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Preface 
 
During my doctoral studies a large portion of my research focused on the covalent post-translational 

modification of histones, from which I published one first author paper “H3K56me3 is a novel, 

conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both 

regulation and localization.” and one second author publication “Versatile toolbox for high throughput 

biochemical and functional studies with fluorescent fusion proteins.”. Both manuscripts are included 

in this cumulative thesis and appear in place of the “Materials and methods” and “Results” sections. 

Additional information on “Materials and methods” such as working protocols, further plasmid 

information and primers are all stored in the lab of Priv.-Doz. Dr. Sandra Hake and are available upon 

request.  During my work on trimethylation of H3K56, I came across several comprehensive reviews 

on histone core modifications, most of which focussed on the impact such marks have on nucleosome 

structure. I, therefore, decided to write a review myself in which I aimed to provide an extra layer of 

information by relating structural findings to possible in vivo functions of core modifications, through 

evaluation of their genomic distribution. As such, much of what I discuss in the review relates to 

possible roles in transcription, however many of the principles can be applied to other cellular 

functions in which individual modifications have been implicated. I enjoyed writing the review article, 

titled “Getting down to the CORE of HISTONE MODIFICATIONS”, shortly before writing my PhD 

thesis and have since heard that it has been accepted for publication in Chromosoma. Considering the 

primary manuscript of my thesis focuses on trimethylation of H3K56, which is found in the histone 

core domain, I felt including slightly modified parts of the review would facilitate the readers 

understanding of how modifications in such regions might function, given their restricted accessibility. 

In doing so, I hope that readers will be able to view H3K56me3 in the context of other histone H3 core 

modifications and that this will allow them to postulate, as I have, about the functional roles of this 

novel mark. These parts include section 1.4 “Modification of histone H3 core residues and their 

implications on nucleosome structure” in my thesis introduction and section 2.2 “Genome-wide 

localization of H3 core modifications and their functional implications” in my discussion.  

 

To increase the readability of the thesis, the “Introduction” is directly followed by the “Discussion” 

plus a joint reference list for both parts. Subsequent to these sections come the two research papers, 

which constitute the “Results” part of the thesis. This layout is in accordance with the university 

guidelines for preparing a cumulative thesis. 
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SUMMARY 
 
The compaction of DNA into chromatin is a phylogenetically conserved process, which is not only 

important in terms of organizing the genetic code into the confines of the cell nucleus, but also 

provides a means of regulating access to the underlying sequence during processes such as 

transcription, replication and repair. One of the major mechanisms for manipulating DNA accessibility 

is post-translational modification (PTM) of histone proteins. Although originally regarded as being 

limited to the more accessible histone N-terminal tails, technological advances in the last decade have 

provided evidence that PTMs can also occur within the histone core domains. Given the extensive 

histone-histone and histone-DNA interactions with which the latter regions are associated, it was 

postulated that modifications within these domains could directly alter nucleosome structure and 

stability - a hypothesis which has since been supported by accumulating experimental data.  

The primary manuscript in this cumulative thesis describes the identification and characterization of 

H3K56me3, a novel histone H3 core modification. In this paper, we identify both enzymes responsible 

for setting the mark (writers) and those responsible for regulating its removal (erasers). Interestingly, 

these enzymes are also known to regulate H3K9me3, a well characterized histone tail modification, 

famous for its role in heterochromatin formation. In addition, we show that H3K56me3 distribution 

overlaps with H3K9me3, localizing to silenced regions including the centromeres, but not telomeres, 

of mitotic cells and the chromocentres of interphase cells. Given the similarity in sequence 

surrounding both H3 residues, we performed extensive specificity studies to ensure our observations 

were not a result of antibody cross-reactivity. In this regard our antibody performed well and we can 

therefore conclude that H3K56me3 is a novel histone core modification associated with 

heterochromatin. Finally, we show that this modification is conserved, at least within metazoans, and 

that it shows some interesting differences compared to H3K9me3 in the C. elegans germline. Together 

with the finding that unlike H3K9me3, H3K56me3 is not present at the telomeres of mitotic 

chromosomes, this highlights possible functional differences between the two modifications, at least 

within certain processes, which will be interesting to pursue in future studies. 

Changes in local PTM patterns can be brought about by histone variants, the incorporation of which 

lead to potential alterations in the physiochemical properties of a nucleosome. Indeed there is evidence 

that certain histone variants are more commonly associated with a certain repertoire of modifications, 

which likely reinforce any structural changes the variant may impart. For example, a variant which has 

the potential to destabilize a nucleosome, is more likely to harbour “activating” PTMs, together 

contributing to a more open chromatin conformation and recruitment of factors for which such an 

environment is necessary. In the second paper of this thesis, through the testing of a novel GFP-

multiTrap binder tool, we were able to confirm previously published data that showed the histone 
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variant H2A.Z is enriched for H3K4me2 relative to its canonical counterpart, H2A. Although highly 

controversial, H2A.Z has been reported to destabilize nucleosomes, which would fit with the 

enrichment of a modification associated with transcriptional activation. Contained within this paper 

are also further, more extensive tests, performed by our collaborators, which show the GFP-multiTrap 

binder plate to be a highly useful tool for quantitative measurement studies with fluorescent fusion 

proteins, with many applications in chromatin biology. 
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1 INTRODUCTION 
 
1.1 Chromatin structure and assembly 
 

“Simplicity is the ultimate sophistication”- Leonardo da Vinci 

The simplicity of DNA makes it remarkable that what lies within it is the heritable genetic blueprint 

required to sustain any particular life-form. Inscribed with such valuable information, its protection, 

regulation and propagation to the next generation are paramount to the success and survival of the 

organism carrying it. To fulfil these requirements, eukaryotes organize their DNA into a compact 

structure, known as chromatin, which not only allows the storage of vast amounts of genetic 

information within the confines of the cell nucleus, but also provides a means of regulating all 

processes based on the underlying code.  

 

 

Figure 1. Basic architecture of the nucleosome core particle. (a) The crystal structure of the first nucleosome core particle (NCP) revealed 

146 base pairs (bp) of duplex DNA wrapped around a central histone core in a left-handed superhelix ((1) ; pdb code 1AOI). The eight 

histone proteins (two each of H2A, H2B, H3, and H4) form two types of similarly organized heterodimers: H2A–H2B and H3-H4. In the 

octamer, these four dimers are arranged about a two-fold symmetry axis, called the dyad, which also intersects with the middle of the DNA 

fragment. Two symmetry-related H3-H4 dimers define the center of the octamer, and contact the DNA around the dyad. (B) In the 

nucleosome, each histone dimer grips three consecutive minor grooves of DNA in a similar fashion, with the central contact primarily made 

by the N-terminal side chains and backbone of the α1 helix for each histone in the dimer (α1-α1), and the two outer contacts made by the 

loops preceding the second helix of one histone and the third helix of the other (L1–L2). The four histone dimers thus use just two basic 

motifs (α1-α1 and L1–L2) to coordinate 12 minor grooves of DNA. Taken from (2), with permission from Elsevier. 

The basic unit of chromatin is the nucleosome in which 1.65 left-handed superhelical turns (~146bp) 

of DNA are wrapped around a protein octamer containing two of each of the canonical histones: H2A, 

H2B, H3 and H4 (Figure 1a) (1). Histones are small, basic proteins, which are amongst the most 

abundant in any eukaryote’s proteome. Although there is little similarity between the primary 

sequences of the four canonical histones, each contains a highly conserved structural motif, known as 

the histone fold domain. This domain is formed by the association of three alpha-helices (α1-3), which 

are connected by two loop regions (L1 and L2). The histone fold domains interact to form the core of 
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the nucleosome and are therefore under considerable structural constraint, limiting their divergence 

across the phylogenetic tree. In addition, all histones have an intrinsically disordered N-terminal tail 

region. The clustering of cationic residues, within these regions, leads to their protrusion away from 

the nucleosome core and, together with the flexibility endowed by their unstructured organization, 

facilitates their proposed primary function, as recruitment platforms. Although dispensable for the 

organization of the histones into a nucleosome (3), the histone tails appear to be important in 

mediating  inter-nucleosomal interactions and higher-order structures (3). Histone H2A is unique in 

that it also has a long C terminal tail, which interfaces with the H3-H4 core domains and is important 

for binding of the linker histone, H1 (4,5). In vivo, assembly of the nucleosomes occurs in a sequential 

manner in which an H3-H4 tetramer is first deposited onto the DNA, followed by binding of two 

H2A-H2B dimers. Within both the H3-H4 dimers and the H2A-H2B dimers, the histone fold domains 

are arranged antiparallel to one another, which facilitates hydrogen bonding between the L1 loop of 

one histone and the L2 loop of the other (Figure 1b) (1). Additional contact occurs between the α1 

helices of opposite histones. The H3-H4 tetramer is assembled by the association of two H3-H4 

dimers, which interact via a 4-helix bundle formed between the two H3 histones. Upon addition of the 

H2A-H2B dimers, a similar bundle forms between H4 and H2B, allowing the assembly of the full 

octamer. In this process, the presence of DNA is required for the association of the tetramer with the 

dimers, in vivo, and the use of highly-charged histone chaperones prevents the occurrence of non-

specific interactions (6). This association forms the first level of compaction and functions, in part, by 

alleviating the repulsive forces that prevent a naked DNA strand from folding alone. Within each 

nucleosome, major interactions, between the DNA and histones, occur at 14 different locations via 

α1α1 DNA binding motifs or by using the L1 and L2 loops (Figure 1b) (7). These interactions are 

facilitated by a combination of hydrogen bonding, between the phosphate oxygen of the DNA and the 

amide group of the histone residue, and electrostatic associations with the basic side chains. At the 

nucleosomal DNA entry/exit point, the penultimate 13bps of DNA interact with the H3αN helices, 

which do not form an integral part of the (H3-H4)2 tetramer (7). These interactions are weaker than 

those occurring within the nucleosome dyad and it is thought that this allows DNA breathing to occur, 

facilitating binding of, for example, transcription factors, to underlying cis-regulatory sites (8). 

Early studies, in which chromatin was partially digested using nucleases and analyzed by electron 

microscopy, famously depicted the repeating units along the length of DNA as ‘’beads on a string’’ 

(Figure 2) (9). In this conformation chromatin is described as accessible and has a diameter of 

approximately 10nm. Binding of the additional linker histone, H1, wraps a further 20bps of DNA and 

compacts this structure into a chromatosome (10), an important step in the establishment of what has 

been traditionally termed the 30nm fibre (Figure 2). In recent years, the identification of several 

distinct 30nm fibre structures  (reviewed in (11)), along with the use of new in situ techniques, which 

bring into question its presence in vivo (12), have led to controversial views surrounding the exact 

nature of this structure.  
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Figure 2. Chromatin structure and the mechanisms by which it is regulated. Assembly of chromatin is depicted in the electron 

micrographs (EM) at the top of the diagram with increasing compaction from left to right. Below are the major mechanisms used to regulate 

chromatin structure. Adapted from (13) and adapted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics (14), copyright 

2007. 

Irrespective of the precise conformation, the organization of chromatin into higher-order structures 

seems refractory to the requirement that the genetic information be accessible for DNA-based 

processes, such as transcription, replication and repair, to occur. However, chromatin is a highly 

dynamic and malleable structure and only with the development and application of techniques such as 

genome-wide analyses (and chromatin capture), are we beginning to fully appreciate the extent of this 

lability. While chromatin has traditionally been split into two main types: euchromatin, which is gene 

rich, adopts a more ‘open’ conformation and is conducive to transcription; and heterochromatin, which 

is gene poor, densely packed and refractory to transcription, our increased understanding of how DNA 

accessibility is regulated has led to the formulation of more complex categorizations based, for 

example, on associated protein complexes (15).  These categorizations often comprise, at least in part, 

histone modification signatures (16,17). A more recent proposal, however, highlights some of the 

problems with this approach and the need to take into account the structural features of chromatin, by 

incorporating data from techniques such as chromosomal capture techniques to fully understand 

chromatin function in three dimensions (18). 
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Mechanisms for regulating chromatin structure 
 

Broadly speaking there are six, highly interconnected mechanisms for regulating chromatin structure 

(Figure 2): 1. ATP-dependent remodelling, which uses the energy from ATP hydrolysis to evict or 

move nucleosomes along the DNA; 2. DNA methylation, which is thought to induce tighter wrapping 

of the DNA around the nucleosome, as well as serving a recruitment function and is associated with 

transcriptionally silenced regions; 3. Non-coding RNAs (ncRNAs), which are involved in a number of 

processes, including protein recruitment, RNAi-mediated silencing, higher-order structure and nuclear 

organization; 4. Nuclear organization, which contributes to the formation of ‘inactive’ and ‘active’ 

domains; 5. Covalent post-translational modifications (PTMs) of histones, which can act directly, by 

altering nucleosomal interactions, or indirectly, through recruitment of protein complexes; and 6. 

Incorporation of histone variants, which can alter the physiochemical properties of the nucleosome as 

well as the PTM pattern. Given that this thesis focuses primarily on histone PTMs, including in the 

context of histone variants, the latter two mechanisms will be reviewed in more detail, while the others 

will be largely omitted. 

 

1.2 Histone modifications 
 

Post-translational histone modification is most well known for its occurrence on the N-terminal tails, 

however in the last decade an increasing number of core residues have also been identified as target 

sites. Enzymes that regulate the addition of chemical groups are termed writers and those that catalyze 

their removal are known as erasers. The covalent addition of specific groups onto targeted residues can 

alter their size, charge density and hydrophobicity (19). Such changes have been proposed to mediate 

chromatin structure in two ways: Firstly, by facilitating the recruitment of protein complexes, a 

process mostly associated with the N-terminal tail regions; and secondly, by directly altering histone-

histone and histone-DNA interactions, a process primarily associated with modifications of the histone 

core domains. When looked at as individual modifications, PTMs can appear to have seemingly 

opposing roles in the different cell processes in which they are involved.  For example H3 serine 10 

phosphorylation (H3S10ph) has been implicated in both transcriptional activation during heat shock 

(20) and chromatin condensation during mitosis (21). However such differences can, in part, be 

explained by an extended view of the “Histone Code” hypothesis, which states that PTMs function in 

a interdependent, combinatorial manner (in both cis and trans), to modulate the interactions of 

multivalent chromatin-associated proteins/complexes (22,23).  As such, specific combinations of 

modifications, rather than individual marks, in conjunction with the proteins they recruit lead to the 

establishment and overall function of different chromatin domains e.g. heterochromatin and 

euchromatin (22,24). Indeed, the identification of conserved protein motifs, capable of recognizing 

and binding specific modifications adds weight to this prediction. Proteins harbouring one or more of 

these domains, known as readers, are usually found in multi-subunit, enzyme-containing complexes, 
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the composition and balance of which determines the structure and function of chromatin regions 

(15,24). With the discovery of an increasing number histone modification types and locations, the 

complexity of this code is increasing. The list of modifications now includes acetylation, methylation, 

phosphorylation (discussed in more detail below), ubiquitination, sumoylation, poly-ADP-

ribosylation, citrullination, biotinylation, glycosylation, glutathionylation and isomerization, the latter 

of which is the only non-covalent one. Several of these PTMs can occur on the same type of residues 

suggesting a degree of competition occurs, the outcome of which is likely determined by the local 

levels of writers and erasers, as well as other chromatin-associated proteins. As genome-wide analyses 

tools improve, so we can better appreciate the complexity in the interplay between not just PTMs but 

also factors such as DNA methylation patterns, histone variant incorporation and nucleosome 

occupancy, in establishing chromatin domains.  

 

1.2.1 Acetylation (ac) 
 

Acetylation is regulated by histone acetyltransferases (HATs), which transfer an acetyl group from 

acetyl Coenzyme A (acetyl-CoA) onto the positively charged ε-amino group of lysine residues (Table 

1).  This results in charge neutralization and an increase in hydrophobicity. Consequently, this type of 

modification favours the formation of secondary structures and has been suggested to increase the α-

helical content of the N-terminal tails (25,26). In addition, loss of the lysine positive charge alters 

electrostatic interactions between the residue and negatively charged DNA or histone groups, resulting 

in a reduced affinity. Along these lines, H4K16ac has been shown to negatively influence higher-order 

chromatin structures (27) by weakening interactions between H4 and H2A-H2B in neighbouring 

nucleosomes (28). In line with these biophysical alterations, histone acetylation has traditionally been 

associated with the promotion of a more ‘open’, transcriptionally-permissive chromatin state, where as 

deacetylation, by histone deacetylases (HDACs) (Table 1), favours a more ‘closed’, transcriptionally-

silent state (29). In addition to reinstating the positive charge, the latter reaction also makes the lysine 

residue available for other modifications, such as methylation (discussed later in this section), 

providing a means of regulating competition between modifications at a specific site. 

HATs can be split into two major groups: type-A and type-B. While type-A HATs are typically found 

in the nucleus, act on nucleosomal histones and are associated with transcription, type-B HATs are 

found in the cytoplasm, acetylate soluble histones and are associated with DNA replication (30,31). 

Type-A HATs can be further classified into three sub-groups based on conserved sequence motifs and 

structures: p300/CREB binding protein (CBP), which act as global transcriptional coactivators, GCN5 

related N-Acetyltransferases (GNAT), which play a role in Epidermal Growth Factor (EGF) signalling 

and cell cycle progression and MYST (Moz, Ybf2 (Sas3), Sas2, Tip60), which are involved in DNA 

damage repair (32). 
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PTM  Position  Writer  Eraser  Reader
    S.c  C.e  D.m  Mammals  S.c  C.e  D.m  Mammals   

A
ce
ty
la
ti
on

 

H2AK4 
H2AK5 

Esa1  mys‐1? 
cbp‐1? 

Tip60  TIP60,P300/CBP 
HAT1 

Rpd3  hda‐1? 
hda‐2? 

   
HDAC3 

 

H2AK7  Esa1                 
H2AK9  Elp3, Gcn5              HDAC5   
H2BK11 
H2BK12 

Gcn5  cbp‐1?    P300/CBP, ATF2  Rpd3, Hda1, 
Hos3 

hda‐1? 
hda‐2? 
hda‐4? 

     

H2BK16 
H2BK15 

Gcn5  cbp‐1?    P300/CBP, ATF2           

H3K9  Gcn5, 
Rtt109 

  dGcn5    Rpd3, Set3, 
Hda1, Hos2, 
Hst1 

hda‐1? 
hda‐2? 
hda‐3? 
hda‐4? 

dHDAC1  SIRT1/6   

H3K14  Gcn5, Hpa2, 
Esa1, Elp3, 
Sas2, Sas3 

mys‐4? 
mys‐1? 
cbp‐1? 

dGcn5, Taf1, 
dCBP 

P300/CBP, TAF1, 
hGCN5, PCAF, 
MOZ, MORF, 
TIP60, SRC1, HBO1 

      HDAC5  Bromo, PHD 

H3K18  Gcn5  cbp‐1?  dCBP  P300/CBP           
H3K23  Gcn5, Sas3  mys‐4? 

cbp‐1? 
  P300/CBP           

H3K27  Gcn5, 
Rtt109 

  dCBP             

H3K36  Gcn5                 
H3K56  Rtt109  cbp‐1?  dCBP  P300/CBP  Hst3/4    Sir2  SIRT1/2/6   
H3K122    cbp‐1?    P300/CBP           
H4K5  Esa1, Gcn5  mys‐1? 

cbp‐1? 
Hat1, dCBP  HAT1, TIP60, P300, 

HBO1 
Rpd3, Set3, 
Hos2, Hst1 

hda‐1? 
hda‐2? 

  HDAC3  Bromo 

H4K8  Esa1, Elp3, 
Gcn5 

mys‐1?  dCBP  TIP60, P300, HBO1          Bromo 

H4K12  Hat1, Esa1, 
Hpa2, Gcn5 

mys‐1? 
cbp‐1? 

  TIP60, P300, HBO1        HDAC3   

H4K16  Sas2, Esa1, 
Gcn5 

mys‐1? 
mys‐2? 

dMof, Atac2  hMOF, TIP60, 
ATF2 

Sir2    Sir2  SIRT1/2  Bromo 

M
et
hy
la
ti
on

 

H3K4  Set1  set‐1, 
set‐2, 
(set‐12, 
set‐16?), 
ash‐2, 
lin‐59? 

Trx, Trr, 
Ash1, Set1 

SET1, NSD2‐3, 
SET7/9, MLL1‐4, 
SMYD3, ASH1L 

Jhd2    Lid, Suv33  LSD1/KDM1A, 
AOF1, JARID1A‐
D/KDM5A‐D 

PHD, 
CHROMO, 
WD40, ADD, 
Tudor, MBT, 
Zf‐CW 

H3K9    met‐1 
met‐2 

Suv39, G9a 
Ash1,  

SUV39H1/H2, G9a, 
GLP, SETDB1, RIZ1, 
ASH1L 

Rph1  Jmjd2a  dKDM4B  LSD1, 
JHDM2A/B, 
JMJD2A‐
D/KDM4A‐D, 
PHF8, KDM7A 

PHD, 
CHROMO, 
WD40, 
Ankyrin 

H3K14                   
H3K23                  CHROMO 
H3K27    mes‐2, 

mes‐3, 
mes‐6 

Ez  EZH1/2, NSD2‐3, 
G9a 

        CHROMO, 
WD40 

H3K36  Set2  mes‐4, 
met‐1, 
met‐2 

Set2, Mes4, 
Ash1 

SETD2, SETD3 
NSD1‐3, SMYD2, 
ASH1L, SETMAR 

Jhd1, Rph1, 
Gis1 

Jmjd2a  dKDM4A/B  JHDM1A/B, 
JMJD2A‐
C/KDM4A‐C 

CHROMO, 
PHD, PWWP 

H3K56        G9a, SUV39H1/H2        JMJD2D/KDM4D, 
JMJD2E/KDM4E 

 

H3K64        SUV39H1/H2 
(indirect) 

         

H3K79  Dot1    Grappa  DOT1L           
H4K12                   
H4K20      Pr‐set7, 

Suv4‐20, 
Ash1 

ASH1L, NSD1/2, 
PR‐SET7, SUV4‐
20H,  

      KDM7A, PHF8   

Ph
os
ph

or
yl
at
io
n 

H2AS1  Sps1      MSK1           
H2AT119 
H2AT120 

    NHK‐1, 
AuroraB 

BUB1           

H2AS129 
H2A.XS139 

Tel1, Mek1       
ATM, ATR 

Pph3       
PP2A, Wip1, 
PP6, PP4 

 

H2BS10 
H2BS14 

Ste20       
MST1, HIPK2 

         

H2BS33 
H2BS32 

    TAF1   
RSK2 

         

H2BS36        AMPK           
H2BY37        WEE1           
H3T3        HASPIN        PP1  BIR 
H3T6        PKCβ           
H3S10  Snf1, Ipl1  Aurora B  Jil‐1, Aurora 

B 
TG2, Aurora B, 
MSK1/2, JNK, 
IKKα, PKB, RSK2, 
ERK, p38, Fyn, Act, 
COT,PIM1, CDK8 

Glc7  PP1  PP2A  PP1, DUSP1  14‐3‐3 

H3T11        DLK/ZIP, PRK1, 
PKM2, CHK1 

      PP1, PPP1CC   

H3T45        PKCδ           
H3S28        MSK1/2, ERK1/2, 

p38, Fyn, MLTKα, 
Aurora B, RPSK6α4 

Glc7      PP1   

H3Y41        JAK2           
H4S1  CkII      CKII           
H4S47        PAK2           
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Table 1. Major histone modifications. Alternative residue numbers that refer to mammalian histones are shown in red. Writers, erasers and 

reader domains are shown for Saccharomyces cerevisiae (S.c), Caenorhabditis elegans (C.e.), Drosophila melanogaster (D.m.) and 

mammalian modifications. Question marks represent predictions based on structural homology to proteins from the other organisms.  

Adapted from (33). For references see text. 

In higher eukaryotes, HDACs can be divided into four main groups: Class I HDACs, which are related 

to yeast RPD3 and comprise HDAC 1, 2, 3 and 8; Class II HDACs, which are related to yeast Histone 

Deacetylase-A 1 (HDA1) and include HDAC 4, 5, 6, 7, 9 and 10; Class III, which is made up of the 

SIRTuins (SIRTs); and Class IV, consisting of just one member, HDAC 11 (34). Unlike class I, II and 

IV enzymes, which are all zinc-dependent, the SIRTs require the co-factor nicotinamide adenine 

dinucleotide (NAD+) for their function. In general the HATs and HDACs are rather promiscuous in 

their specificity and a certain amount of compensation can occur. Moreover, an increasing number of 

non-histone proteins, including key regulators such as p53, are being found to be targeted by the same 

enzymes, highlighting the problems in defining the cause of cellular changes upon manipulation of 

enzyme levels.  

While HATs are often found as components of multi-subunit complexes involved in transcriptional 

activation, HDACs form part of those involved in transcriptional repression, supporting the early idea 

that histone acetylation plays a role in transcriptional regulation (35).  Histone acetylation is not only 

implicated in transcriptional control, but also in processes such as DNA replication (36) and repair 

(37), differentiation (38) and apoptosis (39). Like transcription, these processes are mediated through 

the interaction of acetylation regulators with DNA binding proteins that allow the integration and 

transduction of many cellular signals (40). In addition to the enzymes that regulate them, acetylated 

lysine residues can be recognized by other proteins containing the same conserved domains capable of 

binding the added moiety. These domains include: the Bromodomain (41) and the Plant Homeo 

Domain (PHD) (42) (Table 1). The bromodomain, contains a structural fold called the ‘BRD fold’, 

which consists of two helical loops that form a hydrophobic pocket that selects for acetylated, rather 

than unacetylated lysine residues (43). The PHD domain is a zinc finger-like domain, which is found 

on many chromatin associated proteins, but only recently implicated in histone acetyl binding (42).  

Interestingly, proteins which utilize these domains for acetyl-recognition commonly use a tandem set-

up in which one PHD domain recognizes a certain sequence while the other binds an acetylated lysine 

via a hydrophobic pocket (42,44). Furthermore, it was recently shown that binding of the double PHD 

domain of the HAT, MOZ/MYST3, induces α-helical turns in the H3 tail, which consequently 

promote further post-translational modification (44). This indicates that once a specific protein binds a 

modification it may initiate a cascade of further modifications to enforce a particular outcome.  
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1.2.2 Lysine Methylation (me) 
 

Methylation occurs in three forms, mono-, di- or tri-methylation (me1, me2, me3), on lysine residues 

(Table 1) and two forms, mono- and di-methylation, on arginine (R) residues. Due to the presence of 

two terminal nitrogens on arginine, di-methylation of these residues can occur either symmetrically, 

where each receives one methyl group or asymmetrically, where both groups are added onto the same 

nitrogen. Although progress has been made in the arginine methylation field, much more is known 

about lysine methylation and, due to its relevance to my project, I will focus on this for the remainder 

of this section. Unlike acetylation of lysine residues, methylation does not result in charge alteration. 

Instead, addition of methyl groups causes the loss of polar amino (NH) groups and a decrease in 

hydrogen bonding capacity (45). Furthermore, alterations in the conformation of the side chain may 

also occur. Compared to HATs and HDACs, the lysine methyltransferases (KMTs) and demethylases 

(KDMs) are relatively specific for both the residue they target and the number of methyl groups they 

add or remove, respectively (Table 1). The H3K79 KMT, Dot1, appears to be quite unique in that it is 

the only enzyme which regulates methylation at this residue and works in a distributive manner to 

facilitate addition of one, two or three methyl groups (46). This has led to the controversial debate 

over the functional redundancy of the different H3K79 methylation states. All KMTs use S-adenosyl-

L-methionine (SAM) as their methyl donor (47) (Figure 3) and with the exception of Dot1, all contain 

a conserved SET domain (Supressor of Variegation, Enhancer of Zeste and Trithorax). This domain is 

evolutionarily conserved and was first identified in the three Drosophila melanogaster proteins that 

give it its acronym (48-50). SET-domain containing proteins can be further divided based on sequence 

motifs surrounding the domain and similarities within the domain itself (51) (Figure 3a). These 

families include SUppressor of Variegation 39 (SUV39), SUppressor of Variegation 4-20 (SUV4-20), 

SET domain containing protein 1 (SET1), SET domain containing protein 2 (SET2), Enhancer of 

Zeste (EZ), RIZ, and Set and MYND containing protein (SMYD). Additionally, SET7/9 and SET8, 

also known as PR-SET7 exist, but do not fall into any of the aforementioned groups.  

Although KDMs evaded detection for a long time, the identification of Lysine Specific Demethylase 1 

(LSD1 /KDM1A) in 2004, challenged the idea that methylation is a one-way process. Since then a 

multitude of KDMs have been discovered (Table 1), which, like the KMTs, are residue and methyl-

state specific. LSD1 and mammalian-specific LSD2/KDM1B (52) both contain a flavin adenine 

dinucleotide (FAD)-dependent amine oxidase domain, which is responsible for the demethylation of 

H3K4me1 and me2 (Figure 3b). In addition, a much larger group of KDMs exists, which all contain a 

Jumonji C (JmjC) domain that uses Fe2+, O2 and α-ketoglutarate to hydroxylate the methyl group (53) 

(Figure 3b). The reaction then proceeds in much the same way as that of LSD1 (54). Importantly, the 

LSD proteins require a protonated nitrogen as a hydrogen donor and therefore cannot target tri-

methylated residues. JmjC KDMs, on the other hand, can target all three states of methylation.  
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Figure 3. Regulation of histone methylation. a) Protein methyltransferases (PMTs) (left) and demethylases (KDMs) (right) are 

phylogenetically clustered on branches based on amino acid sequence similarity. The phylogenetic analysis tends to cluster structurally 

related proteins as it was compiled using multiple sequence alignments of the domains, which characterize known protein sub-groups. 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery (32), copyright 2012 . b) Enzymatic reactions for 

lysine methylation and demethylation. For demethylation, reaction mechanisms are shown for the LSD family of demethylases, which can 

remove me1 and me2 and for the JMJD demethylases, which can remove me1, me2 or me3.  

Methylation is recognized by a number of domains including chromo, tudor, malignant brain tumour 

(MBT) and PWWP (Pro-Trp-Trp-Pro), which are structurally related and grouped as the Royal 

Family, PHD domains, Zinc finger CW (Zf-CW) and the Ankyrin and WD40 (Trp-Asp) repeats 

(55,56) (Table 1). These domains are able to differentiate between the location and number of methyl 

groups and are found on a broad range of proteins including those involved in gene silencing, cell 
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proliferation, DNA repair as well as on the KMTs and KDMs. G9a/EHMT2 and G9a-like protein 

(GLP)/EHMT1, catalyze both H3K9me1 and H3K9me2. They can, in addition, bind their products 

using ankyrin repeats (57). These repeats form a hydrophobic pocket, which is characteristic to 

methyl-binding modules. While the cage formed by G9a and GLP can accommodate H3K9me1/2, it is 

too narrow to fit three methyl groups. SUV39 homolog 1 (SUV39H1) and 2 (SUV39H2), both 

responsible for H3K9me2 and me3 catalysis, contain a chromodomain, which forms a hydrophobic 

pocket that can accommodate H3K9me3. The H3K9me2/3 reader, heterochromatin protein 1 (HP1), 

also interacts via a chromodomain (58). Interestingly, it has recently been proposed that slight 

differences in binding affinities between the pockets of SUV39H and HP1 help reduce competition for 

residue interaction (59). While HP1 has a minor preference for H3K9me2, SUV39 favours the 

trimethyl state and it is thought these propensities facilitate the spread of heterochromatin (see next 

section). In a similar manner to the binding of acetylated peptides to their readers, when in complex 

with methyl-binding domains, the H3 tail adopts an extended conformation that is thought to facilitate 

further interactions between it and the protein (19). This achieves a degree of specificity that, for 

example, allows the chromodomain of Polycomb to distinguish a different target to the chromodomain 

of HP1 (60). Along these lines, a certain amount of specificity is therefore conferred by the sequence 

surrounding the target residue (60). 

