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Zusammenfassung

In der Großhirnrinde von Säugetieren befindet sich die Mehrheit erregender Synapsen auf
Dornfortsätzen, kleinen dendritischen Ausbuchtungen, die in Größe und Form stark variie-
ren. Die Auslösung aktivitätsabhängiger synaptischer Langzeitplastizität geht mit struktu-
rellen Veränderungen dendritischer Dornen einher. Da das beugungsbegrenzte Auflösungs-
vermögen konventioneller Lichtmikroskope nicht ausreicht um die Morphologie der Dornen
verlässlich zu untersuchen, stellte die Elektronenmikroskopie bisher das wichtigste bild-
gebende Verfahren zur Erforschung von struktureller Plastizität dar, blieb dabei jedoch
auf die Betrachtung fixierter Gewebeproben beschränkt. Die Anwendung hochauflösender
Laser-Raster-Mikroskopie mit Stimulierter-Emissions-Auslöschung hat es mir möglich ge-
macht, die Dynamik dendritischer Dornenmorphologie in lebenden Zellen zu studieren.
Die N-Methyl-D-Aspartat-Rezeptor-abhängige Langzeitpotenzierung von Pyramidenzellen
der Cornu-Ammonis Region 1 des Hippocampus bildete dabei den Mechanismus, welcher
plastische Veränderungen hervorrief. Nach Potenzierung exzitatorischer Synapsen durch
die lokale Ultraviolett-Photolyse von caged -Glutamat wurde ein starker, vorrübergehender
Anstieg des Anteils dendritischer Dornen mit sichelförmigen Köpfen und ein leichter, an-
haltender Zuwachs an pilzförmigen Dornfortsätzen über einen Zeitraum von 50 Minuten
beobachtet. Meine Untersuchungen ergänzen frühere Studien zur Wechselbeziehung zwi-
schen synaptischer Potenzierung und struktureller Plastizität dendritischer Dornen und
korrespondieren mit dem aktuellen Kenntnisstand der zu Grunde liegenden molekularen
Mechanismen.





Abstract

The majority of excitatory synapses in the cortex of mammalian brains is situated on
dendritic spines, small protrusions, heterogeneous in size and shape. The induction of
activity-dependent long-term synaptic plasticity has been associated with changes in the
ultrastructure of spines, particularly in size, head shape and neck width. Since the di-
mensions of dendritic spines are at the border of the diffraction-limited resolving power of
conventional light microscopes, until recently, electron microscopy on fixed tissue consti-
tuted the primary method for investigations on spine morphology. I have employed live
cell stimulated emission depletion imaging to analyse spine motility and structural transi-
tions in response to n-methyl-d-aspartate receptor dependent long-term potentiation over
time at super-resolution in Cornu Ammonis area 1 pyramidal neurons of the hippocampus.
Local induction of long-term potentiation via ultraviolet photolysis of caged glutamate fa-
cilitated a strong transient increase in the proportion of spines with curved heads and a
subtle persistent growth in the amount of mushroom spines over a time course of 50 min-
utes. My findings reinforce previous investigations on the relation of synaptic potentiation
and spine motility, and are in good agreement with the current knowledge of the molecular
mechanisms underlying long-term plasticity.
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Preamble

It’s a popular fact that 90 % of the brain is not used and, like most popular

facts, it is wrong. Not even the most stupid Creator would go to the trouble

of making the human head carry around several pounds of unnecessary grey

goo if its only real purpose was, e.g., to serve as a delicacy for certain remote

tribesmen in unexplored valleys. It is used. One of its functions is to make the

miraculous seem ordinary, and turn the unusual into the usual. [...] It is very

efficient, and can make people experience boredom in the middle of marvels.

— Terry Pratchett, Small Gods (Discworld), 1992





Chapter 1

Introduction

The Neuron Doctrine1. Brains can be characterized as complex networks of countless

fibers, that are interconnected to exchange information in terms of electrical or chemical

signals. The principal anatomical units of brains are neurons [Waldeyer, 1891], ramified

cells that are polarized into receiver and transmitter parts emanating from their somata,

so called dendrites and axons (cp. Fig.1.2.A and the reviews by Braitenberg [2007]; Llinas

[2008]). Signal transduction between neurons is located at specialized contact sites, the

synapses. Remarkably, neural networks are by no means static entities. Instead, inter-

connections have proven to be plastic, which means tunable by learning (see for example

review by Pascual-Leone et al. [2005]).

1.1 The Hippocampus

As reviewed by Buzsaki [2011], a critical role during declarative learning and memory con-

solidation is constituted by the hippocampus, a central element of the limbic system2. It

is part of the forebrain, located in the medial temporal lobe, and in rodents consists of

1The organizational and functional principle of the nervous system based on neuro-anatomical work of
Camillo Golgi and Santiago Ramón y Cajal, who both were awarded the nobel prize in 1906 “in recognition
of their work on the structure of the nervous system“ [Nobel Media AB, 2013]. Its historical development
was for instance reviewed by Jones [1994].

2Structures that line the edge of the cerebral cortex of mammals. They include the hippocampus,
cingulate cortex, olfactory cortex, and amygdala.
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Figure 1.1: Modified Drawing of the Basic Neural Circuitry of the Rodent Hippocam-
pus. CA1: Cornu Ammonis area 1, CA3: Cornu Ammonis area 3, DG: dentate gyrus, EC:
entorhinal cortex, Sub: Subiculum. By Santiago Ramón y Cajal, Histologie du Système Nerveux
de l’Homme et des Vertebrétés, Vols. 1 and 2. A. Maloine, Paris, 1911 [Cajal, 1952].

ventral and dorsal portions, both of which are composed similarly but seem to be parts of

different neural circuits [Moser and Moser, 1998]. The hippocampus as a whole is shaped

like a curved tube, which has been occasionally compared to a seahorse3. Fig.1.1 shows a

schematic transverse sectional drawing of its anatomy as found in rodent brains, though

the general layout holds for all mammalian species. It can be identified as a region, where

cortex narrows to a single, densely packed layer of pyramidal neurons, which curl into a

tight U shape, the Cornu Ammonis areas. They are embedded into a backward-facing,

strongly flexed, V-shaped cortex, the dentate gyrus (cp. review by Amaral and Lavenex

[2006]). Neighbouring and part of the parahippocampal gyrus, the entorhinal cortex (EC)

is anatomically connected to the hippocampus in an alternating pattern of multi-synaptic

feed-forward loops. According to Buzsaki [2011], the advantage of this type of organiza-

tion might be, that neuronal representations can be iteratively segregated and integrated

in successive layers: Information from the cerebral cortex in the entorhinal-hippocampal

system is passed on mainly unidirectionally, with signals propagating through a series of

tightly packed cell layers. Granule cells of the dentate gyrus constitute the main input to

the hippocampus, receiving signals from the upper layers of the EC via the perforant path.

They send their axons, called mossy fibers, to the pyramidal cells of the Cornu Ammonis

3Hence the name from the Greek hippos meaning ”horse” and kampos meaning ”sea monster”.
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areas. Cornu Ammonis area 3 (CA3) axons extend to Cornu Ammonis area 1 (CA1)

along the so called Schaffer collaterals, supposedly the most extensive recurrent system in

the brain [Buzsaki, 2011]. To complete a reciprocal circuit, CA1 pyramidal neurons send

axons to the subiculum and sparsely back into the deep layers of the EC. Each entorhinal-

hippocampal cell layer contains additional intrinsic circuitry and extensive longitudinal

connections.

The hippocampal formation has become a primary object of neuroscientific investigation

after Scoville and Milner published a case study on Henry Gustav Molaison4. To treat his

epilepsy, the hippocampi of both hemispheres were surgically removed from this patient’s

brain. After that, he suffered from severe memory deficits [Scoville and Milner, 1957],

which indicated an essential hippocampal involvement in episodic learning and memory.

Later O’Keefe and Dostrovsky [1971] discovered so called “place cells“, hippocampal neu-

rons that are activated selectively when a mammal moves through a particular location in

space. This lead to the proposal of the hippocampus to resemble the spatial memory of

the brain.

The principal excitatory pathways of the hippocampus are organized in a lamellar fash-

ion. Entorhinal activity is therefore projected through the hippocampal formation along

a slice or lamella of tissue, oriented normally to the alvear surface and perpendicular to

the long axis of the hippocampus [Andersen et al., 1971]. This organization enables the

cultivation of tissue explants for several weeks [Gähwiler et al., 2001]. In large parts they

retain their in-vivo structure and develop with the same time course as in-situ [Muller

et al., 1993]. Additionally, neural connections and expression profiles of synaptic proteins

are similar to those found in acute slices [De Simoni et al., 2003; Buckby et al., 2004], but

organotypic hippocampal explants stay widely unaffected by tissue degradation associated

with acute preparations. They are also easily amenable to cellular staining methods with

synthetic dyes, antibodies or genetic markers. Alongside its relatively simple circuitry,

these features have made the hippocampus a well-suited in-vitro model system, not only

to scrutinize neural wiring, but also for long-term manipulations and imaging studies to

investigate learning and memory formation in mammalian brains.
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Figure 1.2: Dendritic Spines on Different Types of Neurons. A Modified camera lucida
drawing of the dendritic tree of a rat cerebral cortex pyramidal cell. Reprinted by permission
from John Wiley & Sons: The American Journal of Anatomy [Peters and Kaiserman-Abramof,
1970]. B High magnification view of the main apical dendrite of a hippocampal pyramidal cell
from a binary segmented fluorescence image. C Low (left) and high (right) magnification views
of a cerebellar Purkinje cell drawn by Santiago Ramón y Cajal, Textura del sistema nervioso
del hombre y de los vertebrados (Primera Edicion), Madrid, 1899 [Cajal, 1899].

1.2 Dendritic Spines

The dendritic trees of many neurons in the central nervous system (CNS) are covered

with small protrusions, heterogeneous in size and shape. They were named “espinas“, i.e.

spines, by the Spanish neuroscientist Santiago Ramón y Cajal, who first described them

in 1888 [Yuste, 2002]. Spines are found in many species and are exceptionally abundant

in brains of vertebrates. Since they constitute major structural elements of the majority

of principal neurons in most areas of the CNS, they are considered essential for neural

4Usually referred to as “patient H.M.“
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processing [Yuste, 2010]. Indeed, they have proven to mediate most (> 90 %) excitatory

inputs to a cell [Gray, 1959]. Besides, practically all spines are regarded to possess an

excitatory synapse at their tip [Colonnier, 1968; Arellano et al., 2007]. On the other hand,

spines are absent, or present at much lower densities, on some classes of neurons like

inhibitory interneurons [Yuste, 2010].

Fig.1.2 illustrates two examples of spiny nerve cells: pyramidal neurons, so named for

the shape of their cell bodies, and Purkinje cells of the cerebellum. From the apex of a

pyramidal neuron a long dendritic trunk, the main apical dendrite, emanates, giving rise to

a number of lateral dendritic branches (cp. Fig.1.2.A). From the base of the soma a second

bundle of dendrites emerges, as well as the cell’s axon. At higher magnification dendritic

spines become clearly visible (cp. Fig.1.2.B). Cajal already acknowledged the appearance

of dendritic spines investigating silver-impregnated histological tissue sections using Golgi’s

staining method (cp. Fig.1.2.C). Moreover, he already noticed their diversity of shapes,

postulated that spines were the primary points of synaptic contact between nerve cells and

involved in learning and memory [Bourne and Harris, 2001; Tashiro and Yuste, 2003].

Structural characteristics of spines could be closely connected to the function of synapses,

leading to the claim, that dendritic spines serve as basic functional units of neuronal

integration [Yuste and Denk, 1995]: 1) Spine necks enable the compartmentalization of

second messengers like calcium and are therefore linked to their localization in the spine

heads [Majewska et al., 2000a,b]. 2) The narrowing in spine necks poses a small resistive

barrier causing a time delay in charge transfer of a few hundred milliseconds. This seems

to be sufficient to provide a transient amplification of voltage at the synapse and, hence,

facilitate the opening of voltage-dependent channels in the spine head [Bourne and Harris,

2001; Grunditz et al., 2008]. 3) Dendrites with spines can synapse with neurons 1 −
3µm away, thereby increasing the density of possible connections. Besides, the shape of

dendritic spines allows efficient convolution and interdigitation of dendrite, axon and spine

membranes. For that, the presence of spines is thought to submit an increase in synaptic

density without increasing the overall volume of the brain [Bourne and Harris, 2001; Yuste,

2010].
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Figure 1.3: Diagram of a Synaptic Contact on a Dendritic Spine, observed with the
electron microscope after osmium tetroxide fixation. The strippled regions represent neuronal
and glial processes of the neuropil. a: spine apparatus, b: stalk of the spine, c: pre-synaptic
membrane, d: extracellular electron-dense thickening, den.t: dendritic shaft, e: post-synaptic
density, m: mitochondrion, st: stalk of the bouton, sv: synaptic vesicles. Inset The opposed
regions of the pre- and post-synaptic membranes seen after potassium permanganate fixation.
The membranes (i) are of neighbouring processes of the neuropil. f: synaptic cleft, g: pre-
synaptic membrane, h: post-synaptic membrane. Reprinted by permission from Macmillan
Publishers Ltd: Nature [Gray, 1959].

1.2.1 Synapses

Each neuron connects to several thousand other neurons via synapses. Gray [1959] un-

doubtedly confirmed that dendritic spines are actual sites of these connections5. He used

electron microscopy (EM), which facilitated direct visualization of the contacts, and re-

vealed a cleft separating the pre-synaptic axon from the post-synaptic dendrite (cp. Fig.1.3)

[Harris and Weinberg, 2012]. He identified two main classes of synaptic contacts: asym-

metric excitatory (type I), and symmetric inhibitory (type II). Type I synapses contain

spherical vesicles in the pre-synaptic compartment and are characterized by an electron-

dense protein band, the post-synaptic density (PSD), located 35 − 50 nm into the cyto-

5It should be noted, that this is referring to synapses in the mammalian brain, as for example found in
rodent hippocampus, cerebral cortex, and cerebellum.
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plasm beneath the post-synaptic plasma membrane [Gulley and Reese, 1981; Landis and

Reese, 1983]. The PSD houses a whole “signalling machinery“ [Kennedy, 2000] includ-

ing glutamate receptors6, ion channels, cell adhesion molecules and signaling enzymes,

as well as membrane trafficking, cytoskeletal and scaffolding proteins (see reviews by Ziff

[1997]; Tashiro and Yuste [2003]; Kim and Sheng [2009]; Harris and Weinberg [2012]). It is

opposed by a thin electron-dense pre-synaptic density, the active zone, where neurotrans-

mitters are released into the synaptic cleft by synaptic vesicle exocytosis [Südhof, 2004;

Südhof and Rizo, 2011]. In contrast, type II synapses, mainly recipient to γ-amino-butyric

acid (GABA) [Roberts, 2007], typically do have thin pre- and post-synaptic densities of

similar width and vesicles in the pre-synaptic compartment appear ellipsoid or egg-shaped

under EM.

As pointed out earlier, excitatory synapses are mainly found on dendrites and dendritic

spines. In contrast, inhibitory synapses concentrate on the cell soma and axonal initial

segment, but do also sparsely distribute along dendritic shafts of certain neuronal cell

types. Together with astrocytic7 processes, dendrites and axons form a fine mesh, the

neuropil, where most of the synaptic interactions occur [Harris and Weinberg, 2012]. In

the stratum radiatum of CA1, axons pervading the neuropil develop bulges that contain

neurotransmitter-filled vesicles and sometimes mitochondria, the so called pre-synaptic

boutons. The large majority (≈ 75 %) of these boutons make a single synaptic contact,

about one fifth form multiple synapses, and a small proportion (≈ 4 %) lack a post-synaptic

partner [Shepherd and Harris, 1998; Sorra et al., 2006].

Interestingly, the synaptic cleft, an approximately 20 nm wide gap in the apposition be-

tween the pre- and post-synaptic partners, is not an empty space. It seems to be packed

with electron-dense material, that appears to contain extracellular matrix proteins, as well

as specialized synaptic proteins [Lucić et al., 2005; Zuber et al., 2005; Dityatev et al.,

2010].

Complementing the chemical synapses described above, electrical synapses enable rapid

signal transfer between nerve cells [Hinrichsen, 1970; Baker and Llinás, 1971]. In con-

trast to chemical synapses, here pre- and post-synaptic cell membranes are closer together

and physically connected by gap junctions, special pores allowing passive flow of ionic

current [Brightman and Reese, 1969]. Changes in pre-synaptic membrane potential there-

fore induce respective voltage changes in the downstream cell. Gap junctions are present

throughout the whole CNS . Extensive investigations considered electrical synapses between

6The most common excitatory neurotransmitter is glutamate.
7Astrocytes are a subtype of glia, non-neuronal cells, that supposedly maintain and protect neurons.
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Figure 1.4: Ultrastructure of Dendritic Spines. Electron micrographs of dendritic spines
in hippocampal slice culture. A Thin spines with macular PSDs. B Mushroom spines with per-
forated PSDs. C Modified schematic drawing of spine morphologies in categories, as described
by Peters and Kaiserman-Abramof (1970). D Modified schematic drawing of macular and per-
forated PSDs. Scale bar: 500 nm. Reprinted by permission from Juan F. Madrid (editor):
Histology and Histopathology [Tashiro and Yuste, 2003].

excitatory projections of the inferior olivary nucleus and between inhibitory interneurons

of the neocortex, hippocampus, and thalamus, as reviewed by Connors and Long [2004].

1.2.2 Spine Morphology

The ultrastructure of dendritic spines comes at a great diversity of morphological charac-

teristics, that are abnormal in many mental and neurological disorders [Kasai et al., 2010].

In the past excessive efforts were made, especially employing EM, to classify them accord-

ingly [Bourne and Harris, 2001], although recent investigations suggest no clear affirmation

of distinct subtypes [Arellano et al., 2007]. Generally spoken, spines emerge from dendritic

shafts and can be divided into a spine neck / stalk and a spine head containing the synapse

(cp. Fig.1.3) [Nimchinsky et al., 2002]. Under EM, they come out as small protrusions

ranging more than 100-fold in length (typically less than 2−3µm, from shaft to tip) having

a bulbous head (diameter: 0.5− 1.5µm) and a narrow neck (diameter: < 0.5µm) [Tashiro

and Yuste, 2003]. Figs.1.4.A and B show examples of electron micrographs of dendritic

spines in organotypic slice culture. Sometimes, dendritic spines are found to have more
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than one head. Such branched spines can connect to the same pre-synaptic axon or to

different axons, though they do not necessarily have a pre-synaptic partner at all [Bourne

and Harris, 2001].

Interestingly, the actual ultrastructure of spine heads might not be reflected correctly by

traditional EM. It has been argued, that tissue fixation could alter their shape and bul-

bous heads are a mere artifact of this treatment, since investigations on live tissue showed

concave cup-shaped spine heads with lamellipodia, so called spinules, surrounding the pre-

synaptic terminal [Fischer et al., 1998; Dunaevsky et al., 1999; Lendvai et al., 2000; Nägerl

et al., 2008]. These finger-like protrusions were shown to be rich of actin and undergo plas-

tic structural changes in response to the activation of ionotropic, as well as metabotropic

receptors of principal neurons [Fischer et al., 2000; Roelandse et al., 2003; Richards et al.,

2005; Schätzle et al., 2011].

Despite the distributions of morphological spine variables being highly skewed8 [Nimchin-

sky et al., 2002; Yuste, 2010; Harris and Weinberg, 2012], a traditional idea of four main

subtypes has evolved, greatly influenced by Peters and Kaiserman-Abramof [1970] (cp.

Fig.1.4.C): thin spines are most common and have a thin, long neck and a small (bul-

bous) head [Tashiro and Yuste, 2003], mushroom spines possess a large head and are

typically found in mature samples [Yuste, 2010], stubby spines lack an obvious stalk and

are strikingly noticeable during postnatal development [Jones and Powell, 1969; Peters and

Kaiserman-Abramof, 1970; Harris et al., 1992], filopodia, finally, are developmentally tran-

sient, elongated arborizations without a clear head-compartment, that lack a PSD [Fiala

et al., 1998; Kasai et al., 2010]. Regarding synaptic constituents, the majority of thin

spines has a disk-like, macular PSD, whereas more than 80 % of mushroom spines have

more complex, perforated (non-macular) ones (cp. Fig.1.4.D) [Harris et al., 1992]. Larger

spines contain more structural components (receptors, smooth endoplasmatic reticulum,

endosomes, polyribosomes) and show more astroglial contacts [Yuste, 2010].

Quantitative studies of spine morphology revealed strong correlations between certain

structural / synaptic elements. PSD thickness is not only sensitive to alterations of its

constituent proteins’ organization [Hu et al., 1998; Otmakhov et al., 2004b; Tao-Cheng,

2007], but also the PSD surface area correlates very well with spine head volume and the

total number of (docked) synaptic vesicles, which relates to their release probability, and

therefore, synaptic strength [Harris and Stevens, 1988; Lisman and Harris, 1993; Harris

and Sultan, 1995; Schikorski and Stevens, 2001; Arellano et al., 2007; Meyer, 2013]. Also,

8They are unimodal, but certainly not normal, with long tails and great variability between different
brain regions.
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the number of post-synaptic receptors is tied in the areas of the PSD and active zone and

could be associated with the current injected at a synapse [Nusser and Somogyi, 1997;

Nusser et al., 1998; Matsuzaki et al., 2001, 2004; Holderith et al., 2012].

1.2.3 Synaptic Plasticity

From time immemorial, one of the most intriguing questions of neuroscience has been, how

learning and memory are implemented and maintained in the brain. Based on Hebb’s learn-

ing rule9 from 1949, long-lasting experience-dependent changes in the efficacy of synaptic

transmission have long been believed to pose the underlying mechanism and are generi-

cally embraced by the conception of long-term synaptic plasticity [Lüscher and Malenka,

2012]. Two of the most prominent forms of activity-dependent long-term changes are long-

term potentiation (LTP) [Bliss and Lomo, 1973] and its potential counterpart long-term

depression (LTD) [Levy and Steward, 1979], leading to a persistent increase or decrease in

synaptic strength, respectively. Both being widespread phenomena, expressed at a large

part of excitatory synapses in the mammalian brain, several forms of LTP and LTD exist

on the basis of the particular molecular mechanisms required to elicit and maintain the

synaptic change [Malenka and Bear, 2004; Castillo, 2012]. Notably, several protocols have

been discovered to potentiate or depress synapses by purely pharmacological means. There-

fore referred to as chemical long-term potentiation (cLTP) [Aniksztejn and Ben-Ari, 1991;

Otmakhov et al., 2004a; Fujii et al., 2004] and chemical ) [Palmer et al., 1997; Nicoll et al.,

1998; Santschi et al., 1999] in the literature, they affect different extra- and intracellular

systems. N-methyl-d-aspartate (NMDA) receptor dependent LTP / LTD, occuring be-

tween CA3 and CA1 pyramidal neurons of the hippocampus, remain the most extensively

studied and therefore prototypic forms of synaptic plasticity [Malenka and Bear, 2004].

Other forms of experience- / activity-dependent plasticity are for example reviewed by

Alvarez and Sabatini [2007]; Nelson and Turrigiano [2008]; Holtmaat and Svoboda [2009].

At the Schaffer collaterals, the loci of induction and expression of changes are situated in the

post-synaptic neurons, pyramidal cells, whose excitatory synapses are characterized by the

presence of two ionotropic glutamate receptors: α-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA) and NMDA receptors. AMPARs drive strong and rapid synaptic

signalling, having a high conductance for sodium in the glutamate bound conformation,

9“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.“ [Hebb, 1949]
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whereas NMDARs activate more slowly and are additionally permeable to calcium (see

reviews by Bliss and Collingridge [1993]; Lüscher and Malenka [2012]). LTP and LTD are

induced by specific patterns of pre- and post-synaptic activity [Malenka and Nicoll, 1993]:

while weak calcium influx activates phosphatases leading to LTD, strong calcium influx ac-

tivates kinases triggering LTP. The conductance for calcium ions depends on the strength

of post-synaptic depolarization due to magnesium ions entering the pores of NMDA recep-

tors, blocking the passage for all other ions at resting potential [Collingridge et al., 1988].

Under physiological conditions this has been shown to occur during spike timing depen-

dent plasticity (STDP), when pre-synaptic action potential firing precedes post-synaptic

back-propagating spiking within a window of several tens of milliseconds [Dan and Poo,

2006]. Through that mechanism, NMDARs play the role of molecular coincidence detec-

tors [Lüscher and Malenka, 2012].

Diverse morphological correlates of long-term synaptic plasticity have been observed in

the past, particularly with regard to structural alterations in dendritic spine size, shape

and number. Comprehensive reviews of a large body of literature dealing with this fas-

cinating subject were prepared for example by Bonhoeffer and Yuste [2002]; Bourne and

Harris [2007]; Harms and Dunaevsky [2007]; Kasai et al. [2010]; Bosch and Hayashi [2011].

They are briefly summarized below, focusing on spine plasticity associated with LTP in

pyramidal cells of the neocortex and hippocampus. The induction of LTD by either chemi-

cal or electrical stimulation usually induces shrinkage or loss of dendritic spines [Bosch and

Hayashi, 2011]. Investigations of structural spine plasticity can be categorized according

to their methodical approaches — EM and light microscopy:

Electron Microscopic Studies. Van Harreveld and Fifkova [1975]; Fifková and Van

Harreveld [1977]; Fifková and Anderson [1981] reported larger spines with wider but

shorter necks on stimulated compared to unstimulated pathways. Desmond and Levy

[1983, 1986a,b, 1988] found an increase in the proportion of cup-shaped and an accom-

panying decrease in bulbous spines after stimulation. Also, concave spines showed larger

PSD surface areas and lengths. These observations were supported by Calverley and Jones

[1990]; Harris et al. [1992]; Toni et al. [2001]; Popov et al. [2004]; Stewart et al. [2005],

who detected increases in the number of perforated PSDs after LTP induction. A strong

effect of increased spine density after LTP was reported by Andersen and Soleng [1998].

Complementary findings cover a stimulus related increase in the number of branched spines

and multiple-synapse boutons [Trommald et al., 1996; Toni et al., 1999; Fiala et al., 2002],

as well as the formation of spinules [Richards et al., 2005; Tao-Cheng et al., 2009] and a
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gain of spines containing polyribosomes after potentiation [Ostroff et al., 2002]. Although

structural changes of spines during synaptic plasticity are strongly backed by all these

investigations, contradictory findings were also published, e.g. by Lee et al. [1979, 1980];

Chang and Greenough [1984]; Geinisman et al. [1991]; Sorra et al. [1998]. Discrepancies

could be ascribed to variations in the brain regions studied, in tissue preparation (cultured

vs. acute brain slices), in stereological details and to the methodical approach itself, since

EM investigations rely on statistical evaluation of dead tissue, where small changes could

be “buried within noise“ [Yuste and Bonhoeffer, 2001].

Light Microscopic Studies. Initial time-lapse experiments linking LTP to morpholog-

ical spine plasticity were performed by Hosokawa et al. [1995], who observed increases in

spine length and changes in spine orientation in response to a pharmacological stimulus.

LTP associated outgrowth of new spines was detected by Maletic-Savatic et al. [1999] and

by Engert and Bonhoeffer [1999]. Drastic enlargement of spines was observed by Matsuzaki

et al. [2004] in response to a potentiating photolysis of caged glutamate. Further investi-

gations, employing electric stimuli [Okamoto et al., 2004], or glutamate uncaging paired

with opto-genetically induced post-synaptic depolarization [Zhang et al., 2008], supported

those findings. Kopec et al. [2006] were able to show similar increases in spine volume

using a cLTP protocol, that resulted in a transfer of additional AMPA receptors into the

spine heads. Additionally local glutamate uncaging induced the formation of new spines

[Kwon and Sabatini, 2011]. Changes towards wider spine necks in response to classic cLTP

were reported by Urban et al. [2011].

Taken together, a general idea of LTP converting “learning spines“ into “memory spines“

evolved [Bourne and Harris, 2007]. The transition is supposed to be accompanied by mor-

phological changes that resemble the cellular correlate of memory consolidation. The most

probable mechanism driving structural spine plasticity involves the regulation of the actin

cytoskeleton, as reviewed by Bosch and Hayashi [2011] or Kasai et al. [2010]. However,

according to Bourne and Harris [2007]; Harms and Dunaevsky [2007] several questions

remain open. For example: Which structural changes are specific to particular classes of

synapses? Is structural plasticity in the mature brain fundamentally different from devel-

opmental transitions? How long do structural changes last? Motility can be correlated

with alterations in network organization and biochemical compartmentalization, but does

induction of synaptic plasticity itself cause changes in motility? It is also unclear, if spine

movement alone substantially alters synaptic transmission. A number of studies are in
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support of structural plasticity being dissociated from functional plasticity [Lang et al.,

2004; Zhou et al., 2004; Yang et al., 2008; Gu et al., 2010]. Therefore, it is yet to be

shown that spines are sites that are specifically acted upon during learning and memory

formation.

1.3 Super-Resolution Imaging

Dimensions of dendritic spines are right at the border of the diffraction-limited resolving

power of conventional light microscopes [Yuste, 2010]. Therefore, the advent of super-

resolution microscopy opened a completely new perspective to structural and functional

investigations on spines, as it did to cellular biology in general. Before the scope of the

present investigation is outlined, state-of-the-art nanoscopic technologies will be briefly

introduced, laying the focus on far-field fluorescence imaging. Being of less importance for

live cell investigations, near-field optical microscopy (NOM) [Pohl et al., 1984], for example

reviewed by Novotny [2007] will be left out, as well as methods expanding the aperture

solid angle of the imaging lens like 4Pi microscopy [Cremer and Cremer, 1978; Hell et al.,

1994]. Furthermore, a summary of fluorescence nanoscopy applications to neuroscience is

provided, and the method of choice for my analysis, stimulated emission depletion (STED)

imaging, delineated.

