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Chapter 1. Introduction 

 

1.1 Overview 

Over the past 100 years, organic chemistry has been greatly developed in all the 

subfields such as synthetic methodologies, mechanism studies and analytical methods. 

A large variety of natural products, medicines, and functional materials can be 

prepared artificially nowadays. However, a synthetic route always requires multiple 

steps and expensive reagents, catalysts or solvents, resulting in high cost and a huge 

amount of waste. To resolving these problems, one of the main challenges of modern 

synthetic organic chemistry is preparing highly applicable target compounds 

selectively, efficiently and economically under mild conditions. Meanwhile, the 

loading of expensive or toxic reagents should be avoided, and the amount of wastes 

should be reduced.
1
 

 

On the other hand, after decades of improvement, the organometallic chemistry has 

well matured, enabling the preparations of versatile functional organometallic 

reagents
2

 for further transformations such as transition-metal-catalyzed 

cross-couplings.
3
 Although many transition-metal-catalysts have been well known for 

their good activity and selectivity, the high price and difficulties in recovery hamper 

their applications in large scale transformations in industry. To explain these problems 

in details, three randomly picked examples of famous transition-metal-catalysts are 

shown in Figure 1: the Grubbs second generation catalyst for olefin- metathesis,
4
 the 

PEPPSI-IPr for cross-coupling reactions
5

 and the Hayashi catalyst for 

enantioselective 1,4-additions.
6
 Notably, all of these catalysts are very expensive not 

only because of the employment of expensive transition-metals as catalytic centers, 

but also owing to the requirements of complex ligands to sustain the catalysts’ activity 

and control the chemo-, regio- and stereoselectivity. Also, the 

transition-metal-catalyzed procedures are frequently accompanied by side reactions 

such as homo-coupling and β-hydride elimination. Besides, the toxicity of most 

transition-metals and the difficulties in removal of the harmful metal contamination in 

products make these procedures unattractive especially for pharmaceutical industry.
7
 

                                                             
1
 a) B. M. Trost, Science 1991, 254, 1471; b) R. Noyori, Green Chem. 2003, 5, G37; 

c) B. M. Trost, Angew. Chem. Int. Ed. 1995, 34, 259; d) R. Noyori, Chem. Commun. 

2005, 1807; e) R. H. Crabtree, Organometallics 2011, 30, 17. 
2
 Handbook of Functionalized Organometallics (Ed.: P. Knochel), Wiley-VCH, 

Weinheim, 2005. 
3
 Metal-Catalyzed Cross-Coupling Reactions, 2

nd
 Ed. (Eds.: A. de Meijere, F. 

Diederich), Wiley-VCH, Weinheim, 2004. 
4
 T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18. 

5
 C. Valente, M. E. Belowich, N. Hadei, M. G. Organ, Eur. J. Org. Chem. 2010, 4343. 

6
 T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829. 

7
 a) C. E. Garrett, K. Prasad, Adv. Synth. Catal. 2004, 346, 889; b) C. J. Welch, J. 

Albaneze-Walker, W. R. Leonard, M. Biba, J. DaSilva, D. Henderson, B. Laing, D. J. 

Mathre, S. Spencer, X. Bu, T. Wang, Org. Process Res. Dev. 2005, 9, 198. 
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Figure 1. Transition-metal-catalysts and their prices (data from Sigma-Aldrich
 ®

). 

 

As a better choice, the transition-metal-free cross-couplings or other similar 

procedures are really appreciated especially in industry because they get rid of all the 

drawbacks of transition-metals. Although such procedures are still rare, recently 

several elegant methods have been developed. In 2010, the Shi group reported a 

cross-coupling between arylbromides or iodides and simple arenes with the assistance 

of potassium butoxide, affording a series of biaryls. The reaction is proposed to 

undergo a radical pathway and a catalytic amount of phenanthroline type compounds 

is believed to facilitate the radical generation.
8
 In 2013, the Kurti group reported a 

novel biaryl formation from ortho-substituted nitrobenzenes and arylmagnesium 

species. The N,O-biarylhydroxylamine is believed to form firstly, followed by a 

[3,3]-sigmatropic rearrangement to produce the 2-amino-2’-hydroxy-1,1’-biaryl as a 

highly functionalized product (Scheme 1).
9
 The advantages of these processes are 

quite apparent, not only since there is no need of transition-metals, but also because 

they give products which are not easily accessible by transition-metal-catalyzed 

reactions. 

 

 

Scheme 1. Transition-metal-free cross-couplings. 

 

1.2 Preparation of Functionalized Organomagnesium Reagents 

In 1912, Victor Grignard (1871–1935), a French organic chemist, was awarded that 

                                                             
8
 C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou, X.-Y. Lu, K. Huang, S.-F. Zheng, B.-J. 

Li, Z.-J. Shi, Nature Chem. 2010, 2, 1044. 
9
 H. Gao, D. H. Ess, M. Yousufuddin, L. Kurti, J. Am. Chem. Soc. 2013, 135, 7086. 
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year’s Nobel Prize for chemistry for his contribution to the preparation of a series of 

organometallic reagents through a convenient direct insertion of magnesium metal 

into a carbon–halogen bond.
10

 The insertion reaction proceeds smoothly in a solvent 

such as diethyl ether or THF. The produced organomagnesium species, which are 

called Grignard reagents now, are highly nucleophilic and react with a variety of 

electrophiles such as ketone, aldehyde, epoxide and organic halides to form a new 

carbon–carbon bond. These methods have been proven very useful and efficient in 

organic synthesis (Scheme 2).
11

 

 

Scheme 2. Preparation of a Grignard reagent for the C–C bond formation 

 

However, considering that the Grignard reagents are quite reactive at room 

temperature, the direct insertion method always requires a high reaction temperature 

(usually the boiling point of the solvent) and therefore is not compatible with many 

functional groups. To resolve this problem, Rieke et al. developed an elegant method 

to use in-situ reduced magnesium (also other metals including Ca, Zn, In and Cu), 

which is highly reactive owing to its big surface area and less coverage of surface 

oxides, for the preparation of functionalized Grignard reagents at low temperature 

(Scheme 3).
12

 

 

 

Scheme 3. Preparation of functionalized Grignard reagent using active Rieke Mg. 

 

As a further improvement of the direct insertion method, Knochel et al. reported a 

LiCl-promoted preparation of Grignard reagent using commercial magnesium 

turnings or powder. In this procedure, LiCl is believed to solubilize the generated 

organomagnesium species and thus remove their clusters accumulating on the surface 

of metals, leading to more vacant sites for the following insertion reactions. As a 

                                                             
10

 V. Grignard, Compt. Rend. Acad. Sci. Paris 1900, 130, 1322. 
11

 a) Handbook of Grignard Reagents (Eds.: G. S. Silverman, P. E. Rakita), Marcel 

Dekker, New York, 2000; b) Grignard Reagents, New Developments (Ed.: H. G. 

Richey Jr.), Wiley-VCH, New York, 2000; c) J. Wiss, M. Länzlinger, M. Wermuth, 

Org. Proc. Res. Dev. 2005, 9, 365. 
12

 a) R. D. Rieke, Science 1989, 246, 1260; b) R. D. Rieke, M. V. Hanson, 

Tetrahedron 1997, 53, 1925; c) J. Lee, R. Verlade-Ortiz, A. Guijarro, J. R. Wurst, R. D. 

Rieke, J. Org. Chem. 2000, 65, 5428. 
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result, the insertion step is highly accelerated and the reaction can even occur at low 

temperature (≤ 0 ºC). Thus, a variety of functionalized aryl and heteroaryl magnesium 

species can be prepared from the corresponding iodides, bromides and even chlorides 

(Scheme 4).
13

 

 

 

Scheme 5. LiCl-promoted insertion of magnesium into functionalized aryl bromides. 

 

As an alternative method, the halogen-metal exchange can easily furnish the Grignard 

reagent under mild conditions, avoiding the high temptation for reaction initiation in 

the insertion method. Therefore, a series of functional groups can be tolerated during 

these procedures. Despite the early examples,
14

 Knochel et al. developed an 

iodine-magnesium exchange method employing 
i
PrMgBr, 

i
Pr2Mg or PhMgCl and 

used it to prepare functionalized Grignard reagents (Scheme 5).
15

 

 

                                                             
13

 a) F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. 

Int. Ed. 2008, 47, 6802; b) F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. 

Gavryushin, P. Knochel, Chem. Eur. J. 2009, 15, 7192. 
14

 a) C. Prévost, Bull. Soc. Chim. Fr. 1931, 49, 1372; b) J. Villiéras, Bull. Chem. Soc. 

Fr. 1967, 5, 1520; c) J. Villiéras, B. Kirschleger, R. Tarhouni, M. Rambaud, Bull. 

Chem. Soc. Fr. 1986, 24, 470. 
15

 a) L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed. 1998, 

37, 1701; b) I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 1610. 
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Scheme 5. Preparation of functionalized arylmagnesium species through 

iodine-magnesium exchange. 

 

Although the iodine-magnesium exchange proceeds smoothly under mild conditions, 

the similar bromo-magnesium exchange is ofen sluggish at low temperature, being in 

competition with other side reactions. Interestingly, in the presence of a stoichimetric 

amount of LiCl, this exchange is dramatically accelerated and a variety of 

functionalized Grignard reagents can be prepared and used for further synthesis 

(Scheme 6).
16

 

 

 

Scheme 6. Preparation of functionalized Grignard reagents from aromatic or 

heteroaromatic bromide using 
i
PrMgCl·LiCl. 

 

1.3 Preparation of Functionalized Organozinc Reagents 

Organozinc reagents are another big family of organometallic reagents and have been 

applied in versatile organic synthetic methodologies such as Negishi coupling.
17

 

Because of the high covalent character of the carbon–zinc bond, many kinds of 

                                                             
16

 a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333; b) A. 

Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 159. 
17

 A. O. King, N. Okukado, E.-i. Negishi, J. Chem. Soc., Chem. Commun. 1977, 683. 
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functional groups can be introduced to the organozinc reagents. However, there are 

several drawbacks of organozinc reagents such as its lower reactivity in comparison 

with Grignard reagents and the difficulties in preparations, limiting their applications. 

For the purpose of preparation simplicity and atom economy, the direct insertion of 

zinc powder into carbon–halogen bonds has been proved to be the most attractive 

method. Nevertheless, owing to the inertness of zinc powder, the direct insertion 

procedure usually requires very harsh conditions and only can proceed smoothly at 

some activated organohalides, narrowing the substrate scope. 

 

As a similar method for the preparation of Grignard reagent (vide supra), Rieke et al. 

also employed highly active Zn*, which is prepared by in-situ reduction of ZnCl2, for 

the preparation of functionalized organozinc reagents using less active arylbromides.
18

 

Considering the difficulties for the preparation of active Zn, this method is still less 

convenient. 

 

Recently, Knochel et al. developed a LiCl-mediated zinc insertion in THF for the 

preparation of functionalized organozinc reagents. The effect of LiCl is believed to be 

the same as its effect for the preparation of Grignard reagent (vide supra). With the aid 

of LiCl, the insertion step is highly accelerated and previously unavailable organozinc 

reagents can be obtained using this method. Thus, a variety of functionalized aryl, 

alkyl, alkenyl, allyl and benzyl organozinc reagents can be easily prepared within a 

single step (Scheme 7).
19

 

                                                             
18

 a) L. Zhu, R. M. Wehmeyer, R. D. Rieke, J. Org. Chem. 1991, 56, 1445; b) R. D. 

Rieke, Aldrichim. Acta 2000, 52, 52; c) S. H. Kim, R. D. Rieke, Tetrahedron 2010, 66, 

3135. 
19

 a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 

2006, 45, 6040; b) H. Ren, G. Dunet, P. Mayer, P. Knochel J. Am. Chem. Soc. 2007, 

129, 5376; c) N. Boudet, S. Sase, P. Sinha, C.-Y. Liu, A. Krasovskiy, P. Knochel, J. 

Am. Chem. Soc. 2007, 129, 12358; d) A. Metzger, M. A. Schade, P. Knochel, Org. Lett. 

2008, 10, 1107; e) A. Metzger, M. A. Schade, G. Manolikakes, P. Knochel, Chem. 

Asian J. 2008, 3, 1678; f) S. Sase, M. Jaric, A. Metzger, V. Malakhov, P. Knochel, 

2008, 73, 7380; g) C. Samann, M. A. Schade, S. Yamada, P. Knochel, Angew. Chem. 

Int. Ed. 2013, 52, 9495. 
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Scheme 7. LiCl-promoted zinc insertion for the preparation of functionalized 

organozinc reagents. 

 

For the preparation of more challenging arylzinc reagents, usually the active yet 

expensive aryl iodides or highly activated aryl bromides are still needed. The direct 

insertion of zinc powder into less active arylbromides or aryliodides bearing 

electron-donating groups is always very sluggish, even in the presence of LiCl and 

under harsh conditions. Then an elegant method was developed in the same group. To 

combine the advantages of the good activity of magnesium turnings and the stability 

of zinc reagents, Knochel et al. reported the preparation of arylzinc reagents using 

non-activated arylbromides and magnesium turnings in the presence of LiCl and 

ZnCl2. The functionalized arylbromides can undergo the magnesium insertion quickly 

under mild conditions and the formed arylmagnesium species will transmetalate to 

ZnCl2 immediately, leading to the more stable arylzincs, which can react with the 

following added electrophiles such as ketone, aldehyde, acidchloride and allylhalide. 
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Moreover, this method can be extended to other organohalides such as alkylhalide and 

benzylhalide. With the complexation of MgCl2, the reactivity of the produced 

organozinc reagents is dramatically increased (Scheme 8).
13a,20

 

 

 

Scheme 8. Preparation of organozinc reagents using Mg turnings and ZnCl2. 

 

Although a wide scope of organozinc reagents can be readily prepared using this 

method, the formed organozinc species are unstable owing to its high activity and thus 

cannot be stored for a long time even at low temperature. An alternative method for 

the preparation of organozinc reagents from electron-rich aryliodides and bromides is 

using a transition-metal-catalyst for accelerating the insertion step. Recently, Yoshikai 

et al. reported a Cobalt/Xantphos-catalyzed preparation of arylzinc reagents from aryl 

iodides, bromides, and even chlorides. In these reactions, the LiCl is still necessary 

(Scheme 9).
21

 

 

                                                             
20

 a) A. Metzger, F. M. Piller, P. Knochel, Chem. Commun. 2008, 5824; b) F. M. Piller, 

A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel Chem. Eur. J. 2009, 

15, 7192; c) T. D. Blümke, F. M. Piller, P. Knochel, Chem. Commun. 2010, 46, 4082; 

d) A. Metzger, S. Bernhardt, G. Manolikakes, P. Knochel, Angew. Chem. Int. Ed. 2010, 

49, 4665; e) M. A. Schade, G. Manolikakes, P. Knochel Org. Lett. 2010, 12, 3648. 
21

 M.-Y. Jin, N. Yoshikai, J. Org. Chem. 2011, 76, 1972. 
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Scheme 9. CoCl2/Xantphos-catalyzed zinc insertion to aryl halides. 

 

1.4 Direct Functionalization of Pyridines 

Pyridine derivatives (including quinolines, acridines and other similar compounds) are 

a large family of N-heterocycles which may display biological activity. Many 

bioactive compounds such as nature products, medicines, and agrochemicals bear the 

pyridine scaffold (Figure 2).
22

 

 

 
Figure 2. Selected examples of bioactive pyridine derivatives. 

 

During the past decades, numerous methods have been developed for the preparation 

of pyridine derivatives, including the transition-metal-catalyzed cross-couplings
23

 

                                                             
22

 a) F. Glorius, N. Spielkamp, S. Holle, R. Goddard, C. W. Lehmann, Angew. Chem. 

Int. Ed. 2004, 43, 2850; b) G. D. Henry, Tetrahedron 2004, 60, 6043; c) J. P. Michael, 

Nat. Prod. Rep. 2005, 22, 627; d) M. C. Bagley, C. Glover, E. A. Merritt, Synlett 2007, 

2459; e) M. D. Hill, Chem. Eur. J. 2010, 16, 12052; f) A. R. Hardin Narayan, R. 

Sarpong, Org. Biomol. Chem. 2012, 10, 70. 
23

 a) N. Miyaura, Cross-Coupling Reactions. A Practical Guide, Springer, Berlin, 

2002; b) Metal-Catalyzed Cross-Coupling Reactions (Eds.: F Diederich, A. de 

Meijere), Wiley-VCH, Weinheim, 2004; c) Organotransition Metal Chemistry (Ed.: J. 
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and ring-closure reactions.
 24

 In comparison with these classical methods, the 

advantages of direct pyridine functionalization are quite apparent. For example, there 

is no need of a pre-installation of halogens on the pyridine core, and the scope of 

substrate is much wider. Also, a highly functionalized pyridine can be synthesized by 

a shortened route using direct functionalization pathways. On the other hand, the 

directed metalation of pyridine scaffolds has been studied for a long time.
25

 However, 

because of the multiple vacant positions on pyridine core and the strong 

electrophilicity of pyridine itself, the bulky and expensive bases such as LIC-KOR 

mixture (LIC =butyllithium, plus KOR = potassium tert-butoxide) and TMP bases are 

always employed to control the regioselectivity and suppress the side reactions. 

Nevertheless, the formed 2-pyridyl organometallics are unstable and incompatible in 

most cross-coupling reactions. 

 

As a typical example of direct pyridine functionalization, the recently well developed 

transition-metal-catalyzed C–H bond activation has been widely applied in the 

synthesis of polyfunctional pyridine derivatives. Although the electron-rich 

heterocycles can easily undergo such a transformation through an electrophilic 

aromatic substitution (SEAr) pathway, the electron-deficiency of pyridines makes their 

direct functionalization a challenging goal. In 2005, Fagnou et al. reported firstly a 

palladium-catalyzed direct arylation reaction, using pyridine N-oxides as activated 

substrates instead of naked pyridines and arylbromides as the reaction partners 

(Scheme 10). The enhanced reactivity of such a kind of substrates is attributed to the 

electron-deficient nitrogen; hence the acidity of the two ortho-protons of the pyridine 

ring is dramatically increased. The arylated pyridine N-oxides can be readily reduced 

employing Pd/C and ammonium formate.
26

 

 

 
Scheme 10. Palladium-catalyzed direct ortho-arylation of pyridine N-oxides. 

 

Later, Charette et al. developed a similar palladium-catalyzed arylation of 

N-iminopyridinium ylides. It is believed that except activating the pyridine ring, the 

amide functionality of substrates performs as a stronger Lewis base for the 
                                                                                                                                                                               

F. Hartwig), University Science Books, Sausalito, California, 2010. 
24

 a) J. Barluenga, M. Ferrero, F. Palacios, Tetrahedron 1997, 53, 4521; b) J. 

Barluenga, M. A. Fernandez-Rodriguez, P. Garcia-Garcia, E. Aguilar, J. Am. Chem. 

Soc. 2008, 130, 2764; c) C. Lau, G. C. Tsui, M. Lautens, Synthesis 2011, 3908; d) Z. 

Shi, D. C. Koester, M. Boultadakis-Arapinis, F. Glorius, J. Am. Chem. Soc. 2013, 135, 

12204. 
25

 a) M. Schlosser, F. Mongin, Chem. Soc. Rev. 2007, 36, 1161; b) B. Haag, M. 

Mosrin, H. Ila, V. Malakhov, P. Knochel, Angew. Chem., Int. Ed. 2011, 50, 9794. 
26

 L.-C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020. 
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complexation of the palladium center, directing the following C–H bond insertion 

(Scheme 11).
27

 

 

 

Scheme 11. Palladium-catalyzed direct ortho-arylation of N-iminopyridinium ylides. 

 

However, these methods require a pre-installation of an auxiliary group and final 

removing of it, introducing several extra steps and narrowing the substrate scope. To 

get rid of such an auxiliary group, Nakao et al. proposed a strategy of generating an 

active pyridine species in-situ by coordinating it to a mild Lewis acid. Thus, in the 

presence of a catalytic amount of Lewis acids such as ZnMe2, ZnPh2, and AlMe3, the 

pyridine derivatives react smoothly with internal alkynes, leading to the 

ortho-alkenylated pyridines in good yields (Scheme 12).
28

 

 

 

Scheme 12. Nickel/Lewis acid catalyzed direct ortho-alkenylation of pyridines. 

 

On another hand, the direct functionalization of pyridines at other positions is rare 

owing to the charge distribution of the pyridine ring. Yu et al. used readily available 

nicotinamide and isonicotinamide derivatives as substrates for the 

palladium(0)/PR3-catalyzed direct arylation. In these cases, the functionalization 

occurs specifically at the meta or para positions of the pyridine ring. The amide 

functionality is used as a directing group for giving this unique regioselecivity 

(Scheme 13).
29

 

 

                                                             
27

 A. Larivée, J. J. Mousseau, A. B. Charette, J. Am. Chem. Soc. 2008, 130, 52. 
28

 Y. Nakao, Y. Yamada, N. Kashihara, T. Hiyama, J. Am. Chem. Soc. 2010, 132, 

13666. 
29

 M. Wasa, B. T. Worrell, J.-Q. Yu, Angew. Chem. Int. Ed. 2010, 49, 1275. 
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Scheme 13. Palladium catalyzed direct arylation of isonicotinamides. 

 

Besides, the pyridine derivatives can easily react with certain alkyl and acyl radicals, 

which are formed from precursors such as carboxylic acids, halides and boronic 

acids.
30

 Because of the nature of the pyridyl radical intermediate, this reaction 

proceeds similar to Friedel-Crafts reactions yet with higher activity and opposite 

regioselectivity (Scheme 14). 

 

 

Scheme 14. The pathway of Minisci reaction. 

 

Recently, Baran et al. developed an interesting strategy using zinc sulphinate as a 

radical precursor for the pyridine functionalization.
31

 A series of alkyls and 

fluoroalkyls can be introduced to substrates using this method. Amazingly, the 

reaction proceeds well even in open flasks with the presence of water (Scheme 15). 

 

 

Scheme 15. Rapid pyridine functionalization using zinc sulphinate and TBHP. 

 

Although the transition-metal-catalyzed C–H activation and radical reaction have 

been proved to be very efficient methods for direct pyridine functionalization, they 

still have some drawbacks such as the necessity of transition metals and the limited 

scope of substrate and functionality. Meanwhile, with the rapid development of the 

preparation methods of organometallic reagents, the oxidative Chichibabin-type two 

step strategies (nucleophilic addition followed by oxidative rearomatization) represent 

one of the most expedient methods for the direct functionalization of pyridine 

derivatives.
32

 In most cases, a pre-activation of the pyridine ring such as N-oxidation, 

                                                             
30

 F. Minisci, E. Vismara, F. Fontana, Heterocycles 1989, 28, 489. 
31

 Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. 

D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran, Nature 2012, 492, 

95. 
32

 a) D. M. Stout, A. I. Meyers, Chem. Rev. 1982, 82, 223; b) R. Lavilla, J. Chem. 

Soc., Perkin Trans. 1 2002, 1141; c) H. Andersson, R. Olsson, F. Almqvist, Org. 
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N-acylation or N-alkylation is required. 

 

During the early stage of systematic studying of Grignard reagent’s activity, people 

had already started to apply it for the pyridine functionalization through a nucleophilic 

addition. Rather than the inert pyridine itself, the more active pyridine N-oxide had 

been proved to be a better substrate attributing to its higher electrophilicity. However, 

in the preliminary examples the desired pyridine products were isolated in very low 

yields. The following studies indicated that a ring-opened byproduct, the 2,4-dienal 

oxime, was formed (Scheme 16).
33

 The poor chemo-selectivity hampered the further 

application of this method. 

 

 
Scheme 16. Nucleophilic addition of Grignard reagent to pyridine N-oxide. 

 

Recently, Almqvist et al. revisited this field and modified the conditions to achieve 

high chemo-selectivity towards pyridine products. The key of success is using acetic 

anhydride and high temperature for work up to suppress the undesired ring-opening. 

Under this condition, the addition specifically occurs at C(2) and affords mono- or 

disubstituted pyridines from pyridine N-oxides and a variety of aryl, alkyl, benzyl and 

alkynylmagnesium reagents (Scheme 17).
34

 

 

                                                                                                                                                                               

Biomol. Chem. 2011, 9, 337; d) J. A. Bull, J. J. Mousseau, G. Pelletier, A. B. Charette, 

Chem. Rev. 2012, 112, 2642; e) J. L. Jeffrey, R. Sarpong, Org. Lett. 2012, 14, 5400. 
33

 a) T. Kato, H. Yamanaka, J. Org. Chem. 1965, 30, 910; b) R. M. Kellogg, T. J. Van 

Bergen, J. Org. Chem. 1971, 36, 1705; c) P. Schiess, P. Ringele, Tetrahedron Lett. 

1972, 13, 311. 
34

 H. Andersson, F. Almqvist, R. Olsson, Org. Lett. 2007, 9, 1335. 



Chapter 1 

14 
 

 

Scheme 17. Direct functionalization of pyridine N-oxides using Grignard reagents. 

 

Interestingly, in the reaction of 3-substituted pyridine N-oxide such as 3-picoline 

N-oxide, the dienal oxime is not formed and the direct arylation occurs at the more 

crowded C(2) position, affording the 2,3-disubstituted pyridine in 43% yield (Scheme 

18). 

 

 
Scheme 18. Synthesis of 2,3-disubstituted pyridine. 

 

It is noteworthy that a set of consecutive direct arylations of a 4-substituted pyridine 

N-oxide has also been screened. After the first addition of PhMgCl, heating of the 

intermediate under air gave the 1,4-disubstituted pyridine N-oxide in 86% yield. Then, 

a second arylation can be easily performed and finally a 2,4,6-trisubstituted pyridine 

was obtained (Scheme 19). 

 

 

Scheme 19. Consecutive direct arylations of pyridine N-oxide. 

 

Although the reaction activity, the chemoselectivity and regioselectivity have been 
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increased greatly under the modified conditions, the functional group tolerance is still 

unsatisfying because the addition reaction is operated at room temperature, at which 

most of the functional groups cannot survive in the presence of a Grignard reagent. 

However, at a much lower reaction temperature (-60 °C), it is found that the addition 

reaction of nitropyridine N-oxides still proceeds smoothly and the Grignard reagents 

specifically adds to the pyridine ring, instead of the more reactive nitro group 

(Scheme 20).
35

 Notably, for the reaction of 4-nitropyridine N-oxide, the 

isopropylmagnesium species adds selectively at the position 3, the ortho position of 

nitro group, instead of the position 2. 

 

 
Scheme 20. Direct functionalization of pyridine-N-oxides with a nitro substituent. 

 

The pyridine derivatives can also be activated by acyl chloride to form an 

N-acylpyridinium salt. Then, a Grignard reagent easily adds to this in-situ prepared 

intermediate, leading to N-acyldihydropyridine derivatives, which can undergo a 

oxidative rearomatization to form substituted pyridines. However, in those early 

reported cases, a mixture of 1,2-addition and 1,4-addition products were obtained 

(Scheme 21).
36

 

 

Scheme 21. One-step synthesis of substituted pyridine derivatives from 

N-acylpyridinium. 

 

Meanwhile, inspired by the HSAB theory, people found that while using a series of 

soft nucleophiles such as organocopper or organozinc reagents instead of Grignard 

reagents or organolithium reagents, the para position of the pyridine ring was 

preferentially attacked whereas the ortho position was leaved untouched, leading to 

                                                             
35

 F. Zhang, X.-F. Duan, Org. Lett. 2011, 13, 6102. 
36

 a) G. Fraenkel, J. W. Cooper, C. M. Fink, Angew. Chem. Int. Ed. Engl. 1970, 9, 523; 

b) R. E. Lyle, J. L. Marshall, D. L.Comins, Tetrahedron Lett. 1977, 1015; c) R. E. 