 

1.2.2.1 Lysine methylation and constitutive heterochromatin formation 
 

Lysine methylation is rather ambiguous in terms of function and as such has been linked to both 

euchromatic and heterochromatic regions. While higher states of methylation at H3K9, H3K27 and 

H4K20 are generally regarded as indicators of transcriptional silencing, H3K4, H3K36 and H3K79 

methylation are associated with activation (61). In reality these correlations are not so black and white, 

however the role of histone methylation in heterochromatin formation has been extensively studied 

and provides a good example of how modifications function in assembling a specific chromatin 

domain. 

Broadly speaking heterochromatin is densely packed making it refractory to transcription, however 

defined features and differences in packaging dynamics has led to its classification into two, further 

sub-groups: constitutive and facultative (62). The genome-wide distribution of facultative 

heterochromatin is cell-type dependent and is often associated with differentiation, development and 

stress. This type of heterochromatin retains the capacity to adopt a more open conformation in 

response to specific cellular or environmental cues, allowing regulated access to any genes and 

regulatory elements with which they are associated (62). Constitutive heterochromatin is different in 

that it contains a high density of DNA repeat elements most commonly associated with the telomeres 

and centromeres. These features and their functions are conserved between different cell types and 

therefore the same regions of DNA are tightly packaged into this type of chromatin. It is thought that 
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the repressive structure of constitutive heterochromatin is conducive to the maintenance of genomic 

stability, preventing re-arrangements, which might otherwise occur between the highly similar 

sequences, and facilitating correct chromosome segregation. Any genes within regions of constitutive 

heterochromatin will be poorly expressed and the spreading of this form of chromatin, into adjacent, 

non-repetitive regions can lead to the silencing of neighbouring genes - a phenomenon known as 

Position Effect Variegation (PEV).  

Centromeres are specialized regions of chromatin, identifiable by their incorporation of the histone H3 

variant CENtromeric Protein A (CENP-A). These regions are responsible for assembly of the 

kinetochore, which serves as the attachment point for the mitotic spindle and is required for proper 

sister chromatid segregation during mitosis (63) .  CENP-A is uniquely incorporated into these regions 

and is essential for their function with deletion of this histone variant causing severe defects in cell 

division (64). While the functionality and the presence of CENP-A are conserved between 

centromeres of different species the overall architecture is rather different (65). In S. cerevisiae, three 

DNA elements, CDEI, CDEII and CDEIII are responsible for the functionality of this region and span 

a total of approx. 125bp. A 15bp stretch of CDEIII serves to recruit a complex of proteins necessary 

for the assembly of a single nucleosome, containing CENP-A, over the middle AT-rich CDEII element 

(65).  In contrast, centromere assembly in higher eukaryotes is not strictly DNA sequence dependent 

and is governed by large arrays of repetitive DNA, known as satellite repeats. During interphase, these 

repeats cluster together to form chromocenters that can be microscopically visualized as DAPI-dense 

regions in the nucleus. Blocks of CENP-A-containing nucleosomes are assembled onto these repeats 

and are interspersed with H3-containing nucleosomes, encompassing anywhere from 500-1500bp in 

humans (65). Interestingly, while the flanking pericentromeric heterochromatin is associated with 

expected, repressive modifications, such as DNA methylation, H3K9me3, H3K27me3 and 

H4K20me3, the canonical H3 found at the centromeres is enriched for H3K4me2, a mark normally 

correlated with euchromatin, but not other hallmarks of open chromatin such as hyperacetylation (66). 

In addition, studies in mouse also revealed the presence of H2A.Z in these regions and it is 

conceivable that these latter features facilitate transcription of ncRNAs within these regions (67). 

In mammals, the establishment of pericentric heterochromatin occurs in a sequential manner (68,69) 

(Figure 4). Recent evidence suggests that the binding of transcription factors to sites within the 

repeats, may serve as an early step in establishing this form of chromatin, working together with 

ncRNAs to facilitate the recruitment of G9a/GLP and SUV39H1/H2 (70,71). In addition, H3K9me is 

monomethylated outside of chromatin and subsequently incorporated into the repeat units, where it 

acts as a substrate for SUV39H1/H2 (72,73). H3K9me3 has been shown to act as a high-affinity 

binding site for HP1 (74), which is subsequently recruited to these regions. While the HP1 

chromodomain (CD) has been shown to be important for H3K9me3 recognition, the chromoshadow 

domain (CSD) functions in HP1 dimerization and interacts with the αN region of nucleosomal histone 
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H3 (75,76). This latter interaction is thought to require some loosening of the DNA at the entry/exit 

site. HP1 binding has been shown to compact chromatin by interacting with nucleosomal DNA, 

histones and other chromatin associated factors. For example, it recruits DNA methyltransferases 

(DNMTs) (77) and synergistically stabilizes SUV4-20H2, thereby promoting H4K20me3 and 

recruitment of the cohesin complex (78). 

Figure 4. Establishment of pericentric heterochromatin.  Establishment occurs in a stepwise manner beginning with recruitment of 

transcription factors and the RNAi machinery, followed by deposition of H3K9me3 by Suv39 and subsequent binding of HP1. 

Finally accumulation of Suv4-20 and DNMTs leads to H4K20me3 and DNA methylation (5metC), respectively. 

Cohesion is established between sister chromatids during S-phase, linking them together until their 

separation during anaphase. The cohesin complex is initially distributed along the length of sister 

chromatids and remains as such until mitosis. In metazoans, removal of the complex begins in 

prophase (79). After this phase, it is only present at the centromeres, where it facilitates the alignment 

of chromosomes on the spindle (80). It is thought that centromere-specific recruitment of the 

phosphatase PP2A is important in counteracting cohesin-targeted kinase activity, thereby preserving 

the complex at these regions, while removal in the chromosome arms takes place (79).  A second 

round of dissociation then occurs during anaphase when the enzyme separase cleaves Scc1, a subunit 

which stabilizes the cohesin ring structure. Interestingly in yeast, all cohesin removal occurs during the 

metaphase to anaphase transition via the separase pathway (79). Misregulated cohesin recruitment 
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leads to chromosome segregation defects (78), indicating the importance of this process in maintaining 

genomic stability.  

 

1.2.3 Phosphorylation (ph) 
 

Phosphorylation is catalyzed by kinases and removed by phosphatases (Table 1). Like acetylation, the 

addition of a phosphate group onto serine, threonine or tyrosine residues results in a charge alteration. 

In this case, however, the residues gain a negative charge. As with acetylation, this alteration 

disfavours certain electrostatic interactions, for instance with DNA, and it has been shown that these 

two types of modifications are often linked (81,82). It is not surprising, therefore, that phosphorylation 

has been implicated in gene activation (83,84). This type of modification has been shown, in some 

cases, to antagonize repressive methylation marks at nearby residues or prevent the removal of 

activating methylation marks. For example, H3T11ph accelerates H3K9 demethylation by JMJD2C to 

regulate androgen receptor targeted transcription (85), while H3T6ph prevents H3K4 demethylation 

during the same process (86). Intriguingly and seemingly contradictory, some phosphorylation marks 

including H3S10ph and H3S28ph are found on both open and closed chromatin regions (87,88). 

Despite roles in processes such as transcription, histone phosphorylation is perhaps most famous for 

its role in mediating mitotic and meiotic chromosome condensation (21,89). H3S10ph accumulates at 

the centromeres during mitosis, where it is sufficient to displace HP1 binding at the neighbouring 

H3K9 residue (90), a process that is thought to be necessary for proper chromatin condensation and 

segregation. H3T3ph is also associated with mitosis, during which it becomes enriched at the 

centromeres. This regional accumulation is important for the recruitment of the Chromosomal 

Passenger Complex (CPC) and therefore the regulation of chromosome separation rather than 

condensation (91). It was recently shown that this forms the start of a cascade in which the presence of 

CPC results in H3S10ph and subsequent recruitment of the HDAC Hst2p (SIRT2 homolog), which 

targets H4K16ac (28). As mentioned earlier, loss of this modification facilitates the formation of 

higher-order structures (27), and Wilkins et al., could show that this favours interactions between H4 

and the H2A-H2B dimer in adjacent nucleosomes thereby promoting mitotic chromosome 

condensation.    

Phosphorylation marks are recognized by a number of well characterized domains including the 14-3-

3 family (92), BRCT, SH2, WW, FHA, WD-40, LRR and BIR (56) (Table 1). The CPC subunit, 

Survivin, contains a BIR domain and the structural basis for its recognition of H3T3ph was recently 

resolved (93). Although surrounded by negatively charged residues of the BIR domain, H3T3ph docks 

onto a small patch of positive charge found between the side chains of the Survivin K62 and H80 

residues. Further interactions between the other peptide residues and negative regions of the BIR 

domain further stabilize the conformation. Interestingly, similarities can be drawn in the way the BIR 

domain of Survivin and the PHD finger domains, which are often recruited to methylatable residues, 
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bind the main chain of the H3 peptide. This shows that both types of domain use a common mode of 

recognizing a peptide sequence, but achieve specificity for PTM recognition via variations in their 

binding pockets. For example, the PHD fingers of the INhibitor of Growth (ING) factors form a 

hydrophobic pocket that recognizes H3K4me3, whereas the Survivin BIR domain binds H3T3ph via a 

small positively charged region (93).  

 

1.3 Modification of histone H3 core residues and their implications on nucleosome 
structure 

 

The modified residues discussed so far are all found within the accessible histone N-terminal tail 

regions. Although PTMs in the histone tails have been shown to be important for higher-order 

chromatin assembly , affecting inter-nucleosomal interactions (94), their protrusion away from the 

nucleosome limits their participation in intra-nucleosomal interactions that occur at the heart of the 

nucleosome. Although once thought to be inaccessible to histone modifying enzymes, technological 

advances have led to the discovery that an increasing number of residues within the histone core 

regions can in fact be covalently modified and that these residues occupy functionally significant 

positions within the nucleosome (95). 

 

1.3.1 H3K56 at the DNA entry/exit site 
 

Although part of the core globular histone domain, lysine 56 of histone H3 (H3K56) lies in the amino-

terminal alpha helix (H3αN) (Figure 5a), which is significantly less structured than the histone fold. 

Nevertheless, this region has been shown to be important for stabilization of the nucleosome and is 

positioned by the H2A docking domain, to interact with the penultimate 10 bp of DNA, at the DNA 

entry /exit site (1) (Figure 5b, top left). In addition, in yeast, it has been shown that ~ 30% of 

transcription factor binding sites reside within this region (96). H3K56 is well documented as a site of 

acetylation (ac), occurring on ~ 30% of yeast histone H3 (97) and is predominantly associated with the 

incorporation of H3 during DNA replication and repair (37,98). In higher eukaryotes H3K56ac is far 

less abundant appearing on less than 1% of mammalian H3 (99). However, unlike in yeast, H3K56 can 

also be methylated in these organisms, with monomethylation playing a key role in DNA replication 

(100) and trimethylation likely having a role in heterochromatin formation (101). Acetylation of 

H3K56, disrupts the normal water-mediated interaction between it and the DNA entry gyre (102) and 

has been shown, by single-molecule fluorescence resonance energy transfer (FRET), to increase the 

rate of DNA unwrapping by 7-fold as compared to the unmodified residue (103). Although X-ray 

crystallography suggests there is no change in the nucleosome structure or DNA conformation (104), 

this is compatible with the FRET data given that crystallization stabilizes the DNA in a ‘closed’ 

conformation (105). 
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Figure 5. Position and regulation of histone H3 core modifications.  a) Sequence (NCBI Reference Sequence NP_002098.1) and 

secondary structure of human histone H3.3 with core modified residues, for which there is more than just mass spectrometry data, 

highlighted in purple (methylated and acetylated), blue (acetylated) and red (methylated). Writers and erasers are displayed above and below 

the sequence, respectively and the colouring of the surrounding box matches the modification colour-coding used for the residues. (y) and 

(m) denote yeast and mammalian, respectively. (b) The crystal structure of the nucleosome (PDB ID: 1AoI) (1). H3 is shown in blue, H4 in 

green, H2A in yellow, H2B in red and DNA in grey. Discussed H3 core modifications (H3K56, H3K64, H3K79 and H3K122) are 

highlighted in cyan. Zoomed images show H3K56 and the H2A docking domain (top left), H3K122 (top right), H3K64 (bottom left) and 

H3K79 and the H4 basic patch (bottom right). 
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It has been shown that although there is extensive histone-DNA interaction at the entry/exit site, these 

contacts are relatively weak, compared to those at the nucleosome dyad (106). Loosening of the DNA, 

therefore, facilitates the binding of proteins to the chromatin fibre by promoting a more accessible 

nucleosomal environment (107). It is conceivable that these proteins include chromatin remodelers 

(97) and it was previously reported that a H3K56Q mutation, chemically mimicking acetylation of this 

residue, thereby contributes modestly to nucleosome repositioning (103). Additionally, it had been 

proposed that given the pivotal location of H3K56, its acetylation might lead to destabilization of the 

nucleosome. Recently, however, these findings have been disputed (107,108).  

There is also some controversy over the exact effect H3K56ac has on chromatin compaction in vitro. 

While it is generally accepted that H3K56ac has no effect on cis acting interactions within individual 

nucleosomal arrays, discrepancies lie in the effects it has on trans array-array interactions (103,104). 

One postulated reason for this is that H3K56 acetylation may only disrupt oligomerization of sub-

saturated arrays, which may better reflect the in vivo local chromatin environment in which H3K56ac 

is found, but such arrays were not tested in all studies. The use of H3K56ac to decrease interactions 

between multiple arrays may be a means of maintaining nucleosome-depleted regions (NDRs) of 

chromatin permissible for such functions as DNA replication and repair (104). 

Recently, using pulsed electron-electron double resonance spectroscopy coupled with site-directed 

spin labelling, the structure of the (H3-H4)2 histone tetramer was investigated and revealed that, while 

the H3-H3 interface retains a similar structure as observed in a nucleosomal context, the H3αN 

extension is more heterogeneous, so that in this conformation additional flexibility may enhance the 

likelihood of post-translational modifications and further interactions with chromatin-associated 

proteins (109). In yeast, H3K56 is primarily acetylated by the HAT, Rtt109 (110), which requires the 

presence of the histone chaperone Asf1 and therefore occurs on (H3-H4)2 tetramers before 

incorporation into chromatin. In mammals and flies, H3K56ac is mediated by the HATs, CBP/p300 

(111) and GCN5 (112).  

In higher eukaryotes, H3K56 has also been identified, by mass spectrometry (MS), as a site of 

methylation (113,114) and further in vivo data demonstrated the presence of me1 (100) and me3 (101). 

Recent crystal structures, reconstituted with methylated histones, show that although this type of 

modification is thought to induce less severe structural changes compared to charge-altering 

modifications, it can still alter the capacity of a residue to hydrogen bond and can change the 

conformation of the side chain (45). In this respect, methylation of this residue may alter the water-

mediated hydrogen bond between H3K56 and the DNA backbone, although to date there is no 

available experimental data to confirm this.  

Adjacent to H3K56 is serine 57, which has been identified by MS as a site of phosphorylation (115). 

Although there is currently no further evidence for this mark in vivo, it is imaginable that the presence 
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of this mark could affect the binding of proteins at H3K56, acting as a phospho-methyl binary switch 

(116).  

 

1.3.2 H3 PTMs at the dyad 
 

H3K122 acetylation is the most recent core modification to be characterized and is found at the 

nucleosome dyad axis (Figure 5b, top right), where the contact between histone and DNA is at its 

strongest (106). So far this modification has only been characterized in higher eukaryotes where, like 

H3K56ac, it is deposited by CBP/p300 (Figure 5a) (117). Similar to H3K56, addition of an acetyl 

group at H3K122 is likely to disrupt a water-mediated contact between it and the nucleosomal DNA 

(118). Interestingly, recent in vitro studies showed that unlike PTMs at the DNA entry/exit site, those 

at the dyad do not affect DNA unwrapping, but rather function by facilitating nucleosome disassembly 

(108,119) and sliding (120,121).  Given that salt-dependent nucleosome disassembly has recently been 

shown to begin with the ‘loosening’ of the (H3-H4)2 tetramer and the (H2A-H2B) dimer interface, 

before (H2A-H2B) dissociation from the DNA (122), one could speculate that H3K122ac and other 

modifications within the dyad axis facilitate this process. H3T118 can be phosphorylated and sits 

between, although not directly adjacent to, H3K122 and H3K115, the latter of which has also been 

identified, by MS, as a site of acetylation. Mutations of H3T118 fall into the class of SWI/SNF 

(SWItching and Sucrose Non Fermentation) INdependence (SIN) histone mutations, which in yeast, 

can functionally compensate for loss of the ATP-dependent chromatin remodeller SWI/SNF and are 

either found near the dyad-DNA contact points or the tetramer-dimer packing interface (123). Like the 

other two dyad modifications, H3T118ph facilitates nucleosome disassembly and does not appear to 

affect DNA unwrapping in vitro (108). Interestingly, a recent study, in which the binding of 

nucleosome assembly proteins (NAPs) was assessed in the presence of different modifications, 

showed that H3T118ph enhanced NAP-peptide interactions, while H3K122ac diminished them (124). 

Engineered histone H3, containing site-specific genetically incorporated acetyl-lysine (103) was, 

however, successfully assembled into chromatin, in vitro, using a combination of NAP1 and ATP-

dependent chromatin assembly factor (ACF) (117). This suggests further studies will be needed to 

delineate the in vivo functions and relationship of these modifications. 

 

1.3.3 H3K79 on the solvent-exposed nucleosome surface  
 

H3K79 is found on the first loop of the histone H3 globular domain (Figure 5a) and is exposed on the 

solvent accessible surface of the nucleosome (Figure 5b, bottom right). Unlike the DNA entry/exit 

point this region does not contact the DNA, however mutational analysis has shown that residues 

surrounding H3K79 are important for heterochromatic silencing in yeast (125,126). H3K79 can be 

mono-, di- and tri-methylated by the enzyme Disruptor of Telomeric Silencing (Dot1) (Figure 5a) 

(127-129). This enzyme is conserved and in most organisms analyzed to date and with the exception 
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of trypanosomes (130), is the only enzyme identified as able to mediate this modification. In the case 

of H3K79, addition of methyl groups has been shown to disrupt a weak hydrogen bond between it and 

the L2 loop of histone H4 and it has been demonstrated that the induced side chain rearrangement 

causes the partial uncovering of a hydrophobic pocket lined by H3L82 and H4V70 (45). While such 

changes are small, alterations of the electrostatic potential and nucleosomal surface may lead to a more 

cumulative effect. In addition, the nucleosomal position of H3K79, in close proximity to the histone 

H4 N-terminal tail (Figure 5b, bottom right), is likely to facilitate its methylation by Dot1, given that 

this H4 region contains a stretch of basic residues necessary for Dot1 methyltransferase activity 

(131,132). Furthermore, higher levels of H3K79 methylation are dependent on another trans-mediated 

interaction, yH2BK123/hH2BK120 ubiquitination (H2Bub). This modification is a pre-requisite for 

Dot1-mediated H3K79me2 and me3, as well as H3K4 methylation by COMPASS (133-135). Indeed, 

in vitro studies showed that H2Bub could actually stimulate H3K79me (136).The position of 

H2BK123, on the same solvent-exposed surface and in close proximity to H3K79, is likely to facilitate 

such cross-talk between the two modifications (137). 

H3K79 has also been shown, by MS, to be acetylated in both humans (114) and yeast (138). In both 

organisms H3K79ac occurs in low abundance and the only regulatory data that exists is in yeast, 

where Sir2 has been shown to catalyze its removal (Figure 5a). 

 

1.3.4 H3K64 on the lateral surface  
 

H3K64 is located at the beginning of the α1-helix (Figure 5a) and tri-methylation of this residue is 

indirectly mediated, by the known H3K9 methyltransferases, SUV39H1 and SUV39H2 (139). This 

residue is located on the lateral surface of the nucleosome (Figure 5b, bottom left) and the crystal 

structure of the nucleosome core particle (NCP) shows that it contacts the nucleosomal DNA via 

hydrogen bonds between the main-chain amide nitrogen of H3K64 and the phosphates of the DNA 

backbone (118). In addition, the amino group of H3K64 may participate in stabilizing the H3 α1 and 

α2 helices, via water-mediated hydrogen bonds. Considering the addition of methyl groups can alter 

hydrogen bonding, the aforementioned interactions may be disrupted, although modeling shows steric 

complementarity between the methyl group and the nucleosomal DNA (139). Both MS data (114) and 

antibody detection (140) show this residue can be acetylated  in mammals. Like H3K56ac and 

H3K122ac, H3K64ac is catalyzed by CBP/p300 (140) (Figure 5a). Crystal structures of the NCP 

containing H3K64Q, show that while the presence of acetylation is not likely to affect hydrogen 

bonding to the DNA backbone, it may alter the interactions with the H3 α1 and α2 helices as a result 

of a significant change in side-chain orientation (118). These findings are somewhat contradicted by 

recent FRET studies, which were used to analyze the stability of nucleosomal DNA interactions in 

nucleosomes containing chemically incorporated acetyl lysine at K64 (140) . Using this second 

technique, it appears that H3K64ac does in fact negatively impact the stability of DNA-histone 
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interactions, reflecting possible limitations of using K to Q substitutions in some assays. Interestingly, 

the latter study also showed that this modification facilitates ATP-dependent chromatin remodeling in 

an enzyme specific manner, behaving, in this respect, differently from H3K56ac. 

1.4 Histone variants 
 

The major histones are transcribed from multiple, intron-less genes, in a replication-dependent 

manner, to cope with the increased genetic material during DNA synthesis. However, nucleosome 

assembly and disassembly are also essential in replication-independent processes, such as transcription 

and DNA repair. Many organisms have evolved nonallelic histone variants, which, although derived 

from their canonical counterparts, have altered amino acid sequences and are transcribed from a 

single, intron-containing gene, in a replication-independent manner. Many of the sequence changes lie 

in functionally significant regions and consequently, their incorporation into nucleosomes can alter the 

physiochemical properties of the chromatin building blocks, as well as their PTM pattern. Although it 

is highly debated, incorporation of one of the most conserved histone variants, H2A.Z, is thought to 

destabilize the nucleosome, facilitating its disassembly. This variant is often associated with regions 

such as the promoters, transcription start sites (TSS) and enhancers of active or poised genes (141), 

where nucleosome disassembly is crucial for allowing  access to underlying cis-regultory elements, 

binding of protein complexes and progression of the transcriptional machinery.  In agreement with 

this, the presence of H2A.Z correlates with H3K4me2 (141), a modification associated with ‘active’ 

chromatin and nucleosomes containing H2A.Z are enriched for this modification, relative to H2A. In 

my contribution to the second paper of this thesis, I was able to verify the latter finding (142). The 

presence of H2A.Z at poised genes, which are often in a repressed state, insinuates that while H2A.Z 

may facilitate activation, other factors are required to trigger nucleosome disassembly or repositioning. 

In this regard, it has been suggested that the presence of modifications such as acetylation or 

monoubiquitination may influence the overall outcome (143). H3K56ac, for example, was recently 

shown to alter the substrate specificity of the yeast chromatin remodeler SWR-C, favouring the 

deposition of H2A rather than H2A.Z (144). The combined use of histone variants and PTMs provides 

a large number of possibilities to fine-tune the structure and accessibility of chromatin at targeted 

regions and as such, increasing our understanding of how they work is invaluable. 
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2 DISCUSSION 
 
2.1 Identification of H3K56 as a site of trimethylation 
 

Although previously detected by MS, a more stringent characterization of the histone core 

modification, H3K56me3 has never been carried out. Given the pivotal location of H3K56 at the 

nucleosome DNA entry/exit site and the wealth of literature implicating acetylation of this residue in 

an increasing number of cell processes, we sought to understand how trimethylation impacts 

chromatin-based functions. To this end, we developed a specific antibody and used it to identify 

potential regulators of H3K56me3 as well as the evolutionary conservation and cell cycle appearance 

of this modification. These results are presented in the first paper of this thesis, titled “H3K56me3 is a 

novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in 

both regulation and localization”. 

 

2.1.1 Evolutionary conservation and heterochromatin  
 

In order to assess the conservation of H3K56me3 in metazoans we used our antibody to probe acid 

extracted histones from cell lines of different organisms and could show that this modification is 

present in human, mouse, fly and worms. Although we did not test yeast histones, it was recently 

published that, like H3K9me, H3K56me1 is not detectable in S.cerevisiae (100). Of course this does 

not rule out that H3K56me3 does not exist in this organism, however it seems unlikely given that, 

unlike fission yeast, budding yeast do not have a SUV39 homolog, which we identified as a regulator 

of H3K56me3 deposition in mammals.   

 

2.1.2 Identification of SUV39H1/H2 as potential writers of H3K56me3 
 

The characterization of H3K56me1 was recently published and included the identification of G9a as 

the KMT responsible for the deposition of this modification, both in vivo and in vitro (100). G9a is a 

member of the SUV39 family of KMTs, which, in addition to a SET domain, share common Pre-SET 

(9 Cys, 3 Zn) and Post-SET (CXCX4C) domains and all target H3K9 (51). Combining this information 

with our antibody staining data showing that H3K56me3 localizes to heterochromatic regions, 

overlapping significantly with H3K9me3, we asked whether the KMTs responsible for trimethylation 

of H3K9 were also involved in H3K56me3. In cells lacking SUV39H1/H2, H3K56me3 signal was 

severely diminished, indicating that these enzymes target H3K56 either directly or indirectly. G9a 

substrate specificity has been studied in detail and it has been shown that the sequence surrounding the 

residues it targets may play a role in its selectivity (145,146), a feature that also affects SUV39H 

recruitment. As well as targeting H3K9, which lies in the sequence TARKST, G9a also methylates 
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H3K27 (147), H3K56 (100), H1.4K26 (148) and H1.2K187 (149), the surrounding sequences of 

which are AARKSA, RYQKST, KARKSA and KAAKSA, respectively. Looking at these sequences 

it would appear that the neighbouring serine is important for lysine selectivity although substrate 

specificity studies indicate that for G9a this is not the case (146). However, in these studies it was also 

concluded that substitution of threonine 6 (T6) within the H3K9 sequence significantly reduced G9a 

KMT activity and that the RK motif was of importance for methylation. These statements do not fit 

with all sequences surrounding G9a-methylatable residues and likely reflect some limitations in the 

experimental set-up. Interestingly, when comparing the conformation of H3S10 when H3 peptides are 

bound by either the G9a ternary complex or DIM-5, the Neurospora crassa homolog of SUV39H1, it 

is possible to see that in the case of G9a, H3S10 forms hydrogen bonds with water, where as with 

DIM-5 the main chain N-H and side chain hydroxyl group of H3S10 form hydrogen bonds with the 

catalytic side residues Y283 and D209 in the enzyme (150). In addition, H3T11 also hydrogen bonds 

to Q285, in the catalytic region of DIM-5, highlighting the likely importance of these peptide residues 

in guiding SUV39H1/H2, but not G9a, and substantiating our finding that H3K56 can also be 

trimethylated by SUV39H1/H2. If SUV39H1/H2 are able to trimethylate H3K56 directly, then 

phosphorylation of H3S57 and/or H3T58 could disrupt this activity by altering the enzyme binding 

affinity. With the exception of H3K56 and H3K9, SUV39H1/H2 does not methylate any of the other 

sites targeted by G9a, none of which contain the KST motif reiterating the importance of these 

residues. In addition, site selection is likely to require other residues both up- and downstream of the 

lysine target and also be dependent on their modification status (151,152). For example, in silico 

studies, predict that an H3K4me3K14ac-containing peptide would cause torsion of H3K9 into a 

limited region that would not allow enzyme binding (152). Interestingly, H3K14ac stimulates binding 

of the yeast 14-3-3 proteins Bmh1 and Bmh2, to H3S10ph peptides, suggesting that combinations of 

modifications enforce a particular readout (56). Structural studies combined with such computational 

methods could be used as another means of predicting combinatorial patterns of histone modifications 

and it would be interesting to see if differences arise between the modifications with which H3K9me3 

and H3K56me3, co-occur. 

As briefly mentioned, using IF, we saw that H3K56me3 largely overlapped with H3K9me3 

localization patterns and in WT interphase cells was concentrated in the DAPI-dense chromocenters, 

suggesting a role in heterochromatin formation. In mice, disruption of the SUV39H1/H2 genes, leads 

to impaired pericentric heterochromatin formation and subsequent genomic instability thereby 

decreasing viability (153). The absence of SUV39H1/H2 results in H3K9me1 relocalization 

(accumulation) to the chromocenters, in interphase cells and a similar redistribution is seen for 

H3K56me1. H3K9me1 accumulation at these regions, likely arises because H3K9, which has been 

monomethylated outside of chromatin, by the KMTs, Prdm3 and Prdm16 (73), is deposited into 

pericentric heterochromatin by a HP1α-CAF1-SETDB1 complex (72). However in the absence of 

SUV39H1/H2 subsequent trimethylation cannot take place. Although SETDB1 has the capacity to 
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trimethylate H3K9, this process requires the cofactor ATFα-associated factor (AM) (154), which may 

not be present or sufficient enough to compensate for SUV39H absence. Given the accumulation of 

H3K56me1 at the chromocenters upon SUV39H1/H2 disruption, it is plausible that a similar 

mechanism exists for deposition of this modification within pericentric heterochromatin and that both 

marks are deposited at the same time. Alternatively, it could be that H3K9me precedes H3K56me and 

could even be a pre-requisite for the latter modification. Indeed, in the case of H3K64me3, another 

core modification which is reduced upon SUV39H1/H2 knockout, it was shown that loss of this mark 

did not result from lack of the KMTs but occurred rather as an indirect result of depleted H3K9me3 

(155). The sequence surrounding H3K64 (LIRKLP), however, does not resemble those of H3K9 and 

H3K56, which are both followed by ST, and provides a likely reason that this modification is not a 

direct target of the SUV39Hs, where as H3K56 could be. Interestingly, a sub-set of the H3K9 KMTs, 

including G9a, GLP, SUV39H1, and SETDB1, have recently been shown to co-exist in a 

megacomplex that is recruited to both major satellite repeats and G9a target genes (156). Although 

G9a and GLP-mediated H3K9 methylation has traditionally been associated with euchromatin (157), 

more recent publications also suggest a role in pericentric heterochromatin maintenance (158), 

chromosome segregation and telomere length regulation (159). Recruitment of a complex containing 

both KMTs for lower and higher methylation states provides another means of initiating pericentric 

H3K9 and H3K56 methylation, perhaps in a simultaneous fashion. In future studies, it will be 

interesting to see whether G9a and GLP monomethylate H3K56 in these regions, thereby providing a 

substrate for SUV39H-mediated trimethylation, or whether, like in ES cells, they function simply to 

recruit DNMTs to these regions.  

