Aus dem Zentrum für Klinische Tiermedizin
der Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

Arbeit angefertigt unter der Leitung von Univ.-Prof. Dr. Katrin Hartmann

Untersuchungen zur Prävalenz und zum Nachweis
von Antikörpern gegen feline Panleukopenieviren

Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde der
Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

von Katherina Mende (geb. Habekost)
aus Hamburg

München 2014
Meiner Familie
INHALTSVERZEICHNIS

I. EINLEITUNG .. 8

II. LITERATURÜBERSICHT: FELINE PANLEUKOPENIE ... 9

1. Ätiologie ... 9
 1.1. Taxonomie ... 9
 1.2. Morphologie ... 10
 1.2.1. Virusgenom ... 10
 1.2.2. Virusproteine ... 10

2. Epidemiologie .. 12
 2.1. Empfängliche Spezies ... 12
 2.2. Infektion und Übertragung .. 13
 2.3. Prävalenz der Infektion ... 14

3. Immunantwort .. 16
 3.1. Angeborene Immunität ... 16
 3.2. Erworbene Immunität ... 17
 3.2.1. Bildung von Antikörpern nach Impfung oder Infektion .. 17
 3.2.2. Maternale Antikörper ... 19
 3.2.3. Untersuchung auf Antikörper ... 21
 3.2.3.1. Hämagglutinationshemmtest .. 23
 3.2.3.2. Serumneutralisationstest .. 23
 3.2.3.3. Enzyme-Linked Immunosorbent Assay .. 24
 3.2.3.4. Indirekter Immunofluoreszenztest .. 24
 3.2.3.5. Schnelltests ... 24
 3.2.3.6. Antikörperprävalenz .. 25

4. Prävention .. 27
 4.1. Aktive Immunisierung .. 27
 4.1.1. Verfügbare Impfstoffe .. 29
 4.1.1.1. Modifizierte Lebendvakzinen ... 30
 4.1.1.2. Inakivierte Impfstoffe ... 32
 4.1.2. Leitlinien zur Impfung .. 33
 4.1.3. Bestimmung des optimalen Impfzeitpunktes ... 37
 4.1.4. Impfversager und Impfdurchbrüche ... 39
| 4.2. | Passive Immunisierung ... 40 |
| III. | STUDIE 1 ... 43 |
| IV. | STUDIE 2 ... 49 |
| V. | DISKUSSION ... 56 |
| VI. | ZUSAMMENFASSUNG ... 67 |
| VII. | SUMMARY ... 69 |
| VIII.| LITERATURVERZEICHNIS ... 71 |
| IX. | DANKSAGUNG ... 99 |
ABKÜRZUNGSVERZEICHNIS

µl Mikroliter
AAFP American Association of Feline Practitioners
ABCD Advisory Board on Cat Diseases
BPT Bundesverband Praktizierender Tierärzte e. V.
CDV canine distemper virus
 (canines Staupevirus)
CPV canines Parvovirus
CRF chronic renal failure
 (chronisches Nierenversagen)
DNA deoxyribonucleic acid
 (Desoxyribonukleinsäure)
ELISA enzyme-linked immunosorbent assay
 (enzymgekoppelter Immunadsorptionstest)
FeLV felines Leukämievirus
FISS feline injection site sarcoma
 (felines impfassoziiertes Sarkom)
FIV felines Immunschwächevirus
FPV felines Panleukopenievirus
GFR glomeruläre Filtrationsrate
HAH Hämagglutinationshemmtest
i. p. intraperitoneal
IFA immunofluorescence assay
 (Immunfluoreszenztest)
IgG Immunglobulin-G
IgM Immunglobulin-M
kDa Kilodalton
kg Kilogramm
MDA maternally derived antibodies
 (maternale Antikörper)
mg Milligramm
MGB Minor Groove Binder
ml Milliliter
MLV modifizierte Lebendvakzine
mRNA messenger ribonucleic acid
 (Boten-Ribonukleinsäure)
NF-κB nuclear factor-kappa B
 (nukleärer Faktor-Kappa B)
NK-Zellen natürliche Killerzellen
NPV negative predictive value
 (negativer prädiktiver Wert)
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>non structural protein (Nichtstrukturprotein)</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction (Polymerase-Kettenreaktion)</td>
</tr>
<tr>
<td>PEI</td>
<td>Paul-Ehrlich-Institut</td>
</tr>
<tr>
<td>PPV</td>
<td>positive predictive value (positiver prädiktiver Wert)</td>
</tr>
<tr>
<td>s. c.</td>
<td>subkutan</td>
</tr>
<tr>
<td>SNT</td>
<td>Serumneutralisationstest</td>
</tr>
<tr>
<td>SPF</td>
<td>specific pathogen-free (spezifisch-pathogen-frei)</td>
</tr>
<tr>
<td>StIKo Vet.</td>
<td>Ständige Impfkommission Veterinär</td>
</tr>
<tr>
<td>TCO</td>
<td>tissue-culture-origin</td>
</tr>
<tr>
<td>u. a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>VGG</td>
<td>Vaccine Guidelines Group</td>
</tr>
<tr>
<td>VP</td>
<td>viral protein (virales Protein, Strukturprotein)</td>
</tr>
<tr>
<td>VPC</td>
<td>Veterinary Products Committee</td>
</tr>
<tr>
<td>WSAVA</td>
<td>World Small Animal Veterinary Association</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
I. EINLEITUNG

Das feline Panleukopenievirus (FPV) ist ein weltweit bei Katzen allen Alters vorkommendes Parvovirus und Erreger der felinen Panleukopenie. Insbesondere aufgrund der Schwere der Erkrankung, welche durch gastrointestinale Symptome und Blutbildveränderungen geprägt ist, sollte entsprechend nationaler und internationaler Leitlinien jede Katze zu jedem Zeitpunkt über einen ausreichenden Immunschutz, entweder infolge einer natürlichen Infektion oder einer Impfung gegen FPV, verfügen (RICHARDS et al., 2006; TRUYEN et al., 2009; DAY et al., 2010; STÄNDIGE IMPFKOMMISSION VET., 2013).

II. LITERATURÜBERSICHT: FELINE PANLEUKOPENIE

1. Ätiologie

1.1. Taxonomie

Die Familie der Paroviridae umfasst die zwei Subfamilien, Parvovirinae und Densovirinae. Während die Vertreter der Densovirinae Insekten infizieren, umfasst die Subfamilie der Parvovirinae Viren, die Wirbeltiere infizieren. Die Subfamilie der Parvovirinae wird in die fünf Gattungen Parvovirus, Erythrovirus, Dependovirus, Amdovirus und Bocavirus unterteilt. Mitglieder der Gattung Parvovirus replizieren autonom und sind grundsätzlich wirtsspezifisch (KING et al., 2011).

Aus dem FPV entwickelte sich das canine Parvovirus Typ 2 (CPV-2) (TRUYEN, 1999), das 1978 und in den Jahren danach in vielen Ländern gefunden wurde (APPEL et al., 1979; BLACK et al., 1979; CARMICHAEL et al., 1980; WALKER et al., 1980; CARMICHAEL & BINN, 1981; CARMICHAEL, 2005). Das CPV-2 ist seitdem mehrfach mutiert und hat seine genetischen und antigenetischen Eigenschaften verändert (PARRISH et al., 1985; PARRISH et al., 1988a; SENDA et al., 1988). Es wurde schließlich durch die neuen Varianten CPV-2a und CPV-2b verdrängt und wird seitdem in der Hundepopulation praktisch nicht mehr nachgewiesen (PARRISH et al., 1991; PARRISH, 1994; TRUYEN et al., 1996b; CLEGG et al., 2011). Im Jahr 2000 wurde eine weitere Variante, das CVP-2c, entdeckt (BUONAVOGLIA et al., 2001). Auch diese Variante breitete sich schnell in der Hundepopulation aus (MARTELLA et al., 2004; NAKAMURA et al., 2004; DECARO et al., 2005; DECARO et al., 2006b;
DECARO et al., 2006c; DECARO et al., 2007a; PEREZ et al., 2007; CALDERON et al., 2009; NANDI et al., 2010). Diese neuen CPV-Varianten 2a, 2b und 2c kommen derzeit weltweit in unterschiedlichen Häufigkeiten vor (DE YBANEZ et al., 1995; GREENWOOD et al., 1995; SAGAZIO et al., 1998; PEREIRA et al., 2000; WANG et al., 2005; DECARO et al., 2007a; DECARO et al., 2009; HOELZER & PARRISH, 2010; CLEGG et al., 2011). So wurden in den USA die Varianten CPV-2a bei etwa 20 % und CPV-2b bei etwa 80 % aller Hunde (PARRISH et al., 1991) und in Deutschland CPV-2a bei etwa 70 % und CPV-2b bei etwa 30 % aller Hunde nachgewiesen (TRUYEN et al., 1996a).

Anders als das CPV ist das FPV genetisch sehr stabil. Mutationen und antigenetische Variationen sind selten (PARRISH & CARMICHAEL, 1983; MOCHIZUKI et al., 1989; MOCHIZUKI et al., 1993; MOCHIZUKI et al., 1996; DECARO et al., 2008b).

1.2. Morphologie

1.2.1. Virusgenom
Die Viruspartikel enthalten ein einzelsträngiges, lineares Desoxyribonukleinsäure (DNA) -Genom mit einem Molekulargewicht von 1,5 bis 2,0 x 10^6 Dalton, welches zum Großteil komplementär zu der während einer Infektion produzierten Boten-Ribonukleinsäure (mRNA) vorliegt (SIEGL et al., 1985). Es gibt zwei offene Leserahmen mit jeweils eigenen Promotoren, die zum einen für die Strukturproteine (VP) und zum anderen für die Nichtstrukturproteine (NS) codieren (COTMORE & TATTERSALL, 1987; REED et al., 1988).

1.2.2. Virusproteine
Die Kapsomere werden zu etwa 5 % aus dem VP1 mit einem Molekulargewicht von 83 bis 86 Kilodalton (kDa) und zu etwa 95 % aus dem VP2 mit einem Molekulargewicht von 64 bis 66 kDa gebildet (COTMORE & TATTERSALL, 1987). Ein drittes Strukturprotein VP3 ist nur bei einigen Parvoviren ausgebildet (MODROW et al., 2010). Die Strukturproteine VP1 und VP2 bestimmen die
Wirtsspezifität des Virus, wobei nur wenige Aminosäuren für die entscheidenden genetischen und antigenetischen Eigenschaften verantwortlich sind (PARRISH, 1991; CHANG et al., 1992; TRUYEN et al., 1994; TRUYEN et al., 1995; TRUYEN et al., 1996a). Vor allem Aminosäuresubstitutionen im VP2 führen zu einer Veränderung der Kapsidstruktur und beeinflussen somit die Bindungsfähigkeit an spezifische feline und canine Transferrin-Rezeptoren (GOVINDASAMY et al., 2003). Diese spezifische Bindung führt schließlich zu Unterschieden in der Wirtsspezifität von felinen und caninen Parvoviren (HUEFFER et al., 2003; PALERMO et al., 2006). Für das feline und canine Wirtspektrum sind so jeweils drei Aminosäurepositionen verantwortlich. Bei FPV sind es die Aminosäuren 80, 564 und 568 (TRUYEN et al., 1994; TRUYEN et al., 1996a), bei CPV die Aminosäuren 93, 323 (CHANG et al., 1992; HUEFFER et al., 2003) und 300 (PARKER & PARRISH, 1997). Die CPV-Varianten 2a, 2b und 2c unterscheiden sich untereinander jeweils in nur einer Aminosäuresubstitution an der Position 426 (PARRISH et al., 1991; BUONAVOGLIA et al., 2001). Außerdem beeinflussen Unterschiede im VP2 die Fähigkeit zur Hämagglutination (PARRISH et al., 1988b).

II. Literaturübersicht: Feline Panleukopenie

Bei den tierpathogenen Parvoviren gibt es zwei Nichtstrukturproteine, das NS1 und das NS2. Die Hauptfunktionen der hier codierten Proteine liegen in der Vermehrung und Infektiosität der Viren (MODROW et al., 2010).

2. Epidemiologie

Die feline Panleukopenie kommt in allen Teilen der Welt und bei allen Mitgliedern der Familie der Felidae vor (COCKBURN, 1947; BARKER et al., 1983; SCOTT, 1987). Auch wenn Katzen allen Alters erkranken können, so ist die feline Panleukopenie vor allem eine Jungtierkrankheit (KRUSE et al., 2011).

2.1. Empfängliche Spezies

Die genetischen und antigenetischen Veränderungen von CPV-2 ermöglichten den neuen CPV-Varianten 2a, 2b und 2c auch an den feline Transferrin-Rezeptor zu binden (HUEFFER & PARRISH, 2003). Dadurch können die Viren Katzen infizieren (IKEDA et al., 2002; HUEFFER & PARRISH, 2003) und sehr effektiv in ihnen replizieren (TRUYEN et al., 1994; TRUYEN et al., 1996a). In mehreren Studien konnte gezeigt werden, dass Katzen im Feld mit den neuen CPV-Varianten infiziert werden können und vergleichbare Symptome einer feline Panleukopenie entwickeln (MOCHIZUKI et al., 1993; MOCHIZUKI et al., 1996;
II. Literaturübersicht: Feline Panleukopenie

TRUYEN et al., 1996b; IKEDA et al., 2000; BATTILANI et al., 2006; DECARO et al., 2010; BATTILANI et al., 2011; DECARO et al., 2011). Diese Beobachtungen im Feld decken sich mit experimentellen Studien zur Infektion von CPV-Varianten bei Katzen (CHALMERS et al., 1999; NAKAMURA et al., 2001b; GAMOH et al., 2003; GAMOH et al., 2005). Weiterhin konnte gezeigt werden, dass die CPV-Varianten auch über mehrere Wochen von symptomlosen Katzen ausgeschieden werden können (CLEGG et al., 2012). In Deutschland konnten in einer älteren Studie bei etwa 10 % der Katzen mit einer Parvovirusinfektion die Subtypen CPV-2a und CPV-2b nachgewiesen werden (TRUYEN et al., 1996b).

