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Zusammenfassung

Für die meisten Menschen ist Schwimmen eine alltägliche Erfahrung. Auch wenn man kein
besonders talentierter Schwimmer ist, wird eine irgendwie geartete Paddelbewegung einen Vor-
trieb erzeugen. Dieser beruht auf dem Impulsübertrag vom Schwimmer auf das ihn umgebende
Fluid. Es gibt jedoch Umstände, in denen eine solche Bewegung nicht möglich ist. Ein solches
Regime wird durch eine kleine Reynoldszahl gekennzeichnet und ist durch kleine Längenska-
len sowie relativ kleine Geschwindigkeiten charakterisiert. Für einen Schwimmer unter diesen
Bedingungen fühlt sich das ihn umgebende Fluid wie Honig an. Jede Form von Bewegung
wird augenblicklich gedämpft, außer sie wird durch eine permanente externe Kraft aufrecht
erhalten. Für die Physik ist dieses Regime von besonderem Interesse, da es die natürlichen
Bedingungen von biologischen Systemen, wie Bakterien sowie von Kolloiden beschreibt.

Der Erste, der die Bedingung für Bewegung unter solchen extremen Bedingungen formulierte,
war Eric Purcell [1]. Er stellte heraus, dass ein Schwimmer bei kleinen Reynoldszahlen eine
nicht zeitinvariante Folge von Zuständen durchlaufen muss, um sich voran zu bewegen, wie
es z.B. bei den Schlägen des Ciliums eines Bakteriums geschieht [2]. Aufbauend auf dieser
Arbeit sind viele künstliche Schwimmer entwickelt worden, die sich dieses Prinzip zu Nutze
machen [3]. Diese können in mikrofluidischen Aufbauten [4] oder als Transportvehikel für Me-
dikamente verwendet werden. Damit diese Schwimmer jedoch die verschieden Konfigurationen
durchlaufen können, muss ein externer Mechanismus verwendet werden. In den meisten An-
wendungen dient hierzu ein magnetisches Feld. Ob dies jedoch eine gangbare Vorgehensweise
ist, um einen Schwimmer durch so komplexe Umgebungen wie den menschlichen Körper zu
treiben, ist nicht klar. Eine Alternative hierzu, die in den letzten Jahren intensiv untersucht
wurde, sind Schwimmer, die sich entlang externer Gradienten orientieren, insbesondere ent-
lang von Teilchengradienten. Diese Anwendungen wurden angeregt durch die Untersuchung
von Bakterien, die sich mittels Chemotaxis in komplexen Umgebungen bewegen. Für einen
künstlichen Schwimmer sollten allerdings einfachere physikalische Mechanismen verwendet
werden als der eher komplexe chemotaktische Apparat eines Bakteriums. Einer der vielver-
sprechendsten Ansätze ist Diffusiophorese. Diese erklärt die Bewegung von Kolloiden in einem
externen Teilchengradienten mittels eines aktiven Prozesses in der Grenzschicht zwischen dem
Festkörper und dem Fluid [5]. In den letzten Jahren wurde dieser Ansatz auf sogenannte
selbstdiffusiophoretische Schwimmer erweitert [6, 7]. Diese sind in der Lage selbst einen Teil-
chengradienten zu erzeugen und sich entlang dessen zu bewegen. Auch wenn für solche Systeme
bereits erste analytische Ergebnisse bekannt sind [8, 9], sind sie auf Grund der Kopplung der
Dynamik eines Teilchengradienten mit der Hydrodynamik des Fluids schwierig zu beschreiben.
Ein vielversprechender Ansatz hierfür sind Simulationen des Systems.

Für Simulationen von Systemen bei kleinen Reynoldszahlen gibt es hauptsächlich zwei Ansät-
ze. Der Erste basiert auf der effektiven Kraft, die durch das Fluid auf ein Objekt wirkt, wie z.B.
in sogenannten Stokesian Dynamics Simulationen [10]. Alternativ hierzu gibt es Methoden,
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die das Fluid explizit modellieren. Erstere sind z.B. geeignet, um die hydrodynamische Wech-
selwirkung zwischen Polymeren zu untersuchen. Sie sind allerdings schwierig auf komplexere
Fluide zu erweiteren, wie sie in selbstdiffusiophoretischen Systemen notwendig sind. In dieser
Arbeit wird daher der zweite Ansatz genutzt. Die meisten Fluidmodelle enthalten keine ther-
mischen Fluktuationen. Dies ist eine vertretbare Annahme, falls die Bewegung des Systems
haupts̈achlich auf Konvektion beruht. Die Dynamik eines externen wie auch einen selbstpro-
duziertes Teilchengradienten basiert allerdings auf Diffusion. Dieses Regime wird durch eine
kleine Pecletzahl charakterisiert. Eine Technik, die gerade für diese Bedingungen entwickelt
wurde, ist Multiparticle Collision Dynamics (MPC). Es ist ein teilchenbasierter Ansatz, der
leicht auf komplexere Fluide und Objekte erweiterbar ist. Der MPC-Ansatz wurde in den
letzten Jahren insbesondere angewandt um Polymere [11] und Schwimmer [12] bei kleinen
Reynoldszahlen zu untersuchen. In dieser Arbeit wird die Technik ausführlich diskutiert. Es
wird zwischen der kanonischen und mirkokanonischen Version der Technik unterschieden. Fer-
ner werden ihre hydrodynamischen sowie thermischen Eigenschaften detailliert besprochen.
Die Transportkoeffizienten des MPC-Fluids können als Funktionen der Modellparameter ana-
lytisch abgeleitet werden. Dadurch läßt sich das hydrodynamische Regime des simulierten
Systems variieren. Hiermit kann das Verhalten des Fluids jedoch nur qualitativ beschrieben
werden. Da der MPC-Ansatz auf einer Vergröberung der Freiheitsgerade des Systems beruht,
wird die Zeitskalenseparation des Systems im Vergleich zum Experiment reduziert.

Janus-Kolloide sind Kugeln aus Latex oder Silica, die auf einer Hemisphäre mit Gold oder
Platin beschichtet sind. In einer Wasserstoffperoxid-Lösung katalysiert die beschichtete Seite
H2O2 in Wasser und Sauerstoff und baut so einen Gradienten auf. Dies ist der meist genutzte
Ansatz um einen selbstdiffusiophoretischen Schwimmer zu untersuchen. Die zugänglichste Grö-
ße hierbei ist die mittlere quadratische Strecke, die der Schwimmer zurückgelegt hat. Besonders
interessant ist dabei der Langzeitlimes. Es kann beobachtet werden, dass die Rotationsdiffusi-
on des Schwimmers nicht vom Antriebsmechanismus beeinflußt wird, die Diffusionskonstante
jedoch um mehrere Größenordnungen gegenüber der eines Brownschen Teilchens ansteigt. Mit
Hilfe von Simulationen wurde dieses Regime allerdings noch nicht betrachtet. Daher wird in
dieser Arbeit eben dieses mittels MPC untersucht. Es wird gezeigt, dass dieser Ansatz in
der Lage ist, das im Experiment gefundene Verhalten zu erklären. Es zeigt sich kein Einfluß
des Antriebs auf das Rotationsverhalten des Kolloids. Dies wird einerseits durch die Winkege-
schwindigkeitskorrelation gezeigt, die den für ein Brownsches Teilchen erwarteten Abfall zeigt.
Andererseits kann die Rotationsdiffusionskonstante aus dem Abfall der Orientierungskorrela-
tionsfunktion bestimmt werden. Auch hier zeigt sich kein Einfluß des Antriebsmechanismus.
Trotzdem wird ein Anstieg der Diffusionskonstante über mehrere Größenordnungen beobach-
tet. Dieser kann auf die erhöhte intrinsische Geschwindigkeit des Janusteilchens zurückgeführt
werden. Die Geschwindigkeit ist jedoch selbst auf Grund des ihr zugrunde liegenden dyna-
mischen Teilchengradienten eine fluktuierende Größe. Es wird gezeigt, dass im Vergleich zu
einem Brownschen Teilchen die Geschwindigkeitskorrelationen auf kleinen Zeitskalen deutlich
ansteigen. Auf diesen Zeitskalen kann, auf Grund der reduzierten Zeitskalenseparation des
MPC-Ansatzes, die Wechselwirkung zwischen dem Januskolloid und dem Produktgradienten
nur qualitativ betrachtet werden. Für die mittlere Geschwindigkeit des Schwimmers wird das
aus der Literatur bekannte Skalenverhalten beobachtet. Eine quantitative Übereinstimmung
kann jedoch nicht erreicht werden. Im Gegensatz hierzu wird für den Langzeitlimes der aus
den Experimenten bekannte Anstieg der Diffusionskonstante in der richtigen Größenordnung
beobachtet. Dies bestätigt die MPC-Technik als einen vielversprechenden Ansatz.