 

2.1.3 Identification of JMJD2D and JMJD2E as potential erasers of H3K56me3 
 

In order to identify the enzyme responsible for removing H3K56me3, we overexpressed GFP-tagged 

Jmjc-demethylases and looked for any changes in the abundance of this modification, using our 

antibody. Both JMJD2D (KDM4D) and JMJD2E (KDM4E) caused a decrease in H3K56me3 and 

concurrent increase in H3K56me1. These two enzymes are highly related in sequence showing 

approximately 70% similarity. Although we could not prove that these enzymes targeted H3K56me3 

directly, the results suggest that they remove two methyl groups, in one step, at this residue, since 

H3K56me2 levels remained unchanged. Like the writers regulating H3K56me, both demethylases also 

target H3K9me and it is plausible that these interactions are mediated by similarities in the sequences 

surrounding the target residues. Indeed, recent structural data provides insight into JMJD2D selectivity 

for H3K9me3.(160). When complexed with an H3K9me3-containing peptide, they could show that 

both JMJD2A/KDM4A and JMJD2D form contacts with R8, S10, T11 and G12, located at positions -

1, +1, +2, and +3, respectively, relative to H3K9. Although the H3K56 sequence does not have the 

same residues in the -1 and +3 positions, the respective +1 and +2, S and T, are the same. The latter 
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three residues adopt a bent conformation that allows them to interact with a hydrophobic pocket that 

lies adjacent to the active site of the enzyme. Interestingly, for JMJD2D the peptide residues maintain 

a bent conformation via hydrogen bonds between 1) H3S10 and either the G12 amide nitrogen and 

carbonyl oxygen or the R8 carbonyl oxygen and 2) H3T11 and D139 in JMJD2D. Considering the 

H3K56 sequence has residues with charged side chains at both positions equivalent to G12 and R8, it 

would be useful to compute the effects this might have on the adopted peptide conformation. In the 

case of JMJD2A the bent conformation is stabilized only by intrapeptide bonds and H3T11 does not 

interact with D135 of the enzyme due to a rotated conformation. This indicates that while the two 

enzymes are structurally similar and both induce a similar peptide bending, their interactions with the 

surrounding sequence are different. Interestingly, the sequence surrounding the JMJD2E equivalent 

D139 is highly similar to that of JMJD2D but not JMJD2A. This suggests that like JMJD2D, JMJD2E 

likely positions the H3 tail such that it hydrogen bonds with H3T11. Further experiments showed that 

H3T11ph abrogates H3K9me3 demethylation by JMJD2 demethylases due to steric hinderance (160). 

This is contradictory to in vivo data showing that H3T11ph accelerates H3K9 demethylation by 

JMJD2C to regulate androgen receptor targeted transcription (85) and may reflect either the lack of 

other regulatory factors in vitro. Indeed, phosphorylation marks are very often associated with mitotic 

chromatin compaction, however, they are also implicated in transcriptional activation.  

H3T11ph occurs in a centromere-specific manner during mitosis, where it could prevent H3K9me3 

removal, thereby promoting regionalized maintenance of this mark. This localized accumulation of 

H3T11ph is due to its deposition by the Dlk/ Zip kinase and results in the replacement of H3S10ph 

exclusively at the centromeres during prophase (161). H3S10ph is deposited at the centromeres 

between late G2 and early prophase, following recruitment of the CPC by H3T3ph (28). H3S10ph 

then leads to the dissociation of HP1, although H3K9me3 levels remain unchanged (90). The 

appearance of H3T11ph at prophase and its persistence until early anaphase, may serve to preserve 

H3K9me3 by inhibiting the binding of JMJD2 demethylases (160). In addition, structural studies show 

that H3S10 and H3T11 have been shown to interact with DIM-5 (150), the Neurospora homolog of 

SUV39H1 and therefore phosphorylation of these residues would also fit with the loss of centromeric 

SUV39H at the metaphase to anaphase transition. Given the presence of serine and threonine residues 

in the same positions relative to H3K56 as those relative to H3K9, one could speculate that 

H3K56me3 is recognized and regulated by the same mechanism. Given the recent finding that the 

CSD of HP1α interacts with the H3αN region at the nucleosome DNA entry/exit site, it is plausible 

that this could be mediated by H3K56me3. Indeed, like the CD the CSD has a hydrophobic pocket, 

although so far there is no evidence that this can interact with histone modifications (162). One could 

imagine a scenario in which HP1 is first recruited, via its CD to the more abundant and accessible 

H3K9me3 and that subsequent binding is stabilized through interaction of the CSD with H3K56me3. 

Although we performed SILAC labelled comparative peptide pull-downs, to try and identify potential 

interactors for this modification, we were unsuccessful in finding anything that stood out. Since 



Discussion 

24 
 

histone core modifications are less accessible compared to tail modifications, it could be that proteins 

which interact with these residues require further interactions for recruitment or stabilization, which 

are not provided by the short peptides. It will therefore be important to repeat such experiments using 

mono- or poly-nucleosomes as the pull-down substrate, providing a more in vivo like situation. 

Considering that the CSD of HP1 interacts with the H3αN, it would seem plausible that like H3S10, 

H3S57 is phosphorylated during mitosis, reinforcing the dissociation of HP1. Furthermore, in this 

scenario, H3T58ph could replace H3S57ph at mitotic centromeres, thereby preventing H3K56me3 

removal, despite loss of SUV39H1/H2.  

 

2.1.4 H3K56me3 cell cycle appearance  
 

H3K56ac has been studied extensively in yeast, where it functions primarily in the deposition of 

histones during DNA replication and repair. As such the bulk appearance of this mark occurs during 

S-phase when it promotes the association of H3 with the histone chaperone CAF1 and its subsequent 

deposition into chromatin. Compared to yeast, H3K56ac is far less abundant in mammalian cells, 

occurring on 30% and 1% of H3 respectively. It therefore seems unlikely that this modification serves 

the same role in mammalian DNA replication as that in yeast. In addition, there is considerable debate 

and conflicting data over whether or not its appearance is cell cycle dependent in higher eukaryotes 

(111,163). Given that H3K56ac and H3K56me are mutually exclusive, we were interested in 

investigating whether H3K56me3 deposition showed any cell cycle dependence. Recent data on 

H3K56me1 showed that it is present at similar levels in all cell cycle stages and that in G1 it serves a 

functional role by recruiting PCNA, disruption of which impairs DNA replication (100). Using an 

EdU labelling approach to distinguish interphase from S-phase cells, we saw a decrease in H3K56me3 

during DNA replication, which was not reflected by an increase of H3K56ac at this stage. One might 

speculate that this disappearance is mediated by other modifications and could be necessary in 

allowing replication of heterochromatic regions. Following replication, heterochromatin is rapidly re-

established, a process that is facilitated through interactions between PCNA and enzymes such as 

deacetylases, DNMTs and the H4K20 KMT, SET8 (PR-Set7) (164). Indeed, mutation of PCNA 

interferes with heterochromatin silencing in yeast (165) and flies (166), indicating its importance in 

roles outside of DNA polymerase recruitment. PCNA has also been implicated in the establishment of 

sister-chromatid cohesion during S-phase by interacting with the HAT Eco1, thereby coupling 

acetylation of the multiprotein cohesin complex, to replication (167). This process is essential in 

ensuring the correct pairing of chromatids before their separation at the end of mitosis. In particular 

high levels of cohesin binding occurs at the centromeres and in yeast this is dependent on 

heterochromatin (168).  

During prometaphase-to-metaphase transition SUV39H1/H2 have been shown to accumulate 

transiently at centromeres (169) and both gain- and loss-of-function studies indicate their importance 
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in proper chromosome segregation. Metaphase chromosome spread stains show that like 

SUV39H1/H2, H3K56me3 accumulates at the centromeric regions during this phase of mitosis and 

one could speculate that it plays a role in chromosome segregation. In mammals, the DNA-PK 

complex, containing the Ku heterodimer (Ku70/Ku80) and the catalytic sub-unit of DNA dependent 

protein kinase (DNA-PKcs), has recently been implicated in normal cell cycle progression through 

mitosis (170), where it is thought to modulate chromosome alignment and the meta-to-anaphase 

transition. This complex is more commonly known for its role in non-homologous end joining (NHEJ) 

repair, where Ku is responsible for guiding DNA-PKcs to DNA breaks and activating its kinase 

activity (171).  In S.pombe, Ku has also been implicated in centromeric interactions, where it is 

important for loading of condensin onto retrotransposons, a process which is disrupted by H3K56ac 

(172). It would be interesting to see if, in mammalian systems, H3K56ac is also refractory to Ku 

binding. If this is the case then it may be that concentration of mammalian H3K56me3 at the mitotic 

centromeres serves to prevent acetylation within these regions, allowing recruitment of DNA-PK and 

successful alignment of chromosomes before segregation. Interestingly, in fission yeast, Clr4, the 

homolog of SUV39H, has been shown to interact with the APC/C-E3 ligase (173), which is necessary 

for the ubiquitination and subsequent degradation of cohesin complex subunits. Furthermore, 

SUV39H1/H2 dissociate from pericentric heterochromatin at the meta-to-anaphase transition, adding 

weight to the idea of a role in cohesion regulation. Although these ideas are plausible they are highly 

speculative and a lot more work will need to be done to investigate their true potential. If H3K56me3 

does play a role in mediating mitosis, it is likely that its perturbation would result in chromosomal 

missegregation and genomic instability. Therefore, although this hypothesis is purely speculative, a 

more detailed analysis of H3K56me3 dynamics during mitosis could be performed to give beneficial 

insight into its role at the centromeres during this phase. Given that H3K56me3 appears to be 

regulated in similar ways to H3K9me3, it will be hard to use techniques such as enzyme inhibition or 

depletion to analyze functional effects of this mark in a specific manner. Although it is unlikely that 

H3K56me3 exists in S. cerevisiae there is a chance it exists in S. pombe given that this organism 

contains a homolog of SUV39 (Clr4) and this would provide an opportunity to perform mutational 

studies. In addition, since H3K56me3 appears to be present in Drosophila, mutational studies could 

also be performed in this organism using the recently developed “histone cassette replacement” 

technique (174). Although such studies have their limitations, they could at least be used as a means of 

distinguishing events involving H3K9 modification from those involving H3K56 modification. 

The fact that little H3K56me3 is found at telomeres suggests that it plays a specialized role at 

centromeres, however considering that it appears to be regulated by the same enzymes as H3K9me3 it 

will be important to find out how these differential patterns are established. One hypothesis is that if 

H3S57ph or H3ST58ph exist in vivo, these modifications could influence H3K56me3 distribution. In 

particular, during mitosis tight spatial and temporal regulation of phosphorylation and 

dephosphorylation plays a key role in mediating events at the centromeres (28). Additionally, it has 
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recently been shown that within the histone tails it is not just modification of adjacent residues that can 

impart a physical effect on protein recruitment, but also those some distance away. For example, the 

binding of the tandem PHD domain of DPF3b to H3 is promoted by H3K14ac but inhibited by 

H3K4me, the latter of which interferes with two important interactions formed between the H3K4 side 

chain and two residues of the tandem domain (56) . Therefore, other modifications, in either cis or 

trans, may affect H3K56me3 localization. Indeed, it is known that modifications are differentially 

regulated at the telomeres and centromeres. For example, in the absence of SUV39H1/H2, the levels 

of H3K27me3 are increased at pericentric heterochromatin, although undetectable at telomeres (175). 

This highlights the need to further understand the interplay between H3K56me3 and other chromatin 

regulators. In addition, since we have used antibody-based methods for all our analyses, it is possible 

that a nearby phosphorylation mark occludes the H3K56me3 antibody epitope and therefore some 

regions appear devoid of the methyl mark. H3K56me3 may also be regulated by other enzymes that 

have not yet been identified and which may act independently of H3K9me3, leading to differential 

patterning of the two modifications at specific loci. Indeed, although G9a has been shown to regulate 

H3K56me1, this modification is still detectable in G9a-/- cells, supporting the idea that other KMTs 

can regulate this modification in vivo (100). Despite efforts to perform in vitro methyltransferase 

assays using recombinant SUV39H, we were unable to detect neither H3K9me3 nor H3K56me3. This 

could have been due to loss of SUV39H enzymatic activity or due to insufficient interactions with the 

substrates used for the assay (H3 peptides or recombinant H3). It is feasible that SUV39H can only 

methylate H3K56 when it is presented in the nucleosomal context, perhaps requiring distant cis or 

trans interactions to target this site or additional factors to make the site accessible. 

  

2.1.5 H3K56me3 in C. elegans 
 

In addition to the aforementioned organisms, our collaborators performed a more comprehensive 

analysis of H3K56me3 in C. elegans. Substantiating what we saw in mammalian cells, this 

modification showed considerable overlap with H3K9me3 patterns in worms, likely playing a role in 

heterochromatin formation. Interestingly, the only major difference between H3K9me3 and 

H3K56me3 appeared in germline cells. In agreement with previously published data, our collaborators 

found that H3K9me3 was restricted to worm oocytes, whereas H3K56me3 was present in both oocytes 

and sperm. Interestingly, previous transcriptional analyses of mouse SUV39H1 and SUV39H2 showed 

that while their expression patterns overlap during embryogenesis, SUV39H2 mRNA is largely 

restricted to the testes in adult mice (176), suggesting a role in spermatogenesis. Indeed, SUV39 

double-knock-out results in impaired meiotic chromosome pairing (153). Given the similarities 

between events during meiosis and mitosis, it would be interesting to further investigate H3K56me3 

dynamics during germline establishment. It is worth mentioning that unlike in worms, H3K9me is 

present in mouse sperm highlighting that direct comparisons may not be valid. This is especially true 
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for the substrate specificities of worm KMTs, which do not always reflect the actions of their 

mammalian counterparts (Table 1). 

In an RNAi screen of worm KMTs, our collaborators identified met-2 and set-25 as being important 

for H3K56me3 regulation, with reduction of either enzyme causing a decrease in this mark. 

Interestingly, these two enzymes both regulate H3K9 methylation and have recently been identified as 

being important for perinuclear sequestering of heterochromatin in worms (177). Tethering of 

constitutive heterochromatin at the nuclear periphery has been shown to be important for 

transcriptional repression (reviewed in (178)) and DNA damage repair (179). In yeast, H3K56ac has 

been shown to be important for disengaging Ku-mediated telomere sequestering at the nuclear 

periphery in order to allow its replication (172,180). Although it is unlikely that H3K56me3 exists in 

S. cerevisiae one could speculate that in worms this modification plays a role in mediating 

heterochromatin nuclear localization. It will be interesting to conduct further studies in higher 

eukaryotes to see if H3K56me3 is involved in antagonizing the effects of H3K56ac in other Ku-

mediated processes, such as DNA damage repair. 

Through IF studies, we were able to gain information about the localization of H3K56me3 allowing us 

to postulate about its possible functions. While it remains technically challenging to perform ChIP-

chip or ChIP-seq for the analysis of repeat-dense genomic regions, Daujat et. al., were successful in 

using ChIP-qPCR to extrapolate information on H3K64me3 distribution in heterochromatin (139) 

(discussed in section 2.2.3 Core modifications at repeat elements: Telomeres and centromeres). Indeed 

analyzing the genome-wide localization of modifications has provided invaluable insight into not only 

their roles in cellular functions, in particular transcriptional regulation, but also how combinations of 

marks work together to promote a particular read-out. By considering the genomic distribution and 

roles of other well-studied core modifications, we may be able to identify links that help us to learn 

more about H3K56me regulation and functions.  

 

2.2 Genome-wide localization of H3 core modifications and their functional implications 
 

As well as occupying important positions within a nucleosome and thereby possibly influencing its 

structural integrity, histone H3 core histone modifications are distributed in a non-random manner 

throughout the genome.  

In this next section we integrate the in vitro data on H3 core modifications with information on their 

genomic distribution. Although we focus primarily on the impact of core modification localization on 

transcription, the principles of how they mediate this process can be extended to and are compatible 

with postulated roles in other important cellular functions.  
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2.2.1 Core modifications at promoter and enhancer regions  
 

The chromatin organization within distinct regions associated with any particular gene is a key in 

defining its transcriptional plasticity and output. At gene promoters, for example, the density and 

positioning of nucleosomes determines the accessibility of essential cis-regulatory elements, which 

can either be exposed or occluded, facilitating or hindering, respectively, events such as transcription 

factor binding. Likewise, nucleosome arrangement around the transcriptional start site (TSS) and in 

the body of genes influences processes such as RNA polymerase II (RNAPII) recruitment and 

transcriptional initiation, elongation and termination (181,182).  

Promoters of actively transcribed genes are associated with a high nucleosome turnover and are 

typically enriched in histone acetylation. Correlating this knowledge with the in vitro properties of 

H3K56ac, H3K122ac and H3K64ac, it is not surprising that these three core modifications are most 

abundant within these regions (Figure 6) (97,99,117,140). One could speculate that the increased DNA 

breathing H3K56ac confers at the DNA entry/exit site facilitates the preferred binding of transcription 

factors close to these regions or helps the invasion by RNAPs (183).  

 

 

Figure 6. Schematic depicting the major chromosomal distribution patterns of histone H3 core modifications. The distribution patterns 

of H3K122ac and H3K64ac (blue), H3K56ac (cyan), H3K79me (purple), H3K64me3 (bright red), H3K56me3 (dark red) at common 

chromosomal features including the enhancer (light grey), promoter (mid-grey) and gene body (dark grey) of an active gene, telomeres 

(short, off-white arrows) and centromeres (long, off-white arrows). Distributions are generalized, based on genome-wide, single locus and 

immunofluorescence studies from different organisms and give a broad overview of histone H3 core modification genomic localization. Not 

depicted are more minor or species-specific distribution patterns, which are discussed in the main text. The general regions of a chromatid at 

which the chromosomal features are found, are shown on the right. 
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Profiling of H3K122ac-containing nucleosomes showed they are enriched for H3K56ac as well as 

other hallmarks of active transcription, but not H3K36me3 (117), which is typically found at the 3’end 

of actively transcribed genes and is associated with elongation (181). These findings substantiate 

genome-wide profiling data of H3K122ac, which showed that its distribution is limited to the flanking 

regions of the TSS (Figure 6), similar to H3K27ac and H2A.Zac. Likewise, H3K64ac is also enriched 

around the TSS (Figure 6) of active genes and is anti-correlated with repressive marks (140). H3K56ac 

has also been shown to overlap with H2A.Z at vertebrate promoters. Interestingly, recent findings 

show that H3K56Q-containing nucleosomes enhance the replacement of H2A.Z with H2A (144) 

indicating that H3K56ac may prepare H2A.Z nucleosomes for exchange. H3K122ac levels are 

proportional to the amount of mRNA expression (117), suggesting a role in transcriptional activation. 

The correlation to transcriptional activation is interesting, given the promotion of nucleosome 

disassembly when H3K122 is acetylated (108). One could speculate that H3K56ac allows limited 

access to a small region of nucleosome-obscured DNA, requiring relatively little energy, given the 

weaker DNA-histone contacts at these sites, and maintaining it in a poised state. Indeed, experimental 

evidence implicates H3K56ac in nucleosome disassembly during transcription (184). When the 

conditions favour transcriptional activation, acetylation at H3K122 could act as a switch to reinforce 

the signal and facilitate the more energy-demanding nucleosome disassembly or nucleosome sliding 

required for promoter clearance. The latter point is substantiated, by the confirmation of a direct 

function for H3K122ac in transcriptional activation, by the group of R. Schneider (117). Using an in 

vitro transcription assay, they showed that unlike the tail modification H3K18ac, H3K122ac alone 

could stimulate transcription from a chromatin template. Furthermore, histone eviction experiments 

demonstrated that nucleosomes displaying H3K122ac were more susceptible to displacement, 

reiterating the likely mechanism by which it functions. Given the negative effects H3K64ac has on 

nucleosome stability and its correlation with transcriptional activation (140), it will be interesting, in 

future studies, to assess any cross-talk that may occur between these modifications. The role of 

H3K56ac in the proposed hypothesis, as a mechanism of opening up chromatin but not activating 

transcription, is supported experimentally. In both yeast and humans, H3K56ac is found at some 

repressed genes and regions of DNA repair and therefore does not necessarily correlate with mRNA 

expression levels (37,99).  

Genome-wide profiling in human embryonic stem (hES) cell lines showed that genes associated with 

the highest levels of H3K56 acetylation include almost all canonical histone genes, similar to a 

published study in yeast (97). Furthermore, in hES cells H3K56ac was also found to associate with 

many pluripotency regulators, such as Nanog, Sox2 and Oct4 (NSO) (99). The recent finding that 

H3K56ac and Oct4 interact directly, both in vitro and in vivo (185), suggests a direct mechanism by 

which these factors could be recruited to specific regions and also highlights the accessibility of 

H3K56 to binding proteins. The latter point is further substantiated by the finding that during G1 

phase of the cell cycle, H3K56me1 acts as a chromatin docking site for PCNA, thereby facilitating 



Discussion 

30 
 

DNA replication (100). Interestingly, upon differentiation, H3K56ac is redistributed to the promoters 

of genes involved in development, such as the HOX genes, and those involved in somatic cell 

maintenance (99). In support of these findings, a study in mature adipocytes also found H3K56ac 

adjacent, but not overlapping, to some transcription factor binding sites, as well as hyperacetylation of 

this residue at developmental genes (186). Again this supports a role for H3K56ac in maintaining 

transcriptional plasticity rather than mRNA levels per se.  

Findings by the group of B. Ren suggest that cell type-specific modification patterns at enhancer 

regions play a major role in driving differences in gene expression profiles associated with cell fate 

decisions (187). It has been postulated that the modification pattern of specifically placed nucleosomes 

may act to display transcription factor binding sites (188). H3K4me1/me2 enrichment is associated 

with enhancers and is often coupled with H3K27me3 if the gene that it is regulating is repressed or 

with H3K27ac when the gene is activated (189,190). In keeping with a similar distribution to 

H3K27ac, genome-wide analyses of H3K122ac and H3K64ac showed that both are also present at 

active enhancer regions (117,140). This is compatible with a role in transcriptional activation, whereby 

the presence of H3K64ac at enhancers likely decreases nucleosome stability and H3K122ac facilitates 

nucleosome disassembly, thereby permitting the binding of transcriptional activators to cis-regulatory 

sites.  

Previous work in murine ES cells (mES) has shown that NSO co-occupancy at specific genomic 

regions is indicative of enhancer activity and that these factors are able to recruit p300, an 

acetyltransferase associated with H3K56ac,H3K122ac and H3K64ac (191). More recently super-

enhancers have been discovered, which regulate the transcription of master regulator genes that 

control cell identity (192). In mES cells these super-enhancers consist of clusters of enhancers, which 

are densely occupied by NSO and have high levels of the Mediator co-activator complex (192). Given 

previous data showing co-localization of H3K56ac with NSO, the fact that p300 can catalyze addition 

of this modification and the established role of H3K56ac in ES cell identity, one might speculate that 

this modification could also be a mark of super-enhancers and that its misregulation could have 

deleterious effects on cell specification.  

Taken together, the presence of acetylation within the histone H3 core at promoters and enhancers 

seems to function by promoting an ‘open’ and binding-permissive chromatin conformation. While the 

nucleosomal changes induced by H3K56ac do not seem to be strong enough to direct transcription 

alone, it appears that this modification may mark specific regions that respond to regulatory cues, for 

example during differentiation. In addition, it is directly involved in protein recruitment. The stronger 

effects of H3K64ac and H3K122ac, on the other hand, likely serve as a switch to commit to 

nucleosome disassembly and transcriptional activation. Given the long-range chromatin interactions 

between promoters and enhancers and the presence of these modifications on both elements (193), it 
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will be interesting to see if these three core marks have additional roles in facilitating chromatin 

looping and the selective association of specific regulatory regions.  

 

2.2.2 Core modifications in the gene body 
 

Unlike H3K122ac, H3K56ac is not only enriched at the promoters but also extends into the gene body 

of highly transcribed genes (Figure 6) (110), suggesting that while H3K122ac plays a role in 

transcriptional initiation, H3K56ac may also function in proximal promoter pause release. Although 

nucleosome occupancy in gene bodies is high compared to promoter regions, they must retain a level 

of dynamicity in order to allow chromatin disassembly at the transcriptional machinery and 

reassembly following its passage along the gene (194). Whereas H3K122ac appears to function solely 

in nucleosome disassembly, there is evidence that H3K56ac also functions in nucleosome assembly 

(37,98), providing a possible reason for the presence of this modification within the gene body of 

highly transcribed genes (195). Interestingly, neither recruitment of pre-initiation complex components 

to promoters of actively transcribed genes, nor the presence of RNAPII within the coding sequences, 

were affected in Asf1-mutant yeast strains, in which H3K56ac levels were diminished (110). 

Transcriptional repression of genes within heterochromatic loci, has been suggested to be regulated at 

the level of elongation rather than initiation considering the successful recruitment and binding of 

transcriptional activators, components of the pre-initiation complex and RNAPII to promoters within 

these regions (196,197). Rtt109 or Asf1 yeast mutant strains, as well as H3K56R substitution, inhibit 

transcription at a heterochromatinized locus. In contrast, the H3K56Q substitution is able to restore 

transcription in the Rtt109 mutant, reiterating that the presence of this mark is important in allowing 

RNAPII progression (198).  

Although H3K56ac and RNAPII overlap (110), the finding that RNAPII is still present at coding 

sequences in Asf1 mutants (110) suggests that H3K56ac is not directly involved in its recruitment to 

transcribed regions. At these sites, it could therefore function by promoting the progression of RNAPII 

by loosening the nucleosomal DNA and/or by recruiting a factor that has not yet been identified. 

In vitro data suggesting that H3K56ac can destabilize the (H3-H4)2 tetramer, but not the nucleosome 

indicate that (H3K56ac-H4)2 tetramers favour assembly with (H2A-H2B) dimers in order to form a 

more stable complex or they are otherwise disassembled (109). Considering both processes occur at 

transcriptionally active loci it is hard to decipher the exact role of H3K56ac within these regions. One 

could postulate that the presence of other histone modifications and different histone variants could 

favour the one or the other outcome.  

H3K79 methylation is the core PTM most well known for its enrichment in the gene body (Figure 6). 

At these sites it is associated with the presence of RNAPII, suggesting a role in transcriptional 

elongation (199-201). In addition, within these regions H3K79me2 and me3 overlap with the presence 
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of Dot1 (202). This is not surprising given the requirement of several trans-histone interactions for 

Dot1-mediated H3K79 methylation and therefore the targeting of this enzyme to chromatin-

incorporated, rather than soluble H3. Dot1 has been found as part of several elongating complexes 

(summarized in (137)), consistent with the overlap of H3K79me and RNAPII and a role in gene 

regulation. A recent study showed that Dot1-like methyltransferase (Dot1L), the mammalian homolog 

of Dot1, can directly bind the phosphorylated C-terminal domain (CTD) of RNAPII. Interestingly, this 

interaction occurs through a region on Dot1L that is unique to the multicellular eukaryotes (203), 

reflecting the possible evolution of a more streamlined process. In addition to its histone methylation 

roles, Dot1 has recently been proposed to function in other ways (204,205) and therefore correlations 

with this methyltransferase may not always serve as a means of analyzing H3K79me actions.  

Given that all three H3K79me states share a common, nonprocessive methltransferase, there has been 

some debate over the individuality of their functions. On the one hand it has been shown that Dot1 

works in a distributive manner and that all states are functionally redundant (46), however the 

observation that H3K79me2 and me3 are differentially distributed in yeast (206), suggests otherwise. 

The latter finding is not only intriguing in terms of functional implications but also in terms of how the 

two modifications are independently regulated. Firstly, from the functional perspective, one could 

imagine that modified H3K79 behaves as a binding platform, given that in vitro data suggests 

methylation of this residue induces a more flexible side-chain conformation (45), likely facilitating 

association of this solvent exposed residue with potential binding partners. However, the accessibility 

of H3K79 within polynucleosomes is still unclear. Although, so far, there is little data on H3K79me 

binding partners, it is conceivable that such interactions are dependent on the extent of methylation, 

with H3K79me2 recruiting a different repertoire of proteins compared to H3K79me3, thereby 

establishing different functional domains. Secondly, from the regulation perspective, the finding that 

Dot1 is present in multiple complexes makes it plausible that the differential distribution of 

H3K79me2 and me3 is established by the presence, or lack of, other complex components that may be 

involved in H3K79me. Furthermore, H3K79me3 but not H3K79me2 has been found to overlap with 

yH2BK123ub, suggesting the presence of the latter mark may influence localization. Interestingly, in 

C.elegans, Dot1 forms a negative feedback loop by opposing H2Bub, thereby reducing RNAPII 

transcription through polymerase pausing (207), indicating the need to better understand the molecular 

aspects of correlative studies. 

Both yH2BK123ub and H3K79me3, but not H3K79me2, often associate with longer genes (208). Like 

the deposition of H3K36me3 at the 3’end of genes, it could be that the presence of H3K79me3 and 

yH2BK123ub prevent aberrant transcription in the wake of RNAPII. Indeed, there is already some 

evidence that H2Bub functions in this respect by promoting the assembly of nucleosomes (207,209). 

What is compelling is how these modifications could function in both transcriptional elongation, 
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where nucleosome turnover must take place, as well as cryptic transcription, where it must be 

prevented. 

In yeast over 90% of total H3 is methylated at K79 with me3 making up the majority (128). In mES 

cells this modification is far less abundant and the vast majority of the 11% of H3K79 that is 

methylated, harbours me3 and to a lesser extent me2 (114,210). This is interesting in light of recent 

ChIP-seq data from mouse adipocytes, which provides evidence that in mammals the conversion of 

H3K79me1 to H3K79me2/3 correlates with a transition from low to high level transcription (202). 

Considering, under normal growth conditions, most of the yeast genome is transcribed (211), 

differences in gene density and transcriptional activity could provide an explanation for the organismal 

differences with regards not only to the total levels of H3K79me, but also the abundance of the 

individual states.  

Most of the data linking H3K79 methylation to transcriptional elongation come from correlative 

studies and it is hard to say whether it is cause or consequence. There is continual debate over whether 

this modification facilitates transcriptional activation or whether it plays a role in repression. While 

some of the earlier discrepancies have been accounted for by technical differences in ChIP protocols 

there remains considerable controversy (181,201,212-214). Although strong correlations between 

H3K79me and transcriptional activation fit with the finding that Dot1 is more abundant at the 

transcribed regions of active genes compared to inactive (202,215,216), H3K79me has also been 

found at some repressed regions (213,217,218). In addition, disruption of Dot1L in mice does not 

affect all transcriptional pathways (219) suggesting that if it does play a role in mediating gene 

expression, this occurs in a targeted manner.  Unlike H3K79me2/me3, which are found in proximity to 

the TSS, H3K79me1 covers a broader gene-associated area extending both upstream and downstream 

of regions enriched for Dot1 (202), in mouse adipocytes. This suggests that while H3K79me2/3 play a 

role in the early steps of elongation, H3K79me1 has a different function. Although there is some 

overlap with H3K4me1, which has previously been shown to associate with enhancers, the presence of 

H3K79me1 does not appear to be a general demarcation of these regulatory elements (201). However, 

its co-localization with some transcriptional activators at their binding sites has been shown, indicating 

that its targeted deposition within certain intergenic regions may play a gene-specific role (201,202).  

H3K79me1 has also been found at some poised genes (202) suggesting it may function to set the stage 

for gene activation in response to specific cues. Consistent with the presence of H3K79 methylation at 

these regions, RNAPII is also known to accumulate at some tightly regulated genes, such as human c-

myc (220) and Drosophila hsp70 (221), under repressive conditions. During the process of 

differentiation, dynamic changes in H3K79me2/3 within transcribed regions have been shown, which 

parallel changes in mRNA levels (201,202), suggesting that together the three modification states may 

also serve specific functions in cell specification. 
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2.2.3 Core modifications at repeat elements: Telomeres and centromeres 
 

The formation and confinement of genomic silencing at constitutive heterochromatin is crucial for the 

maintenance of genomic integrity and has been shown to be partly dependent on histone H3 core 

modifications.  