Lyle, D. L. Comins, J. Org. Chem. 1976, 41, 3250.  
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the 1,4-adddition products predominantly (Table 1)
37

. Comins et al. reported the 

regioselectivity of the addition of Grignard reagents to the pyridinium salts were 

dramatically changed in the presence of a catalytic amount of CuI. The produced 

dihydropyridine were readily rearomatized by alkaline S8 treatment under heating 

(entries 1–3).
37a

 Nearly at the same time, Akiba et al. proved that the organocopper 

reagent itself such as RCu·BF3 also added selectively at the position 4 of pyridine and 

both alkyl and aryl group was introduced with good functional group tolerance. The 

oxidation was operated by flowing oxygen to the neat dihydropyridine species (entries 

4 and 5).
37b

 Later, the benzylic copper reagents (entries 6 and 7)
37c

 or benzylic zinc 

reagents (entries 8 and 9)
37d

 were also screened for the pyridine functionalization, and 

the 4-substituted products were selectively afforded. 

 

To control the stereoselectivity of the addition step, Mangeney et al. prepared a chiral 

aminal, obtained from nicotinaldehyde and chiral diamines with C2 symmetry. This 

aminal undergoes the addition of organocopper reagents at position 4 to form 

1,4-dihydropyridine-3-carboxaldehydes in good diastereoselectivity. One more 

addition of an organometallic reagent furnishes a chiral alcohol, which can be easily 

rearomatized by alkaline oxidation, affording a chiral pyridyl alcohol (Scheme 22).
38

 

 

 
Scheme 22. Diastereoselective 1,4-addition to pyridine with a chiral auxiliary. 

 

Some other pyridine activation methods including N-alkylation,
39

 N-triflylation
40

 and 

N-pyridinium formation
41

 have also been reported for the following direct pyridine 

functionalizations. These methods have been applied for the synthesis of natural 

products and other bio-active compounds. 

                                                             
37

 a) D. L. Comins, A. H. Abdullah, J. Org. Chem. 1982, 47, 4315; b) K. Akiba, Y. 

Iseki, M. Wada, Tetrahedron Lett. 1982, 23, 429; c) T.-L. Shing, W.-L. Chia, M.-J. 

Shiao, T.-Y. Chau, Synthesis 1991, 849; d) A. P. Krapcho, D. J. Waterhouse, A. 

Hammach, R. Di Domenico, E. Menta, A. Oliva, S. Spinelli, Synth. Commun. 1997, 

27, 781. 
38

 P. Mangeney, R. Gosmini, S. Raussou, M. Commerçon, Tetrahedron Lett. 1993, 34, 

6399. 
39

 R. Loska, M.  a     a, J. Org. Chem. 2007, 72, 1354. 
40

 a) A. R. Katritzky, S. Zhang, T. Kurz, M. Wang, Org. Lett. 2001, 3, 2807; b) E. J. 

Corey, Y. Tian, Org. Lett. 2005, 7, 5535. 
41

 A. B. Charette, M. Grenon, A. Lemire, M. Pourashraf, J. Martel, J. Am. Chem. Soc. 

2001, 123, 11829. 
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Table 1. 1,4-addition to pyridines using soft organometallics. 

 
a
A trace amount of regio-isomers were still observed. 

b
PhOCOCl was used instead of 

EtOCOCl for the preparation of pyridinium salt. 
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1.5 Frustrated Lewis Pairs 

In 1923, Gilbert N. Lewis defined a molecule with an empty molecular orbital to 

accept an electron-pair as acid, and a molecule which can donate an electron-pair as 

base.
42

 Since then, the concept of Lewis acid/base has been used widely to rationalize 

many chemical processes and guide the development of new synthetic methodologies. 

As a common understanding now, mixing a Lewis acid and a Lewis base results in a 

neutralization and the formation of a Lewis acid/base adduct. 

 

However, during the study of coordination between pyridines and boranes, Brown et 

al. found that the 2,6-lutidine formed a stable adduct with BF3 but there was no 

reaction between 2,6-lutidine and BMe3 at low temperature (Scheme 23).
43

 It was 

explained by the steric conflict between the two bulky species. 

 

 

Scheme 23. Treatment of 2,6-lutidine with BF3 and BMe3. 

 

Later, some similar phenomenons were observed, that instead of forming a stable 

adduct, the mixed Lewis acid and base afforded a weakly interacted pair and still 

expressed their Lewis acidity and basicity in the following transformations. For 

example, as a classical Lewis acid and base, triphenylphosphine and triphenylborane 

were mixed and preferably underwent a benzyne insertion, instead of quenching each 

other. Similarly, while mixing tritylsodium and triphenylborane, the two species were 

still active enough to produce a trapping product with 1,3-butadiene (Scheme 24).
44

 

 

 

Scheme 24. Early examples of Frustrated Lewis Pair. 

 

To generalize this concept, in 2006 the Stephan group prepared a zwitterionic species 

(1) which undergoes a thermal liberation of H2 at a temperature above 100 °C, leading 

to a phosphino-borane (2). In solution, 2 proved to be monomeric because of the 

                                                             
42

 G, N, Lewis, Valence and the Structure of Atoms and Molecules, Chemical 

Catalogue Company, New York, 1923. 
43

 H. C. Brown, H. I. Schlesinger, S. Z. Cardon, J. Am. Chem. Soc. 1942, 64, 325. 
44

 a) G. Wittig, E. Benz, Chem. Ber. 1959, 92, 1999; b) W. Tochtermann, Angew. 

Chem. Int. Ed. Engl. 1966, 5, 351. 
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bulky groups surrounding the B and P atoms, hampering dimerization or higher 

aggregation. Thus, it is called a sterically “frustrated Lewis pair” (FLP). By treating 2 

with H2 at 25 °C, the rapid regeneration of 1 was observed (Scheme 25).
45

 

Mechanism studies indicated that during this reaction, the complexation of H2 to 

Lewis acidic B firstly occurred. With the assistance of the Lewis basic P, the H–H 

bond heterolytic cleaved followed by an intramolecular H
+
 migration to P. 

 

 

Scheme 25. H2 storage and releasing using 1 and 2. 

 

Inspired by this strategy and related mechanism information, later an intermolecular 

H–H bond cleavage using sterically demanding phosphines and boranes was reported 

by the same group. A series of phosphonium borates were obtained as products of 

these transformations (Scheme 26).
46

 

 

 

Scheme 26. Heterolytic cleavage of H2 by phosphines and boranes. 

 

The hydrogen uptake/releasing cycle by 1/2 can be applied in catalytic 

transformations such as imines hydrogenation. Treating the imine substrates in the 

presence of a catalytic amount of 1, the hydrogenation proceeds smoothly under 

heating and 1–5 atm of H2, providing a transition-metal-free strategy of catalytic 

hydrogenation (Scheme 27).
47

 

 

 

Scheme 27. Catalytic hydrogenation of imines using 1 as a catalyst. 

Recently, the Knochel group reported a novel Lewis pair 3, which was easily prepared 

                                                             
45

 a) G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 

1124; b) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46. 
46

 G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880. 
47
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by mixing the TMP base and BF3·OEt2 at low temperature. It can regioselectively 

deprotonate pyridine derivatives, affording a variety of pyridylmagnesium species for 

further synthetic reactions (Scheme 28).
48

 

 

 
Scheme 28. Regioselective metalation of pyridines mediated by FLP 3. 

 

1.6 Objectives 

The direct functionalization of simple and commercial available pyridines into more 

complex pyridine derivatives for applications in biology and material science is a 

challenging task for organic synthetic chemists. Our group has developed a 

BF3-triggered direct metalation of pyridines. The formed pyridylmetallic species can 

be trapped by electrophiles with or without transition-metal-catalysts, affording a 

variety of polyfunctional pyridine derivatives (Scheme 29).
48,49

 

 

 

Scheme 29. Regioselective functionalization of pyridines using BF3·OEt2 and 

TMP-bases. 

 

As a variant of this method, we designed a pyridine functionalization method using 

BF3-activated pyridines as substrates for a following Chichibabin-type nucleophilic 

addition by alkyl- and arylmagnesium reagents. The regioselectivity of the addition 

should be controlled by the complexed BF3, which shields the C(2) and C(6) position 

of the pyridine ring by steric hindrance. Thus the C(4) position should be preferred. 

An oxidative work up is necessary to rearomatize the 1,4-dihydropyridine 

                                                             
48

 M. Jaric, B. A. Haag, A. Unsinn, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. 

Ed. 2010, 49, 5451. 
49
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49, 2124. 
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intermediate to obtain the pyridine product (Scheme 30). 

 

 

Scheme 30. BF3-mediated Chichibabin-type reaction. 

 

As an attempt to introduce more functionalities into the substrates, a variety of 

functional organozinc reagents would be screened under a similar condition. 

Nevertheless, the organozinc reagents are less reactive than Grignard reagents and 

therefore the addition of an organozinc reagent to the pyridine rings might be sluggish. 

Considering the diorganozinc species were more reactive than the corresponding 

monoorganozinc species, we planned to convert the functional organozinc reagents to 

diorganozinc species with a non-transferrable ligand and use them in-situ for the 

following pyridine functionalization (Scheme 31). 

 

 

Scheme 31. BF3-mediated pyridine functionalization using functional organozinc 

reagents. 

 

Besides, based on the HSAB theory, we hypothesized that in comparison with 

organomagnesium or zinc species, a smaller and harder nucleophile such as 

alkynyllithium can undergo a 1,2-addition, instead of the 1,4-addition, to selectively 

functionalize the C(2) position of pyridines (Scheme 32). 

 

 

Scheme 32. BF3-mediated pyridine functionalization at C(2) using alkynyllithiums. 

 

Also, if the C(4) position of pyridine ring has already been substituted by a suitable 

leaving group (X), then after the treatment with BF3·OEt2 and Grignard reagents, the 

4,4-disubstituted-1,4-dihydropyridine intermediate should be formed and after the 

cleavage of C–X bond, a cross-coupling product will be observed (Scheme 33). 
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Scheme 33. BF3-mediated cross-coupling of 4-substituted pyridines. 

 

With a combination of above methods, a successive functionalization of pyridines was 

proposed, affording di-, tri- and tetra-substituted pyridine products within several 

simple steps (Scheme 34 and 35). 

 

 

Scheme 34. BF3-mediated polyfunctionalization of pyridines through oxidative 

cross-couplings. 

 

 

Scheme 35. BF3-mediated polyfunctionalization of pyridines through oxidative and 

non-oxidative cross-couplings. 

 

Finally, the addition/oxidation strategy would be modified and an addition/reduction 

method would be used for the synthesis of piperidine derivatives. A suitable reduction 

condition is crucial for the final step (Scheme 36). 

 

 

Scheme 36. Addition/reduction method for the synthesis of piperidines. 
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Chapter 2. BF3-Mediated Regioselective Direct Alkylation and Arylation of 

Functionalized Pyridines 

 

2.1 Introduction 

Pyridines are an important class of N-heterocycles including many bioactive 

compounds
1

 and functional materials.
2

 The direct functionalization of these 

heterocyclic scaffolds has been achieved by numerous methods, including C–H 

activation,
3

 radical reaction,
4

 and directed metalation.
5

 Nevertheless, these 

approaches always require the addition of catalytic or stoichiometric amounts of 

transition-metals, most of which are expensive and non-environmentally benign. 

Besides, such transition-metal catalyzed procedures are frequently accompanied by 

side reactions such as homo-coupling and β-hydride elimination. Moreover, especially 

                                                             
1
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2459; e) M. D. Hill, Chem. Eur. J. 2010, 16, 12052; f) A. R. Hardin Narayan, R. 
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2
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Hyodo, N. Chatani, J. Am. Chem. Soc. 2009, 131, 12070; e) Y. Nakao, Y. Yamada, N. 

Kashihara, T. Hiyama, J. Am. Chem. Soc. 2010, 132, 13666; f) M. Wasa, B. T. Worrell, 

J.-Q. Yu, Angew. Chem. Int. Ed. 2010, 49, 1275; g) B. Xiao, Z.-J. Liu, L. Liu, Y. Fu, J. 

Am. Chem. Soc. 2013, 135, 616. 
4
 a) F. Minisci, C. Giordano, E. Vismara, S. Levi, V. Tortelli, J. Am. Chem. Soc. 1984, 

106, 7146; b) F. Minisci, F. Fontana, E. Vismara, J. Heterocycl. Chem. 1990, 27, 79; c) 

I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel, P. S. 

Baran, J. Am. Chem. Soc. 2010, 132, 13194; d) G. A. Molander, V. Colombel, V. A. 

Braz, Org. Lett. 2011, 13, 1852; e) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, 

D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. 
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for the pharmaceutical industry, the removal of harmful transition-metal 

contamination is often costly and difficult.
6
 

 

To avoid using transition-metals, oxidative Chichibabin-type two step strategies 

(nucleophilic addition followed by oxidative aromatization) represent one of the most 

expedient methods for the direct functionalization of pyridine derivatives.
7
 However, 

a pre-activation of the pyridine ring such as N-oxidation, N-acylation or N-alkylation 

is usually required.
8
 Especially for hard nucleophiles such as organolithium, Grignard 

and organozinc reagents, the nucleophiles add mostly to the C(2)-position of the 

pyridine ring. The formation of a small but not negligible amount of a 4-substituted 

product is often observed, lowering somewhat the synthetic value of these methods.
9
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6360. 
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2.2 Results and Discussion 

 

2.2.1 BF3-Mediated Direct Alkylation of Pyridines using Grignard Reagents 

During the primary studies, we found a novel transition-metal-free BF3·OEt2
10

 

mediated regioselective synthesis of 4-substituted pyridine derivatives using LiCl 

activated Grignard
11

 or organozinc reagents.
12

 Thus, the treatment of 

3-chloropyridine (1a) with BF3·OEt2 (1.1 equiv, THF, 0 °C, 15 min) affords the Lewis 

pair (2). Subsequent addition of 
i
PrMgCl·LiCl (1.2 equiv, -50 °C, 0.5 h) leads to the 

tentative intermediate (3), which was conveniently aromatized by chloranil
13

 (2.0 

equiv, 25 °C, 2 h) affording the 3-chloro-4-isopropylpyridine (4a) in 89% isolated 

yield. The regioisomeric 2-substitution product is not observed (Scheme 1). BF3 

facilitates considerably this addition reaction and without this Lewis acid, no reaction 

occurs. 

 

The presence of LiCl has a beneficial effect since the addition of EtMgCl·LiCl 

provides the product (4b) in 94% NMR yield (NMR-determination with internal 

standard calibration). In the absence of LiCl, EtMgCl furnishes the desired product 

(4b) in only 67% NMR yield (Table 1, entry 1). 

 

                                                             
10

 a) K. Maruyama, Y. Yamamoto, J. Am. Chem. Soc. 1977, 99, 8068; b) K. B. 

Aubrecht, M. D. Winemiller, D. B. Collum, J. Am. Chem. Soc. 2000, 122, 11084; b) G. 

A. Molander, N. Ellis, Acc. Chem. Res. 2007, 40, 275; c) D. W. Stephan, G. Erker, 

Angew. Chem. Int. Ed. 2010, 49, 46; d) M. Jaric, B. A. Haag, A. Unsinn, K. 

Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 5451; e) M. Jaric, B. A. 

Haag, S. M. Manolikakes, P. Knochel, Org. Lett. 2011, 13, 2306. 
11

 a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333; b) F. M. Piller, 

P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 

6802; c) F. M. Piller, A. Metzger, M. A. Schade, B. A. Hagg, A. Gavryushin, P. 

Knochel, Chem. Eur. J. 2009, 15, 7192. 
12

 a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 

2006, 45, 6040; b) M. Hatano, S. Suzuki, K. Ishihara, J. Am. Chem. Soc. 2006, 128, 

9998; c) T. D. Blümke, F. M. Piller, P. Knochel, Chem. Commun. 2010, 46, 4082; d) 

A.Metzger, S. Bernhardt, G. Manolikakes, P. Knochel, Angew. Chem. Int. Ed. 2010, 

49, 4665. 
13

 a) A. Krasovskiy, A. Tishkov, V. del Amo, H. Mayr, P. Knochel, Angew. Chem. Int. 

Ed. 2006, 45, 5010; b) V. del Amo, S. R. Dubbaka, A. Krasovskiy, P. Knochel, Angew. 

Chem. Int. Ed. 2006, 45, 7838. 
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Scheme 1. Selective addition of a Grignard reagent to 3-chloropyridine. 

 

A range of primary and secondary alkylmagnesium derivatives add in the presence of 

LiCl to 3-chloropyridine (1a) to furnish regiospecifically the 4-substituted products 

(4c–f) in 70–94% yield (entries 2–5). Notably, even a tertiary alkyl group such as a 

tert-butyl group can be introduced to nicotinonitrile (1b) in 70% yield (entry 6). In 

order to exclude a radical pathway, we used hex-5-en-1-ylmagnesium chloride as a 

radical clock, but did not observe any cyclized product and only the linear substituted 

pyridine (4h) was obtained in 76% NMR yield (entry 7). Several other 3-substituted 

pyridines such as 3-bromopyridine (1c), ethyl nicotinate (1d), 3-phenylpyridine (1e) 

and 3-vinylpyridine (1f) add 
i
PrMgCl·LiCl, leading to the desired 4-substituted 

pyridines (4i–l) in 47–79% yield (entries 8–11).  

 

Also, 2-chloropyridine (1g) adds 
i
PrMgCl·LiCl in C(4)-position to afford the 

corresponding disubstituted pyridine (4m) in 76% NMR yield. Interestingly, the 

2-chloro substituent is inert under these conditions (entry 12). Similarly, a 

1,2,3-trisubstituted pyridine (4n) can be readily prepared in 93% isolated yield (entry 

13). 

 

In the case of quinolines (1i–k), the addition of 
i
PrMgCl·LiCl occurs with good 

regioselectivity to afford the 4-substituted quinolines (4o–q) in 78–86% isolated yield 

(entries 14–16). However, <10% of the corresponding 2-substituted quinolines
14

 have 

also been isolated.
15

 

                                                             
14

 See Experimental Section. 
15

 For other substrates such as pyridine, 3-picoline and 2-methoxypyridine, the 

addition is very slow and only affords trace amount of the desired products. A 

4-substituted substrate such as ethyl isonicotinate does not give any addition product. 

See Table 2. 
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Table 1. Direct alkylation of pyridine derivatives using Grignard reagents 

 
 



Chapter 2 

28 
 

Table 1. Continued. 

 
a
Isolated yields of analytically pure products. NMR yields are given in parenthesis. 

b
The reaction is performed with EtMgCl. 

c
The low isolated yield is caused by a 

difficult chromatographical separation. 

 

Also, nicotinamides are widely used as building blocks for many pharmaceuticals. 

However, the direct functionalization of nicotinamides always relies on 

transition-metal catalyzed procedures.
3f,16

 Here, an equivalent of 
t
BuMgCl is used to 

deprotonate the amide nitrogen of the nicotinamde (1l) and two equivalents of 

BF3·OEt2 are added, leading to the tentative intermediate 5. The isopropylmagnesium 

reagent reacts smoothly with 5 and the desired product (4r) is obtained in 67% 

isolated yield (Scheme 2). 

 

Scheme 2. Direct alkylation of nicotinamide (1l). 

 

To get more information of the potential and scope of this reaction, some other 

                                                             
16

 Q. Chen, L. Ilies, E. Nakamura, J. Am. Chem. Soc. 2011, 133, 428. 
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substrates have also been screened, in the reactions with different Grignard reagents 

(Table 2). A naked pyridine and pyridines with electron-donating groups such as 

3-picoline and 2-methoxypyridine only give trace amounts of the addition products 

(4aa–ac). More electron-rich substrates such as DMAP cannot afford any detectable 

product. Also, when using 2-substituted pyridine derivatives, the reactions proceed 

quite sluggishly and usually result in very low yields of the addition products, or even 

no reaction (4ad–ag). One possible explanation is that because of the bulky 

ortho-substituents of these pyridine derivatives, the corresponding BF3-adducts are 

not stable even at low temperature (See Chapter 1, Ref. 43). A 4-substituted pyridine 

derivative, ethyl isonicotinate also fails to give the product (4ah). In this case the 

attached BF3 shields the ortho-positions and thus an alkyl Grignard reagent cannot 

add to the C(2) position. With a mild electron-withdrawing group, the 

3-fluoropyridine can be converted to the corresponding products (4ai–aj) in moderate 

yields. In the reaction between 3-iodopyridine and 
i
PrMgCl·LiCl, the exchange occurs 

much faster than the addition and the product (4ak) is not formed. If a bulky Grignard 

reagent such as 
t
BuMgCl is employed for the reaction of 3-chloropyridine, only 14% 

of the product (4al) are obtained. For pyridines with functional groups such as nitro 

and amide, the desired products (4am and 4an) are formed in low yields. Other 

functionalized pyridines such as 3-acetylpyridine, 3-phenylcarbonylpyridine, 

2-phenylcarbonylpyridine and 2-vinylpyridine afford more complex mixtures after the 

reaction. 

 

For other heterocycles such as pyrazine and pyrimidine, the addition products (4ao 

and 4ap) are produced in 12% and 38% yields. Also, benzo[f]quinoline gives the 

product 4aq in 18% yield together with other isomers. Quinazoline or pyridazine also 

produces a mixture of regio-isomers. And benzoxazole or 2,2'-bipyridine just 

decomposes during the reaction. Imidazo[1,2-a]pyridine is inert toward the addition 

of Grignard reagents under these conditions. 

 

While using isoquinoline (1m) to react with 
i
PrMgCl·LiCl, in addition to the desired 

product 4s, a dimerized product 4sa was also detected (Scheme 3).
17

 

 

 
Scheme 3. Reaction of isoquinoline. 
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 T. Louerat, Y. Fort, V. Mamane, Tetrahedron Lett. 2009, 50, 5716. 
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Table 2. Other examples of direct alkylation of pyridine derivatives using Grignard 

reagents.
a 

a
Yields determined by GC or NMR. 

b
Owing to the volatility of these compounds, 

some part of these products was lost during the workup. 

 

To explore some mechanistic details of this reaction, 3-chloropyridine (1a) was 

reacted with BF3·OEt2 and pre-mixed 
i
PrMgCl·LiCl and EtMgCl·LiCl in equal 

amounts. Interestingly, the bulkier isopropyl adduct (4a) is mainly formed (eq 1). It 

indicates that rather than steric effects, the nucleophilicity and aggregation of the 

Grignard reagents play a more important role in these additions to pyridines. Besides, 

more electro-deficient ethyl nicotinate (1d) undergoes the addition of the Grignard 

reagent more readily (ca. 4 times) than 3-chloropyridine (1a); (eq 2). 
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2.2.2 BF3-Mediated Direct Alkylation of Pyridines using Organozinc Reagents 

To expand the scope of this reaction, we have investigated the use of alkylzinc 

reagents
12c

 for the nucleophilic addition. The addition of OctZnBr·MgCl2·LiCl to 

nicotinonitrile (1b) led to an unsatisfactory reaction with uncompleted conversion. 

However, by forming the mixed diorganozinc reagent OctZn
t
Bu, readily prepared by 

adding 
t
BuMgCl to OctZnBr·MgCl2·LiCl, we obtained a fast and quantitative addition 

to nicotinonitrile (1b) at -50 °C. After oxidative treatment with chloranil, the desired 

4-substituted pyridine (6a) was obtained in 99% yield (Scheme 4). The tert-butyl 

group plays in all these reactions the role of a non-transferable ligand.
 18

 It should be 

noticed that although the tert-butyl group bears 9 β-hydrogens, no significant 

β-hydride elimination is observed in these reactions, since no transition-metal is 

present. This enables us to avoid using more expensive non-transferable ligands such 

as neopentyl, neophyl
18b

 or trimethylsilylmethyl,
18 a,c

 which bear no β-hydrogen. 

 

 

Scheme 4. Selective addition of an organozinc reagent to nicotinonitrile 

 

Thus, a variety of functionalized zinc reagents react under these conditions and highly 

functionalized products were obtained in 60–93% yield (Table 3). Remarkably, 

functionalized mixed diorganozinc reagents bearing an acetoxy, a carbethoxy
19

 or a 

cyano group can be prepared and used without problems. In the case of 

3-cyanopyridine, some part of the substrate is destroyed by the active dialkylzinc 

reagent so the yield of the desired product is low, although almost all the substrate has 

been consumed when the reaction finishes (entry 3). Surprisingly, the reaction using a 

bulky cyanoalkylzinc reagent (entry 8) works much better than the reaction using a 

similar yet less bulkier zinc reagent (entry 9). One possible reason is that the 

coordinative cyano group can deactivate the BF3 and remove it from the substrate. 

While employing the 6-chlorohexylzinc reagent, the dechloronated product 6ka is 

obtained together with the desired product 6k (entry 10). To be noticed, an 8 mmol 

reaction using a functionalized zinc reagent also works well and gives the 

corresponding alkyl pyridine 6m in 63% yield (entry 12). A functionalized secondary 

alkylzinc reagent also adds to the substrate (1a) but because of the severe β-hydride 

elimination during the in situ preparation of the zinc reagent, the yield of the product 

6o is less than 20% (entry 14). 

 

                                                             
18

 a) S. Berger, F. Langer, C. Lutz, P. Knochel, T. A. Mobley, C. K. Reddy, Angew. 

Chem. Int. Ed. Engl. 1997, 36, 1496; b) C. Lutz, P. Jones, P. Knochel, Synthesis 1999, 

312; c) M. Nakamura, S. Ito, K. Matsuo, E. Nakamura, Synlett 2005, 11, 1794. 
19

 E. Nakamura, I. Kuwajima, J. Am. Chem. Soc. 1984, 106, 3368. 
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Table 3. Direct alkylation of pyridine derivatives using alkylzinc reagents 

 
 

 

 

 

 



Chapter 2 

33 
 

Table 3. Continued. 

 
a
2MgX2·LiCl is omitted for clarity. 

b
Isolated yields of analytically pure products. 

NMR yields are given in parenthesis. 
c
The reaction was carried in a 8 mmol scale. 

 

2.2.3 BF3-Mediated Direct Arylation of Pyridines using Grignard Reagents 

Next, we have examined the arylation of functionalized pyridines (Table 4). Here, 

arylmagnesium reagents proved to give the best results and a smooth addition is 

obtained with a variety of Grignard reagents leading to polyfunctional 4-arylated 

pyridines (7a–n; 42–99%). Remarkably, a number of functional groups are tolerated 

in the starting pyridines such as an ester (entries 1–4), an amide (entry 5), a ketone 

(entry 6), a nitro
8g

 (entry 7) and a cyano group (entries 8–14). In a large scale (8 mmol) 

reaction, 2-chloromethylphenylmagnesium bromide
20

 adds to ethyl nicotinate (1d) 

and leads to the pyridine (7d) in 83% isolated (entry 4). Both Grignard reagents with 

electron-withdrawing (entry 9) or electron-donating groups (entry 10) afford 

4-arylated pyridines (7i and 7j) in high yields. Even a bulky Grignard reagent such as 

                                                             
20

 B. Haag, Z. Peng, P. Knochel, Org. Lett. 2009, 11, 4270. 
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mesitylmagnesium bromide reacts efficiently with nicotinonitrile (1b) and furnishes 

the 4-mesitylnicotinonitrile (7k) in 98% isolated yield (entry 11). For a 4-subsituted 

starting pyridine such as isonicotinonitrile (1s), the addition of a Grignard reagent 

cannot occur at C(4) but proceeds at C(2) and furnishes the corresponding product in 

acceptable yields (entries 12 and 13). Finally, 2-chloronicotinonitrile (1t) is converted 

to the 1,2,3-trisubstituted pyridine (7n) in 57% isolated yield (entry 14). 

 

Table 4. Direct arylation of pyridine derivatives using Grignard reagents. 
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Table 4. Continued. 

 

a
Isolated yields of analytically pure products. 

b
The reaction was carried in a 8 mmol 

scale. 

 

To introduce a more functionalized aryl group, p-EtO2C-C6H4MgCl·LiCl (9) was 

prepared in situ via iodine/magnesium exchange.
11a

 In a reversed addition procedure, 

a mixture of nicotinonitrile (1b) and BF3·OEt2 was added to the Grignard reagent 9 to 

furnish a dual-functionalized pyridine (7o) in 86% isolated yield (Scheme 5). 

 

Scheme 5. Selective addition of a functionalized Grignard reagent to nicotinonitrile. 
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Nicotinonitrile oligomers are usually used as functional materials, but their synthesis 

is always complex.
21

 Surprisingly, with the aid of BF3·OEt2, a dimagnesiated species 

(10)
11b

 reacts with two equivalents of nicotinonitrile and affords a fluorescent 

compound (11) in one step (Scheme 6). 

