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1 Einleitung 

1.1 Übersicht zum Mammakarzinom 

Das statistische Bundesamt in Deutschland führt das Mammakarzinom mit 17.815 

Todesfällen an vierter Stelle der Todesursachen für Frauen in 2011 [1]. Im Jahr 2009 

wurde bei insgesamt 73.340 Frauen Brustkrebs diagnostiziert [2]. Innerhalb der 

letzten Jahre kam es zu einem Anstieg der Brustkrebsdiagnosen. Dies wird zu einem 

großen Teil auf das seit 2005 eingeführte flächendeckende 

Früherkennungsprogramm inklusive der Mammographie für Frauen ab dem 50. 

Lebensjahr zurückgeführt [3]. Seit 2009 sind die Neuerkrankungsraten erstmals 

wieder leicht rückläufig [2].  

Statistisch gesehen erkrankt jede achte Frau im Laufe ihres Lebens an einem 

Mammakarzinom. 2008 bekamen pro 100.000 Einwohner in Deutschland 171 Frauen 

und 1 Mann die Diagnose Mammakarzinom. Damit steht das Mammakarzinom an 

erster Stelle der Krebserkrankungen bei Frauen [2, 4].  

Die Therapiemöglichkeiten für Mammakarzinome umfassen verschiedene Säulen: 

Zum einen die operative Therapie, zum anderen die Radio-, Chemo- und 

Hormontherapien. Die zunehmende Personalisierung der Therapie ist unter anderem 

auf die großen Erfolge der Forschung in den letzten Jahren zurückzuführen, zu 

denen auch die Entdeckung des Her2/neu-Rezeptors und die Entwicklung des 

spezifischen Antikörpers Trastuzumab gehören.  

Die Chemotherapie bei Mammakarzinompatientinnen kann je nach Patienten- und 

Tumortyp zu verschiedenen Zeitpunkten im Rahmen der Tumortherapie eingesetzt 

werden.  

Bei kurativem Ansatz besteht die Möglichkeit, die Patienten primär mit einer 

Chemotherapie zu versorgen, um sie anschließend zu operieren. Dieser sogenannte 

neoadjuvante Ansatz hat mehrere Vorteile: Zum einen wird der Tumor vor der 

Operation durch die Chemotherapie verkleinert, was die Rate von brusterhaltenden 

Operationen erhöht [5]. Zum anderen wird das Chemotherapiemedikament quasi in 

vivo getestet, da die Ansprechrate auf die Therapie nach einigen Wochen 

radiologisch nachgewiesen werden kann. Nötigenfalls kann man zu diesem Zeitpunkt 

die Chemotherapie dann umstellen – oder bei Nichtansprechen auch die Operation 

vorziehen.  
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Die neoadjuvante Chemotherapie ist das Standardvorgehen, wenn die Patientin 

unter einem inflammatorischem oder lokal fortgeschrittenem Tumor (T3, UICC 3) 

leidet. Zusätzlich sollte sie erwogen werden, wenn der Tumor bestimmte Kriterien 

ausweist, die ein sehr gutes Ansprechen auf die Chemotherapie wahrscheinlich 

machen. Dazu gehören zum Beispiel ein Alter < 40 Jahre, ein schlecht oder niedrig 

differenziertes bösartiges Gewebe (Grading 3 nach UICC) und negative 

Hormonrezeptoren. Außerdem zeigen nicht lobuläre Mammakarzinome ein potentiell 

gutes Ansprechen auf die Chemotherapie [6].  

Zudem wurde die Äquivalenz der neoadjuvanten und der adjuvanten Therapieregime 

im Bezug auf das tumorfreie Überleben und das Gesamtüberleben in Studien gezeigt 

[7].  

Eine typische neoadjuvante Chemotherapie besteht aus 8 Therapiezyklen im 

Abstand von jeweils 3 Wochen. Verschiedene Chemotherapeutika werden hierzu 

kombiniert, ein häufiges Schema ist eine Kombination aus einem Anthrazyklin und 

Cyclophosphamid für 4 Gaben, gefolgt von eine Taxan-Gabe für weitere 4 Gaben [8]. 

Im Anschluss erfolgt dann die Operation, sowie gegebenenfalls eine Bestrahlung. 

Hormontherapie mit Östrogenrezeptormodulatoren wie Tamoxifen oder 

Aromatasehemmern werden ebenso wie eine Trastuzumab-Therapie in Abhängigkeit 

des Hormonrezeptorstatus des Tumors hinzugefügt [5, 7].  

1.2 Konventionelle Tumormarker bei Mammakarzinoms 

Als Tumormarker bezeichnet man im Blut oder sonstigen Körperflüssigkeiten 

nachweisbare Substanzen, deren Nachweis auf das Vorhandensein von 

Tumorgewebe oder Tumorzellen hindeutet. Im Fall von Brustkrebs sind die derzeit 

relevanten Marker carcinoembryonale Antigen (CEA) und das Cancer Antigen 15-3 

(CA 15-3). Für beide Tumormarker wurde nachgewiesen, dass sie im Falle eines 

Tumorwachstums ebenfalls ansteigen [9] und als Prognosefaktor eingesetzt werden 

können [10].  

1.3 Zellfreie DNA und DNA Integrity als potentielle Tumormarker bei Brustkrebs 

Zirkulierende zellfreie DNA (cell-free DNA, cfDNA) wurde in mehreren Studien als 

potentieller diagnostischer Biomarker beschrieben, da erhöhte Werte von 

zirkulierenden Nukleinsäuren im Blut bei verschiedenen Erkrankungen nachgewiesen 

werden konnten. Zu diesen Erkrankungen zählen neben Sepsis, rheumatologischen 
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und traumatologischen Erkrankungen auch Krebserkrankungen [11-13]. In 

unterschiedlichen Tumorentitäten wie Brust, Kolon, Rektum und Hoden wurden 

erhöhte Werte für zirkulierende zellfreie DNA gemessen und als Diagnosemarker 

erprobt [14-16]. Die prädiktive und prognostische Aussagekraft der zellfreien DNA 

wurde bis jetzt nur in wenigen Studien erprobt, von denen einige einen statistische 

signifikanten Zusammenhang fanden [17, 18].  

Umetani et al. [14, 15] beschrieben im Jahre 2006 eine Rechenformel, die auf 

gemessenen Werten für zellfreie DNA basiert. Diese Rechenformel beruht auf der 

Annahme, dass zirkulierende zellfreie DNA mit einer Länge von weniger als 180 

Basenpaaren (base pairs, bp) vorwiegend durch apoptotischen Zelltod ins Blut 

freigesetzt werden, wohingegen längere Basenpaare eher nekrotischen Ursprungs 

sind [19, 20]. Diese Annahme gründet sich darauf, dass während der Apoptose 

spezifische Endonukleasen aktiviert werden, die das Chromatin in nukleosomale 

Fragmente mit einer Größe von 160-180 bp spaltet [21, 22], Ausgehend davon 

entwickelte diese Forschergruppe Primer zur Messung zweier DNA-Stücke: ALU 115 

(115 Basenpaare lang) und ALU 247 (entsprechend 247 bp) und berechnete aus den 

gemessenen DNA-Mengen im Serum den Quotienten ALU 247/ALU 115. Dieser 

Quotient wurde DNA Integrity genannt und steht für das Verhältnis von nekrotischen 

zum apoptotischem Zelltod. Folgt man der Hypothese, dass während des 

Tumorwachstums alternative Zelltodarten häufiger auftreten als der physiologische 

apoptotische Zelltod [19, 23], so müsste bei Tumorpatienten die DNA Integrity im 

Vergleich zu Gesunden erhöht sein und wäre somit ein potentieller Diagnose- wie 

Prognosemarker für Tumorpatienten.  

Wang et al. [24] beschrieben 2003 ausgehend von ähnlichen Überlegungen eine 

weitere Formel, die sie ebenfalls DNA Integrity nannten. Diese Formel berechnet 

auch das Verhältnis von längeren zu kürzeren DNA Fragmenten im Plasma, 

allerdings auf Basis einer komplizierteren Rechenformel e(-ΔΔCp x ln(2)). Hierbei wird der 

im Rahmen der PCR gemessene Cp-Wert jeder einzelnen Probe von einem 

Standardwert abgezogen. Anschließend werden die so entstandenen ΔCp Werte für 

ALU 247 von den ΔCp Werten für ALU 115 abgezogen. So entsteht ΔΔCp, welches 

dann in die o.g. Formel eingesetzt wird.  
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2 Zielsetzung der Untersuchungen 

Die vorliegende Arbeit untersucht die Wertigkeit von zellfreier DNA und DNA Integrity 

als Diagnosemarker für Brustkrebs. Desweiteren untersucht sie, in wie weit diese 

noch neuen Tumormarker zur prätherapeutischen Prädiktion des Ansprechens  bzw. 

zum Monitoring einer neoadjuvanten Chemotherapie bei Mammakarzinom-

patientinnen verwendet werden können. Hierbei werden die konventionellen 

Tumormarker CEA und CA 15-3 als Vergleich – wie von den Leitlinien der European 

Group on Tumor Markers (EGTM) empfohlen – herangezogen [25].  

3 Material und Methoden 

3.1 Patienten 

Die Rekrutierung der Patientinnen für diese Studie erfolgte im Zeitraum von Frühjahr 

2007 bis Herbst 2011 in einer hämatoonkologischen Praxis in München. 

Zusätzlich zu 65 Brustkrebspatientinnen mit einem lokalisierten Tumor (LBC) wurden 

prätherapeutische Proben von 47 Patientinnen im metastasierten Stadium (MBC) 

sowie von 28 gesunden Probandinnen und 12 Patientinnen mit einer benignen 

Brusterkrankung in der Studie untersucht.  

Den 65 Brustkrebspatientinnen wurde zu verschiedenen Zeitpunkten während ihrer 

neoadjuvanten Chemotherapie Blut abgenommen. Die Erstabnahme erfolgte vor 

Beginn der Chemotherapie (Zyklus 1, Z1). Die folgenden Abnahmen erfolgten vor 

Beginn der zweiten Chemotherapiezyklus, ca. 3 Wochen nach der ersten 

Chemotherapie (Z2), sowie nach ca. 60 Tagen (zwischen Zyklus 5 und 6), kurz vor 

Ende der neoadjuvanten Chemotherapie.  

 

Alle Brustkrebspatientinnen durchliefen vor Beginn ihrer Therapie ein ausführliches 

Staging, welches neben radiologischen Untersuchungen (Sonographie Abdomen, 

Röntgen Thorax, Mammographie und Skelettszintigraphie) auch pathologische 

Abklärungen (Stanzbiopsien des Tumors mit Bestimmung des 

Hormonrezeptorstatus) umfasste. Anschließend wurden die Tumore der Patientinnen 

nach dem TNM-System klassifiziert.  

Nach Ende der neoadjuvanten Chemotherapie wurden alle Patientinnen in der LBC 

Gruppe operiert und in Abhängigkeit des pathologischen Gutachtens des 
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Operationspräparates wurde das Ansprechen auf die präoperative Chemotherapie 

eruiert (siehe Abbildung 1).  

Alle Patientinnen wurden bezüglich der vorliegenden Studie umfassend informiert 

und eine schriftliche Einverständniserklärung wurde eingeholt. Das Ethikkommitee 

der Ludwig-Maximilians-Universität hat die Studie im Jahre 2008 geprüft und gebilligt. 
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Abbildung 1: Studienablauf und Zielsetzung 

 

3.2 Entnahme der Proben 

Allen Patientinnen und allen gesunden Probanden wurde vor Beginn einer etwaigen 

Therapie Plasmaproben und Serumproben (für die etablierten Tumormarker CEA 

und CA 15-3) entnommen. Die Proben wurden innerhalb von 2 Stunden zentrifugiert, 

aliquotiert und bei -80°C eingefroren. Das gleiche Procedere wurde bei Entnahme im 

weiteren Therapieverlauf der neoadjuvanten Chemotherapie durchgeführt.  

Im Rahmen ausführlicher Voruntersuchungen wurde die Stabilität des Materials 

mittels Präanalytik getestet. Hierbei wurden Untersuchungen bezüglich der 
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Vergleichbarkeit von Messungen innerhalb eines Ansatzes wie auch zwischen zwei 

Ansätzen durchgeführt. Das Material zeigte sich hierbei stabil. 

3.3 Messmethoden 

Die Plasmaproben wurden nach dem Auftauen mithilfe eines DNA-Extraktionskits 

(Firma Qiagen, Hilden, Deutschland) behandelt. Hierbei wurden jeweils 400µl 

Plasma eingesetzt und nach mehreren Waschvorgängen 50µl DNA gewonnen. 5µl 

diesen DNA-Eluats wurden anschließend als Probe in der PCR eingesetzt.  

Die quantitative PCR erfolgte an einem Lightcycler 480 der Firma Roche Diagnostics 

(Mannheim, Deutschland). Hierfür wurden die gleichen Primer wie in Umetani et al. 

