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1 Introduction 

 General Introduction 1.1

More than three decades ago the field of therapeutic drugs was extended by a new class 

of pharmaceuticals: therapeutic proteins. Proteins are defined as macromolecules which 

consist of at least 100 proteinogenic amino acids 1,2. Nowadays, this class is represented 

by approximately 200 marketed products which are mainly therapeutic proteins besides 

a few diagnostic proteins and vaccines which differ in their pharmacologic activity 3. 

Biopharmaceutics can be grouped into drugs which a) can be used to replace deficient 

or morbid natural proteins, b) can be used to augment existing pathways, c) allow to 

enter new pathways of drug action which cannot be induced by small molecule drugs, d) 

offer extremely high specificity and affinity to molecules or organisms, or e) deliver 

radionuclides, cytotoxics or effectors 4. Other classifications include enzymes, hor-

mones, engineered scaffolds, growth factors, interferons, interleukins and antibody-

based drugs 1-3,5. Within these groups, antibody therapeutics represent the fastest grow-

ing segment with around 30 drugs already marketed either in the US or EU, and further 

30 molecules in late stage clinical trials 6,7. This success dates back to 1950s when the 

development of monoclonal antibodies started following the discovery that DNA en-

codes for proteins 8. However, it took around 25 years until Kohler and Milstein devel-

oped an efficient procedure to prepare monoclonal antibodies 9. Another 15 years later, 

Winter and Milstone discovered a method to clone antibody genes which then allowed 

to obtain recombinant versions of any antibody from diverse cell lines. Additionally, 

they were able to optimize their product antibodies according to their needs 10. Further 

advancement in pharmaceutical and biopharmaceutical technology, molecular biology, 

protein engineering, life sciences and genomics allowed to establish antibodies as suc-

cessful drugs with a remarkable value in the pharmaceutical market 6,11,12. 

In 2010, the market value for pharmaceuticals was already about 597 billion USD with 

around 75% of this sum represented by small therapeutic drug molecules. Recombinant 

proteins without antibodies counted for 10%, while antibodies alone had a total market 

value of about 7% 6. This commercial value makes antibodies an attractive field for re-

search and development for biotec and pharmaceutical companies. 
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Antibodies are characterized by their ability to bind and eliminate antigens with ex-

tremely high specificity. It is envisioned to develop an infinite number of different tai-

lor-made antibodies against any target 13. 

In contrast to small therapeutic drug molecules, antibodies are characterized by a highly 

ordered three-dimensional structure and a large amount of functional groups. Addition-

ally, proteins are naturally unstable, and this instability includes not only chemical deg-

radation such as deamination, oxidation and others, but also physical denaturation 11,14. 

The latter one refers to alterations of the antibody molecule, such as partial or complete 

unfolding of its native confirmation, even without chemical mutations which most often 

results in a loss of biological activity 15. In addition, unfolded species tend to interact 

with each other by forming protein aggregates of different sizes 16-18. Such antibody 

aggregates are considered as a serious risk to induce immunogenicity 19-22. Hence, scien-

tists are faced with a number of challenges when it comes to formulation of antibodies, 

which usually result in high development costs 11,16,23-26. All these concerns should be 

addressed by an appropriate quality control of the final product including the quality 

itself as well as the monitoring of product stability during storage and release 21. 

In addition to these stability issues, routes of administration are limited for antibodies 

due to enzymatic degradation in the gastrointestinal tract. Therefore, most proteins are 

usually administered by the intravenous or subcutaneous route 27,28. Alternative routes 

of administration such as oral, nasal or transdermal applications are currently under de-

velopment but remain hardly feasible 27,29-33. Furthermore, certain clinical needs may 

also limit the choice of route how the protein can be applied. Especially administration 

of antibody formulations remains challenging due to large quantities (often > 100 mg up 

to 1 g per dose) required for therapeutic use 34. Stable antibody solutions rarely exceed 

concentrations of 50 mg/mL and are therefore applied by infusion 34-36. This way of 

administration is one of the most unpopular methods for the patient since a clinical set-

ting is needed, costs are high and patient compliance is rather poor 35,37. On this ac-

count, development of subcutaneous injections is of high interest 34. However, volumes 

that can be administered subcutaneously are rather small (< 1.5 mL), therefore highly 

concentrated antibody formulations are needed which in turn increase the risk of protein 

aggregation and high viscosities 17,37-39. Typical approaches nowadays are to exceed the 

formulation volume which makes infusion inevitable or to freeze dry the products to 

reach long term stability 37,40. From an economical view, the latter strategy represents a 



4 
 

very cost and time intensive procedure. During drying, the product faces several stress 

factors including freezing and drying which can induce protein aggregation 41-43. An 

innovative idea to overcome the aforementioned obstacles is the development of protein 

drug suspensions, particularly crystalline suspensions 44. 

Although macromolecular crystallization has already been presented in the 1920s and 

crystallization of monoclonal antibodies (mAb) has been subject of significant interest 

during the last 30 years, only one product - insulin crystals - has entered the 

market 35,45,46. 

Nevertheless, crystal formulations potentially offer advantages already known from 

crystals of small therapeutic drug molecules: 

• The crystalline state possesses a lower internal energy state and lower chemical 

reactivity. Consequently, the stability of protein crystals might be superior com-

pared to amorphous or liquid formulations 45,47-49. 

• Protein crystals might exhibit a superior protection against proteolytic enzymes 

compared to its amorphous or liquid counterparts 46. 

• Protein crystals are per definition the most highly concentrated protein formula-

tion possible. This enables the delivery of high doses without excessive increase 

in viscosity 46,47. 

• As already shown for insulin formulations, protein crystals allow for a carrier 

free sustained release which might be dependent on the crystal morphology, the 

crystal size, the presence of excipient without creating new biological  

entities 35,46,47,49. 

• Crystallization represents a common purification step in active pharmaceutical 

ingredient (API) manufacturing and therefore economization of the manufactur-

ing procedure would be possible 35,47. 

In case of antibody formulations, crystals could be administered by subcutaneous injec-

tion in form of a suspension. As mentioned before, antibodies often have to be adminis-

tered in high concentrations which often leads to stability issues and high viscosity for-

mulations 17,37-39. Here, a crystal suspension may provide a comfortable solution. Yang 
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et al. have shown a low viscosity over broad concentration range for crystalline inflixi-

mab formulations (Fig. 1-1) 35. 

The Einstein equation explains this phenomenon by:  

 

η/η0 = 1 + 2.5ø  
 

with (η) being the formulation viscosity, (η0) the viscosity of the formulation vehicle 

and (ø) the volume fraction of the suspended matter 46. It illustrates that the viscosity of 

a suspensions is mainly dependent on the viscosity of the formulation vehicle. However, 

Basu et al. already demonstrated that this low viscosity is not infinite. For crystalline 

amylase, an increase in viscosity could not be explained by the Einstein’s equation be-

yond concentrations of 200 mg/mL 46. 

 

Figure 1-1 Comparison of viscosity for crystalline (pink boxes) and liquid (blue rhombuses) antibody formulations. 
Reproduced from Yang et al. 44. 

 

Nevertheless, crystalline formulations possess certain drawbacks and requirements. For 

example, a sufficient resuspendability should be given, settling of the crystals needs to 

be controlled and particle size distribution is reported to be best when it is as small as 

possible 46. Notably, long term stability has to be considered case by case as it is not 

generally guaranteed for all protein crystal suspensions. Pikal et al. already stated a su-

perior stability for an amorphous insulin formulation compared to its crystalline coun-

terpart 46,50. 
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 Macromolecular crystallization 1.2

The aforementioned fact that only one crystalline biopharmaceutical so far reached the 

market is quite surprising. Crystallographers possess a tremendous experience in protein 

crystallization for X-ray structure determination 51. Until 2012, over 70.000 molecules 

were analyzed by this approach 52. Adversely to therapeutic formulations, crystals need-

ed for X-ray studies should be as large as possible (ideally > 500 µm) whereas the crys-

tal yield, the crystallization time and the crystal size distribution remain rather unim-

portant (Tab. 1-1) 53,54. To obtain the desired large crystal sizes, crystallographers usual-

ly apply vapour diffusion techniques which provide only small amounts of crystals 55. 

Upscaling of such a technique can hardly be achieved and thus only few proteins have 

been crystallized successfully under large scale conditions 35,46. Furthermore, many 

crystallization conditions used for X-ray analysis are rarely applicable for therapeutic 

protein formulations since the employed excipients were not biocompatible 45. Conse-

quently, the crystallization approaches in literature vary greatly and reproducibility of 

conditions is not always given 35,46,53. In summary, crystallization experiences gained 

from x-ray structure determination are not necessarily transferable to crystallization for 

therapeutic applications. 

Table 1-1 Comparison of required crystals for x-ray diffraction and large scale crystallization. Reproduced after 
Shenoy et al. 53. 

Parameter 
X-ray crystallographic stud-

ies 
Large scale crystallization 

Crystal size 
Crystal quality 

Growth rate 
Yield 

Precipitate 

> 500 µm 
Very important 
Not important 
Not important 

Usually present 

0.1 - 100 µm 
Less important 

Important 
Very important 
Rarely present 

 

Protein crystallization is a rather complicated approach compared to crystallization of 

small therapeutic drug molecules 54,56,57. In addition to the different molecular weight, 

the presence of surface oligosaccharides and a high degree of segmental flexibility often 

hinder the production of crystals from reproducible quality 35,54. Thus, with increasing 

homogeneity and purity of the proteinacous material the probability of crystallization 

increases 54. 
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1.2.1 The mechanism of protein crystallization 

1.2.1.1 Growth rate 

Crystallization can be defined as “the transition of a solved substance into the solid state 

which possesses a specific regular lattice structure” 2. This lattice is characterized by a 

three-dimensional long-range order whereas amorphous precipitates exhibit a short-

range order over a few molecular dimensions 48,53. 

The most substantial requirement in protein crystallization is the creation of a high level 

of supersaturation 54. Supersaturation is a non-equilibrium condition with some quantity 

of abundant protein which can be achieved by several approaches 54: 

Table 1-2 Approaches for creating supersaturation. Reproduced after McPherson 2004 54. 

Approaches for creating supersaturation 

• pH shift 
• Addition of ligands to change solubility 
• Removal of solvent (evaporation) 
• Addition of cross binding agents 
• Addition of salts to trigger “salting in” or “salting out” 
• Addition of polymers to trigger volume exclusion (polyethylene glycols) 

 

The supersaturation is compensated energetically by amorphous or crystalline protein 

precipitation until reaching the equilibrium 54. 

However, the creation of supersaturation will not cause crystallization compulsorily. An 

optimal level of supersaturation has rather to be reached (Fig. 1-2). In case of higher 

protein concentrations and/or higher precipitants concentrations the system is directed 

into the precipitation zone where amorphous particles are formed instead of 

crystals 45,54. Under optimal conditions, the labile zone (or crystallization zone) is 

reached. Nuclei start to form and the concentration of the protein in the solute drops 55. 

Following, the system crosses the metastable zone where crystal grow without any fur-

ther formation of nuclei 45,55. By this, further reduction of the protein concentration in 

the solute, the solubility curve is reached and the system achieves again equilibrium 54. 
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Figure 1-2 Quantitative phase diagram of sitting drop vapour diffusion crystallization of lysozyme (20µl scale). Black 
boxes represent clear drops, crosses stand for crystallization and black circles represent formation of precipitates. 

Reproduced from Hekmat et al 58. 

 

The crystallization process can kinetically be divided into two different steps: nuclea-

tion and growth. Herein, nucleation represents the most difficult step in theory and prac-

tice 54. This phenomenon describes a first order phase transition over intermediates from 

an entirely disordered into an ordered state, called critical nuclei 54,55. Formation of such 

nuclei occurs at high supersaturation whereas crystal growth is favored in the lower 

metastable region 55. If the level of supersaturation is chosen too high, the crystal 

growth might be incomplete which results in formation of defects within the crystal 

structure 45. Hence, the level of supersaturation alone is not responsible for the growth 

rate 56,59. 

One essential requirement for an appropriate protein incorporation into a well-ordered 

crystal is that the molecules show proper orientation and position to their neighbor mol-

ecules 56. The molecules during their encounter collide with each other due to their rota-

tionally and translationally diffusion 60. By coincidence, one of these collisions results 

in an appropriate contact and thus incorporation of the molecules into the crystal  

lattice 56. This process might be widely steered by electrostatic effects 56,61,62. Surface 

studies beared the conclusion that protein crystal growth shows similarties to those of 

small molecules 45,56. This concept was augmented by the observation of soluble protein 

aggregate formation which function as building units. The formation of such building 
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units represents the first step in the crystallization and crystal growth process 56,63. 

However, the complete mechanism of crystallization is still not fully understood 54,58. 

1.2.1.2 Crystallization agents 

1.2.1.2.1 Long chain polymers 

The most prominent class of polymers used for macromolecular precipitation is repre-

sented by polyethylene glycols (PEG) which are part of a vast amount of screening  

kits 54,64-67. PEG is a polymerization product of ethylene oxide units resulting in the fol-

lowing structure 68: 

 

HO-(CH2CH2O)n-H 

 

The most useful PEGs for protein precipitation possess a molecular weight in the range 

of 2000 to 8000 54. PEG shows different properties dependent on its molecular  

weight 69. Larger polymers are more effective in reducing protein solubility 70. 

Their feature to precipitate or crystallize proteins is ascribed to a preferential exclusion 

effect in that the polymer chains occupy certain space within the solvent 65,71. Hence, the 

protein is sterically excluded from the solution and is concentrated until the solubility 

limit is reached and precipitation starts 54. This mechanism explains why these polymers 

are not part of the crystal lattice in contrast to salt ions used also as precipitants 54,70. 

One fundamental benefit of PEG is the preservation of the native conformation of the 

proteins during crystallization which was shown by structure determination of many 

proteins using PEG as precipitant 54. 

1.2.1.2.2 Salts 

The two main mechanisms induced by the addition of salts are: “salting out” and “salt-

ing in” 54. 

“Salting in” describes the effect of increasing protein solubility in low ionic strength 

solutions by increasing the salt concentration. At higher salt concentrations a reverse 

effect occurs: the “salting out” effect. “Salting out” describes a competition of salt ions, 



10 
 

mainly anions, and protein molecules for hydrogen bonds with surrounding water mole-

cules in solution. Such bonds are essential for maintenance of solubility 54,72. If an ex-

cess of salt ions hinders the formation of sufficient protein hydrogen bonds to saturate 

electrostatic requirements, the protein molecules will start to form hydrophobic intermo-

lecular interaction resulting in crystalline or amorphous precipitates 54. The effective-

ness of the anion is dependent on its ionic strength (I) which is defined as: 

 

I/2 = Σmv2 

 

with (m) being molarity and (v) being the valence. It appears that polyvalent ions are 

more effective than monovalent ions. This fact is displayed by the Hofmeister series 

which classically sorts anions to their ability to precipitate proteins 73-76. Differences in 

the effectiveness of ions from the same valence are explained by their different ability to 

destroy or form hydrogen bonds. Herein, ions are divided into “kosmotropic” ions 

which are strongly hydrated but possess a strong ability for “salting out”, whereas 

weakly hydrated and thus inferior precipitants are classed as “chaotropic” ions 77,78. 

Hofmeister series: 

anions: Carbonate > Sulphate > Dihydrogen phosphate > Acetate > Chloride > Iodide 

cations: Ammonium > Potassium > Sodium > Lithium > Magnesium > Calcium 

 

The mechanism behind protein precipitation by ions of the Hofmeister series is not en-

tirely understood. It appears that not changes in the general water structure were of im-

portance but also specific interactions between ions and proteins which might result in 

protein destabilization. Especially salts with strong “salting in” effects (e.g. I-, SCN-) 

might foster protein denaturation by preferably interacting with the unfolded state 79. 

However, the influence of ions on protein solubility can be much more complicated. 

Besides the aforementioned “salting out” and “salting in” mechanisms, specific non-
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destructive protein-ion interactions may also play an important role. In this context, the 

crystalline insulin zinc complex represents an excellent example 54. 

1.2.1.2.3 Organic solvents 

Crystallization of proteins by organic solvents is ascribed to multiple mechanisms. Or-

ganic solvents can function as “anti-solvent” similar to kosmotropic salts or can de-

crease the dielectric constant of an aqueous medium. The latter effect enhances intermo-

lecular interactions and thus fosters protein precipitation. One representative of this 

class which is often used is ethyl alcohol. This compound tends to solubilize hydropho-

bic residues which can end in unfolding and denaturation, therefore usage at lower tem-

peratures and low ionic strengths is recommended 54,70,80. 

1.2.2 Protein crystal properties 

A transfer of the advantageous attributes of small molecule crystals to protein crystals 

would be desirable. However, crystals of proteins show differences in many aspects. 

They represent rather an ordered gel with extensive interstitial spaces than a solid state 

with highly ordered structures 54. Furthermore, the crystals contain up to 90 % bound 

water which is needed to maintain the protein’s integrity and its native structure which 

commonly remains unchanged 54,81,82.  

For crystals of small molecules, a significant fraction of functional groups is involved in 

the crystal lattice interactions 54. In contrast, the crystalline macromolecules show con-

siderably less bonds and interactions to adjacent molecules in proportion to their molec-

ular size 45,54. Most of these interactions are of intra-molecular and notably not inter-

molecular nature which weakens the crystalline structure 56. Consequently, the reduction 

in free order and molecule mobility is small within the crystal lattice 50,56. With that in 

mind it is obvious that crystals of proteins show different attributes in e.g. stabilization 

of the molecules. They show only a minor stability advantage compared to amorphous 

counterparts which is confirmed by small internal energy differences 54. Besides the 

quoted differences, a multitude of others exist as listed in Table 1-3: 
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Table 1-3 Comparison of crystalline small molecules (e.g. salt) and macromolecules (e.g. proteins). Reproduced from 
McPherson and Jen & Merkle 45,54. 

Small molecule crystals Protein crystals 

• Firm lattice forces 
• Relatively highly ordered structure 
• Physically hard and brittle 
• Easy to manipulate 
• Exposition to air is possible 
• Strong optical properties 
• Intense x-ray diffraction 

• More limited in size 
 

• Very soft and easily crushable 
• Dehydration can result in disintegra-

tion 
• Weak optical properties 
• Weak x-ray diffraction 

 

Analysis of protein crystals is difficult as they show weak x-ray diffraction properties 

which is caused by their low internal order 54. The resolution is limited by permeating 

liquid channels and solvent filled cavities. These characteristics and the isotopic globu-

lar character of the protein units also cause poor birefringence of protein crystals under 

polarized light in comparison to small molecule crystals 45. 

Another specific property of protein crystals is polymorphism which is the co-existence 

of different crystalline lattice structures with the same chemical composition 2,54. These 

diverse habits and unit cells even may develop from conditions that do not differ con-

sidering most of the standard parameters 54. Control of the crystal shape may be 

achieved by variation of the buffer or the precipitant 83,84. For small molecules this phe-

nomenon is well documented. Polymorphs can show different properties regarding e.g. 

solubility, stability, bioavailability, and melting points 83. 
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 Crystallization of mAb1 and mAb2: The achievements of a pre-1.3

liminary study on mAb crystallization and process up-scaling 

As abovementioned, mAb crystal formulations potentially offer superior features com-

pared to their liquid counterparts in terms of stability and reduced viscosity enabling 

subcutaneous injection 44. However, antibody crystallization must not necessarily suc-

ceed under biocompatible conditions. In general, adverse conditions are required to ac-

tually achieve protein crystallization. A precise prediction of condition parameters nec-

essary to induce crystallization is extremely complex and hardly achievable in the ma-

jority of cases. Identification of suitable crystallization formulations usually ends in 

extensive screening approaches 45,85. 

Nonetheless, the opportunity to generate stable mAb crystal formulations with superior 

properties would compensate the effort and the high risk of failure. 

Therefore, a project (preliminary study - PhD thesis Stefan Gottschalk at LMU Munich) 

was conducted with the purpose to find suitable and biocompatible crystallization con-

ditions for two full length IgG1 antibodies (mAb1 and mAb2) and one antibody frag-

ment. The aim of the project was to administer the crystal formulations subcutaneously 

or to use them as sustained release formulation platform. Large scale crystallization 

conditions could successfully be determined in the case of the antibodies and the anti-

body fragment, however, resulting in low protein crystal stability against ambient or 

higher temperatures. Furthermore, the effect of vacuum drying on the stability of mAb1 

crystals and embedding the crystals in sustained release formulations was studied. 

The study started with microscale crystallization in vapor diffusion experiments to iden-

tify suitable and biocompatible crystallization conditions. Therefore, only physiological 

acceptable crystallization conditions were examined. Subsequently, lead conditions 

were validated and optimized in grid screens by varying parameters against each other. 

Finally, the most promising crystallization formulations were transferred to the batch 

crystallization method. For each antibody, lead conditions were defined as described in 

this section 86. The lead crystallization conditions only from mAb1 and mAb2 will be 

presented in the following as only these two molecules were subject of the present 

study. 
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1.3.1 mAb1 lead crystallization conditions (preliminary study) 

mAb1 was found to crystallize in a 5 mg/mL protein solution in presence of 11 - 12% 

(w/v) PEG 4000. Therefore, a 10 mg/mL antibody solution in 0.1 M sodium acetate 

buffer at pH 5.5 was mixed in a 1:1 ratio with a 22 - 24% (w/v) PEG 4000 solution  

(0.1 M sodium acetate buffer at pH 5.5). This mixture was stored at ambient tempera-

ture for 1 - 2 months. Crystallization, using the 23% (w/v) PEG solution showed the 

best results in terms of crystallization potency and quality and was therefore defined as 

lead concentration. It combined a relatively fast crystallization with high yield and ho-

mogeneous particle size (plate like crystals, see Fig. 1-3). Using 24% (w/v) PEG for 

crystallization, time and yield were acceptable, but initially formed needle like clusters 

converted to plate like crystals after 180 days of crystallization. Higher PEG concentra-

tions triggered amorphous precipitates. In contrast, usage of a 22% (w/v) PEG solution 

resulted in a lower maximum crystal yield (60% vs. 65 - 70%) and a longer crystalliza-

tion period (80 days vs. 40 - 50 days). Lower PEG concentrations did not trigger any 

crystallization. 

23% (w/v) PEG 24% (w/v) PEG > 24% (w/v) PEG 

Figure 1-3 Light microscopic images from mAb1 crystallized with different amounts of PEG. Platelet shaped crystals 
were obtained with 23% (w/v) PEG 4000 (left). Small needle cluster occur using 24% (w/v) PEG 4000 (middle). 
Above 24% (w/v) PEG 4000 amorphous precipitates were obtained.  

 

1.3.2 mAb2 lead crystallization conditions (preliminary study) 

In contrast to mAb1, crystallization of mAb2 was only possible in a salt based crystal-

lizing system. Similar to mAb1, crystallization was carried out from a 10 mg/mL pro-

tein solution. Therefore, the initial stock solution at pH 5.2 was diluted with highly puri-

fied water. Subsequently, the protein solution was admixed in a 1:1 ratio with a 4.2 M 

sodium dihydrogen phosphate solution in a 0.1 M sodium acetate buffer at pH 4.1. The 

mixture was stored for one week at ambient temperature. Notably, mAb2 initially pre-
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cipitates amorphously after mixing the two solutions. Transition into crystals starts im-

mediately and is usually completed after 2 days and sea-urchin like crystal structures 

could be observed (Fig. 1-4) 86. 

 
 

mAb2 crystals 

Figure 1-4 shows a light microscopic picture of mAb2 crystals obtained after crystallization with the lead conditions. 

 

Table 1-4 summarizes the lead conditions used during the present study as defined by 

the preliminary study.  

Table 1-4 shows the optimized crystallization lead conditions for the two full length IgG1 antibodies 86. 

mAb1 mAb2 

• 10 mg/mL protein solution 
• 22% - 24% (w/v) PEG 4000 solution 
• 0.1 M sodium acetate buffer 

pH 5.50 
• Batch crystallization (admixing 1:1)  
• Ambient temperature 

• 10 mg/mL protein solution 
• 4.2 M sodium dihydrogen phosphate 

solution 
• 0.1 M sodium acetate buffer 

pH 4.10 
• Batch crystallization (admixing 1:1)  
• Ambient temperature 

 

1.3.3 Stability of antibody crystals (preliminary study) 

During the preliminary study, aggregate formation was observed for mAb1 and mAb2 

in their crystalline states (see section 1.3.3.1 and 1.3.3.2). To describe the stability of 

both antibodies, one needs to differentiate between stability during the crystallization 

process and under storage conditions after maximum crystal yield has been reached. 

Analysis of the secondary structure did not reveal any changes in the crystalline state 

compared to the dissolved state. Therefore, the aforementioned aggregate formation 

observed during the preliminary study was not linked to protein unfolding so that a dif-

ferent mechanism for protein instability was anticipated. 
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It was assumed that the aggregation occurs inside the crystal lattice due to residual flex-

ibility of the antibodies supported by the short distances between the molecules 86. 

These characteristics theoretically result in highly concentrated microsystems which in 

general foster aggregation due to macromolecular crowding. An additional influence of 

the formulation excipients, which are able to move through the solvent channels and 

thus permeate the crystals, was also considered. However, investigations on molecular 

level were not presented 86. 

1.3.3.1 mAb1 stability during crystallization and storage (preliminary study) 

For mAb1, aggregate formation was observed immediately after mixing the antibody 

solution with the PEG 4000 solution. Samples stored at 2-8°C remained quite stable 

whereas storage at 25°C and especially at 40°C resulted in high levels of aggregates. 

After 3 months storage time at 25°C, the amount of soluble aggregates reached approx-

imately 6.5% and continued up to 9% after 6 months. Interestingly, the aggregate for-

mation can be associated to the PEG concentration; the higher the PEG concentration 

the higher the observed aggregate content. It was already assumed that initial aggregates 

might serve as primary nuclei for crystallization and thus were concentrated in the crys-

talline phase. However, this could not explain the further aggregation during storage. 

Stabilization of the antibody by association within a crystal lattice was obviously not 

naturally given as a comparison of the crystalline suspensions and their liquid counter-

parts revealed a higher stability for the liquid formulations 86. 

1.3.3.2 mAb2 stability during crystallization and storage (preliminary study) 

mAb2 crystals showed a loss of total monomer content of about 0.4% immediately after 

crystallization. The aggregate content continuously increased to approximately 5% dur-

ing storage at ambient temperature for 6 months and increased to 10% after one year. As 

the crystal yield was almost 100%, the aggregates were likely not formed during storage 

as primary nuclei. Extended stability studies for mAb2 were performed over 3 months 

at 2-8°C, 25°C and 40°C with similar results as for mAb1. All tested formulations re-

mained stable at 2-8°C. After storage at 25°C and 40°C, significant aggregate and frag-

ment levels could be observed. In conclusion, both model proteins did show a superiorly 

stability in their crystallized states compared to its liquid formulations 86. 
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 Objectives of the thesis 1.4

The feasibility of the concept to grow highly stable mAb crystals from biocompatible 

conditions was still arguable at the end of the preliminary study. Therefore, the present 

study was carried out in order to prove this concept and to stabilize the crystals from the 

two IgG1 antibodies by, amongst others, drying and to use them as platform for sus-

tained release formulations. 

As proof of concept, a small initial study should be conducted as fundament for the 

main work. By means of a model protein a lead procedure from the crystallization itself 

towards a dry and stable product was to be developed. The investigated strategies and 

methods should subsequently be transferred to mAb1 and mAb2. Lysozyme was chosen 

as model protein as, in contrast to the two antibodies, several stable polymorphic forms 

were already known. Consequently, the whole concept of the present study could be 

demonstrated and pre-assessed without limitations arising from unstable and inappro-

priate protein crystal material (Chapter 2).   

Dry crystalline products were anticipated to be beneficial for protein crystal stabiliza-

tion and long term storage properties and thus an appropriate drying procedure was to 

be developed. Herein, the first step was to reproduce and to evaluate the vacuum drying 

procedure from the preliminary study. Additional innovative drying techniques such as 

hot-air drying were also to be assessed (Chapter 3). 

The crystallization lead conditions resulted in needle-like structures which were consid-

ered thermodynamically very unfavorable 58. Therefore, a screening for different poly-

morphs was to be conducted in order to obtain polymorphic crystals of higher stability 

(Chapter 4).  

Investigation of the underlying aggregation pathways was to be performed to set the 

stabilization of the two mAb crystals on a rational level (Chapter 5). 

Multiple administrations are not well accepted for the patience. Applicable sustained 

release formulations are required which allow to reduce the frequency of administration. 

Protein crystals might possess beneficial attributes for long term protein drug release. 

Therefore, the crystals of the two antibodies were to be assessed for their ability to func-

tion as innovative platform for several sustained release formulations (Chapter 6). 
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Amorphous precipitates might occur as impurities during protein crystallization. Com-

monly used analytical techniques such as microscopy do not allow for a high throughput 

analysis with respect to differentiate between crystalline and amorphous structures as 

well as to quantify the amorphous impurity. Therefore, an alternative analytical tech-

nique (flow cytometry) was to be assessed for this purpose (Chapter 7). 

  



19 
 

 References 1.5

1. Carter, P.J., Introduction to current and future protein therapeutics: A protein 

engineering perspective. Experimental Cell Research, 2011. 317(9): p. 1261-
1269. 

 
2. Ammon, H.P., Hunnius Pharmazeutisches Wörterbuch. 2010: Walter de 

Gruyter. 
 
3. Walsh, G., Biopharmaceutical benchmarks 2010. Nature Biotechnology, 2010. 

28(9): p. 917. 
 
4. Leader, B., Baca, Q.J., Golan, D.E., Protein therapeutics: a summary and 

pharmacological classification. Nature Reviews Drug Discovery, 2008. 7(1): p. 
21-39. 

 
5. Nicolaides, N.C., Sass, P.M., Grasso, L., Advances in targeted therapeutic 

agents. Expert Opinion on Drug Discovery, 2010. 5(11): p. 1123-1140. 
 
6. Elvin, J.G., Couston, R.G., van der Walle, C.F., Therapeutic antibodies: Market 

considerations, disease targets and bioprocessing. International Journal of 
Pharmaceutics, 2013. 440(1): p. 83-98. 

 
7. Reichert, J.M., Antibodies to watch in 2013: Mid-year update. MAbs, 2013. 5: 

p. 0--1. 
 
8. Hoekstra, W.P.M., Smeekens, S.C.M., Molecular Biotechnology, in 

Pharmaceutical Biotechnology, Crommelin, D.J.A., Sindelar, R.D., Editor. 
2002, Taylor & Francis. p. 1-21. 

 
9. Köhler, G., Milstein, C., Continuous cultures of fused cells secreting antibody of 

predefined specificity. Nature, 1975. 256(5517): p. 495-497. 
 
10. Winter, G., Milstein, C., Man-made antibodies. Nature, 1991. 349(6307): p. 

293-299. 
 
11. Pechenov, S., Shenoy, B., Yang, M.X., Basu, S.K., Margolin, A.L., Injectable 

controlled release formulations incorporating protein crystals. Journal of 
Controlled Release, 2004. 96(1): p. 149-158. 

 
12. Strohl, W.R., Therapeutic monoclonal antibodies: past, present, and future, in 

Therapeutic Monoclonal Antibodies: From Bench to Clinic, An, Z., Editor.  
2009: p. 1-50. 

 
13. Chowdhury, P.S., Wu, H., Tailor-made antibody therapeutics. Methods, 2005. 

36(1): p. 11-24. 
 
14. Wang, W., Instability, stabilization, and formulation of liquid protein 

pharmaceuticals. International Journal of Pharmaceutics, 1999. 185(2): p. 129-
188. 



20 
 

15. Crommelin, D.J., Storm, G., Verrijk, R., de Leede, L., Jiskoot, W., Hennink, 
W.E., Shifting paradigms: biopharmaceuticals versus low molecular weight 

drugs. International Journal of Pharmaceutics, 2003. 266(1): p. 3-16. 
 
16. Manning, M.C., Chou, D.K., Murphy, B.M., Payne, R.W., Katayama, D.S., 

Stability of protein pharmaceuticals: an update. Pharmaceutical Research, 2010. 
27(4): p. 544-575. 

 
17. Wang, W., Protein aggregation and its inhibition in biopharmaceutics. 

International Journal of Pharmaceutics, 2005. 289(1): p. 1-30. 
 
18. Chi, E.Y., Krishnan, S., Randolph, T.W., Carpenter, J.F., Physical stability of 

proteins in aqueous solution: mechanism and driving forces in nonnative protein 

aggregation. Pharmaceutical Research, 2003. 20(9): p. 1325-1336. 
 
19. Jiskoot, W., Randolph, T.W., Volkin, D.B., Middaugh, C.R., Schöneich, C., 

Winter, G., Friess, W., Crommelin, D.J., Carpenter, J.F., Protein instability and 

immunogenicity: Roadblocks to clinical application of injectable protein 

delivery systems for sustained release. Journal of Pharmaceutical Sciences, 
2012. 101(3): p. 946-954. 

 
20. Rosenberg, A.S., Effects of protein aggregates: an immunologic perspective. 

The AAPS journal, 2006. 8(3): p. E501-E507. 
 
21. Carpenter, J.F., Randolph, T.W., Jiskoot, W., Crommelin, D.J.A., Middaugh, 

C.R., Winter, G., Fan, Y.-X., Kirshner, S., Verthelyi, D., Kozlowski, S., Clouse, 
K.A., Swann, P.G., Rosenberg, A., Cherney, B., Overlooking subvisible 

particles in therapeutic protein products: Gaps that may compromise product 

quality. Journal of Pharmaceutical Sciences, 2009. 98(4): p. 1201-1205. 
 
22. Johnson, R., Jiskoot, W., Models for evaluation of relative immunogenic 

potential of protein particles in biopharmaceutical protein formulations. Journal 
of Pharmaceutical Sciences, 2012. 101(10): p. 3586-3592. 

 
23. Daugherty, A.L., Mrsny, R.J., Formulation and delivery issues for monoclonal 

antibody therapeutics. Advanced Drug Delivery Reviews, 2006. 58(5): p. 686-
706. 

 
24. Strohl, W.R., Knight, D.M., Discovery and development of biopharmaceuticals: 

current issues. Current Opinion in Biotechnology, 2009. 20(6): p. 668-672. 
 
25. Johnson-Léger, C., Power, C.A., Shomade, G., Shaw, J.P., Proudfoot, A.E., 

Protein therapeutics-lessons learned and a view of the future. Expert Opinion on 
Biological Therapy, 2006. 6(1): p. 1-7. 

 
26. Fuh, K., Modern-day challenges in therapeutic protein production. Expert 

Review of Proteomics, 2011. 8(5): p. 563-564. 
 



21 
 

27. Antosova, Z., Mackova, M., Kral, V., Macek, T., Therapeutic application of 

peptides and proteins: parenteral forever? Trends in Biotechnology, 2009. 
27(11): p. 628-635. 

 
28. Mahmood, I., Green, M.D., Pharmacokinetic and pharmacodynamic 

considerations in the development of therapeutic proteins. Clinical 
Pharmacokinetics, 2005. 44(4): p. 331-347. 

 
29. Fahy, J.V., Cockcroft, D.W., Boulet, L.-P., Wong, H.H., Deschesnes, F., Davis, 

E.E., Ruppel, J., Su, J.Q., Adelman, D.C., Effect of aerosolized anti-IgE (E25) 

on airway responses to inhaled allergen in asthmatic subjects. American Journal 
of Respiratory and Critical Care Medicine, 1999. 160(3): p. 1023-1027. 

 
30. Orive, G., Hernandez, R.M., Gascón, A.R.g., Domı ́nguez-Gil, A., Pedraz, J.L., 

Drug delivery in biotechnology: present and future. Current opinion in 
biotechnology, 2003. 14(6): p. 659-664. 

 
31. Mitragotri, S., Blankschtein, D., Langer, R., Ultrasound-mediated transdermal 

protein delivery. Science, 1995. 269(5225): p. 850-853. 
 
32. Kalluri, H., Banga, A.K., Transdermal delivery of proteins. AAPS 

PharmSciTech, 2011. 12(1): p. 431-441. 
 
33. Frokjaer, S., Otzen, D.E., Protein drug stability: a formulation challenge. 

Nature Reviews Drug Discovery, 2005. 4(4): p. 298-306. 
 
34. Bhambhani, A., Kissmann, J.M., Joshi, S.B., Volkin, D.B., Kashi, R.S., 

Middaugh, C.R., Formulation design and high-throughput excipient selection 

based on structural integrity and conformational stability of dilute and highly 

concentrated IgG1 monoclonal antibody solutions. Journal of Pharmaceutical 
Sciences, 2012. 101(3): p. 1120-1135. 

 
35. Yang, M.X., Shenoy, B., Disttler, M., Patel, R., McGrath, M., Pechenov, S., 

Margolin, A.L., Crystalline monoclonal antibodies for subcutaneous delivery. 
Proceedings of the National Academy of Sciences, 2003. 100(12): p. 6934-6939. 

 
36. Frokjaer, S., Otzen, D.E., Protein drug stability: a formulation challenge. 

Nature Reviews Drug Discovery, 2005. 4(4): p. 298-306. 
 
37. Shire, S.J., Shahrokh, Z., Liu, J., Challenges in the development of high protein 

concentration formulations. Journal of Pharmaceutical Sciences, 2004. 93(6): p. 
1390-1402. 

 
38. Harris, R.J., Shire, S.J., Winter, C., Commercial manufacturing scale 

formulation and analytical characterization of therapeutic recombinant 

antibodies. Drug development research, 2004. 61(3): p. 137-154. 
 
39. Kanai, S., Liu, J., Patapoff, T.W., Shire, S.J., Reversible self‐association of a 

concentrated monoclonal antibody solution mediated by Fab–Fab interaction 



22 
 

that impacts solution viscosity. Journal of Pharmaceutical Sciences, 2008. 
97(10): p. 4219-4227. 

 
40. Brange, J., Andersen, L., Laursen, E.D., Meyn, G., Rasmussen, E., Toward 

understanding insulin fibrillation. Journal of Pharmaceutical Sciences, 1997. 
86(5): p. 517-525. 

 
41. Wang, W., Lyophilization and development of solid protein pharmaceuticals. 

International Journal of Pharmaceutics, 2000. 203(1-2): p. 1-60. 
 
42. Bhatnagar, B.S., Bogner, R.H., Pikal, M.J., Protein stability during freezing: 

separation of stresses and mechanisms of protein stabilization. Pharmaceutical 
Development and Technology, 2007. 12(5): p. 505-523. 

 
43. Carpenter, J.F., Pikal, M.J., Chang, B.S., Randolph, T.W., Rational design of 

stable lyophilized protein formulations: some practical advice. Pharmaceutical 
Research, 1997. 14(8): p. 969-975. 

 
44. Yang, M.X., Shenoy, B., Disttler, M., Patel, R., McGrath, M., Pechenov, S., 

Margolin, A.L., Crystalline monoclonal antibodies for subcutaneous delivery. 
Proceedings of the National Academy of Sciences of the United States of 
America, 2003. 100(12): p. 6934-6939. 

 
45. Jen, A.Merkle, H.P., Diamonds in the Rough: Protein Crystals from a 

Formulation Perspective. Pharmaceutical Research, 2001. 18(11): p. 1483-1488. 
 
46. Basu, S.K., Govardhan, C.P., Jung, C.W., Margolin, A.L., Protein crystals for 

the delivery of biopharmaceuticals. Expert Opinion on Biological Therapy, 
2004. 4(3): p. 301-317. 

 
47. Shenoy, B., Wang, Y., Shan, W., Margolin, A.L., Stability of crystalline 

proteins. Biotechnology and Bioengineering, 2001. 73(5): p. 358-369. 
 
48. Hancock, B.C., Zografi, G., Characteristics and significance of the amorphous 

state in pharmaceutical systems. Journal of Pharmaceutical Sciences, 1997. 
86(1): p. 1-12. 

 
49. Margolin, A.L., Khalaf, N.K., Clair, N.L.S., Rakestraw, S.L., Shenoy, B.C., 

Stabilized protein crystals formulations containing them and methods of making 

them. 2003, US Patent 6,541,606 B2. 
 
50. Pikal, M.J., Rigsbee, D.R., The stability of insulin in crystalline and amorphous 

solids: observation of greater stability for the amorphous form. Pharmaceutical 
Research, 1997. 14(10): p. 1379-1387. 

 
51. McRee, D.E., Practical protein crystallography. 1999: Access Online via 

Elsevier. 
 
52. http://www.rcsb.org/pdb/statistics/holdings.do, 2012. 
 



23 
 

53. Shenoy, B., Crystals of whole antibodies and fragments thereof and methods for 

making and using them. 2010, US Patent 7,833,525 B2. 
 
54. McPherson, A., Introduction to protein crystallization. Methods, 2004. 34(3): p. 

254-265. 
 