 

a
Yield based on Grignard reagent. 

Scheme 6. Double addition to nicotinonitriles using a 1,4-dimagnesiated aromatic 

reagent. 

 

For other substrates without a strong electron-withdrawing group such as 

3-chloropyridine and 3-bromopyridine, the additions proceed sluggishly even using an 

electron-rich Grignard reagent, affording products (Table 5, 7aa–ae) in moderate 

yields. Still, while applying 3-iodopyridine as the substrate, instead of addition the 

exchange reaction proceeds exclusively without the detection of the desired product 

7af. o-TolMgCl·LiCl adds to 2-Cyanopyridine and gives the product 7ag in 67% yield. 

For isonicotinonitrile, the addition of 4-MeOC6H4MgCl·LiCl occurs selectively at the 

position 2 and affords the product 7ah in 64% yield. Meanwhile, some trace amount 

of substitution product can also be detected (see Chapter 3). 3-Acetylpyridine affords 

the product (7ai) in low yield and only a trace amount of the product 7aj is formed in 

the reaction between o-TolMgCl·LiCl and pyrimidine. A series of more complex 

Grignard reagents with functional groups such as carbetoxy, nitro and trifluoromethyl 

also react with substrates and afford highly functionalized products (7ak–an) in 

moderate to good yields. However, the reaction employing 3-pyridylmagnesium 

chloride-lithium chloride is very sluggish and only trace amount of the desired 

coupling product (7ao) is observed. The addition of 2-thiophenylmagnesium 

chloride-lithium chloride toward 2-chloronicotinonitrile affords the desired product 

(7ap) in less than 5% yield. 

 

 

 

                                                             
21

 a) N. Li, P. Wang, S.-L. Lai, W. Liu, C.-S. Lee, S.-T. Lee, Z. Liu, Adv. Mater. 2010, 

22, 527; b) J. You, M.-F. Lo, W. Liu, T.-W. Ng, S.-L. Lai, P. Wang, C.-S. Lee, J. Mater. 

Chem. 2012, 22, 5107. 
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Table 5. Other examples of direct arylation of pyridine derivatives using Grignard 

reagents.
a 

 a
Yields determined by GC or NMR. 

 

Meanwhile, in some examples a mixture of regioisomers is obtained (Table 6). 

Quinoline (1i) affords a mixture of 2- and 4-adducts in nearly 1:1 ratio (entry 1). 

Interestingly, some heteroaryl Grignard reagents such as 3-benzofurylmagnesium 

chloride-lithium chloride and 2-thiophenylmagnesium chloride-lithium chloride 

always lead to poor regioselectivity (entries 2 and 3), perhaps owing to the change of 

aggregation and related bulkiness of the active organometallic species. The blocking 

of position 2 of substrates forces the additions proceed in position 4, but in very low 

yields (vide supra). Also, 2-bromophenyl and 2-phenylethenyl Grignard reagents add 

to isonicotinonitrile (1d) nonspecifically, affording a mixture of regioisomers (entries 

4 and 5). 
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Table 6. Direct arylation of pyridine derivatives giving a mixture of regioisomers. 

 
a
Yields dertermined by GC or NMR. 

 

An intramolecular cyclization through the BF3-mediated cross-coupling was also 

screened. Thus, the I/Mg exchange was firstly performed of 1u at -30 °C to obtain the 

arylmagnesium species 12. But after the treatment of BF3·OEt2, the desired cyclized 

product 13 was not detected (Scheme 7). 

 

 

Scheme 7. BF3-mediated cyclization. 

 

Similarly to alkylation, the arylation of nicotinamide (1l) also proceeds using 2 

equivalents of BF3·OEt2 and o-TolMgX. The arylated product 7f was obtained in 70% 

isolated yield (Scheme 8). 
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Scheme 8. Direct arylation of nicotinamide (1l). 

 

2.3 Summary 

In summary, a transition-metal-free BF3·OEt2 mediated functionalization of pyridines 

with functionalized alkyl and aryl groups has been developed. An excellent 

C(4)-regioselectivity makes this method a complement to previously reported ones. A 

large variety of functionalized coupling products can be obtained in good yields using 

this method. Besides, this reaction is practical and can be performed at a larger scale 

with no yield decrease. 

 

2.4 Experimental Section 

 

2.4.1 General Considerations 

All reactions are carried out under argon atmosphere in flame-dried glassware. 

Syringes which are used to transfer anhydrous solvents or reagents are purged with 

argon prior to use. THF is continuously refluxed and freshly distilled from sodium 

benzophenone ketyl under nitrogen. Yields refer to isolated yields of compounds 

estimated to be pure as determined by 
1
H-NMR (25 °C) and capillary GC. Column 

chromatographical purifications are performed using SiO2 (0.040 – 0.063 mm, 230 – 

400 mesh ASTM from Merck). Mass spectra and high resolution mass spectra 

(HRMS) are recorded using electron ionization (EI) or electrospray ionization (ESI). 

Grignard reagents and organozinc reagents are prepared according to the 

literature.
11,12

 BF3·OEt2 is purchased from Aldrich and distilled before use. 

 

2.4.2 Typical Procedures 

 

Typical Procedure for the BF3-mediated direct alkylation of pyridine derivatives 

using alkyl Grignard reagents (TP1) 

A dry and argon flushed 10 ml flask, equipped with a magnetic stirring bar and a 

rubber septum is charged with a solution of a pyridine derivative (1, 1.0 mmol) in dry 

THF (2 mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and 

stirred for 15 min at the same temperature. The reaction mixture is cooled to - 50 °C 

followed by dropwise addition of a THF solution of an alkyl Grignard reagent (1.2 

mmol), and stirring the reaction mixture at the same temperature for 30 min. Then 

chloranil (492 mg, 2.0 mmol) is added and the mixture is warmed up to room 
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temperature and continuously stirred for 2 h. Finally, it is quenched with 1 mL 

saturated ammonia water solution and extracted with Et2O several times. The organic 

phases are combined and filtered through a layer of silica gel. The filtrate is 

concentrated in vacuo. Purification by flash chromatography furnishes the desired 

product (4). 

 

Typical Procedure for the BF3-mediated direct alkylation of pyridine derivatives 

using organozinc reagents (TP2) 

According to the literature,
12c

 a functionlized organozinc reagent is prepared using 

Mg-turnings (109 mg, 4.5 mmol), LiCl (95 mg, 2.25 mmol), ZnCl2 (1M solution in 

THF, 2.0 mL, 2.0 mmol) and alkyl bromide (1.8 mmol). The reaction is carried out at 

25 ˚C and monitored by GC until all the alkyl bromide has been consumed. 

A dry and argon flushed 10 ml flask, equipped with a magnetic stirring bar and a 

rubber septum is charged with a solution of a pyridine derivative (1, 1.0 mmol) in dry 

THF (2 mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and 

stirred for 15 min at the same temperature. Then the reaction mixture is cooled to - 

50 °C. The produced alkylzinc reagent is transferred to this flask followed by 

dropwise addition of a THF solution of 
t
BuMgCl (1.5 mmol), and stirring the reaction 

mixture at the same temperature for 1 h. Then chloranil (492 mg, 2.0 mmol) is added 

and the mixture is warmed up to room temperature and continuously stirred overnight. 

Finally, it is quenched with 1 mL saturated ammonia water solution and extracted 

with Et2O several times. The organic phases are combined and filtered through a layer 

of silica gel. The filtrate is concentrated in vacuo. Purification by flash 

chromatography furnishes the desired product (6). 

 

Typical Procedure for the BF3-mediated direct arylation of pyridine derivatives 

using aryl Grignard reagents (TP3) 

A dry and argon flushed 10 ml flask, equipped with a magnetic stirring bar and a 

rubber septum is charged with a solution of a pyridine derivative (1, 1.0 mmol) in dry 

THF (2 mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and 

stirred for 15 min at the same temperature. The reaction mixture is cooled to - 30 °C 

followed by dropwise addition of a THF solution of an aryl Grignard reagent (1.5 

mmol), and stirring the reaction mixture at the same temperature for 2 h. Then 

chloranil (492 mg, 2.0 mmol) is added and the mixture is warmed up to room 

temperature and continuously stirred overnight. Finally, it is quenched with 1 mL 

saturated ammonia water solution and extracted with EtOAc several times. The 

organic phases are combined and filtered through a layer of silica gel. The filtrate is 

concentrated in vacuo. Purification by flash chromatography furnishes the desired 

product (7). 
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2.4.3 Competition Experiments 

 

 
 

According to TP1, 3-chloropyridine (1a; 1.0 mmol) reacts with a THF solution of 

pre-mixed 
i
PrMgCl·LiCl (1.2 mmol) and EtMgCl·LiCl (1.2 mmol). After filtration, 

the crude products are measured by 
1
H NMR using 1,1,2,2-tetrachloroethane as an 

internal standard, giving the corresponding NMR yields of each product. 

 

 

According to TP1, a mixture of 3-chloropyridine (1a; 1.0 mmol) and ethyl nicotinate 

(1d; 1.0 mmol) reacts with 
i
PrMgCl·LiCl (1.2 mmol) in the presence of 2.2 mmol 

BF3·OEt2. After filtration, the crude products are measured by 
1
H NMR using 

1,1,2,2-tetrachloroethane as an internal standard, giving the corresponding NMR 

yields of each product. 

 

2.4.4 Product Synthesis and Analytical Data 

 

 

3-chloro-4-isopropylpyridine (4a): To a solution of 3-chloropyridine (1a; 115 mg, 

1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.2 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with 
i
PrMgCl·LiCl (0.94 mL, 1.27 M in THF, 1.1 mmol). The crude product is purified by 

flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 4a (140 mg, 

89%) as a brown oil. 
1
H NMR (599 MHz, CDCl3)  ppm 8.52 (s, 1 H), 8.43 (d, J=5.2 Hz, 1 H), 7.25 (d, 

J=5.2 Hz, 1 H), 3.44 - 3.31 (m, J=13.7, 6.9, 6.9, 6.9, 6.9 Hz, 1 H), 1.27 (d, J=6.9 Hz, 

6 H). 
13

C NMR (151 MHz, CDCl3)  ppm 155.22, 148.62, 147.29, 131.74, 121.61, 30.00, 

21.72 (2 C). 

MS (70 eV, EI) m/z (%): 155 (79), 140 (100), 104 (96), 77 (34). 
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HRMS for C8H10ClN: calcd. 155.0502; found 155.0479 (M
+
). 

 

 

3-chloro-4-ethylpyridine (4b): To a solution of 3-chloropyridine (1a; 115 mg, 1.0 

mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP1 and reacted with EtMgCl·LiCl 

(1.6 mL, 1.25 M in THF, 2.0 mmol) or EtMgCl (0.82 ml, 2.44 M in THF, 2.0 mmol). 

After filtration, an NMR yield of 94% or 67% is given using mesitylene as an internal 

standard. The crude product of the reaction using EtMgCl·LiCl is diluted in EtOAc 

and washed with 2M HCl for 3 three times. The aqueous layers are combined and 

neutralized with a NaOH solution. Then it is washed with EtOAc 3 times and the 

organic layers are combined and dried by K2CO3. After evaporating the extra solvents, 

the mixture is purified by flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing 

the compound 4b (56 mg, 39%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.51 (s, 1 H), 8.39 (d, J=5.0 Hz, 1 H), 7.17 (d, 

J=5.0 Hz, 1 H), 2.77 (q, J=7.6 Hz, 2 H), 1.26 (t, J=7.6 Hz, 3 H); in accordance with 

the literature.
22

 
13

C NMR (75 MHz, CDCl3)  ppm 150.29, 149.05, 147.69, 132.00, 123.98, 25.95, 

12.83. 

MS (70 eV, EI) m/z (%): 141 (100), 126 (49), 106 (63), 77 (24). 

 

 

3-chloro-4-octylpyridine (4c): To a solution of 3-chloropyridine (1a; 114 mg, 1.0 

mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP1 and reacted with 

OctMgBr·LiCl (2.8 mL, 0.72 M in THF, 2.0 mmol). The crude product is purified by 

flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 4c (212 mg, 

94%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.50 (s, 1 H), 8.35 (d, J=5.0 Hz, 1 H), 7.15 (d, 

J=5.0 Hz, 1 H), 2.72 (t, 2 H), 1.71 - 1.52 (m, 2 H), 1.40 - 1.21 (m, 10 H), 0.88 (t, 

J=6.1 Hz, 3 H) 
13

C NMR (75 MHz, CDCl3)  ppm 149.53, 148.90, 147.18, 132.18, 124.83, 32.80, 

31.79, 29.26 (2 C), 29.13, 28.69, 22.61, 14.05. 

MS (70 eV, EI) m/z (%): 224 (20), 188 (15), 174 (26), 161 (100). 

HRMS for C13H20ClN: calcd.225.1284; found 225.1315 (M
+
). 

 

                                                             
22

 S. Hayashi, N. Ueno, A. Murase, Y. Nakagawa, Takada, J. Eur. J. Med. Chem. 2012, 

50, 179. 
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3-chloro-4-cyclohexylpyridine (4d): To a solution of 3-chloropyridine (1a; 111 mg, 

1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with 

c-HexylMgBr·LiCl (2.0 mL, 0.59 M in THF, 1.2 mmol) for 1 h. The crude product is 

purified by flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 

4d (134 mg, 70%) as a reddish brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.48 (s, 1 H), 8.37 (d, J=5.0 Hz, 1 H), 7.14 (d, 

J=5.0 Hz, 1 H), 3.05 – 2.84 (m, 1 H), 1.93 - 1.69 (m, 5 H), 1.53 - 1.14 (m, 5 H). 
13

C NMR (75 MHz, CDCl3)  ppm 153.11, 149.21, 147.83, 131.49, 121.81, 40.03, 

32.07 (2 C), 26.39 (2 C), 25.89. 

MS (70 eV, EI) m/z (%): 195 (100), 160 (37), 139 (90), 127 (41). 

HRMS for C11H14ClN: calcd. 195.0815; found 195.0811 (M
+
). 

 

 

3-chloro-4-cyclopentylpyridine (4e): To a solution of 3-chloropyridine (1a; 112 mg, 

1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with 

c-PentMgCl·LiCl (1.2 mL, 1.01 M in THF, 1.2 mmol). The crude product is purified 

by flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 4e (158 

mg, 89%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.48 (br. s., 1 H), 8.36 (br. s., 1 H), 7.18 (d, J=5.0 

Hz, 1 H), 3.46 - 3.26 (m, 1 H), 2.19 – 1.95 (m, 2 H), 1.91 - 1.63 (m, 4 H), 1.63 - 1.42 

(m, 2 H). 
13

C NMR (75 MHz, CDCl3)  ppm 152.64, 149.03, 147.62, 132.13, 121.74, 41.52, 

32.54 (2 C), 25.41 (2 C). 

MS (70 eV, EI) m/z (%): 181 (100), 152 (40), 146 (60), 139 (99), 104 (35). 

HRMS for C10H12ClN: calcd. 181.0658; found 181.0643 (M
+
). 

 

 
3-chloro-4-(hexan-2-yl)pyridine (4f): To a solution of 3-chloropyridine (1a; 111 mg, 

1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with 

2-HexylMgCl·LiCl (1.7 mL, 0.72 M in THF, 1.2 mmol). The crude product is purified 

by flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 4f (177 
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mg, 91%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.49 (s, 1 H), 8.38 (d, J=5.3 Hz, 1 H), 7.14 (d, 

J=5.3 Hz, 1 H), 3.32 - 3.09 (m, 1 H), 1.69 - 1.42 (m, 2 H), 1.35 - 1.09 (m, 7 H), 0.84 (t, 

J=6.9 Hz, 3 H) 
13

C NMR (75 MHz, CDCl3)  ppm 153.68, 149.25, 147.70, 131.81, 121.87, 36.06, 

34.89, 29.37, 22.53, 20.09, 13.85. 

MS (70 eV, EI) m/z (%): 197 (46), 141 (100), 104 (39), 77 (23). 

HRMS for C11H16ClN: calcd. 197.0971; found 197.0974 (M
+
). 

 

 

4-(tert-butyl)nicotinonitrile (4g): To a solution of nicotinonitrile (1b; 104 mg, 1.0 

mmol) in THF (1 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP1 and reacted with 
t
BuMgCl·LiCl (3.3 mL, 0.60 M in THF, 2.0 mmol). The crude product is purified by 

flash chromatography (SiO2, Et2O/i-hexane 1:2) furnishing the compound 4g (112 mg, 

70%) as a red oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.82 (s, 1 H), 8.68 (d, J=5.5 Hz, 1 H), 7.40 (d, 

J=5.5 Hz, 1 H), 1.52 (s, 9 H). 
13

C NMR (75 MHz, CDCl3)  ppm 162.44, 154.92, 152.88, 120.85, 118.00, 108.56, 

35.83, 29.31 (3 C). 

MS (70 eV, EI) m/z (%): 160 (29), 145 (100), 118 (24). 

HRMS for C10H12N2: calcd. 160.1001; found 160.0987 (M
+
). 

 

 
3-chloro-4-(hex-5-en-1-yl)pyridine (4h): To a solution of 3-chloropyridine (1a; 114 

mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

hex-5-en-1-ylMgCl·LiCl (1.2 mL, 1.02 M in THF, 1.2 mmol). After filtration, an 

NMR yield of 76% is given using mesitylene as an internal standard. The product is 

partially separated from the unconverted substrate by flash chromatography (SiO2, 

Et2O/i-hexane 1:4) furnishing the compound 4h (87 mg, 44%) as a reddish brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.51 (s, 1 H), 8.37 (d, J=5.0 Hz, 1 H), 7.14 (d, 

J=4.9 Hz, 1 H), 5.91 - 5.68 (m, J=17.0, 10.3, 6.6, 6.6 Hz, 1 H), 5.09 - 4.90 (m, 2 H), 

2.73 (t, J=7.5 Hz, 2 H), 2.11 (q, J=7.0 Hz, 2 H), 1.73 - 1.57 (m, 2 H), 1.57 - 1.40 (m, 2 

H). 
13

C NMR (75 MHz, CDCl3)  ppm 149.23, 148.91, 147.53, 138.32, 132.07, 124.75, 

114.77, 33.38, 32.59, 28.44, 28.14. 

MS (70 eV, EI) m/z (%): 195 (34), 160 (52), 152 (60), 139 (100), 127 (73), 117 (38). 
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HRMS for C11H14ClN: calcd. 195.0815; found 195.0804 (M
+
). 

 

 
3-bromo-4-isopropylpyridine (4i): To a solution of 3-bromopyridine (1c; 160 mg, 

1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.27 M in THF, 1.2 mmol). The crude product is purified by 

flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 4i (135 mg, 

67%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.67 (s, 1 H), 8.46 (d, J=5.1 Hz, 1 H), 7.25 (d, 

J=5.5 Hz, 1 H), 3.23 - 3.44 (m, J=13.7, 6.8, 6.8, 6.8, 6.8 Hz, 1 H), 1.27 (d, J=7.0 Hz, 

6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 157.19, 150.99, 147.59, 122.95, 122.05, 32.70, 

21.86. 

MS (70 eV, EI) m/z (%): 199 (81), 184 (98), 104 (100), 77 (28). 

 

 
ethyl 4-isopropylnicotinate (4j): To a solution of ethyl nicotinate (1d; 153 mg, 1.0 

mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP1 and reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.28 M in THF, 1.2 mmol). The crude product is purified by 

flash chromatography (SiO2, Et2O/i-hexane 1:2) furnishing the compound 4j (155 mg, 

79%) as a pink oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.94 (s, 1 H), 8.62 (d, J=5.3 Hz, 1 H), 7.32 (d, 

J=5.3 Hz, 1 H), 4.40 (q, J=7.2 Hz, 2 H), 3.89 - 3.69 (m, J=13.8, 6.8, 6.8, 6.8, 6.6 Hz, 

1 H), 1.41 (t, J=7.0 Hz, 3 H), 1.27 (d, J=6.9 Hz, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 166.53, 158.83, 152.12, 150.90, 126.03, 120.99, 

61.32, 29.25, 23.09 (2 C), 14.21. 

MS (70 eV, EI) m/z (%): 193 (89), 146 (100), 132 (59), 117 (24). 

HRMS for C11H15NO2: calcd. 193.1103; found 193.1100 (M
+
). 

 

 
4-isopropyl-3-phenylpyridine (4k): To a solution of 3-phenylpyridine (1e; 155 mg, 

1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.00 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with 
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i
PrMgCl·LiCl (1.6 mL, 1.28 M in THF, 2.0 mmol) for 1 h. The crude product is 

purified by flash chromatography (SiO2, Et2O/i-hexane 1:4 to 1:2) furnishing the 

compound 4k (142 mg, 72%) as a reddish brown oil. 
1
H NMR (400 MHz, BENZENE-d6)  ppm 8.61 (s, 1 H), 8.58 (d, J=5.3 Hz, 1 H), 

7.18 - 7.04 (m, 5 H), 6.88 (d, J=5.1 Hz, 1 H), 2.97 (spt, J=6.8 Hz, 1 H), 0.91 (d, J=6.8 

Hz, 6 H). 
13

C NMR (101 MHz, BENZENE-d6)  ppm 154.78, 151.33, 149.95, 139.06, 137.33, 

130.09 (2 C), 128.91 (2 C), 127.95, 120.76, 29.61, 23.69 (2 C). 

MS (70 eV, EI) m/z (%): 197 (87), 182 (100), 167 (96). 

HRMS for C14H15N: calcd. 197.1205; found 197.1194 (M
+
). 

 

 

4-isopropyl-3-vinylpyridine (4l): To a solution of 3-vinylpyridine (1f; 107 mg, 1.0 

mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.00 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP1 and reacted with 
i
PrMgCl·LiCl (0.93 mL, 1.29 M in THF, 1.2 mmol). The crude product is purified by 

flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 4l (71 mg, 

47%) as a pink oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.59 (s, 1 H), 8.44 (d, J=5.2 Hz, 1 H), 7.16 (d, 

J=5.2 Hz, 1 H), 6.96 (dd, J=17.4, 11.0 Hz, 1 H), 5.67 (dd, J=17.4, 1.1 Hz, 1 H), 5.41 

(dd, J=11.0, 1.1 Hz, 1 H), 3.29 - 3.07 (m, J=13.7, 6.9, 6.9, 6.9, 6.9 Hz, 1 H), 1.24 (d, 

J=6.7 Hz, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 154.21, 148.83, 147.38, 132.23, 131.80, 119.64, 

117.91, 28.94, 22.42 (2 C). 

MS (70 eV, EI) m/z (%): 147 (70), 132 (98), 117 (100). 

HRMS for C10H13N: calcd. 147.1048; found 147.1028 (M
+
). 

 

 

2-chloro-4-isopropylpyridine (4m): To a solution of 2-chloropyridine (1g; 111 mg, 

1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.28 M in THF, 1.2 mmol). After filtration, an NMR yield of 

76% is given using mesitylene as an internal standard. The product is partially 

separated from the unconverted substrate by flash chromatography (SiO2, 

Et2O/i-hexane 1:19) furnishing the compound 4m (80 mg, 53%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.27 (d, J=5.0 Hz, 1 H), 7.18 (br. s., 1 H), 7.07 

(dd, J=5.3, 1.1 Hz, 1 H), 2.98 - 2.79 (m, J=13.8, 6.9, 6.9, 6.9, 6.9 Hz, 1 H), 1.26 (d, 

J=6.9 Hz, 6 H). 
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13
C NMR (75 MHz, CDCl3)  ppm 160.97, 151.64, 149.51, 122.33, 120.87, 33.49, 

22.90 (2 C). 

MS (70 eV, EI) m/z (%): 155 (83), 140 (100), 120 (35), 104 (69), 77 (31). 

HRMS for C8H10ClN: calcd. 155.0502; found 155.0487 (M
+
). 

 

 
ethyl 2-chloro-4-isopropylnicotinate (4n): To a solution of ethyl 2-chloronicotinate 

(1h; 186 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.00 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and 

reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.28 M in THF, 1.2 mmol). The crude product is 

purified by flash chromatography (SiO2, Et2O/i-hexane 1:4) furnishing the compound 

4n (212 mg, 93%) as a pink oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.30 (d, J=5.3 Hz, 1 H), 7.17 (d, J=5.3 Hz, 1 H), 

4.41 (q, J=7.0 Hz, 2 H), 2.99 - 2.78 (m, J=13.6, 6.9, 6.8, 6.8, 6.8 Hz, 1 H), 1.37 (t, 

J=7.0 Hz, 3 H), 1.22 (d, J=6.9 Hz, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 165.86, 157.62, 149.82, 147.15, 129.45, 119.48, 

62.02, 31.42, 22.87 (2 C), 13.92. 

MS (70 eV, EI) m/z (%): 227 (88), 199 (43), 182 (100), 162 (51), 148 (49), 117 (41), 

91 (29). 

HRMS for C11H14ClNO2: calcd. 227.0713; found 227.0710 (M
+
). 

 

 
4-isopropylquinoline (4o): To a solution of quinoline (1i; 128 mg, 1.0 mmol) in THF 

(2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The reaction mixture 

is stirred for 15 min according to TP1 and reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.27 

M in THF, 1.2 mmol). The crude product is purified by flash chromatography (SiO2, 

Et2O/i-hexane 1:4 to 1:2) furnishing the compound 4o (136 mg, 80%) as a reddish oil 

and 4oa (11 mg, 6%) as a pink oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.85 (d, J=4.7 Hz, 1 H), 8.12 (t, J=9.5 Hz, 2 H), 

7.69 (td, J=7.6, 1.1 Hz, 1 H), 7.62 - 7.49 (m, 1 H), 7.30 (d, J=4.4 Hz, 1 H), 3.66 - 3.83 

(m, J=13.7, 6.8, 6.8, 6.8, 6.8 Hz, 1 H), 1.40 (d, J=6.6 Hz, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 154.46, 150.28, 148.20, 130.24, 128.79, 126.87, 

126.17, 123.03, 116.86, 28.26, 22.86 (2 C). 

MS (70 eV, EI) m/z (%): 171 (60), 156 (100), 143 (5), 128 (15). 

HRMS for C12H13N: calcd. 171.1048; found 171.1025 (M
+
). 
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2-isopropylquinoline (4oa)  
1
H NMR (200 MHz, CDCl3)  ppm 8.08 (t, J=8.0 Hz, 2 H), 8.08 - 7.64 (m, 2 H), 7.52 

- 7.38 (m, 1 H), 7.30 (d, J=14 Hz, 1 H), 3.35 - 3.20 (m, 1 H), 1.40 (d, J=7.0 Hz, 6 H); 

in accordance with the literature.
23

 

MS (70 eV, EI) m/z (%): 171 (29), 156 (100), 143 (25), 128 (29). 

 

 
methyl 4-isopropylquinoline-6-carboxylate (4p): To a solution of methyl 

quinoline-6-carboxylate (1j; 186 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 

(156 mg, 1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min 

according to TP1 and reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.27 M in THF, 1.2 

mmol). The crude product is purified by flash chromatography (SiO2, Et2O/i-hexane 

1:4 to 1:1) furnishing the compound 4p (197 mg, 86%) and 4pa (24 mg, 10%) as 

brown oils. 
1
H NMR (300 MHz, CDCl3)  ppm 8.86 (d, J=4.7 Hz, 1 H), 8.83 (s, 1 H), 8.27 - 8.16 

(m, 1 H), 8.15 - 8.03 (m, 1 H), 7.30 (d, J=4.3 Hz, 1 H), 3.94 (s, 3 H), 3.87 - 3.65 (m, 1 

H), 1.36 (d, J=6.7 Hz, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 166.66, 155.94, 152.28, 150.08, 130.47, 128.15, 

127.50, 126.22, 125.98, 117.56, 52.23, 28.20, 22.92 (2 C). 

MS (70 eV, EI) m/z (%): 229 (100), 214 (67), 198 (73), 170 (44), 154 (61). 

HRMS for C14H15NO2: calcd. 229.1103; found 229.1094 (M
+
). 

