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Abstract 
 

Background: T cells are functionally compromised during HIV infection despite their increased activation and 

proliferation. Although T cells hyperactivation is a predictive marker for disease progression, its causes are not 

completely understood. Tat is a regulatory protein of HIV, necessary for viral gene expression, that can be 

released extracellularly and increases activation and cytokines release in uninfected CD4+ T lymphocytes and 

APCs. However, whether Tat can modulate also CD8+ T cell functions is not clear.  

Methods: We examined the effect of Tat from different HIV clades on CD8+ T cell responses and antiviral 

immunity in different in vitro and in vivo models of T cell activation by TCR engagement, including HSV infection. 

Moreover, a cross-sectional study on HIV-infected subjects was conducted to determine the association between 

anti-Tat antibodies and immune impairment. 

Results: The presence of both clade B and clade C Tat during priming of CD8+ T cells favors the activation of 

antigen-specific CTLs. CD8+ T cells activated in the presence of Tat show an increased expression of T-bet and 

Eomes, two “master regulators” of T cell functionality and development. Overstimulation of effector CD8+ T cells 

generated in the presence of Tat turns to a partial dysfunctionality at the peak of the response, and worsens HSV 

acute infection. Moreover, Tat favors the development of effector memory CD8+ T cells and a transient loss of B 

cells, two hallmarks of the chronic immune activation observed in HIV-infected patients. In accordance with a 

Tat-mediated impairment of the immune system, anti-Tat IgM are found preferentially in patients with high 

CD4+counts, suggesting a protective role of anti-Tat immunity. 

Conclusion: Our data provide evidence that Tat, irrespectively to the HIV clade, contributes to CD8+ T cell 

dysfunctions and support a role of Tat in deleterious immune activation in HIV-infected individuals. 
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1 Introduction 
 

Since its isolation in 1983 [1], the human immunodeficiency virus (HIV) is still one of the major plagues 

worldwide with about 34 million of infected individuals, 2.5 million of new infections and 1.7 million of deaths 

per year [2]. HIV is the causative agent of AIDS (acquired immunodeficiency syndrome), a condition 

characterized by loss over time of immune cell functions which allows intrusion by several different infectious 

agents. Thus, HIV infection results in a complex impairment of the immune system. 

 

1.1 The Immune system 

 

The human immune system is composed by two major branches, the innate immunity and the adaptive 

immunity, and both of them are involved in the response against HIV.  

The innate immunity is the first and nonspecific reaction initiated after every infection, with the aim to block the 

spread of the pathogen and to induce the inflammatory process. Moreover, innate immune cells activated by the 

interaction between PAMPs (pathogen-associated molecular patterns, molecular structures belonging to 

microorganisms) and PRRs (pathogen recognition receptors, expressed on the surface of innate immune cells) 

favor the onset of the adaptive immunity. This cross talking among the two major branches of the immune 

system happens mostly through two mechanisms: 

1. activation of pro-inflammatory signaling pathways, resulting in the production of antimicrobial 

molecules, of pro-inflammatory cytokines and chemokines and of co-stimulatory molecules that, soluble 

or expressed on the cell surface, activate adaptive immune cells;  

2. phagocytosis of the pathogen by macrophages, neutrophils and dendritic cells (DCs). This is followed by 

the processing of the antigen and their presentation, through MHC molecules, to T lymphocytes (see 

below). 

The adaptive (or acquired) immunity is composed by cell-mediated and humoral responses, mediated 

respectively by the T and the B lymphocytes.  

 

1.1.1 Cellular response 

The worst damage caused by the HIV infection to the human immune system is at the level of the cellular 

immunity. The pathogen-specific cellular immunity is mediated by CD4+ and CD8+ T lymphocytes; CD4+ T cells 
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are the preferential target of the virus and they massively dye during the course of the infection, but also CD8+ T 

cells experience important dysfunctions. Moreover, because CD4+ T cells provide help for both B and CD8+ T 

lymphocyte responses, their loss during HIV infection leads to impairment both the two arms of the adaptive 

immunity.  

T lymphocytes mount specific responses against antigens (Ags) that are presented through major 

histocompatibility complex (MHC) molecules; indeed, intracellular or internalized antigens are processed by the 

cellular proteolytic systems (“antigen processing”) that generates small peptides (epitopes); these small 

peptides, associated to the MHC molecules, migrate to the cell surface to be recognized by the specific T cell 

receptor. Intracellular Ags are presented through MHC class I molecules, present on all nucleate cells, and 

activate CD8+ T cells, while internalized antigens are presented through MHC class II molecules, present on 

“professional” APCs like DCs, macrophages and B cells, and activate CD4+ T cells. However, professional APCs can 

also present exogenous antigens to CD8+ T cells through a mechanism called “cross presentation”. T lymphocytes 

recognize the presented antigen through the TCR, a complex of proteins that includes a dimer (usually formed by 

α and β subunits, but in some cases γ and δ subunits can be found), responsible for the binding with the epitope, 

and the CD3 chains (consisting in other three protein dimers), responsible for the signal transduction. Signal 

transduction begins with the activation of protein tyrosine kinases, serine/threonine kinases and the mTOR 

kinase, continues with the involvement of several second messenger cascades and end with the entering into the 

nucleus of some transcription factors (TFs), like NFAT, AP-1 and NFκB, that stimulate the expression of key T cell 

associated genes. Moreover, TCR stimulation leads to increased avidity of integrins for their ligands, thus 

favoring the adhesion of T cells to APCs. 

Further to TCR stimulation, also defined as “signal 1”, T cells activation requires costimulatory signals (“signal 

2”) and other additional signals from the environment, like the presence of pro-inflammatory cytokines (“signal 

3”) [3]. Several co-stimulatory receptors are exposed on T cell surface; among them, CD28 seems to be the most 

relevant. CD28 binds to ligands (CD80, CD86) present on APCs. Co-stimulation through CD28 results in an 

enhanced and prolonged activation of signals downstream TCR, in the transcription of the il-2 gene through the 

engagement of the CD28 RE (response element), a sequence within the IL-2 promoter, and in the enhancement of 

the mRNA half-life of multiple cytokine genes [4]. CD28 co-stimulation is responsible for the activation of c-Jun 

kinase and PI3K/AKT/mTOR axis, thus contributing to anti-apoptotic effects due to the up-regulation of Bcl-2. 

Physiologically, a balance among MAP kinase family enzymes, in particular between ERK and c-Jun, is important 

for T cell survival, and while ERK is activated through TCR stimulation, c-Jun depends mostly by CD28 signalling 
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[5]. Type 2 signals are provided by different kind of co-stimulation which include CD28, tumor necrosis factor 

receptors (TNFR), CD40-CD154 interaction and IL-2. The IL-2 receptor is composed by three chains, the α chain 

(CD25), the β chain (CD122, common with IL-15 receptor) and the γ chain, common to other cytokines receptors 

defined as “common γ chain” cytokines (IL-4, IL-7, IL-9, IL-15 and IL-21), and induce the proliferation of the 

stimulated T cell [6]. A third signal is required for the “expansion” of antigen stimulated T cells, and it consists in 

the pro-inflammatory milieu due to the secretion by APCs or by neighboring cells of IFNα and γ, IL-12, IL-23 or 

other pro-inflammatory cytokines [3].  

The modulation of these 3 signals during the priming of naïve T lymphocytes is of great importance to generate a 

productive response leading to strong effector functions, cell survival and memory generation. Following antigen 

stimulation, that can be represented by any infections, antigen-specific T cells undergo a remarkable phase of 

“expansion”: naïve precursors massively proliferate and differentiate into “effectors”, encharged of the clearance 

of the pathogen [7]. Effector CD4+ T cells may accomplish their duty of “orchestrating” the immune response both 

remaining in lymph nodes to help B cells or migrating into the site of infection, thus supporting the activities of 

innate immunity cells or cytotoxic T lymphocytes (CTLs), directly involved in the clearance of the pathogen 

through the secretion cytotoxic proteins. T helper lymphocytes that recognize the epitope bound to MHC class II 

molecules on the surface of the same DC presenting the antigen to the CD8+ T cell can help the activation of the 

CD8+ T cell itself through the secretion of IL-2 (beneficial for CTLs expansion) or enhancing, on DCs, the 

expression of co-stimulatory molecules and the production of cytokines in favour of the CD8+ T cell. The ability of 

T helper cells to sustain (or depress) a certain kind of immunity depends by the lineage that they acquire: Th1, 

Th2, Th17 and Treg. The acquisition of a certain lineage strongly depend by the cytokine milieu (Table 1.1) that 

determines the expression of specific TFs. In particular, Th1/Th2 balance is regulated by T-bet and Gata-3, both 

induced by TCR stimulation and, in a different way, by several cytokines [8]. T-bet enhances responsiveness to 

IL-12 up-regulating IL-12Rβ2 and promotes IFNγ expression, thus favoring a Th1 phenotype, while Gata-3 is the 

TF responsible for the acquisition of a Th2 lineage [9]. T-bet and Gata-3 expression is regulated, in turn, by the 

different activation of the two complexes of the intracellular kinase mTOR, mTORC1 and mTORC2, that also 

control Th17 development [10, 11].  

IL-12 plays a fundamental role in this process since it promotes Th1 development in addition to ensures a robust 

expansion and the acquisition of effector functions by CD8+ T cells favoring the secretion of IFNγ and granzime B 

through the activation of the PI3K-Akt pathway that leads to mTOR phosphorylation and T-bet expression [12, 

13]. 
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T helper lineage Principal inductive cytokines Role of T helper cells subpopulations 

Th1 IL-12, IFNγ, IFNα 
Defense vs intracellular organisms: NK, macrophages and CTLs 

activation and IFNγ secretion. 

Th2 IL-4 

Mucosal and epithelial defense, promotion of IgE and 

eosinophil/basophil/mast cell-mediated immune reaction, 

response to parasites 

Th17 TGFβ, IL-6, IL-23 

Defense vs extracellular organisms, release of pro-

inflammatory cytokines, activation of T cells, NK and 

neutrophils. 

Treg TGFβ, IL-10 Suppression and control of the immune response 

Table 1.1 T helper lineage commitment 

 

Remarkably, expression of T-bet in CD4+ and CD8+ T cells is induced downstream of TCR, IFNγ and IL-12 

signaling, and promotes the transcription of effector genes [14]. The effector functions of CD4+ and CD8+ T cells is 

dependent also by Eomes, belonging to the T-box TFs family, like T-bet [15]. However, T-bet and Eomes display 

an opposite function in the memory development (see below) and, moreover, their expression seems inversely 

related; for instance, IL-12 induces T-bet and represses Eomes [12], while IFNα increases Eomes expression and 

IFNγ production in effector CD8+ T cells but has no effect on T-bet expression [13]. 

After the antigen is cleared (or the pathogens go into latency), the vast majority of effector T cells die during the 

so called “contraction phase”, and the survivors differentiate into memory cells that, in case of secondary 

infection, will be ready to give birth to a new immune response [16]. The death of effector cells once the 

antigenic challenge has been met, is of essential importance to avoid tissue damages and enlargement of 

secondary lymphoid organs, and usually involves the 90% of the clonal population [17]. Their elimination occurs 

by apoptosis and AICD (activation-induced cell death), displayed by several mechanism like privation of IL-2 or 

stimulation of CD95 (also known as Fas). CD95 is a surface receptor up-regulated after TCR stimulation that, 

when triggered by its ligand (present as soluble or on the surface of other activated cells), initiates a signalling 

pathway that brings to caspase activation and, so, to apoptosis. At the same time, cells can prevent this process 

by the up-regulation of some anti-apoptotic genes like Bcl-2 [18].  

High amounts of antigens and a prolonged stimulation can increase the size of the expansion of both CD4+ and 

CD8+ T cells [17, 19]. However, the fraction of effectors undergoing the contraction phase does not seem to 
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depend on the magnitude of the expansion phase [17], while the kinetic of expansion and contraction are strictly 

dependent, as the onset of CD8+ T cell contraction has been shown to initiate about 5 days after the last 

interaction with Ag-loaded DC [20]. The amount of effector cells undergoing contraction is mostly regulated by 

events occurring in the early expansion. Higher number of cells surviving the contraction phase correlates with 

low levels of inflammation [21], increased interaction among CD80 or CD86 expressed on DCs with CD28 

expressed on the T cells [22] and IL-2 co-stimulation [22, 23].  

The pool of effector T cells surviving the contraction phase will generate the memory T cells. Memory T cells do 

not require antigen stimulation for their maintenance, but are dependent on IL-7 and IL-15 signalling that 

mediates homeostasis and survival, up-regulating anti-apoptotic molecules such as Bcl-2 [24]. Bcl-2 down-

regulation seems related to the modification of the T cell subsets occurring during HIV infection [25]. Memory 

cells can be categorized into two broad subpopulations: “central memory” (TCM) and “effector memory” (TEM), 

although the development of multiparametric flow cytometry allowed the characterization of other T cell 

subsets. TCM reside mostly in lymph nodes and are responsible for the clonal expansion after re-exposure to 

antigen, while TEM are disseminated within peripheral tissues where they display immediate effector functions. 

Their different role and anatomical distribution determine their phenotype; for example, lymph node homing 

receptors like CD62L and CCR7 are expressed on TCM but not on TEM. However, this differentiation seems more a 

simplistic way of describing the T cell memory organization than a clear picture of the reality, because several 

experiments have demonstrated that TCM can display secretory capacity and TEM may proliferate [26]. 

Nevertheless, it is well established that the secondary response, mediated by memory cells, is faster and more 

intense than the primary response [27, 28].  

In the case of chronic or latent infections, and particularly during the HIV infection, the persistence of the 

pathogen misleads the physiological development of the cellular response, affecting the functionality of memory 

cells, that can exhibit poor recall proliferation, exhausted phenotype, loss of effector functions and a skewed 

composition of T cell memory subpopulations [29]. 

 

1.1.2 CD8+ T cell programming 

Long lived memory CD8+ T cells seem to originate from a subset of effector cells called MPEC, memory precursor 

effector cells, in contrast to SLEC, short lived effector cells. The balance of MPEC/SLEC among a population of 

effectors depend by the overall amount and duration of the three above mentioned signals, thus the first 48-96 

hours of stimulation determine the fate of the future memory population. In particular, the development of TCM 
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cells is dictated by a short and reduced antigenic stimulation [30, 31]. The composition of the effector T cell 

subsets and, as a consequence, the generation of long lived memory T cells, is related by the balance of the two 

TFs T-bet and Eomes; indeed, T-bet is important for the generation of SLECs, and its expression has to decrease 

for the development of a functional memory population, while Eomes is crucial for the ability of memory T cells 

to respond to IL-7 signaling, important for memory homeostasis [13, 32]. The expression of T-bet and Eomes is 

regulated by the mTOR kinase, whose activity promote T-bet at the expense of Eomes; thus, mTOR inhibition 

promote the accumulation of memory precursors CD8+ T cells, the increased and sustained expression of 

prosurvival genes (Bcl-2 and Bcl-3) and the development of fully competent memory CD8+ T cells [13], as well as 

the maintenance and the antigen-recall responses of competent memory CD8+ T cells [33]. 

Other TFs are involved in the development of memory T cells like the Foxo family, Bcl-6 and Blimp-1. The 

forkhead box O1 (FOXO1) is downstream to mTORc2 and under the stringent control of AKT-mediated 

phosphorylation and nuclear exclusion, induced by IL-12 and IFNα signalling [34]. FOXO1 targets IL‑7 receptor 

subunit-α, CD62L, Bcl-2 and Eomes, thus promoting memory differentiation [34]. FOXO3 too needs 

phosphorylation, induced by IL-7 and IL-15 [35], for nuclear exclusion, and its inhibition leads to an enhanced 

expansion protecting effector cells from apoptosis; this results in an increased accumulation of memory CD8+ T 

cells, without effects on the phenotype [36].  

Bcl-6, the transcriptional repressor of Granzyme B, is important for CD4+ and CD8+ memory T cells formation 

[37] and interacts with T-bet for Th1 development [38]. Bcl-6 is negatively regulated by Blimp-1, a TF required 

for T cell homeostasis, cytokine secretion [39] and more expressed in SLEC than MEPC and TCM [40]; of note, 

Blimp-1/Bcl-6 balance is involved also in the formation and maintenance of memory B cells.  

The interaction with CD4+ T cells and DCs, both targets of HIV infection, play a fundamental role in determining 

the CD8+ T cells programming. Indeed an increased interaction between DCs and T cells due to a higher epitope 

density does not affect the expansion but enhances the survival of CD8+ T cells during the contraction phase 

through an increased expression of both Bcl-6 and Eomes [41], the TFs required for long lived memory cells 

development. Moreover, DCs interact with CD4+ T cells to promote the development of CD8+ TEM cells [42]. 

Together, DCs and CD4+ T cells may influence CD8+ T cells programming through the cytokines they secrete. For 

instance, IL-2 promotes the expansion of SLECs and the accumulation of TEM [42], IL-15 favors the formations of 

MPECs [19] while pro-inflammatory cytokines such as IL-12 and IFNγ enhance the contraction phase [21] and 

the formation of SLECs through the induction of T-bet [43].  
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1.1.3 Humoral response 

The humoral immunity is mediated by immunoglobulins (Ig), secreted by B lymphocytes. Ig molecules are 

constituted by four chains, each of those formed by a variable and a constant region. While the variable region of 

Igs determines the antigen specificity, the constant region contributes to the creation of the antigen binding 

domain and determines the effector functions of antibodies (Abs) and their fate of being secreted or remaining 

on the cell surface. Abs anchored to the cell membrane constitute the B cell receptor (BCR) that induces the 

antigen recognition by B cells, while secreted Abs traffic into the tissues and across mucosal surface. Moreover, 

the constant regions determine the subdivision of Abs into five different types: IgA, IgD, IgE, IgG, IgM, each with 

different properties and functions (Table 1.2). 

 

Immunoglobulin Principal features 

IgA 

IgA is the predominant isotype in the mucosal secretions, but can be found in the blood 

too. IgA are present as monomer, dimers, trimers and tetramers. The IgA-mediated effects 

are different from the immune mechanisms mediated by other Abs, and include the 

blocking of microbial receptors, mucus trapping and induction of phagocytosis. 

IgD They are principally found on the cell surface of naive and mature B cells. 

IgE 
They are mostly associated with allergy, hypersensitivity reactions and immunity against 

parasites. 

IgG 

IgG constitute approximately the ¾ of total Ig in the blood; they characterize the B cell 

memory response, and usually arose after a switch of B cell secretion from IgM to IgG. 

They can mediate complement activation or cellular cytotoxicity (ADCC), but they can also 

directly neutralize the pathogen (neutralizing antibodies). They are subdivided in four 

subtypes: IgG1, IgG2, IgG3 and IgG4, that display some different effector functions. 

IgM 

Constituting the primary antibody response, IgM can be found both anchored on the cell 

membrane and in the soluble form, where they are organized in pentamer or hexamer. IgM 

are very effective in activating the classical pathways of the complement and in the 

opsonization of pathogens. 

Table 1.2 Antibodies isotypes 
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The interaction between the BCR and the antigen induces the activation of multiple signaling reactions that 

involve kinase pathways (JNK, PI3K-Akt, ERK) thus leading to the activation of several TFs like NF-κB and NFAT, 

close resembling the signal mediated by TCR. The cellular responses elicited by BCR stimulation are different 

(survival or apoptosis, change in location, proliferation), depending by the developmental stage of the B cell, the 

presence of other soluble or cellular signals and the interaction with CD4+ T lymphocytes. BCR allows also the 

endocytosis of the antigen and its presentation, through class II MHC molecules, to CD4+ T cells, thus inducing T-

dependent antibody responses. Indeed, B cells can secrete Igs with and without T helper cells. In the latter case, 

these responses are usually fast and dominated by IgM, while T-dependent antibody responses promote isotype 

switching (from IgM to IgG) and the generation of B memory cells and long lived plasmacells (PC). T cell help to 

antibody responses is provided by specific T helper lymphocytes previously primed by DCs; these CD4+ T cells, 

according to the kind of cytokines produced, control the isotype of IgG secreted; in particular, IL-4 induces IgG1 

production while IFN-γ (secreted by both CD4+ and CD8+ T cells) and IL-6 induce IgG2a production. Class 

switching to IgG2a and survival of memory B cells secreting IgG2a require T-bet expression [44]. 

Antibody may “neutralize” the antigen blocking its interaction with host receptors, or they may eliminate 

microbes and toxins through different mechanisms that include the involvement of some innate mechanisms as 

complement activation, phagocytosis or antibody-dependent cellular cytotoxicity by NK cells.  The involvement 

of phagocytes or NK cells requires the interaction of the heavy constant chain of Ig with the leukocyte Fc 

receptor that, after having been triggered, will deliver signals to activate the cell and stimulate its microbicidal or 

phagocytic activity (opsonization). 

