that a lower bound for the initiation of actions may be specified
whereas their success and failure are merely observed.

7.1.2 Satisfying Temporal Dependencies

During runtime, actions need to be executed according to their tem-
poral dependencies. To this end, lower bounds for the initiation need
to be established in a way such that the resulting values for the initi-
ation, success, and failure meet the temporal dependencies.

However, due to the incomplete knowledge on actions and the re-
sulting uncertainty for the exact values of their initiation, success,
and failure the required bounds remain undetermined until runtime
where they become gradually available when the respective actions
are executed.

example The temporal dependencies succ(a) + 5 <= init(b) spec-
ify the lower bound succ(a) + 5 for the initiation of b. However, the

138

exact value of succ(a) remains unknown until the action a has actu-
ally succeeded.

In order to satisfy the temporal dependencies in presence of latency
and unknown durations of actions the following strategy is applied.
The action a is requested, as there are no dependencies that constrain
its initiation. If the action is successful, the value of succ(a) is eventu-
ally determined and thus the request of the action b can be deferred
until the time succ(a) + 5 has lapsed. Note that at this time the action
b is only requested and because of latency the time init(b) of its ac-
tual initiation is even later. In this way, the temporal dependencies
succ(a) + 5 <= init(b) are guaranteed to hold.

Naturally, this strategy can be applied to all formulas that refer to
the initiation of actions on the right hand side of an inequation ex-
pressing a temporal dependency. Formulas of this kind bear a special
meaning and therefore they are also called lower bound formulas.

restriction to lower bound formulas By design, complex
actions in Dura only support temporal dependencies that are com-
posed from lower bound formulas. Although it seems desirable to
consider more generic formulas for the specification of the execution
of actions, this restriction is not specific to Dura but applies to all sys-
tems that establish a clear separation between the specification of the
execution and the specification of properties that should be satisfied
when the action is executed.

The time of the success and failure of actions cannot be determined
by the EPS and thus temporal dependencies that refer to those times
on the right hand side of an inequation can only be observed at run-
time. Therefore, these kind of dependencies do not necessarily hold at
runtime, unless the EPS applies a dynamic execution strategy that ef-
fectively enforces temporal dependencies that are not explicitly spec-
ified by the programmer. However, to obtain a clear separation of
dimensions, temporal dependencies are intended to explicitly specify
the execution strategy of actions. They should not entail additional
implicit dependencies which can easily be overlooked by program-
mers and are merely established by the scheduling algorithm to sat-
isfies the explicitly specified temporal dependencies.

However, if desired, generic formulas can be specified as assertions
in the hence part of complex actions whereby it is verified whether
they are actually satisfied at runtime when the complex action is ex-
ecuted according to its temporal dependencies. In this way, the full
flexibility of generic formulas is preserved and at the same time pro-
grammers are required to explicitly and unambiguously specify all
temporal dependencies that affect the execution of the action.

event driven feedback loop In general, the execution of com-
plex actions resembles an event driven feedback loop which roughly

139

relates to the Observe-Orient-Decide-Act (OODA) model [Gra05] that
describes different processes of an agent competitively interacting
with other agents in the environment.

At some point the execution of a complex action is triggered by an
event. This causes the execution of certain sub-actions which can be
sensed by means of events and eventually leads to the detection of
their success or failure. These events either satisfy the preconditions
of conditional actions or determine the values of lower bounds for
the initiation of further actions. Hence, further actions are eventually
requested when their corresponding bounds are exceeded. This, in
turn, leads to the detection of further events which determines values
of further lower bounds and thus a new iteration of the feedback loop
begins.

7.1.3 Basic Ideas and Approach

To obtain a semantics of actions that is suitable for a static analysis the
execution of complex actions needs to be represented in a formal and
precise manner. But although the execution strategy that is applied
by the EPS described above can be precisely formalized, the uncertain
runtime effects of physical actions substantially complicate a precise
formalization of their behavior. If the runtime effects are known, eg, if
they have been measured during runtime, the execution of the action
can be precisely reproduced. However, due to the physical nature of
actions this information often cannot be determined at compile time
and thus is not available for the semantic analysis.

As a consequence, the semantics of complex actions needs to be
formalized by abstracting away the unknown runtime effects. To this
end, the event driven feedback loop described above is formalized by
means of a fixpoint computation that iteratively determines the times
of the executed actions as a function of so-called scenarios which de-
scribes the occurring runtime effects. Subsequently, the desired prop-
erties are verified for all possible scenarios. If the verification fails for
a single scenario it fails for the entire complex action. This guaran-
tees that all runtime effects that may actually occur at run time are
covered at compile time.

Moreover, if specific domain knowledge is available, this informa-
tion can be incorporated into the analysis in order to exclude certain
scenarios that do not correspond to the delays as they are known to
appear at runtime.

7.2 formalization of complex actions

For the sake of simplicity, complex actions are formalized in a more
concise manner that omits the syntactic constructs of Dura and con-
tains only information that is crucial for the static analysis of com-

140

plex actions. As names and parameters are not relevant for the in-
tended analysis, they are omitted from the formal representation and
only temporal formulas that correspond to the temporal dependen-
cies, domain knowledge, and temporal assertions of complex actions
are represented in the formalization.

7.2.1 Formal Representation of Complex Actions

For convenience, the sub-actions of a complex action are referred to
by means of the corresponding action identifier which is more concise
than their actual name. The time-points of sub-actions, which are par-
ticularly important for the static analysis, are represented by means
of variables associated with the corresponding action identifier.

For instance, the time-points referring to the initiation, success, and
failure of the following action

action a: open-fire-dampers{ area{var A} }

are represented by the variables ainit, asucc, and afail, respectively.

definition 7 .1. The set of identifiers and variables is denoted I and V,
respectively. Variables are furthermore classified into affected variables
Va and observed variables Vo with

Va =
⋃
f∈I

{
finit
}

and Vo =
⋃
f∈I

{
fsucc, ffail

}
.

The separation of affected and observed variables reflects the dif-
ferent extent in which the EPS can influence the values that are de-
termined for those time-points at runtime. The initiation of actions
can be deferred by the system and thus the system can determine
lower bounds for the value of affected variables whereas the values
of observed variables can merely be observed by the EPS.

Note that the given notions resemble activated and received time-
points from [VF99].

definition 7 .2. Temporal formulas are inductively defined by

1. > and ⊥ are temporal formulas

2. each atomic formula u+ d 6 v with u, v ∈ V and d ∈ Q

is a temporal formula

3. if F and G are temporal formulas then
F∧G is a temporal formula

For convenience, temporal formulas of the form u+−d 6 u ′ and
v+ 0 6 v ′ are represented more concisely by u− d 6 u ′ and v 6 v ′,
respectively.

141

definition 7 .3. A complex action is a triple C = (W,D,H) of tempo-
ral dependencies W, domain knowledge D, and temporal assertions
H represented by temporal formulas.

A complex action in Dura is formally represented by a complex
action C = (W,D,H) by mapping its temporal dependencies to the
temporal formula W, its domain knowledge to the temporal formula
D, and its temporal assertions to the temporal formula H.

definition 7 .4. The variables occurring in a temporal formula F are
denoted var(F).

Variables of a temporal formula commonly correspond to the initi-
ation, success, and failure times of the corresponding complex action
and its sub-actions.

example 7 .1. The formal representation of complex actions omits
all information that is not crucial for the static analysis from the spec-
ification of the action in Dura.

Listing 7.1: Specification of a Complex Action

compound{

action a: open-fire-dampers{ area{var A} },

action b: activate-ventilators{ area{var A} }

} where { succ(a) + 5sec <= init(b) }

hence { init(a) + 20sec <= succ(b), init(a) + 1min <= fail(b) } �
Accordingly, the complex action from Listing 7.1 is formally repre-

sented by the triple C = (W,D,H) with

W = asucc + 5 6 binit

D = >
H = ainit + 20 6 bsucc ∧ ainit + 60 6 bfail

whereby ainit and binit are affected variables and asucc, bsucc, and bfail

are observed variables.

7.2.2 Formalization of Domain Knowledge

The execution of complex actions follows the algorithm that is pro-
vided by the EPS and obeys some very natural and basic properties.
Sub-actions are not initiated before the initiation of the complex ac-
tion. Moreover, actions succeed or fail only after they have been ini-
tiated. These implicit assumptions are formalized by the following
definitions.

definition 7 .5. For a temporal formula W its lower bound formulas
are denoted

WL =
∧
v∈Va

u+d6v is sub-formula of W

u+ d 6 v

142

As discussed in Section 7.1.2, lower bound formulas are closely re-
lated to the execution of actions by the EPS. Ie, for a complex action
C = (W,D,H) only the lower bound formula WL is actually consid-
ered by the EPS for the execution of C.

definition 7 .6. The axiomatic closure of the temporal dependencies
W is denoted

WA =W ∧
∧

finit∈var(W)

(
⊥init 6 finit ∧ finit 6 fsucc ∧ finit 6 ffail

)
whereby the special variable ⊥init ∈ Vo refers to the initiation of the
complex action.

The axiomatic closure simply formalizes that sub-actions are only
initiated after the corresponding complex action has been initiated
and that actions are only successful or fail after they have been initi-
ated.

In addition to the very generic domain knowledge denoted by the
axiomatic closure there may be more specific information available
that applies only for certain actions. This kind of information in-
cludes, eg, information on the system latency and bounds on the du-
ration of certain actions. Domain knowledge is specified in a way that
resembles the specification of temporal dependencies and assertions
by means of inequalities in the schema of actions.

Accordingly, analogous to the formalization of temporal dependen-
cies and assertions, domain knowledge is formally represented by
means of temporal formulas.

example 7 .2. If it is known that the opening of the fire dampers
always takes longer than 30 seconds, this information is incorporated
into the schema of the open-fire-dampers action and represented by
means of the following formula

D = ainit + 30 6 asucc ∧ ainit + 30 6 afail.

Moreover, the subsequent formula specifies that the latency of the
system exceeds 100 milliseconds

D ′ = ⊥init + 0.1 6 ainit ∧ ⊥init + 0.1 6 binit ∧ asucc + 0.1 6 binit

The available domain knowledge is eventually considered by the
semantic analysis introduced in Chapter 8 to verify the validity of
assertions at runtime

7.2.3 Formalization of Conditional Actions

Complex actions containing conditional actions are also represented
by means of a triple C = (W,D,H). Thereby, temporal conditions are

143

simply represented as discussed above. Additional information infer-
able from the event query in the IF part is currently not considered
by the analysis algorithm, although it can be incorporated into the
domain knowledge of complex actions.

For a discussion on the implications of the imprecise formalization
of complex actions refer to Section 8.3.3.

Listing 7.2: A Conditional Action

compound{

action a: ...

IF state s: is-empty{ area{var A} }

where{ s valid-at succ(a) }

THEN action b: ...

} where { succ(a) + 10sec <= init(b) } �
example 7 .3. Accordingly, the complex action from Listing 7.2 is
formalized by C = (W,>,>) with

W = asucc + 10 6 binit

In this particular example, C precisely formalizes the complex ac-
tion because the query in the IF part does not affect the execution
of the action. However, if the temporal conditions of the event query
are adapted to, eg, s valid-at succ(a) + 23sec, the action b will not be
executed until 23 seconds after the success of a which corresponds to
the additional domain knowledge

D = asucc + 23 6 binit

which is not present in the primal formalization of C.

7.3 fixpoint theory

In order to statically verify properties of complex actions, their behav-
ior during runtime needs to be characterized in a formally precise
manner appropriate for formal reasoning.

To this end, we develop a notion of runtime traces that formalizes
the execution of complex actions with respect to their temporal de-
pendencies and the execution strategy that is applied by the EPS.

7.3.1 Preliminaries

definition 7 .7. P = Q+ ∪ {∞} and D = Q+ ∪ {∞} denote the set
of time-points and the set of durations, respectively. Time-points and
durations can be added up in a canonical manner

+ : P×D→ P, (p,d) 7→ p+ d.

144

Thereby,∞ denotes an arbitrarily large time-point or duration with

∀q ∈ Q : q <∞ and ∞+ q = q+∞ =∞
Time-points and durations are distinguished to emphasize their dif-

ferent semantics. Durations will be used to describe possible delays
during runtime whereas time-points will refer to the absolute times,
for instance, at which time an action succeeded.

definition 7 .8. A variable assignment maps variables to values in
D or P. In the following, variable assignments are denoted by sets of
variable value pairs as it is known from substitutions used in model
theory [ABW88].

Thereby, im(σ) denotes the image of a variable assignment σ, that is,
im(σ) corresponds to the set of all values that are actually substituted
for variables by σ.

Variable assignments are intended to describe the execution of ac-
tions during runtime. To this end, they map variables corresponding
to the initiation, success and failure of sub-actions to actual time-
points. Thereby the value ∞ indicates that an action has not been
initiated, did not succeed, or did not fail.

Variable assignments can be naturally applied to formulas and com-
posite expressions in a canonical manner. For vi ∈ V and di ∈ Q,
temporal formulas F and G, and a variable assignment σ follows

σ(F∧G) = σ(F)∧ σ(G)

σ(v1 + d1) = σ(v1) + d1

σ
(
{v1 + d1, . . . , vk + dk}

)
=
{
σ(v1 + d1), . . . ,σ(vk + dk)

}
example 7 .4. The complex action C = (asucc + 5 6 binit,>,>) de-
rived from Listing 7.1 may be, for instance, initiated at time 2 fol-
lowed by the initialization of a at time 5 and its success four seconds
later. Eventually b may be initiated at time 16 and fails at time 67.

This specific execution of the action is formalized by means of the
following variable assignment

ς =
{
2
/
⊥init, 5

/
ainit, 9

/
asucc,∞/afail, 16

/
binit,∞/bsucc, 67

/
bfail
}

which maps variables of C to time-points whereby ς(afail) = ∞ and
ς(bsucc) = ∞ specify that a never fails and b never succeeds. More-

over, ς satisfies the temporal conditions W and the assertions H, that
is, the variable free formulas

ς(W) = 9+ 5 6 16

ς(H) = 5+ 20 6∞ ∧ 5+ 60 6 67

hold under the axioms of P from Definition 7.7. In the following, this
circumstance is also denoted by ς |=W and ς |= H.

145

Obviously, not every arbitrary variable assignment describes how
an action is actually executed during runtime. An arbitrary variable
assignment may, for instance, indicate that a sub-action succeeds be-
fore it started or may not satisfy the temporal dependencies of actions.
Thus, to obtain a valid representation for the execution of actions,
those invalid variable assignments need to be excluded by incorporat-
ing the temporal dependencies and the delays that occur at runtime.

7.3.2 Fixpoint Iteration

The time-points of actions are not determined arbitrarily but are the
result of the execution strategy that is applied by the EPS and runtime
effects that determine, eg, how long it takes to execute a physical
action and whether it is successful or not. However, in general, these
properties are unknown prior to the actual execution of the action.
It cannot be known in advance how long it will take to execute an
external action and whether the execution will be successful or not.

To obtain a generic and valuable semantics of actions, these prop-
erties need to be considered in a suited way. To this end, the runtime
effects are abstracted away and the elaborated semantics of complex
actions is a function of so called scenarios.

definition 7 .9. A variable assignment ∆ is called scenario for a
formulaW if it maps all variables ofW to corresponding delays rather
than time-points, that is, if ∆ has the signature var(W)→ D.

For the sake of readability, ∆(v) is also denoted ∆v.

Scenarios are meant to abstract away runtime effects that can hardly
be specified formally or that are a priori unknown. Each scenario
describes one particular series of developments for the different out-
comes of sub-actions and time delays that can potentially occur dur-
ing runtime.

example 7 .5. The scenario

δ =
{
2
/
⊥init, 3

/
ainit, 4

/
asucc,∞/afail, 2

/
binit,∞/bsucc, 51

/
bsucc

}
describes, eg, that the action a is initiated 3 second after the complex
action was initiated and succeeds 4 seconds after it has been initiated
but never fails.

Note how the delays described by this scenario correspond to the
delays that occur during the execution described in Example 7.4 by
means of ς. However, be aware that delays for the initiation of actions
are specified relative to the earliest possible time an action could have
been initiated. Eg, because of the dependency asucc + 5 6 binit the
earliest time for the initiation of b is 14, however b is actually initiated
at time 16, thus the delay δ(binit) for the initiation of b corresponds to
2 and not to 7.

146

A scenario characterizes all runtime specific properties that influ-
ence the execution of physical actions. Therefore, if a particular sce-
nario is known, all relevant time-points related to the execution of
a complex action can be determined in a deterministic manner by
imitating the execution strategy that is applied by the EPS.

To this end, the stepwise determination of time-points as it is in-
formally described in Section 7.1.2 is formalized by a stepwise com-
putation of variable assignments. Thereby, the runtime specific prop-
erties that affect the time-points are obtained from a predetermined
scenario.

definition 7 .10. The preconditions for the determination of a vari-
able v ∈ var(W) of the temporal dependencies W are denoted

preW(v) =
{
u+ d

∣∣ u+ d 6 v is sub-formula of W
}

Informally, the preconditions of a variable finit describe the earliest
possible time for the request of the action f with respect to the times
the executions of f depends on.

example 7 .6. Given the axiomatic closure

WA = W ∧
(
⊥init 6 ainit ∧ ainit 6 asucc ∧ ainit 6 afail

)
∧(

⊥init 6 binit ∧ binit 6 bsucc ∧ binit 6 bfail
)

of the temporal dependencies W = asucc + 5 6 binit from Line 7.1, the
preconditions of binit correspond to

preWA
(binit) =

{
⊥init + 0, asucc + 5

}
Hence, in this particular case, preWA

(binit) indicates that b is re-
quested only if the complex action has already been initiated and if
furthermore a has been successful at least 5 seconds ago.

The actual determination of values of further variables is accom-
plished by means of the operator T . The operator formalizes one step
of the informally introduced feedback loop.

definition 7 .11. For a temporal formulaW and a runtime scenario
∆ the operator T∆,W maps variable assignments to variable assign-
ments with

T∆,W(σ) =
{(

max
{
σ
(
preW(v)

)}
+∆v

)/
v
∣∣∣

var
(
preW(v)

)
⊆ dom(σ)

}
whereby max ∅ = 0 ∈ P.

147

Note how the operator T makes a transition from merely syntactic
formulas on the right to actual time-points that are associated with a
variable v on the left.

example 7 .7. Recall the complex action from Line 7.1 with the tem-
poral dependencies W = asucc + 5 6 binit, which specify that b is
initiated at least 5 seconds after the success of a.

Moreover, consider the variable assignment

σ =
{
2
/
⊥init, 5

/
ainit, 9

/
asucc

}
which describes an ongoing execution of the complex action and thus
contains a set of already observed time points. According to σ, the
action a has been successful at time 9 whereas b has not been initiated
yet. Therefore, when the action is executed by the EPS the next step
would be to request b so that b is initiated at time 14 or later.

Note how the following application of Tδ,WA
to σ corresponds to

the behavior of the EPS.

Tδ,WA
(σ) = σ∪

{(
max{σ(⊥init + 0, asucc + 5)}+ δbinit

)/
binit
}

= σ∪
{(

max{2, 14}+ 2
)/
binit
}

= σ∪
{
16
/
binit
}

In this case max{σ(⊥init + 0, asucc + 5)} = 14 determines the earli-
est possible time for the initialization of b by means of the already
observed time-points obtained from σ. Moreover, the latency δbinit is
incorporated to determine when b is actually initiated according to
the scenario δ from Example 7.5. Eventually, the computation yields a
new variable assignment which incorporates the determined value 16

for the initiation of b in addition to all previously determined values.

Accordingly, the operator T adds values for affected variables of ac-
tions to the variable assignment σ whose initiation would have been
requested be the EPS in the situation described by σ. To obtain a com-
plete variable assignment that contains values for all variables of WA,
the operator is applied multiple times to incrementally determine all
missing values.

Note that by determining max ∅ = 0 the request time of complex
actions is artificially set to 0. In this way, the operator T describes the
execution of sub-action relative to the request of the complex action.

definition 7 .12. The powers of T are inductively defined by

T ↑ 0 = ∅
T ↑ n+ 1 = T (T ↑ n)

and the least fixpoint of T ↑ is denoted T = lfp(T ↑).

148

Remark. For the sake of readability the indices of the operator T and
of related notions may be omitted. For instance, T , T and T ↑ will
be often used as abbreviations for T∆,WA

, T∆,WA
and T∆,WA

↑ in the
following.

The fixpoint T basically describes, based on one particular scenario,
how the action will be executed by the system if the given delays are
actually observed at runtime. Note that the operator T is monotonic
[ABW88] and that the fixpoint T actually exists for any complex ac-
tion C. Moreover, the fixpoint is unique and is reached after a finite
number of iterations.1

example 7 .8. A complete iteration of T∆,WA
for W = asucc + 5 6 binit

is given in Figure 7.1.

T ↑ 0 = ∅

T ↑ 1 =
{
∆⊥init

/
⊥init
}

T ↑ 2 = T ↑ 1 ∪
{
∆⊥init +∆ainit

/
ainit
}

T ↑ 3 = T ↑ 2 ∪
{
∆⊥init +∆ainit +∆asucc

/
asucc

}
∪
{
∆⊥init +∆ainit +∆afail

/
afail
}

T ↑ 4 = T ↑ 3 ∪
{

max
{
∆⊥init , ∆⊥init +∆ainit +∆asucc + 5

}
+∆binit

/
binit
}

= T ↑ 3 ∪
{
∆⊥init +∆ainit +∆asucc + 5+∆binit

/
binit
}

T ↑ 5 = T ↑ 4 ∪
{
∆⊥init +∆ainit +∆asucc + 5+∆binit +∆bsucc

/
bsucc

}
∪
{
∆⊥init +∆ainit +∆asucc + 5+∆binit +∆bfail

/
bfail
}

T ↑ 6 = T ↑ 5 = T

Figure 7.1: A Complete Fixpoint Iteration

Note that not only the initiation of actions, but also the time-point
of their success and failure are determined by T according to the
scenario ∆. With the concrete scenario δ from Example 7.5 and with
T = lfp(Tδ,WA

↑) follows

T(⊥init) = 2, T(ainit) = 5, T(asucc) = 9

which means that the complex action is initiated at time 2 and the
sub-action a is initiated at time 5 and succeeds at time 9.

However, under certain conditions the fixpoint T may not contain
values for all variables of the complex action as the next example
demonstrates.

example 7 .9. For W = asucc + 5 6 binit ∧ bsucc + 3 6 ainit the EPS

will neither initiate a nor b at runtime as the initiation of a (indirectly)
depends on the initiation of b and vice versa. Therefore it is desirable

1 For a formal proof of these and further properties of T refer to Section 9.2.

149

that the fixpoint T assigns∞ to the variables ainit and binit. However,
the fixpoint T contains neither of the two variables instead.

T ↑ 0 = ∅
T ↑ 1 =

{
∆⊥init

/
⊥init
}

T ↑ 2 = T ↑ 1 = T

This observation finally leads to the desired notion of runtime
traces which describe the execution of actions according to their tem-
poral dependencies and assign values in P to all variables of an ac-
tion.

7.3.3 Runtime Traces

Runtime traces formalize the execution of complex actions. On an ab-
stract level, runtime traces correspond to particular solutions of tem-
poral formulas. More precisely, for a complex action C = (W,D,H),
runtime traces are those solutions of W that correspond to the possi-
ble instances of the complex action at runtime.

Basically, runtime traces are an extensions of variable assignments
obtained from a fixpoint iteration. Thereby, variables of the complex
action that are not contained in the fixpoint are mapped to infinity
so as to to obtain a complete representation of the execution of the
action.

definition 7 .13. For temporal dependenciesW the variable assign-
ment τ is called runtime trace of W iff there is a scenario ∆ such that
with T = lfp(T∆,WA

↑) holds

τ|dom(T) = T

∀v 6∈ dom(T) : τ(v) =∞
Mind the difference between scenarios and runtime traces. A sce-

nario describes the time delays that occur at runtime in a real world
system and specify which actions are successful and which fail. In
contrast, a runtime trace describes, based on one particular runtime
scenario, how a composite action with certain execution constraints
is actually executed at runtime by the EPS. It specifies the exact time
points for the initiation, success and failure of all of its sub-action
relative to the request of the complex action.

definition 7 .14. For temporal dependencies W and a scenario ∆
the corresponding runtime trace is denoted τ∆,WA

.

Note that a runtime trace is indeed completely determined by the
temporal dependencies W and a scenario ∆. Accordingly, the given
notation is a convenient abbreviation for the characterization of run-
time traces from Definition 7.13.

150

In the following, the convention is adopted that variable assign-
ments are denoted σ whereas runtime traces are denoted τ to empha-
size the difference between variable assignments and runtime traces
on a syntactical level.

definition 7 .15. A runtime trace τ is a definite runtime trace iff

∀finit ∈ dom(τ) : τ(fsucc) =∞∨ τ(ffail) =∞
The notion of definite runtime traces is particularly relevant for

Emergency Management (EM) as definite runtime traces satisfy the
natural assumption that no action both succeeds after finite time and
fails after finite time. However, for other application domains the re-
striction to definite runtime traces might be dropped which entails a
slightly different and less complicated semantic analysis.

definition 7 .16. A variable assignment τ is called runtime trace of
C = (W,D,H) iff τ is a runtime trace of WL and τ |= D.

Runtime traces of C are very specific solutions of the formula cor-
responding to temporal conditions of C. Each runtime trace corre-
sponds to one possible way in which the action can be actually exe-
cuted at runtime and conversely for each way the action is executed
there is a corresponding runtime trace.

Note that, by design, the EPS only determines values for affected
variables and hence ignores all atomic formulas with observable vari-
ables on the right hand side of the inequation. Therefore, runtime
traces of C = (W,D,H) are defined as being runtime traces of WL

in order to correspond to the way actions are actually executed at
runtime.

7.3.4 Recapitulation of Notions

The execution of complex actions depends on its temporal dependen-
cies and on contingent runtime effects which are formalized by means
of so-called scenarios. Each scenario gives rise to a particular instance
of the complex actions which differs from other instances in the exact
time points for the initiation, success, and failure of its sub-actions.

As it cannot be predetermined which scenario will actually take
place at runtime, the semantics of a complex action is formalized as a
function of scenarios. As a consequence, there is no single semantics
of a complex action but instead a family of different possible seman-
tics, each of which is caused by a different scenario and determined
by means of a fixpoint iteration which formalizes the execution algo-
rithm applied by the EPS. Thereby, each possible semantics is called
runtime trace and naturally satisfies the temporal dependencies of
the corresponding actions. Accordingly, runtime traces correspond to
specific solutions of the temporal dependencies of a complex actions.

151

However, mind the difference between runtime traces and solutions
to the temporal dependencies of complex actions. Only runtime traces
describe the execution of complex actions in an appropriate manner.
And although runtime traces necessarily satisfy the temporal depen-
dencies of the corresponding, not every solution to the temporal de-
pendencies corresponds to a runtime trace. In some rather extreme
cases, there even exists infinitely many solutions to the temporal de-
pendencies of a complex action, but none of them corresponds to a
(definite) runtime trace (for details refer to Section 8.1.1).

Finally, definite runtime traces of a complex action are runtime
traces that additionally satisfy that each sub-action either succeeds
or fails, but not both. As this is a natural and desirable assumption
for complex actions, the definite runtime traces of a complex action
represent the desired formal semantics that is suitable to prove the
soundness and completeness of the static analysis for complex ac-
tions.

152

8
S TAT I C A N A LY S I S O F C O M P L E X A C T I O N S

Based on the semantics of complex actions desirable and crucial prop-
erties of complex actions are identified that need to be satisfied at
runtime when the actions are actually executed.

However, merely characterizing desirable properties does not con-
tribute to the quality of complex actions. In addition, it needs to be
statically verifiable whether the properties are satisfied by a given ac-
tion. To this end, a static analysis algorithm is elaborated and its cor-
rectness and completeness is formally verified based on the semantics
of complex actions introduced in the previous chapter.

8.1 requirements and desirable properties

The clear separation and a good coverage of the four orthogonal di-
mensions is clearly desirable for complex actions, in particular for
complex actions applied in Emergency Management (EM). However,
the resulting expressiveness comes at a price. Due to the separation of
orthogonal dimensions, programmers have more liberties in the spec-
ification of actions. Thus flaws can be introduced more easily into the
specification of actions than with more constrained languages. More-
over, assertions specified by programmers are not necessarily satisfied
at runtime.

Therefore, complex actions call for a strong semantic analysis ca-
pable of identifying actions with undesired behavior and actions not
complying with their specification in order to prevent issues at run-
time.

8.1.1 Undesired Behavior of Complex Actions

The following examples demonstrate some of the undesired behav-
ior of actions that may emerge at runtime and should therefore be
identified by the static analysis which is elaborated in the following.

Recall that a complex action is formally represented by a triple
C = (W,D,H) of temporal formulas corresponding to its temporal
dependencies, domain knowledge, and temporal assertions, respec-
tively. Moreover, each runtime trace of C describes one possible in-
stance of the execution of the complex action.

example 8 .1. Consider the complex action C = (W,>,>) with

W = asucc 6 bsucc

153

As asucc and bsucc are observed variables their values cannot be
affected by the Event Processing System (EPS). Therefore, when the
complex action C is initiated, the sub-actions a and b are simply con-
currently requested. However, at runtime a may fail whereas b is
successful and the system has no means to prevent this behavior. Ac-
cordingly, the temporal dependencies W that have been specified by
the user are not necessarily satisfied at runtime.

It is highly desirable that programmers can rely on the fact that
the specified temporal dependencies of the complex action will be
actually satisfied at runtime. Therefore, the static analysis needs to be
capable to reject complex actions as the one from Example 8.1 that do
not necessarily satisfy their temporal dependencies.

example 8 .2. Consider the complex action C = (W,>,>) with

W = asucc + 5 6 binit ∧ bsucc − 3 6 ainit

At runtime a will only be initiated after b has been successful and
b will only be initiated after a has been successful. Thus, because of
this cyclic dependency between ainit and binit neither a nor b will be
initiated at runtime.

example 8 .3. Consider the complex action C = (W,>,>) with

W = asucc + 5 6 binit ∧ bsucc − 7 6 ainit

In analogy to Example 8.2, neither a nor b will be initiated by the
EPS. However, in contrast to the previous example there are indeed
variable assignments σ that satisfy W and for which furthermore
holds σ(ainit) <∞ and σ(binit) <∞ like, for instance,

σ =
{
0
/
⊥init, 2

/
ainit, 3

/
asucc,∞/afail, 8

/
binit, 9

/
bsucc,∞/bfail,

}
However, none of these variable assignments corresponds to the way
actions are executed by the EPS, that is, none of them corresponds to
a runtime trace.

example 8 .4. Consider the complex action C = (W,D,>) with

W = asucc + 5 6 binit

D = afail + 3 6 binit

For this complex action there are actually instances that initiate the
actions a and b. Eg, the runtime trace

τ =
{
1
/
⊥init, 3

/
ainit, 5

/
asucc, 7

/
afail, 12

/
binit,∞/bsucc, 13

/
bfail
}

corresponds to such an instance of C. Note, however, that for this τ
holds τ(asucc) < ∞ and τ(afail) < ∞ which is rather unintuitive as it

154

implies that a is both successful and fails. Therefore τ is not definite
as definite traces cannot have this unintuitive property.

However, the domain knowledge specifies that a always fails but
the initiation of b depends on the success of a. Therefore for all def-
inite runtime traces τ of C, which necessarily satisfy WL ∧D and
τ(asucc) = ∞ or τ(afail) =∞, follows τ(binit) = ∞. Therefore the ac-
tion b is never initiated by any instance of C that satisfies the intuitive
property that actions are either successful or fail.

For each of the three complex actions from Example 8.2 to 8.4 there
is a sub-action that is never initiated by any instance of the complex
action at runtime. At least if only instances are considered with the
natural assumption that sub-actions are either successful or fail. How-
ever, if sub-actions are never initiated they may aswell be removed
from the complex action and therefore it is likely that the temporal
dependencies do not entail the behavior that is intended by the pro-
grammer.

Therefore, the analysis needs to be able to reject complex actions,
like the ones from Example 8.2 to 8.4, that contain sub-actions which
are never initiated by any instance of the action at runtime.

example 8 .5. Consider the complex action C = (W,>,H) with

W = asucc + 5 6 binit

H = bsucc 6 ainit + 17

Although there are definite runtime traces that satisfy H, eg,

τ =
{
1
/
⊥init, 3

/
ainit, 5

/
asucc,∞/afail, 12

/
binit, 13

/
bsucc,∞/bfail

}
there are as well definite runtime traces that do not, eg,

τ =
{
2
/
⊥init, 3

/
ainit, 11

/
asucc,∞/afail, 12

/
binit, 23

/
bsucc,∞/bfail

}
Similar to the temporal dependencies of complex actions, their tem-

poral assertions are only meaningful if they are actually satisfied at
runtime. Temporal assertions are intended as a mean for program-
mers to specify the behavior they expect from the action when it is
actually executed at runtime.

Accordingly, the analysis needs to reject complex actions that do
not necessarily comply with their temporal assertions, such as the
complex action from Example 8.5.

8.1.2 Desirable Properties of Complex Actions

From the examples of the previous section we derive three proper-
ties of complex actions, namely, viability, fairness, and compliance.
Those three properties of complex actions are eventually verified by
the static analysis that is elaborated in the following.

155

definition 8 .1 (viability). A complex action C = (W,D,H) is
viable iff WL |=W.

By design, the EPS only determines values for affected variables
and hence ignores all atomic formulas with observable variables on
the right hand side of the inequation, that is, for a complex action
C = (W,D,H) the EPS only considers WL for the execution of actions.
Therefore, the temporal dependencies of C should correspond to the
lower bound formulas WL.

Note that with the given definition of viability, it follows for all vi-
able complex actions C that for each runtime trace τ of C the variable
free formula τ(W) is satisfied. Moreover, the definition of viability ef-
fectively realizes a clear separation between temporal dependencies
and temporal assertions. Eg, with F = asucc 6 bsucc the complex action
C = (F, F,>) is not viable although every runtime trace of C satisfies F.
However, F is clearly an assertion that cannot be actively enforced by
the EPS but can only be observed at runtime. Consequently, F should
not be combined with temporal dependency but should be specified
as an assertion of C instead.

definition 8 .2 (fairness). A complex action C = (W,D,H) is
fair iff for each finit ∈ var(W) there is a definite runtime trace τ of C
with τ(finit) <∞.

Example 8.2 to 8.4 from the previous section specify complex ac-
tions that contain sub-actions which are never initiated by any in-
stance of the given complex actions at runtime.

It seem to be too strong a restriction to demand that all sub-actions
are initiated by all instances of the complex action, as it would effec-
tively prevent the specification of alternatives, such as, execute b if a
is successful and c otherwise. However, it seems desirable to require
that each sub-action is initiated by at least one instance of the com-
plex action, that is, for all actions f there is a runtime trace τ with
τ(finit) <∞.

definition 8 .3 (compliance). A complex action C = (W,D,H)
is compliant iff for each definite runtime trace τ of C the variable free
formula τ(H) holds.

As it has been discussed in the previous section the temporal as-
sertions of complex actions are only meaningful if they are satisfied
at runtime by each instance of the complex action, that is, if for each
runtime trace τ the variable free formula τ(H) is satisfied.

8.1.3 Requirements for the Semantic Analysis

To be valuable in practice, an analysis algorithm for formal verifi-
cation of complex actions and their properties should consider the
following aspects.

156

suitability for physical actions The amount of knowledge
available on physical actions is usually very heterogeneous and may
range from no a priori information on the duration and the result,
eg, when complicated physical effects are involved, to comprehensive
knowledge, eg, in case of actions that cannot fail.

Therefore, the analysis must be capable to scale with the amount of
knowledge that is available. That is, very basic properties of actions
should be verified without any a priori knowledge. Moreover, specific
knowledge, if available, should be integrated into the analysis so as
to verify more sophisticated properties of actions.

verification at compile time Naturally, the analysis of com-
plex actions must be static, that is, the analysis is carried out at com-
pile time and identifies actions with undesired behavior that would
emerge at runtime.

A static analysis helps programmers to identify undesired behavior
of actions and to correct it before the actions are actually carried out
and their effects actually manifest. If the undesired behavior is only
detected at runtime, then it is often too late to correct the actions, in
particular in EM.

correctness and completeness The analysis needs to be cor-
rect in the sense that if it testifies the viability, fairness, and compli-
ance of a complex action, then the complex action actually has these
properties. If the analysis is not correct, it does not provide reliable
information on the properties of complex actions which substantially
reduces its usefulness.

Moreover, it is highly desirable that the analysis is complete in the
sense that for each complex action the analysis algorithm terminates.

8.2 static temporal analysis

Although the formalization of properties of complex actions from Sec-
tion 8.1.2 is precise in a mathematical sense it is not suitable to ver-
ify the properties of complex actions in an algorithmic manner. For
each sufficiently interesting complex action which contains at least
one sub-action that is actually initiated at runtime there are infinitely
many runtime traces. However, as the properties universally quantify
over runtime traces a direct algorithmic verification of them seems
impossible.

Therefore, the following section elaborates an alternative but equiv-
alent characterizations of the properties of complex actions that can
indeed be algorithmically tested in finite time.

157

8.2.1 Preliminaries

definition 8 .4. A dependency graph GF of a temporal formula F is
a directed weighted graph G = (V ,E,w) with V = var(F), E ⊆ V × V ,
and w : E→ Q such that for each sub-formula u+ d 6 v of F there is
an edge e = (v,u) ∈ E with w(e) = −d.

Note that dependency graphs correspond to distance graphs de-
scribed by [DMP91] to verify the consistency of Simple Temporal
Problem (STP) and to temporal distance graphs of [BE08a; Eck08]
where they are used to derive information related to the garbage col-
lection of events.

example 8 .6. The axiomatic closure of the temporal dependencies
W = asucc + 5 6 binit is represented by the graph GWA

in Figure 8.1a.
For the sake of readability, the labels of edges with weight zero are
omitted from the graphical representation.

⊥init

ainit

afail asucc

binit

bfail bsucc

-5

(a) GWA

1/⊥init

3/ainit

∞/afail 5/asucc

11/binit

17/bfail ∞/bsucc

-5

(b) GWA
Augmented with τ

Figure 8.1: Two Dependency Graphs of WA

In the following it is furthermore convenient to concisely represent
runtime traces within dependency graphs. An example of such an ex-
tended dependency graph is contained in Figure 8.1b for the runtime
trace

τ =
{
1
/
⊥init, 3

/
ainit,∞/afail, 5/asucc, 11

/
binit,∞/bsucc, 17

/
bfail
}

The following definitions provides some convenient notions that
are related to paths in (dependency) graphs and which are commonly
used in the literature, eg, in [Cor+01].

definition 8 .5. For a graph G = (V ,E,w) the notation v0
p
 vn

indicates that p = 〈v0, . . . , vn〉 is a path in G with (vi, vi+1) ∈ E for
0 6 i < n. To emphasize that a path is a proper edge in G, ie, n = 1,
the notation v0 → vn is used.