Auch Co-Infektionen mit mehreren Parvoviren kommen bei Hunden und Katzen vor. So wurden bereits bei einer Katze gleichzeitig mehrere CPV-Varianten (BATTILANI et al., 2006) sowie gleichzeitig CPV-Varianten und FPV nachgewiesen (URL et al., 2003; OSHIMA & MOCHIZUKI, 2009; BATTILANI et al., 2011). Bei Hunden können Co-Infektionen von mehreren CPV-Varianten (BATTILANI et al., 2007) und von CPV-Feld- und -Impfstämmen vorkommen (DECARO et al., 2007b; MOCHIZUKI et al., 2008).

2.2. Infektion und Übertragung

Kontakt zu anderen Katzen (KRUSE et al., 2010). Das Virus kann auch transplazentar vom Muttertier auf den Fetus übertragen werden (CSIZA et al., 1971a; GILLESPIE & SCOTT, 1973).

Auch wenn die Virusausscheidung meist nur ein bis zwei Tage dauert, können FPV und CPV-Varianten bis zu sechs Wochen nach einer Infektion im Urin und Kot von Katzen nachgewiesen werden (CSIZA et al., 1971a, 1971b; CHALMERS et al., 1999; GREENE & ADDIE, 2006; CLEGG et al., 2012). Damit stellen Katzen eine lang andauernde Infektionsquelle für andere Katzen und auch für Hunde, falls sie mit CPV-Varianten infiziert sind, dar (CLEGG et al., 2012).

Parvoviren sind aufgrund ihrer Morphologie sehr stabil gegenüber physikalischen und chemischen Einflüssen und können in kontaminierten Umgebungen über Wochen bis zu einem Jahr infektiös bleiben (MACPHerson, 1956; POOLE, 1972; UTTENTHAL et al., 1999). Eine Inaktivierung ist nur unter anderem (u. a.) mit Formalin (0,2 %) (JOHNSON, 1966), Peressigsäure, Formaldehyd, Natriumhypochlorit oder Natriumhydroxid möglich (KÖHLER et al., 2009). Aufgrund seiner hohen Kontagiosität und Stabilität kann sich das Virus schnell ausbreiten (FROMONT et al., 1996).

2.3. Prävalenz der Infektion

Zur Bestimmung der Prävalenz dient der direkte Erregernachweis mittels PCR aus Gewebe oder Kot, oder mittels Antigennachweis aus Kot. Da sich die Untersuchungen jedoch meist auf symptomatische Tiere beschränken und die Tiere auch inapparent infiziert sein können, ist die tatsächliche Prävalenz von FPV und CPV-Varianten nur schwer abzuschätzen. In einer Studie aus England, in der 274 Einsendungen (ganze Tiere und Gewebeproben), die größtenteils aus Katzenzuchten und Tierheimen stammten, histopathologisch untersucht wurden,
war die feline Panleukopenie mit 25 % die häufigste Todesursache bei Welpen (CAVE et al., 2002). Die meisten klinischen Tests zum Erregernachweis aus Ausscheidungen unterscheiden nicht zwischen FPV und CPV-Varianten (NEUERER et al., 2008). Zudem kann Impfvirus noch bis zu drei Wochen nach einer Impfung mittels PCR oder enzyme-linked immuno sorbent assay (ELISA) im Kot nachgewiesen werden und zu positiven Ergebnissen führen (PATTERSON et al., 2007; NEUERER et al., 2008). Dabei zeigen verschiedene Testsysteme zum Antigennachweis deutliche Sensitivitäts-Unterschiede (PATTERSON et al., 2007).

Neben der Enge des Zusammenlebens ist das Alter der Katzen ein weiterer wichtiger Risikofaktor. Auch wenn ältere Tiere erkranken können, so sind Jungtiere doch signifikant häufiger von der felinen Panleukopenie betroffen (KRUSE et al., 2010, 2011). Als mögliche Erklärungen werden insbesondere eine unzureichende Impfung, fehlende natürliche Exposition oder fehlende Boosterung durch inapparente Infektionen erwogen (KRUSE et al., 2010).

Beim Hund wird eine Rasseprädisposition für die canine Parvovirose beschrieben. So weist eine Studie darauf hin, dass die Rassen Dobermann und Rottweiler häufiger erkranken als andere Rassen (GLICKMAN et al., 1985). Dagegen wurde die Rasse als Risikofaktor für die feline Panleukopenie in entsprechenden Studien zu Prävalenz und Verlauf bislang nicht festgestellt (CAVE et al., 2002; KRUSE et al., 2010, 2011; DIGANGI et al., 2012a).

3. **Immunantwort**

3.1. **Angeborene Immunität**

II. Literaturübersicht: Feline Panleukopenie

3.2. Erworbene Immunität

3.2.1. Bildung von Antikörpern nach Impfung oder Infektion

sogar gezeigt werden, dass Wiederholungsimpfungen gegen CPV bei bereits nachweisbarem Antikörpertiter keinen signifikanten weiteren Anstieg der Antikörper bewirkten (HOGENESCH et al., 2004) und dass Hunde, die mindestens eine Wiederholungsimpfung während ihres Lebens bekommen hatten, keine größere Wahrscheinlichkeit hatten, Antikörper gegen CPV zu haben als Hunde, die lediglich grundimmunisiert wurden (TENNANT et al., 1991; BOEHM et al., 2004).

3.2.2. Maternale Antikörper

II. Literaturübersicht: Feline Panleukopenie

(JAKEL et al., 2012), als auch bei Hunden (FRIEDRICH & TRUYEN, 2000). Bereits 24 Stunden nach der Geburt kommt es zu einem graduellen Abfall der MDA mit einer Halbwertszeit von etwa 8,8 (JAKEL et al., 2012) bis 9,5 Tagen (SCOTT et al., 1970c).

MDA führen also zu einer selektiven Hemmung der Bildung von Antikörpern durch das Neugeborene (TIZARD, 2012f). Dabei werden verschiedene Mechanismen der Interferenz diskutiert; am wahrscheinlichsten ist, dass die MDA die Epitope der Antigene (und damit auch der Impfstoffe) maskieren und damit die Erkennung durch B-Zellen verhindern (TIZARD, 2012c).

3.2.3. Untersuchung auf Antikörper

Der sogenannte Cut-off legt fest, welcher Antikörpertiter als positiv gilt und damit als schützend vor einer Infektion angesehen wird. Der Cut-off kann in Form von Infektionsexperimenten ermittelt werden. In verschiedenen Studien werden Antikörpertiter von \(\geq 1:40 \) im HAH als schützend vor einer Infektion
angenommen, sowohl für MDA, als auch für aktiv gebildete Antikörper (MOUZIN et al., 2004; PATTERSON et al., 2007; REESE et al., 2008; DIGANGI et al., 2011). Derzeit wird jedoch davon ausgegangen, dass bei geimpften Katzen jeglicher Nachweis, also auch niedrige Antikörpertiter von unter 1:40 im HAH mit dem Schutz vor einer Infektion assoziiert sind (LAPPIN, 2012; DAY, 2013); dies wurde auch in Infektionsexperimenten gezeigt (LAPPIN et al., 2002).

3.2.3.1. Hämagglutinationshemmtest

3.2.3.2. Serumneutralisationstest

3.2.3.3. **Enzyme-Linked Immunosorbent Assay**
Der ELISA nutzt für den Nachweis von Antikörpern deren spezifische Bindung an FPV in Kombination mit einer enzymatischen Farbreaktion zur Sichtbarmachung der Bindung. Für den Test kann auch das in *E.\text{scherichia coli}* exprimierte VP2 des FPV verwendet werden (LAPPIN et al., 2002). In einer Studie zum Nachweis von Antikörpern gegen FPV zeigte der ELISA im Vergleich mit dem HAH eine Übereinstimmung der Ergebnisse von 75 % und zeichnete sich durch eine hohe Sensitivität, jedoch auch durch eine hohe Anzahl falsch-positiver Ergebnisse aus (LAPPIN et al., 2002).

3.2.3.4. **Indirekter Immunofluoreszenztest**

3.2.3.5. **Schnelltests**

Für den Hund befindet sich ein vergleichbarer Schnelltest, der ImmunoComb® Canine VacciCheck (Biogal Laboratories, Kibbutz Galed, Israel), zum Nachweis von Antikörpern gegen CPV-Varianten auf dem Markt (WANER et al., 2006). Der Test beruht auf dem gleichen Messprinzip wie der ImmunoComb® Feline VacciCheck. Dieser Test wurde auch für den Einsatz bei Katzen evaluiert, zeigte im Vergleich zum ImmunoComb® Feline VacciCheck jedoch eine deutlich niedrigere Sensitivität (28 %), Antikörpertiter unter 1:640 wurden nie als positiv erkannt (DIGANGI et al., 2011). Für den Hund sind zwei weitere Schnelltests erhältlich. Der TiterCHEK CDV/CPV (Synbiotics Corp., San Diego, CA), der ebenfalls auf einem ELISA Prinzip basiert, und der FASTest® CPV Ab (Megacor Diagnostik GmbH, Hörbranz, Österreich), der auf einem immunkromatographischen „Sandwich“ Prinzip basiert. Der zuletzt genannte Schnelltest wurde ebenfalls bei Katzen getestet, lieferte jedoch keine auswertbaren Ergebnisse (WILHELM et al., 2005).

3.2.4. Antikörperprävalenz

<table>
<thead>
<tr>
<th>Studie/ Autoren</th>
<th>Ort</th>
<th>Population</th>
<th>Impfstatus</th>
<th>Antikörper-prävalenz in %</th>
<th>Anzahl der getesteten Katzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SCOTT, 1968)</td>
<td>New York, USA</td>
<td>unselektiert</td>
<td>ungeimpft</td>
<td>75</td>
<td>k. A.</td>
</tr>
<tr>
<td>(BLANCO et al., 2009)</td>
<td>Costa Rica</td>
<td>selektiert (Hauskatzen)</td>
<td>z. T. geimpft</td>
<td>93</td>
<td>97</td>
</tr>
<tr>
<td>(LEVY et al., 2008)</td>
<td>Isabela Island,</td>
<td>unselektiert</td>
<td>ungeimpft</td>
<td>67</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Galapagos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LAPPIN et al., 2002)</td>
<td>Colorado, USA</td>
<td>selektiert (Proben zur Laboruntersuchung auf Dirofilaria immitis)</td>
<td>unbekannt</td>
<td>69</td>
<td>276</td>
</tr>
<tr>
<td>(HELLARD et al., 2011)</td>
<td>Frankreich</td>
<td>unselektiert (15 Populationen)</td>
<td>ungeimpft</td>
<td>25</td>
<td>469</td>
</tr>
<tr>
<td>(DIGANGI et al., 2012a)</td>
<td>Florida, USA</td>
<td>selektiert (Tierheim)</td>
<td>unbekannt</td>
<td>40</td>
<td>347</td>
</tr>
</tbody>
</table>

4. Prävention

Grundsätzlich gibt es zwei Möglichkeiten, Katzen gegenüber einer Infektion mit FPV zu immunisieren: (1) die langanhaltende aktive Immunisierung und (2) die schnell aber nur kurzzeitig wirksame passive Immunisierung (TRUYEN et al., 2009).

4.1. Aktive Immunisierung

Vergleich zu ungeimpften Katzen signifikant niedriger ist (JAS et al., 2009), wodurch der Infektionsdruck innerhalb einer Population zusätzlich gesenkt wird. In der Studie von JAS und Mitarbeitern (2009), reduzierte eine Impfung sieben Tage vor einer experimentellen Infektion mit FPV die Ausscheidungs-Titer um mehrere \(\log_{10} \)-Stufen.

Für die Entwicklung einer belastbaren Immunität gegenüber FPV ist eine erfolgreiche Grundimmunisierung essentiell (BOEHM et al., 2004). Welpen, welche keine messbaren MDA haben, können bereits auf die erste Impfung mit einem Anstieg der Antikörper reagieren (DAWSON et al., 2001) und zeigen Antikörperanstiegsraten, welche mit denen ausgewachsener Tiere vergleichbar sind (PATTERSON et al., 2007; LAPPIN et al., 2009). In einer aktuellen Studie konnte gezeigt werden, dass die Reaktionsmuster bezüglich des Zeitpunkts des Anstiegs und der Höhe der Antikörpertiter nach einer Impfung zwischen Wurfgeschwistern sehr ähnlich (Abweichungen um maximal eine Titerstufe) sind (JAKEL et al., 2012). Die empfohlene Frequenz der auf die Grundimmunisierung folgenden Wiederholungsimpfungen ist hauptsächlich von der nachgewiesenen Dauer der Immunität nach der Impfung abhängig. Entsprechende Impfempfehlungen werden für die Katze regelmäßig von verschiedenen Expertengruppen aktualisiert und veröffentlicht (siehe II.4.1.2) (RICHARDS et al., 2006; 2009; TRUYEN et al., 2009; DAY et al., 2010).

Grundsätzlich ist bei jeder aktiven Impfung mit dem Auftreten von leichten Nebenwirkungen wie z. B. einer lokalen Entzündungsreaktion (Schwellung, Schmerz) zu rechnen. Schwerwiegende Komplikationen, wie z. B. ein allergischer Schock oder das Auftreten von felinen impfassozierten Sarkomen (FISS), sind selten (HORZINEK & THIRY, 2009; MODROW et al., 2010). Obwohl auch andere injizierbare Medikamente oder die Implantation eines Mikrochips als potentiell onkogen gelten, so stellen Impfungen derzeit doch die häufigste Ursache für die Bildung von FISS dar (KASS et al., 2003; SRIVASTAV et al., 2012).