55. Chayen, N., Comparative Studies of Protein Crystallization by Vapour-Diffusion 

and Microbatch Techniques. Acta Crystallographica Section D, 1998. 54(1): p. 
8-15. 

 
56. Durbin, S., Feher, G., Protein crystallization. Annual review of physical 

chemistry, 1996. 47(1): p. 171-204. 
 
57. Feigelson, R.S., The relevance of small molecule crystal growth theories and 

techniques to the growth of biological macromolecules. Journal of Crystal 
Growth, 1988. 90(1): p. 1-13. 

 
58. Hekmat, D., Hebel, D., Schmid, H., Weuster-Botz, D., Crystallization of 

lysozyme: From vapor diffusion experiments to batch crystallization in agitated 

ml-scale vessels. Process Biochemistry, 2007. 42(12): p. 1649-1654. 
 
59. Forsythe, E., Ewing, F., Pusey, M., Studies on tetragonal lysozyme crystal 

growth rates. Acta Crystallographica Section D: Biological Crystallography, 
1994. 50(4): p. 614-619. 

 
60. von Hippel, P.H., Berg, O., Facilitated target location in biological systems. 

Journal of Biological Chemistry, 1989. 264(2): p. 675-678. 
 
61. Sharp, K., Fine, R., Honig, B., Computer simulations of the diffusion of a 

substrate to an active site of an enzyme. Science, 1987. 236(4807): p. 1460-
1463. 

 
62. Karshikov, A., Bode, W., Tulinsky, A., Stone, S.R., Electrostatic interactions in 

the association of proteins: An analysis of the thrombin–hirudin complex. 
Protein Science, 1992. 1(6): p. 727-735. 

 
63. McPherson, A., Crystallization of biological macromolecules. Vol. 586. 1999: 

Cold Spring Harbor Laboratory Press New York. 
 
64. Grimm, C., Chari, A., Reuter, K., Fischer, U., A crystallization screen based on 

alternative polymeric precipitants. Acta Crystallographica Section D: Biological 
Crystallography, 2010. 66(6): p. 685-697. 

 
65. Atha, D.H., Ingham, K.C., Mechanism of precipitation of proteins by 

polyethylene glycols. Analysis in terms of excluded volume. Journal of 
Biological Chemistry, 1981. 256(23): p. 12108-12117. 

 
66. Bhat, R., Timasheff, S.N., Steric exclusion is the principal source of the 

preferential hydration of proteins in the presence of polyethylene glycols. 
Protein Science, 1992. 1(9): p. 1133-1143. 



24 
 

 
67. McPherson, A., Use of polyethylene glycol in the crystallization of 

macromolecules. Methods in enzymology, 1985. 114: p. 120-125. 
 
68. Kumar, V., Kalonia, D.S., Removal of peroxides in polyethylene glycols by 

vacuum drying: Implications in the stability of biotech and pharmaceutical 

formulations. AAPS PharmSciTech, 2006. 7(3): p. 47-53. 
 
69. Henning, T., Polyethylene glycols (PEGs) and the pharmaceutical industry. 

SÖFW-Journal, 2001. 127(10): p. 28-32. 
 
70. Wiencek, J., New strategies for protein crystal growth. Annual review of 

biomedical engineering, 1999. 1(1): p. 505-534. 
 
71. Arakawa, T., Timasheff, S.N., Mechanism of polyethylene glycol interaction 

with proteins. Biochemistry, 1985. 24(24): p. 6756-6762. 
 
72. Ryu, S., Lee, B., Hong, S., Jin, S., Park, S., Hong, S.H., Lee, H., Salting-out as a 

scalable, in-series purification method of graphene oxides from microsheets to 

quantum dots. Carbon, 2013. 63(0): p. 45-53. 
 
73. Zhang, Y., Furyk, S., Bergbreiter, D.E., Cremer, P.S., Specific ion effects on the 

water solubility of macromolecules: PNIPAM and the Hofmeister series. Journal 
of the American Chemical Society, 2005. 127(41): p. 14505-14510. 

 
74. Arakawa, T., Timasheff, S.N., Preferential interactions of proteins with salts in 

concentrated solutions. Biochemistry, 1982. 21(25): p. 6545-6552. 
 
75. Arakawa, T., Timasheff, S.N., Mechanism of protein salting in and salting out 

by divalent cation salts: balance between hydration and salt binding. 
Biochemistry, 1984. 23(25): p. 5912-5923. 

 
76. Schwierz, N., Netz, R.R., Effective interaction between two ion-adsorbing 

plates: Hofmeister series and salting-in/salting-out phase diagrams from a 

global mean-field analysis. Langmuir, 2012. 28(8): p. 3881-3886. 
 
77. Gurau, M.C., Lim, S.-M., Castellana, E.T., Albertorio, F., Kataoka, S., Cremer, 

P.S., On the mechanism of the Hofmeister effect. Journal of the American 
Chemical Society, 2004. 126(34): p. 10522-10523. 

 
78. Collins, K.D., Ions from the Hofmeister series and osmolytes: effects on proteins 

in solution and in the crystallization process. Methods, 2004. 34(3): p. 300-311. 
 
79. Baldwin, R.L., How Hofmeister ion interactions affect protein stability. 

Biophysical Journal, 1996. 71(4): p. 2056-2063. 
 

80. Kiese, S., Papppenberger, A., Friess, W., Mahler, H.C., Shaken, not stirred: 

mechanical stress testing of an IgG1 antibody. Journal of Pharmaceutical 
Sciences, 2008. 97(10): p. 4347-4366. 

 



25 
 

81. Matthews, B.W., Solvent content of protein crystals. Journal of Molecular 
Biology, 1968. 33: p. 491-497. 

 
82. Frey, M., Water structure associated with proteins and its role in crystallization. 

Acta Crystallographica Section D: Biological Crystallography, 1994. 50(4): p. 
663-666. 

 
83. Shekunov, B.Y., York, P., Crystallization processes in pharmaceutical 

technology and drug delivery design. Journal of Crystal Growth, 2000. 211(1–
4): p. 122-136. 

 
84. Lee, T.S., Vaghjiani, J.D., Lye, G.J., Turner, M.K., A systematic approach to the 

large-scale production of protein crystals. Enzyme and microbial technology, 
2000. 26(8): p. 582-592. 

 
85. Kantardjieff, K.A., Rupp, B., Protein isoelectric point as a predictor for 

increased crystallization screening efficiency. Bioinformatics, 2004. 20(14): p. 
2162-2168. 

 
86. Gottschalk, S., Crystalline Monoclonal Antibodies: Process Development for 

Large Scale Production, Stability and Pharmaceutical Applications. Thesis 
Munich, 2008. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



26 
 

 
 
 
 
 
  



27 
 

Chapter 2 

  



28 
 

2 Case study: From protein bulk crystallization towards dry 

protein products 

 Abstract  2.1

Drying of protein crystals is challenging. Specific levels of residual intra-crystalline 

water are required to preserve the protein’s integrity within the crystal lattice. Utiliza-

tion of standard drying techniques for biopharmaceuticals as freeze drying or vacuum 

drying easily can end in overdrying and protein denaturation. Consequently, alternative 

drying techniques are required to achieve dry protein crystals. During the present study, 

protein crystals were washed with a volatile organic solvent which was subsequently 

evaporated using a heated inert gas stream of nitrogen. An appropriate crystal had to be 

insoluble and stable within the organic washing liquid and during the drying procedure 

itself. It was assumed that only certain crystal polymorphs would possess such required 

attributes. Therefore, lysozyme was crystallized into different morphologies. Three pol-

ymorphs were characterized for processability, mechanical properties and solubility in 

organic solvents. During an extensive solvent screening isopropanol 95% was found to 

be the best washing liquid. Only one crystal polymorph was insoluble and stable in this 

solvent. A crystalline free flowing powder was obtained which showed very low residu-

al isopropanol and water contents and fully retained specific activity of the protein. The 

crystal morphology was shown to be a key factor within the presented approach. 
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 Introduction 2.2

Although protein crystallization has been performed for almost 150 years, only one bio-

pharmaceutical is on the market comprising the protein drug in crystal form: insulin 1-5. 

In contrast, crystals made of small molecules have been utilized in therapeutic formula-

tions for decades possessing well-known attractive attributes, e.g. stability and  

handling 6. Hence, transferring these advantageous properties of small molecule crystals 

to proteins would be a desirable target. Furthermore, the crystalline state might prevent 

biological, chemical or physical degradation of the biopharmaceutical drug 6,7. Protein 

crystals may also enable sustained release of protein molecules eventually in combina-

tion with specific excipients 2,5-7. In addition, as there is a need for administration of 

highly concentrated protein formulations (e.g. antibodies), the solid state should also 

allow a reduction of the required dosage volume due to a comparatively low viscosity 

(Einstein equation) of crystal suspensions 2,5,8. Therefore, protein crystals were already 

referred to as “diamonds in the rough” by Jen and Merkle in 2001 6.   

However, development of crystalline protein formulations is complicated by the fact 

that many proteins only crystallize at inappropriate conditions, which means that the 

applied temperatures, pH, solvents and precipitation agents are not biocompatible or 

significantly affect protein stability 6. In literature, only few parameters are described to 

have a positive impact on the crystallization process 2,9. Thus, screening for optimal 

crystallization conditions is quite complex and can end in extensive efforts although a 

number of screening kits and proved crystallization strategies are available 9. Even if an 

acceptable crystallization condition is found, the observed crystal morphology may not 

fulfill the requirements for further processing like acceptable handling (e.g. mechanical 

stability), solubility, stability, and capability for drying. Especially in the case of anti-

body crystals, the occurrence of needle-shaped morphologies is often reported, repre-

senting a very unfavorable morphology 3. 

With regard to storage stability and shelf life, dry formulations are considered to be su-

perior to liquid protein formulations. The need of a protein crystal to contain a specific 

amount of intra-crystalline water (up to 90%) to maintain protein stability is complicat-

ing this issue 4,10. It was even stated that protein crystals cannot be dried in general 11. 

On the contrary, studies showed that certain protein crystals remain stable after drying 

and at a water content of only 10% or 3% 8,12. However, overdrying of the crystals has 
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to be prevented. Crystalline suspensions usually contain crystals of different sizes and 

with different amounts of solvent. Theoretically, each crystal would have an optimal 

drying time that could not be adjusted in a bulk process like freeze drying and vacuum 

drying 13. Furthermore, lyophilization requires freezing of the crystalline suspension 

which might be destructive to the crystal lattice as a result of ice crystal formation 14,15. 

In consequence, other drying strategies have to be applied for protein crystals. The 

mother liquor could be exchanged by an organic solvent which is subsequently evapo-

rated 13,14,16. However, this process is only applicable when the protein crystal is insolu-

ble in the employed liquid. Furthermore, the crystal must protect the protein from dena-

turation upon contact with the organic solvent. Different crystal morphologies of one 

protein can eventually show different attributes toward organic solvent exposition, but 

systematic studies on this matter have not been published, yet. 

It was the aim to present a suitable new approach for drying protein crystals. In that 

context, protein crystals are washed with an organic liquid and subsequently the solvent 

is evaporated with an inert gas stream of nitrogen. Hence, such a protein crystal must be 

insoluble and stable during exposition to an organic washing liquid and during the dry-

ing procedure. These attributes were deemed to be polymorph dependent and a model 

protein was therefore crystallized in different morphologies. For that purpose, lysozyme 

was chosen since several crystal shapes have already been reported in literature 17-21. 

Mechanical properties, processability, and solubility in diverse organic solvents were 

compared for the different polymorphs. Furthermore, the best washing liquid was iden-

tified which maintained the crystal and protein integrity. Finally, a free flowing powder 

of lysozyme crystals was obtained after inert gas drying. In summary, a model proce-

dure to obtain protein crystals in a dry powder formulation is presented which can be 

applied for pharmaceutical proteins. This process includes, the crystallization itself, a 

morphology screening, the assessment of crystal properties, a solvent screening, as-

sessment of protein and crystal stability, and finally the drying procedure. 
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 Materials and Methods 2.3

2.3.1 Materials 

Lysozyme from chicken egg white (lyophilized powder, protein > 90%, > 40,000 

units/mg protein) was obtained from Sigma-Aldrich (Taufkirchen, Germany). Sodium 

chloride (AnalaR NORMAPUR) as crystallization agent was purchased from VWR 

Prolabo (Leuven, Belgium). Sodium acetate (USP standard) was of analytical quality 

from Merck (Darmstadt, Germany). All other used reagents or solvents were of analyti-

cal grade and purchased either from Sigma-Aldrich (Taufkirchen, Germany) or from 

VWR Prolabo (Leuven, Belgium). 

2.3.2 Methods 

2.3.2.1 Crystallization of lysozyme 

The crystallization was carried out as batch crystallization in 50 mM sodium acetate 

buffer (pH 8) at room temperature without stirring in 60 mL PETG Nalgene vessels 

(Thermo Scientific, Langenselbold, Germany). Sodium chloride was used as crystalliza-

tion agent in different concentrations from 0.5 M to 2 M. The concentration of lyso-

zyme was set to 4% (m/V). 10 mL sodium chloride solution was poured carefully to  

10 mL of lysozyme solution while the vessel was gently shaken to dissolve the initial 

precipitation. For each condition four identical batches were prepared. 

2.3.3 Drying of lysozyme crystals 

2.3.3.1 Inert gas drying 

Inert gas drying of lysozyme crystals was performed in a Barkey® Hot-Air Dryer 

“Flowtherm” (Leopoldshöhe, Germany). The system consists of a heater that allows the 

tempering of a nitrogen gas stream (upper part) and a bottom heater for the sample 

(lower part) (Fig. 2-1). 300 µL of the crystal slurry were filled into 2R glass vials and 

placed into the sample holder. The nitrogen gas stream (10 L/min) was tempered to  

30 °C and guided through a needle into 10 vials. The bottom heater was set to 20°C. 

After drying, the vials were closed and sealed. 
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Figure 2-1 Schematic illustration of drying lysozyme crystals using the Barkey® Hot-Air Dryer “Flowtherm”. 2R 
vials containing the crystals suspended in an organic liquid are placed in the sample holder (left). Subsequently, the 
nozzle is inserted into the vials and drying with an inert gas stream of nitrogen is performed (red arrow) - (middle). 
After evaporation of the liquid, a free flowing powder of protein crystals powder remains in the vials (right). 

 

2.3.3.2 Freeze Drying 

Freeze drying of lysozyme crystal suspension was performed using a Christ Epsilon 2-

6D pilot scale freeze dryer (Christ, Osterode am Harz, Gemany). 1 mL of the suspen-

sions were filled into 2R glass vials and semi stoppered. Subsequently, the temperature 

was decreased to -40°C at a rate of 1°C/min and was held for 1h and 10min. In the last 

10 min pressure was reduced to 0.08 mbar. In the next step, temperature was increased 

to -10°C at a rate of 1°C/min and held for 16.66 h. Finally, temperature was increased to 

25°C at a rate of 0.15°C/min and held for 10 h. At the end of the drying cycle the cham-

ber was aerated with nitrogen and the vials were stoppered automatically within the 

chamber. The samples were stored until analytical examination at 2-8°C. 

2.3.3.3 Test for mechanical properties 

Centrifugation was performed in a Sigma® 4K15 centrifuge for the assessment of me-

chanical properties. 500 µL of a crystal suspension were centrifuged for 10 min at 

25,150 g. Subsequently, the precipitate was suspended and the procedure was repeated 

twice. The crystal integrity was verified microscopically. If the integrity had been af-

fected, the procedure was repeated with a reduced spin speed. 

2.3.3.4 Transferability and handling properties 

To examine the handling properties of the crystal suspensions, pipetting through three 

different Eppendorf pipette tips with a volume of 10 µL, 200 µL, and 1000 µL was used 

as a simple surrogate method. The respective maximum tip volume of a homogenized 
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stock suspension of lysozyme crystals was withdrawn, subsequently ejected (90%) and 

sucked again for 1-, 5-, and 20 - times. After each step, the crystal integrity was verified 

microscopically. 

2.3.3.5 Solvent screening 

Solubility and stability of lysozyme crystals in different organic solvents were assessed 

by transferring the crystals into the respective organic solvent (three times centrifuga-

tion, replacement of supernatant with respective solvent). After each washing step, the 

crystal integrity was verified microscopically. A dissolution test in isotonic 10 mM 

phosphate buffer solution (PBS) at pH 7.4 was performed at the end of the washing pro-

cedure. 

2.3.3.6 Protein yield determination 

Protein concentration was assessed by UV-spectrometry at 280 nm using an Agilent® 

8453 UV spectrometer (Böblingen, Germany). 

The yield was determined after centrifugation (11,200 g, 15 min) of an aliquot from the 

crystal suspension and subsequent determination of residual protein concentration in the 

supernatant. The fraction of crystallized protein was calculated by subtraction of the 

concentration in supernatant from the initial protein concentration before crystallization. 

The amount of crystallized protein in percent of the initial protein concentration repre-

sented the yield. 

2.3.3.7 Microscopic examination 

The crystal integrity was determined microscopically using a Nikon Labophot equipped 

with a JVC TK-C1381 color video camera and the Screen Measurement / Comet – 

Software Version 3.52a. Glass cover slides were used for sample preparation. Octagonal 

shaped protein crystals were placed on sample holders with convexities to prevent crys-

tal breakage. Examination was performed at 200 fold magnification. 

2.3.3.8 Determination of residual moisture 

A Karl Fischer coulometric titrator (652-KF Coulometer and 737-KF Coulometer, 

Metrohm, Filderstadt, Germany) was used for determination of residual moisture. 2 mL 

methanol (Hydranal®-Methanol dry, Fluka, Sigma-Aldrich Chemie GmbH) was added 

to the protein crystals (5 – 10 mg). The samples were placed in an ultrasonic water bath 
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and incubated for 15 min prior to injection of 1 mL aliquot into the reaction vessel. 

Measurement was performed until the drift dropped below the start value (< 10 µg/min). 

2.3.3.9 Size exclusion high performance liquid chromatography (SE-HPLC) 

Monomer content and total protein recovery were determined by SE-HPLC. The analy-

sis was performed on a Thermo separation system using a Superose 12 10/300 GL col-

umn (GE Healthcare, Uppsala). The mobile phase consisted of 200 mM sodium phos-

phate at a pH of 6.8. The flow rate was 0.6 mL/min and the protein was detected at 215 

nm and 280 nm, respectively. 

2.3.3.10 Nephelometry 

Turbidity was measured using a Nephla Dr. Lange turbidimeter (Dr. Lange GmbH, 

Düsseldorf, Germany) by 90° light scattering at a wavelength of λ = 860 nm (Ph. Eur. 

2.2.1). Results are given in formazine normalized units. Crystals were dissolved in 

phosphate buffer solution (0.01M, pH 7.4, isotonic) (PBS) and concentration was set to 

1 mg/mL. 2 mL of each sample were filled into round glass cuvettes and placed into the 

sample holder. 

2.3.3.11 Gas Chromatography (GC) 

Determination of residual isopropanol was performed according to Ph. Eur. 7.0/2.4.24. 

Gas chromatography was carried out using an Agilent GC 6890 system, a S/SL injector 

and a flame ionization detector. The system contained a MPS-2 auto sampler with head-

space loading. An Agilent DB-624 capillary column (30 m x 0.32 mm x 3 µm) was used 

with nitrogen as carrier gas. The linear flow rate was 40 cm/sec and a splitless-loading 

was employed. During the static headspace-sample draw, the temperature was set to 

80°C and equilibrated for 60 min. 1 mL of the samples was injected at a transition tem-

perature of 80°C. The temperature of the injector was 140°C, for the detector 250°C. 

The temperature of the column was 40°C for 20 min and subsequently heated up to 

240°C with a rate of 10°C/min and held for 20 min. 

Different from the Ph. Eur. protocol, the amount of sample was reduced by ten due to 

shortage in dry crystal material obtained from the drying procedure. In consequence, the 

isopropyl standards were also reduced and a splitless loading was performed. In order to 

reach the required amount for analysis, all samples from one drying process were 

mixed. Thus, the result represented the average of the samples. 
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2.3.3.12 Particle counting 

Size and amount of particles between 1 and 200 µm were determined using a PAMAS 

SVSS-C40 (PAMAS GmbH, Rutesheim, Germany) light blockage system. Particles 

were counted classified into 16 different size ranges. Crystals were dissolved in PBS 

and concentration was set to 1 mg/mL. The number of measurements was set to three 

for each sample with a measuring volume of 0.3 ml. The rinsing volume was 0.5 ml. 

2.3.3.13 Determination of lysozyme activity 

The lysozyme activity was determined by the decrease in absorption of a Micrococcus 

lysodeikticus (ATCC No. 4698) suspension. The assay was performed in a 66 mM 

phosphate buffer, pH 6.2. The concentration of the substrate suspension was 0.5 

mg/mL. Measurement was performed in 96 well-plates using a microplate reader. The 

decrease in absorption was determined at 450 nm for 5 min. For calculation, the linear 

slope of the first minute was calculated by linear regression. 
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 Results 2.4

2.4.1 Polymorph-screening 

Crystallization was performed employing only one buffer system and precipitation 

agent. Otherwise, ascription of crystal properties only on the basis of their morphologies 

would not be possible. Same shapes containing varying salts would differ at least in 

their solubility 22. Merely the precipitant’s concentration was altered. In literature, the 

crystallization agent concentration was reported to have strong impact on crystal mor-

phology 17.  

Four distinct crystal shapes were obtained depending on the sodium chloride concentra-

tion (Fig. 2-2). More than 2 M sodium chloride led to amorphous lysozyme precipitates 

(data not shown). For each shape, the obtained yield was approximately 90%. 

0.5 M sodium 

chloride 

1.0 M sodium 

chloride 

1.5 M sodium 

chloride 

1.75 M sodium 

chloride 

    

undefined structures needle octagonal orthorhombic 

Figure 2-2 The microscopic pictures show four different crystal appearances after crystallization of lysozyme by 
varying the sodium chloride concentrations. The scale bar represents 100 µm. 

 

In the following, studies on crystal properties were only performed for needle, octago-

nal, and orthorhombic crystals. 
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2.4.2 Crystal properties dependent on the plymorphic form 

2.4.2.1 Handling and mechanical properties 

Handling properties and mechanical stability of protein crystals are of fundamental im-

portance for processing. Thus, the first step was to assess these properties in relation to 

the crystal’s morphology. 

Transfer by pipetting is the most often used stress during a bench scale study and is re-

ported to be crucial for protein crystals 6. For this reason, extensive pipetting was per-

formed as surrogate for mechanical process stress to examine discrepancies between the 

three crystal morphologies. 

Pipetting was performed 1 -, 5 -, and 20 times through three different pipette tips with 

volumes of 10 µL, 200 µL, and 1000 µL. Interestingly, all three crystal morphologies 

withstood the stress and neither damages nor debris were observed. Consequently, in 

the further course of our studies no limitations in pipetting had to be taken into account. 

In addition, centrifugation was chosen as surrogate to examine mechanical stability fur-

ther. This method allows application of high gravitational forces and may give insight 

into assorted breaking points for each crystal morphology. 

During this test the maximal force was 25,150 x g which represented the technical limit 

of our centrifuge. The spin speed was reduced if the respective crystal morphology 

broke during any of the three cycles, which each lasted for 10 min. Surprisingly, needle 

shaped crystals remained stable at the speed limit of the centrifuge. In contrast, octago-

nal and orthorhombic shaped crystals showed mechanical damage already at 700 xg and 

450 xg, respectively (Fig. 2-3). The defined speed limits were applied during further 

experiments. 
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Initial state before centrif-

ugation 

Crystal state at respective 

centrifugation speed limit 

Crystal state at 

higher centrifuga-

tion speed 

 

 
untreated 

 

 
25,150 x g 

 

 
25,150 x g * 

 
untreated 

 
700 x g 

 
1800 x g 

 
untreated 

 
450 x g 

 
1000 x g 

Figure 2-3 The microscopic pictures represent the crystal´s condition after a third round of centrifugation at the re-
spective spin speed. The scale bar represents 100 µm. (*The needle shaped crystals remained stable up to the tech-
nical limit of the Sigma® 4k15 centrifuge). 

 

2.4.2.2 Solubility and stability during organic liquid exposure 

Protein crystals in dry powder form should be reached by exchanging the mother liquid 

with a volatile organic solvent which would subsequently be evaporated by an inert gas 

stream of nitrogen 13. Therefore, a solvent screen was performed to identify organic 

liquids where the crystals and the protein remained stable. Transfer into the respective 

washing liquid was performed by a defined procedure including several microscopical 

examinations (see methods). At the end, a dissolution test in PBS was performed to test 

if severe aggregation inside the crystal lattice or at the crystal surfaces took place which 

might be fostered by the reduced polarity of the organic liquids 23,24. Irreversible non-

covalent aggregation had been previously reported as a factor which could prevent dis-

solution of protein crystals 24. 
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A high number of organic solvents were examined. Needle shaped crystals passed the 

whole washing procedure merely in ethyl acetate. They dissolved or were insoluble in 

PBS after washing with the other liquids. For orthorhombic crystals, four appropriate 

solvents were found: acetyl acetone, ethyl acetate, triacetine, and triethyl citrate. How-

ever, crystal aggregation was observed during extensive washing which might hinder 

sufficient drying. Octagonal lysozyme crystals passed the procedure in the same four 

solvents and in higher ethanol and isopropanol concentrations (Tab. 2-1). For the latter 

two liquids no crystal aggregation was observed during washing. Deusser et al. already 

described that phenomenon for insulin crystals. A complete removal of inter-crystalline 

water was required, otherwise, the crystals formed large aggregates 13. This finding was 

confirmed during our solvent screening. Hence, it was decided to apply only ethanol 

and isopropanol as washing liquids as they are water miscible, volatile and show low 

toxicity. Only octagonal shaped crystals remained stable in both solvents, and thus, only 

this polymorph was applied for further studies. 

Table 2-1 List of applicable washing liquids. In all cases, the crystals remained stable and dissolved in PBS after the 
washing procedure. 

Needle Octagonal Orthorhombic 

 Acetyl acetone Acetyl acetone 
 Ethanol 90 - 100%  

Ethyl acetate Ethyl acetate Ethyl acetate 
 Isopropanol 90 - 100%  
 Triacetine Triacetine 
 Triethyl citrate Triethyl citrate 

 

2.4.3 Hot-Air drying 

In a first test, crystals were washed with different liquids (ethanol 90 - 100% or isopro-

panol 90 - 100%) and subsequently dried in an inert gas stream of nitrogen. Therefore, 

300 µL of each crystal suspension were placed into 2 R glass vials and placed in the 

sample holder of the Barkey® Hot-Air Dryer (Fig. 2-1). Drying time was set to 30 min. 

Interestingly, film like structures were obtained after drying crystal suspensions contain-

ing ethanol (90 - 100%) and isopropanol 90% (data not shown). 

In contrast, a free flowing powder resulted from suspensions containing isopropanol 

95% and 100% (Fig. 2-5 right). Subsequently, to assess the crystal integrity by light 
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microscopy, the protein powder was suspended in the respective washing liquid. No 

alterations of the crystal shape were observed (Fig. 2-4). 

   
 

Crystals from the mother 
slurry 

 
Crystals after transfer into 

isopropanol 95% 

 
Crystals after inert  

gas drying suspended in  
isopropanol 95% 

Figure 2-4 Light microscopy pictures of crystals after crystallization (left), washing with isopropanol 95% (middle), 
and inert gas drying (right). The scale bar presents 100 µm. 

 

Hence, only isopropanol 95% and 100% were applied as washing liquids for the addi-

tional studies. 

After freeze drying After hot-air drying 

 

 

 

 

Figure 2-5 Light microscopy picture: Broken lysozyme crystals after freeze drying (left). Photo camera picture: Free 
flowing powder of lysozyme crystals after washing with isopropanol 95% and drying in an inert gas stream of nitro-
gen (right). 

 

2.4.4 Comparative study assessing the suitability of freeze drying to obtain dry 

and stable protein crystal sproducts 

In a comparative experiment, freeze drying was applied on the same lysozyme crystal 

polymorph. This study should illustrate the challenge to freeze dry protein crystals. 

Since the crystals would dissolve in an aqueous solution of sugar, drying was performed 

employing four different approaches: Drying from the crystallization liquid or after 

washing the crystals with PEG 6,000, isopropanol 95% or 100%. For the latter two con-

ditions, evaporation of the organic solvent was assumed immediately after reduction of 

drying washing 
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pressure (vacuum drying). As for freeze drying, cake formation was observed for sam-

ples containing the mother slurry and PEG 6,000. However, crystal suspensions washed 

with isopropanol 95% or 100% dried by film formation. After reconstitution of the dried 

material, an extensive crystal breakage was observed in all cases (Fig. 2-5 left). 

2.4.5 Assessment of crystal and protein integrity during the hot-air drying pro-

cedure 

Aggregate formation after crystallization and washing with an organic liquid was exam-

ined by SE-HPLC, turbidity, and light blockage. First, crystals were separated from the 

mother slurry by centrifugation and decanting (3 x) and subsequently dissolved in PBS 

for aggregate analytics. Then, other crystals were washed with isopropanol 95% and 

100% incubated for 2 hours at room temperature in the respective liquid. The organic 

solvents were removed by centrifugation and decanting (3 x). Finally, the crystals were 

also dissolved in PBS to perform aggregate analysis. 

SE-HPLC analysis was used to assess total protein recovery which was calculated 

against a lysozyme stock solution in PBS. No significant decrease was detected for 

fresh crystallized lsozyme and crystals washed and incubated with isopropanol 95% 

(Fig. 2-6). However, washing of crystals with isopropanol 100% led to a significant 

decrease in total protein recovery to 95.9% (± 1.3%). Interestingly, soluble aggregates 

could not be detected for any sample. 

 

Figure 2-6 Total protein recovery after crystallization (stock suspension) and incubation of octagonal lysozyme crys-
tals in the respective liquid. The displayed protein recovery is calculated against a lysozyme stock solution in PBS. 
The bars represent the mean of three samples and ± standard deviation. 
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Further, the same samples were analyzed for turbidity and subvisible particle count. 

Whereas the lysozyme solution and freshly crystallized protein showed about the same 

turbidity and particle count, a remarkable increase in both parameters occurred after 

exposition to both isopropanol concentrations (Fig. 2-7). Washing with isopropanol 

95% resulted in an increase in turbidity by 0.8 FNU and total particle count of approxi-

mately 30,000 particles per mL. Pure isopropanol as washing liquid led to an increase in 

turbidity of about 1.1 FNU and the subvisible particle count was further increased to 

80,000 particles per mL. Consequently, isopropanol 95% was used for the final experi-

ments. 

 

Figure 2-7 Total subvisible particle count (1 - 200 µm) (left) and the turbidity [FNU] (right) of a lysozyme stock 
solution and octagonal lysozyme crystals directly dissolved in PBS (stock suspension) or after impregnation with 
isopropanol 95% and isopropanol 100%. 

 

Next, crystals were washed with isopropanol 95% and dried. Subsequently, they were 

examined for residual isopropanol and water contents in order to optimize the drying 

time. In accordance to the EMA guideline for class III solvents, organic residues of ≤ 

0.5% were aimed. Gas chromatography following Ph. Eur. 7.0/2.4.24 was used for 

analysis. Before analysis, the drying time was set to 30 min, 15 h and 24 h. As expected, 

residual isopropanol contents were dependent on the applied drying time. After 30 min 

of drying, organic residues of 2.5% (± 0.2%) were detected while after 15 h and 24 h 

values of 0.85% (± 0.08%) and 0.24% (± 0.1%) were found, respectively. Hence, the 

drying time was set to 24 h for further studies.  
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To determine residual moisture contents, the Karl Fischer Methanol extraction tech-

nique was applied. Water residues of 1.15% (± 0.7%) were detected after 24 h of inert 

gas drying which was considered to be acceptable. 

After definition of an acceptable drying time, the effect of inert gas drying on the pro-

tein integrity was evaluated. For that purpose, SE-HPLC, turbidity, and subvisible parti-

cle count measurements were performed on crystals which were dried for 24 h and sub-

sequently dissolved in PBS. 

SE-HPLC revealed no formation of soluble aggregates and protein recovery was ~ 

100%. Interestingly, turbidity and subvisible particle counts were reduced for dried 

crystals in comparison to washed crystals without drying (Fig. 2-8). However, com-

pared to the lysozyme stock solution, the values still showed a small increase. 

 

Figure 2-8 Total subvisible particle count (1 - 200 µm) (left) and turbidity [FNU] (right) of a lysozyme solution, 
immediately dissolved crystals (stock suspension) and crystals dissolved after washing into isopropanol 95% (after 
exposition) and after drying. 

 

Finally, maintenance of the biological activity of lysozyme was assessed by applying a 

well-established activity assay. The specific activity was determined at 98% (± 1%), and 

thus, no significant loss in the biological activity was found for the dry product. 
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 Discussion 2.5

It is stated in literature that drying of protein crystals is difficult as certain amounts of 

intra-crystalline water are required to maintain the protein integrity 4. Overdrying, de-

struction of the crystals and denaturation of protein is risked by application of standard 

drying techniques for biopharmaceuticals like freeze drying. Residual moistures are 

different for each crystal as they are related to the crystal size and surface which com-

monly show distribution for protein crystal suspensions 13. Indeed, application of freeze 

drying resulted in crystal breakage even after exchanging the matrix with organic liq-

uids due to ice crystal formation in inclusion bodies within the crystals (Fig. 2-5). 

Therefore, an alternative approach was tested. The crystallization liquid was removed 

by washing with a water miscible organic liquid which subsequently was evaporated by 

inert gas drying in stream of heated nitrogen. An appropriate protein crystal had to be 

insoluble and stable during washing with an organic liquid and would withstand the 

subsequent drying procedure. The crystal morphology was deemed to be the key factor 

determining crystal properties. However, only polymorphs grown in the same buffer 

with the same precipitant would allow ascribing differences in their attributes to varying 

morphologies. Even same shapes crystallized in other buffers or with different precipi-

tants would vary at least in their solubility 22. Hence, several lysozyme morphologies 

were made by changing only the concentration of the crystallization agent. Three 

shapes, needle, orthorhombic and octagonal were applied for property characterization 

as a clear optical definition as polymorph was not possible for the fourth precipitate 

(Fig. 2-2).  

With regard to mechanical stability, the needle shape was the most stable polymorph 

(Fig. 2-3). This can be explained by a dense package of the crystals during centrifuga-

tion which prevents from breakage. Interestingly, the polymorphs showed a significant 

different solubility in organic liquids. Only octagonal crystals were insoluble and stable 

in ethanol (> 90%) and isopropanol (> 90%) (Tab. 2-1). 

Furthermore, the solvent screen revealed that only water miscible liquids allow to obtain 

suitable crystal suspensions for drying by reduction of the inter-crystalline water. The 

other liquids fostered formation of large crystal aggregates during the washing proce-

dure which prevents sufficient drying. This finding was in accordance to Deusser et. al 

which already described the need to remove the inter-crystalline water for proper drying 
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of insulin crystals 13. Hence, only octagonal shaped lysozyme crystals and ethanol (> 

90%) as well as isopropanol (> 90%) were applied for further studies. 

In a first test, octagonal crystals were washed with the aforementioned liquids and sub-

sequently dried in an inert gas stream of nitrogen at 30°C. A film like structure was ob-

tained after 30 min of drying for samples which contained ethanol (90% - 100%) and 

90% isopropanol. Likely, the tempered nitrogen gas stream fostered dissolution of the 

lysozyme crystals. The dissolved protein precipitated by film formation during drying. 

Reduction of the drying temperature might prevent dissolution, and even “cooling” for 

example to 15°C might be suitable to evaporate the volatile liquids. However, a free 

flowing powder was obtained for samples which contained isopropanol 95% or 100%. 

Maintenance of the crystal shape and integrity throughout the procedure led to applica-

tion of these two liquids for further analysis (Fig. 2-4). 

No significant loss in total protein recovery was detected after crystallization and after 

washing with isopropanol 95%, respectively. However, a loss of approximately 4% total 

protein was found after washing with isopropanol 100% which demonstrated that even 

little differences in the concentration of organic washing liquids can significantly affect 

protein stability (Fig. 2-6). This finding was supported by light blockage and turbidity 

measurements. Both analytics showed higher values for samples washed with isopropa-

nol 100%. Total particle count was doubled (40,000 vs 80,000) and the turbidity in-

creased by 0.3 FNU in comparison to washing into isopropanol 95% (Fig. 2-7). Hence, 

isopropanol 95% was chosen as washing liquid. Deusser et al already described that 

mixtures of water and organic solvents are superior washing liquids as lower organic 

residue levels were found after drying 13. However, stability data were not presented. 

To optimize the drying time with respect to residual isopropanol and water contents, 

different drying intervals from 30 min to 24 h were tested. Isopropanol residues could 

be reduced from 2.5% to 0.24% after prolonging the drying time from 30 min to 24 h. 

The latter value even meets EMA guideline requirements for class III solvents. Fur-

thermore, residual moisture was found to be 1.15% after 24 h inert gas drying which 

also was considered to be acceptable. 

Analysis of total subvisible particle count and turbidity revealed reduced values for 

crystals which were washed and subsequently dried in comparison to washed crystals 
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without any drying (Fig. 2-8). This finding can be ascribed to lower organic liquid resi-

dues after drying which might be higher for crystals without drying. These higher levels 

of organic residues might foster aggregate formation during dissolution prior to analy-

sis. 

Finally, the biological activity of the dry material was analyzed and found to be fully 

retained. Hence, it was shown that neither the crystallization, the washing with isopro-

panol 95% nor the inert gas drying affected the protein integrity with regard to its bio-

logical activity. 
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 Conclusion 2.6

In conclusion, a model study is presented which describes a procedure to obtain a dry, 

stable and biologically active crystalline protein material. During the procedure the 

crystals were transferred into a volatile organic liquid and subsequently dried in an inert 

gas stream of nitrogen. Furthermore, the necessity was demonstrated to screen for pol-

ymorphs which exhibit different properties as only one crystal morphology was insolu-

ble and stable in the suitable organic washing liquids. Furthermore, it was shown that 

only one solvent was applicable to maintain both the crystal and protein integrity. Be-

sides a polymorph screening, a reasonable solvent screen must be performed. Neverthe-

less, it can be considered that creation of “tailor-made” therapeutic or diagnostic protein 

crystals with desired attributes for later use and storage forms or intermediates for novel 

formulations can be achieved. Furthermore, the feasible drying method using a heated 

gas stream of nitrogen opens new possibilities in storage and handling of protein crys-

tals. 
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3 Drying of mAb crystals  

 Introduction 3.1

Storage stability is a major issue during protein formulation development. Proteins are 

prone to chemical and physical degradation. To achieve long term stability during stor-

age protein solutions are often stored at - 80°C 1-3. Despite the stabilizing feature to re-

strict molecular mobility low temperatures foster protein drug degradation by cold-

denaturation 4-6. Therefore, drying strategies are applied to avoid extensive protein ex-

posure towards destructive temperatures. In addition to reduced protein mobility the 

water content is decreased in a dried product. Consequently, water mediated degrada-

tion  processes such as hydrolysis, oxidation and aggregation are avoided or at least 

reduced 7,8. Commonly used drying techniques for biopharmaceuticals comprise freeze-

drying, vacuum drying, spray drying and combined techniques such as spray-freeze 

drying 8-12.  

The drying itself is a crucial procedure during development of stable solid biopharma-

ceuticals products. The loss of the hydration shell can cause protein unfolding and thus 

protein degradation 6. Following, the drying technique and the drying regime have to be 

chosen carefully for each protein. 

3.1.1 Freeze drying (lyophilization) 

Freeze drying is the most often used drying technique for biopharmaceuticals 8. During 

the drying step water is removed from a frozen solution by ice sublimation 4. The fea-

tures of lyophilization are a low primary drying temperature, the possibility for sterile 

process conditions and favorable rehydration properties due to a porous end-product 13. 

However, a drying process which comprises additional freezing stresses can promote 

protein degradation by different pathways 6: 

• During the freezing step, protein and salt (e.g. buffer salt) concentrations can in-

crease by ice crystal formation. 

• Precipitation of a less water soluble buffering agent can provoke pH changes.  

• The formation of ice / freeze concentrate interfaces represent another stress fac-

tor detrimental to protein stability 14. 
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• Both, freezing stresses and drying stresses are known to alter protein secondary 

structure which finally can result in protein aggregation. 

Finally, lyophilization represents a very unfavorable procedure from an economical 

point of view. It requires an elaborate process, an enormous amount of time and en-

ergy which lead to extensive production costs 5,14,15. 

