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1 Introduction   1 

1 Introduction 
 

1.1 Dealing with the energy problem 
 

The sustainable transformation, storage and allocation of energy is one of the major issues of 

our time. The scarcity of fossil fuel and the current drawbacks of alternative energy sources 

drive the search for increased energy-usage efficiency. Great potential unfolds from the usage 

of waste heat. Although this has been done for many years in industrial processes, e.g. by 

recuperative heat exchangers, the development of highly efficient thermoelectric materials 

yields many new possible applications (Chapter 1.2). Due to the direct conversion of heat to 

electricity, thermoelectric materials are especially suited for non-stationary waste-heat 

recovery.  

Great energy-saving potential has already been unleashed in the illumination sector (Chapter 

1.3). New concepts for the conversion of energy to visible light, e.g. phosphor-converted 

light-emitting diodes (pc-LEDs), result in dramatically increased efficiencies. The 

comprehensive structural characterization of the luminescent oxonitridosilicates 

Sr1-xBaxSi2O2N2:Eu2+ made it possible to reveal unknown compounds as well as the real-

structure effects present, which leads to an advanced understanding of the luminescence 

properties (Chapter 5).  

In thermoelectric materials, real-structure phenomena often have a strong impact on the 

thermoelectric performance, especially on the phononic contribution to thermal conductivity 

(κph). In germanium antimony telluride (GST) based materials and structurally related 

tellurides, phase transitions can be used to introduce nanostructures whose extent depends on 

thermal treatment and composition (Chapters 2 and 3). Therefore, the profound understanding 

of the structural chemistry is the basis of specifically influencing thermoelectric properties by 

substitutions and thermal treatment. 

Both the systematic development of new compounds for pc-LEDs and the improvement of 

thermoelectric materials are model cases of the fact that the detailed understanding of 

structural features is important for the explanation of properties. In both fields of research, the 

correlation between the nanostructure and the properties has received growing attention in 

recent years as the improvement of analytical methods resulted in significantly higher 

accuracy of real-structure determination. Electron microscopy is ideally suited for the analysis 

of most real-structure phenomena. It enables the direct observation of individual domains and 
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defects with atomic resolution and the determination of the degree of disorder with high 

spatial resolution. Statistical information about the frequency of occurrence of such 

phenomena can be obtained by evaluating the diffuse intensities present in X-ray diffraction 

patterns. The combination of electron and synchrotron X-ray methods enables the structure 

elucidation of microcrystalline materials with low scattering power (Chapter 4). The long-

term objective is the development of real-structure property relationships that allow a 

systematic optimization of thermoelectric or luminescent materials. 

 

1.2 Thermoelectrics 
 

Thermoelectric generators (TEG) enable the direct conversion of heat that is present at 

temperature gradients into electricity. The efficiency of this conversion process is determined 

by the individual thermoelectric figures of merit (ZT) of the p- and n- doped semiconductors 

of which the TEG is composed. The ZT value describes the thermoelectric efficiency and is 

determined by the Seebeck coefficient (S), which is the material property that describes the 

magnitude of the voltage induced by a thermal gradient across a material, as well as the 

electrical conductivity (σ) and the thermal conductivity (к): ZT = S2 · σ · T · к-1.[1,2] According 

to the Wiedeman-Franz law, σ is linked with the electronic contribution to the lattice thermal 

conductivity  (κe) by the heat transport of the electrons. Both properties are also correlated 

with S since they all depend on the charge-carrier concentration. Therefore, recent approaches 

to optimizing the ZT values tend to focus on reducing the κph, which is the only property that 

can be changed, to a certain extend, without altering the electronic properties.[3,4] The reduced 

phonon proliferation is often realized by nanostructuring, e.g. introduction of nanoscale 

precipitates and grain boundaries. This is a textbook example for the changing focus of solid-

state chemistry away from ideal crystal structures towards materials where real-structure 

effects determine the properties. This explains the increased use of electron microscopy, 

which renders the local determination of structural effects on the atomic level possible. 

In cars and airplanes with increasingly complex electronic systems, for instance, the 

production of electrical energy for on-board systems by the generators consumes a significant 

amount of the engine’s energy. It is already possible to reduce the fuel consumption of 

automotives by up to 1.2% when waste heat from the combustion is “harvested” by TEGs.[5,6] 

Further improved TEGs could result in the replacement of the alternator, which would 

significantly reduce the fuel consumption. The reasonable efficiency of TEGs down to the 

microwatt power level results in new applications.[7] The turbine heat in airplanes can already 
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be utilized to produce the energy for sensors, resulting in notably lower weight.[8] One of the 

major issues that prohibit the proliferation of TEGs is their low efficiency. ZT values of 1.5 – 

2 or more are necessary for the development TEGs that are competitive with conventional 

mechanical engines for applications in non-stationary waste heat recovery, while actually 

used materials often exhibit ZT < 1. Higher ZT values would also pave the way for new 

applications of Peltier-type cooling or heating devices. Even higher ZT values of 4 or more 

would be necessary for TEGs to be competitive in industrial waste-heat recovery.[3,7,9] 

However, even with rather low efficiencies the mechanical advantages already drive the 

substitution of classical cooling devices by Peltier elements. These are silent and require little 

maintenance due to the absence of moving parts. They are easily scalable and the direction of 

the heat transport can be altered by changing the direction of the applied electrical voltage. 

Diverse applications require optimal conversion efficiencies in different temperature regions 

and new energy-saving concepts like the automated start-stop mechanism of engines in 

modern cars demand high stability of the TEGs during repetitive cooling and heating cycles. 

Tellurides are prominent candidates that exhibit a combination of properties that render them 

promising materials for thermoelectric applications. For high-temperature applications, 

thermoelectric tellurides like PbTe are the best investigated materials. Among other materials, 

germanium antimony telluride (GST) compounds, which are well known for their application 

as phase-change materials, might be well suited as thermoelectric materials. It has been 

shown that, for example, the substitution with GeTe has a positive influence on the 

thermoelectric properties of Sb2Te3.[10] It also turned out that the thermal treatment has an 

impact on the thermoelectric performance of Ge2Sb2Te5 and GeSb2Te4.[11] This indicates the 

possibility to influence the properties of GST materials by the thermal treatment as well as by 

varying the composition. The use of GST and silver indium antimony telluride (AIST) 

materials as phase-change materials indicates that it might be possible to apply similar 

concepts to both systems. The transfer of the insights derived from these PCMs to similar 

systems, like (GeTe)nAgSbTe2 (TAGS materials)[12], which exhibit high ZT values is a 

promising approach for the further optimization of thermoelectric materials. These ideas 

present the motivation of many projects discussed in this thesis. 
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1.3 Luminescent materials 
 

Due to the enormous amount of waste heat created by incandescent lamps (up to 90 % of the 

used electrical energy), the use of thermoelectric materials would not improve their overall 

energy efficiency to a competitive level as major improvements in lighting technology have 

been achieved in last decades. Compared to incandescent lamps, compact fluorescent lamps 

(CFLs), where ultraviolet light is emitted by an activator (Hg) and converted to visible light 

by a phosphor blend, were a remarkable improvement. However, the higher efficiency of 

CFLs comes with certain drawbacks. They contain Hg which makes their disposal difficult 

and raises health concerns by customers. The rather long warm-up time until the maximum 

brightness is reached reduces the convenience especially for applications where only short-

time lighting is required. These drawbacks are overcome and even higher efficiencies can be 

achieved with pc-LEDs. These are mostly based on blue emitting In1-xGaxN semiconductor 

pump-LEDs.[13] White pc-LEDs are obtained by additive color mixing with additional 

phosphors (green-yellow, orange-red) applied on top of such primary LEDs. Due to their 

energy-saving potential, long life cycle and non-toxicity, pc-LEDs are replacing traditional 

lighting solutions in a constantly growing number of applications. The conversion of light by 

the phosphors is achieved through a two-step process that involves rare-earth ions such as 

Eu2+.[14-16] Here the UV to blue radiation from the pump-LED excites 4f electrons of Eu2+ 

atoms to higher energy levels (5d). For Eu2+ phosphors, the emission can be very intense due 

to the parity allowed 4f6(7F)5d1  4f7(8S7/2) transition and thereby energy is re-emitted as 

light with a longer wavelength compared to the absorbed one. The Stokes shift, which is 

defined as the difference between the excitation-band maximum and the emission-band 

maximum, depends on the ligands and the characteristics of the chemical bonds between the 

ligands and the rare-earth atom. Therefore, the crystal structure of the host lattice is crucial for 

the conversion properties of the phosphor material. In order to achieve high quantum 

efficiencies, rigid host lattices are desirable. Compounds with highly condensed substructures 

exhibit low thermal quenching, which would reduce the quantum efficiency at the application 

temperatures of the corresponding pc-LED. The rigid silicate substructure built up of 

condensed Si(O,N)4 tetrahedra in combination with high thermal and chemical stability make 

(oxo)nitridosilicates well suited as host lattices for rare-earth atoms for the use in pc-LEDs. 

The layered oxonitridosilicates Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) discussed in this thesis are 

highly interesting for the application in pc-LED devices as they show intense emission from 

blue to yellow depending on the composition, combined with high quantum efficiencies. Due 
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to the presence of pronounced real-structure effects in this class of materials, the elucidation 

of the local structure is crucial for the understanding of the luminescence properties. 

Therefore, a significant synergism arises from the combined analysis of the average and local 

structure by means of X-ray and electron methods, respectively.  
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2 TEM investigations of nanostructured germanium 
antimony tellurides and related compounds with 
respect to their thermoelectric properties 

 

2.1 Overview  
 

Metastable germanium antimony tellurides (GST materials) are the predominant materials 

used in rewritable optical storage media like DVDs and BluRay discs. They are also well 

suited for PCRAM devices, where the switch between the amorphous and the crystalline state 

is triggered by electrical resistance heating. [1-7] The information is stored as a binary code by 

switching between an amorphous state with low reflectivity and high resistance and a 

crystalline state with high reflectivity and low resistance. The metastable crystalline phase 

involved exhibits a disordered rocksalt-type structure which is in fact thermodynamically 

stable at high temperature (HT). The corresponding trigonal structure, which is 

thermodynamically stable at room temperature (RT), does not play a role in phase-change 

data storage. However, “partial” transitions from the cubic HT phase to the trigonal RT phase 

can be utilized to induce nanostructures. During these phase transitions, the rearrangement of 

the defects is crucial. There are various analogies concerning the required material properties 

for PCMs and thermoelectrics that render GST materials promising candidates for high 

thermoelectric figures of merit (ZT) (Chapter 2.2.1). For high storage density, small recording 

marks are required. Therefore, a low thermal conductivity (κ) is necessary in order not to 

affect the neighbouring recording marks. For the application in PCRAM devices, intermediate 

electrical conductivities (σ) are necessary which also render high Seebeck coefficients (S) 

possible. The introduction of nanostructures, which can be easily obtained in GST materials 

by quenching the HT phase, is a common approach to improving thermoelectric materials by 

reducing their phononic contribution to the thermal conductivity (κph)  

The members of the homologous series (GeTe)nSb2Te3 represent the pseudo-binary line 

between tetradymite-type Sb2Te3
[8] and the layered structure of GeTe. Like Sb2Te3 itself, the 

resulting long-range ordered layered structures (space groups P3m1 or R3m) consist of 

rocksalt-type slabs as building blocks, which are interconnected by van der Waals gaps 

between the Te atom layers terminating the slabs. The stacking sequence of the Te atom 

layers across the van der Waals gaps is hexagonal (ABAB) and the distance of the Te atoms is 

shorter than the sum of the van der Waals radii, which indicates partially covalent 
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bonding.[9,10] The thickness of the rocksalt-type slabs depends on the GeTe content (n). GeTe 

was discovered in 1934;[11] its α-GeTe structure type with the space group R3m [12] is a binary 

variant of the gray As type with alternating cationic and anionic layers. This corresponds to a 

rocksalt-type structure with a metric distortion along the cubic <111> directions and a Peierls-

like distortion that leads to the formation of layers. Above 705 K, a cubic rocksalt-type HT 

structure is formed.[13] For GST materials with n ≥ 3, a comparable rocksalt-type HT phase 

exists with Te on the anion position and a mixed occupation of Ge, Sb and vacancies on the 

cation position.[14] The thermal treatment has a huge impact on the nanostructures formed and 

thereby on the thermoelectric properties of GST materials (Chapter 2.2.2). Temperature 

programmed powder X-ray diffraction (PXRD) reveals that metastable pseudo-cubic phases 

are obtained by quenching (Figure 1). In these phases, short-range defect ordering leads to 

defect layers perpendicular to the <111> directions. Intersecting defect layers with different 

orientations form a parquet-like nanostructure. At higher temperatures the increased mobility 

results in the formation of the layered trigonal phase that is thermodynamically stable at room 

temperature. This phase is also formed when the cubic HT phase is slowly cooled. In the 

pseudocubic phase the parquet-like structure is associated with lower κ and higher ZT values 

compared to the trigonal structure; probably the parquet-like structure hinders the phonon 

proliferation more efficiently. This results in ZT values of up to 1.5 at 450 °C for 

(GeTe)nSb2Te3 (n = 12, 19).  
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Fig. 1: Temperature-dependent PXRD (top) typical for 
quenched compounds (GeTe)nSb2Te3 (n = 4-12) and 
structure models corresponding to the phases shown in 
the PXRD: Quenching the cubic HT phase (red) results 
in a metastable pseudocubic phase (black) where the 
randomly distributed cation defects of the HT phase 
are short-range ordered in vacancy layers; heating 
results in a transformation to a long-periodically 
ordered layered phase that is thermodynamically stable 
at ambient conditions (blue) and at higher temperatures 
to the cubic HT phase. The stacking of the Te-atom 
layers terminating the rocksalt-type building blocks are 
indicated by alphabetic letters in the pseudocubic 
(black with ABC-stacking) and trigonal phase (blue 
with ABAB-stacking). 
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For GST materials with substitutions by In or Sn on the cation position or Se on the anion 

position, comparable parquet-like structures are obtained when the samples are quenched 

from the cubic HT phase. The thermal conductivities In-substituted compounds are 

comparable to unsubstituted GST materials due to the similar differences of the atomic 

masses on the anion and cation position and the presence of analogous nanostructures. The ZT 

values of the In-substituted compounds are higher below 200 °C due to higher Seebeck 

coefficients (Chapter 2.3.1). The substitution of Ge with Sn results in a more pronounced 

parquet-like structure, especially for lower GeTe contents (n), compared to unsubstituted 

compounds with similar defect concentrations. Higher ZT values of the substituted samples 

with n = 4 and 7 result from higher σ and S values (Chapter 2.3.2). Substitution with Se 

results in increased S and reduced κ, especially at high temperatures, due to the additional 

disorder by the mixed occupation on the anion position (Chapter 2.3.3). These effects are 

most pronounced for the materials with 20 % substitution rate and result in an overall increase 

of the ZT value up to 400 °C. 

Substitutions also affect the phase transition temperatures and the extent of the metrics 

distortion before or after the phase transition, respectively. Compared to unsubstituted GST 

materials, In-substituted compounds yield pseudo-cubic phases for higher vacancy 

concentration at lower quenching rates, since the metrics of the layered phases remains closer 

to cubic one (Chapter 2.3.1 and ref.[15]). The transition temperatures between the trigonal 

phase and the cubic HT phase are lower for the substituted compounds, especially for those 

with Se (Chapter 2.3.3). They exhibit a lower lateral extension of the defect layers as visible 

in HRTEM images and concluded from the broadening of the diffuse intensities in reciprocal 

lattice sections calculated from single-crystal data and in SAED patterns. This reflects the 

shorter time available for diffusion processes and lower mobility of the atoms and vacancies 

during the quenching process, as a result of lower phase-transition temperatures. The variety 

of possibilities to influence the properties of GST materials in combination with their usually 

low κ and intermediate σ values, render these well established PCMs promising candidates for 

thermoelectric application. The phononic contribution to the thermal conductivity can be 

optimized by changing the nanostructure via the variation of vacancy concentration and 

different thermal treatment as well as the variation of the transition temperatures by 

substitution. Of course, the substitutions might additionally be used for the optimization of 

electronic properties.  
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2.2 Thermoelectric germanium antimony tellurides 

2.2.1 From phase-change materials to thermoelectrics? 

M. N. Schneider, T. Rosenthal, C. Stiewe, O. Oeckler 

Z. Kristallogr. 2010, 225, 463-470.  

 

Abstract 

Metastable tellurides play an important role as phase-change materials in data storage media 

and non-volatile RAM devices. The corresponding crystalline phases with very simple basic 

structures are not stable as bulk materials at ambient conditions, however, for a broad range of 

compositions they represent stable high-temperature phases. In the system Ge/Sb/Te, rocksalt-

type high-temperature phases are characterized by a large number of vacancies randomly 

distributed over the cation position, which order as 2D vacancy layers upon cooling. 

Short-range order in quenched samples produces pronounced nanostructures by the formation 

of twin domains and finite intersecting vacancy layers. As phase-change materials are usually 

semimetals or small-bandgap semiconductors and efficient data storage requires low thermal 

conductivity, bulk materials with similar compositions and properties can be expected to 

exhibit promising thermoelectric characteristics. Nanostructuring by phase transitions that 

involve partial vacancy ordering may enhance the efficiency of such thermoelectrics. We have 

shown that germanium antimony tellurides with compositions close to those used as phase-

change materials in rewritable Blu-Ray Discs, e.g. (GeTe)12Sb2Te3, exhibit thermoelectric 

figures of merit of up to ZT = 1.3 at 450 °C if a nanodomain structure is induced by rapidly 

quenching the cubic high-temperature phase. Structural changes have been elucidated by 

X-ray diffraction and high-resolution electron microscopy. 
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2.2.1.1 Introduction 

2.2.1.1.1 Thermoelectrics 

In the past decade, an increasing number of research projects have focused on both the 

synthesis and the optimization of thermoelectric materials. These may be used to reversibly 

interconvert thermal and electrical energy, the ultimate goals being electric power generation 

from waste heat and the construction of efficient cooling devices. In this context, structure-

property relationships concerning thermoelectricity have received increasing attention of 

materials scientists as understanding the phenomenon on the atomic as well as the nanoscale 

is the basis for any targeted optimization. Efficient thermoelectrics should combine high 

electrical conductivity (σ) and high Seebeck coefficients (S). Furthermore, the thermal 

conductivity (κ) should be as low as possible. The interplay of these specifications is 

represented by the dimensionless figure of merit ZT = S2Tσκ-1 which is directly related to the 

efficiency of thermoelectric generators.  

All relevant properties depend on the charge carrier concentration and cannot be altered 

independently. Concerning σ and κ, the best compromise are small-bandgap semiconductors 

or semimetals. As the electronic part of κ is proportional to σ, only its phononic part can be 

somehow independently varied. 

 

Table 1. Comparison of tellurides used as thermoelectrics or as phase-change materials. 
Compounds without references are discussed in reviews.[1-5, 31-40]  
thermoelectric materials phase-change materials 
  
M-Te (M = Ge, In, Ga, Pb, Bi, Sb) M-Te (M = Au, Ge, Sb) 
GeTe4,[19] InTe4,[20] GaTe4,[20] PbTe, Bi2Te3, Sb2Te3, 
(Bi2)m(Bi2Te3)n,[21], (Sb2)m(Sb2Te3)n [22] 

Au5Te95,[23] GeTe, GeTe4,[23] Sb2Te, Sb7Te3 

  
M-Sb-Te (M = Ag, Ge, Ag/Ge, Ga, Pb) M-Sb-Te (M = Ag, Ge, Sn, In) 
AgSbTe2, (GeTe)n(Sb2Te3)m (GST),[24,25] 
(AgSbTe2)1-x (GeTe)x (TAGS),  
GamSbnTe1.5(m+n),[26] Pb2Sb6Te11, GeSb100Te150 [27] 

AgSbTe2,[28] (GeTe)n(Sb2Te3)m (GST), 
SnSb2Te4, Ge7.1Sb76.0Te16.9 
In3SbTe2 [29] 

  
M-Bi-Te (M = Ge, Sn, Pb, Cs) M-Bi-Te (M = Ge) 
(GeTe)n(Bi2Te3)m (GBT),[30], (SnTe)n(Bi2Te3)m,[30] 
(PbTe)n(Bi2Te3)m,[30] CsBi4Te6 

(GeTe)n(Bi2Te3)m (GBT) 

  
M-Tl-Te (M = Ag, Sn, Bi) M-In-Sb-Te (M = Ag) 
Ag9TlTe6, Tl2SnTe5, Tl9BiTe6 Ag5In5Sb60Te30, Ag3.4In3.7Sb76.4Te16.5 (AIST) 
  
M- Pb- (M’)-Sb-Te (M = Ag, Na, K; M’ = Sn) M-M’-Sn-Te (M = Au M’=Ge) 
AgPbmSbTe2+m (LAST), AgPbmSnnSbTe2+m+n (LASTT), 
NaPbmSbTe2+m (SALT), NaPbmSnnSbTe2+m+n (SALTT), 
KPbmSbTe2+m (PLAT) 

Au25Ge4Sn11Te60 
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One way to increase ZT is the incorporation of atoms that are located in voids that are larger 

than necessary to accommodate them. These so-called ‘rattling’ atoms may effectively scatter 

phonons and thus reduce κ. Several classes of compounds such as skutterudites (e.g., CoSb3), 

clathrates (e.g., Na8Si46) or half Heusler alloys (e.g., TiNiSn) provide promising candidates as 

summed up in various recent reviews.[1–5] However, practical applications are still dominated 

by tellurides such as PbTe or Bi2Te3 which show a sufficient concentration of carriers and 

exhibit a rather low thermal conductivity owing to the presence of heavy atoms. Based on 

these conventional thermoelectrics with ZT in the range of ~1, a broad range of new tellurides 

with promising properties has been prepared (see Table 1). Most of these materials exhibit a 

high degree of disorder on various length scales. Nanostructuring by partial decomposition or 

exsolution on the nanoscale led to ZT values up to ~2, the most prominent examples being 

AgPbmSbTe2+m (LAST-m) or NaPbmSbTe2+m (SALT-m).[6,7] Other examples such as 

Pb2Sb6Te11 exhibit layered structures.[8] Precipitates and domain or grain boundaries, 

respectively, are essential as corroborated by thermoelectrics which combine high power 

factors S2σ with drastically reduced lattice thermal conductivity due to increased phonon 

scattering at interfaces. This approach has successfully been demonstrated for layer-like 

systems such as Sb2Te3/Bi2Te3 superlattices, PbTe/PbSe quantum dot superlattices or 

nanocomposites of crystalline GeTe in an amorphous matrix with overall composition 

GeTe4.[9–11] Such approaches (recent reviews [12–18]): strongly depend on the interplay of 

thermodynamics and kinetics and always mean approaching (but not reaching) the 

equilibrium state from a metastable one. Unstable but kinetically inert tellurides obviously 

offer a good starting point to follow this concept. 

 

2.2.1.1.2 Phase-change materials 

Metastable tellurides play another important role as phase-change materials (PCMs) in the 

recording layers of many rewritable data storage media (e.g., DVD-RW, DVD-RAM, BD-

RE) and novel non-volatile random-access memory (RAM) devices.[31–40] PCMs allow 

switching between amorphous and crystalline modifications which differ in optical and 

electrical properties, respectively. According to theoretical calculations and X-ray absorption 

fine structure (EXAFS) investigations,[41–48] Ge/Sb–Te–Ge/Sb–Te squares and 

even-membered larger rings are present in the amorphous modification. Although distorted 

octahedral coordination is predominant for most atoms, tetrahedral coordination of Ge has 

been evidenced and led to the hypothesis of an ‘umbrella-flip’ mechanism for the phase 
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change between the amorphous and crystalline phases.[49–53] The metastable crystalline 

modifications of various PCMs exhibit simple average structures, such as the A7 (gray As) 

type (e.g., Ag3.4In3.7Sb76.4Te16.5 or Ge7.1Sb76.0Te16.9) [39] or the rocksalt type (e.g., GeSb2Te4 or 

Ge2Sb2Te5) [54–56] which may be rhombohedrally distorted towards a GeTe-type structure (e.g., 

Ge8Sb2Te11).[57] These simple average structures are accessible from amorphous ones via 

short diffusion pathways, which is a requirement for the fast phase transition. As chemically 

very different atom types share the same Wyckoff position, the question of short-range 

ordering arises, both concerning of the elements and the vacancies, including the 

accompanying local distortion and relaxation, respectively. Vacancies are crucial for the 

stabilization of these materials and a statistical distribution as well as an arrangement in 

planar defect planes have been discussed.[58–64] The stable phases formed upon annealing of 

the metastable crystalline materials often exhibit ordered layered structures such as 

21R-GeSb2Te4, 21R-GeBi2Te4 or 9P-Ge2Sb2Te5.[65–69] These structures can be described as a 

stacking sequence of distorted rocksalt-type slabs with van der Waals gaps in between Te 

layers terminating the slabs. These gaps can be viewed as 2D infinite layers of cation 

vacancies associated with relaxation. However, in other cases equilibrium conditions 

correspond to a mixture of two or more different phases. For example, GeTe-rich GST 

materials do not form single-phase materials when reaching the thermodynamically stable 

state but separate into the long-periodically ordered compound Ge9Sb2Te12 and an additional 

phase with a GeTe-type structure.[57] Although the stable modifications do not occur during 

the write-erase cycle, they need to be taken into consideration as they are the ‘thermodynamic 

trap’ to be avoided. The kinetic inertness of metastable tellurides is essential for PCMs. 

The properties of the materials depend, of course, on the electronic structure of the materials. 

The reversible phase transition amorphous to metastable crystalline is either induced by laser 

irradiation or by an electric current. In general, small-bandgap semiconductors or semimetals 

are required. Especially in RAM devices, intermediate electrical conductivity ensures 

sufficient currents but still allows ‘resistance heating’. The writing process involves the 

amorphization of small recording marks in a crystalline matrix, whereas erasing means 

recrystallization. For the sake of high spatial resolution and short write and erase times, low 

thermal conductivity of the PCMs is important in order to obtain high temperatures in very 

small areas. The metastability of both modifications is essential and ensures the reversibility 

of the process which would be interrupted once the stable phases are formed.  

Several reviews show impressively that tellurides dominate the field of PCMs.[31–40] For 

example, Ag5In5Sb60Te30 and Ag3.4In3.7Sb76.4Te16.5 are used for DVD-RW media, whereas 
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germanium antimony tellurides (GST materials) are employed in CD-RWs (e.g. 

Ge7.1Sb76Te16.9), DVD-RAMs (GeSb2Te4 or Ge2Sb2Te5) and Blu-Ray Discs (GeTe-rich 

materials like Ge8Sb2Te11). The relevant materials are summarized in Table 1, which also 

contains further examples that exhibit rapid phase-change behavior but are currently not used 

due to slightly inferior properties. Interestingly, the combinations of elements used for 

efficient PCMs are rather similar to those employed in thermoelectrics with high figures of 

merit. This fact is reflected in several basic properties. For both applications, semimetals or 

small-bandgap semiconductors with low thermal conductivity are required. For a few 

examples, such as AgSbTe2, Ge2Sb2Te5 or GeTe4, more or less stable modifications have been 

shown to possess interesting thermoelectric properties,[3,25] whereas their metastable 

modifications are well known PCMs. The striking similarities between both classes of 

materials rise the question if metastable modifications of PCMs are intriguing precursors for 

efficient thermoelectrics. Whereas the formation of thermodynamically stable modifications is 

a drawback concerning PCM applications, the partial equilibration by exsolution or short-

range vacancy ordering might be associated with the formation of nanostructures in bulk 

material. Such processes may yield interesting thermoelectrics, however, not much is known 

about the thermoelectric properties of PCMs and materials obtained from such ‘precursors’ by 

approaching stable states. 

 

2.2.1.2 Structure of metastable GST bulk materials with different GeTe content and 

their thermoelectric properties 

2.2.1.2.1 Structural aspects 

Concerning the investigation of thermoelectric properties, it is a drawback that most 

metastable phases of PCMs are only accessible as thin films prepared by sputtering techniques. 

Therefore, it is desirable to find compounds whose metastable modifications are accessible as 

bulk material. Most GST materials with metastable, slightly distorted rocksalt-type average 

structures correspond to compositions that lie on the pseudobinary line (GeTe)n(Sb2Te3)m, i.e. 

all elements exhibit normal valence states. Rewriting the formula so that it reflects the cation 

and anion positions of the rocksalt-type shows that the concentration of vacancies decreases 

with decreasing Sb content: (Gen/(3m+n)Sb2m/(3m+n)⁫m/(3m+n))Te, whereas the cation to anion ratio 

converges to 1 when approaching pure GeTe as shown in Fig. 1 for m = 1. 
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Fig. 1: Concentration of vacancies in metastable rocksalt-type structures with compositions 
(GeTe)nSb2Te3 (solid squares) and anion/cation ratio (empty squares) depending on the GeTe 
content n in the range n = 1 – 20. For n ≥ 3 (broken line), there are stable cubic high-
temperature modifications. 

 

The vacancy concentration has an impact on the existence and stability of different atomic as 

well as nanostructures. The spacing between van der Waals gaps that can be viewed as 2D 

extended cation defect planes in the stable modifications increases with increasing GeTe 

content; the overall stacking sequence (Ramsdell symbol) depends on n and m.[69,70] On the 

other hand, the average structure of metastable crystalline GeTe-rich PCM phases produced 

by magnetron sputtering corresponds to the rocksalt type for n ≤ 6, whereas phases with n ≥ 8 

exhibit a rhombohedrally distorted rocksalt-type resembling the structure of GeTe.[57] Similar 

to GeTe, these phases have a cubic rocksalt-type modification at high temperatures. If this 

high-temperature phase is rapidly quenched to room temperature, the transition to the stable 

layered phase is hindered due to the multiple twinning associated with a 

cubic  rhombohedral phase transition. Stresses between the nanoscale rhombohedral twin 

domains impede lattice relaxation and long-range two-dimensional defect ordering.[71] The 

metrics remain almost cubic but short-range layer formation takes place. Concerning the use 

of this partial phase transition to optimize the thermoelectric properties of (GeTe)nSb2Te3 

compounds, it is interesting to determine the range of n in which a stable cubic high-

temperature modification does exist and in which cases it can be quenched to pseudocubic 

metastable bulk material. 
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For the most prominent PCMs GeSb2Te4 

and Ge2Sb2Te5 (i.e., n < 3), no phase 

transition from their stable 21R type and 

9P type structures to cubic high 

temperature modifications has been 

reported in the literature. This is in 

accordance with temperature-dependent 

X-ray powder diffraction and DTA 

experiments which we performed in the 

course of this study. No phase transitions 

were observed up to the melting points. 

However, for the stable ambient 

temperature phase of 33R-Ge3Sb2Te6 

(n = 3), which was obtained by annealing a 

sample at 500 °C, both methods indicate a 

phase transition to a cubic phase at ~575 °C, 

which melts at ~615 °C. The rocksalt-type 

of the high-temperature phase was 

confirmed by a Rietveld refinement on a 

powder diffraction pattern recorded at 

600 °C (cf. Fig. 2a), assuming that Te 

occupies the anion position and Ge, Sb and 

vacancies share the cation position. Details 

of the structure refinement are given in 

Table 2. Whereas slow cooling from the melt yields long-range ordered 33R-Ge3Sb2Te6, rapid 

quenching in air or liquid nitrogen does neither yield the stable modification nor a 

homogenous distorted rocksalt-type structure. Powder diffraction patterns of quenched 

samples indicate a mixture of a cubic and a layered rhombohedral phase. However, the 

rhombohedral phase is strongly disordered as indicated by the diffuse broadening of its 

reflections. Upon heating this material, the cubic phase vanishes at ~270 °C, whereas 

33R-Ge3Sb2Te6 forms from the disordered rhombohedral phase at ~420 °C as shown in 

Fig. 3a. The cubic phase forms at ~575 °C and transforms back to 33R-Ge3Sb2Te6 without 

significant hysteresis. 

 

Fig. 2: Result of Rietveld fits (gray) of 
experimental powder diffraction patterns 
(black) measured at 600 °C (background 
from the furnace subtracted) of (a) 
(GeTe)3Sb2Te3 and (b) (GeTe)12Sb2Te3 with 
difference curve and reflection markers 
(bottom). 
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Table 2. Experimental details and results of the Rietveld refinements for the high-temperature 
phases of (GeTe)nSb2Te3 with n = 3 and 12, respectively.  

 (GeTe)3Sb2Te3 (GeTe)12Sb2Te3 
sum formula Ge3Sb2Te6 Ge12Sb2Te15 
structure type NaCl (B1) 
crystal system cubic 
space group  

Fm3 m 
temperature 600 °C 
lattice 
parameters 

a = 6.1140(6) Å a = 6.0826(5) Å 

cell volume 228.54(7) Å3 225.04(6) Å3 
formula weight 1226.87 g/mol 3028.58 g/mol 
Z 2/3 4/15 
observed 
reflections 

22 

refined 
parameters 

62 

diffractometer Stoe STADI P, Ge(111) monochromator 
radiation Mo Kα1 (λ = 0.7093 Å) 
2θ range 10 – 50° 
background 
function 

Shifted Chebyshev (48 parameters) 

Rp 0.029 0.026 
wRp 0.044 0.041 

 

(GeTe)12Sb2Te3 exhibits an analogous rocksalt-type high-temperature phase (cf. Table 2) 

which has also been confirmed by a Rietveld refinement (Fig. 2b) using data measured at 

600 °C. In contrast to (GeTe)3Sb2Te3, rapid quenching of this phase (or directly quenching the 

melt) yields a homogeneous (stress-stabilized) pseudo-cubic phase whose average structure 

corresponds to a rhombohedrally distorted rocksalt-type. Slow cooling as well as annealing at 

400 °C, however, leads to a relaxed rhombohedral layered structure. Temperature dependent 

powder diffraction (cf. Fig. 3b) starting from quenched samples indicate a transformation to 

the relaxed structure at ~325 °C and the phase transition to the cubic high-temperature phase 

at ~475-500 °C, which is significantly lower than for (GeTe)3Sb2Te3. 
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Fig. 3: Comparison of in situ temperature dependent powder diffraction patterns (heating and 
subsequent cooling shown from bottom to top): (a) a sample of (GeTe)3Sb2Te3 quenched from 
the melt after heating to 950 °C; (b) a sample of (GeTe)12Sb2Te3 quenched after annealing at 
500 °C for 20 h (samples of (GeTe)12Sb2Te3 quenched from the melt are not significantly 
different). The asterisk marks a reflection from the furnace. The reflections of the (pseudo-
)cubic quenched phases (bottom) can be identified by comparison with those of the cubic 
high-temperature phase (middle): they are the only ones observed for quenched 
(GeTe)12Sb2Te3 whereas they correspond to a minor phase for (GeTe)3Sb2Te3. Note that the 
reflection broadening for the main phase in quenched (GeTe)3Sb2Te3 vanishes around 420 °C. 

 

Single crystals of (GeTe)12Sb2Te3 (composition verified by EDX) were grown from starting 

material with the same composition by chemical transport in the stability region of the high 

temperature and subsequently quenched to room temperature. Their structure is similar to that 

of GeTe-rich single crystals isolated from pseudo-cubic bulk material.[71] The average 

structure is rhombohedral (GeTe type, R3m, a = 4.237(3) Å, c = 10.29(1) Å) with pseudo-

cubic metrics due to stresses resulting fourfold twinning. Their diffraction patterns exhibit 

pronounced diffuse streaks along the pseudocubic <111> directions as shown in Fig. 4a. Very 

similar diffraction patterns have been obtained by selected-area electron diffraction (SAED). 

Figure 5 shows that these correspond to nanostructured crystals as described in detail 

recently.[71] The corresponding high-resolution images show that vacancies tend towards 
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short-range order in finite layers that extend perpendicular to the (pseudo-)cubic <111> 

directions. This involves a (local) symmetry reduction, however, the corresponding twin 

domains are very small.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, X-ray diffraction patterns recorded in the stability range of the high temperature 

phase (550 °C, cf. Fig. 4b) do not show diffuse streaks. This indicates that at this temperature 

there are no planar defects, i.e., no significant short-range ordering of vacancies. Ge, Sb and 

vacancies are probably randomly distributed over all cation sites. 

 
Fig. 5: SAED pattern (bottom) and 
HRTEM image (top, with corresponding 
Fourier transform) of quenched 
(GeTe)12Sb2Te3. The zone axis [110] 
(pseudocubic indexing) corresponds to 
the reciprocal lattice sections hhl. 
 

 
Fig. 4: Reciprocal lattice sections hhl 
(with respect to pseudocubic indexing) 
reconstructed from area-detector data of a 
(GeTe)12Sb2Te3 single crystal grown by 
chemical transport: (a) quenched crystal 
at room temperature with diffuse streaks 
along <111>; (b)  measurement at 550 °C 
(cubic high-temperature phase, no diffuse 
streaks). 
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2.2.1.2.2 Thermoelectric properties 

 

The nanostructuring by planar defect 

planes in quenched material as 

indicated by HRTEM and diffuse 

scattering can be expected to reduce 

the thermal conductivity of the 

materials and increase the 

thermoelectric efficiency. Very high 

electrical conductivities were 

measured for both of the samples (Fig. 

6b), with lower values for 

(GeTe)12Sb2Te3, probably due to a 

more pronounced scattering of charge 

carriers because of the nanodomain 

structure. The temperature 

dependences of the electrical 

conductivities show metallic behavior, 

corresponding to highly doped 

semiconductors.  

The Seebeck coefficient for both 

samples is positive over the complete 

temperature range under investigation, 

proving the deficiency electrons 

(holes) as the major charge carriers 

(Fig. 6c). At each temperature, the 

Seebeck coefficient values of 

(GeTe)12Sb2Te3 are almost double 

compared to (GeTe)3Sb2Te3. This 

surprising result has been checked in 

a repeated measurement run to 

improve the reliability. The reason for 

this behavior of the Seebeck 

coefficient is not yet completely 

 

Fig. 6: Thermoelectric characteristics for 
(GeTe)12Sb2Te3 (solid squares) and (GeTe)3Sb2Te3 
(empty squares): (a) thermal conductivity 
(additional triangles represent the lattice part κL); 
(b) electrical conductivity; (c) Seebeck coefficient; 
(d) overall thermoelectric figure of merit. 
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understood and will be investigated in more detail in further studies. The overall thermal 

conductivity matches the picture of the electrical conductivity with smaller values for 

(GeTe)12Sb2Te3. Calculating the electrical contribution of the thermal conductivity using the 

Wiedemann-Franz law for non-degenerate semiconductors allows the identification of the 

lattice thermal conductivity as displayed in Fig. 6a. No significant difference in κL could be 

found between both samples. Although the domain structure is more pronounced for 

(GeTe)12Sb2Te3, the higher concentration of vacancies in (GeTe)3Sb2Te3 probably 

compensates for the higher degree of long-range order. Therefore, the difference in the overall 

thermal conductivity is due to the difference in the electrical one, leading to an almost 

uninfluenced ratio of σ/κ. 

Both compounds exhibit rather high overall figures of merit ZT as compared to long-range 

ordered stable GST phases, where maximum ZT values of about ~0.2 have been 

measured.[24,25] The high value of ZT = 1.3 at 450 °C for (GeTe)12Sb2Te3 is due to the 

increased Seebeck coefficient, as can be seen from Fig. 6c and d, making this class of 

materials very promising for thermoelectric applications.  

 

2.2.1.3 Conclusion 

Several conclusions can be drawn from the comparison of GeTe-poor and GeTe-rich 

(GeTe)nSb2Te3 materials. Only materials with n ≥ 3 exhibit a stable cubic high-temperature 

modification with randomly distributed cation defects. 2D vacancy ordering is energetically 

favored, therefore, the transition temperature to the high-temperature phase is higher for 

compounds with high vacancy concentrations (~575 °C for n = 3 vs. ~500 °C for n = 12). If 

the vacancy concentration is rather high (e.g., (GeTe)3Sb2Te3), the high-temperature 

modification cannot be completely quenched to a pseudocubic phase, in contrast to phases 

with fewer vacancies like (GeTe)12Sb2Te3 which require longer diffusion pathways to reach 

the stable layered compounds. The pseudocubic phases are kinetically inert as stresses impede 

metric relaxation and vacancy diffusion.[71] The partial transition from the randomly 

disordered high-temperature phase to the layered stable phase can be used to induce 

nanostructuring which influences both the thermal as well as the electric conductivity. The 

composition of (GeTe)12Sb2Te3 is close to that of PCMs employed in rewritable BluRay-

Discs. As pointed out in the introduction, the requirements for PCMs and thermoelectrics are 

comparable. If the cubic phases of PCMs are used as precursors for nanostructured 

thermoelectrics, one can expect efficient materials. We have shown this for quenched 

(GeTe)12Sb2Te3, which exhibits promising ZT values at high temperatures, and, to a lesser 
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extent, for (GeTe)3Sb2Te3. We believe that this is a promising concept for the search of new 

nanostructures chalcogenide or pnictide thermoelectrics. 

 

2.2.1.4 Experimental 

2.2.1.4.1 Synthesis 

Bulk samples of (GeTe)3Sb2Te3 (= Ge3Sb2Te6) and (GeTe)12Sb2Te3 (= Ge12Sb2Te15) were 

prepared by melting stoichiometric amounts of the elements Ge (99.999%, Sigma Aldrich), 

Sb (99.999%, Smart Elements) and Te (99.999%, Alfa Aesar) in sealed silica glass ampoules 

under Ar atmosphere. After melting the mixtures at 950 °C (ca. 2 h), the ampoules were 

quenched in water. The nanostructured samples were obtained by reheating to 500 °C for 20 h 

and quenching in water again. Other samples were annealed at the temperatures given in the 

text. 

Single crystals of (GeTe)12Sb2Te3 were grown by chemical transport using iodine as transport 

agent. Stoichiometric (GeTe)12Sb2Te3 (ca. 110 mg, see above) was sealed in evacuated silica 

ampoules of approximate 20 cm in length and 15 mm diameter as starting material. Small 

amounts (ca. 10 mg) of SbI3 were added to generate I2 by decomposition at elevated 

temperatures (a similar procedure has been used for GeSb4Te7 [72]). The octahedral single 

crystals grew in a temperature gradient from 600 to 550 °C (i.e., in the stability range of the 

high-temperature phase) within 15-20 h and were subsequently quenched to room temperature 

by removing the ampoule from the furnace. 

Ingots for the measurement of thermoelectric properties were prepared by melting 

stoichiometric mixtures of the elements under inert atmosphere in ampoules with flat base 

which allow to solidify the melts into disc-shaped ingots with diameter of approximately 

15 mm and thickness of 3-6 mm. After melting at 950 °C and quenching, these ingots were 

annealed at 500 °C for 20 h and quenched to room temperature in air. For thermoelectric 

measurements, they were polished to flat plates. Powder diffraction patterns of these materials 

do not differ significantly from those of the corresponding samples used for the other 

investigations.  
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2.2.1.4.2 Scanning electron microscopy and chemical analysis 

Energy dispersive X-ray spectroscopy was done with a JSM-6500F (Jeol, USA) scanning 

electron microscope (SEM) equipped with an energy-dispersive X-ray (EDX) detector (model 

7418, Oxford Instruments, Great Britain). The compositions of the bulk samples were 

confirmed by averaging three point analyses on crystallites isolated from bulk material. The 

resulting atom ratios Ge : Sb : Te are 29 : 18 : 53 for (GeTe)3Sb2Te3 (calculated: 27.3 : 18.2 : 

54.6) and 48 : 5 : 47 for (GeTe)12Sb2Te3 (calculated: 41.4 : 6.8 : 51.7), the deviations are 

within the usual error limits for samples with rough surfaces. The composition of single 

crystals (GeTe)12Sb2Te3 grown by transport reactions was determined as Ge : Sb : Te = 

43 : 7 : 50 by analyzing flat crystal faces. No iodine impurities were detected. 

 

2.2.1.4.3 X-ray diffraction 

X-ray powder patterns were recorded on a Huber G670 Guinier camera equipped with a fixed 

imaging plate and integrated read-out system using Cu-Kα1 radiation (Ge monochromator, 

λ = 1.54051 Å). Specimens were prepared by fixing powdered parts of the samples on Mylar 

foils using silicone grease. Temperature-dependent powder patterns were recorded using a 

STOE Stadi P powder diffractometer with a linear position-sensitive detector (PSD) using 

Mo-Kα1 radiation (Ge monochromator, λ = 0.71093 Å) equipped with a graphite furnace. The 

powdered sampled were filled into silica glass capillaries with 0.3 mm diameter which were 

sealed with silicone grease under argon atmosphere. During the measurements, the samples 

were heated up to 600 °C (5 °C/min), where several measurements were carried out (at least 

90 min altogether) and then cooled to room temperature with a rate of 5 °C/min. Powder 

patterns were evaluated using WINXPOW.[73] Rietveld pattern fitting was carried out using the 

program TOPAS.[74] 

Single crystals obtained from chemical transport reactions were sealed in silica glass 

capillaries under argon atmosphere and checked for quality by Laue photographs on a Buerger 

precession camera. Intensity data were collected on a Stoe IPDS I diffractometer using Mo-Kα 

radiation (graphite monochromator, λ = 0.71073 Å). High temperature measurements were 

performed using a heated gas flow around the crystals (Stoe Heatstream). Reciprocal space 

sections were reconstructed using the diffractometer software. 
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2.2.1.4.4 Transmission electron microscopy 

Finely ground samples were dispersed in ethyl alcohol suspension and subsequently dispersed 

on copper grids coated with holey carbon film. The grids were mounted on a double tilt holder 

with a maximum tilt angle of 30°. Selected-area electron diffraction (SAED) and high-

resolution electron microscopy (HRTEM) were carried out on a FEI Titan 80-300 equipped 

with a field emission gun operating at 300 kV. The images were recorded using a Gatan 

UltraScan 1000 (2k x 2k) camera. 

 

2.2.1.4.5 Thermal analysis 

The thermal behavior of the samples was studied up to 700 °C by differential thermal analysis 

and thermo-gravimetry (DTA-TG) with a Setaram TG-92 instrument. The measurement was 

conducted under helium at a scanning rate of 10 K · min-1 using alumina crucibles. In this 

temperature range, the weight loss was not significant. 

 

2.2.1.4.6 Thermoelectric properties 

The temperature dependence of the electrical and thermal conductivity as well as the Seebeck 

coefficient and the figure of merit were investigated in the range from room temperature up to 

approx. 500 °C under vacuum using various facilities, both commercial and in-house-built 

ones. The electrical conductivity was measured by a four-point-probe setup above room 

temperature using an AC method in order to avoid Peltier influences on the measurement. 

Seebeck coefficient investigation was performed using a small temperature gradient across the 

sample while slowly changing the environment temperature. This way Seebeck coefficient 

values for each mean sample temperature are obtained. The thermal conductivity was 

calculated from measurements of the thermal diffusivity by a Laser Flash Apparatus (Netzsch 

LFA 427) and heat capacity determined by Differential Scanning Calorimetry (Netzsch DSC 

404). 
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2.2.2 Real structure and thermoelectric properties of GeTe-rich germanium 

antimony tellurides 

 

T. Rosenthal, M. N. Schneider, C. Stiewe, M. Döblinger, O. Oeckler 

Chem. Mater. 2011, 23, 4349-4356. 

 

Abstract 

Quenched Ge-Sb-Te (GST) compounds exhibit strongly disordered metastable structures whose 

average structure corresponds to a distorted rocksalt type with trigonal symmetry. Depending on 

the composition and thermal treatment, the metrics remain more or less pseudocubic. The 

corresponding stable phases show regular sequences of distorted rocksalt-type blocks that 

formally result from layer-like cation defect ordering. These thermodynamically stable layered 

phases can gradually be approached by annealing the metastable (pseudo)cubic compounds that 

are accessible by quenching high-temperature phases. The relaxation of Te atoms in the vicinity 

of the defect layers leads to van der Waals gaps rather than defect layers in an undistorted matrix. 

The partially ordered phases obtained show defect layers with an average distance and 

arrangement depending on the composition and the thermal treatment of the samples. This 

variation of the nanostructure influences the lattice thermal conductivity (κL) and thus the 

thermoelectric figure of merit (ZT). This results in ZT values up to 1.3 at 450 °C for bulk 

samples of Sb2Te3(GeTe)n (n = 12 and 19). The stability ranges of the various phases have been 

examined by temperature programmed X-ray powder diffraction and can be understood in 

conjunction with the changes of the nanostructure involved. The real structure of phases 

Sb2Te3(GeTe)n (n = 3-19) has been investigated by high-resolution electron microscopy 

(HRTEM) and scanning transmission electron microscopy (STEM)-high-angle annular dark-

field (HAADF) with respect to the stoichiometry and synthesis conditions. The correlation of the 

nanostructure with the thermoelectric properties opens an interesting perspective for tuning 

thermoelectric properties.  

 

 

 

 



                                    2 TEM investigations of nanostructured germanium antimony tellurides 
 

30 

2.2.2.1 Introduction 

2.2.2.1.1 Tellurides as thermoelectrics 

Tellurides have been the predominant materials for thermoelectric applications in the past decade. 

PbTe, Bi2Te3, and Sb2Te3 are well-established examples that still dominate the market.[1] In order 

to secure the future energy supply, the sustainable usage of energy is becoming increasingly 

important.[2] Thermoelectric materials make electric power generation from waste heat possible, 

e.g., in cars and airplanes, leading to lower fuel consumption. In addition, they may become 

increasingly popular in energy-efficient cooling and heating devices. The bottleneck for all 

applications is the efficiency of the transformation between heat and electric energy, which 

depends on the thermoelectric figure of merit (ZT) of the material used. At a given temperature T, 

it is defined as:  

TSZT
κ
σ2

=  

 

The major problem is the interdependence of the material properties determining ZT. The 

electrical conductivity (σ) and the electronic part of the thermal conductivity (κe), which 

corresponds to heat transport by electrons, are linked by the Wiedemann-Franz law. Both 

properties correlate with the Seebeck coefficient (S), as all these properties depend on the charge 

carrier concentration. The phononic part of the thermal conductivity (κL) reflects the heat that is 

transported by phonons. Since it depends on various structural features, it seems to be the most 

promising approach to reduce κL by increased phonon scattering. Therefore, many new 

approaches rely on nanostructuring and doping. Novel element combinations, e.g., Ag/Sb/Pb/Te 

(LAST, ZT up to 2)[3] or Ag/Ge/Sb/Te (TAGS, ZT up to 1.5[4]), and structuring processes (e.g., 

spin-milled, ball-milled and hot pressed crystalline ingots of Bi-Sb-Te alloys with ZT up to 

1.4[5]) have led to drastic improvements in recent years. However, there is still an urgent need for 

bulk materials with high ZT values at various temperatures.  

 

2.2.2.1.2 Sb2Te3(GeTe)n as phase-change materials 

For rewritable optical data storage media, GST (Ge-Sb-Te) materials have been used for more 

than a decade[6,7] because the fast reversible phase change between metastable crystalline and 

amorphous phases can be induced in a favorable energy range. Compared to rewritable DVDs, 

the GeTe content has been increased for rewritable Blu-Ray discs in order to (1) optimize the bit 
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density by enhancing the difference in reflectivity between both phases and (2) obtain higher 

stability of the amorphous phase (recording marks), corresponding to a longer life cycle.[8] The 

fast reversible phase change can also be induced by electric pulses, and the structural states can 

be identified by their different resistivity.[9,10] As the information is preserved by structural 

changes, GST materials are very promising candidates for nonvolatile PC-RAM devices.[11-14] 

Besides this well-known phase change between amorphous and metastable crystalline phases, 

GeTe-rich GST materials exhibit another phase transformation between a rocksalt-type high-

temperature and a layered low-temperature modification.  

 

 
Fig. 1: Tetradymite-like Sb2Te3 slabs (left) are formally enlarged by inserting GeTe-type layers 
in the blocks. The resulting structure (right) consists of distorted rocksalt-type building blocks 
with a thickness depending on the GeTe content n (the crosses indicate the position of the formal 
“vacancies” in the van der Waals gaps). For Sb2Te3 itself, n equals 0. 
 

2.2.2.1.3 Structure and properties of Sb2Te3(GeTe)n 

The structures of materials with the composition Sb2Te3(GeTe)n can be described as a 

combination of tetradymite-type Sb2Te3
[15] and GeTe, a binary variant of the A7 (gray arsenic) 

structure type. The tetradymite-like Sb2Te3 blocks can formally be enlarged by inserting GeTe, 

resulting in the pseudobinary homologous series Sb2Te3(GeTe)n with distorted rocksalt-type 

building blocks of a thickness depending on n (Figure 1). These blocks are separated by van der 
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Waals gaps between the Te layers terminating the individual building blocks. The distance 

between these Te layers and the following cation layers are rather short, leading to a 3 + 3 

coordination of these cations and an arrangement resembling that in GeTe itself. The Te-Te 

distances between adjacent building blocks are significantly shorter than the sum of the van der 

Waals radii and indicate partially covalent bonding. Although these trigonal, thermodynamically 

stable phases contain no structural vacancies, the strongly distorted octahedral voids between 

these Te layers can formally be viewed as layer-like ordered cation-position “vacancies”.[16,17] 

The cubic rocksalt-type high-temperature phases are highly disordered with Ge, Sb, and 

vacancies occupying the cation positions and Te occupying the anion positions. The vacancy 

concentration depends on the ratio GeTe/Sb2Te3 (n).[18,19] In GeTe rich (n > 3) GST phase-

change materials, the structure of the crucial metastable crystalline phase is similar to the high-

temperature rocksalt-type phase. It is kinetically inert at ambient conditions, providing long-time 

data storage on rewriteable optical media.  

In recent years, the thermoelectric behavior of some GST materials has been investigated.[20] 

HRTEM investigations of spark plasma sintered Sb2Ge0.02Te3 revealed a large number of 

randomly distributed nanodomains, coupled with a 0.3 W/mK decrease in thermal conductivity 

compared to pure Sb2Te3. Consequently, the ZT value of Sb2Te3 increases from 0.74 to 0.84 at 

492 K when doped with small amounts of Ge.[21] Recent investigations indicate ZT values up to 

1.3 at 720 K for Ge-rich compositions (n ~ 12).[22] 

 

2.2.2.2 Experimental Section 

Bulk samples of Sb2Te3(GeTe)n (3 ≤ n ≤ 19) were prepared by melting (950 °C, 2 h) 

stoichiometric amounts of the elements Ge (99.999%, Sigma Aldrich), Sb (99.999%, Smart 

Elements), and Te (99.999%, Alfa Aesar) in silica glass ampules sealed under Ar atmosphere. 

Nanostructured samples were obtained by annealing the initially quenched samples at 500-

550 °C (i.e., in the stability range of the cubic high-temperature phase) for 2 days and quenching 

in water. The relaxed (trigonal) samples with less pronounced nanostructuring were annealed for 

2 days at 400 °C and slowly cooled in the furnace (2 h). A fraction of each sample was used for 

electron microscopy.  

Ingots for thermoelectric measurements were prepared under analogous conditions in silica glass 

ampules with flat bottom. The ingots obtained were disk-shaped with a diameter around 15 mm 

and a thickness of 2-6 mm. They were polished to obtain flat discs with a constant thickness. 

X-ray powder diffraction patterns matched those from corresponding samples used for other 

investigations. 
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The composition of the samples was verified by energy-dispersive X-ray spectroscopy (EDX). 

Typical analyses deviate less than 5 atom % from values corresponding to the starting mixture. 

Data acquisition was done using a JSM-6500F (Jeol, Japan) scanning electron microscope 

equipped with an EDX detector (model 7418, Oxford Instruments, UK). 

For transmission electron microscopy, samples were finely ground, dispersed in ethanol, and 

subsequently transferred on a copper grid coated with holey carbon film. Selected area electron 

diffraction (SAED) and high-resolution electron microscopy (HRTEM) were done on a 

JEM2011 (Jeol Ltd., Japan) with an tungsten thermal emitter and an acceleration voltage of 200 

kV equipped with a TVIPS CCD camera (model 114, resolution: 1k x 1k). Further HRTEM, 

SAED, EDX, and scanning transmission electron microscopy (STEM) using a high-angle 

annular dark-field (HAADF) detector was done on a Titan 80-300 (FEI, USA) with a field 

emission gun operated at 300 kV equipped with a TEMTOPS 30 EDX spectrometer (EDAX, 

Germany). Images were recorded on an UltraScan 1000 camera (Gatan, USA, resolution: 2k x 

2k). HRTEM and SAED data were evaluated using the Digital Micrograph[23] and EMS[24] 

software; for STEM and EDX data, the program ES Vision[25] was used. 

X-ray powder diffraction (XRPD) patterns were recorded from ground samples fixed on Mylar 

foils using silicone grease. Data were collected on a G670 Guinier camera (Huber, Germany) 

equipped with a fixed imaging plate detector with an integrated read-out system using Cu Kα1 

radiation (Ge monochromator, λ = 1.54051 Å).  

Temperature programmed XRPD patterns were collected using powdered samples filled into 

silica glass capillaries with a diameter of 0.3 mm and sealed with silicone grease under Ar. Data 

were collected using a Stadi P powder diffractometer (Stoe & Cie. GmbH, Germany) with a 

linear position-sensitive detector (PSD) and a graphite furnace using Mo Kα1 radiation (Ge 

monochromator, λ = 0.71093 Å). The samples were heated from room temperature to 600 °C 

(10°/min) and subsequently cooled to room temperature in the same way. Data were collected 

every 25 °C with 10 min acquisition time. Powder patterns were analyzed with WINXPOW.[26]  

Thermoelectric properties were measured up to 450 °C under vacuum using commercial and in-

house-built facilities of the DLR (Cologne, Germany). The Seebeck coefficient was measured by 

establishing a small temperature gradient across the sample while the temperature was changed 

slowly and continuously. Type-R thermocouples attached directly to the sample’s surface were 

used for both temperature measurement (T1 and T2) and Seebeck voltage (US) pickup via the Pt 

lines. The sample’s Seebeck coefficient was then calculated as  

12 TTTS
T
US Pt
S

sample −=Δ−
Δ

=  
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Electrical conductivity σ was calculated from the sample’s resistance R, measured using an AC 

method in order to reduce Peltier influences and a four-point-probe setup to avoid cable and 

contact resistances affecting the measurement. When the cross-section A of the sample and the 

distance l of the probe tips are taken into account, the electrical conductivity follows as σ = l/A R. 

Thermal conductivity κ was calculated from measurements of the thermal diffusivity Dth using a 

laser-flash apparatus (LFA 427, Netzsch GmbH & Co., Germany), the heat capacity cp in a 

differential scanning calorimeter (DSC 404, Netzsch GmbH & Co., Germany), and the density ρ 

using a Mohr’s balance: κ = Dth · ρ · cp. 

 

2.2.2.3 Results and Discussion 

2.2.2.3.1 Stability of the phases Sb2Te3(GeTe)n (3 ≤ n ≤ 17) 

Temperature-dependent XRPD investigations of quenched samples of Sb2Te3(GeTe)n 

(3 ≤ n ≤ 17) were performed in order to determine the existence range of the different phases 

(Table 1). Two changes occur when the quenched samples are heated (T1, T2) (Figure 2) and 

one during cooling (T3) (Table 1). All transformation temperatures depend on the composition, 

indicating the influence of the thickness of the distorted rocksalt-type building blocks and the 

vacancy concentration on the stability of each phase, respectively. Starting from quenched 

pseudocubic samples, diffusion processes occur at T1 when the quenched sample with short-

range ordered vacancies relaxes to the thermodynamically stable trigonal phase (see below), 

which transforms to the cubic high-temperature phase when the sample reaches the latter’s 

stability region (T2). When it is slowly cooled below that stability range, the transformation from 

the cubic to the trigonal phase occurs (T3). This phase transition is delayed because the high-

temperature phase can be undercooled (T3 < T2).  

 

Table 1. Phase transformation temperatures of Sb2Te3(GeTe)n (3 ≤ n ≤ 17) 
from temperature programmed XRPD 

Composition T1 (in °C) T2 (in °C) T3 (in °C) 
Sb2Te3(GeTe)3 375 560 550 
Sb2Te3(GeTe)7 250-320 500 460 
Sb2Te3(GeTe)12 325 475-500 460 
Sb2Te3(GeTe)14 325 450 320 
Sb2Te3(GeTe)17 300 410 250-275 
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Fig. 2: Heating section of the temperature-dependent PXRD of different Sb2Te3(GeTe)n samples 
with the transition temperatures T1 and T2 (left: temperatures in °C). 

 

With increasing GeTe content n, the cubic phase obviously becomes more stable and more inert 

at lower temperatures: it is reached at lower temperatures (T2) upon heating and can be 

increasingly undercooled (T3 decreases). GeTe itself cannot be undercooled as it exhibits no 

vacancies.[27] Its transition temperature (ca. 390 °C for slightly Te-rich samples) between the 

rhombohedral and the cubic phase continues the trend given by samples with increasing n.  

The diffusion pathways required to reach the trigonal phase with more or less equidistant van der 

Waals gaps depend on the block size. Due to the long diffusion pathways involved, the cubic 

phase can be increasingly undercooled and partially retained at room temperature by quenching 

the samples if the GeTe content is higher (i.e., thicker blocks). The transition from the trigonal to 

the cubic phase requires a rearrangement of the Te substructure and the introduction of randomly 

distributed structural vacancies on cation positions. This process is governed by thermodynamics 

rather than by kinetics. Trigonal phases of all samples investigated can be long-time annealed at 

400 °C without phase transition to the cubic high-temperature phase. 
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2.2.2.3.2 Influence of thermal treatment on the nanostructure 

The microstructure of Sb2Te3(GeTe)12 samples with different thermal treatment have been 

investigated by TEM. Samples quenched from temperatures in the existence range of the cubic 

high-temperature phase show intersecting defect layers perpendicular to all pseudocubic <111> 

directions in the HRTEM images. A parquet-like structure is formed, and corresponding diffuse 

intensities are observed in the SAED patterns (Figure 3). The defect layers are directly imaged 

by Z contrast in STEM-HAADF images (electron-rich areas appear brighter). A similar HRTEM 

investigation of samples that were annealed in the existence range of the trigonal phase (400 °C) 

show parallel van der Waals gaps with irregular distances, which can only formally be viewed as 

“defect layers”. Accordingly, the corresponding SAED patterns show diffuse intensities only in 

the direction orthogonal to the layers (Figure 3). Slowly cooled samples resemble those obtained 

by annealing quenched ones.  

 

Fig. 3: Comparison of two samples of Sb2Te3(GeTe)12 with different thermal treatment (top: 
annealed at 400°C for 20h; bottom: quenched from 500 °C); each with HRTEM image (left, 
insert: corresponding Fourier transform), STEM-HAADF image (middle) and SAED (right).  
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The different arrangements of the defect layers or van der Waals gaps, respectively, are a 

consequence of the diffusion processes that occur during the phase changes associated with the 

thermal treatment. The disorder-order phase transition from the cubic high-temperature phase 

with random distribution of the vacancies to the long-range ordered trigonal structures, which are 

thermodynamically stable at room-temperature, requires a reconstructive phase transition 

including a rearrangement of the anion substructure. During this phase transformation, the short-

range order gradually increases when the vacancies are arranged in two-dimensional layers by 

diffusion in the solid state. In quenched phases, the defect layers are finite and arranged 

perpendicular to all <111> directions of the original cubic phase, forming the parquet-like 

structure consisting of multiple intersecting defect layers. Annealing quenched phases leads to 

further diffusion and thus to an extension of the defect layers toward the thermodynamically 

stable trigonal phase with an ideally symmetric, equidistant arrangement of van der Waals gaps. 

Summing up, the structure of the quenched phases combines features of both stable (low and 

high temperature) phases even though it cannot be observed as an intermediate state during the 

phase transition at equilibrium conditions. 

 

 

 

Fig. 4: Quenched sample with diffuse intensities in the corresponding Fourier transform and 
defect layers in HRTEM (left); after prolonged exposition (1 min) to the electron beam, there are 
no diffuse intensities in the Fourier transform and no defect layers in HRTEM (right). 
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Investigations of the phase diagram Ge-

Sb-Te showed that such samples need up 

to 8 months of annealing to reach the 

trigonal thermodynamically stable 

phase.[28] Therefore, it is possible to 

obtain various stages between the 

structure of quenched samples and the 

stable phase by controlling the annealing 

conditions. This transformation is 

hindered because the cubic structure is 

locally preserved, owing to stresses 

caused by multiple twinning that is 

unavoidable in quick transitions from the 

cubic high-temperature to the 

rhombohedral phase (translationengleiche 

group-subgroup relationship).[30] When 

the quenched pseudocubic samples are 

heated, the mobility of vacancies 

increases and stresses are relieved during 

the transformation to the stable trigonal 

structure (T1 in Table 1). 

In situ TEM experiments show that the 

defect layers present in samples quenched 

from the cubic high-temperature phase 

disappear when the sample is exposed to 

the highly energetic electron beam for 

about 1 min (Figure 4). This is similar to 

the behavior described for Ge2Sb2Te5.[29] 

 

 

 

 

 

 
Fig. 5. HRTEM images of different 
Sb2Te3(GeTe)n samples with similar thermal 
treatment (top to bottom n = 4.5; 7; 12; 19; the 
defect layers are highlighted with white dotted 
lines) – they become fewer and less regularly 
spaced with increasing n.  
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2.2.2.3.3 Influence of the composition on the nanostructure of quenched Sb2Te3(GeTe)n 

samples 

The nanostructure of Sb2Te3(GeTe)n (n = 4.5-19) samples quenched from the cubic phase not 

only depends on the thermal treatment but also on the composition (n) of the samples. Higher 

GeTe contents result in fewer defects in the high-temperature phase and larger blocks in the 

trigonal phase with strongly varying thicknesses. Higher defect concentrations at lower GeTe 

contents correspond to an increased number of van der Waals gaps with more regular spacing 

(Figure 5). This change in the variance of the spacing results from the increasing diffusion 

pathways which are necessary to reach the ideal, thermodynamically stable trigonal phase. 

Samples with a higher GeTe content must be annealed much longer in order to reach this state, 

and therefore, the block thickness distribution is more irregular as compared to samples with the 

same thermal treatment and a lower GeTe content. 
 

 

Fig. 6: HAADF-STEM image (pseudocubic zone axis <110>, with corresponding SAED of the 
whole crystallite) of Sb2Te3(GeTe)12; the atom rows on either side of the defect layer are marked 
(gray and white dotted lines); at the defect layer the structure is shifted by 1/3 of the distance 
between the atom rows parallel to the defect layer; the image also shows the relaxation of the 
defect layer (black lines).  

Increased diffusion pathways have a second effect on the microstructure. The probability of 

intersecting defect layers with different orientations increases when the diffusion pathways 

necessary to form the stable phase increase. Therefore, the fraction of domains with intersecting 

defect layers forming parquet-like structures increases with the GeTe content. Thus, in addition 
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to the thermal treatment, the composition is an important factor that determines the nanostructure 

of Sb2Te3(GeTe)n. 

 

2.2.2.3.4 Structural relaxation around the defect layers in Sb2Te3(GeTe)12. 

We reported in earlier works that the relaxation and/or shift of Te atom layers upon “vacancy 

ordering” leads to van der Waals gaps rather than defect layers in an undistorted matrix.[22,30] 

High-resolution imaging both by HRTEM and STEM-HAADF shows that the magnitude of 

relaxation between the distorted rocksalt-like building blocks depends on the lateral extension of 

the “vacancy” layers. Where they terminate, the relaxation is hindered by the surrounding bulk 

and the Te atom positions of the rocksalt-type phase are approximately retained. For the same 

reason, no relaxation occurs if the defect layers extend over just a few unit cells. Whenever 

defect layers extend over larger areas, Te-Te contacts are formed and the structure is partially 

relaxed (Figure 6). The relaxation includes a shift of 1/3 of the distance between the rows of 

atom columns parallel to the defect layers. This shift corresponds to the structure around the van 

derWaals gaps in stable trigonal phase (compare Figure 1), whose structures were derived from 

single-crystal data.[31,32] This proves the van der Waals character of extended defect layers 

whereas less extended ones are rather similar to “point defects” (point defect = a type of defect 

as opposed to a planar defect or a line defect) with little influence on the surrounding lattice.  

 

2.2.2.3.5 Influence of the microstructure on the thermoelectric characteristics of 

Sb2Te3(GeTe)n (n = 3-19) 

The thermoelectric properties of Sb2Te3(GeTe)n (n = 3, 4.5, 7, 12, 19) samples, each quenched 

from its cubic high-temperature phase, show that the nanostructures resulting from different 

compositions (Figure 7) have diverse and, in part, complex consequences.  

For all samples of Sb2Te3(GeTe)n with n = 3-19, the Seebeck coefficients (S) are quite similar 

and increase continuously with the temperature reaching 100-200 µVK-1 at 450 °C. They 

correspond to p-type semiconductors. For n = 19, the increase with the temperature is most 

pronounced. Such values are common for materials with high ZT values, e.g., TAGS (Te-Ag-Ge-

Sb) compounds with S = 160-220 µV/K at 450 °C, the exact values depending on the 

composition and sample treatment.[33,34] Water quenched and rapidly solidified (melt-spun) 

samples of layered Sb2Te3(GeTe)n with n = 1or 2 reach S = 60-110 µV/K at 450 °C.[35] 
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The temperature dependence of the electrical conductivity (σ) corresponds to metallic behavior. 

Upon heating, σ decreases down to 800-2000 S/cm at 450 °C, which is also similar to TAGS 

compounds (800-1200 S/cm at 450 °C)[33,34] and optimized Sb2Te3(GeTe)n (n = 1, 2) (1500-2000 

S/cm at 450 °C).[35] The electrical conductivity decreases with the GeTe content for n = 3, 4.5, 7, 

probably as a consequence of the increasingly inhomogeneous spacings between defect layers 

(see above). Further increasing the GeTe content (n = 12, 19) increases σ, probably because the 

defect layer concentration gets rather small and its influence on the metallic character becomes 

less dominant. The fact that Sb2Te3(GeTe)12 exhibits the maximal electrical conductivity is 

probably the result of a complex interplay of different factors. 

As the positive effect of a high electrical conductivity σ is compensated by a higher electronic 

part of the thermal conductivity κe, the phononic part (lattice thermal conductivity κL) is crucial 

for ZT. The overall thermal conductivities of the compounds Sb2Te3(GeTe)n (n = 3-19) range 

from 1 to 3.5 W/mK, the lattice part amounts to 0.2-1.3 W/mK at 450 °C. For TAGS, the overall 

thermal conductivity ranges from 1.5 to 2.8 with a lattice part around 0.4 at 450 °C.[33,34] 

 

Fig. 7: Thermoelectric characteristics of quenched Sb2Te3(GeTe)n (n = 3 – 19) samples; electric 
conductivity (σ) (top left); Seebeck coefficient (S) (top right); thermal conductivity (κ) (middle 
left); lattice thermal conductivity (κL) (middle right) and the resulting thermoelectric figure of 
merit (ZT, bottom). 
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In general, more pronounced nanostructuring is expected to cause more phonon scattering and 

thus reduce κL, thereby increasing ZT. Higher defect concentrations should have a similar effect. 

Sb2Te3(GeTe)3 has the highest overall thermal conductivity of the samples investigated. Its cubic 

high-temperature phase exhibits a maximum cation defect concentration; however, it cannot be 

quenched to a pseudocubic one with highly disordered defect planes. Therefore, quenched 

samples of Sb2Te3(GeTe)3 are not significantly different from annealed ones and exhibit an 

almost completely ordered trigonal structure with equidistant van der Waals gaps. Since such an 

ordered arrangement has less potential to suppress the phonon proliferation, Sb2Te3(GeTe)3 has 

the highest lattice (κL) and overall (κ) thermal conductivity. This results in a relatively low ZT 

value. Therefore, the rather low ZT of more or less long-range ordered phases Sb2Te3(GeTe)n 

with n = 1 or 2 (~0.2 at 450 °C)[35] is not surprising. 

Since ZT of all compounds investigated increases with temperature, the temperature dependence 

of κL is crucial. Sb2Te3(GeTe)4.5 has a very low κL and thus the highest ZT at roomtemperature, 

probably due to the high defect concentration combined with disorder. However, in this case, the 

diffusion pathways are rather short so that the transition to the stable trigonal phase causes κL to 

increase significantly with the temperature. That outweighs the increasing Seebeck coefficient 

and results in a comparably low ZT at higher temperatures. The same effect is observed for 

Sb2Te3(GeTe)7 which has a higher κL at room temperature due to the reduced defect 

concentration and therefore a lower ZT value. The overall low thermal conductivity is not helpful 

as it comes with a low electrical conductivity. The lower defect concentration also means less 

pronounced effects of structural changes at higher temperatures since the diffusion pathways are 

significantly increased compared to Sb2Te3(GeTe)4.5. The compounds with higher GeTe contents 

(n = 12, 19) increasingly show the parquet-like structure, owing to intersecting finite defect 

layers as a result of the even longer diffusion pathways hypothetically required to form the 

thermodynamically stable trigonal phase. The diffusion processes are, of course, more 

pronounced at higher temperatures, which results in an increased κL, except for Sb2Te3(GeTe)19, 

where there is little diffusion due to the low defect concentration. The strongly increasing 

Seebeck coefficient of the compounds with n = 12 and 19 leads to the steep increase of ZT at 

higher temperatures. As a result, the ZT values reach 1.3 at 450 °C for both Sb2Te3(GeTe)19 and 

Sb2Te3(GeTe)12. 
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Fig 8: Comparison of the thermoelectric characteristics of quenched samples of Sb2Te3(GeTe)n 
(n = 7, 12) with those of annealed and slowly cooled ones; left side: thermoelectric figure of 
merit (ZT); right side: lattice thermal conductivity.(κL). 

 

In order to analyze the influence of the nanostructure on the thermoelectric properties 

independent of the chemical composition and the associated carrier concentration, samples with 

identical composition but different thermal treatment were investigated. Quenched samples of 

Sb2Te3(GeTe)12 and Sb2Te3(GeTe)7 have a higher ZT value at room temperature than those 

annealed at 400 °C (in the stability range of the trigonal phase) and slowly cooled afterward 

(Figure 8). The Seebeck coefficients are influenced very little by the thermal treatment and 

almost identical for the samples investigated. Up to 300 °C, i.e., in the temperature range where 

diffusion effects are negligible, the lattice thermal conductivity of the quenched samples is 

significantly lower, reflecting the high degree of phonon scattering by the finite defect layers 

with irregular spacings. This effect is much more pronounced in Sb2Te3(GeTe)12 than it is in 

Sb2Te3(GeTe)7. This is obviously due to the parquet-like structure of quenched Sb2Te3(GeTe)12 

which is neither present in annealed samples nor in quenched Sb2Te3(GeTe)7. 

The electrical conductivity σ of annealed and slowly cooled Sb2Te3(GeTe)12 is lower than that of 

quenched samples. For Sb2Te3(GeTe)7, however, σ nearly doubles between 300 and 400°C, 

resulting in a higher ZT value at high temperatures than that of quenched samples. The slowly 

cooled samples exhibit a structure that is closer to the thermodynamically stable layered structure 

than that of the quenched sample. Most defect layers in slowly cooled Sb2Te3(GeTe)12 are 

already ordered and form van der Waals gaps, which results in long diffusion pathways for the 

remaining disordered defects. This results in a decreasing lattice thermal conductivity with 

increasing temperatures, comparable to the situation in quenched Sb2Te3(GeTe)19. Thus, the high 

ZT value of quenched Sb2Te3(GeTe)12 is a consequence of the reduced thermal conductivity in 

combination with a high electrical conductivity. 
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2.2.2.4 Conclusion 

The nanostructure of Sb2Te3(GeTe)n (n = 3-19) can be tuned both by varying the composition 

and by changing the thermal treatment of the samples. Cation defects tend to form layers, which 

become van der Waals gaps if they are extended enough to allow the relaxation of the 

surrounding structure. Quenching from highly disordered cubic high-temperature phases leads to 

finite intersecting defect layers forming a parquet-like structure, which (especially for n = 12) 

leads to a significant reduction of the lattice thermal conductivity. The concentration and 

arrangement of the defect layers have substantial influence on the thermoelectric properties. The 

temperature dependence of the individual contributions varies in a rather complicated way. 

Although this makes predictions rather difficult, the complex interplay of different structural 

features correlates with the properties and is very valuable for an a posteriori understanding of 

many observed effects.  