[14, 15] für ALU 115 und ALU 247 verwendet, für die genauen Daten zur 

Durchführung der PCR, der Primer und der DNA-Extraktion verweist die Autorin auf 

die mit eingereichten Arbeiten zum Erwerb dieser kumulativen Dissertation. Alle 

Messungen wurden als Duplikate ausgeführt, Positiv- und Negativkontrollen sowie 

Standards wurden bei jedem Durchgang zusätzlich gemessen, um die 

Vergleichbarkeit der einzelnen Messvorgänge zu gewährleisten. Im Anschluss an die 

Messungen erfolgte die Umrechnung der Messergebnisse in ng/dl mittels der 

mitgeführten Standardkurve sowie die Berechnung der DNA-Integrity anhand der 

oben erwähnten Formeln nach Umetani und Wang [14, 15, 24]. Zur besseren 

Übersicht wurde die DNA-Integrity Formel nach Umetani DNA Int 1 und die Formel 

nach Wang DNA Int 2 benannt.  

Zusätzlich zu den neuen Biomarkern DNA Integrity und zellfreie DNA wurden die 

konventionellen Tumormarker CEA und CA 15-3 mithilfe eines ECLIA-Essays (Roche 

Diagnostics) im Serum gemessen.  

3.4 Statistik 

Diagnose: Um eine übersichtliche statistische Darstellung zu gewährleisten, wurde 

das Kollektiv in 4 Gruppen geteilt: Gesunde, Benigne, Brustkrebspatienten mit 

kurativem Ansatz unter neoadjuvanter Chemotherapie und metastasierte 

Brustkrebspatientinnen.  

Prädiktion und Monitoring: Die dritte Gruppe, welche mit neoadjuvanter 

Chemotherapie versorgt wurde, teilt sich nach Ende der systemischen Therapie 

anhand des pathologischen Ergebnis nach Operation in 3 Gruppen: Patienten mit 

exzellentem Ansprechen auf die präoperative Chemotherapie (complete remission, 
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CR, kein Resttumor im Operationpräparat), Patienten mit gutem bis mäßigem 

Ansprechen (partial remission, PR, Tumorverkleinerung im Vergleich zu 

prätherapeutischen Untersuchungen zwischen 30 und 99%) und Patienten mit 

schlechtem und keinem Ansprechen (no change bzw. progressive disease, NC/PD, 

Tumorverkleinerung kleiner als 30% oder Tumorwachstum).  

Korrelationen mit prätherapeutisch erhobenen Daten wie beispielweise dem TNM-

Status oder dem Hormonrezeptorstatus wurden mithilfe des Wilcoxon- oder Kruskal-

Wallis-Tests durchgeführt. Spearman-Rank-Korrelationen wurden für die 

Korrelationen der Biomarker untereinander verwendet.  

Zur statistischen Auswertung wurden Mediane, Perzentilen und p-Werte berechnet. 

Als statistisch signifikant wurde ein p-Wert <0.05 betrachtet.  

Alle Berechnungen erfolgten mit der SAS-Software, version 9.2.  

4 Ergebnisse 

Die hier vorgestellten Arbeiten adressieren unterschiedliche Fragestellungen. Die 

erste Arbeit [26] befasst sich mit der Relevanz der untersuchten Marker im Bezug auf 

die Diagnose von Brustkrebs. Die zweite Arbeit beleuchtet das Therapiemonitoring 

während der neoadjuvanten Chemotherapie von Brustkrebspatientinnen [27].  

4.1 Diagnostik 

Die Diagnostik-Studie umfasste 65 Brustkrebspatientinnen mit kurativem 

Therapieansatz (Altersmedian 47,0 Jahre), 47 Patientinnen mit metastasiertem 

Brustkrebs (Median 60,8 Jahre) sowie 28 gesunde Probandinnen (45,5 Jahre) und 

12 Patientinnen mit benignen Mammaerkrankungen (41,7 Jahre). In Tabelle 1 sind 

weitere Patientendaten der neoadjuvant therapierten Patientengruppe aufgeführt.  
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Prätherapeutische Daten  
Tumorstadium anhand des TNM Systems (T-Stadium) N % 
1 8 12.3 
2 39 60.0 
3 14 21.5 
4 3 4.6 
X 1 1.6 
Lymphknotenbefall anhand des TNM Systems (N-Stadium) N % 
0 17 26.1 
1 40 61.6 
2 1 1.6 
3 3 4.6 
X 4 6.1 
Differenzierung des Tumorgewebes (Grading, G-Stadium) N % 
2 22 42.3 
3 21 40.4 
4 1 1.9 
X 8 15.4 
Histologie N % 
Invasiv duktales Karzinom 57 87,7 
Invasiv lobuläres Karzinom 4 6,1 
Adenokarzinom 2 3,1 
Nicht genauer definiert 2 3,1 
Histopathologische Klassifikation N % 

Östrogen Rezeptor positiv/negativ 38/27 58.5 / 41.5 
Gestagen Rezeptor positiv/negativ 32/33 49.2 / 50.8 
Her2neu positiv/negative 21/44 32.3 / 67.7 
Triple negativ/Nicht Triple negativ 21/44 32.3 / 67.7 

 Tabelle 1: Prätherapeutische Daten der Patientinnen mit lokalisiertem Mammakarzinom 

 

Desweiteren wurde die Relevanz der untersuchten Marker ALU 115, ALU 247 (als 

Repräsentanten für die zirkulierende zellfreie DNA), DNA Int 1 und 2 sowie CEA und 

CA 15-3 als Diagnosemarker bei Brustkrebs untersucht. Hierbei berechnete sich 

zuerst je ein p-Wert als Unterscheidungskriterium zwischen den einzelnen Gruppen 

(siehe Tabelle 2). Alle signifikanten Werte sind fett unterlegt.  
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Marker Gruppe N Median Min Max Im Vergleich mit  
      Benignen  

 
(p-value) 

LBC (kurativer 
Ansatz) 
 (p-value) 

MBC 
(metastasiert) 
(p-value) 

ALU 115 
(ng/mL) 
 
Gesamt 
p<0.0001 

Gesund 28 1.8 0.1 3.2 < 0.001 < 0.001 < 0.001 
Benigne 12 27.4 1.4 89.2  0.523 0.446 
LBC 65 15.9 0.7 871.8   0.011 

MBC 47 22.3 3.3 827.1    

ALU 247 
(ng/mL) 
 
Gesamt 
p<0.0001 

Gesund 28 1.9 0.3 4.4 < 0.001 < 0.001 < 0.001 
Benigne 12 22.3 1.4 63.8  0.950 0.082 
LBC 65 16.8 0.8 577.6   0.001 

MBC 47 29.8 5.1 835.6    

DNA-Int 1 
 
Gesamt 
p=0.0003 

Gesund 28 1.2 0.5 9.3 0.006 0.120 0.738 
Benigne 12 0.9 0.5 1.1  0.015 <0.001 
LBC 65 1.1 0.6 1.7   0.005 

MBC 47 1.2 0.6 1.9    

DNA-Int 2 
 
Gesamt 
p<0.0001 

Gesund 28 1.0 0.3 1.9 0.001 0.026 0.2434 
Benigne 12 0.7 0.4 1.0  0.093 <0.001 
LBC 65 0.8 0.4 1.5   <0.001 

MBC 47 1.1 0.5 2.1    

CEA 
(ng/mL) 
 
Gesamt 
p<0.0001 

Gesund 27 1.0 0.2 4.2 0.402 0.166 < 0.001 
Benigne 12 0.7 0.2 3.4  0.092 <0.001 
LBC 62 1.3 0.2 14.1   < 0.001 

MBC 41 6.0 0.3 2608    

CA 15-3 
(U/mL) 
 
Gesamt 
p<0.0001 

Gesund 27 17.6 5.6 26.9 0.726 0.303 < 0.001 
Benigne 12 17.3 8.2 41.1  0.747 <0.001 
LBC 62 19.1 6.3 258.0   < 0.001 

MBC 41 61.3 10.0 319000    

 

Tabelle 2 Tumormarkerwerte der verschiedenen Patientengruppen 

 

Die Korrelationen der Marker für alle Patienten untereinander zeigte eine sehr gute, 

gleichsinnige Korrelation sowohl zwischen ALU 115 und ALU 247 als auch zwischen 

DNA Int 1 und 2. Die Werte für CA 15-3 korrelierten mit allen untersuchten 

Biomarkern, wohingegen CEA nur mit den zirkulierenden zellfreien DNA-Stücken, 

DNA Int 2 und mit CA 15-3 eine gleichsinnige Korrelation zeigte. Eine detaillierte 

Darstellung findet sich in der Originalarbeit [26]. 
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Die Spezifität und Sensivität der einzelnen Marker wurde mit ROC-Kurven 

dargestellt. In Abbildung 2 zu sehen ist die ROC-Kurve für den Vergleich LBC gegen 

gesunde Probanden, der Vergleich, der besonders für die frühe Diagnose relevant 

ist.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 2 ROC Kurven der Plasmawerte von ALU 115, ALU 247, DNA Int 1 und 2 

sowie der Serumwerte von CA 15-3 und CEA als Unterscheidung zwischen LBC und 

gesunden Probanden  

 

Hierbei erwiesen sich ALU 115 und ALU 247 als beste diagnostische Marker mit 

AUCs von 95,4% respektive 95,5%. CEA und CA 15-3 diskriminierten für LBC 

deutlich schwächer, allerdings erkannten sie MBCs im Vergleich zu allen anderen 

Gruppen am besten (siehe Originalarbeit) [26].  

 

 

 

 

 

 



 

11 
 

4.2 Prognose und Prädiktion 

Dieser Teil der Studie wurde in der 2. Originalarbeit [27] veröffentlicht. Nach 

Abschluss der Chemotherapie wurde im Zuge der Operation ein histologisches 

Präparat des Tumors gewonnen. Die Untersuchungsergebnisse sowie weitere Daten 

bezüglich der Chemotherapie finden sich in Tabelle 3.  

 

Patientendaten nach Abschluss der Chemotherapie (zum Operationszeitpunkt)   
Tumorstadium (T-Stadium) N % 
0 16 24.6 
1 (1A-1C) 30 46.2 
2 12 18.5 
3 6 9.2 
4 1 1.5 
Lymphknotenstadium (N-Stadium) N % 
0 40 61.6 
1 16 24.6 
2 6 9.2 
3 3 4.6 
Ansprechen auf die Chemotherapie N % 
Exzellentes Ansprechen, kein Resttumor (complete remission, CR) 13 20.0 
Gutes bis mäßiges Ansprechen, Resttumor 33-99% kleiner (partial remission, PR) 32 49.2 
Schlechtes Ansprechen oder Tumorwachstum (no change, NC) 20 30.8 
Neoadjuvante Chemotherapeutikakombinationen N % 
Cyclophosphamid + Epirubicin + Docetaxel 36 55.3 
Cyclophosphamid + Epirubicin 13 20.0 
Cyclophosphamid + Epirubicin + Paclitaxel 11 16.8 
Cyclophosphamid + Epirubicin + Fluorouracil+ Docetaxel 2 3.1 
Cyclophosphamid + Epirubicin + Docetaxel + Paclitaxel 1 1.6 
Cyclophosphamid + Epirubicin + Carboplatin 1 1.6 
Carboplatin 1 1.6 
 

Tabelle 3 Patientendaten der LBC Gruppe nach Abschluss der Chemotherapie 

 

Die Auswertung aller Biomarker im Bezug auf Prognose und Prädiktion erfolgte 

sowohl zu den einzelnen Messzeitpunkten (Zyklus 2, Zyklus 6), als auch als 

kinetisches Auswertung der Marker im Therapieverlauf. Hierbei wurde der 

prätherapeutische Wert (siehe auch unter Diagnostikmarker bei LBC) mit dem Wert 

bei Zyklus 2 respektive Zyklus 6 verglichen. Signifikante Ergebnisse zeigte nur die 

Kinetik der zirkulierenden zellfreien DNA ALU 115 im Vergleich von Zyklus 6 mit dem 

prätherapeutischen Wert. ALU 115 war in der Lage, Patienten mit einem exzellenten 

Chemotherapieansprechen (CR) von Patienten ohne Therapieansprechen (NC) zu 

unterscheiden (p-Wert = 0.033), siehe auch Tabelle 4. Für ALU 247 zeigten sich 

ähnliche Tendenzen, wenngleich der Unterschied nicht signifikant war. Die 
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prätherapeutisch erhobenen Klassifikationsfaktoren wie der TNM-Status und der 

Hormonrezeptorstatus wurden ebenfalls auf ihren prädiktiven Wert untersucht. 

Hierbei zeigte sich, dass der Her2/neu-Status im Mantel-Haenzsel-Test klar zwischen 

den einzelnen Gruppen unterscheidet: in der CR Gruppe finden sich 53,9% Her2neu 

positive Patienten, wohingegen nur 34,4% der PR und 15,0% der NC Gruppe einen 

positiven Rezeptorstatus aufweisen (p-Wert 0.0193) [27].  