3.1.2 Vacuum drying 

Vacuum drying represents a less time and energy consuming drying technique com-

pared to freeze drying. Freezing steps are avoided and thus freezing associated protein 

degradation. However, the dry product does not show a porous matrix structure. It ra-

ther represents a rubber of high viscosity which finally reaches a glassy state and the 

end of the procedure. Protein concentrations are high in the rubber state and molecular 

motions are not hindered far enough to prevent physico-chemical protein drug degrada-

tion. Therefore, the process time should be as short as possible. Furthermore, the rubber 

state hinders convenient water evaporation and thus the total surface area is crucial for 

water evaporation and process times. Consequently, vacuum drying is usually carried 

out in low volume which is not suitable for large scale pharmaceutical production 13,16.        

3.1.3 Spray drying 

Spray drying can be performed continuously and thus is less time and cost consuming 

than freeze drying 17. The final products are free flowing powders, granulates and ag-

glomerates which are obtained from solutions, emulsions or pumpable suspensions 18. 

However, powder yield is less compared to freeze drying 19. 

During spray drying, the liquid protein formulation is pumped to a nozzle. Rotary or 

nozzle atomizers generate small droplets which contact hot air in the drying chamber by 

formation of small solid particles. The inlet temperature usually exceeds 100°C which 

might be deemed detrimental to protein stability. Surprisingly, heat damage to proteins 

is reported negligible as the exposure to the high temperature is very short. The product 

duration in the drying chamber is longer and at lower temperatures (outlet temperature, 

often 50 – 70°C). Spray drying faces proteins to stresses such as shearing stresses in the 

nozzle, thermal stresses during drying and by formation of liquid/air interfaces during 

atomization. As for each drying technique, the drying itself might result in alteration of 

the protein secondary structure which can induce protein aggregation 7,12,17,18. 
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3.1.4 Spray-freeze drying 

Spray-freeze drying combines the advantages of spray drying and freeze drying: a high 

yield of small drug particles which are formed at low temperatures. 

During spray-freeze drying, the protein solution is atomized by a two-fluid or an ultra-

sonic nozzle and sprayed into a cryogenic medium such as liquid nitrogen where the 

droplets immediately freeze. Subsequently, the product is placed in a lyophilizer with 

pre-cooled shelves (usually -50 – -80°C) and undergoes a common freeze drying proce-

dure. The protein drug faces varying stresses such as mechanical stresses during the 

spray drying step and freezing stress during the freeze drying step 7,12. 

3.1.5 Alternative drying methods suitable for protein crystals 

Protein crystal suspensions open new possibilities for reaching dry biopharmaceutical 

products such as already described by Margolin et al 5. The crystals might be separated 

from the mother liquor by filtration and subsequent be air dried or by introduction of 

nitrogen. Alternatively, the supernatant can be exchanged with a volatile organic solvent 

such as ethanol or isopropanol followed by evaporation of this non-aqueous liquid 18. 

This procedure is already described for crystalline candida rugosa lipase suspended in 

cold isopropanol (4°C) and introduction of trehalose as additive 20. However, this meth-

od is difficult to automatize. Loading and emptying remain hand-made which increases 

the risk for product contamination. Finally, this drying technique is foremost kinetically 

driven which results in a mixture of differently dried crystals (dry small crystals versus 

wet larger crystals). Therefore, Deusser et al. developed a machine that comprises cen-

trifuge and dryer 21. This approach was shown to be applicable for insulin crystals. In 

brief, the insulin crystal suspension was filtrated and washed. The washing medium was 

replaced by a volatile organic solvent. The pellet was converted in fluid bed and intro-

duced to nitrogen at 40°C. After one to four hours, the protein crystals were emptied 

into a container by nitrogen pressure. The best results were reported for mixtures of 

water and water miscible organic solvents such as methanol, ethanol, n-propanol and 

isopropanol as washing media. Applying of humid nitrogen allowed a thermodynamical 

control of the residual moisture which was following independent from the crystal  

size 21. 
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3.1.6 Stabilizing agents 

Formulation scientists use cryoprotectants and lyoprotectants to stabilize proteins during 

freezing and drying procedures.  

3.1.7 Cryoprotectants 

Cryoprotectants such as sucrose, mannitol, trehalose, polyethylene glycol, Brij 30 and 

others are used to stabilize proteins during freezing processes. The stabilizing effect is 

ascribed to a preferential interaction. These interactions prevent the protein from con-

formational changes and denaturation upon freezing. 6,22.   

3.1.8 Lyoprotectants 

Sucrose, trehalose, several amino acids and others are used as lyoprotectants. Upon ly-

ophilization, the hydration shell of proteins is removed and thus the concept of preferen-

tial exclusion is no longer applicable. Two main hypotheses are still in discussion, the 

formation of an amorphous glass and the “water replacement hypothesis”. Formation of 

a glassy state hinders conformational protein motions which results in an increased pro-

tein stability. The “water replacement mechanism” involves the replacement of native 

protein-water hydrogen bonds by protein-excipient hydrogen bonds which prevents the 

protein from unfolding 6,23.    

3.1.9 Chances of dry protein crystal material and challenges in producing it 

A dry protein crystal material would potentially represent a pure, highly concentrated 

and convenient bulk storage form of superior stability 16. The reduction of the water 

content and the formation of specific intermolecular interactions within a crystal lattice 

would reduce molecular motions and reactivity and thus would avoid or at least slow 

down protein drug degradation 24. This concept could be scrutinized by the need of pro-

tein crystals for a specific amount of intra-crystalline water to maintain protein stability. 

Consequently, crystals cannot be dried 25-27. However, protein crystal drying even to 

low residual water contents by utilization of lyoprotectants is reported for crystalline 

glucose oxidase and Candida rugosa lipase 20,28. 

Nevertheless, drying of protein crystals still remains challenging as crystal suspensions 

usually contain a mix of different crystal sizes with different amounts of solvent. In the-

ory, an optimal drying time would have to be determined for each protein crystal to pre-
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vent overdrying and protein degradation 21. This can hardly be achieved by the common 

drying techniques for biopharmaceuticals. In addition, each of these drying techniques 

comprises specific challenges for protein crystal drying. Freeze drying would require 

crystal freezing during the drying procedure. Crystallographers already have shown that 

upon freezing the protein crystal lattice can easily be destroyed due to ice crystal for-

mation. This destruction can result in the formation of a mix from amorphous and crys-

talline structures 18,29. Spray drying comprises high temperatures and harsh shear stress-

es which are detrimental for protein crystal stability. During the preliminary study, a 

low melting point between 60 and 80°C was shown for at least one mAb crystal 16. Fol-

lowing, spray drying at inlet temperatures above 100°C and outlet temperatures between 

50 and 70°C appears to be inappropriate for mAb crystal drying. Furthermore, the crys-

tals would hardly maintain their shape during the shear stresses upon spray draying as 

they are known to be very soft and easy to crush 26,30. Spray-freeze drying would also 

not be an appropriate technique for mAb crystal drying. This technique comprises a 

combination of harmful conditions (e.g. shear stresses, freezing) for protein crystals 

from both techniques: spray- and freeze drying. 

A vacuum drying procedure for mAb1 crystals has been presented by Stefan Gottschalk 

during the preliminary study. Within this study a small solvent screening was performed 

to identify suitable washing liquids in order to remove the mother liquor. The mAb1 

crystals were found to remain stable in ethanol 85% which was subsequently applied as 

washing liquid. Sucrose was added as lyoprotectant. Only a low aggregate formation 

was reported for the vacuum-dried mAb1 crystals. However, compared to an amorphous 

mAb1 product the stability was less 16. 

In chapter 2, an alternative drying procedure for protein crystals is introduced. This 

method does not contain any freezing, heat or shear stresses and resulted in a free flow-

ing powder. The most critical step is the identification of suitable (non-toxic, water mis-

cible, volatile) washing liquids in which the crystal and the protein integrity would be 

maintained. Nevertheless, the introduced procedure is deemed promising for protein 

crystal drying. 

Considering the aforementioned arguments, spray drying and spray-freeze drying were 

excluded from the present study. The introduced vacuum drying procedure for mAb1 

was reproduced and protein stability was assessed. Freeze drying was investigated as 
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comparative drying procedure. Finally, it was the aim to transfer the presented hot-air 

drying technique from lysozyme to mAb1 and mAb2 crystals (see Chapter 2). 
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 Materials and Methods 3.2

3.2.1 Materials 

mAb1 and mAb2 were stored at - 80°C until required for use. 

Sodium chloride (AnalaR NORMAPUR) as crystallization agent for lysozyme was pur-

chased from VWR Prolabo (Leuven, Belgium). Sodium acetate (USP standard) was 

from Merck (Darmstadt, Germany). Sodium sulphate (99%) was from Grüssing GmbH 

(Filsum, Germany). Sodium dihydrogen phosphate-dihydrate (pure Ph. Eur., USP), 

disodium hydrogen phosphate-dihydrate (analytical grade), potassium dihydrogen 

phosphate and potassium chloride (both analytical grade) were obtained from Appli-

chem GmbH (Darmstadt, Germany). PEG 4000S was from Clariant (Frankfurt a. M., 

Germany). Hydrochloric acid 32% (analytical grade), acetic acid 100 % and ortho-

phosphoric acid 85% were all purchased from Merck KGaA (Darmstadt, Germany). 

Sodium azide (99%) was received from Acros Organics (New Jersey, USA). All other 

reagents or solvents used during the solvent screening were of at least analytical grade 

and purchased either from Sigma-Aldrich (Taufkirchen, Germany) or from VWR Pro-

labo (Leuven, Belgium). 

3.2.2 Methods 

3.2.2.1 Crystallization of mAb1 

Crystallization of mAb1 was carried out in a 0.1 M sodium acetate buffer at a pH of 

5.50. For crystallization, a 24% (w/v) PEG 4000 solution was added dropwise in a 1:1 

ratio to a 10 mg/mL protein solution under gentle shaking. The final formulation was 

stored at 20°C for at least two weeks.  

3.2.2.2 Crystallization of mAb2 

Crystallization of mAb2 was performed in a 0.1 M sodium acetate buffer of 4.1. For 

crystallization, a 4.2 M sodium dihydrogen phosphate solution was added dropwise in a 

1:1 ratio to a 10 mg/mL protein solution under gentle shaking. The final formulation 

was stored at 20°C for at least one week. 
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3.2.2.3 Solvent screening 

Solubility and stability of mAb1 and mAb2 crystals in different organic solvents were 

assessed by transferring the crystals into the respective organic solvent (three times cen-

trifugation, replacement of supernatant with respective solvent). After each washing 

step, the crystal integrity was verified microscopically. A dissolution test in isotonic 10 

mM phosphate buffer solution (PBS) at pH 7.4 was performed at the end of the washing 

procedure. 

3.2.2.4 Drying of protein crystals 

3.2.2.4.1 Vacuum drying 

Vacuum drying of mAb1 crystals was performed in according to the procedure intro-

duced by Stefan Gottschalk during the preliminary study 16. The mAb1 crystals were 

washed with 22% PEG solution in 0.1 M sodium acetate buffer at a pH of 5.5 by three 

times of centrifugation (15 min) in a Sigma® 4K15 centrifuge at 4,000 rpm and subse-

quent replacement of the supernatant. After that, this procedure was repeated with EtOH 

85% at 2°C. Finally, the pellet was suspended in 200 µl, 2°C cold EtOH 85% which 

contained 5% (w/v) sucrose. The protein concentration of the suspension was set to 100 

mg/ml. Vacuum drying was carried out in a Martin Christ Epsilon 2-6 D pilot freeze 

dryer which was connected to a Vacuubrand CVC 2000 vacuum pump. The temperature 

was set to 2°C for 3 h at 20 mbar followed by 14 h at 0.1 mbar. 

3.2.2.4.2 Inert gas drying  

Inert gas drying was performed in a Barkey® Hot-Air Dryer “Flowtherm” (Leo-

poldshöhe, Germany). The system consists of a heater that allows the tempering of a 

nitrogen gas stream (upper part) and a bottom heater for the sample (lower part). 300 µL 

of the crystal slurry were filled into 2R glass vials and placed into the sample holder. 

The nitrogen gas stream (10 L/min) was tempered to 30°C and guided through a needle 

into 10 vials. The bottom heater was set to 20°C. After drying, the vials were closed and 

sealed. 

3.2.2.4.3 Freeze Drying  

Freeze drying of the mAb crystal suspensions was performed using a Christ Epsilon 2-

6D pilot scale freeze dryer (Christ, Osterode am Harz, Gemany). 1 mL of the crystal 

suspensions were filled into 2R glass vials and semi stoppered. Subsequently, the tem-
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perature was decreased to - 40°C at a rate of 1°C/min and was held for 1h and 10min. In 

the last 10 min pressure was reduced to 0.08 mbar. In the next step, temperature was 

increased to - 10°C at a rate of 1°C/min and held for 16.66 h. Finally, temperature was 

increased to 25°C at a rate of 0.15°C/min and held for 10 h. At the end of the drying 

cycle the chamber was aerated with nitrogen and the vials were stoppered automatically 

within the chamber. The samples were stored until analytical examination at 2-8°C. 

3.2.2.5 Assessment of crystal and protein integrity 

3.2.2.5.1 Size exclusion high performance liquid chromatography (SE-HPLC) 

Total protein release was determined by SE-HPLC. The analysis was performed on a 

Thermo separation system 

3.2.2.5.1.1 mAb1 

The mobile phase for mAb1 consisted of 0.092 M Na2HPO4 (anhydrous) and 0.211 M 

Na2SO4 (anhydrous) at a pH of 7. The flow rate was set to 0.25 mL/min. Analysis was 

performed at the wavelengths of 214 nm and 280 nm. A TSKgel G300SWXL coloum 

from Tosoh Bioscience GmbH (Stuttgart, Germany) was used for separation. 

3.2.2.5.1.2 mAb2 

The mobile phase for mAb2 consisted 0.02 M Na2HPO4 (dihydrate) und 0.15 M sodium 

chloride at a pH of 7.5. The flow rate was set to 0.50 mL/min. Analysis was performed 

at the wavelengths of 214 nm and 280 nm. For separation, a Suprose-6-HR-10/30-

coloum from GE Healthcare (Uppsala, Sweden) was used. 

3.2.2.5.2 Microscopic examination 

The crystal integrity was determined microscopically using a Nikon Labophot equipped 

with a JVC TK-C1381 color video camera and the Screen Measurement / Comet – 

Software Version 3.52a. Glass cover slides were used for sample preparation. A polyri-

zation filter was used to assess the crystalline state of the samples. Examination was 

performed at 200 fold magnification. 

3.2.2.5.3 Nephelometry 

Turbidity was measured using a Nephla Dr. Lange turbidimeter (Dr. Lange GmbH, 

Düsseldorf, Germany) by 90° light scattering at a wavelength of λ = 860 nm (Ph. Eur. 
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2.2.1). Results are given in formazine normalized units. Crystals were dissolved in 

phosphate buffer solution (0.01M, pH 7.4, isotonic) (PBS) and concentration was set to 

1 mg/mL. 2 mL of each sample were filled into round glass cuvettes and placed into the 

sample holder. 

3.2.2.5.4 Particle counting 

Size and amount of particles between 1 and 200 µm were determined using a PAMAS 

SVSS-C40 (PAMAS GmbH, Rutesheim, Germany) light blockage system. Particles 

were counted classified into 16 different size ranges. Crystals were dissolved in PBS 

and concentration was set to 1 mg/mL. The number of measurements was set to three 

for each sample with a measuring volume of 0.3 ml. The rinsing volume was 0.5 ml. 
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 Results 3.3

3.3.1 mAb1 and mAb2 crystal properties 

In accordance to the presented concept in Chapter 2, handling properties and mechani-

cal stability of mAb1 and mAb2 crystals were assessed to prevent crystal damage dur-

ing the drying procedure. Therefore, pipetting was performed 1 -, 5 -, and 20 times by 

applying different pipette tips with the volumes of 10 µL, 200 µL, and 1000 µL. Neither 

for mAb1 nor for mAb2 crystals were any debris or damages observed (not shown). 

Following, no limitations caused by pipetting had to be taken into account during the 

course of the present study. 

Centrifugation was again chosen as surrogate to examine the mechanical properties of 

the crystals. In brief, the maximal force during the study was 25,150 x g which repre-

sented the technical limit of the Sigma® 4K15 centrifuge. This speed was chosen as 

starting point for the study. Three cycles of 10 min centrifugation were performed at a 

respective speed. The spin speed was reduced if the respective mAb crystal broke dur-

ing any of the three cycles. 

Initial state before cen-

trifugation 

Crystal state at respec-

tive centrifugation speed 

limit 

Crystal state at higher 

centrifugation speed 

 

 
untreated mAb1 

 

 
1,789 x g 

 

 
7,155 x g * 

 
untreated mAb2 

 
1,789 x g 

 
4,025 x g 

Figure 3-1 Light microscopic pictures which show the crystal´s condition after three rounds of centrifugation at the 
respective spin speed. The scale bar represents 50 µm.  

 



63 
 

Both mAb crystals remained stable up to 1,789 x g which was set as centrifugation 

speed limit during the course of the present study (Fig. 3-1). Above this spin speed, the 

mAb1 crystals broke while the mAb2 crystals started to disintegrate by losing their sea 

urchin like structure. 

3.3.2 Reproducibility of the vacuum drying approach for mAb1 crystals 

The vacuum drying procedure for mAb1 crystals introduced by Stefan Gottschalk was 

assessed for reproducibility and protein stability. The reported results suggested a prom-

ising starting point for further studies on mAb crystal drying 16. In brief, mAb1 crystals 

were washed with a 22% (w/v) PEG 4000 solution and subsequent with ethanol 85% at 

2°C. Finally, the pellet was suspended in 2°C cold EtOH 85% which contained  

5% (w/v) sucrose. 

SE-HPLC measurements revealed an aggregate formation of around 4% after drying 

and crystal dissolution in PBS. X-ray analysis of the crystal suspension prior to drying 

and after drying was performed externally. The results could not confirm the crystalline 

character neither for the suspension nor for dried crystals (not shown). The findings 

were in accordance to the results of the preliminary study 16. However, light microscop-

ic observations revealed a reduction in the count and the size of the crystals and the 

crystals appeared more transparent (Fig. 3-2 A & B). Total protein recovery detected by 

SE-HPLC analysis was reduced by approximately 25% and no free flowing powder was 

obtained by this procedure (Fig. 3-2 C). However, a free flowing powder could be gen-

erated by scratching the film with a spatula. By exert of pressure, the film burst into 

smaller pieces by forming a free flowing powder (Fig. 3-2 D). SE-HPLC analysis of the 

treated powder revealed a slight increase in aggregate formation of about 2%.  
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Before the vacuum drying procedure 

 

After the vacuum drying procedure 

 

Film after vacuum drying 

 

Free flowing powder after film treatment 

Figure 3-2 mAb1 crystals in their mother liquor before washing and drying and after washing with a sucrose-ethanol 
85% mixture and subsequent vacuum drying (B, suspended in a 24 (w/v) PEG 4000 solution). Picture C shows the 
vacuum-dried product immediately after drying while picture D shows a free flowing powder after film treatment 
with a spatula. The scale bar represents 50 µm. 

 

Table 3-1 shows the results regarding crystal size, crystal quality and achievement of a 

free flowing powder from the present study compared the preliminary study. 

Table 3-1 Results from the reproduction experiment of the vacuum drying approach for mAb1 crystals compared to 
the results from the preliminary study 16.   

 Present study Preliminary study 

Proof of crystallinity 
Crystal size 

Aggregate fraction 
Protein recovery 

Free flowing powder 

No 
Reduced 
3 - 4 % 
~ 75 % 

No 

No 
Not described 

2 - 3 % 
Not described 

Yes 

 

A B 

C D 
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3.3.3 Solvent screening for mAb1 and mAb2 crystals 

To distinguish between the effect of the washing and the vacuum drying procedure on 

protein integrity, SE-HPLC measurements were performed to determine the aggregate 

fraction of total protein and the total protein recovery after washing with different con-

centrations of ethanol and isopropanol at 2°C. Both liquids were chosen as they were 

already stated to be applicable washing liquids for mAb1 crystals 16. However, a stabil-

ity based choice of the washing liquid had not been performed during the preliminary 

study. Ethanol has been preferred as it is already FDA approved for parenteral  

use 16. Sucrose as additive was excluded from the study as it functions foremost as lyo-

protectant and a stabilizing effect during the washing step was not anticipated. The same 

test was performed for a mAb1 solution (5 mg/mL) and amorphous mAb1 which was 

produced by freeze drying to highlight the effect of the crystalline state on protein integ-

rity preservation. The formulation of the freeze-dried product was 5 mg/mL mAb1, 50 

mg/mL sucrose in a 50 mM sodium acetate buffer pH 5.50. For the experiment, the total 

protein recovery was set to 100% for reference samples (mAb1 solution, crystals and 

lyophilisates) which were not treated with any organic solvent. Prior to analysis, the 

crystals and lyophilisates were dissolved in PBS. 

The results showed significantly decreased total protein recoveries for all samples after 

washing with the organic solvent. The lowest total protein recovery was found for sam-

ples washed with ethanol. Interestingly, these samples showed only small aggregate 

levels (Tab. 3-2). After washing with isopropanol protein recovery was less reduced, but 

more aggregates could be detected (Tab. 3-2 & 3-3). Regarding total protein recovery 

and aggregate formation, mAb1 crystals showed the highest resistance against both liq-

uids while freeze-dried mAb1 was prone to aggregation. Notably, protein recovery of 

the 85% ethanol washed crystals was reduced about 23% which confirmed the above-

mentioned results (Tab. 3-1). 
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Table 3-2 Aggregate content and total protein recovery of mAb1 crystals, mAb1 in solution and freeze-dried mAb1 
after incubation with different ethanol concentrations at 4°C. 

 mAb1 crystals mAb1 solution Freeze-dried mAb1 

Ethanol concen-

tration [%] 

 
Aggreg. 
content  

[%] 

Total 
protein 

recovery 
[%] 

 
Aggreg. 
content  

[%] 

Total 
protein 

recovery 
[%] 

 
Aggreg. 
content  

[%] 

Total 
protein 

recovery 
[%] 

70 0.3 91.5 2.6 41.0 1.6 26.4 
75 0.5 87.4 2.6 41.6 2.1 28.0 
80 0.7 83.8 4.4 35.6 2.5 29.0 
85 1.0 77.4 2.4 31.3 3.1 32.2 
90 0.5 71.8 3.5 32.6 4.6 31.2 
95 0.3 67.1 3.9 33.3 7.4 31.4 

100 0.8 63.8 - - - - 

 

Table 3-3 Aggregate content and total protein recovery of mAb1 crystals, mAb1 in solution and freeze-dried mAb1 
after incubation with different isopropanol concentrations at 4°C. 

 mAb1 crystals mAb1 solution Freeze-dried mAb1 

Isopropanol 

concentration 

[%] 

 
Aggreg. 
content  

[%] 

Total 
protein 

recovery 
[%] 

 
Aggreg. 
content  

[%] 

Total 
protein 

recovery 
[%] 

 
Aggreg. 
content  

[%] 

Total 
protein 

recovery 
[%] 

70 2.5 83.3 3.8 92.3 4.8 88.0 
75 2.1 91.4 3.9 97.5 5.0 86.6 
80 2.1 87.5 4.2 94.6 5.2 86.0 
85 4.6 94.2 6.0 96.3 5.2 85.4 
90 4.0 87.5 4.0 94.9 5.4 83.0 
95 4.4 90.2 5.5 92.0 8.1 80.4 

100 6.7 84.3 - - - - 

 

The SE-HPLC results were confirmed by light obscuration and turbidity measurements. 

Samples washed with ethanol showed significantly higher total particle counts as well 

as a significantly higher turbidity (Fig. 3-3). 
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Washing 

liquid 

Turbidity 

[FNU] 

Buffer 
Untreated 

 

E 70 
E 90 

E 100 
 

I 70 
I 95 

I 100 

0.3 
0.6 

 

4.5 
9.2 
6.6 

 

1.2 
1.8 
1.2 

 

Figure 3-3 Selective results for the total particle count obtained from light obscuration measurements and the turbidi-
ty after washing mAb1 crystals with different ethanol and isopropanol concentrations. The crystals were dissolved in 
PBS prior to analysis. 

 

Consequently, the washing procedure was considered to be foremost responsible for the 

observed protein instability. Different washing liquids were to be found. Therefore, an 

extensive solvent screening was performed for mAb1 and mAb2 crystals. 

During exposure to a suitable organic washing liquid the crystal and protein integrity 

has to remain unaffected. Therefore, the same solvent screening procedure as for lyso-

zyme crystals was performed including microscopic observations during the washing 

procedure (see Chapter 2). A dissolution test in PBS was conducted at the end of the 

washing procedure to identify severe aggregation inside the crystals or at their surfaces. 

Such an aggregation is already reported to hinder protein crystal dissolution 2,31. Finally, 

aggregate analysis of the dissolved protein was performed after passing the solubility 

test by SE-HPLC, light obscuration and turbidity. 

As for the lysozyme crystals, a high number of solvents were examined (see Chapter 2). 

However, only a small number of organic washing liquids passed the solubility test as 

well as a subsequent aggregate analysis. 

Among other solvents, mAb2 crystals were insoluble after washing with different con-

centrations of ethanol or isopropanol. For these two liquids, a severe protein aggrega-
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tion was already stated during the preliminary study and thus mAb2 crystals were ex-

cluded from the vacuum drying approach 16. After washing, the crystal integrity was 

affected and protein precipitation could be observed (Fig. 3-4 A). In contrast, the crystal 

shape was maintained during washing with ethyl acetate, acetyl acetone, triacetine and 

triethyl citrate (Fig. 3-4 B). Protein recovery, aggregate formation and total particle 

count gave no hint for protein degradation (not shown). Acetyl acetone, triacetine and 

triethyl citrate were considered to be inappropriate for drying processes due to their high 

boiling temperatures and their low water miscibility. 

 

mAb2 crystal state after washing with  
ethanol 90 % 

 

mAb2 crystal state after washing with  
ethyl acetate 

Figure 3-4 Light microscopic pictures of mAb2 crystals after washing with ethanol 90% (A) and ethyl acetate (B). 
The scale bar represents 50 µm. 

 

Except of ethyl acetate, different promising solvents were found for mAb1 crystals as 

for mAb2 crystals (Tab 3-4). Again, only ethyl acetate remained as promising washing 

liquid as a severe aggregate formation was observed after washing with isopropanol and 

ethanol (Tab. 3-2 & 3-3). 

  

A B 
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Table 3-4 Applicable washing liquids for mAb1 and mAb2 crystals. The crystals remained soluble in PBS after wash-
ing with the solvents listed. 

mAb1 mAb2 

 
Ethyl acetate 

Ethanol 
Isopropanol 

Acetyl acetone 
Ethyl acetate 

- 
- 

Triacetine 
Triethyl citrate 

 

During extensive washing with ethyl acetate, mAb1 and mAb2 crystal aggregation was 

observed. The same phenomenon was already described for lysozyme crystals (see 

Chapter 2). However, the mAb crystal agglomeration was irreversible (not shown). Dry-

ing after crystal washing with ethyl acetate was considered to be impossible. 

3.3.4 Hot-Air drying of mAb1 crystals 

Nevertheless, mAb1 crystals should be dried as straight-forward approach in accordance 

to the approach presented in Chapter 2. Therefore, mAb1 crystals were washed with 

different ethanol and isopropanol concentrations of up to 95% and placed in the 

Barkey® Hot-Air Dryer (see Chapter 2). The drying set-up was the same as for the ly-

sozyme crystals, only the nitrogen gas stream was not heated. 

For all samples, a glassy material of high viscosity was obtained. After prolonging the 

drying time up to one week, a thin powder like film was obtained which did not contain 

any crystals as assessed microscopically after sample reconstitution with a 24% (w/v) 

PEG 4000 solution. 

3.3.5 Freeze drying 

Finally, freeze drying was assessed as comparative drying technique for mAb crystals. 

Therefore, mAb1 and mAb2 crystals were either lyophilized in their mother liquor or 

after transfer into a 23% (w/v) PEG 4000 solution. As the freezing rate is described to 

affect the size and number of ice crystals which potentially can destruct the protein crys-

tals upon freezing, the mAB suspensions were either slowly frozen during the lyophi-

lization cycle or alternatively, quickly pre-frozen by dipping into liquid nitrogen 6.  The 

samples were visually inspected before and after drying for their crystalline character by 
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light microscopy with and without polarization filter (Fig. 3-5). Sample reconstitution 

was performed by replacing the calculated loss in weight after drying with the same 

amount of highly purified water. 

The product cakes appeared pharmaceutically elegant after freeze drying of mAb1 and 

mAb2 crystals in PEG 4000 solutions. The product cake for the samples dried in the 

mother liquor was collapsed. 

 

Figure 3-5 Photographic picture of the freeze-dried product after mAb crystal drying in a 23% (w/v) PEG 4000 solu-
tion (left) and in the mother liquor (right). 

 

The crystalline state was confirmed before freeze drying by applying the polarization 

filter (Fig. 3-6 A & C). The mAb crystals appeared as bright structures and thus showed 

the birefringent behavior of a crystal state. After freeze drying, the crystals were optical-

ly destroyed and light polarization could no longer reveal crystallinity of the products 

(Fig. 3-6 B & D). Notably, the presented results were independent from the applied 

freezing rate. 
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Before freeze drying After freeze drying 

Figure 3-6 Light microscopic pictures of mAb1 and mAb2 crystals before freeze drying (A & C) and after freeze 
drying (B & D). To assess the crystalline character of the samples, light microscopy was performed with (upper 
pictures) and without (lower pictures) polarization filter. 

 

 

 

 

B 

C 

A 

D 
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 Discussion 3.4

It is already emphasized in literature that drying of crystals from biopharmaceuticals is 

complicated 25,26. A certain amount of residual intra crystalline water is required to 

maintain the protein integrity even in its crystalline state 25,26. Standard drying tech-

niques for biopharmaceutics such as freeze drying are assumed to be inappropriate for 

protein crystals 18,21,29. This was confirmed during the present study already in Chapter 2 

for lysozyme crystals, but also for both mAb crystals within this chapter. In all cases, 

crystal breakage was observed after freeze drying independent from the applied carrier 

matrix. Obviously, ice crystal formation within the protein crystals and thus volume 

expansion led to crystal destruction by formation of amorphous structures 18,29. Even 

smaller ice crystals obtained by fast sample freezing by dipping into liquid nitrogen can 

destroy the crystalline state. 

The presented vacuum drying approach for mAb1 crystals was found to be inappropri-

ate as it affects the protein integrity. The question whether the crystalline state was con-

served or not still remains unanswered. X-ray analysis was not successful most probably 

due to the low internal order of the protein crystals 26. The reduced crystal sizes ob-

tained after drying suggest crystal dissolution during the drying procedure. The reduc-

tion of birefringence, which also was already presented by the preliminary study, further 

confirms a loss in protein crystallinity. The significant loss in protein integrity might be 

caused by water replacement with organic liquid or crystal dissolution and thus protein 

denaturation within the organic solvent. Nevertheless, compared to mAb1 in solution 

and to its amorphous state, the crystals showed higher protection of the protein integrity 

upon contact to organic liquid. 

Similar to the needle shaped lysozyme crystals (Chapter 2), only a small number of ap-

plicable organic washing solvents were found for both mAb crystals. Some liquids had 

to be excluded due to their high boiling temperatures (triacetine, triethly citrate) or as 

they fostered crystal agglomeration during extensive washing procedures (ethyl acetate). 

This finding confirmed that a needle shaped protein crystal represents a very unfavora-

ble polymorph which is unfortunately common for antibodies 32. Only few inter-

molecular bindings are present within such a crystal and thus stabilization of the crystal-

line state itself as well as of the protein integrity is small 33. The concept study presented 

in Chapter 2 demonstrates the need to identify and characterize different crystal poly-
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morphs. Unfortunately, further mAb1 and mAb2 morphologies were not found (see 

Chapter 4). This limited the possibilities for a convenient drying study. 
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 Conclusion 3.5

No satisfying drying procedure for mAb crystals could be developed. Protein crystal 

drying remains a challenging approach which has to be assessed individually for each 

protein drug crystal. Common drying techniques for biopharmaceuticals such as vacu-

um drying or freeze drying comprise the risk for product overdrying and crystal destruc-

tion. As most suitable drying approach for protein crystals appears the replacement of 

the mother liquor with a volatile organic liquid which is subsequently evaporated. Etha-

nol and isopropanol are identified as the most suitable washing liquids. A stable crystal 

polymorph is required which is insoluble in the organic solvent and conserves the pro-

tein integrity. Generation of such a crystal might demand an extensive polymorph 

screening.  
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Chapter 4 

 

Statement: Within this chapter, the work related to section 4.3.3 includes results from 

the Master thesis “Impact of high hydrostatic pressure on the dissociation of protein 

aggregates and protein crystallization” by Benjamin Werner, LMU Munich, 2012. The 

results within section 4.3.3 are expressed in figures (4-7 – 4-18) and tables (4-3 – 4-11) 

which were reproduced in a modified form from the Master thesis. 

The Master thesis has been planned, structured and carried out under my direct supervi-

sion. The results obtained and the conclusions drawn have been discussed under my 

supervision. 
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4 Different strategies to obtain mAb crystal polymorphs 

with higher stability 

 Introduction 4.1

Chapter 2 demonstrates a model approach from protein crystallization to a dry and sta-

ble crystalline product. The feasibility of this concept has been shown for the non-

therapeutic lysozyme protein. An easy transfer to both antibodies was restricted already 

at the starting point. No crystal polymorphs and a constant aggregate formation for both 

proteins, mAb1 and mAb2, were reported by the preliminary study 1. The protein insta-

bility was at least partially ascribed to the needle-like crystal morphology (see  

Chapter 1). Needle-like structures represent a very common shape for antibody crystals 

and were considered to be a very unfavorable polymorph 2. Only few inter-molecular 

interactions are required to form such a crystal. The number of these interactions deter-

mines crystal attributes such as manufacturing, handling and pharmacokinetic proper-

ties. The latter are dependent on the solubility and dissolution kinetics which are report-

ed to be very fast for mAb1 and mAb2 crystals 1,3-5. This indicates low numbers of pro-

tein-protein interactions within the crystal lattice for both mAb crystals. The extent of 

protein stabilization in the crystalline state is probably also dependent on the number of 

inter-molecular interactions 6. For certain IgG crystals, free moving protein residues and 

unordered protein packages within the crystal lattice were reported in literature 7. These 

IgG crystal attributes might result in protein drug degradation even in the crystalline 

state. Consequently, higher protein stability was anticipated for different crystal poly-

morphs which exhibit higher numbers of inter-molecular interactions 1,6. 

Different approaches were already reported in literature to alter protein crystal mor-

phologies. These approaches comprise foremost the modification of the crystallization 

temperature or the pH of the crystallization buffer. In addition, applying of additives or 

agitation during the crystallization process is also described as strong tool to create pro-

tein crystal polymorphism. 

The crystallization temperature and the crystallization buffer pH directly influence pro-

tein interactions 3,8. By alteration of these parameters, the number of protein-protein 

interactions might be influenced and thus the crystal shape. Especially the buffer pH is a 

strong tool as it affects the protein surface charges and the protein solubility 3,8. Altera-

tion of the crystallization temperatures, applying of temperature shifts or agitation dur-
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ing the crystallization process result in altered crystal growth kinetics and thus poten-

tially different crystal morphologies 9,10. The effects of additives are more complicated 

and dependent on the type of additive used. Dependent on the utilized class the protein 

interactions are either mediated directly by electrostatic interactions, covalent interac-

tions, H-bondings or indirectly by modulating solvent properties 11-14. 

Another approach to change the protein crystal morphology comprises the application 

of high hydrostatic pressure. Lorber et al. have already shown the transition from te-

tragonal lysozyme crystals to a needle form under increased pressure levels 15. Despite 

the fact that protein crystallization under high hydrostatic pressure has been extensively 

investigated especially for lysozyme, it has not been described for antibodies, yet 16-23. 

Another specific attribute of high pressure is its feature to dissociate protein aggregates 

and oligomers by reducing hydrophobic and electrostatic protein interactions 24-26. The 

protein agglomerates can be dissociated even at high protein concentrations with a high 

yield and without utilization of denaturing agents and any filtration or dilution steps. 

These features makes it potentially a superior approach 27-29. Such a dissociation has 

already been demonstrated amongst others for human growth hormone, β-lactamase, 

nuclear receptors and enolase 25,27,30,31. However, pressure induced protein unfolding is 

also described at pressures above 400 MPa 31-35. So far, this technique has not been ap-

plied to antibodies or antibody crystals. 

mAb1 and mAb2 were crystallized with the lead conditions of the preliminary study 

introduced by Stefan Gottschalk (see Chapter 1). A constant aggregate formation even 

in the crystalline state was followed over one year. This instability was ascribed to the 

unfavorable mAb1 and mAb2 crystal morphology. Therefore, several strategies to alter 

the crystallization conditions were investigated in order to find stable mAb1 and mAb2 

crystal polymorphs. New polymorphs should be crystallized by alteration of the crystal-

lization temperature and the pH of the crystallization buffer. Another approach was the 

addition of additives to the crystallization formulation or the application of agitation 

during crystallization. Finally, high hydrostatic pressure was introduced as new tool for 

mAb crystallization. This technique was investigated for its ability to allow for growing 

new mAb1 and mAb2 crystal polymorphs as well as to dissociate protein aggregates 

within the crystal suspensions. 
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 Materials and Methods 4.2

4.2.1 Materials 

mAb1 and mAb2 were two monoclonal antibodies from the IgG1 class. The samples 

were stored at - 80°C (antibodies) until required for use. 

Sodium acetate (USP standard) was from Merck (Darmstadt, Germany). Ammonium 

sulphate (99%) was from Gruessing (Filsum, Germany). Sodium dihydrogen phosphate-

dihydrate (pure Ph. Eur., USP), disodium hydrogen phosphate-dihydrate (analytical 

grade), potassium dihydrogen phosphate and potassium chloride (both analytical grade) 

were obtained from Applichem GmbH (Darmstadt, Germany). PEG 4000S, 6000P, 

8000P, 10000P were from Clariant (Frankfurt a. M., Germany). Hydrochloric acid 32% 

(analytical grade), acetic acid 100% and ortho-phosphoric acid 85% were all purchased 

from Merck KGaA (Darmstadt, Germany). Sodium azide (99%) was received from 

Acros Organics (New Jersey, USA). All other reagents or solvents used during the sol-

vent screening were of at least analytical grade and purchased either from Sigma-

Aldrich (Taufkirchen, Germany) or from VWR Prolabo (Leuven, Belgium). 

4.2.2 Methods 

4.2.2.1 Crystallization of mAb1 

Crystallization of mAb1 was carried out in a 0.1 M sodium acetate buffer at a pH of 

5.50. For standard crystallization, a 23% or 24% (w/v) PEG 4000 solution was added 

dropwise in a 1:1 ratio to a 10 mg/mL protein solution under gentle shaking. The final 

formulation was stored at 20°C for at least two weeks. 

4.2.2.2 Crystallization of mAb2 

Standard crystallization of  mAb2 was performed in a 0.1 M sodium acetate buffer at a 

pH of 4.1. For crystallization, a 4.2 M sodium dihydrogen phosphate solution was added 

dropwise in a 1:1 ratio to a 10 mg/mL protein solution under gentle shaking. The final 

formulation was stored at 20°C for at least one week. 

4.2.2.3 Alteration of crystallization conditions 

The mAb1 and mAb2 lead crystallization conditions were varied in order to obtain new 

mAb1 crystal polymorphs. The standard crystallization parameters remained unaltered 

if additives or different precipitants were used. Additives were mixed to the protein so-
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lutions in the respective concentration prior to crystallization. The standard crystalliza-

tion agents were replaced by the respective precipitant. Stirring was performed with 

stirring bars (2 x 2 mm). For sample rotating and teetering the Heidolph polymax 1040 

(Heidolph Instruments, Schwabach, Germany) or the GFL Rocking Shaker 3013 (GFL 

GmbH, Burgwedel, Germany) was used, respectively. Colder crystallization tempera-

tures were obtained by placing the samples in a lab refrigerator obtained from VWR 

Prolabo (Leuven, Belgium). Crystallization at elevated temperature was performed in 

lab incubator from Memmert GmbH & Co. KG (Schwabach, Germany).  

4.2.2.4 High hydrostatic pressure 

For sample pressurization a pressure intensifier from BOLENZ & SCHAEFER was 

used which was equipped with a hydraulically driven pressure generating unit and a 200 

mL water jacketed chamber for temperature control. For each experiment, the tempera-

ture was set at 18.5 °C. The applied pressure medium consisted of 40% (v/v) Univis J13 

(Esso Germany), 30% (v/v) diesel and 30% (v/v) petroleum. The experiments were per-

formed as following: 

• 3 min pressure increase to the preset pressure. 

• 30 min hydraulic support to maintain the pressure. 

• 23.5 h in which pressure is hold by the system without hydraulic support. 