Despite the high abundance of repeat sequences and low level of transcription within these regions, 

they are not functionally inert. Telomeres, for example, cap eukaryotic chromosome ends, preventing 

their recognition as sites of DNA damage and play an essential role in limiting the loss of protein-

coding regions, which would otherwise occur as a result of the end replication problem (222). 

Although similar to telomeres in their dense nucleosomal packing and epigenetic features, centromeres 

serve a very different function and are responsible for assembly of the kinetochore, which serves as the 

attachment point for the mitotic spindle and is required for proper sister chromatid segregation during 

mitosis (223). In both mentioned structures, as well as other silenced genomic regions, the repressive, 

heterochromatic architecture is essential for the maintenance of genomic stability, preventing re-

arrangements, which might otherwise occur between the highly similar sequences (224). In higher 

eukaryotes this architecture is promoted by several epigenetic features including DNA methylation, 

which induces tighter wrapping of the DNA around the nucleosome (225) and H3K9me3, which 

recruits the chromo-domain protein, heterochromatic protein 1 (HP1) (224). As a result of its compact 

conformation any genes within constitutive heterochromatin will be poorly expressed, a trait which 

can spread into adjacent, non-repetitive regions through a phenomenon known as position effect 

variegation (PEV) (226).  

H3K79 methylation has known functions in telomere silencing and in the yeast genome it is 

specifically excluded from these and other silenced regions (128,204). Indeed, mutation of Dot1 

methyltransferase activity or substitution of H3K79 both lead to severe silencing defects 

(128,129,227). In several of the studies cited, these defects were measured by activation of a URA3 

gene integrated in a region that is normally silenced, for example close to the telomere. This technique, 

however, has recently received some criticism since it was discovered that the silencing defects 

resulting from mutation of some proteins, including Dot1 and PCNA, are actually determined by 

uneven nucleotide metabolism at the URA3 promoter, rather than the effects of the tested proteins 

themselves (228). Despite these novel insights, a recent study monitoring changes at natural telomeric 

genes in H3K79-methylation defective mutants, showed that this modification is still important for the 

regulation of some coding sequences (229), although overall effects seem to be milder than formerly 

predicted. In addition, when other pathways are compromised the role of Dot1 in natural silencing 

may become more apparent (230), highlighting the need for further investigation.  

 In yeast, silencing is mediated by assembly of the Silencing Information Regulator (SIR) complex, 

consisting of the H4K16 deacetylase Sir2 together with Sir3 and Sir4 (231,232). Mutation of any of 
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these proteins leads to a complete loss of silencing (233). Several lines of evidence suggest H3K79me 

and Sir3 share an antagonistic relationship. Firstly, Sir3 and Dot1 both bind the same short basic patch 

of the histone H4 tail (131,132) and therefore compete for this site. Secondly, methylation at H3K79 

disrupts contacts between the bromo-adjacent homology (BAH) and AAA+ domains of Sir3 and the 

lateral surface of the nucleosome (234,235). In this regard, H3K79me appears to function by altering 

the binding affinity of certain proteins rather than causing direct effects on the nucleosome structure. It 

was postulated that H3K79me distribution throughout most of the yeast genome, prevents Sir binding, 

causing its localization to discrete, silenced regions (128,236).  

In higher eukaryotes there is very little mechanistic information on how H3K79me functions. 

However, H3K79me2 marks a distinct set of replication origins in the human (237) and trypanosome 

genome (H3K76me2) and it has been shown that in T. brucei overexpression of Dot1A, one of two 

DOT1 homologs, causes continuous replication of nuclear DNA (238). In humans, these data favour 

the view that H3K79me2’s association with these origins and replicated chromatin during S-phase 

may play a role in preventing re-replication thereby preserving genome stability. In trypanosomes, 

however, H3K76me1/2 occurs exclusively after replication and most likely initiates licensing, raising 

interesting questions regarding functional conservation. Several mammalian proteins contain a BAH 

domain similar to Sir3, raising the possibility that methylation of H3K79 may alter the binding of 

these proteins. In higher eukaryotes several of the proteins harboring the BAH module, including 

ORC1, are important for replicative events (239). In addition, the BAH domain is part of the mouse 

DNA methyltransferase 1 (DNMT1) enzyme and may be involved in its recruitment to the replication 

origins, suggesting a functional link between DNA methylation and replication (239). Finally MTA1, 

a subunit of the repressive, HDAC-containing NuRD complex, also contains a BAH domain and one 

could speculate that methylation of H3K79 could disrupt a nucleosomal interaction and hinder 

targeted chromatin remodeling and histone deacetylation within specific regions.  

In mammals H3K79me2 is present throughout heterochromatic regions (pericentric, centromeric, 

telomeric and sub-telomeric) (210), however its absence in Dot1L mutant cells leads to a general 

reduction in heterochromatic marks including H4K20me3 and H3K9me2 (but not H3K9me3) and an 

increase in H3K9ac. As a functional consequence, loss of Dol1L activity resulted in aberrant telomere 

elongation through activation of the Alternative Lengthening of Telomere (ALT) pathway (reviewed 

in (240)), a telomerase-independent mechanism of counteracting the end replication problem. The 

effects of dysfunctional Dot1L on telomere length appear to be conserved as similar alterations have 

been observed in yeast Dot1 mutant strains (129). As the authors point out this finding is intriguing 

given the presence of H3K79me-containing nucleosomes at mammalian telomeres and complete lack 

of nucleosomes at yeast telomeres. Moreover, the results in this study point to Dot1L playing a 

promotional role in heterochromatin maintenance, which seems counterintuitive to its link with 

transcriptional activation and the enrichment of H3K79me in euchromatin. Possible functions for 
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Dot1L in heterochromatin maintenance could be mediating the expression and/or distribution of 

heterochromatin-associated factors, or effects might result from changes to as yet unknown non-

histone Dot1L targets.   

In addition to alterations in H3K79me levels, H3K56 substitutions in yeast, also lead to silencing 

defects, especially at the telomeric regions (241,242). The silencing effects are, however, neither due 

to altered Sir protein recruitment or spreading, nor due to changes in other acetylated residues, such as 

H4K16 (242) although it may facilitate slight loosening of Sir binding (243). In yeast, H3K56 

deacetylation is globally mediated by the HDACs Hst3 and Hst4 (244,245), mutation of which leads to 

defects in telomeric silencing as a result of hyperacetylation. This occurs despite recruitment of Sir2 

(246). Although Sir2 itself has previously been implicated in H3K56 deacetylation, it is possible that 

alone it is not able to compensate for the loss of Hst3 and Hst4. In addition, its role in H3K56 

deacetylation is controversial and there are several reports presenting conflicting data (242,243,246). It 

has recently been shown that HDACs mediate the stability of heterochromatin through the suppression 

of histone turnover (247) and given that H3K56ac is conducive to DNA unwrapping at the entry/exit 

site of the nucleosome, removal of this modification may facilitate this process by inducing a more 

closed conformation at these sites. A similar mechanism is likely to be used in higher eukaryotes, 

given that the HDACs SIRT1 and SIRT6, which can both deacetylate H3K56, have been shown to be 

associated with mammalian telomeres and to be important for their integrity (111,248-250). 

H3K64me3 is found at constitutive heterochromatin, and ChIP-qPCR showed that it is enriched on 

repetitive DNA, including pericentromeric heterochromatin (Figure 6) (139). Interestingly, this 

localization does not require DNA methylation, consistent with other tail modifications in these 

regions, nor is it affected by HP1 localization (155). Instead, there appears to be cross-talk between 

H3K64me3 and H3K9me3. Indeed, knockout of SUV39H1/H2 causes not only a severe reduction in 

H3K9me3, but also H3K64me3. An elegant experiment by Lange et. al., in which H3K9me3 was 

artificially recruited to pericentromeric heterochromatin in SUV39H1/H2 double knockout cells, 

showed restoration of H3K64me3 at these regions. This  indicates a dependency of H3K64me3 on 

H3K9me3 rather than on the SUV39Hs (155).  It is perhaps not surprising that H3K64 is not directly 

regulated by the Suv39Hs, considering the surrounding amino acids are different to those of H3K9. In 

this regard it would be interesting to carry out similar dependency-based experiments for H3K56me3 

to decipher when in the heterochromatin formation chain of events it is deposited. One might predict 

that it occurs concomitantly, or just shortly after H3K9me3, but before H3K64me3. Given that it is 

found in organisms with little or no DNA methylation, it is also possible that H3K56me3 occurs 

independently of this process. Interestingly, in mouse NIH3T3 cells, overexpression of H3 in which 

K64 was substituted to arginine (R), resulted in a reduction of PTMs and factors representing 

hallmarks of constitutive heterochromatin, including H3K9me3, H4K20me3 and HP1, indicating an 

important role for H3K64me3 in heterochromatin maintenance. As a means to test our antibody, we 
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also made H3K56R mutants and could therefore easily perform similar assays to test global effects on 

other heterochromatic marks. 

 

2.3 Mislocalization of core modifications and disease 
 

Given the importance and implications of histone core modification genomic localization, it is not 

surprising that their mislocalization is implicated in several pathological processes. The occurrence of 

abnormal fusion proteins through genomic rearrangement is a common feature of many cancers. In 

over 70% of infant leukaemias, for example, the 5’-region of the Mixed Lineage Leukemia (MLL) gene 

is fused to various translocation partners, many of which are involved in transcriptional initiation and 

elongation (reviewed in (251)). In addition to other fundamental cellular processes, MLL is involved 

in transcriptional control of specific genes within the developmentally regulated Hox cluster (252). 

Amongst the MLL fusion partners are CBP/p300 and several elongating complex members which are 

capable of interacting with Dot1. Fusion-facilitated mistargeting of these histone modifying activities 

alters the pattern of PTMs at specific regions, such as the Hox genes, resulting in aberrant gene 

expression. In this regard, altered H3K79me patterns can contribute to the disruption of normal 

haematopoiesis and the progression of leukaemia (253,254) - a finding that has been substantiated 

using an inducible MLL fusion protein expression system. Indeed, Dot1 inhibitors are effective at 

reducing the growth of MLL leukaemias (255) and are currently in phase 1 clinical trials 

(ClinicalTrials.gov Identifier: NCT01684150, Drug: EPZ-5676). 

A common fusion protein linked to prostate cancer is formed through the joining of the 5’-UTR region 

of the androgen-regulated TMPRSS2 gene to the oncogenic transcription factor, ERG (256,257). It is 

thought that this fusion is brought about through the interaction of the androgen receptor (AR) at 

specific binding sites, which mediates chromatin looping, thereby inducing abnormal spatial proximity 

between the two gene partners (258). Recent studies have shown that AR-binding sites at TMPRSS2 

and ERG breakpoints are enriched in H3K79me and H4K16ac raising the possibility that histone 

modifications may play a novel role in chromatin looping (259,260) and promote the formation of 

fusion proteins. Finally, it has also been demonstrated that DNA tumor viruses encode oncoproteins, 

which amongst other regulatory proteins, target CBP/p300 (261-263). A recent publication showed 

that in cells expressing the Simian Virus 40 T antigen, higher levels of CBP/p300 resulted in an 

increase in H3K56ac and H4K12ac (264). In the case of adenovirus early region 1A, CBP/p300 is re-

localized from the promoters of genes involved in differentiation and antiviral defense to those 

involved in cell proliferation, altering their histone acetylation patterns, including H3K56ac 

distribution (265).  

Given the enrichment of H3K56me3 at metaphase centromeres it is likely that this modification plays 

a key role in ensuring equal partitioning of DNA to the two daughter cells during mitosis. If this is the 
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case then one could postulate that loss or reduction of H3K56me3 may impede proper chromosome 

segregation and lead to genomic instability. 

Furthering our understanding of the effects of H3 core modifications on transcription and long-range 

interactions will be crucial in delineating their role in disease pathogenesis. In addition, identifying the 

enzymes that regulate them could enhance our array of potential drug targets. 

 

2.4 Concluding remarks 
 

The identification of histone core modifications and their genome-wide mapping gives us further 

insight into the regulation of DNA accessibility across the genome. While many functional 

conclusions have already been drawn about the role of these modifications at specific genomic loci, 

most of the data is based on correlative studies. In addition, the interpretation of mutational studies can 

be problematic. For example, the commonly used K to Q substitution to mimic acetylation behaves 

differently, in multiple assays, compared to acetylation itself. Such mutations also lead to 100% of 

histones being “acetylated” all the time, which does not reflect the in vivo situation. The finding that 

several lysine residues can be both methylated and acetylated also complicates such studies as 

replacement with a Q not only mimics acetylation but also prevents methylation. Deciphering whether 

histone PTMs take place as cause or consequence of the processes with which they are linked, also 

remains problematic (discussed in (266)). H3K56ac and H3K79me have both been implicated in 

cellular functions outside of transcription, for example mitotic and meiotic regulation and the DNA 

damage response. Such roles are consistent with their predicted mode of action in transcription.  

With the development of more sensitive MS machines the repertoire of core histone PTMs is 

increasing (267,268). In addition, the explosion of data implicating core modifications in DNA 

damage repair, cell cycle regulation, cell fate determination and disease pathogenesis highlights the 

need to better understand the mechanisms underlying their functions and regulation. Finally, with the 

implementation of chromatin capture techniques our understanding of the importance of chromatin 

organization in the nucleus is growing and it is likely that, as in the case of H3K56ac and telomere 

localization, new functions for histone modifications in mediating processes such as long-range 

interactions will become apparent. Given the pivotal role of non-random nuclear organization in 

maintaining genomic stability, it will be intriguing to see how we can integrate this new knowledge 

with what we already know to further our understanding of cellular homeostasis and disease 

pathogenesis. 



References 

39 
 

REFERENCES 
 

1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal 
structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251-260. 

2. Bowman, G.D. (2010) Mechanisms of ATP-dependent nucleosome sliding. Current opinion in 
structural biology, 20, 73-81. 

3. Dorigo, B., Schalch, T., Bystricky, K. and Richmond, T.J. (2003) Chromatin fiber folding: 
requirement for the histone H4 N-terminal tail. Journal of molecular biology, 327, 85-96. 

4. Vogler, C., Huber, C., Waldmann, T., Ettig, R., Braun, L., Izzo, A., Daujat, S., Chassignet, I., 
Lopez-Contreras, A.J., Fernandez-Capetillo, O. et al. (2010) Histone H2A C-terminus 
regulates chromatin dynamics, remodeling, and histone H1 binding. PLoS genetics, 6, 
e1001234. 

5. Shukla, M.S., Syed, S.H., Goutte-Gattat, D., Richard, J.L., Montel, F., Hamiche, A., Travers, 
A., Faivre-Moskalenko, C., Bednar, J., Hayes, J.J. et al. (2011) The docking domain of histone 
H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic acids 
research, 39, 2559-2570. 

6. Akey, C.W. and Luger, K. (2003) Histone chaperones and nucleosome assembly. Current 
opinion in structural biology, 13, 6-14. 

7. Luger, K. and Richmond, T.J. (1998) DNA binding within the nucleosome core. Current 
opinion in structural biology, 8, 33-40. 

8. Li, G. and Widom, J. (2004) Nucleosomes facilitate their own invasion. Nature structural & 
molecular biology, 11, 763-769. 

9. Olins, A.L. and Olins, D.E. (1974) Spheroid chromatin units (v bodies). Science, 183, 330-
332. 

10. Simpson, R.T. (1978) Structure of the chromatosome, a chromatin particle containing 160 
base pairs of DNA and all the histones. Biochemistry, 17, 5524-5531. 

11. Tremethick, D.J. (2007) Higher-order structures of chromatin: the elusive 30 nm fiber. Cell, 
128, 651-654. 

12. Maeshima, K., Hihara, S. and Eltsov, M. (2010) Chromatin structure: does the 30-nm fibre 
exist in vivo? Current opinion in cell biology, 22, 291-297. 

13. Hardin, J., Bertoni, G.P. and L.J., K. (2012) Becker’s world of the cell 8th ed. Benjamin 
Cummings. 

14. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. and Cremer, T. (2007) Dynamic genome 
architecture in the nuclear space: regulation of gene expression in three dimensions. Nature 
reviews. Genetics, 8, 104-115. 

15. Filion, G.J., van Bemmel, J.G., Braunschweig, U., Talhout, W., Kind, J., Ward, L.D., 
Brugman, W., de Castro, I.J., Kerkhoven, R.M., Bussemaker, H.J. et al. (2010) Systematic 
protein location mapping reveals five principal chromatin types in Drosophila cells. Cell, 143, 
212-224. 

16. Kharchenko, P.V., Alekseyenko, A.A., Schwartz, Y.B., Minoda, A., Riddle, N.C., Ernst, J., 
Sabo, P.J., Larschan, E., Gorchakov, A.A., Gu, T. et al. (2011) Comprehensive analysis of the 
chromatin landscape in Drosophila melanogaster. Nature, 471, 480-485. 

17. Ernst, J. and Kellis, M. (2010) Discovery and characterization of chromatin states for 
systematic annotation of the human genome. Nature biotechnology, 28, 817-825. 

18. Chen, H., Monte, E., Parvatiyar, M.S., Rosa-Garrido, M., Franklin, S. and Vondriska, T.M. 
(2012) Structural considerations for chromatin state models with transcription as a functional 
readout. FEBS letters, 586, 3548-3554. 

19. Hansen, J.C., Lu, X., Ross, E.D. and Woody, R.W. (2006) Intrinsic protein disorder, amino 
acid composition, and histone terminal domains. The Journal of biological chemistry, 281, 
1853-1856. 

20. Nowak, S.J. and Corces, V.G. (2000) Phosphorylation of histone H3 correlates with 
transcriptionally active loci. Genes & development, 14, 3003-3013. 

21. Hendzel, M.J., Wei, Y., Mancini, M.A., Van Hooser, A., Ranalli, T., Brinkley, B.R., Bazett-
Jones, D.P. and Allis, C.D. (1997) Mitosis-specific phosphorylation of histone H3 initiates 



References 

40 
 

primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion 
coincident with mitotic chromosome condensation. Chromosoma, 106, 348-360. 

22. Strahl, B.D. and Allis, C.D. (2000) The language of covalent histone modifications. Nature, 
403, 41-45. 

23. Ruthenburg, A.J., Li, H., Patel, D.J. and Allis, C.D. (2007) Multivalent engagement of 
chromatin modifications by linked binding modules. Nature reviews. Molecular cell biology, 
8, 983-994. 

24. Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science, 293, 1074-1080. 
25. Wang, X., Moore, S.C., Laszckzak, M. and Ausio, J. (2000) Acetylation increases the alpha-

helical content of the histone tails of the nucleosome. The Journal of biological chemistry, 
275, 35013-35020. 

26. Potoyan, D.A. and Papoian, G.A. (2012) Regulation of the H4 tail binding and folding 
landscapes via Lys-16 acetylation. Proceedings of the National Academy of Sciences of the 
United States of America, 109, 17857-17862. 

27. Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R. and Peterson, C.L. (2006) 
Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 
311, 844-847. 

28. Wilkins, B.J., Rall, N.A., Ostwal, Y., Kruitwagen, T., Hiragami-Hamada, K., Winkler, M., 
Barral, Y., Fischle, W. and Neumann, H. (2014) A cascade of histone modifications induces 
chromatin condensation in mitosis. Science, 343, 77-80. 

29. Robert, F., Pokholok, D.K., Hannett, N.M., Rinaldi, N.J., Chandy, M., Rolfe, A., Workman, 
J.L., Gifford, D.K. and Young, R.A. (2004) Global position and recruitment of HATs and 
HDACs in the yeast genome. Molecular cell, 16, 199-209. 

30. Hodawadekar, S.C. and Marmorstein, R. (2007) Chemistry of acetyl transfer by histone 
modifying enzymes: structure, mechanism and implications for effector design. Oncogene, 26, 
5528-5540. 

31. Brownell, J.E. and Allis, C.D. (1996) Special HATs for special occasions: linking histone 
acetylation to chromatin assembly and gene activation. Current opinion in genetics & 
development, 6, 176-184. 

32. Arrowsmith, C.H., Bountra, C., Fish, P.V., Lee, K. and Schapira, M. (2012) Epigenetic protein 
families: a new frontier for drug discovery. Nature reviews. Drug discovery, 11, 384-400. 

33. Smolle, M. and Workman, J.L. (2013) Transcription-associated histone modifications and 
cryptic transcription. Biochimica et biophysica acta, 1829, 84-97. 

34. Gray, S.G. and Ekstrom, T.J. (2001) The human histone deacetylase family. Experimental cell 
research, 262, 75-83. 

35. Allfrey, V.G. and Mirsky, A.E. (1964) Structural Modifications of Histones and their Possible 
Role in the Regulation of RNA Synthesis. Science, 144, 559. 

36. Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T. and Allis, C.D. (1995) Conservation 
of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proceedings 
of the National Academy of Sciences of the United States of America, 92, 1237-1241. 

37. Chen, C.C., Carson, J.J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J. and Tyler, J.K. 
(2008) Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals 
for the completion of repair. Cell, 134, 231-243. 

38. McCool, K.W., Xu, X., Singer, D.B., Murdoch, F.E. and Fritsch, M.K. (2007) The role of 
histone acetylation in regulating early gene expression patterns during early embryonic stem 
cell differentiation. The Journal of biological chemistry, 282, 6696-6706. 

39. Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., 
Qin, J. and Nakatani, Y. (2000) Involvement of the TIP60 histone acetylase complex in DNA 
repair and apoptosis. Cell, 102, 463-473. 

40. Legube, G. and Trouche, D. (2003) Regulating histone acetyltransferases and deacetylases. 
EMBO reports, 4, 944-947. 

41. Zeng, L. and Zhou, M.M. (2002) Bromodomain: an acetyl-lysine binding domain. FEBS 
letters, 513, 124-128. 

42. Zeng, L., Zhang, Q., Li, S., Plotnikov, A.N., Walsh, M.J. and Zhou, M.M. (2010) Mechanism 
and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature, 
466, 258-262. 



References 

41 
 

43. Owen, D.J., Ornaghi, P., Yang, J.C., Lowe, N., Evans, P.R., Ballario, P., Neuhaus, D., Filetici, 
P. and Travers, A.A. (2000) The structural basis for the recognition of acetylated histone H4 
by the bromodomain of histone acetyltransferase gcn5p. The EMBO journal, 19, 6141-6149. 

44. Dreveny, I., Deeves, S.E., Fulton, J., Yue, B., Messmer, M., Bhattacharya, A., Collins, H.M. 
and Heery, D.M. (2013) The double PHD finger domain of MOZ/MYST3 induces alpha-
helical structure of the histone H3 tail to facilitate acetylation and methylation sampling and 
modification. Nucleic acids research. 

45. Lu, X., Simon, M.D., Chodaparambil, J.V., Hansen, J.C., Shokat, K.M. and Luger, K. (2008) 
The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin 
structure. Nature structural & molecular biology, 15, 1122-1124. 

46. Frederiks, F., Tzouros, M., Oudgenoeg, G., van Welsem, T., Fornerod, M., Krijgsveld, J. and 
van Leeuwen, F. (2008) Nonprocessive methylation by Dot1 leads to functional redundancy of 
histone H3K79 methylation states. Nature structural & molecular biology, 15, 550-557. 

47. Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., 
Mechtler, K., Ponting, C.P., Allis, C.D. et al. (2000) Regulation of chromatin structure by site-
specific histone H3 methyltransferases. Nature, 406, 593-599. 

48. Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G. and Reuter, G. (1994) The 
protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 
combines domains of antagonistic regulators of homeotic gene complexes. The EMBO 
journal, 13, 3822-3831. 

49. Jones, R.S. and Gelbart, W.M. (1993) The Drosophila Polycomb-group gene Enhancer of 
zeste contains a region with sequence similarity to trithorax. Molecular and cellular biology, 
13, 6357-6366. 

50. Stassen, M.J., Bailey, D., Nelson, S., Chinwalla, V. and Harte, P.J. (1995) The Drosophila 
trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain 
and an ancient conserved motif found in other chromosomal proteins. Mechanisms of 
development, 52, 209-223. 

51. Dillon, S.C., Zhang, X., Trievel, R.C. and Cheng, X. (2005) The SET-domain protein 
superfamily: protein lysine methyltransferases. Genome biology, 6, 227. 

52. Karytinos, A., Forneris, F., Profumo, A., Ciossani, G., Battaglioli, E., Binda, C. and Mattevi, 
A. (2009) A novel mammalian flavin-dependent histone demethylase. The Journal of 
biological chemistry, 284, 17775-17782. 

53. Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P. and 
Zhang, Y. (2006) Histone demethylation by a family of JmjC domain-containing proteins. 
Nature, 439, 811-816. 

54. Nottke, A., Colaiacovo, M.P. and Shi, Y. (2009) Developmental roles of the histone lysine 
demethylases. Development, 136, 879-889. 

55. Kim, J., Daniel, J., Espejo, A., Lake, A., Krishna, M., Xia, L., Zhang, Y. and Bedford, M.T. 
(2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO 
reports, 7, 397-403. 

56. Yun, M., Wu, J., Workman, J.L. and Li, B. (2011) Readers of histone modifications. Cell 
research, 21, 564-578. 

57. Collins, R.E., Northrop, J.P., Horton, J.R., Lee, D.Y., Zhang, X., Stallcup, M.R. and Cheng, 
X. (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and 
dimethyllysine binding modules. Nature structural & molecular biology, 15, 245-250. 

58. Jacobs, S.A. and Khorasanizadeh, S. (2002) Structure of HP1 chromodomain bound to a 
lysine 9-methylated histone H3 tail. Science, 295, 2080-2083. 

59. Al-Sady, B., Madhani, H.D. and Narlikar, G.J. (2013) Division of labor between the 
chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. 
Molecular cell, 51, 80-91. 

60. Fischle, W., Wang, Y., Jacobs, S.A., Kim, Y., Allis, C.D. and Khorasanizadeh, S. (2003) 
Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by 
Polycomb and HP1 chromodomains. Genes & development, 17, 1870-1881. 

61. Black, J.C., Van Rechem, C. and Whetstine, J.R. (2012) Histone lysine methylation dynamics: 
establishment, regulation, and biological impact. Molecular cell, 48, 491-507. 



References 

42 
 

62. Trojer, P. and Reinberg, D. (2007) Facultative heterochromatin: is there a distinctive 
molecular signature? Molecular cell, 28, 1-13. 

63. Santaguida, S. and Musacchio, A. (2009) The life and miracles of kinetochores. The EMBO 
journal, 28, 2511-2531. 

64. Regnier, V., Vagnarelli, P., Fukagawa, T., Zerjal, T., Burns, E., Trouche, D., Earnshaw, W. 
and Brown, W. (2005) CENP-A is required for accurate chromosome segregation and 
sustained kinetochore association of BubR1. Molecular and cellular biology, 25, 3967-3981. 

65. Allshire, R.C. and Karpen, G.H. (2008) Epigenetic regulation of centromeric chromatin: old 
dogs, new tricks? Nature reviews. Genetics, 9, 923-937. 

66. Sullivan, B.A. and Karpen, G.H. (2004) Centromeric chromatin exhibits a histone 
modification pattern that is distinct from both euchromatin and heterochromatin. Nature 
structural & molecular biology, 11, 1076-1083. 

67. Grewal, S.I. and Elgin, S.C. (2007) Transcription and RNA interference in the formation of 
heterochromatin. Nature, 447, 399-406. 

68. Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D. and 
Jenuwein, T. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at 
constitutive heterochromatin. Genes & development, 18, 1251-1262. 

69. Dambacher, S., Hahn, M. and Schotta, G. (2013) The compact view on heterochromatin. Cell 
cycle, 12, 2925-2926. 

70. Nagano, T., Mitchell, J.A., Sanz, L.A., Pauler, F.M., Ferguson-Smith, A.C., Feil, R. and 
Fraser, P. (2008) The Air noncoding RNA epigenetically silences transcription by targeting 
G9a to chromatin. Science, 322, 1717-1720. 

71. Bulut-Karslioglu, A., Perrera, V., Scaranaro, M., de la Rosa-Velazquez, I.A., van de Nobelen, 
S., Shukeir, N., Popow, J., Gerle, B., Opravil, S., Pagani, M. et al. (2012) A transcription 
factor-based mechanism for mouse heterochromatin formation. Nature structural & molecular 
biology, 19, 1023-1030. 

72. Loyola, A., Tagami, H., Bonaldi, T., Roche, D., Quivy, J.P., Imhof, A., Nakatani, Y., Dent, 
S.Y. and Almouzni, G. (2009) The HP1alpha-CAF1-SetDB1-containing complex provides 
H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO reports, 10, 
769-775. 

73. Pinheiro, I., Margueron, R., Shukeir, N., Eisold, M., Fritzsch, C., Richter, F.M., Mittler, G., 
Genoud, C., Goyama, S., Kurokawa, M. et al. (2012) Prdm3 and Prdm16 are H3K9me1 
methyltransferases required for mammalian heterochromatin integrity. Cell, 150, 948-960. 

74. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of 
histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410, 116-120. 

75. Richart, A.N., Brunner, C.I., Stott, K., Murzina, N.V. and Thomas, J.O. (2012) 
Characterization of chromoshadow domain-mediated binding of heterochromatin protein 
1alpha (HP1alpha) to histone H3. The Journal of biological chemistry, 287, 18730-18737. 

76. Nielsen, A.L., Oulad-Abdelghani, M., Ortiz, J.A., Remboutsika, E., Chambon, P. and Losson, 
R. (2001) Heterochromatin formation in mammalian cells: interaction between histones and 
HP1 proteins. Molecular cell, 7, 729-739. 

77. Lehnertz, B., Ueda, Y., Derijck, A.A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., 
Chen, T., Li, E., Jenuwein, T. and Peters, A.H. (2003) Suv39h-mediated histone H3 lysine 9 
methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. 
Current biology : CB, 13, 1192-1200. 

78. Hahn, M., Dambacher, S., Dulev, S., Kuznetsova, A.Y., Eck, S., Worz, S., Sadic, D., Schulte, 
M., Mallm, J.P., Maiser, A. et al. (2013) Suv4-20h2 mediates chromatin compaction and is 
important for cohesin recruitment to heterochromatin. Genes & development, 27, 859-872. 

79. Clarke, A. and Orr-Weaver, T.L. (2006) Sister chromatid cohesion at the centromere: 
confrontation between kinases and phosphatases? Developmental cell, 10, 544-547. 

80. Ishiguro, K. and Watanabe, Y. (2007) Chromosome cohesion in mitosis and meiosis. Journal 
of cell science, 120, 367-369. 

81. Lo, W.S., Trievel, R.C., Rojas, J.R., Duggan, L., Hsu, J.Y., Allis, C.D., Marmorstein, R. and 
Berger, S.L. (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro 
and in vivo to Gcn5-mediated acetylation at lysine 14. Molecular cell, 5, 917-926. 



References 

43 
 

82. Zhong, S., Goto, H., Inagaki, M. and Dong, Z. (2003) Phosphorylation at serine 28 and 
acetylation at lysine 9 of histone H3 induced by trichostatin A. Oncogene, 22, 5291-5297. 

83. Lau, P.N. and Cheung, P. (2011) Histone code pathway involving H3 S28 phosphorylation 
and K27 acetylation activates transcription and antagonizes polycomb silencing. Proceedings 
of the National Academy of Sciences of the United States of America, 108, 2801-2806. 

84. Gehani, S.S., Agrawal-Singh, S., Dietrich, N., Christophersen, N.S., Helin, K. and Hansen, K. 
(2010) Polycomb group protein displacement and gene activation through MSK-dependent 
H3K27me3S28 phosphorylation. Molecular cell, 39, 886-900. 

85. Metzger, E., Yin, N., Wissmann, M., Kunowska, N., Fischer, K., Friedrichs, N., Patnaik, D., 
Higgins, J.M., Potier, N., Scheidtmann, K.H. et al. (2008) Phosphorylation of histone H3 at 
threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nature cell 
biology, 10, 53-60. 

