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1. Introduction 
 

1.1. Sensing by the innate immune system 
 

1.1.1. Pattern Recognition Receptors (PRRs) 
 

After a pathogen managed to bypass the physical and chemical barriers of the body 

the innate immune system is the next level of defense. It is an evolutionary ancient 

system found in all animal and plant species that is composed of germline encoded 

genes responsible for fighting infections. These innate immune genes form the 

complete immune system in most species except for vertebrates. The vertebrate 

immune system comprises the germline encoded factors of the innate immune 

system and additional factors belonging to the adaptive immune system. The latter 

evolves with the infection leading to highly pathogen specific defense mechanisms, 

e.g. formation of antibodies. There is a smooth transition between the anti-infectious 

actions of the innate and the adaptive immune system. Both, the innate and the 

adaptive immune system, act in concert and complement each other in clearing the 

host from the pathogen. Thereby, the innate immune system reacts very fast upon 

infection but in a rather generic way while the adaptive immune system is activated 

through the innate immune system and reacts relatively late after infection but very 

specific. In addition, the adaptive immune system is responsible for the generation of 

a long term immunological memory [1, 2]. 

The basis for triggering an appropriate immune response lies in the ability to 

recognize the presence of a pathogen. The innate immune system is responsible for 

this recognition process. It provides germline encoded receptor proteins, termed 

pattern recognition receptors (PRRs) that evolved to sense special pathogen derived 

and host signature molecules during infection. Each PRR is specialized to bind to 

one specific signature molecule or class of signature molecules termed 

microbial/pathogen associated molecular pattern (MAMP/PAMP) or damage 

associated molecular pattern (DAMP). After MAMP/DAMP binding, PRRs activate 

signaling cascades that induce the immune response [3, 4]. 

MAMPs comprise a variety of different kinds of pathogen derived molecules, which 

are ether structurally distinct from any host molecule, e.g. lipopolysaccharide (LPS, 
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bacterial cell wall component) or appear in abnormal locations, e.g. cytosolic DNA 

originating from DNA viruses or bacterial genomes. Since their structures usually are 

essential for the survival of the pathogen, MAMPs show just a very small degree of 

structural variance. This links the observed high evolutionary conservation of each 

MAMP and its presence in a broad range of pathogens with the circumstance that 

many different infections can be sensed by just a small set of PRRs. A prominent 

example for this observation is the conserved lipid A, which is a component of the 

outer cell wall of Gram-negative bacteria. The PRR Toll-like receptor (TLR) 4 

recognizes lipid A and thereby is able to sense the presence of any Gram-negative 

bacteria infecting the host [5]. The evolutionary selected specificity of PRRs for 

MAMPs furthermore contributes to the ability of the immune system to distinguish 

between self and non-self structures. This is important to avoid an immune response 

against the own body. In fact, several autoimmune diseases are linked to 

malfunctioning PRRs, e.g. TLR2/4 play a role in type 1 diabetes [6] or the NOD2 role 

in Crohn’s disease [7-9]. 

Like MAMPs, DAMPs are also recognized by PRRs. They also comprise a variety of 

different kinds of molecules but in this case originating from the host. Generally, 

these molecules are released from stressed or damaged cells, thereby losing their 

normal function in the context of a “healthy” cell and contributing to the induction of 

inflammation as a danger signal. A prominent example is the High-mobility group 

protein B1 (HMGB1). It is a nuclear protein involved in chromatin organization and 

transcription regulation. Upon endotoxic shock it is released by hematopoietic cells 

and can be sensed e.g. by the PRR RAGE (Receptor for Advanced Glycation 

Endproducts) leading to the induction of an inflammatory response [10-12]. 

Several protein families act as PRRs and even though they can be structurally very 

different they often share a common concept of initiating signaling. After binding to 

the corresponding MAMP or DAMP, PRR signaling domains interact with 

downstream adaptor proteins resulting in signaling cascades that activate terminal 

effector proteins like caspases and transcription factors. This leads to the 

expression, maturation and secretion of proinflammatory cytokines, chemokines and 

type I interferons (IFNs). These molecules in turn trigger a second wave of autocrine 

and paracrine signaling resulting in the induction of the immune response. 
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1.1.2. Toll-like receptors (TLRs) 
 

The best studied PRRs belong to the mammalian Toll-like receptor (TLR) family. 

They were first identified in the 1990s based on the homology to the Drosophila Toll 

protein which plays a role in establishing the embryonic dorsal-ventral pattern [13, 

14]. The 10 TLRs known in humans (12 in mice) are mainly expressed in dendric 

cells (DCs) and monocytes/macrophages. All TLRs are type I transmembrane 

proteins which are found either in the plasmamembrane (TLR1, TLR2, TLR4, TLR5, 

TLR6 and TLR11) or the endosomes (TLR3, TLR7, TLR8, TLR9 and TLR10). Both 

of these groups sense a broad range of different MAMPs and DAMPs. The 

plasmamembrane bound TLRs mainly sense extracellular bacterial and viral lipids 

and Lipoproteins while the endosomal TLRs recognize luminal appearing nucleic 

acids. Upon MAMP/DAMP binding via their extracellular/endosome lumenal leucin-

rich repeats (LRRs) TLRs undergo homo- and heterodimerization depending on the 

bound substrate. The signal is then transduced to the inside of the cell by the 

cytoplasmatic TIR (Toll/Interleukin 1 Receptor) domains that interact with TIR 

domains of downstream adaptors. This activates the NF-κB (Nuclear Factor Kappa-

Light-Chain-Enhancer of Activated B Cells), MAP (Mitogen-Activated Protein) kinase 

and IRF3 (Interferon Regulatory Factor 3) pathways, respectively, involving complex 

signaling cascades including ubiquitinylation, proteolysis and phosphorylation. The 

resulting production and release of proinflammatory cytokines and type I interferons 

induces the immune response [15-17]. 

 

 

1.1.3. NOD-like receptors (NLRs) 
 

TLRs are considered to be the most important PRRs for recognizing infections. But 

because of their localization in the plasmamembrane and endosomes TLR sensing 

is restricted to extracellular pathogens. Since many pathogenic processes such as 

viral replication take place inside the cell, intracellular sensing mechanisms are also 

essential for triggering an immune response. Indeed, several different cytosolic PRR 

families crucially contribute to pathogen recognition inside the cell. An example is the 

NOD-like receptor (NLR) family that comprises at least 23 members in humans. 
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They are more diverse in structure but typically they possess either N-terminal 

CARDs (Caspase Activation and Recruitment Domain) or pyrin domains (PYD) 

followed by a central nucleotide-binding and oligomerization domain (NOD; also 

known as NACHT domain) and C-terminal leucin-rich repeats (LRRs). Similar to 

TLRs, the NLR LRRs are considered to be involved in MAMP/DAMP sensing. The 

CARDs and PYDs are responsible for transducing the signal via protein-protein 

interactions while the central NOD/NACHT domain seems to play a role in ATP-

dependent oligomerization. Well described examples of NLR family members are 

NOD2 (Nucleotide-Binding and Oligomerization Domain Containing 2) and NLRC3 

(NOD-Like Receptor Family CARD Containing 3). NOD2 is involved in the sensing of 

cytosolic peptidoglycans (PGs) which are bacterial cell wall components. Binding to 

PGs is suggested to induce oligomerization and interaction with downstream 

adaptors, eventually leading to the activation of the NF-κB and MAP kinase 

pathways. NLRC3 is activated by various different stimuli like potassium efflux and 

the generation of reactive oxygen species (ROS) but the exact sensing mechanism 

remains to be clarified. Furthermore, NLRC3 activation does not stimulate the 

transcription of cytokines but leads to the formation of a high molecular weight multi-

protein signaling complex called inflammasome. Inflammasomes are composed of 

higher order oligomers of the corresponding NLRs, thereby forming a platform for the 

recruitment and activation of caspase 1 that by proteolytic cleavage contributes to 

the maturation of cytokines like interleukin 1β (IL1β) and interleukin 18 (IL18). Many 

other NLRs such as NLRP1 or NLRC4 also form inflammasomes [18-20]. 
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1.2. The RIG-I signaling pathway senses cytosolic RNAs 
 

It has been known for more than 50 years that exogenous added nucleic acids such 

as DNA and RNA have immunostimulatory effects on cells [21, 22]. In the case of 

RNA, several TLRs were identified as important PRRs. An example is TLR3, which 

was found to be involved in the sensing of long dsRNAs by stimulating cells with the 

synthetic analog polyinosinic-polycytidylic acid (poly(I:C)) [23]. Additionally, TLR7 

and TLR8 were shown to play roles in the sensing of ssRNA in a species specific 

manner [17, 24]. However, due to their endosomal localization TLR3/7/8 are 

restricted to recognize only extracellular RNAs. Furthermore, TLR expression is 

limited to just a few cell types of the immune system like dendric cells (DCs). These 

features, in combination with the observation that RNA viruses induce type I IFN 

production in cell lines lacking TLR3/7/8, suggested the existence of a cytosolic RNA 

recognition pathway independent of TLR signaling [25]. Indeed, the discovery of the 

RIG-I-like receptors (RLR) confirmed this assumption. The RLR family comprises 

three members: The name giving RIG-I (Retinoic Acid Inducible Gene-I), MDA5 

(Melanoma Differentiation Associated Gene 5) and LGP2 (Laboratory of Genetics 

and Physiology 2). RIG-I and MDA5 are cytosolic RNA sensors responsible for 

recognizing RNA virus infections and transmitting the signal to downstream factors of 

the RLR pathway, whereas the role of LGP2 is not fully resolved yet. It is supposed 

to act as modulator of the RLR signaling dependent on the infection [26]. 

 

 

1.2.1. The RIG-I-like receptor (RLR) family 
 

RIG-I and MDA5 were both identified in cancer cells. RIG-I was first described in 

1997 as a protein that is expressed after stimulating acute promyelocytic leukemia 

cells with retinoic acid [27] while MDA5 was originally described as an IFN inducible 

protein involved in differentiation and growth of melanoma cells [28]. In 2004, both 

proteins were connected to the innate immune system as RNA helicases that are 

essential for the induction of IFN production during infection with RNA viruses [29, 

30]. Various following studies described RIG-I and MDA5 as direct sensors for viral 

RNAs in the cytosol [15, 16, 24, 26, 31-33]. Reports about the last member of the 
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RLR family, LGP2, are inconsistent. LGP2 was identified as negative regulator of 

RIG-I-dependent IFN production [34], however, later studies described it as positive 

regulator of RLR signaling [35, 36]. 

All three proteins are closely related and form a subfamily within the superfamily 2 

(SF2) of type DExD/H-box ATPases. The central SF2 type DECH-box domain is 

composed of two RecA (Recombinase A) folds (Hel1 and Hel2) and a unique 

insertion domain (Hel2i) in the second RecA fold. The SF2 domain is involved in 

RNA binding and responsible for the ATPase activity. At the C-terminus, the bridging 

domain links the SF2 domain to the regulatory domain (RD). The RD is a small flat 

domain which confers part of the ligand specificity. Major differences between the 

RLR members in respect to the domain architecture are found at the N-terminus. 

Both, RIG-I and MDA5 contain two CARDs at the N-terminus which mediate 

downstream signaling. However, the LGP2 protein, which is thought to play a 

regulatory role lacks these two CARDs (Fig.1.2.1). 

 

 
 
Fig.1.2.1. Domain architecture of RIG-I, MDA5 and LGP2. The SF2 domain is composed of Hel1, Hel2, Hel2i, 

and the bridging domain (B). At the C-terminus, the bridging domain links the RD to the SF2 domain. RIG-I and 

MDA5 contain two additional N-terminal CARDs.  

 

 

1.2.2. RIG-I and MDA5 sensing and signaling 
 

RIG-I and MDA5 recognize mainly distinct viruses. RIG-I senses primarily infections 

of negative ssRNA viruses such as influenza A virus (Orthomyxoviridae), vesicular 

stomatitis virus (VSV; Rhabdoviridae), and rift valley virus (Bunyaviridae) but also of 

some positive-stranded viruses like japanese encephalitis virus (JEV; Flaviviridae). 
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MDA5 on the other hand senses mainly positive ssRNA- and dsRNA viruses such as 

encephalomyocarditis virus (EMCV; Picornaviridae) and norovirus (Caliciviridae). 

However, in some infections, especially of viruses from the Paramyxoviridae (e.g. 

sendai virus (SeV)), Flaviviridae (e.g. west nile virus) and Togaviridae (e.g. semliki 

forest virus) families, sensing of both receptors overlaps [31, 33].  

The explanation for the different specificities of both receptors for different viruses is 

reflected by the different RNA features both receptors recognize. RIG-I and MDA5 

bind to dsRNA structures but with different length specificities. Experiments with 

different poly(I:C) constructs showed that RIG-I-dependent production of IFNs is 

stimulated with short chains (~300 bp) while MDA5 can only be activated with longer 

chains (>4 kb). These results were further confirmed in context of viral infected cells: 

VSV, for example, produces short dsRNAs activating only RIG-I-dependent IFN 

production. Conversely, EMCV infection, which produces long dsRNAs, activates 

only MDA5-dependent signaling [37]. 

A further feature that is important for RIG-I signaling is the presence of a 5’-

triphosphate end with a short stretch of double-stranded RNA. This structure is 

directly recognized by the RD of RIG-I. The 5’-triphosphate dsRNA end provides an 

elegant mechanism of discrimination between self and non-self RNA since it is not 

found in normal host mRNAs. Nevertheless, the origin of these RNA structures is still 

under extensive research. Some genomes of negative ssRNA viruses and viral 

transcripts can fold back into a panhandle structure forming such a 5’-triphosphate 

dsRNA end. Defective-interfering (DI) RNAs are hairpin-like RNA structures and 

byproducts of viral replication and transcription which also provide this feature for 

RIG-I recognition [38-45]. Furthermore, there are host processed self RNAs which 

can be sensed by RIG-I. RNaseL is an RNA virus infection activated endonuclease 

that cleaves viral RNAs as well as host RNAs. The cleavage creates short RNAs 

(~200 nt) with 5’-OH- and 3’-monophosphate ends which activate RIG-I signaling 

[46, 47]. This expands the range of physiological RIG-I antagonists to viral genomes 

and transcripts, intermediates and byproducts of viral replication as well as RNaseL 

cleavage products. 

Apart from the tendency to sense long RNAs, there is little information about MDA5 

ligands. In fact, long dsRNAs are not sufficient to induce MDA5-dependent signaling. 

A study showed that rather RNA webs are needed for MDA5 activation. These RNA 
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webs are complex high molecular weight structures containing stretches of ss- and 

dsRNA suggested to occur during viral replication and transcription [48]. 

After ligand binding, RIG-I and MDA5 form oligomers, which is a hallmark for the 

activation of both receptors. In the case of RIG-I the oligomerization depends on its 

ATPase activity. It is suggested that RIG-I scans along RNA utilizing the SF2 domain 

as ATP-dependent motor [49]. Binding to the 5’-triphosphate dsRNA end via the RD 

triggers loading of further RIG-I molecules and the formation of a filament along the 

RNA [50]. However, filament formation is not just dependent on ATPase activity but 

also on ubiquitinylation. RIG-I ubiquitinylation is partially mediated by the RING 

finger E3 ubiquitin ligases TRIM25 (Tripartite Motif-Containing Protein 25) and Riplet 

and involves covalent linkage as well as non-covalent interactions of K63 linked 

polyubiquitin chains with the RIG-I CARDs and RD, respectively [51-54]. It is 

suggested that the polyubiquitin chains provide a mechanism for scaffold formation 

supporting RIG-I oligomerization even with RNAs that are too short for a proper 

filament platform [55]. 

Generally, the activation mechanism of MDA5 is less well characterized than that of 

RIG-I. Similar to RIG-I, MDA5 forms filaments on dsRNA. In these filaments MDA5 is 

arranged in a head-to-tail pattern. This MDA5 oligomerization is not dependent on its 

ATPase activity which implicates a somewhat different activation mechanism 

compared to RIG-I. Indeed, it is suggested that ATP-hydolysis is involved in the 

proper alignment of the MDA5 CARDs along the filament for downstream signaling 

instead of scanning the RNA. Additionally, the MDA5 RD is not involved in the RNA-

end sensing but is thought to contribute to MDA5-RNA filament formation by 

cooperative dsRNA recognition [56-60]. Furthermore, the involvement of 

ubiquitinylation is still discussed in the field. It has been shown that K63 polyubiquitin 

chains non-covalently interact with MDA5 CARDs and thereby lead to MDA5 filament 

formation and activation of signaling [52], whereas other studies failed to show an 

effect of ubiquitinylation in MDA5 activation [56]. 

Once activated, the CARDs of both receptor proteins are responsible for transmitting 

the signal to the downstream factors. For RIG-I, ligand binding is thought to release 

the CARDs from an autoinhibited state (see below) which contributes to polyubiquitin 

mediated oligomerization. The CARDs of unstimulated MDA5 are not trapped in an 

autoinhibibited state, however, their proper arrangement during filament formation is 

needed for downstream signaling. These signaling competent CARDs in RIG-I and 
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MDA5 filaments interact with the downstream adaptor MAVS (Mitochondrial Antiviral 

Signaling; also known as: CARDIF, VISA, IPS1) [61-64]. MAVS is a transmembrane 

protein predominantly anchored in the outer mitochondrial membrane. It comprises 

an N-terminal CARD followed by a proline-rich domain and a C-terminal 

transmembrane domain. The importance of MAVS as component of the RLR 

pathway was confirmed by knockdown and knockout experiments in several cell-

lines and in mice, respectively [65, 66]. The cytosolic CARD domain of MAVS is 

responsible for homotypic interaction with RIG-I and MDA5 CARDs. Thereby, the 

oligomeric RIG-I and MDA5 CARDs are thought to function as “seeds” for the 

oligomerization of MAVS. After induction, MAVS oligomerization proceeds 

independently of further RIG-I/MDA5 binding leading to the formation of prion-like 

aggregates on the surface of mitochondria. This way, MAVS provides an activation 

platform for downstream signaling over the TBK1 and NF-κB axes (Fig.1.2.2.) [67]. 

This aggregation based mechanism offers a fast and strong amplification of the RLR 

signal allowing for a rapid response of the immune system [15, 16, 24, 26, 31-33]. 

 

 
 
Fig.1.2.2. Schematic overview of the RLR signaling pathway. Binding of viral RNAs to RIG-I and/or MDA5 leads 

to RLR induced oligomerization of MAVS on the surface of mitochondria. This activates the NF-κB and TBK1 

pathways, respectively, and leads to the expression of type I IFNs and proinflammatory cytokines (Figure taken 

from [68]). 
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1.2.3. Structural mechanism of RNA sensing by RIG-I and MDA5 
 

A recent series of structural reports analysed the mechanism of RNA sensing and 

signaling via RIG-I. The first structural information was obtained of the RD in 

isolation and in complex with 5’-triphosphate- and blunt ended dsRNA, respectively. 

The RD is a small flat domain comprising a core of antiparallel β-sheets that is 

stabilized by a conserved C-4-type zinc finger. The 5’-end of dsRNA is bound via 

several highly conserved residues forming a positively charged and shallow binding 

groove [69-73]. The C-terminal RD is connected to Hel2 of the SF2 domain via the 

so called bridging- or pincer domain. It is an elbow-like structure composed of two α-

helices interacting with Hel1 and Hel2. This nanomechanical structure transmits RNA 

binding of the RD to the SF2 domain, thereby connecting ligand recognition and 

motor function. The SF2 domain of RIG-I has a “C-shaped” structure. As mentioned 

before, it contains the two RecA-like folds Hel1 and Hel2 as well as the unique 

insertion Hel2i. Compared to other SF2 proteins RIG-I-Hel1 and -Hel2 are spaced 

rather far apart forming a relatively “open” ATP-binding cleft [74, 75]. Hel2i is a 

bundle of six α-helices inserted in the Hel2 fold. Together with Hel1 and Hel2 it 

shares the RNA binding site in the center of the “C-shaped” SF2 domain [76]. At the 

N-terminus the two CARDs are connected to Hel1 via a flexible linker. 

In the RNA free state RIG-I exists as a monomer in a rather open and extended 

conformation [77]. It is suggested that the RD is moving freely sensing for ligands 

while the CARDs are trapped in an autoinhibitory state via direct interactions 

between the second CARD and Hel2i [78]. Upon ligand recognition by the RD, a 

dramatic conformational change is triggered mediated by the bridging domain. It 

involves rearrangements of the whole SF2 domain and a relocalization of the RD 

resulting in a closed O-ring structure formed around the dsRNA. Thereby, the RIG-I 

SF2 domain interacts with the RNA only via the sugar-phophate-backbone providing 

a sequence independent binding mode. In addition, ATPase activity of the SF2 

domain leads to different degrees of further ring-compaction. Thereby, binding of 

ATP results in the highest compaction which decreases with different stages of 

hydrolysis [79-81]. This ring formation and compaction eventually interrupts the 

CARD-Hel2i interactions which releases the CARDs making them accessible for 

ubiquitinylation and competent for oligomerization and downstream signaling 

(Fig.1.2.3.1.). Even though, the exact role of ATPase activity is not fully resolved yet, 
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this mechanism explains how RIG-I signaling is repressed during the absence of 

adequate ligands and turned on during viral infection [82]. 

 

 
 
Fig.1.2.3.1. Current model for the activation of RIG-I. Binding of 5’-triphosphate dsRNA to the free moving RD 

triggers ring formation. This disturbs the autoinhibiting CARD2-Hel2i interactions and releases the CARDs for 

oligomerization and downstream signaling (RD structure: 2QFB [69]; RIG-I full length and CARDs structure: 

4A2W [78]; RIG-I-RNA structure: 3TMI [77]). 

 

In contrast to RIG-I, the mechanism of MDA5 activation is not completely resolved, 

yet. The crystal structure of the MDA5 SF2-RD in complex with RNA shows an 

overall similar structure with subtle differences compared to RIG-I. The MDA5-SF2 

domain adopts a comparable conformation like in RIG-I but due to a shortened helix 

(highly conserved) in the MDA5 Hel2i the RD is positioned differently. It does not cap 

the 5’-end of the RNA like the RIG-I-RD but binds in a slightly different orientation 

recognizing the dsRNA stem. This leads to an overall more open “C-shaped” 

complex around the RNA in contrast to the closed O-ring observed with RIG-I 

(Fig.1.2.3.2.). No crystallographic information about the effect on MDA5-CARDs 

positioning upon RNA binding is currently available, but electron microscopy data 
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and modeling approaches suggest that the CARDs form patches of signaling-

competent oligomers along the head-to-tail filaments of MDA5 [56, 57]. 

Nevertheless, structural details of filament formation and signaling repression in the 

absence of MDA5 ligands are still unclear. In addition, the exact role of ATP-

hydrolysis in positioning the CARDs for signaling needs to be resolved. 

 

 
 
Fig.1.2.3.2. Structural comparison of RIG-I and MDA5 in RNA bound state. RIG-I forms a closed ring around 

RNA. Additionally, the RIG-I RD caps the 5’-end (RIG-I structure: 3TMI [77]). MDA5 exhibits an open “C-shaped” 

structure. The RD binds the RNA without capping (MDA5 structure: 4GL2 [56]). 

 

In spite of the high similarities of RIG-I and MDA5, the existing structural data 

suggest a different activation mechanism for both receptors. This is also supported 

by different ligand specificities and their involvement in the recognition of mainly 

distinct viral infections [83]. 

 

 

1.2.4. Further regulation of RLR signaling  
 

Signaling pathways are generally tightly regulated on different levels involving 

regulation strategies such as activator/inhibitor binding, posttranslational 

modifications and degradation. This allows for fine tuning, flexibility and adjustment 

of the signal resulting in an appropriate response corresponding to the stimulus. 
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Apart from the already mentioned essential polyubiquitinylation, which is involved in 

oligomerization of RIG-I, other polyubiquitin-dependent regulatory mechanisms 

contribute to activation of both receptors [84]. The E3 ubiquitin ligases c-Cbl (Casitas 

B-Lineage Lymphoma Proto-Oncogene) and RNF125 (RING-Finger Protein 125) 

provide a negative feedback mechanism to avoid overstimulation of the RLR-

pathway. Upon viral infection they mark RIG-I and MDA5, respectively, with K48-

linked polyubiquitin chains, which targets them for proteasomal degradation [85, 86]. 

The deubiquitinase USP4 (Ubiquitin-Specific Protease 4), on the other hand, 

removes K48-linked polyubiquitin chains from RIG-I. Thereby, it acts as positive 

regulator of RIG-I signaling by preventing its degradation by the proteasome [87]. 

Another deubiquitinase involved in the regulation of RIG-I is CYLD 

(Cylindromatosis). This protein was shown to be able to remove K63-linked ubiquitin 

chains, thereby inhibiting RIG-I activation [88]. 

Except for ubiquitinylation other posttranslational modifications play a role in the 

regulation of both receptors. RIG-I CARDs are phosphorylated at S8 and T170 by 

PKC-α (Protein Kinase C α) or PKC-β (Protein Kinase C β) while MDA5 CARDs are 

phosphorylated at S88. These phosphorylations inhibit CARD-CARD interactions 

with downstream adaptor MAVS thereby silencing RLR signaling. However, 

phosphorylation can be reversed by the two phosphatases PP1α (protein 

phosphatase 1 α) and PP1γ (protein phosphatase 1 γ), which renders both receptors 

competent for signaling again [89-91].  

Another mechanism of regulation apart from covalent modifications and degradation 

is the interaction with endogenous activators or inhibitors. An example is the 

shortened isoform of poly(ADP-ribose) polymerase 13 called ZAPS. This protein was 

shown to associate with RIG-I and to stimulate its ATPase activity and 

oligomerization [92]. A further activator of RIG-I signaling is PACT (Protein Kinase, 

Interferon-Inducible Double-Stranded RNA-Dependent Activator), a dsRNA binding 

protein that interacts with the RD and promotes RIG-I signaling [93]. An example for 

an activator of MDA5-dependent signaling is the protein RAVER1 (Ribonucleoprotein 

PTB-Binding 1). It was shown to bind to MDA5 and enhance its affinity to dsRNA, 

thereby supporting MDA5 activation [94]. In contrast, DAK (Dihydroaceton Kinase), 

interacts with MDA5 and prevents binding to dsRNA or downstream factors serving 

as an inhibitor for MDA5-dependent stimulation of type I IFN production [95]. 
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All these factors display a complex regulatory network that allows for adjustment, 

fine tuning and flexibility of the RLR signaling.  

 

 

1.2.5. Viral evasion on the level of RLRs 
 

The evolved immune systems of the diverse species are generally very effective in 

fighting infections. Nevertheless, some viruses have developed evasion mechanisms 

that counteract the host immune system and ensure their proliferation. These 

evasion mechanisms often directly target components of the host immune system 

including the RLR recognition and signaling pathway. 

An example for a mechanism that conceals the viral genome from RIG-I recognition 

is the processing of the 5’-triphosphate dsRNA end by some viruses (e.g. crimean-

congo haemorrhagic fever virus (CCHFV), borna disease virus (BDV), all 

Bunjaviridae). These viruses utilize virus-encoded phosphatases to hydrolyze the 5’-

triphosphate to create a 5’-monophosphate end or endonucleases to resect the 5’-

strand of the dsRNA end to generate a 3’-overhang, respectively. These structures 

cannot be recognized by RIG-I and therefore do not trigger RIG-I-dependent IFN 

responses during infections with those viruses [96-98]. Another example for a 

concealing mechanism is the capping of the 5’-triphosphate dsRNA end. Members of 

the Picornaviridea and Caliciviridea encode the protein VPg, which is covalently 

linked to the 5’-end of the genome thereby circumventing recognition by RIG-I [99]. 

Several viruses manipulate posttranslational modifications to suppress immune 

responses. One example was reported for kaposi’s sarcoma-associated herpesvirus 

(KSHV). Beside others, its genome encodes the protein ORF64. This protein exhibits 

deubiquitinase activity and is able to decrease the level of K63-linked polyubiquitin 

chains covalently bound to RIG-I which dampens its signaling [100, 101]. A further 

example is the V protein from viruses belonging to the family of Paramyxoviridea 

(e.g. measles virus (MV), nipah virus (NiV)). It was shown that the MV- and NiV-V 

proteins can interact with PP1α/γ and inhibit the dephosphorylation of MDA5 CARDs 

thereby rendering MDA5 inactive [102]. 

Interestingly, the V proteins of the Paramyxoviridea family suppress the immune 

response utilizing multiple mechanisms that can differ from virus to virus [103]. Apart 
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from the described inhibition of dephosphorylation the V protein is also an example 

for a viral factor that can inhibit the ATPase activity of its PRR. A structural study 

could show how the V protein of parainfluenza virus 5 (PIV5) incorporates itself into 

the Hel2 fold of MDA5. This binding disrupts the SF2 domain and abolishes ATPase 

activity providing a further mechanism that prevents MDA5-dependent signaling 

[104]. 

Many viruses encode proteases, which are involved in their replication cycle. In 

addition, several of these proteases also play roles in immune evasion. For example, 

the 3Cpro protease of some members of the Picornaviridea family (e.g. poliovirus, 

rhinovirus, echovirus, Encephalomyocarditisvirus (EMCV)) cleaves and inactivates 

RIG-I during infection [105]. Another example for a viral protease that is involved in 

silencing RLR signaling is 2Apro, encoded by enterovirus 71 (EV71). Upon infection it 

cleaves MDA5 thus inactivating it [106, 107]. However, RLR cleavage does not 

always rely on direct involvement of viral proteases. Poliovirus infection, for example, 

was shown to induce apoptosis leading to proteasomal and caspase mediated 

degradation of MDA5 which contributes to the suppression of an immune response 

[108, 109]. 

Finally, many viruses use sequestration mechanism to avoid RLR-dependent 

signaling. ORF3b and ORF6 are proteins encoded by the severe acute respiratory 

syndrome coronavirus (SARS-CoV). Both proteins localize at the outer membrane of 

mitochondria and block the RIG-I-MAVS interaction by binding to either MAVS or 

RIG-I [110, 111]. In infections with respiratory syncytial virus (RSV) the formation of 

inclusion bodies (IB) inside the cell is observed. This formation is dependent on the 

viral proteins N and P. During infection relocalization of RIG-I, MDA5 and MAVS to 

these IB is accompanied by a significant decrease of IFN production [112]. 

During evolution viruses have developed various strategies to evade the host 

immune system. In the case of RLR recognition and signaling this involves 

mechanisms like concealing the viral genome and transcripts, manipulation of 

posttranslational modifications, inhibition of the ATPase activity, proteolytic cleavage 

and sequestration as displayed by the presented examples [31, 68].  
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1.2.6. Further cytosolic RNA sensors 
 

Apart from RLRs, other proteins act as cytosolic RNA sensors. PKR (dsRNA-

Dependent Protein Kinase R) was first described in 1976 [113]. It is a 

serine/threonine kinase that is activated by binding to cytosolic dsRNAs. Activated 

PKR phosphorylates eIF2 (Eukaryotic Translation Factor 2), which leads to 

suppression of translation. During viral infection this mechanism inhibits viral 

replication by preventing the production of essential viral proteins [114]. In addition, 

PKR was also implicated in the induction of type I IFN production but the exact 

mechanism is not fully understood yet [25, 115]. 

