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1 Introduction 

Poxviridae are a large family of enveloped viruses with double stranded, linear DNA 

genomes that replicate in the cytoplasm and exhibit a broad host range. Vaccinia virus 

(VACV) is a prototypical poxvirus that was used in the successful vaccination campaign 

which led to the eradication of the closely related variola virus, the etiologic agent of 

smallpox. Despite the eradication of smallpox the need for an effective vaccine has not 

entirely disappeared as there remains a small but significant threat of outbreaks of 

smallpox-like diseases. The latest generations of vaccine strains such as the highly 

attenuated modified vaccinia virus Ankara (MVA) would likely fill this gap if the need were 

to arise again.  

Although unable to propagate in human cells, MVA efficiently expresses viral and 

recombinant genes. Coupled with its intrinsic adjuvant properties MVA is a promising viral 

vector, which, along with a number of other VACV strains are being developed for use as 

viral vector vaccines. VACV has shown promise in these applications, however, there is little 

understanding of the mechanisms underlying the immune response to VACV. In view of this 

and the complex regulatory questions associated with the use of recombinant viral vectors it 

is imperative that we develop a better understanding of the immune responses elicited by 

VACV and decipher the role of host and viral derived factors in the mechanisms behind the 

potent immunity induced by VACV.  

MVA is unique amongst VACV strains in its ability to trigger the rapid release of 

inflammatory cytokines and recruitment of leukocytes. We believe that this potent 

induction of innate immunity may play an important role in the efficacy of MVA vaccination. 

Previous work by our group has demonstrated the importance of chemokine (C-C motif) 
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ligand 2 (CCL2) in the recruitment of monocytes and lymphocytes to the site of infection, 

however a large proportion of the infiltrating leukocytes are neutrophils which are recruited 

independently of CCL2. Despite being one of the most abundant cell types recruited during 

the early stages of infection little is known about the role of neutrophils in poxvirus 

immunity. The aim of this study was to investigate MVA induction of the innate immune 

response by assessing the contribution of signalling through chemokine (C-C motif) receptor 

1 (CCR1) and activation of the complement system to the recruitment of neutrophils and 

monocytes.  

Cell migration assays were employed to assess the contribution of CCR1 to MVA induced 

migration of monocytes and neutrophils. Infiltrating leukocytes in MVA infected Ccr1-/- mice 

were quantified by flow cytometry to show the important role of CCR1 for neutrophil and 

monocyte recruitment. Similarly the role of complement activation in the induction of 

leukocyte migration was assessed by infection studies in mice deficient in the central 

complement component C3. Investigations into complement component C5 showed that 

MVA infection activates C5 independently of C3 and that C5 contributes to the recruitment 

of neutrophils and CD8+ T-cells. These studies demonstrated an important role for CCR1 and 

complement activation in the recruitment of leukocyte subpopulations during MVA 

infection, advancing our knowledge of the innate immune response to MVA. 
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2 Literature review 

2.1 Poxviruses 

2.1.1 Taxonomy  

Poxviruses, from the Poxviridae family, are divided into two subfamilies, Entomopoxvirinae 

which infect insects and the Chordopoxvirinae which infect vertebrates. Within the 

Chordopoxvirinae family there are 8 genera, of which the Orthopoxviruses, Parapoxviruses, 

Molluscipoxviruses and Yatapoxviruses contain species that can infect humans. Generally 

most poxviruses exhibit a specific host range however some strains such as cowpox are 

known to infect various hosts including humans, others are acquired as rare zoonotic 

infections [1]. 

2.1.2 Structure & lifecycle 

Poxviruses particles are large (240 by 300 nm) with a distinct brick like shape. Virus is 

released from the cell in two major infectious forms, the extracellular enveloped viron (EEV) 

which buds from the cell acquiring an additional envelope, and the intracellular mature 

viron (IMV) which is released upon cell lysis and only has a single viral envelope. The two 

forms differ in antigenicity and, due to different entry mechanisms, also in infectivity [2]. 

Poxviruses have large linear double stranded DNA genomes with inverted terminal repeats 

and contain several hundred open reading frames. Genes involved in replication and 

morphogenesis are largely conserved, whilst many of the non-structural genes which are 

involved with host interaction are adaptively evolved to specific species, and so are more 

divergent [3]. 
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Poxvirus entry into cells is a complex process involving many viral and host factors that 

trigger the activation of signalling pathways and  actin remodelling leading to 

internalisation, possibly by macropinocytosis [4]. Though the exact cell surface receptors 

involved have not been determined it is thought that the virus binds to ubiquitously 

expressed glycosaminoglycans [5]. As the macropinosome matures the change in pH triggers 

release of the virus core into the cytosol [6]. The first wave of early viral transcription is then 

initiated by the viral transcriptome at early promoters leading to the synthesis of early viral 

mRNA [7] (Fig. 2.1). In the second step the viral core is uncoated releasing the viral genome 

into the cytosol, where host factors are recruited for genome replication and the 

subsequent synthesis of intermediate and late genes in cytosolic membrane wrapped virus 

factories [8]. An important feature of poxvirus infection is the synthesis of a vast array of 

host immunomodulatory factors which subvert important host pathways including 

apoptosis, antigen presentation and immune signalling. These factors act both intracellularly 

and extracellularly, allowing the virus to avoid detection by the host immune response [9]. 

Assembly and release of progeny virus is a complex process, whereby virons bud through 

the smooth endoplasmic reticulum (ER) acquiring a double membraned cisterna to form 

IMV [10], the majority of which remain inside the cell until it is ultimately lysed. Other types 

of virus particles are formed by subsequent budding of IMV through the trans-golgi 

network. This leads to the further acquisition of another double cisterna membrane forming 

intracellular enveloped virus (IEV) [11].  The outer membrane of IEV can fuse with the cell 

membrane, leaving a cell associated enveloped virus (CEV) exposed on the cell surface. 

Under the control of several host proteins, CEV polymerises actin leading to the release of 
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EEV or extrusion of CEV from the cell surface, propelling them towards neighbouring cells 

[12]. 

 

Fig. 2.1: Life cycle of VACV. See main text for details. Adapted from McFadden 2005 [13], with 

permission from Macmillan Publishers Ltd: Nature Reviews Microbiology, copyright 2005. 

 

2.1.3 Disease 

A main characteristic feature of poxvirus infection is the development of skin lesions, 

sometimes solely at the primary site of infection, which can then spread further due to self-

inoculation. Lesions can be haemorrhagic as seen with some orthopoxviruses, tumor-like as 
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with parapox or leporipox viruses, or less innocuous fleshy nodules as seen with molluscum 

contagiosum. Other poxviruses are capable of establishing generalised infections [1]. 

Historically, the orthopoxviruses are perhaps the most infamous of the poxviruses due to 

variola virus, the etiologic agent of smallpox. Smallpox infections have been traced back to 

antiquity and with an overall fatality rate of approximately 20-40%, smallpox was one of the 

most deadly diseases to affect mankind [14]. Variola was likely transmitted by close contact 

with lesions, material or respiratory secretions of infected persons. In generalised infections 

such as smallpox the virus first replicates locally, for example in the respiratory tract, before 

spreading to the draining lymphoid organs and finally throughout the body to peripheral 

sites. The prodromal symptoms are similar to many other viral infections and included fever, 

malaise, vomiting, headache and muscle pain. After an incubation period of approximately 

12 days the first enanthema appear on the mucus membranes, followed by the 

characteristic macules. Once they appear the macules spread rapidly across the body and 

then in the majority of cases develop into the characteristic pustules (though not usually full 

of pus) which would dry up into scabs and begin to resolve after some 20 days often leaving 

disfiguring scars [14].  

It was in the effort to combat smallpox that the concept of vaccination was invented, firstly 

with the slightly precarious practice of variolation which was then superseded when Edward 

Jenner demonstrated the effectiveness of vaccination with cowpox in 1796 [15]. One of the 

enigmas of the smallpox eradication campaign is that whilst it is widely thought that the 

original vaccinations were carried out with cowpox, the vaccine stocks that were eventually 

used to eradicate the disease were actually the closely related vaccinia virus (VACV).  To this 

day, smallpox is the only disease that has been completely eradicated by vaccination.  
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Since the WHO declared the world free of smallpox in 1979, modern research has 

predominantly focused on the development of VACV for viral vector vaccines and oncolytic 

therapy, applications in which they show much promise. However since the advent of 

globalised terrorism, interest in poxvirus vaccines has been somewhat renewed. In 1763, 

variola virus was allegedly used as a bioweapon when it was distributed on contaminated 

blankets by the British during the Pontiac's uprising [16, 17], and there remain fears that it 

could yet be deliberately released into the now mostly immunologically naïve population. 

However, perhaps the most immediate threat to human health is posed by the emergence 

of zoonotic strains such as cowpox [18] or the more virulent monkeypox. The potential 

threat of monkeypox was demonstrated by an outbreak in 2003 when it was inadvertently 

imported to the United States in rodents from West Africa [19, 20]. This particular variant 

was relatively benign and monkeypox remains a relatively rare disease, however little is 

known about the natural host of monkeypox, and if it were able to establish a reservoir in 

heterologous animal species the public health consequences could be more severe.  

More recently, the spread of avian pox in wild bird populations throughout Europe but 

particularly in the United Kingdom has caused some alarm [21]. Though in many species 

avian pox is a relatively mild self-limiting disease, in the much beloved garden bird Parus 

major (common name: Great tit), lesions are significantly larger. This can lead to visual 

impairment and difficulties feeding, which can negatively impact survival through increased 

predation and starvation, particularly in juveniles. Though infection rates have not reached 

a threshold where they are expected to cause a decline in Parus populations, it is thought 

that avian pox may hinder the recovery of some rarer Parus species [22]. Other poxvirus 
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diseases such as ecthyma orf, sheep pox, goat pox, lumpy skin disease and myxomatosis 

continue to be important causes of morbidity in wild and domesticated animals.  

Viruses are incredibly resilient and are constantly evolving and adapting as we have seen 

with the emergence of diseases such as HIV and SARS. Despite their rather cumbersome 

DNA genomes, poxviruses are able to adapt relatively quickly [23] and though the threat of 

smallpox has been vanquished, many other poxvirus species have natural reservoirs that 

would make control considerably harder if a more virulent species was to emerge. 

Therefore it would be wise to be prepared should the situation arise where a poxvirus 

vaccine is again needed, whether it is to stop the spread of an emerging disease or save a 

species from extinction.  

2.2 MVA 

2.2.1 Development 

During the last decades of the smallpox vaccination campaign, chorioallantoic vaccinia virus 

Ankara  (CVA) was attenuated by serial passage in chicken embryo fibroblast (CEF) cells at 

the Institute for Infectious Diseases and Zoonoses (formerly the Institute of Medical 

Microbiology, Infectious and Epidemic Diseases) at the Ludwig-Maximilians-University of 

Munich. The resulting strain designated modified vaccinia virus Ankara (MVA), had lost 

approximately 15% of its genome through 6 large deletions and acquired a number of point 

mutations [24]. These changes affected many genes involved in host interaction [25], as a 

result MVA displays a greatly restricted host range and is unable to productively infect 

human and many other mammalian cells. Despite the inability to replicate, MVA can still 

enter and efficiently express viral genes in many cell types [26] triggering robust immune 

responses.  The loss of its replicative capacity greatly improved the safety profile of MVA 
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and as a result, it was licensed by the Paul-Ehrlich-Institute in Germany for immunization 

against smallpox. Though the vaccination campaign was almost at an end, over 100,000 

individuals were vaccinated with MVA without any documentation of the severe adverse 

reactions that were associated with previously used vaccine strains [27, 28]. Given its 

improved safety profile MVA is an excellent candidate should a poxvirus vaccine be required 

in the future. Currently, interest is predominately focused on developing MVA and other 

VACV strains as viral vectors, in which they appear to show promise as vaccine platforms 

[29] and for oncolytic viral therapy [30]. 

Being non replicative MVA cannot be used for oncolytic therapy, however MVA has many 

desirable characteristics that make it a suitable candidate for development as a vector 

vaccine platform [31, 32]: i) The inability to replicate in most mammalian cells not only 

minimises the risk to the patient, but also the potential for cross infection, which is 

particularly important given the ever increasing number of immunocompromised individuals 

in the population. ii) MVA has a large genome and can take large and even multiple inserts, 

thus it could potentially be developed as a multivalent vaccine against multiple diseases. iii) 

VACV are easy to manipulate, relatively stable genetically and easy to store. iv) MVA induces 

robust immune responses to recombinant and even co-administered antigens [33] and 

VACV vaccination produces long lasting immunity [34]. v)  MVA has already been used in 

humans with a proven safety record, and is routinely used to vaccinate elephants [35]. 

