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Abbreviations	  

Ab    Antibody 
ACR    American College of Rheumatology 

AMV  Avian myoblastosis virus 

ANOVA  Analysis of variance 
Anti-CCP  Anti-cyclic citrullinated protein  

APC   Antigen presenting cell 

ATP  Adenosine triphosphate 
bp  Base pair 
CD  Cluster of differentiation 

cDNA  Complementary DNA 

CRP  C-reactive protein 
DAS28  Disease activity score 28 

DDT  Dichlorodiphenyltrichloroethane 

DMARD  Disease-modifying anti-rheumatic drug 
DMSO Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 
dNTP Deoxyribonucleotide triphosphate 

E.coli  Escherichia coli 
EDTA  Ethylenediaminetetraacetic acid 

ESR  Erythrocyte sedimentation rate 

EULAR European League Against Rheumatism 
FACS  Fluorescence activated cell sorting 

FCS Fetal calf serum 

FITC  Fluorescein isothiocyanate 
FOXP3 Forkhead box P3 
GARP Glycoprotein A repetitions predominant 

gDNA  Genomic DNA 

HC  Healthy control 
IL  Interleukin 

IPTG  Isopropyl β-D-1-thiogalactopyranoside 

iTreg  Induced regulatory T cells 

LB  Lysogeny broth 
MACS Magnetic activated cell sorting 
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MHC  Major histocompatibility complex 
mRNA messenger RNA 

MTX  Methotrexat 

NHS  Normal human serum 
NK cells  Natural killer cells 

NSAID  Non-steroidal anti-inflammatory drug 

nTreg Natural regulatory T cells 
OD Optical density 
PCR  Polymerase chain reaction 
PBMC Peripheral blood mononuclear cells 
PBS  Phosphate buffered saline 
PE  Phycoerythrin 

PEG Polyethylene glycol 

PFA Paraformaldehyde 
RA  Rheumatoid arthritis 

RF  Rheumafactor 

RNA  Ribonucleic acid 

RT  Reverse transcriptase 
RT  Real time 

SD Standard deviation 

SEM Standard error of the mean 
SNP Single nucleotide polymorphism 
S.O.C medium Super Optimal Broth medium 
TAE  TRIS-Acetate-EDTA 
Taq polymerase  Thermus aquaticus polymerase 
TCR T cell receptor 

TGF  Transforming growth factor 

Th-cell T helper-cell 
TNF  Tumor necrosis factor 

Treg cells  Regulatory T cells 

X-Gal  5-bromo-4-chloro-indolyl-β-D-galactopyranoside 
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Summary	  

Regulatory T cells (Tregs) have been implicated in the maintenance of peripheral tolerance 

and controlling of autoimmune disease development. Rheumatoid arthritis (RA) is a chronic 

inflammatory autoimmune disease characterized by development of bone erosions and severe 

joint destructions. The importance of Tregs in RA has been proven in both patients and 

animal models. Glycoprotein A repetitions predominant (GARP) has been recently identified 

to be specifically expressed on human Tregs and is important for the suppressive capacity of 

Tregs. Recent studies have highlighted the important role of miRNA-mediated post-

transcriptional regulation in many immunological processes including their involvement in 

regulating the function of human Tregs. During my PhD study I therefore investigated the 

involvement of miRNA-regulated GARP in Treg function and moreover miRNA regulation 

of Treg function in RA. 

GARP possesses a 2 kb long 3’UTR. In the first part of my PhD study I could demonstrate 

that the distal part of GAPR 3’UTR was capable to down-modulate GARP protein expression 

via a microRNA recognition element (MRE) of miR-142-3p. The attenuation of GARP 

expression by miR-142-3p led to the diminution of Treg proliferation and their regulatory 

capacity, indicating the important role of miR-142-3p in Treg homeostasis and function. 

Thereafter the expression levels of miR-142-3p and GARP in Tregs of patients with RA were 

further analyzed. The up-regulation of miR-142-3p upon TCR stimulation was more 

prominent in RA Tregs than healthy individuals (HC). Accordingly reduced level of GARP 

expression upon TCR stimulation was observed in Tregs of RA as compared to HC Tregs. 

Genotyping analysis of GARP 3’UTR region revealed that two single nucleotide 

polymorphisms (SNPs), rs1320645 and rs1320646, presented differently in RA patients. 

Furthermore, two haplotypes of the 3’UTR of GARP also distributed variously in RA 

patients. 

Two additional miRNAs, miR-146a and miR-155 have been implicated in RA pathogenesis. 

In the next part of my PhD study, I analyzed their expression in Tregs of RA and their 

influence on Treg phenotype. Both miRNAs, miR-146a and miR-155, demonstrated 

diminished expression in Tregs of RA patients. The Treg-specific diminution of miR-146a 

expression was observed in particular in patients with active disease and correlated with joint 

inflammation. Analysis of the expression of their putative targets that are involved in NF-κB 
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signaling pathway suggested impaired mRNA expression of IRAK1, TRAF6 and IKKε. NF-

κB activity was however comparable between RA patients and healthy individuals. Yet, 

mRNA expression levels of other targets, STAT1 and SOCS1, which are the regulators of 

cytokine signaling, were elevated in patients with RA. The expression level of STAT1 mRNA 

correlated with the expression level of miR-146a but not of SOCS1 with miR-155. 

Interference with miR-146a altered the expression and phosphorylation of STAT1. In this 

regard, Tregs of active RA patients demonstrated pro-inflammatory phenotype characterized 

by increased IL-2, IFNγ,  IL-17 and TNF expression although the suppressive capacity of 

these Tregs was not interfered. Moreover, diminished levels of miR-146a and miR-155 were 

observed in serum from patients with RA. 

In summary, in my PhD study, I identified and characterized miR-142-3p regulation of GARP 

expression in Tregs. Delineation of miR-142-3p expression and the linked GARP expression 

in RA provides an important hint for the impaired Treg proliferation and function in RA. 

Analysis of SNPs and haplotypes of the 3’UTR of GARP bring an additional concept for 

decreased GARP expression in RA. Further analysis of the expression levels of miR-146a and 

miR-155, which interfere with cytokine signaling pathway, illuminated further fact of RA 

Treg. Thus in RA miRNAs control different specific aspects of Treg function by regulating 

the expression of their target genes and thereby might contribute critically to RA 

pathogenesis.

 

 



Zusammenfassung 	  
 

 

5 

Zusammenfassung	  

Regulatorische T-Zellen (Tregs) sind mit der Aufrechterhaltung der peripheren Toleranz und 

der Kontrolle der Entstehung von Autoimmunerkrankung in Verbindung gebracht worden. 

Die rheumatoide Arthritis (RA) ist eine chronisch-entzündliche Autoimmunerkrankung, die 

durch die Entwicklung von Knochenerosionen und schweren Gelenkzerstörungen 

charakterisiert ist. Die Bedeutung von Tregs für die RA ist sowohl bei Patienten als auch in 

Tiermodellen nachgewiesen worden. Glycoprotein A repetitions predominant (GARP) wird 

spezifisch auf menschlichen Tregs exprimiert. Dessen Expression ist von kritischer 

Bedeutung für die regulatorische Kapazität von Tregs. Jüngste Studien haben die wichtige 

Rolle der miRNA-vermittelten posttranskriptionellen Regulation bei vielen immunologischen 

Vorgängen nachgewiesen, unter anderem ihre Beteiligung an der Funktion von Tregs. Im 

Rahmen meiner Doktorarbeit habe ich daher den Einfluss der durch miRNA-regulierten 

GARP-Expression auf die Treg-Funktion analysiert. Darüber hinaus habe ich die miRNA-

Regulation der  Treg-Funktion in der RA untersucht. 

Ich habe zeigen können, dass der distale Teil der 2 kb langen 3’-UTR des GARP die GARP-

Protein-Expression herunter reguliert. Dies geschah über ein miR-142-3p Erkennungselement 

(microRNA recognition element, MRE). Die Abschwächung der GARP-Expression durch 

miR-142-3p führte zur Verringerung der Proliferation und der regulatorischen Funktion von 

Tregs. Dies weist auf die wichtige Rolle der miR-142-3p in der Homöostase und Funktion 

von Tregs hin. Anschließend analysierten wir die Expression von miR-142-3p und GARP bei 

Patienten mit RA. Die Hochregulation von miR-142-3p nach TCR-Stimulation war in Tregs 

von RA-Patienten ausgeprägter als bei gesunden Personen (healthy controls, HC). 

Dementsprechend wurde eine verringerte Expression von GARP nach TCR-Stimulation in 

Tregs von RA-Patienten im Vergleich zu HC beobachtet. Die genetische Analyse der GARP-

3’-UTR-Region offenbarte zwei Einzel-Nukleotid-Polymorphismen (single nucleotide 

polymorphisms, SNPs), rs1320645 und rs1320646, die in RA-Patienten signifikant häufiger 

vorkommen. Des weiteren wurden in RA-Patienten häufiger zwei verschiedene Haplotypen in 

der 3’-UTR von GARP gefunden.  

Zwei weitere miRNAs, miR-146a und miR-155, sind in der Literatur im Zusammenhang mit 

der RA-Pathogenese beschrieben worden. In meiner Doktorarbeit analysierte ich daher ihre 

Expression in Tregs von RA-Patienten und ihren Einfluss auf Tregs. Beide miRNAs, miR-

146a und miR-155, zeigten eine verminderte Expression in Tregs von RA-Patienten. Die 
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Treg-spezifische Abnahme der miR-146a-Expression wurde insbesondere bei Patienten mit 

aktiver Erkrankung beobachtet und korrelierte mit der Gelenkentzündung. Die Analyse der 

Expression ihrer putativen Ziele, die an der NF-κB-Signalkaskade beteiligt sind, ließ auf 

eingeschränkte mRNA-Expression von IRAK1, TRAF6 und IKKε schließen. NF-κB-

Aktivität war jedoch vergleichbar bei Patienten und gesunden Personen. Dennoch war die 

mRNA Expression von zwei anderen putativen Ziele, STAT1 und SOCS1, welche 

Regulatoren der Zytokin-Signalwege sind, bei Patienten mit RA erhöht. Der Expressionslevel 

von STAT1 mRNA korrelierte mit dem Niveau der Expression von miR-146a. Der 

Expressionslevel korrelierte jedoch nicht mit dem der miR-155. Manipulation von miR-146a 

beeinflusste die Expression und Phosphorylierung von STAT1. In dieser Hinsicht wiesen die 

Tregs der aktiven RA-Patienten einen proinflammatorischen Phänotyp charakterisiert durch 

eine erhöhte IL-2-, IFNγ-, IL-17- und TNF-Produktion auf. Die suppressive Kapazität dieser 

Tregs war jedoch nicht beeinträchtigt. Darüber hinaus wurden reduzierte Mengen an miR-

146a und miR-155 im Serum von Patienten mit RA beobachtet. 

Zusammenfassend identifizierte und charakterisierte ich in meiner Doktorarbeit die 

posttranskriptionelle Regulierung der GARP-Expression in Tregs durch miR-142-3p. Ich 

habe zeigen können, dass miR142-3p entscheidend für hohe GARP-Expression auf Tregs und 

damit für die Treg-Funktion ist. Die Analyse der miR-142-3p-Expression und der damit 

verbunden GARP-Expression bei der RA lieferte darüber hinaus einen wichtigen Hinweis auf 

die Beeinträchtigung der Treg-Proliferation und -Funktion in der RA. SNPs- und Haplotypen-

Verteilung in der 3’-UTR von GARP könnten eine weitere Ursache für die verringerte 

GARP-Expression bei der RA sein. Desweiteren habe ich gezeigt, dass die Expression von 

miR-146a und miR-155 in Patienten dereguliert ist. Dies beeinflusst direkt Zytokin-

Signalwege. Tregs von RA-Patienten wiesen ein verändertes Zytokinproduktionsprofil auf. Es 

lässt sich aufgrund meiner Daten schlussfolgern, dass bei der RA miRNAs für die Treg-

Funktion verantwortlich sind durch Regulierung ihrer Zielgene. Dadurch könnten miRNAs 

entscheidend zur Pathogenese der RA beitragen.  
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Introduction	  

I.1 CD4	  T	  cells	  

I.1.1 General	  properties	  of	  immune	  systems	  

The immune system protects the human body against infections, such as viral, bacterial, 

fungal and parasitic. Two types of immune defense are involved in the process: innate and 

adaptive immune responses. The innate immune response, which is driven by granulocytes 

and macrophages, acts immediately after infection entry and is short-lasting and non-specific 

to the pathogens. The adaptive immune response, which is driven by lymphocytes, acts later 

during infection and is highly specific and powerful against pathogens (Murphy et al. 2012).  

Lymphocytes can be further divided into two main subtypes: T lymphocytes (T cells), which 

mediate cellular and initiate humoral immunity; and B lymphocytes (B cells), which are 

essential for humoral immunity. Upon infection, naive lymphocytes recognize specific 

pathogen motifs (antigens) presented by antigen-presenting cells (APCs), get activated and 

start to proliferate and differentiate into antigen-specific effectors cells. By producing 

antibodies or by activating other cells within the immune system, effector lymphocytes 

therefore are able to drive the clearance of the infections. Some effector cells further 

differentiate into memory lymphocytes that persist long-term memory to expand quickly upon 

re-exposure to their specific antigens (Murphy et al. 2012). 	  

I.1.2 CD4	  T	  effector	  cell	  subsets	  

Upon infection, naive CD4 T lymphocytes, which have no previous contact with their specific 

antigen, get activated and start to proliferate and differentiate into antigen-specific effectors 

cells. The sufficient activation of naive T cells requires two signals: firstly, the binding of T 

cell receptors (TCRs) with antigens presented by the MHC II and, secondly, a co-stimulatory 

signal, comprising the binding of CD28 to the molecules on the APCs such as CD80, CD86 

(Schwartz 1990, Schwartz 1992). The nature of the antigen, the strength of the MHC-antigen-

TCR interaction and co-stimulation, as well as the surrounding cytokine milieu influence the 

activation of CD4 T cells and drive the expression of lineage specific signal transduction 

molecules and transcription factors. This results in the differentiation of naive CD4 T cells 

towards specific effector CD4 T cell subsets with the secretion of lineage specific cytokines 

(Smith et al. 1986).  
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I.1.2.1 Th1/Th2 effector cells 

The first described and most-well-studied effector CD4 T cell subtypes are type 1 T helper 

(Th1) and type 2 T helper (Th2) cells, which were discovered by Coffman and Mosman in 

1986 (Mosmann et al. 1986). Th1 cells develop preferentially under the influence of 

interleukin (IL)-12 and IL-18. IL-12 and IL-18 activate the signal transducer and activator of 

transcription 4 (STAT4) and induce the expression of the Th1 master transcription factor T-

box transcription factor (T-bet). They are characterized by the production of Th1 signature 

cytokine interferon (IFN)-γ as well as other pro-inflammatory cytokines such as IL-2, 

lymphotoxin-α (LTA), and tumor necrosis factor (TNF) (Romagnani 2006). They are of great 

importance for defense against intracellular pathogens such as bacteria and protozoa (Delprete 

et al. 1991, Annunziato and Romagnani 2009). 

Th2 cells are generated under the induction of IL-4. IL-4 signals through the activation of 

STAT6 and induce the expression of the Th2 master transcription factors GATA binding 

protein 3 (GATA-3) and c-Maf (Skapenko et al. 2001, Skapenko et al. 2004). Th2 cells are 

characterized by the production of Th2-signature cytokines IL-4 as well as IL-5 and IL-13 

(Mosmann et al. 1986, Abbas et al. 1996, Annunziato and Romagnani 2009). Th2 cells are 

important for parasite clearance by functioning as a helper of B cells to drive the humoral 

immune response (Annunziato and Romagnani 2009). 

I.1.2.2 Th17 effector cells 

In the last decade, a distinct T helper cell subset characterized by the production of IL-17 was 

identified (Infante-Duarte et al. 2000, Harrington et al. 2005, Park et al. 2005). They are 

induced from naive CD4 T cells by pro-inflammatory cytokines IL-1β, IL-6 (Acosta-

Rodriguez et al. 2007), IL-21 (Yang et al. 2008) and IL-23 (Volpe et al. 2008) and 

characterized by the expression of master transcription factor, retinoic acid receptor related 

orphan receptor C (RORC). Besides the production of the Th17-signature cytokines IL-17A 

and IL-17F, Th17 cells also secrete IL-22, IL-26 and chemokine ligand 20 (CCL20) (Wilson 

et al. 2007). They may involve in mediating host defense against certain bacteria and fungi 

(Korn et al. 2009). 

I.1.2.3 Th22 and Th9 effector cell 

Recently a new subtype of effector CD4 T cells that produce IL-22 has been identified as 

Th22 cells. Th22 cells produce IL-22 without the co-secretion of IL-17 and IFNγ (Duhen et 
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al. 2009, Trifari et al. 2009). The differentiation of Th22 cells occurs under the influence of 

IL-6 and TNF (Duhen et al. 2009) and is dependent on expression of the aryl hydrocarbon 

receptor (AHR). Many reports have suggested that Th22 cells are skin-homing T cells 

therefore it acts on the induction of keratinocyte hyperplasia and the induction of tissue repair 

and wound healing (Zenewicz et al. 2007). 

Another newly identified effector CD4 T cells subtype is Th9 cells, characterized by their 

primary capacity to secrete IL-9 but lacking the production of other lineage specific cytokines 

(Locksley 2009). Th9 cell differentiation requires IL-4 and TGFβ (Dardalhon et al. 2008, 

Veldhoen et al. 2008). IL-4 and TGFβ induce the expression of the Th9 master transcription 

factor, PU.1 and interferon regulator factor 4 (IRF4) (Staudt et al. 2010, Ramming et al. 

2012). Th9 cells promote cell proliferation and therefore contribute to tissue inflammation 

(Townsend et al. 2000, Nowak et al. 2009).  

I.1.3 Regulatory	  T	  cells	  	  

I.1.3.1 General properties of regulatory T cells 

To tightly control destructive immune response against pathogens and to sustain 

immunological self-tolerance and homeostasis, another subtype of CD4 T cells, the so called 

regulatory T cells (Tregs) exists. Depending on ontogeny and phenotype, two main subtypes 

of Tregs are well accepted: thymus derived naturally occurring regulatory T cells (nTregs) 

and regulatory T cells induced in the periphery (iTregs) (Ohkura et al. 2013). 

Tregs, first described by Sakaguchi in 1995, composite 5-10% of peripheral CD4 T cells. 

They constitutively express the Treg master transcription factor, forkhead box P3 (Foxp3), 

and are highly positive for the IL-2 receptor α-chain (CD25) (Fontenot et al. 2005). Tregs are 

anergic and important for maintaining of self-tolerance. Adaptive transfer of CD25+-depleted 

CD4 T cells into immune-deficient mice results in the development of severe autoimmune 

disease (Sakaguchi et al. 1995, Vignali et al. 2008). Mice lacking Foxp3, the so-called “scurfy 

mice”, are characterized by a lymphoproliferative disease resulting in early death within three 

to four weeks of age (Brunkow et al. 2001). Induced depletion of Tregs by diphtheria toxin in 

depletion of regulatory T cell (DEREG) mice model reveals similar “scurfy-like” symptom. 

This further confirms the importance of Tregs in the controlling of effector T cell 

proliferation and homeostasis (Lahl et al. 2007). 

Whereas nTregs represent a homogeneous population, there is a high diversity within total 
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Treg population. Thus Tregs are now accepted as a heterogenic cell population, comprising 

several subtypes (Schmidt et al. 2012). For example, Sakaguchi’s group has performed a 

detailed characterization of human Foxp3+ Tregs and suggested a composition of naive 

CD45RA+Foxp3low resting Tregs, memory CD45RA−Foxp3high activated Tregs, and 

CD45RA−Foxp3low cytokine-secreting Tregs. The first two groups maintain Treg phenotype 

and function, whereas the latter is non-suppressive (Miyara et al. 2009). In mice, several 

Tregs subtypes carrying distinct transcriptional signatures have been identified as well 

(Feuerer et al. 2009, Feuerer et al. 2010). These diverse Treg subtypes might recruit different 

suppression mechanism, depending on location and type of immune response. For instance, 

Tregs can suppress the proliferation of effector T cells through a contact depend mechanism 

or through the IL-2 deprivation (Thornton and Shevach 1998, Pandiyan et al. 2007). They can 

produce inhibitory cytokines, for example IL-10, TGF-β and IL-35 (Asseman et al. 1999, Li 

et al. 2006, Collison et al. 2007). They can also induce cytolysis of effector cells by 

presenting granzyme and perforin. Furthermore, Tregs can suppress effector T cells by 

targeting on dendritic cells (Grossman et al. 2004).  

I.1.3.2 GARP as a specific marker of regulatory T cells 

Despite the expression of Foxp3 and high level of CD25, Tregs are also characterized by 

other cell surface receptors, including glucocorticoid-induced tumor necrosis factor receptor 

(GITR), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), latency associated peptide 

(LAP) and lymphocyte-activation gene 3 (LAG-3) (Annunziato et al. 2002, Shimizu et al. 

2002). Besides, down-regulated expression of IL-7 α chain CD127 has also been described to 

be characteristic for nTregs (Seddiki et al. 2006). However, most of these markers are 

problematic to be Treg specific markers in human. For instance, upon the immune activation, 

non-regulatory effector T cells up-regulate CD25 and express Foxp3 transiently. CD127 is 

down-regulated in effector T cells in response to activation. Therefore, identifying unique and 

specific cell surface markers expressed on Tregs are of great interest.  

Recently, a surface receptor, Glycoprotein A repetitions predominant precursor (GARP; or 

leucine rich repeat containing protein 32, LRRC32), has been identified as a molecule 

specially expressed on Tregs. Human GARP or LRRC32 gene (ID: 2615) locates in the 

chromosomal region 11q13-11q14. It consists of three exons although only the last two exons 

are protein coding (Ollendorff et al. 1994). The protein coding sequence of GARP gene is 

highly conserved cross species. It shares over 80% identity between human and mouse 

(Ollendorff et al. 1992). The mature 80kD GARP protein consists of 662 amino acids, 
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containing 20 leucine-rich repeats in the extracellular region, followed by a hydrophobic 

transmembrane domain and a 15-residue C-terminal cytoplasmic domain (Ollendorff et al. 

1994). The N-terminal of GARP contains a 17-residue signal peptide, which guides the native 

GARP to its surface location (Chan et al. 2011).  

The expression of GARP on Tregs was firstly reported by analysis of microarray to identify 

genes specifically expressed in human CD25+ CD4 T cells after TCR stimulation (Wang et al. 

2008, Probst-Kepper et al. 2009). GARP expression is detected on activated Tregs as well as 

on expanded Treg clones (Wang et al. 2008, Stockis et al. 2009). GARP can be induced by 

IL-2 and IL-4, but not by TGF-β and retinoic acid in vitro (Edwards et al. 2013, Haupt et al. 

under preparation). Using of specific small interfering RNA (siRNA) to knock down GARP 

expression in Tregs results in impaired Treg suppressive function (Tran et al. 2009, Probst-

Kepper et al. 2010). Interestingly, TGF-β-induced iTreg lacks the expression of GARP (Tran 

et al. 2007). These findings have implied that GARP is a specific marker of activated Treg 

cells and is important for Treg suppressive function. 

GARP has been characterized as a potential receptor of latent TGF-β (Stockis et al. 2009, 

Chan et al. 2011). TGF-β is a pleiotropic cytokine that are essential for preventing 

autoimmunity (Wan and Flavell 2008). It is firstly secreted as pro-TGF-β precursor 

homodimers. The pro-TGF-β is then cleaved by a pro-protein convertase Furin to generate 

latent-TGF-β which consists of two noncovalently associated domains: C-terminal domain 

~110-residue mature TGF-β and N-terminal domain ~250-residue latency-associated peptide 

(LAP) (Dubois et al. 1995, Pesu et al. 2008). LAP prevents the binding of mature TGF-β to its 

receptor, therefore the release of mature TGF-β from latent TGF-β complex is of great 

importance for Tregs (Stockis et al. 2009). Wang and colleagues have shown that GARP 

captures and presents latent TGF-β on the cell surface. The integrin αvβ6 and αvβ8 on the 

surface of the target cells then release mature TGF-β from GARP-latent TGF-β complex 

(Wang et al. 2012). Furthermore, conditional knockout of GARP in CD4 T cells leads to 

failure of expressing latent TGF-β on Tregs (Edwards et al. 2013). These observations suggest 

the function of GARP as a receptor and activator for latent TGF-β on Tregs. 

I.2 Rheumatoid	  arthritis	  

I.2.1 General	  characteristics	  of	  rheumatoid	  arthritis	  

An immune response can be a double-edged sword. Besides its protective function by fighting 

against pathogens, the immune system can become harmful to the body if being insufficiently 
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controlled. Good examples for that are allergic reactions, host tissues damage and 

autoimmune processes. Allergies are caused by hypersensitivity in response to environmental 

antigens. Host tissue damage may occur as a result of uncontrolled response against 

pathogens (Murphy et al. 2012). In addition, it is of great importance for the immune system 

to distinguish between host- (self or auto) and foreign- (non-self) antigens. Usually, the so-

called autoreactive T cells (T cells that recognized self-antigens) are eliminated during 

maturation of T cells in thymus. However, some of them can escape from the selection step 

and enter into the periphery. These cells may react to APCs which present self-antigens. Thus 

a process termed as autoimmunity is initiated (Romagnani 2006). Uncontrolled autoimmunity 

may lead to autoimmune diseases. The occurrence of the diseases may be restricted to either 

local organs (e.g. in autoimmune thyroiditis) (Dayan and Daniels 1996) or involve a systemic 

range (e.g. systemic lupus erythematosus [SLE] and Rheumatoid arthritis [RA]) (Majithia and 

Geraci 2007, Rahman and Isenberg 2008).  

RA is a chronic inflammatory autoimmune disease which affects approximately 0.5-1% of 

adult population in the industrialized countries, with two to three times more women than 

men (Firestein 2003). The average age where disease commonly occurs is about 30 to 50 

years old (Crowston et al. 1997, Smolen et al. 2007, Choy 2012). RA is a systemic disease 

characterized by the involvement of tender and swollen joints, the development of bone 

erosions and severe joint destructions (Aletaha et al. 2010). The usage of 2010 American 

College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR) 

classification criteria is accepted as a standard mean for early RA diagnosis. The criteria can 

be applied to patients who have at least one swollen joint and the synovitis can not be better 

explained by another disorder like SLE, psoriatic arthritis (PsA), and gout, etc. A score 

system is included in the criteria covering four categories: joint involvement (0-5 points), 

serology (0-3 points), acute-phase reactants (0-1 point) and duration of symptoms (0-1 point). 

Patients with total points ≥ 6 are termed as with definite RA. Any tender or swollen joints are 

included in order to identify joint involvement. The serological markers refer to rheumatoid 

factor (RF) and antibodies to cyclic citrullinated proteins. The acute-phase reactants refer to 

the level of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) (Aletaha et al. 

2010).  

Once patients are defined, the progression of disease can be evaluated based on the disease 

activity score for 28 joints (DAS28). The counts of both tender joints (TJC28) and swollen 

joints (SJC28) are recorded and markers for acute-phase reactants (ESR or CRP) are 
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measured (Prevoo et al. 1995). Besides, a subjective assessment (SA) of disease activity is 

made by patients based on a visual analogue scale between 0 and 100, where 0 stands for no 

activity and 100 stands for highest activity. The final value of DAS28 is calculated from all of 

the four parameters and covers between 0 and 10 points. Patients therefore can be stratified 

according to DAS28 score into four groups: patients who have DAS28 higher than 5.1 are 

termed as patients with high disease activity; patients who have DAS28 in between 3.2 and 

5.1 are termed as patients with moderate disease activity; patients who have DAS28 in 

between 2.6 and 3.2 are termed as patients with low disease activity; patients who have 

DAS28 below 2.6 are termed as patients in remission (Aletaha et al. 2010).  

I.2.2 RA	  etiology	  

RA is regarded as an autoimmune disease, due to the existence of autoantibodies such as RF 

and anti-CCP antibodies (Firestein 2003, Choy 2012). However, the cause of the disease is 

not yet fully understood. In general, the disease is triggered by self-antigens of unknown 

origin presented by professional APCs (Burkhardt et al. 2001, Smolen et al. 2007). 

Autoreactive CD4 T cells recognize the self-antigen presenting cells via MHC II, which 

results in the activation and expansion of antigen-specific effector T cells. As a consequence, 

activated effector T cells secrete pro-inflammatory cytokines such as IFNγ, IL-17 and TNFα 

(Ehrenstein et al. 2004). The cytokines produced by T cells lead to the activation of B cells to 

promote the production of autoantibodies and the activation of macrophages to promote the 

production of pro-inflammatory cytokines such as TNF, IL-1, and IL-6 (Debets et al. 1988, 

Rodriguez-Pinto 2005). These pro-inflammatory cytokines in turn stimulate the 

differentiation of fibroblast and osteoclast, which play an important role in the destruction of 

cartilage and bone tissue in the affected joints (McInnes and Schett 2007). In addition, the 

functional activity of Treg cells is severely impaired in RA. This may lead to a break down of 

Treg-mediated tolerance. Thereafter, the expansion of effector T cells is uncontrolled and the 

initial autoimmune response develops into persistent inflammation (Ehrenstein et al. 2004). 

Environmental factor such as smoking may also contribute to RA pathogenesis (Choy 2012). 