4.1.1. Verfügbarer Impfstoffe

Tabelle 2: In Deutschland zugelassene Impfstoffe gegen feline Panleukopenie
(FCV: felines Calicivirus, FHV-1: felines Herpesvirus-1, C. felis: Chlamydophila felis, FeLV: felines Leukämievirus)

<table>
<thead>
<tr>
<th>Einzelimpfstoffe</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impfstoffname</td>
<td>Art des Impfstoffs</td>
<td>Hersteller</td>
</tr>
<tr>
<td>Eurifel P</td>
<td>lebend</td>
<td>Merial SAS, Frankreich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kombinationsimpfstoffe</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impfstoffname</td>
<td>Art des Impfstoffs</td>
<td>weitere Bestandteile</td>
</tr>
<tr>
<td>Eurifel RCPT</td>
<td>lebend</td>
<td>FCV, FHV-1, Tollwutvirus</td>
</tr>
<tr>
<td>Felocell CVR</td>
<td>lebend</td>
<td>FCV, FHV-1</td>
</tr>
<tr>
<td>Fevaxyn i-CHP</td>
<td>inaktiviert</td>
<td>FCV, FHV-1</td>
</tr>
<tr>
<td>Fevaxyn i-CHP Chlam</td>
<td>inaktiviert</td>
<td>FCV, FHV-1, C. felis</td>
</tr>
<tr>
<td>Fevaxyn Pentofel</td>
<td>inaktiviert</td>
<td>FCV, FHV-1, C. felis, FeLV</td>
</tr>
<tr>
<td>Nobivac RCP</td>
<td>lebend</td>
<td>FCV, FHV-1</td>
</tr>
<tr>
<td>Nobivac RCP-Chlam</td>
<td>lebend</td>
<td>FCV, FHV-1, C. felis</td>
</tr>
<tr>
<td>Purevax RCP</td>
<td>lebend</td>
<td>FCV, FHV-1</td>
</tr>
<tr>
<td>Purevax RCPCh</td>
<td>lebend</td>
<td>FCV, FHV-1, C. felis</td>
</tr>
<tr>
<td>Purevax RCP FeLV</td>
<td>lebend</td>
<td>FCV, FHV-1, FeLV (Rekombinante)</td>
</tr>
<tr>
<td>Versifel CVR</td>
<td>lebend</td>
<td>FCV, FHV-1</td>
</tr>
<tr>
<td>Versifel CVR-T</td>
<td>lebend</td>
<td>FCV, FHV-1, Tollwutvirus</td>
</tr>
<tr>
<td>Virbagen felis RCP</td>
<td>lebend</td>
<td>FCV, FHV-1</td>
</tr>
<tr>
<td>Virbagen felis RCP/T</td>
<td>lebend</td>
<td>FCV, FHV-1, Tollwutvirus</td>
</tr>
</tbody>
</table>

4.1.1.1. Modifizierte Lebendvakzinen
MLV werden über die kontinuierliche Vermehrung und Passagierung in Zellkulturen hergestellt. Die produzierten Virusvarianten verlieren ihre Virulenz, behalten jedoch die Fähigkeit zur Vermehrung bei. Sie verursachen eine abgeschwächte Infektion, die durch das gesunde Immunsystem leicht kontrolliert werden kann (MODROW et al., 2010). Das Impfvirus induziert die Bildung von überwiegend gegen virale Oberflächenmoleküle gerichteten, neutralisierenden Antikörpern und zytotoxischen T-Zellen und damit einen langanhaltenden Schutz über die Stimulation von humoraler und zellulärer Immunität (MODROW et al., 2010; TIZARD, 2012d).

Wohingegen in Deutschland alle zugelassenen Impfstoffe gegen FPV parenteral appliziert werden, ist in den USA, neben ebenfalls parenteral zu applizierenden Impfstoffen, eine intranasal zu applizierende MLV, die Feline UltraNasal FVRCP (Heska Corporation, Loveland, Colorado, USA) zugelassen (LAPPIN et al., 2006). Die Bildung von Antikörpern nach der Verwendung einer intranasalen MLV ist mit der einer parenteralen MLV vergleichbar. Dies konnte sowohl an
II. Literaturübersicht: Feline Panleukopenie

ausgewachsene Katzen (LAPPIN et al., 2009), als auch an spezifisch-pathogen-freien (SPF) -Welpen gezeigt werden (PATTERSON et al., 2007; LAPPIN, 2012).

4.1.1.2. **Inaktivierte Impfstoffe**

Zu den Vorteilen eines inaktivierten Impfstoffs gehören die Stabilität bei der Lagerung, die Sicherheit, dass es nicht zu einer Wiedererlangung virulenter Eigenschaften kommen kann und der sichere Einsatz bei immunsupprimierten Tieren, tragenden Katzen und Welpen, die jünger als vier Wochen sind (GREENE & ADDIE, 2006; TIZARD, 2012d).

Viele inaktivierte Impfstoffe enthalten zur Steigerung der Immunantwort Adjuvanten (wie z. B. Aluminiumsalze), welche im Verdacht stehen, mit der Bildung von FISS assoziiert zu sein (HENDRICK et al., 1992; SCHULTZE et al., 1997; McENTEE & PAGE, 2001; MORRISON & STARR, 2001). Eine aktuelle Studie konnte zeigen, dass FISS häufiger nach der Verwendung inaktivierter Impfstoffe auftraten (SRIVASTAV et al., 2012). Adjuvanten können zu
II. Literaturübersicht: Feline Panleukopenie

schwerwiegenden lokalen Entzündungen und, bei mehrfacher Wiederholung, zu Hypersensitivitätsreaktionen führen (DAY et al., 2007b; TIZARD, 2012d).

4.1.2. Leitlinien zur Impfung

Zur Zeit geben drei internationale Expertengruppen Leitlinien zur Impfung von Kleintieren heraus: (1) das American Association of Feline Practitioners (AAFP) Feline Vaccine Advisory Panel (ELSTON et al., 1998; RICHARDS & RODAN, 2001; RICHARDS et al., 2006), (2) die World Small Animal Veterinary Association Vaccine Guidelines Group (WSAVA VGG) (DAY et al., 2007a, 2010) und (3) das European Advisory Board on Cat Diseases (ABCD) (TRUYEN et al., 2009; EUROPEAN ADVISORY BOARD ON CAT DISEASES, 2012). In Deutschland gibt zudem die Ständige Impfkommission Veterinär (StIKo Vet.) im Bundesverband Praktizierender Tierärzte e. V. (BPT) regelmäßig eine Leitlinie zur Impfung von Kleintieren heraus (STÄNDIGE IMPFKOMMISSION VET., 2013) (Tabelle 3).

<table>
<thead>
<tr>
<th>Publikation/Autoren</th>
<th>Region</th>
<th>Einstufung der Impfung</th>
<th>Erstimpfung von Welpen</th>
<th>Erstimpfung von Katzen älter als 16 Wochen</th>
<th>Impfung von ausgewachsenen Katzen mit unbekanntem Impfstatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RICHARDS et al., 2006)</td>
<td>USA</td>
<td>Core</td>
<td>Beginn im Alter von sechs Wochen; Wiederholungs-impfungen alle drei bis vier Wochen bis zu einem Alter von 16 Wochen; bei Gefahr eines Ausbruchs Beginn im Alter von vier Wochen mit MLV</td>
<td>ab einem Alter von 16 Wochen zweimalige Impfung im Abstand von drei bis vier Wochen</td>
<td>k. A.</td>
</tr>
<tr>
<td>(TRUYEN et al., 2009; EUROPEAN ADVISORY BOARD ON CAT DISEASES, 2012)</td>
<td>Europa</td>
<td>Core</td>
<td>Beginn im Alter von acht bis neun Wochen; Wiederholungs-impfungen alle drei bis vier Wochen bis zu einem Alter von zwölf Wochen, bei hohen MDA und/oder erhöhtem Infektionsrisiko bis zu einem Alter von 16 Wochen; bei Gefahr eines Ausbruchs Beginn im Alter von vier Wochen mit MLV</td>
<td>ab einem Alter von 16 Wochen zweimalige Impfung im Abstand von drei bis vier Wochen</td>
<td>einmalige Impfung mit MLV</td>
</tr>
<tr>
<td>(DAY et al., 2010)</td>
<td>International</td>
<td>Core</td>
<td>Beginn im Alter von acht bis neun Wochen; Wiederholungs-impfungen alle drei bis vier Wochen bis zu einem Alter von zwölf Wochen, bei hohen MDA und/oder erhöhtem Infektionsrisiko bis zu einem Alter von 16 Wochen; bei Gefahr eines Ausbruchs Beginn im Alter von vier Wochen mit MLV</td>
<td>ab einem Alter von 16 Wochen einmalige Impfung mit MLV oder zweimalige Impfung mit inaktivierten Impfstoffen im Abstand von drei bis vier Wochen</td>
<td>einmalige Impfung mit MLV</td>
</tr>
<tr>
<td>(STÄNDIGE IMPFKOMMISSION VET., 2013)</td>
<td>Deutschland</td>
<td>Core</td>
<td>Beginn im Alter von acht bis neun Wochen; Wiederholungs-impfungen alle drei bis vier Wochen bis zu einem Alter von zwölf Wochen, bei hohen MDA und/oder erhöhtem Infektionsrisiko bis zu einem Alter von 16 Wochen; bei Gefahr eines Ausbruchs Beginn im Alter von vier Wochen mit MLV</td>
<td>ab einem Alter von 16 Wochen einmalige Impfung mit MLV oder zweimalige Impfung mit inaktivierten Impfstoffen im Abstand von drei bis vier Wochen</td>
<td>einmalige Impfung mit MLV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AAFP</th>
<th>ABCD</th>
<th>WSAVA</th>
<th>StIKo Vet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welpen in Tierheimen</td>
<td>Welpen in Tierheimen ab einem Alter von sechs Wochen mit MLV; im Falle eines Ausbruchs ab einem Alter von vier Wochen; bei erhöhtem Risiko alle zwei Wochen bis zu einem Alter von 16 Wochen</td>
<td>Welpen in Tierheimen ab einem Alter von sechs Wochen mit MLV; im Falle eines Ausbruchs ab einem Alter von vier Wochen</td>
<td>Welpen in Tierheimen vor oder zum Zeitpunkt der Aufnahme im Alter von vier bis sechs Wochen mit MLV; Wiederholungsimpfungen alle zwei bis vier Wochen bis zu einem Alter von 16 Wochen</td>
<td></td>
</tr>
<tr>
<td>Auffrischungsimpfungen</td>
<td>zwölf Monate nach den ersten Impfungen; anschließend nicht häufiger als alle drei Jahre</td>
<td>zwölf Monate nach den ersten Impfungen; anschließend nicht häufiger als alle drei Jahre</td>
<td>zwölf Monate nach den ersten Impfungen; anschließend nicht häufiger als alle drei Jahre</td>
<td>im Alter von 15 Monaten; anschließend im Abstand von drei Jahren</td>
</tr>
<tr>
<td>alle Katzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tragende Tiere und Welpen</td>
<td>MLV nicht bei tragenden Tieren oder Welpen unter vier Wochen; tragende Kätzinnen können im Ausnahmefall mit inaktivierte Impfstoßen geimpft werden</td>
<td>MLV nicht bei tragenden Tieren oder Welpen unter vier Wochen; tragende Kätzinnen können im Ausnahmefall mit inaktivierte Impfstoßen geimpft werden</td>
<td>MLV nicht bei tragenden Tieren oder Welpen unter vier Wochen; tragende Kätzinnen können im Ausnahmefall mit inaktivierte Impfstoßen geimpft werden</td>
<td>k. A.</td>
</tr>
<tr>
<td>Laktierende Kätzinnen</td>
<td>laktierende Kätzinnen nicht impfen</td>
<td>k. A.</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>FIV-/FeLV-infizierte</td>
<td>FIV-/FeLV-infizierte Katzen nur mit inaktivierte Impfstoßen impfen</td>
<td>FIV-/FeLV-infizierte Katzen nur mit inaktivierte Impfstoßen impfen; FeLV-infizierte Katzen eventuell häufiger impfen</td>
<td>FIV-/FeLV-infizierte Katzen nur mit inaktivierte Impfstoßen impfen</td>
<td>k. A.</td>
</tr>
<tr>
<td>Koidtherapie</td>
<td>zum Zeitpunkt der Impfung keine Glukokortikoide verabreichen</td>
<td>zum Zeitpunkt der Impfung keine Glukokortikoide verabreichen</td>
<td>zum Zeitpunkt der Impfung keine Glukokortikoide verabreichen</td>
<td>k. A.</td>
</tr>
</tbody>
</table>

WSAVA, ABCD und StIKo Vet. empfehlen mit der Impfung in einem Alter von acht bis neun Wochen zu beginnen, die AAFP empfiehlt dies grundsätzlich bereits in einem Alter von sechs Wochen. Im Rahmen der Grundimmunisierung sollten nach allen Leitlinien die Wiederholungsimpfungen in einem zeitlichen Abstand von drei bis vier Wochen bis zu einem Alter von 16 Wochen wiederholt werden (RICHARDS et al., 2006; TRUYEN et al., 2009; DAY et al., 2010; STÄNDIGE IMPFKOMMISSION VET., 2013). ABCD rät dabei zunächst mindestens bis zu einem Alter von zwölf Wochen, bei hohen MDA-Titern und/oder erhöhtem Infektionsrisiko bis zu einem Alter von 16 Wochen zu impfen (TRUYEN et al., 2009). Darüber hinaus empfehlen AAFP und ABCD, bei der Gefahr eines Ausbruchs, Welpen bereits ab einem Alter von vier Wochen mit einer MLV in einem drei- bis vier-wöchigen Abstand bis zu einem Alter von 16 Wochen zu impfen. Des Weiteren empfehlen sie, Katzen in Tierheimen ab der sechsten Lebenswoche mit MLV zu impfen und im Falle eines Ausbruchs diese ebenfalls schon ab der vierten Lebenswoche zu impfen (RICHARDS et al., 2006; TRUYEN et al., 2009). AAFP, WSVÁ und StIKo Vet. empfehlen, Welpen in Tierheimen bei erhöhtem Risiko sogar alle zwei Wochen zu impfen (RICHARDS et al., 2006; DAY et al., 2010; STÄNDIGE IMPFKOMMISSION VET., 2013).