 

 

methyl 2-isopropylquinoline-6-carboxylate (4pa) 
1
H NMR (400 MHz, CDCl3)  ppm 8.54 (d, J=1.8 Hz, 1 H), 8.27 (dd, J=8.8, 1.9 Hz, 

1 H), 8.18 (d, J=8.6 Hz, 1 H), 8.08 (d, J=8.8 Hz, 1 H), 7.41 (d, J=8.6 Hz, 1 H), 3.99 (s, 

3 H), 3.35 - 3.22 (m, J=13.8, 6.9, 6.9, 6.9, 6.9 Hz, 1 H), 1.41 (d, J=7.0 Hz, 6 H); in 

accordance with the literature.
24

 
13

C NMR (101 MHz, CDCl3)  ppm 170.12, 166.79, 149.63, 137.54, 130.63, 129.21, 

128.79, 127.15, 126.00, 120.11, 52.31, 37.41, 22.35 (2 C). 

MS (70 eV, EI) m/z (%): 229 (29), 214 (100), 201 (20). 

HRMS for C14H15NO2: calcd. 229.1103; found 229.1097 (M
+
). 

 

 
                                                             
23

 T. Kobayashi, M. Arisawa, S. Shuto, Org. Biomol. Chem. 2011, 9, 1219. 
24

 PFIZER INC.; RENOVIS, INC. US2012/88746 A1, 2012. 
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4-isopropyl-6-methoxyquinoline (4q): To a solution of 6-methoxyquinoline (1k; 156 

mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.27 M in THF, 1.2 mmol). The crude product is purified by 

flash chromatography (SiO2, Et2O/i-hexane 1:4 to 1:1) furnishing the compound 4q 

(154 mg, 78%) and 4qa (<4%) as brown oils. 
1
H NMR (300 MHz, CDCl3)  ppm 8.68 (d, J=4.5 Hz, 1 H), 8.01 (d, J=9.1 Hz, 1 H), 

7.27 - 7.38 (m, 2 H), 7.22 (d, J=4.3 Hz, 1 H), 3.91 (s, 3 H), 3.49 - 3.70 (m, 1 H), 1.37 

(d, J=6.7 Hz, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 157.47, 152.74, 147.77, 144.17, 131.55, 127.65, 

120.91, 116.99, 101.37, 55.34, 28.32, 22.54 (2 C). 

MS (70 eV, EI) m/z (%): 201 (100), 186 (95), 143 (33). 

HRMS for C13H15NO: calcd. 201.1154; found 201.1141 (M
+
). 

 

 

2-isopropyl-6-methoxyquinoline (4qa) 

MS (70 eV, EI) m/z (%): 201 (38), 186 (100), 173 (32), 143 (27). 

 

 
4-isopropyl-N-phenylnicotinamide (4r): A dry and argon flushed 10 ml flask, 

equipped with a magnetic stirring bar and a rubber septum is charged with a solution 

of N-phenylnicotinamide (1l; 197 mg, 1.0 mmol) in dry THF (2 mL) and cooled to 

0 °C. 
t
BuMgCl (0.78 ml, 1.28 M in THF, 1.0 mmol) is dropped in and the mixture is 

stirred for 30 min. Then BF3·OEt2 (298 mg, 2.1 mmol) is added dropwise and stirred 

for 15 min at the same temperature. The reaction mixture is cooled to - 50 °C 

followed by dropwise addition of a THF solution of 
i
PrMgCl·LiCl (0.93 ml, 1.29 M in 

THF, 1.2 mmol), and stirring the reaction mixture at the same temperature for 30 min. 

Then chloranil (492 mg, 2.0 mmol) is added and the mixture is warmed up to room 

temperature and continuously stirred overnight. Finally, it is quenched with 1 mL 

saturated ammonia water solution and extracted with EtOAc several times. The 

organic phases are combined and filtered through a layer of silica gel. The filtrate is 

concentrated in vacuo. Purification by flash chromatography (SiO2, EtOAc/i-hexane 

1:1) furnishes compound 4r (159 mg, 67%) as a brown oil. 
1
H NMR (400 MHz, DMSO-d6)  ppm 10.55 (s, 1 H), 8.60 (d, J=5.3 Hz, 1 H), 8.57 

(s, 1 H), 7.73 (d, J=7.6 Hz, 2 H), 7.48 (d, J=5.3 Hz, 1 H), 7.35 (t, J=7.8 Hz, 2 H), 7.12 

(t, J=7.3 Hz, 1 H), 3.29 - 3.18 (m, 1 H), 1.23 (d, J=6.8 Hz, 6 H). 
13

C NMR (101 MHz, DMSO-d6)  ppm 165.86, 154.74, 150.59, 147.25, 138.93, 

132.63, 128.75 (2 C), 123.88, 121.00, 119.68 (2 C), 29.46, 22.88 (2 C). 

MS (70 eV, EI) m/z (%): 240 (31), 148 (100), 130 (47), 92 (17). 
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HRMS for C15H16N2O: calcd. 240.1263; found 240.1261 (M
+
). 

 

 

4-octylnicotinonitrile (6a): To a solution of nicotinonitrile (1b; 104 mg, 1.0 mmol) in 

THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The reaction 

mixture is stirred for 15 min according to TP2 and reacted with OctZnBr·MgCl2·LiCl 

(1.8 mL, 0.68 M in THF, 1.2 mmol) and 
t
BuMgCl (0.94 ml, 1.28 M in THF, 1.2 

mmol). The crude product is purified by flash chromatography (SiO2, Et2O/i-hexane 

1:4 to 1:2) furnishing the compound 6a (214 mg, 99%) as a reddish brown oil. 
1
H NMR (400 MHz, BENZENE-d6)  ppm 8.43 (s, 1 H), 8.21 (d, J=5.3 Hz, 1 H), 

6.33 (d, J=5.3 Hz, 1 H), 2.33 (d, J=7.8 Hz, 2 H), 1.38 - 1.00 (m, 12 H), 0.92 (t, J=7.0 

Hz, 3 H). 
13

C NMR (101 MHz, BENZENE-d6)  ppm 155.03, 153.44, 152.78, 123.79, 116.46, 

111.12, 34.27, 32.53, 30.21, 29.89, 29.84, 29.68, 23.42, 14.71. 

MS (70 eV, EI) m/z (%): 215 (5), 187 (21), 173 (29), 159 (32), 145 (100), 131 (55), 

118 (37). 

HRMS for C14H19N2: calcd.215.1543; found 215.1520 [(M-H)
+
]. 

 

 
4-(3-chloropyridin-4-yl)butyl acetate (6b): To a solution of 3-chloropyridine (1a; 

111 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP2 and reacted with 

freshly prepared 4-acetoxybutylZnBr·MgCl2·LiCl and 
t
BuMgCl (1.2 ml, 1.28 M in 

THF, 1.5 mmol). The crude product is purified by flash chromatography (SiO2, 

Et2O/i-hexane 1:2 to 1:1) furnishing the compound 6b (208 mg, 93%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.45 (s, 1 H), 8.31 (d, J=5.0 Hz, 1 H), 7.09 (d, 

J=5.0 Hz, 1 H), 4.04 (br. s., 2 H), 2.70 (br. s., 2 H), 1.98 (s, 3 H), 1.65 (br. s., 4 H). 
13

C NMR (75 MHz, CDCl3)  ppm 170.82, 149.09, 148.14, 147.46, 131.84, 124.55, 

63.69, 32.09, 28.00, 24.97, 20.73. 

MS (70 eV, EI) m/z (%): 227 (6), 192 (38), 166 (26), 140 (100), 127 (27). 

HRMS for C11H14ClNO2: calcd. 227.0713; found 227.0708 (M
+
). 

 

 
ethyl 4-(4-acetoxybutyl)nicotinate (6c): To a solution of ethyl nicotinate (1d; 148 

mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 
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0 °C. The reaction mixture is stirred for 15 min according to TP2 and reacted with 

freshly prepared 4-acetoxybutylZnBr·MgCl2·LiCl and 
t
BuMgCl (1.2 ml, 1.28 M in 

THF, 1.5 mmol). The crude product is purified by flash chromatography (SiO2, 

Et2O/i-hexane 1:4 to 1:2) furnishing the compound 6c (205 mg, 79%) as a pale yellow 

oil. 
1
H NMR (400 MHz, CDCl3)  ppm 9.06 (s, 1 H), 8.59 (d, J=5.1 Hz, 1 H), 7.19 (d, 

J=5.1 Hz, 1 H), 4.40 (q, J=7.1 Hz, 2 H), 4.10 (t, J=6.0 Hz, 2 H), 3.01 (t, J=7.3 Hz, 2 

H), 2.05 (s, 3 H), 1.80 - 1.59 (m, 4 H), 1.42 (t, J=7.1 Hz, 3 H). 
13

C NMR (101 MHz, CDCl3)  ppm 171.12, 165.95, 152.95, 152.03, 151.66, 125.76, 

125.29, 64.04, 61.24, 33.27, 28.48, 27.07, 20.94, 14.21. 

MS (70 eV, EI) m/z (%): 265 (5), 192 (38), 178 (100), 149 (29). 

HRMS for C14H20NO4: calcd. 266.1387; found 266.1388 (M+H
+
). 

 

 
ethyl 6-(3-chloropyridin-4-yl)hexanoate (6h): To a solution of 3-chloropyridine (1a; 

115 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP2 and reacted with 

freshly prepared 6-ethoxy-6-oxohexylZnBr·MgCl2·LiCl and 
t
BuMgCl (1.2 ml, 1.28 

M in THF, 1.5 mmol). The crude product is purified by flash chromatography (SiO2, 

Et2O/i-hexane 1:2 to 1:1) furnishing the compound 6h (176 mg, 68%) as a brown oil. 
1
H NMR (400 MHz, CDCl3)  ppm 8.45 (br. s., 1 H), 8.31 (d, J=3.7 Hz, 1 H), 7.11 (d, 

J=4.7 Hz, 1 H), 4.08 (q, J=7.1 Hz, 2 H), 2.69 (t, J=7.6 Hz, 2 H), 2.27 (t, J=7.3 Hz, 2 

H), 1.53 - 1.71 (m, 4 H), 1.30 - 1.44 (m, 2 H), 1.21 (t, J=7.1 Hz, 3 H). 
13

C NMR (101 MHz, CDCl3)  ppm 173.45, 148.96, 148.83, 147.17, 132.00, 124.73, 

60.14, 33.97, 32.45, 28.56, 28.21, 24.48, 14.12. 

MS (70 eV, EI) m/z (%): 255 (3), 220 (17), 210 (15), 140 (100), 127 (33). 

HRMS for C13H18ClNO2: calcd. 255.1026; found 255.1012 (M
+
). 

 

 
6-(3-chloropyridin-4-yl)-2,2-dimethylhexanenitrile (6i): To a solution of 

3-chloropyridine (1a; 114 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 

TP2 and reacted with freshly prepared 5-cyano-5-methylhexylZnBr·MgCl2·LiCl and 
t
BuMgCl (1.2 ml, 1.28 M in THF, 1.5 mmol). The crude product is purified by flash 

chromatography (SiO2, Et2O/i-hexane 1:2 to 1:1) furnishing the compound 6i (142 mg, 

60%) as a pale brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.48 (s, 1 H), 8.35 (d, J=5.0 Hz, 1 H), 7.12 (d, 

J=5.0 Hz, 1 H), 2.73 (t, J=7.1 Hz, 2 H), 1.70 - 1.50 (m, 6 H), 1.31 (s, 6 H). 
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13
C NMR (75 MHz, CDCl3)  ppm 149.11, 148.35, 147.50, 131.87, 124.84, 124.64, 

40.59, 32.47, 32.20, 28.56, 26.53 (2 C), 24.93. 

MS (70 eV, EI) m/z (%): 236 (3), 221 (5), 201 (18), 140 (100), 127 (17). 

HRMS for C13H17ClN2: calcd.236.1080; found 236.1071 (M
+
). 

 

 
ethyl 4-(3-chloropyridin-4-yl)butanoate (6l): To a solution of 3-chloropyridine (1a; 

114 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP2 and reacted with 

freshly prepared 4-ethoxy-4-oxobutylZnBr·MgCl2·LiCl and 
t
BuMgCl (1.2 ml, 1.28 M 

in THF, 1.5 mmol). The crude product is purified by flash chromatography (SiO2, 

Et2O/i-hexane 1:2 to 1:1) furnishing the compound 6l (194 mg, 85%) as a pink oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.48 (s, 1 H), 8.35 (d, J=5.0 Hz, 1 H), 7.13 (d, 

J=5.0 Hz, 1 H), 4.10 (q, J=7.1 Hz, 2 H), 2.75 (t, J=7.5 Hz, 2 H), 2.33 (t, J=7.3 Hz, 2 

H), 1.94 (quin, J=7.5 Hz, 2 H), 1.23 (t, J=7.0 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 172.72, 149.25, 147.68, 147.60, 131.97, 124.72, 

60.34, 33.35, 31.82, 23.76, 14.12. 

MS (70 eV, EI) m/z (%): 227 (7), 192 (10), 182 (20), 140 (100), 126 (18), 88 (18). 

HRMS for C11H14ClNO2: calcd. 227.0713; found 227.0703 (M
+
). 

 

 
ethyl 4-(3-bromopyridin-4-yl)butanoate (6m): According to literature,

12c
 

4-ethoxy-4-oxobutylZnBr·MgCl2·LiCl is prepared using Mg-turnings (875 mg, 36 

mmol), LiCl (763 mg, 18 mmol), ZnCl2 (1M solution in THF, 16 mL, 16 mmol) and 

ethyl 4-bromobutanoate (2.81 g, 14 mmol). The reaction is c rried  ut  t 20 ˚C for 6 h 

until most of the alkylbromide has converted. Then to a solution of 3-bromopyridine 

(1c; 1.26 g, 8.0 mmol) in THF (16 ml) is added BF3·OEt2 (1.25 g, 8.8 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP2 and 

reacted with the freshly prepared alkylzinc reagent and 
t
BuMgCl (9.4 ml, 1.28 M in 

THF, 12 mmol) under - 50 ˚C for 1h. Then chloranil (3.93 g, 16 mmol) is added and 

the mixture is warmed up to room temperature and continuously stirred overnight. 

Finally, it is quenched with 5 mL saturated ammonia water solution and extracted 

with EtOAc several times. The crude product is purified by flash chromatography 

(SiO2, EtOAc/i-hexane 1:9 to 1:7 to 1:4) furnishing the compound 6m (1.37 g, 63%) 

as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.66 (s, 1 H), 8.42 (d, J=5.0 Hz, 1 H), 7.18 (d, 

J=4.7 Hz, 1 H), 4.15 (q, J=7.0 Hz, 2 H), 2.79 (t, J=7.7 Hz, 2 H), 2.38 (t, J=7.3 Hz, 2 

H), 1.97 (quin, J=7.5 Hz, 2 H), 1.27 (t, J=7.2 Hz, 3 H). 
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13
C NMR (75 MHz, CDCl3)  ppm 172.84, 151.79, 149.74, 148.09, 125.13, 123.09, 

60.48, 34.49, 33.44, 23.97, 14.22. 

MS (70 eV, EI) m/z (%): 270 (1), 228 (20), 192 (100), 184 (79), 88 (17). 

HRMS for C11H15BrNO2: calcd. 272.0281; found 272.0279 (M+H
+
). 

 

 
ethyl 3-(3-chloropyridin-4-yl)propanoate (6n): To a solution of 3-chloropyridine 

(1a; 112 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (156 mg, 1.1 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP2 and 

reacted with freshly prepared 3-ethoxy-3-oxopropylZnBr·MgCl2·LiCl and 
t
BuMgCl 

(1.2 ml, 1.28 M in THF, 1.5 mmol). The crude product is purified by flash 

chromatography (SiO2, Et2O/i-hexane 1:2 to 1:1) furnishing the compound 6n (182 

mg, 86%) as a pale pink oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.53 (s, 1 H), 8.39 (d, J=5.0 Hz, 1 H), 7.20 (d, 

J=4.7 Hz, 1 H), 4.14 (q, J=7.2 Hz, 2 H), 3.07 (t, J=7.6 Hz, 2 H), 2.67 (t, J=7.6 Hz, 2 

H), 1.24 (t, J=7.2 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 171.90, 149.33, 147.73, 146.80, 132.00, 124.77, 

60.69, 32.68, 27.93, 14.11. 

MS (70 eV, EI) m/z (%): 212 (2), 178 (98), 150 (100), 140 (29), 104 (35), 77 (18). 

HRMS for C10H11ClNO2: calcd. 212.0473; found 212.0469 [(M-H)
+
]. 

 

 

ethyl 4-(p-tolyl)nicotinate (7a): To a solution of ethyl nicotinate (1d; 149 mg, 1.0 

mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP3 and reacted with 

p-TolMgBr·LiCl (1.5 mL, 1.05 M in THF, 1.5 mmol). The crude product is purified 

by flash chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 7a 

(190 mg, 80%) as a reddish brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.99 (s, 1 H), 8.69 (d, J=5.0 Hz, 1 H), 7.30 (d, 

J=5.0 Hz, 1 H), 7.23 (s, 4 H), 4.19 (q, J=7.2 Hz, 2 H), 2.40 (s, 3 H), 1.11 (t, J=7.0 Hz, 

3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 166.80, 151.37, 150.38, 150.12, 138.44, 135.40, 

128.95 (2 C), 127.88 (2 C), 126.80, 124.78, 61.28, 21.15, 13.68. 

MS (70 eV, EI) m/z (%): 241 (63), 196 (100), 167 (31), 115 (22). 

HRMS for C15H15NO2: calcd. 241.1103; found 241.1092 (M
+
). 
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ethyl 4-(4-methoxyphenyl)nicotinate (7b): To a solution of ethyl nicotinate (1d; 148 

mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP3 and reacted with 

p-MeOC6H4MgBr·LiCl (1.3 mL, 1.13 M in THF, 1.5 mmol). The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:4 to 1:2) furnishing the 

compound 7b (203 mg, 81%) as a reddish brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.97 (s, 1 H), 8.67 (d, J=5.2 Hz, 1 H), 7.34 - 7.21 

(m, 3 H), 6.96 (d, J=8.6 Hz, 2 H), 4.20 (q, J=7.0 Hz, 2 H), 3.85 (s, 3 H), 1.14 (t, J=7.2 

Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 167.07, 159.97, 151.57, 150.60, 149.44, 130.59, 

129.36 (s, 2 C), 126.72, 124.65, 113.77 (s, 2 C), 61.27, 55.24, 13.78. 

MS (70 eV, EI) m/z (%): 257 (100), 212 (96), 169 (24). 

HRMS for C15H15NO3: calcd. 257.1052; found 257.1044 (M
+
). 

 

 

ethyl 4-(o-tolyl)nicotinate (7c): To a solution of ethyl nicotinate (1d; 151 mg, 1.0 

mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP3 and reacted with 

o-TolMgBr·LiCl (1.4 mL, 1.12 M in THF, 1.5 mmol). The crude product is purified 

by flash chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 7c 

(201 mg, 83%) as a reddish brown oil. 
1
H NMR (400 MHz, CDCl3)  ppm 9.16 (s, 1 H), 8.74 (d, J=4.7 Hz, 1 H), 7.37 - 7.14 

(m, 4 H), 7.04 (d, J=7.4 Hz, 1 H), 4.10 (q, J=7.0 Hz, 2 H), 2.08 (s, 3 H), 1.00 (t, J=7.1 

Hz, 3 H). 
13

C NMR (101 MHz, CDCl3)  ppm 165.67, 151.56, 150.77 (2 C), 138.62, 134.52, 

129.55, 127.99, 127.62, 126.58, 125.34, 125.27, 61.01, 19.68, 13.43. 

MS (70 eV, EI) m/z (%): 241 (32), 196 (100), 167 (97), 139 (32), 115 (25). 

HRMS for C15H15NO2: calcd. 241.1103; found 241.1092 (M
+
). 

 

 
ethyl 4-(2-(chloromethyl)phenyl)nicotinate (7d): To a solution of 2-iodobenzyl 

chloride (3.23 g, 13 mmol) in THF (9.4 mL) is added dropwise a solution of 
i
PrMgCl·LiCl (9.4 ml, 1.28 M in THF, 12 mmol) at -20 °C. The reaction mixture is 

stirred for 30 min to furnish the 2-(chloromethyl)phenylMgCl·LiCl.
25

 Then to a 

                                                             
25

 B. Haag, Z. Peng, P. Knochel, Org. Lett. 2009, 11, 4270. 
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solution of ethyl nicotinate (1d; 1.21 g, 8.0 mmol) in THF (16 ml) is added BF3·OEt2 

(1.25 g, 8.8 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min 

according to TP3 and reacted with the freshly prepared Grignard reagent under - 

30 °C for 2 h. Then chloranil (3.93 g, 16 mmol) is added and the mixture is warmed 

up to room temperature and continuously stirred overnight. Finally, it is quenched 

with 5 mL saturated ammonia water solution and extracted with EtOAc several times. 

The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:4) 

furnishing the compound 7d (1.84 g, 83%) as a brown solid. 
1
H NMR (300 MHz, CDCl3)  ppm 9.21 (s, 1 H), 8.78 (d, J=5.0 Hz, 1 H), 7.60 - 7.29 

(m, 4 H), 7.09 (d, J=7.5 Hz, 1 H), 4.39 (d, J=11.6 Hz, 1 H), 4.28 (d, J=11.9 Hz, 1 H), 

4.10 (q, J=6.9 Hz, 2 H), 1.01 (t, J=7.0 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 165.44, 151.87, 151.31, 148.85, 138.81, 134.34, 

129.82, 128.74, 128.55, 128.18, 126.37, 125.62, 61.26, 43.90, 13.62. 

MS (70 eV, EI) m/z (%): 275 (32), 225 (49), 194 (55), 182 (34), 166 (100), 139 (55). 

HRMS for C15H15ClNO2: calcd. 276.0786; found 276.0785 (M+H
+
). 

 

 

N,N-diethyl-4-(o-tolyl)nicotinamide (7e): To a solution of N,N-diethylnicotinamide 

(1p; 177 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP3 and 

reacted with o-TolMgBr·LiCl (1.3 mL, 1.12 M in THF, 1.5 mmol). The crude product 

is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:1 to 2:1) furnishing the 

compound 7e (232 mg, 87%) as a reddish brown oil. 
1
H NMR (400 MHz, CDCl3)  ppm 8.71 - 8.53 (m, 2 H), 7.39 - 7.09 (m, 5 H), 2.94 

(br. s., 4 H), 2.23 (s, 3 H), 0.92 (t, J=6.5 Hz, 3 H), 0.77 (t, J=7.0 Hz, 3 H). 
13

C NMR (101 MHz, CDCl3)  ppm 167.26, 148.92, 147.15, 146.55, 136.35, 135.27, 

132.98, 130.36, 128.83, 128.61, 125.42, 124.77, 42.41, 38.18, 19.95, 13.68, 11.74. 

MS (70 eV, EI) m/z (%): 267 (14), 196 (100), 167 (38), 139 (11), 115 (13). 

HRMS for C17H19N2O: calcd. 267.1492; found 267.1487 [(M-H)
+
]. 

 

 

phenyl(4-(o-tolyl)pyridin-3-yl)methanone (7f): To a solution of 

phenyl(pyridin-3-yl)methanone (1q; 183 mg, 1.0 mmol) in THF (2 ml) is added 

BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 

min according to TP3 and reacted with o-TolMgBr·LiCl (1.3 mL, 1.12 M in THF, 1.5 

mmol). The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 

1:4 to 1:2) furnishing the compound 7f (187 mg, 68%) as a reddish brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.77 (br. s., 2 H), 7.61 (d, J=7.5 Hz, 2 H), 7.46 (t, 



Chapter 2 

56 
 

J=7.3 Hz, 1 H), 7.38 - 7.23 (m, 3 H), 7.17 – 6.93 (m, 4 H), 2.14 (s, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 195.65, 150.48, 149.29, 149.01, 136.97, 136.90, 

134.89, 134.85, 133.20, 130.16, 129.45 (s, 2 C), 129.07, 128.42, 128.16 (s, 2 C), 

125.48, 125.29, 19.96. 

MS (70 eV, EI) m/z (%): 273 (24), 258 (43), 196 (100), 167 (24), 105 (27), 77 (39). 

HRMS for C19H15NO: calcd. 273.1154; found 273.1147 (M
+
). 

 

 

3-nitro-4-(o-tolyl)pyridine (7g): To a solution of 3-nitropyridine (1r; 125 mg, 1.0 

mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP3 and reacted with 

o-TolMgBr·LiCl (1.3 mL, 1.16 M in THF, 1.5 mmol). The crude product is purified 

by flash chromatography (SiO2, EtOAc/i-hexane 1:9) furnishing the compound 7g 

(126 mg, 58%) as a yellow solid. 
1
H NMR (400 MHz, CDCl3)  ppm 9.23 (s, 1 H), 8.84 (d, J=4.9 Hz, 1 H), 7.42 - 7.22 

(m, 4 H), 7.09 (d, J=7.1 Hz, 1 H), 2.12 (s, 3 H); in accordance with the literature.
26

 
13

C NMR (101 MHz, CDCl3)  ppm 152.80, 145.43, 145.35, 144.66, 134.94, 134.59, 

130.29, 129.13, 127.59, 126.34, 126.03, 19.70; in accordance with the literature.
26

 

MS (70 eV, EI) m/z (%): 214 (21), 197 (44), 184 (70), 167 (100), 139 (56), 115 (40). 

HRMS for C12H10N2O2: calcd. 214.0742; found 214.0731 (M
+
). 

 

 

4-(o-tolyl)nicotinonitrile (7h): To a solution of nicotinonitrile (1b; 104 mg, 1.0 mmol) 

in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. The reaction 

mixture is stirred for 15 min according to TP3 and reacted with o-TolMgBr·LiCl (1.4 

mL, 1.12 M in THF, 1.5 mmol). The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 7h (188 mg, 

97%) as a pink solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.95 (s, 1 H), 8.81 (d, J=5.0 Hz, 1 H), 7.24 - 7.46 

(m, 4 H), 7.14 - 7.23 (m, 1 H), 2.22 (s, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 153.21, 153.02, 152.31, 135.27, 134.99, 130.68, 

129.58, 128.71, 126.07, 124.64, 115.91, 110.41, 19.61. 

MS (70 eV, EI) m/z (%): 194 (100), 167 (26), 139 (18). 

HRMS for C13H10N2: calcd. 194.0844; found 194.0836 (M
+
). 

 

                                                             
26

 P. Guo, J. M. Joo, S. Rakshit, D. Sames, J. Am. Chem. Soc. 2011, 133, 16338. 
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4-(4-(trifluoromethyl)phenyl)nicotinonitrile (7i): To a solution of 

i
PrMgCl·LiCl 

(1.2 ml, 1.28 M in THF, 1.5 mmol) 1-iodo-4-(trifluoromethyl)benzene (368 mg, 1.6 

mmol) is added at -20 °C. The reaction mixture is stirred for 30 min to furnish the 

4-(trifluoromethyl)phenylMgCl·LiCl.
11a

 Meanwhile a solution of nicotinonitrile (1b; 

104 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP3 and reacted with the 

freshly prepared Grignard reagent. The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:4 to 1:2) furnishing the compound 7i (221 

mg, 89%) as a brown solid. 
1
H NMR (300 MHz, CDCl3)  ppm 9.01 (s, 1 H), 8.88 (d, J=5.0 Hz, 1 H), 7.83 (d, 

J=8.3 Hz, 2 H), 7.75 (d, J=8.3 Hz, 2 H), 7.50 (d, J=5.3 Hz, 1 H). 
13

C NMR (75 MHz, CDCl3)  ppm 154.00, 153.10, 150.76, 138.78, 132.20 (q, 
2
JC–F=33 Hz), 128.87 (2 C), 126.19 (q, 

3
JC–F=3.7 Hz, 2 C), 123.64, 123.63 (q, 

1
JC–F=271 Hz), 116.13, 108.58. 

MS (70 eV, EI) m/z (%): 248 (100), 229 (13), 222 (20), 179 (31). 

HRMS for C13H7F3N2: calcd. 248.0561; found 248.0539 (M
+
). 