In addition, about 60% occurrence of the disease is associated with heritability (MacGregor et 

al. 2000). Genotyping studies to investigate single nucleotide polymorphisms (SNPs) provide 

powerful tools to study the possible genetic factors that may associate with RA.  Several 

genetic factors have therefore been identified. For instance, the alleles of human leukocyte 

antigen (HLA) gene which locates at chromosome 6 (6p21.3) and encodes human MHC II 

molecules contribute to three times higher susceptibility of RA. They encode a conserved 
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amino acid motif in peptide binding domain to allow the presentation of self-antigens. 

Thereby APCs that express MHC II encoded by these RA-associated alleles can activate 

autoreactive effector CD4 T cells to initiate autoimmunity (Patil et al. 2001). Besides, protein 

tyrosine phosphatase non-receptor type 22 (PTPN22) gene which locates at chromosome 1 

(1p13 region) is reported to inhibit TCR signaling and T cell activation (Vang et al. 2005). A 

missense nonsynonymous SNP which introduces a R620W substitution (arginine substitution 

for tryptophan [W] at amino acid position 620) interferes the protein function and is verified 

as a RA-associated allele by different research groups (Plenge et al. 2005, Orozco et al. 2006, 

Lee et al. 2007). Furthermore, two SNPs, which are located within the functionally important 

IL-4- and STAT6-binding regions of the IL-4 receptor gene (IL-4R), are identified to 

associate with RA susceptibility and severity. In particular, the I50V SNP (amino acid 

substitutions of isoleucine [I] to valine [V] at position 50) is identified as a novel genetic 

marker for early severe RA as a result of its high association with aggressive bone erosions 

(Prots et al. 2006, Leipe et al. 2014). 

I.2.3 Central	  role	  of	  CD4	  T	  cells	  in	  RA	  

Although the mechanisms behind the pathogenesis of RA is not fully understood, the 

important role CD4 T cells played in the process has been highlighted (Choy 2012). Many 

evidences suggest that impaired frequencies and functions of T cell subsets including effector 

T cells and Tregs contribute to uncontrolled inflammation and disease development (Cope et 

al. 2007). Elevated frequency of Th1 cells and reduced frequency of Th2 cells in RA are 

correlated with disease activity (van der Graaff et al. 1999). Increased levels of IL-2 and 

IFNγ, but not of IL-4 are secreted by activated CD4 T cells in RA peripheral blood and 

inflamed synovial tissues (Schulze-Koops and Kalden 2001). Moreover, the differentiation 

capacity of uncommitted CD4 T cells towards Th2 cells is badly impaired (Skapenko et al. 

1999). These findings suggest that Th1 cells are more associated with autoimmune diseases 

while Th2 cells in this respect have a more protective effect. Recent studies have brought a 

new sight for understanding the pathogenesis of RA by focusing on IL-17 producing Th17 

cells. IL-17 induces the production of IL- 6, which leads to the activation of monocytes and 

macrophages resulting in osteoclastogenesis and cartilage destruction (Chabaud et al. 2001, 

Kotake and Kamatani 2002, Yago et al. 2007). The serum level of IL-17, as well as the 

frequencies of Th17 cells are elevated in patients with early RA and highly correlated with 

disease activity (Leipe et al. 2010). IL-17-defficient mice show their resistance to collagen-

induced arthritis (CIA) (Nakae et al. 2003). Moreover, the blockage of IL-6, a Th17 inducing 
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cytokine neutralizes the development of CIA in mice (Fujimoto et al. 2008). In addition to IL-

17, IL-22, which is secreted by Th17 cells and Th22 cells, is also involved in the disease 

development of RA. Elevated serum levels of IL-22 are observed in patients with early RA 

and are highly correlated with the development of bone erosions (Cascao et al. 2010, Leipe et 

al. 2011, Leipe et al. 2014).  

Despite of the altered frequencies and functions of effector T cells in RA, the abnormality of 

Tregs also contributes to the pathogenesis of RA. Tregs have been implicated in the 

maintenance of peripheral tolerance and control of the disease development. Several studies 

have indicated that the frequency of Tregs in the peripheral blood is decreased from patients 

with RA and is negatively correlated with disease activity score 28 (DAS28), C-reactive 

protein (CRP), and erythrocyte sedimentation rate (ESR) (Kawashiri et al. 2011, Matsuki et 

al.). On the other hands, other studies have shown a similar, even higher frequency of Tregs 

in patients with RA compared to healthy individuals (HC) (Bayry et al. 2007, Han et al. 

2008). Regardless of this debate, the importance of Tregs in RA has been proven in both 

patients and animal models (Frey et al. 2010, Pesce et al. 2013). Valencia and colleagues have 

observed reduced suppressive capacity of Tregs isolated from patients with RA (Valencia et 

al. 2006). This can be negatively affected by elevated expression of multiple pro-

inflammatory cytokines (Valencia et al. 2006, van Amelsfort et al. 2007), or deficient 

regulation of CTLA-4 (Flores-Borja et al. 2008). Studies with K/BxN mice, which 

spontaneously develop inflammatory arthritis induced by a CD4+ T-cell response to a GPI 

peptide, suggest the eventual function of Treg cells is to affect disease pathogenesis and 

severity, but not to prevent disease occurrence (Nguyen et al. 2007, van Amelsfort et al. 

2007). These findings are further confirmed by the amelioration of disease in collagen-

induced arthritis model after the transfer of exogenous CD25+ CD4 T cells into pre-arthritic 

mice (Kelchtermans et al. 2009). 

Taken together, functional analysis of various CD4 T cells subsets in RA patients and animal 

models reveal an impaired regulation of the immune response at various levels: on the one 

hand, an uncontrolled effector T cells expansion and pro-inflammatory cytokine production, 

on the other hand a simultaneous failure in the expansion and the function of Tregs.  
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I.3 microRNA	  

I.3.1 General	  properties	  of	  miRNA	  

Recent studies have highlighted the important role of microRNA (miRNA)-mediated post-

transcriptional regulation in many immunological processes. miRNAs are endogenous small 

(~23 nucleotide), evolutionally conserved non-coding RNAs. Human cells express around 

500 to 1000 miRNAs, targeting more than half of the genes (Bentwich et al. 2005, Lewis et 

al. 2005, Friedman et al. 2009). The majority of miRNA genes are considered to be 

independent transcription units (Lee et al. 2002), based on the fact that they locate either 

intergenically or in a reverse direction to the neighboring genes (Lagos-Quintana et al. 2001, 

Mourelatos et al. 2002). Some of the miRNA genes locate in the introns of protein or non-

protein coding genes, thereby can be transcribed together with the host gene (Rodriguez et al. 

2004).  

The biosynthesis of mature miRNAs involves four steps: transcription, nuclear processing, 

nuclear export and cytoplasmic processing (Figure 1) (Winter et al. 2009). miRNA genes are 

transcribed generally by RNA polymerase II into large primary transcripts (pri-miRNA) using 

a mechanism similar to protein-coding genes (Lee et al. 2004). The pri-miRNA is then 

cleaved by the RNase III endonuclease Drosha and DiGeorge Syndrome Critical Region 8 

(DGR8) in the nucleus into a ~70-nt precursor miRNA (pre-miRNA) (Gregory et al. 2006). 

Afterwards, the pre-miRNA is recognized by Exportin-5 and transported into the cytoplasm 

(Murchison and Hannon 2004), where it is cleaved by another RNase III endonuclease, Dicer, 

resulting in a ~21-nt miRNA duplex (Lund and Dahlberg 2006). 

 In the cytoplasm, one strand of the miRNA duplex (leading strand) is loaded into an 

Argonaute- (Ago-) containing ribonucleoprotein (RNP) complex referred to as RNA-induced 

silencing complex (RISC), whereas another strand (passenger strand) is normally degraded 

(Rana 2007). Once incorporated into RISC, the miRNA guides the complex to its mRNA 

targets, binds the 3’ untranslated region (3’UTR) of the target and represses translation 

(Huntzinger and Izaurralde 2011). The specificity for the binding of the miRNAs to their 

targets is determined by the miRNA seed region, which is 6-8 nucleotides in length and 

located in the 5’ end of the miRNA (Lewis et al. 2003). When perfect or near perfect 

complementarity happens between the seed region and the target mRNA, this results in target 

mRNA cleavage and degradation. Otherwise the inhibition of translation occurs without 

mRNA degradation (Williams 2008, Eulalio et al. 2009). The Ago protein family plays an 
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important role in the function of the RISC complex. In human, four Ago proteins exist and 

miRNAs can be incorporated indiscriminately of their sequence into Ago1- through Ago4-

containing RISC. However, only Ago2-associated RISC is exclusively associated with the 

mRNA degradation (Pratt and MacRae 2009). Instead of functioning as an on-off switch 

miRNAs modulate the expression of their target gene by impacting the gene expression from 

1.2- to 4- fold (O'Neill et al. 2011, O'Connell et al. 2012).  

 

 

 

 

 

 

 

 

Figure 1. Schematic overview of miRNA biogenesis 
The canonical biosynthesis of mature miRNAs involves four steps: transcription of pri-miRNA by RNA 
polymerase II, nuclear processing of pre-miRNA by Drosha, nuclear export by Exportin-5 and cytoplasmic 
processing by Dicer (adapted from Winter et. al, 2009) 

Recent studies have shown the existence of miRNAs in the circulating system outside of the 

cells. The first evidence demonstrated the presence of miRNAs in exosomes (Valadi et al. 

2007). Since then circulating miRNAs are confirmed in vesicles, such as apoptotic bodies 

(Zernecke et al. 2009), high-/low-density lipoprotein (HDL/LDL) complexes (Vickers et al. 

2011), RNA-binding proteins (Arroyo et al. 2011), as well as in serum and other body fluids 

(Chim et al. 2008, Lawrie et al. 2008). The circulating miRNAs are important for cell-cell 

communications and can be used as a biomarker for disease prognosis and diagnosis (Lawrie 

et al. 2008).  

I.3.2 miRNA	  as	  a	  regulator	  of	  immune	  response	  

During last few decades it becomes apparent that immune cells express miRNAs during 

immune response and as a consequence these miRNAs impact immune response at the 

cellular and organismal levels. Evidence exists in both innate immune response and adaptive 
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immune response. Many miRNAs are involved in controlling innate immune response, for 

instance miR-155, miR-146a, miR-21, miR-125b and let-7. Activation of TLR signaling 

pathway by various pathogens initiates innate immune response and the production of several 

miRNAs, such as miR-155, miR-146a and miR-21 (Kawai and Akira 2010). In turn, these 

miRNAs function as positive or negative regulator of the TLR signaling: miR-155 functions 

as a pro-inflammatory miRNA and accelerates the immune response by targeting on Src 

homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1) and suppressor of cytokine 

signaling 1 (SOCS1) (Androulidaki et al. 2009, O'Connell et al. 2009). miR-146a involves in 

a negative feedback loop to regulate the innate immune response. It inhibits the expression of 

its target TNF receptor associated factor 6 (TRAF6) and interleukin-1 receptor-associated 

kinase 1 (IRAK1), therefore dampens the downstream nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) activation and attenuates the expression of pro-

inflammatory cytokines such as IL-6 and TNFα (Boldin et al. 2011, Zhao et al. 2011). miR-

21 also serves as negative regulator of NF-κB pathway by inhibiting the expression of 

programmed cell death protein 4 (PDCD4) (Sheedy et al. 2010). In addition, miR-125b and 

let-7 restrict the expression of TNF and IL-6, respectively, resulting in repression of the 

production of pro-inflammatory cytokines (Tili et al. 2007, Iliopoulos et al. 2009). 

In the context of adaptive immune response, miR-17 to miR-92 clusters are important for T 

cell lineage development by inhibiting the expression of BCL2-like 11 (BIM) and 

phosphatase and tensin homolog (PTEN) (Iliopoulos et al. 2009). Moreover, miR-155 and 

miR-182 play an important role in the clonal expansion of activated effector CD4 T cells by 

repressing B-cell integration cluster (BIC) and forkhead box protein O1 (Foxo1) (Rodriguez 

et al. 2007, Stittrich et al. 2010). miR-155 deficient mice are not capable to produce Th1 and 

Th17 cells in autoimmune inflammation (Kurowska-Stolarska et al. 2011, Oertli et al. 2011). 

miR-326 functions as a supporter in Th17 cells differentiation by targeting v-ets avian 

erythroblastosis virus E26 oncogene homolog 1 (Ets1) in experimental autoimmune 

encephalomyelitis (EAE) (Du et al. 2009). In addition to regulating the development and 

function of effector T cells, miRNAs are also important for the function of Tregs. Ablations 

of two key miRNA processing enzymes, Dicer or Drosha in Tregs result in severe even fatal 

autoimmunity in mice (Chong et al. 2008, Liston et al. 2008). miR-142-3p interferes Treg 

suppressive capacity by controlling cAMP expression (Huang et al. 2009). miR-146a is 

demonstrated to maintain Treg cell suppression capacity as well as prevent deflection of 

activated Treg cells into Th1-like cells in animal model (Lu et al. 2010). 



Introduction 	  
 

 

19 

I.3.3 miRNA	  and	  human	  disease	  

Taken into account for their important roles in regulating immune response, a number of 

reports have demonstrated several specific miRNAs that affect many types of autoimmune 

diseases both in human as well as in mouse models. Mice deficient in miR-155 expression are 

resistant to EAE, colitis and CIA due to their failure in producing Th1 and Th17 cells 

(O'Connell et al. 2010, Kurowska-Stolarska et al. 2011, Oertli et al. 2011). miR-326 provokes 

the development of EAE (Du et al. 2009). miR-146a deficient mice show high susceptibility 

in the course of CIA (Nakasa et al. 2011). In human, abnormal expression of miR-146a, miR-

155 and miR-21 are associated with the development of SLE (Dai et al. 2010, Garchow et al. 

2011, Luo et al. 2011). In RA, high expression level of miR-146a, miR-155 has been 

demonstrated in synovial tissue and synovial fibroblasts (Nakasa et al. 2008, Stanczyk et al. 

2008). Peripheral monocytes and CD4 T cells from RA revealed altered expression of miR-

146a (Pauley et al. 2008, Li et al. 2010). 

In addition to intracellular miRNAs, many studies raised their pivotal role of miRNAs in 

different body fluid in disease pathogenesis (Hasuwa et al. 2013, Wang et al. 2013). Increased 

levels of miR-146a and miR-155 have been found in the intrarenal and urine samples from 

patients with IgA nephropathy (Wang et al. 2011). A recent analysis of circulating miRNA 

profiles in plasma from patients with SLE demonstrated increased levels of miR-142-3p and 

miR-181a, and decreased levels of miR-106a, miR-17, miR-20a, miR-203, and miR-92a 

(Carlsen et al. 2013). 
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Aims	  of	  the	  thesis	  

RA is a chronic inflammatory autoimmune disease characterized by development of bone 

erosions and severe joint destructions. Tregs are involved in maintaining of peripheral 

tolerance and control of the disease development. The importance of Tregs in RA has been 

demostrated in both patients and animal models. Recently, a surface molecule, GARP, has 

been identified to be specifically expressed on Tregs and is important for the suppressive 

capacity of Tregs. On the other hand, miRNA-mediated post-transcriptional regulation has 

also been reported to control many immunological processes including the involvement of 

regulating Treg function. Therefore, the detailed aims of my PhD thesis were:  

1. to analyze whether and which miRNAs are involved in the regulation of GARP 

expression; 

2. to dissect the functional outcome of miRNA-regulated GARP expression in Tregs; 

3. to correlate the miRNA-regulated GARP expression with clinical characteristics of 

RA; 

4. for comparison to analyze expression of other RA-associated miRNAs in Tregs.  
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Materials	  and	  Methods	  

II.1 Materials	  

II.1.1 Reagents	  

Reagents Origin 

Acetic Acid (CH3COOH) Merck, Darmstadt, Germany 

Acetone(C3H6O) Merck 

Acrylamid/bis-acrylamid 30 % (37.5:1) Merck 

Agarose Merck 

Albumin fraction V from bovine serum (BSA) Merck 

Ammonium chloride (NH4Cl) Sigma-Aldrich, St. Louis, USA 

Ammonium persulfate (APS) Sigma-Aldrich 

Ampicillin, sodium salt Life Technologies, Carlsbad, USA 

L-Arginine-HCl Thermo Scientific, Lafayette, USA 

L-Arginine-HCl, 13C6,15N4 Thermo Scientific 

β-Mercaptoethanol Sigma-Aldrich 

Biotin Sigma-Aldrich 

Bromophenol blue Merck 

BupH modified Dulbecco’s PBS Thermo Scientific 

Carboxyfluorescein succinimidyl ester (CFSE) Life Technologies 

Chloroform (CHCl3) Merck 

Complete protease inhibitor cocktail Roche, Penzberg, Germany 

Dimethylformamide (DMF) Sigma-Aldrich 

Dimethylsulfoxid (DMSO) Merck 

Dithiothreitol (DTT) Sigma-Aldrich 

Dulbecco’s modified eagle medium (DMEM) Life Technologies 

dNTP set, 100 mM Life Technologies 

Dynabeads human T-activator CD3/CD28 Life Technologies 

Dynabeads MyOne streptavidin C1 Life Technologies 

ECL western blotting detection reagent GE Healthcare, Munich, Germany 

Ethanol (C2H5OH) Merck 

Ethylendinitrotetraaceticacid (EDTA) Sigma-Aldrich 
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Ficoll Biotest, Dreieich, Germany 

GelCode blue stain reagent Thermo Scientific 

Geneticin (G418) Life Technologies 

L-Glutamine (C5H10N2O3)  Life Technologies 

Glycerol (C3H5(OH)3)  Merck 

Glycine (NH2CH2COOH) Merck 

GlycoBlue Life Technologies 

Heparin-sodium salt Ratiopharm, Ulm, Germany 

Hydrochloric acid 37% (HCl) Merck 

IPTG (isopropylthio-β-galactoside) Life Technologies 

Isopropanol (C3H7OH) Merck 

LB agar powder (Lennox L Agar) Life Technologies 

LB Broth (1x) Life Technologies 

Lipofectamine 2000 transfection reagent Life Technologies 

L-Lysine-2HCl Thermo Scientific 

L-Lysine-2HCl, 13C6, 15N2 Thermo Scientific 

Magnesium chloride (MgCl2) Merck 

Methanol (CH3OH) Sigma-Aldrich 

M-PER mammalian protein extraction reagent Thermo Scientific 

NP-40 Millipore, Billerica, USA 

Nonfat dry milk powder Real 

NuPAGE 4-12% bis-tris gel Life Technologies 

Oligo-dT12-18 GE Healthcare 

Paraformaldehyde (PFA) Merck 

Penicillin G/Streptomycin Life Technologies 

Phosphatase inhibitor cocktail 3  Sigma-Aldrich 

Phosphate buffered saline (PBS) Life Technologies 

Potassium chloride (KCl) Merck 

Potassium bicarbonate (KHCO3) Merck 

Protein G sepharose 4 fast flow beads GE Healthcare 

Protran nitrocellulose membranes Whatman, Dassel, Germany 

rmp Protein A sepharose fast flow beads GE Healthcare 

RPMI 1640 Life Technologies 
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RPMI media for SILAC Thermo Scientific 

Recombinant human IL-2 Chiron, Emerville, USA 

Saponin Sigma 

Sheep erythrocytes Fiebig-Naehrstofftechnik, Idstein, Germany 

Sodium azide (NaN3) Merck 

Sodium chloride (NaCl) Merck 

Sodium dodecyl sulfate (SDS) Merck 

Sodium hydroxide (NaOH) Merck 

SYBR safe DNA gel stain (10,000x) Life Technologies 

TaqMan universal PCR master mix 2x Life Technologies 

Tetramethylethylenediamin (TEMED) Merck 

Tris (hydroxymethyl)-aminomethane (C4H11NO3) Merck 

Tween 20 Sigma-Aldrich 

X-Gal (5-Bromo-4-Chloro-3-Indolyl β-D-
Galactopyranoside) Life Technologies 

II.1.2 Antibodies	  and	  biotinylated	  peptides	  

II.1.2.1 Antibodies for FACS analysis 

Specificity Conjugate Clone Provider 

Anti-human CD3 FITC UCHT1 Sigma-Aldrich 

Anti-human CD3/anti-human 
CD4 dual Tag  FITC/PE UCHT-1/ 

Q4120 Sigma-Aldrich 

Anti-human CD4 FITC Q4120 Sigma-Aldrich 

Anti-human CD25  PE M-A251 BD Pharmingen, San Jose, 
USA 

Anti-human GARP hybridoma 
supernatant Non 7H2 Helmholtz Center, Munich, 

Germany 

Anti-human Stat1 (N-Terminus) PE 1/Stat1 BD Phosflow, San Jose, 
USA 

Anti-human Stat1 (pS727) Alexa Fluor 647 K51-856 BD Phosflow 

Anti-mouse CD3 PE 17A2 BD Pharmingen 

Anti-mouse CD4 FITC GK 1.5 BD Pharmingen 

Anti-mouse CD25 PE PC 6.15 BD Pharmingen 

Anti-rat IgG(H+L) PE Polyclonal Dianova, Hamburg, 
Germany 
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Rat IgG  Non Polyclonal Sigma-Aldrich 

Anti-mouse IgG2b, κ Alexa Fluor 647 MPC-11 BD Pharmingen 

Anti-mouse IgG1 PE  BD Pharmingen 

II.1.2.2 Antibodies for Immunoprecipitation 

Specificity  Clone Provider 

Anti-Ago1 hybridoma supernatant  4B8 Dr. G. Meister, Regensburg, Germany 

Anti-Ago2 hybridoma supernatant 11A9 Dr. G. Meister 

Anti-GARP  Plato-1 Enzo Life Sciences, Lausen, Switzerland 

Anti-Radixin EP1862Y Abcam, Cambridge, UK 

Mouse IgG 2b, κ IgG 2b, κ BioLegend, San Diego, USA 

Rabbit IgG Polyclonal Cell signaling, Danvers, USA 

Rat IgG  Polyclonal Sigma-Aldrich 

II.1.2.3 Antibodies for Immunoblotting 

II.1.2.4 Biotinylated	  Peptides	  

II.1.3 Ladders/Markers	  

Name Provider 

Biotinylated protein ladder Cell signaling 

GeneRuler DNA ladder (100 bp) Fermentas, Sankt Leon-Rot, Germany 

GeneRuler DNA ladder (1 kb) Fermentas 

Prestained protein marker (7-175 kDa) New England Biolabs, Ipswich, USA 

Specificity  Clone Provider 

Anti-GARP Plato-1 Enzo Life Sciences 

Anti-goat IgG-HRP Polyclonal Santa Cruz 

Anti-mouse IgG-HRP Polyclonal Cell signaling 

Anti-Radixin Polyclonal Santa Cruz 

Name Sequence Provider 

WT peptide Desthiobiotin-SGSAILLTTLAACCCVRRQKFNQQYKA-OH Max-Planck Institute, Munich, 
Germany 

Scr peptide Desthiobiotin-SGRACQCTAQRIKLQSFLACNVTAYKL-OH Max-Planck Institute 
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II.1.4 Serum	  

Name Provider 

Dialyzed fetal bovine serum(FBS) Thermo Scientific 

Fetal calf serum (FCS) Life Technologies 

Mouse serum Sigma-Aldrich 

Normal human serum (NHS) From our lab, Munich, Germany 

Rat serum Sigma-Aldrich 

II.1.5 Enzymes 

II.1.5.1 Restriction Endonucleases 

II.1.5.2 Other Enzymes 

Enzymes Supplied Reaction Buffer  Origin 

AmpliTaq DNA polymerase 10x PCR Buffer II Life Technologies 

AMV reverse transcriptase 5x AMV RT Buffer Promega, Mannheim, 
Germany 

RE Name Recognition site Supplied Reaction Buffer  Origin 

BamHI G´GATCC 10x NEBuffer 3+100x BSA New England Biolabs 

EcoRI G´AATTC Buffer EcoRI+ Fermentas 

EcoRV GAT´ATC 10x NEBuffer 3+100x BSA New England Biolabs 

HindIII A´AGCTT Buffer R+ Fermentas 

HpaI GTT´AAC 10x NEBuffer 4 New England Biolabs 

KpnI GGTAC´C 10x NEBuffer 1+100x BSA New England Biolabs 

NheI G´CTAGC 10x NEBuffer 2+100x BSA New England Biolabs 

NotI GC´GGCCGC 10x NEBuffer 3+100x BSA New England Biolabs 

PmeI CTTT´AAAC 10x NEBuffer 4+100x BSA New England Biolabs 

SacI GAGCT´C 10x NEBuffer 1+100x BSA New England Biolabs 

SacII CCGC´GG 10x NEBuffer 4 New England Biolabs 

SalI G´TCGAC 10x NEBuffer 3+100x BSA New England Biolabs 

SpeI A´CTAGT 10x NEBuffer 4 New England Biolabs 

XbaI T´CTAGA 10x NEBuffer 4+100x BSA New England Biolabs 

XhoI C´TCGAG 10x NEBuffer 4+100x BSA New England Biolabs 
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Protease K 1x Protease K reaction buffer New England Biolabs 

GeneAmp High Fidelity PCR 
Enzyme Mix 10x GeneAmp High Fidelity PCR Buffer Life Technologies 

Quick T4 DNA Ligase 2x Quick Ligation Reaction Buffer New England Biolabs 

II.1.6 MicroRNA	  mimics	  and	  antagomirs	  

All reagents were purchased from Thermo Scientific. 

miRIDIAN microRNA mimics 

miRNA mimics Assay ID Mature miRNA Sequence 

miRNA negative control 
(cel-miR-67) CN-00100 UCACAACCUCCUAGAAAGAGUAGA 

hsa-miR-142-3p C-300610 UGUAGUGUUUCCUACUUUAUGGA 

hsa-miR-181a C-300552 AACAUUCAACGCUGUCGGUGAGU 

hsa-miR-181b C-300554 AACAUUCAUUGCUGUCGGUGGGU 

hsa-miR-181c C-300556 AACAUUCAACCUGUCGGUGAGU 

hsa-miR-381 C-300690 UAUACAAGGGCAAGCUCUCUGU 

hsa-miR-424 C-300717 CAGCAGCAAUUCAUGUUUUGAA 

hsa-miR-497 C-300765 CAGCAGCACACUGUGGUUUGU 

hsa-miR-551a C-300868 GCGACCCACUCUUGGUUUCCA 

hsa-miR-661 C-300981 UGCCUGGGUCUCUGGCCUGCGCGU 

hsa-miR-662 C-300982 UCCCACGUUGUGGCCCAGCAG 

miRIDIAN microRNA hairpin inhibitors 

Inhibitor Assay ID Targeted miRNA Sequence 

Inhibitor negative control IN-001005 UCACAACCUCCUAGAAAGAGUAGA 

Inhibitor hsa-miR-142-3p IH-300610 UGUAGUGUUUCCUACUUUAUGGA 

Inhibitor hsa-miR-424 IH-300717 CAGCAGCAAUUCAUGUUUUGAA 

II.1.7 TaqMan	  Assays	  	  

All assays were purchased from Life Technologies. 

II.1.7.1 TaqMan Gene Expression Assays 

TaqMan gene expression endogenous controls 

Gene Assay ID Interrogated Sequence 
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β-actin 4326315E NM_001101.2 

Cyclophilin A 4310883E NM_021130.3 

TaqMan Gene Expression Assays 

Gene Assay ID Interrogated Sequence 

FoxP3 Hs01085835_m1 NM_001114377.1, NM_014009.3 

GARP Hs00194136_m1 NM_001128922.1, NM_005512.2 

IFNγ Hs00989291_m1 NM_000619.2 

IKKε Hs01063858_m1 NM_001193321.1, NM_001193322.1, NM_014002.3 

IL-2 Hs00174114_m1 NM_000586.3 

IL-10 Hs00961622_m1 NM_000572.2 

IL-17 Hs00174383_m1 NM_002190.2 

IRAK1 Hs01018347_m1 NM_001025242.1, NM_001025243.1, NM_001569.3 

SOCS1 Hs00705164_s1 NM_003745.1 

STAT1 Hs01013996_m1 NM_007315.3, NM_139266.2 

TNF Hs01113624_g1 NM_000594.2 

TRAF6 Hs00371512_g1 NM_004620.3, NM_145803.2 

II.1.7.2 TaqMan MicroRNA Assays 

TaqMan control miRNA assays 

Control Assay ID NCBI Accession# Mature miRNA Sequence 

RNU6B 001093 NR_002752 CGCAAGGATGACACGCAAATTCGTGAAG 
CGTTCCATATTTTT 

RNU48 001006 NR_002745 ATGACCCCAGGTAACTCTGAGTGTGTCGC 
TGATGCCATCCCGCAGCGCTCTGACC 

TaqMan MicroRNA Assays 

miRNA Assay ID miRBase ID  Mature miRNA Sequence 

cel-miR-67 000224 cel-miR-67-3p UCACAACCUCCUAGAAAGAGUAGA 

hsa-miR-142-3p 000464 hsa-miR-142-3p UGUAGUGUUUCCUACUUUAUGGA 

hsa-miR-146a 000468 hsa-miR-146a-5p UGAGAACUGAAUUCCAUGGGUU 

hsa-miR-155 002623 hsa-miR-155-5p UUAAUGCUAAUCGUGAUAGGGGU 

hsa-miR-223 002295 hsa-miR-223-3p UGUCAGUUUGUCAAAUACCCCA 

hsa-miR-424 000604 hsa-miR-424-5p CAGCAGCAAUUCAUGUUUUGAA 
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II.1.7.3 SNP Genotyping Assays 

SNP ID Location Type Polymorphism 

rs1320644 Chr.11: 76370187 3’UTR A/G, Transition Substitution 

rs1320645 Chr.11: 76370088 3’UTR A/C, Transversion Substitution 

rs1320646 Chr.11: 76370047 3’UTR C/T, Transition Substitution 

rs3781699 Chr.11: 76369785 3’UTR G/T, Transversion Substitution 

rs3781700 Chr.11: 76369709 3’UTR A/C, Transversion Substitution 

rs1803627 Chr.11: 76369344 3’UTR A/C, Transversion Substitution 

rs3197153 Chr.11: 76369072 3’UTR C/T, Transition Substitution 

rs7685 Chr.11: 76368639 3’UTR A/C, Transversion Substitution 

II.1.8 Primer	  list	  

All primers were synthesized from Eurofins MWG, Ebersberg, Germany. 

