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Zusammenfassung

Die Überlebenszeitanalyse beschreibt verschiedene statistische Methoden, die die Zeit bis
zu einem bestimmten Ereignis analysieren. Bei der Analyse dieser Beobachtungsdauer wird
die Zeit bis zum Eintritt eines Ereignisses oftmals als kontinuierlich angenommen. Aller-
dings ist in vielen Studien lediglich bekannt, dass das Ereignis zwischen zwei aufeinander
folgenden Beobachtungszeitpunkten aufgetreten ist oder die Beobachtungsdauer tatsächlich
diskret ist. Daher kann eine beachtliche Anzahl von Bindungen in den Daten vorkommen,
was zu Problemen bei der Benutzung von Likelihood-Methoden führt. Um auftretende Bin-
dungen zu berücksichtigen, werden in dieser Arbeit Überlebenszeitmodelle für diskrete Zeit
betrachtet. Nach einer Umstrukturierung der üblichen Form von Time-To-Event-Daten,
können diskrete Überlebenszeitmodelle als generalisierte lineare Modelle aufgefasst werden.
Diese Umstrukturierung der Daten führt dazu, dass einige Beobachtungen nur sehr selten
vorkommen, insbesondere wenn viele Zeitpunkte vorhanden sind. Die vorliegende Datensi-
tuation wird noch diffiziler, wenn zeit-variierende Koeffizienten in das Modell aufgenommen
werden. Es kommt nicht selten vor, dass Maximum-Likelihood-Methoden (ML) in diesen
Situationen nicht angewendet werden können, da die ML-Schätzungen entartet sind oder
gar nicht existieren. Um stabile und zuverlässige Schätzungen zu erhalten, eignet sich die
Anwendung von Regularisierungstechniken. In diesem Zusammenhang konzentriert sich die
Arbeit auf Penalisierungsmethoden.
Da Time-To-Event-Daten über die Zeit hinweg gemessen werden, liegt es nahe, zeitvariie-
rende Koeffizienten in das Modell einzubinden. Nachfolgend werden speziell auf diese Situa-
tion abgestimmte Penalisierungsterme vorgestellt. Diese Penalisierungsterme ermöglichen
beispielsweise glatte zeit-variierende Koeffizienten oder eine Variablenselektion. Letzteres
bedeutet, dass Kovariablen komplett aus dem Modell entfernt werden können. Die Stärke
der Penalisierung wird durch Tuningparameter gesteuert, deren Wahl im Folgenden syste-
matisch untersucht wird.
Die zugrunde liegenden Daten aus Überlebenszeitmodellen resultieren aus wiederholten
Messungen, was zu unbeobachteter Heterogenität in den Daten führt. Um unbeobachte-
te Heterogenität zu berücksichtigen, werden Frailty-Modelle, beziehungsweise Modelle mit
zufälligen Effekten, betrachtet. Dabei werden die linearen Prädiktoren der eben erwähnten
Penalisierungsmethoden für diskrete Zeit um zufällige Effekte erweitert.
In zahlreichen Anwendungen in der Überlebenszeitanalyse, ist die Analyse von mehr als
zwei möglichen Ereignissen von Interesse. Dabei kann für jedes Individuum eines von k
(k ≥ 2) möglichen Ereignissen (Competing Risks) auftreten. Diese Modelklasse wird für
diskrete Beobachtungsdauer vorgestellt. Diskrete Competing Risk Modelle können in die
Theorie von multinomialen Regressionsmodellen eingebettet werden. Um eine Variablen-
selektion durchführen zu können und um die Anzahl der dabei auftretenden Parametern
zu bewältigen, empfiehlt es sich geeignete Penalisierungstechniken einzusetzen, welche für
Competing Risk Modelle vorgestellt werden.
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Summary

Survival analysis describes a collection of statistical procedures that explore the time until
an event occurs. In the framework of analyzing failure time or time to event data, time is
often considered to be continuously observed. However, in many studies it is only known
that the event occurs between a pair of consecutive follow-ups or time is truly discrete.
Hence, there are many ties in the data. This causes problems when likelihood methods for
continuous-time models are used. Hence, to account for the issue of tied observations, in
this thesis discrete-time survival models are considered. After a restructuring of the typical
form of time-to-event data, survival models for discrete duration time can be understood
as generalized linear models. This complex data restructuring process results in a large
number of observations that are only rarely observed, especially when there are many time
periods. This data situation becomes even more difficult when time-varying covariate ef-
fects are incorporated. Ordinary Maximum-Likelihood (ML) methods cannot be applied as
the ML-estimates are deteriorated or even do not exist. To obtain stable and reliable esti-
mates, the application of regularization methods is necessary. Thereby, this thesis focuses
on penalization methods.
Survival data of an individual are usually collected over time. Hence, it is of great interest
to incorporate time-varying covariate effects in the model. To regularize discrete survival
regression models, different penalty terms that cope with this special case are proposed.
For example, these penalty terms allow for smooth time-varying coefficients or provide a
variable selection. The latter means that covariates can be completely removed from the
model. The strength of penalization is steered by tuning parameters. In this thesis, it is
systematically investigated, how these tuning parameters have to be chosen.
The underlying data in survival models deal with repeated measurements leading to certain
heterogeneity in the data. To control for unobserved heterogeneity, frailty models are con-
sidered and a corresponding penalty term is introduced. That is, the described penalization
methods are combined with the incorporation of frailty effects.
In many applications concerning survival analysis, the investigation of more than one ter-
minating event is of interest. Hence, for each object one of k (k ≥ 2) causes may occur,
called competing risks. This model class is introduced in the context of discrete survival
times. Discrete competing risks models can be embedded into the framework of multino-
mial regression models. To provide variable selection and to account for the large amount
of parameters that arise with the use of this model type, a penalization technique for
discrete-time competing risks models is introduced.
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all meinen Freunden möchte ich danken, für all die offenen Ohren und die wohltuende
Ablenkung.

München, im April 2014 Stephanie Möst





Contents

1. Introduction 1

2. Discrete Survival Analysis 9
2.1. Continuous time versus discrete time in Survival Analysis . . . . . . . . . . . . . . 9
2.2. Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Hazard Rate and Survival Function . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2. Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3. Discrete time versus continuous time models . . . . . . . . . . . . . . . . . 17
2.2.4. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3. Time-Varying Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4. Time-Varying Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Lasso-Type Penalties 25
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Lasso-Type Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1. Penalized Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2. Computational Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Standard Errors and Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . 34
3.4. Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1. Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1. The Munich Founder Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2. Fertility Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4. Choice of Tuning Parameter 59
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2. Choice of Tuning Parameter ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1. Measures of Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2. Choice of the Censoring Distribution . . . . . . . . . . . . . . . . . . . . . . 66

4.3. Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.1. Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xii Contents

5. Penalization in Survival Models with Frailties 85
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2. Discrete Survival Models with Frailties . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3. Penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.1. Numerical Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2. Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4. Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.1. The Munich Founder Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5.2. Fertility Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6. Penalization in Competing Risks Models 115
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2. Competing Risks Models for Discrete Time . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3. Penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4. Computational Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5.1. Congressional Careers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5.2. Unemployment Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7. Conclusion and Outlook 135

A. Appendix 139
A.1. Additional Figures for Section 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.2. Laplace Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.3. Inversion of Pseudo Fisher Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.4. Additional Figures for Section 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References 149



1. Introduction

Survival Analysis

Survival analysis describes a collection of statistical procedures that explore the time until
an event occurs. Thereby, time means any kind of time unit from the beginning of a follow-
up of an object until the occurrence of an event. An event defines any designated experience
of interest that may happen to an object, for example death, disease incidence or recovery.
Thus, a number of mutually exclusive states can be considered at each point in time. The
patterns for each object are described by the time spent within each state, and the dates
of each transition made. Hence, each change of state is equivalent to an event.

In a single spell analysis, the survival time of an object is observed from the beginning of
follow-up up to one absorbing event. When an object can experience one of several differ-
ent types of absorbing events, the statistical problem is characterized as a competing risk
problem. Competing risk theory has an intriguing history going back to a memoir read
in 1760 by Daniel Bernoulli and published in 1765 (Klein and Moeschberger, 2003). It is
about the merits of smallpox inoculation and asks “What would be the effect on mortality
if the occurrence of one or more causes of death were changed?”.
Furthermore, recurrent events that determine a multiple spell analysis have to be distin-
guished. They consider a single event that may occur more than once over the follow-up
time for a given object. Thus, in this case the event is not absorbing. Aalen (1988) pro-
vided theoretical and practical motivation for such models. Of course, a mixture of recurrent
events and competing risks, predominantly named multistate models, are possible as well.
An example for a multistate model is the stages of sleep with the recurrent events rapid eye
movement (REM), non-rapid eye movement (NREM) and awake (Loomis et al., 1937).

Modeling survival data, also denoted as time-to-event data, has been well investigated and
is used in many different areas of research like medicine, biology, social science, economics or
demography. In biological organisms, time often refers to the survival of an object, whereas
in mechanical systems, time usually depicts a failure. Generally, time-to-event data also are
denoted as event-history-data (e.g. social science) or survival data (e.g. biology or medicine)
according to the area of application. More general, time-to-event data are named duration
data, transition data or failure time data as well.
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Censoring and Truncation

A common feature of survival data is the incorporation of either censored or truncated
data. Censored data arise when an object’s survival time has not been fully observed.
Thus, the survival time is not known exactly. For instance, this is the case if an object does
not experience the event before the end of the study or the object is dropped out during
the study period. Possible common censoring types are right censoring, left censoring and
interval censoring.

Right Censoring

Right censoring is given if the beginning of a follow-up time is known, but the time when
the event arises is not observed. At the time of observation, the relevant event (transition
out of the current state) had not yet occurred. Thus, it is only known that the survival
time is larger than the observed time. This can be the case if an object dies from another
cause, independently of the cause of interest, the study ends while the subject survives
or the subject is lost to the study, by dropping out or moving to a different area. If it is
not stated otherwise right censoring is assumed in this thesis.

Left Censoring

An object is said to be left-censored if it is known that the event of interest occurred at
some time before the observation date but it is not known exactly when. Consequently,
the observed survival time is larger than the true survival time. It happens, for example,
if the date of a medical exam, revealing a disease, is specified, but it is not observed when
the patient has been infected.

Interval Censoring

An object is defined as interval censored if the event occurs in a time interval but it is not
known exactly when in the interval. It can appear, if an object is regularly checked and
one time the event is experienced. So, the only information is that the incidence appears
between two checks.

By contrast, for truncated survival time data, survival times are systematically excluded
from a sample, and the sample selection effect depends on the survival time itself (Jenkins,
2005). An object whose event time is not in a certain observational interval is not observed.
This is in contrast to censoring, where at least partial information on each object exists. It
is to distinguish between left and right truncation.
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Right truncation

Only objects with event times less than a specific threshold are included in the sample.
So, relatively long survival times are systematically excluded from the study. A general
example for right truncation, regardless of time, are stars that are too far away and not
visible and are thus not incorporated in the estimation of the distribution of stars (Klein
and Moeschberger, 2003). An example of a right truncated sample with respect to survival
time is a mortality study based on death records.

Left truncation

Only those objects can be observed, whose event time exceeds some truncation thresh-
old. Consequently, especially short survival times are systematically excluded from the
observation sample. A common example of left truncation is the issue of estimating the
distribution of the diameters of microscopic particles. On the basis of the resolution of
the microscope, only particles big enough to be seen can be observed, whereas smaller
particles do not come to the attention of the investigator (Klein and Moeschberger, 2003).
Referring to survival time, the truncation event may be the occurrence of some interme-
diate event such as graft-versus-host disease after a bone marrow transplantation.

The issues of censoring and truncation are a main challenge in terms of analyzing survival
data. Using counting process methodology has allowed for substantial advances in the
statistical theory to account for censoring and truncation in survival experiments. Aalen
(1975) first developed this approach by combining elements of stochastic integration, con-
tinuous time martingale theory and counting process theory. The resulting methodology
easily concedes to the development of inference techniques for survival quantities based on
censored and truncated data. Thereby, a relatively simple development of large sample
properties of such statistics is possible (Klein and Moeschberger, 2003). A detailed descrip-
tion of this special field can be found in the books of Andersen et al. (1993) and Fleming
and Harrington (2005).

Why does survival analysis need special statistical methods?

The methods of survival analysis are very specific and differ from commonly used methods
of regression models. There are several reasons for these distinctions shortly mentioned in
the following.
The goal of survival analysis is the modeling of survival time as response variable. All
survival times are non-negative and distributions of survival times are typically skewed
(Jenkins, 2005). These features of survival times have to be considered in modeling. A
new modeling scheme is necessary since the survival times of some objects are usually not
completely observed. Hence, the methods of survival analysis has to include the partial
information provided by censored observations.
An ordinary regression model has only a single dependent variable. In survival analysis,
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however, an object is observed for a period of time and multiple values of a time-varying
covariate exist belonging to only one value of the response. Should one value of the time-
varying covariate, that is the most representative, be chosen or how can time-varying co-
variates be handled?
In the context of survival analysis, the hazard rate is of special interest. It depicts the
stochastic behavior of the survival time and is used as an alternative representation of it.
It is a common way to choose a parametrization of the hazard rate to model time-to-event
data, leading to special statistical methods.
The need of distinctive statistical models for survival analysis is described in more detail in
Jenkins (2005). As survival analysis is widely used in several fields of application a consid-
erable number of books are available like Klein and Moeschberger (2003), Kleinbaum and
Klein (2013), Kalbfleisch and Prentice (2002), Therneau and Grambsch (2000) and Hosmer
et al. (2011). Much more details on censoring and truncation can especially be found in
Klein and Moeschberger (2003).

Regularization ideas

In general, modeling discrete survival data is done by using parametric regression mod-
els. Estimation procedures for discrete survival models require rearrangements of the data.
This often leads to designs, especially when incorporating time-varying coefficients, where
computational problems arise and estimates may become unstable. Therefore, the use of
regularization techniques is recommended. In addition, depending on the technique, regu-
larization techniques coincide with a reduction of the predictor space. This is a convenient
effect when many predictors are available.
A typical regularization technique is penalization. Penalization means to add a penalty
term to the log-likelihood yielding shrinkage of the estimates towards zero. Depending on
the penalty, it is even possible to set particular estimates exactly to zero. One of the oldest
penalization methods is the ridge method (Hoerl and Kennard, 1970), that uses a L2-type
penalization of the regression coefficients. However, no variable selection can be performed
by using this penalty term. An alternative penalty term that has become very popular is
the lasso penalty term, using a L1-type penalty on the regression coefficients. In this case,
variable selection can be carried out. As the lasso merely selects individual predictors, the
penalty is unsatisfactory in the case of grouped data, for example, with categorical predic-
tors. The group lasso proposed by Yuan and Lin (2006), can overcome these problems. To
get consistent estimates of the parameters, Zou (2006) extended the lasso to the adaptive
lasso by including weights on the penalized coefficients. Several further improvements for
the lasso method have been designed in the last decades, for example fused lasso (Tibshi-
rani et al., 2005), SCAD (Fan and Li, 2001), elastic net (Zou and Hastie, 2005), Dantzig
selector (Candes and Tao, 2007) and DASSO (James et al., 2009).

Another regularization approach, developed in the machine learning community is based
on boosting methods. Boosting is a powerful learning idea that was originally designed for
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classification problems. However, it can also be applied to regression. The general idea
of combining several weak learners to a final strong learner was introduced by Schapire
(1990). A detailed overview on boosting algorithms can be found in Bühlmann and
Hothorn (2007). The focus of this thesis is on penalization and to boosting techniques will
not be gone into any further.

Guideline through the thesis

The main part of this thesis consists of four basic chapters, which show possibilities of
penalization for discrete survival models. Chapters 3 and 4 deal with the penalization
of discrete-time survival models with single spells and the corresponding choice of the
tuning parameters. In Chapter 5, an additional frailty is incorporated in the model and
finally Chapter 6 deals with penalized competing risks models for discrete duration time.
Some background on survival analysis is given in Chapter 2. In order to keep individual
chapters self-contained, some passages repeat themselves with only small modifications and
adjustments due to the different frameworks.

Chapter 2: Discrete Survival Analysis

This chapter describes the basic aspects of univariate survival data and contains
notation and important statistical methods with regard to discrete duration
time models. Based on single spells, basic concepts of survival analysis like
the hazard rate and the survival function are treated. Two commonly used
regression models for discrete time survival analysis, are presented. Moreover,
the incorporation of time-varying covariates and time-varying coefficients in
discrete survival regression models is depicted.

Chapter 3: Lasso-Type Penalties

Using time-varying coefficients in a linear predictor of a discrete survival model
results in a large number of parameters that have to be estimated. This might
lead to unstable estimates or computational problems. To overcome these is-
sues, in this chapter penalization methods are incorporated in discrete-time
survival models. To get access to uncertainty measures, standard errors and
confidence intervals for the parameters resulting from the penalized estimation
are provided. Several simulation studies judge the performance of the presented
method. The proposed method is applied to the Munich founder study and to
a fertility study.
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Chapter 4: Choice of Tuning Parameter

Building on Chapter 3, in this chapter, the choice of tuning parameters is sys-
tematically investigated. To this end, the conventional loss function, that is the
predictive deviance, is substituted by different alternative loss functions and
possible associated model improvements are investigated. Several measures of
prediction accuracy are presented, whereby well-known measures used for con-
tinuous survival outcomes are adopted to discrete failure time analysis. The
performance of the shown alternative loss functions is investigated by means of
a simulation study.

Chapter 5: Penalization in Survival Models with Frailties

In general, survival data are based on repeated measurements leading to certain
heterogeneity in the data. This chapter deals with the incorporation of random
effects or frailties in survival models for discrete duration time. These frailties
control for existing unobserved heterogeneity. The methodology and the estima-
tion of discrete survival models with frailties are described and a penalty term
that allows for variable selection is incorporated in the model. The performance
of the proposed method is judged by means of a simulation study. To compare
the results, the proposed method is applied to the same real data examples as
in Chapter 3.

Chapter 6: Penalization in Competing Risks Models

In many applications concerning survival analysis, the investigation of more than
one terminating event is of interest. Hence, for each object one of k (k ≥ 2)
causes may occur, referred to as competing risks. This model class is introduced
in the context of discrete survival times. Discrete competing risks models can
be embedded into the framework of multinomial regression models. Due to
the large amount of parameters that arise with the use of this model type, a
penalization technique for discrete-time competing risks models is introduced.
The proposed method is applied to career paths of Congressmen in the United
States and to characteristics of unemployment in Germany.
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Software

All computations were carried out using the statistical program R (R Development Core
Team, 2013) and related packages. The corresponding packages are indicated in the re-
spective chapters and sections. The basis of the implementation of the approaches from
Chapters 3 and 4 is the R add-on package gvcm.cat (Oelker and R Development Core
Team, 2013). The functions of this package were adapted to survival models for discrete
duration time. Moreover, for the approach of Chapter 5 the program code is enhanced
to enable the computation of frailties for discrete survival models. That means, that the
algorithms pendsm and fpendsm were completely implemented by means of the statistical
program R. The used functions are available on request. For fitting penalized competing
risks models, the R package MLSP was extended. The original package can be downloaded
from http://www.statistik.lmu.de/∼poessnecker/software.html and will be avail-
able as a proper R add-on package via CRAN (see http://cran.r-project.org) in the
near future.





2. Discrete Survival Analysis

This chapter describes basic aspects of univariate survival data, contains notation and
important statistical methods with regard to discrete duration time models. In Section 2.1,
continuous time is generally opposed to discrete time in the context of survival analysis.
Based on single spells, basic concepts of discrete-time survival analysis like the hazard
rate and the survival function are treated in Section 2.2. Therein, the grouped proportional
hazard model and the continuation ratio logit model, two commonly used regression models
for discrete-time survival analysis, are presented as well. Moreover, Section 2.3 and Section
2.4 deal respectively with the incorporation of time-varying covariates and time-varying
coefficients in discrete survival regression models.

2.1. Continuous time versus discrete time in Survival
Analysis

The basic interest in survival analysis is the survival time. So far, it is implicitly assumed
that the event of interest can arise at any particular time. In general, time is a continuum
and the length of a spell can be measured by a non-negative real number. However, in
fact, duration time is often grouped or banded into discrete intervals. For example, in
some research fields time is measured in days or years. That is, time as a continuum is
divided into an infinite sequence of continuous time periods. So, for survival times a set
of positive integers can be used. Hence, the resulting transition process is more discrete
than continuous. These kind of data are named grouped data and are commonly used in
the context of survival data. The underlying process arises in continuous time, however, it
is observed in a discrete manner. Biostatisticians typically refer to this situation as one of
interval censoring (Jenkins, 2005). It is evident that in grouped survival data, some objects
have an identical survival time, also named ties. The occurrence of ties may be an indicator
of interval censoring. In statistical models for continuous time, it is usually assumed that
no ties are present. When ties are present regarding continuous time models, it has to be
clarified whether the ties are original or do they occur due to grouping at the observation
or reporting stage.

On the other hand survival time can be truly discrete. In this case, Jenkins (2005) denoted
the underlying transition process as intrinsically discrete. That means, that the measure-
ments of survival time represent natural numbers. Consider, for example, the number of
attempts at a puzzle before it is solved. A fraction of the number of attempts does not
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make sense. Another similar example is the modeling of fertility, especially the time from
puberty to first childbirth. It is more instinctual to model time in terms of numbers of
menstrual cycles rather than the time up to pregnancy because the cycle length varies
amongst women, and a woman ovulates only once per menstrual cycle (Kleinbaum and
Klein, 2013).

In general, there is no difference in applying statistical methods when these two kinds of
discrete data form the basis of modeling. Therefore, they are only referred to as discrete
time models. The general distinction between discrete time data and continuous time data
is the more important one.

2.2. Basic Concepts

In the following, survival data with regard to discrete time are assumed. That means, the
time scale is truly discrete or continuous survival times are observed only in intervals. Let
T represent a non-negative discrete random variable assuming values from {1, ..., q}.

In the case of intrinsically discrete time, the probabilities

f(t) = P (T = t),

where t ∈ {1, ..., q} is a set of positive integers, are obtained. Thereby, t defines, for example,
the numbers of menstrual cycles. Also definitions without referring to time are possible.
That means, t might also denote the number of attempts to solve a puzzle, for example.
For expositional purposes, t is generally considered in the context of time.

In contrast, in the case of grouped survival times, continuous time is divided into q + 1
intervals

[a0, a1), [a1, a2), ..., [aq−1, aq), [aq,∞), (2.1)

where usually a0 = 0 is assumed and aq denotes the end of the observation period. Instead
of observing continuous time the discrete time T is observed. Analogous to truly discrete
survival time, in the grouped case, the random variable T takes values from a set of positive
integers {1, ..., q}, where T = t denotes an event within the interval [at−1, at). Thereby, t
denotes, for example, the month in which an event is occurred. In (2.1), it is presumed
that the date marking the beginning of the interval is included. The interval ends at the
instant before the date marking the end of the interval. This approach can also be defined
vice versa, but the choice is largely irrelevant concerning the theory.

Besides the survival time, for each object i, i = 1, ..., n, a p-dimensional vector xi of
covariates is collected. For this vector xi, an impact on the survival time is assumed.
Therefore, it is usually referred to conditional probability density functions f(t|x) = P (T =
t|x) and conditional cumulative density functions F (t|x), where xT = (x1, ...,xn). Initially,
the covariates are supposed to be time-independent. The comprehension of time-dependent
covariates is discussed in Section 2.3.
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2.2.1. Hazard Rate and Survival Function

At the beginning of this chapter, single spells were assumed. As each object can experience
the event of interest only once, event occurrence is inherently conditional. An object can
experience the event at time t, t = 1, .., q, only if the event did not already occur at any
earlier time. Similarly, once the event has occurred it cannot arise again after time t.

In survival analysis, the modeling of survival time T is general based on the hazard rate.
It captures the intrinsically conditionality of the event occurrence and the dynamic feature
of survival time. The discrete hazard function, given the covariates, is defined by

λ(t|x) = P (T = t
∣∣ T ≥ t,x), t = 1, ..., q, (2.2)

which is the conditional probability that an event occurs in interval [at−1, at), given the
interval is reached. In the same way, it can be interpreted for truly discrete survival times:
λ(t|x) is the conditional probability of an event at time t, given that no event has occurred
prior to time t. The conditional probability (2.2) belongs to the most important parameters
of the discrete-time survival process. A main issue of survival analysis is the estimation of
the hazard function λ(t|x) and the investigation of the influence of covariates on it (Singer
and Willett, 1993). Since the discrete hazard rate (2.2) denotes a probability, it ranges
between 0 and 1. Usually, the hazard rate is plotted subject to time t, visualizing the risk
of the event occurring in each time period, respectively, on the condition that the event not
having occurred at any earlier time. For further details on examples of hazard functions
and the information that can be retrieved from them, compare Singer and Willett (1991).

In addition, the conditional probability for surviving interval [at−1, at) or surviving time t,
respectively, is given by

P (T > t|T ≥ t,x) = 1− λ(t|x).

The discrete survival function S(t) gives the probability that an object survives longer
than some specified discrete time t. S(t) defines the probability that the random variable
T exceeds the specified time t:

S(t|x) = P (T > t|x) =
t∏

j=1

(1− λ(j|x)) = 1− F (t|x). (2.3)

Thereby, the survival function (2.3) is directly linked to the discrete hazard function as
well as the corresponding cumulative density function. In Singer and Willett (1993), it was
explained why the hazard function and not the survival function forms the cornerstone of
survival analysis.
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Finally, the unconditional probability for an event in interval [at−1, at) or at time t, respec-
tively, is denoted by

P (T = t|x) = λ(t|x)
t−1∏
j=1

(1− λ(j|x)). (2.4)

2.2.2. Regression Models

A simple method to describe survival data for the total sample or for sub-populations of
interest is by life table. The influence of covariates is disregarded in this case. It is a useful
nonparametric estimation approach and can be applied to discrete survival times as well
as grouped survival times. Life table estimates are shortly discussed in Section 4.2.2 and
more detailed in Fahrmeir and Tutz (2001) or Hamerle and Tutz (1989).

The central focus of regression modeling of survival data is to obtain estimates of the
hazard rate after adjusting for measured covariates, something that is not possible with life
table estimators. As the hazard function λ (t|x) is a probability, Cox (1972) proposed an
parametrization by means of binary regression models. This is attained by modeling binary
transitions. That means, does an event occur or not at time t, given the corresponding
object reaches time t. To put it another way, the binary outcomes {T = t|T ≥ t,x} and
{T > t|T ≥ t,x} are distinguished (Hamerle and Tutz, 1989). Thus, binary regression
models with response variable Y ∈ {0, 1} can be used. More details on the class of binary
regression models can be found in Tutz (2012), Agresti (2013) and McCullagh and Nelder
(1989). Using the representation of binary regression models, the discrete hazard rate has
the form

λ(t|x) = P (T = t
∣∣ T ≥ t,x) = P (Y = 1|x) = F (γ0t + xTγ), (2.5)

where F is an appropriate cumulative distribution function and γ contains the effects of
the covariates. Moreover, γ0t denotes a time-varying intercept and can be seen as a baseline
effect disregarding any set of covariates. For the model (2.5) an appropriate distribution
function has to be chosen. In this context, a directly associated function is the link function
g(·) that “links” the linear predictor to the hazard function λ(t|x). It is the inverse function
of the cumulative distribution function F in Equation (2.5) and is given by

g(λ(t|x)) = γ0t + xTγ.

The model (2.5) constitutes a sequential model and represents the common structure of
discrete-time survival models. A sequential model can be seen as an extension of generalized
linear models with a particular cumulative distribution function or link function. More
details on that issue can be found in Fahrmeir and Tutz (2001).
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To indicate if an observation i, i=1,...,n, is right-censored or not, a censoring indicator
variable is introduced. In the case of grouped survival data, the censoring indicator is given
by

δi =

{
1, Ti ≤ Ci, that is failure in interval [ati−1, ati)

0, Ti > Ci, that is censoring in interval [ati−1, ati) ,
(2.6)

where [ati−1, ati) denotes the last observed time interval of object i with ti ≤ q, for all ti.
In definition (2.6), it is implicitly assumed that censoring occurs at the end of the interval
[ati−1, ati). A censoring indicator for truly discrete survival time can be defined analogous.

To use binary regression models it is necessary to restructure the original data by setting
up the binary transitions. Let Rt be a index set of objects that are respectively at risk in
interval [at−1, at) or at time t:

Rt = {i : t ≤ ti} .

Binary event indicators for i ∈ Rt are defined as follows

yit =

{
1, for t = ti and δi = 1

0, otherwise.
(2.7)

Consequently, in the resulting data set, denoted as long format, each observation of object
i consists of ti rows, where an additional variable defines the running time. In the case of
a censored observation i (δi = 0), this leads to

object binary response time censoring design
i 0 1 δi xTi
i 0 2 δi xTi
i 0 3 δi xTi
...

...
...

...
...

i 0 ti δi xTi .

On the other hand, the data rows of a non-censored observation i with δi = 1 are given
by

object binary response time censoring design
i 0 1 δi xTi
i 0 2 δi xTi
i 0 3 δi xTi
...

...
...

...
...

i 0 ti − 1 δi xTi
i 1 ti δi xTi .
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For example, the data representation of the long format of the following three observations
{ (t1 = 3, δ1 = 0,x1), (t2 = 2, δ2 = 1,x2), (t3 = 4, δ3 = 1,x3) } is obtained by

object binary response time censoring design
1 0 1 0 xT1
1 0 2 0 xT1
1 0 3 0 xT1
2 0 1 1 xT2
2 1 2 1 xT2
3 0 1 1 xT3
3 0 2 1 xT3
3 0 3 1 xT3
3 1 4 1 xT3 .

The resulting structure of the data set enables the immediate application of software for
binary regression models. In doing so, the running time, denoted as time in the previous
examples, has to be included as a factor to the model, that means, with an appropriate
coding with regard to a categorical variable.

Grouped Proportional Hazard Model

For continuous survival time the hazard function is given by

λcont(t|x) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
.

A possibility to model the hazard rate λcont subject to the covariates x, is the model of
Cox (Cox, 1972), that is one of the most popular regression models for continuous survival
time. It is given by

λcont(t|x) = λ0(t) exp(xTγ), (2.8)

where the baseline hazard function λ0(t) is assumed to be the same for all observations
and is independent of the covariates. Furthermore, no specific structure is assumed for the
baseline hazard.

The Cox model is also denoted proportional hazard model, as the hazard ratio of two vectors
of covariates x and x̃ does not depend on time

λcont(t|x)

λcont(t|x̃)
= exp((x− x̃)Tγ). (2.9)

Let the underlying time be continuous but the observed survival times are interval-censored.
Thus, let survival time T be a discrete random variable with T = t denoting an event in
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interval [at−1, at). Then, the assumption of (2.8) yields the grouped proportional hazard
model

λ(t|x) = 1− exp(− exp(γ0t + xTγ)), (2.10)

deriving the parameters

γ0t = log(exp(θt)− exp(θt−1)), with θt = log

∫ at

0

λ0(u)du

from the baseline hazard function λ0(u) (Kalbfleisch and Prentice, 1973, 2002). In the
model (2.10), the baseline hazard function exists no longer in an explicit form, rather the
parameter γ0t contains the information of the baseline hazard. Moreover, γ0t is a discrete
parametrization of λ0(t) of the underlying Cox model for continuous time. The model
(2.10) is presumed as a Cox model for discrete survival times. The model (2.10) also holds,
if truly discrete survival times instead of grouped survival times are assumed (Kalbfleisch
and Prentice, 2002).
The parameter γ is identical in the discrete Cox model (2.10) as well as in the continuous
Cox model (2.8). That means, the interpretation of the parameter γ is the same in both
models.
As the discrete hazard rate is given by λ(t|x) = P (T = t|T ≥ t,x), the grouped
proportional hazard model is a sequential model with a Gompertz distribution F (x) =
1− exp(− exp(x)), that is an extreme-value-distribution. The corresponding link function
is constituted by the complementary log-log link also known as clog-log link g(λ(t|x)) =
log(− log(1 − λ(t|x))). Because of this link function, the discrete Cox model is often re-
ferred to as clog-log model, and as stated by Kalbfleisch and Prentice (2002), this model “is
the uniquely appropriate one for grouped data from the continuous proportional hazards
model”.

While the property (2.9) holds in the continuous Cox model, it no longer holds in the
grouped proportional hazard model. Thus, the name grouped proportional hazard model
sometimes is deceptive. A further feature of the continuous Cox model is the proportion-
ality of logarithmic survival functions. Only the latter property can be transferred to the
discrete Cox model. Compare Hamerle and Tutz (1989) for more details. An immediate
generalization of the grouped proportional hazard was provided by Aranda-Ordaz (1983).
Instead of considering a multiplicative model as in the Cox model (2.8), the proposed model
of Aranda-Oraz is based on an additive form for continuous survival time, whereof a model
for discrete survival time can be derived.

Finally, note that the clog-log model is not the only model that is consistent with a continu-
ous time model and interval-censored survival time data. In Sueyoshi (1995), it was shown
how, for example, a logistic hazard model (as considered in the following section) with
interval specific intercepts, may be consistent with an underlying continuous time model in
which the within-interval durations follow a log-logistic distribution (Jenkins, 2005).
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Discrete Logistic Model

An alternative choice of the distribution function in Equation (2.5), is the logistic distri-
bution function yielding the discrete logistic model. The resulting sequential model for the
discrete hazard function is defined by

λ(t|x) =
exp(γ0t + xTγ)

1 + exp(γ0t + xTγ)
. (2.11)

The model (2.11) was originally developed for truly discrete survival times but may also
be applied to grouped survival times. The choice of the logistic distribution function is
equivalent to the logit link function given by

g(λ(t|x)) =
λ(t|x)

1− λ(t|x)
.

An alternative formulation of the model is obtained by

log
P (T = t|x)

P (T > t|x)
= γ0t + xTγ.

In this representation, the comparison of the response category t to the response categories
t + 1, ..., q is evident. The logits P (T = t|x)/P (T > t|x) are also denoted continuation
ratio logits (Tutz, 2012). This sometimes leads to the name continuation ratio logit model
instead of discrete logistic model.

Originally, this model was proposed by Cox (1972). He extended the proportional hazard
model to intrinsically discrete time by working with conditional odds of an event at time
t, given survival up to that point. It is closely related to the Mantel-Haenszel approach
(Mantel, 1966). The original model given by Cox is of the following form

λ(t|x)

1− λ(t|x)
=

λ0(t)

1− λ0(t)
exp(xTγ),

where λ(t|x) defines the conditional discrete-time hazard rate and λ0(t) defines the corre-
sponding baseline hazard that arises when x = 0. Taking the logarithms, the logit of the
hazard rates, respectively the conditional probability of an event at t, given survival up to
that time, is obtained by

logitλ(t|x) = log
λ(t|x)

1− λ(t|x)
= αt + xTγ, (2.12)

where αt = logitλ0(t) is the logit of the baseline hazard. Thereby, time is treated as
a discrete factor, as for each time t a parameter αt is introduced. Interpretation of the
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parameters γ is analogous to logistic regression. Moreover, an alternative formulation of
the model (2.12) is given by

λ(t|x) =
1

1 + exp(−αt − xTγ)
. (2.13)

Finally, the model (2.13) is equivalent to the model (2.11). A property concerning specif-
ically the interpretation of the model can be derived from the proportion of odds of two
populations x and x̃

P (T = t|x)/P (T > t|x)

P (T = t|x̃)/P (T > t|x̃)
= exp((x− x̃)Tγ.

It is seen that the proportion of odds does not depend on time. That means, it is the same
for all time periods allowing for a simple interpretation of effects. Due to this feature the
continuous ratio logit model is also known as a proportional odds model (Jenkins, 2005).
Thompson (1977) dealed with the proportional odds model in detail, and showed that it
leads back to Cox’s proportional hazard model when the lengths of the grouping intervals
approach zero (see also Fleming and Harrington, 2005). However, as stated in Prentice and
Gloeckler (1978), the meaning of the regression coefficient in the discrete logistic model
depends on the choice of grouping intervals.

Additional to the extreme-value distribution and the logistic distribution, for the choice of
F in Equation (2.5), further cumulative distribution functions are possible. For example,
possible distributions are the normal distribution yielding a probit model and the Gumbel
distribution. More details can be found in Cox and Oakes (1984).

2.2.3. Discrete time versus continuous time models

In practice, it should be determined which kind of survival data are on hand: continuous
survival times, grouped survival times (interval censoring) or intrinsically discrete survival
times. According to the available data an appropriate model has to be chosen. However,
in practice, it is common to use the widespread Cox model instead of prevalent models for
discrete time.
Many approaches for continuous time assume that equal survival times of a sample have
probability zero. This assumption is incorrect if many ties are present. As the Cox model
is the most popular model for survival data, it is often preferred to models for discrete
time. However, it can be inappropriate when analyzing event history data. The Cox
model implies a continuous-time specification whereas the observations are often obtained
by means of grouped data. As a result, the observation of ties is unavoidable. The partial
likelihood approach of the Cox model requires, however, chronologically ordered duration
times (Hess and Persson, 2012). Kalbfleisch and Prentice (2002) pointed out, that the
incidence of ties causes asymptotic bias in both the estimation of the regression coefficients
and in the estimation of the corresponding covariance matrix. There are several suggestions
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how to deal with this issue. Breslow (1974) proposed one of the most popular approaches to
handle ties. It is based on an approximation of the exact marginal likelihood but it becomes
inaccurate in the case of many ties. More precisely, this leads to an increasing asymptotic
bias of the parameter estimates (Prentice and Gloeckler, 1978; Hsieh, 1995). Another
approximation of the exact marginal likelihood, being more appropriate, was proposed by
Efron (1977), but it is still inaccurate in the presence of heavy ties. Scheike and Sun (2007)
have investigated the performance of the methods of Breslow and Efron. They arrived at
the conclusion that the impact of tied survival times depends on the number of ties in
comparison to the spell size.

A further drawback of the Cox model is that it supposes the individual hazard functions
to be proportional. When the assumption of proportional hazards is not met, the esti-
mated covariate effects tend to be biased (Hess and Persson, 2012). The issue of constant
covariates over survival time is well investigated in the literature and several tests exists
to examine the proportionality assumption (McCall, 1994; Klein and Moeschberger, 2003).
Two reasons exist why the proportional hazards assumption may fail to hold. First, the
effect of covariates on the hazard may be intrinsically non-proportional. Second, if it is
not accounted for unobserved individual heterogeneity, the influence of observed regressors
depend on survival time, even if the underlying model satisfies the proportional hazard
assumption (Lancaster and Nickell, 1980).

Consequently, the existing data should be well investigated before the analysis of survival
time models. Statistical models for discrete survival time can overcome the handicaps
just mentioned. Discrete-time models are also preferable for computational reasons.
Conventional regression models for binary response data can be used to model hazard
rates for discrete duration times. These models are computationally less demanding than
the Cox model.