 

 Marker Gruppe N Median Min Max Vergleich mit CR 
Gruppe (p-Wert) 

Zyklus 6 im Vergleich mit 
prätherapeutischen 
Werten (in %) 

ALU 115 NC 13 109.8 -99.8 5100.6 0.033 
 PR 26 109.4 -94.8 2744.7  
 CR 9 -39.4 -87.8 175.0  
ALU 247 NC 13 123.9 -99.9 4223.4 0.071 
 PR 26 125.6 -98.9 2279.5  
 CR 9 -16.3 -77.8 193.0  
DNA Int 1 NC 13 -2.0 -89.4 89.1 0.182 
 PR 26 -4.5 -78.1 82.7  
 CR 9 26.7 -17.0 85.4  
DNA Int 2 NC 13 -58.5 -91.8 55.1 0.125 
 PR 26 -67.6 -94.9 -22.8  
 CR 9 -30.7 -67.9 89.7  
CEA NC 12 -2.9 -66.7 216.7 1.00 
 PR 25 40.0 -81.2 900.0  
 CR 8 -1.8 -87.2 166.7  
CA 15-3 NC 12 19.3 -34.9 158.1 0.787 
 PR 25 73.8 -80.1 209.8  
 CR 8 39.9 -48.0 76.6  

Tabelle 4 Biomarkerwerte aus Zyklus 6 im Vergleich mit prätherapeutischen Werten, positive Zahlen 

zeigen einen Anstieg, negative einen Abfall der Markerwerte an.  

 

4.3 Diskussion des Studiensettings und Perspektiven 

Der neoadjuvante Therapieansatz bei Krebserkrankungen ist eine in den letzten 

Jahren entwickelte und intensivierte Methodik, die zu deutlichen Verbesserungen der 

Operabilität und der Langzeit-Ergebnisse bei Tumorpatienten geführt hat. Zur 

Kontrolle der Wirksamkeit von neoadjuvanten Therapien eignen sich im Blut 

zirkulierende Biomarker im besonderen Maße, da bei Studienbeginn nach Diagnose 

der Erkrankung zum Teil erhebliche Tumormasse vorhanden ist, die mit einer 

Ausschwemmung verschiedenster Substanzen ins Blut einher geht. Dies ist bei 

adjuvanten Therapien nach Entfernung des Primärtumors nicht der Fall. Zudem 

erfolgt im Anschluss an die neoadjuvante Therapie in der Regel eine Operation 
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inklusive pathologischer Aufarbeitung des Gewebes, so dass ein äußerst genaues 

posttherapeutisches Staging vorliegt. Bisherige Ansätze des Therapiemonitorings 

beim Mammakarzinom zielen auf die Veränderung der Serumkonzentration von 

Tumor-assoziierten Antigenen wie CEA, CA 15-3 oder HER2-neu, jedoch gibt es 

bislang für die neoadjuvante Situation noch wenige aussagekräftige Daten.  

Weitere potentielle Biomarker sind zirkulierende Nukleinsäuren im Blut. Hierbei kann 

ähnlich wie bei Tumormarkern die Konzentration von Nukleosomen im Serum oder 

Plasma quantitativ bestimmt werden. Darüber hinaus ist der qualitative Nachweis von 

Tumor-spezifischen Veränderungen auf zirkulierender DNA wie genetische und 

epigenetische Marker möglich. Ferner bietet sich die Bestimmung der DNA Integrity 

an, welche das Verhältnis von langen zu kurzen DNA-Stücken beschreibt und sowohl 

für diagnostische Fragestellungen wie auch für die Prädiktion des Therapie-

ansprechens einsetzbar ist. 

Die hier durchgeführte Studie verbindet die guten Voraussetzungen des 

neoadjuvanten Settings mit einem relativ homogenen Kollektiv von Patientinnen in 

ähnlichen Tumorstadien, die eine vergleichbare diagnostische Untersuchungen und 

vergleichbare Chemotherapie-Regime erhielten. Für den differentialdiagnostische 

Bewertung der Marker wurde zudem auf eine homogene Altersverteilung der 

gesunden Probandinnen im Vergleich zu den erkrankten Probandinnen geachtet. Die 

Zeitpunkte der Biomarkermessungen richteten sich nach den Therapiezyklen der 

neoadjuvanten Chemotherapie und orientierten sich an Erfahrungen bereits früher 

durchgeführter Studien. Hierbei hatte sich eine Abnahme der Blutproben zu Beginn 

der Chemotherapie sowie Abnahmen im Bereich von 3 Wochen und ca. 60 Tagen 

nach Start als günstig erwiesen [28]. Eine in früheren Studien ebenfalls 

durchgeführte Abnahme 8 Tage nach Beginn der Chemotherapie war in diesem 

Kollektiv aus logistischen Gründen (lange Anfahrtswege der Patientinnen, keine 

reguläre Vorstellungen der Patientinnen zu diesem Termin) leider nicht durchführbar.  

Vor dem Hintergrund, dass präanalytische Faktoren die Messergebnisse prinzipiell 

beeinflussen können, erfolgte die Blutentnahme und –verarbeitung nach einem 

standardisierten Protokoll, um die Fehleranfälligkeit zu minimieren. Ein Vorteil hierbei 

war die unizentrische Anlage der Studie, die gewährleistete, dass alle Proben mit den 

gleichen Standards aserviert wurden. 
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Zur Sicherung der Qualität der DNA-Quantifizierung wurden die Proben zunächst bei 

-80°C gelagert und zu einem späteren Zeitpunkt gesammelt vermessen. Hierbei 

wurde insbesondere auf eine standardisierte Extraktion sowie quantitative DNA-

Messung geachtet. Die hohen Effizienzen der Standardkurve belegen die sehr gute 

Qualität der Messmethode. Zudem erfolgte die quantitative DNA-Messung im 

Rahmen der PCR als Doppelbestimmung, wobei nur Proben in die Auswertung 

eingingen, die einen Variationskoeffizienten kleiner 20% aufwiesen. Zur Kontrolle der 

Präzision innerhalb sowie zwischen verschiedenen Messläufen wurden mit jeder 

PCR-Platte verschiedene Kontrollproben mitgeführt. Die Studie erfüllt die MIQE-

Richtlinien zur Überprüfbarkeit von Studien, in denen die quantitative PCR als 

Methode eingesetzt wird (siehe Supplementary Data der Diagnostik-Studie [26]).  

Eine weitere Stärke der vorliegenden Studie ist der durchgehende Vergleich der 

neuen, zu testenden Biomarker mit den oben genannten, beim Mammakarzinom 

etablierten Tumormarker CEA und CA 15-3. Dies ist ein Qualtitätsmerkmal, welches 

für Biomarkerstudien von Fachgesellschaften gefordert wird, um eine Einordung im 

Vergleich zu den Routinemarkern vornehmen zu können [25].   

Außerdem ist hervorzuheben, dass die Erhebung und Dokumentation der 

Patientendaten, die Messung der Biomarker sowie die statistische Auswertung 

jeweils unabhängig voneinander an verschiedenen Orten durch unterschiedliche 

Personen erfolgte und somit ein „Erwartungs-Bias“ vermieden wurde.  

Einige Studien befassten sich bereits mit dem potentiellen diagnostischen und 

prognostischen Nutzen von zellfreier DNA und DNA Integrität bei verschiedenen 

Tumorentitäten [29, 30]. Allerdings gibt es bislang keine Daten zur DNA Integrity 

hinsichtlich der Prädiktion des Therapieansprechens bei Tumorpatienten während 

einer neoadjuvanten Therapie. Somit erlaubten die Ergebnisse unserer Studie 

erstmals eine Einschätzung dieses neuen Markers bei neoadjuvant therapierten 

Patientinnen mit einem Mammakarzinom sowohl für die differentialdiagnostische 

Abgrenzung zu Kontrollgruppen wie auch für die Prädiktion des 

Therapieansprechens.  

Wir wählten hierfür einen mehrfach genutzte Methode zur DNA-Integrität, bei der so 

genannte ALU Sequenzen verwendet werden. Die ausgewählten DNA-Fragmente 

mit charakteristischer Länge kleiner und größer der nukleosomalen Fragmentgröße 
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(115 bp und 247 bp) weisen jeweils eine große Menge an repetitiven DNA 

Sequenzen auf und sind somit methodisch leichter zu detektieren. Zudem erhöht sich 

die Aussagekraft durch die DNA Menge, da kleine Messabweichungen keine starken 

Auswirkungen auf die Gesamtmenge der DNA zeigen. Andere Arbeiten bedienen 

sich anderer Primer, längerer oder kürzerer Amplicons oder Einzel-Gen-Sequenzen 

zur Berechnung der DNA-Integrität. Nachdem wir die Brauchbarkeit bereits 

bekannter Marker für den diagnostischen Einsatz testen wollten, haben wir uns für 

die bekannten ALUs (wie von Umetani beschrieben [15]) entschieden. Allerdings 

haben wir zusätzlich zwei Rechenmethoden zur Bestimmung der DNA Integrität 

herangezogen, um zu sehen, welcher Algorithmus besser geeignet ist. Auch dieser 

Vergleich wurde bislang noch nicht durchgeführt.  

Wenngleich im Rahmen dieser Studie eine repräsentative Anzahl an Patientinnen 

untersucht werden konnte, ist der hierbei gewählte, für eine Hypothesenbildung 

gedachte, explorative Ansatz der Arbeit als gewisse Limitation zu werten. Aufgrund 

der Vielzahl an Markern, Algorithmen und Messzeitpunkten können einzelne zufällige 

Zusammenhänge nicht sicher ausgeschlossen werden. Deshalb sind diese 

Ergebnisse an einem unabhängigen Kollektiv noch einmal gezielt zu validieren. Ein 

interessanter Aspekt wäre zudem die Bestimmung der Kinetik von ALU 115, ALU 247 

und DNA Integrity innerhalb der ersten Tage nach Gabe einer Chemotherapie, wie 

sie für andere Biomarker durchgeführt wurde [28]. Möglicherweise erlauben bereits 

Veränderungen dieser Marker unmittelbar nach Therapiegabe Rückschlüsse auf das 

weitere Ansprechen der Behandlung.  
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5 Zusammenfassung 

5.1 DNA Integrity und zirkulierende zellfreie DNA als Biomarker für die Diagnostik, 

Prognose und Prädiktion bei Mammakarzinompatientinnen unter neoadjuvanter 

Chemotherapie 

Brustkrebs ist mit 23% aller jährlichen weltweiten Krebsdiagnosen der am häufigsten 

diagnostizierte Tumor weltweit [3].  

Zirkulierende zellfreie DNA ist ein neuer Biomarker, der im Blut bei Patienten mit 

vielen verschiedenen Krebsentitäten als erhöht nachgewiesen werden konnte. Bei 

DNA Integrity handelt es sich um eine Rechenformel, die das Verhältnis von langen 

zu kurzen DNA Stücken im Blut berechnet. Hypothesen besagen, dass bei 

Tumorpatienten die Art des Zelltodes zu einer vermehrten Freisetzung von langen 

DNA Stücken im Vergleich zu Gesunden führt. Daher stiege das errechnete 

Verhältnis dieser beiden DNA Stücke bei Tumorpatienten im Vergleich zu Gesunden.  

Die vorliegende Studie befasst sich zum einen mit der diagnostischen Aussagekraft 

der zirkulierende zellfreie DNA und DNA Integrity. Hierzu wurden 65 

Mammakarzinompatientinnen mit lokalisiertem Tumor, 47 Patientinnen mit 

metastasiertem Mammakarzinom sowie 28 gesunde Probandinnen und 12 

Patientinnen mit benignen Brusterkrankungen vor Start einer etwaigen Therapie 

Plasmaproben entnommen. Hierbei zeigte sich eine gute Diskriminationsfähigkeit von 

ALU 115 (ein 115 Basenpaare langes zirkulierendes DNA Stück) und ALU 247 (247 

Basenpaare lang). Beide Marker unterschieden gesunde Probanden von malignen 

wie benignen Erkrankungen (p-Werte alle <0.001). Die DNA Integrity, bei der es zwei 

verschiedene Berechnungsformeln gibt, grenzte zudem die benignen von den 

malignen Erkrankungen (p-Werte 0.015 bzw. <0.001) ab. Die konventionellen 

Tumormarker CEA und CA 15-3 unterschieden klar zwischen metastasierten 

Patientinnen und anderen Gruppen (p-Werte alle < 0.001).  

Der zweite Teil der Studie befasste sich mit den 65 Patientinnen mit lokalisiertem 

Brustkrebs, die eine neoadjuvante Chemotherapie erhielten, während derer ihnen zu 

bestimmten Zeitpunkten Plasmaproben entnommen wurden. Zielsetzung war, bereits 

im Laufe der Chemotherapie das Ansprechen der Patientinnen auf die systemische 

Therapie zu evaluieren (Prädiktion und Prognose). Hierbei zeigte sich, dass ALU 115 

in der Lage war, Patientinnen mit exzellentem Ansprechen auf die Chemotherapie 

von Patientinnen ohne Ansprechen auf die Chemotherapie zu trennen. Patientinnen 
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mit exzellentem Ansprechen verringerten ihre ALU 115 Werte 60 Tage nach Beginn 

der Therapie um durchschnittlich 40% im Vergleich zu den prätherapeutischen 

Werten, wohingegen Patientinnen ohne Ansprechen ihre Werte um durchschnittlich 

100% steigerten (p-Wert 0.033). In der Gruppe mit exzellentem Ansprechen zeigte 

sich zudem ein höherer Anteil an Her2/neu positiven Patienten.  