The Seebeck coefficient of all compounds investigated rises with increasing temperature, 

especially for high GeTe contents, and indicates p-type semiconductors. Materials with 

intermediate n such as Sb2Te3(GeTe)7 have the lowest electric conductivity. As their lattice 

thermal conductivity increases with temperature, they interestingly exhibit the lowest ZT values 

at high temperatures, in addition to those (e.g., n = 3) that exhibit fully ordered structures 

independent of the thermal treatment. A high defect concentration leads to a relatively 

homogeneous arrangement of parallel “defect layers” which correspond to van der Waals gaps 

and result in an increased electric conductivity. The high defect concentrations induces a low 

lattice thermal conductivity in case enough disorder remains in quenched pseudocubic samples. 

This holds for GeTe contents as low as n = 4.5; further decreasing n is not helpful as short 

diffusion pathways usually yield highly ordered structures (as shown for n = 3). The increased 

mobility of the atoms at higher temperatures emphasizes the importance of order-disorder effects 

and causes a more or less pronounced transition to the thermodynamically stable phase with 

equidistant van der Waals gaps around ~300 °C. In compounds with higher GeTe contents, the 

reduced defect concentration increases the electrical conductivity while the long diffusion 

pathways required to form extended defect layers result in intersecting finite defect layers and a 

more pronounced nanostructure, decreasing the lattice thermal conductivity (especially for n = 

19). Therefore, the compounds Sb2Te3(GeTe)12 and Sb2Te3(GeTe)19 have rather low ZT values at 

room temperature but reach the highest ZT values up to 1.3 in the high-temperature range. 

Although due to limited long-time stability above ~300 °C, this value has little meaning for the 

application in actual devices;the ZT values of about 0.7 in the temperature interval where the 

nanostructures are long-time stable still seems promising. Probably, the properties can be further 
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enhanced by doping with additional elements, even if such efforts might further complicate the 

situation. In contrast to other multinary telluride systems, germanium antimony tellurides do not 

tend to exhibit phase separation (e.g., precipitates) and, despite the nanostructuring, remain 

chemically homogeneous.  
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2.3 Influencing properties and nanostructures of germanium 

antimony tellurides by substitution 
 

2.3.1 The solid solution series (GeTe)12M2Te3 (M = Sb, In): nanostructures 

and thermoelectric properties 

 

T. Rosenthal, S. Welzmiller, O. Oeckler 

Solid State Sci. 2013, 25, 118-123. 

 

Abstract 

Quenching rocksalt-type high-temperature phases of members of the solid solution series 

Ge12M2Te15 (M = Sb, In) results in nanostructured (pseudo-)cubic materials as shown by 

high-resolution electron microscopy. The transition temperatures between the 

thermodynamically stable trigonal phases and the cubic high-temperature phases decrease 

with increasing In content. Due to a pronounced increase of the Seebeck coefficient, the 

thermoelectric figure of merit (ZT) of Ge12SbInTe15 (average structure: Fm3m, a = 5.9603(1), 

RBragg = 0.024) is higher than that of Ge12Sb2Te15 up to 300 °C. This effect is even more 

pronounced for metastable Ge12In2Te15 (average structure: Fm3m, a = 5.94723(4), RBragg = 

0.048). 

 

2.3.1.1 Introduction 

Germanium antimony tellurides, so called GST materials, are commonly used as thin-film 

phase-change materials in optical data storage media such as rewritable DVDs and BluBay 

discs and also as electrically switchable non-volatile PC-RAM devices.[1-4] Tuning the 

nanostructure of bulk material with similar chemical compositions by utilizing phase 

transitions between a cubic disordered rocksalt-type high-temperature (HT) phase and a 

layered trigonal phase, which is stable at ambient temperature, yields thermoelectric materials 

with figures of merit (ZT) up to 1.3.[5,6] During this phase transition, the randomly distributed 

vacancies present in the cubic phase form defect layers with limited lateral extension 

perpendicular to the cubic <111> directions. This represents a “transition state” towards the 

layered phase where rocksalt-type blocks are separated by van der Waals gaps whose 

formation involves relaxation processes of the adjacent Te-atom layers when the lateral 



                                    2 TEM investigations of nanostructured germanium antimony tellurides 
 

48 

extension of the defect layers increases.[5,6] The thermoelectric properties of these 

(GeTe)nSb2Te3 compounds depend on their GeTe content (n) and the synthesis conditions 

(temperature, annealing time and cooling rate). Furthermore, the thermoelectric properties can 

be influenced by doping, e.g. with Se and Sn.[7] Despite the different chemical behavior of In 

and Sb in most of their compounds, the combination of In3SbTe2 and Ge2Sb2Te5 in thin films 

was performed successfully and shown to influence the characteristics of the phase transition 

in In-Ge-Sb-Te thin films.[8] Doping thin GST films with In results in retarded crystallization, 

partially as a result of phase separation and the increased transition temperature between the 

amorphous and the metastable crystalline (NaCl-type) phase.[9-11] This altered crystallization 

behavior probably also affects the formation of nanostructures upon quenching the HT phase 

and might influence the kinetic stability of the nanostructure in In-doped GST bulk samples. It 

has been shown by resonant X-ray diffraction – which allows one to distinguish elements with 

very similar electron counts such as Te, Sb and In – that In can substitute Sb in trigonal 33R-

Ge3InSbTe6.[12] This can be explained by the similar ionic radii of both elements in octahedral 

coordination (Sb3+ 76 pm; In3+ 80 pm).[13] Such substitutions, of course, influence the 

electronic band structure as well as the phonon scattering and may provide a simple way to 

tune the thermoelectric properties. Here we report on the synthesis and thermoelectric 

characterization of bulk samples of solid solutions between Ge12Sb2Te15 and Ge12In2Te15. 

 

2.3.1.2 Experimental Section 

2.3.1.2.1 Synthesis 

Ge12(Sb1-xInx)2Te15 (x = 0, 0.5, 0.75, 1) samples were prepared by melting stoichometric 

amounts of the elements Ge (99.999%, Sigma Aldrich), Sb (99.999%, Smart Elements), Te 

(99.999%, Alfa Aesar) and In (99.999%, Smart Elements) in silica glass ampoules sealed 

under Ar atmosphere at 950 °C for 2 hours. The samples were quenched in water and 

annealed at 590 °C for 3 days and subsequently quenched in water. For thermoelectric 

characterization, disc-shaped pellets with 20 mm diameter were prepared using ampoules of 

appropriate dimensions and grinding the ingots to a thickness of 3-4 mm.  

 

2.3.1.2.2 Powder X-ray diffraction 

Powder diffraction experiments were carried out with a G670 Guinier camera (Huber, 

Germany) with a fixed imaging-plate detector and an integrated read-out system using Cu-

Kα1 radiation (Ge monochromator, λ = 1.54051 Å). Temperature-programmed investigations 
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were done using a Stadi P powder diffractometer (Stoe & Cie. GmbH, Germany) with a 

imaging plate detector system and a graphite furnace using Mo-Kα1 radiation (Ge 

monochromator, λ = 0.71093 Å) in Debye-Scherrer geometry. The samples were heated from 

room temperature up to 700 °C with 10 °C/min in silica glass capillaries and data were 

collected every 25°C with 10 minutes acquisition time. Rietveld refinements of the powder 

patterns were carried out using the program package TOPAS-Academic.[14]  

 

2.3.1.2.3 Electron microscopy 

Energy dispersive X-ray spectroscopy (EDX) was done using a Jeol JSM-6500F scanning 

electron microscope (SEM) with a Si/Li EDX detector (Oxford Instruments, model 7418). 

Electron diffraction patterns (SAED, selected area electron diffraction) and high-resolution 

transmission electron micrographs (HRTEM) were recorded on a FEI Titan 80-300 

transmission electron microscope with a field emission gun (acceleration voltage 300 keV). 

The images were recorded on a Gatan UltraScan 1000 camera with a resolution of 2k x 2k. 

Additional EDX measurements were performed in the TEM using a TEM TOPS 30 EDX 

spectrometer (EDAX). The data were evaluated using the software Digital Micrograph[15] and 

ES Vision[16]. 

 

2.3.1.2.4 Thermoelectric measurements 

 

Thermoelectric measurements were done up to 450 °C under vacuum conditions using in-

house-built (DLR, Cologne, Germany) and commercial facilities (LSR-3 for S and σ, LFA 

1000 for κ, both Linseis GmbH, Germany; as well as LFA 427 for κ, Netzsch GmbH & Co., 

Germany). The determination of the thermal conductivity κ was followed by the combined 

measurement of the Seebeck coefficient S and the electrical conductivity σ. 

The values of σ were calculated from the resistance R taking into account the cross-section A 

of the sample and the distance l of the probe tips: σ = 1/A R-1. In order to reduce Peltier 

influences, the resistance was measured using an AC method; to avoid cable and contact 

resistances affecting the measurement a four-point-probe setup was used. Seebeck coefficients 

were measured by slowly and continuously changing the environmental temperature in the 

presence of a small temperature gradient across the sample. Temperatures measurement (T1 

and T2) and Seebeck voltage (US) pickup were carried out with the Pt lines of type-R 
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thermocouples attached directly to the samples. The sample’s Seebeck coefficient was then 

calculated as Ssample = Us/∆T – SPt  with ∆T =|T2 – T1|. 

The thermal diffusivity Dth was measured using laser-flash apparatuses and the heat capacity 

cp was measured by differential scanning calorimetry (DSC 404, Netzsch GmbH & Co. or 

DSC PT10, Linseis GmbH, Germany). The densities ρ determined using a Mohr’s balance 

were consistent with the X-ray densities. The thermal conductivities κ were calculated from 

these measurements according to: κ = Dth · ρ · cp. The thermoelectric figure of merit (ZT) 

results from these properties according to  ZT = S2 · σ · κ−1 · Τ; where T is the absolute 

temperature. 

 

2.3.1.3 Results and Discussion 

2.3.1.3.1 Crystal structure of quenched Ge12(Sb1-xInx)2Te15 phases 

Rietveld refinements and EDX analyses of samples quenched from the cubic HT phase prove 

the existence of a solid solution series of quenched (pseudo-)cubic Ge12(Sb1-xInx)2Te15 

(0 ≤ x ≤ 1) phases. The composition of the samples was verified by a minimum of 4 

individual SEM-EDX measurements for each sample (Table 1). 

The powder diffraction patterns of the samples Ge12(Sb1-xInx)2Te15 (0 < x ≤ 1) were fitted with 

a cubic NaCl-type structure model, similar to the one described for metastable crystalline 

phases of phase-change materials.[17] Te anions occupy the 4a position and Sb, Ge, In and 

vacancies share the 4b cation position. A fit with a GeTe-type model[18] (space group R3m, 

atoms on 3a (0, 0, z), Te at the origin (z = 0), cations and vacancies at z = ~0.5) showed no 

significant deviations of the metrics and the coordination polyhedra from the cubic structure. 

However, both reflection profiles and atomic displacement parameters indicate that the cubic 

model represents a good, yet still approximate description of the average structure, as strain 

distortions and concentration gradients may be present. For Ge12Sb2Te15 (x = 1), the 

refinement of a trigonal GeTe-type structure revealed a significant deviation from the cubic 

metrics with an a/c ratio of 2.4680 (ideal value for the trigonal setting of cubic metrics: 

2.4498), which is also obvious as the "pseudocubic" 200 reflection (at ca. 30° 2ϑ) is much 

sharper than others that split when there is a trigonal distortion. The trigonal symmetry is 

corroborated by the clear 3+3 coordination of the atoms as suggested in ref. [19] 

For all refinements of the cubic structure model, the same parameter set was used. Site 

occupation factor were derived from the nominal composition verified by EDX and not 
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refined. Equal displacement parameters were employed for the cations sharing one position. 

Reflection profiles were described by a fundamental parameter approach as a direct 

convolution of parameters of the experimental setup, anisotropic microstrain and crystallite 

size effects. Preferred orientation was taken into account using spherical harmonics. The 

results of the Rietveld refinements are shown in Fig. 1, crystallographic data are given in 

Tables 2 and 3, respectively. Further details of the crystal structure investigations may be 

obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, 

Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-

karlsruhe.de /request_for_deposited_data.html) on quoting the depository numbers CSD-

426029, CSD-426031 and CSD-426030 for x = 0.5, 0.75 and 1, respectively (data for 

Ge12Sb2Te15 cf. reference [5]). 

 

Table1. Results from SEM-EDX measurements (calculated for the nominal 
composition/measured, in atom %). 

 sample Ge Sb In Te 
Ge12Sb2Te15 41.4 / 41(2) 6.9 / 7.5(7) 0 / 0 51.7 / 51.7(9) 
Ge12SbInTe15 41.4 / 42(1) 3.45 / 3.3(3) 3.45 / 3.5(1) 51.7 / 51.1(8) 
Ge12Sb0.5In1.5Te15 41.4 / 42(1) 1.7 / 1.6(3) 5.2  /5.5(3) 51.7 / 51.2(8) 
Ge12In2Te15 41.4 / 41.6(7) 0 / 0 6.9 / 7.4(3) 51.7 / 51.0(5) 

 

The refinements show that the cubic lattice parameter a decreases with increasing In content 

(x), the value for x = 0.75 corresponds to the average of those for x = 0.5 and 1, which is 

consistent with Vegard’s law and yields a linear fit a = 5.9733(5) - 0.02614(7) x. This would 

result in a = 5.9733 Å for x = 0 which is in good agreement with the cube root of the volume 

of the trigonal cell (5.9727 Å). In addition, a cubic sample with x = 0.1, which was not 

investigated in further detail, yielded a = 5.9727 Å in good agreement with 5.9707 Å as 

calculated from the Vegard relationship. 
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Fig. 1: Rietveld refinements of Ge12(Sb1-xInx)2Te15: from top to bottom for x = 0, 0.5, 0.75, 1; 
experimental (black) and simulated (gray) powder patterns, difference plot (below) and 
reflection markers (black, bottom); the scaling of the 2ϑ axis is the same for all plots, the 
intensity scale is normalized according to the strongest reflection (same scaling for pattern 
and difference plot); for x = 0, arrows mark some of the reflections that are broadened due to 
the rhombohedral symmetry of the GeTe type of this compound. 
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Table 2. Atom coordinates and isotropic displacement parameters for Ge12(Sb1-xInx)2Te15 (in 
Å².); space groups see Table 3. 

 Te  cations and vacancies 
 position Uiso  position occupancy Uiso 
Ge12Sb2Te15  3a 0 0 0 1.01(2)  3a 0 0 0.4818(5) 0.8 Ge, 0.133 Sb 1.85(7) 
Ge12SbInTe15 4a 0 0 0 1.50(3)  4b ½ ½ ½  0.8 Ge, 0.067 Sb, 0.067 In 3.36(5) 
Ge12Sb0.5In1.5Te15 4a 0 0 0 1.46(2)  4b ½ ½ ½ 0.8 Ge, 0.033 Sb, 0.1 In 3.26(3) 
Ge12In2Te15 4a 0 0 0 0.42(2)  4b ½ ½ ½ 0.8 Ge, 0.133 In 2.87(3) 

 

Table 3. Details of the Rietveld refinements for the quenched Ge12(Sb1-xInx)2Te15 phases. 

 Ge12Sb2Te15  Ge12SbInTe15 Ge12Sb0.5In1.5Te15 Ge12In2Te15 
M (in g mol-1) 3029.20 3022.26 3018.79 3015.12 
F(000) 337.6 337.1 336.8 336.4 
crystal system 
/ space group (no.) 

trigonal / R3m 
(160) 

cubic / Fm3m 
(225) 

lattice parameters (in Å) a = 4.2128(1) 
c = 10.3971(7) a = 5.9603(1) a = 5.95346(6) a = 5.94723(4) 

cell volume (in Å3) 159.80(1) 211.74(1) 211.012(6) 210.350(4) 
density (X-ray, in g/cm³) 6.295 6.320 6.334 6.347 
radiation Cu-Kα1 (λ = 1.540596 Å) 
2θ range (in °) 20 ≤ 2θ ≤ 100 
parameters  
(thereof background) 30 (6) 20 (12) 20 (12) 20 (12) 

Rp / Rwp  0.025 / 0.035 0.061 / 0.092 0.055 / 0.081 0.042 / 0.068 

GooF / RBragg 1.399 / 0.009 4.087 / 0.024 3.590 / 0.027 2.844 / 0.048 
 

2.3.1.3.2 Influence of In substitution on strain and on the phase transition temperatures 

The misfits in the difference plot of the Rietveld refinements are a consequence of reflection 

broadening. According to the refined fundamental parameters, this is due to anisotropic 

microstrain as well as domain size (microstructure) effects[19] and probably also local 

chemical variations. With increasing In content, the reflections in the powder patterns become 

sharper and more Lorentz-shaped, indicating less microstrain as the local deviations from 

cubic metrics become smaller and the situation remains closer to that of the cubic HT phase. 

In addition, strain effects are probably less pronounced due to the lower transition temperature 

between the trigonal phase and the cubic HT phase in In substituted samples as shown by 

temperature-dependent powder X-ray diffraction (cf. Fig. 2 and Table 4). As the stability 

region of the cubic phase extends towards lower temperatures with increasing x, quenching 

yields samples whose structure is more similar to the HT phase. Yet, the general thermal 

behavior of In-substituted samples corresponds to that of unsubstituted ones.[6]  
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Fig. 2: Temperature-dependent powder diffraction patterns of Ge12(Sb1-xInx)2Te15 with x = 0 
(left), 0.5 (middle) and 1 (right); heating (bottom to middle) and cooling (middle to top). The 
strongest reflections of In2Te3 phase are marked with white ellipses and the transition 
temperatures are indicated by horizontal lines: pseudo-cubic  trigonal (dot-and-dashed); 
trigonal  cubic (during heating, dashed) and cubic  trigonal (during cooling, dotted). 
 

Table 4. Phase transition temperatures of Ge12(Sb1-xInx)2Te15 (0 ≤ x ≤ 1) from the experiments 
shown in Fig. 2 (for Ge12Sb2Te15, also see ref. [6]). 

phase transition Ge12Sb2Te15 Ge12SbInTe15 Ge12In2Te15  

pseudo-cubic → trigonal 325 °C 290 °C ~130 °C  

trigonal → cubic (heating) 475 °C 440 °C ~260 °C*  

cubic  trigonal (cooling) 460 °C 310 °C 190 °C  

melting point ~700 °C 700 °C 690 °C  

 

The increasing mobility at higher temperatures leads to the transition from the quenched 

pseudocubic phase to the thermodynamically stable trigonal phase. The cubic HT phase is 

formed when its existence region is reached and is stable up to the melting point. When the 

melt is slowly cooled, the cubic HT phase forms and upon further cooling transforms to the 

trigonal phase. 

In the case of Ge12In2Te15, the transition to a trigonal GeTe-type phase during heating is 

indicated by reflection broadening only. In addition, the segregation of a binary or doped 

indium telluride occurs at 260 °C when the HT phase is formed. Such a segregation has also 

been reported for In substituted thin-film Ge2Sb2Te5.[10] The binary phase is present up to 

430 °C when it probably dissolves in the HT phase of Ge12In2Te15 which then is stable up to 

the melting point at 690 °C. When the melt is slowly cooled, a homogeneous cubic phase 

reappears, only below 380 °C the segregation is observed. The remaining In-substituted main 

phase distorts to a trigonal GeTe-type phase below 190 °C. This distortion is much less 

pronounced than that of Ge12(Sb1-xInx)2Te15 (x = 0, 0.5) described above, which involves the 

formation of van der Waals gaps. Very small amounts of In2Te3 also occur when the trigonal 

phase of Ge12InSbTe15 is formed. Thus, the quaternary phases are only stable at high 
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temperatures as a cubic phase and metastable, respectively, as the pseudocubic phase 

accessible by quenching. The thermodynamically stable state at ambient conditions is a 

mixture of In2Te3 and trigonal Ge12Sb2Te15 probably doped with In. 

 

2.3.1.3.3 Influence of the In substitution on the nanostructure  

TEM investigations of Ge12(Sb1-xInx)2Te15 (x = 0, 0.5, 1) samples reveal their rocksalt-type 

average structure with pronounced layer-like short-range ordering of the defects forming a 

parquet-like nanostructure as reported for Ge12Sb2Te15 (cf. Fig. 3).[5,6] This leads to 

characteristic diffuse intensities in SAEDs and Fourier transforms of HRTEM images; and the 

defect layers are clearly visible in the HRTEM images themselves. It turned out that, in 

general, their relative arrangement is not significantly affected by the In substitution. The 

nanostructure of GST thermoelectrics depends significantly on the vacancy concentration (as 

discussed in detail in ref. [6]) which is given by n in (GeTe)n(Sb,In)2Te3 and does not change 

upon substitution with In. The cooling rate, which was not varied in the present investigation, 

further determines the structural features of GST thermoelectrics.[19] Substitution influences 

the existence regions of the different phases and thus the diffusion processes and, 

consequently, the nanostructures formed. For Se-substituted GST samples, the lower 

transition temperatures between the cubic HT phase and the trigonal phase are correlated to 

smaller average lateral extensions of the defect layers.[7] This effect also explains their slightly 

different average extension in the HRTEM images of Ge12(Sb1-xInx)2Te15 with different x. 

Lower phase transition temperatures, especially for Ge12In2Te15, mean less time for vacancy 

diffusion during quenching and lead to less extended defect layers. Thus, the phase transition 

temperatures influence strain effects and the layer-like short-range ordering of the vacancies 

but do not have a significant impact on the principal arrangement of the defect layers. 

Both for Ge12SbInTe15 and Ge12In2Te15, TEM-EDX measurements do not show significant 

chemical variation within crystallites and between individual crystallites. The average 

composition was determined as Ge12.2(2)Sb1.2(3) In1.2(1)Te15 and Ge12.4(5)In2.2(1)Te15, respectively. 
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Fig. 3: HRTEM images for the cubic <100> zone axis with corresponding SAED patterns 
(with beam stop) and Fourier transforms of the images; for each composition, images for two 
different representative crystals are shown. 

2.3.1.3.4 Influence of the In substitution on the thermoelectric properties  

The difference in the thermoelectric properties of Ge12Sb2Te15 compared to Ge12SbInTe15 and 

Ge12In2Te15 (Fig. 4) is most significant concerning the much higher Seebeck coefficients of 

the In-containing samples, which exhibit only minor changes with temperature. Therefore, at 

temperatures below 300 °C the ZT value of the substituted samples is higher. However, the 

high values for Ge12In2Te15 are not long-time stable and also depend on the measurement 

procedure as the compound tends to decompose as described above. 

The higher Seebeck coefficients of the semiconducting compounds Ge12In2Te15 and - even 

more pronounced - Ge12SbInTe15 are reflected in their lower electrical conductivities as both 
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quantities are related by the charge carrier concentration, which is apparently reduced by In 

substitution. At 450 °C, the absolute electrical conductivity of Ge12InSbTe15 is 580 S/cm, 

which is comparable to that of Ge19Sb2Te22 (769 S/cm) with ZT = 1.3 [6] and Se substituted 

samples, e.g. Ge7Sb2Te5Se5 (400 S/cm, ZT = 1.0) [7]. The electrical conductivity of 

Ge12In2Te15 at 450 °C is 960 S/cm. The higher electrical conductivity of Ge12Sb2Te15, 

especially at low temperatures, is associated with metallic characteristics. 

 

 
Fig. 4: Thermoelectric characteristics of quenched Ge12(Sb1-xInx)2Te15 samples: Seebeck 
coefficient (S) top left, electrical conductivity (σ) top right, thermal conductivity (κ) middle 
left, lattice thermal conductivity (κL, calculated from σ with L = 1.48 ⋅10-8 WΩK-2) middle 
right, and the resulting thermoelectric figure of merit (ZT) bottom. The values for Ge12Sb2Te15 
have been taken from ref. [6]. 
 

As suggested by the Wiedemann-Franz law, the compounds with higher electrical 

conductivities also exhibit higher thermal conductivities which increase with temperature. It is 

difficult to assess the lattice parts of the thermal conductivity (кL) as semiconductors and 

metals may exhibit significantly different Lorenz numbers L.[20] Assuming a constant L of 

1.48 ⋅10-8 WΩK-2, which is typical for degenerate semiconductors like Ag2Te[21], the κL values 

of all compounds at low temperatures are similar as suggested by the similar nanostructures 

and similar masses of In and Sb atoms. The low кL at low temperatures, especially for 

Ge12In2Te15, contributes to the high ZT value at room temperature.  
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2.3.1.4 Conclusion 

In contrast to binary GeTe, in which only a few percent of InTe can be solved due to the 

different structures of the binary phases[22], quenched rocksalt-type Ge12Sb2Te15 forms a 

complete solid solution series with the corresponding In compound. Substituting Sb with In 

lowers the transition temperature between the trigonal phase stable at ambient conditions and 

the cubic HT phase. Upon quenching, the metrics remains closer to cubic and strain effects 

are less pronounced than in pure GST materials. However, the short-range defect ordering is 

almost independent of the In content. This results in the parquet-like nanostructure which is 

well known from GST materials. Therefore, the lattice thermal conductivity remains 

approximately the same at low temperature, so that the electronic properties can be varied 

independently up to a certain extent. The substitution involves a change from metallic to 

semiconducting behavior of the electrical conductivity that strongly increases the Seebeck 

coefficient at low temperatures. This increases the ZT values of Ge12SbInTe15 and Ge12In2Te15 

as compared to Ge12Sb2Te15 below ~300°C, where their parquet-like nanostructure is stable. 
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2.3.2 Nanostructures and thermoelectric properties of the solid solution 

series (Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 0 ≤ x ≤ 1) 

 

T. Rosenthal, L. Neudert, P. Ganter, J. de Boor, C. Stiewe, O. Oeckler  

J. Solid State Chem. 2014, 215, 231 -240. 

 

Abstract 

Solid solutions (Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 0 ≤ x ≤ 1) represent stable high-temperature 

phases and can be obtained as metastable compounds by quenching. High-resolution 

transmission electron microscopy reveals that the quenched (pseudo-)cubic materials exhibit 

parquet-like nanostructures comparable to, but especially for n = 4 more pronounced than in 

(GeTe)nSb2Te3 (GST materials). The temperature-dependent phase transitions are 

comparable; however, substitution with Sn significantly lowers the transition temperatures 

between cubic high-temperature phase and the long range ordered layered phases that are 

stable at ambient conditions. In addition, the metrics of the quenched Sn-containing materials 

remains closer to cubic, especially for samples with n = 7 or 12. For samples with high defect 

concentrations (n = 4, 7), Sn-substituted samples exhibit electrical conductivities up to 3 times 

higher than those of corresponding GST materials. Since the difference in thermal conducti-

vity is much less pronounced, this results in a doubling of the thermoelectric figure of merit 

(ZT) at high temperatures for (Ge0.5Sn0.5Te)4Sb2Te3 as compared to (GeTe)4Sb2Te3. Sn doping 

in (GeTe)7Sb2Te3 increases the ZT value by a factor of up to 4 which is also due to an 

increased Seebeck coefficient. 

 

2.3.2.1 Introduction 

The increased awareness for the responsible use of energy has led to major improvements in 

the efficiency of production processes and combustion engines; however, there is still a lot of 

waste heat. This might be utilized by employing thermoelectric generators on a large scale; 

however, restrictions concerning their efficiency have to be overcome. Thus, the improvement 

of thermoelectric properties is an important field of research. The thermoelectric performance 

is characterized by the dimensionless ZT value which depends on the Seebeck coefficient S, 

the electrical conductivity σ and the thermal conductivity κ : ZT = S2σΤ κ-1. The 

interdependence of the thermal and electrical conductivities as described by the Wiedemann-
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Franz law constitutes a major problem for the optimization of ZT and in addition, both proper-

ties correlate with S via the charge carrier concentration.[1,2] Therefore, improvements of one 

property are often at least partially compensated by less favorable values of the other crucial 

ones. Yet, this holds mainly for the electronic contribution (κel) to κ, whereas the phononic 

contribution κL is not directly related to σ. 

Germanium antimony tellurides (GST materials) and substitution variants thereof offer many 

possibilities for optimization. The nanostructure and, in part as a consequence, the thermo-

electric properties of (GeTe)nSb2Te3 can be influenced by changing the vacancy concentration 

which is directly related to the GeTe content (n) as well as by altering the thermal treatment.[3] 

The thermodynamically stable phase at room temperature (RT) is a layered trigonal phase 

with van der Waals gaps connecting rocksalt-type slabs while the high-temperature (HT) 

phase corresponds to a defect rocksalt-type structure with randomly distributed vacancies.[4] 

These vacancies form defect layers with limited lateral extension when the samples are 

quenched. These are oriented perpendicular to the cubic rocksalt type’s <111> directions. 

This is associated with metric distortion. The frequency and lateral extension of the defect 

layers and the variance of their spacing are determined by diffusion processes and by the total 

defect concentration. These defect layers may intersecting each other and form a rather 

isotropic nanostructure that hinders the phonon proliferation effectively. Thus, quenching the 

cubic HT phase of (GeTe)nSb2Te3 with n > 3 yields materials with ZT values up to 1.3. [3,5]  

Substituting Sb with In in quenched samples of (GeTe)12Sb2Te3 results in materials with 

similar nanostructures but improved Seebeck coefficients at temperatures below 400 °C.[6] 

Substitution of Te by Se leads to a reduction of the lattice part of κ (κL) due to the mixed 

occupation of the anion site.[7,8]  Due to a significant improvement of S, ZT values up to 6 

times higher than those of (GeTe)7Sb2Te3 (n = 7) can be achieved. 

Doping with Sn influences the properties of (GeTe)2Sb2Te3 thin films which are widely used 

as phase-change materials.[9-15] Such thin films consisting of (GeTe)nSb2Te3 with different 

GeTe contents (n) have also been substituted with Sn which, for example, results in higher 

crystallization speeds for Ge2.7Sn1.3Sb2Te7 = (Ge0.672Sn0.325Te)4Sb2Te3 
[16 ]

 (n = 4) while 

SnGe7Sb2Te7Se4 (n = 8) exhibits an increased band gap in the amorphous state.[ 17 ] 

Investigations of the element distribution in bulk samples of layered phases of 

(Ge0.65Sn0.35Te)2Sb2Te3 and (Ge0.6Sn0.4Te)Sb2Te3 showed that Sn has a slight preference to 

occupy the cation positions near the van der Waals gaps.[18] In these studies, resonant X-ray 

diffraction data were used due to the similar electron counts of Sn, Sb and Te.[19] Similar 

investigations were performed on 39R-M0.067Sb0.667Te0.266 (M=Ge, Sn)[20] and 21R-SnSb2Te4 



                                    2 TEM investigations of nanostructured germanium antimony tellurides 
 

62 

= (SnTe)Sb2Te3.[21]
 The substitution of Ge by Sn in TAGS materials (AgSbTe2)100-x(GeTe)x (x 

= 80, 85, 90, 95) results in higher hole mobility in (AgSbTe2)100-x(SnTe)x and in low κ (0.3 

W/m K for x = 85 at RT).[ 22 ] The compounds (Ge0.65Sn0.35Te)2Sb2Te3 and 

(Ge0.6Sn0.4Te)Sb2Te3 also exhibit lower κ and higher ZT values compared to (GeTe)2Sb2Te3 

and (GeTe)Sb2Te3, respectively.[18] However, in these cases ZT values reach a maximum of 

only 0.25 at 400 °C since the low GeTe content is associated with a less favorable parallel 

arrangement of the defect layers and low Seebeck coefficients (max. 85 µV/K at 400 °C). 

Since compounds (GeTe)nSb2Te3 with higher GeTe contents (n = 7, 12, 19) exhibit higher 

Seebeck coefficients,[3] the substitution with Sn should result in a better thermoelectric 

performance for these materials. 

 

2.3.2.2 Experimental 

Ternary and quarternary bulk samples of (Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 0 ≤ x ≤ 1) were 

synthesized under Ar in sealed silica glass ampoules. Stoichometric mixtures of the elements 

Ge (99.999%, Sigma Aldrich), Sn (99.999%, Smart Elements), Sb (99.999%, Smart 

Elements) and Te (99.999%, Alfa Aesar) were melted (minimum 1h at 900-950 °C) and 

quenched in water. The compact metallic gray ingots were annealed in the existence range of 

the cubic HT phases, i.e. between 560 °C and 610 °C, for up to 10 d and quenched in water. 

Details of the synthesis conditions are given in the Supplementary Information Table S1. 

Disc-shaped ingots for thermoelectric characterization were prepared under Ar in flat-bottom 

ampoules. The air-quenched melts where annealed at 590 °C for 2 days and subsequently 

quenched by removing from the furnace. The resulting ingots with a diameter of 20 mm were 

polished to a thickness of 2 - 5 mm. The products were analyzed by Rietveld refinements of 

the powder X-ray diffraction patterns (PXRD) and the composition was verified by energy-

dispersive X-ray spectroscopy (EDX) as discussed below. All samples were obtained as single 

phased metallic gray ingots.  

For EDX analysis, a JSM-6500F (Jeol, Japan) scanning electron microscope (SEM) equipped 

with an EDX detector (model 7418, Oxford Instruments, UK) was used. Additional EDX 

analyses as well as high-resolution transmission electron microscopy (HRTEM), selected-area 

electron diffraction (SAED), and scanning transmission electron microscopy (STEM) using a 

high-angle annular dark-field (HAADF) detector were carried out with a Titan 80-300 (FEI, 

USA) equipped with a TEM TOPS 30 EDX spectrometer (EDAX, Germany). The field 

emission gun was operated at 300 kV. An UltraScan 1000 camera (Gatan, USA, resolution 2k 
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x 2k) was used to record SAED patterns and HRTEM images which were evaluated using 

Digital Micrograph[23] and EMS.[24] For STEM and EDX data, the program ES Vision[25] was 

used. For TEM investigations, finely ground pieces of the samples were dispersed in ethanol 

and distributed onto a copper grid coated with holey carbon film by drop casting. 

For PXRD, the samples were ground in a agate mortar and fixed on Mylar foils with small 

amounts of vacuum grease. Data were collected using a Guinier camera (G670, Huber, 

Germany) equipped with a fixed imaging plate detector and an integrated read-out system 

using Cu-Kα1 radiation (Ge(111) monochromator, λ = 1.54051 Å). Temperature-programmed 

PXRD was carried out on powdered samples filled into silica glass capillaries with a diameter 

of 0.3 mm and sealed with silicone grease under Ar atmosphere. The samples were heated 

from RT up to 750 °C with 10 °C/min and subsequently cooled to RT with the same rate. 

Data were collected every 25°C with 10-20 minutes acquisition time. These investigations 

were carried out with a Stadi P powder diffractometer (Stoe & Cie. GmbH, Germany) with an 

imaging plate detector system using Mo-Kα1 radiation (Ge(111) monochromator, λ = 

0.7093 Å), equipped with a graphite furnace. Rietveld refinements were performed using the 

program package TOPAS-Academic.[26]  

A fundamental parameter approach taking into account the experimental setup was used to 

describe the reflection profiles in all refinements. Lorentzian and Gaussian crystallite size 

broadenings as well as Lorentzian microstrain broadening were taken into account for all 

samples. The pronounced asymmetry of the reflection profiles of (GeTe)4Sb2Te3 was 

empirically described by anisotropic microstrain and crystallite size broadening using the 

LeBail-Jouanneaux algorithm.[27] This effect may be due to local distortions as a result of the 

high vacancy concentration. Preferred orientation was taken into account using 4th order 

spherical harmonics.  

For the characterization of the thermoelectric properties up to 450° C, commercial and in-

house-built facilities of the DLR (Cologne, Germany) were used. The thermal conductivity 

(κ) was measured first, followed by a combined measurement of σ  and S. Datapoints at 

comparable temperatures were obtained from the different measurements by linear 

interpolation. The electrical conductivity was determined by an in-line four-point-probe setup 

to avoid influences of cable and contact resistance. Peltier influences were reduced by using 

an AC method with a frequency of 7 Hz. The electrical conductivity σ was calculated from the 

resistance R according to σ = 1/(2π s · R · G), taking into account the distance of the voltage 

probes s and the sample geometry, given by a correction factor G. Temperatures as well as the 

Seebeck voltage (US) were determined by type-N thermocouples attached to the sample by 
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spring-loaded pressure contacts. For the measurement of S, a variable temperature difference 

∆T was used. S was calculated according to: S = ∂US / ∂∆T – SNicrosil with SNicrosil the Seebeck 

coefficient of the corresponding thermocouple wires. Detailed information about the S 

measurement is given in ref. [28]; information about the hardware and the σ measurements 

can be found in ref. [29]. A laser-flash apparatus (LFA 427, Netzsch GmbH & Co., Germany) 

was used to measure the thermal diffusivity (Dth). κ  was	
   calculated	
   according	
  

to κ = Dth · ρ · cp. The specific heat capacity cp was determined by differential scanning 

calorimetry (DSC 404, Netzsch GmbH & Co., Germany). The results of the cp and Dth 

measurement are provided in the Supplementary Information Table S2. The densities ρ were 

determined using Mohr’s balance; the maximum deviation from the X-ray densities was 1 %. 

The thermoelectric figure of merit (ZT) was calculated from the individual properties 

according to ZT = S2 · σ · κ−1 · T  where T is the absolute temperature. 
 

2.3.2.3 Results and discussion 

2.3.2.3.1 Composition, and average structure of (pseudo-)cubic quenched phases 

The samples (Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; x = 0, 0.25, 0.5, 0.75, 1) prepared by 

quenching the HT phase were single-phase according to the Rietveld refinements discussed 

below. In addition, the composition of many representative samples was verified by REM-

EDX and TEM-EDX (cf. Supplementary Information, Tables S3 and S4). The crystal 

structures were refined from PXRD data by the Rietveld method. These analyses confirm a 

rocksalt-type structure with Te on the anion position and Sb, Sn, Ge and vacancies on the 

cation position. The occupancies were derived from the nominal composition and not refined. 

Due to the random distribution of the cations and vacancies, the isotropic displacement 

parameters of the cations are rather large compared to the anions. Therefore, this effect is less 

pronounced for samples with lower vacancy concentrations (higher n).The profile fits from 

the refinements for compounds with x = 0.5 and 1.0 are shown in Fig. 1; the corresponding 

plots for all other samples can be found in the Supplementary Information (Fig. S1). Crystal 

data and details of all refinements are given in Tables 1-3, the refined atom parameters are 

given in Tables 4-6. Further details of the crystal structure investigations may be obtained 

from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: 

(+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-
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karlsruhe.de/request_for_deposited_data.html) on quoting the depository numbers provided in 

Tables 1, 3 and 5.  

In contrast to all other samples discussed here, new refinements (not shown) fully confirmed 

that quenched (GeTe)12Sb2Te3  (n = 12, x = 0) exhibits a trigonal GeTe-type average structure 

as described earlier.[30] The volume of that trigonal cell is 159.80(1) Å3, the cube root of the 

volume (213.07 Å3) of the corresponding pseudocubic cell is 5.9727 Å. This value was used 

in Fig. 2, which shows Vegard plots for the tree solid solution series investigated. The cubic 

lattice parameter a increases in a linear fashion when more Ge is substituted by the larger Sn. 

This confirms the existence of solid solution series of quenched phases (Ge1-xSnxTe)nSb2Te3 

for n = 4, 7 and 12 based on samples with x = 0, 0.25, 0.5, 0.75 and 1.  

 
Fig. 1: Profile fits from the Rietveld refinements of (Ge1-xSnxTe)nSb2Te3 with n = 4, 7, 12 (top 
to bottom) and x = 1 (left) and x = 0.5 (right); experimental (light gray) and simulated (black) 
powder patterns, difference plot (below) and reflection markers (black, bottom); the scaling of 
the 2θ axis is the same for all plots. 
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Table 1. Details of the Rietveld refinements for (Ge1-xSnxTe)4Sb2Te3 phases obtained by 
quenching the HT phase. 

sum formula Ge4Sb2Te7 Ge3SnSb2Te7 Ge2Sn2Sb2Te7 GeSn3Sb2Te7
 Sn4Sb2Te7 

(Ge1-xSnxTe)4Sb2Te3 x = 0 x = 0.25 x = 0.5 x = 0.75 x = 1 

CSD 426870 426869 426866 426861 426862 

asymmetric unit Ge0.571Sb0.286Te Ge0.429Sb0.286Sn0.143Te Ge0.286Sb0.286Sn0.286Te Ge0.143Sb0.286Sn0.429Te Sb0.286Sn0.571Te 
formula weight 
asymmetric unit  
(in g mol-1) 

203.87 210.45 217.04 223.63 230.22 

F(000) 339.4 349.7 360.0 370.4 380.5 

crystal system  
/ space group (no.) cubic / Fm3m (225) 

lattice parameters  
(in Å) a = 5.988(2) a = 6.0437(3) a = 6.10480(17) a = 6.16579(7) a = 6.22175(8) 

cell volume (in Å3) 214.7(2) 220.75(3) 227.517(19) 234.405(8) 240.845(9) 

X-ray density  
(in g/cm³) 6.307 6.333 6.337 6.337 6.349 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 
parameters  
(thereof background) 26(6)* 16(6) 

Rp / Rwp  0.0287 / 0.0432 0.0278 / 0.0411 0.0313 / 0.0429 0.0248 / 0.0349 0.0196 / 0.0273 

GooF / RBragg 1.550 / 0.0104 1.496 / 0.0111 1.600 / 0.009 1.354 / 0.0103 0.994 / 0.0102 

* with LeBail-Jouanneaux anisotropic broadening 

 

 

Table 2. Details of the Rietveld refinements for (Ge1-xSnxTe)7Sb2Te3 phases obtained by 
quenching the HT phase. 

sum formula Ge7Sb2Te10 Ge5.25Sn1.75Sb2Te10 Ge3.5Sn3.5Sb2Te10 Ge1.75Sn5.25Sb2Te10 Sn7Sb2Te10 

(Ge1-xSnxTe)7Sb2Te3 x = 0 x = 0.25 x = 0.5 x = 0.75 x = 1 

CSD 426859 426871 426867 426865 426863 

asymmetric unit Ge0.7Sb0.2Te Ge0.525Sb0.2Sn0.175 Te Ge0.35Sb0.2Sn0.35Te Ge0.175Sb0.2Sn0.525Te Sb0.2Sn0.7Te 

formula weight 
asymmetric unit 
(in g mol-1) 

202.76 210.85 218.92 226.98 235.05 

F(000) 338.4 351.0 363.6 376.2 388.8 

crystal system  
/ space group (no.) cubic / Fm3m (225) 

lattice parameters  
(in Å) a = 5.99160(6) a = 6.05668(5) a = 6.12377(7) a = 6.19206(11) a = 6.25520(11) 

cell volume (in Å3) 215.094(7) 222.179(6) 229.645(7) 237.414(13) 244.751(13) 
X-ray density  
(in g/cm³) 6.262 6.303 6.332 6.350 6.379 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 

parameters  
(thereof background) 16 (6) 

Rp / Rwp  0.0255 / 0.0371 0.0196 / 0.0278 0.0160 / 0.0222 0.0195 / 0.0268 0.0210 / 0.0333 

GooF / RBragg 1.394 / 0.0267 1.009 / 0.0196 0.785 / 0.0029 0.958 / 0.0059 1.199 / 0.0307 

 



2 TEM investigations of nanostructured germanium antimony tellurides  
 

67 

Table 3. Details of the Rietveld refinements for (Ge1-xSnxTe)12Sb2Te3 phases obtained by 
quenching the HT phase; for Ge12Sb2Te15, see ref. [30]. 
sum formula Ge9Sn3Sb2Te15 Ge6Sn6Sb2Te15

 Ge3Sn9Sb2Te15
 Sn12Sb2Te15

 

(Ge1-xSnxTe)12Sb2Te3 x = 0.25 x = 0.5 x = 0.75 x = 1 
CSD 426860 426858 426868 426864 

asymmetric unit Ge0.6Sb0.133Sn0.2Te Ge0.4 Sb0.133Sn0.4Te Ge0.2Sb0.133Sn0.6Te Sb0.133Sn0.8Te 

formula weight 
asymmetric unit (in g 
mol-1) 

211.13 220.35 229.58 238.80 

F(000) 352.0 366.4 380.8 395.2 

crystal system  
/ space group (no.) cubic / Fm3m   (225) 

lattice parameters (in 
Å) a = 6.05352(4) a = 6.13145(6) a = 6.21548(12) a = 6.27778(9) 

cell volume (in Å3) 221.832(4) 230.510(7) 240.118(14) 247.411(11) 
X-ray density  
(in g/cm³) 6.322 6.350 6.350 6.411 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 

parameters  
(thereof 
background) 

16(6) 

Rp / Rwp  0.0207 / 0.0301 0.0167 / 0.0245 0.0187 / 0.0265 0.0193 / 0.0291 

GooF / RBragg 1.168 / 0.0137 0.872 / 0.0129 0.962 / 0.0114 1.047 / 0.0224 

 

Table 4. Atom coordinates, site occupancies and isotropic displacement parameters (in Å²) 
for (Ge1-xSnxTe)4Sb2Te3 samples obtained by quenching the HT phase. 
  Te  cations and vacancies 
 x position Biso  position occupancy Biso 
(GeTe)4Sb2Te3 0 4a ½ ½ ½  1.67(8)  4b 0 0 0 4/7 Ge, 2/7 Sb 3.81(11) 
(Ge0.75Sn0.25Te)4Sb2Te3 0.25 4a ½ ½ ½  1.52(10)  4b 0 0 0 3/7 Ge, 1/7 Sn, 2/7 Sb 3.71(14) 
(Ge0.5Sn0.5Te)4Sb2Te3 0.5 4a ½ ½ ½  1.71(6)  4b 0 0 0 2/7 Ge, 2/7 Sn, 2/7 Sb 3.75(9) 
(Ge0.25Sn0.75Te)4Sb2Te3 0.75 4a ½ ½ ½ 1.00(4)  4b 0 0 0 1/7 Ge, 3/7 Sn, 2/7 Sb 2.84(6) 
(SnTe)4Sb2Te3 1 4a ½ ½ ½ 0.98(5)  4b 0 0 0 4/7 Sn, 2/7 Sb 2.52(7) 
 

Table 5. Atom coordinates, site occupancies and isotropic displacement parameters (in Å²) 
for (Ge1-xSnxTe)7Sb2Te3 samples obtained by quenching the HT phase. 
  Te  cations and vacancies 
 x position Biso  position occupancy Biso 
(GeTe)7Sb2Te3 0 4a ½ ½ ½  0.70(4)  4b 0 0 0 7/10 Ge, 1/5 Sb 2.55(5) 
(Ge0.75Sn0.25Te)7Sb2Te3 0.25 4a ½ ½ ½  1.07(4)  4b 0 0 0 21/40 Ge, 7/40 Sn, 1/5 Sb 2.84(6) 
(Ge0.5Sn0.5Te)7Sb2Te3 0.5 4a ½ ½ ½  1.57(5)  4b 0 0 0 7/20 Ge, 7/20 Sn, 1/5 Sb 3.08(7) 
(Ge0.25Sn0.75Te)7Sb2Te3 0.75 4a ½ ½ ½ 0.89(7)  4b 0 0 0 7/40 Ge, 21/40 Sn, 2/5 Sb 2.31(9) 
(SnTe)7Sb2Te3 1 4a ½ ½ ½ 1.41(8)  4b 0 0 0 7/10 Sn, 1/5 Sb 2.82(10) 
 

Table 6. Atom coordinates, site occupancies and isotropic displacement parameters (in Å²) 
for (Ge1-xSnxTe)12Sb2Te3 samples obtained by quenching the HT phase. 
  Te  cations and vacancies 
 x position Biso  position occupancy Biso 
(Ge0.75Sn0.25Te)12Sb2Te3 0.25 4a ½ ½ ½  0.80(3)  4b 0 0 0 9/15 Ge, 3/15 Sn, 2/15 Sb 2.65(4) 
(Ge0.5Sn0.5Te)12Sb2Te3 0.5 4a ½ ½ ½  1.02(4)  4b 0 0 0 6/15 Ge, 6/15 Sn, 2/15 Sb 2.59(6) 
(Ge0.25Sn0.75Te)12Sb2Te3 0.75 4a ½ ½ ½ 0.80(6)  4b 0 0 0 3/15 Ge, 9/15 Sn, 2/15 Sb 1.88(8) 
(SnTe)12Sb2Te3 1 4a ½ ½ ½ 0.89(6)  4b 0 0 0 12/15 Sn, 2/15 Sb 1.92(8) 
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Fig. 2: Vegard plots for (pseudo-)cubic phases (Ge1-xSnxTe)nSb2Te3 with linear least-squares 
fits for n = 4 (black triangles and line), 7 (gray squares and line), 12 (light gray stars and line): 
lattice parameters vs. increasing Sn-content x (for Ge12Sb2Te15 [30] the cube root of the volume 
of the trigonal cell was used).  
 

2.3.2.3.2 Thermal behavior of quenched phases 

Temperature-dependent X-ray investigations reveal the influence of the Sn doping on the 

phase transition temperatures (Fig. 3 and Table 7). Starting from the quenched (pseudo-)cubic 

(Ge1-xSnxTe)nSb2Te3 samples with short-range ordered vacancies (see TEM investigation 

below), two structural changes occur when the samples are heated and one upon subsequent 

cooling. All transformations depend on the vacancy concentration. Upon heating to T1, the 

vacancies undergo re-ordering processes that lead to the thermodynamically stable trigonal 

phase with parallel defect planes extended in 2D (i.e., van der Waals gaps). This involves a 

trigonal distortion whose temperature, as a rule, neither depends significantly on the vacancy 

concentration nor on the Sn content; it occurs at 260 °C. The transformation from this trigonal 

phase to the cubic HT phase sets in at T2, when the latter’s stability region is reached. This 

starts at lower temperatures for samples with lower vacancy concentrations (i.e. higher n) 

since this means less anions with low coordinaton numbers. Rocksalt-type phases become less 

favorable with very high defect concentrations as these involve many “under-coordinated” Te 

atoms. With increasing Sn content x, T2 becomes lower as shown for n = 4. For x = 0.5, T2 is 

up to 100 °C lower than for unsubstituted samples which exhibit T2 of 500 °C and 460 – 

500 °C for n = 7, 12, respectively.[3] 
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Fig. 3: Temperature-dependent X-ray powder diffraction patterns of quenched samples of 
(Ge1-xSnxTe)nSb2Te3: heating and cooling (bottom to middle and middle to top, respectively, 
in each image; reflections originating from the furnace are marked with asterisks, *); the 
phase transition temperatures T1, T2 and T3 (see the text) are highlighted with black 
horizontal lines. The reduced number and intensities of certain reflections during cooling 
results from preferred orientation as a result of recrystallization from the melt in small 
capillaries. 
 
When the samples are slowly cooled down below the stability range of the cubic HT phase, 

the transformation from the cubic to the rhombohedral phase occurs at T3. In analogy to T2, 

T3 is lower for higher Sn contents x. For higher GeTe contents n, samples with x = 0.5 exhibit 
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lower T3 (by up to 250 °C) in comparison to GST samples with T3 = 460 °C for n = 7 and 

12.[3] Due to the lower phase transition temperatures T2 and T3, which are expected for mixed 

crystals, it is easier to obtain the (pseudo-)cubic phase by quenching samples with higher Sn 

contents x and lower vacancy concentrations (i.e. higher n). 

For higher GeTe contents, the trigonal distortion of slowly cooled phases 

(Ge0.5Sn0.5Te)nSb2Te3 (n = 4, 7, 12) is less pronounced, i.e. the metrics remains closer to cubic. 

This is more pronounced for Sn-containing samples. The formation of the trigonal layered 

phase during heating is only obvious from reflection splittings for n = 4, while 

(Ge0.5Sn0.5Te)7Sb2Te3  and (Ge0.5Sn0.5Te)12Sb2Te3 show only a minor splitting or broadening, 

of the corresponding reflections upon slow cooling. The melting points increase with higher 

GeTe contents (as for unsubstituted samples), while the Sn substitution decreases the melting 

point only very little. 
 

Table 7. Phase transition temperatures for (Ge1-xSnxTe)nSb2Te3 (see text). 

phase transition n = 4 
x = 0 

n = 4 
x = 0.25 

n = 4 
x = 0.5 

n = 4 
x = 1 

n = 7 
x = 0.5 

n = 12 
x = 0.5 

pseudo-cubic  trigonal (T1) 260 °C 260 °C 260 °C 260 °C 260 °C 260 °C 

trigonal  cubic (heating) (T2) 490 °C 470 °C 460°C 410 °C* 410 °C 390 °C 

cubic  trigonal (cooling) (T3) 470 °C 465 °C 460 °C 420 °C 260 °C 220 °C 

melting point 630°C 610 °C 610 °C 610 °C 640 °C 660 °C 
* cubic and trigonal phase coexist from 410 to 510 °C in the TPXRD due to time-dependent effects. 

2.3.2.3.3 Influence of the Sn substitution on the nanostructure 

TEM investigations show how the Sn substitution influences the nanostructure of 

pseudocubic quenched materials (Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12, x = 0, 0.5). The 

composition of the investigated regions was verified by TEM-EDX (cf. Supplementary 

Information Table S4). STEM-HAADF images (Fig. 4) show that Sn substituted GST 

contains intersecting vacancy layers comparable to those in GST itself.[3,30] HRTEM images 

reveal the parquet-like structure in all of these samples (Fig. 5). Similar to unsubstituted GST, 

(Ge0.5Sn0.5Te)nSb2Te3 samples exhibit less vacancy layers for higher n, i.e. for lower defect 

concentrations. However, (Ge0.5Sn0.5Te)4Sb2Te3 exhibits a more pronounced parquet-like 

structure than the corresponding (GeTe)4Sb2Te3 and occasionally a tendency towards 

superstructure formation. Yet, the SAED patterns shown in Fig. 5 are typical and indicate no 

long-range order. Slight differences between GST and Sn-substituted variants may be a 

consequence of kinetic effects due to the lower bonding energy Sn-Te (359.8 kJ/mol) in 

comparison to Ge-Te (397 kJ/mol) which makes structural rearrangements easier.[31,32]  



2 TEM investigations of nanostructured germanium antimony tellurides  
 

71 

 
Fig. 4: Z-contrast image (STEM -HAADF) of the parquet-like structure of a quenched sample 
with the nominal composition (Ge0.5Sn0.5Te)4Sb2Te3. 
 

Although Rietveld refinements show a cubic average structure of the quenched phases, some 

SAED patterns reveal slight metric distortions as evidenced by angles down to 88.2° between 

the (pseudo-)cubic [110] and [001] directions. The cubic metrics is probably a result of 

stresses in the quenched samples after the “incomplete” phase transition. In the very thin 

fringes suitable for TEM, a certain metric relaxation towards rhombohedral structures may 

occur. Comparable effects of stress and strain in GST samples have been shown to depend on 

the crystallite size.[30]  
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Fig. 5: HRTEM images and corresponding SAED patterns (insets) of (Ge1-xSnxTe)nSb2Te3 
with x = 0 (left) and x = 0.5 (right); from top to bottom with n = 4, 7, 12.  
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2.3.2.3.4 Thermoelectric properties 

The influence of the Sn substitution and its interplay with the defect concentration on the 

thermoelectric properties was investigated for (Ge0.5Sn0.5Te)nSb2Te3 with n = 4, 7, 12 (cf. 

Fig. 6). For comparison, results of comparable samples of (GeTe)7Sb2Te3 and (GeTe)12Sb2Te3 

were taken from Ref. [3]; data for (GeTe)4Sb2Te3 were obtained in the present study (cf. 

Supplementary Information Fig. S2). The phase purity of the ingots used for thermoelectric 

measurements was verified by Rietveld refinements with the same parameters as described in 

Section 2 (details of these refinements are given in Supplementary Information Table S5; for 

(GeTe)4Sb2Te3 and (Ge0.5Sn0.5Te)4Sb2Te3 the use of anisotropic microstrain and crystallite 

size broadening was necessary). These Rietveld refinements are inferior to the ones shown 

above as the reflections of the samples used for thermoelectric measurements are broadened 

as a consequence of lower quenching rates due to the larger sample volumes, especially for 

(Ge0.5Sn0.5Te)4Sb2Te3. 

The values for σ and S in consecutive measurement cycles (except during the initial heating) 

are similar, they are shown for (Ge0.5Sn0.5Te)12Sb2Te3 in the Supplementary Information 

(Fig. S4). The Seebeck coefficient S of (Ge0.5Sn0.5Te)nSb2Te3 with n = 4 is lower that those 

for n = 7 and 12. All samples show positive values of S that increase with temperature, 

corresponding to p-type semiconductors. The values, including the effects associated with the 

phase transition, are very similar to those of the corresponding unsubstituted GST materials 

except for (Ge0.5Sn0.5Te)7Sb2Te3, whose S is higher than that of (GeTe)7Sb2Te3
[3] over the 

whole temperature range (up to 30 µV/K). Both for GST itself[3] and for (Ge0.5Sn0.5Te)nSb2Te3, 

σ is lowest for the intermediate defect concentration with n = 7. Decreasing form 810 S/cm to 

560 S/cm from 50 °C to 450 °C, respectively, the values for (Ge0.5Sn0.5Te)7Sb2Te3 are much 

higher than those of (GeTe)7Sb2Te3 which exhibits the lowest σ of all (pseudo-)cubic GST 

samples investigated so far (decreasing from 350 S/cm at 50 °C to 150 S/cm at 450 °C). For 

the other samples the difference is less pronounced: σ of (Ge0.5Sn0.5Te)4Sb2Te3 is comparable 

to that of (GeTe)4Sb2Te3 at elevated temperatures (cf. Supplemantary Information Fig. S2) 

while (Ge0.5Sn0.5Te)12Sb2Te3 exhibits a lower σ compared to (GeTe)12Sb2Te3.  

While κ of all (Ge0.5Sn0.5Te)nSb2Te3 samples converges at HT, (Ge0.5Sn0.5Te)7Sb2Te3 has a 

much lower κ up to 250 °C than (Ge0.5Sn0.5Te)12Sb2Te3. Whereas κ of (Ge0.5Sn0.5Te)4Sb2Te3 

is not reversible after the first heating cycle, for (Ge0.5Sn0.5Te)7Sb2Te3 and 

(Ge0.5Sn0.5Te)12Sb2Te3 it is only slightly lower during cooling than during heating. This 

reflects the strong influence of the high defect concentration and the tendency to form a long-
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range ordered structure in (Ge0.5Sn0.5Te)4Sb2Te3. (Ge0.5Sn0.5Te)12Sb2Te3 and (GeTe)12Sb2Te3 

exhibit comparable κ during heating; however, the values for (Ge0.5Sn0.5Te)4Sb2Te3 and 

(Ge0.5Sn0.5Te)7Sb2Te3 are significantly higher than for pure GST (below 250 °C: 1.2 -1.3 

W/mK vs. 0.8 W/mK and 1.4 – 1.5 W/mK vs. 1.0 W/mK, respectively). This is due to the 

higher σ and the resulting higher electronic contribution (κel) to κ of the Sn-containing 

samples. The phononic part κL, which is more characteristic for real-structure effects was 

calculated using a Lorenz number of 1.48 · 10-8 WΩK-2 for all samples, which is a typical 

value for degenerate semiconductors.[33] There is little difference in κL for the samples with n 

= 7 and 12 (cf. Supplementary Information Fig. S3) whereas for n = 4, it is significantly lower 

during the initial heating cycle. Above ~250 °C and after cooling, the parquet-like 

nanostructure is not present; consequently κL of all (Ge1-xSnxTe)nSb2Te3 samples (n = 4, 7, 12, 

x = 0, 0.5) then converges to ~ 1.0 W/mK. All changes in κ and κL start around 250 °C where 

the transition from the parquet-like nanostructure to the trigonal phase sets in (T1 = 260° C). 

A comparable effect was observed for quenched (GeTe)nSb2Te3 (n = 7, 12) which exhibit 

significantly lower κL and consequently higher ZT values than slowly cooled or annealed 

samples with the same composition.[3]   

The comparison of the ZT values of (Ge1-xSnxTe)nSb2Te3 in Fig. 7 shows that Sn substitution 

is most beneficial for defect-rich (Ge1-xSnxTe)nSb2Te3 (i.e., n = 4, 7) where the higher 

electrical conductivity results in higher ZT values. Compared to (GeTe)7Sb2Te3, the 

combination of the increased σ with a higher S results in a strong increase of ZT for 

(Ge0.5Sn0.5Te)7Sb2Te3, reaching 0.7 at 400 °C.  

Whereas we report on chemically homogeneous samples, improved thermoelectric properties, 

especially a reduction of the thermal conductivity has also been achieved with nanostructured 

bulk materials, e.g. in systems based on GeTe and PbTe, often with additional Sb2Te3.[34-37] In 

the system PbTe/PbS[38,39], temperature-induced nucleation leads to nanoprecipitates which 

are very beneficial due to the reduction of lattice thermal conductivities in bulk samples. 

Although the annealing processes involved seem very similar to the ones we describe, in GST 

materials and substitution variants thereof, annealing results in a higher degree of order in a 

chemically homogeneous system and thus is not beneficial. Long-range order in annealed 

samples hinders phonon proliferation less effectively compared to the short-range ordered 

nanostructures in the quenched samples. Thus, prolonged annealing is expected to reduce ZT, 

yet, several months would be required to reach the thermodynamical equilibrium.[40]  
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Fig. 6: Thermoelectric properties of 
(Ge0.5Sn0.5Te)nSb2Te3 with n = 4 (circles), 7 
(triangles) and 12 (squares); from top to 
bottom: Seebeck coefficient (S), electrical 
conductivity (σ) and thermal conductivity (κ, 
black symbols heating, gray symbols 
cooling); for S and σ  the average of the 
heating and cooling curve is shown (these 
curves do not differ significantly). 

 

Fig. 7: Thermoelectric figure of merit ZT of 
(Ge1-xSnxTe)nSb2Te3) with x = 0 (asterisks) 
and x = 0.5 (n = 4: circles, left; n = 7: 
triangles, middle, n = 12: squares, right); for 
S and σ  the average of the heating and 
cooling curves (as shown in Fig. 6) was used; 
for (Ge0.5Sn0.5Te)nSb2Te3 ZT was calculated 
separately with the κ  values of the heating 
and cooling cycle. The values for 
(GeTe)7Sb2Te3 and (GeTe)12Sb2Te3 are taken 
from measurements identical to those in Ref. 
[3]. For these samples - and also for 
(GeTe)4Sb2Te3 - only heating curves for κ 
were measured.  
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2.3.2.4 Conclusion 

Pseudocubic sample of the solid solutions (Ge1-xSnxTe)nSb2Te3 exhibit 2-3 times higher 

electrical conductivities for samples with high defect concentrations (i.e., n = 4, 7), which 

result in higher thermoelectric figures of merit ZT. The phase transitions observed by PXRD 

are comparable to those of GST materials but occur at significantly lower temperatures. These 

transitions are often seen in temperature-dependent conductivity measurements, too. The 

nanostructure of quenched Sn-containing samples is characterized by intersecting defect 

layers and thus comparable to that of GST materials. For high vacancy concentrations, 

however, the parquet-like arrangement of defect layers becomes more pronounced upon Sn 

substitution. In combination with the improved Seebeck coefficient this results in ZT values of 

up to 0.7 at 400 °C for (Ge0.5Sn0.5Te)7Sb2Te3 compared to 0.2 for (GeTe)7Sb2Te3. Since the 

nanostructures develop during quenching, long-range ordered phases do not form when 

diffusion rates are rather low. Therefore, in general, low transition temperatures are desirable. 

Comparable to In-substituted samples, the metrics of the layered structures that are 

thermodynamically stable at ambient conditions are closer to cubic in Sn-containing samples, 

especially for lower vacancy concentrations (n = 7, 12). This probably contributes to the fact 

that pseudocubic phase can be obtained more easily in quaternary phases. Such changes in the 

phase stabilities might be utilized to improve the phase-change properties of GST materials 

for data storage devices. 
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2.3.2.5 Supplementary Information 

 
Fig. S1: Profile fits from the Rietveld refinements of (Ge1-xSnxTe)nSb2Te3 for n = 4, 7, 12 (top 
to bottom) with x = 0 (left), x = 0.25 (middle) and  x = 0.75 (right); measured (light gray) and 
simulated (black) powder patterns, difference plot (below) and reflection markers (black, 
bottom); the scaling of the 2ϑ axis is the same for all plots. 
 

 

 
Fig. S2: Thermoelectric properties of Ge4Sb2Te7: Seebeck coefficient (left) and electrical 
conductivity (middle) as interpolated and averaged values from heating and cooling 
measurements, heating measurement for the thermal conductivity (experimental procedure 
analogous to the measurements shown in the text). 
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Fig. S3: Lattice part of the thermal conductivity of (Ge1-xSnxTe)nSb2Te3 with x = 0 (asterisks) 
and x = 0.5 (n = 4: circles, left side; n = 7: triangles, middle, n = 12: squares, right side) 
calculated from the heating and cooling curves of κ combined with the averaged heating and 
cooling curves (which do not differ significantly!), the same Lorenz number of 1.48 · 10-8 
WΩK-2 was used for all samples. The electrical and thermal conductivities for Ge7Sb2Te10 and 
Ge12Sb2Te15 are taken from T. Rosenthal, M. N. Schneider, C. Stiewe, M. Döblinger, O. 
Oeckler, Chem. Mater. 2011, 23, 4349-4356; for these samples - and also for Ge4Sb2Te7 - 
only heating curves for κ were measured. 
 

Table S1. Detailed synthesis conditions for the samples (Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 0 
≤ x ≤ 1) discussed in the text. 
composition used for melting 

temp. / time 
annealing 

temp. / time 
Ge4Sb2Te7 Rietveld, TEM, TPXRD 950 °C, 1h 590 °C , 2.5 d 
 TE 950 °C, 1h 590 °C, 2.5 d 
Ge3SnSb2Te7 Rietveld, TPXRD 950 °C, 9d 590 °C, 20 h 
Ge2Sn2Sb2Te7 Rietveld, TEM, TPXRD 950 °C, 1.5 h 590 °C, 20 h 
 TE 900 °C, 4h 600 °C, 2d 
GeSn3Sb2Te7 Rietveld, TPXRD 950 °C, 9d 600 °C, 20 h 
Sn4Sb2Te7 Rietveld, TPXRD 900 °C, 5h 600 °C, 10d 
Ge7Sb2Te10

 Rietveld, TEM 950 °C, 4.5 h 590 °C, 2d 
Ge5.25Sn1.75Sb2Te10 Rietveld 950 °C, 2h 566 °C, 10 d 
Ge3.5Sn3.5Sb2Te10 Rietveld, TPXRD 950 °C, 4d 566 °C, 2d 
 TE, TEM 900 °C, 5d 590 °C, 2d 
Ge1.75Sn5.25Sb2Te10 Rietveld 950 °C, 2.5h 566 °C, 10 d 
Sn7Sb2Te10 Rietveld 950 °C, 2.5h 566 °C, 10 d 
Ge12Sb2Te15  TEM 950 °C, 4h 500 °C, 20 h 
Ge9Sn3Sb2Te15 Rietveld 900 °C, 3 h 590 °C, 3d 
Ge6Sn6Sb2Te15 Rietveld, TPXRD 950 °C, 20h 560 °C, 1d  
 TEM 950 °C, 15h 610 °C, 1d 
 TE 900 °C, 4d 590 °C, 2d 
Ge3Sn9Sb2Te15 Rietveld 950 °C, 20h 570 °C, 30h 
Sn12Sb2Te15  Rietveld 950 °C, 4.5h 605 °C, 10d 
 

 
 

Table S2. REM-EDX results for selected (Ge1-xSnxTe)nSb2Te3 samples 
sample calculated composition (at.-%) measured composition (at.-%) 
Ge5.25Sn1.75Sb2Te10 Ge27.6Sn9.2Sb10.5Te52.6 Ge28.2(8)Sn9.2(2)Te10.7(1)Te51.8(5) (3 points) 
Ge3.5Sn3.5Sb2Te10 Ge18.4Sn18.4Sb10.5Te52.6 Ge17.3Sn18.7Sb11.5Te52.5(1 point) 
Ge1.75Sn5.25Sb2Te10 Ge9.2Sn27.6Sb10.5Te52.6 Ge10.3(2)Sn29.0(3)Sb9.8(5)Te50.9(6) (3 points) 
Sn7Sb2Te10 Sn36.8Sb10.5Se52.6 Ge39.2(4)Sb9.1(2)Te51.6(2) (3 points) 
Sn12Sb2Te15 Sn41.4Sb6.9Te51.7 Sn44.3(5)Sb4.7(6)Te51.0(3) (3 points) 
Ge6Sb6Sb2Te15 Ge20.7Sn20.7Sb6.9Te51.7 Ge21.5(3)Sn21.3(3)Sb5.7(3)Te51.6(5) (3 points) 
Ge3Sn9Sb2Te15 Ge10.3Sn31.0Sb6.9Te51.7 Ge10.2(2)Sn34.1(1)Sb5.5(4)Te50.1(2) (2 points) 
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Table S3. TEM-EDX results for (Ge1-xSnxTe)nSb2Te3 for all samples investigated by TEM 
sample calculated composition (at.-%) measured composition (at.-%) 
Ge4Sb2Te7 Ge30.8Sb15.4Te53.8 Ge32.3(5)Sb14.9(9)Te52.8(1.3) (3 points) 
Ge2Sn2Sb2Te7 Ge15.4Sn15.4Sb15.4Te53.8 Ge14.1(5)Sn17.5(8)Te15.9(9)Te52.5(6) (2 points) 
Ge7Sb2Te10 Ge36.8Sb10.5Se52.6 Ge36.1(4.0)Sb9.4(8)Te54.5(3.1) (2 points) 
Ge3.5Sn3.5Sb2Te10 Ge18.4Sn18.4Sb10.5Te52.6 Ge18.5(2)Sn19.2(1.3)Sb9.9(1)Te52.3(1.6) (2 points) 
Ge12Sb2Te15 Ge41.4Sb6.9Te51.7 Ge41.9(1.3)Sb5.4(1)Te52.8(1.2) (2 points) 
Ge6Sb6Sb2Te15 Ge20.7Sn20.7Sb6.9Te51.7 Ge20.5Sn19.3Sb9.8Te50.4 (1 point) 

 

Table S4. Details of the Rietveld refinements for the samples used for thermoelectric 
measurements of quenched (Ge1-xSnxTe)nSb2Te3 phases. 

 Ge4Sb2Te7 Ge2Sn2Sb2Te7
 Ge3.5Sn3.5Sb2Te10

 Ge6Sn6Sb2Te15
 

asymmetric unit Ge0.571Sb0.286Te Ge0.286Sb0.286Sn0.286
Te Ge0.35Sb0.2Sn0.35Te Ge0.4 Sb0.133Sn0.4Te 

formula weight of 
the asymmetric unit  
(in g mol-1) 

203.87 217.04 218.92 220.35 

F(000) 339.43 360.00 363.60 366.4 
crystal system  
/ space group (no.) cubic / Fm3m   (225) 

lattice parameters  
(in Å) a = 5.974(2) a = 6.045(2)** a = 6.1180(2) a = 6.1322(2) 

cell volume (in Å3) 213.2(2) 220.9(2) 229.00(3) 230.60(2) 
density (X-ray, in 
g/cm³) 6.351(6) 6.527(6) 6.3496(7) 6.3473(5) 

radiation Cu-Kα1 (λ = 1.540596 Å) 
2θ range (in °) 22 ≤ 2θ ≤ 100 
parameters  
(thereof background) 26(6)* 16(6) 

Rp / Rwp  0.030 / 0.044 0.049 / 0.071 0.029 / 0.040 0.022 / 0.032 
GooF / RBragg 1.585 / 0.007 2.793 / 0.040 ** 1.527 / 0.008 1.239 / 0.007 
* Le Bail-Jouanneaux treatment of anisotropic peak broadening and anisotropic peak shape. 
** Due to broadened reflections, the fit is not optimal and the lattice parameter determination is imprecise (thus 
the values seems to from that of other samples discussed in the text - in fact it is just an approximate value). 
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2.3.3 Enhancing the thermoelectric properties of germanium antimony 

tellurides by substitution with selenium in compounds 

 GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; n ≥ 7) 

 

T. Rosenthal, P. Urban, K. Nimmrich, L. Schenk, J. de Boor, C. Stiewe, O. Oeckler  

Chem. Mater. 2014, 26, 2567-2578. 

 

Abstract  

Quenched pseudocubic germanium antimony tellurides (GST compounds) exhibit promising 

thermoelectric properties. These are related to the nanostructures which can be influenced by 

varying the composition and the thermal treatment. The substitution of Te by Se in bulk 

samples of GenSb2Ten+3 with high thermoelectric figures of merit (ZT) is possible over a wide 

compositional range. This results in solid solution series GenSb2(Te1-xSex)n+3 with 0 < x < 0.75 

for n ≥ 7. Se substitution reduces the average lateral extension of the defect layers in 

quenched samples. This is a consequence of the reduced mobility during the quenching 

process due to the lower cubic to trigonal phase transition temperatures of Se-substituted 

samples. Most pronounced for n = 7, Se doping increases the transition temperatures between 

the nanostructured (pseudo)cubic modification of quenched samples and their layered trigonal 

phase. This increases the temperature ranges in which the materials can be employed without 

altering their nanostructures and properties. When Se is introduced, the Seebeck coefficient 

increases and the thermal conductivity decreases. The ZT value of Ge7Sb2Te8Se2, for instance, 

increases up to 1.2 at 425 °C, which is 6 times higher than that of Ge7Sb2Te10. Similarly, the 

ZT value of Ge12Sb2(Te1-xSex)15 increases up to a factor of 2 for x = 0.2 at temperatures below 

400 °C. The most promising thermoelectric properties (ZT = 1.2 at 425 °C for n = 7, and ZT = 

1.1 at 350 °C for n =12) are observed for x = 0.2 whereas higher Se substitution rates result in 

a less pronounced effect. The average structures were determined by powder as well as single 

crystal X-ray diffraction (SCXRD). The real structure of quenched GenSb2(Te1-xSex)n+3 (0 ≤ x 

≤ 0.5; n ≥ 7) bulk material was investigated by high-resolution electron microscopy 

(HRTEM) with respect to the degree of substitution (x) and correlated with the resulting 

changes of the thermoelectric properties. The decrease of the lateral extension of the defect 

layers with increasing Se content as found by HRTEM and electron diffraction is confirmed 

by SCXRD data for Ge~5Sb2(Te0.13Se0.87)~8. 
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2.3.3.1 Introduction 

Thermoelectric generators are intriguing devices for the improvement of the efficiency of 

energy conversion processes by utilizing waste heat and may also advance new cooling and 

heating concepts. Their proliferation depends on the economic feasibility which is strongly 

related to the thermoelectric figure of merit (ZT), defined as ZT = S2 · σ · T · κ-1, which 

determines the efficiency of thermoelectric generators. The most favorable materials combine 

high Seebeck coefficients (S) and high electrical conductivities (σ) with low thermal 

conductivities (κ). New synthetic approaches and element combinations have been developed 

in recent years, resulting in a significant enhancement of ZT values.  