The number of edges of p is denoted length(p) = n and the weight
or distance of p is denoted w(p) =

∑
06i<nw(vi, vi+1). Moreover, for

a node s ∈ V the notion s ∈ p indicates that s lies on the path p, that
is, there is a 0 6 k 6 n such that s = vk.

158

definition 8 .6. For a complex action C = (W,D,H) the set of all
nodes on any path from v to ⊥init in GWA∧D is denoted

ρ(v) =
{
s ∈ p

∣∣ p with v
p
 ⊥init is a path in GWA∧D

}
.

Note that for all variables v ∈ var(WA) there is a path v ⊥init

in GWA
. And although the definition of ρ seems to have appeared

from nowhere it will turn out in the following that there is a strong
connection between ρ and the fairness of actions.

8.2.2 Basic Ideas and Informal Introduction

This section motivates and sketches the major ideas that are used
throughout the entire formal part concerned with the static analy-
sis in Chapter 9. Most notably, it provides the intuition for the rela-
tionship between definite runtime traces τ of a complex action C =

(W,D,H) with ∞ ∈ im(τ) and solutions σ of the temporal formula
WA ∧D with∞ 6∈ im(σ).

absence of definite runtime traces Runtime traces are de-
signed to map variables on a cycle in GWA

to infinity. Thus, if GWA
of

a viable complex action C = (W,D,H) contains a cycle it follows that
there is at least one finit with τ(finit) =∞ for all runtime traces τ of C.

Moreover, paths in GWA∧D denote (indirect) dependencies between
variables. More precisely, if there is a path u

p
 v in GWA∧D then all

runtime traces of C satisfy u−w(p) 6 v. Consider, for instance, the
action C = (W,D,>) with

W = asucc + 5 6 binit

D = afail + 7 6 binit

and the corresponding dependency graph in Figure 8.2. In this graph
there is a path binit afail and binit asucc. However, for definite
runtime traces τ holds that τ(afail) = ∞ or τ(asucc) = ∞ and thus,
because of the indicated dependencies, it follows for all definite run-
time traces τ of C that τ(binit) = ∞. Hence, there is no instance of C
that actually initiates b.

⊥init

ainit

afail asucc

binit

bfail bsucc

-5
-7

Figure 8.2: The Dependency Graph GWA∧D

159

These observations generalize to the following statement. If there
is a finit such that finit is contained in a cycle of GWA

or if there is a
ginit with gsucc ∈ ρ(finit) and gfail ∈ ρ(finit) then for all runtime traces
τ holds τ(finit) =∞.

construction of definite runtime traces Consider, for in-
stance, the action C = (W,D,H) with

W = asucc + 5 6 binit

D = asucc + 13 6 bsucc ∧ bfail − 9 6 asucc

H = bfail 6 asucc

and the variable assignment

σ =
{
2
/
⊥init, 5

/
ainit, 7

/
afail, 23/asucc, 29

/
binit, 37

/
bsucc, 30

/
bfail
}

which is included in the dependency graph ofGWA
in Figure 8.3. Note

that σ |=WA ∧D and σ 6|= H.

2/⊥init

5/ainit

7/afail 23/asucc

29/binit

30/bfail 37/bsucc

-5

9

-13

Figure 8.3: GWA∧D and σ with σ |=WA ∧D and σ 6|= H

From the given variable assignment σ we can construct the follow-
ing scenario ∆ such that for the runtime trace τ∆,WA

holds τ∆,WA
= σ:

∆ =
{
2
/
⊥init, 3

/
ainit, 2

/
afail, 18/asucc, 1

/
binit, 8

/
bsucc, 1

/
bfail
}

Note that the runtime trace τ is obviously not definite. However, it
can be made definite by constructing a new scenario ∆ ′ from ∆ by
adapting the values of ∆ ′afail

and ∆ ′bsucc
to∞. Then with τ ′ = τ∆ ′,WA

it
follows

τ ′ =
{
2
/
⊥init, 5

/
ainit,∞/afail, 23/asucc, 29

/
binit, 37

/
bsucc,∞/bfail

}
Note that furthermore τ ′(asucc) = τ(asucc) and τ ′(v) > τ(v) for all
variables v ∈ var(WA). Therefore, as τ 6|= H holds it follows that

τ ′(asucc) = τ(asucc) < τ(bfail) − 9 6 τ
′(bfail) − 9

and thus τ ′ is a definite runtime trace of C with τ ′ 6|= H.
Be aware that this example was carefully chosen to avoid some

rather technical details and to provide an easy to understand expla-
nation. However, in general for a complex action C = (W,D,H) with

160

WA is acyclic and for all finit,ginit ∈ var(WA) follows gsucc 6∈ ρ(finit)

or gfail 6∈ ρ(finit) the following proposition holds. For each variable
assignment σ with σ |= WA ∧D and each variable v ∈ var(WA) there
is a definite runtime trace τ of C with τ(v) = σ(v) and τ(u) > σ(u)
for all u ∈ var(WA).

Accordingly, under the given premises, a solution of WA ∧D can
be transformed into a definite runtime trace of C.

reduction to variable assignments in Q To construct a
variable assignment with values in Q from a definite runtime trace τ
with ∞ ∈ im(τ) we can take advantage of the following observation.
The value ∞ denotes an arbitrarily large time-point which is larger
than any finite time-point. However, in practice, for each specific run-
time trace the arbitrarily large time-point ∞ can be identified by a
sufficiently large time-point in Q. And therefore each runtime trace
τ can be translated into an equivalent variable assignments τfin with
im(τfin) ⊆ Q.

Consider, for instance, the action C = (W,D,H) with

W = asucc + 5 6 binit

D = afail + 23 6 bfail ∧ bfail − 9 6 asucc

H = bfail 6 asucc + 30

and the definite runtime trace τ∆,WA
of C with

∆ =
{
0
/
⊥init, 2

/
ainit, 7

/
afail,∞/asucc,∞/binit,∞/bsucc,∞/bfail

}
which is also included in the dependency graph of GWA

in Figure 8.4.
Note that all finite values are smaller than 8 and thus the value ∞
can be identified with values larger or equal to 8.

0/⊥init

2/ainit

7/afail ∞/asucc

∞/binit

∞/bfail ∞/bsucc

-5

Figure 8.4: GWA
and τ with τ |=WA ∧D but∞ ∈ im(τ)

However, to satisfy WA the value∞ cannot be simply identified by
a single value, but instead it needs to be identified by several values
larger than 7 that satisfy the constraints of WA. This is realized by
extending WA to Wfin

A with formulas that ensure that all variables v

161

with τ(v) = ∞ become larger than 7 and by adapting the scenario ∆
to ∆fin whereby ∆fin(v) = 0 for all v with τ(v) =∞.

Wfin
A =WA ∧

∧
τ(v)=∞⊥0 + 8 6 v

∆fin =
{
0
/
⊥init, 2

/
ainit, 7

/
afail, 0/asucc, 0

/
binit, 0

/
bsucc, 0

/
bfail
}

In this way, the fixpoint iteration that determines the runtime trace
τ ′ = τ∆fin,Wfin

A
automatically provides suited values for all variables v

with τ(v) = ∞ so that τ ′(v) > 8 and τ ′ |= WA. The runtime trace and
the corresponding graph GWfin

A
is depicted in Figure 8.5. Moreover,

note that only variables that are mapped to ∞ by τ are affected by
the described adaptations whereas variables that are mapped to finite
values remain the same.

0/⊥init

2/ainit

7/afail 8/asucc

13/binit

13/bfail 13/bsucc 0/⊥0

-8

-8

-8

-8
-5

Figure 8.5: GWfin
A

and τ ′ with∞ 6∈ im(τ ′) but τ ′ 6|= D

Although ∞ 6∈ im(τ ′), it does not follow that τ ′ |= D because vari-
ables that have been mapped to ∞ before and thus trivially satisfied
all atoms of D can be inappropriately chosen by τ ′.

However, the promising idea to apply the transformation to the
temporal dependencies WA ∧D instead of WA introduces further is-
sues here. Wfin

A ∧ D contains cycles and runtime traces have been
designed to map variables that are contained in a cycle to corre-
spond to the behavior of the EPS. Therefore, for the runtime trace
τ ′′ = τ∆fin,Wfin

A ∧D there are variables with τ ′′(v) = ∞ as Figure 8.6
illustrates.

0/⊥init

2/ainit

7/afail ∞/asucc

∞/binit

∞/bfail ∞/bsucc 0/⊥0

-8

-8

-8

-8
-5

9

-23

Figure 8.6: GWfin
A ∧D and τ ′′ with τ ′′ |=WA ∧D but∞ ∈ im(τ ′′)

162

The final solution that obtains a variable assignment τfin that satis-
fies WA ∧D and ∞ 6∈ im(τfin) is as surprising as beautiful. Although
the operator T has been designed to map variables on a cycle to∞, this property only holds if T ↑ 0 = ∅. If, however, T ↑ 0 is in-
stead determined in a suited manner, eg, by T ↑ 0 = τ ′, then for
τfin = lfp(T∆fin,Wfin

A ∧D ↑) holds τfin |= WA ∧D and im(τfin) ⊆ Q. Note
that furthermore the primal runtime trace τ can be reconstructed
from τfin by substituting all values larger than 7 with∞.

0/⊥init

2/ainit

7/afail 21/asucc

26/binit

30/bfail 26/bsucc 0/⊥0

-8

-8

-8

-8
-5

9

-23

Figure 8.7: GWfin
A ∧D and τfin with τfin |=WA ∧D and∞ 6∈ im(τfin)

Again, this example was carefully chosen. In general it can be
shown that if C is fair and WA ∧D is consistent, then for every run-
time trace τ the corresponding fixpoint τfin exists and is determined
within a finite amount of iteration steps. Moreover, it can be shown
that τfin |=Q WA ∧D and furthermore τfin |=Q H =⇒ τ |=P H.

relations to fairness The observations made in the first two
examples can be generalized to the following. If there is a cycle in
GWA

or if there are variables finit and ginit such that gsucc ∈ ρ(finit)

and gfail ∈ ρ(finit) then there is a sub-action a such that τ(ainit) = ∞
for all runtime traces τ of C.

Conversely, suppose GWA
is acyclic and for all finit,ginit ∈ var(WA)

holds gsucc 6∈ ρ(finit) or gfail 6∈ ρ(finit). If WA ∧D is consistent, then
there is a σ with σ |=Q WA ∧D and according to the observation from
the previous examples for each sub-action a a definite runtime trace
τ can be constructed from σ with τ(ainit) = σ(ainit) < ∞. Therefore,
as ainit has been arbitrarily chosen, it follows that C is fair.

Accordingly, to verify whether C is fair it suffices to verify that GWA

is acyclic and that for all finit,ginit ∈ var(WA) holds gsucc 6∈ ρ(finit) or
gfail 6∈ ρ(finit).

relations to compliance By definition, for each definite run-
time trace τ of a complex action C holds τ |=P WA ∧D. Thus the
question whether a complex action is compliant resembles the ques-
tion whether WA ∧D |=Q H which can be verified by established
algorithms [SK00; SV98; BB12b].

163

However, runtime traces map variables to values in P and thus
there is no direct relation between runtime traces and solutions of
WA ∧D in Q. Example 8.2, for instance, specifies a complex action
C for which holds that there are runtime traces τ of C but none of
those runtime traces is a solution of WA ∧D in Q. Moreover, Exam-
ple 8.3 specifies a complex action C for which holds that none of the
solutions in Q of WA ∧D are runtime traces.

Nevertheless there are two important aspects that can be observed
from the previous examples. If C = (W,D,H) is a fair complex action
with WA ∧D consistent in Q then for each definite runtime trace τ of
C there is a τfin with τfin |=WA ∧D and τfin |=Q H =⇒ τ |=P H. Thus
if WA ∧D |=Q H it follows for each runtime trace τ of C that τ |=P H.
Conversely, if WA ∧D 6|=Q H then there is a σ with σ |=Q WA ∧D and
σ 6|=Q H and therefore there is a definite runtime trace τ of C with
τ 6|=P H.

Accordingly, to verify whether each runtime trace τ of a fair action
C satisfies H, that is, whether C is compliant, it actually suffices to
verify that WA ∧D |=Q H.

8.2.3 Analogies to Skolemization

Skolemization [Bry+07] is a technique used in mathematical logic to
construct a universal formula from a non-universal formula. Interest-
ingly, Skolemization and the construction of τfin from τ share some
remarkable commonalities that may help readers familiar with the
matter to gain a better understanding of τfin and its relationships to
the compliance of complex actions.

The Skolemization of a non-universal formula ϕ yields a universal
formula ϕsko. However, the Skolemization introduces new function
symbols to the signature of the underlying formal language and thus
ϕ and ϕsko are not equivalent in the sense that they share the same
models. Nevertheless, each model Msko |= ϕsko can be converted into
a model of ϕ by simply omitting the interpretation of redundant func-
tion symbols that are only present in ϕsko and not in ϕ. Conversely,
from each model M |= ϕ an interpretation Msko can be constructed
that interprets the additional function symbols of ϕsko in the right
manner so that Msko |= ϕsko. As a consequence, under certain condi-
tions, it suffices to consider the universal formula ϕsko to draw con-
clusions on the satisfiability of ϕ.

Similar to the relationship between M and Msko, definite runtime
traces τ and solutions of WA ∧D in Q cannot be directly related. Def-
inite runtime traces necessarily map some variables to infinity and
thus ∞ ∈ im(τ) but ∞ 6∈ Q and thus definite runtime traces are no
solutions of WA ∧D in Q and vice versa. However, if the complex
action C = (W,D,H) obeys certain conditions, then for each definite
runtime trace τ of C a corresponding τfin exists with ∞ 6∈ im(τfin).

164

And conversely, from every solution of WA ∧D in Q a definite run-
time trace τ can be constructed. As a consequence, very similar to the
relationship between ϕ and ϕsko, under certain conditions it suffices
to verify properties of the solution to WA ∧D in Q to draw conclu-
sions on properties of definite runtime traces τ.

8.2.4 Desirable Properties Reconsidered

This section provides the formal foundations for the informal exam-
ples of the previous section. It establishes formally provable relation-
ships between the desirable properties of complex actions described
in Section 8.1.2 and properties of graphs and Disjunctive Tempo-
ral Problems (DTPs) that can be algorithmically tested. However, the
rather technical proofs are omitted from this section. For the formal
proofs refer to Chapter 9.

theorem 8 .1. A complex action C = (W,D,H) is not fair only if the
graph GWA

is cyclic or there are variables finit and ginit with gsucc ∈ ρ(finit)

and gfail ∈ ρ(finit).

theorem 8 .2. A complex action C = (W,D,H) with WA ∧D consistent
is not fair if the graph GWA

is cyclic or there are variables finit and ginit with
gsucc ∈ ρ(finit) and gfail ∈ ρ(finit).

The preceding theorems provide the formal foundations for the
relationships between the fairness of actions and properties of the
corresponding dependency graph. As a consequence, it is not manda-
tory to analyze all infinitely many runtime traces to verify the fairness
of an action but instead it suffices to verify the properties of a finite
graph.

theorem 8 .3. For a fair complex action C = (W,D,H) with WA ∧D

consistent holds WA ∧D |=Q H only if for all definite runtime traces τ of C
holds τ |=P H.

theorem 8 .4. For a fair complex action C = (W,D,H) with WA ∧D

consistent holdsWA∧D |=Q H if for all definite runtime traces τ of C holds
τ |=P H.

The prior two theorems provide the formal foundations for the
relationships between the compliance of actions and the entailment
WA ∧D |=Q H. Accordingly, to verify the compliance of complex ac-
tions it is sufficient to verify the consistency of the DTP WA ∧D∧¬H

which is known to be decidable [TVP03; BB12a].

8.3 analysis algorithm

The results presented in Section 8.2.4 form the basis of the analysis
algorithm as they provide relationships between the viability, fairness

165

and compliance of complex actions and graph properties and the en-
tailment of temporal formulas which can be decided in finite time.

8.3.1 Pseudocode

The static analysis algorithm Algorithm 1 takes as input a complex
action C = (W,D,H) with WA ∧D consistent in Q and determines
whether C is viable, fair, and compliant.

Note that the consistency of the STP WA ∧D can be verified in a
preprocessing step in polynomial time [DMP91]. Moreover, the re-
striction to complex actions C with WA ∧D consistent seems reason-
able as otherwise there are variables that are mapped to infinity by
any runtime trace of C.

Algorithm 1: Viability, Fairness, and Compliance Test
input : an action C = (W,D,H) with WA ∧D consistent

1 if WL 6|=Q W then /* ensure viability */

2 fail C is not viable;

3 if GWA
is cyclic then /* ensure fairness */

4 fail C is not fair;

5 for finit ∈ var(WA) do
6 if finit gsucc and finit gfail are path in GWA∧D then
7 fail C is not fair;

8 if WA ∧D 6|=Q H then /* ensure compliance */

9 fail C does not comply with H;

10 success C is viable, fair, and compliant;

The analysis algorithm is based on the following auxiliary func-
tions which are applied to verify the properties described in the pre-
vious section to draw conclusions on the properties of the complex
action.

constructing GWA
and GWA∧D Both formulas W and D are

finite and it furthermore follows from Definition 8.4 that for the de-
pendency graphs GWA

and GWA∧D the number of vertices V has the
order of O

(
|var(W)|

)
and the number of edges E has the order of

O(w+ d) whereby w and d denote the number of atomic formulas in
W and D, respectively.

Accordingly both dependency graphs are finite and can be con-
structed in finite time.

166

cycle detection n GWA
(line 3) Cycles contained in a directed

weighted graph G can be detected by means of depth-first search
[Cor+01] over G with a running time of O(V + E).

traversing paths in GWA∧D (line 6) In an (acyclic) graph all
paths leading from finit to ⊥init can be determined with a running
time of O(E). Accordingly, the running time of line 5-7 is in the order
of O(V · E).

entailment of temporal formulas (line 1 and 8) The
entailment of temporal formulas F |=Q G is equivalent to the incon-
sistency of the DTP F∧¬G in Q. Moreover, checking the consistency
of DTPs is known to be NP-hard [TVP03] and can be decided with
exponential running time [ACG00; BD13].

Note that the given assessments of the running time is not very
tight. However, as the analysis algorithm is executed at compile time,
we would like to emphasis that the algorithm always terminates. The
efficiency of the algorithm is a matter of secondary importance here.

8.3.2 Correctness and Completeness

Correctness and completeness are two substantial properties of algo-
rithms meaning that the answer an algorithm gives is indeed correct
and that the algorithm will eventually give an answer for any input,
respectively.

correctness The correctness of Algorithm 1 with respect to fair-
ness follows from Theorem 8.1 and 8.2. Moreover, from Theorem 8.3
and 8.4 follows the correctness with respect to compliance and with
C = (WL,>,W) if further follows the correctness with respect to via-
bility.

Note that the algorithm is only correct in the sense that it termi-
nates whenever it determines that one of the three properties is not
satisfied. That is, if an action is not viable and not compliant, Algo-
rithm 1 only outputs not viable. However, as all three properties are
considered to be equally important for EM purposes and thus com-
plex actions should always have all three properties this circumstance
does not seem to be a major issue.

completeness As a complex action C = (W,D,H) is determined
by a triple of finite formulas it follows from the discussion in Sec-
tion 8.3.1 that Algorithm 1 terminates for each input. Hence, Algo-
rithm 1 is complete with respect to viability, fairness, and compliance,
respectively.

167

8.3.3 Compliance Under Incomplete Knowledge

The domain knowledge of a complex action C may be specified in-
completely, as further and more detailed knowledge is wittingly or
unwittingly omitted from the specification of the complex action C.
Be aware that in particular in case of physical actions the domain
knowledge may never be completely available or that temporal for-
mulas may not be suited to formalize it. Eg, Section 7.2.3 indicates
that the current formalization of conditional action omits domain
knowledge that can be extracted from temporal conditions of its event
queries.

As a consequence, the static analysis verifies the compliance of
the action C = (W,D,H) as it is specified by the programmer, but
in reality the complex action always satisfies the additional domain
knowledgeD ′, that is, actually the compliance of C ′ = (W,D∧D ′,H)
should have been verified instead. So how does the compliance of C
which is checked by the static analysis relate to the compliance of the
more accurately formalized action C ′?

If the complex action C is compliant then WA ∧D |=Q H and thus
WA ∧D∧D ′ |=Q H. Hence, all definite runtime traces τ of C ′ satisfy
H and therefore from C compliant follows C ′ compliant. However, for
certain actions may follow that WA ∧D 6|=Q H but WA ∧D∧D ′ |=Q H

and thus C ′ may be compliant whereas C is not.
Accordingly, the compliance of C is a conservative approximation

of the compliance of C ′.1 That is, if C ′ is not compliant the analy-
sis always rejects the compliance of C but there are cases in which
the compliance of C ′ is wrongly rejected as C is not compliant but
C ′ is. In particular for EM the last observation is important as the
domain knowledge of many physical actions intrinsically cannot be
completely specified in a suitable manner and thus remains incom-
plete. However, an analysis that is too conservative is still acceptable
whereas an analysis that it too optimistic is not, at least for EM.

8.3.4 Variation for Non-definite Runtime Traces

Although the restriction to consider only definite runtime traces of
complex actions seems desirable, not only for EM purposes, this re-
striction can be easily omitted from the analysis algorithm.

proposition 8 .5. An action C = (W,D,H) with WA ∧D consistent is
fair (considering also non-definite runtime traces) iff GWA

is acyclic.

proposition 8 .6. For an action C = (W,D,H) that is fair (consider-
ing also non-definite runtime traces) and with WA ∧D consistent holds
WA ∧D |=Q H iff for all traces τ of C holds τ |=P H.

1 Note that the viability and fairness of complex actions is not related to their domain
knowledge and thus the viability and fairness of C and C ′ coincide.

168

Both propositions follow from the proofs of Theorem 8.1 to 8.4
by omitting all references to definite runtime traces. Accordingly, if
desired, Algorithm 1 can be adapted for non-definite runtime traces
simply by omitting lines line 5 to 7.

8.3.5 Revision of Prior Work

In prior work presented in [HB13], the algorithm for the verification
of the compliance of actions has been based on work proposed in
[BB12b]. Thereby we made the incorrect assumption that [BB12b]
describes a generalization of DTPs for the domain P that can verify
whether F |=P G holds by checking the inconsistency of the formula
F∧¬G in P.

However, the previous sections suggest, under the additional prem-
ise that WA ∧D is consistent in Q, that it actually suffices to verify
whether F |=Q G holds to draw conclusions on the compliance of ac-
tions. Accordingly, approaches verifying the consistency of DTPs in
Q, such as [SK00; SV98; BB12b], are actually sufficient to verify the
compliance of actions.

8.4 temporal constraint satisfaction problems

Temporal constraint satisfaction is related to the proposed static anal-
ysis of complex actions in two aspects. First of all, the static analysis
is based on algorithms that verify the consistency of STPs and DTPs.
Moreover, there are extensions that introduce uncertainty into the de-
termination of time-points by discriminating between free and con-
tingent constraints, a notion that is related to affected and observed
time-points. These extensions are then used to verify whether there
exists solutions of constraints that can be found in an incremental
fashion which is relates to the feasibility of the stepwise execution of
actions at runtime.

However, temporal constraint satisfaction approaches are often re-
lated to planning and scheduling of composite action, an issue that
is, by design, not considered for complex actions as it contradicts a
clear separation of dimensions of actions. They furthermore do not
consider the possibility of actions to fail and thus are restricted to
domains not including∞. Nevertheless, static plans for the execution
of action that are obtained from the following approaches can indeed
be specified as temporal dependencies of complex actions.

8.4.1 Simple and Disjunctive Temporal Problems

STPs and DTPs have been well studied in the literature [DMP91; SK00;
SV98] as they are suited to express and to reason about temporal
constraints which is closely related to scheduling, planning, and tem-

169

poral reasoning in general. STPs and DTPs are specific Constraint Sat-
isfaction Problems (CSPs) which involve a set of variables over a con-
tinuous domain, usually Q or R, and a set of (disjunctive) constraints
that correspond to atomic temporal formulas from Definition 7.2.

Two relevant issues, in particular for DTPs, are deciding consistency
and answering queries that are related to the solutions of the con-
straints [SV98]. Thereby, checking the consistency of STPs has a poly-
nomial time complexity [DMP91] whereas checking the consistency
of DTPs is known to be NP-hard [TVP03]. Nevertheless, developing
efficient algorithms and polynomial-time approximation algorithms
for the verification of the consistency of DTPs has been deeply inves-
tigated by the community [SV98; TP03; OC00]. Moreover, extensions
of DTPs have been proposed [BB12b; TVP03] that are also capable of
dealing with atomic constraints of the form u+ d < v. Accordingly,
for two temporal formulas F and G the consistency of F∧¬G can be
verified by these approaches.

Beyond their relevance for scheduling and planning, DTPs and DTPs

are also suited to automatically determine temporal relevance condi-
tions that enable garbage collection of events that contribute to com-
plex event queries [BB12b; BE08a; Eck08].

8.4.2 Temporal Problems with Uncertainty

Vidal and Fragier [VF99] propose Simple Temporal Problem under
Uncertainty (STPU) that incorporate a notion of uncertainty into STPs.
STPUs discriminate between free constraints, which correspond to the
constraints of STPs, and contingent constraints whose duration cannot
be decided by the system but is provided by the external world. In
[VF99] varying notions of controllability are elaborated which are in-
tended to replace the notion of consistency for STPUs and reflect, eg,
whether a dynamic strategy for assigning values to free constraints
exists that is guaranteed to satisfy all constraints in any situation.

In [VY05] STPUs are generalized to allow for disjunctions of free and
contingent constraints. And similar to DTPs, a major issue has since
been to elaborate efficient algorithms [MM05; PVY07; Ven+10] that
verify the various notions of controllability proposed in [VF99].

Moreover, dynamic execution algorithm for temporal constraints
with both preferences and uncertainty have been elaborated by Rossi,
Venable, and Yorke-Smith [RVY04; RVY06].

8.4.3 Temporal Problems with Predicates

Another formalism dealing with uncertainty are Conditional Tempo-
ral Problems (CTPs) as they are proposed by Tsamardinos, Pollack,
and Ramakrishnan [TPR03]. However, in contrast to STPUs the uncer-

170

tainty arises from the outcome of observation not from the uncer-
tainty of the duration of contingent constraints.

CTPs are represented by distance graphs of STPs that are further-
more augmented by observation nodes which correspond to decision
points and determine which of several alternative execution paths is
to be taken. A notion of controllability that is similar to the corre-
sponding notions of STPUs is elaborated.

Recently, the work on CTP has been further extended to incorporate
contingent durations of actions [FRV10; Lan+13].

171

9
F O R M A L P R O O F S

This chapter provides the formal proofs of the theorems Theorem 8.1
to Theorem 8.4 which are only informally motivated in the previous
chapter.

But before we actually prove these theorems, we will restate the
most relevant definitions from the previous chapters and introduce
some convenient notations. Moreover, we will elaborate particular
properties of runtime traces that facilitate the following proofs.

9.1 preliminaries

definition 7 .10. The preconditions for the determination of a vari-
able v ∈ var(W) of the temporal dependencies W are denoted

preW(v) =
{
u+ d

∣∣ u+ d 6 v is sub-formula of W
}

definition 7 .11. For a temporal formulaW and a runtime scenario
∆ the operator T∆,W maps variable assignments to variable assign-
ments with

T∆,W(σ) =
{(

max
{
σ
(
preW(v)

)}
+∆v

)/
v
∣∣∣

var
(
preW(v)

)
⊆ dom(σ)

}
whereby max ∅ = 0 ∈ P.

definition 7 .13. For temporal dependenciesW the variable assign-
ment τ is called runtime trace of W iff there is a scenario ∆ such that
with T = lfp(T∆,WA

↑) holds

τ|dom(T) = T

∀v 6∈ dom(T) : τ(v) =∞
definition 7 .15. A runtime trace τ is a definite runtime trace iff

∀finit ∈ dom(τ) : τ(fsucc) =∞∨ τ(ffail) =∞
definition 7 .16. A variable assignment τ is called runtime trace of
C = (W,D,H) iff τ is a runtime trace of WL and τ |= D.

definition 8 .6. For a complex action C = (W,D,H) the set of all
nodes on any path from v to ⊥init in GWA∧D is denoted

ρ(v) =
{
s ∈ p

∣∣ p with v
p
 ⊥init is a path in GWA∧D

}
.

173

definition 9 .1. The following definition generalizes T ↑ from Defi-
nition 7.12 so that the value of T ↑ 0 can be determined by a variable
assignment σ.

Tσ ↑ 0 = σ
Tσ ↑ n+ 1 = T

(
Tσ ↑ n

)
In the primal definition of T ↑ the value of T ↑ 0 has always been

committed to ∅.
Remark. For the sake of readability the indices of the operator T may
be omitted. Eg, T , T and T ↑ will be often used as abbreviations for
T∆,WA

, T∅∆,WA
and T∅∆,WA

↑ in the following.

definition 9 .2. The domain of the fixpoint T∅∆,WA
merely depends

on the temporal formula WA and is independent of the scenario ∆.
Therefore we adopt the notion

dom(W) = dom
(
T∅∆,WA

)
definition 9 .3. For a complex action C = (W,D,H) the length of
the longest path from v to ⊥init in GWA

is denoted

λ(v) = max
{

length(p)
∣∣ p with v

p
 ⊥init is a path in GWA

}
Moreover, if there is a path v

p
 ⊥init that contains a cycle then

λ(v) =∞ as the length of the longest path is unbounded.

definition 9 .4. For a variable assignment σ with im(σ) ⊆ Q and a
temporal formula F the notation σ |=Q F means that the variable free
formula σ(F) holds under the axioms of Q.

definition 9 .5. For temporal formulas F andG the notation F |=Q G

denotes that for all variable assignments σ with im(σ) ⊆ Q and
σ |=Q F follows σ |=Q G.

definition 9 .6. The notations σ |=P F and F |=P G are defined
likewise with P substituted for Q.

Remark. For the sake of readability Q and P may be omitted from |=Q

and |=P if ambiguities can be ruled out.

theorem 9 .1 (Dechter , Meiri , and Pearl [DMP91]). A Sim-
ple Temporal Problem (STP) F is consistent in Q iff there is no negative
cycle in GF. Moreover, if v

p
 u is a path in GF and σ |=Q F then

σ |=Q u 6 v+w(p).

The following theorem is an adaptation of the widely recognized re-
lationship of semantic properties and entailment of formulas in math-
ematical logic [Bry+07] adapted to temporal formulas.

theorem 9 .2. For temporal formulas G and H holds G |=Q H iff the
Disjunctive Temporal Problem (DTP) G∧¬H is inconsistent in Q.

Remark. For the sake of simplicity, we assume without loss of gen-
erality that for all temporal formulas F that are considered in the
following neither ⊥ nor > is sub-formula of F.

174

9.2 properties of runtime traces

lemma 9 .3. For temporal formula W and a variable v ∈ var(W) follows
v ∈ dom(T ↑ n) if and only if λ(v) < n.

Proof. =⇒ : If λ(v) > n then there is a path p in GWA
such that

p = 〈vn, . . . , v0〉 and vn = v and v0 = ⊥init. Accordingly, W contains
the sub-formulas

(v0 + d0 6 v1), (v1 + d1 6 v2), . . . , (vn−1 + dn−1 6 vn)

As vi ∈ pre(vi+1) for 0 6 i < n, it follows that vi+1 ∈ dom(T ↑ i+ 1)
only if vi ∈ dom(T ↑ i). Thus,

vn ∈ dom(T ↑ n) =⇒ . . . =⇒ v0 ∈ dom(T ↑ 0)

But as v0 6∈ ∅ = dom(T ↑ 0) it follows vn 6∈ dom(T ↑ n).
⇐= : By induction. Base Case (n = 1): From λ(v) < 1 follows

v = ⊥init and as pre(⊥init) = ∅ it further follows that v ∈ dom(T ↑ 1).
Inductive Case (n→ n+ 1): If λ(v) < n+ 1, then for u ∈ var

(
pre(v)

)
holds

λ(u) = max
{

length(p)
∣∣ u p
 ⊥init

}
= max

{
length(p)

∣∣ v→ u
p
 ⊥init

}
< max

{
length(p)

∣∣ v p ⊥init
}

= λ(v) < n+ 1

Hence, for all u ∈ var
(
pre(v)

)
follows λ(u) < n and furthermore,

by induction hypothesis, u ∈ dom(T ↑ n). Thus, according to the
definition of T follows v ∈ dom(T ↑ n+ 1).

theorem 9 .4. If v ∈ dom(T ↑ n), then(
T ↑ n

)
(v) = max

{∑
s∈p

∆s −w(p)
∣∣∣ v p ⊥init

}
.

Proof. By induction. Base Case (n = 0): As dom(T ↑ 0) = ∅ there is no
v ∈ dom(T ↑ 0) and thus the implication is trivially satisfied.

Inductive Case (n → n+ 1): According to the definition of T , from
v ∈ dom(T ↑ n+ 1) follows

var(pre(v)) ⊆ dom(T ↑ n)

Therefore, for all u ∈ var(pre(v)) follows by induction hypothesis that(
T ↑ n

)
(u) = max

{∑
s∈p

∆s −w(p)
∣∣∣ u p
 ⊥init

}
.

175

Without loss of generality pre(v) =
{
v1 + d1, . . . , vk + dk

}
and as

di = −w(v, vi) it follows(
T ↑ n+ 1

)
(v) = max

{(
T ↑ n

)
(pre(v))

}
+∆v

= max
16i6k

{(
T ↑ n

)
(vi) + di

}
+∆v

= max
16i6k

{
max

{∑
s∈p

∆s −w(p)
∣∣∣ vi p ⊥init

}
+ di

}
+∆v

= max
{∑
s∈p

∆s +∆v −w(p) + di

∣∣∣ v→ vi
p
 ⊥init

}
= max

{∑
s∈p

∆s +∆v −w(p) −w(v, vi)
∣∣∣ v→ vi

p
 ⊥init

}
= max

{∑
s∈p

∆s −w(p)
∣∣∣ v p ⊥init

}

theorem 9 .5. If σ ⊆ σ ′ then T(σ) ⊆ T(σ ′), that is, T is monotonic
[ABW88].

Proof. Suppose σ ⊆ σ ′. If v ∈ dom(T(σ)) then

var(pre(v)) ⊆ dom(σ)

However, as σ ′ ⊇ σ it follows

var(pre(v)) ⊆ dom(σ ′)

and thus u ∈ dom(T(σ ′)). Moreover, if v ∈ dom(T(σ)) and σ ⊆ σ ′,
then, as pre(v) is independent of σ and σ ′

T(σ)(v) = max
{
σ(pre(v))

}
+∆v

= max
{
σ ′(pre(v))

}
+∆v

= T(σ ′)(v)

and therefore T(σ) ⊆ T(σ ′).

theorem 9 .6. For all conjunctive formulas W the fixpoint T exists and
T = T ↑ n for some n ∈N.

Proof. As T is monotonic it follows that T ↑ n ⊆ T(T ↑ n) = T ↑ n+ 1

and thus dom(T ↑ n) ⊆ dom(T ↑ n+ 1).
As furthermore dom(T ↑ n) ⊆ var(W) for all n ∈ N and W is a

finite conjunctive temporal formula it follows that T ↑ n = T ↑ n+ 1

for some n and therefore T = T ↑ n.

corollary. v ∈ dom(W) if and only if λ(v) <∞.

corollary. If v ∈ dom(W), then

T(v) = max
{∑
s∈p

∆s −w(p)
∣∣∣ v p ⊥init

}
.

176

lemma 9 .7. Suppose v u is a path in GWA
. If u 6∈ dom(W) then

v 6∈ dom(W).

Proof. If v u is a path in GWA
, then v u ⊥init is a path in GWA

.
Moreover, if u 6∈ dom(W) then λ(u) =∞ and thus

λ(v) > λ(u) =∞.

Therefore, v 6∈ dom(W).

lemma 9 .8. Suppose v u is a path in GWA
and v,u ∈ dom(W). If

T(u) =∞ then T(v) =∞.

Proof. If v u is a path in GWA
then v u ⊥init is also a path in

GWA
. Thus,

T(v) = max
{∑
s∈p

∆s −w(p)
∣∣∣ v p ⊥init

}
> max

{∑
s∈p

∆s −w(p)
∣∣∣ v p ⊥init ∧ u ∈ p

}
> max

{∑
s∈p

∆s −w(p)
∣∣∣ u p
 ⊥init

}
= T(u) =∞

lemma 9 .9. For a runtime trace τ∆,WA
follows τ∆,WA

|=WA.

Proof. Suppose u+d 6 v is a sub-formula of WA. If v 6∈ dom(W) then
τ(v) =∞ and thus τ |= u+ d 6 v.

If v ∈ dom(W) then τ(v) = T(v) and as T is a fixpoint it follows

T(v) = T(T)(v) = max
{

T(pre(v))
}
+∆v

> T(u) + d

and therefore τ |= u+ d 6 v.
As u+d 6 v has been arbitrarily chosen it follows that τ |=WA.

lemma 9 .10. For a temporal formula W with GWA
acyclic follows if

σ |=WA then there is a scenario ∆ such that τ∆,WA
= σ.

Proof. Suppose σ is a variable assignment with σ |=WA. Because GWA

is acyclic it suffices to show that there is a scenario ∆ such that σ =

T∆,WA
. Let ∆v be determined by

∆v =

σ(v) − max
{
σ(pre(v))

}
if max

{
σ(pre(v))

}
<∞

0 otherwise

For this scenario follows by induction T ↑ n+ 1 = σ|dom(T↑n+1).

177

Base Case (n = 0): Recall that max ∅ = 0. Thus

T ↑ 1 =
{
∆⊥init

/
⊥init
}
=
{
σ(⊥init)

/
⊥init
}
= σ|dom(T↑1)

Inductive Case (n → n+ 1): Suppose v ∈ dom(T ↑ n+ 1). Then for
all u ∈ pre(v) holds u ∈ dom(T ↑ n) thus by induction hypothesis
follows for those u that

(
T ↑ n

)
(u) = σ(u). Hence(

T ↑ n+ 1
)
(v) = max

{(
T ↑ n

)
(pre(v))

}
+∆v

= max
{
σ(pre(v))

}
+∆v = σ(v)

Accordingly, T ↑ n+ 1 = σ|dom(T↑n+1).
Therefore, if follows from Theorem 9.6 and the premise that GWA

is
acyclic that dom(W) = var(WA) and thus T∆,WA

= σ|dom(W) = σ.

lemma 9 .11. Suppose τ is a runtime trace of C = (W,D,H) and GWA

acyclic, WA ∧D consistent in Q, and for all variables finit and ginit holds
gsucc 6∈ ρ(finit) or gfail 6∈ ρ(finit).

Then for all s ∈ var(WA) there is a definite runtime trace τ ′ of C with
τ ′ |= D and τ ′(s) = τ(s) and τ ′(v) > τ(v) for all v ∈ var(WA).

Proof. As GWA
is acyclic it follows that τ∆,WA

= T∆,WA
and therefore

it suffices to prove the propositions for T∆,WA
.