 

 
 
Fig.1.2.6. Positive feedback loop for RIG-I-OAS-RNaseL activation. Cytosolic viral RNAs activate the RIG-I 

pathway leading to the production of type I IFNs. The IFN signal is recognized and transduced by the JAK/STAT 

system and the expression of members of the OAS family is induced. Following the activation by cytosolic viral 

RNAs OAS members produce 2’-5’ oligoadenylates. These second messengers activate the nuclease activity of 

RNaseL and the production of further RIG-I ligands (Figure taken with minor changes from [47]). 
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Another protein family involved in sensing of cytosolic dsRNAs is the OAS (2’-5’-

Oligoadenylate Synthase) family. It consists of four members (OAS1, OAS2, OAS3 

and OASL) and forms an own subfamily in the superfamily of NTases [116]. With the 

exception of OASL all members act as cytosolic dsRNA sensors. Upon viral infection 

production of OAS1/2/3 is induced over the JAK/STAT (Januskinase/Signal 

Transducers and Activators of Transcription) pathway in an IFN-dependent manner. 

In the cytosol, binding to dsRNA triggers activation of OAS1/2/3 and the production 

of 2’-5’ oligoadenylates from ATP with lengths of two to over ten nucleotides. The 

adenosines in these chains are linked via unique 2’-5’-diphosphoester bonds. 2’-5’ 

oligoadenylates act as second messenger molecules and activate the downstream 

target RNaseL. As mentioned before, RNaseL cleaves ssRNAs, thereby producing 

ligands for RIG-I. This mechanism connects RLR signaling with OAS sensing and 

establishes a positive feedback loop that leads to a rapid and robust IFN signal 

(Fig.1.2.6.) [46, 47, 117-120]. 
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1.3. The STING signaling pathway senses cytosolic DNA and cyclic 
dinucleotides 
 

DNA normally resides in the nucleus of eukaryotic cells but during infections 

pathogen and/or host DNAs can also appear in other compartments, in the cytosol or 

the extracellular environment via diverse mechanisms (e.g. injection of genome by 

DNA virus, DNA release by necrotic cells). These abnormally localized DNAs are 

sensed as danger signals by PRRs which eventually induce the production and 

release of proinflammatory cytokines and type I IFNs.  

 

 
 
Fig.1.3. STING pathway. Cyclic-dinucleotide sensing branch: STING acts as PRR for bacterial second 

messenger molecules c-di-AMP, c-di-GMP and cGAMP. DNA sensing branch: cGAS is the PRR for cytosolic 

dsDNA. Binding activates cGAS leading to the production of the eukaryotic second messenger 2,3-cGAMP. 2,3-

cGAMP is recognized by STING. Activated STING translocates to small vesicular perinuclear compartments 

forming an activation platform for TBK1. Hereupon, TBK1 phosphorylates IRF3, which dimerizes and relocates 

into the nucleus acting as transcription factor for type I IFNs and proinflammatory cytokines.  
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The first PRR responsible for inducing type I IFN production upon DNA sensing 

discovered was TLR9. It particularly senses unmethylated CpG rich DNA sequences 

that are frequent in bacterial and viral genomes [121]. Exactly like the RNA sensing 

by TLR3/7/8, DNA sensing by TLR9 is restricted to extracellular DNAs and 

plasmacytoid dendric cells due to its cell type specific expression and endosomal 

localization. Experiments with other cell types and TLR9 depleted cells with DNA 

injected into the cytosol also showed robust type I IFN production demonstrating the 

existence of a further TLR9-independent cytosolic DNA sensing mechanism [122, 

123]. The following years of research finally culminated in the discovery of the 

STING pathway. It is named after the central adaptor protein STING (Stimulator of 

Interferon Genes) that forms the DNA sensing branch of this pathway together with 

the sensor protein cGAS (Cyclic GMP-AMP Synthase) [26, 124] (Fig.1.3.). 

 

 

1.3.1. STING is the central adaptor protein for the cytosolic DNA signaling 
pathway 
 

Human STING (ERIS, MITA, TMEM173) is a 42 kDa (379 amino acids) protein 

consisting of an N-terminal transmembrane domain (TMD; 1-135) followed by a 

ligand binding domain (LBD; 150-340) and a C-terminal tail (CTT; 340-379) 

(Fig.1.3.1.). Bioinformatical analysis predicts an unstructured CTT and three to four 

transmembrane helices in the TMD. The structure of the LBD was solved by several 

groups and will be discussed below. 

 

 
 
Fig.1.3.1. Domain architecture of STING. It consists of a N-terminal transmembrane domain (TMD) followed by 

the cytosolic ligand binding domain (LBD) and the C-terminal tail (CTT). 

 

 

On amino acid level, human STING is 81 % similar and 68 % identical to the mouse 

ortholog (42 kDa, 378 amino acids). In fact, STING orthologs/homologs are found in 
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diverse vertebrate (e.g. Gallus gallus, Danio rerio, Xenopus tropicalis) and 

invertebrate species (e.g. Drosophila melanogaster, Nasonia vitripennis, Hydra 

magnipapillata). 

In 2008, STING was first identified as a molecule interacting with the major 

histocompatibility complex II, though the relevance of this discovery remains to be 

clarified [125]. At the same time, by using cDNA overexpression screens combined 

with IFN-β promoter activation readout, three other groups independently described 

STING as a key innate immune signaling protein involved in the sensing of cytosolic 

nucleic-acids [126-128]. Following studies confirmed the importance of STING for 

the induction of a type I IFN response. Experiments in HEK293T cells, which do not 

express endogenous STING, continuously produce IFN-β upon STING 

overexpression [126]. Vice versa, STING knockdown experiments in cell types 

endogenously expressing STING (e.g. DCs, bone marrow derived macrophages 

(BMDM), murine embryonic fibroblasts (MEFs)) showed abolished IFN-β production 

upon infection with DNA viruses (e.g. herpes simplex virus 1 (HSV-1)) or stimulation 

with dsDNAs (e.g. interferon stimulatory DNA (ISD)). The high susceptibility to HSV-

1 virus of STING knockout mice furthermore demonstrated the in vivo importance of 

STING in fighting DNA virus infections [129]. 

STING is particularly expressed in tissues connected with the immune system like 

lung, peripheral leukocytes, placenta, spleen and thymus. Low expression is 

observed in the brain, colon, kidney, liver, skeletal muscles and small intestines. In 

expressing cells, it is anchored via its TMD in the endoplasmic reticulum (ER) 

localized partially in regions associated with mitochondrial membranes [126, 127, 

129]. These structures are referred to as mitochondria-associated ER membranes 

(MAMs) and are known to play an important role for the oxidative metabolism and 

the Ca2+ transmission of mitochondria [130]. Some studies reported an interaction 

between STING and components of the RIG-I pathway (MAVS, RIG-I) in these 

structures and an involvement of STING in the signaling of cytosolic RNA [126-129]. 

However, later studies could not confirm a role of STING in the cytosolic RNA 

induced type I IFN production [131, 132]. 

Inactive STING has been described to occur in different oligomeric states. One study 

demonstrated that inactive STING resides as monomer in the ER. Dimerization via 

the cytosolic domain of STING eventually triggers interferon expression [127]. In 
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contrast, other studies showed that the cytosolic domain of STING is already dimeric 

in solution suggesting a dimeric inactive state [133-139]. 

While the inactive form of STING is still unclear, several studies describe the 

activation of STING. Upon virus infection or stimulation with dsDNAs STING 

relocates from the ER over the Golgi apparatus to ER connected punctuate 

perinuclear vesicular compartments. The exact nature of these structures is still 

vague but confocal fluorescence microscopy assays suggest the formation of higher 

order STING oligomers. Interestingly, STING colocalizes with the TANK binding 

kinase 1 (TBK1) which plays an important role in innate immune signaling [129, 140]. 

Additionally, co-immunoprecipitation data show an interaction between STING and 

TBK1 after immunostimulation. Furthermore, the recruitment and activation of 

transcription factor IRF3 (Interferon Regulatory Factor 3) is observed. In 

combination, these data establish the model in which STING forms an activation 

platform for TBK1 and IRF3 leading to interferon expression via TBK1/IRF3 [141]. 

In addition to this, STING-dependent activation of TBK1 leads to activation of STAT6 

(Signal Transducer and Activator of Transcription 6) and following expression of 

certain STAT6-dependent cytokines. This virus infection induced STAT6 activation 

differs from the interleukin-dependent canonical activation and suggests the 

existence of a new virus infection signaling pathway [132]. 

 

 

1.3.2. STING is a direct sensor for cyclic dinucleotides 
 

Cyclic dinucleotides, e.g. cyclic-di-AMP, cyclic-di-GMP or cyclic-AMP-GMP 

(Fig.1.3.2.) are bacterial second messenger molecules. They are found in a wide 

range of diverse bacteria where they are involved in several different cellular 

processes like bacterial motility, biofilm formation, DNA integrity sensing and 

virulence [142-144]. In eukaryotic cells the presence of cyclic dinucleotides triggers 

the production of type I IFNs [145-147]. Because of their essential roles in bacteria 

and their wide distribution among the diverse bacterial species, cyclic dinucleotides 

are the ideal MAMPs for the recognition of bacterial infections by the eukaryotic 

immune system. 
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Fig.1.2.3. Cyclic dinucleotides. Examples for known bacterial second messengers: cyclic-di-AMP (c-di-AMP), 

cyclic-di-GMP (c-di-GMP) and cyclic-GMP-AMP (cGAMP). 

 

Recent research has shown the crucial involvement of the STING pathway in 

sensing cyclic dinucleotides and the resulting induction of type I IFN expression [131, 

148]. Biochemical studies were able to show direct binding of these dinucleotides to 

STING by using UV-crosslinking assays [149]. Dissociation constants of c-di-GMP 

bound to STING determined by isothermal titration calorimetry (ITC) are in the range 

of Kd = 2.5-5 µM and several co-crystal structures of the STING-LBD with bound c-

di-GMP and cGAMP could be solved (see below) [133-138, 150]. 

 

 

1.3.3. The DNA sensor cGAS produces 2,3-cGAMP 
 

 
 
Fig.1.3.3.1. Domain architecture of cGAS. The N-terminus is predicted to be unstructured. The C-terminus 

consists of a Mab21 domain carrying an unique Zn-finger insertion called Zn-thumb. 

 

Human cGAS (MB21D1, c6orf150) is a 59 kDa (522 amino acids) protein. It consists 

of an unstructured and poorly conserved N-terminus (1-160) followed by a Mab21 

domain (161-522) carrying a unique zinc-finger insertion (Zn-thumb; 390-405; 

Fig.1.3.3.1.). The Mab21 domain belongs to the family of nucleotidyltransferases 

(NTases) including the cytosolic RNA sensor protein OAS1 (2,5-Oligoadenylate 

Synthase 1) and pre-mRNA modifying enzyme PAP (Polyadenylate Polymerase) 

[116]. In vertebrates the cGAS Mab21 domain is well conserved (e.g. sus scrofa, 
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mus musculus) but in invertebrates it is more homologous to the Mab21 domain from 

the human MB21L1 protein. 

cGAS was discovered in 2011 as a protein that suppresses viral replication upon 

overexpression [151]. The exact role of cGAS was unclear until the end of the year 

2012. In two publications the Chen group describes elegant in vivo and in vitro 

experiments including elaborated transfection assays and biochemical purification 

procedures identifying cGAS and its role as sensor in the STING-dependent 

cytosolic DNA signaling pathway. The authors of the two studies could show that 

upon direct DNA binding cGAS utilizes ATP and GTP to produce a non-canonical 

cyclic dinucleotide, which is bound by STING thereby activating IFN-β expression 

[152, 153]. This discovery of a new second messenger synthesized by a cytosolic 

DNA sensor connects DNA sensing and the recognition of bacterial cyclic 

dinucleotides by the STING pathway. The exact nature of the cyclic dinucleotide was 

resolved by several following studies using ribonuclease digestion assays combined 

with small molecule NMR and mass spectrometry or protein crystallography. It could 

be shown that the activated cGAS protein synthesizes a completely new kind of 

eukaryotic second messenger, namely cyclic 2,5-GMP-3,5-AMP (2,3-cGAMP). This 

cyclic dinucleotide differs from the canonical bacterial cGAMP at the phosphodiester 

linkage between the 2’-position of GMP and the 5’-position of AMP. It is probably 

formed in a two-step mechanism which comprises the initial formation of a linear 

intermediate pppGMP-2’-p-5’-AMP and a final cyclization reaction to yield the 

product. Each step is accompanied by pyrophosphate release (Fig.1.3.3.2.) [154-

156]. 

Other studies support the importance of cGAS and 2,3-cGAMP for the STING 

pathway. Overexpression of cGAS activates STING-dependent type I IFN production 

while knockdown and knockout of cGAS abolishes STING-dependent type I IFN 

expression upon HSV-1 infection or dsDNA treatment in diverse cells types. cGAS 

knockout mice furthermore were highly susceptible to HSV-1 infections compared to 

wild type mice [157]. 

Noteworthy, 2,3-cGAMP has been shown to spread from producing cells via gap 

junctions to neighboring cells inducing STING-dependent type I IFN production in 

these cells. This small-molecule mediated communication between neighboring cells 

is ideal for initiating a further level of defense against infections and is able to prime 

neighboring cells [158]. 
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Fig.1.3.3.2. Reaction mechanism of 2,3-cGAMP production. In the first step, the nucleophilic attack of the 2’-OH 

of GTP against the α-phosphate of ATP is catalyzed. Pyrophosphate released yields the linear intermediate 

pppGMP-2’-p-5’-. In a second step, the 3’-OH of the adenosine moiety attacks the α-phosphate of the guanosine 

to complete the cyclization reaction to 2,3-cGAMP. 

 

 

1.3.4. Structural studies of cGAS 
 

The poorly conserved unstructured N-terminus of cGAS has been shown to be not 

involved in cytosolic DNA signaling. In contrast, the Mab21 domain harboring the 

DNA binding and the catalytic site is essential [152]. The fact that cGAS has been 

identified to be the cytosolic DNA sensor in combination with the Mab21 domain 

synthesizing a new second messenger molecule led to several publications 

describing crystal structures of this domain with and without DNA/nucleotides 

immediately after [156, 159-163]. 

The DNA and nucleotide free (apo-) form comprises two lobes which are separated 

by the active site cleft (Fig.1.3.4.). The N-terminal lobe contains the NTase fold (two-

leaved highly twisted β-sheet flanked by two helices) while the C-terminal lobe is 

composed of a bundle of four α-helices. Opposing the active site cleft the two lobes 

are connected by a long α-helix (spine-helix) which flanks the slightly concave highly 

positively charged surface (platform). The other side of the surface is flanked by a 

protruding Zn-binding loop (Zn-thumb). 

The crystal structure of the cGAS-Mab21 domain bound to dsDNA shows a 2:2 

protein:DNA complex (Fig.1.3.4.). The DNA is positioned along two highly positively 

charged binding sites and is stabilized by side chain and main chain contacts to the 
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sugar-phosphate-backbone and intrusion of arginines into the minor groove. DNA 

binding furthermore induces several conformational changes including a nicking of 

the spine helix leading to reordering and slight closure of the active site. Apart from 

DNA, several structures contained either the nucleotide substrates ATP and GTP, 

different intermediates or the end product 2,3-cGAMP in the active site. 

The co-crystal structures of cGAS with different nucleotides mechanistically support 

the two step reaction mechanism suggested for the formation of 2,3-cGAMP. 

However, the complete reaction cycle is not yet fully resolved, as from the sterical 

point of view the linear reaction intermedieates would have to bind, reorient and 

rebind in order to be able to obtain the 2,3-cGAMP product [164, 165]. The observed 

DNA binding mode is sequence-independent and explains the role of cGAS as a 

broad range DNA sensor. 

 

 
 
Fig.1.3.4. Activation of cGAS. Apo cGAS consists of lobe 1 and lobe 2. Lobe 1 contains the NTase fold (yellow). 

Both lobes are separated by the active site cleft. Opposing the active site cleft the platform is positioned, flanked 

by the spine helix on one side and by the Zn-thumb on the other side. Upon substrate binding cGAS forms a 2:2 

protein:DNA complex. This leads to the nicking of the spine helix and a rearrangement of the active site inducing 

the formation of 2,3-cGAMP from ATP and GTP (apo cGAS structure: 4JLX [159], holo cGAS structure: 4LEZ 

[162]). 



28 
 

1.3.5. Structural studies of STING 
 

Several groups were able to solve the structure of the STING LBD which is involved 

in dimerization and responsible for cyclic dinucleotid binding [133-139, 150, 166]. 

Ligand free (apo-) LBD crystallized as a homodimer forming a V-shaped structure. 

Each protomer possesses a unique α/β-fold containing a central twisted five 

stranded β-sheet, flanked by three α-helices at the dimer interface side and two α-

helices at the opposing surface side (Fig.1.3.5.). In the holoprotein, 2,3-cGAMP is 

bound in a cavity at the bottom of the dimer interface stabilized by π-π stacking 

interactions and hydrogen bonds. The binding of 2,3-cGAMP mediates the formation 

of a lid which is composed of a four stranded antiparallel β-sheet (two strands of 

each protomer) that closes the ligand binding site. Apart from the lid formation, 2,3-

cGAMP binding leads to a general compaction of approximately ~20 Å compared to 

the apoprotein (Fig.1.3.5.) [150, 166]. This compaction and the formation of the lid 

are suggested to contribute to the activation of STING but the exact mechanism is 

still unclear. 

 

 
 
Fig.1.3.5. Ligand binding mechanism of STING. Apo STING LBD is a V-shaped dimer. 2,3-cGAMP is bound in 

the cavity at the bottom of the V. Binding induces the formation of a lid that closes the binding cavity and a further 

compaction of the dimer (apo STING LBD structure: 4EF5 [134], holo STING LBD structure: 4KSY [166]).  

 

 

Human LBD structures with bacterial c-di-GMP bound differ from the 2,3-cGAMP 

bound structures. The c-di-GMP is positioned in the same ligand binding site but less 

deep and less coordinated than the endogenous ligand. The compaction is less 
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distinct and the lid structure is not resolved [134, 136, 137] or in a different 

conformation [135]. Just one human structure [133] shows a well ordered lid. A 

possible explanation could be the use of the rare human H232 isoform [167] for 

crystallization that has been reported to be less responsive to c-di-GMP [166]. The 

human structure with the ordered lid contains the abundant R232 variant. This 

residue is located at the end of the outer strands of the lid. It contacts c-di-GMP via 

an Mg2+-ion contributing to a proper lid formation. Thus, the H232 isoform could be 

compromised in proper lid formation which is observed as disordering of the lid 

region in the crystal structures and at the same time explains its functional 

impairment in sensing c-diGMP. 

In general, the structures demonstrate that STING works as a dimer. Additionally, 

they support the model of STING being at the same time a PRR for bacterial cyclic 

dinucleotides and a central receptor for the cGAS-dependent cytosolic DNA sensing. 

Nevertheless, the structures still cannot explain how the signal is carried on in 

downstream signaling. Lid formation and compaction are considered to be part of 

STING activation but how this contributes to TBK1/IRF3 activation is yet unclear. 

The closed lid could provide an interaction surface for downstream factors but the 

CTT which was shown to be essential for TBK1 activation is not resolved in any 

structure [141]. 

 

 

1.3.6. Further regulation of the cGAS-STING axis 
 

Several studies have identified mainly STING as a target for several different 

regulatory modifications. 

The two RING finger E3 ubiquitin ligases tripartite motif-containing protein 56 and 32 

(TRIM56, TRIM32) were shown to be responsible for K63-linked ubiquitinylation of 

STING at K150 after virus infection. This modification is suggested to contribute to 

STING activation by facilitating its oligomeriztion [168, 169]. Interestingly, the E3 

ubiquitin ligase RING finger protein 5 (RNF5) was reported to also ubiquitinylate 

STING at the same position but as a K48-linked modification in a virus infection 

dependent manner. This was shown to negatively regulate STING by inducing its 

proteasomal degradation providing a regulatory negative feedback loop [170]. 
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Another negative feedback loop for STING activation was reported to rely on the 

presence of cytosolic 2,3-cGAMP. Upon DNA sensing cGAS produces 2,3-cGAMP. 

Via an unknown mechanism 2,3-cGAMP inhibits AMPK (AMP-Activated Protein 

Kinase) which leads to the activation of ULK1 (UNC-51-Like Kinase 1). Activated 

ULK1 in turn phosphorylates STING at S366 (located in the CTT). This is suggested 

to render STING inactive, eventually leading to its degradation [171]. However, this 

finding is in contrast to another report where the phosphorylation of S366 has been 

shown to be essential for the STING-dependent activation of IRF3 by TBK1 [141]. 

The mutations S366D and S366A render STING inactive emphasizing the critical 

role of this residue but at the same time not clarifying if S366 phosphorylation 

regulates STING activity positively or negatively. 

A further phosphorylation site is S358 which is also located in the CTT. It was shown 

that S358 phosphorylation is mediated by TBK1 and essential for downstream 

signaling after virus infection [128]. 

Besides of posttranslational modifications, STING-dependent signaling is also 

regulated by protein-protein interactions. NLRC3 was shown to bind to STING 

thereby disturbing the STING-TBK1 interaction, reducing the type I IFN production 

upon stimulation with DNA and c-di-GMP and HSV-1 infection [172]. A similar 

mechanism was observed for MRP (MITA-Related Protein). MRP is a splice variant 

of STING lacking the CTT. It is suggested to form heterodimers with STING also 

disturbing STING-TBK1 interaction and thereby inhibiting IFN-β expression [173]. 

The different regulatory modifications and inhibitors observed display a complex 

system which enables a fine tuning of the STING signaling. This is particularly 

important because major defects in the regulation of signal transduction are often 

causes of severe diseases. 

 

 

1.3.7. STING pathway and autophagy 
 

Autophagy is a digestion mechanism for various cytosolic components. It is mainly 

controlled by the autophagy related proteins (ATGs) ULK1/2 (UNC-51-Like Kinase 

1/2), Beclin1, VPS34 (Vacuole Protein Sorting 34) and ATG14L (Autophagy Related 

14 Like). Hallmark of autophagy is the formation of the autophagosome, a double 
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membrane compartment around the component that has to be digested. After 

formation, the autophagosome fuses with a lysosome leading to the degradation of 

the inner membrane and the autophagosomal content. Autophagy is the key 

mechanism in several cellular processes. It is responsible for the degradation of 

potentially toxic protein aggregates that cannot be processed by the proteasomal 

pathway and plays a role in the organelle quality control by digesting defective 

organelles (e.g. leaky mitochondria). In times of starvation, autophagy is able to 

provide the cell with energy and other resources like amino acids from degraded 

proteins. Additionally, it plays a role as regulator and effector of innate and adaptive 

immunity (e.g. digestion of invading pathogens) [174, 175].  

It is known that autophagy can be triggered by innate immune signalling pathways. 

Indeed, several studies have connected cGAS and STING to autophagy. Infections 

with DNA viruses HSV-1 and HCMV (human cytomegalovirus) induce autophagy in a 

STING-dependent manner [176, 177]. The same is observed during infections with 

Mycobacterium tuberculosis. The bacterium releases DNA into the cytosol of the 

host cell triggering autophagy via the STING pathway [178, 179]. 

After stimulation with DNA, STING colocalizes in the punctuate foci with Atg9a, p62 

and LC3 which are all essential factors in autophagy. In fact, Atg9a depleted cells 

are not just impaired in autophagy but they also show an enhanced type I IFN 

production upon DNA stimulation suggesting that STING is negatively regulated by 

Atg9a [140].  

Contradicting data exists about the role of autophagy factor Atg7. Atg7 deficient cells 

(defective in autophagy) were shown to be less effective in type I IFN expression in 

one study [176] while another study reported that knockdown of Atg7 does not alter 

cytokine production and STING translocation after DNA stimulation [140]. 

The possible role of the autophagy controlling factor ULK1/2 for the regulation of the 

STING pathway has been discussed before. Upon DNA sensing via cGAS and 2,3-

cGAMP production ULK1 is activated and induces autophagy. At the same time, it 

negatively regulates STING probably via direct phosphorylation [171]. 

A further autophagy induction mechanism also relies on cGAS. After stimulation, 

DNA bound cGAS interacts with autophagy controlling protein Beclin-1. This 

interaction suppresses 2,3-cGAMP production by cGAS and releases Beclin-1 it from 

its inhibitor Rubicon. Hereupon, Beclin-1 gets activated and triggers autophagy while 

at the same time type I IFN production is reduced [180]. 
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PRR signalling is important for the induction of an immune response and at the same 

time excessive signalling must be avoided to prevent uncontrolled and self-damaging 

immune reactions. The connection of the STING pathway to autophagy provides 

both: The activation of autophagy to clear the host from cytosolic pathogenic 

compounds and negative feedback mechanisms to reduce cytokine production 

thereby avoiding deleterious effects. 

 

 

1.3.8. STING pathway and disease 
 

The STING pathway is connected to several diseases. It was shown to play a role in 

virus and bacterial infections as well as in diseases caused by protozoan parasites 

(Table.1.3.8.1.) [181]. In most of these infections STING pathway activation 

contributes essentially to IFN production. 

Even though the STING pathway is very effective in the induction of an immune 

response, some pathogens successfully developed mechanism to shut down this 

pathway. The NS2B3 protease complex of Dengue virus (DENV) cleaves human 

STING and thereby inactivates it [182, 183]. Coronaviruses reduce IFN production 

by interrupting STING dimerization via their papain-like protease NSP3 [184]. 

Furthermore, hepatitis C virus (HCV) protein NS4B interrupts STING interaction with 

components of the signalling complex e.g. TBK1 [185, 186]. These evasion 

mechanisms connect STING to RNA virus infections since DENV, HCV and 

Coronaviruses are all RNA viruses. However, it is suggested that these evasion 

mechanisms act on a second, indirect level of infection, which suppresses the 

induction of an immune response upon sensing released DNAs from already 

destroyed host cells via the STING pathway. 

Apart from diseases caused by pathogenic infections the STING pathway is also 

involved in autoimmune diseases. An example is the Aicardi-Goutières syndrome 

(AGS) which is a hereditary disease affecting the skin and the brain. The disease 

manifests itself as a calcifying vasculitis leading to an early onset progressive 

encephalopathy. Mutations in the gene encoding for the protein TREX1 (Three Prime 

Repair Exonuclease 1) are the cause for this disease in Aicardi-Goutières syndrome 

group 1 (AGS1) patients [187]. TREX1 is an ER associated protein that degrades  
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Pathogen name Pathogen class Publication 

Vesicular stomatitis virus (VSV) (-)ssRNA virus [126, 127, 129] 

Sendai virus (SeV) (-)ssRNA virus [127, 128] 

Newcastle disease virus (NDV) (-)ssRNA virus [127] 

Encephalomyocarditisvirus (EMCV) (+)ssRNA virus [129] 

Japanese Encephalitis virus (JEV) (+)ssRNA virus [192] 

Dengue virus (DENV) (+)ssRNA virus [182, 183] 

Hepatitis C virus (HCV) (+)ssRNA virus [185, 186] 

Severe acute respiratory syndrome coronavirus 

(SARS-CoV) 
(+)ssRNA virus [184, 193] 

Human T cell leukemia virus type 1 (HTLV-1) ssRNA-RT virus [194] 

Human immunodeficiency virus (HIV) ssRNA-RT virus [195, 196] 

Herpes simplex virus 1 (HSV-1) dsDNA virus 
[129, 176, 177, 197, 

198] 

Nucleopolyhedrovirus (NPV) dsDNA virus [129] 

Human cytomegalovirus (HCMV) dsDNA virus [129] 

Modified vaccinia virus ankara (MVA) dsDNA virus [199] 

Human papillomavirus (HPV) dsDNA virus [200] 

Human serotype5 adenovirus (Ad5) dsDNA [201] 

Hepatitis B virus (HBV) dsDNA-RT virus [202] 

Listeria monocytogenes 
Gram-positive bacterium, 

intracellular pathogen 
[131, 203, 204] 

Streptococcus pneumoniae 
Gram-positive bacterium, 

 extracellular pathogen 
[205, 206] 

Brucella abortus 
Gram-negative bacterium, 

 intracellular pathogen 
[207] 

Chlamydia trachomatis 
Gram-negative bacterium, 

 intracellular pathogen 
[208] 

Chlamydia muridarum 
Gram-negative bacterium, 

 intracellular pathogen 
[209] 

Francisella tularensis 
Gram-negative bacterium, 

 intracellular pathogen 
[210] 

Legionella pneumophila 
Gram-negative bacterium, 

 intracellular pathogen 
[211] 

Mycobacterium tuberculosis 
Bacterium, no Gram staining, 

 intracellular pathogen 
[178, 179] 

Plasmodium falciparum Protozoan parasite [212] 

 
Table 1.3.8.1.: Viruses, bacteria and protozoan pathogens that have been shown to effect the STING pathway. 

 

endogenous retroelements and byproducts of replication. TREX1 deficiency causes 

the accumulation of these DNAs and triggers a persistent type I IFN production 

which eventually activates factors of the adaptive immune system leading to 
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autoimmune inflammation and fibrosis. Experiments in mice and in cell culture 

showed that the additional lack of components of the STING pathway (e.g. cGAS, 

STING, IRF3) leads to the loss of the persistent IFN signalling. Indeed, mice were 

completely rescued from the deleterious symptoms of the TREX1 deficiency 

phenotype which supports the critical role of the STING pathway in AGS [188-191]. 

 

 

1.3.9. STING pathway as a drug target 
 

Since the connection between type I IFNs and antiviral and antibacterial responses 

of the Immune system were known researchers have tried to find activators for type I 

IFN production to fight infections. In this respect, sensing pathways of the innate 

immune system provide promising targets for the development of antiviral and 

antibacterial compounds. In fact, recent research on two molecules, DMXAA (5,6-

Dimethylxanthenone-4-acetic acid) and CMA (10-carboxymethyl-9-acridanone) 

(Fig.1.3.9.), revealed their potential as activator of type I IFN production via the 

STING pathway. 

 

 
 
Fig.1.3.9.: Chemical structure of CMA (10-carboxymethyl-9-acridanone) and DMXAA (5,6-Dimethylxanthenone-

4-acetic acid).  

 

DMXAA was described as a vascular disrupting agent with potential use in cancer 

treatment [213], but failed in phase III clinical trials for application as a 

chemotherapeutic [214]. Nevertheless, it was shown to be able to induce type I IFNs 

and cytokines production in a STING-dependent manner in the mouse system 

providing a potential use as antiviral- and antibacterial drug [215, 216]. Biochemical 

assays and crystal structures of DMXAA bound to mouse STING provided evidence 
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that DMXAA activates STING by direct interaction. However, these results did not 

translate into the human system. DMXAA could neither interact directly with human 

STING nor could it stimulate IFN production in human cells [150, 217].   