Die hier vorliegende Studie zeigt den Wert zirkulierender zellfreier DNA im Rahmen 

der Diagnostik von Brustkrebserkrankungen. Soweit den Autoren bekannt ist, 

behandelt sie als erste Studie überhaupt den prädiktiven und prognostischen Wert 

von zirkulierender zellfreier DNA und DNA Integrity im Rahmen einer neoadjuvante 

Chemotherapie bei Brustkrebserkrankungen. Weitere Studien werden zeigen, in wie 

weit zellfreie DNA und DNA Integrity in Zukunft als Tumormarker bei Brustkrebs von 

Nutzen für den klinischen Alltag sein können.  
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5.2 DNA Integrity and circulating cell-free DNA as biomarker for diagnosis, 

prediction and prognosis in breast cancer patients undergoing neoadjuvant 

chemotherapy 

With 23% of all diagnosed cancer yearly, breast cancer is the most frequently 

diagnosed cancer in women worldwide [3].  

Circulating cell-free DNA is a new biomarker, that was shown to be elevated in 

plasma and serum of patients with different sorts of cancer. DNA Integrity on the 

other hand is a formula, that calculates a quotient of longer to shorter DNA 

fragments. Longer DNA fragments are supposed to be elevated in blood of cancer 

patients when compared to healthy individuals, due to the fact that different cell death 

occurs in tumor patients. Following this hypothesis, DNA Integrity should be elevated 

in tumor patients when compared to healthy individuals.  

The following study was conducted to find out about the diagnostic capability of DNA 

Integrity and circulating cell-free DNA (cfDNA) in breast cancer. Plasma samples of 

65 patients with localized breast cancer, 47 patients with metastasized breast cancer, 

28 healthy individuals and 12 patients with benign breast diseases were taken before 

the start of any therapy. The results showed a high discriminative power of both ALU 

115 and ALU 247 (two circulating cell-free DNA fragments of 115 and 247 basepair 

length) when comparing healthy individuals to both benign and malign diseases 

(p<0.001). DNA Integrity, which was calculated with two different formula, was able to 

differ between benign and malign diseases (p=0.015 and p<0.001). CEA and CA 15-

3, which were measured in order to compare the new biomarkers to established 

ones, were higher in metastasized breast cancer patients when compared to all other 

groups (p<0.001).  

In the second part of the study, plasma samples 65 patients with localized breast 

cancer were taken at several points while undergoing a neoadjuvant chemotherapy. 

The aim of the study was to find out whether cfDNA, DNA Integrity, CEA and CA 15-3 

were able to find out about the response to chemotherapy while undergoing 

neoadjuvant treatment (prediction and prognosis). Results showed ALU 115 to be the 

only measured marker to distinguish patients with excellent chemotherapy response 

from patients without chemotherapy response. Values of ALU 115 at day 60 after 

start of neoadjuvant chemotherapy were compared with pretherapeutic values. 

Patients with excellent response had a median decrease of 40% in values, where as 

patients without response had a median increase of 110% (p-value 0.033).  
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Furthermore, the complete remission group contained a significantly higher 

percentage of Her2/neu positive patients.  

The present study shows the value of circulating cell-free DNA in breast cancer 

diagnosis. As far as to our best knowledge, this study is the first to investigate the 

prognostic and predictive values of circulating cell-free DNA and DNA Integrity in 

breast cancer patients undergoing neoadjuvant chemotherapy. Further research will 

have to be done in order to find out about the clinical use of these tumor markers in 

breast cancer patients.  
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7 Eigenanteil an den vorgelegten Arbeiten 

Die Konzeption der vorliegende Studie erfolgte durch Herrn PD Dr. Stefan 

Holdenrieder (SH) sowie Herrn Dr. Oliver J. Stötzer (OJS). Im Rahmen der 

Studienkonzeption wurde eine Einverständniserklärung der Ethikkommision 

eingeholt. 

Die Patientenrekrutierung, klinische Dokumentation und Validierung des 

Ansprechens auf die Chemotherapie mittels Auswertung der Pathologiebefunde 

erfolgte durch OJS, Frau Dr. Debora Fersching-Gierlich (DFG) und Frau Doktorandin 

Julia Lehner (JL) in der Praxis Dr. Stötzer/Prof. Salat in der Franz-Schrank-Str. 2 in 

München, in der auch die Patientinnen diagnostiziert und behandelt wurden.  

Ebenfalls in obengenannter Praxis durchgeführt wurde die Probenentnahme und  die 

sofortige Weiterverarbeitung des Blutmaterials. Anschließend wurden die Proben 

nach Bonn transportiert. Für diesen Teil der Studie zeichnen sich die Doktorandin JL, 

DFG, SH sowie OJS verantwortlich.  

Die Methodenetablierung, die eigentlichen Messungen sowie das 

Qualitätsmanagement  wurde durch die Doktorandin JL unter Supervision von SH am 

Institut für Klinische Chemie und Klinische Pharmakologie der Rheinischen Friedrich-

Wilhelms-Universität in Bonn durchgeführt. Diese Kooperation entstand durch den 

Wechsel von Herrn PD Dr. med. S. Holdenrieder an die Universität Bonn im Sommer 

2010.  

Anschließend erfolgte die statistische Auswertung der gemessenen Werte durch 

Frau Dr. rer. nat. D. Nagel (DN). Die weitere Diskussion sowie Interpretation der 

Ergebnisse wurde durch JL und SH durchgeführt. DN stand zudem bei graphischen 

Darstellungen der Ergebnisse unterstützend zur Seite.  

Beide Publikationen wurden von der Doktorandin JL verfasst, anschließend von SH 

revidiert und in Kooperation mit OJS in ihre hier vorgelegte Fassung gebracht. Die 

Präsentation auf mehreren wissenschaftlichen Kongressen erfolgte durch JL, SH und 

OJS.  

Zusammenfassend war die Doktorandin JL an der Patientenrekrutierung, der 

klinischen Dokumentation, der Probenverarbeitung und Logistik beteiligt. Die 

laborchemischen Messungen führte sie an der Universität Bonn selbstständig durch.  

Im Anschluss an die statischen Auswertungen durch Frau Dr. D. Nagel erfolgte die 

Diskussion und Interpretation der Daten durch die Doktorandin in Zusammenarbeit 

mit SH. Anschließend fertigte die Doktorandin selbstständig beide Publikationen an.  
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8 Originalarbeiten 

8.1 Publikationen für die kumulative Dissertation 

Die in dieser Arbeit erläuterten Ergebnisse wurden in mehreren Originalarbeiten 

veröffentlich. Als Grundlage zum Erwerb der kumulativen Dissertation werden eine 

Arbeit zur Diagnostischen Relevanz und eine Arbeit zum Verlauf im Rahmen der 

neoadjuvanten Chemotherapie eingereicht.  

 

- Diagnostic relevance of plasma DNA and DNA integrity for breast cancer. 

Stötzer OJ, Lehner J, Fersching-Gierlich D, Nagel D, Holdenrieder S. 

Tumour Biol. 2013 Sep 10. [Epub ahead of print] 

 

Dieser Artikel befasst sich mit der Stellung der Biomarker ALU 115, ALU 247, DNA 

Integrity 1 und 2 sowie CEA und CA 15-3 im Rahmen der Diagnose von 

Mammakarzinomen im Vergleich zu benignen Erkrankungen und gesunden 

Probanden.  

Tumor Biology ist die Zeitschrift der International Society of Oncology and 

Biomarkers (ISOBM) und gehört zum Springer Verlag. Herausgeber ist Prof. Torgny 

Stigbrand von der Umea Universität in Schweden. Der Impact Faktor im Jahre 2012 

liegt bei 2,518 (2012 Journal Citation Reports® Science Edition; Thomson Reuters).  

 

- Circulating plasma DNA and DNA integrity in breast cancer patients 

undergoing neoadjuvant chemotherapy. 

Lehner J, Stötzer OJ, Fersching D, Nagel D, Holdenrieder S. 

Clin Chim Acta. 2013 Aug 2;425C:206-211. doi: 10.1016/j.cca.2013.07.027 

 

Diese Arbeit beleuchtet den Nutzen von zellfreier DNA und DNA Integrity als 

Prädiktions- und Prognosemarker im Rahmen der neoadjuvanten Chemotherapie.  

Die Zeitschrift Clinica Chimica Acta wird durch den Verlag Elsevier aufgelegt. Sie 

vertritt die International Federation of Clinical Chemistry and Labaratory Medicine 

(IFCC). Im Jahre 2012 lag der Impact Faktor bei 2,850 (2012 Journal Citation 

Reports® Science Edition; Thomson Reuters). Damit belegt Clinica Chimica Acta im 

Fachbereich Medizinische Labor Technologie bei ISI Web of Knowledge Platz 6 (von 

31).   
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Elevated DNA Integrity In Colorectal Cancer 

Leszinski G, Lehner J, Gezer U, Holdenrieder S 
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Plasma DNA Integrity indicates response to neoadjuvant chemotherapy in patients 

with locally confined breast cancer 

Lehner J, Stötzer OJ, Fersching DM, Nagel D, Holdenrieder S. 

Int J Clin Pharmacol Ther. 2013 Jan;51(1):59-62 

 

Circulating nucleosomes and biomarkers of immunogenic cell death as predictive and 

prognostic markers in cancer patients undergoing cytotoxic therapy. 

Stoetzer OJ, Wittwer C, Lehner J, Fahmueller YN, Kohles N, Fersching DM, 

Leszinski G, Roessner J, Holdenrieder S. 

Expert Opin Biol Ther. 2012 Jun;12 Suppl 1:S217-24. 

 

Methodological and Preanalytical Evaluation of an HMGB1 Immunoassay. 

Lehner J, Wittwer C, Fersching D, Siegele B, Holdenrieder S, Stoetzer OJ. 

Anticancer Res. 2012 May;32(5):2059-62. 

 

Methodological and Preanalytical Evaluation of a RAGE Immunoassay. 

Wittwer C, Lehner J, Fersching D, Siegele B, Stoetzer OJ, Holdenrieder S. 

Anticancer Res. 2012 May;32(5):2075-8. 
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http://www.ncbi.nlm.nih.gov/pubmed/22593488
http://www.ncbi.nlm.nih.gov/pubmed/22593491
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Abstract Levels of ALU 115, ALU 247, DNA integrity ([1,

2]) and of the tumour markers CA 15–3 and CEA were

analysed in the blood of 152 patients. Plasma levels of ALU

115 and ALU 247 were significantly higher in patients with

locally confined (LBC;N =65), metastatic breast cancer (MBC;

N =47), and benign diseases (N =12) than in healthy controls

(p <0.001 for all comparisons). DNA integrity, CEA, and CA

15–3 were significantly higher in MBC than in benign controls

and LBC but could not identify LBCs. The best discrimination

of LBC from healthy controls was achieved by ALU 115 and

ALU 247 (AUC 95.4 and 95.5%) and ofMBC from all control

groups by CA 15–3 and CEA (AUC 83.2 and 79.1 %). Plasma

DNA is valuable for the detection of LBC, while established

tumour markers are most informative in MBC.

Keywords PlasmaDNA .DNA integrity . Breast cancer .

Neoadjuvant chemotherapy

Introduction

With 1.38 million new cases in 2008, breast cancer still

represents the most frequently diagnosed cancer in women

worldwide [3]. About 458,000 women die due to this disease

each year [3]. An increased incidence of breast cancer

(60 % of all cases) is known for developed countries

like Western/Northern Europe, North America, and Aus-

tralia, which is also due to early stage detection as a result of

screening programs [3]. Whereas radiological screening pro-

grams (mammography) have demonstrated to be useful in

detecting breast cancer in earlier stages, no valuable blood

biomarkers have been identified for that purpose up to now. [4].

Several studies analysing the benefit of using the established

tumour markers cancer antigen 15–3 (CA 15–3) and

carcinoembryonic antigen (CEA) in breast cancer have been

published. Whereas multiple investigations demonstrated the

efficacy of CEA and CA 15–3 in monitoring the course of

metastatic breast cancer, this has not yet been addressed in the

neoadjuvant setting [5]. While a few studies support an effect of

these markers on earlier relapse detection in breast cancer after

curable surgery [6], there is still no evidence that CEA and CA

15–3 are valuable tools for early breast cancer detection and

screening [7]. Therefore, there is yet a need for reliable bio-

markers as an aid in breast cancer screening, early detection of

local or distant relapse, and monitoring and predicting response

to primary systemic chemotherapy.

Elevated levels of circulating cell-free DNA (cfDNA) have

been detected in diseases of different origins, such as trauma,

stroke, burns, sepsis, autoimmune diseases, and also cancer

[8–12]. This broad prevalence of diseases with potentially

elevated cfDNA levels limits to a certain extent the diagnostic

specificity [13]. However, cfDNA has been identified to offer

high sensitivity for cancer detection [1, 14, 15] and to indicate

a high prognostic and predictive value in various solid tumour

diseases [16]. Several approaches have been used to measure

cfDNA in plasma and serum, including non-coding DNA

(like repetitive ALU sequences [1, 2] or LINE1 (long inter-

spersed nucleotide elements) [14]). These repetitive DNA

sequences are known to be distributed everywhere in the

genome, with approximately 1.4 million copies per genome

for the ALUs [17, 18].
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Umetani et al. described primers and a quantitative PCR

method to measure ALU 115 and ALU 247 in which the

smaller ALU 115 fragments were an integral part of the larger

ALU 247 fragments [1, 2]. During apoptotic cell death, DNA

is cleaved by specific endonucleases to nucleosomal or to

subnucleosomal fragments smaller than 180 bp, while during

necrotic cell death longer fragments are produced by a non-

specific cleavage [19, 20]. Following this hypothesis, ALU

247 is then supposedly a marker of necrotic cell death, while

ALU 115 is associated with either form of cell death. As

elevated cellular proliferation and, in parallel, elevated rates

of diverse forms of cell death are characteristic biological

features of tumour growth [21], elevated levels of cfDNA

and a higher portion of longer DNA fragments (DNA integrity)

are supposedly useful blood markers for cancer detection [20].