Let T ′ be determined by T ′ = T∆ ′,WA
with

∆ ′(v) =

∆(v) if v ∈ ρ(s)

∞ otherwise

Then ∀v ∈ ρ(s), in particular for v = s, follows ∆ ′v = ∆v and thus

T ′(v) = max
{∑
r∈p

∆ ′r −w(p)
∣∣∣ v p ⊥init

}
+∆ ′s

= max
{∑
r∈p

∆r −w(p)
∣∣∣ v p ⊥init

}
+∆s

= T(v)

Moreover, if v 6∈ ρ(s) then ∆ ′s = ∞ and therefore T ′(v) = ∞. Thus
T ′(v) > T(v).

As by premise ∀finit : fsucc 6∈ ρ(s)∨ ffail 6∈ ρ(s) holds it follows by
construction of ∆ ′ that ∀finit : T ′(fsucc) =∞∨ T ′(ffail) =∞ thus T ′ is
a definite runtime trace.

Suppose u+d 6 v is a sub-formula ofD. If v 6∈ ρ(s) then T ′(v) =∞
and therefore T ′ |= u+ d 6 v.

If v ∈ ρ(s) then s v ⊥init is a path in GWA∧D. However, as
u+ d 6 v is a sub-formula of D it follows that s v → u ⊥init is
also a path in GWA∧D and therefore u ∈ ρ(s).

Accordingly, T ′(u) = τ(u) and T ′(v) = τ(v) and as τ |= D it follows
that T ′ |= u+ d 6 v.

178

9.3 properties of fair actions

lemma 9 .12. If GWA
is cyclic, then the complex action C = (W,D,H) is

not fair.

Proof. If GWA
is cyclic, then for each variable v that is contained in

a cycle holds λ(v) = ∞. Therefore v 6∈ dom(W) and thus for every
runtime trace τ of C holds τ(v) =∞.

lemma 9 .13. If there are variables finit and ginit such that gsucc ∈ ρ(finit)

and gfail ∈ ρ(finit) it follows that the complex action C = (W,D,H) is not
fair.

Proof. Suppose τ is a definite runtime trace of C = (W,D,H). It thus
follows from Lemma 9.9 that τ |=WA and thus τ |=WA ∧D.

As gsucc ∈ ρ(finit) and gfail ∈ ρ(finit) there are paths p,p ′ in GWA∧D

with finit
p
 gsucc and finit

p ′
 gfail. It thus follows from Theorem 9.1

τ(gsucc) 6 τ(finit) +w(p) and τ(gfail) 6 τ(finit) +w(p
′)

And as τ is a definite runtime trace it further follows that τ(gsucc) =∞
or τ(gfail) =∞ thus τ(finit) =∞ and therefore C is not fair.

theorem 8 .1. A complex action C = (W,D,H) is not fair only if the
graph GWA

is cyclic or there are variables finit and ginit with gsucc ∈ ρ(finit)

and gfail ∈ ρ(finit).

Proof. Immediate consequence from Lemma 9.12 and 9.13.

theorem 8 .2. A complex action C = (W,D,H) with WA ∧D consistent
is not fair if the graph GWA

is cyclic or there are variables finit and ginit with
gsucc ∈ ρ(finit) and gfail ∈ ρ(finit).

Proof. Suppose ∀finit,ginit : gsucc 6∈ ρ(finit)∨ gfail 6∈ ρ(finit) and GWA
is

acyclic.
As WA ∧D is consistent in Q there is a σ such that σ |=Q WA ∧D.

As in particular σ |=Q WA it follows from Lemma 9.10 that there is a
runtime trace τ with τ = σ.

Suppose hinit ∈ var(WA). It then follows from Lemma 9.11 that
there is a definite runtime trace τ ′ with τ ′(hinit) = τ(hinit) and thus
with τ ′(hinit) <∞.

As hinit was arbitrarily chosen it follows that for all hinit ∈ var(WA)

there is a definite runtime trace τ ′ with τ ′(hinit) <∞.

9.4 properties of compliant actions

definition 9 .7. For a temporal formula W and a runtime trace
τ∆,WA

the corresponding operator Tfin is denoted by

Tfin = T
T∅
∆fin,Wfin

A = T
lfp(T∅

∆fin,Wfin
A

↑)

179

whereby

∆fin(v) =

∆(v) if τ(v) <∞
0 otherwise

and

Ffin = F ∧
∧

τ(v)=∞⊥0 +ωτ 6 v

withωτ = max
{
p ∈ im(τ)

∣∣ p <∞}+ 1 and a variable ⊥0 6∈ var(WA).

definition 9 .8. For the runtime trace τ of a fair complex action
C = (W,D,H) the corresponding τfin is denoted by

τfin = Tfin
∆fin,Wfin

A ∧D∞
whereby

D∞ =
∧

τ(v)=∞
u+d6v is sub-formula of D

u+ d 6 v

Note that dom
(
τfin
)
⊇ var(WA) and im

(
τfin
)
⊆ Q. Moreover, be

aware that τfin is the result of three successive fixpoint iterations.

Remark. In the following, the index of the operator Tfin and of Tfin ↑
is always committed to ∆fin,Wfin

A ∧D∞. Moreover, the index of the
fixpoints τ and τfin is always committed to ∆,WA.

Thus, for the sake of readability, these indexes may be omitted in
the following.

definition 9 .9. For two runtime traces τ, τ ′ the notion τ � τ ′ de-
notes that for all v ∈ dom(τ) holds

1. τ(v) <∞ =⇒ τ(v) = τ ′(v)

2. τ(v) =∞ =⇒ τ ′(v) > ωτ

Note that if τ � τ ′ then τ(v) > τ ′(v) for all v.

lemma 9 .14. For a temporal formula H and runtime traces τ � τ ′ such
that for all u ∈ dom(τ) with τ(u) =∞ holds

τ ′(u) > ωτ−min
(
{0}∪ {d ′ | u ′+d ′ 6 v ′ is sub-formula of H}

)
> ωτ

follows τ ′ |= H implies τ |= H.

Proof. Suppose τ ′ |= u+ d 6 v. If τ ′(u) = τ(u) then

τ(u) + d = τ ′(u) + d 6 τ ′(v) 6 τ(v)

hence τ |= u+ d 6 v.

180

If τ ′(u) 6= τ(u) then τ(u) =∞. Moreover, as

d > min
(
{0}∪ {d ′ | u ′ + d ′ 6 v ′ sub-formula of H}

)
it follows by premise that τ ′(u) > ωτ − d and thus

ωτ 6 τ
′(u) + d 6 τ ′(v)

hence τ ′(v) > ωτ and thus τ(v) =∞ which implies τ |= u+ d 6 v.
Accordingly, in any case holds if τ ′ |= u+d 6 v then τ |= u+d 6 v.

Suppose H =
∧
i ci is an arbitrary temporal formula and τ ′ |= H. It

thus follows for all i that τ ′ |= ci. Therefore τ |= ci for all i and hence
τ |= H.

lemma 9 .15. For a runtime trace τ of a complex action C = (W,D,H)
holds τ � Tfin ↑ n.

Proof. By induction. Base Case (n = 0): If τ(v) = ∞ then ⊥0 +ωτ 6 v
is a sub-formula of Wfin

A . Without loss of generality, v ∈ dom(W) and
thus (

Tfin ↑ 0
)
(v) = T∅

∆fin,Wfin
A

(v)

> max
{

T∅
∆fin,Wfin

A

(preWfin
A ∧D∞(v))

}
> T∅

∆fin,Wfin
A

(⊥0) +ωτ

> ωτ

If τ(v) <∞ it follows from Lemma 9.8 that for all u with v u in
WA holds τ(u) <∞. Therefore, for all such u, follows ∆fin(u) = ∆(u)

and there is no sub-formula of Wfin
A with u+ωτ 6 v. Accordingly,(

Tfin ↑ 0
)
(v) = T∆fin,Wfin

A
(v)

= max
{∑
s∈p

∆fin
s −w(p)

∣∣∣ v p ⊥0 in GWfin
A

}
= max

{∑
s∈p

∆s −w(p)
∣∣∣ v p ⊥0 in GWA

}
= τ(v)

Inductive Case (n → n+ 1): If τ(v) = ∞ then ⊥0 +ωτ 6 v is a sub-
formula of Wfin

A . Without loss of generality, v ∈ dom(W) and thus(
Tfin ↑ n+ 1

)
(v) = max

{(
Tfin ↑ n

)
(preWfin

A ∧D∞(v))
}
+∆fin

v

>
(
Tfin ↑ n

)
(⊥0) +ωτ

> ωτ

If τ(v) < ∞ then ∆fin(v) = ∆(v) and preWfin
A ∧D∞ = preWA

. It fur-
thermore follows from Lemma 9.8 that τ(u) <∞ for all u ∈ preWA

(v)

181

and therefore τ(u) < ∞ for all u ∈ preWfin
A ∧D∞(v). Thus by induc-

tion hypothesis
(
Tfin ↑ n

)
(u) = τ(u) for all u ∈ preWfin

A ∧D∞(v). and
therefore(

Tfin ↑ n+ 1
)
(v) = max

{(
Tfin ↑ n

)
(preWfin

A ∧D∞(v))
}
+∆fin

v

= max
{
τ(preWfin

A ∧D∞(v))
}
+∆fin

v

= max
{
τ(preWA

(v))
}
+∆v

= τ(v)

lemma 9 .16. Suppose τ is a runtime trace of the complex action C, then(
Tfin ↑ n+ 1

)
(v) >

(
Tfin ↑ n

)
(v).

Proof. By induction. Base Case (n = 0): As by definition Tfin ↑ 0 coin-
cides with the fixpoint T∅

∆fin,Wfin
A

it follows that(
Tfin ↑ 0

)
(v) = T∅

∆fin,Wfin
A

(v)

=
(
T∅
∆fin,Wfin

A

(T∅
∆fin,Wfin

A

)
)
(v)

= max
{

T∅
∆fin,Wfin

A

(pre∆fin,Wfin
A
(v))
}
+∆fin

v

= T∅
∆fin,Wfin

A

(u) + d+∆fin
v

=
(
Tfin ↑ 0

)
(u) + d+∆fin

v

for a sub-formula u+ d 6 v of Wfin
A . Therefore(

Tfin ↑ 1
)
(v) = max

{(
Tfin ↑ 0

)
(preWfin

A ∧D∞(v))
}
+∆fin

v

>
(
Tfin ↑ 0

)
(u) + d+∆fin

v

=
(
Tfin ↑ 0

)
(v)

Inductive Case (n→ n+ 1):(
Tfin ↑ n+ 1

)
(v) = max

{(
Tfin ↑ n

)
(preWfin

A ∧D∞(v))
}
+∆fin

v

> max
{(
Tfin ↑ n− 1

)
(preWfin

A ∧D∞(v))
}
+∆fin

v

=
(
Tfin ↑ n

)
(v)

lemma 9 .17. Suppose τ is a runtime trace of the fair complex action C =

(W,D,H) and WA ∧D is consistent in Q. Then the fixpoint τfin exists and
τfin = T ↑ n for some n ∈N.

Proof. For a v with
(
Tfin ↑ i

)
(v) >

(
Tfin ↑ i− 1

)
(v) follows that there

is a sub-formula u+ d 6 v of Wfin
A ∧D∞ with(

Tfin ↑ i
)
(v) =

(
Tfin ↑ i− 1

)
(u) + d+∆fin

v

182

and furthermore
(
Tfin ↑ i− 1

)
(u) >

(
Tfin ↑ i− 2

)
(u).

Suppose there is no n such that τfin = Tfin ↑ n, then for all n there
is a v such that

(
Tfin ↑ n+ 1

)
(v) 6=

(
Tfin ↑ n

)
(v). It then follows from

Lemma 9.16 that
(
Tfin ↑ n+ 1

)
(v) >

(
Tfin ↑ n

)
(v). Accordingly, for an

n larger than the longest acyclic path in GWfin
A ∧D∞ there is a v such

that
(
Tfin ↑ n+ 1

)
(v) >

(
Tfin ↑ n

)
(v). It thus follows that there are

v = vn+1, . . . , v0 such that for 0 < i 6 n+ 1 there is a sub-formula
vi−1 + di−1 6 vi and(

Tfin ↑ i
)
(vi) =

(
Tfin ↑ i− 1

)
(vi−1) + di−1 +∆

fin
vi

As n is larger than the longest path it furthermore follows that
there is a 0 6 k < n+ 1 such that vk = vn+1 and thus that the path
p = 〈vn+1, . . . , vk〉 is a cycle in GWfin

A ∧D∞ . However, it follows from
Definition 9.7 and Definition 9.8 that ⊥0 cannot be contained in any
cycle and therefore it follows that p is actually a cycle in GWA∧D∞ .

Moreover(
Tfin ↑ n+ 1

)
(v) =

(
Tfin ↑ n

)
(vn) + dn

=
(
Tfin ↑ n− 1

)
(vn−1) + dn−1 + dn

...

=
(
Tfin ↑ k

)
(vk) +

n∑
i=k

di =
(
Tfin ↑ k

)
(v) +

n∑
i=k

di

And as Lemma 9.16 implies
(
Tfin ↑ n

)
(v) >

(
Tfin ↑ k

)
(v) and further-

more
(
Tfin ↑ n+ 1

)
(v) >

(
Tfin ↑ n

)
(v) it follows

0 >
(
Tfin ↑ k

)
(v) −

(
Tfin ↑ n+ 1

)
(v) = −

n∑
i=k

di = w(p)

Therefore p denotes a negative cycle in GWA∧D∞ and hence also in
GWA∧D. And thus it follows from Theorem 9.2 that WA ∧ F is incon-
sistent in Q.

lemma 9 .18. For a fair complex action C = (W,D,H) with WA ∧D

consistent follows τ � τfin.

Proof. Immediate consequence from Lemma 9.17 and Lemma 9.15.

lemma 9 .19. For the runtime trace τ of a fair complex actionC = (W,D,H)
with WA ∧D consistent follows τfin |=Q WA ∧D.

Proof. Let u+d 6 v determine sub-formula of WA∧D. If u+d 6 v is
furthermore sub-formula of Wfin

A ∧D∞ it follows for the fixpoint τfin

that

τfin(v) = Tfin(τfin)(v)
= max

{
τfin(preWfin

A ∧D∞(v)
)}

+∆fin
v

> τfin(u) + d

183

thus τfin |= u+ d 6 v.
Otherwise u + d 6 v is a sub-formulas of D but not of D∞ and

hence τ(v) < ∞. As τ |= WA ∧D it further follows τ |= u + d 6 v

and therefore τ(u) < ∞. Thus τ(v) = τfin(v) and τ(u) = τfin(u) and
therefore τfin |= u+ d 6 v.

Accordingly, as im
(
τfin
)
⊆ Q and u + d 6 v has been arbitrarily

chosen it follows τfin |=Q W
fin
A ∧D. And by definition of Wfin

A follows
Wfin

A |=Q WA and therefore τfin |=Q WA ∧D.

theorem 8 .3. For a fair complex action C = (W,D,H) with WA ∧D

consistent holds WA ∧D |=Q H only if for all definite runtime traces τ of C
holds τ |=P H.

Proof. Suppose τ is a definite runtime trace. So far, the value ∆⊥0 of
the variable ⊥0 introduced in Definition 9.7 has not been constrained
and thus we can determine

∆⊥0 = −min
(
{0}∪ {d | u+ d 6 v sub-formula of H}

)
From Lemma 9.19 then follows τfin |=Q W

fin
A ∧D and thus τfin |=Q

H. In addition, it follows from Lemma 9.18 that τ � τfin. Therefore,
it follows from τfin |=Q Wfin

A that τfin(v) > ωτ + ∆⊥0 for all v with
τ(v) =∞ and therefore the premises of Lemma 9.14 are satisfied and
it thus follows τ |=P H.

theorem 8 .4. For a fair complex action C = (W,D,H) with WA ∧D

consistent holdsWA∧D |=Q H if for all definite runtime traces τ of C holds
τ |=P H.

Proof. If WA ∧D 6|=Q H there is a variable assignment σ and a sub-
formula u+ d 6 v of H such that σ |=Q WA ∧D and σ 6|=Q u+ d 6 v.

As σ |=Q WA it follows from Lemma 9.10 that there is a runtime
trace τ with σ = τ. It further follows from Lemma 9.11 that there is
a definite runtime trace τ ′ with τ ′(v) = τ(v) and τ ′(s) > τ(s) for all
s ∈ var(WA). Therefore

τ ′(u) + d > τ(u) + d > τ(v) = τ ′(v)

and thus τ ′ 6|=P u+ d 6 v. Accordingly, τ ′ is a definite runtime trace
with τ ′ 6|=P H.

184

Part IV

O P E R AT I O N A L S E M A N T I C S A N D
I M P L E M E N TAT I O N

10
O P E R AT I O N A L S E M A N T I C S O F D U R A C

The evaluation of Dura is based on the Temporal Stream Algebra (TSA)
[BB12a], an extension of the relational algebra adapting it to streams.
To this end, Dura queries and rules are represented by means of TSA

algebra expressions build from operators as they are known from the
relational algebra, such as, cross product, selection, and grouping.

However, to reduce the complexity of the translation Dura is not
directly translated to TSA. Instead, we identify a language core of
Dura denoted DuraC (pronounced “Dura Core”) that is expressive
enough to cover all aspects of Dura and elaborate a translation of
DuraC to TSA. Subsequently, we establish a translation that rewrites
Dura queries to DuraC queries and thus indirectly obtain an opera-
tional semantics of (full) Dura.

10.1 preliminaries and informal introduction

Before we describe TSA in more detail and elaborate the translation
to TSA, we clarify some basic notions and introduce the sublanguage
DuraC. Moreover, the basic ideas of the translation to TSA are illus-
trated by means of simple but distinctive example queries.

10.1.1 Event Streams

Event streams resemble relations known from databases. However, in
contrast to conventional relations, streams are unbounded and the
tuples or events of the stream arrive online as time advances. As a
consequence, for each point in time only a prefix of the entire stream,
containing the already obtained events, is known and the conceptu-
ally unbounded stream is never obtained completely.

In the following, some of the notions from [AHV95] conceived for
relations are transferred to streams. In particular, the named perspec-
tive of relational algebra is adopted where tuples are viewed as func-
tions mapping attributes to values and the attributes of a stream R

are denoted sort(R). Accordingly, a tuple of R is represented by a
total mapping r with dom(r) = sort(R).

10.1.2 Representation of Dura Events

To be applicable to streams, Dura events need to be represented by
means of flat tuples. However, the schema of events resembles records
with an inherent structure whereas the schema of streams merely

187

correspond to a collection of attribute names. Accordingly, there is
no direct mapping between events and tuples.

Listing 10.1: Schema of temp Events

temp{

id{identifier}, rt{ begin{timestamp}, end{timestamp} },

area{long}, value{double}, sensor-id{long}

} �
Nevertheless, recall that the schema of events is represented by

means of Xcerpt terms whereby references to nodes as well as equally
labeled or ordered siblings are not permitted. As a consequence, the
payload of events corresponds to a tree structure and the location
of each atomic value is uniquely described by the labels of the path
form the root to the leaf containing the respective value. Accordingly,
the schema of events can be mapped to the schema of streams by in-
terpreting the paths to all leafs of the event schema as attributes of
a stream schema. In this way, events can be translated to flat tuples
whereby the structure of the event is preserved in the names of the
attributes.

example The schema of temp events from Listing 10.1 translates to
the stream T with

sort(T) = {area, id, rt.begin, rt.end, sensor-id, value}

Note how the attribute rt{ begin{timestamp}, end{timestamp} } of the
temp event translates to the two attributes rt.begin and rt.end of the
stream T . Accordingly, the event

temp{ area{31}, value{12.7}, sensor-id{8191}, ... }

corresponds to a tuple t ∈ T represented by the function

t = {area 7→ 31, value 7→ 12.7, sensor-id 7→ 8191, . . . }

Be aware that for the sake of conciseness and readability, the label
of the composite attribute reception-time is abbreviated with rt in
this and all following examples.

10.1.3 A Generalization of Relational Algebra for Streams

TSA proposed by Brodt and Bry [BB12a] is an extension of the rela-
tional algebra adapting it to streams, in particular with respect to the
incremental evaluation of expressions, which is inevitable due to the
unbounded nature of streams.

TSA provides algebra operators, such as, projection (π), selection
(σ), rename (ρ), cross product (×), union (∪), and set difference (\),

188

which are closely related to the respective operators of the relational
algebra [AHV95]. Composite algebra expressions, in turn represent-
ing streams, are built by applying algebra operators to streams.

However, as at runtime merely a prefix of the entire stream is avail-
able, in contrast to the relational algebra, there are syntactically cor-
rect algebra expressions that can conceptually not be evaluated in an
incremental fashion and hence cannot be evaluated on streams. Such
kind of expressions usually involve non-monotonic operators, such
as, grouping and aggregation, and are recognized by the static analy-
sis described in [BB12a], which determines whether and how algebra
expressions can be incrementally evaluated.

representation of streams in tsa Streams, as they are intro-
duced in [BB12a], are associated with a sophisticated stream schema,
which includes, in addition to the attributes of the stream, further
information related to the static analysis and the incremental evalua-
tion of TSA expressions. However, the details on the proposed static
analysis and incremental evaluation are out of the scope of this thesis,
they are thoroughly elaborated in [BB12a], though.

Accordingly, the stream schema is usually omitted in the following
as the additional information is not further relevant for the translation
of Dura to TSA. Merely the translation of event schemata described in
Section 10.4.1 specifies stream schemata as they are introduced in the
original work on TSA.

relations between dura and tsa TSA and Dura have been
elaborated in close collaboration within the EMILI project. Accord-
ingly, both formalisms have been designed to be suited to each other.
As a consequence, some of the considerable features of Dura, in par-
ticular the support of user defined times and multiple independent
time lines and the versatile grouping and negation capabilities, are
actually inherited from TSA, which forms the basis for the evaluation
of Dura queries.

To discriminate between Dura and TSA the notions event, tuple,
query, and (algebra) expression are strictly separated in the follow-
ing. The notions event and query are only used when referring to
Dura whereas the notion tuple and expression is only used when re-
ferring to TSA. Nevertheless, the notions are closely related as Dura
events correspond to TSA tuples and Dura queries correspond to TSA

expressions. In addition, arithmetic expressions from Dura and TSA

are referred to as terms to distinguish them from algebra expressions.
Note, however, that the notions may be named differently elsewhere,
in particular in [BB12a].

189

10.1.4 The Sub-language DuraC

Informally speaking, DuraC is the subset of Dura that is limited to
declarative event queries and deductive rules. In this way, DuraC is
limited to constructs that can be translated more or less directly. In
contrast, stateful objects, complex actions, and reactive rules cannot
be easily expressed in TSA and are thus not included in DuraC.

More formally, DuraC queries are inductively defined as follows.

1. each atomic event query event e: t is a DuraC query

2. if q is a DuraC query, then
q where c, q let l, and q group by g aggregate a are DuraC queries

3. if q1, . . . , qk are DuraC queries, then
and{q1,...,qk}, or{q1,...,qk}, and not{q1} are DuraC queries.

Moreover, if q is a DuraC query, then DETECT t ON q END is a DuraC rule.

10.1.5 Basic Ideas of the Translation

In the following, queries from Chapter 5 are used to illustrate the
basic ideas of the translation of Dura queries to TSA expressions by
means of examples. The generic translation from Dura to TSA are
subject to Section 10.4.

The queries are based on temp, smoke, sensor-msg, temp-value, and
alarm events which are represented by the streams T , S, M, V , and A,
respectively. The corresponding attributes of those streams are listed
in Table 10.1.

sort(T) = {area, id, rt.begin, rt.end, sensor-id, value}

sort(S) = {area, conc, id, rt.begin, rt.end}

sort(M) = {area, id, rt.begin, rt.end, sensor, type, value}

sort(V) = {aid, id, rt.begin, rt.end, sid, val}

sort(A) = {area, id, rt.begin, rt.end}

Table 10.1: Stream Attributes

atomic queries and query supplements Atomic queries are
translated by mapping the type of the queried event to the corre-
sponding stream. In addition, a prefix coinciding with the event iden-
tifier of the query is added to the attributes of the stream by means
of a rename (ρ) operator. In this way, the attributes of each stream are
unambiguously determined when multiple streams are considered,
eg, for the translation of composite queries, and thus name conflicts
between equally named attributes of different streams are avoided.

190

Listing 10.2: An Atomic Query with Supplement

event e: temp{ area{var A}, value{var T} }

where { var T > 400 }

let { var Min = ceil(end(e), 1min) } �
Moreover, the where part of queries is translated to selections (σ)

by canonically converting the formulas specified in the where part to
composite TSA formulas. Thereby, references are replaced with the
respective attributes they are referring to. For instance, the atomic
formula var A > 400 is translated to e.area > 400.

In addition, variables introduced by let constructs are translated to
designated attributes that are added to the stream by means of embed-
dings (ι).1 Eg, the let part from above is translated to an embedding
which adds the attribute .var.Min to the stream, notice the leading pe-
riod, whose value is determined by the term ceil(e.rt.end, 60). Thereby,
.var is a prefix that is not valid for variable names in Dura and thus
name conflicts between existing attributes and attributes caused by
the translation of let parts are avoided.

Accordingly, the query from Listing 10.2 translates to the following
TSA expression.

ι[.var.Min← ceil(e.rt.end, 60)
(

σ[e.value > 400]
(

ρ[∗ → e.∗]
(
T
)))

conjunctive queries Conjunctive queries are translated to TSA

by a combination of cross products (×) and selections (σ).

Listing 10.3: A Conjunctive Query

and{

event e: temp{ area{var A}, value{var T} },

event f: smoke{ area{var A}, conc{var C} }

} where { {e,f} within 1min, var T > 100, var C > 0.1 } �
To translate a conjunctive query, all (unnegated) sub-queries are

translated to the corresponding TSA expression and subsequently con-
nected by means of a cross product. Moreover, the join conditions con-
tained in the supplementary where part are translated by means of a
selection. Thereby, implied join conditions, caused by the usage of
equally named variables, need to be explicitly added to the condition
of the selection.

For the given conjunctive query, the atomic formula e.area = f.area,
caused by the implied join over the variable A, is added to the condi-

1 Embeddings correspond to extended projections of the relational algebra that do not
omit values.

191

tion of the selection. Note that the reception time of events is explic-
itly contained in the payload of events and that thus even temporal
conditions between events are translated to conditions contained in
selections.

σ[e.area = f.area ∧ e.value > 100 ∧ f.conc > 0.1 ∧

greatest(e.rt.end, f.rt.end) − least(e.rt.begin, f.rt.begin) 6 60]
(

×
(
ρ[∗ → e.∗]

(
T
)
,

ρ[∗ → f.∗]
(
S
)))

negated sub-queries Negated sub-queries contained in a con-
junctive query are translated by means of anti-semi-joins (n).

Listing 10.4: A Query with Negation

and{

event e: temp{ sensor-id{var Id} },

not event f: temp{ sensor-id{var Id} }

} where { f during from-end(e, 1min) } �
In contrast to a conventional join R on S, which combines tuples

from R with matching tuples from S, that is, which only preserves
tuples from R that have a join partner in S, an anti-semi-join R n S fil-
ters all tuples from R that have a join partner in S. Note that therefore
sort(R n S) = sort(R) and that hence the join condition needs to be
specified in conjunction with the anti-semi-join operator and cannot
be applied in a supplemental selection afterwards, as it is realized for
the translation of conjunctive queries without negations.

As a consequence, a conjunctive query with negated sub-queries is
translated by independently translating the unnegated and negated
part of the query to TSA expressions and by connecting them by
means of an anti-semi-join operator. Thereby, join conditions con-
tained in the supplemental where part referring to the negated sub-
query, are specified in association with the anti-semi-join operator.

n[e.sensor-id = f.sensor-id ∧

e.rt.end < f.rt.begin ∧ f.rt.end < e.rt.end + 60]
(

ρ[∗ → e.∗]
(
T
)
,

ρ[∗ → f.∗]
(
T
))

grouping and aggregation Grouping and aggregation from
Dura is translated by means of groupings (γ). Thereby, the first argu-
ment of γ corresponds to the grouping attributes from the group by

part whereas the second argument introduces new attributes based
on terms applying the aggregation functions that are specified in the
aggregate part of the query.

192

Listing 10.5: A Query with Grouping

event e: temp{ area{var A}, value{var T} }

let { var Min = ceil(end(e), 1min) }

group by { var Min, var A } aggregate { var Tavg = avg(T) } �
If event identifiers are specified in the group by part, they are re-

placed by all basic attributes of the stream corresponding to the event
that is referenced by the identifier.

γ[.var.Min, e.area][.var.Tavg← avg(e.value)]
(

ι[.var.Min← ceil(e.rt.end, 60)
(

ρ[∗ → e.∗]
(
T
)))

disjunctive queries Disjunctions are translated by means of
unions (∪) in TSA. However, the union operator can only be applied
to streams with identical attributes. Therefore, a projection (π) is used
to eliminate attributes that are not common to both streams.

Listing 10.6: A Disjunctive Query

or{

event e: sensor-msg{ area{var A}, value{var Tkel} }

let { var Tcel = var Tkel - 273.15 }

event e: temp-value{ aid{var A}, val{var Tfah} }

let { var Tcel = (var Tfah - 32)/1.8 }

} �
As the projection also eliminates attributes that are referenced by

variables, all variables that have positive polarity in the disjunction
are explicitly added to the stream by means of embeddings. For in-
stance, the value of the variable A is in both streams copied to the
attribute .var.A and thus remains in the stream determined by the
union operator whereas the primal attributes e.area and e.aid are elim-
inated by the projections.

∪
(
π[e.id, e.rt.begin, e.rt.end, .var.A, .var.Tcel]

(
ι[.var.A← e.area, .var.Tcel← e.value − 273.15]

(
ρ[∗ → e.∗]

(
M
)))

,

π[e.id, e.rt.begin, e.rt.end, .var.A, .var.Tcel]
(

ι[.var.A← e.aid, .var.Tcel← (e.val − 32)/1.8]
(

ρ[∗ → e.∗]
(
V
))))

event construction Event construction from rule heads is re-
alized in TSA by means of embeddings (ι) and projections (π).

193

Listing 10.7: A Declarative Rule

DETECT

alarm{ area{var A} }

ON

and{

event e: temp{ area{var A}, value{var T} },

event f: smoke{ area{var A}, conc{var C} }

} where { {e,f} within 1min, var T > 100, var C > 0.1 }

END �
The attributes of derived tuples need to coincide with the attrib-

utes of the stream corresponding to the event type specified in the
rule head. Accordingly, the schema of the TSA expression needs to
be adapted appropriately. To this end, redundant attributes are elim-
inated by means of projections and terms determining the value of
attributes in the query head are translated by means of embeddings.
Moreover, the implicit attributes for the key and the reception time
of the event that are not explicitly determined in the rule head are
added to the stream by means of further embeddings.

Note that because of the implied join caused by the variables A in
the body of the rule, either of both attributes that are referenced by A

can be used in the rule head as a translation of A. Accordingly, in the
rule head, e.area as well as f.area are valid substitutes for var A.

A← π[area, id, rt.begin, rt.end]
(

ι[area← e.area]
(

ι[id← sequence.next(),

rt.begin← least(e.rt.begin, f.rt.begin),

rt.end← greatest(e.rt.end, f.rt.end)]
(

. . .
)))

10.2 a gentle introduction to tsa

This section contains an informal introduction of TSA that is derived
from [BB12a]. Thereby, many details of TSA, in particular those related
to the stream schema and the evaluation of TSA expressions, are omit-
ted or presented in a simplified manner. For a comprehensive and
precise description of TSA refer to [BB12a].

10.2.1 Basic Algebra Operators

TSA provides the following seven basic operators which closely re-
semble the operators known from relational algebra [AHV95]. How-
ever, note that the operators include a cross product but no join and
that the definition of new attributes is separated from the projection

194

operator. This design decision has been made in [BB12a] to obtain
orthogonal operators that are easier to analyze and better suited for
optimizations of query plans. Nevertheless, a combination of the TSA

operators can be used to obtain the functionality of joins and other
conventional operators known from relational algebra.

Note that the following representation of streams and operators de-
viates from the one in [BB12a]. In particular, the sophisticated schema
of operators determining composite streams is omitted as it is not rel-
evant for the translation of Dura queries and rules.

selection (σ) A selection filters tuples of a stream that do not
meet a given condition. Suppose R is a stream and C is a formula
solely referring to the attributes of R, then

σ[C]
(
R
)
=
{
r
∣∣ r ∈ R and r satisfies C

}
embed (ι) An embedding determines values for new attributes ac-
cording to a term t, which is identified by means of a function ft in
the following.

Suppose R is a stream, ai ∈ sort(R), and a ′ 6∈ sort(R), then

ι[a ′ ← ft(a1, . . . ,ak)]
(
R
)
=
{
r ′
∣∣ dom(r ′) = sort(R)] {a ′} and

exists r ∈ R such that

r ′(a) = r(a) for a ∈ sort(R) and

r ′(a ′) = ft
(
r(a1), . . . , r(ak)

)}
projection (π) A projection omits attributes from a stream R.
Note that in TSA, in contrast to the classical projection from relational
algebra, new attributes can only be introduced by means of embed-
dings.

Suppose R is a stream and A ⊆ sort(R), then

π[A]
(
R
)
=
{
r ′
∣∣ dom(r ′) = A and

exists r ∈ R such that r ′(a) = r(a) for a ∈ A
}

grouping (γ) A grouping aggregates the values of multiple tu-
ples. To this end, the tuples of R are partitioned into groups so that
all tuples of each group have the identical values with respect to the
set of grouping attributes A. Subsequently, an aggregation function f
is applied to the tuples of each group, determining a single value for
the attribute a ′ for each group.

195

Suppose R is a stream, A ⊆ sort(R), a ∈ sort(R), a ′ 6∈ sort(R), and
f ∈ {min, max, avg, sum, count}, then

γ[A][a ′ ← f(a)]
(
R
)
=
{
r ′
∣∣ dom(r ′) = A] {a ′} and

exists r ∈ R such that

r ′(a) = r(a) for a ∈ A and

r ′(a ′) = f
(
〈s(a)〉s∈Rr

)}
whereby Rr = {t ∈ R | t(a) = r(a) for a ∈ A} and 〈·〉· denotes a
duplicate preserving sequence.

cross product (×) A cross product between R and S pairwise
combines all tuples of R with all tuples of S.

Suppose R and S are streams with sort(R)∩ sort(S) = ∅, then

R× S =
{
r ′
∣∣ dom(r ′) = sort(R)] sort(S) and

exists r ∈ R and s ∈ S such that

r ′(a) = r(a) for a ∈ sort(R) and

r ′(a) = s(a) for a ∈ sort(S)
}

union (∪) The union of two streams R and S merges all tuples of
R and S into a single stream.

Suppose R and S are streams with sort(R) = sort(S), then

R∪ S =
{
r
∣∣ r ∈ R or r ∈ S

}
set difference (\) The set difference of two streams R and S

omits all tuples from R that are also contained in S.
Suppose R and S are streams with sort(R) = sort(S), then

R \ S =
{
r ∈ R

∣∣ r 6∈ S}
syntactic variations It is furthermore legitimate that embed-
dings and groupings specify more than one attribute to be added
to the stream. Moreover, as cross product and union are associative,
parentheses around multiple cross products and unions can be omit-
ted.

10.2.2 Composite Algebra Operators

For convenience, the following two additional composite TSA oper-
ators have been introduced which are based on the operators intro-
duced above and which are used as syntactic sugar in the following.

rename (ρ) A renaming adapts the names of attributes. It can be
obtained by applying an embedding and projection to the stream.

196

Suppose R is a stream, a ∈ sort(R), and a ′ 6∈ sort(R), then

ρ[a→ a ′]
(
R
)
= π[A]

(
ι[a ′ ← a]

(
R
))

whereby A =
(
sort(R) \ {a}

)
] {a ′}.

prefix (ρ) A slight variation of the rename operator can further-
more be used to add a prefix to the attributes of a stream.

Suppose R is a stream with sort(R) = {a1, . . . ,ak}, then

ρ[∗ → p.∗]
(
R
)
= ρ[a1 → p.a1, . . . ,ak → p.ak]

(
R
)

anti-semi-join (n) An anti-semi-join between R and S filters all
tuples of R that have a join partner in S according to a join condition
C. Be aware that consequently sort(R n[C] S) = sort(R).

Suppose R and S are streams and C is a formula referring solely to
the attributes of R and S, then

R n[C] S =

R \ π[sort(R)]
(

σ[C]
(
R× S

))
10.3 normalization of queries

Prior to their translation to TSA, Dura queries are normalized in a
preprocessing step to facilitate their translation.

Dura provides many high-level concepts, eg, pattern matching with
variables, that are not available in TSA and need to be expressed with
equivalent but more basic means. In addition, even basic operators
of Dura, eg, the unary negation not, do not have a direct correspon-
dence in TSA so that structural modifications of the queries are re-
quired to facilitate their translation to TSA expressions. Moreover, the
implied conditions that are not explicitly specified in Dura, eg, joins
over equally named variables specified in different locations of the
query, need to be made explicit.

The following translations are intended to be applied in the order
they are presented in this section. Thereby, valid Dura queries and
rules are transformed to semantically equivalent but more basic Dura
queries and rules. Each translation is successively applied where ap-
plicable starting at the inner most operator, formula, and function, re-
spectively. In addition, the translations expect that queries are weakly
range restricted as described in Section 5.2.1 and that furthermore
the conditions on progressing attributes described in Section 5.2.5 are
satisfied.

197

10.3.1 Eliminating Literals in Query Terms

Literals, that is, the textual representation of values in Dura, speci-
fied in query terms are intended to constrain the values of events
matching the query. However, the concept of pattern matching is not
available in TSA. Nevertheless, the same effect is achieved by adding
a condition to the corresponding atomic query specifying the path to
the literal and constraining the referenced value accordingly, as it is
illustrated in Figure 10.1.

event e: temp{ sensor-id{496} } � event e: temp{}

where { e.sensor-id = 496 } �
Figure 10.1: Eliminating Literals

Accordingly, after this transformation has been applied, conditions
on the values of attributes specified by means of patterns containing
literals have been replaced by equivalent conditions in the where part
of the corresponding event queries.

10.3.2 Eliminating Temporal Relations and Functions

Interval functions are not available in TSA but can be translated to
composite terms by successively replacing the inner most composite
function by the corresponding definition summarized in Table 10.2.

where {

f during from-end(e, 1min),

{f,g} apart-by 2min

} �

where {

e.rt.end < f.rt.begin,

f.rt.end < e.rt.end + 1min,

or{

f.rt.begin - e.rt.end >= 2min,

e.rt.begin - f.rt.end >= 2min

}

} �
Figure 10.2: Translation of Relations and Functions

Simultaneously, interval functions operating on event identifiers,
namely, time(e), begin(e), and end(e), are translated by replacing
them with [e.rt.begin, e.rt.end], e.rt.begin, and e.rt.end, respec-
tively. In addition to the transformation of composite functions, tem-
poral relations are translated to composite formulas in a similar man-
ner. The corresponding definition can be found in Table 10.2.