Abstract

Moving through a fluid is a common experience for all humans. Even if one is not a skilled
swimmer any kind of paddling motion will propel you forward. The motion is based on transfer
of momentum from the swimmer to the fluid. However, there are regimes, described by low
Reynolds numbers, where this kind of propulsion does not work. For small length scales and
sufficiently low velocities a fluid behaves similar to honey. This means, every kind of motion
is immediately damped if it is not sustained by a permeant external force. For physics, this
regime is of particular interest as many biological systems like bacteria or colloids are faced
by these conditions.

It was first pointed out in the seminal work of Eric Purcell [1] that in order to propel at low
Reynolds numbers a permanent non-time-reversal motion has to be kept up, as for example
the power and recovery strokes of bacterial cilia [2]. It inspired a lot of experimental work to
build up low Reynolds number swimmers based on this principle [3]. They could e.g. be used
in microfluidic devices [4] or as drug carriers in the human body. However, in order to let an
artificial swimmer evolve through a set of configurations in a controlled way, some kind of
external mechanism has to be applied. In most applications, a magnetic field is used to derive
this effect. This can be a drawback if these swimmers have to explore complex environments. In
the recent years, alternative approaches based on the motion of swimmers in external gradients,
especially in particle gradients, received considerable interest. The particle gradient approach
has been inspired by the motion of bacteria in gradients of nutrients, called chemotaxis. This
mechanism, however, relies on a rather complicated internal machinery to reorientate the
bacterium. An artificial swimmer has to be based on a more simple physical principle in order to
guarantee highly controllable motion. One of the most promising candidates is diffusiophoresis.
It explains the motion of a colloid in an external particle gradient based on an active process at
the interface between the fluid and the solid [5]. Recently, this approach has been extended to
so called selfdiffusiophoretic swimmers [6, 7] which are not driven by an external gradient but
produce the gradient themselves. Even though there are first analytical approaches trying to
describe this phenomenom [8, 9], due to the coupling of low Reynolds number hydrodynamics
to the evolution of solute particle gradients it is difficult to obtain a complete description. An
alternative are simulations which are able to capture both contributions.

Classically, two approaches are used to simulate low Reynolds number hydrodynamics. The
first one tries to mimic the effective force due to the fluid on the embedded objects, like for
example for Stokesian Dynamic simulations [10]. The second explicitly models the fluid and
its interaction with relevant boundary conditions. The former is a veritable tool to address e.g.
the effect of hydrodynamics on the relaxation of polymers but it is difficult to implement more
complex fluids as in the case of selfdiffusiophoretic swimmers. Therefore, the second approach
is used for the simulations in this work. Most of the fluid models mimic a fluid in which ther-
mal fluctuations can be neglected. This is a sufficient assumption if the motion of the fluid is
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dominated by convection. However, the relaxation of external as well as self-produced solute
gradients is based on diffusion, called the low Peclet number regime. A technique which can
mimic hydrodynamic behavior and naturally contains thermal fluctuations is Multiparticle
Collsion Dynamics (MPC). It is a particle based approach which can be extended straight for-
wardly to incorporate solute particle gradients as well as complex objects. The MPC approach
gained considerable interest in the recent years especially for simulations of polymers [11] and
swimmers at low Reynolds numbers [12]. In this work, the technique is described extensively.
It will be distinguished between a canonical as well as a microcanocial version and their hy-
drodynamic as well as thermodynamic properties will be discussed in detail. As the transport
coefficients of MPC can be derived analytically the fluid can be adjusted to different regimes
characterized by a set of hydrodynamic numbers. In will be shown that these numbers are
only recapturing the expected behavior qualitatively. In particular, the approach only leads
to compressible fluids. As MPC is a coarse grained description compared to an experimental
system a reduction of the time scale separation is observed.

Janus colloids are latex or silica beads which are half coated with gold or platinum. In a water
peroxide solution these colloids catalyze the H202 into water and oxygen and are, therefore,
able to build up a solute gradient. These objects have mainly been used in experiments to
investigate the behavior of selfdiffusiophoretic swimmers. Mostly, the mean square displace-
ment of these swimmers has been evaluated as it is experimentally easy accessible, especially
in the long time limit. It is observed that while the rotation diffusion of the swimmer is not
effected by the propulsion mechanism, the diffusion constant is increased by several orders of
magnitude. This regime has not yet been addressed with simulations. Therefore, in this work
a Janus colloid is implemented into a MPC algorithm, which has not been done so far. It is
shown that the interaction between the swimmer and the gradient it produces does not affect
the rotation of the swimmer. This can on one hand be shown by the decay of the angular
velocity correlation function which shows the typical behavior of a Brownian colloid. On the
other hand, the diffusion rotation can be measured by the decay of the orientation correlation
function and it is shown that it is not affected by the propulsion mechanism. Nevertheless, the
diffusion constant increases by several orders of magnitude. It will be shown that this arises
from the increased velocity of the Janus colloid. The velocity is a fluctuating quantity coupled
to the fluctuations of the product particle gradient. It will, however, be shown that on small
time scales the velocity correlations increase significantly compared to a Brownian colloid. In
the short time limit, due to the shrinked time scale separation, the interaction between the
swimmer and the gradient can only be considered qualitatively. The mean propulsion shows
the scaling behavior as has been previously reported in literature, but the exact values do not
match. In contrast, for the long time limit the increase of the diffusion constant in the simu-
lations is of the same order of magnitude as the experimentally observed results, confirming
the MPC approach.
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1 Introduction

The classical theory of hydrodynamics is based on the famous Navier-Stokes equation. To-
gether with the relevant boundary conditions, it describes the motion of fluids ranging from
the turbulent flows necessary to understand the flight characteristics of an airplane to the
laminar flow of lava erupting out of a vulcano. It is given by

ρ
∂v

∂t
+ ρ(v · ∇)v = η∆v −∇p+ f , (1.1)

which is a field equation for the mean velocity v of the fluid field. Sources of the motion are
the pressure gradient p and the external force density f [13]. The material constant η is the
viscosity which describes the amount of internal friction in the fluid. However, there are some
major problems solving the Navier-Stokes equation naively. As it is a non-linear equation it is
not trivial to show that the solutions obtained are stable and, therefore, of general practical
use. In fact, the prove of existence and regularity of the 3D solutions of the Navier-Stokes
equation is one of the millennium problems. The skilled scientist who will be able to solve it
receives 1 million dollars from the Clay Institute.

1.1 Low Reynolds Number Hydrodynamics

Very early in the consideration of the Navier-Stokes equation, simplifications have been in-
troduced to make it analytically more tractable. By far the most relevant one is the Stokes
equation

η∆v = ∇p− f . (1.2)

If the Navier-Stokes equation (1.1) is considered as a continuous Newton equation, on the left-
hand side all contributions can be treated as inertial forces while the right-hand side contains
the viscous forces arising due to internal friction. The Reynolds number is defined as the ratio
between these forces

Re =
Inertial forces
Viscous forces

=
ρU L

η
. (1.3)

Here U and L are the typical velocity respectively length scales in the system considered. In
systems with a low Reynolds number the viscous forces are much stronger than the inertial
ones. Therefore, the left-hand side of the Navier-Stokes equation can be neglected leading
to the Stokes equation (1.2). Phenomenologically, a low Reynolds number means that every
motion is immediately damped if it is not sustained by a permanent force. This could be
called an Aristotalian world, as Aristoteles assumed that the world can be described by a
first order differential equation meaning that the force is equivalent to a velocity and not to
an acceleration. Further, the Stokes equation is not time dependent and, hence, any kind of
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Figure 1.1: Comparison of the Reynolds numbers of humans, fish and bacteria. They cover a range
of over 108. From the seminal paper of E. Purcell [1].

motion affecting the flow field must be incorporated via boundary conditions or time dependent
forces. It has implicitly been assumed that also the "frequency Reynolds number" ρLw2/η is
small which means that the typical frequency of a motion is small.