1.3.1 Overview

About one century had passed after the discovery of the resolution barrier10 for light mi-

croscopes by Verdet [1869]; Abbe [1873] and Rayleigh [1903], stating that objects closer

than a distance d ≈ λ/(2 ·n · sin(α)) can not be distinguished, since their images are fused

by the diffraction of light to a single blur11 (cp. Fig.1.5), when suggestions came up, that

this barrier can be broken [Hell and Wichmann, 1994]. Today it is clear, that diffraction

still limits the resolution obtained with any lens-based optical system apart from certain

exceptions. One of them is fluorescence imaging. There is a heated discussion going on in

the field, about who initially came up with the ground breaking concepts to bring super-

resolution microscopy to life. Fortunately, it is not within the scope of the present thesis,

10Also Abbe limit, Rayleigh criterion or angular resolution limit.
11λ denotes the wavelength of illumination and n · sin(α) denotes the numerical aperture (N.A.) of the

imaging lens, where n corresponds to the refractive index of the medium in which the lens is working and
α to half of the lens’ opening angle.
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Figure 1.5: Diffraction Pattern of Two Incoherent Light Sources. The separation of
the point sources corresponds right to the resolution limit. Reprinted with kind permission from
Springer Science+Business Media B.V.: M. Cagnet, M. Françon, J. C. Thrierr, Atlas of optical
phenomena (Springer, Berlin, Heidelberg, 1962) [Cagnet et al., 1962].

to resolve this issue. I follow Hell [2009] for the most part surveying the various modalities

of fluorescence nanoscopy, primarily, because his classification seemed consistently com-

pelling to me12. Besides, his lab published the first real super-resolved images [Klar and

Hell, 1999].

As pointed out by Lemmer et al. [2008], to overcome the limiting character of diffraction in

fluorescence microscopy, neighbouring structures, i.e. emitters closer than the Abbe limit

of approximately 200 nm, if labelled with different spectral signatures, can optically be

isolated with spectrally selective detection schemes and can be discerned via high precision

location determinations. When thinking of spectral signatures as different excitation /

emission spectra (i.e. colors) of the fluorophores, their separation seems rather unproblem-

atic and has been predicted to attain 1/30 of the Rayleigh criterion [Burns et al., 1985].

However, that approach required a way to selectively label neighbouring structures in a

sample with distinct markers of different color. Isolating single coloured fluorophores either

needs alternative signatures, like fluorescence lifetimes, photoluminescence, or random la-

12Further reading: Elaborate reviews with a focus on applications to (neuro-)biology were published for
example by Patterson et al. [2010]; Toomre and Bewersdorf [2010]; Cremer et al. [2011]; Tønnesen and
Nägerl [2012]; Requejo-Isidro [2013], just to name a few. Some of them approach the subject differently
in parts.
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belling schemes [Lemmer et al., 2008; Cremer et al., 2011]. A paradigm change to the time

domain of the data acquisition, finally, poses the underlying concept of nearly all current

far-field nanoscopy implementations, that is to switch fluorescent signals of neighbouring

structures on and off, so that they are detected consecutively [Hell, 2009]. Tab.1.1 summa-

rizes the most prominent super-resolution fluorescence techniques. They can be subdivided

in two classes [Hell, 2009]:

1. Methods based on targeted fluorescence switching (STED, GSD, SPEM/SSIM and

RESOLFT).

2. Methods based on stochastic fluorescence switching (PALM, STORM, dSTORM,

GSDIM).

The second group could be complemented by Single-Molecule High-Resolution Imaging

with Photobleaching (SHRImP) [Gordon et al., 2004], Photobleaching Microscopy with

Non-Linear Processing (PiMP) [Munck et al., 2012] and Super-Resolution Optical Fluc-

tuation Imaging (SOFI) [Dertinger et al., 2009]; other authors tend to pool all pointillist

(see below) super-resolution approaches under the common term Localization Microscopy,

thereby also covering the concepts of Spectral Position Determination Microscopy (SPDM)

[Lemmer et al., 2008; Gunkel et al., 2009; Cremer et al., 2011].

Table 1.1: Glossary of Far-Field Fluorescence Nanoscopy Techniques. In part reprinted
by permission from Macmillan Publishers Ltd: Nature Methods [Hell, 2009].

Technique Description References

STED: stimu-
lated emission
depletion mi-
croscopy

A non-diffraction-limited form of scanning far-field fluores-
cence microscopy. Typically, fluorescence excitation cre-
ated by a focused beam of excitation light is narrowed
down in space by simultaneously applying a second spot
of light for molecular de-excitation featuring a central zero
(for example, a doughnut). The role of the de-excitation
(STED) beam is to effectively confine molecules to the
ground state, thus, effectively switching off the ability
of the dye to fluoresce. De-excitation occurs within the
nanosecond lifetime of the fluorescent state. Because no
de-excitation occurs at the central zero, the excited state
is established only in the region close to the zero.

[Hell and Wich-
mann, 1994;
Klar et al., 2000;
Willig et al.,
2006; Schmidt
et al., 2008]
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Table 1.1 – continued from previous page

Technique Description References

GSD: ground
state depletion
microscopy

Analogous to STED microscopy. The area in which
molecules can reside in the fluorescent state is narrowed
down in space by transiently switching the dyes to a
metastable dark state — specifically, the triplet state. The
use of a dark state of micro- to millisecond lifetime reduces
the intensity required for the molecular switch in compar-
ison to STED. The concept of switching fluorophores be-
tween long-lived bright and dark states has successively
been extended to switching by cis–trans isomerization and
other optically induced molecular bistabilities in the con-
cept called RESOLFT.

[Hell and Kroug,
1995; Hell, 2002;
Bretschneider
et al., 2007]

SPEM/SSIM:
saturated pattern
excitation mi-
croscopy or satu-
rated structured
illumination mi-
croscopy

A wide-field recording, highly parallelized scanning mi-
croscopy in which the molecules are strongly excited to
the fluorescent state, depleting the ground state (that is,
switched from the ground state to the fluorescent state)
outside the line-shaped zeros produced by a standing wave
interference pattern. To cover the field of view, the pattern
is scanned across the specimen by phase-shifting the max-
ima of the interference pattern and reading out the fluores-
cence imaged onto a camera for each scanning step. Be-
cause resolution is improved only perpendicular to the line-
shaped zeros, the pattern is tilted several times to cover
all directions in the focal plane. Mathematical analysis of
the data renders super-resolved images. Even scanning a
single line-zero would give super-resolution, but the use of
an array of lines parallelizes the process over a large area.

[Heintzmann
et al., 2002;
Gustafsson,
2005]

RESOLFT:
reversible sat-
urable/switchable
optically linear
fluorescence
transition

A generalization of STED and GSD microscopy for molecu-
lar switching, including switching of reversibly activatable
proteins and organic fluorophores. Switching can be re-
garded as a perfect saturable transition from one state to
the other. The terminology ’saturated transition’ is used
in conjunction with molecular ensembles to also account
for the fact that in an ensemble the population of the two
states may equilibrate to fractions — say, 90% in the Off
state and 10% in the On state.

[Hell, 2003; Hell
et al., 2003; Hell,
2004; Hell et al.,
2004, 2006]
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Table 1.1 – continued from previous page

Technique Description References

(F)PALM,
STORM: (flu-
orescence)
photoactiva-
tion localiza-
tion microscopy,
stochastic optical
reconstruction
microscopy

Switches individual molecules stochastically and sparsely
on by light-induced activation and then off, to detect a
bunch of m photons from a single molecule on a camera,
emitted while the molecules are in the On state. Calculat-
ing the centroid of the diffraction blob produced by each
molecule and registering the coordinates of each molecule
produces an image consisting of individual molecule po-
sitions. STORM has been initiated with pairs of pho-
tochromic cyanine dyes with one of them used as an acti-
vation (switch-on) facilitator.

[Betzig et al.,
2006; Hess et al.,
2006; Rust et al.,
2006; Bates
et al., 2007;
Shroff et al.,
2007; Huang
et al., 2008;
Juette et al.,
2008; Shroff
et al., 2008]

dSTORM: direct
STORM

A simplified version of STORM that refrains from using a
special dye for activation.

[Heilemann
et al., 2008]

GSDIM: ground
state depletion
followed by indi-
vidual molecule
return

Switches off by depleting the molecular ground state and
shelving the dye molecules in their triplet state, as in GSD.
However, unlike GSD, it uses a stochastic readout, as in
PALM, STORM, FPALM and dSTORM. It differs from
these stochastic methods in that the dye molecule is not
optically activated but is automatically switched on after
its spontaneous return from the dark (triplet) state to its
singlet state.

[Fölling et al.,
2008; Steinhauer
et al., 2008]

In targeted fluorescence switching, detection also happens in a targeted manner. In fact

it works like any laser scanning microscope, where images are acquired point-by-point or

line-by-line, and the coordinates and intensities of photon-emission are rendered to a raster

image of the sample. To achieve super-resolution the scanning spot / line is usually reduced

in size by switching off the fluorescence signal in its periphery [Hell and Wichmann, 1994].

Stochastic fluorescence switching, on the contrary, relies on parallel detection schemes with

cameras catching the whole field of view (FOV) at once. Here a subset of fluorophores are

switched on randomly in space and their coordinates determined with sub-wavelength ac-

curacy through centroid calculation, provided that they are more than a Rayleigh distance

apart [Bobroff, 1986; Betzig, 1995]. Subsequent registration of fluorophore coordinates

enables to reconstruct the corresponding relative positions. To finally form an image at

super-resolution a superposition of these pointillist maps is rendered. An exception to the

general picture just drawn is made by SPEM/SSIM [Heintzmann et al., 2002; Gustafsson,
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2005], since it provides resolution improvement in a targeted manner, but allows for paral-

lel detection from many sample coordinates at once. It also spatially confines the Off state

of a chromophore, proving that molecular switching has no preferred direction (on→off or

off→on) to yield super-resolved images.

Whether a targeted or a stochastic switching approach is chosen, greatly affects the im-

plementation of an actual fluorescence nanoscope. Systems for stochastic switching are

generally considered easier and faster to built up than targeted switching designs. On the

other hand, the former rely on sophisticated data processing, whereas the latter delivers

immediately interpretable images. Implementations therefore vary in imaging speed and

detection efficiency. According to Hell [2009], however, the most relevant practical differ-

ence between the two strategies is the economy of the switching: in the stochastic mode

a fluorophore has to undergo a switching cycle only once to be registered, whereas in tar-

geted implementations the molecules are perforce switched on and off repeatedly. Time

lapse imaging aside, this puts hard constraints on the molecular mechanisms utilized for

the switching, as the number of switching cycles in most current chromophores (fluorescent

proteins or synthetic dyes) is limited.

That said, another defining feature of current fluorescence nanoscopes comes to the fore —

the switching mechanism utilized to achieve optical isolation of neighbouring structures.

Exemplifying saturated transitions, Hell [2009] denotes why:

“The shared molecular [switching] mechanism leads to common aspects in many

of these concepts, and these can be readily understood by looking into the basics

of an incoherently driven optical transition. If a molecule can be transferred

from one state to the other by light, the probability that the molecule remains

in the first state decreases exponentially with the beam intensity I used; that is,

it varies as exp(−I/Is). The “saturation intensity“ Is is a characteristic of the

transition used, scaling inversely with the lifetimes of the two states. Applying

intensities I to a molecule that exceed Is makes it > 63% probable that one of

the photons brings about the switch; I > 5Is makes it almost certain (> 99%).

The longer the lifetime of the initial state, the more time we have to impinge

upon it with a photon, and the longer the lifetime of the final state, the more

durable the switch becomes. The lifetimes of the states can vary by orders of

magnitude, and so does Is.“

In other words, the photo-physics of a fluorophore determines the light exposure necessary

to induce a particular optical transition with respect to intensity and timing. Hence, the
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switching process of choice not only affects the amount of energy delivered to a sample, but

also the frame rates of image acquisition — both crucial parameters for time lapse studies

of live biological specimens. Moreover, it restricts the variety of fluorescent markers to be

used, potential sample environments and the possibilities of multi-color imaging.

Finally, all current super-resolution techniques share a common concept of non-linearity,

which comes yet into play at contrasting points with respect to the route taken to discern

neighbouring structures. Targeted modalities are based upon an exponential dependence

on the illumination intensity applied, when switching respective chromophores on / off, to

spatially constrain the coordinates of fluorescence [Schönle et al., 2007]. In stochastic modes

this is avoided, but they feature a non-linear dependence on the number of simultaneously

detected photons to register respective coordinates of fluorescence [Hell et al., 1995]. Thus,

the non-linear character of nanoscopy becomes manifest either at photon absorption or

emission, interestingly enough, affecting the photon representation intrinsic to the emergent

images, which is linear in targeted super-resolution approaches, but non-linear in stochastic

modes [Hell, 2009].

1.3.2 STED Nanoscopy: A Role Model of the Targeted Switch-

ing Concept

Once stimulated emission13 was proposed to pose a viable mechanism to circumvent the

diffraction barrier in laser scanning microscopy [Hell and Wichmann, 1994], it took nearly a

decade until Klar et al. [2000] furnished their ground breaking proof of principle. After that,

many studies followed elaborating STED nanoscopy to become a readily usable imaging

modality for the life sciences [Müller et al., 2012]. Its basic working principle is depicted in

Figs.1.6 and 1.7, referring to the implementation used for the current study with respect

to the laser pair employed, which was optimal for green fluorescent protein (GFP) and /

or yellow fluorescent protein (YFP) to serve as molecular switches.

In STED imaging, the On / Off states of a fluorescent probe are formed by its ground

state and first excited singlet state (cp. Fig.1.6.A). An incident photon of the excitation

source switches the chromophore to its fluorescent On state, if its energy is sufficient to

overcome the gap between S0 and S∗
1 , the photon itself being absorbed in the process. If

left to its fate without further interference the excited molecule will return to the ground

state spontaneously emitting a Stokes- / red-shifted photon of lower energy. Via stimulated

13Also induced emission; a quantum-chemical transition well known from laser physics.
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Figure 1.6: Principle of Stimulated Emission. A Jablonksi diagram of the molecular states
used in STED nanoscopy. kexc denotes the photophysical transition from the ground state S0

to the first excited state S∗
1 after the absorption of an excitation photon, kSTED denotes the

stimulated transition from S1 back to S∗
0, and kfl denotes the spontaneous transition from S1

to S0. The dashed arrows symbolize internal conversions. Adapted from Naredi-Rainer [2014].
B The wavelength of the STED beam lies at the right edge of the YFP emission spectrum,
where YFP excitation is negligible. Adapted from Nägerl and Bonhoeffer [2010].

emission, a photon of energy fitting the gap between S1 and S∗
0 can quench the excited

fluorophore back to its ground state. So, with a second light source one is able to switch off

fluorescence emission. Energy and momentum are conserved during stimulated quenching

by the emission of a photon matching the wavelength, phase, polarization and direction of

the photon inducing the molecular transition [Lakowicz, 2006].

Determinant for imaging, due to internal conversion processes the off-switching light is

also Stokes-shifted with respect to the excitation light, such that the former can be tuned

to have no overlap with the excitation spectrum of the dye (cp. Fig.1.6.B) and can be

excluded from detection with spectral filtering. Both, the on- and off-switching beams, are

then concentrically superimposed in the focal plane, where the off-switching point spread

function (PSF) is given a toroidal shape with an intensity zero at its center. This is achieved

by patterning the phase of incident wavefronts across the entrance pupil of the objective

lens in its back focal plane (BFP). Several ways to create hole-centered PSFs to break

the diffraction-limit have been investigated. The most common STED nanoscope designs

employ various phase plates [Klar et al., 2001; Wildanger et al., 2009] or spatial light

modulators [Willig et al., 2006; Auksorius et al., 2008]. Eventually, that way the volume

of fluorescence emission is spatially confined to the intensity zero of the off-switching PSF

and a specimen scanned by a significantly smaller spot (cp. Fig.1.7.A, upper panel).
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Figure 1.7: Principle of STED Nanoscopy. A Upper panel: Superposition of the diffraction-
limited spot of the excitation laser (blue) and the doughnut of the STED laser (orange) dra-
matically reduces the size of the fluorescence spot (green). Lower panel: Non-linear relationship
between the intensity of the STED beam (ISTED) and the suppression of the fluorescence. The
dotted line indicates the STED power that effectively switches off the fluorescence. B Tempo-
ral relationship between excitation and STED pulses. The fluorescence lifetime (τfl) of YFP is
≈ 3 ns. Adapted from Nägerl and Bonhoeffer [2010].

The resulting raster image is therefore resolved in much greater detail by purely physical

means. Notably, the angular resolution limit is not violated, since both the excitation and

de-excitation PSFs still fully comply with diffraction.

To ensure efficient quenching within the desired region of the off-switching PSF, stimulated

emission rates have to be favourable compared to spontaneous photon emission, i.e. the

excited state S1 has to be depleted14. On that condition Westphal and Hell [2005] estimated

the attainable resolution to the following:

d ≈ λ

2 · n · sin(α) ·
√

1 + a · ξ
. (1.1)

This equation is basically an extension of Abbe’s formula (cp. Sec.1.3.1), where ξ =

ISTED/Isat defines the saturation level of the de-excitation. The constant a denotes for the

steepness of the intensity zero and depends on the particular phase filter used to create the

hole-centered PSF [Harke et al., 2008]. ISTED is the maximum of the intensity distribution

of the de-excitation light and Isat is the effective saturation intensity of the fluorophore,

which can be defined as the de-excitation intensity at which the population of the excited

On state is reduced by 63 % (cp. Fig.1.7.A, lower panel). For ISTED = 0, Eq.1.1 gives

14Hence the term Stimulated Emission Depletion.
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the diffraction limit, whereas for ISTED � Isat, the On state is sharply confined. As the

square root of ISTED/Isat increases, d decreases and is therefore theoretically not limited

anymore.

Though mathematically not fully stringent, one can understand the dependence of the reso-

lution on the intensity of the de-excitation light in Eq.1.1 by contemplating the probability

to find a dye molecule in state Si as given by its occupation number Ni in the following

differential equation:
dN1

dt
= −koffN1 + konN0 = −dN0

dt
, (1.2)

where ki denote the transition rates for on- / off-switching. More detailed deductions can

be found in Hell and Wichmann [1994]; Klar [2001]; Hell [2003, 2004]. The total decay rate

is provided by the rate constant of spontaneous fluorescence emission kfl = 1/τfl and the

rate constant of stimulated emission:

koff = kfl + σSTED · ISTED, (1.3)

where σSTED denotes for the optical cross-section of the stimulated transition S1 → S0.

Assuming N0
1 chromophores in state S1 at time t0 after a well defined excitation pulse, the

population in state S1 at time t > t0 is given by a simple decay curve:

N1(t) = N0
1 · exp(−koff · t). (1.4)

Hence, application of a de-excitation pulse of duration τSTED will lead to an occupation

number of

N1(τSTED) = N0
1 · exp(−kfl · τSTED) · exp(−σSTED · ISTED · τSTED). (1.5)

Compared to the situation without stimulated emission (ISTED = 0), the amount of exited

molecules N1, i.e. the fluorescence signal, is reduced by

η = exp(−σSTED · ISTED). (1.6)

η is called the STED suppression coefficient, as it describes the amount of fluorescence

inhibition15. To fully deplete the outer rim of a fluorescence volume, induced emission

rates have to exceed spontaneous emission dramatically in the corresponding region, i.e.

15For numerical simulations of the suppression coefficient see Klar [2001].
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koff ≈ σSTED · ISTED. A function of the de-excitation intensity, η is accessible by experi-

ments and can vary under real conditions. For real fluorescent molecules Eq.1.6 is a good

approximation if vibrational relaxation is short compared to the duration of a de-excitation

pulse, and if fluorescence is not prevented by further processes like photobleaching [Dyba,

2004]. Experimental depletion curves were for example published in Klar et al. [2000,

2001]; Dyba and Hell [2003]; Westphal et al. [2003]. Considering a standard dye, typical

cross-sections for the stimulated transition are in the order of σSTED ≈ 10−16 cm2 [Kastrup

and Hell, 2004], which leads to values of Isat ∝ (τSTED · σSTED)−1 in the order of several

MW/cm2 [Hell, 2009].

My investigation employed pulsed excitation and depletion light sources (cp. Fig.1.7.B).

For such implementations, the pulse width of the STED beam has to be in a range of a

few hundred picoseconds16. Additionally, de- / excitation pulses need to be synchronized

in time, such that excited molecules are allowed to relax to the vibrational ground state

of S1 before a STED pulse arrives. Implementations with cw-lasers were also reported to

work for STED nanoscopy [Willig et al., 2007], and could be combined with time-gated

detection schemes to increase the efficiency of targeted switching / readout [Moffitt et al.,

2011; Vicidomini et al., 2011, 2013].

1.3.3 Applications to Neuroscience

Operating at much smaller wavelengths than light microscopy, until recently, EM con-

stituted the primary method to investigate the ultrastructure and functional domains of

synaptic constituents. Since it is not suited for the examination of live tissue, the dy-

namics of synaptic compartments remained mostly unexplored [Requejo-Isidro, 2013]. The

advantage of super-resolution light microscopy has gained impact on neurobiology, tackling

questions on neuronal protein function and dendritic spine motility.

Photoactivated localization microscopy (PALM) was utilized to investigate the nanoscale

dynamics of the actin-cytoskeleton [Tatavarty et al., 2009; Frost et al., 2010; Izeddin et al.,

2011; Tatavarty et al., 2012] and to follow post-synaptic AMPA receptor trafficking [Hoze

et al., 2012] in live dissociated cultured neurons with photo-switchable tdEos and Dronpa

fusion proteins. Dani et al. [2010] adopted multi-color three dimensional / three dimensions

(3D) STORM to assess the distribution of 10 protein components of the pre-synaptic ac-

tive zone and PSD in cryosections of fixed mouse brains labelled with fluorescently marked

16Dependent on the laser source, this is usually achieved by dispersion of fs-pulses, which have a broad
spectral range, in stretches of glass.
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antibodies. Reversible switchable optical fluorescence transition (RESOLFT) imaging of a

Lifeact17-Dronpa fusion construct has been applied to examine the cytoskeletal structure

of living neurons in organotypic slice cultures [Testa et al., 2012].

Over the years, STED nanoscopy has become increasingly popular with neuroscientists.

Its applications cover several variants of sample preparations. Fixed tissue studies were

performed to investigate the Drosophila active zone protein Bruchpilot [Kittel et al., 2006],

as well as synaptic vesicle fusion and exocytosis [Willig et al., 2006; Opazo et al., 2010].

Hoopmann et al. [2010]; Kamin et al. [2010]; Dean et al. [2012] and Westphal et al. [2008]

used time lapse and video-rate STED imaging to further study the latter in live primary

neuronal cultures immunostained with synthetic dyes. Hippocampal organotypic slice cul-

tures marked with cytosolic fluorescent proteins or Lifeact fusions served as a model system

to study spine motility at the nanoscale in response to cLTP [Nägerl et al., 2008; Urban

et al., 2011]. To facilitate nanoscopy in acute brain slices Ding et al. [2009] and Takasaki

et al. [2013] combined two-photon-excitation (2PE) with one-photon de-excitation using

Alexa Fluor-594 as their cellular marker. This was complemented by dual-color imaging,

discerning microglial and neuronal cells labelled with cytosolic GFP and YFP, respectively,

in a transgenic mouse line at super-resolution [Bethge et al., 2013]. Finally, even time lapse

in-vivo STED imaging has been demonstrated, examining YFP expressing neurons in layer

1 of the cerebral cortex of anaesthetized transgenic mice for up to half an hour [Berning

et al., 2012; Willig et al., 2014].

1.4 Objectives

In the backdrop of its potential relevance for learning and memory, morphological spine

plasticity was within the central scope of the current thesis. Focusing on the major benefits

of super-resolution light microscopy – nearly non-invasive, time-lapse suitability, sub-100

nm resolution – dendritic spine morphing was attempted to be analysed in response to the

induction of synaptic potentiation in live tissue. I decided on organotypic hippocampal

slice cultures to constitute an appropriate in-vitro model system, and the induction of

NMDAR dependent LTP in CA1 pyramidal neurons to constitute an eligible plasticity

paradigm. The objectives of my project, then, comprised of three major steps:

1. Implementation and characterization of a confocal STED-laser scanning microscope

(LSM), designed for the imaging of green fluorescent probes and adapted to the

17An actin-binding peptide [Riedl et al., 2008]
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standards of neurobiological research. A crucial point concerned the penetration

depth of the imaging optics in organotypic slice preparations.

2. Integration of local light stimulation by means of ultraviolet (UV) flash photolysis of

caged glutamate, as it presented a non-invasive, reliable and specific way to induce

LTP in spines.

3. Investigation of morphological spine plasticity in longitudinal experimental sessions

at Schaffer collateral synapses over at least one hour in-vitro. To exclude imaging

related artefacts, appropriate control experiments had to be conducted.

With this I aimed at an examination of the current understanding of spine (sub-) structure

and its dynamics:

1. I investigated the persistence of morphological transitions in live cells.

2. I scrutinized to what extent synaptic potentiation perturbs the baseline motility of

dendritic spines.

3. I related my findings to actual assessments on the molecular mechanisms driving

structural plasticity.

Finally, with the experience gained on STED nanoscopy, I intended to evaluate its ap-

titude for neurobiological live-cell studies, in particular in combination with local light

stimulation.
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Chapter 2

Experimental Methods

2.1 Organotypic Slice Cultures

Organotypic slice cultures facilitate the investigation of single regions of the CNS in-vitro

under nearly physiological conditions. They develop thin cellular structures organized very

similar to those found in the intact brain and can be maintained in culture for relatively

long periods of time of up to several weeks [Gähwiler, 1988; Gähwiler et al., 2001; Muller

et al., 2001].

2.1.1 Preparation of Membrane Cultures

According to the protocol introduced by Stoppini et al. [1991] transverse hippocampal ex-

plants were cultivated. The method obviates the need for a roller drum (cp. Sec.2.1.2).

Instead explants reside on a membrane at the interface between medium and air.

Tissue slices were prepared under laminar flow either from wild-type (C57BL/6) or trans-

genic (Thy1-GFP-M and Thy1-YFP-H [Feng et al., 2000]) mice bred at the MPI of Neuro-

biology at postnatal day 5 to 7. Mice were sacrificed by decapitation, skin and skull were

removed. Hippocampi were resected in Preparation Medium before they were cut into

350 µm thick transverse slices with a McIlwain Tissue Chopper. The explants were then

incubated at 4 ◦C for half an hour and afterwards transferred one by one onto pieces of

membrane cut to size (pore size: 0.4 µm, Biopore Membranes). Three slices on membrane

snippets each were placed onto cell culture inserts (pore size: 0.4 µm, diameter: 30 mm,
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height: 2 mm, Millicell Cell Culture Inserts) and incubated at 35 ◦C with a 5 % CO2

enriched atmosphere in 6-well Tissue Culture Test Plates. Half of the Membrane Culture

Medium, i.e. 500µL per well, was exchanged twice a week and slices kept in culture for

up to 20 days. Before further investigated with STED imaging, slices were screened for

labeling density, fluorescence brightness and integrity of tissue on grounds of morphological

criteria with a commercial stereo microscope (SteREO LumarV.12).

2.1.2 Preparation of Roller Tube Cultures

Gähwiler [1981] introduced a protocol to culture brain explants in a slightly different fash-

ion than described above. With his method tissue slices are embedded in chicken plasma

on a glass substrate and put upstanding into a closed culture tube filled with enough

medium to submerge half the culture on substrate. For incubation the tube resides in a

roller drum, rotating at specific speed and angle to repeatedly expose the cultured slices

to air and growing medium, respectively.

Transverse hippocampal slices were prepared under laminar flow either from wild-type

(C57BL/6) or transgenic (Thy1-GFP-M and Thy1-YFP-H [Feng et al., 2000]) mice bred

at the MPI of Neurobiology at postnatal day 5 to 7. As for the membrane cultures de-

scribed above, mice pups were decapitated, skin and skull removed, hippocampi resected

in Preparation Medium and cut into 350µm thick transverse slices with a McIlwain Tis-

sue Chopper. Next, explants were incubated at 4 ◦C for 30 − 60 min, before they were

transferred one by one to a drop of 10µL Chicken Plasma Solution either on a glass cover

slip (No. 1.5H) or on a glass bottom dish (diameter: 35 mm, glass diameter: 14 mm,

P35GC-1.0-14-C). To induce coagulation of the plasma 10µL Thrombin Working Solution

were added. After a resting time of approximately half an hour coverslips were placed in a

roller incubator tube (Nunc Cell Culture Tubes) containing 750µL of Roller Tube Culture

Medium, pre-warmed to 35 ◦C. 1.5 mL of pre-warmed Roller Tube Culture Medium were

added to explants in glass bottom dishes. Both preparations were incubated at 35 ◦C for 3

to 4 days, before 10µL (20µL for glass bottom dishes) of Mitotic Inhibitor Solution were

added to each slice. After another 16−24 h two thirds of the medium were exchanged with

fresh Roller Tube Culture Medium, which was then repeated once a week (every 10 days

for glass bottom dishes). In total, slices were kept in culture for up to 100 days to be used

for imaging. Before further studied with the STED-LSM, slices were screened for labeling

density, fluorescence brightness and health of tissue on grounds of morphological criteria

with a commercial stereo microscope (SteREO LumarV.12).
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Table 2.1: DNA Constructs Used Throughout the Work at Hand. Sequences are given
in Appx.C.

Construct Promoter Resistance Source

pCI-hSyn-tdimer2RFP Synapsin Ampicillin Dr. Tobias Rose
Synapses - Circuits - Plasticity
MPI of Neurobiology
Martinsried, Germany

pCI-Neo-PSD-95::EGFP CMV Ampicillin Prof. Dr. Valentin Stein
Physiology Department 2
University of Bonn
Bonn, Germany

pCI-hSyn-PSD-95::EGFP Synapsin Ampicillin Claudia Huber
Synapses - Circuits - Plasticity
MPI of Neurobiology
Martinsried, Germany

pSCA-Lifeact::EYFP CMV Ampicillin Dr. Roland Wedlich-Söldner
Cellular Dynamics and Patterning
MPI of Biochemistry
Martinsried, Germany

2.1.3 Generation of Plasmid DNA

pCI-hSyn-PSD-95::EGFP for single-cell electroporation (SCE) mediated gene transfection of

pyramidal neurons in CA1 was designed, generated, and amplified using standard molecular

biology techniques. Deoxyribonucleic acid (DNA) constructs used are listed in Tab.2.1.