 

 
4-(4-(dimethylamino)phenyl)nicotinonitrile (7j): To a solution of nicotinonitrile (1b; 

104 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP3 and reacted with 

4-(dimethylamino)phenylMgBr·LiCl (1.4 mL, 1.09 M in THF, 1.5 mmol). The crude 

product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:2) furnishing 

the compound 7j (220 mg, 99%) as a brown solid. 
1
H NMR (400 MHz, CDCl3)  ppm 8.85 (s, 1 H), 8.67 (d, J=5.4 Hz, 1 H), 7.64 - 7.55 

(m, 2 H), 7.42 (d, J=5.3 Hz, 1 H), 6.80 (d, J=8.9 Hz, 2 H), 3.05 (s, 6 H). 
13

C NMR (101 MHz, CDCl3)  ppm 154.26, 152.25, 152.09, 151.55, 129.45 (2 C), 

122.68, 122.03, 117.71, 112.00 (2 C), 107.14, 40.07 (2 C). 

MS (70 eV, EI) m/z (%): 222 (100), 206 (10), 179 (11). 

HRMS for C14H13N3: calcd. 223.1110; found 223.1103 (M
+
). 

 

 

4-mesitylnicotinonitrile (7k): To a solution of nicotinonitrile (1b; 104 mg, 1.0 mmol) 

in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. The reaction 

mixture is stirred for 15 min according to TP3 and reacted with MesMgBr·LiCl (1.5 

mL, 1.04 M in THF, 1.5 mmol). The crude product is purified by flash 
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chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 7k (217 mg, 

98%) as a red solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.96 (s, 1 H), 8.82 (d, J=5.3 Hz, 1 H), 7.26 (d, 

J=5.3 Hz, 1 H), 6.98 (s, 2 H), 2.33 (s, 3 H), 1.99 (s, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 153.54, 153.16, 152.67, 138.90, 134.64 (2 C), 

132.25, 128.65 (2 C), 125.03, 115.60, 111.26, 21.01, 20.01 (2 C). 

MS (70 eV, EI) m/z (%): 222 (100), 207 (75), 192 (13), 180 (27). 

HRMS for C15H14N2: calcd. 222.1157; found 222.1142 (M
+
). 

 

 

2-(o-tolyl)isonicotinonitrile (7l): To a solution of isonicotinonitrile (1s; 104 mg, 1.0 

mmol) in THF (1 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP3 and reacted with 

o-TolMgBr·LiCl (1.3 mL, 1.16 M in THF, 1.5 mmol). The crude product is purified 

by flash chromatography (SiO2, EtOAc/i-hexane 1:9) furnishing the compound 7l (87 

mg, 45%) as a brown solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.86 (d, J=5.0 Hz, 1 H), 7.63 (s, 1 H), 7.46 (dd, 

J=5.0, 1.4 Hz, 1 H), 7.22 - 7.42 (m, 4 H), 2.37 (s, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 161.33, 150.05, 138.25, 135.78, 131.03, 129.51, 

129.17, 126.12, 125.45, 122.80, 120.55, 116.53, 20.16. 

MS (70 eV, EI) m/z (%): 193 (100), 166 (7). 

HRMS for C13H9N2: calcd. 193.0760; found 193.0758 [(M-H)
+
]. 

 

 

2-(thiophen-2-yl)isonicotinonitrile (7m): To a solution of isonicotinonitrile (1s; 104 

mg, 1.0 mmol) in THF (1 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP3 and reacted with 

thiophen-2-ylMgBr·LiCl (1.2 mL, 1.26 M in THF, 1.5 mmol). The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the 

compound 7m (78 mg, 42%) as a pale yellow solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.71 (d, J=5.3 Hz, 1 H), 7.83 (s, 1 H), 7.64 (d, 

J=3.9 Hz, 1 H), 7.49 (d, J=5.0 Hz, 1 H), 7.33 (d, J=5.0 Hz, 1 H), 7.15 (t, J=4.3 Hz, 1 

H). 
13

C NMR (75 MHz, CDCl3)  ppm 153.78, 150.46, 142.56, 129.41, 128.41, 126.14, 

122.61, 121.11, 120.27, 116.44. 

MS (70 eV, EI) m/z (%): 186 (100), 142 (15). 

HRMS for C10H6N2S: calcd. 186.0252; found 186.0248 (M
+
). 
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2-chloro-4-(o-tolyl)nicotinonitrile (7n): To a solution of 2-chloronicotinonitrile (1t; 

138 mg, 1.0 mmol) in THF (2 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP3 and reacted with 

o-TolMgBr·LiCl (1.3 mL, 1.16 M in THF, 1.5 mmol). The crude product is purified 

by flash chromatography (SiO2, EtOAc/i-hexane 1:9) furnishing the compound 7n 

(130 mg, 57%) as a white solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.58 (d, J=5.0 Hz, 1 H), 7.47 - 7.24 (m, 4 H), 

7.19 (d, J=7.5 Hz, 1 H), 2.23 (s, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 157.03, 153.38, 151.55, 134.94, 134.78, 130.81, 

129.97, 128.51, 126.20, 123.53, 113.90, 111.00, 19.65. 

MS (70 eV, EI) m/z (%): 228 (100), 201 (18), 192 (60), 166 (40), 139 (16). 

HRMS for C13H9ClN2: calcd. 228.0454; found 228.0443 (M
+
). 

 

 
ethyl 4-(3-cyanopyridin-4-yl)benzoate (7o): To a solution of ethyl 4-iodobenzoate 

(443mg, 1.6 mmol) in THF (1 ml) is added
 i
PrMgCl·LiCl (1.2 ml, 1.28 M in THF, 1.5 

mmol) dropwise at -30 °C. The reaction mixture is stirred for 30 min to furnish the 

4-carbethoxyphenylMgCl·LiCl.11a
 Then to a solution of nicotinonitrile (1b; 103 mg, 

1.0 mmol) in THF (1 ml) is added BF3·OEt2 (149 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP3 and reacted with the 

freshly prepared Grignard reagent. The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:2) furnishing the compound 7o (216 mg, 

86%) as a brown solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.99 (s, 1 H), 8.86 (d, J=5.0 Hz, 1 H), 8.22 (d, 

J=8.1 Hz, 2 H), 7.70 (d, J=8.3 Hz, 2 H), 7.52 (d, J=5.0 Hz, 1 H), 4.43 (q, J=7.2 Hz, 2 

H), 1.43 (t, J=7.2 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 165.55, 153.86, 152.86, 151.12, 139.30, 131.93, 

130.17 (2 C), 128.34 (2 C), 123.56, 116.14, 108.44, 61.27, 14.18. 

MS (70 eV, EI) m/z (%): 252 (13), 224 (53), 207 (100), 179 (36), 152 (28), 125 (13). 

HRMS for C15H12N2O2: calcd. 252.0899; found 252.0894 (M
+
). 
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4,4'-(2,5-dimethoxy-1,4-phenylene)dinicotinonitrile (11): To a solution of 

nicotinonitrile (1b; 344 mg, 3.3 mmol) in THF (3 ml) is added BF3·OEt2 (426 mg, 3.0 

mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP3 

and the dimagnesiated species (10)
11b

 (3.0 mL, 0.34 M in THF, 1.0 mmol) is dropped 

in at -30 °C. The mixture is stirred at the same temperature for 2 h and rearomatized 

by chloranil (736 mg, 3.0 mmol). The crude product is purified by flash 

chromatography (SiO2, THF/i-hexane 1:4) furnishing the compound 11 (138 mg, 

40%
27

) as a white powder. 
1
H NMR (300 MHz, CDCl3)  ppm 8.97 (s, 2 H), 8.86 (d, J=5.0 Hz, 2 H), 7.54 (d, 

J=5.3 Hz, 2 H), 6.99 (s, 2 H), 3.86 (s, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 152.94 (2 C), 152.42 (2 C), 150.35 (2 C), 149.20 

(2 C), 126.75 (2 C), 125.02 (2 C), 116.39 (2 C), 113.99 (2 C), 110.72 (2 C), 56.20 (2 

C). 

MS (70 eV, EI) m/z (%): 342 (100), 327 (54), 311 (43). 

HRMS for C20H14N4NaO2: calcd. 365.1015; found 365.1012 (M+Na
+
). 

 

 
N-phenyl-4-(o-tolyl)nicotinamide (7f): A dry and argon flushed 10 ml flask, 

equipped with a magnetic stirring bar and a rubber septum is charged with a solution 

of N-phenylnicotinamide (1l; 197 mg, 1.0 mmol) in dry THF (2 mL) and cooled to 

0 °C. 
t
BuMgCl (0.78 ml, 1.28 M in THF, 1.0 mmol) is dropped in and the mixture is 

stirred for 30 min. Then BF3·OEt2 (298 mg, 2.1 mmol) is added dropwise and stirred 

for 15 min at the same temperature. The reaction mixture is cooled to - 30 °C 

followed by dropwise addition of a THF solution of o-TolMgBr·LiCl (1.3 ml, 1.16 M 

in THF, 1.5 mmol), and stirring the reaction mixture at the same temperature for 2 h. 

Then chloranil (492 mg, 2.0 mmol) is added and the mixture is warmed up to room 

temperature and continuously stirred overnight. Finally, it is quenched with 1 mL 

saturated ammonia water solution and extracted with EtOAc several times. The 

organic phases are combined and filtered through a layer of silica gel. The filtrate is 

concentrated in vacuo. Purification by flash chromatography (SiO2, EtOAc/i-hexane 

1:1) furnishes compound 7f (202 mg, 70%) as a brown oil. 
1
H NMR (400 MHz, DMSO-d6)  ppm 10.36 (s, 1 H), 8.84 (s, 1 H), 8.73 (d, J=5.1 

                                                             
27

 Calculated based on Grignard reagent. 
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Hz, 1 H), 7.49 (d, J=7.6 Hz, 2 H), 7.38 (d, J=5.1 Hz, 1 H), 7.31 - 7.13 (m, 6 H), 7.04 

(t, J=7.4 Hz, 1 H), 2.13 (s, 3 H). 
13

C NMR (101 MHz, DMSO-d6)  ppm 164.88, 150.02, 147.71, 147.52, 138.71, 

137.43, 134.82, 132.95, 129.91, 128.61 (2 C), 128.47, 128.14, 125.42, 125.20, 123.75, 

119.60 (2 C), 19.70. 

MS (70 eV, EI) m/z (%): 288 (5), 196 (100), 167 (38), 93 (28). 

HRMS for C19H17N2O: calcd. 289.1335; found 289.1335 (M+H
+
). 
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Chapter 3. BF3-Mediated Direct Alkynylation, Benzylation and Substitution of 

Functionalized Pyridines 

 

3.1 Introduction 

The functionalization of the pyridine scaffold is an important synthetic task since 

polyfunctional pyridines are widely used for pharmaceutical and biological 

applications.
1

 Transition-metal catalyzed cross-coupling methodology has been 

extensively used to functionalize the pyridine skeleton.
2,3

 However, the use of Pd- or 

Ni-catalysis has some drawbacks such as the toxicity or price of the metal and the 

need of ligands. In chapter 2, I described that 3-substituted pyridines of type 1 

undergo BF3-mediated
4
 oxidative cross-couplings

5,6
 at position 4 with various alkyl- 

                                                             
1
 a) F. Glorius, N. Spielkamp, S. Holle, R. Goddard, C. W. Lehmann, Angew. Chem. 

Int. Ed. 2004, 43, 2850; b) G. D. Henry, Tetrahedron 2004, 60, 6043; c) J. P. Michael, 

Nat. Prod. Rep. 2005, 22, 627; d) M. C. Bagley, C. Glover, E. A. Merritt, Synlett 2007, 

2459; e) M. D. Hill, Chem. Eur. J. 2010, 16, 12052; f) A. R. Hardin Narayan, R. 

Sarpong, Org. Biomol. Chem. 2012, 10, 70. 
2
 a) N. Miyaura, Cross-Coupling Reactions. A Practical Guide, Springer, Berlin, 

2002; b) Metal-Catalyzed Cross-Coupling Reactions (Eds.: F Diederich, A. de 

Meijere), Wiley-VCH, Weinheim, 2004; c) Organotransition Metal Chemistry (Ed.: J. 

F. Hartwig), University Science Books, Sausalito, California, 2010. 
3
 For the transition-metal-catalyzed direct functionalization of pyridines, see: a) L.-C. 

Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020; b) A. 

Larivée, J. J. Mousseau, A. B. Charette, J. Am. Chem. Soc. 2008, 130, 52; c) Y. Nakao, 

K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448; d) M. Tobisu, I. 

Hyodo, N. Chatani, J. Am. Chem. Soc. 2009, 131, 12070; e) Y. Nakao, Y. Yamada, N. 

Kashihara, T. Hiyama, J. Am. Chem. Soc. 2010, 132, 13666; f) M. Wasa, B. T. Worrell, 

J.-Q. Yu, Angew. Chem. Int. Ed. 2010, 49, 1275; g) B. Xiao, Z.-J. Liu, L. Liu, Y. Fu, J. 

Am. Chem. Soc. 2013, 135, 616. 
4
 a) K. Ishihara, N. Hanaki, M. Funahashi, M. Miyata, H. Yamamoto, Bull. Chem. 

Soc. Jpn. 1995, 68, 1721; b) K. B. Aubrecht, M. D. Winemiller, D. B. Collum, J. Am. 

Chem. Soc. 2000, 122, 11084; c) H. Yamamoto, K. Futatsugi, Angew. Chem. Int. Ed. 

2005, 44, 1924; d) M. Jaric, B. A. Haag, A. Unsinn, K. Karaghiosoff, P. Knochel, 

Angew. Chem. Int. Ed. 2010, 49, 5451; e) M. Jaric, B. A. Haag, S. M. Manolikakes, P. 

Knochel, Org. Lett. 2011, 13, 2306. 
5
 For a recent review, see: J. A. Bull, J. J. Mousseau, G. Pelletier, A. B. Charette, 

Chem. Rev. 2012, 112, 2642 and references cited therein. Also, see: J. L. Jeffrey, R. 

Sarpong, Org. Lett. 2012, 14, 5400. 
6
 For a similar type of reactions undergoing a radical pathway, see: a) F. Minisci, C. 

Giordano, E. Vismara, S. Levi, V. Tortelli, J. Am. Chem. Soc. 1984, 106, 7146; b) F. 

Minisci, F. Fontana, E. Vismara, J. Heterocycl. Chem. 1990, 27, 79; c) I. B. Seiple, S. 

Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel, P. S. Baran, J. Am. 

Chem. Soc. 2010, 132, 13194; d) G. A. Molander, V. Colombel, V. A. Braz, Org. Lett. 

2011, 13, 1852; e) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. 

A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran, 

Nature 2012, 492, 95; f) F. O’Hara, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 

2013, 135, 12122. 
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and aryl-magnesium or zinc reagents leading via a tentative intermediate of type 2 to 

3,4-disubstituted pyridines of type 3 (Scheme 1).
7
 These reactions are remarkably 

regioselective and proceed almost only at position 4. 

 

 
Scheme 1. BF3-mediated oxidative and non-oxidative cross-coupling of pyridines. 

 

Then we wondered which reaction course would be observed if the position 4 of the 

pyridine is occupied by a substituent. Then I found a new BF3-mediated oxidative 

cross-coupling of pyridines of type 4 with alkynyllithium derivatives 5 via a tentative 

intermediate 6 which leads to 2,4-disubstituted pyridines of type 7. As a guideline for 

predicting this regioselectivity, it should be noticed that the complexation of the 

pyridine nitrogen with BF3 makes the position 2, 4 and 6 of the pyridine ring 

especially electrophilic, favoring the new carbon–carbon bonds formation at these 

positions. The overall result may also be governed by steric effects. In the course of 

this work, we discovered an even more attractive cross-coupling procedure which 

does require neither an oxidative step nor a transition-metal catalyst but proceeds via 

an addition-elimination step mediated by BF3·OEt2. This method allows a direct 

substitution of X (X = CN, Cl) in pyridines of type 4 with various alkyl groups from 

Grignard reagents via the tentative intermediate 8, affording products of type 9.
8
 I 

demonstrate that these new reactions allow a convenient functionalization of the 

pyridine scaffold leading to various polyfunctional di-, tri-, and tetra-substituted 

pyridines.
9
 

                                                             
7
 Q. Chen, X. Mollat du Jourdin, P. Knochel, J. Am. Chem. Soc. 2013, 135, 4958. 

8
 a) Y. Nakao, S. Oda, T. Hiyama, J. Am. Chem. Soc. 2004, 126, 13904; b) F. Zhang, 

S. Zhang, X.-F. Duan, Org. Lett. 2012, 14, 5618. 
9
 a) J. Barluenga, M. Ferrero, F. Palacios, Tetrahedron 1997, 53, 4521; b) J. 

Barluenga, M. A. Fernandez-Rodriguez, P. Garcia-Garcia, E. Aguilar, J. Am. Chem. 
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3.2 Results and Discussion 

 

3.2.1 BF3-Mediated Direct Alkynylation of Pyridines using Alkynyllithiums 

As a typical example, a 4-substituted pyridine, isonicotinonitrile (4a), was treated 

with BF3·OEt2 (1.1 equiv, THF, 0 °C, 15 min).  After subsequent addition of 

triisopropylsilylethynyllithium (5a, 1.5 equiv, -30 °C, 1 h) and rearomatization with 

chloranil (2.0 equiv, 25 °C, 2 h), the 2,4-disubstituted pyridine 7a was obtained in 81% 

isolated yield (Scheme 2). 

 

 

Scheme 2. BF3-mediated addition of the alkynyllithium (5a) to isonicotinonitrile (4a). 

 

Under these conditions, a variety of 4-substituted pyridines (4; X = CN, Cl, Br, Aryl 

or Alkyl) react with various alkynyllithiums
10

 bearing an alkyl (5b and 5c), aryl (5e 

and 5g), silyl (5d) or alkenyl substituent (5f), providing the expected functionalized 

pyridines 7b–k in 53–89% yield (Table 1, entries 1–10). Notably, the presence of an 

electron-withdrawing substituent at position 4 is not required and an aryl or a t-butyl 

substituent at position 4 lead to the expected products 7i–k in 53–63% yield (entries 

8–10). In the absence of a substituent at position 4, we still observed a reaction at 

position 2 or 6. Thus, 2-cyanopyridine (10a) reacts with the alkynyllithium 5h at 

position 6 to furnish the 2,6-disubstituted pyridine 11 in 66% yield. With 

electron-withdrawing substituents at position 3, a smooth alkynylation occurs at 

position 2 leading to the 2,3-disubstituted pyridines (12a–c) in 69–82% yield (entries 

12–14).
11

 While using electron-rich 3-picoline (1d) as a substrate, the coupling 

reaction also proceeds well, yet surprisingly it takes place at the more crowded 

C(2)-position and a 2,3-disubstituted product (12d) is obtained (entry 15). Even 

pyridine itself (13) undergoes the coupling reaction with the lithium reagent (5f) and 

gives a 2-substituted product (14) in 66% yield (entry 16). 

 

 

 
                                                                                                                                                                               

Soc. 2008, 130, 2764; c) C. Lau, G. C. Tsui, M. Lautens, Synthesis 2011, 3908; d) Z. 

Shi, D. C. Koester, M. Boultadakis-Arapinis, F. Glorius, J. Am. Chem. Soc. 2013, 135, 

12204. 
10

 The alkynyllithiums were prepared by the reaction of the corresponding alkynes 

with 
n
BuLi; see more details in the Experimental Section. 

11
 Whereas, as reported before, 3-halopyridines react with alkyl or arylmagnesium 

reagents at position 4, alkynyllithiums still predominantly react at position 2 leading 

to 2,4-disubstituted pyridines. However, in each case, 5% of a regioisomer contamine 

the 2-substituted product. 
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Table 1. Direct alkynylation of pyridine derivatives using various alkynyllithiums. 
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Table 1. Continued. 

 
a
Isolated yields of analytically pure products. 

 

Also, a double functionalization at positions 2 and 6 can be readily achieved. Thus, 

isonicotinonitrile (4a) is alkynylated at position 2 by our standard procedure resulting 

in the formation of 7l and 7m in 65–76% yield. The addition of a second 

alkynyllithium in the presence of BF3·OEt2 followed by oxidative rearomatization 

furnishes the 2,4,6-trisubstituted pyridines (15a–c) in 60–74% yield (Scheme 3). 
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Scheme 3. BF3-mediated direct alkynylation leading to the preparation of 

2,4,6-trisubstituted pyridines. Reaction conditions: a) BF3·OEt2 (1.1 equiv, THF, 0 °C, 

15 min); b) 5h (1.5 equiv, -30 °C, 1 h); c) chloranil (2.0 equiv, 25 °C, 2 h); d) 5d (1.5 

equiv, -30 °C, 1 h); e) 5e (1.5 equiv, -30 °C, 1 h); f) 5f (1.5 equiv, -30 °C, 1 h); g) 5g 

(1.5 equiv, -30 °C, 1 h). 

 

Moreover, highly functionalized tetra-substituted pyridines were obtained from 

nicotinonitrile (1e) via a sequence of several oxidative cross-couplings. The first 

carbon–carbon bond formation occurs at position 4 as expected, 
7
 leading to the 

disubstituted pyridine 16 in 95% yield. The position 2 and 6 of 16 can be readily 

differentiated since the cyano group activates strongly the position 2. Therefore, the 

addition of the alkynyllithium (5j) in the presence of BF3·OEt2 produces only the 

2,3,4-trisubstituted pyridine 17 in 88% yield after chloranil treatment. Finally, a range 

of organometallic reagents such as alkynyllithiums (5f and 5h), 2-thienylmagnesium 

bromide-lithium chloride or even benzylmagnesium chloride undergo an oxidative 

cross-coupling at position 6 affording the tetrasubstituted pyridines (18a–d) in 53–89% 

yield (Scheme 4). 
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Scheme 4. BF3-mediated polyfunctionalization of nicotinonitrile (1e) for the 

preparation of 2,3,4,6-tetrasubstituted pyridines. 

 

3.2.2 BF3-Mediated Direct Benzylation of Pyridines using Benzylmagnesium 

Reagents 

The unprecedented addition of a benzylic Grignard reagent to 17 led me to examine 

shortly the BF3-mediated oxidative coupling of BnMgX (X = Cl or Br) with various 

halopyridines such as 1a, b, f and 10b. The desired 4-benzylpyridines (19a–d) were 

obtained in 72–95% yield (Scheme 5). 

 

 

Scheme 5. Oxidative coupling of BnMgX to pyridines (1a, b, f and 10b). 

 

3.2.3 BF3-Mediated Substitution using Grignard Reagents 

By treating isonicotinonitrile (4a) in the presence of BF3·OEt2 with an 

alkylmagnesium reagent complexed with lithium chloride instead of an 

alkynyllithium, we observed the formation of an unexpected 4-substituted product of 

type 9 (Scheme 1). Thus, the treatment of 4a with BF3·OEt2 at 0 °C followed by the 

addition of c-HexMgBr·LiCl (1.2 equiv) at -50 °C leads to a very fast cross-coupling 

reaction (within 30 min) affording the 4-substituted pyridine 9a in 71% yield (Scheme 

6). 
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Scheme 6. BF3-mediated substitution of isonicotinonitrile (4a) and 4-chloropyridine 

(4b) by c-HexMgBr·LiCl. The yields of the competition experiment were determined 

by GC using n-undecane as an internal standard. 

 

The BF3-mediated cross-coupling can be extended to various primary and secondary 

organomagnesium reagents leading to the 4-substituted pyridines (9b–e) in 46–89% 

yield (Table 2). Interestingly, the 2-chloro-4-cyanopyridine (20) which could in 

principle undergo a cross-coupling at position 2 (the 2-chloro substituent is a good 

leaving group)
12

 reacts smoothly at position 4 leading to the chloropyridine 9e as an 

only detectable product in 46% yield (entry 4). In order to evaluate the difference of 

reactivity between a chloro- and a cyano-substituent in such BF3-mediated 

cross-couplings, we submitted a 1:1 mixture of 4a and 4b to a BF3-mediated 

cross-coupling with c-HexMgBr·LiCl. We found that the cyano group is a better 

leaving group, leading within 30 min to the full consumption of 4a and the formation 

of the desired product 9a in 94% yield. The chloropyridine 4b could be recovered in 

81% yield (Scheme 6). The higher reactivity of the isonicotinonitrile (4a) may be 

explained by the mesomeric acceptor properties of the cyano group compared to the 

mesomeric donor properties of the chloro-substituent (acid cyanides are also more 

electrophilic than acid chlorides).
13

 

 

 

 

 

 

 

 

 

                                                             
12

 a) O. M. Kuzmina, A. K. Steib, J. T. Markiewicz, D. Flubacher, P. Knochel, Angew. 

Chem. Int. Ed. 2013, 52, 4945; b) A. K. Steib, O. M. Kuzmina, S. Fernandez, D. 

Flubacher, P. Knochel, J. Am. Chem. Soc. 2013, 135, 15346. 
13

 a) S. R. Crabtree, W. L. Alex Chu, L. N. Mander, Synlett 1990, 169; b) C. Duplais, 

F. Bures, I. Sapountzis, T. J. Korn, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed. 2004, 

43, 2968. 
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Table 2. Non-oxidative cross-coupling of isonicotinonitrile (4a) or 4-chloropyridine 

(4b) using Grignard reagents. 

 
a
Isolated yields of analytically pure products. 

b
4-chloropyridine (4b) is used as 

substrate. 

 

In order to demonstrate the versatility of these methodologies, we have combined the 

two new functionalization procedures of pyridines (oxidative and non-oxidative 

cross-couplings) for producing various 2,4-disubstituted pyridines of type 21. Thus, 

the isonicotinonitrile (4a) and 4-chloropyridine (4b) were treated with the 

alkynyllithiums (5j,i,b) in the presence of BF3·OEt2 leading after oxidative workup 

with chloranil to the 2-alkynylated pyridines 7n–p in 73–84% yield. After these 

oxidative cross-couplings, we have performed a BF3-mediated cross-coupling with 

various alkylmagnesium reagents leading by substitution of the chloro- or 

cyano-substituent to the 2,4-disubstituted pyridines 21a–c in 66–88% yield (Scheme 

7). Interestingly, the 2,6-dialkynylisonicotinonitriles (15a–c; Scheme 3) do not 

undergo these cross-coupling reactions and only starting materials are recovered, 

indicating that the BF3 complexation at the pyridine nitrogen (and not at the cyano 

nitrogen) is crucial for the success of this substitution reaction. 
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Scheme 7. Consecutive BF3-mediated alkynylation and substitution for the 

preparation of 2,4-disubstituted pyridines. 

 

3.3 Summary 

In summary, we have developed two new functionalization procedures of pyridines. 

The oxidative cross-coupling proceeds with alkynyllithiums and affords 2- or 

6-substituted pyridines after oxidative rearomatization. On the hand, the 

cross-coupling procedure leads to the substitution at position 4 of a chloro- or 

cyano-substituent by an alkylmagnesium reagent. Neither method requires the use of a 

transition-metal catalyst.  

 

3.4 Experimental Section 

 

3.4.1 General Considerations 

All reactions are carried out under argon atmosphere in flame-dried glassware. 

Syringes which are used to transfer anhydrous solvents or reagents are purged with 

argon prior to use. THF is continuously refluxed and freshly distilled from sodium 

benzophenone ketyl under nitrogen. Yields refer to isolated yields of compounds 

estimated to be pure as determined by 
1
H-NMR (25 °C) and capillary GC. Column 

chromatographical purifications are performed using SiO2 (0.040 – 0.063 mm, 230 – 

400 mesh ASTM from Merck). Mass spectra and high resolution mass spectra 

(HRMS) are recorded using electron ionization (EI) or electrospray ionization (ESI). 
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Grignard reagents are prepared according to the literature.
14

 Alkynyllithium reagents 

are prepared according to the literature.
15

 The n-BuLi is purchased from Rockwood 

Lithium and titrated before use. Benzylmagnesium chloride (2.0 M in THF) is 

purchased from Aldrich. BF3·OEt2 is purchased from Acros or Aldrich and distilled 

before use. 

 

3.4.2 Typical Procedures 

 

Typical Procedure for the BF3-mediated direct alkynylation of pyridine 

derivatives using alkynyllithium reagents (TP1) 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a rubber 

septum is charged with a solution of a pyridine derivative (4, 1.0 mmol) in dry THF (2 

mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and stirred 

for 15 min at the same temperature. Then the reaction mixture is cooled to -30 °C. An 

alkynyllithium (5: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 0.75 M 

solution of the alkyne in THF at 0 °C and stirring for 30 min) is cannulated to the 

reaction flask and the resulting mixture is stirred at the same temperature for 1 h. 