86. Metzger, E., Imhof, A., Patel, D., Kahl, P., Hoffmeyer, K., Friedrichs, N., Muller, J.M., 
Greschik, H., Kirfel, J., Ji, S. et al. (2010) Phosphorylation of histone H3T6 by PKCbeta(I) 
controls demethylation at histone H3K4. Nature, 464, 792-796. 

87. Johansen, K.M. and Johansen, J. (2006) Regulation of chromatin structure by histone H3S10 
phosphorylation. Chromosome research : an international journal on the molecular, 
supramolecular and evolutionary aspects of chromosome biology, 14, 393-404. 

88. Kim, J.Y., Kim, K.B., Son, H.J., Chae, Y.C., Oh, S.T., Kim, D.W., Pak, J.H. and Seo, S.B. 
(2012) H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation 
by INHAT subunit SET/TAF-Ibeta. FEBS letters, 586, 3159-3165. 

89. Wei, Y., Mizzen, C.A., Cook, R.G., Gorovsky, M.A. and Allis, C.D. (1998) Phosphorylation 
of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and 
meiosis in Tetrahymena. Proceedings of the National Academy of Sciences of the United 
States of America, 95, 7480-7484. 

90. Fischle, W., Tseng, B.S., Dormann, H.L., Ueberheide, B.M., Garcia, B.A., Shabanowitz, J., 
Hunt, D.F., Funabiki, H. and Allis, C.D. (2005) Regulation of HP1-chromatin binding by 
histone H3 methylation and phosphorylation. Nature, 438, 1116-1122. 

91. Dai, J., Sultan, S., Taylor, S.S. and Higgins, J.M. (2005) The kinase haspin is required for 
mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. 
Genes & development, 19, 472-488. 

92. Winter, S., Simboeck, E., Fischle, W., Zupkovitz, G., Dohnal, I., Mechtler, K., Ammerer, G. 
and Seiser, C. (2008) 14-3-3 proteins recognize a histone code at histone H3 and are required 
for transcriptional activation. The EMBO journal, 27, 88-99. 

93. Jeyaprakash, A.A., Basquin, C., Jayachandran, U. and Conti, E. (2011) Structural basis for the 
recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal 
passenger complex. Structure, 19, 1625-1634. 

94. Hansen, J.C. (2002) Conformational dynamics of the chromatin fiber in solution: 
determinants, mechanisms, and functions. Annual review of biophysics and biomolecular 
structure, 31, 361-392. 

95. Freitas, M.A., Sklenar, A.R. and Parthun, M.R. (2004) Application of mass spectrometry to 
the identification and quantification of histone post-translational modifications. Journal of 
cellular biochemistry, 92, 691-700. 

96. North, J.A., Shimko, J.C., Javaid, S., Mooney, A.M., Shoffner, M.A., Rose, S.D., Bundschuh, 
R., Fishel, R., Ottesen, J.J. and Poirier, M.G. (2012) Regulation of the nucleosome 
unwrapping rate controls DNA accessibility. Nucleic acids research, 40, 10215-10227. 

97. Xu, F., Zhang, K. and Grunstein, M. (2005) Acetylation in histone H3 globular domain 
regulates gene expression in yeast. Cell, 121, 375-385. 

98. Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A. and Zhang, Z. 
(2008) Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome 
assembly. Cell, 134, 244-255. 

99. Xie, W., Song, C., Young, N.L., Sperling, A.S., Xu, F., Sridharan, R., Conway, A.E., Garcia, 
B.A., Plath, K., Clark, A.T. et al. (2009) Histone h3 lysine 56 acetylation is linked to the core 
transcriptional network in human embryonic stem cells. Molecular cell, 33, 417-427. 



References 

44 
 

100. Yu, Y., Song, C., Zhang, Q., DiMaggio, P.A., Garcia, B.A., York, A., Carey, M.F. and 
Grunstein, M. (2012) Histone H3 lysine 56 methylation regulates DNA replication through its 
interaction with PCNA. Molecular cell, 46, 7-17. 

101. Jack, A.P., Bussemer, S., Hahn, M., Punzeler, S., Snyder, M., Wells, M., Csankovszki, G., 
Solovei, I., Schotta, G. and Hake, S.B. (2013) H3K56me3 is a novel, conserved 
heterochromatic mark that largely but not completely overlaps with H3K9me3 in both 
regulation and localization. PloS one, 8, e51765. 

102. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. and Richmond, T.J. (2002) Solvent 
mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. 
Journal of molecular biology, 319, 1097-1113. 

103. Neumann, H., Hancock, S.M., Buning, R., Routh, A., Chapman, L., Somers, J., Owen-
Hughes, T., van Noort, J., Rhodes, D. and Chin, J.W. (2009) A method for genetically 
installing site-specific acetylation in recombinant histones defines the effects of H3 K56 
acetylation. Molecular cell, 36, 153-163. 

104. Watanabe, S., Resch, M., Lilyestrom, W., Clark, N., Hansen, J.C., Peterson, C. and Luger, K. 
(2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. 
Biochimica et biophysica acta, 1799, 480-486. 

105. Suto, R.K., Edayathumangalam, R.S., White, C.L., Melander, C., Gottesfeld, J.M., Dervan, 
P.B. and Luger, K. (2003) Crystal structures of nucleosome core particles in complex with 
minor groove DNA-binding ligands. Journal of molecular biology, 326, 371-380. 

106. Hall, M.A., Shundrovsky, A., Bai, L., Fulbright, R.M., Lis, J.T. and Wang, M.D. (2009) High-
resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nature structural 
& molecular biology, 16, 124-129. 

107. Shimko, J.C., North, J.A., Bruns, A.N., Poirier, M.G. and Ottesen, J.J. (2011) Preparation of 
fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within 
nucleosomes. Journal of molecular biology, 408, 187-204. 

108. Simon, M., North, J.A., Shimko, J.C., Forties, R.A., Ferdinand, M.B., Manohar, M., Zhang, 
M., Fishel, R., Ottesen, J.J. and Poirier, M.G. (2011) Histone fold modifications control 
nucleosome unwrapping and disassembly. Proceedings of the National Academy of Sciences 
of the United States of America, 108, 12711-12716. 

109. Bowman, A., Ward, R., El-Mkami, H., Owen-Hughes, T. and Norman, D.G. (2010) Probing 
the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-
directed spin labelling. Nucleic acids research, 38, 695-707. 

110. Schneider, J., Bajwa, P., Johnson, F.C., Bhaumik, S.R. and Shilatifard, A. (2006) Rtt109 is 
required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA 
polymerase II. The Journal of biological chemistry, 281, 37270-37274. 

111. Das, C., Lucia, M.S., Hansen, K.C. and Tyler, J.K. (2009) CBP/p300-mediated acetylation of 
histone H3 on lysine 56. Nature, 459, 113-117. 

112. Tjeertes, J.V., Miller, K.M. and Jackson, S.P. (2009) Screen for DNA-damage-responsive 
histone modifications identifies H3K9Ac and H3K56Ac in human cells. The EMBO journal, 
28, 1878-1889. 

113. Zhang, L., Eugeni, E.E., Parthun, M.R. and Freitas, M.A. (2003) Identification of novel 
histone post-translational modifications by peptide mass fingerprinting. Chromosoma, 112, 
77-86. 

114. Garcia, B.A., Hake, S.B., Diaz, R.L., Kauer, M., Morris, S.A., Recht, J., Shabanowitz, J., 
Mishra, N., Strahl, B.D., Allis, C.D. et al. (2007) Organismal differences in post-translational 
modifications in histones H3 and H4. The Journal of biological chemistry, 282, 7641-7655. 

115. Aslam, A. and Logie, C. (2010) Histone H3 serine 57 and lysine 56 interplay in transcription 
elongation and recovery from S-phase stress. PloS one, 5, e10851. 

116. Fischle, W., Wang, Y. and Allis, C.D. (2003) Binary switches and modification cassettes in 
histone biology and beyond. Nature, 425, 475-479. 

117. Tropberger, P., Pott, S., Keller, C., Kamieniarz-Gdula, K., Caron, M., Richter, F., Li, G., 
Mittler, G., Liu, E.T., Buhler, M. et al. (2013) Regulation of transcription through acetylation 
of H3K122 on the lateral surface of the histone octamer. Cell, 152, 859-872. 

118. Iwasaki, W., Tachiwana, H., Kawaguchi, K., Shibata, T., Kagawa, W. and Kurumizaka, H. 
(2011) Comprehensive structural analysis of mutant nucleosomes containing lysine to 



References 

45 
 

glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry, 50, 7822-
7832. 

119. Manohar, M., Mooney, A.M., North, J.A., Nakkula, R.J., Picking, J.W., Edon, A., Fishel, R., 
Poirier, M.G. and Ottesen, J.J. (2009) Acetylation of histone H3 at the nucleosome dyad alters 
DNA-histone binding. The Journal of biological chemistry, 284, 23312-23321. 

120. Muthurajan, U.M., Park, Y.J., Edayathumangalam, R.S., Suto, R.K., Chakravarthy, S., Dyer, 
P.N. and Luger, K. (2003) Structure and dynamics of nucleosomal DNA. Biopolymers, 68, 
547-556. 

121. Flaus, A. and Owen-Hughes, T. (2003) Dynamic properties of nucleosomes during thermal 
and ATP-driven mobilization. Molecular and cellular biology, 23, 7767-7779. 

122. Bohm, V., Hieb, A.R., Andrews, A.J., Gansen, A., Rocker, A., Toth, K., Luger, K. and 
Langowski, J. (2011) Nucleosome accessibility governed by the dimer/tetramer interface. 
Nucleic acids research, 39, 3093-3102. 

123. Kruger, W., Peterson, C.L., Sil, A., Coburn, C., Arents, G., Moudrianakis, E.N. and 
Herskowitz, I. (1995) Amino acid substitutions in the structured domains of histones H3 and 
H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes & 
development, 9, 2770-2779. 

124. Kumar, A., Kashyap, M., Bhavesh, N.S., Yogavel, M. and Sharma, A. (2012) Structural 
delineation of histone post-translation modifications in histone-nucleosome assembly protein 
complex. Journal of structural biology, 180, 1-9. 

125. Park, J.H., Cosgrove, M.S., Youngman, E., Wolberger, C. and Boeke, J.D. (2002) A core 
nucleosome surface crucial for transcriptional silencing. Nature genetics, 32, 273-279. 

126. Thompson, J.S., Snow, M.L., Giles, S., McPherson, L.E. and Grunstein, M. (2003) 
Identification of a functional domain within the essential core of histone H3 that is required 
for telomeric and HM silencing in Saccharomyces cerevisiae. Genetics, 163, 447-452. 

127. Lacoste, N., Utley, R.T., Hunter, J.M., Poirier, G.G. and Cote, J. (2002) Disruptor of telomeric 
silencing-1 is a chromatin-specific histone H3 methyltransferase. The Journal of biological 
chemistry, 277, 30421-30424. 

128. van Leeuwen, F., Gafken, P.R. and Gottschling, D.E. (2002) Dot1p modulates silencing in 
yeast by methylation of the nucleosome core. Cell, 109, 745-756. 

129. Singer, M.S., Kahana, A., Wolf, A.J., Meisinger, L.L., Peterson, S.E., Goggin, C., Mahowald, 
M. and Gottschling, D.E. (1998) Identification of high-copy disruptors of telomeric silencing 
in Saccharomyces cerevisiae. Genetics, 150, 613-632. 

130. Janzen, C.J., Hake, S.B., Lowell, J.E. and Cross, G.A. (2006) Selective di- or trimethylation of 
histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in 
Trypanosoma brucei. Molecular cell, 23, 497-507. 

131. Fingerman, I.M., Li, H.C. and Briggs, S.D. (2007) A charge-based interaction between histone 
H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a 
new trans-histone pathway. Genes & development, 21, 2018-2029. 

132. Altaf, M., Utley, R.T., Lacoste, N., Tan, S., Briggs, S.D. and Cote, J. (2007) Interplay of 
chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of 
telomeric heterochromatin. Molecular cell, 28, 1002-1014. 

133. Dover, J., Schneider, J., Tawiah-Boateng, M.A., Wood, A., Dean, K., Johnston, M. and 
Shilatifard, A. (2002) Methylation of histone H3 by COMPASS requires ubiquitination of 
histone H2B by Rad6. The Journal of biological chemistry, 277, 28368-28371. 

134. Shilatifard, A. (2006) Chromatin modifications by methylation and ubiquitination: 
implications in the regulation of gene expression. Annual review of biochemistry, 75, 243-269. 

135. Lee, J.S., Shukla, A., Schneider, J., Swanson, S.K., Washburn, M.P., Florens, L., Bhaumik, 
S.R. and Shilatifard, A. (2007) Histone crosstalk between H2B monoubiquitination and H3 
methylation mediated by COMPASS. Cell, 131, 1084-1096. 

136. McGinty, R.K., Kim, J., Chatterjee, C., Roeder, R.G. and Muir, T.W. (2008) Chemically 
ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature, 
453, 812-816. 

137. Nguyen, A.T. and Zhang, Y. (2011) The diverse functions of Dot1 and H3K79 methylation. 
Genes & development, 25, 1345-1358. 



References 

46 
 

138. Bheda, P., Swatkoski, S., Fiedler, K.L., Boeke, J.D., Cotter, R.J. and Wolberger, C. (2012) 
Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces 
cerevisiae as a substrate for Sir2. Proceedings of the National Academy of Sciences of the 
United States of America, 109, E916-925. 

139. Daujat, S., Weiss, T., Mohn, F., Lange, U.C., Ziegler-Birling, C., Zeissler, U., Lappe, M., 
Schubeler, D., Torres-Padilla, M.E. and Schneider, R. (2009) H3K64 trimethylation marks 
heterochromatin and is dynamically remodeled during developmental reprogramming. Nature 
structural & molecular biology, 16, 777-781. 

140. Di Cerbo, V., Mohn, F., Ryan, D.P., Montellier, E., Kacem, S., Tropberger, P., Kallis, E., 
Holzner, M., Hoerner, L., Feldmann, A. et al. (2014) Acetylation of histone H3 at lysine 64 
regulates nucleosome dynamics and facilitates transcription. eLife, 3, e01632. 

141. Ku, M., Jaffe, J.D., Koche, R.P., Rheinbay, E., Endoh, M., Koseki, H., Carr, S.A. and 
Bernstein, B.E. (2012) H2A.Z landscapes and dual modifications in pluripotent and 
multipotent stem cells underlie complex genome regulatory functions. Genome biology, 13, 
R85. 

142. Pichler, G., Jack, A., Wolf, P. and Hake, S.B. (2012) Versatile toolbox for high throughput 
biochemical and functional studies with fluorescent fusion proteins. PloS one, 7, e36967. 

143. Talbert, P.B. and Henikoff, S. (2010) Histone variants--ancient wrap artists of the epigenome. 
Nature reviews. Molecular cell biology, 11, 264-275. 

144. Watanabe, S., Radman-Livaja, M., Rando, O.J. and Peterson, C.L. (2013) A histone 
acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science, 
340, 195-199. 

145. Chin, H.G., Pradhan, M., Esteve, P.O., Patnaik, D., Evans, T.C., Jr. and Pradhan, S. (2005) 
Sequence specificity and role of proximal amino acids of the histone H3 tail on catalysis of 
murine G9A lysine 9 histone H3 methyltransferase. Biochemistry, 44, 12998-13006. 

146. Rathert, P., Dhayalan, A., Murakami, M., Zhang, X., Tamas, R., Jurkowska, R., Komatsu, Y., 
Shinkai, Y., Cheng, X. and Jeltsch, A. (2008) Protein lysine methyltransferase G9a acts on 
non-histone targets. Nature chemical biology, 4, 344-346. 

147. Tachibana, M., Sugimoto, K., Fukushima, T. and Shinkai, Y. (2001) Set domain-containing 
protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with 
hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. The Journal of 
biological chemistry, 276, 25309-25317. 

148. Trojer, P., Zhang, J., Yonezawa, M., Schmidt, A., Zheng, H., Jenuwein, T. and Reinberg, D. 
(2009) Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine 
Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. 
The Journal of biological chemistry, 284, 8395-8405. 

149. Weiss, T., Hergeth, S., Zeissler, U., Izzo, A., Tropberger, P., Zee, B.M., Dundr, M., Garcia, 
B.A., Daujat, S. and Schneider, R. (2010) Histone H1 variant-specific lysine methylation by 
G9a/KMT1C and Glp1/KMT1D. Epigenetics & chromatin, 3, 7. 

150. Krishnan, S., Horowitz, S. and Trievel, R.C. (2011) Structure and function of histone H3 
lysine 9 methyltransferases and demethylases. Chembiochem : a European journal of 
chemical biology, 12, 254-263. 

151. Wu, H., Min, J., Lunin, V.V., Antoshenko, T., Dombrovski, L., Zeng, H., Allali-Hassani, A., 
Campagna-Slater, V., Vedadi, M., Arrowsmith, C.H. et al. (2010) Structural biology of human 
H3K9 methyltransferases. PloS one, 5, e8570. 

152. Sanli, D., Keskin, O., Gursoy, A. and Erman, B. (2011) Structural cooperativity in histone H3 
tail modifications. Protein science : a publication of the Protein Society, 20, 1982-1990. 

153. Peters, A.H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., 
Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A. et al. (2001) Loss of the 
Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. 
Cell, 107, 323-337. 

154. Wang, H., An, W., Cao, R., Xia, L., Erdjument-Bromage, H., Chatton, B., Tempst, P., Roeder, 
R.G. and Zhang, Y. (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl 
lysine 9 of histone H3 to cause transcriptional repression. Molecular cell, 12, 475-487. 



References 

47 
 

155. Lange, U.C., Siebert, S., Wossidlo, M., Weiss, T., Ziegler-Birling, C., Walter, J., Torres-
Padilla, M.E., Daujat, S. and Schneider, R. (2013) Dissecting the role of H3K64me3 in mouse 
pericentromeric heterochromatin. Nature communications, 4, 2233. 

156. Fritsch, L., Robin, P., Mathieu, J.R., Souidi, M., Hinaux, H., Rougeulle, C., Harel-Bellan, A., 
Ameyar-Zazoua, M. and Ait-Si-Ali, S. (2010) A subset of the histone H3 lysine 9 
methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. 
Molecular cell, 37, 46-56. 

157. Tachibana, M., Sugimoto, K., Nozaki, M., Ueda, J., Ohta, T., Ohki, M., Fukuda, M., Takeda, 
N., Niida, H., Kato, H. et al. (2002) G9a histone methyltransferase plays a dominant role in 
euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes 
& development, 16, 1779-1791. 

158. Dong, K.B., Maksakova, I.A., Mohn, F., Leung, D., Appanah, R., Lee, S., Yang, H.W., Lam, 
L.L., Mager, D.L., Schubeler, D. et al. (2008) DNA methylation in ES cells requires the lysine 
methyltransferase G9a but not its catalytic activity. The EMBO journal, 27, 2691-2701. 

159. Kondo, Y., Shen, L., Ahmed, S., Boumber, Y., Sekido, Y., Haddad, B.R. and Issa, J.P. (2008) 
Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption 
and chromosome instability in cancer cells. PloS one, 3, e2037. 

160. Krishnan, S. and Trievel, R.C. (2013) Structural and functional analysis of JMJD2D reveals 
molecular basis for site-specific demethylation among JMJD2 demethylases. Structure, 21, 
98-108. 

161. Banerjee, T. and Chakravarti, D. (2011) A peek into the complex realm of histone 
phosphorylation. Molecular and cellular biology, 31, 4858-4873. 

162. Cowieson, N.P., Partridge, J.F., Allshire, R.C. and McLaughlin, P.J. (2000) Dimerisation of a 
chromo shadow domain and distinctions from the chromodomain as revealed by structural 
analysis. Current biology : CB, 10, 517-525. 

163. Vempati, R.K., Jayani, R.S., Notani, D., Sengupta, A., Galande, S. and Haldar, D. (2010) 
p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in 
mammals. The Journal of biological chemistry, 285, 28553-28564. 

164. Probst, A.V., Dunleavy, E. and Almouzni, G. (2009) Epigenetic inheritance during the cell 
cycle. Nature reviews. Molecular cell biology, 10, 192-206. 

165. Zhang, Z., Shibahara, K. and Stillman, B. (2000) PCNA connects DNA replication to 
epigenetic inheritance in yeast. Nature, 408, 221-225. 

166. Henderson, D.S., Banga, S.S., Grigliatti, T.A. and Boyd, J.B. (1994) Mutagen sensitivity and 
suppression of position-effect variegation result from mutations in mus209, the Drosophila 
gene encoding PCNA. The EMBO journal, 13, 1450-1459. 

167. Moldovan, G.L., Pfander, B. and Jentsch, S. (2006) PCNA controls establishment of sister 
chromatid cohesion during S phase. Molecular cell, 23, 723-732. 

168. Bernard, P., Maure, J.F., Partridge, J.F., Genier, S., Javerzat, J.P. and Allshire, R.C. (2001) 
Requirement of heterochromatin for cohesion at centromeres. Science, 294, 2539-2542. 

169. Aagaard, L., Schmid, M., Warburton, P. and Jenuwein, T. (2000) Mitotic phosphorylation of 
SUV39H1, a novel component of active centromeres, coincides with transient accumulation at 
mammalian centromeres. Journal of cell science, 113 ( Pt 5), 817-829. 

170. Lee, K.J., Lin, Y.F., Chou, H.Y., Yajima, H., Fattah, K.R., Lee, S.C. and Chen, B.P. (2011) 
Involvement of DNA-dependent protein kinase in normal cell cycle progression through 
mitosis. The Journal of biological chemistry, 286, 12796-12802. 

171. Smith, G.C. and Jackson, S.P. (1999) The DNA-dependent protein kinase. Genes & 
development, 13, 916-934. 

172. Tanaka, A., Tanizawa, H., Sriswasdi, S., Iwasaki, O., Chatterjee, A.G., Speicher, D.W., Levin, 
H.L., Noguchi, E. and Noma, K. (2012) Epigenetic regulation of condensin-mediated genome 
organization during the cell cycle and upon DNA damage through histone H3 lysine 56 
acetylation. Molecular cell, 48, 532-546. 

173. Dubey, R.N., Nakwal, N., Bisht, K.K., Saini, A., Haldar, S. and Singh, J. (2009) Interaction of 
APC/C-E3 ligase with Swi6/HP1 and Clr4/Suv39 in heterochromatin assembly in fission 
yeast. The Journal of biological chemistry, 284, 7165-7176. 



References 

48 
 

174. Gunesdogan, U., Jackle, H. and Herzig, A. (2010) A genetic system to assess in vivo the 
functions of histones and histone modifications in higher eukaryotes. EMBO reports, 11, 772-
776. 

175. Peters, A.H., Kubicek, S., Mechtler, K., O'Sullivan, R.J., Derijck, A.A., Perez-Burgos, L., 
Kohlmaier, A., Opravil, S., Tachibana, M., Shinkai, Y. et al. (2003) Partitioning and plasticity 
of repressive histone methylation states in mammalian chromatin. Molecular cell, 12, 1577-
1589. 

176. O'Carroll, D., Scherthan, H., Peters, A.H., Opravil, S., Haynes, A.R., Laible, G., Rea, S., 
Schmid, M., Lebersorger, A., Jerratsch, M. et al. (2000) Isolation and characterization of 
Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. 
Molecular and cellular biology, 20, 9423-9433. 

177. Towbin, B.D., Gonzalez-Aguilera, C., Sack, R., Gaidatzis, D., Kalck, V., Meister, P., Askjaer, 
P. and Gasser, S.M. (2012) Step-wise methylation of histone H3K9 positions heterochromatin 
at the nuclear periphery. Cell, 150, 934-947. 

178. Kind, J. and van Steensel, B. (2010) Genome-nuclear lamina interactions and gene regulation. 
Current opinion in cell biology, 22, 320-325. 

179. Therizols, P., Fairhead, C., Cabal, G.G., Genovesio, A., Olivo-Marin, J.C., Dujon, B. and 
Fabre, E. (2006) Telomere tethering at the nuclear periphery is essential for efficient DNA 
double strand break repair in subtelomeric region. The Journal of cell biology, 172, 189-199. 

180. Hiraga, S., Botsios, S. and Donaldson, A.D. (2008) Histone H3 lysine 56 acetylation by 
Rtt109 is crucial for chromosome positioning. The Journal of cell biology, 183, 641-651. 

181. Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., 
Walker, K., Rolfe, P.A., Herbolsheimer, E. et al. (2005) Genome-wide map of nucleosome 
acetylation and methylation in yeast. Cell, 122, 517-527. 

182. Li, B., Carey, M. and Workman, J.L. (2007) The role of chromatin during transcription. Cell, 
128, 707-719. 

183. Luger, K. (2006) Dynamic nucleosomes. Chromosome research : an international journal on 
the molecular, supramolecular and evolutionary aspects of chromosome biology, 14, 5-16. 

184. Williams, S.K., Truong, D. and Tyler, J.K. (2008) Acetylation in the globular core of histone 
H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. 
Proceedings of the National Academy of Sciences of the United States of America, 105, 9000-
9005. 

185. Tan, Y., Xue, Y., Song, C. and Grunstein, M. (2013) Acetylated histone H3K56 interacts with 
Oct4 to promote mouse embryonic stem cell pluripotency. Proceedings of the National 
Academy of Sciences of the United States of America, 110, 11493-11498. 

186. Lo, K.A., Bauchmann, M.K., Baumann, A.P., Donahue, C.J., Thiede, M.A., Hayes, L.S., des 
Etages, S.A. and Fraenkel, E. (2011) Genome-wide profiling of H3K56 acetylation and 
transcription factor binding sites in human adipocytes. PloS one, 6, e19778. 

187. Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P., Stark, A., Harp, L.F., Ye, Z., 
Lee, L.K., Stuart, R.K., Ching, C.W. et al. (2009) Histone modifications at human enhancers 
reflect global cell-type-specific gene expression. Nature, 459, 108-112. 

188. He, H.H., Meyer, C.A., Shin, H., Bailey, S.T., Wei, G., Wang, Q., Zhang, Y., Xu, K., Ni, M., 
Lupien, M. et al. (2010) Nucleosome dynamics define transcriptional enhancers. Nature 
genetics, 42, 343-347. 

189. Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D., Barrera, L.O., 
Van Calcar, S., Qu, C., Ching, K.A. et al. (2007) Distinct and predictive chromatin signatures 
of transcriptional promoters and enhancers in the human genome. Nature genetics, 39, 311-
318. 

190. Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., 
Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A. et al. (2010) Histone H3K27ac 
separates active from poised enhancers and predicts developmental state. Proceedings of the 
National Academy of Sciences of the United States of America, 107, 21931-21936. 

191. Chen, C.Y., Morris, Q. and Mitchell, J.A. (2012) Enhancer identification in mouse embryonic 
stem cells using integrative modeling of chromatin and genomic features. BMC genomics, 13, 
152. 



References 

49 
 

192. Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., 
Lee, T.I. and Young, R.A. (2013) Master transcription factors and mediator establish super-
enhancers at key cell identity genes. Cell, 153, 307-319. 

193. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. and de Laat, W. (2002) Looping and 
interaction between hypersensitive sites in the active beta-globin locus. Molecular cell, 10, 
1453-1465. 

194. Schwabish, M.A. and Struhl, K. (2004) Evidence for eviction and rapid deposition of histones 
upon transcriptional elongation by RNA polymerase II. Molecular and cellular biology, 24, 
10111-10117. 

195. Rufiange, A., Jacques, P.E., Bhat, W., Robert, F. and Nourani, A. (2007) Genome-wide 
replication-independent histone H3 exchange occurs predominantly at promoters and 
implicates H3 K56 acetylation and Asf1. Molecular cell, 27, 393-405. 

196. Sekinger, E.A. and Gross, D.S. (1999) SIR repression of a yeast heat shock gene: UAS and 
TATA footprints persist within heterochromatin. The EMBO journal, 18, 7041-7055. 

197. Sekinger, E.A. and Gross, D.S. (2001) Silenced chromatin is permissive to activator binding 
and PIC recruitment. Cell, 105, 403-414. 

198. Varv, S., Kristjuhan, K., Peil, K., Looke, M., Mahlakoiv, T., Paapsi, K. and Kristjuhan, A. 
(2010) Acetylation of H3 K56 is required for RNA polymerase II transcript elongation 
through heterochromatin in yeast. Molecular and cellular biology, 30, 1467-1477. 

199. Bitoun, E., Oliver, P.L. and Davies, K.E. (2007) The mixed-lineage leukemia fusion partner 
AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated 
chromatin remodeling. Human molecular genetics, 16, 92-106. 

200. Mueller, D., Bach, C., Zeisig, D., Garcia-Cuellar, M.P., Monroe, S., Sreekumar, A., Zhou, R., 
Nesvizhskii, A., Chinnaiyan, A., Hess, J.L. et al. (2007) A role for the MLL fusion partner 
ENL in transcriptional elongation and chromatin modification. Blood, 110, 4445-4454. 

201. Wang, Z., Zang, C., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S., Cui, K., Roh, 
T.Y., Peng, W., Zhang, M.Q. et al. (2008) Combinatorial patterns of histone acetylations and 
methylations in the human genome. Nature genetics, 40, 897-903. 

202. Steger, D.J., Lefterova, M.I., Ying, L., Stonestrom, A.J., Schupp, M., Zhuo, D., Vakoc, A.L., 
Kim, J.E., Chen, J., Lazar, M.A. et al. (2008) DOT1L/KMT4 recruitment and H3K79 
methylation are ubiquitously coupled with gene transcription in mammalian cells. Molecular 
and cellular biology, 28, 2825-2839. 

203. Kim, S.K., Jung, I., Lee, H., Kang, K., Kim, M., Jeong, K., Kwon, C.S., Han, Y.M., Kim, 
Y.S., Kim, D. et al. (2012) Human histone H3K79 methyltransferase DOT1L protein 
[corrected] binds actively transcribing RNA polymerase II to regulate gene expression. The 
Journal of biological chemistry, 287, 39698-39709. 

204. Stulemeijer, I.J., Pike, B.L., Faber, A.W., Verzijlbergen, K.F., van Welsem, T., Frederiks, F., 
Lenstra, T.L., Holstege, F.C., Gasser, S.M. and van Leeuwen, F. (2011) Dot1 binding induces 
chromatin rearrangements by histone methylation-dependent and -independent mechanisms. 
Epigenetics & chromatin, 4, 2. 

205. Ooga, M., Suzuki, M.G. and Aoki, F. (2013) Involvement of DOT1L in the remodeling of 
heterochromatin configuration during early preimplantation development in mice. Biology of 
reproduction, 89, 145. 

206. Schulze, J.M., Jackson, J., Nakanishi, S., Gardner, J.M., Hentrich, T., Haug, J., Johnston, M., 
Jaspersen, S.L., Kobor, M.S. and Shilatifard, A. (2009) Linking cell cycle to histone 
modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of 
H3K79 dimethylation. Molecular cell, 35, 626-641. 

207. Cecere, G., Hoersch, S., Jensen, M.B., Dixit, S. and Grishok, A. (2013) The ZFP-
1(AF10)/DOT-1 complex opposes H2B ubiquitination to reduce Pol II transcription. 
Molecular cell, 50, 894-907. 

208. Schulze, J.M., Hentrich, T., Nakanishi, S., Gupta, A., Emberly, E., Shilatifard, A. and Kobor, 
M.S. (2011) Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of 
H2BK123. Genes & development, 25, 2242-2247. 