Briefly, a pCI-hSyn expression vector backbone was obtained from a pCI-hSyn-tdimer2RFP

plasmid, removing the transgene by digestion with XhoI and NotI restriction enzymes.

The backbone was isolated by gel-extraction following gel-electrophoresis (QIAquick Gel

Extraction Kit). The PSD-95::EGFP transgene was isolated from a pCI-Neo-PSD-95::EGFP

vector using the same restriction reaction as for the pCI-hSyn backbone, followed by gel-

electrophoresis and -extraction. All restriction digestions were carried out at 37 ◦C for 2 to

3 hours. Ligation reactions were performed for 3 hours with T4 ligase at 23 ◦C, mixing the

backbone and insert in a 1:7 molar ratio. Ligation products were transformed to competent

Escherichia coli DH5α by heat shock and transformants were grown overnight on Luria-

Bertani medium agar plates at 37 ◦C. Colonies carrying the plasmid were selected based

on their resistance to ampicillin and amplified. Target plasmid DNA was purified from

liquid cultures of identified colonies (QIAGEN Plasmid Plus Midi Kit) and verified via test
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restriction.

2.1.4 Transfection via Single-Cell Electroporation

Targeted SCE provides efficient means to manipulate gene expression of identified sub-

sets of mammalian neurons within intact tissue [Judkewitz et al., 2009]. Increasing the

electrical conductivity and permeability of its plasma membrane by an externally applied

electric field, a neuron can be loaded with synthetic dyes, molecular markers or coding

DNA [Haas et al., 2001; Rae and Levis, 2002; Rathenberg et al., 2003; Nevian and Helm-

chen, 2007; Wang et al., 2010]. To overexpress fluorescently marked post-synaptic density

protein 95 (PSD-95) in CA1 pyramidal cells, I followed the protocol of Judkewitz et al.

[2009]. In brief, cultured hippocampal explants of wild-type mice were transferred to a

custom built setup after 7 to 10 days in-vitro (DIV) and immersed in HEPES-buffered

ACSF at room temperature (22± 1 ◦C) under sterile conditions. The setup comprised the

following hardware: a motorized stage was mounted to a Axioskop2 research microscope,

equipped with a long distance imaging lens (LUMPlanFL, 60x/0.9 W); the stage hosted a

micro-manipulator (Unit MRE/MLE Mini-25) to carry a micro-electrode pipette; to mea-

sure pipette resistances and apply voltage pulses I employed a commercial electroporation

system (Axoporator 800A). Micro-electrodes were pulled from glass capillaries (GC150F-

10) with a vertical puller (PC-10) to have a resistance of approximately 10 MΩ and were

back-filled with cooled, sterile filtered Electroporation Solution. 3 to 5 pyramidal neurons

in CA1 per slice were targeted under visual control and electroporated with 12 V pulses

of 5 ms duration at 50 Hz for 1 s, positioning the mico-electrode in a loose patch configu-

ration (20 − 30 MΩ) at the soma of a cell. Slices were transferred back to the incubator

for 5 to 7 days to allow for expression of the transgenes. Before further investigated with

STED imaging, slices were screened for fluorescence brightness and integrity of marked

cells on grounds of morphological criteria with a commercial stereo microscope (SteREO

LumarV.12).

2.1.5 Transfection via Viral Injection

To label the cytoskeleton of hippocampal pyramidal neurons Lifeact, an actin-binding pep-

tide derived from yeast [Riedl et al., 2008], fused to enhanced YFP was used. Labelling

fine-veined structures, cytoskeletal markers are ideal candidates for super-resolution imag-

ing. Moreover, Lifeact is likely to be a less invasive probe than labels grounded on the
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overexpression of fusion constructs. Additionally, the fluorescence signal of a Lifeact fusion

protein is less prone to photobleaching due to the reversible binding kinetics of the probe

[Urban et al., 2011]. It has been utilized for neurobiological studies in diverse preparations

including dissociated neuronal cultures, organotypic slice cultures and transgenic animals

[Riedl et al., 2008; Swanger et al., 2011; Urban et al., 2011; Kerr and Blanpied, 2012; Testa

et al., 2012; Chmyrov et al., 2013; Lauterbach et al., 2013].

For transfection, a modified Semliki Forest virus [Ehrengruber et al., 1999] containing a

pSCA-Lifeact::EYFP vector plasmid (courtesy of Claudia Huber), was injected into hip-

pocampal slice cultures of wild-type mice, immersed in HEPES-buffered ACSF at room

temperature, after 7 to 30 DIV. Micro-electrodes (resistance: 4− 6 MΩ), pulled from glass

capillaries (TW150F-4) with a vertical puller (PC-10), were first backfilled with virus par-

ticles dissolved in distilled water (titer: 10−16 ). Under visual control pipettes, connected

to a pressure injector (TooheySpritzer), were guided to CA1 at the setup described in

Sec.2.1.4. Four to ten pressure pulses (duration: 100 ms, pressure: 138 kPa) were applied

to deliver the necessary amount of virus containing solution into the tissue to generate

sparse cellular labelling. Transfected slices were then incubated overnight for at least 16 h,

before they were screened for fluorescence brightness and imaged the following day.

2.1.6 Handling During Experimental Sessions

Chemical LTP. Experiments were conducted on cultured slices of transgenic animals

(traditional roller tube cultures) after 14 to 96 DIV at room temperature (22 ± 1 ◦C) in

artificial cerebro-spinal fluid (ACSF). Tissue slices on coverslips were taken out of their

roller incubator tubes and pasted into a custom made experimental chamber with duplica-

tion silicone (Picodent Twinsil). They were immersed in ACSF for cLTP with a perfusion

system, connected to the chamber with magnetic mounts, that was driven by a peristaltic

pump (Minipuls 3). Slices rested in ACSF for 20 min, while STED images were taken at

10 min intervals. Then LTP was induced by means of chemical stimulation adding 25 mM

of TEA (Tetraethylammonium, Et4N
+) to the bath for 5 min. Subsequent imaging went

on for up to an hour.

Imaging of PSD-95. Super-resolution images were taken from cultured slices (mem-

brane cultures), transfected with pCI-hSyn-PSD95::EGFP and pCI-hSyn-tdimer2RFP via

SCE (cp. Sec.2.1.4), after 12 to 17 DIV at room temperature (22±1 ◦C) in ACSF. The red

volume marker was mainly used not to unnecessarily bleach the PSD label, when checking
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Figure 2.1: Experimental Paradigm for Glutamate Uncaging. Images were taken at 10
min intervals and immediately after the induction of LTP to confirm plastic changes. A light
stimulus was directed to the center of the FOV at the first or second branchpoint of the main
apical dendrite of a GFP positive CA1 hippocampal pyramidal cell.

the efficiency of the transfection and searching respective cells at minimal light exposure

in the green fluorescence channel. A slice on membrane snippet was transferred to a cus-

tom made experimental chamber with a glass bottom (coverslip No. 1.5H), immersed in

pH-buffered saline (HEPES-buffered ACSF) turned bottom up1 and held down by a nylon

mesh attached to a small ring of platinum wire. By this means the distance of the tissue

to the imaging optics was minimized. The objective lens (cp. Sec.2.3.5) was additionally

equipped with a mechanical correction collar to adjust for spherical aberrations, and there-

fore to optimize the penetration depth of the STED-LSM as demonstrated by Urban et al.

[2011]. Imaging sessions lasted about 10− 15 min after the explants climatized to the new

environment for approximately 10 min.

Glutamate Uncaging (see Sec.2.2). Experiments were carried out on cultured slices

of transgenic mice pups (membrane cultures) after 7 to 20 DIV at room temperature

(22 ± 1 ◦C) in ACSF, saturated with humidified carbogen to stabilize pH and oxygenate

the solution. An explant on a membrane snippet was transferred to a custom made ex-

perimental chamber as described above for the imaging of PSD-95, with the exception

that specimens were immersed in ACSF for Glutamate Uncaging. Solution was applied

via a closed perfusion system of 10 mL holding capacity, connected to the chamber with

magnetic mounts, that was driven by a peristaltic pump (Minipuls 3). ACSF for Gluta-

mate Uncaging contained no magnesium and a low concentration of D-serine to activate

1The membrane was facing upward and the tissue downward.
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NMDA driven calcium channels by the removal of their Mg2+ block, tetrodotoxin (TTX)

was added to prevent spontaneous activity of the slices and Trolox to reduce potential

effects of phototoxicity. In the cases where caged glutamate was added to the ACSF, its

concentration was set to 2 mM. Experimental sessions lasted no longer than 90 min in-

cluding an acclimation phase for the cultures of about 10 min. The time course of trials is

given in Fig.2.1.

2.2 Glutamate Uncaging

2.2.1 Methodological Conception

In several studies the photolysis of caged glutamate has been shown to serve as an ef-

ficient approach to locally induce synaptic plasticity [Callaway and Katz, 1993; Kandler

et al., 1998; Matsuzaki et al., 2004; Richards et al., 2005; Kwon and Sabatini, 2011; Meyer,

2013]. Both, an immediate and selective enlargement, as well as an enhancement of synap-

tic strength of stimulated spines have been reported (see Sec.1.2.3). When exposed to

UV light MNI-caged-L-glutamate (4-Methoxy-7-nitroindolinyl-caged-L-glutamate or MNI-

glutamate) rapidly and efficiently releases the neurotransmitter glutamate, that can then

bind to AMPA and NMDA receptors. Tight focusing of the incident light beam and se-

quential pulsing of the light source allows for spatial confinement and finely graduated

titration of the stimulus. Hence, glutamate uncaging unites the advantages of other plas-

ticity induction paradigms: 1) being a light-driven process it is less invasive than electrical

stimulation with an electrode impaling the tissue, but maintains a comparable locality, 2)

bath application of the caged compound preserves the simplicity and low time exposure

of cLTP protocols. In combination with 2PE, glutamate uncaging has been proven to be

suited for the stimulation of single synapses, confining the photolysis-reaction to a defined

focal volume of a few femtoliters [Denk, 1994].

2.2.2 Setup for Local Light-Stimulation

Even though the ideal wavelength for the uncaging of glutamate lies in the UV part of the

visible spectrum (300 − 380 nm), in the past MNI-glutamate was successfully photolyzed

at longer wavelengths, particularly at 405 nm [Trigo et al., 2009]. At that wavelength the

light absorption of the caged compound is sufficiently low to allow for deeper penetration

of the preparation. The reduced photolysis performance can be compensated by using
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higher light intensities or higher cage concentrations, and was reported to be still better

than with 2PE. Additionally, the use of near UV light puts less constraints onto the optics

to be employed with respect to their transmittance.

At the setup adopted throughout this study, 405 nm light from a fiber coupled solid state

laser (OXX-405-100-LBX-ZIR) was collimated and guided through the side port of an up-

right micro-inspection lens system (Optem Zoom 70XL) to an objective lens (LUMPlanFL,

60x/0.9 W) positioned par-focally to the imaging optics of the LSM. The collimated beam

diameter was set to overfill the back aperture of the lens and the average light power in

the BFP to 2 mW. The laser was externally triggered at its analog input by a Master-8-cp

pulse generator to provide a stimulus of 30 pulses of 4 ms duration at 0.5 Hz. The effective

reach of action of the uncaging spot was estimated to 13.2 ± 0.4µm from examining its

effect on dendritic spines during glutamate uncaging experimental sessions.

2.3 Laser Scanning Microscope

The layout of the custom built STED - LSM used throughout the current study, geared

to image live GFP- or YFP-labeled cells, essentially followed Willig and Nägerl [2012].

Its components are described in detail below. It was situated in a temperature-controlled

laboratory space on vibration damped optic tables (ST Series). Variations in temperature

were limited to ±0.5 ◦C and relative humidity stood below 50 %. A diagram of its optical

layout is shown in Fig.2.2.

2.3.1 Excitation Source

To excite fluorescence in a specimen, a pulsed diode laser was used (Pico TA). It generates

pulsed laser light of up to 4 mW average power at a fixed wavelength of 488 nm, at a

repetition rate of up to 80 MHz and a pulse width of 90 ps. Its controller (PDL 800-B)

was externally transistor-transistor-logic (TTL)-triggered by an optical constant fraction

discriminator (OCF-401) measuring the repetition frequency of the depletion light. The

OCF-output signal was electronically delayed by a custom-made circuit board (DELAY)

to synchronize the pulse patterns of both the excitation and depletion light sources in

time with 10 ps accuracy. The excitation light was coupled into a 2 m long polarization

maintaining single mode fiber (PMC-460Si-3.0-NA012-3-APC-200-P) in a free space ar-

rangement via two dielectric mirrors and a custom made fiber port coupler, after it passed

through an electro-optic modulator (M350-80) tuning its intensity.
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Figure 2.2: Optical Layout of the STED-LSM. A detailed description can be found in
the text. AL: achromatic lens, APD: avalanche photo diode, BP: band pass filter, BS: beam
splitter, DC: dichroic mirror, DM: dielectric mirror, EOM: electro-optic modulator, FP: flipable
pellicle beam splitter, GM: galvo mirror, GR: glass rod, HWP: half wave plate, KT: kepler
type telescope, LP: long pass filter, MMF: multi-mode optic fiber, OBJ: objective lens, OCF:
optical constant fraction discriminator, OPO: optical parametrical oscillator, PBS: polarizing
beam splitter, PolF: linear polarizer, PM: parabolic mirror, pm-SMF: polarization maintaining
single-mode optic fiber, PMT: channel photomultiplier, QWP: quarter wave plate, SL: scan
lens, Ti:Sa: titanium-sapphire laser, TL: tube lens, VPP: vortex phase plate.

2.3.2 Depletion Source

A pulsed titanium-sapphire (Ti:Sa) laser (MaiTai HP) pumping an optical parametrical

oscillator (OPO) (OPO Advanced) served as a coherent light source for the induction of

stimulated light emission in a fluorescently labeled specimen. The laser emits light pulses

150−300 fs wide at a repetition rate of 80 MHz. The wavelength of the pump laser light was

tuned to 795 nm at an average output power of about 2.8 W. The OPO was set up in the

so called Ring Version to intracavity frequency double the wavelength of the pump laser,

i.e. the near infrared (NIR) light of the Ti:Sa was “shifted“ to the visible spectral range

(592 nm). This nonlinear process comes at a power loss of 70− 80 %, therefore the output
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of the OPO averaged to about 700 mW. A combination of a Glan-type polarizer (GL5-A)

and an optical retarder (AHWP05M-600) was used to adjust intensity, before the light

was coupled into a 50 m long polarization maintaining single mode fiber2 (PMJ-3U3A-633-

4/125-3-50-1-HP) in order to disperse the pulse widths to 300− 500 ps. Pre-stretching the

pulses in a glass rod (SF6 glass) by a factor of about 10 to 20 helped minimizing potential

damage to the fiber through absorption of high energy light.

2.3.3 Beam Combination and Telecentric Scanner

Both laser beams were collimated at the fiber outputs with f = 60 mm achromatic lenses

to overfill the back aperture of the objective lense (cp. Sec.2.3.5) having a diameter of

8.25 mm. The excitation light was then straightly directed to a dichroic long pass mirror

(500 DCXR, DC1 in Fig.2.2), whereas the depletion light passed through a long pass clear-

ing filter (561 LP Edge Basic), a combination of linear polarizer and achromatic retarders

(CM1-PBS251, AHWP05M-600 and RAC 3.2.15) to set its polarization, and a spiral phase

plate (VPP-1) before it was directed to a dichroic short pass (z 590 sprdc, DC2 in Fig.2.2).

The VPP-1 introduces a certain phase shift, a so called screw dislocation or phase singu-

larity, in incident wave fronts that results in a toroidal PSF when focused at a large angle

or by a high N.A., respectively [Keller, 2006]. To create toroidal PSFs with central holes

of ideally zero intensity the depletion light must at best be circularly polarized, which was

achieved by placing an achromatic quarter wave plate (AQWP05M-600) carefully oriented

and tilted into the beam path after the dichroic mirrors. By that, the distance an incident

light wave travelled through the retarder, i.e. the effective crystal thickness, could precisely

be adjusted.

The aforementioned telescope basically served two purposes. First, it relayed the BFP

of the imaging lens, such that a mirror on a piezoelectric mount (AG-M100N) as part of

the STED beam path (not shown in Fig.2.2) could be positioned into a conjugate Fourier

plane; that way it was conveniently possible to overlay both the excitation and depletion

PSFs by only changing the incidence angle of the depletion beam at the objective lens’

back aperture without introducing an x/y-shift in its BFP. Second, it counterbalanced the

magnifying effect of the scan-telescope (SL and TL in Fig.2.2), which widened the beam

diameters by factor of 4; since the telecentric scanner (Yanus IV) via two parabolic mirrors

resembled a 2:1 Keplerian telescope, the relay lenses were chosen to follow a ratio of 2:1 of

2This was done in the same way as for the excitation light utilizing a custom made fiber port coupler
in a free space arrangement.
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Figure 2.3: 4f-Arrangement. Two convex lenses of a Keplerian telescope, separated a
distance that corresponds to the sum of their focal lengths, relay an optic plane by a span two
times the sum of their focal lengths along the optical axis. A collimated beam entering the
system exits collimated with altered diameter (solid line), a point source is imaged onto a single
point (dotted line). BFP: back focal plane, IIP: intermediate image plane.

their focal distances, as well. At system construction great care had to be taken to set up

the scan-head and scan-telescope in a so called “4f-arrangement“ (cp. Fig.2.3), meaning

to settle the second galvo mirror (GM2 in Fig.2.2) into a conjugate Fourier plane, to be

able to properly relay the BFP to the piezo mirror.

2.3.4 Confocal Detection Unit

Fluorescent light from a specimen was collected with the same objective lens the illuminat-

ing beams had passed (HCX PL APO CS 63x/1.30 GLYC). It was de-scanned backward

progressing along the excitation beam path and spectrally filtered by dichroics (DC2 and

DC1 in Fig.2.2). Confocal detection was achieved by placing a pinhole of 30µm in diameter

at a conjugate image plane3. The light then passed another dichroic mirror (zt 514 RDC,

cp. DC3 in Fig.2.2) before it was spectrally cleared by bandpass filters (525/50 BrightLine

HC and 536/40 BrightLine HC, cp. BP1 and BP2 in Fig.2.2) and directed to fiber-coupled

single-photon counting detectors (SPCM-AQRH-13-FC). Separation of the detected signal

had two main advantages: 1) it granted the option of two-color imaging at a single exci-

tation wavelength via spectral imaging and linear unmixing, as reviewed by Zimmermann

et al. [2003] and introduced for STED microscopy by Tønnesen et al. [2011], 2) when used

with monochrome specimens it boosted the signal by way of enhanced photon counting

statistics.

To measure the PSFs of the excitation and depletion beams, fixated gold nanoparticles

(diameter: 150 nm) were scanned and the back-scattered light detected with a channel

3The pinhole size was chosen to correspond to approximately 0.7 Airy units.
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photomultiplier (MD-963). For that a 50:50 pellicle beam splitter (BP145B1) could be

swung into the beam path when required. A large pinhole (size: 100µm), siting in a con-

jugate image plane, reduced the contribution of out of focus light to the PSF-measurement.

2.3.5 Setup for Live Cell Imaging and Electrophysiology

Mainly on grounds of convenience a commercial inverted research microscope (DMI6000

B) was used as a “front end“ for the LSM. Optical coupling was performed via a ded-

icated side port. The (DMI6000 B) came equipped with an epi-fluorescence condenser

and a transmitted light path in a fully automated system, designed for the life sciences.

The trans-illumination condenser arm was removed to give way to the uncaging setup de-

scribed earlier (cp. Sec.2.2.2). Oblique, diffuse illumination was installed instead using

an off-the-shelf light bulb or infrared (IR) light-emitting diode (LED), respectively, which

yielded sufficient through-light contrast for my purposes. A high N.A. glycerol-immersion

objective lens (HCX PL APO CS 63x/1.30 GLYC) was mounted on a piezo-stepper (PI-

FOC P-721.LLQ) to be able to acquire z-stacks at high repetition rates. One camera port

was equipped with a fast charged coupled device (CCD) camera (iXon DV885LC) to pro-

vide the option of wide field functional imaging with fluorescent reporters like calcium- or

voltage-sensitive dyes [Lang et al., 2006; Albantakis and Lohmann, 2009]. The experimen-

tal chamber (cp. Sec.2.1.6) fit onto a motorized x/y-stage, custom-built by the mechanical

workshop at the Max Planck campus in Martinsried.

Besides, the setup was prepared for future electrophysiological investigations. On that

account it was supplied with micromanipulators (Junior RE/LE System), stimulus isola-

tors for the injection of current and voltage pulses (A 360 and V-Stim), a microelectrode

amplifier (AxoClamp 2B) in combination with a laboratory amplifier (Model 410) for sig-

nal filtering and a noise eliminator (Hum Bug) to reduce 50/60 Hz hum, an oscilloscope

(HM507), and an IR sensitive CCD camera (KP-M2RP) at the DMI6000 B’s second cam-

era port, whose output was split between a liquid-crystal display (LCD) screen (UltraSharp

2001FP) and a video-to-universal serial bus (USB)-converter (DFG/USB2pro) connected

to the personal computer (PC) (cp. Sec.2.3.6). Data acquisition (DAQ) was conducted

with a custom software suite written in the LabVIEW programming language (courtesy of

Volker Staiger).
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Figure 2.4: DAQ Block Diagram. Solid lines represent electrical signals, dashed lines the
optical beam path. AO: analog output, Ctr: counter input, DO: digital output.

2.3.6 Operation of the Imaging Setup and Data Acquisition

As an interface to control the LSM and acquire images a PC (Precision T7500) was used.

Images were taken with the ImSpector software suite [Schönle, 2006]. External hardware

control was achieved via a peripheral component interconnect express (PCIe) plug-in card

(PCIe-6363) connected to equivalent breakout boards (BNC-2090A). The scan-head and

z-stepper were operated by analog voltage signals, beam-shutters by digital (TTL) signals.

Detectors were connected to digital inputs, set-up as on-board counters, in the case of the

SPCM-AQRH-13-FCs, and to an analog input in the case of the MD-963. Fig.2.4 shows

an overview of the routing for DAQ. Raw data were stored in .msr-files, a binary format

inherent to ImSpector. For post-processing images were manually exported to 8−bit gray-

scale tagged image file format (TIFF) files.

2.4 Electron Microscopy of Fixed Tissue Slices

To reconstruct post-synaptic densities from EM images membrane cultures were fixed

after 15 to 20 DIV at 4 ◦C for 12− 60 h in Fixative. Processing for EM followed standard

procedures according to Knott et al. [2009]. In short, osmication was conducted in OSO4

(1 % in 100 mM sodium cacodylate) for a period of 40 min. Slices were then washed 3
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times in distilled water and dehydrated consecutively in 50 %, 70 % and 2 times 100 %

ethanol, each for 10 min. They were washed for another 10 min in propylene (100 %) and

equilibrated in propylene oxide (epoxy resin (ER), 100 %) for 24 + 2 h, before they were

embedded in Resin for 48 h at 60 ◦C. Embedded tissue was cut into ultra-thin serial sections

(dimensions: 150 x 250 x 0.07µm3) using an ultramicrotome (EM UC6). Samples were

counterstained in a slide stainer (Ultrastainer) with uranyl acetate (0.5 %) and lead citrate

(3 %). Images were obtained at a commercial transmission electron microscope (TEM)

(JEM-1230), equipped with a SC1000 ORIUS CCD camera, using the DigitalMicrograph

image acquisition and processing software. I employed the free software Reconstruct [Fiala,

2005] to first linearly align serial EM images (magnification: 50’000x), identify and count

synaptic connections from 6 randomly chosen regions of interest (ROIs) and finally render

3D surface reconstructions of potentially non-macular PSDs.

2.5 Processing of Raw STED Images

8−bit TIFF files were edited with two bundled distributions of the public domain program

ImageJ [Abràmoff et al., 2004], MBF-ImageJ [Collins, 2007] and Fiji [Schindelin et al.,

2012], either manually or using batch processing using custom-written code in the ImageJ

Macro Language. The following analysis tools and plugins have been applied:

• Addition of related color channels of monochrome specimens

• Rendering of maximum intensity projections (MIPs)

• Background subtraction (rolling ball)

• Clipping of the dendrite signal

• Contrast stretching and histogram normalization

• Median filtering (radius: 1 px)

• Creation of sorted time series

• Registration with the Linear Stack Alignment with SIFT plugin

• Annotation

Distance measurements were taken from unprocessed MIPs.
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2.6 Analysis of Spine-Neck Dimensions after Chemi-

cal LTP

After image processing (cp. Sec.2.5), spines were identified in MIPs of the image stacks,

whose neck was clearly visible at each time point of the imaging session. Using MBF-

ImageJ [Collins, 2007] cross-sectional profile plots of necks were compiled for each time

point, averaging 3 px perpendicular to the necks’ long axis, and saved to formatted text

files (tab-separated values). With custom written routines in the Python programming

language, Gaussian functions were fitted to the profile plots and their full width at half

maximums (FWHMs) taken as measures for the corresponding spine-neck widths. The

average of consecutive measurements, two before and four after pharmacological stimula-

tion (cp. Sec.2.1.6), were computed for each spine-neck to form pre- and post-stimulus

populations of neck widths, which were then compared by means of their median values.

2.7 Analysis of Spine Morphology after Light-Induced

Plasticity

Annotation of Spines. In the first step, individual spines were tagged in average in-

tensity projections of registered time series. Identified spines were then visually inspected

at each time point with MBF-ImageJ [Collins, 2007] and annotated in appendant MS

Excel files. Measurements of spine dimensions, if any, were performed on MIPs and ex-

ported to formatted text files (tab-separated values). Preferably impartial categorization

criteria, considering absolute and relative proportions of spine dimensions, are summa-

rized in Fig.2.5. They were based on former EM and light microscopy studies [Peters and

Kaiserman-Abramof, 1970; Harris et al., 1992; Nägerl et al., 2008] and comprised spine

morphology, head shape, as well as total spine length (stubby spines were considered long

if L > 0.5µm and short if L ≤ 0.5µm; thin / mushroom /filopodial spines were considered

long if L > 1µm and short if L ≤ 1µm). Branched spines were highlighted and counted

as two separate heads. If in doubt or non of the classification criteria fit, a spine was

registered ambiguous. For quantification, spines that belonged to the ambiguous class in

all frames were not incorporated in the analysis, as well as spines, that were not visible in

all frames. The latter occurred, when a spine had moved out of the imaging plane.
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Figure 2.5: Spine Classification. A Annotation of spines was based on morphological
criteria. A spine fell into one of the main categories in the first row (thin / mushroom / stubby
/ filopodia) and was then further classified according to its head shape and total length, so for
example a stubby spine could still be considered cup-shaped. If in doubt, the ambiguous class
applied. L: total spine length, dh: spine head diameter. dn: spine neck diameter. B Examples
of spine classification; a: ambiguous, f: filopodium, m: mushroom spine, s: stubby spine, t:
thin spine; the blue arrow indicates a cup-shaped head. Scale bar: 1 µm.

Statistical Analyses. Annotations were imported to MATLAB and analyzed with cus-

tom routines. Spines were sorted according to their main category, their head shape and

their total length. First, the time course of spine morphing was analysed. To compute the

relative amounts of spines in each category, they were pooled according to frame number,

and the respective averages, as well as standard error of the means (S.E.M.s) of these

collections determined. In a second step, morphological changes were evaluated statisti-

cally on a population level. To compute pre- and post-stimulus populations of spines in

each categorical class, the respective fractions were rendered for individual experiments at

each frame, and 3 baseline points, as well as 5 time points after stimulus application were

averaged (cp. Fig.2.1). The resulting values were pooled according to spine class. Their

distributions were compared with respect to statistical equivalence of the means between

pre- and post-stimulus populations. For that, unpaired two-sample t-tests were conducted,

where differences were considered significant, if the p-value was below 0.05. Different ex-

perimental conditions were analysed separately. To analyse stable spine fractions and the

amount of spines changing morphology between time point 20 min and 30 min, respective

values were determined from the sorted annotations for each individual trial and averages,

as well as S.E.M.s computed for treated and untreated slices, respectively. Resulting distri-

butions were compared with two-sample Kolmogorov-Smirnov tests, where differences were
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again considered significant, if the p-value was below 0.05. Significance levels throughout

the current thesis: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Chapter 3

Results

3.1 Characterization of the LSM

Before biological experiments could be realized, the custom imaging system’s characteristics

had to be defined. For that, I decided to follow three steps: first, the physical, optical

features had to be identified, next, a simple study in live tissue helped to familiarize with

the system, and finally, I probed its performance in comparison to EM.

3.1.1 Resolving Power

After careful alignment of the imaging optics, the two laser beams of the excitation and

depletion sources had to overlap in 3D. This was routinely checked at the beginning of

an experimental session by scanning spherical gold nano-particles (cp. 2.3.4). Resolution

improvement due to a STED effect was tested in a sample of fixated yellow-green fluorescent

beads (FluoSpheres, Carboxylate-Modified Microspheres, 0.04 um), adherent to a glass

coverslip [Wurm et al., 2010]. The actual resolving power of the LSM was dependent on

depletion intensity, penetration of the specimen and the fluorescent reporter used to mark

features of interest. Best results in live tissue were obtained with a fluorescent Lifeact

fusion [Riedl et al., 2008] examining cellular structures close to the coverslip (distance

< 10µm) using a STED power of 35 mW in the BFP1.

Fig.3.1.A shows examples of cross-sectional views along three orthogonal spatial planes of

1Higher de-excitation intensities resulted in improved resolution, but also increased photodamage to
untolerable extent.
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Figure 3.1: PSFs of the Imaging System. A Excitation and depletion PSFs in cross-
sectional view along orthogonal planes. Scale bar: 0.5 µm. B Comparison of confocal and
STED imaging of fluorescent microspheres. Scale bar: 1 µm.

the excitation and depletion PSFs, respectively: The excitation PSF appeared circular and

more or less symmetric in the focal plane and exhibited a typical elongated shape along

the optical axis [Diaspro et al., 2006]; extended side lobes were present above and below

the axial focus in the x/z- and y/z-planes, pointing to spherical aberrations of the imaging

system [Deng et al., 2010]. I tried to reduce them to a minimum adapting the correction

collar of the imaging lens [Urban et al., 2011]. The excitation volume was determined to

extend 205± 7 nm in the focal plane and 509± 11 nm along the optical axis.

