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I know that there is nothing better for people
than to be happy and to do good while they live.

Cat each of them may eat and drink,
and �nd satisfaction in all their toil – this is the gi� of God.

ecclesiastes 3:12-13





zusammenfassung

Das�ema dieser Arbeit ist die mathematische Behandlung von Andersons Ortho-

gonalitätskatastrophe, einem intrinsischen E�ekt in Fermi-Gasen. P.W. Anderson

untersuchte das nach ihm benannte Phänomen in den späten 60iger Jahren. In sei-

nem ersten Beitrag zur Katastrophe in [Anda] behandelte Anderson ein System

von N nicht-wechselwirkenden Fermionen im dreidimensionalen Raum und stell-
te fest, dass der Grundzustand asymptotisch orthogonal ist zum Grundzustand des

gleichen Systems, gestört durch ein Streupotential mit endlicher Reichweite.

Genauer formuliert: Sei ΦN
L der N-Teilchen-Grundzustand des Fermionensys-

tems in einer d-dimensionalen Box mit Kantenlänge L, und sei ΨN
L der Grundzu-

stand des entsprechenden Systemsmit einem zusätzlichen Potential endlicher Reich-

weite. Dann verursacht die Katastrophe das asymptotische Verschwinden

SN
L ∶= ⟨ΦN

L , Ψ
N
L ⟩ ∼ L−γ/ (∗)

des Überlapps SN
L der N-Teilchen-Grundzustände Φ

N
L und Ψ

N
L . Die Asymptotik in

Gleichung (∗) versteht sich im thermodynamischen Limes L →∞ und N →∞mit
fester Dichte N/Ld → ρ > .
In [GKM] wurde der Überlapp SN

L durch eine asymptotische Schranke der

Form

∣SN
L ∣ ≲ L−γ̃ (∗∗)

nach oben abgeschätzt. Der Abkling-Koe�zient γ̃ dort entspricht demjenigen von
Anderson in [Anda]. Eine weitere Arbeit von Anderson aus dem selben Jahr,

[Andb], enthält die exakte Asymptotik (∗) mit einem größeren Koe�zienten γ.
Die vorliegende Arbeit stellt einen Beitrag dar, zur exakten Asymptotik zu gelan-

gen. Es wird (∗∗) mit einemKoe�zienten γ bewiesen, der in gewissem Sinne dem in
[Andb] entspricht und den in [GKM] verbessert. Die verwendete Methode ist

die aus [GKM], es werden aber in einer Reihenentwicklung von lnSN
L sämtliche

Terme statt nur des ersten Terms behandelt. Die Behandlung der höheren Terme

geht mit der Schwierigkeit einher, dass die au�retenden Spur-Ausdrücke nicht mehr

zwingend nicht-negativ sind, was für einige Abschätzungen aus [GKM] zusätzli-

che Argumente nötig macht.

Das Hauptresultat der vorliegenden Arbeit wird auch in einer gemeinsamen Ver-

ö�entlichung [GKMO] mit Martin Gebert, Peter Müller und Peter Otte erscheinen.
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abstract

�e topic of this thesis is amathematical treatment of Anderson’s orthogonality catas-

trophe. Named a�er P.W. Anderson, who studied the phenomenon in the late 1960s,

the catastrophe is an intrinsic e�ect in Fermi gases. In his �rst work on the topic in

[Anda], Anderson studied a systemofN noninteracting fermions in three space di-
mensions and found the ground state to be asymptotically orthogonal to the ground

state of the same system perturbed by a �nite-range scattering potential.

More precisely, let ΦN
L be the N-body ground state of the fermionic system in a

d-dimensional box of length L, and let ΨN
L be the ground state of the corresponding

system in the presence of the additional �nite-range potential.�en the catastrophe

brings about the asymptotic vanishing

SN
L ∶= ⟨ΦN

L , Ψ
N
L ⟩ ∼ L−γ/ (∗)

of the overlap SN
L of the N-body ground states Φ

N
L and Ψ

N
L .�e asymptotics in equa-

tion (∗) is in the thermodynamic limit L → ∞ and N → ∞ with �xed density

N/Ld → ρ > .
In [GKM], the overlap SN

L has been bounded from above with an asymptotic

bound of the form

∣SN
L ∣ ≲ L−γ̃ . (∗∗)

�e decay exponent γ̃ there corresponds to the one of Anderson in [Anda]. An-
other publication by Anderson from the same year, [Andb], contains the exact

asymptotics (∗) with a bigger coe�cient γ.
�is thesis features a step towards the exact asymptotics.We prove (∗∗) with a co-

e�cient γ that corresponds in a certain sense to the one in [Andb], and improves
upon the one in [GKM]. We use the methods from [GKM], but treat every term

in a series expansion of ln SNL , instead of only the �rst one. Treating the higher or-
der terms introduces additional arguments since the trace expressions occurring are

no longer necessarily nonnegative, which complicates some of the estimates from

[GKM].

�e main contents of this thesis will also be published in a forthcoming article

[GKMO] co-authored with Martin Gebert, Peter Müller, and Peter Otte.
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introduction

�e topic of this thesis is amathematical treatment of Anderson’s orthogonality catas-

trophe (aoc). Named a�er P.W. Anderson, who studied the phenomenon in the late

1960s, the aoc is an intrinsic e�ect in Fermi gases. In his �rst work on the topic in

[Anda], Anderson studied a systemofN noninteracting fermions in three space di-
mensions and found the ground state to be asymptotically orthogonal to the ground

state of the same system perturbed by a �nite-range scattering potential.�e asymp-

totics here involve the N → ∞ limit, as well as a spatial limit for the box size the

fermionic system resides in.

More precisely, let ΦN
L be the N-body ground state of the fermionic system in a

d-dimensional box of length L, and let ΨN
L be the ground state of the corresponding

system in the presence of the additional �nite-range potential.�en the aoc brings

about the asymptotic orthogonality

⟨ΦN
L , Ψ

N
L ⟩ ∼ L−γ/ (i.1)

in the thermodynamic limit N → ∞ and L → ∞, where N/Ld converges to some

positive constant.

However, the aoc has shown itself to be a more robust phenomenon with im-

plications beyond single-impurity problems, and the physics literature continues to

discuss it. Being classically treated in connection to e�ects inmetals, like Fermi-edge

singularities in the x-ray edge problem (see [ND; OT]), the recent literature con-

siders the aoc in absorption in quantum dots, or in graphene and other mesoscopic

systems (see [Hel+; Tür+; HKa; HKb], as well as [HUB; HG; RH]).

�e original derivation of the power law (i.1) was given by [Anda], where a non-

interacting Fermi gas in three dimensions is perturbed by a compactly supported
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spherically symmetric single-particle potential. Anderson’s informal computation

uses bounds on the Slater determinant of the two ground states and arrives at

⟨ΦN
L , Ψ

N
L ⟩ = O(L−γ̃/) (i.2)

in the thermodynamic limit, and he writes the decay exponent γ̃ using the (single-
particle) scattering phases (δℓ)ℓ∈N associated with the perturbation, namely

γ̃ = 
π

∞
∑
ℓ=

(ℓ + )(sin δℓ)

. (i.3)

In [Andb] later that same year, Anderson derived the exact asymptotics (i.1) with

an exponent γ bigger than the exponent γ̃, stating that »[i]t is interesting that the
main di�erence from the previous result is to replace sin δ by δ« [Andb, p. 164].
In the decade a�er 1967, Anderson’s result was the subject of some discussion in

the literature, with [RS] claiming a di�erent result, but [Ham] correcting their re-

sult back to Anderson’s original one, and [KY] con�rming Anderson’s result using

an adiabatic approach.

By now, Anderson’s asymptotics (i.1) are well-established in the physics commu-

nity. Its mathematical treatment, however, was severely lacking until last year. Al-

though [Ott] found a limit expression for the overlap involving solutions to a

Wiener-Hopf equation, this expression could not be controlled in the thermody-

namic limit and did therefore not yield any asymptotics – it did, however, shed

some light from a mathematical point of view on the discussion between [RS] and

[Ham] regarding the correctness of interchanging of limits.�e �rst mathematical

proof of the orthogonality (i.2) was given in [KOS], where a rigorous version of

the bound in [Anda] was proved for the one-dimensional case. A proof for the

asymptotic bound (i.2) valid for any dimension was then given in [GKM], with a

decay exponent γ̃ that reduces to (i.3), the one �rst given by Anderson, in the case
Anderson considers.�at proof uses the same bounds on Slater determinants that

Anderson employed, too: a series expansion for the logarithm of the overlap is trun-

cated a�er the �rst term, see Remark 1.3 below.

�e aim of this thesis is to consider the full series expansion in order to arrive at a

better asymptotic bound.�e methods used are the ones from [GKM], with some

modi�cations made necessary by the character of the trace expressions that occur in

the higher terms of the series. In particular, just as in [GKM], the argument relies

on the smoothing of indicator functions and on the Hel�er-Sjőstrand formula (§§ 4

and 5 below).�is smoothing necessarily provides just an asymptotic bound on the

overlap, instead of the exact asymptotics, and for technical reasons, the asymptotics
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involves subsequences of length scales; see�eorem 10.1 for the rigorous statement.

Formally, the result is the asymptotic bound

⟨ΦN
L , Ψ

N
L ⟩ = O(L−γ/) (i.4)

with a decay exponent γ that is given by

γ = 
π

∥arcsin∣T/∣∥HS, (i.5)

where T is the transition matrix.�is is a bigger expression than the decay exponent
γ̃ from [GKM], which can be written as

γ̃ = 
π

∥T/∥HS. (i.6)

Note how this compares with the quote from [Andb] given above: while Anderson

�rst gave an expression involving the sine function and then one without, here we

move from an expression without a sine function to one with an arcsine function. In

fact, we expect the asymptotics (i.1) to hold with the decay exponent γ given by (i.5).
�e methods employed here, however, only allow for an upper bound on the overlap.

See Remark 10.2 below for a further discussion of open questions regarding the aoc.

�emain contents of this thesis will also appear in a forthcoming article [GKMO]

co-authored with Martin Gebert, Peter Müller, and Peter Otte.

¹

overview. �is thesis is divided into ten sections which follow in a linear fash-

ion.�e main result is therefore found in § 10, while the preceding sections contain

propositions leading up to the main result.

§ 1 contains a description of the model we investigate, de�nes the overlap as the

main quantity we are interested in and states a series expansion of that quantity.

§ 2 contains a method for rewriting the nth term of that series expansion in a
di�erent form.

§ 3 contains an integral formula going back to R. P. Feynman and J. S. Schwinger,

and its application to the expression of the preceding section.

§ 4 contains the smoothing argument and the application of theHel�er-Sjőstrand

formula as mentioned above.

§ 5 contains a proof of the Hel�er-Sjőstrand formula, as well as a proof of a tech-

nical lemma from the preceding section, which is one of the core elements of the

exposition.

§ 6 contains yet another way to rewrite an estimate of the nth term of the series
we started with. In particular, the smoothing done in § 4 is undone in a certain way,

and the smoothed functions replaced by discontinuous ones again.
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§ 7 contains a proof of the asymptotic behavior of the expression from the pre-

ceding section.�e expression is shown to diverge logarithmically, with a rate given

by the trace of a certain operator times a particular integral.

§ 8 contains an evaluation of this integral.

§ 9 contains a formula expressing the trace part of the rate from § 7 via quantities

from scattering theory.

§ 10 �nally contains the proof of the asymptotic orthogonality (i.4), which follows

from combining the statements from the preceding sections.

A�er the ten sections of the main matter of this thesis, three sections follow in

the appendix.�e �rst one states some conditions for the decay exponent γ to be
positive, which is necessary for making the asymptotic bound (i.4) nontrivial.�e

second section provides some additional propositions and their proofs.�e third

and �nal section in the appendix gives a proof of the geometric resolvent inequality

in the form needed in § 5.

¹

a word on notation. �is thesis tries to follow certain stylistical and notational

conventions; a list of commonly used symbols can be found in the appendix. On top

of that, certain expressions occur multiple times and give rise to abbreviations or a

certain precedence of operations. For instance, »operator functionals« like traces or

determinants have a lower precedence than multiplication, and thus trAB = tr(AB)
and trAn = tr(An). Terms like »a.e.« (almost every) or »null set« refer to Lebesgue
measure on the appropriate measure space, unless speci�ed otherwise. Components

of vectors from Rn are taken cyclically; in particular, x = xn and xn+ = x for a
vector x ∈ Rn. Commonly used functions take ±∞ as their continuation whenever
that is natural, for instance ln  ∶= −∞ and trA ∶= ∞ for a positive operator A that
is not of trace class. Integration is denoted in the physics way, i.e., ∫R dx f (x) is the
integral of f on R; if no measure is speci�ed, the appropriate Lebesgue measure is
meant. Expressions like ∫M d(x , y) f (x , y) for M ⊆ X × Y denote integration with
respect to the product measure of appropriate Lebesgue measures on X and Y .�e
symbol ⋅ is used to denote an anonymous function, for instance f (g( ⋅ )) = f ○ g;
the same function could also be written x ↦ f (g(x)); if the domain or codomain
needs to be speci�ed, we write X ∋ x ↦ f (g(x)) ∈ Y .�e scalar product ⟨ ⋅ , ⋅ ⟩ on
a Hilbert space is linear in the second argument.�e universal quanti�cation ∀ (for
all) is sometimes put a�er the expression quanti�ed and in parentheses, for instance

g(x) = f (x) (x ∈ M); the quanti�cation statement might be read as »where x ∈ M«.
Further abbreviations are introduced as we go along.
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1 the setup

Let d ∈ N. Let Ω ⊆ Rd be open and bounded with  ∈ Ω. For L > , de�ne ΩL ∶=
L ⋅Ω.
Let the negative Laplacian −∆L be supplied with Dirichlet boundary conditions

on ΩL. We de�ne two multiplication operators V and V acting on L(ΩL), corre-
sponding to real-valued functions on Rd with the properties

max{V, } ∈ Kloc(Rd), max{−V, } ∈ K(Rd) (v0)

and

V ∈ L∞(Rd), V ≥ , sptV ⊆ Ω compact. (v)

Here, K(Rd) and Kloc(Rd) denote the functions of Kato class and local Kato class,
respectively, see [Sim, §a2]; a list of notations used in this work can be found in

the appendix.�e �nite-volume one-particle Schrödinger operators HL ∶= −∆L + V
and H′

L ∶= HL + V are self-adjoint and densely de�ned in the Hilbert space L(ΩL).
�e in�nite-volume operators H ∶= −∆ + V and H′ ∶= H + V are self-adjoint and
densely de�ned in the Hilbert space L(Rd). Birman’s theorem (see [BÈ,�m. 2]
or [RS,�m. xi.10]; the assumptions there are satis�ed due to [Sim,�m. b.9.1])

guarantees the existence and completeness of the wave operators for the pair H,H′.
In particular, their absolutely continuous spectra are the same, i.e.,

σac(H) = σac(H′). (1.1)

�e assumptions (v0) and (v) on V and V , together with [BHL,�m. 6.1 and
Remark 6.2 iii)], imply that the semigroup operators e−tHL and e−tH′

L generated by

the �nite-volume one-particle operators HL and H′
L are trace class for every t > ,

and, a fortiori, compact. In particular, HL and H′
L are bounded from below and have

purely discrete spectra.

Let λL
 ≤ λL

 ≤ ⋯ and µL
 ≤ µL

 ≤ ⋯ be the sequences of the eigenvalues of HL
and H′

L, respectively, counting multiplicities. Let (φL
j ) j∈N and (ψL

k)k∈N be the corre-
sponding normalized eigenfunctions, with an arbitrary choice of basis vectors in any

eigenspace of dimension greater than one.

Let N ∈ N.�e induced (noninteracting) �nite-volume N-particle Schrödinger op-
erators ĤL and Ĥ′

L act on the totally antisymmetric subspace ⋀N
j= L(ΩL) of the N-

fold tensor product space and are given by

Ĥ(′)
L ∶=

N

∑
j=

I ⊗⋯⊗ I ⊗H(′)
L ⊗ I ⊗⋯⊗ I, (1.2)

1



where the index j determines the position of H(′)
L in the N-fold tensor product of

operators.�e corresponding ground states are given by the totally antisymmetrized

products

ΦN
L ∶=

√
N!

φL
 ∧⋯ ∧ φL

N and ΨN
L ∶= √

N!
ψL
 ∧⋯ ∧ ψL

N . (1.3)

Given L >  and a Fermi energy E ∈ R, the number of particles is de�ned as

NL(E) ∶= #{ j ∈ N; λL
j ≤ E} ∈ N, (1.4)

which is the eigenvalue counting function of HL at E.�e main quantity of interest
is the ground-state overlap

SL(E) ∶= ⟨ΦNL(E)
L , Ψ

NL(E)
L ⟩

NL(E)
= det(⟨φL

j ,ψL
k⟩) j,k=,...,NL(E)

, (1.5)

in particular its asymptotic behavior as L →∞. In (1.5), ⟨ ⋅ , ⋅ ⟩N stands for the scalar
product on the N-fermion space ⋀N

j= L(ΩL), and ⟨ ⋅ , ⋅ ⟩ for the one on the single-
particle space L(ΩL).�e equality in (1.5) is a consequence of the Leibniz formula
for determinants.

