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Summary 
The cytoskeleton of eukaryotic cells is an essential and highly dynamic structural 

network of fibers protecting the cell from deformation, providing cellular scaffold and 

enabling cellular motility for spatial organization. Motor proteins are responsible for 

intracellular trafficking as well as morphological activities in eukaryotic cells, using 

actin filaments and microtubules as tracks. Cytoskeletal motor proteins (Myosins, 

dyneins and kinesins) can be described as ATP-driven “nano-machines” that are 

responsible for directed intracellular movements. The kinesin superfamily contains 

several hundred members divided into at least 14 family designations. Vast majority 

of kinesins are homodimeric, some are homotetrameric, or monomeric. The 

heterodimeric kinesin-2 from C. elegans consists of three subunits: two different 

kinesin-like motor subunits encoded by kinesin like proteins (KLP) 11 and 20 and one 

non-motor subunit termed KAP (Kinesin associated protein).  

However, why kinesin-2 combines two different subunits and which advantages this 

provides for the whole motor remains elusive. Are the subunits kinetically not 

equivalent as they also differ in size? Does KLP11/20 regulate its catalytic activity by 

a tail mediated mechanism similar to kinesin-1 and kinesin-3? Testing kinesin-2’s 

catalytic activity and its regulation as well as of its subunits by molecular engineering 

has enabled the dissection of the kinetic properties of the subunits KLP11 and KLP20 

constituting the heterodimeric KLP11/20 motor from C. elegans.  

Four main conclusions were drawn from these analyses. First, wild type KLP11/20 is 

auto-regulated and this inhibition can be relieved either by swapping the relative 

head positions (KLP20/11) or by replacing the flexible kink position by stiff residues 

(KLP11EE/20EE) or by removing the KLP11 subunit (KLP20/20). Second, the 

dimerization of two KLP11 vs. two KLP20 head domains either by the wild type tail or 

by the unrelated molecular zipper GCN4 results in motors with distinct kinetic 

properties. Third, the GCN4-mediated dimerization of the KLP11 subunit results in an 

unprocessive motor whereas the corresponding dimerization of the KLP20 subunit 

results in a processive motor. Fourth, introducing flexible residues between the 
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KLP11 head domains is sufficient to impart processivity onto the homodimeric 

KLP11/11 GCN4 motor. 

 

 



 

Zusammenfassung 

 

 3 

Zusammenfassung 
Das Zytoskelett von eukaryontischen Zellen ist ein essentielles und sehr 

dynamisches strukturelles Netzwerk von Fasern, das die Zelle vor Verformung 

schützt, zelluläre Stabilität bietet und Mobilität für die räumliche Organisation 

ermöglicht. Indem sie die Aktinfilamente und die Mikrotubuli als Schienen benutzen, 

sind Motorproteine sowohl für den intrazellulären Transport als auch für die 

morphologischen Aktivitäten in eukaryotischen Zellen verantwortlich. Zytoskelett 

Motorproteine (Myosine, Dyneine und Kinesine) können als ATP betriebene 

"Nanomaschinen" bezeichnet werden, die für gerichtete intrazelluläre Bewegungen 

verantwortlich sind. Die Kinesin -Superfamilie umfasst mehrere hundert Mitglieder, 

die in mindestens 14 Familienstämme unterteilt werden können. Die überwiegende 

Mehrheit der Kinesine bilden Homodimere, während einige Homotetramere oder 

Monomere sind. Das heterodimere Kinesin-2 aus C. elegans besteht aus drei 

Untereinheiten: zwei unterschiedlichen Kinesin ähnlichen Motoreinheiten, welche 

durch die Kinesin Like Proteins (KLP) 11 und 20 kodiert werden, sowie einer nicht-

Motoruntereinheit die als KAP (Kinesin associated protein) bezeichnet wird.  

Doch warum Kinesin-2 zwei unterschiedliche Untereinheiten kombiniert und welche 

Vorteile dies für den ganzen Motor bietet bleibt ungeklärt. Sind die Untereinheiten 

etwa kinetisch nicht gleichwertig, da sie sich auch in der Größe unterscheiden? 

Reguliert KLP11/20 seine katalytische Aktivität durch einen Schwanz vermittelten 

Mechanismus ähnlich wie bei Kinesin-1 und Kinesin-3? Die Untersuchung der 

katalytischen Aktivität und dessen Regulierung sowohl von Kinesin-2 als auch von 

seinen Untereinheiten mit Hilfe der Molekulartechnik hat zur Aufklärung der 

kinetischen Eigenschaften der Untereinheiten KLP11 und KLP20, die den 

heteromerischen KLP11/20 Motor aufbauen, beigetragen.  

Aus diesen Analysen wurden vier haupt Schlussfolgerungen gezogen: (1) Wildtyp 

KLP11/20 ist auto-reguliert und diese Hemmung kann entweder durch Vertauschen 

der relativen Kopfpositionen (KLP20/11) oder durch den Austausch der flexiblen 

Knick-Position durch steife Elemente (KLP11EE/20EE) oder durch Entfernen der 

KLP11 Untereinheit aufgehoben werden (KLP20/20). (2) Die Dimerisierung von zwei 
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KLP11 und zwei KLP20 Kopf Domänen zu einem Motor entweder durch den Wildtyp-

Schwanz oder durch den molekularen ‚Zipper‘ GCN4 führt zu zwei unterschiedlichen 

Motoren mit verschiedenen kinetischen Eigenschaften. (3) Die GCN4-vermittelte 

Dimerisierung von zwei KLP11 Untereinheiten führt zu einem unprozessiven Motor 

während die Dimerisierung von zwei korrespondierenden KLP20 Untereinheiten 

einen prozessiven Motor liefert. (4) Die Einführung flexibler Reste zwischen den 

Kopfdomänen bei KLP11 ist ausreichend, um dem Homodimeren KLP11/11 GCN4 

Motor Prozessivität zu verleihen. 
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Introduction 

1. The cytoskeleton and cellular motility 
The cytoskeleton of eukaryotic cells is an essential and highly dynamic structural 

network of fibers protecting the cell from deformation, providing a cellular scaffold 

and enabling cellular motility for spatial organization. Technical and experimental 

improvements in the last decades have made possible to provide unequivocal 

evidence that motor proteins are responsible for intracellular trafficking as well as 

morphological activities in eukaryotic cells, using actin filaments and microtubules as 

tracks. Motor proteins are capable of converting chemical energy from adenosine 

triphosphate (ATP) hydrolysis into mechanical work in order to transport vesicles and 

organelles along filaments [1, 2]. The segregation of chromosomes in mitosis and 

meiosis [3, 4], asymmetric localization of morphogens in early embryos or the 

transport of secretory vesicles in vertebrates or mRNA in yeast [5] are well known 

processes that require molecular motors. 

1.1. The cytoskeleton 
Filamentous actin (F-actin), microtubules and intermediate filaments constitute the 

eukaryotic cytoskeleton [6] accompanied by a large number of accessory proteins, 

responsible for proper function and maintenance of these three filament types [7]. 

Intermediate filaments, have a diameter of about 10nm, protect cells against 

mechanical stress and provide cell integrity. The intermediate filament monomers are 

elongated fibrous proteins and have no enzymatic activity. So far, no evidence is 

available that they serve as tracks for molecular motors. 

F-actin and microtubules are polar structures containing a fast growing plus (+) and a 

slow growing minus (-) end. In contrast to intermediate filaments, both types serve as 

tracks for molecular motors. The F-actin is a flexible two stranded helical polymer 

with a diameter of 6 to 8 nm, composed of actin subunits (also called microfilaments). 

They are built from so-called globular actin monomers (G-Actin) containing ATP in 

their ATP-binding clefts [8, 9] that polymerize in an oriented way to F-Actin [10]. 



 

Introduction 

 

 6 

Numerous accessory proteins (actin binding proteins, ABPs) form actin bundles, 

regulate the length of the filament, its orientation and structure or cross-link the 

filaments to each other or even to microtubules, ending in an actin network, 

concentrated at the cell cortex that serves as tracks for myosin motors.  

Microtubules (MTs) are cylindrical polymers with a diameter of 24 nm composed of 

guanosine triphosphate (GTP) binding α- and β-tubulin heterodimers. In contrast to 

G-actin which uses ATP for polymerization, the tubulin heterodimer uses GTP to 

polymerize into microtubules. The head-to-tail arrangement of the subunits generates 

a linear structure termed protofilament, which gives polarity to the filaments. It is 

known, that in vivo often 13 laterally arranged protofilaments form the microtubule 

[11]. MTs are highly dynamic structures, characterized by spontaneous elongation 

and shrinking phases [12]. This process, named dynamic instability is coupled to 

GTP hydrolysis and is controlled by numerous proteins [13]. In vivo, the minus end of 

MTs is anchored at the microtubule-organizing centre (MTOC) by the gamma (γ)-

tubulin complex [14], in close proximity of the nucleus, whereas the plus end grows 

out towards the cell periphery. Typically, MTs radiate from the cell centre to the cell 

cortex, allowing long range transports. Similar to actin filaments, a number of proteins 

termed MT-Associated Proteins (MAPs) are responsible for the dynamics and 

maintenance of the MTs [15]. MT stabilization in in vitro assays is accomplished with 

the anticancer drug taxol, which effectively promotes the assembly of tubulin 

monomers to MTs [16] and prevents the MTs from shrinking. So far, two classes of 

motor proteins, kinesins and dyneins are capable of using MTs for long distance 

transport of cell organelles. 

1.2. Cellular motility driven by motor proteins 
Cytoskeletal motor proteins can be described as ATP-driven “nano-machines” that 

are responsible for directed intracellular movements. Three different groups of motor 

proteins evolved to power such transport: Myosins, which are responsible for actin 

based motility, and two types of MT based motors, kinesins and dyneins (Figure 1).  
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Figure 1. The three motor protein 
‘prototypes’. The catalytic domains of the 
motors are depicted in yellow, followed by 
the stalk, shown in blue. Associated 
polypeptides are shown in purple. (From 
Woehlke et al. 2000 [17]) 

 

 

 

 

 

The actin-based myosin and the microtubule-based kinesin motors were initially 

considered unrelated [17]. Mechanistically, a fundamental difference is the 

nucleotide-dependent interaction of the motors with their filaments. That means in 

detail, that myosin hydrolyses ATP while detached from actin, whereas kinesin 

hydrolyses ATP while attached to the microtubule [18]. So the structural similarity of 

the core of their catalytic domains came as a surprise [19] (see Figure 1). 

Furthermore there were also striking similarities of the kinesin core to structural 

elements of G-Proteins [20]. The similarity is particularly apparent in the nucleotide 

active site, which consists of three loops called the P-loop, Switch I, and Switch II 

[21]. The vast majority of the members in the myosin super family are involved in 

plus-end directed transport on F-actin. Myosin VI is so far the only motor that drives 

minus-end directed transport. Kinesin super family also comprises members that are 

mostly involved in plus-end directed transport on the microtubule, whereas some 

members are minus-end directed and bi-directional kinesins, respectively [22-25].  

Dyneins are so far the only family of motor proteins that are exclusively involved in 

minus-end directed transport. Dyneins can be divided into two groups: cytoplasmic 

dyneins and axonemal dyneins, which are also named ciliary or flagellar dyneins. 

It has to be mentioned that beside motor protein driven motility, there is a 

polymerization driven motility, which is accomplished by rearrangements of the 

cytoskeleton. This type of motility is controlled by assembly and disassembly 
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processes of microfilaments and/or microtubules including a vast number of 

regulatory proteins. Polymerization driven motility is, for example, responsible for 

migration of fibroblasts or macrophages by building up a leading edge containing 

assembled actin filaments. 

2. Kinesin superfamily 
The first kinesin was discovered more than two decades ago as a novel ATPase 

involved in neuronal microtubule based motility. The name kinesin comes from the 

greek word “kinein” for “to move” [26, 27]. The kinesin superfamily already contains 

several hundred members, which are identified based on the sequence homology of 

the kinesin motor domains and is divided into at least 14 family designations [28].  

In contrast to dyneins, the members of the kinesin superfamily show large 

morphological diversity. Their roles in cells vary from transport of vesicles and 

organelles to mediation of proper cell division, as well as the movement of 

chromosomes [4, 29, 30]. The best studied motor proteins within the kinesin family 

are the founding members, also known as conventional kinesins or kinesin-1 [31].  

Kinesin subfamilies can be classified on the basis of their directionality (plus-end or 

minus-end directed movement on microtubules), or the localization of the catalytic 

domain (N-terminal, internal, or C-terminal, i.e. N, I, or C-type) or by their variable 

polypeptide chain composition (monomers, homodimers, heterodimers, etc.) [32]. It is 

reported, that the direction of kinesin movement is correlated with the location of the 

head domains, i. e. kinesins with their motor domain located at the N-terminus move 

towards the plus-end of MTs, whereas kinesins with their motor domains located at 

the C-terminus move to the minus-end of the MTs [22-25]. Interestingly there is also 

a group of kinesins having their motor domains located in the middle of the protein, 

as in case of the kinesin-13 family. The members of this group are capable of moving 

in both directions by lattice diffusion on the MT filament and accumulate at the ends 

of MTs where they are associated with microtubule depolymerization [33, 34]. Vast 

majority of kinesins described above are homodimeric, some are homotetrameric, or 

monomeric.  

One noteworthy exception is the Kinesin-2 subgroup, also known as heteromeric 

kinesin [35], Kif3 [36] or simply heterokinesin [37]. Here, two distinct polypeptides 
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heterodimerize into one double-headed motor which in turn C-terminally associates 

with a non-motor subunit [38-40], termed Kinesin Associated Protein or KAP, to form 

a heterotrimeric complex in vivo and in vitro [41]. So far, all kinesin-2 motors were 

shown to move towards the plus-end of the microtubule [35]. 

2.1. Functional anatomy of kinesins 
Typically kinesins are composed of three main domains (Figure 2): a globular head 

domain containing the neck linker region, responsible for catalytic activity, a α-helical 

stalk region, necessary for dimerization of two kinesin chains and a tail domain [38-

40] responsible for cargo binding and regulation [17, 42]. 

 
Figure 2. Domain organization of the conventional kinesin heavy-chain dimer. The conventional 
kinesin is a homodimer containing two heavy chains, with a head, stalk and tail domain. The catalytic 
head domains (~350 amino acids) are responsible for force production via ATP hydrolysis, converting 
chemical energy into mechanical work, as well as for binding to the microtubule track. The stalk region 
(~50 nm) contains several coiled-coil segments, mediating the homodimerization of the subunits to a 
double headed motor protein. The small globular tail domains (~20 nm) at the distal C-terminal end 
are implicated in cargo binding and regulation. The overall size of the molecule is about 80 nm [43]. 
(Adapted from Woehlke and Schliwa, 2000 [17]) 

2.1.1. Structural elements involved in force generation 

Molecular motors power intracellular transport of different cargoes along cytoskeletal 

tracks by converting free energy from ATP hydrolysis into mechanical work. The 

chemical cycle of ATP hydrolysis needs to be coupled to a mechanical cycle of motor 

interaction with its filament [44, 45], resulting in a displacement of the motor along the 

cytoskeletal track.  

The catalytic elements of the kinesin motors are the motor domains, also named 

head domains, which are followed by a neck region connecting the motor head to the 

stalk. These two elements of the kinesins are the most highly conserved regions 
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(about 30 to 40% sequence identity [33, 36, 37]). The motor domain and the neck 

linker are necessary and sufficient to couple the ATP hydrolysis to mechanical work. 

Depending on the nucleotide state of the molecule, the neck-linker is found in 

different positions relative to the head domains [46] (Figure 3). Being also 

responsible for MT binding through a microtubule interaction site, the globular head is 

playing a crucial role in the ‘mechanochemical’ cycle of kinesin motor proteins [17].  

2.1.2. Structural elements involved in autoregulation 

Figure 4 illustrates the flexible kink region found in the middle of the coiled-coil stalk 

which mediates the auto-regulatory folding of kinesin [47]. The resulting interaction of 

the globular tail domain located at the distal C-terminus with the head domains has 

been demonstrated to suppress the motor’s ATPase [48-56]. Specifically, this 

interaction significantly slows down the ADP release from the catalytic head domains, 

leading to a reduced motor activity, while the motors affinity to microtubules is not 

affected [49, 51, 57-59]. In the folded state, the globular tail domains are in close 

proximity to the head domains, allowing a basic level of regulation [17]. 

2.2. Model of Processive movement by kinesins 
Depending on specific physiological functions, some motors move processively, 

whereas others move in a non-processive manner. Processive movement is 

achieved by taking consecutive steps on the cytoskeletal track without falling off. 

Conventional kinesin is a processive molecular motor [60, 61] moving in 8 nm steps 

on its microtubule track, representing the distance between β-tubulin subunits of a 

microtubule [62]. Having directly coupled the stepping to the ATP hydrolysis, in each 

step one ATP molecule is consumed [63, 64].  