2.2.4. Estimation

As specified in the introduction, the objects’ survival times often cannot be fully observed.
Therefore, right censoring is included in the estimation approach. Estimates of the unknown
parameters can be obtained by the maximum likelihood (ML) method. The considered
model has the form

λ(t|x) = F (γ0t + xTγ),

as it is already defined in Equation (2.5). If censored data are existent in a sample, besides
the survival time T the censoring time C (time until censoring of an object) is of interest.
For each object i, the random variables survival time Ti and censoring time Ci are available.
The observed time ti for each object is the minimum of survival time and censoring time
obtained by ti = min(Ti, Ci), where ti ≤ q. It is generally assumed that the random
variables Ti and Ci are independent and that the tupel (Ti, Ci), i = 1, ..., n, are measured
independently (Hamerle and Tutz, 1989). This assumption is called random censoring.
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For an object i, an observation is defined by the triple (ti, δi,xi), i = 1, ..., n, where xi
contains the object’s characteristics and δi is the censoring indicator variable of definition
(2.6) with

δi =

{
1, Ti ≤ Ci, that means failure in interval [ati−1, ati)

0, Ti > Ci, that means censoring in interval [ati−1, ati) .
(2.14)

Thereby, [ati−1, ati) denotes the last observed time interval of object i with ti ≤ q. In
definitions (2.6) and (2.14), it is implicitly assumed that censoring occurs at the end of the
interval. This assumption is of special interest with respect to time-varying coefficients and
holds during the whole thesis. For all details concerning censoring at the beginning of an
interval, compare Fahrmeir and Tutz (2001).
By omitting covariates and using the assumption of random censoring, the probability of
observing (ti, δi = 1) is obtained by

P (Ti = ti, δi = 1) = P (Ti = ti)P (Ci ≥ ti), (2.15)

where censoring is supposed to occur at the end of the interval. On the other hand, the
probability of observing (ti, δi = 0) is given by

P (Ti = ti, δi = 0) = P (Ci = ti)P (Ti > ti). (2.16)

The combination of probability (2.15) and probability (2.16) leads to the likelihood contri-
bution of observation (ti, δi)

Li = P (Ti = ti)
δiP (Ti > ti)

1−δiP (Ci ≥ ti)
δiP (Ci = ti)

1−δi ,

where, according to Allison (1982), a separate expression for censored objects and an ex-
pression for uncensored objects is derived. Let ci = P (Ci ≥ ti)

δiP (Ci = ti)
1−δi be the

contribution of the censoring distributions. If it is presumed that ci does not depend on
the parameters determining the survival time, that means, the censoring mechanism is
non-informative (see Kalbfleisch and Prentice, 2002), the reduced likelihood contribution is
obtained by

Li = ciP (Ti = ti)
δiP (Ti > ti)

1−δi .

Inserting the definition of the discrete hazard function and including covariates it follows

Li = ciλ(ti|xi)δi(1− λ(ti|xi))1−δi
ti−1∏
j=1

(1− λ(j|xi)).

By incorporating the binary event indicators, the likelihood can be written as

Li = ci

ti∏
j=1

λ(j|xi)yij(1− λ(j|xi))1−yij , (2.17)
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where

(yi1, ..., yiti) =

{
(0, ..., 0, 0), if δi = 0

(0, ..., 0, 1), if δi = 1.
(2.18)

The data structure (2.18) is already described in Section 2.2.2. The likelihood contribution
(2.17) describes that of a binary regression model. Thus, the likelihood function of a
discrete survival model is equivalent to the likelihood of a binary regression model (Laird
and Olivier, 1981; Allison, 1982; Brown, 1975). Finally, the log-likelihood of a discrete-time
survival model is given by

l =
n∑
i=1

ti∑
j=1

(yij log(λ(j|xi)) + (1− yij) log(1− λ(j|xi))).

The contribution of each object to the design matrix are ti rows whereas the complete design
matrix consists of

∑
i ti rows. It has to be noted, that the equivalence of the likelihood

of discrete survival time models and binary regression models is only valid concerning the
estimation approach. The asymptotic propositions of binary regression models, that is, the
distributions of test statistics cannot be adopted. The presented estimation approach of
models for discrete survival times was illustrated on the basis of grouped survival times. It
can be carried out analogous to intrinsically discrete time.

2.3. Time-Varying Covariates

By means of the baseline effects, a time variation is implicitly incorporated in the models
of the previous section. This time variation is ensured by including the running time as a
factor variable into the model. The observed covariates of each object, though, are assumed
to be constant over survival time. However, in many applications it might be of special
interest that the covariates vary over the duration time.
For the i-th object, xi1, ...,xit, i = 1, ..., n, t = 1, ..., ti, denote the time-dependent observa-
tions of covariates until time ti. The vector xTit = (xit1, ..., xitp), with p denoting the number
of covariates, is observed at the end of interval [at−1, at) or is determined at discrete time
t. The resulting hazard rate incorporating time-dependent covariates is given by

λ(t|xi(t)) = P (T = t|T ≥ t,xi(t)) = F (zTitβ),

where the temporal sequence of covariates xTi (t) = (xTi1, ...,x
T
it) influence the hazard rate

and zit is composed from xit. A very simple way to specify zit is given by

zTitβ = γ0t + xTitγ,

where zTit = (0, ..., 1, ..., 0,xTit), β
T = (γ01, ..., γ0q,γ

T ) and γT = (γ1, ..., γp). Further specifi-
cations of zit, in terms of time-varying coefficients or time lags, can be found in Fahrmeir
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and Tutz (2001). For modeling the hazard rate and incorporating time-varying covariates,
the models of Section 2.2.2 can be modified by

Discrete Logistic Model

λ(t|zit) =
exp(zTitβ)

1 + exp(zTitβ)
.

Grouped Proportional Hazard Model

λ(t|zit) = 1− exp(− exp(zTitβ)). (2.19)

Due to the incorporation of time-dependent covariates, the model (2.19) cannot be derived
as a grouped version of the continuous Cox model (Hamerle and Tutz, 1989).

Moreover, Kalbfleisch and Prentice (2002) distinguished between external and internal co-
variates that are outcomes of a stochastic process. With external covariates, the sequence
of a covariate vector is not influenced by the duration time of an object. Conversely, it can
thoroughly impact the duration time. A possible example for external covariates is envi-
ronmental factors. Let the sequence of observations of covariates xi1, ...,xit be an output
of a stochastic process. This output may be considered external if the condition

P (xi,t+1, ...,xiq|xi(t),yi(t)) = P (xi,t+1, ...,xiq|xi(t)), t = 1, ..., q, (2.20)

holds, where yi(t) = (yi1, ..., yit). The condition (2.20) implies that failure does not influence
the path of the covariate process.

In contrast, an internal time-dependent covariate depends on the individual survival, its
path may carry information about the time of failure occurrence. It is related to the
behavior of the individual and can be observed only as long the object is in the study and
alive. Thus, the hazard rate only incorporates the path until time t

λ(t|xi(t)) = P (yit = 1|xi(t), yi1 = 0, ..., yi,t−1 = 0).

As the covariates xi,t+1, ..., xiq no longer have any meaning if an event occurs in interval
[at−1, at) the condition (2.20) cannot be presumed to hold. This statement can be adapted
to intrinsically discrete survival times, as well.

In addition, Hamerle and Tutz (1989) have shown that for external time-dependent covari-
ates, an analogous formulation of the survival function (2.3) can be derived

S(t|x̃t) =
t∏

s=1

(1− λ(s|x̃(s))),

where x̃(t) = (x(1), ...,x(t)). The previous equation leads to the usability of the same
likelihood function that is used for the models with time-independent covariates (Fahrmeir
and Tutz, 2001). For the type of internal covariates, however, the simple connection between
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survival function and hazard function, given in Section 2.2.1, no longer hold. With internal
covariates the likelihood of time-independent covariates cannot be used, especially if internal
covariates are strict informative. A strictly informative internal covariate has to fulfill the
condition P (T ≥ t|x(1), ...,xt) = 1. In Hamerle and Tutz (1989), a likelihood function was
introduced that is appropriate with respect to internal covariates.

2.4. Time-Varying Coefficients

So far, the regression parameters of the models in Section 2.2.2 are assumed to be time-
constant. A further extension is to allow the regression parameters to vary over time.
Time-varying coefficients were systematically introduced by Hastie and Tibshirani (1993).
Varying coefficient models arise from various statistical contexts. For example, Hoover et al.
(1998) considered a time-varying coefficient model for continuous longitudinal data using
smoothing splines and local polynomial estimators. Huang et al. (2002) proposed a basis
function approximation method to estimate the time-varying coefficients, whereas Tutz and
Kauermann (2003) used generalized local likelihood estimation.
The discrete-time hazard model with time-varying coefficients has the form

λ(t|x) = F (ηt) = F (β0(t) + x1β1(t) + ...+ xpβp(t)) = F (β0t + x1β1t + ...+ xpβpt), (2.21)

where β1(t), ..., βp(t), t = 1, ..., q are unspecified functions to be estimated and ηt is the
linear predictor depending on time. If covariates are also time varying, the model (2.21)
can be extended to

λ(t|xit) = F (ηit) = F (β0t + xit1β1t + ...+ xitpβpt). (2.22)

The models (2.21) and (2.22) have the form of generalized linear models (Fahrmeir and
Tutz, 2001). In time-varying coefficient models, time t is considered as an effect modifier as
it modifies the effect on the predictors. In the case of discrete-time survival models, time
can supposed to be a categorical effect modifier (Gertheiss and Tutz, 2012). The variation
of the parameters across the effect modifier time t, may be seen as an interaction of time
and covariate j, j = 1, ..., p.
Although the models with time-varying coefficients are given as a linear combination,
the functions β1(t), ..., βp(t) are not parametrically specified and have to be estimated by
smoothing techniques. To this end, regression splines are used for the estimation of the
functions βj(t), j = 1, .., p. In the last decades, regression splines have been widely used for
the estimation of additive structures, see, for example, Marx and Eilers (1998) and Wood
(2006). In regression spline approaches the unspecified functions βj(t) are approximated
by basis functions of the form

βj(t) = βjt =

mj∑
m=1

αjmBjm(t),
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where Bjm(t) are basis functions such as B-splines or truncated power series and mj, j =
1, ..., p, denotes the number of basis functions for each time-varying parameter. The choice
of basis functions and their number influence the flexibility of the basis function approach.
B-splines are very famous and widely used because the basis functions are strictly local
defined entailing a big numerical advantage compared to other basis function approaches.
Using a B-spline basis of degree d yields

βj(t) =

mj∑
m=1

αjmBjm(t; d) = αTj bjt,

where αTj = (αj1, ..., αjmj) denotes the unknown parameter vector of the j-th smooth
function, bj(t)

T = (Bj1(t; d), ..., Bjmj(t; d)) represents the vector-valued evaluations of the
mj basis functions and p denotes the number of time-varying parameters. For simplicity
reasons, the degree d is often omitted. Generally, cubic B-splines (d = 3) and equidistant
knots are assumed (Eilers and Marx, 1996). For B-splines of degree d = 0 and knots at
each point in time, that means, mj = q, it results βj = αj, with βTj = (βj1, ..., βjq).

By the use of B-splines for the time-varying coefficients, the resulting linear predictor can
be written as

ηit = αT0 b0(t) + xit1α
T
1 b1(t) + · · ·+ xitpα

T
p bp(t)

= b0(t)Tα0 + (xit1b1(t))Tα1 + · · ·+ (xitpbp(t))
Tαp.

Moreover, not necessarily all of the p covariates have to vary over time. It is also possible,
that some of the functions βj(t) are assumed to be constant, that means βj(t) = γj, for all t,
resulting in terms with simple linear effects. Altogether this leads to the linear predictor

ηit = b0(t)Tα0 + (zit1b1(t))Tα1 + · · ·+ (zitrbr(t))
Tαr + xTitγ, (2.23)

with parameter vector γT = (γ1, ..., γs) and xTit = (xit1, ..., xits), i = 1, ..., n, t = 1, ..., ti.
Thereby, zitj, i = 1, ..., n, t = 1, ..., ti, j = 1, ..., r, denotes the observations of the covariates
that are allowed to exhibit time-varying effects, and xit define the covariates that are
restricted to have constant effects. That is, the linear predictor (2.23) consists of p = r+ s
covariates with r time-dependent covariates and s time-constant covariates. By collecting
observations over time, that is XT

i = (xi1, ...,xiti) for the i-th object, a simpler form of the
model is given by

ηi = Z̃i0α0 + Z̃i1α1 + ...+ Z̃ipαr +X iγ,

where Z̃
T

i0 = (b0(1)T , ..., b0(ti)
T ) denotes the transposed B-spline design matrix of the time-

varying intercept for the i-th object and Z̃
T

ij = ((zi1jbj(1))T , ..., (zitijbj(ti))
T ), j = 1, ..., r,

represents the transposed B-spline design matrix for the i-th object and the j-th time-
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dependent covariate effect.
With XT =

[
XT

1 , ...,X
T
n

]
, the model in matrix form is given by

η = Z̃0α0 + Z̃1α1 + ...+ Z̃pαr +X iγ,

where Z̃
T

j =
[
Z̃
T

1j, ..., Z̃
T

nj

]
defines the transposed B-spline design matrix of the j-th smooth

function. By collecting Z̃ =
[
Z̃0, Z̃1, ..., Z̃r

]
and αT = (αT0 ,α

T
1 , ...,α

T
r ) the linear predictor

can be further reduced to
η = Z̃α +Xγ.
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Using time-varying coefficients in a linear predictor of a model, results in a large number of
parameters that have to be estimated. Especially in the context of discrete survival models
this might lead to wiggly time-varying covariate effects, unstable estimates or computational
problems (Section 3.1). To overcome these issues, regularization techniques in terms of
penalization methods are incorporated in discrete-time survival models (Section 3.2). To
get access to uncertainty measures, Section 3.3 provides standard errors and confidence
intervals for the parameters resulting from the penalized estimation. In addition, in Section
3.4, several simulation studies are conducted to judge the performance of the presented
method. Finally, two real data examples are discussed in Section 3.5. Section 3.6 contains
concluding remarks. Some parts of the following chapter are based on Hess et al. (2014),
the result of a close cooperation. In the following, only the notation and explanations with
respect to grouped survival times are considered, but they can easily be modified to truly
discrete survival times.

3.1. Introduction

High-dimensional time-varying coefficients, for example, were treated by Xue and Qu
(2012), Wei et al. (2011) or Wang and Xia (2009), but they do not consider survival anal-
ysis. The issue of discrete duration time models with time-varying coefficients has been
investigated, for example, by Tutz and Binder (2004) using penalized B-splines for estimat-
ing time-varying coefficients. Fahrmeir (1994) introduced a dynamic modeling approach by
means of penalized likelihood techniques. A fully Bayesian approach using Markov Chain
Monte Carlo techniques was proposed by Fahrmeir and Knorr-Held (1997). However, the
latter publications disregard regularization techniques.
Survival analysis with discrete duration times is not well investigated. In contrast, a rich
literature dealing with continuous-time survival models is available. Unfortunately, in prac-
tice, this encourages the use of continuous survival models, also in situations where discrete-
time survival models are more appropriate leading to biased estimates.
The data referring to survival analysis usually consist of repeated measurements over time.
As discrete-time survival data often cover rather long time periods, the question arises
whether the effects of the explanatory variables vary over time. However, in many stud-
ies, it is simply assumed that regression coefficients are time-constant. The incorporation
of time-varying coefficients often leads to a large number of coefficients to be estimated
and consequently to instability in the estimation process, especially, if the data become
sparse for larger values of time t. Hence, alternative tools such as penalization methods



26 3. Lasso-Type Penalties

are needed. In addition, to obtain coefficient estimates that vary flexibly over time, inter-
actions of covariates and time have to be incorporated in the regression model. Using this
approach, the problem of overfitting of the model may arise. That means, it leads to overly
wiggly and hard-to-interpret covariate effects. The issue of overfitting can be avoided by
using penalized regression methods. The basic idea of this chapter is to incorporate smooth
flexible interactions of covariates and time into the regression model. By using that time
intervals are naturally ordered, the difference between coefficients of adjacent time periods
are penalized by the use of regularization techniques.
This approach offers several benefits. First, the flexible interactions of regressors and time
allow for covariate effects that vary across time without any restrictions on parametric as-
sumptions. Second, the use of penalized differences between coefficients of adjacent time
periods solves the problem of overfitting. Third, the type of penalization of the proposed
method is rather flexible. Different kinds of penalty terms can be used. The type of penalty
enables different interpretation possibilities that allows for a large flexibility. Depending
on the particular application, for each predictor can be chosen which one is the most em-
pirically reasonable penalty. Finally, the penalty term must not only affect the differences
between coefficients of adjacent time periods. Due to the fact that several penalty types
can shrink coefficients to be exactly zero, the proposed approach can also be used for model
selection. To reduce the inhibitions regarding discrete survival models, in the following an
approach for a discrete survival model that accounts for time-varying coefficients and that
incorporates penalization methods is proposed.

3.2. Lasso-Type Penalties

Let yit denote the binary outcome of an object i, i = 1, ..., n, in period t, t = 1, ..., ti,
and let (zit,xit)

T = (zit1, ..., zitr, xit1, ..., xits) with p = r + s be a vector of realizations of
explanatory variables that may vary over time. Thereby, the binary outcome yit denotes an
event in [at−1, at) if yit = 1 and no event or censoring if yit = 0 leading to the data situation
2.18. Thus, the existing data structure is of the same form as described in Section 2.2.2,
regarding binary regression models in the context of discrete survival analysis. The discrete
hazard function λ(t|zit,xit) is fitted by the binary regression model (2.5)

λ(t|zit,xit) = P (yit = 1|zit,xit) = F (ηit). (3.1)

By incorporating time-varying as well as time-constant regression coefficients the linear
predictor for object i, i = 1, ..., n, and time period t, t = 1, ..., q, is given by

ηit = β0t +
r∑
j=1

zitjβjt +
s∑
l=1

xitlγl, (3.2)

where the parameters β0t represent the baseline effects that are the same for all individuals.
Moreover, let z 1, ...,z r with zT j = (z11j, ..., z1tij, ..., zn1j, ..., zntij) denote the observa-
tions of the covariates that are allowed to exhibit time-varying effects, and x 1, ...,x s with
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xT l = (x11l, ..., x1til, ..., xn1l, ..., xntil) define the observations of covariates that are restricted
to have time-constant effects. In other words, the model implies time-varying coefficients
β0t, β1t, ..., βrt including a time-varying intercept β0t, whereas γT = (γ1, ..., γs) is assumed to
be time-constant. When the covariates do not depend on time, the time index is omitted;
that is zitj = zij and xitl = xil.

As the time-varying effects in model (3.1) are estimated for each time period t, the number of
parameters can be very large and estimating them using conventional maximum likelihood
(ML) techniques may lead to unstable results. In extreme cases, the maximum likelihood
estimates might not exist. Furthermore, the resulting wiggly coefficient vectors are hard to
interpret in a meaningful manner. A simple solution to reduce the amount of parameters
is the application of B-splines basis functions to the time-varying covariate effects (see also
Section 2.4). The time-varying coefficients then are expanded in equally spaced B-splines
given by βjt = βj(t) =

∑mj
m=1 αjmBjm(t), j = 0, ..., r. By using this B-spline representation

to model the time-varying effects βjt, j = 0, 1, ..., r, t = 1, ..., q, the linear predictor (3.2)
can be rewritten as

ηit = z̃T0 α0 +
r∑
j=1

mj∑
m=1

z̃itjαjm +
s∑
l=1

xitlγl. (3.3)

Note, that z̃itj in the linear predictor (3.3) differs from zitj in the linear predictor (3.2). The
z̃itj contain the design of the interaction of the according covariate and the evaluations of
the appropriate basis functions at time t. Moreover, αjm denotes the unknown parameter
values of the j-th smooth function. By using B-splines for the basis expansion of the
time-varying coefficients the resulting model is a generalized additive model, but the linear
predictor (3.3) can still be embedded into the framework of generalized linear models.
In general, additive models exhibit an identification problem so that it is necessary to fix the
level of each flexible function. This is usually done by centering each flexible function around
zero (Fahrmeir et al., 2009). However, in the context of time-varying coefficients centering
of the time-varying functions βj(t) depends on the scale of the j-th interaction variable
belonging to the observations z j, j = 1, ..., r. In the case of a metric interaction variable,
the smooth terms does not have to be centered and it is not necessary to incorporate main
effects of the j-th covariate belonging to observations z j in the model. In contrast, if
the interaction variable is categorical, centering constraints are applied to the smooths,
which usually means that the variable itself should be included as a parametric term as
well (Fahrmeir et al., 2009; Wood, 2006).
To yield smooth functions βj(t) that are not too wiggly, the differences between adjacent
parameters of the smooths αjm − αj,m−1, j = 1, ..., r, m = 2, ...,mj, are penalized. Some
coefficients may not have an impact on the discrete hazard function and should be omitted
from the model. This implies a need for variable selection, that is to determine whether
βjt = 0, for all t. In order to accomplish smooth time-varying coefficients as well as variable
selection, penalized estimation techniques are proposed in the following.
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3.2.1. Penalized Estimation

As stated in the previous sections, the modeling approach of discrete-time survival data
utilizes the framework of binary regression models. Thus, the estimation of the parameters
is performed by maximum likelihood estimation. In empirical applications it is often eligible
to suppose that covariate effects vary rather smoothly over time. This implies that adjacent
coefficients αjm and αj,m−1 in the linear predictor (3.3) should be expected to be similar,
or in other words, that differences ζjm = αjm−αj,m−1, j = 1, ..., r, m = 2, ...,mj, are small.
Moreover, parameters that are not relevant should be removed from the model. These goals
can be reached by penalization, leading to the maximization of the penalized log-likelihood
given by

lξ(α,γ) = l(α,γ)− Jξ(α,γ) = l(α,γ)− ξJ(α,γ), (3.4)

where l(α,γ) denotes the ordinary log-likelihood and J(α,γ) stands for a penalty term
that depends on a scalar tuning parameter ξ ≥ 0. The tuning parameter ξ controls the
strength of penalization. Without a penalty, that is, with ξ = 0, ordinary ML-estimation
is obtained.

As the choice of J(α,γ) determines the properties of the penalized estimator, the main
issue is to choose an adequate penalty. Typical penalties are the ridge penalty (Hoerl
and Kennard, 1970) that shrinks coefficients towards zero but do not perform variable
selection, the lasso method (Tibshirani, 1996) that combines shrinkage and selection of
single coefficients or the fused lasso (Tibshirani et al., 2005) applying the Lasso penalty
to differences between adjacent parameters. In the latter case, parameters are shrunken
towards each other and possibly are fused. A further penalty used in this thesis, is the
group lasso (Yuan and Lin, 2006) that shrinks whole groups of parameters simultaneously
towards zero until their selection. Hence, true variable selection can be obtained instead of
simple parameter selection as, for example, in case of the lasso. For a detailed account of
recently developed regularization approaches, including the lasso and versions of it, compare
Bühlmann and van de Geer (2011).

Selection and Smoothing of Time-Varying Coefficients

A simple penalty that effects smoothness of the time-varying coefficients is given by

Jξ(α) = ξ
r∑
j=1

mj∑
m=d

(
∆dαjm

)2
= ξ

r∑
j=1

αTjKd,jαj, (3.5)

where ∆ defines a difference operator, operating on adjacent coefficients ∆αjm = αjm −
αj,m−1, ∆2αjm = ∆(αjm − αj,m−1) = αjm − 2αj,m−1 + αj,m−2 etc. The penalty does not
depend on the time-constant parameters γ as currently only time-varying coefficients are
considered. This penalty term was originally presented by Eilers and Marx (1996) in the
context of penalized regression splines. The matrix Kd follows from representing the dif-
ferences in matrix form and has a banded structure. By means of difference matrices, the
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requested difference can be obtained recursively by Dd = D1Dd−1. For example, for d = 2
the (d− 2× d) difference matrix is given by

1 −2 1
1 −2 1

. . . . . . . . .

1 −2 1

 .

By means of the difference matrix Dd, the sum of squared differences is simply given by
αTjKd,jαj with Kd = DT

dDd. Through penalization of squared differences between the
adjacent parameters αjm−αj,m−1, m = 2, ...,mj, large shifts in parameter values are avoided
(see Gertheiss and Tutz, 2009). That is, for ξ > 0 large parameter differences have a negative
impact on the penalized log-likelihood lξ(α,γ) that has to be maximized. Thus, estimated
parameter differences will be smaller than they would have been in unpenalized models.
Finally, the tuning parameter ξ is responsible for the roughness of the time-varying effects
βjt. The stronger the penalization, the smoother is the resulting curve of the covariate
effect. However, the penalization term (3.5) disregards selection. To achieve a selection
of all differences ζjm = αjm − αj,m−1, m = 2, ...,mj, belonging to the j-th time-varying
coefficient, the following penalty can be applied

Jξ(α) = ξ
r∑
j=1

√√√√√ mj∑
m=2

(αjm − αj,m−1︸ ︷︷ ︸
ζjm

)2 = ξ
r∑
j=1

√
αTjK1,jαj. (3.6)

The penalty (3.6) is defined as the group lasso of Yuan and Lin (2006), extended to gener-
alized linear models by Meier et al. (2008), applied to the differences ζj2, ..., ζjmj between
adjacent parameters of the smooths regarding the time-varying coefficients. In order to
maximize the penalized likelihood (3.4), the group lasso shrinks parameter differences ζjm,
thereby generating smooth time-varying coefficients. For a value of ξ large enough, the
group lasso simultaneously forces the whole group of parameter differences ζj2, ..., ζjmj to
be zero, implying that the effect of covariate j is constant over time. For estimation of the
parameters by using the group lasso penalty, Meier et al. (2008) proposed an algorithm
that is implemented in the R add-on package grplasso (Meier, 2013). Hence, the penalty
term (3.6) can be simply applied by using the freely available standard software R. The
only requirement for application of standard software is the reparametrization of the linear
predictor (3.3) using parameters ζjm instead of αjm, that is accomplished by using split
coding of the covariates. This approach is described in more detail in (Gertheiss et al.,
2011).

However, the penalty (3.6) is still not satisfactory in the context of discrete survival mod-
eling: First, a penalty with regard to the time-varying intercept has to be incorporated. It
is essential that the time-varying intercept is not excluded from the model as it represents
a baseline hazard. Hence, a further tuning parameter is needed only responsible for the
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strength of penalization of the intercept. Second, by means of the penalty term (3.6) only
the differences ζjm can be selected out of the model but no variable selection is performed.
Moreover, if penalization of the γ-parameters is intended an additional penalty term has
to be included. Incorporating these three issues, leads to the extended penalty

Jξ0,ξ(α,γ) =ξ0

m0∑
m=2

(α0m − α0,m−1)2

+ξ

(
φ

r∑
j=1

ψj
∥∥ζj∥∥2

)
+ ξ

(
(1− φ)

r∑
j=1

ϕj ‖αj‖2

)
+ ξJ(γ),

(3.7)

where ‖·‖2 denotes the L2-norm, ζTj = (ζj2, ..., ζjmj) and αTj = (αj1, ..., αjmj). The first
term enforces shrinkage of the differences between adjacent B-spline coefficients of the
baseline hazard with the objective of a smooth function over time. This is related to a ridge
penalty of the parameters ζ0m, m = 2, ...,mj. This part of penalization is predominantly
incorporated due to stability reasons. Hence, the tuning parameter ξ0 should be chosen
rather small, for example ξ0 = 0.001. By using a group lasso penalty with respect to the
differences ζj2, ..., ζjmj , j = 1, ..., r, the second term steers the smoothness of the time-
varying covariate effects, but for a value of ξ large enough, all differences ζj2, ..., ζjmj are
removed from the model resulting in a constant covariate effect. The third term steers
the selection of covariates and corresponds to a group lasso penalty with regard to the
parameters αjm, m = 1, ...,mj, belonging to the j-th covariate. If the tuning parameter
ξ exceeds a certain value, αj1, ..., αjmj are set to zero and the j-th covariate is removed
from the model. That means, the penalty term may distinguish if a covariate effect is
incorporated smooth or constant in the model or if it is completely removed from the
model. The last term has the intention to penalize the time-constant parameters γ1, ..., γs.
If only shrinkage of γl is desired a ridge penalty can be used, whereas for exclusion of the
model, that means shrinking the coefficient γl to zero, the lasso penalty has to be applied.
In addition, many further penalty types are available. For more details compare Oelker
and Tutz (2013). The penalties of time-constant parameters γl are summarized in J(γ).
Except the penalty regarding the time-varying intercept, the remaining penalty terms have
a shared tuning parameter ξ. Weighting of the selection part and the smoothing part of a
covariate is obtained by the parameter φ, that is a further tuning parameter. The terms
ψj =

√
mj − 1 and ϕj =

√
mj are weights that assign different amounts of penalization to

different parameter groups.
To sum up, the penalty (3.7) performs smooth time-varying or time-constant coefficients
as well as their selection out of the model. Additionally, the baseline effects are slightly
penalized and optional penalty terms regarding the time-constant parameters γ l may be
added.
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Selection and Fusion of Time-Varying Coefficients

In some situations it may be reasonable that the time-varying effect of a covariate is assumed
to be piecewise constant over time. That means, the effect of covariate j only changes for
some distinct time periods t1 < t2 < ... . Some external events may be the cause of
relevant changes. The objective is to identify these breakpoints or jumps when estimating
the regression coefficients. For this issue, the linear predictor (3.2) is considered. Hence,
for time-varying coefficients βjt, each time period determines a separate coefficient. This
corresponds to a B-spline representation with degree d = 0 and knots at the observed
interval limits and jumps really refer to time periods instead of the chosen knots. For
the simultaneous estimation of regression coefficients and the identification of jumps, fused
lasso-type penalties can be employed (Tibshirani et al., 2005). As time t can be seen as
an ordinal effect modifier, a regularization method for categorical effect modifiers using the
fused lasso in the context of generalized linear models can be applied (Oelker et al., 2014).
Then, the penalty term of the penalized likelihood (3.4) has the form

Jξ(β) = ξ

(
r∑
j=1

(
q∑
t=2

|βjt − βj,t−1|+ κj

q∑
t=1

|βjt|

))
, (3.8)

where κj is an indicator that activates the second term if needed. Thus, using the L1-
norm, the penalty encourages sparsity of the coefficients (second term of the penalty) on
the one hand and on the other hand sparsity of their differences (first part of the penalty),
that means, time constancy of the coefficient profile. In other words, variable selection
is obtained by a penalization, strong enough to set some of the βjt to zero. Moreover,
a distinction of time-varying or time-constant coefficients is obtained by the selection of
relevant jumps. That is, separate differences βjt − βj,t−1 can be fitted as exactly zero. In
some situations it might be reasonable to introduce a weighting on the selection and the
fusion part to emphasize either of them (see Tibshirani et al., 2005). More concrete, this
results in

Jξ,φ(β) = ξ

(
r∑
j=1

(
φ

q∑
t=2

|βjt − βj,t−1|+ (1− φ)κj

q∑
t=1

|βjt|

))
, (3.9)

where the tuning parameter φ is restricted to [0, 1] in order to separate it strictly from
tuning parameter ξ. However, a further tuning parameter is introduced. A drawback of
the lasso-type penalty (3.8) is the occurrence of much more parameters compared to the
B-spline approach using βjt =

∑mj
m=1 αjmBjm(t), j = 0, 1, ..., r, where only mj parameters

per covariate are used and usually mj < q is assumed.

To get a time-varying intercept with piecewise time-constant coefficients the corresponding
penalty can be incorporated in penalties (3.8) or (3.9) as well. However, the intercept should
rather vary smoothly over time. Hence, for penalizing the intercept, the corresponding part
of penalty term (3.7) can be used. Furthermore, it is possible to combine the penalty terms
(3.7) and (3.9) depending on whether a covariate effect should vary smoothly over time, be
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piecewise time-constant or, in the case of time-constant coefficients, is regularized by any
lasso-type penalty.

By using a penalization approach, the importance of variables can be assessed. That is, if
the contribution of covariates or their time interactions is relatively little to the maximiza-
tion of the likelihood, they may be removed from the model.

Adaptive Penalties

Variable selection procedures aim to identify the right subset model. Let A denote the
active set of parameters of a corresponding model, that means, all non-zero coefficients are
collected in A. A selection procedure is consistent if asymptotically the right subset model
is found, that is limn P (An = A) = 1, where An is the active set for n observations. It
has been shown by Zou (2006) that for the ordinary lasso the induced variable selection
can be inconsistent in certain scenarios. To overcome this selection inconsistency, Zou
(2006) proposed an adaptive version of the lasso. This adaptive approach was extended
to the group lasso by Wang and Leng (2008). Further applications of adaptive penalties,
can be found, for example in Zhang and Lu (2007), Meier et al. (2009) or Gertheiss and
Tutz (2012). The decisive modification is to weight the penalty terms by the inverse of the
respective unpenalized parameter estimates. For example, given penalty (3.7), the adaptive
version is obtained by replacing the weights ψj and ϕj by

ψaj =

√
mj − 1

||ζ̂
ML

j ||
, ϕaj =

√
mj

||α̂ML
j ||

, (3.10)

where ζ̂
ML

j and α̂ML
j denote the according ML-estimates. The intuition behind this weight-

ing procedure is rather straightforward. With very large data sets, unpenalized point esti-
mates can be expected to be rather accurate. Thus, the norm of ML-estimates of parameter
groups belonging to relevant predictors is rather large. Consequently, the corresponding
penalization should be small. In contrast, a strong penalization goes along with param-
eter groups belonging to irrelevant predictors and, hence, leading to a small norm of the
ML-estimates. Moreover, the ML-estimates employed in the adaptive weights (3.10), can
be replaced by any

√
n-consistent estimates. For example, a ridge penalty can be used in

situations where the ML-estimates do not exist.

3.2.2. Computational Issues

In the following, some details regarding the penalized estimation of the parameters are
described. Some details on the estimation are outlined and tuning parameter selection
for discrete penalized survival models is discussed. As the proposed method deals with
PENalization of Discrete Survival Models, it is denoted by pendsm.
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Estimation

Using the penalty term (3.6), the parameters can be estimated by the algorithm proposed in
Meier et al. (2008). By using the penalty term (3.7) or (3.9), this is no longer possible as a
combination of different types of penalties is used. The application of several penalties turns
out as a challenge since various potentially non-differentiable terms can arise. To cope with
these different penalties that employ different norms, local quadratic approximations in a
penalized iteratively re-weighted least squares (PIRLS) algorithm is used. This idea is based
on Fan and Li (2001), who approximate the non-convex SCAD penalty quadratically. An
adoption to lasso-type penalties was proposed by Ulbricht (2010). Oelker and Tutz (2013)
showed how penalties that are norms of scalar linear transformations of the coefficient
vector, can be approximated quadratically in generalized linear models. Their approach is
based on the ideas of Fan and Li (2001) and Ulbricht (2010) and is defined such that a
variety of penalty types, like for example the lasso, group lasso, fused lasso, ridge or elastic
net are embedded. The approximation allows to combine all these penalties in one model.
In common generalized linear models, the unpenalized optimization problem is given by
θ̂ = arg minθ−l(θ). Thereby, let θ = (α,γ) be defined with respect to the penalized
likelihood (3.4). This equation is solved iteratively by

θ̂(k+1) = θ̂
(k)
−H(θ̂

(k)
)−1s(θ̂

(k)
), (3.11)

where s(θ) = ∂l(θ)/∂(θ) denotes the score function and H(θ) = ∂2l(θ)/∂θ∂θT the Hessian
matrix. Equation (3.11) can be transformed to a Fisher scoring algorithm or an iteratively
re-weighted least squares algorithm. Oelker and Tutz (2013) proposed penalized versions
of the score function s(θ(k)) and the Hessian matrix H(θ(k)) or the Fisher matrix, respec-
tively. They are needed to use a conventional penalized iteratively re-weighted least squares
(PIRLS) algorithm for the penalized optimization problem (3.4). By using the penalized
score function, the same optimization problem as for usual generalized linear models is
obtained by solving spen(θ) = 0. For more details see Oelker and Tutz (2013).
An implementation of the PIRLS algorithm is provided by the R add-on package gvcm.cat

(Oelker and R Development Core Team, 2013). As the discrete survival model with time-
varying coefficients can be estimated by means of a binary regression model, pendsm can
be embedded into gvcm.cat. However, some profound implementation modifications have
to be executed to enable the application to pendsm.

Tuning parameter selection

In practice, a remaining task is the selection of the tuning parameters ξ and φ. For this
purpose, a common approach for selecting tuning parameters, is K- fold cross-validation,
whereby the data are (randomly) split into K (roughly) equal-sized parts. To include the
whole information of an object, the splitting refers to objects instead of individual data
points. Then, for each part k = 1, ..., K, the model is fitted to the remaining K − 1
parts of the data. The data set, on which the estimation is based, constitutes the learning
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sample. Afterwards, the prediction error of the fitted model is calculated when predicting
the outcome variables yit of the k-th sub-sample denoting the test sample. Lastly, the K
estimates of the prediction error are combined, and the resulting measure of prediction error
is minimized as a function of the tuning parameter of interest (see Hastie et al., 2009).

A possible approach of assessing the predictive performance of a model is the predictive
deviance. For a new observation (tpredi , δpredi , zpredi ,xpredi ), with zpredi = (zpredi1 , ...,zprediti

)T

and xpredi = (xpredi1 , ...,xprediti
)T the predictive deviance is defined by

Di = −2

ti∑
t=1

{
ypredit log(λ̂(t|zpredit ,xpredit )) + (1− ypredit ) log(1− λ̂(t|zpredit ,xpredit ))

}
,

where λ(t|zpredit ,xpredit ) = P (Ti = t|Ti ≥ t, zpredit ,xpredit ) and (ypredi1 , ..., yprediti
) denotes the

transitions over periods of object i. To choose simultaneously multiple tuning parameters
by cross-validation, a two- or more-dimensional grid of the tuning-parameters is used on
which the cross-validation is performed. Hence, for choosing the tuning parameters ξ and
φ a two-dimensional grid of possible parameters is used, on which the optimal parameter
combination is chosen.

3.3. Standard Errors and Confidence Intervals

A drawback of regularization methods is the missing standard error of the unknown param-
eters. Especially, in practical applications the user demands for a measure of uncertainty.
To solve this problem, Efron (1979) proposed bootstrapping. When no information about
the distribution of the standard errors exists, a nonparametric bootstrap approach is con-
ducted: Let F denote the underlying true distribution function of a random variable and
F̂ its empirical probability distribution referring to the observations x1, ..., xn. By draw-
ing B random samples of size n with replacement, the bootstrap samples xb = x∗1, ..., x

∗
n,

b = 1, ..., B, are obtained. As in survival analysis multiple measures per object are given,
the bootstrap sampling will be based on samples with replacement from objects instead of
individual data points. This cluster sampling takes into account any correlation structure
that might exist within subjects. For each bootstrap replication b, the model of interest is
fitted leading to B estimates of the parameter. For a single parameter γl, this results in
γ̂

(b)
l leading to the following estimation of the standard error

ŝe(γ̂l) =

√√√√ 1

B − 1

B∑
b=1

(
γ̂

(b)
l − ¯̂γ

(b)
l

)2

.