Germanium antimony tellurides (GST materials), which are well-known because of their 

applications as phase-change materials in optical data storage media and nonvolatile RAM 

devices,[1-5] have recently been shown to exhibit very interesting thermoelectric properties.[6,7] 

These are related to the nanostructure which can be influenced by utilizing characteristic 

phase transitions of GST materials. At ambient temperature, the thermodynamically stable 

pseudobinary compounds of the homologous series GenSb2Ten+3 consist of tetradymite-type 

Sb2Te3
[8] slabs that are formally enlarged by n additional GeTe layers. The crystal structure of 

these compounds thus consists of layer-like distorted rocksalt-type building blocks separated 

by van der Waals gaps between the Te atom layers terminating the individual slabs. These Te 

atoms formally surround distorted octahedral voids, so that the van der Waals gaps can be 

viewed as layer-like ordered cation defects (cf. Figure 1).[9,10] At high temperatures (HT), 

these defects are randomly disordered in a cubic rocksalt-type phase with Ge, Sb and 

vacancies occupying the cation positions and Te occupying the anion positions. Therefore, 

both the vacancy concentration in the cubic HT phase and the thickness of the slabs in the 

layered ambient-temperature phase are given by n in the formula GenSb2Ten+3.[11,12] In GeTe-

rich samples with n ≥ 3, quenching the cubic HT phase yields a metastable pseudocubic 

phase.[11] In this material, short-range ordering of the defects in finite layers perpendicular to 

the cubic <111> directions often leads to pronounced nanostructuring. While the average 

spacing of the defect layers exclusively depends on n, the variance of the spacing and the 

sizes of discrete domains with parallel defect layers in addition depend on the thermal 

treatment. Individual defect layers may intersect, forming parquet-like structures.[7] Across 

defect layers with limited lateral extension, the cubic stacking of the HT phase is preserved, 

while structural relaxation towards a hexagonal stacking (comparable to the situation in 

layered phase) occurs when the lateral extension is larger.[7,13] The lack of long-range order of 

the defect layers in quenched pseudocubic GST materials results in a lower lattice thermal 
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conductivity and higher ZT values (up to 1.3 at 450° C for Ge12Sb2Te15) as compared to 

annealed samples with a parallel arrangement of the defect layers (ZT up to 0.2 at 450° C for 

Ge12Sb2Te15).[7]  

The substitution of tellurium by the isovalence-electronic selenium is often possible. In some 

telluride-based thermoelectrics, the partial substitution of Te by Se led to improved ZT values, 

probably due to reduced lattice thermal conductivity (κL) as a consequence of Se/Te anion 

disorder. For example, Se-doped LAST materials AgPb18SbTe20−xSex (x = 1, 2, 4) exhibit a 

lower thermal conductivity at all temperatures investigated and, at low temperatures, a higher 

power factor than the corresponding Se-free material AgPb18SbTe20.[14] Se substitution in 

AgSbTe2 has been investigated in detail. The solid solution series AgSbTe2-xSex (0 < x < 2) 

obeys Vegard's law; the cubic cell parameter a deceases with increasing Se content.[15,16] The 

highest ZT values are found for small values of x; they mainly result from the reduced κL.[17-19] 

For example, ZT of p-type AgSbSexTe2-x (x = 0.02-0.04) is 1.37 at 292 °C, i.e. 26% higher 

than that of undoped AgSbTe2.[19] Co4Sb11.3Te0.6Se0.1, a Te-doped skutterudite-type CoSb3 

additionally doped by Se, exhibits ZT values 15% higher than those of Co4Sb11.4Te0.6, again 

due to a significantly lower κL.[20] The Se and Te doping is supposed to increase both point-

defect phonon scattering and electron-phonon interaction. Moderate doping with Se leads to a 

lower charge carrier concentration in n-type Co4Sb11.3Te0.7-xSex (0 ≤ x ≤ 0.3), and thus a lower 

σ.[21] Similarly, for Co4Sb11Ge0.2Te0.7Se0.1, a maximum ZT value of 0.99 is obtained at 502 °C, 

16% higher than that of Co4Sb11Ge0.2Te0.8 at the same temperature.[ 22 ] Therefore, the 

substitution of Te with small amounts of Se should also be a promising approach to increasing 

the thermoelectric performance of telluride thermoelectrics in general and GST materials in 

particular. 

The correlation of the nanostructure with the thermoelectric properties opens an interesting 

perspective for tuning these properties as partially substituting Te with Se changes phase 

transition temperatures. This has also been investigated for phase-change materials; e.g., in 

thin films of Ge8Sb2Te11, where the substitution of Te by Se has been shown to increase the 

temperature of the amorphous to crystalline phase change.[23] In nanostructured thermoelectric 

materials, on the other hand, phase transitions influence the defect ordering upon cooling or 

quenching. Therefore, varying the transition temperatures constitutes an intriguing aspect for 

optimizing the performance of GST bulk thermoelectrics by Se doping. Limitations are 

indicated by the fact that at ambient conditions GeSe crystallizes in a binary variant of the 

black phosphorus structure type [24] while the structure of α-GeTe is a binary variant of the 

structure type of gray arsenic.[25-28] Even though at HT both compounds exhibit a rocksalt-
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type structure, the ternary phase diagrams Ge/Sb/Te [29] and Ge/Sb/Se [30] are significantly 

different. There is no homologous series of layered compounds “GenSb2Se3+n“ corresponding 

to those on the pseudo-binary line Sb2Te3/GeTe. Therefore, complete solid solution series 

between selenides and tellurides are unlikely. However, there are solid solutions Sb2Te3-xSex 

with x up to 1.25.[31] Furthermore, Te was substituted with Se in thin films like GeSb2Te3Se 

and Ge2Sb2Te5−xSex
 [32] as well as Ge8Sb2Te6Se5.[23] 

 

 

Fig. 1: Rocksalt-type HT phase of GenSb2(Te1-xSex)n+3 with random distribution of the 
vacancies on the cation position (left);. quenching results in rhombohedral distortion along 
<111>cubic which is accompanied by short range ordering of the vacancies in defect layers 
between distorted rocksalt-type slabs (middle, two of four possible distortions are shown, a 
and b); when the lateral extension of the defect layers is sufficient, relaxation occurs and the 
stacking sequence across the vacancy layers becomes hexagonal (right). 

 

2.3.3.2 Experimental Section 

For the synthesis of bulk samples GenSb2(Te1-xSex)n+3 (0 < x ≤ 0.5; 7 ≤ n ≤ 19), stoichiometric 

amounts of the elements Ge (99.999%, Sigma Aldrich), Sb (99.999%, Smart Elements), Te 

(99.999%, Alfa Aesar) and Se (99.999%, Alfa Aesar) were melted in silica glass ampoules 

sealed under Ar atmosphere for 2 h at 950 °C and then quenched in water. Subsequently, the 

samples were annealed for 2 days in the stability range of the cubic high-temperature phase 

(~ 580 °C; except Ge19Sb2(Te0.8Se0.2)22: 630 °C) and quenched in water again. All samples 
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were obtained as homogenous compact metallic gray ingots without any visible impurities. 

For thermoelectric measurements, ingots were prepared under analogous conditions (but 

quenched in air) in silica glass ampoules with a flat bottom. After polishing, the disc-shaped 

ingots exhibit a diameter of ca. 20 mm and a thickness of 2-6 mm. The phase purity of the 

samples was verified by Rietveld refinements based on the X-ray powder diffraction patterns. 

Representative refinements are shown in Section 3.1, further refinement results are given in 

the Supporting Information (for the ingots used for thermoelectric measurements cf. Figure S1 

and Tables S1 and S2, for the samples Ge12Sb2(Te1-xSex)15 used for the Vegard plot cf. Figure 

S2 and Tables S3 and S4, respectively). For comparison, unsubstituted samples GenSb2Ten+3 

(7 ≤ n ≤ 19) were synthesized as described in ref. [7]. The single crystal was obtained by 

melting a stoichiometric mixture of Ge2Sb2TeSe4 at 950 °C in a sealed silica glass ampoule 

under dry Ar, quenching it in water and keeping the ampoule at 650 °C for 69 h followed by 

quenching it again in ice water. Octahedral crystals were isolated from the ampoule wall. 

The chemical composition of the samples, including two representative single crystals, was 

determined by energy-dispersive X-ray spectroscopy (EDX) using a JSM-6500F (Jeol, Japan) 

scanning electron microscope (SEM) equipped with an EDX detector (model 7418, Oxford 

Instruments, UK). 

For transmission electron microscopy (TEM), finely ground pieces of the samples were 

dispersed in ethanol and distributed onto a copper grid coated with holey carbon film by drop 

casting. High-resolution transmission electron microscopy (HRTEM), selected-area electron 

diffraction (SAED), and energy dispersive X-ray spectroscopy (EDX) were done on a Titan 

80-300 (FEI, USA). The microscope was equipped with a field emission gun operated at 300 

kV and a TEM TOPS 30 EDX spectrometer (EDAX, Germany). The SAED and HRTEM 

images (recorded on an UltraScan 1000 camera, Gatan, USA, resolution 2k x 2k) were 

evaluated using Digital Micrograph[33] and EMS,[34] for STEM and EDX data the program ES 

Vision[35] was used.  

X-ray patterns of powdered pieces of the ingots fixed on Mylar foils (by means of vacuum 

grease) were collected on a G670 Guinier camera (Huber, Germany) equipped with a fixed 

imaging plate detector and an integrated read-out system using Cu-Kα1 radiation (Ge(111) 

monochromator, λ = 1.54051 Å). For temperature programmed X-ray powder diffraction, a 

Stadi P powder diffractometer (Stoe & Cie. GmbH, Germany) with an imaging plate detector 

system was used with Mo-Kα1 radiation (Ge(111) monochromator, λ = 0.7093 Å). The 

diffractometer was equipped with a graphite furnace (details cf. Supplementary Information). 

Powder patterns were analyzed with WINXPOW.[36] For phase analysis and the determination of 



                                    2 TEM investigations of nanostructured germanium antimony tellurides 
 

86 

lattice parameters, Rietveld refinements were performed using the program package TOPAS-

Academic.[37]  

Single crystal data were acquired with an IPDS-I diffractometer (Stoe & Cie GmbH, 

Germany) with Ag-Kα radiation (λ = 0.56085 Å) and with a heavy-duty diffractometer 

(Huber, Germany) equipped with a FReLoN2K CCD detector (dynamical range 216) [38] at the 

materials science beamline ID11 [39] (ESRF, Grenoble, France) near the absorption edges of 

Te (λ = 0.38979 Å; 31.808 keV) and Sb (λ = 0.40681 Å; 30.477 keV), respectively. 

Dispersion correction terms Δf’ and Δf’’ near the absorption edges of Sb and Te were 

calculated from wavelength-dependent fluorescence measurements (Rontec X-Flash detector) 

with CHOOCH.[40] Laboratory single crystal data were processed with the diffractometer 

software,[ 41] numerical absorption correction was performed with X-RED32[42 ] and X-

SHAPE[43] taking into account the Laue symmetry m3m. Synchrotron diffraction data were 

indexed with SMART[44] and integrated with SAINT;[45] semiempirical absorption correction 

as well as scaling and merging the different datasets for each wavelength was performed with 

SADABS.[46] The final structure refinements were performed with JANA2006.[47] Additional 

test refinements were also done with SHELX-97.[48]  

The thermoelectric properties were measured up to 450° C under inert conditions (see below) 

using commercial and in-house-built facilities of the DLR (Cologne, Germany). The 

combined measurement of the electrical conductivity (σ) and the Seebeck coefficient (S) was 

performed after the measurement of the thermal conductivity (κ). The raw data were treated as 

described in the Supplementary Information. For the measurement of the electrical resistivity, 

an in-line four-point-probe setup was used to avoid influences of cable and contact resistance; 

an AC method with a frequency of 7 Hz was employed to reduce Peltier influences. The 

values of σ were determined from the resistance R using σ = 1/(2π s · R · G), where s is the 

distance of the voltage probes and the correction factor G takes into account the sample 

geometry. Type-N thermocouples attached directly to the sample were used to measure the 

temperatures (T1 and T2) and the Seebeck voltage (Us). The Seebeck coefficient was 

determined from a variable temperature gradient using S = ∂Us / ∂∆T – SNicrosil  with 

∆T =|T2 - T1| and SNicrosil the Seebeck coefficient of the thermocouple wires. More details on 

the hardware and the electrical conductivity measurements can be found in ref. [49], while the 

details of the Seebeck measurement are given in ref. [50]. 

The thermal conductivity (κ) was calculated from the thermal diffusivity (Dth), taking into 

account the heat capacity (Cp) and the density (ρ) of the sample: κ  = Dth · ρ · Cp. The 

densities were determined using Mohr’s balance; the deviation from the X-ray densities was ≤ 
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1%. Dth was measured with a laser-flash apparatus (LFA 427, Netzsch GmbH & Co., 

Germany) and Cp was determined by differential scanning calorimetry (DSC 404, Netzsch 

GmbH & Co., Germany). The lattice part of the thermal conductivity (κL) was calculated as 

the difference of the total thermal conductivity and the electronic contribution to the thermal 

conductivity (κe), which is related to the electrical conductivity according to the Wiedemann-

Franz law: κ e / σ = LT (with the absolute temperature T and the Lorenz number L). For all 

samples, L = 1.48 ⋅10-8 WΩK-2 was used; this value is typical for degenerate 

semiconductors.[ 51 ] The thermoelectric figure of merit (ZT) was calculated from these 

properties according to ZT = S2 · σ · T · κ -1.  

 

2.3.3.3 Results and Discussion 

2.3.3.3.1 Structure and existence ranges of Se-substituted GST materials 

GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; 7 ≤ n ≤ 19) 

a) (pseudo)cubic mixed crystals of quenched GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; 7 ≤ n ≤ 12) 

Se-substituted samples exhibit phase transitions comparable to those of the ternary GST 

compounds as described in the Introduction, e.g., a layered structure thermodynamically 

stable at ambient conditions and a cubic HT phase. Quenching the cubic HT phase of solid 

solutions GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; n = 7, 12) results in pseudocubic samples whose 

powder patterns do not indicate significant deviations from the cubic metrics. Following 

Vegard's law, the volume of the (pseudo)cubic unit cell of Ge12Sb2(Te1-xSex)15 (x = 0.05, 

0.067, 0.133, 0.2, 0.333, 0.5, 0.6, 0.733) decreases with increasing x, i.e., when Te is 

substituted with the smaller Se (cf. Figure 2).  

The chemical composition of the products GenSb2(Te1-xSex)n+3 (x = 0.2, 0.5; n = 7, 12) 

corresponds to that of the weighted samples with deviations of less than 2 atom% according to 

TEM-EDX (for samples used for TEM investigations) and SEM-EDX (for the samples used 

for thermoelectric characterization and the Vegard plot, Figure 2). The results of these 

measurements are given in the Supporting Information (Tables S5 and S6). In contrast to the 

quarternary compounds Ge12Sb2(Te1-xSex)15 (x < 0.75), quenching the ternary selenium 

compounds (x = 1) does not yield a pseudocubic single-phase product; instead, a mixture of 

Sb-doped GeSe and (possibly Ge-doped) Sb2Se3 is formed.  
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Fig. 2: Decrease of the cubic lattice parameter a with the Se content (x) in quenched samples 
of Ge12Sb2(Te1-xSex)15 (Vegard’s plot) with linear least-squares fit (a = 6.001(8) – 
0.321(19) x , gray line). 
 
The lattice parameters of the quenched (pseudo-)cubic samples GenSb2(Te1-xSex)n+3 

(0 ≤ x < 0.75; n = 7, 12) were determined by Rietveld refinements using the powder 

diffraction patterns. A fundamental parameter approach based on the experimental setup was 

employed to describe the reflection profiles. For n = 7, Lorentzian microstrain broadening 

was taken into account; for n = 12, anisotropic microstrain and crystallite size broadening 

(using the LeBail-Jouanneaux method)[52] were considered and significantly improved the fit 

due to the pronounced asymmetry of the reflection profiles. Preferred orientation (using 

spherical harmonics) was taken into account for all samples discussed. Site occupation factors 

were derived from the nominal composition. Common displacement parameters were 

employed for the cations and anions, respectively. The isotropic displacement parameters of 

the cations are rather large due to the variance of the surrounding atoms that results from the 

mixed occupancy of the anion position with Se and Te as well as the random distribution of 

the cations and vacancies. 

The results of the refinements for GenSb2(Te1-xSex)n+3 (x = 0.2, 0.5 and  n = 7, 12) are shown 

in Figure 3, crystal data and details on the refinements are given in Table 1, the atomic 

parameters are listed in Table 2. These compositions were also used for the determination of 

the nanostructure by TEM and measurements of thermoelectric properties. Further details of 

the crystal structure investigations may be obtained from Fachinformationszentrum Karlsruhe, 

76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-

karlsruhe.de, http://www.fiz-karlsruhe.de /request_for_deposited_data.html) on quoting the 

depository numbers CSD-426896 (Ge7Sb2Te8Se2), CSD-426895 (Ge7Sb2Te5Se5), CSD-

426892 (Ge12Sb2Te12Se3), and CSD-426897 (Ge12Sb2Te7.5Se7.5), respectively (data for 

Ge12Sb2Te15 cf. ref. [6] and for Ge7Sb2Te10 cf. ref. [53]). 
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Fig. 3: Profile fits from the Rietveld refinements of Ge7Sb2Te8Se2 (top left), Ge7Sb2Te5Se5 
(top right), Ge12Sb2Te12Se3 (bottom left) and Ge12Sb2Te7.5Se7.5 (bottom right): experimental 
(black) and simulated (red) powder patterns, difference plots (blue) and reflection markers 
(black, bottom); the scaling of the 2θ axis is the same for all plots and the intensities were 
normalized according to that of the strongest reflection of the experimental powder pattern.  
 

Table 1. Details of the Rietveld refinements for GenSb2(Te1-xSex)n+3 (n = 7, 12) phases 
obtained by quenching the HT phase. 

 Ge7Sb2Te8Se2 Ge7Sb2Te5Se5 Ge12Sb2Te12Se3 Ge12Sb2Te7.5Se7.5 

asymmetric unit Ge0.7Sb0.2Se0.2Te0.8 Ge0.7Sb0.2Se0.5Te0.5 Ge0.8Sb0.133Se0.2Te0.8 Ge0.8Sb0.133Se0.5Te0.5 

formula weight of the 
asymmetric unit (in g mol-1) 193.05 178.46 192.15 177.56 

F(000) 324.0 302.4 323.1 301.5 
crystal system / space group (no.) cubic / Fm3m   (225) 
lattice parameters (in Å) a = 5.93511(11) a = 5.8326(2) a =5.9566(6) a = 5.8231(10) 
cell volume (in Å3) 209.067(12) 198.42(2) 211.35(6) 197.45(10) 
density (X-ray, in g/cm³) 6.13 5.97 6.04 5.97 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 
parameters (thereof background) 20(12) 33(12)* 
Rp / Rwp  0.0231 / 0.0317 0.0362 / 0.0535 0.0251 / 0.0356 0.0318 / 0.0519 
GooF / RBragg 1.192 / 0.0085 2.110 / 0.0079 1.386 / 0.0068 2.034 / 0.0094 
*with LeBail-Jouanneaux anisotropic broadening 52 
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Table 2. Atom coordinates, site occupancies and isotropic displacement parameters (in Å²) 
for GenSb2(Te1-xSex)n+3 (n = 7, 12) samples obtained by quenching the HT phase. 
 anions   cations and vacancies 

 position occupancy Biso  position occupancy Biso 

Ge7Sb2Te8Se2 4a 1/2 1/2 1/2 4/5 Te, 1/5 Se 1.42(4)  4b 0  0  0 7/10 Ge, 2/10 Sb 3.48(6) 

Ge7Sb2Te5Se5 4a 1/2 1/2 1/2 1/2 Te, 1/2 Se 2.03(8)  4b 0  0  0 7/10 Ge, 2/10 Sb 3.60(11) 

Ge12Sb2Te12Se3 4a 1/2 1/2 1/2 4/5 Te, 1/5 Se 1.13(6)  4b 0  0  0 12/15 Ge, 2/15 Sb 3.67(8) 

Ge12Sb2Te7.5Se7.5 4a 1/2 1/2 1/2 1/2 Te, 1/2 Se 1.50(9)  4b 0  0  0 12/15 Ge, 2/15 Sb 3.93(13) 

 

b) single-crystal structure determination of Ge~5Sb2(Te0.13Se0.87)~8 

Diffraction data of a single crystal of Ge~5Sb2(Te0.13Se0.87)~8 have been obtained with 

synchrotron radiation near the K absorption edges of Sb and Te in order to enhance the 

scattering contrast between these elements. At such wavelengths, the atomic form factor 

f(λ,θ) = f 0(sinθ/λ) + Δf’(λ) + iΔf’’(λ) (dependent on the diffraction angle θ and the 

wavelength λ) is characterized by large dispersion correction terms Δf’ and Δf’’, which are 

rather small when wavelengths far from absorption edges are used.[54-56] The structure was 

refined simultaneously on 3 datasets (near the Sb-K and Te-K edges and far off the edges with 

Ag-Kα radiation). The dispersion correction terms of Sb and Te at their respective absorption 

edges were calculated from fluorescence data. The remaining dispersion correction terms 

were taken as they are implemented in JANA2006.[57] The values used for the structure 

refinement are listed in Table 3. Ge and Sb were refined on a shared cation position and Se 

and Te on a shared anion position, respectively. Common displacement parameters were used 

for each shared position. Full site occupancy of the anion position was assumed so that the 

refined ratio Se/Te requires one parameter. Concerning the occupancy of the cation position, 

an electroneutrality constraint was applied, assuming that the cation position is occupied by 

Ge2+, Sb3+ and vacancies; this way one additional parameter suffices to describe the cation 

distribution without assuming full occupancy. EDX measurements of two crystals from the 

same batch yield an average composition that is in good agreement with the composition 

Ge~5Sb2(Te0.13Se0.87)~8 refined from the single crystal data (in atom-%: calculated 

Ge33.3Sb13.3Se6.9Te46.4, measured Ge33.4(6)Sb13.9(3)Se6.8(3)Te45.9(6)). The lattice parameter 

a =5.708 Å of the single crystal also corresponds to a very high Se content. Since the 

influence of the GeTe content n on the lattice parameter is much less pronounced than that of 

the Se content x (cf. Table 1), Figure 2 may be used to estimate x ~ 0.9, which is in good 

agreement with the refined composition. The results of the joint refinement and crystal data 

are shown in Tables 4 and 5, respectively. Further details of the crystal structure 
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investigations may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-

Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, 

http://www.fiz-karlsruhe.de/ request_for_deposited_data.html) on quoting the depository 

number CSD-426726. 

The structure can be described as a rocksalt-type one with mixed cation and anion sites and 

additional vacancies on the cation position. The diffraction pattern exhibits diffuse intensities 

around the Bragg reflections (cf. Fig. 7 top right). Streak-like but rather broad and weak 

maxima next to the Bragg reflections indicate short-range vacancy ordering in defect layers as 

described for (GeTe)nSb2Te3 (3 < n < 15).[6,58] The corresponding nanostructure and the 

influence of the Se substitution are described in Section 3.3.  

 

 

Table 3. Dispersion correction terms used for the 
structure refinement of Ge~5Sb2(Te0.13Se0.87)~8. 
λ / Å  element Δf’ / e Δf’’ / e 
 Ge 0.302 1.190 
 
0.56085 

Sb -1.055 1.010 
Se 0.237 1.483 

 Te -0.971 1.096 
 Ge 0.279 0.670 
 
0.40681 

Sb -5.790 0.630 
Se 0.289 0.843 

 Te -2.574 0.623 
 Ge 0.268 0.619 
 
0.38979 

Sb -2.214 3.303 
Se 0.281 0.780 

 Te -6.950 0.710 
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Table 4. Crystal data and results of the joint refinement of 
Ge~5Sb2(Te0.13Se0.87)~8 = Ge0.625Sb0.25Se0.87Te0.133. 

refined composition (per formula unit) Ge0.64(4)Sb0.24(2)Se0.866(9)Te0.133 

molecular mass 161.1 gmol-1 
temperature 293 K 
crystal size 0.08 · 0.10 · 0.17 mm³ 
lattice parameter a = 5.7078(18) Å 
cell volume 185.95(10) Å3 
crystal system cubic 
space group Fm3m 
ρcalc. 5.751 gcm-3 
Z 4 
F(000) 276 
diffractometer IPDS-I ID11 (ESRF) 
radiation Ag-Kα synchrotron 
λ 0.56085 Å 0.40681 Å 0.38979 Å 
reflections (independent) 321 (48) 1116 (65) 1221 (60) 
Rint (all) 0.0355 0.0221 0.0217 
µ 17.31 mm-1 7.15 mm-1 10.79 mm-

1 
sinθ/λ  0.89 Å-1 1.02 Å-1 1.00 Å-1 
absorption correction numerical semiempirical 
parameters 8 (3 constraints, cf. text) 
weighting scheme w = 1/[σ2(Fo) + 0.000225(Fo

2)] 
R1 [I > 3σ(I)] 0.0320 0.0227 0.0257 
wR [I > 3σ(I)] 0.0391 0.0309 0.0370 
R1 (all) 0.0362 0.0227 0.0257 
wR (all) 0.0401 0.0309 0.0370 
 for all data in all datasets 
R1 [I > 3σ(I)] 0.0267 
wR [I > 3σ(I)] 0.0352 
R1 (all) 0.0280 
wR (all) 0.0354 
GooF (all) 1.91 
Δρmin / Δρmax -2.96 / +0.93 

 
 
 

Table 5. Atomic coordinates, site occupancies and isotropic displacement 
parameters (in Å²) of Ge~5Sb2(Te0.13Se0.87)~8. 
 

Atom 

Wyckoff 

position 

 

x 

 

y 

 

z 

 

sof 

 

Uiso 

Ge1 
4a 0 0 0 

0.64(4) 
0.0366(2)  

Sb1 0.24(2) 

Se2 
4b 0.5 0.5 0.5 

0.866(9) 
0.02172(18) 

Te2 0.134 
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c) GeTe-type average structure of Ge19Sb2(Te1-xSex)22 

While quenching the HT phases of GenSb2(Te1-xSex)n+3 with n = 7, 12 yields samples with a 

cubic average structure, quenching samples with lower defect concentrations (i.e., higher 

GeTe contents) yields materials whose powder patterns indicate a rhombohedral average 

structure. Samples of Ge19Sb2(Te1-xSex)22 (x = 0.2, 0.5) quenched from the cubic HT phase 

exhibit an α-GeTe-type structure (i.e., the binary variant of the A7 structure type of gray 

arsenic)[25] according to Rietveld refinements. HRTEM images (cf. Figure 6 in Section 3.3) 

reveal only few defect layers comparable to those in the (pseudo)cubic quenched samples of 

GenSb2(Te1-xSex)n+3 (x = 0.2, 0.5) with n = 7, 12. Thus, the non-centrosymmetric average 

α-GeTe-type structure model mainly reflects A7-type layers with cation-anion ordering 

within the domains that are free of defect layers, and not an average over multiple domains 

(which would be centrosymmetric).[59] The short-range defect ordering is not visible in the 

PXRD pattern since there are only few layers with limited lateral extension so that diffuse 

intensities are very weak and cannot be distinguished from the background. In analogy to the 

refinements of the (pseudo)cubic samples (Section 3.1 a), a fundamental parameter approach 

for reflection profiles was used, and anisotropic microstrain and crystallite size boadening 

(LeBail-Jouanneaux method)[52] as well as preferred orientation (using spherical harmonics) 

were taken into account. Site occupancies and displacement parameters were treated in the 

same way as for the cubic samples. The results of the Rietveld refinements are given in 

Figure 4 as well as Tables 6 and 7. Further details of these crystal structure investigations may 

be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, 

Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-

karlsruhe.de/ request_for_deposited_data.html) on quoting the depository numbers CSD- 

426894 (Ge19Sb2Te17.6Se4.4) or CSD- 426893 (Ge19Sb2Te11Se11), respectively.  

During cooling or quenching, the α-GeTe-type structure is formed when the metrics of the 

cubic HT phase is distorted by an elongation along one of the the cubic <111> directions and 

A7-type-analogous anion/cation layers are formed in quenched Ge19Sb2(Te1-xSex)22. The c/a 

ratios of both samples are very similar: 2.544 for x = 0.2 and 2.543 for x = 0.5, respectively 

(cf. Table 6). This is between the value of the trigonal setting of a cubic unit cell (2.532) and 

that of binary GeTe (2.559). In addition to the significant distortion of the cubic metrics, the 

A7-layer formation leads to a 3 + 3 coordination, with bond lengths of 2.8336(7) Å and 

3.1140(9) Å for x = 0.2 and 2.8016(9) Å and 3.0567(11) Å for x = 0.5, respectively. This is 

typical for the α-GeTe-type structure and follows from the deviation of the z coordinates of 

the anions from z = ½ which would correspond to equal bond lengths (Table 7). The anion-
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cation ordering of the HT cubic phase is preserved, which is in good agreement with the 

temperature dependent X-ray investigations that basically indicate a displacive phase 

transition during cooling. 

 

Table 6. Crystal data and details of the Rietveld refinements for quenched Ge19Sb2(Te1-xSex)22  

(x = 0.2, 0.5) with α-GeTe-type average structure. 

 Ge19Sb2Te17.6Se4.4 Ge19Sb2Te11Se11 

asymmetric unit Ge0.86Sb0.091Se0.2Te0.8 Ge0.86Sb0.091Se0.5Te0.5 

formula weight of the asymm. unit (in g mol-1) 191.69 177.10 

F(000) 242.1 225.9 
crystal system  
/ space group (no.) trigonal / R3m   (160) 

lattice parameters (in Å) a = 4.14306(12) 
c = 10.5387(3) 

a = 4.0823(2) 
c = 10.3825(6) 

cell volume (in Å3) 156.661(12) 149.85(2) 
density  
(X-ray, in g/cm³) 6.09 5.89 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 

parameters (thereof background) 48(12) 

Rp / Rwp  0.0192 / 0.0267 0.0191 / 0.0274 
GooF / RBragg 1.030 / 0.0071 1.069 / 0.0063 

 

 

 

 

 

Table 7. Atom coordinates, site occupancies and isotropic displacement parameters (in Å²) 
for Ge19Sb2(Te1-xSex)22  (x = 0.2, 0.5). 
 anions   cations and vacancies 

 position occupancy Biso  position occupancy Biso 

Ge19Sb2Te17.6Se4.4  4a 0  0  0 0.8 Te, 0.2 Se 1.00(1)  4b 0  0  0.47748(13) 19/22 Ge, 2/22 Sb 1.84(3) 

Ge19Sb2Te11Se11   4a 0  0  0 0.5 Te, 0.5 Se 1.15(2)  4b 0  0  0.47920(16) 19/22 Ge, 2/22 Sb 2.23(4) 
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Fig. 4: Results of the Rietveld refinements for Ge19Sb2Te17.6Se44 (top) and Ge19Sb2Te11Se11 
(bottom): experimental powder diffraction pattern (black), calculated pattern (red), difference 
plot (blue) and reflection markers (bottom). 
 

2.3.3.3.2 Influence of Se substitution on the phase transitions of GST materials 

Temperature-programmed X-ray powder diffraction (TPXRD) investigations of pseudocubic 

bulk samples of GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; n ≥ 7) obtained by quenching the cubic HT 

phase were performed in order to determine the existence range of the different crystalline 

phases (Figure 5). In general, Se-substituted samples exhibit phase transitions similar to those 

known from quenched unsubstituted GST samples (3 ≤ n ≤ 17).[7] Upon heating, two 

transformations (temperatures T1 and T2, respectively) occur whereas during cooling there is 
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only one (T3). The increased atom mobility at elevated temperatures enables a vacancy re-

ordering process that leads from the metastable quenched pseudocubic material towards the 

thermodynamically stable trigonal layered phase with 2D extended van der Waals gaps at T1 

(cf. Figure 1, right). When the temperature reaches the stability region of the cubic HT phase, 

the random distribution of the vacancies in a rocksalt-type phase becomes favorable (T2). 

When the sample is slowly cooled down below the stability range of the cubic HT phase, only 

one transition is observed at T3 (cf. Table 8), where the stable trigonal layered phase is 

formed. The transformation temperatures of individual samples depend on the GeTe content. 

The difference in the cubic  trigonal transition temperatures during heating (T2) and 

cooling (T3) show that the cubic HT phase can be undercooled.  

The diffusion pathways required for complete vacancy ordering, i.e., the formation of van der 

Waals gaps “infinitely” extended in 2D, depend on the slab thickness and thus increase with 

the GeTe content (n). However, in contrast to unsubstituted GST, the transformation 

temperature T1 of Se-substituted materials decreases with increasing n; probably because the 

trigonal phase remains very close to cubic in Se-containing compounds (see below) and 

therefore the transition process requires less strain relaxation. Upon heating, the cubic phase 

of substituted and unsubstituted GST materials is reached at lower temperatures (T2) with 

increasing n; and T3 also decreases. Thus, with increasing n, the cubic HT phase obviously 

becomes stable at lower temperatures. This is probably due to the higher local coordination 

numbers in structures with fewer vacancies. Therefore, this effect is more pronounced for the 

more ionic Se-substituted samples. From the point of view of kinetics, however, the long 

diffusion pathways at higher n mean that it becomes easier to undercool the cubic HT phase 

and partially retain it at room temperature by quenching.  

As a rule, the metrics of the trigonal phase remains closer to cubic for the Se-substituted 

samples. For compounds Ge12Sb2(Te1-xSex)15 (x = 0.2, 0.5), the cubic metrics is nearly 

preserved both at room and at elevated temperatures. This effect is visible in the less 

pronounced splitting of the cubic reflections 220, 222 and 420 (at 2θ = ~19°, ~26° and ~32°, 

respectively) compared to the corresponding pure GST materials.[7] With increasing Se 

contents x, the transition temperatures T1 from the pseudocubic nanostructured phase to the 

thermodynamically stable layered phase increase for samples with n = 7. Thus, the substituted 

material can be kept at higher temperatures without altering its nanostructure or properties. 

This may again be due to the more ionic character that involves higher activation energies for 

diffusion processes. As a rule, the lower trigonal-cubic transition temperatures T2, and more 

pronounced T3, indicate that the stability range of the cubic HT phase is reached at lower 
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temperatures with increasing Se contents. This results in a reduced mobility at the transition 

temperature, especially during quenching, which influences the short-range defect order and 

the metrics of the quenched samples. Altogether, the existence ranges of the trigonal phases 

are narrower for samples with higher Se contents. The melting points of the compounds show 

a tendency to decrease with increasing relative Se contents. 

 

Table 8. Phase transformation temperatures and melting points (mp) in °C of 
GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; n = 7, 12) from temperature programmed PXRD; T1, T2 and 
T3 of Ge7Sb2Te10 and Ge12Sb2Te15 taken from ref (7). 

Composition T1 T2 T3 mp 
Ge7Sb2Te10

 250-320 500 460 650 
Ge7Sb2Te8Se2 325 450 360 640 
Ge7Sb2Te5Se5 380 460 330 600 
Ge12Sb2Te15

 325 475-500 460 ~700* 

Ge12Sb2Te12Se3 150 280 265 640 
Ge12Sb2Te7.5Se7.5 150 260 240 600 

* The material is solid up to 650 °C and liquid at 700 °C. 
 

 
Fig. 5: Temperature-dependent PXRD: heating and cooling (bottom to middle and middle to 
top, respectively, in each image; Ge12Sb2Te12Se3 was only heated up to 650 °C, the white bar 
represents the interval where no data was measured) of GenSb2(Te1-xSex)n+3 with x = 0.2 (top) 
and x = 0.5 (bottom) quenched form the cubic HT phase, with increasing GeTe content from 
left to right (n = 7, 12, 19); transition temperatures from the pseudocubic to the trigonal 
layered phase (T1), from the trigonal to the cubic HT phase (T2) and from the cubic HT to 
trigonal during cooling (T3) are marked with dotted lines; reflections originating from the 
furnace are marked with asterisks (*). 
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For Se-substituted samples Ge19Sb2(Te1-xSex)22 (x = 0.2 and 0.5), quenching does not yield a 

pseudocubic phase but an α-GeTe-type layered structure with very little partial defect 

ordering as shown above. Upon heating, the transition to the cubic HT phase (comparable to 

T2 of pseudocubic samples) occurs at 300 and 290 °C for x = 0.2 and 0.5, respectively (Figure 

5). Upon cooling, the transition to the trigonal phase (T3) occurs at 300 and 280 °C for x = 0.2 

and 0.5, respectively. In contrast to the pseudocubic samples, there is no difference between 

phase transition temperatures during heating (T2) and cooling (T3). This may be explained by 

the fact that this is a second-order phase transition comparable to that of GeTe itself which 

involves only a negligible degree of vacancy ordering. The main effect is the formation of 

layers in the disordered structure via a Peierls-type transition; thus, the HT phase cannot be 

undercooled. 

 

2.3.3.3.3 Influence of Se substitution on the nanostructure of GST materials and the 

lateral extension of defect layers 

a) domain structure 

For unsubstituted GST compounds GenSb2Ten+3 (n = 4.5 - 19), an increasing GeTe content n 

results in an increasing average spacing of the defect layers, which are formed by short-range 

ordering of the randomly distributed defects during quenching the cubic HT phase, and a 

higher variance of these spacings. Due to the longer diffusion pathways that are required to 

form long-range ordered layered structures with extended defect layers at higher values of n, 

the probability of intersecting defect layers with different orientation increases, resulting in 

more pronounced parquet-like structures with intersecting defect layers.[7] Since the 

substitution with Se does not alter the defect concentration in mixed crystals 

GenSb2(Te1-xSex)n+3, a similar trend is visible for the substituted samples (Figure 6). For a 

given Se fraction x, the average spacing of the defect layers increases with n; and the 

decreasing average sizes of the domains with parallel defect layers result in more pronounced 

parquet-like structures. However, at very high GeTe contents (e.g., n = 19), the situation is 

different: Quenching yields compound with an α-GeTe-type average structure (cf. Section 

3.1c) and only a very limited number of finite defect layers is present.  
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Fig. 6: HRTEM images (zone axis <110> according to (pseudo)cubic setting); all of them 
have the same magnification) and SAED patterns (insets) of Ge12Sb2(Te1-xSex)n+3; with in-
creaseing Se content (x) from top to bottom and increasing GeTe content (n) from left to right. 
 

b) lateral extension of defect layers 

The lower transition temperature from the cubic HT phase to the trigonal one (T3) and the 

less pronounced metric distortion of the trigonal phase in Se-substituted samples influence the 

short-range ordering of defects as the mobility of atoms and vacancies is lower during the 

quenching process. For comparable quenching rates, there is less time for diffusion processes 

that are necessary to form defect layers from randomly disordered defects. Thus, the lateral 

extension of the defect layers in the pseudocubic phase is smaller for higher Se contents. This  
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Fig. 7: Comparison of the real structures of unsubstituted (left) with Se-substituted (right) 
GST crystals; from top to bottom: reconstructed reciprocal lattice section hhl of single crystal 
X-ray data of Ge~6Sb2Te~9 and Ge~5Sb2(Te0.13Se0.87)~8, respectively, measured at the Te-K 
absorption edge (enlarged section with diffuse scattering around Bragg reflections); SAED 
patterns of the <110> zone axes of Ge7Sb2Te10 and Ge7Sb2Te5Se5, respectively, with enlarged 
reflection surrounded by diffuse intensity and HRTEM images (<110> zone axis) showing 
defect layers (some highlighted by white lines).  
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is visible in the HRTEM images and reflected in the broadening of the diffuse streaks both in 

the SAED and in the single-crystal X-ray diffraction patterns in Figure 7. The enlarged 

reflections depicted in the reciprocal lattice sections reconstructed from X-ray data as well as 

the SAED patterns show that the diffuse scattering of unsubstituted GST samples is localized 

on thin diffuse streaks between the Bragg reflections. The Se-substituted sample rather 

exhibits diffuse clouds whose diameter is larger than that of the Bragg reflections. This clearly 

indicates less pronounced 2D ordering, i.e., a smaller lateral extension of the defect layers, 

and is also obvious from the corresponding HRTEM images (Figures 6, 7, and additional 

data): the average lateral extension of the defect layers of the unsubstituted samples is 11(3) 

nm for n = 7 and 17(6) nm for n = 12, while the values found for the samples with x = 0.5 are 

7(1) nm for n = 7 and 7(2) nm for n = 12, respectively.  

 

2.3.3.3.4 Influence of Se substitution on the thermoelectric properties of GST materials 

Thermoelectric measurements were performed starting with chemically homogeneous disc-

shaped ingots of quenched pseudocubic GenSb2(Te1-xSex)n+3 (cf. Supporting Information, 

Figure S1, Tables S1 and S2). Their composition corresponds to the weighted samples (cf. 

Supporting Information Table S5), and the lattice parameters differ slightly from those of 

smaller samples due to minor variations of cooling rates; however, there is no indication for 

different nanostructures in samples with the same composition. The substitution with Se alters 

the phase transition temperatures and, as a consequence, the nanostructure of 

GenSb2(Te1-xSex)n+3 (see above) and thus strongly influences the thermoelectric properties 

(Figure 8). For Ge12Sb2Te12Se3, the thermal conductivity κ during cooling does not differ 

significantly from that during the heating process, thus the measured values were averaged. 

For the other samples multiply measured heating curves were averaged (cf. Supporting 

Information Figure S3). For σ and S, some of the heating and cooling measurements differ 

more than the experimental error since in some cases there are partially irreversible structural 

changes (see above). Still, the values are comparable and were averaged in order not to over-

interpret very small time-dependent changes. Heating and cooling curves of the σ and S 

measurements of Ge12Sb2Te12Se3 further show that there is no significant change in a second 

measurement cycle. Therefore, the averaged σ and S curves show realistic values for materials 

in application. 

For Ge12Sb2Te15, σ and κ are significantly higher than for Ge7Sb2Te10 and all samples 

containing Se. The latter exhibit electrical conductivities between 100 and 600 S/cm. Whereas  
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Fig. 8: Thermoelectric characteristics of quenched GenSb2(Te1-xSex)n+3 samples with n = 7 
(left) and n = 12 (right); from top to bottom: electrical conductivity (σ), Seebeck coefficient 
(S), thermal conductivity (κ), lattice part of thermal conductivity (κL), and the resulting ZT 
values; averaged values of heating and cooling curves were used for S and σ. The error bars 
for the ZT values were calculated from those of the individual measurements as detailed in the 
Supporting Information. 
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for Se-free samples, the temperature dependence of σ corresponds to metallic behavior, σ of 

GenSb2(Te1-xSex)n+3 (x = 0.2, 0.5) changes little with temperature up to 300 °C for n = 7 and 

over the whole temperature range for n = 12. Se doping increases the ionicity so that σ of 

samples Ge12Sb2(Te1-xSex)15 with x > 0 is much lower (1/5 at RT; 1/3 at 430 °C) than for 

Ge12Sb2Te15. When the trigonal layered phase is formed, Se-substituted samples with n = 7 

become semiconducting; this effect is much less pronounced for n = 12. Probably the van der 

Waals gaps, which are more closely spaced for n = 7, impede metallic electron conduction. 

Thus, the samples Ge7Sb2(Te1-xSex)10 (x = 0.2, 0.5) are better electrical conductors at higher 

temperatures compared to metallic Ge7Sb2Te10 whose σ decreases with temperature.  

The lowest thermal conductivities are found for the samples GenSb2(Te1-xSex)n+3 with x = 0.2. 

For samples with n = 7, and for the Se-substituted ones with n = 12, the overall thermal 

conductivity κ as well as the lattice part κL are similar up to the phase transition temperature 

(~300 °C) for all values of x. Ge12Sb2Te15 exhibits similar κL values but different κ due to the 

higher electronic contribution. The Se-substituted samples show a tendency for lower absolute 

values of κL, especially above 300 °C when the unsubstituted samples (especially Ge7Sb2Te10) 

exhibit an increase in κL (and κ). Se-containing samples exhibit only a small increas in κ at 

higher temperatures, reflecting their increasing σ (especially for n = 7), while κL remains 

constant above 300°C probably due to the higher phonon scattering caused by the Se/Te anion 

disorder. 

The Seebeck coefficient of all samples GenSb2(Te1-xSex)n+3 investigated is positive, i.e., the 

compounds are p-type materials. S increases with the temperature in the same way as it does 

for the unsubstituted samples that reach 110 -  180 µV K-1 at 450 °C.[7] S of samples with Se 

contents of x = 0.2 is on average by 100 µV K-1 higher than for the correspon+ding pure GST 

materials. This has a strong influence on the thermoelectric performance given the fact that 

high efficiency thermoelectrics like TAGS (Te-Ag-Ge-Sb)[60,61] compounds have a maximum 

S of 160 - 220 µV/K and ZT depends on the square of S. The highest values of up to 250 

µV/K are reached for x = 0.2, i.e., moderate Se doping. Additional investigations on 

Ge12Sb2Te15 (shown in the Supporting Information Figure S4) reveal typical charge carrier 

concentrations that increase form 0.6 ⋅ 10[21] at 25 °C to 1.2 ⋅ 1021 at 300 °C and charge carrier 

mobilities that decrease from 14 cm2/(V⋅s) at 25 °C to ~ 2 cm2/(V⋅s) at 500 °C. 

In general, the substitution with small amounts of Se leads to the most favorable combination 

of high S and low κ with a relatively high σ. The high S is the crucial quantity behind the 

higher maximal ZT values (at 425 °C) of Se-substituted Ge7Sb2(Te1-xSex)10 (maximal ZT ~ 1.0 

for x = 0.5 and ZT ~ 1.2 for x = 0.2) compared to the unsubstituted sample (maximal ZT ~ 
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0.2). This is due to the less pronounced metallic character resulting from the incorporation of 

electronegative Se. Around 250 °C, the ZT value of the Se-containing samples increases much 

faster compared to the unsubstituted ones due to a strong increase of σ upon forming the 

trigonal phase that is not fully compensated by the less pronounced increase in κ. For n = 12, 

the reduced κ cannot compensate the very high σ of Ge12Sb2Te15 so that an increased ZT value 

is observed only at temperatures below 300 °C for x = 0.5 and 400 °C for x = 0.2. At higher 

temperature, the ”convergence” of S in combination with the still rather large difference in σ 

results in higher ZT vales of the unsubstituted sample (ZT ~ 1.5 at 450 °C) while the 

substituted ones exhibit a slower increase of ZT (Ge12Sb2Te7.5Se7.5 ) or no increase at all 

(Ge12Sb2Te12Se3 with ZT = 1.1 – 1.2 between 350°C and 450 °C). As a rule (up to 300 – 

400 °C), the ZT values of the substituted GenSb2(Te1-xSex)n+3 samples with x = 0.2 is 

signficantly higher than those of unsubstituted ones and or those of samples with a higher 

degree of substitution (x = 0.5) due to their higher S.  

 

2.3.3.4 Conclusion 

Our experiments have shown that Te in pseudocubic quenched GST bulk materials 

GenSb2Te3+n (7 ≤ n ≤ 19) can be partially replaced by Se; however, it is not possible to 

synthesize single phase quenched pseudocubic samples of ternary GenSb2Se3+n. Quenching 

Se-substituted samples with n = 19 yields α-GeTe-type structures, which exhibit a 

pronounced deviation from cubic metrics. Samples with higher Se substitution rates exhibit 

lower transition temperatures between the cubic HT and the layered trigonal phase; thereby 

the diffusion processes during the quenching processes are more limited. As a consequence, 

the average lateral extension of the defect layers is smaller and the nanostructure of 

pseudocubic quenched samples is stable up to higher temperatures for increasing Se 

concentrations. This result may also be important for thin-film phase-change materials. 

Moreover, thermoelectric devices using compounds with higher Se content could be used up 

to higher temperatures without altering the nanostructure and properties. The best 

thermoelectric performance is achieved for low Se substitution rates (20 %). The resulting 

compounds exhibit a lower thermal conductivity due to the nanostructure and the additional 

disorder by the mixed occupation of the anion position. In combination with a higher S but 

lower σ due to the less metallic character (increased ionicity) compared to the unsubstituted 

samples, this results in up to 6 times higher ZT values when 20% of the Te is substituted with 

Se in Ge7Sb2Te10. However, at higher substitution rates (50%), the effect of the substitution 

on σ and S is less pronounced than for lower substitution rates. This could be a result of the 
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change in band structure and the mobility of the charge carriers. The influence of the 

substitution on the thermoelectric performance is more pronounced for samples with lower 

GeTe content (n = 7 vs. n =12). The well understood influence of the GeTe/Sb2Te3 ratio and 

the thermal treatment on the nanostructure and thermoelectric properties of GST materials can 

be combined with Se substitution. This results in Se-substituted nanostructured GST materials 

with improved thermoelectric properties and an increased thermal stability which offer 

various approaches for further optimization.  
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2.3.3.5 Supplementary Information 

 

 
Fig. S1: Profile fits for the Rietveld refinements (cf. Table T1) for powders that were obtained 
by grinding small parts of the ingots used for thermoelectric measurements of 
GenSb2(Te1-xSex)n+3; experimental (black) and simulated (red) powder patterns, difference plot 
(blue) and reflection markers (black, bottom); the scaling of the 2 θ axis is the same for all 
plots and the intensities have been normalized according to the intensity of the strongest 
reflection of the experimental powder pattern. 
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Table S1. Details of the Rietveld refinements for powder diffraction data of the quenched 
GenSb2(Te1-xSex)n+3 samples used for thermoelectric measurements (obtained by grinding 
small parts of the ingots) 

 Ge7Sb2Te8Se2
 Ge7Sb2Te5Se5 Ge12Sb2Te12Se3

 Ge12Sb2Te7.5Se7.5
 

asymmetric unit Ge0.7Sb0.2Se0.2Te0.8 Ge0.7Sb0.2Se0.5Te0.5 Ge0.8Sb0.133Se0.2Te0.8 Ge0.8Sb0.133Se0.5Te0.5 

formula weight asymmetric unit 
(in g mol-1) 193.05 178.46 192.15 177.56 

F(000) 324.0 302.4 323.1 301.5 

crystal system / space group (no.) cubic / Fm3m   (225) 

lattice parameters (in Å) a = 5.919(3) a = 5.844(2) a =5.913(2) a = 5.798(2) 

cell volume (in Å3) 207.4(4) 199.6(2) 206.8(6) 194.9(2) 

density (X-ray, in g/cm³) 6.182(11) 5.939(6) 6.174(6) 6.052(7) 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 

parameters  (thereof background) 33 (12) 32 (12)* 

Rp / Rwp  0.026 / 0.043 0.028 / 0.046 0.023 / 0.034 0.027 / 0.038 

GooF / RBragg 1.515 / 0.013 1.656 / 0.010 1.301 / 0.011 1.469/ 0.007 

*1 profile parameter less for Ge12Sb2(Te1-xSex)15 (x = 0.2, 0.5)  
 

 

 

 

Table S2. Atom coordinates and isotropic displacement parameters (in Å²) from Rietveld 
refinements for the GenSb2(Te1-xSex)n+3 samples used for thermoelectric measurements 
(obtained by grinding small parts of the ingots).  
 Anions   Cations and vacancies 

 position occupancy Uiso  position occupancy Uiso 

Ge7Sb2Te8Se2 4a 1/2 1/2 1/2  4/5 Te, 1/5 Se 1.36(10)  4b 0 0 0 7/10 Ge, 2/10 Sb 3.06(14) 

Ge7Sb2Te5Se5 4a 1/2 1/2 1/2 1/2 Te, 1/2 Se 1.32(10)  4b 0 0 0 7/10 Ge, 2/10 Sb 2.93(13) 

Ge12Sb2Te12Se3 4a 1/2 1/2 1/2 4/5 Te, 1/5 Se 1.88(12)  4b 0 0 0 12/15 Ge, 2/15 Sb 3.62(15) 

Ge12Sb2Te7.5Se7.5 4a 1/2 1/2 1/2 1/2 Te, 1/2 Se 1.19(8)  4b 0 0 0 12/15 Ge, 2/15 Sb 4.12(13) 
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Fig. S2: Profile fits from Rietveld refinements of Ge12Sb2(Te1-xSex)15 samples that where 
prepared by quenching the melt in water, subsequently annealing in the existence range of the 
cubic HT Phase (580 °C) for 2 days and quenching in water again: experimental (black) and 
simulated (red) powder patterns, difference plot (blue) and reflection markers (black, bottom); 
the scaling of the 2 θ axis is the same for all plots and the intensities have been normalized 
according to the intensity of the strongest reflection of the experimental powder pattern. 
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Table S3a. Details of the Rietveld refinements for the quenched Ge12Sb2(Te1-xSex)15 phases. 

 Ge12Sb2Te14.25Se0.75
 Ge12Sb2Te14Se Ge12Sb2Te13Se2

 

x 0.05 0.067 0.133 

M (in g mol-1) 2992.72 2980.56 2931.92 

F(000) 334.0 332.8 328.0 

crystal system / space group (no.) cubic / Fm3m   (225) 

lattice parameters (in Å) a = 5.9752(3) a = 5.9811(7) a =5.951(4) 

cell volume (in Å3) 213.33(3) 213.96(7) 210.7(4) 

density (X-ray, in g/cm³) 6.2112(8) 6.168(2) 6.161(12) 

Radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 

parameters (thereof background) 33 (12) 

Rp / Rwp  0.027 / 0.039 0.042 / 0.073 0.038/ 0.057 

GooF / RBragg 1.516 / 0.008 2.902 / 0.017 2.253 / 0.008 

 

 

Table S3b. Details of the Rietveld refinements for the quenched Ge12Sb2(Te1-xSex)15 phases. 

 Ge12Sb2Te10Se5
 Ge12Sb2Te6Se9 Ge12Sb2Te4Se11

 

x 0.333 0.600 0.733 

M (in g mol-1) 2786.00 2591.44 2494.16 

F(000) 313.6 294.4 284.8 

crystal system / space group (no.) cubic / Fm3m   (225) 

lattice parameters (in Å) a = 5.902(4) a = 5.819(1) a =5.7625(15) 

cell volume (in Å3) 205.5(4) 197.05(12) 191.35(15) 

density (X-ray, in g/cm³) 6.001(12) 5.823(3) 5.771(4) 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range (in °) 22 ≤ 2θ ≤ 100 

parameters (thereof background) 33 (12) 

Rp / Rwp 0.034 / 0.053 0.036 / 0.059 0.047 / 0.074 

GooF / RBragg 2.084 / 0.010 2.334 / 0.010 3.096 * / 0.022 

*) The slightly worse fit of these data is not hard to recognize in Fig. S2 as it is uniformly distributed over the 

whole pattern. 
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Table S4. Atom coordinates and isotropic displacement parameters for the quenched 
Ge12Sb2(Te(1-x) Sex)15 phases (in Å²). 
 anions   cations and vacancies 

 position occupancy Uiso  position occupancy Uiso 

Ge12Sb2Te14.25Se0.75 4a	
   ½	
  ½	
  ½	
  	
   0.95 Te, 0.05 Se 1.09(5)	
    4b	
   0	
  0	
  0	
   12/15 Ge, 2/15 Sb 3.15(9) 

Ge12Sb2Te14Se 4a	
   ½	
  ½	
  ½	
  	
   14/15 Te, 1/15 Se 0.94(8)	
    4b	
   0	
  0	
  0	
   12/15 Ge, 2/15 Sb 3.56(13) 

Ge12Sb2Te13Se2 4a	
   ½	
  ½	
  ½	
  	
   13/15 Te, 2/15 Se 1.20(11)	
    4b	
   0	
  0	
  0	
   12/15 Ge, 2/15 Sb 3.66(15) 

Ge12Sb2Te10Se5 4a	
   ½	
  ½	
  ½	
  	
   2/3 Te,1/3 Se 1.26(13)	
    4b	
   0	
  0	
  0	
   12/15 Ge, 2/15 Sb 3.81(17) 

Ge12Sb2Te6Se9 4a	
   ½	
  ½	
  ½	
   6/15 Te, 9/15 Se 1.27(8)	
    4b	
   0	
  0	
  0	
   12/15 Ge, 2/15 Sb 3.72(12) 

Ge12Sb2Te4Se11 4a	
   ½	
  ½	
  ½	
   4/15 Te,11/15 Se 1.52(9)	
    4b	
   0	
  0	
  0	
   12/15 Ge, 2/15 Sb 3.58(12) 

 
Table S5. EDX results of GenSb2(Te1-xSex)n+3 samples: calculated values: SEM-EDX of 
samples for thermoelectric (TE) characterization and TEM-EDX of the samples investigated 
by TEM (in atom-%, one measurement from the region used for HRTEM images, accuracy ~ 
1 – 2 atom-%). 
weighted composition 

 Ge  Sb  Te  

 

Se 

Ge7Sb2Te8Se2 

 

calculated 36.8 10.5 42.1 10.5 

TE sample 37.1(5) 11.0(3) 41.2(6) 10.6(2) 

TEM  35.7(2.3) 10.6(6) 42.1(1.3) 11.4(3) 

Ge7Sb2Te5Se5 

 

calculated 36.8 10.5 26.3 26.3 

TE sample 37.1(7) 10.2(7) 26(1) 27(2) 

TEM  35.0(1) 10.3(7) 27.0(4) 27.6(1.1) 

Ge12Sb2Te12Se3 

 

calculated 41.4 6.9 41.4 10.3 

TE sample * 40.9(5) 6.9(2) 41.5(6) 10.8(3) 

TEM  41.5(4) 7.1(1.3) 41.8(9) 9.6(1.9) 

Ge12Sb2Te7.5Se7.5 

 

calculated  41.4 6.9 25.9 25.9 

TE sample 41.7(3) 6.4(1) 27.8(9) 24.0(5) 

TEM  41.4 6.8 25.7 26.0 

* Thermoelectric values of a sample prepared under the same conditions as those used for the sample for EDX 

(here) are given in the paper. 
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Table S6. EDX results of the GenSb2(Te1-xSex)n+3 samples used for the Vegard plot (Fig. 2): 
calculated values and SEM-EDX (in atom %, the number of point measurements averaged is 
given in parentheses). 
weighted 

composition 

 Ge Sb Te Se 

Ge12Sb2Te14Se  calculated 41.38 6.90 3.45 48.28 

SEM-EDX (4)* 43(5) 7(4) 2.9(8) 47.5(9) 

Ge12Sb2Te13Se2  calculated 41.38 6.90 6.90 44.83 

SEM-EDX (3) 41.5(1.2) 7.9(1.7) 11.4(1.9) 39.3(2.6) 

Ge12Sb2Te10Se5  calculated 41.38 6.90 17.24 34.48 

SEM-EDX (3) 42.3(1.2) 7.6(7) 16.6(2.3) 33.5(1.8) 

Ge12Sb2Te8Se7  calculated 41.38 6.90 24.14 27.59 

SEM-EDX (4) 42.4(7) 6.9(5) 27.8(2.39 24.8(2.1) 

Ge12Sb2Te6Se9  calculated 41.38 6.90 31.03 20.69 

SEM-EDX (4) 41.0(8) 7.6(1.1) 32.1(6) 19.3(5) 

* This measurement was done before annealing the sample; the rather large variance probably indicated 
a slightly inhomogeneous distribution of Ge and Sb; however, the effect might also be due to surface 
roughness effects. 
 

 
Fig. S3: Thermoelectric characteristics of quenched GenSb2(Te1-xSex)n+3 samples: top to 
bottom Ge12Sb2Te12Se3, Ge12Sb2Te7.5Se7.5, Ge7Sb2Te8Se2 and Ge7Sb2Te5Se5; from left to 
right: thermal conductivity (κ), electrical conductivity (σ) and Seebeck coefficient (S)  
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Fig. S4: Charge carrier concentration and charge carrier mobility obtained by Hall 
measurements  of quenched Ge12Sb2Te15. 
 
 
Appendix to the Experimental Section 
 
Details of the temperature programmed X-ray powder diffraction investigations 
 
Powdered samples were filled intp silica glass capillaries with a diameter of 0.3 mm under Ar 
atmosphere. These were heated from room temperature up to 750 °C with 10 °C/min and subsequently 
cooled to room temperature at the same rate. Data were collected every 25°C with 10-20 minutes 
acquisition time. 
 
 
Treatment of the thermoelectric data: 
 

The values of (in some cases multiple) heating and cooling cycles were averaged to avoid the over-

interpretation of slight variations e.g. due to partially irreversible structural changes, various 

experimental errors, etc. (cf. Section 3.4). In order to obtain comparable data, equal temperature steps 

were obtained from the different measurements by linear interpolation. 

 

 

Uncertanties of the thermoelectric characterization 

 

The estimated experimental uncertainties of individual measurements are 7% for the electrical 

conductivity (due to the slightly irregular sample geometries, the "standard" value of 5% was 

increased to account for sample imperfectness) and 5% for the Seebeck coefficient. An experimental 

error of 3% for the thermal diffusivity and 5% for the heat capacity was considered in the calculation 

of the uncertainty of the ZT values shown as error bars in Figure 8. This uncertainty of 14% results 

from the square root of the sum of the squares of the individual errors which is valid given the 

assumption of independent and statistical individual errors. The uncertainties of the ZT values and the 

individual measurements are comparable to the values stated in the International Round-Robin Study 

on the transport properties of bulk thermoelectrics.[62,63] 

 



2 TEM investigations of nanostructured germanium antimony tellurides  
 

113 

2.3.3.6 References
 

[1]  S. Raoux, R. M. Shelby, J. Joran-Sweet, B. Munoz, M. Salinga, Y.-C. Chen, Y.-H. Shih, E.-K. Lai, M.-

H. Lee, Microelectron. Eng. 2008, 85, 2330. 

[2]  T. Siegrist, P. Merkelbach, M. Wuttig, Annu. Rev. Condens. Matter Phys. 2012, 3, 215. 

[3]  T. Matsunaga, N. Yamada, Phys. Rev. B. 2004, 69, 104111. 

[4]  M. Wuttig, S. Raoux, Z. Anorg. Allg. Chem. 2012, 638, 2455. 

[5]  D. Lancer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nature Mater. 2008, 7, 972. 

[6]  M. N. Schneider, T. Rosenthal, C. Stiewe, O. Oeckler, Z. Kristallogr. 2010, 225, 463. 

[7]  T. Rosenthal, M. N. Schneider, C. Stiewe, M. Döblinger, O. Oeckler, Chem. Mater. 2011, 23, 4349. 

[8]  T. L. Anderson, H. B. Krause, Acta Crystallogr. Sect. C 1974, 47, 1141. 

[9]  O. G. Karpinsky, L. E. Shelimova, M. A. Kretova, J.-P. Fleurial, J. Alloys Compd. 1998, 268, 112. 

[10]  L. E. Shelimova, O. G. Karpinsky, M. A. Kretova, V. I. Kosyakov, V. A. Shestakov, V. S. Zemskov, F. 

A. Kuznetsov, Inorg. Mater. 2000, 36, 768. 

[11]  T. Matsunaga, H. Morita, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, J.-J. Kim, M. 

Kobata, E. Ikenaga, K. Kobayashi, J. Appl. Phys. 2008, 103, 093511.  

[12]  S. Raoux, W. Wojciech, D. Ielmini, Chem. Rev. 2010, 110, 240. 

[13]  T. Rosenthal, L. Neudert, S. Welzmiller, O. Oeckler, Z. Kristallogr. Suppl. 2012, 32, 15. 

[14]  H. Li, K. F. Cai, Y. Du, H. F. Wang, S. Z. Shen, X. L. Li, Y. Y. Wang, C. W. Zhou, Curr. Appl. Phys. 

2012, 12, 188. 

[15]  M. Schmidt, R. Zybala, K. T. Wojciechowski, Ceram. Mater. 2010, 62, 465. 

[16]  K. Wojciechowski, J. Tobola, M. Schmidt, R. Zybala, J. Phys. Chem. Solids 2008, 69, 2748. 

[17]  K. Wojciechoeski, M. Schmidt, J. Tobola, M. Koza, A. Olech, R. Zybala, J. Electron. Mater. 2010, 39, 

2053.  

[18]  K. T. Wojciechowski, M. Schmidt, Phys. Rev. B, 2009, 79, 184202.  

[19]  B. Du, H. Li, J. Xu, X. Tang, C. Uher, Chem. Mater. 2010, 22, 5521. 

[20]  B. Duan, P. Zhai, L. Liu, Q. Zhang, X. Ruan, J. Solid State Chem. 2012, 193, 8. 

[21]  B. Duan, P. Zhai, L. Liu, Q. Zhang, Mater. Res. Bull. 2012, 47, 1670. 

[22]  B. Duan, P. Zhai, L. Liu, Q. Zhang, J. Electron. Mater. 2012, 41, 1120. 

[23]  S. Buller, C. Koch, W. Bensch, P. Zalden, R. Sittner, S. Kremers, M. Wuttig, U. Schürmann, L. Kienle, 

T. Leichtweiß, J. Janek, B. Schönborn, Chem. Mater. 2012, 24, 3582. 

[24]  S. N. Dutta, G. A. Jeffrey, Inorg. Chem. 1965, 4, 1363. 

[25]  T. Chattopadhyay, J. X. Boucherle, H. G. von Schnering, J. Phys. C: Solid State Phys. 1987, 20, 1431.  

[26]  J. Goldak, C. S. Barrett, D. Innes, W. J. Youdelis, Chem. Phys. 1966, 44, 3323. 

[27]  K. Schubert, H. Z. Fricke, Naturforsch. A 1951, 6, 781. 

[28]  K. Schubert, H. Z. Fricke, Metallkd. 1953, 44, 457. 

[29]  S. Brodas, M. T. Clavaguera-Mora, B. Legendre, C. Hancheng, Thermochim. Acta 1986, 107, 239. 

[30]  S. Brodas, M. T. Clavaguera-Mora, B. Legendre, Thermochim. Acta 1982, 56, 161. 

[31]  P. Losták, R. Novontný, L. Benes, S. Civis, J. Crystal Growth 1989, 94, 656. 

[32]  J. Tomforde, S. Buller, M. Ried, W. Bensch, D. Wamwangi, M. Heidelmann, M. Wuttig, Solid State 

Sci. 2009, 11, 683. 



                                    2 TEM investigations of nanostructured germanium antimony tellurides 
 

114 

 

[33]  DigitalMicrograph 3.6.1, Gatan Software, Pleasanton, USA, 1999. 

[34]  P. A. Stadelmann, Ultramicroscopy 1987, 21, 131. 

[35]  ESVision, 4.0.164, Emispec Systems Inc., Tempe, USA, 1994-2002. 

[36]  WINXPOW, v2.12 ed., Stoe & Cie GmbH, Darmstadt, Germany, 2005. 

[37]  TOPAS-Academic, V. 4.1, Coelho Software, Brisbane, Australia, 2007. 

[38]  J.-C. Labiche, O. Mathon, S. Pascarelli, M. A. Newton, G. G. Ferre, C. Curfs, G. Vaughan, A. Homs, D. 

F. Carreiras, Rev. Sci. Instrum. 2007, 78, 091301. 

[39]  G. B. M. Vaughan, J. P. Wright, C. Bytchkov, C. Curfs, C. Grundlach, M. Orlova, L. Erra, H. 

Gleyzolle, T. Buslaps, A. Götz, G. Suchet, S. Petitdemange, M. Rossat, L. Margulies, W. Ludwig, A. 

Snigirey, I. Snigireva, H. O. Sørensen, E. M. Lauridsen, U. L. Olsen, J. Oddershede, H. F. Poulsen, 

Proc. 31st Risø Int. Symp. Mater. Sci. 2010, 521, 457. 

[40]  G. Evans, R. F Pettifer, J. Appl. Crystallogr. 2001, 34, 82. 

[41]  IPDS software package, STOE & Cie GmbH, Darmstadt, Germany, 1997-1999. 

[42]  X-RED32 V. 1.31, STOE & Cie GmbH, Darmstadt, Germany, 2005. 

[43]  X-SHAPE V. 2.07, STOE & Cie GmbH, Darmstadt, Germany, 2005. 

[44]  J. L. Chambers, K. L. Smith, M. R. Pressprich, Z. Jin, SMART Version 5.059, Bruker AXS, Madison 

(USA) 1997-1998. 

[45]  SAINT V. 6.36A, Bruker AXS, Madison , USA, 1997-2002. 

[46]  SADABS V. 2.05, Bruker AXS, Madison, USA, 1999. 

[47]  V. Petricek, M. Dusek, Palatinus, L. JANA2006 – The Crystallographic Computing System. Institute of 

Physics, Praha, Czech Republic, 2006. 

[48]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112. 

[49]  J. de Boor, C. Stiewe, P. Ziolkowski, T. Dasgupta, G. Karpinski, E. Lenz, F. Edler, E. Müller, J. 

Electron. Mater. 2013, 42, 1711. 

[50]  J. de Boor, E. Müller, Rev. Sci. Instrum. 2013, 84, 065102. 

[51]  G. S. Kumar, G. Prasad, R. O. Pohl, J. Mater. Chem. 1993, 28, 4261. 

[52]  A. Le Bail, A. Jouanneaux, J. Appl. Crystallogr. 1997, 30, 265. 

[53]  unpublished results, deposited at the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-

Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) as CSD-426863. 

[54]  A. K. Cheetham, A. P. Wilkinson, Angew. Chem. Int. Ed. 1992, 31, 1557. 

[55]  S. Welzmiller, P. Urban, F. Fahrnbauer, L. Erra, O. Oeckler, J. Appl. Crystallogr. 2013, 46, 769. 

[56]  J. L. Hodeau, V. Favre-Nicolin, S. Bos, H. Renevier, E. Lorenzo, J. F. Berar, Chem. Rev. 2001, 101, 

1843. 

[57]  L. Kissel, B. Zhou, S. C. Roy, S. K. Sen Gupta, R. H. Pratt, Acta Crystallogr. Sect. A 1995, 51, 271. 

[58]  M. N. Schneider, X. Biquard, C. Stiewe, T. Schröder, P. Urban, O.Oeckler, Chem. Commun. 2012, 48, 

2192. 

[59]  M. N. Schneider, M. Seibald, P. Lagally, O. Oeckler, J. Appl. Crystallogr. 2010, 43, 1012. 

[60]  Y. Chen, T. J. Zhu, S. H. Yang, S. N. Zhang, W. Miao, X. B. Zhao, J. Electron. Mater. 2010, 39, 1719.  

[61]  S. H. Yang, T. J. Zhu, C. Yu, J. J. Shen, Z. Z. Yin, X. B. Zhao, J. Electron. Mater. 2011, 40, 1244. 



2 TEM investigations of nanostructured germanium antimony tellurides  
 

115 

 

[62]  H. Wang, W. D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T. M. Tritt, A. Mayolet, J. Senawiratne, 

C. Smith, F. Harris, P. Gilbert, J. W. Sharp, J. Lo, H. Kleinke, L. Kiss, J. Electron. Mater. 2013, 42, 

654. 

[63]  H. Wang, W. D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T. M. Tritt. A. Mayolet, J. Senawiratne, 

C. Smith, F. Harris, P. Gilbert, J. W. Sharp, J. Lo, H. Kleinke, L. Kiss, J. Electron. Mater. 2013, 42, 

1073.  

 



                                  3 Real - structure property relationships in thermoelectric chalcogenides  
 

116 

3 Real - structure property relationships in 
thermoelectric chalcogenides 
 

3.1 Overview 
 

The insights concerning the optimization of the thermoelectric properties by substitution and 

thermal treatment obtained for GST materials (Chapter 2) can be transferred to various related 

tellurides. The structural chemistry in the system (GeTe)nBi2Te3 (GBT materials) is analogous 

to that of GST materials.[1-3] It is possible to influence the nanostructures and thermoelectric 

properties of GBT materials by variation of the thermal treatment during high-pressure (HP) 

synthesis (Chapter 3.2). Thermodynamically stable GeBi2Te4 and samples that were slowly 

cooled under HP conditions are metallic. In contrast, samples thermally quenched while 

maintaining the pressure exhibit semiconducting characteristics of σ(T), since they have 

higher grain-boundary concentrations compared to slowly cooled ones.  

Investigations on other Bi containing compounds such as In2Bi3Se7I and InBi2Se4I (Chapter 

3.3) reveal that even though their structural motifs are well suited for low thermal 

conductivity (к) due to the presence of rather weakly bound heavy atoms (rattlers), low σ 

values and consequently ZT values are observed if all elements exhibit normal valence states. 

However, delocalized electrons in In3SbTe2 result in metallic conductivity, which impedes 

high S and therefore high ZT values.[4] In3SbTe2 exhibits a rocksalt-type structure with In in a 

sixfold coordination and randomly disordered Sb and Te on the anion position. No 

pronounced nanostructures are present; however, TEM investigations and single-crystal X-ray 

data reveal diffuse streaks caused by static atom displacements from the special position as a 

result of the different radii of the atoms occupying the anion position. The sixfold 

coordination of In in metallic In3SbTe2 is uncommon as In exhibits a tetrahedral coordination 

polyhedron at ambient conditions in most of its compounds. However, HP conditions are a 

way to synthesize homogeneous bulk materials of silver indium antimony telluride (AIST) 

Ag3.4In3.7Sb76.4Te16, which at ambient pressure can only be obtained by melt spinning.[5] Like 

the GST materials discussed in Chapter 2, Ag3.4In3.7Sb76.4Te16 is used as a phase-change 

material for rewritable data storage.[6,7] Both HP syntheses and melt-spinning yield the A7 

(gray As type) structure type, in which In is coordinated in a 3+3 fashion. The preference for 

the fourfold coordination of In might be an explanation for the formation of chalcopyrite-type 

AgInTe2 under conventional solid-state synthesis conditions and upon heating the A7-type 
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material. Whereas it is impossible to synthesize mixed crystals of rocksalt-type AgSbTe2 and 

chalcopyrite-type AgInTe2 at ambient conditions, HP/HT syntheses lead to rocksalt-type 

AgInxSb1-xTe2, which exhibits a mixed occupation on the cation position which is probably 

the reason for its extremely low phononic contribution to the thermal conductivities (кph) 

(Chapter 3.4). Alloying AgSbTe2 and AgInTe2 is possible under HP/HT conditions since the 

latter exhibits a rocksalt-type HP phase in accordance with the pressure-coordination rule.[8] 

At high temperature, the quaternary compounds decompose to AgInTe2 and AgSbTe2. This 

decomposition might be utilized to create nano-composite materials with improved 

thermoelectric properties at room temperature.  

The combination of AgSbTe2 with GeTe results in (GeTe)nAgSbTe2 (TAGS) materials which 

are well known for their high ZT values that mainly result from low thermal conductivities 

(к).[9,10] TAGS materials crystallize in the α-GeTe-type structure with random disorder of Ag, 

Sb and Ge on the cation position. They exhibit phase transitions to a cubic rocksalt-type 

structure, comparable to GeTe itself, at ~510 K.[11,12] TAGS can be doped with In (up to 

3.6 %) by quenching from high temperatures at ambient pressure (Chapter 3.5). 

(GeTe)5.5AgIn0.5Sb0.5Te2 exhibits a reduced к up to the decomposition temperature compared 

to (GeTe)~5.5AgSbTe2 (TAGS-85). This might be explained by the presence of a combination 

of nanoscopic precipitates with other real-structure effects like dislocations and twinning in 

(GeTe)5.5AgIn0.5Sb0.5Te2. Above 240 °C the compound decomposes to (GeTe)11AgSbTe2 and 

chalcopyrite-type AgInTe2. Materials with higher In contents decompose at lower 

temperatures. For the synthesis of such compounds, HP/HT conditions are required to “force” 

In in the octahedral coordination. (GeTe)5.5AgInTe2 prepared under HP/HT conditions 

exhibits higher ZT values than TAGS-85 material up to 125 °C. If the Ag/Sb ratio in such 

materials is smaller than 1, vacancies are present and the structural chemistry is comparable to 

that of GST materials (Chapter 3.6). The quenched pseudocubic materials exhibit a phase 

transition to a layered trigonal phase with parallel van der Waals gaps at elevated 

temperatures and to a cubic HT phase at higher temperatures. TEM investigations reveal 

parquet-like nanostructures comparable to those in GST materials in the quenched compounds 

Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1. These materials combine the 

excellent power factors of conventional TAGS materials without vacancies and the 

nanostructures known from GST that correlate with low к values. This results in ZT values 

that are superior to both GST and TAGS at certain temperatures (up to 1.3 at 160 °C for 

parquet-like nanostructured Ge0.53Ag0.13Sb0.27□0.07Te1) 
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Abstract 

We report on a new metastable modification of GeBi2Te4 obtained by high-pressure high-

temperature synthesis. It crystallizes in the CuPt type, different nanostructures are induced by 

various temperature programs under a constant pressure of 12 GPa. The particle size changes 

from < 10 nm in quenched samples to > 100 nm for melts slowly crystallized under high 

pressure. The smaller the domains the more random is their orientation distribution. The 

nanostructure has a high impact on the temperature characteristics of the electrical resistivity. 

The domain size determines whether the compounds are metallic or semiconducting. In the 

latter case, the semiconducting behavior is due to the scattering of electrons at domain and/or 

grain boundaries. Intermediate behavior that starts off metal-like and changes to 

semiconducting at higher temperature has been observed for samples thermally quenched 

from the solid state at high-pressure. Resistivity measurements of the high-pressure samples 

involving multiple heating and cooling sequences lead to a significant reduction of internal 

stress and finally approach a state which is characterized by a ρ(T) hysteresis. Our results 

show the large influence of the domain size and the grain boundary concentration on the 

properties of the materials and reveal how properties like the thermoelectric figure of merit 

(ZT) depend on the preparation technique. By the microstructuring of stable GeBi2Te4, the ZT 

value drops by one order of magnitude.  