There have been a number of attempts to determine which viral genes, and the loss thereof, 

account for the attenuation of MVA. This has led to the discovery of a number of important 

virulence factors [36-39]. In a comprehensive study, the six major deletions in the MVA 

genome were introduced, in various combinations, into the parent CVA strain using a 
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bacterial artificial chromosome (BAC) system. Interestingly, the loss of three regions actually 

increased virulence in mice, indicating the possibility for a gain in fitness. Mutant strains 

with five or six deletions retained virulence and replicative capacity with only partial 

attenuation, which was subsequently traced to region V [40]. There are some important 

technical caveats with the technology employed in this study, namely the possibility for 

complementation and recombination between the viruses that were used. Despite this, it 

does raise some important points regarding the attenuation of MVA: Firstly, it appears that 

mutations in genes outside of the deleted regions have had profound effects on viral fitness, 

particularly regarding replication. Secondly, it indicates that the attenuation of MVA was a 

stepwise process involving multiple genes. The interactions of VACV with the host are 

complex and viral genes can have overlapping and redundant functions, there is also the 

consideration of the different mechanisms that may be required for infection of different 

hosts. Therefore a virulence factor in one host species or cell type, does not necessarily 

apply globally to all others making it difficult to account for what is required during different 

stages of the infection cycle in vivo. The traditional approach of deleting viral genes and 

testing mutant phenotypes undoubtedly has its place, and has produced interesting results 

[39]. However, assuming that multiple mutations are required to achieve the attenuation of 

MVA, this would require an enormous number of possible combinations to reproduce the 

observed phenotype of MVA. Therefore, as an alternative approach, characterising the 

immune response to MVA gives us an indication as to the host mechanisms that the virus 

needs to avoid, and thus may eventually enable the reconstruction of the major virulence 

factors that are required, based on knowledge acquired from testing of single gene mutants.
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2.2.2 Efficacy of MVA 

There are two main murine models for assessing the protective efficacy of orthopoxvirus 

vaccines. The first is based on infection with a virulent laboratory strain, Western Reserve 

(WR), and the second is infection with ectromelia virus the etiologic agent of mousepox. 

Mousepox is arguably the better model, as ectromelia has evolved to evade murine immune 

responses  and some of these interactions have a high degree of species specificity 

[41].Therefore, mousepox shares similarities with human smallpox, namely the low 

infectious dose, respiratory transmission [42], long incubation period, generalised infection 

and exanthematous rash [43, 44]. However, there are some important differences: the 

disease course of mousepox is shorter, with fatalities occurring between 7 - 14 days post 

infection (p.i.) whereas fatalities from smallpox occur after some 18 - 22 days. During 

mousepox infection the major lesions occur in the liver and spleen, the extent of replication 

in these organs determines the outcome of the infection. Extensive replication in the liver 

ultimately leads to death due to acute hepatitis in the absence of skin lesions. Alternatively 

in resistant strains, skin lesions occur during the secondary viremia caused by the systemic 

release of the virus from the liver and spleen [45, 46]. This differs from smallpox where 

death occurs probably due to hypotension after the appearance of skin lesions.  Thus 

mousepox is the better of the two models, however like all models there are some 

limitations. 

MVA has been tested alongside other conventional VACV vaccine strains, all of which 

protect from lethal infection in both disease models. Vaccination with MVA shortly before 

exposure or even therapeutically after infection protects from lethal disease [47, 48]. The 

potential for therapeutic vaccination is a greatly desirable trait for any vaccine; therefore 
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the mechanisms underlying the post exposure protection provided by MVA are of great 

interest and could potentially boost future efforts in vaccine development.

2.3 Innate Immune response to MVA 

2.3.1 Induction of the innate immune response 

Typically, when it comes to vaccination, the development of the adaptive immune response 

and long lasting immunological memory is the primary requirement. In this respect, MVA is 

no different from other VACV strains as evidenced by the success of the smallpox 

vaccination campaign. With the adaptive immune response typically  taking 7 - 14 days to 

develop [49] it is unlikely that any divergence in the adaptive immune response to the 

different strains would explain the superior short-term protection provided by MVA 

vaccination in VACV challenge models. One feature that distinguishes MVA from other VACV 

strains is its ability to activate robust innate immune responses.  

To this extent, MVA vaccination of Rag1-/- mice, which lack an adaptive immune response, 

provides a transient survival benefit in poxvirus disease models, though ultimately the mice 

eventually succumb to lethal infection [47, 48]. This short-term protection is associated with 

an infiltration of cells of the innate immune system to the site of vaccination. Therefore, it is 

possible that the induction of the innate immune response plays a key role providing 

protection in the early stages, buying time for the adaptive immune response to develop.

2.3.2 Signal activation by pathogen recognition receptors 

Activation of pathogen recognition receptors (PRR) is an important step in the induction of 

innate antiviral immunity, which leads to activation of immune cells and the production of 

type I interferons (herein referred to as IFN, Fig 2.2). VACV are known to trigger multiple 

cytosolic and membrane associated PRR. A prevailing theory is that recognition of an as yet 
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undetermined viral ligand by cell membrane associated Toll-like receptor (TLR) 2 is the 

crucial event preceding IFN production [50]. One premise of this study, that TLR2 

discriminates between bacterial and viral ligands, was largely disproven shortly after 

publication [51], and definitive proof of the crucial role of TLR2 that has been claimed, is still 

lacking. Indeed prior studies whilst noting a role for TLR2 recognition, reported that IFN 

induction occurs independently of TLR2 [52]. These studies are inherently complicated, and 

we recently raised our concerns regarding the handling of technical factors and the 

interpretation of results in a review [53].  

Despite the controversy, TLR2 has been the target of much investigation with others also 

proposing a role for TLR2 in the induction of IFN [51]. However, studies in disease models 

have ultimately shown that TLR2 has a minor influence over the course of disease [54]. Viral 

loads in WR infected Tlr2-/- mice only differ in a small time window between days 5 - 10 with 

the infections resolving in a similar time frame, and TLR2 is completely dispensable for 

resistance to ectromelia infection [54]. This coincides well with the observation that whilst 

the CD8 T-cell response is dependent on the MyD88 signal adaptor molecule, Tlr2-/- mice still 

produce a robust antiviral immune response as TLR2 is not the upstream receptor [55]. As 

infection with recombinant IFNβ expressing VACV restores CD8 cytotoxic lymphocyte (CTL) 

activation in MyD88 knockout mice, it appears that this effect on T-cell expansion is indirect 

through the induction of IFN [56]. 

As intracellular pathogens, recognition of VACV ligands by cytosolic PRR is thought to be a 

major pathway of innate immune activation, and was noted in many of the studies that 

implicate TLR2. Sensing of viral DNA by TLR9 has been shown to be important in ectromelia 

infection, with Tlr9-/- mice showing increased susceptibility to infection. Crucially, MVA was 
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shown to induce other TLR9 independent pathways, and provided protection from disease 

in Tlr9-/- mice [47]. Other cytosolic factors of importance are protein kinase R (PKR) and 

RNase L, which are involved with the host interferon response and have been demonstrated 

to be important in signal induction and poxvirus immunity [57, 58].  

 

  

Fig. 2.2: Recognition of viral products by PRR.  (Left) Rig-I and MDA5 recognition of cytosolic viral 

RNA. (Middle) TLR4 recognition of viral surface antigens at the cell membrane. (Right) Recognition of 

viral antigens in endocytotic compartments by TLR. Recognition of viral antigens by PRR leads to the 

induction of cell signalling and the production of type I IFN. IFN works in an autocrine and paracrine 

fashion to induce inflammatory cytokines leading to the recruitment of leukocytes and the induction 

of the immune response. Adapted from Katze et al 2008 [59], with permission from Macmillian 

Publishers Ltd: Nature Reviews Immunology, copyright 2008.
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2.3.3 Type I interferon 

IFN is a key mediator of antiviral immune responses. The heterodimeric type I IFN receptor 

(IFNAR) is ubiquitously expressed and binding of IFN to IFNAR leads to the transcription of 

hundreds of IFN stimulated genes (ISG). Many of these ISG encode additional PRR for the 

detection of viral molecules, and transcription factors that serve to amplify IFN production. 

Others such as RNaseL, PKR and the Mx GTPases interfere with the virus life cycle at various 

stages, serving to make the host cell inhospitable and unproductive for progeny virus [60]. 

This induction of an antiviral state is particularly important for cells of the immune system 

which will be recruited to peripheral infection sites where they will invariably encounter 

virus. Exposure to IFN makes these cells resistant to viral infection, allowing them to carry 

out their intended functions, rather than providing more potential hosts for virus 

production (Fig 2.3) [61].  

The effects of IFN are not limited to the induction of ISG; it has recently become clear that 

IFN has a profound influence over the innate and adaptive immune responses [62-64]. 

Natural killer (NK) cells are important effectors of the innate immune system, particularly 

with regard to poxvirus infection [62]. IFN signalling not only mediates the migration of NK 

cells, it also plays an important role in eliciting their crucial cytotoxic functions [63]. 

Likewise, in IFNAR deficient mice the recruitment of inflammatory monocytes (IM) is 

diminished, and although still capable of differentiating into inflammatory dendritic cells 

(DC), they do not functionally mature [65]. IFN has also been implicated to play a role in the 

adaptive immune response as it is required for the clonal expansion and memory formation 

of virus specific CD8+ CTL [66].  
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The main mechanism of IFN mediated recruitment appears to be by the induction of 

chemokines (Fig 2.3). Chemokines are chemoattractant cytokines that mediate the 

migration of leukocytes during the host immune response, and play a particularly important 

role in inflammation [67]. Based on the arrangements of disulphide bridges between 

cysteine residues at the N’ terminus, chemokines are classified into 4 groups C, C-C, C-X-C, 

C-X3-C [68]. Chemokine receptors are differentially expressed on leukocyte subpopulations, 

which along with the chemokine milieu, determines which populations are recruited to sites 

of inflammation. IFN induces chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) 

ligand 7 (CCL7) and chemokine (C-C motif) ligand 12 (CCL12) expression in bone marrow 

macrophages during murine cytomegalovirus (MCMV) infection, which was shown to induce 

monocyte egress and migration to peripheral infection sites [69]. These recruited cells 

themselves further enrich the cytokine milieu, which contributes to the development of the 

local immune response. Herpes simplex virus (HSV) infection of IFNAR deficient mice is 

associated with abhorrent chemokine production, resulting in defective lymphocyte 

recruitment and an enhanced sensitivity to viral infection, despite the development of 

adaptive immune responses in the lymph node [64]. 

IFN is known to play an important role in poxvirus immunity, as demonstrated by the 

protection from lethal WR infection afforded by IFN therapy [70], and increased 

susceptibility of IFNAR deficient mice to VACV infection [44, 47]. However, one baffling 

observation is that MVA vaccination can still protect IFNAR knockout mice from a lethal 

infection [44, 47], highlighting that we still have much to learn about the immune response 

to MVA. 
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Poxviruses are masters of immune evasion, so given the critical role of IFN in the immune 

response it is unsurprising that VACV has evolved mechanisms to evade IFN signalling. Viral 

proteins such as B18R, N1L and E3L are known virulence factors that interfere with IFN 

signalling [71-73]. Many of these factors were lost during the attenuation of MVA. The 

result, is that MVA, unlike other VACV strains, induces rapid local immune responses [53] 

and IFN dependent expansion of virus specific CD8+ CTL [74].  

 

Fig.2.3: IFN primes and mediates the release of leukocytes. (1-2) Virus infection leads to the 

activation of PRR and the local release of pro-inflammatory cytokines. (3) IFN is transported into the 

circulation where it reaches the bone marrow. (4) IFN induces an antiviral state, and mediates the 

production of CCL2 and CCL7 stimulating the release of monocytes into the circulation. (5) Primed 

monocytes are guided to infected tissue by chemokine gradients and locally released inflammatory 

mediators. Adapted from Hermesh et al 2010 [61] with permission from Elsevier, copyright 2010.
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2.3.4 Complement activation 

Many PRR are cell associated, triggering cellular signalling and gene expression. However, 

there are other PRR that initially function independently of host cells, recognising conserved 

pathogen associated molecular patterns (PAMPs), inducing rapid antimicrobial immune 

responses. One of the best characterised is the complement system. 

Complement is a key constituent of innate immunity that helps to bridge the innate and 

adaptive immune responses [75].  The complement system comprises over 30 serum 

proteins and cell surface receptors that elicit rapid inflammatory and cytolytic responses. 

Activation of complement sets off a proteolytic cascade resulting in the generation of 

inflammatory mediators, opsonins and membrane penetrating lytic components [76]. The 

complement cascade is activated by three main pathways: classical, lectin and alternative 

(Fig 2.4) [76]. All three pathways converge on the activation of the central C3 component, 

leading to opsonisation of the target, and activation of the terminal C5 component. 