If NL(E) = , we set SL(E) ∶= .
1.1 Remark. �e particular choice (1.4) of NL(E) as an eigenvalue counting func-
tion turns out to be technically useful when conducting the thermodynamic limit,

see Lemma 2.1 below.�e particle density ρ(E) of the two noninteracting fermion
systems in the thermodynamic limit coincides with the integrated density of states

ρ(E) = lim
L→∞

NL(E)
Ld ∣Ω∣

(1.6)

of the single-particle Schrödinger operator H (which is the same as the integrated
density of states of H′, see Lemma b.3 on page 57), provided the limit exists. Here,
∣Ω∣ denotes the Lebesgue measure of Ω ⊆ Rd . Situations where the limit (1.6) is

known to exist include periodic V, or V vanishing at in�nity. If the limit (1.6) does
not exist, there is more than one accumulation point, since assumption (v0), together

with [Sim, �m. c.7.3], imply lim supL→∞ NL(E)/Ld < ∞ for every E ∈ R. We
will study the asymptotic behavior of the overlap SL(E) as L → ∞ regardless of the
existence of the limit (1.6).

In order to expand the ground-state overlap as a series, we introduce the orthog-

onal projections

PNL ∶=
N

∑
j=

⟨φL
j , ⋅ ⟩φL

j and ΠN
L ∶=

N

∑
k=

⟨ψL
k , ⋅ ⟩ψL

k (N ∈ N). (1.7)

2



Using those, we can prove the following lemma.

1.2 Lemma. Assume that SL(E) ≠ .�en

∣SL(E)∣ = exp(−
∞
∑
n=



n
tr(PNL(E)

L (I −ΠNL(E)
L ))n), (1.8)

where the trace is in the Hilbert space L(ΩL).

Proof. For brevity, set N ∶= NL(E). If N = , the assertion is true by de�nition.
Otherwise, de�ne the N × N-matrix M ∶= (⟨φL

j ,ψL
k⟩) j,k=,...,N .�en SL(E) = detM

and ∣SL(E)∣ = detMM∗
. For  ≤ j, ℓ ≤ N , the ( j, ℓ)th entry ofMM∗

is

(MM∗) j,ℓ =
N

∑
k=

⟨φL
j ,ψL

k⟩⟨ψL
k , φ

L
ℓ ⟩ = ⟨φL

j , Π
N
L φL

ℓ ⟩. (1.9)

By assumption, SL(E) ≠ , and therefore M ≠  and MM∗ > . Moreover, MM∗
is

unitarily equivalent to PNL Π
N
L P

N
L ∣lin{φL

 ,...,φ
L
N} ∶ ranP

N
L → ranPNL , since

⟨φL
j , P

N
L Π

N
L P

N
L φL

ℓ ⟩ = ⟨φL
j , Π

N
L φL

ℓ ⟩ = (MM∗) j,ℓ ( ≤ j, ℓ ≤ N). (1.10)

In particular, since PNL and Π
N
L are projections,  < MM∗ ≤ ; it follows that  ≤

 −MM∗ < .�is allows us to compute

ln(MM∗) = ln( − ( −MM∗)) = −
∞
∑
n=



n
( −MM∗)n , (1.11)

since the series ln( − x) = −∑∞
n= xn/n converges absolutely for ∣x∣ < .�is implies

∣SL(E)∣ = detMM∗ = exp(tr ln(MM∗)) = exp(−
∞
∑
n=



n
tr( −MM∗)n), (1.12)

where the trace is in CN×N .�e matrix  − MM∗
is unitarily equivalent to (PNL −

PNL Π
N
L P

N
L )∣lin{φL

 ,...,φ
L
N}, and therefore

trCN×N( −MM∗)n = trranPNL (P
N
L − PNL ΠN

L P
N
L )n

= trL(ΩL)(PNL (I −ΠN
L )PNL )n . (1.13)

Using the projection property and the cyclicity of the trace, the assertion follows.

1.3 Remark. Lemma 1.2 will be the starting point of our estimates for ∣SL(E)∣. Equa-
tion (1.8) can be written as

− ln∣SL(E)∣ =




∞
∑
n=



n
tr(PNL(E)

L (I −ΠNL(E)
L ))n . (1.14)

3



�e trace expressions in (1.14) are nonnegative, so any truncation of the series yields a

lower bound on − ln∣SL(E)∣, and therefore an upper bound on the overlap. Keeping
only the term for n = , one recovers the so-called Anderson integral, which is the
bound used in [GKM].

In the sequel, we will �nd an upper bound on ∣SL(E)∣ by bounding the individual
terms of (1.14) from below.
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2 trace expressions and spectral projections

In this section, we rewrite the nth term of (1.14) in a formmore susceptible to replac-
ing the �nite-volume operators HL and H′

L with their in�nite-volume variants.

We begin by recasting the orthogonal projections (1.7) as functions of HL and

H′
L in the sense of the functional calculus.�e projections in (1.7) are not necessarily

spectral projections ofHL andH′
L, since the Nth eigenvaluesmight be of multiplicity

higher than one.�e choice of NL(E) in (1.4), together with a convergence result of
the spectral shi� function, allows us to put them into spectral projection form at the

cost of passing to a subsequence of length scales:

2.1 Lemma (Adapted from [GKM, Lemma 3.9]). Let n ∈ N. Let (Lm)m∈N be a
sequence in (,∞) with Lm → ∞.�en there exists a subsequence (Lmk)k∈N such
that

∣tr((−∞,E](HLmk
)(E,∞)(H′

Lmk
))n − tr(P

NLmk
(E)

Lmk
(I −Π

NLmk
(E)

Lmk
))n∣ = o(ln Lmk)

(2.1)

as k →∞ for a.e. E ∈ R.

Proof. For �xed L >  and E ∈ R, the de�nition of NL(E) in (1.4) implies
λL
NL(E) ≤ E < λL

NL(E)+ ≤ µL
NL(E)+ (2.2)

if we set λL
 ∶= −∞.�is allows us to write

P
NL(E)
L = (−∞,E](HL) (2.3)

and

I −ΠNL(E)
L = (E,∞)(H′

L) −
NL(E)
∑
k=
(E,∞)(µL

k) ⟨ψL
k , ⋅ ⟩ψL

k =∶ (E,∞)(H′
L) − Q . (2.4)

�e trace norm of the projection Q is the number of nonzero terms in the sum, i.e.,

trQ = #{k ∈ {, . . . ,NL(E)}; µL
k > E} = NL(E) − #{k ∈ N; µL

k ≤ E} =∶ ξL(E),
(2.5)

which is the value of the spectral shi� function for the pairHL,H′
L at E. We write the

di�erence of operator powers on the le�-hand side of (2.1) as

((−∞,E](HL)(E,∞)(H′
L))

n − (PNL(E)
L (I −ΠNL(E)

L ))n

=
n

∑
k=

(PNL(E)
L (I −ΠNL(E)

L ))k−PNL(E)
L Q ((−∞,E](HL)(E,∞)(H′

L))
n−k
. (2.6)
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Equation (2.6) is a consequence of the algebraic identity

n

∏
j=

A j −
n

∏
j=

B j =
n

∑
k=

B⋯Bk−(Ak − Bk)Ak+⋯An (2.7)

for bounded operators A j, B j for  ≤ j ≤ n, where n ∈ N. Estimating the traces of
the operators on the right-hand side of (2.6) by bounding the operator norms of all

projections except Q by , we arrive at nξL(E) as a bound. We now use the weak
convergence [HM,�m. 1.4]

∫I dE ξL(E)
L→∞ÐÐ→ ∫I dE ξ(E) (2.8)

for every bounded interval I ⊆ R, where ξ ∈ L,loc(R) is the spectral shi� function
for the pair of in�nite-volume operators H, H′.�us, given a sequence of diverging
lengths (Lm)m∈N, the sequence of nonnegative functions (ξLm/ ln Lm)m∈N converges
to zero in the norm of L(I). By standard arguments, there exists a subsequence
(Lmk)k∈N such that (ξLmk

/ ln Lmk)k∈N converges to zero for Lebesgue-a.e. E ∈ I. Ex-
pressing R as a union of bounded intervals, the claim follows.

2.2 Remark. (a) In Lemma 2.1, we pass to a subsequence since we don’t know any
good bounds on the �nite-volume spectral shi� function ξL with respect to the vol-
ume. In fact, [Kir] shows that in the simple situation ΩL = [−L, L]d for d ≥ 
and V = , eigenvalues of arbitrary multiplicity occur, which implies that the set
{E ∈ R; supm∈N ξLm(E) =∞} is dense in [,∞), see [Kir,�m. 1].
We also note that since ξL(E) ∈ N for all L >  and E ∈ R, pointwise convergence

of ξL a.e. would imply ξ ∈ N a.e.; a much stronger convergence result than (2.8) is
therefore unlikely to be true. Remark 4.7 (d) belowmentions another idea thatmight

help to circumvent the lack of known bounds for ξL.
In some situations however, better bounds on the spectral shi� function are

known. For instance in d = , a Dirichlet-Neumann bracketing argument shows

sup
L>
sup
E∈R

ξL(E) <∞. (2.9)

�e same is true if one considers not −∆ on L(ΩL) but the discrete Laplacian on a
subspace of ℓ(Zd). Whenever a bound like (2.9) is known, passing to a subsequence
is not necessary.

(b) In following sections, we will repeatedly estimate the trace of the di�erence

of products of operators, and the algebraic identity (2.7) will be used at every such

step.�e proofs of Lemma 4.5 and Lemma 6.7 are examples of this.
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Having established (2.1), we will treat the L →∞ asymptotics of the trace expres-
sion tr((−∞,E](HL)(E,∞)(H′

L))
n
, where no restriction to particular length scales will

be necessary.

�e next lemma will be used to get lower bounds of our trace expressions.

2.3 Lemma. Let A, B, Ã, B̃ ≥  be self-adjoint bounded operators in a Hilbert space
H , and let Ã ≤ A and B̃ ≤ B. Assume

√
A is trace class and let n ∈ N.�en

tr(AB)n ≥ tr(ÃB̃)n ≥ . (2.10)

Proof. From
√
AB

√
A ≥

√
AB̃

√
Awe deduce

tr(AB)n = tr(
√
AB

√
A)n ≥ tr(

√
AB̃

√
A)n = tr(B̃A)n , (2.11)

since the eigenvalues of the positive operator
√
AB

√
A are larger than those of√

AB̃
√
A, and so are their respective nth powers. In the same manner,

tr(B̃A)n = tr(
√
B̃A

√
B̃)n ≥ tr(

√
B̃Ã

√
B̃)n = tr(ÃB̃)n . (2.12)

As the �nal step in this section, we write the trace expression tr( f (HL)g(H′
L))

n

in a di�erent form.

2.4 Lemma. Let n ∈ N. Let L >  and E ∈ R. Let f , g ∶R → [, ] be measurable
functions with compact supports spt f ⊆ (−∞, E] and spt g ⊆ (E ,∞).�en

tr( f (HL)g(H′
L))

n = ∑
α,β∈Nn

n

∏
j=

( f (λL
α j
)g(µL

β j
)
⟨φL

α j
,VψL

β j
⟩⟨ψL

β j
,VφL

α j+
⟩

(µL
β j
− λL

α j
)(µL

β j
− λL

α j+
) ) (2.13)

with the convention αn+ ∶= α for multi-indices α ∈ Nn.

Proof. We begin by noting that

f (HL) =∑
j∈N

f (λL
j ) ⟨φL

j , ⋅ ⟩φL
j , g(H′

L) =∑
k∈N

g(µL
k) ⟨ψL

k , ⋅ ⟩ψL
k . (2.14)

To ease notation, we employ bra-ket notation, writing ⟨φ, ⋅ ⟩φ = ∣φ⟩⟨φ∣ for φ ∈
L(ΩL).�en (2.14) implies

( f (HL)g(H′
L))

n = ∑
α,β∈Nn

(
n

∏
j=

f (λL
α j
)g(µL

β j
))

n

∏
j=

∣φL
α j
⟩⟨φL

α j
∣ψL

β j
⟩⟨ψL

β j
∣, (2.15)

and

tr( f (HL)g(H′
L))

n = ∑
α,β∈Nn

(
n

∏
j=

f (λL
α j
)g(µL

β j
))

n

∏
j=

⟨φL
α j
∣ψL

β j
⟩⟨ψL

β j
∣φL

α j+
⟩, (2.16)
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where we used the convention αn+ ∶= α for α ∈ Nn.

Now, we note that the eigenvalue equations imply

λL
j ⟨φL

j ,ψL
k⟩ = ⟨HLφL

j ,ψL
k⟩ = µL

k⟨φL
j ,ψL

k⟩ − ⟨φL
j ,VψL

k⟩ (2.17)

for j, k ∈ N, and therefore

⟨φL
j ,ψL

k⟩ =
⟨φL

j ,VψL
k⟩

µL
k − λL

j
(2.18)

whenever λL
j ≠ µL

k . Using this, (2.16) reads

tr( f (HL)g(H′
L))

n = ∑
α,β∈Nn

(
n

∏
j=

f (λL
α j
)g(µL

β j
))

n

∏
j=

⟨φL
α j
,VψL

β j
⟩⟨ψL

β j
,VφL

α j+
⟩

(µL
β j
− λL

α j
)(µL

β j
− λL

α j+
) .

(2.19)

2.5 Remark. In [GKM], the role of Lemma 2.4 here is played by Lemma 3.11, where
a special (�nite-volume) spectral correlation measure occurs. It would be possible to

do something similar in our case, for instance by de�ning

µnL (A ×⋯ × An × B ×⋯ × Bn)
∶= tr(A(HL)V B(H′

L)V ⋯ An(HL)V Bn(H′
L)V) (2.20)

for n ∈ N, L >  and bounded A, . . . ,An , B, . . . , Bn ∈ Borel(R). Lemma 2.4 would
then read

tr( f (HL)g(H′
L))

n = ∫Rn×Rn
dµnL (x , y)

n

∏
j=

f (x j)g(y j)
(y j − x j)(y j − x j+)

. (2.21)

However, for n ≥  the expression (2.20) is not necessarily nonnegative, and de�n-
ing µnL as a signed measure on Borel(Rn)might not be possible due to the missing
vector space structure of the two-point compacti�cation [−∞,∞] of R. Since writ-
ing the trace expressions using spectral correlation measures is merely a question of

convenient notation, we choose not to do so in our present case.
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3 feynman-schwinger parametrization

In this section, we rewrite the right-hand side of (2.13) using an integral formula that

goes back to Feynman and Schwinger.

We start with a well-known theorem from integration theory, which we state for

the convenience of the reader. In the whole section, let n ∈ N.

3.1�eorem (Coarea formula). Let Ω ⊆ Rn be open, g ∶Ω → R continuously di�er-
entiable, and grad g(x) ≠  for all x ∈ Ω.�en the level set Mr ∶= {x ∈ Ω; g(x) = r}
is a hyper-surface for all r ∈ R. Let f ∈ C(Ω), and either f ∈ L(Ω) or f ≥ .�en

∫Ω dx f (x) = ∫R dr ∫Mr
dS(ξ) f (ξ) 

∣grad g(ξ)∣ , (3.1)

where dS stands for integration with respect to the surface measure onMr.

In more specialized situations,�eorem 3.1 can be re�ned further.

3.2 Corollary. In the situation of�eorem 3.1, suppose g is positive and positive
homogeneous, i.e., g(x) ≥  and g(rx) = rg(x) for x ∈ Ω and r ≥ .�en

∫Ω dx f (x) = ∫
∞


dr ∫M

dS(ξ)
∣grad g(rξ)∣ r

n− f (rξ). (3.2)

3.3 Remarks. (a) In the physics literature, the integration with respect to the sur-
face measure on Mr is o�en written using the one-dimensional Dirac distribution,

namely

∫Ω dξ δ(r − g(ξ)) f (ξ) ∶= ∫Mr

dS(ξ)
∣grad g(ξ)∣ f (ξ). (3.3)

We will employ this notation where it is convenient.

(b) We will use Corollary 3.2 in the situation Ω = (,∞)n and g(x) = ∣x∣ ∶=
x +⋯ + xn.�en ∣grad g(x)∣ =

√
n and

∫(,∞)n
dx f (x) = ∫

∞


dr ∫{ξ∈Ω; ∣ξ∣=}

dS(ξ)√
n

rn− f (rξ). (3.4)

Notice that

∫∣ξ∣=
dS(ξ)√

n
= ∫∆n−

dx = 

(n − )! , (3.5)
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where ∆n− ∶= {x ∈ [, ]n−; x + ⋯ + xn− ≤ } is the (n − )-dimensional standard
simplex; (3.5) can be seen by parameterizing {ξ ∈ (,∞)n; ∣ξ∣ = } via ∆n− ∋ x ↦
(x ,  − ∣x∣) ∈ Rn.�is implies, using the physics notation,

∫[,]n dξ δ( − ∣ξ∣) f (ξ) = ∫∆n−
dx f (x, . . . , xn−,  − x −⋯ − xn−). (3.6)

We now prove the Feynman-Schwinger parametrization formula in a well-

known generalization.