 

1.2 The HIV infection: epidemiology and virology 

 

HIV-1 and HIV-2 belongs to the family of Retroviridae, genus of Lentiviruses, and are the disease causing agents 

of AIDS. HIV is thought to be derived by its simian version, SIV, in west central African Countries [45], and after a 

slow and focal spread, probably yet in the early 20th century [46], rapid urbanisation and immigration led to a 

worldwide spread probably at the end of ‘70s, until the first recognized case of AIDS was reported in 1981[47]. 

Nowadays, the region most hit by this plague is sub-Saharian Africa, that accounts for 23.5 million of infected 

individuals, followed by Asia (4.8 million). HIV-2 shows a reduced pathogenicity and a longer clinical course 

compared to HIV-1, and is predominantly found in West Africa [48]; indeed most of the global AIDS pandemic is 

due to HIV-1.  
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Figure 1.1 HIV-infected people. Regional overview adapted by [2] 

 

Based on their genetic differences, four major groups of HIV-1 (M, N, O, P) have been recognized [49]; the M 

group is responsible for about the 90% of HIV-1 infections, and at least 9 subtypes, or clades, can be 

distinguished (A, B, C, D, F, G, H, J, K), in addition to others recombinants forms (CRFs) [50]. The clade C virus is 

responsible for about the half of all HIV infections, followed by subtype A and B [51]. HIV-1 subtypes are 

characterized by some differences in progression rate and virulence [52, 53], and show a peculiar geographical 

distribution; in particular, subtype C viruses are predominant in developing countries accounting for the vast 

majority of all global HIV-1 infections (southern Africa, India and Brazil), subtype B viruses in Europe, America, 

Australia but also southeast Asia, northern Africa and the Middle East, subtype A is the main genetic form in 

central/east Africa and in east Europe and subtype D is mostly present in East Africa [54]. 

 

 

Figure 1.2 HIV-1 subtypes distribution. Adapted by [55] 
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1.2.1 Virus structure and cycle 

HIV viral particles have a diameter of about 100 nm and are built in a concentric structure consisting in an 

envelope, a matrix and a capsid. The capsid contains the genome, composed by two identical copies of single-

stranded RNA that codifies for three major genes (gag, pol, and env) and six accessory genes (tat, rev, nef, vpr, vif, 

and vpu). Structural proteins composing the viral particles are encoded by env and gag, while the pol gene 

encodes for enzymes crucial for viral replication (reverse transcriptase, integrase, protease). The regulatory 

proteins deriving from accessory genes exert functions important for viral infectivity and replication, as well as 

for the immune system impairment. 

 

 

Figure 1.3 HIV-1 virion and genome 

 

The replication cycle of HIV is a multistep process that involves many virus-cell interactions; it starts with the 

binding of the envelope protein gp120 with the CD4 molecule, mostly expressed on T lymphocytes, macrophages 

and DCs; the following interaction with chemokine receptors expressed on the cell surface (commonly CXCR4 

and CCR5) permits the fusion of the virus with the cell membrane and the subsequent entry of the viral capsid. 
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The next step is the uncoating of the core freeing the viral RNA into the cytoplasm of the target cell where, 

through the reverse transcriptase (also present in the HIV virion), is transcribed into double-stranded DNA and 

subsequently integrated into the host genome.  

Once integrated, the proviral DNA may remain latent until the host cell will be activated. When this happens, 

cellular RNA polymerase II complex will transcript viral genome. The first proteins produced are Tat, Rev and 

Nef. The proviral DNA is enclosed by two long terminal repeats (LTR); the 5’ LTR includes the promoter, an 

“enhancer” sequence and a region called “TAR” (Trans-Activation Responsive). Tat binds to the TAR site of the 

nascent RNA to stimulate the transcription and the formation of longer RNA transcripts, that will be translated in 

protein precursors. These, after cleavage, will compose the new viral particles. This final step begins with the 

assembly of the core; the core then migrates towards the cell surface and buds through plasma membrane, that 

contains viral structural proteins.  

 

Figure 1.4 HIV-1 replication cycle 
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The replication cycle utilizes several host transcription factors and requires the cell to be activated, thus the 

immune response arisen to eliminate the virus can trigger further virus production. 

 

1.3 The HIV infection: pathogenesis 

  

HIV infects preferentially CD4+ T lymphocytes, macrophages and DCs, even if other cell types have been 

described as target of the infection [51]. Virus transmission requires the direct exposure to infected blood or 

secretions, and is highly dependent on the virus concentration, viral isolate and host susceptibility. The most 

common routes of transmission include sexual contact, vertical transmission (mother to child transmission) and 

needles exchanges, thus populations most at risk for becoming infected include sex workers, men who have sex 

with men and people who inject drugs [56]. The contribution of the different routes of infection to the global 

epidemiology varies across the regions of the world. 

The transmitting virus usually utilizes the CCR5 chemokine receptor for viral entry (R5 viruses) [57] and 

establishes a localized infection determining a severe loss of CD4+ T cells, especially in the gut [58]. Infected CD4+ 

T cells expand locally and start to produce pro-inflammatory chemokines and cytokines, recruiting to the site of 

infection plasmacitoid dendritic cells (pDC) and new targets of infection thus determining the dissemination to 

lymph nodes; from the lymph nodes, HIV spreads systemically via the blood stream. Several flu-like or 

mononucleosis-like symptoms may characterize the acute phase (first 6 weeks), and the infection is countered 

only by innate mechanisms of immunity and by intracellular resistance factors like APOBEC3, TRIM5α and 

thetherin [59]. This phase is followed by the development of B and T cell responses that determine the decline of 

the viral load to a “set point” and the raise of CD4+ count, and symptoms begin to disappear. Phenotypic changes 

in viral isolates determine the appearance of X4 viruses, characterized by the usage of CXCR4 co-receptor, or of 

dual tropic (X4R5) viruses; these viral strains show some difference in tropism, infectivity and disease 

progression [57, 60]. The situation can remain asymptomatic, in absence of therapy, up to 10 years; however, in 

this time frame, a slow loss of CD4+ T cells and immune impairment occur, and the virus continues to replicate in 

some body compartments. CD4+ T cells death does not involve only infected cells and is not exclusively due to 

direct cytopathic effects of HIV, but can be caused by several mechanisms including apoptosis induction and anti-

CD4+ T cells cytotoxic activity [61]. This “clinical latency” phase is accompanied by the establishment of cellular 

reservoirs, resting memory CD4+ T cells that host the integrated virus with low expression of viral antigens, not 

to be eliminated by the adaptive immune system [62].  
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A “chronic immune activation” status that characterizes the whole T cell compartment (see below), as well as a 

continuous viral replication, contribute to the destruction of the lymphoid tissue. These detrimental effects, and 

the CD4+ count drop to 200 cells/µl,  favors the onset of opportunistic infections (eg. Pneumocystis carinii, 

toxoplasmosis, Candida, CMV, Mycobacterium Tuberculosis) and tumors [63, 64], as well as of sever problems at 

the central nervous system (CNS), leading the patient to death. 

 

1.3.1 Immune activation and other immune dysfunctions 

T helper cells are known to interact with other many cell types like APCs, B cells and CD8+ T lymphocytes; so, HIV 

infection can, directly or through the loss of CD4+ T cells, influence other compartments of the adaptive 

immunity. Several damages at the level of lymphoid organs have been extensively demonstrated [65], and 

defects in T cells maturation and differentiation [66] and in the composition of the T cell subsets are quite 

common in AIDS patients; indeed, the HIV infection is characterized by decrease of naïve and expansion of 

memory T cells, in particular of the effector memory subset [56, 67, 68]. 

CD4+ and CD8+ T cells show several dysfunctions like impairment of cytolitic functions [69], loss of 

polyfunctionality [70, 71], exhaustion [72, 73], increased T cell proliferation [74, 75] and susceptibility to 

apoptosis [76, 77]. T lymphocytes from HIV-positive subjects are also characterized by a deep modification of the 

intracellular signaling [78], as demonstrated by the impaired response to TCR- and IL-2- mediated stimulation 

[56, 79] and by the skewed expression of some important TFs, including T-bet and Eomes [80, 81]. These 

detrimental effects of the HIV infection on the whole T cell compartment, regardless antigen-specificity, and that 

involve uninfected cells too [82], are a direct consequence of the chronic and systemic immune activation 

characterizing the immune system of HIV-infected individuals, that is one of major determinants of pathogenesis 

[83]. In fact, T cell hyperactivation contributes to immune impairment and creates new target of infections, since 

HIV infects preferentially activated CD4+ T cells. 

The causes of chronic immune activation are still poorly known. HIV infected subjects are characterized by high 

levels of pro-inflammatory cytokines and chemokines [84] that contribute to T cells hyperactivation and increase 

HIV-1 replication [85]. At the same time, T cells activation is induced by the reactivation of some co-infections 

(HCV, HSV-2, CMV, EBV) and by the disruption of the mucosal barrier that results in microbial translocation from 

the gut to the systemic immune system [82, 86, 87]. In addition, some viral structural proteins, like the gp120 

[88], and some regulatory proteins (Tat, Nef and Vpr) known to be secreted by infected cells [89-91], have been 

shown to favor T lymphocytes activation. Immune activation involves also other cell types, like B cells, NK and 
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DCs [92-94]. In fact DCs show, during chronic HIV infection, an activated phenotype, and increase their 

spontaneous production of pro-inflammatory cytokines and chemokines, thus contributing to the overall 

hyperactivation of the immune system [95, 96]. 

 

1.3.2 HIV persistence in cellular reservoirs 

One of the most important barriers to the elimination of HIV is its persistence in cellular reservoirs [97], that 

consist in latently infected central memory (TCM) and transitional memory (TTM) CD4+ T cells [98]. Their 

homeostatic proliferation, low proliferation rates and long term maintenance sustained by IL7 and IL15 make 

them a very stable viral reservoirs [98]. Latently infected CD4+ T cells may persist in the body for many years and 

are supposed to derive from infected activated CD4+ T cells that switch to a resting memory phenotype and 

reduce the transcription factors required for HIV replication. Thus, the infected host cells persist for years until 

they receive a stimulatory signal that induces their activation and, concomitantly, induces viral production. The 

lack of viral reactivation in absence of T cell stimulation seems to depend by multiple mechanisms that involve 

modifications to the chromatin environment, low levels of host transcription factors (like NF-kB, NFAT or p- 

TEFb) important for HIV expression [99] and mutations of Tat and its RNA target, TAR [100]. 

 

1.4 HIV control and cure 

 

The early detection of the infection is the first step to try to cure the disease as it is estimated that only half of the 

population living with HIV know their HIV status [2], and untreated HIV infection leads the patient to death in 

about 10 years. Since the approval of Azidothymidine in the USA in 1987, more than 20 antiretroviral agents, 

targeting almost completely the virus cycle, were introduced. The combination of different antiretroviral drugs 

(HAART: highly active antiretroviral therapy) allowed the evolution of HIV infection into a chronic condition, 

were fatality may be avoided [101]. HAART initiation results in an increase of the CD4+ count and in a 

suppression of the viral load [102], although HIV-positive treated patients show shorter life expectancy than 

uninfected peers, especially when the therapy is initiated in advanced stages of the disease [103].  

Despite the important results reached through the introduction of antiretroviral drugs (halving of AIDS-related 

deaths between 2005 and 2011 [2]), several problems regarding HAART remain unresolved like the side effects, 

the right time to start, the lifelong and daily adherence required, the unavailability of pediatric formulations and 

the issue of drug resistance [104]. Moreover, long-term side effects are not known, and HIV infected subjects 
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show, even in the presence of HAART, an acceleration of ageing [105]. Treated patients show variable responses 

to therapy in term of viral suppression, clinical response and, most of all, immunological responses [106, 107], as 

it has been widely demonstrated that HAART does not restore completely immune functions [56, 70, 71]. 

However, one of the biggest problems of HAART remains its cost, that severely affects the coverage. Even if the 

coverage of antiretroviral therapy has increased dramatically in the last 2 years (60% more of people accessing 

to treatments), mostly thanks to Indian generic producers [108], 6-8 of the 15 million of people eligible for 

treatments are not receiving antiretroviral drugs [2]. TRIPS agreements (trade-related aspects of intellectual 

property rights), introduced by the World Trade Organization (WTO) to uniform intellectual property rules of 

the WTO members through a 20-years patent, constituted a big limitation to universal antiretroviral access. 

Recently, UNITAID launched the Medicines Patent Pool, that permits to produce low-cost generic formulations of 

molecules made available by the Patent Holder in exchange of royalties [109]; since its introduction several 

multinational pharmaceutical companies have joined it, and the dialogue among patent holders and generic 

manufacturers is still ongoing to increase antiretroviral coverage.  

Nevertheless, the most important unresolved problem to achieve HIV cure is the issue of eradication, as current 

antiretroviral drugs cannot eliminate cellular reservoirs [110]. Thus, growing efforts aimed at the reservoirs 

elimination have identified some approaches, still under study, to integrate pharmacological therapy with the re-

activation of HIV from CD4+ latently infected T cells directly through the activation of the DNA transcription 

[111] or indirectly through the activation of the T cell compartment [112]. However, many steps forward have 

still to be done to achieve a final cure for AIDS, and current pharmacological approaches need to be implemented 

and integrated with other strategies. 

 

1.4.1 HIV prevention 

Antiretroviral drugs have demonstrated their importance not only at the individual level, but also from the 

community point of view. Recent studies underline the importance of HAART as a prevention method: indeed, 

HIV suppression prevents virus transmission from HIV infected women to the newborns (409000 infected-

children avoided from 2009 to 2011 [2]) and in serodiscordant couples [113]. Some new approaches that include 

the administration of antiretroviral drugs to healthy people at high risk of infection have also been proposed 

(pre-exposure prophylaxis, PrEP), even if with discordant results [114, 115]. The implementation of HAART and 

the introduction of PrEP to prevent new infections are issues strongly debated nowadays, because arise some 

ethical problems such as the exposure of patients to longer treatment periods, with the increase risk of side 
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effects, and the high cost carried by the option of early treatment of HIV positive patients with CD4 count above 

the threshold of 350 cells/µl. 

In 2011, 700000 fewer new infections per year were registered than in 2001 and, in this decade, several 

countries decreased HIV incidence also more than 60% [2]. Despite this trend, some regions (Middle East, north 

Africa, eastern Europe and central Asia) still suffer for an increase of people newly infected. The best results in 

the field of incidence reduction were observed in those countries putting much efforts in prevention and 

treatment programs [2]. Indeed, the best way for preventing HIV infections is, nowadays, through the education. 

Factors like gender inequality or social and economic underdevelopment may have detrimental effects on sexual 

education or on a safe sexual behavior [116]. Moreover, stigma and discrimination of people living with HIV and 

of “populations most at risk“ for HIV can be a deterrent for both prevention methods usage and diagnostic 

testing. So, if the key role of safe sex and of practices like circumcision have been already demonstrated, many 

efforts have been put to develop other complementary prevention approaches, like vaccination. 

 

1.4.2 Searching for a vaccine 

Some HIV infected patients naturally control HIV infection in absence of any therapy. They are called “long term 

non progressors” (LTNP), for the low viral load exhibited and the slow CD4+ count decline; among them, the ones 

maintaining undetectable viremia for years are called “elite controllers”(EC) [117]. This group of subjects has 

been extensively studied to determine correlates of protection that can be important for vaccination strategies, 

although genetic host factors are often the causes of the viral control [118, 119]. 

CD8+ T cells seems to play a key role in the control of HIV infection, as the detection of HIV-specific CTLs 

coincides with a viral load decline [120], and some HLA class I alleles are associated with the control of the 

infection [121]. CD8+ T cell responses quality, more than magnitude, contribute to viral control: indeed, HIV-

specific CTLs from viral controller display increased polyfunctionality [69], proliferative capacity and antiviral 

activity [122]. Interestingly, protective alleles target epitopes showing CTL escape mutations with high cost for 

the viral fitness [123]. In fact, HIV mutates the dominant epitopes [124] to avoid cellular immunity, and 

protective CTL responses put pressure on mutations that result in a loss of replication competence. This dynamic 

process also leads to continues changes in the virus and, thus, to the development of genetically diverse viruses 

in the single individual [123, 125]. Regarding the antigen targeted, anti-Gag responses correlate with low 

viremia, while anti-Env responses are more frequent in patients with high viral load [126]. Moreover, the 
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breadth of anti-Gag responses, especially if directed to two regions of Gag (Gag 1-75 and Gag 248-500), seems to 

be  a protective correlate [121, 126]. 

Also humoral responses have been shown to induce escape mutants [127]. However, if the CTL response seems 

protective for the control of HIV infection, neutralizing antibodies (nAbs) production needs high viral loads, and 

their potency and breadth do not seem the correlate of protection in EC [128]. The recent discovery of broadly 

nAbs able to confer a wide response against global circulating viruses [129] strengthened the concept of the 

induction of humoral response more for the prevention of HIV infection than for therapeutic vaccines. However, 

Abs may act through different mechanisms, as antibody-dependent cellular cytotoxicity (ADCC), shown to be 

important for the viral control [130, 131]. First vaccine trials were based on this concept, with the aim to induce 

Abs against envelope proteins. However, they failed in inducing protection against acquisition [132]. So, 

scientific world moved the attention to vaccine candidates able to induce cellular response but, again, the results 

were not promising, and the trial was stopped for an increased risk of HIV acquisition in vaccinees [133], due to 

some pre-existent immunity to the viral vector used, and to an inappropriate bias of CTL responses towards less-

conserved epitopes [134]. 

The third vaccine candidate finishing phase 3 trial was the RV144, that showed about a 30% of protection 

against HIV acquisition but no effects on viral control after infection [135]. The trial, conducted in Thailand, 

consisted in a prime with a canarypox expressing Gag, Pro and gp120 and a gp120 boost [135]. The studies on 

correlates of analysis show that, while anti-V1V2 (variable regions of the gp120) plasmatic IgG correlated with 

decreased risk of infection among vaccinated and non-vaccinated, ant-Env plasmatic IgA correlated with a minor 

control of the infection interfering with the ability of the vaccine to decrease HIV infection. These data arose the 

question if different antibody isotypes influence the level of vaccine efficacy [136]. The mechanism behind the 

interference of IgA with protective immunity has not been elucidated; however, some correlate analysis suggest 

that IgA can interfere with different protective mechanisms provided by IgG, through the binding to the same site 

used by IgG [136].  

The development of vaccines against HIV has been explored, in addition to prevent HIV acquisition, also to 

control viral replication and disease progression in HIV-infected individuals, with the aim to discover therapeutic 

vaccines that may substitute HAART. However, nowadays no candidates have been shown to be highly 

immunogenic and, at the same time, confer protection from viral rebound after HAART interruption [137, 138]. 

Thus, the research on preventive and therapeutic vaccines against HIV is still ongoing, and accounts for many 

candidates undergoing the different trial phases.   
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1.5 The Tat protein of HIV: role in viral fitness 

 

Tat is a regulatory protein of HIV fundamental for viral cycle and is involved in many aspects of 

immunopathogenesis. The main role of Tat in the viral fitness is to trans activate the transcription of the HIV 

genome. Indeed the first round of HIV-trascritpion is inefficient and leads to the production only of some 

regulatory proteins [139]. Among these, Tat is synthetized and removes the obstacles to the elongation binding 

to the TAR sequence on the nascent viral RNA [140], thus promoting the transcription of the full HIV genome. 

The transcription process involves several host TFs such as NFAT-1 and NF-κB. Some studies have also explored 

a possible role of Tat in reverse transcription, discovering that this process may be stimulated by low 

concentrations of Tat and inhibited by high amounts [141]. 

Beside these fundamental activities, Tat plays other roles important for HIV replication and spread. In fact, Tat 

can be expressed prior to viral integration [142], leading to the activation of the infected T cell, thus promoting 

viral cycle and replication [143, 144]; in addition, Tat can be released extracellularly by a leaderless secretory 

pathway [145, 146]. Upon release, Tat binds heparan sulphate proteoglycans of the extracellular-matrix and is 

detected in the tissues of infected individuals [145, 147] and can target immune cells expressing RGD-binding 

integrin receptors via its RGD-binding site, thus inducing integrin-mediated signals and entering the cells [147-

149]. In this way Tat can enter and activate uninfected cells, rendering them more prone to be infected [150, 

151], and induces HIV co-receptors expression [152, 153], thus favouring HIV spread. To this regard, a recent 

study suggests that Tat interacts with Env forming a novel virus entry complex favoring R5 or X4 virus entry and 

productive infection of DCs via an integrin-mediated pathway that can be blocked only in the presence of both 

anti-Tat and anti-Env antibodies [154]. 