Slight spherical aberrations were also present in the depletion PSF (cp. x/z- and y/z-

planes). Besides, it displayed an asymmetry in the lateral dimension. Deng et al. [2010]

ascribed similarly asymmetric toroidal intensity distributions to astigmatism of the optical

system. Sources of astigmatic aberrations can, in general, relate to grinding and polishing of

optical parts with respect to frictional side pressure, to poor lens centration, misalignment

of optical components along the beam path, or to tension on reflective surfaces [Mahajan,

2011]. So far, I was not able to reliably identify the sources of astigmatic aberrations in the

implemented imaging system. Since they did not severely affect the resolution obtained

(see below), they were not investigated thoroughly.

The quality of the intensity zero, a prominent feature of the depletion torus, had to be

determined differently, due to its dependence on the circularity of the light’s polarization

[Keller, 2006]. The pellicle beam splitter, introduced to image back scattered light (cp.

2.3.4), altered particularly this characteristic and had to be taken out of the beam path not

to disturb the measurement. I took the relation of fluorescence intensities in confocal and
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Figure 3.2: Determination of the Resolution of the STED-LSM. A Comparison of
confocal and STED imaging of living neurons, labeled with Lifeact::EYFP via viral injection.
Scale bar: 1 µm. B Lorentzian fits (solid lines) to 3 px wide profile plots (dashed lines) through
the spine neck highlighted in A with the blue line. STED improves the resolution roughly by a
factor of 3 when comparing the FWHMs of the fitted curves.

STED images as a qualitative gauge for wavefront pattering: if a structure imaged with

STED appeared significantly darker than imaged confocally, the central minimum of the

depletion PSF was not low enough to allow for sufficient spontaneous light emission and

the fluorophores were quenched over the whole excitation volume. In experiments imaging

yellow-green fluorescent beads at an excitation power of 3µW and a depletion power of

15 mW (both measured in the BFP of the imaging lens), I determined an empirical value

of below 20 % signal loss to be reasonable; Fig.3.1.B shows an example of the resolution

improvement due to STED in a fluorescent bead sample.

The effective resolution obtained in live tissue with the current STED-LSM is illustrated

in Fig.3.2. A three pixel wide line profile of a spine neck was plotted from confocal and

STED images, and Lorentzian functions fit to the data points. Their FWHMs served as a

measure for the resolution. I gained a resolving power of at least 77 nm with STED imaging

(excitation power: 6µW, depletion power: 35 mW, both in the BFP), a roughly three-fold

increase compared to the best confocal resolution measured (232 nm)2. Even though better

STED-resolutions had been reported down to 60 − 66 nm in various biological specimens

[Willig et al., 2006; Hein et al., 2008], the estimated value for the present system compared

very well to published data from living cells labelled with fluorescent proteins (77− 80 nm,

[Nägerl et al., 2008; Tønnesen et al., 2011]). In general, resolution can be tuned with

depletion power and will have to be weighed against phototoxicity and photobleaching,

2This is about 10 % above Abbe’s theoretical resolution limit for green light of 532 nm wavelength,
which corresponds to 205 nm.
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Figure 3.3: Change of Spine Neck Dimensions in Response to Chemical LTP –
Examples. A Time-lapse series exemplifying the dynamics of spine stalks during cLTP; the
dashed line marks the pharmacological induction of LTP. Scale bar: 500 nm. B Intensity profiles
(3 px average) indicated by the blue lines in A at time points 0 and 60 min with Gaussian fits
to determine respective diameters of the spine neck.

which is much less of an issue in fixed specimens labelled with synthetic dyes.

Imaging speed depended on photon counting efficiency. In specimens bright enough for

experimental usage, photon counts above about 50 cpp resulted in a sufficient signal to

noise ratio to give acceptable contrast. Therefore, pixel dwell times of 10 − 30µs had to

be applied. Given a typical FOV of 30 x 30 µm2, a Nyquist-Shannon compliant pixel size

of 30 x 30 nm2 and four z-planes to cover dendritic stretches in 3D, I obtained frame rates

of 40 − 120 s. Subsequent z-planes were usually separated 750 nm to gather fluorescence

from non-overlapping sections. Faster frame rates were attained by reduction of the FOV,

keeping pixel size and dwell time constant.

3.1.2 Applicability to Neurobiology

Spine Neck Width in Response to cLTP. As a first proof of principle study, I de-

cided to investigate spine neck dimensions with respect to the induction of cLTP. In total,

four organotypic slice cultures of transgenic mice pups were used for the study after 14 to

96 DIV. Of these, three slices were treated as described in Sec.2.1.6 and one served as a

control, i.e. no TEA (Tetraethylammonium, Et4N
+) was added to the bath. This cation
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Figure 3.4: Change of Spine Neck Dimensions in Response to Chemical LTP –
Summary. A Comparison of pre- and post-stimulus populations (median ± standard error).
cLTP: n = 12 spines; control: n = 9 spines. B Cumulative histogram of neck widths, pooling
all measurements together (cLTP + controls); n = 126 measurements.

blocks potassium channels in post-synaptic terminals [Hille, 1967] and has been shown to

pharmacologically induce LTP at hippocampal CA1 synapses in a calcium-dependent way

[Aniksztejn and Ben-Ari, 1991; Huber et al., 1995]. Twenty-one spine necks were analysed

(12 stimulated and 9 controls) following Sec.2.6. Fig.3.3 shows an example of a time-lapse

recording (A) and the estimation of spine neck diameters via Gaussian fit curves (B). To

determine pre- and post-stimulus populations, two baseline values and four measurements

after LTP induction were averaged from individual experiments.

Fig.3.4 summarizes the results: First, he cumulative histogram (Fig.3.4.B) subsumes all

neck widths measured, indicating 55 % of them to fall within the scope of super-resolution

imaging below 200 nm, and second, when normalized to the initial neck width, i.e. before

stimulation with TEA, a 17 ± 3 % increase in the median neck diameters became promi-

nent, whereas in the control cases no such change was noticed within the 5 % error range

(Fig.3.4.A). The modification of their neck widths is a proposed dynamic feature of post-

synaptic spines, potentially regulating molecular diffusion and therefore morphological and

functional plasticity [Van Harreveld and Fifkova, 1975; Fifková and Van Harreveld, 1977;

Fifková and Anderson, 1981].

At the same time I performed these experiments, Urban et al. [2011] published a similar

study on cultured slices labelled with a fluorescent Lifeact probe. The necks reported in

their publication were thinner than those quantified here by a factor of approximately 1.4

(170 nm vs. 119 nm), and they observed an increase in neck widths of 22 % on average

after chemical induction of LTP. Considering, that Lifeact is selectively assigned to the

cytoskeleton, smaller neck diameters are to be expected when compared to measurements
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on volume markers used in my experiments. The different label could also account for the

larger changes in neck width measured by Urban et al. [2011] in the wake of LTP: massive

recruitment of actin to widen the necks might not reflect the effective volumetric increase

happening, such that Urban et al. [2011] might have overestimated the actual changes. On

the other hand, they reported their imaging system to outperform my LSM with respect

to the achievable resolution by a factor of 1.2 (down to 60 nm). Therefore, it could as well

be me to underestimate the actual size adjustments, due to an overestimation of the spine

necks’ baseline extent.

All in all, these initial experiments confirmed the applicability of the custom LSM to neu-

robiological research. I was able to adapt state-of-the-art STED nanoscopy to the needs

of standard in-vitro assays and quantified spine neck changes with sub-100 nm resolution

in time-lapse recordings. As pointed out by Urban et al. [2011] an essential benefit of our

systems was gained by the use of a special objective lens (HCX PL APO CS 63x/1.30

GLYC), since the combination of glycerol immersion3 and correction collar allowed for

modest tissue penetration. Besides, telecentric mirror scanning turned out to be essential

for fast time-lapse imaging without noteworthy disturbances of the specimens, especially

regarding future electrophysiological studies.

A drawback of the actual implementation was the lack of temperature control of the bath

chamber. All experiments were carried out at room temperature, though physiological

conditions required 35 ◦C. Addition of temperature control is possible, but would mean a

further upgrade of the system. Simple filaments, heating up the experimental chamber, as

generally used in many labs, would not be sufficient here, since they introduce temperature

gradients in the bath, especially in the imaging area, where the lens poses a heat sink. As

a consequence, additional aberrations would arise, making corrections in a simple manner,

as by a collar, hardly manageable. Alternatively, incubation or environmental chambers

combined with a heated, temperature adapted imaging lens could solve this problem, but

are usually costly and inconvenient in the running.

Incubation of Roller Tube Cultures in Glass Bottom Dishes. Handling of stan-

dard roller tube cultures turned out an elaborate and error prone procedure performing

the trials described above (cp. Sec.2.1.6). Duplication silicone (Picodent Twinsil) needed

10− 15 min for setting. During that time cultured slices could not be perfused with ACSF

and had to reside in small droplets of Roller Tube Culture Medium. Though I kept them

3This means better refractive index matching of the immersion liquid and the tissue at reasonably high
N.A.
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Table 3.1: Quantification of Non-Macular PSDs in Organotypic Slice Cultures.

ROI Exc. Synapses Macular PSDs Non-Macular PSDs Non-Macular
Proportion

1 16 12 4 0.25

2 11 7 4 0.36

3 9 7 2 0.22

4 10 8 2 0.20

5 14 9 5 0.36

6 6 5 1 0.17

Total 66 48 18 0.27

warm at 35 ◦C, the pH of the medium could hardly be controlled. In addition, great care

had to be taken, to prevent desiccation of the slices. I therefore developed an alternative

preparation protocol to culture hippocampal slices in glass bottom dishes together with

the technical staff in the Bonhoeffer lab (see Sec.2.1.2). With that I was able to drop

the intermediate step of pasting slices on coverslips into an experimental chamber, which

saved me about half an hour between subsequent imaging sessions and induced less stress

on neurons. Therefore experimental throughput, measured by the number of slices that

survived a whole imaging session, could be boosted by 66 % (from three to five slices per

day). I observed no differences in the quality of organotypic slice cultures prepared one or

the other way, cells displayed comparable morphological characteristics (size of cell body,

amount of dendritic branching, spine density). Roller tube cultures in glass bottom dishes

were incubated for extended periods of time of up to 6 weeks.

3.1.3 Post-Synaptic Density: A Comparison of EM and STED

Imaging

To assess, whether STED nanoscopy represents an appropriate methodology to investigate

the structure of PSDs, I first quantified the proportion of non-macular shapes in my model

system. For that, an organotypic tissue explant was processed for EM as described in

Sec.2.4. At six randomly chosen regions of interest (ROIs) I identified excitatory synapses

and quantified the fraction of non-macular PSDs, i.e. those electron dense structures
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Figure 3.5: Comparison of STED-LSM with EM. STED image of fluorescently labelled
PSD (PSD-95::EGFP). The dendrite signal was removed in the background subtraction step
of the post-processing of the image for better visualization of the relevant features. Inset
Simulated image from EM reconstructions scaled to size (details in the text). Colored circles
highlight structures of similar shape in both pictures. Elongated PSDs presumably represent
those oriented perpendicular to the focal plane. Scale bar: 3 µm.

that displayed perforations; the results are summarized in Tab.3.1. Accordingly, about

one third (27 %) of excitatory synapses in CA1 stratum radiatum appeared perforated or

non-macular in organotypic slice cultures after 17 DIV. Former EM studies reported non-

macular fractions between 12 % in dissociated neuronal cultures after 12 DIV [Neuhoff

et al., 1999] and 70 % in acute hippocampal slices from adult rodent brains [Stewart et al.,

2005]. In hippocampal slice cultures of neonate rats Toni et al. [2001] found 22.4 ± 2.3 %

of Schaffer collateral synapses to be perforated after 12 DIV, which fits very well to my

rough assessment.

I then reconstructed the identified perforated assemblies from each region of interest (ROI)

in 3D to get an idea of their dimensions and shapes, determining the average extent of

a perforation to be 65 ± 5 nm, and therefore slightly below the resolving power of the

LSM (cp. Sec.3.1.1)4. Nevertheless, I convolved a two dimensional / two dimensions (2D)

4Value corresponds to mean ± S.E.M..
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projection of those reconstructions in their original orientation with a Gaussian kernel

(FWHM: 75 nm), to get a blurred image of the structures, “simulating“ fluorescence laser

imaging; the inset in Fig.3.5 shows the outcome of this procedure. Taking into account

the random orientations of synapses in a piece of tissue, I estimated one third of complex

PSDs, i.e. about 10 % of all PSDs, in a piece of tissue to be detected with the custom

STED microscope.

In Fig.3.5 I show an example of a STED image of fluorescently labelled PSD-95 taken in

a tissue slice after 19 DIV. Most of the PSDs seemed to be elongated structures, but a

few (encircled) resembled similar morphologies to those non-macular assemblies found with

EM (cp. inset). As to be expected, circular perforations were not clearly visible. However,

according to the predictions above, I was able to verify complex structured PSDs with

STED imaging.

This shows, that STED nanoscopy can be beneficially employed to study PSDs in live

tissue, though there is still room for optimizations to reliably resolve perforations. For

time-lapse imaging, photobleaching poses a major problem to study PSD-dynamics. Unlike

volume markers, where bright dye molecules continuously replace faded fluorophores via

diffusion, PSD-95 proteins have a relatively slow molecular turnover in the range of a few

hours [Okabe et al., 1999; Gray et al., 2006]. In my hands, the brightness of the PSD-

95-GFP fusion went down by about 50 % in the wake of STED illumination, such that

after a maximum of three to five frames hardly any information could be extracted from

STED-images.

3.2 Local Induction of Spine-Plasticity

Following the experimental paradigm described in Sec.2.1.6 and Sec.2.2.2 I induced mor-

phological spine plasticity in 37 pyramidal cells of hippocampal CA1. Cultured tissue slices

from transgenic animals (Thy1-GFP-M mice [Feng et al., 2000]) were used after 7 to 20

DIV. Fourteen additional slice cultures served for control conditions, where in eight cases

a photo-stimulus was applied without caged glutamate being present in the ACSF, and

in six cases no photo-stimulus was applied when caged glutamate had been added to the

bath. Typically a set of control slices preceded a set of stimulated ones in a test run, to

reduce batch related variabilities. Not taking into account spines, that had not been visi-

ble, or those, that had fallen into the ambiguous class throughout the whole experimental

session, I incorporated in total 1505 stimulated and 517 control spines to my analyses (see
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Sec.2.7). Spine density was measured to be 1.18 ± 0.05 spines/µm (see Appx.A), which

corresponded well to published values from primary cultures (13.1 spines/10 µm [Izeddin

et al., 2011]) and moreover from hippocampal organotypic slice cultures (1.3 spines/µm,

[Oe et al., 2013]), as well as from in-vivo quantifications in the transgenic mouse line used

(1.4 spines/µm [Oe et al., 2013]).

Fig.3.6 shows a classic example of a stimulated neuron as imaged with the STED system

in time-lapse recordings. After 3 baseline images a light stimulus released glutamate in a

localized spot around the center FOV. Consistently, I focused on main apical dendrites at

a distance of their first or second branch point from the soma. After stimulation imaging

went on at a 10 min interval for another 50 min. Alongside spontaneous movements of

spines, clearly stimulus related dynamics, mainly volumetric enlargements, could be ob-

served in response to the photolysis reaction. In contrast, when no caged glutamate was

present, the light stimulus did not induce additional dynamics (cp. Fig.3.7). The same

held true for control slices with caged glutamate in the bath, but no photo-stimulus ap-

plied. Further analyses focused on the morphological changes of individual spines, as well

as overall modifications of the fractions of different morphological criteria, particularly of

total spine size, spine classification and head shape. For that, frames to confirm successful

photolysis of MNI-glutamate taken directly after the stimulus had been applied (stim1 and

stim2 in Figs.3.6 and 3.7), were not considered, as they were out of line with the regular

time-lapse interval.

3.2.1 Tracking of Morphological Changes over Time

Following Sec.2.7 spine morphology was captured and documented in living tissue under

treatment and control conditions. The results are compiled in Fig.3.8, where all spines

investigated are displayed color coded according to their morphological category (A) and

their head shape (B), respectively, for each time point imaged. Traces were sorted to make

interpretation of the results easier. Several aspects of the data could be discerned from

these graphs at a glance. A quantitative analysis of changing fractions on a population

level follows in the subsequent sections.

The first prominent features were stable fractions, i.e. spines which did not change through-

out the whole experimental session. They are subsumed in Fig.3.9. Starting from compa-

rable distributions of morphological categories, in both, treated and untreated slices (cp.

time 0 min in Fig.3.8), the largest proportion of stable spines belonged to the mushroom

class (dark blue), making up a quarter in approximation of the spines examined (cp. Fig.3.9
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Figure 3.8: Tracking of Spine Morphology over Time. Sorted traces of individual spines as
classified by visual inspection at each imaging time point for uncaging and control experiments
(both control conditions pooled together), respectively. The dashed lines mark the stimulus. A
Morphological main classes; M: mushroom, T: thin, S: stubby, F: filopodia, A: ambiguous. B
Spine head shapes; b: bulbous, c: curved, s: spinules, F: filopodia, A: ambiguous (the latter
two lacked a classifiable head).

panel A1). The next largest quota (roughly 10 %) was made up by stubby spines (green)

irrespective of the treatment. A similar amount of thin spines (light blue) was stable in

controls, whereas in uncaging trials less thin spines (about two thirds compared to con-

trols) stayed within their category5. If related to their own subgroup (cp. Fig.3.9 panel

A2), it appeared that ≈ 79 % of thin spines, ≈ 44 % of mushroom spines and ≈ 38 % of

stubby spines changed shape during an uncaging session. In controls these fractions came

out as 58 % of thin spines, 47 % of mushroom spines and 41 % of stubby spines. Thus,

under control conditions, most of the thin spines were plastic and the least stable spines

5Filopodia and ambiguous proportions were neglected in this respect, since they were small.
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Figure 3.9: Stable Spine Fractions. Percentage of spines that did not change categories
throughout experimental sessions. A Morphological main classes. B Spine head shapes. The
upper panels (1) show ratios of the number of stable spines of a category over the total number
of spines analysed, the lower panels (2) display ratios of the number of stable spines of a
category over the number of spines that fell initially into the same category. Uncaging: n =
1505 spines, N = 37 slices; Controls: n = 517 spines, N = 14 slices.

were thin spines. On the other hand, most stable spines were mushroom spines, though

about half of them appeared plastic. With glutamate uncaging, even less stable spines

belonged to the thin category and the amount of initially thin spines changing shape grew

by 21 %.

Glutamate uncaging facilitated in addition dramatic spine head morphing in comparison

to the control conditions. This was reflected in a reduced proportion of stable heads (cp.

Fig.3.9 panels B1 and B2): 25 % of initially bulbous heads (dark blue) kept their shape

after glutamate uncaging, but 41 % in controls. On the other hand, the appearance of spine

head filopodia (= spinules, green) was rather infrequently detected (cp. Fig.3.8 panels B1

and B2) and hardly stable at all (cp. Fig.3.9 panel B1). Curved spines (light blue), were

as well highly dynamic throughout the testing period, their stable proportion was less than

2 % under all experimental conditions (cp. Fig.3.9 panel B1). Most stable heads had a

bulbous shape, irrespective of the treatment (≈ 18 % and ≈ 31 %, respectively).
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Figure 3.10: Stimulus Locked Changes in Spine Fractions. Percentage of spines that did
change categories after LTP induction. A Morphological main classes. B Spine head shapes.
The upper panels (1) show ratios of the number of changing spines of a category over the total
number of spines analysed, the lower panels (2) display ratios of the number of changing spines
of a category over the number of spines that fell into the same category before stimulation.
Uncaging: n = 1505 spines, N = 37 slices; Controls: n = 517 spines, N = 14 slices.

Another striking observation concerned stimulus related changes, meaning those from time

20 min to 30 min (cp. Fig.3.10). Though subtle, a larger amount of thin spines changed

to the mushroom category after the stimulus in treated slices than in controls (41 % vs.

23 %, cp. Fig.3.10 panel A2). In addition, the total amount of mushroom spines changing

to the thin category was markedly smaller than the total amount of thin spines changing

to the mushroom category in treated slices (4 % vs. 12 %), whereas in controls they were

more or less equal (5 % vs. 7 %, cp. Fig.3.10 panel A1). After glutamate uncaging also

a higher fraction of the “new“ mushroom spines kept their class, but in controls most of

them remained flexible (cp. Fig.3.8 panel A1). In essence, this indicated an evolution of a

subset of thin spines to mushroom spines due to glutamate uncaging, that is, the induction

of LTP.

Analogous observations were made for head shape changes directly after the light stim-

ulus. Whereas roughly 220 of 800 spines (28 %) altered their head shape from bulbous
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to curved in treated slices (≈ 20 % of all spines), that fraction in controls was less than

half as large (≈ 7 % of all spine heads and 10 % of initially bulbous heads, cp. Fig.3.10

panels B1 and B2). Though most of them in treated slices had turned back to bulbous

heads already 10 min later, this change made up the complete surplus of unstable spines

in treated slices when compared to controls (cp. Fig.3.8 panels B1 and B2). In controls

the amount of spines changing head shape from bulbous to curved was basically compen-

sated by the amount of spine heads changing from cup-shaped to bulbous (9 %), whereas

in treated slices the amount of bulbous to curved changes was nearly three-fold as large as

the amount of curved to bulbous changes (≈ 7 %, cp. Fig.3.10 panel B1). Remarkably, to

compensate the absolute changes in control slices, more than 50 % of the curved spines had

to alter their head shape (cp. Fig.3.10 panel B2). Posing a minor fraction also in treated

slices, ≈ 36 % of the curved spine heads changing to bulbous shapes did not outbalance

the opposed shifting.

Overall, most spines varied their head shape and morphological class quite recurrently and

sometimes in between all categories. This held true, again, for treated and untreated slice

cultures. Along the lines of Parnass et al. [2000] and Nägerl et al. [2008] my observations

support the idea of morphology being a highly dynamic characteristic of dendritic spines.

Therefore, structural classification might be much less predetermined than to be specu-

lated from former studies on fixed tissue [Peters and Kaiserman-Abramof, 1970; Harris

et al., 1992]. Also movements of spines were most common (see Figs.3.6 and 3.7): heads

were shaking or swirling around, necks bending and stretching. Here the strength of STED

nanoscopy became most obvious, as subtle morphological details like head curvatures or

head-to-neck-diameter ratios of a high number of individual post-synaptic compartments

could be traced in live cells over time.

An astonishing by-product of my study is depicted in Fig.3.11. Here I give examples of

developing branched spines, being observed at super-resolution in live dendrites. In both

cases, what was to become the second head started evolving from a protrusion in the ex-

isting neck. Within 20 − 30 min that protrusion appeared to grow to its final size and

even advanced a cup-shape in the case of Fig.3.11.A. Within another 20− 30 min the new

born head detached from the original neck to form an additional compartment. The pri-

mary head seemed to be rather unaffected from these processes and showed the typical

dynamics, i.e. subtle movements or head shape changes. In both cases the outgrowth of

the additional branch seemed to be completed at the last imaging point after 70 min. I

detected the outgrowth of additional heads in four cases.
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Other rare events included the vanishing of one branch of a multi-headed spine observed

in two slices, moving protrusions in spine necks, that could indicate molecular transport

(not quantified), and two spines stably “facing“ each other, potentially contacting the same

pre-synaptic bouton (four slices). Additionally, several three-headed spines were found and

events observed, where spines / necks seemed to wander along the dendrite, where spines

seemed to split up, or where two spines seemed to merge. All latter perceptions were not

a major consideration within the scope of the work at hand, and therefore not system-

atically investigated. Thus, their mentioning here is solely meant as a side note for the

sake of completeness. However, they yet again prove the power of super-resolution light

microscopy, as one can get a glimpse of what kind of phenomena come at reach by the

method.

The greatest handicap of my investigation was probably the limited resolution along the

optical axis, being no better than in a normal confocal system. I therefore may unwillingly

overestimate inter-class changes of spines, as I restricted my analyses to 2D projections

of 3D structures. A mushroom spine, for instance, with a head being elongated in only

one spatial domain, could be classified as thin spine, when inspected from the “wrong“

perspective. Else, very small mushroom spines, with necks shorter than their heads, could

be seen as stubby spines due to diffraction of light. This issue is intrinsic to my methodical

approach and can only be circumvented by 3D STED implementations (see for example

Hein et al. [2008]; Wildanger et al. [2009]) and Nyquist-Shannon compliant z-scanning.

Consequently, potential inter-class changes based on my data have to be interpreted with

great caution.

3.2.2 Effects on Classification of Spines

Further insight in the ongoing structural dynamics is gained, examining fractions of spines

belonging to the main morphological categories (thin, mushroom, stubby spines and filopo-

dia) as depicted in Fig.3.12. Panels A1 to A3 reveal the corresponding mean fractions over

time for the three different experimental conditions, panels B1 to B3 a comparison of

the matching pre- and post-stimulus population distributions, derived from averaging the

baseline and post-stimulus fractions of single experiments (cp. Sec.2.7). Hence, neither

the stubby spine section, nor filopodia went through significant changes during the trials,

regardless of the induction of plasticity. Stubby spines settled at a stable quota of almost

15 %, filopodia at about 5 % in all preparations.

However, proportions of thin and mushroom spines were altered after the photolysis of



62 3. Results

Figure 3.11: Development of Branched Spines. Two examples of spines branching to
grow an additional head as imaged with the STED-LSM. Scale bars: 1 µm.

caged glutamate in opposite directions: the thin fraction dropped from 30 % to 23 % on

average, whereas the mean mushroom fraction increased by the very same amount from

48 % to 55 %, both changes appearing to be highly significant on the population level and

becoming obvious right after the photo-stimulus had been applied. Potentially due to bio-

logical variability standard errors are large (±10 %), such that the changing fractions still

fall within their limits.

Starting at comparable baselines on average, no such modifications became obvious in con-

trols without caged glutamate addition (panels A2 and B2) and in controls with the caged

construct being present, but no photo-stimulus applied (panels A3 and B3). In the latter

case, the corresponding baselines on average exhibited a 5 % shift compared to the other

two experimental conditions. However, within the standard error range, this can most

probably as well be considered biological variance.

Baseline levels of categorical fractions in comparable tissue preparations were reported to

correspond well with my data: Roelandse et al. [2003] found 51± 11 % mushroom spines,

25± 4 % thin spines and 24± 11 % stubby spines in 4 organotypic hippocampal slice cul-

tures after 30 DIV; McKinney et al. [1999] on the other hand, found 24± 6 % mushroom,

34 ± 4 % thin and 42 ± 5 % stubby spines in 60 organotypic hippocampal slice cultures

after 14 DIV. Though both studies were performed on roller tube cultures, they support

the great biologic variability I have observed.
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Figure 3.12: Effects of Glutamate Uncaging on Main Spine Classes. A Fraction of
spines belonging to a morphological class in the lapse of time (mean ± S.E.M.). The dashed
lines mark the stimulus. B Comparison of pre- and post-stimulus populations. (1) Uncaging:
n = 1505 spines, N = 37 slices, (2) Controls: n = 387 spines, N = 8 slices, (3) Controls: n =
130 spines, N = 6 slices.
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Figure 3.13: Effects of Glutamate Uncaging on Spine Head Shapes. A Fraction of
spines belonging to a head shape class in the lapse of time (mean ± S.E.M.). The dashed lines
mark the stimulus. B Comparison of pre- and post-stimulus populations. (1) Uncaging: n =
1505 spines, N = 37 slices, (2) Controls: n = 387 spines, N = 8 slices, (3) Controls: n = 130
spines, N = 6 slices.
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3.2.3 Effects on Head-Shapes

Next, I investigated proportional modifications of spine head shapes. The results are sub-

sumed in Fig.3.13, again illustrating the corresponding mean fractions over time in panels

A1 to A3 and a juxtaposition of their distributions before and after stimulation in panels

B1 to B3. In accordance with the analysis of single spine tracking (cp. Sec.3.2.1), the ad-

vent of spinules was a rather rare event, as the proportion of spine heads growing filopodia

remained steadily below 5 % in all experiments conducted. A slight increase in the spinule

fraction was observed at a significance level of 5 % in treated slices and in controls lacking

the caged compound. This change was relatively small (1− 2 %) and did not reach beyond

the standard error range (±3 %).

Panels A1 and B1 show highly significant transitions in the proportions of bulbous and

curved spine heads, clearly related to the photo-stimulus. Already at the first post-stimulus

imaging point the number of cup-shaped heads doubled on average from an initial fraction

of 15 % to about 30 % and stayed at that level until the end of the trial period. Accordingly,

the quota of bulbous heads declined from 75 % to nearly 60 %. Again, the standard errors

are large (10−15 %), but are a minor concern against the backdrop of the population data

in panel B1. The upper and lower quantiles of respective pre- and post-stimulus distribu-

tions do not have any overlap and their means differ at a significance level of 0.1 %.

In the controls without glutamate being present, no prominent drop at time 30 min was

observed. However, their time course displays an approximately 5 − 10 % decrease in the

number of bulbous heads at time point 60 min, hardly compensated by a corresponding

increase in the curved fraction. When comparing population distributions, this is reflected

in a significant drop of bulbous heads in panel B2. Nevertheless, that is probably due to

the error range of the corresponding baseline (cp. panel A2) being unusually small when

compared to the other experimental conditions. In addition, I conducted analyses where

only the time points 30 min to 50 min served to make up the post-stimulus populations;

under those circumstances, no significant change could be verified in the controls, leaving

the results for the stimulated slices unaffected.

Under control conditions lacking the photo-stimulus (panel A3) I observed a gradual in-

crease of curved and a decrease of bulbous heads (10 % on average), both of which did

not prove statistically significant, and were therefore regarded biases of the experimental

paradigm. Since they were more pronounced in controls with caged glutamate being

present in the bath, it might very well be, that, though spectrally far from the ideal

uncaging wavelength, photolysis was partially induced by the imaging lasers. Persistent
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head changes are therefore hard to infer from the data at hand.