 

3.2.1 Introduction 

Tellurides play important roles in various fields of application such as phase-change materials 

(PCMs) for data storage as well as a broad range of high-performance thermoelectrics. 

Interestingly, most of the relevant tellurides are not thermodynamically stable. Metastability is, 

for example, a crucial property of PCMs used in optical as well as electrical rewritable storage 

devices (DVD-RW, BD-RE, PC-RAM, etc.).[1,2] The recording and erasing process involves 
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the fast and reversible switching between amorphous and metastable disordered crystalline 

phases with simple average structures which exhibit the A7 (gray arsenic) or the rocksalt 

structure type. Metastability and disorder are essential to reach extremely short switching 

times for writing or erasing large amounts of data as no long-distance diffusion is required 

and as both structural states are inert enough to guarantee reliable long-time data storage. The 

required material properties of PCMs, are, at least in part, similar to those that are crucial in 

the field of thermoelectrics.[3] However, it remains unclear if the thermoelectric effect itself is 

important in electrically switchable PCMs. 

The long-time goal of most research activities on thermoelectrics, which interconvert thermal 

and electrical energy, is the generation of electrical energy from waste heat. The efficiency of 

thermoelectrics depends on the dimensionless figure of merit ZT = S²T / ρκ (with the Seebeck 

coefficient S, the electrical resistivity ρ, and the thermal conductivity κ). As all these 

quantities depend on the charge carrier concentration, they cannot be optimized independently. 

The electrical resistivity and the electronic part of the thermal conductivity are inversely 

proportional to each other according to the Wiedemann-Franz law. Therefore, the only way to 

decrease the overall thermal conductivity without significantly increasing the electrical 

resistivity is to influence the phononic part of the thermal conductivity. This can be achieved, 

for instance, by introducing nanostructures. Phase transitions associated with the formation of 

long-periodically ordered structures, twinning, or (partial) decomposition may yield 

nanostructures that scatter phonons rather effectively and therefore enhance the thermoelectric 

properties. Nanostructures are, of course, metastable states, especially if they are obtained by 

partial stabilization of highly disordered metastable phases. This can be accomplished by 

various quenching techniques. However, care must be taken not to completely reach the fully 

ordered equilibrium state.[4-11] 

In addition to the common characteristic feature that the compounds are metastable, many 

efficient thermoelectrics (e.g. AgPbmSbTe2+m (LAST),[ 12 ] NaPbmSbTe2+m (SALT),[ 13 ] 

(AgSbTe2)1-m (GeTe)m (TAGS),[14] or Bi2Te3) contain more or less the same chemical 

elements in similar ratios as well-known PCMs (e.g. (GeTe)n(Sb2Te3) (GST),[ 15 - 17 ] 

Ag3.4In3.7Sb76.4Te16.5 (AIST)).[18] Inspired by GST-based PCMs in PC-RAM and BD-RE 

devices, the investigation of the thermoelectric properties of (GeTe)12(Sb2Te3) yielded ZT 

values of ~1.3 at 450 °C.[3] These compounds exhibit cubic high-temperature phases with Ge, 

Sb and vacancies disordered on the cation sites of the rocksalt-type structure, which can be 

quenched as pseudocubic bulk material. The high ZT value can be related to short-range 

vacancy ordering effects. Similar metastable rocksalt-type phases of GBT (Ge/Bi/Te) 
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materials have been reported for thin-film samples obtained by sputtering and exhibit rapid 

phase-change behavior that can be induced by laser irradiation.[19] However, in this case the 

rocksalt-type phase does not exist as a stable high-temperature phase (it is in fact unstable at 

any temperature). Therefore, quenching experiments using bulk samples do not yield cubic or 

pseudocubic phases, but the stable rhombohedral layered modifications which are similar to 

stable GST phases. Therefore, it is essential to apply methods beyond conventional solid-state 

synthesis to obtain metastable GBT compounds as bulk materials. Fast quenching methods 

such as melt-spinning as well as high-pressure experiments seem promising in order to obtain 

different nanostructures that can be correlated with the corresponding thermoelectric 

properties.  

In this report, we focus on GeBi2Te4, which is one of the peritectic compounds that can be 

found on the pseudo-binary line GeTe-Bi2Te3 in the Ge/Bi/Te phase diagram. The stable 

modification of GeBi2Te4 crystallizes in a rhombohedral long-range ordered 21R-type 

structure (space group R3m, no. 166) with 21 hexagonal atom layers in each unit cell 

(Fig. 1).[20] These 21 layers form three blocks of 7 layers each, which can be described as a 

distorted cutout of the rocksalt structure type due to the octahedral coordination of the cations. 

Adjacent blocks are linked via van der Waals gaps by tellurium…tellurium interactions. In 

contrast to this stable phase, the metastable cubic modification found for thin-film samples 

experiments corresponds to a rocksalt-type structure (Ge0.25Bi0.5□0.25)Te displaying cation 

defects.[19, 21 ] A phase transition towards the stable state therefore involves a vacancy 

rearrangement. Layer-like defect ordering and subsequent relaxation leads to the formation of 

the van der Waals gaps. Intermediate structures between the cubic and the 21R-type phases 

could be observed for Ge2Bi2Te5 in annealing experiments on thin films.[22] They involve a 

shear deformation which may also be important for the phase-change mechanism. 
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Fig. 1: Crystal structure of stable 21R-type GeBi2Te4 (the small percentage of anti-site 
disorder is neglected). 
 

3.2.2 Experimental details 

3.2.2.1 Synthesis 

Bulk samples with the nominal composition GeBi2Te4 were prepared by heating a 

stoichiometric mixture (e.g., 0.3 g) of the pure elements (germanium 99.999 %, Sigma 

Aldrich; bismuth 99.999 %, Smart Elements; tellurium 99.999 %, Alfa Aesar) in sealed silica 

glass ampoules to 950 °C under argon atmosphere. The resulting melts were quenched to 

room temperature in water and used as starting material for the following syntheses. After 

quenching, some ingots were annealed at 500 °C to obtain the stable 21R-type modification. 
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High-pressure experiments were performed using the multi-anvil technique with a hydraulic 

press (Voggenreiter, Mainleus, Germany).[23-26] Quenched GeBi2Te4 was powdered, loaded 

into a cylindrical capsule of hexagonal boron nitride (Henze, Kempten, Germany) and sealed 

with a BN cap. The capsule was centered within two nested graphite tubes, which acted as an 

electrical resistance furnace. The remaining volume at both ends of the sample capsule was 

filled with two cylindrical pieces of magnesium oxide. The arrangement was placed into a 

zirconia tube and then transferred into a pierced Cr2O3-doped MgO octahedron (edge length 

14 mm, Ceramic Substrates & Components, Isle of Wight, Great Britain). Eight truncated 

tungsten carbide cubes (truncation edge length 8 mm) separated by pyrophyllite gaskets 

served as anvils for the compression of the octahedron. Two plates of molybdenum provided 

electrical contact for the graphite tubes. The assembly was compressed up to a constant 

pressure of 12 GPa in 350 minutes. At this pressure, three temperature programs were applied 

(see Table 1). Samples were prepared by heating to 850 °C and subsequently (1) quenching 

the melt by turning off the furnace (melt-quenched samples), or (2) cooling the sample to 

200 °C within 5 hours and then turning off the furnace (solid-quenched samples). A third type 

(3) of high-pressure samples was prepared by cooling the samples to room temperature within 

4 hours (slowly cooled samples). After the temperature program the pressure was reduced to 

ambient pressure within 1050 minutes. 

 

Table 1. High-pressure sample overview 

denotation pressure temperature program 
melt-quenched 12 GPa quenched from melt (850 °C) 
solid-quenched 12 GPa quenched from 200 °C 
slowly cooled 12 GPa slowly cooled from 850 °C to RT 
 

A melt-spinning apparatus (model SC, Bühler, Germany) was used in order to obtain high 

quenching rates (up to approximately 109 K/s) at ambient pressure. Powdered GeBi2Te4 was 

loaded into a tantalum blast pipe, which was placed over a rotating copper wheel (60 Hz). 

Both the tantalum blast pipe and the copper wheel were placed in a recipient, which was 

evacuated and/or filled with argon. The powder was melted using a water-cooled high-

frequency coil (high frequency generator Himmel HIT 12, Himmelwerk Hoch- & 

Mittelfrequenzanlagen GmbH, Germany) and then sprayed onto the rotating copper wheel 

under an argon pressure of 500 mbar by applying an excess argon pressure connected to the 

tantalum blast pipe. The melt hits the copper wheel and solidifies immediately. Flat particles 

with the size of about 5 × 2 × 0.2 mm3 were hurled away from the wheel onto a collecting tray.  
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3.2.2.2 EDX analysis 

EDX (energy dispersive X-Ray) spectra were recorded using a JSM-6500F (Jeol, USA) 

scanning electron microscope with EDX detector (model 7418, Oxford Instruments, Great 

Britain). For each particle or fragment of the ingot, respectively, the results of five point 

analyses were averaged and the error limits were estimated from their variance. 

 

3.2.2.3 X-ray diffraction 

X-ray powder patterns were recorded with a Huber G670 Guinier camera equipped with a 

fixed imaging plate and integrated read-out system using Cu-Kα1 radiation (Ge 

monochromator, λ = 1.54059 Å). Specimens were prepared by crushing representative parts of 

the samples and fixing the powder on Mylar foils using silicone grease. Low-temperature 

measurements between 10 K and 300 K were obtained using a cryo cooling system (Cooling 

head, CTI-Cyrogenics, model 22 CP). The phase homogeneity was assessed and lattice 

parameters were determined by pattern fitting (Rietveld method) using the program 

TOPAS.[27] Temperature-dependent powder diffraction experiments at temperatures above 

300 K were performed with a STOE Stadi P powder diffractometer equipped with an imaging 

plate detector system using Mo-Kα1 radiation (Ge monochromator, λ = 0.71093 Å) in Debye–

Scherrer geometry. Powdered specimens were filled into silica glass capillaries with 0.3 mm 

diameter and sealed with silicone grease under argon atmosphere. During the measurement, 

the samples were heated up to 600 °C in a graphite furnace and then cooled to room 

temperature with a heating/cooling rate of 5 K/min. 

 

3.2.2.4 Transmission electron microscopy 

For transmission electron microscopy studies, finely ground samples were dispersed in 

ethanol and distributed on copper grids coated with a holey carbon film (S166-2, Plano GmbH, 

Germany). The grids were fixed on a double tilt holder. Selected area electron diffraction 

(SAED) and high resolution transmission electron microscopy (HRTEM) were done on a 

JEM2011 (Jeol Ltd., Japan) with a tungsten thermal emitter and an acceleration voltage of 

200 kV equipped with a TVIPS CCD (model 114, resolution: 1k x 1k). Further HRTEM, 

SAED and EDX measurements were done on a Titan 80-300 (FEI, USA) with a field 

emission gun operated at 300 kV equipped with a TEM TOPS 30 EDX spectrometer (EDAX, 
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Germany). Images were recorded using an UltraScan 1000 camera (Gatan, USA, resolution: 

2k × 2k). HRTEM and SAED data was evaluated using the Digital Micrograph and EMS 

software,[28,29] for STEM and EDX data the program ES Vision was used.[30]  

 

3.2.2.5 Electrical and thermal transport measurements 

 

The temperature dependent resistivity ρ(T) of various stable and metastable GeBi2Te4 

modifications were measured by a standard four-probe dc method employing a constant 

current of 5 mA and using a physical property measurement system (PPMS, Quantum 

Design). The data were collected in the temperature range of 2 – 300 K by cooling and 

heating sequences in which the temperature changed at a rate of 0.5 K/min. The uncertainty of 

the absolute electrical resistivity values (approx. 20 – 30 %) has been estimated by taking into 

account the errors in specifying the sample dimensions.  

The thermoelectric power S(T) and the thermal conductivity κ(T) of samples crystallizing in 

the stable GeBi2Te4 modification were measured simultaneously using the commercial 

thermal transport option of the PPMS. This is based on a relaxation method employing one 

heater and two thermometers to determine the induced thermal voltage and the temperature 

gradient along the sample in a temperature range between 4 K and 300 K. These 

measurements were carried out using bar-shaped samples with typical dimensions of about 

1 × 2 × 5 mm3 during a heating process at a rate of 0.5 K/min. The total accuracy of S(T) and 

κ(T) is about 5%.  

 

3.2.3 Results and discussion 

3.2.3.1 Structure of quenched HP-GeBi2Te4 

The powder diffraction pattern of a sample obtained by quenching the melt of GeBi2Te4 under 

a constant pressure of 12 GPa (i.e. switching off the furnace) could be indexed assuming a 

rhombohedral unit cell with a = 4.3508(3) Å and c = 11.234(2) Å. Starting from an α-GeTe-

type structure model (space group R3m), which allows many degrees of freedom, Ge, Bi and 

vacancies were placed on the cation position (occupancy factors 0.25 for Ge and 0.5 for Bi) 

and Te (fully occupied) on the anion position. The occupancy factors were derived from the 

nominal composition, which is confirmed by the EDX results (for all GeBi2Te4 samples 

between Ge0.9(1)Bi2.2(1)Te4 and Ge1.1(1)Bi2.0(1)Te4). The Rietveld refinement (shown in Fig. 2) 

turned out that there is no evidence for non-centrosymmetry of the average structure, as in 
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contrast to α-GeTe, all cation-anion distances are equal within two standard deviations. 

Therefore, the average structure seems not to be layered, and the space group can be identified 

as R3m (no. 166). Details of the Rietveld analysis and the refined atomic parameters are given 

in Tables 2 and 3, respectively. 
 

Table 2. Crystal data and Rietveld refinement of melt-quenched GeBi2Te4 

sum formula GeBi2Te4 
molar mass (in g/mol)  1000.97 
lattice parameters (in Ǻ) a = 4.3508(3) Ǻ; c = 11.234(2) 
cell volume (in Ǻ³) 184.16(5) 
radiation Cu-Kα1 (λ = 1.540596 Å) 
density (in g/cm³) 6.769(2) 
space group R3m (no. 166) 
2 theta range 22° < 2Θ < 95° 
number of reflections  32 
refined parameters 12 structural / 36 background  
constraints 2 
profile function fundamental parameter approach 
step width (2θ) 0.005° 
Rwp; Rp 0.0135; 0.0104 

 

Table 3. Atom positions and displacement parameters of HP-GeBi2Te4 

atom Wyck. x  y  z s.o.f. Ueq U11 = U22 = 2U12  U33 U13=U23 
Te 3a 0  0  0 1 0.15(2) 0.017(11) 0.48(7) 0 
Bi/Ge 3b 0  0  1/2 Bi 0.5 0.18(2) 0.008(11) 0.43(6) 0 
   Ge 0.25     

 
Fig. 2: Rietveld refinement of melt-quenched HP-GeBi2Te4: experimental powder pattern 
(black), calculated pattern (gray), and difference plot (black) and tick marks (black, straight 
lines). 
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The average structure model derived from Bragg reflections corresponds to the CuPt-type 

structure, a rhombohedrally distorted variant of the rocksalt type, derived from the latter by 

stretching the unit cell along <111>. In fact, the powder pattern contains no significant 

evidence for different scattering densities on anion and cation positions, as disordered 

germanium, bismuth and vacancies lead to an average electron count of 49.5 at the cation 

position and tellurium involves 52 electrons on the anion position. Thus, the structure might 

formally be described assuming the α-Hg type with just one Wyckoff position for all atoms, 

however, electron diffraction patterns clearly show the CuPt type’s reflections hkl with h, k, l 

= 2n+1 whose intensity (similar to the rocksalt case) can only be observed in case of different 

scattering densities for cation and anion sites (see next section). Of course, a certain degree of 

anti-site disorder cannot be excluded; however, such phenomena have been thoroughly 

investigated for Ge/Sb/Te phases, where the amount of anti-site disorder is either very small 

or not significant.[17,31] Although the refinement fits the experimental data, the structure model 

does not correspond to an ordered compound; and the disorder goes far beyond the cation 

disorder itself. The “average” structure from Bragg data can only be described with very 

prolate atomic displacement ellipsoids as can be seen in Fig. 3; so in fact there is no average 

structure with, at least in part, “normal” atom positions. These results suggest that a cubic 

rocksalt-type phase is formed under high pressure, but partially relaxes to a layered trigonal 

structure as soon as the pressure is released. The short-range order in this phase may locally 

correspond to the structure of the stable room temperature phase. Obviously, the high vacancy 

concentration of 25 % on the cation sites does not allow a completely random vacancy 

distribution at ambient conditions. 

The powder diffraction patterns of the slowly cooled and solid-quenched samples, 

respectively, do not differ significantly from those of samples that were quenched from the 

melt, although the micro-/nanostructures are significantly different (see below). However, 

Table 4 shows that the lattice parameters of the average structures vary slightly. All trigonal 

c/a ratios are almost equally far from that of the trigonal setting of a unit cell with cubic 

metrics (2.45).  
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Fig. 3: “Average” structure model of metastable HP-GeBi2Te4 as determined from Bragg data 
(displacement ellipsoids for 99% probability). 
 
Table 4. Comparison of the lattice parameters of various high-pressure samples (cf. text)  

denotation a  (Ǻ) c  (Ǻ) c/a Volume (Ǻ3) 

melt-quenched 4.3502(4) 11.234(2) 2.582 184.05(5) 
solid-quenched 4.347(2) 11.184(5) 2.573 183.1(2) 
slowly cooled 4.3495(5) 11.043(3) 2.539 180.93(7) 

 

Figure 4 shows that temperature-dependent powder diffraction experiments and ex-situ 

annealing of high-pressure samples (for 36 hours at 300 °C) prove that the high pressure 

phase is metastable at ambient pressure. The reflections of the layered 21R-type structure 

reappear when the metastable compound is heated over 200 °C. 
 

 
Fig. 4: Temperature-dependent PXRD (left, room temperature to 600 °C, Mo-Kα1 radiation - 
intensity from 0 (white) to maximum (black)) of the melt-quenched HP phase; PXRD (Cu-Kα1 
radiation) of the melt-quenched sample (right): a) as removed from the press, b) after 
annealing for 36 h at 300 °C, c) calculated powder pattern of 21R-type GeBi2Te4. 
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3.2.3.2 Nucleation mechanism and nanostructuring 

The nanostructure of the melt-quenched sample which is shown in Fig. 5(a) is characterized 

by a broad range of different domain orientations with domain sizes < 10 nm. The domains 

are intergrown, but there are no coherent domain walls. Therefore, the SAED pattern 

corresponds to the combination of multiple patterns and not to a single crystallite. A few 

grains with larger domains can be found, but they are rare exceptions. Thus, quenching the 

melt under a high constant pressure leads to nucleation dominated growth. 

The solid-quenched sample exhibits larger and more anisotropic domains with average 

dimensions ≥ 10 nm. Therefore, it is possible to obtain single crystalline SAED patterns as 

shown in Fig. 5(b), if larger domains are selected. These patterns contain reflections hkl with 

h, k, l = 2n+1, which implies that there are different scattering densities for anion and cation 

sites, respectively. There are no pronounced diffuse streaks in the SAED patterns. Thus, there 

is no pronounced intermediate-range order corresponding to extended vacancy layers or van 

der Waals gaps within the domains as they are known from the stable trigonal phases.  

 
Fig. 5: HRTEM images (left) and the corresponding SAED (right) a) of the melt-quenched 
sample (Titan 80-300); b) of the solid-quenched sample, some domain orientations are 
highlighted with white dashed lines (JEM 2011); c) of the slow cooled sample; here different 
domain orientations overlap (Titan 80-300). 
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Probably the lack of vacancy ordering limits the maximal domain size as vacancies might 

aggregate at domain boundaries. The crystallites are larger than the ones in the melt-quenched 

HP sample; yet, the domains are still randomly oriented. The domain shape is more 

anisotropic than in the melt-quenched sample.  

Fig. 5(c) shows that the slowly cooled sample has large crystallites ≥ 100 nm. Twinned areas 

next to single-domain areas can be observed. All slowly cooled samples exhibit extended 

vacancy layers which lead to van der Waals gaps if the adjacent Te atom layers relax. 

Therefore, diffuse streaks can be observed in the corresponding SAED patterns. These large 

domains indicate fast growth crystallization rather than nucleation dominated growth. The 

relative orientation of the twin domains corresponds to the <111> directions of a pseudo-

cubic structure. This corroborates the assumption that there is a cubic high-pressure phase of 

GeBi2Te4 which, upon a phase transition towards a trigonal phase, involves fourfold twinning 

according to the translationengleiche cubic  rhombohedral group-subgroup relationship. 

The powder X-ray diffraction pattern (PXRD) pattern of melt-spun GeBi2Te4 corresponds to 

that of the ordered 21R-type structure and not to the PXRD patterns of the high pressure 

samples. Yet, melt-spun GeBi2Te4 exhibits small intergrown domains, the smallest ones with 

a diameter of ~10 nm as shown in Fig. 6 larger domains are also present. The domain 

orientation changes within one grain, however, not as randomly as in the quenched high-

pressure samples.  
 

 
Fig. 6. HRTEM image of a melt-spun sample of GeBi2Te4; two well-ordered domains of the 
stable layered phase are highlighted by black circles. 
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3.2.3.3 Influence of the nanostructure on the electrical resistivity 

The following section conduces to the understanding of the influence of the nanostructure of 

the metastable modifications of HP-GeBi2Te4 on the temperature dependent resistivity ρ(T). 

Therefore the resistivity of three different metastable quenched samples – slowly cooled, 

solid-quenched and melt-quenched – were synthesized and compared with an annealed ingot 

as well as a melt-spun particle, both crystallizing in the stable modification.  

 

Stable and melt-spun modification of GeBi2Te4  

The resistivity of an annealed ingot of the stable ambient-pressure modification of GeBi2Te4 

is plotted vs. temperature in the range between 2 K and 300 K in Fig. 7a). The decrease of 

ρ(T) with decreasing temperature suggests metal-like behavior. However, the high residual 

resistivity ρ0 of about 0.3 mΩ cm together with the small residual resistivity ratio of RRR = 

ρ(300 K)/ρ(2 K) = 2.52 suggest the presence of severe disorder. The metallic conductivity 

behavior depends on two different scattering processes. The temperature independent residual 

resistivity ρ0 originates from the scattering of conduction electrons by defects (impurity atoms, 

grain boundaries etc.). In the present case this is probably due to the Ge/Bi disorder at the 

cation sites. The second – temperature dependent – process is due to the scattering of 

conduction electrons by phonon excitations. These two processes yield the description of 

simple metals via the Bloch-Grüneisen (BG) relation.  

 

where B is the temperature-independent electron-phonon interaction strength, ΘD the Debye-

temperature and z = ħω/kBT.  

The insert of Fig. 7(a) depicts the resistivity behavior ρ(T) of the stable GeBi2Te4 

modification in comparison with a corresponding data fit employing the Bloch-Grüneisen 

(BG) relationship. The BG relation fits the experimental sufficiently well only at temperatures 

below ~ 40 K. For higher temperatures, ρ(T) displays larger values than those expected by the 

BG relation for metallic behavior. This suggests an onset of semiconducting behavior at 

elevated temperatures in accordance with the high residual resistivity and the small RRR 

value. Furthermore, ρ(T) of the annealed ingot reflects fully reversible behavior between 

cooling and heating sequences only below 40 K in the region where experimental data can be 
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fitted by the BG relation. This reversibility can also be retrieved in the metastable 

modifications of GeBi2Te4 (see subsequent discussion). 

 

 
Fig. 7: Comparison of the temperature-dependent resistivity of a) an annealed ingot of 
21R-type GeBi2Te4 and of b) a melt-spun particle of GeBi2Te4. The inserts show the low-
temperature behavior together with a fit according to the Bloch-Grüneisen relationship (solid 
line). The arrows denote cooling and heating sequences, respectively. 
 
The deviation from metallic behavior above a certain temperature, becomes more evident in 

the resistivity of the melt-spun particle (see Fig. 7.(b)), although in this case the BG relation 

fits the experimental data well up to ~ 60 K. However, the residual resistivity ρ0 increases by 

a factor of 20 in comparison to the annealed ingot. Furthermore, ρ(T) of the melt-spun particle 

starts to saturate already at ~ 9.3 mΩ cm in the high temperature regime. The higher 

resistivity can be attributed to the reduction of the grain size (up to 10 nm) and can therefore 

be related to the increasing number of domain and grain boundaries acting as scattering 

centers. The saturation below room temperature is in line with a transition from metal-like to 

a degenerate semiconducting behavior as supported by the description via the BG formalism 

(see insert Fig. 7b)) at low temperatures which also takes the temperature dependency of the 

charge carrier density into account.[32] Such a two-regime behavior was recently reported for 

Ge-based clathrate I compounds as well as Sb-based skutterudites.[33-35]  

These results point out that the nanostructure, e.g. the domain size and the relative orientation, 

influence the temperature characteristics of the resistivity behavior even if the crystal 

structure is maintained (21R type). 
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Metastable quenched HP-GeBi2Te4  

All three high-pressure samples are characterized by pronounced irreversible temperature 

dependencies of ρ(T) for repeated cooling and heating cycles in the temperature range 

between 44 K and 260 K. This is shown for the slowly cooled sample of HP-GeBi2Te4 in 

Fig. 8 There is a drastic change of the hysteretic behavior when the ρ(T) sequences of cycle 

one and two are compared. However, already after the third cooling/heating sequence the 

hysteresis curves remain rather invariant. There is, however, a subtle decrease of the 

resistivity (and of the ρ(T) minima at ca. 35 K - 38 K) with increasing number of 

cooling/heating cycles. 

 

 
Fig. 8: Temperature-dependent resistivity of a slowly cooled HP-GeBi2Te4 sample; from left 
to right three successive cooling (black) and heating (gray) sequences, approaching a final 
state.  
 

In the final state after more than three successive cooling and heating sequences, the 

resistivity ρ(T) shows a metal-like behavior above 35 K and an insulating one for lower 

temperatures, similar to the behavior observed, e.g., for didymium skutterudites 

(Pr,Nd)(Fe,Co)4Sb12 and (Pr,Nd)(Fe,Ni)4Sb12.[36] Below 44 K heating and cooling curves 

show reversibility, while above 44 K a hysteresis with a maximal splitting of 0.014 mΩ cm at  

~ 208 K occurs. One may speculate that the ρ(T) behavior in the reversible regions is mainly 

controlled by the intrinsic resistivity of the grains, whereas above 44 K the resistivity of the 

grain boundaries starts to dominate, as observed in case of in the stable GeBi2Te4 modification 

(see previous discussion, Fig. 7(a)). 
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In Fig. 9 the temperature-dependent resistivity behavior of three metastable high-pressure 

samples of GeBi2Te4 obtained by different cooling/quenching procedures is compared. All 

three samples are characterized by a hysteretic ρ(T) behavior which also depends on the 

number cooling/heating sequences applied (vide supra; Fig. 8). However, in order to study 

exclusively the competition between the intrinsic resistivity of the domains with that of the 

grain boundaries only those ρ(T) cooling/heating curves were depicted in Fig. 9 which 

remained invariant after several measuring cycles. All of the three samples possess reversible 

temperature dependence below ~ 40 K. Above that temperature, the temperature 

characteristics of the resistivity changes from metallic-like (slowly cooled) to semiconducting 

(melt-quenched sample). Hence, the temperature-dependent resistivity behavior critically 

depends on the sample history, especially on the cooling/quenching approach applied. In 

contrast, the hysteretic behavior above 40 K remains a characteristic feature of all the three 

different samples.  

The occurrence of such hysteresis effects could be due to either a first-order phase transition 

or the presence of internal stress. A first-order phase transition can be excluded based on 

temperature dependent X-ray experiments, which do not reveal any significant change in the 

powder diffraction pattern down to 15 K (except for a trivial change of lattice parameters), as 

well as by specific heat studies (not shown here) which do not indicate any phase 

transformation. Therefore, the hysteretic ρ(T) behavior is probably due to the internal stress of 

the grains. The extent of the hysteresis changes drastically with an increasing domain size and 

the number of their relative orientation in the different samples. Accordingly, the slowly 

cooled sample is characterized by the smallest hysteresis splitting of all three samples (see Fig. 

9(a). This is consistent with the expected small change of internal stress as a consequence of 

the large domain size (≥ 100 nm) and the presence of only few domain orientations as 

evidenced by the HRTEM studies. A similar, but more pronounced splitting is therefore found 

in case of the melt-quenched sample (see Fig. 9(c)) which is characterized by very small 

particles (< 10 nm) showing many different orientations. However, the solid-quenched sample 

reveals the strongest splitting of all metastable GeBi2Te4 compounds (see Fig. 9(b)). This is 

probably a result of the strongly anisotropic size of the grains.  

 



3 Real - structure property relationships in thermoelectric chalcogenides  135 

 
Fig. 9: Final state of the cooling (black) and heating (gray) sequences of the temperature 
dependent resistivity of a) slowly cooled b) solid-quenched and c) melt-quenched high-
pressure samples of GeBi2Te4 
 

Due to this type of nanostructuring, the total resistivity of these samples is not only affected 

by the intrinsic structure and disorder of the domains but also by a contribution of the 

microscopic nature of the domain and/or grain boundaries. The change of the residual 

resistivity in Fig. 9 suggests that also the dominant scattering mechanisms might differ in the 

three samples. The slowly cooled high-pressure sample exhibits the lowest residual resistivity 

and the most pronounced similarity to the stable modification (e.g. metallic conductivity at 

ambient temperature; see Fig. 7(a). This is basically due to the fact that this sample exhibits 

the largest domains of the three high-pressure systems and displays a disordered pseudocubic 

layered structure. The melt-quenched sample, however, shows semiconducting behavior 

between 41 K and room temperature in spite of the isotropy and rather random orientation of 

its domains. The temperature dependence of the resistivity is therefore dominated by the grain 

boundaries’ contributions. The solid-quenched sample indicates the highest residual resistivity 

of all the high-pressure species under investigation. This remarkably high value in 

combination with the pronounced grain anisotropy implies a coexistence of both scattering 
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mechanisms discussed (see previous discussion). The ρ(T) behavior of the solid-quenched 

modification, however, marks an intermediate behavior and thus adopts to the high-

temperature behavior of the slowly cooled and mimics the low-temperature behavior of the 

melt-quenched one.  

 

Influence of grain boundaries on ZT 

In order to investigate the influence of the sample preparation techniques on the 

thermoelectric figure of merit ZT, the thermal and electrical transport properties of three 

characteristic samples were measured between 4 K and room temperature. In this respect, the 

annealed ingot of stable 21R-type GeBi2Te4 represents a benchmark sample which is 

compared with two pellet samples (samples two and three). Sample two is a pellet pressed of 

21R-GeBi2Te4 powder while the third sample is a pellet composed of cold-pressed powder of 

the melt-spun 21R-GeBi2Te4. It was not possible to perform such measurements with the 

high-pressure samples due to their small sample volumes.  

A comparison of the ρ(T) behavior of these three samples is plotted in Fig. 10(a)-10(c). The 

ρ(T) behavior of the annealed ingot and that of the melt spun sample were already 

characterized as metal-like in Fig. 7. In contrast, ρ(T) of the two pellets do not shows metal-

like conductivity behavior. In addition, ρ0 increases by a factor of about 30 and 60 in case of 

both pellet samples, irrespective of the sample’s origin (stable modification or melt-spun 21R-

GeBi2Te4 sample, respectively). Two closely related control parameters might be responsible 

for observation of semiconducting behavior, namely the nano- or microstructure formation by 

different synthesis routes and the process of pellet pressing itself. Both lead to an increasing 

number of grain boundaries and therefore trigger the increase of ρ0 and the change of the ρ(T) 

behavior. 

These observations are consistent with the thermal conductivity κ(T) behavior shown in Fig. 

11(a) and (b). The total thermal conductivity κtotal of solids can be expressed as the sum of an 

electrical κel as well as a phononic κph contribution. The electrical contribution was estimated 

from the electrical resistivity (cf. Fig. 10) via the Wiedemann-Franz law. Subtracting this part 

from the experimentally determined total thermal conductivity yields the phononic 

contribution. 
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Fig. 10: Comparison of the temperature dependent resistivity ρ(T) (heating from 2 to 300 K) 
of a) an annealed ingot of GeBi2Te4, b) a pressed powder pellet of 21R-GeBi2Te4 and c) a 
pressed powder pellet of melt-spun GeBi2Te4. 
 

 

In Fig. 11(a), κtotal of the annealed ingot of the stable modification is composed of significant 

contributions from κph and κel. While at room temperature both parts coexist and contribute 

approximately by the amount to κtotal, a phonon dominated state is observed below 50 K. The 

maximum of κph at about 13 K displays the onset of phonon umklapp scattering which 

effectuates a decrease of κph above a certain temperature. Such kind of maximum depends 

only weakly on the Debye temperature and occurs well below ΘD/10. The low-temperature 

slope of κph thus indicates defect scattering and becomes large when the number of defects is 

small. 
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Fig. 11. Temperature characteristics a) of the total thermal conductivity, κtotal, (black squares), 
the phonon contribution, κph, (dashed line) and electronic contribution, κel, (dashed and dotted 
line) for the annealed ingot of GeBi2Te4; b) of κtotal for the pressed powder pellet of 21R-type 
GeBi2Te4 (gray circles) and the powder pressed pellet of melt-spun GeBi2Te4 (gray triangles) 
and the phonon contributions (dashed lines, dark gray); c) of the Seebeck coefficient and d) of 
the ZT value for the annealed ingot (black squares), the pressed powder pellet of 21R-type 
GeBi2Te4 (gray circles) and the pressed powder pellet of melt-spun GeBi2Te4 (light gray 
triangles). 
 

A comparison with the κ(T) results of the two pellets indicate an overall and significant 

reduction of κtotal(T) (Fig. 11(b)). Generally, κph of the thermal conductivity of both samples 

follows the pattern of κtotal while the κel contribution vanishes as expected in the light of the 

high resistivity values observed. Furthermore, the change of the low-temperature slope of κph 

hints to an increase of phonon scattering at boundaries and/or point defects. Hence, the 

reduced thermal conductivity of the pellet-pressed samples originates mainly from the 

enhancement of these scattering processes.  
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The thermopower S(T) of the three samples is depicted in Fig. 11(c). For the annealed ingot of 

the stable modification, an increase of the thermopower up to about + 50 µV/K at room 

temperature can be observed. The positive sign of S(T) between 4 K and 300 K reveals the 

characteristic behavior of a p-type material. The featureless, almost linear temperature 

dependence of S(T) indicates the absence of any significant correlations within the charge 

carriers and is expected for the diffusion thermopower above the Debye temperature (125 K). 

In this temperature region electron-phonon scattering is the dominant scattering mechanism 

and given by  

 

 

 

with kB = 1.38065·10-23 J/K, me = 9.10938·10−31 kg, e = 1.60218·10-19 C, and h = 

6.62607·10-34 Js. According to this equation, the slope below 300 K yields a density of charge 

carriers of 3.4 · 1021 cm-3. 

In contrast to its influence on ρ(T) and κ(T), the method of synthesis has no drastic influence 

on S(T) except for the remarkable change of sign in the thermopower of the pellets from 

positive (p-type) to negative (n-type). The absolute values of S(T) as well as the carrier 

concentration (~ 1021 cm-3) of the pellet samples remain more or less the same. 

The ZT values, for the three samples, calculated from the present results are shown in Fig. 

11(d). For the annealed ingot of the stable modification a ZT value of 0.055 was reached at 

room temperature. The ZT values of both pellet samples where found to be one order of 

magnitude lower, which disqualifies these sample from thermoelectric applications. 

Significant scattering of the charge carriers on grain boundaries results in high resistivity 

values for the micro- or nanostructured samples and, as a consequence, in a small electronic 

contribution to the thermal conductivity. 

 

3.2.4 Conclusion 

Quenching melts of GeBi2Te4 at high pressure yields metastable samples whose average 

structure is related to the rocksalt type, similar to samples obtained by laser irradiation of thin 

films for PCM applications. Partial relaxation towards the stable trigonal layered modification 

leads to a rhombohedrally distorted crystal structure. The metastable state can be completely 

relaxed by annealing. Concerning PCMs, the nucleation mechanisms are important. 

“Nucleation dominated growth” begins spontaneously at different spots in the amorphous 

phase and therefore leads to a multitude of grains, which have no crystallographic relation to 
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each other. We have shown that the crystallization of melts during rapid quenching is very 

similar, an intermediate solid amorphous phase might be discussed for bulk samples as well, 

but cannot be confirmed by our experiments. The domain size and therefore probably the 

nucleation mechanism depends on the temperature regime, including quenching rates, which 

were applied under a constant pressure of 12 GPa. The nanostructures obtained and especially 

the corresponding domain and grain boundaries have a large influence on the temperature 

characteristics of the electrical resistivity. In the high pressure compounds, the characteristics 

of the electrical resistivity changes from metal-like to semiconducting behavior with 

decreasing domain size and more randomly oriented domains, because the resistivity becomes 

more dominated by scattering of the electrons at the domain or grain boundaries. The 

temperature regime during the synthesis therefore determines at which temperature this type 

of scattering becomes dominant. However, multiple heating and cooling sequences in course 

of the resistivity measurements show that the system seems to approach a final state. 

Apparently, internal stress needs to be reduced before the measurements yield invariant ρ(T) 

sequences, but even after the stabilization a hysteretic behavior remains. 

As a consequence, the preparation technique has a large influence on the ZT value as shown 

by measurements on samples that exhibit the stable layered structure. The thermal 

conductivity is influenced by the electronic contribution, which decreases significantly in 

pressed pellets with many grain boundaries; however, it is accompanied by the corresponding 

increase of the electrical resistivity. Therefore, the ZT value drops by more than an order of 

magnitude because the phononic contribution becomes dominant. These findings illustrate the 

importance of the thermal conditioning of thermoelectrics, especially in order to ensure 

sufficient electrical conductivity. It is often difficult to reproduce thermoelectric materials 

with distinct properties; because different methods of synthesis (like hot press, high pressure 

experiments or conventional solid-state preparation techniques), annealing times and 

temperatures lead to various amounts of grain boundaries and therefore strong deviations in 

ZT. 
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3.3 Structural features and physical properties of In2Bi3Se7I, InBi2Se4I 

and BiSeI 

 

T. Rosenthal, M. Döblinger, P. Wagatha, C. Gold, E.-W. Scheidt, W. Scherer, O. Oeckler 

Z. Anorg. Allg. Chem. 2011, 637, 2239–2245. 
 

 
Abstract 

The quaternary compounds In2Bi3Se7I and InBi2Se4I have been synthesized via gas phase 

reactions. They decompose above ca. 400 °C, losing iodine and forming binary compounds. 

Their crystal structures have been solved and refined using single crystal X-ray diffraction 

data (In2Bi3Se7I: space group Pnma, a = 13.6720(2), b = 4.0893(3), c = 16.7070(2) Å; 

InBi2Se4I: space group Pnma, a = 26.6039(14), b = 4.1285(2), c = 13.5031(9) Å). Both 

compounds show structural features related to those found in alkali metal bismuth 

chalcogenides known for their good thermoelectric properties such as β-K2Bi8Se13. All these 

structures contain rocksalt-like building blocks as well as CdI2-like fragments and loosely 

bound anions (selenide halides) or cations (alkali metal selenides), respectively, located in 

rather large cavities which suggests the possibility of phonon scattering by rattling. The 

electrical resistivity of In2Bi3Se7I and InBi2Se4I conforms to semiconducting behavior. The 

total thermal conductivity of sintered pellets of In2BiSe4I exhibits a maximum of 

0.7 W K−1 m−1 at 22 K. The rather high electrical resistivity of In2Bi3Se7I and In2BiSe4I is 

probably a consequence of the different electronegativities of the constituting elements in 

combination with the balanced valence states. The related compound BiSeI has a lower 

electrical resistivity and a higher thermal conductivity featuring a maximum of 

10.3 W K−1 m−1 at 8.2 K; its Seebeck coefficient (S) amounts to -55 µV K−1 at 295 K. 

 

3.3.1 Introduction  

The efficiency of thermoelectric materials depends on the combination of a high Seebeck 

coefficient, low thermal conductivity and low electrical resistivity. Therefore, it is crucial to 

understand how certain structural features are related to physical properties in order to 

improve existing materials or – as a long-term goal – to synthesize tailor-made materials for 

specific applications. Bi2Te3 has been one of the main starting points for the development of 

thermoelectric materials since the 1950s.[1] Mixing the isostructural Bi2Se3 with alkali metals 
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provides another intriguing perspective to control its physical properties. Indeed, it has been 

demonstrated that K2Bi8S13 displays a significantly lower electrical resistivity at room 

temperature than its parent compound Bi2S3.[2] Assuming that the replacement of S by the 

heavier Se results in reduced occupancy disorder between K+ and Bi3+ and decreased thermal 

conductivity, β-K2Bi8Se13 was synthesized by Kanatzidis and coworkers.[3] The resulting 

positive effect on the thermoelectric properties has been revealed by comparing the 

isostructural compounds K2Bi8S13 and β-K2Bi8Se13. The α-phase of K2Bi8Se13 is a wide-band 

semiconductor with a band gap of 0.76 eV.[4] β-K2Bi8Se13 is a narrow-gap semiconductor with 

mixed K/Bi occupancy and interesting thermoelectric properties; it has an electrical resistivity 

of 4 mΩcm and a Seebeck coefficient of -200 µV/K at room temperature resulting in a ZT 

value of 0.23.[3] 

This compound was found during an exploratory synthesis program based on the assumption 

that more complex structures may lead to complex electronic structures which possibly result 

in high thermoelectric power factors combined with low thermal conductivities.  

The compounds in the quaternary system In-Bi-Se-X (X = I, Br) exhibit structural features 

related to those found in many alkali metal bismuth chalcogenides such as the above 

mentioned α-K2Bi8Se13 and β-K2Bi8Se13 [3,4] and might as well help to understand the 

underlying structure-property relationships. Wang first synthesized InBi2Se4Br[ 5 ] and 

In2Bi3Se7I[6] and elucidated their crystal structures. All these structures consist of complex 

partial structures with rocksalt-like and CdI2-like fragments and loosely bound anions 

(selenide halides) or cations (alkali metal selenides), respectively, located in rather large 

cavities which opens the possibility of phonon scattering by rattling. Due to the structural 

similarity to alkali bismuth chalcogenides it seems interesting to investigate the compounds in 

the system In/Bi/Se/I and their thermoelectric properties, especially as the high atomic weight 

of all elements present should further decrease the phonon propagation.  

 

3.3.2 Results and Discussion 

3.3.2.1 Synthesis and stability of In2Bi3Se7I and In2BiSe4I  

Samples of In2BiSe4I can be prepared by annealing a stoichiometric mixture of In2Se3 and 

BiSeI obtained by quenching or air-cooling a corresponding melt of the elements. In2Bi3Se7I 

was synthesized in a two-zone furnace with the reactants, i.e. a mixture of the elements, in the 

hot zone. Details are given in the Experimental Section. The gas phase obviously plays an 
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important role in the synthesis of both In2Bi3Se7I and In2BiSe4I. The long and delicate needle-

shaped habit of the lustrous dark grey crystalline products is typical for chemical vapor 

transport reactions, and the formation of the product on the surface of apparently unchanged 

ingots (In2BiSe4I) or next to the starting material (In2Bi3Se7I) further corroborates this 

assumption. Both compounds cannot be obtained by simply melting stoichiometric mixtures 

of the elements.  

In2BiSe4I crystals are formed on the surface of the In2Se3/BiSeI ingots during the annealing 

process and large amounts of them can be collected in order to obtain pure samples. A 

Rietveld fit of the experimental powder diffraction pattern using the structure model of 

In2BiSe4I derived from the single crystal X-ray diffraction data proves the phase purity of the 

product (cf. Figure S1 in the Supporting Information) and yields Rp = 0.0575. According to 

differential thermal analysis and thermogravimetry (DTA-TG) in an open crucible, In2BiSe4I 

shows a reduction in mass of 13 % between 400 °C and 450 °C, associated with an 

endothermic heat flow. In powder X-ray diffraction (PXRD) patterns of the samples after 

thermal analysis, In2Se3, Bi2Se3 as well as small amounts of InSeI and BiSeI were found. The 

decomposition might correspond to the reaction 6In2BiSe4I → 5In2Se3 + 3Bi2Se3 + 2InI3. 

However, the evaporation of InI3 would mean a weight loss of 18.7%. The amount of InI3 that 

formally remains in the samples forms MSeI = M2Se3•InI3 (M = In, Bi). A second 

endothermic signal in the heat flow at approximately 715 °C may be credited to the melting of 

Bi2Se3 (melting temperature 706 °C [7]) or the phase transition γ-In2Se3 → δ-In2Se3, reported 

to occur at 730 °C.[8]  

In2Bi3Se7I is not obtained with quantitative yield; however, the Rietveld fit using the structure 

model of In2Bi3Se7I from the single crystal X-ray diffraction data shows the phase purity of 

the product (cf. Figure S2 in the Supporting Information, Rp = 0.0144). In2Bi3Se7I shows a 

reduction in mass of 8 % starting at 430 °C and peaking around 470 °C, concurring with an 

endothermic heat flow. In the corresponding PXRD, In2Se3 and Bi2Se3 could be identified. In 

analogy to In2BiSe4I, this can be explained by 6In2Bi3Se7I → 5In2Se3 + 9Bi2Se3 + 2InI3, again 

with some MSeI as a byproduct. A second endothermic signal at approximately 700 °C 

coincides with the melting of Bi2Se3 (melting temperature 706 °C9), In2Se3 remains solid in 

the measured temperature range (melting temperature 880 °C[8]). 
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3.3.2.2 Crystal structure of In2BiSe4I 

In2BiSe4I crystallizes in the orthorhombic space group Pnma. Atomic parameters are listed in 

Table 1, anisotropic displacement parameters are given in Table S1 in the Supplementary 

Information. Crystal data and details of the refinement are summarized in Table 2. 

 
Table 1. Wyckoff positions, atomic coordinates and isotropic displacement parameters (in Å) 
for In2BiSe4I 

atom Wyckoff 
position x y z Ueq  

Bi (1)  4c  0.54283(4) 0.25 0.61052(3) 0.02061(13) 
I (1) 4c  0.06245(7) 0.25 0.27815(6) 0.0253(2) 
In (1) 4c  0.24027(8) 0.25 0.50210(6) 0.0212(2) 
In (2) 4c  0.39286(8) 0.25 0.13975(7) 0.0239(2) 
Se (1) 4c  0.10806(10) 0.25 0.04080(8) 0.0191(3) 
Se (2) 4c  0.22002(11) 0.25 0.66588(9) 0.0231(3) 
Se (3) 4c  0.32093(10) 0.25 0.35705(8) 0.0197(3) 
Se (4) 4c  0.88775(11) 0.25 0.51611(9) 0.0217(3) 

 

Table 2. Crystallographic data and structure refinement of In2BiSe4I and In2Bi3Se7I at 293 K 
Formula In2BiSe4I In2Bi3Se7I 
Formula mass (in gmol-1) 881.36 1536.20 
Crystal system / Space group orthorhombic, Pnma  orthorhombic, Pnma  
Cell parameters (in Å) a  = 13.6720(2) Å 

b  = 4.0893(3) Å 
c  = 16.7070(2) Å 

a  = 26.6039(14) Å 
b  = 4.1285(2) Å 
c  = 13.5031(9) Å 

 
Cell volume (in Å3) 934.07(19) 1483.10(14) 
X-ray density (in gcm-3) 6.267 6.880 
Absorption coefficient (in mm-

1) 
22.829 31.224 

Formula units per unit cell (Z) 4 4 
F(000) 1480 2552 
Diffractometer Stoe IPDS I Stoe IPDS I 
Radiation Ag-Kα1 (λ = 0.56085 Å) Ag-Kα1 (λ = 0.56085 Å) 
2ϑ  range (in °) 0 ≤ 2θ ≤ 50 0 ≤ 2θ ≤ 45 
Absorption correction numerical numerical 
Measured reflections 11973 14384 
Independent data / parameters 1871 / 50 2208 / 80 
Refinement full-matrix least-squares on F2 full-matrix least-squares on F2 
R(int) / R(σ) 0.0987 / 0.0651 0.0506 / 0.0267 
R indices [I > 2σ(I)] R1 = 0.0399, 

wR2 = 0.0742 
R1 = 0.0184, wR2 = 0.0354 

R indices [all data] R1 = 0.0747, 
wR2 = 0.0835 

R1 = 0.0270, wR2 = 0.0375 

GooF [all data] 0.929 0.979 
Δρmin / Δρmax   (eÅ-3) −2.246 / +1.986 −1.468 / +1.085 
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Fig. 1. Projection of the structure of In2BiSe4I along [010], Typical NaCl-like (larger) and CdI2-like (smaller) 
building blocks are marked by gray boxes. The unit cell is indicated by thin lines, displacement ellipsoids are 
scaled to include a probability of 98%. 

 

The structure is built up of one-dimensional infinite strands running along [010] (Figure 1). 

The strands are interconnected by I atoms. They contain two structure motifs that can be 

described as a distorted rocksalt-type strand in the center and two CdI2-like strands that share 

the In(1) atoms on both sides with the rocksalt-like strand. 

Bi is 5+2 coordinated by five Se and two I atoms corresponding to the notation 

[Bi3+
1/1Se2−

3/5Se2−
2/3I−2/3]1/5−. The Bi coordination polyhedrons share faces and edges. Bi–Se 

bond lengths range from 2.681 Å to 3.129 Å, varying around the values of 2.990 Å and 3.061 

Å observed in Bi2Se3.[10] The Bi coordination polyhedrons share edges with the In(1) coordi-

nation octahedrons. In occupies two crystallographically and chemically different atom sites. 

In(1) is coordinated in a distorted octahedral fashion by six Se atoms. The octahedrons share 

common edges corresponding to the notation [In3+
1/1Se2−

2/5Se2−
4/3]7/15−. In(2) is coordinated by 

a distorted tetrahedron consisting of three Se atoms and one I atom. The tetrahedrons are 

linked via the edges by common Se atoms, corresponding to the notation [In3+
1/1Se2−

3/3I−1/3]2/3+. 

The In(1) coordination octahedrons are edge-linked to the In(2) coordination tetrahedron. The 

In–Se bond lengths range from 2.599 Å to 2.983 Å, comparable to the bond lengths 2.521 and 

2.940 in In2Se3.[11] The In–I bond length of 2.694 Å is in compliance with the terminal In–I 

bond lengths of 2.641 Å - 2.643 Å in In2I6.[12] Se occupies four chemically and crystallo-
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graphically independent atom sites. Se(1) is coordinated by three In atoms, Se(2) is 

coordinated by three Bi atoms and two In atoms, Se(3) is coordinated by two Bi atoms and 

one In atom, Se(4) is coordinated by three In atoms. The interatomic distance Bi–I of 3.754 Å 

is significantly longer than the Bi-I distances in the binary BiI3 (3.054 Å, 3.125 Å) [13] but 

below the sum of the van der Waals radii of these atoms (4.05 Å[14]). It is comparable with 

other long Bi–I bonds, e.g. 3.742 Å in BiSI[15], 3.790 Å in BiSeI[16] and 3.822 Å in SbSeI.[17] 

Neglecting the Bi-I interaction the calculated bond valence sum[22] of iodine is smaller (-0.84) 

than the formal oxidation state -I, in accordance with a weak bonding condition of the I atoms. 

Taking the Bi-I bond into consideration, the valence sum of I increases to -1.00; however, at 

the same time the valence sum of Bi increases from 3.07 to 3.23. In general, all bond valence 

sums are in a reasonable range (2.63 to 2.94 for In, -1.74 to -2.4 for Se) for a compound that is 

not very ionic. 

 

3.3.2.3 Structure of In2Bi3Se7I 

 

The structure of In2Bi3Se7I was first described by Wang.[6] The accessibility of these data is 

limited as they have not been published in a journal and, moreover, they are not very precise. 

Therefore we redetermined the structure. The structure refinement presented here is much 

more accurate with a final R1 (observed reflections) of 0.018 compared to 0.078 for the 

original refinement. In2Bi3Se7I crystallizes in the orthorhombic space group Pnma. Crystal 

data and details of refinement are summarized in Table 2. Fractional atomic coordinates and 

equivalent isotropic displacement parameters are given in Table 3, anisotropic displacement 

parameters are given in Table S2 in the Supporting Information. 

In2Bi3Se7I is built up of layers containing two different building blocks with the iodine atoms 

pointing towards the interlayer space. One building block corresponds to the distorted 

rocksalt-like, the other one to the CdI2-like fragment also present in In2BiSe4I (see above). 

However, in In2Bi3Se7I there are different types of CdI2-like blocks distinguished by their 

connectivity. The one containing In(1) shares one In position with the rocksalt-type block as 

described for In2BiSe4I. The other CdI2-like block contains In(2) and is connected to the 

rocksalt-type block along the (001) plane by a three-coordinated Se atom. The interlayer Bi–I 

distance (dotted line in Figure 2) is 3.586 Å, corresponding to a weak interaction, so that the 

layers adhere mainly by van der Waals type bonding. The overall weak bonding of the iodine 

atoms results in a calculated bond valence sum (-0.65) that is 35% smaller than the formal 
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valence sum of -1. The other bond valence sums are in reasonable ranges (2.77 to 2.84 for In, 

2.99 to 3.17 for Bi, -1.84 to -2.22 for Se). 

 

Table 3. Wyckoff positions, atomic coordinates and isotropic displacement parameters (in Å) 
for In2Bi3Se7I 

atom Wyckoff 
position x y z Ueq  

In (1) 4c  0.03383(2) 0.25 0.58439(4) 0.02334(12) 
In (2) 4c  0.44764(2) 0.25 0.54308(5) 0.02714(13) 
Bi (1) 4c  0.186068(10) 0.25 0.425180(19) 0.01966(7) 
Bi (2) 4c  0.190731(10) 0.25 0.049321(19) 0.02002(7) 
Bi (3) 4c  0.343750(9) 0.25 0.20446(2) 0.01920(7) 
Se (1) 4c  0.00991(3) 0.25 0.12187(5) 0.01906(14) 
Se (2) 4c  0.02755(3) 0.25 0.38917(5) 0.01971(15) 
Se (3) 4c  0.08705(2) 0.25 0.74802(5) 0.01515(13) 
Se (4) 4c  0.23125(2) 0.25 0.60733(5) 0.01476(13) 
Se (5) 4c  0.24091(2) 0.25 0.87243(5) 0.01599(13) 
Se (6) 4c  0.36424(2) 0.25 0.44888(5) 0.01559(13) 
Se (7) 4c  0.38011(2) 0.25 0.01920(5) 0.01558(13) 
I (1) 4c  0.366341(19) 0.25 0.73411(3) 0.02175(10) 

 

 
Fig. 2: Projection of the structure of In2Bi3Se7I viewed along [010]. Typical NaCl-like 
(larger) and CdI2-like (smaller) building units are highlighted by the gray boxes. The unit cell 
is indicated by thin lines, displacement ellipsoids are scaled to include a probability of 98%. 

 

In In2Bi3Se7I, In(1) atoms are coordinated by six Se atoms corresponding to the notation 

[In3+
1/1Se2−

2/5Se2−
4/3]7/15− like in In2BiSe4I. In(2) is coordinated in a trigonal bipyramidal 

fashion by four Se atoms and one I atom corresponding to the notation [In3+
1/1Se2−

4/3I−1/5]2/15+. 



                                  3 Real - structure property relationships in thermoelectric chalcogenides  
 

150 

The In(1) as well as the In(2) coordination polyhedrons are edge linked along [010]. In–Se 

bond lengths range from 3.207 Å to 2.557 Å with the longest In–Se bond being 0.267 Å 

longer than the corresponding one in In2Se3,[11] the shorter bond lengths In–Se are similar in 

the quaternary and binary compounds. The distance In–I (3.366 Å) is significantly larger than 

the longest In-I bonds in In2I6 (2.839 Å), but smaller than the sum of the van der Waals radii 

(3.91 Å),[14] confirming the weak bonding of the iodine atoms as suggested by the bond 

valence sum mentioned above. Bi occupies three crystallographically independent atom sites. 

Bi(1) is 5+2 coordinated by five Se atoms and two I atoms corresponding to the notation 

[Bi3+
1/1Se2−

2/3Se2−
3/5I−2/5]1/15+. Bi(2) is 5+2 coordinated by five Se atoms and two I atoms 

corresponding to the notation [Bi3+
1/1Se2−

3/3Se2−
2/5I−2/5]3/15−. Bi(3) is coordinated by five Se 

atoms corresponding to the notation [Bi3+
1/1Se2−

3/5Se2−
2/3]7/15+. Bi–Se bond lengths range from 

2.682 Å to 3.156 Å. The two different Bi–I bond lengths are very similar (3.576 Å and 

3.586 Å) and a little shorter than those in In2BiSe4I. 

 

3.3.2.4 Common structural features in the systems Bi-In-Se-I and X-Bi-Se (X = alkali metal) 

The structures of In2BiSe4I and In2Bi3Se7I exhibit similar building units. Both contain 

distorted rocksalt-type blocks and characteristic entities that can be described as small cut-

outs of the CdCl2 type. These structural features are also present in alkali metal bismuth 

chalcogenides that exhibit interesting thermoelectric properties. Kanatzidis et al. describe 

β-K2Bi8Se13 as a 3D network built up from Bi2Te3, CdI2 and NaCl rod-like fragments,[3] 

which are also common in other chalcogenides (cf. Figure S3 in the Supporting Information). 

As Bi2Te3 blocks can be considered as distorted NaCl-like fragments, all these structures can 

be described as 3D-networks containing more or less distorted cut-outs of the rocksalt-type 

atom arrangement and of CdI2-like fragments. While most of the known alkali metal bismuth 

chalcogenides consist of an anionic framework with weakly bound alkali metals, the formally 

cationic infinite strands or sheets in In2BiSe4I and In2Bi3Se7I, respectively, are interconnected 

by weakly bound I atoms as indicated by the bond lengths and the low bond valence. One 

might expect that this reduces the phonon propagation between the sheets or strands and leads 

to a low lattice thermal conductivity. 
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3.3.2.5 Thermoelectric Properties 

Due to the structural similarity with well-known thermoelectric materials, the physical 

properties of In2Bi3Se7I and In2BiSe4I were examined. The total thermal conductivity (κ) of 

In2BiSe4I ranges from 0.16 W K−1 m−1 at 3.5 K to 0.3 W K−1 m−1 at room temperature, with a 

maximum of 0.7 W K−1 m−1 at 22 K. The electrical resistivity increases from 3.3 kΩ cm at 

300 K to 325 kΩ cm at 222 K (Figure 3a). The corresponding Arrhenius plot reveals 

semiconducting behavior with a band gap of 0.72 eV between 250 K and 300 K (insert Figure 

3a). The electrical resistivity of In2Bi3Se7I drops from 136 kΩ cm at 4 K to 94 Ω cm at 300 K 

(Figure 3b). The calculated band gap of 0.19 eV results from an Arrhenius plot in the same 

temperature range as specified for In2BiSe4I. Due to this high electrical resistivity, 

measurements of the thermal conductivity and the thermopower were considered futile. As a 

consequence, no reliable figure of merit ZT could be determined for In2Bi3Se7I and In2BiSe4I.  

 

Fig. 3: Electrical resistivity of a) In2BiSe4I and b) In2Bi3Se7I. The inserts pictures an 
Arrhenius plot for the temperature range between 250K and 300 K. 
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Fig. 4: Thermoelectric properties of BiSeI; a) electrical resistivity (ρ); b) Seebeck coefficient 
(S); c) thermal conductivity (κ); d) thermoelectric figure of merit (ZT). 

The electrical resistivity of both compounds is much larger compared with the characteristic 

values displayed by structurally related alkali metal bismuth chalcogenides.[3,4] The reason for 

this discrepancy may be explained by the differences in the respective electronic structures. 

The ionicity in In2Bi3Se7I and In2BiSe4I is rather high and the compounds are characterized 

by balanced valence states. In contrast, the actual composition of β-K2Bi8Se13 from single 

crystal structure refinement is K2.06Bi7.94Se13, yielding a charge mismatch of 0.12 electrons 

per formula unit. Therefore, the valence states are not balanced which, in combination with a 

lower degree of ionicity, is reflected in a lower electrical resistivity. 

The related compound BiSeI,[16] which contains CdI2-like strands of Bi and Se atoms with 

weakly bound terminal I atoms, is structurally similar but exhibits slightly better 

thermoelectric properties (Figure 4). In comparison with the quaternary compounds In2Bi3Se7I 

and InBi2Se4I, the total resistivity at 4 K is reduced by three orders of magnitude. 

Semiconducting behavior (band gap 0.06 eV) can only be observed in the high-temperature 

region well above 100 K. The absolute value of the Seebeck coefficient rises from nearly 0 

µV K−1 at 4K to -55 µV K−1 at 295 K in accordance with n-type conductivity. The thermal 
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conductivity of BiSeI is 70 mW K−1 cm−1 at 4 K and decreases to 21 mW K−1 cm−1 at 295 K. 

The maximum at 8.2 K is probably due to phonon umklapp scattering – a phenomenon 

typically observed in pure crystalline materials. The resulting thermoelectric figure of merit 

(ZT) reaches 6 10-5 at 295 K. Hence, the lower degree of condensation in BiSeI is probably 

responsible for the enhancement of the ZT value relative to the quaternary indium bismuth 

selenide iodides. However, the nominal value achieved is rather small. 

 

3.3.3 Conclusion 

In2Bi3Se7I and In2BiSe4I exhibit structural features similar to several alkali metal bismuth 

chalcogenides that are known for their thermoelectric properties, e.g. β-K2Bi8Se13. These 

features include a three-dimensional network with some weakly bonded heavy atoms as well 

as rocksalt-like and CdI2-like building blocks and loosely bound atoms. Although this might 

reduce the lattice thermal conductivity, good thermoelectric properties are impeded by the 

high electrical resistivity of In2Bi3Se7I and In2BiSe4I which again is probably a consequence 

of the significantly different electronegativities of the elements in combination with the 

balanced valence states. Therefore, the rather high ionicity of these ternary phases is reflected 

in poor electrical conductivity. On contrary, the deviation of β-K2Bi8Se13 samples from their 

formal composition with balanced valence states and their lower ionicity might be the key 

parameters responsible for the lower electrical resistivity observed in these non-stoichiometric 

compounds. The deviation of the actual composition from the idealized composition with 

balanced valence states is a common feature found in structurally related compounds that 

have been discussed as thermoelectric materials, e.g. K2.5Bi8.5Se14 showing an actual 

composition of K2.36Bi8.64Se14 and a resulting charge mismatch of 0.28 per formula unit.[3] 

This shows the strong influence of slight variations from the balanced valence state on the 

electrical resistivity and thus on the thermoelectric properties. Therefore, increasing the 

metallic character by doping, e.g. with alkali metals, might significantly enhance the 

thermoelectric properties in the system In-Bi-Se-X (X = I, Br). 
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3.3.4 Experimental Section 

3.3.4.1 Synthesis 

All samples were prepared from stoichiometric mixtures of the elements indium (99.999%, 

Smart Elements, Vienna, Austria), bismuth (99.999%, Smart Elements, Vienna, Austria), 

selenium (shots, amorphous, 99.999+%, Alfa Aesar), and iodine (99.9%, AppliChem, 

Germany, dried with conc. H2SO4). Samples of In2BiSe4I were prepared by melting the 

mixtures in a tube furnace in silica glass ampoules (11 mm diameter) under argon. The 

resulting ingots consist of In2Se3 and BiSeI. They were ground and annealed at 425 °C for 

36 h under argon. Coarse metallic gray needles of In2BiSe4I could be mechanically separated, 

with approximately 10% In2Se3 as a side phase. In2Bi3Se7I was synthesized in a two-zone 

furnace. A stoichiometric mixture of the elements was sealed at a pressure of < 5×10−3 mbar 

and heated to 380 °C / 330 °C for 7 days with the reactants in the hot zone, and subsequently 

quenched to room temperature. The product consists of fine metallic gray needles of 

In2Bi3Se7I on the hot side of the tube, near the starting material. Pellets for thermoelectric 

measurements (6 mm diameter) were pressed with a force of 21 kN and annealed for 24 h at 

420 °C under Ar atmosphere to reduce the amount of grain boundaries. Pellets for physical 

property measurements of BiSeI were prepared by melting a stoichiometric mixture of the 

elements in a flat-bottom silica glass tube (22 mm diameter) at 600 °C for 15 h followed by 

quenching to room temperature, resulting in a dark grey ingot of BiSeI, which was polished to 

a pellet-like shape. All operations at reduced pressure were conducted under dry ice cooling to 

prevent iodine sublimation.  

3.3.4.2 EDX analyses 

The composition of the compounds was verified by energy-dispersive X-ray spectroscopy 

(EDX) with a JSM-6500F (Jeol, USA) scanning electron microscope (SEM) equipped with a 

model 7418 EDX detector (Oxford Instruments, Great Britain). Spectra were acquired using 

an acceleration voltage of 24 kV and 80 seconds accumulation time. 3 to 7 point analyses 

were averaged and the uncertainties estimated from the variance. 

The ingot for thermoelectric measurements with the nominal composition BiSeI yielded an 

average composition of Bi0.9(1)Se1I.0.8(1). The EDX results of the samples of In2BiSe4I and 

In2Bi3Se7I used for physical property measurements were In2.0(2)Bi1.1(2)Se4I1.1(2) and 

In1.9(1)Bi2.9(2)Se7I1.0(1) respectively. The phase purity of the samples was verified by PXRD 

prior to the physical property measurements.  
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3.3.4.3 Thermal Analysis 

Differential thermal analysis and thermogravimetry (DTA-TG) was performed on finely 

ground samples using a Setaram TG-92 thermal analyzer, equipped with a protected DTA-TG 

rod. The measurements were conducted under helium at a scanning rate of 10 °C min−1 using 

alumina crucibles. 
 

3.3.4.4 X-ray Diffraction 

For X-ray powder diffraction, finely ground samples were fixed on Mylar foils using silicone 

grease. Data were collected on a G670 (Huber, Germany) X-ray powder diffractometer with 

Guinier geometry, equipped with a position-sensitive imaging plate detector using Cu-Kα1 

radiation (1.54051 Å, Ge(111) monochromator). Powder patterns were evaluated using the 

program WINXPOW.[18]  

Single crystals were mounted on glass fibers and checked for quality by Laue photographs 

using a Buerger precession camera (Huber, Germany). Data were collected on an IPDS-I 

(Stoe & Cie GmbH, Germany) diffractometer equipped with an imaging plate detector using 

graphite monochromated Ag-Kα1 (0.56086 Å) radiation. Numerical absorption correction 

based on measured crystal faces was performed on all samples using the X-RED/X-SHAPE 

software.[19,20] The structures were solved by direct methods and refined by full-matrix least-

squares techniques using the SHELX-97 software.21 The crystallographic information files (cif) 

are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-

Leopoldshafen (Germany), e-mail: crysdata@fiz-karlsruhe.de, by quoting the deposition 

numbers CSD-423015 (In2BiSe4I) and CSD-423016 (In2Bi3Se7I), respectively, the name of 

the authors and the citation of the paper.  

The formal charge distribution according to bond valence sums was calculated with VaList.[22] 

The calculation was based on the structure parameters from single-crystal data. 
 

3.3.4.5 Thermoelectric Measurements 

For thermoelectric measurements, a commercial PPMS (Quantum Design, USA) was used. 

The electrical resistivity measurements were performed by a standard four-probe dc method 

with a constant current of 5 mA where the temperature changes at a rate of 0.7 K min−1. The 

thermal conductivity and the Seebeck coefficient were measured using the thermal transport 

option on bar-shaped samples in a four-point setup (one heater, two thermometers). All 

measurements were performed in the temperature range between 3 K and room temperature. 
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3.3.5 Supplementary Information: 

A) Powder diffraction 

 
Figure S1: Result of a Rietveld fit (gray) based on a structure model of In2BiSe4I derived 
from the single crystal X-ray diffraction data, showing the experimental powder diffraction 
pattern of In2BiSe4I (black), a difference plot and reflection markers (bottom). The fit 
converged at Rp = 0.0575 and Rwp = 0.0754, respectively.  
 

 
Figure S2: Result of a Rietveld fit (grey) based on a structure model of In2Bi3Se7I derived 
from the single crystal X-ray diffraction data, showing the experimental powder diffraction 
pattern of In2Bi3Se7I (black), a difference plot and reflection markers (bottom). The fit 
converged at Rp = 0.0144 and Rwp = 0.0183, respectively. 
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B) Anisotropic displacement parameters 

 

Table S1.  Anisotropic displacement parameters (in Å²) for In2BiSe4I 
atom U11  U22  U33  U13  U23 = U12  

Bi (1) 0.0204(2) 0.0195(2) 0.0220(2) 0.00309(19) 0 
I (1) 0.0197(4) 0.0317(6) 0.0246(5) 0.0028(3) 0 
In (1) 0.0235(5) 0.0184(5) 0.0219(5) 0.0082(4) 0 
In (2) 0.0251(5) 0.0188(5) 0.0278(5) -0.0087(4) 0 
Se (1) 0.0172(5) 0.0206(7) 0.0194(6) -0.0015(5) 0 
Se (2) 0.0233(6) 0.0186(7) 0.0272(7) -0.0015(5) 0 
Se (3) 0.0177(6) 0.0197(7) 0.0218(6) -0.0014(5) 0 
Se (4) 0.0202(6) 0.0203(7) 0.0245(6) -0.0009(5) 0 

 
Table S2.  Anisotropic displacement parameters (in Å²) for In2Bi3Se7I 

atom U11  U22  U33  U13  U23 = U12 
In (1) 0.0299(3) 0.0170(3) 0.0231(2) -0.0130(2) 0 
In (2) 0.0173(3) 0.0146(3) 0.0495(4) -0.0084(2) 0 
Bi (1) 0.02061(12) 0.01924(15) 0.01914(12) -0.00156(9) 0 
Bi (2) 0.01692(11) 0.02059(15) 0.02255(13) 0.00036(9) 0 
Bi (3) 0.01884(11) 0.01769(15) 0.02106(12) 0.00296(9) 0 
Se (1) 0.0212(3) 0.0147(4) 0.0213(3) 0.0013(2) 0 
Se (2) 0.0187(3) 0.0171(4) 0.0234(3) 0.0001(2) 0 
Se (3) 0.0154(3) 0.0135(4) 0.0165(3) -0.0004(2) 0 
Se (4) 0.0147(3) 0.0136(4) 0.0159(3) 0.0005(2) 0 
Se (5) 0.0158(3) 0.0160(4) 0.0161(3) -0.0002(2) 0 
Se (6) 0.0152(3) 0.0171(4) 0.0145(3) 0.0015(2) 0 
Se (7) 0.0145(3) 0.0159(4) 0.0163(3) 0.0007(2) 0 
I (1) 0.0259(2) 0.0221(3) 0.0173(2) 0.00034(17) 0 

 

C) Additional figure 

 
Figure S3: Projection of the structure of β-K2Bi8Se13

 viewed along [010]. Typical NaCl (large 
and middle) and CdI2 (smaller) building units are highlighted by gray boxes. The unit cell is 
indicated by thin lines. (according to D. Y. Chung, K. S. Choi, L. Iordanidis, J. L. Schindler, 
P. W. Brazis, C. R. Kannewurf, B. X. Chen, S. Q. Hu, C. Uher, M. G. Kanatzidis, Chem. 
Mater. 1997, 9, 3060-3071). 
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3.4 A high-pressure route to thermoelectrics with low thermal 

conductivity: the solid solution series AgInxSb1-xTe2 (x = 0.1 - 0.6) 

 

T. Schröder, T. Rosenthal, D. Souchay, C. Petermayer, S. Grott, E.-W. Scheidt, C. Gold, W. 

Scherer, O. Oeckler  

J. Solid State Chem. 2013, 206, 20 - 26. 

 

Abstract 

Metastable rocksalt-type phases of the solid solution series AgInxSb1-xTe2 (x = 0.1, 0.2, 0.4, 

0.5 and 0.6) were prepared by high-pressure synthesis at 2.5 GPa and 400 °C. In these 

structures, the coordination number of In3+ is six, in contrast to chalcopyrite ambient-pressure 

AgInTe2 with fourfold In3+ coordination. Transmission electron microscopy shows that real-

structure phenomena and a certain degree of short-range order are present, yet not very 

pronounced. All three cations are statistically disordered. The high degree of disorder is 

probably the reason why AgInxSb1-xTe2 samples with 0.4 < x < 0.6 exhibit very low thermal 

conductivities with a total κ < 0.5 W/Km and a lattice contribution of κph ~ 0.3 W/Km at room 

temperature. These are lower than those of other rocksalt-type tellurides at room temperature; 

e.g., the well-known thermoelectric AgSbTe2 (κ ~ 0.6 W/Km). The highest ZT value (0.15 at 

300 K) is observed for AgIn0.5Sb0.5Te2, mainly due to its high Seebeck coefficient of 

160 µV/K. Temperature-dependent X-ray powder patterns indicate that the solid solutions are 

metastable at ambient pressure. At 150 °C, the quaternary compounds decompose into 

chalcopyrite-type AgInTe2 and rocksalt-type AgSbTe2. 

 

3.4.1 Introduction 

The interconversion of thermal and electrical energy by means of thermoelectrics is intensely 

researched, the long-term goal being the efficient generation of electrical energy from waste 

heat and the development of novel materials for Peltier coolers or small heating devices. The 

dimensionless figure of merit ZT = S²σT / κ (Seebeck coefficient S, electrical conductivity σ, 

thermal conductivity κ)[1] is a measure of the efficiency of the conversion process. All 

quantities involved depend on the charge carriers’ concentration and mobility and therefore 

cannot be optimized independently. According to the Wiedemann-Franz law, σ and the 

electronic part of the thermal conductivity (κel) are proportional to each other. Increasing the 

mobility of the charge carriers and thus σ, in addition, usually lowers the absolute value of S. 
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Therefore, a common approach to improving thermoelectrics aims at decreasing the phononic 

part of the thermal conductivity (κph) without significantly interfering with the electronic 

properties. This paradigm suggests that effective phonon scattering is important, which can be 

achieved by creating nano-domain structures, e.g. twin domains in TAGS, 

i.e.,(AgSbTe2)1-n(GeTe)n,
[2-4] or short-range ordered defect layers in GST materials, i.e. 

(GeTe)nSb2Te3.[5,6] Domain structures often result from phase transitions or, in case of 

heterogeneous systems, from partial phase separation.[7-14] Exsolution may lead to endotactic 

nanodots, e.g. in LAST (AgPbnSbTe2+n).[15] As nanostructures and other real-structure effects 

as well as phase transitions play an important role, transmission electron microscopy and 

temperature-dependent X-ray diffraction are very valuable tools for structure elucidation. 

Synthetic approaches to lowering κph may include the application of high pressure or fast 

quenching (e.g. melt spinning) during crystallization. Stress as well as short crystallization 

times usually yield smaller grain sizes (i.e. more grain boundaries) and more pronounced real-

structure effects. Both features may scatter phonons more effectively than electrons.[16,17]  

A large number of ternary I-V-VI2 phases exhibit very low intrinsic thermal conductivities 

(< 1 W/Km),[18,19] the most prominent compound being AgSbTe2 with κ ≈ 0.6 W/Km at room 

temperature (RT). It is characterized by ZT values of ~0.3 at RT and up to 1.3 at 400 °C, 

respectively;[20] and represents both the end member of TAGS solid solutions and the matrix 

of LAST materials.[2-4,15] All of these materials, including nanostructured ones, exhibit cation 

disorder in sometimes distorted rocksalt-type crystal structures. 

In contrast to AgSbTe2, AgInTe2 crystallizes in the chalcopyrite structure type, a 

superstructure of the sphalerite type where all cations are tetrahedrally coordinated by Te. In 

accordance with the pressure-coordination rule, AgInTe2 transforms to a rocksalt-type 

structure under high pressure; however, phases with tetrahedrally coordinated In3+ are formed 

again after decompression within a few days.[21] For AgInSe2, rocksalt-type high-pressure 

phases are metastable at ambient pressure when In is partially substituted by Sb.[22] Thus, one 

can expect that cation-disordered rocksalt-type members of a solid solution series AgInTe2-

AgSbTe2 are accessible by high-pressure high-temperature syntheses and may be metastable 

at ambient conditions. For these phases, no thermoelectric data are available. However, 

chalcopyrite-type AgInTe2 exhibits a thermal conductivity of ~ 2 W/Km at 300 K,[14,23] more 

than three times higher than that of AgSbTe2. The thermal conductivities of quaternary solid 

solutions may be expected to be even lower than those of ternary I-V-VI2 compounds due to 

the fact that the number of disordered cation types is higher.  
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The element combination Ag/In/Sb/Te (“AIST”) is an intriguing one as it plays an important 

role in the field of phase-change materials for rewritable optical data storage (e.g. 