198

begin([l,u]) ≡ l

end([l,u]) ≡ u

extend(e, d) ≡ [begin(e), end(e) + d]

shorten(e, d) ≡ [begin(e), end(e) - d]

extend-begin(e, d) ≡ [begin(e) - d, end(e)]

shorten-begin(e, d) ≡ [begin(e) + d, end(e)]

shift-forward(e, d) ≡ [begin(e) + d, end(e) + d]

shift-backward(e, d) ≡ [begin(e) - d, end(e) - d]

from-end(e, d) ≡ [end(e), end(e) + d]

from-end-backward(e, d) ≡ [end(e) - d, end(e)]

from-begin(e, d) ≡ [begin(e), begin(e) + d]

from-begin-backward(e, d) ≡ [begin(e) - d, begin(e)]

e before f ≡ f after e ≡ end(e) < begin(f)

e meets f ≡ f met-by e ≡ end(e) = begin(f)

e overlaps f ≡ f overlapped-by e ≡ and{ begin(e) < begin(f),

begin(f) < end(e), end(e) < end(f) }

e during f ≡ f contains e ≡ and{ begin(f) < begin(e), end(e) < end(f) }

e starts f ≡ f started-by e ≡ and{ begin(e) = begin(f), end(e) < end(f) }

e finishes f ≡ f finished-by e ≡ and{ end(e) = end(f), begin(e) > begin(f) }

e equals f ≡ and{ begin(e) = begin(f), end(e) = end(f) }

{e,f} apart-by d ≡ or{ begin(f) - end(e) >= d, begin(e) - end(f) >= d }

{e1, ..., ek} within d ≡ greatest(end(e1), ..., end(ek))

- least(begin(e1), ..., begin(ek)) <= d

Table 10.2: Translation of Relations and Functions whereby the expressions
l and u correspond to timestamps, d corresponds to a duration,
and e, e1, . . . , ek and f correspond to identifiers or intervals.

199

10.3.3 Eliminating Identifiers in Groupings

Event identifiers have, similar to variables, no direct correspondence
in TSA and thus every event identifier specified in the group by part of
a query is replaced with the set of all basic attributes of the event that
is referenced by the identifier.

and{

event e: alarm{},

...

} group by { event e } �

and{

event e: alarm{},

...

} group by {

e.area, e.id, e.rt.begin, e.rt.end

} �
Figure 10.3: Translation of Event Identifiers: Groupings

This transformation eliminates all remaining event identifiers in
the supplement of a query, as all identifiers contained in where and
let parts have been eliminated by the previous transformation. Note,
however, that the identifiers preceding atomic queries, which are ref-
erences by paths, are preserved so as to obtain valid Dura queries.

10.3.4 Adding Value Definitions in Disjunctions

Disjunctions are translated to unions, which can only be applied to
streams with equal sets of attributes. As a consequence, only attrib-
utes that are common to all events contained within a disjunction are
available in the attributes of the resulting stream. However, attributes
referenced by variables may be absent in the stream corresponding to
the translation of the disjunctive query.

or{

event e: sensor-msg{ area{var A} }

event e: temp-value{ aid{var A} }

} �

or{

event e: sensor-msg{}

let { var A = e.area }

event e: temp-value{}

let { var A = e.aid }

} �
Figure 10.4: Adding Value Definitions

To avoid the omission of attributes referenced by variables, vari-
ables with positive polarity in the disjunctive query are transformed
to variable definitions in a let part, as it is illustrated in Figure 10.4. In
this way, the value of each variable with positive polarity is copied to
a distinguished attribute with the same name in each sub-expression
contributing to the union eg, .let.A in case of the query above. Ac-
cordingly, attributes referenced by variables with positive polarity are

200

copied to attributes that remain in the resulting stream whereas the
attributes they actually refer to are eliminated.

10.3.5 Eliminating Redundant Variable Definitions

Variables are a concept of Dura that is not available in TSA and there-
fore variables need to be eliminated in order to facilitate the transfor-
mation of Dura to TSA. Variables specified in a query term correspond
to variable definitions basically associating a name with an attribute
of an event. Therefore, variables are simply translated to the attributes
they refer to.

However, equally named variables occurring in different locations
of a query imply a join between the attributes they are referring to.
Accordingly, to eliminate multiple definitions of equally named vari-
ables without affecting the semantics of queries, the join conditions
need to be explicitly specified in the where part of the query, as it is
illustrated in Figure 10.5. Note that the variable definition may be ref-
erenced in other query parts and therefore, similar to the elimination
of identifiers in Section 10.3.3, one variable definition is preserved so
as to obtain valid Dura queries.

and{

event e: temp{ area{var A} },

event f: smoke{ area{var A} }

} �
and{

event e: temp{ area{var A} },

event f: smoke{}

} where { e.area = f.area } �
Figure 10.5: Materializing Implied Join Conditions

A similar transformation is illustrated in Figure 10.6 to proceed
with implied conditions involving variables introduced in let parts.
Note, however, that the condition added to the query corresponds
to var C = f.value-273.15, including the variable C, instead of the path
to its definition. Variables solely defined in let are in general not
referring to the attributes of an event and thus cannot be expressed
by means of a path.

and{

event e: temp-value{ val{var F} }

let { var C = (F-32)/1.8 }

event f: sensor-msg{}

let { var C = f.value-273.15 }

} �

and{

event e: temp-value{ val{var F} }

let { var C = (F-32)/1.8 }

event f: sensor-msg{}

} where { var C = f.value-273.15 } �
Figure 10.6: Eliminating Redundant Variable Definitions

As a result of these transformations, implied join conditions caused
by equally named variables are explicitly specified as a condition in

201

the where part of queries. Moreover, each remaining variable defini-
tion contained in a conjunctive query is unambiguous and refers to
the attributes of one distinguished event or to a term specified in the
let part of a query.

10.3.6 Establishing Range Restriction

The positioning of references is quite liberal in Dura as queries are
merely required to be weakly range restricted. In consequence, the
where part of queries may contain references with weak positive po-
larity. However, the translation of Dura queries to TSA expressions
often involves projections omitting attributes of the stream. As a con-
sequence, it is mandatory for the translation of queries that refer-
ences appear at the right position, that is, queries need to be properly
range restricted whereas being weakly range restricted is no longer
sufficient. Consequently, queries and their conditions may need to be
restructured in order to adapt the polarity of references appropriately.

In the following, a condition of a query denotes one conjunct of the
conjunctive normal form of the formula specified in the supplemental
where part of the query.2 Moreover, before any condition is moved to
another location by one of the following translations, the formula
of the corresponding where part is firstly converted into conjunctive
normal form.

conditions with positive polarity First of all, conditions
containing only references that have positive polarity in a particular
sub-query q are moved to the where part in the supplement of q. This
applies, eg, to the conditions in Figure 10.7 which are moved to the
atomic event queries they refer to. Note that, although this transfor-
mation may improve the efficiency of the evaluation, its major inten-
tion is to prepare the queries for the following transformation.

As a result, all remaining conditions containing references with
weak positive polarity necessarily also contain references with pos-
itive polarity. However, there is no common sub-query q so that all
references have positive polarity in q. Those kind of conditions are
further treated by the following two transformations.

expanding disjunctions This transformation applies for con-
junctive queries containing conditions referring to a disjunctive sub-
query. Consider the query q determined by

and{ c1, ..., ck, or{ d1, ..., d` } }

If there is a condition of q containing a reference with positive polarity
in a ci as well as a reference with positive polarity in a dj, then the

2 Note that for formulas solely composed from atomic formulas and conjunctions,
each atomic sub-formula corresponds to a condition.

202

and{

event e: alarm{}

or{

event f: temp{}

event g: smoke{}

}

} where {

f.value > 50, g.conc > 0.1

} �

and{

event e: alarm{}

or{

event f: temp{}

where { f.value > 50 }

event g: smoke{}

where { g.conc > 0.1 }

}

} �
Figure 10.7: Relocating Conditions with Positive Polarity

and{

event e: alarm{}

or{

event f: temp{}

event g: smoke{}

}

} where {

f.rt.end < e.rt.end + 1min,

g.rt.end < e.tr.end,

} �

or{

and{

event e: alarm{}

event f: temp{}

}

and{

event e: alarm{}

event g: smoke{}

}

} where {

f.rt.end < e.rt.end + 1min,

g.rt.end < e.tr.end,

} �
Figure 10.8: Expanding Disjunctions

and{

event e: temp{}

not event f: temp{}

} where {

e.id = f.id,

e.rt.end < f.rt.begin,

f.rt.end < e.rt.end + 1min

} �

and{

event e: temp{}

not {

event f: temp{}

} where {

e.id = f.id,

e.rt.end < f.rt.begin,

f.rt.end < e.rt.end + 1min

}

} �
Figure 10.9: Relocating Conditions with Weak Positive Polarity

203

disjunctive query is expanded using the distributivity law as it is
known from mathematical logic and illustrated in Figure 10.8. Note
that in this example both atomic formulas satisfy the properties that
entail the expansion.

As a result, for all conditions containing references with weak pos-
itive polarity there is either a sub-query q so that all references of
the condition have positive polarity in q or there is a sub-query not q

so that all references of the condition have positive or weak positive
polarity in the query comprising not q. Those conditions are subse-
quently relocated in a manner similar to the one described above.

conditions with weak positive polarity The remaining
conditions containing references without positive polarity can be re-
located to their proper location by means of the following transfor-
mation.

Suppose there is a condition containing a reference r without posi-
tive polarity. If r refers to an atomic query nested within a negation,
then the condition is added to the where part of the negated query.
This applies, for instance, to the conditions in Figure 10.9 which are
hence moved to the where part of the negation.

Otherwise, the condition is moved to the supplement of the partic-
ular sub-query q which satisfies that r has positive polarity in q. This
applies to the conditions in Figure 10.8 which need to be moved to
the where part of the respective conjunctive sub-queries.

10.3.7 Summary

In result of the applied transformations the obtained queries are sat-
isfying the following properties.

All rules are range restricted rather than weakly range restricted.
Moreover, as a consequence of rules being range restricted, negated
queries are directly contained in conjunctive queries.

Join conditions caused by the usage of equally named variables as
well as restrictions imposed by literals in query terms are explicitly
expressed by appropriate formulas in the where part of queries. Ac-
cordingly, all references can be directly translated to an attribute of a
stream.

Atomic formulas have the form t1 θ t2 with θ ∈ {<, <=, =, >=, >, !=}
whereas composite formulas are composed from the n-ary connec-
tives and and or and the unary connective not.

Terms in aggregate parts of queries are composed from references
and the aggregation functions min, max, avg, sum, count whereas all
other terms are composed from literals, variables and paths, the null-
ary functions system-time.now() and sequence.next(), the binary func-
tions +, -, *, /, **, floor and ceil, and the n-ary functions least and
greatest.

204

Finally, the conditions on progressing attributes are not affected by
the transformations as the existing conditions are not eliminated but
merely expressed in an equivalent manner and relocated to different
parts of the query in order to establish range restriction. Accordingly,
the conditions on progressing attributes are preserved by the trans-
formations.

10.4 translating durac to tsa

Eventually, Dura queries and rules are translated to composite TSA

algebra expressions. To this end, queries are translated to expressions
by recursively applying the following transformations. Thereby syn-
tactically correct and range restricted queries satisfying the conditions
on progressing attributes discussed in Section 5.2.5 yield valid TSA

expressions, that is, syntactically correct expressions that can be in-
crementally evaluated and pass the static analysis of TSA.

10.4.1 Event Schemata

The schema of streams as they are introduced in [BB12a] corresponds
to a triple S = (A,G,H). In simplified terms, A is the set of attrib-
utes of the stream, G is a formula providing information on temporal
dependencies between attributes, and H is a formula designating the
progressing attributes of a stream.

An event schema is translated to the corresponding TSA stream
schema S = (A,G,H) in the following way. The attributes of the event
are mapped to the set of attributes A by interpreting the paths to
all leaves of the event schema as attributes. Temporal dependencies
between attributes, which coincide with atomic formulas composed
from inequations in the where part of the event schema, are mapped to
a formula G by means of a conjunction. And finally, atomic formulas
designating the progressing attributes of the event, which coincide
with atomic formulas composed from the progressing relations in the
where part of the event schema, are mapped to a formula H by means
of a disjunction.3

example The event schema from Listing 10.8 is translated to the
stream schema sch(T) = (A,G,H) of the stream T with

A = {area, id, rt.begin, rt.end, sensor-id, value}

G = rt.begin 6 rt.end

H = progressing(id)∨ progressing(rt.end)

Note that the stream schema is of particular importance for the
static analysis that is carried out on composite TSA expressions corre-

3 A disjunction is used to specify that it is sufficient to maintain progress information
for any of those attributes (see Section 5.2.5).

205

Listing 10.8: Schema of temp Events from Listing 5.21

temp{

id{identifier}, rt{ begin{timestamp}, end{timestamp} },

area{long}, value{double}, sensor-id{long}

} where {

progressing(id), progressing(rt.end),

rt.begin <= rt.end

} �
sponding to entire Dura queries. The analysis determines properties
of streams that are required for the evaluation of TSA expressions and
identifies inconsistent temporal dependencies [BB12a].

For the translation of Dura to TSA the schema and in particular
the formulas G and H are only relevant in the base case, that is, for
the translation of stream schemata, and thus merely the attributes of
streams are considered in the following.

10.4.2 Atomic Queries

An atomic Dura query

event i: e{ ... }

translates to the TSA expression

ρ[∗ → i.∗]
(
E
)

whereby E corresponds to the stream containing all event of type e.

10.4.3 Terms and Formulas

atomic terms The representation of literals is identical in Dura
and TSA with the exception of booleans and durations. The boolean
literals true and false are translated to> and⊥, respectively, whereas
Dura durations, which are independently specifying the hours, min-
utes, and so on, are translated to the equivalent amount of seconds.

Constants are translated to the corresponding literal they represent.
Paths in Dura coincide with the attribute names of the correspond-

ing TSA streams.
Variables specified in a query term are translated to attributes cor-

responding to the path that specifies their location in the query term.
Recall that during the normalization of queries ambiguous variable
definitions are eliminated and that hence each variable translates to
an unambiguous attribute.

Variables introduced by means of let and aggregate are translated
to the attribute name .var.V whereby V is the name of the variable
and .var is a prefix that cannot occur in variable names in Dura.

206

composite terms and formulas Composite terms and for-
mulas of normalized Dura queries are canonically mapped to TSA

terms and formulas. They merely differ slightly in their syntax and
structure, eg, <= as opposed to 6 and the n-ary connective and instead
of multiple binary connectives ∧.

10.4.4 Query Supplements

selection A where part

q where c

is translated to a selection

σ[C]
(
Q
)

whereby Q corresponds to the translation of the query q and C corre-
sponds to the translation of the formula c.4

embedding A let part

q let { var v1 = expr1, ..., var vk = exprk }

is translated to an embedding

ι[.var.v1 ← expr1, . . . , .var.vk ← exprk]
(
Q
)

whereby Q is the translation of the query q and expri denotes the
translation of the term expri.5

grouping and aggregation A generic group by and aggregate

part is determined by

q

group by { r1, ..., rk }

aggregate { var v1 = fn1(s1), ..., var v` = fn`(s`) }

whereby ri and si denote references and fni denotes an aggregation
function. The query is translated to the TSA expression

γ[R1, . . . , Rk][.var.v1 ← fn1(S1), . . . , .var.v` ← fn`(S`)]
(
Q
)

whereby Q corresponds to the translation of q. Moreover Ri and Si
correspond to the attributes referenced by ri and si, respectively.

Note that in Dura the aggregate part is optional and if omitted the
second argument of γ remains empty.

4 Note that where { ... } is actually syntactic sugar for where and{ ... }.
5 Note that in this context vi is meta variable and not a Dura variable.

207

10.4.5 Disjunctive Queries

A disjunctive query

or{ q1, ..., qk }

is translated by means of unions and projections

π[A]
(
Q1
)
∪ π[A]

(
Q2
)
∪ · · · ∪ π[A]

(
Qk
)

whereby Qi corresponds to the translation of the sub-query qi and
A =

⋂
i sort(Qi).

10.4.6 Conjunctive Queries

A generic conjunctive query is determined by

and{

q1, ..., qk,

not { n1 } where c1,

...,

not { n` } where c`
}

Recall that Dura is a declarative language and that hence the sub-
queries can be arbitrarily reordered as opposed to, eg, Prolog, where
a rearrangement of subgoals may affect the semantics and the termi-
nation behavior of programs.

The conjunctive query translates to the following TSA expression
composed from anti-semi-joins and cross products

n[C`]
(

· · ·
n[C2]

(
n[C1]

(
Q1 ×Q2 × · · · ×Qk, N1

)
,

N2
)
,

· · ·
N`
)

whereby Ci corresponds to the translation of the formula ci and Qi
and Ni correspond to the translation of the queries qi and ni, respec-
tively.

Note that if the conjunctive query does not contain any negated
sub-queries, its translation degenerates to the cross product

Q1 ×Q2 × · · · ×Qk

208

10.4.7 Deductive Rules

A deductive rule

DETECT type{ ... } ON q END

translates to the TSA expression

T ← π[sort(T)]
(

ι[P1 ← E1, . . . ,Pk ← Ek]
(

ι[id← sequence.next(),

rt.begin← least(e1.rt.begin, . . . , e`.rt.begin),

rt.end← greatest(e1.rt.end, . . . , e`.rt.end)]
(
Q
)))

whereby T is the stream that corresponds to the event type type and
Q is the translation of the query q and the prefixes e1, . . . , e` coincide
with the identifiers having positive polarity in q. Moreover, Ei cor-
responds to the translation of an (arithmetic) expression in the rule
head whereby Pi corresponds to the path describing the location of
the expression in the construct term.

Note that furthermore the definition of the attributes id, rt.begin,
and rt.end are omitted from the inner most embedding, if they coin-
cide with one of the Pi, that is, if they are explicitly specified in the
head of the rule.

10.5 walk through of an entire translation

Consider the rules from Listing 10.9 which are based on previously
introduced queries and rules from Chapter 5. The first rule derives
temp-exceeded-stat events which determine the number of areas that
exceed an average temperature of 100 degrees Celsius within one
minute after the occurrence of an alarm. The second rule derives
broken-temp-sensor events whenever the latest received temp event of
a certain sensor has been obtained more than one minute ago.

basic streams The given rules are based on the events alarm,
temp, temp-exceeded-stat, and broken-temp-sensor events which corre-
spond to the TSA streams A, T , E, and B with the schemata

sch(A) =
(
{area, id, rt.begin, rt.end},G,H

)
sch(T) =

(
{area, id, rt.begin, rt.end, sensor-id, value},G,H

)
sch(E) =

(
{count, id, rt.begin, rt.end},G,H

)
sch(B) =

(
{id, rt.begin, rt.end, sensor-id},G,H

)
whereby

G = rt.begin 6 rt.end

H = progressing(id)∨ progressing(rt.end)

209

Listing 10.9: Rules Derived from Listing 5.12 and Listing 5.17

DETECT

temp-exceeded-stat{ count{var Acount} }

ON

and{

event e: alarm{},

event f: temp{ area{var A}, value{var T} }

} where { f during from-end(e, 1min) }

group by { e, var A } aggregate { var Tavg = avg(var T) }

where { var Tavg > 100 }

group by { e } aggregate { var Acount = count(var A) }

END

DETECT

broken-temp-sensor{

sensor-id{var Id}, rt{ end{ end(e)+15sec } }

}

ON

and{

event e: temp{ sensor-id{var Id} }

not event f: temp{ sensor-id{var Id} }

} where { f during from-end(e, 1min) }

END �
Listing 10.10: Normalization of Rules from Listing 10.9

DETECT

temp-exceeded{ count{var Acount} }

ON

and{

event e: alarm{},

event f: temp{ area{var A}, value{var T} }

} where { e.rt.end < f.rt.begin, f.rt.end < e.rt.end+1min }

group by { e.area, e.id, e.rt.begin, e.rt.end, var A }

aggregate { var Tavg = avg(var T) }

where { var Tavg > 100 }

group by { e.area, e.id, e.rt.begin, e.rt.end }

aggregate { var Acount = count(var A) }

END

DETECT

broken-temp-sensor{

sensor-id{var Id}, rt{ end{ e.rt.end+15sec } }

}

ON

and{

event e: temp{ sensor-id{var Id} }

not { event f: temp{} } where {

e.rt.end < f.rt.begin, f.rt.end < e.rt.end+1min,

e.sensor-id = f.sensor.id

}

}

END �

210

normalization of rules The normalization of the rules from
Listing 10.9 is illustrated in Listing 10.10:

The temporal condition f during from-end(e, 1min) is replaced with
the formula and{ e.rt.end < f.rt.begin, f.rt.end < e.rt.end + 1min }. In
case of the second rule, the formula is subsequently relocated to the
where part of the negation. Finally, in both group by parts of the first
rule the event identifier e is replaced by e.area, e.id, e.rt.begin,

e.rt.end.

translation to tsa Subsequently, the normalized queries from
Listing 10.10 are recursively translated to TSA expressions. Note that
thereby, each sub-query can be individually translated as all potential
interdependencies between sub-queries have been eliminated by the
preceding normalization of queries.

In case of the first rule deriving temp-exeeded events the translation
to TSA yields the expression

E← π[count, id, rt.begin, rt.end]
(

ι[count← .var.Acount]
(

ι[id← sequence.next(),

rt.begin← least(e.rt.begin),

rt.end← greatest(e.rt.end)]
(

γ[e.area, e.id, e.rt.begin, e.rt.end]

[.var.Acount← count(f.area)]
(

σ[.var.Tavg > 100]
(

γ[e.area, e.id, e.rt.begin, e.rt.end, f.area]

[.var.Tavg← avg(f.value)]
(

σ[e.rt.end < f.rt.begin, f.rt.end < e.rt.end + 60]
(

×
(
ρ[∗ → e.∗]

(
A
)
, ρ[∗ → f.∗]

(
T
))
· · ·
)

whereas the second rule deriving broken-temp-events is eventually
translated to the expression

B← π[id, rt.begin, rt.end, sensor-id]
(

ι[sensor-id← e.sensor-id, rt.end← e.rt.end + 15]
(

ι[id← sequence.next(),

rt.begin← least(e.rt.begin)]
(

n[e.rt.end < f.rt.begin, f.rt.end < e.rt.end + 60,

e.sensor-id = f.sensor-id]
(

ρ[∗ → e.∗]
(
T
)
, ρ[∗ → f.∗]

(
T
)))))

211

11
T R A N S L AT I N G D U R A T O D U R A C

Having established an operational semantics for DuraC in the pre-
vious chapter, we now elaborate a translation of generic Dura rules
to DuraC rules in order to obtain an operational semantics for (full)
Dura. To this end, all constructs that are not available in DuraC need
to be expressed by means of DuraC event queries and deductive rules.
This includes in particular queries for stateful objects; internal, exter-
nal, and complex actions; and reactive and complex action rules.

The translation of Dura to DuraC is separated into aspects con-
cerned with the execution of external and complex actions, which
is subject to Section 11.1, and aspects concerned with queries of state-
ful objects and internal actions on stateful objects, which is is subject
to Section 11.2.

In the following, the translations are illustrated by means of rele-
vant excerpts of the resulting deductive rules. For the sake of com-
pleteness and further reference, the entire rule sets are contained in
Appendix B.

11.1 actions in durac

Actions have no direct representation in DuraC and thus they need to
be modeled by means of events. As a consequence, reactive and com-
plex action rules need to be translated to deductive rules that realize
the intended effect of the specified actions by deriving appropriate
events.

The translation of complex action and reactive rules is realized by
means of several translation steps that are subsequently applied to
a program. Each step is devoted to a certain aspect of the transla-
tion and produces intermediate rules that are the basis for the next
translation step.

An early draft for the translation of complex actions was elaborated
by Scherr in his Diploma thesis [Sch11] supervised by François Bry
and the author of this thesis. However, as the language definition
and the basic assumptions have substantially changed in the mean
time, only the basic ideas for the translation of complex actions can
be adopted from [Sch11].

11.1.1 Informal Introduction

Information on action instances is internally represented by means
of events. To this end, the invocation of an action is indicated by the

213

occurrence of a corresponding «name»$requested event, whereas the
actual initiation and the success or failure of an action is indicated by
«name»$initiated, «name»$succeeded, and «name»$failed events.

For instance, the immediate-reactions action from Listing 11.2 is
represented by four events whose schema is indicated in Listing 11.1
whereby «type» corresponds to requested, initiated, succeeded, and
failed. Thereby, the end of the reception time of, eg, succeeded events
indicates the success of the action instance referred to by the respec-
tive payload.id attribute.

Listing 11.1: Events Associated with the immediate-reactions Action

immediate-reactions$«type»{

pl{ id{identifier}, ref{identifier}, area{long} }

} �
Be aware that, for the sake of conciseness and readability, the label

of the composite attribute payload is abbreviated with pl in this and
all following examples. Moreover, the prefix of event names referring
to actions may be omitted in the following, if the complete name is
clear from the context.

translating reactive rules When an atomic action is trig-
gered by means of a reactive rule, a requested event is derived in-
ternally that indicates the invocation of the respective action. This is
realized by translating the reactive rule to a deductive rule as it is
illustrated in Listing 11.3. In case of external actions, the occurrence
of a requested event causes furthermore the delivery of a message to
the respective actuator where it triggers the actual execution of the
action.

Listing 11.2: A Reactive Rule

ON

event e: certain-fire-alarm{ area{var A} }

DO

action a: immediate-reactions{ area{var A} }

END �
Listing 11.3: Translation of the Reactive Rule from Listing 11.2

DETECT

immediate-reactions$requested{ pl{

id{sequence.next()}, area{var A}

} }

ON

event e: certain-fire-alarm{ area{var A} }

END �

214

translating complex actions Similarly to the invocation of
actions by means of reactive rules, the invocation of sub-actions spec-
ified in a complex action is realized by the derivation of appropriate
requested events. Therefore, the invocation of each sub-action is real-
ized by means of a separate rule that derives an appropriate requested

event. However, thereby the temporal dependencies that are specified
in the where part of the complex action need to be properly taken into
account for the invocation of each sub-action. To this end, the body
of each rule deriving requested events contains event queries that are
used to determine the earliest time for the invocation of the sub-action
according to the temporal conditions of the complex action.

Consider, for instance, the complex action rule in Listing 11.4 con-
taining the activate-ventilators sub-action that is referenced by the
identifier b. Obviously b must not be initiated before the initiation of
the complex action v of which it is a sub-action. Moreover, both tem-
poral dependencies in the where part further constrain the initiation
of b such that b must not be initiated until the success of the sub-
action a nor until one minute after the initiation of c. Accordingly, b
must not be initiated before greatest(init(v), succ(a), init(c)+1min)

whereby the time points init(v), succ(a), and init(c) can be obtained
by means of queries to

adapt-ventilation$initiated

open-fire-dampers$succeeded

warn-of-smoke$initiated

events that have been caused by the execution of the complex action.
Note that, with slight abuse of notation, the earliest time for the initi-
ation of b coincides with greatest(preWA

(init(b))).1

The deductive rule responsible for the invocation of the sub-action
b is illustrated in Listing 11.5. Note how the area parameter A of
the complex action is obtained in the deductive rule by means of a
query to the adapt-ventilation$initiated event. Moreover, the recep-
tion time of derived events is determined by the earliest possible time
for the initiation of b in order to respect the temporal dependencies
that are specified in the complex action.

translating status queries The translation of status queries
is closely related to the translation of action invocations in complex
actions. Status queries are basically translated to deductive rules, eg,
deriving succeeded events in case of a succeeds on part, and references
to the times of actions and their parameters are substituted with ref-
erences to appropriate event queries.

The translation of the succeeds on part of the complex action in List-
ing 11.4 is illustrated in Listing 11.6.

1 Recall from Section 7.3.2 that preWA
(v) =

{
u+ d

∣∣ u+ d 6 v is sub-formula of WA

}
wherebyWA is determined by the axiomatic closure of the complex action’s temporal
dependencies.

215

Listing 11.4: A Complex Action Rule

FOR

action v: adapt-ventilation{ area{var A} }

DO

compound{

action a: open-fire-dampers{ area{var A} }

action b: activate-ventilators{ area{var A} }

action c: warn-of-smoke{ area{var A} }

} where { succ(a) <= init(b), init(c)+1min <= init(b) }

succeeds on and{

event e: smoke{ area{var A}, amount{var C} }

} where { var C < 0.1, init(v) < end(e), end(e) < init(v)+2min }

group by { v }

END �

Listing 11.5: Translation of the Invocation of b from Listing 11.4

DETECT

activate-ventilators$requested{

reception-time{ end{

greatest(end(v$init), end(a$succ), end(c$init)+1min)

} }

pl{ area{var A}, id{sequence.next()}, ref{v$init.pl.id} }

}

ON

and{

event v$init: adapt-ventilation$initiated{ pl{ area{var A} } }

event a$succ: open-fire-dampers$succeeded{}

event c$init: warn-of-smoke$initiated{}

} where {

v$init.pl.id = a$succ.pl.ref, v$init.pl.id = c$init.pl.ref

}

END �
Listing 11.6: Translation of the succeeds on Part from Listing 11.4

DETECT

adapt-ventilation$succeeded{ pl{ v$init.pl } }

ON

and{

event e: smoke{ area{var A}, amount{var C} }

event v$init: adapt-ventilation$initiated{ pl{ area{var A} } }

} where {

var C < 0.1, end(v$init) < end(e), end(e) < end(v$init)+2min

} group by { v$init }

END �

216

stepwise translation The translation of complex actions and
reactive rules is carried out in a stepwise manner. Initially, anony-
mous complex actions are eliminated by assigning them a (generated)
name. Subsequently, complex action rules are translated to reactive
rules and status queries of complex action rules and external actions
are translated to deductive rules. Finally, reactive rules are translated
to deductive rules deriving requested events.

11.1.2 Representation of Actions

Each action is internally represented by means of the four event types
illustrated in Listing 11.7. Thereby, «parameters» corresponds to the
attributes id{identifier} and ref{identifier} and the explicit param-
eters of the action.

Listing 11.7: Schema of Events Representing Actions

«name»$requested{ pl{ «parameters» } }

«name»$initiated{ pl{ «parameters» } }

«name»$succeeded{ pl{ «parameters» } }

«name»$failed{ pl{ «parameters» } } �
All events that are associated with a certain action instance refer

to the same key in their pl.id attribute. Moreover, all events refer to
the key of the complex action that caused their invocation in their
pl.ref attribute. In addition, the explicit parameters passed to an ac-
tion are found in the pl attribute and the end of the reception time
of each event coincides with the respective time of the action. Eg, if
«id» is an action identifier referring to an action «name», then the time
point referenced by succ(«id») coincides with the one referenced by
end(«name»$succeeded).

11.1.3 Eliminating Anonymous Complex Actions

To begin with, all anonymous complex actions, that is, complex ac-
tions that are directly specified in the head of a reactive rule, are
eliminated by transforming them to a complex action rule with an
(arbitrary) generated name. Subsequently, the head of the reactive
rule is replaced with an invocation of the newly introduced (named)
complex action.

The corresponding translation is illustrated in Listing 11.8 and List-
ing 11.9. Thereby, «generated parametes» is determined by the set of
variables that occur in «complex action» and have positive polarity in
«event query». In result of the transformation, all reactive rules spec-
ify a single action in their head and all complex actions are associated
with a proper name. Both of these aspects are exploited by subsequent
transformations.

217

Listing 11.8: A Reactive Rule Specifying an Anonymous Action

ON

«event query»

DO

«complex action»

END �
Listing 11.9: Translation of the Reactive Rule from Listing 11.8

ON

«event query»

DO

action «generated id»: «generated name»{ «generated parameters» }

END

FOR

action «generated id»: «generated name»{ «generated parameters» }

DO

«complex action»

END �
11.1.4 Translating Complex Action Rules

The translation of complex actions divides each complex action into
several separate reactive rules, namely, one reactive rule for each sub-
action that is invoked by the complex action. Thereby, each reactive
rule is intended to trigger the execution of one sub-action according
to the (temporal) dependencies specified for the complex action.

The generic scheme for the translation of action invocation is illus-
trated in Listing 11.11. Thereby, the set of queries from IF parts that
constrain the sub-action execution corresponds to the queries of all
IF parts the sub-action is nested within. It is naturally empty if the
sub-action is not nested within any conditional action. Moreover, WA

corresponds to the axiomatic closure of the «temporal dependencies»

specified in the where part of the complex action.
Note how in the reactive rule in Listing 11.11 the ref parameter

of the invoked action is determined by the key of the complex ac-
tion instance that caused its invocation. In this way, sub-actions that
are invoked by one particular complex action instance can be dis-
criminated from equally named sub-actions that happen to be in-
voked by other rules that are not related to the considered complex
action instance. This is important, as it would be incorrect in the con-
text of the complex action adapt-ventilation from Listing 11.4 to ini-
tiate a activate-ventilators action in response to the success of a
open-fire-damper action that has not been caused by the complex ac-
tion adapt-ventilation.

Note that a similar technique is required if the same action is spec-
ified multiple times within a complex action. This can be simply real-

218

Listing 11.10: A Generic Complex Action Rule

FOR

action «complex action identifier»: «complex action name»{

«parameters»

}

DO

compound{

action «sub-action identifier>: «sub-action name»{

«sub-action parameters»

}

...

} where { «temporal dependencies» }

fails on { «fails query» }

succeeds on { «succeeds query» }

END �

Listing 11.11: Translation Scheme for Sub-Action Invocation

ON

and{

event: «complex action name»$initiated{ pl{«parameters»} }

«queries from IF parts that constrain the sub-action execution»

}

DO

action: «sub-action name»{

«sub-action parameters»

ref{ id(«complex action identifier») }

request-time{ greatest(preWA
(init(«sub-action identifier»))) }

}

END �
Listing 11.12: Translation Scheme for initiated Queries

DETECT

«action name»$initiated{ pl{«id».pl} }

ON

and{

«initiates query»

event «id»: «action name»$requested{ pl{«parameters»} }

}

END �
Listing 11.13: Translation Scheme for succeeded and failed Queries

DETECT

«action name»$«status»{ pl{«id».pl} }

ON

and{

«status query»

event «id»: «action name»$initiated{ pl{«parameters»} }

}

END �

219

ized by adding the (unique) name of the respective sub-action iden-
tifier to the parameters of the invoked sub-action, similar as it is ac-
complished by the ref attribute. However, for the sake of simplicity,
this aspect is not further considered in the following.

11.1.5 Translating Status Queries

Status queries specified in complex action rules or in the schema of
external actions are translated into deductive rules as it is illustrated
in Listing 11.12 and Listing 11.13.

Thereby, «status query» corresponds to the event query that is ei-
ther specified in the succeeds on or fails on part of the corresponding
action and «id» is an identifier that does not occur in «status query».
Note that because initiates on can only be specified for external ac-
tions the «initiated query» in Listing 11.12 is empty for the translation
of complex action rules.

11.1.6 Illustrative Examples

Applying the preceding two transformations to the complex action
rule from Listing 11.4 yields the rules in Listing 11.14.

Note that most of these intermediate rules are not range restricted,
as they contain action identifiers that are not, and cannot be, positive
in the respective rule bodies as queries in rule bodies cannot contain
actions. Moreover, values for request-time are specified which is no
proper parameter of any of the actions.

These issues are addressed by the following translations. However,
the translations are only illustrated for some of these intermediate
rules. The complete translation is contained in Appendix B, though.

11.1.7 Translating Action Identifier

The deductive and reactive rules generated by the previous transla-
tion step contain references to actions, in particular to their times. To
obtain valid DuraC rules, these references need to be expressed by
means of appropriate event queries that provide the referenced infor-
mation in their payload.

The mapping of action identifiers to attributes of the corresponding
events is illustrated in Table 11.1. Thereby, «id» may be chosen from
among any identifier areq, ainit, a$succ, or a$fail that has positive
polarity in the body of the rule. It defaults to a$init if no such identi-
fier exists. In addition, for each event identifier that is introduced by
this translation appropriate event queries are added to the rule body.2

2 Note that it is thus convenient to begin with the translation of init(a), succ(a),
fail(a) and afterward translate the remaining action identifiers.

220

Listing 11.14: Intermediate Translation of the Rule from Listing 11.4

ON

event v$init: adapt-ventilation$initiated{ pl{ area{var A} } }

DO

action a: open-fire-dampers{

area{var A},

ref{id(v)}, request-time{ greatest(init(v)) }

}

END

ON

event v$init: adapt-ventilation$initiated{ pl{ area{var A} } }

DO

action a: activate-ventilators{

area{var A},

ref{id(v)},

request-time{ greatest(init(v), succ(a), init(c)+1min) }

}

END

ON

event v$init: adapt-ventilation$initiated{ pl{ area{var A} } }

DO

action a: warn-of-smoke-emission{

area{var A},

ref{id(v)}, request-time{ greatest(init(v)) }

}

END

DETECT

adapt-ventilation$initiated{ pl{ v$req.pl } }

ON

event v$req: adapt-ventilation$requested{ }

END

DETECT

adapt-ventilation$succeeded{ pl{ v$init.pl } }

ON

and{

event e: smoke{ area{var A}, amount{var C} }

event v$init: adapt-ventilation$initiated{ pl{ area{var A} } }

} where { C < 0.1, init(v) < end(e), end(e) < init(v)+2min }

group by { v }

END �

221

a ≡ «id»

id(a) ≡ «id».pl.id

a.«path» ≡ «id».pl.«path»

req(a) ≡ end(a$req)

init(a) ≡ end(a$init)

succ(a) ≡ end(a$succ)

fail(a) ≡ end(a$fail)

Table 11.1: Translation of Action Identifiers to Attributes of Events

For instance, when succ(a) is translated to end(a$succ) the query

event a$succ: «name»$succeeded{}

where { «complex action id»$init.pl.id = a$succ.pl.ref }

is added to the body of the rule (unless it is already existing there
of course) whereby «name» coincides with the name of the action that
is referenced by a. Moreover, «complex action id» corresponds to the
identifier of the complex action whose translation caused the respec-
tive declarative rule. The condition thus ensures that only events that
are caused by the same complex action instance, and thus provide
the same key in their pl.ref attribute, are considered by the respec-
tive query.

When the null-ary variant of these functions is used in the schema
of external actions, the mapping applies accordingly whereby «name»

corresponds to the name of the uniquely determined action from
the respective schema and the condition of added event queries is
dropped.

The translation is illustrated in Listing 11.15 for the reactive rule
from Listing 11.14 that is invoking the activate-ventilators action.
Note that the resulting reactive rule is weakly range restricted. It still
determines implicit attributes of the actions which is not legitimate
for user defined actions but tolerated for these particular internal
rules.

11.1.8 Translating Reactive Rules

Reactive rules triggering external or complex actions are simply trans-
lated to deductive rules that derive the respective requested events. Be
aware that for rules triggering internal actions, which are modifying
stateful objects, a particular translation is applied that is introduced
in Section 11.2.