3.4 Corollary (Generalized Feynman-Schwinger parametrization). Let x, . . . , xn ∈
C and α, . . . , αn ∈ C with Re x j >  and Re α j >  for  ≤ j ≤ n.�en



xα
 ⋯xαn

n
= Γ(α +⋯ + αn)
Γ(α)⋯Γ(αn) ∫[,]n du δ( − ∣u∣)

uα−
 ⋯uαn−

n

(ux +⋯ + unxn)α+⋯+αn
. (3.7)

Proof. �e de�nition of the Gamma function implies

∫
∞


dt tγ−e−tx = Γ(γ)

xγ (3.8)

for x , γ ∈ C with Re x >  and Re γ > . Using (3.8) for each x−α j
j yields

Γ(α)⋯Γ(αn)
xα
 ⋯xαn

n
= ∫(,∞)n

du uα−
 ⋯uαn−

n e−∑
n
j= u jx j

the coarea formula gives

= ∫
∞


dr ∫∣u∣=

dS(u)√
n

rn−r∑
n
j= α j−nuα−

 ⋯uαn−
n e−r∑

n
j= u jx j

= ∫∣u∣=
dS(u)√

n
uα−
 ⋯uαn−

n ∫
∞


dr r∑

n
j= α j−e−r∑

n
j= u jx j

using (3.8) with γ = ∑n
j= α j yields

= ∫∣u∣=
dS(u)√

n
uα−
 ⋯uαn−

n
Γ(∑n

j= α j)

(∑n
j= u jx j)

∑n
j= α j
. (3.9)

3.5 Remark. Corollary 3.4 for α = ⋯ = αn =  implies


x⋯xn
= Γ(n) ∫[,]n du δ( − ∣u∣)



(u ⋅ x)n

= ∫
∞


dt tn− ∫[,]n du δ( − ∣u∣)e−tu⋅x (x ∈ (,∞)n), (3.10)
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where u ⋅ x = ∑n
j= u jx j is the Euclidean scalar product. For n = , this reads



ab
= ∫

∞


dt

e−ta − e−tb

b − a
(a, b > , a ≠ b). (3.11)

We also mention that the right-hand side of (3.10) can be written as

∫
∞


dt tn− ∫(,∞)n

du ∣u∣e−∣u∣ e−tu⋅x , (3.12)

cf. Lemma 8.3; this variant of the Feynman-Schwinger parametrization formula will

be used in the upcoming publication [GKMO] and has the advantage that it needs

no Dirac distribution or surface integration.

We use (3.10) to rewrite the right-hand side of (2.13).

3.6 Lemma. Let L >  and E ∈ R. Let f , g ∶R → [, ] be measurable functions with
compact supports spt f ⊆ (−∞, E] and spt g ⊆ (E ,∞).�en

tr( f (HL)g(H′
L))

n = ∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× tr
n

∏
j=

√
V f (HL)e(u j+v j−)t(HL−E)Vg(H′

L)e−(u j+v j)t(H′
L−E)

√
V , (3.13)

with the convention v ∶= vn for v ∈ Rn.

Proof. Let x ∈ (−∞, ]n and y ∈ (,∞)n.�en, by (3.10),


∏n
j=(y j − x j)(y j − x j+)

= ∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× exp(−t(∑n
j= u j(y j − x j) +∑n

j= v j(y j − x j+))), (3.14)
where xn+ ∶= x and

n

∑
j=

u j(y j − x j) +
n

∑
j=

v j(y j − x j+) =
n

∑
j=

((u j + v j)y j − (u j + v j−)x j) (3.15)

for u, v ∈ [, ]n. Now, let α, β ∈ Nn. Using x j = λL
α j
−E and y j = µL

β j
−E, we can write

the denominator in (2.13) as



∏n
j=(µL

β j
− λL

α j
)(µL

β j
− λL

α j+
) = ∫

∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

×
n

∏
j=

e
−(u j+v j)t(µLβ j

−E)
e(u j+v j−)t(λL

α j
−E)
. (3.16)
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Looking at (2.13), the sum is �nite thanks to the compact supports of f and g, and
therefore the summation can be interchangedwith the integrals from (3.16), resulting

in

tr( f (HL)g(H′
L))

n = ∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× ∑
α,β∈Nn

n

∏
j=

( f (λL
α j
)e(u j+v j−)t(λL

α j
−E)g(µL

β j
)e−(u j+v j)t(µLβ j

−E)

× ⟨φL
α j
,VψL

β j
⟩⟨ψL

β j
,VφL

α j+
⟩), (3.17)

from which the assertion follows.
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4 smoothing and infinite-volume operators

In this section, we apply Lemma 3.6 using suitable functions f and g and rewrite
the right-hand side of (3.13) as a trace expression of the in�nite-volume operators H
and H′.
Switching from�nite-volume to in�nite-volume operators constitutes the core of

the argument.�e technical tool to implement this switch to in�nite-volume objects

is the Hel�er-Sjőstrand formula (see �eorem 5.1 below). Since it is applicable to

smooth functions only, we de�ne appropriately smoothed versions of our indicator

functions.

In the whole section, let a ∈ (, ) be �xed.
4.1 De�nition (Adapted from [GKM, Def. 3.13]). Given a length L > , a cut-o�
energy E ≥ , and a Fermi energy E ∈ [−E + , E − ], we say that χ±L ∈ C∞

c (R) are
smooth cut-o� functions if they obey

[E+L−a ,E] ≤ χ+L ≤ (E+L−a ,E+) and [−E ,E−L−a] ≤ χ−L ≤ (−E−,E−L−a), (4.1)

and if there exist L-independent constants ck >  for k ∈ N, such that
χ±L(E ± L−a ± x) ≤ cLa x (4.2)

for all x ∈ [, L−a), and

∣ ∂
k

∂xk χ±L(E ± L−a ± x)∣ ≤
⎧⎪⎪⎨⎪⎪⎩

ckLak if  ≤ x < L−a ,
ck otherwise

(4.3)

for every k ∈ N and x ∈ R. To ease estimates, choose c ≥ , then (4.3) holds for k = 
as well.

�us, χ+L equals one inside [E + L−a , E] and zero in (−∞, E] ∪ [E + ,∞).
Whereas its smooth growth in [E + L−a , E + L−a] gets steeper with increasing L, we
choose its smooth decay in [E, E + ] independently of L.�e properties of χ−L are
analogous.�e following �gure illustrates the behavior of χ±L .

E E+L
−a

E−L
−a

E+L
−a

E−L
−a

E−E E+−E−

χ−
L

χ+
L

4.2 Remark. We are interested in lower bounds on the terms of (1.14) (plus
a sublogarithmic error). Using Lemma 2.1, this is equivalent to bounding

tr((−∞,E](HL)(E,∞)(H′
L))

n
from below. For this bound, we use the inequalities

(−∞,E] ≥ χ−L and (E,∞) ≥ χ+L . (4.4)
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Looking at Lemma 2.3, Lemma 2.4, and Lemma 3.6, this yields

tr((−∞,E](HL)(E,∞)(H′
L))

n ≥ ∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× tr
n

∏
j=

√
V χ−L(HL)e(u j+v j−)t(HL−E)V χ+L(H′

L)e−(u j+v j)t(H′
L−E)

√
V . (4.5)

�e inequality in (4.5) is in fact the only place in this thesis where we actually bound

the nth term of (1.14) instead of computing its exact asymptotics.We know of no way
to bound the error introduced in this step in the general case. In d = , the following
approach might yield a bound on this error and therefore the exact asymptotics of

the nth term: De�ne the smoothed functions χ±L with ( − a)L−a in place of where
L−a is in the de�nition above, and bound the error introduced by χ+L via an estimate
on the number of eigenvalues in the interval [E , E + (− a)L−a], and analogously for
χ−L ; then perform a coupled a → , L →∞ limit. Since exact �rst-order asymptotics
of the nth term by themselves don’t yield the exact asymptotics of the overlap SL(E),
and this approach only seems promising for d = , we will not follow it in this thesis.

�e following technical lemma is at the core of the arguments in the present sec-

tion. Its proof will be given in the next section.

4.3 Lemma ([GKM, Lemma 3.14]). For L > , t ≥  and x ∈ R, de�ne

f tL(x) ∶= χ−L(x)e t(x−E) and g tL(x) ∶= χ+L(x)e−t(x−E) (4.6)

and let ht
L stand for either f

t
L or g

t
L. Let ε ∈ (,  − a). LetM ∈ N withM ≥ .

�en there is a constant c >  and L >  and a polynomial QM of degree M + 
with nonnegative coe�cients, with c, L, andQM all independent of t, L, and ε, such
that

∥
√
V(ht

L(H
(′)
L ) − ht

L(H(′)))
√
V∥ ≤ QM(t/La)(La−M(−a−ε) + Ld+a(M+)e−cL

ε)
(4.7)

for t ≥  and L > L.

Before we prove the main assertion of this section, we need one more technical

lemma that takes the form of a spectral gap estimate.

4.4 Lemma. �ere is a constant C >  such that

tr(
√
Vht

L(H
(′)
(L))

√
V) ≤ Ce−tL

−a (L > , t ≥ ), (4.8)

where ht
L ∈ C∞

c (R) is as in Lemma 4.3.
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Proof. �ere is a bounded interval I ⊆ R such that ht
L ≤ Ie−tL−a for all t ≥  and

L > .�us,

tr(
√
Vht

L(H
(′)
(L))

√
V) ≤ e−tL

−a
tr(

√
V I(H(′)

(L))
√
V)

≤ e−tL
−a
esup I tr(

√
Ve−H

(′)

(L)
√
V)

≤ e−tL
−a
esup I tr(

√
Ve−H

(′)
√
V) (4.9)

for t ≥  and L > .�e last inequality and the �niteness of tr(
√
Ve−H(′)

√
V) can be

seen from [BHL,�m. 6.1].

�e next lemma accomplishes the transition from �nite-volume to in�nite-

volume expressions.

4.5 Lemma. For L >  and t ≥ , let f tL , g tL ∈ C∞
c (R) as in Lemma 4.3. Let n ∈ N and

m ∈ N.�en

sup
u,v∈[,]n
∣u∣+∣v∣=

∫
∞


dt tm tr∣

n

∏
j=

√
V f (u j+v j−)t

L (HL)Vg
(u j+v j)t
L (H′

L)
√
V

−
n

∏
j=

√
V f (u j+v j−)t

L (H)Vg(u j+v j)t
L (H′)

√
V ∣ →  (4.10)

as L →∞.

Proof. Let u, v ∈ [, ]n with ∣u∣+ ∣v∣ = . To shorten formulas, we introduce a vector
α ∈ (,∞)n via

α j− ∶= u j + v j− and α j ∶= u j + v j (4.11)

for  ≤ j ≤ n, and operators

A(L)
k ∶=

⎧⎪⎪⎨⎪⎪⎩

√
V f αk t

L (H(L))
√
V for k odd,√

Vgαk t
L (H′

(L))
√
V for k even

(4.12)

for  ≤ k ≤ n.�e di�erence of operator products in (4.10) is then
n

∏
j=

AL
j −

n

∏
j=

A j =
n

∑
k=

A⋯Ak−(AL
k − Ak)AL

k+⋯AL
n . (4.13)
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�e trace norm of this di�erence can be estimated via Lemma 4.4:�ere is a constant

C >  such that

tr∣
n

∏
j=

AL
j −

n

∏
j=

A j∣ ≤
n

∑
k=

∥AL
k − Ak∥(

k−
∏
j=
tr∣A j∣)(

n

∏
j=k+

tr∣AL
j ∣)

≤ Cn−
n

∑
k=

∥AL
k − Ak∥e−(∣α∣−αk)tL−a , (4.14)

where ∣α∣ = α +⋯+ αn denotes the 1-norm of α ∈ (,∞)n, and the de�nition of α
implies ∣α∣ = . We estimate the kth term in this sum. Notice that ∣α∣ − αk ≥  ≥ αk.

Let ε ∈ (,  − a) andM ∈ N. For L su�ciently large, Lemma 4.3 yields

∥AL
k − Ak∥e−(∣α∣−αk)tL−a ≤ ∥AL

k − Ak∥e−tL
−a

≤ QM(αk t/La)(La−M(−a−ε) + Ld+a(M+)e−cL
ε)e−tL−a , (4.15)

where QM(x) = ∑M+
ℓ= qℓxℓ is the polynomial in Lemma 4.3 with nonnegative coe�-

cients qℓ. Integrating (4.15) yields

∫
∞


dt tm∥AL

k − Ak∥e−(∣α∣−αk)tL−a

≤ (La−M(−a−ε) + Ld+a(M+)e−cL
ε)

M+
∑
ℓ=

qℓ ∫
∞


dt tme−tL

−a tℓ

Laℓ

= (La−M(−a−ε) + Ld+a(M+)e−cL
ε)

M+
∑
ℓ=

qℓΓ(n + ℓ)La(m+ℓ+)

Laℓ

≤ CMLa(m+)(La−M(−a−ε) + Ld+a(M+)e−cL
ε), (4.16)

with a constant CM >  depending on QM and n. For given ε <  − a, we can choose
M large enough for the L-terms to vanish as L →∞.

Using Lemma 4.5, we can rewrite the right-hand side of (4.5).

4.6 Corollary. Let n ∈ N.�en

∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× (tr
n

∏
j=

√
V f (u j+v j−)t

L (HL)Vg
(u j+v j)t
L (H′

L)
√
V

− tr
n

∏
j=

√
V f (u j+v j−)t

L (H)Vg(u j+v j)t
L (H′)

√
V) = o() (4.17)

as L →∞.
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Proof. A�er interchanging the integrations with respect to t and (u, v), the claim
follows from Lemma 4.5 and the uniform convergence therein.

4.7 Remarks. (a) From Remark 4.2 and Corollary 4.6, we conclude

tr((−∞,E](HL)(E,∞)(H′
L))

n ≥ ∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× tr
n

∏
j=

√
V χ−L(H)e(u j+v j−)t(H−E)V χ+L(H′)e−(u j+v j)t(H′−E)

√
V + o() (4.18)

as L →∞.
It is possible to rewrite the right-hand side of (4.18) as tr(χ−L(H)χ+L(H′))n.�is

form is useful for lower bounds, e.g., for the bound tr((−∞,E](HL)(E,∞)(H′
L))

n ≥
tr([−E ,E−L−a](H)[E+L−a ,E](H′))n. However, we will not use this form and therefore
omit the proof of this representation.

(b) When comparing the smooth cut-o� functions χ±L with the ones in [GKM,
Def. 3.13], the di�erence is that the cut-o� functions there have E as the boundary of
their support, while the ones here have distance L−a between E and their support. To
compensate, the t-integral has been cut o� at t = L−a in [GKM, Lemma 3.11], which
yields a lower bound for n = . For n ≥ , it is not immediately clear if the integrand
in (4.18) is positive, so cutting o� the integration might not result in a lower bound;

this is the reason we chose the cut-o� functions di�erently than in [GKM].

(c) In this connection, we mention the Bessis-Moussa-Villani conjecture

[BMV], recently proven by Stahl [Sta]: For two self-adjoint matrices A and B,
the function λ ↦ tr exp(A− λB) is the Laplace transform of a positive measure. One
consequence of this is that

∫[,]k+ du δ( − ∣u∣) tr(euABeuAB ⋯ eukABeuk+A) ≥  (4.19)

for k ∈ N, see [LS,�m. 4].�e expression in (4.19) is similar to the one in (4.18),
where we also expect the integration with respect to (u, v) to yield a positive expres-
sion for any t. If that was the case, we could adopt the same method as in [GKM].
However, it is not clear if (4.19) implies positivity in the context of (4.18), wheremore

than one operator occurs as exponent.

(d) As a �nal remark in this section, we mention that the distance L−a between E
and the support of χ±L might give a way of circumventing the lack of known bounds
on the spectral shi� function that resulted in the introduction of a subsequence in

Lemma 2.1, see also Remark 2.2: A bound like

µL
NL(E)+ − λL

NL(E) = O(L−) (L →∞) (4.20)
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on the distance between eigenvalues of HL and H′
L would imply a version of

Lemma 2.1 for the operators χ−L(H) and χ+L(H′) that does not require a subsequence.
However, we did not �nd a bound like (4.20) in the literature andwill therefore prove

a result involving subsequences in the sequel.

18



5 proof of lemma 4.3: a formula of helffer and
sjstrand

In this section, we prove Lemma 4.3.�e main technical tool to do so is a functional

calculus formula due to Hel�er and Sjőstrand [HS]. We state it here in the formu-

lation of [HS], see also [Dav].

5.1�eorem (Hel�er-Sjőstrand formula [HS, Section IX]). Let A be a self-adjoint
operator in a Hilbert spaceH . Let n ∈ N and f ∈ Cn+

c (R). Let ξ ∈ C∞
c (C) with the

identi�cationC ≅ R and ξ(z) =  in some complex neighborhoodU of spt f . De�ne
an almost analytic extension f̃ ∈ Cc(C) of f via

f̃ (x + iy) ∶= ξ(x + iy)
n

∑
k=

f (k)(x)(iy)
k

k!
(x , y ∈ R). (5.1)

�en

f (A) = − 
π ∫R dx ∫R dy (x + iy − A)− ∂z f̃ (x + iy), (5.2)

where ∂z ∶= ∂x + i∂y.