Ag3.4In3.7Sb76.4Te16.5 on CD-RWs).[24] As the required material properties for phase-change 

materials are comparable to those for thermoelectrics,[5] the present study aims at 

characterizing the thermoelectric properties and structural features as well as stability ranges 

of AIST materials prepared by high-pressure high-temperature synthesis. 

 

3.4.2 Experimental 

3.4.2.1 Synthesis  

Bulk samples with the nominal compositions AgInxSb1-xTe2  (x = 0.1, 0.2, 0.4, 0.5 and 0.6) 

were prepared by heating stoichiometric mixtures (e.g., 1.5 g) of the pure elements (silver 

99.9999%, Alfa Aesar; indium 99.999%, Smart Elements; antimony 99.9999%, Smart 

Elements; tellurium 99.999 %, Alfa Aesar) in sealed silica glass ampoules to 950 °C under 

argon atmosphere. The resulting melts were quenched to RT in water. They contain mixtures 

of chalcopyrite-type AgInTe2 and rocksalt-type AgSbTe2 and were used as starting materials 

for high-pressure syntheses.  

High-pressure experiments were performed using a multi-anvil hydraulic press (Voggenreiter, 

Mainleus, Germany).[25-28] Quenched AgInxSb1-xTe2 was powdered, loaded into a cylindrical 

crucible made of hexagonal BN (Henze, Kempten, Germany) and sealed with a BN cap. In 

order to obtain an electrical resistance furnace; the capsule was centered within two nested 

graphite tubes. The remaining volume at both ends of the outer graphite tube was filled with 

two MgO discs. The arrangement, surrounded by a zirconia tube, was then placed into a 

pierced truncated Cr2O3-doped MgO octahedron (edge length 25 mm, Ceramic Substrates & 

Components, Isle of Wight, Great Britain). Eight truncated tungsten carbide cubes (truncation 

edge length 17 mm) served as anvils for the compression of the truncated octahedron, they 

were separated by pyrophyllite gaskets. The graphite tubes were electrically contacted by two 

Mo plates. The assembly was compressed up to a pressure of 2.5 GPa in 2 h. At this constant 

pressure, samples were prepared by annealing at 400 °C for 5 h and subsequently quenching 

the sample by turning off the furnace. After quenching the sample, the pressure was 

maintained for 1 h to ensure that RT was reached. Subsequently, the pressure was reduced to 

ambient pressure within 6 h. 
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3.4.2.2 EDX analysis  

EDX (energy dispersive X-Ray) spectra of representative pieces of crushed bulk samples 

were recorded using a JSM-6500F (Jeol, USA) scanning electron microscope with EDX 

detector (model 7418, Oxford Instruments, Great Britain). For each sample, the results of five 

point analyses were averaged and the errors were estimated from their variance (see Table 1). 

 

Table 1. EDX results for AgInxSb1-xTe2 (averaged from 5 point analyses each) 

sum formula atom-% (calc.) atom-% (EDX) 

AgIn0.6Sb0.4Te2 Ag: 25; In: 15;    Sb: 10;    Te: 50 Ag: 23.1(7); In: 14.8(4); Sb: 11.6(3); Te: 50.5(9) 

AgIn0.5Sb0.5Te2 Ag: 25; In: 12.5; Sb: 12.5; Te: 50 Ag: 24.2(3); In: 12.1(6); Sb: 13.5(5); Te: 50.2(5) 

AgIn0.4Sb0.6Te2 Ag: 25; In: 10;    Sb: 15;    Te: 50 Ag: 24.9(5); In: 8.9(3);  Sb: 16.0(5); Te: 50.2(6) 

AgIn0.2Sb0.8Te2 Ag: 25; In:  5;     Sb: 20;    Te: 50 Ag: 24.5(4); In:  4.5(3); Sb: 20.9(3); Te: 50.1(4) 

AgIn0.1Sb0.9Te2 Ag: 25; In: 2.5;   Sb: 22.5; Te: 50 Ag: 24.5(5); In:  2.2(5); Sb: 23.5(5); Te: 49.7(6) 

 

3.4.2.3 X-ray diffraction  

X-ray powder patterns were recorded with a Huber G670 Guinier camera equipped with a 

fixed imaging plate and integrated read-out system using Cu-Kα1 radiation (Ge 

monochromator, λ = 1.54051 Å). Specimens were prepared by crushing representative parts 

of the samples and fixing the powder on Mylar foils using vacuum grease. The phase 

homogeneity was evaluated and lattice parameters were determined by pattern fitting 

(Rietveld method) using the program TOPAS.[29] Temperature-dependent powder diffraction 

experiments were performed with a STOE Stadi P powder diffractometer equipped with an 

imaging plate detector system using Mo-Kα1 radiation (Ge monochromator, λ = 0.71093 Å) in 

a modified Debye–Scherrer geometry. Powdered specimens were filled into silica glass 

capillaries with 0.3 mm diameter and sealed with vacuum grease under argon atmosphere. 

During the measurement, the samples were heated up to 600 °C in a graphite furnace with a 

heating rate of 5 K/min. 
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3.4.2.4 Transmission electron microscopy 

For transmission electron microscopy, finely ground samples were dispersed in ethanol and 

distributed on copper grids coated with a holey carbon film (S166-2, Plano GmbH, Germany). 

The grids were fixed on a double-tilt holder. Selected area electron diffraction (SAED), high 

resolution transmission electron microscopy (HRTEM) and EDX measurements were done on 

a Titan 80-300 (FEI, USA) with a field emission gun operated at 300 kV equipped with a 

TEM TOPS 30 EDX spectrometer (EDAX, Germany). Images were recorded using an 

UltraScan 1000 camera (Gatan, USA, resolution: 2k x 2k). HRTEM and SAED data were 

evaluated using the programs Digital Micrograph[30] and EMS,[31] EDX data were processed 

with ES Vision.[32]  

 

3.4.2.5 Electrical and thermal transport measurements  

The temperature-dependent conductivities σ(T) of the samples were measured by a standard 

four-probe dc method employing a constant current of 5 mA with a physical property 

measurement system (PPMS, Quantum Design). The data were collected in the temperature 

range of 2 – 300 K by cooling and heating sequences in which the temperature changed at a 

rate of 0.5 K min-1. The uncertainty of the absolute electrical resistivity has been estimated by 

taking into account the errors in specifying the sample dimensions; it amounts to ~ 20 %. The 

thermoelectric power S(T) and the thermal conductivity κ(T) of samples were measured 

simultaneously using the thermal transport option of the PPMS. This is based on a relaxation 

method employing one heater and two thermometers to determine the induced thermal voltage 

and the temperature gradient along the sample in a temperature range between 4 K and 300 K. 

These measurements were carried out using bar-shaped samples with typical dimensions 

between 4 and 7 mm3 during a heating process at a rate of 0.5 Kmin-1. The total accuracy of 

the S(T) and κ(T) values is about 5%.  

 

3.4.3 Results and discussion 

3.4.3.1 Crystal structure 

The powder diffraction patterns of the compounds of the solid solution series AgInxSb1-xTe2 

with x = 0.1, 0.2, 0.4, 0.5 and 0.6, which were obtained by thermal quenching under a 

constant pressure of 2.5 GPa, could be indexed assuming cubic metrics. For x > 0.6, the 
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samples were inhomogeneous. The average structure (for x ≤ 0.6) derived from Bragg 

reflections corresponds to the rocksalt type (space group Fm3m, no. 225), which has been 

reported for AgSbTe2 (x = 0) at ambient pressure and for the high-pressure phase of AgInTe2 

(x = 1).[33,20] The powder patterns contain little evidence for different scattering densities on 

anion and cation positions due to the similar electron counts; however, very weak intensities 

can be observed for the NaCl type’s reflections hkl with h, k, l = 2n+1 (more pronounced in 

electron diffraction patterns, see below). Thus, Ag, In and Sb were placed on the cation 

position (occupancy factors 0.5 for Ag, x/2 for In and 0.5 – x/2 for Sb), whereas full occupancy 

by Te was assumed on the anion site. The occupancy factors were set according to the 

nominal composition of the starting materials, which was confirmed by EDX measurements 

(see Table 1). A common isotropic displacement parameter was used for the cations; the one 

for Te was refined separately. Slight preferred orientation was taken into account using the 

March-Dollase algorithm. Representative profile fits resulting from Rietveld refinements for 

AgIn0.5Sb0.5Te2 and AgIn0.6Sb0.4Te2 are shown in Fig. 1 (the Rietveld fit for x = 0.1, 0.2 and 

0.4 can be found in the Supplementary Information). Crystal data and the refined atomic 

parameters are given in Tables 2 and 3, respectively. Further details of the crystal structure 

investigations may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-

Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, 

http://www.fiz-karlsruhe.de /request_for_deposited_data.html) on quoting the depository 

numbers CSD-426090, CSD-426089, CSD-426086, CSD-426088 and CSD-426087 for x = 

0.1, 0.2, 0.4, 0.5 and 0.6, respectively. 
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Fig. 1: Rietveld fits for AgIn0.5Sb0.5Te2 (bottom) and AgIn0.6Sb0.4Te2 (top); experimental 
(black) and calculated data (gray); difference plot (gray, below), peak positions (black, 
vertical lines). 
 

 

 

 

Fig. 2: Vegard’s plot for AgInxSb1-xTe2 (dotted line: least-squares fit) with estimated error 
bars of 0.5 atom-% (see text); the atom-% refer to the sum formula (i.e. AgInTe2 would 
correspond to 25 atom-% In); value for AgSbTe2 from ref. [32].  
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Table 2. Results of the Rietveld refinements for AgIn0.1Sb0.9Te2, AgIn0.2Sb0.8Te2, 
AgIn0.4Sb0.6Te2, AgIn0.5Sb0.5Te2, and AgIn0.6Sb0.4Te2. 
Sum formula AgIn0.1Sb0.9Te2 AgIn0.2Sb0.8Te2 AgIn0.4Sb0.6Te2 AgIn0.5Sb0.5Te2 AgIn0.6Sb0.4Te2 
Molar mass / g mol-1 484.13 483.44 482.05 481.36 480.66 
F(000) 403.6 403.2 402.4 402 401.6 
Crystal system /  
space group (no.) cubic / Fm3m (no.225) 

Lattice parameter / Å 6.06114(2) 6.05464(2) 6.02965(2) 6.02483(2) 6.01881(2) 
Cell volume / Å3 222.671(2) 221.955(2) 219.218(2) 218.693(2) 218.038(2) 
Density (X-ray) / g cm-3 7.221 7.234 7.303 7.310 7.321 
Radiation Cu-Kα1 (λ = 1.540596 Ǻ) 
2θ range / ° 20 ≤ 2θ ≤ 100 
Profile function fundamental parameter approach 
Constraints 2 
Number of reflections 15 
Refined parameters / 
thereof background 

23 / 12 23 / 12 23 / 12 23 / 12 23 / 12 

Rp / Rwp 0.0168 / 0.0239 0.0186 / 0.0259 0.0149 / 0.0209 0.0173 / 0.0238 0.0170 / 0.0244 
Gof 0.841 0.937 0.743 0.888 0.890 

 
 
Table 3. Atom positions, occupancy and displacement parameters (Beq) for AgIn0.1Sb0.9Te2, 
AgIn0.2Sb0.8Te2, AgIn0.4Sb0.6Te2, AgIn0.5Sb0.5Te2, and AgIn0.6Sb0.4Te2. 
Sum formula Atom Wyckoff 

position 
x y z s.o.f. Beq 

AgIn0.1Sb0.9Te2 Ag/In/Sb 
Te 

4a 
4b 

0 0 0 
1/2 

1/2 
1/2 

0.5/0.05/0.45 
1 

2.36(2) 
1.57(2) 

AgIn0.2Sb0.8Te2 Ag/In/Sb 
Te 

4a 
4b 

0 0 0 
1/2 

1/2 
1/2 

0.5/0.1/0.4 
1 

2.34(3) 
1.58(2) 

AgIn0.4Sb0.6Te2 Ag/In/Sb 
Te 

4a 
4b 

0 0 0 
1/2 

1/2 
1/2 

0.5/0.2/0.3 
1 

1.53(2) 
1.18(2) 

AgIn0.5Sb0.5Te2 Ag/In/Sb 
Te 

4a 
4b 

0 0 0 
1/2 

1/2 
1/2 

0.5/0.25/0.25 
1 

1.35(2) 
0.90(2) 

AgIn0.6Sb0.4Te2 Ag/In/Sb 
Te 

4a 
4b 

0 0 0 
1/2 

1/2 
1/2 

0.5/0.3/0.2 
1 

1.29(2) 
0.83(2) 

 

 

The lattice parameters approximately fulfill Vegard’s law (see Fig. 2) up to x = 0.6; indicating 

a solid solution series. The standard deviations of the lattice parameters are negligible 

compared to the uncertainties of the composition of high-pressure samples. The latter were 

estimated from the variance of EDX analyses and their deviation from the starting 

compositions. The lattice parameter of AgSbTe2 deviates slightly more from the least-squares 

fit than the other values. This might be due to the fact that AgSbTe2 cannot be synthesized 

without minor amounts of Ag2Te so that its actual composition has been given as 

Ag19Sb29Te52.[34]  
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3.4.3.2 Thermal behavior 

Temperature-dependent powder X-ray diffraction patterns (Fig. 3 middle and bottom, 

additional ones in the Supplementary Information) show that, for instance, AgIn0.5Sb0.5Te2 

and AgIn0.1Sb0.9Te2 decompose upon heating. The higher the In concentration, the lower the 

temperature that is required for the transition to the stable state, which corresponds to a 

mixture of rocksalt-type AgSbTe2 and chalcopyrite-type AgInTe2. The decomposition of 

AgInxSb1-xTe2 starts at 120 °C for x = 0.6, at 140 °C for x = 0.5 and 0.4, at 160 °C for x = 0.2 

and at 200 °C for x = 0.1. This is consistent with the fact that samples with x > 0.6 are not 

long-term stable even at RT. 

Chalcopyrite-type AgInTe2 begins to form while the diffraction pattern is still dominated by 

the reflections of the rocksalt-type phase. The intensity of the latter's Bragg peaks is rather 

invariant, however, the reflection positions shift upon heating. This is due to the formation of 

AgSbTe2 which has the same structure type but displays a slightly different lattice parameter 

(a = 6.078 Å).[32] It might still contain small amounts of In. As indicated by the dashed 

rectangles in Fig. 3, an additional reflection is observed at intermediate temperature which 

disappears when the rocksalt-type reflections of (possibly In-doped) AgSbTe2 become 

stronger at higher temperature. This single reflection is not sufficient to decide if the rocksalt-

type phase is distorted (reflection splitting) or if an additional intermediate phase (e.g. a silver 

telluride) is present. The diagram for x = 0.1 shows that at least at high temperatures, small 

amounts of In are soluble in AgSbTe2 as the chalcopyrite-type reflections disappear without 

another phase being formed. 

 

3.4.3.3 Electron microscopy of AgIn0.5Sb0.5Te2 

Electron microscopy studies of AgIn0.5Sb0.5Te2 confirm the results of the Rietveld refinements. 

The d-values observed in selected area electron diffraction (SAED) patterns (Fig. 4) are 

consistent with those found in the Rietveld fit of the corresponding X-ray powder data (cf. Fig. 

1, bottom). The rocksalt type's reflections with h, k, l = 2n+1 are clearly visible. Samples are 

chemically homogeneous according to TEM-EDX. There are just very weak diffuse 

intensities; this means that there are no pronounced short-range cation ordering phenomena, 

atomic size effect[35] or other real-structure features. However, the scattering contrast between 

the elements involved is small, so that a possible small degree short-range order without 

relaxation is hard to detect. There are no discrete maxima between the Bragg reflections in 

SAEDs which would indicate a tendency to form a superstructure. 
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Fig. 3: Simulated powder X-ray diffraction pattern of chalcopyrite-type AgInTe2 at ambient 
conditions (top), temperature dependent powder X-ray diffraction patterns of AgIn0.5Sb0.5Te2 
(middle) and AgIn0.1Sb0.9Te2 (bottom); reflections caused by the furnace material are 
indicated by dashed lines; the decomposition of the rocksalt-type phase is marked by dashed 
rectangles. 
 
 
In the HRTEM images in Figures 4 and 5, few planar defects can be observed in the fringe 

areas of the crystallites. In contrast to the Fourier transforms of these areas, the SAED 

patterns of whole small crystallites or of thicker areas exhibit less pronounced diffuse 

intensities. Therefore, such defects are rather rare effects in thin areas. It remains unclear 

whether they are due to the high-pressure high-temperature synthesis or induced by the TEM 

sample preparation. 
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Fig. 4: SAED patterns of the zone axes [100], [110] and [210] (top) of rocksalt-type 
AgIn0.5Sb0.5Te2; HRTEM image of AgIn0.5Sb0.5Te2 (bottom, left) with the corresponding 
Fourier transforms of the whole image (middle right) and of the region marked with the white 
square (bottom right). 
 

3.4.3.4 Thermoelectric properties 

All investigated compounds of the series AgInxSb1-xTe2 are p-type semiconductors. The 

electrical conductivity (Figure 6, top) increases with x, although at low temperatures the 

values for x = 0.4 and 0.5 are similar. For x = 0.6, σ is higher by one order of magnitude 

compared to the other samples. Below RT, κ of all samples is very low (Figure 6; third from 

top), less than 0.5 W/Km. In line with the electrical contribution to κ, the absolute values of 

the thermal conductivities exhibit a comparable trend with respect to x as the electrical 

conductivities. For all samples, κph at 300 K is in the same range of 0.35 - 0.29 W/Km. Due to 

the low σ of x = 0.4 and 0.5, the electrical contribution κel to the total κ is rather small (cf. 

Figure 6). The thermal conductivity of all samples is lower than that of both AgSbTe2 (~ 0.6 

W/Km at 300 K) and AgInTe2 (~ 2 W/Km at 300 K).[18] This strong decrease in κ, especially 

κph, upon doping might be caused by the increased disorder at the cation position. 
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Fig. 5: Electron microscopy AgIn0.5Sb0.5Te2 (zone axis [100]): HRTEM images of two 
different areas of the same crystallite (top) with the corresponding Fourier transforms (FT, 
bottom) and the SAED pattern (bottom, middle) of the crystallite. The rather strong contrasts 
originate from thickness variations (the sample was crushed from an ingot obtained under 
high-pressure conditions). 
 

AgIn0.5Sb0.5Te2 exhibits the highest Seebeck coefficient (Figure 6; second from top) of the 

quaternary samples; at RT it amounts to 160 µV/K. This probably indicates a rather high 

charge carrier concentration. The differences in the ZT values of the samples investigated are 

mainly due to the different Seebeck coefficients; thus, AgIn0.5Sb0.5Te2 exhibits the highest ZT 

value (0.15 at 300K) (Figure 6; bottom). This is lower than that of AgSbTe2 (ZT = ~0.3 at 300 

K) because of the latter's higher Seebeck coefficient (~240 µV/K at 300 K). However, the 

observed ZT value of AgIn0.5Sb0.5Te2 falls in the same range as corresponding values of other 

tellurium-based high-performance p-type thermoelectrics at 300 K.[14] In comparison, the 

thermoelectric properties of chalcopyrite-type AgInTe2, which exhibits a maximum ZT value 

of 0.06 at 600 K and <0.01 at 300 K,[23] are less suitable for potential applications. 
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Fig. 6: Electrical conductivity (top), Seebeck coefficients (second from top), total (solid lines) 
and phononic (broken lines) thermal conductivities (third from top), and ZT values (bottom) 
of AgIn0.4Sb0.6Te2 (light gray), AgIn0.5Sb0.5Te2 (black) and AgIn0.6Sb0.4Te2 (dark gray). 
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3.4.4 Conclusion 

High-pressure high-temperature syntheses have been shown to lead to solid solutions 

AgInxSb1-xTe2 that are metastable at ambient conditions and are yet not accessible by other 

synthetic approaches. The novel phases exhibit thermoelectric figures of merit ZT up to 0.15 

which are comparable to many high-performance thermoelectrics and outperform those of 

chalcopyrite-type AgInTe2, but are still lower than in the benchmark system AgSbTe2 at room 

temperature (ZT ~ 0.3).[20] Most likely, the cation disorder is the true physical origin of the 

significantly reduced thermal conductivity in the solid solutions, especially as the phononic 

contribution is dominant. Thus, further optimization of the power factor S²σ, possibly by 

additional doping, might lead to materials with better performance than AgSbTe2 at low 

temperatures. To the best of our knowledge, the quenched high-pressure phases exhibit the 

lowest thermal conductivities among all rocksalt-type tellurides (e.g. NaSbTe2, AgSbTe2 or 

NaBiTe2) at room temperature.  

In general, high-pressure phase transitions may be an intriguing way towards novel 

thermoelectrics. As high pressure favors higher coordination numbers, solid solutions may be 

accessible in many systems that are characterized by immiscibility gaps. Although the 

decomposition of the quenched high-pressure phase AgIn0.5Sb0.5Te2 into AgInTe2 and 

AgSbTe2 is a drawback for high-temperature applications, careful annealing may be used to 

produce materials that are heterogeneous on the nanoscale and possibly exhibit endotactic 

nano-precipitates. As the exsolution of chalcopyrite type AgInTe2 starts before the cubic 

compound decomposes, such nanostructuring of the material by nanodots comparable to 

LAST materials may be achieved in a controllable fashion. In addition, phase transitions may 

further produce favorable domain structures. The synthesis of nanostructured solid solutions 

displaying low thermal conductivities is thus a promising approach which warrants further 

exploration. 
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3.4.5 Supplementary information 

 

Fig. S1: Rietveld fits for AgIn0.1Sb0.9Te2 (top), AgIn0.2Sb0.8Te2 (middle) and AgIn0.4Sb0.6Te2 
(bottom); experimental data (black); calculated data (light gray); difference plot (gray, 
below), peak positions (black, vertical lines). 
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Fig. S2: Temperature dependent powder X-ray diffraction patterns of AgIn0.2Sb0.8Te2 (top), 
AgIn0.4Sb0.6Te2 (middle) and AgIn0.6Sb0.4Te2 (bottom); the decomposition of the rocksalt-type 
phase is marked by dashed rectangles.   
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3.5 TAGS-related indium compounds and their thermoelectric properties 

– the solid solution series (GeTe)xAgInySb1-yTe2 (x = 1 – 12; 

y = 0.5 and 1) 

 

T. Schröder, T. Rosenthal, N. Giesbrecht, S. Maier, E.-W. Scheidt, W. Scherer, G. J. Snyder, 

W. Schnick, O. Oeckler 

J. Mater. Chem. A 2014, 2, 6384-6395. 

 

Abstract 

Various members of the solid solution series (GeTe)xAgInySb1-yTe2 can be obtained by 

quenching high-temperature phases (x = 12 for y = 1 and x > 5 for y = 0.5). In contrast, high-

temperature high-pressure conditions (2.5 GPa, 350 °C) are required for the synthesis of 

members with In contents > 3.6 atom-% (such as x < 12 for y = 1 and x < 5 for y = 0.5) in 

order to avoid the formation of AgInTe2. The latter exhibits tetrahedrally coordinated indium 

atoms at ambient conditions and therefore does not form mixed crystals with tellurides of 

germanium and antimony that are characterized by sixfold coordinated atom sites. Solid 

solutions with x ≤ 5 crystallize in rocksalt-type structures with octahedrally coordinated 

indium, whereas the ones with x > 5 adopt the α-GeTe structure type (3+3 coordination). 

Thus, in all samples investigated, 3 or 4 cations are disordered at one Wyckoff position. The 

quenched high-temperature or high-pressure phases, respectively, are almost homogeneous. 

Their powder X-ray diffraction patterns suggest pure phases; yet, high-resolution electron 

microscopy occasionally reveals a very small extent of nanoscopic precipitates as well as 

dislocations and twinning. (GeTe)5.5AgIn0.5Sb0.5Te2 shows a maximal ZT value of 0.75 even 

when (partial) decomposition into the TAGS material (GeTe)11AgSbTe2 and chalcopyrite-

type AgInTe2 has occurred at 300 °C. (GeTe)5.5AgInTe2 prepared under high-pressure 

conditions exhibits a ZT value of 0.6 at 125 °C, i.e. far below the decomposition temperature 

and thus is an interesting new low-temperature thermoelectric material. 

 

3.5.1 Introduction 

Under ambient conditions, In is tetrahedrally coordinated by Te in chalcopyrite-type 

AgInTe2.[1] A rocksalt-type high-pressure polymorph with octahedral coordination of In has 

been described; however, upon decompression, this phase cannot be obtained as a metastable 
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material as it transforms back to the chalcopyrite structure type.[2] This shows the strong 

tendency of In to be tetrahedrally coordinated. It is possible to obtain comparable metastable, 

i.e. kinetically inert, compounds with octahedrally coordinated In by partially substituting In 

in AgInTe2 by Sb; however, high-pressure conditions are always required to synthesize these 

compounds.[3] This substitution leads to the rocksalt-type solid solution series AgInySb1-yTe2. 

Its member AgIn0.5Sb0.5Te2 exhibits a dimensionless thermoelectric figure of merit ZT = 

S2σT/κ (with the Seebeck coefficient S, the electrical conductivity σ, the temperature T and 

the thermal conductivity κ)[4] of 0.15 at room temperature (RT). Due to the solid-solution 

alloying, the low thermal conductivities of both end members AgInTe2 and AgSbTe2 (κ ~ 2 

W/Km and 0.6 W/Km,[5] respectively) are further reduced to 0.4 W/Km at RT. These 

compounds decompose to chalcopyrite-type AgInTe2 and rocksalt-type AgSbTe2 at 

temperatures > 150 °C. In general, tellurides crystallizing in these structure types exhibit very 

good thermoelectric properties: rocksalt-type compounds mainly due to their low lattice 

thermal conductivities,[6] and materials with structures derived from sphalerite (e.g. Cu2Zn1-

xFexGeSe4, CuGaTe2, CuInTe2) predominantly due to their high Seebeck coefficients.[7-10] 

Despite the lower κ ofAgIn0.5Sb0.5Te2, the ZT value of AgSbTe2 at RT (~ 0.3) is higher due to 

its a higher Seebeck coefficient.[11] It is well known that the thermoelectric properties of 

AgSbTe2 can further be improved in solid solutions with GeTe,[12,13]
 resulting in so-called 

TAGS materials (GeTe)x(AgSbTe2).[14-17] These compounds have been the subject of many 

investigations because of their high ZT values (up to 1.7) at elevated temperatures.[18,19] 

Further optimization of TAGS materials was achieved by substituting Ge by Sn as well as by 

doping with rare-earth elements.[20-22] However, to the best of our knowledge, the substitution 

of Sb with In has not been investigated, probably because many of these compounds cannot 

be obtained by classical solid-state synthesis as they would contain octahedrally coordinated 

In.  

Consequently, solid solutions between GeTe, AgInTe2 and additional AgSbTe2 are intriguing 

as they would probably combine the effects known from TAGS with the low thermal 

conductivity of AgIn0.5Sb0.5Te2 and thus might exhibit high ZT values. Here we report on 

solid solutions (GeTe)x(AgInTe2) which we call TIGS in analogy to TAGS and on compounds 

(GeTe)xAgIn0.5Sb0.5Te2, i.e. TAGS materials in which half of the Sb is substituted by In. 
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3.5.2 Experimental 

3.4.2.1 Synthesis 

Samples of (GeTe)xAgInySb1-yTe2 (x = 1 – 12; y = 0.5, 1) were prepared by reacting 

stoichiometric mixtures of the elements (germanium 99.999%, Sigma-Aldrich; silver 

99.9999%, Alfa Aesar; antimony 99.9999%, Smart Elements; indium 99.996%, Smart 

Elements; tellurium 99.999%, Alfa Aesar) at 950 °C for 12 h in sealed silica ampoules under 

argon atmosphere. The ampoules containing the resulting melts were quenched in water and 

subsequently annealed for 3 days at 550 °C. After that, the ampoules containing the annealed 

ingots were quenched in water. This synthesis route yielded (GeTe)xAgInySb1-yTe2 samples 

with x = 12 and y = 1 as well as those with x = 5, 5.5, 7 or 12 and y = 0.5 which were 

homogeneous according to powder X-ray diffraction patterns (cf. section Crystal structure). 

Samples with higher overall In contents, i.e. x = 1, 5, 5.5, 7 and y =1 or x = 1 and y = 0.5 

were not single-phase (see below); they were used as starting materials for further high-

pressure (HP) synthesis.  

A multi-anvil hydraulic press (Voggenreiter, Mainleus, Germany) was used for the HP 

experiments.[23-26] The finely ground starting materials were densely loaded in crucibles 

sealed with caps (material: hexagonal boron nitride, Henze, Kempten, Germany). These were 

centered in two nested graphite tubes, which acted as a resistance furnace. In order to keep the 

inner graphite tube in place, the remaining volume at both ends of the outer tube was filled 

with MgO discs. This arrangement was surrounded by a zirconia tube and placed in pierced 

Cr2O3-doped MgO octahedron (edge length 25 mm, Ceramic Substrates & Components, Isle 

of Wight, Great Britain). In order to electrically contact the graphite tubes, Mo plates were 

used that were connected to two of the eight truncated tungsten carbide cubes (truncation edge 

length 17 mm), which served as anvils for the compression. These cubes were separated by 

pyrophyllite gaskets. Within two hours, this assembly was compressed to 2.5 GPa. At this 

pressure, the temperature was raised to 350 °C within 30 min and the samples were 

subsequently kept at this temperature for 8 h. Afterwards, the samples were quenched to room 

temperature by switching off the furnace. The arrangement was kept under pressure for 

another hour to ensure that the sample was cooled down completely before reducing the 

pressure to ambient conditions within 6 h. 
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3.4.2.2 X-ray diffraction 

Powder X-ray diffraction (PXRD) patterns of the finely ground samples fixed between Mylar 

foils on a flat sample holder with vacuum grease were collected using a Huber G670 Guinier 

camera (Cu-Kα1 radiation, Ge(111) monochromator, λ = 1.54051 Å) with a fixed imaging 

plate and an integrated read-out system. 

Temperature-dependent PXRD patterns were measured using a STOE Stadi P diffractometer 

(Mo-Kα1 radiation, Ge(111) monochromator, λ = 0.71093 Å) with an imaging plate detector 

system in a modified Debye-Scherrer geometry. The powdered samples were filled into silica 

glass capillaries (0.3 mm diameter) under argon atmosphere and sealed with vacuum grease. 

Data were measured up to 600 °C with a heating rate of 10 °C/min in 20 °C steps. For 

(GeTe)5.5AgIn0.5Sb0.5Te2, further diffraction patterns were recorded from 600 °C to RT with a 

cooling rate of 5 °C/min. 

Phase homogeneity was evaluated using WINXPOW[27] and Rietveld refinements were 

carried out using the program TOPAS.[28] 

 

3.4.2.3 Electron microscopy, diffraction and X-ray spectroscopy 

A JSM-6500F (Jeol, USA) scanning electron microscope (SEM) equipped with an energy 

dispersive X-ray (EDX) detector (model 7418, Oxford Instruments, Great Britain) was used 

for the collection of X-ray spectra of representative parts of the samples. The results of 5 - 15 

point analyses were averaged. The compositions determined can be found in Table S1 and S2 

in the Supplementary Information. 

For high-resolution transmission electron microscopy (HRTEM), the samples were ground, 

dispersed in ethanol and distributed on copper grids coated with a holey carbon film (S166-2, 

Plano GmbH, Germany) which were subsequently fixed on a double-tilt holder. HRTEM 

images and selected area electron diffraction (SAED) patterns were recorded using a Titan 80-

300 (FEI, USA) with a field-emission gun operated at 300 kV equipped with a TEM TOPS 30 

EDX spectrometer (EDAX, Germany). The images were recorded using an UltraScan 1000 

camera (Gatan, USA, resolution 2k x 2k). For HRTEM and SAED data evaluation, the Digital 

Micrograph and EMS software packages were used;[29,30] EDX data were evaluated with ES 

Vision.[31] 
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3.4.2.4 Thermoelectric characterization 

The thermoelectric properties of (GeTe)5.5AgIn0.5Sb0.5Te2 prepared by quenching the sample 

from 550 °C were determined from 25 °C to 500 °C. The electrical conductivity σ was 

measured in 50 K steps at a heating rate of 150 K/h using the van der Pauw method[32] and 

pressure-assisted Nb contacts in an in-house built facility at Caltech.[ 33 ] The Seebeck 

coefficient S was determined using Chromel-Nb thermocouples in steps of 61 K at a heating 

rate of 150 K/h and a temperature oscillation rate of ± 7.5 K.[34] The thermal diffusivity Dth 

was measured using a LFA457 MicroFlash (Netzsch, Germany) laser flash system. The 

thermal conductivity was calculated according to κ = Dth ● Cp ● d with a calculated heat 

capacity Cp using the Dulong-Petit approximation and the density d determined by weighing 

the sample and measuring its dimensions. The combined uncertainty of the measurements is 

ca. 20% for the ZT value. 

The thermoelectric properties of a (GeTe)5.5AgInTe2 sample prepared under high-pressure 

conditions were characterized between 4 K and 400 K using a physical property measurement 

system (PPMS, Quantum Design). The temperature dependent electrical resistivity ρ was 

measured using a standard four-probe dc method by employing a constant current of 5 mA 

with a cooling/heating rate of 2 K/min, the estimated uncertainty of ρ amounts to ca. 10 %. 

The thermal transport option of the PPMS with a cooling/heating rate of 0.5 K/min was used 

to measure the κ and S values simultaneously. The measurements relied on a relaxation 

method employing one heater and two thermometers to determine the induced thermal voltage 

and the temperature gradient along the sample. The uncertainty of these values is 

approximately 5%. 
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3.5.3 Results and Discussion 

3.5.3.1 Sample characterization and optimal conditions for syntheses 

The present investigation focuses on compounds (GeTe)xAgInySb1-yTe2 with x = 1, 5, 5.5, 7 

and 12 for y = 0.5 and 1, which cover a broad range of In-substituted TAGS materials. The 

stoichiometry includes In contents from 16.7 atom-% in (GeTe)AgInTe2 down to 1.8 atom-% 

in (GeTe)12AgIn0.5Sb0.5Te2. Quenched melts with In-rich compositions such as 

(GeTe)xAgInTe2 (x = 1 - 7) contain mixtures of chalcopyrite-type AgInTe2 and GeTe. In 

contrast, related homogeneous TAGS materials, i.e. (GeTe)xAgSbTe2, are easily obtained.[15] 

However, syntheses under high-pressure high-temperature conditions (2.5 GPa and 350 °C for 

all high-pressure experiments mentioned in this article) yield samples of, for instance, 

(GeTe)AgInTe2 and (GeTe)AgIn0.5Sb0.5Te2 with rocksalt type structure whose PXRD patterns 

exhibit no reflections of side phases (cf. section Crystal structure). 

The compositional range investigated allows one to elucidate the influence of In on the 

reaction products under various synthesis conditions. It turned out that samples of 

(GeTe)xAgInTe2 with x < 12 and (GeTe)xAgIn0.5Sb0.5Te2 with x < 5, all of which contain more 

than 3.6 atom-% In, consist of mixtures of AgInTe2 and GeTe or (GeTe)2xAgSbTe2, 

respectively, both after quenching the melt and after quenching solid ingots after annealing 

them at 550 °C. For such In-rich compounds, high-pressure conditions are required to obtain 

samples that are single-phase according to their PXRD patterns. In contrast, single-phase 

compounds (according to PXRD) with In contents ≤ 3.6 atom-%, i.e. (GeTe)12AgInTe2 and 

(GeTe)xAgIn0.5Sb0.5Te2 x ≥ 5, respectively, can be obtained by quenching the samples after 

annealing them at 550 °C (existence range of high-temperature (HT) phases, cf. Thermal 

behavior section).  

The chemical compositions of all compounds whose PXRD patterns show no side phases 

were determined by SEM-EDX measurements. They agree very well with the nominal 

composition (cf. Tables S1 and S2 in the Supplementary Information). 

  

3.5.3.2 Crystal structure 

PXRD patterns of (GeTe)xAgInySb1-yTe2,samples (cf. Fig. 1 and 2) without reflections from 

side phases (synthesis with or without HP depending on the In content as described above) 

could be indexed assuming cubic metrics for x ≤ 5.5; however, for x = 5.5 the structure is 
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rhombohedral (see below). Samples with x > 5.5 clearly show reflection splittings in 

conformity with rhombohedral unit-cell dimensions. All structures were refined using the 

Rietveld method. Even if the metrics is cubic, rhombohedral structures must be considered as 

suggested by the reflection splittings for x > 5.5. Symmetry reduction is not unusual in 

comparable compounds that are pseudocubic from the point of view of lattice parameters. 

Therefore, refinements in space groups with rhombohedral symmetry were tested, especially 

in R3m, which corresponds to the α-GeTe type.[12,13] In the trigonal setting, the z parameter of 

the cations is a measure for the formation of layers when the anions of the polar structure are 

fixed on the origin. If z deviates significantly from 0.5, GeTe-type layers are formed which 

correspond to a binary variant of the A7 structure type of gray arsenic. 

The cation positions in all structure models were occupied according to the nominal 

composition with Ge, Ag, In, and Sb if present, refining a common displacement parameter 

for all cations on a shared Wyckoff site (i.e. a common z parameter in rhombohedral 

compounds); the anion position was occupied with Te whose displacement parameter was 

refined individually. Due to the use of a flat sample holder, preferred orientation had to be 

taken into account, using 4th order spherical harmonics with a single parameter for x ≤ 5 

(cubic) and with 3 parameters for x ≥ 5.5 (trigonal). Anisotropic broadening of the reflection 

profiles was refined for (GeTe)xAgInTe2 (with x = 5.5, 7 and 12) and (GeTe)xAgIn0.5Sb0.5Te2 

(with x = 7 and 12) using the LeBail-Jouanneaux algorithm.[35] In addition to the profile fits of 

the Rietveld refinements in Fig. 1 and 2, crystal data and details of the structure refinement as 

well as the atomic parameters are given in Tables 1 and 2, respectively, for the TIGS 

compounds and in Tables 3 and 4, respectively, for the quinary compounds. Further details of 

the crystal structure investigations may be obtained from Fachinformationszentrum Karlsruhe, 

76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: 

crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request_for_deposited_data.html) on 

quoting the depository numbers CSD 426809, 426800, 426805, 426808 and 426803 for 

(GeTe)xAgInTe2 with x = 1, 5, 5.5, 7 and 12, respectively, or CSD 426807, 426801, 426804, 

426802 and 426806 for (GeTe)xAgIn0.5Sb0.5Te2 with x = 1, 5, 5.5, 7 and 12, respectively. 

It turned out that the average structure of the samples with x ≤ 5 corresponds to the rocksalt 

structure type. The atom positions refined in trigonal space groups (for testing purposes) do 

not deviate from those of the rocksalt type, which in combination with the cubic unit cell 

confirms the assumption of a cubic average structure. In these compounds, the lattice 

parameter a and thus the average cation-anion distance, which corresponds to a/2, decreases 

with increasing Ge content both for TIGS compounds as well as for the quinary 
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(GeTe)xAgIn0.5Sb0.5Te2 phases. The lattice parameters of the latter phases are slightly larger 

than those of the corresponding Sb-free TIGS samples. 

The compounds with x > 5 display, however, rhombohedral symmetry. Although for x = 5.5, 

the refined c/a ratios (2.451 for (GeTe)5.5AgInTe2 and 2.459 for (GeTe)5.5AgIn0.5Sb0.5Te2) 

deviate only slightly from that of the rhombohedral setting of a cubic unit cell (c/a = 2.449), 

the z parameter of the cations clearly indicates the formation of α-GeTe-type layers which 

precludes cubic symmetry. This becomes more pronounced for increasing GeTe contents (x > 

5.5) where, in addition, the reflection splittings in the PXRD patterns strongly support 

rhombohedral structures. With increasing GeTe content, i.e. from x = 5.5 to x = 12, the a 

lattice parameters become smaller and the c lattice parameters become larger. These opposite 

trends lead to a non-linear change of the unit-cell volumes.  

 
Table 1. Crystal data and results of the Rietveld refinements of (GeTe)AgInTe2, 
(GeTe)5AgInTe2, (GeTe)5.5AgInTe2, (GeTe)7AgInTe2 and (GeTe)12AgInTe2. 
compound (GeTe)AgInTe2 (GeTe)5AgInTe2 (GeTe)5.5AgInTe2 (GeTe)7AgInTe2 (GeTe)12AgInTe2 
asymmetric unit Ge1/3Ag1/3In1/3Te Ge5/7Ag1/7In1/7Te Ge11/15Ag2/15In2/15Te Ge7/9Ag1/9In1/9Te Ge12/14Ag1/14In1/14Te 
molar mass (of 
asymmetric unit) / g 
mol-1 

225.94 211.29 210.44 208.81 205.64 

F(000) 378.5 354.3 264.7 262.7 258.7 
crystal system /  
space group (no.) cubic / Fm3m (225) trigonal / R3m (160) 

Z 4 3 
lattice parameters / 
Å 5.96391(2) 5.95766(3) a = 4.21824(2) 

c =10.3378(1) 
a = 4.20056(2) 
c = 10.4188(1) 

a = 4.18692(3) 
c = 10.5211(1) 

cell volume / Å3 212.126(2) 211.460(3) 159.302(2) 159.207(2) 159.728(3) 
density (X-ray) / g 
cm-3 7.075 6.637 6.581 6.534 6.413 

absorption 
coefficient / mm-1 163.93 140.433 138.55 135.87 130.40 

radiation Cu-Kα1 (λ = 1.540596 Ǻ) 
2θ range / ° 20 – 100 
no. of data points 16001 
no. of reflections 13 30 
constraints 2 4 
refined parameters / 
thereof background 23 / 12 39 / 12 

Rp / Rwp 0.0151 / 0.0216 0.0195 / 0.0277 0.0170 / 0.0255 0.0148 / 0.0204 0.0206 / 0.0306 
RBragg 0.0156 0.0108 0.0117 0.0120 0.0062 
Goof 0.746 0.974 0.941 0.684 1.101 
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Fig. 1: Rietveld fits for (GeTe)xAgInTe2 (x = 1, 
5, 5.5, 7 and 12; from top to bottom – HP 
synthesis except for x = 12): experimental (black) 
and calculated data (gray); difference plot (gray, 
below); peak positions (black, vertical lines). 

Fig. 2: Rietveld fits for (GeTe)xAgIn0.5Sb0.5Te2 (x 
= 1, 5, 5.5, 7 and 12; from top to bottom – HP 
synthesis for x = 1): experimental (black) and 
calculated data (gray); difference plot (gray, 
below); peak positions (black, vertical lines). 
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Table 2. Atom positions, occupancy factors and isotropic displacement parameters (Biso in 
Å2) for (GeTe)AgInTe2, (GeTe)5AgInTe2, (GeTe)5.5AgInTe2, (GeTe)7AgInTe2 and 
(GeTe)12AgInTe2. 
sample atom positions x y z s.o.f. Biso 

(GeTe)AgInTe2 
Ge/Ag/In 
Te 

0 0 0 
0.5 0.5 0.5 

1/3 1/3 1/3 
1 

1.508(15) 
0.797(12) 

(GeTe)5AgInTe2 
Ge/Ag/In 
Te 

0 0 0 
0.5 0.5 0.5 

5/7 1/7 1/7 
1 

1.980(14) 
0.810(11) 

(GeTe)5.5AgInTe2 
Ge/Ag/In 
Te 

0 0 0.4834(4) 
0 0 0 

11/15 2/15 2/15 
1 

1.28(6) 
1.11(2) 

(GeTe)7AgInTe2 
Ge/Ag/In 
Te 

0 0 0.48596(18) 
0 0 0  

7/9 1/9 1/9 
1 

2.05(3) 
1.057(14) 

(GeTe)12AgInTe2 
Ge/Ag/In 
Te 

0 0 0.47877(16) 
0 0 0 

12/14 1/14 1/14 
1 

1.81(3) 
0.847(18) 

 

Table 3. Crystal data and results of the Rietveld refinements of (GeTe)AgIn0.5Sb0.5Te2, 
(GeTe)5AgIn0.5Sb0.5Te2, (GeTe)5.5AgIn0.5Sb0.5Te2, (GeTe)7AgIn0.5Sb0.5Te2 and 
(GeTe)12AgIn0.5Sb0.5Te2. 
compound (GeTe)AgIn0.5Sb0.5Te2 (GeTe)5AgIn0.5Sb0.5Te2 (GeTe)5.5AgIn0.5Sb0.5Te2 (GeTe)7AgIn0.5Sb0.5Te2 (GeTe)12AgIn0.5Sb0.5Te2 
asymmetric unit Ge1/3Ag1/3In1/6Sb1/6Te Ge5/7Ag1/7In1/14 Sb1/14Te Ge11/15Ag2/15In1/15 Sb1/15Te Ge7/9Ag1/9In1/18 Sb1/18Te Ge12/14Ag1/14In1/28Sb1/28Te 
molar mass (of 
asymmetric unit)/ g 
mol-1 

227.21 211.67 211.02 209.31 206.00 

F(000) 380 354.7 265.2 263.1 259.1 
crystal system / 
 space group (no.) cubic / Fm3m (225) trigonal / R3m (160) trigonal / R3m (160) 

Z 4 3 
lattice parameters / 
Å a = 5.99892(1) a = 5.97300(4) a = 4.2218(1) 

c = 10.3821(4) 
a = 4.20712(5) 
c = 10.4602(2) 

a = 4.18601(3) 
c = 10.5582(1) 

cell volume / Å3 215.883(1) 213.097(4) 160.255(11) 160.340(6) 160.222(3) 
density (X-ray) / g 
cm-3 6.991 6.598 6.560 6.503 6.405 

absorption 
coefficient / mm-1 163.48 140.28 138.75 135.78 130.58 

radiation Cu-Kα1 (λ = 1.540596 Ǻ) 
2θ range / ° 20 - 100 
no. of data points 16001 
no. of reflections 13 30 30 
constraints 3 6 6 
refined parameters / 
thereof background 23 / 12 27 / 12 39 / 12 

Rp / Rwp 0.0150 / 0.0210 0.0217 / 0.0313 0.0165 / 0.0241 0.0183 / 0.0252 0.0233 / 0.0355 
RBragg 0.0032 0.0043 0.0064 0.0082 0.0064 
Goof 0.7220 1.120 0.781 0.889 1.310 
 

 
Table 4. Atom positions, occupancy factors and isotropic displacement parameters (Biso in 
Å2) for (GeTe)AgIn0.5Sb0.5Te2, (GeTe)5AgIn0.5Sb0.5Te2, (GeTe)5.5AgIn0.5Sb0.5Te2, 
(GeTe)7AgIn0.5Sb0.5Te2 and (GeTe)12AgIn0.5Sb0.5Te2. 
sample atom positions x y z s.o.f. Biso 

(GeTe)AgIn0.5Sb0.5Te2 
Ge/Ag/In/Sb 
Te 

0 0 0 
0.5 0.5 0.5 

1/3 1/3 1/6 1/6 
1 

2.176(12) 
1.462(10) 

(GeTe)5AgIn0.5Sb0.5Te2 
Ge/Ag/In/Sb 
Te 

0 0 0 
0.5 0.5 0.5 

5/7 1/7 1/14 1/14 
1 

2.37(2) 
0.810(18) 

(GeTe)5.5AgIn0.5Sb0.5Te2 
Ge/Ag/In/Sb 
Te 

0 0 0.4857(8) 
0 0 0 

11/15 2/15 1/15 1/15 
1 

2.00(11) 
1.14(5) 

(GeTe)7AgIn0.5Sb0.5Te2 
Ge/Ag/In/Sb 
Te 

0 0 0.4813(2) 
0 0 0 

7/9 1/9 1/18 1/18 
1 

1.65(4) 
1.32(2) 

(GeTe)12AgIn0.5Sb0.5Te2 
Ge/Ag/In/Sb 
Te 

0 0 0.47722(14) 
0 0 0 

12/14 1/14 1/28 1/28 
1 

1.71(3) 
0.991(19) 
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For the rhombohedral TIGS compounds, the unit-cell volumes are smaller than those of the 

quinary (GeTe)xAgIn0.5Sb0.5Te2 compounds. Yet, the shortest cation-tellurium bond lengths 

are slightly larger in the TIGS samples e.g. 2.8609(9) Å for (GeTe)12AgInTe2 and 2.8546(8) Å 

for (GeTe)12AgIn0.5Sb0.5Te2, which can be explained by a less pronounced tendency towards 

layered structures in TIGS. 

Also note that the cations’ z parameter value of (GeTe)7AgInTe2 does not lie between those of 

(GeTe)5.5AgInTe2 and (GeTe)12AgInTe2, which is probably related to the fact that 

(GeTe)5.5AgInTe2 and (GeTe)7AgInTe2 had to be synthesized under HP conditions, whereas 

(GeTe)12AgInTe2 was synthesized by quenching the sample after annealing it at 550 °C.  

 

3.5.3.3 Electron microscopy and diffraction 

HRTEM and SAED were performed on (GeTe)5.5AgIn0.5Sb0.5Te2 and (GeTe)7AgIn0.5Sb0.5Te2 

which were both synthesized by annealing the samples at 550 °C and subsequent quenching 

through a two phase region (cf. Thermal behavior section). The former’s metrics are very 

close to cubic, the latter’s are clearly rhombohedral. Although the angle between the 

directions [012]* and [014]* (which correspond to cubic [110]* and [001]*, respectively) of 

(GeTe)5.5AgIn0.5Sb0.5Te2 is calculated as 89.7° from the structure model obtained by Rietveld 

refinement, the SAED patterns in Fig. 3 show more pronounced deviations from 90°. This 

may be due to local variations of the composition – possibly as a consequence of the fast 

quenching – or metric relaxation in the small crystallites investigated. In quenched bulk 

samples the domains may be strained and thus the metrics remains closer to the one of the HT 

phase. 

Although the samples appear homogeneous in PXRD patterns, the HRTEM images in Fig. 4 

and 5 show two different kinds of precipitates. Both (GeTe)5.5AgIn0.5Sb0.5Te2 and 

(GeTe)7AgIn0.5Sb0.5Te2 contain Ag-rich precipitates (Fig. 4). These may consist of Ag2Te, 

which was observed as a side phase in AgSbTe2,[36] or Ag7Te4,[37] which might be an inter-

mediate phase during the formation of Ag2Te. Both compounds exhibit d values (e.g. 6.8 Å, 

3.4 Å) close to those observed in SAED patterns and Fourier transforms of HRTEM images. 

Fig. 5 shows In-rich precipitates in (GeTe)7AgIn0.5Sb0.5Te2 which most likely correspond to 

AgInTe2 which is also expected from the temperature-dependent phase equlibria (see below). 

However, only very few precipitates can be observed and they are too small to contribute 

significantly to the PXRD patterns. The formation of precipitates also causes slight deviations 

in the compositions of the matrix crystallites which might contribute to the deviating metrics 
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observed in the SAED patterns in Fig. 3 as the most pronounced metric deviations occur next 

to the precipitates. In addition, characteristic dislocations and twinning have also been 

observed in these materials (cf. Fig. S1 in the Supplementary Information and also weak 

additional maxima in Fig. 3a). 

 

 
Fig. 3: SAED patterns of the <100> zone axis of different crystallites in a sample of 
(GeTe)5.5AgIn0.5Sb0.5Te2 (a and b: different areas of the same crystallite, c: other crystallite). 
The [012]* (horizontal) and [014]* (vertical) directions are marked with dotted lines and the 
angle between them is given; TEM-EDX analyses of the corresponding areas are given below 
each SAED (calculated composition: Ge36.7Ag6.7In3.3Sb3.3Te50). 
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Fig. 4: HRTEM images (zone axis <100> with respect to the rhombohedral matrices, top) of 
silver-rich precipitates in (GeTe)5.5AgIn0.5Sb0.5Te2 (left) and in (GeTe)7AgIn0.5Sb0.5Te2 (right) 
with corresponding Fourier transforms of the precipitates (insets) and SAED patterns 
(irradiated area ca. 50 - 100 nm, bottom) with composition (in atom-%, from TEM-EDX, 
irradiated area ca. 10 - 20 nm) of the matrix areas (a, c) and areas that contain the matrix and 
the precipitates (b, d; b also shows twinning of the matrix, see also Fig. S1 in the 
Supplementary Information).  
 

3.5.3.4 Thermal behavior 

The fact that In-poor (GeTe)xAgInySb1-yTe2 compounds with x = 12 for y =1 and x ≥ 5 for y = 

0.5 can be synthesized without applying HP by annealing at 550 °C and subsequent 

quenching may be explained by the existence of thermodynamically stable, homogeneous HT 

phases. The PXRD patterns in Fig. 6 show the temperature-dependent phase transitions of 

four rocksalt-type samples during the heating process: (GeTe)AgInTe2, (GeTe)AgIn0.5Sb0.5Te2 

and (GeTe)5AgInTe2, which were prepared under HP conditions, and (GeTe)5AgIn0.5Sb0.5Te2, 

which was prepared by quenching from 550 °C. Upon heating, the cubic phases decompose 

by forming chalcopyrite-type AgInTe2. Assuming complete decomposition as a reasonable 

approximation, the main phase is GeTe or (GeTe)2xAgSbTe2, respectively. However, these 
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might be doped with small amounts of In. (GeTe)AgInTe2 decomposes into AgInTe2 and 

GeTe at ~150 °C. No HT phase is formed, both compounds melt at individual temperatures. 

For (GeTe)AgIn0.5Sb0.5Te2, the decomposition reaction into AgInTe2 and (GeTe)2AgSbTe2 

starts at ~200 °C. The intensity of the strongest reflection of AgInTe2 at ~11° 2θ becomes 

weaker at around 520 °C, which might be attributed to melting or a reaction with 

(GeTe)2AgSbTe2, which however does not result in a homogeneous quinary HT phase. 

(GeTe)5AgInTe2 shows a similar decomposition reaction as (GeTe)AgInTe2 starting at 

~220 °C; however, a quaternary HT phase is formed at ~480 °C and the reflections of 

AgInTe2 vanish completely. This re-reaction is also confirmed by the non-linear increase in 

the lattice parameter a of the rocksalt-type phase (best visible for the reflections at 31° and 

34° 2θ). Although a HT phase exists at 550 °C, quenching it does not yield a homogeneous 

compound; AgInTe2 was always found as a side phase so that HP synthesis was necessary as 

described above (Section Sample characterization and optimal conditions for synthesis). 

Probably, the cooling rate is not sufficient to avoid the partial decomposition. As expected, 

(GeTe)5AgIn0.5Sb0.5Te2 decomposes into AgInTe2 and (GeTe)10AgSbTe2 at ~240 °C. A 

quinary HT phase is formed which can be quenched to obtain a metastable sample which is 

homogeneous according to its PXRD pattern. 

Temperature dependent PXRD of (GeTe)5.5AgIn0.5Sb0.5Te2 (see Fig. 7, also concerning the 

numbering of the transitions) reveal that in addition to the decomposition, structural phase 

transitions of the trigonal compounds occur during heating and cooling. At ~100 °C (1) the 

phase transition from trigonal (α-GeTe type) to cubic (rocksalt type) takes place in the quinary 

quenched compound. At ~240 °C (2) the compound decomposes into AgInTe2 and – 

assuming complete decomposition – (GeTe)11AgSbTe2. The homogeneous HT phase begins 

to form at 400 °C (3), whereas upon slow cooling, the decomposition into AgInTe2 and 

(GeTe)11AgSbTe2 starts at ~340 °C (4). The different temperatures for the formation and 

decomposition of the HT phase, respectively, probably reflect time and particle-size 

dependence. During heating (3), relatively large grains of AgInTe2 react with 

(GeTe)11AgSbTe2 while during cooling (4) AgInTe2 grains need to nucleate and to grow, and 

the very broad reflections of nanoscale precipitates may not be visible in PXRD patterns. As 

discussed above, there may be very small amounts of other nanoscale precipitates that do not 
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Fig. 5: HRTEM images viewed along the <100> zone axis of two different crystal areas of 
rhombohedral (GeTe)7AgIn0.5Sb0.5Te2 with AgInTe2 precipitates, the corresponding Fourier 
transforms (FT) and an SAED pattern from the crystallite corresponding to the HRTEM on 
the right side; TEM-EDX of areas containing the precipitates yield Ge7Ag5In26Sb6Te56 (left) 
and Ag26In23Te51 (right), these analyses only show a trend as the beam cannot be focused 
exclusively on the precipitates. 
 
 

 
Fig. 6: Temperature-dependent X-ray powder diffraction patterns of (GeTe)xAgInySb1-yTe2 
for x = 1 (top) and 5 (bottom); y = 1 (left) and 0.5 (right); asterisks (*) mark reflections 
caused by the furnace; the arrows mark the strongest reflection of AgInTe2. 
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contribute to the PXRD patterns, especially when quenching leads through a two-phase region. 

While AgInTe2 remains present, the cubic to trigonal phase transition (5) of the main phase 

(GeTe)11AgSbTe2 takes place at ~140 °C. The difference between the trigonal to cubic (1) and 

cubic to trigonal (5) phase transition temperatures is due to the change of the main phase’s 

composition from (GeTe)5.5AgIn0.5Sb0.5Te2 to (GeTe)11AgSbTe2. Therefore, the phase 

transition temperatures increases and gets closer to the one of pure GeTe.[38] 

 

 
Fig. 7: Temperature-dependent X-ray powder diffraction pattern of (GeTe)5.5AgIn0.5Sb0.5Te2: 
(1) the reflections become sharper as the rhombohedral splitting of the α-GeTe type's pattern 
vanishes during the phase transition to the rocksalt-type structure; (2) decomposition to 
AgInTe2 and (GeTe)11AgSbTe2; (3) formation of a cubic quinary HT phase; (4) 
decomposition to AgInTe2 and (GeTe)11AgSbTe2; (5) cubic to trigonal phase transition of 
(GeTe)11AgSbTe2. 
 

3.5.3.5 High-temperature thermoelectric properties of (GeTe)5.5AgIn0.5Sb0.5Te2 

The thermoelectric properties of (GeTe)5.5AgIn0.5Sb0.5Te2 (cf. Fig. 8), which was prepared by 

annealing at 550 °C (stability region of the quinary HT phase) and subsequent quenching can 

be understood by the temperature dependent PXRD pattern in Fig. 7. During heating, σ 

exhibits metallic characteristics and decreases from 1100 to 750 S/cm; this is only slightly 

affected by the decomposition into chalcopyrite-type AgInTe2 and (GeTe)11AgSbTe2. 

However, for the quinary cubic HT phase σ increases again, probably because the interfaces 

caused by nanoscopic AgInTe2 precipitates (cf. Section Electron microscopy and diffraction) 

vanish and thus do not scatter electrons anymore. Upon cooling, the characteristics of σ is 
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parallel to the heating curve. The heating and cooling curves of κ are very similar. In the two-

phase region the slope of κ is not as steep as for lower and higher temperatures. However, this 

part of the κ curve should not be over-interpreted as the assumption of constant heat capacity 

(according to Dulong-Petit) may not be a good approximation during the decomposition 

reaction. S increases up to a maximum at ~300 °C, i.e. in the two-phase area. For the quinary 

cubic HT phase, S decreases slightly with increasing temperature. Upon cooling, S is slightly 

larger than at the same temperatures during heating. This is a consequence of the above 

mentioned reactions and phase transitions. In general, the characteristics of the thermoelectric 

properties nicely reflect the phase transitions observed in the temperature dependent PXRD 

pattern. The discussion of the maximal ZT should be restricted to the cooling curve below 

350 °C. During heating and in the two-phase regions, the absolute values of the properties are 

not reliable (no well-defined heat capacity, see above) and there may be a pronounced time 

dependence due to reactions and nucleation processes. The highest ZT value of 0.75 at 300 °C 

can be observed close to the decomposition into AgInTe2 and (GeTe)11AgSbTe2. Low-

temperature experiments are not promising, because the ZT value has already dropped to 0.35 

at room temperature. 

 

3.5.3.6 Low-temperature thermoelectric properties of (GeTe)5.5AgInTe2 

The thermoelectric properties of the TIGS sample (GeTe)5.5AgInTe2 (Fig. 9) were measured 

from RT down to 4 K and then up to 400 K, i.e. far below the decomposition temperature. 

The heating and cooling curves for all properties are almost similar within the experimental 

errors and do not indicate pronounced irreversible processes (the slight deviation between the 

κ values during cooling and heating sequences between 50 and 150 K is probably due to 

contact problems). The subtle hysteretic behavior between 40 and 300 K may be comparable 

to that observed in metastable modifications of GeBi2Te4 where the extent of the hysteresis 

could be correlated with the average domain size of the crystalline samples.[39] The high 

residual resistivity of 1.015 mΩcm together with the remarkably small residual resistivity 

ratio of RRR = ρ(300 K) / ρ(2 K) = 1.08 clearly confirms the presence of significant disorder 

in (GeTe)5.5AgInTe2. Furthermore, the sequential change of the sign of the slope, dρ/dT sup-

ports the presence of a crossover-scenario between a degenerated semiconducting and 

metallic-like behavior of (GeTe)5.5AgInTe2. This observation may be due to different 

scattering processes caused (i) by the temperature independent residual resistivity originating 

from   electron-impurity   scattering   (impurity  atoms,   grain  boundaries,  etc.)   and (ii)  the  
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Fig. 8: Thermoelectric properties of 
(GeTe)5.5AgIn0.5Sb0.5Te2 (heating curves: ■; 
cooling curves: ▲), from top to bottom: 
electrical conductivity and resistivity (solid 
and empty symbols, respectively), thermal 
conductivity, Seebeck coefficient and ZT 
value in comparison to values for TAGS-85 
(asterisks) taken from reference [19]. 
 

Fig. 9: Thermoelectric properties of 
(GeTe)5.5AgInTe2 (heating curve: ■; cooling 
curve: ▲), from top to bottom: electrical 
conductivity and resistivity (solid and empty 
symbols, respectively), thermal conductivity, 
Seebeck coefficient and ZT value in 
comparison to values for TAGS-85 
(asterisks) taken from reference [19]. 
 

 

temperature dependent contribution due to electron-phonon scattering. From 150 K to 400 K, 

σ(T) exhibits metallic-like characteristics and the absolute values between RT and 400 K are 

approximately in the same range as the corresponding ones of (GeTe)5.5AgIn0.5Sb0.5Te2. The 

absolute κ values of the TIGS sample are slightly larger compared with the ones in  
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(GeTe)5.5AgIn0.5Sb0.5Te2 at room temperature. This hints for a less pronounced disorder in 

(GeTe)5.5AgInTe2 vs. (GeTe)5.5AgIn0.5Sb0.5Te2. The increase of S is steeper for TIGS than for 

(GeTe)5.5AgIn0.5Sb0.5Te2 which compensates the higher κ and leads to a higher ZT value of 

0.6 at 400 K. 

 

3.5.4 Conclusion 

Members of the solid solution series between GeTe and AgInTe2 or AgIn0.5Sb0.5Te2, 

respectively, crystallize in disordered rocksalt-type structures for GeTe contents 1 < x ≤ 5 and 

in disordered α-GeTe-type structures for 5 < x < 12. In such (GeTe)xAgInySb1-yTe2 phases, In 

is octahedrally coordinated by Te or exhibits a 3+3 coordination in a trigonal antiprismatic 

fashion, respectively, whereas in general, In prefers to be tetrahedrally coordinated by Te.   

Thus, the synthesis of homogeneous In-rich samples with more than 3.6 atom-% In (i.e. x < 

12 for y = 1 and x < 5 for y = 0.5) requires high-pressure conditions, because the octahedral 

coordination of In is energetically favored under HP conditions (pressure-coordination rule). 

Samples with an In content ≤ 3.6 atom-% (i.e. x = 12 for y = 1 and x ≥ 5 for y = 0.5) do not 

require HP synthesis and can be obtained by quenching after annealing the samples at 550 °C. 

All (GeTe)xAgInySb1-yTe2 phases investigated decompose into chalcopyrite-type AgInTe2 and 

GeTe or (GeTe)2xAgSbTe2 for y = 1 or 0.5, respectively, upon heating at ambient pressure. 

The decomposition temperature depends on the In content and is higher for samples with 

lower In contents. However, the cubic HT phases of GeTe or (GeTe)2xAgSbTe2 react with 

small amounts of AgInTe2. At high temperature, solid solutions are favored by entropy as 

indicated by the observation of rocksalt-type HT phases for In contents up to 7-8 atom-% at 

temperatures above ~450 °C (the exact temperature depends on the In content). Although no 

side phase can be observed in the PXRD patterns, quenching leads to nanoscopic precipitates 

of AgInTe2 and Ag-rich domains. Thus, the applied quenching rates cannot completely 

suppress the nucleation of AgInTe2 during the decomposition reaction. 

(GeTe)5.5AgIn0.5Sb0.5Te2 quenched from the rocksalt-type HT phase exhibits a maximum ZT 

value of 0.75 at 300 °C close to the decomposition into AgInTe2 and (GeTe)11AgSbTe2 but 

only 0.5 at 125 °C where (GeTe)5.5AgInTe2 prepared under HP conditions exhibits ZT = 0.6. 

As expected the latter’s κ is slightly higher than that of the quinary compound, but this is 

outbalanced by the higher Seebeck coefficient. TIGS's ZT value is higher than that of the 

corresponding TAGS-85[19] in the investigated temperature range. 

Both the (GeTe)xAgIn0.5Sb0.5Te2 as well as the TIGS samples show promising new ways 

towards high-performance thermoelectric materials. While TIGS compounds prepared under 
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high-pressure conditions exhibit remarkable ZT values close to RT and up to 125 °C, both the 

more pronounced disorder and the decomposition of (GeTe)5.5AgIn0.5Sb0.5Te2 might provide 

possible control parameters to decrease the thermal conductivity without significantly 

affecting the electrical conductivity.  
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3.5.5 Supplementary information 

Table S1. Results of the SEM-EDX analyses (averaged from 5 - 15 point analyses per sample) of 
(GeTe)AgInTe2, (GeTe)5AgInTe2, (GeTe)5.5AgInTe2, (GeTe)7AgInTe2 and (GeTe)12AgInTe2. 

sample atom-% calc. atom-% found 

(GeTe)AgInTe2 Ge: 16.7; Ag: 16.7; In: 16.7; Te: 50.0 Ge: 17.9(4); Ag: 16.0(4); In: 16.5(4); Te: 49.6(6) 

(GeTe)5AgInTe2 Ge: 35.7; Ag: 7.1; In: 7.1; Te: 50.0 Ge: 36.0(14); Ag: 7.2(4); In: 7.3(4); Te: 50(1) 

(GeTe)5.5AgInTe2 Ge: 36.7; Ag: 6.7; In: 6.7; Te: 50.0 Ge: 37.1(15); Ag: 6.5(4); In: 6.9(4); Te: 49.5(8) 

(GeTe)7AgInTe2 Ge: 38.9; Ag: 5.6; In: 5.6; Te: 50.0 Ge: 39.7(16); Ag: 5.5(5); In: 5.4(6); Te: 49.4(8) 

(GeTe)12AgInTe2 Ge: 42.9; Ag: 3.6; In: 3.6; Te: 50.0 Ge: 44(1); Ag: 3.2(7); In: 3.6(4); Te: 49.3(7) 

 

 

Table S2. Results of the SEM-EDX analyses (averaged from 5 - 15 point analyses per sample) of 
(GeTe)AgIn0.5Sb0.5Te2, (GeTe)5AgIn0.5Sb0.5Te2, (GeTe)5.5AgIn0.5Sb0.5Te2, (GeTe)7AgIn0.5Sb0.5Te2.and 
(GeTe)12AgIn0.5Sb0.5Te2 
sample atom-% calc. atom-% found 

(GeTe)AgIn0.5Sb0.5Te2 Ge: 16.7; Ag: 16.7; Sb: 8.3; In: 8.3; Te: 50.0 Ge: 17.3(7); Ag: 16.2(5); Sb: 9.0(6); In: 8.0(5); Te: 49.6(4) 

(GeTe)5AgIn0.5Sb0.5Te2 Ge: 35.7; Ag: 7.1; Sb: 3.6; In: 3.6; Te: 50.0 Ge: 37.7(9); Ag: 6.6(1); Sb: 3.9(4); In: 3.3(3); Te: 48.5(7) 

(GeTe)5.5AgIn0.5Sb0.5Te2 Ge: 36.7; Ag: 6.7; Sb: 3.3; In: 3.3; Te: 50.0 Ge: 37.1(1); Ag: 6.5(5); Sb: 3.5(1); In: 3.3(1); Te: 49.6(5) 

(GeTe)7AgIn0.5Sb0.5Te2 Ge: 38.9; Ag: 5.6; Sb: 2.8; In: 2.8; Te: 50.0 Ge: 40(1); Ag: 5.2(4); Sb: 2.9(4); In: 2.7(3); Te: 48.9(9) 

(GeTe)12AgIn0.5Sb0.5Te2 Ge: 42.9; Ag: 3.6; In: 1.8; Sb: 1.8 Te: 50.0 Ge: 41.8(9); Ag: 3.8(3); In: 1.9(3); Sb: 2.2(5) Te: 50.3(7) 
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Fig. S1. HRTEM images (right) and the corresponding SAED patterns (left) of crystal areas 
with dislocations and twin domains: (GeTe)5.5AgIn0.5Sb0.5Te2 (top) and 
(GeTe)7AgIn0.5Sb0.5Te2 (bottom). 
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3.6 Nanostructures in TAGS thermoelectric materials induced by phase 

transitions associated with vacancy ordering 

 

T. Schröder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier, H. Wang, G. J. Snyder, O. 

Oeckler 

Inorg. Chem. 2014, 53, 7722-7729. 

 

Abstract 

TAGS materials with rather high concentrations of cation vacancies exhibit improved 

thermoelectric properties as compared to corresponding conventional TAGS (with constant 

Ag/Sb ratio of 1) due to a significant reduction of the lattice thermal conductivity. There are 

different vacancy ordering possibilities depending on the vacancy concentration and the 

history of heat treatment of the samples. In contrast to the average α-GeTe-type structure of 

TAGS materials with cation vacancy concentrations < ~3%, quenched compounds like 

Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 exhibit “parquet-like” multi-domain 

nanostructures with finite intersecting vacancy layers. These are perpendicular to the pseudo-

cubic <111> directions but not equidistantly spaced, comparable to the nanostructures of 

compounds (GeTe)nSb2Te3. Upon heating, the nanostructures transform into long-periodically 

ordered trigonal phases with parallel van der Waals gaps. These phases are slightly affected 

by stacking disorder but distinctly different from the α-GeTe-type structure reported for 

conventional TAGS materials. Deviations from this structure type are evident only from 

HRTEM images along certain directions or very weak intensities in diffraction patterns. At 

temperatures above ~ 400 °C, a rocksalt-type high-temperature phase with statistically 

disordered cation vacancies is formed. Upon cooling, the long-periodically trigonal phases are 

reformed at the same temperature. Quenched nanostructured Ge0.53Ag0.13Sb0.27□0.07Te1 and 

Ge0.61Ag0.11Sb0.22□0.06Te1 exhibit ZT values as high as 1.3 and 0.8, respectively, at 160 °C, 

which is far below the phase transition temperatures. After heat treatment, i.e. without 

pronounced nanostructure and when only reversible phase transitions occur, the ZT values of 

Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 with extended van der Waals gaps 

amount to 1.6 at 360 °C and 1.4 at 410 °C, respectively, which is at the top end of the range of 

high-performance TAGS materials. 
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3.6.1 Introduction 

Facing the current energy problems, many ways of increasing the efficiency of energy 

transformation processes have been evaluated, among them the interconversion of heat and 

electrical energy by thermoelectric materials. Their efficiency is characterized by the 

dimensionless figure of merit ZT = S2σT/κ (with the Seebeck coefficient S, the electrical 

conductivity σ, the temperature T and the thermal conductivity κ). At moderately high 

temperatures between 150 and 600 °C, chalcogenides with high ZT values are the materials of 

choice.[ 1 ] Many different materials, e.g. tellurides with rocksalt-type structure like 

AgSbTe2
[2,3] or AgInxSb1-xTe2

[4,5]
 as well as heterogeneous (PbTe)mAgSbTe2 (LAST)[6] 

materials were recently investigated, along with chalcogenides derived from the sphalerite 

structure type, such as Cu2Zn1-xFexGeSe4,[7] CuGaTe2,[8,9] or CuInTe2.[10] The so-called 

TAGS-x materials (GeTe)x(AgSbTe2)100-x, which crystallize in the α-GeTe structure type at 

ambient conditions and exhibit rocksalt-type high-temperature (HT) phases represent some of 

the classical and best characterized thermoelectric materials with ZT values above 1.[11-14] 

They can be understood as quasi-binary solid solutions between AgSbTe2 and GeTe[15,16] and 

reach ZT values of up to 1.7 at 500 °C.[17] In order to optimize the thermoelectric properties of 

TAGS, many different substitution variants were investigated, e.g. Ge2+ was replaced by Sn2+ 

in (SnTe)xAgSbTe2,[ 18 ] Ag+ by Li+ in (GeTe)x(LiSbTe2)2
[ 19 ] and Sb3+ by In3+ in 

(GeTe)xAgInTe2 and (GeTe)xAgIn0.5Sb0.5Te2.[20] Even doping with rare earth metals was 

considered.[21,22] Extending the compositional range of TAGS materials beyond pseudobinary 

solid solutions (GeTe)x(AgSbTe2)100-x leads to compounds 

(GeTe)x[(Ag2Te)y(Sb2Te3)1-y]100-x,[23] where the Ag/Sb ratio is variable. This approach leads to 

improved thermoelectric properties in high-performance TAGS materials like 

(GeTe)85(AgySbTey/2+1.5)15, where the thermal conductivity is reduced without significantly 

affecting the electrical conductivity[24] and the power factor is increased due to an optimized 

charge carrier concentration without decreasing the carrier mobility.[25,26] This extension 

involves cation vacancies for all values of y < 1, because y atoms of Ag but only y/2 atoms of 

Te are removed as compared to TAGS-x, which results in a larger number of anions than 

cations. The impact and the ordering possibilities of cation vacancies have not been taken into 

consideration so far in the literature. In compounds (GeTe)nSb2Te3 (n = 12, 19), which 

correspond to TAGS (GeTe)x(AgySbTey/2+1.5)100-x with y = 0 and consequently exhibit 

maximal cation vacancy concentrations, different cation vacancy ordering motifs were 

described, depending on the composition (n) and the thermal treatment.[27] Upon quenching, 

these compounds (GeTe)nSb2Te3 form metastable pseudo-cubic phases in contrast to the α-
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GeTe-type structure of vacancy-free TAGS, whose cubic HT phase cannot be retained at 

ambient temperature by quenching as the phase transition is displacive. The reason for the 

formation of such pseudo-cubic structures lies in their “parquet-like” nanoscale domain 

structures produced by short-range vacancy ordering in layers perpendicular to the cubic 

<111> directions.[28] These layers are not equidistantly spaced, which results in diffuse streaks 

along <111>* in diffraction patterns. Upon heating, the atoms next to the vacancy layers 

rearrange to form extended parallel van der Waals gaps. Stacking disorder is typical and 

results in an α-Hg-type average structure. At higher temperatures (typically above ~500 °C), a 

rocksalt-type HT phase with randomly disordered cation vacancies is formed. If this is slowly 

cooled, the above mentioned trigonal phase is formed.  

The formation of comparable “parquet-like” nanostructures can be expected to be beneficial 

for the thermoelectric properties of high-performance TAGS materials, too, although the 

existence of multiple phase transitions might be a drawback for the thermal cycling behavior 

of these materials. In the present work, the effects of the cation vacancy concentration on the 

structure, stability and properties of TAGS materials with cation vacancies are studied. 