Concerning the so-called DNA integrity that potentially

mirrors the relation between the necrotic and overall cell death

rate, different calculations have been used. Umetani et al.

simply calculate the ratio of the concentrations of longer

DNA fragments (ALU 247) to shorter DNA fragments

(ALU 115) [1, 2], while Wang et al. [22] use a more sophis-

ticated formula based on Cp value differences. Both groups

demonstrate significantly higher portions of long fragments in

the plasma and the serum of cancer patients than in healthy

controls. However, they do not compare their results with each

other or with established protein tumour markers.

The present study was conducted to find out whether

quantitative levels of ALU 115 and ALU 247 and the two

DNA integrity formulas are powerful biomarkers for the di-

agnosis of breast cancer as well as for tumour characterization

and staging purposes. Furthermore, we compared these bio-

markers with the already established and routinely used cancer

biomarkers CEA and CA 15–3 to identify their specific rele-

vance in the clinical setting.

Patients and methods

Patients

Between 2007 and 2011, plasma samples of 112 breast cancer

patients were collected at the time of diagnosis and before the

therapy started. Forty-seven of the patients suffered from

metastatic breast cancer (MBC); 65 had a locally confined

breast cancer (LBC; UICC stages II and III). Additionally, we

collected plasma samples of 40 controls, including 28 healthy

female controls and 12 patients with benign breast diseases.

In all breast cancer patients, complete relevant histopatholog-

ical staging (subtype, grading, oestrogen receptor status, proges-

terone receptor status, Her2/neu-status) was pretherapeutically

assessed. Further clinical and radiological staging—including

mammography, ultrasound, chest X-ray, abdomen ultrasound,

and bone scintigraphy—were performed. In the neoadjuvant

setting, the histology was done by fine needle biopsy or vacuum

biopsy and underwent a clinical classification according to the

TNM system. In all other cases, a complete pathological and

clinical TNM status was available. In breast cancer patients,

venipunctures were regularly performed before starting a neo-

adjuvant or palliative systemic chemotherapy in controls before

any therapy was started.

The study was approved by the local ethics committee.

Patients were intensively informed of the study; prospective

and written informed consent was obtained from all patients

before study entry.

Plasma preparation for qPCR

Plasma samples (4.4 ml) and serum samples (10 ml) were

collected in K2-EDTA and gel separation tubes, respectively

(Sarstedt, Nürnbrecht, Germany). All samples were centri-

fuged within 1 to 2 h after venipuncture. Plasma and sera were

separated, aliquoted, and cryopreserved at −80 °C.

DNA isolation was done with a QIAamp DNA Mini Kit

(Qiagen, Hilden, Germany). Initially, 400 μl of plasma sample

and 400 μl of lysis buffer were added to a vial containing

20μl of Qiagen protease. After the mixture of the reagents and

30 min of incubation at 56 °C, 400 μl of 100 % ethanol was

pipetted into the vials and mixed. Subsequently, a vacuum

pumpwas used to wash the two washing buffers (750 μl each)

through spin columns. Afterwards, the spin columns were

centrifuged, 50 μl of lysis buffer was added, and one more

centrifugation followed to elute the DNA from the column

filter. Five microliters of this eluate was used as a template for

the qPCR.

Quantitative PCR of ALU repeats

For the qPCR of the ALU repeats, we used the same primers as

described by Umetani et al. [1] (“Electronic supplementary

material 1”). The reaction mixture for the qPCR contained

5 μl of template, 0.25 μl of uracile DNA glycosylase (UNG,

Roche Diagnostics, Mannheim, Germany) to prevent carryover

contamination, 2 μl of each primer (forward and reverse),

6.75μl of PCR grade H2O, and 4μl ofMastermix SYBRGreen

(Roche Diagnostics), resulting in 20 μl of reaction volume.

Real-time PCR amplification was performed using the

LightCycler® 480 Instrument II (Roche Diagnostics, Mann-

heim Germany). It started with 10 min of incubation time for

the uracil–DNA–glycosylase at 40 °C, followed by 10 min of

UNG inactivation time at 95 °C. The real-time PCR amplifi-

cation was conducted with 45 cycles of denaturation (at 95 °C

for 10 s), annealing (at 62 °C for 15 s), and extension (at 72 °C

for 15 s). To determine the absolute quantitative amount of

DNA in the samples, a standard curve was calculated. We

used serial dilutions of 20 to 0.076 ng/ml of DNA (Roche

Diagnostics) in ten dilution steps. The standard curve for ALU
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115 had an efficiency of 1.95; for ALU 247 the efficiency was

1.84 (“Electronic supplementary material 2”). Additionally to

the samples, a negative and a positive control, two patient

plasma pools with high and low DNA levels as well as three

dilution step samples of the standard curve were performed

with every plate for quality control. All measurements were

done in duplicates (description according to MIQE standards;

see “Electronic supplementary material 3”).

Calculation of the DNA integrity index

DNA integrity was calculated according to two different al-

gorithms according to Wang et al. [22] and Umetani et al. [1,

2]. For the calculation of the DNA integrity index according to

Umetani et al. (DNA Int 1), the ratio of the concentration of

ALU 247 sequences to the concentration of ALU 115 se-

quences was calculated. This ratio can theoretically vary be-

tween 0 and 1 as the ALU 115 sequences are represented

within the annealing sites of ALU 247 [1]. Assuming

that DNA fragments originating from apoptosis are

mainly sized below 180 bp, a high index would indicate

a considerable contribution of non-apoptotic cell death,

such as necrosis.

For the calculation of the DNA integrity index according to

Wang et al. (DNA Int 2), the difference between the Cp value

of a standard pool of human genomic DNA (which was

measured with every PCR plate) and the Cp value of each

sample for ALU 115 and for ALU 247 to obtainΔCp 115 and

ΔCp 247 was used. These two ΔCp values were subtracted

(ΔCp115−ΔCp247) to obtain ΔΔCp. Subsequently, DNA

integrity was calculated using the formula: e (−ΔΔCp × ln(2)).

Determination of established tumour markers

CA 15–3 and CEAwere measured by enzymatic chemilumi-

nescent immunoassay (ECLIA) on the ElecSys 2010 immu-

noassay analyser of Roche Diagnostics, Germany, in sera of

breast cancer patients.

Statistics

The concentrations of all measured markers before the start of

a therapy in the breast cancer groups as well as the measure-

ments of the healthy and benign group were considered for

statistical evaluation.

Medians, percentiles, and ranges are presented in tables for

biomarker concentrations within the different groups. Dot

plots show the individual marker distribution. Discriminative

power between the groups was tested by overall analysis of

variance on ranks of data followed by the Ryan–Einot–Gabri-

el–Welsch multiple-range test to assess the significance of

differences between single groups. Additionally, results are

illustrated in receiver operating characteristic (ROC) curves.

The correlation of biomarkers with disease characteristics,

such as TNM stage and receptor status (oestrogen receptor,

progesterone receptor, and Her2/neu receptor), was done by

Wilcoxon test or Kruskal–Wallis test. The correlation of bio-

markers with each other was done by Spearman rank–corre-

lation test.

A p -value of <0.05 was considered to be statistically

significant. All calculations were performed with SAS soft-

ware (version 9.2, SAS Institute Inc., Cary, NC, USA).

Results

Clinical data of patients with primary breast cancers

Clinical and histopathological data of patients suffering from

breast cancer and controls, including age, tumour subtype,

grading, receptor-status, Her2/neu status, clinical and/or path-

ological TNM, and UICC stage, and radiological results are

given in Table 1.

Table 1 Patient characteristics

Patients and controls, N (age, median)

Locally confined breast cancer 65 47.0

Metastatic breast cancer 47 60.8

Benign breast diseases 12 45.5

Healthy controls 28 41.7

Characteristics of patients with locally confined breast cancer, N (%)

T stage

1 8 12.3

2 39 60.0

3 14 21.5

4 3 4.6

X 1 1.6

N stage

0 17 26.1

1 40 61.6

2 1 1.6

3 3 4.6

X 4 6.1

Histology

Invasive ductal carcinoma 57 87.7

Invasive lobular carcinoma 4 6.1

Adenocarcinoma 2 3.1

Unknown 2 3.1

Histopathological classification, N (%)

Oestrogen receptor positive/negative 38/27 58.5/41.5

Progesterone receptor positive/negative 32/33 49.2/50.8

Her2/neu receptor positive/negative 21/44 32.3/67.7

Triple negatives/non-negatives 21/44 32.3/67.7
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Biomarker values in different patient groups; diagnostic value

Plasma levels of ALU 115 were discriminated significantly

between the single groups by Ryan–Einot–Gabriel–Welsch

multiple-range test (p <0.0001). Median values in healthy

females (1.8 ng/mL) were significantly lower than in patients

with benign diseases (27.4 ng/mL) and in patients with LBC

(15.9 ng/mL) and with MBC (22.3 ng/mL).

Similar results were obtained for ALU 247. Overall signif-

icance for the discrimination of the single groups was p <

0.0001. There was a significant difference between median

ALU 247 levels in healthy controls (1.9 ng/mL) and benign

diseases (22.3 ng/mL), LBC (16.8 ng/mL), and MBC

(29.8 ng/mL). In addition, ALU 247 levels significantly dis-

criminated between benign diseases and MBC as well as

between LBC and MBC (Table 2; Fig. 1a, b).

For both DNA integrities, overall significances for the

discrimination of the single groups were p =0.0003 and

p <0.0001, respectively. DNA integrity index 1 (DNA Int 1),

representing the ratio of ALU 247 to ALU 115, was able to

distinguish between healthy controls (median 1.2) and benign

diseases (0.9) and between benign diseases and both LBC (1.1)

and MBC (1.2). DNA integrity index 2 (DNA Int 2) showed

significant differences between healthy controls (1.0) and be-

nign diseases (0.7) as well as between benign diseases and

LBC (0.8) and MBC (1.2), respectively (Table 2; Fig. 1c, d).

With respect to the established marker CEA, locally con-

fined tumours could not be distinguished from the control

groups of healthy women and from those with benign breast

diseases. However, women with MBC (6.0 ng/mL) had sig-

nificantly higher median CEA levels than healthy women

(1.0 ng/mL), women with benign breast diseases (0.7 ng/

mL), and patients with LBC (1.3 ng/mL). Comparable results

were obtained for CA 15–3 that also revealed highly signifi-

cant differences of median values in patients with MBC (61.3

U/mL) and all other groups, such as healthy women (17.6 U/

mL), patients with benign diseases (17.3 U/mL), and patients

with LBC (19.1 U/mL). Similar to CEA, CA 15–3 was

not able to discriminate between locally confined tumours

and either control group. Overall significances for the

Table 2 Biomarker values in different patient groups

Marker Group Number

of cases

Median Minimum Maximum Comparison with

Benign

(p-value)

Localized breast

cancer (p-value)

Metastatic breast

cancer (p-value)

ALU 115 (ng/mL);

overall p <0.0001

Healthy 28 1.8 0.1 3.2 Sig. Sig. Sig.

Benign 12 27.4 1.4 89.2 Not sig. Not sig.

Localized breast cancer 65 15.9 0.7 871.8 Not sig.

Metastatic breast cancer 47 22.3 3.3 827.1

ALU 247 (ng/mL);

overall p <0.0001

Healthy 28 1.9 0.3 4.4 Sig. Sig. Sig.

Benigns 12 22.3 1.4 63.8 Not sig. Sig.

Localized breast cancer 65 16.8 0.8 577.6 Sig.

Metastatic breast cancer 47 29.8 5.1 835.6

DNA-Int 1; overall

p =0.0003

Healthy 28 1.2 0.5 9.3 Sig. Not sig. Not sig.

Benign 12 0.9 0.5 1.1 Sig. Sig.

Localized breast cancer 65 1.1 0.6 1.7 Not sig.

Metastatic breast cancer 47 1.2 0.6 1.9

DNA-Int 2; overall

p <0.0001

Healthy 28 1.0 0.3 1.9 Sig. Not sig. Not sig.

Benign 12 0.7 0.4 1.0 Not sig. Sig.

Localized breast cancer 65 0.8 0.4 1.5 Sig.

Metastatic breast cancer 47 1.1 0.5 2.1

CEA (ng/mL); overall

p <0.0001

Healthy 27 1.0 0.2 4.2 Not sig. Not sig. Sig.

Benign 12 0.7 0.2 3.4 Not sig. Sig.

Localized breast cancer 62 1.3 0.2 14.1 Sig.

Metastatic breast cancer 41 6.0 0.3 2,608

CA 15–3 (U/mL);

overall p <0.0001

Healthy 27 17.6 5.6 26.9 Not sig. Not sig. Sig.

Benign 12 17.3 8.2 41.1 Not sig. Sig.

Localized breast cancer 62 19.1 6.3 258.0 Sig.

Metastatic breast cancer 41 61.3 10.0 319,000
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discrimination of the single groups were p <0.0001 for CEA

and CA 15–3, respectively (Table 2; “Electronic supplemen-

tary materials 4 and 5”).