Proof. We prove that the integrand in (5.2) is absolutely (Bochner) integrable. First
notice that it has compact support. Moreover, ∂z f̃ (z) = f (n+)(x)(iy)n/n! for z =
x + iy ∈ U , and thus there is C >  such that ∣∂z f̃ (x + iy)∣ ≤ C∣y∣n for x , y ∈ R. Since
∥(z−A)−∥ ≤ ∣Im z∣− for z ∈ C∖σ(A), the integrand in (5.2) has no singularities and
therefore exists. It remains to show the equality in (5.2). For t ∈ R and ε > , de�ne

fε(t) ∶= −


π ∫R dx ∫∣y∣>ε
dy (x + iy − t)− ∂z f̃ (x + iy). (5.3)

�e assertion follows once we have established fε(t) → f (t) for t ∈ R as ε → .
Integrating by parts yields

fε(t) =


π ∫R dx ∫∣y∣>ε
dy ∂z



x + iy − t
f̃ (x + iy)

+ i
π ∫R dx ( 

x + iε − t
f̃ (x + iε) − 

x − iε − t
f̃ (x − iε)). (5.4)

�e �rst term is zero due to holomorphy.�e second term is, for ε small enough,
n

∑
k=

(iε)k
k!

i
π ∫R dx f (k)(x)( 

x + iε − t
− (−)k
x − iε − t

). (5.5)

�e integral in (5.5) converges for all k due to the Sokhotski-Plemelj formula, see
below.�us only the k =  term of the sum remains in the limit and yields f (t).
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In the proof of�eorem 5.1, we used the Sokhotski-Plemelj formula, which we

state and prove as a convenience for the reader.

5.2 �eorem (Sokhotski-Plemelj formula). Let a < x < b and φ ∶ [a, b] → C be
continuous, and di�erentiable at x.�en

lim
ε↓ ∫

b

a
dx

φ(x)
x − x ± iε

= ∓iπφ(x) + pv∫
b

a
dx

φ(x)
x − x

, (5.6)

where pv∫ b
a dx stands for the Cauchy principal value.

Proof. By extending φ continuously, it su�ces to treat the case x = (a + b)/.�en

∫
b

a
dx

φ(x)
x − x ± iε

= ∫
b

a
dx φ(x) x − x ∓ iε

(x − x) + ε

= φ(x) ∫
b

a
dx

x − x ∓ iε
(x − x) + ε

+ ∫
b

a
dx

φ(x) − φ(x)
x − x ± iε

. (5.7)

�e �rst integral has twoparts: Its real part is zero by cancellation,while the integrand

of its imaginary part has x ↦ ∓i arctan x−x
ε as an antiderivative.�e second integral

has a pointwise convergent integrand that is dominated by

∣φ(x) − φ(x)
x − x

∣ ≤ C (a ≤ x ≤ b) (5.8)

for some C > .�erefore,

lim
ε→∞ ∫

b

a
dx

φ(x)
x − x ± iε

= ∓iπφ(x) + ∫
b

a
dx

φ(x) − φ(x)
x − x

. (5.9)

�e second term is the principal value pv∫ φ(x)
x−xdx, since

( ∫
x−ε

a
dx + ∫

b

x+ε
dx) φ(x)

x − x
= ( ∫

x−ε

a
dx + ∫

b

x+ε
dx)φ(x) − φ(x)

x − x

+ φ(x)( ∫
x−ε

a
dx + ∫

b

x+ε
dx) 

x − x
(5.10)

for ε > , where the second term is zero due to cancellation.

Before we can prove Lemma 4.3, we need one additional technical result, which is

a consequence of the geometric resolvent inequality.We state it here in a formulation

suited for our application and give a proof in�eorem c.2 in theAppendix for amore

general formulation.�e proof is an adaptation of the one in [Sto].
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5.3 Lemma. Let L >  and let A ⊆ ΩL− be closed. Take φ ∈ Cc(ΩL) with φ(x) = 
for x ∈ ΩL−.�en UL ∶= ΩL ∖ ΩL− is an open neighborhood of spt∇φ and δ ∶=
dist(∂UL , spt∇φ) > . Let K ⊆ C be compact.�en there exists Cgr >  depending
on δ, ∥∇φ∥∞, V , and K such that for all z ∈ ρ(H(′)

L ) ∩ ρ(H(′)) ∩ K the operator
norm estimate

∥A((z−H(′))−−(z−H(′)
L )−)A∥ ≤ Cgr∥A(z−H(′)

L )−UL∥∥UL(z−H(′))−A∥
(5.11)

holds, where the indicator functions are understood as their associated multiplica-

tion operators.

Proof of Lemma 4.3. �e proof is an adaptation of [GKM, Proof of Lemma 3.14].
We use the identi�cation R ≅ C and choose ξ ∈ C∞

c (C) with ξ(z) =  for z ∈
spt ht

L × [−, ] and ξ(z) =  for z with distC(z, spt ht
L) ≥  for all t ≥  and L > .

Since spt ht
L ⊆ [E , E + ], the function ξ can be chosen independently of L and t,

with ∥ξ∥∞ =  and ∥ξ′∥∞ ≤ . For n ∈ N, de�ne an almost analytic extension h̃t
L of h

t
L

as in�eorem 5.1, i.e.,

h̃t
L(z) ∶= ξ(z)

n

∑
k=

(iy)k
k!

dk

dxk h
t
L(x) (z = x + iy ∈ C). (5.12)

Let TL and T stand for either HL and H or H′
L and H′. By�eorem 5.1,

ht
L(TL) − ht

L(T) = 

π ∫C dz ((z − T)− − (z − TL)−)∂z h̃t
L(z). (5.13)

In (5.13), we consider the bounded operators occurring there as mapping from

L(ΩL) to L(Rd) by restricting and embedding canonically.
Now, note that there is a constant C > , independent of L and t, such that

∣∂z h̃t
L(z)∣ ≤ C∣y∣n

n+
∑
k=

∣ d
k

dxk h
t
L(x)∣ (z = x + iy ∈ C) (5.14)

and the bounds (4.2) and (4.3) imply, by the Leibniz rule,

∣ d
k

dxk h
t
L(x)∣ ≤ Lbk

k

∑
j=

(k
j
)( t

La )
j
ck− j[−E−,E+](x) (5.15)

for t ≥ , L > , and x ∈ R. Notice that (5.15) is true for both f tL and g tL, since the
exponential part of both functions is bounded by one and their supports are subsets
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of [−E − , E + ]. From (5.15), we conclude that there is a polynomial Qn over R of
degree n +  with nonnegative coe�cients such that

 ≤
n+
∑
k=

∣ d
k

dxk h
t
L(x)∣ ≤ Qn(t/La)La(n+)[−E−,E+](x) (5.16)

for all t ≥ , L > , and x ∈ R. We are looking for a bound on ∥
√
V(ht

L(TL) −
ht
L(T))

√
V∥, which we can express using (5.13). We split the integration in two parts

and de�ne

D<
L(t) ∶=



π ∫∣y∣≤L−+ε
dz

√
V((z − T)− − (z − TL)−)

√
V ∂z h̃t

L(z),

D>
L(t) ∶=



π ∫∣y∣>L−+ε
dz

√
V((z − T)− − (z − TL)−)

√
V ∂z h̃t

L(z).
(5.17)

�en
√
V(ht

L(TL) − ht
L(T))

√
V = D<

L(t) + D>
L(t), and we can bound D<

L(t) using
the boundedness of

√
V and estimates (5.14) and (5.16) and the norm bounds of the

resolvents:

∥D<
L(t)∥ ≤



π ∫∣y∣≤L−+ε
dz


∣y∣ ∥
√
V∥∣∂z h̃t

L(z)∣

≤ C
π
∥V∥∞ ∫∣y∣≤L−+ε

dz ∣y∣n−
n+
∑
k=

∣ d
k

dxk h
t
L(x)∣

= C
πn

∥V∥∞Ln(−+ε) ∫R dx
n+
∑
k=

∣ d
k

dxk h
t
L(x)∣

≤ C<Qn(t/La)La+n(−+ε+a) (t ≥ , L > ), (5.18)

with C< ∶= (C/πn)(E + )∥V∥∞ <∞ and the convention z = x + iy ∈ C.
We turn now to D>

L(t), which we bound using Lemma 5.3, estimate (5.14), the
properties of ξ, and the norm bound for one of the resolvents:

∥D>
L(t)∥ ≤

Cgr

π
∥V∥∞∫∣y∣>L−+ε

dz ∥sptV(z−TL)−UL∥∥UL(z−T)−sptV∥∣∂z h̃t
L(z)∣

≤ CCgr

π
∥V∥∞∫L−+ε<∣y∣≤

dz ∣y∣n−∥UL(z − T)−sptV∥
n+
∑
k=

∣ d
k

dxk h
t
L(x)∣ (5.19)

for t ≥  and L > , where UL ∶= ΩL ∖ ΩL−, and the constant Cgr depends only

on E, ξ, and the potentials V and V . To bound the operator norm in (5.19), we
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employ a Combes-�omas estimate for operator kernels of resolvents of Schrödinger

operators, which implies

∥Λ(x + iy − T)−Λ′∥ ≤
Cct

∣y∣ e
−cct dist(Λ,Λ′)∣y∣ (∣x∣ ≤ E + , ∣y∣ ≤ ), (5.20)

where Λ and Λ′ are cubes of side length , see [GK,�m. 1] or [Sto,�m. 2.4.1
and Rem. 2.4.3].�e constants Cct and cct in (5.20) depend only on E, the space
dimension d, and the potentialsV andV.�us, by covering sptV andUL with cubes

of side length , we can �nd a constant C̃ > , independent of L and t, such that
CCgr

π
∥V∥∞∥UL(z − T)−sptV∥ ≤ C̃Ld ∣y∣−e−cct ∣y∣L/ (5.21)

for L > L, where L depends on sptV and Ω. Let n ≥ . Applying (5.21) and (5.16)
to (5.19) gives

∥D>
L(t)∥ ≤ C̃(E + )Qn(t/La)Ld+a(n+) ∫L−+ε<∣y∣≤

dy ∣y∣n−e−cct ∣y∣L/

≤ C>Qn(t/La)Ld+a(n+)e−cctL
ε/ (5.22)

for t ≥  and L > L, with C> ∶=  ⋅ n−/(n − )C̃(E + ).
Combining the estimates (5.18) and (5.22), we arrive at

∥
√
V(ht

L(TL) − ht
L(T))

√
V∥ ≤ ∥D<

L(t)∥ + ∥D>
L(t)∥

≤ (C< + C>)Qn(t/La)(La+n(−+ε+a) + Ld+a(n+)e−cctL
ε/), (5.23)

which implies the assertion for n = M.
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6 infinite-volume trace expressions

Let n ∈ N. In (4.18), we gave a lower bound on the nth term of (1.14) in which only
in�nite-volume objects occur. In order to control the errors in that step, it was nec-

essary to introduce smoothed versions of indicator functions in (4.4). In the present

section, our aim is to replace these smoothed functions with discontinuous ones,

which will allow us to determine the asymptotics of the resulting expression.

We introduce the measures µ, ν ∶Borel(R)→ [,∞] de�ned via
µ(A) ∶= tr(

√
V A(H)

√
V) and ν(B) ∶= tr(

√
V B(H′)

√
V) (6.1)

for A, B ∈ Borel(R).�e expressions in (6.1) are �nite for bounded Borel sets as a
consequence of [Sim,�m. b.9.2].

�e absolutely continuous parts of the measures µ and ν will turn out to be
important. To de�ne their densities in an applicable manner, we use a convergence

result due to Birman and Èntina.�is statement is known as the limiting absorption
principle [Yafa, Chap. 6].
6.1 Proposition ([BÈ, Lemma 4.3]). �ere exists a Lebesgue null setN ⊂ R such
that the limits

A(E) ∶= lim
ε→



ε
√
V (E−ε,E+ε)(H)

√
V ,

B(E) ∶= lim
ε→



ε
√
V (E−ε,E+ε)(H′)

√
V

(6.2)

exist in trace class for all E ∈ R ∖N and de�ne nonnegative trace class operators

A(E) and B(E).
We state a simple consequence of Proposition 6.1 that follows directly from the

de�nitions.

6.2 Corollary. �e functions E ↦ trA(E), respectively E ↦ trB(E), are locally
integrable Lebesgue densities of the absolutely continuous parts of µ, respectively
ν.
We will need two auxiliary propositions.

6.3 Lemma. Let µ be a locally �nite Borel measure on R. Let c >  and  < δ < c.
�en for a.e. x ∈ R there is a constant C, depending on x, c, and µ, such that

∫(x ,x+δ)
dµ(x) e−t(x−x) ≤ C

 − e−tδ

t
(t > ). (6.3)

�e exceptional set of values of x for which the assertion does not hold does not
depend on c or δ.
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Proof. �e constant de�ned by

C ∶= sup
ε∈(,c)



ε
µ([x, x + ε]) (6.4)

is �nite for a.e. x ∈ R. We compute using Tonelli’s theorem

∫[x ,x+δ]
dµ(x) e−t(x−x)

= ∫[x ,x+δ]
dµ(x)(e−tδ + t ∫

x+δ

x
dξe−t(ξ−x))

= δe−tδ


δ
µ([x, x + δ]) + t ∫

x+δ

x
dξ ∫[x ,ξ] dµ(x) e−t(ξ−x)

≤ Cδe−tδ + t ∫
x+δ

x
dξ e−t(ξ−x) ξ − x

ξ − x
µ([x, ξ])

≤ Cδe−tδ + Ct ∫
δ


dξ ξe−tξ = C

 − e−tδ

t
. (6.5)

6.4 Corollary. In the situation of Lemma 6.3, let  < ε < δ.�en for a.e. x ∈ R the
bound

∫(x+ε,x+δ)
dµ(x) e−t(x−x) ≤ Ce−tε/

 − e−tδ/

t/ ≤ C
e−tε/

t/ (t > ) (6.6)

holds, with C >  from Lemma 6.3.�e exceptional set of measure zero does not
depend on c, ε, or δ.

Proof. �e assertion follows from e−t(x−x) ≤ e−tε/e−t(x−x)/ for ε ≤ x − x ≤ δ and
Lemma 6.3.

6.5 De�nition. (a) For n ∈ N, we de�ne

In ∶= ∫[,]n du δ( − ∣u∣)


∏n
j=(u j + u j+)

, (6.7)

where un+ ∶= u for u ∈ Rn.

(b) We de�ne discontinuous L-independent functions χ± ∶R→ [, ] by
χ− ∶=max{χ−L , [−E ,E)} and χ+ ∶=max{χ+L , (E,E]}. (6.8)

6.6 Remarks. (a)�e integral In will be discussed further in § 8; in particular, In is
�nite for every n ∈ N.
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(b)�e functions χ±L converge pointwise to χ± as L →∞.�ey are obtained from
replacing the smooth L-dependent part by a discontinuous step at E.�e following
�gure illustrates the behavior of χ±.

E E−E E+−E−

χ− χ+

�e next lemma is the main result of the present section.

6.7 Lemma. �ere is a null setN ⊆ R such that for E ∈ R ∖N ,

∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× (tr
n

∏
j=

√
V χ−L(H)e(u j+v j−)t(H−E)V χ+L(H′)e−(u j+v j)t(H′−E)

√
V

− e−tL
−a
tr

n

∏
j=

√
V χ−(H)e(u j+v j−)t(H−E)V χ+(H′)e−(u j+v j)t(H′−E)

√
V) = O()

(6.9)

as L →∞.

Proof. First notice that if f j, g j are bounded measurable functions of compact sup-
port for  ≤ j ≤ n, then

tr
n

∏
j=

∣
√
V f j(H)Vg j(H′)

√
V ∣ ≤

n

∏
j=
tr(

√
V f j(H)

√
V) tr(

√
Vg j(H′)

√
V)

= ∫Rn
dµn(x) ∫Rn

dνn(y)
n

∏
j=

f j(x j)g j(y j), (6.10)

where we wrote µn and νn for the n-fold product measure of µ and ν, respectively.
For brevity, set δ ∶= L−a. We introduce a vector α ∈ (,∞)n via

α j− ∶= u j + v j− and α j ∶= u j + v j (6.11)

for  ≤ j ≤ n, and operators

A(L)
k ∶=

⎧⎪⎪⎨⎪⎪⎩

√
V χ−(L)(H)eαk t(H−E)

√
V for k odd,√

V χ+(L)(H′)e−αk t(H′−E)
√
V for k even

(6.12)
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for  ≤ k ≤ n.�e di�erence of operator products in (6.9) is then

n

∏
j=

AL
j − e−tδ

n

∏
j=

A j = e−tδ(
n

∏
j=

AL
j −

n

∏
j=

A j) + ( − e−tδ)
n

∏
j=

AL
j , (6.13)

where as in (4.13),

n

∏
j=

AL
j −

n

∏
j=

A j =
n

∑
k=

A⋯Ak−(AL
k − Ak)AL

k+⋯AL
n . (6.14)

We will treat the two terms on the right-hand side of (6.13) individually. For the

�rst term, we estimate the kth term in (6.14). We will carry out the argument in the
case where k is even.�e argument is similar for odd k. Since  ≤ χ+ − χ+L ≤ [E,E+δ],
(6.10) implies

tr∣A⋯Ak−(AL
k − Ak)AL

k+⋯AL
n∣

≤ ∫[−E−,E]n dµn(x) ∫[E,E+]n dνn(y) [E,E+δ](yk)

× exp(−t
n

∑
j=

((u j + v j)(y j − E) − (u j + v j−)(x j − E)))

≤ Cn
 − e−tδ

t
( − e−t(E+)

t
)
n− 

∏n
j=(u j + v j)(u j + v j−)

, (6.15)

where the last inequality follows from applying Lemma 6.3.�e classical formula

∫
∞


dt e−δt  − e−εt

t
= ln( + ε/δ) (δ, ε > ) (6.16)

now implies

∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣) e−tδ tr∣

n

∏
j=

AL
j −

n

∏
j=

A j∣

≤ nCn ∫
∞


dt e−tδ

 − e−tδ

t ∫[,]n×[,]n d(u, v)
δ( − ∣u∣ − ∣v∣)

∏n
j=(u j + v j)(u j + v j−)

= nCnIn ln , (6.17)

with In <∞ from (6.7).
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�e trace norm of the second term on the right-hand side of (6.13) is

( − e−tδ) tr∣
n

∏
j=

AL
j ∣ ≤ ( − e−tδ) ∫[−E−,E−δ]n

dµn(x) ∫[E+δ,E+]n
dνn(y)

× exp(−t
n

∑
j=

((u j + v j)(y j − E) − (u j + v j−)(x j − E)))

≤ Cn( − e−tδ)
n

∏
j=

e−(u j+v j−)tδ/e−(u j+v j)tδ/

(u j + v j−)(u j + v j)(t/)
= (C)n( − e−tδ)e−tδ t−n
∏n

j=(u j + v j)(u j + v j−)
,

(6.18)

where the second inequality is a consequence of Corollary 6.4. Integration yields

∫
∞


dt tn− ∫[,]n×[,]n d(u, v) δ(− ∣u∣− ∣v∣)

( − e−tδ)e−tδ t−n
∏n

j=(u j + v j)(u j + v j−)
= In ln ,

(6.19)

where we used formula (6.16) again.