• Final depressurization for 3 min for the crystal morphology screening experi-

ments. For all other experiments, the depressurization time was set to 20 min. 

For all experiments, the samples were filled into 1 mL Nunc CryoTubesTM (Thermo 

Scientific, Waltham, MA, USA) with an external thread and a round bottom shape. The 

threads were wrapped with a layer of Teflon film. The tubes were sealed into three lay-

ers of polyethylene film (GROPACK Verpackung, Gräfelfing, Germany) which each 

were vacuumed. 

4.2.2.4.1 mAb1 

In order to grow new crystal mAb1 crystal morphologies under high hydrostatic pres-

sure, 10 mg/mL protein solutions were mixed in a 1:1 ratio with 20%, 30%, 32%, 34%, 
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35%, 36%, 38%, 40% and 50% (w/v) PEG 4000 solutions. Subsequently, the samples 

were pressurized at different pressure levels for 24 h. 

4.2.2.4.2 mAb2 

To identify new mAb2 crystal morphologies under the impact of high hydrostatic pres-

sure PEG 4000 and ammonium sulfate were used as crystallization agents. Therefore, 

40%, 45% and 50% (w/v) PEG 4000, dissolved in sodium acetate buffer at pH 4.1 were 

mixed in a 1:1 ratio with a 10 mg/mL mAb2 solution. For crystallization with ammoni-

um sulfate the 10 mg/mL protein solution was mixed in a 1:1 ratio with 2 M, 3 M, 

3.62 M, 3.78 M and 3.88 M of ammonium sulfate solutions in sodium acetate buffer at 

pH 4.1.  

4.2.2.4.3 Generation of stressed antibody solutions 

It was the aim to investigate whether high hydrostatic pressure is able to dissociate anti-

body aggregates. Therefore, artificial aggregates were generated by four different kinds 

of stress: agitation, stirring, exposure to thermal stress at 30°C and 50°C and light with 

60 watt/m2. All experiments were conducted with 5 mg/mL protein solutions. 

Shaking stress was induced to 1 mL of the protein solutions which were filled into 2 mL 

Eppendorf tubes. The caps were sealed with Parafilm and horizontally fixed on an Ep-

pendorf Mixer 5432 for 8 h (Eppendorf AG, Hamburg, Germany). The samples were 

pooled to obtain a homogenous batch for the experiments. 

Stirring stress was exerted on a Heidolph MR 3001 K (Heidolph Instruments, Schwa-

bach, Germany) at a speed of 500 rpm for 8 h. 

For temperature stresses, the protein solutions were placed in Greiner tubes and exposed 

to 50°C for 24 h. 

For light stress was introduced for 24 h using the Suntest CPS from Heraeus Original 

(Hanau, Germany) equipped with a xenon lamp. The protein solutions were placed into 

high pressure liquid chromatography (HPLC) vials. Some vials were wrapped up with 

an aluminum film to assess the effect of light induced thermal stress which was set at 

35°C. These samples were additionally used to assess temperature induced aggregate 

formation at 35°C. The light stressed samples were pooled to obtain a homogenous 

batch for the experiments. 
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4.2.2.5 Size exclusion high performance liquid chromatography (SE-HPLC) 

Total protein recovery and soluble aggregate content were determined by SE-HPLC. 

The analysis was performed on a Thermo separation system 

4.2.2.5.1 mAb1 

The mobile phase for mAb1 consisted of 0.092 M Na2HPO4 (anhydrous) and 0.211 M 

Na2SO4 (anhydrous) at a pH of 7. The flow rate was set to 0.25 mL/min. Analysis was 

performed at the wavelengths of 214 nm and 280 nm. A TSKgel G300SWXL column 

from Tosoh Bioscience GmbH (Stuttgart, Germany) was used for separation. Crystals 

were dissolved in PBS prior to analysis. 

4.2.2.5.2 mAb2 

The mobile phase for mAb2 consisted 0.02 M Na2HPO4 (dihydrate) und 0.15 M sodium 

chloride at a pH of 7.5. The flow rate was set to 0.50 mL/min. Analysis was performed 

at the wavelengths of 214 nm and 280 nm. For separation, a Suprose-6-HR-10/30-

coloum from GE Healthcare (Uppsala, Sweden) was used. Crystals were dissolved in 

PBS prior to analysis. 

4.2.2.6 Microscopic examination 

The crystal integrity was determined microscopically using either a Nikon Labophot 

equipped with a JVC TK-C1381 color video camera and the Screen Measurement / 

Comet – Software Version 3.52a or Biozero BZ-8000 (Keyence, Neu-Isenburg, Germa-

ny) microscope with the BZ Viewer application. Glass cover slides were used for sam-

ple preparation. A polarization filter was used to assess the crystalline state of the sam-

ples. Examination was performed at 400 fold magnification. 

4.2.2.7 Nephelometry 

Turbidity was measured using a Nephla Dr. Lange turbidimeter (Dr. Lange GmbH, 

Düsseldorf, Germany) by 90° light scattering at a wavelength of λ = 860 nm (Ph. Eur. 

2.2.1). Results are given in formazine normalized units. Crystals were dissolved in 

phosphate buffer solution (0.01M, pH 7.4, isotonic) (PBS) and concentration was set to 

1 mg/mL. 2 mL of each sample were filled into round glass cuvettes and placed into the 

sample holder. 
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4.2.2.8 Total subvisible particle count 

Size and amount of subvisible particles between 1 and 200 µm were determined using a 

PAMAS SVSS-C40 (PAMAS GmbH, Rutesheim, Germany) light blockage system. 

Crystals were dissolved in PBS and concentration was set to 1 mg/mL. The number of 

measurements was set to three for each sample with a measuring volume of 0.3 ml. The 

rinsing volume was 0.5 ml. 
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 Results 4.3

4.3.1 Reproducibility of mAb1 and mAb2 crystallization lead conditions 

In a first experiment, the lead crystallization conditions for mAb1 and mAb2 were as-

sessed for their reproducibility. In brief, a 10 mg/mL mAb solution was admixed in a 

1:1 ratio either with a 23% or 24% (w/v) PEG 4000 solution in sodium acetate buffer at 

pH 5 or with a 4.2 M sodium dihydrogen phosphate dehydrate salt solution in a sodium 

acetate buffer at pH 4.1. The mixtures were stored at 20°C in a climate room. The sam-

ples were analyzed optically by light microcopy. Aggregate formation was followed by 

SE-HPLC. Analysis of the samples was performed over 1 year. 

The same mAb1 and mAb2 crystals morphologies were found after one week of crystal-

lization as described by the preliminary study (Fig. 4-1) 1. Dependent on the PEG 4000 

concentration, the mAb1 crystals appeared as platelet-like structures (23% (w/v) PEG) 

or needle-clusters (24% (w/v) PEG). Notably, crystallization of mAb by using 23% 

(w/v) PEG 4000 was not successful in each case. Therefore, it was decided to crystallize 

preferably with 24% (w/v) PEG during the present study. Sea-urchin like crystal struc-

tures were found for mAb2. 

mAb1 crystals  
(23 % (w/v) PEG) 

mAb2 crystals  
(24 % (w/v) PEG) 

mAb2 crystals  
 

Figure 4-1 depicts light microscopy pictures of mAb1 (left, middle) and mAb2 (right) crystals after one week of 
crystallization. The mAb1 crystal shape was dependent on the PEG concentration used. The scale bar represents  
50 µm. 

 

SE-HPLC measurements confirmed a constant aggregate formation for both mAbs as 

described by the preliminary study (Fig. 4-2) 1. Interestingly, aggregate formation for 

mAb1 crystallized with 24% (w/v) PEG was observed immediately after starting crys-

tallization while mAb2 aggregation was first observed after 8 days. While total mono-
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mer recovery was lower for mAb1 crystals compared to the supernatant, adverse results 

were found for mAb2 (Fig. 4-2). These observations had not been reported by Stefan 

Gottschalk during the preliminary study 1. The extent of aggregate formation was less 

for the samples crystallized with 23% (w/v) PEG compared to the samples crystallized 

with 24% (w/v) PEG (not shown). Notably, aggregate formation was even detected for 

the non-crystallized samples which contained 23% (w/v) PEG. However, the aggregate 

levels strongly differed for these samples (not shown).  

  

Figure 4-2 Total mAb1 (left) and mAb2 (right) protein monomer recovery in the crystals and the supernatant over 
365 days. The results for mAb1 refer to crystallization using 24% (w/v) PEG. The x-axis displays a non-linear scal-
ing. Nonetheless, the graph displays applicable values as the reduction in the total monomer recovery occurs in a 
nearly linear matter. 

 

4.3.2 Alteration of mAb1 and mAb2 crystal morphology by variations in the 

crystallization lead conditions 

The protein instability was ascribed to the unfavorable crystal polymorph with low 

numbers of protein-protein interactions within the crystal lattice. Protein stabilization 

should be reached by growing of other crystal polymorphs which possess a higher num-

ber of protein-protein bindings 6. Fundamental alterations of the crystallization lead 

conditions were avoided during the study in order to conserve biocompatibility. 

4.3.2.1 Agitation and alternative crystallization temperatures 

In a first experiment, only the crystallization temperature was changed and application 

of agitation was tested. mAb1 was crystallized with 23% (w/v) PEG while mAb2 crys-

tals should be obtained with the lead formulation (4.2 M sodium dihydrogen phos-

phate). Table 4-1 shows the variations of the standard conditions used in order to obtain 
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new mAb1 and mAb2 crystal polymorphs. The crystallization samples were stored for 8 

weeks at 20°C in a climate room. The optical crystal shape was assessed by light mi-

croscopy while total monomer recovery was analyzed by SE-HPLC. 

Table 4-1 Alterations of the crystallization lead conditions in order to obtain new mAb crystal polymorphs. 

Variations in the lead crystallization conditions 

Crystallization at:  
 

20°C + 200; 400 rpm stirring 
20°C + 2; 20; 40 rpm teetering 

20°C + 40 rpm rotating 
 

2-8°C; 15°C, 30°C 
shift after two weeks : 2-8°C  20°C 
shift after two weeks : 20°C  2-8°C 

2-8°C + 20 rpm teetering 

 

Figure 4-3 shows the crystals shapes after 8 weeks of crystallization under modified 

conditions according to table 4-3. The crystal sizes were reduced after crystallization at 

altered temperatures. The platelet-shaped morphology was changed to small needle-like 

clusters. Beside the crystals amorphous aggregates could be observed for samples stored 

2-8°C and 30°C. Notably, the smaller needle-shaped crystals obtained at lower tempera-

tures grew to the platelet-shaped morphology after transfer to ambient temperature. 

However, the platelet-shape was conserved after the temperature shift from 20°C to  

2-8°C. 

The crystal morphology remained unaltered after crystallization under rotating. Interest-

ingly, crystal breakage and small needles could only be observed after applying of tee-

tering. Stirred samples showed only amorphous aggregates independent from the used 

speed. 

Summarizing, no new mAb1 crystal polymorph was found under the tested conditions. 

The same trends were observed for mAb2 crystals (not shown). 
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Standard crystallization 2-8°C 15°C 

30°C 20 rpm teetering 40 rpm teetering 

40 rpm rotating 200 rpm stirring 400 rpm stirring 

Figure 4-3 depicts light microscopic pictures of selected mAb1 samples. The figure captions refer to the alterations of 
the crystallization conditions compared to the lead conditions. The scale bar represents 50 µm. 

 

Analysis of the total monomer recovery revealed reduced values of about 1 – 2% for all 

mAb1 samples, except of the stirred samples, compared to samples crystallized under 

unaltered standard conditions (Fig. 4-4). The stirred samples showed a loss in total 

monomer recovery of about 5 – 6%. Only samples crystallized at 2-8°C showed in-

creased protein stability which was indicated by a higher total monomer recovery. 
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Figure 4-4 Total monomer recovery of selected mAb1 crystallization samples. The x-axis captions refer to alterations 
of the crystallization lead conditions. STD crystallization means mAb1 crystallization with 23% (w/v) PEG.  

 

4.3.2.2 Additives, pH shifts and PEG of higher molecular weight 

Since no satisfying effects could be obtained by modification of the crystallization tem-

perature and applying of agitation, small pH shifts and additives were assessed in order 

to obtain new mAb1 and mAb2 crystal morphologies. In addition, PEGs of different 

chain lengths were investigated as alternative to PEG 4000 for crystallization of mAb1. 

The crystallization buffer pH is reported to be most important for protein crystallization. 

Macromolecular nucleation rate as well as protein-protein interactions are very sensitive 

towards the buffer pH. Even small changes of the pH value can result in crystalline 

products of different quality and quantity 3,8,36. Therefore, the pH of the crystallization 

buffers was only slightly changed.  

Table 4-2 shows the pH shifts, additives and PEG molecular weights applied during the 

study. For the assessment of the pH shifts and additives, mAb1 was crystallized with 

both “standard” PEG concentrations (23% and 24% (w/v) PEG 4000). In contrast, the 

alternative PEG molecular weights were used in different concentrations (Tab. 4-2). All 

samples were prepared in accordance to the lead procedure introduced by Stefan 

Gottschalk (see 1.3.1) and subsequent stored at 20°C for 5 weeks. Light microscopy 

was performed to inspect the optical crystal morphology. SE-HPLC analysis was used 

to investigate aggregate formation. 
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Table 4-2 The pH shifts and additive concentrations examined to obtain new crystal morphologies. In addition, dif-
ferent PEG molecular weights were listed which were assessed as alternative to PEG 4000 for crystallization of 
mAb1. The percentages refer to values in w/v. 

 mAb1 mAb2 

pH Screen pH 5.2, 5.5, 5.7, 5.9 pH 3.8, 4.1, 4.4, 4.6 

Sucrose 0.1 %, 2.5 %, 5 % 0.1 %, 2.5%, 5 % 

Poloxamer 0.5 %, 2.5 % 0.5 %, 2.5 % 

Hyaluronic acid 0.1 % 0.05 % 

Ficoll 400 0.1 %, 1 %, 2.5 % 0.1 %, 0.5 %, 1 % 

Cyclodextrin 

(Cavasol W7 HP) 
0.1 %, 2.5 %, 5 % 0.1 %, 2.5 %, 5 % 

Dextran 6,000 0.1 %, 2.5 %, 5 % 0.1 %, 2.5 %, 5 % 

Fructose-6-

phosphate 
0.1 %, 1 %, 5 % 0.1 %, 1 %, 5 %   

Carboxy methyl 

cellulose 

(low viscosity) 

0.1 %, 2.5 %, 5 % 0.1 %, 2.5 %, 5 % 

PEG 6000P 20 % - 

PEG  8000P 
16 %, 20 %, 22 %, 
24 % 

- 

PEG 10000P 12 %, 16 % - 

 

Light microscopic observations revealed only small changes in the optical mAb1 crystal 

morphology (Fig. 4-5). 

For mAb1 crystallization with 23% (w/v) PEG 4000, smaller needle-like crystal struc-

tures were obtained after increasing the pH value of the buffer to 5.90. Addition or after 

cyclodextrin or ficoll to mAb1 crystallization systems with 24% (w/v) PEG 4000 result-

ed in small needle-like crystal structures and platelet-like mAb1 crystals (besides nee-

dle-like structures), respectively. However, Stefan Gottschalk has already considered 

that the smaller needle-like morphology does not represent a polymorphic crystal form 

towards the platelet-like crystal shapes 1. 

For mAb2, no changes in the crystal morphology could be obtained. Addition of cy-

clodextrine and Ficoll 400 resulted in different needle orientations which were associat-

ed to amorphous precipitates in the center of the needle-clusters (Fig. 4-5 bottom row). 
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Generally, application of higher additive concentrations resulted in the occurrence of 

amorphous structures. 

mAb1 
Standard crystallization  

(23% (w/v) PEG) 

mAb1 
pH 5.7 

(23% (w/v) PEG) 

mAB1 
pH 5.9 

(23% (w/v) PEG) 

mAb1 
Standard crystallization 

(24% (w/v) PEG) 

mAb1 
1% (w/v) Ficoll 

(24% (w/v) PEG) 

mAb1 
2.5% (w/v) Cyclodextrine 

(24% (w/v) PEG) 

mAb2 
Standard crystallization 

mAb2 
0.1% (w/v) Ficoll 

mAb2 
2.5% (w/v) Cyclodextrine 

Figure 4-5 Light microscopic pictures of mAb1 and mAb2 crystals obtained after crystallization under the lead condi-
tions (left column). The other pictures show crystal shapes obtained after application of pH shifts (first row, middle 
and right column) or additives (middle and bottom row, middle and right column). The scale bar represents 50 µm. 

 

Amorphous mAb1 precipitates were also observed after crystallization with PEGs of 

higher molecular weight (not shown). Reduction of the PEG concentration again result-

ed in crystal formation, but again in needle-like morphologies (Fig. 4-6). However, 

amorphous structures could still be observed within these samples. Further reduction of 
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the PEG concentration did not foster mAb1 crystallization. Consequently, crystal for-

mation without amorphous precipitates could not be reached with PEGs of higher mo-

lecular weight. 

  
mAb1 

Standard crystallization with 
24% (w/v) PEG 4000  

6% aggregates after 5 weeks 

mAb1 
Crystallization with 

22% (w/v) PEG 8000 
3.7% aggregates after 5 weeks 

Figure 4-6 Light microscopic pictures of mAb1 crystals obtained after crystallization with 24% (w/v) PEG 4000 (left) 
or 22% (w/v) PEG 8000 (right). The scale bar represents 50 µm. 

 

Despite the occurrence of amorphous precipitates, SE-HPLC analysis revealed a reduc-

tion in aggregate formation after 5 weeks from 6% aggregates (lead conditions) to 3.7% 

aggregates (22% (w/v) PEG 8000) (Fig. 4-6). Application of the pH shifts and cy-

clodextrine resulted in increased aggregate levels of about 7 - 8%. All other additives 

did not affect the extent of aggregate formation (not shown). 

Overall, no mAb1 or mAb2 crystal polymorph could be obtained by alteration of the 

crystallization buffer pH or with the tested additives. Small effects on the crystal shape 

were accompanied with increased aggregate formation. Only the application of higher 

molecular PEGs for mAb1 crystallization resulted in reduced aggregate formation after 

5 weeks. However, usage of these PEGs led to amorphous precipitates besides the 

mAb1 crystals and thus to a reduced product quality of the crystal suspension. 

4.3.3 High hydrostatic pressure 

No alterations of mAb1 and mAb2 crystal morphology were reached by pH shifts, PEG 

of higher molecular weight and additives. Therefore, high hydrostatic pressure was test-

ed. Beside the aim to grow new mAb1 and mAb2 crystal morphologies the reduction of 
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the aggregate content of stored crystal suspensions should be reached. However, it was 

not clear if mAb1 and mAb2 crystals would withstand exposure to elevated pressure 

levels. 

4.3.3.1 mAb1 and mAb2 crystal stability at elevated pressure levels 

First, crystallization was performed under lead conditions (24% (w/v) PEG for mAb1) 

for both antibodies. Then, the samples were pressured at 150 MPa to 500 MPa which 

represented the working span of the applied pressure intensifier from BOLZEN & 

SCHAEFER. Integrity of the crystalline state was assessed by light microscopy imme-

diately after depressurization. 

mAb1 crystals started to convert into an amorphous state already at 160 MPa. This tran-

sition was completed at 175 MPa. In contrast, mAb2 crystals withstood pressurization 

up to the technical limit of the pressure intensifier (Fig. 4-7). 

mAb1 - 0.1 MPa mAb1 - 160 MPa mAb1 - 175 MPa 

 

  
mAb2 - 0.1 MPa mAb2 - 500 MPa 

Figure 4-7 Light microscopic pictures of mAb1 and mAb2 crystals before pressurization (A, D) and after pressuriza-
tion. Amorphous precipitate besides mAb1 crystals was observed already after pressurization at 160 MPA (B). Pres-
surization at 175 MPa resulted only in amorphous structures (C). mAb2 crystals maintained until the technical limit 
of the pressure intensifier (E).  

 

A B C 

D E 
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4.3.3.2 The effect of high hydrostatic pressure on the mAb crystal morphology 

In a further experiment, high hydrostatic pressure was used with the aim to obtain new 

mAb1 and mAb2 crystal morphologies. The opportunity to generate new crystal shapes 

was anticipated since the transition from one polymorph to a different one was already 

described for lysozyme crystals 15. In a different study, recombinant human growth 

hormone was precipitated amorphously with high PEG concentrations at ambient pres-

sure. This state was transited into crystals after application of elevated pressures 19. 

Therefore, 10 mg/mL mAb1 solutions were admixed with PEG solutions with concen-

trations from 20% to 50% (w/v). The mixtures were subsequently exposed to different 

pressure levels (Tab. 4-3). Experiments with pressures above 300 MPa were not con-

ducted since mAb1 crystals did not withstand such conditions (see above). The samples 

were inspected visually by light microscopy immediately after pressurization. A polari-

zation filter was used to distinguish between amorphous and crystalline states. The 20% 

(w/v) PEG 4000 concentration was chosen as for some proteins which were exposed to 

high hydrostatic pressures a reduction in solubility is reported 16-18,23. 

For the higher PEG concentrations only amorphous precipitates could be observed after 

pressurization. In contrast, no precipitation was found for the samples mixed with 20% 

(w/v) PEG. These findings were independent from the applied pressure levels  

(Tab. 4-3). Protein agglomerates (melted sheets) of a different shape could be found 

already at ambient pressure for samples mixed with 30% (w/v) PEG. The shapes were 

observed after pressurization of samples from 30% to 35% (w/v) PEG. These structures 

were different to the typical amorphous mAb1 structures obtained so far (Fig. 4-8).   

Table 4-3 mAb1 precipitate states after precipitation with different PEG 4000 concentrations and subsequent expo-
sure to elevated pressure levels. 0.1 MPa refers to samples without pressure treatment. 

PEG [%] 

(m/v) 
0.1 MPa 160 MPa 200 MPa 250 MPa 300 MPa 

20% soluble  soluble  
30% melted sheets amorphous  
32% amorphous melted sheets amorphous 
34% amorphous melted sheets amorphous 
35% amorphous melted sheets amorphous 
36% amorphous  
38% amorphous  
40% amorphous  amorphous  
50% amorphous  amorphous  
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The new agglomeration shapes represented connected assemblies with round bounda-

ries. This structure obtained with 30% (w/v) PEG could be disconnected at elevated 

pressure levels (Fig. 4-8 C). Application of the polarization filter could not confirm a 

crystalline state (Fig. 4-8 F). A new mAb1 crystal morphology could not be found under 

the tested conditions. 

30% (w/v) PEG 0.1 MPa 30% (w/v) PEG 160 MPa 30% (w/v) PEG 200 MPa 

32/34/35% (w/v) PEG  
0.1 MPa 

32/34/35% (w/v) PEG 
160/200/250 MPa 

32/34/35% (w/v) PEG 
160/200/250 MPa polariza-

tion filter 

Figure 4-8 mAb1 precipitates obtained after crystallization with higher PEG concentrations (A, D) at atmospheric 
pressure and after exposure to higher pressure levels (B, C, E). The melted-sheet like structure obtained with 30% 
(w/v) PEG disappeared with increasing pressures (A, B, C). Samples precipitated with higher PEG concentration 
formed small amorphous structure (D). Pressurization of such samples resulted in formation of melted sheets (E). 
Application of a polarization filter revealed no crystalline state of the melted-sheet like structures (F). The scale bar 
represents 50 µm.  

 

To grow new mAb2 crystal morphologies, a different test set-up was utilized. PEG 4000 

was used as new crystallization agent for mAb2 under high hydrostatic pressure. A sim-

ilar approach was already described in literature for recombinant human growth hor-

mone 19. PEG could not crystallize that protein under ambient pressure conditions but at 

elevated pressure levels. Therefore, a 10 mg/mL mAb2 solution was admixed with 20%, 

22.5% and 25% (w/v) PEG solutions to obtain amorphous mAb2 precipitates at ambient 

pressure. These suspensions were exposed to high hydrostatic pressures. However, all 

samples retained its amorphous state (not shown). 

A B C 

D E F 
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A different strategy was followed by utilizing ammonium sulfate ((NH4)2SO4) as crys-

tallization agent for mAb2. In accordance to the Hofmeister series, ammonium sulfate 

should possess a stronger salting out feature 37. Consequently, lower concentrations 

would be required for mAb2 crystallization. Again, a 10 mg/mL mAb2 solution was 

admixed with different ammonium sulfate solutions with concentrations from 2 M to 

3.88 M. The mixtures were subsequently pressurized. Light microscopy was used to 

assess the precipitant state. 

Application of 3 M solutions resulted in mAb2 crystal formation. The crystals where 

similar to those obtained with ammonium phosphate but without the sea-urchin like 

crystal shape (Fig. 4-9 A).  

  
3 M ammonium sulfate 
0.1 MPa – crystalline  

3 M ammonium sulfate 
250 MPa – crystalline 

 
Amorphous precipitate at concentrations > 3 M ammonium sulfate 

Figure 4-9 mAb2 crystals obtained after crystallization with 3 M ammonium sulfate (A). This state withstood in-
creased pressure levels at 250 MPa (B). Application of higher ammonium sulfate concentrations (> 3 M) resulted in 
amorphous mAb2 precipitation (C). The scale bar represents 50 µm. 

 

The crystal morphology was maintained at elevated pressures (Fig. 4-9 B). Amorphous 

mAb2 precipitates were obtained at higher ammonium sulfate concentrations which also 

were retained at higher pressure levels (Fig. 4-9 C). Concentrations lower than about 3 

M ammonium sulfate did not precipitate mAb2. As for mAb1, no new crystal morphol-

ogy could be found under the tested conditions. 

A B 

C 
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4.3.3.3 The effect of high hydrostatic pressure on mAb crystallization and the 

protein integrity 

High hydrostatic pressure has the feature to dissociate aggregated protein in solution 

which is extensively described in literature 25,27,30,31. However, crystallization at high 

hydrostatic pressure was so far described for only three proteins. For glucose isomerase, 

accelerated protein crystallization but reduced crystal sizes were reported whereas de-

creased nucleation and growth rates were stated for lysozyme and subtilisin at elevated 

pressure levels. Hydrostatic pressure effects on mAb crystallization have not been re-

ported, yet. Therefore, mAb1 and mAb2 solutions were admixed with the respective 

crystallization buffer and immediately pressurized. mAb1 samples were pressured at 

150 MPa while mAb2 samples were exposed to 150 MPa and 400 MPa as the crystals 

were found to withstand the higher pressure levels (see above). The crystal appearances 

were followed by light microscopy. Aggregate formation for the crystalline fraction was 

investigated by SE-HPLC, light obscuration and nephelometry after 1 day and 4 weeks. 

The results were compared to not-pressurized samples. 

Pressurization at 150 MPa did not hinder mAb1 crystallization. However, the needle-

like crystals were larger in number but smaller in their size. The morphology and crystal 

sizes did not change during the four weeks (not shown).  

SE-HPLC analysis showed minor differences in the protein integrity between the pres-

surized and non-pressurized samples. About 1.5% soluble aggregates were detected 

after one day and around 3.3% after 4 weeks. However, total protein recovery was de-

creased about 3.8% for the pressurized samples after 4 weeks (Tab. 4-4). 

Table 4-4 Soluble aggregate content and total protein recovery of mAb1 crystallization samples after 1 day and 4 
weeks of storage obtained by SE-HPLC measurements. The values refer to samples pressurized at 150 MPa for 24 h 
immediately after mixing the protein solution with the precipitant solution and to samples without any treatment (0.1 
MPa). 

Pressure level Storage time 
Soluble aggregate 

content [%] 

Total protein re-

covery [%] 

0.1 MPa 1 day 1.6 100 

150 MPa 1 day 1.3 100 

0.1 MPa 4 weeks 3.4 100 

150 MPa 4 weeks 3.1 96.2 
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This finding was confirmed by light obscuration and turbidity measurements. Both 

methods again revealed only small differences for the pressurized and non-pressurized 

samples with slightly increased values for the first ones (Fig. 4-10). Interestingly, tur-

bidity and total subvisible particle count were reduced after 4 weeks for both samples. 

 

Figure 4-10 Light obscuration (left) and turbidity [FNU] (right) measurements for mAb1 samples without any treat-
ment (0.1 MPa) and for samples pressurized at 150 MPa for 24 h immediately after starting the crystallization.  

 

As for mAb1, pressurization at 150 MPa had no effect on mAb2 crystallization. How-

ever, pressurization at 400 MPa hindered mAb2 crystallization. Under standard condi-

tions, the samples possess an amorphous state before the crystals start to form after ap-

proximately 2 days. Whereas samples pressurized at 150 MPa still become crystalline 

with the common morphology, the samples pressurized at 400 MPa remained amor-

phous over the 4 weeks (Fig. 4-11). 
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Figure 4-11 Precipitate state of mAb2 of differently treated crystallization samples. The states refer to samples with-
out any treatment (0.1 MPa) and to samples pressurized at 150 MPa and 400 MPa for 24 h immediately after starting 
the crystallization. 

 

With respect to aggregate formation, no differences between the samples pressurized at 

150 MPa and the non-pressurized samples could be observed. No soluble aggregates 

were found after 1 day while about 2% soluble aggregates were detected after 4 weeks 

(Tab. 4-5). Total protein recovery was equal after 4 weeks for both samples. In contrast, 

samples pressurized at 400 MPa showed about 12.5% soluble aggregates after 1 day. 

After 4 weeks the soluble aggregate level was determined at 4.5%, but the total protein 

recovery dropped from 83% after 1 day to 65% after 4 weeks. 

Table 4-5 Soluble aggregate content and total protein recovery of mAb2 crystallization samples after 1 day and 4 
weeks of storage obtained by SE-HPLC measurements. The values refer to untreated samples (0.1 MPa) and samples 
pressurized at 150 MPa or 400 MPa for 24 h immediately after mixing the protein solution with the precipitant solu-
tion. 

Pressure level Storage time 
Soluble aggregate 

content [%] 

Total protein re-

covery [%] 

0.1 MPa 1 day 0 100 
150 MPa 1 day 0 100 
400 MPa 1 day 12.5 95.8 

0.1 MPa 4 weeks 1.9 100 
150 MPa 4 weeks 2.2 100 
400 MPa 4 weeks 4.5 69.2 
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Light obscuration and turbidity results were again higher after 1 day than after 4 weeks. 

Interestingly, the samples pressurized at 400 MPa showed lower subvisible particle 

counts and turbidities than samples pressurized at 150 MPa. 

Overall, no positive effect of high hydrostatic pressure on mAb1 and mAb2 crystalliza-

tion and aggregate formation could be observed (Fig. 4-12). 

 

 

Figure 4-12 Light obscuration (left) and turbidity [FNU] (right) measurements for mAb2 samples without any treat-
ment (0.1 MPa) and for samples pressurized at 150 MPa or 400 MPa for 24 h immediately after starting the crystalli-
zation. 

 

4.3.3.4 Reduction of the aggregate contents of mAb crystal suspensions by appli-

cation of elevated pressure levels 

It was the aim of the following experiment to reduce the aggregate level of older mAb 

crystal suspensions by application of elevated pressure levels. 

Therefore, maturated mAb1 crystals which contained about 13.5% aggregates were 

pressurized at 160 MPa and 200 MPa. This pressure range was chosen as for it dissocia-

tion of protein aggregates in solution was already described 24,25. Furthermore, it has 

been shown that mAb1 crystals can withstand these pressure levels. Matured mAb2 

crystals which possessed an aggregate content of about 4.3% were exposed to 175 MPa,  

400 MPa and 500 MPa pressures. SE-HPLC, light obscuration and turbidity measure-
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ments were used to assess the aggregate levels of the samples. The results were com-

pared to untreated samples of the same age.  For calculation of the total protein recovery 

after pressurization, the total protein recovery of the untreated comparison samples was 

taken as 100%. 

For mAb1, SE-HPLC analysis revealed lower soluble aggregate levels which were ac-

companied with a significantly decreased total protein recovery for the pressurized 

samples. The reduction in total protein recovery was larger for samples pressurized at 

160 MPa than for samples exposed to 200 MPa (Tab. 4-6). This reduction was ascribed 

to formation of insoluble aggregates which were not detectable by SE-HPLC. 

Table 4-6 Soluble aggregate content and total protein recovery determined by SE-HPLC measurements of maturated 
non-pressurized (0.1 MPa) and pressurized (160 MPa, 200 MPa) mAb1 crystal suspensions. Reduction in total pro-
tein recovery was ascribed to formation of insoluble aggregates which were not detectable by SE-HPLC. 

Pressure level 
Soluble aggregate 

content [%] 

Total protein re-

covery [%] 

0.1 MPa 13.5 100 
160 MPa 10.5 88.1 
200 MPa 9.7 95.4 

 

This finding was supported by light obscuration and turbidity measurements which 

showed again the highest values for samples exposed to 160 MPa (Fig. 4-13). 
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Figure 4-13 Total subvisible particle count > 1 µm per milliliter and turbidity [FNU] of maturated mAb1 crystal 
suspensions without any pressurization (0.1 MPa) and after treatment at 160 MPa and 200 MPa. 

 

The soluble aggregate content of mAb2 crystals was reduced about 2.5% after pressuri-

zation at 175 MPa (Tab. 4-7). Interestingly, the total protein recovery was increased 

compared to the untreated samples. In contrast, after exposure to 400 MPa and 500 MPa 

the soluble aggregate level remained unaltered, but the total protein recovery was de-

creased by 3.9% and 13.3%, respectively. 

Table 4-7 Soluble aggregate content and total protein recovery determined by SE-HPLC measurements of maturated 
mAb2 crystal suspensions which were either non-pressurized (0.1 MPa) or pressurized at 175 MPa, 400 MPa and 500 
MPa. 

Pressure level 
Soluble aggregate 

content [%] 

Total protein re-

covery [%] 

0.1 MPa 4.3 100 
175 MPa 1.9 105.8 
400 MPa 4.0 96.1 
500 MPa 4.7 86.7 

 

Light obscuration and turbidity measurements showed increased values for the samples 

pressurized at 400 MPa and 500 MPa (Fig. 4-14). The lowest subvisible particle count 

but the highest turbidity was found for the samples pressurized at 400 MPa. The turbidi-
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ty value of the samples pressurized at 175 MPa was slightly decreased compared to the 

untreated samples. However, the total subvisible particle count was not significantly 

altered. By that, it was concluded that for maturated mAb2 the aggregate content can be 

decreased by application of high hydrostatic pressure at 175 MPa. For all other condi-

tions, pressurization resulted in increased aggregate levels. 

 

Figure 4-14 Total subvisible particle count > 1 µm per milliliter and turbidity [FNU] of maturated mAb2 crystal 
suspensions without any pressurization (0.1 MPa) and after treatment at 175 MPa, 400 MPa and 500 MPa. 

 

Overall, only for mAb2 crystals a reduction in the aggregate content was observed after 

pressurization at 175 MPa. All other conditions tested and for all mAb1 samples, the 

aggregate levels were increased after application of high hydrostatic pressure. 

4.3.3.5 The impact of high hydrostatic pressure on the protein integrity of differ-

ently concentrated mAb solutions  

To determine whether the crystalline state is responsible for increased aggregate levels 

after sample pressurization, mAb1 and mAb2 solutions of different concentrations were 

exposed to elevated pressure levels. Therefore, mAb1 solutions in concentrations of  

5 mg/mL and 114 mg/mL respectively were pressurized at 160 MPa, 175 MPa, 300 

MPa and 400 MPa. mAb2 solutions with concentrations of 5 mg/mL and 66 mg/mL 

were exposed to 400 MPa. The protein solutions used for the study were fresh and 
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without any aggregate contents. Aggregate analysis was performed immediately after 

pressure treatment by SE-HPLC, light obscuration and turbidity measurements. 

The results reveal a significant reduction in the total protein recovery for all mAb1 sam-

ples. Higher concentrated protein solutions showed a higher loss in protein. The soluble 

aggregate contents remained nearly unaltered except for the 114 mg/mL protein solution 

which was pressurized at 400 MPa. For this sample the soluble aggregate level was sig-

nificantly increased by 5.5% (Tab. 4-8). 

Table 4-8 Soluble aggregate content and total protein recovery obtained by SE-HPLC for mAb1 solutions of 5 
mg/mL or 114 mg/mL protein. The results refer to samples without any treatment (0.1 MPa) or pressurized samples 
(160 MPa, 175 MPa, 300 MPa, 400 MPa).  

mAb1 con-

centration 
Pressure level 

Soluble aggre-

gate content 

[%] 

Total protein 

recovery [%] 

 
5 mg/mL 

0.1 MPa 0.4 100 
175 MPa 0.6 96.6 
300 MPa 0.7 93.9 

 

114 mg/mL 

0.1 MPa 0.4 100 
160 MPa 0.3 77.0 
400 MPa 6.0 62.2 

 

Light obscuration and turbidity measurements revealed the same trend (Fig. 4-15). 

Higher subvisible particle counts and turbidity values were found for the pressurized 

samples with the highest count for the 114 mg/mL protein solution treated with  

400 MPa. This sample showed also the highest turbidity value.  
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Figure 4-15 Total subvisible particle count (> 1 µm/mL) and the turbidity [FNU] for mAb1 solutions of 5 mg/mL and 
114 mg/mL protein. The results refer to samples without any treatment (0.1 MPa) or to pressurized samples (160 
MPa, 175 MPa, 300 MPa, 400 MPa). 

 

Similar results could be obtained for the mAb2 protein solutions (Tab. 4-9). Pressurized 

samples showed a loss in total protein recovery, but with an adverse result compared to 

the mAb1 solutions. The reduction in total protein was higher for the lower concentrat-

ed mAb2 samples. However, the soluble aggregate content was again elevated for the 

higher concentrated protein solutions.  

Table 4-9 Soluble aggregate content and total protein recovery obtained by SE-HPLC for mAb2 solutions of 5 
mg/mL and 66 mg/mL protein. The results refer to samples without any treatment (0.1 MPa) or samples pressurized 
at 400 MPa. 

mAb2 con-

centration 
Pressure level 

Soluble aggre-

gate content 

[%] 

Total protein 

recovery [%] 

5 mg/mL 
0.1 MPa 0.3 100 
400 MPa 0 75.9 

66 mg/mL 
0.1 MPa 0.3 100 
400 MPa 3.4 84.9 

 

Light obscuration measurements revealed increased subvisible particle counts for the 

higher concentrated mAb2 solutions (Fig. 4-16). The pressurized samples showed fur-
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ther increased values. The results of the turbidity analysis were nearly equal for the  

5 mg/mL and 66 mg/mL protein solutions. Only the pressurized samples showed again 

slightly increased values.  

 

Figure 4-16 Total subvisible particle count (> 1 µm/mL) and the turbidity for mAb2 solutions (5 mg/mL and 66 
mg/mL). The results refer to samples without any treatment (0.1 MPa) or samples pressurized at 400 MPa. 

 

The results reveal a pressure induced aggregate formation for solutions of both antibod-

ies which is dependent on the applied pressure level and protein concentration used.   

4.3.3.6 Dissociation of mAb aggregates through high pressure 

Despite the fact that adverse effects on protein stability in protein solutions were ob-

served after exposure to high hydrostatic pressure, further studies on mAb aggregate 

dissociate should be performed. The protein solutions used so far did not contain any 

aggregates. Conclusions concerning potential antibody aggregate dissociation by high 

hydrostatic pressure could not be drawn. Therefore, mAb1 and mAb2 solutions were 

faced to different stresses in order to generate protein aggregates. The stresses utilized 

were light stress (60 watt/m3, 24 h), stirring stress (500 rpm with stirrer bar, 8 h), agita-

tion stress (Eppendorf Mixer 5432, 8 h) and thermal stress at 35°C (24 h) and 50°C  

(24 h). After aggregate formation, the samples were exposed to 150 MPa or 400 MPa 

for 24 h and analyzed by SE-HPLC, light obscuration and turbidity. 
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For each stressed mAb1 sample aggregate formation could be observed (Tab. 4-10). The 

highest soluble aggregate level was determined for light stressed samples while the 

highest loss in total protein was detected for thermal stressed samples at 35°C. For the 

latter samples lower soluble aggregate contents as well as an increased total protein re-

covery could be observed after treatment at 150 MPa compared to the untreated coun-

terparts. For all other samples, except the light stressed samples, smaller soluble aggre-

gate contents, but also a decreased total protein recovery was found after exposure to 

150 MPa. Treatment at 400 MPa resulted in increased soluble aggregate contents except 

for the light stressed samples. In all cases the total protein recovery was reduced by at 

least 58.5% at 400 MPa. 