1.2 Swimmers at low Reynolds Numbers

Due to their size and the typical length scales involved, the Stokes equation can be applied to
many biological systems. The typical example here is a bacterium as can be seen in figure 1.1.
It has a size of about 10µm and swims with a velocity of around 10 µm

s resulting in a Reynolds
number of approximately Re ≈ 10−4 [14]. Hence, such an organism cannot propel itself based
on inertia as fish or human beings do. It has to rely on a non-time-reversal stroke pattern, as
has first been pointed out by Eric Purcell in his famous Scallop Theorem [1].

Scallop Theorem

At low Reynolds numbers it can be assumed that a swimmer propels itself through the fluid
due to local interactions with the medium and, hence, no external force is applied. For further
simplifications rotation of the swimmer will be neglected. As the Stokes equation is linear
and time independent, the solutions have the following property sometimes called kinematic
reversibility [15]. The velocity U of a swimmer can be used as a boundary condition for the
Stokes equation. A rescaling of this velocity by an arbitrary factor α leads to a change of the
flow field αv as well as the pressure αp by the same factor, due to the linearity of the Stokes
equation. The form of the flow lines is thus not altered by this factor, only the magnitude
of the flow. This is especially true if α = −1 which just inverts the flow field. Bearing this
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(a) (b)

Figure 1.2: (a) The simplest version of a low Reynolds number swimmer, called Purcell swimmer, is
based on a non-time-reversal sequence of configurations. The swimmer consists of three
rods connected by two hinges. From [1].
(b) A three spheres version of the Purcell swimmer, which is analytically tractable due to
the simple structure. From [16].

in mind, it is obvious that a swimmer whose motion is based on reversible movements, like a
scallop or a fish, cannot swim under these conditions. Instead, after reversing the direction of
its propulsion, the swimmer will return to its starting point.

The Purcell Swimmer

The first minimal model of a low Reynolds number swimmer which is able to perform non-time-
reversal motion and, hence, propel itself under these conditions, was also proposed by Eric
Purcell [1]. It consists of three rods connected through two hinges as shown in figure 1.2 (a).
Such a swimmer can move its two outer rods in a sequence of configurations which returns to
the initial condition without passing a configuration twice. Even though this swimmer seems
to be rather simple, it took more than 30 years to analyze its basic properties like efficiency or
the optimal stroke pattern [17, 18]. The difficulties arise as rods are difficult to analyze with
the methods developed for low Reynolds number hydrodynamics.

An alternative model which is easier to investigate was proposed by Najafi and Golestanian [16].
It consists of three spheres connected through two rods which can vary in length as shown in
figure 1.2 (b). Due to its simple geometry it is possible to derive the flow field [12] and its
behavior in various complex situations [19, 20]. Even though there seems to be no realization
of this kind of swimmer in nature, it was possible to build an artificial version [21] which used
latex beads in an optical trap.
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This inspired a lot of experimental [3, 22–24] as well as theoretical work in the field [21, 25–
27], all considering swimmers performing some kind of non-reversal motion. However, one
of the drawbacks of such an approach is that the non-time-reversal motion has to be kept
up by mechanically driven movements of parts of the body. While this is not a problem for
a bacterium due to its internal machinery driven by molecular motors [2], it is difficult to
maintain for an artificial swimmer. In most of the experiments, this is done by an external
magnetic field which drives some kind of rotating motion [28]. However, this makes such an
approach impractical for motion in an arbitrary 3D environment, e.g. as a cargo for drug
delivery.

Gradient Driven Motion

An alternative approach for motion at low Reynolds numbers would be to use a swimmer
which is capable of orientating itself due to external or self-produced stimuli, like bacteria
do in chemotaxis [29] or phototaxis [30]. In contrast to a bacterium, the propulsion of an
artificial swimmer has to be based on rather simple physical mechanisms to yield highly
controllable motion. Maybe the oldest approach to move an object at low Reynolds numbers
is electrophoresis where the object is driven by an external electrical field [31]. This has also
been proposed on the level of a single swimmer creating the electrical field by itself [32]. In a
similar manner, thermal gradients have been used to propel so called Janus colloids through a
fluid [33]. These are spheres with two hemispheres of different materials. In the experiments
with thermal gradients silica beads half coated with gold have been used. They moved in the
spot of a defocused laser making them little radiators in the fluid. As gold conducts heat
better than silica, the thermal gradients around the colloid became asymmetric leading to a
net motion.

Even though a lot of progress has been achieved in controlling electrical fields as well as thermal
gradients at small length scales, it is still an experimentally challenging task [34]. Alternatively,
particle gradients can be imposed which are simpler to control and can be produced globally
[35] by external gradients, as well as locally by a swimmer itself [6, 36–38]. Intuitively it
seems to be clear that an object should move down such a gradient. However, the detailed
physical mechanism behind this motion is not as clear as expected and often is confused with
the motion in gaseous environment. Different approaches have been suggested [8, 39] trying
to understand especially the motion in self-produced gradients. Using the old concept of
diffusiophoresis pioneered by Derjaguin and later by Anderson [5] it has been proposed that
a colloid can move in a self-produced particle gradient by selfdiffusiophoresis. The classical
theory of phoresis assumes that an external gradient, may it be a thermal gradient, an electrical
field or a particle gradient, propels an immersed object due to an interfacial process at the
boundary between the fluid and the swimming object. Even though the interfacial zone is
narrow it can have a profound effect on the system. It has been shown in experiments by
Howse and coworkers [40] that it might also be the physical mechanism behind the propulsion
of a swimmer producing the gradient itself. For a Janus colloid the mean velocity has been
derived analytically. However, for a detailed comparison with experiments, further properties
should be considered which can only be obtained by alternative approaches like simulations.
In a closely related system of dimer swimmers producing a solute gradient, it has been shown
that simulations can be used and compared to experiments of a single swimmer [41] or more
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complex situations [42, 43].

For Janus colloids no such simulations have been performed so far. This work aims to close
this gap, especially the long time limit of such a swimmer will be addressed. This makes it
possible to compare the results with experiments where generally the long time limit is easier
accessible.

1.3 Simulating low Reynolds Number Hydrodynamics

In many soft matter systems like polymers, it is sufficient to consider that the conformations
and interactions of the objects are dominated by Brownian forces [44–49]. It can be assumed
that the hydrodynamic forces are screened by the surrounding solution on the relevant length
scales. Nevertheless, for dense systems [50] and short length scales [51] the relevance of hydro-
dynamics increases significantly. Further, if swimmers are investigated, their motion depends
explicitly on the interaction with the fluid. In classical approaches towards hydrodynamic
effects at low Reynolds numbers, approximation schemes are used to incorporate the effect of
the medium rather than simulating it explicitly. However, in order to simulate swimmers at
low Reynolds numbers their flow field is relevant. This holds especially true if the swimmer
is driven by a particle gradient as the disturbance of the particles decays on the same length
scale as the velocity field produced by the swimmer. In order to understand the significance
of the explicit modeling one has to understand the basic problems of classical low Reynolds
number simulation approaches.

Brownian Dynamics

The classical simulation technique to study soft matter systems is Brownian Dynamics (BD).
It solves the Newton equations with a stochastic force FB which is based on a white noise
random variable

m
∂v

∂t
= FB + FH + FExt, (1.4)

and can be extended to incorporate the effect of hydrodynamics with the force FH [52]. The
form of the hydrodynamic force can be deduced from the Oseen tensor G(r) given by

v(x) = G(x− x′) · F,with G(r) =
1

8π η

(
1

r
+

rr

r3

)
, r = |r|, (1.5)

p(x) = H(x− x′) · F,with H(r) =
1

4π r3
. (1.6)

The Oseen tensor is the fundamental solution of a point force δ(x−x′) F, also called Stokeslet [15].
Such approaches have for example been used to study the synchronization behavior of semi-
flexible polymers [53, 54]. In order to incorporate higher order hydrodynamics, the extended
scheme of Stokesian Dynamics [10] can be used.

These approaches are constructed to solve the Stokes equation. If, however, the fluid consists
of more than one particle type, a more complex set of equations describes its hydrodynamic
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behavior as in the case of a binary fluid

η∆v +

(
η̄ − η

3

)
∇(∇ · v) = −∇p+ f , (1.7)

∇ · v = −∆ρ

ρ

(
∂

∂t
+ v · ∇

)
φ. (1.8)

Even at low Reynolds numbers it resembles the steady-state Navier-Stokes equation. It still
describes an incompressible fluid, even though the divergence of the flow field is not zero. This
makes the solution more difficult than in the case of the linear Stokes equation.