Extracellular Tat can also enter infected cells leading to HIV genome transactivation [155] and rescuing viral 

expression from latently infected cells [156], thus promoting reactivation of latent reservoirs [157]. Indeed, low 

concentrations of Tat have been shown to be important mechanisms of HIV latency [158], and latently-infected 

CD4+ T cells are enriched for Tat variants carrying domains with impaired transactivation activity [100, 159] but 

possibly competent for those pleiotropic functions exerted on human cells. Among these effects, it is important to 

underline the activation of Akt and the induction of the anti-apoptotic protein Bcl-2 that could be involved in 

reservoirs maintenance [160-162].  

Tat is composed by two exons, and can be found in two forms, generated by translation from multiple spliced 

viral transcripts. One form is 72 amino acids in length and encoded by a one-exon transcript. The other form is 
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encoded by two exons and has an additional C-terminal domain, and can be 86 or 101 amino acids long 

depending by differences in the position of translational stop codons in the second coding exon [163]. While the 

two-exon Tat is generated early in infection, the one-exon Tat appears in the late phase [164]. Both forms are 

able to activate HIV-1 gene expression but only the two-exon form mediates the immune hyper activation of 

infected cells [165], suggesting that, in later phases, the one-exon Tat that prevails does not activate infected 

cells.  

Tat protein is formed by multiple domains [163, 166], able to interact with different receptors [150, 167-169]: 

 

Sequence Function 

aa 1-20 Acidic/proline-rich domain that binds bivalent ions able to mediate interactions among Tat 

monomers.  

aa 21-37 Cysteine rich domain, highly conserved and necessary for LTR transactivation; cysteines are 

involved in intramolecular disulphide bonds formation. 

aa 41-48 Core region important for LTR transactivation. 

aa 49-57 Basic domain, highly conserved, contains the protein transduction domain (PTD) that allows 

the binding of the TAR sequence and with heparan sulphates. This domain allows nuclear 

transportation and uptake of Tat by cells, and seems responsible of neurotoxic effects. 

aa 58-72 Glutamine rich region. 

aa 73-86/101 C-terminal domain, contains the RGD motif that mediates the binding with integrins. It is 

codified by the second exon. 

Table 1.3 Tat domains 

 

1.5.1 Inter-clade differences 

Infection by different HIV-1 subtypes could result in a different progression to AIDS and response to HAART 

[170, 171]. Variability among HIV-1 clades in cell tropism and co-receptors usage can account for these 

differences in virulence [170, 171]. To this regard, it has been shown that clade B Tat, but not C Tat, has the 

capacity to render CD4+ T cells more susceptible to X4 HIV-1 infection increasing CXCR4 expression [172].  

Subtype differences at the level of Tat sequence impact also the viral replication: clade C and E Tat display a 

higher transactivation potential than B Tat due to a better affinity to the TAR element and to a longer half-life 

[173]. Moreover, subtype C isolates possess QGD in place of the RGD domain in the second exon of Tat gene, and 
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this confers to clade C Tat a greater capacity in activating LTRs [174]. It has been reported that Tat can tolerate 

about 40% of sequence variation and, while mutations at the level of the first 21 amino acids are well tolerated, 

changes in residues from 22 to 40 can have deleterious effects, at least respect to transactivation [175, 176]. 

Tat displays several immunomodulatory properties (see section below) that may be affected by sequence 

variations. The replacement of RGD domain with QGD confers to C Tat a lower capacity in inducing apoptosis of 

activated macrophages [174]. Moreover, the replacement of a Cysteine (B Tat) by a Serine (C Tat) that occurs in 

position 31 seems responsible for opposite effects on cytokine secretion and [Ca2+] flux in monocytes [177, 178]. 

Indeed, it has been shown that B Tat favors the secretion of pro-inflammatory cytokines  while clade C Tat 

induces the secretion of anti-inflammatory molecules [179], although the opposite effects of B and C Tat on 

cytokines secretion are still controversial [177]. Clade B Tat, in addition to favor the secretion of pro-

inflammatory cytokines, would also induce an increased release of neuropathogenic agents compared to C Tat 

[52, 180], and this would be the cause of the higher neurotoxicity of subtype B compared to subtype C HIV [181].  

Modifications at the level of the primary and tertiary structures of Tat can also impact its immunogenicity [176], 

although B and T cell immunogenic regions of Tat are conserved among the HIV-1 M group [182, 183]. In fact, 

usually anti-Tat antibodies elicited against one Tat clade are able to recognize other Tat variants [176], and an 

effective cross-recognition of a B-clade strain-derived Tat protein by individuals infected with different local 

viruses has been demonstrated [178, 184]. 

 

1.6 The Tat protein of HIV: immunomodulatory properties 

 

Along with the several roles played by Tat in infection acquisition and viral fitness, other functions have been 

attributed to this protein regard different aspects of disease progression. In fact, Tat interacts with various co-

infecting opportunistic pathogens during AIDS progressions [185], is directly implicated in the pathogenesis of 

AIDS-related Kaposi's sarcoma [147, 167, 186] and some vasculopathic conditions in AIDS patients [187, 188], 

and causes several damages in CNS [52, 180], thus leading to HIV-associated dementia, a pathology present in 

one-third of adults infected with HIV [189].  Moreover, several immunomodulatory properties have been 

attributed to Tat, suggesting its contribution to CD4+ T cells loss, chronic immune activation and T cell 

dysfunctions. Indeed, as previously mentioned, Tat can be released [145, 146, 155, 186] and enter uninfected 

cells, inducing integrin-mediated signals [147-149] or directly binding with the human genome to up-regulate 

genes linked to immune response, cell adhesion, cell activation and cell death [190]. 
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1.6.1 Effects of Tat on antigen presentation and antigen presenting cells 

It has been shown that Tat modulates antigen presentation at different levels. Indeed, Tat modifies the 

composition and the activity of the proteasome, affecting the generation and recognition of CTL peptide epitopes 

[191, 192]. In particular, Tat increases the presentation of subdominants epitopes at the expense of the 

immunodominant ones [192, 193]. Some reports also describe a modulation exerted by Tat on HLA class I 

molecules, even if results are not concordant [194, 195]. Inconsistencies among the studies may derive by the 

observation that only certain epitope/MHC class I complexes are enhanced by Tat [196]. However, recently, a 

Tat-mediated enhancement of HLA-ABC and HLA-DR expression on DCs has been demonstrated [148, 149]. 

Further to modulated antigen presentation, Tat induces the maturation and activation of APCs, as demonstrated 

in macrophages [197], monocytes [198] and DCs [148, 149]. In particular Tat has been shown to enhance release 

of several cytokines in monocytes,  macrophages  and DCs [148, 149, 198-201], as well as to up regulate co-

stimulatory molecules such as CD40, CD80, CD83 and CD86 [148, 149]. As during chronic HIV-1 infection DCs are 

reported to acquire an activated phenotype [95, 96] and spontaneously produce of pro-inflammatory 

cytokines/chemokines [94], Tat-mediated effects on APCs might contribute to immune activation. 

Finally, Tat activates the adhesion of monocytes to endothelial cells and their transmigration through endothelial 

monolayer, thus contributing to vascular and tissues damages and cardiovascular diseases [202, 203].  

 

1.6.2 Effects of Tat on B and T lymphocytes 

Further to provide a stimulatory signal through APCs, Tat directly activates CD4+ T cells that undergo anti-

CD3/CD28 stimulation, in a mechanism dependent by CD28 co-stimulation that enhances IL-2 secretion [165, 

204, 205] and that may result in an increased susceptibility to HIV1 infection [205]. Moreover, it has been shown 

that Tat induces release of other pro-inflammatory cytokines involved in T cell activation and differentiation, 

such as IL-8, IL-12 and TNFα [206-208]. Thus, Tat contributes to CD4+ T cells hyperactivation. This would be 

confirmed by the observation that Tat, expressed on the surface of heterologous cells, activates and induces 

proliferation of human PBMCs, in a mechanisms dependent by CD3 stimulation that involves the up regulation of 

IFNγ and T-bet [209]. 

Tat-mediated modulation of B cell lymphocytes has not been yet completely characterized. However, it has been 

reported that Tat up-regulates the expression of Fas, an activation marker that mediates for apoptotic signals 

[210], and modifies B cells cytokines release [207], proposing a role of Tat in B cell hyperactivation. Moreover, it 

has been shown that Tat promoted contemporarily proliferation and apoptosis of B cells [211] depending by the 
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kind of stimulus used and by the B cell subtype [212]. Regarding to a Tat-modulation of the humoral response, it 

has been observed that Tat decreases IgM, IgG, and IgA production in vitro [212], although in vivo models showed 

an adjuvant property of Tat related to humoral responses [213]. 

 

1.6.3 Dual role of Tat on cell viability and proliferation 

The HIV infection is characterized by extensive loss of B and CD4+ T cells and by the simultaneous 

hyperproliferation of lymphocytes. As Tat may exit infected cells and target uninfected T cells and APCs, its role 

on cell cycle and cell survival has been extensively investigated. However, reports show conflicting results, and 

Tat seems to both promote and inhibit cell proliferation and to display at the same time anti- and pro-apoptotic 

effects.  

CD4+ and CD8+ T cells hyper activation is a feature of chronic immune activation, and Tat-mediated enhanced 

proliferation of CD4+ T lymphocytes has been proposed as a mechanism of pathogenesis [151, 155] and 

associated to tumorigenic potential [147, 155, 167, 186]. On the contrary, suppressive effects have been ascribed 

to Tat and taken as explanation of the immune impairment occurring during HIV-infection. Tat-mediated 

inhibition of proliferation [201, 214] would be due to the inhibition of CD26 activity  (marker  involved in cell 

growth) [215] and the enhanced release of the suppressive cytokine IL-10 [177, 179].  

Further to suppress proliferation, some reports have shown that Tat mediates apoptosis of bystander and 

activated T cells, thus contributing to CD4+ loss during HIV infection. This effect would be displayed through 

different mechanisms like modulation of cell cycle regulators [216], increased expression of pro-apoptotic 

molecules [217] or  enhancement of microtubule polymerization [218]. Moreover, Tat favours oxidative stress 

[219], which may induce cells to divide but, at higher levels, causes apoptosis or necrosis [220], and activates the 

pro-apoptotic pathway Egr1-PTEN-Akt-FOXO3a [221]. These mechanisms lead to the Tat-mediated up-

regulation of the TNF-related apoptosis inducing ligand (TRAIL) [197, 222] and of the “death receptor” Fas 

(CD95) in different cell types [210, 223].  

On the contrary, many reports show that cell lines expressing Tat are protected by serum starvation-, TRAIL- and 

Fas- mediated apoptosis [160, 224-226] through the up regulation of NF-κB dependent anti-apoptotic molecules, 

in particular Bcl-2 [160, 225, 227]. Same phenomenon occurs when co-culturing cells with low doses of Tat 

protein (nM) or with immobilized Tat, while higher concentrations of soluble Tat seem to induce apoptosis [150, 

197, 224, 227]. Tat-mediated enhancement of NF-κB and NFAT and the activation of the anti-apoptotic pathway 
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PI3K/Akt/GSK-3 [161] are also usually observed at nanomolar concentrations [161, 228], confirming that these 

anti-apoptotic effects are preferentially activated by low amounts of Tat.  

 

1.6.4 Effects of Tat on intracellular signalling  

Tat displays different properties depending by the concentration and localization (intra or extracellular), 

suggesting that it may signal through different pathways. Extracellular receptor-activated kinase (ERK) and c-Jun 

N-terminal kinase (JNK) are two kinases lying downstream to TCR and CD28 and triggered by Tat. The two-exon 

form of Tat is required to activate JNK, and this effect follows a dose-dependent fashion. Conversely, both the one 

and two exon forms of Tat activate ERK/MAPK, not following a clear dose-dependence as the maximal activation 

occurs at very low Tat amounts (1nM) [91, 229]. The dose of Tat required for JNK activation (micromolar range) 

is the same shown to inhibit cell growth, while ERK/MAPK activation occurs at lower concentrations (nanomolar 

range), like the Tat-mediated proliferation [91]. Thus, it has been proposed that Tat may induce pro-apoptotic 

signals through JNK (sustained JNK activation is associated with apoptosis), while mediates cell proliferation 

through the ERK pathway, whose activation is required for cell growth [230]. The pleiotropic effects of Tat on 

these two pathways are confirmed by the observation that the rapamycin, which inhibits mTORC1 activity, 

abolished Tat-mediated activation of JNK while enhanced Tat-mediated activation of ERK/MAPK, suggesting the 

involvement of mTOR in Tat-induced signalling [91]. 

The activation by extracellular Tat of JNK and ERK occurs through two NADPH oxidases, respectively Nox2 and 

Nox4 [187, 231, 232], which are in turn activated by the GTPase Rac, downstream the interaction between 

integrins and the RGD domain of Tat [231]. Nox4 mediates Tat-dependent proliferation, whereas Nox2 mediates 

cytoskeletal rearrangements and oxidative stress (Fig. 1.5) [231, 233].  
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Figure 1.5 Tat intracellular signalling. Adpated by [231]. 

 

In addition to mediate effects on T cell proliferation, the ERK pathway is also involved in Tat-mediated increase 

of IL-2 production.  Indeed, through ERK, Tat activates c-fos  which constitutes, in association with c-jun, the 

transcription factor AP-1 [234].  AP-1, cooperating with NFAT, also activated by Tat, binds to IL-2 promoter to 

induce IL-2 production [235]. 

As previously mentioned, Tat-mediated anti-apoptotic effects are also due to the activation of PI3K/Akt, a 

pathway crucial for cell survival, proliferation, gene expression and cell migration and activated by 

nano/picomolar concentrations of Tat through its basic and RGD domains [162, 228, 236]. Tat induces the 

degradation of PTEN, a negative regulator of Akt [236]; once activated, Akt triggers, through Nox2, NF-κB [233]. 

Tat has been shown to activate  NF-κB through different signalling cascades, indirectly modulating or directly 

interacting with NF-kB regulators [204, 237]. The induction of NF-kB has been proposed to be one of the 

fundamental mechanisms that mediates Tat-induced T cell hyperactivation [165, 185, 204, 238]. 
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Figure 1.6 Tat-mediated NF-κB activation and IL-2 induction 

 

1.7 The Tat protein of HIV: protective immunity 

 

The CTL responses against HIV proteins that are produced in the first phases of the infection are of particular 

importance for viral control, and this is highlighted by the detection of Tat-CTL escape mutants early after 

infection [239, 240]. Moreover, there is evidence that the presence of anti-Tat CTLs correlates with non-

progression in HIV-positive individuals [241]. The N-terminus region, the core region and the basic domain of 

Tat contain the majority of T cell [242, 243], as well of B cell [184, 244], epitopes. 

Consistent with the roles of Tat in HIV pathogenesis and it’s early production after infection, anti-Tat IgM and IgG 

are more frequent in the asymptomatic stage of the infection [245, 246]. Anti anti-Tat IgG are present in a small 

proportion of HIV-infected individuals, but are more frequently found in nonprogressors [247]. Indeed, several 

works describe the protection conferred by anti-Tat IgG from CD4+ decline [248, 249], high viral load or p24 

antigenemia [250, 251] and disease progression [247, 250, 251].  
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1.7.1 Tat-based vaccine 

Tat plays a key role in HIV life cycle and progression to AIDS and anti-Tat humoral and cellular immunities 

constitute a correlate of protection. Thus, the inclusion of Tat as antigen in preventive and therapeutic vaccines 

against HIV has been pursued by several groups. 

Immunization with Tat in different animals models elicited antibody responses able to block Tat-entry and Tat 

effects on gene expression and replication [Rewied in 252]. Moreover, Tat-vaccinated monkeys kept viremia at 

undetectable levels and prevented CD4+ decline after challenge with SHIV viruses, suggesting an abortive 

infection [253, 254]. In addition, in Tat-vaccinated and SHIV-challenged macaques was observed long-term 

protection, absence of viral reservoirs and of virus replication, and both anti-Tat humoral and cellular responses 

were responsible for this effect [255, 256]. These results, along with safety and immunogenicity data collected in 

several animals models [245, 252], supported the development of a Tat-based vaccine. A preventive and a 

therapeutic phase I trial were conducted in parallel with the recombinant biologically active HIV-1 Tat (86aa) to 

evaluate safety and immunogenicity [257, 258]. After the successful achievement of the end-points, the Tat 

vaccine advanced in clinical phase II therapeutic trials in Italy and South Africa. Results from an ad hoc 

exploratory interim analysis on 87 HAART-treated HIV-positive individuals receiving the Tat vaccine during 

phase II trial was published in 2010 [259]. Tat-injection reversed immune activation signs decreasing levels of  

cellular and soluble markers of immune activation and hypergammaglobulinemia. Of note, restoration of 

immune functions after Tat-injection was confirmed by the reversion of CD4+ T cells and B lymphocytes loss in 

Tat-immunized individuals, as well as by the increased cellular responses to HIV and heterologous recall 

antigens [259].  

A second Tat-based vaccine that utilizes a Tat variant isolated from a group of HIV controllers African patients 

(Tat Oyi)[260] entered in phase I clinical trial in France in 2013.  

 

1.7.2 Tat as adjuvant 

The immunomodulatory properties displayed by Tat render this molecule an attractive adjuvant for other 

antigens. Indeed, as previously mentioned, Tat induces DCs maturation and activation, thus favoring co-

stimulation of T cells and potentiating T cell responses [148, 149]. In addition, the Tat-mediated modification of 

proteasome composition and antigen presentation [191, 192] increases T cell responses to subdominant 

epitopes. Indeed, it has been demonstrated that co-immunization of mice with OVA and Tat protein induces CTL 

responses against subdominant and cryptic OVA-derived epitopes which were not detected in mice vaccinated 
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with OVA alone. Similarly, mice vaccinated with the HIV-1 Gag, Env or V2-deleted Env antigens in combination 

with Tat showed Th-1 type and CTL responses directed to a larger number of T cell epitopes, as compared to 

mice vaccinated with Gag, Env or V2-deleted Env proteins alone [193]. Interestingly, the adjuvant properties 

mediated by Tat did not affect Th2-type responses [193, 261], consistent with in vitro studies that demonstrate 

that Tat induces a predominant Th1-type adaptive immune response [148, 149].  

A short sequence of the Tat protein, the PTD (aa 47-59), is already used for its property to enable conjugated 

proteins to enter the cells [262]. Thus, the fusion of heterologous antigen with Tat or PTD has been used to 

increase MHC class I antigen presentation and increase CD8+ T cell responses [263]. In addition, some studies 

suggest that PTD itself increases the expression of certain MHC-I/peptide complexes [196]. Finally, some works 

have demonstrated that Tat possesses auto-adjuvanticity and adjuvanticity to unrelated antigens with respect to 

humoral responses [264]. 

Considering all these features possessed by Tat, its use in combination with other antigens to develop a vaccine 

against HIV has been proposed. Thus, combination of Tat with Gag or Env antigens has been explored in different 

formulation and has been shown to be safe and immunogenic in mice [193, 261, 265] and to protect SHIV 

challenged monkeys from CD4+ T cells decline, high viremia and, in some cases, from infection acquisition [266, 

267]. Given the promising results collected during the pre-clinical phases, the Italian National Institute of Health 

(ISS), in collaboration with Novartis, is now enrolling volunteers for a phase I clinical trial based on Tat and Env 

proteins combination (study ISS P-002). 

In parallel, also the possibility of associating Tat with other regulatory proteins has been explored in mice and 

monkeys [Reviewed in 252]; in particular, the combination of Tat and Rev seems to protect macaques in a 

preventative approach [268, 269]. More in general, several multi-component vaccines containing Tat have been 

tested in animals, and different approaches that include the combination of structural and regulatory HIV 

antigens, as well as strategies aiming at generating immune responses against multiple early and late antigens of 

different HIV clades are now at the clinical stage [Reviewed in 252]. 
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2 Objective 
 

The overall objective of this study is the characterization of the immunomodulatory properties of the Tat protein 

of HIV-1 on CD8+ T cells, to understand the role of this protein in T cell hyperactivation and dysfunctions as well 

as to consider its use in vaccination approaches. 

It is known that extracellular Tat induces integrin-mediated signals and efficiently enters cells, resulting in the 

activation and modulation of several cellular functions in CD4+ T cells and professional APCs, suggesting that Tat 

may play an important role in the chronic immune activation described during the HIV infection. However, 

whether Tat can, directly or indirectly, affect CD8+ T cell functions is not clear.  

The first part of the study was aimed to investigate whether Tat (clade B and C) may modulate the 

transcriptional profile and the functionality of CD8+ T cells. In vitro experiments were performed on human 

resting and activated CD8+ T cells, in the presence or absence of Tat, alone or together with CD4+ T cells. Data 

collected allow to better understand the role of extracellular Tat on uninfected CD4+ and CD8+ T lymphocytes and 

their hyperactivation during HIV infection.  