Alle Expertengruppen empfehlen zwölf Monate nach den Welpenimpfungen (Grundimmunisierung) eine Auffrischungsimpfung. Anschließende Auffrischungsimpfungen sollten nicht häufiger als alle drei Jahre durchgeführt
werden (RICHARDS et al., 2006; TRUYEN et al., 2009; DAY et al., 2010; STÄNDIGE IMPFKOMMISSION VET., 2013).

AAFP und die WSAVA empfehlen für Katzen, die bei der Vorstellung zur Grundimmunisierung 16 Wochen oder älter sind, zweimal im Abstand von drei bis vier Wochen und einmal nach zwölf Monaten zu impfen (RICHARDS et al., 2006; DAY et al., 2010). Für ausgewachsene Katzen mit unbekannten Impfstatus raten WSAVA, ABCD nur noch zu einer Dosis mit einer MLV, gefolgt von einer Wiederholungsimpfung nach zwölf Monaten (TRUYEN et al., 2009; DAY et al., 2010). Die StIKo Vet. empfiehlt grundsätzlich alle Tiere, die ab einem Alter von 16 Wochen vorgestellt werden, einmal mit einer MLV oder zweimal in einem Abstand von drei bis vier Wochen mit einem inaktivierten Impfstoff und anschließend nach zwölf Monaten erneut zu impfen (STÄNDIGE IMPFKOMMISSION VET., 2013).

Außerdem empfehlen AAFP, ABCD und WSAVA, MLV nicht bei tragenden Tieren und Welpen unter vier Wochen einzusetzen, da dies zu Missbildungen des Kleinhirns während der Entwicklung führen kann. Im Ausnahmefall könnten bei tragenden Tieren inaktivierte Impfstoffe eingesetzt werden. Katzen, welche mit felinem Immunschwächevirus (FIV) oder felinem Leukämievirus (FeLV) infiziert sind, sollten nur mit inaktivierten Impfstoffen geimpft werden. Außerdem empfehlen sie, zum Zeitpunkt der Impfung auf den Einsatz von Glukokortikoiden zu verzichten (RICHARDS et al., 2006; TRUYEN et al., 2009; DAY et al., 2010). ABCD empfiehlt zudem, FeLV-infizierte Katzen gegebenenfalls häufiger zu impfen, da die Immunantwort auf die Impfung möglicherweise nur eingeschränkt sei (TRUYEN et al., 2009). AAFP empfiehlt, laktierende Tiere aufgrund der zu erwartenden Beeinträchtigung des Immunsystems (Stress durch Impfung) und einer möglichen Beeinträchtigung der Milchbildung nicht zu impfen (RICHARDS et al., 2006).

4.1.3. Bestimmung des optimalen Impfzeitpunktes

Der optimale Impfzeitpunkt für die erste Impfung gegen FPV ist der frühestmögliche Zeitpunkt, an dem die MDA sowohl abgesunken sind, dass es nicht mehr zur Interferenz mit einer Impfung kommt. Für eine Berechnung dieses Zeitpunkts wurden bislang verschiedene Empfehlungen ausgesprochen. Eine aktuelle Studie empfiehlt den individuellen Antikörpertiter des Welpen zu Grunde
zu legen (JAKEL et al., 2012) und gibt dazu eine Formel an, um den optimalen
Impfzeitpunkt zu berechnen (Abbildung 1).

\[a = \text{age} + 8,8 \frac{\ln(titer) - \ln(b)}{\ln(2)} \]

Abbildung 1: Berechnung des optimalen Impfzeitpunkts nach JAKEL und
Mitarbeitern (2012) \((a = \text{Alter bei Erreichen des Zielantikörpertiters in Tagen;} \)
\(\text{age} = \text{Alter des Welpen in Tagen zum Zeitpunkt der Blutentnahme;} \)
\(\text{titer} = \text{Antikörpertiter am Tag der Blutentnahme;} \)
\(b = \text{Zielantikörpertiter} \)

Nach JAKEL und Mitarbeitern (2012) können die bei einem Einzeltier ermittelten
Ergebnisse aufgrund ähnlicher Reaktionsmustern zwischen den Wurfgeschwistern
innerhalb eines Wurfes generalisiert werden.

SCOTT und Mitarbeiter (1970c) erstellten eine Gleichung zur Berechnung des
Abfalls der MDA basierend auf dem Antikörpertiter der Mutter (Abbildung 2).

\[a = 4,5 \cdot (b - c) \]

Abbildung 2: Gleichung zur Berechnung des Abfalls der maternalen
Antikörper bei Katzenwelpen nach SCOTT und Mitarbeitern (1970c)
\((a = \text{Alter des Welpen in Wochen bei Erreichen des Zielantikörpertiters;} \)
\(b = -\log-\text{-Wert des Zielantikörpertiters;} \)
\(c = -\log-\text{-Wert des Antikörpertiters der Mutter} \)

Welpen vor der Impfung zu testen. Dabei sei aufgrund der Gleichmäßigkeit der
Antikörpertiter zwischen Wurfgeschwistern die Bestimmung eines beliebigen
Welpen (bezeichnet auch als „fraternaler Antikörpertiter“) vorteilhafter als der
Antikörpertiter des Muttertieres (FRIEDRICH & TRUYEN, 2000).
4.1.4. Impfversager und Impfdurchbrüche

Trotz der Impfung gegen FPV gemäß den aktuellen nationalen und internationalen Leitlinien bildet ein Teil der Welpen nach der Grundimmunisierung nachweislich keine Antikörper (JAKEL et al., 2012). Auch werden regelmäßig schwere Fälle von feliner Panleukopenie bei vorberichtlich geimpften Katzen beobachtet (ADDIE et al., 1998; HORLACHER et al., 2002; KRUSE et al., 2010).

In der Zeit zwischen 2008 und 2011 gingen beim PEI insgesamt 250 Meldungen über unerwünschte Reaktionen nach Impfungen ein (HOFFMANN et al., 2010; HOFFMANN et al., 2011; HOFFMANN et al., 2012). Davon wurde in insgesamt 26 Fällen der Verdacht auf eine mangelhafte Wirksamkeit der Impfung gegen feliner Panleukopenie geäußert. Im Jahr 2008 fiel insbesondere eine Häufung der Fälle bei Norwegischen Waldkatzen auf (HOFFMANN et al., 2010). Der anfängliche Verdacht einer Rasseprädisposition für das Versagen der Impfung konnte in einer groß angelegten Studie jedoch nicht bestätigt werden (JAKEL et al., 2012).

Für das Versagen einer Impfung kann es jedoch auch verschiedene andere Gründe geben. Neben der falschen Lagerung kann auch die Wahl der falschen Applikationsroute zu einer mangelhaften Immunantwort führen. Außerdem kommen genetische Faktoren, Umweltfaktoren, Immunsuppression aufgrund von schwerer Infestation durch Endo- oder Ektoparasiten, Mangelnährung, Virusinfektionen (FeLV/FIV), die Verabreichung immunsupprimierender Medikamente sowie eine gleichzeitige schwere Erkrankungen oder Stress (Trächtigkeit, Laktation, Erschöpfung, extreme Hitze/Kälte) als Ursachen in Betracht (RICHARDS et al., 2006; TRUYEN et al., 2009; TIZARD, 2012e). Glukokortikoide können über die Hemmung des Transkriptionsfaktors nuclear factor-kappa B (NF-kB) eine Vielzahl an zellulären Signalwegen der zellulären und humoralen Immunantwort beeinflussen (TIZARD, 2012g). Entsprechende

4.2. Passive Immunisierung

Homologe anti-FPV-Seren wurden bereits früh in der Prophylaxe und zur Therapie in der frühen Erkrankungsphase einer felenen Panleukopenie eingesetzt (HOLZWORTH, 1966; JOHNSON, 1969). Diese Seren (Immunseren und Hyperimmunseren) können selbst hergestellt und verabreicht werden. Immunseren werden von gesunden Tieren gewonnen, die die entsprechende Krankheit in der Vergangenheit überwunden haben; Hyperimmunseren werden von Tieren gewonnen, die zuvor mehrfach gegen die entsprechende Krankheit geimpft wurden (TRUYEN et al., 2009). Der Antikörpertiter und damit auch die Dauer des zu erwartenden Schutzes sind bei diesen selbst hergestellten Produkten nicht bekannt. Im Allgemeinen ist jedoch von einem Schutz von etwa zwei bis vier Wochen auszugehen (GREENE & ADDIE, 2006; TRUYEN et al., 2009). Idealerweise sollten die Blutgruppen von Spender und Empfänger übereinstimmen. Die empfohlene Dosis beträgt 2 bis 4 Milliliter (ml) Serum/kg Körpergewicht und kann subkutan (s. c.) oder intraperitoneal (i. p.) verabreicht werden (GREENE & ADDIE, 2006; TRUYEN et al., 2009).

In einigen europäischen Ländern sind kommerzielle, heterolog im Pferd hergestellte Hyperimmunglobulin-Produkte für Katzen auf dem Markt. Sie enthalten Antikörper gegen FPV, felines Herpesvirus-1 (FHV-1) und felines Calicivirus (FCV) und sind für die Prophylaxe (Dosierung meist eine Ampulle/Tier s. c., einmalig) und die Therapie (Dosierung eine Ampulle/Tier
III. STUDIE 1

Prevalence of antibodies against feline panleukopenia virus
in client-owned cats in Southern Germany

Katherina Mende

Bianca Stuetzer, Dr. med. vet.

Carola Sauter-Louis, Dr. med. vet.

Timo Homeier, Dr. med. vet.

Uwe Truyen, Prof. Dr. med. vet. habil.

Katrin Hartmann, Prof. Dr. med. vet., Dr. med. vet. habil., Dipl. ECVIM-CA

1 Clinic of Small Animal Medicine, Ludwig-Maximilians-Universitaet of Munich, Germany

2 Clinic of Ruminants and Herd Management, Ludwig-Maximilians-Universitaet of Munich, Germany

3 Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Germany

The Veterinary Journal, veröffentlicht

Prevalence of antibodies against feline panleukopenia virus in client-owned cats in Southern Germany

Katrinse Mende a,⁎, Bianca Stueters c, Carola Sauter-Louis b, Timo Honeier e, Uwe Truyen a, Knat Hartmann a

a Clinic of Small Animal Medicine, Ludwig-Maximilians-Universität von München, Veterinarstrasse 13, 80538 Munich, Germany
b Clinic of Ruminants and Herd Management, Ludwig-Maximilians-Universität von München, Sonnenstrasse 16, 80754 Oberschleißheim, Germany
c Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An der Theresienhöhe 1, 04103 Leipzig, Germany

ARTICLE IN PRESS

The Veterinary Journal xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

The Veterinary Journal

journal homepage: www.elsevier.com/locate/tvjl

ELSEVIER

Prevalence of antibodies against feline panleukopenia virus in client-owned cats in Southern Germany

Katrinse Mende a,⁎, Bianca Stueters c, Carola Sauter-Louis b, Timo Honeier e, Uwe Truyen a, Knat Hartmann a

a Clinic of Small Animal Medicine, Ludwig-Maximilians-Universität von München, Veterinarstrasse 13, 80538 Munich, Germany
b Clinic of Ruminants and Herd Management, Ludwig-Maximilians-Universität von München, Sonnenstrasse 16, 80754 Oberschleißheim, Germany
c Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An der Theresienhöhe 1, 04103 Leipzig, Germany

ARTICLE INFO

Article history:
Accepted 31 December 2013

Available online xxxx

Keywords:
Feline panleukopenia virus
Haemagglutination inhibition
Title
Panovirovirus
Vaccination

ABSTRACT

Feline panleukopenia is a frequent and common fatal disease of cats. Recent published studies have raised suspicions that some cats fail to develop antibodies after vaccination. The purpose of this study was to assess the prevalence of antibodies against feline panleukopenia virus (FPV) in cats in Southern Germany, and to identify factors that are associated with a lack of antibodies. In total, 350 cats presented to the Clinic of Small Animal Medicine, Ludwig-Maximilians-Universität von München, were randomly included in the study. Information regarding signalment, origin, environment, lifestyle, housing conditions, health status, chronic diseases, glucocorticoid therapy, and vaccination status were collected. Antibodies were detected by haemagglutination inhibition test. Asymptomatic chi-squared tests and univariable logistic regression were used to investigate associations between a lack of antibodies and the different variables. Associations determined to be statistically significant at P < 0.1 were verified by a multivariable logistic regression analysis. Of the 350 cats, 103 (29.4%) had no antibodies against FPV. Chronic kidney disease, neoplasia, glucocorticoid therapy, and vaccination status were significantly associated with a lack of antibodies. The cats with no antibodies were twice to have inadequate immunity against panleukopenia and those with chronic diseases or receiving glucocorticoids were less likely to be protected.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Feline panleukopenia is a disease of high morbidity and high mortality for all members of the Felidae family (Barber et al., 1983; Scott, 1987; Kruse et al., 2010). Consequently, vaccination is strongly recommended for all cats and belongs to the core category according to the American Association of Feline Practitioners (AAFP) and other expert groups (Richards et al., 2006; Truyen et al., 2009; Day et al., 2010; Ständige Impfkommission Veterinär, 2013). Vaccination-induced antibodies correlate with protection against infection with feline panleukopenia virus (FPV) and measurement of antibodies can be used to evaluate the specific immune status of individual cats (Scott and Geissinger, 1999; Lappin et al., 2002). The presence of antibodies indicates previous vaccination or exposure to the virus. One study in the USA showed that 67% of 267 client-owned cats had antibodies against FPV (Lappin et al., 2002). However, the current protection of the population in Germany is unknown and feline panleukopenia is still commonly diagnosed despite widespread vaccination (Kruse et al., 2010).

Vaccination against FPV does not always seem to be effective. In 2008/2009, several outbreaks of feline panleukopenia in Norwegian forest cats (NFC) were reported in Germany (Hoffmann et al., 2010) and a subsequent field study revealed that 36.7% of kittens did not develop antibodies despite three basic vaccinations at the age of 8, 12, and 16 weeks. Maternally derived antibodies (MDA) that interfered with primary vaccination and prevented antibody development were detected until 20 weeks of age (Jaks et al., 2012). Recently, it was shown that cats entering an animal shelter in Florida were more likely to have antibodies when they were neutered or older than 6 months (DiGangi et al., 2012). However, studies of associated factors in client-owned cats with a known history (including vaccination status) are missing.