For a comparison of LBC with healthy persons, the diag-

nostic efficiency was highest for ALU 115 and ALU 247,

reaching an area under the curve (AUC) of ROC curves of

95.4 and 95.5 %, respectively. AUCs of CA 15–3 and CEA

were 56.9 and 59.3 % only, of DNA Int 1 39.8 %, and of DNA

Int 2 35.4 %. Sensitivities for cancer detection at 95 % speci-

ficities were 93.8% (ALU 115), 92.3% (ALU 247), 0% (DNA

Int 1 and 2), 30.6 % (CA 15–3), and 8.1 % (CEA) (Fig. 2a).

For a comparison of MBC from either control group, the

diagnostic efficiency was highest for CA 15–3 and CEA,

reaching AUCs in ROC curves of 83.2 and 79.1 %, respec-

tively. AUCs for ALU 115, ALU 247, and DNA Int 1 and 2

were slightly lower with 73.0, 76.4, 64.5, and 71.1 %, respec-

tively. Sensitivities for MBC detection at 95 % specificities

were 19.1 % (ALU 115), 29.8 % (ALU 247), 2.1 % (DNA Int

1), 17.0% (DNA Int 2), 48.8% (CA 15–3), and 56.1% (CEA)

(Fig. 2b).

Correlation with disease characteristics (TNM and UICC

stage, receptor status)

Information on the clinical TNM and receptor status

(oestrogen, progesterone, and Her2/neu receptor) was gained

by pretherapeutic biopsy. When locally confined tumours (T

stage 1 and 2) were compared with locally advanced tumours

(T stage 3 and 4), none of the markers were able to differen-

tiate between these groups. Concerning the nodal (N) stage,

CEAwas higher in lymph node positive (N1–3) as compared

with lymph node negative (N0) patients (p =0.045), while the

other markers showed no differences. In addition, ALU 247

correlated with the progesterone receptor status, with higher

levels for the receptor-positive group (p =0.041). No differ-

ences of biomarker levels were observed between patients
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with Her2/neu receptor-positive or -negative tumours, and

neither between oestrogen receptor-positive and -negative

tumour patients. When comparing the patients with a triple-

negative receptor status (oestrogen receptor, progesterone re-

ceptor, and Her2/neu receptor negative) with all other patients,

no significant difference of marker values was found.

Correlation of the markers with each other

Biomarker levels showed highly significant positive correla-

tions with each other for the conventional tumour markers,

ALUs, and DNA integrity indices. A highly significant corre-

lation was found between both DNA integrity indices for LBC
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andMBC as well as for both ALUs when compared with each

other. The conventional tumour markers showed a very good

correlation with ALU 115 and ALU 247, particularly in

metastatic patients (see Table 3).

Discussion

In order to establish new serum biomarkers for breast cancer,

we investigated the diagnostic value of cell-free DNA in

breast cancer patients.

Multiple studies have indicated elevated absolute

levels of cell-free DNA (cfDNA) in breast, colorectal,

lung, testicular, prostate, and ovarian cancer among others

[1, 2, 17, 23–27]. Results from these studies suggest that

cfDNA levels might be valuable in order to determine the

tumour cell turnover.

In addition, DNA integrity—as the relation of longer

to smaller DNA fragments—has been elevated in the

plasma [2] and the serum of cancer patients [2]. As

other studies reported inconsistent data not supporting

these results [13, 28, 29], we tried to verify the clinical

validity of DNA integrity in plasma as a diagnostic tool

for breast cancer. As diverse algorithms are used for the

calculation of the DNA integrity index, we used the two

most popular methods to compare their clinical validity

and to determine whether the combination of the indi-

ces, the absolute cfDNA levels, and the conventional

markers CEA and CA 15–3 increases the diagnostic

sensitivity.

In line with most studies that have investigated ab-

solute levels of cfDNA in plasma, we found signifi-

cantly higher levels of plasma cfDNA in cancer patients

as compared to healthy controls. Unfortunately, no sig-

nificant difference was obtained from this comparison

of benign and malignant diseases. Indeed this is not

really surprising as benign breast diseases often occur

together with inflammation, and inflammation is known

to increase cfDNA levels in the blood as well [9]. On

the other hand, cfDNA levels can be low in cancer

patients due to low cell death rates and a low half-

life time of cfDNA in the plasma as a result of high

DNA clearance [30].

With DNA Int 1 [1, 2], it was possible to differentiate

between healthy controls and benign diseases and between

benign diseases and both LBC and MBC. Interestingly, the

DNA integrity of healthy individuals and of patients with

malignant diseases did not differ, which is in contrast to the

findings of Umetani et al., who report a clear discriminative

difference [1].

Similar results were obtained for DNA Int 2 [22],

presenting significant differences between healthy con-

trols with benign diseases as well as between MBC with

Table 3 Correlation between the biomarkers

CA153 CEA ALU

115

ALU

247

DNA

Int 1

DNA

Int 2

All patients

CA 15–3 0.399 0.361 0.412 0.234 0.273

<.001 <.001 <.001 0.005 0.001

142 142 142 142 142

CEA 0.399 0.282 0.323 0.158 0.199

<.001 0.001 <.001 0.061 0.017

142 142 142 142 142

ALU 115 0.361 0.282 0.977 −0.168 −0.003

<.001 0.001 <.001 0.039 0.965

142 142 152 152 152

ALU 247 0.412 0.323 0.977 0.021 0.148

<.001 <.001 <.001 0.798 0.069

142 142 152 152 152

DNA Int 1 0.234 0.158 −0.168 0.021 0.752

0.005 0.061 0.039 0.798 <.001

142 142 152 152 152

DNA Int 2 0.273 0.199 −0.003 0.148 0.752

0.001 0.017 0.965 0.069 <.001

142 142 152 152 152

Locally confined breast cancer

CA 15–3 0.047 0.024 0.045 0.221 0.134

0.715 0.855 0.729 0.084 0.298

62 62 62 62 62

CEA 0.0473 −0.087 −0.052 0.119 0.161

0.715 0.503 0.686 0.355 0.212

62 62 62 62 62

ALU 115 0.024 −0.087 0.961 −0.377 −0.146

0.855 0.503 <.001 0.002 0.246

62 62 65 65 65

ALU 247 0.045 −0.052 0.961 −0.141 0.629

0.729 0.686 <.001 0.263 0.619

62 62 65 65 65

DNA Int 1 0.221 0.119 −0.377 −0.141 0.832

0.084 0.355 0.002 0.263 <.001

62 62 65 65 65

DNA Int 2 0.134 0.161 −0.146 0.629 0.832

0.298 0.212 0.246 0.619 <.001

62 62 65 65 65

Metastatic breast cancer

CA 15–3 0.713 0.536 0.554 0.104 0.123

<.001 0.001 0.001 0.519 0.443

41 41 41 41 41

CEA 0.713 0.430 0.464 0.045 0.018

<.001 0.005 0.002 0.781 0.910

41 41 41 41 41

ALU 115 0.536 0.430 0.962 −0.060 0.207

0.001 0.005 <.001 0.688 0.163

41 41 47 47 47
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benign breast diseases and LBC. Notably, both formulas

showed a high correlation with each other in all patients

(R =0.75), LBC (R =0.83), and MBC (R =0.73) despite

the level of absolute values being different. However,

there was no or only a weak correlation with either

ALU 115 and ALU 247 on the one hand and DNA

integrity on the other hand. Interestingly, it was possible

to differentiate between benign and malignant diseases

by use of both types of DNA integrities, a feature

which is an important tool for diagnostic markers. This

information was not obtained with cfDNA or the con-

ventional tumour markers. However, due to elevated

DNA integrity levels in some healthy controls, its use

as diagnostic markers is limited in the individual patient

case.

It has to be pointed out that the levels of DNA

integrity were often above the value of 1.0. This is

theoretically implausible as, according to Umetani

et al. [1], the annealing sites of ALU 115 are represent-

ed within the annealing sites of ALU 247, implying that

ALU 115 is always present when ALU 247 can be

measured. Several reasons may explain this phenome-

non: Lower absolute cfDNA levels could be caused by

the shorter denaturation, annealing, and extension times

in the qPCR. However, this argument cannot clarify

why the longer ALU fragments were measured more

often, as a shorter extension time during qPCR would

preferably affect the amplification of longer DNA frag-

ments. Alternatively, primer binding to DNA could have

been impaired. To improve primer binding, we addition-

ally included different add-ons (DMSO and BSA) to the

PCR setting; however, results were unchanged.

To assure the quality of pPCR measurements, plasma

pools with high and low DNA levels were included in

every run, resulting in quite constant levels in the inter-

run comparison. Interestingly, the level of ALU 247 was

higher even in both pools compared to the level of

ALU 115 in the same pools. This finding confirms that

the ALU 247 levels were elevated compared to the

ALU 115 levels not only in cancer patients. In a re-

cently published paper about cfDNA in patients with

testicular germ cell cancer using another primer pair

(where the annealing sites of the short DNA fragment

were also within the longer DNA fragment), calculated

DNA integrity levels often were above 1, too [23].

Nevertheless, it should be mentioned that both levels

of ALU sequences were highly elevated in the plasma

of cancer patients compared to healthy controls.

The direct comparison of our results with other stud-

ies remains difficult due to the use of different types of

blood samples (serum or plasma). Furthermore, DNA

isolation in the different studies [31] is not always

comparable as the amount of isolated DNA varies high-

ly between the different extraction kits [27]. Addition-

ally, many different primers are used to determine the

DNA integrity, impairing further the direct comparison

of different studies [27]. In fact, studies using single-

copy sequences have also been successfully applied for

the quantification of DNA integrity [29]. Thus, further

clinical validation of these assays is crucial to determine

the relevance of both cfDNA and DNA integrity as a

diagnostic tool under routine conditions [17].

As it is generally requested that new promising bio-

markers are compared with already established ones

[17], we included the breast tumour markers CA 15–3

and CEA in our evaluations. As expected, they had

significantly higher values in MBC than in all other

control groups. However, these markers could not dis-

tinguish between LBC and healthy controls. There was

a highly significant correlation of CA 15–3 and CEA

with each other in MBC but not in LBC patients. The

same applies to comparisons of these tumour markers

with ALU 115 and ALU 247, while there was only a

slight correlation with DNA integrity in the all patients

group. As a consequence, tumour markers performed

best for the detection of MBC. However, for the detec-

tion of LBC, ALU 115 and ALU 247 were considerably

better indicators, showing the potential diagnostic im-

pact of these new markers for the early detection of

breast cancer patients.

Conclusion

Although DNA integrity could not improve the diagnostic

performance of the established markers, ALU concentrations

were highly promising for the detection of locally confined

breast cancers and surpassed the conventional biomarkers

CEA and CA 15–3 by far for this indication. For the detection

of MBC, CA 15–3 and CEA showed the overall best diag-

nostic profile.

Table 3 (continued)

CA153 CEA ALU

115

ALU

247

DNA

Int 1

DNA

Int 2

ALU 247 0.554 0.464 0.962 0.167 0.355

0.001 0.002 <.001 0.262 0.014

41 41 47 47 47

DNA Int 1 0.104 0.045 −0.060 0.167 0.734

0.519 0.781 0.688 0.262 <.001

41 41 47 47 47

DNA Int 2 0.123 0.018 0.207 0.355 0.734

0.443 0.910 0.163 0.014 <.001

41 41 47 47 47
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Background: In breast cancer patients undergoing neoadjuvant chemotherapy before surgery, biomarkers for

predicting response to therapy are urgently required.

Patients and methods: In 65 patients with locally confined breast cancer who had completed the course of chemo-

therapy until surgery, plasma DNA biomarkers obtained before and during therapy were evaluated concerning

(early) estimation of therapy response. Levels of repetitive ALU 115 and ALU 247 elements aswell as DNA integrity

calculated according the formulas of Umetani (1) andWang (2) were correlated with changes in histopathological

staging at surgery and compared with conventional tumor markers CEA and CA 15-3.

Results: At surgery, 13 patients presented complete remission (CR), 32 partial remission (PR) and 20 no change of

disease (NC). Pretherapeutic Her2/neu status was positively correlated with therapy response (p = 0.019). DNA

biomarkers before onset of therapy cycles 1, 2 and 6 did not indicate outcome after therapy. However, kinetics of

ALU 115 from cycle 1 to 6 showed decreases in CR patients, while in NC patients, an increase was observed

(p = 0.033). Similar tendencies were found for ALU 247 fragments. DNA integrity index as well as CEA and CA

15-3 were not informative for therapy outcome.

Conclusion:Kinetics of plasmaDNA (ALU115) is associatedwith response to neoadjuvant chemotherapy in patients

with locally confined breast cancer.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Breast cancer is the most frequently diagnosed cancer in women

worldwide with 23% of all global cancer diagnoses and 14% of cancer

deaths [1]. While in early stage, localized breast cancer, patients

undergo surgical tumor resection eventually followed by adjuvant

radiation and chemotherapy [2], patients with locally advanced (NT3

stage) and inflammatory breast cancer can be treated by neoadjuvant

chemotherapy to downstage the tumor before surgery [3]. Further-

more, patients b40 years, grade 3 tumors, negative hormone receptors

and non-lobular histology are considered for neoadjuvant chemothera-

py [4,5] typically consisting of six to eight cycles of chemotherapy

combinations of docetaxel, adriamycin and cyclophosphamide (TAC)

or epirubicin and cyclophosphamide (EC), followed by docetaxel or

paclitaxel [3,6]. Trastuzumab is added to the regimen depending on

the Her2/neu expression status [3].