The second part of the study was aimed to understand how the immunomodulatory properties displayed by Tat 

on APCs and T lymphocytes affect, in vivo, the overall immune responses against a viral infection and the 

generation and maintenance of effector and memory CD8+ T lymphocytes. The obtained results provide new 

insights about the role of Tat on the immune activation and immune impairment occurring during HIV infection. 

Finally, the third part of the study consisted in a comprehensive analysis regarding the interplay of the different 

anti-Tat antibody isotypes in HIV control. Indeed, as immune activation is a marker of disease progression, and 

as Tat affects T cell activation and functionality, we sought to determine if anti-Tat immunity may play a 

protective role. Moreover, cross-clade reactivity of anti-Tat antibodies was assessed to better understand the 

potential use of clade B Tat in vaccination strategies against subtype C HIV-1. 

Data collected in this study provide important evidence about the role of Tat on immune activation and immune 

impairment and further confirm the importance of anti-Tat immunity. Moreover, the comparison between clade 

B and C Tat effects provide new insights in the disease mechanisms of the different HIV clades. Furthermore, the 

capacity of Tat to activate T cells, if finely regulated, may be beneficial for the development of new subunit-

combined vaccines in which B or C Tat may play at the same time the role of antigen and adjuvant. 
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3 Methods 

 

3.1 In vitro activities 

 

3.1.1 Human cells 

Buffy coats from healthy volunteers that provided consent were obtained from the university hospital in Ferrara. 

Peripheral blood lymphocytes (PBLs) were separated by use of Ficoll–Hypaque density gradient centrifugation 

followed by 90 minutes of adhesion on a plastic support at 37°C to eliminate monocytes. 

CD4+ and CD8+ T cells were sorted by MACS magnetic negative selection (Miltenyi Biotec) according to 

manufacturer instructions (purity > 95% assessed by FACS). Cell sorting occurred before or after the treatment, 

as specified in the experiments. 

PHA-activated blasts were obtained by stimulation of PBLs with 1 µg/ml purified PHA for 3 days and expanded 

in medium supplemented with human rIL-2 (1000 U/ml). 

T2 cells were cultured overnight at 26°C in 1 ml of serum-free AIM-V medium. Cells were washed, treated with 

mitomycin C, and pulsed with 10-5M of the different peptides for 3 hours at 37°C in AIM-V medium.  

 

3.1.2 Tat and Gag proteins 

The HIV-1 Tat proteins from the human immunedeficiency virus type 1 (HIV-1) clade B or clade C were produced 

in E. coli and purified by diethylaminoethyl (DEAE) and heparin sepharose chromatography by DIATHEVA [270]. 

The Tat protein was resuspended in PBS containing 0.1% of BSA for in vitro experiments or in saline buffer 

containing 1% sucrose and 1% human serum albumin for in vivo experiments. The purified Tat protein was fully 

biologically active, as determined by the rescue assay on HLM-1 cell line carrying a Tat-defective HIV provirus 

[145, 155], by the induction of transcription in TZM-bl cells, which contain a luciferase reporter gene under the 

transcriptional control of the HIV LTR and are commonly used to assess HIV infectivity, as well as by Tat uptake 

by monocyte-derived dendritic cells (MDDCs) evaluated by intracellular staining for Tat in flow cytometry [16]. 

This assay constitutes the potency test for HIV-1 Tat protein, since it is highly specific for the reduced form of Tat 

(uptake does not occur with the oxidized form), and is strictly dose-dependent, allowing a precise determination 

of the content of active protein in the preparation (National AIDS Center, ISS, Rome). LPS presence was assessed 

and endotoxin concentration was below the detection limit (0.05 EU/µg), as determined by the Limulus 
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Amoebocyte Lysate analysis (Pyrochrome, Associates of Cape Cod, Falmouth, MA). The HIV-1SF162 Gag (502 aa) 

protein was obtained from Novartis.  

 

3.1.3 Culture conditions and anti-CD3/CD28 stimulation 

For “resting conditions”, 3x106 PBLs, CD4+ or CD8+ T cells were cultured in 2 ml of RPM containing 10% FCS 

(“complete medium”) in 24-well flat bottomed polystyrene plates, in the presence or absence of Tat. 

For surface phenotype analysis, proliferation assessment and analysis of transcriptional profile, cells activation 

occurred through anti-CD3 and anti-CD28 mAbs. 24-well flat bottomed polystyrene plates were coated overnight 

at 4°C with PBS and anti-CD3 mAb (0.5 µg/ml). Soluble anti-CD28 mAb (0.1 µg/ml) and, when required, Tat, 

were added after cells seeding (3x106 cells per well in 2ml of complete medium). 

For intracellular staining, cells were activated with anti-CD3 and anti-CD28 mAbs. 96-well flat bottomed 

polystyrene plates were coated overnight at 4°C with PBS and anti-CD3 mAb (1.5 µg/ml). Soluble anti-CD28 mAb 

(1 µg/ml), anti-CD49d (1 µg/ml), and, when required, Tat, were added after cells seeding (1x106 cells per well in 

0.2 ml of complete medium). 

 

3.1.4 Generation of CTLs culture 

HLA A11-restricted EBV-specific CTL cultures reacting against the EBV-encoded nuclear Ag 4 (EBNA4)-derived 

IVTDFSVIK (IVT, aa 416–424) and HLA A2-restricted EBV-specific CTL cultures reacting against the EBV-

encoded LMP2-derived CLGGLLTMV (CLG, aa 426–434) epitope and the LMP1-derived YLQQNWWTL (YLQ, aa 

159–167) epitope were obtained by stimulation, in the presence or absence of Tat (0.1 µg/ml), of lymphocytes 

from HLA-A2-positive and HLA-A11-positive EBV-seropositive volunteers with peptide-pulsed T2 cells. HLA A2-

restricted survivin-specific CTL cultures reacting against the survivin tumor antigen ELT (ELTLGEFLKL) were 

obtained by stimulation, in the presence or absence of Tat (0.1 µg/ml), of lymphocytes from HLA-A2-positive 

healthy volunteers with peptide-pulsed T2 cells.  

Briefly, PBLs were plated at 3x106 cells per well in 24-well plates in complete medium and stimulated with 

peptide-pulsed T2 cells at a stimulator-responder ratio of 1:20, in the presence or absence of Tat. Cultures were 

re-stimulated after 7 and 14 days, and the medium was supplemented from day 8 with 1000 U/ml rIL-2. On days 

21, CTLs cultures were tested for CTL activity using cytotoxicity assay. 

Alternatively, PBLs from healthy volunteers were plated at 3x106 cells per well in 24-well plates in complete 

medium and stimulated with 32µg/ml of CEF peptide pool (Anaspec), in the presence or absence of Tat. Cultures 
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were re-stimulated after 7 days, and the medium was supplemented from day 8 with 1000 U/ml rIL-2. On day 

14, CTLs cultures were tested for IFNγ release using Elispot assay. 

 

Peptides were synthesized by solid phase method and purified by HPLC to >98% purity (UF Peptides, University 

of Ferrara). 

 

3.1.5 Cytotoxicity assay 

The cytotoxic activity was assayed in standard 5 hours 51Cr release assays. Target cells (PHA blasts) were labeled 

with Na251CrO4 (3.5 MBq/106 cells, Perkin Elmer) for 60 minutes at 37°C and, where indicated, pulsed for 45 

minutes with 10-6 M of the different peptides at 37°C. Subsequently, cells were washed three times and incubated 

with effector cells. 51Cr release was measured after 5 hours at 37°C through the use of a -counter. Maximum 51Cr 

release was evaluated treating target cells with Triton X-100, while spontaneous 51Cr release was evaluated in 

target cells incubated alone in complete medium. Cytotoxicity tests were routinely run at different E:T ratios in 

triplicate. Percentage of specific lysis was calculated as 100 x (cpm sample - cpm medium)/(cpm Triton X-100 - 

cpm medium). Spontaneous release was always < 10%. None of the tested peptides affected spontaneous release. 

 

3.1.6 Elispot assay 

CTLs (4 x 104) were seeded in triplicate on microplate 96-well unifilter (Whatman.) coated with an anti IFNγ 

mAb (Pierce, USA). CTLs were stimulated with CEF peptide pool. CTLs incubated with medium alone were used 

as negative control, whereas CTLs stimulated with PHA (Wellcome Diagnostics.) represented the positive 

control. Plates were incubated for 24 hours and washed, and then a biotinylated anti-IFNγ mAb (1 µg/ml; Pierce) 

was added to the wells. After 60 min, the plates were washed again and HRP-conjugated streptavidin (Pierce) 

was added at room temperature for 45 minutes. Individual IFNγ producing cells were detected using 3-amino-9-

ethylcarbazole cromogen kit (Sigma-Aldrich) and counted by ELISPOT reader (AELVIS). The number of specific 

IFNγ secreting T cells, expressed as spot-forming units per 106 cells, was calculated by subtracting the negative 

control values. 

 

3.1.7 Intracellular Staining 

PBLs were stimulated with anti-CD3, anti-CD28 and anti-CD49d as described above in the presence of Monensin 

(1 μg per well) and CD107b-FITC (bioscience product). Duration of stimulation varied in different assays. PBLs 
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were stimulated for 2 h before adding Brefeldin A (BFA; Sigma-Aldrich). After stimulation, PBLs were washed 

once with PBS and incubated with EDTA for 15 minutes at room temperature. Subsequently, surface proteins 

were stained for 20 minutes and cells were washed twice with FACS buffer (PBS, 1% FCS). The cells were 

permeabilized using the Cytofix/Cytoperm kit (BD), after which they were stained with anti-CD3 APC-Cy7, anti-

IFNγ V450, anti-IL-2 APC and anti-TNFα PE Cy7 (BD). Cells were then washed twice and fixed in CellFix (BD). 

Cells were analyzed with a FACScanto II. Electronic compensation was conducted with antibody capture beads 

(BD) stained separately with the individual antibodies used in the test samples. Flow cytometry data were 

analyzed using FlowJo (version 8.8.3; Tree Star, Inc.).  

 

3.1.8 Flow Cytometry 

All stainings were carried out in FACS buffer for 30 min at 4°C with the following antibodies: HLA-DR FITC, CD38 

PE/Dy 747, CD25 FITC, CD4 PE, CD8 PE (Immunotool); CD95 FITC (BD); CD4 Qdot 705, CD8 Qdot 705 (Life 

Technologies). Proliferation assessment was carried out through CFSE staining. PBLs were labeled with a 

solution containing 5 µM 5(6)-carboxy-fluorescein diacetate succinimidyl ester (CFSE, eBioscience) for 10 

minutes at 37°C and then complete medium was added. Cells were washed twice before culturing. Data were 

acquired on a BD FACScan and analyzed using BD Cell Quest Pro software. 

 

3.1.9 MTT assay 

MTT test was used to study T cells survival. PBLs were seeded in triplicate in 96-well plates at a density of 1x105 

in a final volume 130 µl of complete medium and Tat was added at the concentration of 0.1 or 1 µg/ml. For 

stimulation with anti-CD3/CD28, plates were pre-coated overnight with 0.3 µg of anti-CD3 mAb/well at 4°C, and 

0.2 µg of anti-CD28 mAb was added at the time of cells seeding. For stimulation with PHA or PMA, 0.2µg of PHA 

or 1ng of PMA and 125ng of Ionomycin were added at the time of cells seeding. For stimulation of LPS, 1µg of LPS 

was added at the time of cells seeding. Cells were cultured for 6 days, and then 25 µl of a 3-(4,5-dimethylthiozol-

2-yl)2,5-diphenyltetrazolium bromide solution (MTT, Sigma-Aldrich) (12 mM) were added. After two hours of 

incubation, 100 µl of lysing buffer (50% DMF + 20% SDS, pH 4.7) were added to convert the MTT solution into a 

violet colored formazane. After additional 18 hours the solution absorbance, proportional to the number of live 

cells, was measured by spectrophotometer at 570 nm.  
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3.1.10 Reverse transcription (RT) and quantitative real time PCR 

DNase-treated total RNA was isolated from cells using Trizol reagent (Life Technologies) according to the 

manufacturer's instructions and used to perform cDNA synthesis (High Capacity cDNA Reverse Trnscription Kit, 

Applied Biosystems). cDNA was PCR-amplified with a Chromo4 real-time PCR Detection System using Kapa SYBR 

Green Fast qPCR Kit (Kapabioststems) according to the manufacturer's recommendations with the following 

cycle conditions: 3 minutes at 95°C, then 40 cycles of 15 seconds at 95°C, and 20 seconds at 60°C. Quantitative 

PCR was performed using the pairs of primers shown in Table 3.1. The relative levels for each RNA were 

calculated by the 2−ΔΔCT method using human 18s as housekeeping gene. Each CT value is the mean of two 

biological replicates and each assay was performed a minimum of two times. 

 

Gene Forward 5’-3’ Reverse 5’-3’ 

T-bet GCGCCAGGAAGTTTCATTTG  GGAAAGTAAAGATATGCGTGTTGG 

Eomes TCATTACGAAACAGGGCAGG                 TGCATGTTATTGTCGGCTTTG 

IL-2 AAGAATCCCAAACTCACCAGG  ATTGCTGATTAAGTCCCTGGG 

18s GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 

Table 3.1 Primers used for qPCR 

 

3.2 In vivo activities 

 

3.2.1 Viruses  

The wild-type Herpes Simplex virus type 1 (HSV1), LV strain [271], and a replication-incompetent HSV1 virus, 

named S0ZgJGFP, were used in this study to assess immunomodulation by Tat protein.  

All viruses were generated and provided by the laboratory of Dr. Peggy Marconi, Department of Life Sciences and 

Biotechnology, University of Ferrara. 

 

3.2.2 Peptides  

HSV1 Kb-restricted peptides SSIEFARL (SSI), derived from glycoprotein B (gB), and QTFDFGRL (QTF), derived 

from ribonucleotide reductase 1 (RR1), were used to evaluate anti-HSV1 T cell responses in C57BL/6 mice.  



41 
 

Gag Kd-restricted peptides (Table 3.2) [261] were used to evaluate anti-Gag T cell responses in Balb/c mice and 

were provided by the NIH AIDS Repository Reagents and References Program. Peptide stocks were prepared in 

DMSO at 10−2 M concentration, stored at -20 °C, and diluted in complete medium before use. 

 

Peptide Sequence Gag aa Code T cell response 

TVATLYCVHQRIEVK Gag 81-95 TVA CD8 

SPEVIPMFSALSEGA Gag 165-179 SPE CD8 

AMQMLKET Gag 197-205 AMQ CD8 

AAEWDRLHPVHAGPI Gag 209-223 AAE CD8 

IYKRWIILGL Gag 261-270 IYK CD8 

IVRMYSPTSILDIRQ Gag 273-287 IVR CD8 

VDRFYKTLRAEQASQ Gag 297-311 VDR CD4 

YKTLRAEQASQEVKN Gag 301-315 YKT Not identified 

MTETLLVQNANPDCK Gag 317-331 MTE Not identified 

Table 3.2 Gag peptide epitopes 

 

3.2.3 Mice immunization and infection and samples collection 

BALB/c female mice (Charles River Laboratories) were immunized with 5 µg of HIV-1 Gag protein alone or in 

combination with 5 µg of Tat protein. Immunogens (100 µl) were given subcutaneously at a single site in the 

back at day 0, and mice were sacrificed at day 10. C57BL/6 female mice (Charles River Laboratories) were pre-

treated, one week before infection, with 2 μg/100 µl of Depo-Provera® (Depo-medroxy-progesterone acetate; 

Pharmacia & Upjohn) subcutaneously in the neck, to bring the mice at the same estrous stage and render them 

more susceptible to HSV1 infection. C57BL/6 mice were inoculated intravaginally with 1 x 104 of wild-type HSV1 

(strain LV) or 1 x 108 of replication-defective HSV1 (S0ZgJGFP). Before injection, the virus was thawed on ice, 

sonicated for 5 seconds, and stored on ice. Mice were anaesthetized with 5% isofluorane to allow scraping of the 

vagina with a pipe scraper (in order to remove the mucus that could trap the virus) and then inoculated with the 

purified virus (in 10 μl of total volume for each mouse) using a pipette-tip. Part of mice were injected, at the time 

of infection, with Tat protein (5µg) given subcutaneously (Tat-treated mice), or with only Tat-suspension buffer 

(control mice). After infection, mice were observed daily to monitor the appearance of local and/or systemic 

clinical signs of infection including death. Disease severity was measured using the following scores: 0 (no signs 
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of infection), 1 (appearance of ruffled hair), 2 (appearance of cold sores on and around the vagina), 3 

(appearance of paralysis of the back limbs) and 4 (mouse death). Mice were sacrificed at different time points to 

analyse anti-HSV1 immune responses on fresh splenocytes cultures (individual mice) by means of IFN-γ Elispot 

assays or dextramer staining. At sacrifice, mice were anesthetized intraperitoneally with 100 µl of isotonic 

solution containing 1 mg of Zoletil (Virbac) and 200 µg Rompun (Bayer) to collect blood and spleens.  

The presence of HSV1-specific IgM and IgG in sera was evaluated by enzyme-linked immunoassays (ELISA). 

Blood samples were collected from retro-orbital plexus, incubated for 16 hours at 4°C, centrifuged for 10 

minutes at 10000g to obtain sera and stored at -80°C until analysis. Each group was composed of three/five 

animals. Each experiment was repeated three times. 

Mice experiments were conducted according to European and Institutional guidelines for housing and care of 

laboratory animals and performed under protocols approved by the Italian Ministry for Health.  

 

3.2.4 Elispot assay 

IFN-γ Elispot assays were carried out using the murine kits provided by Becton Dickinson, according to the 

manufacturer’s instructions. Briefly, nitrocellulose plates were coated with 5 μg/ml of anti-IFN-γ mAb for 16 

hours at 4°C. Plates were then washed with PBS and blocked with RPMI 1640 supplemented with 10% FCS for 2 

hours at 37°C. Total splenocytes from individual mice (1-5 x 105 cells) were added to duplicate wells and 

incubated with HSV1- or Gag-derived peptides (10-6 M) for 24 hours at 37°C. Controls were represented by cells 

incubated with 5 μg/ml of Concanavaline A (GE Healthcare) as positive control or with medium alone (negative 

control). Spots were quantified using an AELVIS 4-Plate Elispot Reader. The number of spots counted in the 

peptide-treated cultures minus the number of spots counted in the untreated cultures was the specific response. 

Results are expressed as number of spot forming units (SFU)/106 cells. Values at least 3-fold higher than the 

mean number of spots in the control wells (untreated cells) and ≥ 50 SFU/106 cells were considered positive.  

 

3.2.5 Flow Cytometry 

All stainings were carried out in FACS buffer for 30 minutes at 4°C. The following antibodies were utilized: CD8 

FITC (Immunotools); CD8 PE, CD4 FITC, B220 FITC, CD62L PE (eBioscience); CD8 PerCP, CD4 PerCP, CD95 PeCy7 

(BD Biosciences); PD1 FITC (Biologend). 

For dextramer staining, spleen cells (1 × 106) were incubated for 10 minutes at room temperature with PE 

labeled SSI dextramer (Immudex) and washed prior staining with surface antigen antibodies.  
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Data were acquired on a BD FACScan or a FACS Canto II and analyzed using BD Cell Quest Pro or Diva software. 

 

3.2.6 Enzyme-linked immunosorbent assay (ELISA) 

 Anti-HSV1 specific antibodies in sera (IgM, IgG, IgG1 and IgG2a titers) were measured on samples collected from 

individual mice using 96-well immunoplates (Nunc Max Sorp) previously coated with 100 ng/well of HSV1 viral 

lysate (Herpes Simplex Type 1 Purified Viral Lysate, Tebu-bio), resuspended in PBS containing 0.05% NaN3, for 

16 hours at 4°C. Plates were washed five times with PBS (pH 7.0) containing 0.05% Tween 20 (Sigma) (washing 

buffer) using an automatic washer (BioRad Model 1575 ImmunoWash) and then blocked for 90 minutes at 37°C 

by the addition of 200 µl/well of PBS containing 0.5% milk and 0.05% NaN3. After extensive washes, 100 µl/well 

of appropriate dilutions of each serum were dispensed in duplicate wells and then incubated for 90 minutes at 

37°C. Plates were washed again before the addition of 100 µl/well of HRP-conjugated goat anti-mouse IgG 

(Sigma), diluted 1:1000, or HRP-conjugated goat anti-mouse IgM (Sigma), diluited 1:7500, in PBS containing 

0.05% Tween 20 and 1% BSA, and incubated at 37°C for 90 minutes. In each plate, two wells were incubated 

with PBS containing 0.5% milk and 0.05% NaN3 and the secondary antibodies (blank). Analysis of anti-HSV1 IgG 

isotype was determined using a goat anti-mouse antibody directed against IgG1 or IgG2a (Sigma), diluted 

1:30,000 in PBS containing 0.05% Tween 20 and 1% BSA. After incubation, plates were washed five times and 

subsequently a solution of 2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt (ABTS) 

substrate (Roche) was added. The absorbance values were measured after 50 minutes of incubation at 405 nm 

with an automatic plate reader (SUNRISE TECAN). The cut-off value was estimated as the mean OD of 3 negative 

control sera plus 0.05. Each OD value was subtracted of the blank and cut-off values to obtain a net OD value. IgG 

titers were calculated by intercept function using the Excel program.  