Proteolytic cleavage of C5 releases C5a, an anaphylatoxin, which is a potent 

chemoattractant for neutrophils, and C5b which mediates the formation of the lytic 

membrane attack complex (MAC).  
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Fig 2.4: Complement activation pathways. See main text for details. Adapted from Ricklin & Lambris 2007 

[77], with permission from Macmillian Publishers Ltd: Nature Biotechnology, copyright 2007. 

Initiation of the classical pathway requires pathogen bound complement fixing antibodies 

(IgG1 and IgM), which are bound by the C1 complex resulting in autocatalytic activation of 

C1. Activated C1 then recruits and cleaves C4 and C2, which associate to form a C3 

convertase (C4bC2a). Cleavage of C3 releases the C3a anaphylatoxin, and C3b which forms 

stable covalent bonds with hydroxyl groups on proximate carbohydrates and proteins. C3b 

is recognised by complement receptors, so deposition of C3b on the surface of microbes not 

only leads to further activation of the terminal pathway, but also opsonises the target for 

phagocytosis. The lectin pathway is analogous to the classical pathway, utilising lectin 

proteins as PRR rather than antibody complexes. Binding of lectins to PAMPs activates 

serine proteases which then cleave C2 and C4 to generate the C3 convertase. 
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The alternative pathway unlike the classical and lectin pathways does not utilise PRR. 

Instead the alternative pathway is constitutively active with surface expressed complement 

regulatory proteins preventing activation on host cells. Low level spontaneous hydrolysis of 

C3 generates C3b which binds promiscuously to a wide range of targets. Bound C3b recruits 

factors B and D to create the alternative pathway C3 convertase, which cleaves C3 to form a 

feedback amplification loop. 

Viral infection can trigger complement activation on the surface of infected cells and virus 

particles. Deposition of complement and the formation of the MAC on infected cells can 

lead to premature lysis of the host cell thus disrupting virus replication. Direct activation of 

complement on the surface of virons can lyse virus membranes, enhance phagocytosis, and 

may interfere with receptor interaction, virus entry and uncoating [78]. The second 

consequence of complement activation is the release of the C3a and C5a anaphylatoxins 

which induce local pro-inflammatory responses recruiting leukocytes and stimulating the 

release of lysosomal enzymes and vasoactive amines.  

Complement is known to play an important role in poxvirus immunity as a functioning 

complement system is required to survive mousepox infection [79]. The complement 

system directly attacks foreign microbes inducing rapid local immune responses, and 

therefore exerts a strong selective pressure on pathogens. VACV activates both the 

alternative [80] and classical pathways [81], however two strategies are employed to avoid 

the consequences of this activation of the complement system. During the budding process, 

VACV incorporates host complement regulatory factors into the viral membrane [82], which 

limits complement activation on the viral surface. The second strategy is to release a virally 

encoded complement control protein (VCP), which is secreted in large amounts, and is 
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bound back to the surface  of the infected cell by viral anchor proteins [83, 84].  VCP binds 

to and accelerates the decay of C3b and C4b [85] thus interfering with both the classical and 

alternative pathways of complement activation [81, 86]. As complement plays a role in the 

induction of both B and T-cell responses during viral infection [87, 88], blocking complement 

in this way is highly advantageous, as it not only provides direct protection for virons and 

infected cells, but also modulates downstream immune responses. This has been 

demonstrated in vivo where infection of mice with mutant viruses lacking VCP leads to 

increased infiltration of CD8+ T-cells and enhanced neutralising antibody titres, resulting in 

reduced viral titres and reduced pathogenicity [89, 90]. 

2.4 Neutrophils 

2.4.1 Role  

Neutrophils are polymorphonuclear (PMN) leukocytes that are classically characterised as 

professional phagocytes. During infection, neutrophils are often the primary responders 

recruited in large numbers and thus constitute the first line of defence against invading 

microorganisms. Neutrophils are highly destructive cells, well equipped to deal with 

pathogens. Traditionally, their primary role is to contain the initial infection until the 

adaptive immune response can take over. To execute this primary function, neutrophils 

employ three main mechanisms of killing, targeting both intracellular and extracellular 

pathogens (Fig 2.5).   
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Fig. 2.5 Neutrophil killing mechanisms. (left) Uptake of extracellular pathogens by phagocytosis. (middle) 

Activation of neutrophils causes degranulation and production of ROS. (Right) NETs are used to ensnare 

extracellular pathogens which are inactivated by antimicrobial enzymes preventing further spread of microbes. 

Adapted from Kolaczkowska & Kubes 2013 [91], with permission from Macmillian Publishers Ltd: Nature 

Reviews Immunology, copyright 2013. 

 

Neutrophils have four types of granules, each containing a repertoire of receptors and 

inflammatory mediators as well as antimicrobial peptides and enzymes. These granules are 

released in a strict hierarchical order after activation, creating an inflammatory environment 

that ultimately damages both pathogen and host [92]. The binding of PAMPs to neutrophil 

PRR, or of complement opsonised microbes to neutrophil complement receptors, initiates 

phagocytosis. The phagosome is then fused with granules leading to the destruction of the 

ingested microbe [93]. A final antimicrobial mechanism of neutrophils is the condensation 

and release of cellular DNA to form neutrophil extracellular traps (NETs). The release of 

NETs is generally considered to be an alternative pathway of programmed cell death, 

termed NETosis. However, recent evidence has shown that NETting neutrophils can 

continue to carry out other antimicrobial functions [94]. NETs serve to immobilise 

pathogens and are studded with myeloperoxidase, neutrophil elastase and other 
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antimicrobial proteins, which inactivate microorganisms, including viruses that become 

ensnared in the NET [95]. Neutrophil NETs can also be found at peripheral sites in the 

circulatory system, such as the liver [96]. Thus, NETs are thought to be an important 

immunological mechanism that prevents the spread of pathogens from the primary site of 

infection, and filters pathogens out of the circulatory system [97]. 

2.4.2 Subsets and new functions 

Neutrophils were long regarded as a uniform population of short-lived end stage effector 

cells, with little influence over the progression of the immune response. It was recognised 

some time ago that neutrophil populations display differences in phagocytosis, protein 

synthesis, receptor expression and oxygen metabolism [98], however, this received little 

attention at the time. It is only relatively recently, that the wider scientific community has 

started to regard neutrophils as a heterogeneous population. There has been somewhat of 

a renaissance in neutrophil biology, with many new exciting discoveries as people begin to 

appreciate the previously overlooked roles that neutrophils play in the immune response. 

The renewed interest in neutrophils has revealed that they display a level of plasticity, and 

has highlighted the previously unappreciated immunoregulatory role neutrophils play in 

both arms of the immune response [99]. 

Many of the previously held conceptions about neutrophils have recently been challenged, 

with reports of distinct neutrophil subsets [100, 101], and that neutrophils may have a 

considerably longer half-life than previously reported [102]. Possibly the most significant 

developments have come from studies investigating the influence of neutrophils in the 

progression of the immune response. Neutrophils can detect cytosolic DNA inducing the 

production of IFNβ [103], and it is now apparent that neutrophils synthesise a vast array of 
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other immune mediators including pro and anti-inflammatory cytokines [99]. Many of the 

pro-inflammatory mediators that neutrophils produce serve to recruit other neutrophils. 

Though these mediators are not produced to the same levels as seen with other master 

coordinator cell types, during the early stages of the inflammatory response neutrophils 

make up the majority of the cells that are recruited and therefore sheer numbers 

presumably compensate for this. In addition to perpetuating their own recruitment 

neutrophils produce chemotactic factors for monocytes, which then eventually limit the 

further recruitment of neutrophils thus contributing to the maturation of the immune 

response [99].  

Contrary to previously established neutrophil dogma, several studies have reported that 

tissue emigrated neutrophils can re-enter the circulation [104, 105]. These functionally 

primed “veteran” neutrophils display distinct patterns of surface receptor expression that 

differs from naïve resting and classically activated neutrophils [106] and may contribute to 

pathology via induction of systemic inflammation [107]. During infection, reverse 

transmigrated neutrophils emigrate to the lymph nodes following antigen capture [108], 

and have been shown to cross prime naive CD8+ T-cells [109].  One of the most striking 

advances is the essential co-operation of neutrophils in the development of NK cells. 

Neutrophils are essential for NK cell maturation [110] and have been shown to modulate all 

major NK cell functions including cytotoxic activity and IFNγ production [111].  

Previously the importance of neutrophils has mostly only been appreciated for extracellular 

pathogens. Though many viral infections induce neutrophil recruitment, until relatively 

recently their role has gone largely unaddressed and it has often been assumed that 

neutrophils are a major contributor to pathology and thus may in fact be detrimental.  
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The development of antibodies against Ly6G, which is thought to be exclusively expressed 

on neutrophils, has provided a useful tool to specifically deplete neutrophils, which has 

allowed scientists to start addressing the contribution of neutrophils to antiviral immunity. 

Depletion of neutrophils has been shown to exacerbate viral diseases including influenza 

[112] and respiratory syncytial virus infection [113]. However, their contribution is not 

always straight forward, as early on neutrophils may serve as a viral reservoir, whilst also 

playing a role in virus clearance at later stages, as has been observed during infection of 

mice with West Nile virus [114]. 

2.4.3 Trafficking 

The essential role that neutrophils play in the immune response is counterbalanced with the 

need to control their destructive capacities, which are also potentially damaging to the host. 

The primary mechanism is to control the recruitment and activation of neutrophils with 

signals that guide them directly to where they are needed. Neutrophils respond to a diverse 

range of chemoattractants, including chemokines, peptides and lipid mediators, any 

combination of which are often present at sites of inflammation. Previously, it was 

considered that these different chemoattractants served overlapping, redundant functions. 

However, recent studies suggest that in vivo these signals work in overlapping, non-

redundant cascades [115, 116]. 

Under physiological conditions neutrophils are retained in the bone marrow via locally 

produced signals acting on chemokine (C-X-C motif) receptor 4 (CXCR4) [115]. During 

inflammation, granulocyte colony-stimulating factor (G-CSF) alters the balance of signals in 

the bone marrow favouring production of chemokine (C-X-C motif) receptor 2 (CXCR2) 

ligands. The increased local production likely works in conjunction with circulating CXCR2 



   26  

ligands derived from the primary site of inflammation, to facilitate the rapid release of 

neutrophils into the bloodstream via desensitisation and down regulation of CXCR4 [117]. 

Once in the circulation, neutrophils must then be guided to the site of inflammation. This 

requires arrest on the endothelium, allowing transmigration into the affected tissue. The 

release of pro-inflammatory mediators, especially chemokines and lipid mediators, from 

local sentinel cells, serves a dual purpose [118]. The first of which is to prepare the local 

endothelium by upregulating adhesion molecules. The second is to provide a graduated 

signal, through chemokines immobilised on glycosaminoglycans [119], which guides 

neutrophils towards the site of inflammation, eventually reaching a critical concentration 

inducing arrest and extravasation through a complex process involving a cascade of 

adhesion molecules [120]. Interaction with these immobilised chemokines activates 

neutrophils leading to altered expression of adhesion molecules and cytokine receptors, 

thus fine tuning their effector functions [121, 122]. Expression of proteases, such as matrix 

metalloproteinase 9 (MMP9), is thought to be a crucial mechanism by which neutrophils 

penetrate the basement membrane gaining access to tissue during infection [123]. Inside 

the tissue, activated neutrophils carry out their antimicrobial functions and perpetuate the 

further recruitment of neutrophils via the release of inflammatory mediators, including 

chemokine (C-X-C motif) ligand 2 (CXCL2) and chemokine (C-C motif) ligand 3 (CCL3) [115].



   27  

2.4.4 Roles in poxvirus infection 

Neutrophils are an important part of the immune response, as Cxcr2-/- mice, which are 

unable to recruit neutrophils, have impaired innate and adaptive immune responses to 

parasites [124] and show increased susceptibility to viral infection [125]. Neutrophils make 

up a large proportion of the cells recruited to the infection site during VACV infection, 

however very little is known about the role that they play. 

Incubation of neutrophils with VACV induces activation and functional priming of 

neutrophils [126], which have been shown to take up and destroy VACV [127]. The 

inactivation of VACV by neutrophils appears to require antibody recognition, and is 

dependent on reactive oxygen species (ROS) [128]. Based on these studies it was postulated 

that neutrophils may play a role in poxvirus immunity, this has been confirmed by exciting 

new in vivo studies that have implicated important roles for neutrophils in virus clearance, 

T-cell induction and in the regulation of the inflammatory response to poxvirus infection.  