Then, chloranil (492 mg, 2.0 mmol) is added and the mixture is warmed to room 

temperature and continuously stirred for 2 h. Finally, it is quenched with 1 mL 

saturated ammonia water solution and extracted with ethyl acetate several times. The 

organic phases are combined and filtered through a layer of silica gel. The filtrate is 

concentrated in vacuo. Purification by flash chromatography furnishes the desired 

product (7). 

 

Typical Procedure for the BF3-mediated direct benzylation of pyridine 

derivatives using BnMgCl or BnMgBr (TP2) 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a rubber 

septum is charged with a solution of a pyridine derivative (1, 1.0 mmol) in dry THF (2 

mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and stirred 

for 15 min at the same temperature. Then, the reaction mixture is cooled to -50 °C. A 

THF solution of BnMgCl or BnMgBr (1.2 mmol) is added dropwise and the resulting 

mixture is stirred at the same temperature for 30 min. Then, chloranil (492 mg, 2.0 

mmol) is added and the mixture is warmed up to room temperature and continuously 

stirred for 2 h. Finally, it is quenched with 1 mL saturated ammonia water solution 

and extracted with ethyl acetate several times. The organic phases are combined and 

filtered through a layer of silica gel. The filtrate is concentrated in vacuo. Purification 

by flash chromatography furnishes the desired product (19). 

 

 

 

                                                             
14

 F. M. Piller, A. Metzger, M. A. Schade, B. A. Hagg, A. Gavryushin, P. Knochel, 

Chem. Eur. J. 2009, 15, 7192. 
15

 S. R. Dubbaka, M. Kienle, H. Mayr, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 

9093. 
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Typical Procedure for the BF3-mediated non-oxidative cross-coupling of pyridine 

derivatives using Grignard reagents (TP3) 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a rubber 

septum is charged with a solution of a pyridine derivative (4, 1.0 mmol) in dry THF (2 

mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and stirred 

for 15 min at the same temperature. Then, the reaction mixture is cooled to -50 °C. A 

THF solution of Grignard reagent (1.2 mmol) is added dropwise and the resulting 

mixture is stirred at the same temperature for 30 min. Finally, it is quenched with 1 

mL saturated ammonia water solution and extracted with ethyl acetate several times. 

The organic phases are combined and filtered through a layer of silica gel. The filtrate 

is concentrated in vacuo. Purification by flash chromatography furnishes the desired 

product (9). 

 

3.4.3 Competition Experiments 

 

 
According to TP3, a mixture of isonicotinonitrile (4a; 1.0 mmol) and 

4-chloropyridine (4b; 1.0 mmol) reacts with c-HexMgBr·LiCl (2.0 mL, 0.59 M in 

THF, 1.2 mmol) in the presence of BF3·OEt2 (2.2 mmol). After quenching, the crude 

products are measured by GC using undecane as an internal standard, giving the 

corresponding GC yields of each product. 

 

3.4.4 Product Synthesis and Analytical Data 

 

 

2-[(triisopropylsilyl)ethynyl]isonicotinonitrile (7a): To a solution of 

isonicotinonitrile (4a; 104 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 

TP1 and reacted with 1-triisopropylsilylethynyllithium (5a: 1.5 mmol; prepared by 

adding 
n
BuLi (1.5 mmol) to a 0.75 M solution of triisopropylsilylacetylene in THF 

(274 mg, 2 mmol) at 0 °C and stirring for 30 min). The crude product is purified by 

flash chromatography (SiO2, EtOAc/i-hexane 1:9) furnishing the compound 7a (230 

mg, 81%) as a light yellow oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.76 (d, J=5.0 Hz, 1 H), 7.67 (s, 1 H), 7.45 (dd, 
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J=5.0, 1.4 Hz, 1 H), 1.16 (br. s, 21 H). 
13

C NMR (75 MHz, CDCl3)  ppm 150.82, 144.49, 128.83, 123.80, 120.72, 115.70, 

103.83, 95.49, 18.50 (6 C), 11.07 (3 C). 

MS (70 eV, EI) m/z (%): 284 (5), 241 (100), 213 (41), 199 (18), 185 (32), 171 (25), 

155 (10). 

HRMS for C17H24N2Si: calcd. 284.1709; found 284.1697 (M
+
). 

 

 

2-(6-chlorohex-1-yn-1-yl)isonicotinonitrile (7b): To a solution of isonicotinonitrile 

(4a; 104 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and 

reacted with the lithium reagent (5b: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) 

to a 0.75 M solution of 6-chlorohex-1-yne in THF (175 mg, 1.5 mmol) at -10 °C and 

stirring for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 7b (195 mg, 89%) as a light reddish 

oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.70 (d, J=5.1 Hz, 1 H), 7.56 (d, J=1.5 Hz, 1 H), 

7.40 (dd, J=5.1, 1.5 Hz, 1 H), 3.58 (t, J=6.4 Hz, 2 H), 2.51 (t, J=6.9 Hz, 2 H), 1.95 (m, 

2 H), 1.79 (m, 2 H). 
13

C NMR (75 MHz, CDCl3)  ppm 150.79, 145.02, 128.22, 123.45, 120.79, 115.88, 

93.32, 79.58, 44.30, 31.53, 25.29, 18.67. 

MS (70 eV, EI) m/z (%): 218 (5), 181(55), 155(100), 142(15). 

HRMS for C12H11N2Cl: calcd. 218.0611; found 218.0612 (M
+
). 

 

 

2-(cyclopropylethynyl)isonicotinonitrile (7c): To a solution of isonicotinonitrile (4a; 

104 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise 

at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

the lithium reagent (5c: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 0.75 M 

solution of ethynylcyclopropane in THF (99 mg, 1.5 mmol) at -20 °C and stirring for 

30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 7c (120 mg, 71%) as a pink oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.67 (dd, J=5.0, 1.0 Hz, 1 H), 7.53 (dd, J=1.5, 1.0 

Hz, 1 H), 7.37 (dd, J=5.0, 1.5 Hz, 1 H), 1.55–1.43 (m, 1 H), 0.97–0.88 (m, 4 H). 
13

C NMR (75 MHz, CDCl3)  ppm 150.70, 145.22, 128.11, 123.08, 120.67, 115.97, 

97.83, 74.27, 9.03 (2C), 0.09. 
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MS (70 eV, EI) m/z (%): 168 (55), 142 (100). 

HRMS for C11H8N2: calcd. 168.0687; found 168.0682 (M
+
). 

 

 

4-chloro-2-((trimethylsilyl)ethynyl)pyridine (7d):
 16

 To a solution of 

4-chloropyridine (4b; 113 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 

TP1 and reacted with the lithium reagent (5d: 1.5 mmol; prepared by adding 
n
BuLi 

(1.5 mmol) to a 0.75 M solution of trimethylsilylacetylene in THF (147 mg, 1.5 mmol) 

at -40 °C and stirring for 30 min). The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:3) furnishing the compound 7d (187 mg, 

89%) as a colorless oil. Caution: volatile compound. 
1
H NMR (300 MHz, CDCl3)  ppm 8.50 (dd, J=5.4, 0.5 Hz, 1 H), 7.51 (dd, J=2.0, 0.5 

Hz, 1 H), 7.28 (dd, J=5.4, 2.0 Hz, 1 H), 0.27 (s, 9 H). 
13

C NMR (75 MHz, CDCl3)  ppm 151.56, 145.08, 144.97, 128.18, 124.23, 103.00, 

97.13, -0.40 (3C). 

MS (70 eV, EI) m/z (%): 209 (25), 194 (100), 166 (5), 140 (5). 

HRMS for C10H12NClSi: calcd. 209.0428; found 209.0433 (M
+
). 

 

 

4-chloro-2-((3-fluorophenyl)ethynyl)pyridine (7e): To a solution of 

4-chloropyridine (4b; 113 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 

TP1 and reacted with the lithium reagent (5e: 1.5 mmol; prepared by adding 
n
BuLi 

(1.5 mmol) to a 0.75 M solution of 1-ethynyl-3-fluorobenzene in THF (180 mg, 1.5 

mmol) at -40 °C and stirring for 30 min). The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:3) furnishing the compound 7e (164 mg, 

71%) as a pale brownish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.51 (d, J=5.4 Hz, 1 H), 7.55–7.52 (m, 1 H), 

7.40–7.30 (m, 2 H), 7.30–7.26 (m, 2 H), 7.13–7.05 (m, 1 H). 
13

C NMR (75 MHz, CDCl3)  ppm 162.42 (d, J=247.1 Hz), 150.96, 144.35, 144.32, 

130.23 (d, J=8.6 Hz), 128.16 (d, J=3.1 Hz), 127.48, 123.74, 123.62, 118.98 (d, J=23.1 

Hz), 116.87 (d, J=21.2 Hz), 89.07 (d, J=3.5 Hz), 88.31. 

                                                             
16

 PCT Intl Appl, 2008 WO 2008003665 A1 20080110. 
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19
F NMR (280 MHz, CDCl3)  ppm -112.5 (m). 

MS (70 eV, EI) m/z (%): 231 (100), 196 (20), 169 (25), 149 (5). 

HRMS for C13H7NClF: calcd. 231.0251; found 231.0250 (M
+
). 

 

 

4-bromo-2-(cyclohex-2-en-1-ylethynyl)pyridine (7f): To a solution of 

4-bromopyridine (4c; 157 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 

TP1 and reacted with the lithium reagent (5f: 1.5 mmol; prepared by adding 
n
BuLi 

(1.5 mmol) to a 0.75 M solution of 3-ethynylcyclohex-1-ene in THF (159 mg, 1.5 

mmol) at -10 °C and stirring for 30 min). The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:3) furnishing the compound 7f (203 mg, 

77%) as a light reddish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.36 (d, J=5.3 Hz, 1 H), 7.58 (dd, J=1.9, 0.5 Hz, 1 

H), 7.35 (dd, J=5.4, 1.9 Hz, 1 H), 6.34 (m, 1 H), 2.23 (m, 2 H), 2.19–2.11 (m, 2 H), 

1.72–1.56 (m, 4 H). 
13

C NMR (75 MHz, CDCl3)  ppm 151.30, 145.86, 139.05, 133.27, 130.65, 126.37, 

120.58, 93.37, 85.68, 28.89, 26.05, 22.28, 21.46. 

MS (70 eV, EI) m/z (%): 260 (100), 247 (45), 234 (50), 208 (5). 

HRMS for C13H12N2Br: calcd. 261.0153; found 261.0182 (M
+
). 

 

 

4-bromo-2-(6-chlorohex-1-yn-1-yl)pyridine (7g): To a solution of 4-bromopyridine 

(4c; 157 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and 

reacted with the lithium reagent (5b: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) 

to a 0.75 M solution of 6-chlorohex-1-yne in THF (175 mg, 1.5 mmol) at -10 °C and 

stirring for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 7g (225 mg, 82%) as a reddish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.35 (d, J=5.1 Hz, 1 H), 7.55 (d, J=1.5 Hz, 1 H), 

7.37 (dd, J=5.3, 1.5 Hz, 1 H), 3.59 (t, J=6.4 Hz, 2 H), 2.49 (t, J=6.9 Hz, 2 H), 

2.01–1.89 (m, 2 H), 1.84–1.72 (m, 2 H).
 

13
C NMR (75 MHz, CDCl3)  ppm 151.19, 145.55, 133.44, 130.76, 126.66, 92.22, 

80.33, 44.71, 31.72, 25.53, 18.76. 

MS (70 eV, EI) m/z (%): 272 (10), 236 (100), 208 (90), 195 (15). 
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HRMS for C11H11NBrCl: calcd. 270.9763; found 270.9749 (M
+
). 

 

 

4-bromo-2-((4-methoxyphenyl)ethynyl)pyridine (7h): To a solution of 

4-bromopyridine (4c; 157 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 

TP1 and reacted with the lithium reagent (5g: 1.5 mmol; prepared by adding 
n
BuLi 

(1.5 mmol) to a 0.75 M solution of 1-ethynyl-4-methoxybenzene in THF (198 mg, 1.5 

mmol) at -40 °C and stirring for 30 min). The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:3) furnishing the compound 7h (216 mg, 

75%) as a yellowish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.40 (dd, J=5.4, 0.6 Hz, 1 H), 7.68 (dd, J=1.9, 0.6 

Hz, 1 H), 7.54–7.49 (m, 2 H), 7.39 (dd, J=5.4, 1.9 Hz, 1 H), 6.92–6.86 (m, 2 H), 3.83 

(s, 3 H).
 

13
C NMR (75 MHz, CDCl3)  ppm 160.43, 150.37, 144.76, 143.32, 133.72, 129.91, 

125.78, 119.00, 114.11, 91.16, 86.43, 55.33. 

MS (70 eV, EI) m/z (%): 286 (100), 272 (45), 165 (40). 

HRMS for C14H10ONBr: calcd. 286.9946; found 286.9954 (M
+
). 

 

 

 

2-(cyclohex-1-en-1-ylethynyl)-4-phenylpyridine (7i): To a solution of 

4-phenylpyridine (4d; 310 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 

TP1 and reacted with the lithium reagent (5f: 1.5 mmol; prepared by adding 
n
BuLi 

(1.5 mmol) to a 0.75 M solution of 3-ethynylcyclohex-1-ene in THF (319 mg, 1.5 

mmol) at -50 °C and stirring for 40 min). The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:9 to 1:4) furnishing the compound 7i (328 

mg, 63%) as a brown oil. 
1
H NMR (300 MHz, CDCl3) ppm 8.58 (d, J=5.3 Hz, 1 H), 7.69 - 7.53 (m, 3 H), 

7.53 - 7.40 (m, 3 H), 7.38 (dd, J=5.3, 1.9 Hz, 1 H), 6.33 (dt, J=3.9, 2.0 Hz, 1 H), 2.35 

- 2.20 (m, 2 H), 2.20 - 2.06 (m, 2 H), 1.76 - 1.53 (m, 4 H).
13

C NMR (75 MHz, CDCl3)  ppm 149.94, 148.47, 143.98, 137.27 (2 C), 129.11, 

128.95 (2 C), 126.76 (2 C), 124.65, 120.13, 119.93, 91.51, 86.13, 28.68, 25.71, 22.05, 
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21.24.

MS (70 eV, EI) m/z (%): 259 (100), 243 (15), 230 (25). 

HRMS for C19H17N: calcd. 259.1361; found 259.1353 (M
+
). 

 

 

ethyl 6-(6-chlorohex-1-yn-1-yl)-4-(2-(chloromethyl)phenyl)nicotinate (7j): To a 

solution of ethyl 4-(2-(chloromethyl)phenyl)nicotinate (4e; 328 mg, 1.19 mmol) in 

THF (2 mL) is added BF3·OEt2 (186 mg, 1.3 mmol) dropwise at 0 °C. The reaction 

mixture is stirred for 15 min according to TP1 and reacted with with the lithium 

reagent (5b: 1.8 mmol; prepared by adding 
n
BuLi (1.8 mmol) to a 0.90 M solution of 

6-chlorohex-1-yne in THF (208 mg, 1.8 mmol) at 0 °C and stirring for 30 min). The 

crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:4) 

furnishing the compound 7j (248 mg, 53%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 9.14 (s, 1 H), 7.59 - 7.48 (m, 1 H), 7.48 - 7.31 (m, 

3 H), 7.08 (d, J=7.2 Hz, 1 H), 4.38 (d, J=11.6 Hz, 1 H), 4.29 (d, J=11.6 Hz, 1 H), 4.09 

(q, J=7.2 Hz, 2 H), 3.59 (t, J=6.4 Hz, 2 H), 2.53 (t, J=6.8 Hz, 2 H), 2.04 – 1.89 (m, 2 

H), 1.89 - 1.73 (m, 2 H), 1.00 (t, J=7.2 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 165.02, 151.66, 148.92, 146.03, 138.36, 134.17, 

129.67, 128.70, 128.39 (2 C), 128.09, 124.46, 93.42, 80.51, 61.19, 44.34, 43.81, 31.45, 

25.26, 18.71, 13.54. 

HRMS for C21H22Cl2NO2: calcd. 390.1022; found 390.1023 (M+H
+
). 

 

 

6-(thiophen-3-ylethynyl)picolinonitrile (11): To a solution of 2-cyanopyridine (10a; 

208 mg, 2.0 mmol) in THF (2 mL) is added BF3·OEt2 (312 mg, 2.2 mmol) dropwise 

at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

with the lithium reagent (5h: 3.0 mmol; prepared by adding 
n
BuLi (3.0 mmol) to a 1.5 

M solution of 3-ethynylthiophene in THF (325 mg, 3.0 mmol) at 0 °C and stirring for 

30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:9 to 1:4) furnishing the compound 11 (278 mg, 66%) as a brown 

solid. 
1
H NMR (300 MHz, CDCl3)  ppm 7.83 (t, J=7.9 Hz, 1 H), 7.70 (br. s., 1 H), 7.69 

(dd, J=4.8, 1.0 Hz, 1 H), 7.63 (dd, J=7.6, 1.0 Hz, 1 H), 7.34 (dd, J=5.1, 2.9 Hz, 1 H), 

7.30 - 7.22 (m, 1 H). 
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13
C NMR (75 MHz, CDCl3)  ppm 145.09, 137.32, 134.13, 131.34, 129.94, 129.85, 

127.0, 125.87, 120.38, 116.57, 87.0, 86.67.

MS (70 eV, EI) m/z (%): 210 (100), 184 (8). 

HRMS for C12H6N2S: calcd. 210.0252; found 210.0247 (M
+
). 

Mp: 150–153 ºC. 
 

 

3-chloro-2-(phenylethynyl)pyridine (12a): To a solution of 3-chloropyridine (1a; 

114 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise 

at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

with the lithium reagent (5i: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 

0.75 M solution of ethynylbenzene in THF (153 mg, 1.5 mmol) at 0 °C and stirring 

for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:4) furnishing the compound 12a (159 mg, 74%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.49 (dd, J=4.6, 1.2 Hz, 1 H), 7.72 (dd, J=8.2, 1.2 

Hz, 1 H), 7.68 - 7.56 (m, 2 H), 7.43 - 7.31 (m, 3 H), 7.18 (dd, J=8.0, 4.7 Hz, 1 H). 
13

C NMR (75 MHz, CDCl3)  ppm 147.59, 141.89, 136.59, 134.01, 132.05 (2 C), 

129.26, 128.30 (2 C), 123.27, 121.77, 94.70, 85.71. 

MS (70 eV, EI) m/z (%): 213 (100), 178 (25), 151 (24). 

HRMS for C13H9ClN: calcd. 214.0418; found 214.0418 (M+H
+
). 

 

 

3-bromo-2-(phenylethynyl)pyridine (12b): To a solution of 3-bromopyridine (1b; 

157 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise 

at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

with the lithium reagent (5i: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 

0.75 M solution of ethynylbenzene in THF (153 mg, 1.5 mmol) at 0 °C and stirring 

for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:4) furnishing the compound 12b (210 mg, 82%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.52 (d, J=4.1 Hz, 1 H), 7.89 (d, J=8.0 Hz, 1 H), 

7.70 - 7.57 (m, 2 H), 7.43 - 7.30 (m, 3 H), 7.09 (dd, J=8.0, 4.7 Hz, 1 H). 
13

C NMR (75 MHz, CDCl3)  ppm 148.03, 143.48, 139.75, 132.00 (2 C), 129.25, 

128.29 (2 C), 123.72, 123.43, 121.74, 94.06, 87.28. 

MS (70 eV, EI) m/z (%): 259 (100), 178 (43), 151 (49). 

HRMS for C13H9BrN: calcd. 257.9913; found 257.9911 (M+H
+
). 
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3-iodo-2-(phenylethynyl)pyridine (12c): To a solution of 3-iodopyridine (1c; 205 

mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

with the lithium reagent (5i: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 

0.75 M solution of ethynylbenzene in THF (153 mg, 1.5 mmol) at 0 °C and stirring 

for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:4) furnishing the compound 12c (211 mg, 69%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.54 (d, J=4.1 Hz, 1 H), 8.11 (d, J=7.5 Hz, 1 H), 

7.63 (d, J=3.0 Hz, 2 H), 7.36 (br. s., 3 H), 7.01 – 6.86 (m, 1 H). 
13

C NMR (75 MHz, CDCl3)  ppm 148.49, 147.05, 145.95, 131.91 (2 C), 129.24, 

128.25 (2 C), 123.38, 121.63, 98.69, 93.24, 90.11. 

MS (70 eV, EI) m/z (%): 305 (100), 177 (24), 151 (32). 

HRMS for C13H9IN: calcd. 305.9774; found 305.9773 (M+H
+
). 

 

 

3-methyl-2-(thiophen-3-ylethynyl)pyridine (12d): To a solution of 3-picoline (1d; 

93 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

with the lithium reagent (5h: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 

0.75 M solution of 3-ethynylthiophene in THF (162 mg, 1.5 mmol) at 0 °C and 

stirring for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 12d (127 mg, 64%) as a yellowish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.44 (d, J=3.2 Hz, 1H), 7.62 (m, 1H), 7.55–7.50 

(m, 1H), 7.33–7.28 (m, 1H), 7.27–7.22 (m, 1H), 7.17–7.10 (m, 1H), 2.49 (s, 3H). 
13

C NMR (75 MHz, CDCl3)  ppm 147.36, 143.11, 136.94, 135.72, 129.95, 129.82, 

125.46, 122.60, 121.61, 88.19, 87.11, 19.41. 

MS (70 eV, EI) m/z (%): 199 (100), 154 (50). 

HRMS for C12H9NS: calcd. 199.0456; found 199.0455 (M+). 

 

 

2-(cyclohex-1-en-1-ylethynyl)pyridine (14):
17

 To a solution of pyridine (13; 79 mg, 

                                                             
17

 H. Li, G. A. Grasa, T. J. Colacot, Org. Lett. 2010, 12, 3332. 
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1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with with the 

lithium reagent (5f: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 0.75 M 

solution of 1-ethynylcyclohex-1-ene in THF (159 mg, 1.5 mmol) at 0 °C and stirring 

for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 14 (121 mg, 66%) as an oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.54 (dd, J = 4.1, 0.8 Hz, 1 H), 7.64–7.57 (m, 1 

H), 7.38 (m, 1 H), 7.20–7.14 (m, 1 H), 6.33–6.26 (m, 1 H), 2.26–2.18 (m, 2 H), 

2.18–2.09 (m, 2 H), 1.71–1.54 (m, 4 H). 

 

 

2-(thiophen-2-ylethynyl)isonicotinonitrile (7l): To a solution of isonicotinonitrile 

(4a; 104 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and 

reacted with the lithium reagent (5h: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) 

to a 0.75 M solution of 2-ethynylthiophene in THF (162 mg, 1.5 mmol) at -50 °C and 

stirring for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 7l (137 mg, 65%) as a reddish solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.77 (dd, J=5.0, 0.9 Hz, 1 H), 7.69 (m, 2 H), 7.44 

(dd, J=5.0, 1.5 Hz, 1 H), 7.38 (m, 1 H), 7.25 (m, 1 H). 
13

C NMR (75 MHz, CDCl3)  ppm 150.97, 144.86, 131.35, 129.87, 128.25, 125.90, 

123.60, 120.92, 120.43, 115.84, 87.54, 86.74. 

MS (70 eV, EI) m/z (%): 210 (100), 184 (15), 166 (12), 139 (5). 

HRMS for C12H6N2S: calcd. 210.0252; found 210.0247 (M
+
). 

Mp: 115–117 ºC. 
 

 

2-(thiophen-3-ylethynyl)-6-((trimethylsilyl)ethynyl)isonicotinonitrile (15a): To a 

solution of 2-(thiophen-2-ylethynyl)isonicotinonitrile (7l; 113 mg, 0.54 mmol) in THF 

(2 mL) is added BF3·OEt2 (84 mg, 0.59 mmol) dropwise at 0 °C. The reaction mixture 

is stirred for 15 min according to TP1 and reacted with the lithium reagent (5d: 0.81 

mmol; prepared by adding 
n
BuLi (0.81 mmol) to a 0.75 M solution of 

trimethylsilylacetylene in THF (79 mg, 0.81 mmol) at -40 °C and stirring for 30 min. 

The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:3) 
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furnishing the compound 15a (99 mg, 60%) as a yellowish solid. 
1
H NMR (300 MHz, CDCl3)  ppm 7.68 (dd, J=3.0, 1.2 Hz, 1 H), 7.60 (d, J=1.4 Hz, 1 

H), 7.56 (d, J=1.4 Hz, 1 H), 7.33 (dd, J=5.0, 3.0 Hz, 1 H), 7.24 (dd, J=5.0, 1.2 Hz, 1 H), 

0.27 (s, 9 H). 
13

C NMR (75 MHz, CDCl3)  ppm 145.06, 144.67, 131.58, 129.88, 127.08, 127.01, 

125.91, 121.29, 120.36, 115.35, 101.28, 99.08, 87.85, 86.55, -0.51 (3C). 

MS (70 eV, EI) m/z (%): 306 (50), 291 (100), 145 (5), 135 (2). 

HRMS for C17H14N2SSi: calcd. 306.0647; found 306.0633 (M
+
). 

Mp: 135–137 ºC. 
 

 

2-((3-fluorophenyl)ethynyl)-6-(thiophen-3-ylethynyl)isonicotinonitrile (15b): To a 

solution of 2-(thiophen-2-ylethynyl)isonicotinonitrile (7l; 132 mg, 0.63 mmol) in THF 

(2 mL) is added BF3·OEt2 (98 mg, 0.69 mmol) dropwise at 0 °C. The reaction mixture 

is stirred for 15 min according to TP1 and reacted with the lithium reagent (5e: 0.94 

mmol; prepared by adding 
n
BuLi (0.94 mmol) to a 0.75 M solution of 

1-ethynyl-3-fluorobenzene in THF (113 mg, 0.94 mmol) at 0 °C and stirring for 30 

min. The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 

1:3) furnishing the compound 15b (152 mg, 74%) as a yellowish solid. 
1
H NMR (300 MHz, CDCl3)  ppm 7.75–7.71 (m, 1 H), 7.68–7.64 (m, 2 H), 7.45–7.32 

(m, 4 H), 7.32–7.26 (m, 1 H), 7.21–7.11 (m, 1 H). 
13

C NMR (75 MHz, CDCl3)  ppm 169.56, 162.28 (d, J=247.5 Hz), 145.26, 144.70, 

140.79, 131.69, 130.24 (d, J=8.6 Hz), 129.90, 128.18 (d, J=3.2 Hz), 126.97 (d, J=14.7 

Hz), 125.96, 122.98 (d, J=9.5 Hz), 120.88 (d, J=87.6 Hz), 118.99 (d, J=23.2 Hz), 

117.25 (d, J=21.2 Hz), 115.35, 90.75 (d, J=3.5 Hz), 88.06, 87.34, 86.52. 
19

F NMR (280 MHz, CDCl3)  ppm -112.2 (m). 

MS (70 eV, EI) m/z (%): 328 (100), 302 (2), 283 (2), 164 (2). 

HRMS for C20H9N2FS: calcd. 328.0470; found 328.0473 (M
+
). 

Mp: 155–157 ºC. 
 

 

2-(cyclohex-2-en-1-ylethynyl)isonicotinonitrile (7m): To a solution of 

isonicotinonitrile (4a; 104 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 

1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min according to 
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TP1 and reacted with the lithium reagent (5f: 1.5 mmol; prepared by adding 
n
BuLi 

(1.5 mmol) to a 0.75 M solution of 3-ethynylcyclohex-1-ene in THF (159 mg, 1.5 

mmol) at 0 °C and stirring for 30 min). The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:3) furnishing the compound 7m (158 mg, 

76%) as a light yellowish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.71 (dd, J=5.0, 0.9 Hz, 1 H), 7.58 (dd, J=1.5, 0.9 

Hz, 1 H), 7.37 (dd, J=5.0, 1.5 Hz, 1 H), 6.38 (m, 1 H), 2.27-2.19 (m, 2 H), 2.18-2.12 

(m, 2 H), 1.73-1.56 (m, 4 H). 
13

C NMR (75 MHz, CDCl3)  ppm 150.82, 145.31, 139.08, 128.15, 123.11, 120.70, 

119.63, 115.94, 94.38, 84.82, 28.60, 25.92, 22.07, 21.25. 