In the past, changing spine head shapes were investigated by Desmond and Levy [1986a],

who reported a proportion of 27.2 % of curved heads after LTP induction in detate gyrus

granule cells. Their controls exhibited about 20.7 % cup-shaped spine profiles in adult

rats. Roelandse et al. [2003] found a 50:50 baseline ratio of curved:round heads in cultured

hippocampal slices (roller tube cultures, after 35 DIV) and a 60:40 ratio in adult mice (6

weeks), focusing on CA1 pyramidal neurons. Both studies employed EM on fixed tissue.

3.2.4 Effects on Total Spine Size

In the course of annotating, spines were categorized into two distinct size classes: long

and short (stubby spines were considered long if their total length L > 0.5µm and short if

L ≤ 0.5µm; thin / mushroom / filopodial spines were considered long if L > 1µm and short

if L ≤ 1µm). Panels A1 to A3 in Fig.3.14 display the mean fraction of spines belonging to

each size class (± S.E.M.) over time for the three different experimental conditions probed.

Compared to the control cases, in stimulated slices the baseline fractions were “inverted“,

since more short spines than long spines were found. After stimulation, in all cases the

number of long spines exceeded the number of short spines. The time course of the mean

values showed a slight tendency toward an increase in the number of long spines of about

5 % (panels A1 and A2), whereas in panel A3 the fractions inspected were rather stable.

However, standard errors are large (10 − 20 %) and the overall impression left to the ob-

server is more a 50:50 balance of long and short spines irrespective of the experimental

condition. That is reinforced by panels B1 to B3, comparing pre- and post-stimulus pop-

ulations of the average length fractions from constituent experiments with boxplots (cp.

Sec.2.7). The main part of the spines imaged was quite evenly split between the long and

short class, again no matter what condition was taken into consideration. In controls, no

significant change was observed due to a potential stimulus. In “real“ experiments the

mean of the distributions changed at a significance level of 5 % in favour of larger spines,

which seems surprising, since stimulated spines followed a similar time trend as spines un-

der control conditions with no caged glutamate present. However, the latter do not change

significantly.

Taking into account the low significance level of the changes described for stimulated spines

and the large errors on the back of this, uncaging related modifications in spine size based

on my analysis are only weakly supported. Though former light-microscopic studies have

reported increasing spine lengths in response to cLTP [Hosokawa et al., 1995], I am not
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Figure 3.14: Effects of Glutamate Uncaging on Total Spine Size. A Fraction of spines
belonging to a size class in the lapse of time (mean ± S.E.M.). The dashed lines mark the
stimulus. B Comparison of pre- and post-stimulus populations. (1) Uncaging: n = 1505 spines,
N = 37 slices, (2) Controls: n = 387 spines, N = 8 slices, (3) Controls: n = 130 spines, N =
6 slices.
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convinced at this point, to have observed any effect. Further investigations are neces-

sary, including a continuous length measure. In addition, a distinction between transitions

in spine neck and head dimensions could give more conclusive insights into the ongoing

processes. Still, manual quantification of these characteristics are tedious and have there-

fore not been considered an option for the time being. Automated analyses unfortunately

failed, because suitable, rigorous algorithms for feature detection in low contrast images

were missing. One has to pay great attention, when processing imaging data, as most

operations improving the signal-to-noise affect distance measures and result in non-linear

representations of the data. In contrast, the most efficient feature detectors work best on

deconvolved, noise filtered, contrast enhanced images [Rodriguez et al., 2008]. From what

I have learned, even specialized, expensive proprietary image analysis tools like Bitplane’s

Imaris have trouble to reliably track spines over several images, at least when processing

my data.



Chapter 4

Discussion

4.1 Evaluation of the Methodical Approach

In the previous chapter I gave experimental proof of my efforts to set-up a STED

nanoscope, adapted to the needs of neurobiological in-vitro research. I gathered super-

resolved images of living neuronal structures in longitudinal experimental sessions, keeping

cultured hippocampal slices intact for an elapsed time of 1.5 h. The resolving power of the

custom optical design stood within the limits of the latest state of the art for live tissue

imaging published by other labs [Nägerl et al., 2008; Tønnesen et al., 2011]. With this,

I was able to follow rapid morphing of dendritic spines, and detected drastic changes of

their structural features in response to locally induced NMDAR dependent plasticity or

widespread cLTP. Also, sub-wavelength structural details of PSDs could be resolved in live

tissue and were correlated to EM recordings.

One advancement for the investigation of cultured brain slices at super-resolution, made

within the course of the current thesis, was the development of a modified protocol to

incubate roller tube cultures in glass bottom dishes (cp. Sec.2.1.2). I anticipate this pro-

cedure to become the standard method for slice cultures to be used in conjunction with

nanoscopic imaging at inverted microscopes, as it keeps growing slices directly on a glass

substrate, a major benefit of Gähwiler’s original idea [Gähwiler, 1981] with respect to pen-

etration depth, scattering or aberrations of the imaging light1, but it obviates the need

1Using membrane cultures for the most part of my work, I had to compensate for these issues by turning
the slices upside down.



70 4. Discussion

for elaborately pasting coverslips into an experimental chamber before an imaging session.

Therefore higher throughput of trials can be yielded and the easier handling makes slice

treatment less stressful for cells, i.e. less discard is created. Moreover, slices are accessible

to micro-electrodes enabling electrophysiological experiments. In addition, they can nearly

as easily be stained or genetically targeted as primary cell cultures by standard laboratory

techniques using antibodies, biolistics [McAllister, 2000], SCE or viral injection. Also in-

situ fixation, subsequent to an imaging session, should be feasible without serious problems

and poses an interesting option for combined LSM-EM experiments, especially in view of

near infrared branding (NIRB) [Bishop et al., 2011].

Local stimulation of dendrites using (near) UV photolysis of caged compounds appeared

yet again a powerful supplement to light-microscopic techniques. I implemented a simple

and cheap version of this prominent method, which is much less invasive than electrical

and as easy to apply as chemical stimulation. Though its 2PE derivative holds the option

to interfere with neurons at single synapse resolution, I see its strength in taking effect

on intermediate spatial scales. In that sense, a local stimulus covers short stretches of

dendrites within the FOV. If applied to opto-genetics2, with the current system channel-

rhodopsin assisted synapse identity mapping (CASIM) (see Gökçe [2013]) could be pushed

to nanoscale resolution or spine plasticity studied at those particular synapses, that receive

an actual input from the real network. Calcium imaging or electrophysiological recordings

could provide a functional readout and have both been incorporated to the system already.

However, the present setup still contains several issues for improvement, the most straight

forward probably comprising the implementation of nanoscale 3D sectioning with a second

de-excitation PSF, patterned like a donut in the x/z and y/z focal planes [Klar et al.,

2001]. As well, due to its one-photon character, the STED-LSM is fundamentally limited

to a penetration depth of approximately 50µm, which puts a constraint on the specimens

to be used. Stimulated emission by two-photon absorption should admittedly be possi-

ble in theory, but I am not aware of any practical implementation, presumably due to a

very low cross-section of such a transition bringing about immense energies to saturate the

process. Still, the combination of 2PE with one-photon STED in the red spectral region

have at least tapped into acute slice preparations [Ding et al., 2009; Bethge et al., 2013;

Takasaki et al., 2013]. Next, as pointed out in Sec.3.1.2, the current setup was designed for

investigations at room temperature; ways to adapt it to physiological conditions have been

suggested there. A further intrinsic drawback of STED imaging is its reliance on high light

2One could for example selectively target CA3 axons with Channelrhodopsin-2 [Nagel et al., 2003].
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intensities of several hundred MW/cm2, giving rise to phototoxicity and photobleaching.

The advent of new probes, especially designed for efficient and reversible on- / off switch-

ing, will hopefully provide a remedy in this respect (see for example Testa et al. [2012]).

As for its aptitude to image specimens labelled with multiple colors, the present LSM is

limited to green / yellow fluorescent reporters, i.e. GFP, YFP, or Fluorescein derivatives

like Alexa Fluor 488 (Life Technologies), Atto 488 (ATTO-TEC), Oregon Green 488 (Life

Technologies), and so on. The major constraint is posed by the laser pair employed for de-

/ excitation. If one wanted to stick with this combination of light sources (cp. Fig.1.6), it

could be feasible to use fluorescent dyes with an emission maximum closer to the 592 nm

line of the depletion laser, if the contribution of anti-Stokes excitation (AStEx) by the

STED beam to the (background) fluorescence signal can be effectively subtracted or fil-

tered from respective images. Besides a method introduced by Vicidomini et al. [2012]

based on time-correlated single photon counting (TCSPC)3, frequency dependent lock-in

detection (ModSTED) [Ronzitti et al., 2013] could be a quick way to achieve this: intensity

modulations imposed onto the excitation light leave a traceable signature on fluorescence

emission; hence, excitation induced fluorescence can be distinguished from the AStEx in-

duced fluorescence. Modifications necessary to implement ModSTED at the actual imaging

system are potentially reduced to a lock-in amplifier in the detection unit, since the exci-

tation pathway has already been equipped with a modulator (cp. EOM in Fig.2.2).

4.2 Local Induction of Morphological Spine Plasticity

Spine motility and morphological changes associated with synaptic long-term plasticity are

exceptional attributes of living brains, and might very well represent the cellular correlates

of learning and memory consolidation [Maletic-Savatic et al., 1999; Engert and Bonhoeffer,

1999]. Classically, plasticity can be induced in CA1 pyramidal dendrites of the hippocam-

pus by LTP protocols applied to Schaffer collateral synapses (see Bliss and Collingridge

[1993] for review). It is mediated by NMDA receptors, when strong influx of calcium

ions activate signalling cascades via phosphorylation processes [Collingridge et al., 1988].

Besides extensive investigations utilizing EM, a considerable number of light-microscopic

studies have exposed drastic alterations of dendritic spine structure related to LTP (see for

instance Bosch and Hayashi [2011] for review). Morphological changes comprise spine en-

largement [Van Harreveld and Fifkova, 1975; Hosokawa et al., 1995; Matsuzaki et al., 2004;

3This advanced detection scheme usually involves the need for expensive hardware.
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Okamoto et al., 2004; Kopec et al., 2006; Zhang et al., 2008], widening of the stalk [Fifková

and Anderson, 1981; Urban et al., 2011], larger and more perforated PSDs [Desmond and

Levy, 1986b; Calverley and Jones, 1990; Harris et al., 1992; Toni et al., 2001; Stewart et al.,

2005; Meyer, 2013], more bifurcated spine-heads and multi-synapse boutons [Trommald

et al., 1996; Toni et al., 1999; Fiala, 2005], a gain in spine density, i.e. an outgrowth of new

spines, [Andersen and Soleng, 1998; Maletic-Savatic et al., 1999; Engert and Bonhoeffer,

1999; Kwon and Sabatini, 2011], as well as the formation of spine-head filopodia [Richards

et al., 2005; Tao-Cheng et al., 2009] and an increase in the number of concave spine heads

[Desmond and Levy, 1986a] (also see Sec.1.2.3).

In the work at hand, I have provided evidence of structural transformations of spines in

live tissue, time-locked to the local photolysis of caged glutamate, resembling a prototypi-

cal plasticity induction protocol. Shape changes have been classified according to approved

criteria [Peters and Kaiserman-Abramof, 1970] and quantified over time. Conveniently, the

application of STED nanoscopy has enabled me to reveal changes at sub-100 nm resolu-

tion. Though the real advantage of light microscopy – to be able to conduct individual

measurements on a specimen over time to track single transitions instead of quantify-

ing random samples of whole populations – does not come into effect with the statistical

analyses applied to my data, it entails important information about the reliability of the

method. Because it tailors the results of individual traces to overall proportions, they can

now be compared with studies based intrinsically on population data, like previous EM

experiments.

Thin spines have proven fewest of all to be stable, at the same time holding the largest dy-

namic percentile. After LTP induction a 7 % growth in the amount of mushroom spines has

been observed at an equal expense of thin spines. The shift has been locked to the stimulus

and stable over time. No such transitions have been found under control conditions. That,

plus the high statistical significance of the changes, outbalances the large error range of

my data and indicates uncaging related modifications in spine classification. Furthermore,

I have determined a 10 % increase in the proportion of cup-shaped spine heads balanced

by an equivalent decline in bulbous ones. Controls have shown a substantially different

time course, and dissimilar relations of the pre- and post-stimulus distributions, however,

curved heads have hardly turned out to be stable in the lapse of time. Though subtle,

population differences have statistically proven highly significant. Hence, I am confident

to consider the induction of cup-shaped spine heads due to glutamate uncaging a genuine

effect. In addition, I have been successful to observe a few occurrences of spine branch-
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ing and have infrequently detected the outgrowth of spinules, neither of them particularly

locked to potentiation, though. Corresponding time courses have been hardly different in

slices under treatment and controls, respective statistics are weak and inconclusive. The

findings of Richards et al. [2005] support my observations of spinules being a rather rare

phenomenon; they reported the occurrence of less than 1 spine head filopodium per 10µm

dendrite per hour in organotypic slice cultures after over six weeks in-vitro in response

to glutamate iontophoresis. Although Schätzle et al. [2011] examined spinules in much

higher quantities (up to about 50 %), their pharmacological induction protocol affected

muscarinic acetylcholine receptors, i.e. molecular pathways potentially different from the

glutamatergic system addressed by my experiments. Their baseline levels, on the other

hand, compare quite well to my data (< 5 %, see Sec.3.2.3): they reported 2.87 ± 2.09 %

spinules in hippocampal slice cultures of transgenic mice after at least three weeks in-vitro.

4.2.1 Rapid Spine Motility

With super-resolution time-lapse imaging I have examined great frame-to-frame variabil-

ity in spine head shapes and overall structure, as well as massive movements like bending

necks and swirling heads. Though its function is still a mystery, rapid spine motility has

been discovered to occur throughout the whole CNS by in-vitro [Dunaevsky et al., 1999;

Parnass et al., 2000; Nägerl et al., 2008] and in-vivo [Lendvai et al., 2000] studies. It has

been found to be developmentally regulated and the underlying molecular mechanism to

be actin-dependent, as reviewed for example by Matus [2000].

My observations heavily support the idea of morphology being a continuous characteris-

tic of dendritic spines suggested by Parnass et al. [2000] and Arellano et al. [2007]. A

strict distinction of segregated subtypes leaves the misleading impression of static synaptic

compartments and therefore completely ignores their consecutive morphing within a con-

tinuum of intermediate shapes. Nevertheless, classic categorization of spines according to

morphological criteria has its pragmatic virtue: in my analysis, it has promoted tracing

the overall dynamics of a large number of post-synaptic compartments (> 2000 spines)

in relatively short time (≈ 100 h). In contrast to exact dimensions, different shapes have

been relatively easy to grasp by human annotators, potentially because our visual system

is extraordinarily well trained in such a task. Beside my own experience with automated

feature detection in low contrast fluorescence images (see Sec.3.2.4), this is known from

EM reconstructions, where human annotation has been shown to perform superior to au-

tomated algorithms [Helmstaedter, 2013].



74 4. Discussion

How do correlations of spine structure and function, that have been reported in the past,

such as an equivalence of the PSD area with spine (head) volume [Harris and Stevens,

1989; Arellano et al., 2007] or the regulation of diffusional and electrical coupling between

spines and dendrites at the stalk [Majewska et al., 2000a; Grunditz et al., 2008], fit into a

picture of constant dynamics? I think, spontaneous spine motility does by no means have

to be in opposition to such correlations, as they simply describe complementary aspects of

spines. Meyer et al. [2014] have shown just recently, for instance, how differently morpho-

logical and functional changes evolve over time: in their trials long-term synaptic plasticity

strongly correlated with rapid volumetric spine enlargements followed by a slow increase

of the amount of PSD scaffolding proteins. A previous study by Ehrlich et al. [2007] pro-

vided evidence along similar lines, suggesting PSD-95 to be required for activity-dependent

synapse stabilization after initial phases of synaptic potentiation. Other proteins shown to

be involved in spines stabilization include cell adhesion molecules (CAMs) like N-cadherine

[Bozdagi et al., 2000, 2010; Mendez et al., 2010] and glutamate receptors [Kopec et al.,

2007]. Besides, Lohmann et al. [2005]; Lohmann and Bonhoeffer [2008] observed structural

and functional interactions between pre- and post-synaptic partners well before a func-

tional synapse had been formed, indicating a rapid synaptic partner selection process by

dendritc filopodia. Assuming that spine motility in adult brains serves a similar purpose as

during synaptogenesis in early development, it was highly likely, that spines are indeed con-

stantly probing their surroundings. Synaptic efficacy would eventually only be enhanced,

however, if a contact was stabilized in the long run. Involving protein synthesis and traf-

ficking, this was on the lines of the so called “synaptic tagging and capture hypothesis of

protein synthesis-dependent LTP“ (see Redondo and Morris [2011] for review).

4.2.2 Spine Enlargement and Morphological Class Changes

In the analysis of spine size, my attempts to decipher plasticity related modifications have

initially been rather coarse, drawing a hard line at their total length to let dendritic spines

be considered either long or short (see Sec.3.2.4). Still, I have observed a significant trend

towards larger spines on a population level after LTP induction, that goes along the lines

of earlier glutamate uncaging studies [Matsuzaki et al., 2004; Zhang et al., 2008]. Absolute

enlargements could potentially be examined more thoroughly by restricting actual volume

measurements4 on individual potentiated spines, as performed by Matsuzaki et al. [2004].

4This could be done via the determination of the maximum brightness within a compartment, for
example.



4.2 Local Induction of Morphological Spine Plasticity 75

I have omitted those quantifications for the time being, since, to my understanding, it

would most probably have not contributed additional insight to my assessment of plas-

ticity. Transient spine enlargements due to the photolysis of caged glutamate have been

determined to up to 400 % [Matsuzaki et al., 2004] and persistent growth to between 75 %

[Meyer, 2013] and 200 % [Matsuzaki et al., 2004].

In my analysis, the emphasis has been on the structural morphing of dendritic compart-

ments. In this regard, the overall proportions of spines belonging to the thin and mushroom

morphological categories has changed significantly during uncaging sessions, time locked

to the induction of plasticity and in opposite directions. Hence, I am confident to have

observed a subset of thin spines evolving to mushroom spines. This conclusion is supported

by the analysis of individual spine traces (cp. Fig.3.8), showing that about two thirds of the

spines changing from the thin to the mushroom class after stimulation have stayed in that

category for at least 20 min and quite half of them even until the end of an experiment. A

tendency towards more mushroom shapes holds two aspects: on the one hand, it approves

the trend to larger spine structures associated with LTP, since it necessitates at least head

growth, on the other hand it advocates an evolutionary viewpoint of potentiation, in its

sense of a rudimentary learning paradigm.

Quite a few investigations promote a similar shift from plastic / less evolved thin spines

towards more stable / evolved mushroom spines during development (see for example

Holtmaat et al. [2005]; Zuo et al. [2005]) and associated with the induction of LTP (e.g.

Matsuzaki et al. [2004]; Kopec et al. [2006]). As subsumed in Sec.1.2.2, mushroom spines

carry larger PSDs, more receptors and intracellular components, as well as more astroglial

contacts than thin spines. I have related the particular transition from thin to mushroom

spines to NMDAR mediated LTP on a (sub-) population level. Therefore my findings sup-

plement previous work and support the present understanding of dendritic spines to “learn

to be mushroom spines that remember“ [Bourne and Harris, 2007].

4.2.3 Shape Changes of Spine Heads

Already in the last century Desmond and Levy [1983, 1986a] have found an increase in

the number of concave spine heads in correlation with the induction of LTP in granule

cells of the dentate gyrus. Roelandse et al. [2003] have been the first to detect cup-shaped

heads with light microscopy in developing hippocampal pyramidal cells, though their im-

ages have been rather blurry and curvatures only vaguely perceptible. With the advent

of super-resolution imaging techniques, Nägerl et al. [2008] and Izeddin et al. [2011] have



76 4. Discussion

shown the aptitude of STED and PALM, respectively, to reveal spine head curvature reli-

ably. In the present work, the occurrence of cup-shaped heads is quantitatively investigated

in association with NMDA dependent LTP.

Beside their profound contribution to overall spine motility, convex spine head curvatures

have significantly more often been observed after the induction of plasticity than dur-

ing baseline recording. Though most of the cup-shapes did not persistently stay over

time, a proportional stimulus-locked doubling of their appearance has been detected on

the population level. Visually inspecting corresponding images, I observed post-synaptic

compartments reaching out for their potential pre-synaptic partners (cp. e.g. Figs.3.6 and

3.7). That way they could increase the interface area to a bouton and shield it from its

environment to prevent adjacent post-synaptic compartments from “docking“.

On that account, I propose a scenario, where the sudden increase in local glutamate concen-

tration due to photolysis of the caged compound, triggers some kind of collective “probing

mode“ in spines within the reach of action of the uncaging spot, akin to spontaneous

motility of dendritic filopodia during development [Lohmann et al., 2005; Lohmann and

Bonhoeffer, 2008]. Hence, a great deal of dendritic spines are “encouraged“ to increase the

contact areas to their respective boutons, in the “expectation“ of further input. Since a

stabilizing signal has been missing in my experimental paradigm, head curvatures have not

been persistent, too. Additionally, cup-shaped spines have been abundant in slices under

control treatment. Hence, the presumed “probing mode“ could potentially be considered

an inherent characteristic of dendritic spines. In that case, the amount of cup-shaped

heads could probably serve as a measure for spine motility. Glutamate uncaging would

then predominantly affect exactly this motility and spine morphing would display its mere

consequence.

Due to a lack of analogous investigations, it is hard to assess my findings on grounds of

plausibility. Nägerl et al. [2008] have examined spine morphological transitions in regard

to cLTP in hippocampal slice cultures, but they report 40 − 60 % of the spines to have

changed shape at all after stimulation, without deeper quantification of distinct structural

aspects, like the occurrence of curved spine heads. Furthermore, their pharmacological

stimulation protocol mediated spine plasticity via the potassium channel blocker TEA

in an NMDA independent way [Aniksztejn and Ben-Ari, 1991]. In their super-resolution

based study, Izeddin et al. [2011] have measured the distribution of actin molecules in rat

primary hippocampal neurons, and found actin-free regions in spine heads, that they re-

lated to pre-synaptic boutons and PSDs, respectively. Apparently, what they are referring
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to corresponds to cup-shaped spine heads. With a focus on the method, they have not

addressed spine plasticity at all. Similarly, it is hard to compare my data to the work

of Roelandse et al. [2003]. They focused on developmental aspects of spine morphology,

and did not show quantifications of the number of cup-shaped spine heads from light-

microscopic data. Instead they performed EM on microwave-fixed tissue. The only studies

associating the appearance of curved spines with the induction of (electrical) LTP are the

ones from Desmond and Levy [1983, 1986a]. They have observed a 31.4 % increase in the

proportion of the total synapses that are concave. However, there images have been taken

on perfusion fixed brain tissue (EM) and comprised a different region of the hippocampus

(dentate gyrus).

4.2.4 Spine Branching

One particular sequence of structural changes during LTP that has been speculated about

for quite some time in the literature, is spine splitting (see for instance Hering and Sheng

[2001]; Yuste and Bonhoeffer [2001]). Based on correlations of the number of perforated

PSDs and the number of multiple spine boutons with LTP, the idea has been that large

mushroom spines break / split into two separate compartments, when potentiated. A

couple of branched spine heads formed like this, would then contact the same bouton.

Fiala et al. [2002] have shown that branched spines do, in general, not share a pre-synaptic

partner. Hence, spine splitting is very unlikely to underlie the formation of multiple synapse

boutons or the formation of branched spines. Nevertheless, it has just recently still been

considered a viable mechanism [Verzi and Noris, 2009]. Alternatively, Rusakov et al. [1996]

have suggested spine fusion to guide the creation of branched spines. On grounds of super-

resolved time-lapse images (cp. Fig.3.11), I can neither support the idea of spine splitting,

nor of spine fusion. Instead, I have observed an outgrowth of new heads from the stalks of

spines.

Along the lines of Fiala et al. [2002], additional spine heads seem not to synapse with the

same bouton as their companions, since they usually grow out in different, and even in

opposite directions. The formation of the new head has been initiated at a thickening in

the spine neck, about 1µm away from the dendritic shaft, corresponding to half of the total

length of the initial spine, and has supposedly been completed within one hour. However,

due to a small sample size (n=4) and the lack of a systematic assay, at this stage my

findings have to be treated with great caution.
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Figure 4.1: Simplified Model of Actin Driven Spine Plasticity. Glutamate acts as
a stimulus to induce enlargement of spines via the regulation of the actin cytoskeleton. If
stabilized, changes lead to the establishment of a mushroom spine. Adapted from Kasai et al.
[2010].

4.2.5 Mechanism Driving Spine Plasticity

A lot of research has been conducted to reveal the molecular mechanisms driving mor-

phological spine plasticity, which can hardly be covered in its entirety within the scope of

this thesis. Therefore, I would like to focus on one of the key players of spine morphing,

that is, actin. The review of Matus [2000] is a classic, dealing with the involvement of

actin filaments in the formation of dendritic spines during development and their struc-

tural plasticity at mature synapses. More recent reviews on that topic have been published

for example by Bosch and Hayashi [2011] and Kasai et al. [2010], the latter notably or-

ganizing the fundamental findings on spine structure and function into 15 “spine learning

rules (SLRs)“, as they call them.

Post-synaptic compartments are essentially free of microtubules, such that actin consti-

tutes their main cytoskeletal component. Filaments are anchored in the plasma membrane

and the PSD. On the one hand, they build a fine mesh inside spine heads, on the other

hand, they form long parallel strands within the spine neck [Fifková, 1985; Korobova and

Svitkina, 2010]. In resting spines, actin fibers organize in two groups: a dynamic and a

stable pool [Star et al., 2002; Honkura et al., 2008]. The dynamic pool is located at the

apex of a spine and appears to generate an expansive force, that maintains spine volume.

The stable pool, by contrast, is located at the base of a spine and is supposed to act as

a foundation for the dynamic pool to generate force on [Kasai et al., 2010]. Analysis of

actin dynamics have revealed, that monomers polymerize at the apex and depolymerize

at the base of spines [Honkura et al., 2008; Frost et al., 2010] (although see Tatavarty

et al. [2009]). The involvement of (F-) actin polymerization in synaptic plasticity has been
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shown by Matsuzaki et al. [2004]; Okamoto et al. [2004]; Honkura et al. [2008] as well as

Kim and Lisman [1999]; Krucker et al. [2000].

A potential model of spine dynamics by regulation of the actin cytoskeleton is illustrated

in Fig.4.1. In accordance with my observations, it resembles the current opinion in the field

(see Honkura et al. [2008]; Kasai et al. [2010]; Bosch and Hayashi [2011]). The release of

glutamate from pre-synaptic vesicles into the synaptic cleft mediates calcium influx into the

post-synaptic compartment. Calcium can enter a spine through NMDARs [Collingridge

et al., 1988] or through voltage gated channels in an AMPAR dependent way [Fischer et al.,

2000], and regulates confinement of actin at the spine neck. Additionally, the kinetics of

actin de- / polymerization in the stable and dynamic pools are adjusted. Whereas the

turnover in the stable pool is decreased, polymerization of the dynamic pool continues.

Hence, the spine enlarges. The PSD poses an inherent obstacle to the expansion, which

can therefore only take effect at the periphery of a spine. Eventually, a growth of the stable

pool fixates morphological changes and provides a scaffold for the recruitment of synaptic

constituents with slower turnover (e.g. adhesion molecules, PSD scaffold, receptors , etc.).

If no stabilization is triggered, spine enlargement is reverted to baseline dynamics.

Continuous expansion by actin filaments is probably balanced by a contractile force exerted

by surface tension of the plasma membrane and counteracted by the remaining neuropil,

i.e. extracellular matrix (ECM)5, glia, axons, etc. [Kasai et al., 2010]. This could give

rise to spine motility and the spontaneous morphing I have observed in the current study.

Rapid spine enlargements mainly mirrored by an increase in cup-shaped heads in response

to glutamate uncaging, would be readily explained by the above model. Also, the tran-

sience of curved heads could be ascribed to the different character of the dynamic and

stable actin pools. Moreover, if the model applied, enlargements would take effect mainly

at the periphery of a spine, such that the stable pool would expand at an angle to the

spines’ longitudinal axis. Hence, a stable shift of a subset of thin spines due to potentia-

tion, as I have detected, could be justified at once.

Considering the complex sub-structure of synaptic PSDs, an interesting corollary follows

from the above model. Since mainly guided by the balance of expanding and contractile

forces, as well as the composition of the surrounding densely packed neuropil, spines and

therefore, PSDs can by no means grow freely. Hence, I propose that complex shapes are

a result of that convoluted growth process, as opposed by a break-up of initially disk-like

PSDs into non-macular pieces. Though posing an ambitious scheme, this issue could po-

5A recent study from Orlando et al. [2012] showed an involvement of the ECM in spine dynamics, for
instance.
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tentially be resolved with the experimental setup at hand. Given a suitable marker for

PSDs in live tissue, time-lapse STED nanoscopy should be able to detect their structural

changes. Though, the fluorescent label needs to be specific, bright, and photostable not to

bleach too fast. In addition, it must not interfere with the endogenous expression of PSD

constituents. One option could be to follow a replacement strategy, where the endogenous

expression of proteins is silenced with short hairpin RNA (shRNA) via ribonucleic acid

(RNA) interference [Fire et al., 1998] and replaced by the expression of a fluorescent fu-

sion. Fluorescent intrabodies [Chen et al., 1994] could pose viable alternatives. Also the

labelling of extracellular components of the PSDs might be an option and leaves the door

open to use nanoparticles as reporters, that can be particularly designed for STED imaging

and keep the advantage of quasi-indefinite photostability.
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Conclusion

In the course of the current thesis, I have investigated the sub-structure of post-synaptic

compartments in living hippocampal CA1 pyramidal cells. Time-lapse super-resolution

STED imaging, performed at a custom built LSM, has facilitated tracing dendritic spine

dynamics in association with the local induction of NMDA receptor mediated LTP via UV

photolysis of caged glutamate. My experiments have revealed the evolution of a subset

of thin spines to mushroom spines in two steps: first, the application of a stimulus has

triggered massive spine enlargement, mirrored by a strong increase in the proportion of

spines with curved heads, and second, in a subgroup of enlarged spines changes have been

stabilized to be condensed in a growing proportion of mushroom spines. My observations

have proven plausible against the backdrop of the relevant literature and have been related

to the current understanding of the molecular mechanism underlying morphological spine

plasticity.