Thereby, the tuning parameters are set to the chosen values and hence, are hold constant
for the fitting procedure of all bootstrap replications.
In Efron and Tibshirani (1993), it was shown that 50 to 100 bootstrap replications are
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generally sufficient for standard error estimation. As the B random samples are drawn
referring to individuals instead of single data points, it has been shown that substantially
more bootstrap replications are necessary to yield stable standard error estimates. Hence,
in the following the number of bootstrap replications is constituted to 1000. The resulting
bootstrap estimates can also be used for deriving bootstrap confidence intervals, applying
the percentile bootstrap. For a 95% confidence interval, this is achieved by the 0.025- and
the 0.975-percentile of the empirical distribution of the bootstrapped parameters γ̂

(b)
l .

In this thesis, also time-varying coefficients βjt are considered. Hence, bootstrap standard
error bands are of particular interest. In this context, Hoover et al. (1998) used the sim-
ple case of ±2 pointwise bootstrap standard error bands. However, in the following it is
preferred to use the more exact pointwise percentile bootstrap approach for βjt. Since
smoothing bias has not been taken into account, these bootstrap bands are not actually
confidence intervals in the usual sense (Hoover et al., 1998). For estimating confidence
intervals based on bootstrap percentiles, Efron and Tibshirani (1993) suggested a number
of bootstrap replications of about 500 to 1000.

3.4. Simulation Study

In this section, the performance of pendsm, that means, combining different penalty terms
in a discrete-time survival model, is evaluated. Moreover, it is compared to a method using
conventional generalized additive models (GAM) implemented in the function gam of the R
add-on package mgcv (Wood, 2006). The study aims to investigate in which data situations
pendsm can outperform gam. As well as in pendsm, in gam it is possible to penalize the
parameters representing the baseline hazard separately. However, the selection part is con-
ducted differently. In pendsm, it can be chosen which covariate effects might be set to zero
and pendsm allows to distinguish whether an effect is time-varying or time-constant. The
mgcv package enables a model selection removing complete smoothing terms from the model
by adding an extra penalty. This is achieved by setting the option select=TRUE. Though,
this selection affects all smoothing terms. An individual choice which smoothing terms are
allowed to be removed from the model and which are not, is not possible. Furthermore, any
penalties applied to the parametric model terms can be specified in the option paraPen.
As gam only works with quadratic penalty approaches, variable selection is not feasible for
parametric terms. Moreover, the use of a penalty resulting in piecewise time-constant coef-
ficients is not provided. Hence, gam is not as flexible as the pendsm method in the context
of discrete survival models with time-varying covariate effects.

The simulation approach is performed as follows: The simulated true survival time Ti is
obtained by inversion sampling. Thereby, it is aimed to sample from f(x), with F (x) = u
and F−1(u) = x. As F (x) is a cumulative distribution function, it is bounded to (0, 1).
Thus, sample a random value u from U(0, 1) and compute F−1 to obtain x, where x is drawn
from f(x). To simulate discrete time survival times, F (·) is denoted by the cumulative
distribution function of a binary regression model. This regression model includes the
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simulated values of the covariates and the true coefficients. Moreover, for all settings, that
are described in the following section, the complementary log-log link is used. This results
in the employed cumulative distribution function F (η) = 1− exp(1− exp(η)), where η is
the linear predictor of the corresponding model. For more details on inversion sampling,
see Kolonko (2006). The true individual censoring times Ci are drawn from a multinomial
distribution M(n,pc). Hence, the vector pc determines the censoring rate, that means,
the relative frequency of censoring for all observations and is specified for each setting in
the following section. The minimum of the survival time and the censoring time defines
the observed survival time ti = min(Ti, Ci). The censoring indicator δi then follows from
definition (2.6). Afterwards, the data has to be restructured as proposed in Section 2.2.2 to
yield a binary regression model. Furthermore, the covariates of the whole simulation study
are assumed to be time-constant throughout.
Additionally, in the simulation study, the predictive accuracy of the models is investigated.
Statistically significant covariates do not guarantee a high prognostic value of a statistical
model incorporating these covariates (Korn and Simon, 1990). By using regularization
techniques, no significances are obtained for the estimated parameters. However, the feature
of model selection ensures a resulting model which only includes the covariates having a large
influence on the dependent variable. So, the investigation of prediction accuracy might also
be useful in the context of regularization methods. To assess the predictive performance,
for each simulation setting np additional observations are independently sampled.
The components of the simulation settings required for computing the underlying true linear
predictor

ηtrueit = β0t +
r∑
j=1

zijβjt +
s∑
l=1

xilγl

are given in the following.

3.4.1. Settings

The simulation study assessing the performance of pendsm compared to gam consists of
four simulation settings. In each setting, both time-constant and time-varying coefficients
are included in the model. Several penalties performing variable selection are investigated.
Moreover, the number of time periods and the number of covariates is modified and one
setting considers correlated covariates.

Setting 1

For the first scenario, n = 100 realizations of six covariates are simulated according to

Zi1, Xi1, ..., Xi5
iid∼ U(0, 1). Only three covariates have an effect on the survival time, whereas
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the remaining tree covariates are noise variables. The realizations of covariates zi1, xi1, ..., xi5
are used to simulate survival times according to the linear predictor

ηit = β0t + zi1β1t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4 + xi5γ5,

where the time-varying coefficient effects βjt, j = 0, 1, are given by

β0t = ( −1, −0.5, −1.25, −1.5, −1.75, −1.5, −1.9),
β1t = ( −3, −2, −1, −0.5, 1, 1.5, 2).

Finally, the time-constant coefficient effects γl are defined by γ1 = 0.5, γ2 = −1,
γ3 = γ4 = γ5 = 0. For the time-varying coefficients βjt, a cubic B-spline approach
is used, where the number of equidistant inner knots is set to four. The censoring
times are simulated from a multinomial distribution M(n,pc), where pc is defined by
pTc = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.4). This leads to a censoring rate of approximately 35%.
The simulation scheme for Setting 1 is replicated 100 times. To evaluate the predictive
accuracy, np = 200 further independent observations are sampled.

Setting 2

In simulation Setting 2, the number of time periods is increased to q = 15. The model
consists of 12 covariates, whereof six are noise variables. For the study n = 400 realizations
of the covariates are simulated according to

Zi1, Xi1, Xi4, Xi5
iid∼ U(0, 2),

Xi6, Xi7
iid∼ U(0, 1),

Zi2, Xi2
iid∼ N (2, 1),

Zi3, Xi3, Xi8, Xi9
iid∼ B(0.5).

Hence, the model contains six uniformly distributed, two normal distributed and four binary
distributed covariates. The survival times are sampled by means of the realizations of the
covariates with the linear predictor given by

ηit = β0t + zi1β1t + zi2β2t + zi3β3t + xi1γ1 + xi2γ2 + xi3γ3 + ...+ xi9γ9.

Thereby, the time-varying effects βjt, j = 0, 1, 2, 3, are defined by

β0t=(−1.50,−0.75,−0.52,−0.46,−0.50,−0.58,−0.68,−0.78,−0.88,−0.97,−1.06,−1.13,−1.19,−1.24,−1.29),

β1t=(−0.49,−0.93,−1.28,−1.47,−1.48,−1.28,−0.93,−0.50,−0.07, 0.28, 0.48, 0.47, 0.28,−0.07,−0.51),

β2t=( 0.18, 0.19, 0.21, 0.23, 0.26, 0.29, 0.33, 0.38, 0.43, 0.50, 0.58, 0.67, 0.79, 0.93, 1.09),

β3t=( −0.5, −0.6, −0.7, −0.8, 0.9, 1, 1.1, 0.9, 0.7, 0.8, 0.9, 1.2, 1.3, 1.5, 1.7),



38 3. Lasso-Type Penalties

and the time-constant coefficients γl, l = 1, ..., 9, are given by γ1 = −0.5, γ2 = −1.7, γ3 = 1,
γ4 = ... = γ9 = 0. Analogous to Setting 1, the time-varying coefficients βjt are modeled
in terms of cubic B-splines, but the number of equidistant inner knots is set to eight. In
this setting, the censoring times are simulated from a multinomial distribution M(n,pc)
with pTc = (0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1). This
results in a censoring rate of approximately 65%. The number of replications is 100. The
data set for judging prediction accuracy consists of np = 800 additionally independently
sampled observations.

Setting 3

In the third setting, the impact of correlated covariates is investigated. To this end, n = 250
realizations of eight correlated covariates following a normal distribution are simulated with
Zi1, Zi2, Xi1 ∼ N (1, 1) and Zi3, Zi4, Xi2, Xi3, Xi4 ∼ N (0, 1). The corresponding correlation
structure is specified by the correlation matrix R:

R =



1.0 0.0 0.5 −0.3 0.2 −0.1 0.3 0.0
0.0 1.0 0.1 0.0 0.0 0.0 0.1 −0.3
0.5 0.1 1.0 0.3 0.7 0.2 0.0 0.25
−0.3 0.0 0.3 1.0 0.4 −0.4 −0.2 0.1

0.2 0.0 0.7 0.4 1.0 0.0 0.1 0.0
−0.1 0.0 0.2 −0.4 0.0 1.0 −0.1 0.0

0.3 0.1 0.0 −0.2 0.1 −0.1 1.0 0.2
0.0 −0.3 0.25 0.1 0.0 0.0 0.2 1.0


. (3.12)

By using the realizations of these covariates, the survival times are sampled with the linear
predictor defined by

ηit = β0t + zi1β1t + zi2β2t + zi3β3t + zi4β4t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4,

where the time-varying coefficients βjt, j = 0, 1, 2, 3, 4, are given by

β0t = ( −2, −0.8, −0.5, −1.25, −1.125, −1.5, −2, −2, −1.5, −1),
β1t = ( −4, −3, −2, −1, 0, 0.5, 1.25, 1.5, 1.7, 2),
β2t = ( −2, −1.9, −1.7, −1.5, −1.25, −1, −0.75, −0.5, −1.5, 1),
β3t = ( 0, 0.1, 0.5, 0.8, 0.9, 1.1, 1.5, 1.6, 1.8, 2.5),
β4t = ( −0.8, −0.7, −0.6, −0.5, 0.5, −0.6, −0.7, −0.8, −0.9, −1).

Time-constant covariate effects are defined by γ1 = −0.5, γ2 = 1 and γ3 = γ4 = 0.
Again, the time-varying coefficients βjt are expanded in cubic B-splines with four equidistant
inner knots. Moreover, the censoring times are simulated from a multinomial distribution
M(n,pc) with probability vector pTc = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), leading to
a censoring rate of approximately 65%. For this simulation setting, 100 simulation runs are
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executed. To evaluate the predictive accuracy, np = 500 further independent observations
with correlated covariates are sampled.

Setting 4

For the last scenario, n = 200 realizations of six covariates are simulated according to

Zi1, Xi1, ..., Xi5
iid∼ U(0, 1). Thereby, three covariates have an effect on the survival times

and the remaining three covariates are noise variables. The covariate outcomes are the
basis of simulating the survival times with the linear predictor given by

ηit = β0t + zi1β1t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4 + xi5γ5.

The linear predictor includes the time-varying coefficients βjt, j = 0, 1 with

β0t = ( −1.25, −1, −0.75, −2, −1.85, −1.75, −1.9),
β1t = ( −3, −2.5, −1, −0.5, 1.5, 2, 3),

as well as the time-constant coefficients γ1 = −0.5, γ2 = −1, γ3 = γ4 = γ5 = 0.
For simulation Setting 4, a penalty resulting in piecewise time-constant coefficients is
used. Hence, the coefficients βjt have to be estimated for all time periods, that is
t = 1, ..., q. The censoring times are drawn from a multinomial distribution M(n,pc),
with pTc = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.4) leading to a censoring rate of approximately 50%.
The simulation scheme for Setting 4 is replicated 100 times. Further np = 400 independent
observations are sampled that are used to evaluate the predictive accuracy.

To allow for maximal flexibility in modeling, for all coefficients time-varying effects are
assumed. For Settings 1-3, the time-varying covariate effects are expanded in B-spline
basis functions resulting in the linear predictor

ηmodelit = z̃T0 α0 +

r∑
j=1

mj∑
m=1

z̃itjαjm,

where z̃(·) represents the interaction of the corresponding covariate and the evaluation of
the B-splines at time t (see Section 3.2). In contrast, the linear predictor for Setting 4 is
given by

ηmodelit = β0t +

p∑
j=1

zijβjt,

where for each time period a single parameter is estimated. Moreover, the number of time-
varying coefficients depends on the simulation setting and r = p holds.
Two different types of penalties, referring to the estimation of the time-varying covariate
effects, are used. For Settings 1-3, the penalty term

Jξ0,ξ(α,γ) = ξ0

m0∑
m=2

(α0m − α0,m−1)2 + ξ

(
φ

r∑
j=1

ψj
∥∥ζj∥∥2

+ (1− φ)

r∑
j=1

ϕj ‖αj‖2

)
,
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time covariate effects
setting n intervals varying constant noise penalty correlation

1 100 7 1 2 3 smoothing & selection -
2 400 15 3 3 6 smoothing & selection -
3 250 10 4 2 2 smoothing & selection X
4 200 7 1 2 3 fusion & selection -

Table 3.1. Overview simulations settings of Chapter 3.

is used. It allows for stable baseline effects and steers smoothing, constant effects and
selection of the time-varying coefficients, whereas fusion and selection of the time-varying
coefficients is performed by the penalty term

Jξ0,ξ(β) = ξ0

m0∑
m=2

(α0m − α0,m−1)2 + ξ

 r∑
j=1

q∑
t=2

|βjt − βj,t−1|+
r∑
j=1

q∑
t=1

|βjt|

 ,

used for Setting 4. In the context of survival analysis, it is proposed that a time-varying
intercept β0t remains in the model. Thus, the penalization of β0t is predominantly executed
due to stability reasons. It is defined by ξ0 = 0.001 in all simulation settings corresponding
to a ridge penalty on differences between adjacent weights of the B-spline basis functions.
Moreover, adaptive versions of the penalties are used for the estimation.

Finally, the simulation settings are summarized in Table 3.1. Therein, n denotes the number
of observations of each setting. The number of time-varying and time-constant covariate
effects as well as the number of noise variables are shown in the columns varying, constant
and noise, respectively. Moreover, penalty describes which penalties are used and correlation
declares if a correlation of the covariates is incorporated.

3.4.2. Results

Before estimation, the simulated data sets has to be adapted to the appropriate binary
regression design. In other words, the data are transformed to the long format described
in Section 2.2.2. To be on comparable scales, all covariates are standardized to have equal
variance in order to avoid that coefficient values are scale dependent. The tuning parameters
ξ and φ are chosen by 5-fold cross-validation.
The results of pendsm are compared to the results obtained by the function gam of the
R add-on package mgcv (Wood, 2006), by fitting analogous models. That means, for the
time-varying intercept a slight ridge penalty with tuning parameter 0.001 is used, whereas
the time-varying covariate effects are estimated by cubic B-splines with penalized first
differences between adjacent parameters of the smooth functions. Moreover, the option
select is set to TRUE, adding a penalty to each smooth, to allow it to be penalized out of
the model.
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The assessment of parameter estimations is evaluated in general, and separately for truly
time-varying and truly time-constant parameters. For each simulation run, the according
mean squared errors are computed by

MSE(β, β̂ ) =
1

r

r∑
j=1

(
βj − β̂j

)2

+
1

s

s∑
l=1

(
β̃l − β̂l

)2

,

MSEvary(β, β̂ ) =
1

r

r∑
j=1

(
βj − β̂j

)2

, MSEconst(β, β̂ ) =
1

s

s∑
l=1

(
β̃l − β̂l

)2

,

(3.13)

where β̃l = (γl, ..., γl) and p = r + s. Hence, βj and β̃l denote the true parameter values,

whereas β̂j and β̂l define the estimates. That means, as all components are estimated time-

varying, γ is compared to β̂ as well. For reference, the ordinary maximum likelihood (ML)
estimation is used. However, for many simulation runs, the ML-method does not converge.
To stabilize the estimates, a slight ridge penalty of 0.001 is applied to all parameters
(denoted by MLridge). Hence, the ratios log(MSE(·)/MSE(MLridge)) can be interpreted
in a meaningful manner. In the following plots or outcomes, these ratios are marked by a
star ∗. The predictive accuracy is judged by considering the predictive deviance using the np
additional independently sampled observations. This results in the covariates (zpredit ,xpredit )
and the corresponding predictive deviance is given by

Dpred = −2
n∑
i=1

ti∑
t=1

{
ypredit log(λ̂(t|zpredit ,xpredit )) + (1− ypredit ) log(1− λ̂(t|zpredit ,xpredit ))

}
,

where λ(t|zpredit ,xpredit ) = P (Ti = t|Ti ≥ t, zpredit , xpredit ) and (ypredi1 , ..., yprediti
) denotes the

transitions over periods of object i.

After estimation of the coefficients βjt, j = 1, ..., r, t = 1, ..., q, and γ l, l = 1, ..., s, the
results are compared to the true parameters. Analogous to Oelker et al. (2014), for the
evaluation of the selection performance, false positive rates (FPR) and false negative rates
(FNR) are considered for each simulation run. Thereby, false positive means that a single
parameter value that is truly zero is set to non-zero. In contrast, false negative means that
a single non-zero parameter value is set to zero. The corresponding rates are defined by

FPR =
#(truly zero set to non-zero)

#(truly zero)
FNR =

#(truly non-zero set to zero)

#(truly non-zero)
.

The results of the simulation settings are initially summarized in tables. Therein, the re-
sults of the ordinary ML-estimates with a slight ridge penalty of 0.001 can be found in
the column MLridge. The outcomes of pendsm and of gam are shown in the correspond-
ing columns. The first three rows of the table contain the absolute values of the mean
squared errors for all covariates (MSE) as well as for truly time-varying (MSEvary) and
truly time-constant covariates (MSEconst). A detailed definition of these mean squared er-
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Figure 3.1. Cross-validation scores of the 100 simulation runs subject to penalty parameter ξ for Setting
1-4. Tuning parameter φ is set to 0.5.

rors is given in Equation (3.13). The mean squared errors marked with ∗ correspond to
the ratios log(MSE(·)/MSE(MLridge)), a logarithmic relation to MLridge. Therefore, the
first column has no values in this case. In the same way, the predictive deviances Dpred

and D∗pred=log(Dpred(·)/Dpred(MLridge)) are tabulated. Finally, the false positive rate FPR
and the false negative rate FNR are shown. All presented values correspond to the mean
values over all simulation runs. Moreover, the results are illustrated in boxplots regard-
ing the ratios log(MSE(·)/MSE(MLridge)) and log(Dpred(·)/Dpred(MLridge)). For the sake of
interpretability, outliers are omitted in single cases.

For all settings, the cross-validation scores referred to the predictive deviance subject to
the tuning parameter ξ is illustrated in Figure 3.1. Therein, all simulation runs are incor-
porated. Note, that the tuning parameter φ is set to 0.5 for all plots. All cross-validation
curves imply that penalization techniques clearly outperform the ML-procedure that is
nearly obtained for ξ = 0 as ξ0 is set to the very small value of 0.001. This is indicated by
the strong decrease of the curves for small values of ξ.
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MLridge pendsm gam

MSE 7.31 (5.87) 0.47 (0.27) 0.66 (0.31)
MSEvary 7.77 (8.93) 1.08 (0.80) 1.36 (0.68)
MSEconst 7.13 (6.03) 0.22 (0.19) 0.38 (0.34)

MSE∗ - -2.66 -2.27
MSE∗vary - -1.87 -1.46
MSE∗const - -3.48 -3.05

Dpred 896.04 (268.74) 586.34 (28.78) 594.58 (36.72)
D∗pred - -0.39 -0.38

FPR 1 0.53 0.42
FNR 0 0.13 0.12

Table 3.2. Results for Setting 1 for the estimated mean squared errors (MSE, MSEvary, MSEconst, MSE∗,
MSE∗

vary, MSE∗
const), the predictive deviances Dpred, D∗

pred referring to test data and the false positive rate
(FPR) as well as the false negative rate (FNR) for the MLridge, pendsm and gam. The displayed values
represent the means over all simulation runs. Estimated standard errors are given in parentheses.

Setting 1

The MSE of an ordinary ML-model with regard to Setting 1 is 3.03 · 1030 (sd=1.57·1031).
This value is extremely large and it is not meaningful as the ML-algorithm does not con-
verge. The corresponding simulation results are summarized in Table 3.2. It can be seen,
that a slight ridge penalty improves the MSE value enormously. Penalization methods
achieve even better values of the MSE, as the estimation is more stable and variable selec-
tion is performed. Furthermore, for all MSE values pendsm outperforms gam.
In addition, the predictive deviance Dpred yields a bad value for the ordinary maximum
likelihood compared to pendsm and gam. By using penalization approaches, it can be
considerably improved. Thereby, pendsm produces lower values regarding the prediction
accuracy than gam. The competence of the algorithm with respect to variable selection
is performed by FPR and FNR. For ML-methods, FPR is always equal to one and FNR
always equal to zero, since the ML-method cannot set coefficient values to zero. FNR is
quite similar for pendsm and gam. However, the FPR of gam is lower than the FPR of
pendsm.

The boxplots of pendsm* and gam* of the log ratios log(MSE(·)/MSE(MLridge)) show that
pendsm outperform gam (Figure 3.2a). As expected, MSE∗const has the lowest boxes, whereas
MSE∗vary has the highest. Finally, in Figure 3.2b the boxplots referring to the log ratios
log(Dpred(·)/Dpred(MLridge)) are illustrated. Therein, it is seen that the predictive accuracy
is slightly better for pendsm as for gam.

Setting 2

The second setting is the most complex one. Different covariate distributions are incorpo-
rated in the model and the number of time periods is set to 15. This complex setting leads
to a MSE of the ML-model of 1.22 · 1030 (1.71 · 1030). Moreover, the ML-algorithm does
not converge. The summary of the simulation results are shown in Table 3.3. Like in the
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Figure 3.2. Boxplots of the mean squared errors and the predictive deviance for Setting 1

previous setting, a small ridge penalty improves the MSE values. By using the penalization
methods pendsm and gam much more reasonable MSE values are obtained. Again, pendsm
performs better than gam for all MSE values. Even the values of the predictive deviances
Dpred and D∗pred are slightly smaller than the predictive deviances of gam. However, the false
positive rate FPR has a smaller value for gam.

Regarding the boxplots that stem from the empirical distribution of the log ratios with
log(MSE(·)/MSE(MLridge)), it is obvious that pendsm outperforms gam for all boxplots
(Figure 3.3a). The predictive performance of pendsm yields slightly better results than
that of gam shown in the boxplots of the log ratios log(Dpred(·)/Dpred(MLridge)) (Figure
3.3b).

Setting 3

In simulation Setting 3, correlated covariates according to the correlation matrix (3.12) are
incorporated in the model. In this setting it should be investigated whether this correlation
affects the estimation results. The MSE of the ordinary ML-method constitutes a value of
9.70 · 1033 (2.39 · 1034), that is a higher value compared to the other settings. The results
for Setting 3 are summarized in Table 3.4. On closer examination of the MSE values, it can
be seen that pendsm outperforms gam clearly. In addition, both predictive deviance values
Dpred and D∗pred perform best for pendsm. Only for the FPR, gam yields better results than
pendsm. However, the FPR values of pendsm and gam are higher compared to the other
settings. This leads to the conclusion that variable selection performs much worse in the
case of correlated variables.
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MLridge pendsm gam

MSE 28.20 (27.37) 0.15 (0.07) 0.22 (0.11)
MSEvary 37.31 (38.47) 0.42 (0.23) 0.57 (0.27)
MSEconst 24.15 (27.56) 0.04 (0.02) 0.07 (0.06)

MSE∗ - -4.86 -4.49
MSE∗vary - -4.11 -3.76
MSE∗const - -6.04 -5.65

Dpred 3192.03 (701.13) 1640.77 (80.54) 1647.16 (87.01)
D∗pred - -0.64 -0.64

FPR 1 0.65 0.56
FNR 0 0.00 0.00

Table 3.3. Results for Setting 2 for the estimated mean squared errors (MSE, MSEvary, MSEconst, MSE∗,
MSE∗

vary, MSE∗
const), the predictive deviances Dpred, D∗

pred referring to test data and the false positive rate
(FPR) as well as the false negative rate (FNR) for the MLridge, pendsm and gam. The displayed values
represent the means over all simulation runs. Estimated standard errors are given in parentheses.
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Figure 3.3. Boxplots of the mean squared errors and the predictive deviance for Setting 2
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MLridge pendsm gam

MSE 5.87 (3.06) 0.34 (0.13) 0.80 (1.14)
MSEvary 8.16 (5.11) 0.56 (0.21) 1.22 (1.78)
MSEconst 3.01 (2.59) 0.06 (0.05) 0.29 (0.49)

MSE∗ - -2.74 -2.07
MSE∗vary - -2.54 -1.55
MSE∗const - -4.12 -2.76

Dpred 1546.15 (405.13) 730.40 (51.82) 862.70 (194.54)
D∗pred - -0.72 -0.57

FPR 1 0.75 0.62
FNR 0 0.03 0.05

Table 3.4. Results for Setting 3 for the estimated mean squared errors (MSE, MSEvary, MSEconst, MSE∗,
MSE∗

vary, MSE∗
const), the predictive deviances Dpred, D∗

pred referring to test data and the false positive rate
(FPR) as well as the false negative rate (FNR) for the MLridge, pendsm and gam. The displayed values
represent the means over all simulation runs. Estimated standard errors are given in parentheses.

In addition, the boxplots of the log ratios log(MSE(·)/MSE(MLridge)) related to pendsm

outperforms the boxplots related to gam (Figure 3.4a). Especially, for the mean squared er-
rors resulting from the true time-constant parameters pendsm yield extremely better results
than gam. Additionally, the boxplots assessing the predictive performance by the log ratios
log(Dpred(·)/Dpred(MLridge)) show that the boxplot of pendsm outperforms the boxplot of
gam (Figure 3.4b). Summarizing the outcomes of this setting, pendsm performs well in the
case of correlated covariates for the mean squared errors and the predictive deviance. How-
ever, for both methods pendsm and gam, the performance assessing the variable selection
yields bad results.

Setting 4

The employed penalty of the last setting indicates piecewise time-constant coefficients by
employing a L1-type penalty. However, the penalty regarding the time-varying intercept
constitutes a ridge penalty of the differences between coefficients of adjacent B-spline pa-
rameters. The mean squared error of the ML-procedure is 3.13·1027 (3.13 · 1028) and the
L1-type penalty achieves a clear improvement. This can be seen in the summary of the
results (Table 3.5). As the gam procedure only deals with quadratic penalties, this setting
cannot exactly be implemented using the gam function of mgcv. To obtain a comparative
method, the features of gam are conformed to the pendsm preferably equivalent, except the
penalty itself. The illustrated results serve only as exemplification. The MSE values exhibit
that pendsm with L1-type penalty performs better than gam, whereas, as expected, both
pendsm with L1-type penalty and gam outperform MLridge.

Also the boxplots of the log ratios log(MSE(·)/MSE(MLridge)) confirm that the L1-penalty
of pendsm is more appropriate than the L2-penalty regarded in gam (Figure 3.5a). The
illustration of the predictive performance referring to the ratios log(Dpred(·)/Dpred(MLridge))
shows that pendsm yields slightly better results than gam (Figure 3.5b).
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Figure 3.4. Boxplots of the mean squared errors and the predictive deviance for Setting 3

MLridge pendsm gam

MSE 9.28 (20.66) 0.38 (0.21) 0.69 (0.28)
MSEvary 11.08 (24.48) 0.85 (0.59) 1.53 (0.45)
MSEconst 8.56 (21.51) 0.19 (0.14) 0.35 (0.33)

MSE∗ - -2.42 -1.74
MSE∗vary - -1.79 -1.04
MSE∗const - -3.16 -2.56

Dpred 1194.40 (246.54) 966.37 (41.69) 973.35 (46.25)
D∗pred - -0.20 -0.19

FPR 1 0.49 0.55
FNR 0 0.12 0.11

Table 3.5. Results for Setting 4 for the estimated mean squared errors (MSE, MSEvary, MSEconst, MSE∗,
MSE∗

vary, MSE∗
const), the predictive deviances Dpred, D∗

pred referring to test data and the false positive rate
(FPR) as well as the false negative rate (FNR) for the MLridge, pendsm and gam. The displayed values
represent the means over all simulation runs. Estimated standard errors are given in parentheses.
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Figure 3.5. Boxplots of the mean squared errors and the predictive deviance for Setting 4

3.5. Applications

In this section, pendsm is applied to two real data examples. The first data set depicts the
Munich founder study, whereas the second describes a fertility study. For comparison, the
gam function is applied to the data examples as well.
By incorporating time-varying covariate effects, these two data examples require a large
number of parameters. These parameters can be reduced by using basis expansions for
the time-varying coefficients. However, to use a penalty term that allows for piecewise
time-constant time-varying coefficients, like penalty term 3.9, for each time period and
each covariate effect a single parameter has to be estimated. Due to this large number of
parameters, heavily computational problems occur when fitting these two data examples.
Therefore, the application of a penalty allowing for piecewise time-constant time-varying
coefficients is not possible in this section.

3.5.1. The Munich Founder Study

The practical use of pendsm is illustrated by considering the Munich founder study. A
detailed description of the data can be found in Brüderl et al. (1992). Therein, the survival
of newly founded firms in the area of Munich and Upper Bavaria is investigated. In the
local Chamber of Commerce, 28646 business registrations were listed in 1985-1986. From
this total number, a stratified random sample of about 6000 companies was drawn. In 1990,
1849 business founders were interviewed. For the analysis, only the complete cases that
means, observations with no missing values for any covariate are used, resulting in 1224
observations.
The dependent variable defines the transition process of a newly founded company up to



3.5. Applications 49

Variable Description

Time Time (in quarters) until insolvency of a company (effect modifier)
Sector Economic sector

0: industry, manufacturing and building sector, 1: commerce, 2: service industry
Legal Legal form

0: Small, 1: Partnership
Seed Seed capital

0: ≤ 25000 , 1: > 25000
Equity Equity capital

0: no, 1: yes
Debt Debt capital

0: no, 1: yes
Market Target market

0: local, 1: national
Clientele Clientele

0: wide spread, 1: small amount of important customer, one important customer
Degree Education degree

0: no A-levels, 1: A-Levels
Gender Gender

0: female, 1: male
Experience Professional experience

0: <10 years,1: ≥ 10 years
Employees Number of employees excluding the company founders

0: 0 or 1, 1: >2
Age Age of the founder at formation of the company, centered around 43 (sample mean: 43.22)

Table 3.6. Description of the variables used for the Munich founder study.

insolvency, denoting the event. Thereby, the duration time until insolvency is measured
in quarters, where a maximum of 22 quarters can be reached. A company that was still
“alive” at the time of the registration of the interview is treated as right-censored. Based
on the results of the analysis of (Brüderl et al., 1992), only a part of the covariates of the
Munich founder study are incorporated in the model. Moreover, to reduce the number of
categories of some variables, several categories were combined. In Table 3.6, an overview
of the employed variables is given.

The data were reorganized according to Section 2.2.2, to conduct a binary regression model
with complementary log-log link corresponding to a discrete-time survival model. The long
format of the data consists of

∑n
i=1 ti = 17736 rows. To be on comparable scales, all

covariates are standardized to have equal variance in order to avoid that coefficient values
are scale dependent. For company i and measurement at quarter t, the considered model
has the form

ηit = β0t + Sector
(1)
it β1t + Sector

(2)
it β2t + Legalitβ3t + Seeditβ4t + Equityitβ5t + Debtitβ6t

+Marketitβ7t + Clienteleitβ8t + Degreeitβ9t + Genderitβ10t

+Experienceitβ11,t + Employeesitβ12,t + Ageitβ13,t.

In Table 3.7, the frequencies of the dependent variable versus the quarters are illustrated. It
can be seen that in the first three years after establishing of the companies no censoring had
occurred. Moreover, with increasing number of quarters the frequency of failure decreases.
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y
quarter

1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0
1 17 28 30 45 26 22 28 29 21 15 24

y
quarter

12 13 14 15 16 17 18 19 20 21 22

0 0 19 109 110 99 119 119 77 101 96 16
1 15 11 21 7 7 4 0 6 2 1 0

Table 3.7. Frequencies for the dependent variable y and the quarters.

For all covariate effects cubic B-splines are used, that means βjt =
∑

m αjmBjm(t), j =
0, 1, ..., 13, with 10 equidistant inner knots resulting in 12 basis functions. The used penalty
is given by

Jξ0,ξ(α,γ) = ξ0

12∑
m=2

(α0m − α0,m−1)2 + ξ

(
φ

13∑
j=1

ψj
∥∥ζj∥∥2

+ (1− φ)
13∑
j=1

ϕj ‖αj‖2

)
,

where adaptive weights (3.10) for ψj and ϕj are employed. The penalty allows for smooth
or constant covariate effects or their selection from the model. For estimation, the tuning
parameter regarding the penalization of the time-varying intercept ξ0 is set to 0.001. For
selection of the tuning parameters ξ and φ, a 5-fold cross-validation, based on the predictive
deviance, is conducted. In Figure 3.6a, the corresponding scores are illustrated. The verti-
cal black line determines the chosen tuning parameters with ξ set to 5.85 and φ set to 0.8.
The run of all curves indicates that penalization clearly improves ordinary ML-estimation
nearly obtained for ξ = 0 as ξ0 is set to the very small value of 0.001.
For a comparison of the results, a generalized additive model using the function gam of
R add-on package mgcv (Wood, 2006) is applied to the Munich founder study. For this
purpose, for the time-varying intercept a slight ridge penalty with tuning parameter 0.001
is used, whereas the time-varying covariate effects are estimated by cubic B-splines with
penalized first differences between the parameters of the smooth functions and 10 equidis-
tant inner knots. Moreover, the option select is set to TRUE, adding a penalty to each
smooth, to allow it to be penalized out of the model. However, as time-varying categorical
covariates are incorporated as smooth effects in modeling, in addition to the interaction of
time and the categorical covariate, gam enforces the inclusion of the corresponding main
effect (see Section 3.2 and Wood, 2006). This is due to internal centering constraints of
gam. For example, the interaction Legal:Time is incorporated as a smooth time-varying
effect in the model. As Legal is categorical, the main effect of Legal has to be incorporated
as well. Thus, in the case of time-varying categorical covariates, gam can only remove the
smooth terms from the model. The constant terms still remain in the model as gam cannot
perform variable selection with respect to parametric terms. For metric covariates like Age,
no main effect has to be incorporated and the smooth time-varying effect of Age can be
excluded from the model by gam. Hence, in the context of time-varying coefficients, gam can
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Figure 3.6. Plots corresponding to the Munich founder study

only perform true variable selection for metric covariates. The parametrization of pendsm

allows for variable selection of any measurement scale of the covariates.

Figure 3.6b shows the resulting hazard rate of the fitted model when all covariate charac-
teristics are set at reference. That is, a female founder at the age of 43 whose firm has
the following characteristics: industry, manufacturing and building sector, small legal form,
seed capital ≤ 25000, with equity capital, with debt capital, local target markets, wide
spread clientele, no A-levels, professional experience < 10 years and 0 or 1 employees. The
probability of becoming insolvent tends to increase in the first 8 quarters, but from quarter
9 on the risk of failure has a decreasing tendency over time. However, this hazard rate
shows some variation. Maybe, this variation stems from seasonal fluctuation. This issue
could be investigated in a further time series analysis. The values of the corresponding
hazard function resulting from the gam function (red line) are almost completely below the
hazard rate resulting from pendsm and shows no large variation. The dashed lines specify
the pointwise 95% confidence interval based on 1000 bootstrap replications. See Section
3.3 for more details.

In the context of penalization methods, it is common to plot coefficient paths subject to
the tuning parameter ξ. For time-varying coefficients, the illustration of such coefficients
paths would be too complex and is not meaningful. To illustrate the impact of the tuning
parameter ξ on the smoothness of a time-varying coefficient, exemplary the effect of the
variable Debt is plotted in Figure 3.6c with five different values of ξ. Thereby, tuning
parameter φ is fixed to 0.8, the resulting value of the cross-validation. With only a slight
penalization of ξ = 0.05 the effect of Debt varies rather erratically over time. Moreover,
the impression of a rather decreasing effect of Debt is provided. By introducing a penalty
of ξ = 1 the changes in the effect of Debt are shrunk, making the function rather smooth.
For a penalty of ξ = 5.85, that is equivalent to the cross-validated tuning parameter ξ,
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the curve is smoother. Increasing the penalization to ξ=15 let the effect of Debt almost
vanishing. Finally, a penalty of ξ = 50 is large enough to set the whole effect to zero. That
means, the effect of Debt is removed from the model.

In Figure 3.7, the estimates β̂jt resulting from the model with ξ = 5.85 and φ = 0.8 are
summarized. The solid black lines denote the parameter estimates, whereas the dashed
lines specify the corresponding 95% confidence intervals. The intervals are based on 1000
bootstrap replications and are computed pointwise. Moreover, the solid red lines define
the estimates resulting from the gam function. Both procedures come to the conclusion
that Legal, Market, Clientele, Degree and Experience have a linear effect in the predictor,
whereas Age is removed from the model. By using pendsm, it is suggested that the predictor
referring to the sector commerce has a time-varying effect, and the effect of the variable
Employees is estimated time-constant. In contrast, for gam, the situation is vice versa. In
general, the course of the curves of the time-varying coefficients follows a similar pattern.
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Figure 3.7. Estimates of pendsm for the Munich founder study using cubic B-splines. Black lines mark the
estimates resulting from pendsm, whereas red lines stand for the estimates from gam. Dashed lines represent
pointwise 95% bootstrap confidence intervals.
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Variable Description

Time Time (in years) until pregnancy (effect modifier)
Job Labour Status

0: unemployed/seeking work/housewife, 1: full-time/self-employed,
2: marginal/part-time employed, 3: school, 4: no info

Education Educational attainment
0: school leaver/(general) certificate of secondary education (low-level),
1: A-levels/apprenticeship (A-levels),
2: polytechnic degree/university degree/PhD (university), 3: no info

Relationship Relationship Status
0: single, 1: cohabit, 2: married

Siblings Number of siblings
0: no, 1: yes

ClassParents Parents educational attainment
0: school leaver/(general) certificate of secondary education (low-level),
1: A-levels/apprenticeship (A-levels),
2: polytechnic degree/university degree/PhD (university), 3: no info

Cohort Birth cohort
0: 1971-1973, 1: 1981-1983, 2: 1991-1993

Table 3.8. Description of the variables used for the fertility study. Employed labels are indicated in
brackets.