 

3.3 Cross-sectional study  

 

3.3.1 Study design 

Human serum samples from 96 HAART-naïve HIV-1-positive subjects were obtained from the WHIS cohort, 

Mbeya Medical Reserch Center, Mbeya, Tanzania. The WHIS cohort contains information about viral load, CD4+ 

counts, phenotype of T cells and Elispot data for the majority of enrolled individuals. Thus, our study was a cross-

sectional study nested in the WHIS study. This study was approved by the ethics committee of the Tanzanian 
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National Institute of Medical Research and conducted according to the principles expressed in the Declaration of 

Helsinki. All participants provided written informed consent before enrolment into the study. 

 

3.3.2 Enzyme-linked immunosorbent assay (ELISA) 

Human anti-Tat IgA, IgM and IgG were measured in human sera using 96-well immunoplates (Nunc Max Sorp) 

previously coated with 100 ng/well of clade B or clade C Tat re-suspended in carbonate buffer, for 16 hours at 

4°C. Plates were washed five times with PBS (pH 7.0) containing 0.05% Tween 20 (Sigma) and then blocked  

with PBS containing 0.05% Tween 20 and 1% BSA for 90 minutes at 37°C (IgG) or 60 minutes at room 

temperature (IgA) or with PBS containing 5% milk for 60 minutes at 37°C (IgM). After extensive washes, 100 

µl/well of appropriate dilutions of each serum diluted in PBS containing 0.05% tween and 1% BSA (“block 

buffer” IgG and IgA) or PBS containing 5% milk (“block buffer” IgM) were dispensed in duplicate wells and then 

incubated for 90 minutes at 37°C. Plates were washed again before the addition of 100 µl/well of HRP-

conjugated anti-human IgG (Sigma), diluted 1:1000, or HRP-conjugated anti-human IgA (Sigma) diluted 1:3000, 

or HRP-conjugated anti-human IgM (Sigma), diluted 1:1000, in block buffer and incubated at 37°C for 90 minutes 

(IgG) or for 60 minutes (IgA and IgM). In each plate, two wells were incubated with block buffer and the 

secondary antibodies (blank). After incubation, plates were washed five times and incubated with block buffer 

for 15 minutes at 37°C (IgG and IgM). Plates were washed five times and subsequently a solution of ABTS was 

added. The absorbance values were measured after 50 minutes of incubation at 405 nm with an automatic plate 

reader (SUNRISE TECAN). The cut-off value was estimated as the mean OD of 3 negative control sera plus 0.05. 

Each OD value was subtracted of the blank and cut-off values to obtain a net OD value. Titers were calculated by 

intercept function using the Excel program. As control sera were considered samples from HIV-negative subjects 

from the same cohort. 
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4 Results 

 

4.1 Effects of the HIV-1 Tat protein on CD8+ and CD4+ T cell programming 

 

4.1.1 Tat contributes to the activation of CD8+ T cells 

Several studies have reported the capacity of the HIV-1 Tat protein to activate CD4+ T cells and increase IL-2 

production in both HIV-infected and uninfected cells exposed to different stimuli [165, 205, 238]. Conversely, the 

role of Tat on CD8+ T cells, that are also substantially affected by HIV infection, is still unknown. To determine 

whether Tat could modulate CD8+ T cell responses, we first assessed the capacity of Tat to contribute to the 

activation of memory CD8+ T cells. To this purpose, PBLs from healthy volunteers (Methods section 3.1.1) were 

stimulated, in the presence or absence of Tat, with CEF peptide pool, a group of 32 peptides, 8-12 amino acids in 

length, with sequences derived from the human Cytomegalovirus, Epstein-Barr Virus and Influenza Virus 

(Methods section 3.1.4). After two rounds of stimulation, PBLs were tested for IFNγ release in Elispot assay 

against CEF peptides (Methods section 3.1.6). As shown in Fig. 4.1, the presence of Tat induced higher numbers 

of IFNγ-secreting epitope-specific CD8+ T cells suggesting that Tat favors the activation of memory CD8+ T cells. 

 

Figure 4.1 Tat favors the activation of antigen-specific memory CD8+ T cells. PBLs from healthy volunteers (n=5) were 
stimulated with CEF peptide pool in the presence or absence of 0.1 µg/ml of Tat protein. After two weeks, cells were tested in 
IFNγ Elispot against CEF peptide pool. Bars show SFU/million cells after the subtraction of the background of one representative 
donor out of five. Dots show all the donors represented as fold increase of Tat-treated cells compared to cells stimulated in the 
absence of Tat (normalized to 1). 
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In addition, PBLs obtained from healthy HLA class I-typed EBV-seropositive volunteers were stimulated three 

times with cells pulsed with EBV-derived CTL peptide epitopes in the presence or absence of Tat (0.1 μg/ml). 

Specifically, PBLs were stimulated with the subdominant HLA-A2-presented CLGGLLTMV (CLG) or 

YLQQNWWTL (YLQ) epitopes [272, 273] or the immunodominant HLA-A11-presented IVTDFSVIK (IVT) epitope 

[274] (Methods section 3.1.4). The cytotoxic activity of CTL cultures generated in the presence or absence of Tat, 

was tested using standard 51Cr-release assays against autologous PHA-blasts, pulsed or not with the relevant 

synthetic peptide (Methods section 3.1.5). All three CTL cultures generated in the presence of Tat clearly 

exhibited higher percentages of specific lysis compared to CTL cultures generated in the absence of Tat (Fig. 4.2). 

These observations suggest that Tat favors the activation of memory CD8+ T cells; however, they do not clarify 

whether Tat must be present at time of the stimulation or may enhance the cytotoxic activity of activated CD8+ T 

cells. Thus, to address this issue, CTL cultures specific for the HLA-A2-presented CLG epitope were generated in 

the absence of Tat. Subsequently, CTL cultures untreated or treated for 1 or 2 days with the Tat protein at the 

concentration of 0.1 μg/ml were tested for their cytotoxic activity throughout 51Cr-release assays against 

autologous PHA-blasts, pulsed or not with the CLG peptide. As shown in Fig. 4.2 D, CTL cultures, treated or not 

with Tat, lysed target cells at similar levels, suggesting that Tat enhances CD8+ T cells activation only if present 

contemporarily with the stimulus, but does not enhance effector functions of CTLs that have been already 

generated.  

To determine whether the Tat protein favors also the activation of naïve T cells, PBLs from HLA-A2 healthy 

volunteers were stimulated with the synthetic ELT peptide in presence or absence of the Tat protein. ELT 

(ELTLGEFLKL) peptide is a CTL epitope, presented by HLA-A2 [275, 276], belonging to the anti-apoptotic protein 

survivin that is overexpressed in tumor cells [277]. No T-cell reactivity against this epitope is normally detected 

in healthy patients [277]. The specificity of cultures, obtained in the presence or absence of Tat, was tested by 5 h 

51Cr-release assays against PHA-blasts pulsed with the ELT-peptide (Fig. 4.2 E). HLA-A2 positive PHA-blasts 

pulsed with the ELT-peptide were efficiently lysed by CTLs generated in the presence of Tat, while unpulsed 

HLA-A2 positive blasts or HLA-A2 positive blasts pulsed with the ELT peptide were not lysed by CTLs generated 

in the absence of Tat, clearly demonstrating a role of Tat in the enhancement of the activation of naïve CD8+ T 

cells. 

Taken together, these results suggest that Tat contributes to the priming and the activation of antigen-specific 

naïve and memory CD8+ T cells.  
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Figure 4.2 Tat favors the activation of antigen-specific naïve and memory CTLs. CTLs cultures specific for CLG (A), YLQ 
(B) or IVT (C) EBV-derived epitopes were generated, in the presence or absence of Tat (0.1µg/ml), from lymphocytes purified 
from EBV-positive volunteers (n=5) and tested for their cytotoxic activity throughout 51Cr-release assay against autologous 
peptide-pulsed PHA-blasts. (D) CTLs cultures specific for CLG peptide epitope were generated from lymphocytes purified from 
EBV-positive volunteers (n=5). 48 or 24 hours prior to 51Cr-release assay, CTL cultures were treated with the Tat protein 
(0.1µg/ml). (E) CTLs cultures specific for ELT survivin-derived epitope were generated, in the presence or absence of Tat 
(0.1µg/ml), from lymphocytes purified from healthy volunteers (n=5) and tested for their specificity throughout 51Cr-release 
assay against autologous peptide-pulsed PHA-blasts. Bars show percentages of specific lysis of one representative donor out of 
five. Dots show all the donors represented as fold increase of Tat-treated cells compared to cells stimulated in the absence of Tat 
(normalized to 1). 

 

 

4.1.2 Tat enhances IL-2 expression in CD8+ and CD4+ T cells  

It has been demonstrated that Tat favors CD4+ T cell activation and IL-2 secretion after stimulation with 

antibodies specific for the CD3 and CD28 receptors that mimic physiological T cell activation [165, 204, 205]. To 

confirm these results, PBLs from healthy volunteers were stimulated with anti-CD3/CD28 (Methods section 

3.1.3) in the presence of different doses of Tat (from 0.001 µg/ml to 1 µg/ml), and IL-2 mRNA levels were 

measured after 4 hours (Methods section 3.1.10). At all Tat doses, except the lowest ( 0.001µg/ml), a 200-fold 
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induction of IL-2 mRNA was detected by real-time PCR in response to anti-CD3/CD28 treatment, while only a 75-

fold induction was observed in the absence of Tat (Fig. 4.3 A).  

 

 

Figure 4.3 Tat enhances IL-2 production. PBLs from healthy volunteers (n=6) were activated with anti-CD3/CD28 in the 
presence or absence of different concentrations of Tat for 4 (A) or 24 (B) hours. IL-2 mRNA levels were quantified by qPCR and 
normalized to untreated PBLs. (C-D) PBLs from healthy volunteers (n=8) were activated with anti-CD3/CD28 in the presence or 
absence of different concentrations of Tat for 18 hours. Percentages of CD8+ (C) or CD4+ (D) T cells secreting IL-2 were 
determined by ICS. Data are presented as mean ± SEM. For statistical analysis two-tailed Wilcoxon signed rank test was used. 
*P<0.05: Tat-treated cells compared to control cells (-). 

 

Similar results were obtained at 24 hours after stimulation (Fig. 4.3 B), demonstrating that the effect is long 

lasting. Tat-mediated enhancement of IL-2 production was also evaluated by intracellular cytokine staining (ICS, 

Methods section 3.1.7). To this aim, PBLs from healthy subjects were activated with anti-CD3/CD28 in presence 

or absence of Tat (0.1 and 10 µg/ml), and the secretion of IL-2 was measured in CD8+ and CD4+ T cells at 6 and 18 
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hours after treatment. No effect of Tat on IL-2 production by CD8+ and CD4+ T cells was observed at 6 hours after 

stimulation (not shown). However, an average 1.5-time fold increase of IL-2 secretion was observed after 18 

hours of stimulation in both CD8+ and CD4+ T cells activated in the presence of 0.1 µg/ml of Tat compared with 

CD8+ and CD4+ T cells activated without Tat (from 0.28% to 0.43% IL-2+CD8+ in the absence or presence of Tat 

respectively, p<0.05, Fig. 4.3 C, and from 0.60% to 0.90% IL-2+CD4+ in the absence or presence of Tat 

respectively, p<0.05, Fig. 4.3 D).  

These data further confirm that Tat enhances CD8+ and CD4+ T cells activation and demonstrate for the first time 

that Tat increases IL-2 secretion in CD8+ T cells. 

 

4.1.3 Transcriptional profile of CD8+ T cells activated in the presence of Tat 

As Tat enhances activation of CD8+ and CD4+ T cells stimulated by TCR engagement (different CD8 peptide 

epitopes and anti-CD3/CD28 stimulation), we sought to determine whether this effect was linked to a 

modulation of the expression of some TFs important for the activation and effectors functions of T cells. To this 

aim, mRNA levels of T-bet were measured in PBLs activated in the presence of different Tat doses. T-bet is 

known to be up-regulated after T cell activation and to promote the transcription of effector genes [14]. 

Consistently with the results observed measuring IL-2 mRNA, Tat enhanced T-bet expression of more than two 

times at 4 and 24 hours after stimulation (Fig. 4.4 A-B). The reported results demonstrate that the effect was 

absent at the lowest dose of Tat (0.001 µg/ml), while was almost equivalent when Tat was present at 

concentrations ranging between 0.01 and 1 µg/ml, although the highest fold increase was observed at the 0.1 

µg/ml dose. This concentration was chosen to perform the subsequent experiments. 

It is known that extracellular Tat activates CD4+ T cells binding, via its RGD region, to the αvβ3 and α5β1 integrins 

expressed on the cell surface [147-150]. To understand whether the Tat-mediated enhancement of T-bet 

expression was due to the same mechanism, PBLs were preincubated with Abs directed against αvβ3 and α5β1 

and subsequently stimulated with anti-CD3/CD28. The reported results demonstrated that the effect of Tat was 

significantly inhibited by blocking integrins (Fig. 4.4 C), indicating that Tat enhanced T-bet expression through 

its binding with αvβ3 and α5β1. Blocking experiments with anti-Tat immune sera demonstrated that this effect 

was specifically mediated by Tat (Fig. 4.4 C). 
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Figure 4.4 Tat increases T-bet expression. PBLs from healthy volunteers (n=6) were activated with anti-CD3/CD28 in the 
presence or absence of different concentrations of Tat for 4 (A) or 24 (B) hours. T-bet mRNA levels were quantified by qPCR and 
normalized to untreated PBLs. (C) PBLs were pre-incubated with anti-integrins monoclonal antibodies or with anti-Tat immune 
sera for 1 hour at room temperature before activation and Tat treatment. Data are presented as mean ± SEM. For statistical 
analysis two-tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells compared to control cells (-). 

 

To characterize the effects of Tat on CD8+ T cells transcriptional profile, the expression of IL-2, T-bet and Eomes 

mRNA levels was evaluated in purified CD8+ T cells activated, alone or in the presence of CD4+ T cells, with anti-

CD3/CD28. Eomes expression was assessed, along with T-bet, as it also controls effector functions of CD4+ and 

CD8+ T cells [11]. 
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Figure 4.5 Tat-effects on transcriptional profile of CD8+ T cells activated without CD4+ T cells help. CD8+ T cells were 
purified from PBLs from healthy volunteers (n=6) and activated with anti-CD3/CD28 in the presence or absence of 0.1µg/ml of 
Tat for 4 hours. IL-2 (A), T-bet (B) and Eomes (C) mRNA levels were quantified by qPCR and normalized to untreated CD8+ T 
cells. Data are presented as mean ± SEM. For statistical analysis two-tailed Wilcoxon signed rank test test was used. *P<0.05: Tat-
treated cells compared to control cells (-). 

 

The expression of T-bet and Eomes in CD8+ T lymphocytes stimulated in the absence of CD4+ T cells was not 

modified by the presence of Tat (Fig. 4.5 B-C). However, Tat significantly increased IL-2 mRNA of CD8+ T cells 

stimulated without CD4+ T cell help (from 100 to 170-fold induction in CD8+ T cells stimulated in the absence or 

presence Tat respectively, p<0.05, Fig. 4.5 A). 

 As CD4+ T cells provide help for CD8+ T cells stimulation , we sought to determine the transcriptional profile of 

CD8+ T cells activated in the presence of CD4+ T lymphocytes. Interestingly, under these experimental conditions, 

a significant up-regulation of all the three genes taken into consideration was observed in CD8+ T cells stimulated 

in the presence of Tat compared with CD8+ T cells activated without Tat (Fig. 4.6). In fact, CD8+ T cells stimulated 

in the presence of Tat exhibited a 65-fold increase of IL-2 mRNA, compared to a 30-fold increase observed in 

CD8+ T lymphocytes stimulated without Tat (p<0.05, Fig. 4.6 A). Moreover, T-bet and Eomes relative levels were 

up-regulated from 0.93 and 0.87 respectively in CD8+ T cells activated in the absence of Tat to 1.8 and 1.53 in 

CD8+ T cells activated in the presence of Tat (Fig. 4.6 B-C). 

Taken together, these data demonstrate that Tat up-regulates IL-2, T-bet and Eomes expression in activated 

CD8+ T cells. Notably, T-bet and Eomes up-regulation required the help by CD4+ T cells. 
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Figure 4.6 Tat-effects on transcriptional profile of CD8+ T cells activated with CD4+ T cells help. PBLs from healthy 
volunteers (n=6) were activated with anti-CD3/CD28 in the presence or absence of 0.1µg/ml of Tat. After 4 hours of stimulation, 
CD8+ T cells were purified. IL-2 (A), T-bet (B) and Eomes (C) mRNA levels were quantified by qPCR and normalized to untreated 
CD8+ T cells. Data are presented as mean ± SEM. For statistical analysis two-tailed Wilcoxon signed rank test was used. *P<0.05: 
Tat-treated cells compared to control cells (-). 

 

4.1.4 Transcriptional profile of CD4+ T cells activated in the presence of Tat 

As we have shown that the Tat-mediated up-regulation of T-bet and Eomes in CD8+ T cells requires the presence 

of CD4+ T cells, we sought to determine whether Tat could also modulate the transcriptional profile of activated 

CD4+ T cells. To this aim, purified CD4+ T cells were activated, in the presence or absence of Tat, with anti-

CD3/CD28, and the expression of IL-2, T-bet and Eomes mRNA was evaluated 4 hours after stimulation. As 

previously demonstrated [205], the presence of Tat during the stimulation induced a significant increase in IL-2 

mRNA expression (from 190 to 470-fold induction in CD4+ T cells stimulated in the absence or presence of Tat 

respectively, p<0.05, Fig. 4.7 A). Notably, a 15.5-fold increase of T-bet mRNA was observed in CD4+ T cells 

activated in the presence of Tat as compared to a 7-fold increase in CD4+ T cells activated without Tat (p<0.05, 

Fig. 4.7 B). However, no significant differences were observed in Eomes expression in CD4+ T cells activated in 

the presence or absence of Tat (Fig. 4.7 C).  

Thus, these data provide evidence that the activation of CD4+ T cells in the presence of Tat enhances T-bet 

expression.  
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Figure 4.7 Tat-effects on transcriptional profile of activated CD4+ T cells. CD4+ T cells were purified from PBLs from 
healthy volunteers (n=6) and activated with anti-CD3/CD28 in the presence or absence of 0.1µg/ml of Tat for 4 hours. IL-2 (A), T-
bet (B) and Eomes (C) mRNA levels were quantified by qPCR and normalized to untreated CD4+ T cells. Data are presented as 
mean ± SEM. For statistical analysis two-tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells compared to 
control cells (-). 

 

4.1.5 Tat effects on the basal transcriptional profile of CD8+ and CD4+ T cells 

We next investigated whether Tat could also modulate the basal transcriptional prolife of resting CD8+ and CD4+ 

T cells. To this aim, T-bet and Eomes mRNA levels were measured in purified CD8+ and CD4+ T cells cultured for 4 

hours in the presence or absence of Tat. As previous results demonstrate that Tat modulates T-bet and Eomes 

transcription in CD8+ T cells only if CD8+ T cells are co-cultured with CD4+ T cells, we maintained the same 

conditions to evaluate the effects of Tat on basal transcription of resting CD8+ T cells. T-bet mRNA expression 

was not modified by the presence of Tat in both CD8+ and CD4+ T cells (fold increase of T-bet mRNA levels in 

CD8+ and CD4+ T cells cultured in the presence of Tat not significantly different from 1, taken as reference value 

of CD8+ and CD4+ T cells cultured in the absence of Tat, Fig. 4.8 A). Interestingly, Eomes expression was up-

regulated of 1.7 folds in CD8+ T cells cultured in the presence of Tat compared to CD8+ T cells cultured in the 

absence of Tat. No Tat-mediated effects on Eomes expression were observed in CD4+ T cells (Fig. 4.8 B). 