As only a small portion of patients achieve the prognostically rel-

evant complete remission [7], predictive markers for pretherapeutic

stratification and for the early estimation of response to neoadjuvant

therapy are urgently required. Currently, response is only assessed

after several therapy cycles and before surgery by radiology. Serial mea-

surement of blood-basedmarkers is an attractive approach because this

can be performed easily, rapidly and with minimal invasiveness.

Depending on the results, therapy could be adapted to the individual

patient's needs thereby optimizing efficiency and reducing toxicity of

the treatment.

To date, prognostic and predictive markers are mainly on tissue basis.

Apart from tumor size, lymph node and metastasis status and tumor cell

grading, diverse immunohistological markers particularly for estrogen re-

ceptor (ER), progesterone receptor (PR), Her2/neu and Ki67 are used to

stratify the relapse risk of the patient [8–10]. The conventional serum

tumor markers CA 15-3 and CEA frequently used for therapy monitoring

[11] or early recurrence detection [12], show lack in diagnostic sensitivity

especially for thedetectionof small tumornodules [13]. At timeof surgery,

they provide important prognostic information [14]. However, their use-

fulness in pretherapeutic stratification and early estimation of therapy re-

sponse in patients receiving neoadjuvant chemotherapy is still unclear.

A promising approach is the quantification of tumor related cell-free

DNA (cfDNA) in plasma or serum of cancer patients [15] that has shown

potential in cancer detection [15–17] and prognosis [18]. However,

cfDNA was also found to be elevated in various benign diseases, such
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as stroke, burns, sepsis and autoimmune diseases [19–23]. Frequently,

single gene copies such as ß-actin, GAPDH or ERV-DNA are quantified

[24]. Due to the limited sensitivity, highly repetitive sequences such as

ALUs [15,25], which are distributed throughout the genome [26], were

suggested as alternatives.

Two ALU fragments with 115 and 247 base pairs (bp) were used to

differentiate between apoptotic and necrotic cell death. As DNA frag-

mentation during apoptosis is known to result in nucleosomal pieces

of around 150–180 bp, the shorter ALU 115 should represent the total

amount of DNA while the longer ALU 247 fragments are considered a

necrotic products [27,28]. Since necrotic cell death is particularly rele-

vant in progressive tumor disease [29], a higher portion of longer DNA

fragments was proposed as biomarker for cancer detection [28].

In order to objectify the “DNA integrity index” as ratio of longer and

smaller fragments, different formulas were suggested: Umetani et al.

calculated the pure ratio of ALU 247 and ALU 115 concentrations in

the serum of patients [15,25], while Wang et al. used a formula based

on delta-Cp values for the quantification of DNA integrity in patient

plasma [30]. Both authors reported higher DNA integrities in serum

and plasma of patients with ovarian, breast, and colorectal cancer as

compared with controls [15,25]. However, other reports could not find

a difference of DNA integrity values in the same tumor types [31–33].

Unfortunately, no study has compared the diagnostic utility of DNA in-

tegrity in comparison with established cancer biomarkers. Concerning

prediction and monitoring of therapy response in cancer patients un-

dergoing systemic therapies, little data has become available to date

[15,24,34].

In the present study, we measured ALU 115 and ALU 247 in breast

cancer patients undergoingneoadjuvant systemic chemotherapy, calcu-

lated the DNA integrity according to both formulas and compared them

with the established breast cancer biomarkers CA 15-3 and CEA

concerning their relevance in the pretherapeutic prediction and the

intratherapeutic monitoring of tumor response to treatment.

2. Patients and methods

2.1. Plasma samples, clinical and pathology information

Plasma samples of 65 breast cancer patients undergoing neoadjuvant

chemotherapy were collected between 2007 and 2011. The 65 patients

with localized breast cancer received pretherapeutic staging (mammog-

raphy, mamma-sonography, chest x-ray, abdomen sonography and

bone scintigraphy) before onset of neoadjuvant chemotherapy. During

the study, the TNM-stage of all patients before onset of chemotherapy,

and after surgery, as well as the receptor status (estrogen, progesterone

and Her2/neu status) were documented. Furthermore, histopathological

findings such as tumor subtype and patient’s age were reported.

When neoadjuvant chemotherapy was completed after six to eight

chemotherapy cycles, patients underwent surgery. The histopathologi-

cal findings at surgery were compared with pretherapeutic staging

and were used to determine the outcome of the neoadjuvant chemo-

therapy. The patients were classified into three groups according to

RECIST criteria [35]: no change (NC, i.e. less than 30% tumor regression),

partial remission (PR, 30 to 99% tumor regression) and complete remis-

sion (CR).

During the chemotherapy cycles, plasma sample were taken be-

fore onset of the neoadjuvant chemotherapy (cycle 1), before cycle

2 (approximately 3 weeks after cycle 1) and between cycles 5 and

6 (C6, approximately 60 to 70 days after therapy start) when therapy

was almost finished. Detailed patient data are provided in Table 1.

The study was approved by the local ethics committee. Patients

were informed in detail on the study prospective and written in-

formed consent was obtained from all patients before study entry.

2.2. Plasma preparation for qPCR

From each patient, three plasma samples (4.4 ml) were collected in

an EDTA collection tube (Sarstedt, Nürnbrecht, Germany). The samples

were centrifuged within a maximum of two hours after venipuncture,

separated, aliquoted and cryopreserved at −80 °C.

For DNA isolation, the QIAamp DNA Mini Kit (Qiagen, Hilden,

Germany) was used: 400 μl of plasma sample and 400 μl of lysis buffer

was mixed with 20 μl of Qiagen protease. After 30 minutes of incuba-

tion at 56 °C, 400 μl of 100% ethanolwas added to the vial. Twowashing

steps were performed using buffers (750 μl each), a vacuum pump and

spin columns as recommended. Spin columns were centrifuged, before

50 μl of lysis buffer was added. After an additional centrifugation, DNA

was eluated from the column. 5 μl of this eluate was used as a template

for each qPCR performed.

2.3. Quantitative PCR for ALU repeats

Two primers for the detection of ALU 115 and ALU 247were used as

described by Umetani et al. [15] (see Supplemental Data). The reaction

mixture for the qPCR contained the following ingredients: 5 μl

template, 0.25 μl of UNG DNA Glycosylase (UNG, Roche Diagnostics,

Mannheim, Germany), 2 μl of each primer (forward and reverse, only

one primer combination (ALU 115 or 247) per PCR plate), 6.75 μl PCR

grade H2O and 4 μl of Mastermix SYBR Green (Roche Diagnostics). A

reaction volume of 20 μl was achieved.
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Fig. 1.Dot-plots showing the distribution of individual relative changes of ALU 115 andALU 247 from courses 1 to 6 in patientswith complete (CR), partial remission (PR) and no change of

disease (NC).
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The Light Cycler®480 Instrument II (RocheDiagnostics)was used to

perform the RT qPCR amplification. UNG DNA glycosylase was incubat-

ed for 10 min at 40 °C followed by 10 min UNG-inactivation time at

95 °C. Each PCR amplificationwas performedwith 45 cycles of denatur-

ation (95 °C for 10 s), annealing (62 °C for 15 s and extension (72 °C for

15 s). A standard curve was calculated after measuring serial dilutions

of a DNA (Roche Diagnostics). Efficiencies were calculated at 1.95 for

ALU 115 and 1.84 for ALU 247 (See Supplemental data). All measure-

ments were performed in duplicates. For quality controls, positive and

negative controls, two plasma patient pools with high and low DNA

levels as well as three dilution steps of the standard curve were mea-

sured with each PCR plate.

2.4. Calculation of the DNA Integrity Index

DNA Integrity Index as the relation of ALU 247 to ALU 115was calculat-

ed according to the formulas of Umetani et al. (DNA Int 1) [15,25] and of

Wang et al. (DNA Int 2) [30]: DNA Int 1 represents the ratio of ALU 247 to

ALU 115 concentration. As the annealing sites of ALU 247 are represented

within those of ALU 115, this ratio can theoretically vary between 0 and 1.

DNA Int 2 was calculated using the following formula: DNA Int

2 = e(−ΔΔCp × ln(2)). Therein, ΔΔCp is the difference between ΔCp

115 and ΔCp 247, and ΔCp 115 and ΔCp 247 was calculated as the

difference between the Cp value of a standard pool of human geno-

mic DNA and the Cp value of both ALU 115 and ALU 247.

2.5. Determination of established tumor markers

Carcinoembryonic antigen (CEA) and cancer antigen (CA) 15-3 were

measured in patient sera by enzymatic chemiluminescent immunoassay

(ECLIA) on the ElecSys 2010 immunoassay analyzer of Roche Diagnostics,

Germany.

2.6. Statistics

The concentration of allmeasuredmarkers (bothALUs, bothDNA In-

tegrity Indices, CEA and CA 15-3) was measured before therapy onset,

before cycle 2 and before cycles 5 or 6. For the latter, the percentage dif-

ferences to pre-therapeutic values were also considered for statistical

evaluation. The patients were separated into three groups according to

their surgery results as described above.

Concentrations of biomarker values are given asmedians and ranges

for the three groups. Significance of differences between the three

groups was tested by Wilcoxon–Mann–Whitney test. First, all marker

values were compared between the complete remission (CR) group

and the no change (NC) group. If this test was significant, patients

with partial remission (PR) were additionally compared with the CR

and NC patients. For significantmarkers, receiver operating characteris-

tic (ROC) curves are given. Here, the PR and NC groups were combined

and compared to the CR group resulting in sensitivities and specificities

for complete versus non-complete remission.

Pre-therapeutic clinical factors in the three therapy response groups

were tested for significance by means of the Mantel–Haenszel χ2 test

for overall trend.

A p-value b 0.05 was considered statistically significant. All calcula-

tions were performed with SAS software (version 9.2, SAS Institute Inc.,

Cary, N.C., USA).

3. Results

3.1. Clinical characteristics and treatment response

During neoadjuvant chemotherapy, 65 patients were followed: 47

breast tumors were classified as T1 or T2 tumors while 17 were classi-

fied as T3 or T4. Seventeen patients presented lymph-node negative

stage (N0), while 44 were classified as lymph node positive (N1–3).

Histological subtypes included 57 invasive ductal, four invasive lobular

carcinoma, two adenocarcinoma and two without classification.

Thirty-eight patients were estrogen receptor positive (27 negative), 32

progesterone receptor positive (33 negative) and 21 Her2/neu receptor

positive (44 negative). Twenty-one patients were found to have a “tri-

ple negative” receptor status with negative results for all three receptor

classes.

In histopathological staging at time of surgery, 13 patients achieved

a pathological complete remission (CR), and 32 a partial remission (PR),

while no change of disease (NC)was found in 20 patients (for details see

Table 1).

Concerning pretherapeutic clinical factors (TNM-status, grading, hor-

mone receptors), only the Her2Neu receptor was found to be predictive

of therapy response in the Mantel–Haenszel test (p-value = 0.019). A

Table 1

Patient characteristics.

Patient characteristics Median Min/Max

Age 47.0 26.5/72.7

Characteristics of patients before neoadjuvant chemotherapy

T stage N %

1 8 12.3

2 39 60.0

3 14 21.5

4 3 4.6

X 1 1.6

N stage N %

0 17 26.1

1 40 61.6

2 1 1.6

3 3 4.6

X 4 6.1

G stage N %

2 22 42.3

3 21 40.4

4 1 1.9

X 8 15.4

Histology N %

Invasive ductal carcinoma 57 87.7

Invasive lobular carcinoma 4 6.1

Adenocarcinoma 2 3,1

Unknown 2 3.1

Histopathological classification N %

Estrogen receptor positive/negative 38/27 58.5/41.5

Progesterone receptor positive/negative 32/33 49.2/50.8

Her2/neu positive/negative 21/44 32.3/67.7

Characteristics of patients at time of surgery after neoadjuvant chemotherapy

T stage (ypT) N %

0 16 24.6

1 (1A-1C) 30 46.2

2 12 18.5

3 6 9.2

4 1 1.5

N stage (ypN) N %

0 40 61.6

1 16 24.6

2 6 9.2

3 3 4.6

Response to therapy N %

Complete remission (CR) 13 20.0

Partial remission (PR) 32 49.2

No change (NC) 20 30.8

Neoadjuvant chemotherapies

(trastuzumab was added depending on Her2Neu receptor

status)

N %

Cyclophosphamide + Epirubicine + Docetaxel 36 55.3

Cyclophosphamide + Epirubicine 13 20.0

Cyclophosphamide + Epirubicine + Paclitaxel 11 16.8

Cyclophosphamide + Epirubicine + Fluorouracil + Docetaxel 2 3.1

Cyclophosphamide + Epirubicine + Carboplatin 1 1.6

Cyclophosphamide + Epirubicine + Docetaxel + Paclitaxel 1 1.6

Carboplatin 1 1.6
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positive Her2/neu receptor status was found for 53.9% in the CR group,

34.4% in the PR group and 15.0% in the NC group.