II.1.8.1 Primers	  for	  gene	  amplification	  

Primer sets for cloning GARP 3’UTR* 

Name Sequence 

GARP 3’UTR For 
Rev 

5´-CTCGAGAGAAGCCGGGAGAC-3´ 
5´-CCGCGGACATTCAGGTAGG-3´ 

GARP 3’UTR-Up For 
Rev 

5´-TCTAGAGGGGGACTGAAGAACATCAACC-3´ 
5´-CAAACTCCAGGCTCTGCTCAATAG-3´ 

GARP 3’UTR-Down For 
Rev 

5´-GGGAATGCTGGGAAATGAGATAC-3´ 
5´-TGTGAAGAG TGGGAGGACGAAG-3´ 

GARP 3’UTR-distal For 
Rev 

5´-GTTTAAACGATGGGAAACTGAGGCTTAGG-3´ 
5´-TCTAGAACATTCAGGTAGG -3´ 

GARP 3’UTR-Frag1 For 
Rev 

5´- GAGAGTTTAAACAGAAGCCGGGAGAC -3´ 
5´- CATTCCCAGTGCCCAGA -3´ 

GARP 3’UTR-Frag2 For 
Rev 

5´- GAGAGTTTAAACGGGAATGCTGGGAAATGAGATAC -3´ 
5´- CTTAACCAGACCCTGCTGG -3´ 

GARP 3’UTR-Frag3 For 
Rev 

5´- GAGAGTTTAAACCAGCAGGGTCTGG -3´ 
5´- GAGAGTCGACGAATCTCACCTATGGC -3´ 

GARP 3’UTR-Frag4 For 
Rev 

5´- GAGAGTTTAAACAGCACCGTCCCTG -3´ 
5´- GAGAGTCGACAGACACAAGGCTTGG -3´ 

GARP 3’UTR-Frag5 For 
Rev 

5´-GAGAGTTTAAACAAGCCTTGTGTCTGC-3´ 
5´-GAGAGTCGACGAATCTCACCTATGGC-3´ 

GARP 3’UTR-Frag6 For 
Rev 

5´-GAGAGTTTAAACTGCCATAGGTGAGATTC-3´ 
5´-GAGAGTCGACCCACAAGTTTCATTCTC-3´ 
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GARP 3’UTR-Frag7 For 
Rev 

5´-GAGAGTTTAAACCTGAGGCTTAGGAAGAG-3´ 
5´-GAGAGTCGACGGCCAAGCACAGGTAAG-3´ 

GARP 3’UTR-Frag8 For 
Rev 

5´-GAGAGTTTAAACACCTGTGCTTGGC-3´ 
5´-GAGAGTCGACTGGGCCTTGGTGTTC-3´ 

GARP 3’UTR-Frag9 For 
Rev 

5´-GAGAGTTTAAACGAACACCAAGGCCC-3´ 
5´-GAGAGTCGACGAGGAGTGTTACGTGC-3´ 

GARP 3’UTR-Frag10 For 
Rev 

5’-GAGAGTTTAAACCTACTGCACGTAAC-3´ 
5’-GAGAGTCGACACATTCAGGTAGG-3´ 

Primer sets for cloning Radixin§ 

Name Sequence 

Radixin-Frag1 For 
Rev 

5’-CACCATGCCGAAACCAATCAACG-3’ 
5’-CCGCTTATTGATTCTCAGACGAGG-3’ 

Radixin-Frag2 For 
Rev 

5’-ATGATAGACTCCTACCCCAGCGTG-3’ 
5’-TTTCCAAGTCTTCCTGGGCTG-3’ 

Radixin-Frag3 For 
Rev 

5’-TGCCGACCAGATGAAGAATCAG-3’ 
5’-CATTTGCTTTATGCTGCTTTGGCAAGAGC-3’ 

Radixin For 
Rev 

5’-GAGAGGATCCATGCCGAAACCAATCAACG-3’ 
5’-GAGACTCGAGCATTTGCTTTATGCTGCTTTGGCAAGAGC-3’ 

*Underlined sequences indicate the inserted restriction sites. 
§Underlined sequences indicate the restriction site of BamHI (forward primer) and XhoI (reverse primer). 

II.1.8.2 Primers	  for	  sequencing	  	  

II.1.8.3 Primers	  for	  the	  site-‐directed	  mutagenesis*	  

Name Sequence 

GARP 3’UTR-5pri For 
Rev 

5’-GGGAATGCTGGGAAATGAGATAC-3’ 
5’-ACAAATCCTCCTGGGCTTGG -3’ 

GARP 3’UTR-mid For 
Rev 

5’-TCATCCTTCTGTCTCCAGGGC-3’ 
5’-CAAACTCCAGGCTCTGCTCAATAG-3’ 

GARP 3’UTR-3pri For 
Rev 

5’-GATGGGGAAACTGAGGCTTAGG-3’ 
5’-GTAAAATGGGGTGGAGAGAGTGG-3’ 

M13 For 
Rev 

5’-TGTAAAACGACGGCCAGT-3’ 
5’-CAGGAAACA GCT ATG ACC-3’ 

pmirGlo For 
Rev 

5’-ACACGGTAAAACCATGAC-3’ 
5’-GTCCAAACTCATCAATGTA-3’ 

Name Sequence 

GARP 3’UTR-MRE-142-
3p mutated 

For 
Rev 

5’-ggtccccacgcctgatctttgaaaacaGGacagggctgctgtcac-3’ 
5’-gtgacagcagccctgtCCtgttttcaaagatcaggcgtggggacc-3’ 

GARP 3’UTR-MRE-424 
mutated 

For 
Rev 

5’-ttgaaaacactacacagggcAAgtcacttcccagggcccagg-3’ 
5’-cctgggccctgggaagtgacTTgccctgtgtagtgttttcaa-3’ 
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*Capital letters indicate the mutated nucleotides. 

II.1.8.4 Oligonucleotides	  for	  cloning	  MREs*§	  

Name Sequence 

MRE-142-3p-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTTCCATAAAGTAGGAAACACTACAG-3’ 
5’-CTAGCTGTAGTGTTTCCTACTTTATGGAACTAGCGGCCGCTAGTTT-3’ 

MRE-142-3p-
GARP 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTCCCACGCCTGATCTTTGAAAACACTACAG-3’ 
5’-CTAGCTGTAGTGTTTTCAAAGATCAGGCGTGGGACTAGCGGCCGCTAGTTT-3’ 

MRE-142-3p-
mut 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTCCCACGCCTGATCTTTGAAAACggCAG-3’ 
5’-CTAGCTGccGTTTTCAAAGATCAGGCGTGGGACTAGCGGCCGCTAGTTT-3’ 

MRE-181a-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTACTCACCGACAGCGTTGAATGTTG-3’ 
5’-CTAGCAACATTCAACGCTGTCGGTGAGTACTAGCGGCCGCTAGTTT-3’ 

MRE-181b-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTACCCACCGACAGCAATGAATGTTG-3’ 
5’-CTAGCAACATTCATTGCTGTCGGTGGGTACTAGCGGCCGCTAGTTT-3’ 

MRE-181c-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTACTCACCGACAGGTTGAATGTTG-3’ 
5’-CTAGCAACATTCAACCTGTCGGTGAGTACTAGCGGCCGCTAGTTT-3’ 

MRE-181a/b/c-
GARP 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTAACTCTTTGTATAACCTACCTGAATGTAG-3’ 
5’-CTAGCTACATTCAGGTAGGTTATACAAAGAGTTACTAGCGGCCGCTAGTTT-3’ 

MRE-381-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTACAGAGAGCTTGCCCTTGTATAG-3’ 
5’-CTAGCTATACAAGGGCAAGCTCTCTGTACTAGCGGCCGCTAGTTT-3’ 

MRE-381-
GARP 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTCCAGGCCTCGGGACCAACTCTTTGTATAAG-3’ 
5’-CTAGCTTATACAAAGAGTTGGTCCCGAGGCCTGGACTAGCGGCCGCTAGTTT-
3’ 

MRE-424-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTTTCAAAACATGAATTGCTGCTGG-3’ 
5’-CTAGCCAGCAGCAATTCATGTTTTGAAACTAGCGGCCGCTAGTTT-3’ 

MRE-424-
GARP 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTTTTGAAAACACTACACAGGGCTGCTGG-3’ 
5’-CTAGCCAGCAGCCCTGTGTAGTGTTTTCAAAACTAGCGGCCGCTAGTTT-3’ 

MRE-424-mut For 
Rev 

5’-AAACTAGCGGCCGCTAGTTTTGAAAACACTACACAGGGCaaGG-3’ 
5’-CTAGCCttGCCCTGTGTAGTGTTTTCAAAACTAGCGGCCGCTAGTTT-3’ 

MRE-497-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTACAAACCACAGTGTGCTGCTGG-3’ 
5’-CTAGCCAGCAGCACACTGTGGTTTGTACTAGCGGCCGCTAGTTT-3’ 

MRE-497-
GARP 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTTTTGAAAACACTACACAGGGCTGCTGG-3’ 
5’-CTAGCCAGCAGCCCTGTGTAGTGTTTTCAAAACTAGCGGCCGCTAGTTT-3’ 

MRE-551a-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTTGGAAACCAAGAGTGGGTCG-3’ 
5’-CTAGCGACCCACTCTTGGTTTCCAACTAGCGGCCGCTAGTTT-3’ 

MRE-551a-
GARP 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTTGGAGGCCAAGGTGTGGGTCG-3’ 
5’-CTAGCGACCCACACCTTGGCCTCCAACTAGCGGCCGCTAGTTT-3’ 

MRE-661-
Canon 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTACGCGCAGGCCAGAGACCCAGGCAG-3’ 
5’-CTAGCTGCCTGGGTCTCTGGCCTGCGCGTACTAGCGGCCGCTAGTTT-3’ 

MRE-661-
GARP(3) 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTGGCTGCTGTCACTTCCCAGGGCCCAGGCCG-3’ 
5’CTAGCGGCCTGGGCCCTGGGAAGTGACAGCAGCCACTAGCGGCCGCTAGTTT-
3’ 

GARP 3’UTR-MRE-142-
3p/424 mutated 

For 
Rev 

5’-cctgatctttgaaaacaGGacagggcAAgtcacttcccagggccc-3’ 
5’-gggccctgggaagtgacTTgccctgtCCtgttttcaaagatcagg-3’ 
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MRE-661-
GARP(4) 

For 
Rev 

5’-AAACTAGCGGCCGCTAGTGGCCCAGGCCTCAGCCCAGGCCG-3’ 
5’-CTAGCGGCCTGGGCTGAGGCCTGGGCCACTAGCGGCCGCTAGTTT-3’ 

*Underlined sequences indicate the restriction site of NotI. 
§Lower case indicates the mutated nucleotides. 

II.1.8.5 Other	  Oligonucleotides	  *§	  

*Underlined sequences indicate the restriction site of PmeI. 
§Bold font indicates the stop codons. 

II.1.9 Vector	  list	  

Vector name Inserted sequence 

pCR2.1-GARP-3’UTR-Up 21676140-21673856 bp of NT_167190.1 

pCR2.1-GARP-3’UTR-Down 21676571-21675120 bp of NT_167190.1 

pCR2.1-GARP-3’UTR-Up&Down 21676140-21675120 bp of NT_167190.1 

pCR2.1-GARP-3’UTR GARP-3’UTR, +2128-+4182 bp of 
NM_001128922.1 

pcDNA3.1-GARPcds GARP cds, +139-+2127 bp of 
NM_001128922.1 

pcDNA3.1-GARPcds-3’UTR 
GARP cds, +139-+2127 bp of 
NM_001128922.1 and GARP-3’UTR, 
+2128-+4182bp of NM_001128922.1 

pcDNA3.1-Radixin Radixin cds, +311-+2125 bp of 
NM_001260492 

pEGFP-C1* Stop codon-linker 

pEGFP-C1*-fr(1-10) Overlapping fragments of GARP-3’UTR 

pmirGlo-GARP-3’UTR-distal Distal part of GARP-3’UTR, +3818-+4182 
bp of NM_001128922.1 

pmirGlo- MRE-Canon Canonical sequence of MRE 

pmirGlo- MRE-GARP MRE sequence in the GARP-3’UTR 

pmirGlo-MRE-mut Mutated MRE sequence in the GARP-
3’UTR 

II.1.10 	  Kits	  

Kit name (application) Origin 

AffinityScript QPCR cDNA Synthesis Kit Agilent Technologies, Santa Clara, USA 

Amaxa Cell Line Nucleofector Kit V Lonza, Cologne, Germany 

Name Sequence 

Stop Codon-linker For 
Rev 

5’-TCGAGTGACTAAATAGTTTAAACA-3’ 
5’-AGCTTGTTTAAACTATTTAGTCAC-3’ 
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Amaxa human T cell Nucleofector Kit Lonza 

Amaxa Mouse T Cell Nucleofector Kit  Lonza 

Bio-Rad Protein Assay Kit Bio-Rad, Munich, Germany 

CD25 Microbeads II, human Miltenyi Biotech, Bergisch Galdbach, 
Germany 

CD25 MicroBead Kit, mouse Miltenyi Biotech 

Dual-Glo Luciferase Assay System Promega 

CD4+ T cell isolation kit II, human Miltenyi Biotech 

CD4+ T cell Isolation Kit II, mouse Miltenyi Biotech 

Human IL-17 Quantikine ELISA Kit R&D system,	  Minneapolis, USA 

Human IFNγ Quantikine ELISA Kit R&D system 

Human TNF Quantikine ELISA Kit R&D system 

miRNeasy Serum/Plasma Kit Qiagen, Hilden, Germany 

QIAamp DNA Blood Mini Kit Qiagen 

QIAGEN Plasmid Maxi Kit Qiagen 

QIAprep Spin Miniprep Kit Qiagen 

QIAquick Gel Extraction Kit Qiagen 

QIAquick PCR Purification Kit Qiagen 

QuikChange Lightning Site-Directed Mutagenesis Kit Agilent Technologies 

RNeasy Plus Mini Kit Qiagen 

TaqMan MicroRNA Reverse Transcription Kit Life Technologies 

TOPO TA Cloning Kit Life Technologies 

II.1.11 Buffers	  

Buffers and Solutions Composition 
Blotting buffer 12.5 mM Tris-HCl 

86 mM Glycine 
0.05 % SDS 
20 % Methanol 

FACS PBS PBS 
2 % FCS 
0.01 % NaN3 

MACS Buffer PBS 
0.5 % BSA 
2 mM EDTA 

10x NH4Cl solution 41.45 g NH4Cl 
5 g KHCO3 
1 mM EDTA, H2O ad 0.5 l 
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NP-40 cell lysis/wash buffer 50 mM Tris-HCl (pH8.0) 
1 % NP40 
2 mM EDTA 
25 mM NaCl 

10x Oligo annealing buffer 100 mM Tris-HCl (pH 7.5) 
1 M NaCI  
10 mM EDTA 

1x Protease K reaction buffer 25 mM EDTA 
300 mM NaCl 
200 mM Tris-HCl (pH7.5) 
2 % SDS 

RNP-IP lysis buffer 0.5% NP-40 
150 mM KCl 
25 mM Tris-HCl (pH7.5) 
2 mM EDTA 
0.5 mM DTT (freshly added) 

RNP-IP wash buffer 0.05 % NP-40 
300 mM NaCl 
50 mM Tris-HCl (pH7.5) 
5 mM MgCl2 

Resolving gel (8%) 0.35 M Tris-HCl (pH8.8) 
8% Acrylamid/bis-acrylamid 
100 µl 10% SDS 
100 µl 10% APS 
10 µl TEMED, H2O ad 10 ml 

Stacking gel 126.7 mM Tris-HCl (pH6.8) 
4% Acrylamid/bis-acrylamid 
50 µl 10% SDS 
50 µl 10% APS 
5 µl TEMED, H2O ad 5 ml 

SDS running buffer 25 mM Tris-HCl  
192 mM Glycine 
0.1 % SDS 

2x SDS sample buffer 4 % SDS 
125 mM Tris-HCl 
20 % Glycerol 
100 mM DTT 
0.02 % Bromophenol Blue 

50x TAE buffer 242 g Tris-HCl 
57.2 ml acetic acid 
50 mM EDTA (pH8.0), H2O ad 1 l 

TBST 20 mM Tris-HCl (pH7.6) 
140 mM NaCl 
0.1 % Tween-20 
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II.2 Methods	  

II.2.1 Molecular	  Biological	  Methods	  

II.2.1.1 Genomic	  DNA	  isolation	  

Genomic DNA (gDNA) from whole blood was extracted using QIAamp DNA Blood Mini 

Kit (Qiagen) according to manufacturer’s instructions. Each pulse-vortexing step was 

followed by snap centrifugation to collect all liquid drops from the inside of the lid. Briefly, 

200 µl of whole blood sample were added to a 1.5ml Eppendorf tube containing 20 µl of 

QIAGEN Protease (supplied) and mixed with 200 µl of Buffer AL by pulse-vortexing for 15 

sec. The mixtures were incubated at 56°C for 10 min and mixed with 200 µl of ethanol (96%-

100%) by pulse-vortexing for 15 sec, then applied to QIAamp Mini spin columns and 

centrifuged at 8000 rpm for 1 min. Columns were washed first with 500 µl of Buffer AW1 at 

8000 rpm for 1 min, then with 500 µl of Buffer AW2 at 13,000 rpm for 3 min. After the last 

wash, columns were placed to fresh collecting tubes and centrifuged for additional 1 min at 

13,000 rpm. After transferring the columns to fresh Eppendorf tubes, 200 µl of distilled 

water/column were added and centrifuged at 13,000 rpm for 1 min to elute DNA. The quality 

and quantity of DNA were controlled by analyzing the absorbance at 260 nm/280 nm 

(A260/A280) using an Eppendorf BioPhotometer (Eppendorf, Hamburg, Germany). Genomic 

DNA was then stored at 4°C for immediate usage or -20°C for longer storage. 

II.2.1.2 RNA	  isolation	  

II.2.1.2.a Total RNA isolation from cells 

Total RNA was extracted using RNeasy Plus Mini Kit (Qiagen) following the manufacturer’s 

instructions. After washing with PBS, 1 to 5 Mio cells were collected and lysed in 350 µl of 

RLT buffer containing 1 % β-mercaptoethanol. Cell lysates were then applied first to 

QIAShredder columns by centrifuging under 13,000 rpm for 2 min. The gDNA Eliminator 

Spin Columns were used afterwards by centrifuging under 10,000 rpm for 30 sec. Eluent was 

mixed with 350 µl of 70 % Ethanol and applied to Rneasy Minikit Spin Columns. After a 

short spin down for 15 sec at 10,000 rpm, columns were washed first with 700 µl of RW1 

Buffer followed by two times 500 µl of RPE Buffer. After the last wash, columns were 

transferred to fresh collecting tubes and centrifuged for additional 2 min at 13,000 rpm. After 

transferring the columns to fresh Eppendorf tubes, 33 µl of RNease-free water/column were 

added and centrifuged at 13,000 rpm for 1 min to elute RNA. The quality and quantity of total 

RNA were controlled by analyzing the absorbance at 260 nm/280 nm (A260/A280) using an 
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Eppendorf BioPhotometer. RNA was then stored at 4°C for immediate usage or -20°C for 

longer storage. 

II.2.1.2.b Serum RNA isolation 

Serum RNA was extracted using miRNeasy Serum/Plasma Kit (Qiagen) based on the 

manufacturer’s instructions. Unless stated otherwise, centrifugation was performed at room 

temperature. 200 µl of serum were mixed with 1 ml of QIAzol lysis Reagent and incubated at 

room temperature for 5 min. 5 µl of 1 nM C.elegans miR-67 mimic (CN-001000, Thermo 

Scientific) were added after incubation as spike-in control. 200 µl of chloroform were 

carefully added to the mixture, vortexed vigorously for 15 sec, incubated for 2 to 3 min at 

room temperature and followed by centrifuging for 15 min at 12,000 rpm at 4°C. The upper 

aqueous phase (around 600 µl) was transferred to a new tube and mixed thoroughly with 900 

µl of 100 % ethanol. The mixtures were then applied to RNeasy MinElute spin. After short 

spin down for 15 sec at 10,000 rpm, columns were washed first with 700 µl of RWT Buffer 

and then 500 of µl RPE Buffer. Afterwards, columns were washed with 500 µl of 80 % 

ethanol for 2 min at 10,000 rpm then transferred to fresh collecting tube and centrifuged for 

additional 5 min at 13,000 rpm in order to dry the membrane. After transferring the columns 

to fresh Eppendorf tubes, 33 µl of RNase-free water/column were added to elute RNA by 

centrifuging for 1 min at 13,000 rpm and stored at -20°C until usage. 

II.2.1.3 Reverse	  Transcription	  

II.2.1.3.a cDNA Synthesis 

500 ng to 1 µg of total RNA were reversely transcribed into cDNA in a 20-µl volume at 42°C 

for 1 h by 0.25 U/µl AMV reverse transcriptase (Promega) supplemented with 1x AMV 

Reverse Transcription Reaction Buffer in addition to 1 mM dNTPs, 20 ng/µl Oligo-dT12-18. 

cDNA was then stored at 4°C for immediate usage or -20°C for longer storage. 

When low RNA yield appeared, AffinityScript QPCR cDNA Synthesis Kit (Agilent 

Technologies) was used based on the manufacturer’s instruction. Briefly, 100 to 250 ng RNA 

were reversely transcribed in a 20 µl volume by 1.0 µl of AffinityScript RT/ RNase Block 

enzyme mixture supplemented with 12.75 nM Oligo(dT) primer, 2.25 nM random primer and 

1x First Strand Mastermix. Reaction started with primer annealing at 25°C for 5 min, then 

followed by two steps cDNA synthesis (5 min at 4°C, then 30 min at 55°C) and terminated at 

95°C for 5 min. cDNA was then stored at 4°C for immediate usage or -20°C for longer 

storage. 
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II.2.1.3.b miRNA reverse transcription 

50 ng total RNA in a 5 µl volume or 5 µl of purified serum RNA were used to reversely 

transcribe miRNA using TaqMan MicroRNA Reverse Transcription Kit (Life Technologies) 

in a 15 µl reaction volume. Reaction was performed by 50 U MultiScribe Reverse 

Transcriptase in 1x Reverse Transcription Buffer supplemented with 3.8 U RNase Inhibitor, 1 

nM dNTPs and 3 µl of 5x miRNA-specific RT primer from TaqMan MicroRNA Assays (Life 

Technologies). Reaction started with primer annealing at 16°C for 30 min, then followed by 

reverse transcription at 42°C for 30 min and terminated at 85°C for 5 min. RT reaction 

solutions were then stored at 4°C for immediate usage or -20°C for longer storage. 

II.2.1.4 Polymerase	  Chain	  Reaction	  (PCR)	  

50 ng cDNA, 50 ng gDNA or 10 ng plasmid DNA were used as template per PCR. DNA 

fragments were amplified by 0.02 U/µl AmpliTaq DNA Polymerase (Life Technologies) in a 

25 µl reaction volume containing 1x PCR Buffer II supplemented with 0.4 µM primers, 0.2 

mM dNTPs. The reaction began at 95°C for 5 min, then followed by 35 cycles containing a 

denaturation step (30 sec, 95°C), an annealing step (30 sec, 60°C) and an extension step 

(1kb/min, 72°C) and ended with an additional extension step (7 min, 72°C) on 9800 Fast 

Thermal Cycler (Life Technologies). PCR products were stored at 4°C for immediate usage 

or -20°C for longer storage. 

To reduce the mismatch during amplification, GeneAmp High Fidelity PCR system (Life 

Technologies) was applied to amplify DNA fragments for downstream molecular cloning. 

Briefly, 50 ng cDNA, 50 ng gDNA or 10 ng plasmid DNA were used as template per 

reaction. DNA fragments were amplified by 0.05 U/µl GeneAmp High Fidelity PCR Enzyme 

Mix in a 25 µl reaction volume containing 1x GeneAmp High Fidelity PCR Buffer 

supplemented with 0.2 µM primers, 0.4 mM dNTPs. PCR was performed under standard 

amplifying program. 

II.2.1.5 Real-‐time	  PCR	  

II.2.1.5.a Real-time PCR to detect gene expression level 

Real-time PCR to detect gene expression level was performed in duplicates with TaqMan 

Gene Expression Assays in a 7500 Fast Real-time PCR System (all from Life Technologies). 

Each TaqMan Gene Expression Assay mix (20x) contains two unlabeled sequence specific 

primers and one 6-carboxyfluorescein (FAM) dye-labeled TaqMan minor groove binder 
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(MGB) probe or one 6-VIC (proprietary, no information provided by Life Technology) dye-

labeled TaqMan MGB probe for TaqMan endogenous controls. The primer probe is 

constructed containing a reporter fluorescent dye (FAM or VIC) on the 5’ end and a 

nonfluorescent quencher on the 3’ end that quenches the reporter dye emission if the probe is 

intact. During amplification, the 5’ nuclease activity of Taq DNA polymerase cleaves the 

probe and separates the reporter dye from the quencher to increase the reporter dye signal. 

Each PCR cycle brings additional reporter dye emission, which results in an increase in 

fluorescence signals in proportion to the amount of amplicon produced. 1 µl of cDNA were 

used in a 20 µl reaction volume containing 1x TaqMan Universal PCR Master Mix 

supplemented with 0.5 µl 20x TaqMan Gene Expression Assay mix. The mixture began 

reaction firstly for hot enzyme activation at 95°C for 10 min, then followed by 40 cycles 

containing a denaturation step (15 sec, 95°C), an annealing/extension step (1min, 60°C). 

Relative quantification was performed by calculating the difference in cross-threshold values 

(ΔCt) of the gene of interest and an endogenous control according to the formula 2-Δct. To 

quantify the copy numbers of GARP mRNA serial dilutions of a vector encoding GARP cDNA 

(present in our lab) were analyzed along with the samples. The copy numbers were calculated 

based on the concentrations of the control curve. 

II.2.1.5.b Real-time PCR to detect miRNA expression level 

Real-time PCR to detect miRNA expression level was performed in duplicates with TaqMan 

MicroRNA Assays (Life Technologies). Each TaqMan MicroRNA Assay contains one tube 

of miRNA-specific RT primer for miRNA reverse transcription and one tube of 20X Probe 

mix including miRNA-specific forward PCR primer, specific reverse PCR primer and 

miRNA-specific TaqMan MGB probe for Real-time PCR detection. 5 µl of 1:11 diluted 

miRNA reverse transcription product were used in a 20 µl reaction volume containing 1X 

TaqMan Universal PCR Master Mix supplemented with 1 µl 20x Probe mix. Real-time PCR 

was performed under standard real-time PCR program. To quantify the copy numbers of miR-

142-3p serial dilutions of the mimics of miR-142-3p were analyzed along with the samples. The 

copy numbers were calculated based on the concentrations of the control curve. 

II.2.1.5.c Genotyping of SNPs 

Genotypes of GARP 3’UTR were determined by TaqMan SNP Genotyping Assays based on 

the release of reporter fluorescent dye from the quencher using the Taq DNA polymerase’s 

5’-nuclease activity. Each pre-formulated SNP Genotyping Assay mix contains 2 unlabelled 

PCR primers (forward and reverse primers), 1 VIC dye – MGB labeled probe detects the 
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allele 1 sequence and 1 6-FAM dye – MGB labeled probe detects the allele 2 sequence. A 

fluorescent signal of a single dye (FAM or VIC) determines homozygosity for a respective 

allele and fluorescent signals of both dyes indicate heterozygosity. 10 ng DNA were reacted 

in a 10 µl reaction volume containing 1x TaqMan Universal PCR Master Mix supplemented 

with 0.25 µM SNP Genotyping Assay mix. The reaction began firstly for hot enzyme 

activation at 95°C for 10 min, then followed by 40 cycles containing a denaturation step (15 

sec, 95°C), an annealing/extension step (1min, 60°C) on a 9800 Fast Thermal Cycler and was 

analyzed on 7500 Fast Real-time PCR System. Each sample was determined in duplicates and 

water was included into each PCR run as a no template control (NTC). 

II.2.1.6 Agarose	  Gel	  electrophoresis	  

1 % Agarose gel containing 1x SYBR Safe DNA Gel Stain (Life Technologies) was used for 

gel electrophoresis of DNA fragments. 5 µl of DNA were diluted with 1 µl of 6x loading dye 

and loaded per well. To identify the size of the bands, 0.2 µg of GeneRuler DNA ladder 

(100bp and 1kb, Fermentas) were loaded as marker. Gel electrophoresis was performed at 100 

V for 30 min in 1x TAE Buffer. DNA bands were visualized using UVT-28 MP 

transilluminator (Herolab, Wiesloch, Germany) 

II.2.1.7 PCR	  products	  purification	  

PCR products were purified using QIAquick PCR Purification Kit (Qiagen) following the 

manufacturer’s instructions. All centrifugation steps were performed at 13,000 rpm for 1min 

at room temperature. Briefly, one volume PCR sample was mixed with five volumes Buffer 

PBI and applied to QIAquick spin columns. Columns were then washed with 750 µl of Buffer 

PE. After discarding the flow-through from the washing step columns were centrifuged for 

additional 1 min and transferred to fresh Eppendorf tubes. 50 µl of distilled H2O were added 

per column and centrifuged to elute purified DNA. The quality and quantity of DNA were 

controlled by analyzing the absorbance at 260 nm/280 nm (A260/A280) using an Eppendorf 

BioPhotometer. Purified DNA was then stored at 4°C for immediate usage or -20°C for 

longer storage. 