The same was observed with CMA. CMA has been already described in 1976 as an 

antiviral compound [218]. The antiviral properties of CMA could be traced back to its 

ability to stimulate type I IFN production in the murine system [219]. Biochemical and 

crystallographic studies could show that CMA directly binds and activates mouse 

STING but fails to do so in the human system [220]. 

Both compounds are bound by mouse STING in the nucleotide binding site in a 

similar way. Binding leads to compaction and lid formation nearly identical to the 

active conformation of human STING. Strikingly, the nucleotide binding site is 

completely conserved in both species and only small structural differences between 

human and mouse STING probably contribute to the different affinities for CMA and 

DMXAA. This is also supported by the finding that a nucleotide binding site mutant 

(S162A) of human STING was able to bind DMXAA in an ITC assay [150]. 

Although both components could not bind to human STING these studies still can 

provide the basis for structure driven development of activators of type I IFN 

production. 

 

 

1.3.10. Further proposed DNA sensors 
 

Additional cytosolic DNA sensors were proposed in several studies before the 

identification of cGAS. 

RNA polymerase III is able to transcribe transfected poly(dA:dT) into a 5’-

triphosphate RNA that can fold into a double-stranded RNA ligand activating RIG-I. 

Even though, restricted to AT-rich DNA sequences, this mechanism probably allows 

for the utilisation of a RNA signalling pathway to defend against some DNA virus- 

and bacterial infections [221, 222]. 

Another cytosolic DNA sensing mechanism relies on DNA sensor AIM2 (absent in 

melanoma 2) and the adaptor protein ASC (apoptosis-associated speck-like protein 

containing a CARD). AIM2 recognizes cytosolic dsDNAs and recruits adaptor protein 

ASC to form an inflammasome. Like the NLR-dependent inflammasomes the AIM2 
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inflammasome does not trigger expression of type I IFNs but it is responsible for the 

maturation of IL1β and IL18 by activating caspase-1 [223-226]. 

Further putative DNA sensors are DAI (DNA-Dependent Activator of IRFs; also 

known as: ZBP1, DLM1) [227], the AIM2-like protein IFI16 (Gamma-Interferon-

Inducible Protein 16) [228], the DExD/H-box helicase DDX41 [229] and two 

complexes involved in DNA damage repair: DNA-PK (DNA-Dependent Protein 

Kinase: composed of Ku70, Ku80 and DNA-PKc) [230, 231] and MRE11 (Meiotic 

Recombination 11 Homolog A)-Rad50-complex [232]. However, most of the studies 

connecting these proteins to DNA sensing rely on immunoprecipitation, 

immunofluorescence and RNAi knockdown experiments, which may measure 

indirect or nonspecific effects. The lack of direct experimental evidence and the 

existence of contradicting data might result from the fact that these proteins and 

complexes function as DNA sensors and contribute to the STING pathway induced 

IFN response just in certain cell types and/or certain infections [26, 31, 124].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

2. Publications 
 

2.1. The RIG-I ATPase domain structure reveals insights into ATP-dependent 
antiviral signaling 
 

2.1.1 Summary 
 

Understanding the mechanisms of viral invasion and the reactions of the immune 

system is important for fighting infections. In this publication we present the structure 

of the mouse RIG-I SF2 domain in complex with the ATP analogue AMP-PNP 

(adenylyl-β,γ-imidotriphosphate). This structure enabled us to give insights into the 

mechanism of antiviral signalling of RIG-I. 

The selenomethionine-labelled RIG-I SF2 domain was crystallized using an in-drop 

proteolysis approach. The structure displays an overall open “C-shaped” architecture 

composed of the three sub-folds 1A, 2A and 2B (denoted as Hel1, Hel2 and Heli in 

other publications; see Introduction). The RecA-like fold 1A is positioned at the N-

terminus followed by the second RecA-like fold 2A. Fold 2B consists of a bundle of 

six α-helices and is inserted into fold 2A. The C-terminus is formed by two peculiar 

bend α-helices resembling an arm and elbow (denoted as bridging domain or pincer 

domain in other publications; see Introduction). In the nucleotide binding pocked 

located in fold 1A the ATP analogue AMP-PNP is bound. 

In addition to the crystallization trials, we collected SAXS (Small-angle X-ray 

scattering) data of the nucleotide free human SF2 domain (signal-off state). The 

scattering amplitudes of nucleotide free human SF2 domain resembled very well the 

calculated amplitudes of the mouse crystal structure. Furthermore, the mouse crystal 

structure fitted well into the SAXS envelope of the human SF2 domain. This led to 

the assumption that the observed conformation of the mouse crystal structure is 

highly similar to the solution structure and represents an open signal-off state of the 

SF2 domain. 

Obviously, the binding mode of AMP-PNP in the crystal structure describes the 

nucleotide binding mode in the signal-off state. In this mode, the hydrolysis of the 

bound nucleotide cannot be stimulated by the SF2 domain due to the misalignment 

of ATPase motives in fold 1A and 2A. Comparison with other SF2 enzymes revealed 
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that a substantial conformational change is necessary to adopt a signal-on state that 

possesses ATPase activity. In this state the SF2 domain probably folds around the 

bound RNA which leads to the proper alignment of the ATPase motives and a 

general compaction. To validate the possible signal-on state mutational analysis in 

combination with ATPase assays was carried out. The results supported the model 

of a conformational switch between the off- and the on state of RIG-I signalling. 

In the signal-off state the RIG-I SF2 adopts an open conformation while the CARDs 

rest in a signalling incompetent state. Binding of 5’-triphosphate dsRNA by the RIG-I 

RD triggers a conformational change that results in compaction of the SF2 domain 

around the RNA. This signal-on state stimulates ATPase activity and is accompanied 

by the release of the CARD inhibition. 

With this publication we contributed to the understanding of the activation 

mechanism of RIG-I signalling, which is important for deciphering the complex 

proceedings during viral infections.  

 

 

2.1.2. Contribution 
 

The author of this thesis contributed to this publication by purifying the human RIG-I 

SF2 domain. Additionally, the author collected the SAXS data of the human RIG-I 

SF2 domain and helped with the analysis of this data. 
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2.1.3. Paper 
 

The following paper was published 2011 in EMBO reports. 

 

RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral 
signalling 
 

Filiz Civril, Matthew Bennett, Manuela Moldt, Tobias Deimling, Gregor Witte, Stefan 

Schiesser, Thomas Carell & Karl-Peter Hopfner 

 

EMBO rep. 2011 Oct 28; 12(11): 1127 - 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The RIG-I ATPase domain structure reveals insights
into ATP-dependent antiviral signalling
Filiz Civril1, Matthew Bennett1, Manuela Moldt1, Tobias Deimling1, Gregor Witte1,2, Stefan Schiesser 3,
Thomas Carell3,4 & Karl-Peter Hopfner1,2,4+
1Department of Biochemistry at the Gene Center, 2Munich Center for Advanced Photonics, 3Department of Chemistry,

and 4Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Munich, Germany

RIG-I detects cytosolic viral dsRNA with 50 triphosphates (50-ppp-
dsRNA), thereby initiating an antiviral innate immune response.
Here we report the crystal structure of superfamily 2 (SF2)
ATPase domain of RIG-I in complex with a nucleotide analogue.
RIG-I SF2 comprises two RecA-like domains 1A and 2A and a
helical insertion domain 2B, which together form a ‘C’-shaped
structure. Domains 1A and 2A are maintained in a ‘signal-off’
state with an inactive ATP hydrolysis site by an intriguing helical
arm. By mutational analysis, we show surface motifs that are
critical for dsRNA-stimulated ATPase activity, indicating that
dsRNA induces a structural movement that brings domains 1A
and 2A/B together to form an active ATPase site. The structure
also indicates that the regulatory domain is close to the end of the
helical arm, where it is well positioned to recruit 50-ppp-dsRNA to
the SF2 domain. Overall, our results indicate that the activation
of RIG-I occurs through an RNA- and ATP-driven structural
switch in the SF2 domain.
Keywords: ATPase; crystal structure; innate immunity; RIG-I;
viral RNA
EMBO reports (2011) 12, 1127–1134. doi:10.1038/embor.2011.190

INTRODUCTION
The innate immune system is the first line of defence against
infections by pathogens. In the innate immune system, pattern
recognition receptors (PRRs) distinguish self versus non-self by
binding molecular patterns that are present on pathogen-
associated molecules (pathogen-associated molecular patterns
(PAMPs)) but typically not on host molecules (Takeuchi & Akira,
2010). In mammals, the formation of PRR–PAMP complexes start
signalling cascades that activate the transcription factors nuclear
factor-kB and interferon regulatory factors, triggering host defense

mechanisms such as the activation of interferon-regulated genes
and inflammatory responses.

RIG-I-like receptors (RLRs) sense cytoplasmic viral RNA and
comprise RIG-I, MDA5 (melanoma differentiation-associated
protein 5) and LGP2 (laboratory of genetics and physiology 2;
Kang et al, 2002; Yoneyama et al, 2004; Rothenfusser et al, 2005).
RIG-I senses infections from viruses such as hepatitis C virus, Sendai
virus, influenza virus, vesicular stomatitis virus, rabies virus and
Japanese encephalitis virus (Kato et al, 2006).

After sensing RNA ligands, RIG-I associates with interferon-b
promoter stimulator 1 (IPS-1), a process that involves RIG-I
ubiquitination and/or interaction with ubiquitin chains (Gack et al,
2007; Zeng et al, 2010).

The optimal ligand for RIG-I has been found to be base-paired
or double-stranded RNA (dsRNA) molecules containing a 50

triphosphate (50-ppp-dsRNA; Hornung et al, 2006; Pichlmair et al,
2006; Schlee et al, 2009). RIG-I contains two N-terminal caspase
activation and recruitment domains (CARDs), which are required
for interaction with IPS-1 (Yoneyama et al, 2004), a superfamily 2
helicase/translocase/ATPase (SF2) domain and a C-terminal
regulatory/repressor domain (RD; Saito et al, 2007). The RD of
RIG-I is required to activate the SF2 domain by binding 50-ppp-
RNA (Cui et al, 2008; Takahasi et al, 2008). Recent structural data
show that RLR RDs are base-paired end-recognition modules with
a preference for 50-ppp-dsRNA in the case of RIG-I (Lu et al,
2010; Wang et al, 2010). However, the functional role of the SF2
domain of the RIG-I is unclear. RLRs possess the typical seven
core motifs (I, Ia, II–VI) that are involved in the recognition of ATP
and nucleic acid substrates (Singleton et al, 2007). In contrast to
bona fide helicases that unwind duplex nucleic acids,
RIG-I translocates on dsRNA in a 50-ppp-dependent manner
(Myong et al, 2009). It is unclear how dsRNA recognition by
the SF2 domain and 50-ppp recognition are linked to RIG-I
activation, but current models indicate conformational changes
that expose CARDs for downstream signalling (Yoneyama &
Fujita, 2009).

To help reveal the mechanism of ATP-dependent RIG-I
activation, we have determined the crystal structure of the mouse
RIG-I SF2 domain with adenosine 50-(b,g-imido)triphosphate
(AMP-PNP) bound.
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RESULTS
Crystal structure of the mouse RIG-I helicase domain
The SF2 domain of mouse RIG-I (mmRIG-I) was crystallized
using an in-drop proteolysis approach from selenomethionine-
labelled protein, and its structure determined to a resolution of
2.2 Å (which we have denoted as RIG-ISF2). The structure has been
deposited at the Protein Data Bank with ID 3TBK. The SF2 domain
of RIG-I is a ‘C’-shaped particle consisting of three structural
domains denoted 1A, 2A and 2B in analogy to other SF1 and 2
enzymes (Fig 1A,B). ‘RecA-like’ domain 1A extends from residues
244 to 445 and carries motifs Q, I (Walker A), Ia, Ib, Ic, II (Walker
B), IIa and III. It is connected to domain 2A by a short, a-helical
hinge. ‘RecA-like’ domain 2A comprises residues 456–467 and
610–746 and carries motifs IV, V and VI (Fig 1C). ‘Helical
insertion’ domain 2B is a compact bundle of six a-helices (a10–
a15) inserted into domain 2A at the loop between b8 and a16. It is
a specific feature of RLRs and the related Hef/FANCM DNA
repair ATPases (supplementary Fig S3 online). Domain 2B is
situated ‘on top’ of domain 2A, at the site that typically binds
to nucleic acids in SF2 enzymes, indicating that it could be
an important element of the dsRNA recognition or translocase
function of RIG-I.

The three domains are connected to each other by small,
mainly hydrophobic interfaces, which seem to be conserved in
RIG-I, opening the possibility for conformational changes that
might be important in the context of PAMP recognition and
signalling. However, an unusual ‘helical arm’ (a18 and a19)
reaches from domain 2A back to and across domain 1A. Bound to
the inner side of the ‘elbow’ is a helical protrusion in domain 1
(a8) that interacts with both arm helices by an extended aromatic/
hydrophobic interface (Fig 2A). The arm therefore seems to
maintain stabilization between domains 1A and 2A in the absence
of RNA in the observed conformation (which we have denoted as
‘open’ as described below).

Solution structure of the RIG-I helicase
To confirm that the observed ‘open’ state resembles the solution
structure of RIG-ISF2, we used small-angle X-ray scattering (SAXS)
on nucleotide-free human RIG-ISF2.

The scattering amplitudes measured for human RIG-ISF2 match
those calculated from the crystal structure model of mouse
RIG-ISF2 very well (Fig 2B). The crystal structure of mouse RIG-ISF2

also docks well into the averaged SAXS envelope of human
RIG-ISF2 (Fig 2C). This shows that human RIG-ISF2 adopts a similar
conformation in solution to mouse RIG-ISF2 in the crystal. We
therefore propose that this conformation represents a ‘signal-off’
state of the RIG-ISF2 domain, found in the absence of an
RNA ligand.

Helicase motifs and AMP-PNP recognition
The seven helicase motifs are located in loops on the surfaces of
domains 1A and 2A that sandwich ATP during the ATP-hydrolysis
cycle (Fig 3A). The AMP-PNP ligand is clearly defined in the
electron density, bound to motif I (Fig 3B; supplementary Fig S1B
online). The adenine moiety is situated in a partially polar,
partially hydrophobic pocket. It is recognized by two hydrogen
bonds from Q248 (Q-motif) to adenine N6 and N7 and by a
hydrogen bond from the carbonyl oxygen of K243 to N6. The walls
of the pocket are formed by the side chains of R245, L242 and
F273, providing extra stacking and hydrophobic interactions.

The b- and g-phosphates are bound to motif I, whereas the
a-phosphate lacks direct contacts (Fig 3B). The triphosphate chain
appears slipped by one phosphate compared with the canonical
binding; the g-phosphate is in the position that is typically
occupied by the b-phosphate. It is unclear whether this is a
specific feature of RIG-I or whether conformational movements
occur to allow canonical binding of the triphosphate chain.

Motif III is located in the loop that connects b6 to the a8
protrusion that binds to the helical arm. In contrast to mutations in
other motifs, which abolish RIG-I activation by viral ligands,
mutation of motif III was found to render RIG-I constitutively
active (Bamming & Horvath, 2009), suggesting that perturbation
of the protrusion–helical arm interaction might allow RIG-I
activation in the absence of proper ligands.

Functional motifs are not aligned in the ‘signal-off’ state
Analysis of the relative location of motifs I–III and IV–VI with respect
to each other shows that domain 2A needs to rotate substantially to
engage domain 1A to form a functional ATPase site. For instance,
motif VI residue R731 typically interacts with the triphosphate
backbone, yet in the crystal structure it is B25 Å from the
g-phosphate bound to motif I. Thus, the lack of ATPase activity in
the signal-off state of RLRs can be explained by the stabilization of
domains 1A and 2A in the observed ‘open’ orientation with
misaligned helicase motifs. As we crystallized RIG-I SF2 in the
presence of AMP-PNP and yet observe an ‘open’ structure, ATP
alone is probably not sufficient to orientate the SF2 domains of RIG-I
properly. In SF2 enzymes, nucleic acids are typically required to
appropriately position domains 1A and 2A for ATP hydrolysis to
occur. In addition, specific recognition of proper RNA ligands
requires insertion domains, such as domain 2B in RIG-ISF2.

To learn more about the conformational change and model
how RIG-ISF2 might bind to RNA in an activated form, we
independently superimposed RIG-ISF2 domains 1A and domains
2A–2B with equivalent domains 1A and 2A of the activated RNA-
bound form of VASA, an SF2 DEAD box helicase with similarity
to RIG-ISF2 (PDB 2DB3; Fig 4A; Fairman-Williams et al, 2010).

Fig 1 | Structure of the mouse RIG-I SF2 domain. (A) Front view of RIG-ISF2 along the nucleotide-binding cleft. RIG-ISF2 consists of three domains:

SF2 domain 1A (yellow) and SF2 domain 2A (green) are connected by a short linker helix (grey) and form the conserved ATP-binding and hydrolysis

core. The helical bundle domain 2B (red) is a specific feature of RIG-I/FANCM/Hef helicases, indicating that it is involved in double-stranded nucleic

acid binding or translocation. An unusual arm (orange), unique to RIG-I-like receptors, reaches from domain 2 across domain 1 and stabilizes the

observed ‘open’ conformation. (B) Top view of RIG-I, coloured as in (A). (C) Close-up view of the helical arm and its elbow (orange), embracing

the helical protrusion from domain 1A, with a hydrophobic interface. (D) Structure-based sequence alignment of selected RIG-I-like receptors with

highlighted conserved residues and annotated motifs. The secondary structural elements are shown on top of the alignment. AMP-PNP, adenosine

50-(b,g-imido)triphosphate; RIG-I, retinoic acid inducible gene I; SF2, superfamily 2.

c

Crystal structure of RIG-I ATPase domain

F. Civril et al

EMBO reports VOL 12 | NO 11 | 2011 &2011 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

scientificreport

1128



This shows that a rotation of domain 2A–2B of B90 1 would
properly align all motifs for activation. Notably, in the modelled
‘signal-on’ conformation, the helical domain 2B is situated

opposite domain 1A forming a channel that is shaped to
grip dsRNA (Fig 4B). The superposed conformation is also
consistent with the presence of the helical arm. Although the
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portion of domain 2A that connects to the helical arm rotates
significantly, it only shifts its position by 11 Å and only modest
conformational changes are required in the helical arm to
accommodate this shift.

RIG-I activation requires conformational change
To understand better how RNA binding might cause a transition
between the off and on states, we performed mutational analyses
to locate residues important for dsRNA-stimulated ATPase activity
in full-length RIG-I.

Most of the dsRNA-binding activity of RIG-I is contributed
by RD (Fig 4C), which thus masks effects of mutations in SF2
in a direct RNA-binding assay (supplementary Fig S2A
online). Unfortunately, without RD, SF2 alone is mostly inactive
because it needs RD to present RNA for binding. However,
the ATPase activity of full-length RIG-I is very sensitive to
RNA-induced conformations in SF2 and can therefore help map
RNA-binding motifs.

Point mutations in domain 1A motif II (E374Q) and domain 2A
motif VI (R731A; Fig 3C) practically abolish 50-ppp-dsRNA-induced
ATP hydrolysis (Fig 3D), consistent with our model that these
motifs must come together to form an active site. It has also been
proposed that RIG-I could form multimers, in principle allowing
domains 1A and 2A from different RIG-I molecules to function
in trans, without necessitating a conformational change. However,
when E374Q and R731A mutants are combined in the same
reaction, ATPase activity remains diminished (Fig 3D). This lack
of complementation indicates that domains 1A and 2A from the
same RIG-I molecule need to come together by a conformation
change to hydrolyse ATP.

Two highly conserved motifs (named QQ-motif and R-motif)
form a positively charged face on the helical bundle on domain 2B
(Fig 1C). In the crystal structure, these motifs are not positioned
to bind RNA bound at domain 1A. However, in the model for
the closed conformation (Fig 4B), the QQ- and R-motifs are
repositioned opposite domain 1A in the proposed RNA-binding
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cleft. To test the relevance of these motifs, we mutated R 547 to
glutamate and Q508/Q512 to alanine, and found ATPase activity
reduced to B10% and 40%, respectively (Fig 3D). The mutants
retained RNA-binding activity (supplementary Fig S2B online),
although this is probably due to the high affinity of the RD
domain for RNA ligands (Fig 4C).

Swi/Snf2 helicases, in addition to sharing significant homology
with RLRs (Fairman-Williams et al, 2010), are also stimulated by
double-stranded nucleic acids and translocate on dsDNA by ATP-
dependent tracking of the minor groove. Binding to dsDNA occurs
through motifs Ia, Ib and Ic, recognizing the 30-50 strand, and IIa
(recognizing the 50-30 strand; Durr et al, 2005).

This functional and sequence similarity between RIG-I and
Swi2/Snf2 enabled us to analyse the recognition of nucleic acid
duplexes by motifs Ic and motif IIa (T 348 and K380, respectively;
Fig 3C). To test the functional relevance of these motifs, we mutated
T 348 and K380 to glutamate. Both mutations abolished 50-ppp-
RNA-stimulated ATPase activity of full-length mmRIG-I (Fig 3D).
As these residues are involved in nucleic acid binding in Swi/
Snf2, it seems likely that motifs Ic and IIa are similarly involved in
RNA duplex binding in RIG-I. A 50-ppp-RNA–DNA hybrid binds
to RIG-I similarly to 50-ppp-dsRNA, but lacks the ability to induce
ATP hydrolysis (Fig 4D; supplementary Fig S2C online), showing
that a proper ATPase site is only formed when both strands of the
ligand are RNA.

A model for RIG-I activation by RNA binding
Our structure, together with mutational analyses, shows how the
SF2 domain of RIG-I could function as an RNA ligand-induced
activation switch (Fig 5).

Interestingly, as there are only nine residues between the last
structurally defined residue in RIG-ISF2 and the first structurally

defined residues in RIG-I RD (missing in our structure), we can
also roughly position RD with respect to an RNA ligand (Fig 5).

Our structure therefore provides a high-resolution framework
for the signal-off state of the SF2 domain and a plausible
mechanistic model for a signal-off to signal-on switch. The
conservation of all motifs and the helical arm in MDA5 and
LGP2 indicates that the structural model presented here is also
a good framework to understand and analyse these other RLRs.

METHODS
Crystallization and structure determination. For protein purifica-
tion and crystallization conditions see supplementary information
online. Selenomethionine-labelled RIG-ISF2 was crystallized from
DRD–RIG-I in complex with ANP-PNP using an in-drop proteo-
lysis approach with subtilisin, which generated an SF2 helicase
core with two internal loops removed (supplementary
Fig S1A online). X-ray diffraction data were collected at Swiss
Light Source (SLS) at the X06SA beamline at 100K and a
wavelength of 0.97972 Å (Se peak). Phenix.autosol (Terwilliger
et al, 2009) was used to locate Se sites and produce a solvent-
flattened map (supplementary Fig S1B online). A model was built
using Phenix.autobuild (Adams et al, 2010). The model was
manually improved using Coot (Emsley et al, 2010) and refined
using Phenix.refine to an Rwork/Rfree of 19.1%/23.3%. Data and
model statistics are shown in Table 1. The structure has been
deposited at the Protein Data Bank with ID 3TBK.
Small-angle X-ray scattering. Small-angle X-ray scattering experi-
ments were conducted at the The European Molecular Biology
Laboratory/Deutsches Electronen-Synchotron X33 beamline. All
proteins used were purified by size-exclusion chromatography
before SAXS measurements, with running buffer used as reference.
Data were processed and analysed using the ATSAS package
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Fig 5 | Proposed model for RIG-I activation by a conformational switch in the SF2 domain. RD binds to dsRNA with 50 triphopshates (50-ppp;
magenta spheres) and might recruit it to the SF2 domain. RNA and ATP binding switches SF2 into signal-on conformation by gripping RNA

between motifs Ic/IIa on domain IA and R/QQ on domain IIB. The position of the helical arm with the short linker to RD might allow RD to

bind 50-ppp-RNA ends cooperatively with SF2. The precise position of RD, which from our structure might bind on either side of the RNA duplex
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(Konarev et al, 2006) as described in Putnam et al (2007).
Theoretical scattering curves were calculated using CRYSOL
(Svergun et al, 1995). Sets of independent ab initio models were
calculated using GASBOR, and then averaged and aligned using
DAMAVER (Volkov & Svergun, 2003). Figures including docking
were generated using the Situs-Package (Wriggers, 2010) and
UCSF Chimera (Pettersen et al, 2004).
RNA and DNA oligonucleotides. HPLC-grade RNA and DNA
oligonucleotides were purchased from Biomers. The forward
sequence used in this study is 50-ACCAAACAAGAGAAGA

AACAUGUAC-30. 50-ppp-RNA was synthesized as previously
described (Ludwig & Eckstein, 1989; Paul et al, 2006) and
purified by C18 reverse-phase chromatography at 94% purity
confirmed by capillary electrophoresis.
ATPase assay. The reactions were performed in 100mM Tris–HCl
(pH 8.0), 150mM NaCl, 10mM ZnCl2, 5mM MgCl2, 2% glycerol
and 2mM dithiothreitol (DTT). Increasing concentrations (25 nM–
0.5 mM) of proteins were incubated with 1mM in vitro-synthesized
50-ppp-dsRNA, unless otherwise indicated, and 100 mM ATP
including 10 nM of [g-32P]ATP for 30min at 37 1C. Free phosphate
was separated by thin-layer chromatography. Images were
analysed with ImageJ. Only the linear part of the concentration
curve was used for calculations.
Electrophoretic mobility shift assay. A measure of 200 nM RNA
was incubated with the indicated amount of purified protein for
30min on ice in 20mM Tris–HCl (pH 8.0), 150mM NaCl, 10 mM
ZnCl2 and 2mM DTT reaction buffer. Samples were separated by
native PAGE and stained with Gel-Red (Biotium). Gel images were
analysed by ImageJ.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Resolution (Å) 50.0–2.14 (2.27–2.14)*

Rsym 10.2% (46.3%)

I/sI 16.09 (3.35)

Completeness 99.4% (96.5%)

Redundancy 5.5 (5.2)

Phasing

Figure of merit 0.47

Correlation coefficient 11.9

Refinement
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2.2. Species-specific detection of the antiviral small-molecule CMA by STING 
 

2.2.1. Summary 
 

Since the connection between type I IFN production and the activation of the 

immune system was revealed lots of effort has been done to identify small-molecule 

compounds, which are able to trigger type I IFN production to fight infections. 

Indeed, PRRs and the connected pathways of the innate immune system are 

promising targets for the activation via small-molecule compounds. In this publication 

we analysed the mechanism of STING activation by the antiviral compound CMA 

(10-carboxymethyl-9-acridanone). 

CMA is a small-molecule compound that is an approved antiviral drug in Russia and 

was shown to trigger type I IFN response in rodents. In experiments in mouse cell 

cultures we could show that the CMA indeed induces the production of type I IFNs 

and that this induction is dependent on the STING pathway. Unfortunately, the same 

experiments in various human cell lines showed no effect of CMA on the induction of 

type I IFNs. Further experiments in human HEK293T cells with wild type (wt) and 

chimeric mouse and human STING constructs were carried out. These experiments 

showed that CMA activates the STING pathway by direct interaction with the LBD of 

mouse STING but fails to do so in the context of the human STING-LBD. This 

observation of the species specific activation of STING by CMA was supported by in 

vitro experiments using DSF (Differential Scanning Fluorimetry) assays. In these 

assays CMA could stabilize the mouse STING-LBD at high temperatures but not the 

human STING-LBD. The crystal structure of mouse STING-LBD in complex with 

CMA could proof the direct interaction of CMA with mouse STING. In this structure 

two molecules of CMA are bound in the ligand binding cavity of the STING-LBD. 

Binding of CMA also triggers lid formation and compaction and thereby explains the 

activation of mouse STING by CMA (see Introduction). 

In this publication we were able to explain how CMA stimulates type I IFN production 

in the mouse system by directly activating STING. The unresponsiveness of the 

human system to CMA could be ascribed to species specific differences in the LBD 

of STING. However, we could not explain the antiviral effects of CMA in the human 

system. A possibility is that CMA can inhibit viral replication. Nevertheless, CMA still 
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could be the basis for the development of antiviral drugs that activate the STING 

pathway. 

 

 

2.2.2. Contribution 
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complex, collected the crystal diffraction data and solved the structure. 
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Extensive research on antiviral small molecules starting

in the early 1970s has led to the identification of

10-carboxymethyl-9-acridanone (CMA) as a potent type I

interferon (IFN) inducer. Up to date, the mode of action of

this antiviral molecule has remained elusive. Here we

demonstrate that CMA mediates a cell-intrinsic type I IFN

response, depending on the ER-resident protein STING.

CMA directly binds to STING and triggers a strong anti-

viral response through the TBK1/IRF3 route. Interestingly,

while CMA displays extraordinary activity in phosphory-

lating IRF3 in the murine system, CMA fails to activate

human cells that are otherwise responsive to STING

ligands. This failure to activate human STING can be

ascribed to its inability to bind to the C-terminal ligand-

binding domain of human STING. Crystallographic studies

show that two CMA molecules bind to the central Cyclic

diguanylate (c-diGMP)-binding pocket of the STING dimer

and fold the lid region in a fashion similar, but partially

distinct, to c-diGMP. Altogether, these results provide

novel insight into ligand-sensing properties of STING

and, furthermore, unravel unexpected species-specific

differences of this innate sensor.

The EMBO Journal (2013) 32, 1440–1450. doi:10.1038/

emboj.2013.86; Published online 19 April 2013
Subject Categories: immunology
Keywords: antiviral activity; innate immunity; STING;

type I interferon

Introduction

The innate immune system operates to sense microbial

infection. To this effect, it expresses a variety of so-called

pattern-recognition receptors (PRRs) that are able to sense

certain highly conserved microbial patterns, known as mi-

crobe-associated molecular patterns (MAMPs). Upon MAMP

sensing, cells of the innate immune system elicit certain

effector functions that are geared at eliminating the invading

pathogen. As such, cytokines play an important role in

orchestrating subsequent cellular immune responses or by

inducing antimicrobial effector functions in non-immune

cells. In this regard, cytokines of the type I interferon (IFN)

family play a pivotal role in eliciting antiviral, but also

antibacterial, effector functions. Soon after the discovery of

type I IFNs by Isaacs and Lindenmann (1957), many research

groups tried to delineate the mechanisms of its induction.