5.1 Résumé

The efforts to build-up of a confocal STED-LSM are by no means comparable to the design

of for instance a 2PE-LSM. Where in the latter case one can consider oneself to be home

and dry after “overfilling“ the imaging lens’ back aperture to generate a decent PSF, the

actual challenge in the former case has just started there. The gathering of super-resolved

images has been found to be highly sensitive to all kinds of parameters – superposition of
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the PSFs, synchronization of laser sources, polarization of de-excitation light, immersion

liquid, detection efficiency, and many more. The slightest deviations from the ideal config-

uration bring about devastating consequences in the resolution obtained. Still, fluorescence

nanoscopy is not sorcery, and latest developments like EasySTED [Reuss et al., 2010] will

contribute to super-resolution imaging becoming a standard laboratory technique in the

future. Also, commercialization of diverse nanoscopic concepts has been considerably pro-

moted in recent years.

As for the examination of structural spine plasticity, I have been able to follow morpholog-

ical changes over time at sub-100 nm resolution in live cells. My findings can be considered

a supplement to previous investigations and poke into questions of how long structural

changes last and how the induction of synaptic plasticity affects the motility of spines.

They are in good agreement with the current knowledge on actin driven spine morphing

and give rise to new, testable hypothesis on the evolution of non-macular PSDs.

That said, it’s probably fair to take a look back to the early times of modern neuro-

science, when Santiago Ramón y Cajal first had spotted dendritic spines, a ground breaking

discovery of great physiological relevance, according to his own judgement [Yuste, 2002].

He not only proposed spines to be the primary sites of neuronal communication, but also

accorded them dynamic entities, that mediate learning and memory consolidation [Tashiro

and Yuste, 2003]. For his reasoning, he did not need any live-cell, or in fact super-resolution

imaging. He had to reflect about his finding on purely logical grounds and may not even

have considered spines to be static. Constituent of a living organ in an alive organism,

that has its part in a changing ecosystem, it might have felt natural to associate neurons

and synapses to be constantly on the move. Nevertheless, imagining Cajal to have been

equipped with means of modern imaging technology, he would most certainly have entered

the history books as the “Leonardo da Vinci“ of Neuroscience.

5.2 Outlook

Super-resolution imaging has become a fast-growing branch of optic research and clever

developments are announced nearly every month. With respect to neurobiological appli-

cations, there is great potential in targeted switching concepts like STED or RESOLFT,

especially, if they can be adapted to 2PE with improved probes, specifically tailored to

low light intensities and high photostability. Due to their technical similarity to standard

laser scanning modalities, this could finally facilitate long-term in-vivo imaging at super-
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resolution.

A great advancement regarding the frame rates of image acquisition has been the invention

of parallelized nanoscopy with patterned illumination using standing light waves to provide

isotropic resolution in the focal plane [Chmyrov et al., 2013]. Here, the authors took ad-

vantage of both, RESOLFT and saturated structured illumination microscopy (SSIM), to

dramatically speed up far-field super-resolution imaging. Hence, the fusion of complemen-

tary aspects of unlimited optical resolution might show the right way to new fundamental

breakthrough.

Furthermore, quantitative fluorescence readout, like with the combination of STED and

raster image correlation spectroscopy (RICS) [Hedde et al., 2013] or super-resolved fluo-

rescence correlation spectroscopy (FCS) [Eggeling et al., 2009], will provide further insight

into intracellular molecular pathways and protein trafficking.

A more than interesting by-product of these mainly TCSPC based methods, is STED

lifetime imaging [Auksorius et al., 2008]. With an arrangement to measure fluorescence

lifetime, the possibilities for multi-color nanoscopy are multiplied (see for example Bückers

et al. [2011]). It basically adds another dimension to the detection, such that each pixel

not only contains information on fluorescence brightness and spectral color, but also on the

fluorescence lifetime of a fluorophore. Therefore, multiple markers in a specimen can be

discerned on grounds of photon counts in a 2D space (color and lifetime). I foresee a major

aptitude of STED lifetime imaging for neuronal connectomics, as it will be able to reveal

synaptic connections in live tissue, e.g. from the Brainbow mouse line [Livet et al., 2007],

and can additionally be applied to correlative EM, when complemented by serial block-face

scanning [Denk and Horstmann, 2004] or array tomography [Micheva and Smith, 2007].
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Appendix A

Determination of Spine Density

Table A.1: Statistics of Spine Density Measurements.

Population Size 51 Third Quartile 1.41

Mean 1.18 Variance 0.11

Median 1.15 Standard Deviation 0.34

Minimum 0.15 Quartile Deviation 0.23

Maximum 2.23 Mean Absolute Deviation (MAD) 0.27

First Quartile 0.95 Standard Error of the Mean (S.E.M.) 0.05

Figure A.1: Determination of Spine Density. A Scatter plot of all dendritic stretches
analysed. B Boxplot of spine density distribution.

Average intensity projections of registered time series were rendered with MBF-ImageJ

[Collins, 2007] and the total length of dendritic stretches measured on segmented line
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reconstructions. Spines were tagged and their total count verified. Statistical analysis and

graphs were compiled with MS Excel. Fig.A.1 and Tab.A.1 summarize the results. For this

analysis all experiments were pooled together, i.e. I did not distinguish between uncaging

trials and controls. The slope of the linear regression in Fig.A.1.A corresponds to the mean

spine density. The border between light and dark gray in Fig.A.1.B resembles the median

spine density.
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Materials

B.1 Media and Solutions

ACSF for cLTP 2.5 mM calcium chloride, 1.25 mM monosodium hydrogen phosphate,

10 mM glucose, 1.3 mM magnesium chloride, 2.5 mM potassium chloride, 26 mM

sodium bicarbonate, 126 mM sodium chloride, pH 7.2.

ACSF for Glutamate Uncaging 4 mM calcium chloride, 10µM D-serine, 1.25 mM

monosodium hydrogen phosphate, 25 mM glucose, 2.5 mM potassium chloride,

25 mM sodium bicarbonate, 127 mM sodium chloride, 1µM TTX, 1 mM Trolox;

pH 7.2.

Chicken Plasma Solution reconstituted in distilled water.

Dissolved Kynurenic Acid 946 mg of kynurenic acid were dissolved in 5 mL NaOH (1 M)

and 45 mL distilled water.

Electroporation Solution 167 ng pCI-hSyn-PSD95::EGFP, 33 ng pCI-hSyn-tdimer2GFP

and 50µM Alexa Fluor 594 were dissolved in 50µl HEPES-buffered ACSF.

Fixative 2.5 % (v/v) glutaraldehyde, 2 % (w/v) paraformaldehyde, 154 mM sodium chlo-

ride, 80 mM disodium hydrogen phosphate, 20 mM monosodium hydrogen phos-

phate.

GBSS 1.5 mM calcium chloride, 840µM disodium hydrogen phosphate, 5.5+0.36 mM glu-

cose, 1.03 mM magnesium chloride, 280µM magnesium sulfate, 210µM monopotas-

sium phosphate, 4.98 mM potassium chloride, 2.7 mM sodium bicarbonate, 136 mM

sodium chloride.
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Glucose Solution 50 g of glucose were dissolved in 50 mL distilled water.

HEPES-buffered ACSF 2 mM calcium chloride, 10 mM glucose, 10 mM HEPES, 2 mM

magnesium sulfate, 5 mM potassium chloride, 125 mM sodium chloride, pH 7.4.

Membrane Culture Medium 48 % (v/v) MEM medium, 25 % (v/v) HBSS, 25 % (v/v)

horse serum, 1.25 % (v/v) HEPES (1 M), 1 % (v/v) Glucose Solution; pH 7.2.

Mitotic Inhibitor Solution 0.33 mM 5-Fluoro-2’-deoxyuridine in distilled water, 0.33 mM

Ara-C, 0.33 mM uridine.

Preparation Medium 98 % (v/v) GBSS, 1 % (v/v) Dissolved Kynurenic Acid, 1 % (v/v)

Glucose Solution; pH 7.2.

Resin 100 mL glycidether + 89 mL MNA, 62 mL glycidether + 100 mL DDSA, 6.3 mL

BDMA.

Roller Tube Culture Medium 48.5 % (v/v) BME, 25 % (v/v) HBSS, 25 % (v/v) horse

serum, 1 % (v/v) Glucose Solution, 1 mM L-glutamine.

Thrombin Solution 0.5 g thrombin were dissolved in 50 mL distilled water and 50 mL

GBSS (0.5 % (w/v) solution).

Thrombin Working Solution 742.5µL GBSS, 7.5µL Glucose Solution, 500µL Throm-

bin Solution. Has to be made on the day of the preparation and stored at 4 ◦C.

B.2 Equipment

Electron Microscopy

EM UC6 Leica Microsystems, Wetzlar, Germany

JEM-1230 JEOL, Tokyo, Japan

SC1000 ORIUS Gatan, Pleasanton, US-CA

Ultrastainer Leica Microsystems, Wetzlar, Germany

Laser Scanning Microscope

500 DCXR Chroma, Rockingham, US-VT

525/50 BrightLine HC Semrock, Rochester, US-NY

536/40 BrightLine HC Semrock, Rochester, US-NY

561 LP Edge Basic Semrock, Rochester, US-NY

A 360 World Precision Instruments, Sarasota, US-FL

AG-M100N Newport, Irvine, US-CA
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AHWP05M-600 Thorlabs, Newton, US-NJ

AQWP05M-600 Thorlabs, Newton, US-NJ

AxoClamp 2B Molecular Devices, Sunnyvale, US-CA

BNC-2090A National Instruments, Austin, US-TX

BP145B1 Thorlabs, Newton, US-NJ

CM1-PBS251 Thorlabs, Newton, US-NJ

DELAY MPI-BPC (home-built), Göttingen, Germany

DFG/USB2pro The Imaging Source Europe, Bremen, Germany

DMI6000 B Leica Microsystems, Wetzlar, Germany

GL5-A Thorlabs, Newton, US-NJ

HCX PL APO CS 63x/1.30 GLYC Leica Microsystems, Wetzlar, Germany

HM507 HAMEG Instruments, Mainhausen, Germany

Hum Bug Quest Scientific, North Vancouver, CA-BC

iXon DV885LC Andor Technology, Belfast, UK

Junior RE/LE System Luigs & Neumann, Ratingen, Germany

KP-M2RP Hitachi Kokusai Electric Europe, Erkrath, Germany

M350-80 ConOptics, Danbury, US-CT

MaiTai HP Spectra Physics, Mountain View, US-CA

MD-963 Excelitas Technologies, Waltham, US-MA

Model 410 Brownlee Precision, Palo Alto, US-CA

OCF-401 Becker & Hickl, Berlin, Germany

OPO Advanced APE, Berlin, Germany

PCIe-6363 National Instruments, Austin, US-TX

PDL 800-B Pico Quant, Berlin, Germany

Pico TA Pico Quant, Berlin, Germany

PIFOC P-721.LLQ Physik Instrumente, Karlsruhe, Germany

PMC-460Si-3.0-NA012-3-APC-200-P Schäfter+Kirchhoff, Hamburg, Germany

PMJ-3U3A-633-4/125-3-50-1-HP OZ Optics, Ottawa, CA-ON

Precision T7500 Dell, Round Rock, US-TX

RAC 3.2.15 B. Halle Nachfl., Berlin, Germany

SPCM-AQRH-13-FC Excelitas Technologies, Waltham, US-MA

ST Series Newport, Irvine, US-CA

UltraSharp 2001FP Dell, Round Rock, US-TX

V-Stim MPI-N (home built), Martinsried, Germany
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VPP-1 RPC Photonics, Rochester, US-NY

Yanus IV Till Photonics, Gräfelfing, Germany

z 590 sprdc Chroma, Rockingham, US-VT

zt 514 RDC Chroma, Rockingham, US-VT

Organotypic Slice Cultures

Axioskop2 Carl Zeiss Microscopy, Jena, Germany

Axoporator 800A Molecular Devices, Sunnyvale, US-CA

Biopore Membranes Merck Millipore, Billerica, US-MA

GC150F-10 Harvard Apparatus, Edenbridge, UK

McIlwain Tissue Chopper Mickle Laboratory Engineering, Surrey, UK

Millicell Cell Culture Inserts Merck Millipore, Billerica, US-MA

Minipuls 3 Gilson, Middleton, US-WI

No. 1.5H Paul Marienfeld, Lauda-Königshofen, Germany

Nunc Cell Culture Tubes Thermo Fisher Scientific, Waltham, US-MA

P35GC-1.0-14-C MatTek, Ashland, US-MA

PC-10 Narishige, Tokyo, Japan

QIAGEN Plasmid Plus Midi Kit Qiagen, Venlo, Netherlands

QIAquick Gel Extraction Kit Qiagen, Venlo, Netherlands

SteREO LumarV.12 Carl Zeiss Microscopy, Jena, Germany

Tissue Culture Test Plate TPP Techno Plastic Products, Trasadingen, Switzerland

TooheySpritzer Toohey, Fairfield, US-NJ

TW150F-4 World Precision Instruments, Sarasota, US-FL

Unit MRE/MLE Mini-25 Luigs & Neumann, Ratingen, Germany

Software

DigitalMicrograph Gatan, Pleasanton, US-CA

ImageJ National Institute of Mental Health, Bethesda, US-MD

ImSpector MPI-BPC, Göttingen, Germany

LabVIEW National Instruments, Austin, US-TX

MATLAB The MathWorks, Natick, US-MA

MS Excel Microsoft, Redmond, US-WA

Python Python Software Foundation, US-DE

Reconstruct c©1996 - 2007, John C. Fiala

Uncaging Setup

LUMPlanFL, 60x/0.9 W Olympus Deutschland, Hamburg, Germany
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Master-8-cp A.M.P.I, Jerusalem, Israel

Optem Zoom 70XL Qioptiq Photonics, Göttingen, Germany

OXX-405-100-LBX-ZIR Oxxius, Lannion, France

B.3 Chemicals

5-Fluoro-2’-deoxyuridine Sigma-Aldrich, Steinheim, Germany

Alexa Fluor 594 hydrazide Life Technologies, Darmstadt, Germany

Ampicillin Sigma-Aldrich, Steinheim, Germany

Ara-C Hydrochloride Sigma-Aldrich, Steinheim, Germany

BDMA (Benzyldimethylamine) Serva Electrophoresis, Heidelberg, Germany

BME (Basal medium eagle) Life Technologies, Darmstadt, Germany

Calcium chloride (CaCl2) Sigma-Aldrich, Steinheim, Germany

Carbogen (95 % O2, 5 % CO2) Westfalen AG, Münster, Germany

CMNB-caged fluorescein Life Technologies, Darmstadt, Germany

D-Serine Biotrend Chemikalien, Köln, Germany

DDSA (2-Dodecenylsuccinic anhydride) Serva Electrophoresis, Heidelberg, Germany

Disodium hydrogen phosphate (Na2HPO4 · H2O) Merck, Darmstadt, Germany

Ethanol absolute Sigma-Aldrich, Steinheim, Germany

FluoSpheres, Carboxylate-Modified Microspheres, 0.04 um Life Technologies, Darm-

stadt, Germany

Glucose (α-D(+)-glucose · H2O) Carl Roth, Karlsruhe, Germany

Glutaraldehyde Electron Microscopy Sciences, Hatfield, US-PA

Glycidether 100 Serva Electrophoresis, Heidelberg, Germany

HBSS Life Technologies, Darmstadt, Germany

HEPES Carl Roth, Karlsruhe, Germany

Horse serum Life Technologies, Darmstadt, Germany

Kynurenic acid Sigma-Aldrich, Steinheim, Germany

L-Glutamine (200 mM) Life Technologies, Darmstadt, Germany
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Lead citrate Leica Microsystems, Wetzlar, Germany

Magnesium chloride (MgCl2 · 6H2O) Merck, Darmstadt, Germany

Magnesium sulfate (MgSO4 · 7H2O) Merck, Darmstadt, Germany

MEM Life Technologies, Darmstadt, Germany

MNA (Methylnadic anhydride) Serva Electrophoresis, Heidelberg, Germany

MNI-caged-L-glutamate Tocris Bioscience, Bristol, UK

Monopotassium phosphate (KH2PO4) Merck, Darmstadt, Germany

Monosodium hydrogen phosphate (NaH2PO4 · H2O) Merck, Darmstadt, Germany

Paraformaldehyde Electron Microscopy Sciences, Hatfield, US-PA

Picodent Twinsil Picodent, Wipperfürth, Germany

Potassium chloride (KCl) Sigma-Aldrich, Steinheim, Germany

Propylen oxide Electron Microscopy Sciences, Hatfield, US-PA

PVP (Polyvinylpyrrolidon) Bio-Rad, München, Germany

Sodium bicarbonate (NaHCO3) Merck, Darmstadt, Germany

Sodium cacodylate buffer (pH 7.4) Electron Microscopy Sciences, Hatfield, US-PA

Sodium chloride (NaCl) VWR International, Leuven, Belgium

Spermidine Sigma-Aldrich, Steinheim, Germany

TEA (Tetraethylammonium, Et4N
+) Sigma-Aldrich, Steinheim, Germany

Thrombin Merck, Darmstadt, Germany

Trolox Sigma-Aldrich, Steinheim, Germany

TTX (Tetrodotoxin) Biotrend Chemikalien, Köln, Germany

Uranyl acetate Leica Microsystems, Wetzlar, Germany

Uridine Sigma-Aldrich, Steinheim, Germany
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Sequences of Plasmid DNA

C.1 pCI-hSyn-tdimer2RFP

1 ACGCGGCCTT TTACGGTTCC TGGCCTTTGC TGGCCTTTTG CTCACATGGC TCGACAGATC

61 TAATCTGCAG AGGGCCCTGC GTATGAGTGC AAGTGGGTTT TAGGACCAGG ATGAGGCGGG

121 GTGGGGGTGC CTACCTGACG ACCGACCCCG ACCCACTGGA CAAGCACCCA ACCCCCATTC

181 CCCAAATTGC GCATCCCCTA TCAGAGAGGG GGAGGGGAAA CAGGATGCGG CGAGGCGCGT

241 GCGCACTGCC AGCTTCAGCA CCGCGGACAG TGCCTTCGCC CCCGCCTGGC GGCGCGCGCC

301 ACCGCCGCCT CAGCACTGAA GGCGCGCTGA CGTCACTCGC CGGTCCCCCG CAAACTCCCC

361 TTCCCGGCCA CCTTGGTCGC GTCCGCGCCG CCGCCGGCCC AGCCGGACCG CACCACGCGA

421 GGCGCGAGAT AGGGGGGCAC GGGCGCGACC ATCTGCGCTG CGGCGCCGGC GACTCAGCGC

481 TGCCTCAGTC TGCGGTGGGC AGCGGAGGAG TCGTGTCGTG CCTGAGAGCG CAGCTGCAGC

541 TAGGAAGTTG GTCGTGAGGC ACTGGGCAGG TAAGTATCAA GGTTACAAGA CAGGTTTAAG

601 GAGACCAATA GAAACTGGGC TTGTCGAGAC AGAGAAGACT CTTGCGTTTC TGATAGGCAC

661 CTATTGGTCT TACTGACATC CACTTTGCCT TTCTCTCCAC AGGTGTCCAC TCCCAGTTCA

721 ATTACAGCTC TTAAGGCTAG AGTACTTAAT ACGACTCACT ATAGGCTAGC CTCGAGAATT

781 CAAGCTGCTA GAAATAATTT TGTTTAACTT TAAGAAGGAG ATATACATAT GCGGGGTTCT

841 CATCATCATC ATCATCATGG TATGGCTAGC ATGACTGGTG GACAGCAAAT GGGTCGGGAT

901 CTGTACGACG ATGACGATAA GGATCCGATG GTGGCCTCCT CCGAGGACGT CATCAAAGAG

961 TTCATGCGCT TCAAGGTGCG CATGGAGGGC TCCGTGAACG GCCACGAGTT CGAGATCGAG

1021 GGCGAGGGCG AGGGCCGCCC CTACGAGGGC ACCCAGACCG CCAAGCTGAA GGTGACCAAG

1081 GGCGGCCCCC TGCCCTTCGC CTGGGACATC CTGTCCCCCC AGTTCCAGTA CGGCTCCAAG

1141 GCGTACGTGA AGCACCCCGC CGACATCCCC GACTACAAGA AGCTGTCCTT CCCCGAGGGC

1201 TTCAAGTGGG AGCGCGTGAT GAACTTCGAG GACGGCGGCG TGGTGACCGT GACCCAGGAC



94 C. Sequences of Plasmid DNA

1261 TCCTCCCTGC AGGACGGCAC GCTGATCTAC AAGGTGAAGT TCCGCGGCAC CAACTTCCCC

1321 CCCGACGGCC CCGTAATGCA GAAGAAGACC ATGGGCTGGG AGGCCTCCAC CGAGCGCCTG

1381 TACCCCCGCG ACGGCGTGCT GAAGGGCGAG ATCCACCAGG CCCTGAAGCT GAAGGACGGC

1441 GGCCACTACC TGGTGGAGTT CAAGACCATC TACATGGCCA AGAAGCCCGT GCAGCTGCCC

1501 GGCTACTACT ACGTGGACAC CAAGCTGGAC ATCACCTCCC ACAACGAGGA CTACACCATC

1561 GTGGAACAGT ACGAGCGCTC CGAGGGCCGC CACCACCTGT TCCTGGGGCA TGGCACCGGC

1621 AGCACCGGCA GCGGCAGCTC CGGCACCGCC TCCTCCGAGG ACGTCATCAA AGAGTTCATG

1681 CGCTTCAAGG TGCGCATGGA GGGCTCCGTG AACGGCCACG AGTTCGAGAT CGAGGGCGAG

1741 GGCGAGGGCC GCCCCTACGA GGGCACCCAG ACCGCCAAGC TGAAGGTGAC CAAGGGCGGC

1801 CCCCTGCCCT TCGCCTGGGA CATCCTGTCC CCCCAGTTCC AGTACGGCTC CAAGGCGTAC

1861 GTGAAGCACC CCGCCGACAT CCCCGACTAC AAGAAGCTGT CCTTCCCCGA GGGCTTCAAG

1921 TGGGAGCGCG TGATGAACTT CGAGGACGGC GGCGTGGTGA CCGTGACCCA GGACTCCTCC

1981 CTGCAGGACG GCACGCTGAT CTACAAGGTG AAGTTCCGCG GCACCAACTT CCCCCCCGAC

2041 GGCCCCGTAA TGCAGAAGAA GACCATGGGC TGGGAGGCCT CCACCGAGCG CCTGTACCCC

2101 CGCGACGGCG TGCTGAAGGG CGAGATCCAC CAGGCCCTGA AGCTGAAGGA CGGCGGCCAC

2161 TACCTGGTGG AGTTCAAGAC CATCTACATG GCCAAGAAGC CCGTGCAGCT GCCCGGCTAC

2221 TACTACGTGG ACACCAAGCT GGACATCACC TCCCACAACG AGGACTACAC CATCGTGGAA

2281 CAGTACGAGC GCTCCGAGGG CCGCCACCAC CTGTTCCTGT AGGAATTCAC GCGTGGTACC

2341 TCTAGAGTCG ACCCGGGCGG CCGCTTCGAG CAGACATGAT AAGATACATT GATGAGTTTG

2401 GACAAACCAC AACTAGAATG CAGTGAAAAA AATGCTTTAT TTGTGAAATT TGTGATGCTA

2461 TTGCTTTATT TGTAACCATT ATAAGCTGCA ATAAACAAGT TAACAACAAC AATTGCATTC

2521 ATTTTATGTT TCAGGTTCAG GGGGAGATGT GGGAGGTTTT TTAAAGCAAG TAAAACCTCT

2581 ACAAATGTGG TAAAATCGAT AAGGATCCGG GCTGGCGTAA TAGCGAAGAG GCCCGCACCG

2641 ATCGCCCTTC CCAACAGTTG CGCAGCCTGA ATGGCGAATG GACGCGCCCT GTAGCGGCGC

2701 ATTAAGCGCG GCGGGTGTGG TGGTTACGCG CAGCGTGACC GCTACACTTG CCAGCGCCCT

2761 AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG

2821 TCAAGCTCTA AATCGGGGGC TCCCTTTAGG GTTCCGATTT AGTGCTTTAC GGCACCTCGA

2881 CCCCAAAAAA CTTGATTAGG GTGATGGTTC ACGTAGTGGG CCATCGCCCT GATAGACGGT

2941 TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG

3001 AACAACACTC AACCCTATCT CGGTCTATTC TTTTGATTTA TAAGGGATTT TGCCGATTTC

3061 GGCCTATTGG TTAAAAAATG AGCTGATTTA ACAAAAATTT AACGCGAATT TTAACAAAAT

3121 ATTAACGCTT ACAATTTCCT GATGCGGTAT TTTCTCCTTA CGCATCTGTG CGGTATTTCA

3181 CACCGCATAT GGTGCACTCT CAGTACAATC TGCTCTGATG CCGCATAGTT AAGCCAGCCC

3241 CGACACCCGC CAACACCCGC TGACGCGCCC TGACGGGCTT GTCTGCTCCC GGCATCCGCT
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3301 TACAGACAAG CTGTGACCGT CTCCGGGAGC TGCATGTGTC AGAGGTTTTC ACCGTCATCA

3361 CCGAAACGCG CGAGACGAAA GGGCCTCGTG ATACGCCTAT TTTTATAGGT TAATGTCATG

3421 ATAATAATGG TTTCTTAGAC GTCAGGTGGC ACTTTTCGGG GAAATGTGCG CGGAACCCCT

3481 ATTTGTTTAT TTTTCTAAAT ACATTCAAAT ATGTATCCGC TCATGAGACA ATAACCCTGA

3541 TAAATGCTTC AATAATATTG AAAAAGGAAG AGTATGAGTA TTCAACATTT CCGTGTCGCC

3601 CTTATTCCCT TTTTTGCGGC ATTTTGCCTT CCTGTTTTTG CTCACCCAGA AACGCTGGTG

3661 AAAGTAAAAG ATGCTGAAGA TCAGTTGGGT GCACGAGTGG GTTACATCGA ACTGGATCTC

3721 AACAGCGGTA AGATCCTTGA GAGTTTTCGC CCCGAAGAAC GTTTTCCAAT GATGAGCACT

3781 TTTAAAGTTC TGCTATGTGG CGCGGTATTA TCCCGTATTG ACGCCGGGCA AGAGCAACTC

3841 GGTCGCCGCA TACACTATTC TCAGAATGAC TTGGTTGAGT ACTCACCAGT CACAGAAAAG

3901 CATCTTACGG ATGGCATGAC AGTAAGAGAA TTATGCAGTG CTGCCATAAC CATGAGTGAT

3961 AACACTGCGG CCAACTTACT TCTGACAACG ATCGGAGGAC CGAAGGAGCT AACCGCTTTT

4021 TTGCACAACA TGGGGGATCA TGTAACTCGC CTTGATCGTT GGGAACCGGA GCTGAATGAA

4081 GCCATACCAA ACGACGAGCG TGACACCACG ATGCCTGTAG CAATGGCAAC AACGTTGCGC

4141 AAACTATTAA CTGGCGAACT ACTTACTCTA GCTTCCCGGC AACAATTAAT AGACTGGATG

4201 GAGGCGGATA AAGTTGCAGG ACCACTTCTG CGCTCGGCCC TTCCGGCTGG CTGGTTTATT

4261 GCTGATAAAT CTGGAGCCGG TGAGCGTGGG TCTCGCGGTA TCATTGCAGC ACTGGGGCCA

4321 GATGGTAAGC CCTCCCGTAT CGTAGTTATC TACACGACGG GGAGTCAGGC AACTATGGAT

4381 GAACGAAATA GACAGATCGC TGAGATAGGT GCCTCACTGA TTAAGCATTG GTAACTGTCA

4441 GACCAAGTTT ACTCATATAT ACTTTAGATT GATTTAAAAC TTCATTTTTA ATTTAAAAGG

4501 ATCTAGGTGA AGATCCTTTT TGATAATCTC ATGACCAAAA TCCCTTAACG TGAGTTTTCG

4561 TTCCACTGAG CGTCAGACCC CGTAGAAAAG ATCAAAGGAT CTTCTTGAGA TCCTTTTTTT

4621 CTGCGCGTAA TCTGCTGCTT GCAAACAAAA AAACCACCGC TACCAGCGGT GGTTTGTTTG

4681 CCGGATCAAG AGCTACCAAC TCTTTTTCCG AAGGTAACTG GCTTCAGCAG AGCGCAGATA

4741 CCAAATACTG TTCTTCTAGT GTAGCCGTAG TTAGGCCACC ACTTCAAGAA CTCTGTAGCA

4801 CCGCCTACAT ACCTCGCTCT GCTAATCCTG TTACCAGTGG CTGCTGCCAG TGGCGATAAG

4861 TCGTGTCTTA CCGGGTTGGA CTCAAGACGA TAGTTACCGG ATAAGGCGCA GCGGTCGGGC

4921 TGAACGGGGG GTTCGTGCAC ACAGCCCAGC TTGGAGCGAA CGACCTACAC CGAACTGAGA

4981 TACCTACAGC GTGAGCTATG AGAAAGCGCC ACGCTTCCCG AAGGGAGAAA GGCGGACAGG

5041 TATCCGGTAA GCGGCAGGGT CGGAACAGGA GAGCGCACGA GGGAGCTTCC AGGGGGAAAC

5101 GCCTGGTATC TTTATAGTCC TGTCGGGTTT CGCCACCTCT GACTTGAGCG TCGATTTTTG

5161 TGATGCTCGT CAGGGGGGCG GAGCCTATGG AAAAACGCCA GCA
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C.2 pCI-Neo-PSD-95::EGFP