In one study, systemic poxvirus infection induced the recruitment of neutrophils to the liver 

microvasculature. Adherent neutrophils interacted with platelets forming large aggregates 

inducing the release of NETs, which filtered out circulating virus protecting host cells from 

infection [129]. In a second study, it was shown that after intradermal vaccination with 

MVA, neutrophils rapidly transport antigen from the dermis to the bone marrow in a CCR1 

dependent manner. This antigen transport mechanism led to the induction of a functionally 

distinct lineage of virus specific CD8+ memory T-cells.  The induction of the bone marrow 

CD8+ T-cell response was dependent on myeloid antigen presenting cells (APC), and as the 

migrating neutrophils expressed annexin V, the apoptotic “eat me” signal, it seems the 

migrating neutrophils were ingested by myeloid APC upon arrival [130]. Finally a ground 
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breaking but slightly perplexing study, showed the infiltration of ROS and IFNβ producing 

CD11b+Ly6G+ cells during the later stages of VACV infection (>5 days), a time point that is 

not normally associated with neutrophil infiltration. In addition to the neutrophil marker 

Ly6G, these cells were mononuclear and also expressed monocytic markers. However, origin 

studies demonstrated that these cells were not derived from traditional monocytic lineages. 

In terms of functionality, these cells played only a minor role in limiting viral spread. Instead, 

they appeared to have a regulatory function via induction of ROS, as depletion of these cells 

led to enhanced tissue pathology [131]. 

2.5 Monocytes 

2.5.1 Subsets and functions 

Monocytes are myeloid cells, derived from common progenitor cells shared with 

granulocytes [132]. A complex signalling network controls their release into the blood, 

where they circulate as non-dividing cells [133]. Monocytes are themselves precursor cells 

and as such are not yet terminally differentiated. It is thought that in steady state 

conditions, circulating monocytes may act as a reservoir migrating into tissues where they 

differentiate to replenish populations of long-lived resident macrophages and dendritic cells 

[134]. During inflammation, large numbers of monocytes are mobilised from reservoirs in 

the bone marrow and spleen. Locally produced chemotactic signals released from the site of 

inflammation recruit monocytes from the circulation into tissues where they differentiate 

into macrophages and dendritic cells (Fig 2.6) [135]. 

In most mammals circulating monocytes in the blood are a heterogeneous population, 

whether these represent distinct lineages or different states of maturation is still a matter of 

debate. Murine monocytes are broadly classified into 2 subsets, “inflammatory“ or 
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“resident”, based on the expression of cell surface markers CD11b,  chemokine (C-X3-C-

motif) receptor 1 (CX3CR1), chemokine (C-C motif) receptor 2 (CCR2) and Ly6C. 

Inflammatory monocytes (IM) are CD11b+ CCR2+ CX3CR1low Ly6Chigh, and resident monocytes 

are CD11b+ CCR2- CX3CR1high Ly6Clow. Human monocytes also fall into 2 major categories 

based on the expression of CD14 and CD16. The so called “classical” monocytes, which are 

an approximate counterpart to murine IM, are defined as CD14high CD16-. Non-classical 

monocytes are CD14+ CD16+, and are similar to murine resident monocytes. Despite some 

physiological differences, human and murine subsets are thought to be similar in terms of 

their differentiation and contribution to immune defence [136]. 

2.5.2 Trafficking 

IM make up some 2-5% of white blood cells in steady state conditions, and are rapidly 

recruited to peripheral sites during the inflammatory response [137]. At sites of infection IM 

differentiate into macrophages and dendritic cells. Both of these cell types are professional 

phagocytes that present antigen to cells of the adaptive immune response, however both 

fulfil distinct roles. Macrophages are primarily charged with clearing debris, killing invading 

microbes, and regulating local immune responses [138]. Dendritic cells are arbitrators of the 

immune response, producing large amounts of immune mediators, capturing antigen and 

migrating to peripheral immune sites where they are potent activators of the adaptive 

immune response [139].  

The migration of IM is mediated in part by CCR2 and its ligands CCL2 and CCL7 [140]. 

Infection with MVA, but not other VACV strains, leads to the production of large amounts of 

CCL2 that recruits monocytes into the lung after intranasal infection [141]. At the primary 

site of inflammation, CCL2 is transported across endothelial cells via Duffy antigen receptor 
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for chemokines (DARC) and so reaches high levels in the circulation. In one proposed model 

for CCL2 mediated trafficking, CCL2 dimerises and binds to glycosaminoglycans establishing 

a gradient which directs monocytes to the site of inflammation [142, 143].  Additionally, the 

systemic release of IFN during viral infection drives expression of CCL2 in bone marrow cells, 

promoting monocyte egress into the bloodstream [69] 

Other receptors, namely CCR1 and chemokine (C-C motif) receptor 5 (CCR5), which are 

expressed on monocytes [144], have been shown to play a role in monocyte recruitment 

[145, 146]. However, ascertaining the role of CCR1 and CCR5 has been more complicated as 

CCR1 and CCR5 are widely expressed on a variety of cell subpopulations [147, 148] and 

share some important ligands including CCL3 and chemokine (C-C motif) ligand 5 (CCL5) 

[149], so it is not always clear if observed effects are directly related. 

The role of resident monocytes is less clear and has only recently been proposed. Intravital 

microscopy studies showed that resident monocytes appear to patrol tissues by attaching to 

and migrating along blood vessels [150] entering non-inflamed tissue [151]. These patrolling 

monocytes can also sense foreign antigens with PRR, triggering rapid recruitment into 

tissues where they differentiate into macrophages and elaborate inflammatory cytokines 

including TNFα, IL-1β and CCL3 [152]. Patrolling of resident monocytes appears to be at 

least partially mediated by CX3CR1, as patrolling is diminished in the absence of this 

receptor [150]. During bacterial infection the recruitment of resident monocytes to splenic 

sites of infection is mediated by chemokine (C-X3-C motif) ligand 1 (CX3CL1), which also 

provides an additional survival signal [153]. Thus unlike IM, resident monocytes appear to 

be recruited before neutrophils and may be an important primary responder. 
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Fig 2.6: Monocyte subsets and functions. Ly6C
hi

 monocytes are derived from macrophage and DC precursor 

cells in the bone marrow. Exit and recruitment of Ly6C
hi

 monocytes is mediated by CCR2, and once inside 

tissues they differentiate into inflammatory macrophages or DC. Some Ly6C
hi

 monocytes may return to the 

bone marrow where it is thought they could differentiate into ly6C
low 

monocytes. Ly6C
low

 monocytes “patrol” 

blood vessels and are rapidly recruited to sites of tissue damage where they differentiate into macrophages. In 

addition to the bone marrow, the spleen acts as an additional monocyte reservoir. Adapted from Shi & Pamer 

2011 [140], with permission from Macmillian Publishers Ltd: Nature Reviews Immunology, copyright 2011.
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2.5.3 Role in poxvirus infection 

Monocytes, and their terminally differentiated counterparts, have been studied quite 

extensively and have been shown to play an important role in poxvirus immunity. In vitro 

infectivity assays demonstrated that VACV preferentially infects monocytic cells [154]. The 

productivity of this infection appears to be related to the activation state of the cell, as 

VACV replicates in macrophages from naïve but not immune animals [155]. This is mirrored 

in vivo, where macrophages in rabbits are initially amenable, however as the immune 

response develops permissiveness is lost, with activation occurring faster after secondary 

challenge [156]. Virus specific antibodies may be partially responsible for this effect [157], 

however abortive replication in macrophages  can also be induced by treatment with 

interferon-γ (IFNγ) [158]. Infected macrophages readily undergo apoptosis [159] and in 

activated macrophages VACV replication appears to be blocked at later stages [160, 161], 

indicating direct roles for cell mediated effects. 

Monocytic cells appear to have an important role in limiting virus replication and 

dissemination. Macrophages collected late after VACV infection have been shown to have 

selective cytotoxicity towards virus infected cells [162]. In co-culture experiments, alveolar 

macrophages limit the spread of VACV, and depletion of these cells in vivo increases the 

severity of disease, due to increased virus replication and dissemination. Interestingly, 

depletion of alveolar macrophages does not appear to affect chemokine expression, but 

none the less, leads to increased numbers of neutrophils, natural killer cells and dendritic 

cells at the site of infection, indicating that alveolar macrophages may play a role in limiting 

the local immune response [163]. 
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It has been proposed that IM are the most important source of IFN production during VACV 

infection [50]. This conclusion was reached using a CD11b conditional depletion model, 

however as we [53] and others have pointed out [51] CD11b is widely expressed on a 

number of immunologically important cell subsets including dendritic cells, and therefore is 

not a reliable model to test inflammatory macrophage function.  

Besides the direct role played by monocytic cells in controlling poxvirus infection, there is 

evidence that these cells may also play a critical role in the development and execution of 

the adaptive immune response by augmenting the activity of CD8+ CTL’s [164]. Indeed, in 

ectromelia disease models, depletion of macrophages has dire consequences on survival, 

resulting in 100% mortality which is associated with an impaired antiviral CD8+ CTL response 

[165].  Therefore monocytic cells are key players in both arms of the immune response, and 

ultimately in the induction of poxvirus immunity. 
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3 Objectives 

Unlike other VACV strains, MVA induces rapid cytokine release and early migration of 

leukocytes. This inability to avoid the innate immune response may play a key role in the 

superior early protection provided by MVA vaccination in disease models, and is therefore 

of great interest. Additionally, exploring the mechanisms underlying this immune response 

may provide some insight into dominant virus host interactions. 

These studies examine the signals that lead to the early recruitment of leukocytes during 

MVA infection. Previous work has shown that recruitment of monocytes and lymphocytes 

during MVA infection is dependent on CCL2 [141]. However, deficiency of CCL2 does not 

affect the recruitment of neutrophils, which make up a large proportion of the cells that are 

recruited during the early stages. MVA infection activates complement and induces 

secretion of ligands for CCR1, both of which have been shown to play important roles in the 

recruitment of neutrophils [166-168] and monocytes [169, 170].  In vitro migration assays, 

and in vivo infection models were used to examine the impact of CCR1 and complement 

activation on the early MVA induced migration of monocytes and neutrophils.
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4 Methods 

4.1 Virus and Cell lines 

All VACV strains (MVA, WR and Wyeth) were propagated in chicken embryo fibroblasts (CEF) 

and purified by sucrose density centrifugation using standard methodology [171]. Titres of 

concentrated virus stocks were determined by standard plaque assay in CEF and 

corroborated by tissue culture infectious dose 50 (TCID50) assay performed in 96 well plates 

using BHK and DF1 cells. Infectious dose 50 was calculated using Spearman Karber 

methodology, and infectious units per ml estimated by applying Poisson distribution. 

MH-S murine alveolar macrophages and human monocytic THP-1 cells were maintained in 

RPMI 1640 (Sigma) + 10% v/v foetal calf serum (FCS, Biochrom). Murine NIH3T3 fibroblasts 

and MLE-12 lung epithelial cells were maintained in DMEM (Biochrom) + 10% v/v FCS 

(Biochrom).  

Murine MPRO cells were maintained in DMEM (Sigma) + 10% v/v FCS (Biochrom) + 10% v/v 

granulocyte macrophage colony stimulating factor (GM-CSF) conditioned medium, at a 

density < 1 × 106 cells/ml. To prepare GM-CSF conditioned medium, GM-CSF expressing 

X6310 cells were grown in DMEM (Sigma) + 10% v/v FCS (Biochrom) until confluent (>3 days 

of growth), cells were removed from the medium by centrifugation at 400 × g for 5 min then 

the culture supernatant was filtered through a 0.2 µm filter (BD Biosciences), aliquoted and 

frozen until use. MPRO cells were differentiated into neutrophils (nMPRO) by addition of 10 

µM all-trans retinoic acid (ATRA, dissolved in ethanol) to the growth medium, and incubated 

for 72 h. 
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4.2 Harvesting of supernatants 

NIH3T3, MLE-12, and MH-S cells: 1 × 106 cells were seeded into 6 well plates in appropriate 

medium and incubated overnight. Medium was removed and cells were infected at the 

indicated multiplicity of infection (MOI) in medium containing 0.5% v/v FCS. At the indicated 

time points cell culture supernatant was removed and centrifuged for 5 min at 450 × g then 

at 4000 × g, the supernatants were then treated with 800 mJ of UV light (Stratalinker 1800, 

Stratagene) to inactivate residual virus, aliquoted and frozen at -80 °C until use. 

THP-1 cells: 2 × 106 cells were added to 6 well plates in RPMI 1640 + 2% v/v FCS and infected 

at the indicated MOI. After 6 h supernatants were harvested by centrifugation at 400 × g, 

treated with 800 mJ of UV light to inactivate residual virus then frozen at -80 °C until use. 

4.3 Chemotaxis assay 

nMPRO cells: MPRO cells were differentiated as described above, and resuspended at a 

density of 1 × 106 cells/ml in DMEM + 0.5% v/v FCS, where indicated 10 nM of CCR1 or 

CXCR2 antagonists, J113863 and SB265610 (Tocris), or equivalent amount of ethanol solvent 

was added. Test culture supernatant (150 µl) was placed in the bottom well of a 96 well 

Multi-Screen-MIC plate equipped with hydrophilic polycarbonate filters (5 µm pore size; 

Millipore Corp), and 75 µl of nMPRO cell suspension was added to the top. Cells were left to 

migrate at 37 °C for 2 h, before quantification on a FACScan (BD). 