Early on, it was already noted that nucleic acid preparations

derived from viruses or enzymatic preparations were able to

trigger potent type I IFN responses. One of the most potent

triggers that emerged from these studies was the double-

stranded RNA polynucleotide mimic poly(I:C) (Isaacs et al,

1963; Rotem et al, 1963), but other polynucleotide

preparations, including double-stranded DNA (dsDNA),

were also reported to initiate antiviral immunity by eliciting

type I IFN responses. Moreover, in the early 1970s, several

groups tried to develop small-molecule compounds with

oral bioavailability that were able to trigger type I IFN

responses, thereby blocking viral replication. In the

course of these studies, the first small-molecule compound

reported was the tricyclic compound tilorone (2,7-bis(2-

diethylaminoethoxy)fluoren-9-one), which exhibited broad

antiviral activities against many viruses (Krueger and

Mayer, 1970; Mayer and Krueger, 1970). Subsequently,

additional heterocyclic compounds were reported to induce

type I IFNs, including various quinoline, anthraquinone

and acridine derivatives. Another structurally related

molecule that even surpassed most of these compounds in

antiviral activity was 10-carboxymethyl-9-acridanone (CMA),

discovered by Grunberg and colleagues, 1976. CMA was

shown to harbour potent antiviral activity and this could be

mainly ascribed to its ability to induce type I IFN production

(Taylor et al, 1980b; Kramer et al, 1981; Storch and Kirchner,

1982; Brehm et al, 1986; Storch et al, 1986).

However, while most of these small-molecule compounds

showed excellent type I IFN induction and antiviral activities

in rodents (Kramer et al, 1976; Taylor et al, 1980a,b), these

promising results failed to translate into the human system.

Tilorone, for example, showed no type I IFN induction in the

human system, both upon systemic or topic administration

(Kaufman et al, 1971), and at the same time, research

on CMA was abandoned by most groups. Nevertheless,

CMA is currently widely distributed and applied in Russia

for antiviral therapy, including hepatitis B virus, hepatitis C

virus, HIVor herpes simplex virus infection (Silin et al, 2009).

Three independent research approaches have led to the

discovery of STING as a protein that strongly induced type I

IFN production upon overexpression (Ishikawa and Barber,

2008; Zhong et al, 2008; Sun et al, 2009). Through its

N-terminal four-pass transmembrane region STING is

tethered to the ER, whereas its C-terminal region faces the

cytoplasmic lumen. STING-deficient cells show a profound

defect in sensing DNA viruses, and also synthetic DNA

ligands are strongly blunted in their capacity to induce
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pro-inflammatory gene expression in STING-deficient cells

(Ishikawa et al, 2009). At the same time, bacteria that

replicate in the cytoplasm, such as Listeria monocytogenes,

trigger type I IFN production in a STING-dependent manner

(Ishikawa et al, 2009). This finding was initially explained by

bacterial DNA being sensed in the cytoplasm in a STING-

dependent fashion. However, it turned out that type I IFN

production by L. monocytogenes could be mainly ascribed to

the cytoplasmic presence of the bacterial quorum-sensing

molecule cyclic diadenylate (c-diAMPs; Woodward

et al, 2010). Indeed, bacteria-derived c-diAMP or cyclic

diguanylate (c-diGMP) had already been described as

potent triggers of innate immune responses (Karaolis et al,

2007a,b; McWhirter et al, 2009). Both c-diAMP and c-diGMP

function as quorum-sensing molecules in bacteria, regulating

cell motility, biofilm formation and bacterial growth.

Surprisingly, STING turned out to be the direct sensor for

c-diGMP and c-diAMP, with its C-terminal part harbouring

the binding domain (Burdette et al, 2011). In addition, most

recently, it was discovered that cytosolic DNA sensing

triggers the formation of a novel second messenger, cyclic

GMP–AMP, which in turn binds to and activates STING (Sun

et al, 2013; Wu et al, 2013). This finding reconciles the

puzzling concept of STING serving as a sensor for

microbial cyclic dinucleotides and DNA at the same time.

Several groups have recently been able to solve the crystal

structure of c-diGMP binding to the C-terminal domain of

STING (Huang et al, 2012; Ouyang et al, 2012; Shang et al,

2012; Shu et al, 2012; Yin et al, 2012). These studies have

shown that the ligand-binding domain (LBD) of STING is

present as a preformed dimer that forms a V-shaped structure

harbouring a binding pocket for one c-diGMP molecule.

While ligand-binding does not induce a major confor-

mational change of the LBD of STING, a plausible model

of activation suggests that the C-terminal tail (CTT) of STING

is displaced from the pocket upon binding, so that it can

interact with TBK1 (Yin et al, 2012). TBK1 subsequently leads

to the phosphorylation of IRF3 and thereby induces

transcription of antiviral genes.

In this study, we elucidate the molecular mechanism of

CMA, a long-known small-molecule inducer of antiviral

responses. In the murine system, CMA was found to be a

potent activator of type I IFN production, yet in the human

system it failed to elicit detectable antiviral responses. CMA

activity depends on STING, and non-responsive human cells

can be conferred responsive by overexpressing murine

STING or a chimeric version of human STING that contains

the LBD of murine STING. Differential scanning fluorimetry

(DSF) studies using the LBDs of murine and human

STING furthermore indicate that unresponsiveness of

human STING to CMA is due to a lack of ligand binding.

The crystal structure of CMA bound to murine STING shows

that two CMA molecules bind the central c-diGMP-binding

cavity in a fashion representing the inherent c-diGMP

molecule symmetry, whereas differences are found in the

folding of the lid region. While the structural studies

cannot explain the species specificity in CMA detection, we

provide additional data that suggest a differential involve-

ment of the STING ‘lid region’ in CMA versus c-diGMP

recognition. Altogether, these data reveal important insight

into the species-specific recognition of a novel class of STING

ligands.

Results

CMA is a potent trigger of the type I IFN response

in murine macrophages

Intrigued by earlier publications on the antiviral activity of

CMA (Figure 1A), we were interested in the molecular

mechanisms of its activation, especially its putative receptor

and associated signalling routes. We first assessed its ability

to induce type I IFN production in macrophages in compar-

ison to defined ligands for various PRR systems. To this

effect, LPS (TLR4), transfected poly(I:C) (TLR3 and MDA5),

transfected 50triphosphate RNA (pppRNA/RIG-I) and trans-

fected 45mer dsDNA (ISD/STING) were used. All ligands

were tested at their previously determined optimal concen-

trations, and as readouts we assessed phosphorylation of

IRF3, transcription of Ifnb mRNA, IFNb protein levels

and transactivation of the IFNb promoter, using pIFNb-Luc
reporter mouse macrophages (Lienenklaus et al, 2009).

Indeed, CMA induced robust IRF3 phosphorylation that was

followed by strong Ifnb mRNA induction and translation

(Figure 1B–E). CMA-mediated IFNb production reached

peak levels already 4 h after stimulation, even exceeding

LPS in its readiness to trigger IFNb synthesis (Figure 1F).

Of note, for the various ligands studied, IRF3 phosphoryla-

tion, Ifnb mRNA induction and its translation did not go in

parallel, which is attributable to the fact that additional

ligand properties can play important roles in regulating

transcription and translation of this key cytokine. Assessing

other IRF3-dependent targets, such as IP-10, corroborated the

notion of CMA being a potent trigger of antiviral immunity,

yet NF-kB target cytokines (e.g., IL-6) were induced to a

lesser degree in CMA-stimulated cells (Figure 1G,H). In line

with this observation, assessing IRF3, MAPK and NF-kB

activation following CMA stimulation showed that CMA led

to synchronous and rapid activation of all these signalling

cascades, with a predominant IRF3 signature. LPS, on the

other hand, showed stronger NF-kB and MAPK activation,

with a slight delay in IRF3 phosphorylation (Figure 1I). At the

functional level, CMA blocked viral gene expression of

VSV-based replicon particles in a dose-dependent manner

(Supplementary Figure S1; Berger Rentsch and Zimmer,

2011). Altogether, these studies indicated that CMA is a

rapid and potent inducer of antiviral immune responses in

murine macrophages.

CMA-dependent type I IFN production requires STING

While most immortalized cell lines did not respond to CMA

(e.g., immortalized murine embryonic fibroblasts (MEFs),

HEK 293T cells, HeLa cells), early-passage MEFs could

be stimulated with CMA. This allowed us to use MEFs

from TBK1/IKKe-deficient mice, to determine the role of

these canonical kinases in IRF3 phosphorylation. As

expected, IRF3 phosphorylation was completed blunted in

MEFs deficient for TBK1 and IKKe (Supplementary Figure

S2A). We next assessed the role of TLR signalling pathways

using macrophages from mice deficient in MyD88 or TRIF.

Neither MyD88 nor TRIF were required for CMA sensing,

which ruled out an involvement of TLRs (Supplementary

Figure S2B–D). At the same time, absence of MAVS, the

shared signalling adapter of RIG-I and MDA5, had no impact

on CMA-mediated antiviral immunity (Supplementary

Figure S2E,F). We next went on to study the role of STING
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in CMA-triggered type I IFN production. To this effect, we

used macrophages from a mutant mouse strain, Goldenticket,

that harbours a missense mutation (I199N) in STING

(Sauer et al, 2011). Indeed, macrophages from these mice

showed no detectable activation of IRF3 or NF-kB (Figure 2A)

and also a complete absence of cytokine production

(Figure 2B). In addition, the antiviral activity elicited by

CMA treatment was completely abolished when STING-

deficient macrophages were stimulated (Supplementary

Figure S3). In line with the critical requirement of STING in

CMA sensing, a human HEK 293T cell line engineered to

stably express murine STING responded to CMA, with a

strong increase in pIFNb or pELAM reporter activity

(Supplementary Figure S4). As expected, this cell line also

showed a strong gain-of-function signal with regards to

c-diGMP sensing, which is usually non-functional in unmo-

dified HEK 293T cells. Altogether, these results indicated that

STING was required and also sufficient for CMA recognition.

CMA fails to activate human STING

Despite the fact that CMA had been reported to induce type I

IFN responses in human cells (Silin et al, 2009), we were

unable to elicit type I IFN production in various cell types of

the human system. Human PBMCs readily responded to

50pppRNA, poly(I:C), DNA, c-diGMP and LPS stimulation,

yet CMA failed to induce detectable cytokine responses, even

at high doses (Figure 3A–C). A similar picture was seen when

primary human fibroblasts were used (Figure 3 D,E).

In line with this finding, when we transiently transfected

HEK 293T cells with a human STING construct, no CMA

response could be detected, despite the fact that overexpres-

sion of human STING rendered 293T cells sensitive to

c-diGMP (Figure 4A). At the same time, transient overexpres-

sion of murine STING made HEK 293T cells responsive

towards both c-diGMP and CMA (Figure 4B). The fact that

human STING displayed c-diGMP-dependent signalling

capacity in HEK 293T cells suggested that the C-terminal
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LBD of STING could be held responsible for the insen-

sitivity towards CMA. To address this question, we

constructed chimeric STING constructs, in which the

N- and C-terminal domains of the murine or human STING

were exchanged: mmSTING(1-137)-hSTING(139-379) or

hSTING(1-138)-mmSTING(138-378) (Figure 4C,D). Testing

these constructs in HEK 293T cells revealed that as long as

the murine LBD was present (hSTING(1-138)-mmSTING

(138-378); Figure 4D), CMA was able to trigger type I IFN

production. Altogether, these results indicated that unrespon-

siveness of human cells towards CMA could be explained

by species-dependent differences in the LBD of STING.

Using the murine STING construct, we next wanted to

address the role of functionally relevant point mutations for

the recognition of CMA. The previously described null-

mutant I199N most likely perturbs the structure of STING

and thereby abolishes c-diGMP binding and signalling

(Burdette et al, 2011). In line with this notion,

overexpression of mmSTING-I199N showed no pIFNb-Luc
transactivation upon CMA- or c-diGMP-mediated stimulation

(Supplementary Figure S5A,B). Interestingly, mmSTING-

R231A, a mutant that has previously been described to

completely blunt c-diGMP-mediated STING activation despite

binding, showed normal activity upon CMA stimulation

(Supplementary Figure S5C). These data demonstrated that

c-diGMP sensing could be dissociated from CMA recognition

at the receptor level.

CMA does not bind the human STING LBD

The failure of CMA to activate human STING could be

explained by several scenarios. Foremost, we wanted

to rule out the possibility that human STING does not bind

to CMA. To address this question, we expressed and purified

the LBD of murine and human STING in E. coli and tested its

ability to associate with various ligands, using DSF. DSF

indirectly assesses the association of a low molecular weight

compound to a purified protein by measuring the stability of

a protein–compound complex as a function of temperature

(Niesen et al, 2007). As indicated by a robust thermal shift,

the LBD of murine STING associated with its known ligands

c-diGMP and c-diAMP, and also binding to CMA, could

be observed (Figure 5A). At the same time, also the LBD of

human STING displayed association with c-diGMP and

c-diAMP, as indicated by a dose-dependent shift in thermal

stability. However, addition of CMA had no detectable impact

on the thermal stability of human STING, indicating that

CMA does not bind human STING (Figure 5B). Despite high

homology, murine and human STING show least conserva-

tion in their CTT region. As such, we additionally wanted to

rule out that this part of STING was required for CMA

binding. To this effect, we generated truncated versions of

the murine STING LBD lacking the CTT. However, testing this

variant showed similar binding properties as the full-length

LBD, indicating that the CTT is not required for ligand

binding by STING (Supplementary Figure S6).

The crystal structure shows a c-diGMP-like STING

interaction for CMA

Recently, five independent groups determined the crystal

structure of the LBD of human STING bound to c-diGMP

(Huang et al, 2012; Ouyang et al, 2012; Shang et al, 2012; Shu

et al, 2012; Yin et al, 2012). In these studies it was shown that

the LBD of STING constitutes a preformed dimer that is

stabilized through homotypic interaction at a hydrophobic

interface. This STING dimer forms a V-shaped pocket, in

which one c-diGMP molecule is buried at its bottom. To see

how CMA binds murine STING, we crystallized murine

STING LBD in the presence of CMA and determined the

crystal structure to 2.75 Å resolution (Supplementary Table

S1). The final model comprises two STING LBDs along with

two well-resolved CMA molecules (Figure 6A,B). Murine

STING LBD forms a dimer with high overall structural

similarity to the previously determined human STING LBDs

(Supplementary Figure S7). Two CMA molecules are located

in the deep central c-diGMP-binding pocket at the dimer

interface. The acridone ring moieties of both CMAs partially

stack to each other (B4 Å distance) in a parallel, laterally

shifted orientation, resembling the twofold symmetry

of c-diGMP. They are situated near the phosphate–ribose
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binding site for c-diGMP, but due to the flat shape can wedge

deep into the helical bundle core of the LBD dimer. As a

result, CMA binds directly to Thr226 at the bottom of the

ligand-binding pocket, whereas c-diGMP binds via a water

molecule (Figure 6C,D).

Significantly, we find two well-ordered lid domains in a

four-stranded antiparallel b-sheet that closes the CMA/

c-diGMP-binding pocket (Figure 6A,B). The lids are generally

in a similar conformation than the folded lids in the human

STING–c-diGMP complex reported by Huang et al (2012)

(PDB-code: 4F5D), but there are also differences. The

carboxymethyl groups of the CMA moieties face and

stabilize the conformation of the lid by forming salt bridges

to both Arg237 residues. The equivalent human Arg238

residues stack between the two c-diGMP guanine moieties,

thereby stabilizing the lid. The space of the guanine moieties

is unoccupied by CMA. As a result, murine Arg237 and

Tyr167, plus Tyr240, directly stack instead of sandwiching

guanine as observed in the human c-diGMP complex. The

direct stacking induces or enables further closure of the

V-shaped binding cleft compared to the c-diGMP-bound

conformation, which may contribute to active signalling.

However, the tips of the lids fold differently in the presence

of CMA and c-diGMP. In particular, Arg231 (human Arg232),

which binds the phosphates of c-diGMP via a magnesium ion

or water molecule (Huang et al, 2012), is pushed to the

surface due to steric hindrance from the acridone ring. In

summary, CMA binds to the c-diGMP-binding pocket, with

two stacked CMA molecules mimicking the symmetric

c-diGMP. CMA induces a conformation in the LBD dimer

that is similar, if not more pronounced than the proposed

signalling conformation of human LBD, with folded lids in

the presence of c-diGMP, but also results in a somewhat

altered lid conformation. Altogether, the structure can explain

why CMA activates murine STING.

Discussion

In line with early reports on the antiviral activity of CMA

(Storch and Kirchner, 1982; Storch et al, 1986), our data

confirm the extraordinary type I IFN-inducing capacity of

CMA in the murine system. Further analysis of signalling

cascades involved in IFNb transactivation show a quick and

strong phosphorylation of IRF3, whereas the activation of the

NF-kB and MAPK pathways is slightly delayed and less

prominent compared to TLR signalling. This observation is

also reflected by the cytokine profile, as CMA induces high

levels of IFNb as opposed to IL-6. Studies using knockout

cells revealed that CMA triggers antiviral immunity cells

through the STING–TBK1–IRF3 route, which could be further

corroborated by gain-of-function experiments in cells devoid

of functional mmSTING.

Unexpectedly, human cells showed complete unrespon-

siveness towards CMA, although c-diGMP-dependent STING

activity was observed. We could ascribe this to species-

dependent differences within the C-terminal LBD of STING,

as HEK 293T cells expressing a chimeric STING protein

equipped with the murine LBD readily responded towards

CMA. Further studies could pinpoint the failure of human

STING to respond to CMA, to the inability of the human LBD

to form a stable complex. Of note, these experiments do not

formally proof that human STING cannot bind to CMA, yet in

light of the functional data this appears to be the most likely

scenario. The species-specific activation of murine STING by
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CMA is surprising, especially given the fact that several

reports on antiviral activity in the human system both

in vitro and in vivo exist (Vershinina et al, 2002; Zarubaev

et al, 2003). One possibility is that these antiviral activities

are due to direct inhibition of viral replication, independent

of the innate immune response (e.g., inhibition of viral

0

5

10

15

0

5

10

15

20
20
40
60
80

100

0

2

4

6

8

10

50

100

150

200

0

2

4

6

8

10

Stimulus:

STING
construct: 0 0 0 0

c-diGMP CMA (500) CMA (125) Ctrl.Stimulus:

STING
construct: 0 0 0 0

c-diGMP CMA (500) CMA (125) Ctrl.

Stimulus:

STING
construct: 0 0 0 0

c-diGMP CMA (500) CMA (125) Ctrl.Stimulus:

STING
construct: 0 0 0 0

c-diGMP CMA (500) CMA (125) Ctrl.

TM1 TM2 TM3 TM4 CBD CTT TM1TM2 TM3 TM4 CBD CTT

hsSTING mmSTING
1 138 1371379 378

A B

TM1TM2 TM3 TM4 CBD CTTTM1TM2 TM3 TM4 CBD CTT

hsSTING-mmCBDmmSTING-hsCBD
1 1381371 379378

C D

E

hS
TIN

G

m
m

STIN
G

hs
STIN

G-m
m

CBD

m
m

STIN
G-h

sC
BD

WB:
Anti-GFP

(STING constructs)

Anti-β-actin

pI
F

N
β-

G
Lu

c 
(f

ol
d 

in
du

ct
io

n)

pI
F

N
β-

G
Lu

c 
(f

ol
d 

in
du

ct
io

n)

pI
F

N
β-

G
Lu

c 
(f

ol
d 

in
du

ct
io

n)

pI
F

N
β-

G
Lu

c 
(f

ol
d 

in
du

ct
io

n)

Figure 4 Species-specificity CMA activity is determined by the C-terminal LBD of STING. (A–D) 293T cells were transiently transfected with
the indicated STING constructs (25, 12.5, 6.25 and 0 ng), whereas 12.5 ng of pIFNa-GLuc reporter plasmid were included. For titrations, an
empty pCI vector served as a stuffer to obtain 200ng total plasmid DNA. After 24 h, cells were transfected with c-diGMP or stimulated with
CMA (500 and 125 mg/ml). Luciferase activity was measured after an additional period of 24 h in the supernatant, and data were normalized
to the condition without STING overexpression. Plasmids coding for full-length hSTING (A), mmSTING (B), mmSTING(1-137)-hSTING(139-
379) (C) and hSTING(1-138)-mmSTING(138-378) (D) were tested. (E) Expression of the above described constructs was studied in 293T cells
24 h after transfection (200 ng per 96-well plate) using western blot, whereas b-actin served as a loading control. Representative results out of
three independent experiments are depicted. Source data for this figure is available on the online supplementary information page.
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polymerases). At the same time, it is conceivable that higher

local concentrations of CMA can be achieved during systemic

application or that other cell types are activated, both leading

to a STING-dependent type I IFN response. Nevertheless,

our results clearly question a predominant role for type I

IFN induction by CMA in the human system.

FAA (flavone-8-acetic acid) and DMXAA (5,6-dimethyl-9-

oxo-9H-xanthen-4-yl)-acetic acid) are two additional tricyclic

small-molecule compounds that have been reported to trigger

potent type I IFN responses in the murine system (Hornung

et al, 1988; Futami et al, 1991; Perera et al, 1994; Roberts

et al, 2007). Both compounds have been pursued for their

potent antitumour activity in murine tumour models, and for

both compounds it was shown that activation of the immune

system plays a pivotal role in therapeutic activity (Ching and

Baguley, 1987; Hornung et al, 1988; Pang et al, 1998). FAA,

however, failed to induce type I IFN responses in human

cells (Futami et al, 1991) and, moreover, it failed to

display antitumour activity in clinical trials (Bibby and

Double, 1993). In parallel, despite strong activity in the

murine system, DMXAA by itself also showed limited

immunostimulatory capacity in human cells (Patel et al,

1997; Philpott et al, 2001; Gobbi et al, 2006). At the same

time, DMXAA in combination with a platinum-based

chemotherapy did not show any efficacy in a large phase III

clinical trial for the treatment of non-small cell lung cancer

(Lara et al, 2011). Most recently, it has been reported that

DMXAA triggers type I IFN responses in a STING-dependent

fashion (Brunette et al, 2012; Prantner et al, 2012). In these

reports, only murine cells were tested and direct binding of

DMXAA to STING was not assessed. Nevertheless, given

the similarity of CMA and DMXAA at the molecular level,

we would expect that DMXAA also directly engages STING in

a species-specific manner. As such, it appears likely that the

failure of DMXAA in the human system can be attributed

to its inability to trigger STING activation.

At the structural level, the species-specific recognition of

CMA is unlikely to be attributable to the binding pocket itself.

This region, which is mainly formed by a-helices, a1 and a3,
is more or less invariant between the human and the murine

system, with all direct interactors of CMA being identical.

It is possible that more subtle structural differences prevent
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Figure 5 DSF implicates direct binding of CMA to murine, but not to human STING. (A,B) The interaction of STING with c-diGMP, c-diAMP
and CMA were analysed by thermal shift assay. Purified murine STING (A) and human STING (B) were tested with different concentrations
of c-diGMP/c-diAMP/CMA; (i) Schematic views of the protein domains used for binding studies are shown; (ii) thermal shifts of (iii)
fluorescence intensity versus temperature are shown. Representative results out of two independent experiments are depicted for the
temperature curves (ii), whereas mean valuesþ s.e.m. out of two independent experiments are depicted for the thermal shift graphs (iii).
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binding of CMA to human STING. An alternative, probably

more likely, explanation concerns loops b2 and b3 of the

LBD, which are critically involved in the coordination of

c-diGMP. While flexible in the apo form of human STING,

this loop region undergoes a conformational rearrangement

upon c-diGMP binding, thereby functioning as a ‘lid’ that

keeps c-diGMP within the binding pocket (Huang et al, 2012).

Two conserved residues within the tip of this loop (human:

Arg238, Tyr240) have been shown to interact with c-diGMP,

and point mutagenesis data support the critical role of the

loop region in c-diGMP recognition. In support of a similar

activation mechanism, CMA binds Arg237 of murine STING.

Interestingly, the previously reported R231A mutation within

this loop region impairs c-diGMP-mediated IFN induction

even though DNA- and CMA-dependent IFN induction are

not affected (Burdette et al, 2011). These data suggest that

the loop region is differently involved in CMA sensing,

as opposed to c-diGMP recognition. Consistent with the

mutational data, Arg231 is not involved in recognition of

CMA, and the tip of the lid, where this conserved residue is

located, is folded differently compared to the human STING

bound to c-diGMP (Figure 6C). As such, species-dependent

differences that may stabilize or allow this altered conforma-

tion could account for the observed unresponsiveness

of hSTING towards CMA. Yet, additional studies will be

required to pinpoint this phenomenon to an exact structural

determinant.

This is the first report of a direct STING ligand that is not a

cyclic dinucleotide. Most intriguingly, CMA is not sensed

as a monomeric ligand within the ligand-binding pocket of

the STING dimer; yet, two molecules positioned in a

rotational symmetry are required to activate STING. We

assume that other reported tricyclic small-molecule antivirals

(e.g., tilorone, DMXAA, etc) are also sensed as a dimeric

ligand in a fashion similar to CMA. Moreover, it is tempting to

speculate that beyond these synthetic compounds, natural

ligands exist that also follow a CMA-like recognition mode.

In this regard, several bioflavonoids reported to exert

antiviral activity might be interesting candidates. At the

same time, the novel class of STING ligands described here

might open novel avenues to develop compounds that block

STING activation, with favorable drug-like properties. Given

the likely involvement of STING in sensing endogenous DNA

in the course of sterile inflammatory conditions (Ahn et al,

2012; Gall et al, 2012), pharmacological targeting of STING

might constitute a reasonable therapeutic venture.

Materials and methods

Reagents
Poly(I:C) and CMA were purchased from Sigma Aldrich. Ultra-pure
LPS from E. coli was purchased from Invivogen. c-diGMP and
c-diAMP were from BioLog. GeneJuice Transfection Reagent was
from Novagen. Lipofectamine 2000 was from Life Technologies.
Goat anti-rabbit-IgG-HRP, goat-anti-mouse-IgG-HRP and anti-
b-actin-IgG-HRP were from Santa Cruz Biotechnology. Passive
lysis buffer was purchased from Promega.

Plasmids
Expression plasmids coding for human or murine STING were
cloned into pEFBOS coding for an N-terminal GFP or an N-terminal
mCherry tag. Chimeric STING constructs, human STING (AA1–
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Figure 6 Structural basis for CMA recognition. (A) Ribbon model of the mouse STING dimer (light and dark brown) with highlighted
secondary structure. The two bound CMA molecules are shown as magenta stick models. (B) Close-up view of the CMA-binding site with
superimposed 2mFo-DFc electron density (blue; contoured at 1.4). One STING protomer is shown in light brown. For the other protomer
(brown), only the lid is displayed. Folding of the lid via hydrogen bonds to Arg237 and Tyr239 suggests how CMA activates mouse STING.
(C,D) Side-by-side comparison of CMA bound to mouse STING (C) and c-diGMP bound to human STING (D) showing selected interactions.
CMA folds the lid differently from c-diGMP, due to steric clash with Arg231 (human Arg232), which binds c-diGMP via a magnesium ion/water
molecule.
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138)–murine STING (AA138–378) and murine STING (AA1–137)–
human STING (AA139–379) were generated by ligation-indepen-
dent cloning (Aslanidis and de Jong, 1990; Schmid-Burgk et al,
2012). The STING mutants (I199N, R231A in pEFBOS-mCherry)
were generated by point mutagenesis PCR. pCI-empty was used as a
stuffer. All primer sequences used for cloning are available upon
request.

Cell culture
PBMCs were isolated from whole blood of healthy donors. After
Ficoll density-gradient centrifugation (Biochrom), red blood cells
were lysed using lysing buffer (BD Biosciences). PBMCs were
seeded with a density of 4�106 perml at 100ml in a 96-well plate
containing RPMI supplemented with 10% (v/v) FCS, sodium pyr-
uvate, penicillin and streptomycin (all from Life Technologies).
293T and primary human fibroblasts were cultured in DMEM
supplemented with 10% (v/v) FCS, sodium pyruvate (all from
Life technologies) and Ciprofloxacin (Bayer Schering Pharma).
Primary macrophages were generated from mouse bone marrow
cells that were cultured for 7 days in DMEM with the same additives
as described above and 30% (v/v) L929 supernatant.

Immunoblotting
Primary macrophages were lysed in 1� Laemmli buffer and
denatured at 951C for 5min. Probes were separated by 10% SDS–
PAGE and transferred onto nitrocellulose membranes. Blots were
incubated with anti-Phospho-IRF3 (number 4947), anti-Phospho-
NF-kappaB-p65 (number 3033), anti-Phospho-p38 (number 4511),
anti-IkappaB-alpha (number 4814) or anti-Phospho-SAPK/JNK
(number 9255) from Cell Signaling Technology.

Transfection
For transfection experiments, primary macrophages were seeded
with a density of 1�105 perml. Cells were transfected with poly
(I:C) (2mg/ml), pppRNA (1.33mg/ml), ISD (2mg/ml) and c-diGMP
(8.66mg/ml) using Lipofectamine 2000 (Life Technologies), accord-
ing to the manufacturer’s instructions. LPS (200 ng/ml) and CMA
were directly added to the medium. Human PBMCs were trans-
fected as described above, at a density of 4�106 perml, human
fibroblasts at a density of 1.5�105 perml. For western blot experi-
ments, cells were lysed after 2 h, if not indicated otherwise. For
cytokine assays, supernatants were collected after 18–20 h. For RNA
isolation, cells were lysed after 4 h.

Enzyme-linked immunosorbent assay
Cell culture supernatants were assayed for human IP-10 (BD
Biosciences), human IL-6 (BD Biosciences), human IFNa
(eBioscience), mouse IFNb (BioLegend), mouse IP-10 (R&D
Systems) or mouse IL-6 (BD Biosciences), according to the manu-
facturer’s instructions.

Quantitative real-time PCR analysis
RNA from macrophages was reverse transcribed using the
RevertAid First Strand cDNA Synthesis kit (Fermentas) and quanti-
tative PCR analysis was performed on an ABI 7900HT. All murine
gene expression data are presented as relative expression to HPRT1.
Primer sequences are available upon request.

Luminescence assays
pIFNb-FFLuc macrophages (Lienenklaus et al, 2009) were
stimulated as indicated and were lysed with passive lysis
buffer 18–20 h after stimulation, to determine luminescence. For
VSV*DG(Luc) replicon assays, macrophages were treated with
ligands or supernatants as indicated and subsequently infected at
an MOI of 10 with the VSV*DG(Luc) replicon virus particles. Firefly-
luciferase activity was measured in the lysates using a 2104
EnVision Multilabel reader from Perkin-Elmer.

Plasmid overexpression experiments
293Tcells were seeded with a density of 2�105 cells perml at 100ml
96-well plate. IFNb (12.5 ng) promoter–reporter plasmid pIFNb–
GLuc or pELAM-GLuc, and STING constructs were transfected using
GeneJuice according to the manufacturer’s instructions. For
titration experiments, empty pCI vector was used as a stuffer.
After 24 h, the cells were transfected with c-diGMP or were stimu-

lated with CMA. After further 20 h, GLuc activity was measured in
the supernatants using coelenterazine as a substrate.

Cell viability assays
Cell viability was assessed using CellTiter-Blue (Promega)
according to the manufacturer’s instructions. The assay was per-
formed immediately after (Gaussia) or before (Firefly) luciferase
measurement.