1 TCAATATTGG CCATTAGCCA TATTATTCAT TGGTTATATA GCATAAATCA ATATTGGCTA

61 TTGGCCATTG CATACGTTGT ATCTATATCA TAATATGTAC ATTTATATTG GCTCATGTCC

121 AATATGACCG CCATGTTGGC ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG

181 GTCATTAGTT CATAGCCCAT ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC

241 GCCTGGCTGA CCGCCCAACG ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT

301 AGTAACGCCA ATAGGGACTT TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC

361 CCACTTGGCA GTACATCAAG TGTATCATAT GCCAAGTCCG CCCCCTATTG ACGTCAATGA

421 CGGTAAATGG CCCGCCTGGC ATTATGCCCA GTACATGACC TTACGGGACT TTCCTACTTG

481 GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAC

541 CAATGGGCGT GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC CCATTGACGT

601 CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTG

661 CGATCGCCCG CCCCGTTGAC GCAAATGGGC GGTAGGCGTG TACGGTGGGA GGTCTATATA

721 AGCAGAGCTC GTTTAGTGAA CCGTCAGATC ACTAGAAGCT TTATTGCGGT AGTTTATCAC

781 AGTTAAATTG CTAACGCAGT CAGTGCTTCT GACACAACAG TCTCGAACTT AAGCTGCAGT

841 GACTCTCTTA AGGTAGCCTT GCAGAAGTTG GTCGTGAGGC ACTGGGCAGG TAAGTATCAA

901 GGTTACAAGA CAGGTTTAAG GAGACCAATA GAAACTGGGC TTGTCGAGAC AGAGAAGACT

961 CTTGCGTTTC TGATAGGCAC CTATTGGTCT TACTGACATC CACTTTGCCT TTCTCTCCAC

1021 AGGTGTCCAC TCCCAGTTCA ATTACAGCTC TTAAGGCTAG AGTACTTAAT ACGACTCACT

1081 ATAGGCTAGC CTCGAGACCA TGGACTGTCT CTGTATAGTG ACAACCAAGA AATACCGCTA

1141 CCAAGATGAA GACACGCCCC CTCTGGAACA CAGCCCGGCC CACCTCCCCA ACCAGGCCAA

1201 TTCTCCCCCT GTGATTGTCA ACACGGACAC CCTAGAAGCC CCAGGATATG AGTTGCAGGT

1261 GAATGGAACA GAGGGGGAGA TGGAGTATGA GGAGATCACA TTGGAAAGGG GTAACTCAGG

1321 TCTGGGCTTC AGCATCGCAG GTGGCACTGA CAACCCGCAC ATCGGTGACG ACCCGTCCAT

1381 TTTTATCACC AAGATCATTC CTGGTGGGGC TGCAGCCCAG GATGGCCGCC TCAGGGTCAA

1441 TGACAGCATC CTGTTTGTAA ATGAAGTGGA TGTTCGGGAG GTGACCCATT CAGCTGCGGT

1501 GGAGGCCCTC AAAGAGGCAG GTTCCATCGT TCGCCTCTAT GTCATGCGCC GGAAACCCCC

1561 AGCCGAAAAG GTCATGGAGA TCAAACTCAT CAAAGGGCCT AAAGGACTTG GCTTCAGCAT

1621 TGCGGGGGGC GTTGGGAACC AGCACATCCC TGGAGATAAC AGCATCTATG TAACGAAGAT

1681 CATCGAAGGA GGTGCTGCCC ACAAGGATGG CAGGTTGCAG ATTGGAGACA AGATCCTGGC

1741 GGTCAACAGT GTGGGGCTGG AGGACGTCAT GCACGAGGAT GCCGTGGCAG CCCTGAAGAA

1801 CACATATGAC GTTGTGTACC TAAAGGTGGC CAAGCCCAGC AATGCCTACC TGAGTGACAG

1861 CTATGCTCCC CCAGACATCA CAACCTCGTA TTCTCAGCAC CTGGACAATG AGATCAGTCA

1921 TAGCAGCTAC TTGGGCACTG ACTACCCCAC AGCCATGACC CCCACTTCCC CTCGGCGCTA
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1981 CTCCCCTGTG GCCAAGGACC TGCTGGGGGA GGAAGACATT CCCCGGGAAC CAAGGCGGAT

2041 CGTGATCCAT CGGGGCTCCA CCGGCCTGGG CTTCAACATC GTGGGCGGCG AGGATGGTGA

2101 AGGCATCTTC ATCTCCTTCA TCCTTGCTGG GGGTCCAGCC GACCTCAGTG GGGAGCTACG

2161 GAAGGGGGAC CAGATCCTGT CGGTCAATGG TGTTGACCTC CGCAATGCCA GTCACGAACA

2221 GGCTGCCATT GCCCTGAAGA ATGCGGGTCA GACGGTCACG ATCATCGCTC AGTATAAACC

2281 AGAAGAGTAT AGTCGATTCG AGGCCAAGAT CCATGATCTT CGGGAACAGC TCATGAATAG

2341 TAGCCTAGGC TCAGGGACTG CATCCTTGCG AAGCAACCCC AAGAGGGGCT TCTACATTAG

2401 GGCCCTGTTT GATTACGACA AGACCAAGGA CTGCGGTTTC TTGAGCCAGG CCCTGAGCTT

2461 CCGCTTCGGG GATGTGCTTC ATGTCATTGA CGCTGGTGAC GAAGAGTGGT GGCAAGCACG

2521 GCGGGTCCAC TCCGACAGTG AGACCGACGA CATTGGCTTC ATTCCCAGCA AACGGCGGGT

2581 CGAGCGACGA GAGTGGTCAA GGTTAAAGGC CAAGGACTGG GGCTCCAGCT CTGGATCACA

2641 GGGTCGAGAA GACTCGGTTC TGAGCTATGA GACGGTGACC CAGATGGAAG TGCACTATGC

2701 TCGTCCCATC ATCATCCTTG GACCCACCAA AGACCGTGCC AACGATGATC TTCTCTCCGA

2761 GTTCCCCGAC AAGTTTGGAT CCTGTGTCCC TCATACGACA CGTCCTAAGC GGGAATATGA

2821 GATAGACGGC CGGGATTACC ACTTTGTCTC CTCCCGGGAG AAAATGGAGA AGGACATCCA

2881 GGCACACAAG TTCATTGAGG CTGGCCAGTA CAACAGCCAC CTCTATGGGA CCAGCGTCCA

2941 GTCTGTGCGA GAGGTAGCAG AGCAGGGGAA GCACTGCATC CTCGATGTCT CGGCCAATGC

3001 CGTGCGGCGG CTGCAGGCGG CCCACCTGCA CCCCATCGCC ATCTTCATCC GTCCCCGCTC

3061 CCTGGAGAAT GTGCTAGAGA TCAATAAGCG GATCACAGAG GAGCAAGCCC GGAAAGCCTT

3121 CGACAGAGCC ACGAAGCTGG AGCAGGAGTT CACAGAGTGC TTCTCAGCCA TCGTAGAGGG

3181 CGACAGCTTT GAAGAGATCT ATCACAAAGT GAAACGTGTC ATTGAAGACC TCTCAGGCCC

3241 CTACATCTGG GTCCCAGCCC GAGAGAGACT CGGAATTCGG ATGGTGAGCA AGGGCGAGGA

3301 GCTGTTCACC GGGGTGGTGC CCATCCTGGT CGAGCTGGAC GGCGACGTAA ACGGCCACAA

3361 GTTCAGCGTG TCCGGCGAGG GCGAGGGCGA TGCCACCTAC GGCAAGCTGA CCCTGAAGTT

3421 CATCTGCACC ACCGGCAAGC TGCCCGTGCC CTGGCCCACC CTCGTGACCA CCCTGACCTA

3481 CGGCGTGCAG TGCTTCAGCC GCTACCCCGA CCACATGAAG CAGCACGACT TCTTCAAGTC

3541 CGCCATGCCC GAAGGCTACG TCCAGGAGCG CACCATCTTC TTCAAGGACG ACGGCAACTA

3601 CAAGACCCGC GCCGAGGTGA AGTTCGAGGG CGACACCCTG GTGAACCGCA TCGAGCTGAA

3661 GGGCATCGAC TTCAAGGAGG ACGGCAACAT CCTGGGGCAC AAGCTGGAGT ACAACTACAA

3721 CAGCCACAAC GTCTATATCA TGGCCGACAA GCAGAAGAAC GGCATCAAGG TGAACTTCAA

3781 GATCCGCCAC AACATCGAGG ACGGCAGCGT GCAGCTCGCC GACCACTACC AGCAGAACAC

3841 CCCCATCGGC GACGGCCCCG TGCTGCTGCC CGACAACCAC TACCTGAGCA CCCAGTCCGC

3901 CCTGAGCAAA GACCCCAACG AGAAGCGCGA TCACATGGTC CTGCTGGAGT TCGTGACCGC

3961 CGCCGGGATC ACTCTCGGCA TGGACGAGCT GTACAAGTAA GCGGCCGCTT CCCTTTAGTG
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4021 AGGGTTAATG CTTCGAGCAG ACATGATAAG ATACATTGAT GAGTTTGGAC AAACCACAAC

4081 TAGAATGCAG TGAAAAAAAT GCTTTATTTG TGAAATTTGT GATGCTATTG CTTTATTTGT

4141 AACCATTATA AGCTGCAATA AACAAGTTAA CAACAACAAT TGCATTCATT TTATGTTTCA

4201 GGTTCAGGGG GAGATGTGGG AGGTTTTTTA AAGCAAGTAA AACCTCTACA AATGTGGTAA

4261 AATCCGATAA GGATCGATCC GGGCTGGCGT AATAGCGAAG AGGCCCGCAC CGATCGCCCT

4321 TCCCAACAGT TGCGCAGCCT GAATGGCGAA TGGACGCGCC CTGTAGCGGC GCATTAAGCG

4381 CGGCGGGTGT GGTGGTTACG CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG

4441 CTCCTTTCGC TTTCTTCCCT TCCTTTCTCG CCACGTTCGC CGGCTTTCCC CGTCAAGCTC

4501 TAAATCGGGG GCTCCCTTTA GGGTTCCGAT TTAGTGCTTT ACGGCACCTC GACCCCAAAA

4561 AACTTGATTA GGGTGATGGT TCACGTAGTG GGCCATCGCC CTGATAGACG GTTTTTCGCC

4621 CTTTGACGTT GGAGTCCACG TTCTTTAATA GTGGACTCTT GTTCCAAACT GGAACAACAC

4681 TCAACCCTAT CTCGGTCTAT TCTTTTGATT TATAAGGGAT TTTGCCGATT TCGGCCTATT

4741 GGTTAAAAAA TGAGCTGATT TAACAAAAAT TTAACGCGAA TTTTAACAAA ATATTAACGC

4801 TTACAATTTC CTGATGCGGT ATTTTCTCCT TACGCATCTG TGCGGTATTT CACACCGCAT

4861 ACGCGGATCT GCGCAGCACC ATGGCCTGAA ATAACCTCTG AAAGAGGAAC TTGGTTAGGT

4921 ACCTTCTGAG GCGGAAAGAA CCAGCTGTGG AATGTGTGTC AGTTAGGGTG TGGAAAGTCC

4981 CCAGGCTCCC CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCAGG

5041 TGTGGAAAGT CCCCAGGCTC CCCAGCAGGC AGAAGTATGC AAAGCATGCA TCTCAATTAG

5101 TCAGCAACCA TAGTCCCGCC CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC

5161 GCCCATTCTC CGCCCCATGG CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC

5221 TCGGCCTCTG AGCTATTCCA GAAGTAGTGA GGAGGCTTTT TTGGAGGCCT AGGCTTTTGC

5281 AAAAAGCTTG ATTCTTCTGA CACAACAGTC TCGAACTTAA GGCTAGAGCC ACCATGATTG

5341 AACAAGATGG ATTGCACGCA GGTTCTCCGG CCGCTTGGGT GGAGAGGCTA TTCGGCTATG

5401 ACTGGGCACA ACAGACAATC GGCTGCTCTG ATGCCGCCGT GTTCCGGCTG TCAGCGCAGG

5461 GGCGCCCGGT TCTTTTTGTC AAGACCGACC TGTCCGGTGC CCTGAATGAA CTGCAGGACG

5521 AGGCAGCGCG GCTATCGTGG CTGGCCACGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG

5581 TTGTCACTGA AGCGGGAAGG GACTGGCTGC TATTGGGCGA AGTGCCGGGG CAGGATCTCC

5641 TGTCATCTCA CCTTGCTCCT GCCGAGAAAG TATCCATCAT GGCTGATGCA ATGCGGCGGC

5701 TGCATACGCT TGATCCGGCT ACCTGCCCAT TCGACCACCA AGCGAAACAT CGCATCGAGC

5761 GAGCACGTAC TCGGATGGAA GCCGGTCTTG TCGATCAGGA TGATCTGGAC GAAGAGCATC

5821 AGGGGCTCGC GCCAGCCGAA CTGTTCGCCA GGCTCAAGGC GCGCATGCCC GACGGCGAGG

5881 ATCTCGTCGT GACCCATGGC GATGCCTGCT TGCCGAATAT CATGGTGGAA AATGGCCGCT

5941 TTTCTGGATT CATCGACTGT GGCCGGCTGG GTGTGGCGGA CCGCTATCAG GACATAGCGT

6001 TGGCTACCCG TGATATTGCT GAAGAGCTTG GCGGCGAATG GGCTGACCGC TTCCTCGTGC
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6061 TTTACGGTAT CGCCGCTCCC GATTCGCAGC GCATCGCCTT CTATCGCCTT CTTGACGAGT

6121 TCTTCTGAGC GGGACTCTGG GGTTCGAAAT GACCGACCAA GCGACGCCCA ACCTGCCATC

6181 ACGATGGCCG CAATAAAATA TCTTTATTTT CATTACATCT GTGTGTTGGT TTTTTGTGTG

6241 AATCGATAGC GATAAGGATC CGCGTATGGT GCACTCTCAG TACAATCTGC TCTGATGCCG

6301 CATAGTTAAG CCAGCCCCGA CACCCGCCAA CACCCGCTGA CGCGCCCTGA CGGGCTTGTC

6361 TGCTCCCGGC ATCCGCTTAC AGACAAGCTG TGACCGTCTC CGGGAGCTGC ATGTGTCAGA

6421 GGTTTTCACC GTCATCACCG AAACGCGCGA GACGAAAGGG CCTCGTGATA CGCCTATTTT

6481 TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT TTTCGGGGAA

6541 ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA TTCAAATATG TATCCGCTCA

6601 TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA AAGGAAGAGT ATGAGTATTC

6661 AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT GTTTTTGCTC

6721 ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT

6781 ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC GAAGAACGTT

6841 TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTATTGACG

6901 CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG GTTGAGTACT

6961 CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA TGCAGTGCTG

7021 CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA

7081 AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT GATCGTTGGG

7141 AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG CCTGTAGCAA

7201 TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTACT TACTCTAGCT TCCCGGCAAC

7261 AATTAATAGA CTGGATGGAG GCGGATAAAG TTGCAGGACC ACTTCTGCGC TCGGCCCTTC

7321 CGGCTGGCTG GTTTATTGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA

7381 TTGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC ACGACGGGGA

7441 GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC TCACTGATTA

7501 AGCATTGGTA ACTGTCAGAC CAAGTTTACT CATATATACT TTAGATTGAT TTAAAACTTC

7561 ATTTTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTTGA TAATCTCATG ACCAAAATCC

7621 CTTAACGTGA GTTTTCGTTC CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT

7681 CTTGAGATCC TTTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAAA CCACCGCTAC

7741 CAGCGGTGGT TTGTTTGCCG GATCAAGAGC TACCAACTCT TTTTCCGAAG GTAACTGGCT

7801 TCAGCAGAGC GCAGATACCA AATACTGTTC TTCTAGTGTA GCCGTAGTTA GGCCACCACT

7861 TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG

7921 CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA

7981 AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA

8041 CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCCCGAAG



100 C. Sequences of Plasmid DNA

8101 GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG

8161 AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCCTGT CGGGTTTCGC CACCTCTGAC

8221 TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA

8281 ACGCGGCCTT TTTACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG GCTCGACAGA

8341 TCT
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1 ACGCGGCCTT TTACGGTTCC TGGCCTTTGC TGGCCTTTTG CTCACATGGC TCGACAGATC

61 TAATCTGCAG AGGGCCCTGC GTATGAGTGC AAGTGGGTTT TAGGACCAGG ATGAGGCGGG

121 GTGGGGGTGC CTACCTGACG ACCGACCCCG ACCCACTGGA CAAGCACCCA ACCCCCATTC

181 CCCAAATTGC GCATCCCCTA TCAGAGAGGG GGAGGGGAAA CAGGATGCGG CGAGGCGCGT

241 GCGCACTGCC AGCTTCAGCA CCGCGGACAG TGCCTTCGCC CCCGCCTGGC GGCGCGCGCC

301 ACCGCCGCCT CAGCACTGAA GGCGCGCTGA CGTCACTCGC CGGTCCCCCG CAAACTCCCC

361 TTCCCGGCCA CCTTGGTCGC GTCCGCGCCG CCGCCGGCCC AGCCGGACCG CACCACGCGA

421 GGCGCGAGAT AGGGGGGCAC GGGCGCGACC ATCTGCGCTG CGGCGCCGGC GACTCAGCGC

481 TGCCTCAGTC TGCGGTGGGC AGCGGAGGAG TCGTGTCGTG CCTGAGAGCG CAGCTGCAGC

541 TAGGAAGTTG GTCGTGAGGC ACTGGGCAGG TAAGTATCAA GGTTACAAGA CAGGTTTAAG

601 GAGACCAATA GAAACTGGGC TTGTCGAGAC AGAGAAGACT CTTGCGTTTC TGATAGGCAC

661 CTATTGGTCT TACTGACATC CACTTTGCCT TTCTCTCCAC AGGTGTCCAC TCCCAGTTCA

721 ATTACAGCTC TTAAGGCTAG AGTACTTAAT ACGACTCACT ATAGGCTAGC CTCGAGACCA

781 TGGACTGTCT CTGTATAGTG ACAACCAAGA AATACCGCTA CCAAGATGAA GACACGCCCC

841 CTCTGGAACA CAGCCCGGCC CACCTCCCCA ACCAGGCCAA TTCTCCCCCT GTGATTGTCA

901 ACACGGACAC CCTAGAAGCC CCAGGATATG AGTTGCAGGT GAATGGAACA GAGGGGGAGA

961 TGGAGTATGA GGAGATCACA TTGGAAAGGG GTAACTCAGG TCTGGGCTTC AGCATCGCAG

1021 GTGGCACTGA CAACCCGCAC ATCGGTGACG ACCCGTCCAT TTTTATCACC AAGATCATTC

1081 CTGGTGGGGC TGCAGCCCAG GATGGCCGCC TCAGGGTCAA TGACAGCATC CTGTTTGTAA

1141 ATGAAGTGGA TGTTCGGGAG GTGACCCATT CAGCTGCGGT GGAGGCCCTC AAAGAGGCAG

1201 GTTCCATCGT TCGCCTCTAT GTCATGCGCC GGAAACCCCC AGCCGAAAAG GTCATGGAGA

1261 TCAAACTCAT CAAAGGGCCT AAAGGACTTG GCTTCAGCAT TGCGGGGGGC GTTGGGAACC

1321 AGCACATCCC TGGAGATAAC AGCATCTATG TAACGAAGAT CATCGAAGGA GGTGCTGCCC

1381 ACAAGGATGG CAGGTTGCAG ATTGGAGACA AGATCCTGGC GGTCAACAGT GTGGGGCTGG

1441 AGGACGTCAT GCACGAGGAT GCCGTGGCAG CCCTGAAGAA CACATATGAC GTTGTGTACC

1501 TAAAGGTGGC CAAGCCCAGC AATGCCTACC TGAGTGACAG CTATGCTCCC CCAGACATCA



C.3 pCI-hSyn-PSD-95::EGFP 101

1561 CAACCTCGTA TTCTCAGCAC CTGGACAATG AGATCAGTCA TAGCAGCTAC TTGGGCACTG

1621 ACTACCCCAC AGCCATGACC CCCACTTCCC CTCGGCGCTA CTCCCCTGTG GCCAAGGACC

1681 TGCTGGGGGA GGAAGACATT CCCCGGGAAC CAAGGCGGAT CGTGATCCAT CGGGGCTCCA

1741 CCGGCCTGGG CTTCAACATC GTGGGCGGCG AGGATGGTGA AGGCATCTTC ATCTCCTTCA

1801 TCCTTGCTGG GGGTCCAGCC GACCTCAGTG GGGAGCTACG GAAGGGGGAC CAGATCCTGT

1861 CGGTCAATGG TGTTGACCTC CGCAATGCCA GTCACGAACA GGCTGCCATT GCCCTGAAGA

1921 ATGCGGGTCA GACGGTCACG ATCATCGCTC AGTATAAACC AGAAGAGTAT AGTCGATTCG

1981 AGGCCAAGAT CCATGATCTT CGGGAACAGC TCATGAATAG TAGCCTAGGC TCAGGGACTG

2041 CATCCTTGCG AAGCAACCCC AAGAGGGGCT TCTACATTAG GGCCCTGTTT GATTACGACA

2101 AGACCAAGGA CTGCGGTTTC TTGAGCCAGG CCCTGAGCTT CCGCTTCGGG GATGTGCTTC

2161 ATGTCATTGA CGCTGGTGAC GAAGAGTGGT GGCAAGCACG GCGGGTCCAC TCCGACAGTG

2221 AGACCGACGA CATTGGCTTC ATTCCCAGCA AACGGCGGGT CGAGCGACGA GAGTGGTCAA

2281 GGTTAAAGGC CAAGGACTGG GGCTCCAGCT CTGGATCACA GGGTCGAGAA GACTCGGTTC

2341 TGAGCTATGA GACGGTGACC CAGATGGAAG TGCACTATGC TCGTCCCATC ATCATCCTTG

2401 GACCCACCAA AGACCGTGCC AACGATGATC TTCTCTCCGA GTTCCCCGAC AAGTTTGGAT

2461 CCTGTGTCCC TCATACGACA CGTCCTAAGC GGGAATATGA GATAGACGGC CGGGATTACC

2521 ACTTTGTCTC CTCCCGGGAG AAAATGGAGA AGGACATCCA GGCACACAAG TTCATTGAGG

2581 CTGGCCAGTA CAACAGCCAC CTCTATGGGA CCAGCGTCCA GTCTGTGCGA GAGGTAGCAG

2641 AGCAGGGGAA GCACTGCATC CTCGATGTCT CGGCCAATGC CGTGCGGCGG CTGCAGGCGG

2701 CCCACCTGCA CCCCATCGCC ATCTTCATCC GTCCCCGCTC CCTGGAGAAT GTGCTAGAGA

2761 TCAATAAGCG GATCACAGAG GAGCAAGCCC GGAAAGCCTT CGACAGAGCC ACGAAGCTGG

2821 AGCAGGAGTT CACAGAGTGC TTCTCAGCCA TCGTAGAGGG CGACAGCTTT GAAGAGATCT

2881 ATCACAAAGT GAAACGTGTC ATTGAAGACC TCTCAGGCCC CTACATCTGG GTCCCAGCCC

2941 GAGAGAGACT CGGAATTCGG ATGGTGAGCA AGGGCGAGGA GCTGTTCACC GGGGTGGTGC

3001 CCATCCTGGT CGAGCTGGAC GGCGACGTAA ACGGCCACAA GTTCAGCGTG TCCGGCGAGG

3061 GCGAGGGCGA TGCCACCTAC GGCAAGCTGA CCCTGAAGTT CATCTGCACC ACCGGCAAGC

3121 TGCCCGTGCC CTGGCCCACC CTCGTGACCA CCCTGACCTA CGGCGTGCAG TGCTTCAGCC

3181 GCTACCCCGA CCACATGAAG CAGCACGACT TCTTCAAGTC CGCCATGCCC GAAGGCTACG

3241 TCCAGGAGCG CACCATCTTC TTCAAGGACG ACGGCAACTA CAAGACCCGC GCCGAGGTGA

3301 AGTTCGAGGG CGACACCCTG GTGAACCGCA TCGAGCTGAA GGGCATCGAC TTCAAGGAGG

3361 ACGGCAACAT CCTGGGGCAC AAGCTGGAGT ACAACTACAA CAGCCACAAC GTCTATATCA

3421 TGGCCGACAA GCAGAAGAAC GGCATCAAGG TGAACTTCAA GATCCGCCAC AACATCGAGG

3481 ACGGCAGCGT GCAGCTCGCC GACCACTACC AGCAGAACAC CCCCATCGGC GACGGCCCCG

3541 TGCTGCTGCC CGACAACCAC TACCTGAGCA CCCAGTCCGC CCTGAGCAAA GACCCCAACG
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3601 AGAAGCGCGA TCACATGGTC CTGCTGGAGT TCGTGACCGC CGCCGGGATC ACTCTCGGCA

3661 TGGACGAGCT GTACAAGTAA GCGGCCGCTT CGAGCAGACA TGATAAGATA CATTGATGAG

3721 TTTGGACAAA CCACAACTAG AATGCAGTGA AAAAAATGCT TTATTTGTGA AATTTGTGAT

3781 GCTATTGCTT TATTTGTAAC CATTATAAGC TGCAATAAAC AAGTTAACAA CAACAATTGC

3841 ATTCATTTTA TGTTTCAGGT TCAGGGGGAG ATGTGGGAGG TTTTTTAAAG CAAGTAAAAC

3901 CTCTACAAAT GTGGTAAAAT CGATAAGGAT CCGGGCTGGC GTAATAGCGA AGAGGCCCGC

3961 ACCGATCGCC CTTCCCAACA GTTGCGCAGC CTGAATGGCG AATGGACGCG CCCTGTAGCG

4021 GCGCATTAAG CGCGGCGGGT GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG

4081 CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC

4141 CCCGTCAAGC TCTAAATCGG GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC

4201 TCGACCCCAA AAAACTTGAT TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA

4261 CGGTTTTTCG CCCTTTGACG TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA

4321 CTGGAACAAC ACTCAACCCT ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA

4381 TTTCGGCCTA TTGGTTAAAA AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA

4441 AAATATTAAC GCTTACAATT TCCTGATGCG GTATTTTCTC CTTACGCATC TGTGCGGTAT

4501 TTCACACCGC ATATGGTGCA CTCTCAGTAC AATCTGCTCT GATGCCGCAT AGTTAAGCCA

4561 GCCCCGACAC CCGCCAACAC CCGCTGACGC GCCCTGACGG GCTTGTCTGC TCCCGGCATC

4621 CGCTTACAGA CAAGCTGTGA CCGTCTCCGG GAGCTGCATG TGTCAGAGGT TTTCACCGTC

4681 ATCACCGAAA CGCGCGAGAC GAAAGGGCCT CGTGATACGC CTATTTTTAT AGGTTAATGT

4741 CATGATAATA ATGGTTTCTT AGACGTCAGG TGGCACTTTT CGGGGAAATG TGCGCGGAAC

4801 CCCTATTTGT TTATTTTTCT AAATACATTC AAATATGTAT CCGCTCATGA GACAATAACC

4861 CTGATAAATG CTTCAATAAT ATTGAAAAAG GAAGAGTATG AGTATTCAAC ATTTCCGTGT

4921 CGCCCTTATT CCCTTTTTTG CGGCATTTTG CCTTCCTGTT TTTGCTCACC CAGAAACGCT

4981 GGTGAAAGTA AAAGATGCTG AAGATCAGTT GGGTGCACGA GTGGGTTACA TCGAACTGGA

5041 TCTCAACAGC GGTAAGATCC TTGAGAGTTT TCGCCCCGAA GAACGTTTTC CAATGATGAG

5101 CACTTTTAAA GTTCTGCTAT GTGGCGCGGT ATTATCCCGT ATTGACGCCG GGCAAGAGCA

5161 ACTCGGTCGC CGCATACACT ATTCTCAGAA TGACTTGGTT GAGTACTCAC CAGTCACAGA

5221 AAAGCATCTT ACGGATGGCA TGACAGTAAG AGAATTATGC AGTGCTGCCA TAACCATGAG

5281 TGATAACACT GCGGCCAACT TACTTCTGAC AACGATCGGA GGACCGAAGG AGCTAACCGC

5341 TTTTTTGCAC AACATGGGGG ATCATGTAAC TCGCCTTGAT CGTTGGGAAC CGGAGCTGAA

5401 TGAAGCCATA CCAAACGACG AGCGTGACAC CACGATGCCT GTAGCAATGG CAACAACGTT

5461 GCGCAAACTA TTAACTGGCG AACTACTTAC TCTAGCTTCC CGGCAACAAT TAATAGACTG

5521 GATGGAGGCG GATAAAGTTG CAGGACCACT TCTGCGCTCG GCCCTTCCGG CTGGCTGGTT

5581 TATTGCTGAT AAATCTGGAG CCGGTGAGCG TGGGTCTCGC GGTATCATTG CAGCACTGGG
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5641 GCCAGATGGT AAGCCCTCCC GTATCGTAGT TATCTACACG ACGGGGAGTC AGGCAACTAT

5701 GGATGAACGA AATAGACAGA TCGCTGAGAT AGGTGCCTCA CTGATTAAGC ATTGGTAACT

5761 GTCAGACCAA GTTTACTCAT ATATACTTTA GATTGATTTA AAACTTCATT TTTAATTTAA

5821 AAGGATCTAG GTGAAGATCC TTTTTGATAA TCTCATGACC AAAATCCCTT AACGTGAGTT

5881 TTCGTTCCAC TGAGCGTCAG ACCCCGTAGA AAAGATCAAA GGATCTTCTT GAGATCCTTT

5941 TTTTCTGCGC GTAATCTGCT GCTTGCAAAC AAAAAAACCA CCGCTACCAG CGGTGGTTTG

6001 TTTGCCGGAT CAAGAGCTAC CAACTCTTTT TCCGAAGGTA ACTGGCTTCA GCAGAGCGCA

6061 GATACCAAAT ACTGTTCTTC TAGTGTAGCC GTAGTTAGGC CACCACTTCA AGAACTCTGT

6121 AGCACCGCCT ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA

6181 TAAGTCGTGT CTTACCGGGT TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGGTC

6241 GGGCTGAACG GGGGGTTCGT GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT

6301 GAGATACCTA CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGA GAAAGGCGGA

6361 CAGGTATCCG GTAAGCGGCA GGGTCGGAAC AGGAGAGCGC ACGAGGGAGC TTCCAGGGGG

6421 AAACGCCTGG TATCTTTATA GTCCTGTCGG GTTTCGCCAC CTCTGACTTG AGCGTCGATT

6481 TTTGTGATGC TCGTCAGGGG GGCGGAGCCT ATGGAAAAAC GCCAGCA
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1 ATGGCGGATG TGTGACATAC ACGACGCCAA AAGATTTTGT TCCAGCTCCT GCCACCTCCG