THP-1 cells: Cells were resuspended to a density of 1 × 106 cells/ml in RPMI 1640 + 0.5% v/v 

FCS, the procedure was carried out as above using a Multi-Screen-MIC plate with a 8µm 

filter, migrating cells were quantified on a MACSQuant VYB (Miltenyi). Where indicated 5 
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nM of CCR1 or CXCR2 antagonists, J113863 and SB265610 (Tocris), or equivalent amount of 

ethanol solvent was added. 

4.4 Mice 

C57BL/6 mice and FVB mice were purchased from Charles River. C3-/- mice were kindly 

provided by Dr. Stoiber (Division of Virology, Innsbruck Medical University, Innsbruck, 

Austria) and Ccr1-/- mice were provided by Dr. Luckow (Klinikum der Universität München, 

Medizinische Klinik und Poliklinik IV, Arbeitsgruppe Klinische Biochemie, München, 

Deutschland). All mice were maintained under specific pathogen-free conditions. Mice were 

housed in a temperature and light controlled room (21 – 23 °C, 55 ± 3% relative humidity, 12 

h light : 12 h dark cycle) and were fed a standard rodent diet with sterilised water ad 

libitum. All experiments were licensed under the Regierung von Oberbayern and planned 

using resource equation methodology or power analysis (when standard deviation could be 

estimated) so as to limit the number of animals used.  

4.5 Infection 

For infection studies mice were anesthetised with a weight adjusted dose of 

ketamine/xylazine, (100 mg/Kg and 10 mg/Kg of body weight respectively) administered by 

intraperitoneal injection and infected intranasally with 1 × 107 PFU of MVA diluted in 

endotoxin free PBS (Biochrom) to a total volume of 30 µl, control mice were dosed with the 

equivalent volume of endotoxin free PBS. After 48 h mice were euthanized by overdose of 

ketamine/xylazine, and bronchoalveolar lavage (BAL) was performed using RPMI 1640 

supplemented with 10% v/v FCS and 10 mM EDTA (Sigma). The first wash was retained in a 

separate 1.5 ml tube, and the 3 subsequent washes were combined into 15 ml tubes. 

Samples were centrifuged at 400 × g, cells were combined into V-bottomed 96 well plate 
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(Corning), and supernatant from the first wash was aliquoted and frozen at -80 °C until use. 

For C5 ELISA and Western blot, BAL fluid was collected 16 h after infection. 

4.6 Flow cytometry 

Analysis of CCR1 expression on THP-1 cells: THP-1 cells were incubated with non-specific 

human IgG (0.1 µg/ml) and live/dead fixable red dye (Invitrogen) in PBS 1% v/v FCS for 30 

min on ice. Cells were washed three times with PBS 1% v/v FCS then cells were fixed and 

permeabilised using a Cytofix/Cytoperm kit (BD biosciences) according to the 

manufacturer’s instructions. Cells were then incubated with Alexa fluor-405 conjugated 

anti-CCR1 (Santa Cruz Biotechnology) for 30 min, washed 3 times then analysed on a 

MACSQuant VYB (Miltenyi). 

Analysis of cells collected from BAL: Cells were distributed on a 96 well pate (Corning Life 

Sciences) and non-specific binding was blocked by incubation of cells with anti-CD14/16 in 

PBS + 1% v/v FCS + 0.01% w/v sodium azide (FACS buffer), for 30 min on ice. Antibody 

cocktail containing anti-murine CD11b –FITC, Ly6G-APC, Ly6C-APC-Cy7, CD3-PE and CD8a-

PE-Cy7 or CD4-PE-Cy7 (all from Biolegend) was added and incubated for a further 30 min on 

ice. Cells were washed 3 times in FACS buffer, and then transferred into tubes for analysis 

on a FACS Calibur II (BD biosciences). Alternatively, cells were stained with anti-Ly6C-Alexa 

Fluor 488, Ly6G-APC (Biolegend) and CD11b-VioGreen (Miltenyi) and analysed on a 

MACSQuant VYB (Miltenyi). 

Analysis was performed using FlowJo software (Tristar); cells were gated off the 

forward/side scatter and dead cells were excluded using 7-Aminoactinomycin D (BD 

Biosciences) or live/dead fixable violet stain (Invitrogen).  
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4.7 ELISA 

ELISA for C5a in BAL fluid was performed using a murine C5a ELISA Duo set from R&D 

Systems. The assay was carried out according to the manufacturer’s instructions. Capture 

antibody was diluted to 4 µg/ml in PBS, 100 µl was added to each well of a 96 well plate 

(Nunc Maxisorp) sealed and incubated overnight at room temperature. The plate was then 

washed 3× with excess PBS containing 0.01% Tween20 (wash buffer, Sigma) and blotted dry 

on absorbent towel. Non-specific binding was blocked by adding 200 µl of PBS + 1 % BSA 

(Sigma) and incubated at room temperature for 1 h. A two fold serial dilution of 

recombinant C5a (1000 pg/ml – 15.625 pg/ml) in PBS + 1% BSA was prepared and was 

added to the plate along with BAL samples (100 µl each) and incubated for 2 h at room 

temperature. The plate was washed 3× prior to addition of biotinylated secondary detection 

antibody (200 ng). After 1 h incubation at room temperature, the plate was washed 3× and 

100 µl of Streptavidin-HRP (1 µg/ml) diluted in PBS + 1% BSA was added to each well then 

incubated for 20 min at room temperature. The plate was washed 4x then developed by 

addition of 100 µl of 3, 3′, 5, 5′-Tetramethylbenzidine (TMB) Liquid Substrate System for 

ELISA (Sigma). The reaction was stopped by addition of 100 µl of 1 M sulphuric acid and 

optical density measured at 450 nm on a Tecan Sunrise microplate reader. Concentrations 

of C5a in BAL samples were determined by interpolation from the standard curve using non-

linear regression. 

4.8 Western blot 

For western blot of C5, 4 µl of 4× laemmli sample buffer (Bio-Rad), containing β-

mercaptoethanol (100 µl/ml) was added to 12 µl of BAL fluid and held on ice. 15 µl of each 

sample was run on a 4 - 20% Criterion TGX stain free gel (Bio-Rad), which allows rapid 
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fluorescent detection of total proteins before and after protein transfer on the basis of 

incorporated trihalo compounds.  For determination of size, 5 µl of colour plus P7711S 

prestained protein ladder (New England Biolabs) was used as a marker and the gel was run 

for 40 min at 120 V in the provided Tris-Glycine buffer (Bio-Rad). Protein was transferred 

onto a 0.2 µm nitrocellulose membrane using Bio-Rad Trans Blot Turbo system, and protein 

transfer was verified using the Bio-Rad stain free UV activation protocol on the ChemiDoc 

MP (Bio-Rad). Staining was carried out using the ECL Advance western blotting kit (GE 

Healthcare) according to the manufacturer’s instructions. Non-specific binding was blocked 

by incubation in the provided block solution, 2% w/v dissolved in Tris buffered saline 

containing 0.1% Tween20 (TBS, see appendix for composition) for 1 h, before staining with 

0.2 µg/ml of rat, anti-mouse C5a (taken from ELISA kit, R&D systems) in blocking solution for 

1 h. Membrane was washed 6 times with TBS, then incubated for 1 h with 8 ng/ml of 

horseradish peroxidise conjugated anti-rat IgG antibody (Biolegend) in block solution. 

Membrane was washed 6 times with TBS then incubated in the substrate solutions for 5 

min. Positive signals were visualised on a ChemiDoc Imager (Bio-Rad). 

4.9 Statistical analysis 

All data was assembled using Prism 5 (Graphpad Software), significance was determined by 

non-parametric Mann-Whitney U test, or two-way ANOVA using Bonferroni post-hoc test, 

with P value of ≤ 0.05 deemed to be statistically significant. 
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5 Results 

5.1 CCR1 

5.1.1 Chemotaxis of differentiated MPRO neutrophils towards supernatants from 
MVA infected cells is mediated by CXCR2 not CCR1 

CCR1 has been shown to play an important role in the recruitment of neutrophils in disease 

various models [172, 173]. Neutrophils express CCR1 and respond to CCR1 ligands [121, 174] 

however, due to the expression of CCR1 on different leukocyte subsets, determining 

whether the effects observed in vivo are direct or indirect can be difficult. Therefore, an in 

vitro chemotaxis assay was used to access the role of CCR1 in the recruitment of neutrophils 

during MVA infection. The mouse fibroblast cell line NIH3T3 was infected with MVA at 

different multiplicities of infection (MOI) and compared to WR for the ability of cell culture 

supernatants to induce the chemotaxis of promyelocytic MPRO cells differentiated into 

neutrophils (nMPRO). Cell culture supernatants from MVA but not WR infected cells 

induced chemotaxis of nMPRO cells, and this induction was dependent on the MOI used 

(Fig. 5.1a). This MVA specific induction of nMPRO chemotaxis was also observed from 

supernatants of other murine cell lines, namely MLE-12 lung epithelial cells and MH-S 

alveolar macrophages, which did not induce chemotaxis of nMPRO cells when infected with 

VACV Wyeth (Fig. 5.1b & c). As the strongest induction was seen by supernatants from MVA 

infected MH-S cells, these cells were selected for further testing.  

The contributions of two chemokine receptors CCR1 and CXCR2 were assessed by the 

addition of non-peptide receptor antagonists J113863 and SB265610 (CCR1i and CXCR2i 

respectively) to nMPRO cells. This assay revealed that induction of nMPRO chemotaxis by 
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supernatants from MVA infected cells was mediated by CXCR2, whereas inhibition of CCR1 

had no effect on the level of chemotaxis (Fig. 5.1d). 

           MH-S

C
M

M
o

c
k

M
V

A

W
y
e

th

0

5,000

10,000

15,000

***

*** **

C
e

ll 
n
u
m

b
e

r

**

        MLE-12

C
M

M
o

c
k

M
V

A

W
y
e

th

0

2,000

4,000

6,000

8,000

* *

C
e

ll 
n
u
m

b
e

r

       NIH3T3

C
M

M
o
c
k

1
 m

.o
.i

5
 m

.o
.i

W
R

0

500

1,000

1,500

2,000

** *

MVA

C
e
ll 

n
u
m

b
e
r

***

Solvent CCR1i CXCR2i
0

1

2

3

*** Mock

MVA

C
h
e
m

o
ta

xi
s
 in

d
e
x

A B

C D

 

Fig. 5.1: MVA infected cells produce a chemotactic factor for MPRO cells differentiated into neutrophils 

(nMPRO) which acts on CXCR2 and not CCR1. (A) Number of nMPRO cells that migrated towards cell culture 

supernatants of mock, MVA or VACV WR (5 MOI, 16 h) infected NIH3T3 cells or cell culture medium (CM). (B) 

MLE-12 cells were infected with MVA or VACV Wyeth at MOI of 5 for 16 h, (C) MH-S cells for 8 h at a MOI of 1, 

and supernatants used for chemotaxis assay of nMPRO cells. (D) Chemotaxis of nMPRO cells towards 

supernatants of MH-S cells infected with MVA for 8 h at a MOI of 1. Where indicated, nMPRO cells were 

treated with 10 nM of CCR1 inhibitor J113863 (CCR1i) or CXCR2 inhibitor SB265610 (CXCR2i) or the equivalent 

amount of solvent. The chemotaxis index was calculated as the ratio of the number of cells that migrated in 

response to cell culture supernatants from MVA infected cells, to cells that migrated towards cell culture 

supernatants of mock treated cells. Data are means ± SEM, (n ≥ 4). *, P < 0.05; **, P < 0.01; ***, P < 0.001; 

Mann-Whitney-U test (a - c); 2-way ANOVA with Bonferroni post-hoc test (d). Results are from at least 2 

independent experiments. 
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5.1.2 Chemotaxis of THP-1 cells is mediated by CCR1 

Previously it was shown that cell culture supernatants from MVA infected human monocytic 

THP-1 cells induce chemotaxis of non-infected THP-1 cells by production of CCL2 [141]. 

Extravasation is a complex process, involving multiple chemokine receptors fulfilling non-

redundant overlapping functions, with CCR1 playing a critical role in arrest of monocytes 

[169]. Analysis of CCR1 expression showed that THP-1 cells express CCR1 (Fig. 5.2a). 