II.2.1.8 Agarose	  Gel	  extraction	  

Desired DNA fragments were extracted using QIAquick Gel Extraction Kit (Qiagen) based on 

the manufacturer’s instructions. All centrifugation steps were performed at 13,000 rpm for 1 

min at room temperature. DNA bands were excised from 1.0% Agarose gel after gel 

electrophoreses and weighted. 3 volumes of QG Buffer were added per 1 volume gel (100mg 



Materials and Methods 	  
 

 

39 

≈ 100µl) and mixtures were incubated at 50°C for 10 min by short vortexing every 2-3 min 

during incubation. After incubation, 1 volume of isopropanol was added. Mixtures were 

applied to the QIAquick columns and centrifuged for DNA binding. Columns were washed 

first with 500 µl of Buffer QG, then two times with 700 µl of Buffer PE. After discarding the 

last flow-through, columns were centrifuged for additional 1 min and transferred to fresh 

Eppendorf tube. 30 µl of distilled H2O were added per column and centrifuged to elute 

extracted DNA. The quality and quantity of DNA were controlled by analyzing the 

absorbance at 260 nm/280 nm (A260/A280) using an Eppendorf BioPhotometer. Purified DNA 

was then stored at 4°C for immediate usage or -20°C for longer storage. 

II.2.1.9 Cloning	  

II.2.1.9.a TOPO TA cloning 

TOPO cloning reaction was performed using TOPO TA cloning kit (Life Technologies). 10 

ng pCR2.1-TOPO vectors were mixed with 1 µl of fresh PCR product for 30 min at room 

temperature in a 6 µl volume supplemented with 1x salt solution (0.2 M NaCl and 0.01 M 

MgCl2). The reaction mixtures were then placed on ice and used for transformation 

immediately. 

II.2.1.9.b Ligation 

50 ng vectors were ligated with a 3-fold molar excess of insert by 1 µl 400 U/µl Quick T4 

DNA Ligase (New England Biolabs) for 5 min at room temperature in a 20 µl volume 

containing 1x Quick ligation reaction buffer. The reaction mixtures were then placed on ice 

and used for transformation immediately. 

For the insertion of DNA oligonucleotides, 4 µM complementary s-oligonucleotides and as-

oligonucleotides were annealed to each other in a 50-µl volume supplemented with 1x Oligo 

Annealing Buffer containing 10 mM Tris-HCl (pH 7.5), 100 mM NaCl and 1 mM EDTA at 

95 °C for 5 min, then 37°C for 15 min. Annealed oligonucleotides were stored at 4°C for 

immediate usage or -20°C for longer storage. 50 ng vectors were ligated with 20-fold molar 

excess of oligonucleotides under standard ligation condition. 

II.2.1.9.c Transformation 

2 µl of TOPO cloning reaction or ligating reaction or 10 pg vectors (5 pg/µl) were 

transformed into OneShot TOP10 competent E.coli cells (Life Technologies) chemically  

according to manufacturer’s instructions. DNA was gently mixed with 50 µl of carefully 
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thawed competent E.coli cells and incubated on ice for 30 min. Vials were then heat shocked 

for 30 sec at 42°C and incubated on ice for additional 2 min. After adding 250 µl of Super 

Optimal Broth (S.O.C) medium pre-equilibrated to room temperature, E.coli cultures were 

then shaken for 1 h at 300 rpm, 37°C. 100 µl of transformation were spread onto a pre-

warmed selective LB Agar plate containing 50 µg/ml ampicillin or 50 µg/ml kanamycin and 

incubated at 37°C overnight. For TOPO cloning reaction, 40 µl of 40 mg/ml X-Gal (Life 

Technologies) dissolved in DMF (Sigma-Aldrich) were applied on to the plate at least 1 h in 

advance for blue-white selection. For site-directed mutagenesis, 10 µl of 100mM IPTG (Life 

Technologies) and 40 µl of 40 mg/ml X-Gal were applied on to the plate at least 1 h in 

advance for blue-white selection.  

II.2.1.9.d Analysis of transformants 

5 to 10 colonies (white or light blue colonies for TOPO cloning plates) were picked and 

cultured for 8-16 h at 225 rpm, 37°C in 3ml LB medium containing 50 µg/ml ampicillin or 50 

µg/ml kanamycin. Plasmid DNA was isolated and digested by suitable restriction enzymes to 

confirm the presence and correct orientation of the insert. DNA sequencing was performed to 

control the sequence of the insert. 

II.2.1.10 Plasmid	  DNA	  purification	  

Two scales of plasmid DNA purification kit were used based on the desired yield of plasmid 

DNA: QIAprep Spin Miniprep Kit (Qiagen) for desired DNA yield less than 20 µg, and 

QIAGEN Plasmid Maxi Kit (Qiagen) for desired DNA yield up to 500 µg. 

II.2.1.10.a Plasmid DNA miniprep 

1 to 3 ml E.coli overnight cultures were collected by centrifugation at 8,000 rpm for 3 min at 

room temperature. Pelleted bacterial cells were firstly resuspended in 250 µl of Buffer P1 

containing 100 µg/ml RNase A, then mixed with 250 µl of Buffer P2 by inverting the tube 

gently and then mixed with 350 µl of Buffer N3. The mixtures were centrifuged for 10 min at 

13,000 rpm and supernatants were applied to the QIAprep spin columns to allow the binding 

of plasmid DNA to the silica membrane. All centrifuge steps later on were performed at 

13,000 rpm for 1 min at room temperature. After discarding the flow-through, columns were 

washed first with 500 µl of Buffer PB, then one time with 700 µl of Buffer PE. After 

discarding the last flow-through, columns were centrifuged for additional 1 min and 

transferred to fresh Eppendorf tubes. 50 µl of distilled H2O/column were added and incubated 

for additional 1min before centrifugation to elute plasmid DNA. The quality and quantity of 
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DNA were controlled by analyzing the absorbance at 260 nm/280 nm (A260/A280) using an 

Eppendorf BioPhotometer. Purified plasmid DNA was then stored at 4°C for immediate usage 

or -20°C for longer storage. 

II.2.1.10.b Plasmid DNA maxiprep 

150ml E.coli overnight cultures were collected by centrifugation at 4,500 rpm for 20 min at 

room temperature. The pelleted bacterial cells were resuspended in 10 ml of Buffer P1 

containing 100 µg/ml RNase A and thoroughly mixed with 10 ml of Buffer P2 by inverting 4 

to 5 times and incubated for 5 min at room temperature. The mixtures were then vigorously 

mixed with 10 ml of pre-chilled Buffer P3, incubated on ice for 20min and centrifuged at 

4,500 rpm for 20 min at 4°C. Meanwhile, the QIAGEN-tip 500 was equilibrated by applying 

10 ml of Buffer QBT. All liquid applied to the columns later passed through only by gravity 

flow. The supernatants from centrifugation were carefully transferred into the columns 

without any disturbance of the pellet and allowed to flow through. The QIAGEN-tip 500 was 

then washed 2 times with 30 ml of Buffer QC and DNA was eluted by 15 ml of Buffer QC 

into a clean 50ml Falcon. To precipitate DNA, eluted DNA was mixed with 10.5 ml of 

isopropanol pre-equilibrated to room temperature and centrifuged at 4,500 rpm for 20 min. 

After discarding the supernatant, DNA pellets were first washed one time with 70% ethanol 

and then air-dry at room temperature for 5 to 10 min before being dissolved in 600 µl of 

distilled H2O. The quality and quantity of DNA were controlled by analyzing the absorbance 

at 260 nm/280 nm (A260/A280) using an Eppendorf BioPhotometer. Purified plasmid DNA was 

then diluted to a concentration of 0.5 µg/ml and stored at 4°C for immediate usage or -20°C 

for longer storage.  

II.2.1.11 Restriction	  enzyme	  (RE)	  digestion	  

1µg of DNA were digested in a 20 µl volume at 37°C for 2 h by 2.5 U/µl suitable restriction 

enzymes supplemented with respective 1x supplied reaction buffer as listed in Section II.1.5.1. 

If gel extraction was necessary, 8 µg of DNA were digested in a 160 µl volume. 

II.2.1.12 DNA	  sequencing	  

DNA sequencing was performed using the service of Eurofins MWG Operon. 750 ng of 

plasmid DNA in a 15 µl total volume were used per sequencing. 2 µl of 10 µM sequencing 

primer were enclosed if necessary. 
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II.2.1.13 Vector	  construction	  

The sequences of all primers and oligonucleotides are listed in Section II.1.8. The sequences 

of all generated vectors were proven by DNA sequencing. 

II.2.1.13.a Construction of pCR2.1-GARP 3’UTR 

PCR products encoding a) the 5’ fragment of human GARP 3’UTR (GARP-3’UTR-Up) 

corresponding to nucleotides 21676140-21673856 bp of NT_167190.1 (starts in the coding 

sequence and ends in the 3’UTR); and b) the 3’ fragment of human GARP 3’UTR (GARP-

3’UTR-Down) corresponding to nucleotides 21676571-21675120 of NT_167190.1 (starts in 

the 3’UTR and ends outside of the gene (507 bp downstream)) were amplified from genomic 

DNA using GeneAmp High Fidelity PCR system and cloned into pCR2.1-TOPO vector 

(Figure 2).  

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Schematic overview of generating pCR2.1-GARP 3’UTR vector. 

After digestion by SacI the fragments released from pCR2.1-GARP-3’UTR-Up vector 

containing the 5’ part of inserted 3’UTR fragment were purified by gel extraction and ligated 

into the backbone remained from pCR2.1-GARP-3’UTR-Down to generate a pCR2.1-GARP-

3’UTR-Up&Down vector. 
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GARP 3’UTR (+2128-+4182bp, NM_001128922.1) was amplified using pCR2.1-GARP- 

3’UTR-Up&Down as template and cloned into the pCR2.1 vector. Restriction sites of XhoI 

and SacII were introduced in forward and reverse primer, respectively, for consecutive 

cloning steps.  

II.2.1.13.b Construction of reporter vectors containing overlapping fragments of GARP 3’UTR 

The pEGFP-C1* vector which was modified to contain stop codons and PmeI restriction site 

at the 3’ end of GFP open reading frame was generated by inserting a Stop Codon-linker into 

a pEGFP-C1 vector (Clontech, Mountain View, USA) between XhoI and HindIII sites. Ten 

overlapping fragments of the GARP 3’UTR were amplified from pCR2.1-GARP-3’UTR and 

inserted into the pEGFP-C1* vector between PmeI and SalI sites. 

To generate a vector containing the GARP coding sequence followed by the GARP 3’UTR 

(pcDNA3.1-GARPcds-3’UTR), the GARP 3’UTR fragment was released from the pCR2.1-

GARP-3’UTR vector using XhoI and SacII restriction endonucleases and inserted into the 

pcDNA3.1-GARPcds vector (from our lab) between XhoI and SacII sites. 

The distal part of GARP 3’UTR was amplified from pCR2.1-GARP-3’UTR and inserted into 

a pmirGlo vector (Promega) between PmeI and XbaI sites downstream of the luciferase 

sequence  

II.2.1.13.c Construction of luciferase reporter vectors containing MREs 

Perfect matching sequences of miRNAs (canonical miRNA recognition elements [MREs]), 

predicted MREs of miRNAs within the GARP 3’UTR (GARP MREs), or mutated GARP 

MREs and their complementary strands were synthesized as single-stranded unmodified DNA 

oligonucleotides by Eurofins MWG. For subsequent cloning, overhangs bearing a PmeI 

restriction site (forward oligonucleotide, 5’-AAAC, reverse oligonucleotide, 5’-TTTG) and an 

NheI restriction site (forward oligonucleotide, 5’-G, reverse oligonucleotide, 5’-CTAGC) 

were introduced at the 5’ and 3’ end of the synthesized oligonucleotides, respectively. 

Additionally, a NotI restriction site was introduced into the oligonucleotides for clone 

selection. Paired oligonucleotides were annealed and cloned into pmirGlo vectors 

downstream of the luciferase gene.  

II.2.1.13.d Construction of mammalian expression vector encoding Radixin 

PCR products encoding a) the Radixin-Frag1 corresponding to +311-+1151 bp of 

NM_001260492, b) the Radixin-Frag2 corresponding to +760-+1686 bp of NM_001260492 
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and c) the Radixin-Frag3 corresponding to +1535-+2125 bp of NM_001260492 were 

amplified from cDNA using GeneAmp High Fidelity PCR system and cloned into pCR2.1-

TOPO vector. After digestion with HpaI and NheI, gel extraction and sequential ligation, a 

pCR2.1-Rdxcds vector was generated. Radixin cds (+311-+2125 bp, NM_001260492) was 

amplified using pCR2.1-Rdxcds as template and cloned into pcDNA3.1-V5-His between 

BamHI and XhoI sites. 

II.2.1.14 Site-directed mutagenesis 

Site-directed mutagenesis was performed in three steps using QuikChange Lightning Site-

Directed Mutagenesis Kits (Agilent Technologies) based on the manufacturer’s instructions. 

First, synthesis of the mutant strand was carried out. For this complementary forward and 

reverse oligonucleotides that carry the site of mutation were designed and synthesizeds as 

listed in Section II.1.8.3. 25 ng dsDNA templates were mixed with 0.5 µl of QuikChange 

Lightning Enzyme and 0.24 µM forward / reverse oligonucleotides in a 25 µl volume 

supplemented with 1x reaction buffer. The reaction began at 95°C for 2 min, then followed by 

18 cycles containing a melting step (20 sec, 95°C), an annealing step (10 sec, 60°C) and an 

extension step (30 sec/kb, 68°C) and ended with an additional extension step (5 min, 68°C) on 

a 9800 Fast Thermal Cycler. In the next step, digestion of parental methylated DNA by DpnI 

was performed. 2 µl of the provided DpnI restriction enzyme were added directly to the tube 

and incubated at 37°C for 5min to digest the parental methylated  DNA. At the last step, 45 µl 

gently thawed XL10-Gold ultracompetent cells were transfected by adding 2 µl of DpnI-

treated DNA in addition to 2 µl of β-Mercaptoethanol mix. E.coli were incubated on ice for 

30 min. Standard transformation was carried out and E.coli culture was spread onto pre-

warmed selective LB Agar plates containing 10 µl of 100 mM IPTG and 40 µl of 40 mg/ml 

X-Gal for blue-white selection. 	  
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II.2.2 Cell	  Biological	  Methods	  

II.2.2.1 Cell purification 

II.2.2.1.a Isolation of human CD25+ CD4 T cells 

Human CD25+ and CD25- T cells were isolated from heparin-treated peripheral blood from 

healthy individuals and patients with RA. The whole procedure includes four sequential steps: 

isolation of peripheral blood mononuclear cells (PBMCs) from peripheral blood, resetting of 

CD4+ and CD8+ T cells, negative selection of CD4+ T cells and positive selection of CD25+ 

CD4 T cells. Briefly, 10 ml of Ficoll were carefully loaded under a mixture of 20 ml of blood 

and 20 ml of PBS, and centrifuged at 1,300 rpm for 20 min without forced stop at room 

temperature. PBMCs located above the Ficoll layer and beneath the plasma layer were 

harvested and washed once with PBS. PBMC were counted and incubated with sheep 

erythrocytes for the isolation of the rosette-positive cell fraction containing CD4+ and CD8+ T 

cells. As described before (Rosenberg and Lipsky 1979), CD58 homologue expressed on 

sheep erythrocytes binds to CD2 which is exclusively expressed on T cells and natural killer 

(NK) cells. Therefore, only T cells and NK cells, but not the other components of PBMC 

(termed as rosette negative cells, e.g. monocytes and B cells) are recruited in the heavier layer 

after centrifugation. Thus, PBMC were resuspended at 10 x 106 cells/ml and incubated with ½ 

volume FCS and ½ volume sheep erythrocytes (approximately 2 x 106 cells/ml) for 10 min at 

37°C in a water bath with gentle shaking, followed by centrifugation at 1,040 rpm for 10 min 

and incubation for 40 min at 4°C to allow the formation of rosettes between sheep 

erythrocytes and CD2 positive cells. Afterwards, 10 ml of Ficoll were loaded under carefully 

resuspended PBMC/sheep erythrocytes mixture and centrifuged at 1,300 rpm for 20 min 

without forced stop at room temperature. The rosettes of T cells or NK cells bound to sheep 

erythrocytes were collected in the pellet beneath the Ficoll layer, while the rosette-negative 

cells were located above the Ficoll layer. The pellet of rosette-positive cells was resuspended 

in 10 ml/tube of 1x NH4Cl solution to lyze the erythrocytes and then washed with PBS. For 

cell proliferation assay the rosette-negative cells were collected, incubated with 10 ml of 1x 

NH4Cl solution to lyze contaminating sheep erythrocytes, washed twice with PBS and 

maintained in PBS at 4°C until usage.  

CD4+ T cells were then purified by negative selection from rosette-positive cells using human 

CD4+ T cell isolation Kit II (Miltenyi Biotech) according to the manufacturer’s instructions. 

Each 10 x 106 rosette-positive cells were resuspended in 40 µl of MACS buffer and incubated 

with 10 µl of biotin-antibody cocktail for 10 min at 4°C. The antibody cocktail contained 
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biotin-conjugated monoclonal antihuman antibodies against CD8, CD14, CD15, CD16, 

CD19, CD36, CD56, CD123, TCRγ/δ, and CD235a (Glycophorin A). The antibody-labeled 

cells were then resuspended in additional 30 µl of MACS buffer and incubated with 20 µl of 

MicroBeads conjugated to monoclonal antibiotin antibody and monoclonal anti-CD61 

antibody for 15 min at 4°C. After washing cells with PBS, up to 2x109 cells containing a 

maximum of 108 positive cells were resuspended in 1 ml of MACS buffer and applied on an 

LS MACS column placed in a magnetic field. Whereas magnetically labeled non-CD4 T cells 

stuck in the column, unlabeled CD4+ T cells were collected in the flow through by washing 

the column three times with 3 ml of MACS buffer. 

CD25+ CD4 T cells were then purified by positive selection from CD4+ T cells using human 

CD25 Microbeads II (Miltenyi Biotech) based on the manufacturer’s instructions. Each 10 x 

106 CD4 T cells were resuspended in 90 µl of MACS buffer and incubated with 10 µl of 

human CD25 Microbeads for 15 min at 4°C. After washing cells with PBS, up to 2x108 cells 

containing a maximum of 107 positive cells were resuspended in 500 µl of MACS buffer and 

applied on an MS MACS column placed in the magnetic field. The magnetically labeled 

CD25+ CD4 T cells stuck in the column, while unlabeled CD25- CD4 T cells were collected 

in the flow through by washing the column three times with 500 µl of MACS buffer. After 

removal of the column from the magnetic filed, CD25+ CD4 T cells were eluted with 1 ml of 

MACS buffer by firmly pushing the plunger into the column. The CD25- CD4 T cell fraction 

was immediately transferred onto a LD column to remove the contaminating CD25+ T cells. 

The pure CD25- CD4 T cells were collected in collected in the flow through by washing the 

LD column three times with 3 ml MACS buffer. Purified cells were maintained at 4°C until 

usage. The purity of isolated cells was routinely controlled by flow cytometry. 

II.2.2.1.b Isolation of mouse CD25+ CD4 T cells 

Spleen and lymph nodes were collected from C57BL/6 mouse. Splenocyte cell suspensions 

were obtained by passing cells through 70 µm Nylon Cell Strainer (BD Falcon, Bedford, 

USA). Afterwards, erythrocytes were lyzed with 1x NH4Cl solution for 2 min at room 

temperature. CD4+ T cells were then purified by negative selection from splenocytes cells 

using mouse CD4+ T cell isolation Kit II (Miltenyi Biotech) in a similar procedure described 

in Section II.2.2.1.a. Afterwards CD25+ CD4 T cells were purified by positive selection from 

CD4+ T cells using mouse CD25 Microbead Kit (Miltenyi Biotech) based on the 

manufacturer’s instructions. Each 10 x 106 CD4+ T cells were resuspended in 100 µl of 

MACS buffer and incubated with 10 µl of CD25-PE-labeled antibody for 10 min at 4°C. Cells 
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were then washed with PBS and each 10 x 106 cells were resuspended in 90 µl of MACS 

buffer and incubated with 10 µl of magnetically labeled anti-PE microbeads for 15 min at 

4°C. The CD25+ CD4 T cells and CD25- CD4 T cells were collected and maintained at 4°C 

until usage. The purity of isolated cells was routinely controlled by flow cytometry. 

II.2.2.2 Flow Cytometry 

Fluorescence-activated cell sorting (FACS) was carried out to analyze the expression of cell 

surface molecules or intracellular proteins on a single cell level by a Cytomics FC500 flow 

cytometer (Beckman Coulter, Fullerton, USA). Fluorescence signals were determined using 

appropriate electronic compensation to exclude emission spectra overlap. All centrifugation 

steps were performed at 6,000 rpm for 2 min at room temperature. 

II.2.2.2.a Flow Cytometry of surface molecules 

For extracellular staining, 1 x 105 cells/sample were washed with 1 ml FACS PBS and 

resuspended in a 50 µl volume. To control the purity of isolated cells staining was performed 

in PBS with saturating amounts (2 µl) of suitable directly fluorochrome-conjugated antibodies 

for 15 min at 4°C in the dark. Afterwards cells were washed, resuspended in 300 µl of FACS 

PBS and analyzed. Typically, CD4+ T cells after negative selection were ≥ 95% positve for 

CD3 and CD4, CD25+ CD4 T cells after positive selection were ≥ 90% positive for CD25.  

For surface staining of GARP, equal amount of cells were stained with 25 µl of anti-GARP 

hybridoma supernatant (Clone 7H2) or 0.25 µl of 0.5mg/ml rat IgG as isotype control for 15 

min at 4°C in the dark. Then cells were washed and resuspended in a 50 µl volume and 

incubated with 0.25 µl of secondary antibody (PE-labeled anti-rat IgG) and 2 µl of FITC-

labeled anti-CD4 antibody for 15 min at 4°C in the dark. Afterwards cells were washed, 

resuspended in 300 µl of FACS PBS and analyzed. 

II.2.2.2.b Flow Cytometry of intracellular proteins 

To perform the intracellular staining of total STAT1 and phosphorylated STAT1, 1-2 x 106 

cells/staining were fixed with 4% PFA for 10 min at 37°C. Cells were then washed once with 

PBS and permeablized with FACS-PBS containing 0.1% (w/v) saponin (FACS-Saponin). 

Later on, cells were incubated with 4% rat and mouse serum for 10 min at 4°C to block 

unspecific binding sites. Cells were then washed once with FACS-Saponin and incubated 

with saturating amount of PE-labled anti-STAT1 (N-terminus, Clone 1/stat1) and Alexa Fluor 

647-labeled anti-STAT1 (pS727, Clone K51-856) for 15 min at 4°C in the dark. Afterwards 

cells were washed, resuspended in 300 µl of FACS PBS and analyzed. 
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II.2.2.3 Cell culture 

Cell cultures were carried out in medium supplemented with penicillin G (50 U/ml), 

streptomycin (50 µg/ml) and L-glutamine (2 mM) (All from Life Technologies) and 10% 

normal human serum (NHS) for human cells or 10% fetal calf serum (FCS) for cell lines and 

murine cells (termed as complete medium). Cell cultures were maintained at 37°C in a 

humidified atmosphere containing 5% CO2 in Heracell 240 CO2 incubators (Thermo 

Scientific). 

II.2.2.3.a Cell culture of primary T cells 

All T cell medium were supplemented with recombinant human IL-2 (Chiron). Human T cells 

were stimulated with anti-CD3/28-coated beads (Dynabeads Human T-Activator CD3/CD28, 

Life Technologies) in a 1:1 ratio and 100 RU/ml recombinant human IL-2 in RPMI 1640 

complete medium for 1 to 4 d. For stable isotope labeling by amino acids in cell culture 

(SILAC), CD25+ CD4 T cells were labeled by culturing them under stimulation condition for 

at least two weeks with RPMI media for SILAC (Thermo Scientific) supplemented with 

dialyzed FBS and natural Lysine (Lys0) and Arginine (Arg0) (termed as light medium) or 

heavy labeled L-13C6,15N4-Arginine (Arg10) and L-13C6,15N2-Lysine (Lys8) (termed as heavy 

medium) (All from Thermo Scientific). 

II.2.2.3.b Maintenance of cell lines 

Human embryonic kidney cells (HEK293) and a T cell leukemia line (Jurkat) were obtained 

from American Type Culture Collection (ATCC). HEK293 were split twice a week with 

Dulbecco’s Modified Eagle Medium (DMEM) complete medium. Jurkat cells were 

maintained in Roswell Park Memorial Institute medium (RPMI 1640) complete medium and 

were split every 2 to 3 d.  

II.2.2.4 Transfection 

II.2.2.4.a Lipofectamine transfection 

Lipofectamine transfection was performed to transfect HEK293 using Lipofectamine 2000 

Transfection Reagent (Life Technologies). 5 x 104 HEK293 cells per well were seeded in 50 

µl of DMEM medium supplemented with 10% FCS and 2 mM L-glutamine into 96 well flat-

bottom plates and transfected on the next day. Each designed transfection condition was 

performed in triplicate. On the day of transfection, 155 ng of pmirGlo constructs and 0.2325 

µl of 25nM miRNA mimics or 250nM antagomirs were diluted into a 62-µl volume by 

DMEM medium supplemented with 2 mM L-glutamine. 1.55 µl of Lipofectamine 2000 were 
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diluted at a 1:9 ratio using DMEM medium supplemented with 2 mM L-glutamine and 

incubated for 5 min at room temperature. Afterwards, the diluted reagent was applied to DNA 

mix and incubated for 20 min at room temperature to allow the formation of DNA- 

Lipofectamine 2000 complexes. 25 µl of DNA Lipofectamine 2000 complexes were then 

added to each well of the plates containing cells and mixed gently. 24h after transfection, 

luciferase activity was measured. 

II.2.2.4.b Amaxa Transfection 

Amaxa transfection was performed to transfect T cells (primary and Jurkat T cells) by using 

Amaxa Human T cell Nucleofector Kit or Jurkat cells using Amaxa Cell Line Nucelofector 

Kit V respectively (All from Lonza).  

To analyze luciferase activity in T cells, CD25+ CD4 T cells were stimulated with anti-

CD3/28-coated beads for three days and transfected with desired luciferase reporter vectors. 

On the day of transfection, 6 x 105 CD25+ CD4 T cells were collected, washed with PBS, 

carefully resuspended in 100 µl of nucleofector solution pre-equilibrated to room temperature. 

The cell suspension was then combined with 1 µg of luciferase constructs in the presence or 

absence of 1 µl of 250nM antagomirs and carefully transferred to a certified cuvette. 

Transfection was carried out using the nucleofector program, T-023 on a Nucleofector II 

device. After transfection, cells were carefully mixed with 500 µl of pre-equilibrated to 37oC 

RPMI medium supplemented with 10% NHS and 2 mM L-glutamine, gently transferred into 

a 24-well plate to avoid repeated aspiration and maintained in culture for 3 h. Afterwards, 

cells were mixed with additional 100 µl of RPMI complete medium supplemented with 

recombinant human IL-2 to an end concentration of 10 RU/ml, split into three wells on a 96 

well flat-bottom plate and cultured for additional 21 h. On the next day luciferase activity was 

measured. 

To measure GFP expression in T cells, 6 x 105 freshly isolated CD25+ CD4 T cells were 

transfected with 1 µg of pEGFP-C1* constructs using Amaxa Human T cell Nucleofector Kit. 

Transfection was carried out using the nucleofector program, U-014. After transfection, cells 

were cultured in RPMI 1640 complete medium in the presence of 10 RU/ml recombinant 

human IL-2. Expression of GFP was analyzed 24h after transfection by flow cytometry. 

To perform ribonucleoprotein immunoprecipitation assay (RNP-IP, see Section), 60 x 106 

Jurkat cells were transfected with 6 µg of pcDNA3.1-GARPcds-3’UTR vectors in the 

presence or absence of 5 µl of 250nM antagomirs using Amaxa Cell Line Nucleofector Kit V 
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(Lonza). Transfection was carried out using nucleofector program, X-005. After transfection, 

cells were incubated for 10 min at room temperature before adding pre-equilibrated to 37oC 

RPMI complete medium. The ribonucleoprotein immunoprecipitation was performed 24 h 

after transfection. 

II.2.2.5 Creating stable cell lines 

To successfully generate a stable cell line expressing human GARP and Radixin, Jurkat cells 

were transfected with either pcDNA3.1-GARPcds or pcDNA3.1-Radixin vector using Amaxa 

Cell Line Nucelofector Kit V. 24h after transfection, cells carrying the vectors were selected 

in RPMI complete medium with 250 µg/mL geneticin (Life Technologies) by replenishing the 

medium every three days for two weeks. The expression of GARP was confirmed by flow 

cytometry and the expression of Radixin in Jurkat cells was confirmed by western blot. 