Thus, these results suggest that Tat induces T-bet and Eomes transcription by two independent mechanisms, up-

regulating the basal transcription of Eomes in CD8+ T cells and acting in synergy with stimulation to enhance T-

bet mRNA levels in both CD8+ and CD4+ T cells. 
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Figure 4.8 Tat-effects on transcriptional profile of resting CD8+ and CD4+ T cells. PBLs from healthy volunteers (n=6) 
were cultured in the presence of 0.1 µg/ml of Tat. After 4 hours, CD8+ T cells were purified. CD4+ T cells were purified from PBLs 
from healthy volunteers (n=6) and cultured in the presence of 0.1 µg/ml of Tat for 4 hours. T-bet (A) and Eomes (B) mRNA levels 
were quantified by qPCR and normalized to untreated CD8+ and CD4+ T cells. Data are presented as mean ± SEM. For statistical 
analysis two-tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells compared to control cells (1). 

 
 

4.1.6 Tat does not directly increase proliferation nor modifies the phenotype of activated CD8+ and 

CD4+ T cells 

Our results demonstrate that Tat enhances effector functions and modifies the transcriptional profile of 

stimulated CD8+ and CD4+ T cells favoring their activation; thus, we first sought to determine whether these Tat-

mediated effects resulted in an enhanced T cells proliferation. PBLs stimulated with anti-CD3/CD28 were 

cultured up to six days in the presence or absence of Tat, and CD8+ and CD4+ T cells proliferation was measured 

by CFSE staining (Methods section 3.1.8). As shown in Fig. 4.9, no differences in T cells proliferation were 

observed in the presence or absence of Tat. Moreover Tat, even at different doses, did not enhance CD8+ or CD4+ 

T lymphocytes proliferation at longer or shorter stimulation time or when stimulation was performed with 

different amount of anti-CD3/CD28 (not shown). 
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Figure 4.9 Tat does not enhance T cells proliferation. PBLs from healthy volunteers were activated with anti-CD3/CD28 in 
the presence or absence of 0.1 µg/ml of Tat and cultured up to six days. Proliferation of CD8+ and CD4+ T cells was assessed by 
CFSE staining. One representative experiment out of five is shown. 

 

This is consistent with previous reports showing that soluble Tat was ineffective in enhancing anti-CD3/CD28 

induced proliferation [150, 205]. Furthermore, the same reports demonstrated that higher doses of Tat could 

mediate apoptosis. To assess this, PBLs were stimulated with different stimuli (anti-CD3/CD28, PMA, PHA, LPS, 

Methods section 3.1.9) in the presence of different Tat doses (0.1 and 1 µg/ml). Our results demonstrated that 

PBLs stimulated in the presence of Tat did not display any significant death during the six days of culture 

compared to PBLs activated without Tat (Fig. 4.10). The same experiments were repeated with increasing 

amounts of Tat and varying the doses of stimuli, but no Tat-mediated effect on cell viability was observed (not 

shown). 

 

Figure 4.10 Tat does not affect T cells viability. PBLs from healthy volunteers were activated with different kind of stimuli: 
PHA, PMA + Ionomycin, LPS and anti-CD3/CD28, in the presence or absence of different concentrations of Tat, and cultured up to 
six days. PBLs viability was measured by MTT assay. One representative experiment out of five is shown. 
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Finally, to assess if Tat-mediated modulation of the transcriptional profile of CD4+ and CD8+ T cells impacted 

their surface phenotype, the expression of different activation markers (HLA-DR, CD38, CD95, CD25) was 

assessed on CD4+ and CD8+ T cells activated by anti-CD3/CD28 in the presence or absence of Tat (Methods 

section 3.1.8). The presence of Tat did not modify the phenotype of activated CD4+ and CD8+ T cells characterized 

at 10 and 24 hours after stimulation (Fig. 4.11). The measurement of the expression of the same markers 

performed at earlier (6 hours) and later (48 hours) time points confirmed these results (not shown). 

Thus, we can conclude that Tat increases the functionality of CD8+ and CD4+ T cells without affecting their 

proliferation and phenotype. 

 

Figure 4.11 Tat does not affect T cells phenotype. PBLs from healthy volunteers were activated with anti-CD3/CD28, in the 
presence or absence of 0.1 µg/ml of Tat. After 10 or 24 hours of stimulation the expression of HLA-DR, CD38, CD95 and CD25 was 
assessed by flow cytometry on CD8+ and CD4+ T cells. One representative experiment out of five is shown. 

 

4.1.7 Comparison between clade B and clade C Tat effects on T cell activation 

Different HIV-1 subtypes display some differences in progression rate and virulence [52, 53]. As Tat is necessary 

for the viral cycle and contributes to progression to AIDS, differences at the level of its sequence may be 

responsible for the higher or lower virulence of a particular HIV subtype. In the majority of the studies, the 

immunomodulatory properties ascribed to Tat have been characterized using clade B Tat. However, clade C HIV-

1 is responsible of the half of infections worldwide [51]. Thus, the comparison between clade B and clade C Tat 

immunomodulatory properties may be of interest to understand differences between subtype B and C HIV-1 
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pathogenicity. In particular, we compared clade B and clade C Tat for their effects on CD8+ and CD4+ T cell 

activation. 

To address this issue, PBLs from healthy subjects were activated with anti-CD3/CD28 in presence or absence of 

clade B and clade C Tat (0.1 and 10 µg/ml), and IL-2, TNFα and IFNγ secretion was measured by ICS after 6 and 

18 hours of stimulation. Results were normalized considering  the percentage of cytokine-secreting cells after 

anti-CD3/CD28 stimulation as “1”. Thus, the  percentage of cytokine-secreting  cells after anti-CD3/CD28 in the 

presence of Tat  is reported as fold increase compared to the stimulation without Tat. This allows to better 

compare clade B and clade C Tat effects avoiding individual variability of volunteers to anti-CD3/CD28 

activation. 

The results demonstrated that clade B Tat enhanced IL-2 production in CD4+ and CD8+ T cells at 18, but not 6 

hours after stimulation. Moreover, the effects of clade B Tat on IL-2 secretion were observed at concentrations 

ranging from 0.1 to 10 µg/ml. On the contrary, clade C Tat enhanced IL-2 production by CD4+ and CD8+ T cells 

yet at 6 hours after stimulation, while at 18 hours the effect reached statistical significance only in CD4+ T cells. 

Moreover, the C Tat-mediated effects were more pronounced at the highest dose (10µg/ml) while 0.1 µg/ml of C 

Tat only modestly enhanced IL-2 production (Fig. 4.12).  
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Figure 4.12 Comparison between clade B and C Tat on IL-2 production. PBLs from healthy volunteers were activated with 
anti-CD3/CD28, in the presence or absence of different doses of clade B (8 donors) or clade C (6 donors)  Tat. After 6 or 18 hours 
of stimulation, the IL-2 release by CD4+ and CD8+ T cells was assessed by ICS. Fold increase of the number of IL-2 secreting cells 
compared to PBLs stimulated in the absence of Tat is shown. Data are presented as mean ± SEM. For statistical analysis two-
tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells compared to control cells (1). 

 

 

When assessing TNFα production, we observed a similar phenomenon, as clade B Tat significantly enhanced 

TNFα secretion by CD4+ T cells only after 18 hours of stimulation, while clade C Tat significantly enhanced TNFα 

production in both CD4+ and CD8+ T cells at 6, but not at 18 hours post activation (Fig. 4.13).  
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Figure 4.13Comparison between clade B and C Tat on TNFα production. PBLs from healthy volunteers were activated 
with anti-CD3/CD28, in the presence or absence of different doses of clade B (8 donors) or clade C (6 donors)  Tat. After 6 or 18 
hours of stimulation, the TNFα release by CD4+ and CD8+ T cells was assessed by ICS. Fold increase of the number of TNFα 
secreting cells compared to PBLs stimulated in the absence of Tat is shown. Data are presented as mean ± SEM. For statistical 
analysis two-tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells compared to control cells (1). 

 

 

Finally, we measured the production of IFNγ by CD4+ and CD8+ T cells activated in the presence of clade B or C 

Tat. Consistently with previous results, clade B Tat did not modulate cytokine production at 6 hours after 

stimulation, while both doses of B Tat significantly enhanced IFNγ secretion by CD4+ T cells at 18 hours after 

stimulation (Fig. 4.14). On the contrary, clade C Tat increased IFNγ production exclusively at the highest dose, exerting 

its effects in both CD4+ and CD8+ T cells at 6 hours after stimulation and on CD4+ T cells at 18 hours after stimulation 

(Fig. 4.14). 
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Figure 4.14 Comparison between clade B and C Tat on IFNγ production. PBLs from healthy volunteers were activated with 
anti-CD3/CD28, in the presence or absence of different doses of clade B (8 donors) or clade C (6 donors)  Tat. After 6 or 18 hours 
of stimulation, the IFNγ release by CD4+ and CD8+ T cells was assessed by ICS. Fold increase of the number of IFNγ secreting cells 
compared to PBLs stimulated in the absence of Tat is shown. Data are presented as mean ± SEM. For statistical analysis two-
tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells compared to control cells (1). 

 

Taken together, these results show that both clade B and clade C Tat activate CD8+ and CD4+ T cells but in 

different dose-dependent and time-dependent fashions. Indeed, the effects of clade B Tat were observed at low 

concentrations and at 18 hours after stimulation, while the effects of clade C Tat, although more pronounced, 

were observed only at the highest concentration and yet at 6 hours after stimulation.  

To understand whether these two different Tat forms also differently modulated the transcriptional profile of 

CD8+ and CD4+ T cells, we compared clade B and clade C Tat for their capacity to up-regulate T-bet and Eomes 

expression in activated CD8+ and CD4+ T cells. Thus, CD8+ and CD4+ T cells from healthy volunteers were 

stimulated with anti-CD3/CD28 in the presence of B or C Tat. Results are expressed as fold increase of mRNA 
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levels comparing T cells stimulated in the presence of Tat with T cells activated in the absence of Tat (considered 

as a reference value of “1”). 

Results demonstrated that clade C Tat mediated the same effect as subtype B  enhancing T-bet and Eomes 

expression of about 2 times in activated CD8+ T cells (Fig. 4.15), although the number of performed experiments 

was not enough to determine statistical significance (n=3).  

 

Figure 4.15 Comparison between clade B and C Tat on transcriptional profile of activated CD8+ T cells. PBLs from 
healthy volunteers were activated with anti-CD3/CD28 in the presence of 0.1 µg/ml of clade B (6 donors) or C (3 donors) Tat. 
After 4 hours, CD8+ T cells were purified. Fold increase of T-bet (A) and Eomes (B) mRNA expression compared to CD8+ T cells 
stimulated in the absence of Tat is shown. Data are presented as mean ± SEM. For statistical analysis two-tailed Wilcoxon signed 
rank test was used. *P<0.05: Tat-treated cells compared to control cells (1); n.d.: not determined. 

 

The assessment of the transcriptional profile of CD4+ T cells activated in the presence of clade B Tat showed a 

significant Tat-mediated up-regulation of T-bet but not of Eomes (Fig. 4.16). However, when CD4+ T cells where 

activated in the presence of  clade C Tat, an up-regulation of both T-bet and Eomes was observed (Fig 4.16). 

Taken together, these data show that both clade B and clade C Tat enhanced the activation of CD8+ and CD4+ T 

cells increasing T-bet expression. Interestingly, while B Tat increased Eomes mRNA levels exclusively in CD8+ T 

cells, clade C Tat up-regulated Eomes in both CD4+ and CD8+ T cells. 
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Figure 4.16 Comparison between clade B and C Tat on transcriptional profile of activated CD4+ T cells. CD4+ T cells 
were purified from PBLs from healthy volunteers and activated with anti-CD3/CD28 in the presence of 0.1µg/ml of clade B (6 
donors) or clade C (3 donors) Tat for 4 hours. Fold increase of T-bet (A) and Eomes (B) mRNA expression compared to CD8+ T 
cells stimulated in the absence of Tat is shown. Data are presented as mean ± SEM. For statistical analysis two-tailed Wilcoxon 
signed rank test was used. *P<0.05: Tat-treated cells compared to control cells (1); n.d.: not determined; n.s.: not significant. 

 

 

4.1.8 Comparison between clade B and clade C Tat-effects on the basal transcriptional profile of CD8+ 

and CD4+ T cells 

We have previously demonstrated that clade B Tat did not affect the basal transcriptional profile of resting CD4+ 

T cells, while it significantly increased Eomes (but not T-bet) expression in resting CD8+ T cells (Fig. 4.8). 

Similarly, when we evaluated clade C Tat effects on the transcriptional profile of resting CD4+ T cells, we did not 

observe any modulation of T-bet and Eomes expression (Fig 4.17). As previously mentioned, number of samples 

has to be enlarged to allow any statistical testing. We next evaluated clade C Tat effects on T-bet and Eomes 

expression of resting CD8+ T cells. Neither clade B nor clade C Tat modulated the transcription of T-bet, while 

both of them up-regulated Eomes expression in resting CD8+ T cells (Fig. 4.18). These results further 

demonstrate that Tat, irrespectively to the subtype, induces T cell activation by affecting CD8+ and CD4+ T cells 

transcriptional profile. 
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Figure 4.17 Comparison between clade B and C Tat on transcriptional profile of resting CD4+ T cells. CD4+ T cells were 
purified from PBLs from healthy volunteers and cultured in the presence of 0.1µg/ml of clade B (6 donors) or clade C (3 donors) 
Tat for 4 hours. T-bet (A) and Eomes (B) mRNA levels were quantified by qPCR and normalized to untreated CD4+ T cells. Data 
are presented as mean ± SEM. For statistical analysis two-tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells 
compared to control cells (1); n.d.: not determined; n.s.: not significant. 

 
 
 
 

 

Figure 4.18 Comparison between clade B and C Tat on transcriptional profile of resting CD8+ T cells. PBLs from healthy 
volunteers were cultured in the presence of 0.1µg/ml of clade B (6 donors) or clade C (3 donors) Tat. After 4 hours, CD8+ T cells 
were purified. T-bet (A) and Eomes (B) mRNA levels were quantified by qPCR and normalized to untreated CD4+ T cells. Data are 
presented as mean ± SEM. For statistical analysis two-tailed Wilcoxon signed rank test was used. *P<0.05: Tat-treated cells 
compared to control cells (1); n.d.: not determined; n.s.: not significant. 
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4.2 Tat-mediated modulation of viral-specific cellular and humoral responses 

 

4.2.1 Tat enhances T cell responses against co-administered antigens 

Our data suggest that Tat enhances the activation of naïve and memory CD4+ and CD8+ T cells if stimulated in its 

presence. To confirm these in vitro observations, the effect of Tat on the expansion of naïve CD8+ T cells was 

investigated using an in vivo model of protein vaccination previously characterized in our laboratory [193, 261]. 

Specifically, Balb/c mice were immunized with the HIV-1 Gag protein alone or in combination with Tat  (Methods 

section 3.2.3) and, ten days after immunization, fresh splenocytes from immunized mice were assayed by IFNγ 

Elispot (Methods section 3.2.4) to evaluate T cell responses directed against previously identified Gag-derived 

peptides [261] containing one CD4 and eight CD8 epitopes (Table 3.2).  

 

Figure 4.19 Tat-mediated T cell activation. Balb/c mice (3 per groups) were injected with 5 µg of Gag alone or in 
combination with 5 µg of Tat. Ten days after vaccination mice were sacrificed and fresh splenocytes assayed in IFNγ Elispot 
against the indicated Gag-derived T cell peptide epitopes (see also Table 3.2). One representative experiment out of three is 
shown. 

 

As shown in Fig. 4.19, immunization with Gag alone did not induce detectable Gag-specific T cell responses, 

whereas immunization with the Gag protein in the presence of Tat elicited significant Gag-specific responses 

directed against all tested CD4 and CD8 epitopes. These data confirm that Tat activates CD4+ T cells and 

demonstrate that the Tat protein induces the expansion of CD8+ T cells.  
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4.2.2 Tat increases the duration and decreases the magnitude of antiviral CD8+ T cell responses 

The stimulatory effect of Tat on CD8+ T cells (see section above) and its capacity to increase antigen 

presentation, as reported in previous studies [148, 149, 192, 193], suggest that Tat may play a role in the 

hyperactivation of CD8+ T cells observed during HIV infection. To understand how the immunomodulatory 

properties displayed by Tat on APCs and T lymphocytes affect the overall immune responses against a viral 

infection, C57BL/6 mice were infected intravaginally (i.v.) with wild type HSV1 (strain LV) with or without the 

Tat protein administered at the time of infection by the subcute route (Methods section 3.2.3). At days 5, 8 and 

13 post-infection (p.i.), the presence of HSV1-specific CD8+ T cells was evaluated on splenocytes by staining with 

MHC-peptide dextramers specific for the immunodominant SSI CTL epitope of glycoprotein B (Methods section 

3.2.5). As shown in Fig. 4.20 A, at day 5 p.i. low numbers of SSI-specific T cells were detected in both groups of 

mice. However, at day 8 p.i., when CD8+ T cell response reached the peak of expansion, and at day 13 p.i., 

corresponding to the contraction phase of the T cell response, the percentage of SSI-specific CD8+ T cells was 

significantly higher in mice treated with the Tat protein than that measured in the control group inoculated with 

HSV1 alone. 

Since the presence of antigen-specific CD8+ T cells does not necessarily correlate to a functional cytotoxic 

phenotype [278, 279], the activity of SSI-specific CD8+ T cells isolated from mice infected with HSV1, with and 

without Tat, was further investigated. Moreover, to better characterize the population of HSV1-specific CD8+ T 

cells, CTL responses against the subdominant QTFDFGRL (QTF) epitope of ribonucleotide reductase 1 (RR1) 

were also analysed. To this purpose, fresh splenocytes purified from mice infected with HSV1, in the presence or 

absence of Tat, were tested at different time points p.i. by evaluating IFN release against the immunodominant 

SSI and the subdominant QTF epitopes (Methods section 3.2.4). As shown in Fig. 4.20 B, the expansion phase of 

HSV1-specific CD8+ T cell responses against both epitopes was more robust in mice treated with Tat as 

compared to that observed in the control group. Indeed, significantly higher numbers of SSI- and QTF-specific 

CD8+ T cells secreting IFN were detected in the Tat-treated group at days 5 and 6 p.i., respectively (Fig. 4.20 C).  
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Figure 4.20 Tat modulates the kinetics and the magnitude of CTL responses. Splenocytes were purified from control and 
Tat-treated HSV1-infected C57/BL6 mice at days 4, 5, 6, 7, 8, 10 and 13 post-infection. (A) Percentage of SSI-specific CD8+ T cells 
detected by dextramer staining. Dot plots show dextramer positive CD8+ T cells of one representative mice per group (including a 
naïve uninfected mice) at day 8 p.i.. Graph presents mean ± SEM of 5 mice per group. One representative experiment out of three 
is shown. (B) Kinetics of SSI- and QTF-specific cellular responses detected by IFNγ Elispot on fresh splenocytes. Data are 
presented as mean ± SEM of 5 mice per group (left panel). Expansion and contraction were normalized, for each group, to values 
detected at day 7 (right panel). One representative experiment out of three is shown. (C) SSI- and QTF- specific IFNγ responses at 
days 5 and 6 post-infection. (D) SSI- and QTF- specific IFNγ responses at day 7 post-infection. (E) SSI- and QTF-specific IFNγ 
responses at day 13 post-infection. For statistical analysis two-tailed Mann Whitney test was used. *P<0.05. 
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Conversely, and despite the higher percentage of SSI-specific CD8+ T cells measured by dextramer staining (Fig. 

4.20 A), at day 7 p.i., corresponding to the peak of the expansion phase of CTL responses, a significant lower 

number of SSI- and QTF-specific IFN-secreting cells was observed in mice treated with Tat compared to the 

control group (Fig. 4.20 B-D). To try to solve this apparent contradiction, the expression of CD62L and IL-7 

receptor (CD127) was evaluated on SSI-specific effector T cells, since these markers define specific CD8+ 

subpopulations. In particular, during the expansion of CTL responses, the majority of antigen-specific CD8+ T 

cells are usually within the CD62L-CD127- subset, consistent with the effector phenotype, while a small subset of 

T cells retains the expression of CD62L and CD127 molecules resulting in a different pattern of cytokine 

secretion [280]. The results of these analyses showed that the largest population of SSI-specific CTLs consisted in 

CD62L-CD127- cells (not shown) in both groups, indicating that the lower number of IFNγ-secreting T cells in 

Tat-treated mice was not due to the unbalancement of effector cells subpopulations. It is likely that the robust 

expansion of HSV1-specific CD8+ T cells induced by Tat damps the cytokine release at the peak of the response, 

resembling the impaired functionality that follows hyperactivation of CD8+ T cells during chronic immune 

activation [71, 119, 281]. 