It is also currently unknown whether vaccination is effective and safe in immunocompromised cats that receive immunosuppressive drugs or suffer from chronic diseases (Hosie et al., 2009; Lutz et al., 2009; Truyen et al., 2009). In a study with dogs, different doses of glucocorticoids over a short period of time did not affect responses to immunization (Nara et al., 1979). However, cats that are infected with feline leukemia virus (FeLV) do not respond adequately to vaccination (Franchini, 1990) and a similar situation might occur in cats infected with feline immunodeficiency virus (FIV).

⁎ Corresponding author. Tel.: +49 89 2180 2651.
E-mail address: katherine.mende@googlemail.com (K. Mende).
10.1016/j.tvjl.2013.12.023

The objectives of this study were (1) to provide information about the prevalence of antibodies against FPV in the field to estimate the protection rate in cats and (2) to identify factors associated with a lack of antibodies to determine groups that are particularly at risk.

Materials and methods

Cats

The protocol of this prospective cross-sectional study was approved by the ethical committee of the Ludwig-Maximilians-Universitaet (approval number 3-5-10-2012).

In total, 350 cats that were presented from December 2011 to June 2012 to the Clinic of Small Animal Medicine and to the Clinic of Small Animal Surgery and Gynecology of the Ludwig-Maximilians-Universitaet were randomly included into the study. In each of those cat blood had been taken for various unrelated reasons. Cats were excluded if (1) serum preparations containing antibodies against FPV had been administered within 6 months of presentation, or (2) if no historical data were available (i.e., in stray cats). Information about signalment (breed, age, sex, neuter status), origin (breeder, animal shelter, foreign country, adopted stray cats, or private household), environment (urban or rural), lifestyle (currently indoors or outdoors), housing conditions (single or multi-cat household), health status (healthy, acute or chronic disease), and vaccinations (commercial vaccines) were recorded.

A complete vaccination against FPV according to current guidelines (Richards et al., 2009; Tranquini et al., 2009; Day et al., 2010; Norden-implikationsen Veterinar, 2011) was defined as a complete primary vaccination including a booster at 16 weeks of age and a further booster after 1 year, followed by regular vaccinations on a triennial basis. The health status was judged by history and physical examination on the day of presentation. Any disease that had been present for at least 4 weeks (according to the owner or known time period of diagnosis) was classified as chronic; others were defined as acute. In addition, FIV and FeLV status and current therapy with glucocorticoids were recorded.

Detection of antibodies by hemagglutination inhibition test

Serum samples as well as positive and negative serum controls for test validation were heat inactivated (56°C, 30 min), diluted with buffered saline solution (BBS) 1:5, and pre-absorbed at 15 μl of 50% suspension of swine erythrocytes in phosphate buffered saline (PBS) for 3 h at 4°C. After centrifugation at 12,000 rpm for 5 min, the supernatant was serially diluted 1:2 over 12 steps beginning at 1:10 in 96-well V-bottom plates (Greiner Bio-One). Eight hemagglutinating units of FPV-H strain 992C, as described previously (Chen et al., 1995; Vilic, Fersich and Carman, 1985) in BBS were added to each well and incubated for 1 h at room temperature. A 0.5% suspension of swine erythrocytes in phosphate buffered saline (PBS) was then added and incubated at 4°C, overnight. The following day, plates were read by two independent evaluators (KM and an experienced laboratory technician). Divergent results were re-checked by a further laboratory technician who was blinded to the results of the other two individuals. All three were blinded to the history of the cats.

The antibody titre was expressed as the reciprocal of the highest dilution of serum displaying hemagglutination inhibition (HI). As antibody titres > 1:40 are suggestive of resistance to infection with FPV, results > 1:40 were defined as positive (Scott et al., 1978; Scott and Greisinger, 1989; Lappin et al., 2002; Moula et al., 2004).

Statistical analysis

Statistical analysis was performed in PASW version 18.0. A power analysis was conducted before beginning of the study to estimate the required sample size, assuming a prevalence of 95% and a desired precision of 5%, in order to achieve a power of 0.8, a sample size of at least 323 animals was required.

Prevalence of antibodies was calculated as the proportion of positive results in FPV-H. The total number of tested sera, to quantify uncertainty, 95% confidence intervals (CI) were calculated. Analysis of association of antibodies with breed was restricted to the two most common breeds, namely, European short hair and Maine Coon. A factor ‘exposure risk’ was introduced. Cats with current access to outdoors or a history of cat fights or cat show were categorized as ‘high exposure risk’ in contrast to ‘low exposure risk’. Diseases with frequencies of >5% in the study population were analyzed and included chronic kidney disease (CKD), diabetes mellitus (DM), neoplasia, and FIV infection. A master operating characteristic (ROC) analysis was performed to determine the best cut-off for the duration of glucocorticoid therapy (Braun, 2006).

An univariable analysis was performed to investigate associations between the antibody status of the animals and the different variables. All categorical variables with two categories were analyzed using asymptotic chi-squared tests, unless an expected number in one of the cells in the contingency table was <5, in which case Fisher’s exact test was used. A probability level of 0.05 was considered statistically significant (P < 0.05). All categorical variables with more than two categories were analyzed using univariable logistic regression. Odds ratios (OR) and 95% CI were calculated to examine the strength of the associations between the categorical variables and the status of the antibody. All variables with P < 0.1 in the univariable analysis were offered to a multivariable logistic regression analysis with backwards stepwise selection using a Wald P < 0.05 as a selection criterion. The variable breed was forced into the model, despite not fulfilling the selection criterion, as it was supposed to be a risk factor in earlier reports (Mandel et al., 2010). Variables that were dependent on other variables (duration of glucocorticoid therapy and time after vaccination) were excluded from the multivariable analysis, as they would have substantially reduced the dataset. Due to missing data in the variables, the final dataset for the multivariable analysis contained complete data for 212 cats. The significance level was set at α = 0.05.

Results

Antibody prevalence

Antibodies against FPV were not detectable in 29.4% (103/350; 95% CI, 24.6–34.2%) and were detectable in 70.6% (247/350; 95% CI, 65.8–75.4%) of cats. Of all 350 cats, 47 (13.4%) had been vaccinated adequately and 238 inadequately according to the current guidelines. Thus, only 47/285 (16.5%) vaccinated cats had been vaccinated following recommendations in the study population. Sensitivity and specificity of the results were calculated (Richards et al., 2006; Truven et al., 2005; Day et al., 2010; Stândium ImunKommission Veterinar, 2013). Of those, 11/47 (23.4%) had no antibodies. However, antibodies were found in 8/288 (28.6%) that had never been vaccinated.

Associated factors

In the univariable analysis, the factors origin, exposure risk, neoplasia, glucocorticoid therapy, and vaccination status were all significantly associated with a lack of antibodies for feline panleukopenia (Table 1). The duration of glucocorticoid therapy was categorized as short (<11 weeks) and long (≥11 weeks) by ROC analysis. A duration of glucocorticoid therapy ≥11 weeks was significantly associated with a lack of antibodies (P = 0.024).

The multivariable logistic regression analysis confirmed presence of neoplasia (P = 0.010), glucocorticoid therapy (P = 0.016), and vaccination status (P < 0.001) as associated factors. In addition, CKD was significantly associated with a lack of antibodies (P = 0.037). The factors origin and exposure risk were not retained in the multivariable logistic regression analysis (Table 1).

Discussion

In this study, 29.4% of the cats in this study had no antibodies detectable, indicating that they were not protected against infection with FPV at the time of presentation and at risk of acquiring a disease that is potentially life-threatening. Former comparable studies have shown conflicting results. A comparatively high prevalence of antibodies was found in domestic cats in a metropolitan area of Costa Rica (92.8%) (Blanco et al., 2009), although only 17.8% of the cats were reported to have been previously vaccinated. Remarkably lower antibody prevalence rates (39.8%) were observed in cats entering a Florida animal shelter (D’Garngi et al., 2012) but these were mainly young, sexually intact, healthy animals, and most (67%) were strays of unknown vaccination status. A low antibody prevalence was also found in a study of 15 separated rural populations of non-vaccinated cats in France with an average antibody prevalence of 25.0% (private cats 36.6% vs. stray cats 15.9%) (Holland et al., 2011).

A study including 267 client-owned cats in the USA (Lappin et al., 2002), however, found an antibody prevalence of 67%, which is similar to the present study. Different vaccination rates between countries and study populations might in part explain these divergent results. In addition, differences in the frequency of natural
Table 1
Factors associated with lack of antibodies against FIV in univariable and multivariable analysis (hold = statistically significant).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total number</th>
<th>Category</th>
<th>Number tested</th>
<th>Number antibody-negative (%)</th>
<th>Univariable analysis</th>
<th>Multivariable analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Odds ratio (antibody-negative)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Breed</td>
<td>289</td>
<td>Maine Coon</td>
<td>13</td>
<td>6 (46.2)</td>
<td>2.10</td>
<td>0.69-6.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>European shorthair</td>
<td>276</td>
<td>80 (29.0)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Age</td>
<td>350</td>
<td>0-2 years</td>
<td>53</td>
<td>17 (32.3)</td>
<td>0.94</td>
<td>0.47-1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-7 years</td>
<td>69</td>
<td>27 (38.6)</td>
<td>0.64</td>
<td>0.40-1.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 7 years</td>
<td>99</td>
<td>24 (24.2)</td>
<td>0.64</td>
<td>0.35-1.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td>35 (33.3)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Sex</td>
<td>350</td>
<td>Male</td>
<td>200</td>
<td>58 (29.5)</td>
<td>1.01</td>
<td>0.63-1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>150</td>
<td>44 (29.3)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Housing status</td>
<td>350</td>
<td>Intact</td>
<td>42</td>
<td>13 (31.0)</td>
<td>1.09</td>
<td>0.44-2.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neutered</td>
<td>308</td>
<td>90 (28.2)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Origin</td>
<td>301</td>
<td>Breeder</td>
<td>30</td>
<td>13 (43.3)</td>
<td>1.38</td>
<td>0.71-2.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shelter</td>
<td>42</td>
<td>11 (26.2)</td>
<td>0.73</td>
<td>0.39-1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foreign</td>
<td>59</td>
<td>9 (15.3)</td>
<td>0.37</td>
<td>0.17-0.82</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td>Adopted</td>
<td>31</td>
<td>10 (32.3)</td>
<td>0.98</td>
<td>0.43-2.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stray cat</td>
<td></td>
<td></td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Private household</td>
<td></td>
<td></td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Environment</td>
<td>350</td>
<td>Urban</td>
<td>299</td>
<td>93 (31.3)</td>
<td>1.85</td>
<td>0.89-3.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rural</td>
<td>51</td>
<td>10 (19.6)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Lifestyle</td>
<td>330</td>
<td>Indoor</td>
<td>194</td>
<td>65 (33.5)</td>
<td>1.64</td>
<td>1.00-2.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outdoors</td>
<td>136</td>
<td>32 (23.6)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Housing conditions</td>
<td>328</td>
<td>Multi-cat</td>
<td>189</td>
<td>58 (30.7)</td>
<td>1.14</td>
<td>0.70-1.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-cat</td>
<td>139</td>
<td>39 (28.3)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Cattery/cat show</td>
<td>257</td>
<td>No</td>
<td>236</td>
<td>72 (30.5)</td>
<td>1.10</td>
<td>0.61-1.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>21</td>
<td>6 (28.6)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Exposure risk</td>
<td>283</td>
<td>Low</td>
<td>133</td>
<td>48 (36.1)</td>
<td>1.79</td>
<td>1.07-2.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>150</td>
<td>36 (24.0)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Health status</td>
<td>350</td>
<td>Healthy</td>
<td>33</td>
<td>12 (36.4)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anemia III</td>
<td>127</td>
<td>35 (27.6)</td>
<td>0.86</td>
<td>0.30-1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronically ill</td>
<td>190</td>
<td>56 (29.5)</td>
<td>0.73</td>
<td>0.43-1.59</td>
</tr>
<tr>
<td>Duration of disease</td>
<td>300</td>
<td>0-4 weeks</td>
<td>125</td>
<td>33 (26.4)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 weeks to 1 year</td>
<td>83</td>
<td>26 (31.3)</td>
<td>1.27</td>
<td>0.69-2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 year</td>
<td>125</td>
<td>33 (26.4)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>350</td>
<td>Yes</td>
<td>41</td>
<td>17 (41.5)</td>
<td>1.84</td>
<td>0.94-3.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>309</td>
<td>86 (27.8)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>350</td>
<td>Yes</td>
<td>20</td>
<td>6 (30.0)</td>
<td>1.03</td>
<td>0.38-2.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>330</td>
<td>97 (29.4)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Neoplasia</td>
<td>190</td>
<td>Yes</td>
<td>30</td>
<td>21 (70.0)</td>
<td>2.34</td>
<td>1.27-4.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>160</td>
<td>76 (29.0)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>PIIV</td>
<td>74</td>
<td>Negative</td>
<td>67</td>
<td>16 (24.0)</td>
<td>1.88</td>
<td>0.71-4.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positive</td>
<td>7</td>
<td>1 (14.3)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Glaucoma-related therapy</td>
<td>348</td>
<td>Yes</td>
<td>21</td>
<td>11 (52.4)</td>
<td>2.90</td>
<td>1.19-7.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>327</td>
<td>90 (27.5)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Duration of glaucoma-related therapy</td>
<td>21</td>
<td>> 11 weeks</td>
<td>14</td>
<td>10 (71.4)</td>
<td>1.50</td>
<td>1.34-1.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 11 weeks</td>
<td>7</td>
<td>1 (14.3)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Time since last vaccination</td>
<td>235</td>
<td>0-1 year</td>
<td>121</td>
<td>26 (21.5)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-3 years</td>
<td>71</td>
<td>19 (26.8)</td>
<td>1.34</td>
<td>0.66-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3 years</td>
<td>143</td>
<td>31 (21.6)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td>Vaccination status</td>
<td>313</td>
<td>Not vaccinated</td>
<td>286</td>
<td>77 (27.0)</td>
<td>Ref. value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vaccinated</td>
<td>28</td>
<td>20 (71.4)</td>
<td>6.75</td>
<td>2.86-15.97</td>
</tr>
</tbody>
</table>

NA, not applicable; Ref. value, reference value indicating the category used as the base line for comparison for each variable.
exposure based on presence of the virus in the environment can contribute to different prevalences. A high environmental contamination might explain the results for the newly reported from Costa Rica (Blanco et al., 2009). Furthermore, cats can also be infected by canine parvovirus (CPV) 2a, 2b, and 2c (Clegg et al., 2012; Decaro et al., 2016, 2011) and because of cross reactions, antibodies against CPV cannot be distinguished from antibodies against FPV (Nakamura et al., 2001). As CPV infection is common in Costa Rica (Blanco et al., 2009), the high prevalence of antibodies in cats in Costa Rica could, at least partly, be due to co-infection with CPV. Finally, different methods of antibody testing (ELISA vs. HI) with different sensitivities could account for some differences in the reported prevalence, although HI is generally accepted as the gold-standard for the detection of antibodies against FPV and has been used in most prevalence studies (Lappin et al., 2002; Di Giampietro et al., 2012).