II.2.2.6 Measurement of T cell proliferation 

II.2.2.6.a CFSE labeling 

T cell proliferation assays were performed by assessing the proliferative capacity of CFSE-

labeled T cells. Briefly,	   freshly isolated CD25+ or CD25-‐ CD4 T cells were resuspended in 

one volume of PBS at the concentration of 10 x 106/ml, labeled with 10 µM CFSE (Life 

Technologies) for 8 min at room temperature. Reaction was stopped by adding two volumes 

of NHS and cells were washed and resuspended in RPMI 1640 complete medium.  

II.2.2.6.b Assessment of CD25+ CD4 T cells proliferative capacity 

6 x 105 CFSE-labeled cells were transfected with 1µl of 250 nM antagomirs or miRNA 

mimics and cultured in 96-well round-bottom plates under the stimulation of anti-CD3/CD28-

coated beads in a 1:1 ratio and 100 RU/ml recombinant human IL-2 for 3 days. Proliferative 

capacity of Tregs was assessed by flow cytometry based on CFSE-dilution. 

II.2.2.6.c Suppression assay of T cell proliferation  

The potential inhibitory capacity of CD25+ CD4 T cells treated with antagomirs or miRNA 

mimics was determined by co-culturing with CD25- CD4 responder T cells and measuring 

their proliferation in comparison to the proliferation of the CD25- CD4 cells co-cultured with 

non-transfected CD25+ CD4 T cells. Briefly, freshly isolated Tregs were transfected with 1 µl 

250 nM antagomirs or miRNA mimics. 1 x 105 transfected CD25+ CD4 T cells were co-

cultured with CFSE-labeled CD25- T cells at a ratio of 1:1 under the stimulation with 5 x 104 

feeder cells and 1 µl of 1 mg/ml soluble anti-CD3 mAb in 96-well round-bottom plates for 5 
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days. Suppressive function of Tregs was assessed by flow cytometry based on CFSE-dilution. 

II.2.3 Biochemical	  and	  Immunological	  Methods	  

II.2.3.1 Luciferase Assay 

Luciferase activity was measured in triplicates using Dual-Glo Luciferase Assay System 

(Promega). Cells in 75 µl of culture medium were mixed with equal volume of Dual-Glo 

Reagent (applied in the kit) and incubated for 10 min at room temperature to allow cell lysis. 

Afterwards the firefly luminescence was measured on Centro LB 960 Microplate 

Luminometer (Berthold Technologies, Bad Wildbad, Germany). Dual-Glo Stop & Glo 

Reagent was freshly prepared by diluting Dual-Glo Stop & Glo Substrate 1:100 into Dual-Glo 

Stop & Glo Buffer. 75 µl of Dual-Glo Stop & Glo Reagent was added per well and incubated 

for 10 min at room temperature. Afterwards, the Renilla luminescence was assessed. The 

relative luciferase activity in each well was calculated as the ratio of luminescence of the 

firefly luciferase to luminescence of the Renilla luciferase. The mean value of triplicates was 

calculated to estimate the relative luciferase activity for each sample. 

II.2.3.2 Measurement of protein concentration 

Protein concentration in cell lysates was determined by Bio-Rad Protein Assay Kit (Bio-Rad) 

based on manufacturer’s instructions. The assay is a dye-binding assay based on the method 

of Bradford (Bradford 1976). The Coomassie brilliant blue G-250 dye binds to primarily 

basic (especially arginine) and aromatic amino acid residues. By comparing the color change 

of a sample to a standard curve a relative measurement of protein concentration is provided. 

Briefly, 10 µl of cell lysates were incubated with 200 µl of 1x protein assay dye reagent 

(diluted fresh immediately before use from 5x protein assay dye reagent concentrate) for 5 

min at room temperature. The quality and quantity of protein were controlled by analyzing the 

absorbance at 595 nm (A595) using an Eppendorf BioPhotometer. Cell lysates were then kept 

on ice for immediate usage or snap-frozen using dry ice and then stored at -80°C for longer 

storage. 

II.2.3.3 Ribonucleoprotein immunoprecipitation (RNP-IP) assay 

RNP-IP assay was performed based on the protocol of Beitzinger and Meister (Beitzinger and 

Meister 2011) with minor adjustments. Briefly, 60 x 106 Jurkat cells transfected with 

pcDNA3.1-GARPcds-3’UTR vectors in the presence or absence of antagomirs were collected 

24 h after transfection, resuspended in 1 ml of RNP-IP lysis buffer containing 0.5% NP-40, 
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150 mM KCl, 25 mM Tris-HCl (pH 7.5), 2 mM EDTA with 0.5 mM DTT and 1x complete 

protease inhibitor cocktail (Roche) added freshly immediately before use and incubated for 30 

min on ice. All centrifugation steps were performed at 4°C. Cell lysates were then centrifuged 

at 13,000 rpm for 30 minutes and 100 µl of cell lysates were removed to present total input 

RNA. For immunoprecipitation, 80 µl per IP Protein-G Sepharose 4 fast flow beads (GE 

Healthcare) containing 50% slurry were washed with 1 ml of cold PBS by centrifuging at 

3,000 rpm for 1 min and incubated for 3 h at 4°C with excess immunoprecipitating antibody, 

using either 1ml of anti-Ago1 (Clone 4B8) or anti-Ago2 (Clone 11A9) hybridoma supernatant 

(generous gifts from Dr. Meister) or 1 µg of rat IgG isotype control antibody (Sigma-

Aldrich). The antibody-coated beads were washed with RNP-IP wash buffer containing 

0.05% NP-40, 300 mM NaCl, 50 mM Tris-HCl (pH7.5) and 5 mM MgCl2, resuspended in 

500 µl of cold PBS and gently mixed with 300 µl of cell lysate. The tube was filled with 

RNP-IP lysis buffer to avoid larger volumes of air and incubated for 3 h at 4°C under rotation. 

After incubation, the beads were washed gently with RNP-IP wash buffer for six times, 

resuspended in 1 ml of cold PBS to remove residual detergent and transferred into a new tube 

to remove protein and/or RNA contamination that might bind to the walls of the tube. The 

beads were then pelleted, resuspended in 250 µl of 1x protease K reaction buffer containing 

25 mM EDTA, 300 mM NaCl, 200 mM Tris-HCl (pH7.5) and 2 % SDS supplemented with 

10 µl of proteinase K (20mg/ml) and incubated for 15 min at 65°C. RNA was isolated using 

QIAGEN’s RNeasy Plus Mini Kit. GARP mRNA and miR-142-3p expression were assessed 

by TaqMan assays. 

II.2.3.4 SILAC-Based peptide immunoprecipitation assay 

To investigate the intracellular partners of GARP, SILAC-based peptide immunoprecipitation 

was performed as described previously (Schulze and Mann 2004). Snap centrifugation was 

performed if necessary to collect all liquid drops from the inside of the lid. 10 x 106 SILAC-

labeled CD25+ CD4 T cells cultivated in light medium (L-medium, Arg0 and Lys0-labeled) or 

heavy medium (H-medium, Arg10 and Lys8-labeled) for at least two weeks were collected, 

resuspended in 1 ml of M-PER buffer (Thermo Scientific) with 1x complete protease inhibitor 

cocktail and 1x phosphatase inhibitor cocktail 3 (Sigma-Aldrich) added freshly immediately 
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before use and incubated for 30 min on ice. Cell lysates were then centrifuged at 13,000 rpm 

for 15 minutes at 4°C and protein concentration was measured by Bio-Rad Protein Assay.  

To perform peptide immunoprecipitation, biotinylated peptides that encoding the C-terminal 

sequence of GARP protein (WT) or scrambled (Scr) peptide were designed and synthesized 

as listed in Section II.1.2.4. The peptides were picked by a ‘spatula’ generated (~0.2 mg) from 

a cut blue pipette tip and dissolved in 1 ml lysis buffer (1:1 dilution of M-PER buffer with 

BupH modified Dulbecco’s PBS) supplemented with 1 mM DTT added freshly immediately 

before use. 75 µl of dynabeads MyOne streptavidin C1 (Life Technologies) were washed 3 

times with 600 µl of lysis buffer, resuspended in 500 µl of WT or Scr peptide solution, and 

rotated for 3 hours at 4°C. The peptide-coupled beads were washed three times with 1 ml of 

lysis buffer, gently mixed with 1 mg of cell lysate, filled with lysis buffer and incubated for 2 

h at 4°C under rotation. After incubation, the beads were washed two times with 1 ml of lysis 

buffer. WT peptide-coupled beads incubated with L-Lysate (WT-L) were gently mixed with 

Scr peptide-coupled beads incubated with H-Lysate (Scr-H) for the forward experiment (WT 

L+ Scr H), while WT peptide-coupled beads incubated with H-Lysate (WT-H) were gently 

mixed with Scr peptide-coupled beads incubated with L-Lysate (Scr-L) for the reverse 

experiment (WT H+ Scr L). After combination, beads were washed one time with 1 ml BupH 

modified Dulbecco’s PBS, resuspended in 300 µl of 20 nM biotin (Sigma-Aldrich) in PBS 

(pH 7.0) by vortexing vigorously and incubated for 30 min at 30°C while shaking at 1,100 

rpm. The supernatant was transferred two times sequentially into fresh tubes to remove all the 

brownish beads traces and precipitated in 1.2 ml of pre-cooled (-20°C) acetone with 2 µl of 

GlycoBlue (Life Technologies) overnight at -20°C. The precipitated proteins were pelleted by 

gradually centrifuging the samples from 6,000 rpm to 13,000 rpm in 2 min intervals and 

maintaining centrifugation at 13,000 rpm for 10 min, washed with 1 ml of ethanol and dried 

for 5 min at room temperature.  

Protein pellets were then resuspended in 20 µl of 2x SDS sample buffer, applied to NuPAGE 

4-12% bis-tris gel (1.0 mm x 10 well) (Life Technologies) to perform polyacrylamide gel 

electrophoresis (PAGE) (See Section II.2.3.6). Afterwards, the gel was washed three times 

with distilled water, stained with GelCode blue stain reagent (Thermo Scientific) for 1 h at 

room temperature, and distained with distilled water overnight. The gel was subjected to a 

standard in-solution tryptic digestion and analyzed by a Liquid Chromatography-Mass 

Spectrometry (LC-MS). Data analysis was performed as described previously by Cox and 

Mann (Cox and Mann 2008). The ratio of Scr-H/WT-L (X axis) and WT-H/Scr-L (Y axis) 
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was visualized by scatter plot on a Cartesian coordinate system. True specific binding 

proteins of WT peptide were located at the II quadrant of the Cartesian coordinate system. 

II.2.3.5 Immunoprecipitation 

Immunoprecipitation was performed to confirm the specific binding of GARP and Radixin 

using Jurkat cells stable transfected with GARP and Radixin expressing vectors. Briefly, 40 x 

106 cells were lyzed in 1 ml of NP-40 cell lysis/wash buffer containing 1% NP-40, 25mM 

NaCl, 50 mM Tris-HCl (pH 8.0), 2 mM EDTA with 1x complete protease inhibitor cocktail 

and 1x phosphatase inhibitor cocktail 3 added freshly immediately before use, incubated for 

30 min on ice and centrifuged at 13,000 rpm for 30 minutes at 4°C. The cell lysates were 

incubated with 5 µg anti-GARP monoclonal antibody (Clone Plato-1, Enzo Life Sciences) or 

mouse IgG 2b,  κ isotype control antibody (Biolegend) overnight at 4°C under rotation. To 

perform immunoprecipitation, 50 µl per IP rmp protein-A sepharose 4 fast flow beads (GE 

Healthcare) containing 50% slurry were washed with 1 ml of NP-40 cell lysis/wash buffer by 

centrifuging at 3,000 rpm for 1 min and incubated with cell lysates/antibodies mixture for 1 h 

at 4°C under rotation. Afterwards, the beads were washed four times with NP-40 cell 

lysis/wash buffer and resuspended in 20 µl of 2x SDS sample buffer. 

II.2.3.6 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) and Western Blot 

To perform SDS-PAGE, polyacrylamide gel was poured using Mini-PROTEAN Tetra Cell 

Casting Module (Bio-Rad). 3 ml of the resolving gel were poured per plate set (10 ml 8% 

resolving gel contained 3.5 ml 1 M Tris-HCl (pH 8.8), 2.7 ml 30% acrylamide/bis-

acrylamide, 100 µl 10% SDS, 100 µl 10% APS, and 10 µl TEMED). After polymerization of 

the resolving gel, 1 ml of stacking gel was poured on top (5 ml 4% staking gel contained 

0.633 ml 1 M Tris-HCl (pH 6.8), 0.683 ml 30% acrylamide/bis-acrylamide, 50 µl 10% SDS, 

50 µl 10% APS, and 5 µl TEMED).  

Samples for SDS-PAGE were boiled for 5 min at 95°C, centrifuged at 13,000 rpm for 5 min 

and loaded onto the gel. To estimate the size of the bands, biotinylated protein ladder (Cell 

signaling) and prestained protein marker (7-175 kDa, New England Biolabs) were included to 

each gel. The gel electrophoresis was carried out in SDS-running buffer containing 25 mM 

Tris-HCl, 192 mM Glycine and 0.1% SDS for 30 min at 100 V, followed by additional 1 h at 

200 V.  

For blotting, proteins were transferred onto a Protran nitrocellulose membrane (Whatman) in 

the blotting buffer containing 12.5 mM Tris-HCl, 86 mM Glycine, 0.05% SDS and 20% 
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methanol. The transfer was performed at 150 mA for 1.5 h using the EC140 Mini Blot 

Module (E-C Apparatus corporation, Holbrook, USA). Afterwards, the membrane was 

blocked with 5% nonfat milk powder in TBST buffer containing 20 mM Tris-HCl (pH 7.6), 

140 mM NaCl and 0.1% Tween 20 for 1 h at room temperature. After washing three times 

with TBST buffer, the membrane was incubated with polyclonal anti-Radixin antibody (1:200 

diluted in TBST buffer containing 5% BSA) for 2 hours at room temperature or overnight at 

4°C. The membrane was then washed with TBST buffer three times and incubated with 

horseradish peroxidase (HRP)-conjugated anti-goat antibody (1:5000 diluted in TBST buffer 

containing 5% nonfat milk) for 1 hour at room temperature. After three times washing with 

TBST buffer, the membrane was incubated for 1 min with 2 ml of the ECL western blotting 

detection reagent (1:1 mixture of reagent 1 and reagent 2, all from GE Healthcare) and 

developed for 1-5 min using a FUJIFILM LAS-3000 (Fujifilm, Tokyo, Japan). 

II.2.3.7 Enzyme-linked immunosorbent assay (ELISA) 

Enzyme-linked immunosorbent assays (ELISAs) were performed to quantify cytokine levels 

in the serum and cell culture supernatants according to manufacture’s instruction. Briefly, 100 

µl samples were applied to each well to allow the binding of cytokine molecules to plate-

bound specific primary antibody. After 3 hours incubation at room temperature, plate was 

washed carefully with wash buffer to remove any remaining samples. The cytokine conjugate 

were then applied to each well and incubate for 1 hour at room temperature to allow the 

binding of specific secondary antibody. The plate was washed thoroughly before the addition 

of substrate solution. After 30 min incubation in the dark, 50 µl stop solution was added and 

the absorption in each well was analyzed at 450 nm with a wavelength correction of 620 nm. 

II.2.4 Statistical	  Analyse	  

Statistical analyses were performed to compare two different groups using a Student’s t-test  

or to compare more than two groups using one-way analysis of variance (ANOVA) with a 

Tukey’s correction for multiply comparison. For polymorphism analysis of GARP 3’UTR, 

the allele and genotype distributions were analyzed using Haplotype Analysis v1.0b and 

visualized in Haploview v4.2 software. Chi-squared (χ2) test was performed to compare the 

haplotype in different sample size. Normal distribution was controlled by Kolmogorov–

Smirnov. Spearman’s rank correlation coefficient was calculated to determine statistical 

dependency between two variables. All statistical analyses were performed with the help of 

Prism 5 (GraphPad Software, La Jolla, USA) or InStat 3 (GraphPad Software). Statistical 
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significance was assigned when p-value was less than 0.05 and denoted as: * p < 0.05, ** p < 

0.01, *** p < 0.001 and ns not significant. 
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Results	  

III.1 miRNA-‐mediated	  post-‐transcriptional	  regulation	  of	  GARP	  expression.	  	  

III.1.1 Analysis	  of	  molecular	  mechanism	  of	  miRNA-‐mediated	  GARP	  expression	  and	  

its	  influence	  on	  Treg	  function.	  

III.1.1.1 The distal part of the GARP 3’UTR contains miRNA binding sequences capable 

of posttranscriptional regulation of gene expression. 

Conserved elements in 3’UTR region are crucial for controlling post-transcriptional gene 

regulation and the stability of mRNAs via miRNA (Shabalina et al. 2003, Bartel 2009). The 

3’UTR of GARP is ~2 kb long and possesses five highly conserved regions suggesting a 

possibility of miRNA involvement in the regulation of GARP expression (Figure 3 and Table 

1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Schematic presentation of conserved non-coding sequences (CNS) in the GARP gene locus. 
Chromosome 11 (76368569-76381044) including the GARP gene is displayed. Exons are depicted in purple. 
The 3’UTR is shown in light blue. CNS regions were selected according to a conservation identity between 
mouse and human sequences by VISTA Genome Browser (Frazer et al. 2004).  
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In order to identify putative miRNA recognition sites that are capable of regulating GARP 

expression in the 3’UTR of GARP in sillico prediction was performed using miRbase Target 

(http://www.mirbase.org/) (Kozomara and Griffiths-Jones 2011), Diana Lab 

(http://diana.cslab.ece.ntua.gr/microT/) (Maragkakis et al. 2009), Pictar (http://pictar.mdc-

berlin.de/) (Krek et al. 2005) and Target Scan (http://targetscan.org/) (Lewis et al. 2005). 

Table 1. CNS regions of human GARP 3’UTR in the GARP gene locus*¶
 

 Start§ End§ Length Homology 
CNS5 76368571 76368756 187bp 76.2% UTR 
CNS4 76368807 76368920 119bp 71.4% UTR 
CNS3 76369497 76369633 137bp 66.4% UTR 
CNS2 76369776 76369886 113bp 72.6% UTR 
CNS1 76370038 76370154 118bp 77.1% UTR 
exon 76370650 76372552 1903bp 81.1% exon 

*CNS regions were selected according to a conservation identity between mouse and human by the VISTA genome Browser. 
§Genomic position of the start and end point for each CNS region. 

Total of 21 miRNAs were predicted as shown in Figure 4A: eleven miRNAs were predicted 

by miRbase Target (purple), five miRNAs by Diana Lab (blue), five miRNAs by Pictar (red) 

and one miRNA by Target Scan (green). miR-181a, miR-181b and miR-181c were predicted 

to recognize the same miRNA recognition elements (MREs) within the GARP 3’UTR.  

 

 

 

 

 

 

  

 

 
Figure 4. The GARP 3’UTR contains sequences capable of down regulation of protein expression. 
(A) Schematic presentation of the GARP 3’UTR. In silico predicted miRNA binding sites in the 3’UTR of 
GARP mRNA are shown as dashes. Positions are indicated by nucleotide numbers above. Numbers in 
parentheses indicate the running number of MREs, if more than one was predicted. Based on the distribution of 
MREs, the full-length GARP3’UTR was subdivided into ten overlapping fragments, fragment 1 to 10. (B) 
Fragments 1 to 10 were cloned into pEGFP-C1* vector downstream of the GFP gene and transfected into freshly 
isolated CD25+ CD4 T cells. Mean fluorescence intensity of GFP was analyzed 24h after transfection by flow 
cytometry. Results within one experiment were normalized to the value obtained from cells transfected with a 
control vector without any insert. Mean ± SD of five independent experiments is shown. Statistical analyses 
were performed by a Student’s t-test. ** p < 0.01.  
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Based on the distribution of predicted MREs within the GARP 3’UTR, full length GARP 

3’UTR was subdivided into ten overlapping fragments and cloned separately into the pEGFP-

C1* reporter vector (Figure 4A) downstream of the GFP gene. Vectors were transfected into 

freshly isolated CD25+ CD4 T cells. Mean fluorescent intensity (MFI) of GFP expression was 

analyzed to determine the effect of the inserted sequences on GFP expression in CD25+ CD4 

T cell. As shown in Figure 4B, only the vector containing the distal part of the GARP3’UTR 

(fragment 10) showed significantly reduction of GFP expression, indicating that this part of 

the GARP 3’UTR contains sequences capable of posttranscriptional regulation of protein 

expression.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. miR-142-3p, miR-181a/b/c and miR-424 recognize their respective MREs.  
(A) MREs for miR-142-3p, miR-181a, miR-181b, miR-181c and miR-424 and (B) MREs for miR-381, miR-
497, miR-551 and miR-661 predicted in the distal part of the GARP 3’UTR were cloned into the pmirGlo 
luciferase reporter vector downstream of the firefly luciferase gene and cotransfected with 25nM respective 
miRNA or scrambled miRNA (scr) into HEK293 cells. Luciferase activity was analyzed 24h after transfection. 
Vectors containing canonical sequences of MREs (can) and the pmirGlo vector without an insert (ctrl) were used 
as positive and negative controls, respectively. Mean ± SD of five independent experiments is shown. Statistical 
analyses were performed by a Student’s t-test. * p < 0.05, *** p < 0.001.  

To investigate whether and which miRNA can recognize fragment 10 of the GARP 3’UTR 

and thus contribute to the post-transcriptional regulation of protein expression, nine miRNAs 

(miR-142-3p, miR-181a, miR-181b, miR-181c, miR-381, miR-424, miR-497, miR-551, and 

miR-661) which were predicted to recognize this region were further analyzed. MREs of 

these miRNAs were cloned separately into the pmirGlo luciferase reporter vector downstream 

of the luciferase gene. Reporter vectors containing canonical miRNA recognition sites were 
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generated as positive control. Luciferase activity was measured 24h after cotransfection of 

miRNA mimics and the respective vectors into HEK293 cells. As indicated in Figure 5A, 

luciferase activity was significantly reduced in the cells cotransfected with miRNA mimics of 

miR-142-3p, miR-181a, miR-181b, miR-181c or miR424 and their respective vectors, 

indicating that these miRNAs indeed recognize their predicted MREs in the GARP 3’UTR. 

However, cotransfection of miR-381, miR-497, miR-551 and miR-661 mimics with their 

respective vectors had no effect on interfering reporter gene expression (Figure 5B). 

Therefore, miR-142-3p, miR-181a, miR-181b, miR-181c and miR424 are the miRNAs that 

recognize their MREs within GARP 3’UTR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6 miR-142-3p and miR-424 recognize their MREs in the context of GARP 3’UTR 
(A) The pmirGlo luciferase reporter vector containing distal the 400bp fragment of GARP 3’UTR downstream 
of the firefly luciferase gene was cotransfected with 25nM miR-142-3p, miR-181a, miR-181b, miR-181c or 
miR-424 miRNA or with scrambled miRNA into HEK293 cells. Luciferase activity was analyzed 24h after 
transfection. (B) Mutations in the region complementary to the miRNA seed sequence (shown in bold) of miR-
142-3p and/or miR-424 were generated by site-directed mutagenesis as indicated. (C) pmirGlo luciferase 
reporter vectors containing distal 400bp fragment of GARP 3’UTR with mutated binding sites as shown in C 
were cotransfected with miRNA mimics into HEK293 cells. Luciferase activity was analyzed 24h after 
transfection. Mean ± SD of at least three experiments is shown. Statistical analyses were performed by ANOVA. 
* p < 0.05, ** p < 0.01, *** p < 0.001, n.s. non-significant.  

To further confirm the binding of miRNAs to the GARP 3’UTR, we then examined the 

putative miRNA binding in the context of the GARP 3’UTR by using a luciferase vector 

which contains an approximately 400bp DNA fragment covering the distal part of the GARP 

3’UTR. Diminished luciferase activity was observed in HEK293 cells cotransfected by this 

vector with miRNA mimics of either miR-142-3p or miR-424, whereas reporter gene 
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expression was not interfered in cells cotransfected with the vector and miRNA mimics of 

miR-181a, miR-181b, or miR-181c (Figure 6A). To verify the specificity of miRNA-MRE 

binding, the MREs for miR-142-3p and miR-424 were mutated by site-directed mutagenesis 

as shown in Figure 6B. After cotransfection of these mutated vectors with respective miRNA 

mimics, the inhibitory effect of the mimics was abrogated (Figure 6C). Hence miR-142-3p 

and miR-424 recognize their MREs in the context of GARP 3’UTR. 

III.1.1.2 miR-‐142-‐3p	  but	  not	  miR-‐424	  is	  relevant	  for	  recognition	  of	  the	  GARP	  3’UTR	  

in	  CD25+	  CD4	  T	  cells.	  

To further confirm the function of miR-142-3p and miR-424 in regulating GARP expression 

in human CD25+ and CD25- CD4 T cells, we firstly analyzed the expression pattern of these 

two miRNAs in both cell type. As shown in Figure 7A, both CD25+ and CD25- CD4 T cells 

expressed abundant amount of miR-142-3p. However, the endogenous expression levels of 

miR-424 were fairly low in both cell types.  

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Endogenous miR-142-3p interacts with its MRE in GARP 3’UTR in CD25+ CD4 T cells.  
(A) Expression of miR-142-3p and miR-424 was determined in CD25+ and CD25- CD4 T cells by real-time PCR 
using TaqMan miRNA assays. Relative expression to RNU6B is demonstrated. Mean ± SD of 3 independent 
experiments is shown. (B and C) CD25+ CD4 T cells activated for 3 days with anti-CD3/CD28 dynabeads were 
transfected with pmirGlo vectors containing miR-142-3p or miR-424 MREs predicted in the GARP 3’UTR (B) 
or the distal fragment of the GARP 3’UTR (fragment 10), wild type or mutated as shown in Figure 6B (C), and 
cotransfected with respective specific or scrambled (scr) antagomirs as control. Luciferase activity was analyzed 
24h after transfection. Results are demonstrated as mean ± SEM of four experiments (right panel) or as one 
representative of two independent experiments with similar outcome (left panel). Statistical analyses were 
performed by a Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, n.s. non-significant.  
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The effect of both miRNAs on the reporter gene activity was then analyzed based on their 

endogenously expression levels. To address this, microRNA hairpin inhibitors (antagomirs), 

which prevent endogenous miRNAs binding to their targets were cotransfected with 

respective luciferase reporter vectors into CD25+ CD4 T cells. For control, pmirGlo vector 

with no insert was used. Reduced luciferase activity was observed in CD25+ CD4 T cells 

transfected only with a vector containing the predicted GARP miR-142-3p MRE (without any 

cotransfection) as compared with the control vector (Figure 7B). On the other hand, luciferase 

activity in CD25+ CD4 T cells transfected only with a vector containing the predicted GARP 

miR-424 MRE was similar to that of the control vector (Figure 7B). These findings indicate 

that endogenous expression of miR-142-3p is in a sufficient extent to down-modulate 

expression of the reporter gene, whereas endogenous expression of miR-424 is conceivably 

too low. To further confirm this, antagomirs were cotransfected into CD25+ CD4 T cells to 

inhibit the endogenous miRNA biological activity. Cotransfection of the GARP miR-142-3p 

MRE reporter vector with an antagomir to miR-142-3p restored the luciferase activity, while 

cotransfection of the GARP miR-424 MRE reporter vector with a respective antagomir had 

no effect on the reporter gene activity (Figure 7B).  

In the context of GARP 3’UTR, transfection of CD25+ CD4 T cells with a vector containing 

the distal part of the GARP 3’UTR lead to reduced activity of the reporter gene as compared 

to control (Figure 7C). Inhibition of miR-142-3p biological activity by cotransfection of this 

reporter vector with a respective antagomir restored the luciferase activity in the cells. Similar 

finding was noticed in cells transfected with a reporter vector containing the mutation of 

putative miR-142-3p MRE (Figure 7C). In contrast, luciferase activity was not restored in 

cells either cotransfected by the GARP 3’UTR reporter vector with an antagomir to miR-424 

or transfected with a vector containing mutation of miR-424 binding site (Figure 7C). Thus, 

miR-142-3p is identified as the miRNA involved in post-transcriptional regulation of GARP 

expression in CD25+ CD4 T cells. 

III.1.1.3 miR-‐142-‐3p	  launches	  Ago2-‐mediated	  GARP	  mRNA	  degradation.	  

MiRNA mediated repression of target gene expression requires binding of miRNA to the 

argonaute (Ago) protein within the RNA-induced silencing complex (RISC). The degree of 

base paring in miRNA/mRNA duplex influence the types of Ago proteins that miRNAs is 

loaded into. When fully complementary base paring occurs between miRNA seed sequence 

and target mRNA, the miRNA/mRNA duplex are preferentially loaded into Ago2 resulting in 

mRNA degradation. In case of unpaired bulges between miRNA seed sequence and target 
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mRNA, the duplex are loaded into Ago1 leading to translational repression (Meister et al. 

2004, Czech et al. 2008). 

 

 

 

 

 

 

 

 

Figure 8. Down-regulation of GARP expression is mediated via the Ago2-associated pathway.  
The GARP coding sequence and the GARP 3’UTR were sequentially cloned into the pcDNA3.1 vector and 
transfected into Jurkat cells. (A) Endogenous ribonucleoproteins were immunoprecipitated with anti-Ago1 or 
anti-Ago2 antibodies 24h after transfection. Isotype IgG was used as a control. (B) To evaluate the involvement 
of miR-142-3p, cells were cotransfected with an antagomir to miR-142-3p or with a scrambled antagomir. RNA 
was isolated, reversely transcribed and analyzed by real-time PCR for GARP mRNA or miR-142-3p. Relative 
expression normalized to input is demonstrated. Means ± SEM of five (A) and four (B) independent experiments 
are shown. Dashed lines indicate the background of the assay determined as means ± SD from 
immunoprecipitations with isotype control.  