Processivity in conventional kinesin is brought about by dimerization of two heavy 

chains via the stalk domain to a homodimer. The various models of processivity have 

common, that the two motor domains of the molecule have to remain enzymatically 

“out of phase”, which means that at least one head is strongly bound to microtubules 

at any given time [65, 66]. This implies that there must be some form of 

communication between the two motor head domains for a possible processive 

movement, to prevent the motor from dissociating from its track. The alternated 

ATPase cycles between the two heads, where one head is kept bound to the 
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microtubule, while the other head detaches and moves forward [67], ensures 

consecutive stepping. Conventional kinesin regulates the behavior of its heads by 

using a nucleotide dependent change in its affinity to microtubules [68-70]. This 

means in detail, that in solution both motor heads tightly bind ADP until the first head 

attaches to the filament. Upon binding of the first head (Figure 3, green motor head) 

to microtubules, ADP is released and the motor locks onto the filament. The 

mechanochemical cycle is initiated by binding of ATP to the attached (green) leading 

motor head. Binding of ATP leads to rapid docking of the leading head’s neck linker, 

which throws the tethered rear head (magenta) forward. The new rear head can be 

released again only if it binds and hydrolyses a new ATP molecule. During this 

hydrolysis process, the new leading head is allowed to find its next proper 

microtubule binding site, where it releases its ADP and locks onto the filament [71]. In 

this intermediate state, both heads are tightly bound to the filament and the neck-

linkers are strained (Figure 3, blue arrows). With a mechanism preventing ATP from 

binding to the new leading head while it is experiencing rearward strain, ATP 

hydrolysis is followed by the dissociation of the rear head, while the leading head 

holds on [65]. At this point, both heads have exchanged their roles and the motor 

walks hand-over-hand, which represents the widely accepted model for processive 

stepping [72-76].  

Based on a hand-over-hand model, it was believed that processive motility requires 

two heads acting precisely coordinated to stay out of phase while walking to the plus-

end of the microtubule. So the discovery of a minus-end-directed [77], dimeric and 

non-processive motor like Ncd (Non-claret-disjunctional) [78], as well as the 

observation that a monomeric single-headed motor, mouse Kif1A, moving 

processively came as a surprise [79]. Kif1A has evolved a unique mechanism where 

it can maintain contact to the negatively charged carboxyl terminus of microtubule 

dimers via a positively charged surface loop [79]. In contrast to a directed movement 

of conventional kinesin, Kif1A shows back-and-forth movement with a net directional 

bias [17, 80] during its movement. So, processivity in the field of kinesins is still 

controversial and requires further investigations to be fully understood.  
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Figure 3. First two steps of kinesin on microtubules. The heads are distinguished by magenta and 
green shading connected by neck linkers colored in blue to the black coiled coil region. The 
mechanochemical cycle is initiated by the binding of ATP to the attached, green motor domain, and is 
characterized by the equilibrium constant KATP. This leads to the rapid docking of this motor domain’s 
neck linker, which throws the tethered rear (magenta) motor forward in the direction of the next tubulin 
binding site. The release of ADP from the new leading head (magenta) is followed by ATP hydrolysis 
that leads to the binding of both heads at the same time to the filament. This places the two neck 
linkers under mechanical strain, depicted as blue arrows. In the absence of any mechanism to prevent 
it, ATP could then bind to the empty, leading head domain and then become rapidly hydrolyzed. This 
would lead to the dissociation of the motor from the track after only two turnovers. The red X indicates 
that this does not happen. It must exist a mechanism to prevent ATP from binding to the leading head 
while it is experiencing rearward strain. Instead, the ATP hydrolysis is followed by the dissociation of 
the rear head, characterized by rate constant kd(MT), which occurs concomitantly with phosphate 
release (from Rosenfeld et al., 2003 [65]). 
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2.3. Regulation of kinesin motors 
Because kinesins use a considerable amount of ATP to function as motors, it is 

essential to have mechanisms preventing the cell from unnecessarily wasting energy. 

It is believed that kinesins are regulated at several levels [81] to avoid futile ATP 

consumption, including associated light chains, phosphorylation, binding to its cargo 

or intramolecular folding [17] (Figure 4). Electron microscopy and FRET experiments 

provided evidence that without cargo bound, kinesin is in a folded and inactive 

conformation [56, 82]. This inhibitory folding is enabled by a flexible kink in the middle 

of the stalk [49, 50, 52]. Folding of the protein brings the carboxyl terminus of the tail 

and the N-terminal head domains in close proximity to inhibit the catalytic activity of 

the motor [48-56]. Competitive cargo binding to the C-terminal end of the tail 

disengages the catalytic heads and activates the motor. This is also true for an 

artificial cargo such as a silica bead [83]. A recent crystal structure of kinesin-1 in 

complex with its tail domain provided the structural evidence that the head-tail 

interaction creates a “lock down” preventing the movement of the motor domains that 

is needed to undock the neck linker and release ADP [84]. 
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Figure 4. Autoinhibitory mechanisms used by kinesin motors. a) Inactive kinesin-1, Kif17, Kif1A 
and CENPE (Centromere associated protein E) assume a folded conformation that enables an 
inhibitory and direct motor-to-tail interaction. Double arrows indicate regions that interact in the folded, 
inactive conformation and dotted arrows indicate plausible interactions. b) Upon interaction of two 
binding partners (FEZ1, fasciculation and elongation protein-1 and JIP1, Jun N-terminal kinase-
interacting protein1) with kinesin-1, its autoinhibition is relieved. c) Upon phosphorylation of CENPE by 
kinases MPS (Monopolar spindle protein 1) and CDK1 (Cyclin-dependent kinase 1); its activation is 
initiated (from Verhey and Hammond, 2009 [85]). 

3. Kinesin-2 subfamily 
Kinesin-2 family members are a class of diverse plus-end directed motor proteins 

[35, 86]. Having homodimeric as well as heterotrimeric members with different 

functions, kinesin-2 members are found in many organisms. In mammals, kinesin-2 is 

highly enriched in the testes and, to a lesser extent, in many other tissues, 

suggesting non-neuronal functions. In the frog, it is found in melanophores and 

unfertilized eggs [87]. In echinoderms, kinesin-2 is found in both embryos and sperm, 

where it localized to the mitotic spindle and midpiece and flagellum, respectively [40]. 

This diversity of distribution suggests that these kinesins perform different tasks in 

different cell types, a hypothesis supported by an expanding wealth of evidence. 

Being essential for assembly and maintenance of cilia and flagella [41, 88-90] as well 

as for proper function of these structures [41, 90-96], a co-evolution of both can be 

assumed.  
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Kinesin-2 and homologues have been identified in almost every species examined 

and studying these homologues has aided in the identification of many different 

potential functions for the kinesin-2 motor complex in numerous contexts. The best 

established function of kinesin-2 is its role in ciliary transport. Intraflagellar transport 

or IFT was detected using a differential interference microscopy (DIC) in 

Chlamydomonas, where bidirectional movement of granule-like molecules beneath 

the flagellar membrane could be observed [97, 98]. Experiments with mutant 

Chlamydomonas cells containing temperature sensitive homologues of kinesin-2 

could provide evidence, that kinesin-2 is responsible for transport of the raft complex 

and transport of the components used for cilia construction and maintenance to the 

tip of the flagella [41, 95, 97] in numerous cell types and organisms. In addition, 

kinesin-2 guarantees proper IFT in other essential processes like vision [99] or 

chemosensory behavior in metazoans which rely on specialized cilia [100, 101]. 

Besides IFT transport, many other functions of kinesin-2 family members have been 

discovered. Chromosome segregation [102] and cytokinesis [103], mitotic spindle 

assembly [104], organelle sorting and anterograde transport in axons [39, 105, 106], 

endoplasmatic reticulum (ER) and Golgi membrane transport [107], dispersion of 

melanosomes [108], signal transduction [109-111] as well as localization of RNA 

[112] are just some of the well known processes where kinesin-2 plays an important 

role.  
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Figure 5. Intraflagellar transport (IFT) in C. elegans. Components of the IFT machinery and ciliary 
cargo assemble at or near the transition zone (basal body). Heterotrimeric kinesin-2 and homodimeric 
OSM-3 kinesin, separately bind IFT particles and transport these together with IFT-dynein and cargo 
along the middle segment in the anterograde (+) direction. In the distal segment, OSM-3 kinesin alone 
transports the IFT particles and dynein/cargo. BBS (Bardet–Biedl syndrome) proteins act to stabilize 
the association between the motors and IFT particles. Components of the IFT machinery and 
presumably other ciliary molecules are recycled back to the base of the cilium using the IFT dynein 
molecular motor. The lengths of the transition zone (1 μm), middle segment (4 μm) and distal segment 
(2.5 μm) regions are shown (for amphid cilia) along with transverse view schematics of the 
microtubule arrangements (on top). (Adapted from Inglis et al., 2007 [113].) 

3.1. Kinesin-2 involved in IFT in C. elegans sensory cilia  
The heterotrimeric kinesin-2 in C. elegans consists of three subunits (Figure 6): two 

different kinesin-like proteins (KLP) 11 and 20 that are members of the KIF3A/3B or 

KRP85/95 kinesin subfamilies and one non-motor subunit termed KAP (Kinesin 

associated Protein) [40, 114]. 

During IFT, heterotrimeric KLP11/20 acts in concert with the homodimeric Osm-3 

kinesin-2 to assemble and maintain cilia of chemosensory neurons (Figure 5) [28, 86, 

115-117]. In vivo, KLP11/20 alone moves with an average velocity of 0.5 µm/s and 

Osm-3 alone moves at 1.3 µm/sec, respectively. The observed intermediate velocity 

in the middle segment in mutants most likely results from the concerted action of both 

motors [115, 116, 118]. Furthermore, investigations on Osm-3 by Imanishi et al. 2006 

[119] showed that Osm-3 kinesin is an auto-regulated motor in vitro. Additionally, 

ATPase activity and processivity were both dramatically stimulated by replacing the 
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flexible residues located in the middle of the stalk that was reminiscent of the kink 

position found in kinesin-1 (Figure 4). The removal of the kink in Osm-3 also changed 

the conformation of the motor from a compact to an extended form [119]. Taken 

together these results strongly argue for the existence of a flexible kink in the 

homodimeric kinesin-2 Osm-3 which allows the motor to adopt a folded, auto-

regulated conformation as was demonstrated for the conventional kinesin-1 (Figure 

4).  

 

Figure 6. Domain organization of the heterotrimeric kinesin-2 from C. elegans. A) Schematic 
overview of the two motor subunits and Kinesin associated protein (KAP) with amino acid positions, 
building up the heterotrimeric motor in C. elegans. Interestingly both N-terminal motors differ in size of 
their head domains, as well as in size of their C-terminal located tail domains, whereas KLP11 
(orange) contains 782 amino acids, which are 136 amino acids more than KLP20 (blue). The 
accessory subunit KAP contains about 10 armadillo repeats, which is conserved among kinesin-2 
kinesins and is reported to interact with cargo. B) Model showing the structure of kinesin-2 from C. 
elegans. Head domains have a size about 10 nm and are shown in orange (KLP11) and in blue 
(KLP20) dimerized via their tail domains (about 30 nm). Kink region, responsible for bending is located 
within the tail domains. The accessory subunit KAP has a globular overall structure. The size of all 
subunits is about 50 nm (adapted from Cole 1999 [40]) 
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4. Aims of this thesis 
Structural comparison of conventional kinesin and kinesin-2 shows, that these two 

motors have similar overall structures: two motor heads located at the N-terminus, 

dimerized by a stalk and a C-terminal located tail region with the accessory subunit 

(KAP). Interestingly, structural similarity of both motor proteins exists although 

significant sequence homology is limited to the catalytic head domains [86]. 

Nevertheless, KLP11/20 kinesin-2 from C. elegans and conventional kinesin use the 

rod domains to ensure heterodimerization and homodimerization, respectively, to 

assemble a proper functioning motor protein [38, 40]. However, why kinesin-2 

combines two different head domains and which advantages this provides for the 

whole motor needs to be determined. Testing kinesin-2’s catalytic activity and its 

regulation as well as that of its individual subunits could illuminate the question why 

evolution favoured the generation of a heterotrimeric motor. 

4.1. Mechanism of autoinhibition 
Investigations of conventional kinesin and kinesin-2 motors so far have shown that 

autoinhibition is a possible mechanism of controlling their activity [81, 119, 120]. One 

main aim of this thesis is to investigate whether KLP11/20 is regulated by a similar 

mechanism to prevent futile energy consumption or not. The KLP11 and KLP20 

subunits assembling kinesin-2 expose high sequence homology in the catalytic head 

domains, whereas the rod domains lack a significant sequence homology. 

Consequently, having two different although related motor subunits varying also in 

size (KLP11: 782 amino acids and KLP20: 646 amino acids) raises the question, 

whether both head domains are used for different purposes. Is possibly only one of 

the head domains autoregulated by the tail domains, while the other head performs a 

different task? One aspect favouring an autoregulation of the molecule is a helix 

breaker position probably serving as a hinge located in the wild type KLP11 tail 

domain. Are one of the head domains or maybe both motor heads kept in stand by 

modus by bending of the tail domains over the head domains at this position when 

they are not in use? 

Assuming that KLP11/20 activity is controlled by autoinhibition, there were different 

possibilities to turn on the motor’s activity. Eliminating the kink region responsible for 
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the bending of the molecule via exchange of the amino acids in the kink was one 

possibility. Another option was to remove the complete native tail domain to exclude 

any influence on the head domains and replacing it with an artificial GCN4 leucine 

zipper with strong propensity to form coiled-coils to ensure homodimerization. At last, 

by reducing the motor to its monomeric head domains including the neck regions 

eliminated every disturbance of motor activity caused by the tail domains. 

Additionally, the monomeric constructs were released of a possible mutual influence 

of the head domains which might occur in the case of homodimerization. 

All generated constructs were assayed in ATPase assays for their ATP turnover 

(kcat) and the affinity for microtubules (Km) as well as for ATP. Furthermore, with the 

exception of monomeric constructs, all motors were tested in multiple motor gliding 

filament assays for their gliding velocities. 

4.2. Mechanism of processivity 
The ability of kinesin motors walking along the microtubule track without dissociating, 

called processivity is not totally understood. Initially, it was believed that processive 

movement requires two head domains acting in concert, until the discovery of a 

single headed processive Kif1A motor [79] disproved this theory. The cooperation 

partner of KLP11/20, Osm-3, was turned processive only by mutations in the hinge 

region of the molecule in in vitro assays [119]. So, probing for the processive 

movement properties of KLP11/20 was essential since a hinge region within the 

motor protein was also present. During processive movement, a crucial role is played 

by the neck and neck-linker regions of the molecule, which is believed to be 

responsible for generating an intramolecular strain. It is widely accepted that this 

intramolecular strain [65, 75, 121-123] is responsible for ‘gating’, a mechanism that 

allows the two head domains to communicate their enzymatic state to each other to 

stay out of phase during stepping.  

This work is focused on the processivity of KLP11/20 from C. elegans. What does it 

take to be a processive motor? This was the leading question accompanying the 

investigations regarding processive movement of kinesin-2. Additionally, it was 

intended to illuminate the question what the minimum requirement for a motor protein 

is to display processive movement. By investigating single molecule behavior of all 
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constructs including different tail variations it was intended to answer whether both 

subunits as homodimeric motor combinations were processive or not. Furthermore, 

by introducing flexible residues (glycine and serine repeats) in the neck region of 

KLP11 it was intended to investigate the influence of intramolecular strain on the 

processive behavior of kinesin-2. For this purpose, single molecule assays with 

homodimeric KLP11 and KLP11 GS constructs zipped together with GCN4 were 

performed. These assays provided insight into the individual behavior of a single 

molecule, which otherwise is inaccessible in bulk measurements. With single 

molecule assay, one is able to determine the processivity index and velocity of a 

motor protein under zero load conditions. With four SfGFP (Superfolder Green 

Fluorescent Protein) dyes tagged to homodimeric GCN4 constructs of KLP11, KLP11 

GS repeats, and KLP20 were investigated in single molecule assays via TIRF (Total 

internal reflection fluorescence) microscopy. Their individual processivity behavior 

has been elucidated to better understand the overall structure and kinetic properties 

of this special heterotrimeric protein within the kinesin family members. 
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Materials and methods 

1. Materials 

1.1. Reagents and other Materials 
Unless stated otherwise chemicals were purchased from BioMol (Hamburg), Biorad 

(Munich), Braun (Melsungen), Fluka (Buchs, Swiss), Invitrogen (Karlsruhe), Merck 

(Darmstadt), Millipore (Munich), PeqLab (Erlangen), Roche (Mannheim), Roth 

(Karlsruhe), Serva (Heidelberg) or Sigma-Aldrich (St. Louis, U.S.A.) and were of 

"p.a." quality. Other materials were mainly purchased at Greiner (Munich), Nunc 

(Wiesbaden), Qiagen (Hilden), Peske (Karlsruhe) and Sarstedt (Nümbrecht). 

1.2. Plasmids and Vectors 
The full-length DNA sequences of KLP11 and KLP20 cloned into the pDest8 vector 

(Invitrogen) by Prof. Jonathan Scholey (University of California, Davis). All further C. 

elegans kinesin constructs used in this work were derived from these sequences with 

the help of either primers or by synthesis. Full-length and Flag-tagged KLP11-EE and 

KLP20-EE constructs were synthesized by Sloning (Puchheim, Germany). All 

constructs were cloned into pFastBac1TM (Invitrogen) plasmid (Figure 7).  
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Figure 7. Map of pFastBac1TM vector. All constructs were cloned into the multiple 
cloning site (MCS) via NotI and SpeI restriction sites (red). This allowed to integrate 
genes of interest under the control of the strong polyhedrin promoter (orange), 
ensuring overexpression of the target protein. Other characteristics of this plasmid 
were gentamicin and ampicillin resistance for selection, the translocation sites Tn7L 
and Tn7R to translocate the target gene into the bacmid and f1 and pUC origins for 
replication.   

1.3. Oligonucleotides (Primers) 

Oligonucleotides for PCR and sequencing were designed manually and purchased 

from Biomers (Ulm). The primers used in this study are shown in Table I and II.  