The presence of antibodies associated with vaccination status was as expected in our study. However, there were several unexpected findings. Firstly, eight cats (28.6%) that had never been vaccinated had antibodies. Of these, four currently had outdoor access and one had previously had outdoor access, so for these five cats natural exposure from the environment is most likely. One cat was a kitten less than 20 weeks old and the presence of MDA could be an explanation for antibody detection. Another cat was presented with signs of cerebellar hypoplasia, and panleukopenia of the dam during pregnancy can be suspected. For the third remaining indoor cat, no obvious explanation could be identified, although contact with dogs infected with CPV or a CPV-contaminated environment are reasonable explanations.

Seventy-one (71%) cats (23.6%) had been vaccinated according to current guidelines had no antibodies. Three of these cats were between 2 and 7 years old, four cats were between 7 and 12 years, and another four were older than 12 years. Interference with MDA lasting longer than 16 weeks with failure of the administered vaccine to overcome passive immunity is a likely explanation. One recent study showed that MDA can last up to 20 weeks of age and 56.2% of kittens had no evidence of initial antibodies (Jäkel et al., 2012). In that study, MDA interfered with vaccinations at 8, 12 and 16 weeks of age, and despite triple vaccination, 36.7% of the kittens did not develop antibodies (Jäkel et al., 2012).

Thirdly, 81/88 cats (44.5%) that had their last vaccination between 3 and 7 years previously, had no antibodies. That is a surprising finding, because the duration of immunity (DOI) is supposed to last for at least 7 years based on challenge experiments in specific-pathogen-free (SPF) cats (Scott and Geissinger, 1999). Potentially, the cats in the present study never developed antibodies, or perhaps the DOI of FPV is shorter in some field cats than is presently suspected. It is uncertain whether these cats are protected despite a lack of antibodies, since SPF kittens without detectable antibodies can resist experimental viral challenge probably due to a cell-mediated immune response (Lappin et al., 2002).

An interesting finding in the current study was a lack of antibodies associated with CKD. An association between CKD and reduced antibody development following vaccination has been described in humans. For example, antibody development after vaccination against hepatitis B decreases in advanced stages of CKD in humans (Agrafioti et al., 1999). Furthermore, kidney function as measured by glomerular filtration rate (GFR) predicts antibody response after vaccination, since a rise of antibody titers after vaccination becomes increasingly unlikely as GFR decreases (Agrafioti et al., 1999; Daffra et al., 2003). Malnutrition in patients with CKD is suspected to be associated with an impaired immune response (Lombardi et al., 1992) and chronic uremia, directly or indirectly, alters immune cell function (Pesanti, 2001). Consequently, a generalized immunosuppression and decreased antibody development are present in CKD patients.

Neoplasia was also associated with a lack of antibodies in the current study. No information on responses to vaccination in tumour patients exists in veterinary medicine, but a recently published meta-analysis in humans indicated lower rates of antibody development after vaccination in tumour patients (Beck et al., 2012). Generalized immunosuppression in cancer patients is caused by a complex network of different tumour-derived factors with immunosuppressive function (Kim et al., 2006).

Finally, glucocorticoid therapy was also associated with a lack of antibodies. One study investigated the effect of oral prednisolone on vaccination against canine distemper virus in beagle puppies and found that doses of 1 mg/kg and 10 mg/kg over a period of 21 days had no effect on the response to vaccination (Nara et al., 1979). In the present study, 52.4% of the cats that received glucocorticoids had no antibodies against FPV. Cats receiving glucocorticoids for at least 11 weeks were particularly at risk.

Several factors were not associated with a lack of antibodies. The initial suspicion that breed could be an associated factor was based on several outbreaks of FPV in vaccinated breeding catteries of NFC that were reported by the Paul-Ehrlich-Institut in Germany in 2008 and 2009 (Hofmann et al., 2010). A subsequent field study did not find a significant difference in antibody development between NFC and European short hair cats (Jäkel et al., 2012). The present study confirmed that breed is not a factor associated with a lack of antibody generation. Sex as well as neutering status also were not associated with a lack of antibodies. However, an unexpected finding was that the prevalence of antibodies was not associated with age. Older cats were expected to have antibodies due to frequent vaccinations and potential natural exposure, and an increasing prevalence of antibodies in older cats has previously been reported (Scott and Geissinger, 1999; Hellard et al., 2011).

There were several limitations to this study. First, the validity of historical data (e.g., date of birth) depends on the information provided by the owner. Second, only cats presented to the clinic were included, and the clinic population cannot be regarded as a representative sample of the whole population. Third, this study determined antibody prevalence as an equivalent for protection. However, some cats might have been protected (e.g., after vaccination) without detectable antibodies. In challenge experiments some cats without antibodies can be protected against infection and protection in these cats is assumed to be caused by cell-mediated immunity (Lappin et al., 2002).

Conclusions

About one-third of the cats in the current study had no antibodies against FPV, CKD, neoplasia, and long-term glucocorticoid therapy were significantly associated with a lack of antibodies against FPV. Although vaccination status was associated with a lack of antibodies, a certain number of ‘properly’ vaccinated cats had no antibodies, while some unvaccinated cats had antibodies probably due to natural exposure. Based on these findings, antibody titre measurement is recommended in order to determine individual immune status as part of an annual health check, especially in cats with chronic diseases or those receiving long-term glucocorticoid therapy.

Conflict of interest statement

None of the authors has any financial or personal relationships with other people or organizations that could inappropriately influence or bias the content of the paper.
Acknowledgements

We thank Professor Dr. Andrea Meyer-Lindenberg for providing sera that were collected from cats from the Clinic of Small Animal Surgery and Gynaecology of the Ludwig-Maximilians-University, during sample period. We thank Professor Dr. Ralf S. Mueller (Clinic of Small Animal Medicine, Ludwig-Maximilians-University) for very helpful discussions concerning study design and for his critical review of the manuscript. Preliminary results were presented as an abstract at the 21st Internal Medicine and Clinical Pathology Conference of the German Veterinary Association (DVG), Munich, February, 2013, and at the 23rd Congress of the European College of Veterinary Internal Medicine—Companion Animals (ECVIM-CA), Liverpool, September, 2013.

References

Franchini, M., (1990). Die Trolleinfektion von mit Feline Leukämie-Virus infizierten Katzen. Infectious vaccination in cats infected with feline leukaemia virus. Veterinary Dissertation, Dr. med. vet., University of Zurich, Zurich, Switzerland.

IV. STUDIE 2

Evaluation of an in-house dot enzyme-linked immunosorbent assay to detect antibodies against feline panleukopenia virus

Katherina Mende¹

Bianca Stuetzer¹, Dr. med. vet.

Uwe Truyen², Prof. Dr. med. vet. habil.

Katrin Hartmann¹, Prof. Dr. med. vet., Dr. med. vet. habil., Dipl. ECVIM-CA

¹ Clinic of Small Animal Medicine, Ludwig-Maximilians-Universitaet of Munich, Germany

² Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Germany

Journal of Feline Medicine and Surgery, veröffentlicht

Journal of Feline Medicine and Surgery (February 2014):
doi 10.1177/1098612X14520812
Evaluation of an in-house dot enzyme-linked immunosorbent assay to detect antibodies against feline panleukopenia virus

Katherina Mende¹, Bianca Stuetzer¹, Uwe Truyen² and Katrin Hartmann¹

Abstract
Measuring antibody titres to determine a cat’s immunity to core diseases instead of just administering annual vaccinations has not been established in Germany so far. An in-house test kit for the detection of antibodies against feline panleukopenia virus (FPV), feline herpesvirus-1 and feline calicivirus – the ImmunoComb Feline VaccioCheck – is now available in several European countries. The aim of this study was to assess the quality of the ImmunoComb Feline VaccioCheck to determine antibodies by comparing it to a gold standard. The test is aimed for use in practice to assist decision-making when performing an individual health assessment to see whether a cat is potentially unprotected against FPV and requires FPV vaccination. Sera from 347 cats were included in the study. For antibody detection, haemagglutination inhibition (HI) was performed as gold standard. Sensitivity, specificity and positive and negative predictive values of the ImmunoComb Feline VaccioCheck were determined for three different HI titre cut-off points (1:20, 1:40, 1:80). In comparison to the HI, the ImmunoComb Feline VaccioCheck showed a sensitivity of 79%, 83% and 87%, and a specificity of 89%, 86% and 81%, respectively. Specificity of the ImmunoComb Feline VaccioCheck, which was considered the most important parameter, was acceptable in comparison to HI. Especially when considering an antibody titre of 1:20 sufficient for protection (eg in an adult animal), the ImmunoComb Feline VaccioCheck can be recommended for use in veterinary practice.

Accepted: 26 December 2013

Introduction
Feline panleukopenia virus (FPV) is a single-stranded DNA virus of the family Paroviridae and the genus Parovirus. All members of Felidae and cats of all ages can be infected.² Owing to high morbidity and high mortality of the infection, the FPV vaccine is considered a core vaccine, and current guidelines on vaccination recommend vaccinating as often as necessary, but not more than necessary. Experts recommend vaccinating kittens every 3–4 weeks up to 16 weeks of age followed by a booster vaccination after 1 year and further vaccinations on a triennial basis.²⁴ In a population in which the virus is still endemic, many cats are likely to have antibodies and be protected either because of exposure or vaccination. As the presence of antibodies is considered to indicate protection from disease, antibody testing can be used to determine protection or susceptibility of individual cats. Furthermore, it can be used to evaluate the immune response after vaccination and the efficacy of vaccines in experimental settings.²⁵ Titré testing to determine whether a cat has specific antibodies against FPV is a useful tool in individualised medicine. However, it has so far not been established in Germany. Its major aim in small animal practice is to determine whether a cat is potentially unprotected against FPV and requires FPV vaccination. Thus, using titre testing instead of just vaccinating a potentially protected cat can prevent over-vaccination in

¹Clinic of Small Animal Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
²Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany

Corresponding author:
Katherina Mende, Veterinarian, Clinic of Small Animal Medicine, Ludwig-Maximilians-University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
Email: katherina.mende@gmail.com
the adult cat population. Haemagglutination inhibition (HI) is considered to be the gold standard of measuring antibodies against FPV, but the HI titre cut-off point to predict protection is still debated, and different studies consider different HI titre cut-off points as protective. While titre determination by HI in a commercial laboratory is time-consuming, an in-house test that provides rapid and reliable results would be useful in everyday practice. Very recently, an in-house test arrived on the German market. The test detects antibodies against FPV, feline herpesvirus-1 (FHV-1) and feline calicivirus (FCV) (ImmunoComb Feline VacCICheck; Biogal). One study investigated the performance of this test in detecting FPV antibodies in young, presumed unvaccinated cats entering a shelter in Florida, USA. Since then, the test has been modified in aim to increase sensitivity. So far, no study has evaluated this modified antibody in-house test in a diverse population in a country with a high prevalence of FPV antibodies.

Thus, the aims of this study were to evaluate the ImmunoComb Feline VacCICheck in the field by comparing the FPV results to those of the HI (gold standard) using different HI titre cut-off points (1:20, 1:40, 1:80) by measuring sensitivity, specificity, and positive (PPVs) and negative predictive values (NPVs), and furthermore to evaluate the practicability of the test. FHV-1 and FCV results were not evaluated.

Materials and methods

Cats

The study was designed as a prospective cross-sectional study. All cats (n = 347) that were presented from December 2011 to June 2012 to the Clinic of Small Animal Medicine and to the Clinic of Small Animal Surgery and Gynaecology of the Ludwig-Maximilians-University of Munich, Germany, and that needed a blood sample for preventive health assessment or for diagnostic purposes in sick animals, were included in the study. Blood was collected by venepuncture of the vena cephalica antebrachii, vena saphena, or vena jugularis. For data collection, medical records were studied and missing data were collected via a structured telephone interview. Cats were excluded if there were no historical data available (ie, in stray cats). The study protocol was approved by the ethics committee of the Centre for Veterinary Clinical Medicine, Ludwig-Maximilians-University of Munich, Germany (licence number 3-5-10-2-2012).

ImmunoComb Feline VacCICheck

After blood sampling, sera were directly separated by centrifugation and stored at −20°C until processed. All samples were analysed with the ImmunoComb Feline VacCICheck according to manufacturer’s instructions. Each antibody test kit contained a comb-shaped plastic card and a multi-compartment developing plate for testing 12 sera in parallel (Figure 1). The manufacturer declares that the positive control of the test would be equivalent to an antibody titre of 1:80 in HI. The test is based on an enzyme-linked immunosorbent assay principle and detects antibodies against FPV, FHV-1 and FCV (FHV-1 and FCV results were not part of this study).