The respective transformation is illustrated in Listing 11.17. There-
by, e1, . . . , ek correspond to the event identifiers that have positive
polarity in «event query». If there is no request-time and ref attribute
in the head of the reactive rule, ie, when the reactive rule is specified

222

Listing 11.15: Translation of Identifiers of a Rule from Listing 11.14

ON

and{

event v$init: adapt-ventilation$initiated{ pl{ area{var A} } }

event a$succ: open-fire-dampers$succeeded{}

event c$init: warn-of-smoke$initiated{}

} where {

v$init.pl.id = a$succ.pl.ref, v$init.pl.id = c$init.pl.ref

}

DO

action a: activate-ventilators{

area{var A},

ref{v$init.pl.id},

request-time{greatest(end(init$v), end(a$succ), end(c$init)+1min)}

}

END �

Listing 11.16: A Generic Reactive Rule

ON

«event query»

DO

action «id»: «action name»{

«parameters»

ref{«ref»}, request-time{«request time»}

}

END �
Listing 11.17: Translation Scheme for Reactive Rules

DETECT

«action name»$requested{

reception-time{greatest(e1, ..., ek, «request time»)},

pl{ id{sequence.next()}, ref{«ref»}, «parameters» } }

ON

«event query»

END

DETECT

«external action name»{ «id».pl }

ON

event «id»: «external action name»$requested{}

END �

223

by a programmer and not generated by the preceding transforma-
tions, then «request time» remains empty and «ref» is determined by
sequence.next(). Furthermore, the second rule only applies for exter-
nal actions, as it is merely responsible for the derivation of the mes-
sage that is sent to the actuator where it causes the actual invocation
of the action.

Note how the end of the reception-time of the derived requested

event is determined by greatest(e1, ..., ek, «request time») and is
thus greater than or equal to the «request time» that is specified for the
reactive rule. This is in particular relevant for the invocation of exter-
nal actions, as in this way the derivation of the «external action name»

message that is sent to the actuator is deferred until the determined
«request time» is exceeded.

11.2 stateful objects in durac

Stateful objects have no direct representation in DuraC and thus need
to be represented by means of events. Therefore, queries for stateful
objects need to be expressed by means of event queries, and reactive
rules modifying stateful objects need to be expressed by means of
deductive rules that, by deriving appropriate events, affect the result
of event queries representing queries for stateful objects.

The basic ideas for the translation of stateful objects, which are
discussed in Section 11.2.1, have been elaborated in collaboration with
Simon Brodt.

11.2.1 Informal Introduction

The basic idea to model stateful objects in DuraC is to represent the
values of a stateful object by means of appropriate «name»$created and
«name»$terminated events that characterize their payload and valid
time. Note that as before the label payload is abbreviated by pl and
the prefix «name»$ of event names is omitted in textual descriptions.

Listing 11.18: Schema of created and terminated Events

operation-mode{ area{long}, mode{int} }

on conflict select { max mode, min id }

operation-mode$created{ pl{ id{identifier}, area{long}, mode{int} } }

operation-mode$terminated{ pl{ id{identifier}, area{long}, mode{int} } }�
More precisely, a value of a stateful object becoming valid is indi-

cated by means of a created event whereas the validity of a value
coming to an end, eg, when the stateful object is updated, is indi-
cated by means of a terminated event that is referring to the respec-
tive created event. Thereby, the actual data of a value is contained in

224

the pl attribute of the respective events and the end of their reception
times corresponds to the time the value becomes valid and invalid,
respectively.

translating queries Based on the representation of stateful
objects by means of events, queries for stateful objects are translated
to conventional event queries. Consider, for instance, the composite
query in Listing 11.19 which contains a query for the stateful object
operation-mode.

Listing 11.19: A Stateful Object Query

and{

event e: certain-fire-alarm{ subarea{var S} }

state s: operation-mode{ area{var S}, mode{var M} }

} where { s valid-at «tp» } �
Listing 11.20: Basic Translation of the Query from Listing 11.19

and{

event e: certain-fire-alarm{ subarea{var S} }

event s$cre: operation-mode$created{ pl{ area{var S}, mode{var M} } }

not event s$term: operation-mode$terminated{}

} where {

s$cre.pl.id = s$term.pl.id,

end(s$cre) < «tp», end(s$term) < «tp»

} �
When a certain fire alarm occurs, the query matches all values of

the stateful object that are valid at time «tp» and refer to the subarea
S. It furthermore binds the variable M to the respective mode of match-
ing values. In other words, the query looks for a value of the stateful
object that began to be valid before «tp» and did not become invalid
as early as «tp». And as values becoming valid and invalid is repre-
sented by means of created and terminated events, the query for the
stateful object can be equivalently expressed by means of the DuraC

query in Listing 11.20.

translating reactive rules Reactive rules that trigger ac-
tions altering stateful objects are translated to rules deriving created

and terminated events. Consider, for instance, the rule in Listing 11.21.
When a certain fire alarm occurs, the operation mode of all value of
the stateful object that are matching the subarea S and are valid at
time «tp» is set to OPM_EMERGENCY.

Accordingly, every matching value becomes invalid at time «tp»

and in turn a new value carrying the updated data begins to be valid
after «tp». Similar as before, this is realized by rules deriving created

and terminated events as it is illustrated in Listing 11.22. Note that

225

Listing 11.21: Updating a Stateful Object

ON

and{

event e: certain-fire-alarm{ subarea{var S} }

state s: operation-mode{ area{var S} }

} where { s valid-at end(e) }

DO

action a: operation-mode$update{

query{id(s)}, set{ area{var S}, mode{OPM_EMERGENCY} }

}

END �
Listing 11.22: Basic Translation of the Rule from Listing 11.21

DETECT

operation-mode$updated{

old-payload{ s$cre.pl }

new-payload{ area{var S}, mode{OPM_EMERGENCY} } }

}

ON

and{

event e: certain-fire-alarm{ subarea{var S} }

event s$cre: operation-mode$created{ pl{ area{var S} } }

not event s$term: operation-mode$terminated{}

} where {

s$cre.pl.id = s$term.pl.id,

end(s$cre) < end(e), end(s$term) < end(e)

}

END

DETECT

operation-mode$created{ pl{var P} }

ON

event ud: operation-mode$updated{ new-payload{var P} }

END

DETECT

operation-mode$terminated{ pl{var P} }

ON

event ud: operation-mode$updated{ old-payload{var P} }

END �

226

the body of the reactive rule closely resembles the query from List-
ing 11.19 and therefore the translation of the body is adopted from
Listing 11.20 with minimal adaptations.

meeting conditions on cyclic rules Although the previ-
ous examples are convenient to illustrate the basic idea for modeling
stateful objects by means of events, the given rules are unsound as
they are cyclic and do not satisfy the conditions on cyclic rules.3 Re-
call from Section 5.2.4 that these conditions require that the end of
the reception time of a derived event exceeds the end of the reception
time of recursively queried events by a constant duration.

However, the rule in Listing 11.22 deriving updated events queries
created and terminated events and at the same time it (indirectly)
derives events of the same type. Thereby, the end of the reception
time of the queried events is merely constrained by the two condi-
tions end(s$cre) < «tp» and end(s$term) < «tp». Thus, with a properly
selected «tp» such as end(e), the reception time of derived created and
terminated events coincides with «tp», which comes arbitrarily close
to end(s$cre) and end(s$term). Therefore, the rule does not conform
to the requirements on recursive rules.

update

invocation

ur

ur us ud
cd

td
ur

ur

Figure 11.1: Events Caused by the Invocation of an Update Action

So in order to meet the conditions for cyclic rules, the translation
of update invocations is adapted as follows. Instead of directly en-
tailing updated events (ud), the invocation of an update action entails
update$requested events (ur) whose reception time may be shifted for-
ward by an arbitrary but fixed duration min-dist. Moreover, the rule
deriving update$requested events (ur) matches only terminated events
(td) that occur at least min-dist before the time of the update invoca-
tion. In this way, the conditions on cyclic rules are satisfied but there
may be update$requested events that would not have been derived
if all terminated events were queried. Therefore, terminate$requested
and update$requested events that occurred prior to the invocation of
the update are queried to determine if an update$requested event is
actually justified so that eventually an update$succeeded event (us) can
be derived. Finally, each identified update$succeeded event (us) results
in a corresponding updated event (ud) which in turn causes the deriva-
tion of terminated and created events (td and cd).

3 Note that the rules are neither stratifiable [ABW88] nor local stratifiable [Prz88].

227

The translation of rules triggering a terminate actions is almost
identical to the translation of update actions whereas the translation
of rules triggering created actions is straight forward as it does never
involve recursion.

shifting the reception time The end of the reception time
of derived update$requested events is shifted forward until the time
difference between the end of its reception time and the end of the
reception time of the created event it refers to exceeds min-dist. If,
however, this time difference is already large enough, the end of the
reception time remains unaffected. Moreover, the primal end of the
reception time is preserved in the semantic-time attribute of the event.

In this way, the end of the reception time of created events entailed
by the updated$requested event exceed the end of the reception time
of the queried created event by the duration min-dist. Note, however,
that the shifted time of the update$requested event also affects the
reception time of update$suceeded, updated, created, and terminated

events, as these events are derived from update$requested events.

semantic-time

reception-time.end

cd1 ur5(1)

min-dist

(a) An Update Request with Shifted Reception Time

semantic-time

reception-time.end

cd1 ur3(1)

min-dist

(b) An Update Request without Shifted Reception Time

Figure 11.2: Adaptation of Times of Update Request Events

The adaptation of the reception time is illustrated in Figure 11.2.
The labels cd and ur refer to created and update$requested events
and indicate the respective values of their reception-time.end and
semantic-time attributes. The index of each label coincides with the
value of their pl.id attribute and the number inside the brackets of
the update$requested event refers to the key of the value that is to be
updated, that is, to the index of a cd label. Moreover, the gray arrow
indicates the value of the reception-time.end attribute relative to the
semantic-time of each event.

masking terminated events A temporal condition is added
to the body of the rule deriving update$requested events so that only
terminated events occurring at least min-dist before the time of the

228

update invocation are matched. That is, terminated events that are
temporarily to close to the update invocation are masked.

In this way, the end of the reception time of terminated events en-
tailed by the updated$requested event exceed the end of the reception
time of the queried terminated event by the duration min-dist. How-
ever, in consequence, there may occur update$requested that would
not have been derived if all terminated events were considered. Natu-
rally, these events must not cause a updated event because they refer to
a value that is already terminated. Accordingly, these kind of events
are called false positives whereas update$request events that refer to
a value that can be updated are called true positives.

semantic-time

reception-time.end

cd1 td3(1) ur7(1)

min-dist min-dist

Figure 11.3: A False Positive Update Request

The masking of events is illustrated in Figure 11.3. Similar to before,
the labels cd, td, and ur refer to events and their times. The gray area
indicates the time interval of duration min-dist in which terminated

are masked for the rule deriving the update$requested, ie, for the rule
deriving the event represented by the label ur7(1).

Note that the value represented by the created event is actually
terminated by the td3(1) event. It is thus no longer valid when the
update$requested event is derived. Accordingly, ur7(1) is a false posi-
tive update$requested event, as it would not have been derived, if the
td3(1) event were not masked in the rule deriving the event.

11.2.2 Representing Values of Stateful Objects

Recall from Section 5.3.1 that whenever a stateful object is modified,
its current value is not overwritten but instead merely marked as
obsolete and remains, at least conceptually, in the system. To this
end, a stateful object is actually determined by a series of successive
values whereby each value is associated with a unique key and only
valid within a certain time interval.

Each of these values is represented in DuraC by means of created

and terminated events whose schema is illustrated in Listing 11.23.
Thereby, the unique key of a value and its actual data is located in
the pl attribute. Moreover, the validity of a value is determined by
the semantic-time of the two events, more precisely, the value is valid
from the semantic-time of the created event through the semantic-time

of the terminated event. Note, however, that as long as a certain value
is valid it is merely represented by a created event.

229

Both attributes, semantic-time and reception-time.end, are distin-
guished as progressing attributes in the where part of the schema.
Moreover, the value of semantic-time is bounded above and below
by the value of reception-time.end and the duration min-dist.

11.2.3 Translating Stateful Object Queries

Queries for stateful objects are simply translated by replacing them
with queries for the respective created and terminated events and by
adapting the conditions in the where part appropriately.

The scheme for the translation of queries for stateful objects is il-
lustrated in Listing 11.25 whereas the translation of conditions is il-
lustrated in Table 11.2. Be aware that the query for terminated events
is negated in Listing 11.25 which affects the translation of the tem-
poral dependencies. The translation of conditions is thereby delib-
erately restricted to the two temporal conditions valid-at «tp» and
valid-during «ti» here. For a generalization that covers temporal con-
ditions built from formulas based on the terms cre(s) and term(s)

refer to Section 13.2.

s ≡ s$cre

s.«path» ≡ s$cre.pl.«path»

s valid-at «tp» ≡ and{ s$cre.semantic-time < «tp»,

s$term.semantic-time < «tp» }

s valid-during «ti» ≡ and{ s$cre.semantic-time < end(«ti»),

s$term.semantic-time < begin(«ti»)}

Table 11.2: Translation of Temporal Conditions on Stateful Objects

Note that the translations of valid-at and valid-during both specify
an upper bound on the progressing attribute semantic-time of the
negatively queried terminated event. Thus, to enable the incremental
evaluation of queries for stateful objects it is for instance sufficient to
specify a «tp» or a «ti» that are depending on the time of an event
that is positive in «queries». For further details on how to facilitate
the (incremental) evaluation of queries check for Section 5.2.5.

11.2.4 Translating Reactive Rules

Actions modifying stateful objects are translated in the following way.
A special translation for reactive rules triggering such actions is ap-
plied that yields rules deriving update$requested events on the invo-
cation of an update action. Thereby it is assumed that the query for
the stateful object that is to be modified is directly contained in the
body of the respective reactive rule. This limitation on the structure of
rules is required to keep the effect of falsely derived update$requested

230

Listing 11.23: Complete Schema of created and terminated Events

«name»$«created or terminated»{

id{identifier}

semantic-time{timestamp}

reception-time{ begin{timestamp}, end{timestamp} }

pl{ id{identifier}, «attributes» }

} where {

progressing(id),

progressing(semantic-time),

progressing(reception-time.end),

reception-time.begin <= reception-time.end,

reception-time.end - min-dist <= semantic-time,

semantic-time <= reception-time.end

} �

Listing 11.24: A Generic Stateful Object Query

and{

«queries»

state s: «name»{ «attributes» }

} where { «conditions» } �
Listing 11.25: Translation of the Query from Listing 11.24

and{

«queries»

event s$cre: «name»$created{ pl{ «attributes» } }

not event s$term: «name»$terminated{ }

} where {

s$cre.pl.id = s$term.pl.id

«translation of conditions»

} �

231

events local to internal rules so that false positives can be detected
and thus do not cause an effect that is visible to programmers.

Accordingly, reactive rules modifying stateful objects as they are
considered by this transformation have the syntactical shape as illus-
trated in Listing 11.26. The translation of these reactive rules to de-
ductive rules is illustrated in Listing 11.27. Thereby, the translation of
queries of stateful objects discussed in Section 11.2.3 is applied yield-
ing «translation of queries» and «translation of conditions» to trans-
late further queries to stateful objects that are contained in «queries».
Note that the rule deriving terminate$requested events is obtained by
simply changing the event name of the rule deriving update$requested

events and by omitting the parameter set.
Note how the rule in Listing 11.27 determines values of the attrib-

utes query-time, semantic-time, and reception-time.end by means of
the meta variables «query time», «semantic time», and «reception time».
Thereby, with e1,. . . ,ek corresponding to the event identifiers positive
in «translation of queries», the meta variable «query time» is deter-
mined by

greatest(end(e1), ..., end(ek), «tp»)

or
greatest(end(e1), ..., end(ek), begin(«ti»), end(s$cre))

depending on whether valid-at «tp» or valid-during «ti» is used in
the temporal dependencies to constrain the validity of the stateful
object s.4 Moreover, semantic-time is determined by

greatest(«query time», «request time»)

and «reception time» is determined by

greatest(«semantic time», end(s$cre)+min-dist).

In this way, the «query time» corresponds to the time the query in
the body matches and the update is invoked. It thus corresponds to
the time the key of the currently valid value of the stateful object
that is to be updated is obtained. The «semantic time» corresponds to
the point in time at which the update action is deemed to be initi-
ated. Note that it corresponds to the «query time», unless the initia-
tion is further deferred by «request time», which can only be caused
by the temporal conditions of a complex action. Finally, «reception
time» basically corresponds to the semantic time but may be shifted
to maintain a minimal duration of min-dist to the occurrence of the
queried created event. Accordingly, derived updated events, and also
the resulting terminated events, may occur at «semantic time». Thus,
this time determines the end of the time interval in which terminated

events need to be masked.

4 Note that the first case is actually already covered by the second case if one deter-
mines begin(«tp») = «tp».

232

Listing 11.26: Reactive Rules Triggering Stateful Object Actions

ON

«queries»

DO

action a: «name»$create{

request-time{«request time»}, «attributes»

}

END

ON

and{

«queries»

state s: «name»{ «query terms» }

} where { «conditions» }

DO

action a: «name»$update{

query{id(s)}, set{«attributes»}, request-time{«request time»}

}

END �
Listing 11.27: Translation Scheme for Rules in Listing 11.26

DETECT

«name»$create$requested{

semantic-time{«request time»}

reception-time{ end{«request time»} }

pl{ id{sequence.next()}, «attributes» }

}

ON

«translation of queries»

END

DETECT

«name»$update$requested{

query-time{«query time»}

semantic-time{«semantic time»}

reception-time{ end{«reception time»} }

pl{ query{s$cre.pl.id}, set{«attributes»}, id{sequence.next()} }

}

ON

and{

«translation of queries»

event s$cre: operation-mode$created{ pl{ «query terms» } }

not event s$term: operation-mode$terminated{}

} where {

«translation of conditions»

s$cre.pl.id = s$term.pl.id,

end(s$cre) <= «query time»,

end(s$term) <= «query time» - min-dist

}

END �

233

semantic-time

reception-time.end

cd1 ur5(1) r(5)
td1, cd5

(a) min-dist Exceeded: end(r(5)) - end(cd5) > min-dist

semantic-time

reception-time.end

cd1 ur3(1) ur8(1) r(1)
td1, cd3 td3, cd8

(b) min-dist not Exceeded: end(r(1)) - end(cd1) <= min-dist

5 7

semantic-time

reception-time.end

cd1 ur5(1) ur7(5) r(5), r(7)
td1, cd5 td5, cd7

(c) min-dist Exceeded and not Exceeded: end(r(5)) - end(cd5) > min-dist

and end(r(7)) - end(cd7) <= min-dist

Figure 11.4: Possible Situations for the Derivation of Update Requests

Figure 11.4 illustrates the rule deriving update$requested events
from Listing 11.27 by means of two different situations that may arise,
namely, whether the time difference between the «semantic time» and
the end of the reception time of the referenced created event exceeds
or falls below min-dist. Thereby, the index of each label corresponds
to the pl.id attribute of the respective event and the number inside
the brackets refers to the pl.id attribute of the created event repre-
senting the value that is to be updated. The gray area illustrates the
time interval that ends at «semantic time» and goes backward for a
duration of min-dist. Accordingly, in the gray area terminated events
are masked for the query of the rule deriving update$request events.

Note that in Figure 11.4b the update$requested event r(1) should ac-
tually reference cd8 rather than cd1 and likewise ur8(1) should refer-
ence cd3. However, the end of the reception time of cd8 exceeds «query
time» and thus it does not match the temporal conditions specified in
the body of the rule deriving update$requested events. Moreover, note
that in Figure 11.4c both situations apply for the same update instance
and that the derived update$requested event r(5) is a false positive as
the validity of cd5 has already been terminated by td5. Figure 11.4a is
actually free of special cases.

234

11.2.5 Deriving Succeeded Events

To begin with, we focus on the derivation of update$succeeded events
and assume that updates are not issued concurrently. Aspects related
to the conflict resolution and to the derivation of create$succeeded

and terminate$succeeded events are discussed subsequently.
Note that, with the exception of the translation of the conflict res-

olution, all following rules are independent of any user defined que-
ries and rules and thus apply for the translation of any stateful object.
Merely the prefix of the event names differs for the translation of
different stateful object, but the rest of the rules remains unaffected.

deriving update succeeded events To determine whether
an update$requested event is a true or false positive two different cases
are distinguished, namely, whether the time difference of the end of
the reception time of the update$request and the referenced created

event exceeds min-dist or not. The two situations are illustrated in
Figure 11.5 and Figure 11.6. This time, the gray area illustrates the
time interval that ends at end(r) and reaches backwards for a du-
ration of min-dist. Accordingly, in the gray area created as well as
terminated events need to be masked, as update$requested events po-
tentially entail created and terminated events with a reception time
that coincides with end(r).

Figure 11.5 illustrates a situation where the time difference exceeds
min-dist, that is, end(r(5)) - end(cd5) > min-dist. By looking at the
created and terminated events, it is obvious that the update request
r(5) is a true positive request in Figure 11.5a whereas it is a false
positive request in Figure 11.5b and in Figure 11.5c. However, in the
gray area terminated events are masked and thus the information pro-
vided by the terminated events needs to be deduced from the available
terminate$request and update$request events. Accordingly, an update
request r(i) is a true positive request if there is no tdi with end(tdi)

+ min-dist <= end(r(i)) and if neither a tri nor a uri occurs with

end(r(i)) - min-dist <= end(tri), end(tri) <= end(r(i))

end(r(i)) - min-dist <= end(uri), end(uri) <= end(r(i))

tri.semantic-time <= r(i).semantic-time

uri.semantic-time < r(i).semantic-time

Note that the case uri.semantic-time = r(i).semantic-time is subject to
the conflict resolution which is subsequently addressed.

Figure 11.6 illustrates a situation where the time difference falls
below min-dist, that is, end(r(1)) - end(cd1) <= min-dist. In this situa-
tion, the initiation of the update action occurs before any created and
terminated event referring to cd1, at least with respect to the end to
the respective receptions times. Accordingly, in this situation ur(1) ac-
tually refers to the created event with the largest semantic time that is
smaller than its own, that is, ur(1) actually identifies ur(8). However,

235

semantic-time

reception-time.end

cd1 ur5(1) r(5)
td1, cd5

(a) True Positive Update Request r(5)

semantic-time

reception-time.end

cd1 ur5(1) tr6(5) r(5)
td1, cd5 td5

(b) False Positive Update Request r(5)

semantic-time

reception-time.end

cd1 ur5(1) ur7(5) r(5)
td1, cd5 td5, cd7

(c) False Positive Update Request r(5)

Figure 11.5: min-dist Exceeded: end(r(5)) - end(cd5) > min-dist

semantic-time

reception-time.end

cd1 ur3(1) ur8(1) r(1)
td1, cd3 td3, cd8

(a) True Positive Update Request r(1)

semantic-time

reception-time.end

cd1 ur3(1) ur8(1) tr9(1) r(1)
td1, cd3 td3, cd8 td8

(b) False Positive Update Request r(1)

Figure 11.6: min-dist not Exceeded: end(r(1)) - end(cd1) <= min-dist

236

in Figure 11.6b the validity of cd8 is already terminated by tr9(1),
which actually identifies tr9(8). Thus ur(1) is a true positive request
in Figure 11.6a whereas it is a false positive request in Figure 11.6b.
Accordingly, an update request r(i) is a true positive request if there
is no tdi with end(tdi) + min-dist <= end(r(i)) and if no tr(i) occurs
with

end(r(i)) - min-dist <= end(tri) <= end(r(i))

tri.semantic-time <= r(i).semantic-time

Note that these conditions are actually included in the conditions
of the previous case. Combining the elaborated aspects yields the
deductive rule in Listing 11.28 deriving update$succeeded events for
each true positive ur event.

conflict resolution In case two updates are issued concur-
rently, the conflict resolution specified in the on conflict select part
associated with the schema of a stateful object applies.

Eg, the conflict resolution of the stateful object operation-mode co-
incides with on conflict select { max mode, min id }. Accordingly, when
two updates are issued concurrently the one with the higher mode and,
in case both modes are equal, with the lower id is selected, which
translates to the following condition.

or{

ur.pl.mode > r.pl.mode,

and{ ur.pl.mode = r.pl.mode, ur.pl.id < r.pl.id }

}

Be aware that the query for update$requested events is negated in List-
ing 11.28 which needs to be taken into account for the specification
of conditions. In analogy, the generic conflict resolution

on conflict select { c1 p1, ..., ck pk }

translates to the condition

or{

ur.pl.p1 r1 r.pl.p1,

and{

ur.pl.p1 = r.pl.p1,

or{

ur.pl.p2 r2 r.pl.p2,

and{ ...,

or{

ur.pl.pk−1 rk−1 r.pl.pk−1,

and{ ur.pl.pk−1 = r.pl.pk−1, ur.pl.pk rk r.pl.pk }

} ... }

whereby ri is determined by the relation > if ci coincides with max

and by < otherwise.
If the schema of the corresponding stateful object specifies a conflict

resolution for concurrent updates, the respective condition needs to
be substituted in Listing 11.28 for false.

237

Listing 11.28: Deductive Rule Deriving update$succeeded Event

DETECT

«name»$update$succeeded{

semantic-time{r.semantic-time}

payload{r.payload}

}

ON

and{

event r: «name»$update$requested{},

event cd: «name»$created{},

not event td: «name»$terminated{},

not event tr: «name»$terminate$requested{}

not {

event ur: «name»$update$requested{}

} where or{

and{ end(r) > end(cd)+min-dist, ur.semantic-time < r.semantic-time }

and{ ur.semantic-time = r.semantic-time, false }

}

} where {

end(cd) <= end(r) - min-dist,

end(td) <= end(r) - min-dist,

end(r) - min-dist <= end(tr), end(tr) <= end(r),

end(r) - min-dist <= end(ur), end(ur) <= end(r),

cd.payload.id = td.payload.id,

cd.payload.id = r.payload.query,

tr.payload.query = r.payload.query,

tr.semantic-time <= r.semantic-time,

ur.id != r.id,

ur.payload.query = r.payload.query,

}

END �

238

deriving remaining succeeded events The deductive rule
deriving create$succeeded events is straight forward, as it does not in-
volve recursion and create actions cannot fail. The respective rule just
derives create$succeeded events whenever a create$requested event
occurs. For the sake of completeness, the generic scheme of the rule
is specified in Listing 11.29.

The basic approach for the derivation of terminate$succeeded events
is equivalent to the one for update$succeeded events. Consequently,
both rules are very similar and differ only in two minor aspects. First,
if two terminate actions are issued concurrently, both actions succeed,
as the respective value is indeed terminated, and thus a conflict res-
olution as for update actions is not required. Therefore, the condition
tr.semantic-time <= r.semantic-time from Listing 11.28 is replaced by
tr.semantic-time < r.semantic-time in Listing 11.30. Second, the con-
flict resolution for update actions is omitted, as it is only relevant if
there is not at least one update$requested events. If there are multiple,
it is irrelevant which of them is successful as at least one of them is
successful and therefore the conditions for the conflict resolution can
be safely omitted.

11.2.6 Deriving Failed Events

When a update$requested event occurs whereas the corresponding
update$succeeded event remains absent, this can either mean that that
the request is a false positive or that the update failed. Failed updates
are either caused by concurrently issued updates or if the initiation
of the update is delayed.

Both cases can be distinguished by comparing the query-time of the
update$requested event with the semantic-time of the corresponding
terminated event. If the semantic-time of the terminated event is equal
or greater than the query-time, then the corresponding update$request

would have been successful if its initiation was not deferred. However,
if the semantic-time of the terminated is lower than the query-time then
the terminated event occurs in the time interval that is masked and
thus the update$request event is a false positive. The respective rule is
given in Listing 11.31. Note that that in contrast to update$succeeded

events, update$failed events do not entail created and terminated

events and therefore terminated events can be queried without fur-
ther limitations.

The same conditions naturally also apply for terminate$requested

events. Thus, by substituting terminate for update one obtains the rule
deriving terminate$failed events. Moreover, the creation of values of
stateful objects cannot fail and thus there is simply no rule deriving
create$failed events.

239

Listing 11.29: Deductive Rule Deriving create$succeeded Event

DETECT

«name»$create$succeeded{

semantic-time{r.semantic-time}

payload{r.payload}

}

ON

event r: «name»$create$requested{}

END �
Listing 11.30: Deductive Rule Deriving terminate$succeeded Event

DETECT

«name»$terminate$succeeded{

semantic-time{r.semantic-time}

payload{r.payload}

}

ON

and{

event r: «name»$terminate$requested{},

event cd: «name»$created{},

not event td: «name»$terminated{},

not event tr: «name»$terminate$requested{}

not {

event ur: «name»$update$requested{}

} where and{

end(r) > end(cd)+min-dist,

ur.semantic-time < r.semantic-time

}

} where {

end(cd) <= end(r) - min-dist,

end(td) <= end(r) - min-dist,

end(r) - min-dist <= end(tr), end(tr) <= end(r),

end(r) - min-dist <= end(ur), end(ur) <= end(r),

cd.payload.id = td.payload.id,

cd.payload.id = r.payload.query,

tr.id != r.id,

tr.payload.query = r.payload.query,

tr.semantic-time < r.semantic-time,

ur.payload.query = r.payload.query,

}

END �

240

Listing 11.31: Deductive Rule Deriving update$failed Events

DETECT

«name»$update$failed{

semantic-time{r.semantic-time}

payload{r.payload}

}

ON

and{

event r: «name»$update$requested{}

not event us: «name»$update$succeeded{}

event td: «name»$terminated{}

} where {

ur.payload.id = us.payload.id,

ur.payload.query = td.payload.id,

ur.semantic-time = us.semantic-time,

td.semantic-time <= ur.semantic-time,

ur.observation-time <= td.semantic-time

}

END �

241

11.2.7 Deriving Updated Events

Once an update$succeeded event is derived, the next step is to derive
a corresponding updated event which contains the old and new val-
ues in its payload. As before there are two cases, namely, whether
the time difference between the end of the reception time of the
update$succeeded event and the referenced created event exceeds or
falls below min-dist. The two situations are illustrated in Figure 11.7,
whereby the gray area determines the time interval in which created

and terminated events are masked.

semantic-time

reception-time.end

cd1 ur5(1) us(5)
td1, cd5

(a) min-dist Exceeded: end(us(5)) - end(cd5) > min-dist

semantic-time

reception-time.end

cd1 ur3(1) ur8(1) us(1)
td1, cd3 td3, cd8

(b) min-dist not Exceeded: end(us(1)) - end(cd1) <= min-dist

Figure 11.7: Determining the Payload of the Updated Value

In Figure 11.7a, the time difference exceeds the duration min-dist,
that is, end(us(5)) - end(cd5) > min-dist. Accordingly, the referenced
created event can be queried, which is required to obtain the values
that need to be provided in the old-payload attribute of the updated

event.
In Figure 11.7b, the time difference falls below min-dist, that is,

end(us(5)) - end(cd5) <= min-dist, and thus the created event cd5 is
masked. However, similar as for the derivation of update$succeeded

events, the desired information can be equivalently obtained from
the latest update$requested event that refers to the cd1 and occurred
before us(1) with respect to the semantic time.

The respective rules deriving updated events are illustrated in List-
ing 11.32. Note that the key of the update action instance is reused
to determine the key of the new value which is specified in the
new-payload attribute. It is therefore no coincidence that in the pre-
vious figures the index of update$requested and created events coin-
cides if they occur at the same instant with respect to the semantic
time.

242

Listing 11.32: Deductive Rule Deriving updated Events

DETECT

«name»$updated{

semantic-time{r.semantic-time},

old-payload{cd.payload},

new-payload{

id{r.payload.id},

area{r.payload.set.area}, mode{r.payload.set.mode}

}

}

ON

and{

event r: «name»$update$succeeded{}

event cd: «name»$created{}

not event us: «name»$update$succeeded{}

} where {

cd.payload.id = r.payload.query,

cd.payload.id = us.payload.query,

end(cd) + min-dist <= end(r),

end(r) - min-dist <= end(us), end(us) <= end(r),

us.semantic-time < r.semantic-time

}

END

DETECT

«name»$updated{

semantic-time{r.semantic-time},

old-payload{

id{us.payload.id},

area{us.payload.set.area}, mode{us.payload.set.mode}

}

new-payload{

id{r.payload.id},

area{r.payload.set.area}, mode{r.payload.set.mode}

}

}

ON

and{

event r: «name»$update$succeeded{}

event us: «name»$update$succeeded{}

not event other-us: «name»$update$succeeded{}

} where {

r.payload.query = us.payload.query,

r.payload.query = other-us.payload.query,

end(r) - min-dist <= end(us), end(us) <= end(r),

end(r) - min-dist <= end(other-us), end(other-us) <= end(r),

us.semantic-time < r.semantic-time,

us.semantic-time < other-us.semantic-time,

other-us.semantic-time < r.semantic-time

}

END �

243

Listing 11.33: Deductive Rule Deriving terminated Events

DETECT

«name»$terminated{ semantic-time{r.semantic-time}, pl{cd.pl} }

ON

and{

event r: «name»$terminate$succeeded{}

event cd: «name»$created{}

not event ts: «name»$terminate$succeeded{}

} where {

end(cd) + min-dist <= end(r),

end(r) - min-dist <= end(ts), end(ts) <= end(r),

r.pl.query = cd.pl.id,

r.pl.query = ts.pl.query,

r.semantic-time = ts.semantic-time,

ts.pl.id > r.pl.id

}

END

DETECT

«name»$terminated{

semantic-time{r.semantic-time},

pl{ area{us.pl.set.area}, mode{us.pl.set.mode}, id{us.pl.id} }

}

ON

and{

event r: «name»$terminate$succeeded{}

not event ts: «name»$terminate$succeeded{}

event us: «name»$update$succeeded{}

not event other-us: «name»$update$succeeded{}

} where {

end(r) - min-dist <= end(ts), end(ts) <= end(r),

end(r) - min-dist <= end(us), end(us) <= end(r),

end(r) - min-dist <= end(other-us), end(other-us) <= end(r),

r.pl.query = us.pl.query,

r.pl.query = ts.pl.query,

r.pl.query = other-us.pl.query,

r.semantic-time = ts.semantic-time,

ts.pl.id > r.pl.id,

us.semantic-time < r.semantic-time,

us.semantic-time < other-us.semantic-time,

other-us.semantic-time < r.semantic-time

}

END

DETECT

«name»$terminated{ semantic-time{ud.semantic-time}, pl{ud.old-pl} }

ON

event ud: «name»$updated{}

END �

244

11.2.8 Deriving Terminated Events

The basic approach for the derivation of terminated events is very
similar to the derivation of updated events and, except for slightly
varying payload, only differs in two aspects.

First, recall from Section 11.2.5 that when two terminate actions
are issued concurrently, both of them are successful. Nevertheless,
only one terminated event should be derived. Therefore, the rule in
Listing 11.33 picks (more or less randomly) the terminate$succeeded

event with the larges id to derive the respective terminated event.
Second, in contrast to updated events, terminated events are not only

entailed by terminate$succeeded events but also by update$succeeded

events. Accordingly, a third rule is required for the derivation of
terminated events.

11.2.9 Deriving Created and Initiated Events

As create actions cannot fail, a created event is simply derived when-
ever a create$requested event occurs. Moreover, an updated event also
entails the creation of a new value of the stateful object and thus a
created event is derived whenever an updated event occurs.

Each action triggered by a reactive rule needs to entail an initiated

event. To this end, terminate$initiated and update$initiated events
are derived from the respective succeeded and failed events whereas
created$initiated events are simply derived on the occurrence of the
respective create$requested events as the creation of values is always
successful.

For the sake of completeness, the rather basic rules are illustrated
in Listing 11.34 and Listing 11.35 on the next page.

11.2.10 Concluding Remarks

The translation of stateful objects relies on the presence of the dura-
tion min-dist which is artificially impacting the time of events that
are representing stateful objects. Although this does not affect the
semantics of queries to stateful objects as the translation is carefully
designed to account for the shifted times in a transparent manner, it
affects the evaluation of Temporal Stream Algebra (TSA) expressions
with respect to the latency that is caused at runtime.5 As a conse-
quence, programmers need to balance two different effects that are
impacted by their choice of min-dist.

With the proposed translation, the earliest possible time for the
sound evaluation of a (translated) query to a stateful object corre-
sponds to end(cd) + min-dist, whereby cd refers to the created event

5 Details on runtime effects related to the evaluation of TSA expressions by means of
Event-Mill are out of the scope of this thesis. For details thereon refer to [BB12a].

245

Listing 11.34: Deductive Rules Deriving created Events

DETECT

«name»$created{

semantic-time{r.semantic-time},

payload{r.payload}

}

ON

event r: «name»$create$requested{}

END

DETECT

«name»$created{

semantic-time{ud.semantic-time}

payload{ud.new-payload}

}

ON

event ud: «name»$updated{}

END �
Listing 11.35: Deductive Rules Deriving initiated Events

DETECT

«name»$create$initiated{

semantic-time{r.semantic-time}

payload{r.payload}

}

ON

event r: «name»$create$requested{}

END

DETECT

«name»$terminate$initiated{

semantic-time{d.semantic-time}

payload{d.payload}

}

ON

or{

event d: «name»$terminate$succeeded{}

event d: «name»$terminate$failed{}

}

END

DETECT

«name»$update$initiated{

semantic-time{d.semantic-time}

payload{d.payload}

}

ON

or{

event d: «name»$update$succeeded{}

event d: «name»$update$failed{}

}

END �

246

representing a matching value. In consequence, the evaluation of que-
ries for stateful objects is deferred by min-dist.6 Accordingly, to obtain
a small latency for the evaluation of queries, min-dist should be cho-
sen relatively small.

In contrast, the Event-Mill engine, which is used to evaluate TSA

expressions, continuously triggers the evaluation of expressions con-
tributing to the derivation of created and terminated events in inter-
vals of size min-dist. Hence, the smaller min-dist is chosen the more
often the Event-Mill engine needs to trigger the evaluation of expres-
sions. Accordingly, to keep the base load of the engine low, min-dist
should be chosen relatively large.

All in all, the duration min-dist needs to be chosen as small as
possible to keep the latency for the evaluation of queries to stateful
objects low but still large enough so that the base load of the eval-
uation engine remains reasonable. Consequently, there is no generic
value for min-dist that applies similarly for any setting. Hence, the
duration min-dist needs to be adapted empirically for each individ-
ual rule set based on a characteristic sample of the expected event
stream and the performance of the machine running Event-Mill. It
defaults to one second, though, which is still tolerable for Emergency
Management (EM) purposes and yet still reasonable even for current
desktop computers.

6 By borrowing the query of the rule deriving update$succeeded events, it seems fea-
sible to obtain a translation of queries for stateful objects that defers only queries
issued between end(cd) and end(cd)+min-dist.