3.5.2. Fertility Study

The fertility study investigates whether labor force participation of women influences the
transition to motherhood. The underlying data are used in Abedieh (2013). Therein, it is
aimed to validate the study of Schröder and Brüderl (2008). In Abedieh (2013), the data
were extracted from pairfam (Nauck et al., 2012), a multi-disciplinary longitudinal study
analyzing cooperative and life forms of families in Germany.
The panel has started in 2008 and is based on 12000 randomly chosen observations of the
birth cohorts 1971-73, 1981-83 and 1991-1993. Three survey waves (wave 1: 2008/2009,
wave 2: 2009/2010 and wave 3: 2010/2011) are incorporated in the data. In the meantime,
a fourth wave is available. The dependent variable is the transition to pregnancy with
duration time (in years) until pregnancy. For modeling the duration time, the start of the
observation process is set to 14 years. The maximum value is 27 years until pregnancy.
Furthermore, several covariates are included in the model. An essential variable is the
time-varying covariate Job. It describes the employment status of the women in the study
and originally consists of 23 parameter values, but it is summarized to four categories. The
variable Education contains the highest degree of a woman during the study. The current
relationship status is defined in Relationship. In Siblings, it is indicated if a woman has
siblings or not. By means of the covariate ClassParents, the educational attainment of the
parents is captured. Thereby, the value is based on the higher degree of one parent. Finally,
Cohort describes the birth cohort. To sum up, in this application, the covariates Job and
Relationship are time-varying, that is, the covariate values per object may vary over the
observed period. For more details to the underlying data see Abedieh (2013). An overview
is shown in Table 3.8.

The used data set consists of 2468 observations. Restructuring of the data was executed
according to Section 2.2.2, to conduct a binary regression model with complementary log-
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log link corresponding to a model for discrete duration time. The long format of the data
contain

∑n
i=1 ti = 34601 rows. To be on comparable scales, all covariates are standardized

to have equal variance. For duration year t of individual i, the considered model has the
form

ηit = β0t + Job
(1)
it β1t + Job

(2)
it β2t + Job

(3)
it β3t + Job

(4)
it β4t + Education

(1)
it β5t

+Education
(2)
it β6t + Relationship

(1)
it β7t + Relationship

(2)
it β8t + Siblingsitβ9t

+ClassParents
(1)
it β10t + ClassParents

(2)
it β11t + ClassParents

(3)
it β12t

+Cohort
(1)
it γ11 + Cohort

(2)
it γ12,

where all covariates, except the covariate cohort, are incorporated as time-varying effects
using cubic B-splines. That means βjt =

∑
m αjmBjm(t), j = 0, 1, ..., 12, with 8 equidistant

inner knots resulting in 10 basis functions. The employed penalty is given by

Jξ0,ξ(α,γ) = ξ0

10∑
m=2

(α0m − α0,m−1)2+ξ

(
φ

12∑
j=1

ψj
∥∥ζj∥∥2

+(1−φ)
12∑
j=1

ϕj ‖αj‖2+
√
γ2

11 + γ2
12

)
and it allows for smooth or constant time-varying covariate effects or their selection from
the model, whereas for the covariate cohort a group lasso penalty is used. This means that
the coefficients of the covariate cohort can be shrunk simultaneously until the variable,
including all categories, is removed from the model. Moreover, adaptive weights (3.10) are
employed for estimation. Tuning parameter ξ0 is set to 0.001 and tuning parameters ξ and
φ are chosen by 5-fold cross-validation with the predictive deviance as loss criterion. They
are set to 5.25 and 0.8, respectively. The corresponding cross-validation scores are shown
in Figure 3.8a, where the vertical black line marks the chosen tuning parameters ξ and φ.
Thereby, the score referring to φ = 0, meaning that the weight of the penalty was completely
assigned to the selection part, is omitted. This was done due to a heavy erratically run
of the score curve with extreme peaks. The run of the presented curves indicates that
penalization clearly improves ordinary ML-estimates nearly obtained for ξ = 0 as ξ0 is set
to the very small value of 0.001.

For a comparison of the results, a generalized additive model using the function gam of R
add-on package mgcv (Wood, 2006) is applied as well. For this purpose, for the time-varying
intercept a slight ridge penalty with tuning parameter 0.001 is used, whereas the time-
varying covariate effects are estimated by cubic B-splines with penalized first differences
between the parameters of the smooth functions and 10 equidistant inner knots. Moreover,
the option select is set to TRUE, adding a penalty to each smooth, to allow it to be penalized
out of the model. The covariate cohort is included unpenalized. As stated in Section 3.5.1,
in the context of smooth time-varying coefficients, gam can only perform complete variable
selection for metric covariates and not for categorical covariates.

Resulting plots of the estimated coefficients can be found in Figures 3.8b and 3.9 and Table
3.9. In the figures, the labeling of the abscissa is adapted to the real age of the women,



56 3. Lasso-Type Penalties

2090

2100

2110

2120

2130

0 10 20 30 40 50
ξ

S
c
o

r
e

φ = 0.3

φ = 0.5

φ = 0.8

φ = 1

(a) Cross-validation score subject to
penalty parameter ξ

0.000

0.025

0.050

0.075

0.100

14 20 25 30 35 40
Age (in years)

H
a

z
a

rd
 R

a
te

(b) Estimated hazard rate for all pre-
dictors at reference. Dashed lines
represent the pointwise 95% boot-
strap confidence interval. The red
line mark the gam estimate.

Figure 3.8. Plots corresponding to the fertility study.

where the observation period starts at the age of 14. Solid lines denote the parameter
estimates, whereas the dashed lines specify the 95% confidence intervals. The intervals
are based on 1000 bootstrap replications and are computed pointwise (see Section 3.3).
Moreover the solid red lines mark the estimates resulting from the gam function. As only
categorical covariates are incorporated in the model, gam cannot set any predictor to zero.
Figure 3.8b shows the resulting hazard rate of the fitted model when all covariate charac-
teristics are set at reference. That is, an unemployed single woman born between 1971-1973
with low-level education, no siblings and low-level education of the parents. The effect of
the hazard rate is as expected: Initially, the curve ascends strongly but then descends as
it approaches the early twenties and, finally, steeps from the age of about 36. The course
resulting from gam is similar but is clearly flatter.
The plots for the remaining time-varying coefficients are depicted in Figure 3.9. pendsm

set the coefficients belonging to the part-time labour status and Siblings to zero. For Sib-
lings, gam suggests a very small constant effect of 0.006 as it cannot be removed from the
model. Several covariate effects are considered to be time-constant by pendsm and gam. It
can be seen, that the course of the curves is quite different for single effects. For example,
the coefficient for Relationship - Married is thoroughly positive for pendsm and thoroughly
negative for gam. However, being married should rather raise the probability of getting
pregnant. Hence, the outcome of pendsm is more meaningful than that of gam. The same
behavior can be recognized for further predictors.



3.5. Applications 57

pendsm gam

95%-CI
estimate standard error lower upper estimate standard error

γ11 (cohort 1981-83) -0.061 0.045 -0.164 0.000 -0.301 0.167
γ12 (cohort 1991-93) -0.327 0.327 -1.169 0.000 -0.612 0.283

Table 3.9. Parameter estimates of cohort of the fertility study.

The predictor cohort was incorporated as a time-constant effect in the model and the
obtained estimates as well as the standard errors and the 95% confidence intervals are shown
in Table 3.9. The impact on the fertility of cohort 1981-83 is hardly smaller than for cohort
1971-73, whereas the effect of cohort 1991-93, given by γ12 = −0.33, is considerably stronger.
Compared to the estimates of gam, the estimates obtained by pendsm are smaller due to
the incorporated penalization technique. The results of cohort agree with the statement
that birth rates have been decreased over the last decades in Germany.
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Figure 3.9. Estimates of pendsm for the time-varying coefficients of the fertility study using cubic B-splines.
Black lines mark the estimates resulting from pendsm, whereas red lines stand for the estimates from gam.
Dashed lines represent pointwise 95% bootstrap confidence intervals.
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3.6. Concluding Remarks

In this chapter, discrete-time survival models with time-varying coefficients are investi-
gated. Due to the fact, that the incorporation of time-varying coefficients leads to many
parameters and possibly overfitting, a regularization method is provided. This penalization
method pendsm allows for different types of penalties and even a combination of them
can be employed. One of the main benefits of this approach is the predominantly smooth
temporal variation of time-varying covariate effects. Furthermore, the proposed method
performs variable selection leading to interpretable and parsimonious models. Hence, the
resulting procedure is considerably flexible and can be applied to a variety of applications.
The challenge of estimation, in the case where the model incorporates different types
of penalties, is solved by a local quadratic approximation for the penalties. This issue
is based on ideas of Fan and Li (2001), Ulbricht (2010) and Oelker and Tutz (2013).
The approximation is updated in a PIRLS algorithm. The existing gvcm.cat R add-on
package is modified and extended to apply the proposed method to discrete-time survival
data. The computation of standard errors and confidence intervals are conducted using
bootstrap methods.
A simulation study was conducted to assess the performance of the proposed method
pendsm. Therein, pendsm outperforms the existing gam function of the R add-on package
mgcv (Wood, 2006). However, due to poor results with regard to variable selection for all
methods, caution is recommended in the case of correlated variables.
Moreover, in the context of smooth time-varying coefficients, only pendsm can perform
variable selection for metric and for categorical covariates, whereas gam can only remove
metric predictors from the model.



4. Choice of Tuning Parameter

In the previous chapter, the predictive deviance is the employed loss criterion for the choice
of tuning parameters. It will be substituted by an alternative loss function in this chapter
and possible associated model improvements are investigated. Some background on predic-
tion measures is given in Section 4.1. In Section 4.2, several measures of prediction accuracy
are presented, whereby well-known measures used for continuous survival outcomes were
adopted to discrete failure time analysis. These are useful measures for the choice of tuning
parameter ξ. The performance of the shown alternative loss functions is investigated by
means of a simulation study whose settings and results are provided in Section 4.3. Finally,
Section 4.4 sums up the results. In the following, only the notation and explanations with
respect to grouped survival times are considered, but they can easily be modified to truly
discrete survival times.

4.1. Introduction

The tuning parameter ξ in Chapter 3, steers the strength of penalization and is chosen by
cross-validation based on the predictive deviance. In this chapter, only tuning parameter
ξ is regarded, whereas tuning parameter φ is ignored or is set to 0.5, respectively. The
procedure to be undertaken is cross-validation and the predictive deviance constitutes the
loss function (Wald, 1950).
In discrete survival analysis, the present data consists of repeated measurements per object
for several time periods. The typical long format data structure of discrete time survival
models particularly reflects these repeated measurements. For each object i, the predictive
accuracy is computed independently for all t = 1, ..., ti using the predictive deviance. Hence,
this loss function ignores the dependence structure of the repeated measurements of the ti
observations belonging to one object. In the context of discrete survival times, alternative
measures might be more appropriate for the choice of tuning parameter ξ. Therefore, the
performance of further loss functions, that assess the predictive performance and incorpo-
rate the observations’ dependency, will be investigated.

Duration time models are widely used for predicting the survival of objects. Especially in
biomedical research, where the forecast of patient’s survival is of particular interest. To
assess prognostic performance, statistical measures are needed for evaluating the prediction
accuracy of survival models. These measures are intended to form a rational basis for further
decisions. Due to the occurrence of censoring, the evaluation of prognostic models is not
trivial. Moreover, results of predictive accuracy might be biased due to miss-specification
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of the model. Consequently, universally valid evaluation criteria that are independent of
the underlying model have to be used.

The topic of evaluating the prognostic performance of prediction for continuous survival
outcomes is frequently discussed in the literature of recent methodology, wherein it is aimed
to overcome the problem of biased predictions in the presence of censored observations
(Schemper and Stare, 1996). For this purpose, various new approaches have been suggested
that can be classified into three groups (Schmid et al., 2011):

• likelihood-based approaches (Kent and O’Quigley, 1988; Nagelkerke, 1991; Xu and
O’Quigley, 1999; O’Quigley et al., 2005)

• ROC-based approaches (Heagerty et al., 2000; Heagerty and Zheng, 2005; Cai et al.,
2006; Uno et al., 2007; Pepe et al., 2008)

• distance-based approaches (Korn and Simon, 1990; Graf et al., 1999; Schemper and
Henderson, 2000; Gerds and Schumacher, 2006, 2007; Schoop et al., 2008).

The likelihood-based approaches often set the log-likelihood of a prediction model in re-
lation to the corresponding log-likelihood obtained from a null model where no covariate
information is incorporated. When utilizing ROC-based approaches the dependent variable
is considered as binary, as for each time t the outcomes “event” or “no event” may occur.
This entails the adaption of established concepts for the evaluation of binary classification
rules to time-to-event data. In distance-based approaches, the prediction error is measured
in terms of the distances between predicted and observed survival functions of observations
in a sample.

For discrete-time survival analysis such approaches, with respective comparisons, are not
well investigated, so far. Hence, in the following, some approaches defined for continuous
outcomes are adapted to discrete-time. Furthermore, these measures of prediction accuracy
can substitute the predictive deviance in the cross-validation procedure and provide suitable
loss functions to determine the tuning parameter ξ.

4.2. Choice of Tuning Parameter ξ

Before the choice of the tuning parameter ξ is investigated, several adequate measures of
prediction accuracy are presented. Thereby, likelihood-based, distance-based as well as
ROC-based measures are considered. Usually, measures of prediction accuracy are com-
puted based on an i.i.d. test sample using models which were fitted based on an i.i.d.
learning sample. In order to avoid any misunderstandings, the superscript L is used for
expressions related to the learning data and T marks expressions related to the training
data.

To remind some notation, some basic concepts of discrete survival analysis are given in
the following. Let T denote a non-negative discrete random variable taking values from
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{1, ..., q}. The survival time is represented by discrete time T , where T = t defines an event
in interval [at−1, at), t = 1, ..., q. Additionally, a p-dimensional time-constant vector x of
covariates is given. The conditional survival function given the covariates, is denoted by

S(t|x) = P (T > t|x).

For the i-th subject let Ci denote the individual censoring time independent of survival
time Ti, that is, random censoring is assumed. Consequently, the observed survival time is
defined by ti = min(Ti, Ci). The censoring indicator δi = I(Ti ≤ Ci) determines whether
observation i is right censored (δi = 0) or an event occurs (δi = 1) with respect to the
interval [at−1, at). Finally, the conditional discrete-time hazard rate is given by

λ(t|x) = P (T = t|T ≥ t,x).

Let yit denote the binary outcome of an object i, i = 1, ..., n, in period t, t = 1, ..., ti.
Thereby, the binary outcome yit denotes an event in interval [at−1, at) if yit = 1 and no
event or censoring if yit = 0. Thus, the existing data structure is of the form in Section
2.2.2 regarding binary regression models leading to the discrete survival model

λ(t|xi) = P (yit = 1|xi) = F (β0t + xTi γ),

where F denotes an appropriate cumulative distribution function and xi collects time-
independent characteristics of the i-th object. In general, it holds F (·) = 1−exp(− exp(·)),
defining the complementary log-log link.

4.2.1. Measures of Prediction Accuracy

Predictive Deviance

A likelihood-based measure of prediction accuracy is the predictive deviance. It is evaluated
on the test data and for discrete survival times it is given by

D = −2
nT∑
i=1

(
δTi log

(
P̂L(T Ti = tTi )

)
+ (1− δTi ) log

(
P̂L(T Ti > tTi )

))

= −2
nT∑
i=1

tTi∑
t=1

(
yTit log(λ̂L(t|xTi )) + (1− yTit ) log(1− λ̂L(t|xTi ))

)
,

where yi1, ..., yiti denote the binary transitions over time periods for object i. The expres-

sion λ̂L(t|xTi )) indicates that the model for fitting the hazard rate is based on the learning
sample but the evaluation is based on the test sample. The predictive deviance is equiv-
alent to the negative log-likelihood of a binomial regression model evaluated on the test
data. Therefore, prediction accuracy is large if the given deviance is small. The predictive
deviance is the employed loss criterion in Chapter 3. The question that arises in the context
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of repeated measurements is whether it makes a difference to base the construction of the
cross-validation on the whole observation of an object or on individual data points.

Another likelihood-based prediction measure making use of the predictive deviance is the
R2 coefficient. To facilitate interpretation, it is often convenient to use such a bounded
measure that is given by

R2 =
1− exp(1/nT (D−D0))

1− exp(1/nTD0)
,

where D0 is the deviance obtained from a “null model”, that is the model without any
covariates. If the covariates have no impact on the prediction accuracy R2 is equal to zero
and a R2 value equal to one indicates perfect prediction (Nagelkerke, 1991). In the following,
only the predictive deviance among the likelihood-based measures is considered.

Discrete Ranked Probability Score

As the predictive deviance only takes single observations at particular time periods t into
account, it seems more compelling to define scoring rules directly in terms of predictive
cumulative distribution functions. The estimated survival function for an observation i,
i = 1, ..., nT , is given by ŜLi (t|xTi ) =

∏t
j=1(1 − λ̂L(j|xTi ). A degenerate survival function

for an observation (tTi , δ
T
i = 1,xTi ), i = 1, ..., nT , is obtained by the following simple step

function

STi (t) =

{
1, if t < tTi and δT = 1

0, if t ≥ tTi and δT = 1.
(4.1)

On the other hand, a right-censored observation (tTi , δ
T
i = 0,xTi ) leads to a truncated

survival function given by

STi (t) = 1, if t ≤ tTi and δT = 0. (4.2)

A score that measures the discrepancy between the estimated survival function ŜLi (t|xTi )
and the observed survival function STi (t) with respect to discrete duration time, is defined
by

P̂R =
nT∑
i=1

(
δTi

q∑
t=1

(ŜLi (t|xTi )− STi (t))2 + (1− δTi )

ti∑
t=1

(ŜLi (t|xTi )− STi (t))2

)
.

The discrete ranked probability score measures the quadratic difference between the ob-
served and fitted survival functions. This measure is not based on single observations, but
rather on the whole distribution of an object i. Moreover, the discrete ranked probability
score is strongly related to the continuous ranked probability score (Gneiting and Raftery,
2007). The continuous ranked probability score, which lately has attracted much atten-
tion, enjoys appealing properties and serves as a standard score for evaluating probabilistic
and distributional forecasts of real-valued variables. As PR constitutes a distance-based
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approach, the lower the PR the better is the prediction performance. A simple requirement
regarding distance-based prediction measures is the existence of estimates of the survival
function S(t|xi) for each time period t, t = 1, ..., q.

Brier Score

A very traditional measure to assess prediction accuracy is the Brier score (Brier, 1950),
originally developed for judging the inaccuracy of probabilistic weather forecasts. It is
applicable to tasks in which predictions must assign probabilities to a set of mutually
exclusive discrete outcomes. In case of discrete-time survival analysis, the set of possible
outcomes is binary. The Brier score defines the mean squared deviation of a binary outcome
yit, i = 1, .., nT , and the corresponding fitted probability for a given time period t, t = 1, .., q.
Adapted to discrete survival times the Brier score is given by

B̂R =

nT∑
i=1

(
δTi ((1− P̂L(T Ti = tTi |xTi ))2 +

tTi −1∑
t=1

P̂L(T Ti = t|xTi )2)

+ (1− δTi )

ti∑
t=1

P̂L(T Ti = t|xTi )2

)
.

(4.3)

The Brier score can have values between zero and one and the lower the Brier score is for
a set of predictions, the better the predictions are calibrated. Nevertheless, the Brier score
(4.3) does not take into account the whole distribution of an observation i, i = 1, ..., nT ,
but only the single values of observation i at time t, t = 1, ..., tTi . Hence, a modification of
the Brier score based on inverse probability of censoring weights (IPCW) is suggested.

Modified Brier Score based on IPCW

The formula of the original Brier Score can be applied to the distance between survival
functions. This approach takes the whole distribution into account by incorporating the
squared distance between the predicted survival functions ŜLi (t|xTi ) =

∏t
j=1(1− λ̂L(j|xTi ),

i = 1, ..., nT , and the corresponding observed survival functions STi (t)), defined in (4.1)
and (4.2). However, the resulting score is not robust against model misspecification, why
particular weights are included in the formula. Regarding discrete survival times, this leads
to the modified Brier score

B̂S(t) =
1

nT

nT∑
i=1

wTi

(
ŜLi (t|xTi )− STi (t)

)2

=
1

nT

nT∑
i=1

[
δTi (1− STi (t))

ĜL(tTi−1|xTi )
+

STi (t)

ĜL(t|xTi )

](
ŜLi (t|xTi )− STi (t)

)2
,

where ĜL(·|xTi ) denotes the survival function of the censoring process estimated from the
learning data. Section 4.2.2 deals with the choice of the underlying model determining the
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survival function G. The weights wTi , i = 1, ..., nT , account for the inverse probability that
an observation in the test data is censored at t and thus ensure the consistency of BS(t)
(Gerds and Schumacher, 2006). The underlying assumption to achieve consistency of the
estimator is random censoring.
Corresponding to the definition, the Brier score becomes small if the predicted survival
functions agree closely with the observed survival functions. It can further be shown that
the Brier score reaches its minimum if Ŝ is equal to the true survival function (Gneiting
and Raftery, 2007). A corresponding time-independent coefficient is given by the integrated

Brier score B̂S =
∑

t B̂S(t) · P̂L(T = t). Generally, the integrated Brier score of well-
predicting models should be smaller than 0.25 which is the integrated Brier Score obtained
from the non-informative model with Ŝ(t) = 0.5, for all t.

Modified Schemper-Henderson Estimator based on IPCW

The Schemper-Henderson estimator originally was introduced by Schemper and Henderson
(2000). In contrast to the Brier score, the Schemper-Henderson estimator is based on the
absolute deviations between survival functions instead of quadratic deviations. However,
as the estimator of Schemper-Henderson is distance-based it is not robust against model
misspecification. In analogy to the modified Brier score, this problem is solved by incor-
porating weights. This leads to the modified Schemper-Henderson estimator, proposed by
Schmid et al. (2011). For discrete survival times, it is defined via the absolute distance
between the predicted survival functions ŜLi (t|xTi ) =

∏t
j=1(1− λ̂L(j|xTi ), i = 1, ..., nT , and

the corresponding observed survival functions STi (t), defined in (4.1) and (4.2),

ŜH(t) =
1

nT

nT∑
i=1

wTi

∣∣∣ŜLi (t|xTi )− STi (t)
∣∣∣

=
1

nT

nT∑
i=1

[
δTi (1− STi (t))

ĜL(tTi−1|xTi )
+

STi (t)

ĜL(t|xTi )

] ∣∣∣ŜLi (t|xTi )− STi (t)
∣∣∣ .

Thereby, ĜL(·|xTi ), again, denotes the survival function of the censoring time C estimated
from the learning data and wTi denote the inverse probability of censoring weights. Schmid
et al. (2011) have shown that the modified Schemper-Henderson estimator is robust against
model misspecification under the random censoring assumption. Possible approaches of
estimating ĜL are discussed in Section 4.2.2. A corresponding time-independent measure
is given by the integrated Schemper-Henderson estimator ŜH =

∑
t ŜH(t) · P̂L(T = t).

Concordance Index

An alternative approach that characterizes the predictive performance is based on discrim-
ination measures. This type of measures makes use of the linear predictor ηit, i = 1, ..., n,
t = 1, ..., ti. Discrimination measures consider survival outcomes as time-dependent binary
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outcomes with categories “event at t” (denoted as cases) and “event after t” (denoted as
controls). Consequently, ηit has a high prediction accuracy if it has a high discriminative
power, that means to distinguish between cases and controls in the test data. This results
in an interpretation of binary outcomes (cases versus controls) leading to the fact that
established concepts for the evaluation of binary classification rules can be adapted to the
analysis of time-to-event data. One of the most commonly used discrimination measures
is the concordance index, which has its roots in receiver operating characteristics (ROC)
methodology.
When outcomes are binary, the discriminative power can be summarized through the time-
dependent sensitivity and the time-dependent specificity (Heagerty and Zheng, 2005), which
are given by

sensitivity(c, t) = P (ηit > c|T = t) (4.4)

specificity(c, t) = P (ηit ≤ c|T > t). (4.5)

Thereby, c is a threshold of the linear predictor ηit. Summarizing sensitivity (4.4) and
specificity (4.5) yield a time-dependent ROC curve, which is defined by

ROC(c, t) = {1− specificity(c, t), sensitivity(c, t)} ,

with c ∈ R. Another measure applied to binary outcomes is the area under the curve
(AUC) , that means, the area under the time-dependent ROC curve for each time t. This
results in the time-dependent AUC curve, denoted by AUC(t). By definition, the time-
dependent AUC curve quantifies the discriminative ability of a linear predictor at each
time under consideration. As a value of 0.5 corresponds to the AUC value obtained by a
model without covariate information, only AUC values larger than 0.5 are meaningful.
A time-independent measure of discriminative power is given by the consideration of the
area under the time-dependent AUC curve. Heagerty and Zheng (2005) suggested the
index

C∗ =

∫
t

AUC(t)w(t)dt,

with weights w(t) = P (T = t)P (T > t)/
∑

t P (T = t)P (T > t). According to Schmid et al.
(2014) and Uno et al. (2007), sensitivity and specificity can be estimated by

̂sensitivity(c, t) =

∑
i δ
T
i I(η̂Tit > c ∩ tTi = t)/ĜL(tTi − 1|xTi )∑

i δ
T
i I(tTi = t)/ĜL(tTi − 1|xTi )

̂specificity(c, t) =

∑
i I(η̂Tit ≤ c ∩ tTi > t)∑

i I(tTi > t)
,

where η̂Tit , i = 1, ..., nT , denotes the estimated linear predictor using observations from
the test data but the estimated parameters were obtained from the learning sam-
ple. Similar to the Brier score and the Schemper-Henderson estimator, the weights
1/ĜL(tTi − 1|xTi ) ensure the consistency under the random censoring assumption. Esti-
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mates of AUC(t) can be obtained by using numerical integration of the estimated ROC

curve
{

1− ̂specificity(c, t), ̂sensitivity(c, t)
}

. By means of the estimated area under the

curve ÂUC(t), the concordance index C∗ can be estimated by

C∗ =
∑
t

P̂L(T = t) · P̂L(T > t)∑
t P̂
L(T = t) · P̂L(T > t)

ÂUC(t).

While prediction rules based on random guessing yield C∗ = 0.5, a perfectly discriminating
linear predictor leads to C∗ = 1. In contrast to the likelihood measures and the distance-
based measures described above, the concordance index has to be maximized.

4.2.2. Choice of the Censoring Distribution

For estimating the modified Brier score and the modified Schemper-Henderson estimator,
the underlying model to determine ĜL(·|xTi ) has to be chosen. In general, the conditional
survival function of the censoring process is denoted by G(t|xi) = P (C > t|xi).

A possible approach to determine G(t|xi) is a marginal censoring model. This model ig-
nores any covariates resulting in G(t|xi) = G(t). For example, Graf et al. (1999) used a
marginal censoring model for estimating G(t|xi) with regard to continuous survival out-
comes. Referring to discrete-time survival analysis, life table estimates can be used with
respect to marginal censoring models. Under the assumption of random censoring, the
life table estimator is consistent (Breslow and Crowley, 1974). The life table estimator,
assuming censoring at the end of an interval [at−1, at), is given by

λ(t) =
dt
nt
, (4.6)

where dt denotes the number of observed events (deaths) in the interval [at−1, at) and
nt = nt−1 − dt−1 denotes the number of observations at risk in the interval [at−1, at).

In contrast, G(t|xi) can be modeled by incorporating covariates. A method to model the
dependence of the censoring survival function on covariates is given by generalized additive
models. For the following simulation study, the linear predictor of the model consists of
a time-varying intercept, whereas the covariates are incorporated as linear effects. The
corresponding hazard rate of the censoring process is given by

λG(t|xi) = 1− exp(exp(β0t + xTi γ)). (4.7)
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Thereby, β0t =
∑m0

m=1 α0mB0m(t) indicates a time-varying intercept expanded in B-splines.
The estimate of the corresponding survival function G(t|xi) is derived from the estimates
of model (4.7) by

Ĝ(t|xi) =
t∏

j=1

(1− λ̂G(j|xi)).

To ensure robustness of the estimated model parameters a small ridge penalty is applied
to model (4.7) resulting in the following penalized likelihood

lξ0,ξ(α0,γ) = l(α0,γ)−

(
ξ0

(
m0∑
m=2

(α0m − α0,m−1)2

)
+ ξ

(
p∑
l=1

γ2
l

))
, (4.8)

where l(α0,γ) denotes the ordinary log-likelihood. The first penalty term in (4.8) yield
stable estimates of the time-varying intercepts, whereas the second term slightly shrinks
the parameters referring to the linear effects to yield stable results.

4.3. Simulation Study

In this section, the choice of the tuning parameter ξ is investigated in terms of a simulation
study. Generally, the simulation procedure is equivalent to that of Chapter 3. Thereby, in
Chapter 3 the tuning parameter ξ was chosen by cross-validation based on the predictive
deviance. In the following simulation study, for the choice of ξ a cross-validation procedure
is used as well, but as loss criterion the measures presented in Section 4.2.1 are used. It
is of special interest, if another loss function performs better than the predictive deviance.
Furthermore, it is investigated how the construction of the cross-validation parts affects
the predictive performance since the cross-validation parts can be based on the whole
information of an object or on individual data points. This issue is analyzed by means of
the predictive deviance.
The components of the simulation settings required for computing the underlying true linear
predictor

ηtruet = β0t +
r∑
j=1

zijβjt +
s∑
l=1

xilγl

are given in the following. Thereby, (zi1, ..., zir, xi1, ..., xis), with p = r + s, is a vector of
realizations of explanatory variables that do not vary over time, and zi1, ..., zir denote the
observations of the covariates that are allowed to exhibit time-varying effects and xi1, ..., xis
define the observations of the covariates that are restricted to have constant effects. In
other words, the model implies time-varying coefficients βTjt = (β0t, βrt, ..., βrt) including
an time-varying intercept β0t, whereas γ = (γ1, ..., γs) is assumed to be time-constant.
The time-varying coefficients are expanded in equally spaced B-splines given by βjt =∑mj

m=1 αjmBjm(t), j = 0, ..., r.
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Finally, the prediction accuracy of the resulting models based on different loss functions
is assessed. To ensure the comparability of the predictive accuracy for all measures, it is
judged by considering the predictive deviance irrespective of the underlying loss function.
To this end, np additional independent observation are sampled resulting in the vector of

covariates (zpredit ,xpredit ) and the corresponding predictive deviance is given by

Dpred = −2
n∑
i=1

ti∑
t=1

{
ypredit log(λ̂(t|zpredit ,xpredit )) + (1− ypredit ) log(1− λ̂(t|zpredit ,xpredit ))

}
,

where λ(t|zpredit ,xpredit ) = P (Ti = t|Ti ≥ t, zpredit , xpredit ) and (ypredi1 , ..., yprediti
) denotes the

transitions over periods of object i.

4.3.1. Settings

The simulation study consists of five simulation settings. In each setting, both time-constant
and time-varying coefficients are incorporated in the model and several penalties are in-
vestigated. Moreover, the number of time periods and covariates is modified and in one
setting correlated covariates are incorporated. In a further setting, censoring depends on the
covariates. The covariates of the whole simulation study are time-constant throughout.

Setting 1

For the first setting, n = 120 realizations of six covariates are simulated according to

Zi1, Xi1, ..., Xi5
iid∼ U(0, 1). Only three covariates have an effect on the survival time and the

remaining three covariates are noise variables. The covariate realizations zi1, xi1, ..., xi5 are
used to simulate survival times according to the linear predictor

ηit = β0t + zi1β1t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4 + xi5γ5,

where the time-varying coefficient effects βjt, j = 0, 1 are given by

β0t = ( −1.25, −1, −0.75, −1.5, −1.85, −1.75, −1.9)
β1t = ( −3, −2.5, −1, −0.5, 1.5, 2, 3).

Furthermore, the time-constant coefficient effects are constituted by γ1 = 0.5, γ2 = −1,
γ3 = γ4 = γ5 = 0. The time-varying coefficients βjt are expanded in cubic B-splines, where
the number of equidistant inner knots is set to four. The censoring times are drawn from a
multinomial distribution M(n,pc), with pTc = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.4). This leads to
a censoring rate of approximately 60%. The simulation scheme for Setting 1 is replicated
100 times. To evaluate the predictive accuracy, np = 240 further independent observations
are sampled.
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Setting 2

In simulation Setting 2, the number of time periods is increased to q = 10. The considered
model contains four time-varying covariate effects and one time-constant covariate effect.
In addition, three noise variables are incorporated. For the covariates, n = 200 realizations
are simulated according to

Zi1, Zi2, Xi3, Xi4
iid∼ U(0, 1),

Zi3, Zi4
iid∼ N (−1, 1),

Xi1, Xi2
iid∼ B(0.5).

Hence, the model consists of four uniformly distributed, two normal distributed and two
binary distributed covariates. The survival times are sampled by means of the realizations
of the covariates using the linear predictor

ηit = β0t + zi1β1t + zi2β2t + zi3β3t + zi4β4t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4.

Thereby, the time-varying effects βjt, j = 0, ..., 4, are defined by

β0t = ( −2, −1.5, −1.3, −1, −0.8, −0.5, −1.25, −1.3, −2, 0.01),
β1t = ( −2.5, −2, −1, −0.5, 0.01, 0.5, 0.75, 1.5, 1.8, 1.3),
β2t = ( −2, −1.9, −1.8, −1.7, −1.6, −1.5, −1.25, −0.75, −0.5, 0.01),
β3t = ( 1, 0.25, 0.25, 0.01, −0.25, 0.25, 0.5, 0.5, 0.75, 0.8),
β4t = ( −1.5, −1, −1, 0.01, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7),

and the time-constant coefficients are set to γ1 = −1.5, γ2 = γ3 = γ4 = 0. Anal-
ogous to Setting 1, for the time-varying coefficients βjt, B-spline basis functions are
used, but the number of equidistant inner knots is set to seven. In this setting, the
censoring times are simulated from a multinomial distribution M(n,pc), with pTc =
(0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.3), resulting in a censoring rate of approximately
60%. In this simulation scheme, the number of replications is 100. The data set for inves-
tigating prediction accuracy consists of np = 400 independently sampled observations.

Setting 3

In the third setting the impact of correlated covariates is investigated. To this end, n = 300
realizations of eight correlated covariates following a normal distribution are simulated with
Zi1, Zi2, Xi1, Xi3 ∼ N (1, 1) and Zi3, Zi4, Xi2, Xi4 ∼ N (0, 1). The sampling is carried out in
consideration of the corresponding correlation matrix R:
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R =



1.0 0.0 0.5 −0.3 0.2 −0.1 0.1 0.2
0.0 1.0 0.1 0.0 0.0 0.0 0.2 −0.2
0.5 0.1 1.0 0.3 0.7 0.2 0.1 0.1
−0.3 0.0 0.3 1.0 0.4 −0.4 0.05 0.0

0.2 0.0 0.7 0.4 1.0 0.0 0.3 0.4
−0.1 0.0 0.2 −0.4 0.0 1.0 0.1 0.1

0.1 0.2 0.1 0.05 0.3 0.01 1.0 −0.3
0.2 −0.2 0.1 0.0 0.4 0.1 −0.3 1.0


. (4.9)

The corresponding survival times are sampled using the realizations of the covariates and
the linear predictor defined by

ηit = β0t + zi1β1t + zi2β2t + zi3β3t + zi4β4t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4.

Thereby, the time-varying coefficients βjt, j = 0, ..., 4, are given by

β0t = ( −2, −0.8, −0.5, −1.25, −1.125, −1.5, −2, −2, −1.5, −1),
β1t = ( −4, −3, −2, −1, 0.01, 0.5, 1.25, 1.5, 1.7, 2),
β2t = ( −2, −1.9, −1.7, −1.5, −1.25, −1, −0.75, −0.5, −1.5, 1),
β3t = ( 0.01, 0.1, 0.5, 0.8, 0.9, 1.1, 1.5, 1.6, 1.8, 2.5),
β4t = ( −0.8, −0.7, −0.6, −0.5, 0.5, −0.6, −0.7, −0.8, −0.9, −1),

and the time-constant coefficients are given by γ1 = −0.5, γ2 = 1 and γ3 = γ4 = 0. Again,
the time-varying coefficients βjt are modeled in terms of cubic B-splines with seven equidis-
tant inner knots. Moreover, the censoring times are simulated from a multinomial dis-
tribution M(n,pc) with probability vector pTc = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
leading to a censoring rate of approximately 65%. For this simulation setting, 100 simula-
tion runs are executed. To evaluate the predictive accuracy, np = 600 further independent
observations are sampled.

Setting 4

In simulation Setting 4, the number of time periods is equal to q = 10. The considered
model contains four time-varying covariate effects and two time-constant covariate effects.
In addition, two noise variables are incorporated. For the study n = 150, realizations of
the covariates were simulated according to

Zi1, Zi2, Xi3, Xi4
iid∼ U(0, 1),

Zi3, Zi4
iid∼ N (−1, 1),

Xi1, Xi2
iid∼ B(0.5),
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that is, the model contains four uniformly distributed, two normal distributed and two
binary distributed covariates. The survival times are sampled depending on the realizations
of these covariates with the linear predictor

ηit = β0t + zi1β1t + zi2β2t + zi3β3t + zi4β4t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4.

Thereby, the time-varying effects βjt, j = 0, ..., 4, are defined by

β0t= ( −2,−0.8,−0.5,−1.25, −1.3,−1.7,0.01),
β1t= (−2.5, −2, −1, 0.01, 0.75, 1.5, 1.3),
β2t= ( −2,−1.7,−1.5,−1.25,−0.75,−0.5,0.01),
β3t= ( 1, 0.25, 0.01,−0.25, 0.25, 0.5,0.75),
β4t= (−1.5, −1, 0.01, 0.3, 0.4, 0.5, 0.6),

and the time-constant coefficients γl are γ1 = −1.5, γ2 = 0.5 and γ3 = γ4 = 0. Analogous
to the previous settings, the time-varying coefficients βjt are expanded in cubic B-splines,
where the number of equally spaced inner knots is set to four. In this setting, the vector of
probabilities for simulating the censoring times from a multinomial distribution M(n,pc)
depends on the combination of the covariates Xi5 and Xi6. As Xi5 and Xi6 are drawn from
a binomial distribution, there exist four different vectors of censoring probabilities:

Xi5 = 0 ∧Xi6 = 0 : pTc1 = (0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.6),

Xi5 = 0 ∧Xi6 = 1 : pTc2 = (0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.2),

Xi5 = 1 ∧Xi6 = 0 : pTc3 = (0.1, 0.1, 0.25, 0.25, 0.05, 0.05, 0.2),

Xi5 = 1 ∧Xi6 = 1 : pTc4 = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7),

This leads to an overall censoring rate of approximately 70%. In this simulation scheme the
number of replications is 100. The data set for investigating prediction accuracy consists
of np = 300 independently sampled observations.