6.8 Remark. From Equation (4.18) in Remark 4.7 (a) and Lemma 6.7, we conclude

tr((−∞,E](HL)(E,∞)(H′
L))

n

≥ ∫
∞


dt tn−e−tL

−a ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× tr
n

∏
j=

√
V χ−(H)e(u j+v j−)t(H−E)V χ+(H′)e−(u j+v j)t(H′−E)

√
V +O() (6.20)

as L →∞, for a.e. E ∈ [−E, E], with the exceptional set not depending on a, n, and
E. In the next section, we determine the asymptotics of the right-hand side of (6.20).

29





7 the logarithmic divergence

Let n ∈ N. In this section, we determine the asymptotics of

∫
∞


dt tn−e−tL

−a ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× tr
n

∏
j=

√
V χ−(H)e(u j+v j−)t(H−E)V χ+(H′)e−(u j+v j)t(H′−E)

√
V , (7.1)

and therefore the asymptotics of a lower bound of the nth term of (1.14), when taking
an appropriate subsequence of length scales – see Remark 6.8 and Lemma 2.1.

We start with a lemma.

7.1 Lemma. For a.e. E ∈ [−E, E], the limits
At(E) ∶=

√
Vte t(H−E)χ−(H)

√
V → A(E) (t →∞),

Bt(E) ∶=
√
Vte−t(H

′−E)χ+(H′)
√
V → B(E) (t →∞)

(7.2)

exist in trace class. Moreover,

sup
t≥

∥At(E)∥ ≤ sup
t≥
trAt(E) <∞,

sup
t≥

∥Bt(E)∥ ≤ sup
t≥
trBt(E) <∞.

(7.3)

Proof. We follow [GKM, Lemma 3.16] and treat the operator Bt(E); the assertions
for At(E) can be proved using analogous arguments. Recall that Bt(E) is nonnega-
tive. For (7.2), we show (1) convergence of the trace norms and (2) weak convergence

of the operators. Together, this implies convergence in trace class via [Sim, Adden-

dum H].

For the trace norms, we compute

trBt(E) = tr(
√
Vte−t(H

′−E)χ+(H′)
√
V)

= ∫[E,E] dν(y) te−t(y−E) + ∫[E ,E+] dν(y) χ+(y)te−t(y−E), (7.4)

where the second term converges to zero as t → ∞ for E < E, while the �rst term
can be written as

∫[E,E] dν(y) te−t(y−E) = (νE ∗ ρt)(E), (7.5)

where we introduced the �nite measure νE(M) ∶= ν(M ∩ [−E, E]) for M ∈
Borel(R) and the approximation of the identity x ↦ ρt(x) ∶= te tx(−∞,)(x). As
t →∞, the convolution in (7.5) converges for a.e. E ∈ [−E, E] to dνac

dE = trB(E), see
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e.g. [MS, Subsec. 2.4.1].�us, the trace norm of Bt(E) converges to that of B(E)
as t →∞.�is, together with the continuity of [,∞) ∋ t ↦ trBt(E), which can be
seen from (7.4), implies (7.3).

For the weak convergence, take some dense countable setD ⊆ L(Rd).�en by
a similar delta-argument as above,

lim
t→∞

⟨φ, Bt(E)ψ⟩ = ⟨φ, B(E)ψ⟩ (7.6)

for all φ,ψ ∈ D and all E ∈ [−E, E] outside a null set depending on D. Together
with (7.3), this proves weak convergence to B(E) for a.e. E ∈ [−E, E], see [Wei,
�m. 4.26].

�e following quantity will enter the asymptotics we set out to prove.

7.2 De�nition. For E, . . . , En ∈ R, de�ne
ηn(E, . . . , En) ∶= tr(A(E)B(E)⋯A(En−)B(En)) (7.7)

if the operators exist, and zero otherwise. In addition to the function ηn ∶Rn → C
de�ned via (7.7), de�ne ηn ∶R→ [,∞) via the diagonal values

ηn(E) ∶= ηn(E , . . . , E) = tr(A(E)B(E))n (7.8)

if the operators exist, and zero otherwise.�e nonnegativity of (7.8) can be seen by

the cyclicity of the trace, cf. Lemma 2.3.

7.3 Remark. �e function ηn ∶Rn → C can be viewed as the density of the (in�nite-
volume) spectral correlation expression

µn(A ×⋯×An × B ×⋯× Bn) ∶= tr(A(H)V B(H)V ⋯ An(H)V Bn(H)V)
(7.9)

for n ∈ N and bounded A, . . . ,An , B, . . . , Bn ∈ Borel(R), which can be thought
of as the limit measure of the measures µnL mentioned in Remark 2.5. However, it
is not immediately clear if (7.9) in fact de�nes a measure, and if so, it is not nec-

essarily nonnegative for n ≥ . However, its density ηn is de�ned on the diagonal
(E , . . . , E) ∈ Rn for a.e. E ∈ R and is nonnegative there.

�e next corollary will show that the trace expression in (7.1), times an appropri-

ate power of t, converges to ηn(E).
7.4 Corollary. Let α, . . . , αn , β, . . . , βn > .�en

tn tr
n

∏
j=

√
V χ−(H)α jeα j t(H−E)V χ+(H′)β je−β j t(H′−E)

√
V → ηn(E) (7.10)

as t →∞.
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Proof. By Lemma 7.1, tr∣Aα j t(E) − A(E)∣ →  and tr∣Bβ j t(E) − B(E)∣ →  as t →∞,
while supt≥∥At(E)∥ and supt≥∥Bt(E)∥ are �nite. Writing the di�erence of operator
products in (7.10) as in (4.13), this proves the corollary.

7.5 Remark. Using similar arguments as in Lemma 7.1 and Corollary 7.4, one can
show that t ↦ At(E), t ↦ Bt(E), and

t ↦ tn tr
n

∏
j=

√
V χ−(H)α jeα j t(H−E)V χ+(H′)β je−β j t(H′−E)

√
V (7.11)

are continuous maps from [,∞) into the space of trace class operators.
We will need the following classical result, which is known as the »�nal value

theorem« in control theory. As a convenience for the reader, we give a proof.�e

statement and proof can also be found in [Doe,�m. 34.3].

7.6 Lemma. Let f ∈ L,loc(R) and suppose limt→∞ f (t) exists.�en

lim
t→∞

f (t) = lim
s↓

s ∫
∞


dt e−st f (t). (7.12)

Proof. Let ε > . Set y ∶= limt→∞ f (t) and write h(t) ∶= f (t) − y. Choose T ≥  such
that ∣h(t)∣ < ε/ for t ≥ T .�en

F(s) ∶= ∫
∞


dt e−st f (t)

= y ∫
∞


dt e−st + ∫

T


dt e−st( f (t) − y) + ∫

∞

T
dt e−sth(t) (7.13)

for s > .�e �rst term on the right-hand side of (7.13) is y/s.�e others are

∣ ∫
∞

T
dt e−sth(t)∣ ≤ ε

s
(7.14)

and

∣ ∫
T


dt e−st( f (t) − y)∣ ≤ ∫

T


dt ∣ f (t)∣ + T ∣y∣ =∶ C (7.15)

for s > , with C independent of s.�us

∣F(s) − y
s
∣ ≤ C + ε

s
(s > ), (7.16)

and therefore

∣sF(s) − y∣ ≤ sC + ε


(s > ). (7.17)

For s ≤ ε/(C), this is smaller than ε.
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7.7 Corollary. Let f ∈ L,loc(R) and suppose limt→∞ f (t) exists.�en

lim
t→∞

f (t) = − lim
s↓



ln s ∫
∞


dt t−e−st f (t). (7.18)

Proof. Take a compact interval [s, c] ⊆ (,∞).�en
d

ds ∫
∞


dt t−e−st f (t) = − ∫

∞


dt e−st f (t) (7.19)

for s ∈ [s, c], since ∣ dds t−e−st f (t)∣ ≤ e−s t ∣ f (t)∣, which is integrable on [,∞).�ere-
fore (7.19) holds for all s > . Set y ∶= limt→∞ f (t). If lims↓ ∫∞ dt t−e−st f (t) exists,
then y =  and the assertion holds. Otherwise,

− lim
s↓



ln s ∫
∞


dt t−e−st f (t) = lim

s↓



/s ∫
∞


dt e−st f (t)

= lim
s↓

s ∫
∞


dt e−st f (t)

= lim
t→∞

f (t) (7.20)

by Lemma 7.6.

We are now ready to compute the asymptotics of (7.1).

7.8�eorem. For a.e. E ∈ [−E, E],

lim
L→∞



a ln L ∫
∞


dt tn−e−tL

−a ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× tr
n

∏
j=

√
V χ−(H)e(u j+v j−)t(H−E)V χ+(H′)e−(u j+v j)t(H′−E)

√
V = Inηn(E).

(7.21)

Proof. Let u, v ∈ [, ]n and de�ne

Z(u, v) ∶=
n

∏
j=

(u j + v j−)(u j + v j). (7.22)

Using the notation of Lemma 7.1,

Z(u, v)tn tr
n

∏
j=

√
V χ−(H)e(u j+v j−)t(H−E)V χ+(H′)e−(u j+v j)t(H′−E)

√
V

= tr
n

∏
j=

A(u j+v j−)t(E)B(u j+v j)t(E), (7.23)
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where

∣tr
n

∏
j=

A(u j+v j−)t(E)B(u j+v j)t(E)∣ ≤ (sup
t≥
trAt(E) sup

t≥
trBt(E))

n <∞. (7.24)

By Corollary 7.4,

lim
t→∞
tr

n

∏
j=

A(u j+v j−)t(E)B(u j+v j)t(E) = ηn(E) (7.25)

for all u, v ∈ (, ]n. By Remark 6.6,

In = ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)


Z(u, v) <∞. (7.26)

Equations (7.24) to (7.26) supply the assumptions of the dominated convergence the-

orem, which yields the convergence

lim
t→∞

f (t) = Inηn(E) (7.27)

for

f (t) ∶= ∫[,]n×[,]n d(u, v) δ( − ∣u∣ − ∣v∣)

× tn tr
n

∏
j=

√
V χ−(H)e(u j+v j−)t(H−E)V χ+(H′)e−(u j+v j)t(H′−E)

√
V

= ∫[,]n×[,]n d(u, v)
δ( − ∣u∣ − ∣v∣)

Z(u, v) tr
n

∏
j=

A(u j+v j−)t(E)B(u j+v j)t(E) (t > ).

(7.28)

�e assertion (7.21) then follows from

− lim
L→∞



ln(L−a) ∫
∞


dt t−e−tL

−a
f (t) = lim

t→∞
f (t), (7.29)

which is a consequence of Corollary 7.7 and

sup
L≥
∫



dt t−e−tL

−a
f (t) <∞. (7.30)

7.9 Remark. Continuing from Remark 6.8, we have proved the asymptotic bound

tr((−∞,E](HL)(E,∞)(H′
L))

n ≥ aInηn(E) ln L + o(ln L) (7.31)

as L → ∞ for every  < a < , with an a-dependent error term. From this, one can
infer that (7.31) holds with a =  as well. We will defer this argument to the proof of
the asymptotic bound on the full ground-state overlap ∣SL(E)∣ in�eorem 10.1.
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8 the integral ∫
[,]n du δ( − ∣u∣)∏n

j=(u j + u j+)−

In this section,1 we compute the coe�cient of ηn(E) in the asymptotics in �eo-
rem 7.8, i.e.,

In = ∫[,]n du δ( − ∣u∣)


∏n
j=(u j + u j+)

(8.1)

from De�nition 6.5. We will prove the following theorem.

8.1�eorem. Let n ∈ N≥.�en

In = (π)n−
(Γ( n

 ))


Γ(n) . (8.2)

In particular,�eorem 8.1 implies the �niteness of In. We begin with two elemen-
tary lemmas.

8.2 Lemma. For n ∈ N≥, de�ne

Jn ∶= ∫[,]n du δ( − ∣u∣)


∏n−
j= (u j + u j+)

. (8.3)

�en

In =
n

Jn . (8.4)

Proof.

In =


 ∫[,]n du δ( − ∣u∣)
∣u∣

∏n
j=(u j + u j+)

= 


n

∑
k=
∫[,]n du δ( − ∣u∣)

uk + uk+

∏n
j=(u j + u j+)

= n
 ∫[,]n du

δ( − ∣u∣)
(u + u)⋯(un− + un)

= n

Jn . (8.5)

8.3 Lemma. Let n ∈ N≥ and let f ∈ L(,∞) with ∫∞ dt f (t) ≠ .�en

Jn = ∫(,∞)n
du

f (∣u∣)
∏n−

j= (u j + u j+)
/ ∫

∞


dt f (t). (8.6)

1 �e main results of this section, which lead to the proof of (8.2), were communicated to me by Dr. Pe-

ter Otte of Bochum University.
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In particular,

Jn = ∫∆n

du
∏n−

j= (u j + u j+)
= ∫(,∞)n

du
e−∣u∣

∏n−
j= (u j + u j+)

, (8.7)

where ∆n is the n-dimensional standard simplex.

Proof. For t > , de�ne

Jn(t) ∶= ∫(,∞)n
du

δ(t − ∣u∣)
∏n−

j= (u j + u j+)
. (8.8)

�en Jn = Jn() = Jn(t), where the last equality follows using the substitution u ↝ tu
and the scaling property of the Dirac distribution.�erefore,

Jn ∫
∞


dt f (t) = ∫(,∞)n

du ∫
∞


dt

δ(t − ∣u∣) f (t)
∏n−

j= (u j + u j+)

= ∫(,∞)n
du

f (∣u∣)
∏n−

j= (u j + u j+)
. (8.9)

In the sequel, we will need the Rosenblum-Rovnyak integral operator

T ∶ L(,∞)→ L(,∞), see [Ros] and [Rov], de�ned via

(T f )(x) ∶= ∫
∞


dy

e−(x+y)/

x + y
f (y) (x ∈ (,∞), f ∈ L(,∞)). (8.10)

�is operator can be explicitly diagonalized: Following [Yafb, Sec. 4.2], we de�ne

the unitary operator U ∶ L(,∞)→ L(,∞) via

(U f )(k) = π−
√
k sinh(πk) ∣Γ(/ − ik)∣ ∫

∞


dx x−W,ik(x) f (x) (8.11)

for f ∈ L(,∞) and k ∈ (,∞), whereW,ik denotes the Whittaker functions, see

[DLMF, Sec. 13.14].�e spectral representation of T due to Rosenblum reads

(UT f )(k) = π
cosh(kπ)(U f )(k) (k ∈ (,∞), f ∈ L(,∞)), (8.12)

see [Yafb, Prop. 4.1].

Proof of�eorem 8.1. Let n ∈ N≥. From (8.10) and the second form in (8.7), we see
that

Jn = ⟨φ, Tn−φ⟩, (8.13)
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with φ(x) ∶= e−x/. From (8.13) and (8.12), we obtain

Jn = ⟨Uφ,UTn−φ⟩ = ∫
∞


dk ∣φ̂(k)∣(

π
cosh(kπ))

n−
, (8.14)

where φ̂ ∶= Uφ. In order to compute φ̂, we employ the classical formula

∣Γ(/ − ik)∣ = π
cosh(kπ) (k ∈ R), (8.15)

which is a consequence of the re�ection formula for the Gamma function, and

∫
∞


dx x−W,ik(x)e−x/ =

π
cosh(kπ) (k > ), (8.16)

which follows from the special case z = / and ν = κ =  in [DLMF, eq. 13.23.4].
From (8.11), (8.15), and (8.16), we deduce

∣φ̂(k)∣ = πk
sinh(kπ)
cosh(kπ) (k > ). (8.17)

In (8.14), this yields

Jn = πn− ∫
∞


dk k

sinh(k)
cosh(k)n+ =

πn−

n ∫
∞


dk



cosh(k)n , (8.18)

where we applied the substitution k ↝ k/π and integrated by parts.�is integral can
be evaluated using the substitutions y = cosh(k)− and x = y, one a�er the other:

Jn =
πn−

n ∫



dy

yn−√
 − y

= πn−

n ∫



dx xn/−( − x)−/ = πn−

n
B(n/, /),

(8.19)

since k′(y) = −y−( − y)−/, where B(x , y) = ∫  dt tx−( − t)y− denotes the Beta
function. �e claim then follows by expressing the Beta function via the Gamma

function and then applying the classical duplication formula.