247

12
I M P L E M E N TAT I O N P R O T O T Y P E

The evaluation or rather execution of Dura programs is based on the
Event-Mill engine [BHB12], which is capable of evaluating Temporal
Stream Algebra (TSA) expressions that are obtained by means of the
translation described in Chapter 10 and Chapter 11. The Event-Mill
engine is designed and implemented by Simon Brodt, a colleague of
this dissertation’s author. For the theoretical details on the evaluation
of TSA refer to [BB12a].

Following is an illustration of the implementation of the Dura com-
piler and of the compilation process which focuses on the basic set up
of the Event-Mill engine and the evaluation of Dura programs. More-
over, we briefly introduce a convenient and full-fledged Dura editor
that seamlessly integrates with the Eclipse IDE [Eclb].

12.1 a pragmatic module mechanism

To be suitable for large rule sets that may easily occur in practice, the
Dura compiler is based on a pragmatic module mechanism for Dura
that facilitates the separation of rule sets into modules of manageable
size.

Thereby, the basic ideas for modules in Dura are borrowed from
object-oriented languages, such as, Java [Oraa]. In Java, namespaces
are used to avoid name conflicts between different classes. Moreover,
member variables and functions associated with a certain class are
are specified in a common class definition. Likewise, in Dura, the
schema of a stream and rules that reference the stream in their head
are specified in a common stream definition and module names are
used to avoid name conflicts between streams.

The following description of the module mechanism focuses on
aspects that are relevant for the compilation of Dura programs, in
particular on stream definitions. Further aspects, such as, information
hiding, are elaborated in Hausmann, Brodt, and Bry [HBB12].

12.1.1 Stream Definitions

Events, stateful objects, and action are specified by means of stream
definitions that contain the respective stream schema in combination
with rules that are related to the corresponding stream.

EVENT «event schema» WITH «deductive rules» END

STATE «stateful object schema» END

ACTION «action schema» WITH «complex action rules» END

249

Thereby the WITH part is optional and may be omitted, eg, to specify
the schema of events that are received by the Event Processing System
(EPS) from external sensors.

Within each module, the type of each stream definition must be
unique, that is, there must not be two definitions for the same type.
Accordingly, all rules that derive a particular event type or specify a
particular complex action are specified in a single stream definition.
This seem convenient as all essential properties of a stream are deter-
mined in a single part of the program and cannot be scattered among
a (potentially huge) program.

12.1.2 Stream Modifier

Different modifiers are available that are specified prior to the stream
definition they apply for. They determine which events are read from
or sent to the Event Service Bus (ESB) connected to the Event-Mill
engine and whether a stream is static.

Thereby, the modifiers are mainly intended for event streams. Mod-
ifies specified for stateful objects and actions are transferred to the
implicit events that are used for their internal representation.

buffer type There are three different buffer types that affect how
the Event-Mill engine processes and stores event internally, namely,
input, output, and log.

The modifiers input and output specify that events are read from
and sent to the ESB connected to the Event-Mill engine, respectively.
Moreover, log specifies that all events of a certain type are store in
a particular database relation where they are not subject to garbage
collection.

static If resent, the static modifier determines that no events can
be added to a stream after a Dura program has been initialized. As
a consequence, the attributes of static streams cannot be identified as
progressing attributes.

Note that it is thus reasonable to use static only in conjunction
with input. Static streams cannot be populated by means of rules at
runtime and thus their content needs to be provided as input in the
initiation phase of the engine.

Note that the module system can be naturally extended by means
realizing information hiding, for instance, by public and privat mod-
ifiers. These and further extensions are elaborated in [HBB12] but are
not implemented by the current version of the compiler.

250

Filename: metro.operation-mode.modes.dura

MODULE metro.operation-mode.modes

CONST OPM_NORMAL = 0

CONST OPM_EXCEPTIONAL = 1

CONST OPM_EMERGENCY = 2

CONST OPM_EMERGENCY_MAJOR = 3 �
Filename: metro.operation-mode.dura

MODULE metro.operation-mode

input

STATE

operation-mode{ area{long}, mode{int} }

on conflict select { max mode, min id }

END

output

EVENT

operation-mode-escalation{ area{long}, mode{int} }

WITH

DETECT

operation-mode-escalation{ area{var A}, mode{var Mnew} }

ON

event e: operation-mode$updated{

old-payload{ area{var A}, mode{var Mold} },

new-payload{ area{var A}, mode{var Mnew} }

} where { var Mold < var Mnew }

END

END �
Filename: metro.alarm-detection.dura

MODULE metro.alarm-detection

IMPORT metro.operation-mode.modes.*
IMPORT metro.operation-mode.operation-mode-escalation

output

EVENT

uncertain-alarm{ area{long} }

WITH

DETECT

uncertain-alarm{ area{var A} }

ON

event e: operation-mode-escalation{ new-payload{ area{var A} } }

END

...

END �
Figure 12.1: An Exemplary Module Structure

251

12.1.3 Modules

A module is determined by a unique name, a set of stream and con-
stant definitions, and a set of reactive rules.

The module name is indicated in the beginning of each file by
means of the MODLUE keyword followed by the respective name of the
module. Thereby, periods can be used to realize a hierarchical nest-
ing of modules. A module can be scattered across different files and
there are no regulations on how to store the files on the file system.
However, it seems reasonable to use only one file per module and to
reflect the nesting of modules either in the respective filenames or in
the file system structure.

Within a module, definitions can be referenced by the respective
type they specify. Definitions from other modules need to be refer-
enced by their full qualified name, composed from the module name
and their basic name, unless the definition is imported by means of
the IMPORT statement. For instance, the constant of OPM_NORMAL from
Figure 12.1 can always be referenced by its full qualified name, ie,
metro.operation-mode.modes.OPM_NORMAL. If the definition is imported
properly by either of the following statements it can be referenced by
its basic name OPM_NORMAL.

IMPORT metro.operation-mode.modes.OPM_NORMAL

IMPORT metro.operation-mode.modes.*

Thereby, * imports all definitions of the respective module.

12.2 the dura compiler

The Dura compiler and its sources are integrated into the Event-Mill
release available from

http://www.pms.ifi.lmu.de/cep/releases/

The compiler takes as input a set of source files and yields a set
of TSA expressions that can be evaluated by means of the Event-Mill
engine. To this end, the compiler basically applies the transformations
and normalizations that are discussed in Chapter 10 and Chapter 11.

12.2.1 Source Code Overview

The compiler is written in Java [Oraa] and all relevant classes are
located in the package de.lmu.ifi.pms.cep.durang.compiler and the
following subpackages:

• The package analysis contains classes for the static analysis of
complex actions.

252

http://www.pms.ifi.lmu.de/cep/releases/

• The package transformations contains classes for the translation
of Dura to DuraC.

• The package tsa contains classes for the translation of DuraC to
TSA.

• The package exceptions contains Dura specific exceptions that
are related to the semantic analysis of programs, eg, type checks
and the static analysis of actions.

• The package utils contains auxiliary classes that provide means
to traverse and modify the data structures that model Dura in
addition to means for debugging and unit testing purposes.

The actual compilation is realized by the classes DuraCompiler and
DuraCComplier which are based on the functionality of the given pack-
ages.

12.2.2 Compilation Phases

The compilation process is split into several phases. Initially, the Dura
code is parsed by means of the Xtext parser [Xte]. Subsequently, the
static analysis is applied to the complex actions. Unless the analysis
fails, the Dura program is translated to an equivalent DuraC program
which is eventually translated to a set of TSA expressions.

parsing The parsing of Dura source code is realized by means
of the Xtext parser [Xte]. The parser receives multiple Dura source
files as input and yields an Abstract Syntax Tree (AST) in form of an
instantiated EMF model [EMF] as output.

Moreover, the Xtext parser identifies and reports syntactical errors,
such as, references to undefined variables or streams and references
to non-existing attributes of streams, and validates the weak range
restriction of rules.

A simplified version of the applied Xtext grammar is included in
Appendix A.

static analysis The class ComplexActionAnalysis accomplishes
the static analysis of complex actions as it is described in Section 8.3.

Thereby the verification of the compliance of complex actions re-
lies on functionality that is implemented by the analysis of TSA ex-
pressions. More precisely, the entailment of formulas that indicates
the compliance of complex actions is verified by means of the on the
GenericFormulaAnalyser class which basically implements the method
described in [BB12a].

253

translating dura to durac The class DuraCompiler realizes
the transformation of a Dura program to a DuraC program as it is
described in Chapter 11.

To this end, the AST of the parsed Dura program is modified by
means of the following classes that are part of the transformations

package:

• The class ActionCompositonTransformation contains methods for
the translation of action invocations of complex action rules as
it is described in Section 11.1.4.

• The class ActionStatusQueryTransformation contains methods for
the translation of status queries of complex action rules and
atomic actions as it is described in Section 11.1.5.

• The class ReactiveRuleTransformation contains methods for the
translation of reactive rules as it is described in Section 11.1.8.

• The class StatefulObjectQueryTransformation contains methods
for the translation of queries of stateful objects to event queries
as it is described in Section 11.2.3.

translating durac to tsa The AST resulting from the previ-
ous phase is subsequently translated to a set of TSA expressions by
means of the DuraCCompiler class.

To this end, the DuraC rules are normalized as it is described in
Section 10.3 and subsequently the normalized AST is translated to
TSA expressions by means of the following auxiliary classes that are
contained in the tsa package:

• The class StreamCompiler contains methods for the translation of
Dura streams to TSA streams as it is described in Section 10.4.1.

• The two classes ExpressionCompiler and FormulaComplier contain
methods for the translation of Dura formulas, eg, from query
supplements, to TSA formulas as it is described in Section 10.4.3.

• The class QueryComiler contains methods for the translation of
atomic and conjunctive event queries as it is described in Sec-
tion 10.4.2 and Section 10.4.6.

• The class SupplementCompiler contains methods for the transla-
tion of query supplements as it is described in Section 10.4.4.

• The class RuleCompiler contains methods for the translation of
deductive rules as it is described in Section 10.4.7.

254

12.2.3 Manual Compilation

The Dura compiler is integrated into the Event-Mill engine where it is
automatically applied when Dura programs are initiated for evalua-
tion. Nevertheless, for debugging purposes it is convenient to merely
compile a Dura program and to skip its evaluation.

To this end, the method DuraTestSuite.compile(String...) is avail-
able which provides information on every compilation phase. The
method takes as input a set of files containing a Dura program and
outputs the DuraC translation of the Dura program in addition to the
normalization of the DuraC program. Moreover, the resulting TSA ex-
pressions are output and the static analysis of complex actions as well
as the temporal analysis of TSA expressions is carried out.

12.3 evaluation of dura programs

The evaluation of Dura programs by means of the Event-Mill engine
is realized either by means of a command line interface to Event-Mill
or by means of a Java API.

Both means are equally expressive, in fact, the command line in-
terface is realized by means of the API, but intended for different
purposes. The command line interface is suited for humans to inter-
actively control and explore the evaluation of programs whereas the
API is suited to connect generic ESBs to the Event-Mill engine.

For the sake of simplicity, we only present the command line inter-
face in the following. For details on the Java API refer to [BHB12].

12.3.1 Event-Mill Setup

The Event-Mill engine requires Java 6 or higher and a relational data-
base, namely, MonetDB [Mon], PostgreSQL [Pos], H2 [H2], or Hyper-
SQL [HSQ], to be installed.

The current Event-Mill release is available from the website

http://www.pms.ifi.lmu.de/cep/releases/

which offers zip archives containing an executable jar file, all required
libraries, and various Dura example programs. Each archive further-
more contains the source code of Event-Mill and the Dura compiler
which are provided under the terms of the Eclipse Public License
[EPL].

The engine is set up by downloading and extracting the most recent
event-mill-and-examples-X.X.X.zip archive from the website. Subse-
quently, the database connection, in particular the user credentials
and the database name, need to be configured by adapting the config-
uration file event-mill.configuration.xml as well as the configuration
file event-mill.io.configuration.xml. Both files are included in the

255

http://www.pms.ifi.lmu.de/cep/releases/

archive and contain detailed templates for the currently supported
databases.

Establishing the database connection is basically sufficient to com-
pletely set up the engine. Yet, various further parameters can be ad-
justed in the configuration files which substantially affect the com-
pilation and evaluation of programs. However, these aspects are not
further elaborated here, for details refer to [BHB12].

12.3.2 Event-Mill Command Line Interface

The command line interface serves two different purposes. First and
foremost, it facilitates the compilation and evaluation of Dura pro-
grams. In addition, the interface allows to interactively send events
to the engine and to read derived events from the engine.

Both aspect are illustrated in the following by means of the Dura
program from Figure 12.2. Note that its source code and the source
code of more sophisticated sample programs are included in the
Event-Mill release in the examples directory.

compilation and instantiation To open the command line
interface, simply run the Event-Mill jar file from the archive. Note
that we assume in the following that the java command is executed
from the directory the archive has been extracted to.

$ java -jar event-mill-X.X.X.jar

To begin with the Dura program needs to be compiled and properly
instantiated. To this end, the variable source is assigned the file con-
taining the Dura program and the variable examples.dir is assigned
the examples directory from the Event-Mill release which contains re-
quired auxiliary files.

> set %{examples.dir} = ’examples’

> set %{source} = ’examples/simple-access-control.dura’

Subsequently, the compilation is accomplished by the following com-
mand.

> inject %{examples.dir}/init-example.es

If no compilation errors occur and the instantiation of the program
was successful, the engine replies with a listing of instantiated pro-
grams. Thereby, further previously successfully compiled and instan-
tiated programs may be listed as well.

The following initialized programs are available:

example.simple-access-control:test

...

Eventually, the program instance is loaded and finally set up for
execution by means of the run command.

> run example.simple-access-control:test

256

Filename: simple-access-control.dura

MODULE example.simple-access-control

input

EVENT

request-access{ person{string} }

END

static input

STATE

staff{ person{string} }

END

output log

EVENT

deny-access{ person{string} }

WITH

DETECT

deny-access{ person{var P} }

ON

and{

event e: request-access{ person{var P} },

not state s: staff { person{var P} }

}

END

END

output log

EVENT

grant-access{ person{string} }

WITH

DETECT

grant-access{ person{ var P} }

ON

and{

event e: request-access{ person{ var P} },

not event f: deny-access{ person{ var P} }

} where { end(e) - 5sec <= end(f), end(f) <= end(e) }

END

END �
Figure 12.2: A Simple Dura Program

257

initiation of stateful objects At this point, initial data for
stateful objects, in particular for static stateful objects, can be pro-
vided. To this end, the respective values, specifying the full qualified
name of the stateful object, are parsed and subsequently sent to the
engine.

> parse example.simple-access-control.staff{ person{ "Alice" } }

> parse example.simple-access-control.staff{ person{ "Bob" } }

> write

Note that thereby the whitespaces, in particular those before and
after braces, are mandatory and cannot be omitted. Moreover, attrib-
utes need to be specified according to their lexicographical order.

Finally, the compiled program is initiated and ready for execution.

> init

Note that from now on, input for static streams is ignored by the
engine.

evaluation of programs The program has been successfully
loaded and the values of the static stateful object staff have been
initialized. The next step is to start continuous evaluation for the re-
spective queries.

> start

At this point, events that are marked as input can be sent to the
engine. Similar to before, events are specified by means of their full
qualified name and sent to the engine by means of the parse and write

commands.

> parse example.simple-access-control.request-access{ person{ "Bob" } }

> parse example.simple-access-control.request-access{ person{ "Eve" } }

> write

Derived events and actions with an output modifier can be printed
on the command line interface using a combination of read and print.

> read

> print

The prior command loads all newly derived events into an internal
buffer whereas the latter outputs and removes all events of the buffer.
In the given example, this causes the following output.

Read example.simple-access-control.grant-access{

id{ 58 }, person{ "Bob" },

reception-time{ begin{ 1365127620001 }, end{ 1365127620001 } }

} from message bus.

Read example.simple-access-control.deny-access{

id{ 59 }, person{ "Eve" },

reception-time{ begin{ 1365127620001 }, end{ 1365127620001 } }

} from message bus.

258

Finally, the execution of the engine is stopped and the command
line interface is terminated by means of the commands stop and quit.

> stop

> quit

Further commands are available which are in particular required
to compile Dura programs that are scattered over multiple files. For
thorough details on the command line interface and its commands
refer to [BHB12].

12.3.3 Executing Sample Sessions

In addition to the interactive conduction of sessions as it is described
in the previous section, entire predefined sessions can be automati-
cally executed. In fact, each example program in the example folder
comes with such an example session.

To this end, each Dura program comes with two additional files,
eg, simple-access-control.init.es and simple-access-control.es. The
prior file contains commands that are used to initialize the stateful ob-
jects whereas the latter provides the commands that parse events and
send them to the engine and reads events from the engine. Note that
the commands that are provided by both files almost exactly coin-
cide with the ones that are specified in an interactive session. Merely,
the pause «duration» command, causing a delay of «duration» millisec-
onds, is additionally used to realize a certain timing of the injected
events.

For instance, the sample session for the simple access control exam-
ple, is executed by means of the following three commands.

> set %{examples.dir} = ’examples’

> set %{source} = ’%{examples.dir}/simple-access-control.dura’

> inject %{examples.dir}/run-example.es

Note that thereby only the last command differs from the compilation
of the program.

The sample session causes the exact same command sequence as in
the previous example. Thus similar events, only differing in their key
and reception time are output.

12.4 the dura editor

The Dura Editor is realized as a plugin for the popular Eclipse IDE
[Eclb] which is generated from the formal grammar by means of the
Xtext framework [Xte]. The plugin is available from the update site

http://www.pms.ifi.lmu.de/cep/plugins/duraeditor/

and can be conveniently installed as Eclipse plugin by means of the
“Install New Software” wizard as it is described in [Ecla].

259

http://www.pms.ifi.lmu.de/cep/plugins/duraeditor/

Figure 12.3: Validation and Quick Fixes

Figure 12.4: Content Assist

260

The editor is well integrated with the Eclipse IDE and provides
syntax coloring and several advanced features such as the syntactical
validation of programs; quick fixes that suggest how to resolve er-
rors; content assist for stream names, stream attributes, and variables;
an outline of the program for quick navigation in modules; and the
capability to fold and hide certain program parts. Moreover, the inte-
gration in the Eclipse IDE provides various searching and navigation
capabilities in addition to sophisticated refactoring capabilities, such
as, the global renaming of stream names and attributes.

12.5 current limitations

The implementation prototype does not fully cover all aspects that
have been elaborated for Dura. However, it is complete in the sense
that all following issues can be avoided by adapting the rules by hand.

keywords as labels Keywords of Dura, such as, begin and end,
cannot be directly used as attribute names. Instead, keywords used
as attribute names need to be preceded with a hat sign (^).

For instance, to determine the end of the reception time

reception-time{ ^end{ end(e)+1min } }

must be used instead of

reception-time{ end{ end(e)+1min } }

disjunctive queries The current prototype misses support of
disjunctive event queries. Although inconvenient for programmers,
queries with disjunctions can be expanded by hand using the dis-
tributive law as it is known from mathematical logic.

stateful objects Currently only static stateful objects are sup-
ported by the implementation prototype. Although (dynamic) state-
ful objects can be expressed by means of event queries as it is elabo-
rated in Section 11.2, it seems desirable to directly integrate the trans-
lation into the compiler.

weakly range restriction The parser implements a notion
of weakly range restriction that slightly deviates from the one elabo-
rated in Section 5.2.1. In particular, the first supplement of a conjunc-
tive query with negation must be a where part, although sometimes it
is desirable to specify a let part followed by a where part. The expres-
sions bound to variables in a let part can be directly specified in the
where part, though.

elimination of anonymous complex actions The current
implementation prototype merely supports the compilation of reac-

261

tive rules with a single action in their head. Accordingly, anonymous
complex actions specified in the head of a reactive rule need to be
manually eliminated by introducing an appropriate complex action
rule and by substituting the head with an invocation of the added
complex action.

262

Part V

C O N C L U S I O N A N D O U T L O O K

13
F U T U R E W O R K A N D P E R S P E C T I V E S

Emergency Management (EM) and especially the EM related use cases
of the EMILI project have substantially influenced the design of Dura.
However, not all reasonable aspects could have been thoroughly con-
sidered for the initial design of Dura. Thus, in particular aspects that
are not directly related to the considered EM use cases were given less
consideration.

Accordingly, various extensions, ranging from basic syntactic sugar
to more generic aspects that are relevant for Event Query Languages
(EQLs) in general, can be elaborated and studied more intense in the
future.

13.1 extensions for event queries

Event queries can be extended in several manners including syntactic
sugar and a generalization of weak range restriction.

optional queries for aggregation The following query is
intended to count the number of uncertain alarms in case a certain
alarm occurs in an area.

and{

event e: certain-alarm{ area{var A} }

event f: uncertain-alarm{ area{var A} }

} where { f during from-end-backward(e, 1min) }

group by { e } aggregate { var Count = count(f) }

Thereby, the conjunctive query matches only if at least one uncertain
alarm occurs in the respective time interval. Accordingly, the vari-
able Count is always greater than but never equal to zero. As a conse-
quence, the case when no uncertain alarm occurs needs to be covered
with an additional query. In practice, this often leads to multiple more
or less redundant rules.1

It seems desirable to introduce an optional operator that is speci-
fied before the query for uncertain-alarms and causes the conjunctive
query to match in presence and absence of uncertain alarms. In this
way, the sub-query for uncertain alarms can be adapted to

optional event f: uncertain-alarm{ area{var A} }

and thus the entire query matches in presence and absence of uncer-
tain alarms and thus facilitates a Count equal to zero. Note that the

1 Note that this behavior is common for query languages, including, SQL and SPARQL.

265

conjunctive query thus resembles an outer join rather than a natural
join. A similar construct is proposed for Xcerpt [FBS07; BS02] where
it is mainly intended to cope with the heterogeneous nature of semi-
structured data.

generalization of weak range restriction The notion of
weak range restriction has been elaborated to provide a more lib-
eral variation of range restriction that is convenient for programmers.
Thereby, the conditions for a query or rule to be weakly range re-
striction have been determined in such a way that a weakly range
restricted query or rule can be converted into a range restricted one.
However, the elaborated conditions are sufficient but not necessary.
They can thus be further refined so that more queries and rules would
be accepted.

Listing 13.1: A Query Which is Not Weakly Range Restricted

and{

event e:

or{

not { event f: ... } where { f during from-end(e, 1min) }

...

}

} �
For instance, the query in Listing 13.1 is not weakly range restricted

because of the (mandatory) temporal condition in the where part. This
still holds if the condition is moved to the supplement of the disjunc-
tion and conjunction, respectively. However, by expanding the dis-
junction one obtains a semantically equivalent query that is not only
weakly range restricted but also range restricted.

Listing 13.2: Another Query Which is Not Weakly Range Restricted

and{

event e: ...

not and{

event f: ...

not { event g: ... } where { g during from-end(e, 1min) }

}

} �
Similarly, the query in Listing 13.2 is not weakly range restricted.

However, it can be made weakly range restricted without affecting its
semantics in the following way. The query event e is duplicated and
added as event e’ to the inner conjunctive query. Moreover, inside the

266

inner conjunctive query references to e are replaced by references to
e’ and the condition id(e) = id(e’) is added.

Both illustrated transformations can be naturally integrated into
the normalization of DuraC queries described in Section 10.3 and the
notion of weak range restriction can be adapted accordingly.

identifiers as syntactic sugar for names When stateful
objects are modified by triggering a terminate or update action, the
key of the currently valid value needs to be passed to the respective
action as parameter. Thus, to formulate the update

action a: «name»$update{ query{id(s)}, set{ «new values» } }

the identifier s needs to be bound by means of a query to the state-
ful object «name». However, as the identifier s determines the name
of the stateful object, the invocation of terminate and update actions
can be specified in a syntactically more concise manner that uses the
identifier s to refer to the action «name».

action a: s$terminate{}

action a: s$update{ «new values» }

This applies similarly to the supplements of complex actions that
contain queries for events entailed by actions. Thereby, the queried
events often need to be related to an action instance that has been
caused by the particular complex action. It therefore seems reasonable
to introduce

succeeds on { a$succeeded{} }

as syntactic shortcut for

succeeds on { «name»$succeeded{ payload{ id{id(a)} } }

whereby «name» corresponds to the name of the action that is refer-
enced by the action identifier a.

13.2 extensions for stateful objects

Stateful objects as they are introduced for Dura have been substan-
tially inspired by the representation of operation modes. Accordingly,
some aspects of stateful objects that are not directly relevant for this
purpose have not been thoroughly considered in the first place.

views on stateful objects It seems natural to introduce views
on stateful objects that resemble deductive rules but entail stateful ob-
jects instead of events. Views on stateful objects are for instance con-
venient determine the operation mode of a station by accumulating
the highest operation mode of any of its subareas.

267

Listing 13.3: A View on a Stateful Object

DERIVE

aggregated-operation-mode{ area{var S}, mode{var Mmax} }

ON

and{

state s: station-area{ area{var S}, area{var A} }

state t: operation-mode{ area{var A}, mode{var M} }

} group by { var S } aggregate { var Mmax = max(var M) }

END �
Views on stateful objects can be realized as it is illustrated in List-

ing 13.4. Thereby, reactive rules are used to update values of the de-
rived stateful object whenever the value of one of the queried stateful
objects changes. However, this only indicates the principle feasibility
of views on stateful objects. Beyond that it seems desirable to elab-
orate a more direct translation that only triggers updates for values
that actually changed.

Listing 13.4: Possible Realization of the View from Listing 13.3

ON

and{

or{

event s$mod: operation-mode$created{}

event s$mod: operation-mode$terminated{}

}

state s: station-area{ area{var S}, area{var A} }

state t: operation-mode{ area{var A}, mode{var M} }

state u: aggregated-operation-mode{ area{var S} }

} where {

t valid-at s$mod.semantic-time,

u valid-at s$mod.semantic-time

} group by { end(s$mod), var S } aggregate { var Mmax = max(var M) }

DO

action a: aggregated-operation-mode$update{

query{id(u)}, set{ area{var S}, mode{ var Mmax } }

}

END �
generic temporal conditions for stateful objects The
translation of actions modifying stateful objects as it is described in
Section 11.2 is restricted to the translation of the two temporal rela-
tions valid-at and valid-during.

The limitation to this particular two relations enables the transla-
tion of queries for stateful objects by means of a negated query for
terminated events:

268

and{

...

event s$cre: «name»$created{ ... }

not event s$term: «name»$terminated{}

} where { ... }

In this way, a query for the stateful object «name» with the temporal
conditions s valid-at «tp» matches when «tp» is exceeded. By con-
trast, if the negation is omitted, the query matches after the respective
value is terminated, which is independent from the time «tp».2

However, generic temporal formulas may specify upper bounds
on the termination of the stateful object, eg, term(s) + 1min <= «tp». In
this case, the query for the terminated event must not be negated
as it is required to determine the value of term(s). Accordingly, to
support generic temporal dependencies, the translation of a query
for a stateful object s needs to take the temporal dependencies of s

into account. Based on whether or not they specify an upper or lower
bound on term(s) the query for the respective terminated event needs
to be negated. Moreover, in case disjunctive temporal conditions are
specified the translation of the query for the stateful object needs to
result in a disjunctive event query.

more versatile conflict resolution The currently avail-
able conflict resolution of Dura is intended to select a single value in
case several updates are concurrently invoked. Although this is con-
venient for the adaptation of operation modes, in other situations it
may be more suitable to accumulate the effect of concurrently issued
updates.

A natural extension is, for instance, provided by an additional
group by and aggregate construct that facilitates the aggregation of
several concurrently issued updates.

operation-mode{ area{long}, mode{int} }

on conflict group by { area } aggregate { mode = avg(mode) }

In this way, it is for instance feasible to determine the (rounded) av-
erage operation mode in case of conflicting updates. Although this
behavior is not desired for the considered EM use cases, it may be
required in other domains.

To support this way of conflict resolution, the translation of stateful
objects to reactive rules needs to be adapted. In particular, the deriva-
tion of updated events needs to be extended by means of a grouping
over update$request events with coinciding semantic times.

garbage collection for stateful objects As a matter or
principle, the maximum duration for the validity of values represent-
ing a stateful object is unbounded. As a consequence, the difference

2 Note that this may defer the evaluation of queries for a period of arbitrary length as
the validity of a value may never end, eg, when the stateful object is never updated.

269

between the reception time of related created and terminated events
is unbounded as well, which effectively prevents garbage collection
on these event types.

However, if created events are repeated in regular intervals, eg, of
duration max-dist, whereby only their reception time changes, the
time of relevant created events can be bound below. Accordingly,
as illustrated in Figure 13.1, it is sufficient to query created events
that occur in the gray area, which designates the time interval going
backward from update for a duration of max-dist. As all valid created

events are repeatedly copied they necessarily occur in this interval.

semantic-time

reception-time.end

cd1 cd1 cd1
update

invocation

Figure 13.1: Enabling Garbage Collection by Copying Events

In this way, the reception time of created and terminated events can
be bound below and thus garbage collection for these event types
becomes feasible. This comes at the price of copying events, which
causes additional overhead, though.

13.3 extensions for complex actions

Extensions of complex actions are mainly concerned with the struc-
ture of temporal conditions which is currently limited to conjunctive
formulas.

disjunctive domain knowledge and assertions Tempo-
ral formulas related to actions are restricted to conjunctive formulas.
Disjunctive formulas for the specification of domain knowledge and
assertions seem desirable as they facilitate, for instance, the specifica-
tion of a maximal duration of an action.

open-fire-dampers{ area{long} }

where or{ succ() <= init()+1min, fail() <= init()+1min }

To support disjunctive formulas the semantic analysis algorithm
Algorithm 1 from Section 8.3.1 needs to be adapted appropriately. To
be applicable to a complex action C = (W,D,H) with disjunctive for-
mulas W, D, or H, the algorithm needs to be adapted so that instead
of WA ∧D each disjunct of the disjunctive normal form of WA ∧D is
independently considered by the analysis algorithm.

Thereby, the analysis is successful if it is successful on every disjunct.
Note that it is not sufficient if the verification is successful for only
one disjunct, as the verified properties should hold in any situation
that emerges at runtime and not just in some situations.

270

disjunctive temporal dependencies Disjunctive formulas
are excluded from temporal dependencies of complex actions to main-
tain a deterministic execution of actions. Non-deterministic choices,
as they are common for the specification of business processes, are
thus not considered for Dura. There are, however, examples that main-
tain a deterministic execution of actions but require disjunctive con-
straints.

or{ succ(a) <= init(b), fail(a) <= init(b) }

The given temporal dependencies are, for instance, intended to initi-
ate b after a has been executed, regardless of whether a succeeded or
failed.

To support such kind of constraints, the translation of complex
actions needs to be adapted so that queries for a$succ and a$fail

are translated by means of a disjunctive query, instead of a conjunc-
tive query. Moreover, the temporal analysis for actions needs to be
adapted to be suitable for disjunctive WA as it has been described
previously.

syntactic sugar for simple conditions The IF part of con-
ditional actions and the specification of the status of actions expect
a generic event query. However, in some situations it may be suffi-
cient to specify simple conditions on variables or the times of actions
instead of event queries. Therefore, it seems desirable to introduce

IF var T >= 50 THEN ...

as syntactic sugar for

IF and{} where { var T >= 50 } THEN ...

and likewise to introduce

succeeds on { succ(a) <= init(b) + 1min }

as syntactic sugar for

succeeds on and{} where { succ(a) <= init(b) + 1min }

13.4 exploiting temporal analysis on events

For the evaluation of Temporal Stream Algebra (TSA), a temporal anal-
ysis is applied to the temporal conditions of TSA expressions [BB12a].
It verifies the consistency of temporal dependencies and furthermore
deduces some interesting properties on events. It determines, for in-
stance, the temporal relevance of events, that is, a duration that indi-
cates how long events of a certain type need to be stored by the Event
Processing System (EPS) until they can be removed by garbage collec-
tion. It furthermore deduces the relative temporal distance between

271

two events, that is, the largest time difference between two events
matching a certain query.

It seems desirable to elaborate a better integration of Dura and the
temporal analysis that is applied to TSA expressions. In this way, the
deduced information can be used for the compilation of Dura rules
and thus facilitates some valuable extensions to Dura.

further implicit times of events Some of the information
that is deduced by the temporal analysis can be added to the payload
of events. For instance, the earliest time for the derivation of an event
can be represented in a distinguished stimulus-time attribute. More-
over, the time of the actual derivation of the event can be represented
in a distinguished detection-time attribute.

Both times provide insights to the current performance of the sys-
tem, as their difference corresponds to the latency of events. Thus, by
adding this information to the payload of events, it becomes acces-
sible for the EPS itself as well as for external components that could
recognize the current latency of the EPS and adapt to it appropriately.

implicit success and failure of actions Information on
the relative distance between events can be exploited to implicitly
determine the failure of an action based on the absence of its success.
In this way, the supplement of complex actions can be restricted to
contain either a succeeds on or a fails on part, effectively preventing
the unintended specification of two queries that match in the same
situation and thus entail a succeeded and failed event for the same
action instance.

Listing 13.5: Query Determining the Success of an Action

DETECT

adapt-ventilation$succeeded{ pl{ v$init.pl } }

ON

and{

event e: smoke{ ... }

event v$init: adapt-ventilation$initiated{ ... }

} where {

end(v$init) < end(e), end(e) < end(v$init)+3min

} group by { v$init }

END �
For instance, the temporal analysis of TSA determines that the rule

in Listing 13.5 derives an succeeded event at the latest after three min-
utes from the occurrence of the initiated event. This information can
be used to generate a rule which derives a failed event if there is a
initiated but no corresponding succeeded event within three minutes.

Note however, that the relative temporal distance between events
is unbound unless appropriate temporal conditions are specified. Ac-

272

cordingly, as a matter of principle, the implicit definition for succeeded
and failed events can only be applied if the relevant temporal dis-
tances remain finite.

optional else part for conditional actions The infor-
mation obtained from the temporal analysis facilitates an optional
ELSE part for conditional actions. Similar as before, knowledge on the
temporal distance between events can be used to construct an event
query that matches if the query in the IF part does not match which
can be used as a trigger for the action in the ELSE part.

IF «query»

THEN action a: ...

ELSE action b: ...

However, an ELSE part can only be realized if appropriate temporal
conditions on the events queried by «query» have been specified.

13.5 introducing a lightweight type system

It seems natural to introduce a lightweight type system to Dura that
resembles, for instance, the basic type declarations known from the
functional language SML [MTH90]. Introducing user defined types to
Dura also facilitates the support of enumerations that are capable of
representing finite collections of predefined syntactical items.

TYPE area = long

TYPE location = { station{area}, area{area}, subarea{area} }

ENUM opm-mode = NORMAL | EXCEPTIONAL | ...

Even with such a rather rudimentary type system, generic long or
integer values that are misused for the representation of areas and
the operation mode can be avoided and instead proper types can be
introduced whose correct application is statically verified.

Adding a type system to Dura is rather a matter of extending al-
ready available static type checks than of original research, as the
underlying theory is well established [Pie02] and does not affect any
runtime aspects of Dura. Nevertheless, Dura would certainly benefit
from a lightweight type system.

13.6 generic and reasonable event selection

The conflict resolution of stateful objects specified in the on conflict

select part can be generalized to be applicable to generic event que-
ries. It is for example reasonable to define a select construct that
specifies the selection criterion by referring to the attributes of the
respective events.

273

and{

event e: ...,

event f: ...

} where { f during from-end(e, 1min) }

select { max end(f), min id(f) }

Note that such a select statement generalizes last and first state-
ments known from other languages whereas it avoids implicit as-
sumptions, eg, on events occurring in the same instant as it is dis-
cussed in Section 4.5. In addition, the selection criterion can be cus-
tomized to the specific requirements of programmers.

Internally, the select statement can be realized by translating it to
appropriate event queries. Therefore, the translation can be actually
derived from the translation of the on conflict select statement of
stateful objects.

13.7 declarative semantics for full dura

Dura is a declarative language and has been carefully designed to
facilitate a natural model theoretic semantics. To this end, the ba-
sic ideas that are used to elaborate a declarative semantics for the
language XChangeEQ can be borrowed from [Eck08] and applied to
Dura.

First efforts towards a declarative semantics for Dura were made by
Mayer [May13] in his Diploma thesis supervised by François Bry and
the author of this dissertation. In, [May13] a model theoretic fixpoint
based semantics is elaborated that is well suited to cover aspects re-
lated to the modification of stateful objects as it directly incorporates
the law of inertia (frame problem) into the semantics by determining
a minimal fixpoint. However, the presented work is focused on DuraC

without recursive rules and thus requires substantial extensions to ap-
ply for Dura.

13.8 complexity classes for event processing

Although the efficient evaluation of event queries is a fundamental
aspect of EPSs there have been little theoretical considerations on the
complexity of event queries.

Chandramouli, Goldstein, Barga, Riedewald, and Santos [Cha+11]
elaborate a measure for the prediction of the latency of an EPS. It
seems desirable to generalize their work to be applicable to evaluation
scheduling strategies other than the one proposed in [Cha+11].

It seems furthermore desirable to elaborate an abstraction of EQLs

similar to Datalog [CGT89], which can be seen as an abstraction of
database query languages, and to elaborate complexity classes for
event queries that extend existing complexity classes with a temporal
dimension.

274

14
S U M M A RY A N D C O N C L U S I O N

Inspired by three Emergency Management (EM) use cases we have
elaborated the original Event Query Language (EQL) Dura to close
the gap between the capabilities of current EQLs and the desire for
expressive event queries that are integrated with a notion of state and
the execution of versatile reactions by means of physical actuators.

To this end, Dura has been conceived as a uniform and declarative
language with a clear separation of dimensions, a minimal set of well
aligned language constructs, and a deep integration of events, stateful
objects, and actions. In doing so, special attention has been devoted
to aspects related to interactions with physical actuators which man-
ifests in complex actions with a versatile notion of success and fail-
ure and flexible temporal dependencies in addition to the integrated
access to events and non-volatile data. Moreover, these aspects are
complemented by expressive event queries with support for flexible
temporal conditions, grouping and negation capabilities, and support
for multiple time lines.

To account for inconsistent specifications of complex actions that
cause undesired behavior at runtime we have elaborated a static anal-
ysis that provably verifies crucial properties of complex actions prior
to their execution. The static analysis is based on a semantics of com-
plex actions which is carefully adapted to the inherently incomplete
knowledge on physical actions.

We have complemented our theoretical findings by an operational
semantics that facilitates the evaluation of Dura programs. To this
end, we have identified the rather minimal sub-language DuraC and
elaborate translations that express high-level concepts, such as, state-
ful objects and complex actions, by the means available in DuraC. In
this way, original aspects of Dura can be easily transferred to other
EQLs that are as expressive as DuraC.

Finally, this work is rounded off by a prototypical implementation
of Dura based on the Event-Mill runtime system and the elaboration
of a sophisticated use case that is based on realistic EM applications
that were specified as part of the joint European EMILI project.

Although the inspiration for this work has been drawn from EM

related use cases, the scope of this thesis is not limited to EM and gen-
eralizes to a broad range of domains. In particular with the advent of
the Internet of Things and Cyber-Physical Systems we expect various
challenging applications that benefit from a deep integration of com-
plex event detection with the capabilities of executing sophisticated
composite reactions as provided by Dura.