61 CTACGCGAGA GATTAACCAC CCACGATGGC CGCCAAAGTG CATGTTGATA TTGAGGCTGA

121 CAGCCCATTC ATCAAGTCTT TGCAGAAGGC ATTTCCGTCG TTCGAGGTGG AGTCATTGCA

181 GGTCACACCA AATGACCATG CAAATGCCAG AGCATTTTCG CACCTGGCTA CCAAATTGAT

241 CGAGCAGGAG ACTGACAAAG ACACACTCAT CTTGGATATC GGCAGTGCGC CTTCCAGGAG

301 AATGATGTCT ACGCACAAAT ACCACTGCGT ATGCCCTATG CGCAGCGCAG AAGACCCCGA

361 AAGGCTCGAT AGCTACGCAA AGAAACTGGC AGCGGCCTCC GGGAAGGTGC TGGATAGAGA

421 GATCGCAGGA AAAATCACCG ACCTGCAGAC CGTCATGGCT ACGCCAGACG CTGAATCTCC

481 TACCTTTTGC CTGCATACAG ACGTCACGTG TCGTACGGCA GCCGAAGTGG CCGTATACCA

541 GGACGTGTAT GCTGTACATG CACCAACATC GCTGTACCAT CAGGCGATGA AAGGTGTCAG

601 AACGGCGTAT TGGATTGGGT TTGACACCAC CCCGTTTATG TTTGACGCGC TAGCAGGCGC

661 GTATCCAACC TACGCCACAA ACTGGGCCGA CGAGCAGGTG TTACAGGCCA GGAACATAGG

721 ACTGTGTGCA GCATCCTTGA CTGAGGGAAG ACTCGGCAAA CTGTCCATTC TCCGCAAGAA

781 GCAATTGAAA CCTTGCGACA CAGTCATGTT CTCGGTAGGA TCTACATTGT ACACTGAGAG

841 CAGAAAGCTA CTGAGGAGCT GGCACTTACC CTCCGTATTC CACCTGAAAG GTAAACAATC

901 CTTTACCTGT AGGTGCGATA CCATCGTATC ATGTGAAGGG TACGTAGTTA AGAAAATCAC



104 C. Sequences of Plasmid DNA

961 TATGTGCCCC GGCCTGTACG GTAAAACGGT AGGGTACGCC GTGACGTATC ACGCGGAGGG

1021 ATTCCTAGTG TGCAAGACCA CAGACACTGT CAAAGGAGAA AGAGTCTCAT TCCCTGTATG

1081 CACCTACGTC CCCTCAACCA TCTGTGATCA AATGACTGGC ATACTAGCGA CCGACGTCAC

1141 ACCGGAGGAC GCACAGAAGT TGTTAGTGGG ATTGAATCAG AGGATAGTTG TGAACGGAAG

1201 AACACAGCGA AACACTAACA CGATGAAGAA CTATCTGCTT CCGATTGTGG CCGTCGCATT

1261 TAGCAAGTGG GCGAGGGAAT ACAAGGCAGA CCTTGATGAT GAAAAACCTC TGGGTGTCCG

1321 AGAGAGGTCA CTTACTTGCT GCTGCTTGTG GGCATTTAAA ACGAGGAAGA TGCACACCAT

1381 GTACAAGAAA CCAGACACCC AGACAATAGT GAAGGTGCCT TCAGAGTTTA ACTCGTTCGT

1441 CATCCCGAGC CTATGGTCTA CAGGCCTCGC AATCCCAGTC AGATCACGCA TTAAGATGCT

1501 TTTGGCCAAG AAGACCAAGC GAGAGTTAAT ACCTGTTCTC GACGCGTCGT CAGCCAGGGA

1561 TGCTGAACAA GAGGAGAAGG AGAGGTTGGA GGCCGAGCTG ACTAGAGAAG CCTTACCACC

1621 CCTCGTCCCC ATCGCGCCGG CGGAGACGGG AGTCGTCGAC GTCGACGTTG AAGAACTAGA

1681 GTATCACGCA GGTGCAGGGG TCGTGGAAAC ACCTCGCAGC GCGTTGAAAG TCACCGCACA

1741 GCCGAACGAC GTACTACTAG GAAATTACGT AGTTCTGTCC CCGCAGACCG TGCTCAAGAG

1801 CTCCAAGTTG GCCCCCGTGC ACCCTCTAGC AGAGCAGGTG AAAATAATAA CACATAACGG

1861 GAGGGCCGGC GGTTACCAGG TCGACGGATA TGACGGCAGG GTCCTACTAC CATGTGGATC

1921 GGCCATTCCG GTCCCTGAGT TTCAAGCTTT GAGCGAGAGC GCCACTATGG TGTACAACGA

1981 AAGGGAGTTC GTCAACAGGA AACTATACCA TATTGCCGTT CACGGACCGT CGCTGAACAC

2041 CGACGAGGAG AACTACGAGA AAGTCAGAGC TGAAAGAACT GACGCCGAGT ACGTGTTCGA

2101 CGTAGATAAA AAATGCTGCG TCAAGAGAGA GGAAGCGTCG GGTTTGGTGT TGGTGGGAGA

2161 GCTAACCAAC CCCCCGTTCC ATGAATTCGC CTACGAAGGG CTGAAGATCA GGCCGTCGGC

2221 ACCATATAAG ACTACAGTAG TAGGAGTCTT TGGGGTTCCG GGATCAGGCA AGTCTGCTAT

2281 TATTAAGAGC CTCGTGACCA AACACGATCT GGTCACCAGC GGCAAGAAGG AGAACTGCCA

2341 GGAAATAGTT AACGACGTGA AGAAGCACCG CGGGAAGGGG ACAAGTAGGG AAAACAGTGA

2401 CTCCATCCTG CTAAACGGGT GTCGTCGTGC CGTGGACATC CTATATGTGG ACGAGGCTTT

2461 CGCTAGCCAT TCCGGTACTC TGCTGGCCCT AATTGCTCTT GTTAAACCTC GGAGCAAAGT

2521 GGTGTTATGC GGAGACCCCA AGCAATGCGG ATTCTTCAAT ATGATGCAGC TTAAGGTGAA

2581 CTTCAACCAC AACATCTGCA CTGAAGTATG TCATAAAAGT ATATCCAGAC GTTGCACGCG

2641 TCCAGTCACG GCCATCGTGT CTACGTTGCA CTACGGAGGC AAGATGCGCA CGACCAACCC

2701 GTGCAACAAA CCCATAATCA TAGACACCAC AGGACAGACC AAGCCCAAGC CAGGAGACAT

2761 CGTGTTAACA TGCTTCCGAG GCTGGGCAAA GCAGCTGCAG TTGGACTACC GTGGACACGA

2821 AGTCATGACA GCAGCAGCAT CTCAGGGCCT CACCCGCAAA GGGGTATACG CCGTAAGGCA

2881 GAAGGTGAAT GAAAATCCCT TGTATGCCCC TGCGTCGGAG CACGTGAATG TACTGCTGAC

2941 GCGCACTGAG GATAGGCTGG TGTGGAAAAC GCTGGCCGGC GATCCCTGGA TTAAGGTCCT
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3001 ATCAAACATT CCACAGGGTA ACTTTACGGC CACATTGGAA GAATGGCAAG AAGAACACGA

3061 CAAAATAATG AAGGTGATTG AAGGACCGGC TGCGCCTGTG GACGCGTTCC AGAACAAAGC

3121 GAACGTGTGT TGGGCGAAAA GCCTGGTGCC TGTCCTGGAC ACTGCCGGAA TCAGATTGAC

3181 AGCAGAGGAG TGGAGCACCA TAATTACAGC ATTTAAGGAG GACAGAGCTT ACTCTCCAGT

3241 GGTGGCCTTG AATGAAATTT GCACCAAGTA CTATGGAGTT GACCTGGACA GTGGCCTGTT

3301 TTCTGCCCCG AAGGTGTCCC TGTATTACGA GAACAACCAC TGGGATAACA GACCTGGTGG

3361 AAGGATGTAT GGATTCAATG CCGCAACAGC TGCCAGGCTG GAAGCTAGAC ATACCTTCCT

3421 GAAGGGGCAG TGGCATACGG GCAAGCAGGC AGTTATCGCA GAAAGAAAAA TCCAACCGCT

3481 TTCTGTGCTG GACAATGTAA TTCCTATCAA CCGCAGGCTG CCGCACGCCC TGGTGGCTGA

3541 GTACAAGACG GTTAAAGGCA GTAGGGTTGA GTGGCTGGTC AATAAAGTAA GAGGGTACCA

3601 CGTCCTGCTG GTGAGTGAGT ACAACCTGGC TTTGCCTCGA CGCAGGGTCA CTTGGTTGTC

3661 ACCGCTGAAT GTCACAGGCG CCGATAGGTG CTACGACCTA AGTTTAGGAC TGCCGGCTGA

3721 CGCCGGCAGG TTCGACTTGG TCTTTGTGAA CATTCACACG GAATTCAGAA TCCACCACTA

3781 CCAGCAGTGT GTCGACCACG CCATGAAGCT GCAGATGCTT GGGGGAGATG CGCTACGACT

3841 GCTAAAACCC GGCGGCATCT TGATGAGAGC TTACGGATAC GCCGATAAAA TCAGCGAAGC

3901 CGTTGTTTCC TCCTTAAGCA GAAAGTTCTC GTCTGCAAGA GTGTTGCGCC CGGATTGTGT

3961 CACCAGCAAT ACAGAAGTGT TCTTGCTGTT CTCCAACTTT GACAACGGAA AGAGACCCTC

4021 TACGCTACAC CAGATGAATA CCAAGCTGAG TGCCGTGTAT GCCGGAGAAG CCATGCACAC

4081 GGCCGGGTGT GCACCATCCT ACAGAGTTAA GAGAGCAGAC ATAGCCACGT GCACAGAAGC

4141 GGCTGTGGTT AACGCAGCTA ACGCCCGTGG AACTGTAGGG GATGGCGTAT GCAGGGCCGT

4201 GGCGAAGAAA TGGCCGTCAG CCTTTAAGGG AGCAGCAACA CCAGTGGGCA CAATTAAAAC

4261 AGTCATGTGC GGCTCGTACC CCGTCATCCA CGCTGTAGCG CCTAATTTCT CTGCCACGAC

4321 TGAAGCGGAA GGGGACCGCG AATTGGCCGC TGTCTACCGG GCAGTGGCCG CCGAAGTAAA

4381 CAGACTGTCA CTGAGCAGCG TAGCCATCCC GCTGCTGTCC ACAGGAGTGT TCAGCGGCGG

4441 AAGAGATAGG CTGCAGCAAT CCCTCAACCA TCTATTCACA GCAATGGACG CCACGGACGC

4501 TGACGTGACC ATCTACTGCA GAGACAAAAG TTGGGAGAAG AAAATCCAGG AAGCCATTGA

4561 CATGAGGACG GCTGTGGAGT TGCTCAATGA TGACGTGGAG CTGACCACAG ACTTGGTGAG

4621 AGTGCACCCG GACAGCAGCC TGGTGGGTCG TAAGGGCTAC AGTACCACTG ACGGGTCGCT

4681 GTACTCGTAC TTTGAAGGTA CGAAATTCAA CCAGGCTGCT ATTGATATGG CAGAGATACT

4741 GACGTTGTGG CCCAGACTGC AAGAGGCAAA CGAACAGATA TGCCTATACG CGCTGGGCGA

4801 AACAATGGAC AACATCAGAT CCAAATGTCC GGTGAACGAT TCCGATTCAT CAACACCTCC

4861 CAGGACAGTG CCCTGCCTGT GCCGCTACGC AATGACAGCA GAACGGATCG CCCGCCTTAG

4921 GTCACACCAA GTTAAAAGCA TGGTGGTTTG CTCATCTTTT CCCCTCCCGA AATACCATGT

4981 AGATGGGGTG CAGAAGGTAA AGTGCGAGAA GGTTCTCCTG TTCGACCCGA CGGTACCTTC
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5041 AGTGGTTAGT CCGCGGAAGT ATGCCGCATC TACGACGGAC CACTCAGATC GGTCGTTACG

5101 AGGGTTTGAC TTGGACTGGA CCACCGACTC GTCTTCCACT GCCAGCGATA CCATGTCGCT

5161 ACCCAGTTTG CAGTCGTGTG ACATCGACTC GATCTACGAG CCAATGGCTC CCATAGTAGT

5221 GACGGCTGAC GTACACCCTG AACCCGCAGG CATCGCGGAC CTGGCGGCAG ATGTGCATCC

5281 TGAACCCGCA GACCATGTGG ACCTGGAGAA CCCGATTCCT CCACCGCGCC CGAAGAGAGC

5341 TGCATACCTT GCCTCCCGCG CGGCGGAGCG ACCAGTGCCG GCGCCGAGAA AGCCGACGCC

5401 TGCCCCAAGG ACTGCGTTTA GGAACAAGCT GCCTTTGACG TTCGGCGACT TTGACGAGCA

5461 CGAGGTCGAT GCGTTGGCCT CCGGGATTAC TTTCGGAGAC TTCGACGACG TCCTGCGACT

5521 AGGCCGCGCG GGTGCATATA TTTTCTCCTC GGACACTGGC AGCGGACATT TACAACAAAA

5581 ATCCGTTAGG CAGCACAATC TCCAGTGCGC ACAACTGGAT GCGGTCGAGG AGGAGAAAAT

5641 GTACCCGCCA AAATTGGATA CTGAGAGGGA GAAGCTGTTG CTGCTGAAAA TGCAGATGCA

5701 CCCATCGGAG GCTAATAAGA GTCGATACCA GTCTCGCAAA GTGGAGAACA TGAAAGCCAC

5761 GGTGGTGGAC AGGCTCACAT CGGGGGCCAG ATTGTACACG GGAGCGGACG TAGGCCGCAT

5821 ACCAACATAC GCGGTTCGGT ACCCCCGCCC CGTGTACTCC CCTACCGTGA TCGAAAGATT

5881 CTCAAGCCCC GATGTAGCAA TCGCAGCGTG CAACGAATAC CTATCCAGAA ATTACCCAAC

5941 AGTGGCGTCG TACCAGATAA CAGATGAATA CGACGCATAC TTGGACATGG TTGACGGGTC

6001 GGATAGTTGC TTGGACAGAG CGACATTCTG CCCGGCGAAG CTCCGGTGCT ACCCGAAACA

6061 TCATGCGTAC CACCAGCCGA CTGTACGCAG TGCCGTCCCG TCACCCTTTC AGAACACACT

6121 ACAGAACGTG CTAGCAGCCG CCACCAAGAG AAACTGCAAC GTCACGCAAA TGCGAGAACT

6181 ACCCACCATG GACTCGGCAG TGTTCAACGT GGAGTGCTTC AAGCGCTATG CCTGCTCCGG

6241 AGAATATTGG GAAGAATATG CTAAACAACC TATCCGGATA ACCACTGAGA ACATCACTAC

6301 CTATGTGACC AAATTGAAAG GCCCGAAAGC TGCTGCCTTG TTCGCTAAGA CCCACAACTT

6361 GGTTCCGCTG CAGGAGGTTC CCATGGACAG ATTCACGGTC GACATGAAAC GAGATGTCAA

6421 AGTCACTCCA GGGACGAAAC ACACAGAGGA AAGACCCAAA GTCCAGGTAA TTCAAGCAGC

6481 GGAGCCATTG GCGACCGCTT ACCTGTGCGG CATCCACAGG GAATTAGTAA GGAGACTAAA

6541 TGCTGTGTTA CGCCCTAACG TGCACACATT GTTTGATATG TCGGCCGAAG ACTTTGACGC

6601 GATCATCGCC TCTCACTTCC ACCCAGGAGA CCCGGTACTA GAGACGGACA TTGCATCATT

6661 CGACAAAAGC CAGGACGACT CCTTGGCTCT TACAGGTTTA ATGATCCTCG AAGATCTAGG

6721 GGTGGATCAG TACCTGCTGG ACTTGATCGA GGCAGCCTTT GGGGAAATAT CCAGCTGTCA

6781 CCTACCAACT GGCACGCGCT TCAAGTTCGG AGCTATGATG AAATCGGGCA TGTTTCTGAC

6841 TTTGTTTATT AACACTGTTT TGAACATCAC CATAGCAAGC AGGGTACTGG AGCAGAGACT

6901 CACTGACTCC GCCTGTGCGG CCTTCATCGG CGACGACAAC ATCGTTCACG GAGTGATCTC

6961 CGACAAGCTG ATGGCGGAGA GGTGCGCGTC GTGGGTCAAC ATGGAGGTGA AGATCATTGA

7021 CGCTGTCATG GGCGAAAAAC CCCCATATTT TTGTGGGGGA TTCATAGTTT TTGACAGCGT
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7081 CACACAGACC GCCTGCCGTG TTTCAGACCC ACTTAAGCGC CTGTTCAAGT TGGGTAAGCC

7141 GCTAACAGCT GAAGACAAGC AGGACGAAGA CAGGCGACGA GCACTGAGTG ACGAGGTTAG

7201 CAAGTGGTTC CGGACAGGCT TGGGGGCCGA ACTGGAGGTG GCACTAACAT CTAGGTATGA

7261 GGTAGAGGGC TGCAAAAGTA TCCTCATAGC CATGGCCACC TTGGCGAGGG ACATTAAGGC

7321 GTTTAAGAAA TTGAGAGGAC CTGTTATACA CCTCTACGGC GGTCCTAGAT TGGTGCGTTA

7381 ATACACAGAA TTCTGATTGG ATCCCGGGCT CGAGCTCAAG CTTCGAATTC ATGGGTGTCG

7441 CAGATTTGAT CAAGAAATTC GAAAGCATCT CAAAGGAAGA AGGGGATCCA CCGGTCGCCA

7501 CCATGGTGAG CAAGGGCGAG GAGCTGTTCA CCGGGGTGGT GCCCATCCTG GTCGAGCTGG

7561 ACGGCGACGT AAACGGCCAC AAGTTCAGCG TGTCCGGCGA GGGCGAGGGC GATGCCACCT

7621 ACGGCAAGCT GACCCTGAAG TTCATCTGCA CCACCGGCAA GCTGCCCGTG CCCTGGCCCA

7681 CCCTCGTGAC CACCTTCGGC TACGGCCTGC AGTGCTTCGC CCGCTACCCC GACCACATGA

7741 AGCAGCACGA CTTCTTCAAG TCCGCCATGC CCGAAGGCTA CGTCCAGGAG CGCACCATCT

7801 TCTTCAAGGA CGACGGCAAC TACAAGACCC GCGCCGAGGT GAAGTTCGAG GGCGACACCC

7861 TGGTGAACCG CATCGAGCTG AAGGGCATCG ACTTCAAGGA GGACGGCAAC ATCCTGGGGC

7921 ACAAGCTGGA GTACAACTAC AACAGCCACA ACGTCTATAT CATGGCCGAC AAGCAGAAGA

7981 ACGGCATCAA GGTGAACTTC AAGATCCGCC ACAACATCGA GGACGGCAGC GTGCAGCTCG

8041 CCGACCACTA CCAGCAGAAC ACCCCCATCG GCGACGGCCC CGTGCTGCTG CCCGACAACC

8101 ACTACCTGAG CTACCAGTCC GCCCTGAGCA AAGACCCCAA CGAGAAGCGC GATCACATGG

8161 TCCTGCTGGA GTTCGTGACC GCCGCCGGGA TCACTCTCGG CATGGACGAG CTGTACAAGT

8221 AAAGCGGCCG CAGGGTAATT AATTGAATTA CATCCCTACG CAAACGTTTT ACGGCCGCCG

8281 GTGGCGCCCG CGCCCGGCGG CCCGTCCTTG GCCGTTGCAG GCCACTCCGG TGGCTCCCGT

8341 CGTCCCCGAC TTCCAGGCCC AGCAGATGCA GCAACTCATC AGCGCCGTAA ATGCGCTGAC

8401 AATGAGACAG AACGCAATTG CTCCTGCTAG GCCTCCCAAA CCAAAGAAGA AGAAGACAAC

8461 CAAACCAAAG CCGAAAACGC AGCCCAAGAA GATCAACGGA AAAACGCAGC AGCAAAAGAA

8521 GAAAGACAAG CAAGCCGACA AGAAGAAGAA GAAACCCGGA AAAAGAGAAA GAATGTGCAT

8581 GAAGATTGAA AATGACTGTA TCTTCGTATG CGGCTAGCCA CAGTAACGTA GTGTTTCCAG

8641 ACATGTCGGG CACCGCACTA TCATGGGTGC AGAAAATCTC GGGTGGTCTG GGGGCCTTCG

8701 CAATCGGCGC TATCCTGGTG CTGGTTGTGG TCACTTGCAT TGGGCTCCGC AGATAAGTTA

8761 GGGTAGGCAA TGGCATTGAT ATAGCAAGAA AATTGAAAAC AGAAAAAGTT AGGGTAAGCA

8821 ATGGCATATA ACCATAACTG TATAACTTGT AACAAAGCGC AACAAGACCT GCGCAATTGG

8881 CCCCGTGGTC CGCCTCACGG AAACTCGGGG CAACTCATAT TGACACATTA ATTGGCAATA

8941 ATTGGAAGCT TACATAAGCT TAATTCGACG AATAATTGGA TTTTTATTTT ATTTTGCAAT

9001 TGGTTTTTAA TATTTCCAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA

9061 AAAAAAAAAA AAAAAAAAAA AAAAAAACTA GTGATCATAA TCAGCCATAC CACATTTGTA
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9121 GAGGTTTTAC TTGCTTTAAA AAACCTCCCA CACCTCCCCC TGAACCTGAA ACATAAAATG

9181 AATGCAATTG TTGTTGTTAA CTTGTTTATT GCAGCTTATA ATGGTTACAA ATAAAGCAAT

9241 AGCATCACAA ATTTCACAAA TAAAGCATTT TTTTCACTGC ATTCTAGTTG TGGTTTGTCC

9301 AAACTCATCA ATGTATCTTA TCATGTCTGG ATCTAGTCTG CATTAATGAA TCGGCCAACG

9361 CGCGGGGAGA GGCGGTTTGC GTATTGGGCG CTCTTCCGCT TCCTCGCTCA CTGACTCGCT

9421 GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT ATCAGCTCAC TCAAAGGCGG TAATACGGTT

9481 ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA GCAAAAGGCC AGCAAAAGGC

9541 CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC CCCCTGACGA

9601 GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC CCGACAGGAC TATAAAGATA

9661 CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT GCGCTCTCCT GTTCCGACCC TGCCGCTTAC

9721 CGGATACCTG TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT GCTCGCGCTG

9781 TAGGTATCTC AGTTCGGTGT AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC ACGAACCCCC

9841 CGTTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA ACCCGGTAAG

9901 ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT

9961 AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC GGCTACACTA GAAGGACAGT

10021 ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG

10081 ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC AGCAGATTAC

10141 GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT TCTACGGGGC ATTCTGACGC

10201 TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT

10261 CACCTAGATC CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA

10321 AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT

10381 ATTTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA TACGGGAGGG

10441 CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC CGGCTCCAGA

10501 TTTATCAGCA ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT

10561 ATCCGCCTCC ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT

10621 TAATAGTTTG CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTCAC GCTCGTCGTT

10681 TGGTATGGCT TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCCAT

10741 GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAGAA GTAAGTTGGC

10801 CGCAGTGTTA TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC

10861 CGTAAGATGC TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT

10921 GCGGCGACCG AGTTGCTCTT GCCCGGCGTC AATACGGGAT AATACCGCGC CACATAGCAG

10981 AACTTTAAAA GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACTCT CAAGGATCTT

11041 ACCGCTGTTG AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATC

11101 TTTTACTTTC ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG CCGCAAAAAA
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11161 GGGAATAAGG GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTTC AATATTATTG

11221 AAGCATTTAT CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA

11281 TAAACAAATA GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTGACG TCTAAGAAAC

11341 CATTATTATC ATGACATTAA CCTATAAAAA TAGGCGTATC ACGAGGCCCT TTCGTCTCGC

11401 GCGTTTCGGT GATGACGGTG AAAACCTCTG ACACATGCAG CTCCCGGAGA CGGTCACAGC

11461 TTCTGTCTAA GCGGATGCCG GGAGCAGACA AGCCCGTCAG GGCGCGTCAG CGGGTGTTGG

11521 CGGGTGTCGG GGCTGGCTTA ACTATGCGGC ATCAGAGCAG ATTGTACTGA GAGTGCACCA

11581 TATCGACGCT CTCCCTTATG CGACTCCTGC ATTAGGAAGC AGCCCAGTAC TAGGTTGAGG

11641 CCGTTGAGCA CCGCCGCCGC AAGGAATGGT GCATGCGTAA TCAATTACGG GGTCATTAGT

11701 TCATAGCCCA TATATGGAGT TCCGCGTTAC ATAACTTACG GTAAATGGCC CGCCTGGCTG

11761 ACCGCCCAAC GACCCCCGCC CATTGACGTC AATAATGACG TATGTTCCCA TAGTAACGCC

11821 AATAGGGACT TTCCATTGAC GTCAATGGGT GGAGTATTTA CGGTAAACTG CCCACTTGGC

11881 AGTACATCAA GTGTATCATA TGCCAAGTAC GCCCCCTATT GACGTCAATG ACGGTAAATG

11941 GCCCGCCTGG CATTATGCCC AGTACATGAC CTTATGGGAC TTTCCTACTT GGCAGTACAT

12001 CTACGTATTA GTCATCGCTA TTACCATGGT GATGCGGTTT TGGCAGTACA TCAATGGGCG

12061 TGGATAGCGG TTTGACTCAC GGGGATTTCC AAGTCTCCAC CCCATTGACG TCAATGGGAG

12121 TTTGTTTTGG CACCAAAATC AACGGGACTT TCCAAAATGT CGTAACAACT CCGCCCCATT

12181 GACGCAAATG GGCGGTAGGC GTGTACGGTG GGAGGTCTAT ATAAGCAGAG CTCTCTGGCT

12241 AACTAGAGAA CCCACTGCTT AACTGGCTTA TCGAAATTAA TACGACTCAC TATAGGGAGA

12301 CCGGAAGCTT GAATTC
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Cremer, C. (2009). Dual color localization microscopy of cellular nanostructures. Biotechnology
Journal, 4(6):927–938. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19548231.

Gustafsson, M. G. L. (2005). Nonlinear structured-illumination microscopy: wide-field
fluorescence imaging with theoretically unlimited resolution. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 102(37):13081–6. Available
from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201569&tool=

pmcentrez&rendertype=abstract.

Haas, K., Sin, W. C., Javaherian, A., Li, Z., and Cline, H. T. (2001). Single-cell electroporation
for gene transfer in vivo. Neuron, 29(3):583–91. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/11301019.

Harke, B., Keller, J., Ullal, C., and Westphal, V. (2008). Resolution scaling in STED microscopy.
Opt. Express, 16(6):1347–1355. Available from: http://www3.mpibpc.mpg.de/groups/hell/
publications/pdf/Opt._Exp._16_4154-4162.pdf.

Harms, K. J. and Dunaevsky, A. (2007). Dendritic spine plasticity: looking beyond develop-
ment. Brain Research, 1184:65–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/
16600191.

Harris, K. M., Jensen, F. E., and Tsao, B. (1992). Three-dimensional structure of dendritic spines
and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the
maturation of synaptic physiology and long-term potentiation. The Journal of Neuroscience,
12(7):2685–705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1613552.

http://www.nature.com/nature/journal/v183/n4675/pdf/1831592a0.pdf
http://www.nature.com/nature/journal/v183/n4675/pdf/1831592a0.pdf
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1634879&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1634879&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/19074019
http://www.ncbi.nlm.nih.gov/pubmed/19074019
http://www.nature.com/neuro/journal/v13/n10/full/nn.2634.html
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2111925&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2111925&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/19548231
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201569&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201569&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/11301019
http://www.ncbi.nlm.nih.gov/pubmed/11301019
http://www3.mpibpc.mpg.de/groups/hell/publications/pdf/Opt._Exp._16_4154-4162.pdf
http://www3.mpibpc.mpg.de/groups/hell/publications/pdf/Opt._Exp._16_4154-4162.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16600191
http://www.ncbi.nlm.nih.gov/pubmed/16600191
http://www.ncbi.nlm.nih.gov/pubmed/1613552


120 BIBLIOGRAPHY

Harris, K. M. and Stevens, J. K. (1988). Dendritic spines of rat cerebellar Purkinje cells: serial
electron microscopy with reference to their biophysical characteristics. The Journal of Neuro-
science, 8(12):4455–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3199186.

Harris, K. M. and Stevens, J. K. (1989). Dendritic spines of CA 1 pyramidal cells in the rat
hippocampus: serial electron microscopy with reference to their biophysical characteristics.
The Journal of Neuroscience, 9(8):2982–97. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/2769375.

Harris, K. M. and Sultan, P. (1995). Variation in the number, location and size of synaptic
vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal
CA1 synapses. Neuropharmacology, 34(11):1387–95. Available from: http://www.ncbi.nlm.

nih.gov/pubmed/8606788.

Harris, K. M. and Weinberg, R. J. (2012). Ultrastructure of synapses in the mammalian brain.
Cold Spring Harbor Perspectives in Biology, 4(5). Available from: http://www.ncbi.nlm.

nih.gov/pubmed/22357909.

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory. Psychology Press.

Hedde, P. N., Dörlich, R. M., Blomley, R., Gradl, D., Oppong, E., Cato, A. C. B., and Nienhaus,
G. U. (2013). Stimulated emission depletion-based raster image correlation spectroscopy reveals
biomolecular dynamics in live cells. Nature Communications, 4(May):2093. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/23803641.
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