Differential scanning fluorimetry
Thermal shift assays were carried out using a CFX 96TM Real-Time
System (Biorad) for recording the fluorescence signal (HEX: Ex/Em:
450–490/560–580nm) as a function of temperature. The tempera-
ture gradient was set from 15 to 801C, with an increment of 0.51C
and incubation steps of 15 s. Each 20 ml reaction (buffer: 20mM
Tris, 150mM NaCl, (10% DMSO for reactions with CMA), pH 7.5),
with or without 2mM/1mM/0.5mM of c-diGMP/c-diAMP/CMA
contained 1mg/ml of STING and a dilution of 1:500 of SYPRO
Orange dye (Invitrogen).

Cloning of human and mouse STING constructs for protein
expression
Human STING AA139–379 (R220HþH232R) was cloned from a
human macrophage cDNA library into pET28-SUMO1-eGFP vector
via BamHI and NotI restriction sites. The mouse STING constructs
AA138–378 and AA138–341 were cloned from a mouse lung tissue
cDNA library into pET28-SUMO1-eGFP vector via AgeI and NotI
restriction sites. These plasmids were used to transform
E. coli Rosetta (DE3) protein expression strain cells (Novagen).

Expression and purification of human and mouse STING
constructs
For all used STING constructs, the expression and purification
procedure was the following: E. coli Rosetta (DE3) cells were
grown in 3 l of LB media supplemented with Kanamycin (50mg/l)
and Chloramphenicol (34mg/l) at 371C for 3 h, to OD600¼ 0.8.
Expression of N-terminal His6-SUMO1-tagged STING was induced
by adding IPTG (Roth) to a final concentration of 0.2mM.
Expression was done overnight at 181C. Cells were collected by
centrifugation and were resuspended in lysis buffer (50mM Tris,
500mM NaCl, 10mM imidazole, 5% glycerol, 2mM b-mercap-
toethanol, pH 7.5) and lysed by sonication. The soluble His6-
SUMO1-STING was purified by Ni-affinity chromatography.
The His6-SUMO1-tag was removed by proteolytic cleavage with
SenP2 protease during dialysis overnight (20mM Tris, 150mM
NaCl, 3% glycerol, 2mM b-mercaptoethanol, pH 7.5) and a second
Ni-affinity chromatography step. To remove additional contami-
nants, a HiTrap Q FF (GE Healthcare) purification was applied.
Finally, the STING containing flow-through was used in a HiLoadTM

26/60 Superdex 75 prep grade (GE Healthcare) size-exclusion
chromatography step (20mM Tris, 150mM NaCl, pH 7.5).
Purified STING was concentrated (10–15mg/ml) with a 10 kDa
cut-off centrifugal concentrator device (Millipore) and was flash
frozen in liquid nitrogen for storage (� 801C).

Crystallization of mmSTING AA149–348 with CMA
A protein solution of mmSTING (8mg/ml) was saturated with CMA
(by adding solid powder due to its low solubility in aqueous
solution) and incubated on ice for 1 h. Prior to crystallization,
the protein solution was centrifugated and filtered to remove solid
CMA. Crystals were grown using the hanging drop vapour diffusion
method with drops of 1:1 ratio protein:reservoir. The reservoir
solution contained 0.1M HEPES, pH 7, 1.65M ammonium sulphate,
2% PEG 400 (v/v) and saturating amounts of CMA. mmSTING
crystals appeared after B4 days at 201C. For cryoprotection, the
crystals were soaked in reservoir solution containing 12% (±)-1,3-
butanediol (v/v) before flash freezing in liquid nitrogen.

Data collection and structure determination
X-ray diffraction data were collected at beamline X06SA at the
Swiss Light Source (Villigen, Switzerland). Data processing was
carried out using XDS (Kabsch, 2010). The structure was solved by
molecular replacement with PHASER (McCoy et al, 2007) from the
ccp4 package (Winn et al, 2011), using a mouse search model
created from the human STING structure (4EMT (Shu et al,
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2012)) by ClustalW2 alignment (Goujon et al, 2010; Larkin et al,
2007) and modelling with the SWISS-MODEL structure homology-
modelling server (Peitsch, 1995; Arnold et al, 2006; Kiefer et al,
2009). The structure was refined by rounds of manual model
building carried out with COOT (Emsley and Cowtan, 2004) and
refinement using Phenix (Adams et al, 2010). The final structure
with R/Rfree¼ 21/23.7 shows good stereochemistry and no outliers
in the Ramachandran plot. Figures were created with PyMOL
(Schrödinger, 2010). Coordinates and structure factors have been
deposited with the Protein Data Bank (accession number 4JC5).

Supplementary Data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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2.3. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that 
activates STING 
 

2.3.1. Summary 
 

It has been known for a long time that cytosolic DNA is an important MAMP that 

triggers type I IFN production. Just recently cGAS was revealed as the responsible 

PRR for sensing this class of MAMPs. Binding of cytosolic dsDNA activates cGAS 

leading to the production of a cyclic dinucleotide second messenger that induces 

STING-dependent signalling and the production of type I IFNs. However, the exact 

nature of this cyclic dinucleotide was unclear. In this publication we were able to 

characterize this second messenger using a variety of biochemical and biophysical 

methods. 

In a previous publication cGAMP was suggested to be the second messenger that is 

produced by cGAS. Since the data in this publication was not able to unambiguously 

proof this suggestion, we wanted to test if cGAMP is really produced by cGAS. 

Therefore, we performed experiments in HEK293T cells expressing mouse wild-type 

(wt) or R231A STING. The R231A mutant is known to be responsive to the product 

of cGAS but unresponsive to c-di-GMP. We stimulated these cells endogenously by 

additional overexpression of either cGAS, tDGC (thermophilic diguanylate cyclase 

domain -> c-di-GMP) or DcnV (-> cGAMP), respectively. In wt STING cells the 

stimulation led to the production of type I IFNs in all cases. In R231A STING cells 

type I IFN induction was only observed when cGAS was overexpressed. These 

results revealed that cGAMP cannot be the second messenger that is produced by 

cGAS. Indeed, the protein-depleted lysates of cGAS overexpressing HEK293T cells 

showed an additional, unique peak in a RP-HPLC (Reversed-Phase High-

Performance Liquid Chromatography). It eluted with a different retention time as the 

cGAMP peak in the control experiment. Mass spectrometry analysis revealed that 

the molecular mass of the cGAS product matches the mass of cGAMP but the 

fragmentation patterns were different. A series of additional nuclease digestion 

assays coupled with TLC (Thin Layer Chromatography) and ESI-LC-MS 

(Electrospray Ionization Liquid Chromatography Mass Spectroscopy) identified 2,3-
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cGAMP as the product of the cGAS reaction. This was further supported by H1-NMR 

data. 

A low responsiveness of human STING towards bacterial cyclic dinucleotides 

compared to mouse STING was reported earlier. Therefore, we decided to compare 

cGAMP and 2,3-cGAMP activation of STING for the human and the mouse protein. 

We performed assays with HEK293T cells expressing either human or mouse 

STING. Stimulation with 2,3-cGAMP led to induction of IFN expression in both 

cases, while cGAMP only induced an IFN response in cells expressing mouse 

STING. DSF (Differential Scanning Fluorimetry) assays with mouse or human 

STING-LBD and 2,3-cGAMP or cGAMP supported these results. In summary, these 

observations indicated that the endogenous second messenger 2,3-cGAMP is 

indeed a high potent activator of mouse and human STING. 

By analyzing the side products of the cGAS reaction and by recycling them for a 

second round of cGAS mediated cyclization reaction we could postulate a two step 

mechanism of 2,3-cGAMP formation. In the first step, cGAS utilizes GTP and ATP to 

form the linear intermediate pppGMP-2’-p-5’-AMP with the unique guanine-2’-p-5’-

adenosine phosphodiester linkage. In the second step the cyclization reaction is 

completed and the final product is formed. In both steps pyrophosphate is released. 

In this publication we could identify the eukaryotic second messenger 2,3-cGAMP 

and shed light on its formation and involvement in the signalling of cytosolic DNA. 

This expands our understanding of the processes involved in various bacterial and 

viral infections and can help to develop therapies for several diseases. 

 

 

2.3.2. Contribution 
 

The author of this thesis contributed to this publication by cloning and purifying 

human and mouse STING and cGAS constructs for in vitro experiments. In addition, 

he performed the DSF assays. 
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2.3.3. Paper 
 

The following paper was published 2013 in nature. 
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cGAS produces a 29-59-linked cyclic dinucleotide
second messenger that activates STING
Andrea Ablasser1, Marion Goldeck1, Taner Cavlar1, Tobias Deimling2, Gregor Witte2, Ingo Röhl3, Karl-Peter Hopfner2,4,
Janos Ludwig1 & Veit Hornung1

Detection of cytoplasmic DNA represents one of the most funda-
mental mechanisms of the innate immune system to sense the
presence of microbial pathogens1. Moreover, erroneous detection
of endogenous DNA by the same sensing mechanisms has an
important pathophysiological role in certain sterile inflammatory
conditions2,3. The endoplasmic-reticulum-resident protein STING
is critically required for the initiation of type I interferon signalling
upon detection of cytosolic DNA of both exogenous and endogen-
ous origin4–8. Next to its pivotal role in DNA sensing, STING also
serves as a direct receptor for the detection of cyclic dinucleotides,
which function as second messenger molecules in bacteria9–13.
DNA recognition, however, is triggered in an indirect fashion that
depends on a recently characterized cytoplasmic nucleotidyl trans-
ferase, termed cGAMP synthase (cGAS), which upon interaction
withDNA synthesizes a dinucleotidemolecule that in turn binds to
and activates STING14,15.We here show in vivo and in vitro that the
cGAS-catalysed reaction product is distinct from previously char-
acterized cyclic dinucleotides. Using a combinatorial approach based
onmass spectrometry, enzymatic digestion,NMRanalysis andchemical
synthesis we demonstrate that cGAS produces a cyclic GMP-AMP
dinucleotide, which comprises a 29-59 and a 39-59 phosphodiester
linkage.Gp(29-59)Ap(39-59).. We found that the presence of this
29-59 linkage was required to exert potent activation of human
STING. Moreover, we show that cGAS first catalyses the synthesis
of a linear 29-59-linked dinucleotide, which is then subject to cGAS-
dependent cyclization in a second step through a 39-59 phosphodie-
ster linkage. This 13-membered ring structure defines a novel class
of secondmessengermolecules, extending the family of 29-59-linked
antiviral biomolecules.
Recently, it has been demonstrated that upon intracellular DNA

delivery, a cytoplasmic enzyme dubbed cyclic GMP-AMP synthase
(cGAS) produces a ribo-dinucleotide, which in turn binds to and acti-
vates STING14,15. Given the striking analogy to bacterial cyclic dinucleo-
tide recognition and its determined molecular mass, it was suggested
that this molecule constitutes a cyclic adenosine monophosphate-
guanosinemonophosphate (cGAMP)with a symmetric 12-membered
ring formedby39-59 linkednucleotide residues (.Gp(39-59)Ap(39-59).,
cGAMP(39-59)). On the other hand, it was shown that STING-dependent
DNA sensing can be differentiated from bacterial cyclic di-GMP re-
cognition through a point mutation at a conserved arginine residue
(R231A) within the lid region of murine STING9. R231 functions to
indirectly bind the phosphate of the phosphodiester bond of cyclic di-
GMP/AMP through a Mg21 or H2O molecule, yet this coordination
seems to be dispensable for STING activation in response to DNA
transfection. We have recently identified a novel STING ligand (10-
carboxymethyl-9-acridanone, CMA) that also triggers STING activa-
tion independently of theR231 residue16. In fact, the crystal structure of
CMAbound tomurine STING revealed that the lid region binds CMA
differently than cyclic di-GMP and that R231 is not involved in CMA
binding. We were intrigued by the differential role of R231 for DNA

and cyclic di-GMP sensing, given the fact that modelling studies using
cGAMP(39-59) instead of cyclic di-GMP could not readily explain the
reported differential role of this residue at the structural level. To
explore this further, we expressed cGAS in HEK293T cells together
with eitherwild-typemurineSTINGor itsR231Amutant.As a control,
we induced endogenous cyclic di-GMP production using a codon-
optimized version of the thermophilic diguanylate cyclase domain (tDGC)
(amino acids 83–248) ofThermotogamaritima17 and a codon-optimized
version of the recently discovered bacterial cGAMP(39-59) synthetase
(DncV) from Vibrio cholerae18. As expected, overexpression of the
cyclic di-GMP synthetase, the cGAMP synthetase and cGAS induced

1Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127Bonn, Germany. 2Department of Biochemistry andGene Center, Ludwig-Maximilians-University,
81377 Munich, Germany. 3Axolabs GmbH, 95326 Kulmbach, Germany. 4Center for Integrated Protein Sciences, 81377 Munich, Germany.
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Figure 1 | The R231A STING mutant uncouples cyclic di-GMP sensing
from cGAS-induced activation. a, Overexpression of dinucleotide
synthetases. HEK293T cells were transfected with different dinucleotide
synthetases (100 ng) together with decreasing amounts of wild-type (WT)
mmSTING or the R231A mutant (10, 5, 2.5, 1.25 and 0 ng) and a pIFNb-
luciferase reporter (pIFNb-GLuc). Reporter activity was measured 16 h after
transfection. RLU, relative light units. b, Direct stimulation with synthetic
compounds. HEK293T cells were transfected with WT mmSTING or the
R231A mutant in conjunction with pIFNb-GLuc. The next day CMA was
added or synthetic cyclic di-GMP or synthetic cGAMP(39-59) was transfected
as indicated and pIFNb-GLuc activity was assayed 16 h later. Representative
data of two (a) or three (b) independent experiments are shown (mean values1
s.e.m.).
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a robust type I interferon (IFN) response in HEK293T cells expressing
wild-type murine STING. Moreover, in line with previous reports,
expression of the R231A point mutant completely abolished type I
IFNproduction in response to endogenous cyclic di-GMPproduction,
but not upon overexpression of cGAS (Fig. 1a and Supplementary
Fig. 1). Surprisingly, however, induction of endogenous cGAMPproduc-
tion using DncV was also completely blunted for the R231A mutant.
Next we stimulated HEK293T cells overexpressing wild-type murine
STING or the R231A mutant directly with synthetic compounds. As
previously reported, CMA-mediated activation of STING did not
require coordination throughR231 and in accordancewith the synthe-
tase data fromabove, synthetic cyclic di-GMPonly activated cells expres-
sing wild-type murine STING, but not the R231A mutant (Fig. 1b).
Unexpectedly, synthetic cGAMP(39-59)was also completely blunted in
its stimulatoryactivitywhentransfected intocells expressingSTING(R231A).
Altogether, these results confirmed previous reports on DNA/cGAS-
mediated STING activation being distinct from cyclic dinucleotide
sensing with regards to the involvement of the lid region of STING.
At the same time, however, these results questioned the concept of
cGAMP(39-59) being the cGAS-dependent second messenger mole-
cule activating STING.
To follow up on this observation, we generated cytoplasmic lysates

from cGAS overexpressing HEK293T cells and untreated HEK293T
cells and subjected the protein-depleted, low-molecular-weight fraction
to reversed-phase high-performance liquid chromatography (RP-HPLC).
Incomparison tountreatedHEK293Tcells, cGAS-overexpressingHEK293T
cells showed an additional, unique peakwith a retention time of 46min
(Fig. 2a, *), whereas synthetic cGAMP(39-59) spiked into cell lysate
eluted at a far higher retention time (Fig. 2a, **). Comparing endo-
genously produced cyclic di-GMP to synthetic cyclic di-GMP under
the same conditions revealed nodifference in retention time, excluding

the possibility of the purification process affecting the physiochemical
properties of the compounds (Supplementary Fig. 2). Fractionation of
the cell-derived, cGAS-specific low-molecular-weight product (*) and
transfer into STING competent LL171 cells revealed potent stimula-
tory activity, within the same range as synthetic cGAMP(39-59) (Fig. 2b
and Supplementary Fig. 3). Analogous results were obtained when
purified cGAS was incubated in vitro with GTP and ATP (Fig. 2c). A
cGAS-dependent peak could be detected at the same retention time as
in cell lysates from cGAS overexpressing HEK293T cells and only this
peak exerted stimulatory activity in LL171 cells (Fig. 2d). Thin-layer
chromatography (TLC) as an alternative separation technique revealed
that the cell-derived and the in-vitro-synthesized cGASproduct showed
a similar chromatographicmobility to that of the synthetic cGAMP(39-59)
(Fig. 2e). Despite the big difference in chromatographic properties
under RP-HPLC conditions, electrospray ionization-liquid chromato-
graphy-mass spectrometry (ESI-LC-MS) analysis revealed the same
molecular mass (m/z (M-H)5 673.1) for both the cell-derived cGAS
product and synthetic cGAMP(39-59) (Fig. 2f). In addition, while the
MS/MS fragmentation pattern of the cGAS-derivedmolecule was con-
sistent with a ribo-dinucleotide made up of guanosine and adenosine,
these studies reproducibly displayed a clear difference compared to
synthetic cGAMP(39-59) (Supplementary Fig. 4). Most intriguingly,
the MS/MS fragmentation studies pointed to the presence of a 29-59
phosphodiester bond between guanosine and adenosine (Supplemen-
tary Figs 4–6 and Supplementary Notes 1 and 2).
On the basis of these observations, we considered several candidate

molecules as products of cGAS (Supplementary Fig. 7). Among these, a
cyclic dinucleotide with one or two 29-59 phosphodiester bonds seemed
to be most likely. To address this hypothesis, we performed a series of
enzyme digests coupled to TLC and ESI-LC-MS. First, we treated
synthetic cGAMP(39-59) and the in-vivo- and in-vitro-synthesized
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product is distinct from
cGAMP(39-59). a, RP-HPLC
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transfected into LL171 cells, whereas
synthetic cGAMP(39-59) served as
a control. ISRE-reporter activity
was measured 14 h later.
c, Chromatogramof an in vitro cGAS
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retention time as the endogenous
product from a. d, ISRE activity in
LL171 cells. Peaks 1–8 from c were
fractionated and transfected into
LL171 cells that were then studied for
ISRE-reporter activity using
respective control stimuli. e, TLC
analysis of in-vitro- and in-vivo-
synthesized cGAS product withATP,
GTP and synthetic cGAMP(39-59) as
controls. f, ESI-LC-MS analysis of
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Representative data of two (e) or
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cGAS product using S1 nuclease and ribonuclease T2. Both enzymes
cancleave internal 39-59phosphodiester linkages. Synthetic cGAMP(39-59)
could be processed into mononucleotides by both enzymes, whereas
the cGAS-derived cyclic dinucleotide was only cleaved into a linear
dinucleotide (Fig. 3a–c and Supplementary Fig. 9a, b). These results
suggested that one of the internucleotide bonds was not a 39-59 phos-
phodiester. To addresswhichone of the two phosphodiester bondswas

not hydrolysable by the enzymes above, we took advantage of the
nucleotide specificity of ribonuclease T1, which catalyses the endonu-
cleolytic cleavage of 39-59 phosphodiester bonds only after guanosine.
As expected, ribonucleaseT1processed synthetic cGAMP(39-59) into a
linear dinucleotide, consistent with the presence of a Gp(39-59)A phos-
phodiester bond (Fig. 3d and Supplementary Fig. 9c). The cGAS-
derived dinucleotide, however, was not processed, indicating that the
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GpA phosphodiester bond was not 39-59. In line with this notion,
substitution of GTP by 29dGTP during the in vitro enzymatic reaction
completely blunted synthesis of dinucleotides by cGAS, whereas addi-
tion of 39dGTP gave rise to small, but consistent amounts of a cGAMP
product (Supplementary Fig. 10). In a reverse approach, we made use
of snake venom phosphodiesterase I (SVPDE), which can hydrolyse
59-mononucleotides from 39-hydroxy-terminated ribo-oligonucleotides.
Consistent with its two internal 39-59 phosphodiester bonds, synthetic
cGAMP was not processed by SVPDE, whereas the cGAS-derived
product was hydrolysed in a two-step process into its mononucleotide
components (Fig. 3e and Supplementary Fig. 9d). Altogether, these
results clearly identified the cGAS-derived dinucleotide product as a
cyclic GA dinucleotide with a 29-59 phosphodiester linkage between
guanosine and adenosine and a 39-59 phosphodiester linkage between
adenosine and guanosine .Gp(29-59)Ap(39-59). (cGAMP(29-59)).
Comparison of synthetic cGAMP(39-59) and the cGAS-derived prod-
uct by 1H-NMR spectroscopy supported the notion of differing 39-59/

29-59 linkages between guanosine and adenosine within the cyclic GA
dinucleotide and revealed crucial information on the ribose conformation
of the distinct nucleotide elements in both molecules (Supplemen-
tary Fig. 11 and Supplementary Note 3). Relying on these data we were
able to formulate a model of cGAMP(29-59) based on the previously
determined structure of cyclic di-GMPbound to STING (Fig. 3f, g and
SupplementaryNote 3). To provide an additional proof of cGAMP(29-59)
being the actual cGAS-derived second messenger molecule, we chem-
ically synthesized.Gp(29-59)Ap(39-59). and its isomer.Gp(39-59)
Ap(39-59). (Supplementary Fig. 12). As expected, synthetic cGAMP
(29-59) had the same physiochemical properties as the in vitro cGAS-
generated dinucleotide (Supplementary Fig. 13).
Transfection of both DNA and cyclic dinucleotides (39-59linked)

has been shown to induce indistinguishable transcriptional responses
inmurine cells in a STING-dependentmanner. However, despite being
equally responsive towards DNA challenge, recent reports indicated
that human cells are less responsive to intracellular delivery of cyclic
dinucleotides or other STING ligands19. To determine whether these
species-specific properties of STING would also apply for the recog-
nition of cGAMP, we first sought to compare both cGAMP isomers
with regard to their biological activity in human and murine cells.
Transfection of both cGAMP(29-59) and cGAMP(39-59) into murine
embryonic fibroblasts and macrophages strongly induced production
of the antiviral cytokine IP-10, confirming previous reports on the
stimulatory potency of cyclic dinucleotides for murine STING (Fig. 4a, b).
However, to our surprise, we reproducibly observed a marked differ-
ence in responsiveness towards the two cGAMP isomers, when we
tested them for functional activity in human fibroblasts and themono-
cytic cell line THP-1 (Fig. 4d, e). Here, cGAMP(29-59) wasmore active
than cGAMP(39-59) with regards to production of IP-10. In fact,
human fibroblastswere almost unresponsive towards transfectionwith
cGAMP(39-59), even at high concentrations of the cyclic dinucleotide
beingdelivered. Similar resultswereobtainedwhenwe studiedHEK293T
cells overexpressing cGAS or the cGAMP synthetaseDncVderived from
V. cholerae (Fig. 4c and f). Whereas expression of murine STING ren-
dered HEK293T responsive towards both the cGAS and the cGAMP
synthetase products, only cGAS expression was able to activate human
STING. Finally, we performed binding studieswith the carboxy-terminal
ligand-binding domain (LBD) of mouse and human STING using
differential scanning fluorometry (DSF). These data revealed that
cGAMP(29-59) showed stronger complex formation with both human
and mouse STING compared to cGAMP(39-59) (Fig. 4g, h). Of note,
this preference for cGAMP(29-59) over cGAMP(39-59) was more
prominentwhen the LBDof human STINGwas tested. Together, these
data indicate that, in contrast to cGAMP(39-59), cGAMP(29-59) is
highly potent in the human system and, like DNA, is not affected by
species-specific properties of STING.
Next we wanted to delineate the mechanism of cGAS-dependent

cyclic dinucleotide synthesis. Enzymatic cGAS reactions in thepresence
of excess substrate (ATP/GTP) displayed, among other dinucleotide
species, one predominant peak in ESI-LC-MS analysis, which was
represented by pppGp(29-59)A (Supplementary Fig. 10). However,
upon termination of the reaction we identified four distinct linear
dinucleotide species at almost similar quantities, next to .Gp(29-59)
Ap(39-5). as the major species (Fig. 5a). These molecules included:
pppGp(29-59)A, pppGp(39-59)A, pppGp(29-59)G and pppAp(39-59)A
(Fig. 5a). When we incubated ATP or GTP alone with cGAS, either
pppAp(39-59)A or pppGp(29-59)G predominated by approximately
10:1 over their respective phosphodiester linkage isomers (Supplemen-
tary Fig. 14). Of note, whereas GTP by itself gave rise to substantial
amounts of a cyclic dinucleotide (.Gp(29-59)Gp(39-59).), ATP by
itself was unable to trigger synthesis of detectable amounts of a cyclic
dinucleotide. This observation indicated that a 29-59 dinucleotide con-
stitutes the substrate for the subsequent cyclization reaction and that
pppGp(29-59)A represented the precursormolecule for cGAMP(29-59).
To prove this hypothesis, we fractionated the four major dinucleotide
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species obtainedduring enzymatic cGAS reactions and incubated them
again with cGAS. Interestingly, we found that both 29-59-linked dinu-
cleotide species were quantitatively converted into cyclic dinucleotides,
whereas the 39-59-linked dinucleotides were only scarcely, if at all,
converted (Fig. 5b andSupplementary Fig. 15). Interestingly, the second
phosphodiester bond was linked exclusively via 39-59 for all cyclization
reactions. Together these results unequivocally identified pppGp
(29-59)A as the precursor of cGAS-dependent cGAMP(29-59) synthesis.
On the basis of these results we postulate the following two-step

synthesis model (Fig. 5d). (1) In the presence of ATP and GTP cGAS
first catalyses the generation of a linear dinucleotide, with the attacking
nucleotide determining the type of phosphodiester bond being gener-
ated. 59-GTP preferentially results in a 29-59 linkage, whereas 59-ATP
results in a 39-59 linkage leading to either pppGp(29-59)R or pppAp
(39-59)R, respectively. In this first synthesis step, cGAS shows a pref-
erence forGTPoverATPbeing the attacking nucleotide, andATPover
GTP for the nucleotide being attacked. (2) Whereas pppGp(29-59)R
species are quantitatively cyclized by cGAS in a second step, pppRp
(39-59)A dinucleotides are poor, if at all, substrates for cyclization. Of
note, this second step exclusively generates a 39-59 linkage, at least for
the dinucleotide species studied. The fact that only scarce amounts of
cyclic di-GMP are found during in vitro reactions might be attributed
to lower supply of its precursormolecule pppGp(29-59)G and presum-
ably the preference of pppGp(29-59)A over pppGp(29-59)G during the
cyclization step. All in all, this model explains the nearly exclusive
generation of .Gp(29-59)Ap(39-5). by cGAS in the presence of
ATP and GTP.
Previously it has been shown that the response of STING towards

DNAand cyclic dinucleotides can be uncoupled9. This observation can
now be rationalized by our finding that cGAS produces a novel class of
secondmessenger being a 29-59/39-59-linked cyclic dinucleotide, which is
structurally and physiochemically distinct frombacteria-derived cyclic
dinucleotides. In fact, this report describes the enzymatic productionof
a cyclic 29-59/39-59-linked dinucleotide and thereby adds, at the func-
tional level, cGAS to the oligoadenylate synthetase (OAS) family of
enzymes that are unique in their ability to synthesize 29-59 phospho-
diester bonds. Indeed, this functional similarity seems quite plausible
given the sequence homology of cGAS toOAS1, which produces 29-59-
linked oligoadenylates upon binding double strandedRNA15,20. Another
striking analogy is that cGAS as well as the OAS enzymes both require
nucleic acid binding to be activated to synthesize their products in a
template-independent fashion. Thus, our results now unequivocally
unify these two innate sensing systems and suggest bothprocesses to be
evolutionary linked.
The unorthodox chemical linkage within cGAMP(29-59) provides a

unique feature that may be targeted by specific cellular regulation
mechanisms.At the same time, the cGAS-dependent, two-step synthesis
of cGAMP(29-59) could be amenable for the development of specific
inhibitors for the treatment of autoimmune diseases that engage the
cGAS–STING axis.
Note added in proof: After submission of the revised version of this
manuscript, Gao et al.21 and Diner et al.22 reported the same finding,
that cGAMP(29-59) is the cGAS-derived second messenger molecule
that activates STING.