Setting 5

For the last setting, n = 120 realizations of six covariates are simulated according to

Zi1, Xi1, ..., Xi5
iid∼ U(0, 1). Thereby, three covariates have an effect on the survival time and

three covariates are noise variables. The covariate outcomes are the basis for simulating
the survival time with the linear predictor given by

ηit = β0t + zi1β1t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4 + xi5γ5.

The linear predictor includes the time-varying coefficients βjt, j = 0, 1 given by

β0t = ( −1.25, −1, −0.75, −2, −1.85, −1.75, −1.9),
β1t = ( −3, −2.5, −1, −0.5, 1.5, 2, 3),
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and the time-constant coefficients γ1 = 0.5, γ2 = 1, γ3 = γ4 = γ5 = 0. Consequently,
simulation scheme 5 is equivalent to Setting 1, but in contrast to Setting 1 a penalty
resulting in piecewise time-constant coefficients is used. Hence, the time-varying coefficients
have to be estimated for all time periods t = 1, ..., q. The censoring times are simulated
from a multinomial distribution M(n,pc), with pTc = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.4) leading
to a censoring rate of approximately 55%. The simulation scheme for Setting 5 is replicated
100 times. Additionally, np = 240 independent observations are sampled to evaluate the
predictive accuracy.

To allow for maximal flexibility in modeling, for all coefficients, time-varying effects are
assumed. This leads to the linear predictor

ηmodelit = β0t +

p∑
j=1

zijβjt.

Thereby, the number of time-varying coefficients depends on the simulation setting and
r = p holds. For Setting 1-4, the time-varying coefficients are expanded in B-spline basis
functions with

β0t =

m0∑
m=1

α0mB0m(t) and βjt =

mj∑
m=1

αjmBjm(t).

For the simulation study, two different types of penalties, with regard to the estimation of
the time-varying covariate effects, are employed. For Settings 1-4, the penalty term

Jξ0,ξ(ζ,α) = ξ0

m0∑
m=2

(α0m − α0,m−1)2 + ξ
r∑
j=1

ψj
∥∥ζj∥∥2

,

where ζTj = (ζj2, ..., ζjmj), ζjm = αjm − αj,m−1, m = 2, ...,mj, is used. It allows for stable
baseline effects and steers the smoothness of the time-varying covariate effects. Moreover,
the differences ζTj = (ζj2, ..., ζjmj) can be simultaneously shrunk to zero until their selection
from the model leading to constant effects. On the other hand fusion and selection of the
time-varying coefficients is performed by the following penalty term

Jξ0,ξ(β) = ξ0

m0∑
m=2

(α0m − α0,m−1)2 + ξ

(
r∑
j=1

q∑
t=2

|βjt − βj,t−1|+
r∑
j=1

q∑
t=1

|βjt|

)
,

used for Setting 5. In the context of survival analysis, it is proposed that a time-varying
intercept β0t remains in the model. Thus, the penalization of β0t is only executed due to
stability reasons. It is defined by ξ0 = 0.001 in all simulation settings. This corresponds to
a ridge penalty on differences between adjacent parameters of the B-spline basis functions.
For more details on the penalty, compare Chapter 3.

Finally, the simulation settings are summarized in Table 4.1. Therein, n denotes the number
of observations of each setting. The number of time-varying and time-constant covariate
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time covariate effects dependent
n intervals varying constant noise penalty correlation censoring

1 120 7 1 2 3 smoothing - -
2 400 10 4 1 3 smoothing - -
3 250 10 4 2 2 smoothing X -
4 200 7 4 2 2 smoothing - X
5 200 7 1 2 3 fusion & selection - -

Table 4.1. Overview simulations settings of Chapter 4.

effects as well as the number of noise variables are shown in the columns varying, constant
and noise, respectively. Moreover, penalty describes which penalties are used and correlation
declares if a correlation of the covariates is incorporated. Finally, dependent censoring
marks if the censoring depends on the covariates.

4.3.2. Results

The execution of the simulation study and the corresponding estimation procedure is equiv-
alent to the proceeding described in Section 3.4, but the loss function of the cross-validation
procedure is varied. The simulated data sets are reorganized to the long format before es-
timation and all covariates are standardized to have equal variance. The tuning parameter
ξ is chosen by 5-fold cross-validation incorporating the loss functions presented in Section
4.2.1. The model is estimated by a binary regression model with complementary log-log
link. Estimates are obtained by maximizing the corresponding penalized likelihood (see
Section 3.2.1).

In Gerds and Schumacher (2006), the authors investigated if the censoring model to deter-
mine the survivor function G should depend on covariates. Gerds and Schumacher (2006)
concluded that a censoring model depending on covariates should be preferred to a marginal
censoring model. Hence, for each setting the estimation of the censoring model is carried
out two times. First, a marginal censoring model by means of the life table estimator (4.6),
and second, a regression censoring model as defined in Section 4.2.2 is used. That means,
the censoring regression model of the simulation study is given by

ηGit = β0t +

p∑
l=1

xliγl, β0t =

m0∑
m=1

α0mB0m(t),

with penalty term

JGξ (α0,γ) = ξ0

(
m0∑
m=2

(α0m − α0,m−1)2

)
+ ξ

(
p∑
l=1

γ2
l

)
.
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For the time-varying intercept a cubic B-spline approach is used and all covariates are
incorporated as linear effects. The penalty allows for stable baseline effects, whereas the
coefficients γl are subject to a slight ridge penalty, where ξ0 = ξ = 0.001. The number
of equidistant inner knots for estimating β0t in the censoring model is equivalent to the
number of equidistant inner knots used in the corresponding model for fitting the survival
model.

The assessment of parameter estimates is evaluated as a whole, and separately for truly
time-varying and truly time-constant parameters. For each simulation run, the according
mean squared errors are computed according to definition (3.13).
Thereby, βj and β̃l denote the true parameter values, whereas β̂j and β̂l define the
estimates. That means, as all components are estimated time-varying, γ and β are
compared as well. The ordinary maximum likelihood (ML) estimation is used as refer-
ence. Since many algorithms of the simulation settings did not converge using the ML-
method, a slight ridge penalty of 0.001 is installed (denoted by MLridge). Hence, the ratios
log(MSE(·)/MSE(MLridge)) can be interpreted in a meaningful manner.

The results of all simulation settings are initially summarized in tables. Therein, the or-
dinary ML-estimates with a slight ridge penalty of 0.001 can be found in column MLridge.
The columns denoted with D and D.a contain the results using the predictive deviance
as loss function. In the case of D, the parts of the cross-validation are selected by ob-
ject, hence, all observations of an object are selected at a time. In contrast, the splitting
refers to individual data points for D.a. Consequently, not all observations of an object are
forced to be in the same part of the cross-validation. The remaining abbreviations relate
to the measures given in Section 4.2.1. Thereby, the subscript marg defines a marginal
censoring model used for estimating the survival function G of the censoring process. Ad-
ditionally, reg refers to a generalized regression censoring model for G used in the IPCW
estimators (see Section 4.3.2). The tables contain the mean squared errors, obtained from
the definition (3.13). Thereby, MSEvary refers to the truly time-varying coefficients and
MSEconst to the truly time-constant coefficients. The mean squared errors marked with
∗ correspond to the ratios log(MSE(·)/MSE(MLridge)), a logarithmic relation to MLridge.
In Dpred and D∗pred = log(Dpred(·)/Dpred(MLridge)) the predictive deviances based on the
np additionally independently sampled observations are computed. Dpred and D∗pred are
computed for all loss functions. All presented values correspond to the mean values over
all simulation runs. Moreover, the results are illustrated in boxplots where the ratios
log(MSE(·)/MSE(MLridge)) and log(Dpred(·)/Dpred(MLridge)) are depicted. For the sake of
interpretability, outliers are omitted in single cases.
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MLridge D D.a PR BR BSmarg BSreg SHmarg SHreg C∗marg C∗reg

MSE 11.80 0.69 0.80 0.84 0.74 0.94 0.95 1.49 1.39 1.01 1.00
MSEvary 14.94 1.72 2.03 2.15 1.50 2.43 2.35 2.29 2.13 2.81 2.84
MSEconst 10.54 0.28 0.31 0.31 0.43 0.35 0.39 1.17 1.09 0.29 0.26

MSE* - -2.44 -2.27 -2.24 -2.46 -2.22 -2.09 -1.94 -1.86 -2.10 -1.95
MSE∗vary - -1.73 -1.47 -1.46 -1.89 -1.47 -1.29 -1.73 -1.57 -1.27 -1.02
MSE∗const - -3.32 -3.37 -3.31 -3.11 -3.38 -3.17 -2.16 -2.16 -3.37 -3.28

Dpred 888.90 610.71 612.63 615.01 612.90 628.34 620.96 662.41 646.18 626.80 617.56
D∗pred - -0.34 -0.34 -0.33 -0.34 -0.36 -0.33 -0.31 -0.29 -0.36 -0.33

Table 4.2. Results for simulation Setting 1 for the mean squared errors (MSE, MSEvary, MSEconst,
MSE∗, MSE∗

vary, MSE∗
const), the predictive deviance referring to the additional sampled test data (Dpred,

D∗
pred) for MLridge and the loss functions D (deviance based on objects), D.a (deviance based on individual

data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index). The subscripts marg and reg denote a marginal censoring
model and a regression censoring model, respectively. The displayed values represent the means over all
100 simulation runs. Bold values indicate the best value in each case.

Setting 1

The simulation results for Setting 1 are summarized in Table 4.2. To get an impression of
the magnitude, the corresponding MSE of the ordinary ML-estimation denotes 1.88·1029. A
slight penalty already improves the MSE substantially which can be seen in column MLridge.
The penalization approaches outperform MLridge in all cases. Moreover, the predictive
deviance D yields better results than D.a for all MSE values (except MSE∗const). Apart from
that, the predictive deviance D outperforms for the MSE and Dpred. In comparison to the
other measures, the Brier score (BR) performs best for MSEvary, MSE∗vary and MSE∗. The
modified Brier score using a marginal censoring model provides the best values for MSE∗const
and D∗pred, whereas C∗reg outperforms the other measures for MSEconst. No clear preference
for the marginal or the regression censoring model can be given for the IPCW estimates.

The corresponding boxplots of the ratios log(MSE(·)/MSE(MLridge)) are shown in Figure
4.1, where Figure 4.1a contains the boxplots using a marginal censoring model for the IPCW
estimators and Figure 4.1b contains the boxplots using a regression censoring model. It has
to be mentioned that the boxplots for D, D.a, PR and BR are identical in both cases as
no censoring distributions are utilized for this measures. Comparing the boxplots for the
marginal and the regression censoring model, only a small shift is observable for the mean
squared error of the truly time-varying coefficients using C∗ as loss function. Again, the
boxplots of the log ratios log(Dpred(·)/Dpred(MLridge)) assessing the predictive performance
are identical for D, D.a, PR and BR (Figure 4.2). The predictive performance seems to be
somewhat better in the case of the marginal censoring distribution for the IPCW estimators.
For the other measures the prediction accuracy is on a similar level.
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Figure 4.1. Boxplots of the mean squared errors for Setting 1 for D (deviance based on objects), D.a
(deviance based on individual data points), PR (ranked probability score), BR (Brier score), BS (modified
Brier score), SH (Schemper-Henderson estimator), C∗ (concordance index)
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Figure 4.2. Boxplots of the predictive accuracy for Setting 1 for D (deviance based on objects), D.a
(deviance based on individual data points), PR (ranked probability score), BR (Brier score), BS (modified
Brier score), SH (Schemper-Henderson estimator), C∗ (concordance index)
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Setting 2

The summary of the simulations results for Setting 2 are given in Table 4.3. The MSE of
the corresponding ML-estimation is 1.10 · 1030. As expected, the penalization approaches
outperform MLridge in all cases. Except for MSE∗const, the predictive deviance D outperforms
D.a for all values. Furthermore, the predictive deviance D yields best results for MSE,
MSEconst, MSE*, Dpred and D∗pred. In addition, the discrete ranked probability score (PR)
performs well and shows the best results for MSE, MSEvary, MSE∗vary, Dpred and D∗pred.
C∗marg and C∗reg outperform the other measures for MSE∗const. The values of the IPCW
estimators are very similar, that means, that the estimates using the marginal censoring
model and the estimates using a regression censoring model do not outperform each other.
Finally, the predictive deviance D and the discrete ranked probability score PR turn out
to perform best in this simulation scheme.

There are no visible differences between the boxplots of the log-ratios
log(MSE(·)/MSE(MLridge)) and log(Dpred(·)/Dpred(MLridge)) using a marginal censor-
ing model for the IPCW estimators (Figure 4.3) and the respective boxplots using a
censoring regression model (Figure A.1). Comparing the mean squared errors (Figure 4.3a)
and the predictive accuracy (Figure 4.3b) for the different loss functions, the boxplots
of the Schemper-Henderson estimator perform worst, whereas the boxplots of D and PR
perform quite well. Except for the predictive accuracy of SH and C*, the boxplots are on
a similar level.

MLridge D D.a PR BR BSmarg BSreg SHmarg SHreg C∗marg C∗reg

MSE 46.21 0.36 0.40 0.36 0.44 0.49 0.51 1.73 1.80 0.69 0.69
MSEvary 43.83 0.50 0.55 0.48 0.56 0.66 0.67 1.95 1.99 1.07 1.07
MSEconst 49.19 0.17 0.20 0.20 0.28 0.27 0.31 1.45 1.57 0.22 0.22

MSE* - -4.08 -3.99 -4.07 -3.92 -3.96 -3.92 -2.85 -2.83 -3.65 -3.65
MSE∗vary - -3.62 -3.52 -3.64 -3.56 -3.54 -3.53 -2.66 -2.65 -3.05 -3.05
MSE∗const - -4.96 -5.05 -4.86 -4.48 -4.71 -4.62 -3.06 -3.05 -5.27 -5.27

Dpred 1986.5 1035.6 1043.1 1035.6 1039.3 1044.8 1046.1 1160.5 1163.0 1098.1 1098.2
D∗pred - -0.61 -0.60 -0.61 -0.60 -0.60 -0.60 -0.50 -0.50 -0.55 -0.55

Table 4.3. Results for simulation Setting 2 for the mean squared errors (MSE, MSEvary, MSEconst,
MSE∗, MSE∗

vary, MSE∗
const), the predictive deviance referring to the additional sampled test data (Dpred,

D∗
pred) for MLridge and the loss functions D (deviance based on objects), D.a (deviance based on individual

data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index). The subscripts marg and reg denote a marginal censoring
model and a regression censoring model, respectively. The displayed values represent the means over all
100 simulation runs. Bold values indicate the best value in each case.
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Figure 4.3. Boxplots of the mean squared errors and predictive accuracy for Setting 2 using a marginal
regression model for IPCW estimators for D (deviance based on objects), D.a (deviance based on individual
data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index).

Setting 3

In simulation Setting 3 correlated covariates according to the correlation matrix (4.9) are
incorporated in the model. The dimension for Setting 3 is the same as in Setting 2. The
MSE of the underlying ML-estimation denotes 4.55 · 1033. A summary of the results for
Setting 3 can be found in Table 4.4. Compared to the other measures the predictive deviance
D achieves predominately best results. In particular, the predictive deviance D yields better
or similar results than D.a. Apart from that, the results of the modified Brier score BSreg
outperform all other measures for MSE∗, MSE∗vary and D∗pred. Again, no evidence can be
found if the use of marginal or regression censoring models is more advisable.

The boxplots dealing with marginal regression models (Figure 4.4) and the boxplots dealing
with censoring regression models for the IPCW estimators (Figure A.2) are in high accor-
dance. The Schemper Henderson estimator SH and the concordance index C∗ perform worst
in terms of the log ratios log(MSE(·)/MSE(MLridge)) and log(Dpred(·)/Dpred(MLridge)) using
a marginal censoring model for the IPCW estimators. The boxplots of the remaining mea-
sures are similar. The conclusion for the predictive accuracy is equivalent (Figure 4.4b). In
general, correlated covariates seem to have no negative impact on the estimation approach
as the absolute magnitudes of the results are not considerably different compared to the
previous simulation Settings.
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MLridge D D.a PR BR BSmarg BSreg SHmarg SHreg C∗marg C∗reg

MSE 31.87 0.32 0.34 0.34 0.36 0.35 0.40 1.40 1.57 1.06 1.05
MSEvary 41.28 0.53 0.56 0.55 0.56 0.56 0.62 1.98 2.24 1.81 1.80
MSEconst 20.11 0.07 0.07 0.08 0.11 0.08 0.11 0.67 0.73 0.12 0.12

MSE* - -4.29 -4.24 -4.25 -4.21 -4.23 -4.30 -3.21 -3.26 -3.05 -3.23
MSE∗vary - -3.99 -3.93 -3.96 -3.94 -3.94 -4.02 -3.06 -3.09 -2.70 -2.88
MSE∗const - -5.56 -5.56 -5.48 -5.24 -5.46 -5.42 -3.58 -3.68 -4.71 -4.88

Dpred 1816.6 871.2 877.9 874.4 886.5 876.1 888.0 1041.4 1082.7 1209.4 1211.9
D∗pred - -0.71 -0.70 -0.70 -0.69 -0.70 -0.76 -0.54 -0.58 -0.38 -0.45

Table 4.4. Results for simulation Setting 3 for the mean squared errors (MSE, MSEvary, MSEconst,
MSE∗, MSE∗

vary, MSE∗
const), the predictive deviance referring to the additional sampled test data (Dpred,

D∗
pred) for MLridge and the loss functions D (deviance based on objects), D.a (deviance based on individual

data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index). The subscripts marg and reg denote a marginal censoring
model and a regression censoring model, respectively. The displayed values represent the means over all
100 simulation runs. Bold values indicate the best value in each case.
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Figure 4.4. Boxplots of the mean squared errors and predictive accuracy for Setting 3 using a marginal
regression model for IPCW estimators D (deviance based on objects), D.a (deviance based on individual
data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index)
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MLridge D D.a PR BR BSmarg BSreg SHmarg SHreg C∗marg C∗reg

MSE 35.66 0.60 0.64 0.65 0.78 0.85 0.85 2.45 2.02 1.86 1.98
MSEvary 30.16 0.83 0.91 0.87 0.97 1.08 1.07 2.45 2.24 2.09 2.21
MSEconst 42.54 0.31 0.31 0.38 0.55 0.56 0.58 2.46 1.75 1.57 1.68

MSE* - -3.78 -3.69 -3.72 -3.65 -3.63 -3.61 -2.81 -2.94 -3.08 -3.05
MSE∗vary - -3.17 -3.05 -3.13 -3.12 -3.06 -3.07 -2.48 -2.56 -2.54 -2.51
MSE∗const - -4.95 -4.89 -4.82 -4.52 -4.66 -4.49 -3.14 -3.35 -4.02 -3.98

Dpred 1480.87 569.10 578.88 572.05 586.29 582.95 580.63 708.25 674.47 666.38 672.09
D∗pred - -0.89 -0.87 -0.88 -0.86 -0.87 -0.87 -0.71 -0.75 -0.76 -0.75

Table 4.5. Results for simulation Setting 4 for the mean squared errors (MSE, MSEvary, MSEconst,
MSE∗, MSE∗

vary, MSE∗
const), the predictive deviance referring to the additional sampled test data (Dpred,

D∗
pred) for MLridge and the loss functions D (deviance based on objects), D.a (deviance based on individual

data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index). The subscripts marg and reg denote a marginal censoring
model and a regression censoring model, respectively. The displayed values represent the means over all
100 simulation runs. Bold values indicate the best value in each case.

Setting 4

In simulation scheme 4 the censoring process depends on covariates. This is challenging,
because all IPCW estimators of Section 4.2.1 regarding discrete survival times assume
random censoring. Here, the MSE of the ML-method denotes 1.26 · 1030. The results for
Setting 4 are summarized in Table 4.5. Therein, the results of the predictive deviance D
outperforms the results of D.a in all cases. Apart from that, the predictive deviance yields
best results for all MSE values, Dpred and D∗pred. The Schemper-Henderson estimator using a
regression censoring model SHreg performs slightly better compared to the estimator SHmarg

using a marginal censoring model. On the other hand, for the concordance index the use
of a marginal censoring model C∗marg tends to perform better than the use of a regression
censoring model (C∗reg).

Again, there are no considerable differences between the boxplots of the log ratios
log(MSE(·)/MSE(MLridge)) and log(Dpred(·)/Dpred(MLridge)) for the marginal censoring
model (Figure 4.5) and the regression censoring model for the IPCW estimators (Figure
A.3). Analogous to Setting 3, the Schemper Henderson estimator SH and the concordance
index C∗ yield worst results, whereas all other measures perform similarly. This is equiva-
lent for the MSE and the prediction accuracy (Figure 4.5a and Figure 4.5b). However, in
case of violating the random censoring assumption the overall level of the MSE as well as
the prediction accuracy are somewhat worse compared to the other settings.

Setting 5

The results of simulation Setting 5 are summarized in Table 4.6. In comparison to the
previous settings, a penalty achieving piecewise time-constant coefficient estimates is used
in Setting 5. The corresponding MSE of the underlying ML-model denotes 155.23. It is
not obvious if the predictive deviance D or D.a yields better results for all cases. The
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Figure 4.5. Boxplots of the mean squared errors and predictive accuracy for Setting 4 using a marginal
regression model for IPCW estimators for D (deviance based on objects), D.a (deviance based on individual
data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index)

MSE is minimal for the predictive deviance D, the discrete ranked probability score PR
and the Brier score BR. MSEvary yields minimal results for PR. Except for the Schemper-
Henderson estimator SH the values for MSEconst are similar for all measures. There is no
stability concerning the performance of the different loss functions, since D performs best
for MSE*, D.a performs best for MSE∗vary and C∗marg performs best for MSE∗const. However,
for the predictive deviances Dpred and D∗pred the results are very similar over all measures,
except for SH yielding worse results. In general, no measure outperforms the others.

The boxplots of the log ratios log(MSE(·)/MSE(MLridge)) and log(Dpred(·)/Dpred(MLridge))
dealing with marginal regression models (Figure 4.6) and the boxplots dealing with cen-
soring regression models for the IPCW estimators (Figure A.4) are in high accordance. It
can be seen, that the predictive deviance D possesses a lower median MSE value than for
D.a. Again, the Schemper Henderson estimator SH and the concordance index C∗ yield the
worst results.



82 4. Choice of Tuning Parameter

MLridge D D.a PR BR BSmarg BSreg SHmarg SHreg C∗marg C∗reg

MSE 33.66 0.79 0.82 0.79 0.79 0.93 0.93 2.44 2.44 1.06 1.05
MSEvary 34.35 1.87 2.08 1.82 1.72 2.48 2.44 3.50 3.50 3.10 3.08
MSEconst 21.54 0.25 0.25 0.25 0.25 0.25 0.25 1.86 1.76 0.25 0.25

MSE* - -3.78 -3.55 -3.73 -3.89 -3.72 -3.62 -1.89 -1.87 -3.17 -3.17
MSE∗vary - -3.02 -3.06 -3.00 -3.04 -2.96 -2.66 -1.68 -1.64 -2.34 -2.33
MSE∗const - -4.31 -4.19 -4.14 -4.13 -4.26 -4.30 -2.33 -2.32 -4.43 -4.23

Dpred 1119.57 617.39 618.57 619.24 617.47 626.26 626.26 688.99 687.49 630.41 630.41
D∗pred - -0.58 -0.59 -0.59 -0.59 -0.60 -0.59 -0.37 -0.35 -0.56 -0.56

Table 4.6. Results for simulation Setting 5 for the mean squared errors (MSE, MSEvary, MSEconst,
MSE∗, MSE∗

vary, MSE∗
const), the predictive deviance referring to the additional sampled test data (Dpred,

D∗
pred) for MLridge and the loss functions D (deviance based on objects), D.a (deviance based on individual

data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index). The subscripts marg and reg denote a marginal censoring
model and a regression censoring model, respectively. The displayed values represent the means over all
100 simulation runs. Bold values indicate the best value in each case.
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Figure 4.6. Boxplots of the mean squared errors and predictive accuracy for Setting 5 using a marginal
regression model for IPCW estimators for D (deviance based on objects), D.a (deviance based on individual
data points), PR (ranked probability score), BR (Brier score), BS (modified Brier score), SH (Schemper-
Henderson estimator), C∗ (concordance index)
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4.4. Summary and Conclusion

This chapter is based on the modeling approach in Chapter 3. That means, in both
chapters, a penalized regression model using a binary regression model with comple-
mentary log-log link was used for fitting discrete survival models. In Chapter 3, the
tuning parameter of this penalization approach was chosen by cross-validation with the
predictive deviance as loss function. In this chapter, it was investigated if the performance
of such penalized regression models can be improved by modifying the loss criterion.
Therefore, several prediction measures used in the framework of continuous survival
outcomes are adapted to discrete time survival outcomes. The following measures were
used: the predictive deviance, the discrete ranked probability score, the Brier score, the
modified Brier score, the Schemper-Henderson estimator and the concordance index. The
performance of these alternative loss functions is investigated by means of a simulation
study. All five settings of the simulation study are conducted twice, one time with a
marginal censoring model and one time with a regression censoring model for the survival
function of the censoring process used in the IPCW estimates. Unlike the statement of
Gerds and Schumacher (2006), the simulation results do not provide general evidence that
either a marginal censoring model or a regression censoring model performs better.
Furthermore, the predictive deviance D (regarding complete cases per object with respect
to the cross-validation splits) was compared to the predictive deviance D.a (using individual
data points with respect to the cross-validation splits). In conclusion, with regard to all
simulation settings, it can be said that D should be preferred to D.a. In most of the
simulation cases, D outperforms D.a considerably or at least yield similar results.
Generally, the predictive deviance D is recommended for the choice of the loss function. In
many cases D outperforms the other measures or yields only slightly worse results. This
can be explained by the predictive deviance being a likelihood-based measure. Hence, the
optimization criteria maximizing the penalized likelihood as well as the predictive deviance
referring to the loss function, are based on the likelihood.

Finally, some remarks to the concordance index have to be made. In several cases it out-
performs the other measures. However, throughout all simulation settings the concordance
index has chosen very high values for the tuning parameter ξ. This leads to a large amount
of parameters that are set to almost zero. Apart from that, the related curves of the
cross-validation scores were sometimes degenerated. Although the concordance index is
derived by time-dependent measures, as the time-dependent sensitivity and specificity and
the time-dependent AUC curve, it seems to be inappropriate in the context of discrete-time
survival analysis with respect to time-varying coefficients.





5. Penalization in Survival Models with
Frailties

In this chapter the incorporation of random effects or frailties for survival models for discrete
duration time is considered. These frailties control for unobserved heterogeneity. After a
short introduction (Section 5.1), a small simulation study is presented that illustrates the
issue of unobserved heterogeneity. The methodology and the estimation of discrete survival
models with frailties are described in Section 5.2. In analogy to the previous chapters, a
penalty term is incorporated that also allows for variable selection (Section 5.3) and the
performance of the proposed method is judged by means of a simulation study (Section
5.4). The resulting method is applied to the same real data examples as in Chapter 3
illustrated in Section 5.5. Section 5.6 contains concluding remarks. In the following, only
the notation and explanations with respect to grouped survival times are considered, but
they can easily be modified to truly discrete survival times.

5.1. Introduction

In the previous chapters, it has been implicitly assumed that the considered population is
homogeneous. However, the underlying data in survival models deal with repeated mea-
surements that cause certain heterogeneity in the data. That means, the hazard rates after
comprehension of all relevant covariates may differ for several objects. In this case, un-
observed heterogeneity is existent. If unobserved heterogeneity is disregarded the hazard
rates tend to a bias towards negative duration dependence (Heckman and Singer, 1984a).
In addition, ignoring unobserved heterogeneity may lead to considerable bias for the ef-
fects of the observed covariates (e.g. Lancaster, 1990; Hougaard et al., 1994; van den Berg,
2001). A possible approach to deal respectively with unobserved heterogeneity or repeated
measurements, is the incorporation of unobserved latent variables. These random effects or
frailty components control for the variation between the objects. Random effects are shared
by the measurements of an object and introduce a correlation between the measurements.
The way of incorporating frailties to control for unobserved heterogeneity was first in-
troduced for continuous duration models (Lancaster, 1990; Heckman and Singer, 1984a;
van den Berg, 2001). In the area of biostatistics and demographics, models with incorpo-
rated latent variables are denoted as frailty models and were firstly discussed in Vaupel
et al. (1979). Tuma et al. (1979) introduced these models in the context of event history
analysis in social sciences. In econometrics, unobserved heterogeneity was initially covered
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by Heckman and Singer (1982, 1984a,b), Flinn and Heckman (1982) and Elbers and Ridder
(1982). Unobserved heterogeneity in the context of discrete survival analysis was discussed,
for example, by Scheike and Jensen (1997), Jenkins (1995) or Muthén and Masyn (2005).

Random effects models are also known as mixed models and were introduced by Fisher
(1919). Mixed models contain two kinds of effects: population-specific fixed effects and
individual-specific random effects. They focus on the conditional distribution of each re-
sponse value conditional on the corresponding random effect. An alternative method to
control for the dependence structure of repeated measurements is the generalized estima-
tion equation approach proposed by Liang and Zeger (1986). In contrast to mixed models,
the response values are modeled marginally by using only population-specific effects.
The incorporation of frailties in the context of discrete survival analysis leads to generalized
linear mixed models. This model class is widely used to model correlated and clustered
responses. The computational issues in generalized mixed models require special tools lead-
ing to a great deal of research, accelerating in the 1990s. This results in a wide range of
estimation methods. For example, Breslow and Clayton (1993), Schall (1991) and Wolfinger
and O’connell (1993) proposed a joint maximization approach. That means, maximizing
the joint likelihood of the observed data and the random effects simultaneously. Addition-
ally, numerical computational techniques (e.g. Booth and Hobert, 1999; McCulloch, 1997)
as well as fully Bayesian approaches (e.g. Zeger and Karim, 1991; Clayton, 1996) were
introduced.

A survival model for discrete duration time is considered by means of a binary regression
model (see Chapter 2). By incorporating time-varying covariate effects using B-spline basis
functions for the flexible functions, this model can be perceived as a generalized linear
model (see Chapter 3). Furthermore, the inclusion of random effects yield generalized
linear/additive mixed models. Hence, for generalized linear/additive mixed models, the
computation procedure tremendously influences the estimation approach. Especially in
the case when many covariates are incorporated in the model, leading to a large number of
parameters, the estimation of the parameters become unstable or even may be nonexistent.
This problem becomes even more apparent if covariate effects are also assumed to be
time-varying. This usually leads to an incorporation of only few covariates in the model.
Hence, to avoid such problems, methods selecting relevant predictors are of particular
importance.

Simple conventional variable selection methods are represented by Forward - and Backward-
Stepwise Selection (e.g. Hastie et al., 2009). However, these methods exhibit stability prob-
lems that are based on the inherent discreteness of the method (Breiman, 1996).
An alternative model selection approach that is more up-to-date is based on regulariza-
tion techniques. Thereby, penalization is an approved regularization approach. Adding
a penalty term to the log-likelihood yields shrinkage of the estimates towards zero. De-
pending on the penalty, it is even possible to set particular estimates exactly to zero. One
of the oldest penalization methods is the ridge method (Hoerl and Kennard, 1970) that
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uses a L2-type penalty on the regression coefficients. However, no variable selection can be
performed by using this penalty term. An alternative penalty term that has become very
popular is the lasso penalty term using a L1-type penalty on the regression coefficients.
In this case, variable selection can be carried out. As the lasso merely selects individual
predictors, the penalty is unsatisfactory in the case of grouped data, for example with cat-
egorical predictors. The group lasso proposed by Yuan and Lin (2006), can overcome these
problems. To get consistent estimates of the parameters, Zou (2006) extended the lasso to
the adaptive lasso by including weights on the penalized coefficients.
Several further improvements for the lasso method have been designed in the last decade,
for example the fused lasso (Tibshirani et al., 2005), SCAD (Fan and Li, 2001), elastic
net (Zou and Hastie, 2005), Dantzig selector (Candes and Tao, 2007) and DASSO (James
et al., 2009). Using penalization techniques for the selection of variables in mixed models
is still in the beginning. For example, Groll and Tutz (2014) introduced a L1-penalization
for generalized linear models. A coordinate descent algorithm for generalized linear mixed
models including the elastic net was proposed by Friedman et al. (2010). To utilize the
features of penalization approaches and simultaneously control for unobserved heterogene-
ity, a penalization approach for discrete survival models with frailties is proposed in the
following. For this purpose, the models and the likelihood of Chapter 3 are respectively
extended by a random effect. To estimate the resulting penalized likelihood, the PIRLS
algorithm of Chapter 3 is modified.

Simulation: The effect of unobserved heterogeneity

In this section a short simulation study to evaluate the consequences of ignoring unobserved
heterogeneity is conducted. This issue already has been investigated by Nicoletti and
Rondinelli (2010) but they do not consider time-varying coefficients. Baker and Melino
(2000) and Gaure et al. (2007) investigated the omitting of unobserved heterogeneity as
well, but they assumed a non-parametric distribution for the unobserved heterogeneity.

The underlying data needed for the simulation to model the discrete hazard rate λ(t|z) =
P (T = t|T ≥ t, z) = F (η), where F (·) denotes an appropriate cumulative distribution
function, are generated along the lines of Section 3.4. The only difference is the incorpora-
tion of a random intercept in the linear predictor. Apart from that, the survival time Ti is
obtained by inversion sampling and the censoring times Ci are sampled from a multinomial
distribution M(n,pc) with pc = 1/

∑
t(exp(t/10)) exp(t/10), t = 1, ..., 30. The minimum

of survival time and censoring time defines the observed survival time ti = min(Ti, Ci) and
the censoring indicator δi, indicating right censoring, then follows from definition (2.6).
Afterwards, the data has to be restructured as proposed in Section 2.2.2. The true linear
predictor is generally defined by

ηtrueit = bi + β0t +
r∑
j=1

zijβjt,
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where the random effects bi are specified by bi ∼ N (0, σ2
b ) with the scenarios σb =

(0, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2). The remaining components are specified in more detail in
the corresponding sections of the simulation settings. Moreover, the complementary log-log
link is used resulting in a binary generalized additive mixed model. For estimation, the
gam function supplied by the R add-on package mgcv (Wood, 2006) is used. Thereby, the
smooth components are estimated by cubic regression splines. The estimation of mixed
models in the gam function is carried out by penalized maximum likelihood techniques. For
both settings, 100 simulation runs are executed.
Two different types of models are estimated for each setting. The fixed effects are estimated
in both models identically but the first model incorporates random intercepts, whereas
the second (marked with tilde) ignores them. With βT = (β01, ..., β0q, ..., βr1, ..., βrq) and

β̃
T

= (β̃01, ..., β̃0q, ..., β̃r1, ..., β̃rq), the performance of the estimates is evaluated separately
for the structural components and the variance by the following mean squared errors

MSEβ = ||β − β̂ ||2, MSEβ̃ = ||β − ˆ̃β ||2, MSEσb = ‖σb − σ̂b‖2 .

Setting 1

At the beginning, the focus lies on a simple intercept model given by

ηtrueit = bi + β0t,

where i = 1, ..., n, n = 500 and t = 1, ..., 30. The time-varying intercept is defined by

β0t∗ = 1.5 · Γ(ν, α)− 3, ν = 2, α = 1 and t∗ = (t− 1)/6,

where Γ(ν, α) denotes the density of a gamma distribution with shape parameter ν and
scale parameter α. By incorporating σb = (0, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2), eight different
scenarios are provided. The two models used for fitting are given by

λmodel(t|z) = F (bi + β0t) λ̃model(t|z) = F (β̃0t),

where F (·) = 1− exp(− exp(η)) defines the complementary log-log link. The estimates of
β0t results from a simple intercept model that rightly incorporates random effects as in the
true model and the estimates of β̃0t from a simple intercept model that does not consider
random effects. Hence, estimates of σb are only provided by the first model.

Results for Setting 1 are shown in Table 5.1 and Figures 5.1, 5.2. The best mean squared
errors referred to the variance are obtained for σb = 0.25 (Table 5.1). For σb ≥ 0.25 all
MSE values increase continuously and for σb > 0.1, MSEβ yields better MSE values than
MSEβ̃.

In Figure 5.1, the performance of the MSE values of σb, β and β̃ is illustrated. In particular,
for higher values of σb all MSE values increase considerably. For small values of σb the MSE
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σb MSEσ MSEβ MSEβ̃

0.00 0.052 0.039 0.032
0.10 0.019 0.039 0.037
0.25 0.007 0.035 0.045
0.50 0.110 0.063 0.079
0.75 0.431 0.136 0.165
1.00 0.850 0.252 0.366
1.50 1.401 0.560 0.873
2.00 2.192 0.866 1.359

Table 5.1. Mean squared errors for σb, β and β̃ for Setting 1. Thereby, β indicates the estimates resulting
from a model with incorporated random effects and β̃ the estimates resulting from a model ignoring the
random effects. The displayed values represent the means over all simulation runs.

values of the structural components are quite similar but for higher values of σb the MSE
values belonging to β are considerably lower than those belonging to β̃ . When the values of
σb exceed 0.75, the corresponding MSE values become larger. This is due to the fact, that
in this cases the value of the random intercept bi has a high impact on the linear predictor
compared to the remaining fixed effects leading to a more unstable data basis.

Exemplarily for the case σb = 0.5, the estimates of the baseline effects β0t are shown in
Figure 5.2. It is obvious that the model ignoring the random effects λ̃(t|z) underestimates
the baseline effects. The increasing deviation of the estimated baseline effects at the end
of the time periods is due to the data situation. That means, due to censoring and the
occurrence of events the number of objects that are at risk diminish with increasing time.