Subsequent tests of THP-1 migration towards FCS, which contains CCR1 ligands [175, 176], 

showed that CCR1 plays an important role in the migration of THP-1 cells (Fig. 5.2b). Having 

confirmed the expression and functionality of CCR1 on THP-1 cells, the role of CCR1 in the 

chemotaxis of THP-1 cells towards cell culture supernatants from MVA infected cells was 

assessed. This clearly demonstrated that CCR1 plays a critical role in the chemotaxis of THP-

1 cells, as addition of the CCR1 antagonist not only blocked chemotaxis towards 

supernatants of MVA infected cells, but also reduced the level of migration towards 

supernatants from the mock infected control group (Fig. 5.2c). Additionally the induction of 

THP-1 chemotaxis was shown to be specific to MVA, as supernatants from WR infected cells 

failed to induce chemotaxis of THP-1 cells above the levels seen in supernatants from mock 

infected cells (Fig. 5.2d) which is in line with previously published in vivo data [141]. 
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Fig.  5.2. Chemotaxis of THP-1 cells towards supernatants of MVA infected THP-1 cells is dependent on CCR1. 

(A) Flow cytometric staining of THP-1 cells with an antibody directed against CCR1. The ratio of the mean 

fluorescence intensities of THP-1 cells stained with anti-CCR1 antibody to the negative control is indicated in 

the upper right-hand corner of the histogram. (B) Chemotaxis index; the ratio of the number of THP-1 cells 

treated with 5 nM of J113863 (CCR1i) or SB265610 (CXCR2i) that migrated in response to 5% FCS, to migrating 

solvent treated THP-1 cells. (C) Chemotaxis of THP-1 cells towards supernatant of THP-1 cells infected with 

MVA for 6 h at a MOI of 4. Where indicated, THP-1 cells were treated with 5 nM of CCR1 inhibitor J113863 

(CCR1i) or the equivalent amount of solvent. The chemotaxis index was calculated as described before. (B) 

Chemotaxis of THP-1 cells towards supernatants from mock, MVA or VACV WR infected (6 h, 4 MOI) THP-1 

cells, or cell culture medium (CM). All data are means ± SEM (n = 4). *, P < 0.05; ***, P < 0.001; Mann-Whitney-

U test (b) and (d); 2-way ANOVA with Bonferroni post-hoc test (c). Results are from 2 independent 

experiments. 
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5.1.3 CCR1 mediates recruitment of neutrophils and inflammatory monocytes 
during MVA infection 

The results from the in vitro migration assays indicated that CCR1 plays a role in the MVA 

induced recruitment of monocytes but does not directly influence the MVA induced 

chemotaxis of neutrophils. To gain a better understanding of how CCR1 signalling influences 

leukocyte recruitment, the infiltration of leukocytes to the lung after intranasal infection 

with MVA was examined in Ccr1-/- mice. As has been shown previously MVA infection of WT 

mice triggers the recruitment of a substantial number of neutrophils and monocytes to the 

lung [141]. Comparison of WT and Ccr1-/- mice showed that levels of recruited neutrophils 

(CD11b+Ly6C+Ly6G+) were significantly reduced in Ccr1-/- mice (Fig 5.3). This effect, however, 

was not as pronounced as the dramatic reduction seen in the inflammatory monocyte 

(CD11b+Ly6ChiLy6G-) population. 
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Fig. 5.3. CCR1 plays a critical role in the recruitment of inflammatory monocytes to the lungs of MVA 

infected mice. C57BL/6 (WT) and Ccr1
-/-

 mice (C57BL/6) were intranasally infected with 1 × 10
7
 PFU of MVA 

resuspended in PBS. An equal volume of PBS was used for control animals. Cells in the lung were recovered at 

48 h p.i. by BAL and analysed by flow cytometry. Inflammatory monocytes (IM) were gated as CD11b
+
 Ly6C

high
, 

and neutrophils (PMN) were gated as CD11b
+
 Ly6C

+
 Ly6G

+
. (A) Representative dot plots from each group. (B) 

Summary of the analysis. For groups of MVA infected mice n ≥ 11; for groups of PBS dosed mice n ≥ 8. Columns 

represent the mean number of gated cell populations ± SEM. *, P < 0.05; ***, P < 0.001; Mann-Whitney-U test. 

Data are from 3 independent experiments 



   47  

5.2 Complement 

5.2.1 Complement component C3 is not required for the early migration of 
leukocytes during MVA infection  

VACV is capable of activating both the classical and alternative complement pathways; 

however the consequences of this activation are partly ameliorated by VCP. MVA no longer 

encodes VCP, thus complement activation by MVA potentially generates inflammatory 

mediators, such as C5a that induce leukocyte chemotaxis. The contribution of the central 

pathways of complement activation to the recruitment of leukocytes during MVA infection 

was assessed in an intranasal infection model. This study showed that activation of 

complement via C3 dependent mechanisms did not play a significant role in the recruitment 

of neutrophils, monocytes or lymphocytes 48 h after infection (Fig. 5.4).  
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Fig. 5.4. Recruitment of neutrophils and inflammatory monocytes to the lung after intranasal infection with 

MVA is unaffected in C3
-/-

 mice. B6 and C3
-/- 

mice were intranasally inoculated with MVA or the equivalent 

volume of PBS. Cells collected by BAL, at 48 h p.i., were analyzed by flow cytometry. (A) Representative dot 

plots from flow cytometric analysis showing levels of infiltrating CD11b
+
Ly6G

+
 neutrophils (PMN) and 

CD11b
+
Ly6C

hi
Ly6G

-
 inflammatory monocytes (IM). (B) Summary of the analysis. Columns represent mean cell 

number of each gated cell population ± SEM of 3 independent experiments (PBS, n = 2; B6, n = 7; C3
-/-

, n = 8). 
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5.2.2 C5 is activated independently of C3 in C3-/- mice 

Though C3 did not play a role in the recruitment of leukocytes after MVA infection, this did 

not rule out the possibility that other components of the complement system were 

activated independently of C3 [177]. To test this, levels of C5a in the BAL fluid were assayed 

by ELISA. As has been shown previously C5 was found in the lungs [178], which was 

increased by MVA infection. Surprisingly, the levels of C5a in the BAL fluid of MVA infected 

C3-/- mice were comparable to those of MVA infected wild type mice (Fig. 5.5A) which 

indicated that C5 may still be activated in C3-/- mice.  

To verify the C3 independent activation of C5 in MVA infected C3-/- mice, C5 collected in BAL 

fluid 16 h after infection was visualised by Western blot using a C5 specific antibody. This 

antibody was tested prior to use and was shown not to bind to any FCS components in the 

wash solution (appendix Fig. 11.1). Immunoblot for C5 (Fig. 5.5B) detected the C5 alpha 

chain at the expected size of approximately 115 kDa in all groups. Proteolytic cleavage of C5 

was confirmed in MVA infected groups by the detection of low molecular weight cleavage 

fragments. An additional band of approximately 80 kDa (marked C5*) was also detected in 

MVA infected groups and is presumed to be a C–terminal truncated proteolytic fragment. 
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Fig. 5.5. C5 is equally activated in the lungs of MVA infected B6 and C3
-/-

 mice. B6 and C3
-/-

 mice were 

intranasally inoculated with MVA or the equivalent volume of PBS and BAL was performed 16 h p.i. (A) C5a 

concentrations in BAL fluids were determined by ELISA. Data are group means ± SEM of 3 independent 

experiments (PBS, n = 2; B6, n = 10; C3
-/-

, n = 8), *** p < 0.001. (B) BAL fluids were analyzed with C5 specific 

Western blot. ColorPlus Prestained Protein Ladder, Broad Range (NEB) was visualized using the red LED 

module of the ChemiDoc MP Imaging System. The 2 images were overlaid using the multichannel image tool of 

the Image Lab 4.1 software (Bio-RAD). 

 

5.2.3 C5 activation plays a role in the recruitment of neutrophils during MVA 
infection  

C5a is a potent neutrophil chemoattractant, therefore the C3 independent activation of C5 

potentially makes a significant contribution to leukocyte recruitment. To address this, the 

contribution of C5 to the recruitment of leukocytes during intranasal infection with MVA 

was assessed in the C5 deficient FVB strain. The recruitment of monocytes and CD4+ 

lymphocytes in FVB mice was no different from levels seen in C57BL/6 mice. However levels 

of CD11b+Ly6C+Ly6G+ neutrophils were significantly decreased in FVB mice (Fig. 5.6). As 

expected the levels of CD8+ lymphocytes also appeared to be impacted, however, this 

difference was not quite significant (Fig. 5.6C & D). 
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Fig. 5.6. Neutrophil recruitment to the lung after infection with MVA is impaired in C5 deficient mice. B6 and 

C5
-/-

 mice were intranasally inoculated with MVA or the equivalent volume of PBS. Cells collected by BAL, at 48 

h p.i. were analysed by flow cytometry. (A) Representative dot plots from flow cytometric analysis showing 

levels of infiltrating CD11b
+
Ly6G

+
 neutrophils (PMN) and CD11b

+
Ly6C

hi
Ly6G

-
 inflammatory monocytes (IM). (B) 

Summary of the analysis. Columns represent mean cell number of each gated cell population ± SEM of 2 

independent experiments (PBS groups n = 4, MVA groups n = 8), ** p < 0.01. (C) Representative dot plots from 

flow cytometric analysis showing levels of infiltrating CD3
+
CD4

+
 and CD3

+
CD8

+
 lymphocytes in MVA mice. (D) 

Summary of the analysis. Columns represent mean cell number of each gated cell population ± SEM (MVA 

groups n ≥ 4). 
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6 Discussion 

6.1 CCR1: Role in the recruitment of neutrophils and inflammatory 

monocytes 

There is an increasing appreciation of the role played by both monocytes and neutrophils 

not only in innate immunity but also in the development and even the execution of the 

adaptive immune response [164]. The two arms of the immune response are not mutually 

exclusive; innate immune activation precedes the development of adaptive immunity and 

during the adaptive immune response elements of innate immunity are required for optimal 

function [75, 164]. A large proportion of the non-structural genes of VACV are  targeted at 

the innate immune response [179] underlining its importance in poxvirus immunity. Having 

lost many of these genes MVA potently activates the innate immune response, which may 

play an important role in its efficacy as a vaccine and a viral vector. The emigration of 

effector cells is a key step in the execution of the immune response that is tightly controlled 

by intricate cascades of inflammatory mediators serving to guide cells to exactly where they 

are needed. 

Previous work has shown that CCL2 plays a critical role in the recruitment of monocytes and 

lymphocytes to the lung after intranasal infection with MVA [141]. To further dissect the 

mechanisms involved in leukocyte recruitment during MVA infection, the chemotaxis of 

neutrophils and monocytes towards culture supernatants of MVA infected cells was 

investigated. Culture supernatants from MVA but not VACV infected cells, induced 

migration of differentiated MPRO neutrophils in a MOI dependent manner. All cell types 

tested produced neutrophil chemotactic factors after MVA infection, unsurprisingly the 
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strongest induction was seen by supernatants from MH-S alveolar macrophages.  Similar 

results were seen using monocytic THP-1 cells; with only supernatants from MVA infected 

cells inducing THP-1 chemotaxis. A study comparing cowpox virus to VACV produced similar 

results showing that supernatants from cowpox virus, but not VACV virus, infected cells 

induced the chemotaxis of monocytes [180]. These in vitro observations are in line with 

previous in vivo findings that only MVA induces chemokine production which leads to the 

recruitment of leukocytes [141]. 

CCR1 has been shown to be important for the recruitment of neutrophils [166-168] and 

monocytes [169, 170]. However CCR1 is expressed on a wide range of immune cell 

subpopulations making it difficult to determine if the effects observed are directly related to 

CCR1. The involvement of CCR1 in the migration of neutrophils towards supernatants from 

infected cells was tested using specific non-peptide antagonists. These studies revealed that 

the chemotaxis of nMPRO cells towards supernatants from MVA infected cells was 

independent of CCR1, requiring CXCR2 instead.  

CXCR2 is well established as a key mediator in the mobilisation and recruitment of 

neutrophils. In vitro assays of neutrophil chemoattractants often point to overlapping 

redundant functions; however it is now thought that chemokines exert complex special and 

temporal relationships in vivo. Many of these mediators are linked in inflammatory 

cascades, with leukotriene B4 (LTB4) inducing IL-1β which then induces C-C and C-X-C 

chemokines, all of which are required for the recruitment of neutrophils [181, 182].  

Different mediators may play important roles at different phases of recruitment. 

Chemokines take longer to produce but have greater half-lives than other rapidly produced 

inflammatory mediators, making them better suited to act at later stages. There is also the 
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possibility of spatial signalling whereby chemokines provide the long range signals which 

mobilise neutrophils from reservoirs, and as neutrophils approach they “home in” by 

prioritising  shorter lived end target signals such as C5a or LTB4 [183], as has been seen in a 

model of liver necrosis [116]. Therefore whilst these results indicate an important role for 

CXCR2, they do not necessarily rule out a contribution from other important mediators such 

as complement, arachidonic acid derived lipid mediators or even CCR1 ligands in vivo.  