The in sillico predicted miR-142-3p MRE in the GARP 3’UTR is perfectly matched to the 

seed region of miR-142-3p (GUAGUGU) (Figure 6B) indicating that Ago2-mediated mRNA 

cleavage may contribute to the inhibition of GARP expression via miR-142-3p. To address 

this, we performed ribonucleoprotein (RNP) immunoprecipitation (IP) using antibodies 

against Ago1 and Ago2 in Jurkat cells transfected with a vector containing the GARP cds 

followed by the GARP 3’UTR. miR-142-3p was detected in both Ago1- and Ago2-associated 

RNP complexes as expected, whereas GARP mRNA was present only in IPs of Ago2 (Figure 

8A). 

To further analyze the simultaneous occurrence of miR-142-3p and GARP mRNA in the 

Ago2-associated RNP complex, Jurkat cells were cotransfected with an antagomir to miR-

142-3p to inhibit the biological activity of miR-142-3p. The antagomir blocked miR-142-3p 

loading into both Ago1- and Ago2-associated RNPs, whereas it prevented GARP mRNA 

loading into the Ago2-associated RNP complex (Figure 8B). This confirmed the hypothesis 
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that miR-142-3p functions as the conductor to recruit GARP mRNA into Ago2-associated 

RISC. Thus, post-transcriptional regulation of GARP expression involves miR-142-3p-

mediated Ago2-associated GARP mRNA degradation. 

III.1.1.4 Endogenous	   expression	   of	   miR-‐142-‐3p	   regulates	   GARP	   expression	   in	  

CD25+	  CD4	  T	  cells.	  

We next addressed expression pattern of GARP and miR-142-3p in CD25+ CD4 T cells in 

respective activation. Expression levels of both GARP mRNA and protein were up-regulated 

in CD25+ CD4 T cells within 24 hours in response to activation and disappeared in three days 

(Figure 9A and B). Expression of miR-142-3p also rose significantly in response to T cell 

activation. However, the up-regulation was observed firstly at day two after activation, and 

diminished on the following day (Figure 9C). The up-regulation of miR-142-3p in response to 

T cell activation correlated negatively with the down-modulation of GARP mRNA and 

protein expression in CD25+ CD4 T cells. This finding is consistent with the launched GARP 

mRNA cleavage by miR-142-3p via the Ago2-associated RISC complex (Figure 8A).  

 

 

 

 

 

 

Figure 9. Expression of GARP and miR-142-3p in CD25+ CD4 T cells in response to activation. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of four days. (A) 
Expression of GARP was assessed by flow cytometry using a monoclonal anti-GARP anti-body (grey). Isotype 
control is indicated as thin line histograms. (B and C) GARP mRNA and miR-142-3p expression were analyzed 
by real-time PCR. Relative expression normalized to cyclophilin (B) or RNU-6B (C), respectively, is 
demonstrated. For protein expression, one representative of six independent experiments with similar outcome is 
shown. For mRNA and miRNA expression, means ± SD of three experiments are shown.  

To estimate whether the up-regulated expression level of miR-142-3p upon activation causes 

down-modulation of GARP expression, we assessed GARP expression in CD25+ CD4 T cells 

transfected with an antagomir to miR-142-3p. Transfection was performed at day one after 

stimulation, just before expression of miR-142-3p peaks. As shown in Figure 10, a ~2-fold 

reduction in the miRNA level was observed in response to the transfection with an antagomir. 

The blockage of miR-142-3p affected obviously both GARP surface protein level and mRNA 
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expression level.  

 

 

 

 

 

 

 

Figure 10. Blockage of miR-142-3p delayed the down-modulation of GARP expression in CD25+ CD4 T 
cells.  
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of four days. Cells 
were transfected with 250nM antagomir of miR-142-3p or scrambled antagomir at day one. Surface expression 
of GARP was assessed by flow cytometry using a monoclonal anti-GARP antibody. GARP mRNA expression 
was analyzed daily by real-time PCR. miR-142-3p expression was assessed one day after transfection. One 
representative of four independent experiments with similar outcome is shown for surface GARP staining. 
Means ± SEM of at least three independent experiments are shown. Statistical analyses were performed by a 
Student’s t-test. * p < 0.05, ** p < 0.01.  

In contrast, when cells were treated with a mimic of miR-142-3p before activation, the up-

regulation of GARP expression was markedly diminished as observed for both surface protein 

and mRNA expression (Figure 11) resulting in a ~4-fold increase in the miRNA level in 

response to the transfection with a mimic.  

The miR-142-3p MRE covers 1947-1975 bp of GARP 3’UTR and locates in a 187-bp long 

conserved region that has 76.2% homology with the mouse GARP 3’UTR (CNS 5, Table 1). 

To investigate the effect of miR-142-3p on GARP expression in mouse CD25+ CD4 T cells, 

we interfered the biological activity of murine miR-142-3p by transfecting cells with either an 

antagomir or a mimic of miR-142-3p. As shown in Figure 12, inhibition of biological activity 

of this miRNA resulted in higher GARP expression on the cell surface, whereas the 

transfection of miRNA mimic led to a lower GARP expression. These data correspond with 

the observation in human T cells, indicating the important role of miR-142-3p in regulating of 

GARP expression in CD25+ CD4 cells.   
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Figure 11. miR-142-3p mimics accelerated the down-modulation of GARP expression in CD25+ CD4 T 
cells. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of four days. Cells 
were transfected with 250nM miRNA mimics of miR-142-3p or scrambled miRNA at day 0. Surface expression 
of GARP was assessed by flow cytometry using a monoclonal anti-GARP antibody. GARP mRNA expression 
was analyzed daily by real-time PCR. miR-142-3p expression was assessed one day after transfection. One 
representative of the nine independent experiments with similar outcome is depicted. Means ± SEM of at least 
three experiments are shown. Statistical analyses were performed by a Student’s t-test. ** p < 0.01, *** p < 
0.001.  

Taken together, our data suggest that the magnitude and duration of GARP expression on the 

surface of CD25+ CD4 T cells correlates with up-regulation of miR-142-3p in response to 

activation and thereby demonstrate that miR-142-3p is involved in the post-transcriptional 

regulation of endogenous GARP expression in CD25+ CD4 T cells.  

 

 

 

 

 

Figure 12. Interference with miR-142-3p biological activity in mouse T cells. 
CD25+ CD4 T cells were isolated from spleen and lymph nodes of C57B/6 mouse, transfected either with an 
antagomir or with mimics of miR-142-3p and stimulated for 24h with anti-CD3/CD28 beads. GARP expression 
was assessed by flow cytometry. Numbers indicate mean fluorescence intensity of labeled cell. One 
representative experiment out of three independent experiments is shown.  

III.1.1.5 miR-‐142-‐3p	  intervenes	  CD25+	  CD4	  T	  cells	  proliferation	  and	  function.	  

To explore the biological function of miR-142-3p in CD25+ CD4 T cells, we firstly followed 

the proliferative capacity of cells treated with an antagomir of miR-142-3p. Inhibition of 

biological activity of miR-142-3p by the antagomir before activation led to an immediate 

reduction in the endogenous miR-142-3p expression level in CD25+ CD4 T cells and 
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subsequently an obviously higher expression level of GARP mRNA and protein (Figure 13B). 

The proliferation of CD25+ CD4 T cells treated with the antagomir was significantly 

increased upon stimulation (Figure 13A).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Involvement of miR-142-3p in proliferation of CD25+ CD4 T cells.  
CD25+ CD4 T cells were isolated. Cells were split into two fractions and one fraction of the cells were labeled 
with CFSE. (A and B) cells were transfected with an antagomir to miR-142-3p. (C and D) cells were transfected 
with mimic of miR-142-3p. Cells were then stimulated for four days with anti-CD3/CD28 beads. Proliferation 
was assessed by flow cytometry in CFSE-labeled cultures. Numbers indicate the frequency of proliferating cells 
and the division index (DI). Nonlabeled cells were followed daily for GARP expression. Surface expression of 
GARP was assessed by flow cytometry using a monoclonal anti-GARP antibody. GARP mRNA expression was 
analyzed by real-time PCR. miR-142-3p expression was assessed one day after transfection. Means ± SEM of at 
least three experiments are shown. Statistical analyses were performed by a Student’s t-test. * p< 0.05, ** p < 
0.01, *** p < 0.001.  
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On the other hand, when CD25+ CD4 T cells were transfected with a mimic of miR-142-3p, a 

~4-fold increase was detected in miR-142-3p level and as a consequence, a diminution of 

GARP mRNA and protein expression was observed (Figure 13D). This was accompanied by 

a significant reduction of cell proliferation (Figure 13C). Taken together, these observations 

suggest that miR-142-3p intervenes into the proliferation of CD25+ CD4 T cells. 

We next evaluated the influence of miR-142-3p on the regulatory capacity of CD25+ CD4 T 

cells. CD25+ CD4 T cells were transfected with a mimic of miR-142-3p and cocultured with 

CFSE-labeled CD25- CD4 T cells to examine the suppressive capacity. miR-142-3p mimic-

treated CD25+ CD4 T cells, which possessed lowered GARP expression on the cell surface 

(Figure 13D),  showed a consistent reduction of their suppressive capacity (Figure 14). These 

data suggested that miR-142-3p is involved in modulation of CD25+ CD4 T cell proliferation 

and function. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Involvement of miR-142-3p in suppression of CD25+ CD4 T cells. 
CD25+ and CD25- CD4 T cells were isolated. CD25- CD4 T cells were labeled with CFSE. CD25+ CD4 T cells 
were transfected with a mimic of miR-142-3p. CFSE-labeled CD25- CD4 T cells were cultured with non-labeled 
CD25+ CD4 T cells in 1:0, 1:0.125, 1:0.25, 1:0.5 and 1:1 ratios in the presence of anti-CD3 for four days. 
Proliferation was assessed by flow cytometry based on CFSE-dilution. One representative experiment is 
depicted. Means ± SEM of at least three experiments are shown. Statistical analyses were performed by a 
Student’s t-test. * p< 0.05, ** p < 0.01, *** p < 0.001. 

III.1.1.6 miR-‐142-‐3p	  mediated	  modulation	   of	   GARP	   expression	   correlates	  with	   T	  
cells	  proliferation.	  

To explore the role of GARP and miR-142-3p in T cells proliferation in more detail, CD25- 

CD4 T cells that do not naturally express GARP and do express miR-142-3p in a level 

comparable to that of CD25+ CD4 T cells (Figure 7A) were transfected with vectors 

containing GARP sequence and followed for their proliferative capacity (Figure 15). For this, 

a series of vectors containing the GARP coding sequence followed by the wild-type or 

mutated GARP miR-142-3p MRE were generated. Vectors without any insertion were used as 

control. As shown in Figure 15A, CD25- CD4 T cells transfected with a vector encoding only 
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the GARP coding sequence expressed GARP ectopically on the cell surface. This ectopic 

GARP expression was markedly diminished when the cells were transfected with vectors 

carrying GARP miR-142-3p MRE downstream of the GARP coding sequence. Instead, when 

mutated MRE was inserted downstream of the GARP coding sequence, the expression of 

GARP on the cells was fully restored (Figure 15A).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Regulation of T cell proliferation by miR-142-3p via GARP. 
CD25- CD4 T cells were purified and labeled with CFSE to follow the proliferation or left unlabeled to control 
surface protein expression. Cells were transfected with vectors encoding the GARP coding sequence (GARPcds) 
alone or accompanied by the downstream wild-type or mutated sequence of miR-142-3p MRE from the GARP 
3’UTR (142GARP and 142GARPmut, respectively). The vector without an insert was used as a control. To track 
the proliferation of transfected cells, T cells were cotransfected with pDsRed2-N1. CFSE dilution was followed 
in Red2-expressing cells at days 3, 4, and 5. (A) GARP surface expression one day after transfection is 
demonstrated. (B and C) CFSE dilution in proliferating cells at day 4 of cell culture is shown. Numbers indicate 
the frequency of proliferating cells and division index (DI) within the Red2-expressing population. 
Representative results (B) or means ± SEM of five independent experiments (C) are shown. Statistical analyses 
were performed by a Student’s t-test. * p< 0.05  

To analyze the proliferative capacity of the CD25- CD4 cells with enforced GARP 

expression, T cells was cotransfected with pDsRed2-N1 and labeled with CFSE. Cells 

transfected with a vector encoding only the GARP coding sequence showed increased 
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proliferation capacity as compared to cells transfected with control vector (Figure 15B and C).  

This promoted proliferation was apparently abrogated when the cells were transfected with 

vector containing GARP miR-142-3p MRE downstream of the coding sequence. Mutation of 

the GARP miR-142-3p MRE fully restored cell proliferation.  These data suggested that the 

miR-142-3p might modulate proliferation of CD25+ CD4 T cells by regulating the expression 

of GARP.  

To further verify the important role of GARP in cell proliferation, Hela cells were transfected 

with GARP expressing vector and a clone that stably expresses high amount of GARP on the 

cell surface was selected (from our lab). Effect of GARP on cell proliferation was followed 

after transfecting GARP high-expressing clone with a vector encoding GARP siRNA. As 

shown in Figure 16, GARP expression was remarkably reduced in GARP high-expressing 

clone transfected with the siRNA. Besides, cell proliferation of the GARP siRNA transfected 

clone was highly attenuated compared to clones transfected with scramble siRNA. Therefore, 

our data indicate that GARP modulate cell proliferation suggesting the important role of this 

protein in T cell homeostasis. 

 
 
 
 
 
 
 
 
 
Figure 16. GARP is involved in the modulation of cell proliferation. 
HeLa clones that stably transfected with a GARP cDNA-encoding vector to express high GARP on the cell 
surface or a control vector were transfected with pcDNA6.2 vectors encoding in silico designed siRNA targeting 
GARP or an irrelevant scrambled sequence and GFP for siRNA expression tracking. GFP+ cells were analyzed 
for GFP and GARP expression by immunofluorescence microscopy (original magnification  Χ40). The 
proliferative capacity of clones transfected with scrambled siRNA or GARP siRNA was determined by cell 
counting. Data are shown as means ± SD or as one representative of at least three independent experiments.  

III.1.1.7 Analysis	  of	  intracellular	  proteins	  interacting	  with	  GARP.	  

To study the molecular mechanism of GARP in modulating cell proliferation, the possible 

intracellular connection of GARP to other proteins was further investigated. Stable isotope 

labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was performed 

in CD25+ CD4 T cells expanded in light medium (L-medium, Arg0 and Lys0-labeled) or 

heavy medium (H-medium, Arg10 and Lys8-labeled) using peptide encoding the C-terminal 

intracellular part of GARP. The binding affinity of proteins immunoprecipitated by GARP 

wild type (WT) peptide from cells cultivated in heavy medium was compared to that of 
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proteins immunoprecipitated by a scrambled (Scr) peptide from cells cultivated in light 

medium (termed as the ratio of WT-H/Scr-L, Y-axis). To reduce unspecific background 

binding, a reverse experiment was included to compare the binding affinity of proteins 

immunoprecipitated by Scr peptide from cells cultivated in heavy medium to that proteins 

immunoprecipitated by a WT peptide from cells cultivated in light medium (termed as the 

ratio of Scr-H/WT-L, X-axis). The results are shown in Figure 17B. Each spot represented 

one protein immunoprecipitated by the peptide and proteins that were truly bound to WT 

peptide were located at the II quadrant of the Cartesian coordinate system. 

A total of five proteins (eRF1, Radixin, Spin1, Tomm70a and Uba6) were identified based on 

the data from three independent experiments (Figure 17C). Analysis of their expression levels 

in CD25+ and CD25- cells indicated that Radixin and eRF1 were highly expressed in CD4 T 

cells in response to stimulation, whereas expression of Spin1, Tomm70a and Uba6 

maintained in a low extent. Together with the consideration of the location and reported 

function of these two proteins (Hoeflich and Ikura 2004, Wong et al. 2012, Kryuchkova et 

al.), Radixin was selected as a candidate for further analysis. 

 

 

 

 

 

 

 

 

 
Figure 17. SILAC-based peptide immunoprecipitation.  
CD25+ CD4 T cells were isolated, expanded in light medium (L-medium, Arg0 and Lys0-labeled) or heavy 
medium for at least 14 days and lyzed in M-PER buffer. Immunoprecipitation was performed using 
desthiobiotin-labeled peptide. Protein pellet were resolved by gel electrophoresis, subjected to a standard tryptic 
in-solution digest and analyzed by LC-MS. (A) Amino acid sequence of desthiobiotinylated synthesized GARP 
peptides. (B) The interaction of the GARP WT peptide compared with a scrambled peptide. Each spot represents 
one protein co-IPed with peptide. Data are shown as one representative of three independent experiments. (C) 
Possible candidates that bind to the GARP WT peptide from three independent experiments. 
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Figure 18. Expression of eRF1, Radixin, Spin1, Tomm70a and Uba6 in CD25+ CD4 T cells. 
CD25+ CD4 T cells were isolated from spleen and lymph nodes of C57B/6 mouse and stimulated for 24h with 
anti-CD3/CD28 beads. Expression of eRF1, Radixin(A), Spin1, Tomm70 and Uba6 (B) was determined by real-
time PCR using Taqman gene expression assays. Relative expression compared to cyclophilin was 
demonstrated. Results are shown as one representative of two independent experiments.  

To further prove the binding of GARP and Radixin in a greater detail, co-IP studies were 

performed in human cell line. Jurkat cells stably transfected with a Radixin cDNA-encoding 

vector were transiently transfected with pcDNA3.1-GARPcds vector to generate cells 

overexpressing both proteins (Figure 19A). Radixin was not found in the immunoprecipitates 

obtained by anti-GARP antibody as well as in that with control IgG (Figure 19B), indicating 

the disprove of co-IP of Radixin with GARP. These results do not correspond with the 

findings using SILAC-based peptide immunoprecipitation, suggesting necessity of further 

investigation. 

 

 

 

 

Figure 19. Co-immunoprecipitation of Radixin with GARP. Jurkat cell line stably transfected with a Radixin 
cDNA-encoding vector or a control vector were transfected with pcDNA3.1-GARPcds vector. (A) Expression of 
GARP and Radixin were confirmed by western blot. (B) Co-immunoprecipitation (Co-IP) of Radixin with 
GARP. Jurkat cells expressing Radixin and GARP were subjected to immunoprecipitation with anti-GARP or 
control IgG followed by immunoblotting with anti-GARP, anti-radixin and anti-actin. Cell lysates were used as 
control. Data are shown as one representative of two independent experiments.  
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III.2 Analysis	   of	   GARP	   and	   miR-‐142-‐3p	   expression	   in	   patients	   with	  
rheumatoid	  arthritis	  

III.2.1 Characteristics	  of	  study	  population	  

GARP and miR-142-3p expression was analyzed in 25 patients with RA and 27 age- and 

gender- matched healthy individuals. All Patients fulfilled with the 2010 EULAR/ACR or the 

ACR 1987 classification criteria for RA (Arnett et al. 1988, Aletaha et al. 2010).  

Demographic and clinical parameters were documented at the Division of Rheumatology, 

University of Munich and summarized in Table 2. 

Table 2. Characteristics of the study population* 

	   RA Patients	   Healthy controls	  

Sample number	   25	   27	  
Age, years	   60.8±12.1	   51.0±7.5	  

Female/Male, no.	   20/5	   22/5	  
Disease duration, years	   3.8±4.7	   n.a.§	  

RF positive, %	   88.0	   n.d.¶	  
Anti-CCP positive, %	   72.0	   n.d.	  

DAS28	   3.6±1.8	   n.a.	  
TJC28, no.	   4.5±6.3	   n.a.	  
SJC28, no.	   3.4±4.9	   n.a.	  
CRP, mg/dl	   1.0±1.9	   n.d.	  

ESR, mm/hour	   21.7±16.2	   n.d.	  
Erosions, % 54.0 n.a. 

*Data are shown as mean ± SD or absolute numbers. 
§n.a., not applicable. 
¶n.d., not determined. 
Abbreviations: RA, rheumatoid arthritis; RF, rheumatoid factor; Anti-CCP, anti-cyclic citrullinated peptide; DAS28, disease 
activity score in 28 joints; TJC28, tender joint count on 28 joints; SJC28, swollen joint count on 28 joints; CRP, C-reactive 
protein; ESR, erythrocyte sedimentation rate. 

III.2.2 Diminished	  expression	   level	  of	  GARP	  and	  elevated	  expression	   level	  of	  miR-‐

142-‐3p	  in	  CD25+	  CD4	  T	  cells	  from	  patients	  with	  RA.	  

To investigate the expression of GARP in patients with RA surface staining and real-time 

PCR was performed to address protein and mRNA level of GARP. As shown in Figure 20A, 

expression levels of both GARP protein and mRNA were up-regulated in CD25+ CD4 T cells 

within 24 hours in both patients with RA and healthy individuals in response to activation. 

These data are in line with our previous results (Figure 9). The comparison of GARP 

expression between healthy individuals and RA patients revealed no difference in freshly 

isolated cells. In response to activation, the expression of GARP on protein and mRNA levels 

in CD25+ CD4 T cells were significantly lower in patients with RA compared to healthy 
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individuals. On the other hand, as shown in Figure 20B, expression levels of miR-142-3p 

were up-regulated in CD25+ CD4 T cells for two days in both patients with RA and healthy 

individuals in response to activation, which are in line with our previous results (Figure 9). 

The expression of miR-142-3p was significantly higher in patients with RA as compared to 

healthy individuals in both freshly isolated and activated CD25+ CD4 T cells. These data 

negatively correlated well with the GARP mRNA expression (Figure 20A). 

 

 

 

 

 

 
Figure 20. Expression of GARP and miR-142-3p in CD25+ CD4 T cells in patients with RA. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two days. (A) 
Left panel: Expression of GARP was assessed in CD25+ CD4 T cells by flow cytometry using a monoclonal 
anti-GARP antibody. Frequency of GARP+ cells among the total CD25+ CD4 T cells from 25 healthy individuals 
(HC) and 23 patients with RA is shown. Right panel: Expression of GARP mRNA was analyzed by real-time 
PCR using TaqMan Gene Expression Assays. Relative expression normalized to cyclophilin is demonstrated. 
GARP mRNA level from 20 healthy individuals (HC) and 17 patients with RA is shown. (B) Expression level of 
miR-142-3p from 24 healthy individuals (HC) and 19 patients with RA is shown. miRNA expression in relation 
to expression levels of RNU48 is demonstrated. Data are presented as box plots demonstrating minimum, 
maximum, median and 25th and 75th percentiles. Statistical analyses were performed by a Student’s t-test. * 
p<0.05, ** p<0.01, *** p<0.001. 

III.2.3 Expression	   level	   of	   GARP	   and	   miR-‐142-‐3p	   in	   CD25+	   CD4	   T	   cells	   differs	   in	  

treated	  and	  non-‐treated	  patients.	  

Analyzed RA patients were then subdivided into two groups: non-treated (therapy naive) and 

treated patients. Interestingly, although there was no difference in the protein level of GARP 

between the treated and non-treated patient groups (Figure 21A, left panel), there was a 

significant difference in the expression level of GARP mRNA between these two groups 

(Figure 21A, right panel). For GARP protein expression, both non-treated patients and treated 

patients showed significantly lower protein levels as compared to healthy individuals (Figure 

21A). For GARP mRNA expression, whereas treated patients did not show any difference in 

their mRNA level of GARP expression from healthy individuals, non-treated patients 

possessed significantly lower levels of GARP mRNA in response to activation as compared to 

that of treated patients and healthy individuals (Figure 21A, right panel). These data suggest a 
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trend of treatment-specific down-modulation of GARP expression in CD25+ CD4 T cells 

from patients with RA. 

On the other hand, we observed an elevated expression of miR-142-3p in freshly isolated 

CD25+ CD4 T cells from both non-treated and treated patients as compared to the healthy 

individuals (Figure 21B). In response to TCR stimulation, a more pronounced up-regulation 

of miR-142-3p expression was observed in Tregs from non-treated patients as compared to 

that of healthy individuals and treated patients. Together with the expression of GARP 

mRNA in those two RA groups as described previously (Figure 21, right panel), our data 

indicate a trend of treatment-specific down-modulation of GARP expression via miR-142-3p 

in CD25+ T cells from patients with RA. 

 

 
 

 

 
Figure 21. Expression of GARP and miR-142-3p in CD25+ CD4 T cells in patients with RA stratified 
based on treatment. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two days. (A) 
Left panel: Expression of GARP was assessed by flow cytometry using a monoclonal anti-GARP antibody. 
Frequency of GARP+ cells among the total CD25+ CD4 T cells from 25 healthy individuals (HC) and patients 
with non-treated RA (n=9) and treated RA (n=14) is shown. Right panel: Expression of GARP mRNA was 
analyzed by real-time PCR using TaqMan Gene Expression Assays. Relative expression normalized to 
cyclophilin is demonstrated. GARP mRNA level from 20 healthy individuals (HC) and patients with non-treated 
RA (n=8) and treated RA (n=9) is shown. Data are presented as box plots demonstrating minimum, maximum, 
median and 25th and 75th percentiles. (B) miRNA expression in relation to expression levels of RNU48 is 
demonstrated. Expression level of miR-142-3p from 24 healthy individuals (HC) and patients with non-treated 
RA (n=9) and treated RA (n=10) is shown. Data are shown as box plots demonstrating minimum, maximum, 
median and 25th and 75th percentiles. Statistical analyses were performed by a Student’s t-test. * p<0.05, ** 
p<0.01, *** p<0.001. 

III.2.4 Expression	   level	  of	  GARP	  and	  miR-‐142-‐3p	   in	  CD25+	  CD4	  T	  cells	  differs	   in	  RA	  

groups	  stratified	  according	  to	  disease	  activity.	  

Next, we subdivided analyzed RA patients into two groups stratified according to disease 

activity: patients with active disease (DAS28>3.2) and patients with low disease activity 

(DAS28≤3.2). Here we observed similar expression pattern in both protein and mRNA of 

GARP (Figure 22). A diminished expression of GARP protein and mRNA in response to 

TCR stimulation was observed in Tregs from patients with active disease (DAS28>3.2) 

compared to that of healthy individuals and RA patients with low disease activity 
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(DAS28≤3.2). These findings concede a correlation of down-modulated GARP expression to 

disease activity in CD25+ T cells from patients with RA. 

On the other hand, a pronounced up-regulation of miR-142-3p in response to TCR stimulation 

was observed in Tregs from patients with active disease (DAS28>3.2) compared to that of 

healthy individuals and RA patients with low disease activity (DAS28≤3.2) (Figure 22B). 

Together with the expression of GARP mRNA in those two RA groups as described 

previously (Figure 22A), our data indicate that miR-142-3p-mediated GARP expression in 

Tregs from patients with RA correlates with disease activity. 

 

 

 

 

Figure 22. Expression of GARP and miR-142-3p in CD25+ CD4 T cells in patients with RA stratified 
according to disease activity. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two days. (A) 
Left panel: Expression of GARP was assessed by flow cytometry using a monoclonal anti-GARP antibody. 
Frequency of GARP+ cells among the total CD25+ CD4 T cells from 25 healthy individuals (HC) and patients 
with active disease (DAS28>3.2) (n=10) and low disease activity (DAS28≤3.2) (n=13) is shown. Right panel: 
Expression of GARP mRNA was analyzed by real-time PCR using TaqMan Gene Expression Assays. Relative 
expression normalized to cyclophilin is demonstrated. GARP mRNA level from 20 healthy individuals (HC) and 
patients with active disease (DAS28>3.2) (n=9) and low disease activity (DAS28≤3.2) (n=8) is shown. Data are 
presented as box plots demonstrating minimum, maximum, median and 25th and 75th percentiles. (B) miRNA 
expression in relation to expression levels of RNU48 is demonstrated. Expression level of miR-142-3p from 24 
healthy individuals (HC) and patients with active disease (DAS28>3.2) (n=8) and low disease activity 
(DAS28≤3.2) (n=11) is shown. Data are shown as box plots demonstrating minimum, maximum, median and 
25th and 75th percentiles. Statistical analyses were performed by a Student’s t-test. * p<0.05, ** p<0.01, *** 
p<0.001. 

III.2.5 SNPs	  on	  the	  3’UTR	  of	  GARP	  might	  be	  associated	  with	  RA	  susceptibility	  

Next we examined the possible contribution of GARP 3’UTR polymorphisms to RA 

susceptibility. Genomic DNA of 269 RA patients and 238 HCs were genotyped for 8 SNP 

alleles located on the 3’UTR of GARP (Table 3 and Table 4). The majority of analyzed SNPs 

showed high incidence in both RA and HC groups, except for SNP 6 that demonstrated by the 

very rare appearance of minor allele homozygosity (~1%) in both investigated groups. There 

were no significant differences in the genotype and allele frequencies of SNP 6 and 7 (p≥0.1) 

between RA patients and HC. However SNP 1, 4, 5 and 8 showed a trend of difference 

(0.05≤p<0.1) and SNP 2 and 3 demonstrated significant differences (p<0.5) in the genotype 

and allele frequencies between analyzed cohorts. Thus, SNP 1, 4, 5 and 8, especially SNP 6 

and 7 might be associated with RA susceptibility. 
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Table 3 Allele counts in analyzed GARP 3’UTR SNPs in RA patients and HCs 

Name SNP ID location 
(mRNA) 

Allele 
(major/minor) 

Allele count (major/minor) 
P* 

RA (n=269) HC (n=238) 

SNP1 rs1320644 2588 G/A 363/175 297/179 0.0990 
SNP2 rs1320645 2687 A/C 252/286 255/221 0.0378 
SNP3 rs1320646 2728 C/T 388/150 371/105 0.0355 
SNP4 rs3781699 2990 T/G 362/176 295/181 0.0867 
SNP5 rs3781700 3066 C/A 362/176 295/181 0.0867 
SNP6 rs1803627 3431 A/C 483/55 428/48 1.0000 
SNP7 rs3197153 3703 T/C 359/179 295/181 0.1153 
SNP8 rs7685 4136 A/C 359/179 292/184 0.0767 

*P-values were calculated based on the individual numbers, using Fisher’s exact test. 