275

Part VI

A P P E N D I X

A
F O R M A L G R A M M A R

In the following, we will elaborate a formal grammar for Dura by
means of the formalism that is provided by the Xtext [Xte] parser
which roughly corresponds to the Extended Backus-Naur Form (EBNF)
formalism [ISO96].

a.1 xtext grammar formalism

Xtext grammars are build from production rules [Xte14]: Xtext rules
are written name : expression ; whereby name starts with a capital let-
ter and expressions are build from the following constructs.

1. Tokens are build from a sequence of characters escaped by sin-
gle or double quotes (’0’, ’int’) and character ranges using the
.. operator (’0’..’9’).

2. Alternatives between expressions specified by means of the |

operator (’and’ | ’or’ | ’not’).

3. Groups determined by a sequence of expressions in addition to
optional round brackets (’a’..’z’ (’0’..’9’|’a’..’z’))

4. Unordered groups specified by means of the & operator (’input’
& ’output’).

5. Rule calls referring to other rules.

Moreover, the cardinality of expressions can be adapted by means
of the ? operator (one or none), the + operator (one or more), and the
* operator (zero or more).

a.2 simplified dura grammar

It follows a simplified version of the Xtext grammar for Dura. Thereby,
aspects related to modules and schemas as they are discussed in Sec-
tion 12.1 are omitted for the sake of readability.

Moreover, technical aspect that are related to the construction of
the parse tree, such as assignment operators and cross references, are
omitted from the given representation.

279

Module:

(ConstDefinition | DeclarativeRule | ReactiveRule | ActionRule)*
;

ConstDefinition:

’CONST’ ID ’=’ Expression

;

DeclarativeRule:

’DETECT’

ID ’{’ (Reference | (ConstructTerm Sep?)+)? ’}’

’ON’

Query

’END’

;

ReactiveRule:

’ON’

Query

’DO’

Action

’END’

;

ActionRule:

’FOR’

ActionQuery

’DO’

Action

’END’

;

Query:

AtomicQuery

| CompositeQuery

;

CompositeQuery:

’and’ ’{’ (Query Sep?)* ’}’ QuerySupplement*
| ’or’ ’{’ (Query Sep?)* ’}’ QuerySupplement*
| ’not’ AtomicQuery

| ’not’ ’{’ Query ’}’ QuerySupplement*
;

AtomicQuery:

EventQuery

| StateQuery

;

EventQuery:

’event’ ID ’:’ (ID|QualifiedName)

’{’ (AtomicQueryTerm | (CompositeQueryTerm Sep?)+)? ’}’

QuerySupplement*
;

280

StateQuery:

’state’ ID ’:’ (ID|QualifiedName)

’{’ (AtomicQueryTerm | (CompositeQueryTerm Sep?)+)? ’}’

QuerySupplement*
;

ActionQuery:

’action’ ID ’:’ ID

’{’ (AtomicQueryTerm | (CompositeQueryTerm Sep?)+)? ’}’

QuerySupplement?

;

QuerySupplement:

’where’ CompositeConditionFormula

| ’let’ ’{’ VariableAssignment? (Sep VariableAssignment)* ’}’

| ’group by’ ’{’ Reference? (Sep Reference)* ’}’

(’aggregate’ ’{’ VariableAssignment? (Sep VariableAssignment)* ’}’)?

;

Action:

AtomicAction

| CompositeAction

| ConditionalAction

;

CompositeAction:

’compound’ ’{’

(Action Sep?)*
’}’ ActionSupplement

;

ConditionalAction:

’IF’ Query ’THEN’ Action

;

AtomicAction:

’action’ ID ’:’ (ID|QualifiedName)

’{’ (Reference | (ConstructTerm Sep?)+)? ’}’

;

ActionSupplement:

(’where’ CompositeConditionFormula)?

(’hence’ CompositeConditionFormula)?

(’initiates on’ Query)?

(’succeeds on’ Query)?

(’fails on’ Query)?

;

ConditionFormula:

CompositeConditionFormula

| AtomicConditionFormula

;

CompositeConditionFormula:

(’and’ | ’or’ | ’not’) ’{’ ConditionFormula? (Sep ConditionFormula)* ’}’

281

;

AtomicConditionFormula:

AddExpression (OpCompare | RelQualitativeTemporal) AddExpression

| ’{’ AddExpression (Sep AddExpression)* ’}’ RelQuantitativeTemporal AddExpression

| BooleanLiteral

;

Expression:

AddExpression (OpCompare AddExpression)*
;

AddExpression:

MultiExpression (OpAdd MultiExpression)*
;

MultiExpression:

UnaryExpression (OpMulti UnaryExpression)*
;

UnaryExpression:

OpUnary DuraExpression

| DuraExpression

;

DuraExpression:

BasicTypes ’(’ Expression ’)’

| ’[’ Expression Sep Expression ’]’

| OpAggregateValues ’(’ Expression ’)’

| OpRelativeTimer ’(’ Expression Sep Expression ’)’

| OpTimepoint ’(’ Expression ’)’

| OpIdentifier ’(’ Reference ’)’

| OpSelect ’(’ Expression? (Sep Expression)* ’)’

| OpRound ’(’ Expression Sep Expression ’)’

| AtomicExpression

;

AtomicExpression:

Literal

| Reference

| Constant

| Clock

| ’(’ Expression ’)’

;

Clock:

OpClock

;

AtomicQueryTerm:

Literal

| Constant

| Reference

;

282

CompositeQueryTerm:

ID ’{’ AtomicQueryTerm ’}’

| ID ’{’ (CompositeQueryTerm Sep?)* ’}’

;

ConstructTerm:

ID ’{’ (Expression | (ConstructTerm Sep?)+)? ’}’

;

Reference:

Variable

| QueryPath

| StreamReference

;

Variable:

’var’ ID

;

VariableAssignment:

’var’ ID ’=’ Expression

;

Constant:

’const’ (ID|QualifiedName)

;

StreamReference:

ID

| ’event’ ID

| ’state’ ID

| ’action’ ID

;

QueryPath:

ID ProperSubPath

;

SubPath:

ID ProperSubPath?

| ProperSubPath

;

ProperSubPath:

’.’ ID SubPath?

;

Literal:

LONG

| STRING

| FloatingPointLiteral

| DurationLiteral

| BooleanLiteral

;

283

BooleanLiteral:

(’true’ | ’false’)

;

DurationLiteral:

(LONG ’min’) (LONG ’sec’)? (LONG ’ms’)?

| (LONG ’sec’) (LONG ’ms’)?

| (LONG ’ms’)

;

FloatingPointLiteral:

LONG (’E’ (’+’|’-’) LONG)

| LONG ’.’ LONG (’E’ (’+’|’-’) LONG)?

;

Sep:

’,’

;

QualifiedName:

ID (’.’ ID)*
;

BasicTypes:

’int’ | ’long’ | ’float’ | ’double’ | ’boolean’ | ’string’ | ’duration’

| ’timestamp’ | ’identifier’

;

RelQuantitativeTemporal:

’within’ | ’apart’

;

RelQualitativeTemporal:

’before’ | ’after’ | ’contains’ | ’during’ | ’overlaps’

| ’overlapped-by’ | ’meets’ | ’met-by’| ’starts’ | ’started-by’

| ’finishes’ | ’finished-by’ | ’equals’ | ’valid-at’ | ’valid-during’

;

OpAggregateValues:

’min’ | ’max’ | ’sum’ | ’avg’ | ’count’

;

OpTimepoint:

’begin’ | ’end’

;

OpIdentifier:

’id’ | ’init’ | ’succ’ | ’requested’ | ’fail’ | ’created’ | ’term’ | ’time’

;

OpRelativeTimer:

’extend’ | ’shorten’ | ’extend-begin’ | ’shorten-begin’ | ’shift-forward’

| ’shift-backward’ | ’from-end’ | ’from-end-backward’ | ’from-begin’

| ’from-begin-backward’

;

284

OpCompare:

’=’ | ’!=’ | ’>=’ | ’<=’ | ’>’ | ’<’ ;

OpAdd:

’+’ | ’-’;

OpMulti:

’*’ | ’**’ | ’/’ | ’%’;

OpUnary:

"!" | "-" | "+";

OpSelect:

’least’ | ’greatest’;

OpRound:

’ceil’ | ’floor’;

OpClock:

’system-time.now()’ | ’sequence.next()’

;

ID : ’^’?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’-’|’0’..’9’|"’")*;

LONG : (’0’..’9’)+;

STRING : ’"’ (’\\’ (’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’) | !(’\\’|’"’))* ’"’

285

B
T R A N S L AT I O N S

This chapter provides the complete rule set obtained by the transfor-
mation of the complex action adapt-ventilation and the stateful ob-
ject operation-mode. Both transformations are thoroughly discussed
in Chapter 11 but only excerpts of the following rule sets are given
there.

b.1 complete translation of a complex action

Consider the following complex action rule.

FOR

action v: adapt-ventilation{ area{var A} }

DO

compound{

action a: open-fire-dampers{ area{var A} }

action b: activate-ventilators{ area{var A} }

action c: warn-of-smoke{ area{var A} }

} where { succ(a) <= init(b), init(c)+1min <= init(b) }

succeeds on and{

event e: smoke{ area{var A}, amount{var C} }

} where { var C < 0.1, init(v) < end(e), end(e) < init(v)+2min }

group by { v }

END �
The given complex action rule is used in Section 11.1 to illustrate

the translation of complex actions. It is translated to the following set
of deductive rules.

DETECT

open-fire-dampers$requested{

reception-time{ end{greatest(end(v$init))} }

pl{ id{sequence.next()}, ref{v$init.pl.id}, area{var A} }

}

ON

event v$init: adapt-ventialtion$initiated{ pl{ area{var A} } }

END

DETECT

activate-ventilators$requested{

reception-time{ end{

greatest(end(v$init), end(a$succ), end(c$init)+1min)

} }

pl{ id{sequence.next()}, ref{v$init.pl.id}, area{var A} }

}

ON

287

and{

event v$init: adapt-ventialtion$initiated{ pl{ area{var A} } }

event a$succ: open-fire-dampers$succeeded{}

event c$init: warn-of-smoke$intitated{}

} where { v$init.pl.id = a$succ.pl.ref, v$init.pl.id = c$init.pl.ref}

END

DETECT

warn-of-smoke$requested{

reception-time{ end{greatest(end(v$init))} }

pl{ id{sequence.next()}, ref{v$init.pl.id}, area{var A} }

}

ON

event v$init: adapt-ventialtion$initiated{ pl{ area{var A} } }

END

DETECT

adapt-ventialtion$requested{ pl{ id{var Id}, ref{var Id}, area{var A} } }

ON

event e: certain-alarm{ area{var A} }

let{ var Id = sequence.next() }

END

DETECT

adapt-ventialtion$initiated{ pl{e.pl} }

ON

event e: adapt-ventialtion$requested{}

END

DETECT

adapt-ventialtion$succeeded{ pl{v$init.pl} }

ON

and{

event e: smoke{ area{var A}, conc{var C} }

event v$init: adapt-ventialtion$initiated{}

} where { var C < 0.1, end(v$init) < end(e), end(e) < end(v$init)+2min }

group by { v$init }

END

b.2 complete translation of a stateful object

Consider the following schema of a stateful object.

operation-mode{ area{long}, mode{int} }

on conflict select { max mode, min id } �
The given stateful objects is used in Section 11.2 to illustrate the

translation of complex actions. It is translated to the following set of
deductive rules.

288

DETECT

operation-mode$create$initiated{

semantic-time{r.semantic-time}

payload{r.payload}

}

ON

event r: operation-mode$create$requested{}

END

DETECT

operation-mode$create$succeeded{

semantic-time{r.semantic-time}

payload{r.payload}

}

ON

event r: operation-mode$create$requested{}

END

DETECT

operation-mode$created{

semantic-time{r.semantic-time},

payload{r.payload}

}

ON

event r: operation-mode$create$requested{}

END

DETECT

operation-mode$created{

semantic-time{ud.semantic-time}

payload{ud.new-payload}

}

ON

event ud: operation-mode$updated{}

END

DETECT

operation-mode$terminate$initiated{

semantic-time{d.semantic-time}

payload{d.payload}

}

ON

or{

event d: operation-mode$terminate$succeeded{}

event d: operation-mode$terminate$failed{}

}

END

DETECT

operation-mode$terminate$succeeded{

request-time{r.request-time}

payload{r.payload}

289

}

ON

and{

event r: operation-mode$terminate$requested{},

event cd: operation-mode$created{},

not event td: operation-mode$terminated{},

not event tr: operation-mode$terminate$requested{}

not {

event ur: operation-mode$update$requested{}

} where and{

end(r) > end(cd) + min-dist,

ur.request-time < r.request-time

}

} where {

end(cd) <= end(r) - min-dist,

end(td) <= end(r) - min-dist,

end(r) - min-dist <= end(tr), end(tr) <= end(r),

end(r) - min-dist <= end(ur), end(ur) <= end(r),

cd.payload.id = td.payload.id,

cd.payload.id = r.payload.query,

tr.id != r.id,

tr.payload.query = r.payload.query,

tr.request-time < r.request-time,

ur.payload.query = r.payload.query,

}

END

DETECT

operation-mode$terminate$failed{

request-time{tr.request-time}

payload{tr.payload}

}

ON

and{

event tr: operation-mode$terminate$requested{}

not event ts: operation-mode$terminate$succeeded{}

event td: operation-mode$terminated{}

} where {

tr.payload.id = ts.payload.id,

tr.payload.query = td.payload.id,

tr.request-time = ts.request-time,

td.request-time <= tr.request-time,

tr.observation-time <= td.request-time

}

END

DETECT

290

operation-mode$terminated{

request-time{r.request-time},

payload{cd.payload},

}

ON

and{

event r: operation-mode$terminate$succeeded{}

event cd: operation-mode$created{}

not event ts: operation-mode$terminate$succeeded{}

} where {

end(cd) + min-dist <= end(r),

end(r) - min-dist <= end(ts), end(ts) <= end(r),

r.payload.query = cd.payload.id,

r.payload.query = ts.payload.query,

r.request-time = ts.request-time,

ts.payload.id > r.payload.id,

}

END

DETECT

operation-mode$terminated{

request-time{r.request-time},

payload{

id{us.payload.id},

area{us.payload.set.area}, mode{us.payload.set.mode}

}

}

ON

and{

event r: operation-mode$terminate$succeeded{}

not event ts: operation-mode$terminate$succeeded{}

event us: operation-mode$update$succeeded{}

not event other-us: operation-mode$update$succeeded{}

} where {

end(r) - min-dist <= end(ts), end(ts) <= end(r),

end(r) - min-dist <= end(us), end(us) <= end(r),

end(r) - min-dist <= end(other-us), end(other-us) <= end(r),

r.payload.query = us.payload.query,

r.payload.query = ts.payload.query,

r.payload.query = other-us.payload.query,

r.request-time = ts.request-time,

ts.payload.id > r.payload.id,

us.request-time < r.request-time,

us.request-time < other-us.request-time,

other-us.request-time < r.request-time

}

END

291

DETECT

operation-mode$terminated{

request-time{ud.request-time}

payload{ud.old-payload}

}

ON

event ud: operation-mode$updated{}

END

DETECT

operation-mode$update$initiated{

semantic-time{d.semantic-time}

payload{d.payload}

}

ON

and{

event d: operation-mode$update$succeeded{}

event d: operation-mode$update$failed{}

}

END

DETECT

operation-mode$update$succeeded{

request-time{r.request-time}

payload{r.payload}

}

ON

and{

event r: operation-mode$update$requested{},

event cd: operation-mode$created{},

not event td: operation-mode$terminated{},

not event tr: operation-mode$terminate$requested{}

not {

event ur: operation-mode$update$requested{}

} where or{

and{ end(r) > end(cd) + min-dist, ur.request-time < r.request-time },

and{

ur.request-time = r.request-time,

or{

ur.pl.mode > r.pl.mode,

and{ ur.pl.mode = r.pl.mode, ur.pl.id < r.pl.id }

}

}

}

} where {

end(cd) <= end(r) - min-dist,

end(td) <= end(r) - min-dist,

end(r) - min-dist <= end(tr), end(tr) <= end(r),

end(r) - min-dist <= end(ur), end(ur) <= end(r),

cd.payload.id = td.payload.id,

292

cd.payload.id = r.payload.query,

tr.payload.query = r.payload.query,

tr.request-time <= r.request-time,

ur.id != r.id,

ur.payload.query = r.payload.query,

}

END

DETECT

operation-mode$update$failed{

request-time{r.request-time}

payload{r.payload}

}

ON

and{

event r: operation-mode$update$requested{}

not event us: operation-mode$update$succeeded{}

event td: operation-mode$terminated{}

} where {

r.payload.id = us.payload.id,

r.payload.query = td.payload.id,

r.request-time = us.request-time,

td.request-time <= r.request-time,

r.observation-time <= td.request-time

}

END

DETECT

operation-mode$updated{

request-time{r.request-time},

old-payload{cd.payload},

new-payload{

id{r.payload.id},

area{r.payload.set.area}, mode{r.payload.set.mode}

}

}

ON

and{

event r: operation-mode$update$succeeded{}

event cd: operation-mode$created{}

not event us: operation-mode$update$succeeded{}

} where {

cd.payload.id = r.payload.query,

cd.payload.id = us.payload.query,

end(cd) + min-dist <= end(r),

end(r) - min-dist <= end(us), end(us) <= end(r),

293

us.request-time < r.request-time

}

END

DETECT

operation-mode$updated{

request-time{r.request-time},

old-payload{

id{us.payload.id},

area{us.payload.set.area}, mode{us.payload.set.mode}

}

new-payload{

id{r.payload.id},

area{r.payload.set.area}, mode{r.payload.set.mode}

}

}

ON

and{

event r: operation-mode$update$succeeded{}

event us: operation-mode$update$succeeded{}

not event other-us: operation-mode$update$succeeded{}

} where {

r.payload.query = us.payload.query,

r.payload.query = other-us.payload.query,

end(r) - min-dist <= end(us), end(us) <= end(r),

end(r) - min-dist <= end(other-us), end(other-us) <= end(r),

us.request-time < r.request-time,

other-us.request-time < r.request-time,

us.request-time < other-us.request-time

}

END

294

b.3 translation of rules querying a stateful object

Consider the following rules querying and updating the stateful ob-
ject from above.

DETECT

answer{ payload{ area{var A}, mode{var M} } }

ON

and{

event e: query{ area{var A} },

state s: operation-mode{ area{var A}, mode{var M} }

} where { s valid-at end(e) }

END

ON

event e: touch{ area{var A}, mode{var M} }

DO

action a: operation-mode$create{ area{var A}, mode{var M} }

END

ON

and{

event e: rm{ area{var A} },

state s: operation-mode{ area{var A} }

} where { s valid-at end(e) }

DO

action a: operation-mode$terminate{ id{id(s)} }

END

ON

and{

event e: modify{ area{var A}, set{ mode{var M} } },

state s: operation-mode{ area{var A} }

} where { s valid-at end(e) }

DO

action a: operation-mode$update{

query{ id{id(s)} },

set{ area{var A}, mode{var M} }

}

END �
The given rules are translated to the following set of deductive

rules. Thereby, each rule from above corresponds to one of the rules
below.

DETECT

answer{ area{var A}, mode{var M} }

ON

and{

event e: query{ area{var A} }

event cd: operation-mode$created{ payload{ area{var A}, mode{var M} } },

not event td: operation-mode$terminated{}

} where {

cd.payload.id = td.payload.id,

295

cd.request-time < end(e),

td.request-time < end(e)

}

END

DETECT

operation-mode$create$requested{

reception-time{ end{var RequestTime} }

payload{ area{var A}, mode{var M}, id{sequence.next()} }

}

ON

event e: touch{ area{var A}, mode{var M} }

let { var RequestTime = end(e) }

END

DETECT

operation-mode$terminate$requested{

observation-time{var QueryTime}

request-time{var RequestTime}

reception-time{ end{greatest(end(cd)+min-dist, var RequestTime)} }

payload{ query{cd.payload.id}, id{sequence.next()} }

}

ON

and{

event e: rm{ area{var A} }

event cd: operation-mode$created{ payload{ area{var A} } },

not event td: operation-mode$terminated{}

} let {

var QueryTime = end(e),

var SemanticTime = var QueryTime,

var ReceptionTime = greatest(var SemanticTime, end(cd) + mind-dist)

} where {

cd.payload.id = td.payload.id,

cd.semantic-time < end(e),

td.semantic-time < end(e),

end(cd) <= var QueryTime,

end(td) <= var QueryTime - min-dist

}

END

DETECT

operation-mode$update$requested{

observation-time{var QueryTime}

request-time{var RequestTime}

reception-time{ end{greatest(end(cd)+min-dist, var RequestTime)} }

payload{

query{cd.payload.id},

set{ area{var A}, mode{var M} }

id{sequence.next()}

}

296

}

ON

and{

event e: modify{ area{var A}, set{ mode{var M} } }

event cd: operation-mode$created{ payload{ area{var A} } },

not event td: operation-mode$terminated{}

} let {

var QueryTime = end(e),

var SemanticTime = var QueryTime,

var ReceptionTime = greatest(var SemanticTime, end(cd) + mind-dist)

} where {

cd.payload.id = td.payload.id,

cd.semantic-time < end(e),

td.semantic-time < end(e),

end(cd) <= var QueryTime,

end(td) <= var QueryTime - min-dist

}

END

297

B I B L I O G R A P H Y

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “The
CQL Continuous Query Language: Semantic Foundations
and Query Execution.” In: The VLDB Journal 15.2 (2006),
pp. 121–142 (cit. on pp. 22, 23).

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker.
“Towards a Theory of Declarative Knowledge.” In: Foun-
dations of Deductive Databases and Logic Programming. Mor-
gan Kaufmann, 1988, pp. 89–148 (cit. on pp. 75, 145, 149,
176, 227).

[AC05] Raman Adaikkalavan and Sharma Chakravarthy. “Formal-
ization and Detection of Events Using Interval-Based Se-
mantics.” In: Proceedings of the International Conference on
Management of Data. COMAD’2005. Computer Society of
India, 2005, pp. 58–69 (cit. on p. 21).

[AC06] Raman Adaikkalavan and Sharma Chakravarthy. “SnoopIB:
Interval-Based Event Specification and Detection for Ac-
tive Databases.” In: Data and Knowledge Engineering 1.59

(2006), pp. 139–165 (cit. on p. 21).

[ACG00] Alessandro Armando, Claudio Castellini, and Enrico Giun-
chiglia. “SAT-Based Procedures for Temporal Reasoning.”
In: Proceedings of the European Conference on Planning. ECP’99.
Springer, 2000, pp. 97–108 (cit. on p. 167).

[AD90] Rajeev Alur and David L. Dill. “Automata For Modeling
Real-Time Systems.” In: Proceedings of the International Col-
loquium on Automata, Languages and Programming. ICALP’90.
Springer, 1990, pp. 322–335 (cit. on pp. 26, 28).

[AE04] Asaf Adi and Opher Etzion. “Amit— the situation man-
ager.” In: The VLDB Journal 13.2 (2004), pp. 177–203 (cit.
on pp. 20, 21).

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu, eds. Foun-
dations of Databases: The Logical Level. 1st. Addison-Wesley,
1995. isbn: 978-0-201-53771-0 (cit. on pp. 40, 57, 187, 189,
194).

[All83] James F. Allen. “Maintaining Knowledge about Tempo-
ral Intervals.” In: Communications of the ACM 26.11 (1983),
pp. 832–843 (cit. on p. 61).

299

[Ani+10] Darko Anicic et al. “A Rule-based Language for Complex
Event Processing and Reasoning.” In: Proceedings of the In-
ternational Conference on Web Reasoning and Rule Systems.
RR’10. Springer, 2010, pp. 42–57 (cit. on pp. 30, 40).

[Ani+12a] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad
Stojanovic. “Real-time Complex Event Recognition and
Reasoning: A Logic Programming Approach.” In: Applied
Artificial Intelligence 26.1-2 (2012): Special Issue on Event
Recognition, pp. 6–57 (cit. on p. 30).

[Ani+12b] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Ne-
nad Stojanovic. “Stream Reasoning and Complex Event
Processing in ETALIS.” In: Semantic Web Journal 3.4 (2012):
Special Issue on Semantic Web Tools and Systems, pp. 397–407

(cit. on p. 30).

[ANS] ANSYS Inc. ANSYS Fluent. url: http://www.ansys.com/
Products/Simulation+Technology/Fluid+Dynamics (vis-
ited on 06/30/2014) (cit. on p. 10).

[Art+12] Alexander Artikis, Anastasios Skarlatidis, François Portet,
and Georgios Paliouras. “Logic-based Event Recognition.”
In: The Knowledge Engineering Review 27.4 (2012), pp. 469–
506 (cit. on p. 30).

[ASP12] Alexander Artikis, Marek Sergot, and Georgios Paliouras.
“Run-time Composite Event Recognition.” In: Proceedings
of the International Conference on Distributed Event-Based Sys-
tems. DEBS’12. ACM, 2012, pp. 69–80 (cit. on pp. 30, 83).

[Bat94] Don Batory. The LEAPS Algorithm. Tech. rep. University
of Texas at Austin, 1994 (cit. on p. 24).

[BB12a] Simon Brodt and François Bry. Analysing Temporal Rela-
tions: Beyond Windows, Frames and Predicates. University of
Munich, 2012 (cit. on pp. 5, 76, 77, 165, 187–189, 194, 195,
205, 206, 245, 249, 253, 271).

[BB12b] Simon Brodt and François Bry. Temporal Stream Algebra.
University of Munich, 2012 (cit. on pp. 163, 169, 170).

[BC06] Roger S. Barga and Hillary Caituiro-Monge. “Event Cor-
relation and Pattern Detection in CEDR.” In: Proceedings
of the International Conference on Current Trends in Database
Technology. EDBT’06. Springer, 2006, pp. 919–930 (cit. on
p. 21).

[BD13] James C. Boerkoel Jr. and Edmund H. Durfee. “Decou-
pling the Multiagent Disjunctive Temporal Problem.” In:
Proceedings of the International Conference on Autonomous
Agents and Multi-agent Systems. AAMAS’13. International
Foundation for Autonomous Agents and Multiagent Sys-
tems, 2013, pp. 1145–1146 (cit. on p. 167).

300

http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics

[BE07] François Bry and Michael Eckert. “Rule-based Composite
Event Queries: The Language XChangeEQ and its Seman-
tics.” In: Proceedings of the International Conference on Web
Reasoning and Rule Systems. RR’07. Springer, 2007, pp. 16–
30 (cit. on pp. 4, 28, 30, 39–41, 46, 52, 56, 59, 113).

[BE08a] François Bry and Michael Eckert. “On Static Determina-
tion of Temporal Relevance for Incremental Evaluation
of Complex Event Queries.” In: Proceedings of the Interna-
tional Conference on Distributed Event-based Systems. DEBS’08.
ACM, 2008, pp. 289–300 (cit. on pp. 158, 170).

[BE08b] François Bry and Michael Eckert. “Rules for Making Sense
of Events: Design Issues for High-Level Event Query and
Reasoning Languages.” In: AI Meets Business Rules and
Process Management, Proceedings of the AAAI Press Spring
Symposium. AAAI Press. 2008 (cit. on pp. 4, 46, 102, 113).

[Beh+06] Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz
Schenk. “Combining ECA Rules with Process Algebras
for the Semantic Web.” In: Proceedings of the International
Conference on Rules and Rule Markup Languages for the Se-
mantic Web. RULEML’06. IEEE, 2006, pp. 29–38 (cit. on
p. 35).

[BEP06a] François Bry, Michael Eckert, and Paula-Lavinia Pătrân-
jan. “Querying Composite Events for Reactivity on the
Web.” In: Proceedings of the International Conference on Ad-
vanced Web and Network Technologies, and Applications. AP-
Web’06. Springer, 2006, pp. 38–47 (cit. on p. 35).

[BEP06b] François Bry, Michael Eckert, and Paula-Lavinia Pătrân-
jan. “Reactivity on the Web: Paradigms and Applications
of the Language XChange.” In: Journal of Web Engineering
5.1 (2006), pp. 3–24 (cit. on pp. 21, 35, 41, 52).

[Ber+07] Bruno Berstel, Philippe Bonnard, François Bry, Michael
Eckert, and Paula-Lavinia Pătrânjan. “Reactive Rules on
the Web.” In: Proceedings of the International Summer School
Conference on Reasoning Web. RW’07. Springer, 2007, pp. 183–
239 (cit. on pp. 24, 36).

[Bet01] Marco Bettelini. “CFD for Tunnel Safety.” In: FLUENT
User Meeting. 2001 (cit. on p. 10).

[Bet08] Marco Bettelini. “Transient One-dimensional Simulation
for Optimum Road-Tunnel Ventilation.” In: Proceedings of
the World Tunnel Congress. 2008 (cit. on p. 10).

[BFC86] Avron Barr, Edward A. Feigenbaum, and Paul R. Cohen,
eds. Handbook of Artificial Intelligence. Addison-Wesley, 1986.
isbn: 978-0-201-11810-0 (cit. on p. 73).

301

[BHB10] Simon Brodt, Steffen Hausmann, and François Bry. Re-
active Rules for Emergency Management. Technical Report.
EMILI Deliverable D4.2. University of Munich, 2010. 51 pp.
(cit. on pp. x, 15, 18).

[BHB11] Simon Brodt, Steffen Hausmann, and François Bry. Imple-
mentation. Technical Report. EMILI Deliverable D4.5. Uni-
versity of Munich, 2011. 57 pp. (cit. on pp. ix, 39).

[BHB12] Simon Brodt, Steffen Hausmann, and François Bry. Re-
finement of the Implementation of Event Processing and ECA
Rules for SITE. Technical Report. EMILI Deliverable D4.7.
University of Munich, 2012. 76 pp. (cit. on pp. ix, 39, 249,
255, 256, 259).

[BN09] Philip Bernstein and Eric Newcomer. Principles of Transac-
tion Processing. 2nd. Morgan Kaufmann, 2009. isbn: 978-1-
55860-623-4 (cit. on p. 35).

[Boy09] Stuart A. Boyer. SCADA: Supervisory Control And Data Ac-
quisition. 4th. International Society of Automation, 2009.
isbn: 978-1-936007-09-7 (cit. on p. 96).

[Bro+10] Simon Brodt, Steffen Hausmann, François Bry, Olga Poppe,
and Michael Eckert. A Survey on IT-Techniques for a Dy-
namic Emergency Management in Large Infrastructures. Tech-
nical Report. EMILI Deliverable D4.1. University of Mu-
nich, 2010. 48 pp. (cit. on pp. x, 15, 18).

[BRS13] Marco Bettelini, Samuel Rigert, and Nikolaus Seifert. “Op-
timum Emergency Management through Physical Simu-
lation— Findings from the EMILI Research Project.” In:
Proceedings of the World Tunnel Congress. CRC Press, 2013,
pp. 290–297 (cit. on p. 11).

[Bry+06] François Bry, Michael Eckert, Paula-Lavinia Pătrânjan, and
Inna Romanenko. “Realizing Business Processes with ECA
Rules: Benefits, Challenges, Limits.” In: Proceedings of the
International Workshop on Principles and Practice of Semantic
Web. Springer, 2006, pp. 48–62 (cit. on pp. 35, 111).

[Bry+07] François Bry et al. “Foundations of Rule-Based Query An-
swering.” In: Proceedings of the International Summer School
on Reasoning Web. Vol. 4636. Lecture Notes in Computer
Science. Springer, 2007 (cit. on pp. 67, 70, 164, 174).

[Bry+08] François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach, Mar-
tin Roeder, and Marc Weinberger. “The Facility Control
Markup Language FCML.” In: Proceedings of the Interna-
tional Conference on Digital Society. ICDS’08. IEEE, 2008,
pp. 117–122 (cit. on pp. 16, 96).

302

[BS02] François Bry and Sebastian Schaffert. “Towards a Declar-
ative Query and Transformation Language for XML and
Semistructured Data: Simulation Unification.” In: Proceed-
ings of the International Conference on Logic Programming.
ICLP’02. Springer, 2002, pp. 255–270 (cit. on pp. 29, 41,
43, 52, 53, 266).

[BSB11] Marco Bettelini, Nikolaus Seifert, and François Bry. “Inno-
vatives Sicherheitssystem für U-Bahn-Stationen.” German.
In: Fachzeitschrift für Information Management & Consulting
(1 2011), pp. 71–78 (cit. on pp. 12, 13).

[Bul03] Peter S. Bullen. “The Power Means.” In: Handbook of Means
and Their Inequalities. Vol. 560. Mathematics and Its Appli-
cations. Springer, 2003, pp. 175–265 (cit. on p. 125).

[BW03] David Bailey and Edwin Wright. Practical SCADA for In-
dustry. Newnes, 2003 (cit. on pp. 15, 16).

[CA08] Sharma Chakravarthy and Raman Adaikkalavan. “Events
and Streams: Harnessing and Unleashing Their Synergy!”
In: Proceedings of the International Conference on Distributed
Event-based Systems. DEBS’08. ACM, 2008, pp. 1–12 (cit. on
p. 31).

[CGT89] Stefano Ceri, Georg Gottlob, and Letizia Tanca. “What
You Always Wanted to Know About Datalog (And Never
Dared to Ask).” In: IEEE Transactions on Knowledge and
Data Engineering 1.1 (1989), pp. 146–166 (cit. on pp. 40,
274).

[Cha+11] Badrish Chandramouli, Jonathan Goldstein, Roger Barga,
Mirek Riedewald, and Ivo Santos. “Accurate Latency Es-
timation in a Distributed Event Processing System.” In:
Proceedings of the International Conference on Data Engineer-
ing. ICDE’11. IEEE, 2011, pp. 255–266 (cit. on p. 274).

[Cha+94] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar,
and S.-K. Kim. “Composite Events for Active Databases:
Semantics, Contexts and Detection.” In: Proceedings of the
International Conference on Very Large Data Bases. VLDB’94.
Morgan Kaufmann, 1994, pp. 606–617 (cit. on pp. 20, 21).

[Cla78] Keith L. Clark. “Negation as Failure.” In: Logic and Data
Bases. Springer, 1978, pp. 293–322 (cit. on p. 72).

[CM03] William F. Clocksin and Chritopher S. Mellish. Program-
ming in Prolog. 5th. Springer, 2003. isbn: 3-540-00678-8 (cit.
on pp. 30, 40).

303

[CM10] Gianpaolo Cugola and Alessandro Margara. “TESLA: A
Formally Defined Event Specification Language.” In: Pro-
ceedings of the International Conference on Distributed Event-
Based Systems. DEBS’10. ACM, 2010, pp. 50–61 (cit. on
pp. 30, 40, 45).

[CM12a] Gianpaolo Cugola and Alessandro Margara. “Complex
Event Processing with T-REX.” In: Journal of Systems and
Software 85.8 (2012), pp. 1709–1728 (cit. on p. 30).

[CM12b] Gianpaolo Cugola and Alessandro Margara. “Processing
Flows of Information: From Data Stream to Complex Event
Processing.” In: ACM Computing Surveys 44.3 (2012), 15:1–
15:62 (cit. on pp. 19, 32, 41).

[Cor+01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson. Introduction to Algorithms. 2nd. MIT
Press, 2001. isbn: 978-0-07-013151-4 (cit. on pp. 77, 158,
167).

[Dem+07] Alan J. Demers et al. “Cayuga: A General Purpose Event
Monitoring System.” In: Proceedings of the Biennial Confer-
ence on Innovative Data Systems Research. CIDR’07. 2007,
pp. 412–422 (cit. on p. 24).

[DHL91] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. “A
Transactional Model for Long-Running Activities.” In: Pro-
ceedings of the International Conference on Very Large Data
Bases. VLDB’91. Morgan Kaufmann, 1991, pp. 113–122 (cit.
on p. 35).

[DK75] Randall Davis and Jonathan King. An Overview of Produc-
tion Systems. Stanford University, 1975, p. 43 (cit. on p. 73).

[DMP91] Rina Dechter, Itay Meiri, and Judea Pearl. “Temporal Con-
straint Networks.” In: Artificial Intelligence 49.1-3 (1991),
pp. 61–95 (cit. on pp. 158, 166, 169, 170, 174).

[Droa] JBoss Community. Drools Expert. url: http://www.jboss.
org/drools/drools-expert.html (visited on 06/30/2014)
(cit. on p. 26).

[Drob] JBoss Community. Drools Fusion. url: http://www.jboss.
org/drools/drools-fusion.html (visited on 06/30/2014)
(cit. on pp. 25, 26, 33, 83).

[DS99] Axel Daneels and Wayne Salter. “What is SCADA?” In: In-
ternational Conference on Accelerator and Large Experimental
Physics Control Systems. ICALEPCS’99. 1999, pp. 339–343

(cit. on p. 96).

304

http://www.jboss.org/drools/drools-expert.html
http://www.jboss.org/drools/drools-expert.html
http://www.jboss.org/drools/drools-fusion.html
http://www.jboss.org/drools/drools-fusion.html

[Eck08] Michael Eckert. “Complex Event Processing with XChangeEQ:
Language Design, Formal Semantics, and Incremental Eval-
uation for Querying Events.” Doctoral Thesis. Institute for
Informatics, University of Munich, 2008 (cit. on pp. 4, 28,
30, 34, 39, 46, 56, 59, 113, 114, 158, 170, 274).

[Eck+11a] Michael Eckert, François Bry, Simon Brodt, Olga Poppe,
and Steffen Hausmann. “A CEP Babelfish: Languages for
Complex Event Processing and Querying Surveyed.” In:
Reasoning in Event-based Distributed Systems. Vol. 347. Stud-
ies in Computational Intelligence. Springer, 2011, pp. 47–
70 (cit. on pp. ix, 18).

[Eck+11b] Michael Eckert, François Bry, Simon Brodt, Olga Poppe,
and Steffen Hausmann. “Two Semantics for CEP, no Dou-
ble Talk: Complex Event Relational Algebra and its Ap-
plication to XChangeEQ.” In: Reasoning in Event-based Dis-
tributed Systems. Vol. 347. Studies in Computational Intel-
ligence. Springer, 2011, pp. 71–98 (cit. on pp. ix, 15, 59).

[Ecla] Eclipse Foundation, Inc. Eclipse Documentaion: Installing
New Software. url: http : / / help . eclipse . org / juno /

index.jsp?topic=%2Forg.eclipse.platform.doc.user%

2Ftasks%2Ftasks-129.htm (visited on 06/30/2014) (cit.
on p. 259).

[Eclb] Eclipse Foundation, Inc. Eclipse IDE. url: http://www.
eclipse.org (visited on 06/30/2014) (cit. on pp. 249, 259).

[EE11] Yagil Engel and Opher Etzion. “Towards Proactive Event-
driven Computing.” In: Proceedings of the International Con-
ference on Distributed Event-based System. DEBS’11. ACM,
2011, pp. 125–136 (cit. on p. 32).