8.4 Remark. (a)�e Rosenblum-Rovnyak operator is the special case T = H in
[Ros, eq. (2.3)] and is unitarily equivalent to theHilbert matrix H ∶ ℓ(N)→ ℓ(N),

(Hx) j ∶=
∞
∑
k=

xk
j + k −  ( j ∈ N, x ∈ ℓ(N)). (8.20)

In analogy to (8.13), the representation

In =
n

⟨e,Hn−e⟩ (8.21)

holds, where e ∶= (, , . . . ) ∈ ℓ(N).
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(b) Equation (8.2) implies other nontrivial integral identities. For instance, from

I = J = 
π one can deduce

∫



du (Li(

u − 
u

))


= 


π, (8.22)

where Li(z) = ∑∞
k=

zk
k denotes the dilogarithm. To prove (8.22), start from the �rst

form in (8.7) and parameterize the simplex using the Jacobi map [Kön, Sec. 9.3],

then evaluate four of the �ve resulting integrals.

It is also possible to prove (8.22) without using (8.2). It follows for instance by us-

ing themore complicated integral identities of Freitas [Fre, Table 3]; the expression

for ∫  dx Li

(x) there implies (8.22), which in turn implies (8.2) for the case n = .

As the last step in the current section, we determine the even part of the generat-

ing function of (Jn)n≥.
8.5 Proposition. For n ∈ N≥, let Jn be given by (8.3).�en

∞
∑
n=

Jnxn = π−(arcsin(πx)) (∣x∣ ≤ 
π). (8.23)

Proof. �e well-known power series of arcsin,

arcsin(x) =
∞
∑
n=

(n
n
) xn+

n(n + ) =∶
∞
∑
n=

anxn+ (∣x∣ ≤ ), (8.24)

implies

(arcsin(x)) =
∞
∑
n=

bnxn+ (∣x∣ ≤ ), (8.25)

with

bn ∶=
n

∑
k=

akan−k = n+
(n!)

(n + )! (n ∈ N), (8.26)

as can be shown by induction (or looked up in a table of series, e.g., [GR,

eq. 1.645 2]). By�eorem 8.1,

In+ = (π)n (n!)
(n + )! (n ∈ N) (8.27)

and thus Jn+ = 
n+ In+ = πnbn.�is implies

(arcsin(x)) =
∞
∑
n=

bnxn+ = π
∞
∑
n=

Jn+(
x
π
)
n+

(∣x∣ ≤ ). (8.28)
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9 relations to scattering theory

In this section, the coe�cient ηn(E) inDe�nition 7.2, which entered the asymptotics
in�eorem 7.8, is given a scattering theoretic interpretation.

We �x some notation: Let Hac and H′
ac be the absolutely continuous parts of H

and H′. Let H ∶= L(Rd) and let Hac ∶= (Hac)H be the absolutely continuous sub-
space of the operator H. Let ( fn) be an orthonormal basis ofH , such that

L ∶= lin{ fn; n ∈ N} ⊆H (9.1)

is dense. We begin with a de�nition.

9.1 De�nition. Let σ̂ ⊆ σ(H) be a core of the spectrum of H in the sense of [Yaf,
Def. 1.3.8], i.e., a measurable set σ̂ ⊆ R that

(i) has full measure with respect to the projection-valued measure A ↦ A(H)
and

(ii) has the property that for any other set Z ⊆ R of full measure with respect to
A↦ A(H), the set σ̂ ∖ Z has Lebesgue measure zero.

9.2 Remark. Note that σ(T) itself need not be a core of the spectrum of a general
self-adjoint operator T :�ere is an open dense set G ⊆ [, ] with ∣G∣ < , where
∣G∣ denotes the Lebesgue measure of G. Taking (T f )(x) ∶= G(x) as a self-adjoint
operator in L(, ), its spectrum is σ(T) = G = [, ], but σ(T) ∖ G does not have
Lebesgue measure zero, even though G has full measure with respect to A↦ A(T).
Next wemention four statements from the literature that wewill use in the sequel.

�e �rst one can be found in [Yaf, §1.5].

9.3 Proposition. For a.e. λ ∈ σ̂ , there is a Hilbert spaceHλ such thatHac is decom-
posed into a direct integral on which H acts as a multiplication by λ ↦ λ; i.e., there
is a unitary operator between

Hac and ∫
⊕

σ̂
dλHλ , (9.2)

such that a vector f ∈ Hac corresponds to a vector-valued function λ ↦ fλ ∈ Hλ
that is de�ned for a.e. λ ∈ σ̂ , and for f ∈ D(H) ∩Hac, the vector H f corresponds to
λ ↦ (H f )λ = λ fλ. By extending the unitary mapping in (9.2) by zero to H , every
f ∈H corresponds to a function λ ↦ fλ ∈Hλ.

If f , g ∈H , then for a.e. λ ∈ σ̂ , with a null set depending on f and g, one has
d

dλ
⟨g , (−∞,λ)(H) f ⟩ = ⟨gλ , fλ⟩Hλ . (9.3)
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9.4 Remark. In (9.2), one could also take a core of the absolutely continuous spec-
trum as the domain of integration.�is is because for any such core σ̂ac ⊆ σac(H),
the set σ̂ ∖ σ̂ac has Lebesgue measure zero, i.e., σ̂ itself is a core of the absolutely
continuous spectrum of H.
In the special case V = , the direct integral in (9.2) can be made more explicit

using the Fourier transformation; namely in that case

H ↔ L((,∞); L(Sd−)) = L(,∞)⊗ L(Sd−), (9.4)

where Sd− is the unit sphere in Rd . See [Yafa, §1.2] for details; a similar computa-

tion is done in Appendix a.

�e second statement is a part of [Yaf, proof of Lemma 1.5.1].

9.5 Proposition. �ere is a null setN such that

∀λ ∈ σ̂ ∖N ∶ { fλ; f ∈ L} ⊆Hλ is dense. (9.5)

�e third statement we take from [BÈ, Lemma 4.3, 4.4, and 4.5]; part (b) was

already mentioned in Proposition 6.1.

9.6 Proposition. (a) For �xed f ∈H there is a null setN f such that the derivative

d

dλ
√
V (−∞,λ)(H) f (9.6)

exists for all λ ∈ R ∖N f .

(b)�ere is a null setN such that the derivative

d

dλ
√
V (−∞,λ)(H)

√
V = A(λ) (9.7)

exists in the sense of convergence in trace class for all λ ∈ R ∖N.

(c)�ere is a null setN such that the limits

lim
ε↓

√
V(λ ± iε −H(′))−

√
V (9.8)

exist in operator norm for λ ∈ R ∖N, and

lim
ε↓

√
V(λ − iε −H)−

√
V − lim

ε↓

√
V(λ + iε −H)−

√
V = πiA(λ), (9.9)

lim
ε↓

√
V(λ − iε −H′)−

√
V − lim

ε↓

√
V(λ + iε −H′)−

√
V = πiB(λ). (9.10)

Here, limz→λ±i f (z) denotes the limit limε↓ f (λ ± iε). We also de�ne the operator
norm limit

Φλ±i ∶= lim
ε↓

(I +
√
V(λ ± iε −H′)−

√
V). (9.11)
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�e fourth and �nal statement we quote from the literature is from [BÈ, §7 and

formula (7.14)]

9.7 Proposition. Let S be the scattering operator of the pair H and H′, which ex-
ists since the wave operators exist, and is a unitary operator onHac.�en the corre-
sponding operator onHλ, the scattering matrix Sλ, exists for a.e. λ ∈ σ̂ . Moreover, for
f , g ∈Hac there is a null setN f ,g depending on f and g such that

⟨gλ , (Sλ − Iλ) fλ⟩Hλ =
d

dλ
⟨g , (−∞,λ)(H)(S − I) f ⟩

= −πi⟨ d
dλ

√
V (−∞,λ)(H)g , Φλ+i

d

dλ
√
V (−∞,λ)(H) f ⟩ (9.12)

holds for λ ∈ σ̂ ∖N f ,g . Here, Iλ stands for the identity onHλ.

Using Propositions 9.3 to 9.7, we are now able to prove the following lemma,

which is at the core of our arguments relating ηn(E) to objects from scattering the-
ory.�e general idea of the proof is taken from [BW, Lemma 6, p. 388], adopted

to our more concrete setting.

9.8 Lemma. De�ne

LV ∶= L + lin{
√
V fn; n ∈ N} = lin{ fn ,

√
V fn; n ∈ N}. (9.13)

�en there is a null setN such that for λ ∈ σ̂ ∖N the set

D(Gλ) ∶= { fλ; f ∈ LV} ⊆Hλ (9.14)

is dense and there is an operator Gλ ∶D(Gλ)→H such that

Gλ fλ =
d

dλ
√
V (−∞,λ)(H) f ( f ∈ LV). (9.15)

Moreover,

⟨g ,Gλ fλ⟩ = ⟨(
√
Vg)λ , fλ⟩Hλ ( f , g ∈ LV). (9.16)

Proof. By Proposition 9.5, { fλ; f ∈ L} ⊆ D(Gλ) is dense in Hλ for λ ∈ σ̂ ∖N. By

Proposition 9.6, ddλ

√
V (−∞,λ)(H) f exists for f ∈ H outside of a null set depending

on f . By countability and linearity, one can �nd a common null setN ⊇N such that
d
dλ

√
V (−∞,λ)(H) f exists for all f ∈ LV and λ ∈ σ̂ ∖N . For λ ∈ σ̂ ∖N and f , g ∈ LV ,

we can compute

⟨g , d
dλ

√
V (−∞,λ)(H) f ⟩ = d

dλ
⟨g ,

√
V (−∞,λ)(H) f ⟩ = d

dλ
⟨
√
Vg , (−∞,λ)(H) f ⟩.

(9.17)
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Looking at (9.3), we �nd a bigger null set N ⊇ N such that the right-hand side of

(9.17) is equal to

⟨g , d
dλ

√
V (−∞,λ)(H) f ⟩ = ⟨(

√
Vg)λ , fλ⟩Hλ (9.18)

for every f , g ∈ LV and λ ∈ σ̂ ∖N. Let λ ∈ σ̂ ∖N. For �xed g ∈ LV , the expression

on the right-hand side of (9.18) only depends on fλ, and therefore the expression on
the le�-hand side only depends on fλ.�is renders

LV × D(Gλ) ∋ (g , fλ)↦ ⟨g , d
dλ

√
V (−∞,λ)(H) f ⟩ (9.19)

well-de�ned. Since LV ⊆H is dense, this de�nes Gλ ∶D(Gλ)→H .

We state an immediate consequence of (9.16).

9.9 Corollary. For λ ∈ σ̂ ∖N, the adjointG∗
λ ∶D(G∗

λ)→Hλ satis�esLV ⊆ D(G∗
λ) ⊆

H and

G∗
λ g = (

√
Vg)λ (g ∈ LV). (9.20)

9.10 Corollary. Let λ ∈ σ̂ ∖N.�en D(G∗
λ) =H and G∗∗

λ G∗
λ = A(λ).

Proof. �e adjointG∗
λ is densely de�ned.�e biadjointG

∗∗
λ is an extension ofGλ, the

operator G∗∗
λ G∗

λ is positive self-adjoint and

D(G∗∗
λ G∗

λ) = { f ∈ D(G∗
λ); G∗

λ f ∈ D(G∗∗
λ )} (9.21)

is a core of G∗
λ , see [Wei,�m. 5.39]. Let f ∈ L.�en G∗

λ f = (
√
V f )λ ∈ D(Gλ) ⊆

D(G∗∗
λ ).�us f ∈ D(G∗∗

λ G∗
λ), and

G∗∗
λ G∗

λ f = G∗∗
λ (

√
V f )λ = Gλ(

√
V f )λ =

d

dλ
√
V (−∞,λ)(H)

√
V f = A(λ) f .

(9.22)

�e bounded linear operator A(λ) acts on L as the closed densely de�ned operator
G∗∗

λ G∗
λ does.�is implies G

∗∗
λ G∗

λ = A(λ). In particular, D(G∗
λ) =H .

9.11 �eorem. As in Proposition 9.7, let Sλ be the scattering matrix and Φλ+i be
given by (9.11) for λ ∈ σ̂ ∖N with some null set N .�en there is a larger null set
N ⊇N such that for λ ∈ σ̂ ∖N the transition matrix

Tλ ∶= Sλ − Iλ (9.23)

satis�es

Tλ = −πiG∗
λΦλ+iG∗∗

λ (9.24)
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and is unitarily equivalent to

T̃λ ∶= −πi
√
A(λ)Φλ+i

√
A(λ), (9.25)

which is an operator onH .�is operator can be viewed as the pullback of Tλ intoH ,
cf. [BW, Remark a�er Lemma 12, p. 394].

Proof. From Proposition 9.7, we deduce that there is a null setN ⊇N such that

⟨gλ , (Sλ − Iλ) fλ⟩Hλ = −πi⟨Gλgλ , Φλ+iGλ fλ⟩ = −πi⟨gλ ,G∗
λΦλ+iG∗∗

λ fλ⟩Hλ

(9.26)

for all f , g ∈ LV and λ ∈ σ̂ ∖N . Since {gλ; g ∈ L} ⊆ Hλ is dense for such λ, we
conclude

(Sλ − Iλ) fλ = −πiG∗
λΦλ+iG∗∗

λ fλ , (9.27)

which implies (9.24). To see (9.25), we take the polar decomposition G∗
λ = Uλ∣G∗

λ ∣ =
Uλ

√
A(λ).�en Uλ ∶ ran(

√
A(λ))→ ran(G∗

λ) is an isometry and

Tλ = −πiUλ

√
A(λ)Φλ+i

√
A(λ)U∗

λ . (9.28)

Using�eorem 9.11, we can prove the following identity relating the operators

A(λ) and B(λ) from Proposition 6.1 to the transition matrix.

9.12 Corollary. Let λ ∈ σ̂ ∖N.�en

T̃∗
λ T̃λ = (π)

√
A(λ)B(λ)

√
A(λ). (9.29)

In particular,

∥Tλ∥nn = (π)n tr(A(λ)B(λ))n = (π)nηn(λ) (9.30)

for n ∈ N, where ∥Tλ∥n ∶= n
√
tr∣Tλ∣n is a Schatten norm of Tλ. By setting Tλ ∶= 

whenever A(λ) =  or B(λ) = , (9.30) is true for all λ ∈ R ∖N.

Proof. �e de�nition (9.25) of T̃λ implies

T̃∗
λ T̃λ = (π)

√
A(λ)Φ∗

λ+iA(λ)Φλ+i
√
A(λ), (9.31)
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where Φ∗
λ+i = Φλ−i, as can be seen from (9.11). For z ∈ C ∖ R, we abbreviate the

resolvents with R(′)(z) ∶= (z −H(′))−.�en (9.9) implies

Φ∗
λ+iA(λ)Φλ+i =



πi
lim
ε↓

((I +
√
VR′(λ − iε)

√
V)

×
√
V(R(λ − iε) − R(λ + iε))

√
V(I +

√
VR′(λ + iε)

√
V))

= 

πi
lim
ε↓

√
V(I +R′(λ− iε)V)(R(λ− iε)−R(λ+ iε))(I +VR′(λ+ iε))

√
V .

(9.32)

For �xed ε > , de�ne R(′)
± ∶= R(′)(λ ± iε).�en the middle part of (9.32) is

(I + R′−V)(R− − R+)(I + VR′+)
= R−−R++R−VR′+−R+VR′++R′−VR−−R′−VR++R′−VR−VR′+−R′−VR+VR′+
= R′− − R′+, (9.33)

where we used the second resolvent identity R′± − R± = R′±VR± = R±VR′± several
times. Together with (9.10), this implies

Φ∗
λ+iA(λ)Φλ+i =



πi
lim
ε↓

√
V(R′(λ − iε) − R′(λ + iε))

√
V = B(λ). (9.34)

From this and (9.31), (9.29) follows.�e unitary equivalence in�eorem 9.11 then

implies (9.30).
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10 the catastrophe

�e boundwe set out to prove was proven in § 7. In §§ 8 and 9, we examined the right-

hand side of that bound. What remains to do is to gather the individual statements

into a �nal one and discuss this result.�is we do in the this �nal section.

10.1 �eorem (Orthogonality Catastrophe). Assume conditions (v0) and (v) from
page 1. Let (Lm)m∈N be a sequence in (,∞)with Lm →∞.�en there exists a subse-
quence (Lmk)k∈N, a null setN ⊆ R, and a function γ ∶R ∖N → [,∞) such that for
E ∈ R ∖N the ground-state overlap (1.5) obeys

∣SLmk
(E)∣ ≤ exp(−γ(E) ln Lmk + o(ln Lmk)) = L−γ(E)+o()

mk (10.1)

as k →∞.�e decay exponent γ is given by

γ(E) ∶= 
π

∥arcsin∣TE/∣∥

HS, (10.2)

where TE = SE − IE is the transition matrix for the energy E de�ned in § 9.