1.3.1. Cloning primers 

Table I. Cloning primers used in this study 

Primer Primer sequence 
KLP11_FL_pFastBac1_SpeI/NotI_C-Term Flag 

3_FL_KLP11_Fw (#26) 5‘-aggactagtatggtggaaataatga aaaaatcttcaaa 

acaggagactgt caaagtaattgtgagatgtcg-3‘ 

2_FL_KLP11Rev 
5‘-tatgcggccgctcacttgtcgtcat cgtccttgtagtcg 

ccgccattctg gcttcttctcatcgaaccg-3‘ 
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KLP20_FL_pFastBac1_SpeI/NotI_2_C-Term Flag 

4_FL_KLP20_Fw 5‘-aggactagtatggaaggtgctgaaa 

aagtgaaagtagtggtacgatgtcg tcc-3‘ 

4_FL_KLP20_Rev2 5‘-tatgcggccgctcacttgtcgtcat cgtccttgtagtcgccgc 

ctgtgag caattgttgtagtcg-3‘ 

KLP-20 head+KLP-11 tail_C-Term Flag (Chimera 1) 

4_FL_KLP20_Fw 5‘-gaattccaagaagaaattgaaatgc tccg-3‘ 

2_FL_KLP11Rev 5‘-cggagcatttcaatttcttcttgga attc 

cctgagctgagcatcc-3‘ 

KLP-11 head+KLP-20 tail_C-Term Flag (Chimera 2) 

2_FL_KLP11_Fw 5‘-aggactagtatgaaaaaatcttcaa aacagg 

agactgtcaaagtaattgt gagatgtcg -3‘ 

4_FL_KLP20Rev2 5‘-tatgcggccgctcacttgtcgtcat cgtccttgtag 

tcgccgcctgtgag caattgttgtagtcg -3‘ 

KLP11_Mono_pFastBac1_SpeI/NotI_Flag 

3_FL_KLP11_Fw (#26) 5‘-aggactagtatggtggaaataatgaaaaaatcttcaaa 

acaggagactgt caaagtaattgtgagatgtcg-3‘ 

2_KLP11_Mono_Rev 5‘-gcgcggccgctcacttgtcgtcatc gtccttgt 

agtcgccgccaatttct tcttggaattctcgc-3‘ 

KLP20_Mono_pFastBac1_SpeI/NotI_Flag 

4_FL_KLP20_Fw 5‘-aggactagtatggaaggtgctgaaa 

aagtgaaagtagtggtacgatgtcg tcc-3‘ 

4_Mono_KLP-20_Rev 5‘-gcgcggccgctcacttgtcgtcatcgtccttgtagtcg 

ccgccaatttcc agctgaaacttcctgagc-3‘ 

KLP11_GCN4_2xGS_2xSfGFP_Flag 

3_FL_KLP11_Fw (#26) 5‘-aggactagtatggtggaaataatga aaaaatcttcaaaa 

caggagactgt caaagtaattgtgagatgtcg-3‘ 

ApaI_KLP11_GCN4_2xGS_Rev 5‘-tatgggcccagagccagagccaatttc   

ttcttggaattctcgc-3‘ 

KLP11_GCN4_8xGS_2xSfGFP_Flag 
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3_FL_KLP11_Fw (#26) 5‘-aggactagtatggtggaaataatgaaaaaatcttcaa 

aacaggagactgt caaagtaattgtgagatgtcg-3‘ 

KLP11_8X GS_Apa_Rev 5‘-tatgggcccagagccagagccagagccagagccagagc 

cagagccagagc cagagccaatttcttcttggaattctcgcag-3‘ 

 

1.3.2. Sequencing primers 

Table II. Sequencing primers used in this study 

Primer Primer sequence 

KLP11 full-length 

KLP-11 #1 5‘-gagctagctatttggaaatttatca gg-3‘ 

KLP-11 #2 5‘-ggatgcgaaatctgcccatattcct tatcg-3‘ 

KLP-11 #3 5‘-cgtaggatctgaagaagatggaagg-3‘ 

KLP-11 #4 5‘-cggtgtctttacacgatcatctggt gcc-3‘ 

KLP20 full-length 

KLP-20 #1 5‘-ggaatctggagattaaggaaagacc gg-3‘ 

KLP-20 #2 5‘-ccacgctgagatacgcaaatcgtgc g-3‘ 

KLP-20 #3 5‘-gcaatgagctgaaggatgctcgagc gg-3‘ 

pFastBac1 

Polyhedrin Promoter 5‘-cctataaatattccggattattcat accg-3‘ 

P10 Promoter 5‘-cggacctttaattcaaccc-3‘ 

M13Fw 5‘-gttttcccagtcacgac-3‘ 

M13Rev 5‘-caggaaacagctatgac-3‘ 
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1.4. Bacterial Strains 
Escherichia coli (E. coli) strain XL1-blue (Stratagene, Amsterdam) was used for 

plasmid amplification. MAX Efficiency® DH10BacTM competent E. coli cells 

(Invitrogen, Karlsruhe) were used for bacmid generation.  

1.5. Media and Cultivation of E. coli 
E. coli cells were grown according to standard methods (Sambrook et al. 1989 [124]) 

on agar plates or shaking at 240 rpm at 37°C.  

S.O.C medium:  2% Tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 2% 1 M Glucose  

LB-ampicillin medium/agar:  1% Tryptone, 0.5% yeast extract, 0.5% NaCl, 100 

μg/ml Ampicillin, (1.5 % agar)  

Bluo-Gal LB:  1% Tryptone, 0.5% yeast extract, 1% NaCl, 50 

μl/ml kanamycin, 7 μg/ml gentamycin, 10 μg/ml 

tetracycline, 100 μg/ml Bluo-Gal, 40 μg/ml IPTG  

DH10 selection medium:  LB, 50 μl/ml kanamycin, 7 μg/ml gentamycin, 10 

μg/ml tetracycline 

1.6. Antibodies and peptides 
Antibodies were mainly used for purification of specific tagged proteins. Others were 

used for testing the labeling quality of microtubules with fluorophores or for single 

molecule assays. FLAG peptides were used for purification of Flag tagged proteins. 

The antibodies and peptides used in this study are shown in Table III. 

Table III. Antibodies used in this study  

Antibody Company 

Anti-FLAG® M2 affinity gel Sigma-Aldrich, St. Louis (U.S.A.) 

Anti-FLAG® Biotinylated M5, monoclonal Sigma-Aldrich, St. Louis (U.S.A.) 

Anti-FLAG® M2-Cy3™, monoclonal Sigma-Aldrich, St. Louis (U.S.A.) 

Anti-β Tubulin-Cy3™, monoclonal Sigma-Aldrich, St. Louis (U.S.A.) 

Biotinylated anti GFP Vector, CA (U.S.A.) 

FLAG® peptides Sigma-Aldrich, St. Louis (U.S.A.) 
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2. Methods 

2.1. Molecular biology methods 

2.1.1. Agarose gel electrophoresis 

DNA fragment separation according to their size was performed by electrophoresis in 

1% agarose gels in TAE buffer. To avoid contamination with substances inhibiting a 

ligation, high purity agarose was used for preparative gels. To visualize the acquired 

DNA fragments on the gel, 1% ethidium bromide (10mg/ml) was added to the liquid 

agarose. The DNA samples were mixed with 1/5 volume of 6 x DNA loading dye 

before loading. Electrophoresis was done at 90 mV for 20 to 60 minutes. DNA bands 

were detected by UV illumination and documented using the Eagle Eye II CCD 

camera system (Stratagene, Heidelberg). A standard 1 kb DNA ladder was always 

loaded on the gel, to determine correct DNA bands.   

50 x TAE:   2 M Tris, 0.57% acetic acid, 50 mM EDTA, pH 8.0 

6 x DNA loading dye:  30% glycerol, 0.25% bromphenol blue, 0.25% xylene 

cyanol 

2.1.2. DNA isolation from agarose gels 

DNA bands of interest were cut of the stained high purity agarose gel with a scalpel 

and transferred to a sterile Eppendorf vial. After weighing the extraction of DNA 

fragments was performed with the Qiaquick® Gel Extraction kit (Qiagen) according to 

the manufacturer’s protocol. Elution of DNA was done in 30 to 50 µl Qiagen elution 

buffer, depending on the intensity of observed DNA bands on the agarose gels. 

2.1.3. Determination of DNA concentration 

DNA concentration was determined spectrophotometrically by measuring the 

extinction at a wavelength (λ) 260nm (E260) of the 1:100 diluted sample (in (DEPC)-

water) after calibration of the photometer with a buffer control. The concentration of 

the initial sample was calculated by simply multiplying the determined extinction by 

five. An E260 of 1.0 was corresponding to 50 µg/µl DNA as referred by Sambrook et 

al. 1989 [124].  
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2.1.4. Purification of plasmid DNA 

Plasmid DNA was prepared using the Qiagen-Plasmid-Kit from overnight shaking 

cultures inoculated with single colonies selected from the transformation reaction. For 

small scale preparations (3 ml), the cells were pelleted at 2,500 x g for 7 minutes at 

4°C (Rotanta 460R swinging bucket centrifuge, Hettich) followed by plasmid DNA 

isolation using the QIAprep® Miniprep kit (Qiagen) according to the manufacturer’s 

protocol. DNA was eluted in 50 µl Qiagen Elution Buffer and stored at -20°C.  

2.1.5. DNA cleavage with restriction enzymes 

Plasmid DNA or PCR products destined for analytical restriction were incubated with 

max. 1 µl of enyzme in a 10 µl reaction mix according to the manufacturer’s manual 

(New England Biolabs, NEB). A typical digestion included 2 to 5 µl of mini-prep DNA 

(0.1 to 0.5 µg/µl) and was performed at the temperature optimum of the respective 

restriction enzyme. This guaranteed about 1 to 5 U Enzyme per 1 µg DNA. 

For plasmid DNA or PCR products destined for preparative restriction, about 5 to 10 

µg of DNA were incubated with about 5 U/µg DNA of each enzyme for 1 h at the 

temperature optimum of respective enzymes. Heat inactivation of restriction enzymes 

was carried out by incubation at either 65°C or 85°C for 20 min depending on the 

used enzymes. All digested samples were analysed on agarose gels.  

2.1.6. Dephosphorylation of 5’ –ends of DNA 

To circumvent the probability of religation of linearized vector DNA, the restricted 

DNA is dephosphorylated at 5’ –ends by incubation with Antarctic Phosphatase (AP, 

NEB). For this purpose, about 1 µg of cut DNA was incubated with 5 U of AP in AP-

Buffer (10 x) for 1 h at 37°C. The AP was subsequently heat inactivated at 65°C for 

20 min.  

2.1.7. Ligation of DNA fragments 

Restricted and purified vector and DNA fragments ligation was mediated by T4 DNA 

Ligase (NEB, Frankfurt) in an ATP containing ligase buffer provided by the 

manufacturer. Typically, the ligation reaction contained 40 U T4 DNA Ligase and was 

performed by mixing vector and insert in a 1:3 or 1:5 ratio, mainly depending on the 

concentration of isolated DNA. Vector DNA was incubated without insert as re-

ligation control. The ligation was carried out overnight at 16°C.  
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2.1.8. Transformation of chemically competent E. coli cells 

For transformation, chemically competent E. coli XL1-Blue cells were slowly thawn 

on ice. Usually, 10 µl of DNA from ligation reactions were mixed with 200 µl of XL1-

Blue competent cells and incubated on ice for 20 min. Subsequently, the mixture was 

placed on a 42°C heat block for 1 min to perform a heat shock. Then the reaction 

was cooled on ice for 2 min and was supplemented with 200 µl of S.O.C medium. 

After incubation for 1 hour at 37°C on a shaker, the mix was plated on LB agar plates 

with 100 mg/ml ampicillin and was incubated overnight at 37°C.  

2.1.9. Identification of transformed E.coli 

After an overnight incubation of transformed E.coli, 2 to 8 medium-size colonies were 

selected to inoculate 3 to 4 ml of LB-Amp medium per colony. Incubation was 

performed overnight in a shaker device at 220 rpm and 37°C. Mini-plasmid 

preparation was carried out after pelleting the cells at 2,500 x g for 10 min at 4°C by 

using the QIAprep® Miniprep kit (Qiagen) according to the manufacturer’s protocol. 

The DNA was checked with appropriate restriction endonucleases and analyzed on 

agarose gels. All plasmids with the expected restriction fragments were sequenced at 

the Sequencing Service of the LMU (Ludwig-Maximilians-University, Munich, 

Germany). For this, 150 to 300 ng of purified DNA was mixed with 3.3 pmol 

sequencing primer in 1 x DNA elution buffer (DNA-EB). Sequencing was then carried 

out with the “Cycle, Clean & Run” program using BigDye v3.1. 

2.1.10. Polymerase chain reaction (PCR) 

PCR reactions use thermostable DNA polymerases and an excess of specifically 

designed oligonucleotides to amplify parts of a known sequence from a DNA 

template [125]. Repeated denaturing, annealing and elongation cycles (typically 30 to 

50 cycles) lead to an exponential amplification of the specific DNA fragments. The 

reaction mixture contained the standard reaction buffer (1 x Pfx50TM PCR mix) with 

400 µM of each dNTP, 0.5 µM 5’-and 3’-primer, approximately 20 ng template DNA 

and 2.5 U high fidelity Pfx50TM DNA polymerase (Invitrogen) in a volume of 50 µl and 

was performed in a thermo block (MWG Biotech, Primus 96plus).   
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2.1.11. Generation of constructs 

All constructs have been cloned by PCR on the original full-length cDNA in linearized 

pDest8 vector into pFastBac1TM (Invitrogen) plasmid or have been synthesized from 

known sequences containing full-length kinesin-2 constructs.  

2.1.11.1. Monomeric KLP11 and KLP 20 constructs 

Monomeric KLP11 and KLP20 constructs consisting of just the head domains and 

the neck, conjugated to Flag tag (Figure 8) have been generated by PCR on the 

pDestTM8 vector.  

Figure 8. Monomeric head domain 
architecture of kinesin-2. A) Schematic 
overview of the generated KLP11 and 
KLP20 monomeric constructs with amino 
acid positions. B) Models, depicting the 
structure of monomeric motors. 

 

 

 

 

 

 

2.1.11.2. Full-length, wild type KLP11 and KLP20 constructs 

The C-terminally Flag or 6xHis tagged full-length constructs were cloned into the 

pFastBac1 vector (Figure 7) using specific primers (section 1.2.3). Figure 9 depicts 

an overview of all full-length, wild type tail constructs used in this work.  
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Figure 9. Full-length, wild type tail constructs. A) Overview of the generated constructs with amino 
acid positions and the corresponding purification tags. B) Chimeric constructs were generated using 
the splice site following the neck linker (highlighted in gray) by exchanging the tail domains. C) 
Schematics of the target kinesin-2 dimers. (Adapted from Brunnbauer et al., 2010 [126]) 

2.1.11.3. Full-length ‘EE tail’ constructs 

Constructs containing the G451/S452 (Glycine/Serine) mutation into the E451/E452 

(Glutamic acid/Glutamic acid) for KLP11 and G444/G445 (Glycine/Glycine) mutation 

into E444/E445 (Glutamic acid/Glutamic acid) for KLP20 were generated by partial 

gene synthesis using unique restriction sites in the respective constructs. The C-

terminally Flag or 6xHis tagged full-length ‘EE tail’ constructs were cloned into the 

pFastBac1 vector. Figure 10 depicts an overview of all full-length, ‘EE tail’ constructs 

used in this work. 
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Figure 10. Full-length, ‘EE tail’ constructs. A) Overview of the generated constructs with amino acid 
positions and the corresponding purification tags. Box with EE marks introduced point mutation 
position of the EE amino acids (yellow). B) The KLP11 EE mutant was generated by point mutation at 
the positions 450 and 451 (light orange box, GS exchange) and the KLP20 EE mutant by point 
mutation at the positions 444 and 445 (light blue box, GG exchange). C) Schematics of the target ‘EE 
tail’ kinesin-2 dimers. (Adapted from Brunnbauer et al., 2010[126]) 

2.1.11.4. GCN4 tandem Superfolder GFP (SfGFP) constructs 

To enhance the fluorescent signal in single molecule assays, we generated 

homodimeric constructs conjugated to four Superfolder GFP molecules. The 

fluorophore SfGFP was synthesized by GenScript (NJ, USA) and cloned into 

pFastBac1 vector containing only the head domains of desired constructs. Tandem 

SfGFP constructs were generated by initially cloning a SfGFP molecule with 10 

amino acids in front as a gap, conjugated to an existing KLP11 GCN4 SfGFP 

(AscI/NotI restriction site) or a KLP20 GCN4 SfGFP (ApaI/NotI restriction site) 

construct via restriction enzymes.   

KLP11 constructs with elongated neck regions (GS repeats) were generated with 

specific primers (see section 1.2.3.1) and ligated into plasmids containing only GCN4 

2xSfGFP with individual tag (ApaI/SpeI restriction site, Figure 11). 
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Figure 11. Domain architecture of homodimeric GCN4 motor constructs fused to tandem 
SfGFP. A) Overview of generated KLP11/11 and KLP20/20 constructs with amino acid positions. To 
guarantee correct folding of the second SfGFP protein, a flexible region of 10 amino acids were 
introduced, adapted from Cai et al., 2007 [127] (white box). B) Schematics of homodimeric motors, 
zipped together via GCN4 (light green), conjugated to tandem Superfolder GFP (green, barrel shape). 
C) Overview of generated KLP11/11 GS (red box) constructs with amino acid positions. D) Schematics 
of homodimeric KLP11/11 GS constructs with elongated neck regions. 