Finally, we analysed SSI- and QTF-specific CTL responses during the contraction phase. As shown in Fig. 4.20 B 

and E, a significant higher number of SSI- and QTF-specific CD8+ T cells secreting IFN was detected in the Tat-

treated group at day 13 p.i., demonstrating that Tat delays the contraction phase of the antiviral CTL response. 

Taken together, these data suggest that the presence of Tat at the time of priming results in primary CD8+ T cell 

responses that start earlier and last longer but have a lower intensity at the peak. 

 

4.2.3 Tat treatment does not contribute to the control of acute HSV1 infection 

Several studies demonstrate that helper and cytotoxic T lymphocytes are functionally important in response to 

infection with HSV [282]. In particular, CTLs are critical in limiting the number and severity of herpes lesions, 

promoting recovery from primary and recurrent infections [283, 284]. To determine whether the different CTL 

responses against HSV1 elicited in the presence or absence of Tat have an impact on the outcome of viral disease, 

HSV1-infected, control and Tat-treated, mice were monitored daily for the appearance of typical HSV1 clinical 

manifestations. Disease severity was measured using scores starting from no signs of infection (score 0), 

appearance of ruffled hair (score 1), appearance of cold sores on and around the vagina (score 2), appearance of 

paralysis of the back limbs (score 3) and mouse death (score 4). As shown in Fig. 4.21 A, the clinical 

manifestations were significantly more intense in Tat-treated mice between days 6 and 8 p.i., at the peak of the 
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expansion of the cellular responses, when the animals infected in the presence of Tat showed a lower magnitude 

of the antiviral responses. However, mice from the two groups showed the same probability of developing signs 

of disease (Fig. 4.21 B), suggesting that the prolonged expansion phase detected in mice treated with Tat can 

worsen acute HSV1 infection.  

 

Figure 4.21 Tat does not contribute to the control of HSV1 acute infection. Control and Tat-treated HSV1-infected 
C57/BL6 mice were checked daily for the appearance of disease signs. (A) Mean of disease scores of 20 mice per group is shown. 
For statistical analysis two-tailed Mann Whitney test was used. **P<0.01. (B) Probability of developing disease signs is shown for 
each group. Figure represents Kaplan-Meier estimation of the probability of clinical manifestations. For statistical analysis Log 
rank test was used. One representative experiment out of three is shown. 

 

4.2.4 Tat-mediated stimulatory effects involve only antigen-specific CD8+ T cells 

To investigate whether Tat treatment affects the whole CD8+ T cell compartment or only HSV1-specific CD8+ T 

lymphocytes, the number of the different lymphocytes subpopulations was evaluated in spleens of control and 

Tat-treated HSV1-infected mice at different time points after infection (Methods section 3.2.5). As shown in Fig. 

4.22 A, the number of CD8+ T cells was similar in the two groups during the whole course of the experiment. To 

exclude pro-apoptotic effects due to the Tat treatment that may hide proliferation of CD8+ T cells, the expression 
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of the pro-apoptotic Fas receptor (CD95) was measured on CD8+ T cells derived from control and Tat-treated 

mice, and no differences were detected between the two groups (Fig. 4.22 B). These data indicate that Tat favors 

the activation of antigen-primed CD8+ T cells, and exclude pro-apoptotic effects exerted by Tat on bystander 

CD8+ T cells. Some studies suggest that Tat is able to induce apoptosis in bystander B and CD4+ T cells [210, 211, 

217, 221, 285]. However, conflicting results have been reported by several groups, and both proliferative and 

pro-apoptotic effects have been ascribed to Tat (see section 1.6.3). Assessment of spleen composition revealed 

no differences at the level of CD4+ T cell numbers between the two groups (Fig. 4.22 C). Moreover, the 

CD4+/CD8+ratio was not modified by Tat treatment (data not shown). Of note, when measuring the numbers of B 

lymphocytes, a mild but significant loss of B cells in Tat-treated mice was observed as compared to the control 

group (Fig. 4.22 D). Interestingly, the effect was transient, lasted few days after Tat injection (day 4 and 6 p.i.) 

and quickly disappeared. However, reduction in the number of B cells is present early in HIV infection and 

persists in HAART [82, 286]. Altogether, these data demonstrate that Tat does not induce proliferation or 

apoptosis of bystander T lymphocytes but transiently affects B cell numbers. 

 

Figure 4.22 Tat does not activate bystander T cells. Control and Tat-treated HSV1-infected C57/BL6 mice were sacrificed at 
days 4, 6, 8, 10 and 13 post-infection. CD8+ (A), CD4+ (C) and B (D) lymphocytes numbers were measured by flow cytometry. Data 
are presented as mean ± SEM of 5 mice per group. For statistical analysis two-tailed Mann Whitney test was used. *P<0.05. One 
representative experiment out of three is shown. (B) CD95 expression was measured by flow cytometry on CD8+ T cells. One 
representative experiment out of five is shown. 
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4.2.5 Tat modulates the composition of the antigen-specific CD8+ T cell memory pool  

The differentiation of memory T cells is programmed during the early phases of the immune response [19]. Since 

our results indicate that Tat modulates the expansion and contraction phases of antigen-specific CTL responses, 

we evaluated whether Tat modifies the development of the memory CD8+ T cell pool. To this end, HSV1-infected 

control and Tat-treated mice were analysed 70 days p.i. for the presence of SSI-specific memory T cells. Data 

from dextramer staining (Fig. 4.23 A) and IFN-γ Elispot (not shown) showed that the numbers of epitope-specific 

CD8+ memory T cells were comparable among the two groups. The analysis of the phenotype of SSI-specific CD8+ 

T cells revealed a significant lower expression of CD62L (Fig. 4.23 B) in Tat-treated mice, indicating a larger 

population of HSV1-specific effector memory CD8+ T cells. 

 

Figure 4.23 Tat administered at the time of antigen-priming favors an effector memory phenotype. Control and Tat-
treated mice were infected with HSV1 wt (A and B) or with replicative-defective HSV1 (C and D) and sacrificed at days 70 post-
infection. (A and C) Percentage of SSI-specific CD8+ T cells detected by dextramer staining. (B and D) CD62L expression was 
measured by flow cytometry on SSI-specific CD8+ T cells. Data are presented as mean ± SEM of 5 mice per group. For statistical 
analysis two-tailed Mann Whitney test was used. *P<0.05. One representative experiment out of three is shown. 

 

To exclude that the effect of Tat on T cell memory phenotype was due to HSV1 reactivation, C57BL/6 mice were 

infected intravaginally with a replication-defective strain of HSV (S0ZgJGFP), that primes immune responses 
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without establishing latency, in the presence or absence of Tat. At day 70 p.i., the presence and the phenotype of 

SSI-specific memory T cells were determined in control and Tat-treated mice. As shown in Fig. 4.23 C, the 

percentage of SSI-specific CD8+ T cells was similar between the two groups, and SSI-specific CD8+ T cells from 

Tat-treated mice exhibited a significantly lower expression of CD62L (Fig. 4.23 D), indicating that the presence of 

Tat during priming favors the increase of CD8+ effector memory T cells.  

Taken together, these data show that the prolonged duration and the diminished magnitude of the effector phase 

observed when Tat is present at the time of priming favor an effector memory phenotype.  

 

4.2.6 Tat induces IgG class-switching in B cells without affecting the magnitude of antigen-specific 

humoral responses 

IFNγ secreted by T cells is known to skew switching patterns from IgG1 to IgG2a in responding B cells [287]. 

Thus, as Tat prolongs IFNγ secretion and up-regulates T-bet expression, also involved in Th1 lineage 

commitment, we analysed whether the presence of Tat at the time of priming induces changes in the Th1/Th2 

IgG balance (Methods section 3.2.6). As reported in Fig. 4.24 A, at day 20 p.i., Tat-treated animals showed a 

prevalent anti-HSV1 IgG2a response with titers higher than IgG1 suggesting a Th1 pattern of response, whereas 

the control group showed a balanced anti-HSV1 Th1/Th2 pattern (similar levels of anti-HSV1 IgG1 and IgG2a). 

The predominant induction of antibodies associated to a Th1 response in Tat-treated mice was still evident 70 

days after the infection (Fig. 4.24 A), while control mice showed a prevalence of a Th2 pattern (higher titers of 

IgG1). These data further demonstrate that the presence of Tat at the time of priming induces a Th1-type 

response [149, 193, 288]. 

 

Figure 4.24 Tat administered at the time of antigen-priming favors a Th1 profile of the humoral response. Blood 
samples from control and Tat-treated HSV1-infected mice were collected and the presence of anti-HSV1 antibodies was detected 
by ELISA assay. (A) Anti-HSV1 IgG1 and IgG2a were measured at days 20 (left) and 70 (right) post-infection. (B) Total anti-HSV1 
IgG were measured at days 20 (left) and 70 (right) post-infection. Data are presented as mean ± SEM of 5 mice per group. For 
statistical analysis two-tailed Mann Whitney test was used. *P<0.05. One representative experiment out of three is shown. 
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To investigate whether Tat modifies the magnitude of the antiviral humoral response, we determined anti-HSV1 

antibody titers in sera from Tat-treated and control HSV1-infected mice. Specifically, mice sera collected at 20 

and 70 days p.i. were tested for the presence of anti-HSV1 specific IgM (day 20 p.i.) and IgG (day 20 and 70 p.i.). 

No significant differences were detected among the two groups at both time points, for IgG (Fig. 4.24 B) nor for 

IgM (not shown). 

Thus, Tat modulates the quality of the anti-viral humoral response without affecting its magnitude. 

 

4.3 Role of anti-Tat humoral immunity 

 

4.3.1 Frequency of anti-Tat humoral responses and correlation with CD4+ count 

 

The results presented in chapters 4.1 and 4.2 demonstrate a key role of Tat in contributing to immune activation 

and immune dysfunctions, suggesting that anti-Tat immunity should protect from deleterious effects exerted by 

Tat. Consistently, a protective role exerted by anti-Tat humoral immunity has been demonstrated. In particular, 

anti-Tat antibodies are more frequently found in nonprogressors [247] and protect HIV-infected subjects from 

CD4+ decline [248, 249]. 

Anti-Tat natural immunity is present only in a fraction of HIV-positive subjects, although frequencies of anti-Tat 

IgG and IgM vary depending on the cohort [249, 250]. As the majority of these studies were usually performed in 

subjects infected with clade B HIV, we sought to determine the role of anti-Tat antibodies in an African cohort 

composed of individuals infected with non-clade B forms of HIV. To this aim, sera were collected from HIV-

positive volunteers enrolled in Mbeya, Tanzania, a region where subtype C appears to be the prevalent subtype 

(prevalence > 40%), followed by a high proportion of intersubtype recombinants, while type B infections are 

almost absent; among recombinants, more than 85% contained subtype C sequences in their genome [289-291]. 

The study population consisted of 96 HAART-naïve chronically HIV-1-infected subjects (Table 4.1), and sera 

collection occurred at least 14 months after the infection.  

 Median Range 

Age (year) 36 20-61 

CD4+ count (cells/µl) 402 64-1301 

Female (%) 61% - 

Male (%) 39% - 

Table 4.1Characteristics of study participants 
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Sera were tested in ELISA assays to assess the presence and the titer of IgA, IgG, IgM against Tat B and C 

(Methods section 3.3.2). As shown in Fig. 4.25, of the 96 subjects, 15 (16%) were anti-Tat IgA (B and/or C) 

positive, 49 (51%) anti-Tat IgM (B and/or C) positive and 44 (46%) anti-Tat IgG (B and/or C) positive. 

 

Figure 4.25 Frequencies of anti-Tat humoral responses. Sera from study participants were tested in ELISA assay to look for 
anti-Tat IgA, IgM or IgG. 

 

To assess the impact of the presence of anti-Tat antibodies on CD4+ count, we then evaluated the frequencies of 

the different anti-Tat antibodies in subjects with high or low CD4+ counts (less or more than 350 CD4+ T cells/µl). 

Anti-Tat IgG were present almost at the same frequency in the two groups, while a significant higher prevalence 

of anti-Tat IgM was detected in individuals with CD4+ counts greater than 350 cells/µl compared to subjects with 

low CD4+ counts (p=0.02). Unexpectedly, subjects with low CD4+ counts exhibited a higher frequency of anti-Tat 

IgA compared to patients with counts > 350, although the result did not reached statistical significance (Table 

4.2). 

CD4+ count 

(cells/µl) 

Anti-Tat IgA 

(percentage) p value 

Anti-Tat IgM 

(percentage) p value 

Anti-Tat IgG 

(percentage) p value 

<350 22% 
0.16 

37% 
0.02 

49% 
0.68 

>350 11% 61% 43% 
Table 4.2 Association between anti-Tat immunity and CD4+counts. Cross-sectional assessment of serum IgA, IgM and IgG 
anti-Tat antibodies in HIV-infected patients with different CD4+counts. For statistical analysis Fisher’s exact test was used. 

 

To better understand the association of the different anti-Tat antibodies classes with CD4+counts, individuals 

were stratified according to the presence of one (IgA, IgM or IgG) or multiple anti-Tat antibody classes. 
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Figure 4.26 Anti-Tat humoral responses and CD4+counts. HIV-infected patients were divided according the quality of anti-
Tat antibodies. For every group, the mean CD4+count ± SEM was calculated. For statistical analysis two-tailed Mann Whitney test 
was used. 

 

As shown in Fig. 4.26, subjects with only anti-Tat IgM (21% of the total) displayed a significant higher CD4+ count 

(559 cells/µl) compared to anti-Tat naïve individuals (26% of the total, 391 cells/µl, p=0.05). The simultaneous 

presence of anti-Tat IgM and IgG was also associated with high CD4+ counts (526 cells/µl), although the 

comparison with the anti-Tat naïve group did not reach statistical significance (p=0.075). Furthermore, subjects 

with only IgM or with IgM and IgG exhibited CD4+ counts significantly higher than individuals possessing anti-

Tat IgA and IgG (234 cells/µl), suggesting that the onset of anti-Tat IgA correlates with low CD4+counts.  

These results suggest that anti-Tat IgM may protect from CD4+ T cells loss. 

 

4.3.2 Antibody cross-recognition of clade B and C Tat protein in HIV-1–infected Tanzanian subjects 

The IgG epitopes of the Tat protein are highly conserved among different HIV clades [175, 176], as demonstrated 

by the cross-recognition of a clade B Tat protein by individuals infected with different viral strains [178, 184]. 
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However, these analysis are often based exclusively on IgG, and do not take into consideration other antibody 

isotypes. Thus, to assess the ability of anti-Tat IgA, IgM and IgG from HIV-infected patients to cross-react with 

different Tat variants, anti-Tat B and C humoral immunity was evaluated in every subject. Thus, subjects with 

anti-Tat Abs were stratified according to their ability to recognize exclusively Tat B, exclusively Tat C or both 

clade B and C Tat. As shown in Fig. 4.27, 54% of individuals with anti-Tat IgA was able to cross-recognize both 

clade B and clade C Tat, while 33% and 13% of subjects recognized only clade C and B Tat respectively. Similar 

proportions were observed among individuals with anti-Tat IgG. Interestingly, 76% of individuals with anti-Tat 

IgM was able to cross-recognize both clade B and clade C Tat, while 20% and 4% of subjects recognized only 

clade C and B Tat respectively, indicating that IgM display the highest capacity to cross-recognize Tat of different 

clades. Taken together, these data demonstrate that a high proportion of anti-Tat responders may recognize 

different Tat forms, suggesting that Tat B cell-epitopes are conserved among different HIV clades. The 

contribution of the different anti-Tat antibody classes to the protection from immune activation and 

unbalancement of CD8+ and CD4+ T cell subsets is now under investigation. 

 

 

Figure 4.27 Cross-clade recognition capacity of the different anti-Tat antibodies. Sera from HIV-infected individuals were 
assessed for their capacity to recognize clade B or clade C Tat. The percentage of individuals able to recognize only B Tat, only C 
Tat or both B and C Tat is displayed for every antibody class. 
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5 Discussion 

 

The HIV-1 Tat protein is fundamental for viral fitness [151, 165] and contributes on different levels to disease 

progression [82, 147, 165, 204]. Anti-Tat antibodies are more frequent in the asymptomatic stage of the infection 

and in nonprogressors [245, 247, 249], and their induction by Tat immunization in HIV-infected patients 

reverses signs of immune activation and T cell dysfunctions [259]. Tat, released by infected cells, efficiently 

enters uninfected cells and induces integrin-mediated signals [147-149], resulting in the activation and 

modulation of several cellular functions in CD4+ T lymphocytes [151, 160, 165, 192, 204, 205, 208, 292], 

including the induction of IL-2 secretion [165, 205, 238], suggesting that Tat may play an important role in the 

chronic immune activation present during the HIV infection. However, whether Tat can, directly or indirectly, 

modulate the CD8+ T cell response is unclear. 

 

5.1 Effects of the HIV-1 Tat protein on CD8+ and CD4+ T cell programming 

 

In this part of the study we examined the effects of Tat on CD8+ T cells. We demonstrated that CD8+ T cells 

activated in the presence of Tat exhibited an increased IL-2 release (Fig. 4.3). Several mechanisms may account 

for this effect as it has been reported that Tat favors the activation of some TFs required for IL-2 transcription like 

NF-κB, recruited by Akt [165, 204], NFAT [235, 293] and AP-1, activated by Tat through the the ERK pathway 

[234, 294]. Moreover, Tat superinduces factors binding to the CD28-responsive element (CD28RE), a DNA element 

mediating IL-2 gene activation by CD28 costimulation [165, 204].  

Naïve and memory CD8+ T cells activated in vitro by TCR engagement (different CD8 peptide epitopes and anti-

CD3/CD28 stimulation) in the presence of Tat exhibited an increased activation as detected by cytokine release 

and cytotoxic assay (Figures 4.1-4.2), however the proliferation and phenotype of CD8+ T cells were not affected 

by the presence of Tat (Figures 4.9-4.11). Notably, CD8+ T cells activated in the presence of Tat showed an 

increased mRNA level of T-bet and Eomes (Figures 4.4-4.6). The modulation of the transcriptional profile of CD8+ 

T cells by Tat requires the help of CD4+ T cells, which also exhibited, when activated in the presence of Tat, an 

increased level of T-bet transcription, but not of Eomes (Fig. 4.7). Moreover, Tat-mediated enhancement of T-bet 

mRNA levels in CD8+ T cells was observed only after activation, while Eomes up-regulation by Tat occurred also 
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in resting CD8+ T cells (Fig. 4.8), suggesting two different mechanisms of action exerted by Tat to modulate the 

expression of these TFs (Fig. 5.1). 

 

 

Figure 5.1 Clade B and C Tat-mediated modulation of CD8+ and CD4+ T cells transcriptional profile 

 

We observed that the Tat-mediated up-regulation of T-bet was abolished by integrin blocking, suggesting that the 

RGD domain of Tat and its interaction with αvβ3 and α5β1 integrins are necessary for this effect. Interestingly, it is 

known that Tat mediates the activation of the ERK/MAPK and PI3K/Akt pathways through its RGD domain [236, 

295]. As both ERK and Akt are involved in T-bet induction [30, 296, 297], it plausible to think that Tat triggers these 

pathways to mediate T-bet up-regulation. Moreover, the ERK pathway is also involved in Eomes up-regulation [298].  

Naïve and memory CD8+ T cells activated by peptide epitopes in the presence of Tat exhibited a greater IFNγ 

release and lysis of target cells. Of note, the effect was abolished when Tat was added after the stimulation (Fig. 

4.2), suggesting that Tat favors the expansion and the functionality of effectors cells only if present at the 

beginning of the stimulation. It is tempting to speculate that Tat potentiates the production of cytokines and 

cytolytic molecules through the induction of T-bet and Eomes (Fig. 4.6). Indeed, T-bet and Eomes control the 

transcription of IFNγ, perforins and granzymes in CD8+ T cells, and the cytotoxic potential of CTLs lacking one or 

both these TFs is greatly reduced [32, 299, 300]. In contrast to the Tat-mediated enhancement of IFNγ release after 

CEF stimulation, CD8+ T cells activated by anti-CD3/CD28 in the presence of Tat did not exhibited an increased IFNγ 

production, proliferation, nor an up-regulation of surface activation markers. This is consistent with literature data 

showing that T-bet deficiency does not affect secretory capacity, proliferation and phenotype of CD8+ T cells activated 

with anti-CD3/CD28, while T-bet-deficient CD8+ T cells fail to acquire effector phenotype and functionality after 

peptide stimulation [301]. Thus, the control of T-bet and Eomes on T cell functions is strictly dependent on the quality 
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of the stimulus. Moreover, Eomes up-regulation cannot mediate IFNγ release after anti-CD3/CD28 stimulation as it is 

known to induce IFNγ only late after clonal expansion and not at short time (i.e. 18 hours) after T cell activation [32, 

299, 300]. 