METHODS SUMMARY
Cell stimulation. If not otherwise indicated, cells were transfected using
Lipofectamine 2000 (Invitrogen) with cyclic dinucleotides at a final concentration
of 2mgml21 or DNA (pCI vector) at 1.33mgml21.
In vitro assay for cGAS activity. For in vitro synthesis of the cGAS reaction
product 2mM recombinant cGAS was mixed with 3mM dsDNA in Buffer A
(100mM NaCl, 40mM Tris pH7.5, 10mM MgCl2) with 1mM ATP and 1mM
GTP.
Reverse phase-HPLC. Cell lysates and enzymatic reaction mixtures were applied
to a 4.13 250mmPRP-1 column (Hamilton) and separated in a linear gradient of
0% buffer B for 8min, followed by an increase of buffer B from 0 to 75% in 62min

at a flow rate of 1mlmin21. Buffer A was 20mM triethylammonium hydrogen
carbonate (TEAB) and buffer B 20mM TEAB in 20% methanol.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Reagents. Cyclic di-GMP and cyclic GAMP(39-59) were obtained from Biolog.
DNA oligonucleotides corresponding to ISD were obtained from Metabion and
annealed in PBS. 10-carboxymethyl-9-acridanone was purchased from Sigma
Aldrich. ATP and GTP were obtained from Fermentas.
Cell culture. HEK293T cells, THP1 cells, human fibroblasts (hTERT-BJ1 cells),
mouse embryonic fibroblasts, bonemarrow-derivedmacrophages and LL171 cells
(L929 cells containing a stable IFN-stimulated response element-luciferase reporter
plasmid (ISRE-Luc)) were cultured in DMEM supplemented with 10% (v/v) FCS,
sodiumpyruvate (all Life Technologies) andCiprofloxacin (Bayer Schering Pharma).
All mouse cells used in this study and human hTERT-BJ1 cells and THP1 cells
show responsiveness towards DNA stimulation and thus could be used for the
exploration of DNA sensing pathways.
Plasmids. Expression plasmids coding for murine STING (amino-terminal green
fluorescent protein (GFP)-tag)16, murine STING R231A16 and murine cGAS are
based onpEFBOS23.Murine cGASwas amplified from cDNAbyPCR (forward 59-
ATTACTCGAGATGGAAGATCCGCGTAGA-39 and reverse 59-ATTAAGATC
TCTATCAAAGCTTGTCAAAAATTGGAAACCC-39) and cloned into pEFBOS
usingXhoIandBglII/BamHI.Acodon-optimizedversionof thediguanylate cyclase
domain (aminoacids 83–248) ofTM1788 (ThermotogamaritimaMSB8)harbour-
ing a point mutation (R158A) to enhance c-diGMP production was cloned into
pEFBOS-C-term-Flag/HisusingXhoI andBamHI17. In addition, a codon-optimized
version of theVibrio cholerae cGAMP synthetase (DncV; amino acids 1–438) was
cloned into pEFBOS-C-term-Flag/His using XhoI and BamHI18.
Immunoblotting. Cells were lysed in 13 Laemmli buffer and denatured at 95 uC
for 5min.Cell lysateswere separatedby10%SDS–PAGEand transferredontonitro-
cellulosemembranes. Blotswere incubatedwith anti-b-actin-IgG–horseradishperoxi-
dase (HRP) and anti-GFP-IgG/anti-rabbit-IgG–HRP (all Santa Cruz Biotechnology).
Cell stimulation. LL171 cells (0.153 106 per ml), murine BMDM (13 106 per
ml),MEFs (0.153 106 perml), hTERT-BJ1 cells (0.23 106 perml) andTHP1 cells
(0.63 106 perml) were transfected using Lipofectamine 2000 (Invitrogen) accord-
ing to themanufacturer’s instructions. PlasmidDNA(emptypCI vector)was trans-
fected at a final concentration of 1.33mgml21. Unless otherwise indicated, cyclic
dinucleotides were transfected at a final concentration of 2mgml21. Cells were
stimulated 14 h before final read-out was performed.
Luciferase assay. LL171 cells were lysed in 53 passive lysis buffer (Promega) for
10min at room temperature. The total cell lysate was incubated with firefly luci-
ferase substrate at a 1:1 ratio and luminescence was measured on an EnVision
2104 Multilabel Reader (Perkin Elmer). pIFNb-GLuc activity was measured in
HEK293T cell supernatants using Coelenterazine as a substrate.
ELISA. Cell culture supernatants were assayed for mouse IP-10 (R&D Systems)
and human IP-10 (BD Biosciences) according to the manufacturer’s instructions.
In vitro assay for cGAS activity. For in vitro synthesis of the cGAS reaction
product 2mM recombinant cGAS was mixed with 3mM dsDNA (ISD) in Buffer
A (100mM NaCl, 40mM Tris pH7.5, 10mM MgCl2). Reaction was started by
addition of 1mMATPand 1mMGTP.After 2–4 h incubation at 37 uC the reaction
was stopped and filtered using Amicon Ultra-15 filter devices (10,000 or 30,000
relative molecular mass cut-off).
Preparation of HEK293T cell lysates. HEK293T cells (0.333 106 per ml) were
transfected with 3.2mg plasmid using GeneJuice (Novagen). After 20 h cells were
collected, washed twice with PBS and pelleted by centrifugation at 500g at 4 uC.
The cell pellet was lysed (lysis buffer: 1mMCaCl2, 3mMMgCl2, 1mMEDTA, 1%
Triton X 100, 10mM Tris pH7.5) for 20min at 4 uC. The cell lysate was briefly
centrifuged (1,000g, 10min, 4 uC) and the resultant supernatant was further puri-
fied via two sequential rounds of phenol-chloroform extraction. The extract was
then filtered by centrifugation using Amicon Ultra-15 filter devices (10,000 or
30,000 relative molecular mass cut-off). In some experiments the final extract was
concentrated via centrifugation under vacuum (Eppendorf Vacufuge).
Reversed phase-HPLC.Cell lysates and enzymatic reactionmixtureswere applied
to a 4.13 250mmPRP-1 column (Hamilton) and separated in a linear gradient of
0% buffer B for 8min, followed by an increase of buffer B from 0 to 75% in 62min
at a flow rate of 1mlmin21. Buffer Awas 20mMTEABandbuffer B 20mMTEAB
in 20% methanol. The product fractions were collected, evaporated and desalted
by repeated co-evaporation with methanol. The residue was dissolved in PBS and
the product concentration was determined by measuring ultraviolet absorbance

(A260). This HPLC method was mainly employed for preparative runs of cell
lysates or in vitro synthesis products. Please note the differing retention times of
this method compared to the analytical ESI-LC-MS runs.
Enzymatic reactions. 0.07A260 of cGAMP(39-59) and cGAMPgenerated either in
vivo or in vitro were dissolved in 6.5ml incubation buffer and treated with 1ml of
the following enzymes: RNaseT1 (Fermentas, 100mM Tris-HCl pH7.4, 10mM
EDTA, 1 h, 37 uC), S1 nuclease (Fermentas, 50mMNaOAc pH4.5, 300mMNaCl,
2mM ZnSO4, 1 h, 37 uC), RNase T2 (MoBiTec, 125mM NH4Ac pH4.5, 1 h,
37 uC), SVPDE (Sigma, isolated from Crotalus adamanteus, 50mM Tris-HCl
pH8.8, 10mM MgCl2, 30min, 37 uC). The digestion products were analysed by
TLC and ESI-LC-MS.
Thin layer chromatography (TLC). TLC was performed on 53 10 cm LuxPlate
Si60 silica-covered glass plates (Merck). The samples (1–2ml) were spotted onto
the plate and separation was performed in n-propanol/ammonium hydroxide/
water (11:7:2 v/v/v). The plate was air-dried and bands were visualized with a
short-wavelength (254 nm) ultraviolet light source.
ESI-LC-MS and ESI-LC-MS/MS. All reagents used were purchased from Sigma
Aldrich. The ESI-LC/MS analysis was performedusing aDionexUltimate 3000RS
system (ThermoFisher Scientific) coupled to an IonTrapmass spectrometer (LCQ
Deca XP1, Thermo Finnigan) equipped with an electrospray source operating in
negative ionizationmode. The ionization source parameters were set to: ion trans-
fer capillary temperature 310 uC, spray voltage 4 kV and internal source fragmen-
tation 15 kV. All samples were chromatographed on a Waters XBridge C18 OST
column (2.13 50mm; 2.5mmparticle size) at 30 uC column temperature. Separation
of the analytes was achieved using a gradient of 10mMTEAB in water as eluent A
and10mMTEAB in 20%MeOHas eluent Bwith a flow rate of 0.25mlmin21. The
HPLC gradient starts at 0% B, hold for 3min and then increases over 16.5min to
90% B.
Full-scan mass spectrometry spectra were acquired in a mass range from m/z

150 to 1,000with isotopic resolution for the singly chargedmolecular ions. Tandem
MS-MS and MS-MS-MS spectra were recorded from isolated ions in the ion trap
applying collision induced dissociation (CID) applying heliumas collision gas. For
tandemMS-MS spectra the singly charged molecular ion was isolated and subse-
quently fragmented with 28% normalized collision energy. For tandem MS-MS-
MS spectra the G-depurinated daughter ion of the cyclic dinucleotides with
m/z5 522.0 (2guanine base) generated in the first CID fragmentation stage,
was isolated and subsequently fragmented with 30% normalized collision energy.
Periodate oxidation assay. 0.1mgml21 of the dinucleotide fractionated from cell
culture lysates was incubated with 20mM sodium periodate for 60min at room
temperature in the dark. After the incubation 10-vol% of 2M triethylammonium
acetate was added to the mixture that then was analysed by ESI-LC-MS.
29R39 isomerization assay.Approximately 0.1mgml21 of the dinucleotide frac-
tionated from cell culture lysates was incubated for 2 h at 90 uC in the presence of
10mM EDTA and 20mMTris-HCl at pH8. After the incubation 10-vol% of 2M
triethylammonium acetate was added to the mixture that then was analysed by
LC-MS.
Chemical synthesis of .Gp(29-59)Ap(39-59). and .Gp(39-59)Ap(39-59)..
The chemical synthesis of .Gp(29-59)Ap(39-59). and .Gp(39-59)Ap(39-59).
was performed according to the strategy described in ref. 24 using the commer-
cially available 39-TBDMSprotected 29-guanosine phosphoramidite (Chemgenes)
or 29-TBDMS protected 39-guanosine phosphoramidite (Sigma-Aldrich) for
introduction of the 29-59 and 39-59 phosphodiester bond linkage, respectively.
The 39-adenosine phosphoramidite and all other reagents were purchased from
Sigma-Aldrich.After base deprotection and removal of theTBDMSprotecting groups
.Gp(29-59)Ap(39-59). or .Gp(39-59)Ap(39-59). was purified by RP-HPLC as
described above and the product was verified by ESI-LC-MS/MS.
Differential scanning fluorometry. Purification of human and murine STING
ligand binding domains and differential scanning fluorometry to evaluate their
thermal stabilization by nucleotide ligands was performed as previously
described16.

23. Mizushima, S. & Nagata, S. pEF-BOS, a powerful mammalian expression vector.
Nucleic Acids Res. 18, 5322 (1990).

24. Gaffney, B. L., Veliath, E., Zhao, J. & Jones, R. A. One-flask syntheses of c-di-GMP
and the [Rp,Rp] and [Rp,Sp] thiophosphate analogues. Org. Lett. 12, 3269–3271
(2010).
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2.4. Structural mechanism of cytosolic DNA sensing by cGAS 
 

2.4.1. Summary 
 

cGAS is a PRR responsible for sensing cytosolic DNA. Upon DNA binding cGAS 

utilizes ATP and GTP to produce the second messenger 2,3-cGAMP that activates 

STING and downstream signalling. In this publication we were able to solve the 

crystal structures of apo- and substrate bound cGAS-Mab21 domain. This enabled 

us to explain the first step in the cyclization reaction that leads to the formation of 

2,3-cGAMP and the role of cGAS as broad range DNA sensor. 

The Mab21 domain of cGAS harbours the dinucleotide cyclization activity. We were 

able to solve the structure of the apo domain using a SAD (Single Wavelength 

Anomalous Dispersion) phasing approach with a dataset obtained from crystals of 

selenomethionine-labelled protein. The structure comprises two lobes. Lobe 1 

possesses an NTase fold and lobe 2 consists of a bundle four α-helices. Both lobes 

are separated by the active site cleft. On the opposing site of the active site cleft the 

two lobes are connected by a long α-helix (spine helix) that flanks a flat highly 

positively charged surface called platform. A peculiar protrusion consisting of highly 

conserved histidines and cysteines coordinating a zinc2+ ion (Zn-thumb) flanks the 

platform on the other side. 

Using a mutant construct that is incapable of catalyzing the cyclization reaction we 

were additionally able to solve the structure of porcine cGAS-Mab21 domain trapped 

in the substrate bound state. In this state, the dsDNA is positioned along the 

platform. It is stabilized by various side- and main-chain contacts of platform and 

spine helix residues with the sugar-phosphate backbone. Further stabilization is 

achieved by inserting two arginine fingers into the minor groove. The Zn-thumb is 

located near the major groove. This binding mode is sequence independent and 

explains the role of cGAS as broad range DNA sensor. In the active site, we could 

identify the bound ATP and GTP nucleotides. Their orientation in respect to each 

other explains the first step of the cyclization reaction which leads to the formation of 

a linear intermediate. 

Further, comparison of apo- and holo cGAS revealed that dsDNA binding causes the 

nicking of the spine helix. The resulting movement is translated into a slight closure 
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and the rearrangement of the active site cleft. We termed this the “switching 

mechanism”. It describes the transition from the inactive state to the active state of 

cGAS. The crystal structure derived models were further supported by EMSAs 

(Electrophoretic Mobility Shift Assays) and TLC (Thin Layer Chromatography) 

coupled activity assays in vitro and by luciferase activity based reporter assays in 

vivo. 

In addition, we compared the cGAS-Mab21 domain with the RNA sensor molecule 

OAS1. Both structures are remarkably similar. But in contrast to OAS1, cGAS binds 

B-form DNA instead of A-form RNA. We hypothesize that the Zn-thumb which is only 

present in cGAS acts as a “ruler” that contributes to the DNA specificity of cGAS. 

Nevertheless, because of the similarities of our results and the existing model of 

OAS1 we suggested that DNA and RNA sensing could be evolutionarily connected. 

In this publication we could solve the structure of porcine cGAS-Mab21 domain in 

apo- and the substrate bound form. These structures are in accordance with the role 

of cGAS as broad range DNA sensor and explain the first step in the formation of 

2,3-cGAMP. We describe a switching mechanism that is the basis for the transition 

of the inactive form of cGAS to the active form. Furthermore, we structurally unify 

RNA and DNA sensing in the innate immune system and propose an evolutionary 

connection. 

 

 

2.4.2. Contribution 
 

The author of this thesis contributed equally to this publication. He cloned cGAS 

mutants for cell based assays and for the in vitro experiments. He purified cGAS 

mutants for EMSAs, TLC coupled activity assays and for crystallization. He helped 

with performing the TLC coupled activity assays. Additionally, he crystallized the 

substrate bound Mab21 domain, collected the diffraction data and solved the 

structure. 
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2.4.3. Paper 
 

The following paper was published 2013 in nature. 

 

Structural mechanism of cytosolic DNA sensing by cGAS 
 

Filiz Civril*, Tobias Deimling*, Carina C. De Oliveira Mann, Andrea Ablasser, 

Manuela Moldt, Gregor Witte, Veit Hornung & Karl-Peter Hopfner 

 

Nature 2013 June 20; 498(7454): 332 - 7 
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Structural mechanism of cytosolic DNA
sensing by cGAS
Filiz Civril1*, Tobias Deimling1*, Carina C. de Oliveira Mann1, Andrea Ablasser2, Manuela Moldt1, Gregor Witte1, Veit Hornung2

& Karl-Peter Hopfner1,3

Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular
pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory
cytokines. Recognition of cytosolicDNAby the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces
the production of cGAMP to activate the stimulator of interferon genes (STING). Here we report the crystal structure of
cGAS alone and in complex with DNA, ATP and GTP along with functional studies. Our results explain the broad DNA
sensing specificity of cGAS, show how cGAS catalyses dinucleotide formation and indicate activation by a DNA-induced
structural switch. cGAS possesses a remarkable structural similarity to the antiviral cytosolic double-stranded RNA
sensor 29-59oligoadenylate synthase (OAS1), but contains a unique zinc thumb that recognizes B-form double-stranded
DNA. Our results mechanistically unify dsRNA and dsDNA innate immune sensing by OAS1 and cGAS nucleotidyl
transferases.

Recognition of pathogen- or danger-associated molecular patterns
(PAMPs or DAMPs) is crucial for host defence. Innate immunity
ensures this recognition through germline-encoded pattern recog-
nition receptors (PRRs) and triggers signalling cascades that result
in production of proinflammatory cytokines and type I interferons
(IFN-a and IFN-b)1,2. CytosolicDNAarising fromintracellular bacteria
or viral infections is a powerfulPAMPand is also implicated as aDAMP
in autoimmune diseases1,3,4. Over the past years, a variety of PRRs for
cytosolic DNA have been reported: DNA-dependent activator of IFN-
regulatory factors (DAI, also known as ZBP1)5, absent in melanoma 2
(AIM2)6–8, RNA polymerase III9,10, leucine-rich repeat (in Flightless I)
interacting protein-1 (LRRFIP1)11, DExD/H box helicases (DDX41,
DHX9 and DHX36)12,13 and IFN-inducible protein IFI1614. However,
thesePRRsare either cell-type- orDNA-sequence-specific, arepossible
accessory factors (DExD/H proteins), or trigger different pathways
such as caspase-1 activation (AIM2) or a b-catenin-dependent signall-
ing pathway (LRRFIP1)15.
Although the DNA sensor for type I IFN production with broad

specificity and cell distribution was not identified until recently, it was
known that IRF3 and NFkB activation in response to DNA requires
STING (stimulator of interferon genes, encoded by gene TMEM173
the protein is also known asMITA,MPYS or ERIS), a transmembrane
protein that is resident on the endoplasmic reticulum16–18. STING
colocalizes with DNA in vivo but binds DNA only with low affinity
in vitro19, suggesting the presence of an additional sensor. Furthermore,
STING is a direct PRR for cyclic dinucleotides such as c-di-AMP and
c-di-GMP20, which are signalling molecules in prokaryotes and trigger
IFN in response to, for example, intracellular bacteria21,22.
Recent results identified human c-GMP-AMP (cGAMP) synthase

(cGAS, also known as C6ORF150 and male abnormal 21 domain
containing 1 (MB21D1)) as a broad-specificity cytosolicDNAsensor23.
In the presence ofDNAcGASproduces cGAMP,which is an endogenous
second messenger that activates STING18, explaining how STING can
stimulate IFN in response tobothcyclic dinucleotides andDNA.Toreveal

the mechanism of DNA-stimulated cGAMP synthesis, we determined
the crystal structureofporcine cGASMab21 (residues135–497, comprising
the highly conserved, DNA-stimulated nucleotidyl transferase (NTase)
domain) with and without a 14-mer dsDNA ligand and nucleotide
substrates, along with functional studies in vitro and in living cells.

Crystal structure of cGASMab21

cGAS is a 60 kDa protein composed of an unstructured, not well
conserved amino-terminal stretch of approximately 130–150 residues
followed by a highly conserved Mab21 domain that belongs to the
nucleotidyl transferase (NTase) superfamily24. To overproduce and
crystallize cGAS, it was necessary to genetically remove the unstruc-
tured N-terminal tail. The resulting cGASMab21 used in this study
(residues 155/161–522 for human cGAS and residues 135–497 for
porcine cGAS) possesses DNA-dependent dinucleotide synthesis acti-
vity in the presence of a 50-mer dsDNA that induces IFN inTHP1 cells
(Fig. 1a and Supplementary Fig. 1a, b). Whereas cGAS also produces
cGAMP in the presence of a 40-mer dsDNA, no activity was observed
whenwe omitted eitherGTPorATP from the reactionmixture or sub-
stituted dsDNA with single-stranded DNA (Supplementary Fig. 1a).
We determined the crystal structure of porcine cGASMab21 by single-

wavelength anomalous dispersion to 2.5 Å resolution using a seleno-
methionine derivative. After density modification, we could build an
initialmodel, whichwas completed and refined against the 2.0 Å resolu-
tion native data, resulting in good R-factors and stereochemistry (Sup-
plementary Fig. 1c and Supplementary Table 1).
The Mab21 domain of cGAS comprises two lobes, separated by a

deep cleft (Fig. 1b). Lobe 1 possesses the NTase fold with a two-leaved
highly twisted b-sheet (b1–b8) that is flanked on the outside by two
long a-helices (aA and aB). At the inner side, lining the cleft, b1 and
b6 harbour the signature catalytic site residues (E200, D202, D296) of
the NTase superfamily that coordinate the catalytic Mg21 ions and
nucleotides. Lobe 2 is a bundle of four a-helices (aE–aH), connected

*These authors contributed equally to this work.

1DepartmentofBiochemistry andGeneCenter, Ludwig-Maximilians-University, 81377Munich,Germany. 2Institute forClinicalChemistry&Clinical Pharmacology, Unit forClinical Biochemistry, University
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to lobe 1 by a long ‘spine’ (aA), two linker helices (aC, aD) and by a
long active site loop connecting aA and b1.
The molecular surface opposite the active site is a fairly flat, slightly

concave ‘platform’, formed predominantly by aA, aC, aD and the
nucleotide-binding loop. An intriguing protrusion (residues 367–
382) is situated at one end of the platform. This protrusion contains
highly conserved histidine and cysteines (H367,C373,C374 andC381),
which together coordinate a Zn21 ion (Fig. 1c). We denote this loop
‘Zn thumb’. Its sequence is inserted between lobes 1 and 2 and is a
highly conserved and characteristic feature of cGAS orthologues
(Supplementary Fig. 1d), indicating an important functional role.

The cGAS–DNA–GTP–ATP complex
To reveal the structure of the activated conformation of cGAS, we
co-crystallized cGASMab21(td) with a self-complementary 14-mer oligo-
nucleotide, ATP,GTPandMgCl2. To trap an activated conformationof
cGASMab21 with DNA and bound nucleotides we mutated the NTase
catalytic residues E200 and D202 to Q and N, respectively, thereby pre-
venting catalysis during crystallization. The resulting transferase-
deficient (td) variant is denoted cGASMab21(td). The structure of the
cGASMab21(td)–DNA–GTP–ATP complexwasdeterminedbymolecular
replacement using the coordinates for apo cGASMab21 as searchmodel.
2Fo2 Fc and Fo2 Fc maps revealed interpretable density for 13 out of
14 base pairs of the dsDNA duplex and for both nucleotides bound at
the active site (Supplementary Fig. 2). The structure was refined at
3.1 Å resolution, resulting in a model with good R-factors and stereo-
chemistry (Supplementary Table 1).
DNA is bound along the platformbetween the spine on one side and

the Zn thumb on the other side (Fig. 2a). cGAS binds DNA predomi-
nantly by sequence-independent interactions to both phosphate-sugar
backbone strands along the minor groove (Fig. 2b, c). Hereby, cGAS
binds seven nucleotides at the core of the platform, which are recog-
nized by at least eleven residues via specific side- and/or main-chain
contacts. In addition to the phosphate and sugar contacts, two arginine
fingers (R150 and R192) are inserted into the minor groove, addition-
ally stabilizing the interaction in a fairly sequence-independentmanner.
Besides binding to the array of conserved positively charged residues at
the bottomof the platform, DNA is also bound by the spine and the Zn
thumb. The continuous helix of the spine in apo-cGASMab21 is inter-
rupted in the DNA complex and aDNAbackbone phosphate is bound
at the central kink of the spine helix. On the other side of the platform,
the Zn thumb contacts the DNA backbone near the major groove.We
donot see close, direct polar contacts betweenZn thumbandDNA, but

do not want to rule out water-mediated interactions here (Supplemen-
tary Fig. 2a).
The Zn thumb does not substantially change conformation or loca-

tion between apo and DNA-bound cGAS. It seems to be a rather rigid
element, in which the zinc ion serves as a structural stabilizer of the
protruding loop, similar to Zn21 in regulatory domains of RIG-I-like
receptors25. The location of the Zn thumb at the backbone near the
major groove suggests that it may assist in binding to B-formDNA. In
support of this, we do not see a substantial perturbation of the bound
DNA from canonical B-form DNA.
Altogether, our structure suggests a specific recognition of B-form

dsDNA by cGAS through an extended B-DNA binding platform and
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flanking ‘Zn thumb’ across both lobes of the enzyme. The observed
mode of binding is consistent with the key role of cGAS in sensing
very different types of DNA in a sequence-independent manner18,23.

Structure-function analysis
Tovalidate the structural results, wemutated several conserved positively
charged residues at the DNA-binding platform of human cGAS, two
active site residues, two zinc ligands in the Zn thumb, or the entire Zn
thumband tested fornucleotidyl-transferase activity in vitroby thin-layer
chromatography (TLC) (Fig. 3a). cGASproduces a product thatmigrates
approximately in the range of c-di-AMP synthesized by DisA26, con-
sistent with formation of a dinucleotide. The conserved active site
residues of NTases (human E2251D227; porcine E2001D202 and
human G2121S213) are essential for in vitro activity of cGASMab21.
Moreover,mutation of conserved positively charged residues at the centre
and flanking regions of the platform (K1731R176 and K4071K411)
either diminish or abolish activity, in accordance with this site being
important for DNA sensing. Finally, disruption of the zinc-binding
site of the thumb (human C3961C397, Zn thumbless) abolishes

DNA-induced NTase activity in vitro, highlighting the functional
importance of the conserved Zn thumb in DNA binding.
To test the effect of active site, platform and thumb mutations in

living cells, we measured the transactivation of an IFN-b promoter
reporter by transiently expressing human cGAS variants in HEK293T
cells that stably expressedmurine STING (Fig. 3b). Induction of IFN-b
by cGASMab21 (human cGAS155–552) in these cells is only moderately
reduced compared to wild-type cGAS, showing that the Mab21
domain structurally addressed in this study is the catalytic active
functional core of the sensor. The activity of full-length cGAS was
abolished when residues of the NTase active site were mutated
(E225Q/A1D227N/A or G212A1S213A). Mutating charged plat-
form residues (K173A1R176A; K407A1K411A) substantially reduced
the activity of cGAS in living cells. Likewise, disrupting the zinc-
binding site of the thumb (C396A1C397A, Zn thumbless) severely
compromised cGAS activity. These data validate the in vitro biochem-
ical data and emphasize the importance of the structure-derivedmotifs
and elements in living cells.
To see whether Zn thumb and conserved platform surface residues

are important for dsDNA binding and activity, we performed elec-
trophoretic mobility shift assays (Fig. 3c). Both porcine and human
wild-type cGASMab21 bind efficiently to dsDNAand, surprisingly, also
to dsRNA (Supplementary Fig. 3a, c). The mutations in platform and
thumb either did not affect DNA/RNA binding under these condi-
tions, or reduced but did not abolish it (Supplementary Fig. 3b).
However, both mutants fail to show DNA-stimulated activity under
conditions where they still bind DNA, and dsRNA fails to stimulate
activity under conditions where it binds robustly to the protein
(Supplementary Fig. 3c, d). Thus, although these analyses validate
the functional relevance of the DNA binding platform and Zn thumb
on activating cGAS, they suggest that DNAor RNA interactions per se
are not sufficient to activate the enzyme, indicating for instance the
necessity for a precise DNA-induced structural switch.

NTase and DNA induced structural switch
To reveal the mechanism of activation of cGAS by DNA, we first
analysed the NTase mechanism. We see clear electron density for
two nucleotide triphosphate moieties (Supplementary Fig. 2b). The
two bases partially stack in an approximately 90u rotated orientation
and inserted into a hydrophobic/aromatic pocket, sandwiched between
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Figure 3 | Platform and Zn thumb are involved in dsDNA-dependent
activity. a, NTase assays performed with different cGASMab21 mutants (2mM)
in presence of 3mM dsDNA (50-mer). Human wild-type cGASMab21 (positive
control) synthesizes dinucleotide, DNA binding site mutant K173A1R176A
show reduced activity. K407A1K411A DNA binding site mutant,
C396A1C397A Zn thumb mutant, Zn thumbless, L174N structural switch
mutant, active site mutants E200Q1D202N of porcine cGASMab21 and
E225A1D227A and G212A1S213A of human cGASMab21 are inactive. The
asterisk indicates the dinucleotide product. b, IFN-b stimulation of cGAS
mutants in HEK293T cells stably expressing murine STING. HEK293T cells
were transfected with plasmids encoding indicated constructs along with the
IFN-b promoter reporter plasmid pIFN-b-GLUC. Luciferase activity is plotted:
mean6 s.d. (n5 3). Both full-length and the crystallized region (cGASMab21

human155–522) induce IFN-bpromoter transactivation. Active sitemutations
(G212A1S213A and E225Q/A1D227N/A) abolish IFN-b stimulation. DNA-
binding site mutants (K173A1R176A, K407A1K411A), Zn thumb mutants
(C396A1C397A, Zn thumbless) and structural switch mutant (L174N) either
reduce or abolish IFN-b stimulation. Empty vectorwas used as negative control
whereas cyclic-di-GMP synthase (cdG syn) expressing vector was used as
positive control. Inset: western blot showing wild-type and mutant protein
levels with b-actin as loading control. c, Electrophoretic mobility shift analysis
of 50-mer dsDNA (0.2mM) bound to cGASMab21 mutants at indicated
concentrations. Plotted bars, mean6 s.d. (n5 3). Whereas K407A1K411A
DNAbinding sitemutant andC396A1C397AZn thumbmutant show slightly
reduced but not impaired affinity to dsDNA, no detectable binding change was
observed with the other mutants.
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I298 (lobe 1) and Y413 (lobe 2). The current resolution of the diffrac-
tion data does not allow us to unambiguously determine which base
is adenine and which guanine. Binding of R353 at nucleobase 1 (the
‘receiving substrate’ of NTases) near O6 and N7 would argue for this
being guanine. In general, nucleobase 1 (interpreted as guanine here) is
in hydrogen bonding distance to S355, S357 and T186, suggesting that
this nucleotide is specifically recognized. In contrast, we do not observe
direct hydrogen-bonding contacts of the protein to nucleobase 2
(the ‘transferred’ nucleotide in NTases; interpreted as adenine here).
Nevertheless, this recognition might be mediated via water molecules
such as in 39 terminal uridylyl transferases27.
The structure provides a mechanism for attack of nucleotide 1 on

nucleotide 2, consistent with the mechanism of other NTases, for
example, CCA adding enzyme28. The triphosphate chain of nucleotide
2 is well coordinated via S188 (lobe 1), S412 (lobe 2) andMg21 bound
to E200 (Q in cGASMab21(td)) and D202 (N in cGAS Mab21(td)). As a
consequence, the relative orientation of lobes 1 and 2 is important for
the phosphate coordination of nucleotide 2. In our conformation, the
a-phosphate of nucleotide 2 is well placed and oriented to promote
nucleophilic attack of the sugar 29 OH from nucleotide 1 to form the
29-59 linkage (Fig. 4a, see ref. 29). The attacking OH of nucleotide 1 is
polarized and activated byD296, consistent with the conserved features
of NTases24. A secondMg21 could be important for this catalytic step.
However, distinct localization will require higher resolution.
cGAS is proposed to forma cyclic-dinucleotide, whichwould require

a second catalysis step and an additional attack of the OH of nucleotide
2 on the phosphate of nucleotide 1. Such an attackwill require analmost
180u flip of the sugar moiety of nucleotide 2 to place its a-phosphate
appropriately. In principle this is possible: in the course of our studies
we determined the crystal structure of cGASMab21 bound to UTP in the
absence of DNA and do observe an appropriate flip of the sugar moiety
(Supplementary Fig. 4). In any case, our structure satisfactorily explains
the catalysis of formation of a specific (at present linear) dinucleotide by
cGAS, but formation of a cyclic dinucleotide needs to be addressed in
future studies.
To reveal a potential activationmechanismof cGAS,we superimposed

apo-cGAS, cGASMab21–UTPand cGASMab21(td)–DNA–GTP–ATPcom-
plex (Fig. 4b, c and Supplementary Fig. 5a, b). We used cGASMab21–
UTP because UTP binding orders the b-sheets on lobe 1 and we can
also visualize conformational changes specifically induced by dsDNA
rather than the nucleotides.
AlthoughUTPbinding to cGASordered to someextend thenucleotide-

binding loop in the active site, it didnot substantially change theoverall
structure and active site geometry of cGAS (Supplementary Fig. 5b). In
contrast, DNA phosphate binding to the spine (Fig. 4b) triggers a
substantial structural switch in the spine helix (Fig. 4c) that closes lobes

1 and 2 and rearranges the active site loop, allowing magnesium coor-
dinating of E200 to position and activate nucleotide 2.
To test the role of this DNA-induced structural switch we mutated

human L174 to N. L174 (porcine L148) is repositioned in response to
DNA binding to stabilize the nucleotide-binding loop, but does not
directly bind DNA or NTPs (Supplementary Fig. 5c). Although
L174N shows fairly normal DNA binding (Fig. 3c and Supplemen-
tary Fig. 3b), it lacks DNA-stimulated cGAMP synthetase activity in
vitro (Fig. 3a) and shows decreased interferon stimulation in cells
(Fig. 3b). Thus, the structural and biochemical data suggest that
cGAS is activated by aDNA-induced structural switch that rearranges
the NTase active site.