3.2. Predictive value of pretherapeutic levels of DNA and conventional

tumor markers

Concerning pretherapeutic levels of ALU 115, no differences were

observed between CR patients (median 16.6 ng/ml) and NC patients

(14.3 ng/ml; p = 0.126). Similar results were obtained for ALU 247

levels (CR: 19.2 ng/ml; NC: 14.4 ng/ml; p = 0.294), for DNA integrity

1 (CR: 0.8; NC: 1.1; p = 0.117) and DNA integrity 2 (CR: 0.7; NC: 0.8;

p = 0.178). In addition, no difference was observed between response

groups for conventional tumormarkers CA 15-3 (CR: 18.1 U/ml; NC: 19.0

U/ml; p = 0.824) and CEA (CR: 0.7 ng/ml; NC: 1.5 ng/ml; p = 0.105),

too (Table 2).

3.3. Early estimation of therapy response by intratherapeutic levels of DNA

and conventional tumor markers

Before onset of the second cycle of chemotherapy, levels of ALU 115

and 247 were higher in both response groups when compared

to pretherapeutic levels (medians ALU 115: CR: 20.0 ng/ml; NC:

28.1 ng/ml; ALU 247: CR: 25.0 ng/ml; NC: 30.8 ng/ml). However, differ-

ences between the response groups were not significant for ALU 115

(p = 0.227) and ALU 247 (p = 0.369). Similarly, neither absolute levels

of DNA integrity 1 (p = 0.336) and DNA integrity 2 (p = 0.403) nor of

conventional tumor markers CA 15-3 (p = 0.438) and CEA (p =0.291),

nor relative changes of markers levels from courses 1 to 2 could discrim-

inate between the extreme response groups (Table 2).

Before onset of the sixth cycle of chemotherapy, i.e. shortly before

surgery, absolute levels of ALU 115 and 247 were once again lower.

While ALU 115 levels in the CR group (12.1 ng/ml) were only slightly

lower than in the NC group (15.7 ng/ml; p = 0.385), the relative

changes from courses 1 to 6 were significantly different in both groups

showing a median decrease of 39.4% in the CR group and a median in-

crease to 109.8% in the NC group (p = 0.033) (Fig. 1). Interestingly,

PR patients also had increasing values (109.4%), but without a signifi-

cant difference from CR patients (p = 0.117)

Similar results were obtained for ALU 247. While levels in the CR

group (15.5 ng/ml) were not different from those in the NC group

(19.7 ng/ml; p = 0.593), there was an almost significant difference of

the relative changes from courses 1 to 6 between both groups showing

a median decrease of 16.3% in the CR group and a median increase to

123.9% in the NC group (p = 0.071). All other markers, such as DNA

integrity 1 and 2, CEA and CA 15-3, showed no statistically significant

Table 2

Values and p-values in groups (NC compared with CR).

Marker Group N Median Min Max Comparison

with CR group

(p-value)

Cycle 1 ALU 115 NC 20 14.3 4.0 61.3 0.126

PR 32 15.2 0.7 112.1

CR 13 16.6 8.9 143.9

ALU 247 NC 20 14.4 4.1 48.7 0.294

PR 32 15.9 0.9 119.8

CR 13 19.2 8.4 100.9

DNA Int 1 NC 20 1.2 0.6 1.5 0.117

PR 32 1.1 0.6 1.7

CR 13 0.8 0.6 1.4

DNA Int 2 NC 20 0.8 0.4 1.5 0.179

PR 32 0.8 0.4 1.2

CR 13 0.7 0.5 1.3

CEA NC 19 1.5 0.5 5.9 0.105

PR 31 1.4 0.2 6.9

CR 12 0.7 0.2 14.1

CA 15-3 NC 19 19.0 8.9 102.0 0.824

PR 31 19.3 6.3 164.0

CR 12 18.1 9.9 46.5

Cycle 2 ALU 115 NC 13 28.1 0.1 51.4 0.369

PR 23 23.5 0.2 559.6

CR 10 20.0 6.6 33.9

ALU 247 NC 13 30.8 0.3 67.3 0.515

PR 23 24.7 0.05 370.5

CR 10 25.0 10.5 57.2

DNA Int 1 NC 13 1.2 1.0 2.2 0.403

PR 23 1.3 0.2 1.8

CR 10 1.3 0.7 1.7

DNA Int 2 NC 13 0.4 0.2 1.0 0.336

PR 23 0.3 0.08 0.6

CR 10 0.6 0.2 1.3

CEA NC 13 1.1 0.4 6.2 0.291

PR 21 1.5 0.2 5.8

CR 10 0.8 0.2 11.2

CA 15-3 NC 13 22.9 10.7 103.0 0.438

PR 20 23.4 9.8 73.0

CR 10 26.3 15.7 54.3

Cycle 6 ALU 115 NC 13 15.7 0.05 4059.5 0.385

PR 26 32.1 0.9 204.5

CR 9 12.1 5.0 83.7

ALU 247 NC 13 19.7 0.01 2507.3 0.593

PR 26 38.3 0.3 304.7

CR 9 15.5 6.9 84.5

DNA Int 1 NC 13 1.1 0.1 1.6 0.285

PR 26 1.0 0.3 1.7

CR 9 1.3 1.0 1.5

DNA Int 2 NC 13 0.3 0.09 1.2 0.385

PR 26 0.3 0.07 0.5

CR 9 0.7 0.3 1.1

CEA NC 13 1.6 0.5 4.5 0.738

PR 25 1.7 0.2 14.0

CR 9 1.6 0.4 2.6

CA 15-3 NC 13 27.3 13.9 81.4 0.548

PR 25 34.8 19.5 87.9

CR 9 23.4 16.0 48.8

Cycle 2

compared with

pretherapeutic

values (%)

ALU 115 NC 13 133.0 −98.1 607.4 0.227

PR 23 37.4 −98.9 1453.6

CR 10 28.2 −84.0 108.9

ALU 247 NC 13 143.2 −97.2 412.3 0.369

PR 23 80.7 −99.8 1916.2

CR 10 34.1 −82.4 161.3

DNA Int 1 NC 13 13.4 −34.1 63.1 0.278

PR 23 16.6 −83.5 111.8

CR 10 18.8 −21.0 148.0

DNA Int 2 NC 13 −52.9 −77.9 67.9 0.515

PR 23 −58.9 −94.3 12.6

CR 10 −22.3 −72.9 98.6

CEA NC 12 2.5 −33.3 33.3 0.546

PR 21 0.0 −28.6 50.0

CR 9 0.0 −30.8 66.7

CA 15-3 NC 12 24.7 −7.0 48.4 0.642

PR 20 20.6 −21.0 52.8

CR 9 24.4 4.8 199.0

Table 2 (continued)

Marker Group N Median Min Max Comparison

with CR group

(p-value)

Cycle 6

compared with

pretherapeutic

values (%)

ALU 115 NC 13 109.8 −99.8 5100.6 0.033

PR 26 109.4 −94.8 2744.7

CR 9 −39.4 −87.8 175.0

ALU 247 NC 13 123.9 −99.9 4223.4 0.071

PR 26 125.6 −98.9 2279.5

CR 9 −16.3 −77.8 193.0

DNA Int 1 NC 13 −2.0 −89.4 89.1 0.182

PR 26 −4.5 −78.1 82.7

CR 9 26.7 −17.0 85.4

DNA Int 2 NC 13 −58.5 −91.8 55.1 0.125

PR 26 −67.6 −94.9 −22.8

CR 9 −30.7 −67.9 89.7

CEA NC 12 −2.9 −66.7 216.7 1.00

PR 25 40.0 −81.2 900.0

CR 8 −1.8 −87.2 166.7

CA 15-3 NC 12 19.3 −34.9 158.1 0.787

PR 25 73.8 −80.1 209.8

CR 8 39.9 −48.0 76.6
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difference, neither at cycle 6 nor when comparing cycle 6 values with

pretherapeutic values.

For the comparison of the CR group with the NC and PR group re-

garding changes from pretherapeutic values to cycle 6, an area under

the ROC-curve (AUC) of 71.2% and 68.4% was reached for ALU 115 and

Alu 247, respectively. Sensitivities for CR detection at 90% specificity

were 33% for ALU 115 and 36% for ALU 247 (Fig. 2).

4. Discussion

In recent years,many studies have been carried out investigating the

potential of cfDNA and DNA integrity as new tumor biomarkers. Several

of them showed elevated levels of cfDNA in both serum and plasma of

patients suffering from breast, colorectal, lung or testicular cancer

[15,25,26,36–38]. However, the diagnostic value for the individual pa-

tient is limited by the fact that benign pathologies that are relevant for

the differential diagnosis of a suspicious finding are associated with el-

evated levels for cfDNA in some cases as well [19–23].

Cancer development is known to be associated with high cellular

proliferation which is initially counterbalanced by high rates of active

apoptotic cell death and later by increasing rates of passive necrotic

cell death when the tumor dedifferentiates and becomes invasive [29].

Therefore, high DNA Integrity Index values as relation of longer (non-

apoptotic) to shorter DNA fragments (mirroring all cell death types)

were supposed as relevant biomarkers for detection of aggressive can-

cers with poor prognosis [28]. Indeed, some studies reported a strong

correlation of DNA integrity and cancer diagnosis [15,25,30], while

others did not [31,32].

Recently, we compared the two most often used approaches for the

calculation of DNA integrity in breast cancer patients. While ALU 115

and 247 levels were found to be significantly higher in locally confined

breast cancer patients as comparedwith healthy controls, DNA integrity

could not distinguish between the two groups [39]. It is noteworthy that

the additionally tested, conventional tumor markers CA 15-3 and CEA

were only informative for metastatic breast cancer detection but not

for the locally confined disease [40].

Regarding therapy prediction and prognosis, several studies report-

ed an association of high cfDNA levels with poorer overall and/or

disease-free survival, e.g. for patients with breast, ovarian and prostate

cancer [17,41–43]. In contrast, other studies could not confirm these

findings in breast cancer patients concerning overall survival [24].

RegardingDNA integrity, Umetani et al. described a correlation between

preoperative values and the presence of lymph node metastasis [15].

Another study found better survival rates in 105 patients with naso-

pharyngeal cancer undergoing radiotherapy if DNA integrity values

decreased [44].

The predictive and prognostic value of cfDNA in patients undergoing

chemotherapy has only been investigated in a small number studies to

date showing mainly decreasing cfDNA levels as a marker for early

treatment response, e.g. in lung cancer [45] or rectal cancer during neo-

adjuvant chemo-radiation therapy [46]. DNA integrity has not yet been

addressed for this indication.

Here, a prospective observation study was conducted on a homoge-

nous cohort of patients with locally confined breast cancer who were

treated with neoadjuvant chemotherapy. This approach provided an

excellent setting for the investigation of serum biomarkers measured

at defined time points during treatment and the correlation with

response to therapy objectified by immunohistochemistry at the time

of tumor resection. As radiological staging after several months is cur-

rently used for evaluation of the macroscopic response to tumor thera-

py, new biochemical markers for a more efficient therapy monitoring

and an early estimation of therapy response are urgently required [35].

While our results do not identify amarker for the prediction of ther-

apy response before onset of chemotherapy nor at therapy cycle 2, there

was a statistically significant difference for ALU 115 at cycle 6 when

compared with pretherapeutic values. Indeed, ALU 115 was decreased

in patients with complete tumor remission, whereas it was increased

in patients with no change of disease stage when the tumor was re-

moved. Corresponding with the small fragments, the longer ALU 247

showed a similar tendency. These results are in line with other findings

of decreasing levels of circulating DNA and nucleosomes in patients

with response to chemotherapy and with increasing values in non-

responding patients [45,47–49]. Unfortunately, the DNA Integrity

Index calculated by either formula did not indicate response to therapy

when comparing patients with very favorable (complete remission)

and non-favorable outcome (no change).

Of note, the currently used conventional tumormarkers CA 15-3 and

CEA were unable to distinguish between the response groups at any

time point. This fact underlines the necessity to identify meaningful

serum biomarkers for efficient therapy monitoring of breast cancer pa-

tients. In line with other studies, the Her2/neu status obtained before

onset of therapy was indicative for therapy response. Earlier, higher

rates of pathologically complete remission at the time of tumor removal

were found for Her2/neu positive patients, even if Her2/neu-targeting

antibodies (trastuzumab) were not included in the neoadjuvant treat-

ment [50]. If it was included, rates of pathologically complete response

in Her2/neu positive patients further increased by 16% [51].

It is obvious that the present study has a strongly explorative charac-

ter. Diversemarkers that weremeasured at different time points during

therapy were tested on their ability to anticipate or indicate therapy re-

sponse in a limited set of patients. While in this hypothesis-generating

evaluation, no correction to multiple testing was performed, significant

findings of this study have to be confirmed by independent validation

studies. However, it has to be emphasized that this prospective single-

center study included standardized serial blood drawings, controlled

preanalytics and detailed clinical documentation and enrolled a homog-

enous group of breast cancer patients undergoing neoadjuvant therapy.

This clinically and (pre-) analytically challenging approach could form

the basis for further identification of new biomarkers relevant for re-

sponse prediction and therapy monitoring in these patients.

5. Conclusion

Results of this prospective, exploratory study indicate circulating

DNA markers ALU 115 and ALU 247 as two possible future biomarkers
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for the investigation of response to neoadjuvant chemotherapy in breast

cancer patients which has to be confirmed by future validation studies.
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