Table 4-10 Soluble aggregate content and the total protein recovery of differently stressed mAb1 solutions. The 
samples were either non-pressurized (0.1 MPa) or exposed to 150 MPa or 400 MPa prior to SE-HPLC analysis. 

mAb1 sample Pressure level 

Soluble aggre-

gate content 

[%] 

Total protein 

recovery [%] 

mAb1 
in solution 

0.1 MPa 0.4 100 

Light 
stressed 

0.1 MPa 18.5 91.1 
150 MPa 21.2 92.0 
400 MPa 8.9 30.4 

Stirring 
stressed 

0.1 MPa 2.5 100 
150 MPa 0.8 94.6 
400 MPa 6.9 35.2 

Agitation 
stressed 

0.1 MPa 2.1 100 
150 MPa 0.8 95.1 
400 MPa 8.0 37.2 

Thermal 
stressed 
(35°C) 

0.1 MPa 1.7 86.9 
150 MPa 1.0 95.3 
400 MPa 7.8 41.5 

Thermal 
stressed 
(50°C) 

0.1 MPa 2.1 100 
150 MPa 1.8 100 
400 MPa 6.3 34.3 

 

Light obscuration and turbidity measurements revealed no clear trend for these samples 

(Fig. 4-17). Whereas the turbidity values increased with rising pressure treatment, ex-

cept for the stirring stressed samples, the subvisible particle counts were increased for 
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the samples exposed to 150 MPa compared to samples pressured at 400 MPa. Only for 

the thermal stressed samples (50°C) the subvisible particle counts showed adverse re-

sults.  

 

Figure 4-17 Total subvisible particle count (> 1 µm/mL) and the turbidity [FNU] of mAb1 solutions which remained 
either non-pressurized (0.1 MPa) or were exposed to 150 MPa or 400 MPa prior to light obscuration and turbidity 
measurements. 

 

The results for the mAb2 samples followed similar trends (Tab. 4-11). Again, increased 

soluble aggregate levels and reduced total protein recovery were found for the stressed 

samples. Only for the stirred samples the results remained comparable towards the un-

stressed mAb2 solutions. Treatment at 150 MPa resulted in higher total protein recovery 

but increased soluble aggregate contents. For agitation stressed samples and thermal 

stresses samples (35°C) only slightly increased soluble aggregate contents of about 0.2 - 

0.3% were found. As for mAb1, pressurization at 400 MPa led to increased soluble ag-

gregate levels as well as to significantly reduced total protein recoveries. The light 

stressed samples again showed adverse results with smaller soluble aggregate contents. 
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Table 4-11 Soluble aggregate content and the total protein recovery of differently stressed mAb2 solutions. The 
samples were either non-pressurized (0.1 MPa) or exposed to 150 MPa or 400 MPa prior to SE-HPLC analysis. 

mAb2 sample Pressure level 
Aggregate con-

tent [%] 

Total protein 

recovery [%] 

mAb2 
in solution 

0.1 MPa 0.3 100 

Light 
stressed 

0.1 MPa 9.0 68.8 
150 MPa 18.6 100 
400 MPa 7.1 55.5 

Stirring 
stressed 

0.1 MPa 0.2 100 
150 MPa 0.2 97.0 
400 MPa 31.3 69.1 

Agitation 
stressed 

0.1 MPa 0.1 93.8 
150 MPa 0.3 98.5 
400 MPa 23.0 51.1 

Thermal 
stressed 
(35°C) 

0.1 MPa 0.5 95.9 
150 MPa 0.8 99.3 
400 MPa 3.0 43.1 

Thermal 
stressed 
(50°C) 

0.1 MPa 6.2 60.8 
150 MPa 13.5 100 
400 MPa 40.5 79.5 

 

Light obscuration and turbidity measurements again could not reveal a clear trend  

(Fig. 4-18). The light stressed, agitation stressed and thermal stressed (50°C) samples 

treated with 150 MPa showed the highest subvisible particle counts. In contrast, the 

thermal stressed samples (30°C) showed the highest subvisible particle counts after 

treatment at 400 MPa. Interestingly, untreated samples exposed to stirring stresses 

showed the highest subvisible particle counts. Except of the thermal stressed samples 

(50°C), the turbidity values were higher for samples exposed to 400 MPa as for those 

pressurized at 150 MPa. The untreated but thermal stressed (35°C) samples showed an 

exceptional high turbidity value.  
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Figure 4-18 Total subvisible particle count (> 1 µm/mL) and the turbidity [FNU] of mAb2 solutions which remained 
either non-pressurized (0.1 MPa) or were exposed to 150 MPa or 400 MPa prior to light obscuration and turbidity 
measurements. 

 

Summarizing, a reduction of artificial aggregate levels by application of high hydrostat-

ic pressure could be found for thermal stressed (35°C) mAb1 solutions as well as for 

agitation and thermal stressed (35°C, 50°C) stressed mAb2 solutions. 
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 Discussion 4.4

mAb1 and mAb2 crystallization with the lead condition presented by Stefan Gottschalk 

was reproducible. The crystal morphologies as well as the aggregate formation during 

crystallization and storage were the same as described during the preliminary study 1. 

The unfavorable mAb1 and mAb2 crystal morphologies were deemed to be responsible 

for the instability 1,2. Therefore, it was tried to obtain crystal polymorphs of higher sta-

bility in a first set of experiments by crystallization at higher or lower temperatures than 

under standard crystallization conditions or by applying of agitation during the crystalli-

zation. However, no crystal polymorphs of higher stability were obtained with these 

strategies, but amorphous precipitates, smaller needle-shaped crystals, crystal breakage 

under agitation and, except at crystallization at 2-8°C, a reduction in the total monomer 

recovery of 1-2% in average. The amorphous precipitates were obtained after applica-

tion of extensive stirring. Incorporation into a crystal lattice is time consuming for pro-

teins until the required contacts are formed 3. This process was hindered by an acceler-

ated protein transport by stirring. The smaller needle- shaped crystals were obtained at 

crystallization at 2-8°C and after crystallization at 40 rpm teetering. At 2-8°C, the pro-

tein solubility is reduced which resulted in a higher nucleation rate and thus in a high 

number of smaller crystals 3,8. Application of 40 rpm teetering changed the nucleation 

rates and crystal growth kinetics. Furthermore, it triggered the formation of a higher 

number of nuclei by increasing the mixing of protein in the samples 9,10. However, after 

transfer of the small needle-like crystals to higher temperatures, the protein solubility 

increased and the crystals transited towards larger platelet-shaped crystals by Ostwald 

ripening. The formation of crystal debris resulted from mechanical abrasion at the con-

tainer wall. The loss in total monomer recovery observed resulted from the mechanical 

agitation stress or the thermal stress at elevated temperature. The latter assumption was 

confirmed by an increased total monomer recovery at lower crystallization tempera-

tures. 

In a second experiment pH shifts, additives and PEGs of higher molecular weight were 

tested to change the mAb1 crystal morphology. However, the effects of these approach-

es remain neglectable. The occurrence of smaller crystals after the small pH shift from 

5.5 to 5.9 highlights the strong effect of protein surface charges on protein-protein inter-

actions under crystallization conditions 3,8. Addition of additives resulted in the for-

mation of amorphous aggregates which was ascribed to the additive feature to mediate 
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inter-molecular interactions 11-14. Application of PEG with higher molecular weight re-

sulted in no new crystal morphology, but reduced aggregate formation. This effect re-

sulted from lower PEG concentrations required to trigger crystallization and thus lower 

impurity levels. 

Finally, application of high hydrostatic pressure was assessed for its effect on mAb crys-

tallization and stability. In a first experiment, mAb1 and mAb2 resistance against ele-

vated pressure levels was assessed to define suitable pressure ranges which could be 

used during following experiments. mAb1 crystals remained optically stable until a 

pressure level of 160 MPa. However, some amorphous structures could already be ob-

served at this pressure level which was an effect of increased mAb1 solubility as it is 

describe for other proteins at elevated pressure levels 15,18,33. Upon depressurization the 

protein precipitates fast by formation of amorphous structures. On contrast, mAb2 crys-

tals withstood pressure levels until the technical limit of the pressure intensifier. A de-

creased crystal solubility, as known for other proteins under pressure, could not be 

proven 16,17. However, the absence of amorphous structures confirmed the hypothesis 

that mAb2 crystal did not dissolve at elevated pressure levels. 

Hydrostatic pressure was also tested with the aim to find new mAb1 and mAb2 crystal 

polymorphs. For mAb1, melted-sheet like structures were obtained at 160-250 MPa 

which represented a different shape. However, application of polarized light revealed 

the morphology to be an amorphous state. The microstructure of the melted-sheet like 

structures was dependent on the PEG concentration and the applied pressure. This indi-

cated protein reorganization during pressurization which resulted from elevated mAb1 

solubility at higher pressure levels. However, a new crystallization window could not be 

found. For mAb2, PEG and ammonium sulfate were used as alternative crystallization 

agents against phosphate salt. Application of ammonium sulfate as crystallization agent 

under ambient pressures results in small needle-like crystals. Again, no new crystal 

morphology was found for this protein. Upon depressurization, the protein-protein con-

tacts formed by mAb1 and mAb2 were not appropriate to form crystals. However, an 

extensive screening for a suitable crystallization buffer which allowed for suitable pro-

tein-protein interactions was not in scope of the present study. 

In a further experiment, pressurization at 150 MPa immediately after starting mAb1 

crystallization and pressurization at 150 MPa and 400 MPa immediately after starting 
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mAb2 crystallization was performed to test the effects of high hydrostatic pressure on 

the crystallization process and aggregate formation. While no effects on the crystalliza-

tion process could be observed after pressurization at 150 MPa, mAb2 remained amor-

phous after pressurization at 400 MPa. All pressurized samples showed increased ag-

gregate contents already after 1 day of crystallization. After 4 weeks, the aggregate con-

tents of all pressurized samples were significantly higher compared to non-pressurized 

samples which indicated pressure induced protein unfolding. Undesired pressure-

induced protein unfolding is already described for several proteins above  

400 MPa 31-33,35. However, a small number of protein molecules can be denatured at 

lower pressure levels which results in small aggregate formation over the time. This 

effect was observed for the samples pressurized at 150 MPa. 

In addition, high hydrostatic pressure was used to reduce aggregate contents of maturat-

ed mAb1 and mAb2 crystal suspensions. While for mAb1 adverse effects were ob-

served, mAb2 crystal pressurization at 175 MPa tend to reduced soluble aggregate lev-

els and increased total protein recovery. Higher pressure equal or higher than 400 MPa 

resulted again in pressure-induced protein denaturation 31-33,35. Aggregate dissociated at 

175 MPa was in accordance to literature which describes a range from 100 MPa to 300 

MPa as to be applicable for that approach 24,25. 

Finally, the effect of high hydrostatic pressure on the protein integrity of differently 

concentrated mAb1 and mAb2 solutions and different mAb1 and mAb2 aggregates was 

assessed as the effect of high hydrostatic pressure on mAb solutions or dissociation of 

mAb aggregates have not been reported so far. mAb1 and mAb2 aggregate formation 

was induced by different stresses: thermal stress, light stress and agitation stress. For 

both proteins, a significant aggregate formation could be observed after pressurization 

of fresh mAb solutions which was dependent on the pressure level and protein concen-

tration. The aggregate formation could be detected under the reported limits for pres-

sure-induced protein denaturation. In literature, the limit is set to 400 MPa or  

500 MPa 25,32,33. These results contradict the reports about the feature of high hydrostat-

ic pressure to reduce aggregate contents at lower pressure levels 25,27,30,31. In contrast, 

increased total protein recovery was detected after pressurization for light stressed and 

thermal stressed (35°C) mAb1 as well as agitation and thermal stressed (35°C, 50°C) 

mAb2 samples. For other samples, stressed by light exposure or stirring, no positive 

effects were observed. Thermal stress is described to result only partly in covalent mAb 
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aggregates 38. In contrast, light exposure can induce disulfide bond formation and thus 

lead to covalently linked protein aggregates 39. Consequently, the ability of high hydro-

static pressure to dissociate protein aggregates cannot be ascribed to the type of aggre-

gation. The feature of high hydrostatic pressure to dissociate insoluble mAb aggregates 

in maturated or stressed mAb was demonstrated. 
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 Conclusion 4.5

mAb1 and mAb2 crystallization which was performed in accordance to the lead condi-

tions introduced by Stefan Gottschalk led to a constant aggregate formation over the 

time. This instability resulted from the unfavorable needle-like crystal morphology 

which provides small numbers of protein-protein interactions and thus small protein 

stabilization. 

No new mAb1 and mAb2 crystal morphologies were obtained under the tested crystalli-

zation conditions. Neither small variation of the buffer pH, the crystallization tempera-

ture nor the application of agitation had any effect on the mAb crystal morphology. 

However, the possibilities to alter the crystallization conditions, especially the buffer as 

strongest tool, were restricted to only small changes as it was required to maintain bio-

compatibility of the crystallization systems. 

Application of high hydrostatic pressure as new tool for mAb crystallization did also not 

provide any mAb1 or mAb2 crystal polymorphs. This concept also suffered from the 

restriction to keep the crystallization buffer unchanged. However, it was demonstrated 

that mAb aggregates can be dissociated at low pressure levels around 150 MPa. Further 

research is required to improve complete understanding of this approach towards mAb 

crystallization and stability.  
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Chapter 5 

 

Statement: Within this chapter, the work related to section 5.3.3.1.2 “Investigation of 

the origin of mAb1 aggregate formation during crystallization and storage” was per-

formed together with Roman Mathaes and is planned to be submitted as publication in 

the Journal of Pharmaceutical Sciences.  

The work related to section 5.3.3.1.2 would not have been possible without his remark-

able effort and sound understanding of particle analytics. All analytical work related to 

protein aggregate detection and quantification by flow cytometry and confocal laser 

scanning microscopy was instructed by him. All work in context of sample preparation 

as well as size exclusion chromatography was guided by me. Antibody labelling and 

thesis writing was performed in equal parts. 
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5 The mechanisms behind the aggregate formation in mAb1 

and mAb2 crystal suspensions 

 Introduction 5.1

Therapeutic antibodies represent a class of large protein molecules of high complexity. 

Scientists try to conserve antibody formulation´s stability for long shelf lives up to 24 

months. Degradation pathways can vary depending on the formulation and storage con-

ditions which the proteins face. Different degradation pathways may happen simultane-

ously on chemical or physical level 1-3. 

5.1.1 Chemical instability 

Chemical instabilities comprise protein modifications such as cross-linking, deami-

dation, oxidation, proteolysis, hydrolysis, beta elimination, isomerization and other pro-

cesses which result in bond formation or cleavage 2,4,5. The most common will be dis-

cussed in detail: 

5.1.1.1 Deamidation 

The term deamidation describes the conversion from an amide group of an amino side 

chain to a carboxylate or carboxylic acid group 6. Particularly asparagine and glutamine 

are reported to be prone to deamidation. This instability pathway is regarded as major 

cause for protein charge heterogeneity which results in a more acidic isoelectric point of 

the molecules 7. However, deamidation does not necessarily result in loss of bioactivity 

when the reaction does not take place in the binding region. The extent of deamidation 

is dependent on many factors such as the buffer pH and its ionic strength, the storage 

temperature and vicinal amino acids 1,2,7.   

5.1.1.2 Oxidation 

More functional groups are susceptible to oxidation than to deamidation. However, oxi-

dation is a less common instability pathway. The class of oxidizable amino acids com-

prises methionine, tyrosine, tryptophan, histidine, cysteine and phenylalanine 1,2,7. Me-

thionine and cysteine can easily be oxidized due to their thiol-groups. Tryptophan, his-

tidine and phenylalanine stabilize radicals originated from oxidation by their aromatic 

residues 2,8. Oxidation is induced by light exposure, elevated temperatures, metal cataly-

sis and reactive oxygen species 7,8. 
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Besides direct protein oxidation, formulation scientists have to consider auto-oxidation 

of ingredients. For example polysorbates are prone to auto-oxidation which results in 

formation of peroxides and thus protein oxidation 9. The term auto-oxidation describes 

the uncatalyzed oxidation of a substrate by molecular oxygen, which induces a chain 

reaction in most of the cases 10-12. 

5.1.1.3 Cross-linking 

Cross-linking means the formation of inter- or intra-molecular connections. The most 

common cross-linking pathway results in the creation or exchange of disulfide-bonds 

initiated by reactive thiol groups of cysteinyl residues. This instability mechanism is pH 

dependent and occurs foremost at high formulation pH values. Even proteins without 

free cysteine groups are prone to cross-linking since existing bonds are able to  

scramble 1,2. 

5.1.1.4 Fragmentation 

Fragmentation is a common phenomenon for antibody formulations. This term compris-

es the molecule cleavage at the hinge region of one heavy chain resulting in a Fab and a 

Fab` + Fc fragment. This instability pathway is usually caused by non-enzymatic hydro-

lytic processes rather than by residual proteases. Fragmentation might be induced by for 

example low pH values, thermal treatment or freeze-thaw stresses. Fragmented proteins 

usually show a loss in bioactivity, different bio-distribution and increased toxicity 1,7,13. 

5.1.2 Physical instability 

Physical instability basically means protein degradation by denaturation or aggregation 

without covalent modifications. 

5.1.2.1 Denaturation 

During protein denaturation, the protein molecules lose their secondary, tertiary and 

quarterly structures. However, the native amino acid sequence is not affected. Denatura-

tion can cause a loss in the biological specificity of the molecules. This instability is 

usually caused by temperature changes, shear stresses and other common manufacturing 

processes 1,4,14,15. 
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5.1.2.2 Aggregation 

Protein aggregation represents the more common physical instability caused by stresses 

such as high protein concentrations, elevated viscosity, high ionic strength, inappropri-

ate pH values, temperature changes, shaking, extensive storage and freeze-thaw stresses. 

Aggregation is characterized by protein-protein interactions which are affected by diffu-

sion rates and geometric constraints and is therefore protein concentration dependent. 

Aggregates possess the risk for increased immunogenic potentials and reduced activi-

ties. By that, the WHO limited the aggregate levels for intravenous immunoglobulin 

therapeutics to less than 5% 1,7,16. 

5.1.2.2.1 Mechanism behind aggregation 

The underlying protein aggregation mechanisms will briefly be described: a native pro-

tein, thermodynamically most stable under physiological conditions, holds its hydro-

phobic residues in its interior to prevent their contacts to water molecules 16,17. Howev-

er, the physical stability in this native state is only marginal and mostly driven by hy-

drophobic interactions such as repulsive interactions between the non-polar protein res-

idues and water molecules 2,16,18,19. During unfolding, caused by inappropriate condi-

tions, the hydrophobic residues become exposed to the protein surface which results in 

an increased energetic state for the molecule 2,4,7. Inter-molecular hydrophobic pairings 

result in protein-protein contacts in order to reduce the thermodynamic potential. Sur-

face adsorption represents another mechanism for thermodynamically stabilization of 

unfolded protein states 1,2,4. 

5.1.2.2.2 Aggregate classifications 

Usually the term “aggregate” is used for all kinds of oligomeric or multimeric protein 

agglomerates. However, a protein can undergo several aggregation pathways which are 

dependent on the environmental conditions. Even the initial protein state can differ and 

thus result in different aggregation products. Such potential initial states comprise na-

tive structures, degraded structures, modified structures and partially or fully unfolded 

protein states 5,20,21. Mahler et al. recently suggested to classify protein aggregates into 

the following classes 5: 
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5.1.2.2.2.1 Non-covalent and covalent aggregates 

While non-covalently aggregate proteins are held together by weak forces such as Van 

der Waals interactions, hydrogen bonding or electrostatic forces, the covalent aggre-

gates formed disulfide bridges or are linked by a non-disulfide reaction by dityrosine 

formation 22.  

5.1.2.2.2.2 Reversible and reversible aggregates 

Reversible aggregates are considered to represent protein self-assemblies which might 

quickly disassemble for example when diluted 23. In contrast, irreversible aggregates 

maintain even under denaturing or reducing conditions 2. 

5.1.2.2.2.3 Soluble and insoluble aggregates 

The term “soluble aggregates” described oligomeric protein aggregates of sizes up to  

1 µm. Insoluble aggregates possess sizes larger 1 µm up to particle sizes even being 

visible for the eye. The form of such insoluble particles may be amorphous or fibrillar. 

Soluble and non-soluble aggregates can be separated from each other by centrifugation 

as soluble aggregates do not exhibit sedimentation 24.  

5.1.2.2.2.4 Native and non-native aggregates  

Aggregates which possess predominantly protein in its native structure were referred as 

native aggregates. In contrast, non-native aggregates result from proteins which had 

been undergone either conformational instability or chemical modifications 2.  

5.1.3 Strategies to maintain protein stability 

Nowadays, formulation scientists have several formulation strategies on hand to main-

tain protein instability 25: 

5.1.3.1 Formulation pH 

Proteins represent a class of large macromolecules characterized by many intra- and 

intermolecular electrostatic attributes. In consequence, the formulation pH value strong-

ly influences the overall protein stability. Protein unfolding usually starts at pH values 

far from the isoelectric point as the charge density dramatically increases. This state 

fosters repulsion of accordant charges which is satisfied by molecular unfolding. How-

ever, at pH values close to the isoelectric point, the negative and positive charges can-
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cel. At this state aggregation might occur as repulsive electrostatic forces are reduced 

and the attraction forces predominate. Therefore, protein stability is linked to a narrow 

pH range in the most cases. For most antibodies a weakly acidic conditions were 

deemed to be optimal 1,2,26. 

5.1.3.2 Surfactants 

Surfactants stabilize proteins by interacting with their hydrophobic moieties. By that, 

the tendency for the proteins to form non-covalent aggregate or to absorb to surfaces is 

reduced. The class of surfactants comprises amongs others polysorbate 20/80 and 

poloxamer 188 27-29. 

5.1.3.3 Antioxidants 

Antioxidants should be used in stoichiometric quantities for optimal protein stabiliza-

tion. The class of antioxidants can be divided into chelators such as EDTA, citric acid 

and polyols which chelate oxidation catalyzing metal ions and oxygen scavengers such 

as methionine and thiosulfate which deplete oxygen from the solution 30,31. 

5.1.3.4 Amino acids and Polyols 

Amino acids and polyols such as polyethylene glycol (PEG) stabilize proteins by the 

excluded volume effect. The polymers occupy space in the solute which results in pro-

tein crowding. The macromolecules start to interact by formation of a state of minimal 

surface area which is thermodynamically favored. 

However, PEGs possess destabilizing effects under certain conditions. Beside their ten-

dency for auto-oxidation, PEGs interact with hydrophobic residues which are exposed 

in the unfolded state. Furthermore, a weak denaturation action in solution is described 

for PEGs 2,9,18,30,32,33.  

5.1.3.5 Salts 

The effect of salts on protein stability is hardly predictable as the salt properties were 

strongly dependent on the type of salt used, the salt concentration and the buffer pH. 

Consequently, the search for suitable buffer compositions often results in an extensive 

screening in a trial and error fashion. The property of salts to stabilize proteins is re-

ferred to non-specific electrostatic shielding, specific ion binding and effects on the 

buffer properties 2,26,34.   
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5.1.4 Protein stability in the crystalline state 

In theory, protein crystals represent a state of lower inner energy and thus lower reactiv-

ity compared to the amorphous unordered state 35-37. However, there is an ongoing dis-

cussion whether protein crystals really represent a state of superior stability. 

Already in 1997, Pikal et al. compared the storage stability of crystalline and amorphous 

insulin at 40°C over 2 months. The results suggested a superior stability of the amor-

phous form 38. On the contrary, studies from Shenoy et al. demonstrated higher stability 

for crystalline suspensions than for their corresponding amorphous formulations and 

even compared to liquid formulations 35,39. These studies suggested that a superior pro-

tein crystal stability has to be proven in each single case and might be formulation de-

pendent 35,40-42. 

However, a deep insight study regarding protein aggregate formation in crystalline sus-

pensions has not yet been presented. Studies should be performed which investigate the 

cause for aggregation, the type of aggregates formed and the origin of aggregates (crys-

tals, supernatant). Therefore, several analytical tools such as SDS-PAGE, isoelectric 

focusing (IEF) and LC-MS were used for mAb1 and mAb2 aggregate characterization. 

For both antibodies, the crystallization conditions itself were deemed to cause the ag-

gregate formation during crystallization and storage. For mAb1, the high PEG concen-

tration was suspicious. PEG is prone to auto-oxidation which results in formation of 

peroxides and formaldehyde which can cause aggregation by oxidation and protein-

protein linkage 9. Therefore, studies were conducted to investigate the influence of two 

PEG degradation products, peroxides and formaldehydes, on protein crystallization and 

stability. PEG was purified applying vacuum drying and freeze drying in order to evalu-

ate the effectiveness of both techniques to reduce each impurity. Furthermore, the effec-

tiveness of double purification (vacuum drying followed by freeze drying) was investi-

gated and compared to single purification. Impurity effects such as aggregate formation 

during crystallization of mAb1 were followed by utilizing differently purified PEG. 

Addition of methionine prior to precipitation was applied to study the “neutralizing” 

effect of anti-oxidants on PEG impurities and thus aggregate formation. Addition of 

peroxides and formaldehydes in different concentrations to extensively purified PEG 

was studied to highlight their effects on mAb1 crystallization and aggregate formation. 
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Finally, protein stability during and after crystallization was followed after applying 

different PEG qualities purchased from varying vendors. 

It was hypothesized for the present study that the crystalline state stabilizes the protein. 

Consequently, the origin of the aggregate formation would be the supernatant. A protein 

exchange between the crystals and supernatant would mandatory be required for aggre-

gate incorporation into the crystals. This protein exchange should be investigated and 

visualized during a first experiment. Therefore, the supernatant was exchanged with an 

identical, but fluorescence labeled protein solution after the maximum crystal yield was 

achieved (about two weeks). Monitoring of this phenomenon was performed by confo-

cal laser scanning microscopy (CLSM). Aggregate formation was followed by size ex-

clusion high pressure chromatography (SE-HPLC) and flow cytometry (FACS). Fur-

thermore, if the aggregates found in the crystalline state would show fluorescence sig-

nals, the origin of the protein would be in the supernatant. 

To investigate the cause for mAb2 aggregate formation, the concentration of the crystal-

lization agent and the buffer pH value were changed. Furthermore, methionine was add-

ed to investigate the effect of potential mAb2 oxidation the on aggregate formation. In 

addition, mAb2 was exposed to PEG in order to confirm findings for mAb1. The same 

analytical tools as for mAb1 were used for mAb2 aggregate characterization. 
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 Materials and Methods 5.2

5.2.1 Materials 

mAb1 and mAb2 were two monoclonal antibodies from the IgG1 class. The samples 

were stored at - 80°C (antibodies) until required for use. 

Sodium chloride (AnalaR NORMAPUR) as crystallization agent for lysozyme was pur-

chased from VWR Prolabo (Leuven, Belgium). Sodium acetate (USP standard) was 

from Merck (Darmstadt, Germany). Sodium sulphate (99%) was from Grüssing GmbH 

(Filsum, Germany). Sodium dihydrogen phosphate-dihydrate (pure Ph. Eur., USP), 

disodium hydrogen phosphate-dihydrate (analytical grade), potassium dihydrogen 

phosphate and potassium chloride (both analytical grade) were obtained from Appli-

chem GmbH (Darmstadt, Germany Polyethylene glycol 4000 was purchased from Clar-

iant (Frankfurt, Germany), Alfa Aesar (Karlsruhe, Germany), BioUltra (Sigma-Aldrich, 

Taufkirchen, Germany), Applichem (Darmstadt, Germany) and Croda (Nettetal Kalten-

kirchen, Germany) each in a quality according to the European Pharmacopeia. Hydro-

chloric acid 32% (analytical grade), acetic acid 100% and ortho-phosphoric acid 85% 

were all purchased from Merck KGaA (Darmstadt, Germany). Sodium azide (99%) was 

received from Acros Organics (New Jersey, USA). The fluorescence dye ATTO 633 

(NHS-Ester) was from ATTO-TEC (Siegen, Germany). Slide-A-Lyzer dialysis cassettes 

10,000 MWCO were purchased from Thermo Scientific (Rockford, USA). All other 

reagents or solvents used during the solvent screening were of at least analytical grade 

and purchased either from Sigma-Aldrich (Taufkirchen, Germany) or from VWR Pro-

labo (Leuven, Belgium). 

5.2.2 Methods 

5.2.2.1 Crystallization of mAb1 

Crystallization of mAb1 was carried out in a 0.1 M sodium acetate buffer at a pH of 

5.50. For crystallization, a 24% (w/v) PEG 4000 solution was added dropwise in a 1:1 

ratio to a 10 mg/mL protein solution under gentle shaking. The final formulation was 

stored at 20°C for at least two weeks.  

5.2.2.2 Crystallization of mAb2 

Crystallization of mAb2 was performed in a 0.1 M sodium acetate buffer of 4.1. For 

crystallization, a 4.2 M sodium dihydrogen phosphate solution was added dropwise in a 
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1:1 ratio to a 10 mg/mL protein solution under gentle shaking. The final formulation 

was stored at 20°C for at least one week. 

5.2.2.3 mAb1 labelling 

mAb1 was labelled with ATTO 633 NHS ester functionalized staining kids (ATTO-

TEC GmbH, Siegen, Germany) according to the manufacture protocol. In brief, a 1:1 

molar ratio of Atto633 NHS ester and antibody solution was incubated for 1 hour. The 

unbound dyes were removed by dialyzing with Slide-A-Lyzer dialysis cassettes against 

a 0.1 M sodium acetate buffer at pH 5.50. 

5.2.2.4 Supernatant exchange (mAb1) 

mAb1 crystallization efficacy was monitored by quantifying un-crystallized protein in 

the supernatant. The yield is represented by the amount of crystallized protein in percent 

of the initial protein concentration, which reaches a maximum at week two. Then super-

natants were exchanged by an identical but fluorescence labeled mAb1 solution. 

5.2.2.5 Assessment of crystal and protein integrity 

5.2.2.5.1 Size exclusion high performance liquid chromatography (SE-HPLC) 

Formation of soluble aggregates was followed by SE-HPLC. The analysis was per-

formed on a Thermo separation system. 

5.2.2.5.1.1 mAb1 

The mobile phase for mAb1 consisted of 0.092 M Na2HPO4 (anhydrous) and 0.211 M 

Na2SO4 (anhydrous) at a pH of 7. The flow rate was set to 0.25 mL/min. Analysis was 

performed at the wavelengths of 214 nm and 280 nm. A TSKgel G300SWXL coloum 

from Tosoh Bioscience GmbH (Stuttgart, Germany) was used for separation. 

5.2.2.5.1.2 mAb2 

The mobile phase for mAb2 consisted 0.02 M Na2HPO4 (dihydrate) und 0.15 M sodium 

chloride at a pH of 7.5. The flow rate was set to 0.50 mL/min. Analysis was performed 

at the wavelengths of 214 nm and 280 nm. For separation, a Suprose-6-HR-10/30-

coloum from GE Healthcare (Uppsala, Sweden) was used. 
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5.2.2.6 Ion exchange chromatography (IEC) 

Ion exchange chromatography was carried out at a Merck Hitachi separation system. 

The mobile phase consisted of 5.4 g (20 mM) Na2HPO4 (Heptahydrat) and 2.7 g (20 

mM) CH3COONa (Trihydrat) in 900 mL MilliQ-Water. The pH was set to 7.0. Mobile 

phase B was equal to mobile phase A, but with additional 23.4 g (400 mM) NaCl. The 

pH of the mobile phase B was set to 5.0. For separation, a ProPac® WCX-10 Analytical 

4 x 250mm was used (Thermo Fisher scientific, Rockford, USA). 

5.2.2.7 Confocal laser scanning microscopy (CLSM) 

Protein crystals suspensions were examined using a Zeiss 510 LSMNLO confocal mi-

croscope (Carl Zeiss Microscope systems, Jena, Germany) with a consistent setting for 

all groups. A Carl- Zeiss 63x oil immersion objective was utilized for acquisition. Im-

ages were averaged 4 x and scan speed was set to 6. All experiments were performed in 

triplicates. 

5.2.2.8 Flow cytometry (FACS) 

A BD FACSCanto II flow cytometer (Becton, Dickinson and Company, San Jose, CA) 

equipped with a 488 nm and a 633 nm laser was utilized to analyze protein subvisible 

particles. 60 µL of each sample was analyzed in FACS tubes (Becton, Dickinson and 

Company, San Jose, CA. Detector gain was adjusted for optimal particle analysis. The 

forward scatter detector (FSC) was set to 231 volts and the side scatter detector (SSC) 

was set to 191 volts. All samples (1 mg/mL) were analyzed in the low flow rate mode of 

10 µL/min for 1 min. 

5.2.2.8.1 Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis (SDS-Page) 

SDS-PAGE was used to separate different protein fractions. 

Non-reducing conditions: 

For denaturation, the protein samples were mixed with a Laemmlie buffer (250 mM 

Tris(hydroxymethyl)-aminomethane, 1% of a 0.1% Bromphenol blue solution (Merck, 

Darmstadt, Germany), 4% SDS (Sigma-Aldrich, Taufkirchen, Germany), 23% of glyc-

erol (AppliChem, Darmstadt, Germany) in a 1:1 ratio and incubated at 95°C for 20 min. 

Sample separation was performed on a Novex NuPAGE 3 - 8% Bis-Tris gel (life tech-

nologies, Carlsbad, USA) which was placed in an electrophoresis module (Bio-Rad, 
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Munich, Germany) filled with a Novex NuPAGE MES SDS-Runnung buffer 20x (life 

technologies, Carlsbad, USA). Electrophoresis was carried out at 100 V for 15 min fol-

lowed by 160 V for 45 min. The gel was transferred into a bath of Imperial Protein stain 

(Coomassie blue staining) (Thermo Fisher scientific, Rockford, USA) for detection. 

Staining was carried out for 60 min. The Mark12 protein standard ladder (Invitrogen, 

Carlsbad, USA) and the Spectra Multicolor High Range Protein Ladder (Thermo Fisher 

scientific, Rockford, USA) were used for estimation of the molecular weights. 

Reducing conditions: 

SDS-PAGE can also be performed under reducing conditions. For this purpose dithio-

threitol (DTT) is used which fosters breaking-up of covalent disulfide bonds. Therefore, 

250 mg of DTT (Sigma-Aldrich, Taufkirchen, Germany) were added to 5 mL Laemmli 

buffer. 

Isoelectric focusing (IEF) was used to investigate changes in the isoelectric point (IEP) 

of the two antibodies. Therefore, 10 µL of 0.5 mg/mL of desalted protein solutions were 

placed on a Prectos® gel (SERVA, Heidelberg, Germany).   

5.2.2.8.2 Isoelectric focusing (IEF) 

Isoelectric focusing (IEF) was used to investigate changes in the isoelectric point (IEP) 

of the two antibodies. Analysis was performed on a Multiphor II™ electrophoresis sys-

tem combined with an EPS 3501 XL power supply and a MultiTemp III thermostatic 

circulator (GE Healthcare Europe GmbH, Freiburg, Germany).10 µL of a 0.5 mg/mL 

desalted protein solutions were placed on precast Servalyt® Prectos® Wide Range pH 3 - 

10 gel (SERVA Electrophoreses GmbH, Heidelberg, Germany). For detection a Serva 

Liquid Mix IEF Marker 3 - 10 was used. Final gel staining was accomplished using a 

mix of 2.5 mL 20 % (w/v) trichloroacetic acid and 125 mL staining solution which con-

sisted of 50 mg SERVA Blue W powder in aqua demineralized. 
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 Results 5.3

5.3.1 The initial state of mAb1 and mAb2 crystal stability 

During the preliminary study, an aggregate formation was observed for mAb1 and 

mAb2 crystals when crystallization and storage had been performed in the lead crystal-

lization buffer 25. Therefore, mAb1 and mAb2 were crystallized in accordance to the 

lead conditions in order to reassure the reported findings. mAb1 was crystallized with 

24% (w/v) PEG 4000. The soluble aggregate formation was followed by SE-HPLC for 

12 weeks (Fig. 5-1). Prior to analysis, the crystals were separated from the supernatant 

and dissolved in PBS. 

Figure 5-1 SE-HPLC data which illustrate the aggregate formation for crystalline mAb1 and mAb2 over 12 weeks.  

 

The results revealed differences in the extent and rate of the aggregate levels for both 

antibody crystals. An initial aggregation, which occurred immediately after starting the 

crystallization, and high rates of aggregate formation were found for mAb1. In contrast, 

aggregates were first observed after 8 days for mAb2 and the increase of the aggregate 

level was distinctly smaller. This indicated two different underlying instability mecha-

nisms for both proteins. Therefore, the “nature” of the aggregates was to be investigat-

ed. 
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5.3.2 Aggregate characterization 

5.3.2.1 SDS-PAGE 

In a first experiment, the mAb1 and mAb2 aggregates were characterized by SDS-

PAGE. Covalently linked protein aggregates would indicate a chemical modification of 

the proteins. Therefore SDS-PAGE was performed under reducing and non-reducing 

conditions (Fig. 5-2 & 5-3). For both mAbs, dissolved crystals and the supernatant of 

freshly prepared and 9 months old crystal suspensions were analyzed to highlight the 

effect of long term storage. As mAb2 showed nearly 100% crystal yield, analysis of the 

supernatant was complicated and could only be successfully carried out for the reducing 

conditions (Fig. 5-3 II). In addition, freshly prepared solutions from both mAbs in their 

crystallization buffer without any crystallization agent were analyzed. 

  

Figure 5-2 SDS-PAGEs performed for mAb1 under I non-reducing and II reducing conditions. The captions refer to 
I: A, C mAb1 crystals (9 month old); B, small range ladder; D, E mAb1 in buffer without PEG; F, G mAb1 crystals 
(fresh); H, I supernatant (9 month old); J, K supernatant (fresh); L high range protein ladder; II: A, B mAb1 in buffer 
without PEG; C, D mAb1 crystals (fresh); E, F mAb1 crystals (9 month old); G, H supernatant (fresh); I, J superna-
tant (9 month old); K high range protein ladder. 

 

Non-reducing SDS-PAGE analysis revealed aggregates already for the freshly prepared 

mAb1 solutions (Fig. 5-2 I D, E). Higher aggregate contents as well as fragments were 

found for freshly prepared mAb1 crystals (Fig. 5-2 I F, G). The highest contents of both 

protein degradation products were found for the 9 months old crystals. Furthermore, the 

mAb1 aggregates of the 9 month old samples showed higher molecular weights (Fig. 5-

2 I A, C). In contrast, only small aggregate and fragment contents were found in the 

supernatants independent from the sample age (Fig. 5-2 I H-K). Reducing SDS-PAGE 

analysis revealed covalently linked aggregate species for the freshly prepared mAb1 

solution (Fig. 5-2 II C-F). Higher contents were detected for the dissolved mAb1 crys-

tals with the highest levels for the 9 months old crystals (Fig. 5-2 II C-F). In contrast, 

I II 
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for the supernatants no covalently linked aggregates could be detected (Fig. 5-2 II G-J). 

These findings suggested a chemical modification of the protein during crystallization 

and storage. 

  

Figure 5-3 SDS-PAGEs performed for mAb2 under I non-reducing and II reducing conditions. The captions refer to 
I: A, B mAb2 crystals (fresh); C, D mAb2 in buffer without phosphate salt; E, G mAb2 crystals (9 months old); F 
high range protein ladder; II: A, B mAb2 in buffer without phosphate salt; C, small range ladder; D, E mAb2 crystals 
(9 months old); F, G mAb2 crystals (fresh); H, I supernatant (fresh); J, K supernatant (9 months old); L high range 
protein ladder. 

 

For mAb2, the non-reducing SDS-PAGE analysis also revealed aggregates already for 

the freshly prepared mAb2 solution (Fig. 5-3 I C, D). Again, a higher aggregate content 

as well as fragments were found for freshly prepared mAb2 crystals (Fig. 5-3 A, B). 

Significantly increased aggregate levels of higher molecular weight were found for the 9 

months old crystals (Fig. 5-3 E, G). SDS-PAGE analysis under reducing conditions did 

not show any covalently linked aggregate species for all samples. These findings indi-

cated that the aggregate formation during crystallization of mAb1 and mAB2 were 

caused by two different instability pathways. 

5.3.2.2 Isoelectric focusing (IEF) 

In a next experiment, isoelectric focusing was performed for further investigation of the 

underlying instability mechanism of mAb1 and mAb2 crystals as SDS-PAGE analysis 

alone could not clarify the mechanism behind aggregate formation. Stored (mAb1: 9 

months; mAb2: 12 months) crystal suspensions were analyzed and compared to mAb1 

and mAb2 solutions without any crystallization agent. Furthermore, mAb2 was stored in 

the crystallization buffer at pH 3.9 without any phosphate salt to highlight the effect of 

the pH value on the protein. For cross-checking the effect of PEG on protein stability, 

mAb2 was precipitated amorphously using a 50% (w/v) PEG 4000 solution (Fig. 5-4 J 

& K). 