 

3.6.2 Experimental 

3.6.2.1 Synthesis 

Samples with the nominal compositions Ge0.53Ag0.13Sb0.27Te1, Ge0.61Ag0.11Sb0.22Te1 and 

Ge0.77Ag0.07Sb0.13Te1 were synthesized by melting stoichiometric mixtures (typically 2.0 g) of 

the pure elements (silver 99.9999%, Alfa Aesar; germanium 99.999%, Sigma-Aldrich; 

antimony 99.9999%, Smart Elements; tellurium 99.999 %, Alfa Aesar) at 900 °C under Ar 

atmosphere in silica glass ampoules for 1 day and subsequently quenching the ampoules to 

room temperature (RT) by removing from the furnace. The samples were then annealed at 

500 °C for 3 days and again quenched to RT in the same fashion. Samples for thermoelectric 

characterization were synthesized in the same manner; however, larger ampoules (diameter 

1.2 cm) with a flat bottom were used to quench the melts in order to obtain ingots with 

dimensions as required for the measurements. The disc-shaped ingots were subsequently 

ground down until the round faces were parallel and finally polished. For these discs, 

homogeneity and absence of side phases were verified in the same manner as for all samples; 

the synthesis is well reproducible. 
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3.6.2.2 Diffraction methods  

A Huber G670 Guinier camera equipped with a fixed imaging plate and integrated read-out 

system using Cu-Kα1 radiation (Ge(111) monochromator, λ = 1.54051 Å) was used for the 

collection of powder X-ray diffraction (PXRD) patterns of representative parts of the crushed 

samples, which were fixed between two Mylar foils using vacuum grease. A STOE Stadi P 

powder diffractometer equipped with an imaging-plate detector system using Mo-Kα1 

radiation (Ge(111) monochromator, λ = 0.71093 Å) in a modified Debye–Scherrer geometry 

equipped with a graphite furnace was used for the collection of temperature-dependent 

powder diffraction patterns from RT to 600 °C with a heating rate of 10 K/min and from 

600 °C back to RT with cooling rate of 5 K/min (faster cooling is impossible with the setup 

used). For these temperature-dependent measurements, powdered samples were filled into 

silica glass capillaries (0.3 mm diameter), which were then sealed with vacuum grease under 

argon atmosphere. Rietveld refinements were carried out using the program TOPAS,[29] phase 

homogeneity and the temperature-dependent powder diffraction patterns were evaluated using 

WINXPOW.[30] 

 

3.6.2.3 Electron microscopy, diffraction and X-ray spectroscopy 

X-ray spectra of representative parts of the samples were recorded with an energy dispersive 

X-ray (EDX) detector (model 7418, Oxford Instruments, Great Britain) mounted on a JSM-

6500F (Jeol, USA) scanning electron microscope (SEM). The results of 6 point analyses were 

averaged. Detailed results are given in Table S1 in the Supplementary Information. 

Finely ground samples were dispersed in ethanol and distributed on copper grids coated with 

holey carbon film (S166-2, Plano GmbH, Germany) for high-resolution transmission electron 

microscopy (HRTEM). The copper grids were subsequently fixed on a double-tilt holder and 

investigated in a Titan 80-300 (FEI, USA) equipped with a TEM TOPS 30 EDX spectrometer 

(EDAX, Germany) and a field-emission gun operated at 300 kV. Selected-area electron 

diffraction (SAED) patterns and HRTEM images were recorded using an UltraScan 1000 

camera (Gatan, USA, resolution 2k x 2k). The Digital Micrograph[31] and EMS software 

packages[32] were used for HRTEM and SAED data evaluation; EDX data were evaluated 

with ES Vision.[33] 
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3.6.2.4 Thermoelectric characterization 

For the characterization of the thermoelectric properties of Ge0.53Ag0.13Sb0.27□0.07Te1 and 

Ge0.61Ag0.11Sb0.22□0.06Te1 between 50 °C and 450 °C, three samples of each composition were 

synthesized as irreversible phase transitions (see thermal behavior section) were expected, 

which affect the transport properties. In order to obtain reliable ZT values for quenched 

samples at low temperatures, i.e. where the nanostructure is inert, each property was measured 

using a sample that had not undergone previous heating cycles. All analytical methods applied 

did not indicate any differences between samples with the same composition and thermal 

treatment. The electrical conductivity σ was measured in-plane using pressure-assisted Nb 

contacts in an in-house built facility at Caltech[34] using the van der Pauw method[35] (heating 

rate 150 K/h, measurement in 50 K steps). A LFA457 MicroFlash (Netzsch, Germany) laser 

flash system was used for the out-of-plane measurement the thermal diffusivity Dth. The 

thermal conductivity was calculated as κ = Dth ● Cp ● ρ (Cp: calculated heat capacity using the 

Dulong-Petit approximation, i.e. 0.226 J/gK for Ge0.53Ag0.13Sb0.27□0.07Te1 and 0.230 J/gK for 

Ge0.61Ag0.11Sb0.22□0.06Te1; ρ: density determined by weighing the sample and measuring its 

dimensions). The Seebeck coefficient S was determined out-of-plane using Chromel-Nb 

thermocouples in steps of 61 K at a heating rate of 150 K/h and a temperature oscillation rate 

of ± 7.5 K.[36] The combined uncertainty of the measurements is ca. 20% for the ZT value.  

 

3.6.3 Results and discussion 

3.6.3.1 Overview and sample characterization 

In principle, there are three ways (and combinations of them) of introducing cation vacancies 

(□) in TAGS materials without affecting the overall charge neutrality: (1) the exchange of 1 

Ag+ by 0.5 Ge2+ and 0.5 □, (2) the exchange of 1 Ag+ by 1/3 Sb3+ and 2/3 □ and (3) the 

exchange of 1 Ge2+ by 2/3 Sb3+ and 1/3 □. These different possibilities make it difficult to 

maintain the widespread TAGS-x nomenclature (with x given by (GeTe)x(AgSbTe2)100-x). For 

example, Ge0.53Ag0.13Sb0.27□0.07Te1 may be written as Ge4AgSb2Te7.5, which on the one hand 

could be understood as a variant of TAGS-80 = (GeTe)80(AgSbTe2)20 = (GeTe)4AgSbTe2 = 

Ge4AgSbTe6 with additional 0.5 Sb2Te3 per formula unit, on the other hand it can also be 

viewed as TAGS-85 = (GeTe)85(AgSbTe2)15 ≈ (GeTe)5.5AgSbTe2 = Ge5.5AgSbTe7.5 with 1.5 

Ge2+ being replaced by 1 Sb3+. Therefore, the comparison of vacancy-containing compounds 

with conventional TAGS-x is not unequivocal. Similarly, a given vacancy concentration is not 
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sufficient to characterize modified TAGS materials, because there are different element 

combinations that correspond to the same amount of cation vacancies. For the sake of clarity, 

we use normalized formulas that immediately show the vacancy concentration as a 

consequence of the site occupancies in possibly distorted rocksalt-type structures that are 

characteristic for all compounds discussed here: they exhibit just one cation and one anion 

position. For example Ge4AgSb2Te7.5 is written as Ge0.53Ag0.13Sb0.27□0.07Te1.  

Many experiments have shown that all of these variations lead to single-phase samples as 

long as charge neutrality is not violated. If the anion and cation charges are not balanced, 

binary side phases or remaining elemental Ge or Te are observed. All samples discussed in 

this manuscript are single-phase as shown by Rietveld refinements (cf. next section), typically 

the weight of the ingot differs from that of the mixture of starting materials by less than 1%. 

The composition and homogeneity are further confirmed by SEM-EDX results (cf. Table S1 

in the Supplementary Information). 

 

3.6.3.2 Crystal structures of the quenched compounds 

All reflections in the PXRD patterns of Ge0.53Ag0.13Sb0.27□0.07Te1 and 

Ge0.61Ag0.11Sb0.22□0.06Te1 can be indexed assuming the rocksalt type’s cubic metrics. In 

contrast, reflection splitting indicates that Ge0.77Ag0.07Sb0.13□0.03Te1 is rhombohedral; the unit 

cell corresponds to the α-GeTe type. The latter compound is discussed in order to demon-

strate the influence of the vacancy concentration on the average structure in the case of high 

Ge contents; however, it was not further characterized as its expected low Seebeck coefficient 

(already lowered for Ge0.53Ag0.13Sb0.27□0.07Te1 compared to Ge0.61Ag0.11Sb0.22□0.06Te1; see 

thermoelectric properties section) precludes promising thermoelectric properties. Rietveld 

refinements for Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 confirm the presence 

of rocksalt-type average structures. In order to exclude rhombohedral structures with 

pseudocubic metrics, which have been reported in the Ag/Ge/In/Sb/Te system,[20] various test 

refinements were performed. Layer formation like in α-GeTe reduces the symmetry from 

Fm3m to R3m. A measure of this layer formation is the z parameter of the cations which is 

0.5 in the trigonal setting of the cubic unit cell. No significant deviations from this value were 

detected. In the final refinements, common atom coordinates and displacement parameters 

were refined for all cations. Cation site occupancies were taken from the nominal composition 

and not refined; tentative refinements did not indicate significant changes. The Te anion 

position was assumed as completely occupied with an independent displacement parameter. 



                                  3 Real - structure property relationships in thermoelectric chalcogenides  
 

 

204 

For the refinements in the space group R3m, preferred orientation was considered as a flat 

sample holder was used (4th order spherical harmonics with 3 parameters). The profile fits are 

depicted in Fig. 1, the results of the refinement and the atomic parameters are given in Tables 

1 and 2, respectively. Further details of the crystal structure investigations may be obtained 

from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: 

(+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-

karlsruhe.de/request_for_deposited_data.html) on quoting the depository numbers CSD 

427403, 427405 and 427404 for Ge0.53Ag0.13Sb0.27□0.07Te1, Ge0.61Ag0.11Sb0.22□0.06Te1 and 

Ge0.77Ag0.07Sb0.13□0.03Te1, respectively. 

The rocksalt-type average structure of Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 

is an uncommon observation for TAGS materials, because usually it is not possible to quench 

their cubic HT phase due to the displacive character of the phase transition. This hints at the 

crucial role of cation vacancy ordering in the compounds investigated (see below). With 

increasing GeTe content, the lattice parameter decreases. In addition to the metrics indicated 

by reflection splitting, the α-GeTe type structure of Ge0.77Ag0.07Sb0.13□0.03Te1 is corroborated 

by the cation z parameter of 0.4834(2) which indicates pronounced layer formation.  
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Fig. 1: Experimental (black) and calculated (light gray) powder diffraction patterns according 
to the Rietveld refinement of Ge0.53Ag0.13Sb0.27□0.07Te1, Ge0.61Ag0.11Sb0.22□0.06Te1 and 
Ge0.77Ag0.07Sb0.13□0.03Te1 (top to bottom), with difference plots (black, below the profiles) and 
peak positions (black lines). 
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Table 1. Crystal data and results of the Rietveld refinement of Ge0.53Ag0.13Sb0.27□0.07Te1, 
Ge0.61Ag0.11Sb0.22□0.06Te1 and Ge0.77Ag0.07Sb0.13□0.03Te1. 
Sample Ge0.53Ag0.13Sb0.27□0.07Te1 Ge0.61Ag0.11Sb0.22□0.06Te1 Ge0.77Ag0.07Sb0.13□0.03Te1 

molar mass (of  
asymmetric unit) / g mol-1 213.16 210.97 206.71 

crystal system /  
spacegroup (no.) cubic / Fm3m (no. 225) trigonal / R3m 

Z 4 3 

F(000) 355.7 352.4 259.4 

lattice parameters / Å 6.01175(2) 5.99253(2) 
a = 4.20935(2) 

c = 10.4922(1) 

cell volume / Å3 217.272(2) 215.194(2) 161.001(3) 

density (X-ray) / g cm-3 6.52 6.51 6.40 

absorption coefficient / mm-1 147.2 143.9 134.8 

radiation Cu-Kα1 (λ = 1.540596 Å) 

2θ range / ° 24 – 100 

no. of data points 15201 

no. of reflections 13 31 

constraints 2 4 

refined parameters / 
thereof background 22 / 12 27 / 12 

Rp / Rwp 0.0173 / 0.0275 0.0254 / 0.0371 0.0181 / 0.0280 

RBragg 0.0139 0.0182 0.0147 

Goof 0.997 1.430 0.947 

 

Table 2. Atom positions, occupancy factors (s.o.f.), and displacement parameters (Biso in Å2) 
of Ge0.53Ag0.13Sb0.27□0.07Te1, Ge0.61Ag0.11Sb0.22□0.06Te1 and Ge0.77Ag0.07Sb0.13□0.03Te1. 

sample atom x y z s.o.f. Biso 
Ge0.53Ag0.13Sb0.27□0.07Te1 Ge/Ag/Sb 

Te 
0 0 0 

0.5 0.5 0.5 
0.533/0.133/0.267 

1 
2.66(1) 
0.96(1) 

Ge0.61Ag0.11Sb0.22□0.06Te1 Ge/Ag/Sb 
Te 

0 0 0 
0.5 0.5 0.5 

0.611/0.111/0.222 
1 

2.76(2) 
1.05(1) 

Ge0.77Ag0.07Sb0.13□0.03Te1 Ge/Ag/Sb 
Te 

0 0 0.4834(2) 
0 0 0 

0.767/0.067/0.133 
1 

2.12(3) 
1.35(2) 
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3.6.3.3 Transmission electron microscopy 

HRTEM investigations (cf. Figure 2) reveal the ordering of cation defects in a sample of 

Ge0.61Ag0.11Sb0.22□0.06Te1, which was quenched after being annealed in the stability range of 

the cubic HT phase (see section below). The nanostructure is comparable to the one observed 

for Ag-free (GeTe)nSb2Te3 thermoelectric materials.[28] The average lateral extension of the 

defect layers (measured in HRTEM images) is 9(2) nm in good agreement with the lateral 

extension of 11(3) nm observed for (GeTe)7Sb2Te3, which exhibits a similar cation vacancy 

concentration.[37] The defect layers in both compounds are perpendicular to the cubic <111> 

directions; they intersect and thereby form a “parquet-like” multi-domain nanostructure (cf. 

Figure 2, top). The observation that the defect layers form van der Waals gaps at higher 

temperatures (see next section) and the fact that the average structure of the investigated 

compound is cubic (Fm3m) corroborates that the planar defects correspond to cation vacancy 

layers as opposed to twin boundaries in conventional trigonal TAGS materials (corresponding 

to the symmetry reduction from Fm3m to R3m upon cooling the HT phase). The average 

distance between the vacancy layers is 4(1) nm; however, they are not equidistant as 

corroborated by diffuse streaks that interconnect Bragg reflections along <111>* in the SAED 

patterns taken along the [110] zone axis and the corresponding Fourier transforms of HRTEM 

images. This nanostructure is not limited to thin fringes of the particles, but extends over the 

whole crystallites (cf. Fig. S2 bottom in the Supplementary Information). Due to their special 

orientation, defect layers and corresponding diffuse intensities cannot be observed in HRTEM 

images or SAED patterns along most zone axes (e.g. [100], cf. Fig. S2 top). The same type of 

nanostructure is also observed in quenched Ge0.53Ag0.13Sb0.27□0.07Te1 (cf. Fig. S1). 

Larger areas with parallel defect layers (lateral extension > 25 nm), which are more regularly 

spaced (average spacing: 3.5(5) nm) and correspond to extended van der Waals gaps, were 

observed after prolonged exposure to the electron beam (cf. Figure 2, bottom). This indicates 

a tendency towards long-range order comparable to that in annealed samples of 

(GeTe)nSb2Te3.[28]  
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Fig. 2: HRTEM images of quenched Ge0.61Ag0.11Sb0.22□0.06Te1 (top) and a different area of 
the same crystallite after prolonged exposure to the electron beam (bottom) with the 
corresponding Fourier transforms (FT) and SAED patterns of the crystallite (all along the 
zone axis [110] with respect to cubic indexing). Some selected vacancy layers are highlighted 
by white arrows and their arrangement is indicated. 
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3.6.3.4 Stability ranges and phase transitions 

Temperature-dependent PXRD patterns of quenched Ge0.53Ag0.13Sb0.27□0.07Te1 and 

Ge0.61Ag0.11Sb0.22□0.06Te1 (see Fig. 3) show that upon heating in both compounds the 

pseudocubic phase (with “parquet-like” multi-domain nanostructure) transforms to a trigonal, 

long-periodically ordered phase at ca. 200 °C. This is indicated by reflection splitting and 

additional weak reflections, e.g. at 2θ = 14° and 20°. During heating, these reflections are 

rather broad, which indicates severe stacking disorder and impedes the assignment of a 

distinct structure type. At ca. 400 °C, both compounds form their rocksalt-type HT phases 

with statistically disordered cation vacancies. Upon cooling, they retransform to the trigonal 

long-periodically ordered structures. A schematic illustration of the rearrangements of the 

vacancy layers is depicted in Fig. 4. Owing to the slow cooling process, the weak reflections 

of the trigonal phase are sharper that during the heating process. Therefore, the Ge5As2Te8 

structure type with a 15P stacking sequence (space group P3m1 (no. 164), a = 4.2136(3) Å; c 

= 27.711(4) Å) can be assigned for Ge0.53Ag0.13Sb0.27□0.07Te1 (cf. Fig. S3 and Table S2 in the 

Supplementary Information). This structure can be understood as a sequence of slightly 

distorted 15-layer slabs cut out of the rocksalt-type structure, which are terminated by Te 

atom layers and separated by van der Waals gaps (cf. Fig. S4). Around the latter, the Te-Te 

stacking sequence corresponds to a hexagonal ABAB one. This rearrangement of cation 

vacancies corresponds to a reconstructive phase transition. For such layered phases, the 

number of layers between the van der Waals gaps can be estimated from the vacancy 

concentration as detailed in the literature.[38] In the case of Ge0.53Ag0.13Sb0.27□0.07Te1 the 

expected number of layers (1/0.067 = 15) corresponds exactly the observed one.  
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Fig. 3: Temperature-dependent PXRD patterns of Ge0.53Ag0.13Sb0.27□0.07Te1 (top) and 
Ge0.61Ag0.11Sb0.22□0.06Te1 (bottom, note that different contrast of the cooling section is due to 
the use of another measurement, asterisks mark the positions of reflections caused by the 
furnace); two of the strongest additional reflections that indicate the formation of a long-
periodically ordered trigonal phase are marked with arrows; the dashed horizontal line marks 
the highest temperature.  
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Fig. 4: Schematic illustration of the rearrangement of the vacancies during heating and 
cooling. 
 

3.6.3.5 Thermoelectric properties of Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 

The thermoelectric properties of nanostructured Ge0.53Ag0.13Sb0.27□0.07Te1 and 

Ge0.61Ag0.11Sb0.22□0.06Te1 (cf. Fig. 5) as measured at the beginning of the first heating cycle 

change after heating over 200 °C as expected by the phase transitions as described above, 

when the finite intersecting defect layers become extended and parallel. As the structural 

changes during the first heating measurement between 200 °C and 450 °C can be viewed as a 

slow ongoing ordering process, the measured properties in this range shall not be discussed as 

they may be extremely time-dependent and during a phase transition, assuming a constant Cp 

is not justified. Subsequent heating and cooling cycles show no further significant 

irreversibility within the accuracy of the measurements, which is expected because without 

further quenching steps the samples that were heated once retain only one reversible phase 

transition at 400 °C from a long periodically trigonal phase to the cubic HT phase. The 

density of the samples does not change significantly among the differently ordered variants of 

the compounds after the phase transitions. Both quenched and HT phases are cubic so that 

anisotropy effects should not affect the measurements; they may, however, occur in the 

trigonal phase in the same way as they do in “classical” TAGS materials. 
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Fig. 5: Electrical conductivity σ, thermal conductivity κ (phononic contribution κph with 
empty symbols), Seebeck coefficient S and ZT values (top to bottom; first heating cycle: black 
squares, first cooling cycle: gray triangles, second heating cycle: dark gray circles – some 
slight offsets are within the error limits of the methods and result from re-mounting the 
samples) of Ge0.53Ag0.13Sb0.27□0.07Te1 (left) and Ge0.61Ag0.11Sb0.22□0.06Te1 (right) in 
comparison to TAGS-80 (black line) and TAGS-85 (gray line) as taken from ref. [19] with 
recalculated κph (marked by black/gray κph for TAGS-80 and TAGS-85, respectively); in the 
ZT plot the phase transition temperatures (1. and 2. PT as discussed in the text) are marked by 
dotted lines;  the values between 200 °C and 450 °C during the first heating cycle are not 
shown (the arrows just indicate further heating) because they are strongly affected by slow 
irreversible phase transitions (see discussion).  
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Below 200 °C, Ge0.53Ag0.13Sb0.27□0.07Te1 outperforms both TAGS-80, TAGS-85 and other 

recently reported high-performance TAGS materials.[17,24] The properties of the isotropic 

nanostructured modification at the beginning of the first heating cycle are remarkable 

although they could only be exploited if the samples are never heated over 200 °C. The ZT 

value of 1.3 at 160 °C, i.e. below any phase transition temperature, is higher than that of 

TAGS-80 (or any other TAGS sample) at the same temperature. While σ and S of 

Ge0.53Ag0.13Sb0.27□0.07Te1 are comparable to those of TAGS-80, the high ZT value is due to the 

low thermal conductivity; especially its phononic contribution (calculated with a Lorenz 

number as reported for TAGS materials with vacancies of 2 · 10-8 V2K-2)24 is significantly 

reduced in comparison to TAGS materials without vacancies. However, these favorable 

values may additionally be associated with a change in the carrier concentration and mobility, 

which is another consequence of the adjusted Ag/Sb ratio.[26] For the consecutive cooling and 

heating cycle, the ZT values are in good accordance with the values recently published for 

TAGS materials with Ag/Sb rations deviating from 1.[24,26]  

For Ge0.61Ag0.11Sb0.22□0.06Te1, consecutive heating and cooling cycles vary less than for the 

sample with the slightly higher cation vacancy concentration. The lattice contribution to the 

thermal conductivity is again lower than the one observed for conventional TAGS materials, 

but not as low as for Ge0.53Ag0.13Sb0.27□0.07Te1, and increases when the nanostructure vanishes. 

σ and S are comparable to TAGS-85, while κ corresponds to TAGS-80. This leads to slightly 

higher ZT values than those of TAGS-85, but it does not outperform TAGS-80 and other 

high-performance TAGS materials. These observations clearly show the huge influence of 

minor changes of the vacancy concentration. 

 

3.6.4 Conclusion 

 

The best conventional vacancy-free TAGS materials, i.e. TAGS-80 and TAGS-85 differ only 

little concerning their chemical composition: by 6 atom% for Ge and 3 atom% for Ag and Sb. 

Thus, there is a rather limited compositional range for further optimization. We focus on two 

homogeneous compounds with optimized Ag/Sb ratio, involving the presence of cation 

vacancies. According to the present investigation, the enhanced thermoelectric properties 

result from these more or less short-range ordered cation vacancies. They might act as phonon 

scattering centers as indicated by the significant reduction of the phononic contribution to the 

thermal conductivity while the good electrical properties remain almost unchanged in 

comparison to conventional vacancy-free TAGS materials. The cation vacancy concentration 



                                  3 Real - structure property relationships in thermoelectric chalcogenides  
 

 

214 

also plays a crucial role concerning the structural chemistry of TAGS materials. For high 

cation vacancy concentrations, the structures are in remarkable contrast to those reported for 

conventional TAGS materials.[11-14,19] Both Ge0.53Ag0.13Sb0.27□0.07Te1 and 

Ge0.61Ag0.11Sb0.22□0.06Te1 can be quenched to form metastable compounds with a rocksalt-

type average structure and layer-like short-range ordered vacancies. In contrast, lower 

vacancy concentrations as in Ge0.77Ag0.07Sb0.13□0.03Te1 lead to a TAGS-like α-GeTe-type 

structure which implies that cation ordering effects do not play an important role. 

Quenched, nanostructured compounds with high cation vacancy concentrations exhibit two 

phase transitions. An irreversible transition leads from a (pseudo-)cubic “parquet-like” multi-

domain nanostructure to a long-periodically ordered trigonal one and a second, reversible 

transition to a cubic rocksalt-type HT phase. Although the partial irreversibility and phase 

transitions in general may be viewed as drawbacks concerning thermal cycling, 

nanostructured Ge0.53Ag0.13Sb0.27□0.07Te1 may be applied far below any phase transition 

temperature, where it exhibits a ZT value of 1.3 at 160 °C. Annealed samples, or those heated 

over 200 °C just once, exhibit only one reversible phase transition. Their thermoelectric 

properties still differ from conventional vacancy-free TAGS, as do their structures. These 

findings are in good accordance with the values recently published for high-performance 

TAGS materials.[23,24,26] Our results clearly illustrate how the structural chemistry of this 

multinary system can be significantly changed even when the composition is varied only 

slightly as this involved a much more pronounced relative change of the vacancy 

concentration. In addition to altered charge carrier concentrations, different short- or long-

range ordering variants of the cation vacancies significantly influence the thermoelectric 

properties and are one reason for the high performance of TAGS material with an Ag/Sb ratio 

differing from 1. It remains an open question if conventional TAGS materials, despite the fact 

that their chemical formulas formally suggest vacancy-free structures, may also exhibit a 

certain amount of vacancies that contribute to their performance. 
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3.6.5 Supplementary information 

 

Table S1. Results from EDX analyses (SEM, 6 point analyses averaged per compound). 

sample atom-% (calculated) atom-% (experimental) 

Ge0.53Ag0.13Sb0.27�0.07Te1 Ge: 27.6; Ag: 6.9; Sb: 13.8; Te: 51.7 Ge: 29.0(12); Ag: 6.5(3); Sb: 14.6(4); Te: 49.9(7) 

Ge0.61Ag0.11Sb0.22�0.06Te1 Ge: 31.4; Ag: 5.7; Sb: 11.4; Te: 51.4 Ge: 32.8(9); Ag: 5.2(2); Sb: 12.4(3); Te: 49.7(7) 

Ge0.77Ag0.07Sb0.13�0.03Te1 Ge: 39.0; Ag: 3.4; Sb: 6.8; Te: 50.8 Ge: 39.9(4); Ag: 3.6(3); Sb: 6.9(3); Te: 49.8(6) 

 

 

Fig. S1: HRTEM image of quenched Ge0.53Ag0.13Sb0.27�0.07Te1 (zone axis [110]) with the 
corresponding Fourier transform (inset). Some vacancy layers are highlighted (dotted orange 
lines). 
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Fig. S2: HRTEM images of quenched Ge0.61Ag0.11Sb0.22�0.06Te1 (top: zone axis [100], bottom: 
zone axis [110]) with the corresponding selected-area electron diffraction patterns of the 
crystallites (insets). 
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Fig. S3: Rietveld refinement of Ge0.53Ag0.13Sb0.27�0.07Te1 in its trigonal long-periodically 
ordered layered 15P-Ge5As2Te8 type structure (slowly cooled from the HT phase after the 
heating experiment): experimental (black) and calculated (light gray) powder diffraction 
patterns, difference plots (dark gray) and peak positions (black lines); space group P3m1 (no. 
164), a = 4.2136(3) Å; c = 27.711(4) Å, Rp = 0.0812, Rwp = 0.1087, RBragg = 0.0275. 
Reflections caused by the furnace at ca. 26° and 32.4° 2θ were excluded; arrows highlight the 
most significant reflections indicating long-range order (also visible and highlighted in the 
temperature-dependent PXRD patterns in the text). 

 

Table S2. Atom positions, occupancy factors (s.o.f., atom distribution not refined), and 
displacement factors (Biso in Å2, common for cations and anions respectively) of Ge5As2Te8 
type Ge0.53Ag0.13Sb0.27�0.07Te1 

sample atom x y z s.o.f. Biso 
Ge0.53Ag0.13Sb0.27□0.07Te1 Ge Ag Sb 

Te 
Ge Ag Sb 

Te 
Ge Ag Sb 

Te 
Ge Ag Sb 

Te 

0 0 0 
2/3 1/3 0.064(1) 
1/3 2/3 0.136(1) 

0 0 0.191(1) 
2/3 1/3 0.254(2) 
1/3 2/3 0.320(1) 

0 0 0.392(2) 
2/3 1/3 0.447(1) 

4/7 1/7 2/7 
1 

4/7 1/7 2/7 
1 

4/7 1/7 2/7 
1 

4/7 1/7 2/7 
1 

1.6(3) 
0.8(2) 
1.6(3) 
0.8(2) 
1.6(3) 
0.8(2) 
1.6(3) 
0.8(2) 
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Fig. S4: Crystal structure of 15P-type Ge0.53Ag0.13Sb0.27�0.07Te1, formed after slowly cooling 
the cubic high-temperature phase to room temperature. 
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4 Synergism of electron microscopy and synchrotron 
diffraction methods 

 

4.1 Overview 
 

Electron and X-ray methods often deliver complementary structural information. While X-ray 

diffraction can be used to elucidate the average structure as well as temperature-dependent 

phase transitions, electron microscopy is the most efficient way to analyze real-structure 

effects and assign small grains in inhomogeneous samples. If such crystallites are not large 

enough for conventional single-crystal X-ray diffraction, a combination of transmission 

electron microscopy (TEM) and X-ray synchrotron microdiffraction is an efficient way to 

determine the crystal structure (Chapter 4.2). The high spatial resolution could also be used to 

track reaction mechanism as well as nucleation phenomena. The combination of synchrotron 

methods and electron diffraction can be employed to obtain detailed information on site 

occupancies, e.g. in long-periodically ordered structures of germanium antimony tellurides 

(GST materials) and substitution variants with Sn or In. Nevertheless, due to the similar 

electron counts of Sn, In and Sb and the resulting lack of scattering contrast, the use of 

resonant diffraction is required to determine the element variation in powder samples 

(Chapter 4.3) and in single crystals (Chapter 4.4 as well as references [1] and [2]) of Sn- or 

In-containing GST materials. Synchrotron radiation is suitable to reach wavelengths near the 

adsorption edges of the elements as required for resonant scattering. The corresponding 

structure refinements show that Sb preferably occupies the position near the van der Waals 

gaps in the long-periodically ordered GST compounds and Sn- or In-substituted variants 

thereof. In shows a tendency to occupy the positions at the center of the rocksalt-type slabs,[1] 

while the Sn distribution differs with the thickness of the rocksalt-type building blocks 

(Chapters 4.3 and 4.4). In Sb-rich M0.067Sb0.667Te0.266 (M = Ge, Sn) that consists consist of 

Sb2Te3 slabs alternating with four antimony layers that represent the gray arsenic type, high 

resolution TEM (HRTEM) images show a contrast variation that corresponds to a changing 

element distribution. Resonant scattering reveals the partial substitution of Sb by GeTe and 

SnTe.[2] TEM investigations of thinned single crystals of (Ge0.5Sn0.5Te)4Sb2Te7 reveal a new 

superstructure of the cubic basis structure and a complex hierarchical nanostructure that 

consists of slabs with a parallel arrangement of equidistant defect layers corresponding to the 

thermodynamically stable layered structure embedded in a matrix with the parquet-like 

structure (Chapter 4.3).  
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4.2 Complementary use of electron microscopy and synchrotron 

diffraction for structure analysis 

 

The structure determination of novel compounds has always been a major field of research in 

solid-state chemistry. The easiest and most common way to elucidate the structure of 

unknown materials is single-crystal X-ray diffraction. However, the required crystal size 

remains a constraint for various materials where such single crystals cannot be obtained. As 

long as the materials are crystalline on the microscale, X-ray powder diffraction can often be 

used for the structure determination if phase-pure materials are obtained or if sufficient 

information about the side phases is available. Without optimizing the synthesis conditions, 

which may be very time-consuming, new materials are often neither phase pure nor exhibit 

“large” crystals. Precipitates with diameters of less than one micrometer are often desirable 

for example for the reduction of the phonon proliferation in thermoelectric materials. Also the 

investigation of reaction mechanisms, e.g. nucleation phenomena during phase transitions, 

would greatly benefit from the possibility of investigating sub-micrometer crystals. In recent 

years, electron crystallography has become a powerful tool to overcome the scatter power 

restrictions of X-ray diffraction. Due to the strong interaction of electrons with matter, 

crystallites of down to 20 nm diameter can be investigated. Novel methods like automated 

diffraction tomography (ADT)[1-3] or rotation electron diffraction (RED)[4] generate and 

process electron-diffraction data analogous to conventional X-ray single-crystal diffraction 

methods. The elucidation of various structures like that of the oxonitridophosphates 

SrP3N5O[5] and Ba6P12N17O9Br3
[6] as well as the complex intergrown zeolite ITQ-39[7] have 

demonstrated the potential of these methods. A wide variety of data from structures with 

different complexity ranging from elemental Mn over BaSO4 and Eu2Si5N8 to unknown 

oxonitridophosphates obtained at the electron microscopes available at the LMU Munich 

show that without the use of precession electron diffraction (PED), the structure solution is 

often ambiguous. PED patterns resemble those based on the kinematic approximation since 

multiple scattering is significantly reduced by precessing the electron beam.[8] The data 

manually acquired with tilt ranges between 45° and 120° and tilt steps down to 0.2° can be 

processed by the ADT software package.[1-3] Straightforward determination of the lattice 

parameters is, in most cases, possible even with tilt ranges of only 60°. The best data sets 

collected of BaSO4 and Eu2Si5N8 (tilt range 120°) are sufficient for structure solution. The 

main problem is that the “classical” computer programs for structure determination do not 
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consider the dynamical effects which often strongly affect the intensities in electron-

diffraction patterns. Even when PED patterns of very thin specimens are available, atom 

parameters with a precision comparable to that of single-crystal X-ray structure analyses are 

not accessible. Synchrotron radiation with high brilliance can be used to obtain high-quality 

kinematical data for crystals with diameters smaller than 1 micrometer. A major problem in 

dealing with such small crystals is their selection and alignment in the synchrotron beam. The 

problem can be overcome by the combined use of synchrotron and TEM experiments. 

Electron microscopy can be used to preselect the desired crystals according to their diffraction 

patterns (crystallinity and d-values) and composition. Thereby one can confirm that the 

crystals are not affected by real-structure phenomena and that a selected region is well 

crystallized. The crystal position on the grid is recorded by images with different 

magnifications so that it can be recovered at the synchrotron facility, where a data set is 

measured from which the structure can be solved and refined.  

This method was successfully applied to different chemical systems where inhomogeneous 

samples with small crystals cannot be measured with laboratory single-crystal diffraction 

methods. Synchrotron microfocus data were acquired at the beamline ID11 (ESRF, Grenoble). 

The preselected crystals were optically positioned in the beam and the centering was 

optimized by fluorescence scans. 

The structure of Pb8Sb8S15Te5 (P41, a = 8.0034(11) Å, c = 15.022(3) Å) was solved and 

refined from data obtained with a beam diameter of 0.7 x 1.5 µm. The refined atom 

parameters are comparable to state-of-the-art single-crystal structure refinements; they are 

sufficient for all common discussions, e.g. bond valence sum calculations. This compound is 

the first lead antimony sulfide telluride. It is isostructural to Tl3PbCl5, detailed information is 

provided in Ref.[9,10]. 

The structure of a melam-melem co-crystal was elucidated using a sample that consisted of 

crystals of melem, melam and the co-crystals. Due to pronounced reflection overlap, structure 

analysis from X-ray powder diffraction was not possible. From SAED patterns as well as 

from ADT measurements only the unit-cell metrics of the co-crystal could be determined due 

to significant beam damage during the prolonged exposure to the electron beam. However, it 

was possible to preselect a co-crystal according to its metrics and to obtain data sets at the 

synchrotron from which the structure was solved and refined (P1, a = 4.56(2) Å, b = 

19.34(8) Å, c = 21.58(11) Å, α = 73.34(11)°, β = 89.1(2)°, γ = 88.4(2)°). It consists of 4 

melam and 4 melem molecules in the unit cell as shown in Figure 1. 
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Fig. 1: Structure of the melam-melem co-crystal (zone axis [100]) with 4 melam and 4 melem 
molecules in the unit cell (black) 
 

With the same strategy, the structure of the novel oxonitridophosphate “(Ca,Mg)7P18ON34” 

was elucidated from a data set obtained from a crystallite of several micrometer with a well 

crystallized areas of only 1.5 x 1.5 µm which was obtained as a side-phase during high-

pressure syntheses.[11] The preliminary composition was derived from the experimental data 

under the assumption of charge balance. The compound (P63/m, a = 14.122(2) Å, c = 

8.1068(16) Å) crystallizes in a network of corner-sharing P(O,N)4 tetrahedra and Ca/Mg 

atoms (Figure 2). 

 

 

Fig. 2: Structure of “(Ca,Mg)7P18ON34”; viewing direction along [001]; the P(N,O)4 
tetrahedra are shown; O and N are not distinguished  
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Especially in thermoelectric materials the identification of precipitates by TEM, followed by 

the collection of datasets of the matrix and the precipitates by means of synchrotron micro-

diffraction is very interesting. The structure models of both precipitates and matrix shall be 

used to simulate HRTEM images and identify how the matrix and the precipitates are 

intergrown. According to this approach, the distortion of the characteristic Sb4 units of 

skutterudite-type precipitates in a GST matrix (as shown in Figure 3) can be correlated with 

the degree of substitution of Sb by GeTe.[12] The GST matrix exhibits a rocksalt-type structure 

with neither split positions nor symmetry reduction. 
 

 
Fig. 3: Scanning electron micrograph with STEM inset of a skutterudite-type precipitate in a 
GST matrix (left side); structure models of the rocksalt-type GST matrix (top right) and the 
skutterudite-type precipitate (bottom right); the Sb4 units of skutterudite are marked with blue 
rectangles.  
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4.3 Novel superstructure of the rocksalt type and element distribution in 

germanium tin antimony tellurides  

 

T. Rosenthal, S. Welzmiller, L. Neudert, P. Urban, A. Fitch, O. Oeckler 

J. Solid. State Chem. 2014, 219, 108-117. 

 

Abstract 

A superstructure of the rocksalt-type observed in quenched CVT-grown single crystals of 

Ge3.25(7)Sn1.10(3)Sb1.10(3)Te6 was elucidated by X-ray diffraction using fourfold twinned crystals 

(space group P3m1, a = 4.280(1) Å, c = 20.966(3) Å). The structure is built up of distorted 

rocksalt-type building blocks typical for long-range ordered GST materials and substitution 

variants thereof. In contrast to those phases, an exclusive ABC-type cubic stacking sequence 

of the Te-atom layers is present. High-resolution electron microscopy reveals spheroidal 

domains with this structure (average diameter 25 nm) whose stacking direction is 

perpendicular to the <111> directions of the basic rocksalt-type structure. Additional slab-like 

domains with a lateral extension up to 1 µm occasionally result in a hierarchical structure 

motif. Due to the similar electron counts of the elements involved, resonant diffraction was 

used in order to elucidate the element distribution in rocksalt-type building blocks of the 

stable layered compound 39R-Ge3SnSb2Te7 (R3m, a = 4.24990(4) Å, c = 73.4677(9) Å). Sb 

tends to occupy the atom site close to the van der Waals gaps while Ge concentrates in the 

center of the building blocks. 

 

4.3.1 Introduction 

Germanium antimony tellurides (GeTe)nSb2Te3 (GST materials) are widely used as phase-

change materials (PCMs) in rewritable optical data storage media.[1,2] The substitution with Sn 

in thin films of (GeTe)nSb2Te3, which was predominantly studied for n = 2, decreases the 

melting point and increases the crystallization speed and thereby the performance of these 

PCMs.[3-11] For the same reasons, the substitution with Sn is also beneficial for the application 

in PCRAM devices.[12,13]  The low thermal conductivities that are typical for PCMs are also 

desirable for thermoelectric materials.[14] Sn substitution in compounds with n = 1 or 2 

leads to lower thermal conductivities; however, 21R-Ge0.6Sn0.4Sb2Te4 and 

9P-Ge1.3Sn0.7Sb2Te5 exhibit only slightly higher thermoelectric figures of merit (ZT) 
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than the unsubstituted variants.[15] The ZT value describes the efficiency of thermo-

electric materials and is determined by the Seebeck coefficient (S), the electrical 

conductivity (σ) and the thermal conductivity (к): ZT = S2 • σ • к-1 • T, where T is the 

absolute temperature. For Ge1Sb2Te4 and Ge2Sb2Te5 (i.e. n = 1 and 2), the Seebeck 

coefficients are not affected by the substitution of Ge by Sn and reach a maximum of 

~85 µV/K, resulting in ZT values of up to 0.25 at 400 °C.[15] Higher GeTe contents in 

(GeTe)nSb2Te3 with n = 7, 12, 19 are associated with higher Seebeck coefficients and, as a 

rule, higher ZT values.[16,17] The positive effect of the Sn substitution on the ZT values is 

especially pronounced for samples with n = 4 and n = 7 where a 50% substitution of Ge with 

Sn results in doubled and tripled ZT values at 400 °C, respectively.[17]  For these GeTe 

contents, the lattice thermal conductivity of the Sn-substituted samples is by 0.4-0.5 W/m K 

higher compared to the unsubstituted samples up to 250 °C. The lattice contributions to the 

thermal conductivity converge to ~ 1.0 W/m K for both substituted and unsubstituted samples 

above 250 °C and when slowly cooled to room temperature. 

For GST materials with GeTe contents n > 3, stable high-temperature (HT) phases contain 

randomly disordered cation vacancies in a cubic rocksalt-type structure. In these cases, the 

structure of quenched samples differs from that of the thermodynamically stable layered 

phases. Quenching the HT phase involves short-range ordering of the vacancies which, in 

general, leads to thermal conductivities that are lower than those of the layered phases. The 

latter are present in slowly cooled samples and also in quenched bulk samples with n = 1 and 

2. They are trigonal and consist of rocksalt-type slabs separated by van der Waals gaps with a 

hexagonal stacking (i.e. ABAB) of the Te-atom layers across the gaps. The thickness of the 

rocksalt-type slaps is determined by the GeTe content (n). These layered phases are 

comparable to the members of the binary system (Sb2Te3)m(Sb2)n where additional Sb2 layers 

instead of the additional GeTe layers are introduced between the Sb2Te3 slabs, which has been 

shown to result in higher thermoelectric power factors compared to Sb2Te3 (up to 80 µV/K at 

650 °C for SbTe and Sb8Te9).[18] Electron diffraction patterns revealed rather large translation 

periods in Ge8Sb2Te11;[19] its structure corresponds that of Ge5As2Te8 with a hexagonal 

stacking of the Te layers across the van der Waals gaps.[20] In quenched bulk samples 

(GeTe)nSb2Te3 with n ≥ 3, diffusion pathways required to reach the trigonal structure are 

longer than for n = 1 or 2 and therefore only short-range ordering occurs during rapid cooling. 

The vacancies form defect layers with limited lateral extension which are oriented 

perpendicular to the <111> directions of the cubic phase. Metastable solid solutions 

(Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 0 ≤ x ≤ 1) obtained by quenching also exhibit such defect 
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layers that may intersect.[16,17] More pronounced ordering of the vacancies results in parallel 

defect layers whose lateral extension depends on the vacancy concentration and atom mobility. 

These determine the size of the domains with parallel defect layers and, as a consequence, the 

degree of relaxation which is present at the defect layers. The thermodynamic equilibrium is 

reached when all vacancies are arranged in equidistant parallel defect layers which can then 

be viewed as van der Waals gaps. Their formation involves a change from the cubic ABC 

stacking of the Te-atom layers in the rocksalt type to a hexagonal ABAB one around the gaps, 

which also enables the blocks to move closer together and thus relieves strain that is present 

in quenches samples.[21] 

The arrangement of vacancy layers and the element distribution in the distorted rocksalt-type 

building blocks are crucial in the chemistry of GST materials and Sn-substituted variants 

thereof. In quenched thin films of Ge2Sb2Te5,[22] for example, scanning transmission electron 

microscopy (STEM) using a high-angle annular dark field (HAADF) detector revealed non-

equidistant defect layers with limited lateral extension around which, according to simulations 

based on a rocksalt-type model, there is no significant relaxation and the cubic stacking of the 

HT phase is preserved. Their spatial arrangement perpendicular to all cubic <111> directions, 

which correspond to the [001] directions of the individual trigonal domains, is comparable to 

the situation in quenched bulk samples of GST materials with n = 3-19[16] and 

(Ge1-xSnxTe)nSb2Te3 (n= 4, 7, 12; 0≤x≤1).[17] Like in many related compounds,[23] Sb in the 

layered trigonal compounds 21R-Ge0.6Sn0.4Sb2Te4 and 9P-Ge1.3Sn0.7Sb2Te5 concentrates near 

the van der Waals gaps while Ge prefers positions in the center of the rocksalt-type slabs.[15] 

Sn shows a slight preference for the position near the van der Waals gaps. The Te-Te 

distances at these gaps are nearly the same for 21R-GeSb2Te4,[24,25] 21R-Ge0.6Sn0.4Sb2Te4,[15] 

21R-SnSb2Te4,[26] 9P-Ge1.3Sn0.7Sb2Te5,[15] 9P-Ge2Sb2Te5
[27] and 33R-Ge4-xSb2-yTe7 (x, y ≈ 

0.1)[28] whereas the cation-anion bond lengths increase slightly with increasing Sn content. 

Phase transitions in (Ge1-xSnxTe)4Sb2Te3 (x = 0.25 - 0.5) are comparable to those in the 

corresponding pure GST materials;[17] however, the local structure in the vicinity of the defect 

layers and the element distribution have not been elucidated yet. Diffraction patterns of Sn-

doped GST materials discussed in this study indicate the presence of a novel superstructure of 

the rocksalt type.  
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4.3.2 Experimental  

4.3.2.1 Synthesis 

Samples were prepared by melting stoichiometric mixtures of the elements Ge (99.999 %, 

Sigma Aldrich), Sb (99.999 %, Smart Elements), Sn (99.999 %, Smart Elements), and Te 

(99.999 %, Alfa Aesar) in silica glass ampoules under argon atmosphere and subsequently 

quenching the ampoules in water. Samples with the nominal composition Ge2Sn2Sb2Te7 were 

melted at 950 °C for 1.5 h, annealed at 590 °C for 20 h and subsequently quenched in water 

again. Crystals were grown from ~ 90 mg of this product by chemical vapor transport (CVT) 

with ~ 15 mg iodine (99.9 %, AppliChem, dried over conc. H2SO4) from the hot side (595 °C) 

to the cold side (525 °C) of the ampoules (diameter 11 mm, length ~25 cm) in 3 days and 

subsequently cooled by removing them from the furnace. 39R-Ge3SnSb2Te7 samples were 

prepared by melting a stoichiometric mixture at 950°C for 9 d, subsequent annealing at 

380 °C for 9 d and cooling to room temperature (RT) by turning off the furnace (~ 2 h to RT). 

4.3.2.2 Analytical methods 

The phase purity of the samples was analyzed by powder X-ray diffraction which was 

performed on crushed samples fixed on Mylar foils. The data were collected on a Huber G670 

powder diffractometer with an imaging plate detector in Guinier geometry using Cu-Kα1 

radiation (λ = 1.54051 Å, Ge(111) monochromator). The powder diffraction patterns were 

evaluated with TOPAS-Academic.[29] 

Single crystals were mounted on glass fibers with vacuum grease and their quality was 

assessed with Laue photographs using a Buerger precession camera (Huber, Germany). X-ray 

data of the single crystals were obtained with Ag-Kα1 radiation (λ = 0.56086 Å, graphite 

monochromator) on an IPDS-I diffractometer (Stoe, Germany) with an imaging plate detector. 

Reciprocal lattice sections were reconstructed using the diffractometer software. As detailed 

below and as evident from Fig. 2, crystals with the approximate composition 

Ge3.26Sb1.1Sb1.1Te6 exhibit a sixfold superstructure of the rocksalt type along one of its <111> 

directions. This involves fourfold twinning; however, all reflections of the diffraction pattern 

can be indexed on the basis of a common face-centered cubic “twin lattice” with a = 

36.314(6) Å. Reflection intensities were integrated based on this lattice. For the refinement, 

data corresponding to the four twin-domain orientations were identified using the 

corresponding transformation matrices that describe the transition from the NaCl structure 

type to the superstructure observed. These data were combined in a SHELX HKLF 5 format 
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file,[30] the zero-intensity data at twin lattice nodes that did not correspond to any reflection of 

one of the domains were discarded. Semiempirical absorption correction based on the 

intensities of equivalent reflections was done using XPREP.[31] The refinement strategy is 

described in Section 3.2. 

Resonant X-ray diffraction was done at beamline ID31 of the ESRF (Grenoble, France) on 

powdered samples in glass capillaries with diameters of 0.3 mm that were rotated during the 

measurements in order to improve particle distribution statistics. Data at wavelengths of the 

K-edges of the elements Te, Sb and Sn (cf. Table 1) and at a wavelength far away from these 

K-edges (λ = 0.354198(10) Å) were acquired with a bank of 9 point detectors (2° apart from 

each other), each one preceded by a Si(111) analyzer crystal.[32] The data was recorded in a 

continuous scan mode and afterwards merged, using a Si 670c standard sample (NIST) to 

calibrate the offset and the wavelength.[33] The lattice parameters and other wavelengths were 

refined against this reference. X-ray fluorescence as a function of the wavelength was 

measured with an energy-dispersive AXAS solid state detector (Ketek GmbH). From these 

data, the dispersion correction terms Δf’ and Δf’’ of the elements at the wavelengths 

corresponding to their absorption edges were calculated with the program CHOOCH[34] based 

on the Kramers-Kronig transform.[35] These were used without further refinement; they are 

given in Table 1. Other dispersion correction terms were taken from Ref. [36]. The structure 

was refined taking into account all four datasets simultaneously. Reflection profiles were 

fitted with a fundamental parameters approach using TOPAS-Academic.[29] Preferred 

orientation (using 6th order spherical harmonics) and strain parameters were considered 

individually for each data set. Anisotropic broadening of the reflections was refined according 

to Stephens’s method[37] with one set of parameters for each data set (since data were obtained 

from different specimens of the same sample because of temperature-dependent 

measurements not reported here). The occupancy factors were refined assuming a fixed sum 

formula as derived from the nominal composition and verified by energy-dispersive X-ray 

spectroscopy (EDX, see below). Thus, mixed occupancy of cation positions is possible, but no 

additional vacancies may be taken into account. A common displacement parameter was 

refined for all anion sites whereas individual ones were used for each cation positions in order 

not to obtain unrealistically small standard deviations for the occupancy factors. 

For TEM investigations, finely ground samples were drop cast on copper grids coated with a 

holey carbon film. In addition, single crystals were embedded in two-component glue and 

thinned by grinding, dimpling (dimple grinder model 650, Gatan) with diamond paste and 

precision argon ion polishing (PIPS model 691, Gatan) until holes were fabricated. The 
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composition of the samples was determined by an EDX detector system TOPS 30 (EDAX) 

attached to a FEI Titan 80-300 transmission electron microscope. The microscope was 

equipped with a Gatan UltraScan 1000 camera with a resolution of 2k x 2k and the field 

emission gun was operated at 300 kV. Selected-area electron diffraction (SAED) patterns and 

high-resolution transmission electron microscopy (HRTEM) images were evaluated with the 

Digital Micrograph[38] software package. For EDX analyses, the ES Vision[39] software was 

used. HRTEM image simulations were carried out with the JEMS[40] program package using 

the multi-slice approach (CS = 0.6 mm, CC = 1.2 mm, energy spread 0.9 eV), whereas the 

kinematical approximation was used for the calculation of electron diffraction patterns. 

Additional EDX spectra were obtained with an EDX detector (Inca system, Oxford 

Instruments) attached to a LEO 1530 Gemini (Zeiss) scanning electron microscope. 

 

4.3.3 Results and discussion 

4.3.3.1 Overview and strategy 

As stated in Section 1, the thermoelectric properties of some Sn-doped GST materials out-

perform those of the corresponding Sn-free phases near RT.[17] HRTEM images showed 

planar defects; however, structural details on these phases have not yet been reported. The 

stacking sequence of Te-atom layers around such defect planes may be derived from HRTEM 

images, but in order to obtain precise interatomic distances, single-crystal X-ray data are the 

method of choice. Using Ge2Sn2Sb2Te7 as starting material, crystals could be obtained by 

CVT. Their Ge content is higher than in the starting material and cannot be easily influenced. 

Numerous TEM-EDX analyses of the CVT-grown single crystals (cf. Table S1 in the 

Supplementary Information) yield approximately the same Sn and Sb contents, but more Ge. 

In combination with the assumption of charge neutrality and taking into account the structure 

refinement (Section 3.2b), the approximate composition of the crystals can be given as 

Ge3.25Sn1.1Sb1.1Te6. Crystals with lower GeTe contents (GeTe)nSb2Te3 (n = 1, 2) obtained by 

CVT were also shown to exhibit higher Ge contents than the starting materials.[15] As shown 

in Section 3.2, Ge3.25Sn1.1Sb1.1Te6 crystals form a novel superstructure of the rocksalt type 

upon quenching, whose structure parameters were refined using data of a twinned crystal. Its 

structure is characterized by defect planes that present a realistic model for those in quenched 

samples. This is confirmed by TEM data, which show that the structures of the CVT-grown 

crystals exhibit a higher degree of ordering than ingots obtained by quenching; however, the 
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structure near the defect planes is very similar. In addition, there are hierarchical 

nanostructures with additional slab-like domains (Section 3.3).  

However, the information from CVT-grown crystals is incomplete. Sb, Sb and Te cannot be 

distinguished by conventional X-ray diffraction due to their similar electron counts. 

Furthermore, the long-range order of the superstructure is not perfect in the domain crystals, 

especially when the extended slab-like domains with a more relaxed structure are present. 

Thus, the study was completed with a resonant diffraction (Section 3.4) study using powder 

from a rather Ge-rich well-ordered annealed ingot of Ge3SnSb2Te7 which approximates the 

Ge/Sn ratio of the CVT-grown crystals. The mass of the ingots usually differed less than 1% 

from that of the starting materials (EDX data cf. Table S1). The corresponding joint Rietveld 

refinement provides reliable information about the element distribution in rocksalt-type slabs 

of Sn-doped GST materials although the stacking of the layers differs from that of the 

superstructure observed in CVT-grown crystals. 

4.3.3.2 Superstructure of the rocksalt type 

a) construction of a structure model 

Both X-ray as well as electron diffraction data of the CVT-grown crystals (cf. Fig. 1) show 

superstructure reflections along the cubic <111> directions. These indicate a sixfold 

superstructure of the NaCl type along ctrigonal in the trigonal setting of its cF lattice (atrigonal = 

acubic / 2 , ctrigonal = 3acubic). The diffraction patterns show superstructure reflections along 

all cubic <111> directions which correspond to the [001] direction of the individual domains 

according to the trigonal setting. This can be explained by fourfold twinning by reticular 

pseudo-merohedry; it involves superstructure reflections which belong to the individual twin 

domains and the reflections of the NaCl aristotype which contain contributions from all twin 

domains. The whole diffraction pattern can be indexed assuming a cF lattice with with a = 

36.314(6) Å as used for the data integration (cf. Section 2.2). The individual lattices of the 

trigonal twin domains can be obtained from this “twin lattice” by transformation matrices like 

e.g. (0 1/12 1/12 | 1/12 -1/12 0 | 1/3 1/3 -1/3). Whereas, in principle, the refinement of such a 

twinned structure poses no problem, the overlap of all strong reflections impedes a 

straightforward structure solution.  
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Fig. 1: Comparison of the superstructure reflections in “Ge3.25Sn1.1Sb1.1Te6” in diffraction 
patterns along the zone axes <100> and <210> according to the trigonal setting (cf. Table 1): 
reciprocal lattice sections reconstructed from single crystal X-ray diffraction data (left), 
SAED patterns (middle) and simulations based on the trigonal structure model for the long-
range ordered structure: the pattern corresponding to the <100> zone axis is a twin-like 
superposition of those of domains that result from vacancy ordering in layers perpendicular to 
their [001] directions during quenching. The cubic [001] direction is indicated for all domains 
by black arrows in the SAED patterns. 
 
Therefore, an initial structure model was constructed starting from the NaCl type. The sixfold 

superstructure implies a stacking of 12 atom layers along one of the NaCl-type lattice’s <111> 

directions, which equals [001] of the trigonal superstructure. This corresponds to a structure in 

the space group P3m1 with a ≈ 4.28 Å and c ≈ 20.97 Å. Due to the overlap of all strong 

reflections, the crystal data preclude the detection of small deviations from the cubic metrics 

of the basic structure. As powder diffraction patterns from crushed crystals show no 

significant reflection splitting, the unit cell parameters calculated from those of the 

pseudocubic twin lattice by the matrix given above were used for all further data evaluation. 

HRTEM images clearly show vacancy layers (see below) as known from GST materials and 

substitution variants containing Sn, In, Se.[13,17,43,44] Therefore, one cation layer was replaced 

by a vacancy layer and z coordinates of the six anion and 5 cation layers (3 independent 

Wyckoff sites each) were manually altered so that reasonable interatomic distances were 

obtained. These were approximated by comparable values from similar compounds (cf. 

Section 1). However, as the average structure corresponds to the NaCl type, the stacking 

sequence of Te-atom layers must be a “cubic” (ABC) one.[41] This is also corroborated by 

contrasts in HRTEM images, comparable to investigations on thin films of Ge2Sb2Te5.[22] The 

corresponding Te-Te distance across the vacancy layer was taken from Ge4Bi2Te7,[41] which 

exhibits a comparable environment in highly disordered crystals. Thus, the corresponding 
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model shown in Fig. 2 exhibits an 11P stacking sequence with the composition M3Sb2Te6 (M 

= Ge, Sn) in analogy to Ge3Sb2Te6 which, however, is characterized by a 33R stacking 

sequence (space group R3m) as the Te-atom layers exhibit a “hexagonal” ABAB stacking 

around its van der Waals gaps (which can be viewed as defect layers, cf. Section 1). The latter 

is not a superstructure of the NaCl type in a strict crystallographic sense. The good fit between 

diffraction patterns calculated on the basis of the constructed 11P structure (cf. Fig.1) 

indicates that the model with the exclusively ABC-type stacking of Te-atom layers is suitable. 

b)  structure refinement on X-ray data 

The structure model described above was refined taking into account all four twin domains 

and the fact that all of them contribute to the reflections of the aristotype. The refined 

interatomic distances differ very little from those of the constructed model (see above). From 

a plethora of comparable structures it is obvious that the concentration of anti-site defects is 

negligible so that the Te positions can clearly be identified. As Sn and Sb cannot be 

distinguished and as equal amounts of them were detected by EDX (Table S1), cation 

positions were constrained to full occupancy with equal amounts of Sn and Sb and a refined 

percentage of Ge. This is, of course, only an approximation. However, the refined Ge content 

is highest in the center of the rocksalt-type slabs as in all GST and related materials because 

Sb concentrates near the vacancy layers. Difference Fourier syntheses revealed small residual 

electron densities in the vacancy layers. Due to their short distance to neigboring Te atoms, 

these were assumed to be Ge atoms; their occupancy was refined. This is also an approxi-

mation as these densities are most likely due to the fact that the lateral extension of the defect 

layers is in the range of the X-ray’s length of coherence. Thus, these disordered atoms with 

large displacement parameters represent areas where the vacancies are not fully ordered. This 

refinement yields a chemical formula close to Ge3.25Sn1.1Sb1.1Te6, which was constrained to 

be charge balanced; however, this constraint did not change the refined composition signifi-

cantly. There are no significant residual electron densities, especially none that would indicate 

any deviation from the ABC-type Te-atom layer stacking sequence. Crystal data and refine-

ment details are given in Table 1, the refined atom parameters are listed in Table 2. The struc-

ture is depicted in Fig. 2, which also shows the relevant interatomic distances. Further details 

of the crystal structure investigation may be obtained from Fachinformationszentrum 

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49 7247 808 666; email: 

crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request_for_deposited_data.html) on 

quoting the deposity number CSD-427753. 
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Fig. 2: Crystal structure of “Ge3.25Sn1.1Sb1.1Te6” as refined from X-ray diffraction data of a 
twinned crystal (selected interatomic distances are given in Å); partially occupied Ge 
positions in the vacancy layer (cf. text) are not shown. 
 
Table 1. Crystallographic data and structure refinement of “Ge3.25Sn1.1Sb1.1Te6” at RT 

Formula (refined) Ge3.25(7)Sn1.10(3)Sb1.10(3)Te6 

Formula mass (in gmol-1) 1266.73 

Crystal system / Space group trigonal, P3m1 

Cell parameters (in Å) a  = 4.028(1) Å, c  = 20.966(3) Å 

Cell volume (in Å3) 332.61(19) 

X-ray density (in gcm-3) 6.32 

Absorption coefficient (in mm-1) 12.838 

Formula units per unit cell (Z) 1 

F(000) 527.1 

Radiation Ag-Kα1 (λ = 0.56085 Å) 

2ϑ  range (in °) 4.6 ≤ 2θ ≤ 43.8 

Independent data / parameters / restraints 389 / 34 / 4 

R(σ) 0.0401 

R indices [I > 2σ(I)] * R1 = 0.058, wR2 = 0.167 

R indices [all data] * R1 = 0.128, wR2 = 0.217 

GooF [all data] 0.919 

Δρmin / Δρmax   (eÅ-3) −1.86 / +3.29 
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Table 2. Coordinates, equivalent isotropic and anisotropic displacement parameters and site 
occupancies (s.o.f.) of “Ge3.25Sn1.1Sb1.1Te6” at RT (Ueq = 1/3[U33 + 4/3(U11 + U22 – U12)]; U13 
= U23 = 0; U / Å2). 

Atom Wyckoff 
position x y z s.o.f.** Ueq U11 = U22 = 2 U12 U33 

Ge1/Sb1/Sn1 1a 0 0 0 0.617(12)/0.192(6)/0.192(6) 0.0407(5) 0.0411(6) 0.0399(9) 

Te1 2d 

2d 

1/3 

2/3 

2/3 

1/3 

0.08392(4) 

0.17303(7) 

1 0.0368(2) 

0.0431(4) 

0.0363(4) 

0.0415(4) 

0.0378(6) 

0.0463(8) Ge2/Sb2/Sn2 0.615(10)/0.193(5)/0.193(5) 
Te2 2d 0 0 0.25214(4) 1 0.0383(3) 0.0387(4) 0.0376(6) 

Ge3/Sb3/Sn3 2d 

2d 

1/3 

2/3 

2/3 

1/3 

0.35117(10) 

0.42618(9) 
0.482(11)/0.259(6)/0.259(6) 0.0445(6) 

0.0466(4) 

0.0414(4) 

0.0454(5)  

0.0507(12) 

0.0489(6)  Te3 1 

Ge4* 2d 0 0 0.4804(14) 0.226(5) 0.214(13) - - 

* residual electron densities in the vacancy layers assumed to be Ge 
* s.o.f. (Sn) = s.o.f. (Sb) 
 

The coordination of cations by Te is closer to a regular octahedron in the center of the slabs 

and becomes more distorted towards the defect layers. The Te-Te distance across the defect 

layers in the present ABC stacking is only slightly shorter than the sum of the van der Waals 

radii (ca. 4.0 Å, the exact value depends on the method of calculation);[42] it amounts to 3.96 

Å. This is significantly longer than in stable long-range ordered structures with ABAB 

stacking, e.g. Ge0.6Sn0.4Sb2Te4 (3.720 Å) and Ge1.3Sn0.7Sb2Te5 (3.728 Å),[15] as well as 

Ge3SnSb2Te7 (cf. Section 3.4). 

c) HRTEM image simulations 

HRTEM images obtained from crushed single crystals were simulated based on the trigonal 

11P structure model in P3m1 with a cubic ABC-type stacking of the Te-atom layers across 

the van der Waals gaps (Fig. 3). The differences between the defocus values used are similar 

to those that were applied experimentally. The contrast variation in the simulations matches 

the observed one. At all defocus values, the expected defect layers are clearly visible and it is 

evident that the stacking sequence does not change across the gaps but resembles those within 

the blocks. The slightly smaller distance of similar structural features across the defect layers 

compared to that within the distorted rocksalt-type slabs reflects the shorter distances between 

Te-atom layers (3.96 Å and 4.30-4.41 Å, respectively).  
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Fig. 3: Fourier filtered HRTEM images at various defocus values (two different areas of the 
same crystallite) of crushed crystals of “Ge3.25Sn1.1Sb1.1Te6” (zone axis <100> according to 
trigonal setting )which show the “cubic” ABC-type Te-atom layer stacking sequence around 
the defect layers; the insets show simulations based on the model discussed in Section 3.2 
(thickness: top images 6.4 nm, bottom images 9.0 nm, other parameters used for the 
simulations are provided in the experimental section); bottom right: projected potential as 
well as the structure model used for the simulations. A comparison of the Fourier filtered 
HRTEM images and the unfiltered ones is provided in the Fig. S6 in the Supplementary 
Information. 

4.3.3.3 Domain size and hierarchical structure in Ge2Sn2Sb2Te7  

Most diffraction patterns of single crystals grown by CVT show the superstructure described 

above; diffuse streaks are observed only occasionally. In contrast, crystallites from quenched 

ingots of Ge2Sn2Sb2Te7 show superstructure reflections only in SAED patterns of few areas. 

As shown in ref. [17], they usually exhibit the typical diffuse intensities that correspond to 

"parquet-like" domain structures, which can be understand as tweed-like domains, as 

observed e.g. for Sb2Te3(GeTe)n (n = 4.5 - 19)[16] and substitution variants with Sn, In and 

Se.[17,43,44]. The average lateral extension of the defect layers in the parquet-like areas is 11.3 ± 

3.0 nm for the CVT-grown crystals and 9.1 ± 2.6 nm for the polycrystalline samples, i.e. 

approximately the same as in unsubstituted quenched ingots of Ge4Sb2Te7 with 10.1 ± 2.6 nm 

(derived from the data shown in ref. [44]). These values were obtained by measuring a total of 

~ 100 defect layers in several HRTEM images for each compound. 
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Fig. 4: TEM of Ge2Sn2Sb2Te7 quenched from the melt (zone axis <210> according to trigonal 
setting): HRTEM with spheroidal domains (two domains are highlighted with white dotted 
lines) with average diameter of ~ 25 nm (right); superstructure reflections in the 
corresponding SAED pattern (diameter of irradiated area ca. 150 nm) and Fourier transform 
(middle) as well as Fourier-filtered HRTEM of the highlighted area with selected spacings of 
the defect layers (left, based on an image with higher magnification). 
 

Crystals with superstructure reflections exhibit spheroidal domains with parallel defect layers 

perpendicular to the [001] direction of these trigonal domains, which correspond to the cubic 

<111> directions, with an average diameter of ~ 25 nm (Fig. 4). Most defect layers in these 

domains are equidistantly spaced; however, some slabs differ in thickness (typically by one 

GeTe-type layer). The boundaries between the individual spheroidal domains are expected to 

be twin boundaries but appear rather diffuse. CVT-grown crystals occasionally exhibit 

additional domains with much larger lateral extension (500 to 1200 nm) that are embedded as 

large slabs in a "matrix" consisting of the spheroidal domains. This can lead to a hierarchical 

structure motif as shown in Fig. 5. For sequences of rocksalt-type building blocks with 

identical numbers of atom layers, the translation period along the stacking direction ([001] in 

trigonal setting) in the extended slab-like domains tends to be slightly shorter than in the 

domain structure sandwiched between them. This indicates a higher degree of relaxation; as a 

consequence, the structure of the slab-like domains approaches that of the corresponding 

trigonal phase with hexagonal (ABAB) stacking of the Te-atom layers around van der Waals 

gaps. The composition of these domains does not differ significantly from that of the 

spheroidal domains as evidenced by EDX analyses that focus on different parts of the 

hierarchical structure as shown in Fig. S1 and Table S2 in the Supplementary Information. 

SAED patterns from the hierarchical structure (Fig. S2 in the Supplementary Information) 

exhibit similar superstructure reflections and the same metrics (deviation less than 0.5%) as 

areas without the slab-like domains (cf. Fig. 1). 
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Fig. 5: Thinned section of a CVT-grown crystal of “Ge3.25Sn1.1Sb1.1Te6” (zone axis <110> 
according to cubic setting of the rocksalt type): SAED pattern with superstructure reflections 
along the <111> directions of the cubic average structure which correspond to the [001] 
directions of the trigonal domains with different orientations (top left) and HRTEM images – 
obtained with different magnifications from the same area of the crystallite – that show the 
hierarchical structure of extended slab-like domains with parallel “defect layers” sandwiching 
arrays of spheroidal domains with a diameter of ~ 25 nm and the structure described in the 
text; Fourier transform of the HRTEM image as inset (bottom right corner). 

4.3.3.4 Element distribution Ge3SnSb2Te7 

As Sn, Sb and Te exhibit similar electron counts, they cannot easily be distinguished by 

conventional X-ray diffraction; however, anomalous dispersion near absorption edges leads to 

a change of the atom form factors that increases the scattering contrast. Such resonant 

diffraction experiments were carried out using powder data of the long-periodically ordered 

layered phase 39R-Ge3SnSb2Te7 in order to elucidate the element distribution. The 

composition of this sample approximates that of the above mentioned CTV-grown crystals 

and phase transition temperatures do not show significant differences for slight variations in 
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Sn content.[17] Therefore, the element distribution in powder samples of 39R-Ge3SbSn2Te7 

should be a good model for that in the CVT-grown crystals despite the fact that the stacking 

sequences and slab thicknesses are not identical. Details of the refinement (cf. Experimental 

Section), which yielded unambiguous site occupancies and no significant residual electron 

density in the van der Waals gap, are provided in Tables 3 and 4. A profile fit for the data 

collected at 0.354198 Å is shown in Fig. 6, further ones for the data sets obtained with 

wavelengths close to the K-edges of Sb, Sn, and Te are shown in the Supplementary 

Information (Fig. S3-S5). Further details of the crystal structure investigation may be obtained 

from Fachinformationszentrum Karlsruhe (contact data cf. Section 3.2b) on quoting the 

deposity number CSD-427688. 

 

 

Fig. 6: Profile fit for the data away from the K-edges (λ = 0.354198(10)Å) from the joint 
Rietveld refinement of 39R-Ge3SnSb2Te7 (the other data are shown in the Supplementary 
Information): experimental (black) and calculated pattern (gray) and difference plot (below); 
vertical lines indicate calculated reflection positions. 
 
According to the structure refinement, slowly cooled Ge3SnSb2Te7 exhibits the 39R-type 

structure known for Ge4As2Te7
[20] as shown in Fig. 7. This structure is expected from the 

stoichiometry, whereas in contrast to predictions based on the cation/anion ratio, a 33R-type 

stacking sequence was reported for Ge4Sb2Te7, possibly as a consequence of disorder and 

slight deviations from the idealized composition.[28] 39R-Ge3SnSb2Te7 consists of distorted 

rocksalt-type slabs that exhibit an alternating arrangement of 6 cation and 7 anion layers. Like 

in the structure of “Ge3.25Sn1.1Sb1.1Te6”, the octahedral coordination polyhedra are almost 

regular in the center of the slabs and more distorted near the van der Waals gaps. The distance 
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between the Te atoms terminating the slabs is 3.7508(14) Å in good agreement with the 

corresponding distances in Ge0.6Sn0.4Sb2Te4 (3.720 Å) and Ge1.3Sn0.7Sb2Te5 (3.728 Å) or 

other 21R-type structures of MSb2Te4 with M = Ge[24], Sn[26], Pb[45] where the distance does 

not differ more than 2 % from the ones reported here. The cation positions in the centre of the 

slabs (C3 and C2) are predominantly occupied by Ge and Sn while Sb concentrates at the 

position near the van der Waals gaps. This element distribution resembles the one in long-

range ordered 21R-Ge0.6Sn0.4Sb2Te4 and 9P-Ge1.3Sn0.7Sb2Te5.[15] In contrast to the latter 

compounds with lower GeTe content, the position next to the van der Waals gap (C1) 

contains almost no Sn in Ge3SnSb2Te7 where it is occupied by similar amounts of Ge and Sb. 
 

 

Fig 7: Atom distribution (occupancy factors, missing esd’s are a consequence of constraints) 
for each position and bond lengths in the refined model of 39R-Ge3SnSb2Te7 (only one slab 
and its vicinity is shown) at 293 K.  
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Table 3. Crystallographic data from the structure refinement of 39R-Ge3SnSb2Te7 at RT. 

 39R-Ge3SnSb2Te7 

Formula mass (in g mol-1)  1473.26 
Crystal system / space group  trigonal / R3m 

Cell parameters (in Å)  a = 4.24990(4), c = 73.4677(9) 
Cell volume (in Å3)  1149.17(3) 
X-ray density (in g cm-3)  6.38 
Formula units (per unit cell) 4 

F(000)  1836 
 far Te-K edge Sb-K edge Sn-K edge 
Wavelength (in Å)  0.354198(10)*  0.389937(9) 0.406879(6)  0.424833(5) 
Energy (in keV)  35.00422  31.79597 30.47202 29.18423 
Measured reflections  613 654 622 641 
Absorption coefficient µ (in mm-1) 1.5 9.3 6.9 5.9 
2θ range (in °)  0.5 – 30  0.5 – 34  0.5 – 35  0.5 – 37  
sinθmax / λ in Å-1  0.73  0.75 0.74 0.75 
Δf’ / Δf’’ of the element  

corresponding to the respective edge 

 -8.29 / 2.51 -9.16 / 2.86 -8.99 / 2.34 

Parameters / thereof background 120 / 48 120 / 48 120 / 48 120 / 48 
RBragg  0.018 0.012  0.019 0.016  
Rexp  0.026 0.031 0.027 0.018 
Rp  0.053 0.042  0.054 0.047  
Rwp  0.072 0.054  0.076  0.067  

GooF  2.73 1.74  2.77 3.68  
Rp / Rwp / GooF (all datasets) 0.049 / 0.068 / 2.84 

* In contrast to the other e.s.d.’s, this one is not from the Rietveld refinenemt (where this wavelength was kept 
constant) but from the refinement against a standard (cf. Section 2.2). 
 

 

Table 4. Structure parameters of 39R-Ge3SnSb2Te7 at RT: atom positions and coordinates, 
site occupancies (s.o.f., those with no e.s.d.’s given follow from the others due to the 
constraints applied) and isotropic displacement parameters (Beq in Å2) 

atom position 
Wyckoff 

position 
x y z occupancy Beq 

Te Te1 6c 0 0 0.14736(2) 1 1.11(2) 

Te Te2 6c 0 0 0.23591(2) 1 = Beq (Te1) 

Te Te3 6c 0 0 0.38150(2) 1 = Beq (Te1) 

Te Te4 3a 0 0 0 1 = Beq (Te1) 

Ge/Sn/Sb C1 6c 0 0 0.45975(3) 0.478 / 0.017 / 0.505 2.50(6) 

Ge/Sn/Sb C2 6c 0 0 0.07461(3) 0.453(10) / 0.312(2) / 0.235 1.85(7) 

Ge/Sn/Sb C3 6c 0 0 0.30813(3) 0.569(7) / 0.171(16) / 0.261 1.88(5) 
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4.3.4 Conclusion 

Quenched CVT-grown crystals with the approximate composition Ge3.25Sn1.1Sb1.1Te6 exhibit 

a superstructure of the rocksalt type. The building blocks present resemble the stable trigonal 

phases of GST materials. However, probably due to the quenching process, the ABC-type 

stacking of the Te-atom layers present in the cubic HT phase is retained. The higher degree of 

order of quenched Sn-substituted single crystals compared to the unsubstituted samples may 

be explained by the assumption that the lower bond energy of Sn-Te compared to Ge-Te 

outweighs the lower mobility during quenching of the Sn-substituted compounds resulting 

from the lower phase transition temperatures. The existence of a long- or intermediate-range 

ordered superstructure that combines elements of both stable phases (i.e. HT and RT) hints at 

the mechanism of the phase transition between them. During cooling, the randomly 

distributed vacancies order in defect layers as visible in the pseudocubic quenched 

samples.[16,17] When these defect layers grow larger, the spacing between the adjacent Te-

atom layers decreases but the cubic stacking is preserved. The superstructure of the rocksalt-

type reported here may be viewed as model of this intermediate state. 2D extended defect 

ordering renders the relaxation to the stable trigonal RT phase possible, which involves a shift 

of the consecutive building blocks perpendicular to the stacking direction. Such a process 

would be strongly determined by the atom mobility (i.e., bonding energies of the atoms and 

transition temperatures) and may explain many changes in the nanostructure that are 

associated with substitutions in GST materials.  