Conclusion
Here we provide the structure and mechanism of activation of the
cytosolic DNA sensor cyclic-GMP-AMP synthase that readily explain
the synthesis of a linear dinucleotide intermediate by cGAS in res-
ponse to DNA binding. The backbone binding of a canonical B-DNA
by cGAS is consistent with a broad specificity innate immune PRR for
cytosolic DNA and the structural elements of cGAS such as the posi-
tioning of residues involved inminor-groove binding, arginine fingers
and the Zn thumb suggest that cGAS specifically responds to B-form
DNA. This might explain the function of other innate immune DNA
sensors to detect non-canonical DNA structures, such as DAI5. A
structural switch transmitted by proper B-form DNA binding to the
active site could also explain the lack of activation by dsRNA or in
mutants that still bindDNA: slightly different conformations of RNA-
bound orDNA-boundmutant cGASwould not trigger robust cGAMP
synthesis as even small differences in the active site geometry can
strongly affect catalytic rates of enzymes.
In future, it will be important to address the specificity for other

DNA structures in the activation of cGAS in more detail to see which
types ofDNA structures can activate cGAS. It will also be important to
investigate additional requirements for efficient DNA sensing in vivo,
because although shorter dsDNAmolecules can stimulate cGASMab21

in vitro, DNA larger than 50-mer is required for efficient IFN stimu-
lation in vivo14,19. One possibility is that fraying of shorter DNA
molecules prevents efficient stimulation or that the positively charged
N terminus contributes to sensing of longer DNAmolecules. In addi-
tion, STING might have a direct role in DNA binding in a larger
context in vivo19, although we do not see strong DNA binding in vitro
and IFN stimulation in response to DNA in HEK293T cells in the
absence of cGAS (Supplementary Fig. 6).
Interestingly, cGAS has remarkable fold similarity to the antiviral

protein oligoadenylate synthase 1 (OAS1)30,31 (Fig. 5). OAS1 synthe-
sizes 29-59 linked oligoadenylate chains in response to binding to
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Figure 4 | NTase and DNA-induced structural switch. a, Close-up view of
the NTase active site. Selected residues that are implicated in binding and
catalysis are annotated. Both base moieties partially stack to each other and are
further bound by stacking to Y413 and recognition by R353. E200 (mutated to
Q in our structure) andD202 (mutated toN in our structure) bind an active site
magnesium that coordinates phosphates of nucleotide 2. The attacking OH of

nucleotide 1 is activated by D296 for nucleophilic attack on the a-phosphate of
nucleotide 2 (arrow). b, Close-up view of DNA backbone phosphate binding at
the spine. c, This DNA phosphate binding triggers a change in the spine helix
(*), which allows a closure of the active site cleft ({) and repositioning of the
substrate binding loop for Mg21 coordination of E200 ({).
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cytosolic dsRNA. The structural similarity not only embraces the
overall fold, several active site features and arrangement of lobes 1
and 2, but also certain structural elements of the platform, including
the long ‘spine’ helix. Like cGAS, OAS1 binds dsRNA along the ‘plat-
form’ and triggers a structural change that is transmitted to the active
site31. However, whereas OAS1 is activated by A-form RNA, cGAS is
activated by B-form DNA. The Zn thumb in cGAS, missing in OAS1,
probably acts as a molecular ‘ruler’ to specifically trigger activation in
response to B-form but not A-form nucleic acids (Fig. 5). Despite
these differences, cGAS shows a structural switch induced by
dsDNA that is very similar to that of OAS1 induced by dsRNA31

(Fig. 5). Thus, our results structurally unify dsDNA and dsRNA sens-
ing by cGAS and OAS1 NTases, respectively, in the innate immune
system and suggest that both processes are evolutionarily connected.
Note added in proof: After submission of the revised version of this
manuscript, Gao et al.32 reported related structures of cGAS and its
complexes with DNA and nucleotides.

METHODS SUMMARY
Proteins were produced in Escherichia coli and purified by affinity, ion exchange
and size exclusion chromatography. Apo, UTP- and DNA–ATP–GTP-bound
cGASMab21 and its catalytic inactive form were crystallized by hanging or sitting
drop vapour diffusion. The structure of apo cGASMab21 was determined by single-
anomalous dispersion phasing on selenomethionine derivatized protein. The
other structures were determined by molecular replacement using apo cGASMab21

as searchmodel. NTase assays were performed by thin layer chromatography and
phosphor imaging. DNA and RNA binding were assessed by electrophoretic
mobility shift assays. Analysis of cGAS mutants in living cells were performed in
HEK 293T cells stably expressing full-length murine STING and transfected with
an IFN-b promoter reporter plasmid.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Constructs and cloning. The sequence encoding full-length or truncated Homo
sapiens and Sus scrofa cGASwereamplified fromtotal cDNA(courtesyofS.Bauersachs)
and cloned into pIRESneo3 (Clontech) or a modified pET21 (Novagen), respectively.
The mutants were generated by site-directed mutagenesis using PfuUltra (Stratagene).
Zn thumbless mutant was created by replacing residues 390–405 (Homo sapiens) by
three Gly-Ser replicates.
Protein production and purification. All proteins were produced in E. coli
Rosetta (DE3) or B834 (DE3) strains for native or selenomethionine derivative
proteins, respectively. Bacteria were grown until a D600 of 0.6 to 0.8 was reached
and expression was induced at 18 uC for 16 to 18 h with 0.1mM IPTG. Proteins
were purified by Ni-NTA agarose resin and incubated with tobacco etch virus
(TEV) protease (ratio 1:50) at 4 uC overnight to remove the 6xHis-MBP-tag. The
proteins were further purified by cation exchange chromatography followed by
size exclusion chromatography using a Superdex 200 column (GE Healthcare),
equilibrated in20mMTris pH7.5, 150mMNaCl and1mMDTT.Purifiedproteins
were concentrated to 10mgml21 for crystallization. Human STING 139–379 was
purified as described33. All purified proteins were frozen in liquid N2 and stored at
280 uC.
Crystallization of cGASMab21. Purified porcine cGAS (10mgml21) was crystal-
lized by hanging drop vapour diffusion in 20% PEG3350 and 200mM sodium
malonate. The crystals appeared after one day at 20 uC and were flash frozen after
addition of glycerol to a final concentration of 15% (v/v). The selenomethionine
derivatized protein was crystallized in 100mM Bis-Tris propane pH6.3, 18%
PEG3350 and 200mM sodium malonate and cryo protected with 20% ethane-
1,2-diol before flash freezing. UTP bound crystals were obtained by adding
20mM MgCl2 and 1:10 (v/v) of 50mM of nucleotide in 100mM Tris pH 7.5 to
the protein before crystallization.
For crystallizing theDNA–GTP–ATP–cGAS complex 20mMMgCl2, 2mMof

both nucleotides and 14 bp dsDNA (59-CGACGCTAGCGTCG-39) in a molar
ratio of 1:1.2 protein:DNA were added to the inactive porcine cGASMab21(td)

(E200Q1D202N) (10mgml21). Crystals were obtained by hanging drop vapour
diffusion in 50mM sodium cacodylate pH 7.0, 2.5mM spermine, 60mMMgCl2
and 3% (v/v) PEG 400 after one day at 20 uC. The crystals were soaked in reservoir
solution containing 25% (v/v) glycerol before flash freezing.
Data collection and refinement.X-ray diffraction data of cGAS and cGAS-UTP
were collected at X06SA beamline (Swiss Light Source, Switzerland) and diffraction
data of the cGASMab21(td)–GTP–ATP–DNA complex were collected at PetraIII
beamline P14 (EMBL/DESY,Hamburg, Germany) at 100K.The selenomethionine
derivative data were collected at the selenium peak wavelength (l5 0.97961 Å).
Data processing was carried out with XDS34. AutoSHARP was used to locate Se
sites (SAD data set) and to produce an initial solvent flattened map35. An initial
model was built using iterative cycles of Buccaneer36 andARP/wARP classic37. The
model was optimized by alternating manual building with Coot38 and refinement
using Phenix39 against a 2.0 Å native data set. The structure of UTP-bound cGAS
and the DNA–GTP–ATP–cGAS complex structure were determined using
molecular replacement with Phaser40 and optimized by manual building with
Coot and refinement with Phenix or Autobuster41. Data collection and refinement
statistics are listed in Supplementary Table 1.
NTase assays. NTase assays were performed as described in ref. 26. Reaction
mixtures with the indicated concentrations of protein and DNA (40-mer: 59-
GGATACGTAACAACGCTTATGCATCGCCGCCGCTACATCC-39, 50-mer:
59-GGATACGTAACAACGCTTATGCATCGCCGCCGCTACATCCCTGAGC

TGAC-39) (unless indicated 50-mer dsDNA is used) or RNA (sequence as 50-mer
DNA) in 0.1M NaCl, 40mM Tris pH7.5 and 10mM MgCl2 were started by
addition of 100mM ATP and 100mM GTP containing 1:600 [a32P]ATP and/or
[a32P]GTP (3,000Cimmol21, Hartmann Analytic). Analysis of the reaction pro-
ducts was done using thin layer chromatography (PEI-Cellulose F plates, Merck)
with 1M (NH4)2SO4/1.5M KH2PO4 pH3.8 as running buffer for the TLC plates.
Assays were performed at 35 uC. The dried TLC plates were analysed by phosphor
imaging (GE Healthcare).
Electrophoretic mobility shift assays. 0.2mM of dsDNA or dsRNA (same
sequences used forNTase assays) was incubatedwith indicated amount of purified
protein for 30min on ice. As reaction buffer 20mMTris pH8.0 and 200mMNaCl
was used. Samples were separated by 1% agarose gel prepared with Gel-Red
(Biotium) as suggested by the manufacturer. The gel images were analysed using
ImageJ.
Reporter assays. HEK 293T cells stably expressing full-length murine STING
(23 104 cells in each well of a 96-well plate) were transiently transfected with
25 ng IFN-b promoter reporter plasmid (pIFN-b-GLUC) in conjunction with
200 ng cGAS expression vectors using GeneJuice (Novagen) as indicated by the
manufacturer. A codon-optimized version the diguanylate cyclase domain (83–
248) of TM1788 (Thermotoga maritima MSB8) harbouring a point mutation
(R158A) to enhance c-di-GMP production was cloned into pEFBOS to contain
a carboxy-terminal haemagglutinin (HA) tag42. This construct (c-di-GMP-synthase)
was used to induce c-di-GMP production within 293T cells upon transient over-
expression, which served as positive control. 14 h post transfection luciferase activity
was assessed.
THP-1 cells were stimulated with 200 ng of either 50-mer dsDNA (as in NTase

assays) or tri-phosphate-RNAcomplexedwithLipofectamine2000 (LifeTechnologies)
according to the manufacturer’s instructions. Supernatants were collected 18 h
after stimulation and assayed for IP-10 production via ELISA. 90-mer DNA used
is as described in ref. 19. CMA was purchased from Sigma Aldrich.
Immunoblotting. Cells were lysed in 13 Laemmli buffer and denatured at 95 uC
for 5min. Probes were separated by 10% SDS–PAGE and transferred onto nitro-
cellulosemembranes. Blotswere incubatedwith anti-cGAS (SigmaAldrich), anti-
phospho-IRF3 (Cell SignalingTechnology)or anti-b-actin-IgG–horseradishperoxidase
(HRP).Goat anti-rabbit-IgG–HRPwas purchased from Santa Cruz Biotechnology.
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detection of the antiviral small-molecule compound CMA by STING. EMBO J. 32,
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2.5. Crystal and solution structure of RIG-I SF2 domain 
 

2.5.1. Summary 
 

RIG-I activation by RNA binding involves dramatic conformational changes. In this 

publication we could support the current model of the conformational flexibility of 

RIG-I by solving the human RIG-I SF2 domain in an unusual elongated 

conformation. Additional SAXS studies revealed that this conformation was induced 

to a large degree by crystal packing. However, this RIG-I SF2 structure expands the 

conformational spectrum needed for sensing RNA and forming the active state. 

 

 

2.5.2. Contribution 
 

The author of this thesis contributed to this publication by purifying and crystallizing 

the protein. He collected SEC-RALS-, SAXS- and crystal diffraction data. 

Additionally, he analyzed the SAXS data and participated in solving and refinement 

of the structure, and contributed to writing of the manuscript. 
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RIG-I is a pathogen-recognition receptor that recognizes viral 50-triphosphates
carrying double-stranded RNA. Upon binding to these microbe-associated

molecular patterns (MAMPs), RIG-I forms oligomers and promotes down-

stream processes that result in type I interferon production and induction of an

antiviral state. Here, the crystal structure of the human RIG-I superfamily 2

ATPase domain crystallized in an unusually elongated and open conformation is

reported. The elongated structure is probably induced in part by crystal packing,

but nevertheless indicates that the domain is intrinsically very flexible. This

flexibility might allow substantial structural changes upon substrate binding and

oligomerization.

1. Introduction

The innate immune system detects invading pathogens via microbe-

associated molecular patterns (MAMPs). Proteins belonging to the

group of pattern-recognition receptors (PRR) have evolved to

specifically sense MAMPs such as viral RNA or bacterial cell-wall

components. The formation of PRR–MAMP complexes triggers

signalling cascades that lead to host defence mechanisms by activa-

tion of nuclear factor-�B and interferon regulatory factors. The

resulting production of inflammatory cytokines and type I interferons

induces an antiviral state and activates the adaptive immune

response.

PRRs can be membrane-bound, such as the Toll-like receptors

(TLRs), or cytoplasmic, with the RIG-I-like receptor family being

one prominent example. The latter comprises the name-giving RIG-I

(retinoic acid inducible gene-I), MDA-5 (melanoma differentiation-

associated gene 5) and LGP-2 (Laboratory of Genetics and

Physiology 2). These three proteins are involved in the sensing of a

variety of viruses. RIG-I, for example, senses Rabies virus,Hepatitis C

virus, influenza viruses and others (Goubau et al., 2013; Hornung et

al., 2006; Kato et al., 2006; Loo et al., 2008; Saito et al., 2008), while

MDA-5 detects, for example, picornaviruses (Goubau et al., 2013;

Gitlin et al., 2006). Structurally, RIG-I, MDA-5 and LGP-2 are closely

related to DEAD-box helicases and form a family within the super-

familiy 2 RNA helicases/ATPases (Fairman-Williams et al., 2010).

Apart from the helicase (SF2) domain, RIG-I comprises two N-

terminal CARDs (caspase activation and recruitment domains),

which are essential for downstream signalling (Gack et al., 2007;

Meylan et al., 2005; Saito et al., 2007; Zeng et al., 2010), and a C-

terminal regulatory domain (RD) involved in substrate binding and

specificity (Hornung et al., 2006; Pichlmair et al., 2006; Schlee et al.,

2009; Schmidt et al., 2009).

Recently, several structures have been reported that shed light on

the working mechanism of RIG-I. The first structural information was

obtained for the RIG-I RD alone (Cui et al., 2008; Takahasi et al.,

2008) and in complex with 50-triphosphate and blunt-end dsRNA

(Kowalinski et al., 2011; Lu et al., 2010; Wang et al., 2010), supporting

the model of the RD being responsible for the specificity of RIG-I by

binding to 50-triphosphate RNA (Vela et al., 2012). Further studies

reported the structures of the RIG-I SF2 domain alone, RNA

complexes of RIG-I SF2 and RIG-I SF2-RD, and the structure of

RIG-I CARD-SF2 (Civril et al., 2011; Ferrage et al., 2012; Jiang et al.,

2011; Kohlway et al., 2013; Kowalinski et al., 2011; Luo et al., 2011,

2012).
# 2014 International Union of Crystallography

All rights reserved



The available structures allow the formulation of a mechanism for

RIG-I activation. In the inactive state the second CARD domain

contacts the insertion domain of the RIG-I SF2 (Hel2i), leading to an

auto-inhibited state. RNA ligands bind to the RIG-I RD and SF2

domain and compete with CARDs at the helical insertion domain

(Hel2i). In the resulting clamp-like structure of RIG-I SF2 around the

dsRNA substrate, ATP binding leads to further compaction. This

clamp formation results in the release of the two CARD domains

from the auto-inhibited state (Ferrage et al., 2012; Jiang et al., 2011;

Kohlway et al., 2013; Kowalinski et al., 2011; Leung & Amarasinghe,

2012; Luo et al., 2011, 2012). The exposed CARDs interact with

ubiquitin and CARDs of a downstream adaptor (Peisley et al., 2014).

Here, we report the crystal structure of the human RIG-I SF2 in an

unusual elongated conformation. Additional SAXS (small-angle

X-ray scattering) studies support the conformational flexibility of this

domain, which could play an important role in the formation of

higher order structures or in initial substrate recognition.

2. Materials and methods

2.1. Cloning, expression and purification of Hs-RIG-I HD

Human RIG-I SF2 (hsRIG-I SF2; comprising residues 230–793 of

the full-length protein) was cloned into pETDuet vector (Novagen)

via EcoRI and NotI restriction sites. Transformed Escherichia coli

Rosetta (DE3) cells were grown to an OD600 of 0.8 before induction

with IPTG (0.2 mM final concentration). Expression was carried out

overnight at 18�C. The harvested cells were resuspended in lysis

buffer (50 mM Tris pH 7.3, 500 mM NaCl, 10 mM imidazole, 4 mM

DTT) and lysed by sonication. The N-terminally His6-tagged hsRIG-I

SF2 was first purified by Ni-affinity chromatography and the hsRIG-I

SF2-containing elution fractions were dialyzed against 20 mM Tris

pH 7.3, 100 mM NaCl, 4 mM DTT. In a second step this protein

solution was applied onto a combination of anion- and cation-

exchange resins (HiTrap Q/SP FF, GE Healthcare) and the flow-

through was collected as the construct does not bind to these columns

under the buffer conditions used. As a final purification step, size-

exclusion chromatography was performed (Superdex S200 prep

grade, GE Healthcare, running buffer 20 mM Tris pH 7.3, 100 mM

NaCl, 4 mM DTT). Purified hsRIG-I SF2 could be concentrated to

60 mg ml�1 and aliquots were flash-frozen in liquid nitrogen.

2.2. Crystallization and data collection

HsRIG-I SF2 crystals were grown in hanging-drop vapour-diffu-

sion geometry at 15�C. Crystals suitable for data collection were

obtained by mixing 1 ml hsRIG-I SF2 solution with 1 ml reservoir
solution [100 mM HEPES pH 6.8, 100 mM ammonium sulfate,

6.7%(v/v) 2-propanol, 9%(v/v) PEG 4000] with a total reservoir

volume of 250 ml in the well. Crystals appeared after 4 d. For cryo-

protection, the crystals were soaked in reservoir solution containing

25% ethylene glycol and flash-cooled in liquid nitrogen. Diffraction

data were collected to 2.7 Å resolution on the X06SA beamline of the

Swiss Light Source, Villigen, Switzerland. Diffraction data were

indexed and integrated using XDS and scaled with XSCALE

(Kabsch, 2010a,b). Statistics of the collected data set are shown in

Table 1.

2.3. Structure solution and refinement

The structure of hsRIG-I SF2 was solved by molecular replace-

ment using Phaser (McCoy et al., 2007) within the CCP4 program

suite (Winn et al., 2011). Calculation of the Matthews coefficient with

the space-group parameters (Table 1) and the molecular weight of

hsRIG-I SF2 suggested two molecules per asymmetric unit, with a

solvent content of 53.2% (Matthews, 1968). Molecular replacement

was performed using an approach with the three isolated domains of

the mouse RIG-I SF2 (PDB entry 3tbk; Civril et al., 2011) as search

models. For refinement of the initial maps a randomly chosen 5% of

the reflections were used as a test set for cross-validation (Brünger,

1992). Refinement was performed in cyclic rounds of manual model

building using Coot (Emsley et al., 2010) and refinement using

PHENIX (Afonine et al., 2012). As a last step, water molecules were

added automatically using PHENIX and subsequently manually

checked and refined again. The statistics of the refined model are

shown in Table 1.

2.4. Validation and deposition

The stereochemistry of the hsRIG-I SF2 domain was analyzed by

PROCHECK (Laskowski et al., 1996). All residues lie within the

favoured and allowed regions of the Ramachandran plot (see Table

1). The atomic coordinates and structure factors of hsRIG-I SF2 have

been deposited in the Protein Data Bank as entry 4on9.

2.5. Small-angle X-ray scattering (SAXS)

Small-angle X-ray scattering experiments were conducted at the

X33 beamline at the European Molecular Biology Laboratory/
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Table 1
Crystal parameters and data-collection and refinement statistics for RIG-I SF2.

Values in parentheses are for the highest resolution shell.

Crystal data
Space group P212121
Molecules per asymmetric unit 2
Unit-cell parameters (Å, �) a = 98.9, b = 113.0, c = 124.3,

� = � = � = 90
Solvent content (%) 53.2
Matthews coefficient (Å3 Da�1) 2.63

Data-collection statistics
Diffraction source SLS beamline X06SA
Wavelength (Å) 0.99987
Detector PSI Pilatus 6M pixel
Diffraction protocol Single wavelength

Data-processing statistics
Resolution range (Å) 50–2.70
No. of observed reflections 140661
No. of unique reflections 38287 (6016)
Completeness (%) 99.0 (98.4)
Multiplicity 3.67 (3.59)
hI/�(I)i 20.1 (2.2)
Rmeas (%) 5.2 (77.4)

Refinement
Resolution (Å) 49.06–2.71
No. of reflections used 38264
Rwork (%) 21.9 (31.5)
Rfree (%) 25.8 (36.8)
No. of atoms

Total 8183
Protein 8126
Ligand 21
Water 36

Wilson B factor 68.53
Average B factors (Å2)

Protein 71.03
Ligand 67.69
Water 68.52

R.m.s. deviations
Bond lengths (Å) 0.006
Bond angles (�) 0.907

Ramachandran plot analysis
Favoured (%) 96.0
Allowed (%) 4.0
Disallowed (%) 0

PDB code 4on9



Deutsches Elektronen-Synchrotron, Hamburg, Germany. Samples

were measured using a wavelength of 1.5 Å and with a q range from

0.06 to 6 nm (detector distance d = 2.7 m). Scattering data were

recorded with a Pilatus 1M detector. Prior to measurement, samples

were purified by size-exclusion chromatography and additionally

centrifuged. All samples were monodisperse as could be judged from

size-exclusion chromatography and dynamic light-scattering

(Malvern-Viscotek 802 DLS) measurements. Scattering of the

running buffer of this size-exclusion column (20 mM Tris pH 7.3,

100 mM NaCl, 4 mM DTT) was used for buffer correction of the

protein sample measurements. Scattering data were recorded for

hsRIG-I SF2 samples with concentrations of 2.5, 5 and 10 mg ml�1

(determined spectrophotometrically using A280 nm and the molar

extinction coefficients). The samples did not show signs of radiation
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Figure 1
(a) Crystal structure of human RIG-I SF2. Subdomains are represented in different colours: Hel1, red; Hel2, brown; Hel2i, blue; bridging domain, orange. (b) Superposition
of the ATP-binding site of the RIG-SF2 ADP-AlF3-bound structure (PDB entry 4a36, shown as lines; Kowalinski et al., 2011) and the corresponding region of the structure
reported in this study (shown as sticks). The well coordinated sulfate ion occupies the space of the �-phosphate of the nucleotide-bound state. (c) Overlay of human (blue,
this study), mouse (red, PDB entry 3tbk; Civril et al., 2011) and duck (orange, PDB entry 4a2p; Kowalinski et al., 2011) RIG-I SF2 crystal structures. (d) Cartoon
representation of the crystallographic dimer with one monomer shown as in (a) and the second one in light blue. (e) Guinier plot [ln I(s) versus s2] of hsRIG-I SF2 SAXS data
with linear regression (for points shown in red) used for determination of radius of gyration (Rg = 3.37� 0.01 nm). The concentration of the sample was 5 mg ml�1. The lower
plot shows the residuals of the linear regression, indicating that the sample does not show aggregation or repulsive effects. (f) Comparison of measured hsRIG-I SF2 SAXS
data (5 mg ml�1) with theoretical scattering curves of RIG-I SF2 crystal structures calculated using CRYSOL (Svergun et al., 1995). HsRIG-I SF2 (this study, PDB entry
4on9, blue curve), �2 = 15.0; mouse (PDB entry 3tbk, red curve), �2 = 2.6; duck (PDB entry 4a2p, orange curve), �2 = 2.9.



damage, which was assessed by automatic and manual comparison of

eight consecutive 15 s exposure frames. Data were processed using

PRIMUS from the ATSAS package (Konarev et al., 2006). The

protein molecular weight in solution was determined from the zero-

angle scattering intensity I(0) obtained from extrapolation of the

Guinier plot [ln I(s) versus s2] region obeying the Guinier approx-

imation for globular proteins (s � Rg < 1.3) and from the Porod

volume. BSA (66 kDa) was used as an I(0) reference. Theoretical

scattering curves were calculated using CRYSOL (Svergun et al.,

1995).

2.6. Size-exclusion chromatography coupled right-angle laser light

scattering (SEC–RALS)

SEC–RALS data were measured using a Malvern/Viscotek TD270

right-angle laser light scattering detector and a VE3580 refractive-

index detector connected to an analytical ÄKTAmicro chromato-

graphy system equipped with a 24 ml 10/300 GL Superdex S200

column (GE Healthcare). A BSA standard (66 kDa) was used to

calibrate the system. For data evaluation the program package

equipped with the instrument was used (OmniSEC, Malvern/

Viskotek). The RIG-SF2 construct (c = 3 mg ml�1) eluted as

expected as a sharp single peak without any signs of aggregation in

the SEC run.

3. Results and discussion

Human RIG-I SF2 crystallizes in the primitive orthorhombic space

group P212121 with two molecules per asymmetric unit. Traceable

electron density could be found for the core hsRIG-I SF2 residues

Phe241–Asp792 in chain A and Lys242–Ser793 in chain B and 36

solvent molecules interpreted as water, four sulfate ions and one

chloride ion. The resolution of the structure is 2.7 Å and the model

could be refined to an Rwork and Rfree of 0.219 and 0.258, respectively.

As described previously (Civril et al., 2011; Jiang et al., 2011; Kowa-

linski et al., 2011; Luo et al., 2011), the structure comprises the two

RecA-like domains Hel1 (242–444) and Hel2 (455–466 and 609–742)

as well as the insertion domain Hel2i (271–603) and the bridging

domain (745–793) (Fig. 1a). One sulfate ion coordinated by the P-

loop (266–271) of the Hel1 domain occupies the space of the �-
phosphate of ADP (Fig. 1b and Supplementary Fig. S11).

In contrast to the C-shaped conformation of the SF2 domain

observed previously, hsRIG-I SF2 crystallizes in an unusual elon-

gated conformation in which Hel1 and the bridging domain are bent

away from the rigid Hel2i-Hel2 module with an angular span of about

45� (Fig. 1c). The �-helical linker (445–454) and the short N-terminal

stretch at the beginning of the bridging domain (743–745) serve as

hinges. Conformational flexibility of RIG-I SF2 crystal structures has

been observed before (Kowalinski et al., 2011), but the structure

described here is substantially more elongated than the previously

described structures.

Two RIG-I SF2 domains build up a crystallographic dimer (Fig.

1d), with the Hel2i domain contacting the Hel1 domain of the

neighbouring molecule and vice versa. The molecular weight deter-

mined by SEC–RALS (Mw
SEC–RALS = 64 kDa; Supplementary Fig.

S2) and SAXS data indicate that hsRIG-SF2 is monomeric in solution

(Mw
theoretical = 66.0 kDa), but it is possible that in RNA-activated

RIG-I oligomers some contacts are mediated by the SF2 domains in

addition to the CARD–CARD interactions.

To address solution conformations of the hsRIG-I SF2, we

measured SAXS of the hsRIG-I SF2 construct. We could not observe

signs of aggregation as judged from the linear Guinier plot (Fig. 1e).

The molecular weight derived from SAXS data in the concentration

range c = 2.5–10 mg ml�1 could only be explained by a monomeric

hsRIG-I SF2 species in solution; even the highest concentration did

not show signs of higher oligomers [Mw
I(0); c=10 mg ml�1

= 60.1 kDa;

Mw
Porod; c=10 mg ml�1

= 55.5 kDa]. We then compared the experimental

scattering data with the theoretical scattering curve of our crystal-

lographic model. The obvious differences between the theoretical

scattering curve of our model and the solution scattering curve (Fig.

1f) suggest that the crystallographically observed conformation is

influenced by crystal packing (Supplementary Fig. S3) and does not

represent a major conformation in solution. Notably, the solution

scattering of the human RIG-I SF2 construct is very similar to the

theoretical scattering curves of mouse and duck RIG-I SF2 crystal

structures (Civril et al., 2011).

In summary, the data support the current model that RIG-I SF2

possesses a high degree of conformational flexibility necessary for the

formation of the different observed clamp conformations upon RNA

and ATP binding and ATP-hydrolysis state, respectively (Kohlway et

al., 2013; Luo et al., 2011, 2012). Therefore, the structure described

here, even though not populated to a major degree in solution,

expands the conformational spectrum of RIG-I SF2 that is likely to

be needed to recognize specific MAMPs and form oligomeric struc-

tures for type I interferon activation.
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Brünger, A. T. (1992). Nature (London), 355, 472–475.
Civril, F., Bennett, M., Moldt, M., Deimling, T., Witte, G., Schiesser, S., Carell,

T. & Hopfner, K. P. (2011). EMBO Rep. 12, 1127–1134.
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Supplementary Materials and Methods 

 
Constructs and cloning 

The  sequence  encoding  full‐length  Mus  musculus  RIG‐I  was  amplified  from  total  mouse  cDNA 

(courtesy of Dr. Stefan Bauersachs) and cloned into pET28 (Novagen). ΔRD RIG‐I was subcloned in a 

modified  pET21a  (Novagen)  to  express  6xHis‐MBP‐TEV‐RIG‐I  (1‐797).  The mutants  (T348E,  E374Q, 

K380E,  double  mutant  Q508AQ512A,  R547E,  and  R731A,)  were  generated  by  site  directed 

mutagenesis with PfuUltra (Stratagene).  

 

Expression and protein purification  

All constructs were expressed in E.coli Rosetta (DE3) or B834 (DE3) strains. Native protein was grown 

in LB media and selenomethionine labeled protein in modified M9 media. Bacteria were grown until 

an OD600 of 0.6 to 0.8 and induced at 18°C for 16 to 18 hrs with 0.1mM IPTG. Proteins were purified 

by Ni‐NTA agarose resin and when applicable incubated with TEV protease (ratio 1:50) at 4°C for 20 

to 22 hrs to remove the 6xHis‐MBP‐tag.  The proteins were further purified by ion exchange followed 

by  size  exclusion  chromatography  using  a  Superdex  200  column  (GE  Healthcare)  equilibrated  in 

20mM TRIS pH 7.5, 150mM NaCl and 1mM DTT. Purified RIG‐I ΔRD was concentrated to 27.5 mg/ml 

for crystallization. All purified proteins were frozen in liquid N2 and stored at ‐80°C.  