Direct Numeric Solutions

One of the obvious approaches would be to directly integrate the Stokes equation as well
as the corresponding equation of the density gradients. Such approaches have been used to
derive the velocity of Janus particles driven by self-produced gradients. However, for more
complex situations like collective effects such equations are complex and analytical solutions
are difficult to find. This has been shown in the case of Janus colloids interacting with a
thermal field [55].

Fluid Models

An alternative approach is to explicitly model the fluid. Here, the complete hydrodynamics
are incorporated and it is possible to extend such approaches to different particle type. Clas-
sical fluid models are based on Lattice Boltzmann or Dissipative Particle Dynamics. For both
it is, however, difficult to incorporate thermal fluctuations. Therefore, in this work, the fluid is
modeled with the MPC approach which can simulate hydrodynamics at low Reynolds numbers
straight forwardly and naturally contains thermal fluctuations. It is a particle based combi-
nation of an off-lattice solution of the Newton equations combined with a collision scheme on
a lattice.

The behavior of a low Reynolds number swimmer driven by diffusiophoresis is a very interesting
question, as it couples the motion of a particle gradient to a hydrodynamic problem. For this
system only limited analytical results are available. Therefore, such a problem has to be
addressed by simulations which are able to incorporate the basic properties of the swimmer
as well as the particle gradient. This works aims to investigate this problem in the long time
limit, a problem so far considered neither with analytical nor with simulation approaches.
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In biology it is well known that bacteria can orient their motion along external stimuli like
light [30] or a particle gradient [56]. A bacterium needs a rather complicated internal infor-
mation processing to adapt its motion [57] which itself is still under debate. However, for the
macroscopic dynamic of a bacterium the details of the internal machinery are not relevant.
Therefore, different artificial chemotactic swimmers have been build experimentally in the
recent years [58–60] which alter their motion due to an external gradient. The motion of an
object and its interaction with the gradient is only based on well defined physical mechanisms
such that the motion is highly controllable. Further, experiments have been designed in which
the object is not driven by an external gradient but produces the gradient itself [6, 33, 36–
38, 41, 61]. Where the first is analyzed in the classical theory of phoresis, the second kind of
motion may be termed selfphoresis.

In this chapter, after a short introduction to phoretic effects in general, the experimental as
well as theoretical investigations of diffusiophoresis and selfdiffusiophoresis will be summarized.
Thereby, the discussion will focus on the motion of a Janus colloid. Thermodynamic arguments
will be given to show that such motion can be considered as an interfacial effect at the
boundary between colloid and fluid relying on the existence of a slip velocity. The latter will
be derived depending on the relevant parameters of the model for diffusiophoresis as well as
selfdiffusiophoresis. Finally, the necessary conditions for the application of the theory will
be critically discussed. This chapter will give the main aspects to understand the necessary
considerations behind the simulations done in chapter 4 and distinguishes phenomena often
not clearly distinct from diffusiophoresis.

2.1 Phenomenological Description of Phoretic Effects

The classical review of phoresis was given by Anderson [5] already in 1989. The four major
forms of motion driven by a gradient are identified as

• Thermophoresis =̂ Temperature gradient [62]

• Electrophoresis =̂ Electrical field [63]

• Diffusiophoresis =̂ Particle gradient without pressure gradient [5]

• Osmosiophoresis =̂ Particle gradient with pressure gradient [35].

It is assumed that the first three kinds of phoretic motion can be captured by an unified theory
based on the arising of a slip velocity at the boundary between the fluid and the solid body
which leads to a relative motion of both and will be discussed later in this chapter.
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As diffusiophoresis as well as osmosiophoresis are both based on an external particle gradient,
some confusion arised about their relation [64, 65] and the physical origin of diffusiophoretic
motion.

In order to understand the physical principles of the motion, it has to be stressed that the
motion of an object in a particle gradient differs significantly from a gaseous to a liquid
environment. If an object propels itself through the output of gas particles, like a rocket,
this can be explained by the momentum transport from the object to the gas. Similarly, if a
particle gradient along the x-axis exists which increases linearly with x and a sphere is placed
at the coordinate x0, its left hemisphere undergoes less collisions with the gradient particles
than its right. Hence, this pressure gradient moves the sphere towards smaller x. In a fluid
this cannot be the origin of motion, as becomes clear by an example given by Jülicher and
Prost [66]. As the simplest model of liquid with a gradient of one solute, a binary fluid has
to be considered consisting of two types of particles A and B. Let φ be the volume fraction of
particle type A and (1−φ) respectively the one of B. One of the simplest geometries which can
be considered is a pipe of length L along the x-direction which is connected to two reservoirs
with mixtures of the binary fluid described by the volume fractions φ1/2 and the heights h1/2.
The pressure gradient along the pipe is given by

∂xP ≈ g
ρ2 h2 − ρ1 h1

L
, (2.1)

with the densities of the reservoirs given by ρ1/2 = φ1/2ρA + (1 − φ1/2)ρB. If the densities
and heights of the reservoir are adjusted such that ρ2 h2 = ρ1 h1, there is no pressure gradient
along the channel. However, there is a density gradient of particle type A given by

∂xφ =
φ2 − φ1

L
, (2.2)

which is stable on the time scale given by the diffusion of the particles. In an experiment by
Nardi and coworkers [35], a latex bead was brought in a setup similar to the one described
above. They used two dialysis tubes between which they were able to build up a sucrose
gradient. There, no motion of the bead was observed even so a particle gradient exists. If,
however, a vesicle composed of a lipid membrane was used instead of the latex bead, it moved
along the gradient. The difference comes from the fact that a lipid membrane is transient for
the water molecules while it is impenetrable for the sucrose. As is known from osmosis, if a
semipermeable membrane separates two solutions of different solute concentration, a gradient
of the chemical potential of the solute as well as the solvent exists. By diffusion through the
membrane, the gradient of the chemical potential of the solvent vanishes while the gradient
in the chemical potential of the solute sustains. This gives rise to a pressure gradient across
the membrane. In the case of a spherical vesicle, it would be expected that it starts shrinking
as solvent is moving out of it. However, this is not happening. The osmotic effect leads to
a hydrodynamic flow through the vesicle from the low to the high concentration. Due to
momentum conservation, the hydrodynamic flow must be compensated by a momentum flow
in the opposite direction which leads to a motion of the vesicle down the sucrose gradient.
Such an object might be termed an osmosiophoretic swimmer as it is propelled by an osmotic
pressure produced across the membranes.

In the case of diffusiophoretic driven objects this cannot be the physical mechanism behind
motion. It describes the motion of solid objects in a particle gradient without pressure.
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Therefore, an alternative approach, like the one based on slip velocity discussed in this work,
has to be used. Even though both phenomena seem to be similar in nature, their large scale
behavior is completely different. A pressure gradient leads to the decay of the flow field
according to a Stokeslet as O(r−1) while a diffusiophoretic swimmer has a flow field decaying
as O(r−3) [9] which will be described in detail later on.

Even though thermophoresis, electrophoresis and diffusiophoresis have much in common, in
the course of this work only the latter one will be discussed.

2.2 Experimental Studies of Diffusiophoretic Motion

In the recent years, different experimental set-ups have been brought up for swimmers at low
Reynolds numbers which rely on gradient based motion [36, 59, 60, 67–69]. Various physical
mechanisms have been proposed to understand the origin of the experimentally observed
propulsion. There is, however, still a debate about many of the observed phenomena. This
section aims to present major experimental results of objects propelled by diffusio- as well as
selfdiffusiophoresis in non-electrolyte gradients. As most fluids naturally contain salt, they
have to be considered as electrolytes. This makes the non-electrolyte literature substantially
sparse compared to electrolyte one.

2.2.1 Diffusiophoretic Motion

The first discussion of colloids moving in gradients has already been given by Derjaguin starting
in the 1940s [70, 71]. In most experiments done later, salt has been used to impose a gradient
leading the motion of colloids, mostly latex beads [72–75] as well as DNA [76–78]. Hence, the
fluid has to be considered as an electrolyte. It has been demonstrated that the velocity of the
immersed objects is proportional to the solute gradient. Further, it has been shown that the
direction of the motion is related to the diffusion constants of the anions and cations in the
solution.