Setting 2

In this setting, the realizations of a time-independent normal distributed covariate Zi
iid∼

N (1, 0.5) are included in the model. This leads to the true linear predictor

ηtrueit = bi + β0t + ziβ1t,

where i = 1, ..., n, n = 550 and t = 1, ..., 30. The time-varying coefficients β0t and β1t are
defined by

β0t∗ = 1.5 · Γ(ν, α)− 3, ν = 2, α = 1 and t∗ = (t− 1)/6,

β1t∗ = Exp(1)− 1, t∗ = t/5,

where Γ(ν, α) denotes the density of a gamma distribution with shape parameter ν and
scale parameter α. Moreover, Exp(·) denotes the density of an exponential distribution.
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Figure 5.1. Mean squared errors and corresponding boxplots for σb, β and β̃ for Setting 1. Thereby,
β indicates the estimates resulting from a model with incorporated random effects and β̃ the estimates
resulting from a model ignoring the random effects.
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Figure 5.2. Baseline hazard functions for Setting 1 for σb = 0.5. Thereby, β0t indicates the estimates
resulting from a model with incorporated random effects and β̃0t the estimates resulting from a model
ignoring the random effects. The red line indicates the true baseline hazard function.
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σb MSEσ MSEβ MSEβ̃

0.00 0.002 0.085 0.080
0.10 0.007 0.078 0.096
0.25 0.044 0.069 0.083
0.50 0.212 0.060 0.099
0.75 0.409 0.066 0.117
1.00 0.602 0.108 0.168
1.50 1.175 0.257 0.424
2.00 2.323 0.365 0.750

Table 5.2. Mean squared errors for σb, β and β̃ for Setting 2. Thereby, β indicates the estimates resulting
from a model with incorporated random effects and β̃ the estimates resulting from a model ignoring the
random effects. The displayed values represent the means over all simulation runs.

By incorporating σb = (0, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2), eight different scenarios are provided.
The two models used for fitting are given by

λmodel(t|z) = F (bi + β0t + zβ1t) λ̃model(t|z) = F (bi + β̃0t + zβ̃1t),

where F (·) = 1 − exp(− exp(η)) defines the complementary log-log link. The first fitted
model rightly incorporates random intercepts as in the true model, whereas the second
(denoted by tilde) ignores random intercepts.

The MSEσ values increase continuously for higher values of σb (Table 5.2). Except for
the setting with σb = 0, the values of MSEβ outperform that of MSEβ̃. In particular, for
σb ≥ 0.1 MSEβ is considerably smaller than MSEβ̃. The MSE values in Figure 5.3, where
the MSE values of all simulation runs including the corresponding boxplots are illustrated,
arrive to the same conclusion. The corresponding baseline effects are shown exemplary for
σb = 0.5 (Figure 5.4). Compared to the red line marking the true baseline hazard the curves
of β̃0t cannot cope with the underlying data structure. In contrast, β0t yield good results
especially for early observation times.
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Figure 5.3. Mean squared errors and corresponding boxplots for σb, β and β̃ for Setting 2. Thereby,
β indicates the estimates resulting from a model with incorporated random effects and β̃ the estimates
resulting from a model ignoring the random effects.
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Figure 5.4. Baseline hazard functions for Setting 2 for σb = 0.5. Thereby, β0t indicates the estimates
resulting from a model with incorporated random effects and β̃0t the estimates resulting from a model
ignoring the random effects. The red line indicates the true baseline hazard function.
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5.2. Discrete Survival Models with Frailties

The previous simulations have shown that ignoring unobserved heterogeneity may lead to
problems with the estimation results. In many applications with regard to discrete-time
survival analysis, a considerable variation in the measurements of an object might occur.
Therefore, in this section, random intercepts are incorporated in discrete survival models
to control for the unobserved heterogeneity.

5.2.1. Methodology

In analogy to the previous chapters, time T is considered as a non-negative random
variable taking values from {1, ..., q}. Let time T be divided into q + 1 intervals
[a0, a1), [a1, a2), ..., [aq−1, aq), [aq,∞), where T = t denotes an event within interval [at−1, at).
The main issue in survival analysis is the modeling of the discrete hazard function given
by

λ(t|zit,xit) = P (T = t|T ≥ t, zit,xit) = F (ηit), i = 1, ..., n, t = 1, ..., q, (5.1)

where F (·) is an appropriate cumulative distribution function (see Chapter 2). In the
following, F (·) = 1 − exp(− exp(·)) is assumed. A common feature of survival data is
censoring that have to be incorporated in the modeling approach. For the i-th subject let
Ci denote the individual censoring time. Moreover, random censoring is assumed, that is,
the censoring time C is independent of the survival time T . Consequently, the observed
survival time is defined by ti = min(Ti, Ci). The censoring indicator δi = I(Ti ≤ Ci)
determines whether observation i is right censored (δi = 0) or an event occurs (δi = 1)
with regard to the interval [ati−1, ati). By defining binary event indicators yit = 1, for
t = ti and δi = 1 and yit = 0, otherwise, the model (5.1) can be considered as a binary
regression model (see Chapter 2). Hence, let yit denote the binary outcome of an object
i, i = 1, ..., n, in period t, t = 1, ..., ti, and let (zit,xit)

T = (zit1, ..., zitr, xit1, ..., xits) with
p = r + s be a vector of realizations of explanatory variables that may vary over time.

The linear predictor for object i, i = 1, ..., n, and time period t, t = 1, ..., q, is defined by

ηit = β0t +
r∑
j=1

zitjβjt +
s∑
l=1

xitlγl, (5.2)

where the parameter β0t represents the baseline hazard function that is the same for
all individuals, that means unobserved heterogeneity is ignored. Moreover, z 1, ...,z r

with zT j = (z11j, ..., z1tij, ..., zn1j, ..., zntij) denote the observations of the covari-
ates that are allowed to exhibit time-varying effects and x 1, ...,x s with xT l =
(x11l, ..., x1til, ..., xn1l, ..., xntil) define the observations of the covariates that are restricted
to have constant effects. In other words, the model implies time-varying coefficients
βTjt = (β0t, βrt, ..., βrt) including a time-varying intercept β0t, whereas γT = (γ1, ..., γs) is
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assumed to be time-constant. When the covariates do not depend on time, the time index
is omitted, that is, zitj = zij and xitl = xil.

To control for unobserved heterogeneity, the linear predictor (5.2) can be extended by a
random intercept resulting in

ηit = bi + β0t +
r∑
j=1

zitjβjt +
s∑
l=1

xitlγl,

where βjt, j = 0, ..., r, and γ l, l = 1, .., s, t = 1, ..., q, determine the fixed effects. More-
over, bi is considered to be an individual-specific random effect. With explanatory vari-
ables zTit = (zit1, ...,zitr) and xTit = (xit1, ...,xits) the conditional means λ(t|zit,xit, bi) =
E(yit|zit,xit, bi) are considered. The individual-specific parameters bi are assumed to be
independent with E(bi) = 0 and have density p(bi). The mean of the bi is set to zero be-
cause the population mean is already represented by the fixed baseline hazard parameters
β0t. The individual-specific random effects are assumed to be normally distributed with

b ∼ N (0,Q),

where Q = diag(σ2
b , ..., σ

2
b ) and bT = (b1, ..., bn). Including individual-specific random

effects bi, responses yit given bi are conditionally independent. Furthermore, the random
effects bi are assumed to be independent from the covariates.

Along the lines of Chapter 2, under random censoring the probability of observing (ti, δi)
can be written as

P (ti, δi|zi,xi, bi) = P (Ti = ti)
δiP (Ti > ti)

1−δiP (Ci ≥ ti)
δiP (Ci = ti)

1−δi ,

where the vectors of covariates zi and xi are assumed to be time-independent. This prob-
ability is defined given covariates and random effect bi, which are suppressed on the right
hand side of the equation. Under the assumption that censoring contributions do not de-
pend on the parameters that determine the survival time (non-informative in the sense of
Kalbfleisch and Prentice, 2002), the factor ci = P (Ci ≥ ti)

δiP (Ci = ti)
1−δi can be omitted

and a simpler form is given by

P (ti, δi|zi,xi, bi) =

ti∏
t=1

λ(t|zi,xi, bi)yit(1− λ(t|zi,xi, bi))1−yit . (5.3)

Moreover, analogous to Chapter 2, binary event indicators representing the binary se-
quences, are incorporated in Equation (5.3). They are defined by

yit =

{
1, for t = ti and δi = 1

0, otherwise.
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As the probability P (ti, δi|zi,xi, bi) is defined given the random effect bi, the unconditional
probability can be obtained by

P (ti, δi|zi,xi) =

∫
P (ti, δi|zi,xi, bi)p(bi)dbi

=

∫ ti∏
t=1

λ(t|zi,xi, bi)yit(1− λ(t|zi,xi, bi))1−yitp(bi)dbi.

5.2.2. Estimation

The fixed parameters β and γ and σ2
b are estimated by maximizing the marginal log-

likelihood

l(β,γ, σ2
b ) =

n∑
i=1

log

(∫ ti∏
t=1

λ(t|zi,xi, bi)yit(1− λ(t|zi,xi, bi))1−yitp(bi)dbi

)
. (5.4)

The intractable integral in the marginal log-likelihood (5.4) is the main impediment to apply
mixed models for discrete survival models. There are two general types of solutions of the
integral. The first is to approximate the integral numerically, so that the marginal likelihood
can be computed and optimized. The second is the approximation of the integrand leading
to a closed form of the integral of the approximation. An overview regarding the statistical
inference of generalized linear mixed models can be found in Tuerlinckx et al. (2006) and
Fahrmeir and Tutz (2001).
An approximation of the marginal log-likelihood (5.4) can be obtained, for example, via
(adaptive) Gauss-Hermite quadrature (e.g. Bock and Aitkin, 1981; Stroud and Secrest,
1966; Pinheiro and Bates, 1995) or Monte Carlo integration (e.g. Tuerlinckx et al., 2006;
Fahrmeir and Tutz, 2001). Two approaches for maximizing the resulting approximated
likelihood may be used. Firstly, a direct maximization approach using fitting techniques
for generalized linear models (e.g. Fahrmeir and Tutz, 2001) and secondly, an indirect
maximization approach based on the expectation-maximization algorithm (e.g. Hinde, 1982;
Brillinger and Preisler, 1983; Booth and Hobert, 1999).

Instead of numerically approximating the integral, the integrand itself may be approxi-
mated. The goal is then to find an approximation leading to a tractable integral, so that
the closed-form expression that follows from it can be maximized. A possible method is
the penalized quasi-likelihood (PQL) approach, which has been suggested by Breslow and
Clayton (1993), Schall (1991) and Stiratelli et al. (1984). Thereby, the estimation of the
variance σ2

b is separated from the estimation of the parameters β, γ and bi, that are col-
lected in ωT = (βT ,γT , b1, ..., bn). As a discrete survival model can be represented by a
binary regression model whose log-likelihood has a considerable simpler form, the likeli-
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hood of a binary regression model is used in the following. This results in the marginal
log-likelihood

l(ω, σ2
b ) =

n∑
i=1

log

(∫
f(yi|ω, σ2

b )p(bi)dbi

)
, (5.5)

where f(yi|ω, σ2
b ) =

∏ti
t=1 λ(t|zi,xi, bi)yit(1 − λ(t|zi,xi, bi))1−yit with yTi = (yi1, ..., yiti)

defining the transitions of object i and p(bi) denotes the density function of the random
effects. The approximation along the lines of Breslow and Clayton (1993) is based on a
Laplace approximation yielding the penalized likelihood

lapp(ω, σ2
b ) =

n∑
i=1

log f(yi|ω, σ2
b )−

σ2
b

2

n∑
i=1

b2
i , (5.6)

that can be maximized in place of the log-likelihood (5.5). The penalty term
σ2
b

2

∑n
i=1 b

2
i

stems from the approximation based on the Laplace method (see Appendix A.2). The PQL
approach uses the concept of joint maximization of the penalized likelihood with respect
to the parameters and the random effects appended by the estimation of the variance of
the random effects. That means, given an estimate σ̂2

b the profile likelihood lapp(ω, σ̂2
b ) is

maximized and separately the random effects parameter σ2
b is estimated.

Additionally, the penalized log-likelihood (5.6) can also be motivated as a posterior mode
estimation (see Fahrmeir and Tutz, 2001; Tutz, 2012; Fahrmeir et al., 2013). The PQL
method is implemented in the functions glmmPQL and gamm of the R add-on packages MASS
(Venables and Ripley, 2002) and mgcv (Wood, 2014, 2006), respectively. However, for mod-
eling discrete frailty survival times with time-varying coefficients the R-function glmmPQL

yields no meaningful results. This could possibly be due to the fact that glmmPQL is based
on fitting ordinary ML-estimates that often do not converge. Hence, in this framework the
R function glmmPQL cannot be recommended.

5.3. Penalization

To include regularization techniques in discrete frailty survival models, the penalized log-
likelihood (5.6) has to be extended by a further penalty term that determines the properties
of the estimated fixed effects. Hence, a penalty term following Chapter 3 can be incorpo-
rated yielding the penalized log-likelihood

lpen(β,γ, b, σ2
b ) = lpen(ω, σ2

b ) = lapp(ω, σ2
b )− Jξ0,ξ(β,γ).

The estimation of the random effects bi and the corresponding variance σ2
b is already very

extensive. To yield more parsimonious models, the time-varying coefficients are expanded
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in equally spaced B-splines with βjt =
∑mj

m=1 αjmBjm(t), j = 0, ..., r. The corresponding
penalized log-likelihood is obtained by

lpen(α,γ, b, σ2
b ) = lapp(α,γ, b, σ2

b )− Jξ0,ξ(α,γ). (5.7)

A penalty that enforces variable selection and smoothness of the baseline effects is given
by

Jξ0,ξ(α,γ) = ξ0

m0∑
m=2

(α0m − α0,m−1)2+ξ

(
φ

r∑
j=1

ψj
∥∥ζj∥∥2

)
+ξ

(
(1−φ)

r∑
j=1

ϕj ‖αj‖2

)
, (5.8)

where ‖·‖2 denotes the L2-norm and ζTj = (ζj2, ..., ζjmj), ζjm = αjm−αj,m−1, m = 2, ...,mj,
αTj = (αj1, ..., αjmj). The first term of Jξ0,ξ(α,γ) enforces shrinkage of the differences
between adjacent B-spline coefficients of the baseline hazard with the objective of a smooth
function over time. This part of penalization is predominantly incorporated due to stability
reasons. Hence, the tuning parameter ξ0 should be chosen rather small, for example ξ0 =
0.001. By using a group lasso penalty with respect to the differences ζj2, ..., ζjmj , the
second term steers the smoothness of the time-varying covariate effects, but for a value of ξ
large enough, all differences ζj2, ..., ζjmj are removed from the model resulting in a constant
covariate effect. Finally, the third term steers the selection of covariates (see Chapter
3). The latter term corresponds to a group lasso penalty with regard to the parameters
αjm, m = 1, ...,mj, belonging to the j-th covariate. If the tuning parameter ξ exceeds a
certain value, the values of the parameters αj1, ..., αjmj are set to zero and the covariate j
is removed from the model. That means, the penalty term may distinguish if a covariate
effect is incorporated smooth or constant in the model or if it is removed from the model.
Weighting of the second part and the selection part is obtained by parameter φ, that is
a further tuning parameter. Both tuning parameters ξ and φ have to be chosen by an
appropriate technique. The terms ψj =

√
mj − 1 and ϕj =

√
mj are weights that assign

different amounts of penalization to different parameter groups, relative to the respective
group size. In analogy to Chapter 3, the penalty term might be extended by a penalty
regarding the time-constant parameters γl.

For given σ̂2
b the optimization problem reduces to

ω̂α = arg max
ωα

lpen(ωα, σ̂
2
b ) = arg max

ωα

(
lapp(ωα, σ̂

2
b )− Jξ0,ξ(α,γ)

)
,

where the parameters α, γ and b are collected in ωTα = (αT ,γT , bT ). By considering the
whole parameter vector ωTα = (αT ,γT , bT ), the penalized log-likelihood (5.7) can be seen
as a partially penalized approach.
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5.3.1. Numerical Computation

Maximizing the penalized likelihood lpen(ωα, σ̂
2
b ) is obtained by solving

sp(ωα, σ
2
b ) = (∂lpen(ωα, σ

2
b )/∂α

T , ∂lpen(ωα, σ
2
b )/∂γ

T , ∂lpen(ωα, σ
2
b )/∂b

T ) = 0,

where sp(ωα, σ
2
b ) denotes the penalized score function. The closed form of the score function

is given by
sp(ωα, σ

2
b ) = X̃D(ωα)Σ−1(ωα)(y − λ(t|z,x))−Kωα,

where X̃ = [Z̃|X|1], with XT =
[
(x11, ...,x1t1)

T , ..., (xn1, ...,xntn)T
]
, Z̃

T
=[

(z̃11, ..., z̃1t1)
T , ..., (z̃n1, ..., z̃ntn)T

]
and z̃it contains the design of the interactions of the

according covariates and the evaluations of the appropriate B-spline basis functions (see
Equation (3.3) and Chapter 2). Moreover, D(ωα) = ∂h(η)/∂η, h(·) = 1 − exp(− exp(·)),
λ(t|z,x) = h(η), Σ(ωα) = cov(y|ωα) and

K =

(
A 0
0 Q−1

)
.

Thereby, the matrix A contains the penalization components belonging to the local
quadratic approximations of the penalty term Jξ0,ξ(α,γ) (see Chapter 3 and Oelker and
Tutz (2013)) and Q = diag(σ2

b , ..., σ
2
b ) contains the variance components of the random

effects. The corresponding penalized Fisher matrix is defined by

F p(ωα, σ
2
b ) = X̃

T
W (ωα)X̃

T
+K with W (ωα) = D(ωα)Σ−1(ωα)D(ωα)T .

By means of the penalized versions of the score function and the Fisher matrix, a penalized
iteratively re-weighted least squares (PIRLS) algorithm, that is a pseudo Fisher scoring in
this case, can be executed and is given in the following. It is named fpendsm for Frailty
PENalized Discrete Survival Models.

Algorithm fpendsm

Initialization
Compute starting values α̂(0), γ̂(0), b̂

(0)
, (σ̂2

b )
(0) and the linear predictor η̂(0) =

b(0) + Z̃α̂(0) +Xγ̂(0). Set k = 0.

Iteration

1. Determine α̂(k+1), γ̂(k+1), b̂
(k+1)

by

ω̂(k+1)
α =

α̂
(k+1)

γ̂(k+1)

b̂
(k+1)

 = (X̃
T
W (ω̂(k)

α )X̃ +K)−1X̃
T
W (ω̂(k)

α )η̃(ω̂(k)
α ),
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with pseudo-observations η̃(ωα) = X̃ωα + D−1(ωα)(y − λ(t|z,x)). Thereby, the
current estimate of Q = diag(σ2

b , ..., σ
2
b ) is used. More details on the inversion of the

pseudo-Fisher matrix F p(ωα, σ
2
b ) are given in Appendix A.3.

2. Computation of the variance components
Estimates (σ̂2

b )
(k) are typically obtained by an approximate EM-type algorithm or

by an approximate REML-type algorithm (see Section 5.3.2). Thereby, the current
estimates of α, γ, b are used.

Iterate between one step of Fisher scoring (1.) yielding an estimate for ω̂α and one step of
updating σ̂2

b (2.) until convergence.

5.3.2. Computational Details

In the following some details on the algorithm are described. Details on the initialization of
the starting values are outlined and two estimation techniques for the variance components
are described. Furthermore the tuning parameter selection for discrete frailty survival
models is explained. Finally, adaptive penalties are presented.

Starting Values

For the initialization of the starting values α̂(0), γ̂(0), b̂
(0)

, (σ̂2
b )

(0) from step 1 of the algorithm
fpendsm, a corresponding generalized linear mixed model, using a slight ridge penalty of
0.001 for the fixed effects, can be fitted.

Variance-Covariance Components

The penalized log-likelihood approach of the previous section yields estimates of ωα based
on the assumption that σ2

b is known. Variance estimates can be obtained by an approximate

EM-algorithm, using the posterior mode estimates ω̂(k)
α and the posterior curvatures V̂

(k)
ii .

With β̃ = (α,γ), the corresponding formula for computing (σ̂2
b )

(k) is given by

(σ̂2
b )

(k) =
1

n

n∑
i=1

(V̂
(k)
ii + (b̂

(k)
i )2),

where Vii can be derived by

Vii = F−1
ii + F−1

ii Fiβ̃act(F β̃actβ̃act −
n∑
i=1

Fβ̃actiF
−1
ii Fiβ̃act)

−1Fβ̃actiF
−1
ii .

In analogy to Groll (2011), β̃act is the set of “active” covariates, corresponding to the
non-zero coefficients and X̃act is the corresponding design matrix that consists only of the
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columns belonging to non-zero coefficients. F β̃actβ̃act , Fiβ̃act , Fβ̃acti and Fii are the elements

of the partitioned Fisher matrix, for details see Appendix A.3 with β̃act and X̃act in place
of β̃ and X̃.

An alternative estimation of variances was proposed in Breslow and Clayton (1993), wherein
the authors suggested to maximize the profile likelihood that is associated with the normal

theory model. With β̃ = (α,γ) and replacing β̃ by ˆ̃β, the following term

l(σ2
b ) =− 1

2
log(|V (ω̂α)|)− 1

2
log(

∣∣XTV −1(ω̂α)X
∣∣)

− 1

2
(η̃(ω̂α)−X ˆ̃β)TV −1(ω̂α)(η̃(ω̂α)−X ˆ̃β)

has to be maximized with respect to σ2
b , with pseudo-observations η̃(ωα) = X̃ωα +

D−1(ωα)(y − λ(t|z,x)) and V (ωα) = W−1(ωα)1Q1T , Q = diag(σ2
b , ..., σ

2
b ), W (ωα) =

D(ωα)Σ−1(ωα)D(ωα)T and Σ(ωα) = cov(y|ωα). Having calculated ω̂(k)
α , the obtained

estimate (σ̂2
b )

(k) is an approximate REML-type estimate for σ2
b .

Tuning Parameter Selection

The tuning parameters ξ and φ are chosen by K-fold cross-validation (see Section 3.2.2).
However, there is a special characteristic of the cross-validation with respect to discrete
frailty survival models that has to be accounted for. The hazard rate for discrete survival
models λ(t|z,x) = P (T = t|T ≥ t, z,x) describes the conditional probability for the risk of
failure in interval [at−1, at), given the interval is reached. Therefore, it is not an adequate
cross-validation approach to separate single observations from the entire measurement of an
object. This fact was confirmed by the results of Chapter 4. Consequently, all observations
of an object are located either in the learning sample or in the test sample. If the measure-
ments of an object are located in the test sample, there are no corresponding estimates of
the random effects that are available for prediction.
In this case, the random effects are assumed to be zero that is their most likely value as
the random effects are normally distributed with bi ∼ N (0, σ2

b ). Effectively, for prediction,
only the “fixed part” of the model is used.
In analogy to Chapter 3, the predictive performance in the cross-validation approach is
assessed by the predictive deviance. For a new observation (tpredi , δpredi , zpredi ,xpredi ), with
zpredi = (zpredi1 , ...,zprediti

)T and xpredi = (xpredi1 , ...,xprediti
)T the predictive deviance is defined

by

Di = −2

ti∑
t=1

{
ypredit log(λ̂(t|zpredit ,xpredit )) + (1− ypredit ) log(1− λ̂(t|zpredit ,xpredit ))

}
,

where λ(t|zpredit ,xpredit ) = P (Ti = t|Ti ≥ t, zpredit ,xpredit ) and (ypredi1 , ..., yprediti
) denotes the

transitions over periods of object i. For choosing the tuning parameters ξ and φ a two-
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dimensional grid of possible parameters is used, on which the optimal parameter combina-
tion is chosen.

Adaptive Penalties

Similar to Section 3.2.1, the idea of adaptive penalties can be used by weighting the penalty
terms by the inverse of the respective unpenalized parameter estimates. This modification
is applied due to the inconsistency of simple lasso or group lasso penalties (Zou, 2006; Wang
and Leng, 2008). Given the penalty (5.8), the adaptive version is obtained by replacing the
weights ψj and ϕj by

ψaj =

√
mj − 1

||ζ̂
ML

j ||2
, ϕaj =

√
mj

||α̂ML
j ||2

, (5.9)

where ζ̂
ML

j and α̂ML
j denote the according ML-estimates. The intuition behind this weight-

ing procedure is rather straightforward. With very large data sets, unpenalized point
estimates can be expected to be rather accurate. Thus, the norm of ML-estimates of
parameter groups belonging to relevant predictors is rather large. Consequently, the corre-
sponding penalization should be small. By contrast, a strong penalization goes along with
parameter groups belonging to irrelevant predictors and, hence, leading to a small norm
of ML-estimates. Moreover, the ML-estimates employed in the adaptive weights (5.9), can
be replaced by any

√
n-consistent estimates. For example, a ridge penalty can be used in

situations where the ML-estimates do not exist.

5.4. Simulation

In this section, the performance of fpendsm, that means, combining different penalty terms
in discrete-time survival frailty models, is evaluated. Moreover, it is compared to methods
using conventional generalized additive mixed models implemented in the functions gam and
gamm of the R add-on package mgcv (Wood, 2014, 2006). For gam, the fitting approach of
the smooth terms is carried out by a conversion to penalized regression terms. In gamm, the
smooths are partly specified as fixed effects, but the wiggly components of the smooths are
treated as random effects providing a penalized quasi-likelihood approach for generalized
additive models. As in fpendsm, in gam it is possible to penalize the parameters representing
the baseline hazard separately. However, the selection part is conducted differently. In
fpendsm, it can be chosen which covariate effects might be set to zero and fpendsm allows to
distinguish whether an effect is time-varying or time-constant. The mgcv package provides
a model selection removing complete smoothing terms from the model by adding an extra
penalty. This is achieved by setting the option select=TRUE. Though, this selection affects
all smoothing terms. Moreover, a variable selection with regard to the parametric terms
in the linear predictor is not available. In contrast, the gamm function cannot penalize the
baseline effects separately and cannot perform variable selection.
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The underlying data needed for the simulation are generated along the lines of Section
3.4. That means, the survival time Ti is obtained by inversion sampling and the censoring
times Ci are sampled from a multinomial distribution. The minimum of survival time
and censoring time defines the observed survival time ti = min(Ti, Ci) and the censoring
indicator δi then follows from definition (2.6). Afterwards, the data have to be restructured
as proposed in Section 2.2.2 to yield a binary regression model. The difference to Section
3.4 lies in the computation of the linear predictor since a random intercept is incorporated.
The components of the simulation settings required for computing the underlying true linear
predictor

ηtrueit = bi + β0t +
r∑
j=1

zijβjt +
s∑
l=1

xilγl

are given in the following. Thereby, the random effects are specified by bi ∼ N (0, σ2
b ) with

the scenarios σb = (0.1, 0.5, 0.7, 1, 2). For all settings, according to discrete duration times,
the complementary log-log link is used. To be on comparable scales, all covariates are
standardized. The tuning parameters ξ and φ are chosen by 5-fold cross-validation, where
for the splits it is referred to whole observations of an object. Thereby, the predictive
deviance is chosen as loss criterion.

Setting 1

The first scenario consists of n = 300 realizations of five covariates Xi1, ..., Xi5 independently
drawn from a normal distribution N (1, 0.5). Only two covariates have an effect on the
survival time, whereas the remaining three covariates are noise variables. There are q = 10
time periods considered. The covariate realizations xi1, ..., xi5 are used to simulate survival
times according to the linear predictor

ηit = bi + β0t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4 + xi5γ5.

Thereby, the time-varying intercept β0t is given by

β0t∗ = 1.5 · Γ(ν, α)− 1,

where Γ(ν, α) denotes the density of a gamma distribution with shape parameter ν = 2.1,
scale parameter α = 1 and t∗ = (t − 1)/2.5, t = 1, ..., 10. Furthermore, the time-constant
coefficient effects γl are defined by γ1 = 0.5, γ2 = −1, γ3 = γ4 = γ5 = 0. For the time-
varying intercept β0t, a cubic B-splines approach is used, where the number of equally spaced
inner knots is set to six. The censoring times are simulated from a multinomial distribution
M(n,pc), where pc is defined by pTc = (0.02, 0.02, 0.02, 0.02, 0.02, 0.05, 0.05, 0.1, 0.15, 0.55).
The simulation scheme for Setting 1 is replicated 50 times.
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Setting 2

In simulation Setting 2, the number of time periods is set to q = 10 as well. The model
consists of 5 covariates, whereof two are noise variables. For the study, n = 300 realizations

of the covariates are simulated according to Zi1, Zi2, Xi1, Xi2, Xi3
iid∼ N (1, 0.5). The survival

times are sampled by means of the realizations of the covariates with the linear predictor
given by

ηit = bi + β0t + zi1β1t + zi2β2t + xi1γ1 + xi2γ2 + xi3γ3.

Thereby, the time-varying effects βjt, j = 0, 1, 2, t = 1, ..., 10, are defined by

β0t∗ = 1.5 · Γ(ν, α)− 1, ν = 2.1, α = 1 and t∗ = (t− 1)/2.5,

β1t∗ = Exp(1)− 1, t∗ = t/3,

β2t = 0.5 · cos((t+ 4)/1.2),

where Γ(ν, α) denotes the density of a gamma distribution with shape parameter ν and scale
parameter α. Moreover, Exp(·) denotes the density of an exponential distribution. The
time-constant coefficients γl, l = 1, ..., 9, are given by γ1 = −0.5, γ2 = γ3 = 0. The time-
varying coefficients βjt are expanded in cubic B-splines with six equidistant inner knots. In
this setting, the censoring times are simulated from a multinomial distribution M(n,pc)
with pTc = (0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1). The
number of replications is 50.

To allow for maximal flexibility in modeling, for all coefficients, time-varying effects ex-
panded in B-spline basis functions are assumed. This results in the linear predictor

ηmodelit = β0t +
5∑
j=1

zijβjt,

with

β0t =

m0∑
m=1

α0mB0m(t) and βjt =

mj∑
m=1

αjmBjm(t).

For the simulation study the following penalty term

Jξ0,ξ(α,γ) = ξ0

m0∑
m=2

(α0m − α0,m−1)2 + ξ

(
φ

r∑
j=1

ψj
∥∥ζj∥∥2

+ (1− φ)
r∑
j=1

ϕj ‖αj‖2

)

where ζTj = (ζj2, ..., ζjmj), ζjm = αjm−αj,m−1, m = 2, ...,mj, is used. Therein, ψj and ϕj are
replaced by adaptive weights (5.9). The penalty allows for stable baseline effects and steers
smoothing, constant effects and selection of the time-varying coefficients. The penalization
of β0t is predominantly executed due to stability reasons. It is defined by ξ0 = 0.001 in all
simulation settings. For more details on the penalty term, see Section 5.3.
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Results

The results of fpendsm are compared to the results obtained by the R functions gam and
gamm of the R add-on package mgcv, by fitting analogous models. That means, using the
gam function, for the time-varying intercept a slight ridge penalty with tuning parameter
0.001 is used. In contrast, in the gamm function, the time-varying intercept is penalized by a
ridge penalty, where the tuning parameter is chosen internally. For both functions, gam and
gamm, the time-varying covariate effects are estimated by cubic B-splines with penalized
first differences between the parameters of the smooth functions. Moreover, the option
select is set to TRUE for gam, adding a penalty to each smooth, to allow it to be removed
from the model. Such an option is not provided by gamm.

The performance of the estimators is evaluated separately for the structural components
and the variance. The assessment of parameter estimations is evaluated in general, and
separately for truly time-varying and truly time-constant parameters. For each simulation
run the corresponding mean squared errors are computed by

MSE(σb, σ̂b) = (σb − σ̂b)2,

MSE(β, β̂ ) =
1

r

r∑
j=1

(
βj − β̂j

)2

+
1

s

s∑
l=1

(
β̃l − β̂l

)2

,

MSEvary(β, β̂ ) =
1

r

r∑
j=1

(
βj − β̂j

)2

, MSEconst(β, β̂ ) =
1

s

s∑
l=1

(
β̃l − β̂l

)2

,

(5.10)

where β̃l = (γl, ..., γl) and p = r+s. Hence, σb, βj and β̃l denote the true parameter values,

whereas σ̂b, β̂j and β̂l define the corresponding estimates. That means, as all components

are estimated time-varying, γ is compared to β̂ as well. Additional information on the
stability of the algorithms is collected in n.c. (not converged), which defines the sum over
the data sets, where numerical problems occurred during estimation. This issue solely
affects the gamm function.

In analogy to Chapter 3, after estimation of the coefficients βjt, j = 1, ..., r, t = 1, ..., q,
and γ l, l = 1, ..., s, the results are compared to the true parameters. For the evaluation
of the selection performance, false positive rates (FPR) and false negative rates (FNR) are
considered for each simulation run. Thereby, false positive means that a single parameter
value that is truly zero is set to non-zero. In contrast, false negative means that a single
non-zero parameter value is set to zero. The corresponding rates are defined by

FPR =
#(truly zero set to non-zero)

#(truly zero)
FNR =

#(truly non-zero set to zero)

#(truly non-zero)
.

Initially, the results of the simulation settings are summarized in tables. The outcomes of
fpendsm, gam and gamm are shown in the corresponding columns. The first three rows of
the tables contain the absolute values of the mean squared errors for all covariates (MSE)
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as well as for truly time-varying (MSEvary) and truly time-constant covariates (MSEconst).
A detailed definition of these mean squared errors is given in Equation (5.10). Finally,
the false positive rate FPR and the false negative rate FNR are shown. Moreover, for each
setting a table containing the estimates of σb is provided, where the random effects variance
components are obtained by an EM-type algorithm (see Section 5.3.1). All presented values
correspond to the mean values over all simulation runs. Moreover, the results are illustrated
in boxplots, where for the sake of interpretability, outliers are omitted in single cases.

Setting 1

For settings 1, only a time-varying intercept is chosen, that means that all covariates orig-
inally have a constant effect. The summary of the mean squared errors referring to β as
well as FPR and FNR are shown in Table 5.3. For σb = 0.1 and σb = 0.5, gamm outperforms
fpendsm and gam but poor results are yielded for the remaining values of σb. In general,
fpendsm attains slightly worse results than gam but outperforms it for single cases. The
FPR values of gam outperform those of fpendsm, whereas for FNR the results are quite
similar. For gamm, FPR is always equal to one and FNR always equal to zero since no
variable selection is provided.

The estimates of the random effects variance components derived by fpendsm outperforms
those of gam, except for σb = 2.0 (Table 5.4). The corresponding results of gamm are the
best for σb = 0.7 and σb = 1.0 but the worst for σb = 0.1 and σb = 0.5. For the case
σb = 2.0, the estimate of σb is disproportionately high for gamm, but it is based on only one
replication. Moreover, for at least 25 out of 50 simulation runs, the gamm method does not
converge (see column n.c. in Table 5.4). Hence, gamm only converges for less than 50% of
the replications and it can be expected that these cases are more simple with regard to the
estimation. Thus, the results obtained by gamm cannot be considered as stable or reliable
and gamm cannot be recommended.

In addition, the mean squared errors are illustrated in Figure 5.5, which shows the corre-
sponding boxplots exemplarily for σb = 0.5. In this case, fpendsm performs quite well, in
particular for the mean squared errors referring to σb.

Setting 2

In the second setting, additional to the time-varying intercept, two covariate effects are
originally time-varying. The mean squared errors referring to β as well as FPR and FNR
are shown in Table 5.5. Again, for some cases gamm outperforms fpendsm and gam but on
the other hand also very poor results occur for gamm. The results of fpendsm are better
than those of gam for single cases. The FNR values of fpendsm outperform those of gam,
but for FPR it is the opposite case.

For the estimates of the random effects variance components, fpendsm outperforms gam

for all cases (Table 5.6). The corresponding results of gamm are the best for σb = 0.7 and
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σb fpendsm gam gamm σb fpendsm gam gamm

MSE 0.1 0.052 0.047 0.027 0.5 0.060 0.057 0.035
MSEvary 0.1 0.194 0.157 0.065 0.5 0.183 0.161 0.094
MSEconst 0.1 0.024 0.026 0.019 0.5 0.035 0.037 0.024

FPR 0.1 0.410 0.261 1 0.5 0.503 0.355 1
FNR 0.1 0.005 0 0 0.5 0.013 0.007 0

σb fpendsm gam gamm σb fpendsm gam gamm

MSE 0.7 0.091 0.070 0.345 1.0 0.135 0.116 0.155
MSEvary 0.7 0.308 0.188 1.222 1.0 0.493 0.365 0.197
MSEconst 0.7 0.047 0.047 0.169 1.0 0.063 0.067 0.146

FPR 0.7 0.521 0.340 1 1.0 0.573 0.365 1
FNR 0.7 0.011 0.007 0 1.0 0.027 0.021 0

σb fpendsm gam gamm

MSE 2.0 0.446 0.338 1.368·1030

MSEvary 2.0 1.946 1.367 3.556·1030

MSEconst 2.0 0.146 0.132 9.305·1029

FPR 2.0 0.581 0.377 1
FNR 2.0 0.058 0.095 0

Table 5.3. Results for Setting 1 for the estimated mean squared errors (MSE, MSEvary, MSEconst) referring
to β and the false positive rate (FPR) as well as the false negative rate (FNR) for fpendsm, gam and gamm.

fpendsm gam gamm gamm

σb MSEσ MSEσ MSEσ n.c.

0.1 0.028 0.032 0.808 25
0.5 0.048 0.095 0.236 37
0.7 0.168 0.169 0.069 42
1.0 0.480 0.490 0.057 48
2.0 2.897 2.389 1.01·1015 49

Table 5.4. Results for Setting 1 for the mean squared errors referring to σb for fpendsm, gam, and gamm.

MSE MSE time−varying MSE time−constant
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Figure 5.5. Mean squared errors for Setting 1 for fpendsm, gam and gamm for σb = 0.5.
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σb fpendsm gam gamm σb fpendsm gam gamm

MSE 0.1 0.163 0.108 0.096 0.5 0.220 0.159 0.099
MSEvary 0.1 0.296 0.193 0.160 0.5 0.404 0.286 0.152
MSEconst 0.1 0.029 0.024 0.032 0.5 0.036 0.032 0.045

FPR 0.1 0.568 0.328 1 0.5 0.583 0.308 1
FNR 0.1 0.041 0.086 0 0.5 0.036 0.101 0

σb fpendsm gam gamm σb fpendsm gam gamm

MSE 0.7 0.218 0.178 0.068 1.0 0.302 0.266 0.147
MSEvary 0.7 0.401 0.320 0.105 1.0 0.560 0.488 0.265
MSEconst 0.7 0.035 0.037 0.030 1.0 0.044 0.044 0.028

FPR 0.7 0.551 0.350 1 1.0 0.550 0.397 1
FNR 0.7 0.051 0.126 0 1.0 0.072 0.147 0

σb fpendsm gam gamm

MSE 2.0 0.761 0.629 1.951·1029

MSEvary 2.0 1.454 1.181 3.260·1029

MSEconst 2.0 0.067 0.077 6.415·1028

FPR 2.0 0.497 0.358 1
FNR 2.0 0.263 0.311 0

Table 5.5. Results for Setting 2 for the estimated mean squared errors (MSE, MSEvary, MSEconst) referring
to β and the false positive rate (FPR) as well as the false negative rate (FNR) for fpendsm, gam and gamm.
The displayed values represent the means over all simulation runs.

fpendsm gam gamm gamm

σb MSEσ MSEσ MSEσ n.c.