 

Crystallization 

Selenomethionine labeled RIG‐ISF2 was crystallized using an in‐drop proteolysis approach. To purified 

RIG‐I (27.5 mg/ml) 1:10 (v/v) of 50 mM of ATP derivative adenosine 5′‐(β,γ‐imido)triphosphate (AMP‐

PNP)  and  1:500  (w/w)  1mg/ml  subtilisin  were  added  and  the mix was  crystallized  by  sitting  drop 

vapor diffusion method in crystallization solution [100mM BIS‐TRIS pH 6.6 and 22% (w/v) PEG3350]. 

The crystals appeared in 1 day at 20°C and were soaked in cryoprotectant solution (15% ethane‐1,2‐

diol  in  crystallization  solution)  and  flash  frozen.  SDS‐PAGE  analysis  of  the  crystals  (Suppl.  Fig.  1A) 

shows  that  the protease  cleaved between  the N‐terminal CARDs and SF2 as well  as  removing  two 

internal loops of SF2. 

 

 

 



 

Supplementary Figures 

 

 
 

Supplementary Figure 1: Structure of RIG-I SF2 Domain 

A) Crystals of RIG-I SF2 domain were collected and washed three times with reservoir 

solution and loaded on SDS-PAGE. The bands were assigned the indicated regions based on 

the ordered parts in crystal structure. 

B) 2Fo-Fc electron density overlaid with the final model around the AMP-PNP molecule. The 

2F0-Fc map is contoured at 1 σ. 

C) View of the RIG-I SF2 domain structure in the orientation of Fig 1A, colored according to 

the Cα B-factors. Black residues are glycines. 

 



 
 

Supplementary Figure 2: RNA dependent activation of RIG-I 

A) Size exclusion chromatography analysis of RIG-I (black) preincubated with either 

chemically synthesized 5’-ppp-dsRNA (25-mer) (red) or in vitro transcribed 5’-ppp 

containing rabies virus leader RNA 58-mer (pppRVL) (blue). Upon 5’-ppp-dsRNA binding 

RIG-I dimerizes as in the case of pppRVL (Cui et al, 2008).  

B) Electron mobility shift analysis of RIG-I mutants bound to 25-mer dsRNA. Plotted bars: 

mean±sd (n=3) 

C) Size exclusion chromatography analysis of RIG-I (black) preincubated with 5’-ppp-

dsRNA (25-mer) (red) or dsRNA (25mer) (green) or 5’-ppp-RNA-DNA hybrid (cyan). 

Hybrid ppp-nucleic acid dimerizes RIG-I like ppp-dsRNA  

 

 



 

 
Supplementary Figure 3: Comparison to Hef and Swi/Snf2 dsDNA binding proteins 

Comparison of crystal structures of the SF2 domains of RIG-I  (A, this work), Hef (B, 

(Nishino et al, 2005)) and Swi/Snf2 in complex with dsDNA (C, (Durr et al, 2005)) RIG-I and 

Hef have a related domain structure, although the orientation of domains 1 (yellow) and 2 

(green) are more canonical in Hef, while oriented in a rather non-canonical oritentation in 

RIG-I by the RLR specific helical arm. RD and CARDs are attached to SF2 by linkers, while 

Hef contains a linked nuclease domain. Swi/Snf2 binds dsDNA at motifs Ic and IIa, which we 

identify by mutational analysis in RIG-I. The overall similarity of domains 1a in all three 

structures suggests a related mode of double-stranded nucleic acid binding. 
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Supplementary figure legends 

Figure S1. Dose-dependent antiviral activity of CMA 

A, Antiviral activity of CMA in macrophages was studied using a FFLuc encoding VSV 

replicon. B, Macrophages were stimulated with decreasing concentrations of CMA (500µg/ml 

– 31,25µg/ml in two-fold dilutions) and subsequently infected with the VSV replicon particles. 

18h after stimulation luciferase activity was assessed (left panel) and cell viability was 

determined (right panel). C, pIFNβ-firefly-luciferase macrophages were treated with 

decreasing concentrations of CMA (500µg/ml – 31,25µg/ml in two-fold dilutions). After 18h 

luciferase activity was assessed (left panel) and cell viability was determined (right panel). 

Representative results out of 3 independent experiments are depicted. 

Figure S2. CMA-triggered type I IFN response is TLR- and MAVS-independent and 

mediated via TBK1/IKKe 

A, Wild type and TBK1/IKKε double-deficient MEFs were transfected with poly(I:C), pppRNA, 

plasmid DNA or stimulated with CMA (500µg/ml) for 2h. Cells were collected and assessed 

for phospho-IRF3. Bone marrow-derived wild type (B), MyD88-/- (C) and Trif-/- (D) 

macrophages (MΦ) were stimulated as described above. After 18h supernatants were 

collected and IP-10 production was determined by ELISA. In addition phospho-IRF3 was 

analyzed 2h after stimulation. (E) Bone marrow-derived wild type or (F) MAVS-/- 

macrophages were stimulated with pppRNA or CMA. ELISA and western blot were 

performed as described for A-D. Representative results out of 2 independent experiments 

are depicted. 

Figure S3. Antiviral activity of CMA is STING-dependent 

A, Supernatants of pretreated macrophages were assessed for antiviral properties using the 

VSV-FFLuc replicon in supernatant transfer experiments. B, bone marrow-derived wild type 

or STING-deficient macrophages were left untreated, transfected with pppRNA or stimulated 

with CMA (500µg/ml). After 18h the supernatants were harvested and diluted 1:20. The 

diluted supernatants (grey bars) were then transferred onto macrophages that were 

subsequently infected with VSV replicon particles. As a control infected macrophages were 

left untreated or stimulated with the equivalent concentration of CMA (25µg/ml; 1:20 dilution 

of 500 µg/ml) in the diluted supernatants (hatched bars). Representative results out of 2 

independent experiments are depicted. 

Figure S4. HEK293T stably expressing murine STING respond to CMA 

A-B, HEK293T cells stably expressing murine STING were transiently transfected with a total 

amount of 200ng DNA per 96-well, whereas 12.5ng of pIFNβ-GLuc (A) or pELAM-GLuc (B) 



reporter plasmid were included. An empty pCI vector served as a stuffer. After 24h cells were 

transfected with poly(I:C), pppRNA, ISD and c-diGMP or stimulated with LPS or decreasing 

concentrations of CMA (from 500µg/ml to 15,62µg/ml). Luciferase activity was measured 

after an additional period of 24h in the supernatant (upper panel). Cell viability was 

determined by CellTiter-Blue assay (lower panel). Representative results out of 3 

independent experiments are depicted. 

Figure S5. R231A dissociates c-diGMP- from CMA-mediated STING activation 

A-C, 293T cells were transiently transfected with the indicated STING constructs (25, 12.5, 

6.25 and 0ng), whereas 12.5ng of pIFNβ-GLuc reporter plasmid were included. For titrations, 

an empty pCI vector served as a stuffer to obtain 200ng total plasmid DNA. After 24h cells 

were stimulated with c-diGMP or CMA (500µg/ml and 125µg/ml). Luciferase activity was 

measured after an additional period of 24h in the supernatant and data were normalized to 

the condition without STING overexpression. Plasmids coding for full-length murine STING 

(A), murine STING-I199N (B) and murine STING-R231A (C) were tested. D, Expression of 

the above-described constructs was studied in 293T cells 24h after transfection (200ng per 

96-well) using western blot, whereas β-Actin served as a loading control. Representative 

results out of 3 independent experiments are depicted. 

Figure S6. The CTT is not required for CMA binding 

The interaction of mSTING-LBD-∆CTT with c-diGMP, c-diAMP and CMA detected by thermal 

shift assay. Purified mSTING LBD lacking the CTT (138-341) (i) was analyzed with different 

concentrations of c-diGMP/c-diAMP/CMA. (ii) Thermal shifts of (iii) fluorescence intensity vs. 

temperature are shown. Representative results out of 2 experiments are depicted. 

Figure S7. Comparison of mouse STING:CMA and human STING:c-diGMP 

Superposition of mouse STING, bound to two CMA molecules (brown ribbon model and with 

magenta CMA stick models), with human STING, bound to c-diGMP (PDB accession code 

4F5D, cyan ribbon model with green c-diGMP stick model). The superposition shows a 

similar dimer structure, shared ligand binding site and overall similar folding of the lid region, 

suggesting that CMA activates murine STING by a similar structural mechanism than c-

diGMP. 
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Data collection     

Space group R3  

Cell dimensions     

    a, b, c (Å) 108,54 108.54, 101.83  

    a, b, g  (°)  90.0, 90.0, 120.0  

Resolution (Å) 50.0 – 2.75 (2.91 – 2.75) *  

Rmeas (%) 5.1  (77.2)  

I / σI 19.17 (1.97)  

Completeness (%) 99.3 (98.3)  

Redundancy 4.0 (3.9)  

   

Refinement   

Resolution (Å) 34.38 – 2.75  

No. reflections 11444  

Rwork / Rfree (%) 21.0 / 23.7  

No. atoms   

    Protein 2989  

    Ligand/ion 38  

    Water 32  

B-factors   

    Protein 73,5  

    Ligand/ion 39,2  

    Water 62,5  

R.m.s deviations   

    Bond lengths (Å) 0,007  

    Bond angles (°) 1,159  

Ramachandran values  

    Favored 343 

    Allowed 19 

    Outliers 0 

PDB Accession code 4JC5 

* Values in parentheses are for highest resolution shell 

 !
!
Table S1. Data Collection and Refinement Statistics 
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Supplementary Figure 1 | Expression analysis of wild type murine STING and the R231A mutant. Expres-
sion analysis of wild type murine STING and its mutant R231A (both harboring a GFP-Tag) by immunoblotting 

two independent experiments are shown.
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Supplementary Figure 2 | Overexpression of cyclic di-GMP synthetase induces endogenous expression of 
cyclic di-GMP in HEK293T cells. Chromatograms from purified lysates of untreated HEK293T cells (grey) 
and cyclic di-GMP synthetase overexpressing HEK293T cells (dark green) are shown together with synthetic 
cyclic di-GMP spiked into untreated HEK293T lysate (light green).  Representative data out of two independent 
experiments are shown.
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Supplementary Figure 3 | The endogenous cGAS product is a potent trigger of type I IFN response in 
BMDMs and MEFs. (a-b) BMDMs (a) and primary MEFs (b) were transfected with purified cGAS product 
extracted from HEK293T cells overexpressing cGAS, synthetic cGAMP(3’-5’), cyclic di-GMP, plasmid DNA 
and ISD. After 14h supernatants were collected and the production of IP-10 was assessed by ELISA. Repre-
sentative data out of three independent experiments are shown as mean values + SEM.
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Supplementary Figure 4 | Tandem mass spectrometry of the cGAS-derived product suggests the presence 
of a 2’-5’ phosphodiester linkage. (a) Tandem MS spectra from in cellulo synthesized cGAS product (light 

blue) and synthetic cGAMP (3´-5´) (dark blue) is shown. Grey arrows highlight an ion product with m/z 344.1, 

indicative of a nucleotide with 2’-3’-cyclic phosphates. Orange arrows highlight signals consistent with depuri-

nation of the dinucleotides (m/z 522.0 and m/z 538.1). Representative data out of three independent experi-

ments are shown. (b) Expected fragmentation pathway of synthetic cGAMP(3’-5’) is shown. 
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Supplementary Note 1 | Analysis of tandem MS spectra suggests the presence of a 2’-5’ 
phosphodiester bond within the cGAS-derived dinucleotide product. 

The tandem MS2 spectra of synthetic cGAMP(3’-5’) and the cGAS-derived product isolated from 
cell culture lysates showed significant differences, when analyzed by tandem MS in negative ion 
mode. Among other differences, the cGAS-derived dinucleotide showed a higher propensity for 
depurination of the guanosine, indicative of a lower stability of the N-glycosidic bond at the 
ribose ring in comparison to the synthetic cGAMP(3’-5’) molecule (Supplementary Figure 4). A 
likely scenario for this change in stability could be ascribed to a 2’-instead of 3’-phosphodiester 
bond at the ribose ring of the guanosine. 

The fragmentation of 3’-5’-RNA mainly leads to the y- and c-fragments induced by a cleavage of 
a 5’-P-O bond 1,2. For a cyclic dinucleotide this fragmentation pathway will open the cyclic 
dinucleotide structure by forming a 2’-3’-cyclic phosphate, but it is mass neutral in the first step 
(Supplementary Figure 5). In a second fragmentation step the same fragmentation pathway will 
dissociate the dinucleotide in two nucleotides with 2’-3’-cyclic phosphates, with m/z = 344 (G) 
and m/z = 328 (A).  The product ion with m/z = 344 was detected with highest abundance as the 
main fragmentation product of synthetic cGAMP with two 3’-5’-phosphodiester groups.  This 
result is in sharp contrast to the spectrum obtained for the cGAS product isolated from cell lysate, 
with just 30% relative abundance for this product ion. These findings suggested a different 
configuration at the G-nucleotide in the synthetic cGAMP(3´-5´) versus the in cellulo produced 
cGAS product. 

Another well-described fragmentation pathway of RNA is the neutral loss of a base that leads to 
the signals at m/z = 538 and m/z = 522, by forming a C1 to C2 double bond. Remarkably, for the 
synthetic cGAMP(3´-5´) adenine is eliminated with a higher relative abundance compared to 
guanine, whereas the ratio is reversed in the dinucleotide isolated from cGAS overexpressing 
cells. It is known, that the 2’-hydroxy group has a stabilizing effect on the N-glycosidic bond in 
RNA 3,4. But in the case the 2’-hydroxy group is changed to 2’-phosphoester bond the stabilizing 
effect becomes lost and the neutral base loss of guanine should significantly increase.  

Additional evidence for a guanosine 2’-phosphodiester is the strongly increased neutral loss of 
water in the cGAS-derived substance after elimination of the guanine base (m/z = 522 to m/z = 
504 in the tandem MS3 spectrum of m/z = 522; data not shown). The significantly higher loss of 
water in the natural compound over the synthetic reference was also observed by Wu et al. 5, but 
not attributed to different structures. For a 2’-5’-phosphodiester nucleotide bond two different 
pathways are possible for the loss of a water molecule after base elimination. The first pathway is 
similar between 2’-5’ and 3’-5’ RNA, where water is eliminated by forming a cyclic phosphate 
between the free 2’- or 3’-hydroxy and the adjacent phosphodiester. The alternative pathway is 
unique to the 2’-5’ RNA, where water can eliminated from C3/C4 by forming another double 
bond and generating a thermodynamically stable aromatic furan ring (Supplementary Figure 4). 
No differences were found for the elimination of water after neutral loss of adenine, which 
supports a similar configuration in both compounds at the adenosine nucleotide. 
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All in all, these mass spectrometry findings strongly support the concept of a cyclic dinucleotide 
structure with guanosine connected 2’ via a phosphodiester to 5’-adenosine and adenosine 
connected 3’ via a phosphodiester to 5’-guanosine. 
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Supplementary Figure 6 | The endogenous cGAS product isomerizes at high temperature to 
cGAMP(3’-5’). (a-c) Chromatograms from in cellulo synthesized cGAS product (a), heat-treated in cellulo 
synthesized cGAS product (b) and synthetic cGAMP(3’-5’) (c) are shown. Tandem MS spectra of elution peaks 
from (b) (i and ii) and (c) (iii) are depicted. Representative data out of two independent experiments are shown.
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Supplementary Note 2 | The cGAS-derived dinucleotide product can isomerize into 
cGAMP(3’-5’) at high temperature 

Interestingly, upon prolonged incubation at high temperature (90°), a small, but consistent 
fraction of the cGAS-derived dinucleotide product converted into a molecule with identical 
retention time in RP-HPLC as well as an identical MS/MS fragmentation pattern as the 
synthetic cGAMP(3’-5’) (Supplementary Figure 6). These data strongly suggested that the 
cGAS derived molecule and synthetic cGAMP(3’-5’) were structural isomers with different 
phosphodiester linkages, being consistent with the idea of the cGAS-derived product 
harboring a 2’-5’ phosphodiester linkage that could isomerize into a 3’-5’ phosphodiester 
bond 1. 
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Supplementary Figure 7 | Candidate products of 
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Supplementary Figure 9 | Enzymatic assays reveal the endogenous cGAS product to be 
(>Gp(2’-5’)Ap(3’-5’)>). (a) Chromatograms and schematic view of the reaction products from (a) RNase T2, 

(b) S1 Nuclease, (c) RNase T1 and (d) SVPDE digestion of synthetic cGAMP(3’-5’) (dark blue) and in cellulo 

synthesized cGAS product (light blue). Representative data out of two independent experiments are shown. 

Peaks marked with #, §, ** and *** represent phenol contamination, not assignable peaks (no ESI-MS signal), 

chemical synthesis by-products and isomerization products, respectively.
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Supplementary Figure 11 | Characterization of cGAMP(2’-5’) and cGAMP(3’-5’) by 1H-NMR spectros-
copy. (a) The complete 1H-NMR spectrum of the in vitro reaction product of cGAS (cGAMP(2’-5’)) is shown. 
The inserts in the top indicate the expanded G 2´H (i) and A 3´H (ii) regions. (b and c) Close-up view of the 1´H 
regions of the 1H-NMR spectrum of cGAMP(2'-5') (b) and cGAMP(3'-5') (c).
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Supplementary Note 3 | Characterization of cGAMP(2’-5’) and cGAMP(3’-5’) by 1H-
NMR spectroscopy  

1H-NMR spectrum of the cGAS synthase reaction product (Supplementary Figure 11a) was 
measured from a 0.1 mM solution in D2O at 700 MHz. Singlets of the base protons indicated 
that no multimerization occurs under such conditions 1. The spectral parameters were 
determined as follows (700 MHz; D2O): 8.2 (1H, s, A-H8); 8.16 (1H, s, A-H2); 7.75 (1H, s, 
G-H8); 6.07 (1H, s, A-H1´, J1´2´ = 0 Hz); 5.83 (1H, s, G-H1´, J1´2´ = 8.49 Hz); 5.55 (1H, m, G-
H2´, J1´2´ = 8.49 Hz, J2´P = 9.0 Hz, J2´3´ = 4.06Hz); 4.94 (1H, m, A-H3´, J2´3´ = 4.06Hz, J3´P = 
6.7 Hz, J3´4´ = 10 Hz); 4.75* (s); 4.48 (1H, d, A-H2´, J1´2´ = 0 Hz , J2´3´ = 4.06 Hz); 4.37-4.07* 
(unresolved m, A and G 4´ H and  5´, 5´´ H). 

Comparison of the H-1´ regions of the 1H-NMR spectra of >Gp(2’-5’)Ap(3’-5’)> and 
>Gp(3’-5’)Ap(3’-5’)> revealed that the ribose of the 2’-5’ linked guanosine preferentially 
occupies a 2´-endo conformation (J(1´H-2´H) = 8.49 Hz) 2,3 (Supplementary Figure 11b and c), 
whereas the singlet of the other ribose 1´H indicates the presence of an 3´-endo sugar for 
adenosine, similarly to the sugar pucker observed in the 3´-5´,3´-5´ cGAMP isomer 4. The 
distinction between adenosine and guanosine 1´H signals is based on the fact that 1´H signals 
of adenosine 5´, 3´and 2´ monophosphates appear always downfield from the corresponding 
1´H positions of the corresponding guanosine monophosphates, with no overlap observed 
between A and G series 5,6. Of note, this trend is also valid for the recently characterized 
cyclic 3´-5´ GA diphosphates 4. 

The significantly different J1´2´ coupling constants for G and A allows further distinctions 
between some neighboring atoms the following way: Two signals in the spectrum at 5.55 ppm 
and at 4.94 ppm show significant downfield shift compared to the standard positions of A and 
G 2´or 3´ protons. These values indicate the presence of O-phosphoryl groups at the 
corresponding positions. Based on literature data for of G and A 2´and 3´ monophosphates 5 
the most downfield 5.55 ppm peak may result from H2´ signals of 2´-GMP or 2´-AMP type 
environments. 2´-AMP can be eliminated based on analysis of the fine structure of the 5.55 
ppm peak. This spin system could be modeled with good precision using J1´2´ = 8.49 Hz, J2´P = 
9.0 Hz, J2´3´ = 4.06Hz parameters i.e. the 5.55 peak could be assigned to the guanosine having 
a 1´H proton with J1´2´ = 8.49 Hz. In this calculation literature J2´P values for nucleoside 2´ 
phosphate esters were employed 7. 

The 4,94 ppm multiplet could be modeled with the following parameters: J2´3´ = 4.06Hz, J3´P = 
6.7 Hz, J3´4´ = 10 Hz thus excluding 2´-H of adenosine, which shows no J1´2´ coupling thus 
suggesting that this proton is attached to adenosine 3´C. J (3, 4) was derived using the (J 3´4´ + 
J1´,2 ´)= 10 Hz relationship 3. 

For the residual 4 - 4.8 ppm region containing signals for 4´H, 5´CH2 and the remaining 
ribose protons, partial overlap with the HDO background signal and the complex unresolved 
multiplets for the 5´ and 5´´ CH2 protons allowed only a tentative assignments (These peaks 
are marked with *). 

All in all, this partial assignment confirms that the cGAS reaction product contains 2´-
phosphorylated guanosine and 3´-phosphorylated adenosine substructures, thereby clearly 
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supporting the result of enzymatic digestion experiments indicating the presence of >Gp(2’-
5’)Ap(3’-5’)> linked ring structure.  

Based on these observations, a 3D structure model of cGAMP(2’-5’) was generated by using 
the fragment based approach of COSMOS that relies on nucleotide structure parameters from 
crystallography databases 8. The structure containing 2´-endo G ribose was selected based on 
the observed 1H-NMR parameters for the conformation of the G ribose, and the adenine and 
guanine bases were rotated into trans orientation with Pymol to match the previously 
determined structure of cyclic-diGMP bound to STING by Yin et al. (4F9G.pdb) 9. 
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Supplementary Figure 13 | LC-MS analysis of chemically synthesized cGAMP(2´-5´) and cGAMP(3’-5’). 
(a-b) Chromatograms of chemically synthesized (a) cGAMP(2’-5’) and (b) cGAMP(3’-5’) are shown. (c-d) 
Tandem MS spectra of the product peaks from (a) and (b) are depicted. 
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Supplementary Figure 14 | LC-MS analysis of cGAS enzymatic reaction products. (a-b) Chromatograms 

of in vitro cGAS enzymatic reaction products with (a) ATP or (b) GTP as only substrates are shown. The 

assignment of peaks to mono- and dinucleotide species was determined by LC-MS. In case of arguable isomers, 

characterization of the peaks was complemented with enzymatic digestion analysis for the crucial components. 

The insert on the upper right depicts the relative abundance of the two observed dinucleotide species. Data are 

representative of n=2 experiments.
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Supplementary Figure 15 | The linear 3´-5´ linked dinucleotides pppRp(3´-5´)A are scarcely or not at all 
processed by cGAS. (a-b) Chromatograms before (top) and after (bottom) incubation of pppAp(3’-5’)A (a) 
and pppGp(3’-5’)A (b) with cGAS in in vitro enzymatic reactions are shown. Asterisks indicate the position of 
the substrates (*) and the resulting products (**), respectively. Data are representative of n=2 experiments.
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Supplemental Figure S1: Activity assays, electron density and cGAS sequence alignment  

a) Activity assays with human and porcine cGASmab21 in the presence of ATP, GTP and ATPα32P. Upper 

panel left: 2µM human cGASMab21 + dsDNA (50mer), right: 1µM human cGASMab21 + 0.5µM ssDNA 

(40mer). Lower panel left: 2µM human cGASMab21 + 3µM dsDNA (50mer) using only ATP/ATPα32P and 

only GTP/GTPα32P, respectively; right: 1µM porcine cGAS Mab21 + 0.5µM dsDNA (40mer). The reactions 

were stopped at indicated time points by plotting on TLC plates. Both human and porcine cGASMab21 are 

activated by dsDNA while ssDNA and single nucleotides fail to induce activity.  

b) IFN-β stimulation in THP1 cells by dsDNA50mer or with 5’triphosphate dsRNA (3pRNA). 200ng of 

indicated ligand was transfected to THP1 cells along with IFN-β promoter reporter plasmid pIFN-β-

GLUC. Luciferase activity is plotted: mean ± sd (n=3). The dsDNA50mer used in in vitro assays induces 

interferon production in THP1 cells. 3pRNA, which induces the RIG-I pathway, is used as positive 

control. The negative control is without ligand. 

c) 2Fo-Fc electron density overlaid with the final model around the thumb (carbons green). The 2Fo-Fc 

map is contoured at 2σ.  

d) Structure based alignment of selected cGASMab21 sequences (abbreviations: Sus scrofa: ss, Homo 

sapiens: hs, Mus musculus: mm, Danio rerio: dr, Gallus gallus: gg) with highlighted conserved residues 

and annotated motifs. The secondary structural elements are shown on top of the alignment for the 

porcine homolog, color coding is analogous to Fig. 1. The squares mark residue contacts: green => DNA, 

magenta => GTP/ATP, cyan => Mg2+, orange => Zn2+. Stars denote residues that are mutated in this 

study. 
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Supplemental Figure S2: Electron densities 

a) Ribbon model of cGASMab21(td) (blue) with bound dsDNA (beige stick representation). 2Fo-Fc electron 
density for the DNA and the Zn-thumb residues are shown at a contour level of 1σ.  

b) 2Fo-Fc electron density around the two nucleotides in the active site (contour level of 1σ).  
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Supplementary Figure S3: Electrophoretic mobility shift and activity assays 

a) Electrophoretic mobility shift analysis of dsDNA50mer (0.2 µM) with human or porcine cGASMab21 

(protein concentrations are 0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50 µM (triangle)). Control: without 

protein.  

b) Like a), but with human cGASMab21 mutants.  

c) Like a) but binding of human cGASMab21 to dsRNA50mer.  

d) Activity assay with 2µM human cGASMab21 + 3µM dsRNA50mer. 
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Supplementary Figure S4: Comparison of UTP- and ATP/GTP-bound structure of cGASMab21 

The stereo figure shows the active site of the superimposed structures of the UTP-bound state of 

cGASMab21 (orange) and the cGASMab21(td):DNA:GTP:ATP complex (blue), respectively. The ribose 

moiety is flipped in UTP as compared to ATP. 
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Supplementary Figure S5: Comparison of cGASMab21 structures 

a) Superposition of the DNA-bound (blue) and apo (grey) cGASMab21 structures.  

b) Superposition of apo (grey) cGASMab21 and UTP-bound (orange) cGASMab21.  

c) The Leu148 flip upon DNA binding. In the absence of DNA (orange UTP-bound and grey apo 

structures) Leu148 is solvent exposed. In the DNA binding conformation (blue), Leu148 flips and helps 

stabilize the nucleotide-binding loop. 
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Supplementary Figure S6: Comparison of STING and cGAS DNA binding and STING in vivo 
activity. 

a) Electrophoretic mobility shift analysis of dsDNA (0.2 µM) with human cGASMab21 (left) and human 

STINGaa139-379 (right) (protein concentrations are 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10, 15 µM, control: without 

protein). While human cGASMab21 readily binds dsDNA at a concentration as low as 0.5 µM, human 

STINGaa139-379 fails binding even at concentration as high as 15 µM. 

b) Western blot analysis of IRF3 phosphorylation which indicates interferon stimulation. The HEK293T 

cells stably expressing STING were induced with cyclic-di-GMP, dsDNA90mer and 10-carboxymethyl-9-

acridanone (CMA). The proven STING ligands cyclic-di-GMP and CMA induce IRF3 phosphorylation 

while DNA90mer fails, suggesting requirement of a sensor that detects DNA upstream of STING. β-actin 

was used as loading control. 
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Supplemental Table S1  Data collection and refinement statistics 	
  
  SeMet  Apo  +UTP DNA-GTP-ATP complex 

Data collection       
Space group C2221 C2221 P212121 C2221 
Cell dimensions       
    a, b, c (Å) 47.5, 119.9, 140.9 47.4, 118.0, 142.6 80.6, 97.7, 107.0 86.2, 111.7, 117.6 
    α, β, γ  (°)  90,  90, 90 90,  90, 90 90,  90, 90 90,  90, 90 
Resolution (Å) 47.1 (2.5)* 47.5 (2.0)*  46.9 (2.28)* 999.0 (3.1)* 
Rmerge 9.0 (44.7)* 4.7 (57.5)* 5.8 (59.1)* 9.0 (90.7)* 
I / σI 13.8 (3.3)* 20.9 (2.6)* 12.0 (2.0)* 17.0 (1.9)* 
Completeness (%) 98.7 (92.0)* 99.6 (98.4)* 95.9 (93.3)* 98.6 (91.7)* 
Redundancy 6.8 (6.4)* 6.4 (5.9)* 2.3 (2.3)* 6.9 (6.6)* 
Wavelength  (Å) 0.97961 1.00665 0.97934 0.97626 

     
Refinement     
Resolution (Å)  45.5 - 2.0 44.6 - 2.27 68.3 - 3.08 
No. reflections  51611 72224 10739 
Rwork / Rfree (%)  18.6 / 21.3 17.0 / 20.4 25.5 / 25.8 
No. atoms     
    Protein  2878 5969 2899 
    DNA  - - 555 
    Ligand/ion  54 62 73 
    Water  132 306 2 
B-factors     
    Protein  52.2 38.0 101.4 
    DNA  - - 113.6 
    Ligand/ion  65.6 41.5 129.5 
    Water  45.1 38.2 95.59 
R.m.s. deviations     
    Bond lengths (Å)  0.008 0.009 0.004 
    Bond angles (°)  1.07 1.19 0.888 
Ramachandran (%)     
    Favored   97.4 98.6 96.0 
    Allowed   2.3 1.4 4.0 
    Outliers  0.3 0 0 
PDB Accession Code                                        4JLX 4JLZ 4KB6 

     
*Values in parentheses are for the highest-resolution shell. 
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Figure S1 Coordination of the sulfate ion in the ATP-binding loop of RIG-I SF2. 
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Figure S2 Size-exclusion coupled static light-scattering (SEC-RALS) data of RIG-I SF2. The 

black curve shows the refractive index (left axis) vs. retention volume of the RIG-I SF2 peak with 

the corresponding molecular weight (red curve, right axis) of a 3mg/ml sample loaded on the 

size exclusion column. The molecular weight is constant over the whole range of the peak 

indicating a very homogenous sample (polydispersity Mw/Mz= 1.0). The average molecular 

weight determined by SEC-RALS is Mw
SEC-RALS = 64.2 kDa and thus in very good agreement 

with monomeric RIG-I SF2 (Mw
theoretical =66.0 kDa). 
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Figure S3 Illustration of the crystal packing of the RIG-I SF2 reported in this study. The 

crystallographic dimer (shown as surface representation in light and dark blue) and its 

surrounding symmetry mates shown as grey ribbons. In addition to the stabilizing interactions 

within the dimer, the symmetry mates influence the overall shape by extensive crystal contacts 

from top and bottom. 
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