2.1.12. Baculovirus expression system  

Protein overexpression was carried out using the eukaryotic Bac-to-Bac baculovirus 

expression system (Invitrogen). This eukaryotic expression system has the 

advantage, that all the protein expression and processing machinery which is 

necessary for a correct biological function of the protein of interest is present like in 

higher eukaryotes. [128]. Proteins of interest isolated from this system are close to 

their native forms and show correct biological function [129]. 

2.1.12.1. Generation of Baculovirus shuttle vectors (bacmids) 

In order to transpose the amplified recombinant pFastBAc1TM vector containing the 

desired construct into the baculovirus shuttle vector (bacmid), transformation into 

either chemically competent MAX Efficiency® DH10BacTM E. coli cells by heat shock 

was performed. This strain contains beside a helper plasmid coding for a 

transposase and tetracycline resistance, the Autographa californica nuclear 

polyhedrosis virus (AcNPV) bacmid. This bacmid has a kanamycin resistance marker 

and a mini-attTn7 cassette, which is embedded in the LacZα peptide. Recombinant 
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bacmid generation is achieved by site-specific transposition between the mini-Tn7 

element of the pFastBac1TM donor vector and the mini-attTn7 attachment site on the 

bacmid [130]. With successful transposition, the LacZα gene on the bacmid is 

disrupted, and therefore the complementation process and functional β-galactosidase 

formation, which in turn enables for blue-white screening for successful insertion of 

the gene of interest (Figure 12). 

For transformation, MAX Efficiency® DH10BacTM E. coli cells (50 µl) were thawed on 

ice and incubated with approximately 10 ng DNA for 30 min on ice. After heat shock 

transformation for 1 min at 42°C, the cells were cooled for 2 min on ice and 

supplemented with 900 µl of S.O.C medium. The transformed cells were incubated in 

a shaker device at 220 rpm for 4 hours at 37°C. After incubation, 100 µl of dilutions 

1:10, 1:100, 1:1000 in S.O.C. medium were plated on Bluo-Gal LB (section 1.4) 

plates for blue-white selection and were incubated for 48 hours at 37°C. To exclude 

false positive results, white colonies were again plated on Bluo-Gal LB agar plates 

and incubated for another 48 hours at 37°C to regrow white colonies. 
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Figure 12. Bacmid generation in DH10BacTM E. coli cells and virus amplification in Sf9 cells. 
Recombinant pFastBac1 plasmid containing the gene of interest (GOI) is transformed into competent 
DH10 MAX Efficiency® DH10BacTM E. coli cells. Via site specific transposition, the gene of interest is 
transposed into the lacZα gene of the bacmid. Because the lacZα gene is now disrupted, blue/white 
selection of colonies containing the recombinant bacmid is possible. By using ampicillin, gentamycin 
and kanamycin as selection markers, the bacmid is amplified and extracted. After Cellfectin® 
treatment, Sf9 insect cells are transfected with bacmid containing the GOI. First recombinant virus 
generation (P0) is harvested after an incubation time of 4 to 7 days. (Adapted from BacuVanceTM 
Baculovirus Expression System (GenScript) and Zimmermann D., Involvement of Myosin V in 
organelle transport and its unconventional interaction with microtubules, 2012) 

2.1.12.2. Isolation of bacmid DNA 

Single white growing colonies were picked and inoculated in 6 ml DH10 selection 

medium supplemented with gentamicin, kanamycin and tetracycline and incubated 

overnight in a shaker device at 220 rpm and 37°C. After pelleting the cells in a 

Rotanta 460R swinging bucket centrifuge (Hettich) at 2,500 x g for 15 minutes at 4°C, 

plasmid isolation and purification was performed. According to the Qiagen® Miniprep 

kit, solutions P1, P2 and P3 were used, while all centrifugation steps were performed 

at 16,000 x g at room temperature in a table centrifuge. After resuspending in 200 µl 

of P1 buffer, cells were lysed in 200 µl of P2 lysis buffer and incubated for 5 min at 

room temperature. This was followed by 200 µl of P3 buffer and incubation for 10 min 

on ice and a centrifugation step of 1 min. The supernatant containing the plasmid 

DNA was transferred into a clean tube and mixed with 500 µl isopropanol and 
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incubated for 30 min on ice. The isopropanol precipitated DNA was pelleted by 

centrifugation for 30 min. After removing the supernatant, the pellet was washed in 

350 µl ethanol (70%) and centrifuged again for 1 min. The supernatant was 

discarded and the pellet was completely air-dried and kept for 10 min at 37°C for a 

better dissolving. The pellet was subsequently dissolved in 40 to 50 µl of double-

distilled water and stored at -20°C.  

2.1.12.3. Transfection of Sf9 insect cells with recombinant bacmid 

For every construct to be transfected in Sf9 cells, 2 ml of freshly diluted Sf9 cells at a 

density of 0.5x106 cells/ml were pipetted into one well of a 6-well tissue culture plate 

and incubated light protected for 20 to 30 min at 28°C. Here the cells had the 

opportunity to become adherent to the surface of the culture plate. Meanwhile, 5 to 

15 µl bacmid DNA was covered with 5 µl of the cationic lipid Cellfectin® transfection 

reagent (Invitrogen) (Figure12) into 200 µl Sf-900 II serum free medium (SFM). 

Cellfectin® is a 1:1.5 (m/m) liposome formulation of the cationic lipid N, NI, NII, NIII-

tetramethyl-N, NI, NII, NIII-tetrapalmitylspermine (TM-TPS) and dioleoyl 

phosphatidylethanolamine (DOPE) in membrane-filtered water, which is able of 

coating the DNA and enabling transfection. The mixture was incubated for 20 to 30 

minutes at 28°C, and 800 µl of SFM was added. After removing the medium from the 

Sf9 cells, a double washing step with each 2 ml of SFM was performed. As next, the 

mixture of DNA and Cellfectin® was given to adherent Sf9 cells and the tissue culture 

plate was sealed and incubated for 5 hours at 28°C. After that, the mixture was 

removed and cells were covered with 3 ml of supplemented fresh Sf-900 II SFM 

medium (10% serum and 1% gentamicin, 10mg/ml). Depending on the infection 

degree of the baculoviruses, the cells were incubated 3 to 4 days at 28°C. A clear 

indication for infection were cells with increased cell size or detached cells, which 

were formerly adherent leading to holes in the cell lawn.  

The initial virus generation (P0) was harvested by taking up the supernatant with a 

syringe and pressing it through a micro filter with 0.22 µm pore size.  
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2.1.12.4. Amplification of baculoviruses 

The low titer P0 generation of viruses was used as stock for amplification of larger 

volumes of uninfected cells to get viruses with high titers. Typically, 20 to 30 ml of 

1x106 cells/ml were inoculated with 5% vol. of P0 virus and incubated, depending on 

infection degree light protected on cell plates for 4 to 7 days at 28°C. The second 

virus generation, P1 was used as stock for both, cell plate and shaking culture (V 

generation of viruses) amplification of viruses. Here, usually 60 to 100 ml of 1x106 

cells/ml were inoculated with 10% vol. of P1 virus and treated like P1 virus 

amplification for the case of plate amplification, whereas the shaking culture was kept 

in a shaking device for 4 to 6 days at 110 rpm and 28°C. The density of the shaking 

culture during infection was kept at 1x106 cells/ml while the volume was kept 

constant (If needed, Sf9 cells were inoculated with additional virus). The so 

generated P2 and V1 virus generations were stored light protected at 4°C.  

2.1.12.5. Protein expression in Sf9 cells 

For protein expression, all proteins were over-expressed in Sf9 insect cells either 

from plates or suspension culture. 50 to 1000 ml freshly diluted Sf9 cells to a density 

of 2x106 cells/ml were infected with usually 10 to 20% vol. of recombinant virus 

encoding for the gene(s) of interest. The infected cells were kept for 48 to 72 hours in 

a shaker device at 110 rpm and 28°C or in an incubator at 28°C. Harvesting was 

achieved at 2,500 x g for 15 minutes at 4°C (Rotanta 460R swinging bucket 

centrifuge, Hettich).  

2.2. Biochemical methods 

2.2.1. SDS-polyacryl amide gel electrophoresis (SDS-Page) 

SDS-Page is a method for separation of protein bands according to their size, under 

denaturating conditions [131]. Depending on amount and expected size of proteins, 

typically 8 to 12% polyacryl amide gels were used. Usually, probes were mixed with 

1/5 volume of SDS 6 x sample buffer and boiled at 95°C for 2 min before loaded onto 

the gel. A protein standard (unstained High Molecular Weight ladder) was always 

loaded on the gel. The gels were run for 40 to 60 minutes in 1 x TAE buffer at 20 to 

60 mA with 240 V limit. Gels were stained for 30 to 60 min in Coomassie Blue 
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solution, rinsed with ddH2O and destained with 10% acetic acid. Gels were 

photographed with a CCD camera (Eagle Eye System, Stratagene) or scanned 

(Epson 1200 Photo) for documentation.  

 

PAA solution:    30% acrylamide, 0.8% bisacrylamide (Biorad)  

Running buffer:    25 mM Tris·HCl, 0.1% SDS, 192 mM glycine  

10 x buffer for stacking gel:  500 mM Tris·HCl, pH 6.8, 0.4% SDS  

10 x buffer for separating gel:  1.5 M Tris·HCl, pH 8.8, 0.4% SDS  

6 x Laemmli sample buffer:  300 mM Tris·HCl, pH 6.8, 15 mM EDTA, 12% SDS, 

30% glycerol, 15% β-mercaptoethanol, 0.06% 

bromphenol blue 

Coomassie staining solution: 10% acetic acid, 50% methanol, 0.25 % Coomassie 

Brilliant Blue R250 (Sigma)  

2.2.2. Determination of protein concentration 

The protein concentration was determined either with Bradford reagent [132] or using 

Bovine Serum Albumin (BSA)-standard loaded on SDS-PAGE gels.  

With Bradford, for each measurement, a standard curve was measured in parallel 

using BSA as reference. The absorbtion at E630 was measured with a microplate 

reader (Dynatech MR 5000) and the protein concentration was determined using 

BSA standard as reference.  

With SDS-PAGE gels, usually 2 to 5 different known BSA concentrations were 

loaded next to the proteins of interest and the gel was prepared for imaging (section 

2.2.1). The image of the gel was corrected as desired and the intensity of the BSA 

protein bands was analyzed with ImageQuant imaging software. After determining 

the intensities of the protein bands of interest and relating them to the values 

obtained from the BSA standards, the absolute concentration was transferred into the 

molar concentration of the protein using following equation: 

cmolar (Mol) = cabsolute (mg/ml)/ MW (kDa) 
   

Equation 1 
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2.2.3. Determination of tubulin concentration 

The concentration of microtubule suspensions was calculated after denaturation in 

guanidium·HCl by measuring the E280 in the photometer. 10 µl of a 1/10 and a 1/5 

dilution of microtubules in the used buffer system was mixed with 90 µl of 6,6 M 

guanidium·HCl. After mixing, the absorbtion at E280 was measured against a blank 

containing 10 µl buffer and 90 µl guanidium·HCl. Assuming a molecular weight of 

100000 g/mol for a tubulin dimer, the microtubule concentration was determined with 

the following formula [133]: 

 (E280 / 1.03) ∗ final dilution of MT (100 or 50) = x µM MT 

Equation 2 

2.2.4. Purification of porcine brain tubulin 

For tubulin purification, about 700 g pig brain halves were obtained from the local 

slaughterhouse and put on ice immediately. After removing blood vessels and 

connective tissue, about 350 g of brain tissue were mixed with Buffer A and 

homogenized in a pre-cooled warring blender (Braun, Germany) and centrifuged at 

26,000 x g for 70 min at 4°C (J2-21M/E centrifuge and JA-14 Rotor, Beckman-

Coulter). The supernatant was gently mixed with pre-warmed 25% glycerol (final 

concentration v/v, Roth) and 2 mM Na2ATP. To polymerize the tubulin, this mixture 

was incubated in a constant shaking water bath for 30 min at 35°C. The microtubules 

were sedimented by centrifugation at 200,000 x g for 45 min at 32°C (pre-warmed 

L8-70M Ultracentrifuge and 45Ti Rotor, Beckman-Coulter). The pellets were 

resuspended in 5 ml Buffer C and homogenized on ice in dounce homogenizers 

(Wheaton) for 25 min. depolymerization of microtubules was accelerated by frequent 

homogenization in-between. The homogenate was centrifuged at 150,000 x g for 30 

min at 4°C (pre-cooled L8-70M Ultra-centrifuge and 42Ti Rotor, Beckman-Coulter). 

The supernatant was allowed again to polymerize by adding 2 mM Na2ATP and 

incubation at 35°C for 30 min. This was followed again by a sedimentation step at 

125,000 x g for 30 min at 35°C (pre-warmed L8-70M Ultracentrifuge and 42.1Ti 

Rotor, Beckman-Coulter). The tubulin pellets were dissolved and homogenized on 

ice for 25 min in Buffer B (high ionic strength) to a final volume of 50 ml. This step 

was helpful to remove traces of microtubule-associated proteins (MAPs). The 
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homogenate was then centrifuged again at 150,000 x g for 30 min at 4°C (pre-cooled 

L8-70M Ultracentrifuge and 42.1Ti Rotor, Beckman-Coulter). The supernatant was 

inoculated with 10% DMSO and 2 mM Na2ATP and polymerized at 35°C for 30 min. 

The microtubules were pelleted once more at 125,000 x g for 60 min at 35°C (pre-

warmed L8-70M Ultracentrifuge and 42.1Ti Rotor, Beckman-Coulter) and 

resuspended in 5 ml Buffer D. Homogenization was again performed on ice for 30 

min, followed by a centrifugation at 135,000 x g for 30 min at 4°C (pre-cooled L8-70M 

Ultracentrifuge and 42.1Ti Rotor, Beckman-Coulter), in order to remove precipitates. 

To remove last traces of remaining MAPs, the supernatant was loaded on a gravity-

flow phosphocellulose P11 material filled column, pre-equilibrated with 100 ml Buffer 

D. Tubulin was collected dropwise in Buffer D, while protein level was checked in 

parallel with Bradford reagent. The eluted tubulin was supplemented with 0.1 mM 

GTP and was shock-frozen in aliquots in liquid nitrogen. Tubulin was stored at -70°C.    

 
Buffer A: 0.1 M PIPES·NaOH, 2 mM EGTA, 1 mM MgSO4, 1 mM DTT, 100 μM ATP  

Buffer B: 0.5 M PIPES·NaOH, 1 mM EGTA, 1 mM MgSO4, 1 mM DTT, 1 mM ATP  

Buffer C: 0.1 M PIPES·NaOH, 1 mM EGTA, 1 mM MgSO4, 1 mM DTT, 1 mM ATP  

Buffer D: 0.1 M PIPES·NaOH, 1 mM EGTA, 1 mM MgSO4, 1 mM DTT, 50 μM ATP  

All buffers were adjusted to pH 6.9 at 4°C. 

2.2.5. Tubulin polymerization 

Tubulin polymerization to microtubules occur above a critical concentration and a 

critical temperature under GTP consumption [134]. Microtubules were polymerized in 

varying amounts with the help of taxol (4 mM), a microtubule stabilizing agent. Taxol 

binds to the ß-subunit of tubulin heterodimers and prevents them from dissociating 

(Xiao et al 2006, PNAS). Because aggregated tubulin disturbs polymerisation of 

tubulin monomers to microtubules and disables the accurate determination of 

microtubule concentration as needed for ATPase measurement, it had to be 

removed. This was achieved via a clear spin before further steps were performed at 

200,000 x g for 5 min at 4°C (Optima-TL ultra-centrifuge and TLA120 Rotor, 

Beckman-Coulter). 
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2.2.5.1. Polymerization of tubulin for motility assays 

To obtain fluorescently labeled microtubules for microscopic assays, fluorescent 

Atto488 (Atto-Tec, Siegen, Germany)-labeled or Cy3 (Sigma)-labeled tubulin was 

mixed in a ratio of 1:15 with unlabeled tubulin prior to clear spin. 

Tubulin destined for single molecule assays, where microtubules function as 

cytoskeletal tracks, were additionally to the fluorescent tubulin, supplemented with 

biotinylated tubulin in a molar ratio of 1:15.   

Polymerization was induced by the addition of 1 mM GTP to the mixture and 

incubation for at least 30 min at 37°C. The polymerized microtubule filaments were 

stabilized by adding 20 µM Taxol to the reaction and incubating over night at 37°C.  

2.2.5.2. Polymerization of tubulin for ATPase activity assays 

For ATPase assays, after clear spin and initial polymerization of tubulin to 

microtubules (same conditions as in section 2.2.5.1), one additional centrifugation 

step at 200,000 x g for 15 min at 30°C (Optima-TL ultra-centrifuge and TLA120 

Rotor, Beckman-Coulter) was performed through a sucrose cushion (40% sucrose in 

1x12A25 Buffer and 20 µM taxol). With this step unpolymerized tubulin was removed 

from polymerized microtubules. The pelleted microtubules were washed twice with 

12A25 Buffer containing 20 µM taxol and then resuspended in this buffer. 