In contrast to the electrolyte version of diffusiophoresis, less is known about the non-electrolyte
one. Even though there is a lot of theoretical work about diffusiophoresis in various situations
[79–81], there is only one experiment considering the non-electrolyte version done by Staffeld
and Quinn [82]. They used a Stop-Flow Chamber, shown in figure 2.1 (a), which is able to
produce a solute gradient with the shape of a step function. This quasi 2D set-up has one
inflow at each end. It is possible to flow in solutions with different solute as well as solvent
concentrations {c1, n1} and {c2, n2}. At the middle line, there are outflows which lead to two
compartments with distinct concentrations due to a flow junction method. The horizontal
set-up assures that the results are not masked by convection. In their experiment, Staffeld
and Quinn used latex beads with a diameter of 1.01µm which were solved either in Dextran
or Percoll. The former is a slightly branched polymer of D-glucopyranose while the latter is
a polydisperse colloid solution of silica spheres coated with PVP (polyvinyl pyrrolidone) and
an average diameter of 22 nm. The basic difference between both solutes is that they interact
differently with the colloid. Phenomenologically this leads, however, to the same observations.
Due to the step function gradient in the Dextran or Pecoll, a band of latex beads forms at
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Figure 2.1: (a) Vertical scheme of Stop-Flow Chamber used by Staffeld and Quinn to produce a sharp
gradient of Dextran as well as of Percoll. At the beginning of the experiment the latex
beads are collected at the junction. The dashed line gives the position of the band of latex
beads, shown in figure (b)
(b) Time series of the band of latex beads (white line) due to the influence of the solute
gradient. While moving along the gradient the band starts to widen due to diffusion.
Adapted from: [74]

the middle of the chamber crossing the whole width of it. In this experiment, the band had
a width of 15µm making it clearly visible to the naked eye. After the flow stopped, the band
started to move due to the solute gradient, as is predicted by the theory of diffusiophoresis.
It also extended due to diffusion but stayed remarkably narrow making it easy to follow its
motion 2.1 (b). The velocity of the latex spheres can now be obtained from the motion of
the approximated middle line of the band. Assuming that the interaction between the solvent
and the latex spheres is based on a hardcore potential, Staffeld and Quinn were able to obtain
the Gibbs absorption length, which is a fundamental quantity of the theory of diffusiophorsis
and will be explained in detail in section 2.3.1. For Dextran 38 nm and for Percoll, depending
on the exact concentration, between 13 - 31 nm were obtained. This is in the same order as
the Deybe length κ−1 of a latex sphere, which is of the order of 10 nm. The Debye length
is the screening length of a colloid. For length scales above it the colloid appears to be
electrically neutral. This shows that diffusiophoresis takes place on similar length scales as
surface electrical effects.

As there is a lot of theoretical work done on classical diffusiophoresis even extending it to high
Peclet numbers [83], defined later in this section, or long range surface interactions [84], it
would be of great interest to see new experiments on this classical topic. Interesting questions
could be the behavior of gradient driven motion in complex geometries or the controlled
influence of a hydrodynamic flow.



2.2 Experimental Studies of Diffusiophoretic Motion 11

2.2.2 Selfdiffusiophoretic Motion

In contrast to classical diffusiophoresis, there are a lot of experiments addressing selfdiffusio-
phoresis where an object produces its gradient by itself rather than following an external one.
However, care has to be taken as there are experiments where it seems as if the motion arises
due to diffusiophoresis but other mechanisms are the origin of the observed propulsion. This
section distinguishes between experiments of swimmers with selfdiffusiophoretic motion and
closely related mechanisms and explains the differences between both. All of the experiments
discussed in this section are considering the motion of rods or Janus particles which are both
half coated with two different materials.

A first Hint towards Selfdiffuisophoretic Motion

The first experiment were a selfdiffusiophoretic motion was proposed have been nano rods
whose one half consists of gold while the other was composed of platinum [85], respectively
nickel [86]. These objects start swimming if they are put in a solution of water peroxide H202.
The platinum or nickel side catalyzes the H2O2 into water and oxygen and builds up a gradient
of oxygen. If the motion would be driven by diffusiophoresis, the rods should move towards
its gold end and away from the particles produced at the platinum end. However, exactly the
opposite is observed [87]. The rods move towards the platinum end. Therefore, it is assumed
that the rods act more like a battery and their motion is based on self-electrophoresis. While
the water peroxide is catalyzed at the platinum end, an electric current occurs across the rod
towards the gold end. In order to keep the water electrically neutral, H+ ions move through
the fluid from the platinum to the gold end. As is well known from electrophoresis, a free
charge moving though the fluid drags water with it and leads to a fluid flow along its way. As
the fluid can be assumed to be incompressible, this must lead to a motion of the rod in the
opposite direction [88].

Even though it has been shown theoretically that this mechanism leads to a similar scaling
behavior of the mean velocity of the swimmer as in diffusiophoresis [89], it is not clear that
it will lead to the same collective as well as long time behavior. In order to model such a
swimmer, the charges of the solvent and its structure have to be considered carefully and
may lead to effects not expected from diffusiophoresis of non-electrolyte solutions. Neverthe-
less, experiments with conducting particles have been performed and show interesting new
behaviors [90].

Selfdiffusiophoretic Motion in a H2O2 Gradient

The first experiment showing that even non-conducting spheres can produce motion if coated
with platinum was done by Howse and coworkers [6]. They used latex beads of a diameter
of 1.62 ± 0.13µm half coated with platinum, so called Janus colloids, in a H202 solution.
Tracking the mean square displacement of the spheres, they showed that an increase in the
water peroxide concentration can lead to a significant growth in the diffusion of the objects.
Using the model of a Brownian particle with intrinsic speed V , they were able to extract the
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Figure 2.2: In the experiment of Howse and coworkers it was demonstrated that a latex/platinum
Janus sphere can propel itself through a waterperoxide solution. The velocity clearly
depends on the solute concentration (black line). In contrast, a non-coated latex bead
diffuses unaffected (red line). From: [6]

mean velocity as well as the rotation diffusion time τr from their data with the formula for
the mean square displacement

∆L2 = 4D0∆t+
V 2τ2

R

2

[
2 ∆t

τR
+ e−2 ∆t/τr − 1

]
, (2.3)

here D0 is the bare diffusion coefficient of the spheres without propulsion. The results of the
experiments are shown in figure 2.2. It can be clearly seen that the velocity of the spheres
increases with the concentration of water peroxide as would be expected from the theory
of selfdiffusiophoresis, even though it seems to be saturated for too high concentrations. It
was proven that the colloids do not show increased Brownian motion in water. Hence, the
propulsion can be attributed to the water peroxide catalysis. It is reported that with the
highest concentration of H2O2 an increase in the diffusion constant of a factor of 30 can be
observed, see figure 2.3(a), which is nearly as high as would be expected from simulations
shown in chapter 4.

The effect would be even stronger, as shown in the simulations, if there would not be a
significant increase of the rotation diffusion time occurring with an increase of the H2O2

concentration, shown in figure 2.3(b). It was assumed that due to a non-homogenous platinum
coating, a net angular moment could be acting on the sphere. As the effective diffusion
constant is given by

Deff = 2D0 + V 2 τr, (2.4)

this can lead to a reduction of the effective diffusion. In simulation it can be shown that the
rotation diffusion time is not effected by the details of the propulsion mechanism. This makes
it difficult to compare the simulation results quantitatively with experiments. The long time
limit has, however, been reproduced by the simulations shown in chapter 4.
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(a) (b)

Figure 2.3: (a) The diffusion constant of a latex/platinum bead increases with the water peroxide con-
centration (black line). The diffusion constant of a control colloid is not affected at all (red
line).
(b) In contrast to the prediction of the theory, the rotational diffusion time depends on the
waterperoxide concentration. This can depend on details of the coating process. From: [6]

Selfdiffusiophoretic Motion in a Lutidine Gradient

The decrease of the rotation diffusion time has been avoided in experiments done in the
Bechinger Group using silica beads half coated with gold [61]. The beads had diameters of
2.13µm, 1.0µm and 0.5µm. Those Janus spheres were immersed in a critical mixture of
water and 2,6-lutidine, which is a miscible organic fluid. In this binary fluid the spheres
show unperturbed Brownian motion. This, however, changes drastically if the spheres are
illuminated with non a focused laser of wave length λ = 532 nm. The diffusion of the spheres
increases significantly and can be regulated via the laser intensity. As it is kept below I <
0.2µWµm−2 it can be assured that no optical forces contribute to the motion.