Proof. Let  < a < . LetM ∈ N. LetN be the union of the null sets from Lemma 2.1
and�eorem 9.11. Let E ∈ R ∖N . We start from Lemma 1.2 and Lemma 2.1, which
imply

− ln∣SLmk
(E)∣ ≥ 



M

∑
n=



n
tr(P

NLmk
(E)

Lmk
(I −Π

NLmk
(E)

Lmk
))n (10.3)

= 


M

∑
n=



n
tr((−∞,E](HLmk

)(E,∞)(H′
Lmk

))n + o(ln Lmk)

as k → ∞, for a subsequence (Lmk)k∈N, and with an M-dependent error term
o(ln Lmk). Looking at Remark 6.8 and�eorem 7.8, this is

≥ a


M

∑
n=

In
n
tr(A(E)B(E))n ln Lmk + o(ln Lmk)

as k → ∞, with an M and a-dependent error term o(ln Lmk). Using Corollary 9.12,
this is

= a


M

∑
n=

In
n

(π)−n tr(∣TE ∣n) ln Lmk + o(ln Lmk)

= a

tr

M

∑
n=

Jn ∣TE/(π)∣n ln Lmk + o(ln Lmk). (10.4)

47



Proposition 8.5 yields∑M
n= Jn∣TE/(π)∣n → π−(arcsin∣TE/∣) in operator norm as

M →∞, and therefore

tr
M

∑
n=

Jn∣TE/(π)∣n → π−∥arcsin∣TE/∣∥

HS (M →∞) (10.5)

monotonically. We �ndM ∈ N such that

tr
M

∑
n=

Jn∣TE/(π)∣n ≥ aπ−∥arcsin∣TE/∣∥

HS. (10.6)

�erefore, continuing from (10.4),

− ln∣SLmk
(E)∣ ≥ a

π
∥arcsin∣TE/∣∥


HS ln Lmk + o(ln Lmk)

= a


γ(E) ln Lmk + o(ln Lmk) (10.7)

as k →∞, which implies

−
ln∣SLmk

(E)∣
ln Lmk

≥ a


γ(E) + o() (10.8)

as k →∞, and therefore

lim sup
k→∞

ln∣SLmk
(E)∣

ln Lmk

≤ − 


γ(E). (10.9)

Let ε > . By the de�nition of the limit superior there is k ∈ N such that
ln∣SLmk

(E)∣
ln Lmk

≤ − 


γ(E) + ε (10.10)

for k ≥ k, which implies (10.1).

10.2 Remark. In [GKM], a similar statement to�eorem 10.1 was proven, but with
the smaller exponent

η(E) = tr(A(E)B(E)) = 
π

∥TE/∥

HS. (10.11)

In the special case he considers, this exponent is exactly the one that Anderson ini-

tially gave as a bound in [Anda], except for a factor  which seems to be an over-

sight on Anderson’s part. Anderson considers the case d =  with a spherically sym-
metric perturbation, and in that case η(E) can be written as

η(E) = 
π

∞
∑
ℓ=

(ℓ + )(sin δℓ(E))

, (10.12)
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with the scattering phases (δℓ(E))ℓ∈N . Later that same year, Anderson suggested a
larger exponent for the exact asymptotics, mentioning that »[i]t is interesting that the

main di�erence from the previous result is to replace sin δ by δ« [Andb, p. 164].
Comparing the smaller exponent η(E) in (10.11) to the larger exponent γ(E)

in (10.2), the only di�erence is the arcsin function in the de�nition of γ(E) where
η(E) has the identity function. �is is somewhat analogous to the di�erence be-
tween [Anda] and [Andb]. It should be noted that the particle number N
in [Andb] refers to the number of s-orbital states below the Fermi energy, see
[Ham], and therefore N ∼ L in that publication – in contrast to [Anda], where
N ∼ L.�is accounts for the absence of the dimension factor  in [Andb].
Since (10.1) is also just a bound instead of an exact asymptotic, the exact decay

of the overlap SL(E)might be faster still. We conjecture that this is not the case, i.e.,
that

∣SL(E)∣ = L−γ(E)+o() (L →∞) (10.13)

for a.e. E ∈ R. For d = , some headway towards (10.13) has been made by [KOS]
using explicit computations. For V =  and a slightly di�erent class of perturbations
V , the statement there can be rendered as

tr(PNL(E)
L (I −ΠNL(E)

L )) = η(E) ln L + o() (L →∞); (10.14)

thus the exact asymptotics of the �rst term of (1.14) has been treated in that case.

Since�eorem 7.8 for n =  yields

tr(PNL(E)
L (I −ΠNL(E)

L )) ≥ η(E) ln L + o(ln L) (10.15)

as L →∞with L ∈ {Lmk ; k ∈ N}, we know that for d =  this bound on the n =  term
is asymptotically exact in the setting considered in [KOS]. (For d = , it might be
possible to prove the equivalent of (10.14) for any n ∈ N using the methods of this
thesis: in the d =  case the subsequences in L are not necessary as per Remark 2.2,
and the error introduced by smoothing could be controlled as per Remark 4.2.) It

is therefore reasonable to expect the equivalent of the bound (10.15) to be asymptoti-

cally exact for any n ∈ N, and forV andV satisfying (v0) and (v). However, this alone
would still not imply (10.13), since the bounds on the individual errors we proved in

this thesis are not summable in n ∈ N.�e methods we employed seem unlikely to
yield summable bounds even when further re�ned.

Another approach would be to establish upper bounds on the terms of (1.14). But

there the errors would need to be summable if we want to deduce something about

the overlap, since truncating the series like we did in�eorem 10.1 always yields a

lower bound on − ln∣SL∣. In the case considered there, [KOS] give a nonoptimal
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lower bound on the overlap of the form ∣SL(E)∣ ≥ CL−ε.�e catastrophe therefore is

not qualitatively worse than L to some negative power.
Yet another problem, and probably a much harder one, is to include interactions

in the model. Judging from the physics literature, the catastrophe should then still

occur, and probably with the same behavior in �rst order.�ere seem to be no math-

ematical results in that direction.

50



appendix

In the main matter of the text, we proved an upper bound on the overlap ∣SL∣ under
the assumptions given in�eorem 10.1. In Section a of this appendix, we will give

a result regarding the strict positivity of the decay exponent γ(E); this is of interest
since�eorem 10.1 is a trivial statementwhenever γ(E) = . In Sectionb, we state and
prove some additional propositions mentioned but not needed in the main matter

of the text. Finally, and as a convenience for the reader, we give a proof in Section c

of the geometric resolvent inequality as we used it in § 5.

a positivity of the exponent

In this additional section, we give conditions for the decay exponent γ(E) in (10.2)
to be strictly positive. Intuitively, one might hope that

γ(E) > ⇔ E ∈ σac(H), (a.1)

at least for a.e. E ∈ R. It is not clear if this in fact holds for the general type of
Schrödinger operatorsH = −∆+V we consider. However, (a.1) is true for almost all
E >  in the caseV = , which we treat below. At the end of the section, we comment
upon the case V ≠ .
In the whole section, we assume that V is one �xed representative of a function

satisfying (v), with the property that  ≤ V(x) < ∞ for all x ∈ Rd and V ≠  in the
a.e.-sense.

a.1 �eorem. Let V = . Let E > .�en the operator A(E) from (6.2) has the
integral kernel

A(E; x , y) = Ed/−

(π)d
√
V(x)

√
V(y) ∫Sd− dS(ξ) e i

√
Eξ⋅(x−y) (x , y ∈ Rd).

(a.2)
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(�e surface integral can be evaluated, see�eorem b.4. However, we will not need

its value.)

Proof. For f ∈ L(Rd), denote the Fourier transform by

F( f )(ξ) ∶= 

(π)d/ ∫Rd
dx e−iξ⋅x f (x). (a.3)

Let ε > . Let f ∈ L(Rd) and x ∈ Rd .�en

(
√
V (E−ε,E+ε)(−∆)

√
V f )(x) =

√
V(x)

(π)d/ ∫Rd
dξ (E−ε,E+ε)(∣ξ∣)e iξ⋅xF(

√
V f )(ξ)

=
√
V(x)

(π)d ∫Rd
dξ ∫Rd

dy (E−ε,E+ε)(∣ξ∣)e iξ⋅(x−y)
√
V(y) f (y)

=
√
V(x)

(π)d ∫Rd
dy

√
V(y) f (y) ∫

∞


dr rd− ∫Sd− dS(ξ) (E−ε,E+ε)(r)e irξ⋅(x−y)

=
√
V(x)
(π)d ∫Rd

dy
√
V(y) f (y) ∫

E+ε

E−ε
dr rd/− ∫Sd− dS(ξ) e i

√
rξ⋅(x−y), (a.4)

and therefore

( 
ε

√
V (E−ε,E+ε)(−∆)

√
V f )(x) ε→ÐÐ→

√
V(x)
(π)d ∫Rd

dy
√
V(y) f (y)Ed/− ∫Sd− dS(ξ) e i

√
Eξ⋅(x−y), (a.5)

since the integrand in (a.4) is continuous in r.�is implies (a.2).

a.2 Corollary. Let d ≥ . Let V = .�en for any E >  the operator A(E) from
(6.2) has in�nite rank.

Proof. We �rst show that the set of functions

{Rd ∋ x ↦
√
V(x)e iξ⋅x ; ξ ∈ Rd} (a.6)

is linearly independent in the sense of equality almost everywhere. For this, notice

that {C ∋ z ↦ e isz; s ∈ R} is linearly independent, since for z = −ix, these functions
have di�erent asymptotic behavior for x → ∞. Given a �nite nonempty set M ⊆ R
and cs ≠  for s ∈ M, the analytic function C ∋ z ↦ ∑s∈M cse isz is therefore not
identically zero, and thus R ∋ x ↦ ∑s∈M cse isx is zero only on a discrete subset of R.
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Given another �nite nonempty setM ⊆ Rd and cξ ≠  for ξ ∈ M, de�ne F ∶Rd →
C via F(x) ∶= ∑ξ∈M cξe iξ⋅x . We show that F−({}) ⊆ Rd is a null set. Since F is
continuous, it is measurable, and its measure is

∫Rd
dx F−({})(x) = ∫Sd− dS(η) ∫

∞


dr rd− {}(F(rη)) = , (a.7)

where the r-integral is zero, since for η ∈ Sd− �xed the function r ↦ F(rη) =
∑ξ∈M cξe irξ⋅η is zero only on a discrete subset of R, as shown above. To show that
the set (a.6) is linearly independent, it su�ces to show that

{x ∈ Rd ;
√
V(x)F(x) ≠ } = {x ∈ Rd ; V(x) ≠ } ∩ {x ∈ Rd ; F(x) ≠ } (a.8)

has positivemeasure.�is is the case, since the �rst set in the intersection has positive

measure and the second set is the complement of the null set F−({}).
Now, let f ∈ kerA(E).�en

 = ⟨ f ,A(E) f ⟩ = Ed/−

(π)d ∫Sd− dS(ξ)∣ ∫Rd
dx

√
V(x)e i

√
Eξ⋅x f (x)∣


, (a.9)

and therefore

∫Rd
dx

√
V(x)e i

√
Eξ⋅x f (x) =  (a.10)

for a.e. ξ ∈ Sd−. Since the le�-hand side of (a.10) is continuous in ξ, the orthogonality
in (a.10) holds in fact for all ξ ∈ Sd−. Since f ∈ kerA(E) was arbitrary, we conclude
that

{Rd ∋ x ↦
√
V(x)e i

√
Eξ⋅x ; ξ ∈ Sd−} ⊆ (kerA(E))⊥. (a.11)

Since Sd− is an in�nite set for d ≥ , the set of functions on the le�-hand

side is in�nite and linearly independent, and thus dim(kerA(E))⊥ = ∞. Since
the coimage (kerA(E))⊥ of the linear map A(E) is isomorphic to ranA(E) (the
restriction A(E)∣(kerA(E))⊥ ∶ (kerA(E))

⊥ → ranA(E) being bijective), this shows
dimranA(E) =∞.

a.3 Remark. (a)�e second part of the argument in Corollary a.2 can be made in a
more abstract way. A preliminary form would be the following: Given an inner prod-

uct space H , letM ⊆ H be a linearly independent countable set with the property
that the series

K f ∶= ∑
φ∈M

⟨φ, f ⟩φ (a.12)

converges for all f ∈ H and de�nes a linear operator K ∶H → H .�en dimranK =
#M .
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Still more abstract formulations could be devised using Bochner-integrable func-

tions on a measure space.�e argument in Corollary a.2 can be seen as the applica-

tion of such an abstract result. We remark upon this since this can be a useful way to

determine the rank of an integral operator.

(b) For background potentials V with suitable decay, a generalization of Corol-
lary a.2 that uses generalized eigenfunctions due to Ikebe-Povzner (see [Sim, §c5]

and references therein) in place of e i
√
Eξ⋅x might hold.

�e in�nite rank of A(E) implies the positivity of γ(E).2

a.4�eorem. Let d ≥ , let E >  and let SE be the scattering matrix corresponding
to the pair H = −∆ and H′ = −∆ + V . �en the transition matrix TE = SE − IE
has in�nite rank for a.e. E > . In particular, it is nonzero, and therefore the decay
exponent γ(E) = π−∥arcsin∣TE/∣∥


HS from (10.2) is strictly positive in the caseV = 

for a.e. E > .

Proof. By �eorem 9.11, it su�ces to show that T̃E = −πi
√
A(E)ΦE+i

√
A(E)

has in�nite rank, with ΦE±i = limε↓(I +
√
V(E ± iε − H′)−

√
V). We show that

its imaginary part Im T̃E = 
i (T̃E − T̃∗

E ) has in�nite rank. For brevity, set R ∶=
limz→E+i

√
V(z − H′)−

√
V . Recall that by the limiting absorption principle, this

limit exists in operator norm for a.e. E > . In particular, R is compact.�en

Im T̃E =


i
(−πi

√
A(E)ΦE+i

√
A(E) − πi

√
A(E)ΦE−i

√
A(E))

= −π
√
A(E)(I + ReR)

√
A(E). (a.13)

Since ReR is compact, we can write it as ReR = R +R, where ∥R∥ < / and R has
�nite rank.�us

− 
π
Im T̃E =

√
A(E)(I + R)

√
A(E) + Ã, (a.14)

where Ã is a �nite rank operator. Now, since I + R ≥ I − 
 I = 

 I, we get√
A(E)(I + R)

√
A(E) ≥ 

A(E). (a.15)

By Corollary a.2, this operator has in�nite rank.

2 �e argument in�eorem a.4 was communicated to me by Dr. Alexander Pushnitski, for which I am

very thankful.
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a.5 Remarks. (a)�eorem a.4 shows positivity of γ(E) in the case V =  and d ≥ .
�e argument of�eorem a.4 does not work for d = , since in that case A(E) has
�nite rank – its rank being not more than points on the sphere S = {−, } in R.
However, we expect that using a direct computation it is nonetheless possible to treat

the d =  case as well.
If the background potential V is present, the situation is more complicated and

we know of no argument that yields (a.1). In fact, for the most general case of two

self-adjoint operators di�ering by a perturbation, (a.1) is not necessarily true for all

energies: Let T be a self-adjoint operator with spectral measure ρ (in the sense of
[Sim, §c5]; see also the discussion in [Yaf, §1.3] of elements of maximal spectral

type).�en the density of the absolutely continuous part of ρ need not be strictly
positive almost everywhere on σac(T).�is fact gives rise to the concept of the core
of the spectrum, see De�nition 9.1, and see Remark 9.2 for an example of such a T .
�e absolutely continuous part of ρ corresponds to the trace of the operator function
E ↦ A(E) from Proposition 6.1. For general self-adjoint operators, one can therefore
not expect a statement analogous to (a.1) to hold for a.e. E ∈ R.�e situation for
Schrödinger operators might be di�erent; in many cases, γ could possibly even be a
continuous function. We don’t know of any results in that direction.

(b) Looking at the de�nition of γ(E) in (10.2) and the de�nition TE = SE − IE
of the transition matrix, the question of strict positivity of γ(E) is equivalent to ask-
ing whether SE = IE , i.e., whether SE has any eigenvalue di�erent from one. A series
of papers by Pushnitski (see [Pus], [Pus], and references therein) gives another

equivalent statement:�e operator D(E) ∶= (−∞,E)(H) − (−∞,E)(H′) is compact
if and only if SE = IE .�is result, however, seems more useful for extracting infor-
mation about the spectrum of D(E) from information about SE than the other way
around.

Since the scatteringmatrix SE has some relation to the spectral shi� function ξ of
H and H′, one could also ask for conditions when ξ is nonzero. Since V is not trace
class, ξ is not integrable on all of R, so the support of ξ is unbounded. However, we
know of no concrete condition for some E ∈ R to be in spt ξ.
(c)�e question of strict positivity of γ has some relation to the unique contin-

uation property (ucp) of H as de�ned in [Sim, §c9; see also the open question on
page 510]: Every distributional solution u ofHu =  in an open connected set Ω with
the property that u vanishes near some x ∈ Ω is identically zero.�is is the case
for instance if V  is locally −∆-form bounded, in particular if V  is in Kloc(Rd) (see
[Sim,�eorem c.9.3] and the references therein). It can be shown that if H satis-
�es the ucp, the operator A(E) is nonzero on a dense subset of σac(H).�is does
not imply strict positivity of γ(E) though, since the operator ΦE+i in�eorem 9.11
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(or equivalently B(E) in Corollary 9.12) might map into the null space of A(E). It
is, however, possible to proof that {E ∈ σac(H); γ(E) > } is not a null set if the
perturbation V is su�ciently small.
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b miscellaneous propositions

In this additional section, some additional statements mentioned in the main matter

of the text are proven. In the whole section, let H and H′ be as de�ned in § 1.

We begin with two statements regarding trace class properties of combinations

of functions of the in�nite-volume operators.

b.1 Lemma. Let f ∈ C∞
c (R).�en f (H′) − f (H) is trace class.