 

In quenched crystals of Ge3.25Sn1.1Sb1.1Te6, domains with different degrees of structural 

relaxation coexist, depending on the lateral extension of the domains. Slab-like domains with 

a lateral extension of ~ 1µm exhibit the same number of atom layers in each building block 

and the same composition as the nanodomain “matrix” around them; they deviate only with 

respect to the degree of relaxation. This opens new possibilities for structuring GST materials 

on the nanoscale as well as on the microscale which is expected to be associated with lower 

thermal conductivities compared to long-range ordered compounds. The “matrix” contains 

spheroidal domains with an average diameter of ~ 25 nm. These share a common anion 

sublattice and exhibit no diffuse intensities in diffraction patterns. This is a promising feature 

concerning thermoelectric properties since twin domains with different orientations should 

reduce phonon propagation while the common anion lattice may enable high electrical 

conductivities.  
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The mobility might also influence the formation of the layered thermodynamically stable 

phases. For phases (MTe)nX2Te3 (M = Sn, Ge; X = Sb, In, Bi) with high defect concentrations 

(n ≤ 3), the number of atom layers in the building block is usually 2n + 5.[15,24-28] For samples 

with higher values of n, the observed structures often exhibit fewer atom layers per translation 

period than predicted.[11,28,46] This is probably a consequence of incomplete ordering and 

residual vacancies within the building blocks or the presence of atoms remaining in the 

“vacancy layers” as observed in the superstructure of Ge3.25Sn1.1Sb1.1Te6. The higher mobility 

in the Sn-substituted sample would also explain the fact that Ge3SnSb2Te7 crystallizes in a 

39R-type as expected while Ge4Sb2Te7 adopts a 33R-type,[28] which would be expected for 

compounds with n = 3. The element distribution of layered 39R-Ge3SnSb2Te7 is comparable 

to (Ge1-xSnxTe)nSb2Te3 (n = 1, 2) with the formally higher charged Sb3+ concentrating on the 

position near the defect layers in order to compensate the unsaturated coordination of the Te 

atoms at the outer face of the building blocks. Very likely, this is a suitable model for the 

blocks in the “intermediate phases” with ABC-type Te-atom stacking. 
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4.3.5 Supplementary Information 

Table S1. EDX analyses of crystals grown by CVT from Ge2Sn2Sb2Te7 as a starting material 
(in atom %). 
samples number of point 

analyses 
Ge Sn Sb Te 

calculated composition for Ge2Sn2Sb2Te7 - 15.4 15.4 15.4 53.8 
calculated composition for Ge3Sn1Sb2Te7 - 23.1  7.7 15.4 53.8 
calculated composition for Ge3.25Sn1.1Sb1.1Te6 - 28.4  9.6  9.6 52.4 
ingot of Ge2Sn2Sb2Te7 (quenched) 4 (TEM) 16.0(6) 17.8(5) 15.8(7) 50.3(11) 
ingot of Ge3Sn1Sb2Te7 (annealed) 12 (SEM) 25.5(21)  7.5(6) 15.4(5) 51.7(15) 
crushed CVT-grown crystal 14 (TEM) 24.0(26) 14.1(12) 12.3(15) 49.6(23) 
ion-thinned CVT-grown crystals 10 (TEM) 23.4(22) 13.6(8) 14.0(11) 49.0(21) 
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Table S2. Results of TEM-EDX measurements for different sample areas as shown in Figure 
S1 (in atom %). 

area structure Ge Sb Sn Te 
1 small (spheroidal) domains, “matrix” 19.7 12.5 13.2 54.46 
2 small (spheroidal) domains, “matrix” 20.7 13.1 14.4 51.7 
3 slab-like domain with parallel defect layers 18.6 14.2 13.0 54.3 
4 slab-like domain with parallel defect layers 19.5 12.9 11.8 55.8 
5 slab-like domain with parallel defect layers 20.0 12.8 13.6 53.6 
a “matrix” far away from slab-like domain 19.9 13.1 14.2 52.8 
e “matrix” far away from slab-like domain 21.4 11.9 15.0 51.3 
b “matrix” close to slab-like domain 21.4 11.8 14.7 52.2 
d “matrix” close to slab-like domain 23.4 10.9 14.9 50.8 
c slab-like domain with parallel defect layers 20.7 14.3 12.9 52.1 
average 
(12 points) 

“matrix” close to slab-like domain 22.3(1.7) 13.2(1.6) 14.1(1.0) 50.6(2.7) 

average 
(7 points) 

slab-like domains with parallel defect layers 21.3(2.4) 13.3(1.8) 13.1(1.2) 52.2(2.7) 

 

 

Fig. S1: Thinned sections of a crystal of “Ge3.25Sn1.1Sb1.1Te6”; local EDX analyses from 
various areas of the hierarchical structure (marked spots, the EDX results are given in Table 
S2) and SAED patterns. 
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Fig. S2: Different orientations of the same area of a CVT-grown crystal of 
“Ge3.25Sn1.1Sb1.1Te6” that exhibits the hierarchical structure described in the text: HRTEM 
images (left) with corresponding SAED patterns (second column); simulated SAED patterns 
based on the average cubic rocksalt-type structure and indexed accordingly (third column) as 
well as based on the layered structure model developed for “Ge3.25Sn1.1Sb1.1Te6” (consisting 
of rocksalt type building blocks with 11 atom layers and a cubic stacking of the Te atom 
layers terminating the slabs) and indexed accordingly (fourth column); the pattern of the zone 
axis [100] can be explained by superimposing those of the domains. 
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Fig. S3: Rietveld refinement of 39R-Ge3SnSb2Te7 (the strongest reflection is cut off) near the 
K-edge of Sb at 0.406879Å; vertical lines indicate calculated reflection positions, 
experimental (black) and calculated pattern (gray) and difference plot (below) are shown. 
 

 

Fig. S4: Rietveld refinement of 39R-Ge3SnSb2Te7 (the strongest reflection is cut off) near the 
K-edge of Sn at 0.424833 Å; representation like in Figure S3. 
 

 
Fig. S5: Rietveld refinement of 39R-Ge3SnSb2Te7 (the strongest reflection is cut off) near the 
K-edge of Te at 0.389937Å; representation like in Figure S3. 
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Fig. S6: Comparison of fourier filtered HRTEM images (top) and raw data (bottom) at two 
different defocus values of crushed crystals of “Ge3.25Sn1.1Sb1.1Te6” (zone axis <100>); the 
insets show simulations based on the model discussed in 3.2 (thickness: 9.0 nm, other 
parameters used for the simulations are provided in the experimental section) 
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4.4 Layered germanium tin antimony tellurides: element distribution, 

nanostructures and thermoelectric properties 

 

S. Welzmiller, T. Rosenthal, P. Ganter, L. Neudert, F. Fahrnbauer, P. Urban, C. Stiewe, J. de 

Boor, O. Oeckler  

Dalton Trans. 2014, 43, 10529-10540. 

 

Abstract 

In the system Ge-Sn-Sb-Te, there is a complete solid solution series between GeSb2Te4 and 

SnSb2Te4. As Sn2Sb2Te5 does not exist, Sn can only partially replace Ge in Ge2Sb2Te5; 

samples with 75% or more Sn are not homogeneous. The joint refinement of high-resolution 

synchrotron data measured at the K-absorption edges of Sn, Sb and Te combined with data 

measured at off-edge wavelengths unambiguously yields the element distribution in 

21R-Ge0.6Sn0.4Sb2Te4 and 9P-Ge1.3Sn0.7Sb2Te5. In both cases, Sb predominantly concentrates 

on the position near the van der Waals gaps between distorted rocksalt-type slabs whereas Ge 

prefers the position in the middle of the slabs. No significant antisite disorder is present. 

Comparable trends can be found in related compounds; they are due to the single-side 

coordination of the Te atoms at the van der Waals gap, which can be compensated more 

effectively by Sb3+ due to its higher charge in comparison to Ge2+. The structure model of 

21R-Ge0.6Sn0.4Sb2Te4 was confirmed by high-resolution electron microscopy and electron 

diffraction. In contrast, electron diffraction patterns of 9P-Ge1.3Sn0.7Sb2Te5 reveal a 

significant extent of stacking disorder as evidenced by diffuse streaks along the stacking 

direction. The Seebeck coefficient is unaffected by the Sn substitution but the thermal con-

ductivity drops by a factor of 2 which results in a thermoelectric figure of merit ZT = ~0.25 at 

450 °C for both Ge0.6Sn0.4Sb2Te4 and Ge1.3Sn0.7Sb2Te5, which is higher than ~0.20 for 

unsubstituted stable layered Ge-Sb-Te compounds.  

 

4.4.1 Introduction 

Compounds in the system Ge-Sb-Te (so-called GST materials) with the general formula 

(GeTe)nSb2Te3 are widely used as phase-change materials (PCM) on rewritable optical data 

storage media and in non-volatile PCRAM devices.[1-4] Data is stored by means of a reversible 

phase transition from a metastable crystalline to an amorphous phase of PCMs, which 

involves significant changes of the optical and electrical properties. Consequently, erasing 
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corresponds to recrystallization. The performance mainly depends on kinetic effects as a fast 

transition between the amorphous and crystalline phases is crucial for efficient write-erase 

cycles. The substitution of thin-film GST materials with Sn [5-10] increases the crystallization 

speed which enables fast erasing. It additionally decreases the melting point, which is 

favourable since it means that less energy is required for the amorphization. Both effects are 

due to the lower average bond dissociation energy of Sn-Te compared to Ge-Te.[11] As the 

materials properties required for PCMs are, at least in part, similar to those of good 

thermoelectrics,[12] GST materials turned out to exhibit thermoelectric figures of merit ZT up 

to 1.3.[13 ] ZT depends on the Seebeck coefficient S, the electrical σ and the thermal 

 conductivity κ; ZT = S2σTκ-1. Approaches to improving the ZT values focus on either 

influencing κ or the power factor S2σ However, both are interdependent according to the 

Wiedemann-Franz law (λ/σ = LT; with Lorenz number L). Sn doping should influence the 

thermoelectric properties as phonon scattering is enhanced when an element with a different 

atomic number is included on the same Wyckoff position.[14] In (GeTe)nSb2Te3 phases with 

n ≥ 3, quenching the disordered rocksalt-type high-temperature phase (stable above ~500 °C), 

which corresponds to the metastable crystalline phase of PCMs, yields metastable pseudo-

cubic materials with pronounced nanostructures. They are often characterized by irregularly 

spaced and often intersecting defect layers [13- 16 ] with limited lateral extension whose 

concentration depends on the GeTe content n. The highest ZT values (1.3 at ~450 °C) were 

observed for quenched phases with n = 12 or 19.[13]  

At temperatures below ~500 °C – the exact temperature mainly depending on n –, layered 

trigonal phases of (Ge1-xSnxTe)nSb2Te3 are thermodynamically stable. They are formed by 

long-term annealing at temperatures below the existence range of the cubic high-temperature 

phase or during very slow cooling. These phases contain distorted rocksalt-type slabs with 

alternating anion (Te) and cation layers (Ge/Sb) which are separated by van der Waals gaps. 

In the case of 9P-Ge2Sb2Te5 or 21R-GeSb2Te4, these slabs consist of 9 or 7 alternating anion 

and cation layers, respectively (compare Figures 3 and 7).[17, 18]  

Sn-doped GST materials are a challenge for crystal structure determination as elements with 

similar electron counts (Sb, Sn, Te) are often disordered in comparable systems. The almost 

non-existing scattering contrast requires resonant X-ray diffraction to determine the element 

distribution over the Wyckoff sites present.[19-21] In diffraction experiments with wavelengths 

near the absorption edges, anomalous dispersion significantly changes the atom form factors 

of the respective elements and thus enhances the scattering contrast. The element distribution 

in single crystals of multinary tellurides has been unambiguously investigated by means of 
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resonant X-ray diffraction, e.g. for 39R-M0.067Sb0.667Te0.266 (M=Ge, Sn),[22] 21R-SnSb2Te4
[23] 

and 9P-Ge2Sb2Te5
[24]Therefore, it is a promising method to get a deeper insight in the 

structure-properties relationship of thermoelectric Sn-doped GST materials. 

 

4.4.2 Results and Discussion 

4.4.2.1 The solid solution series (Ge1-xSnx)Sb2Te4 (x = 0-1) 

Samples with the compositions (Ge1-xSnx)Sb2Te4 (x = 0.25, 0.40, 0.50, 0.75) were obtained 

from stoichiometric melts of the elements. Rietveld refinements prove that they are single-

phase and that all members of the solid solution series exhibit a 21R-type structure (space 

group R3m), they are isostructural to the end members GeSb2Te4 [25] and SnSb2Te4.[23] The 

trend of the lattice parameters is linear according to Vegard's law over the whole region of the 

solid solution (Figure 1). The occupancy factors were chosen according to the results of the 

single-crystal structure analysis based on resonant scattering data (see below). The occupancy 

of Sb on each cation’s Wyckoff position was fixed to the value of Ge0.6Sn0.4Sb2Te4 and the 

difference to full occupancy was filled with Ge and Sn according to their site preference ratio 

from the resonant single crystal refinement. With increasing Sn content, the bond lengths 

between cation and anion positions slightly increase according to the Rietveld refinement 

results; however, the standard deviations are rather large (cf. Fig. S1 in the ESI). Yet, this 

reflects the larger ionic radius of Sn in comparison to Ge. Fig. 2 shows the result of the 

Rietveld refinement for Ge0.5Sn0.5Sb2Te4, the other plots are given in the ESI (Fig. S2 – S4). 

Crystallographic data are summarized in Table 1, the refined parameters are given in Table 2. 

 
Fig. 1: Vegard’s plot of compounds in the series (Ge1-xSnx)Sb2Te4 (x = 0 - 1); c parameter 
(top) and a parameter (bottom); values for GeSb2Te4

[25] ans SnSb2Te4
[23] taken from literature. 
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Fig. 2: Rietveld refinement of 21R-Ge0.5Sn0.5Sb2Te4 (the strongest reflection is cut off); 
vertical lines indicate calculated reflection positions, experimental (black) and calculated 
pattern (gray) and difference plot (below) are shown. 
 
 
In order to precisely determine the element distribution, a single crystal for resonant 

diffraction experiments was grown by chemical transport (cf. Experimental Section). Energy-

dispersive X-ray spectroscopy (EDX) yields a composition of Ge9.5(5)Sn6.0(5)Sb28.7(3)Te55.8(4) 

(averaged from 3 point analyses). Taking into account normal valence states, this corresponds 

to the formula Ge0.6Sn0.4Sb2Te4 (calculated atom-%: Ge8.6Sn5.7Sb28.6Te57.1). This compound 

forms a 21R In3Te4-type structure with distorted rocksalt-type slabs as described above, which 

is depicted in Fig. 3.[25-29] The three slabs per unit cell are separated by van der Waals gaps 

with Te-Te distances (between the atoms A2, cf. Table 4 and Fig. 3) of 3.720 Å which 

indicate a partially covalent interaction (sum of van der Waals radii: 4.42 Å).[30] This is 

comparable to the corresponding Te-Te distances in 21R-type phases like GeSb2Te4
[25], 

SnSb2Te4
[23] or PbSb2Te4.[31] Among all these phases, these distances do not differ more than 

about 2%. The bond lengths in the distorted 3 + 3 coordination of the cations (C2) next to the 

van der Waals gap are 2.959 Å towards the gap (C2-A2) and 3.2117 Å towards the center of 

the slabs (C2-A1), respectively (cf. Fig. 3); the bond angles are A2-C2-A2: 92.19°; A1-C2-

A1: 83.18  and A1-C2-A2: 92.15°. The cation-centered octahedra in the middle of the slabs 

are almost regular with bond lengths of 3.045 Å and angles of 88.88° and 91.12° respectively 

(A1-C1-A1). While Sn is almost uniformly distributed over both cation positions (occupancy 

factors 11.8% on position C2 and 16.3% on C1, respectively, cf. Fig. 3), Sb clearly prefers the 

position near the van der Waals gap (77.1% on position C2). In contrast, the position in the 
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centre of the rocksalt-type slab (C1) shows almost equal amounts of Ge (37.8%) and Sb 

(45.8%). The same trend can be found in comparable compounds like GeSb2Te4,[25] 

SnSb2Te4,[23] PbSb2Te4
[31] and GeBi2Te4.[32] Tables 3 and 4 summarize the crystal data and 

give parameters of the refinement. The atomic coordinates obtained from the single-crystal 

data and from the corresponding Rietveld refinement are very similar, taking into account 

their standard deviation, the single-crystal values are of course more precise. 

 
Table 1.  Results from the Rietveld refinements for (Ge1-xSnx)Sb2Te4 compounds with x = 
0.25, 0.4, 0.5, 0.75 

Compound Ge0.75Sn0.25Sb2Te4  Ge0.6Sn0.4Sb2Te4  Ge0.5Sn0.5Sb2Te4  Ge0.25Sn0.75Sb2Te4  

Formula mass (in g mol-1) 838.06 844.97 849.58 861.11 

F(000) 1039.5 1048 1053 1066.5 
Crystal system / space group trigonal /  R3m (no. 166) 

Z 3 
Cell parameters (in Å) a = 4.24950(12)  

c = 41.299(3) 
a = 4.26384(14)  

c = 41.346(3) 
a = 4.27072(13)  

c = 41.376(3) 
a = 4.28656(14)  

c = 41.495(4) 
Cell volume (in Å3) 645.87 (6) 650.973(7) 653.66(6) 660.30(7) 

X-ray density (in g·cm-3) 6.46 6.47 6.48 6.50 

Absorption coefficient (in mm-1) 162.24 163.77 164.97 167.88 

Wavelength (in Å) Cu-Kα1 (λ = 1.540596 Å) 
2θ range (in °) 5 ≤ 2θ ≤ 99 

Profile function fundamental parameters (direct convolution approach) 

Restraints 6 

Reflections 115 117 117 119 
Parameters / thereof background 37 / 18 37 / 18 37 / 18 37 / 18 

Rp / Rwp 0.0235 / 0.0349 0.0234 / 0.0340 0.0238 / 0.0342 0.0246 / 0.0369 
RBragg 0.0350 0.0331 0.0333 0.0332 
GooF 1.326 1.436 1.451 1.567 

 

Table 2. Wyckoff positions, atom coordinates, occupancy factors and isotropic displacement 
parameters Biso (in Å3) for (Ge1-xSnx)Sb2Te4 compounds with x = 0.25, 0.4, 0.5, 0.75.  
Atom Formula Position Wyckoff 

position 
x y z Occupancy Biso 

Ge/Sn/Sb Ge0.75Sn0.25Sb2Te4 
Ge0.6Sn0.4Sb2Te4 

Ge0.5Sn0.5Sb2Te4 
Ge0.25Sn0.75Sb2Te4 

C1 3a 
 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

0.4065 / 0.1355/ 0.458 
0.378 / 0.1634 / 0.458 
0.271 / 0.271 / 0.458 
0.1355 / 0.4065 / 0.458 

1.56(13) 
1.33(13) 
1.10(9) 
1.90(14) 

Ge/Sn/Sb Ge0.75Sn0.25Sb2Te4 
Ge0.6Sn0.4Sb2Te4 
Ge0.5Sn0.5Sb2Te4 
Ge0.25Sn0.75Sb2Te4 

C2 6c 0 0 0.42746(16) 
0 0 0.42740(16) 
0 0 0.42725(14) 
0 0 0.4277(2) 

0.1718 / 0.0572 / 0.771 
0.1107 / 0.1183 / 0.771 
0.1145 / 0.1145 / 0.771 
0.0572 / 0.1718 / 0.771 

1.56(13) 
1.34(13) 
1.10(9) 
1.90(14) 

Te Ge0.75Sn0.25Sb2Te4 
Ge0.6Sn0.4Sb2Te4 
Ge0.5Sn0.5Sb2Te4 
Ge0.25Sn0.75Sb2Te4 

A1 6c 0 0 0.13205(15) 
0 0 0.13208(15) 
0 0 0.13251(14) 
0 0 0.1324(2) 

1 
1 
1 
1 

1.61(11) 
1.21(11) 
1.58(12) 
1.55(12) 

Te Ge0.75Sn0.25Sb2Te4 
Ge0.6Sn0.4Sb2Te4 
Ge0.5Sn0.5Sb2Te4 
Ge0.25Sn0.75Sb2Te4 

A2 6c 0 0 0.2900(2) 
0 0 0.2904(2) 
0 0 0.28993(18) 
0 0 0.2898(3) 

1 
1 
1 
1 

1.61(11) 
1.21(11) 
1.58(12) 
1.55(12) 
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Fig. 3: Atom distribution (occupancy factors, missing esd’s are a consequence of constraints) 
for each positon and bond lengths in the refined model of 21R-Ge~0.6Sn~0.4Sb2Te4 at 293 K 
(displacement ellipsoids drawn at 99 % probability level) compared with GeSb2Te4

[25] and 
SnSb2Te4

[23] (cation-anion antisite disorder is not significant in SnSb2Te4, the e.s.d.’s of the 
occupancy factors are ~ 0.006). 
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Table 3. Crystallographic data on the structure refinement of 21R-Ge0.6Sn0.4Sb2Te4 at 293 K; 
residual electron density averaged over all datasets. 
 Ge0.6Sn0.4Sb2Te4 

Formula mass (in g mol-1) 844.97 

Cell parameters (in Å) a = 4.26384(14) , c = 41.346(3) 

Cell volume (in Å3) 650.973(7) 

Crystal system / space group trigonal, R3m (no. 166) 

X-ray density (in gcm-3) 6.466 

F(000)  1048 

Formular units (per unit cell) 3 

crystal size (in mm) 0.10 · 0.09 · 0.01 

Wavelength (in Å) 0.71073  0.56356  0.42468  0.40681  0.38979  
all 

datasets 

sin(q)/l 0.70 0.75 0.65 0.55 0.60 

Absorption coefficient (in mm-1) 22.47 11.91 5.55 9.34 12.04 

Measured / independent reflections 

Rint  

Rσ 

2667 / 370 

0.0634  

0.0268 

2112 / 366 

0.0408  

0.0374 

5351 / 790 

0.0310 

0.0252 

5334 / 383 

0.0401   

0.0380 

8716 / 370 

0.0392  

0.0277 

Parameters / restraints 22 / 15 

Residual electron density 

(min / max) (in eÅ-3)  

-1.91 / +3.36 

R(obs) (a) 

wR(obs) (b) 

R(all) (a) 

wR(all) (b) 

GooF(obs)   

GooF(all) 

0.0370 

0.0544 

0.0424  

0.0563 

1.25  

1.15 

0.0533  

0.1082 

0.0596  

0.1092 

2.25 

2.04 

0.0419 

0.0898 

0.0500 

0.0918 

1.93 

1.73 

0.0473 

0.1021 

0.0536 

0.1053 

2.24 

2.08 

0.0366 

0.0754 

0.0513 

0.0811 

1.53  

1.41 

0.0362 

0.0509 

0.0411 

0.0516 

1.59 

1.46 

(a) R=∑⎪Fo-Fc⎪/∑⎪Fo⎪. 
(b) wR=[∑[w(F0-Fc)2]/∑[w(F0)2]]1/2; w=1/[σ2(F0)+0.0004 (F0

2)]. 
 

Table 4. Structure parameters of 21R-Ge0.6Sn0.4Sb2Te4 at 293 K: atom positions and 
coordinates, occupancy factors (on each position two parameters were refined and the other is 
calculated from the difference to full occupancy), equivalent isotropic (ueq in Å2) and 
anisotropic displacement parameters (uij in Å2; u23 = u13 = 0) 
Atom Posit

ion 

Wyckoff x y z Occupancy ueq u11 = u22 = 2· u12 u33 

Ge/Sn/Sb C1 3a 0 0 0 Ge 0.379 

Sb 0.457(12) 

Sn 0.164(12) 

0.02466(17) 0.0235(2) 0.0269(3) 

Ge/Sn/Sb C2 6c 0 0 0.426568(11) Ge 0.111 

Sb 0.771 

Sn 0.118 

0.02434(12) 0.02234(14) 0.0284(2) 

Te A1 6c 0 0 0.132947(8) Te 1 0.01858(11) 0.01922(13) 0.01729(17) 

Te A2 6c 0 0 0.289989(7) Te 1 0.01581(10) 0.01666(13) 0.01412(17) 
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HRTEM images and diffraction patterns of a thinned crystal of Ge0.75Sn0.25Sb2Te4 whose 

composition was confirmed by TEM-EDX (measured Ge12.2(7)Sn5.5(11)Sb29(2)Te53(2); calculated 

Ge10.7Sn3.6Sb28.6Te57.1) match well with simulations (Fig. 4 and 5). The average c parameter 

from TEM experiments is 41(1) Å in accordance with the 41.346(3) Å obtained by X-ray 

diffraction (Table 1). No phase separation or exsolution was observed; the sample is 

homogeneous. In the SAED patterns, as well as in the Fourier transform of the HRTEM 

image every seventh reflection is strong, which indicates that there are seven layers per 

rocksalt-type slab corresponding to a trigonal structure (R3m) with a 21R stacking sequence. 

The variance of the interatomic distances derived from X-ray data is also visible in the 

HRTEM images; they show sequences of 7 atom layers are separated by van der Waals gaps 

(Fig. 4). This is confirmed by image simulations based on the structure model of 

Ge0.75Sn0.25Sb2Te4 determined by Rietveld refinement on X-ray powder data. No diffuse 

intensities along [001]* are visible in the SAED patterns; therefore, no stacking disorder is 

present.  

 
Fig. : Fourier filtered HRTEM images (zone axis <100>, different defocus values) with 
inserted image simulations (thickness 6 unit cells along the viewing direction, Cs = 1.2, 
spread of defocus 2.14 nm, beam semiconvergence angle of 0.4 mrad) based on the structure 
model for Ge0.75Sn0.25Sb2Te4 determined by Rietveld refinement on X-ray powder data (left); 
corresponding Fourier transform (for df  = -8  nm) and SAED pattern (right). 
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Fig. 5: SAED patterns of Ge0.75Sn0.25Sb2Te4 and corresponding simulations (kinematical 
intensities) based on the corresponding structure model determined by Rietveld refinement 
(cf. Tables 1 and 2) with calculated (black) and measured (gray) tilt angles between the zone 
axes. 
 

4.4.2.2 Mixed crystals (Ge1-xSnx)2Sb2Te5 (x= 0.35, 0.5) 

Rietveld refinements comfirm that homogemeous samples of (Ge1-xSnxTe)2Sb2Te3 with 

x = 0.50 and 0.35 could be obtained by melting stoichiometric amounts of the pure elements, 

quenching in water and subsequently annealing them. The compounds are isostructural to the 

end member 9P-Ge2Sb2Te5; however, the other end member Sn2Sb2Te5 does not exist. A 

sample with x = 0.75 contains a small amount of a side phase. This is most likely due to a 

partial decomposition,[8] probably into Ge1-xSnxSb2Te4 and Ge1-xSnxTe. Structure refinements 

using the Rietveld method were carried out with powder diffraction data of GeSnSb2Te5 and 
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Ge1.3Sn0.7Sb2Te5 (cf. Experimental section). Constraints concerning the sum formula and 

element distribution set up in the same way as explained above for (Ge1-xSnx)Sb2Te4. Figure 6 

shows the result of the Rietveld refinement of GeSnSb2Te5, the corresponding data for 

Ge1.3Sn0.7Sb2Te5 are presented in the ESI (Figure S5). Further information about the 

refinements of GeSnSb2Te5 and Ge1.3Sn0.7Sb2Te5 powder samples is given in Table 5, the 

refined atom parameters are listed in Table 6. 

 

 
Fig. 6: Rietveld refinement of 9P-GeSnSb2Te5; (the strongest reflection is cut off); vertical 
lines indicate calculated reflection positions, experimental (black) and calculated pattern 
(gray) and difference plot (below) are shown. 
 
A single crystal obtained by chemical transport was used for resonant diffraction experiments 

in order to precisely determine the element distribution. The composition of the single crystal 

was determined by SEM-EDX. Taking into account electroneutrality, the formula is very 

close to Ge1.3Sn0.7Sb2Te5 (experiment: Ge15.7(10)Sn8.2(2)Sb21.6(4)Te54.4(14), calculated: 

Ge14.4Sn7.8Sb22.2Te55.6).  

Similar to Ge2Sb2Te5, Ge1.3Sn0.7Sb2Te5 forms the 9P-Pb2Bi2Se5 structure type with 

9 alternating anion and cation layers, respectively, per distorted rocksalt-type slab and unit 

cell. The slabs contain two additional layers compared to 21R-GeSb2Te4 but their arrangement 

is very similar (cf. Fig. 7). Further information about the structure analysis is given in the 

Experimental section, Table 7 presents details of the refinement; refined atom parameters are 

given in Table 8.  
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Fig. 7 gives an overview of the structure and the element distribution in comparison with 

Ge2Sb2Te5. The Te atoms at the van der Waals gap (A3) have a distance of 3.728 Å to the 

next slab, which is slightly larger than for Ge0.6Sn0.4Sb2Te4 (3.720 Å). The bond length 

alteration in the rocksalt-type slabs is comparable to 21R-type (Ge1-xSnx)Sb2Te4 phases 

described above. The coordination sphere of cations near the van der Waals gap (C2) 

corresponds to distorted octahedrons with shorter bonds (2.939 Å) to the unsaturated Te 

atoms at the van der Waals gap (A3) and longer ones to the Te atom in the middle of the slab 

(A2, 3.232) Å; the bond angles indicate pronounced distortion (A3-C2-A3: 92.82°, A3-C2-

A2: 92.17°, A2-C2-A2: 82.40°). The C1 octahedrons closer to the center of the slab are more 

regular with bond lengths of 2.996 and 3.082 Å to the Te atoms A1 and A2, respectively 

(bond angles: A1-C1-A1: 87.38°, A2-C1-A2:  90.57°; A2-C1-A1: 91.00°). In 

Ge1.3Sn0.7Sb2Te, all bonds are slightly longer than in Ge0.6Sn0.4Sb2Te4 and Ge2Sb2Te5.[24] This 

is due to the higher Sn content (ionic radii: Sn 0.69 Å, Ge 0.53 Å]).[30] The larger Sb with its 

higher oxidation state concentrates on the position C2 near the van der Waals gap (occupancy 

59.8%), where Sn (22.4%) is also slightly preferred in comparision to Ge (17.8%). The cation 

position C1 is occupied by more Ge (47.2%) than Sb (40.2%) and a little Sn (12.6%). The 

atomic coordinates of Ge1.3Sn0.7Sb2Te5 obtained from single crystal refinement and Rietveld 

analysis, respectively, differ by up to 10σ. This is probably due to the fact that standard 

deviations are often underestimated in Rietveld method.  

 

Table 5. Results from the Rietveld refinements for GeSnSb2Te5.and Ge1.3Sn0.7Sb2Te5 
Sum formula Ge1.3Sn0.7Sb2Te5 GeSnSb2Te5 

Formula mass (in g mol-1) 1059.01 1072.84 
F(000) 386.6 392 
 
Crystal system / space group 

 
trigonal / P3m1 (no. 164) 

Z 1 
Cell parameters (in Å) a = 4.25792(11) 

c = 17.3657(14) 
a = 4.27486(7) 
c = 17.4165(8) 

Cell volume (in Å3) 272.66(3) 275.635(16) 
X-ray density (in gcm-3) 6.45 6.46 
Absorption coefficient (in mm-1) 158.50 161.19 
Wavelength (in Å) Cu-Kα1 (λ = 1.540596 Å) 
2θ (in °) 5 ≤ 2θ ≤ 99 
Profile function fundamental parameters (direct convolution approach) 
Restraints 6 
Reflections 148 148 
Parameters / thereof background 38 / 18 38 / 18 
Rp / Rwp 0.0258 / 0.0375 0.0226 / 0.0340 

RBragg 0.0212 0.0158 

GooF 1.660 1.430 
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Table 6. Wyckoff-positions, atom coordinates, occupancy factors, isotropic temperature 
factors (in Å3) for GeSnSb2Te5.and Ge1.3Sn0.7Sb2Te5 from powder data 
Atom Formula Position Wyckoff position x y z Occupancy Biso 

Te Ge1.3Sn0.7Sb2Te5 

GeSnSb2Te5 

A1 1a 0 0 0 

0 0 0 

1 

1 

1.56(10) 

1.41(8) 

Ge/Sn/Sb Ge1.3Sn0.7Sb2Te5 

GeSnSb2Te5 

C1 2d 

 

2/3 1/3 0.1190(11) 

2/3 1/3 0.1097(9) 

0.472 / 0.126 / 0.402 

0.299 / 0.299 / 0.402 

1.70(13) 

2.26(10) 

Te Ge1.3Sn0.7Sb2Te5 

GeSnSb2Te5 

A2 1a 1/3 2/3 0.2065(8) 

1/3 2/3 0.2082(6) 

1 

1 

1.56(10) 

1.41(8) 

Ge/Sn/Sb Ge1.3Sn0.7Sb2Te5 

GeSnSb2Te5 

C2 2c 0 0 0.3235(6) 

0 0 0.3244(5) 

0.178 / 0.224 / 0.598 

0.201 / 0.201 / 0.598 

1.70(13) 

2.26(10) 

Te Ge1.3Sn0.7Sb2Te5 

GeSnSb2Te5 

A3 2d 2/3 1/3 0.4183(8) 

2/3 1/3 0.4189(6)  

1 

1 

1.56(10) 

1.41(8) 

 

 
Fig 7: Atom distribution (occupancy factors, missing esd’s are a consequence of constraints) 
for each element and bond lengths in the refined model of Ge1.3Sn0.7Sb2Te5 at 293 K 
(displacement ellipsoids drawn at 99 % probability level) compared with Ge2Sb2Te5

.[24]  
 
TEM investigations of quenched bulk samples of GeSnSb2Te5 corroborate the structure and 

composition of this quarternary trigonal phase, TEM-EDX measurements yield 

Ge12.1(2)Sn12.3(2)Sb23.2(5)Te52.5(5) (calculated for GeSnSb2Te5: Ge11.1Sn11.1Sb22.2Te55.5). For a 

crushed fragment of the ingot with the nominal composition Ge1.3Sn0.7Sb2Te5 used for 

thermoelectric characterization (see below), EDX yields Ge14.8(2)Sn9.5(2)Sb21.6(5)Te54.0(5) 
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(calculated for Ge1.3Sn0.7Sb2Te5: Ge14.4Sn7.8Sb22.2Te55.5). HRTEM images as well as SAED 

patterns of the same sample show a d-value of 17 Å which corresponds to the [001]* direction 

of 9P-Ge2-xSnxSb2Te5. Diffuse streaks along [001]* (cf. Fig. 8) indicate a certain degree of 

stacking disorder or the presence of rocksalt-type slabs with varying thickness.  
 

 
Fig. 8: Experimental SAED pattern (zone axis <110>, left) of a crystal from a bulk sample of 
Ge1.3Sn0.7Sb2Te5  and a corresponding calculated one (right) based on the structure model 
from Ge1.3Sn0.7Sb2Te5. 
 

Table 7. Crystallographic data on the structure refinement of 9P-Ge1.3Sn0.7Sb2Te5 at 293 K; 
residual electron density averaged over all datasets. 
Formular Ge1.3Sn0.7Sb2Te5 

Formula mass (in g mol-1) 1058.96 
Cell parameters (in Å) a = 4.25793(11) , c = 17.3657(14) 
Cell volume (in Å3) 270.83(7) 

Crystal system / space group trigonal, P3m1 (no. 164) 

X-ray density (in gcm-3) 6.45 
F(000)  439 
Z 1 
crystal size (in mm) 0.20 · 0.09 · 0.03 
Wavelength (in Å) 0.71073  0.56356  0.42468  0.40681  0.38979  all datasets 
sin(q)/l 0.71 0.70 0.52 0.70 0.50  
Absorption coefficient (in mm-1) 23.23 12.31 6.81 9.32 12.12 
Measured/independent reflections 
Rint  
Rσ 

2667 / 370 
0.0634  
0.0268 

2112 / 366 
0.0406  
0.0374 

5351 / 790 
0.0310  
0.0252 

5334 / 383 
0.0401  
0.0383 

8440 / 950 
0.0391  
0.0254 

Parameters/restraints 19 / 13 
Residual electron density 
(min/max) (in eÅ-3)  

-1.95 / +2.64 

R(obs) (a) 
wR(obs) (b) 
R(all) (a) 
wR(all) (b) 
GooF(obs)   
GooF(all) 

0.0362 
0.0532 
0.0416 
0.0552 
1.22 
1.12 

0.0516 
0.0771 
0.0579 
0.0786 
1.60 
1.46 

0.0382 
0.0763 
0.0463 
0.0786 
1.64 
1.48 

0.0436 
0.0814 
0.0498 
0.0745 
1.78 
1.69 

0.0350 
0.0700 
0.0456 
0.0745 
1.46 
1.37 

0.0393 
0.0722 
0.0470 
0.0753 
1.53 
1.41 

(a) R=∑⎪Fo-Fc⎪/∑⎪Fo⎪. 
 (b) wR=[∑[w(F0-Fc)2]/∑[w(F0)2]]1/2; w=1/[σ2(F0)+0.0016(F0

2)] 



4 Synergism of electron microscopy and synchrotron diffraction methods  
 

263 

Table 8. Structure parameters of 9P-Ge1.3Sn0.7Sb2Te5 at 293 K: atom positions and 
coordinates, occupancy factors (on each position two parameters were refined and the other is 
calculated from the difference to full occupancy), equivalent isotropic (ueq in Å2) and 
anisotropic displacement parameters (uij in Å2; u23 = u13 = 0) 

Atom Position Wyckoff x y z Occupancy ueq u11 = u22 = 2· u12 u33 

Te1 A1 1a 0 0 0 Te 1 0.01699(10) 0.01752(13) 0.01593(17) 

Ge/Sn/Sb2 C1 2d 2/3 1/3 0.10705(3) Sb 0.402(6) 

Ge 0.472(3) 

Sn 0.126(7) 

0.02547(13) 0.02393(16) 0.0286(2) 

Te3 A2 2d 1/3 2/3 0.205655(18) Te 1 0.01729(9) 0.01789(11) 0.01608(15) 

Ge/Sn/Sb4 C2 2c 0 0 0.32650(3) Sb 0.598(6) 

Ge 0.178(3) 

Sn 0.224(7) 

0.02326(10) 0.02144(13) 0.02692(18) 

Te5 A3 2d 2/3 1/3 0.41930(2) Te 1 0.02015(9) 0.02072(12) 0.01900(16) 

 

 

4.4.2.3  Thermoelectric properties 

Ge0.6Sn0.4Sb2Te4 and Ge1.3Sn0.7Sb2Te5, for which single-crystal data are available, as well as 

GeSnSb2Te5 show metallic behavior of the electrical conductivity σ the absolute values are 

similar and lie in the range of poor metals (cf. Fig. 9). Compared to water-quenched GeSb2Te4 

and Ge2Sb2Te5, which exhibit the crystal structure of the corresponding stable phase, the 

values of the Sn-containing samples are lower by a factor of 3;.
[33] σ of Ge0.6Sn0.4Sb2Te4 is 

about 50% of that of melt-spun, i.e. rapidly solidified GeSb2Te4 at room temperature and 75% 

at 700 K, respectively, while the values of melt-spun Ge2Sb2Te5 [33] are more or less equal to 

those of quenched Ge1.3Sn0.7Sb2Te5 as reported here. The Seebeck coefficients S of the 

samples investigated are very similar. The values for Ge1.3Sn0.7Sb2Te5 and GeSnSb2Te5 are in 

the same range as those of water-quenched Ge2Sb2Te5 and ~25% lower than those of the 

rapidly solidified (melt spun) compound between 180 K and 380 K.[33] This might be due to 

grain boundaries or anti-site defects in the melt spun sample. 

The difference in the ZT values is a consequence of the different thermal conductivities κ. 

These are only 67% (Ge1.3Sn0.7Sb2Te5) and 56% (Ge0.6Sn0.4Sb2Te4), respectively, of those of 

unsubstituted samples (3.2 W/mK for GeSb2Te4 and 3.0 W/mK for Ge2Sb2Te5 at room 

temperature).[34] The phononic part κL of the thermal conductivity (electronic part calculated 

using L = 2.44 • 10-8 V2K-2 which is a typical value for good metals and degenerate 

semiconductors[35]) decreases slightly with increasing temperature for Ge0.6Sn0.4Sb2Te4 and 

Ge1.3Sn0.7Sb2Te5 while it increases for GeSnSb2Te5. Therefore, Sn substitution reduces κ for 

lower substitution rates (Ge1.3Sn0.7Sb2Te5 and Ge0.6Sn0.4Sb2Te4 compared with Ge2Sb2Te5 and 
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GeSb2Te4), which results in higher ZT values up to 0.25 than those of the unsubstituted 

samples (ZT up to 0.2).[33] Since κ of GeSnSb2Te5 increases with the temperature, its ZT value 

at high temperatures is significantly lower than that of Ge1.3Sn0.7Sb2Te5  

 

 
Fig. 9: Thermoelectric properties of Ge0.6Sn0.4Sb2Te4, Ge1.3Sn0.7Sb2Te5 and GeSnSb2Te5: 
electrical conductivity and Seebeck coefficient (left side top to bottom); lattice thermal 
conductivity (κ bold and κL open faced) and thermoelectric figure of merit (right side top to 
bottom). 
 

4.4.3 Conclusion 

Homogeneous bulk samples of Sn-substituted GST materials have so far been investigated 

predominantly as thin films, because their performance as PCMs can be enhanced by 

substituting Sn into the structure.[5 6, 10] Compounds with a similar composition but a different 

structure could be obtained as bulk samples by quenching stoichiometric melts of elements 

involved. The layered phases Ge0.6Sn0.4Sb2Te4 and Ge1.3Sn0.7Sb2Te5 show improved 

thermoelectric properties compared to GeSb2Te4 and Ge2Sb2Te5 since the thermal 

conductivity is decreased while the Seebeck coefficient remains nearly unaffected at high 

temperatures (~400 °C). The lower thermal conductivity might be due to the introduction of 

an additional element in the cation substructure that can act as a phonon scattering center. 

Detailed structural data on the element distribution obtained from single crystals grown by 

chemical transport reactions show that the cations are not randomly distributed but exhibit 

clear preferences for certain positions. Ge1-xSnxSb2Te4 and (Ge1-xSnx)2Sb2Te5 form layered 

phases comparable to those known from the corresponding stable modifications of GST 

materials. The trend of the element distribution is comparable in the new Sn-containing 
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compounds as well as in unsubstituted GeSb2Te4, Ge2Sb2Te5.and other compounds with the 

same structure type like SnSb2Te4, PbSb2Te4 and GeBi2Te4.[23-25, 31, 32] The position near the 

van der Waals gap is preferably occupied by Sb, whereas the position in the center of the 

distorted rocksalt-type slabs is shared by almost equal amounts of Sb and Ge. Sn shows a 

slight preference for the position near the van der Waals gap. This element distribution can be 

explained by the unsaturated coordination of the Te atoms next to the van der Waals gaps, 

which can be compensated more effectively by Sb3+ than by Ge2+ due to the higher formal 

charge. The polarizability and covalent bonding character may also play a role and explain 

why the behavior of Sn is comparable to that of Sb, yet to a lesser extent. The Te-Te distances 

at the van der Waals gaps are nearly the same for all of the 21R-type and 9P-type compounds 

whereas the cation-anion bond lengths increase slightly with increasing Sn content.  

Layered GST materials substituted with Sn open a field of easily accessible thermoelectrics 

which can be produced as bulk material in large amounts. The use of Sn instead of much more 

expensive Ge may also reduce the cost significantly. As these layered phases are 

thermodynamically stable, the thermoelectric properties are not influenced by changing 

nanostructures or by decomposition. The results concerning the element distribution and the 

distortion of coordination polyhedra may also be valuable as a model for PCMs in order to 

describe the local environment in amorphous and crystalline thin films of Sn-doped GST 

materials.  

 

4.4.4 Experimental Section 

4.4.4.1 Sample preparation  

Bulk samples were prepared by melting stoichiometric mixtures of the elements Ge 

(99.999%, Aldrich), Sn (99.99%, Alfa Aesar), Sb (99.9999%, Smart Elements) and Te 

(99.999%, Alfa Aesar) in sealed silica glass ampoules under argon atmosphere at 950 °C (for 

2 h - 24 h) and quenching in water. Subsequently, the samples were annealed about 48 h at 

temperatures between 450 °C and 590 °C (detailed information can be found in Table S1 in 

the ESI). Samples for thermoelectric measurements (ca. 3-4 g) were melted at 950 °C (2 h) in 

ampoules with a flat bottom, quenched in air, annealed (Ge0.6Sn0.4Sb2Te4: 6 d at 540 °C; 

Ge1.3Sn0.7Sb2Te5: 2 d at 490 °C; GeSnSb2Te5: 20 h at 550 °C) and subsequently quenched in 

air. Single crystals of Ge0.6Sn0.4Sb2Te4 and Ge0.75Sn0.25Sb2Te4 were grown by chemical 

transport reactions in sealed silica glass ampoules under vacuum using ~20 mg of I2 with 

temperature gradients from ca. 580 °C to 500 °C for 1 d (composition of the starting material: 
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Ge0.5Sn0.5Sb2Te4 and GeSnSb2Te5, respectively). Ge1.3Sn0.7Sb2Te5 crystals were grown at 

~600 °C (20 h) using the intrinsic gradient of a tube furnace for 20 h from GeSnSb2Te5 as 

starting material, adding 20 mg of SbI3 as a transport agent. In all cases, plate-like single 

crystals could be obtained from the cold end of the ampoule; residual transport agent was 

removed by washing with acetone. 

 

4.4.4.2 Electron microscopy and X-ray spectroscopy  

The composition of the single crystals used for structure determination was confirmed by 

energy dispersive X-ray spectroscopy (EDX) on planar crystal faces using a Jeol JSM-6500F 

scanning electron microscope with EDX detector (model 7418, Oxford Instruments). 

For TEM investigations on Ge1.3Sn0.7Sb2Te5, a finely powdered part of the sample used for 

thermoelectric measurements was dispersed on a copper grid coated with holey carbon film. 

Single crystals of Ge0.75Sn0.25Sb2Te4  (EDX analysis see above) grown by chemical transport 

were embedded in two-component glue and placed between silicon wafers and glass panels. 

These “sandwiches” were fixed in brass tubes with an inner diameter 2 mm. Slices of 0.2 mm 

thickness were cut from the tube and polished to 80-90 µm thickness using SiC coated sand 

papers. In the middle of the disks, conical cavities were produced using a dimple grinder 

(model 650, Gatan) and diamond polishing paste (Electron Microscopy Science) and holes 

were fabricated using a precision argon ion polishing system (model 691, Gatan). The 

samples were mounted on a double-tilt holder with maximum tilt angles of ±30°. The 

measurements were performed on a FEI Titan 80–300 equipped with a field-emission gun 

operating at 300 kV, a Gatan UltraScan 1000 (2k x 2k) camera and an EDX detector system 

TOPS 30 (EDAX). The results were evaluated using the Digital Micrograph[36] and ES 

Vision[ 37 ] software packages. SAED patterns were calculated applying the kinematical 

approximation and HRTEM images were simulated using the multislice method as 

implemented in the JEMS[38] and EMS program package.[39] 

 

4.4.4.3 X-ray powder diffraction 

X-ray powder patterns were recorded on a Huber G670 Guinier camera equipped with a fixed 

imaging plate and integrated read-out system using Cu-Kα1 radiation (Ge(111) 

monochromator, λ = 1.54056 Å). Specimens were prepared by crushing representative parts 

of the samples and fixing powders on Mylar foils using hair-fixing spray. Lattice parameters 
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were determined by pattern fitting (Rietveld method) using TOPAS ACADEMIC[40] with 

structure models obtained from the single-crystal structure analyses. Shifted Chebychev 

background functions were used, crystallite strain was described using a Voigt function and 

preferred orientation was refined with spherical harmonics of the 6th order. All functions are 

implemented in the TOPAS program suite. Atomic coordinates were set equal for atoms 

sharing one position and one common isotropic displacement parameter each was used for 

anions and cations, respectively. Further details of the Rietveld refinements are available from 

the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on 

quoting the depository numbers CSD-426668 (Ge0.75Sn0.25Sb2Te4), CSD-426672 

(Ge0.5Sn0.5Sb2Te4), CSD-426667 (Ge0.25Sn0.75Sb2Te4) and CSD-426669 (GeSnSb2Te5) as well 

as the names of the authors and citation of the paper (Fax: +49-7247-808-666; E-mail: 

crysdata@fiz-karlsruhe.de). 

 

4.4.4.4 Single crystal and synchrotron diffraction methods  

Laboratory single crystal datasets were recorded on an IPDS I diffractometer (Stoe & Cie.) 

with an imaging plate detector using Mo-Kα radiation (graphite monochromator, λ= 0.71073 

Å). Synchrotron data of the same crystals were collected at beamline ID11[41]of the ESRF 

(Grenoble) on a heavy-duty diffractometer (Huber) with vertical rotation axis equipped with a 

Frelon2K CCD detector. The beamline provides a beam tuneable by undulators in the 

required energy range from 22 keV to 32 keV (0.56 Å to 0.39 Å) near the K absorption edges 

of Sn (29.195 keV, 0.42468 Å), Sb (30.477 keV, 0.40681 Å), Te (31.818 keV, 0.38979 Å) 

and far away from the edges (22.00 keV, 0.56357 Å). In order to measure high-angle data, a 

detector offset was used. The datasets were indexed and integrated using SMART[42] and 

SAINT[43]
  Laboratory datasets were absorption corrected numerically using XRED[44] and 

XSHAPE[45]; synchrotron data consisted of several different datasets, which were combined 

and absorption corrected semiempirically using SADABS.[ 46 ] In both cases, the Laue 

symmetry3m was applied. Joint least-squares refinements employing multiple datasets[19] 

were carried out with JANA2006.[47] The dispersion correction terms Δf' and Δf'' were 

calculated from X-ray fluorescence spectra (energy-dispersive XFlash detector; Rontec) via 

the Kramers-Kronig transform[48] using the program CHOOCH.[49] The refinement aimed at 

determining the element distribution in the compounds simultaneously for each element on 

each crystallographic position; full total occupancy was assumed on all atom positions as 

suggested by the results of previous investigations.[22-24] Occupancy factors were constrained 
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in order to fix the sum formula according to the result of the EDX measurements to prevent 

the overall scale factor from diverging. Elements with occupancy factors close to zero within 

their standard deviation (or slightly negative) were deleted on the respective positions until 

only elements with occupancy factors > 3 σ were present. Atomic coordinates and ADPs of 

atoms occupying the same site were set equal. Cell parameters determined from powder 

samples have been used due to their higher precision. Further details of the single-crystal 

structure investigation are available from the Fachinformationszentrum Karlsruhe, D-76344 

Eggenstein-Leopoldshafen (Germany), on quoting the depository number, CSD-426670 

(Ge0.6Sn0.4Sb2Te4) and CSD-42671 (Ge1.3Sn0.7Sb2Te5) as well as the names of the authors and 

citation of the paper (Fax: +49-7247-808-666; E-mail: crysdata@fiz-karlsruhe.de). 

 

4.4.4.5 Thermoelectric properties  

Commercial and in-house-built facilities of the DLR (Cologne) were used to determine the 

temperature dependence of the electrical and thermal conductivities as well as the Seebeck 

coefficient from room temperature up to approximately 500 °C under He atmosphere. Peltier 

influences on the measurement of the electrical conductivity were reduced by a four-point-

probe setup using an AC method (low frequency method using 7 Hz). The electrical resistivity 

was calculated according to ρ = (1/GF) • R (GF: correction of cross section and thickness of the 

sample as well as distance between probe tips). For the determination of the Seebeck 

coefficient a small-temperature gradient across the sample was established while slowly 

changing the environment temperature in order to obtain Seebeck coefficients for each mean 

sample temperature. Type-N thermocouples were directly attached to the sample in order to 

measure both the Seebeck voltage and the temperature.[50, 51] The thermal conductivity was 

calculated from the thermal diffusivity (measured using a laser-flash apparatus Netzsch LFA 

427), the heat capacity (determined by differential scanning calorimetry Netzsch DSC 404), 

and the density of the samples (measured using a Mohr’s balance). The experimental errors 

were estimated at 5% for the electrical conductivity, 5% for the Seebeck coefficient, and 8% 

for the thermal conductivity. The data were calculated by averaging between heating and 

cooling measurements; the values were interpolated to get 50 °C steps in order to calculate ZT 

and κL. 
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4.4.5 Supplementary Information 

 
Fig. S1: Trend of the cation-anion bond lengths (labelling cf. Fig. 4) with increasing Sn 
content x; error bars corrspond to 3 standard deviations; bond lengths for GeSb2Te4 and 
SnSb2Te4 taken from literature (refs. [20] and [22]). 
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Fig. S2: Rietveld refinement of 21R-Ge0.75Sn0.25Sb2Te4 (the strongest reflection is cut off); 
vertical lines indicate calculated reflection positions, experimental (black) and calculated 
pattern (gray) and difference plot (below) are shown. 
 

 
Fig. S3: Rietveld refinement of 21R-Ge0.6Sn0.4Sb2Te4 (the strongest reflection is cut off); 
vertical lines indicate calculated reflection positions, experimental (black) and calculated 
pattern (gray) and difference plot (below) are shown. 
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Fig. S4: Rietveld refinement of 21R-Ge0.25Sn0.75Sb2Te4 (the strongest reflection is cut off); 
vertical lines indicate calculated reflection positions, experimental (black) and calculated 
pattern (gray) and difference plot (below) are shown. 
 
 

 
Fig. S5: Rietveld refinement of 9P-Ge1.3Sn0.7Sb2Te5; (the strongest reflection is cut off); 
vertical lines indicate calculated reflection positions, experimental (black) and calculated 
pattern (gray) and difference plot (below) are shown 
 
 
 



                                 4 Synergism of electron microscopy and synchrotron diffraction methods 
 

 

272 

Table S1: Specific annealing conditions of samples used for structure determination by 
Rietveld refinement; note that the exact temperatures and annealing times have little influence 
on the powder diffraction patterns and that many more samples with almost the same 
diffraction patterns were obtained at slightly different conditions. 

Formula Annealing time (in h) Temperature (in °C) 
Ge0.75Sn0.25Sb2Te4 46 560 
Ge0.6Sn0.4Sb2Te4 144 540 
Ge0.5Sn0.5Sb2Te4 * 20 550 
Ge0.25Sn0.75Sb2Te4 46 560 
Ge1.3Sn0.7Sb2Te5 46 490 
GeSnSb2Te5 39 570 
* The TEM-EDX measurements for Ge0.5Sn0.5Sb2Te4 were done with a sample that was 
anneales at 620 °C for 72 h and subsequently at 590 °C for 120 h. 
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5 Complementary use of electron and X-ray methods 
for the structure elucidation of luminescent 
oxonitridosilicates 

 

5.1 Overview  
 

The oxonitridosilicate phosphors Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) are well suited for 

application in phosphor-converted light-emitting diodes (pc-LEDs) due to their high thermal 

and chemical stability combined with excellent quantum efficiencies.[1-3] They exhibit intense 

emission from blue to yellow when exited by UV to blue radiation (Chapter 1.2). A 

comprehensive comparison of the Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases reveals that all 

compounds are layered oxonitridosilicates with corrugated or planar metal-atom sheets that 

alternate with silicate layers built up of condensed SiON3 tetrahedra. Although the topology 

of the silicate layers is similar for all Sr/Ba ratios (x), there is no complete solid-solution 

series. Variations of the relative orientations of the silicate layers perpendicular to the 

stacking direction result in the formation of polytypes and pronounced real-structure effects. 

The higher individual symmetry of the metal-atom and silicate layers, respectively, compared 

to the overall crystal structure, results in twinning, anti-phase boundaries and intergrowth of 

domains with different structures as well as domains with the same structure but different 

orientations (Figure 1). The best way of elucidating such real-structure phenomena, which 

dominate the structural chemistry in these materials, is by transmission electron microscopy 

(TEM). Due to the special metrics relation and similar interatomic vectors of the Sr1-

xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases, the X-ray powder diffraction patterns resemble each 

other especially since the intensities of the reflections are often strongly influenced by 

disorder and preferred orientation. Since it is often impossible to obtain phase pure samples, 

these structures can only be distinguished unambiguously by detailed structural analysis. The 

combined use of TEM and X-ray investigations is well suited for the in-depth structural 

analysis of this class of materials. A comprehensive overview of all Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ 

x ≤ 1) phases, their real structures, luminescence properties, synthesis routes as well as a 

critical discussion of the literature can be found in Ref [4].  
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Fig. 1: Real-structure effects typically observed in Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1): SAED of 
SrSi2O2N2 (zone axis [101]) with twinned domains (top left) and domains with stacking disorder (top 
right); SAED indicating intergrowth of domains (top center); HRTEM image of intergrowth of 
SrSi2O2N2 domains of the zone axes [001] (1) and [100](2) (bottom left); HRTEM images of oriented 
intergrowth of domains with (a) the BaSi2O2N2-type structure (zone axis [001]) and (b) domains with 
SrSi2O2N-type structure (zone axis [101]) (bottom right); this figure was taken from Ref [4]  
 

For SrSi2O2N2:Eu2+, there are two maximum degree of order (MDO) polytypes. The yellow-

green emitting triclinic polymorph (space group P1) exhibits a quantum efficiency of more 

than 90%.[5,6] The recently discovered monoclinic modification (space group P21) described 

in Chapter 5.2 exhibits a doubled translation period along the stacking direction. This 

originates from a 180° rotation of consecutive silicate layers, which results in a structure that 

can be described as a "maximally twinned" variant of the triclinic form, every silicate layer 

being a twin boundary. The emission maximum of this monoclinic polytype is shifted to 

lower wavelengths by 5 nm compared to that of the triclinic one. Powder samples that consist 

of both polytypes exhibit even higher quantum efficiencies than the triclinic modification. 

BaSi2N2O2 crystallizes in the orthorhombic space group Pbcn;[7] however, additional domains 

with the idealized space group Cmc21 are present. SAED patterns reveal that 

Sr0.25Ba0.75Si2O2N2:Eu2+ consists of intergrown domains corresponding to the SrSi2N2O2-type 

structure and domains with metrics comparable to BaSi2N2O2 but with additional metal-atom 

ordering (Chapter 5.3). The small average domain sizes impede the collection of single-
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crystal data from exclusively one domain. Therefore, electron microscopy was used for the 

determination of the metrics of the individual domains and their relative orientation. HRTEM 

investigations reveal the ordering of the metal atoms in the domains with BaSi2N2O2 metrics. 

This can be described in the space group P1 with 4 metal atom positions, of which one is 

occupied by Sr and the other three by Ba. Metal-atom layers occupied with Sr and Ba are 

more corrugated than those containing only Ba. Due to its similar atomic radius,[8] Eu2+ is 

expected to occupy exclusively the Sr position. This single-site occupancy with Eu2+ is the 

main reason why Sr0.25Ba0.75Si2O2N2:Eu2+ exhibits the smallest full width at half maximum 

(37 nm) known for Eu2+-doped silicate phosphors. These investigations demonstrate that since 

the luminescence properties are mainly determined by the coordination sphere of the rear-

earth atom, they can only be understood based on a profound knowledge about the crystal 

structure. Due to the presence of various real-structure effects, detailed investigations of Eu2+-

doped Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) compounds (Chapter 5.2 and 5.3), which are necessary to 

explain their luminescence, rely on the combined use of electron and X-ray diffraction 

methods. When the Ba content in Sr1-xBaxSi2O2N2 is increased, a red shift of the emission to 

the yellow green spectral region is observed as long as the SrSi2O2N2-type structure is present, 

e.g. for Sr0.5Ba0.5Si2O2N2:Eu2+.[9] This is a consequence of the shorter bond lengths between 

Eu2+ and the oxygen ligands, because the introduction of larger Ba atoms lead to a 

compression of the Sr coordination spheres and Eu2+ preferably occupies the Sr site as 

described above. Sr0.25Ba0.75Si2O2N2:Eu2+ is expected to show an even stronger red shift due 

to the further increased Ba content. However, the structure changes to a distorted variant of 

the BaSi2O2N2 type and therefore a shift of the emission maxima to the blue spectral region 

compared to the compounds with lower Ba contents occurs. As observed for samples with 

SrSi2O2N2-type structure, a red shift of the emission with respect to BaSi2O2N2 itself is 

expected for increasing Sr contents. However, the corrugated metal-atom layers in 

Sr0.25Ba0.75Si2O2N2:Eu2+ (they are planar in BaSi2O2N2) in combination with the slight shift of 

consecutive silicate layers against each other perpendicular to the stacking direction result in 

larger distances between Eu2+ and the oxygen ligands. Therefore intense blue emission with 

an overall emission wavelength of 472 nm is observed. 
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5.2 New polymorph of the highly efficient LED-phosphor SrSi2O2N2:Eu2+ 

– polytypism of a layered oxonitridosilicate 

 

M. Seibald, T. Rosenthal, O. Oeckler, C. Maak, A. Tücks, P. J. Schmidt, D. Wiechert, W. 

Schnick 

Chem. Mater. 2013, 25, 1852-1857.  

 

Abstract 

SrSi2O2N2:Eu2+ is an outstanding yellow emitting phosphor material with practical relevance 

for application in high power phosphor-converted light-emitting diodes. The triclinic 

compound exhibits high thermal and chemical stability and quantum efficiency above 90 % 

and can be excited by GaN-based UV to blue LEDs efficiently. We have now discovered a 

hitherto unknown monoclinic polymorph of SrSi2O2N2, synthesized by solid-state reaction, 

which is characterized by an alternating stacking sequence of silicate layers made up of 

condensed SiON3 tetrahedra and metal-ion layers. As proven by single-crystal X-ray 

diffraction, the arrangement of the silicate layers is significantly different from the triclinic 

polymorph. The translation period along the stacking direction is doubled in the monoclinic 

modification (P21, Z = 8, a = 7.1036(14), b = 14.078(3), c = 7.2833(15) Å, β = 95.23(3)°, 

V = 725.3(3) Å3). TEM investigations in combination with HRTEM-image simulations 

confirm the structure model. The powder X-ray diffraction pattern shows that the volume 

fractions of the monoclinic and triclinic modifications are approximately equal in the 

corresponding powder sample. The emission wavelength of 532 nm (fwhm ~2600 cm-1) as 

determined by single-crystal luminescence measurements of the monoclinic phase exhibits a 

shift to smaller wavelengths by ~5 nm compared to the triclinic polymorph. Differences of the 

luminescence properties between the monoclinic and triclinic phase are interpreted with 

respect to the differing coordination of Eu2+ in both phases. The new monoclinic 

SrSi2O2N2:Eu2+ polymorph is a very attractive phosphor material for enhancement of color 

rendition of white-light pc-LEDs. 
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5.2.1 Introduction 

Phosphor-converted light-emitting diodes (pc-LEDs) are attractive candidates to replace 

incandescent light bulbs because of their much more efficient conversion of electric energy to 

visible light.[1-4] In order to improve the performance and energy-saving potential of pc-LEDs, 

there is a huge demand for novel efficient phosphors as well as for improvement of the 

properties of existing materials.[5,6] Various luminescent solid-state materials with emission 

from the blue to the red spectral region have been described.[2,6-14] Analysis of their properties 

in relation to composition and crystal structure of the host material has revealed general 

requirements for phosphors to be used for pc-LED applications.[12] The detailed knowledge of 

the crystal structure is a prerequisite as properties of such optical materials cannot be fully 

predicted from the material’s composition alone.[15]  

According to these specifications, the material class of (oxo)nitridosilicates is well suited for 

application as host lattices because high quantum efficiencies (> 90%) can be achieved, a 

small Stokes shift is possible due to the rigidity of silicate substructures and pronounced 

thermal and chemical stability is present.[16] SrSi2O2N2 is a host lattice showing excellent 

luminescence properties when doped with Eu2+. SrSi2O2N2:Eu2+ exhibits intense broad-band 

emission in the yellow-green spectral region due to the parity allowed 4f6(7F)5d1 → 4f7(8S7/2) 

transition when excited by UV to blue light.[4,10,17-35] The disordered crystal structure consists 

of alternating metal-ion and silicate layers. Both the idealized ordered structure as well as the 

average structure of the disordered variant are triclinic (a = 7.0802(2), b = 7.2306(2), 

c = 7.2554(2) Å, α = 88.767(3), β = 84.733(2), γ = 75.905(2)°, V = 358.73(2) Å3, space group 

P1). The metal-ion layers are strongly affected by disorder phenomena, i.e. polysynthetic 

twinning, antiphase boundaries, or oriented intergrowth. The silicate layers are built up of 

vertex-sharing SiO[1]N[3]
3 tetrahedra forming dreier rings perpendicular to [010]*.[36] The 

reflection positions in powder X-ray diffraction (PXRD) patterns, in principle, resemble those 

reported by Zhu (X2-phase)[37] and Hintzen[28] although these authors have proposed different 

metrics. However, some powder patterns of our samples and also those in the literature show 

a number of reflections that are inconsistent with the triclinic structure model of SrSi2O2N2 

discussed in literature.[20,29,31,35,38-41] Surprisingly, samples with such ”impurity phases” 

exhibit excellent overall luminescence properties. Whenever peak emission wavelengths of 

SrSi2O2N2:Eu2+ powder samples are reported to be significantly smaller than 537 nm the 

corresponding PXRD patterns show unknown, additional reflections.[20,29,31,35,38,39] In this 

contribution, we clarify the nature of the additional phase that leads to these reflections and 

further investigate its impact on luminescence properties. 
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5.2.2 Experimental Section 

5.2.2.1 Synthesis  

SrSi2O2N2:Eu2+ (2 mol% Eu) was prepared by heating a stoichiometric mixture of 

Sr2SiO4:Eu2+ and Si3N4 (UBE, > 98%) for 16 h to 1540 °C in forming gas atmosphere 

(N2:H2 = 95:5) according to eq. 1. The starting materials were placed on tungsten foil within a 

molybdenum crucible and heated to the final temperature with 300 °C/h (T < 1000 °C) and 

150 °C/h (T > 1000 °C), respectively.  

 

Sr2SiO4:Eu2+ + Si3N4                        2 SrSi2O2N2:Eu2+    (Eq. 1) 
 

5.2.2.2 X-ray Spectroscopy  

The chemical composition of several crystallites was analyzed by energy dispersive X-ray 

(EDX) spectroscopy using a JSM-6500F scanning electron microscope (SEM, Jeol) with a 

Si/Li EDX detector (Oxford Instruments, model 7418). The SEM was also used to collect 

images of particles to study their morphology. Further analyses were performed using the 

EDX system (TEM Tops 30, Edax) of the transmission electron microscope mentioned below.    
 

5.2.2.3 Powder X-ray Diffraction  

PXRD data were collected on a STOE STADI P diffractometer (Cu-Kα1 radiation, Ge(111) 

monochromator, position sensitive detector) in transmission geometry using a flat sample 

holder with thin film of investigated powder material. Rietveld refinement was carried out 

using the TOPAS package.[42]    
 

5.2.2.4 Single-Crystal X-ray Diffraction  

Selected green luminescent single crystals of SrSi2O2N2:Eu2+ were mounted on glass fibers 

and checked for quality on a Buerger precession camera. Intensity data were collected on a 

Nonius Kappa-CCD diffractometer with graded multilayer X-ray optics (Mo-Kα radiation, 

λ = 0.71093 Å). The structure was solved by direct methods and refined by full-matrix least-

squares methods.[43] Further details of the crystal structure investigation may be obtained from 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax, 

(+49)7247-808-666; e-mail, crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de 

/request_for_deposited_data.html) on quoting the depository number CSD-425649.   
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5.2.2.5 Transmission Electron Microscopy  

Selected area electron diffraction (SAED) patterns and high-resolution (HR) images were 

recorded on a Fei Titan 80-300 (acceleration voltage 300 kV) transmission electron 

microscope (TEM). Tilt series of diffraction patterns were obtained using a double-tilt sample 

holder with a maximum tilt angle of ±30°. For preliminary experiments, ground powder 

samples were dispersed in ethanol and drop cast on copper grids coated with a holey carbon 

film. Since such samples showed pronounced preferred orientation, the powder was mixed 

with a two-component glue, placed between silicon wafers and glass panels, and then fixed in 

brass tubes (inner diameter 2 mm). These were cut into slices perpendicular to the tube 

elongation (thickness approx. 200 µm) and polished to 80-90 µm using different SiC coated 

sand papers (grain size: 40-5 µm). Finally, the thickness in the middle of the disk was reduced 

to approximately 10 µm using a dimple grinder (type 650, Gatan) and diamond polishing 

paste (Electron Microscopy Science). Subsequently, a hole in the glue matrix was fabricated 

using a precision ion polishing system (type 691, Gatan). Crystallites at the perimeter of the 

hole (partially free of glue) were randomly oriented and suitable for TEM investigations. For 

simulations of SAED patterns and HRTEM images EMS program was used.[44] In order to 

ensure comparability to results from single-crystal and powder investigations, the same 

sample was used for TEM analysis. 

 

5.2.2.6 Luminescence  

Luminescence investigations were done using a luminescence microscope consisting of a 

HORIBA Fluoromax4 spectrofluorimeter system attached to an Olympus BX51 microscope 

via fiber optical bundles. The samples were measured inside a glass capillary (outer diameter 

approx. 0.2 mm). The excitation wavelength was chosen to 420 nm with a spectral width of 

10 nm. The emission spectra were collected in the wavelength range between 450 nm and 

750 nm with 2 nm step size. This range was also used for color-point calculations.   
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5.2.3 Results and Discussion 

5.2.3.1 Synthesis and chemical analysis 

In powder samples of SrSi2O2N2:Eu2+ (2 mol% Eu) prepared by the above-mentioned 

synthesis, which exhibit additional reflections in PXRD patterns (referring to triclinic 

structure model), two different types of particle morphology can be found in SEM images. 

Particles of type 1 (Figure 1, left) are built up of stacked platelet-like crystals. Due to the well-

known real-structure effects,[36] such morphology seems to be reasonable for the triclinic 

SrSi2O2N2 structure type. Particles of type 2 (Figure 1, right) show crystals with 

approximately isometric polyhedral shape with diameters of > 10 µm as required for X-ray 

structure analysis, which is surprising for SrSi2O2N2. EDX yields an average composition (7 

measurements), normalized according to the overall metal content, of 

Sr0.98Eu0.02Si2.35(3)O2.6(2)N2.3(6) for crystals of type 2. This is in accordance with the nominal 

composition SrSi2O2N2 taking into account the typical uncertainty intervals (Sr/Si signal 

overlap). 

 

 
Fig. 1: SEM images of two typical SrSi2O2N2:Eu2+ particles in the powder sample. Stacked 
platelet-like crystals (left) and polyhedral single crystals (right) can clearly be distinguished. 
 

5.2.3.2 Single-Crystal Structure Analysis 

Diffraction data of a green luminescent polyhedral crystal (type 2) were collected and the 

corresponding crystal structure of monoclinic SrSi2O2N2:Eu2+ was refined in space group 

P21.[43] The Eu2+ content (2 mol%) was neglected because of its insignificant contribution to 

the scattering density. A separate scale factor was used for the broadened reflections with 

h = 2n + 1, and inversion twinning was taken into account. Crystallographic data are 

summarized in Table 1. Similar to triclinic SrSi2O2N2, the crystal structure exhibits alternating 
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metal-ion and silicate layers, the latter ones built up from highly condensed SiO[1]N[3]
3 

tetrahedra forming dreier rings.[36,45-48] In contrast to the triclinic structure, the tetrahedra 

orientation changes in consecutive silicate layer, which are rotated against each other by 180°, 

consistent with a 21 screw axis and the doubled translation period along the [010]* stacking 

direction compared to the triclinic structure (Figure 2).[36] The cations are coordinated in a 

trigonal prismatic way by O atoms, similar to the triclinic model.  

 

 

 
Fig. 2: Crystal structures (metal atoms: gray spheres, unit-cells outlined) of (a) triclinic 
SrSi2O2N2 (projection along [101]) and (b) monoclinic SrSi2O2N2 (projection along [101]). 
The orientation of consecutive silicate layers (SiON3 tetrahedra: gray, oxygen: white spheres, 
nitrogen: black spheres) differs in both models.  
 

The 180° rotation of two consecutive silicate layers corresponds to the structure of twin 

boundaries as they are present in the real structure of Sr0.5Ba0.5Si2O2N2, which is isotypic to 

triclinic SrSi2O2N2.[47] There, such twin boundaries occur approximately every 100 nm. 

Significantly smaller twin domains dramatically change the PXRD pattern as they involve a 

different average structure. Monoclinic SrSi2O2N2, however, can be regarded as a maximally 

twinned form of the triclinic modification with “domains” of just one layer thickness in an 

ordered stacking sequence. This yields higher symmetry and different unit-cell metrics.  
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Table 1. Crystallographic data for SrSi2O2N2. 

Crystal system monoclinic 
Space group P21 (no. 4) 
Lattice parameters [Å] a = 7.1036(14) 

b = 14.078(3) 
c = 7.2833(15) 
β = 95.23(3)° 

Cell volume [Å3] 725.3(3) 
Z 8 
Formula weight [g mol-1] 203.82 
ρcalcd [g cm-3] 3.733 
Absorption coefficient µ [mm-1] 15.358 
F(000) 768 
2θ range [°] 3.16 – 26.00 
Radiation λ [Å] 0.71073 (Mo-Kα) 
Reflections (total) 5572 
Independent reflections 1468 
Observed reflections 1145 
Goodness of fit 1.077 
R1 / wR2 (all reflections) 0.0850 / 0.1743 
R1 / wR2 (Fo

2 ≥ 2σ(Fo
2)) 0.0633 / 0.1573 

min / max residual electron density [eÅ-3] - 1.58 / 2.74 
 

5.2.3.3 Lattice Energy Calculations  

The consistency of the structure model is corroborated by lattice energy calculations (MAPLE, 

Madelung part of lattice energy).[49-52] The assignment of O and N atoms was done in analogy 

to other Sr1-xBaxSi2O2N2 phases with the same silicate layer topology.[36,45-48] This is 

confirmed by the calculated values listed in Table 2 which are close to typical partial MAPLE 

values.[16] The comparison between the calculated total MAPLE value and the sum of 

MAPLE values corresponding to the reference reaction equation, starting from the respective 

binaries, shows a difference of only 0.06 %. This is in good agreement to the value calculated 

for EuSi2O2N2 also based on single crystal data (Δ = 0.1 %).   

 

Table 2. Results of MAPLE Calculations (in kJ/mol) for Monoclinic SrSi2O2N2: Partial 
MAPLE Values, Total MAPLE Sum and Difference to Theoretical Total MAPLE Value 
Corresponding to a Reference Equationa  

Sr2+ Si4+ O[1]2- N[3]3- Total MAPLE Δ 

1929-2070 9373-9617 2227-2432 6093-6268 37923 0.06 % 

Total MAPLE (SrO + 0.5 SiO2 + 0.5 Si3N4): 37946 
aTypical MAPLE values (in kJ/mol): Sr2+: 1500-2100; Si4+: 9000-10200; O[1]2-: 2000-2800; N[3]3-: 5000-6200. 

 



          5 electron and X-ray methods for structure elucidation of luminescent oxonitridosilicates 

 

286 

5.2.3.4 Rietveld Refinement 

In order to evaluate the proportion of monoclinic SrSi2O2N2 in the powder sample, a two-

phase Rietveld refinement using TOPAS[42] was done (Figure 3). Weighted distance restraints 

for Si-O/N tetrahedra in monoclinic SrSi2O2N2 were used to ensure comparability to other  

Sr1-xBaxSi2O2N2 phases with the same kind of silicate layers.[36,45-48] Thereby all atomic 

coordinates could be refined. The remaining misfit was significantly reduced after adding the 

triclinic structure of SrSi2O2N2 as a second phase. For the latter, only Sr and Si atom positions 

were refined.[36] Some 2θ regions were excluded because they are strongly affected by diffuse 

scattering as a consequence of real-structure effects in triclinic SrSi2O2N2
[47] (stacking 

disorder) which cannot be described by the Rietveld method. The degree of cation disorder, 

i.e. value of antiphase transitions in %, was refined to 40 % using split positions as described 

for the triclinic average structure.[36,47] As expected, both diffraction patterns are rather similar 

since basically only the N positions in every second silicate layer are different in the two 

structure models. Nevertheless, the patterns can clearly be distinguished by reflections at 14.0, 

17.8, 20.9, 22.7, and especially at 29.4° 2θ because there are no contributions from the 

triclinic structure (see Figure 3). The results confirm that the described stacking sequence in 

monoclinic SrSi2O2N2 is present in a significant portion of the powder particles. The amounts 

of both modifications are approximately equal, and no further unexplained reflections occur in 

PXRD pattern.   