The mechanism behind this motion of a bead is different to the one described so far. As the
gold cap is a better heat conducter than the silica bead, the laser produces a local heating of
the solution. As is well known from spinodal decomposition [91], if a binary mixture is heated
above a critical temperature, spontaneous demixing occurs. Here, the fluid was initially kept
below TC = 307K but the local heating overcomes this barrier. This leads to a lutidine
gradient which drives the motion of the spheres.

Similar to previous experiments, the mean velocity and the rotation diffusion time can be
extracted from equation (2.3). It has been shown that the velocity increases strongly with
the laser intensity. However, the rotation diffusion time is not affected by the propulsion
mechanism as can be seen in figure 2.5. As would be expected from classical Brownian theory,
it only depends on the radius of the colloid. The rotation diffusion time is a measure of the
time an object needs to reorientate itself and, hence, to lose the information of a prescribed
direction. For times longer than this time scale, it can be assumed that the particle shows
a classical Brownian motion. This means that due to the propulsion, the time scales of the
Brownian motion is not altered. Nevertheless, the effective diffusion constant is significantly
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Figure 2.4: (a) The mean velocity of a latex/gold Janus colloid clearly depends on the laser intensity
and the radius of the bead. Adapted from: [61]
(b) The mean square displacement significantly increases with the laser intensity. The
inset shows the mean square displacement of a non-coated colloid for comparison.
Adapted from: [7]

increased as would be expected from equation (2.4). In the experiments discussed here, an
increase of a factor 200 has been reported depending on the laser intensity, as shown in
figure 2.4(b).

In contrast to what would naively be expected from theory, a significant effect resulting from
the radius of the colloids has been observed. The smaller colloids have a much higher mean
velocity than that the bigger ones, see 2.4(a). In the classical theory of selfdiffusiophoresis,
described in section 2.4, this dependence is not observed. However, the velocity should depend
linearly on the reaction constant of the catalytic reaction. It can be speculated that the smaller
spheres have a higher reaction constant due to the better volume to surface ratio.

Both experiments discussed so far show significant effects which are attributed to a motion
produced by selfdiffusiophoresis. They both show aspects which ask for further clarification
and may lead to further interesting insights. In contrast to diffusiophoresis, in the case of
selfdiffusiophoresis experiment is ahead of the theoretical investigation. Already, experiments
have been conducted investigating selfphoretic swimmers in complex geometries [7] as well as
their collective motion [77, 90].

2.3 The Classical Theory of Diffusiophoresis

As has been discussed above, it is not obvious that an object starts to move along an external
particle gradient. Here, it will be shown by thermodynamic arguments that first of all, such
motion can be expected if a lowering of the surface excess free energy is reached. Second, this
can be related to a slip velocity at the boundary between the solution and a solid body, as a
result of an interfacial process based on interfacial tension. The detailed form of the slip ve-
locity depends on microscopic parameters which give the concrete type of interaction between
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Figure 2.5: The rotation diffusion time for colloids of diameter 2.13µm, 1.0µm and 0.5µm depends on
their diameter as is expected from Stokes-Einstein relation. However, the laser intensity
does not affect it. Adapted from: [61]

the solid surface and the solution. The microscopic derivation of the slip velocity, based on
thermodynamic and hydrodynamic considerations, was given in the review of Anderson [5]
and will be explained at the end of this section.

2.3.1 Thermodynamic Argument

As the experiments show that diffusiophoresis is a mechanism for motion at low Reynolds
numbers, it has to be clarified which are the basic physical mechanisms behind this kind
of motion. As has been discussed previously, it can be assumed that there is no pressure
gradient in the system and hence no convective transport occurs. However, by thermodynamic
considerations, it can be shown that a transport of a particle from a high solute concentration
to a low one can decrease the free energy in the system. This makes the motion of the colloid
thermodynamically favorable. This line of argumentation was originally given by Anderson
and Prieve [92].

Consider a surface which can absorb or repel solute particles. A thermodynamic measure to
evaluate the strength of interaction of the surface with the solute is the so called Gibbs surface
excess concentration

Γ =
csurface − cbulk

A
. (2.5)

It relates the concentration of the solute at the surface to the concentration in the bulk.
Here, A is the size of the surface making it an intensive variable. The Gibbs surface excess
concentration is positive if the surface absorbs solute particles and negative if it repels them. It
can be related to the surface excess free energy or interfacial tension γ via the thermodynamic
relation

dγ = ssurfacedT −
∑
i

Γidµi, (2.6)

called Gibbs absorption equation [93]. Here, ssurface is the surface entropy and µi is the
chemical potential. This equation shows that in the case of an isothermal system, the change
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of the interfacial tension is proportional to the change in the chemical potential. In a dilute
suspension it can be assumed that the Gibbs excess concentration is approximately constant.
If for the chemical potential an ideal binary mixture is assumed, meaning an ideal gas equation
of state can be expected, it can be given by

µi = µi,0(T ) + kB T ln

(
ci

kB T

)
. (2.7)

Hence, in an isothermal system the change of the interfacial tension is related to the change
of the bulk concentration. If a colloid is taken from a solute concentration c1 and put into a
concentration c2, the free energy F changes according to

∆F = 4πR2(γ2 − γ1), (2.8)

which is just the integration of the interfacial tension along the colloidal surface. In order to
observe a spontaneous motion of the object, the following condition has to hold for adsorption

c2 > c1 ⇒ γ2 < γ1 ⇒ ∆F < 0,

as the Gibbs surface excess concentration is negative Γ < 0. Respectively, if the surface repels
the solute particles Γ > 0 is positive and

c2 < c1 ⇒ γ2 < γ1 ⇒ ∆F < 0.

For a continuously changing solute gradient the continuous version of equation (2.8) is given by

∇F = 4πR2∇γ, (2.9)

= 4πR2 ∂γ

∂c∞
∇c, (2.10)

=
kBTΓ

c
, (2.11)

= kBTK. (2.12)

In the last line, the Gibbs excess concentration has been substituted by the adsorption length
K = Γ/cbulk. It can be considered as the thickness necessary for a surface layer to end up
with the same concentration as in the bulk [84]. The adsorption length can be negative if
the surface is repulsive. As the Gibbs excess concentration can be obtained in experiments
[94] the adsorption length can also be calculated. The adsorption length is a fundamental
quantity of the system and one of the main results of a more detailed theory is to relate it to
microscopic quantities of the system like the interaction potential between solute and surface.

So far, it has been shown that a surface process can lead to the motion of a colloid along a
gradient. If this thermodynamic approach is used to deduce the mean velocity, wrong results
arise. This stems from the fact that such an approach would use the Stokes friction to find
the velocity which is no longer applicable for a surface active motion.

2.3.2 Relation between Interfacial Tension and Slip Velocity

In the previous section, it was shown by thermodynamical arguments that a colloid can move in
an external gradient due to surface interaction. In order to estimate the mean velocity of such
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S+

S-

Lint

Figure 2.6: The velocity field around a diffusiophoretic sphere (red) depends on the boundary condi-
tions on its surface. At length scales of the size of the sphere a slip velocity is proposed
by theory which can be used as a boundary condition of the Stokes equation. However,
a closer look reveals that on length scales Lint � R much smaller than the radius of the
sphere, the velocity of the fluid decays to the velocity of the sphere. The finite velocity
difference between the sphere and the fluid at S+ arises due to surface active processes.

an object, the thermodynamic description given above has to be coupled to the hydrodynamic
one of the solution. Here it will be shown, that this can be done through a slip velocity at
the boundary between the colloid and the fluid which serves as a boundary condition for the
Stokes equation. The relation between surface tension and the slip velocity will be clarified.

A hydrodynamic flow produced by surface tension has been widely reported in literature. As
the interfacial tension can be considered as a force per length, the tension along the interface
between two phases results in a net force. If this force is not balanced by an external force
this leads, according to the Stokes equation, to a hydrodynamic flow. This effect is called
Maragoni effect and has been observed in droplets moving along surfaces with predescribed
surface tension gradients [95, 96] or a flow produced by the surface tension of two immiscible
fluids at equilibrium [97]. It has also been suggested as a origin of the motion of self-propelled
swimmers [98, 99] and it has been stated that the slip velocity of diffusiophoresis arises due
to a similar phenomenon [5]. However, as will be seen from the general treatment given here,
a slip velocity can also arise without surface tension. Therefore, a general non-equilibrium
thermodynamic approach will be described which captures very different situations such that
a comparison between diffusiophorertic and other surface driven motions is possible. The
approach shown here summarizes work previously done by Jülicher and Prost [66].