After stepwise washing and binding of an enzyme-linked anti-cat immunoglobulin G antibody, a grey colour tone developed in the last step. A colour tone equal to or darker than the positive control was regarded as a positive result; a colour tone paler than the positive control was regarded as a negative result.

HI

All samples were analysed by the gold standard HI. HI is a laboratory test to measure antibodies against FPV. As FPV agglutinates swine erythrocytes, antibodies present in the sample prevent attachment of the virus to these erythrocytes and therefore inhibit haemagglutination. Samples underwent heat inactivation (56°C for 30 mins), were diluted with borate buffered saline (BBS) 1:5 and then pre-adsorbed to 15 μl of a 50% suspension of swine erythrocytes in phosphate buffered saline (PBS) for 1 h at 4°C. After centrifugation for 5 mins, the supernatant was subsequently two-fold diluted serially over 12 steps beginning at 1:10 in 96-well V-bottomed plates (Greiner Bio-One). Eight haemagglutinating units of FPV-b (strain 292, as used and described in previous studies) in PBS were added to each well and incubated for 1 h at room temperature. Then, a 0.5% suspension of swine erythrocytes in PBS was added and incubated at 4°C.
IV. Studie 2

The reciprocal of the highest dilution of serum that inhibited haemagglutination was defined as the HI titre of the serum. Different antibody titres were used as HI titre cut-off points for a positive result (1:20, 1:40, 1:80).

Statistical analysis

For test evaluation, the following performance parameters were calculated using a 2 x 2 contingency table: sensitivity, specificity, PPV and NPV. To quantify uncertainty, 95% confidence intervals (CIs) were calculated. The prevalence (and 95% CI) was calculated as the proportion of positive results of the total number of tested sera. Performance parameters and prevalences were calculated for three different HI titre cut-off points (1:20, 1:40, 1:80). Statistical analysis was performed using commercial software (SPSS).

For evaluation of the diagnostic performance specificity was set as the most important parameter. As a predefined criterion, a specificity of >90% was considered a good performance, a specificity of 80–90% was set as acceptable, and a specificity of <80% was considered as unacceptable for recommendation of the test.

Results

Study population

Cats in the study were of a variety of breeds, female (n = 149) or male (n = 198), neutered (n = 306) or sexually intact (n = 41). The median age was 9 years and ranged from 6 weeks to 20 years. Cats came from private households (n = 140), animal shelters (n = 41), breeders (n = 30), foreign countries (n = 59) or were formerly stray cats (n = 30) (origin). Cats lived in either urban (n = 298) or rural communities (n = 49) (source area) and were kept indoors (n = 194) or outdoors (n = 133) (environment), as a single cat (n = 130) or in mult-cat households (n = 167) (housing conditions). At the time of presentation, cats were healthy (n = 33), or acutely (n = 127) or chronically ill (n = 187) (health status). Most cats had a history of prior vaccination (n = 282). Twenty-eight cats had never been vaccinated.

Sensitivity, specificity and predictive values

The results of all sera tested with the ImmunoComb Feline Vaccicheck compared to HI are shown in Table 1. For the three different HI titre cut-off points (1:20, 1:40, 1:80), the test showed 9, 14 and 23 false-positive results, respectively. Specificities of the ImmunoComb Feline Vaccicheck were 89%, 86% and 81%, respectively (Table 2).

Prevalence

Prevalence of antibodies against FPV, when considering a HI titre cut-off point of 1:20, 1:40 or 1:80 as positive, was 77% (267/347), 71% (245/347) and 65% (225/347), respectively (Table 2). Antibody prevalence measured by the ImmunoComb Feline Vaccicheck was 63% (218/347; 95% CI 58–68).

Practicability of the ImmunoComb Feline Vaccicheck

All 347 sera showed valid results in the ImmunoComb Feline Vaccicheck and could clearly be classified as positive or negative. Twelve sera could be processed in parallel. The test always delivered results in 21 mins, as described in the manufacturer’s instruction manual.

Discussion

FPV is a frequent disease that occurs in young and old cats. In a retrospective study that investigated prognostic factors for survival of cats with panleukopenia, 244 cats that were presented to the Clinic of Small Animal Medicine, Ludwig-Maximilians-University of Munich, Germany, were diagnosed with FPV between 1990 and 2007. According to current guidelines, ideally, all cats should be protected against FPV infection at any time, if not through immunity following natural infection, then by vaccination. Although rare in cats, mild-to-severe adverse events after vaccination occur; these include feline injection-site sarcomas (FISS) that often recur after surgery and have a guarded prognosis. FISS occur more commonly after adjuvanted inactivated vaccines, but have also been described after vaccination against FPV, FHV-1 and FCV. As immunological protection against FPV is long lived, vaccination should ideally only be performed in animals that are unvaccinated.

In adult vaccinated cats, regardless of vaccine type or vaccination interval, or cats that overcame infection, detection of FPV-specific antibodies is predictive of protection. Thus, measurement of antibodies against FPV can be used to assess the immune status in these cats.

A fast and reliable in-house test would be an excellent tool for veterinarians to perform modern individualised medicine and avoid over-vaccination.

Table 1 Results of all 347 sera in the ImmunoComb Feline Vaccicheck compared to haemagglutination inhibition (HI) as gold standard for three different HI titre cut-off points (1:20, 1:40, 1:80)

<table>
<thead>
<tr>
<th></th>
<th>ImmunoComb negative</th>
<th>ImmunoComb positive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI negative (<1:20)</td>
<td>71</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td>HI positive (≥1:20)</td>
<td>58</td>
<td>209</td>
<td>267</td>
</tr>
<tr>
<td>HI negative (<1:40)</td>
<td>88</td>
<td>14</td>
<td>102</td>
</tr>
<tr>
<td>HI positive (≥1:40)</td>
<td>41</td>
<td>204</td>
<td>245</td>
</tr>
<tr>
<td>HI negative (<1:80)</td>
<td>99</td>
<td>23</td>
<td>122</td>
</tr>
<tr>
<td>HI positive (≥1:80)</td>
<td>30</td>
<td>195</td>
<td>225</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>218</td>
<td>347</td>
</tr>
</tbody>
</table>
Table 2. Performance parameters of the ImmunoComb Feline Vaccicheck based on results given in Table 1: sensitivity, specificity, and positive (PPV) and negative predictive value (NPV) (and 95% confidence interval (CI)), calculated using haemagglutination inhibition (HI) at three different HI titre cut-off points (1:20, 1:40, 1:80) as gold standard

<table>
<thead>
<tr>
<th>HI titre cut-off point</th>
<th>Antibody prevalence in % (95% CI)</th>
<th>Sensitivity in % (95% CI)</th>
<th>Specificity in % (95% CI)</th>
<th>PPV in % (95% CI)</th>
<th>NPV in % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:20</td>
<td>77 (73–83)</td>
<td>78 (73–83)</td>
<td>89 (82–96)</td>
<td>96 (93–99)</td>
<td>55 (46–64)</td>
</tr>
<tr>
<td>1:40</td>
<td>71 (66–75)</td>
<td>83 (79–88)</td>
<td>86 (80–93)</td>
<td>94 (90–97)</td>
<td>68 (60–76)</td>
</tr>
<tr>
<td>1:80</td>
<td>65 (60–70)</td>
<td>67 (82–91)</td>
<td>81 (74–88)</td>
<td>89 (85–94)</td>
<td>77 (69–84)</td>
</tr>
</tbody>
</table>

The intended use of the test evaluated in this study is to assess the specific immune status of cats by detecting antibodies, either before or after regular vaccinations in veterinary practice. When evaluating a test, samples should be representative for the intended use of the test. Thus, a diverse population of cats that mimics the actual population in a small animal practice regarding signalment, origin, source area, environment, housing conditions, and health and vaccination status was chosen in the present study. However, this clinic population cannot be assumed to be representative for the national cat population.

In this study, 347 sera were analysed. Prevalence of antibodies against FPV was 77%, 71% and 65%, depending on the chosen HI titre cut-off point. Similar FPV antibody prevalences were described in 267 client-owned cats in the USA (67%). A remarkably lower antibody prevalence was found in cats entering a Florida (USA) animal shelter (40%). In that study, 67% of the cats entering the shelter were stray cats. In these cats, a low vaccination rate is the most reasonable explanation for the low antibody prevalence at the time of blood sampling. In addition, differences in environmental exposure to FPV can be a reason for the different prevalences.

For the detection of antibodies against FPV, HI served as the gold standard in this study. The method is very specific for the virus, and the technique is simple and well established. In addition, equipment and reagents are quite inexpensive. However, this test cannot be performed in practice. Another limitation of the method is that reading the plate is subjective, which could lead to false-positive or false-negative results. However, to minimise subjective evaluation, HI plates were read by two independent people: one was the first author (KM) and one was an experienced laboratory technician. Divergent results were checked by a second laboratory technician.

Specificity was set as the most important parameter in this study. For use in the context of an individual health assessment and as a tool for deciding whether a cat needs vaccination, it is essential to obtain a low number of false-positive test results, so that potentially unprotected cats can be identified.

The manufacturer of the ImmunoComb Feline Vaccicheck declares a HI titre cut-off point of ≥1:80 as a positive result. However, when considering a HI titre cut-off point of 1:80 as a positive result, the specificity of the ImmunoComb Feline Vaccicheck in this study would only be 81%. There was a relatively high number (23) of false-positive test results. The PPV was still relatively high (89%), which, however, is influenced by the high antibody prevalence in this study. According to the predefined criterion, the specificity of the test was not good when basing the result on a HI titre cut-off point of 1:80. This specificity would be remarkably lower than those described previously for the ImmunoComb Feline Vaccicheck, for example, in the shelter study in Florida, USA (99%), and in the manufacturer’s product information (98%). On the contrary, the sensitivity of the test (87%) was higher than in the shelter study in Florida (49%), but not as good as declared by the manufacturer (99%). In this study, 30 sera tested false-negative. False-negative results, however, are not as problematic as false-positive results. Cats with false-negative test results will receive a booster vaccination even if they are protected against infection at the time of blood sampling. The difference between test results in the shelter study and the present study, as well as the declaration by the manufacturer concerning sensitivity and specificity, could be due to recent modifications to the test by the manufacturer.

It is still debated which antibody titre is equivalent to protection in adult cats. In former studies, even lower (<1:180) antibody titres were considered to be predictive for protection against FPV infection in cats that were formerly vaccinated or who had overcome infection. Considering a HI titre cut-off point of 1:40 as protective, the specificity of the ImmunoComb Feline Vaccicheck in this study would be 86%.
At present, however, the presence of antibodies even at a low concentration (such as titres of 1:20) is considered protective in cats that have been vaccinated after maternally derived antibodies have dropped, or in cats that have overcome infection, as these indicate a response of the immune system to an antigen. In challenge experiments, the presence of antibody titres of 1:20 in previously vaccinated cats was predictive for protection against disease. When scoring the results of the present study on a HI titre cut-off point of 1:20, specificity of the ImmunoComb Feline VaccCheck was 89% and thus almost reached the predefined criterion for a good test performance. Based on this HI titre cut-off point, the test showed a low number (nine) of false-positive results, which is important in helping to decide whether a cat requires FPV vaccination. The test has some benefits concerning the practicability compared with titre testing at a laboratory. As the test can be performed in about 21 mins, results are available during consultation and can be used immediately for decision-making. Furthermore, up to 12 samples can be processed in parallel. Another advantage is the low amount of blood required. The test just requires 5 μl of serum or plasma, or 10 μl of whole blood, whereas for HI only serum can be used and at least 100 μl is needed. As FHV-1 and FCV results were not evaluated in this study, no recommendation can be given about the test’s usefulness in determining FHV-1 and FCV antibodies in the field of small animal practice. One limitation of the study is that the amount of antibodies indicating protection is still unclear. A true protection can only be determined by challenge experiments, which, of course, was not possible in this study with privately owned cats.

Conclusion

The ImmunoComb Feline VaccCheck showed a high specificity to detect antibodies against FPV. When considering an antibody titre of 1:20 in HI to be protective, the test almost reached the predefined criterion of 90% (89%) for a good performance and at least delivered acceptable results. Thus, the test can be recommended for use in veterinary practice to help in deciding whether a cat requires FPV vaccination. However, further modification by the manufacturer aiming for an even higher specificity of the test would be desirable to reduce the risk of missing and not vaccinating unprotected cats.

Acknowledgements We thank Biogal Galed Laboratories, Kibbutz Galed, Israel, for selling the test at a reduced price. Furthermore, we thank Professor Dr Andrea Meyers-Lindenburg for her consent to use sera that were collected from patients of the Clinic of Small Animal Surgery and Gynaecology of the Ludwig-Maximilians-University of Munich, Germany.

Conflict of interest The authors do not have any potential conflicts of interest to declare.

Funding This research received no grant from any funding agency in the public, commercial or not-for-profit sectors.

References

24 Lappin MK. Feline panleukopenia virus, feline herpesvirus-1 and feline calicivirus antibody responses in seronegative specific pathogen-free kittens after parenteral administration of an inactivated FVRCP vaccine or a modified live FVRCP vaccine. *J Feline Med Surg* 2012; 14: 161-164.

V. DISKUSSION

Nationale und internationale Expertengruppen empfehlen in ihren Leitlinien zur Impfung von Kleintieren, dass jede Katze zu jedem Zeitpunkt vor einer felinen Panleukopenie geschützt sein sollte, entweder durch das Überstehen einer natürlichen Infektion oder durch eine erfolgreiche Impfung. Damit gehört die Impfung gegen FPV zu den sogenannten „Core-Impfungen“ der Katze. Derzeit lautet die Empfehlung, Katzenwelpen alle drei bis vier Wochen bis zu einem Alter von 16 Wochen, gefolgt von einer Impfung nach weiteren zwölf Monaten und anschließend alle drei Jahre zu impfen (RICHARDS et al., 2006; TRUYEN et al., 2009; DAY et al., 2010; STÄNDIGE IMPFKOMMISSION VET., 2013). Dennoch kommt die Erkrankung, welche durch eine hohe Morbidität und Mortalität gekennzeichnet ist, sowohl bei jungen als auch bei ausgewachsenen Katzen häufig vor (KRUSE et al., 2010). Derzeit ist nicht bekannt, wie gut die Katzenpopulation in Deutschland vor Infektionen mit FPV geschützt ist. Auch gibt es bislang keine Studien, die untersucht haben, ob es innerhalb der Population Katzen gibt, die ein erhöhtes Risiko haben, nicht vor Infektionen geschützt zu sein.