2.2.6. Microtubule stimulated ATPase assay 

The microtubule-stimulated steady state ATP turnover was measured in a coupled 

enzymatic assay. In this assay, ATP hydrolysis is linked to the oxidation of NADH to 

NAD+ by the enzymes lactate dehydrogenase (LDH) and pyruvate kinase (PK) [133] 

(Figure 13). PK requires phosphoenolpyruvate (PEP) as co-substrate and converts 

ADP to ATP, thus guaranteeing a constant ATP concentration during the reaction.  
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Figure 13. Coupled enzymatic 
steady-state ATPase assay. The 
motor hydrolyzes ATP to ADP and 
inorganic phosphate. The 
regenerating system (PK) recycles 
the consumed ADP back into ATP, 
keeping up a constant ATP level in 
the system. For each ATP 
molecule regenerated, one NADH 
molecule is oxidized by lactate-
dehydrogenase (LDH) to NAD+. By 
measuring the absorbtion decrease 
at 340 nm, the ATP consumption 
can be calculated. 

The NADH oxidation can be observed in the photometer by its decrease in extinction 

at 340 nm. Consequently, the oxidation of one NADH molecule is coupled to 

hydrolysis of one ATP molecule by a motor protein. ATPase activities of motor 

proteins were analyzed at different microtubule or ATP concentrations. The decrease 

of NADH concentration over time was followed photometrically and determined 

applying the law of Lambert-Beer: 

 ∆E/t= (ε∗∆c(NADH)∗d)/t       

 Equation 3 (Haid et al. 1975 [135]) 

with ∆E/t being the output value of extinction over time, ε being the extinction 

coefficient of NADH at 340 nm (εNADH at 340 nm = 6.22 Mol
-1 ∗ cm

-1 ) and d being the 

diameter of the well. KM and kcat were determined by change of absorbtion-decay 

over 30 min and plotted against microtubule concentration (KM for MT) or ATP 

concentration (KM for ATP) and the values were fitted to a hyperbolic function, 

describing Michaelis-Menten kinetics. KM represents the half maximal activation 

constant, whereas the catalytic constant kcat expresses the maximal number of ATP 

that is hydrolyzed per kinesin head per time. It was calculated as follows:  

 kcat =(∆c(ATP)/∆t)/c(kinesin)      

 Equation 4 

The assay was performed in 12A25 buffer at 27°C over 30 min with a 

spectrophotometer (Bio Tek, Bad Friedrichshall, Germany). The reaction volume was 
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50 µl and consisting of 37 µl microtubule dilution in 12A25 buffer with 20 µM Taxol as 

described above, 10 µl protein dilution with desired protein concentration (7.7 µl) and 

regeneration system (2.3 µl), and also 3 µl of 15 mM Mg·ATP mixed in this order. 

Because the reaction starts with ATP, it was crucial to add it just before the assay 

was started. The measurement was performed in 96-well plates (Greiner) with an 

area size A = 0.15 cm2/well. 

12A25 buffer:  12 mM Aces-KOH, 25 mM KAc, 2 mM MgAc, 0.5 

mM EGTA, pH 6.8  

ATP regeneration system:  1.5 mM NADH in 100 mM HEPES, 3 mM PEP in 

12A25, 1.6 U/ml PK, 2.2 U/ml LDH  

Taxol:     4 mM in DMSO  

Mg·ATP:     100 mM ATP in H2O, 100 mM MgCl2 

2.2.7. Multiple motor gliding filament assay 

Kinesin motors bind non-specifically via their tail domains on microscope coverslips 

while the motor domains stay flexible (Figure 14). Gliding assays were performed 

following standard methods [60] in BRB80 buffer. Here, the protein’s maximum 

velocity is determined indirectly via the speed of single fluorescently labeled 

microtubules.  

For full-length kinesin motors, a flow chamber (volume 10µl) was generated using 

silicone grease (GE Bayer, Germany) and a glass slide covered by a coverslip 

(Figure 14). Flow chambers were incubated with 10 µl of protein for 4 minutes. 

Unbound motors were washed with 34,5 µl of motility buffer containing Cy3-labeled 

microtubules [136], a oxygen scavenger system, glucose and casein. ATP was given 

to motility buffer prior to use. Fluorescently labeled microtubules were either followed 

over time by a Axiovert 200 microscope (Zeiss, Germany) and the velocity was 

measured using the manufacturer’s software (Zeiss, Germany) or with the below 

described TIRF microscope.  

For kinesin motors where the tail domains were removed (Figure 11), a binding to the 

microscope coverslips was no longer possible. In this case, the flow chamber was 

coated with 1 mg/ml BBSA (Sigma), 1 mg/ml streptavidin (Sigma) and biotinylated 

anti-GFP antibodies (Vector, CA/USA; Biozol Diagnostika Vertrieb GmbH, Eching), 
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with washing steps with 1 mg/ml BSA and BRB buffer in between. After this special 

treatment of the chamber, motor proteins bound to the antibody coated surface 

(Figure 14) via their SfGFP.   

 
Figure 14. Multiple motor gliding filament assay. A) Flow chamber preparation with an object slide, 
a cover slip and silicon grease, generating a chamber with a volume of about 10 µl. B) Inside a flow 
chamber, full-length kinesin motors stick to glass surface via their tail domains, while the head 
domains protrude into the matrix containing motility mixture with fluorescently labeled microtubules. By 
doing their step cycle, the motors push the filaments forward, indicated by black arrows. Minus end of 
the filaments is leading, because the motors are plus end directed [86]. C) A combination of sticky 
biotinylated BSA, streptavidin and a biotinylated anti GFP antibody was necessary to attach the GCN4 
motors to the surface via their Superfolder GFP inside a flow chamber.  
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BRB80 buffer:  80 mM PIPES, pH 6.9, 100 mM KAc, 2 mM MgCl2, 1 mM EGTA, 1 

mM DTT         

Motility buffer:  0.145 mg/ml glucoseoxidase (Sigma, G2133), 0.0485 mg/ml 

catalase (Sigma, C3155), 0.2 mg/ml casein, 0.4% glucose, 200 

mM KAc, 1 mM DTT, in BRB80 

2.2.8. Single molecule motility assay 

Single molecule motility assays  (Figure 15) were carried out following the procedure 

given in Vale et al. (1996) [20]. The flow chamber was coated similar to the multiple 

motor gliding assay until the streptavidin step. 10 to 20 µl of biotinylated, 

fluorescently labeled (Cy3) and not labeled microtubule dilution mixture was flushed 

into the chamber and incubated for 5 min before removing unbound filaments with 

washing buffer containing 1 mg/ml BSA in BRB80 buffer. Motor proteins were 

attached to microtubule tracks by supplementing the motility buffer with 1mM non-

hydrolyzable ATP analogue AMP-PNP and incubating for 4 min. After checking the 

immobilized Superfolder GFP labeled motors with a TIRF microscope, motility buffer 

containing 2 mM ATP was washed into the chamber and the movements of the motor 

proteins were recorded with a CCD camera.   
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Figure 15. Single molecule assay with GCN4 motors. A mixture of biotinylated, fluorescently 
labeled and not labeled microtubules (Cy3 (red), not labeled (gray)) were immobilized on the surface 
by a combination of biotinylated BSA and streptavidin. The run of a homodimeric motor conjugated to 
four Superfolder GFP molecules on their microtubule track was obtained and recorded with a TIRF 
microscope. Arrows indicate the plus end directed run of a motor protein.  

2.2.9. Analysis of single molecule experiment 
Superfolder GFP tagged protein movements on immobilized microtubules were 

determined from frame by frame analysis with the help of Cell^R software (Olympus 

Biosystems, Germany). The velocity of motor proteins translocating along their 

cytoskeletal track microtubules was determined manually and calculated simply by 

dividing the traveled distance by the elapsed time. All further data and statistical analysis 

was carried out using IgorPro software (WaveMetrics, Inc., Portland, U.S.A.).   

2.2.10. Protein purification  

Sf9 insect cells were infected with baculoviruses coding for genes of interest and 

cells were harvested as described by centrifugation. From this point on, all steps 

were performed either on ice or 4°C. 
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2.2.10.1. Protein purification via 6xHis tag with Ni-NTA agarose beads 

Harvested cells were lysed in 10% vol. (of the initial cell suspension volume) of ice-

cold His tag lysis buffer with the help of a pipetboy (Integra Biosciences, Germany) 

for 2 to 4 min. After centrifugation at 65,000 x g for 10 min and 4°C (Beckmann L8-M, 

rotors 70.1 Ti, 50.2 Ti, or Beckmann Optima TL, rotor TLA 100.3), the pellet was 

discarded. The supernatant, containing the protein of interest was incubated rotating 

with pre-washed Ni-NTA coated sepharose beads (Ni-NTA agarose, Qiagen) for 1 

hour (250 µl Ni-NTA material for 5 ml cell lysate) at 4°C. After incubation, beads were 

3 to 4 times washed with 1 ml of ice-cold His washing buffer in an Eppendorf reaction 

tube to eliminate unbound protein. Elution of 6xHis tagged proteins was performed by 

incubating with 0.5 to 1% vol. (of lysis suspension volume) of His elution buffer 

containing 500 mM imidazole for 45 min at 4°C. Eluted proteins were shock-frozen in 

liquid nitrogen and stored at -70°C. 

PIPES basic buffer:  80 mM PIPES, 300 mM KAc, 1 mM MgCl2, 1 mM DTT and 

100 μM ATP 

Lysis buffer:  basic buffer, 1% Triton-X 100, protease inhibitor cocktail 

(cOmplete, Roche), 20 mM imidazole, pH 8  

Washing buffer:  basic buffer, 40 mM imidazole, protease inhibitor cocktail 

(cOmplete, Roche), pH 8 

Elution buffer:  basic buffer, 500 mM imidazole, protease inhibitor cocktail 

(cOmplete, Roche), pH 7.5    

2.2.10.2. Protein purification via 6xHis tag with Dynabeads® 

Protein purification with Dynabeads® His tag isolation and pulldown (Life 

Technologies, Darmstadt, Germany) was performed analogous to the His tag 

purification with Ni-NTA agarose beads according to the manufacturer’s protocol. The 

advantage of this method was a lower background and a faster purification due to 

shorter incubation times. Harvested Sf9 cells were lysed and cleared as described. 

Meanwhile, four times with 500 µl in washing buffer washed beads were cleared in a 

DynaMagTM (Life Technologies, Darmstadt, Germany) magnet in between. 50 µl (2 

mg) beads were mixed and incubated rotating with 700 µl supernatant, containing 

protein of interest up to 30 min at 4°C. After incubation, beads were washed again 
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with 500 µl His washing buffer and cleared with the magnet in between. Elution was 

performed rotating up to 10 min at 4°C. The mixture was applied to the magnet and 

the supernatant containing the protein of interest was transferred to a clean tube. 

Eluted proteins were shock-frozen in liquid nitrogen and stored at -70°C.  

2.2.10.3. Protein purification via Flag tag 

Harvested cells were lysed in 10% vol. (of the initial cell suspension volume) of ice-

cold Flag tag lysis buffer with the help of a pipetboy (Integra Biosciences, Germany) 

for 2 to 4 min. The homogenate was cleared by centrifugation at 65,000 x g for 10 

min and 4°C (Beckmann L8-M, rotors 70.1 Ti, 50.2 Ti, or Beckmann Optima TL, rotor 

TLA 100.3). The supernatant, containing the protein of interest was incubated 

rotating with 2 to 3% vol. (of lysis solution volume) of anti-FLAG antibody agarose 

resin (Anti-FLAG M2® Affinity Gel, Sigma) for 1.5 hours at 4°C. After incubation, 

beads were 3 to 4 times washed with 1 ml of ice-cold Flag washing buffer 1, followed 

by 3 to 4 times washing with Flag washing buffer 2 in an Eppendorf reaction tube 

with centrifugation steps in-between, to eliminate unbound protein. Elution of Flag 

tagged proteins was performed by incubating with 2 to 5% vol. (of lysis suspension 

volume) of Flag elution buffer containing an excess of FLAG-peptides (Sigma) for 45 

min at 4°C. If desired, another elution step with 1 to 2.5% vol. (of lysis suspension 

volume) of elution buffer was performed for 45 min at 4°C. Eluted proteins were 

shock-frozen in liquid nitrogen and stored at -70°C. 

PIPES basic buffer:  80 mM PIPES, 300 mM KAc, 1 mM MgCl2, 1 mM DTT, 

and 100 μM ATP 

Lysis buffer:  basic buffer, 1% Triton-X 100 and protease inhibitor 

cocktail (cOmplete, Roche) 

Washing buffer 1:  basic buffer with 500 mM KAc, 5 µM ATP, 0.1% Tween 

20, and protease inhibitor cocktail (cOmplete, Roche) 

Washing buffer 2:  basic buffer with 200 mM KAc, 1 mM EGTA, 5 µM ATP, 

and protease inhibitor cocktail (cOmplete, Roche) 

Elution buffer:  basic buffer with 100 µg/ml FLAG-peptide and protease 

inhibitor cocktail (cOmplete, Roche)    
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2.2.10.4. Co-immunoprecipitation assays 

Constructs consisting of a combination of Flag tagged and His tagged subunits 

required a tandem purification of proteins. Harvesting was performed as described 

(section 2.1.10.5) and Flag tag purification was carried out (section 2.2.10.3). After 

checking eluted protein amounts via SDS-PAGE, usually 500 µl elution was 

incubated with 150 µl Ni-NTA material for the case of Ni-NTA agarose purification, or 

with 50 µl magnetic beads for the case of Dynabeads® His tag isolation. Elution was 

carried out as described above. 

2.2.11. Gel filtration chromatography 

Gel filtration chromatography or size exclusion chromatography is a method based 

on the ability of gel filtration media like Superose to separate complex protein 

mixtures, primarily according to their molecular size.  

To check whether the motor proteins were in a dimeric or aggregated state, gel 

filtration was carried out with a Superdex 200 10/300 GL gel filtration column (GE 

Healthcare) at a Äkta purifier 100 (GE Healthcare) according to manufacturer’s 

manual. Standard protein purification as described above was performed until to the 

elution step. After washing proteins, an extra 3 to 4 times washing step with 1 ml of 

ATP free gel filtrations buffer was performed, to eliminate a possible ATP disturbance 

of the system. The proteins were eluted in gel filtration buffer. If needed, an additional 

concentration step by dialysis into gel filtration buffer or by centrifugation in an 

Amicon® Ultra centrifugal filter unit (10 kDa exclusion size, Millipore) was performed. 

The volume loaded on the column was about 150 µl. 

Gel filtration buffer: 80 mM PIPES, 200 mM KAc, 1 mM MgCl2, 1 mM DTT, and 1 mM 

EGTA 

2.2.12. Microscopy 

The in vitro motility properties of motors investigated in this study were performed via 

fluorescence-microscopy techniques. Epifluorescence microscopy was used for 

studying primarily multiple motor filament gliding assays, whereas total internal 

reflection fluorescence (TIRF) microscope was used for studying single molecule 

motility assays. 
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2.2.12.1. Epifluorescence microscopy 

With this type of microscope, it is possible to illuminate subjects of interest 

conjugated to a fluorophore and detect them via a coupled camera device. The 

illumination is not only restricted to the focus plane, but also to the whole sample, 

leading sometimes to high background signalling. The background is reduced only by 

using an emission filter. Axiovert 200 M epifluorescence microscope (Zeiss, 

Germany) with a 100 x, N.A. 1.4 Oil objective lens and an AxioCaM MRm CCD 

camera was used to study proteins of interest. Illumination was carried out via a 

mercury lamp (FluoArc 01.26D, Jena GmbH, Germany), while band-pass filters 

facilitated excitation of fluorophores at 488 and 532 nm. Depending on each 

experiment and illumination time, sequences of 30 to 300 frames were recorded and 

analysed by AxioVision software (Zeiss, Germany). 

2.2.12.2. TIRF microscopy  

With TIRF microscopy, it is possible to selectively illuminate objects conjugated to 

fluorophores that are really close to the surface and avoid excitation of fluorophores 

in the bulk [137]. This is achieved by the use of an emerging evanescent wave 

caused by the reflection of a laser beam at the glass-water interface. It is necessary, 

that the immersion oil has a similar refractive index as the cover slip and that the 

medium has a lower refractive index than the cover slip (Figure 16). Depending on 

the angle, the wavelength of the laser beam and the refractive indices, the 

evanescent wave penetrates the sample only to a depth of about 150 to 200 nm 

[138], because the intensity decays exponentially with the distance to the glass-water 

interface.  
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Figure 16. Objective-type TIRF microscope. The incident light is guided 
through the objective, refracted by the high numerical aperture lens and 
brought to a critical angel to the glass-water interface. The reflected light 
goes back through the objective to the dichroic mirror. The evanescent field 
is generated from the total internal reflection of the laser beam at the glass-
water boundary, where only a thin layer of the specimen is excited (adapted 
from Sako and Uyemura, 2002 [139]). 

Single SfGFP fused motor proteins were investigated using a objective-type TIRF 

microscope (IX71, Olympus), equipped with a plan objective lens (100 x, N.A. 1.65 

Oil) and a front-illuminated CCD camera (C-9100, Olympus). Excitation of 

fluorophores was achieved with the help of solid-state laser at 488 or 532 nm 

wavelength. Depending on each experiment and illumination time, sequences of 200 

to 600 frames were recorded and analysed with Cell^R software (Olympus 

Biosystems, Germany).  