Consider an intermediate zone of height Lint between a fluid and a solid with a normal vector
orientated along the z-axis. It can be assumed that the interfacial zone is small compared
to length scales of the Stokes equation, as shown in figure 2.6. Therefore, it can be assumed
that this zone can be incorporated in a hydrodynamic theory in a coarse grained way which
only considers averaged quantities. In the ongoing, the top of the zone will be marked by a
"+" and the bottom with a "−". If there is a finite slip velocity between the upper and lower
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boundary, this is given by
vslipi = v+

i − v
−
i . (2.13)

Further, if there is a shear stress throughout the zone, this can be defined as

σSi = εσ+
i + (1− ε)σ−i , (2.14)

here 0 < ε < 1 is a weight of the contribution of the upper and lower boundary. From non-
equilibrium thermodynamics it is known that the interfacial dissipation or entropy production
is given by

T Ṡ =

∫
dA
(
σSizv

S
i + jSi ∇iµS

)
, (2.15)

where jSi is the particle flux from the surface and µS is the chemical potential at the surface.
As is well known from linear Onsager theory, thermodynamic fluxes and forces can be obtained
from this equation as

vSi = νσSiz − α∇iµS , (2.16)

jSi = ασSiz − ξ∇iµS . (2.17)

The Onsager coefficients {ν, α, ξ} are material properties and do not depend on the boundary
conditions, which in this case means the applied gradient. In the case of a diffusiophoretic
object, no propulsion can be found if the particle gradient vanishes. Hence, the only cause of
a slip velocity is the gradient, even though there might be a surface shear due to other effects.
Therefore, the material parameter ν = 0 has to be zero and the slip velocity is given as

vSi = −κ∇icS + κ′∇iPS . (2.18)

In an isothermal situation the chemical potential at local equilibrium is given as µ(c(r), P (r)).
The coefficients above are given as κ = (α/m) (∂µS/∂C) and κ′ = (α/m) (∂µS/∂P ). Both
parameters are merely phenomenological. In order to apply them to a concrete situation they
have to be related to microscopic parameters of the model as for example the interaction
potential between fluid and solid. This will be given in the next section. One of the most
important aspects of diffusiophoretic motion is that it is force free if the object is considered
as a whole. Therefore, as the pressure is a force per surface at the outer boundary of the
interaction zone, the pressure has to match the external pressure which in this case means
that ∇P = 0 outside the surface layer even though this is not true inside.

An important point which sometimes causes confusion is that the equation relating the ther-
modynamic flux to the thermodynamic forces given in equation (2.18) only describes the
coupling of both. It should be stressed that the cause of the slip velocity is the gradient in
the chemical potential and not the shear stress. As has been shown in the previous section,
the interaction between the solute and the surface leads to a surface tension, which by force
balance in the surface can be related to the shear stress at the top and bottom of the surface
as

σ+
iz − σ

−
iz = −∂iγ(x, y). (2.19)

The scheme above can also be applied to situations where there is no difference in the shear
stress across the interfacial zone and, hence, no surface tension gradient. Nevertheless, there
can be a slip velocity as from equation (2.16) it follows that vSi = νσ+

i . This could be for
example the situation in active gels like the cytoskeleton driven by ATP hydrolysis.



2.3 The Classical Theory of Diffusiophoresis 19

S+

S-

Lint

c(y)Φ(y)

Figure 2.7: The diffusiophoretic sphere (red) moves along a solute gradient (grey shaded) and is pro-
pelled due to a slip velocity at its surface. This arises due to the local interaction of the
gradient c(y) with the short range potential of mean force Φ at the surface.

In the derivation so far, a few silent assumptions have been made. First of all, it was assumed
that the viscosity is constant across the interface. This is justified as a decrease in the viscosity
would only increase the surface slip [100]. Further, it was assumed that the particle density
rearranges on a time scale much faster than the hydrodynamic flow. This corresponds to a
small Peclet number, described in section 3.2. The small Peclet number condition also holds
in experiment.

So far, it has been shown that a particle gradient can lead to a slip velocity due to interfacial
tension. However, the description in terms of an interfacial region cannot not be directly
proven by experiments as the interface has a length Lint which is the range of nm. There-
fore, the phenomenological constant κ introduced above has to be related to a microscopic
model of the interfacial zone. This will be done in the next section for diffussio- as well as
selfdiffusiophoresis.

2.3.3 Microscopic Derivation of the Slip Velocity

As has been shown by the general thermodynamic arguments given in the previous section, it is
possible to relate the propulsion of an object in a particle gradient to an effect at the interface
between the solution and the solid body. Here, a general microscopic theory is described which
relates the mean velocity of the imbedded object to an effective slip velocity at the surface
which arises due to a microscopic potential instead of relating it to thermodynamic quantities
like the surface tension. This mainly means to find a microscopic expression for the Onsager
coefficient κ introduced in the previous section.

In most applications of the Navier-Stokes as well as the Stokes equation it is assumed that
at an interface between a fluid and a solid the no slip boundary condition can be applied.
For no slip boundary conditions it is assumed that the velocity of the fluid decays to the
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velocity of a imbedded surface on a length scale which is not resolvable within the field theory.
However, situations have been proposed like e.g. a system with a reduced viscosity close to
a surface in which a slip velocity can arise [100]. In the general theory of diffusiophoresis it
is assumed that the slip velocity arises due to the interaction of the immersed object with
the externally imposed gradient [5]. Therefore, the system is divided into two regions. In the
first one, close to the surface and characterized by a length scale Lint, already introduced in
the previous section, the Stokes equation has to be solved taking into account the interaction
between the solute and the colloid. The second one is much larger and given by LSt. Here, the
Stokes equation is force free and the effect of the solute is only incorporated via the boundary
condition at the colloid surface. Hence, it is assumed that the interaction between the external
gradient and the object only takes place in the small interfacial area Lint, see figure 2.7. The
interaction is mediated through a potential of mean force Φ(r), which can be considered as
an effective potential acting on the solute radial to the interface. The only condition onto
this potential is that it is short range meaning that it decays faster or equal to O(R−1). It is
assumed that the Peclet number in the interfacial region is much smaller than one Pe � 1.
The Peclet number Pe = U L/D compares the convective transport in a system, given by the
typical velocity U and length scale L, with the diffusive, measured by the diffusion constant D.
As this quantity is small here, the solute transport in this interfacial region is dominated by
diffusion and, hence, it can be assumed that the solute concentration is given by a Boltzmann
distribution

c = cS exp(−Φ/kB T ). (2.20)

Here, cS is the concentration at the outer edge of the surface interfacial layer Lint. Hence, the
Stokes equation in the interfacial region can be solved with an external force resulting from
the potential of mean force between the colloid and the solute particles

∂p

∂y
+ c

dΦ

dy
= 0, (2.21)

η
∂2vx
∂y2

− ∂p

∂x
= 0. (2.22)

At the outer boundary of Lint an effective slip velocity vs is obtained as

vS = −kBT
η

∫ ∞
0

y [exp(−Φ/kBT )− 1]dy
dc

dx
, (2.23)

which depends on the strength of the tangential solute gradient. Here, two length scales can
be introduced

K = Lint

∫ ∞
0

[exp(−Φ/kBT )− 1]dy, (2.24)

L =
Lint
K

∫ ∞
0

y [exp(−Φ/kBT )− 1]dy, (2.25)

where K is the Gibbs adsorption length introduced in the previous section and L is the expec-
tation value of the solute distribution. The integration variable is rescaled as y = (r −R)/Lint
where r is the distance from the surface and R the radius of the colloid. The resulting slip
velocity is given by

vS =
kB T

η
K L

dcS

dx
. (2.26)
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As has been described previously, the adsorption length can be obtained in the different
experiments. The length scale L, however, is not accessible experimentally. Mostly, it is
assumed that it is similar to the interfacial height Lint.

Using the slip velocity derived above, it is now possible to solve the Stokes equation in the
outer region with the boundary conditions

at Lint : v = U + Ω× r + vS , (2.27)
r→∞ : v→ 0. (2.28)

Here U and Ω are the velocity as well as angular velocity of the object. It can be shown that
the mean velocity of a passive driven sphere is

U =
kB T

η
K L

dc

dx

∣∣∣∣
∞
. (2.29)

Here dc
dx

∣∣∣∣
∞

is the unperturbed gradient of the solute which drives the motion. Remembering

the definition on L and K one can rewrite this result as [101]

U =
kB T

η
L2
intκ1

dc

dx

∣∣∣∣
∞
, (2.30)

with the first order integral of the form

κn =

∫ ∞
0

yn [exp(−Φ/kBT )− 1]dy. (2.31)

From equation (2.30) it can be seen that the mean velocity of a diffusiophoretic driven sphere
does not depend on its size. This is a typical property of surface driven objects. The propulsion
depends only on the square of the heights of the interaction zone. For selfdiffusiophoretic
motion size dependence has been reported but can be attributed to a more complex reaction
at the surface [102].