II I 
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Figure 5-4 Results from an isoelectric focusing measurement: The captions refer to A SERVA marker mix; B mAb1 
in buffer without PEG; C mAb1 crystals (12 months old); D mAb1 supernatant (12 months old); E SERVA marker 
mix; F mAb2 in buffer without phosphate salt (12 months old); G mAb2 crystals (9 months old); H mAb2 superna-
tant (9 months old); I mAb2 in buffer at pH 3.9 without phosphate salt (12 months old); J mAb2 supernatant with 
PEG; K mAb2 amorphously precipitated with PEG. 

 

The results did not show any alterations of the isoelectric point (IEP) for mAb1  

(Fig. 5-4 B-D). In contrast, mAb2 protein from the crystals and the supernatant showed 

a significant drop in the IEP (Fig. 5-4 G & H). However, no changes could be observed 

for mAb2 stored in the crystallization buffer at pH 3.9 without precipitant (Fig. 5-4 I). 

This indicated that the high phosphate salt concentration was responsible for the shift in 

the IEP and thus the aggregate formation. Interestingly, mAb2 precipitated with PEG 

showed also a small decrease in the IEP (Fig. 5-4 J & K). These results demonstrated 

that the crystallization conditions cause the aggregate formation by two different path-

ways. For mAb2, deamidation was assumed to be responsible for the shift in the IEP 

and thus the aggregate formation. Consequently, PEG and phosphate salt of varying 

concentrations were to be tested to highlight the effects of the crystallization agents on 

the aggregate formation. 
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5.3.3 Investigation of critical crystallization formulation parameters 

It was the aim to investigate critical crystallization formulation parameters of the lead 

conditions which potentially foster antibody aggregation. Therefore, the proteins were 

exposed to different precipitant concentrations, to conditions without precipitant and to 

different buffer pH values. Table 5-1 lists all conditions tested. Methionine was used as 

antioxidant for both antibodies to prove potential oxidative degradation processes caus-

ing the aggregate formation. 

Table 5-1 lists all variations in the lead crystallization conditions tested to identify the responsible parameter for the 
aggregation observed during crystallization and storage of both mAbs.   

mAb1 mAb2 

24% PEG + 40 mM methionine 

24% PEG 
4.2 M phosphate salt 

24% PEG freeze-dried 
4.2 M phosphate salt + 40 mM methio-

nine 

24% PEG vacuum-dried 3 M phosphate salt 

24% PEG freeze + vacuum-dried 50% PEG  

26% PEG freeze + vacuum-dried 50% PEG freeze + vacuum-dried 

storage in NaAc buffer at pH 5.50 with-
out precipitant 

storage in NaAc buffer at pH 3.90 with-
out precipitant 

 

PEG is prone to auto-oxidation which results in the formation of impurities such as per-

oxides and formaldehyde 12. These impurities are known to foster protein degradation 

by oxidation and protein-protein linkage. Kumar et al. developed a purification tech-

nique for PEG solutions which allowed to reduce protein degradation 9. Therefore, 

mAB1 was exposed to unpurified and purified PEG to highlight the effect of the PEG 

degradation products on mAb1 aggregate formation. mAb2 was also exposed to PEG in 

order to cross-check the effect of this excipient on protein stability. mAb2 was intro-

duced to varying phosphate salt concentrations and a very low pH without precipitant. 

Both parameters were suspicious to promote the mAb2 aggregation by deamidation. 
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5.3.3.1 mAb1: Investigation of the instability pathway 

5.3.3.1.1 Investigation of polyethylene glycol (PEG) as destabilizing factor for 

mAb1 

To study the effects of impurities, namely peroxides and formaldehyde, on mAb1 crys-

tallization, first, purification of PEG was carried out. Removal of water by applying 

vacuum and freeze drying is already reported to reduce dissolved oxygen quantities 9. 

Therefore, the drying approach was exploited for reduction of formaldehyde in PEG 

solutions. 

The decrease of both impurity contents was examined after vacuum and freeze drying, 

respectively. For freshly supplied PEG and aged PEG (21 days, ambient temperature or 

50°C), residual degradation products as well as residual moisture were investigated 

(Tab. 5-2). Vacuum drying was found to be superior in reduction of peroxides compared 

to freeze drying and was dependent on former peroxide contents which was in accord-

ance to Kumar et al. 9. At the highest peroxide content obtained during storage at ambi-

ent temperature (RT) removal of up to 85% was possible by vacuum drying whereas 

lyophilization maximally reached a reduction of approximately 60%. For freshly pre-

pared PEG samples, extraction of peroxides was about 10% for both drying techniques. 

Residual moistures were 1% for vacuum-dried samples and 0.05% for lyophilized ones. 

Table 5-2 The peroxide content [mM] of freshly prepared PEG (fPEG)  solutions and solutions stored at 50°C (50°C) 
and ambient temperature (RT) before drying, after freeze drying and after vacuum drying are displayed. 

 Before drying After freeze drying 
After vacuum dry-

ing 

fPEG 0.032 0.029 0.029 
50°C 0.109 0.035 0.028 
RT 0.810 0.336 0.105 
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In contrast, freeze drying was found to be superior in extraction of formaldehyde resi-

dues for all samples (Tab. 5-3). Interestingly, at very high peroxide concentrations (RT) 

the formaldehyde content after vacuum drying was higher than before drying. 

Table 5-3 The formaldehyde content [mM] of freshly prepared PEG (fPEG)  solutions and solutions stored at 50°C 
(50°C) and ambient temperature (RT) before drying, after freeze drying and after vacuum drying are displayed. 

 Before drying After freeze drying 
After vacuum dry-

ing 

fPEG 0.318 0.184 0.243 
1.576 
0.735 

50°C 3.824 0.313 

RT 0.341 0.310 

 

Both methods were found to be suitable to purify PEG solutions. Single purification 

might allow emphasizing effects of either peroxide or formaldehyde on mAb1 crystalli-

zation. Double purification by vacuum drying and subsequent freeze drying after sample 

reconstitution would lead to the highest PEG purity. This assumption was confirmed by 

pH measurements of differently purified PEG solutions. Removal of the acidic impuri-

ties results in more alkaline pH values. Therefore, purified (vacuum- or freeze-dried), 

double purified (vacuum-dried followed by freeze-dried) and unpurified PEG (12% 

(w/v) each) were dissolved in highly purified water. Subsequently, the pH values of the 

solvent (7.22) and the PEG solutions were determined (Fig. 5-5). In all cases, the disso-

lution of PEG led to an acidification. Notably, PEG solutions of double purified PEG 

showed the highest pH value of 6.93. In contrast, the dissolution of unpurified PEG re-

sulted in the lowest pH value of 5.12 due to the highest amount of acidic residues. Vac-

uum drying of PEG resulted in a lower pH value (5.46) compared to solutions of freeze-

dried PEG (5.88). Hence, double purification was found to be a suitable approach for 

extensive reduction of PEG impurities. 
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Figure 5-5 pH values of highly purified water and 12% (w/v) PEG solutions containing unpurified PEG and PEG 
which were purified by applying of vacuum drying, freeze drying or double purification prior to dissolution. 

  

The role of the impurities was now studied on mAb1 crystallization. Therefore, a 10 

mg/mL mAb1 solution was mixed with 24% (w/v) purified, double purified and unpuri-

fied PEG solutions and stored at 20°C in a climate room for 12 weeks in the dark. For a 

further batch, 40 mM methionine was added to unpurified PEG prior to crystallization. 

Aggregate formation was followed by SE-HPLC measurements over the whole period. 

Therefore, the crystal fraction was separated by three times centrifugation and decanting 

from the mother liquor, dissolved in a phosphate buffer solution (PBS) with a pH of 7.4 

and analysed. Protein crystallization was obtained in all cases except for samples with a) 

40 mM methionine and unpurified PEG and b) double purified PEG. However, at the 

very end of the test minor protein precipitation (mix of amorphous and crystalline pre-

cipitates) occurred also for the samples with double purified PEG. By increasing the 

concentration of double purified PEG from 12% (w/v) (initially 24% (w/v)) to 13% 

(m/v) (initially 26% (w/v)) mAb1 crystallization was again obtained. Interestingly, us-

ing unpurified PEG in the same concentration (13% (w/v)) leads to amorphous protein 

precipitates (data not shown). 

Aggregate formation was observed for all samples but in a very different extend  

(Fig. 5-6). For crystallized samples, analysis was performed for the crystallized fraction 

(Fig 5-6 A-D) by dissolving the crystals in PBS as the aggregate counts remained negli-

gible in the supernatant (see section 4.3.1). For non-crystallizing samples (Fig. 5-6 E, 
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F), the aggregate formation was measured directly in the protein solution. The highest 

aggregate levels were found for the mAb1 crystals. Notably, purification of PEG prior 

to crystallization halved the values independent from the applied drying technique (Fig 

5-6 B-D). 

 

Figure 5-6 Aggregate fraction of total protein of crystallized protein (A - D) and not crystallized protein (E -F). STD: 
crystallization with unpurified PEG. Fre: refers to freeze-dried PEG and vac to vacuum-dried PEG. STD +  40 mM 
meth: samples containing unpurified PEG and 40 mM methionine. Vac + fre: double purified PEG. 

 

Comparison of aggregate formation over time revealed a parallel and constant increase 

for purified and unpurified PEG (Fig. 5-7). Hence, and notably, both impurities ap-

peared to be vital for mAb1 crystallization and responsible for aggregate formation. 

Furthermore, a certain level of aggregates appeared to be necessary for crystal for-

mation as well. 
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Figure 5-7 Increase of aggregate fraction in the crystalline precipitate over time in percentage of total protein. The 
values refer to samples crystallized with unpurified PEG (squares) and vacuum-dried PEG (circles). 

 

For further confirmation of this assumption, peroxides or formaldehydes were assessed 

individually for their potential to induce crystallization and aggregate formation of our 

model protein. Therefore, double purified PEG at a concentration of 23% (w/v) was 

spiked with varying amounts of the impurities and mixed with a 10 mg/mL mAb1 solu-

tion. The samples were stored for 24 h at 20°C in a climate room. Subsequently, light 

microscopy and SE-HPLC measurements were performed. In case of crystal formation, 

the precipitate was separated from the mother liquor and dissolved in PBS. Both frac-

tions were analyzed separately. For non-crystallizing samples, aggregate formation was 

analyzed in the solution.  

Interestingly, addition of only peroxides did not provoke any precipitation while addi-

tion of only formaldehyde resulted in an amorphous mAb1 precipitate (Tab. 5-4). How-

ever, a certain mix of peroxides and formaldehydes led to a crystalline precipitation. By 

further increasing the peroxide content (> 0.05% (v/v)) again precipitation was prevent-

ed. 
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Table 5-4 The precipitate state after spiking of double purified PEG (23%) with different amounts of peroxides and 
formaldehydes. Light microscopic pictures are presented right. The scale bar represents 50 µm. 

Double purified PEG 

23% (w/v) 
Precipitate state Light microscopic picture 

no addition of peroxides 
or formaldehyde 

no precipitation ------ 

 
+ peroxides 

 
no precipitation 

 

 
------ 

 

 
 

+ 0.015% (v/v) formalde-
hyde and  

0.015% (v/v) peroxides 
 

 
crystalline 

 

 

 
 

+ 0.015% (v/v) formalde-
hyde 

 

 
 

amorphous 
 

 

 

Regarding aggregate formation, the use of double purified PEG showed a minor in-

crease compared to mAb1 solutions without any PEG (Fig. 5-8). Addition of peroxides 

led to very slight increases in aggregation. In contrast, after addition of formaldehydes, 

the amount of aggregates in the solution was significantly higher. The amorphous pre-

cipitate was insoluble, and thus, could not be dissolved for measurement. Notably, the 

crystalline fraction, obtained by a certain mixture of peroxides and formaldehydes, 

showed the highest aggregate level. Interestingly, after increasing the peroxide concen-

tration for this mixture the aggregate formation was significantly reduced and the pro-

tein precipitation was prevented. 
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Figure 5-8 Aggregate fraction of total protein after spiking double purified 23% (m/v) PEG with different amounts of 
peroxides and formaldehydes. Incubation was performed for 24 h at 20°C. STD = Protein in NaAc buffer, double 
purified PEG = 23% (m/v) PEG solution, PO = percentage (v/v) of peroxide added to double purified PEG, FA = 
percentage (v/v) of formaldehyde added to double purified PEG. 

 

Consequently, it was assumed that the extent of aggregate formation in protein crystal 

suspension was dependent on the PEG quality (impurity content) used. This could be 

confirmed by the study about the effect of PEG degradation products on mAb1 crystal-

lization. It is known that residual peroxide contents can differ for each PEG manufac-

turer and thus would eventually lead to crystalline products varying in their extent of 

aggregate formation 11,43-45. Therefore, mAb1 was crystallized with 23% (m/v) PEG 

solutions from different vendors. Aggregate formation was followed by SE-HPLC 

measurements over a period of 105 days. Formation of acidic mAb1 species as a result 

of oxidation by peroxide impurities was assessed by IEC chromatography. The results 

revealed that the applied PEG had a significant effect on mAb1 stability (Tab. 5-5). 

PEG from Applichem, BioUltra, Clariant and Fluka showed similar results in aggregate 

formation. In contrast, aggregate levels were significantly elevated for samples crystal-

lized with PEG from Croda and Alfa Aesar. Furthermore, the observed trends were cor-

related to a significant shift to acidic species in the IEC chromatography of up to 31.7% 

total acidic protein (TAP). TAP refers to the fraction of total protein which showed 

acidification most probably due to oxidation. The results demonstrated that the aggre-

gate formation was linked to an acidic protein oxidation. This could be confirmed by 

LC-MS measurements which were performed externally (not shown). 

no 
precipitate 

amorphous 
precipitate 

crystals 

no precipi-
tate 
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Overall, the results indicated a superior quality for PEG from Applichem. In contrast, 

the highest aggregate level was found for PEG from AlfaAesar which indicated the 

lowest PEG quality (highest content of impurities). Consequently, a proper choice of the 

PEG used for protein crystallization is crucial with respect to the quality of the final 

crystalline suspension. 

Table 5-5 SE-HPLC data and IEC data representing aggregate fraction (AF) and total acidic protein (TAP) in per-
centage of samples that were crystallized with PEG 4000 from different manufacturers. Aggregate and total acidic 
protein formation was followed over 105 days. 

 Applichem BioUltra Clariant Fluka Croda AlfaAesar 

AF [%] 6.7 7.6 7.8 7.9 12.8 15.2 
TAP [%] 11.5 13.3 13.6 13.9 26.9 31.7 

 

5.3.3.1.2 Investigation of the origin of mAb1 aggregate formation during crystalli-

zation and storage 

It was hypothesized that the crystalline state stabilizes the protein. Consequently, the 

origin of protein involved in the aggregate formation would be the supernatant. As in-

creased aggregate contents were found in the crystalline state (see section 5.3.1), a pro-

tein exchange between the crystals and supernatant would be required to explain the 

situation. This protein exchange should be investigated and visualized during a first 

experiment. Therefore, mAb1 was crystallized for 2 weeks until the maximum mAb1 

crystal yield was reached. The supernatant of the crystal suspension was replaced with 

an identical but red fluorescence labelled mAb1 solution to investigate the protein ex-

change between the crystalline state and the supernatant. If the anticipated protein ex-

change would take place at the equilibrium state, the crystals would start to show fluo-

rescence signals. CLSM was utilized to follow the incorporation of the red fluorescence 

labelled antibodies into the crystals. 
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Figure 5-9 CLSM images of crystal suspensions after supernatant exchange. A: instantly after supernatant exchange; 
B: 2 weeks after exchange; C: 4 weeks after exchange; D: 8 weeks after exchange; E: 12 weeks after exchange. The 
scale bar represents 20 µm. 

 

No labelled protein was detected in the crystalline state instantly after supernatant ex-

change (Fig. 5-9 A). A steady increase in labelled antibodies, obviously incorporated 

into the crystals, was detected by CLSM measurements until week four (Fig. 5-9 B). 

After that, the fluorescence intensity of the crystalline state remained on a constant level 

until week 12 which indicated the formation of equilibrium between labelled protein 

leaving the crystals and labelled protein being incorporated into the crystals (Fig. 5-9 C-

E). 

Following, the aggregate formation within in the crystalline state and its origin during 

storage (after reaching the maximum yield) was to be followed. The exchange of the 

supernatant with a fluorescent labeled mAb1 solution after reaching the equilibrium 

state together with the label free antibody crystals would allow a precise localization of 

the aggregate origin in the crystallization system. For all fluorescent aggregates, the 

origin of the involved protein would be in the solution and not in crystalline state itself. 

On the other hand, unlabeled protein aggregates were formed solely in the crystals. All 

experiments were also conducted by exchanging the supernatant with label free antibod-

ies to investigate the effect of the fluorescence dye on protein aggregation. Non-

crystallized samples without PEG were used as controls to highlight the effect of the 

crystallizing agent on the aggregate formation (compare to section 5.3.3.1.1). SE-HPLC 

and FACS analysis were performed for assessment of aggregate formation over 12 

weeks. Therefore, the crystals were separated from the supernatant and dissolved in 

PBS. The FACS device was applied as new analytical tool for protein aggregate analy-

sis as it allowed for easy detection of labeled protein aggregates even in the submicron 

range. In contrast, standard tools such as light obscuration and micro flow imaging sys-

A B C D E 
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tems were usually not equipped with a fluorescence detector and have lower detection 

limits in the submicron range. 

 

Figure 5-10 Aggregate fractions of total protein in percentage after supernatant exchange. NL = not labeled protein 
exchanged as control analyzed by UV detection (light grey); L = Labeled protein analyzed by UV detection (dark 
grey); LF = Labeled protein and analysis by fluorescence detection (black); EX = Measurements after exchange of 
supernatant; 2 weeks = Analysis 2 weeks after exchange of supernatant; 4 weeks = Analysis 4 weeks after exchange 
of supernatant; 8 weeks = Analysis 8 weeks after exchange of supernatant; 12 weeks = Analysis 12 weeks after ex-
change of supernatant. 

 

The SE-HPLC results revealed no significant differences in the extent of aggregate for-

mation in the crystalline state 12 weeks after supernatant exchange for labeled and non-

labelled protein (Fig. 5-10: not labeled: 9.0% ± 0.2% - light grey bars; labeled: 9.1% ± 

0.2% - dark grey bars). The same trend was found for the total particle count examined 

by flow cytometry (FACS) (data not shown). 

A constant increase in the total aggregate content in the mAb1 crystals was detected for 

the labelled and non-labelled samples from around 2.6% (after supernatant exchange) to 

about 9.0 – 9.1% 12 weeks after supernatant exchange (Fig- 5-10, light grey bars). The 

share of aggregates detected in the crystalline state which contained the fluorescence 

dye and thus protein originated in the supernatant increased with similar kinetic from 

0% (after supernatant exchange) to 6.0% 12 weeks after supernatant (Fig. 5-10, black 

bars). Consequently, rather all aggregates formed after the exchange of the supernatant 

contained a fluorescence dye and thus the protein within the aggregates had with in-
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creasing value its root in the supernatant. Notably, non-crystallized samples did not 

show any aggregate formation after 12 weeks which indicated the crystallizing condi-

tion to be harmful for the protein which remains in solution (not shown). 

For further analysis of the aggregates, their origin and the fluorescence intensity of the 

particles, additional analysis was performed by using flow cytometry. Therefore, the 

supernatant was again exchanged with an identical but fluorescence labeled mAb1 solu-

tion after reaching the crystallization equilibrium. Subvisible particle formation was 

followed for both, the supernatant and the crystals. Prior to analysis the crystals were 

separated from the supernatant and dissolved in PBS. Total subvisible particle count and 

fluorescence intensity were followed for 12 weeks after the exchange of supernatant. 

A) B) 

Figure 5-11 Flow cytometry measurements of subvisible protein aggregates. A Total particle counts of protein crys-
tals and supernatant. B Mean fluorescence of crystal aggregates. 

 

All samples displayed an increased particle count over time (Fig. 5-11 A). The crystals 

start out at 46,433 ± 13,838 particles / ml to 309,600 ± 45,911 particles / ml and the 

supernatant at a significantly higher count from 2,425,200 ± 501,056 particles / ml to 

6,905,800 ± 725,211 particles / ml. The mean fluorescence / particle increased from 

35.66 ± 12.71 to 434.66 ± 73.67 (Fig. 5-11 B and Fig. 5-12). These findings confirmed 

the SEC measurements: Most of the subvisible particles in crystals have their origin in 

the supernatant. The crystallizing conditions were harmful to the solved protein while 

the protein incorporated into a crystal lattice was protected against aggregate formation. 
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A)

 

B)

 
C)

 

D)

 
E)

 

F)

 

Figure 5-12 Flow cytometry dot plot measurements of subvisible protein aggregates at different time points after 
exchange of supernatant. The figures illustrate the particle sizes (x-axis) and the fluorescence intensity (y-axis) at the 
A starting point, after B two weeks, C 4 weeks, D 8 weeks, E 12 weeks. F shows 1 µm silica beads. 

 

The flow cytometry can be calibrated with 1.5 µm silica calibration beads (Fig. 5-12 F) 

to roughly classify the mAb1 aggregate sizes in the FACS dot plots (Fig. 5-12 A - E). 
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The comparison suggests that the majority of subvisible antibody particles were in the 

submicron range. Non-crystallized samples showed with 1849 ± 617 the lowest aggre-

gate count (not shown). 

5.3.3.2 mAb2: Investigation of the aggregate formation 

The IEF measurements suggested that mAb2 deamidation causes the aggregate for-

mation. In general, deamidation reactions are induced by low buffer pH values, high 

ionic strengths and elevated storage temperatures 1,2,7. 

During the present study, only the buffer salt concentration and the buffer pH were 

evaluated to cause mAb2 aggregate formation. The crystallization temperature was held 

constant at a moderate level (20°C) for all experiments. Therefore, beside the lead con-

ditions, mAb2 was exposed to a 3 M phosphate salt solution and an acetate buffer with a 

pH value of 3.9. Both conditions did not induce mAb2 crystallization. This was desired 

in order to highlight the effect of the protein crystallization itself on aggregate for-

mation. Furthermore, 40 mM methionine was added to the lead condition to test the 

effect of potential oxidation (similar to mAb1) on mAb2 crystallization. mAb2 was ad-

ditionally exposed to an unpurified and a double purified 50% (w/v) PEG (see section 

5.3.3.1.1) solution which induced amorphous precipitation. SE-HPLC measurements 

were performed to determine the soluble aggregate levels of the respective precipitates 

(crystalline, amorphous) and the supernatant for each sample. 

 

Figure 5-13 Total soluble aggregate fraction [%] from SE-HPLC measurements for mAb2 samples. A refers to ag-
gregates from the amorphous precipitate; C refers to aggregates from the crystals; S refers to aggregates detected in 
the supernatant; pur refers to double purified PEG.  
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SE-HPLC analysis revealed no soluble aggregate formation in the supernatants (not 

shown) except for the samples which used double purified PEG as precipitant (Fig 5-

13). However, only a small aggregate level of about 0.8% was detected. Aggregates 

could be found in all precipitated states with the highest counts for the samples contain-

ing PEG. No differences could be found for samples crystallized with phosphate salt 

containing methionine and samples without additional methionine (± 4% aggregates). 

The highest aggregate fraction of about 14% was observed for the samples with unpuri-

fied PEG. Double purification of the PEG resulted in a decreased aggregate level of 6%. 

Notably, the non-crystallizing mAb2 samples exposed to 3 M phosphate salt or with a 

pH of 3.9 did not show any aggregate formation (not shown). 

Soluble aggregates might represent only a small amount of the total aggregated protein 

mass in protein samples. Therefore, FACS measurements were performed which al-

lowed for particle analysis in the submicron as well as in the micron-range. To localize 

the aggregate formation, a similar approach as for mAb1 should be performed. Howev-

er, no suitable fluorescence dye could be found for mAb2 as in all cases crystallization 

was prevented by addition of a dye. Consequently, FACS measurements were carried 

out for unlabeled and freshly as well as 3 months stored mAb2 crystal suspensions. 

The FACS analysis revealed similar results as for mAb1 in terms of particle counts in 

the redissolved crystals and the supernatant. (Tab. 5-6). The results showed increased 

values for the stored samples compared to the freshly prepared crystal suspensions. As 

for mAb1, SE-HPLC measurements revealed higher aggregate levels for the crystals 

while FACS measurements revealed higher particle counts for the supernatants.   

Table 5-6 Flow cytometry measurements of subvisible protein aggregates for freshly prepared or 9 months old mAb2 
crystals and their supernatants. Buffer refers to sodium PBS buffer without protein. 

 
mAb2 

crystals 

(fresh) 

mAb2 

crystals 

(old) 

mAb2 su-

pernatant 

(fresh) 

mAb2 su-

pernatant 

(old) 

Buffer 

Aggregate 

count 

838 
± 
91 

1871 
± 

420 

36,313 
±  

3557 

46,569 
± 

3648 

318 
± 
20 

 

In summary, the results for mAb2 indicated that the deamidation was predominately 

caused by the high phosphate salt concentration (4.2 M) necessary to induce crystalliza-
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tion. This assumption was confirmed by LC-MS measurements performed externally 

(not shown). 
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 Discussion 5.4

A steady increase in the aggregate levels could be detected over the time for mAb1 and 

mAb2 crystals. A higher growth rate of the aggregate content was observed for mAb1 as 

for mAb2. SDS-PAGE and IEF analysis of different mAb1 and mAb2 samples suggest-

ed different pathways of aggregate formation for both antibodies. The two different 

crystallization formulations were deemed to cause the mAb instability and thus were 

investigated for their role in mAb1 and mAb2 aggregate formation.    

SDS-PAGE analysis revealed covalently linked aggregates in mAb1 samples. High ag-

gregate levels were detected for dissolved crystals while analysis of the supernatant 

showed small aggregate contents. Following, in a first evaluation the crystallization 

process itself was deemed to cause the aggregate formation. The results from the IEF 

measurements did not show any alteration of the IEP and thus protein degradation by 

deamidation was excluded. The PEG containing crystallization buffer was suspicious to 

foster mAB1 aggregation as PEG is prone to auto-oxidation which results in degrada-

tion products such as peroxides and formaldehyde. These PEG degradation products 

were known to cause protein degradation by protein oxidation and protein-protein link-

age 9-12. Consequently, it was the aim to highlight the effects of these PEG impurities on 

mAb1 crystallization and aggregate formation. Therefore, differently purified PEG was 

to be utilized for crystallization. Removal of water by applying vacuum and freeze dry-

ing is known to reduce peroxide levels 9. Therefore, both drying techniques were used 

for reducing peroxides and formaldehyde impurities. 

During the present study, vacuum drying was found to be superior in reduction of per-

oxide levels in PEG solutions compared to freeze drying which was in accordance to 

Kumar et al. 9. Kumar et al. had also been shown that the relative reduction of peroxide 

residues was dependent on the initial contents of the PEG solutions which was con-

firmed by the present study 9. Following, freshly prepared PEG solutions which con-

tained the lowest amounts of peroxides showed the lowest relative peroxide reduction 

after drying. Storage of PEG solutions at 50°C fostered peroxides degradation into alde-

hydes like formaldehyde. Since residual moisture of vacuum-dried samples was higher 

than that of lyophilized samples, these observations cannot be ascribed to water effects. 

Regarding the reduction of formaldehyde impurities, freeze drying was found to be su-

perior. Interestingly, samples stored at ambient temperature even showed increased 
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formaldehyde contents after vacuum drying. This indicated a degradation of peroxides 

to formaldehyde during vacuum drying and is the reason for its superiority in the reduc-

tion of peroxides. 

As PEG degradation products mostly represent acidic species, pH measurements of 

PEG solutions were deemed to give a hint on the impurity levels 46. Solutions from vac-

uum-dried PEG showed lower pH values as samples from freeze-dried PEG. This was 

ascribed to higher formaldehydes levels due to a lower effectiveness in reduction of this 

impurity for vacuum drying. Almost a complete removal of both compounds and thus 

extensive purification was demonstrated for double purified PEG. Only a minor reduc-

tion of the pH value was observed for the double purified samples. 

The role of PEG impurities during mAb1 crystallization and aggregate formation was 

highlighted by crystallization using purified PEG, double purified PEG and addition of 

40 mM methionine prior to crystallization. The reduction in aggregate formation after 

purification of PEG clearly showed that mAb1 aggregation is correlated to PEG degra-

dation products. A general strong effect on protein crystallization was demonstrated as 

extensive reduction of the impurities by double purification as well as addition of me-

thionine, and thus, inactivation of peroxides totally prevented protein crystallization 

when the same PEG concentration was used. Yet, even for these samples aggregate 

formation was observed. Methionine only disables peroxides. Hence, the aggregates 

were ascribed to formaldehyde 47. However, extensive purification by drying might not 

allow a complete removal of peroxides and formaldehydes and thus allowed for small 

mAb1 aggregation. As double purified PEG at a higher concentration (26% vs 24% 

(w/v)) induced crystallization, a minimum content of PEG impurities was shown to be 

vital to mAb1 crystallization. This was confirmed by samples which contained double 

purified PEG at a concentration of 24% (w/v) without initial mAb1 crystallization. Dur-

ing storage, these samples started to show mAb1 crystallization. Obviously, PEG de-

graded to peroxides and further to formaldehyde which triggered the crystallization. 

The dependency of mAb1 crystallization and aggregate formation on peroxide and for-

maldehyde was ultimately confirmed by addition of both compounds to extensively 

purified PEG. Obviously, both impurities were required to initiate crystallization. A 

complex interaction of both compounds can be assumed. Probably, formaldehyde in-

duces small aggregates which represent a seeding to initiate protein precipitation. Perox-
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ides function as modulator which oxidize the protein itself at thiol and primary amino 

groups which are required for formaldehyde linkage and thus aggregate formation 47. 

This assumption is confirmed as higher peroxide levels prevented any precipitation and 

reduced significantly the extent in aggregate formation. Furthermore, externally per-

formed LC-MS measurements confirmed the presence of significantly oxidized mAb1 

species in PEG containing samples. Consequently, the applied PEG quality defined by 

the content of impurities would have a strong effect on the final crystal suspension qual-

ity. This was demonstrated by applying PEGs from varying manufactures for mAb1 

crystallization 43-45. Different aggregate levels as well as different acidic species levels 

were found for dissolved mAb1 crystals and were depended on the applied PEG. A 

connection between PEG impurities and aggregate formation was clearly demonstrated. 

However, these findings could not completely explain an ongoing aggregate formation 

in the crystalline state after reaching the state of maximum yield. The crystalline state 

should suppress further aggregate formation by fixation of the proteins within the crys-

tal lattice. Therefore, an aggregate formation in the supernatant followed by an incorpo-

ration of the aggregates into the crystals was considered. Consequently, it was the aim 

to further investigate the protein aggregation and its origin within mAb1 crystal suspen-

sions. Therefore, the supernatant was exchanged with an identical, but fluorescence la-

beled protein solution at equilibrium (maximum yield). If the anticipated protein ex-

change would take place at the equilibrium state, the crystals would start to show fluo-

rescence signals. In addition, if aggregates found in the crystalline state show fluores-

cence signals, the origin of the involved protein would be in the supernatant. All exper-

iments were also conducted by exchanging the supernatant with label free antibodies to 

investigate the effect of the fluorescence dye on protein aggregation. 

In the experimental setup the fluorescence label had no significant effect on protein ag-

gregation. Therefore, a significant change of the results due to labelled protein could be 

excluded. 

Labeled protein in the supernatant proved the existence of a dynamic equilibrium by 

increasing fluorescence signals of the crystalline state over the time. This observation 

was made at the state of maximum yield, which did not change during the study. Con-

sequently, a pure attachment of labelled protein without protein leaving the crystals was 
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excluded. A dynamic equilibrium was already mentioned in literature but demonstrated 

and visualized by CLSM during the presented study 40,48. 

SE-HPLC and FACS measurements showed significant aggregate formation for the 

crystallized samples whereas almost no aggregates were found for the non-crystallized 

samples. This finding was in the first view in contrast to the assumption that the crystal-

line state stabilizes protein formulations 37. However, this aggregate formation was not 

necessarily linked to the crystallization itself as aggregate formation was also observed 

for non-crystallizing mAb1 samples which contained double purified PEG (see section 

5.3.3.1.1) or lower PEG concentrations (see section 4.3.1). Furthermore, the labeled 

protein in the supernatant revealed the origin of the protein involved in the aggregate 

formation. The aggregates of the crystalline fraction formed after the supernatant ex-

change mostly contained labelled protein. FACS results showed significantly higher 

aggregate levels for the supernatant of crystallized samples. Consequently, an incorpo-

ration of the aggregates from the supernatant was assumed. The protein in the superna-

tant is faced to PEG degradation products such as peroxides and formaldehyde and ag-

gregates (see section 5.3.3.1.1). Following, the mAb1 aggregation is not necessarily an 

intrinsic phenomenon solely of the crystallization or crystalline state, but occurs pre-

dominantly in the supernatant of crystallization systems. Incorporation of aggregated 

proteins as “crystal building blocks” is already stated in literature but could not be prov-

en in the course of the present study. However, this incorporation of aggregates was 

discussed in context of crystal forming building blocks and not related to protein crystal 

impurities 49.   

For mAb2, a different pathway of aggregate formation was demonstrated as for mAb1 

(see above). SDS-PAGE did not show any covalently linked aggregates for mAb2 and 

IEF measurements showed significantly decreased IEPs. This indicated mAb2 deami-

dation as cause for aggregate formation which could be confirmed by LC-MS measure-

ments performed externally (not shown) 7. Oxidative protein degradation as for mAb1 

could be excluded as for example no effects on aggregate formation were observed after 

addition of methionine to mAb2 crystallization systems. 

Deamidation is caused by low pH values and high ionic strength solutions 1,2,7. Both 

were present in the mAb2 crystallization formulation. However, exposure to only a low 

buffer pH value or a smaller phosphate salt concentration unable to induce crystalliza-
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tion did not result in aggregate formation. Consequently, the deamidation of mAb2 is 

not associated to one single parameter of the crystallization formulation, but to the final 

crystallization composition itself. This was confirmed by FACS measurements which 

revealed increased aggregate counts for the supernatant compared to dissolved mAb2 

crystals. Similar to mAb1, the protein in solution is exposed to the harsh crystallization 

conditions (high phosphate salt concentration associated with a low pH value) and start-

ed to aggregate. The aggregates were finally attached to the crystals or incorporated into 

the crystal lattice. 

In addition, mAb2 was exposed to PEG in order to confirm the findings for mAb1. The 

results obtained by these experiments confirmed the concept of oxidative protein degra-

dation at higher PEG concentrations. The protein instability could be ascribed to the 

PEG impurities as double purification of PEG resulted in decreased aggregate levels. 
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 Conclusion 5.5

Two different pathways for aggregate formation within mAb1 and mAb2 crystallization 

systems were found. “Harsh” crystallization conditions caused the aggregate formation 

in both cases. Expansion of the analytical tools for aggregate quantification from SE-

HPLC to the more sensitive (in the sub-micron range) FACS revealed higher aggregate 

levels in the supernatants where the protein is exposed to the destructive components of 

the crystallization formulations. 

It was clearly demonstrated that the protein involved in the aggregate formation had its 

origin in the supernatant. Aggregate formation in the supernatant followed by aggregate 

incorporation into the crystals or aggregate formation during attachment of the protein 

to the crystals might explain these findings. Nevertheless, the results confirmed stabiliz-

ing properties of the crystalline state even within the crystallization formulations. Con-

sequently, an intrinsic protein instability in the crystalline state cannot be stated.  

For mAb1, oxidative protein degradation caused by impurities (peroxides, formalde-

hyde) from PEG auto-oxidation were responsible for the aggregate formation. A clear 

dependency of the level of aggregate formation on peroxides and formaldehyde was 

shown. Furthermore, it was demonstrated that a minimum level of both compounds was 

vital to start crystallization. The crystallization is accompanied by aggregate formation 

since both, precipitation and aggregate formation, are dependent on formaldehyde in-

duced protein linkage. An uncritical use of PEG for crystallization of therapeutic bio-

pharmaceutics has to be scrutinized. 

Deamidation was found for mAb2 as cause for the instability induced by the low crys-

tallization buffer pH and the high phosphate salt concentration of the final crystalliza-

tion formulation. 

Overall, successful mAb crystallization was impossible as either oxidation and protein 

linkage or deamination was vital to trigger the mAb crystallization. Suitable crystals 

from therapeutic protein can only be obtained from crystallization conditions which 

provide both, the feature to grow stable protein crystals and uncritical conditions for the 

protein which remains in the supernatant.  
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Chapter 6 

 

Statement: Chapter 6 includes results from the Master thesis “Development and optimi-

zation of in situ precipitating depot systems for in vitro monoclonal antibody release” 

by Bistra Nikolaeva Rainova, LMU Munich, 2013. The results within this chapter relat-

ed to the Master thesis were expressed in figures and graphs which were either copied 

or reproduced in a modified form. 

The Master thesis has been planned, structured and carried out under my direct supervi-

sion. The results obtained and the conclusions drawn have been discussed under my 

supervision. 

The work related and the results presented in sections 6.3.2 and 6.3.3 (Fig. 6-11 – 6-13) 

were not subject to the Master thesis. 
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6 Case study: Sustained release formulations containing 

mAb crystals 

 Introduction 6.1

Protein therapeutics represents a class with approximately 200 market products 1. How-

ever, a major drawback of protein formulations is their low oral bioavailability as well 

as degradation processes in vivo 2-4. Thus they have to be administered by multiple ad-

ministrations by injection or infusion which represent very inconvenient procedures for 

the patients 4,5. Hence, development of biodegradable depot formulations would mini-

mize clinical stays and enhance the patient’s acceptance for the therapeutic settings 4,6. 

Besides conventional methods to achieve protein sustained release formulations includ-

ing implants, liposomes and oily depots, two more recent approaches are available: a) 

microencapsulation within biodegradable poly (D, L- lactide-co-glycolide) (PLGA) or 

other polymers and b) in situ precipitating systems which form an implant upon injec-

tion 7,8. ATRIGEL® represents an example for the latter approach where the drug is 

mixed with a biocompatible organic solvent that contains the water immiscible, biode-

gradable PLGA polymer 9-11. After intramuscular (i.m.) or subcutaneous (s.c.) injection, 

the polymer hardens under entrapment of the drug. This solidification is driven by a 

solvent exchange between the organic carrier solvent and the physiological fluid which 

penetrates into the forming depot 10,12,13. Besides the well-established polyesters such as 

PLGA, new materials including the non-polymeric sucrose acetate isobutyrate (SAIB) 

aroused attention 14-16. This water insoluble sugar derivate was introduced as part of the 

innovative SABER technology from Southern Biosystems (now DURECT, Cupertino, 

USA) 12,17. The depots are fabricated under the same precipitation conditions used for 

PLGA 18,19. However, following injection this material forms a semi-solid viscous depot 

rather than a solid implant. SAIB is characterized as a low molecular weight, high vis-

cosity liquid with a viscosity of > 5.000 cP at 37°C 20. Another feature is its low viscosi-

ty (50 - 200 cP) in organic solvents even at very high SAIB concentrations of about 

90% (w/v) 19,21. SAIB provides similar attributes as PLGA with respect to sustained 

release matters and allows reduction of the dose frequency, the total dose and the side  

effects 19,22. 

Proteins show physical and chemical instability, properties which impart the develop-

ment and evaluation of protein sustained release formulations in general but especially 
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the development of in situ precipitating depot systems 12. During manufacturing, the 

protein is susceptible to different potential damaging conditions including the exposi-

tion to organic solvents, water/organic solvent interfaces, hydrophobic surfaces, deter-

gents, agitation and elevated temperatures 7,23. In addition, polymer degradation, as it 

was shown for PLGA, causes acidic microenvironments which would be destructive to 

the majority protein drugs 24. By that, protein crystals were deemed to allow circum-

venting the aforementioned obstacles 12,25,26. The crystalline state may offer a better 

protection against organic solvents or water/organic solvent interfaces as well as de-

structive interactions between the protein and the matrix polymer 25,27. Furthermore, the 

crystals enable for higher loadings due to their compact structure 28. To date, incorpora-

tion of protein crystals into sustained release formulations appears to be a very useful 

and attractive approach. Margolin et al. assumed that crystallized proteins might per se 

offer protracted action even without additional entrapment within a polymer formulation 

due to a prolonged redissolution in vivo 25. In contrast, Stefan Gottschalk demonstrated 

a fast dissolution of mAb1 and mAb2 crystals upon contact with an aqueous media 29. 

This finding was supported by other researchers who showed fast dissolving mAb crys-

tals of different molecules 25,26,28. 

Feasibility of protein crystals as platform for sustained release formulations has already 

been demonstrated by Pechenov et al. where a PLGA/acetonitrile and a SAIB/ethanol 

based in situ forming depot formulation for crystalline α-amylase was introduced 12. 