Table 4 Frequency of genotypes (%) in analyzed GARP 3’UTR SNPs in RA patients and HCs 

Name Allele 
(major/minor) 

Genotype frequency (AA/AB/BB§, shown as %) 
χ2* P * 

RA (n=269) HC (n=238) 

SNP1 G/A 48.7/37.5/13.8 40.3/44.1/15.5 2.59 0.1075 
SNP2 A/C 25.7/42.4/32.0 26.9/53.4/19.7 4.363 0.0367 
SNP3 C/T 51.7/40.9/7.4 60.1/35.7/4.2 4.649 0.0311 
SNP4 T/G 48.3/37.9/13.8 40.3/43.3/16.4 2.804 0.094 
SNP5 C/A 48.3/37.9/13.8 40.3/43.3/16.4 2.804 0.094 
SNP6 A/C 79.9/19.7/0.4 81.1/17.6/1.3 0.006 0.9409 
SNP7 T/C 47.6/38.3/14.1 40.3/43.3/16.4 2.24 0.1345 
SNP8 A/C 47.2/39.0/13.8 39.9/43.7/16.4 2.465 0.1164 

*χ2 and P-values were calculated based on the individual numbers, using Chi-square test. 
§AA: major allele homozygote; AB: heterozygote; BB: minor allele homozygote. 

III.2.6 Haplotype	   distribution	   of	   the	   3’UTR	   of	   GARP	  might	   be	   associated	  with	   RA	  

susceptibility	  

Analysis of haplotypes revealed two distinct blocks of haplotypes in the 3’UTR of GARP, 

termed as block1 and block 2 (Figure 23 and Table 5). Block 1 encompassed SNP 1 to SNP 3 

and suggested a significant association with RA as demonstrated by the global p-value of 

association p=0.0439). Block 2 covered SNP 4 to SNP 8 and revealed a trend of association 

with RA (p=0.0564). Within block 1, four common haplotypes were observed and two of 

them were significantly associated with RA. Haplotype AAC were decreased in RA patients 

and might function as a protective haplotype (p=0.035), while haplotype GCT were over-

presented in RA patients and might function as a susceptible haplotype (p=0.0246). Within 

block 2, three common haplotypes were observed including haplotype TCATA as susceptible 

haplotype (p=0.0138) and haplotype GAACC as protective haplotype (p=0.0358). Therefore, 
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our results suggested that haplotype distribution of GARP 3’UTR might associate with RA 

susceptibility. However, the detailed molecular mechanisms need to be further investigated. 

 
 
 
 
 
 
 
 
 
 
 
Figure 23 Haplotype of SNPs in the 3’UTR of GARP. Haplotype block structure was predicted on the basis of 
the strength of pairwise LD, which is presented as a 2×2 matrix; red represents very high LD (D'), white 
indicates absence of correlation between SNPs. The schematic overview of the location of SNPs on the GARP 
3’UTR are indicated in the upper panel. 

Table 5 Haplotype distribution in the 3’UTR of GARP 

Haplotype Block 1 

Haplotype Count (RA/HC) Frequency (RA/HC) Global P* P§ 

AAC 173:365/179:297 0.321/0.376 

0.0439 

0.0350 
GCC 136:402/109:367 0.252/0.229 0.4255 
GCT 150:388/103:373 0.279/0.216 0.0246 
GAC 73:465/76:380 0.136/0.156 0.3734 

Haplotype Block 2 

Haplotype Count (RA/HC) Frequency (RA/HC) Global P P 
TCATA 312:226/239:237 0.579/0.502 

0.0564 
0.0138 

GAACC 176:362/186:290 0.327/0.391 0.0358 
TCCTA 50:488/49:427 0.092/0.103 0.5980 

*Global p-values were calculated based on the individual numbers, using Chi-square test. 
§P-values were calculated based on the individual numbers, using Fisher’s exact test. 
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III.3 Expression	  of	  other	  miRNAs	  in	  patients	  with	  rheumatoid	  arthritis	  

III.3.1 Characteristics	  of	  study	  population	  

Heparin-treated peripheral blood and serum samples were collected from 61 patients with RA 

and 49 age- and gender- matched healthy individuals. All Patients fulfilled with the 2010 

EULAR/ACR or the ACR 1987 classification criteria for RA (Arnett et al. 1988, Aletaha et 

al. 2010). Demographic and clinical parameters were documented at the Division of 

Rheumatology, University of Munich and summarized in Table 6. At the study entree 23/61 

of patients were untreated, 17/61 were on steroids either alone or in combination with disease 

modifying anti-rheumatic drugs (DMARDs) and/or biologics, 35/61 were treated with 

DMARDs (methotrexate or leflunomide) either alone or in combination with prednisolone 

and/or biologics, and 19/61 were receiving biologics alone or in combination (TNF inhibitors, 

tocilizumab, rituximab, or abatacept). CD25+ and CD25- CD4 T cells were purified and the 

purity of isolated cells was controlled by flow cytometry. Typically, ≥95% of isolated cell 

populations were CD3/CD4 positive. CD25+ CD4 T cells were ≥90% CD25 positive and 

~80% CD127 negative. CD25- CD4 T cells were ≥98% negative for CD25 and ≥98% positive 

for CD127.  The purity and number of the isolated cell populations were comparable between 

RA patients and healthy controls (Figure 24). 

Table 6. Characteristics of the study population* 

 RA Patients Healthy controls 

Sample number 61 49 
Age, years 56.7±13.1 50.1±8.3 

Female/Male, no. 48/13 36/13 
Disease duration, years 6.7±9.0 n.a.§ 

RF positive, % 80.3% n.d.¶ 
Anti-CCP positive, % 80.3% n.d. 

DAS28 3.8±1.5 n.a. 
TJC28, no. 4.6±5.3 n.a. 
SJC28, no. 4.5±5.1 n.a. 
CRP, mg/dl 1.0±2.0 n.d. 

ESR, mm/hour 13.9±12.4 n.d. 
*Data are shown as mean ± SD or absolute numbers. 
§n.a., not applicable. 
¶n.d., not determined. 
Abbreviations: RA, rheumatoid arthritis; RF, rheumatoid factor; Anti-CCP, anti-cyclic citrullinated peptide; DAS28, disease 
activity score in 28 joints; TJC28, tender joint count on 28 joints; SJC28, swollen joint count on 28 joints; CRP, C-reactive 
protein; ESR, erythrocyte sedimentation rate.  
  



Results 	  
 

 

80 

 
 

 

 

 

 

 

 

 

 

 

Figure 24. Purity and numbers of isolated Tregs and CD25- CD4 T cells.  
CD25+ CD4 T cells from 49 healthy individuals (HC) and 72 patients with RA; and CD25- CD4 T cells from 36 
HC and 34 patients with RA were isolated and stained using monoclonal Ab against CD3, CD4, CD25 and 
CD127. (A) Representative stain of isolated cells is demonstrated. (B) Numbers of CD25+ and CD25- CD4 T 
cells purified from 100 ml peripheral blood are show. Statistical analyses were performed by Student's t-test. n.s. 
non-significant. 

III.3.2 Reduced	  expression	  level	  of	  miR-‐146a	  and	  miR-‐155	  in	  CD25+	  CD4	  T	  cells	  from	  

patients	  with	  RA.	  

To investigate the expression of miR-146a and miR-155 in patients with RA, real-time PCR 

using TaqMan MicroRNA Assays was performed. As shown in Figure 25A and Table 7, 

miR-146a was expressed in a comparable level between patients with RA and healthy 

individuals in both freshly isolated CD25+ and CD25- CD4 T cells. Upon stimulation, the 

expression of miR-146a decreased mildly in CD25+ CD4 T cells after two days activation in 

both patients with RA and healthy individuals, while its expression in CD25- CD4 T cells was 

severely down-regulated. Interestingly, CD25+ CD4 T cells from patients with RA expressed 

notably lower level of miR-146a as compared to healthy individuals, whereas no difference in 

the expression level of miR-146a in CD25- CD4 T cells was observed between patients with 

RA and healthy individuals. These data suggest that the expression pattern of miR-146a is 

characteristic for CD25+ CD4 T cells in RA. 
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Figure 25. Expression of miR-146a and miR-155 in CD25+ and CD25- CD4 T cells in patients with RA. 
CD25+ and CD25- CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two 
days. miRNA expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time PCR 
using TaqMan miRNA assays. miRNA expression in relation to expression levels of RNU48 is demonstrated. 
Expression level of miR-146a (A) and miR-155 (B) from 24 healthy individuals (HC) and 19 patients with RA is 
shown. Data are presented as box plots demonstrating minimum, maximum, median and 25th and 75th 
percentiles. Statistical analyses were performed by a Student’s t-test. * p<0.05, ** p<0.01, *** p<0.001.  

Table 7. Mean±SD and fold-change of miR-146a and miR-155 expression levels in CD25+ and CD25- CD4 
T cells. 
 
 
 
 

 

 

 

 

 

 

 

 

  

miR-146a 
Mean±SD fold-change 

HC RA RA-HC 

CD25+ d0 0,04761±0,02555 0,04014±0,02129 0.843 

 d1 0,05479±0,02684 0,03610±0,02175 0.659 

 d2 0,04047±0,01684 0,02698±0,01559 0.667 

CD25- d0 0,03313±0,03133 0,0335±0,03215 1.011 

 d1 0,01045±0,004908 0,01329±0,01442 1.272 

 d2 0,01726±0,01004 0,01358±0,01093 0.787 

miR-155 
Mean±SD fold-change 

HC RA RA-HC 

CD25+ d0 0,05543±0,05309 0,04707±0,02517 0,849 

 d1 1,130 ±0,7787 0,5509±0,3157 0,488 

 d2 1,721 ±1,113 0,7678±0,4823 0,446 

CD25- d0 0,07704±0,1010 0,03795±0,04138 0,503 

 d1 1,733±0,9322 0,8468±0,5226 0,489 

 d2 3,509±1,914 1,724±1,202 0,491 
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On the other hand, the expression of miR-155 revealed a similar pattern between CD25+ and 

CD25- CD4 T cells (Figure 25B and Table 7). In response to stimulation, the expression of 

this miRNA was significantly up-regulated in both RA patients and healthy individuals. 

Similar to the findings about miR-146a, level of miR-155 expression was comparable 

between patients with RA and healthy individuals in freshly isolated cells of both cell types. 

After one and two days stimulation, the expression levels of miR-155 in both cell population 

were markedly increased. Different to the expression pattern of miR-146a, the expression of 

miR-155 were reduced in both CD25+ and CD25- CD4 T cells from patients of RA as 

compared to those from healthy individuals suggesting that the diminished expression of 

miR-155 in RA is rather in a CD4 T cell context. 

III.3.3 Expression	  level	  of	  miR-‐146a	  but	  not	  of	  miR-‐155	  in	  CD25+	  CD4	  T	  cells	  differs	  

in	  treated	  and	  non-‐treated	  patients.	  

We then subdivided analyzed RA patients into two groups: non-treated (therapy naive) and 

treated patients. As shown in Figure 26 and Table 8, in CD25+ CD4 T cells, the expression 

level of miR-146a in patients with non-treated RA was 2-fold lower as compared to patients 

with treated RA or healthy individuals, whereas patients with treated RA expressed 

comparable level of miR-146a to that of healthy individuals. After TCR stimulation, levels of 

miR-146a were significantly lower in patients with non-treated RA as compared to patients 

with treated RA or healthy individuals. On the other hand, in CD25- CD4 T cells, the 

expression level of miR-146a maintained in similar levels among different study groups (right 

panel, Figure 26A), suggesting a Treg-specific regulation of the expression pattern of this 

miRNA. 

For the expression of miR-155, both non-treated patients and treated-patients up-regulated the 

expression of this miRNA in a similar level in response to activation (Figure 26B and Table 

8). However, the expression levels of miR-155 in both RA groups were dramatically deceased 

as compared to that of healthy individuals. A similar finding was observed in CD25- CD4 T 

cells (right panel, Figure 26B), further confirmed that the expression pattern of miR-155 in 

RA is rather in a CD4 T cell context. 
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Figure 26. Expression of miR-146a and miR-155 in CD25+ CD4 T cells in patients with RA stratified based 
on treatment. 
CD25+ and CD25- CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two 
days. miRNA expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time PCR 
using TaqMan miRNA assays. miRNA expression in relation to expression levels of RNU48 is demonstrated. 
Expression level of miR-146a (A) and miR-155 (B) from 24 healthy individuals (HC) and patients with non-
treated RA (n=9) and treated RA (n=10) is shown. Data are presented as box plots demonstrating minimum, 
maximum, median and 25th and 75th percentiles. Statistical analyses were performed by a Student’s t-test. * 
p<0.05, ** p<0.01, *** p<0.001.  
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Table 8. Mean±SD and fold-change of miR-146a and miR-155 expression levels in patient groups 
stratified according to treatment. 

 

III.3.4 Expression	  level	  of	  miR-‐146a	  but	  not	  of	  miR-‐155	  in	  CD25+	  CD4	  T	  cells	  differs	  

in	  RA	  groups	  stratified	  according	  to	  treatment	  efficacy.	  

To further investigate the association of miR-146a and miR-155 expression to treatment 

efficacy, patients with RA received treatment on the day of sample collection were further 

subdivided into two groups: patients with active RA (DAS≥2.6) and patients with remitted 

RA (DAS<2.6) (Figure 27). In freshly isolated CD25+ CD4 T cells, the expression level of 

miR-146a was higher in patients with remitted RA as compared to non-treated patients and 

patients with active RA, but in a comparable level to healthy individuals. After TCR 

stimulation, there was a trend that higher levels of miR-146a were expressed in CD25+ CD4 T 

cells from patients with remitted RA as compared to non-treated patients and patients with 

active RA. The expression level of miR-146a in patients with remitted RA after TCR 

stimulation was comparable to that of healthy individuals (Figure 27A). In contrast, 

expression levels of miR-155 were comparable among all three RA groups, but all 

significantly lower as compared to healthy individuals (Figure 27B).  

miR-146a 

Mean±SD fold-change 

HC RA non-treated RA treated 
RA non-
treated 

/HC 

RA 
treated 

/HC 

RA non-
treated  

/RA treated 

CD25+ d0 0,04761±0,02555 0,03161±0,01370 0,04635±0,02417 0,664 0,974 0,682 

 d1 0,05479±0,02684 0,02435±0,01361 0,04250±0,02315 0,444 0,776 0,573 

 d2 0,04047±0,01684 0,02033±0,01287 0,03061±0,01629 0,502 0,756 0,664 

CD25- d0 0,03313±0,03133 0,03472±0,03893 0,0325±0,02737 1,048 0,981 1,068 

 d1 0,01045±0,004908 0,0105±0,009247 0,01481±0,01681 1,005 1,417 0,709 

 d2 0,01726±0,01004 0,01453±0,008770 0,01306±0,01232 0,842 0,757 1,113 

miR-155 

Mean±SD fold-change 

HC RA non-treated RA treated 
RA non-
treated 

/HC 

RA treated 
/HC 

RA non-
treated  

/RA 
treated 

CD25+ d0 0,05543±0,05309 0,04178±0,02390 0,04727±0,02491 0,754 0,853 0,884 

 d1 1,130 ±0,7787 0,4326±0,1228 0,4891±0,3107 0,383 0,433 0,884 

 d2 1,721 ±1,113 0,6968±0,1303 0,5866±0,3319 0,405 0,341 1,188 

CD25- d0 0,07704±0,1010 0,03433±0,01845 0,04091±0,05440 0,446 0,531 0,839 

 d1 1,733±0,9322 0,9617±0,3518 0,7841±0,6023 0,555 0,452 1,227 

 d2 3,509±1,914 1,986±1,554 1,581±1,020 0,566 0,451 1,256 
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Figure 27. Expression of miR-146a and miR-155 in CD25+ CD4 T cells in patients with RA stratified based 
on treatment efficacy. 
CD25+ and CD25- CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two 
days. miRNA expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time PCR 
using TaqMan miRNA assays. miRNA expression in relation to expression levels of RNU48 is demonstrated. 
Expression level of miR-146a (A) and miR-155 (B) from 24 healthy individuals (HC), 9 non-treated RA, 5 
active RA (DAS≥2.6) and 5 patients with remitted RA (DAS<2.6) is shown. Data are presented as box plots 
demonstrating minimum, maximum, median and 25th and 75th percentiles. Statistical analyses were performed 
by a Student’s t-test. * p<0.05, ** p<0.01, *** p<0.001.) 
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III.3.5 Expression	  level	  of	  miR-‐146a	  but	  not	  of	  miR-‐155	  in	  CD25+	  CD4	  T	  cells	  differs	  

in	  RA	  groups	  stratified	  according	  to	  disease	  activity.	  

Next, the analyzed RA patients were subdivided into two groups stratified according to 

disease activity: patients with active disease (DAS28>3.2) and patients with low disease 

activity (DAS28≤3.2). A dramatic difference of expression levels of miR-146a was observed 

between different patients groups in CD25+ CD4 T cells (Figure 28A and Table 9). Whereas a 

similar expression level of miR-146a was observed between patients with low disease activity 

and healthy individuals, patients with active disease expressed significantly lower level of 

miR-146a. CD25+ CD4 T cells from patients with active RA expressed around 1.5 to 2-fold 

lower levels of miR-146a as compared to healthy controls or patients with low disease 

activity. In CD25- CD4 T cells, no difference was observed among both RA patients groups 

and healthy individuals (right panel, Figure 28A). Taken together, our data imply a possible 

correlation of disease activity to the expression level of miR-146a.  

 

 

 

 

 

 

 

 

 

 
Figure 28. Expression of miR-146a and miR-155 in CD25+ CD4 T cells in patients with RA stratified 
according to disease activity. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two days. 
miRNA expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time PCR using 
TaqMan miRNA assays. miRNA expression in relation to expression levels of RNU48 is demonstrated. 
Expression level of miR-146a (A) and miR-155 (B) from 24 healthy individuals (HC), 4 patients with high 
disease activity (DAS28>5.1), 4 patients with moderate disease activity (3.2<DAS28≤5.1) and 11 patients with 
low disease activity (DAS28≤3.2) is shown. Data are shown as box plots demonstrating minimum, maximum, 
median and 25th and 75th percentiles. Statistical analyses were performed by a Student’s t-test. * p<0.05, ** 
p<0.01, *** p<0.001.  
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Table 9. Mean±SD and fold-change of miR-146a and miR-155 expression levels in patient groups 
stratified according to disease activity. 

 

For the expression of miR-155, both RA patients groups up-regulated the expression of this 

miRNA to a similar level in response to TCR stimulation in CD25+ CD4 T cells (Figure 28B 

and Table 9). However, the up-regulation is less obvious as compared to healthy individuals (left 

panel, Figure 28B). These findings were also observed in CD25- CD4 T cells (right panel, 

Figure 28B). 

III.3.6 Expression	  level	  of	  miR-‐146a	  in	  RA	  correlates	  with	  clinical	  parameters.	  

The expression of miR-146a in patients with RA was in a Treg-specific manner (Figure 25A) 

and a possible correlation of disease activity was implied to the expression level of miR-146a 

(Figure 28A). Hence, we performed correlation analysis of the expression of miR-146a in 

CD25+ CD4 T cells to clinical parameters in a greater detail (Figure 29).  

Disease activity score DAS 28 was negatively correlated with the expression levels of 

miR146a (Figure 29A). For the parameters indicating local inflammation, swollen joint count 

(SJC28, SJC66) and tender joint count (TJC28, TJC68) were inversely correlated with the 

miR-146a 

Mean±SD fold-change 

HC RA DAS28>3.2 RA DAS28≤3.2 

RA 
DAS28 

>3.2 
/HC 

RA 
DAS28
≤3.2 
/HC 

RA 
DAS28>3.2 

/RA 
DAS28≤3.2 

CD25+ d0 0,04761±0,02555 0,02821±0,008180 0,05334±0,008180 0,568 1,073 0,529 

 d1 0,05479±0,02684 0,02560±0,01247 0,04976±0,02224 0,453 0,880 0,514 

 d2 0,04047±0,01684 0,02018±0,01122 0,03646±0,01446 0,487 0,880 0,553 

CD25- d0 0,03313±0,03133 0,03737±0,03597 0,03323±0,03193 1,128 1,003 1,125 

 d1 0,01045±0,004908 0,01006±0,008058 0,01743±0,01926 0,963 1,668 0,577 

 d2 0,01726±0,01004 0,01294±0,008012 0,01526±0,01397 0,750 0,884 0,848 

miR-155 

Mean±SD fold-change 

HC RA DAS28>3.2 RA DAS28≤3.2 

RA 
DAS28 

>3.2 
/HC 

RA 
DAS28
≤3.2 
/HC 

RA 
DAS28>3.2 

/RA 
DAS28≤3.2 

CD25+ d0 0,05543±0,05309 0,03712±0,01953 0,05245±0,02460 0,670 0,946 0,708 

 d1 1,130±0,7787 0,4378±0,1785 0,5395±0,3129 0,387 0,477 0,811 

 d2 1,721±1,113 0,6273±0,2045 0,6632±0,3443 0,364 0,385 0,946 

CD25- d0 0,07704±0,1010 0,03564±0,01881 0,04444±0,06381 0,463 0,577 0,802 

 d1 1,733±0,9322 0,8805±0,4246 0,9037±0,6033 0,508 0,521 0,974 

 d2 3,509±1,914 1,998±1,407 1,642±0,9423 0,569 0,468 1,217 
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expression of miR-146a (Figure 29B, C). On the other hand, for the parameters indicating 

systemic inflammation, no obvious correlations were observed between CRP, ESR and miR-

146a expression (Figure 29D, F). Therefore, our data reveal that the expression of miR-146a 

in CD25+ CD4 T cells from patients with RA correlates with clinical parameters, especially 

with the ones suggesting the local joint inflammation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Correlation of clinical scores to the expression levels of miR-146a in CD25+ CD4 T cells. 
CD25+ CD4 T cells were isolated from 19 patients with RA and stimulated with anti-CD3/CD28 beads for a total 
of two days. miRNA expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time 
PCR using TaqMan miRNA assays. miRNA expression in relation to the expression levels of RNU48 is 
demonstrated. Disease activity score in 28 joints (DAS28; with erythrocyte sedimentation rate [ESR]) (A), 28-
swollen joint count (SJC28) and 66-swollen joint count (SJC66) (B), 28-tender joint count (TJC28) and 68-
tender joint count (TJC68) (C), serum C-reactive protein (CRP) (D) and ESR (E) in patients with RA were 
plotted against miR-146a expression level from each time point (do, d1 and d2). Correlations were determined 
by Spearman’s rank correlation coefficient.  

III.3.7 Expression	   levels	  of	  miR-‐146a	  and	  miR-‐155	   in	  RA	  do	  not	  associate	  with	  NF-‐

κB	  signaling	  pathway.	  

Both miR-146a and miR-155 have been reported to contribute to a negative feedback loop of 

the NF-κB signaling pathway. The expression of these two miRNAs are positively regulated 

downstream of the NF-κB signaling and on the other hand they function as negative 
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regulators of the signaling pathway by targeting the genes within the pathway and promoting 

the inhibition of target gene expression (Ma et al.). To gain insight into the biological function 

of altered expression of miR-146a and miR-155 in patients with RA, we then assessed 

expression levels of their target genes involved in the NF-κB signaling in CD25+ CD4 T cells 

from patients with RA and healthy individuals.  

 

 

 

 

 

 

 

 

 

 
 
Figure 30. Expression of miRNA target genes involved in NF-κB pathway. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two days. mRNA 
expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time PCR using TaqMan 
gene expression assays. mRNA expression in relation to expression levels of β-actin mRNA is demonstrated. 
Expression level of IRAK1 (A), TRAF6 (B) and IKKε (C) from 24 healthy individuals (HC) and 19 patients 
with RA is shown. Data are shown as box plots demonstrating minimum, maximum, median and 25th and 75th 
percentiles. (D) CD25+ CD4 T cells were isolated and transfected with a NF-κB reporter vector (pGL4.32) and 
stimulated with either anti-CD3/CD28 beads or with PMA and ionomycin. Luciferase activity was analyzed 17 
hours later. Relative luciferase activity from 9 HC and 8 RA patients is shown. Statistical analyses were 
performed by a Student’s t-test. * p<0.05, ** p<0.01, *** p<0.001.  

miR-146a regulates the expression of interleukin-1 receptor-associated kinase 1 (IRAK1) and 

TNF receptor associated factor 6 (TRAF6) (Iyer et al. 2012, Schulte et al. 2013), whereas 

miR-155 targets on I-kappa B kinase epsilon IKKε (Tili et al. 2007, Liang et al.). In response 

to TCR stimulation, expression of the IRAK1 mRNA was up-regulated in both patients with 

RA and healthy individuals (Figure 30A). On the other hand, expression of TRAF6 and IKKε 

was rather down-regulated (Figure 30B). Interestingly, expression levels of all three genes 

differed significantly between HC and patients with RA in both freshly isolated and 
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stimulated CD25+ CD4 T cells. However, detection of NF-κB activity by transfecting cells 

with a NF-κB luciferase reporter vector revealed comparable luciferase activity between 

patients with RA and healthy individuals (Figure 30D). In addition, no correlation was 

observed between the expression levels of miR-146a or miR-155 and the NF-κB signalling 

pathway (Figure 31). Hence, the correlation between the expression levels of miR-146a or 

miR-155 to the NF-κB signaling pathway was not clear in CD25+ CD4 T cells from patients 

with RA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Correlation between expression levels of miR-146a and its targets IRAK1, TRAF6 and of miR-
155 and its target IKKε in CD25+ CD4 T cells in RA.  
CD25+ CD4 T cells from RA patients (n=11-14) were isolated and stimulated with anti-CD3/CD28 beads for a 
total of two days. miRNA expression and mRNA expression were assessed in freshly isolated cells (d0), at 24h 
(d1) and 48h (d2) after stimulation by real-time PCR using TaqMan miRNA assays and TaqMan gene 
expression assays. miRNA expression in relation to the expression levels of RNU48 and relative mRNA 
expression in relation to the expression levels of ß-actin mRNA are demonstrated. Expression levels of IRAK1 
(A), TRAF6 (B) mRNAs were plotted against the miR-146a expression levels at d0, d1 and d2. Expression 
levels of IKKε (C) were plotted against the miR-155 expression levels. Correlations were determined by 
Spearman’s rank correlation coefficient. 
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III.3.8 Expression	  levels	  of	  miR-‐146a	  and	  miR-‐155	  in	  RA	  correlate	  with	  expression	  of	  

STAT1	  and	  SOCS1.	  

We next analyzed two other genes, signal transducer and activator of transcription 1 (STAT1) 

and suppressor of cytokine signaling 1 (SOCS1) which have been reported to be the targets of 

miR-146a and miR-155 respectively in CD25+ CD4 T cells from patients with RA (Kohlhaas 

et al. 2009, Lu et al. 2010, Lu et al. 2010). Again, the analyzed patient groups were stratified 

based on disease activity into two groups: patients with active disease (DAS28>3.2) and 

patients with low disease activity (DAS28≤3.2).  

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 32 Expression of STAT1 and SOCS1 in patients with RA stratified according to disease activity. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two days. mRNA 
expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time PCR using TaqMan 
gene expression assays. mRNA expression in relation to expression levels of β-actin mRNA is demonstrated. 
Protein expression was assessed in freshly isolated (d0) and/or in 24h-stimulated (d1) cells by intracellular 
staining (STAT1). (A) Expression levels of STAT1 and SOCS1 from 22 healthy individuals (HC) and 19 RA 
patients are shown. Data are shown as box plots demonstrating minimum, maximum, median and 25th and 75th 
percentiles. (B) Expression of total STAT1 protein and of phosphorylated STAT1 (pSTAT1) was assessed as 
mean fluorescence intensity (MFI). Representative stainings are demonstrated in the upper panel. In the lower 
panel results from 9 HC and 18 RA patients are summarized. Patients were stratified according to disease 
activity: active RA - DAS28>3.2 and low disease activity - DAS28≤3.2. * p < 0.05, ** p < 0.01, *** p < 0.001 
by Student’s t-test. 

Expression levels of STAT1 and SOCS1 were highly up-regulated in response to stimulation 

in healthy individuals (Figure 32). Strikingly, patients with active disease expressed 

significant higher level of STAT1 as compared to patients with low disease activity and 

healthy individuals, which correlated well with the diminished expression level of miR-146a 

in CD25+ CD4 T cells from patients with active disease but not with low disease activity 

(Figure 32A and Figure 33A). Moreover, higher STAT1 protein expression and 
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phosphorylation in response to stimulation in patients with active disease was observed 

(Figure 32B). In contrast, expression of SOCS1 in CD25+ CD4 T cells did not completely 

correlate with the expression pattern of miR-155 as shown in Figure 33B. While patients with 

active disease indeed expressed an increased level of SOCS1 corresponding to a down-

regulated level of miR-155, patients with low disease activity showed diminished level of 

both miR-155 and SOCS1 (Figure 33B), suggesting that there is an additional mechanism 

controlling SOCS1 expression in CD25+ CD4 T cells from patients with RA. 