2.2.13. Mass spectrometry (MS) 
Mass spectrometry is an analytical method where charged particles are analysed 

according to their mass-to-charge ratio. This is achieved mainly by couple of typical MS 

procedures: First, the particle is ionized by an ion source and charged particles (ions) are 

generated; second, the separation of the ions is carried out by a mass analyser, 

according to their mass-to-charge ratio by an electric or magnetic field; and third, a mass 

spectrum is generated with the help of a detector system according to the collected mass 

data [140]. Additionally to sequencing, proteins of interest were analyzed and confirmed 

by mass spectrometry by the Zentrallabor für Proteinanalytik (ZfP) of the LMU.  
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Results 

1. Experimental Concept 
To dissect the kinetic properties of kinesin-2 from C. elegans, different motor 

constructs have been designed and generated (Figure 17). ‘Wild-type tail’ constructs 

were generated to answer the question whether this heterodimeric construct is 

autoinhibited via a bending of the tail domains, as observed already with 

conventional kinesin [47-56]. Homodimeric ‘wild-type tail’ constructs addressed the 

question whether the subunits differ in their kinetic behavior. These motor 

combinations were additionally expected to illuminate the question if in case the 

motor was autoinhibited, which subunit was regulated by autoinhibition. ‘EE tail’ 

combinations, eliminating a regulatory effect by the tail domains, were generated to 

investigate the motors under constitutively activated conditions. ‘GCN4 tail’ 

constructs were designed to eliminate any influence of the tail domains, be it intra- or 

intermolecular. The motor combinations so generated should be fully active. To study 

the single molecule behavior of the ‘GCN4-tail’ motor combinations with the help of 

four Superfolder GFP (SfGFP) molecules per motor under zero load conditions with 

TIRF microscopy was essential. The observations should illuminate the question 

regarding the processive behavior of each subunit as a homodimeric motor. 

Monomeric head domains including the neck regions were generated to investigate 

whether both catalytic subunits lacking a tail region were kinetically equivalent. 

‘GCN4 tail’ KLP11 constructs containing variable GS repeats in their neck regions 

were designed to understand KLP11 subunits suppression in different assays. 

Additionally, these constructs were examined to understand the role of the neck 

linker length and its influence on the catalytic activity of the motor as well. 
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Figure 17. Generated constructs and designated experiments. 
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2. Kinesin-2 (KLP11/20) subunits from C. elegans exhibit 

low sequence homology 
Although related, sequence alignments performed with BLASTP 2.2.27 and MultAlin 

[141-143] showed that the full-length KLP11 (782 amino acids (aa), 88.7 kDa) and 

KLP20 (646 amino acids, 73.5 kDa) subunits are different. They shared only 44% 

identity and 62% similarity (Figure 18, MultAlin sequence alignment), which gave 

reason to the assumption that two completely different subunits dimerize into a 

functional motor. Interestingly, the region of high consensus was found in the 

catalytic head domain (aa 1 to 365). 

 

Figure 18. Sequence alignments of full-length KLP11 and KLP20 subunits (MultAlin, [143]). The 
two motor subunits shared 44% identical and 62% positive amino acids. Strikingly, the high consensus 
part was found in the catalytic head domain region (aa 1 to 365).  
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3. KLP11/20 exhibits a helix breaker position within its stalk 

region  
The Wild-type KLP11 and KLP20 protein sequences were analyzed using coiled-coil 

prediction algorithms [144]. It should be noted, however, that these routines are 

limited to homodimeric coil-coil predictions. Notwithstanding, the KLP11 subunit 

(Figure 19) shows a kink position containing the helix-breaker residue glycine that is 

situated roughly in the middle of the stalk. In contrast, even though KLP20 contains 

two such glycines at the corresponding position (Figure 20), no disruption in the coil-

coil formation is predicted. Similar to the conventional homodimeric kinesin-1, such 

kink positions may mediate auto-regulation in the heterodimeric kinesin-2 as well by 

enabling head-tail interactions [48-56, 84].  

 

Figure 19. Coiled-coil prediction for KLP11. The stalk region of KLP 11 (aa 357 to aa 782) was 
predicted to form a coiled-coil until aa position 548, followed by a random coil until the C-terminal end 
of the molecule [144]. The predicted highly coiled-coil stalk region was interrupted by a helix breaker 
position at aa 450 (Glycine) and 451 (Serine). This position could serve as a kink allowing back-folding 
of the C-terminal distal tail onto the head domains for auto-regulation [84].  

N 
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Figure 20. Coiled-coil prediction for KLP20. The stalk region of KLP 20 (aa 345 to aa 646) was 
predicted to form a coiled-coil until aa position 550, followed by a random coil until the C-terminal end 
of the molecule [144]. Interestingly, even though KLP20 contains two glycines (position 444 and 445) 
at the corresponding position where KLP11’s helix breaker position is located, no disruption in the coil-
coil formation of KLP20 was predicted.  

4. Expression, purification, and quality control of the 

constructs 
All constructs were expressed and purified using the Baculovirus Expression System 

(Invitrogen) in insect cells. Over-expression of the constructs in 200 to 300 ml of Sf9 

cell suspensions resulted in protein concentrations typically ranging from 0.5 to 4 µM. 

Affinity tag purification of the full-length motor combinations via co-

immunoprecipitation (co-IP) displayed both motor subunits combined to a 

heterodimer in a 1:1 molar ratio, when only one of the dimerization partners 

contained the purification tag (Figures 21 and 22). Truncated homodimeric constructs 

were dimerized via the molecular zipper GCN4. Monomeric head domains were 

purified via FLAG-tag affinity purification (Figure 23).   
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Figure 21. Flag-affinity protein purification of kinesin-2 constructs heterodimerized via the wild 
type tail. A) Recombinant proteins were expressed using the baculovirus expression system followed 
by FLAG-affinity protein purification. SDS-Page displays the purified constructs of interest marked by 
stars. B) Schematics of the purified constructs.  

 

Figure 22. Flag-affinity protein purification of the constructs containing the G to E and S to E 
mutations in the stalk domains. A) Recombinant proteins were expressed using the baculovirus 
expression system followed by FLAG-affinity protein purification. The proteins of interest are marked 
with stars on SDS-Page. B) Schematics of the purified constructs. Mutations within the stalk domains 
are high-lightened by yellow boxes. 
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Figure 23. Flag-affinity protein purification of the monomeric head domains and tandem SfGFP 
motors homodimerized via the GCN4 zipper. A) Recombinant proteins were expressed using the 
baculovirus expression system followed by FLAG-affinity protein purification. Motors of interest are 
marked by stars on SDS-Page. B) Schematics of the purified constructs. 

 

4.1. Size-exclusion chromatography of the full-length constructs  
Native size-exclusion chromatography coupled to multiple-angle light scattering 

(MALS) was carried out to characterize the molecular integrity of the purified 

heterodimeric constructs. BSA served as a size control for the chromatography and 

MALS fitting (Figure 24). The first peak in Figure 24 corresponds to the void volume 

of the column. The second peak contains the proteins of interest with molecular 

weights consistent with a dimeric state (Table IV). Eluted fractions were analyzed on 

SDS-PAGE and confirmed a molar ratio of 1:1 of the subunits (Figure 24, B). 

Monomers or aggregates were not detected.  
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Figure 24. Size exclusion chromatography of the full-length constructs containing the wild type 
tail domains. A) Aggregation or monomeric state of the generated ‘WT tail’ constructs was checked, 
and revealed a dimeric state for all constructs. KLP11/11 (blue), KLP20/20 (dark red), KLP 20/11 
(green) andKLP11/20 (orange) eluted between 8.5 and 11 ml, corresponding to the second peak in 
the diagram. BSA as a control had a UV absorption peak at 13.6 ml (magenta). Fraction numbers and 
eluted volumes are depicted on the x-axis, whereas the absorption (mAu) is marked on the y-axis. B) 
Analysis of the eluted fractions on SDS-PAGE. All constructs form heterodimers with a 1:1 molar ratio. 
Fraction numbers of the respective elutions are given at the bottom. (LP: Loaded protein on the 
column) 
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Table IV. Calculated and determined molecular weights of the constructs containing the wild 
type tail 

Construct Calculated MW (kDa) MW from MALS fit (kDa) 
KLP11/11  162.2 143.4 
KLP20/20 160.4 154.5 
MC KLP20/11 162.3 178.3 
WT KLP11/20 162.3 168.6 
BSA control 66.4 67.6 
(Adapted from Brunnbauer et al., 2010 [126])  

4.2. Size exclusion chromatography of the truncated constructs 
To check the molecular integrity of the truncated constructs dimerized via the 

molecular zipper GCN4 and conjugated to tandem Superfolder GFP (SfGFP), size-

exclusion chromatography with KLP11/11 8xGS and KLP20/20 (Figure 26) was 

carried out.  The two SfGFP molecules are separated by a 10 amino acid-long linker 

sequence, resulting in a dimeric motor containing four fluorophores. 

The first peak (Fractions 11 and 12, blue and orange curves) in the graph 

corresponds to the void volume of the column, whereas the second peak (Fractions 

14 to 21) contains the proteins of interest with molecular weights consistent with a 

dimeric state. Column resolution was checked with BSA (Figure 25, magenta). Eluted 

fractions were analyzed on SDS-PAGE and confirmed a non-aggregated state 

(Figure 25, B). 

 



 

Results 

 

 60 

 

Figure 25. Size exclusion chromatography of ‘GCN4 tail’ constructs fused to tandem 
Superfolder GFP (SfGFP) and confirmation via SDS-Page. A) KLP11/11 8xGS (orange) displayed 
an absorption peak at 9.5 ml after injection, whereas KLP20/20 (light blue) eluted already after 9.35 ml 
after injection. Fraction numbers and eluted volume is depicted on the x-axis, whereas the absorption 
(mAu) is marked on the y-axis. Schematics of used constructs are depicted on the right. B) Eluted 
fractions (indicated at the bottom) of each run were analyzed on the SDS-PAGE and no aggregated 
protein fractions was observed in the void volume. High molecular weight (HMW) and fraction 
numbers are shown for each construct. Loaded protein on the column is marked with LP. C) GFP-
scan of selected motors on SDS-PAGE (right) with a Typhoon Scanner (GE Healthcare) prior to 
coomassie stain (left) confirmed conjugation to SfGFP.  
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5. Kinetic properties of the wild type KLP11/20 and its 

chimeric KLP20/11 
Given that wild type KLP11/20 exposed a helix breaker region in its tail domain, its 

ATPase activity is likely to be regulated by a mechanism similar to that of 

conventional kinesin-1. Conventional kinesin-1 prevents futile ATP consumption by 

bending of the molecule at the kink position, bringing the tail domains in close 

proximity of the catalytic head domains, resulting in an autoinhibition of the motor 

[48-56]. 

To determine the catalytic activity of the heterodimeric wild type KLP11/20, steady 

state ATPase and multiple motor gliding filament assays were performed. The wild 

type KLP11/20 construct was compared to the mixed chimera KLP20/11 with 

swapped head positions.  

Steady-state ATPase assays at saturating ATP (3 mM) concentrations with wild type 

KLP11/20 and the reversed chimera KLP20/11 provided first insights into motor 

activity (Figure 26). While the wild type motor KLP11/20 displayed low ATPase 

activity (kcat= 1.8 s-1 (ATP turnover number), KM= 19 µM), its corresponding 

chimera KLP20/11 displayed a robust ATPase activity (kcat= 11.3 s-1, KM= 25 µM). 

Interestingly, the affinity of the constructs to MTs are almost in the same range, 

indicating, as mentioned above, that the interaction of the tail domains with the head 

domains in wild type KLP11/20 slows the ADP release from the catalytic head 

domains, leading to a reduced motor activity, while the motors affinity to microtubules 

is not affected [49, 51, 57-59].  

Strikingly, in contrast to the kinetic differences observed in the solution-based 

ATPase assays, the velocities of the KLP11/20 and the chimeric KLP20/11 were 

experimentally indistinguishable in multiple-motor gliding filament assays (Figure 27). 

This is consistent with the view of a tail-mediated inhibition of the wild type motor. In 

this experimental set-up (see Materials and Methods, section 2.2.7), the tail domains 

are attached to the glass surface, and thus disengaged from interacting with the 

catalytic head domains.  
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Taken together, these results demonstrate that WT KLP11/20 is auto-regulated in 

ATPase assays and that this inhibition of the catalytic heads by the tail domains is 

asymmetric since swapping the head domains (KLP20/11) was sufficient to 

circumvent the auto-regulation (Figure 26). Put differently, the positions of the head 

domains relative to the tail domains are crucial for an efficient inhibition of this 

heterodimeric motor. Consistently, disengaging the tail domains in the wild type 

KLP11/20 all together by binding the motor to a glass surface is equally sufficient to 

activate the motor’s ATPase (Figure 27). 

 

Figure 26. Steady-state ATPase assay with wild type KLP11/20 and the chimeric KLP20/11. The 
wild type motor exhibits suppressed ATPase activity and merely switching the relative positions of the 
head domains in the chimeric KLP20/11 is sufficient to turn on the motor’s ATPase activity. 

 

Figure 27. Analysis of multiple motor gliding 
filament assays with wild type KLP11/20 and 
chimeric KLP20/11. Velocities were calculated by 
dividing the distance a MT was displaced by 
multiple motors over the time. The microtubule 
gliding velocities of both constructs are 
experimentally indistinguishable (Wild type 
KLP11/20 (430 ± 50 nm/s (S.D.), n= 95) and 
KLP20/11 (430 ± 30 nm/s (S.D.), n= 27). 
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6. The kinetic contributions of the KLP11 and KLP20 

subunits to the heterodimeric KLP11/20 motor 
To analyze the individual contributions of the two distinct catalytic subunits KLP11 

and KLP20 to the overall kinetic properties of the heterodimeric KLP11/20 motor, 

homodimeric chimeras KLP11/11 and KLP20/20 were designed. To guarantee 

homodimerization of two identical head domains, the heterodimeric wild type tail 

domains were used as described above.  

In ATPase assays, the ’homodimeric’ KLP11/11 motor displayed reduced ATPase 

activity (kcat = 3 s-1, KM= 38.5 µM) that was comparable with the wild type 

KLP11/20 (Figure 28 and Figure 26). In contrast, the KLP20/20 chimera (kcat = 7.2 s-

1, KM= 9.9 µM) was significantly more active and was rather comparable with the 

chimeric KLP20/11 (Figure 28 and Figure 26). To further analyze the ‘homodimeric’ 

chimeras, multiple motor gliding filament assays were performed. Consistent with 

result obtained from the steady-state ATPase assays (Figure 28), KLP11/11 (190 ± 

13 nm/s (S.D.), n= 29) displayed significantly reduced velocities when compared to 

KLP20/20 (380 ± 20 nm/s (S.D.), n= 30, Figure 29). Thus, the behavior of the 

KLP11/11 contrasts to that of the wild type KLP11/20 which also displayed 

suppressed activity in the ATPase assays (Figure 26), but showed robust gliding 

velocities in multiple motor gliding filament assays (Figure 27).  
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Figure 28. Steady-state ATPase assay with homodimeric KLP11/11 and KLP20/20 chimeras. 
The ATP turnover rates differ for the two ‘homodimeric’ KLP11/11 and KLP20/20. The suppressed 
activity of the KLP11/11 construct is reminiscent of the wild type KLP11/20 and may either represent 
an auto-regulated state or inherent slow kinetics of the KLP11 subunit compared to the KLP20 
subunit.  

Figure 29. Multiple motor gliding filament assays 
with homodimeric KLP11/11 and KLP20/20 
chimeras. KLP11/11 (190 ± 13 nm/s (S.D.), n= 29) 
moves the microtubule filaments at a reduced 
velocity (190 ± 13 nm/s (S.D.), n= 29) when 
compared to KLP20/20 (380 ± 20 nm/s (S.D.), n= 
30). Thus, the differences observed in the ATPase 
assays between the homodimeric KLP11/11 and 
KLP20/20 also persist in the gliding filament assays, 
suggesting that the KLP11 and KLP20 subunits may 
indeed have distinct kinetic properties.   

 

 

7. Relieving auto-regulation in KLP11/20 by tail mutations 
The wild type KLP11/20 motor displayed a suppressed ATPase, and swapping the 

head positions was sufficient to activate the motor’s activity (Figure 26). On the other 

hand, in the multiple-motor filament gliding assays where the motors were attached 

to the microscope slide via their tail domains (Figure 14), both constructs displayed 

equivalent velocities (Figure 27). This suggests that, similar to what has been 
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demonstrated with the kinesin-1 motor, the tail domain’s capability of folding onto the 

head domains via the kink position may mediate the auto-regulation also in kinesin-2 

[119, 120]. Coiled-coil predictions [144], indicating a helix breaker position in the tail 

domain of KLP11 corroborated this assumption (Figure 19). Consequently, removing 

the kink positions in the KLP11/20 tail domains predicts an activation of its ATPase in 

steady state ATPase assays.  

To this end, the putative kink position situated roughly in the middle of the tail domain 

of the KLP11/20 motor was replaced with glutamates as described above (Material 

and Methods, section 2.1.11.3). Such replacement of the glycine residues with 

glutamates was in fact sufficient to relieve the auto-regulation in the homodimeric 

kinesin-2 motor from C. elegans, termed Osm3 [119]. 

7.1. Removing the kink in the tail domain eliminates the auto-

regulation in KLP11/20 
To test the catalytic activity of the KLP11/20 motor containing the glutamate residues 

in its tail domain (termed KLP11EE/20EE hereafter), steady-state ATPase assays 

and multiple motor gliding filament assays were performed. To directly compare the 

results obtained with the wild type tails (Figure 26), the kink in the chimeric construct 

with the swapped head positions KLP20/11 has also been replaced with glutamate 

residues, hereafter termed KLP20EE/11EE.  