Stability of the crystalline protein against organic solvents was shown 12. Furthermore, 

the crystal morphology as well as drying of the crystals prior to their formulation are 

reported to be strong tools to alter the release profiles 12. 

Besides the abovementioned PLGA and SAIB materials, lipids have attracted research-

er’s interest during the last two decades. Lipids exhibit excellent attributes such as bio-

compatibility and biodegradability by lipases or body fluids 30-33. Especially triglyceride 

based, compressed implants are reported to allow a long term release and are easily pre-

pared 34-36. Recently, novel lipid-based solid implants prepared by twin-screwed extru-

sion were introduced by the group of Prof. G. Winter. This new manufacturing strategy 

represents an advancement of the commonly used direct compression technique and 

allows for production of rod-shaped implants of varying diameters 37. The implants are 

easily administered and show a more sustained protein drug release 37,38. So far, feasibil-

ity of such implants as depot formulation for protein crystals has yet to be investigated. 
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As shown in Chapter 3, mAb1 and mAb2 crystals do not offer an increased protein sta-

bility and protection against organic solvents. Consequently, the experiments presented 

within this chapter were conducted with awareness of the insufficient mAb1 and mAb2 

crystal stability. It was decided to perform this study despite the lack in suitable anti-

body crystal material to obtain further insight into in situ forming depot formulations 

containing mAb crystals. Therefore, the present experiments represent a first “proof of 

concept” study. 

As part of the present study, mAb1 and mAb2 crystals were incorporated into in situ 

precipitating formulations which consisted of PLGA (502H and 755S) or SAIB, respec-

tively. A solvent screen was performed to identify applicable liquids. Suited carrier sol-

vents for in situ precipitating depot formulations have to fulfill several requirements 

such as biocompatibility, polymer dissolution and miscibility with the aqueous release 

medium 9. Another important factor is a good processability characterized by a suitable 

viscosity of the polymer solution which allows a convenient injection into the release 

media by a syringe.  As the surface area of the depots would have a significant effect on 

the protein drug release, a standard manufacturing procedure was developed to obtain 

uniform in situ precipitating implants. The mAb crystals comprising sustained release 

formulations were compared to identical formulations which contained freeze-dried, 

amorphous mAb1 or mAb2. As drying of mAb1 and mAb2 crystals could not be suc-

cessfully carried out (see Chapter 3), a comparison to its dry amorphous counterparts 

was exceptionally challenging. In order to enhance protein stability, certain additives 

like sucrose and in case of PLGA pH modifiers such as magnesium hydroxide and sodi-

um carbonate were added to the standard formulations. These compounds would also 

enhance protein release by their function as pore formers. This study was completed by 

depot degradation studies, investigation of the phase inversion dynamics of the PLGA 

formulations and assessment of the syringeability of different PLGA and SAIB depot 

formulations. 

Additionally, twin-screw extruded lipid implants were formulated together with vacu-

um-dried mAb1 crystals. The dry material was obtained by the vacuum drying proce-

dure introduced by the preliminary study 29. Despite the fact that stability and crystallin-

ity of the dry material remained questionable, studies were performed to get a first in-

sight into the release kinetics of crystalline mAb from lipid implants. A formulation 
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introduced by Gerhard L. Sax was adopted for mAb1 crystals as it allowed for a very 

long and steady antibody release 37. 

Finally, as drying of lysozyme crystals could be successfully carried out; a straight-

forward study to highlight the effects of protein crystal drying on the release kinetics for 

lysozyme is also presented within this chapter. 
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 Materials and Methods 6.2

6.2.1 Materials 

Lysozyme from chicken egg white as lyophilized powder (protein > 90%, > 40,000 

units/mg protein) was purchased from Sigma-Aldrich (Taufkirchen, Germany). mAb1 

and mAb2 were two monoclonal antibodies from the IgG1 class. The samples were 

stored at - 80°C (antibodies) or at - 20°C (lysozyme) until required for use. 

RESOMER® RG 502H (PLGA 502H) and RESOMER® RG 755S (PLGA 755S) were 

purchased from Evonik Industries (Darmstadt, Germany). Sucrose acetate isobutyrate 

(SAIB) (kosher food grade) was obtained from Sigma-Aldrich. 

The triglycerides D118 (100% stearic acid, melting range 70 – 72°C) and H12 (71% 

palmitic acid, 27% myristic acid, 2% lauric acid, melting range 37 – 40°C) were a gift 

from Sasol (Witten, Germany) 37. 

Sodium chloride (AnalaR NORMAPUR) as crystallization agent for lysozyme was pur-

chased from VWR Prolabo (Leuven, Belgium). Sodium acetate (USP standard) was 

from Merck (Darmstadt, Germany). Sodium sulphate (99%) was from Grüssing GmbH 

(Filsum, Germany). Sodium dihydrogen phosphate-dihydrate (pure Ph. Eur., USP), 

disodium hydrogen phosphate-dihydrate (analytical grade), potassium dihydrogen 

phosphate and potassium chloride (both analytical grade) were obtained from Appli-

chem GmbH (Darmstadt, Germany). PEG 4000S was from Clariant (Frankfurt a. M., 

Germany). Hydrochloric acid 32% (analytical grade), acetic acid 100% and ortho-

phosphoric acid 85% were all purchased from Merck KGaA (Darmstadt, Germany). 

Sodium azide (99%) was received from Acros Organics (New Jersey, USA). L-histidine 

was from Sigma-Aldrich (St. Louis, MO, USA). All other reagents or solvents were of 

at least analytical grade and purchased either from Sigma-Aldrich (Taufkirchen, Ger-

many) or VWR Prolabo (Leuven, Belgium). 

6.2.2 Methods 

6.2.2.1 Crystallization of mAb1 

Crystallization of mAb1 was carried out in 0.1 M sodium acetate buffer at pH 5.50. For 

crystallization, a 24% (w/v) PEG 4000 solution in the same buffer was added dropwise 
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to a 10 mg/mL protein solution under gentle shaking to obtain a 1:1 ratio. The final 

formulation was stored at 20°C for at least two weeks.  

6.2.2.2 Crystallization of mAb2 

Crystallization of mAb2 was performed in a 0.1 M sodium acetate buffer of 4.1. For 

crystallization, a 4.2 M sodium dihydrogen phosphate solution was added dropwise to a 

10 mg/mL protein solution under gentle shaking to obtain a final ratio of 1:1. The final 

formulation was stored at 20°C for at least one week. 

6.2.2.3 Crystallization of lysozyme 

The crystallization was carried out as batch crystallization in 50 mM sodium acetate 

buffer (pH 8) at room temperature without stirring in 60 mL PETG Nalgene vessels 

(Thermo Scientific, Langenselbold, Germany). Sodium chloride was used as crystalliza-

tion agent in different concentrations from 0.5 M to 2 M. The concentration of lyso-

zyme was set to 4% (m/V). 10 mL sodium chloride solution was poured carefully to 10 

mL of lysozyme solution while the vessel was gently shaken to dissolve the initial pre-

cipitation. For each condition four identical batches were prepared. 

6.2.2.4 Drying of protein crystals 

6.2.2.4.1 Inert gas drying (lysozyme) 

Inert gas drying of lysozyme crystals was performed in a Barkey® Hot-Air Dryer 

Flowtherm (Leopoldshöhe, Germany). The system consisted of a heater which allowed 

the tempering of a nitrogen gas stream (upper part) and a bottom heater for the sample 

(lower part). 300 µL of the crystal slurry were filled into 2R glass vials and placed into 

the sample holder. The nitrogen gas stream (10 L/min) was tempered to 30°C and guid-

ed through a needle into 10 vials. The bottom heater was set to 20°C. After drying, the 

vials were closed and sealed. 
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6.2.2.4.2 Vacuum drying (mAb1) 

Vacuum drying of mAb1 crystals was performed in accordance to a procedure described 

by the preliminary study 29. The mAb1 crystals were washed with 22% PEG solution in 

0.1 M sodium acetate buffer (pH 5.5) by three times of centrifugation (15 min) in a 

Sigma® 4K15 centrifuge at 4,000 rpm and subsequent replacement of the supernatant. 

After that, this procedure was repeated with EtOH 85 % at 2°C. Finally, the pellet was 

suspended in 200 µl EtOH 85% which contained 5% (w/v) sucrose. The concentration 

of the protein solution was set to 100 mg/ml. Vacuum drying was carried out in a Mar-

tin Christ Epsilon 2-6 D pilot freeze-dryer which was connected to a Vacuubrand CVC 

2000 vacuum pump. The temperature was set to 2°C for 3 h at 20 mbar followed by 14 

h at 0.1 mbar. 

6.2.2.4.3 Freeze-Drying (lysozyme, mAb1, mAb2) 

Freeze-drying of the protein crystal suspensions was performed using a Christ Epsilon 

2-6D pilot scale freeze-dryer (Christ, Osterode am Harz, Gemany). A volume of 1 mL 

of the suspensions was filled into 2 R glass vials and semi stoppered. Subsequently, the 

temperature was decreased to - 40°C at a rate of 1°C/min and was maintained at this 

temperature for 1 h and 10 min. In the last 10 min the pressure was reduced to 0.08 

mbar. In the next step, temperature was increased to - 10°C at a rate of 1°C/min and 

held for 16.66 h. Finally, temperature was increased to 25°C at a rate of 0.15°C/min and 

held for 10 h. At the end of the drying cycle the chamber was aerated with nitrogen and 

the vials were stoppered automatically within the chamber. The samples were stored at 

2-8°C until analytical examination. 

6.2.2.5 Preliminary screening approaches 

6.2.2.5.1 Solvent screening 

In order to investigate the solubilizing properties of different organic solvents with 

PLGA and SAIB, a solvent screening was performed. Therefore, PLGA solutions in 

concentrations of 25%, 30%, 40%, 45% and 50% (w/w) and SAIB solutions in concen-

trations of 40%, 45%, 50%, 80%, 85% and 90% (w/w) were prepared with PEG 200, 

PEG 300, PEG 400, isopropanol 100% and ethyl acetate as solvents. To support disso-

lution, the samples were stored at 60°C for at least 2-3 h until complete dissolution. The 

produced formulations were inspected visually to appraise solubilizing capacity of the  
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different solvents. 

6.2.2.5.2 Sieve screening 

The depot should be placed in the middle of the release container to allow an unhin-

dered solvent exchange upon depot solidification. This should be reached by placing the 

aqueous depot formulations on a mesh. The mesh should be subsequently placed above 

the bottom of the release container to allow protein diffusion to all sides from the im-

plants during and after complete depot hardening.  Therefore, a sieve screening was 

performed in order to identify suitable mesh diameters which restrain the liquid PLGA 

and SAIB formulations prior to hardening. Mesh diameters of 10 µm, 20 µm, 40 µm, 80 

µm and 100 µm were investigated which were all made of stainless steel. In addition, a 

10 µm sieve, which was made of polyester (VWR, Leuven, Belgium), was applied dur-

ing the study. 20% and 30% (w/w) PLGA formulations in PEG 400 were tested as well 

as 40%, 45%, 50%, 60%, 70%, 75%, 80%, 85% and 90% (w/w) solutions in ethyl ace-

tate. Each formulation was ejected on the corresponding sieve and evaluated for leakage 

occurring during 5 min of waiting. 

6.2.2.6 Preparation of in situ forming depot devices (mAb1, mAb2) 

A volume of 0.5 mL of each formulation was injected with a 1 mL NORM-JECT® Luer 

syringe (Henke Sass Wolf, Tuttingen, Germany) onto a BD Falcon™ nylon cell strainer 

with a mesh diameter of 70 µm (BD Bioscience, Durham, NC, USA) which was placed 

in a MULTIWELL™ 6-well plate (Becton, Dickinson Labware, Franklin Lakes, NJ, 

USA). Subsequently, 10 mL of phosphate buffer saline (PBS) were added. For SAIB 

based formulations, the cell strainer was covered with a 10 µm (mesh diameter) polyes-

ter nylon foil. The plate was covered and sealed with a parafilm and stored in an incuba-

tor at 37°C under 10 rpm rotating. 

The aforementioned basket approach was compared against an approach in that the 

same depot formulations were directly administered onto the bottom of the 6-well plate. 

6.2.2.6.1 Drug release studies 

Drug release studies were performed at least in triplets. The implants were formed in a 

disc like shape. Samples (5 mL) were taken after 2 h, 24 h, 48 h, 7 d, 14 d, 21 d and 28 

d and replaced with fresh PBS (37°C). 
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6.2.2.6.2 Size exclusion high performance liquid chromatography (SE-HPLC) 

Total protein release was determined by SE-HPLC. The analysis was performed on a 

Thermo separation system 

6.2.2.6.2.1 mAb1 

The mobile phase for mAb1 consisted of 0.092 M Na2HPO4 (anhydrous) and 0.211 M 

Na2SO4 (anhydrous) at a pH of 7. The flow rate was set to 0.25 mL/min. Analysis was 

performed at the wavelengths of 214 nm and 280 nm. A TSKgel G300SWXL coloum 

from Tosoh Bioscience GmbH (Stuttgart, Germany) was used for separation. 

6.2.2.6.2.2 mAb2 

The mobile phase for mAb2 consisted 0.02 M Na2HPO4 (dihydrate) und 0.15 M sodium 

chloride at a pH of 7.5. The flow rate was set to 0.50 mL/min. Analysis was performed 

at the wavelengths of 214 nm and 280 nm. For separation, a Suprose-6-HR-10/30-

coloum from GE Healthcare (Uppsala, Sweden) was used. 

6.2.2.6.2.3 Lysozyme 

The mobile phase for lysozyme consisted of 0.2 M sodium phosphate at a pH of 6.8. 

The flow rate was 0.6 mL/min and the protein was detected at 215 nm and 280 nm, re-

spectively. A Superose 12 10/300 GL column (GE Healthcare, Uppsala) was utilized for 

separation. 

6.2.2.7 Depot characterization 

6.2.2.7.1 Phase inversion dynamics (PEG staining) 

In order to evaluate the time for complete solvent exchange a blue stained PEG 400 was 

utilized to dissolve PLGA 502H and PLGA 755S each at concentrations 20%, 25%, 

30% (w/v). The dye was composed of 0.2041 g potassium thiocyanate and 0.2023 g 

cobalt nitrate dissolved in 10 mL of dichloromethane. The dye was diluted at a 1:9 ratio 

with the respective polymer solution. For analysis, the formulation was ejected directly 

onto a 6-well plate and the solvent exchange which could be identified by dye decolori-

zation, was recorded with a photo camera. 
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6.2.2.7.2 Optical depot degradation  

Optical depot degradation was monitored using a Keyence VHX-500f digital micro-

scope (Keyence, Neu-Isenburg, Germany) equipped with a VH-Z100R objective (mag-

nification 100x - 1000x) enhanced with a Real Zoom Lens. Following incubation for 

four weeks at 37°C, the depot degradation was investigated by complete buffer removal 

and subsequent vacuum drying. 

6.2.2.7.3 Syringeability 

Syringeability was tested by applying a TA.XT.plus Texture Analyser (Stable Micro 

Systems, Godalming, UK) with the integrated software Exponet 32-bit. The experi-

ments were carried out with 20 G, 25 G, 27 G needles and 1 mL and 5 mL syringes.  All 

formulations were investigated by ejection 0.5 mL of a polymer formulation within 10 s 

depending on the syringe size and needle diameter. The formulations were considered to 

be injectable if the required ejection force did not exceed 10 N. 

6.2.2.8 Preparation of lipid implants (mAb1) 

Preparation of lipid implants was performed by using a Twin-screw extruder MiniLab® 

Micro Rheology Compounder (Thermo Haake GmbH, Karlsruhe, Germany). The tem-

perature was set to 41°C. The melt was directed through a 1.9 mm outlet. The rotation 

speed was set to 40 rpm and the bypass channel was closed for all manufactures. The 

basic formulation for all samples was characterized by a 1 to 2.3 ratio of the low melt-

ing (H12) and the high melting (D118) compound. Crystalline and amorphous mAb1 

counted for 5% (w/w) and PEG, if used, for 10% (w/w). The composition was chosen in 

accordance to Gerhard Ludwig Sax 37. 

6.2.2.9 Release study for SAIB based in situ precipitating lysozyme depots 

For depot preparation, 100 mg formulation was placed on the bottom of a 2 mL LoBind 

Eppendorf tube (Eppendorf AG, Hamburg, Germany). Subsequently, 1 mL PBS was 

added as release buffer. The Eppendorf tube was stored in an incubator at 37°C under 

gentle teetering at 10 rpm. The standard formulation consisted of 5% (w/w) lysozyme 

(amorphous or crystalline), 85% (w/w) SAIB and 10% (w/w) isopropanol 95%.  
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 Results 6.3

6.3.1 In situ precipitating depot formulations for mAb1 and mAb2 crystals 

6.3.1.1 Preliminary screening approaches 

6.3.1.1.1 Solvent screening 

Suited solvents for in situ precipitating depot systems must be biocompatible and of low 

toxicity to minimize irritation at the injection site 9. They should easily dissolve the pol-

ymer and should be miscible with the aqueous media (e.g. body fluids) in which the 

polymer should precipitate by formation of an implant. The latter attribute is of vital 

importance as it determines the phase inversion dynamics during solidification of the 

depot system (see section 3.1.4) 39. 

mAb1 and mAb2 crystals show low stability during contact with the most organic sol-

vents (see Chapter 3)  but remain stable in PEG solutions. Therefore, a solvent screen-

ing with PEG of different molecular weight was performed in order to assess the solu-

bility of PLGA 502H, PLGA 755S and SAIB in these liquids. Ethyl acetate and isopro-

panol 100% were included into the study as they have been demonstrated to be accepta-

ble washing liquids for mAb1 and mAb2 crystals (see Chapter 3). PLGA solutions in 

concentrations of 25%, 30%, 40%, 45% and 50% (w/w) and SAIB solutions in concen-

trations of 40%, 45%, 50%, 80%, 85% and 90% (w/w) were prepared with PEG 200, 

PEG 300, PEG 400, isopropanol 100% and ethyl acetate as solvents. To support PLGA 

and SAIB dissolution, the mixtures were stored at 60°C until complete (optically tested) 

dissolution. 

Whereas PLGA 502H and 755S were insoluble in isopropanol 100%, solubility in ethyl 

acetate was satisfying (Tab. 6-1). However, due to markedly high viscosities, these pol-

ymer solutions could not be handled and thus were declared to be inappropriate for im-

plant preparation. PLGA solubility in PEG 200 and PEG 300 was poor. The dissolution 

was a very slow process and even after long time periods (overnight) undissolved poly-

mer was visible. Again, these preparations showed high viscosity which was deemed to 

hinder a convenient implant manufacture. In contrast, PLGA 502H and 755S were ex-

cellently soluble in PEG 400. Regarding the viscosity, merely the solutions of up to 

30% (w/w) PLGA were considered suitable for the further studies. 
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SAIB was not soluble in any PEG (Tab. 6-1). Even a phase separation was observed 

upon cooling to ambient temperature. In contrast, solubility in isopropanol 100% and 

ethyl acetate was excellent. Interestingly, even at the highest SAIB concentrations test-

ed, the viscosity was considered to allow for a convenient handling and depot prepara-

tion. 

By that, it was concluded to use PEG 400 as solvent for both PLGA copolymers where-

as isopropanol 100% and ethyl acetate were chosen as solvents for SAIB. 

Table 6-1 Solubility of PLGA and SAIB in different solvents. S: soluble, IS: insoluble. 

 PLGA 502H PLGA 755S SAIB 

PEG 200 S S IS 
PEG 300 S S IS 
PEG 400 S S IS 

Ethyl acetate S S S 
Isopropanol 100% IS IS S 

 

6.3.1.1.2 Sieve screening 

Drug release from implant based systems is dependent on many factors such as texture, 

size, shape and surface area of the depot which might result in a variable and unpredict-

able release in many cases 40. Generation of uniform implant surfaces appears to be vital 

for consistent drug release studies. Therefore, production of in situ precipitating depots 

in similar flat discs was considered. To enable liquid diffusion from the entire depot 

surface, they were placed on a mesh above the bottom of the release container (six-well 

plate) (Fig. 6-1). 
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Figure 6-1 Depicts the limitations in drug diffusion out of implants placed on the bottom of the release container 
(left). If the depot is placed on a fenestrated mesh which is placed in the middle of the container, hindering in drug 
diffusion is reduced (right). 

 

The fenestration of such a mesh can be variable in size. Hence, a set of different mesh 

sizes (steel sieves) were assessed for their ability to restrain different PLGA and SAIB 

formulations during hardening. Permeability of the meshes was tested optically for 5 

min by placing the sieve on a white paper. If a polymer solution dropped through the 

mesh, a stain on the paper was visible (Fig. 6-2).  

For SAIB, only concentrations above 70% (w/w) in isopropanol 100% and concentra-

tions above 40% (w/w) in ethyl acetate were restrained by a 10 µM mesh. None of the 

SAIB formulations was held back by a 20 µM sieve. No PLGA 502H and 755S solution 

leaked through an 80 µM sieve. 

In general, higher polymer concentrations resulted in solutions of higher viscosity 

which reduced the amount of formulation that passed through the sieve. This was con-

firmed by smaller stains on the paper below the sieves. 
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Figure 6-2 Photographic pictures from the sieve screening. For I (SAIB in isopropanol 100%) and II (SAIB in ethyl 
acetate), a polyester tissue with a mesh diameter of 10 µM (left) and stainless steel sieves of 20 µM mesh diameters 
(right) were tested. The tested polymer concentrations were [w/w]: A: 40%; B: 45%; C: 50 %; D: 60%; E: 70%; F: 
75%; G: 80%; H: 85%; I: 90%. For III (PLGA in PEG 400), A: stainless steel sieves with mesh diameters of 80 µM 
(left) were tested for 25% (w/v) PLGA formulations. For 30% (w/w) PLGA 755S formulations sieve mesh diameter 
of 100 µM (middle) and 80 µM (right) were used. B: For 25% (w/w) PLGA 502H formulations stainless steel sieves 
with mesh diameters of 100 µM (left) were tested as well as for 30% (w/v) PLGA 502H formulations (right). The 
sieves were placed on a white paper for 5 min to follow permeation of the formulations through the sieves. 

 

For implant manufacture, a 90% (w/w) SAIB concentration was considered for both 

solvents (isopropanol 100%, ethyl acetate) whereas concentrations of 25% and 30% 

(w/w) for PLGA 502H / 755S were chosen. Falcon strainers (baskets) with a mean mesh 

diameter of 70 µM, which in the case of SAIB were lined with 10 µM (mesh diameter) 

nylon tissues, were used. 

 

I 

II 

III 
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6.3.1.1.3 Assessment of the basket approach 

To assess the suitability of the falcon strainers to generate uniform implants and thus 

reproducible release kinetics, this approach was assessed in comparison to a classical set 

up in which the depots were injected at the bottom of the release container.   

Therefore, mAb2 crystals were incorporated in a 90% (w/w) SAIB solution in ethyl 

acetate. The depots were prepared by injection of the formulations either on a 70 µm 

falcon strainer sealed with a 10 µm (mesh diameter) nylon mesh placed in a six-well 

plate or by injection directly at the bottom of the well plate, respectively. The release 

was followed for 14 days and measured by HP-HPLC. 

After 14 days, more protein was released from the depots placed in the basket compared 

to implants formed directly on the well plate bottom (Fig. 6-3). The latter one showed a 

small initial burst release followed by an almost steady state with merely low protein 

release. In contrast, the release curve was much steeper for the implants placed in the 

baskets. 

   

Figure 6-3 In vitro release of SAIB 90% in EtAc containing crystallized mAb2 with or without basket over a period 
of 2 weeks. Data shown is expressed as mean ± SD. 

 

Therefore, the basket approach was considered to be reasonable for consistent drug re-

lease studies. 

m
A

b
2
 r

el
ea

se
d

 [
m

g
] 



181 
 

6.3.1.2 In vitro drug release 

The impact of the polymer type, polymer concentration, presence of additives and the 

protein state (crystalline or amorphous) on the in vitro release was assessed. 

Therefore, in situ precipitating depot formulations based on PLGA 502H, PLGA 755S 

and SAIB containing either crystalline or amorphous (freeze-dried) mAb1 or mAb2 

were prepared in the standard formulations as shown in Table 6-2. Pore formers and pH 

modifiers were only added to formulations which contained mAb1 or mAb2 in its crys-

talline state as the freeze-dried material already contained 5% (w/v) sucrose. 

Table 6-2 depicts the standard formulations for PLGA 502H, PLGA 755S and SAIB based implant formulations. If 
pore formers and/or pH modifiers were added to the formulation, the amount of solvents was reduced. 

PLGA 502H / 755S 

20-30% (w/w) 

SAIB 

90% (w/w) 

mAb1 / mAb2 
crystalline or amorphous 

5% (w/w) 

mAb1 / mAb2 
crystalline or amorphous 

5% (w/w) 
Pore former 

Sucrose 
3% (w/w) 

Pore former 
Sucrose 

3% (w/w) 
pH modifier 

Mg(OH)2 / Na2CO3 

3% (w/w) 
- 

PEG 400 
62 - 80% (w/w) 

Isopropanol 100% / Ethyl acetate 
2 - 10% (w/w) 

 

6.3.1.2.1 mAb1 and mAb2 release studies from PLGA 502 and PLGA 755S im-

plants 

Depots which contained amorphous mAb1 and mAb2 showed a large initial drug burst 

release followed by a steady state phase (Fig. 6-4 & 6-5 A-D). In contrast, for depots 

formulated with crystalline mAb (not dried), the initial drug burst release was lower as 

well as the total protein amount released. For all formulations, both parameters were 

dependent on the type and concentration of the polymer used. Higher polymer concen-

trations hindered protein release and slowed down the initial burst release. 
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Figure 6-4 mAb1 in vivo release profiles from depots which contained A 20% (w/w) PLGA 502H; B 30% (w/w) 
PLGA 502H; C 20% PLGA 755S; D 30% PLGA 755S. Amorphous refers to freeze-dried mAb1. Additives were only 
formulated together with crystallized mAb1. 
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Figure 6-5 mAb2 in vivo release profiles from depots which contained A 20% (w/w) PLGA 502H; B 30% (w/w) 
PLGA 502H; C 20% PLGA 755S; D 30% PLGA 755S. Amorphous refers to freeze-dried mAb2. Additives were only 
formulated together with crystallized mAb2. 

 

Stabilizing approaches to persevere the protein integrity by addition of excipients were 

also assessed. PLGA is known to degrade into acidic species which can potentially trig-

ger physical and chemical protein instability 41. By this, magnesium hydroxide 

(Mg(OH)2) and sodium carbonate (Na2CO3) were exploited as pH modifiers in order to 
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prevent a pH drop within the depot which might be harmful to the proteins. Such basic 

salts are already reported to reduce acidic catalyzed degradation of the incorporated 

drug or the polymer itself 42. 

Protein release was increased for formulations which contained one of these two basic 

excipients (Fig. 6-4 & 6-5 A – D). Only the PLGA 755S formulations showed a reduc-

tion in protein release after addition of magnesium hydroxide. 

To enhance the protein drug release sucrose was added as pore forming agent. However, 

a controversial effect was observed for all mAb2 depot formulations which showed a 

significantly reduced protein release. Interestingly, for mAb1 depot formulations, the 

opposite effect was observed except for the PLGA 502H 30% (w/w) formulations with-

out additives. 

Overall, formulations which contained Mg(OH)2 showed the best and most sustained 

mAb release. 

6.3.1.2.2 mAb1 and mAb2 release studies from SAIB depot formulations 

For SAIB, no degradation into acidic species is known and thus no pH modifiers were 

applied. Only sucrose was utilized as pore forming agent in order to enhance protein 

drug release. Only one SAIB polymer was available and thus the focus of the present 

study was on the effect of the carrier solvent on amorphous and crystalline mAb1 and 

mAb2 release. 

Again, the highest initial protein burst was observed for formulations which contained 

amorphous mAb1 or mAb2 except for depot formulations which contained crystalline 

mAb1 and ethyl acetate as carrier solvent (Fig 6-6). In all cases, utilization of isopropa-

nol 100% as carrier solvent led to a decreased protein release compared to formulations 

with ethyl acetate. The lowest protein amounts were released from formulations with 

sucrose as pore forming agent. Notably, almost no protein was released from the formu-

lations which contained crystalline mAb2. This was explained by the low compatibility 

of mAb2 to both solvents (see section 3.3.3). 
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Figure 6-6 mAb1 (A) and mAb2 (B) in vitro release from SAIB 90% (w/w) depots formulations with isopropanol 
100% (Iso) or ethyl acetate (EtAc) as solvent. Furthermore, sucrose was added as pore forming agent only to formu-
lations which contained mAb crystals. 

 

Compared to the PLGA based mAb1 depot formulations, the release from SAIB depots 

was much higher and in a more sustained manner. 

6.3.1.3 Influence of degradation on pH  

PLGA is reported to degrade into acidic species which can affect the stability of pro-

teins entrapped within the depot 23,24. Therefore, the pH value of the different formula-

tions was monitored over 4 weeks (Tab. 6-2). To highlight the effect of buffer replace-
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EtAC crystals 

Iso crystals 
EtAc amorphous 

Iso amorphous 
EtAc crystals + sucrose 

Iso crystals + sucrose 

EtAC crystals 
Iso crystals 

EtAc amorphous 

Iso amorphous 
EtAc crystals + sucrose 

Iso crystals + sucrose 
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ment, as performed during the release studies, control samples (control) without any 

buffer replacement were also tested. To investigate the depot degradation associated 

with the pH drop, the depots were investigated visually by digital microscopy at each 

sample draw.  

Figure 6-7 shows the pH values measured for 30% (w/w) PLGA 502H, PLGA 755S and 

SAIB formulations containing mAb1 in its amorphous or crystalline state over 4 weeks. 

The results for the other formulations did not differ (not shown). 

            

 

A 

B 
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Figure 6-7 pH values of different formulations containing: A. 30% (w/w) PLGA 502H; B. 30% (w/w) PLGA 755S; 
C. 90% (w/w) SAIB as polymer. For PLGA 502H and PLGA 755S, all samples with additives contained crystallized 
mAb. For SAIB, either isopronaol 100% (Iso) or ethyl acetate (EtAc) was used as carrier solvent. Control refers to 
samples with direct pH measurements without buffer exchange. 

 

Generally, the pH values of PLGA 502H formulations dropped to lower levels as for 

PLGA 755S formulations. For both polymers, the controls showed the largest pH drops 

after the 4 weeks. Addition of magnesium hydroxide was able to maintain the pH values 

at around 7.4 for PLGA 755S formulations while for PLGA 502H formulations pH val-

ues of approximately 4.5 were measured. Sodium carbonate showed initially the highest 

pH values (> 9.5) whereas a significant pH drop could be observed after 4 weeks (> 

4.0). Interestingly, the addition of sucrose also allowed a reduction of the pH drop. For 

SAIB, only the controls showed a light pH drop below a value of 7.0. All other SAIB 

formulations remained unaltered.  

Figure 6-8 displays the optical depot degradation for PLGA 502H and SAIB formula-

tions over 4 weeks. A significant decrease in PLGA implant density and diameter could 

be seen for all samples. The same trend was also found for all other PLGA formulations 

(data not shown). However, SAIB degradation could not be observed visually in any 

case.  

C 
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B A 

Figure 6-8 Optical degradation from A 20% and 30% (w/w) PLGA 502H formulations which contained amorphous 
mAb1 (top rows) and mAb2 (bottom rows); B SAIB formulations with amorphous mAb1 (top rows) or mAb2 (bot-
tom rows) and either isopropanol 100% (Iso 100%) or ethyl acetate (EtAc) as carrier solvent. The left boxes show the 
depots immediately after injection and the right boxes after 4 weeks of incubation at 37°C 

 

The results did not allow to draw conclusions with respect to SAIB degradation. Neither 

the pH value nor the optical integrity of the SAIB depots changed during the study. 

However, this study confirmed an even optically visible PLGA into acidic species 

which was associated to a pH drop. Basic additives such as magnesium hydroxide were 

able to reduce the pH drop (PLGA 502H) or even to maintain the pH value at the 

around 7.4 (PLGA 755S). The increased pH values hindered acidic catalyzed degrada-

tion of the polymer which resulted in a more sustained mAb release (PLGA 755S;  

Fig. 6-4 & 6-5). Furthermore, the acidic catalyzed protein degradation was also mini-

mized which allowed an increased protein release from PLGA 502H depots (see section 

6.3.1.2.1) 42. 

6.3.1.4 Depot characteristics 

6.3.1.4.1  Phase inversion for PLGA depot systems 

The phase inversion is deemed to be an important factor which determines the extent of 

the initial drug burst release. This process of dynamic polymer solidification can be 

regulated by different factors such as the overall polymer concentration, the polymer 

molecular weight, the applied carrier solvent and additives 40. Slow inverting systems 

are reported to show small primary burst release 43. Higher polymer concentrations 

show a slower water influx and thus the time of the phase inversion itself is  

prolonged 9,44,45. Therefore, it was the aim to confirm the previously reported correla-

tions to the PLGA formulations used and to their degrees of initial drug burst release. 

To evaluate the phase inversion dynamics, 20%, 25% and 30% (w/w) of PLGA 502H 

  

PLGA SAIB 
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and 755S were dissolved in PEG 400 which was stained with a blue colored “PEG-

dye”. Phase separation was completed when PEG had completely diffused out from the 

polymer depot. This state was indicated by “PEG-dye” discoloration upon contact to the 

surrounding aqueous phase (Fig. 6-9). 

 

Figure 6-9 Example for a phase inversion study for a 20% (w/w) PLGA 502H depot formulation. Blank refers to 
colored PEG 400 without any PLGA 502H. 

 

For both PLGA polymers, time until complete discoloration was elevated with in-

creased polymer concentrations (Tab. 6-3). 

Table 6-3 Time of complete discoloration and thus duration of dynamic phase inversion for different PLGA 502H 
and PLGA 755S solutions in PEG 400. 

Polymer % [w/w] Time until com-

plete discoloration 

20% PLGA 755S  25 
25% PLGA 755S 60 
30% PLGA 755S 140 
20% PLGA 502H 100 
25% PLGA 502H 160 
30% PLGA 502H 220 

 

Notably, formulations which contained PLGA 502H showed longer phase inversion 

periods as systems consisted of PLGA 755S. A slower phase inversion indicates a slow-

er solvent exchange of the depot and thus smaller primary burst releases 43. However, 

detrimental observations were made during the release studies. 
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6.3.1.4.2 Syringeability 

Regarding patience compliance, syringeability is an important factor. It indicates the 

ability of a formulation to be administered by a thin needle with moderate pressure 

fores. 

The PLGA 502H/755S and SAIB formulations were assessed for their syringeability by 

variation of the needle diameter (20 G, 25 G, 27 G) and the syringe size (1 mL, 5 mL). 

Depletion time (10 s) and injection volume (0.5 mL) were kept constant during all tests. 

Syringeability was considered to be acceptable if the required force to eject a polymer 

solution within 10 s did not exceed 10 N 46. It could be observed that the syringeability 

was dependent on a series of factors (Fig. 6-10 A – C). 

An increased syringe volume resulted in a smaller outlet gap compared to the overall 

diameter of the syringe plunge and thus led to a dramatically increased force required 

for ejection (Fig. 6-10 A). Even the system check performed with highly purified water 

and an empty syringe showed larger values. A second important factor was the inner 

diameter of the injection needle. Smaller inner diameters resulted in increased ejection 

forces required (not shown). Notably, the values were distinctly elevated within a small 

polymer concentration range between 25% (w/w) and 30% (w/w) for PLGA 502H and 

PLGA 755S (Fig. 6-10 B). Syringeability for PLGA formulations was only achieved by 

applying a 20 G needle and polymer concentrations of 25% (w/w) and below. 

Generally, SAIB formulations were found to be superior compared to PLGA formula-

tions with respect to their required injection forces (Fig. 6-10 C). However, higher con-

centrated polymer solutions required large needle diameters to fulfill the predefined 

requirements for syringeability. 
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Figure 6-10 Forces [N] required for ejection of 0.5 mL depot formulation within 10 s by using a 1 mL syringe. A 
shows the results for 40 - 90% (w/w) SAIB in ethyl acetate and 80 - 90% (w/w) SAIB in isopropanol 100% through a 
20 G needle. B depicts the required ejection forces for 25% and 30% (w/w) PLGA solution in PEG 400 through a  
20 G needle. C shows the results for 40 – 90% (w/w) SAIB formulations with ethyl acetate as carrier solvent ejected 
through a 27 G needle and a 5 mL syringe. 

A 

B 

C 
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As summarized in Table 6-4 a dependency between polymer concentration and in case 

of SAIB, the carrier solvent and the required force for ejection was clearly demonstrat-

ed. 

Table 6-4 Syringeability of different SAIB and PLGA formulations in dependency to the needle diameter. Syringe-
ability was considered acceptable if the polymer solution could be ejected within 10 s with a force not exceeding 10 
N. NS means that no tested formulations met the defined requirements for syringeability. The percentage refers to 
(w/w). 

 SAIB PLGA 

Needle diameter Ethyl acetate Isopropanol 
100% 

502H 755S 

27 G 40 - 50% NS NS NS 
25 G 60 - 75% 40 - 75% NS NS 
20 G 80 - 90% 80 - 90% < 25% < 25% 

 

6.3.2 Lipid implants  

Lipid implants represent a novel and promising drug sustained release platform for bio-

pharmaceutics. Recently, Gerhard L. Sax presented a lipid formulation consisting of a 

low melting (H12) and a high melting (D118) lipid compound which allowed for a long 

acting and constant antibody release. Here the applicability of this formulation was test-

ed for mAb1 crystals 37. However, this approach required a protein in a dry state and 

thus mAb2 had to be excluded as no successful drying approach could be developed 

(see Chapter 3). mAb1 was vacuum-dried in accordance to a procedure introduced by 

Stefan Gottschalk during the preliminary study 29. Freeze-dried mAb1 was utilized as 

comparison to highlight the effect of the crystalline state on the protein drug release. 

PEG was used as pore forming agent as beneficial release modifying effects have al-

ready been introduced in literature 35,47. Furthermore, additional impact towards a con-

stant and prolonged release was anticipated as PEG also functions as crystallizing agent 

for mAb1. 

All lipid implants were produced applying the twin-screw extrusion procedure 37. Crys-

tals and amorphous mAb1 were each formulated with and without PEG as release mod-

ulator (Fig. 6-11). 
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Figure 6-11 Total mAb1 releases from various lipid implants. The implants contained either amorphous or crystalline 
mAb1 ± PEG 4000 as release modifier. 

 

In comparison, formulations containing PEG showed a lower concentration of mAb1 

released initially (burst). However, the slope of the release curves was steeper compared 

to their PEG free counterparts. A higher total protein release could be observed for these 

formulations until the end of the study. The highest bursts were observed for formula-

tions containing crystalline mAb1. With respect to a constant, prolonged protein drug 

release without initial drug burst, the implants containing amorphous mAb1 and PEG 

were found to be superior towards all other implant formulations. 

In a following experiment, SEM measurements were performed to investigate a poten-

tial attachment of the mAb1 crystals on the implant surface. Due to the crystal sizes  

(> 50 µm) a complete or partial exposure was deemed to be responsible for the initial 

drug burst release. Furthermore, it was aimed to investigate possible differences in the 

implant morphology after release. Therefore, the same lipid implant formulations were 

prepared by twin-screw extrusion and subsequently incubated for 10 weeks at 37°C. 

SEM microscopy was performed before (Fig. 13 D – E) and after incubation (Fig. 13 A 

– C). 
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Figure 6-12 SEM micrographs of lipid implants which were incubated and contained A freeze-dried mAb1before 
implant incubation; B crystalline mAb1 before incubation; C crystalline mAb1 (after incubation); D freeze-dried 
mAb1 (after incubation); E PEG 4000, but no protein (after incubation). 

 

Dependent on the protein state and presence of PEG, different surface appearances 

could be observed. After incubation, implants with crystalline mAb1 showed large cavi-

ties at the implant surface (Fig. 6-12 A). More and also larger cavities were observed 

throughout the whole surface of implants which contained freeze-dried PEG  

(Fig. 6-12 B). Implants without any protein but PEG showed very small holes on their 

surfaces (Fig. 6-12 C). Before incubation, a smooth surface could be seen for implants 

which contained amorphous mAb1 whereas visible attachments were observed for im-

plants with mAb1 crystals (Fig. 6-12 D - E). 

6.3.3 SAIB depots containing dried lysozyme crystals 

The effect of protein crystal drying prior to incorporation into a depot formulation was 

already highlighted by Pechenov et al. 12. Dried crystals showed a slower drug release 

compared to undried crystals. To confirm the presented considerations, a similar ap-

proach was researched for hot air dried lysozyme crystals (see Chapter 2). The crystals 

(5% (w/w) were formulated with 85% (w/w) SAIB and 10% (w/w) isopropanol 95%. 