 
 

 

 

 

 

 

 

 

Figure 33. Correlation between expression levels of miR-146a and its target STAT1 and of miR-155 and 
its target SOCS1 in CD25+ CD4 T cells in RA.  
CD25+ CD4 T cells from RA patients (n=11-14) were isolated and stimulated with anti-CD3/CD28 beads for a 
total of two days. miRNA expression and mRNA expression were assessed in freshly isolated cells (d0), at 24h 
(d1) and 48h (d2) after stimulation by real-time PCR using TaqMan miRNA assays and TaqMan gene 
expression assays. miRNA expression in relation to the expression levels of RNU48 and relative mRNA 
expression in relation to the expression levels of ß-actin mRNA are demonstrated. Expression levels of STAT1 
(A) mRNA were plotted against the miR-146a expression levels at d0, d1 and d2. Expression levels of SOCS1 
(B) were plotted against the miR-155 expression levels. Correlations were determined by Spearman’s rank 
correlation coefficient. 

III.3.9 Altered	   cytokine	   secretion	  pattern	   in	  CD25+ CD4	  T	   cells	   from patients	  with	  

active	  RA.	  

The alteration of STAT1 and SOCS1 as a consequence of altered expression of miR-146a or 

miR-155 has been reported to modify CD4 T cells cytokine secretion profiles (Rodriguez et 

al. 2007, Thai et al. 2007, Lu et al. 2010). Therefore, expression of the pro-inflammatory 

cytokines, IL-2, TNF, IL-17 and IFNγ, was analyzed in CD25+ CD4 T cell from patients with 

RA. As described above, two groups of RA patients were stratified based on disease activity: 
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patients with active disease (DAS28>3.2) and patients with low disease activity (DAS28≤3.2) 

(Figure 34).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 34 Analysis of cytokine expression in CD25+ CD4 T cells from patients with RA stratified 
according to disease activity. 
CD25+ CD4 T cells were isolated and stimulated with anti-CD3/CD28 dynabeads for a total of two days. mRNA 
expression was assessed in freshly isolated cells (d0), at 24h (d1) and 48h (d2) by real-time PCR using TaqMan 
gene expression assays. mRNA expression in relation to expression levels of β-actin mRNA is demonstrated. 
(A) mRNA expression levels of IL-2, TNF, IL-17 and IFNγ from 22 healthy individuals (HC) and 19 RA 
patients are shown as box plots demonstrating minimum, maximum, median and 25th and 75th percentiles. (B) 
TNF, IL-17 and IFNγ at protein level were assessed in cell culture supernatants from 14 HC and 24 RA patients 
24h after stimulation by ELISA. Patients were stratified according to disease activity: active RA - DAS28>3.2 
and low disease activity - DAS28≤3.2. Statistical analyses were performed by a Student’s t-test. * p<0.05, ** 
p<0.01, *** p<0.001.  

Remarkably, cytokine productions by CD25+ CD4 T cells were up-regulated in response to 

TCR stimulation within 24h and down-regulated after 48h in both patients with RA and 

healthy individuals. Patients with active disease expressed strikingly increased levels of all 

analyzed cytokines as compared to patients with low disease activity or healthy individuals. 

In contrast, patients with low disease activity expressed even diminished levels of pro-

inflammatory cytokines as compared to healthy individuals. The changes in cytokine mRNA 
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after 24 of stimulation in Tregs of patients with active disease were reflected by cytokine 

concentrations in cell culture supernatants (Figure 34B). Taken together, our data suggest that 

altered expression of miR-146a and miR-155 levels in CD25+ CD4 T cells might indeed result 

in an altered Treg phenotype of these cells. 

III.3.10 Cytokine	   secretion	  pattern	  but	  not	   the	   suppressive	   capacity	  of	   Tregs	  

correlates	  with	  miR-‐146	  and	  miR-‐155	  expression.	  

To verify the hypothesis that changes in miR-146a and miR-155 expression might result in an 

impaired Treg phenotype in RA, we analyzed cytokine expression in CD25+ CD4 T cells 

treated with either mimics or antagomirs of miR-146a and miR-155 (Figure 35A). Treatment 

with mimics of miR-146a reduced the pro-inflammatory cytokine secretion whereas mimics 

of miR-155 increased the cytokine production. Neutralization of endogenous miRNAs by the 

treatment of antagomirs resulted in opposite consequences. Interestingly, when both miRNAs 

were mimicked or neutralized simultaneously the cytokine secretion profile was rather similar 

to that observed by altering miR-146a biological activity, suggesting a predominant role of 

miR-146a over miR-155 in CD25+ CD4 T cells (Figure 35A). The interference of miR-146a 

also resulted in significant alterations in STAT1 expression and phosphorylation (Figure 

35B). Whereas cells treated with miR-146a mimics showed diminished STAT1 expression 

and phosphorylation, neutralization of the miRNA by antagomirs increased both. 

Remarkably, despite the pronounced effect on cytokine expression profile intervention with 

the expression of these two miRNAs did not affect the in vitro suppressive capacity of Tregs 

(Figure 35C). 
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Figure 35. Effect of miR-146a and miR-155 on Treg cytokine production and suppressive capacity.  
CD25+ CD4 T cells were isolated, transfected with mimics or antagomirs of miR-146a or miR-155 and (A, B) 
stimulated with anti-CD3/28. 24h after stimulation IFNγ, TNF and IL-17 were assessed in cell culture 
supernatants by ELISA (A) or expression and phosphorylation status of STAT1 (total STAT1 and pSTAT1, 
respectively) were assessed intracellularly based on MFI (B). Data are shown as fold changes normalized to cells 
transfected with scrambled (scr) oligos. Mean ± SD of 3 to 10 experiments are shown. (C) To verify the effect of 
intervention with miRNA activity on the suppressive capacity of Tregs CD25- CD4 T cells were isolated in 
addition and labeled with CFSE. Transfected Tregs were cultured with CFSE-labeled CD25- CD4 T cells in a 
1:1 ratio in the presence of anti-CD3 and feeder cells for four days. Proliferation of CD25- CD4 T cells was 
assessed by flow cytometry based on CFSE dilution. One representative experiment of three experiments is 
depicted. * p<0.05, ** p<0.01, *** p<0.001 by Student’s t-test. 
 



Results 	  
 

 

96 

III.3.11 Serum	   levels	  of	  miRNA-‐146a	  and	  miR-‐155	  as	  potential	  biomarkers	   in	  

RA.	  

Recent publication has highlighted the possibility to use circulating miRNAs as biomarkers to 

diagnose and prognose human diseases (Grasedieck et al. 2013). We therefore analyzed the 

expression level of miR-146a and miR-155 in serum from patients with RA. The expression 

level of circulating miR-146a was dramatically lower in patients with RA as compared to 

healthy individuals. In contrast, the expression of miR-155 was in a comparable level between 

patients with RA to healthy individuals (Figure 36A). We further stratified the analyzed RA 

patients according to disease activity into two groups: patients with active disease 

(DAS28>3.2) and patients with low disease activity (DAS28≤3.2). Whereas patients with low 

disease activity expressed comparable level of circulating miR-146a and circulating miR-155 

as compared to healthy individuals, a strikingly lower level of circulating miR-146a and 

circulating miR-155 was observed in patients with active disease as compared to patients with 

low disease activity and healthy individuals. These data together suggested expression levels 

of circulating miR-146a and miR-155 in serum might be used as biomarkers for prediction of 

active phases of the disease in RA. 

 
 
 
 
 
 
 
 
 
Figure 36 Expression level of circulating miR-146a and miR-155 in patients with RA. 
miRNA was excessed in RNA isolated by real-time PCR using TaqMan miRNA expression assays. miRNA 
expression in relation to expression levels of RNU48 is demonstrated. Expression level of miR-146a and miR-
155 from (A) 24 healthy individuals (HC) and 19 RA patients or (B) 24 healthy individuals (HC), 8 patients with 
active disease (DAS28>3.2) and 11 patients with low disease activity (DAS28≤3.2) is shown. Data are shown as 
box plots demonstrating minimum, maximum, median and 25th and 75th percentiles. Statistical analyses were 
performed by a Student’s t-test. * p<0.05, ** p<0.01, *** p<0.001. 
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4 Discussion	  

Tregs, including nTregs and iTregs, are important for tightly controlling destructive immune 

response to pathogens and sustaining immunological self-tolerance and homeostasis (Ohkura 

et al.). A failure in the expansion and the function of Tregs and as a consequence an 

uncontrolled effector T cells expansion and pro-inflammatory cytokine production will result 

in autoimmune diseases, including RA (Frey et al. 2010, Pesce et al. 2013). miRNAs have 

been shown to be involved in the process by mediating post-transcriptional regulation of 

target genes of the immunological processes. (Iliopoulos et al. 2009, Kawai and Akira 2010). 

Thereby, it is of great interest to understand the detailed function of miRNAs in their 

regulation of Tregs and their contribution to the pathogenesis of autoimmune disease, 

especially RA.  

4.1 miR-‐142-‐3p	  mediated	  GARP	  expression	  in	  Tregs	  

In the first part of the study, miRNA-mediated regulation of GARP expression was dissected 

in human regulatory CD25+ CD4 T cells. One specific miRNA, miR-142-3p, was identified to 

target the distal part of GARP 3’UTR and to perform post-transcriptional regulation.  

miR-142-3p was predicted by Diana Lab (Maragkakis et al. 2009) and Target Scan (Lewis et 

al. 2005) to recognize its MRE located in CNS5 region of GARP 3’UTR, which is the distal 

187-bp long conserved region that is 76.2% homologous to the mouse GARP 3’UTR. Besides 

miR-142-3p, several other miRNAs were also predicted in this region which might be capable 

of recognizing GARP mRNA. However, only miR-142-3p and miR-424 were able to 

recognize their MREs in the context of GARP 3’UTR using artificial luciferase reporter 

system. In addition, site-directed mutation of MREs abolished their modulatory effects on the 

activity of GARP 3’UTR. Thus, these observations demonstrated that MREs of miR-142-3p, 

as well as miR-424 in the GARP 3’UTR are responsible for respective miRNA binding.  

Yet, analysis of miR-142-3p and miR-424 expression in CD25+ CD4 T cells revealed constant 

expression of miR-142-3p as described previously (Liston et al. 2008), but reported very low 

level of miR-424 expression. Indeed both the neutralization of endogenous miR-142-3p and 

mutation of its binding sites in CD25+ CD4 T cells restored the reporter gene activity. In 

contrast, neither the inhibition of the biological activity of endogenous miR-424 nor the 

mutation of its MRE in the GARP 3’UTR showed any effects in the CD25+ CD4 T cells. 
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Hence, our data indicated that only miR-142-3p is involved in the post-transcriptional 

regulation of GARP in CD25+ CD4 T cells, whereas the expression level of miR-424 in the 

Tregs is not sufficient to have any effect. Moreover, we observed a cooperation of this 

miRNA with GARP mRNA in Ago2-associated RISC. A recent study using next-generation 

sequencing of co-precipitated RNAs (RIP-Seq) demonstrates miRNA-specific accessibilities 

and Ago2-RISC loading efficiencies and suggests that miRNAs function can only be achieved 

when they are incorporated into RISC complexes (Meier et al. 2013). Therefore, our findings 

of the co-occurrence of miR-142-3p and GARP mRNA in the Ago2-associated RISC further 

strengthened our hypothesis that miR-142-3p is involved in the regulation of GARP 

expression by initiating mRNA degradation. 

The complementarity between the target mRNA and the seed region comprising 2-8 

nucleotides of miRNA largely contributes to the activity of miRNA, resulting either mRNA 

degradation by perfect complementarity or on the other hand inhibition of translation.  

(Williams 2008, Eulalio et al. 2009). When fully complementary base pairing occurs between 

miRNA seed sequence and target mRNA, the miRNA/mRNA duplex preferentially loads into 

Ago2-associated RISC and results in mRNA degradation; whereas if unpaired bulges exist 

between miRNA seed sequence and target mRNA, the duplex loads into Ago1-RISC and 

leads to translational repression (Meister et al. 2004, Czech et al. 2008, Pratt and MacRae 

2009). The recognition of miR-142-3p to its MRE in the GARP 3’UTR is a 8mer motif with a 

perfect complementarity. Our RNP-IP data positively confirmed that the cause of sequential 

diminished expression of GARP mRNA by miR-142-3p is associated with Ago-2 mediated 

mRNA degradation pathway.  

The relationship between miR-142-3p and GARP expression pattern in the CD25+ CD4 T 

cells is well matched to our above indication that miR-142-3p functions as a post-

transcriptional inhibitor of GARP. Whereas expression of miR-142-3p arose at 48h and 72h 

after TCR stimulation, the initial transcription of GARP mRNA was already detectable 4h 

after stimulation (observations from our lab), reached peak value at 24h, diminished at 48h, 

and completely disappeared at 72h after TCR-triggering. The inverse correlation in the 

sequential expression of both counterparts is consistent with function of miR-142-3p as a 

post-transcriptional repressor of GARP. This finding provided an experimental support of the 

theory that there is a mutual exclusive interplay between miRNA and its target, which was 

firstly identified in Drosophilla (Stark et al. 2005). Interestingly, an abundant expression of 

miR-142-3p was detected in freshly isolated CD25+ CD4 T cells, observed by us and other 
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groups independently (Huang et al. 2009). These findings are understandable by considering 

the fact that it is evolutionarily necessary to have a more strict control of transcriptional 

activity in order to diminish the noise of gene expression during cell fate decision (Cohen et 

al. 2006). Indeed, the inhibition of miR-142-3p biological activity by transfecting CD25+ CD4 

T cells with an antagomir directly after activation resulted in higher levels of GARP 

expression.  

Human cells express thousands of miRNAs, targeting more than half of the genes (Bentwich 

et al. 2005, Lewis et al. 2005, Friedman et al. 2009). The post-transcriptional regulation of the 

target genes expression by miRNAs is adapted depending on cell types and is identical within 

same cell type. Instead of functioning as an on-off switch, miRNAs modulate the expression 

of their target genes by impacting the gene expression from 1.2- to 4- fold (O'Neill et al. 

2011, O'Connell et al. 2012). Indeed, inhibition of endogenous miR-142-3p level by an 

antagomir led to an immediate reduction in the endogenous miR-142-3p expression level in 

CD25+ CD4 T cells and subsequently a ~1.5-fold increase in the GARP expression, whereas 

when CD25+ CD4 T cells were transfected with a mimic of miR-142-3p, an accession was 

detected in miR-142-3p level and as a consequence, a ~2-fold diminution of GARP mRNA 

and protein expression was observed. To ask whether these small differences in the gene 

expression level especially the protein concentration can have meaningful physiological 

effects, studies have been performed using heterozygous mice lacking a single copy of gene 

which causes the loss of about half of the protein. PU.1 heterozygous mice display 

overproduction of granulocytes over macrophage during hematopoietic development (Dahl et 

al. 2003). Moreover, insufficient expression of SOCS1 level in the heterozygous mice results 

in hypersensitivity to endotoxemia (Kinjyo et al. 2002). These findings suggest that miRNA-

mediated few-fold change on gene expression is physiologically important in controlling a 

dosage-sensitive phenotype.  

The expression of miR-142-3p has been detected in B cells and T-cell subsets and has been 

suggested to mediate lineage differentiation of T lymphocytes (Chen et al. 2004, Sun et al. 

2011). In the present study, we showed that miR-142-3p interfered the proliferation of CD25+ 

CD4 T cells. In addition to an obviously higher expression level of GARP, inhibition of 

biological activity of miR-142-3p by the antagomir led to increased proliferation. 

Furthermore, cells with overexpressed miR-142-3p displayed a diminished expression of 

GARP, which was accompanied by deducted proliferation capacity of the cells. However, as 

it is well accepted, one miRNA can target on multiple genes from the same signaling pathway 
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(Friedman et al. 2009). In silico prediction of putative miR-142-3p target resulted in a list 

consisting of hundreds of genes. Indeed, 18 genes from the list have been further identified by 

gene ontology analysis to involve in the cell cycle processes. Therefore, it is of great 

importance to bring expedient evidence to rebut such concerns. Ectopic expression of GARP 

in CD25- CD4 T cells with a vector encoding only the GARP coding sequence showed 

increased proliferation capacity as compared to cells transfected with control vector. 

Furthermore, in the presence of miR-142-3p MRE downstream of GARP coding sequence, 

miR-142-3p was able to disturb the ectopical GARP expression and sequentially abrogated 

cell proliferation. However, when the mutated MRE was introduced, miR-142-3p failed to 

suppress GARP expression and the proliferation of cell was restored as a result of recovered 

GARP expression. These data strongly supported the direct effect of miR-142-3p, by 

targeting GARP, in the modulation of CD4 T cell proliferation. 

We then explored the function of GARP in CD25+ CD4 T cells by RNAi including the usage 

of miRNA and siRNA. After transfecting cells with a mimic of miR-142-3p, which 

diminished GARP expression on the cell surface, CD25+ CD4 T cells showed a consistent 

reduction of their suppressive capacity. These findings are in line with description using in 

vitro expanded GARP+ CD25+ clones (Wang et al. 2009). Moreover, as described above, 

GARP was important in the modulation of T cell homeostasis through miR-142-3p mediated 

post-transcriptional regulation. siRNA knock-down of ectopically expressed GARP in Hela 

cells further confirmed these findings, although the molecular mechanisms behind is not 

understood. Cells with lower GARP expression on the cell surface presented a slower cell 

cycle progression, as well as elevated expression of proteins function as inhibitors of cell 

cycle, such as p53, p21/Cip1 and p27/Kip (observations from our lab). Therefore, we 

attempted to investigate the possible intracellular connection of GARP to these molecules 

using SILAC-associated immunoprecipitation. Indeed, 5 candidates were suggested, however, 

none of them were further confirmed by later experiments. Hence, further deep investigations 

are desirable in order to explore the molecular mechanism of GARP in modulating cell 

proliferation. 

Taken together, we identify miRNA-142-3p as the miRNA regulating GARP expression on 

regulatory CD25+ CD4 T cells. GARP mRNA is up-regulated in CD25+ CD4 T cells in 

response to TCR stimulation. The expression of GARP promotes cell proliferation and 

contributes to Treg suppressive function. Sequentially, expression of miR-142-3p is up-

regulated and initiates Ago2-mediated degradation of GARP mRNA by perfect 
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complementarity of the seed region to its target sequence within the GARP 3’UTR. 

Therefore, GARP expression is damped and the expansion of CD25+ CD4 T cells is 

controlled. 

4.2 Elevated	   expression	   of	   miR-‐142-‐3p	   and	   reduced	   GARP	   expression	   in	  

Tregs	  from	  patients	  with	  RA	  

Given the observation that miR-142-3p-mediated regulation of GARP expression contributes 

to the proliferation and function of human regulatory CD25+ CD4 T cells, we therefore in the 

second party of the study followed their expression in patients with RA. We demonstrated a 

delineation of miR-142-3p expression and the linked GARP expression in RA. Moreover, we 

showed difference in the SNP alleles, genotype and haplotype frequency in GARP 3’UTR 

region between RA and healthy individuals (HC), which provided an important hint to 

understand the mechanism driving reduced GARP expression in RA.  

We observed a diminished expression of GARP in CD25+ CD4 T cells from patients with RA. 

GARP was identified as a specific marker on human CD25+ CD4 T cells after TCR 

stimulation by microarray analysis (Wang et al. 2008, Probst-Kepper et al. 2009). The 

induction of GARP expression in CD25+ CD4 T cells is Foxp3-dependent (Wang et al. 2008, 

Probst-Kepper et al. 2010). IL-2 and IL-4, but not TGF-β or retinoic acid can induce the 

expression in vitro (Edwards et al. 2013, Haupt et al. under preparation). GARP has been 

reported as a potential receptor of latent TGF-β (Stockis et al. 2009, Chan et al. 2011). Wang 

and colleagues show that GARP captures latent TGF-β by forming disulfide bonds on Cys-

192 and Cys-331 and presents it on the cell surface (Wang et al. 2012). Expression of GARP 

on cell surface co-occurs with the surface expression of latent TGF-β (Edwards et al. 2013) 

Ectopic expression of GARP in effector T cells leads to Treg-like phenotype with suppressive 

capacity (Wang et al. 2008, Probst-Kepper et al. 2010). Down-modulation of GARP 

expression by specific siRNA in Tregs results in impaired Treg suppressive function (Probst-

Kepper et al. 2010). In addition, our previous results also suggest an alternative fuction of 

GARP by contributing to the proliferation of human CD25+ CD4 T cells. Moreover, mice 

lacking GARP in CD4 T cells or in Foxp3-expressing Tregs show lower CD25+ regulatory T 

cell numbers in inflamed tissues (observations from our lab). Thereby, the diminished 

expression of GARP in Tregs from RA patients may contribute to RA pathogenesis by 

affecting the function and the frequency of Tregs in the patients, which is in line with 

pervious findings (Bayry et al. 2007, Han et al. 2008, Kawashiri et al. 2011, Matsuki et al.).  
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Our previous results have shown that miR-142-3p involved in the post-transcriptional 

regulation of GARP expression in CD25+ CD4 T cells. Inversely correlated to the expression 

of GARP in CD25+ CD4 T cells from RA, the expression of miR-142-3p in these cells was 

unsurprisingly higher than in the healthy individuals. miR-142-3p has been reported to be 

abundantly expressed in hematopoietic cells and is important for the function of dendritic 

cells and T cells (Sun et al. 2011). The expression of this miRNA is deregulated in leukemia 

(Huang et al. 2009, Lv et al. 2012). By targeting on MLL-AF4 (Dou et al. 2013)or gp130 

(Sonda et al. 2013), miR-142-3p prohibits cell proliferation and macrophage differentiation in 

leukemia and myelopoiesis. Our data provide another aspect of the important role miR-142-

3p might play in the pathogenesis of human disease by targeting on GARP. Interestingly, in 

patients with RA, GARP expression negatively correlates with disease activity, whereas the 

expression of miR-142-3p positively correlates with disease activity. These observations may 

suggest an important evidence of Treg-specific functional association during disease 

development. 

The SNP alleles, genotype and haplotype frequency in GARP 3’UTR region varied between 

RA and HC. Polymorphisms in the 3’UTR of a gene may enhance the disease risk by 

increasing the recognizing affinity of miRNA binding sites. For instance, the rs8126 T>C site 

in miR-184 binding site of TNFAIP2 is identified to contribute to the risk with gastric cancer; 

several SNPs localized in the miRNA binding sites of APOL6 are associated with metabolic 

syndrome in Chinese Han population (Xu et al. 2013, Ye et al. 2013). Hereby, our findings 

brought a new concept to understand the diminished expression of GARP expression in 

patients with RA in the context of post-transcriptional regulation, although further 

investigations are yet required.  

Taken together, we conclude that miR-142-3p expression in regulatory CD25+ CD4 T cells 

might modulate the proliferative capacity of the cells and therefore interferers with disease 

pathogenesis. The SNPs in the GARP 3’UTR might associate with the risk of disease 

susceptibility. 

4.3 Decreased	  expression	  of	  miR-‐146a	  and	  miR-‐155	  in	  patients	  with	  RA	  

In the last part of the study, two additional miRNAs, miR-146a and miR-155, were assessed 

in CD25+ CD4 T cells from patients with RA. We demonstrated a deregulated expression of 

miR-146a and miR-155. The altered expression of these two miRNAs may interfere cytokine 
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signaling pathway directly and result in an altered cytokine production pattern, which may 

contribute to the disease pathogenesis. 

The expression of miR-146a and miR-155 were both attenuated in CD25+ CD4 T cells from 

patients with RA as compared to healthy individuals. However, these two miRNAs showed 

different expression pattern in the context of CD4 T cells. The diminished expression of miR-

146a was in a Treg-specific pattern, whereas the diminished expression of miR-155 can be 

observed in both CD25+ CD4 T cells and CD25- CD4 T cells, suggesting their altered 

characteristic in RA. miR-146a and miR-155 have been reported to be widely expressed and 

involved in the controlling of innate and adaptive immune response (Rodriguez et al. 2007, 

Kawai and Akira 2010). miR-146a, by inhibiting the expression of TRAF6 and IRAK1, plays 

an important role in a negative feedback loop to dampen the downstream NF-κB activation 

and attenuate the expression of pro-inflammatory cytokines such as IL-6 and TNFα (Boldin et 

al. 2011, Zhao et al. 2011). miR-155 is involved in the NF-κB pathway by targeting on IKKε 

(Tili et al. 2007, Liang et al.). Based on the above reports, we therefore firstly investigated the 

effect of miR-146a and miR-155 in the regulation of NF-κB activity in CD25+ CD4 T cells 

from RA. We observed elevated mRNA levels of TRAF6, IRAK1 and IKKε, however, no 

difference at the downstream NF-κB activity was detected. These data revealed that there 

might be other signaling pathways, which are targeted by miR-146a and miR-155 in human 

cells.  

It has been reported that miR-146a can down-regulate the expression of STAT1 and play a 

crucial role in Tregs for mediating Th1 response (Lu et al. 2010). On the other hand, miR-155 

accelerates the immune response by targeting on SHIP1 and SOCS1 (Androulidaki et al. 

2009, O'Connell et al. 2009). In our human originated system, however, a fine correlation was 

observed between the expression levels of miR-146a and STAT1, but not between miR-155 

and SOCS1. Further detailed investigation by stratifying patients groups according to disease 

activity indicated that patients with active disease possessed elevated level of STAT1 as a 

result of attenuated expression level of miR-146a; patients with low disease activity expressed 

comparable level of STAT1 as an effect of a similar level of miR-146a as compared to HC. In 

contrast, the expression of miR-155 in patients with both active disease and low disease 

activity was decreased as compared to HC, however, the sequential elevated expression of 

SOCS1 was only detected in patients with active disease, suggesting other mechanisms are 

involved in the controlling of SOCS1 expression in CD25+ CD4 T cells from RA patients. 
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In vivo studies indicate that mice deficient in miR-146a have high disease susceptibility to 

collagen-induced arthritis suggesting a protective effect of this miRNA (Nakasa et al. 2011). 

Moreover, miR-155 is important for the clonal expansion of activated effector CD4 T cells by 

repressing B-cell integration cluster (BIC) and miR-155 deficient mice show failures in 

producing Th1 and Th17 cells in autoimmune inflammation (Rodriguez et al. 2007, 

Kurowska-Stolarska et al. 2011, Oertli et al. 2011). These published reports suggest contrary 

effects of miR-146a and miR-155 in immune response. Whereas miR-146a functions as an 

anti-inflammatory miRNA, miR-155 is rather a pro-inflammatory miRNA. In our hands, 

expression of miR-146a and miR-155 in patients with active disease showed similar contrary 

effects on their target genes expression. The diminished level of miR-146a led to an elevated 

level of STAT1 expression, thus might promote the cells towards a pro-inflammatory 

phenotype. In contrast, the reduced level of miR-155 resulted in an increased expression of 

SOCS1, which might protect the cell from inflammation. Moreover, interferences of miRNA 

biological function using miRNA mimics or antagomirs led to an opposite effect on cytokine 

production. Nevertheless, the overall phenotype of the CD25+ CD4 T cells from patients with 

active disease was rather pro-inflammatory, supported by their elevated expression levels of 

pro-inflammatory cytokines, such as IL-2, IL-17, TNF and IFNγ. This could be further 

confirmed by the findings where we interfered with the biological activity of both miRNAs 

simultaneously. Hence, one may surmise that the resulting pro-inflammatory effect by 

reduced miR-146a expression augments the counteracting protecting effect by reduced miR-

155 expression, leading to an overall pro-inflammatory phenotype of the cells in Tregs from 

RA. 

The further evidence about the predominant effect of miR-146a over miR-155 was 

demonstrated in the correlation of their expression levels to clinical parameters. Only miR-

146a expression level but not miR-155 was observed to be negatively correlated with disease 

activity score, DAS28. Interestingly, the expression of miR-146a was further inversely 

correlated with the parameters indicating local joint inflammation, e.g. TJC and SJC, but not 

with those indicating systemic inflammation, e.g. CRP and ESR. These results indicate that 

phenotype alternation by miR-146a was in particular important for local inflammation. 

Indeed, previously publication has reported that miR-146a prevented bone destruction 

although it was unsuccessful to completely amend inflammation (Nakasa et al. 2011). In 

patients with SLE, a decreased level of miR-146a is suggested to associate with kidney 

inflammation, but not with systemic inflammation (Tang et al. 2009). 
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Recent publication has revealed circulating miRNAs as biomarkers for disease diagnosis and 

prognosis (Grasedieck et al. 2013), especially in the study of human cancer (Kosaka et al. 

2013). Circulating miRNA profiling in plasma from patients with SLE has demonstrated 

increased levels of miR-142-3p and miR-181a, and decreased levels of miR-106a, miR-17, 

miR-20a, miR-203, and miR-92a (Carlsen et al. 2013). A recent report by Filkova and 

colleagues has suggested that miR-16 and miR-223 as novel biomarkers for the disease 

outcome of early RA (Filkova et al. 2013). In our hands, we observed decreased level of miR-

146a and miR-155 in patients with RA, although further investigations are required in order to 

provide more clear explanation for these observations.   

Taken together, we conclude the altered expression of miR-146a and miR-155 in Tregs from 

RA patients might result in an altered cytokine production pattern of these cells, and thereby 

contribute to the pathogenesis of the disease. Moreover, in addition to their direct role in 

mediating Treg function, these two miRNAs might serve as potential biomarkers for disease 

diagnosis and prognosis. 
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