 
Fig. 3: Two-phase Rietveld fit (RP = 0.041, wRP = 0.055; 8367 data points) of the PXRD 
pattern of SrSi2O2N2:Eu2+ with measured histogram (black crosses), calculated pattern (gray 
solid line), difference curve (black solid line) and positions of reflections (bars): top 
monoclinic SrSi2O2N2 (48 %, ρcalcd [g cm-3] = 3.7083(5)), bottom triclinic SrSi2O2N2 (52 %, 
ρcalcd [g cm-3] = 3.7043(2)). The excluded regions (no difference curve) correspond to maxima 
due to diffuse scattering. Selected reflections exclusively belonging to monoclinic phase are 
marked by black arrows in enlarged pattern (upper right). 
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5.2.3.5 Transmission Electron Microscopy and Electron Diffraction 

In TEM samples prepared by dispersing powder on Cu grids with carbon film, all plate-like 

crystallites exhibited approximately the same orientation of the stacking direction, 

perpendicular to the grid, as it is typical for layered compounds. This, of course, impedes the 

determination of the stacking periodicities. Such texture effects are not significant if the 

powder is embedded in glue, where crystallites with a translation period of ~14 Å, typical for 

monoclinic SrSi2O2N2, could easily be found. TEM-EDX yielded an average formula of 

Sr0.98Eu0.02Si2.01(8)O2.3(5)N1.6(3) for the crystallites investigated. Traces of SrSiO3 were found, 

although the corresponding reflections cannot be observed in PXRD data. Various SAED 

patterns showing translation periods of 14 Å can be simulated based on the results from 

single-crystal analysis. Calculated tilt angles between different zone axes correspond to the 

expected ones (Figure 4).[44] Experimental SAEDs contain 0k0 reflections with k = 2n + 1 

(kinematically absent for 21 || [010]) because of dynamic effects.   

 

 
Fig. 4: Experimental SAED patterns (top) of monoclinic SrSi2O2N2:Eu2+ with the 
corresponding zone axes and simulated ones (bottom, calculated from single-crystal data). 
Experimental tilt angles (black) between zone axes match calculated ones (gray). The [101] 
pattern was recorded using another crystallite due to the limited tilt range of the sample holder. 
 

Although the monoclinic model for SrSi2O2N2 is appropriate to simulate experimental SAED 

images, the local stacking sequence might differ since the beam diameter for SAED patterns 

(Ø = 100 nm) is significantly larger than the smallest area (10 unit cells ≈ 10 nm) that may be 

described by an ordered structure model. Figure 5 shows an HRTEM image of a crystallite 

fringe. As the Fourier transform (FT) of the marked area (diagonal 10 nm) corresponds to the 

SAED pattern, this area is representative for the whole area contributing to SAED patterns; no 

or few defects are expected.  
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Fig. 5: (a) HRTEM image of monoclinic SrSi2O2N2:Eu2+ (zone axis [101]); approximately 10 
unit cells (~10 nm) along stacking direction (white frame), the corresponding FT is shown 
(black frame); (b) experimental SAED pattern (beam diameter ~100 nm); (c) SAED pattern 
simulated using SrSi2O2N2 (monoclinic) single-crystal data. 
 

HRTEM image simulations using the multislice method correlate the structure model to 

experimental images of a defocus series, passing the Scherzer defocus.[44] The defocus value 

in Figure 6a (zone axis [101]) is -52 nm, i.e. close to the Scherzer defocus so that contrasts 

can directly be correlated to atom positions.  

The simulation fits all features of the experimental image quite well, which is also true for the 

other HRTEM simulations in Figure 6. In summary, the results of TEM investigations 

confirm the existence of the monoclinic stacking variant of SrSi2O2N2 derived from single-

crystal X-ray diffraction analysis. 
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Fig. 6: HRTEM (accelerating voltage = 300 kV) images of monoclinic SrSi2O2N2:Eu2+ 
crystallites of zone axis [101] (a-d) and [101] (e,f) with inserted image simulations (a: Δf = -
52 nm; b: Δf = -72 nm; c: Δf = -92 nm; d: Δf = -112 nm; e: Δf = +19 nm; f: Δf = +40 nm; for 
all simulations: aperture diameter = 20 nm-1, cs = 1.2 mm, spread of focus = 2.14 nm, beam 
semi-convergence = 0.60 mrad, layer thickness approx. 4 nm). 
 

5.2.3.6 Luminescence 

The emission wavelength of green (presumably) triclinic SrSi2O2N2:Eu2+ (no additional 

reflections in PXRD pattern belonging to monoclinic modification) was reported in a range of 

~537-540 nm for doping with 2 mol% Eu,[4,17,21,24,27,53,54] which leads to high quantum 

efficiency (QE > 90%).24 Regarding the enhancement of color rendition of white-light  

pc-LEDs that make use of mixtures of green and red emitting phosphors, a shift of the peak 

emission wavelength towards shorter wavelengths (~ 530 nm) would be desirable.[14] The 

color point of “triclinic” SrSi2O2N2:Eu2+ can be changed by variation of the Eu-doping 

level[19,26,28-30,34] or substitution of Sr by Ca or Ba.[11,23,24,26,34,55-57] Nevertheless, all changes of 

the host-lattice composition shift the emission wavelength towards smaller energies. For  

Sr1-xBaxSi2O2N2:Eu2+ with x ≥ 0.75, a shift to higher energies can be achieved; however, its 

emission spectrum is located in the blue-green spectral region due to the different structure 

type.[28,46] The determination of luminescence properties of monoclinic SrSi2O2N2:Eu2+ 

cannot be done using powder samples because all obtained samples were inhomogeneous (see 

section: Rietveld refinement). In order to avoid averaging of emission signals of both 

modifications, the emission spectrum of the single crystal, which was already used for 

structure analysis, was measured (Figure 7).   
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Fig. 7: Emission spectrum of the SrSi2O2N2:Eu2+ (2 mol% Eu) single crystal (λexc = 420 nm, 
λem = 532 nm, fwhm ~2600 cm-1); CIE color coordinates: x = 0.314, y = 0.621. 
 

The peak position was determined at λem = 532 nm by exciting with UV to blue radiation. 

This means that the emission wavelength of the single crystal of monoclinic SrSi2O2N2:Eu2+ 

is shifted at least 5 nm towards smaller wavelengths in comparison to powder material of 

SrSi2O2N2:Eu2+ which do not show additional reflections in PXRD pattern belonging to 

monoclinic modification. In order to prove whether this fact is intrinsic or caused by 

reabsorption of emitted high-energetic radiation in the powder sample (i.e. excitation of 

another Eu2+-ion by re-emitted photons due to overlap of absorption and emission band), 

various crystallites (independent of crystal symmetry) with anisotropic morphology were 

investigated. If the emission wavelength is affected by the length of the radiation pathway 

through a crystal (i.e. number of activator centers along the pathway, maximal for 

macroscopic powder sample) different values for λem are expected for varying orientations of 

crystallites. The more centers are involved, the more the macroscopically composed emission 

signal gets shifted to smaller energies. In the present case, λem was constant for various 

orientations of three investigated anisotropic crystallites with different sizes. Thus, the red-

shifted emission wavelength of SrSi2O2N2:Eu2+ powder samples (“triclinic” modification, i.e. 

no additional reflections in PXRD patterns belonging to monoclinic modification), compared 

to SrSi2O2N2:Eu2+ single crystal (monoclinic modification), is not caused by reabsorption 

effects. Therefore, the observed differences in measured λem-values for SrSi2O2N2:Eu2+ (single 

crystal, monoclinic) and SrSi2O2N2:Eu2+ (powder, no additional reflections in PXRD pattern 
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belonging to monoclinic modification) are significant. In order to draft a possible reason for 

the shift on the basis of the crystal structures, we focus on lattice parameters of triclinic and 

monoclinic modification. In contrast to the triclinic phase, monoclinic SrSi2O2N2 has larger  

a and c lattice parameters which represent the periodicity of silicate layers because 

corresponding settings are equal for both crystal structures. As a direct consequence, 

interatomic distances increase which corresponds to less corrugated chains of condensed 

SiON3 tetrahedra. Furthermore, Sr-O distances are also increased which should lead to a 

decreased 5d-orbital splitting in case of substitution of Sr by an Eu activator ion and an 

increase of the energetic separation of the 4f75d0 and 4f65d1 states, equivalent to a blue-shifted 

maximum of the emission band for monoclinic SrSi2O2N2:Eu2+ compared to the triclinic 

modification. For both modifications, average activator-ligand distances are slightly longer 

than the sum of the ionic radii.[52] This hardly leads to lattice relaxation in the case of excited 

Eu2+. As a consequence, less electron-phonon coupling may result in reduced Stokes shift and 

narrower fwhm, which decreases thermal quenching of luminescence.[58] Luminescence 

properties of the above-mentioned SrSi2O2N2:Eu2+ powder (mixture of triclinic and 

monoclinic phase) were also measured while reabsorption effects for the powder were 

minimized by extrapolating the emission properties of a dilution series (silicone suspensions) 

to zero phosphor concentration, in order to ensure comparability of single-crystal and powder 

data. An emission wavelength of λem = 535 nm was determined supporting the thesis that the 

emission band of the monoclinic modification is blue-shifted in comparison to samples 

without additional reflections in the PXRD pattern (537-540 nm).    
 

5.2.5 Conclusion 

A new monoclinic modification of SrSi2O2N2 has been characterized applying a combination 

of X-ray diffraction and electron-microscopy methods. For the first time, single-crystal data 

could be obtained for samples with this composition. The triclinic and monoclinic 

modifications are, in fact, polytypes. Phase formation might therefore be controlled by 

kinetics. Polytypism was occasionally discussed for layered MIISi2O2N2 (M = Ca, Sr, Ba) 

phases; now we have described two distinct maximum degree of order (MDO) polytypes. The 

emission wavelength of a single crystal of the Eu-doped monoclinic modification is shifted by 

~5 nm towards smaller wavelengths (λem = 532 nm) compared to that of triclinic 

SrSi2O2N2:Eu2+ (2 mol%) whose emission wavelength cannot be tuned to that value by host-

lattice modification because substitution of Sr by Ca as well as Ba always leads to red-shifted 

emission bands. The triclinic and monoclinic polytypes only differ by the orientation of 
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consecutive symmetrically equivalent silicate layers. A dependence of luminescence 

properties on layer orientation in polytypes has not yet been discussed for phosphor materials 

in the literature. As the triclinic and monoclinic modifications are so closely related, it is not 

clear if phase pure samples of any SrSi2O2N2 modification can be prepared. The results from 

our contribution complement the understanding of structure-property relationships for 

frequently used phosphor material SrSi2O2N2:Eu2+. 
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5.3 Unexpected luminescence properties of Sr0.25Ba0.25Si2O2N2:Eu2+ –         

a narrow blue emitting oxonitridosilicate with cation ordering  

 

M. Seibald, T. Rosenthal, O. Oeckler, F. Fahrnbauer, A. Tücks, P. J. Schmidt, W. Schnick  

Chem. Eur. J. 2012, 18, 13446-13452. 

 

Abstract  

Due to parity allowed 4f6(7F)5d1 → 4f7(8S7/2) transition, powders of the nominal composition 

Sr0.25Ba0.75Si2O2N2:Eu2+ (2 mol % Eu2+) show surprising intense blue emission 

(λem = 472 nm) when excited by UV to blue radiation. Similarly to other phases in the system 

Sr1-xBaxSi2O2N2:Eu2+, the described compound is a promising phosphor material for pc-LED 

applications as well. The FWHM of the emission band is 37 nm, representing the smallest 

value found for blue emitting (oxo)nitridosilicates so far. A combination of electron and  

X-ray diffraction methods was used to determine the crystal structure of 

Sr0.25Ba0.75Si2O2N2:Eu2+. HRTEM images reveal the intergrowth of nanodomains with 

SrSi2O2N2 and BaSi2O2N2-type structures, which leads to pronounced diffuse scattering. 

Taking into account the intergrowth, the structure of the BaSi2O2N2-type domains was refined 

on single-crystal diffraction data. In contrast to coplanar metal atom layers which are located 

between layers of condensed SiON3-tetrahedra in pure BaSi2O2N2, in Sr0.25Ba0.75Si2O2N2:Eu2+ 

corrugated metal atom layers occur. HRTEM image simulations indicate cation ordering in 

the final structure model, which, in combination with the corrugated metal atom layers, 

explains the unexpected and excellent luminescence properties. 

 

5.3.1 Introduction 

In times of economic crises, shortage of resources and increased sensibility of people to their 

environment, there is a huge demand for new materials or improved applications to enhance 

energy and cost efficiency together with environmental compatibility. One possible strategy is 

the replacement of conventional incandescent bulbs and fluorescent lamps by phosphor 

converted (pc)-LED applications that leads to energy saving and positive environment 

effects.[1-5] White light can be generated by pc-LEDs employing the combination of a blue 

pump LED with yellow-green and orange-red solid-state luminescent materials (phosphors) 

for light conversion. Therefore, the interest and research on host lattices for rare earth 

activators rapidly increased during the last few years. Beside oxidic garnet phosphors 
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especially (oxo)nitrido(alumo)silicates are being investigated in this respect.[1-7] Their crystal 

structures show higher variability compared to pure oxosilicates, because N atoms can bridge 

up to four tetrahedra leading to a higher degree of condensation.[7] As a consequence, 

emission variable within the entire visible optical spectrum can be achieved with these 

materials. The oxonitridosilicate phases Sr1-xBaxSi2O2N2 (examples of so called 1-2-2-2 

phases) are promising host lattices since excellent luminescence properties in the yellow-

green spectral region are observed upon doping with Eu2+ ions.[8-17] For instance, 

SrSi2O2N2:Eu2+ can be used in white high power pc-LED applications achieving a high 

luminous efficiency, excellent color quality and high color stability.[18] The corresponding 

crystal structures exhibit various real-structure effects on different length scales, e.g. 

intergrowth, microtwinning and stacking disorder.[8,15,19] Single crystals for structure 

elucidation could only be obtained for EuSi2O2N2 (isotypic to SrSi2O2N2).[20] As a 

consequence, routine strategies for structure determination could not be used for the related Sr 

and Ba compounds as well as the respective mixed phases.[8,15,19] The compounds  

Sr1-xBaxSi2O2N2:Eu2+ exhibit outstanding luminescence properties. They show an unexpected 

red-shifted luminescence for increasing Ba2+ content.[10,11] Usually, substitution of Sr2+ by 

larger Ba2+ ions causes a shift to shorter emission wavelengths due to lower Eu2+ 5d-orbital 

splitting when Eu2+ randomly occupies the metal positions. Rietveld refinement on powder  

X-ray diffraction (PXRD) data in combination with transmission electron microscopy (TEM) 

showed that Sr0.5Ba0.5Si2O2N2:Eu2+ is highly disordered and multiply twinned.[15] Its crystal 

structure is very similar to that of SrSi2O2N2:Eu2+, which exhibits a lower degree of disorder. 

Substitution of Sr2+ by Ba2+ leads to a deformation of the layered crystal structure. The Sr-O 

distances in the pure Sr phase are larger than the sum of the ionic radii, however, Ba 

integration leads to shorter Sr-O distances in the mixed phase compared to non-substituted 

SrSi2O2N2:Eu2+. The dopant Eu2+ preferably occupies these Sr positions, resulting in more 

pronounced structural relaxation and a larger Stokes shift.[15] Preferred occupation of Sr sites, 

i.e. sites with shorter metal-ligand distances, by Eu2+ was also reported for  

Ba3-xSrxSi6O12N2:Eu2+ where the unexpected small FWHM of the emission band was 

explained by a favored occupation of one of the two independent alkaline earth sites.[21] The 

detailed knowledge of the crystal structure thus allows to explain the luminescence properties, 

which appear surprising at first glance. Apparently, the impact of cation substitution on the 

deformation of the crystal structure is difficult to predict, so that the luminescence properties 

may be unexpected. This is most pronounced for systems which do not form solid solutions 

with a broad compositional range (e.g. SrSi2O2N2 and BaSi2O2N2). As shown for 
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Sr0.5Ba0.5Si2O2N2:Eu2+, PXRD patterns of very similar structures may look significantly 

different; both additional and “missing” intensities do result from real structure effects. The 

coherent interference of scattered waves can change the pattern dramatically if nanodomains 

are present.[15] Therefore, nanotwinning may affect the intensities in powder diffraction 

patterns whereas “classical” twinning (domain sizes larger than the X-ray’s length of 

coherence) has no influence. Here, we present the structure of  

Sr1-xBaxSi2O2N2:Eu2+ (x = 0.75) which was elucidated by combining X-ray and electron 

diffraction and high-resolution TEM (HRTEM). The material exhibits complex real structure 

effects as well as excellent luminescence properties. 

 

5.3.2 Results and Discussion 

5.3.2.1 Synthesis and Chemical Analysis 

Two different approaches for sample synthesis have been applied: (1) Powder samples of  

Sr1-xBaxSi2O2N2:Eu2+ (x = 0.75) suitable for TEM investigations were prepared by heating a 

stoichiometric mixture (1:3; ball milled) of (Sr0.25Ba0.75)2SiO4:Eu2+ and Si powder (Cerac, 

99.999%) at maximum temperatures of 1400 °C in a stream of forming gas (N2:H2 = 95:5) 

using a molybdenum crucible. 

(2) Samples with crystals suitable for single-crystal analysis were obtained by heating a 

stoichiometric mixture of (Sr0.25Ba0.75)2SiO4:Eu2+ and α-Si3N4 (UBE, >95 %) at maximum 

temperatures of 1400 °C using a tungsten crucible positioned in a radio-frequency (RF) 

furnace [22] with stationary forming gas (N2:H2 = 95:5) atmosphere (equation 1). 

 

(Sr1-xBax)2SiO4:Eu2+ + Si3N4                  2 (Sr1-xBax)Si2O2N2:Eu2+   (Eq. 1) 

 

EDX analysis of the Sr1-xBaxSi2O2N2:Eu2+ powder, obtained in a forming gas stream, yielded 

x = 0.74(1) (average of seven measurements of crystallites with typical platelet morphology) 

as expected. For single crystals (RF furnace synthesis), x was determined to be 0.75(1) as an 

average of five measurements. From TEM-EDX, x = 0.73(2) was obtained as an average of 

eight measurements on crystallites with typical morphology. Accordingly, the value of 

x = 0.75 (within experimental standard deviation 2 - 4 at. %) is confirmed by EDX 

measurements so that results from electron and X-ray diffraction data are comparable. A 

minor impurity phase with BaSi6N8O structure type[23] was detected, which is typical for 

thermal decomposition of 1-2-2-2 phases.[15]  
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5.3.2.2 Electron Microscopy 

In samples prepared by dispersing powder on Cu grids with carbon film, all crystallites with 

the expected composition exhibited approximately the same orientation due to the platelet 

particle morphology typical for layered compounds. This impedes the determination of lattice 

parameters. Although in general tilting the sample changes the diffraction pattern significantly, 

in this case tilting (overall up to 48 °) did not result in a variation of the zone axis visible in 

selected area electron diffraction (SAED) patterns. However, the intensity of the “reflections” 

varies (Figure 1). 

 

 
Fig. 1: SAED patterns of a tilt series (along y; overall 48° tilt angle; x and y are absolute tilt 
angles of the TEM sample holder). Exemplary “reflections” with changing intensities are 
marked by white circles. 
 
This effect can be explained by assuming continuous diffuse streaks interconnecting the 

Bragg positions along the viewing direction. The maximum of the measured (real) lattice 

spacing during the tilt is d = 5.46 and 4.80 Å, respectively, which is close to d values 

determined by single-crystal analysis (next section) and include an angle of 90.5°, 

corresponding to the unit mesh dimension within the silicate layer (Figure 2). 

To diminish texture effects (to accomplish more statistical distribution of particles) and 

directly observe diffuse streaks, powder samples, embedded in two-component glue, were 

used. Intense diffuse streaks interconnecting Bragg reflections were observed. The lattice 

spacing along the streaks correspond to the unit cell dimension of BaSi2O2N2. 

In HRTEM images, a domain structure can be observed (Figure 3). The metrics of the crystal 

structure of both domain types were determined using SAED patterns (Figure 4). A subset of 

the reflections can be described by the metrics of the BaSi2O2N2 type. The elongated maxima 

between these Bragg reflections cannot be indexed by this lattice; they require a second lattice, 

resembling that of SrSi2O2N2. 
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Fig. 2: ”Pseudo” lattice spacing (a, b) and corresponding angle (c) of Sr0.25Ba0.75Si2O2N2:Eu2+ 
dependent on tilt angle of TEM sample holder (axes of coordinate systems). Due to platelet 
morphology of crystallites, the tilt angles of the sample holder are approx. 0° in both 
directions for the maximal d values. Typical SAED pattern (d) close to 0 ° tilt angle of sample 
holder. 
 

 
Fig. 3: Typical HRTEM image of Sr0.25Ba0.75Si2O2N2:Eu2+ with layered domain structure. 
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Results of TEM-EDX analyses corroborate the presence of domains with higher Sr content 

which can be expected to exhibit the SrSi2O2N2 structure type. This variation of the Sr 

distribution cannot be detected in SEM-EDX measurements because the domain sizes are 

much smaller than the area investigated. Both lattices share one direction: d010 of the 

BaSi2O2N2 type (14.00 Å; 14.28 Å from single-crystal data; black unit cell) is twice d010 of 

the Sr0.5Ba0.5Si2O2N2 type (7.00 Å; 7.17 Å from PXRD,[15] white unit cell). Both lattice 

vectors are parallel and correspond to the stacking direction of silicate layers. The second 

smallest spacing of each lattice corresponds to d100 of BaSi2O2N2 type (5.53 Å; 5.47 Å from 

single-crystal analysis,) and d101 of Sr0.5Ba0.5Si2O2N2 type (5.34 Å; 5.29 Å from PXRD,[15] 

respectively. The corresponding angles (BaSi2O2N2 type: 90°; single crystal orthorhombic; 

Sr0.5Ba0.5Si2O2N2 type: 75°; 76° from PXRD)[15] also match well. The deviations between 

lattice parameters from electron and X-ray diffraction data are consistent within experimental 

errors of both methods. 

 

 
Fig. 4: SAED pattern representing a superposition (middle) of the [001] zone axis of the 
BaSi2O2N2 type (black, top) and the [101] zone axis of the SrSi2O2N2 type (white, bottom). 
For both, d values and corresponding angles are shown. In every third vertical row, some 
Bragg reflections of both compounds overlap completely. Diffuse streaks interconnect the 
reflections. 
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Some reflections of SrSi2O2N2 and BaSi2O2N2 lattice types overlap completely and therefore 

the intensity of affected sharp Bragg reflections (in every third row) is the sum of two 

contributions and thus contains information from both systems. Therefore, diffraction patterns 

do not show orthorhombic Laue symmetry (see BaSi2O2N2 [8] structure type). The SrSi2O2N2 

structure type [19] is triclinic (space group P1) and the superposition with any other pattern 

yields overall triclinic Laue symmetry. 

 

5.3.2.3 Single-Crystal Structure Analysis 

As shown in Figure 3, Sr0.25Ba0.75Si2O2N2:Eu2+ exhibits a domain structure with 2D extended 

domains, which are only a few nanometers thick. Single crystals show pronounced diffuse 

scattering in reciprocal lattice sections. Because the domains are very thin, the scattered 

waves superimpose coherently which means that overlapping intensities contain information 

on both domain types (see Figure 4). These overlapping reflections were discarded for the 

refinement of the structure of the blue emitting material (based on BaSi2O2N2 lattice 

parameters). The relative orientation of both domain types does not change, so “single crystal” 

methods can be used for such crystals when reflections with contributions from different 

domain types are neglected. The scheme in Figure 5, which was derived from different 

reciprocal lattice sections, shows that all rows along [010] with exclusively sharp reflections 

(see Figure 4) are involved. This corresponds to 1/3 of all reflections. 
 

 
Fig 5: Schematic view of the overlap of the reciprocal lattice of BaSi2O2N2 with that of the 
SrSi2O2N2 structure type. As derived from reciprocal lattice sections, rows along [010] of the 
BaSi2O2N2 type show either exclusively sharp reflections or elongated, diffuse intensities. 
Referring to Figure 4, rows with only sharp reflections overlap for both lattice types (white 
spheres) while the others exclusively belong to the BaSi2O2N2 lattice type (gray spheres). As 
the resolution of the reciprocal lattice sections available was limited, some rows (black-gray 
spheres, black-white spheres) were extrapolated. 
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The crystal structure of Sr0.25Ba0.75Si2O2N2:Eu2+ was refined in space group Pna21 (no. 33) 

with a = 5.470(2), b = 14.277(3), c = 4.791(1) Å and V = 374.2(2) Å3 (see Figure 7). 

Refinement converged finally to R1 = 0.0924. Comparable refinements in Pnma show 

disordered silicate layers as described for BaSi2O2N2 [8] but with significantly higher  

R-values. The absence of disorder in the crystal structure is corroborated by the Fourier 

transforms of individual domains in HRTEM images, which exhibit no diffuse intensities. In 

the refined structure model, the silicate layers are built up of vertex sharing SiON3-tetrahedra 

and shifted against each other along the stacking direction [010]. The metal atom layers in 

between them are corrugated instead of being coplanar as in BaSi2O2N2.[8] As the Bragg 

reflections used for the structure refinement are located on diffuse streaks, their absolute 

intensities are biased. Mixed occupation of the metal atom position was set to an atomic ratio 

Sr:Ba = 1:3 as suggested by the EDX analysis. The doping with 2 mol% Eu was neglected 

during refinement. Distance restraints for the SiON3-tetrahedra were implemented in order to 

ensure their comparability to the values in SrSi2O2N2 and BaSi2O2N2. The similarity of 

tetrahedra topology within the silicate layers is the reason for the intergrowth of 

Sr0.25Ba0.75Si2O2N2 domains in zone axis orientation [001] with SrSi2O2N2 structure type 

domains in [101] respectively, as determined from superimposed diffraction patterns like the 

one in Figure 4. Related anionic substructures can for example also be observed in 

(Sr0.94Eu0.06)(Al0.3Si0.7)4(N0.8O0.2)6, an alumosilicate with stacking faults.[24] 

 

5.3.2.4 Cation Ordering as Derived from HRTEM 

HRTEM image simulations[25] were compared to experimental images (Figure 6). They show 

that a structure model with one mixed occupied metal atom position (Pna21) does not well 

describe all significant features of the HRTEM images (Figure 6b).  

Horizontal rows with bright white contrasts (indicated by black arrows, Figure 6a) are 

strongly affected by the metal atom positions so that the periodic varying contrast in every 

second of these rows indicates deviations from space group Pna21 as it is not consistent with 

mirror planes and mixed occupation of a single metal atom position. A convincing fit was 

obtained employing space group P1 and full occupation of one of the four resulting metal 

atom positions with Sr, which is consistent with the chemical composition Sr:Ba = 1:3 

(Figure 6c, 6d). 
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Fig. 6: HRTEM images of Sr0.25Ba0.75Si2O2N2:Eu2+ with: black arrows indicating horizontal 
contrasts mainly affected by metal atom layers (a), simulation for the refined structure in 
space group Pna21 (b, defocus value -81 nm), simulation for structure in space group P1 (c, 
cation ordering, defocus value -81 nm) and simulation for structure in P1 (d, cation ordering, 
defocus value -119 nm). For all simulations the following values were used: accelerating 
voltage = 300 kV, aperture diameter = 20 nm-1, cs = 1.2 mm, spread of focus = 2.14 nm, beam 
semi-convergence = 0.60 mrad, layer thickness approx. 4 nm (8 unit cells in corresponding 
viewing direction). 
 

 

Additionally, the position of the metal atoms was slightly shifted, because of different ionic 

radii and consequently different coordination spheres of Sr and Ba (compare trigonal 

prismatic in SrSi2O2N2 vs. cuboid in BaSi2O2N2). This means that rows exclusively occupied 

by Ba atoms are less corrugated than rows containing alternating Ba and Sr atoms and Ba-Sr 

bond lengths are shorter than the Ba-Ba bond lengths (Figure 7). The relaxation of 

surrounding light atoms was neglected because it affects only slightly the simulated images. 

Simulated images for two defocus values reproduce the main features (Figure 6c, 6d) quite 

well. 
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Fig 7: Projections of the crystal structures of BaSi2O2N2 (left),[8] Sr0.25Ba0.75Si2O2N2 
(“average” structure from single-crystal data, middle) and Sr0.25Ba0.75Si2O2N2 (local cation 
ordering according to TEM, right) perpendicular to stacking direction. Silicate layers of 
condensed SiON3-tetrahedra are illustrated gray, Ba atoms black, Sr/Ba mixed occupied 
positions dark gray and Sr atoms light gray. 
 

The consistency of the structure model is corroborated by lattice energy calculations (MAPLE, 

Madelung part of lattice energy).[26-29] The assignment of O and N atoms was done in analogy 

to other Sr1-xBaxSi2O2N2 phases with the same silicate layer topology.[8,15,19] The calculated 

values listed in Table 1 are close to typical partial MAPLE values.[7] The total MAPLE values 

calculated for the refined structure and the structure model containing ordered cations are 

compared to that of a theoretical reference reaction equation starting from the respective 

binary compounds. The deviation is almost half the value for the structure model with cation 

ordering compared to the structure model refined on X-ray data. 
 

Table 1. Results of MAPLE calculations (in kJ/mol) for Sr0.25Ba0.75Si2O2N2 and increment 
calculations: partial MAPLE values, total MAPLE sum and difference to theoretical total 
MAPLE value.[a]  

 Sr2+ Ba2+ Si4+ O[1]2- N[3]3- Total MAPLE Δ 
Pna21 1896 (mixed) 9408-9566 2219-2276 6174-6206 37745 0.064 % 
P1 1916 1871-1900 9249-9755 2144-2386 6051-6331 37755 0.037 % 
Total MAPLE (0.25 SrO + 0.75 BaO + 0.5 SiO2 + 0.5 Si3N4): 37769 
[a] Typical MAPLE values (in kJ/mol): Ba2+: 1500-2000; Sr2+: 1500-2100; Si4+: 9000-10200; O[1]2-: 2000-2800; 

N[3]3-: 5000-6200.[7]… 
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5.3.2.5 Luminescence 

Eu2+-doped samples of Sr0.25Ba0.75Si2O2N2 show unexpected intense narrow band blue 

emission when excited with UV to blue radiation as a consequence of the parity allowed 

4f6(7F)5d1 → 4f7(8S7/2) transition. 

 

 
Fig. 8: Left: emission spectrum of Sr0.25Ba0.75Si2O2N2:Eu2+ (2 mol %) powder sample 
(λexc = 400 nm, λem = 472 nm, FWHM = 37 nm). Right: Least-square refinement of measured 
emission spectrum (black solid line) with three individual curves (1: λem = 469 nm, 
FWHM = 36 nm, line: dashed; 2: λem = 498 nm, FWHM = 35 nm, line: dashed and dotted; 3: 
λem = 555 nm, FWHM = 90 nm, line: dashed). 
 

As shown for the SrSi2O2N2 structure type, the substitution of Sr by Ba leads to an 

unexpected increase of the Stokes shift (i.e. a shift of emission wavelength from green to 

yellow spectral region), e.g. for Sr0.5Ba0.5Si2O2N2:Eu2+.[15] Sr0.25Ba0.75Si2O2N2:Eu2+ is 

supposed to show an even larger Stokes shift,[10,11] which, at first glance, seems obvious 

because of the increasing amount of Ba. For this composition, however, the structure changes 

towards the BaSi2O2N2 structure type as mentioned above. In relation to BaSi2O2N2:Eu2+, a 

larger Stokes shift is expected for Sr0.25Ba0.75Si2O2N2:Eu2+ due to more pronounced local 

structure relaxation of Eu2+ sites in the excited state in case of increasing Sr content. However, 

a comparable Stokes shift is observed, leading to an overall emission wavelength of 472 nm 

and a shifted lowest lying absorption band towards higher energies for this material. The 

explanation for this behavior is based on structure deformation. In the crystal structure of 

Sr0.25Ba0.75Si2O2N2 there are corrugated metal atom layers while they are coplanar in 

BaSi2O2N2. Additionally, the silicate layers are slightly shifted against each other 

perpendicular to stacking direction. As a consequence, there are longer Eu-O (also Eu-N) 

distances than in BaSi2O2N2:Eu2+ because of distorted cuboid metal atom coordination. The 

overall Eu2+ coordination explains the shift of absorption and emission bands towards higher 
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energies. The similarity of the ionic radii results obviously in a preferred occupation of Eu2+ 

on the single Sr2+ site, causing the narrow band width of only 37 nm. This is the smallest 

value found so far for blue emitters of this material class. A second emission band can be 

assigned to the yellow conversion of primary radiation by domains with SrSi2O2N2:Eu2+ 

structure type with its typical broad band emission (see Figure 8). To improve the refinement 

of measured values, a sharp profile according to Eu2+ emission in BaSi2O2N2 host lattice was 

included (see Figure 8). BaSi6N8O:Eu2+ is not present in this case, because there is no 

quantitative excitation at 400 nm.[30] 

 

 

5.3.3 Conclusion 

Within the series of Sr1-xBaxSi2O2N2:Eu2+ phosphor materials, Sr0.25Ba0.75Si2O2N2:Eu2+ is a 

remarkable example that complex analytic methods are required to determine the crystal 

structure when dealing with real structure effects. Only detailed knowledge of atomic 

arrangement qualifies to describe reliable structure-property relations. Integration of Ba2+ in 

Sr1-xBaxSi2O2N2 leads to an intergrowth of domains of the SrSi2O2N2 and BaSi2O2N2 structure 

type, respectively, for x = 0.75, as there is no solid solution series. Fourier transforms of 

individual domains in HRTEM images do not show diffuse streaks. Therefore, the diffuse 

scattering in electron diffraction patterns presumably results from this intergrowth. Based on 

HRTEM image simulations, there is only one crystallographic site exclusively occupied by 

Sr2+ ions in the final structure model of Sr0.25Ba0.75Si2O2N2:Eu2+. According to very similar 

ionic radii, also preferred single-site occupation for the Eu2+ ions can be expected. In 

accordance with the results observed for SrSi6N8:Eu2+ [31] and BaSi2O2N2:Eu2+, occupation of 

only one site with Eu2+ is obviously a main reason for a very sharp emission band in phosphor 

materials. Sr0.25Ba0.75Si2O2N2:Eu2+ exhibits the smallest value for FWHM (37 nm) known so 

far for blue emitters of this material class. The narrow band emission in the blue spectral 

region qualifies this material for applications in pc-LEDs, e.g. white LEDs with high color 

rendering index, blue LEDs (UV irradiation) or blue pump-LEDs closing the cyan spectral 

gap. Layered Sr1-xBaxSi2O2N2:Eu2+ phases are good examples how conformation and 

arrangement of metal atoms and the Si-O/N partial structure affect luminescence properties. 
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5.3.4 Experimental Section 

5.3.4.1 Synthesis and Chemical Analysis 

Powder samples of Sr1-xBaxSi2O2N2:Eu2+ (x = 0.75) suitable for TEM investigations were 

prepared by heating a stoichiometric mixture (1:3; ball milled) of (Sr0.25Ba0.75)2SiO4:Eu2+ and 

Si powder (Cerac, 99.999%) for 5 h to 1350 °C in a stream of forming gas (N2:H2 = 95:5) 

using a molybdenum crucible. The product was ground (ball milled using agate balls in 

cyclohexane) and reheated to 1400 °C for another 5 h under forming gas and ground again. 

The final product was washed with diluted HCl and ethanol to remove remaining oxosilicate 

byproducts. Samples with crystals suitable for single-crystal analysis were obtained by 

heating a stoichiometric mixture of (Sr0.25Ba0.75)2SiO4:Eu2+ and α-Si3N4 (UBE, >95 %) using 

a tungsten crucible positioned in a radio-frequency (RF) furnace [22] with stationary forming 

gas (N2:H2 = 95:5) atmosphere. The temperature was increased to 1350 °C (22 °C/ min) and 

held for 3 h. After heating to 1400 °C (10 °C/ min) and keeping this temperature for 3 h, the 

temperature was reduced to 650 °C (1.1 °C/ min). The starting material 

(Sr0.25Ba0.75)2SiO4:Eu2+ was synthesized by heating a mixture (ball milled) of SrCO3 (Solvay, 

SL300), BaCO3 (Solvay, L500), SiO2 (Evonik, Aerosil OX 50) and Eu2O3 (Rhodia, 99,99 %, 

dopant, 2 mol %) for 2 h in a stream of forming gas (N2:H2 = 95:5). The chemical 

composition of the crystalline product was analyzed by energy dispersive X-ray spectroscopy 

(EDX) using a JSM-6500F scanning electron microscope (SEM, Joel) with a Si/Li EDX 

detector (model 7418, Oxford Instruments).  

 

5.3.4.2 Single-Crystal X-ray Diffraction 

Blue luminescent crystals obtained by RF furnace synthesis were mounted on glass fibers and 

checked for quality on a Buerger precession camera. Intensity data were collected on a Nonius 

Kappa-CCD diffractometer with graded multilayer X-ray optics (λ = 0.71093 Å). The 

structure was solved by direct methods [32] and refined by full-matrix least-squares method 

using anisotropic displacement parameters for the metal atoms.[33] Due to intergrowth with 

SrSi2O2N2 intensity data were corrected (section single-crystal structure analysis).[34] 
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5.3.4.3 Transmission Electron Microscopy 

For preliminary experiments, ground powder samples were dispersed in ethanol in order to 

deposit them on copper grids coated with a holey carbon film. Since such samples showed 

preferred orientation, the powder was mixed with two-component glue, placed between 

silicon wafers and glass panels, and then fixed in brass tubes (inner diameter 2 mm). These 

were cut into slices perpendicular to the tube elongation (thickness approx. 200 µm) and 

polished to 80-90 µm using different SiC coated sand papers (grain size: 40 - 5 µm). Finally, 

the thickness in the middle of the disk was reduced to approx. 20 µm using a dimple grinder 

(type 650, Gatan) and diamond grind (Electron Microscopy Science). Subsequently, a hole 

within the glue matrix samples was fabricated using an argon ion precision ion polishing 

system (type 691, Gatan). Crystallites near the hole, which are partially free of glue, are 

suitable for TEM investigations. SAED patterns and/or high-resolution images were recorded 

on transmission electron microscopes Jeol JEM-2011 (200 kV) and Fei Titan 80-300 (300 kV), 

respectively. The latter one was equipped with an EDX system (TEM Tops 30, Edax). Tilt 

series of diffraction patterns were obtained using a double tilt sample holder with maximum 

tilt angle of ±30°. 
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6 Conclusion and prospects 
 

In the present thesis, complementary information obtained from electron microscopy and X-

ray diffraction is combined in different ways in order to elucidate average crystal structures, 

as well as a broad variety of real-structure effects. The latter have a decisive influence on the 

thermoelectric properties of telluride-based thermoelectrics and detailed knowledge about 

them is equally necessary to understand the luminescence properties of Sr1-xBaxSi2O2N2:Eu2+ 

(0 ≤ x ≤ 1) phases.  

In germanium antimony telluride (GST), germanium bismuth telluride (GBT) and silver 

germanium antimony telluride (TAGS) materials, diffusion processes during synthesis and the 

resulting short-range order of cation vacancies strongly determine the thermoelectric 

properties. These kinds of real-structure phenomena are clearly visible in high-resolution 

transmission electron microscopy (HRTEM) images. The Z contrast provided by scanning 

TEM (STEM) using a high-angle annular dark field (HAADF) detector is used to prove the 

nature of such vacancy layers. The limited statistical relevance of TEM investigations is 

overcome by the matching of selected area electron diffraction (SAED) patterns and 

reciprocal lattice sections from single-crystal X-ray data in order to verify that the region 

investigated by TEM is representative for the bulk material. 

In GST materials, the thermal treatment, vacancy concentration and substitution determine the 

diffusion processes during the “partial” phase transitions between the high-temperature (HT) 

phase and the thermodynamically stable state and therefore the resulting nanostructures of the 

compounds (Chapter 2.2, Chapter 2.3). The highest ZT values (up to 1.5 at 450 °C) are 

observed for quenched GST materials with rather low vacancy concentrations (n = 12, 19) 

where the vacancies are short-range ordered in intersecting defect layers with limited lateral 

extension. This nanostructure is associated with a lower phononic contribution to the thermal 

conductivity (кL) compared to slowly cooled samples with a parallel arrangement of the 

“defect layers”. Investigations on GBT emphasize the importance of the thermal treatment 

under various conditions, including high-pressure (HP), on the nanostructure and the 

characteristics and absolute values of the thermoelectric properties (Chapter 3.2). Experiments 

on In3SbTe2,[1] In2Bi3Se7I and InBi2Se4I (Chapter 3.3) highlight the importance of charge 

balance of the anions and cations and/or ionicity for sufficient electrical conductivities. 

Substitutions with In, Sn and Se in GST alter the phase transition temperatures as well as the 

atom mobility and thereby the thermal stability and the degree of order of the nanostructure. 

HRTEM and STEM reveal smaller average lateral extensions of the vacancy layers and a 
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higher variance in their spacing for compounds with lower mobility during quenching (e.g. for 

Se-substituted samples). Statistical information about these vacancy ordering phenomena are 

obtained from the diffuse intensity distribution in SAED and single-crystal X-ray diffraction 

patterns. In contrast to these diffuse intensities, the presence of superstructure reflections in 

Sn-substituted GST crystals prepared by chemical vapor transport reveal the first long-range 

ordered GST phase where the rocksalt-type building blocks of the thermodynamically stable 

layered phase is combined with the cubic stacking of the HT phase. This highlights the 

existence of additional phases GST and substitution variants thereof which have not been 

reported so for (Chapter 4.3). The interplay of the changes in the Seebeck coefficient (S) and 

σ with к results in higher ZT values for the nanostructured Sn-substituted samples, especially 

at temperatures above 300 °C. The substitution with In improves S and, as a consequence, ZT 

values below 300 °C, where the nanostructure does not change as diffusion processes are not 

significant (Chapter 2.3). A combined substitution with both elements is therefore promising 

in order to improve the ZT values in the whole temperature range. Additional anion 

substitution with Se can be used to shift the S(T) curve to higher values which, especially for 

intermediate vacancy concentrations (n = 7), results in higher ZT values. The introduction of 

hierarchical nanostructures as present in single crystals of Sn substituted GST materials might 

be used to further reduce кL (Chapter 4.3). 

Quenched TAGS materials with a Sb/Ag ratio < 1 exhibit intersecting defect layers 

comparable to GST (Chapter 3.6). The resulting low кL values compared to vacancy-free 

TAGS in combination with the higher S compared to the corresponding GST materials, result 

in ZT values of up to 1.3 at 160 °C, which outperforms comparable GST and vacancy free 

TAGS materials. This illustrates the potential of transferring the nanostructuring mechanisms 

investigated for GST and substitution variants thereof to other systems with vacancies and 

intrinsically high (S) and σ values. 

Besides the arrangement of cation vacancies which is crucial for the detailed understanding of 

the structures and the consequences of substitution on the thermoelectric properties, the 

distribution of the cations in long-range ordered GST materials and Sn, In or Se substituted 

variants is also an important issue. Due to the similar electron counts of the elements resonant 

X-ray diffraction is often necessary to elucidate their distribution (Chapter 4.3, 4.4 and 

reference [2]).  

HP syntheses extend this field to compounds with octahedrally coordinated In, e.g. bulk 

material corresponding to the well known PCM material Ag3.4In3.7Sb76.4Te16
[ 3 ] or In-

substituted AgSbTe2. The latter, e.g. AgIn0.5Sb0.5Te2, exhibits extremely low к and high S 
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values (Chapter 3.4). AgInTe2 precipitates in In-substituted TAGS revealed by electron 

microscopy explain the low thermal conductivity of theses compounds (Chapter 3.5). In 

analogy to GST, the substitution with In is correlated with increased S for (GeTe)5.5AgInTe2 

compared to the unsubstituted TAGS material. The decomposition into AgInTe2 and AgSbTe2 

at elevated temperatures might be used to introduce additional nanostructures which render 

this class of compounds an intriguing subject of future studies. The structure and orientation 

of precipitates in such nanostructured systems can be efficiently investigated by combining 

TEM and synchrotron micro-diffraction as described for skutterudite-type precipitates in a 

GST matrix in Chapter 4.2. This combination also enables the elucidation of otherwise hardly 

accessible structures of compounds whose crystals are not suitable for laboratory X-ray 

diffraction (Chapter 4.2). The combined use of electron crystallography and synchrotron 

experiments might also be ideally suited for needle-shaped crystals that often form bunches. 

In such samples there may be several crystals irradiated even by a 1 µm synchrotron beam. 

An initial ADT measurement of a single crystal might be used to deduce an approximate 

structure model. This might then be refined on a data set acquired from multiple crystals at the 

same time with synchrotron radiation in order to obtain reliable interatomic distances, site 

occupancy factors and thermal displacement parameters.  

While the real-structure effects determine the properties of thermoelectric tellurides, they do 

not affect the excellent luminescence properties of most Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) 

compounds since the highly symmetric coordination of the rare-earth atoms is often 

maintained in their disordered structures (Chapter 5). The monoclinic SrSi2O2N2 maximum 

degree of order polytype, which was elucidated by a combination of electron microscopy and 

X-ray diffraction methods, exhibits excellent luminescence properties in the same spectral 

region as the triclinic polytype, because both phases have identical metal-atom coordination 

polyhedra although the orientation of consecutive silicate layers differs (Chapter 5.2). 

Therefore, in this case it is not necessary to apply complex and costly synthesis routes in order 

to obtain phase-pure compounds since powder samples containing both polytypes also exhibit 

quantum efficiencies above 95%. In contrast, the small full width at half maximum (37 nm) of 

Sr0.25Ba0.75Si2O2N2:Eu2+, which is inhomogeneous on the nanoscale, is most likely determined 

by the real-structure phenomena. This results from the ordering of Sr and Ba atoms and the 

resulting occupation with Eu2+ on only one crystallographic position in the distorted 

BaSi2O2N2-type domains (Chapter 5.3). The determination of the metrics of intergrown 

domains by electron microscopy which enabled the structure elucidation form single-crystal 



  6 Conclusion and prospects 
 

 

312 

data obtained from both domains simultaneously highlights the benefits of the complementary 

use of both methods. 

These examples give a comprehensive insight into the importance of real-structure 

determination for the systematic development of new materials for increasing the efficiency in 

the use of energy and the quality of pc-LED light sources. The further elucidation of unknown 

new phases comparable to Sr0.25Ba0.75Si2O2N2:Eu2+ or polymorphs should benefit from TEM 

due to the high probability that such phases are intergrown. Based on the detailed structure 

determination, improved synthesis conditions can be derived in order to obtain compounds 

with desired phase ratios and or phase-pure phosphors which are necessary to optimize the 

color rendition of white pc-LEDs. 
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7 Summary 
 

7.1  From phase-change materials to thermoelectrics? 

Due to their small bandgap and low 

thermal conductivity, germanium 

antimony tellurides (GST) known as 

phase-change materials for data 

storage are promising thermoelectric 

materials. For (GeTe)nSb2Te3 (n ≥ 

3), a rocksalt-type phase with 

randomly distributed vacancies on 

the cation positions is stable at high 

temperatures (HT). The concentration of the vacancies is determined by the GeTe content n. 

At room temperature (RT), stable materials exhibit layered trigonal phases comparable to the 

tetradymite type for high vacancy concentrations such as n = 3 whereas for low vacancy 

concentrations (e.g. n = 12) a α-GeTe-type layered structure is formed. A partial phase 

transition between the cubic HT phase and the layered phases can be utilized to introduce 

nanostructures. X-ray studies reveal diffuse intensities along <111> (cubic setting) in 

quenched Ge12Sb2Te15 whereas at 550 °C (stability range of the cubic phase) no short-range 

vacancy ordering is observed. Transmission electron microscopy (TEM) of quenched 

Ge12Sb2Te15 reveals diffuse intensities in selected area electron diffraction (SAED) patterns 

comparable to those present in the X-ray data and corresponding high resolution transmission 

microscopy (HRTEM) images show intersecting defect layers with limited lateral extension 

oriented perpendicular to the (pseudo)cubic <111> directions. Temperature-dependent 

powder diffraction proves the metastability of such samples. Quenched samples of 

(GeTe)n(Sb2Te3) (n = 12) exhibit thermoelectric figures of merit of up to ZT = 1.3 at 450 °C. 

 

7.2  Real structure and thermoelectric properties of GeTe-rich germanium antimony 
tellurides 

Nanostructured (GeTe)nSb2Te3 (n = 3-19) materials can be obtained by quenching their HT 

rocksalt-type phases with randomly distributed vacancies on the cation position. The GeTe 

content (n) determines the nanostructures of quenched samples. Higher vacancy 

concentrations are correlated to longer diffusion pathways towards the thermodynamically 
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stable phases, which consist of rocksalt-

type building blocks with 5+2n layers 

connected by van der Waals gaps, 

corresponding to a parallel arrangement of 

infinite extended “vacancy layers”. 

Therefore, the quenched samples with 

higher n exhibit a lower number of defect 

layers with more irregular spacing and, in 

addition, a more pronounced parquet-like 

structure formed by intersecting defect 

layers with limited lateral extension perpendicular to the cubic <111> directions. Such 

materials exhibit lower phononic contribution to the thermal conductivities (κPh) and thus 

higher ZT values compared to samples with exclusively parallel arranged defect layers and the 

same composition. As a rule, the increase of the Seebeck coefficient (S) with the temperature 

is more pronounced for higher n, which results in ZT values of up to 1.3 at 450 °C for 

(GeTe)nSb2Te3 (n = 12, 19).  

7.3  The solid solution series (GeTe)12M2Te3 (M = Sb, In): nanostructures and 
thermoelectric properties 

Substitution of Sb with In in GST 

materials results in the solid solution 

series of quenched (GeTe)12M2Te3 (M = 

Sb, In) with pseudocubic structures. For 

samples with higher In contents, the 

metrics of the quenched samples is closer 

to cubic since they exhibit lower transition 

temperatures between the cubic HT phase with randomly disordered vacancies and the 

layered trigonal phases thermodynamically stable at RT. At low temperatures, κPh is almost 

unaffected by the substitution since all quenched samples exhibit similar short-range order in 

the form of a parquet-like nanostructure. The ZT values at temperatures below 300 °C are 

higher for the In-substituted samples. This is mainly due to a strongly increased S compared 

to Ge12Sb2Te15. The substitution is also correlated with a change from metallic to 

semiconducting characteristics of the electrical conductivity (σ) and therefore the substitution 

with In can be used to influence the electronic properties rather independently from the 

thermal transport properties. 
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7.4  Nanostructures and thermoelectric properties of the solid solution series 
(Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 0 ≤ x ≤ 1) 

Pseudo-cubic samples with a parquet-like structure comparable to GST materials can be 

obtained by quenching members of the solid solution series (Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 

0 ≤ x ≤ 1). The substitution of Ge with Sn results in significantly lower transition 

temperatures between the cubic HT phase and the layered RT phases. For low defect 

concentrations (n = 7, 12) the metrics of the substituted samples 

remains closer to the cubic HT phase compared to GST so that 

it is easier to obtain (pseudo-)cubic phases. For 

(Ge0.5Sn0.5Te)nSb2Te3 with n = 4 and 7 the absolute values of σ 

are up to 3 times higher than for GST and result in higher ZT 

values in a broad temperature range. For (Ge0.5Sn0.5Te)7Sb2Te3, 

S is also improved, resulting in ZT values of up to 0.7 at 400 °C 

compared to 0.2 for (GeTe)7Sb2Te3.  

 

7.5  Enhancing the thermoelectric properties of germanium antimony tellurides by 
substitution with selenium in compounds GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; n ≥ 7) 

The substitution of Te by Se in GST bulk samples results in solid solution series of quenched 

GenSb2(Te1-xSex)n+3 with 0 ≤ x < 0.75 for n ≥ 7. Quenching samples with n = 19 yields 

α-GeTe-type structures, which exhibit a pronounced deviation from cubic metrics, while for 

samples with n = 7 and 12 a pseudocubic modification is obtained. For n = 7 and 12 the 

substitution reduces the transition temperature between the cubic HT phase and the trigonal 

phase stable at ambient conditions. This leads to a reduced mobility of the atoms during the 

quenching process and therefore a less pronounced lateral extension of the defect layers. 

However, the Se-containing pseudocubic samples exhibit parquet-like nanostructures, 

comparable to GST itself. The lower к values resulting from the mixed occupation on the 

anion position are combined with higher S especially for substitution rates of 20%. Therefore 

Ge7Sb2(Te1-xSex)10 compounds with (x = 

0.2 and 0.5) exhibit 5-6 times higher ZT 

values at 400 °C compared to Ge7Sb2Te10. 
Those samples also exhibit an increased 

thermal stability of the metastable 

nanostructured phase. 
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7.6  Nanostructures in metastable GeBi2Te4 obtained by high-pressure synthesis and 
rapid quenching and their influence on physical properties 

A metastable CuPt-type modification of GeBi2Te4 can be obtained by high-pressure high-

temperature (HP/HT) synthesis. Electron microscopy 

reveals that the size of individual domains is smaller 

(down to < 10 nm) for higher cooling rates at 12 GPa. 

The determination of the domain size is crucial for the 

understanding of the temperature characteristic of the 

electrical conductivity that is strongly influenced by 

the domain size and resulting grain boundary 

concentration. Randomly oriented domains with small 

average sizes result in semiconducting behavior for 

quenched samples, while larger domains in samples 

that were slowly cooled under high-pressure result in 

metal-like characteristics of σ. This investigation 

emphasizes the importance of the thermal treatment in 

the preparation of thermoelectric materials under high 

pressure. 

 

7.7  Structural features and physical properties of In2Bi3Se7I, InBi2Se4I and BiSeI 

The structures of the quaternary compounds In2Bi3Se7I (Pnma, a = 13.6720(2), b = 4.0893(3), 

c = 16.7070(2) Å) and InBi2Se4I (Pnma, a = 26.6039(14), b = 4.1285(2), c = 13.5031(9) Å) 

consist of three-dimensional networks built up from rocksalt-like and CdI2-like blocks as well 

as loosely bound iodine atoms in rather large cavities. They resemble structures found in 

alkali metal bismuth chalcogenides known for their thermoelectric properties. The electrical 

conductivity of In2Bi3Se7I and InBi2Se4I is, 

however, insufficiently low for thermoelectric 

applications probably due to the high ionicity in 

combination with balanced valence states. These 

experiments, including the thermoelectric 

properties of BiSeI for comparison, emphasize 

the necessity for slight variations from the 

normal valencies in such kind of structures in 

order to obtain high thermoelectric performance.  
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7.8 A high-pressure route to thermoelectrics with low thermal conductivity: the solid 
solution series AgInxSb1-xTe2 (x = 0.1 - 0.6) 

Samples of the solid solutions AgInxSb1-xTe2 can be obtained by HP/HT synthesis. Their 

thermal conductivities are among the lowest ones known for rocksalt-type tellurides at RT. In 

these samples, In3+ is sixfold coordinated, in contrast to the fourfold coordination in 

chalcopyrite-type AgInTe2 at ambient pressure. Electron microscopy confirms the structure 

and chemical homogeneity of AgIn0.5Sb0.5Te2 and reveals 

the occasional presence of real-structure effects like 

short-range cation ordering. The decomposition of the 

quaternary quenched samples into AgInTe2 and AgSbTe2 

at high temperatures opens opportunities for further 

improvement of the thermoelectric performance at RT 

since the growth of nano-precipitates could be utilized to 

introduce nanostructures.  

 

7.9 TAGS-related indium compounds and their thermoelectric properties – the solid 
solution series (GeTe)xAgInySb1-yTe2 (x = 1 – 12; y = 0.5 and 1) 

Quenching the corresponding HT phases yields the solid solution series 

(GeTe)xAgInySb1-yTe2 (x = 12 for y = 1 and x > 5 for y = 0.5). Since In prefers a fourfold 

coordination at ambient conditions, the synthesis of members with In contents > 3.6 atom-% 

requires HT/HP conditions (2.5 GPa, 350 °C) in order to stabilize In in the octahedral 

coordination. For x ≤ 5, a disordered rocksalt-type structure is obtained while the samples 

with x > 5 exhibit a disordered α-GeTe structure type. HRTEM reveals the presence of 

nanoscopic AgInTe2 and Ag-rich precipitates not visible in X-ray powder diffraction patterns 

as well as dislocations and twinning. Local variations of the composition are reflected in the 

deviating metrics indicated by SAED patterns of the <100> zone axes – especially near the 

precipitates – compared to diffraction patterns calculated from X-ray powder diffraction data. 

(GeTe)5.5AgIn0.5Sb0.5Te2 exhibits a maximal (ZT) value of 0.75 at 300 °C, where (partial) 

decomposition into (GeTe)11AgSbTe2 and chalcopyrite-type AgInTe2 is already present. For 

(GeTe)5.5AgInTe2 prepared under high-pressure conditions the ZT value is 0.6 at 125 °C, i.e. 

far below the decomposition temperature. 
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7.10 Nanostructures in TAGS thermoelectric materials induced by phase transitions 
associated with vacancy ordering 

The introduction of cation vacancies 

by employing Ag/Sb ratios deviating 

from 1 may optimize the thermo-

electric properties of silver 

germanium antimony tellurides 

(TAGS). TEM investigations reveal 

the presence of parquet-like 

nanostructures resulting from a short-range ordering of the vacancies similar to those of GST 

materials. Quenched samples with higher vacancy concentrations such as 

Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 undergo a phase transitions analogous 

to those of GST during heating. The nanostructured pseudocubic phase transforms to a long-

periodically ordered trigonal structure and upon further heating to a cubic one. The 

nanostructured phase Ge0.53Ag0.13Sb0.27□0.07Te1 exhibits higher ZT values compared to GST 

and TAGS materials (up to 1.3 at 160 °C). This result from reduced κph values compared to 

vacancy-free TAGS materials in combination with comparable σ and S values.  

 

7.11 Complementary use of electron microscopy and synchrotron microfocus 
diffraction for structure analysis 

The combined use of TEM and synchrotron microfocus diffraction is a promising method to 

elucidate the crystal structure of compounds that can only be obtained as very small crystals 

in samples with additional unknown impurity phases. The preselection of desired crystals in 

the TEM followed by the synchrotron data collection resulted in the elucidation of the crystal 

structures of a melam-melem co-crystal (P1, a = 4.56(2) Å, b = 19.34(8) Å, c = 21.58(11) Å, 

α = 73.34(11)°, β = 89.1(2)°, γ = 88.4(2)°, Z = 4), the first antimony lead sulfide telluride 

Pb8Sb8S15Te5 (P41, a = 8.0034(11) Å, c = 15.022(3) Å) and the oxonitridophosphate 

(Ca,Mg)7P18ON34. The correlation between the degree of GeTe substitution and the distortion 

of the Sb4 units of skutterudite-type precipitates in a GST matrix has been elucidated by the 

combined use of TEM and synchrotron diffraction.  
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7.12 Novel superstructure of the rocksalt type and element distribution in germanium 
tin antimony tellurides  

The structure of a new metastable yet long-range ordered Sn-doped germanium antimony 

telluride is elucidated from single crystal X-ray data. In this structure, distorted rocksalt-type 

building blocks which are typical for long-range ordered thermodynamically stable GST 

phases and substitution variants thereof is combined with the cubic Te-atom layer stacking 

present in the HT phases. SAED and single-crystal X-ray diffraction patterns of 

“Ge3.25Sn1.1Sb1.1Te6” crystals grown by chemical vapor transport exhibit superstructure 

reflections along the <111> directions of the rocksalt-type basis structure in contrast to the 

typical diffuse scattering of corresponding GST crystals. Electron microscopy shows that 

crystals exhibiting the superstructure consist of spheroidal domains with an average diameter 

of 25 nm. The structure of these domains is similar to 33R-Ge4Sb2Te7 with a total of 11 

alternating anion and cation layers separated by van der Waals gaps. While the latter 

compound exhibits a hexagonal Te-atom layer stacking across the van der Waals gaps, a 

cubic stacking is present in 

“Ge3.25Sn1.1Sb1.1Te6”, which involves a 

larger spacing of the Te-atom layers. 

HRTEM images reveal the occasional 

presence of a hierarchical structure motif 

consisting of slabs with exclusively 

parallel van der Waals gaps and a much 

larger lateral extension (500- 1200 nm), 

which is sandwiched by much thicker 

slabs with spheroidal domains. Space-

resolved EDX measurements show no 

significant variation of the chemical 

composition between the different 

domain types.  
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7.13 Layered germanium tin antimony tellurides: element distribution, 
nanostructures and thermoelectric properties 

Single-crystal synchrotron data measured at 

absorption edges reveal that Sb is 

concentrated near the van der Waals gaps in 

21R-Ge0.6Sn0.4Sb2Te4 and 

9P-Ge1.3Sn0.7Sb2Te5, comparable to the 

unsubstituted samples GeSb2Te4 and 

Ge2Sb2Te5. This can be explained by Sb3+ 

saturating Te atoms at the van der Waals 

gaps more efficiently than Ge2+. Sn shows a 

slight preference for the position near the van 

der Waals gap. The structure model of 

21R-Ge0.6Sn0.4Sb2Te4 is verified by 

simulations of HRTEM images and SAED 

patterns. The material is homogeneous, there 

are no indications of decomposition reactions. 

Diffuse intensities along the stacking direction reveal the presence of significant stacking 

disorder in 9P-Ge1.3Sn0.7Sb2Te5. The substitution of Ge with Sn in the layered compounds 

does not alter the S but the ZT values are higher since the thermal conductivity of 

Ge1.3Sn0.7Sb2Te5 and Ge0.6Sn0.4Sb2Te4 is only half of that of unsubstituted samples. 

 

7.14 New polymorph of the highly efficient LED-phosphor SrSi2O2N2:Eu2+ – 
polytypism of a layered oxonitridosilicate 

In addition to the typical triclinic modification, 

a new monoclinic polymorph of SrSi2O2N2 

(P21, a = 7.1036(14), b = 14.078(3), 

c = 7.2833(15) Å, β = 95.23(3)°, 

V = 725.3(3) Å3) is characterized by a different 

stacking sequence with alternatingly rotated 

silicate layers interconnected by metal-ion 

layers. This leads to a doubled translation 

period along the stacking direction. A shift of 

the emission maximum to smaller wavelengths 
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by ~5 nm compared to the triclinic polymorph renders the monoclinic polymorph very 

attractive for the enhancement of color rendition of white-light phosphor converted light 

emitting diodes. The structure of the monoclinic polymorph is elucidated by a combination of 

X-ray and TEM investigations. A structure model obtained from single-crystal data is verified 

by comparison of metrics and intensity variations with SAED patterns along various 

orientations. Simulations based on this model are used to interpret HRTEM defocus series in 

which the stacking sequence is visible. This investigation illustrates the polymorphism of 

SrSi2O2N2:Eu2+ and gives insights on the dependence of the luminescent properties on the 

nanostructure and the orientation of adjacent silicate layers, respectively. 

 

7.15 Unexpected luminescence properties of Sr0.25Ba0.75Si2O2N2:Eu2+ - a narrow blue 
emitting oxonitridosilicate with cation ordering 

The structure of Sr0.25Ba0.75Si2O2N2:Eu2+ (Pna21, a = 5.470(2), b = 14.277(3), c = 4.791(1) Å, 

V = 374.2(2) Å3) is elucidated by a combination of X-ray and TEM methods. The lattice 

parameters are similar to those of BaSi2O2N2, but metal-atom layers are corrugated instead of 

planar. TEM investigations on samples embedded in a two-component matrix reveal the 

intergrowth of nanodomains with SrSi2O2N2-type and BaSi2O2N2-type structures, which leads 

to pronounced diffuse scattering. Consequently, the structure of the BaSi2O2N2-type domains 

is refined on X-ray diffraction data from an 

intergrown and disordered crystal. Cation 

ordering in the corrugated metal atom layers 

is determined by simulations of HRTEM 

images at various defocus values. The 

material exhibits intense blue emission (λem = 

472 nm) with the smallest full width at half 

maximum (FWHM) of the emission band 

(37 nm) observed for blue emitting (oxo-

)nitridosilicates so far. This results from the 

occupation of Eu2+ exclusively on the Sr 

position which is ordered on one metallic site 

which results from the ordering of the metal 

atoms. 
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8 Appendix 
8.1 Publications within this thesis 
 

All publications included in this thesis and the contributions of the individual authors 

are listed in the following sections to the best of my knowledge. All manuscripts were 

revised by Oliver Oeckler, who also initiated the projects and contributed to their 

development. Manuscripts no. 9, 13 and 14 were also discussed with and revised by 

Wolfgang Schnick. Low-temperature thermoelectric measurements of the 

thermoelectric properties for publications no. 6, 7, 8 and 9 were carried out by Ernst-

Wilhelm Scheidt, Christian Gold (except no. 9) and Wolfgang Scherer, who also 

contributes to the discussion. High-temperature thermoelectric measurements were 

done by Christian Stiewe (publication 2) in cooperation with Johannes de Boor 

(publications no. 4, 5, and 12). 

 

1) From phase-change materials to thermoelectrics? 

M. N. Schneider, T. Rosenthal, C. Stiewe, O. Oeckler 

Z. Kristallogr. 2010, 225, 463–470.  
 

In this manuscript the evaluation of the TEM data and physical properties 

measurements for thermoelectric characterization was done by Tobias Rosenthal in 

cooperation with Mathias Schneider who also formulated the manuscript.  

 

2) Real structure and thermoelectric properties of GeTe-rich germanium antimony 

tellurides 

T. Rosenthal, M. N. Schneider, C. Stiewe, M. Döblinger, O. Oeckler 

Chem. Mater. 2011, 23, 4349-4356 . 
 

The majority of samples were prepared by Tobias Rosenthal who also characterized 

the samples by powder X-ray investigations, EDX spectroscopy and TEM. He also 

formulated the text. Additional samples especially for thermoelectric measurements 

were prepared by Matthias Schneider who also revised the manuscript. Markus 

Döblinger helped with the operation of the TEM. The treatment of the raw data of the 

thermoelectric measurements was done by Christian Stiewe. The evaluation of the 

thermoelectric measurements was carried out by Tobias Rosenthal. 
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3) The solid solution series (GeTe)12M2Te3 (M = Sb, In): nanostructures and 

thermoelectric properties 

T. Rosenthal, S. Welzmiller, O. Oeckler 

Solid State Sci. 2013, 25, 118-123. 
 

Tobias Rosenthal formulated the text and carried out the TEM investigations, Rietveld 

refinements and evaluation of the EDX measurements, thermoelectric measurements, 

and temperature dependent powder X-ray investigations. The measurement of the 

thermoelectric properties was done by Jörg Frohrig (Linseis GmbH, Selb, Germany) 

for Ge12InTe15 and Christian Stiewe and Johannes de Boor for Ge12InSbTe15 who are 

mentioned in the Acknowledgement section of the article. Sample preparation was 

done by Tobias Rosenthal and Simon Welzmiller who also revised the manuscript. 

 

4) Nanostructures and thermoelectric properties of the solid solution series 

(Ge1-xSnxTe)nSb2Te3 (n = 4, 7, 12; 0 ≤ x ≤ 1) 

T. Rosenthal, L. Neudert, P. Ganter, J. de Boor, C. Stiewe, O. Oeckler  

J. Solid State Chem. 2014, 215, 231 -240.   
  

The samples were prepared by Tobias Rosenthal and the research interns Lukas 

Neudert and Pirmin Ganter under his supervision. Electron microscopy was done by 

Tobias Rosenthal who also evaluated and obtained all other experimental data and 

formulated the manuscript. 

 

5) Enhancing the thermoelectric properties of germanium antimony tellurides by 

substitution with selenium in compounds GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; n ≥ 7) 

T. Rosenthal, P. Urban, K. Nimmrich, L. Schenk, J. de Boor, C. Stiewe, O. Oeckler  

Chem. Mater. 2014, 26, 2567-2578. 
 

The manuscript was formulated by Tobias Rosenthal who also prepared the samples 

with the help of the research interns Kathleen Nimmrich and Ludwig Schenk. Tobias 

Rosenthal also conducted the EDX spectroscopy, X-ray powder diffraction, evaluation 

of thermoelectric properties, and TEM investigations. The single-crystal data obtained 

at the synchrotron (beamline ID11, ESRF, Grenoble, France) were evaluated by 

Philipp Urban who also revised the manuscript. 

 



  8 Appendix 
 

 

324 

6) Nanostructures in metastable GeBi2Te4 obtained by high-pressure synthesis and 

rapid quenching and their influence on physical properties 

T. Schröder, M. N. Schneider, T. Rosenthal, A. Eisele, C. Gold, E.-W. Scheidt, W. 

Scherer, R. Berthold, O. Oeckler 

Phys. Rev. B 2011, 84, 184104 
 

Tobias Rosenthal contributed TEM experiments and their evaluation. The TEM 

related figures and text were developed in collaboration with Thorsten Schröder who 

formulated the rest of the text and performed all experiments and evaluation of all 

data except TEM and thermoelectric property data. Andreas Eisele contributed with 

preliminary experiments under the supervision of Matthias Schneider. Rico Berthold 

helped with melt-spinning experiments. 

 

7) Structural features and physical properties of In2Bi3Se7I, InBi2Se4I and BiSeI 

T. Rosenthal, M. Döblinger, P. Wagatha, C. Gold, E.-W. Scheidt, W. Scherer, O. 

Oeckler 

Z. Anorg. Allg. Chem. 2011, 637, 2239–2245. 
 

The structure determination from single X-ray data as well as the Rietveld refinements, 

bond valence calculations and the evaluation of the thermoelectric properties were 

done by Tobias Rosenthal who also formulated the manuscript. The samples were 

prepared with the help of Peter Wagatha and based on preliminary studies by Markus 

Döblinger. Oliver Oeckler contributed to the structure solution from single-crystal 

data.  

 

8) A high-pressure route to thermoelectrics with low thermal conductivity: the solid 

solution series AgInxSb1-xTe2 (x = 0.1 - 0.6) 

T. Schröder, T. Rosenthal, D. Souchay, C. Petermayer, S. Grott, E.-W. Scheidt, C. 

Gold, W. Scherer, O. Oeckler  

J. Solid State Chem. 2013, 206, 20-26. 
 

The manuscript was formulated by Thorsten Schöder and revised by Tobias Rosenthal. 

Electron microscopy was done by Tobias Rosenthal. Thorsten Schröder evaluated all 

experimental data. Daniel Souchay, Christian Petermayer and Sebastian Grott helped 

with the high-pressure high-temperature synthesis of the samples. 
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9) TAGS-related indium compounds and their thermoelectric properties – the solid 

solution series (GeTe)xAgInySb1-yTe2 (x = 1 – 12; y = 0.5 and 1) 

T. Schröder, T. Rosenthal, N. Giesbrecht, S. Maier, E.-W. Scheidt, W. Scherer, G. J. 

Snyder, W. Schnick, O. Oeckler 

J. Mater. Chem. A 2014, 2, 6384-6395. 

 

The text was formulated by Thorsten Schröder and revised by Tobias Rosenthal. 

Thorsten Schröder synthesized the samples and evaluated the experimental data with 

the support of the research interns Nadja Giesbrecht and Stefan Maier, who also 

performed the high-temperature thermoelectric measurements under the supervision 

of G. Jeffrey Snyder. Figures and text concerning transmission electron microscopy 

were developed in a close collaboration with Tobias Rosenthal, who acquired all TEM 

data.  

 

10) Nanostructures in TAGS thermoelectric materials induced by phase transitions 

associated with vacancy ordering 

T. Schröder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier, H. Wang, G. J. 

Snyder, O. Oeckler 

Inorg. Chem. 2014, 53, 7722-7729. 
 

The TEM investigations were conducted by Tobias Rosenthal. The manuscript was 

formulated by Thorsten Schröder who prepared the samples, and conducted all other 

experiments with his research interns Nadja Giesbrecht, Markus Nentwig and Stefan 

Maier. G. J. Snyder and H. Wang supervised the thermoelectric measurements at the 

California Institute of Technology and revised the manuscript. 

 

11) Novel superstructure of the rocksalt type and element distribution in germanium 

tin antimony tellurides  

T. Rosenthal, S. Welzmiller, L. Neudert, P. Urban, A. Fitch, O. Oeckler 

J. Solid. State Chem. 2014, 219, 108-117. 

 

The manuscript was formulated by Tobias Rosenthal and Oliver Oeckler. All samples 

were synthesized and prepared for TEM investigations by Tobias Rosenthal and, 

under his supervision, by Lukas Neudert as a research intern. Acquisition and 

evaluation of all TEM data as well as the evaluation of laboratory powder X-ray 
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diffraction patterns was done by Tobias Rosenthal. The structure model was 

determined from single-crystal X-ray diffraction data by Oliver Oeckler and Tobias 

Rosenthal using a preliminary model from Philipp Urban, who also performed the 

data collection. Powder diffraction experiments with synchrotron radiation were 

carried and out and evaluated by Simon Welzmiller with help by Andy Fitch. 
 

12) Layered germanium tin antimony tellurides: element distribution, 

nanostructures and thermoelectric properties 

S. Welzmiller, T. Rosenthal, P. Ganter, L. Neudert, F. Fahrnbauer, P. Urban, C. Stiewe, 

J. de Boor, O. Oeckler  

Dalton Trans. 2014, 43, 10529-10540. 
 

The sample preparation for TEM and thermoelectric measurements as well as the 

characterization of these samples by Rietveld methods and EDX spectroscopy were 

done by Tobias Rosenthal with the support of the research interns Pirmin Ganter and 

Lukas Neudert under his supervision. Electron microscopy as well as the evaluation of 

the thermoelectric measurements was carried out by Tobias Rosenthal. The synthesis 

of further samples including the single crystals and the evaluation of the resonant 

single crystal data came from Simon Welzmiller who also formulated the text. The 

formulation of the thermoelectric and electron microscopy part of the paper were 

contributed by Tobias Rosenthal and revised by Simon Welzmiller. Resonant 

diffraction data were acquired by Felix Fahrnbauer, Philipp Urban, Simon Welzmiller 

and Oliver Oeckler. 
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TEM data for this manuscript were obtained by Tobias Rosenthal. For such 

investigations, the samples were embedded and prepared in cooperation with 

Christian Maak and Markus Seibald. Phase characterization and the simulation and 

evaluation of the TEM data were carried out in a close collaboration by Tobias 

Rosenthal and Markus Seibald. Further analysis and single crystal data evaluation 
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J. Solid State Chem. 2013, 208, 20-26. 
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together with Felix Fahrnbauer. Thorsten Schröder contributed the powder diffraction 
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out by Matthias Schneider. High-temperature thermoelectric measurements were done 

by Christain Stiewe. 

 

5) Highly efficient pc-LED phosphors Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) - crystal 
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(GST) by substitution with In, Sn and Se 
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 32th International Conference on Thermoelectrics, Kobe (Japan) 2013  
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9) Skutterudit in Ge/Sb/Te und Ge/As/Te 
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11*) Se in (GS)TE – Modifikation thermoelektrischer Telluride 
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 Hemdsärmelkolloquium, Freiburg 2013  

 

12) Mit Kanonen auf Spatzen geschossen? – Struktur von Pb8Sb8S15Te5 

 O. Oeckler, T. Schmutzler, G. Wagner, T. Rosenthal, F. Fahrnbauer, O. Oeckler 

 Hemdsärmelkolloquium, Freiburg 2013 
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 F. Fahrnbauer, T. Rosenthal, S. Maier, R. Berthold, T. Schröder, O. Oeckler 
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Gesellschaft Deutscher Chemiker, Darmstadt 2012 
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 31st International Conference on Thermoelectrics, Aalborg (Denmark) 2012 
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