Levels of recruited neutrophils were reduced in MVA infected Ccr1-/- mice indicating that 

CCR1 signalling did indeed play an important role in neutrophil recruitment during MVA 

infection. Others have reported that CCR1 deficiency does not affect the recruitment of 

neutrophils after MVA infection [130]. This does not conflict with our results as this was 2 

hours after infection where recruitment is likely due to rapidly produced short-lived 

inflammatory mediators such as C5a and LTB4, whereas our studies looked after 48 hours 

where chemokines presumably play a much greater role. Though levels of neutrophils were 

reduced, there was no gross deficiency, which when taken together with our in vitro 

findings and those of Duffy et al [130], indicates that the role of CCR1 on neutrophil 

recruitment is indirect. This fits well with observations that CCR1 ligands induce neutrophil 

recruitment through the induction of other mediators including LTB4 [166, 184]. This study 

only examined the recruitment into infected tissue and did not look at the effects of CCR1 

on recirculation or migration within infected tissue. Expression of CCR1 on neutrophils is up-

regulated upon activation [121, 185], and CCR1 is required for the recirculation of 

neutrophils and induction of memory CD8+ T-cell responses [130]. Thus the effects of CCR1 

deficiency go beyond the recruitment from the circulation and may significantly impact 
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downstream processes such as migration within infected tissue, and the development of 

virus specific T-cell responses. 

The effect of CCR1 on the recruitment of monocytes during MVA infection was much more 

striking. Inhibition of CCR1 dramatically reduced chemotaxis of THP-1 cells towards both 

mock and MVA infected supernatants. The role for CCR1 was confirmed by infection studies, 

whereby Ccr1-/- mice presented with greatly reduced levels of infiltrating inflammatory 

monocytes giving a strong indication that CCR1 plays an important direct role in the 

recruitment of inflammatory monocytes during MVA infection. This coincides well with the 

importance of CCR1 for the recruitment of inflammatory monocytes in other infection 

models [186].  

Taken together with other studies, the work presented here suggests overlapping, non-

redundant functions of CCR1 and CCR2 in the recruitment of monocytes during MVA 

infection. MVA induces expression of CCL3 [141] a CCR1 ligand which is known to play a role 

in monocyte recruitment [187]. Therefore it seems highly likely that CCL3 is involved in the 

CCR1 dependent recruitment of monocytes that we observed. 

Based on these findings and currently available literature it is possible to put together a 

hypothetical model of monocyte recruitment during MVA infection. In the first step 

detection of MVA by PRR leads to the induction of inflammatory cytokines including TNFα, 

IL-1β and IFN and the recruitment of neutrophils. IFN induces local expression of 

chemokines including CCL2 [188] and CCL3 [189] which is further supplemented by 

expression from infiltrating neutrophils [190]. CCL2 is transported into the circulation where 

working in conjunction with systemic IFN, it reaches a critical concentration inducing egress 

of monocytes from reservoirs in the bone marrow and spleen. Local production of 
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inflammatory cytokines induces up-regulation of adhesion molecules on endothelial cells, 

allowing interaction with circulating inflammatory monocytes which are guided towards the 

site of infection by a gradient of immobilised CCL2.  As they approach the infected tissue, 

signalling through CCR1, possibly by interaction with immobilised CCL3, induces arrest 

triggering extravasation into infected tissue. The local cytokine milieu induces infiltrating 

monocytes to differentiate, altering the expression of cell surface receptors as they do so 

[144] which presumably affects how signals are prioritised allowing monocytes to “home in” 

to sites of infection. 

These studies did not address the role of Ly6Clow patrolling monocytes which are likely 

recruited before neutrophils, in response to different signals. These non-classical monocytes 

differentiate into macrophages and produce inflammatory chemokines including IL-6 and 

CCL2 [191] which are abundant in the lung after MVA infection. Non-classical monocytes are 

therefore of great interest as they may play an important role in the initial production of 

inflammatory mediators immediately after infection which leads to the recruitment of 

neutrophils. 

Another important aspect that is not touched upon is regarding the consequences of 

immune cell recruitment during poxvirus infection. This seemingly simple question is not as 

straight forward as it may appear, as has been demonstrated by studies investigating 

poxvirus chemokine binding proteins. Poxviruses encode a number of chemokine binding 

proteins, of which two are found in VACV [192]. One such chemokine binding protein, A41, 

which is expressed at early and late stages of infection, is conserved in many VACV strains 

indicating its importance [193, 194]. Interestingly, A41 has a fairly limited range of targets, 

and does not directly block receptor binding. Instead, A41 interferes with chemokine 
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glycosaminoglycan binding sites presumably preventing the establishment of chemokine 

gradients [194, 195]. Thus A41 reduces inflammatory cell infiltration, and deletion of A41 

from WR enhances virus clearance [193]. MVA still retains a functional A41, deletion of 

which leads to stronger induction of CD8+ T-cell responses and confers better protection 

after VACV challenge [196]  giving an indication that limiting the infiltration of host immune 

cells is beneficial to the virus. 

The second chemokine binding protein found in VACV is the 35 kDa, viral C-C chemokine 

inhibitor (vCCI) which shows a high affinity for many human and murine C-C chemokines 

including CCL2 and CCL3 [197]. Due to the lack of homology with host chemokine receptors 

vCCI may have evolved separately [198-200]. vCCI acts as a competitive inhibitor, binding to 

C-C chemokines, preventing receptor interaction [198], inhibiting chemotaxis and 

extravasation of monocytes but not neutrophils [201]. Interference of chemokine receptor 

binding invariably alters the inflammatory immune response leading to decreased overall 

levels of cytokines and reduced cell infiltration [199, 202]. Despite this, the virulent WR 

strain does not encode a functional vCCI [203], and somewhat paradoxically expression of 

vCCI actually decreases the virulence of the virus [204]. This is not entirely dissimilar to A41, 

deletion of which was also associated with increased pathology [193]. The decreased 

virulence associated with expression of vCCI is likely due to its ability to reduce self-inflicted 

damage by the host immune system. However, decreased access to cells that could 

potentially enable further dissemination, such as monocytic cells, along with reduced 

inflammation, and the accompanying vascular permeability which may allow escape, could 

potentially explain why vCCI expression reduces virus replication and spread in vivo. This 

highlights the fine balance between virus and host; arguably the ultimate goal for the virus 



   58  

is long-term survival in a host population, and vCCI appears to nicely illustrate that a gain of 

virulence is not always desirable as it may impact long-term spread and survival. The 

apparently different effects of the two poxvirus chemokine binding proteins on virulence 

could potentially be explained by their diverging target specificities and mechanisms of 

action. However it is also worth bearing in mind variations that arise from routes of 

infection. To this extent, whilst the loss of A41 altered the immunopathology of intradermal 

infection, there was no effect on the outcome of intranasal infection [193] which was the 

same route used to assess the recombinant vCCI expressing WR. Therefore, it would be 

interesting to investigate the impact of vCCI on the pathology of other routes of infection. 

The results presented here suggest that MVA induced recruitment of neutrophils is 

mediated by CXCR2 and that CCR1 also plays an important role, possibly via induction of 

downstream processes. On the other hand CCR1 strongly influenced monocyte recruitment, 

suggesting a direct involvement. This study builds on previous work adding a further level of 

complexity by implicating an important role for CCR1 in the recruitment of neutrophils and 

particularly inflammatory monocytes, expanding our knowledge of the mechanisms 

involved in the recruitment of leukocytes during the inflammatory response to MVA 

infection.
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6.2 Complement: MVA triggers C3 independent activation of C5 

contributing to respiratory migration of neutrophils  

Neutrophils play an important role in host defence, responding to a large number of 

chemotactic signals which are produced after infection. Deciphering the role of these 

inflammatory mediators has proved difficult as multiple signals are elaborated from infected 

tissue, which seemingly fulfil overlapping redundant roles in migration assays. Complement 

plays an important role in neutrophil biology, augmenting recruitment, and effector 

functions.  Recent studies have shown that cell surface activation of complement on 

neutrophils leads to a self-perpetuating amplification loop [205]. Complement components 

are present in the serum and tissues in high concentrations, making the complement system 

uniquely placed to rapidly activate immune responses independently of host gene 

expression. VACV are known to activate complement however, incorporation of host 

regulatory proteins and the secretion of VCP presumably limits the activation of the 

complement system by VACV. MVA does not have these important regulators of 

complement activation, raising the possibility that complement activation may play a role in 

the induction of the immune response. 

This study addressed the role of complement activation in the recruitment of leukocytes to 

the lung after infection with MVA. Recruitment of leukocytes during MVA infection was not 

affected by the absence of the central C3 component. A surprising observation was that the 

levels of C5a in the BAL fluid of MVA infected WT and C3-/- mice were similar which 

suggested that C5 was activated independently of the canonical C3 component. Further 

analysis of C5 cleavage products in the BAL fluid revealed that this was indeed the case.  
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Activation of C5 via C3 independent mechanisms has been shown before in vitro [177,206, 

207] and was observed during cerebral malaria infection [208]. However, the relevance of 

these C3 independent pathways of C5 activation in vivo is not well studied and has not yet 

been observed during viral infection. Immunoblot of C5 showed that C5 is cleaved in the 

lungs of MVA infected mice, including those deficient in the central C3 component. The 

proposed mechanism of C5 activation is through direct cleavage of C5 by serine proteases 

produced from phagocytic cells [209] (Fig. 6.1) rather than by oxidation [206] though the 

possibility of oxidation occurring as an additional mechanism was not ruled out. Activation 

of C5 in this way could serve to immediately amplify the local immune response by rapidly 

creating a high local concentration of inflammatory mediators. Alveolar macrophages 

appear to be particularly efficient at activating C5 in this way, which raises a possibility, that 

this mechanism may be specific to the lung; therefore it would be interesting to investigate 

if this occurs after infection by other routes.  

As C5a is a potent inflammatory mediator, particularly with regard to neutrophil 

recruitment, the contribution of C5 activation to MVA induced leukocyte recruitment was 

examined. Recruitment of neutrophils was significantly lower in the C5 deficient FVB strain, 

giving a strong indication that the activation of C5 plays a role in the recruitment of 

neutrophils during MVA infection. In vitro migration assays with differentiated MPRO cells 

indicated a role for CXCR2 in MVA induced neutrophil migration. This does not conflict with 

the observations implicating a role for C5, as C5a works in conjunction with CXCR2 ligands to 

induce inflammation [210] and is known to induce expression of CXCR2 ligands [211] and 

lipid mediators [212] in addition to being directly chemotactic.  
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Fig 6.1 Proposed model for C3 independent activation of C5 by resident macrophages. Activation of resident 

macrophages leads to the production of serine proteases that cleave locally synthesised C5. Liberated C5a acts 

in an autocrine manner, stimulating chemokine production in macrophages and acts directly to induce 

recruitment of neutrophils from the circulation. Figure adapted from Huber-Lang et al 2002 [209], with 

permission from Elsevier, copyright 2002. 

 

Bearing in mind current thinking regarding the spatial and temporal interactions that lead to 

neutrophil recruitment, it is possible that CXCR2 ligands and C5a are fulfilling distinct roles, 

similar to those proposed for CCL2 and CCL3. In this hypothetical situation CXCR2 ligands, 

such as CXCL1 and CXCL2 which are induced by MVA infection, provide the long range 

signals to mobilise neutrophils from reservoirs. C5a on the other hand has a shorter half-life 

as it is rapidly inactivated [213], thus C5a may provide the “end point” signal which is 

prioritised over CXCR2 as neutrophils approach the infected tissue. This would potentially 

explain why C5 deficiency does not grossly affect the recruitment of neutrophils, as a likely 
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possibility is that C5a serves to amplify CXCR2 ligands by inducing expression in non-infected 

cells, and may play a role in guidance within infected tissue. 

In addition to its role in the recruitment of neutrophils, a reduction in the levels of 

infiltrating CD8+ T-cells was also seen in C5-/- mice. Though this difference was not 

statistically significant, due primarily to the low statistical power of the lymphocyte analysis, 

a reduction of infiltrating CD8+ T-cells in virally infected C5-/- mice has been previously 

reported by others [214]. Indeed C5 appears to play an important role in the development 

of antiviral immunity as C5 deficient mice are more susceptible to influenza infection [215]. 

Complement is required for development of CD8+ CTL responses [214, 216] and appears to 

be important for the induction of type I (TH1) immune responses [217]. Cells of the innate 

immune system induce up-regulation of the C5a receptor on T-cells [218] which provides 

additional costimulatory and survival signals [219], allowing the expansion of antiviral 

effector cells [220]. These properties of C5a have recently been harnessed by the 

development of the C5a agonist, EP67, which retains the immune enhancing properties 

without the accompanied inflammation associated with C5a. This synthetic peptide has 

been used for its adjuvant properties, and has been shown to induce CTL responses [221]. 