In microtubule-stimulated ATPase assays (Figure 30), the KLP11EE/20EE (kcat = 

11.5 s-1, KM= 59.3 µM) and KLP20EE/11EE (kcat = 14.3 s-1, KM= 53 µM) 

constructs both displayed robust ATPase activities when compared to the wild type 

KLP11/20 (Figures 30 and 26). These results provide evidence that in addition to 

swapping head positions in the wild type motor, preventing the tail folding via flexible 

glycine residues by introduced glutamate residues also abolishes auto-regulation in 

the wild type KLP11/20 heterodimer.  

In the multiple motor gliding filament assays, the KLP11EE/20EE (509 ± 39 nm/s, n= 

30) and the KLP20EE/11EE (448 ± 25 nm/s, n= 32) constructs again displayed 

consistent velocities (Figure 31), both among themselves and when compared to the 

wild type KLP11/20 and the chimeric KLP20/11 (Figure 27). 
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Taken together, removing the kink position in the tail domains or swapping the head 

positions in the wild type KLP11/20 motor is sufficient to circumvent the auto-

regulation. The former is consistent with results obtained from kinesin-1 and 

homodimeric Osm3 kinesin-2 [52, 119] and the latter is a novel mechanism of 

relieving self-inhibition.  

 
Figure 30. Steady-state ATPase assay with KLP11EE/20EE and ‘KLP20EE/11EE at saturating 
ATP concentrations (3 mM). Both the KLP11EE/20EE and its corresponding KLP20EE/11EE 
chimera with swapped head positions displayed robust ATPase activity. Consistent results were 
obtained with 0.5mM ATP, demonstrating that the ATP concentration used in the assay was not 
limiting. 

Figure 31. Multiple motor gliding filament 
assays with KLP11EE/20EE and 
KLP20EE/11EE. Upon binding of the constructs to 
the glass surface via their tail domains, the motors 
transported the fluorescently labeled microtubules 
at 509 ± 39 nm/s (S.D.), n= 30 for the 
KLP11EE/20EE and 448 ± 25 nm/s (S.D.), n= 32 
for the KLP20EE/11EE. 
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7.2. Removing the kink in the homodimeric KLP11/11 does not 

affect the motor’s activity 
To rule out the possibility that the reduced ATPase activity of the homodimeric 

KLP11/11 motor is not due to auto-regulation mediated by the presence of the wild 

type tail domain containing the kink position (Figures 28 and 29), the chimeric 

KLP11EE/11EE construct was generated lacking such kink along with the 

KLP20EE/20EE construct as a control (described in Material and Methods, section 

2.1.11.3).  

The analysis of the homodimeric KLP11EE/11EE and KLP20EE/20EE constructs 

using steady state ATPase (Figures 32 and 33) and multiple-motor filament gliding 

assays (Figure 34) again resulted in distinct kinetics as was observed with the 

equivalent constructs containing the wild type tails (Figures 28 and 29).  

While in ATPase assays with increasing microtubule concentrations at saturating 

ATP concentrations (3 mM), the KLP11EE/11EE displayed a suppressed ATPase 

activity (kcat= 4 s-1, KM= 85.6 µM), the KLP20EE/EE chimera showed a robust 

ATPase activity (kcat= 11.5 s-1, KM= 29 µM). Consistent with this experiment, in 

ATPase assays with increasing ATP concentrations at low (15 µM) and high (30 µM) 

microtubule concentrations (Figure 33), the KLP11 subunit displayed slower activity 

compared to the KLP20 subunit.  

In agreement with the results obtained from the steady-state ATPase assays 

(Figures 32 and 33), the KLP11EE/11EE (232 ± 30 nm/s (S.D.), n= 25) displayed 

significantly reduced velocities when compared to the KLP20EE/20EE (500 ± 26 

nm/s (S.D.), n= 27) in gliding filament assays (Figure 34).  

Taken together, these results strengthen the view that the wild type heterodimeric 

KLP11/20 combines two kinetically different subunits to one double-headed motor. 

However, at this point a tail-mediated suppression of the ATPase of the KLP11 

subunit cannot be fully ruled out as the results obtained with the KLP11EE/11EE 

construct addresses on the effect of the kink position. The tail domain may still impart 

auto-regulation onto the KLP11/11 chimera by a so far unknown mechanism. 
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Figure 32. Steady-state ATPase assays with KLP11EE/11EE and KLP20EE/20EE chimeras. As 
observed with the equivalent constructs containing the wild type tails, the ATP turnover rates again 
differ for the two KLP11EE/11EE and KLP20EE/20EE chimeras in which the kink positions have been 
removed. The KLP11 subunit thus consistently displays a 2-3 fold slower activity compared to the 
KLP20 subunit. 

 

 

Figure 33. Steady-state ATPase assays with KLP11EE/11EE and KLP20EE/20EE chimeras in 
the presence of 15 µM and 30 µM microtubule. As observed with previous ATPase experiments 
(Figure 32), the ATP turnover rates again differ for the two KLP11EE/11EE and KLP20EE/20EE 
chimeras at low and high microtubule concentrations. The KLP11 subunit consistently displays a 
slower activity compared to the KLP20 subunit. 
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Figure 34. Multiple motor gliding filament 
assays with KLP11EE/11EE and KLP20EE/20EE 
chimera. Consistent with the results from the 
ATPase assays (Figure 32 and Figure 33), the 
KLP11EE/11EE moves the microtubules at a 
reduced velocity (232 ± 30 nm/s (S.D.), n= 25) 
when compared to the KLP20EE/20EE (500 ± 26 
nm/s (S.D.), n= 27). 

 

 

 

 

 

 

 

7.3 Monomeric KLP11 and KLP20 constructs are kinetically 

equivalent 
The combination of two KLP11catalytic subunits to one double-headed motor 

consistently displayed reduced activity compared to the combination of two KLP20 

subunits (Figures 28, 32 and 33), suggesting that the wild type KLP11/20 motor may 

in fact employ two catalytically non-equivalent subunits. 

To dissect the kinetic properties of the KLP11 and KLP20 subunits without the 

interference of the tail region, monomeric head domains were expressed (Material 

and Methods, section 2.1.11.1) and probed for their activity in steady-state ATPase 

assays. Intriguingly, monomeric and thus unconstrained KLP11 and KLP20 head 

domains displayed comparable activities in the ATPase assays by microtubule 

titration (Figure 35, KLP11: kcat = 8.6 s-1, KM= 19 µM and KLP20: kcat = 10.4 s-1, 

KM= 18.8 µM) as well as by ATP titration (Figure 36, KLP11: 2 µM MT: kcat = 0.27 s-

1, KM= 0.012 mM; 25 µM MT: kcat = 3.8 s-1, KM= 0.036 mM and KLP20: 2 µM MT: 

kcat = 0.26 s-1, KM= 0.007 mM; 25 µM MT: kcat = 3.7 s-1, KM= 0.026 mM). These 

results finally allow two testable conclusions: (A) the slow kinetics of the KLP11 

subunit arises from the (so far unknown) interference from the tail domain or (B) the 
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dimerization of two KLP11 head domains into one double-headed motor is 

responsible for its slow kinetics. 

 

Figure 35. Steady-state ATPase (3 mM ATP) assays with monomeric KLP11 and KLP20 motors. 
Monomeric KLP11 and KLP20 head domains display comparable activities in the absence of the tail 
domain, suggesting that either the tail-mediated inhibition or the dimerization into a double-headed 
motor may account for the differences observed with the ‘homodimeric’ KLP11/11 construct (Figures 
28, 32 and 33). 

 

Figure 36. Steady-state ATPase assays with monomeric KLP11 and KLP20 motors in the 
presence of 2 µM and 25 µM microtubules. Unconstrained, monomeric KLP11 and KLP20 catalytic 
head domains display equivalent ATP binding at saturating (25 µM) and sub-saturating (2 µM) 
microtubule concentrations.    
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8. Dimerization brings about the observed kinetic 

distinctions in KLP11/11 and KLP20/20 chimeras 
So far, the analysis of the wild type KLP11/20 heterodimer and its corresponding 

KLP11/11 and KLP20/20 homodimeric chimeras revealed that (A) KLP11/20 is an 

auto-regulated motor, and (B) the subunits KLP11 and KLP20 may be kinetically non-

equivalent. The analysis of the monomeric and therefore unconstrained KLP11 and 

KLP20, however, exposed that the basic catalytic subunits (devoid of the influence of 

the tail domain) are kinetically equivalent.  

To resolve this discrepancy, KLP11 and KLP20 constructs were designed in which 

the tail domains have been replaced with the molecular zipper GCN4 to 

homodimerize the catalytic KLP11 and KLP20 head domains, respectively. In 

addition, flexible residues of increasing lengths have been introduced between the 

head domains in the KLP11/11 GCN4 to probe putative effects of dimerization on the 

kinetics of this homodimer. Lastly, all constructs were C-terminally tagged with 

tandem SfGFP to enable studies using fluorescence microscopy (Material and 

Methods, section 2.1.11.4).  

The GCN4-mediated homodimerization of the respective KLP11 and KLP20 head 

domains eliminates any inhibitory effects that may arise from the presence of the tail 

region. If the suppressed ATPase activity of the KLP11/11 is a result of such effects, 

the activities of the KLP11/11 GCN4 and KLP20/20 GCN4 is expected to be similar 

as observed with the monomeric head domains (Figures 35 and 36). The analysis of 

the KLP11/11 GCN4 and KLP20/20 GCN4 homodimers in filament gliding as well as 

in ATPase assays revealed that the combination of two KLP11 and two KLP20 head 

domains in fact results in distinct kinetics (Figure 37). The suppressed ATPase 

activity of the KLP11 head domain is thus brought about by the homodimerization, 

either by its full-length stalk (Figures 28, 32 and 33) or by the molecular zipper GCN4 

(Figure 37). Lastly, a tail-mediated suppression of the ATPase activity of the KLP11 

can be excluded. 
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Figure 37. ATPase assays with KLP11/11 and KLP20/20 constructs homodimerized via the 
GCN4 zipper. As it is the case with the homodimeric KLP11/11 and KLP20/20 chimeras containing 
the full-length tails, the ATPase activity of the KLP11/11 head combination is suppressed when 
compared to the KLP20/20 head combination.  

 

Figure 38. Multiple motor gliding filament 
assays with KLP11/11 and KLP20/20 
constructs homodimerized via the GCN4 
zipper. Consistent with the results from the 
ATPase assays (Figure 37), the KLP11/11 head 
combination moves the microtubules at a 
reduced velocity (185 ± 28 nm/s (S.D.), n= 38) 
when compared to the KLP20/20 head 
combination (395 ± 20 nm/s (S.D.), n= 29). 
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9. The suppression of the KLP11/11 activity is relieved by 

flexible residues  
The kinetic equivalence of the monomeric KLP11 and KLP20 head domains on the 

one hand (Figures 35 and 36) and their non-equivalence within the dimeric context 

on the other hand (Figure 37) suggests that steric hindrance may account for the 

suppressed ATPase of the KLP11/11 constructs. To directly test this hypothesis, 

glycine/serine repeats of increasing lengths (2xGS and 8xGS) were introduced 

between the KLP11 head domains in the dimeric KLP11/11 GCN4.  

Figure 39 demonstrates that the insertion of the short extension (2xGS) is already 

sufficient to activate the KLP11/11 GCN4 motor to levels comparable with the 

KLP20/20 GCN4 (Figure 37) homodimer in the microtubule-activated ATPase assay. 

In agreement with this experiment, complementary ATP-activated ATPase assays 

(Figure 40) performed at 60 µM microtubule concentration underlined that the 

suppression of homodimeric KLP11/11 construct is relieved by flexible GS repeats.  

To conclude, the suppressed ATPase activity of the KLP11 subunit is brought about 

by homodimerization that is relieved by flexible extensions situated between the 

KLP11 head domains. Interestingly, additional flexibility provided by 8xGS repeats 

does not further activate the dimeric KLP11/11 motor. 

 

Figure 39. Microtubule activated ATPase assays with GS extended KLP11/11 constructs in the 
presence of saturating ATP (3 mM). Introducing the flexible GS extensions relieves the suppressed 
ATPase activity of the KLP11/11 homodimer. The ATPase rates are comparable with the values of 
KLP20/20 GCN4 homodimer (Figure 37).  
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Figure 40. ATP activated ATPase assays with GS extended KLP11/11 constructs in the 
presence of microtubules (60 µM). As observed with previous ATPase experiments (Figure 39), the 
GS extensions relieve the suppressed ATPase activity of the KLP11/11 homodimer.  

 

10. Homodimeric KLP20/20 is processive, KLP11/11 is not 
The ATPase activity of a motor, however, does not serve as an indicator of 

processive movement, i.e., the motor’s ability to take consecutive steps as a single 

molecule. To test whether the GCN4-mediated dimerization of the KLP11 and KLP20 

head domains generates processivity, and if so, which constructs are capable of 

processive movement, the respective constructs were subjected to single molecule 

fluorescence assays. Briefly, the microtubules are attached to the surface and the 

movement of single, SfGFP-tagged motors is observed in the evanescent field of the 

TIRF microscope (Refer to section 2.2.8 in Material and Methods for experimental 

details). 

Figure 41 shows the processive movement by the KLP20/20 motor, demonstrating 

that the GCN4-mediated dimerization of the KLP20 head domains is capable of 

generating processivity. In contrast, its corresponding KLP11/11 GCN4 motor never 

displayed equivalent processive movement at the single molecule level. 
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Figure 41. Homodimeric KLP20/20 motor dimerized via GCN4 moves processively along 
microtubules. A) TIRF microscopy image sequence showing the displacement of a single 
homodimeric KLP20/20 motor (indicated by white arrowheads) over time. Scale bars represent 1 µm. 
B) Velocity histogram of the movement fitted to a Gaussian. KLP20/20 motors moved with a velocity of 
324.9 ± 10.3 nm/s (S.D.), n= 64. C) Schematics of the construct. D) Run length distribution plotted as 
histogram and fitted to a single exponential (n= 64). KLP20/20 moved about 843 ± 44.3 nm (S.D.), n= 
64, along MT track.  

 

11. KLP11/11 GCN4 motors with flexible extensions 

between the head domains are processive 
As described above, the GCN4-mediated dimerization of the KLP11 head domains 

resulted in an unprocessive motor with a suppressed ATPase activity. However, 

introducing flexible extensions between the head domains in the dimeric KLP11/11 

motor was sufficient to activate its ATPase in microtubule-activated ATPase assays 

(Figures 39 and 40).  
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Figure 42 and Figure 43 show that circumventing the steric hindrance also results in 

processive movement for both KLP11/11 dimers containing the 2xGS and 8xGS 

repeats, respectively. Interestingly, the increasing length of the flexible extensions 

affects neither the velocity nor the run length of the dimeric KLP11/11 GCN4. 

 

Figure 42. The presence of the shortest flexible extension in the KLP11/11 GCN4 motor enables 
processive movement. A) TIRF microscopy image sequence showing the displacement of a single 
homodimeric KLP11/11 GCN4 containing the 2xGS extension (indicated by white arrowheads) over 
time. Scale bars represent 1 µm. B) Velocity histogram of the movement fitted to a Gaussian. 
KLP11/11 2xGS motors moved with a velocity of 183.3 ± 11.3 nm/s (S.D.), n= 105, along MT track. C) 
Schematics of the construct. D) Run length distribution plotted as histogram and fitted to a single 
exponential (n= 105). KLP11/11 2xGS moved about 843.9 ± 183 nm (S.D.), n= 105, along MT track.  
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Figure 43. Increasing the length of the flexible extensions does not significantly impact the 
kinetic parameters of the KLP11/11 GCN4. A) TIRF microscopy image sequence showing the 
displacement of a single homodimeric KLP11/11 GCN4 motor containing 8xGS extensions between its 
head domains (indicated by white arrowheads) over time. Scale bars represent 1 µm B) Velocity 
histogram of the movement fitted to a Gaussian. KLP11/11 8xGS motor moved with a velocity of 162 ± 
8.7 nm/s (S.D.), n= 68, along MT track. C) Schematics of the construct. D) Run length distribution 
plotted as histogram and fitted to a single exponential. KLP11/11 8xGS moved about 593.7 ± 59.1 nm 
(S.D.), n= 68, along MT track.  
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12. Summary of results 
Molecular engineering has enabled the dissection of the kinetic properties of the 

subunits KLP11 and KLP20 constituting the heterodimeric KLP11/20 motor from C. 

elegans. Four main conclusions can be drawn from these analyses:   

(A)  Wild type KLP11/20 is auto-regulated and this inhibition can be relieved either 

by swapping the relative head positions (KLP20/11) or by replacing the 

flexible kink position by stiff residues (KLP11EE/20EE) or by removing the 

KLP11 subunit (KLP20/20). 

(B)  The dimerization of two KLP11 vs. two KLP20 head domains either by the 

wild type tail or by the unrelated molecular zipper GCN4 results in motors with 

distinct kinetic properties.  

(C)  The GCN4-mediated dimerization of the KLP11 subunit results in an 

unprocessive motor whereas the corresponding dimerization of the KLP20 

subunit results in a processive motor. 

(D)  Introducing flexible residues between the KLP11 head domains is sufficient to 

impart processivity onto the homodimeric KLP11/11 GCN4 motor. 
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Figure 44. Summary of generated constructs and achieved results.  
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Discussion 
Heteromeric kinesin-2 (KLP11/20) from C. elegans combines, two different motor 

subunits and an accessory subunit (KAP) into a heterotrimeric motor to be functional 

in intraflagellar transport (IFT) [115, 145]. One of the main goals of this thesis was to 

dissect the molecular properties of the catalytic subunits KLP11 and KLP20 kinesin-2 

from C. elegans. It was intended to understand the benefits of a heterodimeric 

compared to a homodimeric motor.  