In contrast to CD8+ T cells, CD4+ T cells activated by anti-CD3/CD28 in the presence of Tat exhibited an enhanced 

secretion of IFNγ (Fig. 4.14). Several reports show that T-bet controls in a different way IFNγ production by CD4+ and 

CD8+ T cells [32, 301, 302], and this may explain the different association between T-bet expression and IFNγ 

secretion in CD4+ and CD8+ T cells activated by anti-CD3/CD28 in the presence of Tat.  

Thus, our data provide evidence that Tat favors the activation of CD4+ T cells by the up-regulation of T-bet and of 

CD8+ T cells through the cooperation of T-bet and Eomes, suggesting its potential contribution to immune 

activation during the course of HIV infection. Moreover, as T-bet is also involved in Th1 development, these data 

further demonstrate that the presence of Tat favors Th1-type responses [149, 193, 288].  

To understand whether clade B and clade C Tat exerted the same effects on T cell activation, these two forms of 

Tat were compared for their capacity to modulate cytokines secretion and transcriptional profile in CD8+ and 

CD4+ T cells. Our results show that both clade C and clade B Tat enhance T cell activation. However, clade C Tat-

mediated effects occurred earlier but at doses 100 times higher than clade B Tat-mediated effects. Moreover the 

analysis of the T-bet and Eomes expression suggested that clade C Tat altered more deeply the transcriptional 

profile of CD4+ T cells, while B and C Tat exerted the same effects on CD8+ T cells. Indeed, clade C Tat up-

regulated both T-bet and Eomes in activated CD4+ T cells, while clade B Tat only increased T-bet expression in 

activated CD4+ T cells (Fig. 5.1). This suggests that clade C Tat contributes, more than clade B Tat, to the 

hyperactivation of CD4+ T cells. Whether B and C Tat trigger the same intercellular pathways has still to be 

elucidated, although it is known that differences between the two Tat forms at the level of the cysteine rich 

domain and of the RGD domain (necessary for integrin binding) result in a different modulation of monocytes 

functionality [174, 179, 303]. However, our results show that clade B and C Tat act in a different dose-dependent 

and time-dependent manners, suggesting the involvement of alternative cellular signalling. Further studies are 

currently on-going to enlarge the number of samples and to investigate the mechanisms of action. 

Studies describing the modulation of T-bet and Eomes expression on the whole T cells compartment during the 

course of HIV infection are missing, as the few reports available focus on HIV-specific CD8+ T cells [80, 81]. As 

our model takes into consideration the effects of Tat on the transcriptional profile of CD8+ and CD4+ T cells 

irrespectively to their antigen-specificity, results reported here suggest that the HIV infection may, through the 

release of Tat [145, 146, 155, 186], affect T-bet and Eomes expression in the whole T cell compartment. The 
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alteration of T cell transcriptional profile, in the context of a chronic infection as HIV, may result in a deep and 

long-lasting modulation of CD8+ and CD4+ T cells responses. Indeed, it is has been reported that Eomes is usually 

up-regulated in exhausted CD8+ T cells during chronic infections [304], suggesting also a Tat-mediated 

contribution to the exhaustion of CD8+ T cells during HIV infection [305]. 

 

5.2 Tat-mediated modulation of viral-specific cellular and humoral responses 

 

Our results demonstrate that Tat activates CD8+ T cells and affects the transcriptional profile of resting and 

activated T lymphocytes. Moreover, it is known that Tat modulates the functionality of CD4+ T lymphocytes [151, 

160, 165, 192, 204, 205, 208, 292] and professional APCs [148, 149]. Thus, it is reasonable to think that Tat may 

affect in vivo the development of cellular responses, thus contributing to the immune impairment observed 

during HIV infection. To characterize the role of Tat in T cell hyperactivation and dysfunction, we examined 

whether the presence of Tat could affect CD8+ T cell responses and antiviral immunity in different in vivo models 

of antigenic stimulation including a viral antigen and a viral infection i.e. HSV that is common in HIV infection. 

The presence of Tat during in vivo priming by the HIV-1 Gag protein and by infection with HSV1, favored the 

activation of antigen-specific CTLs (Figures 4.19-4.20), but no effect was detected on bystander resting T cells 

(Fig. 4.22). Effector CD8+ T cells generated in vivo in the presence of Tat underwent an enhanced and prolonged 

expansion that turned to a partial dysfunctionality at the peak of the response (Fig. 4.20), that worsened acute 

infection (Fig. 4.21). Moreover, Tat-mediated T cell activation favored the development of effector memory CD8+ 

T cells (Fig. 4.23) and a Th1 pattern of humoral response (Fig. 4.24). 

The Tat-mediated enhanced expansion of CTLs (Figures. 4.19-4.20) may be due to several mechanisms. It has 

been demonstrated that the magnitude of the expansion of CD8+ T cells is related to events occurring in the first 

24 hours after antigenic stimulation [21, 306], and expansion requires TCR engagement (signal 1), co-

stimulation (signal 2) and a pro-inflammatory environment (signal 3) [307]. Tat is known to affect all these 

signalling pathways. Indeed, Tat modulates antigen processing and improves the expression of certain 

epitope/MHC-I complexes on the surface of APCs leading to an increased stimulation of epitope-specific CD8+ T 

cells (Signal 1) [148, 149, 192, 193, 196]. Moreover, it has been demonstrated that Tat activates NF-κB [204, 237, 

308], T-bet and Eomes (Figures 4.4, 4.6 and 4.7), three transcription factors critical for the stimulation and the 

expansion of T lymphocytes [309]. In addition, Tat modulates signal 2 enhancing CD28-mediated stimulation 

[165], CD40 expression [148, 149], IL-2 production [165, 204, 205] and DC maturation and activation [148, 149]. 
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Finally, Tat is known to increase secretion of IL-12 by DCs [148, 149], IFNα by macrophages [201] and of other 

pro-inflammatory cytokines [208, 310] contributing to the type 3 signal.  

The results also demonstrate that antigen-specifc CTLs primed in the presence of Tat began secreting IFNγ at 

earlier time after HSV1 infection (Fig. 4.20 C). However, at the peak of the response, while dextramer staining 

indicated the presence of more effector cells in Tat-treated mice (Fig. 4.20 A), IFNγ Elispot analysis revealed the 

presence of a lower fraction of functional antigen-specific CD8+ T cells (Fig. 4.20 B and D). Nevertheless, epitope-

specific T cells were not completely exhausted, as demonstrated by the lack of PD1 up-regulation (not shown) 

and their recovery during the contraction and memory phases (Figures 4.20 E and 4.23 A). This dysfunctional 

status, defined as “stunning” [311], has been described in the presence of excessive stimulation [279, 311-313] 

and coincided with a transient lower control of infection (Fig. 4.21 A). The presence of a high percentage of 

antigen-specific T cells not secreting IFNγ has been described in several infections [69, 278, 279, 314-319]. In the 

case of HIV, the majority of reports show that the IFNγ secreting CTLs are about the 10-30% of tetramers-

specific CD8+ T cells [315, 317-319]. The different sensitivity of the techniques cannot explain completely the 

discordance between IFNγ and tetramers analysis, that has been described as an impaired functionality of CD8+ 

T cells during HIV infection [69, 71, 320, 321]. Indeed, in HIV-positive patients the loss of IFNγ secretion can be 

observed also in CTLs specific for other pathogens [69, 316], as immune activation leads the whole T cell 

compartment to dysfunction, irrespectively to antigen-specificity [82]. Our data indicated that only about 30% of 

epitope-specific CD8+ T cells secretes IFNγ at the peak of the response in Tat-treated mice, while almost all 

antigen-specific CTLs are fully functional in the control groups (Table 5.1), reflecting the impairment of 

functionality observed in CD8+ T cells from HIV-infected subjects.  

 

Percentage of Dextramer+ Cells Detected by Elispot 

Group Peak (%) Contraction (%) 

control 92.7 ± 13.2 50.9 ± 8.5 

Tat 33.3 ± 12.5 37.1 ± 12.7 

Table 5.1 Percentage of Dextramer+ Cells Detected by Elispot. Proportion of SSI-specific cells/million splenocytes, as 
detected by dextramer staining, secreting IFNγ in response to SSI stimulation, as detected by Elispot, at days 8 (peak) and 13 
(contraction) post-infection 

 

Although the stunned phenotype of HSV1-specifc CTLs was still evident in Tat-treated mice at day 13 p.i. (Table 

5.1), the kinetics of antigen specific CD8+ T cell responses (Fig. 4.20 A) revealed that Tat-treated mice exhibited a 
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delayed contraction of IFNγ-secreting cells as compared to the control group. It is thus plausible that IFNγ-

secreting cells developed in the presence of Tat are less susceptible to death during the contraction phase. An 

increased survival of effectors T cells during the contraction phase has been attributed to the interaction among 

CD80 or CD86 expressed on DCs with CD28 expressed on the T cells [22], to Bcl-2 expression [21] and to IL-2 co-

stimulation [22, 23]. As Tat is known to induce DC activation and expression of CD80 and CD86 [148, 149], to 

directly enhance CD28 co-stimulation [165], to up-regulate Bcl-2 expression [160, 322] and to promote IL-2 

secretion [150, 165, 205, 323], it is tempting to speculate that these different Tat-mediated mechanisms are 

involved in the delayed contraction phase occurring in Tat-treated mice. Moreover, as IL-2 favors the generation 

of CD62Llow effector memory cells [324], Tat-mediated IL-2 secretion can account for the accumulation of 

effector memory CD8+ T cells observed in Tat-treated mice (Fig. 4.23). Thus, the study of the kinetics of CTL 

responses in Tat-treated mice reveals that Tat prolongs the activation of CD8+ T cells, and this further supports a 

role of Tat in immune activation that turns to be deleterious for HIV-infected individuals. Indeed, despite the 

longer expansion phase and the delayed contraction, Tat-treated mice were unable to control the acute HSV1 

infection better than control mice. Moreover, the Tat–mediated hyperactivation of CTLs promoted the 

accumulation of effector memory CD8+ T cells, a phenotype found at high frequencies in HIV-infected individuals 

[68, 325, 326], and reverted in HAART-treated patients by immunization with Tat [259]. 

Finally, we observed, for the first time in an in vivo model, a Tat-mediated transient loss of B cells. A role of Tat in 

B cell apoptosis has already been proposed [210-212], and B cell loss is present in HIV-infected subjects even 

under a suppressive HAART [82, 286], and it is reverted by induction of anti-Tat antibodies in HAART-

immunized subjects [259]. This suggests that Tat may, directly or indirectly, contribute to the death of B 

lymphocytes in HIV-positive patients. Characterization of HSV1-specific humoral responses revealed also a Tat-

mediated modulation of Th1/Th2 antibody pattern in absence of any effect on the magnitude of IgG and IgM 

responses (Fig. 4.24), maybe due to the prolonged IFNγ release observed in Tat-treated mice and to the T-bet up-

regulation [287]. These observations further confirm that Tat induces a predominant Th1-type adaptive immune 

response [149, 193, 288]. 

In conclusion, the results of this study indicate that Tat modulates CD8+ T cells activation and functionality 

resulting in a CTL response that starts earlier and lasts longer, but with a lower intensity at its peak. We propose 

a model by which a Tat-mediated enhancement of CTL activation and proliferation turns to be loss of 

functionality and accumulation of effector memory CD8+ T cells. The Tat protein of HIV is known to exit infected 

cells [145, 146, 155] and exert immunomodulatory effects in both non-infected and non HIV-specific T cells 
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[147-149, 160, 192, 193, 208, 292]. It is interesting to note that several Tat-mediated effects like the activation of 

DCs [148, 149], CD4+ [165, 204] and CD8+ T cells, the induction of an effector memory phenotype and the loss of 

B cells, as reported here, are hallmarks of the chronic immune activation observed in HIV-infected patients [68, 

82, 96, 286, 321, 325-327]. Although further studies are needed to better characterize these effects and the 

molecular pathways involved, we propose a key role of Tat in progression to AIDS contributing to immune 

activation and T cell dysfunctions.  

 

5.3 Role of anti-Tat humoral immunity 

 

The Tat protein of HIV-1, in addition to play a key role in the life cycle of the virus, is involved in several aspects 

of pathogenesis like CD4+T cell loss, dementia and Kaposi Sarcoma, as discussed elsewhere in this thesis. 

Furthermore, the results presented in this study suggest that Tat may play a key role in immune activation and 

immune dysfunctions during HIV infection. Consistent with this, it has been demonstrated that anti-Tat humoral 

and cellular responses protect HIV-infected patients from progression to AIDS and restore immune functions  

[247, 250, 251, 259, 328]. Anti-Tat antibodies are present only in a fraction of HIV positive subjects [249, 250], 

but they are more frequently found in nonprogressors [197, 247], suggesting that the induction of anti-Tat 

humoral response may be a suitable strategy for preventive and therapeutic vaccines against HIV. Recent data 

from other vaccine trials (RV144) have enlightened the concept that different antibody isotypes may influence 

the level of vaccine efficacy and interfere with vaccination protective mechanisms [136]. As studies correlating 

anti-Tat humoral immunity and disease progression usually focus on IgG, and little is known about the 

prevalence of anti-Tat IgA and IgM and their interplay in HIV control, we sought to determine the frequency of 

anti-Tat IgA, IgM and IgG through a cross-sectional study performed in a cohort of HAART-naïve HIV-infected 

subjects in south east Tanzania. Anti-Tat IgM and IgG showed a similar prevalence (around 50%), while anti-Tat 

IgA were present in about 15% of subjects (Fig. 4.25). Data from other cohorts show conflicting results about the 

frequencies of anti-Tat IgG responses, as their prevalence varies in a range between 10 % [184, 245, 249] up to 

80% or more [250, 329]. These variations may reflect differences both at the level of the cohort or of the assays 

sensitivity. However, prevalence data about anti-Tat IgA and IgM are more rare in literature and determined for 

the first time in an African cohort by this study. 

Our results demonstrate a higher prevalence of anti-Tat IgM in HIV-positive individuals with CD4+counts > 350 

cells/µl (Table 4.2 and Fig.4.26), suggesting a protective role of anti-Tat IgM. Consistently, data from European 
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and American cohorts show higher frequencies of anti-Tat IgM in individuals with high CD4+ counts or in the 

asymptomatic stage of the disease [245, 246]. Thus it is tempting to speculate that the association among the 

presence of anti-Tat IgM and high CD4+ counts is constant among subjects infected with different HIV strains. Of 

note, anti-Tat IgM displayed a very high cross-clade recognition capacity (Fig. 4.27). 

No significant differences regarding anti-Tat IgG prevalence were detected among patients with high or low CD4+ 

counts, although it has been shown that anti-Tat IgG protect from CD4+ decline in African [248] and European 

[249] cohorts. However, HIV-positive patients which possessed both anti-Tat IgG and IgM showed CD4+ counts 

significantly higher than individuals with both anti-Tat IgG and IgA. This suggests a complex interplay among 

different antibodies isotypes, as anti-Tat IgA seem to appear in late stages of disease and to interfere with the 

protective capacity of the other anti-Tat antibodies, a phenomenon already observed in other contexts [136]. 

The development of a vaccine against HIV should face the problem of sequence differences among the several 

HIV-subtypes, in order to induce antibodies that react with a broad range of HIV strains. The Tat protein has 

been shown to conserve B cell immunogenic regions among different HIV clades [182, 183, 252] and anti-Tat 

antibodies elicited against one particular Tat clade may recognize Tat from different HIV subtypes [176, 330]. In 

accordance, our data demonstrate that about the half of patients with anti-Tat IgG or IgA were able to recognize 

both clade B anc C Tat, and this percentage reached 75% for anti-Tat IgM.  

Although not all Tat variants are equally recognized by sera collected from people infected with different HIV 

strains [176, 330], it has been reported that clade B Tat may be efficiently cross-recognized by anti-Tat 

antibodies from African individuals infected with different HIV subtypes [176, 178, 184]. Our data show a high 

proportion of individuals with anti-Tat antibodies were able to recognize clade B Tat, with percentages ranging 

from 67% to 80% depending by the antibodies isotypes. Moreover, 13% of anti-Tat IgA positive subjects, 4% of 

IgM positive subjects and 20% of IgG positive subjects recognized clade B but not clade C Tat. Although we did 

not characterize the HIV subtypes in our cohort, it is known that, in the Mbeya District, the vast majority of 

individuals are infected with clade C HIV-1 or with recombinants forms containing type C sequences, while 

subtype B is almost absent, suggesting that a clade B Tat-based vaccine could induce cross-clade reactive 

antibodies in non type B HIV-1-infected individuals. Clade B Tat is now the antigen of a vaccine undergoing phase 

two clinical trial in Italy and South Africa and of a phase one study based on the co-administration of Tat and 

Env.  
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6 Conclusions 

 

6.1 Implications for HIV pathogenesis 
 

In this study we demonstrate, through the use of different in vitro and in vivo models, that the Tat protein of HIV-

1 deeply alters the CD8+ T cell response and the antiviral immunity. Indeed, Tat affects the transcriptional profile 

and functionality of CD8+ T cells and hyperactivates T lymphocytes with deleterious effects on the control of 

acute infections. T cell hyperactivation is an hallmark of HIV infection whose causes are still unknown. Our 

results suggest a model by which Tat, released by HIV-infected cells, contributes to immune activation and 

immune dysfunctions during the course of HIV infection, affecting the functionality and the transcriptional 

profile of uninfected cells. Notably, these effects are mediated by Tat from different HIV subtypes, although our 

data suggest differences in the mechanism of action that have still to be elucidated but may account for the 

different pathogenicity among HIV clades. Consistently with a deleterious effect of Tat on the immune system of 

HIV-infected individuals, a cross-sectional study conducted on HIV-infected subjects revealed that anti-Tat IgM 

were more frequent in patients with high CD4+counts suggesting, along with several other reports, that anti-Tat 

immunity is important to control disease progression. Interestingly, the Tat T cell and B cell epitopes have been 

shown to be conserved among different HIV subtypes, and our data demonstrated that clade B Tat may be 

efficiently recognized by antibodies from non-B HIV infected individuals, suggesting its use to induce anti-Tat 

immune responses. 

Thus, our data provide new insights regarding the causes of immune activation and underscore the importance 

of addressing anti-Tat immunity in future preventive and therapeutic approaches aimed at HIV control and cure.  

 

6.2 Implications for vaccines design 
 

The immunomodulatory capacity displayed by Tat may be exploited to increase immune responses directed to 

poorly immunogenic vaccine antigens. Indeed, we demonstrated here that the co-administration of Tat with the 

Gag protein of HIV-1 dramatically increased Gag immunogenicity (Fig. 4.19) favoring CD8+ and CD4+ T cells 

responses not elicited by immunization with Gag alone. Moreover, it has been demonstrated that Tat broadens T 

cell responses to co-antigens [192, 193] and favors the induction of Th1-type responses [148, 149], suggesting 

its use as adjuvant in vaccination strategies. During last years this hypothesis has been explored through a model 
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of low antigenic stimulation (to avoid the Tat-mediated overstimulation observed with wild-type HSV1 infection) 

and constant Tat expression using a recombinant attenuated replication-competent Herpes simplex virus type 1 

expressing the HIV1 Tat protein (HSV1-Tat). Assessment of HSV1-specific T cell responses in C57BL/6 mice 

immunized intravaginally with HSV1-Tat revealed significant higher IFN-γ responses compared to mice 

immunized with a control virus (HSV1-LacZ). Analysis of HSV1-specific humoral responses in sera from HSV1-

Tat or HSV1-LacZ-immunized mice revealed that HSV1-specific IgG titers were detected in few mice infected 

intravaginally with HSV1-Tat but never in mice infected with HSV1-LacZ. Furthermore, the IgG isotype was 

analyzed and the reported results demonstrate the presence of IgG2a but not of IgG1 antibodies indicating a 

Th1-type immune response. Finally, mice were challenged with a lethal dose of wild-type HSV1. All animals 

treated intravaginally with HSV1-LacZ progressively developed severe HSV1 disease and died, while mice 

treated with HSV1-Tat presented a mild and transient disease and all of them survived to the viral challenge. 

Taken together, these results demonstrate that the intravaginal immunization of mice with a recombinant HSV1 

vector expressing Tat induces stronger HSV1-specific cellular and humoral responses compared to the infection 

with a recombinant HSV1 control vector and protect from challenge with lethal doses of wt HSV1 (Sicurella et al, 

submitted). Thus, Tat effects on T cell activation may be finely modulated to enhance vaccines efficacy. 
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