Der Nachweis von Antikörpern gilt bei geimpften ausgewachsenen Katzen und auch bei Katzen, die bereits eine natürliche Infektion überstanden haben, als prognostisch für den Schutz vor einer Infektion mit FPV. Daher kann die Messung von Antikörpern gegen FPV genutzt werden, um den individuellen Immunstatus bei Katzen zu bestimmen (SCOTT & GEISSINGER, 1997; TIZARD & NI, 1998; LAPPIN et al., 2002).

Antikörper gegen FPV untersucht. Ein Antikörpertiter von $\geq 1:40$ galt in dieser Studie als positives Ergebnis (Cut-off).

Letztendlich könnten auch verschiedene Methoden zur Untersuchung auf Antikörper (ELISA versus HAH) mit unterschiedlichen Sensitivitäten und Spezifitäten zu den unterschiedlichen Prävalenzen beitragen. Der HAH ist allerdings generell als Goldstandard zur Messung von Antikörpern gegen FPV akzeptiert und wurde bislang auch in den meisten Prävalenzstudien verwendet (LAPPIN et al., 2002; BLANCO et al., 2009; DIGANGI et al., 2012a).

Wie zu erwarten konnten bei geimpften Katzen häufiger Antikörper nachgewiesen werden. Bezüglich der Prävalenz von Antikörpern gab es aber auch mehrere unerwartete Untersuchungsergebnisse. Als erstes unerwartetes Ergebnis ist zu nennen, dass bei acht von 28 Katzen (28,6 %), die nachweislich nie zuvor geimpft worden waren, Antikörper nachgewiesen wurden. Fünf dieser Katzen hatten Freigang, so dass die Antikörper durch eine natürliche Exposition mit FPV oder CPV-Varianten in der Vergangenheit erklärt werden können. Dagegen hatten die
Welpen gezeigt werden, dass diese gegen eine experimentelle Infektion geschützt waren, auch wenn keine Antikörper nachweisbar waren. Dieser Schutz ist dann wahrscheinlich auf eine zelluläre Immunität oder sich schnell bildende Antikörper in Folge bereits bestehender Gedächtniszellen zurückzuführen (TIZARD & NI, 1998; LAPPIN et al., 2002). Es kann zudem nicht ausgeschlossen werden, dass einige Katzen dieser Studie niedrige Antikörpertiter hatten, die unterhalb der Nachweisgrenze von 1:40 im HAH lagen.

Katzen, die zum Zeitpunkt der Untersuchung mit Glukokortikoiden behandelt wurden, hatten in der vorliegenden Studie ebenfalls ein erhöhtes Risiko, keine Antikörper gegen FPV zu haben. Eine experimentelle Studie bei Beagle-Welpen untersuchte den Effekt von oral verabreichtem Prednisolon auf eine Impfung gegen CDV. Bei diesen Hunden hatten jedoch weder Dosierungen von 1 mg/kg, noch von 10 mg/kg Prednisolon über einen Zeitraum von jeweils 21 Tagen einen Effekt auf die Immunantwort nach einer Impfung (NARA et al., 1979). In der vorliegenden Studie hatten jedoch 52,4 % (11/21) der mit Glukokortikoiden behandelten Katzen keine Antikörper gegen FPV. Es konnte auch gezeigt werden, dass Katzen, die über einen Zeitraum von über elf Wochen mit Glukokortikoiden behandelt wurden, ein höheres Risiko hatten, keine Antikörper gegen FPV zu haben, als Katzen, die kürzer behandelt wurden.

zurückzuführen sein. Auch wäre es möglich, dass die Katzen der vorliegenden Studie, die zu einem großen Teil chronisch krank waren (29,5 %), im Laufe ihres Lebens seltener Antikörper gebildet hatten.

Das Ziel der zweiten Studie der vorliegenden Arbeit war daher die Evaluation des Schnelltests ImmunoComb® Feline VacciCheck zur Bestimmung von Antikörpern gegen FPV im Vergleich zum Goldstandard HAH. Für den Einsatz in der tiermedizinischen Praxis im Rahmen von regelmäßigen Gesundheitschecks dient der Test insbesondere der Erkennung ungeschützter Katzen, um diese dann gezielt zu impfen.

Der ImmunoComb® Feline VaccinCheck wurde für den Nachweis von IgG-Antikörpern in Serum, Plasma oder Vollblut bei Katzen konzipiert und dient, wie die Antikörpermessung im Labor, der Bestimmung des individuellen Immunstatus von Katzen. Der Hersteller gibt für den Test eine Sensitivität von 90 % und eine Spezifität von 98 % an (BIOGAL GALED LABORATORIES, 2012).

Bezüglich seiner Praktikabilität hatte der Test im Vergleich zur Antikörpermessung mittels HAH im Labor mehrere Vorteile. Der Test kann in 21 Minuten durchgeführt werden, was zur Folge hat, dass die Testergebnisse noch während des Aufenthaltes des Patienten in der tierärztlichen Praxis verfügbar wären. Ein weiterer Vorteil ist die nur sehr geringe erforderliche Probenmenge. Für die Durchführung des Schnelltests genügten 5 Mikroliter (μl) Serum,
wohingegen für den HAH im Labor etwa 100 µl Serum benötigt werden. Alternativ könnten für den Schnelltest 5 µl Plasma oder 10 µl Vollblut verwendet werden.

gegen Tollwut), können aber auch nach FPV-/FHV-1-/FCV-Impfungen auftreten (DE MAN & DUCATELLE, 2007).

Die Unterschiede zwischen der Tierheimstudie aus Florida und der vorliegenden Studie, aber auch die Unterschiede zu den Herstellerangaben bezüglich der Sensitivität und Spezifität des Tests könnten auf Modifikationen durch den Hersteller zurückzuführen sein, so dass eine Verbesserung der Sensitivität zu einer Verschlechterung der Spezifität führte. Da im Rahmen von regelmäßigen Gesundheitschecks eine hohe Spezifität des Tests zur Erkennung von ungeschützten Katzen jedoch deutlich wichtiger ist als eine hohe Sensitivität, ist diese Entwicklung als negativ anzusehen.

In vorangegangenen Studien, wie z. B. in der Tierheimstudie aus Florida, wurden bereits etwas niedrigere Antikörpertiter (≥ 1:40) als schützend vor einer Infektion angesehen (MOUZIN et al., 2004; PATTERSON et al., 2007; REESE et al., 2008; DIGANGI et al., 2011). Würde man in dieser Studie einen Cut-off von ≥ 1:40 für ein positives Ergebnis zugrunde legen, so wäre die Spezifität des ImmunoComb® Feline VacciCheck mit 86 % zwar etwas höher, aber ebenfalls nicht als gut anzusehen.

Zu den Limitationen der ersten Studie gehörte, dass die Zuverlässigkeit der Patientendaten, wie z. B. das Geburtsdatum, von den Angaben der Besitzer abhängig war. Außerdem wurden nur Katzen eingeschlossen werden, die in der Medizinischen Kleintierklinik und der Chirurgischen und Gynäkologischen Kleintierklinik der Ludwig-Maximilians-Universität München vorgestellt wurden. Dadurch fand eine gewisse Selektion der Katzen statt, so dass die Studienpopulation nicht für die gesamte Katzenpopulation repräsentativ war. Eine Limitation, die beide Studien betrifft, war, dass ausschließlich der Nachweis von

VI. ZUSAMMENFASSUNG

Das Ziel der zweiten Studie war die Evaluation des Schnelltests ImmunoComb® Feline VacciCheck zur Bestimmung von Antikörpern gegen das feline Panleukopenievirus im Vergleich zum Goldstandard Hämagglutinationshemmtest. Dieser Schnelltest soll im Rahmen von regelmäßigen Gesundheitschecks in der tierärztlichen Praxis insbesondere der Erkennung ungeschützter Katzen dienen und damit eine zielgerichtete Impfung ermöglichen. Dazu wurden anhand von 347 Serumproben Sensitivität, Spezifität, positiver prädiktiver Wert und negativer prädiktiver Wert für drei verschiedene Cut-offs als positives Ergebnis im Hämagglutinationshemmtest ($\geq 1:20$, $\geq 1:40$, $\geq 1:80$) bestimmt. Eine hohe Spezifität und eine damit einhergehende niedrige Anzahl falsch-positiver
Ergebnisse wurden als besonders wichtig erachtet. Zudem wurde die Praktikabilität des Schnelltests beurteilt.

Der in der zweiten Studie dieser Arbeit evaluierte Schnelltest ImmunoComb® Feline VacciCheck zeigte basierend auf den drei Cut-offs im Hämagglutinationshemmtest (≥ 1:20, ≥ 1:40, ≥ 1:80) eine Spezifität von 88,8 %, 86,3 % und 81,1 %. Bezüglich seiner Praktikabilität hatte der Schnelltest im Vergleich zur Antikörpermessung mittels Hämagglutinationshemmtest im Labor mehrere Vorteile. Die Testergebnisse waren innerhalb von 21 Minuten verfügbar und der Test erforderte nur eine sehr geringe Probenmenge (5 µl Serum, 5 µl Plasma oder 10 µl Vollblut).

VII. SUMMARY

According to national and international guidelines, every cat should be protected against infection with feline panleukopenia virus at any time, either due to natural infection or vaccination. Currently, experts recommend vaccinating kittens every three to four weeks until 16 weeks of age, followed by a vaccination after one year and further vaccinations on a triennial basis. However, despite frequent vaccination feline panleukopenia is still commonly diagnosed. Thus, protection of the population in Germany seems doubtful.

Measuring antibody titers against feline panleukopenia virus can be used to evaluate the specific immune status. Hemagglutination inhibition is considered the gold standard, but cannot be performed in everyday practice. Since recently, an in-house test, the ImmunoComb® Feline VacciCheck, is available in Europe.

The aims of the first study were to determine the prevalence of antibodies against feline panleukopenia virus in client-owned cats in Southern Germany and to identify risk factors that might be associated with lack of antibodies. Three hundred and fifty cats were included; medical records were evaluated and serum samples were analyzed by hemagglutination inhibition. An antibody titer cut-off point of $\geq 1:40$ was considered a positive result.

The aim of the second study was to evaluate the in-house test ImmunoComb® Feline VacciCheck to detect antibodies against feline panleukopenia virus comparing it to the gold standard hemagglutination inhibition. The test is considered to be used as part of a regular health assessment in veterinary practice. Its major goal is to identify unprotected cats that require vaccination. Sera of 347 cats were analyzed by ImmunoComb® Feline VacciCheck and hemagglutination inhibition. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for three different antibody titer cut-off points in hemagglutination inhibition ($\geq 1:20$, $\geq 1:40$, $\geq 1:80$). A high specificity accompanied by a low number of false-positive results, was considered most important for test evaluation. Furthermore, the practicability of the test was assessed.

In the first study, prevalence of antibodies against feline panleukopenia virus in the study population was 70.6% (247/350). Thus, nearly one third of the cats
(29.4%; 103/350) had no antibodies and was likely to have inadequate immunity against infection. Vaccinated cats were more likely to have antibodies. However, eight of 28 cats (28.6%) that had never been vaccinated, also had antibodies against feline panleukopenia virus, while eleven of 47 cats (23.4%) that had been vaccinated according to current guidelines had no antibodies. Chronic kidney disease, neoplasia, and glucocorticoid therapy were associated with lack of antibodies against feline panleukopenia virus. In particular, cats receiving glucocorticoid therapy for at least eleven weeks had an increased risk to have no antibodies.

In the second study, based on the results of three different antibody titer cut-off points in hemagglutination inhibition ($\geq 1:20$, $\geq 1:40$, $\geq 1:80$) the ImmunoComb® Feline VacciCheck showed a specificity of 88.8%, 86.3%, and 81.1%, respectively. When comparing practicability, the test showed several benefits in comparison to hemagglutination inhibition. The test could be performed in about 21 minutes and required only a small amount of blood. Serum, plasma or whole blood could be used for analysis.

In conclusion, measuring antibody titers to evaluate the specific immune status of cats as part of a regular health assessment should be recommended for every cat, especially for cats at risk to have no antibodies against feline panleukopenia virus. When considering an antibody titer of $\geq 1:20$ adequate for protection (for example, in an adult animal), the ImmunoComb® Feline VacciCheck can be recommended for measuring antibody titers in veterinary practice. However, a further increase of specificity would be desirable, to reduce the risk to miss and not vaccinate unprotected cats.
VIII. LITERATURVERZEICHNIS

Boehm M, Thompson H, Weir A, Hasted AM, Maxwell NS, Herrtage ME. Serum antibody titres to canine parvovirus, adenovirus and distemper virus in dogs in the UK which had not been vaccinated for at least three years. Vet Rec 2004; 154: 457-63.

Day MJ. Utility of serum antibody assays to monitor protection and the need for vaccination. Pre-Congress Symposium, European College of Veterinary Internal Medicine, Liverpool 2013: 23-5.

DiGangi BA, Levy JK, Griffin B, McGorray SP, Dubovi EJ, Dingman PA, Tucker SJ. Prevalence of serum antibody titers against feline panleukopenia virus, feline

Parrish CR. The emergence and evolution of canine parvovirus-an example of recent host range mutation. Semin Virol 1994; 5: 121-32.

Scott FW, Csiza CK, Gillespie JH. Feline viruses. IV. Isolation and characterization of feline panleukopenia virus in tissue culture and comparison of cytopathogenicity with feline picornavirus, herpesvirus, and reovirus. Cornell Vet 1970b; 60: 165-82.

Tizard IR. Drugs and other Agents that affect the Immune System. In: Veterinary Immunology, 9th edn. Tizard IR, ed. St. Louis: Saunders 2012g: 467-76.

IX. DANKSAGUNG