Proof. Let T and T ′ be self-adjoint operators on a Hilbert spaceH with the property
that T ′−T is trace class.�en h(T ′)− h(T) is trace class for every h ∈ C∞

c (R) by an
argument involving the spectral shi� function of T ′ and T [Yaf,�m. 8.3.3], see
also [HM, Sec. 5]. Moreover, e−tH′ − e−tH is trace class for every t >  [Hun+,
Remark a�er�m. 1]. Set T ∶= e−H and T ′ ∶= e−H′

as well as

h(x) ∶= {
f (− ln(x)) if x > ,
 if x ≤ .

(b.1)

�en T ′ − T is trace class, h ∈ C∞
c (R), and h(T(′)) = f (H(′)).�is implies that

h(T ′) − h(T) = f (H′) − f (H) is trace class, proving the assertion.

b.2 Corollary. Let f ∈ C∞
c (R) and g , g, g ∈ L∞(R) with spt f ∩ spt g = ∅ and

spt g ⊆ [c, E − ε], spt g ⊆ [E + ε, c] for some c < E < c and ε > .�en the
operators f (H)g(H′), g(H) f (H′), and g(H)g(H′) are trace class.

Proof. �e �rst assertion follows from f (H)g(H′) = −( f (H′) − f (H))g(H′) and
Lemma b.1.�e second assertion follows in the same way. For the third assertion,

one �nds f, f ∈ C∞
c (R) satisfying spt f ⊆ [c, E) and spt f ⊆ (E , c], as well as

g ≤ f and g ≤ f.�en f(H) f(H′) is trace class by Lemma b.1, and Lemma 2.3
implies the third assertion.

Lemma b.1 allows us to prove that the integrated densities of state of H and H′

are the same if they exist at all, which was mentioned in Remark 1.1.

b.3 Lemma. For ε >  and f ∈ C∞
c (R),

lim
L→∞



Lε tr(ΩL f (H) − ΩL f (H′)) = . (b.2)

Moreover, there is a setN ⊆ R of measure zero, such that if E ∈ R ∖N and if either

the integrated density of states of H or of H′, given by

ρ(′)(E) ∶= lim
L→∞



Ld ∣Ω∣
tr(ΩL (−∞,E)(H(′))), (b.3)
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exists, then the other exists and

ρ(E) = ρ′(E) = lim
L→∞

NL(E)
Ld ∣Ω∣

. (b.4)

Proof. �e statement in (b.2) is an immediate consequence of Lemma b.1. If it exists,
the integrated density of states is the distribution function of the density of states

measure, which is represented by the functional

F(′)( f ) ∶= lim
L→∞



Ld ∣Ω∣
tr(ΩL f (H(′))) ( f ∈ C∞

c (R)). (b.5)

If E ∈ R is a continuity point of this distribution function, the limit in (b.3) exists and
is equal to the distribution function at E, see [Sim, Prop. c.7.2]. Since distribution
functions are monotone, the set of discontinuity points is countable. From (b.2) we

infer that if F( f ) exists, so does F ′( f ), and vice versa, and F( f ) = F ′( f ) in that
case. �is proves the �rst equation in (b.4). �e second one follows from [Sim,

�m. c.7.4].

We also compute the integral from�eorem a.1.

b.4�eorem. Let a ∈ Rd .�en

∫Sd− dS(ξ) e iξ⋅a = (π)d/
Jd/−(∣a∣)
∣a∣d/− , (b.6)

where the Bessel function Jν of order ν = d/ −  is given by

Jν(x) = ( x)ν
∞
∑
k=

(−)k
( x)k

k! Γ(ν + k + ) (x > ), (b.7)

and the right-hand side of (b.6) is understood as its analytic continuation for a = .

Proof. For d = , the le�-hand side of (b.6) is  cos a, and so is the right-hand side
since J−/(x) = ( πx )/ cos x. So let d ≥ . For a = , the analytic continuation of
(b.6) is

πd/

Γ( d
 )

= σd−, (b.8)

which is the surface volume σd− of Sd−. For any other a ∈ Rd , there is an orthogonal

matrix U such that a = ∣a∣Ue, where e is the �rst unit normal vector. Since the
surface measure on Sd− is orthogonally invariant,

∫Sd− dS(ξ) e iξ⋅a = ∫Sd− dS(ξ) e i∣a∣U∗ξ⋅e = ∫Sd− dS(ξ) e i∣a∣ξ⋅e . (b.9)
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Parameterizing the sphere, we arrive at

∫Sd− dS(ξ) e i∣a∣ξ⋅e =
∞
∑
k=

ik ∣a∣k
k! ∫Sd− dS(ξ) (ξ ⋅ e)k

=
∞
∑
k=

ik ∣a∣k
k! ∫

π

−π
dφ ∫(−π/,π/)d−

d(φ, . . . , φd−) cosk φ⋯ cosd−+k φd−. (b.10)

For odd k, the integration with respect to φ yields zero. For even k, the integration
yields

∫
π

−π
dφ ∫(−π/,π/)d−

d(φ, . . . , φd−) cosk φ⋯ cosd−+k φd− = ck⋯cd−+k (b.11)

with

ck ∶= ∫
π/

−π/
dφ cosk φ (k ∈ N). (b.12)

An elementary computation shows that

ck⋯cd−+k =
ωd−+k
ωk−

= πd/ k!
k/( k

)! Γ( k
 + 

)
, (b.13)

where

ωd =
πd/

Γ( d
 + )

(b.14)

is the volume of the unit ball. Inserting this back into (b.10) proves the assertion.
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c the geometric resolvent inequality

In this section, we state and prove the geometric resolvent inequality. �e formu-

lation and the proof are an adaptation from [Sto], generalized to allow for Kato

decomposable potentials and complex points in the resolvent set.

Let M >  and let a ∶Rd → Rd×d be measurable with M− ≤ a(x) ≤ M for all

x ∈ Rd in the sense of positive semide�niteness.

LetV+ ∈ Kloc(Rd) andV− ∈ K(Rd) be positive. By [Sim, p. 459],V− is relatively
−∆-form bounded with relative bound zero, i.e., for ε >  there is C(ε) >  such that
⟨φ,V−φ⟩ ≤ ε∥∇φ∥ + C(ε)∥φ∥. Consequently, we can de�ne a self-adjoint operator
H in L(Rd) that is formally given by

H = −∇ ⋅ a∇+ V (c.1)

via its form, where V ∶= V+ − V−. Choosing Dirichlet or Neumann boundary con-
ditions, we can also de�ne a corresponding self-adjoint operator HΩ in L(Ω) for
some open set Ω ⊆ Rd .

Before we can prove the geometric resolvent inequality, we need a technical

lemma.

c.1 Lemma ([Sto, Lemma 2.5.3]). Let Ω̃ ⊂ Ω ⊆ Rd with dist(∂Ω, ∂Ω̃) =∶ δ > . Let
R >  and z ∈ C with ∣z∣ ≤ R. Let g ∈ L(Ω). Let u ∈ W 

(Ω) be a weak solution of
(H + z)u = g in Ω, i.e.,

⟨a∇u,∇φ⟩ + ⟨Vu, φ⟩ + ⟨zu, φ⟩ = ⟨g , φ⟩ (φ ∈ C∞
c (Ω)). (c.2)

�en there exists a constant C only depending on δ,M, V−, and R, such that

∥∇u∥L(Ω̃) ≤ C(∥u∥L(Ω) + ∥g∥L(Ω)). (c.3)

Proof. By density, the condition (c.2) is satis�ed for all φ ∈ W 
,(Ω).�ere is ψ ∈

C∞
c (Ω) with  ≤ ψ ≤ , ψ =  on Ω̃ and ∥∇ψ∥∞ ≤ C/δ, where C depends only upon
the dimension d. For w ∶= uψ ∈W 

,(Ω), it follows that

⟨a∇u,∇w⟩ + ⟨Vu,w⟩ + ⟨zu,w⟩ = ⟨g ,w⟩, (c.4)

and since ∇w = ψ∇u + uψ∇ψ,

⟨a∇u,∇w⟩ = ⟨a∇u,ψ∇u⟩ + ⟨a∇u, uψ∇ψ⟩
= ⟨aψ∇u,ψ∇u⟩ + ⟨aψ∇u, u∇ψ⟩. (c.5)
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Now,

⟨ψ∇u,ψ∇u⟩ ≤ M⟨aψ∇u,ψ∇u⟩ = M(⟨a∇u,∇w⟩ − ⟨aψ∇u, u∇ψ⟩)
= M(⟨g ,w⟩ − ⟨Vu,w⟩ − ⟨zu,w⟩ − ⟨aψ∇u, u∇ψ⟩)
≤ M(∣⟨g ,w⟩∣ + ⟨V−ψu,ψu⟩ + R∥ψu∥ + ∣⟨aψ∇u, u∇ψ⟩∣)

≤ M(∥g∥∥u∥ + ⟨V−ψu,ψu⟩ + R∥ψu∥ + ∥a∥∞∥ψ∇u∥∥u∥∥∇ψ∥∞). (c.6)

Using the −∆-form boundedness of V− with relative bound zero, we set ε = 
M to

conclude

M⟨V−ψu,ψu⟩ ≤ 

∥∇(ψu)∥ + C(M)∥ψu∥

≤ 

∥ψ∇u∥ + 


∥u∇ψ∥ + C(M)∥ψu∥

≤ 

∥ψ∇u∥ + C

δ
∥u∥ + C(M)∥u∥ (c.7)

and therefore




∥ψ∇u∥ ≤ M∥g∥∥u∥+ ( C



δ
+C(M)+R)∥u∥ + MC/δ ∥a∥∞∥ψ∇u∥∥u∥. (c.8)

�is is a quadratic inequality for ∥ψ∇u∥, which implies that there exists C(δ,M , R)
with

∥ψ∇u∥ ≤ C(δ,M , R)(∥u∥ + ∥g∥). (c.9)

Taking the supremum over ψ proves the lemma.

We are now ready to prove the geometric resolvent inequality. To shorten formu-

las, let us write RΛ(z) ∶= (z −HΛ)−, for Λ ⊆ Rd open and z ∈ ρ(HΛ).

c.2 �eorem (Geometric resolvent inequality, [Sto, Lemma 2.5.2]). Let Λ ⊆ Λ′
be open sets, A ⊆ Λ and B ⊆ Λ′. Let φ ∈ Cc(Λ) and Ω an open neighborhood of
spt∇φ with δ ∶= dist(∂Ω, spt∇φ) >  and Ω ∩ A = ∅. Let K ⊆ C be compact.�en
there exists C = C(δ,M , ∥∇φ∥∞,V ,K) such that for all z ∈ ρ(HΛ)∩ ρ(HΛ′)∩K the
operator norm estimate

∥A(φRΛ′(z) − RΛ(z)φ)B∥ ≤ C∥ARΛ(z)Ω∥∥ΩRΛ′(z)B∥ (c.10)

holds, where the functions are understood as their associated multiplication opera-

tors.
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Proof. We use the geometric resolvent equation (see [Sto, Prop. 2.5.1], the proof
there holds for Kato decomposable potentials and arbitrary open sets Λ ⊆ Λ′) to
write

∥A(φRΛ′(z) − RΛ(z)φ)B∥ = ∥A(RΛ(z)((∇φ) ⋅ a∇+∇ ⋅ a∇φ)RΛ′(z))B∥
≤ ∥ARΛ(z)(∇φ) ⋅ a∇RΛ′(z)B∥∥ARΛ(z)(∇⋅)a∇φRΛ′(z)B∥. (c.11)

We estimate the second factor of (c.11). Choose Ω̃ ⊆ Ω with spt∇φ ⊆ Ω̃ and
dist(∂Ω, ∂Ω̃) = δ

 .�en the second factor is, since sptφ ⊆ Λ,

∥ARΛ(z)(∇⋅)Ω̃a∇φRΛ′(z)B∥
≤ ∥ARΛ(z)(∇⋅)Ω̃∥∥a∥∞∥∇φ∥∞∥ΛRΛ′(z)B∥. (c.12)

By adjoining, the �rst factor is ∥Ω̃∇RΛ(z)A∥. We claim that
∥Ω̃∇RΛ(z)A∥ ≤ C(K , δ)∥ΩRΛ(z)A∥. (c.13)

Let f ∈ L(Λ) and set u = RΛ(z)A f and g = A f .�en u is a weak solution of
(H − z)u = g in Λ and, in particular, in Ω ∩Λ. Using Lemma c.1 and Ω ∩ A = ∅, we
arrive at

∥Ω̃∇u∥ ≤ c(δ,M ,V ,K)∥u∥L(Ω) = c(δ,M ,V ,K)∥Ωu∥.
�is proves equation (c.13).�e �rst factor of (c.11) can be treated similarly.

In the main text, we did not use�eorem c.2 in its most general formulation

stated here. We used it in the formulation of Lemma 5.3, which we state here as a

corollary.

c.3 Corollary. Let L >  and let A ⊆ ΩL− be closed. Take φ ∈ Cc(ΩL) with φ(x) = 
for x ∈ ΩL−.�en UL ∶= ΩL ∖ ΩL− is an open neighborhood of spt∇φ and δ ∶=
dist(∂UL , spt∇φ) > . Let K ⊆ C be compact.�en there exists Cgr >  depending
on δ, ∥∇φ∥∞, V , and K such that for all z ∈ ρ(H(′)

L ) ∩ ρ(H(′)) ∩ K the operator
norm estimate

∥A((z −H(′))− − (z −H(′)
L )−)A∥
≤ Cgr∥A(z − H(′)

L )−UL∥∥UL(z − H(′))−A∥ (c.14)

holds, where the indicator functions are understood as their associated multiplica-

tion operators.

Proof. Let a(x) = I be the identity matrix. As the potential, take either V or V +V .
In�eorem c.2, choose Λ = ΩL and Λ

′ = Rd , as well as A = B and Ω = UL.�en

Aφ = φA, and therefore (c.10) implies the assertion.
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notation

⟨ ⋅ , ⋅ ⟩ scalar product on someHilbert space; antilinear in the �rst and

linear in the second argument

∼ asymptotic equality; f (x) ∼ φ(x) as x → c ⇐⇒
f (x)/φ(x)→  as x → c

kerT kernel (null space) of the linear operator T

ranT range (image) of the linear operator T

linM linear span (hull) of the set of vectorsM

L length parameter

ΩL {Lx; x ∈ Ω} = L ⋅Ω, where Ω ⊆ Rd open and bounded with

 ∈ Ω
K(Rd) Kato class

Kloc(Rd) locally Kato class

spt f support of a function f

#M number of elements in the setM; #M ∈ N ∪ {∞}
V background potential, see (v0) on page 1

V perturbation potential, see (v) on page 1

HL = −∆L + V unperturbed �nite-volume Schrödinger operator

H′
L = HL + V perturbed �nite-volume Schrödinger operator

λL
j , µL

j jth eigenvalue of HL and H′
L, counting multiplicities
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φL
j ,ψL

j normalized jth eigenfunction of HL and H′
L

H = −∆ + V unperturbed in�nite-volume Schrödinger operator

H′ = H + V perturbed in�nite-volume Schrödinger operator

E Fermi energy

NL(E) number of particles, see (1.4) on page 2

SL(E) ground-state overlap, see (1.5) on page 2

PNL , Π
N
L orthogonal projections on the �rst N eigenvalues ofHL andH′

L,

see (1.7) on page 2

O(g(x)) Bachmann-Landau symbol; f (x) = O(g(x)) as x →∞ ⇐⇒
∃C , x ≥  ∀x ≥ x ∶ ∣ f (x)∣ ≤ C∣g(x)∣

o(g(x)) Bachmann-Landau symbol; f (x) = o(g(x)) as x → ∞ for

nonzero g(x) ⇐⇒ f (x)/g(x)→  as x →∞
A indicator function of the set A

ξL spectral shi� function

L,loc(R) locally integrable functions

Borel(X) σ-algebra of all Borel sets of the topological space X

dS integration with respect to the surface measure on a manifold

x ⋅ y Euklidean scalar product of x , y ∈ Rn

δ Dirac distribution, used in an abbreviation for integration with

respect to the surface measure, see Remark 3.3 on page 9

∣ ⋅ ∣ 1-norm on Rn

∆n n-dimensional standard simplex; = {x ∈ [, ]n; ∣x∣ ≤ }
Γ Euler’s Gamma function

B Euler’s Beta function

C∞
c (Ω) { f ∈ C∞(Ω); spt f kompakt}

χ+L , χ−L smooth cut-o� functions, see De�nition 4.1 on page 13

χ+, χ− discontinuous cut-o� functions, see De�nition 6.5 on page 26

ρ(T) resolvent set of a linear operator T
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ν, µ one-dimensional trace measures, see (6.1) on page 25

In an integral related to the Hilbert matrix, see § 8

ηn coe�cient in the asymptotics, see De�nition 7.2 on page 32

N≥n set of natural numbers greater than or equal to n

Li dilogarithm function; Li(z) = ∑∞
k=

zk
k

Hac absolutely continuous subspace of H

σ̂ core of the spectrum of H, see De�nition 9.1 on page 41

SE , TE scattering matrix and transition matrix, see § 9

∥ ⋅ ∥HS Hilbert-Schmidt norm

Sd− unit sphere in Rd

ωd volume of the unit ball in Rd ; ωd = πd//Γ( d
 + )

σd− volume of the (d−)-dimensional unit sphere inRd ; σd− = dωd
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