The protein release was compared to formulations from freeze-dried lysozyme and non-

dried lysozyme crystals (Fig. 6-13).   

A B 

C D E 
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Figure 6-13 Total lysozyme release from a 85% (w/w) SAIB formulation. The formulations contained either freeze-
dried lysozyme, hot air dried or non-dried lysozyme crystals. 

 

The results showed a discrepancy between the hot air dried and the non-dried lysozyme 

crystals. While a large initial drug burst release was observed for the non-dried crystals, 

a little initial burst with a subsequently slow and constant lysozyme release was detect-

ed for the dried crystals. The freeze-dried lysozyme also showed a rather small initial 

burst release, but the following constant release was faster than for the dried and non-

dried lysozyme crystals. The results presented by Pechenov et al. could be confirmed by 

the present study for lysozyme crystals. Notably, no superior release kinetics could be 

confirmed for mAb crystals compared to freeze-dried mAb. 
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 Discussion 6.4

For mAb1 and mAb2, in situ forming depot formulations based on PLGA 502H, 755S 

and SAIB should be developed. Suitable polymer concentrations and solvents were de-

fined with respect to convenient preparation process (e.g. fast polymer dissolution) and 

viscosity of the final formulation. A low viscosity was deemed mandatory for a conven-

ient injectability of the final depot formulation. However, it was clear that by decreasing 

the polymer concentration the sustained release properties of the depot formulation 

would be reduced. Therefore, a compromise, especially for the PLGA depots was inevi-

table. PLGA dissolution in PEG 200 and PEG 300 resulted in solutions of high viscosity 

not suitable for injection, and thus, these solvents were excluded from the following 

studies. PEG 400 was identified as suitable solvent with acceptable viscosity of the final 

solution for PLGA 502H and 755S concentrations up to 30% (w/w). Consequently, 

PLGA concentrations of 20% and 30% (w/w) were applied for the following studies. 

SAIB was insoluble in all PEGs tested. Therefore, Isopropanol 100% and ethyl acetate 

were defined as solvents. SAIB showed a low viscosity in both solvents even at a con-

centration of 90% (w/w) which was chosen for the following studies. 

In vitro studies investigating in situ precipitating depot formulations are complicated by 

sophisticated implant preparation methods. The drug release is dependent on depot size, 

shape, thickness and contact points to the release container which hinder drug  

diffusion 10. To reduce the hindrance of drug diffusion, a new testing method was as-

sessed in that the depot was injected on a mesh to form discs of similar shapes. This 

mesh was placed in the middle of the release container. For each depot formulation, 

suitable mesh diameters were identified which allowed depot hardening without depot 

formulation leakage through the mesh. The validity of this set-up was confirmed by a 

higher protein release rate compared to disc shaped depots placed on the bottom of the 

release container. The latter one mimics a sustained release which is however caused by 

reduced depot surfaces with contact to the release media. The location on a mesh above 

the bottom allowed the protein drug to diffuse in all directions. It was clear that the 

mesh side would not allow a complete unimpeded release, but limitations by contact to 

container walls were diminished. 

Subsequently, mAb release studies from different PLGA and SAIB depot formulations 

were carried out. mAb1 and mAb2 concentrations of 5% (w/w) were used for all formu-
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lations. Mg(OH)2 and Na2CO3  were tested as pH modifier for the PLGA depots while 

sucrose was applied as pore former for SAIB depots as well. All additives were used in 

a concentration of 3% (w/w). These additives were assessed for their effect on the pro-

tein drug release. The drug release from any device is influenced besides others by the 

type of drug, its water solubility, the drug load, the water content of the depot, the type 

of polymer used, the presence of additives and the properties of the carrier solvent 12. 

Eliaz et al. stated that for low protein depot loadings the release would be determined by 

the rate of polymer degradation whereas for higher protein loadings additional diffusion 

processes enhance the drug release 13. By this, mAb release from PLGA and SAIB in 

situ precipitating depot systems should be determined by a combination of osmotic me-

diated events and polymer erosion and by drug diffusion 10,48. 

The results for PLGA implants without any additives showed that by trend higher pol-

ymer concentrations were linked to reduced initial drug burst which was in accordance 

to literature 13. This is usually caused by higher viscosities, decreased phase separation 

and water influx and thus lower protein diffusion into the surrounding medium during 

hardening 13. Generally, formulations with freeze-dried mAb showed a higher initial 

burst release and a higher total amount of released protein compared to formulations 

with mAb crystals. This was caused by sucrose which functioned as pore forming agent 

and thus release enhancer for the amorphous mAb. Sucrose was an unavoidable ingredi-

ent (5% (w/v)) for the freeze-dried product as it was required for mAb stabilization dur-

ing the freeze drying procedure. Sucrose functions as pore former due to its water ab-

sorptive properties and thus increased water contents within the depot without changing 

the polymer degradation by affecting the acid-base chemistry 49. Furthermore, sucrose 

was used to stabilize proteins due to its preferential hydration effects 50. However, addi-

tional sucrose used as pore forming agent even led to a reduced release of crystalline 

mAb2. On the contrary, the release of crystalline mAb1 was increased in a sustained 

fashion in presence of sucrose. The results show that protein release is not solely influ-

enced by the pore forming agent. Stability issues were also considered to reduce the 

protein release from formulations which contained crystalline mAb as it was shown that 

PEG induces mAb degradation (see Chapter 5). Furthermore, PLGA is known to de-

grade into acidic species which also can trigger protein instability 41. To overcome po-

tential protein instability and to improve the protein release, the antacid Mg(OH)2  and 

Na2CO3 were used as pH modifiers 23. Addition of such pH modifiers can enhance the 
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protein drug stability by inhibiting the formation of insoluble protein aggregates and 

hydrolytic effects 51. In addition, this class of additives can promote protein release by 

volume expansion. It triggers the formation of a pore network by increased water  

uptake 49. Notably, positive effects on the mAb release could be observed. The overall 

amount of released protein was increased in a sustained manner for both additives. 

Overall, these findings demonstrated that the pürotein drug release was enhanced by 

both, the pore forming effect of sucrose and the stabilizing properties by Mg(OH)2  and 

Na2CO3. 

SAIB was used as polymer for depot formulations with superior preservation of protein 

stability compared to PLGA depots as no degradation into acidic species is known for 

SAIB. Isopropanol 100% and ethyl acetate were chosen as carrier solvents for SAIB 

depot formulations even though their negative effect on mAb1 and mAb2 stability was 

known (see Chapter 3). No suitable alternative to these two solvents was available 

which was able to dissolve SAIB and to preserve the mAb1 and mAb2 stability. The 

present study was supposed to provide a first insight into SAIB depot formulations con-

taining mAb crystals. Furthermore, it was anticipated that the low organic solvent con-

tent of 10% (w/w) required for depot formulation would not trigger protein degradation. 

However, especially mAb2 crystal stability was obviously affected by the solvents as 

almost no protein was released from the depot formulations. This indicated severe pro-

tein degradation. Notably, a sustained release was obtained for the freeze-dried mAb2 

which indicated superior protection of the protein integrity in the dry, amorphous pro-

tein state compared to the crystalline state. The higher mAb1 release rates were also 

ascribed to higher protein stability during organic solvent contact (see Chapter 3). Here, 

the release from SAIB formulations with ethyl acetate was superior to the release from 

implants with isopropanol 100%. This was caused by an effect of the organic solvent on 

the protein integrity. Ethyl acetate was shown to preserve the crystal integrity best (see 

Chapter 3). The inferior mAb1 and mAb2 release from implants which contained su-

crose as pore forming agent remained unclear and needs further investigation. One ex-

planation is based on a faster crystal dissolution accompanied with enhanced contact to 

the organic carrier liquids during hardening caused by an increased water uptake of the 

depots triggered by sucrose 49. 

The degradation of the PLGA and SAIB depots was assessed by visual inspection and 

measuring of the pH. Depot degradation connected to the pH value was assumed as 
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PLGA degrades by formation of acidic species. For SAIB such a dependency is not de-

scribed and thus was assessed. Furthermore, the effect of the additives used during the 

release study on the pH values was tested. The study confirmed PLGA degradation into 

acidic species. pH values of 3 for PLGA 502H and 4 for PLGA 755S could be meas-

ured. The PLGA degradation was also optically visible. A protein degradation at such 

low pH values is plausible. Addition of magnesium hydroxide was able to reduce the pH 

drop (PLGA 502H) or even to maintain the pH value at around 7.4 (PLGA 755S). Con-

sequently, both additives protected the mAb against acidic mediated drug degradation 

which resulted in enhanced release profiles 42. The effect of sucrose on the pH value is 

caused by its pore forming effect. The acidic degradation products were washed out by 

an increased water influx into the depot. 

For SAIB, polymer degradation could not be assured by alteration of the pH value or by 

visible inspection. Consequently, the mAb release was predominately determined by 

drug diffusion. 

In a further experiment, phase inversion dynamics for PLGA depots was studied to as-

sess a dependency between the required time for phase inversion for different polymer 

concentrations and the primary burst release. Formulations from PLGA 502H showed 

longer phase inversion periods than depots consisting of PLGA 755S. A slower phase 

inversion should indicate a slower solvent exchange of the depot and thus smaller pri-

mary burst releases 43. Detrimental observations were made during the release studies 

which were explained by high protein diffusion rates during the solidification phase of 

the depot. The semi-solid state did not hinder the protein release which compensated the 

slow phase inversion. Furthermore, the effect of the additives on the phase inversion has 

to be studied in further experiments. 

Syringeability of the PLGA and SAIB depot formulations has also been studied. It is an 

important feature for patience compliance. For the injection study, 10 N was chosen as 

force limit as it was reported to allow for a easy and convenient injection 46. In accord-

ance with literature, all factors tested such as formulation viscosity, plunger size and 

needle diameter had an effect on the required injection force 46. SAIB formulations 

showed superior syringeability which raised attention with respect to further clinical 

application. In contrast, the PLGA formulations showed an acceptable syringeability 

only through a 20 G needle and at concentrations below 25% (w/w). Notably, the PLGA 
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polymer concentrations used for depot preparation during the present study were lower 

compared to approaches presented in literature. Pechenov et al. showed an excellent 

protein release from a 50% (w/w) PLGA/acetonitrile formulation which contained  

amylase crystals 12. This formulation would hardly be injectable with the aforemen-

tioned results regarding syringeability of 30% (w/w) PLGA formulations in mind. As 

significant lower polymer concentrations result in faster protein releases, formulation 

scientists would have to find a compromise between an acceptable syringeability and 

desired release properties. 

Lipid implants were tested as novel sustained release formulations for mAb crystals. 

However, no beneficial release kinetic was observed for mAb1 crystals. The initial high 

drug burst release was ascribed to the fact that protein crystals represent the highest 

concentrated protein formulation possible 28,52. Furthermore, the mAb1 crystals (platelet 

shape) could reach sizes of more than 100 µm. Considering a lipid implant diameter of 

approximately 2 mm, it would be obvious to expect certain crystal contacts to the im-

plant surface. This might result in a high initial drug burst release due to a fast unload-

ing of the crystalline protein depot. This assumption was confirmed by SEM micro-

graphs which showed crystalline structure on the implant surface while an even and 

uniform surface structure was observed for formulations which contained amorphous 

mAb1. As washing of mAb1 crystals with EtOH (see Chapter 3) reduces protein recov-

ery of SE-HPLC measurements, certain inaccuracy of the presented release profiles was 

considered. By that, steeper release curves and thus faster protein dumping into the re-

lease media can be anticipated for stable protein crystals. 

Dried protein crystals were shown to slow down protein release which could be con-

firmed for dry lysozyme crystals during the present study 12. A SAIB based depot for-

mulation was tested for hot air dried lysozyme crystals, undried lysozyme crystals and 

freeze-dried lysozyme. The crystals in the wet state were surrounded of dissolved pro-

tein and thus the protein was washed out faster of the depot with a large initial burst 

release. Drying of protein crystals reduced the water content of the crystals and thus 

resulted in prolonged rehydration times which slowed down the protein  

release 53,54. Compared to amorphous protein, protein crystals have a reduced surface in 

contact with the solvent and thus dissolved much slower. Consequently, the small initial 

burst release from the freeze-dried protein was followed by a faster protein release 

compared to the dried and non-dried lysozyme crystals. 



203 
 

 Conclusion 6.5

In conclusion, the vision of applicable depot formulations for mAb crystals could not be 

realized. No clear trend towards a superior drug release was found for the formulations 

tested. In all cases, amorphous mAb material showed favorable properties such as high-

er stability (SAIB depot with isopropanol 100%) and higher total protein release. Utili-

zation of additives enhanced protein release from crystalline mAb for only one mAb2 

formulation (30% (w/w) PLGA 502H and magnesium hydroxide). Regarding syringe-

ability, a compromise between an applicable polymer concentration enabling a desired 

protein drug release and the required injection force which allows for a convenient ap-

plication has to be found. 

SAIB still appears as promising polymer for depot formulations. Release kinetics as 

well as syringeability properties were superior compared to PLGA formulations. How-

ever, the choice of a suitable carrier solvent which preserves the protein drug integrity 

remains crucial. 

Vacuum dried mAb1 crystals did not show enhanced sustained release profiles com-

pared to freeze dried and thus amorphous mAb1. As the amorphous mAb1 showed an 

optimal, constant release profile without any burst it remains questionable if the crystal-

line mAb material would be able to provide distinct improvement during further studies. 

Studies with SAIB based depot formulations which contained hot-air dried lysozyme 

crystals, undried lysozyme crystals and freeze-dried lysozyme revealed enhanced re-

lease profiles for the dried crystals. This experiment proved the feasibility of protein 

crystals to offer superior features for depot formulations. However, the studies with 

mAb1 and mAb2 showed that a transfer of these findings to other protein crystals re-

mains challenging and has to be assessed for each single molecule. 
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7 Quality control of protein crystal suspensions using micro 

flow imaging and flow cytometry  

 Abstract 7.1

Protein crystallization is an attractive method for protein processing and formulation. 

However, minor changes in the crystallization set up can lead to changes in the crystal 

structure or the formation of amorphous protein aggregates, which affect product quali-

ty. Only few analytical tools for qualitative and quantitative differentiation between 

protein crystals and amorphous protein exist. Electron microscopy requires expensive 

instrumentation, demanding sample preparation and challenging image analysis. There-

fore, there is a need to establish other analytical techniques. It was the aim of this study 

to investigate the capability of light obscuration (LO), micro flow imaging (MFI) and 

flow cytometry (FC) in differentiating the amorphous and crystalline states of insulin as 

a relevant model. Qualitative discrimination of the two populations based on particle 

size was possible using LO. Quantitative determination of amorphous protein and crys-

tals by MFI was challenging due to overlapping size distributions. This problem was 

overcome by particle analysis based on mean light intensity. Additionally, flow cytome-

try was applied as a new method for the determination of the quality and quantity of 

amorphous protein by differences in light scattering. Our results show the potential of 

MFI and FC for rapid high through-put screening of crystallization conditions and 

product quality. 

 

Keywords: Insulin, crystallization, analysis, proteins, high-throughput technologies, 

flow cytometry, micro flow imaging, light obscuration, microscopy 
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 Introduction 7.2

Crystallization is an important protein processing, formulation and delivery tool, which 

is actively investigated at both the academic and industrial levels. This is because crys-

tallization offers a wide field of application, including controlling/prolonging drug re-

lease reducing the viscosity of highly concentrated solutions by using crystal suspenion 

increasing protein stability 1-4. However, it also offers a number of challenges, including 

the need to identify protein friendly crystallization processing conditions. Among the 

problems in protein crystal development is the fact that minor changes in crystallization 

conditions (changes in temperature, pH, concentration of additives or mechanical treat-

ment) can lead to changes in product quality, such as changes in crystal morphology, 

size, stability or even precipitation of the protein in an amorphous form 3,5. Rapid evalu-

ation of product quality is difficult, as there are still very few analytical methods for the 

quantitative characterization of protein crystals. The methods are traditionally divided 

into those that characterize morphology, and those that prove crystallinity. For the as-

sessment of particle morphology and size distribution, microscopy, particularly electron 

microscopy is the most common method to analyze protein crystals 6. Despite the 

strength electron microscopy, it is a time consuming, low-throughput method that re-

quires expensive instrumentation and non-trivial image analysis 7. On the other hand, X-

ray diffraction is commonly utilized to assess crystallinity, but needs perfectly grown 

crystals larger than 50 µm 8. Therapeutic protein crystals should be much smaller due to 

syringeability issues 8. Thus, it would be beneficial to establish different analytical 

methods, which can overcome these drawbacks and allow a simultaneous determination 

of amorphous impurities and proof crystallinity. 

In the current study, we investigated the ability of microflow imaging and flow cytome-

try to rapidly characterize the quality of protein crystals. For this purpose, we used insu-

lin as a model protein. Crystalline insulin products from different manufacturers have 

huge market sales and have regulatory approval since decades 8,9. Minor changes in in-

sulin’s crystallization process are known to change the crystal morphology, and foster 

amorphous precipitation 10. Accordingly, microflow imaging (MFI) and flow cytometry 

(FC) were benchmarked against standard methods, namely light obscuration (LO), light 

microscopy (LM) and scanning electron microscopy (SEM).  
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 Materials and Methods 7.3

7.3.1 Materials 

Insulin in crystal form (Insuman® basal) was a kind gift from Sanofi-Aventis (Frankfurt 

a. Main, Germany). Human insulin (Humulin) (100 I.E. injection solution) from Lilly 

(Gießen, Germany) was purchased from the market. Lysozyme from chicken egg white 

as lyophilized powder (protein > 90 %, > 40,000 units/mg protein) was purchased from 

Sigma-Aldrich (Taufkirchen, Germany). Sodium acetate (USP standard, analytical qual-

ity) was obtained from Merck (Darmstadt, Germany). Sodium chloride (AnalaR NOR-

MAPUR) was obtained from VWR Prolabo (Leuven, Belgium). Zinc chloride was pur-

chased from Ceasar & Lorenz (Hilden, Germany). 

7.3.2 Methods 

7.3.2.1 Amorphous precipitation of insulin 

Amorphous insulin precipitates were obtained by mixing human insulin with a saturated 

zinc chloride solution in highly purified water at a 1:2 ratio.  

7.3.2.2 Light microscopy  

For microscopy a Biozero BZ-8000 microscope from Keyence (Neu-Isenburg, Germa-

ny) was used. The application BZ viewer was employed for analysis purposes. The 

samples were covered with glass cover slides. Examinations were carried out at 400 fold 

magnification. 

7.3.2.3 Scanning electron microscopy (SEM) 

A JEOL JSM 6500F scanning electron microscope (Jeol Ltd, Tokyo, Japan) with Inca 

Software (Oxford instruments, Oxfordshire, UK) was utilized for particle morphology 

confirmation. Samples were sputtered with carbon after sample fixing with self-

adhesive tape on aluminum stubs. Samples were viewed at a magnification of 2000 – 

11000 fold. 

7.3.2.4 Particle counting (LO) 

A PAMAS SVSS-C40 (PAMAS GmbH, Rutesheim, Germany) light blockage system 

was utilized to size (1 - 200 µm) and count particles. Particle count was classified into 

16 different size ranges. The rinsing volume was set to 0.5 mL and the measurement 

volume to 0.3 mL. 
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7.3.2.5 Micro flow Imaging (MFI) 

Particle size and mean intensity was measured using a micro flow imaging system from 

Brightwell Inc. (Ottawa, Canada). A constant particle stream was confirmed by utilizing 

a peristaltic pump. The sample volume was set to 1 mL. Calibration was performed with 

5 µm polystyrene particle standards (Thermo Scientific, USA). 

7.3.2.6 Flow cytometry (FACS) 

A Bioscience flow cytometer FACS Canto II (Bioscience, Franklin Lakes NJ, USA) 

equipped with forward- and side scattering laser was utilized to analyze protein crystals 

and amorphous precipitates. Detectors gain and sensitivity were optimized to maximize 

particle detection. The forward scatter detector (FSC) was set to 231 volts and the side 

scatter (SSC) detector was set to 191 volts. 
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 Results 7.4

Insuman® basal is an approved crystalline insulin product, therefore chosen as a model 

crystalline protein. Samples containing crystals and amorphous precipitate were pro-

duced by mixing suspended insuman basal samples (1 mL) with 2 µL of precipitated 

human insulin to simulate product impurities. This set up was employed for all analyti-

cal assessments. 

Light microscopy and electron microscopy were utilized to characterize particle size 

and shape. Both methods displayed an oblong shape for the crystals with a Ferret di-

ameter of 8 µm and 1 µm in width (Fig. 7-1). Amorphous precipitates appeared as 

spherical particles sized up to 2 µm that tend to form clusters. After mixing of crystals 

and amorphous precipitates, both structures remained unaltered and were easily detecta-

ble. However, only qualitative information could be obtained from the images. Quanti-

fication was not possible due to clustering of the particles and the transparency of some 

particles. 

 

Figure 7-1 Light microscopy images of a) amorphous human insulin b) insuman basal crystals c) mixture of insuman 
basal crystals and human insulin amorphous precipitates. The scale bar represents 25 µm. SEM micrographs of d) 
human insulin amorphous precipitates e) insuman basal crystals f) mixture of insuman basal crystals and human 
insulin amorphous precipitates 
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The different samples were analyzed by light obscuration (LO), a standard method for 

particle characterization. LO measurements of the different protein samples showed that 

they differ in the mean size (1.64 vs. 10.24) and PDI (2.13 vs 11.66) (Tab. 7-1) for the 

amorphous and crystalline particles, respectively (Fig. 7-2 a, b). Over 99% of the amor-

phous aggregates were smaller than 4.1 µm (Fig. 7-2 a) while over 93% of the crystal-

line insulin were larger than 4.1 µm. Thus, two distinct particle fractions can be discrim-

inated, even in the mixture of both materials (Fig. 7-2 c). 

  

 

Figure 7-2 shows the SVSS-C PAMAS particle counter (LO) measurement of insulin: a) amorphous insulin aggre-
gates, b) insulin crystals, c) mixture of amorphous insulin aggregates and insulin crystals. 

 

Table 7-1 Mean size and polydispersity index (PDI) of the SVSS-C PAMAS particle counter (LO) of amorphous 
insulin aggregates and insulin crystals are displayed.  

 Mean size (µm) PDI 

amorphous aggregates 1.64 2.13 
crystals 10.24 11.66 

 

A B 

C 
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The image-analysis-based micro flow imaging system detects particles flowing through 

a capillary, where the particle stream is imaged by a camera. Particle size is calculated 

by the image analyzing software, which also provides information about particle mor-

phology 11. Besides particle count, the mean intensity of the particle is assessed. This 

feature gives information about the optical density and can be used as a tool to distin-

guish between aggregates and crystals.  

In contrast to LO, assessment of particle size using MFI does not show a clear separa-

tion into two different populations. Although the mean size of the aggregates is rather 

small compared to the crystals, (2.92 vs. 10.63, respectively), the particle distribution is 

rather broad (PDI = 10.64 for the aggregates and 13.53 for the crystals) (Fig. 7-3), so 

that the two populations overlap in the mixture (Fig. 7-3 g). Thus, analysis of the mean 

intensity was used for better discrimination. The standard MFI software offers the pos-

sibility to determine the grey scale of the detected objects. The mean intensity is a di-

mensionless number with low values for dark objects. While amorphous precipitates 

show a mean intensity of approximately 801 (Fig. 7-3 b), the crystal values are around 

644 (Fig. 7-3 e), indicating that the crystals appear darker in the MFI images. Using this 

method, two separate populations can be easily identified and quantified as shown in 

Figure 7-3 h. 
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Figure 7-3 MFI size distribution measurements of A amorphous insulin aggregates, D crystalline insulin, G mixture 
of crystalline and amorphous insulin. Mean intensity measurements of B amorphous insulin aggregates, E crystalline 
insulin and H mixture of crystalline and amorphous insulin. MFI images of C amorphous insulin aggregates, F crys-
talline insulin, I mixture of crystalline and amorphous insulin. 

 

Flow cytometry (FACS) was used as an additional tool for the analysis of aggregate and 

crystalline insulin particles. FACS measurements in the range of 0.5 – 20 µm of protein 

subvisible particles have already been reported 12. Results show that based on light scat-

tering, one can identify distinct populations in FACS dot plots. While the protein crys-

tals show relatively high side and forward scatter, the aggregates are expressed in a 

population with lower forward and side scatter (Fig. 7-4), allowing the identification of 

those impurities in the mixture (Fig. 7-4 c). 

A B C 

D E F 

G H I 
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Figure 7-4 FACS dot plots of A amorphous insulin, B insulin crystals, C mixture of amorphous and crystalline insu-
lin. 

 

  

A B 

C 
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 Discussion 7.5

Product quality of protein crystal suspensions is strongly dependent on reproducible 

production conditions. Minor changes can lead to precipitation of amorphous protein 

aggregates. An appropriate analytical tool should allow for the determination of the 

product´s quality and would also quantify the degree of impurities. Microscopic tech-

niques are often used to confirm the crystalline state. However, the accurate quantifica-

tion of impurity needs the effort of using electron microscopy (including sample prepa-

ration) and non-trivial image analysis. In contrast to microscopic observations, the 

methods investigated in this study allow rapid quantitative analysis of product quality 

and are amenable for high throughput analysis, thus allowing the screening of protein 

crystallization conditions or monitoring crystal quality by frequent in process controls. 

Light obscuration was tested as a method that is commonly used in product particle 

analysis. This approach can size particles in the amorphous and crystalline state. LO 

measurements show that amorphous precipitates were in the size range of 1 - 5 µm 

while crystals show sizes from 4 - 25 µm (Fig. 7-2 a, b). In our experiments, differentia-

tion between crystals and amorphous aggregates was possible based solely on particle 

size. However, if the particle sizes in other samples were similar or the distributions 

were broader, a differentiation based solely on size would have not been possible. 

Meanwhile, MFI showed a larger size range for the amorphous aggregates (1 - 12 µm) 

and for the crystals (0.75 µm - 26 µm) compared to LO. Such differences between MFI 

and LO were reported previously while measuring standard polystyrene particles of 

different sizes and shapes 13. One possible reason is the lower accuracy of LO for parti-

cles smaller than 2 µm. Due to the broad size distribution; identification of the crystals 

and amorphous aggregates based on particle size only was not possible, as both groups 

overlapped. However, using the mean intensity allowed the identification of two sepa-

rate populations based on the fact that the crystals appeared darker than the amorphous 

aggregates. Possible reasons for this can be different refractive indices between the 

crystals and aggregates, or greater thickness (and accordingly greater path length) for 

the crystals, associated with larger light scattering.  

FACS was also used in this study. The use of this tool was described before in context 

of protein aggregate analysis or contamination with silicone oil in biopharmaceutical 

products 12-14. The flow cytometer can measure large particle numbers (up to 5000 parti-
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cles/s) in a very short time frame. This single particle measurement method can analyze 

size ranges from 0.5 to 100 µm. To our best knowledge, this is the first reported use of 

flow cytometer for differentiation of protein crystals and amorphous precipitates. FACS 

measurements expressed as dot plots show the aggregates as a population with relative-

ly low forward and side scatter (Fig. 7-4 a). Contrary, the oblong protein crystals show a 

different scattering pattern dependent on the orientation of the crystal with respect to the 

incident light beam, with higher forward and side scatters (Fig. 7-4 b). These results 

allow for qualitative and quantitative and clear discrimination between insulin crystals 

and amorphous precipitates.  
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 Conclusion  7.6

The presented study shows the potential applicability of micro flow imaging and flow 

cytometry for the differentiation between crystalline and amorphous protein precipitates 

and the assessment of crystalline protein quality. MFI and FACS are rapid and reliable 

methods which provide quantitative statistically valuable information. To the best of our 

knowledge, MFI and FACS were used for the first time for determination of amorphous 

impurities in protein crystal suspensions. The presented tools open new possibilities in 

industrial early phase crystallization screening as well as large scale product quality 

control of crystalline biopharmaceutical products. 
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Chapter 8 
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8 Final summary of the thesis 

mAb crystal suspensions were deemed to offer superior features compared to their solu-

tion counterparts in terms of stability and reduced viscosity enabling subcutaneous in-

jection. Slow dissolving and stable mAb crystals would also allow the development of 

novel sustained release formulations. However, a wide implementation of protein crys-

tal formulations suffers from limitations in finding suitable crystallization conditions. 

Such conditions would have to be biocompatible and must not result in protein degrada-

tion. Until today, a precise prediction of crystallization conditions is extremely complex 

and hardly to achieve and thus usually ends in extensive screening approaches. Howev-

er, the opportunity to obtain stable mAb crystals formulations with superior properties 

compensates the effort and risk of failure. 

With this in mind, a project (preliminary study - PhD thesis Stefan Gottschalk at LMU 

Munich) was conducted with the purpose to find suitable and biocompatible crystalliza-

tion conditions for two full length IgG1 antibodies (mAb1 and mAb2) and one antibody 

fragment. His aim was to develop stable crystal suspensions suitable for subcutaneous 

injection and for the development of sustained release formulations. Biocompatible 

large scale crystallization conditions were successfully determined for all three proteins. 

However, the formulations showed low protein crystal stability against ambient or high-

er temperatures which was expressed aggregates after crystal dissolution. Furthermore, 

Stefan Gottschalk studied the effect of vacuum drying on the stability of mAb1 crystals 

and investigated the applicability of the antibody crystals for sustained release formula-

tions. The results for the drying approach were promising while no advantageous fea-

tures for mAb crystals as platform for sustained release formulations could be present-

ed. 

Consequently, the feasibility of the concept to grow highly stable mAb crystals from 

biocompatible conditions was still arguable at the end of the preliminary study by Stef-

an Gottschalk. Therefore, the present study was carried out in order to prove this con-

cept and to stabilize the crystals from the two IgG1 antibodies by, amongst others, dry-

ing and to use the stabilized crystals as platform for sustained release formulations. The 

cause of aggregate formation and its origin within the crystal suspensions was also to be 

investigated. The project was started with a proof of concept study with a model protein 

for that successful crystallization was already described.  
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In chapter 2, the aforementioned model study is presented which describes a procedure 

to obtain a dry, stable and biologically active crystalline protein material. Lysozyme 

was chosen as model protein since crystallization has been successfully performed since 

decades and several crystalline polymorphs were known. This was desired as the stabil-

ity of protein crystals was deemed to be dependent on the polymorphic form. Three dif-

ferent lysozyme crystals shapes (needle, octagonal, orthorhombic) were obtained in the 

same crystallization buffer only by variation of the crystallization agent´s concentration. 

The polymorphs were assessed for their handling and manufacturing properties which 

revealed different features dependent on the crystal shape. Hot-air drying was chosen as 

drying technique for lysozyme crystals. During the procedure, the crystals were trans-

ferred into a volatile organic liquid and were subsequently dried in an inert gas stream 

of nitrogen by solvent evaporation. Freeze drying was assessed in a comparative study. 

However, the lysozyme crystals broke during the freeze step by volume expansion of 

the frozen water. An extensive solvent screening was required to realize the hot-air dry-

ing approach. Within this screening only one out of the three crystal polymorphs, the 

octagonal shape, was found to maintain exposure to certain ethanol and isopropanol 

concentrations. These solvents were identified to be ideal for the final drying step by 

solvent evaporation as other volatile organic solvents such as ethyl acetate induced irre-

versible crystal agglomeration during washing and drying. As final product after drying, 

a free flowing powder of octagonal lysozyme crystals was obtained which maintained 

its biological activity which was confirmed by a specific bioactivity assay. SE-HPLC, 

light obscuration, turbidity and light microscopy analysis allowed to identify isopropa-

nol 95% as best washing liquid with respect to protein and crystal stability. In summary, 

a model procedure was introduced which highlighted the need for a suitable protein 

crystal polymorph which provides excellent features for further formulation procedures. 

A reasonable concept to produce dry and stable protein crystals was demonstrated. This 

concept should be transferred to mAb1 and mAb2 during the further course of the pre-

sent study.  

Chapter 3 describes the transfer of the successful drying approach for lysozyme to 

mAb1 and mAb2 crystals. Besides hot-air drying, the implemented (by Stefan 

Gottschalk) vacuum drying procedure for mAb1 crystals was used. Freeze drying was 

also assessed which represented a standard drying procedure for biologics. During the 

present study, the vacuum drying approach could not be successfully reproduced for 
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mAb1 crystals with respect to protein stability. The washing step with isopropanol 85% 

was identified to cause aggregate formation. Consequently, an extensive solvent screen-

ing like for the lysozyme crystals was performed for mAb1 and mAb2 crystals to identi-

fy more suitable washing liquids. The only washing liquid which met all requirements 

(crystal integrity maintained, volatile, etc.) was ethyl acetate. However, extensive wash-

ing with this liquid resulted in irreversible crystal agglomeration. A transfer of the suc-

cessful drying procedure for lysozyme crystals to the mAb crystals was therefore not 

achieved. Finally, crystal drying by freeze drying resulted in crystal destruction during 

the freezing step by volume expansion of the frozen water.  

Chapter 4 describes different screening approaches for mAb1 and mAb2 crystal poly-

morphs. Crystallization of both mAbs resulted in constant aggregate formation over 

time as already demonstrated by the preliminary study from Stefan Gottschalk. The un-

favorable needle-like crystal morphology was deemed to provide small numbers of pro-

tein-protein interactions and thus small protein stabilization. Furthermore, one key fac-

tor during the lysozyme study was a successful screening for crystal polymorphs. For 

mAb1 and mAb2 crystals no polymorphs have been described so far. Several strategies 

were followed to grow new morphologies with enhanced features. The implementation 

of agitation, different crystallization temperatures, pH shifts, high hydrostatic pressure 

and additives was tested. However, the possibilities to alter the crystallization condi-

tions, especially the buffer as strongest tool, were restricted to only small changes in 

order to maintain their biocompatibility. Unfortunately, no new crystal polymorphs 

could be found. Small changes in the crystal shapes were not stable under ambient con-

ditions or were associated to aggregate formation. 

High hydrostatic pressure was further tested for its feature to dissociate aggregates with-

in mAb1 and mAb2 crystal suspensions. It could be shown that mAb aggregates can be 

dissociated at low pressure levels around 150 MPa. Consequently, this feature deserves 

attention for further studies as reduction of aggregate contents of mAb formulations was 

presented – with best knowledge – for the first time. Further research is required to im-

prove complete understanding of this approach towards mAb crystallization and stabil-

ity. 

One essential factor to stabilize protein crystal formulations would be the knowledge 

about the underlying instability mechanisms. Therefore, in chapter 5, a study was per-
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formed to investigate the cause for aggregate formation detected for mAb1 and mAb2 

crystals. A large set of analytical tools which comprised among others LC-MS, SE-

HPLC, light obscuration, IEF, SDS-PAGE, nephelometry and FACS was used for anal-

ysis. Two different pathways of aggregate formation were identified for the two anti-

bodies. For mAb2, deamination was induced by the high phosphate salt concentration 

and low pH value of the mAb2 crystallization system. Oxidative protein degradation 

processes caused by PEG impurities (peroxides, formaldehyde) were identified for 

mAb1. A clear dependency of the level of aggregate formation on peroxides and for-

maldehyde was shown. A minimum level of both compounds is vital to start the crystal-

lization. The crystallization is accompanied by aggregate formation since both, precipi-

tation and aggregate formation, are dependent on formaldehyde induced protein linkage 

and oxidation. Furthermore, labelling studies enabled to localize the aggregate for-

mation in mAb1 formulations. The results revealed that the aggregates were foremost 

formed in the supernatant and subsequently attached/incorporated into the crystal lat-

tice. The crystalline state is deemed to stabilize the protein even within the harsh crys-

tallization conditions. This was confirmed by expansion of the analytics to the in the 

sub-micron range more sensitive FACS device which revealed higher aggregate levels 

in the supernatant. A similar mechanism is assumed for mAb2. Consequently, an intrin-

sic protein instability in the crystalline state cannot be stated. Successful protein crystal-

lization would consequently be dependent on suitable crystallization conditions which 

would allow to grow protein crystals and to maintain the protein integrity in the super-

natant. This perquisite represents the fundamental challenge during protein crystalliza-

tion.   

Chapter 6 addressed the question whether protein crystals are beneficial for the formu-

lation of depots or not. In situ forming depot formulations which consisted of PLGA 

502H or 755S (mAb1, mAb2), SAIB (mAb1, mAb2, lysozyme) and solid depot forms 

such as lipid implants (mAb1) were developed and tested for crystalline and amorphous 

protein. To enhance protein drug release, additives such as the pore forming sucrose or 

Mg(OH)2 and Na2CO3 as pH modifiers were tested. The study was completed by inves-

tigation of the phase inversion dynamics of the PLGA depot formulations and the as-

sessment of syringeability and depot degradation of the PLGA and SAIB depot formu-

lations. 
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For the in situ forming depot formulations from PLGA and SAIB, a new release method 

was introduced. The formulation was placed on a mesh in the middle and above the bot-

tom of the release container to enable unhindered drug diffusion to all sides. The validi-

ty of this set-up was confirmed by a higher protein release compared to depots placed 

on the bottom of the release container. 

During the study, no superior drug release profiles of mAb crystals were found for the 

formulations tested. Amorphous mAb material showed superior release kinetics and 

higher stability towards the compounds used for depot formulation. Introduction of ad-

ditives showed small effects. One mAb2 crystal formulation (30% (w/w) PLGA 502H 

and magnesium hydroxide) displayed enhanced release profiles compared to its amor-

phous counterpart. 

Phase inversion studies showed detrimental results towards the literature. The slower 

hardened PLGA 502H showed a higher initial drug burst release. Regarding syringe-

ability, exclusively low PLGA concentrations were found to be injectable with accepta-

ble injection forces (10 N). Consequently, a compromise between an applicable polymer 

concentration enabling a desired protein drug release and the required injection force 

which allows for a convenient application has to be found. 

The release kinetics as well as syringeability properties of SAIB were superior com-

pared to PLGA formulations. However, the choice of a suitable carrier solvent which 

preserves the protein drug integrity remains crucial. mAb1 and mAb2 showed instabil-

ity in the solvents used for the SAIB depot formulations (ethyl acetate, isopropanol 

100%) and thus affected release profiles. Amorphous mAb1 and mAb2 showed superior 

release kinetics. 

Vacuum dried mAb1 was used for lipid implant depot formulations and compared to 

amorphous mAb1. Again, the crystals did not show enhanced sustained release profiles 

compared to the amorphous counterpart. The amorphous mAb1 showed an optimal, 

constant release profile without any burst. 

Notably, studies with SAIB based depot formulation which contained hot air dried lyso-

zyme crystals, undried lysozyme crystals and freeze-dried lysozyme revealed enhanced 

release profiles for the dried crystalline material. The general feasibility of protein crys-

tals to offer superior features for depot formulations was demonstrated. However, the 
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aforementioned studies with mAb1 and mAb2 suggested that a transfer of the results for 

lysozyme crystals to crystals of other proteins remains challenging. 

In chapter 7, novel analytical approaches to distinguish between amorphous and crys-

talline precipitates are presented. In order to detect and quantify amorphous impurities 

in insulin crystal suspensions, traditional techniques like microscopy and light obscura-

tion were compared to new analytical tools such as micro flow imaging (MFI) and flow 

cytometry (FACS). Superior performances were observed for the new techniques which 

enabled an easy and high throughput detection and quantification of amorphous aggre-

gates besides insulin crystals. MFI and FACS were used for the first time for determina-

tion of amorphous impurities in protein crystal suspensions. These techniques allow for 

analysis of impurities in protein crystal suspension without microscopic examination. 

In summary, the present study demonstrated that mAb1 and mAb2 crystals do not ex-

hibit superior features compared to their amorphous and solution counterparts. Howev-

er, the (at the beginning of the study) hypothesized destabilizing properties of mAb 

crystallization and the crystalline state could be disproved. The aggregates detected after 

dissolution of the mAb crystals originated in the supernatant and not from the crystals. 

In contrast, superior protein crystal features were shown for the model protein lysozyme 

for that different crystal polymorphs with different properties were presented. The best 

polymorph could be dried to a free flowing powder and allowed development of a depot 

formulation with enhanced release kinetics compared to depots containing amorphous 

lysozyme. This demonstrated that the concept to grow highly stable protein crystals 

with beneficial features remains realizable. Therefore, future studies should focus on the 

definition of suitable crystallization conditions from that crystal polymorphs with de-

sired features can be grown. Furthermore, as crystallization takes place until a dynamic 

equilibrium is reached the crystallization conditions should not induce protein degrada-

tion in the supernatant. Crystallization conditions for therapeutic proteins are limited to 

biocompatible ones and thus crystals with superior features compared to liquid or amor-

phous states would not be reached in each case. The feasibility of the concept to grow 

highly stable mAb crystals from biocompatible conditions has to be proven for each 

single molecule. 
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