MS (70 eV, EI) m/z (%): 208 (95), 192 (55), 179 (55), 166 (5). 

HRMS for C14H13N2: calcd. 209.1079; found 209.1072 (M+H
+
). 

 

 

2-(cyclohex-1-en-1-ylethynyl)-6-((4-methoxyphenyl)ethynyl)isonicotinonitrile 

(15c): To a solution of 2-(cyclohex-2-en-1-ylethynyl)isonicotinonitrile (7m; 47 mg, 

0.23 mmol) in THF (2 mL) is added BF3·OEt2 (35 mg, 0.25 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP1 and reacted with the 

lithium reagent (5g: 0.34 mmol; prepared by adding 
n
BuLi (0.34 mmol) to a 0.75 M 

solution of 1-ethynyl-4-methoxybenzene in THF (45 mg, 0.34 mmol) at -40 °C and 

stirring for 30 min. The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 15c (49 mg, 64%) as an oil. 
1
H NMR (300 MHz, CDCl3)  ppm 7.56–7.54 (m, 2 H), 7.53–7.51 (m, 1 H), 7.48 (d, 

J=1.4 Hz, 1 H), 6.93–6.86 (m, 2 H), 6.44–6.35 (m, 1 H), 3.84 (s, 3 H), 2.31–2.12 (m, 4 

H), 1.80–1.58 (m, 4 H). 
13

C NMR (75 MHz, CDCl3)  ppm 161.73, 146.41, 146.17, 140.20, 134.75, 127.16, 

126.97, 121.81, 120.39, 116.34, 114.91, 113.93, 95.18, 93.31, 86.68, 85.26, 55.71, 

28.74, 26.12, 22.22, 21.39. 

MS (70 eV, EI) m/z (%): 338 (100), 323 (5), 310 (5), 266 (5). 

HRMS for C23H18ON2: calcd. 338.1419; found 338.1414 (M
+
). 

 

 

ethyl 4-(3-cyanopyridin-4-yl)benzoate (16):
7 

To a solution of ethyl 4-iodobenzoate 

(803mg, 3.2 mmol) in THF (2 mL) is added
 i
PrMgCl·LiCl (2.3 ml, 1.29 M in THF, 

3.0 mmol) dropwise at -30 °C. The reaction mixture is stirred for 30 min to furnish 

the 4-carbethoxyphenylmagnesium chloride-lithium chloride. Then to a solution of 

nicotinonitrile (1e; 208 mg, 2.0 mmol) in THF (2 mL) is added BF3·OEt2 (312 mg, 
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2.2 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 min at 0 °C and 

cannulated to the freshly prepared Grignard reagent at -30 °C and the resulting 

mixture is stirred at the same temperature for 1 h. Then chloranil (984 mg, 4.0 mmol) 

is added and the mixture is warmed up to room temperature and continuously stirred 

for 2 h. Finally, it is quenched with 2 mL saturated ammonia water solution and 

extracted with ethyl acetate several times. The organic phases are combined and 

filtered through a layer of silica gel. The filtrate is concentrated in vacuo. The crude 

product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:2) furnishing 

the compound 16 (479 mg, 95%) as a reddish solid.
18

 

 

 
ethyl 4-(3-cyano-2-(oct-1-yn-1-yl)pyridin-4-yl)benzoate (17): To a solution of ethyl 

4-(3-cyanopyridin-4-yl)benzoate (16; 483 mg, 1.91 mmol) in THF (4 mL) is added 

BF3·OEt2 (299 mg, 2.11 mmol) dropwise at 0 °C. The reaction mixture is stirred for 

15 min according to TP1 and reacted with the lithium reagent (5j: 2.87 mmol; 

prepared by adding 
n
BuLi (2.87 mmol) to a 1.4 M solution of 1-octyne in THF (317 

mg, 2.87 mmol) at 0 °C and stirring for 30 min. The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 17 (605 mg, 

88%) as a reddish brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.73 (d, J=5.0 Hz, 1 H), 8.20 (d, J=8.0 Hz, 2 H), 

7.67 (d, J=8.3 Hz, 2 H), 7.35 (d, J=5.3 Hz, 1 H), 4.42 (q, J=7.2 Hz, 2 H), 2.55 (t, J=7.0 

Hz, 2 H), 1.85 - 1.60 (m, J=7.4, 7.4, 7.3, 7.0 Hz, 2 H), 1.60 - 1.47 (m, 2 H), 1.42 (t, 

J=7.2 Hz, 3 H), 1.38 - 1.21 (m, 4 H), 0.90 (t, J=6.4 Hz, 3 H).
13

C NMR (75 MHz, CDCl3)  ppm 165.54, 152.19, 151.90, 147.61, 139.47, 131.88, 

130.07 (2 C), 128.36 (2 C), 121.76, 115.59, 110.88, 99.14, 77.96, 61.24, 31.17, 28.48, 

27.87, 22.37, 19.48, 14.18, 13.92.

MS (70 eV, EI) m/z (%): 359 (100), 345 (12), 331 (99), 315 (38), 303 (62), 287 (84), 

275 (30), 244 (25). 

HRMS for C23H23O2N2: calcd. 359.1754; found 359.1752 (M-H
+
). 

 

                                                             
18

 For analytical data, see Chapter 2. 
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ethyl 

4-(3-cyano-6-(cyclohex-1-en-1-ylethynyl)-2-(oct-1-yn-1-yl)pyridin-4-yl)benzoate 

(18a): To a solution of the substrate (17; 72 mg, 0.20 mmol) in THF (0.5 mL) is 

added 0.22 mL of a 1 M BF3·OEt2 solution in THF (0.22 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP1 and reacted with the lithium 

reagent (5f: 0.30 mmol; prepared by adding 
n
BuLi (0.30 mmol) to a 0.60 M solution 

of 1-ethynylcyclohex-1-ene in THF (32 mg, 0.30 mmol) at -50 °C and stirring for 40 

min. The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 

1:19) furnishing the compound 18a (83 mg, 89%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.19 (d, J=8.2 Hz, 2 H), 7.65 (d, J=8.2 Hz, 2 H), 

7.39 (s, 1 H), 6.41 (br. s., 1 H), 4.42 (q, J=7.1 Hz, 2 H), 2.53 (t, J=7.1 Hz, 2 H), 2.21 - 

2.28 (m, 2 H), 2.21 - 2.13 (m, 2 H), 1.72 - 1.57 (m, 6 H), 1.49 (dt, J=14.6, 7.4 Hz, 2 H), 

1.42 (t, J=7.1 Hz, 3 H), 1.38 - 1.27 (m, 4 H), 0.90 (t, J=6.9 Hz, 3 H).
13

C NMR (75 MHz, CDCl3)  ppm 165.72, 151.93, 147.80, 146.70, 139.89, 139.30, 

132.01, 130.19 (2 C), 128.41 (2 C), 124.79, 119.74, 115.89, 108.87, 99.27, 96.44, 85.61, 

77.86, 61.37, 31.29, 28.63, 28.53, 27.94, 26.01, 22.49, 22.05, 21.21, 19.62, 14.30, 

14.04.

HRMS for C31H33O2N2: calcd. 465.2537; found 465.2536 (M+H
+
). 

 

 
ethyl 4-(3-cyano-2-(oct-1-yn-1-yl)-6-(thiophen-3-ylethynyl)pyridin-4-yl)benzoate 

(18b): To a solution of the substrate (17; 72 mg, 0.20 mmol) in THF (0.5 mL) is 

added 0.22 mL of a 1 M BF3·OEt2 solution in THF (0.22 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP1 and reacted with the lithium 

reagent (5h: 0.40 mmol; prepared by adding 
n
BuLi (0.40 mmol) to a 0.60 M solution 

of 3-ethynylthiophene in THF (43 mg, 0.40 mmol) at -50 °C and stirring for 45 min). 

The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:9) 

furnishing the compound 18b (77 mg, 82%) as a pale yellow oil. 



Chapter 3 

86 
 

1
H NMR (300 MHz, CDCl3)  ppm 8.21 (d, J=8.2 Hz, 2 H), 7.70 (d, J=2.2 Hz, 1 H), 

7.68 (d, J=8.2 Hz, 2 H), 7.50 (s, 1 H), 7.34 (dd, J=4.9, 3.0 Hz, 1 H), 7.25 (d, J=4.9 Hz, 

1 H), 4.43 (q, J=7.1 Hz, 2 H), 2.55 (t, J=7.1 Hz, 2 H), 1.74 - 1.64 (m, 2 H), 1.50 (quin, 

J=7.4 Hz, 2 H), 1.43 (t, J=7.1 Hz, 3 H), 1.39 - 1.27 (m, 4 H), 0.90 (t, J=6.9 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 165.66, 152.12, 147.88, 146.18, 139.14, 132.08, 

131.81, 130.20 (2 C), 129.88, 128.41 (2 C), 125.94, 124.73, 120.39, 115.76, 109.25, 

99.54, 89.34, 87.48, 77.80, 61.36, 31.27, 28.60, 27.91, 22.47, 19.60, 14.27, 14.02.

HRMS for C29H27O2N2S: calcd. 467.1788; found 467.1789 (M+H
+
). 

 

 
ethyl 4-(3-cyano-2-(oct-1-yn-1-yl)-6-(thiophen-2-yl)pyridin-4-yl)benzoate (18c): 

To a solution of the substrate (17; 72 mg, 0.20 mmol) in THF (0.5 mL) is added 0.22 

mL of a 1 M BF3·OEt2 solution in THF (0.22 mmol) dropwise at 0 °C. The reaction 

mixture is stirred for 15 min followed by a dropwise addition of of 

2-thienylmagnesium bromide-lithium chloride (0.35 mL, 0.40 mmol, 1.14 M in THF) 

at -30 °C. The resulting mixture is stirred for 1 h. Then, chloranil (98 mg, 0.40 mmol) 

is added and the mixture is warmed up to room temperature and continuously stirred 

for 2 h. Finally, it is quenched with saturated ammonia water solution (2 mL) and 

extracted with ethyl acetate several times. The organic phases are combined and 

filtered through a layer of silica gel. The filtrate is concentrated in vacuo. The crude 

product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:19) furnishing 

the compound 18c (48 mg, 53%) as a pale yellow oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.21 (d, J=8.2 Hz, 2 H), 7.75 (d, J=3.6 Hz, 1 H), 

7.69 (d, J=8.2 Hz, 2 H), 7.59 (s, 1 H), 7.54 (d, J=4.9 Hz, 1 H), 7.16 (t, J=4.4 Hz, 1 H), 

4.43 (q, J=7.1 Hz, 2 H), 2.56 (t, J=7.1 Hz, 2 H), 1.71 (qd, J=7.5, 7.3 Hz, 2 H), 1.52 (qd, 

J=7.3, 7.1 Hz, 2 H), 1.43 (t, J=7.1 Hz, 3 H), 1.38 - 1.29 (m, 4 H), 0.91 (t, J=6.7 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 165.81, 155.01, 152.45, 147.70, 142.39, 139.97, 

131.89, 130.63, 130.20 (2 C), 128.53, 128.41 (2 C), 127.66, 116.80, 116.19, 108.52, 

99.01, 78.16, 61.38, 31.30, 28.64, 27.99, 22.50, 19.74, 14.30, 14.06.

HRMS for C27H27O2N2S: calcd. 443.1788; found 443.1788 (M+H
+
). 
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ethyl 4-(6-benzyl-3-cyano-2-(oct-1-yn-1-yl)pyridin-4-yl)benzoate (18d): To a 

solution of the substrate (17; 72 mg, 0.20 mmol) in THF (0.5 mL) is added 0.22 mL of 

a 1 M BF3·OEt2 solution in THF (0.22 mmol) dropwise at 0 °C. The reaction mixture 

is stirred for 15 min according to TP2 and reacted with BnMgCl (0.15 mL, 0.30 mmol, 

2.0 M in THF) at -50 °C for 30 min. The crude product is purified by flash 

chromatography (SiO2, EtOAc/i-hexane 1:9) furnishing the compound 18d (79 mg, 

87%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.15 (d, J=8.2 Hz, 2 H), 7.56 (d, J=8.2 Hz, 2 H), 

7.35 - 7.30 (m, 2 H), 7.30 - 7.23 (m, 3 H), 7.08 (s, 1 H), 4.40 (q, J=7.1 Hz, 2 H), 4.24 (s, 

2 H), 2.56 (t, J=7.3 Hz, 2 H), 1.70 (qd, J=7.5, 7.3 Hz, 2 H), 1.51 (quin, J=7.3 Hz, 2 H), 

1.40 (t, J=7.1 Hz, 3 H), 1.37 - 1.28 (m, 4 H), 0.90 (t, J=6.7 Hz, 3 H).
13

C NMR (75 MHz, CDCl3)  ppm 165.73, 165.03, 152.31, 147.28, 139.81, 137.57, 

131.81, 130.10 (2 C), 129.16 (2 C), 128.89 (2 C), 128.42 (2 C), 127.01, 121.41, 116.00, 

108.80, 98.91, 78.15, 61.32, 44.88, 31.29, 28.64, 27.99, 22.50, 19.68, 14.28, 14.04.

HRMS for C30H31O2N2: calcd. 451.2380; found 451.2380 (M+H
+
). 

 

 

4-benzyl-3-chloropyridine (19a): To a solution of 3-chloropyridine (1a; 113 mg, 1.0 

mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP2 and reacted with BnMgCl (1.4 

mL, 1.2 mmol, 0.85 M in THF) at -50 °C for 30 min. The crude product is purified by 

flash chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 19a (193 

mg, 95%) as a reddish oil. 
1
H NMR

19
 (300 MHz, CDCl3)  ppm 8.54 (s, 1 H), 8.34 (d, J=5.0 Hz, 1 H), 7.20 - 7.39 

(m, 3 H), 7.17 (d, J=6.9 Hz, 2 H), 6.99 (d, J=5.0 Hz, 1 H), 4.06 (s, 2 H).
13

C NMR (75 MHz, CDCl3)  ppm 149.18, 147.64, 147.36, 137.15, 132.02, 128.98 (2 

C), 128.65 (2 C), 126.75, 125.06, 38.35.

MS (70 eV, EI) m/z (%): 203 (85), 168 (100), 139 (27), 91 (25). 

HRMS for C12H10ClN: calcd. 203.0502; found 203.0510 (M
+
). 



 

4-benzyl-3-bromopyridine (19b): To a solution of 3-bromopyridine (1b; 159 mg, 1.0 

mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP2 and reacted with BnMgBr (1.2 

mL, 1.2 mmol, 0.98 M in THF) at -50 °C for 30 min. The crude product is purified by 

flash chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 19b (224 

mg, 90%) as a colorless oil. 
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 T.-L. Shing, W.-L. Chia, M.-J. Shiao, T.-Y. Chau Synthesis, 1991, 849. 
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1
H NMR (300 MHz, CDCl3)  ppm 8.67 (s, 1 H), 8.34 (d, J=5.0 Hz, 1 H), 7.38 - 7.09 

(m, 5 H), 6.97 (d, J=4.7 Hz, 1 H), 4.04 (s, 2 H).
13

C NMR (75 MHz, CDCl3)  ppm 151.52, 149.19, 147.96, 137.04, 128.96 (2 C), 

128.58 (2 C), 126.70, 125.40, 123.15, 40.87.

MS (70 eV, EI) m/z (%): 249 (45), 168 (100), 139 (36), 91 (17). 

HRMS for C12H11NBr: calcd. 248.0069; found 248.0069 (M+H
+
). 

 

 

4-benzyl-3-fluoropyridine (19c): To a solution of 3-fluoropyridine (1f; 99 mg, 1.0 

mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP2 and reacted with BnMgBr (1.2 

mL, 1.2 mmol, 0.98 M in THF) at -50 °C for 30 min. The crude product is purified by 

flash chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the compound 19c (138 

mg, 72%) as a white solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.40 (d, J=1.7 Hz, 1 H), 8.28 (d, J=5.0 Hz, 1 H), 

7.39 - 7.12 (m, 5 H), 7.08 (t, J=5.7 Hz, 1 H), 4.01 (s, 2 H).
13

C NMR (75 MHz, CDCl3)  ppm 158.13 (d, J=253.1 Hz), 145.39 (d, J=5.0 Hz), 

137.51 (d, J=24.8 Hz), 137.43, 137.15 (d, J=13.4 Hz), 128.90 (2 C), 128.79 (2 C), 

126.87, 125.33 (d, J=2.0 Hz), 34.09 (d, J=2.5 Hz). 
19

F NMR (282 MHz, CDCl3)  ppm -131.98 (d, J=5.9 Hz). 

MS (70 eV, EI) m/z (%): 187 (15), 182 (32), 91 (100). 

HRMS for C12H11NF: calcd. 188.0870; found 188.0896 (M+H
+
). 

Mp: 114–116 ºC. 
 

 

4-benzyl-2-chloropyridine (19d): To a solution of 2-chloropyridine (10b; 114 mg, 

1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. 

The reaction mixture is stirred for 15 min according to TP2 and reacted with BnMgCl 

(0.60 mL, 1.2 mmol, 2.0 M in THF) at -50 °C for 30 min. The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:19) furnishing the 

compound 19d (172 mg, 84%) as a yellow oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.24 (d, J=5.3 Hz, 1 H), 7.38 - 7.19 (m, 3 H), 7.19 

- 7.07 (m, 3 H), 7.01 (d, J=5.0 Hz, 1 H), 3.92 (s, 2 H). 
13

C NMR (75 MHz, CDCl3)  ppm 153.33, 151.57, 149.39, 137.82, 128.86 (2 C), 

128.72 (2 C), 126.81, 124.28, 122.82, 40.74.

MS (70 eV, EI) m/z (%): 203 (100), 168 (83), 139 (22), 91 (32). 

HRMS for C12H10NBr: calcd. 203.0252; found 203.049 (M
+
). 
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4-cyclohexylpyridine (9a):
 20

 To a solution of isonicotinonitrile (4a; 104 mg, 1.0 

mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP3 and reacted with 

c-HexMgBr·LiC (2.0 mL, 0.59 M in THF, 1.2 mmol) at -50 °C. The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:3) furnishing the 

compound 9a (115 mg, 71%) as a light yellowish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.46 (d, J=6.0 Hz, 2 H), 7.10 (d, J=6.0 Hz, 2 H), 

2.54-2.41 (m, 1 H), 1.95-1.76 (m, 4 H), 1.76-1.71 (m, 1 H), 1.47-1.33 (m, 4 H), 

1.32-1.16 (m, 1 H). 



 

4-(hex-5-en-1-yl)pyridine (9b):
3e

 To a solution of isonicotinonitrile (4a; 104 mg, 1.0 

mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP3 and reacted with 

hex-5-en-1-ylmagnesium chloride-lithium chloride (1.2 mL, 1.02 M in THF, 1.2 

mmol) at -50 °C. The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 9b (143 mg, 89%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.50 (d, J=6.0 Hz, 2 H), 7.12 (d, J=5.5 Hz, 2 H), 

5.80 (ddt, J=16.9, 10.0, 6.6 Hz, 1 H), 5.09–4.89 (m, 2 H), 2.60 (t, J=7.6 Hz, 2 H), 

2.18–1.97 (m, 2 H), 1.77–1.54 (m, 2 H), 1.54–1.30 (m, 2 H). 



 

4-cyclopentylpyridine (9c):20 To a solution of isonicotinonitrile (4a; 105 mg, 1.0 

mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The 

reaction mixture is stirred for 15 min according to TP3 and reacted with 

c-PentMgBr·LiCl (1.2 mL, 1.2 mmol, 1.0 M in THF) at -50 °C. The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:4) furnishing the 

compound 9c (93 mg, 63%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.47 (d, J=6.0 Hz, 2 H), 7.13 (d, J=6.0 Hz, 2 H), 

                                                             
20

 G. A. Molander , O. A. Argintaru, I. Aron , S. D. Dreher, Org. Lett. 2010, 12, 5783. 

http://pubs.acs.org/action/doSearch?action=search&author=Molander%2C+G+A&qsSearchArea=author
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2.97 (quin, J=8.5 Hz, 1 H), 2.18 – 1.95 (m, 2 H), 1.92 - 1.48 (m, 6 H). 
13

C NMR (75 MHz, CDCl3)  ppm 155.36, 149.42 (2 C), 122.43 (2 C), 44.95, 33.74 (2 

C), 25.35 (2 C).

MS (70 eV, EI) m/z (%): 147 (100), 118 (70), 105 (75). 

HRMS for C10H13N: calcd. 147.1048; found 147.1050 (M
+
). 

 

 
4-(hexan-2-yl)pyridine (9d)

21
 

From 4a: To a solution of isonicotinonitrile (4a; 105 mg, 1.0 mmol) in THF (2 mL) is 

added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred 

for 15 min according to TP3 and reacted with i-HexMgBr·LiCl (1.7 mL, 1.2 mmol, 

0.72 M in THF) at -50 °C. The crude product is purified by flash chromatography 

(SiO2, EtOAc/i-hexane 1:4) furnishing the compound 9d (118 mg, 72%) as a pale 

brown oil. 

From 4b: To a solution of 4-chloropyridine (4b; 113 mg, 1.0 mmol) in THF (2 mL) is 

added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 0 °C. The reaction mixture is stirred 

for 15 min according to TP3 and reacted with i-HexMgBr·LiCl (1.7 mL, 1.2 mmol, 

0.72 M in THF) at -50 °C. The crude product is purified by flash chromatography 

(SiO2, EtOAc/i-hexane 1:3) furnishing the compound 9d (124 mg, 76%) as a colorless 

oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.48 (d, J=5.1 Hz, 2 H), 7.09 (d, J=5.0 Hz, 2 H), 

2.71–2.57 (m, 1 H), 1.61–1.49 (m, 2 H), 1.32–1.10 (m, 7 H), 0.88–0.78 (m, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 157.84, 150.46, 123.34, 39.66, 37.53, 29.83, 22.78, 

21.59, 14.03. 

MS (70 eV, EI) m/z (%): 163 (51), 106 (100). 

HRMS for C11H17N: calcd. 163.1361; found 163.1346 (M
+
). 



 

2-chloro-4-isopropylpyridine (9e): To a solution of 2-chloroisonicotinonitrile (20; 

138 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise 

at 0 °C. The reaction mixture is stirred for 15 min according to TP3 and reacted with 
i
PrMgCl·LiCl (0.95 mL, 1.2 mmol, 1.3 M in THF) at -50 °C. The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:19) furnishing the 

compound 9e (71 mg, 46%) as a brown oil. The 
1
H NMR data is in accordance with 

the literature: 
1
H NMR (300 MHz, CDCl3)  ppm 8.27 (d, J=5.0 Hz, 1 H), 7.18 (br. s., 1 H), 7.07 

(dd, J=5.3, 1.1 Hz, 1 H), 2.98 - 2.79 (m, J=13.8, 6.9, 6.9, 6.9, 6.9 Hz, 1 H), 1.26 (d, 

J=6.9 Hz, 6 H). 
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13
C NMR (75 MHz, CDCl3)  ppm 160.97, 151.64, 149.51, 122.33, 120.87, 33.49, 

22.90 (2 C).Error! Bookmark not defined. 

 

 

2-(oct-1-yn-1-yl)isonicotinonitrile (7n): To a solution of isonicotinonitrile (4a; 105 

mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

1-octynyllithium (5j: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 0.75 M 

solution of 1-octyne in THF (166 mg, 1.5 mmol) at 0 °C and stirring for 30 min). The 

crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:9) 

furnishing the compound 7n (180 mg, 84%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.71 (d, J=4.4 Hz, 1 H), 7.57 (s, 1 H), 7.42 (d, 

J=5.0 Hz, 1 H), 2.45 (t, J=7.0 Hz, 2 H), 1.63 (quin, J=7.1 Hz, 2 H), 1.54 - 1.39 (m, 2 

H), 1.39 - 1.18 (m, 4 H), 0.89 (br. s., 3 H)
13

C NMR (75 MHz, CDCl3)  ppm 150.51, 145.01, 127.95, 123.06, 120.46, 115.69, 

94.31, 78.87, 31.02, 28.36, 27.85, 22.24, 19.09, 13.77

MS (70 eV, EI) m/z (%): 211 (79), 197 (43), 183 (82), 169 (86), 155 (100), 142 (75), 

114 (36). 

HRMS for C14H15N2: calcd. 211.1230; found 211.1228 (M-H
+
). 

 

 

4-isopropyl-2-(oct-1-yn-1-yl)pyridine (21a): To a solution of the substrate (7n; 164 

mg, 0.77 mmol) in THF (1 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise at 

0 °C. The reaction mixture is stirred for 15 min according to TP3 and reacted with 
i
PrMgCl·LiCl (0.72 mL, 0.93 mmol, 1.3 M in THF) at -50 °C. The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:9) furnishing the 

compound 21a (117 mg, 66%) as a brown oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.42 (d, J=5.3 Hz, 1 H), 7.24 (s, 1 H), 7.03 (dd, 

J=5.1, 1.5 Hz, 1 H), 2.93 - 2.75 (m, J=13.8, 6.9, 6.9, 6.9, 6.9 Hz, 1 H), 2.43 (t, J=7.0 Hz, 

2 H), 1.70 - 1.55 (m, J=7.4, 7.4, 7.3, 7.0 Hz, 2 H), 1.53 - 1.40 (m, 2 H), 1.38 - 1.27 (m, 

4 H), 1.24 (d, J=6.9 Hz, 6 H), 0.90 (t, J=6.9 Hz, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 157.52, 149.60, 143.76, 124.90, 120.66, 90.35, 

80.51, 33.31, 31.27, 28.58, 28.32, 22.85 (2 C), 22.43, 19.24, 13.94. 

MS (70 eV, EI) m/z (%): 228 (54), 214 (41), 200 (97), 186 (70), 172 (100), 159 (73), 

144 (32). 

HRMS for C16H22N: calcd. 228.1747; found 228.1742 (M-H
+
). 
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2-(phenylethynyl)isonicotinonitrile (7o):
 22

 To a solution of isonicotinonitrile (4a; 

104 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) dropwise 

at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and reacted with 

phenylethynyllithium (5i: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) to a 0.75 

M solution of phenylacetylene (153 mg, 1.5 mmol) in THF at 0 °C and stirring for 30 

min). The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 

1:3) furnishing the compound 7o (126 mg, 62%) as a light reddish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.79 (dd, J=5.1, 1.0 Hz, 1 H), 7.73 (dd, J=1.5, 1.0 

Hz, 1 H), 7.63-7.59 (m, 2 H), 7.45 (dd, J=5.1, 1.5 Hz, 1 H), 7.43-7.35 (m, 3 H). 
13

C NMR (75 MHz, CDCl3)  ppm 150.98, 144.86, 132.20, 129.71, 128.53, 123.70, 

121.27, 120.92, 119.15, 115.84, 92.19, 86.96. 

MS (70 eV, EI) m/z (%): 204 (100), 177 (14), 150 (7), 126 (7). 

HRMS for C14H9N2: calcd. 205.0766; found 205.0759 (M+H
+
).  

 

 
4-(hex-5-en-1-yl)-2-(phenylethynyl)pyridine (21b): To a solution of 

2-(phenylethynyl)isonicotinonitrile (7o; 40 mg, 0.20 mmol) in THF (2 mL) is added 

BF3·OEt2 (31 mg, 0.22 mmol) dropwise at 0 °C. The reaction mixture is stirred for 15 

min according to TP3 and reacted with hex-5-en-1-ylmagnesium chloride-lithium 

chloride (0.24 mL, 1.02 M in THF, 1.2 mmol) at -50 °C. The crude product is purified 

by flash chromatography (SiO2, EtOAc/i-hexane 1:3) furnishing the compound 21b 

(45 mg, 88%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.49 (dd, J=5.1, 0.8 Hz, 1 H), 7.62–7.57 (m, 2 H), 

7.39–7.32 (m, 4 H), 7.06 (dd, J=5.1, 1.7 Hz, 1 H), 5.79 (ddt, J=16.9, 10.2, 6.7 Hz, 1 H), 

5.07–4.92 (m, 2 H), 2.65–2.58 (m, 2 H), 2.15–2.05 (m, 2 H), 1.72–1.62 (m, 2 H), 

1.51–1.38 (m, 2 H). 
13

C NMR (75 MHz, CDCl3)  ppm 152.79, 150.79, 144.12, 139.23, 132.83 (2C), 

129.65, 129.14 (2C), 128.06, 123.90, 123.12, 115.49, 89.38, 89.29, 35.13, 33.66, 29.77, 

28.51. 