[EEF12] Yagil Engel, Opher Etzion, and Zohar Feldman. “A Ba-
sic Model for Proactive Event-driven Computing.” In: Pro-
ceedings of the International Conference on Distributed Event-
Based Systems. DEBS’12. ACM, 2012, pp. 107–118 (cit. on
p. 32).

[EMF] Eclipse Foundation, Inc. Eclipse Modeling Framework Project.
url: http://www.eclipse.org/modeling/emf/ (visited on
06/30/2014) (cit. on p. 253).

[EMI] EMILI Consortium. EMILI— Emergency Management in Large
Infrastructure. url: http://www.emili-project.eu (vis-
ited on 06/30/2014) (cit. on p. 9).

[EN10] Opher Etzion and Peter Niblett. Event Processing in Action.
1st. Manning Publications Co., 2010. isbn: 978-1-935182-
21-4 (cit. on p. 32).

305

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftasks%2Ftasks-129.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftasks%2Ftasks-129.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftasks%2Ftasks-129.htm
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org/modeling/emf/
http://www.emili-project.eu

[EPL] Eclipse Foundation, Inc. Eclipse Public License - v 1.0. url:
https://www.eclipse.org/legal/epl-v10.html (visited
on 06/30/2014) (cit. on p. 255).

[Esp] EsperTech Inc. Esper. url: http://esper.codehaus.org
(visited on 06/30/2014) (cit. on pp. 24, 31, 33, 35).

[Esp10] Jose Luis Marín Español. Specific Report for Use Case III,
Power Networks. EMILI Deliverable D3.1 Annex C. Grupo
AIA, 2010. 18 pp. (cit. on p. 14).

[Esp14] EsperTech Inc. EsperIO Reference. 2014 (cit. on p. 33).

[FBS07] Tim Furche, François Bry, and Sebastian Schaffert. Xcerpt
2.0 Specification of the (Core) Language Syntax. Reverse De-
liverable I4-D12. 2007, pp. 1–216 (cit. on pp. 29, 53, 54,
266).

[FM77] C. Forgy and J. McDermott. “OPS: A Domain-independent
Production System Language.” In: Proceedings of the Inter-
national Joint Conference on Artificial Intelligence. IJCAI’77.
Morgan Kaufmann, 1977, pp. 933–939 (cit. on p. 26).

[For81] Charles Forgy. OPS5 User’s Manual. CMU-CS-81-135. Car-
negie Mellon University, 1981 (cit. on p. 26).

[For82] Charles L. Forgy. “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem.” In: Artifi-
cial Intelligence 19.1 (1982), pp. 17–37 (cit. on p. 24).

[Fri10] Karl Fridolf. Fire Evacuation in Underground Transportation
Systems: A Review of Accidents and Empirical Research. Tech.
rep. Department of Fire Safety Engineering and Systems
Safety, Lund University, 2010 (cit. on p. 12).

[FRV10] Marco Falda, Francesca Rossi, and Kristen Brent Venable.
“Dynamic Consistency of Fuzzy Conditional Temporal Prob-
lems.” In: Journal of Intelligent Manufacturing 21.1 (2010),
pp. 75–88 (cit. on p. 171).

[GA02] Antony Galton and Juan Carlos Augusto. “Two Approaches
to Event Definition.” In: Proceedings of the International Con-
ference on Database and Expert Systems Applications. DEXA’02.
Springer, 2002, pp. 547–556 (cit. on p. 21).

[GAC06] Vihang Garg, Raman Adaikkalavan, and Sharma Chakra-
varthy. “Extensions to Stream Processing Architecture for
Supporting Event Processing.” In: Proceedings of the Inter-
national Conference on Database and Expert Systems Applica-
tions. DEXA’06. Springer, 2006, pp. 945–955 (cit. on p. 31).

[GD93] Stella Gatziu and Klaus R. Dittrich. “Events in an Active
Object-Oriented Database System.” In: Proceedings of the
International Workshop on Rules in Database Systems. Sprin-
ger, 1993, pp. 23–39 (cit. on p. 21).

306

https://www.eclipse.org/legal/epl-v10.html
http://esper.codehaus.org

[GD94] Stella Gatziu and Klaus R. Dittrich. “Detecting Composite
Events in Active Database Systems Using Petri Nets.” In:
Proceedings of the International Workshop on Research Issues
in Data Engineering: Active Database Systems. IEEE, 1994,
pp. 2–9 (cit. on pp. 20, 21).

[GH13] Brendan Galloway and Gerhard P. Hancke. “Introduction
to Industrial Control Networks.” In: IEEE Communications
Surveys & Tutorials 15.2 (2013), pp. 860–880 (cit. on p. 16).

[GJS92a] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli.
“Composite Event Specification in Active Databases: Model
and Implementation.” In: Proceedings of the International
Conference on Very Large Data Bases. VLDB’92. Morgan Kauf-
mann, 1992, pp. 327–338 (cit. on p. 21).

[GJS92b] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli.
“Event Specification in an Active Object-oriented Data-
base.” In: Proceedings of the International Conference on Man-
agement of Data. SIGMOD’92. ACM, 1992, pp. 81–90 (cit.
on p. 21).

[GJS93] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli.
“COMPOSE: A System For Composite Specification and
Detection.” In: Advanced Database Systems. Springer, 1993,
pp. 3–15 (cit. on p. 21).

[Gra05] Tim Grant. “Unifying Planning and Control Using an OODA-
based Architecture.” In: Proceedings of the Annual Research
Conference of the South African Institute of Computer Scien-
tists and Information Technologists on IT Research in Devel-
oping Countries. SAICSIT’05. South African Institute for
Computer Scientists and Information Technologists, 2005,
pp. 159–170 (cit. on p. 140).

[H2] H2 Database Engine. url: http://www.h2database.com/
(visited on 06/30/2014) (cit. on p. 255).

[Hau11] Steffen Hausmann. “A Uniform Approach for More Re-
activity in Complex Event Processing.” Ph.D. Workshop
Paper at International Conference on Distributed Event Based
Systems. DEBS’11. 2011. 6 pp. (Cit. on p. ix).

[Hau+13] Steffen Hausmann, Simon Brodt, Marco Bettelini, and Fran-
çois Bry. “Dynamic Emergency Management.” In: Fach-
zeitschrift für Information Management & Consulting (2 2013):
Urban Solutions, pp. 36–47 (cit. on pp. ix, 10, 11).

[HB13] Steffen Hausmann and François Bry. “Towards Complex
Actions for Complex Event Processing.” In: Proceedings of
the International Conference on Distributed Event Based Sys-
tems. DEBS’13. ACM, 2013, pp. 135–146 (cit. on pp. ix, 137,
169).

307

http://www.h2database.com/

[HBB11] Steffen Hausmann, Simon Brodt, and François Bry. Dura:
Concepts and Examples. Technical Report. EMILI Deliver-
able D4.3. University of Munich, 2011. 58 pp. (cit. on pp. ix,
39).

[HBB12] Steffen Hausmann, Simon Brodt, and François Bry. Mod-
ularization Mechanisms for Dura. Technical Report. EMILI
Deliverable D4.6. University of Munich, 2012. 39 pp. (cit.
on pp. ix, 39, 249, 250).

[HRS98] Thomas A. Henzinger, Jean-François Raskin, and Pierre-
Yves Schobbens. “The Regular Real-Time Languages.” In:
Proceedings of the International Colloquium on Automata, Lan-
guages and Programming. ICALP’98. Springer, 1998, pp. 580–
591 (cit. on p. 28).

[HSQ] HyperSQL. url: http://hsqldb.org (visited on 06/30/2014)
(cit. on p. 255).

[IAE07] International Association of Emergency Managers. Princi-
ples of Emergency Management. 2007 (cit. on p. 9).

[IBM] IBM Corporation. IBM Operational Decision Manager. url:
http://www.ibm.com/software/products/en/odm (vis-
ited on 06/30/2014) (cit. on p. 26).

[IET14] Internet Engineering Task Force. Hypertext Transfer Pro-
tocol (HTTP/1.1): Message Syntax and Routing. 2014. url:
http://tools.ietf.org/html/rfc7230 (cit. on p. 34).

[ISO96] International Organization for Standardization. ISO/IEC
14977:1996(e) Information Technology - Syntactic Metalanguage
- Extended BNF. 1996 (cit. on p. 279).

[IST] IST GmbH. Aseri. url: http://aseri.ist-net.de/aseri/
(visited on 06/30/2014) (cit. on p. 10).

[KEP00] Gerhard Knolmayer, Rainer Endl, and Marcel Pfahrer. “Mod-
eling Processes and Workflows by Business Rules.” In:
Business Process Management, Models, Techniques, and Em-
pirical Studies. Springer, 2000, pp. 16–29 (cit. on pp. 35,
111).

[KGR12] Ramkumar Krishnan, Jonathan Goldstein, and Alex Raiz-
man. A Hitchhiker’s Guide to Microsoft StreamInsight Queries.
Tech. rep. Microsoft Corporation, 2012 (cit. on pp. 24, 34).

[KLG07] Martin Kersten, Erietta Liarou, and Romulo Goncalves.
“A Query Language for a Data Refinery Cell.” In: Pro-
ceedings of the International Workshop on Event-Driven Ar-
chitecture, Processing and Systems. EDA-PS’07. 2007 (cit. on
p. 24).

308

http://hsqldb.org
http://www.ibm.com/software/products/en/odm
http://tools.ietf.org/html/rfc7230
http://aseri.ist-net.de/aseri/

[Koz+06] Alex Kozlenkov et al. “Prova: Rule-based Java Scripting
for Distributed Web Applications.” In: Proceedings of the In-
ternational Conference on Current Trends in Database Technol-
ogy. EDBT’06. Springer, 2006, pp. 899–908 (cit. on p. 30).

[Kra+04] Jan Krákora, Libor Waszniowski, Pavel Pisa, and Zdeněk
Hanzálek. “Timed Automata Approach to Real Time Dis-
tributed System Verification.” In: Proceedings of the Inter-
national Workshop on Factory Communication Systems. 2004,
pp. 407–410 (cit. on p. 28).

[KS09] Jürgen Krämer and Bernhard Seeger. “Semantics and Im-
plementation of Continuous Sliding Window Queries over
Data Streams.” In: Transactions on Database Systems (TODS)
34.1 (2009), 4:1–4:49 (cit. on p. 24).

[KS86] Robert A. Kowalski and Marek J. Sergot. “A Logic-based
Calculus of Events.” In: New Generation Computing 4.1 (1986),
pp. 67–95 (cit. on pp. 28, 30, 87).

[KSM05] Hubert Klüpfel, Michael Schreckenberg, and Tim Meyer-
König. “Models for Crowd Movement and Egress Simula-
tion.” In: Traffic and Granular Flow. Springer, 2005, pp. 357–
372 (cit. on p. 10).

[Lan+13] Andreas Lanz, Roberto Posenato, Carlo Combi, and Man-
fred Reichert. “Controllability of Time-Aware Processes at
Run Time.” In: Proceedings of the International Conference on
Cooperative Information Systems. CoopIS’13. Lecture Notes
in Computer Science 8185. Springer, 2013, pp. 39–56 (cit.
on p. 171).

[LGI09] Erietta Liarou, Romulo Goncalves, and Stratos Idreos. “Ex-
ploiting the Power of Relational Databases for Efficient
Stream Processing.” In: Proceedings of the International Con-
ference on Extending Database Technology: Advances in Data-
base Technology. EDBT’09. ACM, 2009, pp. 323–334 (cit. on
p. 24).

[LS11] David Luckham and W. Roy Schulte. Event Processing Glos-
sary. Event Processing Technical Society, 2011 (cit. on pp. 19,
43, 51).

[May13] Michael Mayer. “Introducing Semantics to Dura and its
Sublanguages.” Diploma Thesis. University of Munich,
2013 (cit. on p. 274).

[McG+13] Kevin McGrattan et al. Fire Dynamics Simulator Technical
Reference Guide. Tech. rep. Institue of Standards and Tech-
nology (NIST), 2013 (cit. on p. 10).

309

[Mic] Microsoft Corporation. Microsoft StreamInsight. url: http:
//www.microsoft.com/en- us/sqlserver/solutions-

technologies/business-intelligence/streaming-data.

aspx (visited on 06/30/2014) (cit. on p. 24).

[Mil82] Robin Milner. A Calculus of Communicating Systems. Sprin-
ger, 1982. isbn: 978-0-387-10235-1 (cit. on p. 35).

[Mir87] Daniel P. Miranker. “TREAT: A Better Match Algorithm
for AI Production Systems.” In: Proceedings of the National
Conference on Artificial Intelligence. AAAI Press’87. AAAI
Press, 1987, pp. 42–47 (cit. on p. 24).

[MM05] Paul Morris and Nicola Muscettola. “Temporal Dynamic
Controllability Revisited.” In: Proceedings of the National
Conference on Artificial Intelligence. AAAI Press’05. AAAI
Press, 2005, pp. 1193–1198 (cit. on p. 170).

[MMT91] Michael Merritt, Francesmary Modugno, and Marc R. Tut-
tle. “Time-Constrained Automata.” In: Proceedings of the
International Conference on Concurrency Theory. CONCUR’91.
Springer, 1991, pp. 408–423 (cit. on p. 28).

[Mon] MonetDB. url: http : / / www . monetdb . org (visited on
06/30/2014) (cit. on p. 255).

[MS02] Rob Miller and Murray Shanahan. “Some Alternative For-
mulations of the Event Calculus.” In: Computational Logic:
Logic Programming and Beyond. Springer, 2002, pp. 452–490

(cit. on p. 82).

[MS97] Masoud Mansouri-Samani and Morris Sloman. “GEM: A
Generalized Event Monitoring Language for Distributed
Systems.” In: Distributed Systems Engineering 4.2 (1997),
pp. 96–108 (cit. on pp. 20, 21).

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Defini-
tion of Standard ML. MIT Press, 1990. isbn: 0-262-63181-4
(cit. on p. 273).

[NFP] National Fire Protectino Association. Fire Investigation Sum-
mary Düsseldorf. (Visited on 06/30/2014) (cit. on p. 12).

[OC00] Angelo Oddi and Amedeo Cesta. “Incremental Forward
Checking for the Disjunctive Temporal Problem.” In: Pro-
ceedings of the European Conference on Artificial Intelligence.
ECAI’00. IOS Press, 2000, pp. 108–112 (cit. on p. 170).

[OL08] Martin Ouimet and Kristina Lundqvist. “The Timed Ab-
stract State Machine Language: Abstract State Machines
for Real-Time System Engineering.” In: Journal of Univer-
sal Computer Science 14.12 (2008), pp. 2007–2033 (cit. on
p. 28).

310

http://www.microsoft.com/en-us/sqlserver/solutions-technologies/business-intelligence/streaming-data.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/business-intelligence/streaming-data.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/business-intelligence/streaming-data.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/business-intelligence/streaming-data.aspx
http://www.monetdb.org

[OMG11a] Object Management Group, Inc. Business Process Model
and Notation, v2.0. 2011. url: http://www.omg.org/spec/
BPMN/2.0/ (visited on 06/30/2014) (cit. on p. 28).

[OMG11b] Object Management Group, Inc. Unified Modeling Language,
v2.4.1. 2011. url: http://www.omg.org/spec/UML/2.4.1/
(visited on 06/30/2014) (cit. on p. 28).

[Oraa] Oracle Corporation. Java. url: http://www.java.com (vis-
ited on 06/30/2014) (cit. on pp. 249, 252).

[Orab] Oracle Inc. Oracle Complex Event Processing: Lightweight
Modular Application Event Stream Processing in the Real World.
url: http://www.oracle.com/technetwork/middleware/
complex- event- processing/overview/oracle- 37.pdf

(visited on 06/30/2014) (cit. on pp. 24, 31).

[Pas05] Adrian Paschke. ECA-RuleML: An Approach Combining ECA
Rules with Temporal Interval-based KR Event/Action Logics
and Transactional Update Logics. Technical University Mu-
nich, 2005 (cit. on p. 83).

[Pas06] Adrian Paschke. “ECA-LP / ECA-RuleML: A Homoge-
neous Event-Condition-Action Logic Programming Lan-
guage.” In: CoRR abs/cs/0609143 (2006) (cit. on pp. 30,
35).

[Pas+12] Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian,
and Tara Athan. “Reaction RuleML 1.0: Standardized Se-
mantic Reaction Rules.” In: Proceedings of the 6th Interna-
tional Conference on Rules on the Web: Research and Appli-
cations. RuleML’12. Springer, 2012, pp. 100–119 (cit. on
p. 30).

[Pat05] Paula-Lavinia Pătrânjan. “The Language XChange: A De-
clarative Approach to Reactivity on the Web.” Doctoral
Thesis. Institute for Informatics, University of Munich, 2005

(cit. on p. 21).

[PD99] Norman W. Paton and Oscar Díaz. “Active Database Sys-
tems.” In: ACM Computing Surveys 31.1 (1999), pp. 63–103

(cit. on pp. 20, 21, 93).

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, 2002. isbn: 0-262-16209-1 (cit. on p. 273).

[PK09] Adrian Paschke and Alexander Kozlenkov. “Rule-Based
Event Processing and Reaction Rules.” In: Proceedings of
the International Symposium on Rule Interchange and Applica-
tions. RuleML’09. Springer, 2009, pp. 53–66 (cit. on pp. 20,
36).

311

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/UML/2.4.1/
http://www.java.com
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/oracle-37.pdf
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/oracle-37.pdf

[PKB07] Adrian Paschke, Alexander Kozlenkov, and Harold Bo-
ley. “A Homogenous Reaction Rule Language for Com-
plex Event Processing.” In: International Workshop on Event-
driven Architecture, Processing and Systems. EDA-PS’07. VLDB
Endowment, 2007 (cit. on pp. 30, 33, 35).

[Pop+13] Olga Poppe, Sandro Giessl, Elke A. Rundensteiner, and
Franiçois Bry. “The HIT Model: Workflow-Aware Event
Stream Monitoring.” In: Transactions on Large-Scale Data-
and Knowledge-Centered Systems. Vol. 8290. Lecture Notes
in Computer Science. Springer, 2013, pp. 26–50 (cit. on
pp. 26–28).

[Pos] PostgreSQL. url: http://www.postgresql.org (visited on
06/30/2014) (cit. on p. 255).

[PR07] Paolo Pialorsi and Marco Russo. Introducing Microsoft LINQ.
First. Microsoft Press, 2007. isbn: 978-0-7356-2391-0 (cit.
on p. 34).

[Prz88] Teodor C. Przymusinski. “On the Declarative Semantics
of Deductive Databases and Logic Programs.” In: Foun-
dations of Deductive Databases and Logic Programming. Mor-
gan Kaufmann, 1988, pp. 193–216 (cit. on p. 227).

[PVY07] Bart Peintner, Kristen Brent Venable, and Neil Yorke-Smith.
“Strong Controllability of Disjunctive Temporal Problems
with Uncertainty.” In: Proceedings of the International Con-
ference on Principles and Practice of Constraint Programming.
CP’07. Springer, 2007, pp. 856–863 (cit. on p. 170).

[RVY04] Francesca Rossi, Kristen Brent Venable, and Neil Yorke-
Smith. “Controllability of Soft Temporal Constraint Prob-
lems.” In: Principles and Practice of Constraint Programming.
Vol. 3258. Lecture Notes in Computer Science. Springer,
2004, pp. 588–603 (cit. on p. 170).

[RVY06] Francesca Rossi, Kristen Brent Venable, and Neil Yorke-
Smith. “Uncertainty in Soft Temporal Constraint Problems:
A General Framework and Controllability Algorithms for
the Fuzzy Case.” In: Journal Of Artificial Intelligence Re-
search 27.1 (2006), pp. 617–674 (cit. on p. 170).

[San] Sandia National Laboratories. Jess, the Rule Engine for the
Java Platform. url: http://www.jessrules.com (visited on
06/30/2014) (cit. on p. 26).

[SAP] SAP AG. SAP Event Stream Processor. url: http://www.
sap.com/pc/tech/database/software/sybase-complex-

event-processing/index.html (visited on 06/30/2014)
(cit. on p. 24).

[SAP13] SAP AG. Programmers Guide: SAP Event Stream Processor
5.1. Tech. rep. 2013 (cit. on p. 24).

312

http://www.postgresql.org
http://www.jessrules.com
http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html
http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html
http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html

[SAS08] Kay-Uwe Schmidt, Darko Anicic, and Roland Stühmer.
“Event-driven Reactivity: A Survey and Requirements Anal-
ysis.” In: International Workshop on Semantic Business Pro-
cess Management. SBPM’08. CEUR, 2008 (cit. on p. 43).

[SB05] Marco Seiriö and Mikael Berndtsson. “Design and Imple-
mentation of an ECA Rule Markup Language.” In: Pro-
ceedings of the International Conference on Rules and Rule
Markup Languages for the Semantic Web. RuleML’05. Sprin-
ger, 2005, pp. 98–112 (cit. on p. 21).

[SB10a] Nikolaus Seifert and Marco Bettelini. Specific Report for
Use Case II, Public Transport. EMILI Deliverable D3.1 An-
nex B. ASIT Ltd., 2010. 97 pp. (cit. on pp. 17, 52).

[SB10b] Nikolaus Seifert and Marco Bettelini. Use Cases Require-
ments Analysis and Specification (Main Report). EMILI De-
liverable D3.1. ASIT Ltd., 2010. 111 pp. (cit. on pp. 11, 13,
15, 17, 41, 52, 74, 93, 95).

[SBR11a] Nikolaus Seifert, Marco Bettelini, and Samuel Rigert. Con-
crete Use Case Models (Main Report). Deliverable D3.2. ASIT
Ltd., 2011 (cit. on pp. 9, 13–15, 41, 74, 93, 95, 117, 118).

[SBR11b] Nikolaus Seifert, Marco Bettelini, and Samuel Rigert. Emer-
gency Management an Rules in Control Systems of Critical
Infrastructures. EMILI Deliverable D3.2 Annexe A. ASIT
Ltd., 2011. 42 pp. (cit. on pp. 9, 14, 117).

[SBR11c] Nikolaus Seifert, Marco Bettelini, and Samuel Rigert. Sim-
ulation Methodology. EMILI Deliverable D3.2. ASIT Ltd.,
2011. 33 pp. (cit. on p. 11).

[Sch04] Sebastian Schaffert. “Xcerpt: A Rule-Based Query and Trans-
formation Language for the Web.” Doctoral Thesis. Insti-
tute for Informatics, University of Munich, 2004 (cit. on
p. 43).

[Sch11] Maximilian Scherr. “Desugaring Dura— Compiling a High-
Level Event Processing Language.” Diploma Thesis. Uni-
versity of Munich, 2011 (cit. on p. 213).

[SFS12] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide To
Industrial Control Systems (ICS) Security. CreateSpace, 2012.
isbn: 978-1-4701-5814-9 (cit. on pp. 15, 16).

[Sha99] Murray Shanahan. “The Event Calculus Explained.” In:
Artificial Intelligence Today. Vol. 1600. Lecture Notes in Com-
puter Science. Springer, 1999, pp. 409–430 (cit. on pp. 82,
87).

[She85] John C. Shepherdson. “Negation as Failure. II.” In: Journal
of Logic Programming 2.3 (1985), pp. 185–202 (cit. on pp. 57,
72).

313

[SK00] Kostas Stergiou and Manolis Koubarakis. “Backtracking
Algorithms for Disjunctions of Temporal Constraints.” In:
Artificial Intelligence 120.1 (2000), pp. 81–117 (cit. on pp. 163,
169).

[Sto+11] Nenad Stojanovic et al. “Semantic Complex Event Rea-
soning— Beyond Complex Event Processing.” In: Founda-
tions for the Web of Information and Services. Springer, 2011,
pp. 253–279 (cit. on p. 31).

[SV98] Eddie Schwalb and Lluís Vila. “Temporal Constraints: A
Survey.” In: Constraints 3.2 (1998), pp. 129–149 (cit. on
pp. 163, 169, 170).

[TIB] TIBCO Software Inc. TIBCO BusinessEvents. url: http://
www.tibco.de/products/event- processing/complex-

event- processing/businessevents/default.jsp (vis-
ited on 06/30/2014) (cit. on pp. 26, 31, 83).

[TP03] Ioannis Tsamardinos and Martha E Pollack. “Efficient So-
lution Techniques for Disjunctive Temporal Reasoning Prob-
lems.” In: Artificial Intelligence 151.1-2 (2003), pp. 43–89

(cit. on p. 170).

[TPR03] Ioannis Tsamardinos, Martha E. Pollack, and Sailesh Ra-
makrishnan. “Assessing the Probability of Legal Execu-
tion of Plans with Temporal Uncertainty.” In: Proceedings
of the Workshop on Planning Under Uncertainty and Incom-
plete Information. 2003 (cit. on p. 170).

[Tra] TraffGo HT GmbH. PedGo. url: http://www.traffgo-
ht.com/de/pedestrians/products/pedgo/index.html

(visited on 06/30/2014) (cit. on p. 10).

[TRP12] Kia Teymourian, Malte Rohde, and Adrian Paschke. “Fu-
sion of Background Knowledge and Streams of Events.”
In: Proceedings of the International Conference on Distributed
Event-Based Systems. DEBS’12. ACM, 2012, pp. 302–313

(cit. on p. 31).

[TVP03] Ioannis Tsamardinos, Thierry Vidal, and Martha E. Pol-
lack. “CTP: A New Constraint-Based Formalism for Con-
ditional, Temporal Planning.” In: Constraints 8.4 (2003),
pp. 365–388 (cit. on pp. 105, 165, 167, 170).

[Ven+10] Kristen Brent Venable, Michele Volpato, Bart Peintner, and
Neil Yorke-Smith. “Weak and Dynamic Controllability of
Temporal Problems with Disjunctions and Uncertainty.”
In: Proceedings of the Workshop on Constraint Satisfaction
Techniques for Planning and Scheduling Problems. COPLAS’10.
2010 (cit. on p. 170).

314

http://www.tibco.de/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.tibco.de/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.tibco.de/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.traffgo-ht.com/de/pedestrians/products/pedgo/index.html
http://www.traffgo-ht.com/de/pedestrians/products/pedgo/index.html

[VF99] Thierry Vidal and Helene Fragier. “Handling Contingency
in Temporal Constraint Networks: From Consistency to
Controllabilities.” In: Journal of Experimental and Theoretical
Artificial Intelligence 11.1 (1999), pp. 23–45 (cit. on pp. 105,
141, 170).

[Vra+10] Sanja Vraneš et al. Specific Report for Use Case I, Airport.
EMILI Deliverable D3.1 Annex A. Institute Mihailo Pupin,
2010. 92 pp. (cit. on pp. 12, 13, 52, 117).

[VY05] Kristen Brent Venable and Neil Yorke-Smith. “Disjunc-
tive Temporal Planning with Uncertainty.” In: Proceedings
of the International Joint Conference on Artificial Intelligence.
Morgan Kaufmann, 2005, pp. 1721–1722 (cit. on p. 170).

[W3C07] Martin Gudgin et al. SOAP Version 1.2 Part 1: Messaging
Framework. 2007. url: http://www.w3.org/TR/soap12-
part1/ (cit. on p. 34).

[W3C10] Anders Berglund et al. XML Path Language (XPath) 2.0.
2010. url: http : / / www . w3 . org / TR / xpath20/ (cit. on
p. 55).

[Wat85] Donald A. Waterman. A Guide to Expert Systems. Addison-
Wesley, 1985. isbn: 0-201-08313-2 (cit. on p. 73).

[WBG08] Karen Walzer, Tino Breddin, and Matthias Groch. “Rela-
tive Temporal Constraints in the Rete Algorithm for Com-
plex Event Detection.” In: Proceedings of the International
Conference on Distributed Event-based Systems. DEBS’08. ACM,
2008, pp. 147–155 (cit. on pp. 24, 31).

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-perfor-
mance Complex Event Processing over Streams.” In: Pro-
ceedings of the International Conference on Management of
Data. SIGMOD’06. ACM, 2006, pp. 407–418 (cit. on p. 21).

[Wen09] John F. Wendt. Computational Fluid Dynamics. 3rd. Sprin-
ger, 2009. isbn: 978-3-540-85055-7 (cit. on p. 10).

[WGB08] Karen Walzer, Matthias Groch, and Tino Breddin. “Time
to the Rescue - Supporting Temporal Reasoning in the
Rete Algorithm for Complex Event Processing.” In: Pro-
ceedings of the International Conference on Database and Ex-
pert Systems Applications. DEXA’08. Springer, 2008, pp. 635–
642 (cit. on p. 24).

[Wik14] Wikipedia. Daegu Metro Fire — Wikipedia, The Free Ency-
clopedia. 2014. url: http://en.wikipedia.org/w/index.
php?title=Daegu_metro_fire&oldid=596315874 (visited
on 06/30/2014) (cit. on p. 13).

315

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/xpath20/
http://en.wikipedia.org/w/index.php?title=Daegu_metro_fire&oldid=596315874
http://en.wikipedia.org/w/index.php?title=Daegu_metro_fire&oldid=596315874

[WRE11] Di Wang, Elke A. Rundensteiner, and Richard T. Ellison
III. “Active Complex Event Processing over Event Streams.”
In: Proceedings of the VLDB Endowment 4.10 (2011), pp. 634–
645 (cit. on p. 35).

[Xte] Eclipse Foundation, Inc. Xtext— Language Development Made
Easy. url: http://www.eclipse.org/Xtext/ (visited on
06/30/2014) (cit. on pp. 253, 259, 279).

[Xte14] Eclipse Foundation, Inc. Xtext Documentation. Tech. rep.
2014 (cit. on p. 279).

[Zlo77] Moshe M. Zloof. “Query-by-Example: A Data Base Lan-
guage.” In: IBM Systems Journal 16.4 (1977), pp. 324–343

(cit. on p. 42).

[ZU99] Detlef Zimmer and Rainer Unland. “On the Semantics
of Complex Events in Active Database Management Sys-
tems.” In: Proceedings of the International Conference on Data
Engineering. ICDE’99. IEEE, 1999, pp. 392–399 (cit. on p. 20).

316

http://www.eclipse.org/Xtext/

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of October 21, 2014 (classicthesis version 4.1).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

D E C L A R AT I O N

eidesstattliche versicherung

(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

München, 7. August 2014

Steffen Hausmann

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization

	Introduction to Emergency Management
	2 Emergency Management in Critical Infrastructures
	2.1 A Vision for Modern Emergency Management
	2.2 Incidents in Critical Infrastructures
	2.3 Three Challenging Use Cases

	3 Foundations of Dynamic Emergency Management
	3.1 Supervisory Control and Data Acquisition
	3.1.1 Basic Components of SCADA Systems
	3.1.2 Limitations wrt Emergency Management

	3.2 Complex Event Processing
	3.2.1 Composition Operator Based Languages
	3.2.2 Data Stream Query Languages
	3.2.3 Production Rules
	3.2.4 Timed Automata
	3.2.5 Logic Languages
	3.2.6 Summary

	3.3 Means for Reactivity in Event Processing
	3.3.1 Remote Procedure Calls
	3.3.2 Integration with Imperative Languages
	3.3.3 Event-Condition-Action Rules

	The Language Dura
	4 Foundations and Language Design
	4.1 Declarative Rule-based Reasoning over Streams
	4.1.1 Reasoning with Rules
	4.1.2 Data Model
	4.1.3 Pattern-based Queries

	4.2 Full Acknowledgment of Orthogonal Concepts
	4.3 Deep Integration in a Uniform Language
	4.4 Time as a First Class Citizen
	4.5 Explicit Specification over Implicit Assumptions
	4.6 Clear Separation of Concerns
	4.6.1 Dimensions of Complex Events
	4.6.2 Dimensions of Stateful Objects
	4.6.3 Dimensions of Complex Actions

	5 Syntax and Informal Semantics
	5.1 Complex Events
	5.1.1 Representation of Events
	5.1.2 Atomic Event Queries
	5.1.3 Composite Event Queries
	5.1.4 Temporal and other Conditions
	5.1.5 Data Definition
	5.1.6 Grouping and Aggregation
	5.1.7 Existential Queries

	5.2 Deductive and Reactive Rules
	5.2.1 Range Restriction of Queries and Rules
	5.2.2 Deductive Rules
	5.2.3 Reactive Rules
	5.2.4 Recursive Rules
	5.2.5 Progressing Attributes

	5.3 Stateful Objects
	5.3.1 Representation of Stateful Objects
	5.3.2 Atomic Stateful Object Queries
	5.3.3 Integration with Event Queries
	5.3.4 Modifying Stateful Objects
	5.3.5 Creating and Terminating Values
	5.3.6 Querying State Changes
	5.3.7 State Based Processing
	5.3.8 Resolving Simultaneous Updates
	5.3.9 A Generalization of ECA Rules
	5.3.10 Processing Static Data

	5.4 Complex Actions
	5.4.1 Properties of Physical Actions
	5.4.2 Representation of Actions
	5.4.3 Action Invocation
	5.4.4 Action Composition
	5.4.5 Temporal Dependencies
	5.4.6 Execution Status
	5.4.7 Temporal Assertions
	5.4.8 Semantic Analysis for Actions
	5.4.9 Complex Action Rules
	5.4.10 Conditional Actions

	5.5 Relations to XChangeEQ

	6 Emergency Management Use Case
	6.1 Preliminaries
	6.1.1 Station Layout and Characteristics
	6.1.2 Representation in Dura

	6.2 Situation Assessment
	6.2.1 Enrichment of Basic Events
	6.2.2 Incident Categorization
	6.2.3 Alarm Verification
	6.2.4 Fire Size Estimation

	6.3 Operation Mode Governance
	6.3.1 Updating the Operation Mode
	6.3.2 Detecting Operation Mode Crossovers
	6.3.3 Identifying and Adapting the Operation Mode
	6.3.4 Propagating Operation Modes

	6.4 Immediate Reactions
	6.4.1 Elevator Deactivation
	6.4.2 Announcing Safe Evacuation Routes

	Formal Semantics and Semantic Analysis
	7 Semantics of Complex Actions
	7.1 Informal Introduction
	7.1.1 Properties Specific to the Execution of Actions
	7.1.2 Satisfying Temporal Dependencies
	7.1.3 Basic Ideas and Approach

	7.2 Formalization of Complex Actions
	7.2.1 Formal Representation of Complex Actions
	7.2.2 Formalization of Domain Knowledge
	7.2.3 Formalization of Conditional Actions

	7.3 Fixpoint Theory
	7.3.1 Preliminaries
	7.3.2 Fixpoint Iteration
	7.3.3 Runtime Traces
	7.3.4 Recapitulation of Notions

	8 Static Analysis of Complex Actions
	8.1 Requirements and Desirable Properties
	8.1.1 Undesired Behavior of Complex Actions
	8.1.2 Desirable Properties of Complex Actions
	8.1.3 Requirements for the Semantic Analysis

	8.2 Static Temporal Analysis
	8.2.1 Preliminaries
	8.2.2 Basic Ideas and Informal Introduction
	8.2.3 Analogies to Skolemization
	8.2.4 Desirable Properties Reconsidered

	8.3 Analysis Algorithm
	8.3.1 Pseudocode
	8.3.2 Correctness and Completeness
	8.3.3 Compliance Under Incomplete Knowledge
	8.3.4 Variation for Non-definite Runtime Traces
	8.3.5 Revision of Prior Work

	8.4 Temporal Constraint Satisfaction Problems
	8.4.1 Simple and Disjunctive Temporal Problems
	8.4.2 Temporal Problems with Uncertainty
	8.4.3 Temporal Problems with Predicates

	9 Formal Proofs
	9.1 Preliminaries
	9.2 Properties of Runtime Traces
	9.3 Properties of Fair Actions
	9.4 Properties of Compliant Actions

	Operational Semantics and Implementation
	10 Operational Semantics of DuraC
	10.1 Preliminaries and Informal Introduction
	10.1.1 Event Streams
	10.1.2 Representation of Dura Events
	10.1.3 A Generalization of Relational Algebra
	10.1.4 The Sub-language DuraC
	10.1.5 Basic Ideas of the Translation

	10.2 A Gentle Introduction to TSA
	10.2.1 Basic Algebra Operators
	10.2.2 Composite Algebra Operators

	10.3 Normalization of Queries
	10.3.1 Eliminating Literals in Query Terms
	10.3.2 Eliminating Temporal Relations and Functions
	10.3.3 Eliminating Identifiers in Groupings
	10.3.4 Adding Value Definitions in Disjunctions
	10.3.5 Eliminating Variable Definitions
	10.3.6 Establishing Range Restriction
	10.3.7 Summary

	10.4 Translating DuraC to TSA
	10.4.1 Event Schemata
	10.4.2 Atomic Queries
	10.4.3 Terms and Formulas
	10.4.4 Query Supplements
	10.4.5 Disjunctive Queries
	10.4.6 Conjunctive Queries
	10.4.7 Deductive Rules

	10.5 Walk Through of an Entire Translation

	11 Translating Dura to DuraC
	11.1 Actions in DuraC
	11.1.1 Informal Introduction
	11.1.2 Representation of Actions
	11.1.3 Eliminating Anonymous Complex Actions
	11.1.4 Translating Complex Action Rules
	11.1.5 Translating Status Queries
	11.1.6 Illustrative Examples
	11.1.7 Translating Action Identifier
	11.1.8 Translating Reactive Rules

	11.2 Stateful Objects in DuraC
	11.2.1 Informal Introduction
	11.2.2 Representing Values of Stateful Objects
	11.2.3 Translating Stateful Object Queries
	11.2.4 Translating Reactive Rules
	11.2.5 Deriving Succeeded Events
	11.2.6 Deriving Failed Events
	11.2.7 Deriving Updated Events
	11.2.8 Deriving Terminated Events
	11.2.9 Deriving Created and Initiated Events
	11.2.10 Concluding Remarks

	12 Implementation Prototype
	12.1 A Pragmatic Module Mechanism
	12.1.1 Stream Definitions
	12.1.2 Stream Modifier
	12.1.3 Modules

	12.2 The Dura Compiler
	12.2.1 Source Code Overview
	12.2.2 Compilation Phases
	12.2.3 Manual Compilation

	12.3 Evaluation of Dura Programs
	12.3.1 Event-Mill Setup
	12.3.2 Event-Mill Command Line Interface
	12.3.3 Executing Sample Sessions

	12.4 The Dura Editor
	12.5 Current Limitations

	Conclusion and Outlook
	13 Future Work and Perspectives
	13.1 Extensions for Event Queries
	13.2 Extensions for Stateful Objects
	13.3 Extensions for Complex Actions
	13.4 Exploiting Temporal Analysis on Events
	13.5 Introducing a Lightweight Type System
	13.6 Generic and Reasonable Event Selection
	13.7 Declarative Semantics for Full Dura
	13.8 Complexity Classes for Event Processing

	14 Summary and Conclusion

	Appendix
	A Formal Grammar
	A.1 Xtext Grammar Formalism
	A.2 Simplified Dura Grammar

	B Translations
	B.1 Complete Translation of a Complex Action
	B.2 Complete Translation of a Stateful Object
	B.3 Translation of Rules Querying a Stateful Object

	Bibliography
	Colophon
	Declaration