209. Feng, Q., Wang, H., Ng, H.H., Erdjument-Bromage, H., Tempst, P., Struhl, K. and Zhang, Y. 
(2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET 
domain. Current biology : CB, 12, 1052-1058. 



References 

50 
 

210. Jones, B., Su, H., Bhat, A., Lei, H., Bajko, J., Hevi, S., Baltus, G.A., Kadam, S., Zhai, H., 
Valdez, R. et al. (2008) The histone H3K79 methyltransferase Dot1L is essential for 
mammalian development and heterochromatin structure. PLoS genetics, 4, e1000190. 

211. Harrison, P.M., Kumar, A., Lang, N., Snyder, M. and Gerstein, M. (2002) A question of size: 
the eukaryotic proteome and the problems in defining it. Nucleic acids research, 30, 1083-
1090. 

212. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I. 
and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. 
Cell, 129, 823-837. 

213. Zhang, W., Xia, X., Reisenauer, M.R., Hemenway, C.S. and Kone, B.C. (2006) Dot1a-AF9 
complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an 
aldosterone-sensitive manner. The Journal of biological chemistry, 281, 18059-18068. 

214. Buttner, N., Johnsen, S.A., Kugler, S. and Vogel, T. (2010) Af9/Mllt3 interferes with Tbr1 
expression through epigenetic modification of histone H3K79 during development of the 
cerebral cortex. Proceedings of the National Academy of Sciences of the United States of 
America, 107, 7042-7047. 

215. Schubeler, D., MacAlpine, D.M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, 
F., Gottschling, D.E., O'Neill, L.P., Turner, B.M., Delrow, J. et al. (2004) The histone 
modification pattern of active genes revealed through genome-wide chromatin analysis of a 
higher eukaryote. Genes & development, 18, 1263-1271. 

216. Vakoc, C.R., Sachdeva, M.M., Wang, H. and Blobel, G.A. (2006) Profile of histone lysine 
methylation across transcribed mammalian chromatin. Molecular and cellular biology, 26, 
9185-9195. 

217. Shahbazian, M.D., Zhang, K. and Grunstein, M. (2005) Histone H2B ubiquitylation controls 
processive methylation but not monomethylation by Dot1 and Set1. Molecular cell, 19, 271-
277. 

218. Liu, T., Rechtsteiner, A., Egelhofer, T.A., Vielle, A., Latorre, I., Cheung, M.S., Ercan, S., 
Ikegami, K., Jensen, M., Kolasinska-Zwierz, P. et al. (2011) Broad chromosomal domains of 
histone modification patterns in C. elegans. Genome research, 21, 227-236. 

219. Ho, L.L., Sinha, A., Verzi, M., Bernt, K.M., Armstrong, S.A. and Shivdasani, R.A. (2013) 
DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific 
and other intestinal epithelial functions. Molecular and cellular biology, 33, 1735-1745. 

220. Bentley, D.L. and Groudine, M. (1986) A block to elongation is largely responsible for 
decreased transcription of c-myc in differentiated HL60 cells. Nature, 321, 702-706. 

221. Gilmour, D.S. and Lis, J.T. (1986) RNA polymerase II interacts with the promoter region of 
the noninduced hsp70 gene in Drosophila melanogaster cells. Molecular and cellular biology, 
6, 3984-3989. 

222. Blackburn, E.H. (1991) Structure and function of telomeres. Nature, 350, 569-573. 
223. Westhorpe, F.G. and Straight, A.F. (2013) Functions of the centromere and kinetochore in 

chromosome segregation. Current opinion in cell biology, 25, 334-340. 
224. Grewal, S.I. and Jia, S. (2007) Heterochromatin revisited. Nature reviews. Genetics, 8, 35-46. 
225. Lee, J.Y. and Lee, T.H. (2012) Effects of DNA methylation on the structure of nucleosomes. 

Journal of the American Chemical Society, 134, 173-175. 
226. Henikoff, S. (1990) Position-effect variegation after 60 years. Trends in genetics : TIG, 6, 

422-426. 
227. Ng, H.H., Feng, Q., Wang, H., Erdjument-Bromage, H., Tempst, P., Zhang, Y. and Struhl, K. 

(2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for 
telomeric silencing and Sir protein association. Genes & development, 16, 1518-1527. 

228. Rossmann, M.P., Luo, W., Tsaponina, O., Chabes, A. and Stillman, B. (2011) A common 
telomeric gene silencing assay is affected by nucleotide metabolism. Molecular cell, 42, 127-
136. 

229. Takahashi, Y.H., Schulze, J.M., Jackson, J., Hentrich, T., Seidel, C., Jaspersen, S.L., Kobor, 
M.S. and Shilatifard, A. (2011) Dot1 and histone H3K79 methylation in natural telomeric and 
HM silencing. Molecular cell, 42, 118-126. 

230. van Welsem, T., Frederiks, F., Verzijlbergen, K.F., Faber, A.W., Nelson, Z.W., Egan, D.A., 
Gottschling, D.E. and van Leeuwen, F. (2008) Synthetic lethal screens identify gene silencing 



References 

51 
 

processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the 
nucleosome core. Molecular and cellular biology, 28, 3861-3872. 

231. Moretti, P., Freeman, K., Coodly, L. and Shore, D. (1994) Evidence that a complex of SIR 
proteins interacts with the silencer and telomere-binding protein RAP1. Genes & development, 
8, 2257-2269. 

232. Luo, K., Vega-Palas, M.A. and Grunstein, M. (2002) Rap1-Sir4 binding independent of other 
Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. 
Genes & development, 16, 1528-1539. 

233. Aparicio, O.M., Billington, B.L. and Gottschling, D.E. (1991) Modifiers of position effect are 
shared between telomeric and silent mating-type loci in S. cerevisiae. Cell, 66, 1279-1287. 

234. Ehrentraut, S., Hassler, M., Oppikofer, M., Kueng, S., Weber, J.M., Mueller, J.W., Gasser, 
S.M., Ladurner, A.G. and Ehrenhofer-Murray, A.E. (2011) Structural basis for the role of the 
Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79. 
Genes & development, 25, 1835-1846. 

235. Armache, K.J., Garlick, J.D., Canzio, D., Narlikar, G.J. and Kingston, R.E. (2011) Structural 
basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution. 
Science, 334, 977-982. 

236. Ng, H.H., Ciccone, D.N., Morshead, K.B., Oettinger, M.A. and Struhl, K. (2003) Lysine-79 of 
histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential 
mechanism for position-effect variegation. Proceedings of the National Academy of Sciences 
of the United States of America, 100, 1820-1825. 

237. Fu, H., Maunakea, A.K., Martin, M.M., Huang, L., Zhang, Y., Ryan, M., Kim, R., Lin, C.M., 
Zhao, K. and Aladjem, M.I. (2013) Methylation of histone H3 on lysine 79 associates with a 
group of replication origins and helps limit DNA replication once per cell cycle. PLoS 
genetics, 9, e1003542. 

238. Gassen, A., Brechtefeld, D., Schandry, N., Arteaga-Salas, J.M., Israel, L., Imhof, A. and 
Janzen, C.J. (2012) DOT1A-dependent H3K76 methylation is required for replication 
regulation in Trypanosoma brucei. Nucleic acids research, 40, 10302-10311. 

239. Callebaut, I., Courvalin, J.C. and Mornon, J.P. (1999) The BAH (bromo-adjacent homology) 
domain: a link between DNA methylation, replication and transcriptional regulation. FEBS 
letters, 446, 189-193. 

240. Cesare, A.J. and Reddel, R.R. (2010) Alternative lengthening of telomeres: models, 
mechanisms and implications. Nature reviews. Genetics, 11, 319-330. 

241. Hyland, E.M., Cosgrove, M.S., Molina, H., Wang, D., Pandey, A., Cottee, R.J. and Boeke, 
J.D. (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in 
Saccharomyces cerevisiae. Molecular and cellular biology, 25, 10060-10070. 

242. Xu, F., Zhang, Q., Zhang, K., Xie, W. and Grunstein, M. (2007) Sir2 deacetylates histone H3 
lysine 56 to regulate telomeric heterochromatin structure in yeast. Molecular cell, 27, 890-
900. 

243. Oppikofer, M., Kueng, S., Martino, F., Soeroes, S., Hancock, S.M., Chin, J.W., Fischle, W. 
and Gasser, S.M. (2011) A dual role of H4K16 acetylation in the establishment of yeast silent 
chromatin. The EMBO journal, 30, 2610-2621. 

244. Celic, I., Masumoto, H., Griffith, W.P., Meluh, P., Cotter, R.J., Boeke, J.D. and Verreault, A. 
(2006) The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 
56 deacetylation. Current biology : CB, 16, 1280-1289. 

245. Maas, N.L., Miller, K.M., DeFazio, L.G. and Toczyski, D.P. (2006) Cell cycle and checkpoint 
regulation of histone H3 K56 acetylation by Hst3 and Hst4. Molecular cell, 23, 109-119. 

246. Yang, B., Miller, A. and Kirchmaier, A.L. (2008) HST3/HST4-dependent deacetylation of 
lysine 56 of histone H3 in silent chromatin. Molecular biology of the cell, 19, 4993-5005. 

247. Aygun, O., Mehta, S. and Grewal, S.I. (2013) HDAC-mediated suppression of histone 
turnover promotes epigenetic stability of heterochromatin. Nature structural & molecular 
biology, 20, 547-554. 

248. Michishita, E., McCord, R.A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, 
P., Kusumoto, R., Kawahara, T.L., Barrett, J.C. et al. (2008) SIRT6 is a histone H3 lysine 9 
deacetylase that modulates telomeric chromatin. Nature, 452, 492-496. 



References 

52 
 

249. Gil, R., Barth, S., Kanfi, Y. and Cohen, H.Y. (2013) SIRT6 exhibits nucleosome-dependent 
deacetylase activity. Nucleic acids research, 41, 8537-8545. 

250. Palacios, J.A., Herranz, D., De Bonis, M.L., Velasco, S., Serrano, M. and Blasco, M.A. (2010) 
SIRT1 contributes to telomere maintenance and augments global homologous recombination. 
The Journal of cell biology, 191, 1299-1313. 

251. de Boer, J., Walf-Vorderwulbecke, V. and Williams, O. (2013) In focus: MLL-rearranged 
leukemia. Leukemia, 27, 1224-1228. 

252. Milne, T.A., Briggs, S.D., Brock, H.W., Martin, M.E., Gibbs, D., Allis, C.D. and Hess, J.L. 
(2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Molecular 
cell, 10, 1107-1117. 

253. Bernt, K.M., Zhu, N., Sinha, A.U., Vempati, S., Faber, J., Krivtsov, A.V., Feng, Z., Punt, N., 
Daigle, A., Bullinger, L. et al. (2011) MLL-rearranged leukemia is dependent on aberrant 
H3K79 methylation by DOT1L. Cancer cell, 20, 66-78. 

254. Okada, Y., Feng, Q., Lin, Y., Jiang, Q., Li, Y., Coffield, V.M., Su, L., Xu, G. and Zhang, Y. 
(2005) hDOT1L links histone methylation to leukemogenesis. Cell, 121, 167-178. 

255. Daigle, S.R., Olhava, E.J., Therkelsen, C.A., Basavapathruni, A., Jin, L., Boriack-Sjodin, 
P.A., Allain, C.J., Klaus, C.R., Raimondi, A., Scott, M.P. et al. (2013) Potent inhibition of 
DOT1L as treatment of MLL-fusion leukemia. Blood, 122, 1017-1025. 

256. Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W., 
Varambally, S., Cao, X., Tchinda, J., Kuefer, R. et al. (2005) Recurrent fusion of TMPRSS2 
and ETS transcription factor genes in prostate cancer. Science, 310, 644-648. 

257. Kumar-Sinha, C., Tomlins, S.A. and Chinnaiyan, A.M. (2008) Recurrent gene fusions in 
prostate cancer. Nature reviews. Cancer, 8, 497-511. 

258. Mani, R.S. and Chinnaiyan, A.M. (2010) Triggers for genomic rearrangements: insights into 
genomic, cellular and environmental influences. Nature reviews. Genetics, 11, 819-829. 

259. Lin, C., Yang, L., Tanasa, B., Hutt, K., Ju, B.G., Ohgi, K., Zhang, J., Rose, D.W., Fu, X.D., 
Glass, C.K. et al. (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks 
underlie specific translocations in cancer. Cell, 139, 1069-1083. 

260. Wu, D., Zhang, C., Shen, Y., Nephew, K.P. and Wang, Q. (2011) Androgen receptor-driven 
chromatin looping in prostate cancer. Trends in endocrinology and metabolism: TEM, 22, 
474-480. 

261. Eckner, R., Ludlow, J.W., Lill, N.L., Oldread, E., Arany, Z., Modjtahedi, N., DeCaprio, J.A., 
Livingston, D.M. and Morgan, J.A. (1996) Association of p300 and CBP with simian virus 40 
large T antigen. Molecular and cellular biology, 16, 3454-3464. 

262. Avantaggiati, M.L., Carbone, M., Graessmann, A., Nakatani, Y., Howard, B. and Levine, A.S. 
(1996) The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct 
isoforms of the transcriptional co-activator, p300. The EMBO journal, 15, 2236-2248. 

263. Lill, N.L., Tevethia, M.J., Eckner, R., Livingston, D.M. and Modjtahedi, N. (1997) p300 
family members associate with the carboxyl terminus of simian virus 40 large tumor antigen. 
Journal of virology, 71, 129-137. 

264. Saenz Robles, M.T., Shivalila, C., Wano, J., Sorrells, S., Roos, A. and Pipas, J.M. (2013) Two 
Independent Regions of Simian Virus 40 T Antigen Increase CBP/p300 Levels, Alter Patterns 
of Cellular Histone Acetylation, and Immortalize Primary Cells. Journal of virology, 87, 
13499-13509. 

265. Ferrari, R., Pellegrini, M., Horwitz, G.A., Xie, W., Berk, A.J. and Kurdistani, S.K. (2008) 
Epigenetic reprogramming by adenovirus e1a. Science, 321, 1086-1088. 

266. Henikoff, S. and Shilatifard, A. (2011) Histone modification: cause or cog? Trends in genetics 
: TIG, 27, 389-396. 

267. Arnaudo, A.M. and Garcia, B.A. (2013) Proteomic characterization of novel histone post-
translational modifications. Epigenetics & chromatin, 6, 24. 

268. Garcia-Gimenez, J.L., Olaso, G., Hake, S.B., Bonisch, C., Wiedemann, S.M., Markovic, J., 
Dasi, F., Gimeno, A., Perez-Quilis, C., Palacios, O. et al. (2013) Histone h3 glutathionylation 
in proliferating mammalian cells destabilizes nucleosomal structure. Antioxidants & redox 
signaling, 19, 1305-1320. 



H3K56me3 is a novel, conserved heterochromatic mark that 
largely but not completely overlaps with H3K9me3 in both 

regulation and localization
PloS One 8(2), (2013) 

Jack AP, Bussemer S, Hahn M, Pünzeler S, Snyder M, Wells M, 

Csankovszki G, Solovei I, Schotta G, Hake SB.



H3K56me3 Is a Novel, Conserved Heterochromatic Mark
That Largely but Not Completely Overlaps with
H3K9me3 in Both Regulation and Localization
Antonia P. M. Jack1, Silva Bussemer1, Matthias Hahn1, Sebastian Pünzeler1, Martha Snyder2,

Michael Wells2, Gyorgyi Csankovszki2, Irina Solovei3, Gunnar Schotta1, Sandra B. Hake1*

1 Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich,

Munich, Germany, 2 Department of MCDB, University of Michigan, Ann Arbor, Michigan, United States of America, 3 LMU Biozentrum, Department of Biology II, Ludwig-

Maximilians-University Munich, Planegg-Martinsried, Germany

Abstract

Histone lysine (K) methylation has been shown to play a fundamental role in modulating chromatin architecture and
regulation of gene expression. Here we report on the identification of histone H3K56, located at the pivotal, nucleosome
DNA entry/exit point, as a novel methylation site that is evolutionary conserved. We identify trimethylation of H3K56
(H3K56me3) as a modification that is present during all cell cycle phases, with the exception of S-phase, where it is
underrepresented on chromatin. H3K56me3 is a novel heterochromatin mark, since it is enriched at pericentromeres but
not telomeres and is thereby similar, but not identical, to the localization of H3K9me3 and H4K20me3. Possibly due to H3
sequence similarities, Suv39h enzymes, responsible for trimethylation of H3K9, also affect methylation of H3K56. Similarly,
we demonstrate that trimethylation of H3K56 is removed by members of the JMJD2 family of demethylases that also target
H3K9me3. Furthermore, we identify and characterize mouse mJmjd2E and its human homolog hKDM4L as novel,
functionally active enzymes that catalyze the removal of two methyl groups from trimethylated H3K9 and K56. H3K56me3 is
also found in C. elegans, where it co-localizes with H3K9me3 in most, but not all, tissues. Taken together, our findings raise
interesting questions regarding how methylation of H3K9 and H3K56 is regulated in different organisms and their functional
roles in heterochromatin formation and/or maintenance.
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Introduction

Histones, the building blocks of chromatin, are subject to several

posttranslational modifications including methylation, acetylation

and phosphorylation that carry important functional information

[1]. Over the last decades, it has become increasingly obvious that

such chemical histone tags contribute to the regulation of DNA-

related processes in a highly selective and specialized manner [2].

These posttranslational histone modifications (PTMs) either change

nucleosome structure directly by affecting histone-DNA contacts or

indirectly by recruiting PTM-binding proteins that act on the

underlying chromatin structure, as has been proposed in the

‘‘histone code’’ hypothesis [3]. Although most marks are found on

the flexible histone tail regions, some modifications have also been

identified on core residues. One such core PTM, histone H3 lysine

56 acetylation (H3K56ac) [4], occurs in the a-N-helical region near

the entry-exit sites of the DNA superhelix and is conserved from

yeast to man [5]. It is most abundant during S phase [6,7] and has

been shown to play a pivotal role in DNA damage response [6],

chromatin integrity [8,9] and replication-coupled nucleosome

assembly [10]. In a previous mass spectrometry-based study, we

were not only able to verify the existence of H3K56 acetylation in

humans but were also able to identify low levels of mono- and

trimethylation of lysine 56 on histone H3 (H3K56me1 and

H3K56me3, respectively) [11]. Recently, it was demonstrated that

monomethylation of H3K56 regulates DNA replication through

interaction with the replication processivity factor PCNA and is

catalyzed by the lysine methyltransferase (KMT) G9a (KMT1C)

[12]. The involvement of H3K56me1 in such an important

biological event led us to ask how trimethylation of this residue

might be regulated and impact cellular processes. Despite the known

in vivo existence of H3K56me3 [11], no further information

concerning this novel histone H3 core modification has been

established. We set out to learn more about its functional role by

deciphering its chromatin localization and by identifying enzymes

that set (‘‘writer’’) and erase (‘‘eraser’’) this mark.

Materials and Methods

Cell lines
Human HeLa Kyoto cells [13], and mouse C127 (ATCC CRL-

1616) cell lines were grown in DMEM medium (PAA) supplemented
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with 10% FCS (Sigma) and 1% penicillin/streptomycin at 37uC and

5% CO2. Wild type, Suv39hDKO [14] and SUV4-20hDKO [15]

mouse embryonic fibroblast (MEF) cell lines were grown in DMEM

medium (PAA) supplemented with 18% FCS (Sigma), 1% penicil-

lin/streptomycin, 1% non-essential amino acids (Invitrogen),

50 mM b-mercaptoethanol and 0.4% LIF at 37uC and 5% CO2.

Cells were transfected using FuGene HD (Roche Applied Science)

according to the manufacturer’s instructions.

Antibodies
Polyclonal rabbit antibody against H3K56me3 was developed

by Pineda Antikörper-Service (Berlin, Germany) using a peptide

with the following amino acid sequence for immunization and

affinity purification: NH2-CRRYQ-K(me3)-STEL-CONH2. Com-

mercially available antibodies used in this study include: Primary

antibodies: aH3 (C-terminus, Abcam), aH4 (Antikoerper-online),

aH3K4me2 (Abcam), aH3K4me3 (Abcam), aH3K9me1 (Milli-

pore), aH3K9me2 (Active Motif), aH3K9me3 (Active Motif and

[16]; specificity tests are shown in Figure S1), aH3K27me2

(Millipore), aH3K27me3 (Millipore), aH3K36me1 (Millipore),

aH3K36me2 (Active Motif), aH3K36me3 (Abcam), aH4K20me1

(Millipore), aH4K20me2 (Millipore), aH4K20me3 (Abcam),

aH3K56me1 (Millipore), aH3K56me2 (Active Motif), aH3K56ac

(Active Motif). Secondary antibodies: for immunoblots (Amer-

sham), for IF microscopy (Dianova).

Peptide competition experiment
aH3K56me3 antibody in 1:1000 or 1:100 dilutions was

preincubated with 2 mg/ml of peptides (Table S1) before usage

in either immunoblots or immunofluorescence (IF) microscopy,

respectively. Peptides were N-terminally biotinylated and synthe-

sized with higher than 80% purity by The Rockefeller University,

GeneScript or the MPI for Biochemistry Munich. In case of

immunoblots, acid extracted histones [17] and recombinant

histone H3 [18] were used.

Figure 1. Determination of aH3K56me3 specificity and suitability in diverse applications. (A) Immunoblot peptide competition
experiment. aH3K56me3 antibody was preincubated with competitor peptides before addition to immunoblots containing recombinant H3 protein
(R) or acid extracted HeLa Kyoto histones (H) (top). Ponceau staining (bottom) serves as loading control. (B) IF microscopy peptide competition
experiment. aH3K56me3 antibody (green) was preincubated with competitor peptides before addition to fixed HeLa Kyoto cells. DAPI (blue) stains
DNA. Scale bar = 5 mm. (C) Spot-blot with different concentrations (5–1000 ng) of H3 peptides to determine aH3K56me3-binding affinities. (D)
Immunoblot of sequential tryptic digest of HeLa Kyoto-derived mononucleosomes using aH3K56me3 (top), aH3K9me3 (middle) and aH3 (bottom).
FL = full-length histone H3, GD = N-terminally deleted globular domain of histone H3.
doi:10.1371/journal.pone.0051765.g001
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Tryptic digest of mononucleosomes
66107 HeLa Kyoto cells were incubated in PBS, 0.3% Triton

X-100 and Protease Inhibitor Cocktail (Roche, Germany) for

10 min at 4uC. Nuclei were pelleted, washed once in PBS,

resuspended in EX100 buffer (10 mM Hepes pH 7.6, 100 mM

NaCl, 1.5 mM MgCl2, 0.5 mM EGTA, 10% (v/v) glycerol,

10 mM b-glycerol phosphate, 1 mM DTT, Protease Inhibitor

Cocktail (Roche, Germany)) and CaCl2 concentration adjusted to

2 mM. Resuspended nuclei were digested with 1.5 U MNase

(Sigma) for 20 min at 26uC. The reaction was stopped by addition

of EGTA to a final concentration of 10 mM followed by

centrifugation for 10 min at 1000 rcf, 4uC. Mononucleosome

containing supernatant was retained. NH4HCO3 was added at a

final concentration of 50 mM or until a pH of 7–8 was

reached.1.6 mg Trypsin (Promega) was added and the reaction

was incubated at 25uC. Samples were collected at different time

points and the reaction stopped by adding an equal volume of 1%

trifluoroacetic acid. Fragments were size separated on a 15% SDS-

PAGE probed with indicated antibodies.

Spot-blot
Peptide dilutions containing 2, 10, 50, 200 and 1000 ng in

sterile water were spotted on nitrocellulose membrane and allowed

to air-dry. The membrane was then blocked in PBS-Tween (0.1%)

with milk powder (5%), followed by immunoblotting with

aH3K56me3.

Immunofluorescence (IF) microscopy and cell cycle
analysis

Mammalian cells. Preparation of mammalian cells and

chromosome spreads for IF microscopy was done as previously

reported [19]. Staining of S-phase cells was performed as

Figure 2. H3K56me3 is evolutionary conserved, has a cell-cycle independent appearance and is part of pericentromeric
heterochromatin. (A) Immunoblot with acid extracted histones from human (HeLa Kyoto), mouse (MEF) and fly (S2) cell lines using aH3K56me3
(top) and, as loading control, aH4 (bottom) antibodies. (B) IF analysis of H3K56me3 (top) and H3K56ac (bottom) appearance in G1/G2 and S-phase
cells. C127 cells were pulse-labeled with EdU (red) to visualize replication foci and to identify cells in S-phase. Cells were co-stained with aH3K56me3
or aH3K56ac (green) and DAPI (DNA, blue). Scale bar = 5 mm. (C) IF microscopy of MEF cells in interphase and different stages of mitosis co-stained
with aH3K56me3 (red), aH4K20me3 (red) and DAPI (DNA, blue). Scale bar = 5 mm. (D) IF of chromosome spread from nocodazole-arrested HeLa cells
with aH3K56me3 (red) and DAPI (DNA, blue) staining. Scale bar = 5 mm.
doi:10.1371/journal.pone.0051765.g002
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described in [18]. Wide-field IF imaging of EdU-stained C127

cells was performed on a PersonalDV microscope system (Applied

Precision) equipped with a 606/1.42 PlanApo oil objective

(Olympus), CoolSNAP ES2 interline CCD camera (Photometrics),

Xenon illumination and appropriate filtersets. Iterative 3D

deconvolution of image z-stacks was performed with the Soft-

WoRx 3.7 imaging software package (Applied Precision).

Confocal imaging of chromosome spreads was performed on a

TCS SP5 II microscope system (Leica Microsystems, Wetzlar,

Germany), equipped with a 636/1.3 HCX PL APO glycerol

immersion objective. Z-stacks were recorded and subsequently

deconvolved with Huygens Essential Software (SVI, Hilversum,

The Netherlands).

Image stacks of immunostained MEF cells were collected using

a Leica TCS SP5 confocal microscope with Plan Apo Lambda

Blue 636/1.4 NA oil or 636/1.3 glycerol immersion objective.

C. elegans. Methanol/acetone fixation for immunostaining

was performed as follows. Adult hermaphrodites were dissected in

1x sperm salts with and frozen on dry-ice for 20–30 minutes. The

slides were fixed in methanol followed by acetone, 2 minutes each

wash, at 220uC. Slides were then washed once for ten minutes in

PBST prior to incubation with primary antibody [1:200 or 1:100

(direct labeling) aH3K56me3, 1:1000 aH3K9me3 (Abcam

ab8898)]. Remainder of staining protocol was conducted as

described previously [20]. Microscopy and imaging were con-

ducted as described previously [21].

Images were capture with a Hamamatsu Orca-Erga close-

coupled-device (CCD) camera mounted on an Olympus BX61

motorized Z-drive microscope using a 60X APO oil immersion

objective. These images are projections of optical sections with a Z

spacing of 0.2 micrometers. Scale bars were added using ImageJ

(available at http://rsb.info.nih.gov/ij; developed by Wayne

Rasband, National Institutes of Health, Bethesda, MD) and a

template image created in Slidebook.

Quantitative PCR
qPCR was carried out as previously described [22] using Fast

SYBR Green Master Mix (Applied Biolabs). Results were

normalized to HPRT1 and GAPDH levels.

Cloning of GFP-jmjC constructs
pDONR entry clones of the Jmjd2 subgroup [23] were

recombined into the target vector pEGFP-N1-GW using LR

clonase II enzyme mix (Invitrogen) according to the manufactur-

er’s protocol.

C. elegans RNAi
RNA interference by feeding was performed with the Ahringer

laboratory RNAi feeding library [24] in two generations as

described previously [21].

Results

Development of a specific aH3K56me3 antibody
To gain insight into the biological function(s) of H3K56

trimethylation, we raised a polyclonal antibody against

H3K56me3 (aH3K56me3) and determined its specificity in

various assays. Since H3K56me1 has previously been reported

to be catalyzed by the H3K9me1-specific KMT G9a, maybe due

to a conserved lysine-serine-threonine (K/S/T) motif at the site of

both residues [12], we put special emphasis on testing a potential

cross-reactivity of this antibody with H3K9me3. First, we

performed peptide competition experiments using peptides span-

ning diverse regions of histone H3 with or without different

methylation states. Specific antibody recognition of H3K56me3 in

immunoblotting (Figure 1A) and immunofluorescence (IF) micros-

copy (Figure 1B) was efficiently competed out only with

H3K56me3-containing peptides, but not with peptides containing

other methylated or unmethylated histone regions. Next, we

determined the relative binding affinity of aH3K56me3 to its

epitope by a peptide Spot-blot containing various concentrations

of different histone peptides and observed that aH3K56me3

detected as low as 50 ng of H3K56me3 peptides (Figure 1C).

Notably, aH3K56me3 does not recognize any other trimethylated

peptides except H3K56me3. For further support of antibody

specificity, we generated mononucleosomes from HeLa cells that

were subsequently digested with different concentrations of

Trypsin in order to generate histones lacking their flexible tail

regions. In this way, we were able to determine if the antibody

epitope resides in the H3 core region or N-terminal tail. In

Figure 3. Loss of Suv39h enzymes affect H3K56me3. IF
microscopy of wild type (WT), Suv39h double-null (Suv39h DKO) and
Suv4-20h double-null (Suv4-20h DKO) MEF cells using various H3K56 (A)
and H3K9 (B) methyl-specific antibodies (Ab-Cy3, red) and DAPI (DNA,
blue). Scale bar = 5 mm. (C) Immunoblots using acid extracted histones
from HeLa Kyoto (positive control), wild type MEF, Suv39h DKO and
Suv4-20h DKO cells. Blots were incubated with aH3K56me3 (left, top) or
aH3K9me3 (right, top) antibodies, respectively. Blots shown at the
bottom were incubated with aH4 to ensure equal loading.
doi:10.1371/journal.pone.0051765.g003
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immunoblots, aH3K56me3, but not the control aH3K9me3

antibody, recognized both full-length (FL) and the N-terminus

deleted globular domain (GD) of histone H3 (Figure 1D),

demonstrating that aH3K56me3 specifically binds to a modifica-

tion in the core region of H3. In summary, these experiments

provide compelling evidence that aH3K56me3 is highly specific

for this particular modification and can be applied in diverse

biochemical assays.

H3K56me3 is evolutionary conserved and localizes to
pericentromeric heterochromatin outside of S-phase

Having demonstrated the high specificity of aH3K56me3, we

first examined the evolutionary occurrence of this novel mark by

isolating histones from cell lines of diverse origins. Immunoblotting

revealed that H3K56me3 was present in human, mouse and fly

(Figure 2A), suggesting that this modification is conserved within,

at least, metazoans.

Given that H3K56ac is highly conserved and that methylation

and acetylation of the same residue are mutually exclusive we

wanted to investigate if there were correlations between the

appearance of one mark and disappearance of the other. While in

yeast H3K56ac has been shown to be cell cycle dependent,

showing a significant increase during S-phase, [6,9,25], its cell

cycle distribution in mammals remains controversial [26–28], with

a high possibility of its occurrence in all cell cycle phases [29].