0.1 0.023 0.024 0.775 37
0.5 0.042 0.171 0.179 45
0.7 0.163 0.342 0.049 46
1.0 0.492 0.749 0.072 47
2.0 2.889 2.822 6.25·1014 42

Table 5.6. Results for Setting 2 for the mean squared errors referring to σb for fpendsm, gam, and gamm.
The displayed values represent the means over all simulation runs.

σb = 1.0 but the worst for σb = 0.1, σb = 0.5 and σb = 2.0. For the latter case, the estimates
of σb are disproportionately high for gamm. Moreover, for at least 37 out of 50 simulation
runs, the gamm method does not converge (Table 5.6) leading to unstable results that cannot
be reliably interpreted.

Exemplarily for σb = 0.5, the corresponding boxplots of the mean squared errors are illus-
trated in Figure 5.6. fpendsm yields good results, in particular for the mean squared errors
referring to σb.

To conclude, the gamm method has a large variation within the outcomes and evidently
convergence problems. Hence, it is not recommended to use gamm. fpendsm and gam have
no convergence problems and the outcomes are comparable and seem to be stable. However,
fpendsm is much more flexible as for example much more types of penalties are available.
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MSE MSE time−varying MSE time−constant

l
l

l

l

l

l

l

l

l

l

l
l

l

0.0

0.1

0.2

0.3

0.4

0.5

pendsm gam gamm pendsm gam gamm pendsm gam gamm

(a) Mean squared errors for β

MSE

l

0.0

0.1

0.2

0.3

pendsm gam gamm

(b) Mean squared errors for σb

Figure 5.6. Mean squared errors for Setting 2 for fpendsm, gam and gamm for σb = 0.5.

5.5. Applications

In this section, fpendsm is applied to two real data problems. To compare the results to
the examples from Chapter 3, where pendsm is used, the Munich founder study and the
fertility study are analyzed. However, no reference methods, for example, by applying the
functions gam or gamm of the R add-on package mgcv (Wood, 2006) to the data, are available
for discrete survival models with frailties. The gamm function is not able to compute either
one of the examples as due to the incorporated time-varying coefficients the data are to
complex and too many random intercepts have to be estimated. In contrast, the gam

function provides results but after an excessive amount of time. However, the results are
not meaningful. That means, for example, the variance parameter was estimated by an
absolute value greater than 500. Consequently, the functions gam and gamm cannot cope
with such complex data.

5.5.1. The Munich Founder Study

In this section, fpendsm is applied to the Munich founder study. Therein, the survival of
newly founded firms in the area of Munich and Upper Bavaria is investigated. The depen-
dent variable defines the transition process of a newly founded company up to insolvency,
denoting the event. The duration time until the event of insolvency is measured in quar-
ters, where a maximum of 22 quarters can be reached. A company that was still alive
at the time of the registration of the interview is treated as right-censored. See Section
3.5.1 for more details on the data. The data were reorganized according to Section 2.2.2
and standardized, to conduct a binary regression model with complementary log-log link
corresponding to a discrete-time survival model. The long format of the data consists of∑n

i=1 ti = 17736 rows. In contrast to Section 3.5.1, a frailty is incorporated to control for
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the unobserved heterogeneity that is the basic difference between the observed firms. For
company i and measurement at quarter t, the considered model has the form

ηit = β0t + Sector
(1)
it β1t + Sector

(2)
it β2t + Legalitβ3t + Seeditβ4t + Equityitβ5t + Debtitβ6t

+Marketitβ7t + Clienteleitβ8t + Degreeitβ9t + Genderitβ10t

+Experienceitβ11,t + Employeesitβ12,t + Ageitβ13,t + bi,

with individual-specific random intercepts bi ∼ N (0, σ2
b ). For all covariate effects cubic

B-splines are used, that means βjt =
∑

m αjmBjm(t), j = 0, 1, ..., 13, with 10 equidistant
inner knots resulting in 12 basis functions. Hence, the used penalty is given by

Jξ0,ξ(α,γ) = ξ0

12∑
m=2

(α0m − α0,m−1)2 + ξ

(
φ

13∑
j=1

ψj
∥∥ζj∥∥2

+ (1− φ)
13∑
j=1

ϕj ‖αj‖2

)
,

where adaptive weights (5.9) are incorporated in the penalty term. The penalty allows for
smooth time-varying or time-constant covariate effects or their elimination from the model.
The tuning parameter ξ0 is set to 0.001 and for selection of the tuning parameters ξ and φ
a 5-fold cross-validation, based on the predictive deviance, is conducted. In Figure 5.7a the
corresponding scores are illustrated. The vertical black line determines the chosen tuning
parameters with ξ set to 5.3 and φ set to 0.8. The chosen value of ξ is slightly smaller than
that in Chapter 3.5.1. The run of all curves indicates that penalization clearly improves
ordinary ML-estimation that is nearly obtained for ξ = 0 as ξ0 is set to the very small value
of 0.001. Moreover, the curves are wigglier than in Chapter 3.5.1.

In analogy to Chapter 3.5.1, Figure 5.7b shows the resulting hazard function of the fitted
model when all covariates are set at reference. That is, a female founder at the age of 43
whose firm has the following characteristics: industry, manufacturing and building sector,
small legal form, seed capital ≤ 25000, with equity capital, with debt capital, local target
markets, wide spread clientele, no A-levels, professional experience < 10 years and 0 or
1 employees. The resulting hazard rate is quite similar to that in Chapter 3.5.1. The
corresponding confidence interval is based on a nonparametric bootstrap method with 1000
bootstrap replications (see Section 3.3 for more details). They are somewhat larger than
those in Chapter 3.5.1.

The estimation of σ2
b is derived by an approximate EM-algorithm (see Section 5.3.1) and

the resulting estimates of the variance parameter for fpendsm are shown in Table 5.7, where
the standard error and the confidence interval are based on 1000 bootstrap replications. To
illustrate the failure of the gam function, the corresponding estimate of σb is set to 8900,
and absolutely not meaningful.

In Figure 5.8 the estimates β̂jt of the coefficients of the model with ξ = 5.3 and φ = 0.8
are summarized. The solid black lines denote the parameter estimates, whereas the dashed
lines specify the corresponding 95% confidence intervals. The intervals are based on 1000
bootstrap replications and are computed pointwise. By using fpendsm, it is suggested that
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Figure 5.7. Plots corresponding to the Munich founder study

95%-CI
estimate standard error lower upper

σ̂b 0.309 0.002 0.306 0.312

Table 5.7. Estimates resulting from fpendsm for the standard deviation of the random effects, the corre-
sponding standard error and the 95% bootstrap confidence interval for the Munich founder study.

Legal,Market and Experience have a linear effect in the predictor, whereas Age is removed
from the model. These results are analogous to those of Section 3.5.1. In contrast to Section
3.5.1, for fpendsm the estimates of Clientele, Degree and Employees result in flexible time-
varying functions. In general, the course of the curves of the time-varying coefficients follows
a similar pattern compared to the corresponding curves in Section 3.5.1.

5.5.2. Fertility Study

Finally, fpendsm is applied to the fertility study. Therein, the question is investigated
if labor force participation of women influences the transition to motherhood. The data
are extracted from pairfam (Nauck et al., 2012), a multi-disciplinary longitudinal study
analyzing cooperative and life forms of families in Germany, and are described in more
detail in Abedieh (2013). The dependent variable is the transition to pregnancy with
duration time (in years) until pregnancy. For modeling the duration time the start of the
observation process is set to 14 years. The maximum value is 27 years until gravidity. See
Section 3.5.2 for more details on the data. The data were reorganized according to Section
2.2.2 and standardized, to conduct a binary regression model with complementary log-log
link corresponding to a discrete-time survival model. The long format of the data consists
of
∑n

i=1 ti = 34601 rows. In contrast to Section 3.5.2, a frailty is incorporated to control for
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Figure 5.8. Estimates of fpendsm for the Munich founder study using cubic B-splines. Dashed lines
represent pointwise 95% bootstrap confidence intervals.
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the unobserved heterogeneity, that is, the basic differences between the observed women.
For duration year t of individual i the considered model has the form

ηit = β0t + Job
(1)
it β1t + Job

(2)
it β2t + Job

(3)
it β3t + Job

(4)
it β4t + Education

(1)
it β5t

+Education
(2)
it β6t + Relationship

(1)
it β7t + Relationship

(2)
it β8t + Siblingsitβ9t

+ClassParents
(1)
it β10t + ClassParents

(2)
it β11t + ClassParents

(3)
it β12t

+Cohort
(1)
it γ12 + Cohort

(2)
it γ12 + bi,

(5.11)

with individual-specific random intercepts bi ∼ N (0, σ2
b ). All covariates, except the co-

variate cohort, are incorporated as time-varying effects using cubic B-splines, that means
βjt =

∑
m αjmBjm(t), j = 0, 1, ..., 12, with 8 equidistant inner knots resulting in 10 basis

functions. The used penalty is given by

Jξ0,ξ(α,γ) = ξ0

10∑
m=2

(α0m − α0,m−1)2+ξ

(
φ

12∑
j=1

ψj
∥∥ζj∥∥2

+(1−φ)
12∑
j=1

ϕj ‖αj‖2+
√
γ2

11 + γ2
12

)
,

where adaptive weights (5.9) are used for estimation. The penalty term allows for smooth
time-varying or time-constant covariate effects or their selection from the model, whereas
for the covariate cohort a group lasso penalty is used. That means, that the coefficients
of the covariate cohort, including all categories, can be shrunk simultaneously until the
complete variable is removed from the model.

The tuning parameter ξ0 is set to 0.001. Tuning parameters ξ and φ are chosen by 5-fold
cross-validation with the predictive deviance as loss criterion. They are respectively set to
5.0 and 0.8. The corresponding cross-validation scores are shown in Figure 5.9a, where the
vertical black line marks the chosen tuning parameters with ξ = 5.0 and φ = 0.8, where the
chosen ξ is slightly smaller than that in Section 3.5.2. Thereby, the score referred to φ = 0
and φ = 1, meaning that the weight of the penalty was completely assigned either to the
selection part or the smoothing part, was omitted. This was done due to a heavy erratically
run of the score curves attended by extreme peaks. The runs of the showed curves indicate
that penalization clearly improves ordinary ML-estimation that is nearly obtained for ξ = 0
as ξ0 is set to the very small value of 0.001.

Figure 5.9b shows the resulting hazard function of the fitted model when all covariates are
set at reference. That is, an unemployed single women born between 1971-1973 with low-
level education, no siblings and low-level education of the parents. The resulting hazard rate
is quite similar to that in Chapter 3.5.2. For this very complex data example with the linear
predictor (5.11), that is, a data set with 34601 observations, time-varying covariate effects
and included frailty effects, the computation of bootstrap standard errors and confidence
intervals is not feasible. As the computation of a corresponding model using gam is not
meaningful, only the estimates of fpendsm are shown. Resulting plots of the estimated
time-varying coefficients can be found in Figure 5.10. Therein, the labeling of the abscissa
is adapted to the real age of the women, where the observation period starts at the age of
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Figure 5.9. Plots corresponding to the fertility study.

14. In general, the course of the curves of the time-varying coefficients follows a similar
pattern compared to the corresponding curves in Section 3.5.2. The estimation of σ2

b is
derived by an approximate EM-algorithm (see Section 5.3.1) and is given by σ̂b = 0.295.
The estimates for cohort are γ11 = −0.061 and γ12 = −0.327, that are identical to the
corresponding estimates in Section 3.5.2.
In spite of the large amount of parameters and the complex estimation approach due to
frailties, fpendsm yields stable and meaningful results.

5.6. Concluding Remarks

This Chapter extends the method proposed in Chapter 3, where lasso-type penalties are
treated, by an incorporation of frailty effects. Thereby, it is controlled for unobserved
heterogeneity since ignoring unobserved heterogeneity may lead to biased estimates. Hence,
complex penalty terms are combined with random effects for survival models for discrete
duration time. Moreover, time-varying coefficients are regarded in the linear predictor. The
incorporation of these different issues may lead to very complex and difficult data situations.
The proposed method is even able to yield stable estimates for this cases, whereas existing
methods provided by the functions gam and gamm of the R add-on package mgcv (Wood,
2006) or the function glmmPQL of the R add-on package MASS (Venables and Ripley, 2002)
typically fail. However, it has to be mentioned that the computation of fpendsm is very
time-consuming. Hence, a further challenge is the optimization of the estimation algorithm
with the aim to be more efficient.
It has to be noted that actually an improved version of the gamm function is available.
This improved function is gamm4 from the corresponding R add-on package gamm4 (Wood
and Scheipl, 2013) and is numerically more robust than gamm by using lme4 (Bates et al.,
2014) as the underlying fitting engine. However, since the release of 3.0.0 in April 2013
the functions gamm4 and lme4 are no longer compatible. Hence, unfortunately, the function
gamm4 cannot be used for the analysis of this chapter.
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Figure 5.10. Estimates of fpendsm for the time-varying coefficients of the fertility study using cubic
B-splines.



6. Penalization in Competing Risks
Models

In many applications concerning survival analysis, the investigation of more than one ter-
minating event is of interest. Hence, for each object one of k (k ≥ 2) causes may occur,
called competing risks. Background on competing risks models is given in Section 6.1.
This model class is considered in Section 6.2 with respect to discrete duration time. In the
context of discrete survival times, competing risks models can be embedded into the frame-
work of multinomial logit models. However, a large number of parameters arises with the
use of this model type. Therefore, in Section 6.3 a penalization technique for discrete-time
competing risks models is introduced. Some details regarding the corresponding estimation
approach are described in Section 6.4. In Section 6.5 the proposed method is applied to two
applications. Finally, concluding remarks are summarized in Section 6.6. In the following,
only the notation and explanations with respect to grouped survival times are considered,
but they can easily be modified regarding truly discrete survival times.

6.1. Introduction

In the preceding sections, the duration time of an object until it reaches one absorbing event
has been considered. However, in many applications it has to be distinguished between sev-
eral distinct types of terminating events. That means, a subject may fail due to one of k
(k ≥ 2) multiple causes. In survival analysis, the events may stand for several causes of
death, whereas, for example, in the case of government duration, a government may collapse
in one of two ways: dissolution (new elections) or replacement (no new elections) (Diermeier
and Stevenson, 1999). Since only the transition to one of multiple different states can be
observed, models for this type of data are referred to as competing risks models. In some
applications however, the expression competing chances would be more appropriate than
competing risks. Most of the literature on competing risks considers the case of continuous
time. Some examples treating competing risks for continuous time are Beyersmann et al.
(2011), Kalbfleisch and Prentice (2002), Klein and Moeschberger (2003) and Kleinbaum
and Klein (2013). If time is discretely observed, ties cause problems in the estimation
procedure and the model might become inappropriate, especially for a low number of time
periods (see Chapter 2). Hence, appropriate methods are required to model competing
risks with discrete time. In this context, for example, Tutz (1995) proposed two fundamen-
tal approaches to the modeling of competing risks with nominal or ordinal categories of
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response. Furthermore, Fahrmeir and Wagenpfeil (1996) introduced smooth estimation of
hazard functions and time-varying effects in a flexible way. Frailty-based competing risks
models for discrete time were exemplarily considered by Enberg et al. (1990) or Gorfine
and Hsu (2011).
As the target events may be seen as unordered categorical responses, the multinomial logit
model is one of the most widely used models for competing risks with discrete time. More-
over, if the causes are ordered more parameter economic parametrizations are available,
for example, by using ordinal response models (McCullagh, 1980; Agresti, 2013). Their
application to competing risks with discrete time can be found in Tutz (1995).
The multinomial logit model is associated with a large number of parameter estimates since
it employs several coefficients for each explanatory variable. Hence, maximum likelihood
estimates tend to deteriorate quickly and interpretability suffers as well, leading to the re-
striction to applications with few predictors. Therefore, applying regularization methods
that induce variable selection leading to interpretable and reliable models is very advanta-
geous.
Simple conventional variable selection methods are represented by Forward - and Backward-
Stepwise Selection (e.g. Hastie et al., 2009). However, these methods exhibit stability prob-
lems and cannot be recommended. A more current alternative model selection approach
is based on regularization techniques. Thereby, penalization is an approved regularization
approach. Adding a penalty term to the log-likelihood yields shrinkage of the estimates
towards zero. Depending on the penalty, it is even possible to set particular estimated
parameters exactly to zero. One of the oldest penalization methods is the ridge method
that uses a L2-type penalty on the regression coefficients. However, no variable selection
can be performed by using this penalty term. An alternative penalty term that has become
very popular, is the lasso penalty using a L1-type penalty on the regression coefficients.
In this case, variable selection can be carried out. As the lasso merely selects individual
predictors, the penalty is unsatisfactory in the case of grouped data, for example with cate-
gorical predictors. The group lasso, proposed by Yuan and Lin (2006), can overcome these
problems. To obtain consistent estimates of the parameters, Zou (2006) extended the lasso
to the adaptive lasso by including different weights on the penalty for different coefficients.
Several further improvements for the lasso method have been designed in the last decade,
for example the fused lasso (Tibshirani et al., 2005), SCAD (Fan and Li, 2001), elastic
net (Zou and Hastie, 2005), Dantzig selector (Candes and Tao, 2007) and DASSO (James
et al., 2009).
However, these methods are designed for models with univariate response. As the multi-
nomial logit model is not a common univariate generalized linear model, these methods
cannot be applied immediately. The effect of one predictor variable is represented by sev-
eral parameters. Hence, there is a difference in providing variable selection and parameter
selection, where variable selection is only obtained if all parameters belonging to one pre-
dictor are simultaneously set to zero. The available penalty techniques for multinomial
logit models (Krishnapuram et al., 2005; Friedman et al., 2010) use L1-type penalties that
shrink all parameters separately. Thus, they pursue the goal of parameter selection and not
the goal of variable selection as the lasso method does not enforce that all coefficients be-
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longing to a covariate are shrunk to zero. This problem was overcome by Tutz et al. (2012)
and Tutz (2012), where several penalization methods for the multinomial logit model are
described in detail. In particular, the authors perform true variable selection by simultane-
ously removing all effects of one predictor from the model. In the following, on the basis on
Tutz et al. (2012) variable selection in competing risks models for discrete time is executed
by means of an appropriate penalization approach. This penalization approach also allows
for smooth time-varying cause-specific baseline effects. For this purpose, the likelihood of
a discrete competing risks model is extended by a penalty term.

6.2. Competing Risks Models for Discrete Time

In this section, a competing risks model for discrete duration time is considered. The
model is defined and maximum likelihood estimation is embedded into the framework of
multivariate generalized linear models.

6.2.1. Methodology

In the following, time T is considered as a non-negative random variable taking values from
{1, ..., q}. The values of T may be original observations, that is, T is intrinsically discrete.
Alternatively, discreteness may be due to interval censoring. Let time T be divided into
q + 1 intervals

[a0, a1), [a1, a2), ..., [aq−1, aq), [aq,∞),

where usually a0 = 0 is assumed and aq denotes the final follow-up. Then, T = t is observed
if failure occurs within the interval [at−1, at). Let the distinct terminating causes be denoted
by R ∈ {1, ..., k}. The cause-specific discrete hazard function resulting from cause or risk r
is given by the conditional probability

λr(t|x) = P (T = t, R = r|T ≥ t,x),

where x is a vector of covariates and r = 1, ..., k, t = 1, ..., q. Summarizing the k hazard
functions λ1(t|x), ..., λk(t|x) to an overall hazard function, regardless of cause, yields

λ(t|x) =
k∑
r=1

λr(t|x) = P (T = t|T ≥ t,x).

The survival function and the unconditional probability of an event in period t have the
same form as in the simple case of one target event (compare Equations (2.3) and (2.4))
and are given by

S(t|x) = P (T > t|x) =
t∏

j=1

(1− λ(j|x)) = 1− F (t|x)
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and

P (T = t|x) = λ(t|x)
t−1∏
j=1

(1− λ(j|x)) = λ(t|x)S(t− 1|x).

If an individual reaches interval [at−1, at), there are k + 1 possible outcomes. That is, end
of the duration by transition to one of the k target events or survival. The corresponding
conditional response probabilities are given by

λ1(t|x), ..., λk(t|x), 1− λ(t|x),

where 1 − λ(t|x) is the probability for survival. Therefore, given an individual reaches
interval [at−1, at), the k+ 1 possible events may be seen as unordered categorical responses
and a natural parametric model for the hazards is the multinomial logit model given by

λr(t|x) =
exp(β0tr + xTγr)

1 +
∑k

i=1 exp(β0ti + xTγi)
, (6.1)

where t = 1, ..., q, and r = 1, ..., k. Then the parameters β01r, ..., β0qr determine the cause-
specific baseline hazard functions and γr contains the cause-specific effects of covariates. It
suffices to specify the conditional probability of the target events 1, ..., k since conditional
survival corresponds to the reference category in the multinomial logit model. Conditional
probability of survival is implicitly determined by

P (T > t|T ≥ t,x) = 1−
k∑
i=1

λr(t|x) =
1

1 +
∑k

i=1 exp(β0ti + xTγi)
.

With R ∈ {0, 1, ..., k}, where R = 0 denotes the conditional survival, the conditional
probabilities are given by λ0(t|x) = P (T > t|T ≥ t,x), λ1(t|x), ..., λk(t|x), which sum
up to one. To simplify the cause-specific baseline effects, they can be expanded in basis
functions, for example, in equally spaced B-splines resulting in

β0tr =
mr∑
m=1

α
(r)
0mBm(t).

The incorporation of B-splines also results in more parsimonious models when mr < q is
chosen. Some more formal details referring to the incorporation of time-varying baseline
effects can be found in Section 2.4.

6.2.2. Estimation

In this section, the derivation of the ML estimates for the multinomial logit model is
shown. For subject i, the data are given by (ti, ri, δi,xi). Thereby, ti = min(Ti, Ci) is the
observed discrete duration time, where C is a random variable indicating the censoring
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time and random censoring is assumed. Moreover, ri ∈ {1, ..., k} indicates the type of the
terminating event, xi a covariate vector and δi denotes the censoring indicator with

δi =

{
1, Ti ≤ Ci, that means failure in interval [ati−1, ati)

0, Ti > Ci, that means censoring in interval [ati−1, ati) .

This definition of the censoring indicator implicitly assumes that censoring occurs at the
end of the interval. The corresponding likelihood contribution of the i-th observation for
model (6.1) is given by

Li = P (Ti = ti, Ri = ri)
δiP (Ti > ti)

1−δiP (Ci ≥ ti)
δiP (Ci = ti)

1−δi ,

where for notational simplicity, the condition to the covariate vector xi is omitted. Under
the assumption that censoring does not depend on the parameters that determine the
survival time (non-informative censoring, Kalbfleisch and Prentice, 2002), the factor ci =
P (Ci ≥ ti)

δiP (Ci = ti)
1−δi can be omitted, resulting in the reduced likelihood

Li = λri(ti|xi)δi(1− λ(ti|xi))1−δi
ti−1∏
t=1

(1− λ(t|xi)).

Let Rt = {i : t ≤ ti} be the risk set containing all objects who are at risk in interval [at−1, at).
For an alternative form of the likelihood, indicators for the transition to the next period
are defined by

yitr =

{
1, failure of type r occurs in interval [at−1, at)

0, no failure of type r occurs in interval [at−1, at) ,
(6.2)

and

yit0 =

{
0, failure of type r occurs in interval [at−1, at)

1, no failure of type r occurs in interval [at−1, at) ,
(6.3)

where i ∈ Rt and r = 1, ..., k. That means, the indicator variable (6.3) is derived from the
indicator variable (6.2) by yit0 = 1− yit1− ...− yitk. These indicator variables are gathered
in the vector yTit = (yit0, yit1, ..., yitk) denoting the response vector of object i, i = 1, ..., n,
t = 1, ..., ti. By means of the indicator variables (6.2) and (6.3) the likelihood contribution
of the i-th observation is given by

Li =

ti∏
t=1

( k∏
r=1

λr(t|xi)yitr
)(

1− λ(t|xi)
)yit0

=

ti∏
t=1

( k∏
r=1

λr(t|xi)yitr
)(

1−
k∑
r=1

λr(t|xi)
)yit0 .
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That means, the likelihood for the i-th observation is identical to that for the ti observations
yi1, ...,yiti of a multinomial response model. The indicator variables actually represent the
distributions, given a specific interval is reached. Thus, given that an object reaches in-
terval [at−1, at), the response is multinomially distributed with yTit = (yit0, yit1, ..., yitk) ∼
M(1, (1 − λ(t|x), λ1(t|x), ..., λk(t|x))). Therefore, the likelihood is that of the multicate-
gorical model

P (Yit = r|xi) = P (yitr = 1|xi) =
exp(ηitr)

1 +
∑k

j=1 exp(ηitj)
,

with ηitr = β0tr + xTi γr. Hence, ML estimates can be easily computed by using statisti-
cal software for multinomial regression models after construction of an appropriate design
matrix. By introducing the design vector x̃i (that includes the baseline effects and the co-
variate vector xi) and the corresponding parameter vector γ̃Tt = (β0t1, ..., β0tk,γ

T
1 , ...,γ

T
k ),

for the linear predictor follows

ηit = (ηit1, ..., ηitk)
T = (x̃Ti1γ̃t, ..., x̃

T
ikγ̃t) = X̃ iγ̃t,

with

X̃ i =

1 0 xTi 0
. . .

...
0 1 0 xTi

 .
The matrix X̃ i represents the design matrix for object i for time period t. Consequently,
the matrix X̃ i has to be stacked ti times to get the design matrix for object i. The collection
of all individual design matrices yield the global design matrix X̃ resulting in the following
equation

η = X̃ γ̃.
(
∑n

i=1 ti · k)× 1 (
∑n

i=1 ti · k)× (
∑k

r=1 q · k + p · k) (
∑k

r=1 q · k + p · k)× 1

Finally, the total log-likelihood is given by

l =
n∑
i=1

ti∑
t=1

(
k∑
r=1

yitr log λr(t|xi) + yit0 log

(
1−

k∑
r=1

λr(t|xi)
))

=

q∑
t=1

∑
i∈Rt

(
k∑
r=1

yitr log λr(t|xi) + yit0 log

(
1−

k∑
r=1

λr(t|xi)
))

.

(6.4)

If β0tr is expanded in basis functions the design matrix X̃ and the parameter vector γ̃ have
to be adopted.



6.3. Penalization 121

6.3. Penalization

The linear predictor for modeling the cause-specific hazard function λr(t|xi) has the form

ηitr = β0tr + xTi γr, t = 1, ...q, r = 1, ..., k,

where xTi = (xi1, ...,xip), γ
T
r = (γr1, ..., γrp). Because each covariate adds k parameters and

the baseline hazard parameters β0tr vary over time, the number of parameters can be very
large rendering simple ML estimators unstable. To obtain a sparse representation, and in
particular variable selection, penalized estimators are considered. Penalized ML estimators
are obtained by adding a penalty term to the log-likelihood (6.4) yielding the penalized
log-likelihood

lξ1,ξ2(β0,γ) = l(β0,γ)− Jξ1,ξ2(β0,γ), (6.5)

where βT0 = (β011, ..., β01k, ..., β0q1, ..., β0qk), γ
T = (γ1, ...,γk) collect all corresponding pa-

rameters. Thereby, l(β0,γ) denotes the ordinary log-likelihood and Jξ1,ξ2(β0,γ) stands
for a penalty term that depends on scalar tuning parameters ξ1 and ξ2. The tuning pa-
rameters ξ1 and ξ2 control the strength of penalization, whereas the choice of Jξ1,ξ2(β0,γ)
determines the properties of the penalized estimator. As the objective is variable selection,
the penalty should enforce that for variables that are not influential all corresponding pa-
rameters are set to zero simultaneously. Therefore, let all effects of the j-th covariate be
collected in γTj = (γ1j, ..., γkj). A penalty that enforces variable selection and smoothness
of the baseline hazards then is given by

Jξ1,ξ2(β0,γ) = ξ1

k∑
r=1

q∑
t=2

(β0tr − β0,t−1,r)
2 + ξ2

p∑
j=1

φj
∥∥γ j

∥∥
= ξ1J(β0) + ξ2J(γ),

(6.6)

where ‖u‖ = ‖u‖2 =
√
uTu denotes the L2-norm and φj =

√
k is a weight that adjusts the

penalty level on parameter vectors γ j for their dimension.

The first penalty term uses that time intervals are naturally ordered. Therefore, for each
cause r, differences between coefficients of adjacent time periods are penalized in a similar
way as in penalized splines (Eilers and Marx, 1996) and regression with ordered predictors
(Gertheiss and Tutz, 2009). The penalty controls how quickly hazard rates can change and
hence smoothes them over time. The second term enforces variable selection, that means,
all parameters collected in γ j are simultaneously shrunk towards zero. It is strongly related
to the group lasso method (Yuan and Lin, 2006), but as stated in Tutz et al. (2012), in the
group lasso the grouping refers to the parameters that are linked to a categorical predictor
with respect to a univariate regression model, while in the present model grouping arises
from the multivariate response structure. Without a penalty, that is with ξ1 = ξ2 = 0,
ordinary ML-estimation is obtained.
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The cause-specific baseline hazards may also be expanded in basis functions. This can be
carried out by using equally spaced B-splines resulting in the linear predictor

ηtr =
mr∑
m=1

α
(r)
0mBm(t) + xTγr.

The incorporation of B-splines requires a modification of the penalty term given by

Jξ1,ξ2(α,γ) = ξ1

k∑
r=1

mr∑
m=2

(α
(r)
0m − α

(r)
0,m−1)2 + ξ2

p∑
j=1

φj
∥∥γ j

∥∥ . (6.7)

Again, the first term of the penalty steers the smoothness of the baseline effects, whereas
the second term enforces variable selection.

6.4. Computational Issues

In the following, some details regarding the estimation approach are described. Some details
on the estimation approach itself are outlined and the modification to adaptive penalties
is described. Finally, the tuning parameter selection for discrete competing risks models is
presented.

Estimation

To estimate the parameters β0 and γ, the penalized log-likelihood (6.5) has to be max-
imized. For a simple penalized multinomial logit model, Tutz et al. (2012) have shown
how a corresponding maximization problem can be solved by means of the fast iterative
shrinkage-thresholding algorithm (FISTA) of Beck and Teboulle (2009) and called the re-
sulting method Categorically Structured Lasso (CATS Lasso). FISTA is a proximal gradient
method, where only the log-likelihood and its gradient, but no higher derivatives are used.
FISTA combines quick convergence with cheap iterates that are well-suited for the specific
challenges of multinomial logit models.
In a simple multinomial regression model the intercept is often considered to be category-
specific but usually the intercept is not assumed to be time-varying. As Tutz et al. (2012)
considered only category-specific intercepts they do not regard the special structure of the
competing risks model (6.1). In model (6.1), the parameters β01r, ..., β0qr represent the
time-varying cause-specific baseline hazard functions. In addition to the variable selection
of all parameters belonging to one predictor variable, the objective is smooth baseline haz-
ard functions that can be obtained by using the penalty term (6.6). This penalty term
uses that time intervals are naturally ordered by penalizing differences between coefficients
of adjacent time periods for each cause r. Hence, the existing CATS Lasso is extended to
allow for smooth cause-specific baseline effects.
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All details on the algorithm regarding penalized multinomial logit models can
be found in Tutz et al. (2012). An implementation of the algorithm is pro-
vided by the R package MLSP. The current version 0.1 can be downloaded from
http://www.statistik.lmu.de/∼poessnecker/software.html and will be available as
a proper R add-on package via CRAN (see http://cran.r-project.org) in the near fu-
ture.

Adaptive Penalties

Similar to Section 3.2.1, the idea of adaptive penalties, that is, weighting the penalty
terms by the inverse of the respective unpenalized parameter estimates, can be used. This
modification is applied due to the inconsistency of simple lasso or group lasso penalties (Zou,
2006; Wang and Leng, 2008). Given penalty terms (6.6) or (6.7), the adaptive version is
obtained by replacing the weights φj by

φaj =

√
k

||γ̂ML
j ||

, (6.8)

where γ̂ML
j denote the according ML-estimates. The intuition behind this weighting proce-

dure is rather straightforward. With very large data sets, unpenalized point estimates can
be expected to be rather accurate. Thus, the norm of ML-estimates of parameter groups be-
longing to relevant predictors is rather large. Consequently, the corresponding penalization
term is small. In contrast, a strong penalization is obtained for parameter groups belonging
to irrelevant predictors and, hence, leading to a small norm of the ML-estimates. Moreover,
the ML-estimates in definition (6.8) can be replaced by any

√
n-consistent estimates (Tutz

et al., 2012).

Tuning Parameter Selection

The tuning parameters ξ1 and ξ2 are chosen by K-fold cross-validation (see also Section
3.2.2 and Section 5.3.2). The choice of the tuning parameters ξ1 and ξ2 is based on a
two-dimensional grid of possible parameters on which the optimal parameter combination
is determined by cross-validation. In analogy to the previous chapters, the splitting of the
cross-validation approach refers to objects instead of individual data points leading to the
inclusion of the whole information of an object.

A possible approach of assessing the predictive performance of a model is the predictive
deviance. For a new observation (tpredi , rpredi , δpredi ,xpredi ), it is defined by

Di = 2

ti∑
t=1

k∑
r=0

ypreditr log
ypreditr

λ̂r(t|xpredi )
,

where λr(t|xi) = P (Ti = t, Ri = r|Ti ≥ t,xpredi ) and (ypredi11 , ..., ypredi1k , ..., y
pred
itik

, ..., ypreditik
)

denotes the transitions over periods and risks of object i.
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6.5. Applications

In this section, the proposed penalized competing risks model for discrete duration time is
applied to two real data problems. The first data set describes Congressional careers in the
United States. Unemployment data taken from the German socioeconomic panel constitute
the second data set.

6.5.1. Congressional Careers

The first data example deals with the careers of incumbent members of the U.S. Congress
and is used in the book of Box-Steffensmeier and Jones (2004). Therein, the data set is em-
ployed to compute unpenalized discrete survival models. It is available on the corresponding
website of the book http://psfaculty.ucdavis.edu/bsjjones/eventhistory.html. A
detailed description can be found in Jones (1994).
A congressman can end his legislative career in four different ways. He might retire (Re-
tirement), he might be ambitious and seek an alternative office (Ambition), he might lose
a primary election (Primary) or he might lose a general election (General). Career path
data were collected on every member of the House of Representatives from each freshman
class elected from 1950 to 1976. Each incumbent in the data set was tracked from the
first reelection bid until the last term served in office. A member initially elected in 1950
does not enter the risk set until the election cycle of 1952 as the members of the House of
Representatives serve two-year terms. At each subsequent election, a terminating event or
reelection is observed. Once a terminating event is experienced, the incumbent is no longer
observed. All election cycles from 1952 up to 1992 are covered in this data set. The last
freshman class on which data were collected was 1976.
The dependent variable defines the transition process of a Congressman from his first elec-
tion up to one of the competing events General, Primary, Retirement or Ambition. Thereby,
the duration until the occurrence of one of the competing events is measured as terms
served, where a maximum of 16 terms can be reached. Originally, up to 20 terms occurred,
however, only for very few Congressmen. Hence, due to stability reasons, durations that
exceed 15 terms are aggregated. Furthermore, only complete cases, that is, observations
with no missing values for any covariate are incorporated in the analysis. Several covari-
ates are used as predictors of career termination. Thereby, the covariate Age constitutes
the incumbent’s age at each election cycle and is centered around 51 years (sample mean:
51.26) to improve interpretability. The incumbent’s margin of victory in his or her previous
election is collected in the variable PriorMargin, that is centered around a margin of 35
(sample mean: 35.21). The covariate Redistricting indicates if the incumbent’s district was
substantially redistricted. By means of the covariate Scandal it is captured if an incum-
bent was involved in an ethical or sexual misconduct scandal or when the incumbent was
under criminal investigation. The covariates OpenGub and OpenSen indicate if there is an
open gubernatorial and/or open Senatorial seat available in the incumbent’s state. The
data set considers members of the Republican and the Democratic Party. Whether the
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Congressman is a member of the Republican party is gathered in the variable Republican.
Finally, in Leadership it is described if a member is in the House leadership and/or is a
chair of a standing House committee. Except the predictor Republican all covariates are
time-varying, that is, the covariate values per object may vary over the duration time. An
overview of the used predictors is shown in Table 6.1.

Variable Description

Duration Time (in terms served) the incumbent has spent in Congress prior to the election
cycle

Age Incumbent’s age (in years) at each election cycle, centered around 51
Republican Member of the Republican party

0: no, 1: yes
PriorMargin The incumbent’s margin of victory in his or her previous election, centered around 35
Leadership Prestige position

0: otherwise, 1: member is in the House leadership and/or is a chair of a standing
House committee

OpenGub Open gubernatorial seat available in the incumbent’s state
0: no, 1: yes

OpenSen Open Senatorial seat available in the incumbent’s state
0: no, 1: yes

Scandal Incumbent was involved in an ethical or sexual misconduct scandal or when the
incumbent was under criminal investigation
0: no, 1: yes

Redistricting The incumbent’s district was substantially redistricted
0: no, 1: yes

Table 6.1. Description of the variables of the Congressional career data.

The used data set contains the career paths of 860 Congressmen and is already available
in the long format, that means that each row of the data set represents an individual’s
observation for a specific time period (see also Section 6.2.2). To be on comparable scales,
all covariates are standardized to have equal variance, in order to avoid that coefficient
values are scale dependent. A penalized multinomial logit model is applied with k=4 risks
defined by cause 1 (General), 2 (Primary), 3 (Retirement) and 4 (Ambition). Thus, the
model is

λr(t|x) =
exp(ηitr)

1 +
∑4

j=1 exp(ηitj)
, r = 1, 2, 3, 4,

with cause-specific linear predictors ηitr = β0tr + xTitγr. All covariates described in Table
6.1 are incorporated in the model. Moreover, the model considers all pairwise interac-
tions except for Republican:Leadership, Leadership:Redistricting, Opengub:Scandal, Scan-
dal:Redistricting since too few observations of those covariate combinations appear in the
data. The use of interactions increases the model’s complexity and its interpretation. Such
a high-dimensional interaction model cannot be properly handled by unpenalized ML-
estimation. The task of model stabilization and efficient variable selection is tackled by
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Figure 6.1. Cross-validation score subject to penalty parameter ξ2 for ξ1 = 6.0 for the Congressional career
data.

using penalization (see Section 6.3). Referring to the penalty term (6.6), the employed
penalty term is given by

J(β0,γ) = ξ1

4∑
r=1

16∑
t=2

(β0tr − β0,t−1,r)
2 + 2ξ2

32∑
j=1

∥∥γ j

∥∥ .
It allows for smooth cause-specific baseline effects β0tr and a variable selection of the co-
variate effects and the interaction effects collected in the vectors γ 1, ...,γ 32. The adaptive
version of the penalty has shown an improvement referring to the model assessment (e.g.
cross-validation score) and the variable selection. The latter means, that also coefficients
with an extremely small estimate for the non-adaptive case were removed from the model
when using adaptive weights in the penalty. Hence, adaptive weights (6.8) are included
in the penalty. Tuning parameters ξ1 and ξ2 are chosen on a 2-dimensional grid by 5-fold
cross-validation with the predictive deviance as loss criterion. This results in tuning
parameters ξ1 = 6.0 and ξ2 = 2.64. For a fixed ξ1 = 6.0, the corresponding cross-validation
score is shown in Figure 6.1, where the vertical black dashed line marks the chosen tuning
parameter.