MS (70 eV, EI) m/z (%): 261 (20), 206 (20), 193 (100), 146 (20). 

HRMS for C19H19N: calcd. 261.1517; found 261.1517 (M
+
). 
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4-chloro-2-(6-chlorohex-1-yn-1-yl)pyridine (7p): To a solution of 4-chloropyridine 

(4b; 113 mg, 1.0 mmol) in THF (2 mL) is added BF3·OEt2 (156 mg, 1.1 mmol) 

dropwise at 0 °C. The reaction mixture is stirred for 15 min according to TP1 and 

reacted with the lithium reagent (5b: 1.5 mmol; prepared by adding 
n
BuLi (1.5 mmol) 

to a 0.75 M solution of 6-chlorohex-1-yne in THF (175 mg, 1.5 mmol) at -10 °C and 

stirring for 30 min). The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:3) furnishing the compound 7p (166 mg, 73%) as a reddish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.43 (d, J=5.4 Hz, 1 H), 7.38 (dd, J=2.0, 0.5 Hz, 

1 H), 7.21 (dd, J=5.4, 2.0 Hz, 1 H), 3.59 (t, J=6.4 Hz, 2 H), 2.50 (t, J=6.9 Hz, 2 H), 

2.01–1.90 (m, 2 H), 1.84–1.72 (m, 2 H). 
13

C NMR (75 MHz, CDCl3)  ppm 151.47, 145.72, 144.91, 127.74, 123.67, 92.00, 

80.51, 44.70, 31.73, 25.53, 18.75. 

MS (70 eV, EI) m/z (%): 227 (5), 192 (90), 164 (100), 151 (25). 

HRMS for C11H11NCl2: calcd. 227.0269; found 227.0262 (M
+
). 

 

 

2-(6-chlorohex-1-yn-1-yl)-4-cyclopentylpyridine (21c): To a solution of 

4-chloro-2-(6-chlorohex-1-yn-1-yl)pyridine (7p; 70 mg, 0.31 mmol) in THF (2 mL) is 

added BF3·OEt2 (48 mg, 0.34 mmol) dropwise at 0 °C. The reaction mixture is stirred 

for 15 min according to TP3 and reacted with Grignard reagent (0.37 mmol) at -50 °C. 

The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 1:3) 

furnishing the compound 21c (58 mg, 73%) as a palid brownish oil. 
1
H NMR (300 MHz, CDCl3)  ppm 8.40 (d, J=5.1 Hz, 1 H), 7.25 (d, J=1.7 Hz, 1 H), 

7.05 (dd, J=5.2, 1.8 Hz, 1 H), 3.59 (t, J=6.5 Hz, 2 H), 3.01–2.87 (m, 1 H), 2.49 (t, J=6.9 

Hz, 2 H), 2.13–1.92 (m, 4 H), 1.85–1.66 (m, 6 H), 1.65–1.49 (m, 2 H). 
13

C NMR (75 MHz, CDCl3)  ppm 156.79, 150.54, 144.26, 126.44, 122.35, 89.66, 

81.71, 45.19, 44.83, 34.02 (2C), 31.77, 25.70, 25.66 (2C), 18.74. 

MS (70 eV, EI) m/z (%): 261 (25), 226 (100), 198 (95), 185 (15). 

HRMS for C16H20NCl: calcd. 261.1284; found 261.1284 (M
+
). 
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Chapter 4. BF3-Mediated Direct Functionalization of Pyridines for the 

Preparation of Piperidine Derivatives 

 

4.1 Introduction 

Similar to pyridine, the piperidine derivative is another large family of molecules 

including thousands of natural products and pharmaceuticals (Figure 1).
1
 

 

 

 

 

Morphine Haloperidol Paroxetine 

 

 
 

Yohimban Manzamine A Moxifloxacin 

Figure 1. Bio-active piperidine derivatives. 

 

As a saturated version of pyridine, piperidine derivative can be synthesized by 

pyridine reduction or hydrogenation. However, because of the inertness of the 

aromatic pyridine ring, usually the direct hydrogenation of pyridines requires harsh 

conditions (a high pressure of hydrogen) and noble metal catalysts.
2
 

 

Meanwhile, during the studies of the Chichibabin-type nucleophilic addition of 

pyridines, people realized that the addition intermediate can undergo not only an 

oxidative rearomatization, but also a reduction to furnish a piperidine-type product.
3
 

Charette et al. reported a method to prepare 1,2,5,6-tetrahydropyridines through a C(2) 

regioselective addition of Grignard reagents to N-benzoyliminopyridinium ylides 

followed by the reduction with a methanolic solution of NaBH4 (Scheme 1).
4
 The 
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2
 a) F. Glorius, N. Spielkamp, S. Holle, R. Goddard, C. W. Lehmann, Angew. Chem. 

Int. Ed. 2004, 43, 2850; b) J. Wu, W. Tang, A. Pettman, J. Xiao, Adv. Synth. Catal. 

2013, 355, 35. 
3
 J. A. Bull, J. J. Mousseau, G. Pelletier, A. B. Charette, Chem. Rev. 2012, 112, 2642. 

4
 C. Legault, A. B. Charette, J. Am. Chem. Soc. 2003, 125, 6360. 
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reaction also occurs at 2-substituted pyridines, favoring the cis-isomer as the main 

product (Scheme 2). 

 

 

Scheme 1. Formation of 1,2,5,6-tetrahydropyridines. 

 

 

Scheme 2. Formation of 2,6-disubstituted 1,2,5,6-tetrahydropyridines. 

 

Almqvist et al. reported a similar Grignard reagent addition to pyridine-N-oxides at 

position 2 with the assistance of a chiral lithium binolate. The addition intermediate 

was reduced by NaBH4, affording the product 1 in good yield and ee. Compound 1 

can be further reduced by palladium on charcoal and hydrogen gas to afford the 

piperidine product 2 (Scheme 3).
5
 

 

 

Scheme 3. Enantioselective synthesis of substituted piperidines. 

 

As another method to work up the addition intermediate, Comins et al. employed the 

4-methoxypyridine as starting material. After acylation, the presence of the 4-methoxy 

group forces the Grignard reagents to add at position 2, providing the 

1,2-dihydropyridine intermediate 3 which easily undergoes a hydrolysis with a mild 

acidic workup to furnish 2,3-dihydro-4-pyridone (4) as a stable product (Scheme 4).
6
 

This compound is proved to be a very useful substrate for natural product synthesis. 

 

                                                             
5
 M. Hussain, T. Sainte-Luce Banchelin, H. Andersson, R. Olsson, F. Almqvist, Org. 

Lett. 2013, 15, 54. 
6
 D. L. Comins, J. D. Brown, Tetrahedron Lett. 1986, 27, 4549. 
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Scheme 4. Synthesis of N-acyl-2,3-dihydro-4-pyridones from 4-methoxypyridine. 

 

4.2 Results and Discussion 

With the assistance of BF3·OEt2, the aromatic Π bonds of pyridine rings can be easily 

opened by organometallic reagents (vide supra). If the produced dihydropyridine 

intermediate is treated with a reductant, it will be reduced to a piperidine derivative. 

Thus, the 6-methoxyquinoline (5) is readily converted to the intermediate (6) through 

the BF3-mediated addition of 
i
PrMgCl·LiCl at -50 °C. However, a solution of NaBH4 

in MeOH is not reactive enough to reduce the intermediate (6) completely. Further 

studies indicated that an acid was necessary to accelerate the reduction step by 

protonating the BF3-attached nitrogen atom, leading to the iminium 7, which can be 

easily reduced by NaBH4 then. After screening of a variety of proton sources, mild 

acids such as NH4Cl, NH2OH·HCl, Py·HCl, 4-ClPy·HCl, and 4-BrPy·HCl gave 

optimum results, while other stronger or weaker acids such as H2O, NaHCO3, HOAc, 

KH2PO4, PhNH2·HCl, and PivCO2H led to the reduction product 8 in low yields, 

accompanied by the formation of side products of decomposition or oligomerization 

of intermediate 7. In this case, NH2OH·HCl is the optimum proton source to afford 

the product 8 in 81% isolated yield after a smooth reduction at room temperature for 1 

h (Scheme 5). Other reductive reagents such as NaBH3CN and NaBH(OAc)3 are not 

efficient enough. The catalytic hydrogenation using Pd/C and 1 atm H2 only gave a 

trace amount of the reduced product. 

 

 

Scheme 5. Preparation of piperidine 8 from 6-methoxyquinoline 5 through 

addition/reduction. 
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In the reaction using 3-fluoropyridine (9), a dimerization was observed. After addition 

of the Grignard reagent, the intermediate 10 is protonated by NH2OH·HCl, providing 

the iminium 11. This species is attacked by one molecule of remained 10, leading to 

the dimerized species 12, which is finally reduced and converted to the compound 13 

as the main product (Scheme 6). 

 

Scheme 6. Preparation of 13 through an addition/dimerization/reduction of 

3-fluoropyridine 9. 

 

The ethyl nicotinate also reacts with BF3·OEt2 and o-TolMgBr·LiCl easily. After the 

treatment of NaBH4/Py·HCl, the 1,4-dihydropyridine intermediate is reduced to a 

1,4,5,6-tetrahydropyridine derivative 15 in 54% yield (Scheme 7). The double bond 

conjugated to the ester cannot be easily reduced under this condition. 

 

 

Scheme 7. Preparation of 1,4,5,6-tetrahydropyridine derivative (15) from ethyl 

nicotinate (14). 

 

Also, the acidic hydrolysis method developed by Comins can be applied to the 

BF3-mediated addition reaction. The methyl 6-methoxynicotinate (16) undergoes the 

addition of 
i
PrMgCl·LiCl with the assistance of BF3·OEt2, leading to the 

1,4-dihydropyridine intermediate (17). After the workup using an aqueous solution of 

2 M hydrochloric acid, the carbonyl group is readily unmasked and a γ-lactam type 

product 18 is obtained almost quantitively (Scheme 8). 
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Scheme 8. Preparation of γ-lactam (18) from 6-methoxynicotinate (16). 

 

4.3 Summary 

In this chapter, I have described a novel NaBH4-mediated reduction rather than the 

previously introduced chloranil oxidation for converting the BF3-attached 

1,4-dihydropyridine intermediates to piperidine derivatives. Also, the acidic workup 

of an addition intermediate bearing a methyl enolate functionality can readily afford a 

lactam product. Thus, a new category of products can be collected based on these 

workup methods. 

 

4.4 Experimental Section 

 

4.4.1 General Considerations 

All reactions are carried out under argon atmosphere in flame-dried glassware. 

Syringes which are used to transfer anhydrous solvents or reagents are purged with 

argon prior to use. THF is continuously refluxed and freshly distilled from sodium 

benzophenone ketyl under nitrogen. Yields refer to isolated yields of compounds 

estimated to be pure as determined by 
1
H-NMR (25 °C) and capillary GC. Column 

chromatographical purifications are performed using SiO2 (0.040 – 0.063 mm, 230 – 

400 mesh ASTM from Merck). Mass spectra and high resolution mass spectra 

(HRMS) are recorded using electron ionization (EI) or electrospray ionization (ESI). 

Grignard reagents are prepared according to the literature.
7
 NaBH4 is purchased from 

Acros. BF3·OEt2 is purchased from Acros or Aldrich and distilled before use. 

 

4.4.2 Product Synthesis and Analytical Data 

 

 
4-isopropyl-6-methoxy-1,2,3,4-tetrahydroquinoline (8): A dry and argon flushed 10 

ml flask, equipped with a magnetic stirring bar and a rubber septum is charged with a 

solution of a 6-methoxyquinoline (5, 157 mg, 1.0 mmol) in dry THF (4 mL) and 

cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and stirred for 15 

min at the same temperature. The reaction mixture is cooled to - 50 °C followed by 

dropwise addition of a THF solution of 
i
PrMgCl·LiCl (0.93 mL, 1.29 M, 1.2 mmol), 

                                                             
7
 F. M. Piller, A. Metzger, M. A. Schade, B. A. Hagg, A. Gavryushin, P. Knochel, 

Chem. Eur. J. 2009, 15, 7192. 
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and stirring the reaction mixture at the same temperature for 30 min. A solution of 

NaBH4 (114 mg, 3.0 mmol in 2 mL MeOH) and a solution of NH2OH·HCl (348 mg, 

5.0 mmol in 2 mL MeOH) are added and the mixture is warmed up to room 

temperature and continuously stirred for 1 h. Finally, it is quenched with aqueous 

NaOH solution (1 mL, 1 M) and extracted with EtOAc several times. The organic 

phases are combined and filtered through a layer of silica gel. The filtrate is 

concentrated in vacuo. The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:9) furnishing the compound 8 (163 mg, 81%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3)  ppm 6.65 (d, J=2.8 Hz, 1 H), 6.62 - 6.54 (m, 1 H), 

6.41 (d, J=8.6 Hz, 1 H), 3.71 (s, 3 H), 3.54 (s, 1 H), 3.34 - 3.11 (m, 2 H), 2.57 (q, 

J=6.2 Hz, 1 H), 2.17 - 1.98 (m, J=13.3, 6.9, 6.7, 6.7 Hz, 1 H), 1.95 - 1.69 (m, 2 H), 

1.00 (d, J=6.6 Hz, 3 H), 0.84 (d, J=6.9 Hz, 3 H).
13

C NMR (75 MHz, CDCl3)  ppm 151.30, 138.98, 125.89, 114.98, 114.79, 112.42, 

55.71, 41.94, 40.04, 30.49, 22.88, 21.25, 17.94.

MS (70 eV, EI) m/z (%): 205 (34), 162 (100), 147 (14), 131 (15). 

HRMS for C13H19NO: calcd.205.1467; found 205.1461 (M
+
). 

 

 

5,5'-difluoro-4,4'-diisopropyl-1,1',2,2',3,3',4,4'-octahydro-2,3'-bipyridine (13): A 

dry and argon flushed 10 ml flask, equipped with a magnetic stirring bar and a rubber 

septum is charged with a solution of a 3-fluoropyridine (9, 98 mg, 1.0 mmol) in dry 

THF (2 mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and 

stirred for 15 min at the same temperature. The reaction mixture is cooled to -50 °C 

followed by dropwise addition of a THF solution of 
i
PrMgCl·LiCl (1.55 mL, 1.29 M, 

2.0 mmol), and stirring the reaction mixture at the same temperature for 1 h. A 

solution of NaBH4 (114 mg, 3.0 mmol in 2 mL MeOH) and a solution of NH2OH·HCl 

(348 mg, 5.0 mmol in 2 mL MeOH) are added and the mixture is warmed up to room 

temperature and continuously stirred for 1 h. Finally, it is quenched with aqueous 

NaOH solution (1 mL, 1 M) and extracted with EtOAc several times. The organic 

phases are combined and filtered through a layer of silica gel. The filtrate is 

concentrated in vacuo. The crude product is purified by flash chromatography (SiO2, 

EtOAc/i-hexane 1:4) furnishing the compound 13 (60 mg, 42%) as a white solid. 
1
H NMR (300 MHz, CDCl3)  ppm 3.29 - 3.05 (m, 3 H), 2.85 - 2.70 (m, 2 H), 2.49 - 

2.12 (m, 3 H), 2.01 (s, 2 H), 1.81 - 1.64 (m, 2 H), 1.50 (dd, J=15.5, 10.5 Hz, 2 H), 

1.15 - 1.01 (m, 6 H), 0.96 (dd, J=8.2, 6.8 Hz, 6 H).
13

C NMR (75 MHz, CDCl3)  ppm 99.05, 99.04, 98.92, 98.83, 96.40, 96.38, 96.21, 

96.12, 60.77, 60.47, 60.45, 60.15, 56.01, 55.98, 55.78, 55.75, 50.78, 50.76, 47.88, 

47.66, 45.18, 45.17, 44.95, 44.94, 43.83, 43.76, 43.52, 43.45, 38.18, 38.14, 38.07, 

38.02, 32.49, 32.47, 30.71, 30.60, 27.76, 23.43, 23.39, 23.15, 23.06, 21.98, 21.56. 
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19
F NMR (282 MHz, CDCl3)  ppm -160.64, -165.83. 

MS (70 eV, EI) m/z (%): 284 (8), 142 (100), 100 (22). 

HRMS for C16H27N2F2: calcd.285.2137; found 285.2140 (M+H
+
). 

 

 

ethyl 4-(o-tolyl)-1,4,5,6-tetrahydropyridine-3-carboxylate (15): A dry and argon 

flushed 10 ml flask, equipped with a magnetic stirring bar and a rubber septum is 

charged with a solution of ethyl nicotinate (14, 149 mg, 1.0 mmol) in dry THF (2 mL) 

and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added dropwise and stirred for 

15 min at the same temperature. The reaction mixture is cooled to - 30 °C followed by 

dropwise addition of a THF solution of o-TolMgBr·LiCl (1.29 mL, 1.16 M, 1.5 

mmol), and stirring the reaction mixture at the same temperature for 2 h. A solution of 

NaBH4 (114 mg, 3.0 mmol in 2 mL MeOH) and a solution of Py·HCl (347 mg, 3.0 

mmol in 1 mL MeOH) are added and the mixture is warmed up to room temperature 

and continuously stirred for 1 h. Finally, it is quenched with aqueous NaOH solution 

(1 mL, 1 M) and extracted with EtOAc several times. The organic phases are 

combined and filtered through a layer of silica gel. The filtrate is concentrated in 

vacuo. The crude product is purified by flash chromatography (SiO2, EtOAc/i-hexane 

1:4) furnishing the compound 15 (131 mg, 54%) as a white solid. 
1
H NMR (300 MHz, CDCl3)  ppm 7.74 (d, J=6.4 Hz, 1 H), 7.19 - 6.93 (m, 4 H), 

4.74 (br. s., 1 H), 4.21 (d, J=5.0 Hz, 1 H), 4.00 (q, J=7.0 Hz, 2 H), 3.16 - 2.90 (m, 2 

H), 2.44 (s, 3 H), 2.00 - 1.81 (m, 1 H), 1.68 (d, J=13.0 Hz, 1 H), 1.12 (t, J=7.0 Hz, 3 

H). 
13

C NMR (75 MHz, CDCl3)  ppm 168.30, 144.39, 143.53, 134.92, 130.20, 127.59, 

125.68, 125.26, 97.31, 58.82, 36.25, 32.39, 26.57, 19.17, 14.37. 

MS (70 eV, EI) m/z (%): 245 (55), 216 (68), 200 (39), 172 (100), 154 (41). 

HRMS for C15H19NO2: calcd.245.1416; found 245.1406 (M
+
). 

 

 
methyl 4-isopropyl-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate (18): A dry 

and argon flushed 10 ml flask, equipped with a magnetic stirring bar and a rubber 

septum is charged with a solution of methyl 6-methoxynicotinate (16, 167 mg, 1.0 

mmol) in dry THF (2 mL) and cooled to 0 °C. BF3·OEt2 (156 mg, 1.1 mmol) is added 

dropwise and stirred for 15 min at the same temperature. The reaction mixture is 

cooled to - 50 °C followed by dropwise addition of a THF solution of 
i
PrMgCl·LiCl 

(0.93 mL, 1.29 M, 1.2 mmol), and stirring the reaction mixture at the same 
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temperature for 30 min. Then an aqueous HCl solution (1 mL, 2 M) is added and the 

reaction mixture is warmed up to room temperature, stirring for another 2 h. Finally, it 

is extracted with EtOAc several times. The organic phases are combined and filtered 

through a layer of silica gel. The filtrate is concentrated in vacuo. The crude product is 

purified by flash chromatography (SiO2, EtOAc/i-hexane 1:2) furnishing the 

compound 18 (192 mg, 97%) as a white solid. 
1
H NMR (300 MHz, CDCl3)  ppm 8.34 (br. s., 1 H), 7.36 (d, J=5.5 Hz, 1 H), 3.74 (s, 

3 H), 2.86 - 2.72 (m, 1 H), 2.65 - 2.51 (m, 2 H), 1.96 - 1.76 (m, 1 H), 0.93 (d, J=6.9 

Hz, 3 H), 0.85 (d, J=6.9 Hz, 3 H).
13

C NMR (75 MHz, CDCl3)  ppm 172.30, 167.02, 135.07, 111.16, 51.49, 36.74, 

31.89, 31.12, 19.93, 17.82.

MS (70 eV, EI) m/z (%): 198 (12), 155 (100), 123 (40). 

HRMS for C10H15NO3: calcd.197.1052; found 197.1056 (M
+
). 
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Chapter 5. Summary and Outlook 

 

In this thesis, I introduce a series of BF3-mediated pyridine functionalizations and 

transformations using organometallic reagents such as Grignard reagents, organozinc 

and alkynyllithium reagents. The key for the successes of these reactions is the 

pre-N-activation of pyridines by BF3·OEt2, which doesn’t quench the following added 

organometallic reagents at low temperature. The main results of this work will be 

summarized as follows. 

 

5.1 BF3-Mediated Direct Alkylation of Pyridines using Grignard Reagents 

After treatment of BF3·OEt2, a variety of alkylmagnesium reagents add 

regioselectively to the C(4) positions of pyridines and quinolines. Functional groups 

such as chloro, bromo, vinyl, phenyl, cyano and carbethoxy are tolerated under this 

condition (Scheme 1). 

 

 

Scheme 1. BF3-mediated direct alkylation of pyridines using Grignard reagents. 
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5.2 BF3-Mediated Direct Alkylation of Pyridines using Organozinc Reagents 

With the assistance of a non-transferable ligand, the in-situ prepared dialkylzinc 

species react with pyridine derivatives smoothly in the presence of BF3·OEt2. After 

the formal cross-coupling reactions, the alkyl groups with functionalities such as 

acetoxy, nitro and carbethoxy are introduced to the position 4 of pyridines (Scheme 

2). 

 

 

Scheme 2. BF3-mediated direct alkylation of pyridines using organozinc reagents. 

 

5.3 BF3-Mediated Direct Arylation of Pyridines using Grignard Reagents 

Also, the same strategy can be applied to the cross-coupling between pyridines and 

arylmagnesium species, which have good functional group tolerance. Thus, the 

functional pyridine substrates such as nicotinonitrile, nicotinamide and 

3-nitropyridine works well with functional aryl or heteroaryl Grignard reagents, 

affording the cross-coupling products in good yield (Scheme 3). 

 

With the aid of BF3·OEt2, a dimagnesiated species reacts with two equivalents of 

nicotinonitrile and affords a fluorescent compound in one step (Scheme 4). 
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Scheme 3. BF3-mediated direct arylation of pyridines using Grignard reagents. 

 

 

Scheme 4. Double addition to nicotinonitriles using a 1,4-dimagnesiated aromatic 

reagent. 
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5.4 BF3-Mediated Direct Alkylation and Arylation of Nicotinamide using 

Grignard Reagents 

The regioselective direct functionalization of nicotinamides is not easy. After the 

addition of an equivalent of 
t
BuMgCl for the deprotonation of the amide nitrogen and 

two equivalents of BF3·OEt2 for activation and protection, a tentative intermediate is 

produced. Both alkyl and aryl Grignard reagents react readily with it and the desired 

products are obtained in good yields (Scheme 5). 

 

Scheme 5. BF3-Mediated direct alkylation and arylation of nicotinamide using 

Grignard reagents. 

 

5.5 BF3-Mediated Direct Alkynylation of Pyridines using Alkynyllithiums 

With the assistance of BF3·OEt2, the pyridine substrates also react with alkynyllithium 

reagents which are readily prepared by deprotonation of terminal alkynes using 
n
BuLi. 

This time the addition selectively occurs at C(2) of the pyridine ring with a variety of 

alkynyllithiums bearing an alkyl, aryl, silyl or alkenyl substituent (Scheme 6). 
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Scheme 6. BF3-mediated direct alkynylation of pyridines using alkynyllithiums. 

 

Besides, a double functionalization at positions 2 and 6 of pyridines can be readily 

achieved by introducing different alkynyl groups one by one (Scheme 7). 

 

 



Chapter 5 

107 
 

 

Scheme 7. BF3-mediated direct alkynylation leading to the preparation of 

2,4,6-trisubstituted pyridines. 
 

5.6 Successive functionalization of the pyridine core using BF3-mediated 

oxidative cross-couplings 

The polyfunctionalization of a pyridine derivative can be achieved through a series of 

BF3-mediated oxidative cross-couplings (Scheme 8). 

 

 

Scheme 8. Successive functionalization of the pyridine core using BF3-mediated 

oxidative cross-couplings. 
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5.7 BF3-Mediated Direct Benzylation of Pyridines using Benzylmagnesium 

Reagent 

The benzylation works on the BF3-activated pyridines using benzylmagnesium 

reagents. The 4-benzylated pyridines were obtained in good yields (Scheme 9). 

 

 

Scheme 9. BF3-mediated direct benzylation of pyridines using benzylmagnesium 

reagents. 

 

5.8 BF3-Mediated Cross-Couplings between 4-Substituted Pyridines and 

Grignard Reagents 

Moreover, we developed a novel transition-metal-free cross-coupling between 

alkylmagnesium reagents and 4-substituted pyridines such as isonicotinonitrile and 

4-chloropyridine employing BF3·OEt2 as a promoter (Scheme 10). 

 

 

Scheme 10. BF3-mediated cross-couplings between 4-substituted pyridines and 

Grignard reagents. 

 

In a competition experiment, it is indicated that the cyano is a better leaving group 

than chloro under this transition-metal-free condition (Scheme 11). 

 

 

 

Scheme 11. BF3-mediated competition cross-coupling. 
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5.9 Consecutive BF3-Mediated Alkynylation and Substitution 
The combination of the oxidative and non-oxidative cross-couplings enabled us to 

efficiently prepare a broad range of 2,4-disubstituted pyridines (Scheme 12). 

 

Scheme 12. Consecutive BF3-mediated alkynylation and substitution for the 

preparation of 2,4-disubstituted pyridines. 

 

5.10 BF3-Mediated Addition/Reduction or Hydrolysis for Preparing Piperidines 

Under acidic reductive conditions, the intermediates formed by BF3-mediated 

additions are converted to piperidine derivatives (Scheme 13). 

 

Besides, if the addition intermediate with a methyl enolate moiety is treated with acid, 

the hydrolysis will occur, resulting in the formation of a γ-lactam derivative (Scheme 

14). 
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Scheme 13. BF3-mediated conversion of pyridines to piperidines through a reductive 

workup. 

 

 

Scheme 14. BF3-mediated addition/acidic hydrolysis for preparing γ-lactam. 

 

5.11 Outlook 

As a main task of the next stage, the oxidation step of BF3-mediated oxidative 

cross-couplings should be optimized. During the reported workup procedure, 

chloranil produces a lot of waste and dirties, leading to the difficulties in product 

purification. It would be nice to replace chloranil with another mild and clean oxidant, 

such as oxygen, which is beneficial for a large scale manipulation. 

 

Also, the BF3-mediated benzylation has just been briefly studied. More efforts are 

necessary in this area, and it is promising to employ highly functional benzyl 

organometallic reagents as the coupling partner. 

 

The piperidine synthesis should also be carefully studied in the future. The scope of 

substrates is still narrow right now. An efficient and transition-metal-free 

methodology for preparing bio-active piperidines such as natural products and 

medicines will be very attractive to the pharmaceutical industry. 
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Finally, because of the already well-developed alkyne chemistry, the easily prepared 

2-alkynylpyridines can undergo a variety of reactions such as hydrogenation, 

cycloaddition, carbometalation, hydroamination and C–H activation to obtain more 

complex molecules (Scheme 15). 

 

 

Scheme 15. Further transformations of 2-alkynylpyridines prepared by BF3-mediated 

pyridine alkynylation. 
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br 

Bu 

cal. 

conc. 
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HRMS 
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electrospray ionization 
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electron-withdrawing group 

functional group 

frustrated Lewis pair 

gas chromatography 
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halogen 

hetero 

hexyl 

high resolution mass spectroscopy 
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methyl 
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melting point 
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n-butyl 
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[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl) 

palladium(II) dichloride 

phenyl 

parts per million 

pyridyl 
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