Therefore, we analyzed cell cycle appearance and nuclear

localization of both acetylation and methylation of H3K56 in

mammalian cells. To distinguish S-phase from interphase, mouse

C127 cells were pulse-labeled with the thymidine analog EdU,

which was chemically coupled to a fluorescent dye using a ‘‘click-

chemistry’’ approach [30]. Co-staining of EdU-labeled cells with

aH3K56me3 revealed that, during interphase, H3K56me3 is

found predominantly at DAPI-dense heterochromatic chromo-

centers and shows strongly diminished signal intensity in S-phase

cells (Figure 2B top). Although, we observed a more or less equal

appearance of H3K56ac signal in interphase and S-phase cells

(Figure 2B, bottom), it is clearly distinct from the H3K56me3

signal. We also found H3K56me3 to be present throughout

mitosis (Figure 2C), where it co-localizes with heterochromatin

Figure 4. Jmjd2E demethylase affects H3K56me3. (A) IF microscopy of HeLa Kyoto cells transfected with mJmjd2E-GFP (green, left) or jmjc-
domain mutated mJmjd2E-GFP (mutant, green, right) and stained with various H3K56 and H3K9 PTM-specific antibodies (red) and DAPI (DNA, blue).
Arrows indicate transfected GFP-positive cells. Scale bar = 10 mm. See also Figure S2A for IF results of cells transfected with other GFP-tagged
mJMJD2 family members (mJmjd2a-d). (B) List of PTMs analyzed in IF after expression of mJmjd2E in HeLa Kyoto cells indicating changes in
fluorescence intensities. See also Figure S2B for examples of IF results summarized in this table. (C) qPCR analysis with cDNAs from different human
cell lines and tissues using primer pair specific for human Jmjd2E (hKDM4DL). Data were normalized to HPRT1 and GAPDH expression levels. (D) IF
microscopy of HeLa Kyoto cells transfected with human GFP-hKDM4L (green) and stained with various H3K56 and H3K9 methyl-specific antibodies
(red) and DAPI (DNA, blue). Arrows indicate transfected and GFP-positive cells. Scale bar = 10 mm.
doi:10.1371/journal.pone.0051765.g004
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foci, in an even more precise manner than the constitutive

heterochromatin marker H4K20me3 [31]. To determine

H3K56me3 localization in greater detail, human metaphase

chromosomes were analyzed in IF microscopy. In accordance

with H3K56me3 presence at chromocenters in interphase and

heterochromatin foci in mitotic cells, this modification was present

in a non-random manner and found predominantly at pericen-

tromeric heterochromatin regions that include major satellite

repeats (Figure 2D). Interestingly, H3K56me3 is, in contrast to

H3K9me3, rarely found at telomeres [32], suggesting that the

functional roles of these two modifications in heterochromatic

regions might be different.

Mammalian methyltransferase Suv39h affects
trimethylation of H3K56

To assess the functional relevance of posttranslational histone

modifications, it is important to know their responsible enzymes.

Several lysine methyltransferases (KMTs) that catalyze the

methylation of histone lysine residues have been identified

previously [33,34]. Possibly due to the fact that both regions

surrounding H3K56 and H3K9 contain a conserved K/S/T

motif, monomethylation of H3K56 has been shown to be

catalyzed by the H3K9me1-specific KMT G9a [12]. Additionally,

both H3K9me3 and H3K56me3 localize to similar, albeit not

identical, nuclear domains suggesting that H3K9 and H3K56

might share the same KMTs responsible for their trimethylation.

Therefore, we first tested the H3K9me3-specific KMTs Suv39h1/

2 (KMT1A and B) [35] for their ability to affect the methylation

status of H3K56. Interestingly, we observed a complete loss of

both H3K56me3 and H3K9me3 signals at chromocenters in

Suv39h double-null MEF cells (Suv39h DKO, [14]). Accompa-

nied with this loss of trimethyl signals, we observed an increase of

the respective monomethyl marks at chromocenters (Figure 3A

and B). This dramatic change in PTM localization upon the

simultaneous lack of Suv39h1/2 suggests that these enzyme are

involved in catalyzing trimethylation of both H3K9 and H3K56,

the latter in either a direct or indirect manner. Since H3K56me3

showed a somewhat similar nuclear appearance as H4K20me3

Figure 5. H3K56me3 is conserved in Caenorhabditis elegans. Shown are representative IF microscopy pictures from adult C. elegans
hermaphrodite tissues. In all images H3K56me3 is shown in green, H3K9me3 in red, and DAPI (DNA) in blue. Scale bar = 5 mm. A) H3K56me3 co-
localizes with H3K9me3 in the early germline, late pachytene and in a 100-cell embryo (top picture). Interestingly, although H3K56me3 and H3K9me3
are both present in oocytes, only H3K56me3, but not H3K9me3, staining could be observed in sperm. (bottom, split channels) (B) H3K56me3 and
H3K9me3 co-localize throughout all stages of mitosis.
doi:10.1371/journal.pone.0051765.g005
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(Figure 2C), we wondered whether Suv4-20h1/h2 enzymes,

responsible for methylating lysine 20 on histone H4 [15,31],

might also target H3K56. Suv4-20h double null MEF cells (Suv4-

20h DKO, [15]) showed no difference in abundance or

localization of H3K56 methylation when compared to wild type

cells (Figure 3A and B), demonstrating that these enzymes do not

influence H3K56 methylation status. Similar results were also

obtained with immunoblots, showing that the H3K56me3 signal is

diminished in Suv39h DKO, but not Suv4-20 DKO acid

extracted histones (Figure 3C).

Jmjd2E/KDM4DL is a novel lysine-demethylase specific
for H3K9 and H3K56 trimethylation

Having shown that the same enzymes that methylate H3K9 also

affect trimethylation of H3K56, we wondered whether the erasure

of these modifications is catalyzed by identical lysine demethylases

(KDMs) as well. Histone lysines are demethylated by two different

classes of enzymes that are distinguished by their enzymatic active

domains and methylation-state specificities [36]. We focused our

attention on the Jumonji C-terminal domain (JmjC) family of

KDMs, since they are able to remove all methyl-states, including

trimethylation [37]. We therefore tested a panel of GFP-tagged

members of the JMJD2 group-containing demethylases that are

thought to partially work on H3K9me3 [23]. Over-expression of

the respective mKDM in human cells was monitored by GFP

signal in IF microscopy and effects on histone methylation were

analyzed by co-staining with different histone PTM antibodies.

This screen led to the identification of all members of the mJMJD2

family (mJmjd2A-E) able to affect H3K56me3 (Figure S2A and

Figure 4A). Since all members have previously been shown also to

act on H3K9me3 [38], our results point once again towards a

possible link between these two heterochromatic marks due, to a

shared sequence motif (K/S/T). As one example, over-expression

of mJmjd2D or mJmjd2E [39] strongly diminished H3K9me3, as

well as H3K56me3 signals, in HeLa Kyoto cells (Figure 4A, left

and Figure S2A). The loss of the respective trimethyl signal was

accompanied with an increase in the monomethyl, but not

dimethyl state, suggesting that these enzymes remove two methyl

groups in total. Since over-expression of mJmjd2D-GFP caused

severe cellular defects, its role on H3K56me3 was not further

investigated and we focused subsequent analyses on mJmjd2E that

acted solely on H3K9 and H3K56 trimethylation and not on other

histone trimethylation marks (Figure 4B and Figure S2B). The

observed changes in H3K9 and H3K56 methylation states upon

mJmjd2E-GFP over-expression were dependent on the enzymatic

active jmjC domain, since point mutations in that region

completely abolished mJmjd2E’s demethylase activity (Figure 4A,

right). In the mouse, mJmjd2E is predicted to constitute a

pseudogene and we therefore decided to analyze expression and

function of the yet uncharacterized human homolog hKDM4DL.

hKDM4DL mRNA is expressed predominantly in testis, with only

residual levels present in U2OS (osteosarcoma) and HL60

(promyelocytic leukemia) cell lines and human brain tissue

(Figure 4C). Over-expression of GFP-hKDM4DL in HeLa Kyoto

cells showed identical results as seen for the mouse homolog, loss

of H3K56 and H3K9 trimethylation with an accompanied gain of

the respective monomethylation mark (Figure 4D). Taken

together, we have identified the JMJD2 family to facilitate

demethylation of H3K9 and H3K56 trimethyl states. Additionally,

we showed that mJmjd2E, and its previously uncharacterized

human homolog hKDM4DL, specifically remove two methyl

groups from trimethylated H3K56 or H3K9 residues, depending

on their catalytically active jmjC domain.

H3K56me3 is a novel chromatin mark in C. elegans
In order to learn more about H3K56me3 evolutionary

conservation as a novel heterochromatic histone modification

and its functions, we conducted IF microscopy analysis of wild type

(WT) C. elegans hermaphrodite germlines and embryos (Figure 5A).

H3K56me3 is present in both early germline and embryonic

nuclei, as marked by DAPI morphology (Figure 5A, right). In

almost all cells analyzed, we observed an H3K56me3 signal that

strongly co-localized with H3K9me3 in most tissues (Figure 5A).

Surprisingly, H3K56me3 staining was present in both types of

germline cells, oocytes and sperm, whereas the H3K9me3 signal

was restricted to oocytes only (Figure 5A, bottom). These data

mirror previously obtained H3K9me3 results [40] and suggest that

H3K56me3 might have an important H3K9me3-independent

function in sperm development. Next, we wondered whether,

similar to mammalian cells, H3K56 is trimethylated in cells during

mitosis in C. elegans. Indeed, H3K56me3 is part of all mitotic stages

and overlaps with H3K9me3 signals (Figure 5B), demonstrating

the evolutionary high conservation of this novel mark.

Next, we sought to shed light on the enzymatic regulation of

H3K56 trimethylation in C. elegans and performed an RNAi-based

survey of known or predicted methyltransferases, including H3K9-

specific enzymes [41]. The screen included RNAi targeting MET-

2, a homolog of mammalian euchromatic H3K9 HMT SETDB1

[40–42], MET-1, a homolog of yeast Set2, an H3K36-specific

methyltransferase, whose activity was reported to be required for

normal levels of H3K9me3 [41], and SET-25, a distant homolog

G9a, recently reported to deposit H3K9me3 in C. elegans embryos

[42]. We also included RNAi against previously uncharacterized

Figure 6. C. elegans RNAi screen to identify H3K56me3-specific
KMTs. Shown are representative IF images from adult C. elegans
hermaphrodite somatic intestinal nuclei following RNAi treatment.
H3K56me3 (left) or H3K9me3 (right) staining is shown in green and
DAPI (DNA) is shown in blue. CAPG-1 co-staining was used as a staining
control (data not shown). Results show that met-1 and met-2 depletion
severely affect both H3K56me3 and H3K9me3, while reduction of
additional KMTs (set-6, set-25 and set-32) has a stronger effect on
H3K56me3 levels compared to H3K9me3. Scale bar = 5 mm.
doi:10.1371/journal.pone.0051765.g006
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SET domain containing proteins predicted to encode divergent

H3K9-specific methyltransferases (set-6, -12, -15, -20, and -32).

For control, we performed RNAi targeting an H3K4-specific

methyltransferase SET-2, a homolog of SET1/MML. We

conducted our screen in the intestine, where the large size of

nuclei makes scoring easier. This screen identified several genes

whose activity is required for normal levels of H3K56me3 and/or

H3K9me3, some of which have been previously implicated in

H3K9 methylation. H3K56me3 levels were severely reduced in

met-2 and set-25 RNAi, consistent with the requirement for these

genes for H3K9me3 levels in C. elegans embryos [42]. Interestingly,

H3K9me3 levels were less affected in these conditions, indicating

possible differences between the enzymes responsible for these

marks and/or differences in antibody sensitivities. H3K56me3

levels were also reduced in met-1 RNAi, and to a lesser extent in

set-6and set-32 RNAi. H3K9me3 levels were also reduced in met-2

and set-12 RNAi, possibly due to indirect affects (Figure 6).

H3K9me3 levels were never reduced to background levels,

perhaps due to partial redundancy between these enzymes.

Knockdown of other known H3K9 methyltransferases or the

H3K4 KMT set-2 resulted in DAPI perturbations, but showed no

effect on H3K56me3 staining (Figure 6).

In sum, H3K56me3, its relationship to H3K9me3, and its

regulation by several H3K9 methyltransferases are conserved in C.

elegans. However, some degree of divergence in the factors

regulating H3K56me3 may have occurred in C. elegans.

Discussion

Our study establishes the existence of a novel pericentric

heterochromatin mark, H3K56me3, in several metazoan species.

This novel modification is present in all cell cycle phases, with the

exception of S-phase, where it is underrepresented. Enzymes

targeting H3K9 also act on H3K56, as the KMTs Suv39h1/2 are

important for trimethylation of both residues and KDM JMJD2

family members remove these modifications. Mouse Jmjd2E and

its so far uncharacterized human homolog hKDM4DL are

involved in the process of demethylating H3K56me3 to a

monomethylated status. In C. elegans, H3K56me3 is a conserved

feature of mitotic chromosomes that primarily co-localizes with

H3K9me3 and is regulated by some but not all H3K9

methyltransferases.

Of particular interest is our observation in mammalian cells that

H3K56me3 is found in chromocenters containing pericentric

heterochromatin, but only outside of S-phase. During that

particular cell cycle phase, H3K56me3-specific IF microscopy

signals are strongly diminished. Such an effect can be caused either

by a replication-specific removal of the trimethylation mark or by

occlusion of the epitope through adjacent modifications, such as

phosphorylation of H3S57, or association with a binding protein.

As H3K56 is targeted by the lysine acetyltransferases CBP or

GCN5 [26,43] prior to being deposited onto DNA during

replication [7,44,45], it is highly likely that newly synthesized

H3 histones with K56ac replace ‘‘old’’ H3K56me3-containing

ones. Given that H3K56me3 has been recently shown to prevent

binding of PCNA that specifically associates with the mono-

methylation state [12], it is plausible that H3K56me3 needs to be

removed during replication to allow proper action of PCNA at the

replication forks. With regard to adjacent modification sites, a

serine and a threonine, potential phosphorylation sites, are located

next to lysine 56. Although H3S57 phosphorylation was reported

to exist in mammals in vivo [46], no data on its appearance during

cell cycle, on responsible enzymes and its function in mammals are

available due to the lack of a specific antibody. One study,

applying yeast mutants proposes a potential functional interplay

between H3K56 and S57 in replicative stress recovery and

transcriptional elongation [46]. However, because H3S57ph has

thus far not been identified in yeast in vivo, it is not possible to

relate such observations to the mammalian system. Concerning

putative H3K56me3-specific binding partners, we applied peptide

pull-down experiments followed by MS identification of precip-

itated proteins (data not shown). Although we repeated such

experiment many times, we were not able to consistently pull-

down any candidates when compared to unmodified control

peptide pull-downs. It is likely that H3K56me3 is not directly

recognized by any ‘‘reader’’ protein but, instead functions

indirectly by preventing acetylation of H3K56 and its associated

signaling pathways. Alternatively, since H3K56me3 is localized in

the a-N-helical region near the entry-exit sites of the DNA

superhelix, it is possible that the correctly folded three-dimensional

structure of this region (alone or in combination with DNA or

other histones) is crucial for reader binding. Therefore, the use of

peptides in such pull-down experiments will not suffice in reader

binding. H3K56me3 histones or even nucleosomes containing this

PTM will be needed for the identification of its potential reader(s)

in the future.

Our finding that H3K56me3 constitutes another heterochro-

matin mark is in perfect agreement with previously published data,

since H3K56 is monomethylated by G9A [12] that was initially

described as a KMT responsible for H3K9me1 and H3K9me2

[47]. It is therefore plausible that H3K9me3-specific KMT(s)

might also act on H3K56. We report here that the loss of Suv39h

enzymes leads to diminished trimethylation of both H3K56 as well

as H3K9. Based on our experimental set-up using Suv39h double-

null cells, it is at the moment not possible to exclude that loss of

H3K56me3 stems from an indirect effect. The chance of

H3K9me3 influencing trimethylation of H3K56 by an, as yet,

unknown mechanism, is conceivable albeit unlikely. Several

observations argue for a direct enzymatic action of Suv39h on

H3K56; the presence of a ‘‘K/S/T’’ motif in both regions and the

fact that G9a, another H3K9-specific KMT is the responsible

enzyme for H3K56me1 [12]. Therefore, we propose that Suv39h

enzymes directly trimethylate H3K56 leading to a pericentric

heterochromatin localization.

Although like both H3K9me3 and H4K20me3, H3K56me3

also constitutes a mark found in DAPI-dense regions, these

modifications are not identical in their localization when looked at

in greater detail. H3K9me3 stains telomeric repeats [32] and our

results indicate that the majority of H3K56me3 does not. In

contrast to H4K20me3, we found H3K56me3 in distinct

chromatin foci during all mitotic phases, indicating that this novel

mark is found in much more distinct heterochromatic loci. We

plan to investigate this finding in future studies.

Besides our discovery of a novel histone modification site, our

study raises one important question for many researchers dealing

with PTMs and their biological functions. The finding that some

enzymes might have several targets is supported by another recent

study showing that pericentric localization of H3K64me3, another

H3 core modification, also depends on Suv39h activity [48].

Therefore, the observed severe knock-down [14] and over-

expression [49] phenotypes that were previously assigned to the

sole loss or gain of H3K9me3, respectively, have to be reevaluated,

since Suv39h enzymes affect not only H3K9, but also H3K64 as

well as H3K56 trimethylation, It is possible that the assigned role

of H3K9me3 in protecting genome stability and heterochromatic

gene silencing [50] is in part shared by H3K56me3.

In agreement with the finding that H3K9-specific KMTs act on

H3K56, we demonstrated a strong correlation between both
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residues as to their KDM-specificity. Our study expands the list of

known histone target residues of enzymes belonging to the JMJD2

family of demethylases since we could show that they act not only

on H3K9me3 and, in some cases, H3K36me3 [38], but also on

H3K56me3. Of particular interest is our characterization of

mJmjd2E, a predicted pseudogene and its human homolog

hKDM4DL, which codes for a, so far, uncharacterized protein.

Because of hKDM4DL’s strongest expression in human testis, it

will be of great interest to determine if and why removal of the

trimethylation of H3K9 and H3K56 is important in this special

tissue. Perhaps it is crucial during the process of histone-protamine

exchange and/or relaxation of pericentric heterochromatin in

humans; a statement that will be difficult to address since the

mouse enzyme is predicted to be a pseudogene and not expressed.

hKDM4DL might, therefore, constitute a human or primate-

specific protein. If so, then functional studies on hKDM4DL in

testis will be hard, if not impossible to perform.

Our study clearly puts forward H3K56me3 as a novel

modification, but we were unable to address its functional

relevance. Usually, knock-down of the enzymes targeting the

respective modification provide insights into its biological role; but

since H3K9 and H3K56 methylations are affected by the same

enzymatic machinery in mammals, we do not have any technical

tool at hand to pinpoint, in vivo, one particular phenotype to

H3K56me3. However, identification of genes that affect the two

modifications slightly differently in the C. elegans intestine opens up

the possibility of future functional studies, at least in this particular

organism.

Interestingly, we identified MET-1, a H3K36 KMT homolog,

as needed for wild type levels of both H3K9me3 and H3K56me3.

It was previously suggested that H3K36 methylation might be a

prerequisite for H3K9me3 in worms [41], and perhaps it is

similarly required for H3K56me3 as well. Previous studies

reported that H3K9me3 in the germline is independent of

MET-2 [40], however H3K9me3 levels are significantly reduced

in MET-2-depleted embryos [42]. These results indicate that

different KMTs might be primarily used in different tissues.

Consistent with this hypothesis, depletion of MET-2 and SET-25

significantly reduces H3K9me3 levels in embryos [42], and

H3K56me3 levels in the intestine (this study), but their effect is

less pronounced for H3K9me3 levels in the intestine. Future

studies will be needed to reveal how the preference for different

KMTs is regulated in different tissues.

We identified multiple KMTs required for normal levels of both

H3K9me3 and H3K56me3. One possible explanation for the

requirement of two or more methyltransferases is that one of these

KMTs deposits mono- (and perhaps di-) methylation, while the

second KMT deposits trimethylation, in a manner dependent on

prior mono- or dimethylation. This model is similar to what was

previously reported for MET-2 and SET-25 in embryos [42].

Alternative possibilities include indirect effects, perhaps involving

non-histone targets for these proteins.

Early EM studies revealed that C. elegans embryos lack electron-

dense material, classically associated with heterochromatin [51].

In addition, while in mammalian cells H3K9me3 co-localizes with

DAPI-bright regions of pericentric heterochromatin, in C. elegans,

H3K9me3 localizes to DAPI-faint regions [40], leading to the

suggestion that C. elegans lacks heterochromatin or that hetero-

chromatin is different in this species [40]. C. elegans chromosomes

are holocentric, and in the absence of a localized centromere, the

phrase ‘‘pericentric ‘‘ does not apply. Instead, the brightest foci of

H3K9me3 in C. elegans nuclei associate with the nuclear lamina

[42]. H3K9me3 is coincident with H3K27me3 and nuclear

lamina protein LEM-1, all of which are enriched along

chromosome arms [42,52]. Therefore, these regions most likely

are similar to mammalian heterochromatin near the nuclear

periphery, or lamin associated domains, LADs [53]. Our results

show that H3K56me3 colocalizes with H3K9me3 in worms,

suggesting that H3K56me3 likely marks these lamin associated

domains.

In agreement with a specialized role of H3K56me3 in testis is

the finding that sperm cells in C. elegans contain solely trimethyla-

tion of H3K56 but not of H3K9. It will be of interest to see if

H3K56me3 has an evolutionary conserved role in germline

development, although its functional implication might be

different in different metazoans.

Supporting Information

Figure S1 Immunoblot peptide competition experi-
ments to determine specificity of aH3K9me3 antibodies
used in this study. aH3K9me3 antibodies from (A) Active

Motif or (B) the Jenuwein laboratory [16] were pre-incubated with

2 mg/ml competitor peptides before addition to immunoblots

containing recombinant H3 protein (R) or acid extracted HeLa

Kyoto histones (H) (top). Ponceau staining (bottom) serves as

loading control.

(TIF)

Figure S2 Members of the JMJD2 family of demethy-
lases affect H3K56me3. (A) IF microscopy of HeLa Kyoto cells

that were transfected with GFP-tagged mJmjd2a-d and human

Jmjd2d homolog hKDM4 (green) and co-stained with

aH3K56me3 antibody (red) and DAPI (DNA, blue). Arrows

indicate transfected and GFP-positive cells. Scale bar = 10 mm.

See also Figure 4A for detailed PTM analysis of HeLa cells

transfected with mJmjd2E-GFP. (B) IF microscopy of HeLa Kyoto

cells that were transfected with mJmjd2E-GFP (green) and co-

stained with various histone PTM-specific antibodies (red) and

DAPI (DNA, blue). Arrows indicate transfected and GFP-positive

cells. Scale bar = 10 mm. See also Figure 4B that contains a listing

of the results depicted here.

(TIF)

Table S1 List of peptides used in peptide competition
experiments.

(DOCX)
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Figure S1. 
Immunoblot peptide competition experiments to determine specificity of αH3K9me3 antibodies used 
in this study. αH3K9me3 antibodies from (A) Active Motif or (B) the Jenuwein laboratory [16] were pre-
incubated with 2 µg/ml competitor peptides before addition to immunoblots containing recombinant H3 
protein (R) or acid extracted HeLa Kyoto histones (H) (top). Ponceau staining (bottom) serves as loading 
control. 
 

Supplementary Table 1 (Jack et al.) 

Peptide Sequence 
H3K56me0 VALREIRRYQKSTELLIRKL 
H3K56me1 VALREIRRYQK(me1)STELLIRKL 
H3K56me2 VALREIRRYQK(me2)STELLIRKL 
H3K56me3 VALREIRRYQK(me3)STELLIRKL 
H3K9me0 ARTKQTARKSTGGKAPRKQL 
H3K9me1 ARTKQTARK(me1)STGGKAPRKQL 
H3K9me2 ARTKQTARK(me2)STGGKAPRKQL 
H3K9me3 ARTKQTARK(me3)STGGKAPRKQL 
H3K4me3 ARTK(me3)QTARKSTGGKAPRKQL 
H3K64me3 YQKSTELLIRK(me3)LPFQRLVRE 
H3K79me3 LVREIAQDFK(me3)TDLRFQS 
 
Table S1. 
List of peptides used in peptide competition experiments. 



 

 

Figure S2. 
Members of the JMJD2 family of demethylases affect H3K56me3. (A) IF microscopy of HeLa Kyoto 
cells that were transfected with GFP-tagged mJmjd2a-d and human Jmjd2d homolog hKDM4 (green) and 
co-stained with αH3K56me3 antibody (red) and DAPI (DNA, blue). Arrows indicate transfected and GFP-
positive cells. Scale bar = 10 µm. See also Figure 4A for detailed PTM analysis of HeLa cells transfected 
with mJmjd2E-GFP. (B) IF microscopy of HeLa Kyoto cells that were transfected with mJmjd2E-GFP 
(green) and co-stained with various histone PTM-specific antibodies (red) and DAPI (DNA, blue). Arrows 
indicate transfected and GFP-positive cells. Scale bar = 10 µm. See also Figure 4B that contains a listing of 
the results depicted here. 
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Abstract

Fluorescent fusion proteins are widely used to study protein localization and interaction dynamics in living cells. However,
to fully characterize proteins and to understand their function it is crucial to determine biochemical characteristics such as
enzymatic activity and binding specificity. Here we demonstrate an easy, reliable and versatile medium/high-throughput
method to study biochemical and functional characteristics of fluorescent fusion proteins. Using a new system based on 96-
well micro plates comprising an immobilized GFP-binding protein (GFP-mulitTrap), we performed fast and efficient one-step
purification of different GFP- and YFP-fusion proteins from crude cell lysate. After immobilization we determined highly
reproducible binding ratios of cellular expressed GFP-fusion proteins to histone-tail peptides, DNA or selected RFP-fusion
proteins. In particular, we found Cbx1 preferentially binding to di-and trimethylated H3K9 that is abolished by
phosphorylation of the adjacent serine. DNA binding assays showed, that the MBD domain of MeCP2 discriminates between
fully methylated over unmethylated DNA and protein-protein interactions studies demonstrate, that the PBD domain of
Dnmt1 is essential for binding to PCNA. Moreover, using an ELISA-based approach, we detected endogenous PCNA and
histone H3 bound at GFP-fusions. In addition, we quantified the level of H3K4me2 on nucleosomes containing different
histone variants. In summary, we present an innovative medium/high-throughput approach to analyse binding specificities
of fluroescently labeled fusion proteins and to detect endogenous interacting factors in a fast and reliable manner in vitro.
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Introduction

Over the past decade a variety of proteomic approaches have

been used to identify cellular components in order to understand

the mechanism and inner workings of cells [1]. For example, mass

spectrometry-based proteomics uncovered the proteome of many

different organisms as well as cell-type specific differences in

protein expression. However, to understand and characterize the

function of single proteins, as well as the interplay between

different factors, it is essential to gain further insights into their

abundance, localization, dynamic interactions and substrate

specificities.

Fluorescent proteins like the green fluorescent proteins (GFP)

[2] and spectral variants have become popular tools to study the

localization and dynamic interactions of proteins in vivo. Despite,

the availability of a variety of commercial mono- and polyclonal

antibodies against GFP and other fluorescent proteins [3,4] (e.g.

Abcam, UK; Sigma, USA; Roche, Germany, ChromoTek,

Germany), proteins are mostly fused to a small epitope tag such

as FLAG or c-Myc to analyze biochemical characteristics like

enzymatic activities and/or binding specificities. Thus, integration

of such in vitro data with in vivo data obtained with fluorescently

labeled proteins has, in part, been impeded by the simple fact that

different protein tags are used for different applications. The gold

standard to examine binding affinities is surface plasmon

resonance (SPR) [5]. One drawback of this method is the need

of large amount of proteins. Such proteins have to be expressed

and purified from bacterial systems (e.g. E.coli) or lower eukaryotes

such as yeast (e.g. S. cerevisiae). Thus, the recombinant proteins lack

essential post-translational modifications or are not folded properly

possibly leading to different binding properties and inaccurate

results. In addition with SPR measurements one can only

determine the binding affinity to one substrate. This does not

reflect the in vivo situation where most proteins have the choice

between many different binding substrates in parallel.

Protein microarrays are an alternative to study protein-protein

interactions in high-throughput manner [6]. Once more the

drawback of this in vitro method is the laborative and time-

consuming preparation of recombinant proteins or protein

domains. Therefore protein microarrays are limited to domains

that can be produced as soluble, well-folded proteins [6].

Recently, specific GFP binding proteins based on single domain

antibodies derived from Lama alpaca have been described [7]

(GFP-Trap ChromoTek, Germany). The GFP-Trap exclusively

binds to wtGFP, eGFP and GFPS65T as well as to YFP and eYFP.

Coupling to matrices including agarose beads or magnetic

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36967



particles the GFP-Trap allows for one-step purification of GFP-

fusion proteins. Previous studies made use of the GFP-Trap to

perform a broad range of different methods including mass

spectrometry analysis [8], DNA binding, DNA methyltransferase

activity assays [9], as-well-as histone-tail peptide binding assays

[10]. One mayor disadvantage of the GFP-Trap is, that batch

purification of GFP-fusions is very laborious and time-consuming

and one cannot test different GFP-fusion and/or assay conditions

in parallel. Here, we present an innovative and versatile high-

throughput method to quantitatively measure binding specificities

and to detect endogenous interacting factors in a fast and reliable

manner in vitro: 96-well micro plates coated with immobilized

GFP-Trap (GFP-multiTrap). To demonstrate the general suitabil-

ity of our assays, we choose already known binding partners and

compared our results with previous publications. Using this

method, we could confirm that Cbx1 preferentially binds to di-

and trimethylated histone H3 lysine 9 and that this binding is

abolished by phosphorylation of the adjacent serine 10 [11–13]. In

addition, we determined a 4-fold preference of the MBD domain

of MeCP2 for fully over unmethylated DNA in accordance to [14–

16]. Furthermore, we performed protein-protein interaction assays

and found that the Dnmt1 binds to PCNA in a PBD domain-

dependent manner consistent to [17,18]. In contrast, LigaseIII

binds Xrcc1 but does not interact with PCNA [19,20]. Using an

ELISA-based assay, we were able to detect endogenous PCNA

bound to immunoprecipiated Dnmt1, Fen1 and PCNA itself. In

accordance with our protein-protein interaction data, Dnmt1

lacking the PBD domain (Dnmt1DPBD) could not co-immuno-

precipate with PCNA. Consistent with our histone-tail peptide

binding data, we could detect endogenous histone H3 bound to

Cbx1. Finally, we quantified specific histone modifcations on

nucleosomes comprising different histone variants. All of these

data clearly demonstrate the versatility and easy handling of this

high-troughput approach and its immense benefit to many

researchers.

Results

One-step Purification of GFP-fusion Proteins
In a first step, we tested the efficiency of the GFP-multiTrap to

purify GFP-fusion proteins from cellular extracts. First, we

examined the pull-down efficiency of a GFP-tagged protein and

chose GFP-Cbx1 as a model protein. Cbx1 is a chromodomain-

containing protein related to the Drosophila HP1b, a well-studied

heterochromatin-associated protein [11]. We used cell extracts

from HEK293T cells transiently expressing GFP-Cbx1 or GFP,

purified the GFP-fusions using the GFP-multiTrap, eluted the

bound fractions, separated them by SDS-PAGE and visualized the

bound proteins by coomassie staining. The bound fractions

displayed mainly GFP as well as GFP-Cbx1 with only minor

impurities (Figure 1A), providing therefore a reliable tool for

downstream biochemical analyses. Notably, the washing condi-

tions can be varied according to the downstream applications. In

addition to these qualitative results, we performed experiments to

quantify the pull-down efficiency. For this purpose we quantified

the amount of bound GFP with varying concentrations of input

GFP from cellular extracts. After binding, the single wells were

subjected to several washing steps and bound GFP was analyzed

by fluorescent read-out using a micro plate reader. Notably, the

input amount of protein/substrate was measured in solution,

whereas the bound fraction represents one value on the 96-well

surface. We measured the fluorescence intensities of bound GFP

and plotted the amount of bound GFP as a function of total GFP

(Figure 1B). The amount of bound GFP increased linearly from 10

to 130 nM of total input and saturated between 130 and 400 nM.