In Figure 6.2, parameter estimates for the cause-specific time-varying baseline effects are
shown. The corresponding pointwise confidence intervals, marked by light-gray dashed
lines, have been estimated by a nonparametric bootstrap method proposed by Efron
(1979) with 1000 bootstrap replications (see also Section 3.3). It can be seen that it is
justified to allow for cause-specific baseline effects as their run is quite different. Due to
the penalization of differences between coefficients of adjacent time periods β0tr − β0,t−1,r,
the estimated baseline effects are quite smooth.

Parameter estimates of the covariate effects are summarized in Table 6.2. Therein, the or-
dinary ML-estimates and the estimates resulting from the penalized competing risks model
with their corresponding standard errors are shown. The computation of the standard er-
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rors is based on a nonparametric bootstrap approach with 1000 bootstrap replications. It
can be immediately seen, that the penalization method removes a considerable amount of
effects, that is 68 out of 128 parameters, from the model, leading to an enormous reduction
of the model complexity. The incorporated selection procedure suggests that the main ef-
fects Republican and Leadership are not needed in the predictor. Moreover, a large number
of interaction effects are not selected. For example, the absolute values of the covariate
Scandal indicates a strong effect. If a Congressman became embroiled in a scandal it is
more likely that he/she lose a primary or general election or to retire when compared to be-
ing reelected. In contrast, a scandal decreases the probability of seeking an alternative office
compared to reelection. The exact interpretation of the parameter estimates is analogous
to the multinomial logit model. Especially, the use of log odds facilitates the interpretation.
Thereby, the log odds between cause r and the category of being reelected corresponds to
the linear predictor ηitr for a fixed time period t.

General
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Figure 6.2. Parameter estimates of the cause-specific time-varying baseline effects for the Congressional
careers data. Dashed lines represent the 95% pointwise bootstrap interval.

A selection of resulting hazard rates is depicted in Figure 6.3. In particular, Figure 6.3a
shows hazard functions for the following covariate characteristics: Age=51, Prior Mar-
gin=35, no Republican, no Leadership, no open Gubernatorial seat, no open Senatorial
seat, no Scandal and no Redistricting for the transitions to General, Primary, Retirement
and Ambition. That means, all covariate characteristics are set at reference. It can be
seen, that the probability of retirement tends to increase continuously over time. The prob-
ability for seeking an alternative office compared to reelection increases for small terms
and decreases slowly. The hazard rate for losing either a primary or a general election is
rather constant in the reference group. Figures 6.3b and 6.3c show respectively the hazard
rates for younger (Age=41) and older (Age=61) Congressmen compared to the reference
group (Age=51), while everything else remains unchanged. Younger Congressmen prefer
to seek an alternative office and they do not intend to retire. For older Congressmen, the
probability of retirement compared to reelection strongly increases. Moreover, the proba-
bility of losing either a primary or a general election is enhanced compared to the reference
group. Further plots of estimated cause-specific hazard rates can be found in Figure A.5 in
Appendix A.4.

The visualization of the shrinkage and the selection effect is carried out by coefficient paths.
For the main effects these coefficient paths are summarized in Figure 6.4, whereas those of
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General Primary Retirement Ambition
ML pen. sd ML pen. sd ML pen. sd ML pen. sd

Age 0.069 0.046 0.008 0.071 0.046 0.011 0.070 0.068 0.008 -0.034 -0.037 0.007
Republican 0.255 0 0.005 -0.188 0 0.002 -0.201 0 0.009 0.343 0 0.018
PriorMargin -0.078 -0.060 0.005 0.006 0.001 0.005 -0.007 -0.005 0.003 -0.010 -0.004 0.002
Leadership -0.272 0 0.087 -2.779 0 0.081 -0.393 0 0.065 0.033 0 0.080
Open Gub. 0.815 0.205 0.116 0.598 0.181 0.097 0.227 0.109 0.077 0.528 0.208 0.121
Open Sen. -0.638 -0.243 0.125 -0.215 -0.193 0.134 -0.086 0.062 0.125 1.136 0.878 0.134
Scandal 3.750 2.689 0.370 3.215 3.272 0.428 1.921 1.611 0.441 -3.118 -1.532 0.073
Redistricting 2.548 1.617 0.447 1.465 1.149 0.499 -0.563 0.431 0.251 0.574 0.801 0.309

Age:Republican 0.007 0.011 0.007 -0.045 -0.010 0.007 0.041 0.030 0.009 -0.038 -0.029 0.009
Age:PriorMargin 0.001 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000
Age:Leadership 0.014 0 0.002 -0.117 0 0.002 0.018 0 0.002 -0.269 0 0.001
Age:OpenGub. -0.006 0 0 0.034 0 0 -0.016 0 0 -0.011 0 0
Age:OpenSen. -0.005 0 0.001 -0.074 0 0.001 -0.039 0 0.004 -0.015 0 0.002
Age:Scandal -0.106 0 0 0.022 0 0 0.090 0 0 0.009 0 0
Age:Redistricting -0.001 0.007 0.016 -0.066 -0.039 0.018 0.174 0.097 0.031 0.037 0.018 0.016
Republican:PriorMargin 0.016 0.005 0.004 -0.041 -0.016 0.005 -0.008 -0.004 0.004 0.015 0.012 0.004
Republican:OpenGub. -0.532 -0.342 0.200 -4.282 -1.337 0.147 -0.147 -0.233 0.201 -0.063 0.294 0.184
Republican:OpenSen. 0.323 0 0.001 -0.092 0 0.002 0.802 0 0.010 -0.260 0 0.011
Republican:Scandal 0.007 0 0.021 2.121 0 0.054 0.182 0 0.005 -1.418 0 0.001
Republican:Redistricting -1.833 0 0.076 0.447 0 0.059 1.247 0 0.050 -0.276 0 0.051
PriorMargin:Leadership 0.025 0 0 -0.009 0 0 -0.008 0 0.001 0.057 0 0
PriorMargin:OpenGub. 0.020 0 0 -0.001 0 0.001 0.008 0 0.001 0.009 0 0.001
PriorMargin:OpenSen. -0.016 0 0.001 -0.019 0 0.002 0.013 0 0.002 0.011 0 0.004
PriorMargin:Scandal 0.006 0.007 0.005 -0.017 -0.010 0.004 -0.071 -0.019 0.006 -0.028 -0.001 0
PriorMargin:Redistricting 0.066 0.037 0.019 0.000 -0.002 0.003 0.030 0.010 0.006 -0.013 -0.009 0.007
Leadership:OpenGub. -5.168 0 0.117 -1.693 0 0.087 1.054 0 0.359 -5.402 0 0.116
Leadership:OpenSen. -4.513 0 0 -0.941 0 0 1.001 0 0 -6.053 0 0
Leadership:Scandal -0.213 -0.029 0.594 -4.212 -1.803 0.733 -8.621 -1.925 0.756 -0.897 -0.108 0.047
OpenGub.:OpenSen. -0.436 0 0 0.124 0 0 -0.280 0 0 -0.429 0 0
OpenGub.:Redistricting -0.175 0.172 0.663 -4.274 -0.415 0.125 -5.297 -0.666 0.237 2.751 2.126 0.932
OpenSen.:Scandal -2.277 0 0.307 -1.482 0 0.206 -8.270 0 0.266 -3.311 0 0.058
OpenSen.:Redistricting 0.914 0 0.052 -4.560 0 0.006 -0.522 0 0.031 1.771 0 0.147

Table 6.2. Parameter estimates for the Congressional careers data. Ordinary maximum likelihood estimates
are denoted by “ML”, the penalized estimates are denoted by “pen.”. Estimated standard errors for the
penalized model obtained by a bootstrap approach are given in the columns denoted by “sd”.

the interaction effects can be found in Figure A.6 in Appendix A.4. Each path indicates the
penalized estimates subject to tuning parameter ξ2. In particular, the paths illustrate how
the estimates changes towards zero for increasing ξ2. Hence, they show the development
of the covariates for the terminating events when penalization is increased. The dashed
black line indicates the ξ2 chosen via cross-validation and the corresponding estimates. For
simplicity reasons the abscissa is transformed by applying log(1 + ξ2).
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Margin=35, no Republican, no
Leadership, no open Gubernatorial
seat, no open Senatorial seat, no
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Figure 6.3. Estimated cause-specific hazard rates over time for the Congressional careers data.

6.5.2. Unemployment Data

In this section, the proposed penalized competing risks model is applied to unemployment
data. The data set has originally been analyzed by Kauermann and Khomski (2009). Based
on the German socio economic panel (SOEP; see www.diw.de), individuals who have been
unemployed at least once during the years 1990 to 2000 are considered. Generally, for indi-
viduals in the panel with more than one spell of unemployment, one of their spells is chosen
randomly and the others are ignored. This guarantees independence of the observations.
Each unemployment spell terminates due to different competing reasons. It is focused on
two competing risks (or in terminology of unemployment better called chances), that is,
part-time reemployment (r = 1) and full-time reemployment (r = 2). All other reasons for
terminating unemployment are taken as censoring.
The dependent variable defines the transition process of an individual up to one of the
competing events part-time or full-time reemployment. Thereby, the duration until the
occurrence of one of the competing events is measured in months, where a maximum of
36 months can be reached. Several covariates are used as predictors of reemployment like
Nationality, Gender, Age, Education and Training, measured respectively at the beginning
of the unemployment spell. In the following analysis, the focus is on the publicly available
version of the data that is part of the R add-on package CompetingRiskFrailty. In the
meantime, the package was removed from the CRAN repository, but formerly available
versions, including the data set, can be obtained from the archive. The list of explanatory
variables that will be used for modeling is presented in Table 6.3.
The available data set consists of 500 unemployed persons. Restructuring of the data was
executed according to Section 6.2.2, to fit a penalized multinomial logit regression model
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Figure 6.4. Coefficient paths of the main effects for the Congressional career data.

with k=2 risks defined by cause 1 (part-time) and 2 (full-time). To be on comparable scales,
all covariates are standardized to have equal variance. The used model is given by

λr(t|x) =
exp(ηitr)

1 +
∑2

j=1 exp(ηitj)
, r = 1, 2,

with cause-specific linear predictors ηitr = β0tr + xTi γr. All covariates described in Table
6.3 are incorporated in the model. Moreover, the model considers all pairwise interaction
effects. Referring to the penalty term (6.6), the used penalty term is given by

J(β0,γ) = ξ1

2∑
r=1

36∑
t=2

(β0tr − β0,t−1,r)
2 +
√

2ξ2

20∑
j=1

∥∥γ j

∥∥ .
In analogy to the previous example the penalty term allows for smooth cause-specific base-

line effects and a variable selection of the covariate effects and the interaction effects. The
adaptive version of the penalty has not shown a clear improvement regarding model assess-
ment (e.g. cross-validation score) and the variable selection, hence, it is omitted. Tuning
parameters ξ1 and ξ2 are chosen by 5-fold cross-validation with regard to the predictive
deviance. This results in tuning parameters ξ1 = 1.0 and ξ2 = 7.42. For a fixed ξ1 = 1.0,
the corresponding cross-validation score is shown in Figure 6.5a, where the vertical black
dashed line marks the chosen tuning parameter.
Parameter estimates for the cause-specific time-varying baseline effects are shown in Figure
6.5b. The corresponding pointwise confidence intervals have been estimated by a nonpara-
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Variable Description

Time Time spent in the unemployment spell, measured in months.
The spells which lasted more than 36 months have been truncated on
36 months and denoted as censored

Nationality Nationality of the unemployed person
0: German, 1: Foreigners

Gender Gender of the unemployed person
0: Male, 1: Female
Age of the unemployed person at the beginning of the unemployment spell

Age young 0: no, 1: yes (≤ 25 years)
Age old 0: no, 1: yes (> 50 years)
Training Unemployed individual has successfully completed a professional training

0: yes, 1: no
University Unemployed individual has an university degree or equivalent qualification

0: no, 1: yes

Table 6.3. Description of the variables of the unemployment data.

metric bootstrap method proposed by Efron (1979) with 1000 bootstrap replications (see
also Section 3.3). As the run of the baseline functions is quite different, it is justified to
allow for cause-specific baseline effects. The run of the baseline effects over time is not as
smooth as in the Congressional careers example. This is due to the fact that ξ1, steering
the smoothness of the baseline effects, is chosen to be equal to one.

In Table 6.4, the parameter estimates of the covariate effects are summarized. Therein, the
ordinary ML-estimates, the estimates resulting from the penalized competing risks model
with their corresponding standard errors are shown. The computation of the standard
errors is based on a nonparametric bootstrap approach with 1000 bootstrap replications. It
can be immediately seen, that the penalization method removes a considerable amount of
effects, that is 22 out of 40 parameters, from the model, leading to a enormous reduction of
the model complexity. All main effects remain in the models, whereas only three interaction
effects are selected. For example, for women it is more likely to get a part-time job and less
likely to get a full-time job and for younger people, getting a full-time job is more likely than
getting a part-time job. The exact interpretation of the parameter estimates is analogous
to the multinomial logit model. Especially, the use of log odds facilitates the interpretation.
Thereby, the log odds between cause r and the category of being unemployed corresponds
to the linear predictor ηitr for a fixed time period t. Figure 6.6 depicts a selection of
resulting hazard rates. In particular, Figure 6.6a gives hazard functions for a middle-aged
German men with a professional training and no university degree for the transitions to
part-time reemployment and full-time reemployment. That means, that all characteristics
are set at reference. For a transition to full-time reemployment the hazard rate shows the
typical pattern of unemployment data with a short increase and slow decrease. The hazard
rate for the transition to part-time reemployment is rather constant at the beginning of the
observation period but from a duration time of 25 months it increases. In Figure 6.6b, it can
be observed that fewer women get a full-time job than men, whereas slightly more women
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Figure 6.5. Plots corresponding to the unemployment data.

get a part-time job, while everything else remains unchanged, that is, in the reference
group. A transition to a university degree clearly increases the probability of getting a
full-time or part-time job. The remaining plots of the estimated cause-specific hazard rates
can be found in Figure A.7 in Appendix A.4. The visualization of the shrinkage and the
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Figure 6.6. Estimated cause-specific hazard rates over time for the transition to part-time reemployment
and full-time reemployment.

selection effect is carried out by coefficient paths. For the main effects, these coefficient
paths are summarized in Figure 6.7, whereas those of the interaction effects can be found in
Figure A.8 in Appendix A.4. Each path indicates the penalized estimates subject to tuning
parameter ξ2 for ξ1 = 1.0. In particular, the paths illustrate how the estimates change
towards zero for increasing ξ2. The dashed black line indicates the ξ2 chosen via cross-
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Part-time Full-time
ML pen. sd ML pen. sd

Nationality -1.569 -0.317 0.115 0.269 0.125 0.079
Gender 1.115 0.236 0.126 -1.207 -0.847 0.129
Age young 0.371 -0.274 0.133 -0.042 0.088 0.124
Age old -3.501 -0.879 0.156 -0.642 -0.746 0.179
Training 0.547 -0.023 0.069 -1.058 -0.389 0.142
University 3.043 1.360 0.380 0.757 0.483 0.189

Nationality:Gender 0.428 0 0.028 -0.251 0 0.047
Nationality:Age young -2.851 0 0.007 -0.029 0 0.033
Nationality:Age old -1.534 0 0.007 -5.104 0 0.021
Nationality:Training 0.414 0 0.015 0.299 0 0.016
Nationality:University -0.343 -0.350 0.230 -2.618 -0.898 0.393
Gender:Age young -1.135 -0.090 0.052 0.468 0.222 0.122
Gender:Age old -2.278 -0.188 0.080 -0.711 -0.166 0.091
Gender:Training -0.645 0 0.010 0.777 0 0.019
Gender:University -1.324 0 0.069 -1.020 0 0.093
Age young:Training -0.204 0 0.024 0.432 0 0.041
Age old:Training 0.977 0 0.040 -1.407 0 0.107
Age young:University -5.885 0 0.045 0.876 0 1.073
Age old:University 0.671 0 0.063 -0.959 0 0.125
Training:University -0.822 0 0.049 0.959 0 0.033

Table 6.4. Parameter estimates for the unemployment data. Ordinary maximum likelihood estimates
are denoted by “ML”, the penalized estimates are denoted by “pen.”. Estimated standard errors for the
penalized model obtained by a bootstrap approach are given in the columns denoted by “sd”.

validation and the resulting estimates. For simplicity reasons the abscissa is transformed
by applying log(1 + ξ2).

6.6. Concluding Remarks

In this chapter, a penalized competing risks model for discrete duration time is proposed.
The embedding of discrete competing risks models into the framework of a multinomial
regression model allows for the application of the CATS lasso method introduced by Tutz
et al. (2012). In competing risks models for discrete duration time, the cause-specific
hazard rates are of main interest. When modeling these cause-specific hazard rates, several
coefficients for each explanatory variable exist forming their own group. The proposed
penalization method enables the simultaneous shrinkage of parameters belonging to such a
group. A parameter group even can be completely removed from the model. Hence, true
variable selection is performed. Moreover, the proposed method allows that parameters
representing the cause-specific baseline hazards vary over time. In order to avoid that
parameters of adjacent time periods of the baseline effects have completely different values,
a further penalty term is incorporated steering the smoothness of the baseline effects.

Another interesting question would be the incorporation of time-varying covariate effects.
By expanding the time-varying coefficients in basis functions, smooth curves over time can
be obtained. This can be carried out, for example, by using equally spaced B-splines. To
control for unobserved heterogeneity, a further advancement might be the inclusion of frailty



134 6. Penalization in Competing Risks Models

Part Time    Full Time

−1.5

−1.0

−0.5

0.0

0 1 2 3 4
log(1 + ξ2)

N
a
ti

o
n

a
li
ty

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3 4

log(1 + ξ2)

G
e
n

d
e
r

−0.3

−0.2

−0.1

0.0

0.1

0.2

0 1 2 3 4
log(1 + ξ2)

A
g

e
 Y

o
u

n
g

−5

−4

−3

−2

−1

0

0 1 2 3 4
log(1 + ξ2)

A
g

e
 O

ld

−1.0

−0.5

0.0

0.5

0 1 2 3 4
log(1 + ξ2)

T
ra

in
in

g

0

1

2

3

0 1 2 3 4
log(1 + ξ2)

U
n

iv
e
rs

it
y

Figure 6.7. Coefficient paths of the main effects for the unemployment data.

effects in analogy to Chapter 5. By accounting for these two issues, the linear predictor is
given by

ηitr = bir + β0tr +
∑
j

xitjβjtr = bir + β0tr +
∑
j

x̃itjαjr,

with βjtr =
∑mjr

m=1 α
(r)
jmBm(t) and bir is considered to be an individual-specific random effect

that is appropriately distributed. Furthermore, multivariate frailties are required here, with
a separate component for each competing risk. This leads to a frailty vector for each indi-
vidual. Note, that x̃itj differs from xitj. The x̃itj contain the design of the interaction of the
according covariates and the evaluations of the appropriate basis functions. The incorpo-
ration of B-splines requires a modification of the penalty term. Moreover, a weighting has
to be introduced that accounts for smoothing and selection of the time-varying covariate
effects. If frailties are considered in the linear predictor, the estimation algorithm has to
be completely revised to maximize the marginal log-likelihood.



7. Conclusion and Outlook

In this thesis, penalization methods for survival models for discrete duration time are
proposed. Single spell discrete-time survival models can be embedded into the framework
of generalized linear models leading to a data situation with a large number of observations
that are only rarely observed, especially when many time periods are considered. This data
situation becomes even more difficult when time-varying covariate effects are incorporated.
However, as survival data are measured over time, in this thesis, it is mainly focused on
the incorporation of time-varying covariate effects.

To cope with this special data situation, in Chapter 3 penalty methods for discrete survival
models with time-varying coefficients are considered. Penalization means, to add a penalty
term to the log-likelihood. This penalty term determines the properties of the penalized
estimator. Thereby, in Chapter 3, the incorporation of penalties is not restricted to a
special type of penalty terms, but it is allowed for any combination of penalty terms.
Hence, it is possible to add a specific penalty term referring to the baseline effects and
adding further penalty terms that only affect the covariate effects. One further benefit of
this approach is the predominantly smooth temporal variation of time-varying covariate
effects. Furthermore, the proposed method can perform variable selection leading to
interpretable and parsimonious models. Hence, the resulting procedure is considerably
flexible and can be applied to a variety of applications. However, the results of the
simulation study of Chapter 3 have shown that caution is recommended in the case of
correlated variables due to poor variable selection.
The estimates of the penalization approach are obtained by a penalized pseudo Fisher
scoring that is quite time-consuming. Hence, a future objective would be the optimization
of the algorithm with the aim to be more efficient. Furthermore, in Chapter 3, the
proposed variable selection technique, regarding time-varying coefficients, removes whole
parameter groups belonging to one time-varying coefficient, that is, the interaction of
time and the corresponding predictor, from the model. That means, grouping refers to
the parameters that are linked to this interaction and finally, only single parameters can
be removed from the model. However, in terms of categorical predictors an additional
grouping of the categories would be of interest representing a further idea of future research.

The strength of penalization is steered by tuning parameters. The tuning parameters of
the penalization approach in Chapter 3 are chosen by cross-validation with the predictive
deviance as loss function. In Chapter 4, it is systematically investigated if the performance
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of penalized discrete survival regression models can be improved by modifying the loss
function. Therefore, several prediction measures used in the area of continuous survival
outcomes are adapted to discrete time survival outcomes. It has been shown that the pre-
dictive deviance cannot be outperformed by other loss functions. This can be explained
by the predictive deviance being a likelihood-based measure. Since the corresponding opti-
mization criterion maximizes the penalized likelihood, it is based on the likelihood as well.
Hence, an interesting aspect would be that the predictive measures of interest are already
used in the optimization approach. This can be carried out, for example, by a component-
wise gradient boosting algorithm (Bühlmann and Hothorn, 2007) that uses the predictive
measure as optimization criterion.
Furthermore, the results of the simulation study of Chapter 4 indicate that the predictive
deviance regarding complete cases per object with respect to the cross-validation splits has
to be preferred to the predictive deviance using individual data points for splitting.

Chapter 5 extends the method proposed in Chapter 3, where lasso-type penalties are
treated, by an incorporation of frailty effects. Thereby, it is controlled for unobserved het-
erogeneity since ignoring unobserved heterogeneity may lead to biased estimates. Hence,
in the context of survival models for discrete duration time, complex penalty terms are
combined with random effects. Moreover, time-varying coefficients are regarded in the lin-
ear predictor. The incorporation of these different issues may lead to very complex and
difficult data situations. The proposed method is even able to yield stable estimates for
those cases, whereas existing methods provided by the functions gam and gamm of the R
add-on package mgcv (Wood, 2006) or the function glmmPQL of the R add-on package MASS

(Venables and Ripley, 2002), typically fail. However, it has to be mentioned that the com-
putation of fpendsm is very time-consuming. In analogy to Chapter 3, a further challenge
is the optimization of the estimation algorithm with the aim to be more efficient. A possible
alternative algorithm might be based on FISTA that is used in Chapter 6. It belongs to
the class of proximal gradient methods in which only the log-likelihood and its gradient,
but no higher-order derivatives are used.

Penalized competing risks models for discrete duration time are proposed in Chapter 6.
Competing risks models are considered when more than one terminating event is of inter-
est. Discrete competing risks models can be embedded into the framework of multinomial
regression models. Due to the large amount of parameters that arise with the use of this
model type, a penalization technique for discrete-time competing risks models is proposed.
This penalization technique is based on the CATS lasso, introduced by Tutz et al. (2012).
In competing risks models for discrete duration time, the cause-specific hazard rates are
of main interest. When modeling these cause-specific hazard rates, several coefficients for
each explanatory variable are existent forming their own group. The proposed penalization
method enables the simultaneous shrinkage of parameters belonging to such a group. A
parameter group even can be completely removed from the model. Hence, true variable
selection is performed. Moreover, the proposed method allows that parameters represent-
ing the cause-specific baseline hazards vary over time. In order to avoid that adjacent
parameters of the baseline effects have completely different values, a further penalty term
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is incorporated steering the smoothness of the baseline effects.
Another interesting question for future research would be the incorporation of time-varying
covariate effects. By expanding the time-varying coefficients in basis functions, smooth
curves over time are obtained. This can be carried out, for example, by using equally
spaced B-splines. To control for unobserved heterogeneity, a further advancement might be
the inclusion of frailty effects in analogy to Chapter 5. By accounting for these two issues,
the linear predictor is given by

ηitr = bir + β0tr +
∑
j

xitjβjtr = bir + β0tr +
∑
j

x̃itjαjr,

with βjtr =
∑mjr

m=1 α
(r)
jmBm(t) and bir is considered to be a individual-specific random effect

that is appropriate distributed. Furthermore, the frailties are multivariate, with a separate
component for each competing risk. This leads to a frailty vector for each individual. Note,
that x̃itj differs from xitj. The x̃itj contain the design of the interaction of the according
covariates and the evaluations of the appropriate basis functions. The incorporation of
B-splines requires a modification of the penalty term. Moreover, a weighting has to be
introduced that accounts for smoothing and selection of the time-varying covariate effects. If
frailties are considered in the linear predictor, the estimation algorithm has to be completely
revised to maximize the marginal log-likelihood.

Finally, this thesis provides an overview of the benefit of using penalization techniques for
survival models for discrete duration time. However, the mentioned ideas for extensions
show that there is still need for further research in this field.
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A.1. Additional Figures for Section 4.3.2
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Figure A.1. Boxplots of the mean squared errors and predictive accuracy for setting 2 using a regression
censoring model for IPCW estimators
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Figure A.2. Boxplots of the mean squared errors and predictive accuracy for setting 3 using a regression
censoring model for IPCW estimators
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Figure A.3. Boxplots of the mean squared errors and predictive accuracy for setting 4 using a marginal
regression model for IPCW estimators
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Figure A.4. Boxplots of the mean squared errors and predictive accuracy for setting 5 using a marginal
regression model for IPCW estimators



A.2. Laplace Approximation 141

A.2. Laplace Approximation

Based on Tutz (2012) and Groll (2011), in this section the numerical integration by means
of the Laplace approximation is summarized. The Laplace approximation provides an
approximation for integrals of the form

∫
enl(θ)dθ when n is large (e.g. De Bruijn, 1981).

For unidimensional θ it holds∫
enl(θ)dθ ≈ exp(nl(θ̂))

σ̂√
n

√
2π,

where θ̂ is the unique maximum of l(θ) and σ̂2 = 1/(∂2l(θ̂)/∂θ2). This result can be
obtained by using the Taylor approximation of second order

l(θ) ≈ l(θ̂) +
∂l(θ̂)

∂θ
(θ − θ̂) +

1

2

∂2l(θ̂)

∂θ2
(θ − θ̂)2,

resulting in (using ∂l(θ̂)
∂θ

= 0, as θ̂ is the unique maximum of l(θ))∫
enl(θ)dθ ≈

∫
exp

(
nl(θ̂) + n

∂l(θ̂)

∂θ
(θ − θ̂) +

1

2
n
∂2l(θ̂)

∂θ2
(θ − θ̂)2

)
dθ
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σ̂2

n

)
dθ

= exp(nl(θ̂))
σ̂√
n

√
2π.

By substituting g(θ) = enl(θ) it follows∫
g(θ)dθ ≈ g(θ̂)σ̂g

√
2π, (A.1)
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where σ̂g = σ̂
n

=
(
−∂2 log g(θ̂)

∂θ2

)−1

and θ̂ is the unique maximum of g(θ). The i-th contribution

to the marginal likelihood for a discrete frailty survival model is given by

li(β,γ, σ
2
b ) = log

(∫
f(yi|β,γ, bi)p(bi;σ2

b )dbi

)
.

For normally distributed bi ∼ N (0, σ2
b ) it follows

li(β,γ, σ
2
b ) = log

{
1

σ
√

2π

∫
exp

[
log(f(yi|β,γ, bi))−

1

2

(
bi
σ

)2
]
dbi

}
.

With κβ(bi) = − log(f(yi|β,γ, bi)) − 1
2

(
bi
σ

)2
the integrand is exp(−κβ(bi)) and univariate

Laplace approximation (Equation A.1) yields

li(β,γ, σ
2
b ) ≈ log

{
exp(−κβ(b̃i))

σ

n

}
,

where b̃i minimizes κβ(bi). Further simplification yields

li(β,γ, σ
2
b ) ≈ −κβ(b̃i) + log

σ

n

= log(f(yi|β,γ, bi))−
1

2

(
bi
σ

)2

+ log
σ

n
.

In addition, Breslow and Clayton (1993) ignore the last term. Since b̃i minimizes κβ(bi), it
is also defined as the maximum of the i-th penalized log-likelihood

lappi (ω) = log f(yi|ω)− σ2
b

2
b2
i .

A.3. Inversion of Pseudo Fisher Matrix

To keep the notation simple, the argument σ2
b is omitted in the following, for example

writing l(ωα) instead of l(ωα, σ
2
b ). Furthermore, the vector β̃ represents the vector (α,γ).

According to Tutz (2012), the inversion of the penalized pseudo-Fisher matrix F p(ωα) can
be simplified by partitioning of the matrix. Hence, the used partitioning is given by

F p(ωα) =


F β̃β̃ Fβ̃1 Fβ̃2 · · ·Fβ̃n
F1β̃ F11 0

F2β̃ F22

...
. . .

Fnβ̃ 0 Fnn
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with

F β̃β̃ = −E

(
∂2l(ωα)

∂β̃∂β̃
T

)
,

F β̃i = F iβ̃ = −E
(
∂2l(ωα)

∂β̃∂bi

)
,

F ii = −E
(
∂2l(ωα)

∂bi∂bi

)
.

Note, that apart from the Matrix F β̃β̃ the remaining components are scalar quantities due
to the fact that only random intercepts are incorporated in the model. By using standard
formulas for inverting partitioned matrices (see e.g. Magnus and Neudecker, 2007), the
inverse can be easily computed by

F−1
p (ωα) =


V β̃β̃ Vβ̃1 Vβ̃2 · · · Vβ̃n
V1β̃ V11 V12 · · · V1n

V2β̃ V21 V22 · · · V2n

...
...

...
...

Vnβ̃ Vn1 Vn2 · · · Vnn,


with

V β̃β̃ = (F β̃β̃ −
n∑
i=1

Fβ̃iF
−1
ii Fiβ̃)−1, Vβ̃i = Viβ̃ = −V β̃β̃Fβ̃iF

−1
ii ,

Vii = F−1
ii + F−1

ii Fiβ̃V β̃β̃Fβ̃iF
−1
ii , Vij = Vji = F−1

ii Fiβ̃V β̃β̃Fβ̃jF
−1
jj , i 6= j.
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A.4. Additional Figures for Section 6

Congressional Careers
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Figure A.5. Estimated cause-specific hazard rates over time for the Congressional career data.



A.4. Additional Figures for Section 6 145

 General   

 Primary   

 Retirement   

 Ambition   

−0.04

−0.02

0.00

0.02

0.04

0 1 2 3 4
log(1 + ξ2)

A
g

e
 :

 R
e

p
u

b
li

c
a

n

−1.0

−0.5

0

0.5

1.0

0 1 2 3 4
log(1 + ξ2)

A
g

e
 :

 P
ri

o
r 

M
a

rg
in

 [
1

0
^

(−
3

)]

−1.0−0.500.51.0

0 1 2 3 4
log(1 + ξ2)

A
g

e
 :

 L
e

a
d

e
rs

h
ip

−0.01

0.00

0.01

0.02

0.03

0 1 2 3 4
log(1 + ξ2)

A
g

e
 :

 O
p

e
n

 G
u

b
.

−0.06

−0.04

−0.02

0.00

0 1 2 3 4
log(1 + ξ2)

A
g

e
 :

 O
p

e
n

 S
e

n
.

−0.05

0.00

0.05

0 1 2 3 4
log(1 + ξ2)

A
g

e
 :

 S
c

a
n

d
a

l

0.0

0.1

0 1 2 3 4
log(1 + ξ2)

A
g

e
 :

 R
e

d
is

tr
ic

ti
n

g
−0.03

−0.02

−0.01

0.00

0.01

0 1 2 3 4
log(1 + ξ2)

R
e

p
u

b
li

c
a

n
 :

 P
ri

o
r 

M
a

rg
in

−5

−4

−3

−2

−1

0

0 1 2 3 4
log(1 + ξ2)

R
e

p
u

b
li

c
a

n
 :

 O
p

e
n

 G
u

b
.

0.0

0.3

0.6

0 1 2 3 4
log(1 + ξ2)

R
e

p
u

b
li

c
a

n
 :

 O
p

e
n

 S
e

n
.

0.0

0.5

1.0

1.5

0 1 2 3 4
log(1 + ξ2)

R
e

p
u

b
li

c
a

n
 :

 S
c

a
n

d
a

l

−1

0

1

0 1 2 3 4
log(1 + ξ2)

R
e

p
u

b
li

c
a

n
 :

 R
e

d
is

tr
ic

ti
n

g

0.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4
log(1 + ξ2)

P
ri

o
r 

M
a

rg
in

 :
 L

e
a

d
e

rs
h

ip

0.000

0.005

0.010

0.015

0.020

0 1 2 3 4
log(1 + ξ2)

P
ri

o
r 

M
a

rg
in

 :
 O

p
e

n
 G

u
b

.

−0.01

0.00

0.01

0 1 2 3 4
log(1 + ξ2)

P
ri

o
r 

M
a

rg
in

 :
 O

p
e

n
 S

e
n

.

−0.06

−0.04

−0.02

0.00

0 1 2 3 4
log(1 + ξ2)

P
ri

o
r 

M
a

rg
in

 :
 S

c
a

n
d

a
l

0.00

0.02

0.04

0.06

0 1 2 3 4
log(1 + ξ2)

P
ri

o
r 

M
a

rg
in

 :
 R

e
d

is
tr

ic
ti

n
g

−5

−4

−3

−2

−1

0

1

0 1 2 3 4
log(1 + ξ2)

L
e

a
d

e
rs

h
ip

 :
 O

p
e

n
 G

u
b

.

−5

−4

−3

−2

−1

0

1

0 1 2 3 4
log(1 + ξ2)

L
e

a
d

e
rs

h
ip

 :
 O

p
e

n
 S

e
n

.

−6

−4

−2

0

0 1 2 3 4
log(1 + ξ2)

L
e

a
d

e
rs

h
ip

 :
 S

c
a

n
d

a
l

−0.4

−0.3

−0.2

−0.1

0.0

0 1 2 3 4
log(1 + ξ2)

O
p

e
n

 G
u

b
. 

: 
O

p
e

n
 S

e
n

.

−4

−2

0

2

0 1 2 3 4
log(1 + ξ2)

O
p

e
n

 G
u

b
. 

: 
R

e
d

is
tr

ic
ti

n
g

−6

−4

−2

0

0 1 2 3 4
log(1 + ξ2)

O
p

e
n

 S
e

n
. 

: 
S

c
a

n
d

a
l

−2

−1

0

1

0 1 2 3 4
log(1 + ξ2)

O
p

e
n

 S
e

n
. 

: 
R

e
d

is
tr

ic
ti

n
g

Figure A.6. Coefficients paths of the interaction effects for the Congressional career data.
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Unemployment Data
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Figure A.7. Estimated cause-specific hazard rates over time for the transition to part-time reemployment
and full-time reemployment.
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Figure A.8. Coefficients paths of the interaction effects for the unemployment data.
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Meier, L., S. Van De Geer, and P. Bühlmann (2008). The group lasso for logistic regression.
Journal of the Royal Statistical Society B70, 53–71.
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Tutz, G., W. Pößnecker, and L. Uhlmann (2012). Variable selection in general multino-
mial logit models. Technical Report 126, Department of Statistics, Ludwig-Maximilians-
Universität München.

Ulbricht, J. (2010). Variable Selection in Generalized Linear Models. Ph. D. thesis, De-
partment of Statistics, Ludwig-Maximilians-Universität München.

Uno, H., T. Cai, L. Tian, and L. Wei (2007). Evaluating prediction rules for t-year survivors
with censored regression models. Journal of the American Statistical Association 102,
527–537.

van den Berg, G. J. (2001). Duration models: Specification, identification, and multiple
durations. In J. J. Heckman and E. Leamer (Eds.), Handbook of Econometrics, Volume 5.
Amsterdam: North-Holland. 3381-3460.

Vaupel, J. W., K. G. Manton, and E. Stallard (1979). The impact of heterogeneity in
individual frailty on the dynamics of mortality. Demography 16, 439–454.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S (Fourth ed.).
New York: Springer.

Wald, A. (1950). Statistical Decision Functions. New York: Wiley.

Wang, H. and C. Leng (2008). A note on adaptive group lasso. Computational Statistics
& Data Analysis 52, 5277–5286.

Wang, H. and Y. Xia (2009). Shrinkage estimation of the varying coefficient model. Journal
of the American Statistical Association 104, 747–757.

Wei, F., J. Huang, and H. Li (2011). Variable selection and estimation in high-dimensional
varying-coeffient models. Statistica Sinica 21, 1515–1540.

Wolfinger, R. and M. O’connell (1993). Generalized linear mixed models a pseudo-likelihood
approach. Journal of statistical Computation and Simulation 48, 233–243.

Wood, S. (2006). Generalized Additive Models: An Introduction with R. London: Chapman
& Hall.



References 159

Wood, S. (2014). mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smooth-
ness estimation. R package version 1.7-29.

Wood, S. and F. Scheipl (2013). gamm4: Generalized additive mixed models using mgcv
and lme4. R package version 0.2-2.

Xu, R. and J. O’Quigley (1999). A measure of dependence for proportional hazards models.
Journal of Nonparametric Statistics 12, 83–107.

Xue, L. and A. Qu (2012). Variable selection in high-dimensional varying-coefficient models
with global optimality. The Journal of Machine Learning Research 13, 1973–1998.

Yuan, M. and Y. Lin (2006). Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society B68, 49–67.

Zeger, S. L. and M. R. Karim (1991). Generalized linear models with random effects; a
gibbs sampling approach. Journal of the American Statistical Association 86, 79–86.

Zhang, H. and W. Lu (2007). Adaptive lasso for Cox’s proportional hazards model.
Biometrika 94, 691–703.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
statistical association 101, 1418–1429.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society B67, 301–320.





Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)
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