More importantly, it has also been used alone to boost host immune responses where it has 

been shown to provide protection from lethal influenza infection when used for 

prophylactic or therapeutic treatment [222]. In light of these studies the rapid activation of 

C5 by MVA is particularly interesting as C5 appears to play a role in boosting the host 

immune response and aids the development of antiviral CTL responses. Additionally in the 

context of poxvirus infection, C5 has recently been shown to be critical for neutralisation of 

VACV [223]. Therefore the rapid induction of C5 activation by MVA infection could 
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potentially have important consequences, and may be a mechanism underlying the potent 

immunity induced by MVA infection particularly regarding post-exposure protection 

provided by MVA vaccination. 

The role of complement in poxvirus immunity does not appear to be straight forward, as 

currently available literature points to divergent roles of the different complement 

components. In line with our studies, it was observed that deficiency of C5 affects the 

primary immune response to cowpox infection, which was associated with uncontrolled 

inflammation and increased pathology. The potential role of C5 in the clearance of VACV 

[223] and in the expansion of virus specific CTL [214, 216]  may account for this exacerbation 

of disease. However these differences were no longer apparent upon re-infection indicating 

that the long-term development and effectiveness of the adaptive immune response was 

ultimately not grossly affected by C5 deficiency [224]. Conversely, we observed that 

deficiency of C3 does not affect the infiltration of leukocytes during MVA infection as C5 

appears to be activated independently of C3. However with its role in opsonisation and 

complement dependent antibody neutralisation complement plays an important role in the 

adaptive immune response as deficiency of C3 impairs humoral [225] and T-cell [87] 

responses. Thus central complement components are required to survive mousepox 

infection as deficiency of components of the classical or alternative complement activation 

pathways impairs the humoral immune response to poxvirus infection [79]. The seeming 

roles for C5  in early immune response and C3 in the late immune response raises 

interesting questions as to the roles of the complement components in the development of 

protective immunity. The first is if prophylactic vaccination of C3 deficient mice protects 
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from lethal challenge, the second is whether C5 plays an important role in protection 

afforded by therapeutic vaccination with MVA.  

The C3 independent activation of C5 by MVA raises another important issue regarding 

poxvirus VCP. VCP is a virulence factor [90] that binds to and accelerates the decay of 

complement activation products of C3 and C4 [85, 226], thus it is not capable of directly 

preventing complement activation but serves to limit further activation and avoid the 

consequences. As C3 and C4 are critical components of the classical and alternative 

pathways VCP provides protection from both but is particularly efficient at inhibiting the 

antibody dependent, classical pathway [227]. This indicates that the main function of VCP 

may be to aid virus dissemination and to protect from the adaptive immune response [89] 

particularly by avoiding complement dependent antibody neutralisation [228]. MVA does 

not possess VCP, however as MVA is non-replicative and as activation of C5 occurs 

independently of C3, it seems unlikely that VCP would provide any additional benefit in this 

instance. Complement products are synthesised locally by phagocytic cells [178, 229], and 

local activation by MVA infection leads to the secretion of proteases which likely directly 

activate C5 [209]. Therefore it would seem that as a consequence, the viral mechanisms that 

block cellular activation prevent direct cleavage of C5 rather than those that interfere with 

the complement system itself. None the less, it is worth bearing in mind that VCP can 

modulate inflammatory immune responses [230], and  that complement plays an important 

role in the development and execution of the adaptive immune response. Therefore it 

would be interesting to assess the influence of VCP on leukocyte migration and particularly 

whether VCP affects the development of the adaptive immune response to MVA. 

Additionally this study did not address the second effector function of C5 which is the 
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formation of the MAC. It is not clear if C5 activation by C3 independent pathways preserves 

the ability of C5 to form the MAC which could potentially lead to widespread lysis. The 

difficulties of working with murine complement, which is highly unstable, would likely make 

addressing this issue rather complicated, therefore the development of an in vitro system 

using human cells and complement would be preferable. 

This study investigated the role of complement activation during the inflammatory immune 

response to MVA and revealed that the central C3 component does not impact the early 

recruitment of leukocytes. Despite the absence of C3, it was observed that levels of C5a in 

MVA infected C3-/- mice were similar to WT controls, as C5 appeared to be activated 

independently of C3. Analysis of leukocyte recruitment in C5 deficient FVB mice showed 

that levels of neutrophil recruitment were reduced compared to a C5 sufficient strain, 

implicating a role for C5 in the recruitment of neutrophils during MVA infection. 
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7 Summary 

The triggering of the immune response and induction of immune cell trafficking is a critical 

step in the induction of antiviral immunity. Modified vaccinia virus Ankara (MVA) is a 

promising viral vector vaccine, however little is known about the mechanisms underlying its 

potent induction of the host immune response. Therefore, this work was undertaken to 

investigate the mechanisms of leukocyte recruitment during infection with MVA.  

In vitro chemotaxis assays demonstrated that MVA, but not other Vaccinia virus infected 

cells produce chemotactic factors for neutrophils and monocytes. Addition of chemokine 

receptor inhibitors indicated that neutrophil and monocyte chemotaxis was mediated by 

CXCR2 and CCR1 respectively. The important role for CCR1 in the recruitment of 

inflammatory monocytes was then confirmed by infection studies in Ccr1-/- mice. 

To further evaluate the mechanisms of neutrophil recruitment the role of complement 

activation was examined. Leukocyte recruitment was unaffected in C3 deficient mice 

suggesting that activation of central C3 dependent pathways is not required. Further 

investigation of C5 activation products showed that MVA induces C5 activation in C3 

deficient mice, and that C5 appears to play a role in neutrophil recruitment. 

In conclusion, these results suggest an important role for CCR1 signalling in the recruitment 

of inflammatory monocytes and implicate a role for C3 independent activation of C5 in 

neutrophil recruitment to the lung during MVA infection. These findings extend our 

understanding of the mechanisms triggered by MVA to induce cell migration, which 

presumably plays a role in its efficacy as a viral vector vaccine. 

 



   67  

8 Zusammenfassung 

Die  Wanderung von Immunzellen an den Ort einer Infektion oder Impfung ist ein wichtiger 

Schritt bei der Induktion von  spezifischer Immunität gegen Krankheitserreger. Das 

Modifizierte Vaccinavirus Ankara (MVA) ist ein hoch attenuiertes Orthopockenvirus, das 

bereits häufig für die Entwicklung von neuartigen rekombinanten Impfstoffen gegen 

Infektionserreger eingesetzt wird. Jedoch ist noch wenig über die immunologischen und 

zellbiologischen Abläufe bekannt, die der Anregung einer durch die Verabreichung von MVA 

Impfstoff erzielten Immunantwort zugrunde liegen. Diese Arbeit untersucht daher die 

Mechanismen der Leukozytenrekrutierung nach Immunisierung  mit dem MVA.  

In-vitro-Untersuchungen zur Chemotaxis zeigten, dass mit MVA infizierte Zellen, jedoch 

nicht mit anderen Vaccinavirus infizierte Zellen chemotaktische Faktoren für neutrophile 

Granulozyten und Monozyten produzieren. Der Einsatz von spezifischen Inhibitoren der 

Funktion von Chemokinrezeptoren legte nahe, dass die Chemotaxis von neutrophilen 

Granulozyten und Monozyten durch die Rezeptormoleküle CXCR2 beziehungsweise CCR1 

vermittelt wurde. Die Bedeutung von CCR1 bei der Rekrutierung von inflammatorischen 

Monozyten wurde anschließend durch Impfstudien in Rezeptor-defizienten (Ccr1-/-) Mäusen 

bestätigt. 

Um die Mechanismen der Rekrutierung von neutrophilen Granulozyten besser zu verstehen, 

wurde auch die Bedeutung der Komplementaktivierung nach intranasaler Verabreichung 

von MVA im Mausmodell untersucht. In Mäusen, denen der Komplementbestandteil C3 

fehlt, war die Leukozytenrekrutierung nicht beeinträchtigt. Dies legte  nahe, dass die 

Aktivierung des zentralen Komplementbestandteils C3 für die Einwanderung von 

Immunzellen nicht erforderlich ist. Die weitere Erforschung von C5-Aktivierungsprodukten 
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zeigte, dass MVA die Aktivierung von C5 in C3-defizienten Mäusen induzieren kann und 

anscheinend C5 eine Rolle bei der Rekrutierung von neutrophilen Granulozyten spielt. 

Diese Ergebnisse weisen auf eine wichtige Rolle des Chemokinrezeptors CCR1 bei der 

Rekrutierung von inflammatorischen Monozyten hin und implizieren bei der Einwanderung 

von neutrophilen Granulozyten eine Aktivierung des Komplementfaktors C5 durch MVA 

unabhängig von der Funktion der zentralen Komplementkomponente C3. 

Diese Ergebnisse vertiefen das grundlegende Verständnis der durch MVA Immunisierung 

ausgelösten Einwanderung von neutrophilen Granulozyten und inflammatorischen 

Monozyten, welche vermutlich die Wirksamkeit von MVA als Impfstoff beeinflusst. 
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11   Appendix  

11.1 List of materials 

11.1.1 Cell culture and Chemotaxis 

Reagent/Equipment Supplier 

All trans-retinoic acid Sigma 

J113863 (dissolved in ethanol 50 mM) Tocris 

FCS (VLE) Biochrom 

FACScan BD Biosciences 

TrypZean Solution (Trypsin) Sigma 

Ethanol (96%) Roth 

Filter 0.2µm BD Biosciences 

SB265610 (dissolved in ethanol 10 mM) Tocris 

96 well Multi-Screen-MIC plate Millipore 

MACSQuant VYB Miltenyi 

RPMI (Endotoxin free) Sigma 

DMEM (Endotoxin free) Biochrom 
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11.1.2 Infection and BAL 

PBS (Endotoxin free) Biochrom 

EDTA Sigma 

Ketamine Bela-Pharm 

Xylazine Bayer Vital 

RPMI (Endotoxin free) Sigma 

 

11.1.3 Flow cytometry 

96 well (V bottom for FACS) Corning Life Sciences 

Cytofix/Cytoperm kit BD biosciences 

FCS (VLE) Biochrom 

FACSCanto II BD Biosciences 

MACSQuant VYB Miltenyi 

Microplate Centrifuge 5810R Eppendorf 

 

11.1.4 Antibodies and Live dead exclusion 

Reagent Conjugate Clone Supplier Concentration 

CD11b FITC M1/70 Biolegend 2.5 µg/ml 

CD11b VioGreen M1/70 Miltenyi 2.5 µg/ml 

CD3 PE 17A2 Biolegend 2 µg/ml 

CD4 PE-Cy7 GK1.5 Biolegend 1 µg/ml 

CD8 PE-Cy7 53.6.7 Biolegend 1 µg/ml 
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Ly6C APC-Cy7 HK1.4 Biolegend 1 µg/ml 

Ly6C AlexaFluor-488 HK1.4 Biolegend 1 µg/ml 

Ly6G APC 1AB Biolegend 0.4 µg/ml 

CCR1 AlexaFluor 405 C-20 Santa Cruz 10 µg/ml 

C5a N/A  N/A R&D Systems 0.2 µg/ml 

Anti-rat IgG HRP Poly4054 Biolegend 8 ng/ml 

Fixable Live/Dead Violet or Red N/A Invitrogen  2 µl/ml 

7AAD N/A N/A BD Biosciences 2.5 µg/ml 

 

11.1.5 ELISA 

Reagent/Equipment Supplier 

C5a ELISA Duo set R&D Systems 

BSA Sigma 

Sunrise microplate reader Tecan 

Sulphuric acid 1 M (2 N) Roth 

Tween20 Sigma 

96 well (Maxisorp, flat bottom for ELISA) Nunc 

 

11.1.6 Western blot 

Reagent/Equipment Supplier 

4-20% Criteron TGX stain free gel Bio-Rad 

ChemiDoc MP imager Bio-Rad 
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Colour plus protein ladder New England Biolabs 

ECL Advance western blotting kit  GE healthcare 

laemmli buffer (4×) Bio-Rad 

Mini PROTEAN tetra cell (electrophoresis tank) Bio-Rad 

TBS (10×) (0.2 M Tris base, 1.5 M NaCl) Sigma 

Trans-Blot Turbo Mini Nitrocellulose transfer pack Bio-Rad 

Trans-Blot Turbo Transfer system  Bio-Rad 

Tris Glycine solution (10×) Bio-Rad 

Tween20 Sigma 

β-Mercaptoethanol AppliChem 

 

11.2 C5a Western blot controls 
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Fig. 11.1.  Specificity of the C5a antibody. A B6 mouse was 

intranasally inoculated with MVA and subjected to BAL 48 h 

p.i. RPMI 1640 containing 10% FCS was used as wash 

solution. Protein in the BAL fluid and wash solution was 

separated by SDS-PAGE. The gel was subsequently treated 

with UV according to the manufacturer’s instructions (Bio-

Rad) to activate the trihalo compounds. Protein was then 

transferred onto a nitrocellulose membrane as described in 

materials and methods. (A) Fluorescence detection of total 

protein. (B) C5 specific Western blot.   

 