Next, we quantified the amount of bound GFP by immunoblot-

ting. Therefore, we eluted the bound GFP fractions, separated

them by SDS-PAGE, visualized the bound proteins by immuno-

blot analysis (Figure 1C) and quantified the GFP signal by

measuring the mean intensity via Image J (Figure 1D). Similar to

the quantifcation by fluorescent read out using a micro plate

reader, the amount of bound GFP increases linearly from 10 to

130 nM of total input and saturates between 130 and 400 nM.

In summary, we demonstrated that the GFP-multiTrap allows

for fast and efficient one-step purification of GFP-fusion proteins

directly from crude cell lysates in a high-throughput manner. The

method works well for both qualitative and quantitative measure-

ments and the immunoprecipitated GFP-fusions can then be

further tested in biochemical assays.

In vitro Histone-tail Peptide and DNA Binding Assay
In the next assay we determined whether this approach is also

feasible to quantify binding affinities between GFP-proteins and

peptides or DNA. First, we analyzed histone-tail peptide binding

specificities of the chromobox homolog 1, Cbx1, fused with a N-

terminal GFP-tag using the GFP-multiTrap. GFP-Cbx1 was

purified from mammalian cell lysate, as described above, and the

bound protein was incubated with TAMRA-labeled histone-tail

peptides. A set of 20 different histone-tail peptides (Table 1) was

used in technical triplicates in parallel and GFP served as negative

control (GFP data is not shown). After removal of unbound

substrate the amounts of protein and histone-tail peptide were

determined by fluorescence intensity measurements using a micro

plate reader. Binding ratios were calculated by dividing the

concentration of bound histone-tail peptide by the concentration

of GFP fusion (Figure 2A). GFP-Cbx1 preferentially binds

H3K9me3 and H3K9me2 histone-tail peptides consistent with

previous studies [11,12]. As expected, the phosphorylation of

serine 10 (S10p) next to the trimethylated lysine 9 leads prevents

binding of Cbx1, which is in accordance with previous reports

[13]. In addition to fluorescent quantification via a micro plate

reader, we scanned the TAMRA signals using a Typhoon scanner

(Figure 2B). Here, we detected TAMRA signals in the wells

corresponding to di- and trimethylated H3K9. Notably, we did

not detect differences in binding towards di-and trimethylated

H3K9 using a micro plate reader. However, we could detect

a preference for tri- over dimethylated H3K9 using a fluorescence

scanner. These differences could result from different sensitivities

of both methods. Furthermore, we performed a competition assay

to demonstrate the specificity of the histone-tail peptide-binding

assay. We incubated GFP-Cbx1 with TAMRA-labeled H3K9me3

in parallel with either biotinylated H3K9me3 or H3K9ac histone-

tail peptides. As expected, the addition of biotinylated H3K9me3

histone-tail peptide significantly decreased the binding of Cbx1 to

TAMRA-labeled H3K9me3, whereas the addition of biotinylated

H3K9ac did not alter the binding ratios (Figure 2C). In previous

studies [11,12], the binding affinities of the HP1b chromo domain,

the Drosophila homolog of mammalian Cbx1, for both di- and

trimethylated H3K9 peptides have been found to be 7 and

2.5 mM, respectively. In contrast, we could not detect a significant

difference in binding ratios between di- and trimethylated H3K9

histone tail peptides using a micro plate reader (Figure 2A). One

explanation could be the use of different expression systems. While

the binding ratios for the HP1b chromo domain were determined

using bacterially expressed protein we used a fluorescent fusion

protein derived from mammalian cells. In this context a recent

study revealed that recombinant HP1a prepared from mammalian

cultured cells exhibited a stronger binding affinity for K9-
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methylated histone H3 (H3K9me) in comparison to protein

produced in Escherichia coli [21]. Biochemical analyses revealed that

HP1a was multiply phosphorylated at N-terminal serine residues

(S11–14) in human and mouse cells and that this phosphorylation

enhanced the affinity of HP1a for H3K9me, displaying the

importance of post-translational modifications for binding affinities

[21]. To determine the binding affinity of GFP-Cbx1 to

H3K9me3, we varied the input amount of histone-tail peptide.

We plotted the amount of bound histone-tail peptide as a function

of total peptide and fitted the values using GraphPad Prism and

nonlinear regression (Figure 2D). The amount of bound

H3K9me3 histone-tail peptide increases linearly and saturates at

approximately 500 nM of input peptide. In contrast to H3K9me3,

we could not detect any binding of Cbx1 to H3 histone-tail

peptides. Notably, the exact determination of binding affinities was

not possible due to differences in the technical measurement of

input versus bound fractions. Here, the input amount of protein/

substrate was measured in solution, whereas the bound fraction

represents one value on the 96-well surface.

In addition to histone-tail peptide binding assays, we performed

DNA-binding assays. We purified the methyl-binding domain

(MBD) of MeCP2, fused with a C-terminal YFP tag, from cell

extracts as described and performed competition binding analysis

by incubating immobilized MBD-YFP with fluorescently labeled

un- and fully methylated DNA (Table 1). As a result we observed

a five-fold preference of MBD for fully methylated DNA over

unmethylated DNA (Figure 2E). In addition, we measured the

amount of bound DNA to MBD-YFP by varying the input amount

of DNA. We plotted the amount of bound un- and fully

methylated DNA as a function of total un-and fully methylated

DNA and fitted the values using GraphPad Prism and nonlinear

regression (Figure 2F). Similar to the relative binding ratios, MBD

binds preferentially to fully methylated DNA. These results are in

accordance with previous studies describing that MeCP2 interacts

specifically with methylated DNA mediated by the MBD domain.

In these studies, electrophoretic mobility shift assays (EMSA) using

the isolated MBD domain expressed in E. coli were performed and

dissociation constants of 14,7 and 1000 nM were calculated for

symmetrically methylated and unmethylated DNA, respectively

[14–16].

To assess the suitability of the in vitro histone-tail peptide and

DNA binding assay for high-throughput applications, the Z-factor

was calculated. For histone-tail peptide binding assays, we

calculated the Z-factor using the relative binding ratios of

H3K9me3 to GFP-Cbx1 as positive state and of H3K9me0 to

GFP-Cbx1 as negative state. For the DNA binding assay, we

calculated the Z-factor using the relative binding ratios of fully

methylated DNA to MBD-YFP as positive state and of

I FT BM I FT BM[kDa]

70
55

35

27

GFP GFP-Cbx1
A B

C D

GFP

0 100 200 300 400
0

10000

20000

30000

40000

50000

GFP input [nM]

G
FP

 b
ou

nd
 [p

ix
el

 in
te

ns
ity

]
Exp. 1

Exp. 2

GFP input [nM]

G
FP

 b
ou

nd
 [n

M
]

0 100 200 300 400
0

5

10

15

18 37 32611 77 127

24411 23 39 84 130

Input GFP [nM]

Input GFP [nM]

Bound GFP 
α-GFP

E
xp

.1
 

Bound GFP 
α-GFP

E
xp

.2
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unmethylated DNA to MBD-YFP as negative state (Table 2). The

Z-factors of 0.766 for the histone-tail peptide binding assay and

0.756 for the DNA binding assay strongly indicate that both assays

are robust, reproducible and suitable for high-throughput applica-

tions.

In vitro Protein-protein Binding Assay
In addition to the detection of substrate specificity (e.g. histone-

tail peptide) and DNA binding, analysis of the interaction with

other cellular components and factors is essential to understand

the function of proteins.

The use of fluorescence intensity read-out systems for the

quantification of protein-protein interactions in vitro provides a new

Table 1. Sequences of DNA oligonucleotides and histone-tail peptides.

DNA oligos

DNA substrate DNA sequence DNA labeling

CG-up 59- CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG -39 No

MG-up 59- CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG -39 No

um550 59- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -39 ATTO550 at 59end

um700 59- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -39 ATTO700 at 59end

mC700 59- CCATGATGACTCTTCTGGTCMGGATGGTAGTTAGTTGTTGAG -39 ATTO700 at 59end

DNA substrates

DNA substrate CpG site Label Oligo I Oligo II

UMB-550 unmethylated 550 CG-up um550

UMB-700 unmethylated 700 CG-up um700

FMB-700 Fully methylated 700 MG-up mC700

DNA sets

Binding set Control set

UMB-550 UMB-550

FMB-700 UMB-700

Histone-tail peptides

H3 (1–20) ART K QTARKSTGGKAPRKQLK TAMRA at C-terminus

H3K4me1 ART X1 QTARKSTGGKAPRKQLK

H3K4me2 ART X2 QTARKSTGGKAPRKQLK

H3K4me3 ART X3 QTARKSTGGKAPRKQLK

H3K4ac ART Z QTARKSTGGKAPRKQLK

H3K9me1 ARTKQTAR X1 S TGGKAPRKQLK

H3K9me2 ARTKQTAR X2 S TGGKAPRKQLK

H3K9me3 ARTKQTAR X3 S TGGKAPRKQLK

H3K9me3S10p ARTKQTAR X3 Z2 TGGKAPRKQLK

H3K9ac ARTKQTAR Z S TGGKAPRKQLK

H3 (17–36) RKQLATKAAR K SAPATGGVK TAMRA at N-terminus

H3K27me1 RKQLATKAAR X1 SAPATGGVK

H3K27me2 RKQLATKAAR X2 SAPATGGVK

H3K27me3 RKQLATKAAR X3 SAPATGGVK

H3K27ac RKQLATKAAR Z SAPATGGVK

H4 (10–29) LGKGGAKRHR K VLRDNIQGI

H4K20me1 LGKGGAKRHR X1 VLRDNIQGI

H4K20me2 LGKGGAKRHR X2 VLRDNIQGI

H4K20me3 LGKGGAKRHR X3 VLRDNIQGI

H4K20ac LGKGGAKRHR Z VLRDNIQGI

X1: monomethylated Lysine; X2: dimethylated Lysine; X3: trimethylated Lysine; Z: acetylated Lysine; Z2: phosphorylated Serine.
doi:10.1371/journal.pone.0036967.t001
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and simple method avoiding laborious and inaccurate protein

detection using conventional immunoblotting systems.

To address the question if such interaction analysis can be

performed in a multi-well format we analyzed the interaction of

single GFP-fusions with RFP-fusion proteins expressed in mam-

malian cells. More precisely, we determined quantitative binding

ratios between nuclear located proteins involved in DNA-

replication (PCNA) [17,18], DNA-methylation (Dnmt1) [22] as

well as in DNA-repair (Xrcc1) [23]. As described, we immobilized

GFP-fusions on the GFP-multiTrap and incubated them with cell

lysate containing RFP-fusion proteins. After binding, we removed

unbound material, measured the concentrations of RFP and GFP

and calculated the molar binding ratios. Firstly, we determined the

binding ratios of the green fluorescent PCNA-binding domain of

Dnmt1 (GFP-PBD) to RFP-PCNA and used Dnmt1DPBD as

a negative control. By measuring the fluorescent signal intensities

we detected that RFP-PCNA binds to GFP-PBD in a molar ratio

of 1.4260.31 but not to Dnmt1DPBD (Figure 3A).

For a direct comparison we eluted the bound fractions,

separated them by SDS-PAGE and visualized the proteins by

immunoblotting (Figure 3B). Both, GFP-PBD and RFP-PCNA are

detected in the input and bound fractions whereas RFP is not

visible in the bound fraction of GFP-PBD (Figure 3B).

In addition, we measured the amount of bound RFP-fusion to

GFP-PBD with varying the input amount of RFP-fusion. We

plotted the amount of bound RFP-fusion as a function of total

RFP-fusion and fitted the values using GraphPad Prism and

nonlinear regression (Figure 3C). Similar to the relative binding

ratios, GFP-PBD binds to RFP-PCNA but not to RFP.

These results are in accordance with previous findings that

Dnmt1 associates with the replication machinery by directly

binding to PCNA, a homotrimeric ring which serves as loading

platform for replication factors, and that this binding depends on

the PCNA-binding domain in the very N-terminus of Dnmt1

[17,18]. In addition by determining the quantitative binding ratio

between both partner proteins our approach provides a more

detailed insight in the binding events occurring at the central

loading platform of the DNA replication.

Secondly, we determined the molar binding ratio of GFP-Ligase

III to RFP-Xrcc1. Xrcc1 binds in a molar ratio of 0.6160.14 to

Ligase III but did not bind to other proteins such as GFP-PBD,

GFP-Dnmt1DPBD or GFP. Previous studies demonstrated that

DNA Ligase III was recruited to DNA repair sites via its BRCT

domain mediated interaction with Xrcc1 [19,20].

For the protein-protein binding assays, we calculated the Z-

factor using the molar binding ratios of RFP-PCNA to GFP-PBD

as positive state and RFP to GFP-PBD as negative state (Table 2).

The Z-factor of 0.56 indicated that the protein-protein binding

assay is robust and reproducible.

In summary, we demonstrate a new quantitative and reliable

high-throughput method to analyze protein-protein interactions

using GFP- and RFP-fusion proteins.

Enzyme-linked Immunosorbent Assay (ELISA)
Next we examined endogenous protein-protein interactions

using an ELISA assay. For this purpose, we precipitated GFP-

fusion proteins in the 96 well format on the GFP-multiTrap and

cross-linked bound fractions with formaldehyde (CH2O) and/or

treated the bound fractions with methanol (MeOH). Using specific

antibodies against PCNA, we determined the binding of endog-

enous PCNA to GFP fusions of Dnmt1, Dnmt1DPBD, PCNA,

Fen1, which is a flap endonuclease and an essential DNA

replication protein [24]. We could detect endogenous PCNA

binding to Dnmt1 but not to Dnmt1DPBD similar to the results

obtained with the protein-protein interaction assay using RFP-

PCNA (Figure 4A). In addition, we detected binding of

endogenous PCNA to Fen1 but also to PCNA itself. These results

fit well to former studies showing that Fen1 or maturation factor 1

associates with PCNA in a stoichiometric complex of three Fen1

molecules per PCNA trimer [25,26]. In addition to 100 described

interacting partners, it is known that PCNA also interacts with

itself and forms a trimeric ring, which is confirmed by our ELISA

assay by giving a signal for endogenous PCNA binding to GFP-

PCNA (Figure 4A).

Next, we determined the binding of Cbx1 to endogenous

histone H3. Similar to PCNA, we precipitated GFP-Cbx1 and

GFP and detected endogenous H3 via an H3-antibody coupled to

HRP. In accordance with the experiments using TAMRA labeled

histone 3 peptides, we observed an H3 ELISA signal for binding to

Cbx1 but not to GFP. Using an H3K9me3-specific antibody, we

could not detect an ELISA signal (data not shown), due to the fact

that the tight binding of Cbx1 (Figure 2) to H3K9me3 most likely

nonlinear regression. All input and bound fractions were quantified via a plate reader. (E) DNA binding specificities of the MBD domain of MeCP2 to
un- and fully methylated DNA in direct competition. Shown are means 6 SD from three independent experiments. (F) Different amounts of Atto550-
labeled unmethylated and Atto700-labeled fully methylated DNA in direct competition were added to purified MBD-YFP. Shown are means 6 SD
from three independent experiments. The amount of bound DNA peptide was plotted as a function of total DNA. The curve was fitted using
GraphPad Prism and nonlinear regression. All input and bound fractions were quantified via a plate reader.
doi:10.1371/journal.pone.0036967.g002

Table 2. Overview of relative binding ratios and Z-factor values.

Relative binding ratios of Substrate/GFP- or YFP-fusion

Histone-tail peptide binding DNA binding Protein-protein binding

Fusion protein GFP-Cbx1 MBD-YFP GFP-PBD

Substrate H3K9me3 H3K9un Fully methylated DNA Unmethylated DNA RFP-PCNA RFP

Average ratio 0,5715 0,0772 0,0912 0,0223 1,487 0,005

Standard deviation 0,0150 0,0236 0.0037 0.0019 0,2111 0,006

Z-factor 0,766 0.756 0.560

Based on the average relative binding ratios and the standard deviations we calculated the Z-factor.
doi:10.1371/journal.pone.0036967.t002
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occludes the antibody epitope, as has been proposed for HP1

binding to H3K9me3. In this study, the histone H3 trimethyl-

lysine epitope is embedded in an aromatic cage blocking thereby

most likely the binding of any antibodies [27]. To further analyze

the bound fractions, we eluted GFP-Cbx1 and GFP, separated

them on an SDS-PAGE gel and visualized GFP and H3 by
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immunoblotting. Histone H3 was detectable in the input fractions

of both GFP and GFP-Cbx1 but as expected, only in the bound

fraction of GFP-Cbx1.

Comparative Analysis of Posttranslational Histone
Modifications

Histone posttranslational modifications play an important role

in the structural organization of chromatin and often correlate to

transcriptional activation or repression depending on their type

and location. Recently, it has been shown that nucleosomal

incorporation of histone variants can lead to alterations in

modification patterning and that such changes may complement

the properties brought by the variant itself [28].

In order to investigate the suitability of the GFP-multiTrap in

comparing such histone posttranslational modifications, we

isolated nucleosomes from HeLa cells expressing either GFP-

H2A or GFP-H2A.Z and precipitated them with the 96 well micro

plate. GFP levels were then recorded (data not shown) to ensure

equal loading of substrate per well. In addition, as a negative

control, the cytoplasmic supernatant fraction was also incubated

with the GFP-multiTrap. An ELISA approach was then used to

quantify differences in histone H3K4me2 levels between the two

different nucleosome compositions. Following cross-linking and

permeablization, bound nucleosomes were incubated with either

anti-H3, directly conjugated to HRP or anti-H3K4me2 (both

antibodies Abcam, UK). Histone H3K4me2 levels were then

normalized to the histone H3 signal. In accordance with published

data, H2A containing nucleosomes were depleted in H3K4me2

where as those containing H2A.Z showed a large enrichment for

this modification (Figure 5) [28].

Discussion

One challenge of the proteomic era is the effective integration of

proteomic, cell biological and biochemical data. Ideally, proteomic

data on tissue and cell cycle-specific expression of specific proteins

should be combined with subcellular localization and binding

dynamics of fluorescent proteins. Additionally, it is crucial to

determine cell biological and biochemical characteristics such as

interacting factors, enzymatic activity and substrate binding

specificities. The integration of all these different data has, in

part, been impeded by the simple fact that different protein tags
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are used for different applications. Here, we present a new

versatile, high-throughput method to determine in vitro binding

specificities and to detect endogenous interacting factors of GFP-

fusion proteins. We use 96-well micro plates with immobilized

GFP-Trap (GFP-multiTrap) for fast and efficient purification of

GFP-fusion proteins. We demonstrate the efficiency and purity of

the GFP immunoprecipitation (Figure 1), a prerequisite to obtain

reliable biochemical data on e.g. binding specificities. Moreover,

we measured histone-tail binding, DNA and protein-protein

binding ratios underlying the versatility of our approach (Figure 2

and 3 and Table 2). The suitability of the demonstrated assays for

high-throughput biochemical and functional studies was assessed

by calculating the Z-factors (Table 2). Therefore, our assay is

suitable to examine an initial high-throughput screening for

potential binding partners. Moreover, the assay can be used for

compound screening. Additionally, our method allows for de-

tection of endogenous interaction factors based on an ELISA assay

(Figure 4 and 5).

In contrast to other high-throughput techniques like conven-

tional microarrays, it does not require time-consuming recombi-

nant protein expression and purification but allows for the direct

biochemical analyses of GFP-fusion proteins expressed in mam-

malian cells. The versatile GFP-multiTrap combined with the

widespread use of fluorescent fusion proteins now enables a fast

and direct quantitative correlation of microscopic data concerning

the subcellular localization and mobility of fluorescent fusion

proteins with their enzymatic activity, interacting factors, and

DNA binding properties combining cell biology and biochemistry

with mutual benefits.

Materials and Methods

Expression Constructs, Cell Culture and Transfection
Mammalian expression constructs encoding GFP-Dnmt1, GFP-

Dnmt1DPBD, GFP-PBD, GFP-PCNA, RFP-PCNA, GFP-Ligase

III, mRFP, GFP, MBD-YFP, GFP-Fen1 and RFP-Xrcc1 were

described previously [7,20,29–37]. Note that all constructs encode

fusion proteins of GFP, RFP or yellow fluorescent protein (YFP).

The Cbx1 expression construct was derived by PCR from mouse

cDNA, cloned into pEGFP-C1 (Clontech, USA) and verified by

DNA sequencing. Throughout this study enhanced GFP (eGFP)

constructs were used and for simplicity referred to as GFP-fusions.

HEK293T cells [30] and HeLa Kyoto [29] were cultured in

DMEM supplemented with either 50 mg/ml gentamicin

(HEK293T) or 1% penicillin/streptomycin (HeLa Kyoto) and

10% fetal calf serum. For expression of GFP/RFP/YFP fusion

proteins, HEK293T cells were transfected with the corresponding

expression constructs using polyethylenimine (Sigma, USA). 2.

HeLa Kyoto cells were transfected using FuGene HD (Roche,

Germany) according to the manufacturer’s instructions. The

plasmid coding for GFP-H2A (H2A type 1, NP_003501.1) was

kindly provided by Emily Bernstein (Mount Sinai Hospital) and

the plasmid coding for GFP-Z-1 was a gift from Sachihiro

Matsunaga (University of Tokyo). Stable cell lines were selected

with 600 mg/ml G418 (PAA, Austria) and individual cell clones

sorted by using a FACSAria machine (Becton Dickinson,

Germany).

Histone-tail Peptides and DNA Substrate Preparation
Fluorescently labeled DNA substrates were prepared by mixing

two HPLC-purified DNA oligonucleotides (IBA GmbH, Germany

Table 1) in equimolar amounts, denaturation for 30 sec at 92uC
and slow cool-down to 25uC allowing hybridization. Histone-tail

peptides were purchased as TAMRA conjugates and/or biotiny-

lated (PSL, Germany) and are listed in Table 1.

Preparation of Protein Extracts
HEK293T cells were cultured and transfected as described [38].

For extract preparation 1 mg/ml DNaseI, 1 mM PMSF and

Protease Inhibitor cocktail (Roche, Germany) were included in the

lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM

MgCl2, 0.5% NP40) or nuclear extract buffer (10 mM HEPES

pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M Sucrose, 10%Glyc-

erol, 1 mM b-mercapto-ethanol). Cells were lysed for 30 minutes

on ice followed by a centrifugation step (15̀/12000 rpm/4uC).

Extracts from transfected 10 cm plates were diluted to 500 mL

with immunoprecipitation buffer (IP buffer; 20 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.5 mM EDTA) or dilution buffer

(20 mM HEPES pH 7.9, 150 mM KCl). An aliquot of 10 mL

(2%) were added to SDS-containing sample buffer (referred to as

Input (I)).

Purification and Elution of GFP/YFP/RFP- Fusions
For purification, 100 mL or 50 mL precleared cellular lysate

for full-area plates or half-area plates, respectively, was added

per well and incubated for 2 hours at 4uC on a GFP-multiTrap

plate by continuous shaking. After removing the supernatant,

wells were washed twice with 100 mL of washing buffer (WB;

20 mM Tris-HCl pH 7.5, 100–300 mM NaCl, 0.5 mM EDTA)

and 100 mL of IP or dilution buffer was added for measure-

ment. The amounts of bound protein were determined by

fluorescence intensity measurements with a Tecan Infinite

M1000 plate reader (Tecan, Austria). Wavelengths for excitation

and emission of GFP are 490610 nm and 511610 nm, for

RFP are 58665 nm and 608610 nm and for YFP 52565 nm

and 53865 nm, respectively. The concentration of proteins was

calculated using calibration curves that were determined by

measuring the fluorescence signal of known concentrations of

purified GFP, RFP and YFP. Notably, factors interfering with
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Figure 5. Comparative analysis of posttranslational histone
modifications. Cytoplasmic supernatant (SN) or mononucleosome
(MN) fractions prepared from HeLa cells expressing GFP-H2A or GFP-
H2A.Z were precipitated and the levels of H3 and H3K4me2 were
detected by ELISA (Absorbance at 450 nm). Shown are the H3K4me2
levels normalized to H3 and means 6 SD from two independent
experiments.
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fluorescence intensity measurements such as absorption of

excitation light by cell lysates, auto fluorescence of the samples

and/or scattering of the excitation/emission light by cell debris

are negligible (Figure S1). Bound proteins were eluted with

300 mM Glycin pH 2.5 and subsequently buffered with 1 M

Tris pH 7.5. Elution fractions were added to SDS-containing

sample buffer (referred to as Bound (B)). Bound proteins were

visualized by immunoblotting using the anti-GFP mouse mono-

clonal antibody (Roche, Germany).

In vitro Histone-tail Peptide Binding Assay
The in vitro histone-tail binding assay was performed as

described previously [10]. After one-step purification of GFP

fusion proteins the wells were blocked with 100 mL 3% milk

solved in TBS-T (0.075% Tween) for 30 minutes at 4uC on

a plate vortex, shaking gently. After blocking, the wells were

equilibrated in 50 mL IP buffer supplemented with 0.05%

Tween. TAMRA-labeled histone-tail peptides were added either

to a final concentration of 0.15 mM or of the indicated

concentrations and the binding reaction was performed at RT

for 20 min on a plate vortex, shaking gently. After removal of

unbound substrate the amounts of protein and histone-tail

peptide were determined by fluorescence intensity measurements.

The concentrations of bound TAMRA-labeled histone-tail

peptides were calculated using calibration curves that were

determined by measuring a serial dilution of TAMRA-labeled

peptides with known concentrations.

Binding ratios were calculated dividing the concentration of

bound histone-tail peptide by the concentration of GFP fusion.

Wavelengths for excitation and emission of TAMRA were

56065 nm and 58665 nm, respectively.

In vitro DNA Binding Assay
In vitro DNA binding assay was performed as described

previously [9,10] with the following modifications. GFP/YFP

fusions were purified from HEK293T extracts using the 96-well

GFP-binder plates and incubated with two differentially labeled

DNA substrates at a final concentration of either 100 nM or of the

indicated concentration for 60 min at RT in IP buffer supple-

mented with 2 mM DTT and 100 ng/mL BSA. After removal of

unbound substrate the amounts of protein and DNA were

determined by fluorescence intensity measurements. The concen-

tration of bound ATTO-labeled DNA substrates was calculated

using calibration curves that were determined by measuring a serial

dilution of DNA-coupled fluorophores with known concentrations.

Binding ratios were calculated dividing the concentration of bound

DNA substrate by the concentration of GFP/YFP fusion,

corrected by values from a control experiment using DNA

substrates of the same sequence but with different fluorescent

label, and normalized by the total amount of bound DNA.

Wavelengths for excitation and emission of ATTO550 were

54565 nm and 57565 nm and for ATTO700 700610 nm and

720610, respectively.

Protein-Protein Interaction
GFP fusions were purified from HEK293T extracts using the

96-well GFP multiTrap plates, blocked with 3% milk and

incubated with cellular extracts comprising the RFP fusions with

the indicated concentrations for 30 min at RT. After removal of

unbound RFP fusion (washing buffer) the amounts of proteins

were determined by fluorescence intensity measurements. Binding

ratios were calculated dividing the concentration of bound RFP

fusion by the concentration of GFP fusion. Wavelengths for

excitation and emission of RFP were 58665 nm and 608610 nm,

respectively. Bound proteins were eluted and separated by SDS-

PAGE and visualized by immunoblotting using the anti-GFP rat

monoclonal antibody; 3H9, and the anti-red rat monoclonal

antibody, 5F8 (both ChromoTek, Germany).

Enzyme-linked Immunosorbent Assay (ELISA)
GFP fusions were purified (from HEK293T extracts) using the

96-well GFP-multiTrap plates and were washed twice with

dilution buffer (for nucleosome experiments salt concentration

was adjusted to 300 mM). After washing bound fractions were

either cross-linked with 2% formaldehyde and/or additionally

permeabilized with 100% MeOH. After blocking with 3% milk

solved in TBS-T (0.075% Tween) the wells were incubated with

primary antibody (monoclonal rat anti-H3-HRP (Abcam, UK),

polyclonal rabbit anti-H3K4me2 (Abcam, UK) or monoclonal rat

anti-PCNA, 16D10 (ChromoTek, Germany) overnight at 4uC on

a plate vortex, shaking gently. The wells were washed three times

with 200 mL TBS-T and horseradish peroxidase-conjugated

secondary antibody (Sigma, USA) was incubated for 1 h at RT

for the detection of PCNA or H3K4me2. The wells were washed

again as described above. For PCNA experiments detection was

carried out by incubating each well with 100 mL TMB (3,39,5,59-

tetramethylbenzidine) for 10 minutes at RT. The reactions were

stopped with the addition of 100 mL 1 M H2SO4. For nucleosome

experiments, detection was carried out using OPD (Sigma, USA)

according to the manufacturers instructions. Bound histone H3,

PCNA or H3K4me2 levels were quantified by determination of

the absorbance at 450 nm using a Tecan Infinite M1000 plate

reader (Tecan, Austria).

Preparation of Mononucleosomes
261072106107 HeLa cells, expressing either GFP-H2A or GFP-

H2A.Z, were incubated in PBS, 0.3% Triton X-100 and Protease

Inhibitor Cocktail (Roche, Germany) for 10 min at 4uC. Nuclei were

pelleted and supernatant (SN) transferred and retained. The pellet

was washed once in PBS, resuspended in EX100 buffer (10 mM

Hepes pH 7.6, 100 mM NaCl, 1.5 mM MgCl2, 0.5 mM EGTA,

10% (v/v) glycerol, 10 mM b-glycerol phosphate 1 mM DTT,

Protease Inhibitor Cocktail (Roche, Germany)) and CaCl2 concen-

tration adjusted to 2 mM. Resuspended nuclei were digested with

1.5 U MNase (Sigma, USA) for 20 min at 26uC. The reaction was

stopped by addition of EGTA to a final concentration of 10 mM

followed by centrifugation for 10 min at 1000 rcf, 4uC. Mono-

nucleosome containing supernatant (MN) was retained.

Calculation of the Z-factors
To assess the suitability of the assay for high-throughput

biochemical and functional studies, the Z-factor was calculated

using the equation Z~1{
3| sp zsnð Þ

Dmp {mn D
[39]. In this equation, s is

the standard deviation of the positive (p) and the negative (n)

control; m is the mean value for the molar binding ratio (for

positive (mp) and negative (mn) controls). The values of three

independent experiments were used to calculate the Z-factor and

all values are listed in Table 2.

Supporting Information

Figure S1 Factors interfering the measured fluores-
cence intensities. (A) The concentrations of GFP and RFP

expressed in HEK293T cells were measured in serial dilutions of

crude cell extracts. Shown are means 6 SD from two independent

experiments. Fluorescence intensities were measured via a plate

reader and the GFP and RFP concentrations were determined as

described in the Material and Methods part. (B) Background GFP
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and RFP signals in cell lysates of untransfected HEK293T cells.

The fluorescence intensities (FI) were measured via a plate reader

and the concentrations were determined as described in the

Material and Methods part.
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Supporting material 
 

 
Figure S1: Factors interfering the measured fluorescence intensities. (A) 
The concentrations of GFP and RFP expressed in HEK293T cells were 
measured in serial dilutions of crude cell extracts. Shown are means ± SD 
from two independent experiments. Fluorescence intensities were measured 
via a plate reader and the GFP and RFP concentrations were determined as 
described in the Material and Methods part. (B) Background GFP and RFP 
signals in cell lysates of untransfected HEK293T cells. The fluorescence 
intensities (FI) were measured via a plate reader and the concentrations were 
determined as described in the Material and Methods part.  
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