1. Kinesin-2 (KLP11/20) from C. elegans is auto-regulated  
It was already known, that kinesins were regulated at several levels [81], including a 

regulation by autoinhibition to avoid futile ATP consumption in an inactive state. In 

different studies, kinesin-1 [49, 51, 53-56, 58, 59] and kinesin-3 [146-148] have been 

shown to control motor activity by autoinhibition. Electron microscopy and FRET 

experiments could provide evidence that without cargo bound, conventional kinesin is 

in an inactive and folded conformation [56, 82]. Hereby, the flexible kink region in the 

middle of the stalk was crucial, allowing the folding of the tail domains onto the head 

domains [49, 50, 52]. By this folding, the tail domains are brought in close proximity 

to the catalytic head domains interacting with each other [48-56]. Folding and 

consequently interaction leads to slowed ADP release, whereas the ability of kinesin 

to bind and move along the microtubule lattice is not abolished [50]. The head-tail 

interaction creates a ‘lock down’, preventing the movement of the motor domains that 

is necessary to undock the neck linker and release ADP [84].  

Also with homodimeric kinesin-2 from C. elegans (Osm-3) and mouse (Kif 17) it has 

been shown, that the tail domains play a major role [119, 120] in controlling motor 

activity. By point mutation in the predicted hinge region of Osm-3’s coiled-coil stalk as 

well as deletion of that hinge raised the ATPase activity of the motor and additionally 

induced robust processive movement [119].  

By analyzing the coiled-coil formation of KLP11/20 (Figures 19 and 20), we could 

also confirm a hinge region in the KLP11 subunit. Initial testing of the wild type 

KLP11/20 in ATPase assays showed a motor with low activity. Interestingly, the 

same motor showed gliding velocities in gliding filament assays close to values 
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observed from in vivo assays [116, 118]. This was facilitated because the stalk and 

tail domains of kinesin-2 interact with the glass surface in the flow chamber (Figure 

14), releasing the head domains from the control of the tail domains and allowing the 

transport of fluorescently labeled microtubules. Interestingly, in microtubule-

stimulated bulk ATPase assays, a release of the head domains in wild type 

KLP11/20 was prevented, providing an autoinhibited motor with very low kinetic 

activity. These experiments confirmed that wild type KLP11/20 is also controlled by a 

tail mediated autoinhibition mechanism to that of other kinesins, preventing futile ATP 

consumption if not activated.  

Having two different KLP11 and KLP20 subunits assembling kinesin-2 provided six 

possible autoinhibition conformations: KLP11 tail only inhibits KLP11 head (1) or 

KLP20 head (2), KLP20 tail only inhibits KLP11 head (3) or KLP20 head (4), KLP11 

tail inhibits KLP11 head and KLP20 tail inhibits KLP20 tail (5) or vice versa (6). 

Testing the ‘wild type tail’ chimeric constructs provided fully active KLP20/20, 

excluding conformations number (2) and (4), whereas the KLP11/11 combination 

was suppressed. Therefore, initially it was thought that only the KLP11 subunit is 

controlled by autoinhibition (conformations number (1) and (3)). Having an active 

mixed chimera KLP20/11 with swapped head positions, lead to the assumption that 

the regulation of the native heterodimer has to be asymmetric and depends on the 

correct positioning of the head domains, bringing conformations (5) and (6) in focus. 

Vukajlovic et al. (2011) [149] investigated oligomer formation in kinesin-2 from C. 

elegans and found that a C-terminal dimerization seed at the end of the stalk was 

necessary for heterodimerization of KLP11/20. Combining a full-length tail KLP11 

with C-terminally shortened KLP20 tail and vice versa provided no 

heterodimerization. So, it was not possible to probe for conformations number (5) 

and (6) in ATPase assays. Having also active GS constructs in ATPase assays, 

confirming steric hindrance for KLP11/11 combinations suppression, conformations 

number (1) and (3) could be excluded. Taken together, with the performed 

experiments, pinpointing which tail inhibits which head domain was not possible.  
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2. Monomeric head domains are almost equivalent 
The chimeric constructs were generated as described by Brunnbauer et al. (2010) 

[126] in analogy to KIF3A/A and KIF3B/B chimeric constructs generated by Zhang et 

al. (2004) [150] (Figure 9) to ensure dimerization of desired motor constructs. All 

ATPase and gliding filament assays performed with full-length KLP11/11 

combinations resulted in a suppressed motor, indicating that the KLP11/20 combines 

two non-equivalent subunits. So, testing for the kinetic properties of the respective 

minimal catalytic subunits of KLP11/20 was essential to check this hypothesis. These 

minimal catalytic subunits were the monomeric head domains including the neck 

linker region.  

They were generated by cutting the head domains just after the neck linker region 

including an extra extension of eight amino acids of the stalk, where already the α7 

region started (Figure 8). Testing both monomeric head domains in ATPase assays 

provided two almost kinetically equivalent subunits. With these experiments, the 

assumption that KLP11/20 consists of two non-identical subunits whose kinetic 

functions differ was eliminated. Furthermore, a control of the whole motor activity by 

controlling only the KLP11 subunit could be excluded. The reason for suppressed 

activity of KLP11/11 as a full-length ‘wild type tail’ or ‘EE tail’ homodimeric construct 

had to be another one.  

3. Homodimeric KLP11/11 combinations are suppressed 

due to steric hindrance 
Assuming that the full-length tail domains might influence motor activity by an 

intermolecular interaction, we generated ‘GCN4 tail’ constructs. A suppressed 

KLP11/11 GCN4 construct excluded an inhibition by the tail domains, leading to the 

suggestion that steric hindrance might be the reason preventing the KLP11 subunit 

from being as active as KLP20. 3D reconstructions based on the crystal structure of 

the head domain of human Kif3B as a template [151-153] showed that KLP11 was 

quite similar to KLP20, with slight exceptions (Figure 46, yellow circles), although 

they only share about 71% positive and 58% identical amino acids (Figure 45). On 

the other hand, KLP11 shares 81% positive and 69% identical amino acids with 

human Kif3B, whereas KLP20 shares 73% positive and 58% identical amino acids 
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[141-143]. Measurements of the relative mean square displacement in angstrom of 

the KLP11 amino acid sequence versus the KLP20 amino acid sequence (Figure 47) 

underlined the observed difference, whereas the distance around amino acid 230 

(corresponding to the 3rd peak in the graph) promised to be the crucial one. This 

peak in close proximity to the C-terminal region of the head domain (CT) could be of 

relevance in preventing the head domains to pass by each other, when combined 

into a homodimer, leading to steric hindrance.  

By introducing additional flexible neck extensions, namely two and eight glycine and 

serine repeats in the neck region of the KLP11 GCN4 construct, we probed for steric 

hindrance. Actually, by introducing just two GS repeats in the neck linker region of 

KLP11 (total of 13 amino acids: four aa from GS repeats and eight aa from α7) turned 

on the activity of KLP11/11 in ATPase assays (Figures 39 and 40). Interestingly, 

increasing the length of the flexible extensions (8xGS repeats) didn’t affect the kinetic 

activity of KLP11/11 GCN4. With these results, evidence was provided that both 

subunits are kinetically similar, as already observed with monomeric head domain 

constructs.  
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Figure 45. Amino acid sequence alignment of head domains of KLP11, KLP20 and human 
Kif3B. Interestingly, KLP11 and KLP20 head domains shared only 71% positive and 58% identical 
amino acids. On the other hand, KLP11 shared 81% positive and 69% identical amino acids to human 
Kif3B, whereas KLP20 shared 73% positive and 58% identical amino acids [141-143]. KLP11 head 
domain had more similarity to HsKif3B than to KLP20. 

 
Figure 46. 3D reconstruction of KLP11 and KLP20 head domains based on HsKif3B [151-153] 
(3b6u B subunit). Using the HsKif3B kinesin as a template for 3D reconstructions of the catalytic 
head domains of KLP11 and KLP20 revealed a large structural identity for both motors although the 
lack of high sequence identity was given. Having only about 71% positive and 58% identical amino 
acids (Figure 45) gave reason to assumption that the head domains had different structures. The main 
differences based on the 3D reconstruction are depicted with yellow circles. The loop in close 
proximity to the C-terminal end of the head domain of KLP11 subunit might play a role in suppressing 
the head domains if KLP11 is combined to a homodimer. (CT= C-terminal, NT= N-terminal) 
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Figure 47. Measurements of the relative mean square displacement in angstrom of the KLP11 
amino acid sequence versus the KLP20 amino acid sequence (NOC 3.01 software, M.E. Chen, 
H.X. Cang, H. Nymeyer). The calculated distance around amino acid 230 (3rd peak in the graph), 
corresponding to the loop of KLP11 in close proximity to the C-terminal part of the head, could play a 
crucial role in kinetic behavior of KLP11. This region of the head domain could be of relevance in 
preventing the head domains to pass by each other, leading to a steric hindrance.  

4. Neck linker region and kinetic activity 
The neck linker was known to play a major role during the mechano-chemical cycle 

of kinesin molecules. On the basis of crystal structures, Hariharan and Hancock 

(2009) [154] defined neck linker regions for kinesin-1 as well as kinesin-2. While 

kinesin-1 had a neck linker region of 14 amino acids, kinesin-2’s neck linker was 

composed of 17 amino acids. In both cases the neck linker regions were embedded 

between alpha helical structures, one ending the head domain (α6) and one starting 

the stalk region (α7). Muthukrishnan et al. (2009) [155] have investigated the 

processive behavior of Drosophila kinesin-1 and mouse kinesin-2 at the single 

molecule level and found that kinesin-2 was less processive than kinesin-1. Shastry 

and Hancock (2010) [156] suggested that the neck linker length determines the 

degree of processivity in kinesin-1 and in kinesin-2. Shortening the neck linker region 

of kinesin-2 enhanced its processivity [156], whereas the extension of the neck linker 

in kinesin-1 decreased its processivity. The same observation was made by 
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Muthukrishnan et al. (2009) [155], assuming that the mechanical tension transmitted 

through the neck linker domains was reduced [155]. Yildiz et al. (2008) [157] have 

intensively investigated the extension by artificial peptides of the neck linker region of 

kinesin-1 , which led to a reduction of the intramolecular tension between the motor 

domains. A dramatic decrease of velocity was observed, although the processivity 

was not much affected. Also, strain between both motor domains was found to be 

responsible for reduced velocities of the constructs.  

Interestingly, our GCN4 constructs included the respective neck linker region (17 aa) 

and an additional eight amino acids of alpha 7 (Figure 11). This ‘native’ elongation of 

the neck linker region can be assumed to reduce the tension between both head 

domains. In gliding filament assays and ATPase assays, a decrease in activity could 

not be observed for KLP20/20 GCN4 constructs containing these eight additional aa 

in their neck regions compared to ‘wild type tail’ and ‘EE tail’ KLP20/20 constructs 

lacking such an extension (Figures 28, 32 and 37). Same observations were made 

with KLP11/11 GCN4 constructs. Despite these eight amino acid extensions, 

homodimeric KLP11/11 GCN4 showed almost the same activity as the ‘wild type tail’ 

and ‘EE tail’ KLP11/11 constructs (Figures 28, 32 and 37). Furthermore, it lacked 

processive movement and displayed suppressed activity in gliding and ATPase 

assays (Figures 37 and 38), indicating that the additional eight aa were not sufficient 

to avoid a steric hindrance. Homodimeric KLP11/11 GCN4’s activity in ATPase 

assays was turned on only by inserting additional four amino acids (2xGS construct, 

total of 12 aa extension) in the neck region. The 8xGS construct with its 24 aa 

elongation (eight aa from α7 and 16 aa as GS repeats) showed almost the same 

activity in ATPase assays as the 2xGS construct containing only a 12 aa extension in 

their neck region (Figures 39 and 40).  

5. Neck linker region and processivity 
It has been reported, that in addition to its role in force generating conformational 

changes, an equally important role of the neck linker is to transmit tension between 

the two head domains [154]. All mechanisms trying to explain processive movement 

of kinesin involve mechanical tension transmitted between the head domains 

[66,154, 158-161]. So, by inserting additional amino acids in the neck linker region of 
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kinesin-1, Yildiz et al. (2008) [157] found that the processivity of this motor was 

influenced. Proline extended construct’s velocities decreased with the number of 

inserted proline residues, whereas no clear correlation between the length of the 

insertion and processivity could be observed. Glycine and serine extended (14 

additional aa) kinesin constructs showed even lower velocities than the proline 

constructs, whereas the run length was not affected strikingly. Interestingly, as was 

observed also in our investigations with the KLP11 GCN4 GS constructs and KLP20 

GCN4 constructs, the maximal microtubule-stimulated ATP turnover rates between 

WT kinesin-1 and the neck extended constructs were similar. This leads to the 

assumption that neck extended constructs were less efficient in turning ATP 

consumption into effective directed movement. Actually, probing for stepping 

behavior revealed that these constructs took highly variable as well as sideways and 

backward steps, leading to decreased velocities in case of neck extended kinesin-1. 

In agreement with this observation, Brunnbauer et al. (2012) [162] could provide 

direct evidence that kinesin’s neck region determines the torque generating 

properties.  

In our experiments, a GS extended KLP11 GCN4 construct showed an increase in 

the maximal microtubule-stimulated ATP turnover compared to KLP11/11 GCN4. 

This construct suffered steric hindrance, unable to take consecutive steps along MT 

tracks, resulting in an unprocessive motor. Interestingly, activated GS contructs in 

single molecule assays failed to reach the velocities observed with KLP20/20 GCN4, 

most probably for the same reason observed by Yildiz et al. (2009). Our neck 

extended GS constructs were not effective enough to turn the ATP consumption into 

directed movement. In contrast to the observation of Yildiz et al. (2009), however, our 

constructs showed no clear correlation between neck length and velocity as well as 

processivity. KLP11/11 2xGS and KLP11/11 8xGS constructs had almost same 

velocities in single molecule assays. These results were also in contrast to the 

observations made by Shastry and Hancock (2010) [156], where a clear correlation 

between neck shortening and processivity of kinesin-2 (Kif3A) was observed.  
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Summary and Outlook 
The mechanistic scrutiny of homodimeric molecular motors (e.g. kinesin-1) over the 

past three decades has revealed two universal kinetic signatures of such long-range 

transporters: (A) the ATPase activity of the motors is self-regulated via an 

intramolecular interaction between the catalytic heads and the distal end of the tail 

domains. (B) Once attached, molecular motors take multiple ATP-dependent “steps” 

on their respective filaments before detaching (i.e. processivity) which in turn allows 

the motor to efficiently transport its cargo over long distances. 

This work has uncovered several kinetic properties of the heterodimeric kinesin-2 

(KLP11/20) motor from C. elegans which agree with the concepts described above. 

However, the distinct identities of the motors proteins, namely KLP11 and KLP20, 

constituting the heterodimeric KLP11/20 allowed pinpointing the contributions of each 

member to the observed kinetic signatures. 

The investigation of recombinantly expressed wild type and engineered constructs 

led to following four major conclusions: First, the wild type KLP11/20 self-inhibits its 

ATPase activity (auto-regulation) via its tail domains. This inhibition can be relieved 

either by swapping the relative head positions (KLP20/11) or by replacing the flexible 

kink position by stiff residues (KLP11EE/20EE) or by removing the KLP11 subunit 

(KLP20/20). This uncovered kinetic signature in the KLP11/20 heterodimer 

represents a novel concept of an asymmetric auto-regulation as merely swapping the 

head positions (KLP20/11) is sufficient to switch on the ATPase activity of the motor. 

Second, the dimerization of two KLP11 vs. two KLP20 head domains either by the 

wild type tail or by the unrelated molecular zipper GCN4 results in motors with 

distinct kinetic properties. Third, the GCN4-mediated dimerization of the KLP11 

subunit results in an unprocessive motor whereas the corresponding dimerization of 

the KLP20 subunit results in a processive motor. Fourth, introducing flexible 

glycine/serine repeats between the KLP11 head domains is sufficient to turn on 

processivity of the homodimeric KLP11/11 GCN4 motor without affecting the motor’s 

overall velocity.  
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This work provides a solid basis to further dissect the molecular interactions that 

allow auto-regulation in the heterodimeric KLP11/20: is the distal tail of the KLP11 or 

the KLP20 subunit responsible for the inhibition of the ATPase of the motor, provided 

the half-site inhibition model derived from the homodimeric kinesin-1 is applicable?. 

Or does KLP11/20 need both distal tail domains for efficient self-inhibition? Another 

intriguing question concerns the processivity of the dimeric KLP11 GCN4 motor 

containing the flexible glycine/serine extensions. In stark contrast to kinesin-1, the 

velocity of the KLP11-GCN4 remains constant with increasing length of the flexible 

elements inserted into the neck region. In kinesin-1 the stability of this neck region 

was shown to control the intramolecular strain which in turn is responsible for efficient 

stepping of the motor (i.e. one ATP hydrolysis per step). Disrupting the stability in the 

neck region with flexible insertions significantly decreased the velocity of the kinesin-

1 motor and lead to futile ATP hydrolysis cycles that were uncoupled from 

mechanical stepping. Why is the combination of two KLP11 motor domains 

insensitive to such reduced intramolecular strain? Or in more general terms, what is 

the molecular basis of achieving processivity? This question is still unanswered for 

kinesin-1, and this work has added another flavor to the spectrum. 
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