From the form of the velocity it is not clear how the diffusiophoretic swimmer interacts with
its environment. As the external gradient, in contrast to an external force, does not lead to a
net force acting on the object, the body is torque and force free∫

S
n · σdS = 0, (2.32)∫

S
r× (σ · n)dS = 0. (2.33)

This has significant effects on the flow field produced by the swimmer. In contrast to a sphere
driven by a Stokeslet, which decays as O(r−1), it decreases as O(r−3). As the disturbance in
the concentration filed decays like a dipole field, hence as O(r−2) [89], and the velocity depends
on the gradient of this field, effects due to hydrodynamics and to concentration disturbance
are on the same length scale. Therefore, to investigate collective effects of diffusiophoretic
swimmers it is necessary to use an approach that is able to resolve hydrodynamic as well as
concentration effects, like the MPC technique that will be described in chapter 3.
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2.3.4 Extensions to Electrolytes

The diffusiophoretic motion discussed so far has only been considering non-electrolyte solutions
as otherwise the electrical charge of the solute has to be included in the analysis. Here, a short
remark on electrolytes will be given, even though they are not relevant for this work. A slip
velocity for electrolytes has been given by Prieve [83]

vS =
ε

2πη

(
kB T

Ze

)2

ln(1− ζ2)
d ln(cS)

dx
+

εζ

4π η
ES , (2.34)

here ζ is the zeta potential describing the electric interaction between the colloid and the
electrolyte. The rest is well known material properties. The significant difference between the
mechanism described here and the non-charged version is the arising of second contribution.
The first term in the slip velocity is called chemiphoretic as it is related to the motion due to
the gradient of electrolytic concentration just as it is the case in diffusiophoreis. The second
term is the electrophoretic contribution and leads to a motion in the opposite direction. It
arises because the cations and anions in the solution do not have the same diffusion constant,
which leads to a microscopic electric field. As most aqueous solutions are electrolytes they
are much more amenable to experimental investigations and have been studied extensively
[72–78]. From a simulations perspective it is the other way around, as capturing the long rang
electrostatic interactions is rather difficult. However, there have been attempts to simulate
electrolytes [103] in the context of thermophoresis [104].

2.4 The Theory of Selfdiffusiophoresis

In contrast to diffusiophoresis, in selfdiffusiophoresis it is assumed that the object considered,
here mostly a sphere, is not driven by an external gradient but produces a gradient itself.
In the former case, the symmetry in the system is broken by the external gradient while the
colloid itself has a homogenous surface structure. If in the latter case the sphere would produce
the gradient homogeneously around its surface, e.g. through a catalytic reaction, this would
only lead to an increase in the diffusion constant but no directed motion would be observed.
Therefore, the simplest model which can produce an asymmetric particle gradient around a
spherical object is a Janus particle which has only one active hemisphere producing particles
while the other one does not. This model will be used throughout this section as well as in
the simulations done in chapter 4.

2.4.1 Fundamental Equations of the Theory

In diffusiophoresis it is assumed that the external particle gradient is only slightly affected
by the motion of the embedded object and can hence be considered as constant during the
relevant timescales. In the selfdiffusiophoretic version the gradient concentration itself becomes
a dynamic quantity as it is permanently altered by the production at the active surface.
Following Sabass and Seifert [89], here a Janus colloid is considered which converts a solute
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particle of a type A into type B particles through a catalytic reaction at the active hemisphere.
This can be done straight forwardly by using a simple field approach

∂tcA(r, t) = −∇cAv +DA∇2cA(r, t), (2.35)

∂tcB(r, t) = −∇cBv +DB

(
∇2cB(r, t) +∇

( cB
kB T

∇Φ
))
, (2.36)

η∇2v −∇p = cB∇Φ. (2.37)

The first term on the right side of the first two equations describes the motion of the educt re-
spectively product particles through a convective flow, while the second describes their motion
due to diffusion. It is assumed that the conversion takes place while the educt particles of type
A hit the surface. The particles of type B interact with the surface via an effective potential Φ
which is considered repulsive in the rest of this work but could also be attractive. It is similar
to the potential of mean force used in the microscopic derivation of the diffusiophoretic model.
The interaction with the potential is the only difference between the two particle types as it is
assumed that their relevant physical properties, here their mass mA/B = m and diffusion con-
stant DA/B = D, are equal. This is justified e.g. for 02 and H202. Finally, the hydrodynamic
velocity described by the Stokes equation is the mean velocity of a fluid element composed of
both particle types.

To solve this set of equations, boundary conditions have to be given by

erJ(A,B)(R, θ) = α(A,B)(R, θ), (2.38)

∇c(A,B)(∞, θ) = 0. (2.39)

Here, the first condition describes the conversion of the particles at the surface of the sphere
given by its conversion rate α(A,B), whose detailed form will be discussed later. The second
states that the concentrations of both particle types are constant far away form the sphere.
For the Stokes equation no slip boundary conditions can be assumed as an explicit potential
is given and no assumptions of a slip velocity have been used so far.

This set of equations is the most general possibility of describing the motion of the two particle
species. They are non-linear and in general difficult to solve. Therefore, they are solved in a
regime where the non-linearities can be neglected. This is the case if the Peclet number of the
fluid Pe� 1 is small. Hence, in a steady-state, equation (2.35) and following can be rewritten
in a non-dimensional form where the effect of the Peclet number can explicitly be seen

∇2cB +∇ · (cB∇Φ)− Pe

δ
v · ∇e−Φ = Pev · ∇cB, (2.40)

∇2cA = Pev · ∇cA. (2.41)

Here δ = cB/cB,∞ is the relative deviation from the equilibrium distribution. If it can be
assumed that the gradients in the system are small and the deviation from the equilibrium
distribution are not of the same order as the Peclet number, the final set of equations to solve
is given by

∇2cB +∇ · (cB∇Φ) = 0, (2.42)

∇2cA = 0, (2.43)

∇2v −∇p− 1

λ2
CB∇Φ = 0, (2.44)
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with λ = Lint/R. Here Lint is the typical decay length of the potential, described previously
in section 2.3.2. In order to solve this set of equations, two different approaches have been
used. The first one assumes that on the length scale of the Stokes equation the potential Φ
decays to zero and its effect can be introduced via a slip velocity at the boundary of the Janus
particle analog to the diffusiophoretic case in 2.3.3. The second approach explicitly solves the
set of equations derived above in a zone close to the surface and in one far from the surface
and uses a matching procedure to obtain the mean velocity of the swimmer. Even though
both approaches lead to similar results, the necessary conditions for the applicability differ
fairly.

2.4.2 Explicit Slip Velocity

In the approach pioneered by Golestanian [105], the surface activity of the sphere is captured
in a slip velocity which is similar to the one obtained for diffusiophoresis in section 2.3.3 and
can be written as

vS = κ(rS)∇||cB. (2.45)

This gives the boundary condition for the Stokes equation on a length scale where the potential
has decayed to zero. Here, κ is a phenomenological function which captures the specific
interaction of the solute particles with the sphere. It depends on the detailed surface structure
of the sphere as well as the microscopic potential. For a Janus colloid with particle conversion
only on one half-sphere but an isotropic surface potential, the conversion rate α and the surface
activity κ are given by

{α(θ), κ(θ)} =

{
{α0, κ0}, if 0 < θ < π

2 ,

{0, κ0}, if π
2 < θ < π,

(2.46)

where θ is the azimuthal angle. The functions {α(θ), κ(θ)} contain the catalytic activity and
the interaction of the sphere with the product particles and specify the boundary problem
completely. However, in this approach it is assumed that the concentration of the educts is
much higher than the concentration of the products cA � cB and, hence, can be assumed to
be constant throughout the system.

For equation (2.45) it is, like in the diffusiophoretic version, assumed that the Peclet number
is small, such that the process in the boundary layer as well as the relaxation of the product
concentration is controlled by diffusion.

Using the slip velocity (2.45) it is possible to solve the Stokes equation via an expansion in
the eigenfunctions of the Laplace operator [9]. With the further assumption that the Janus
particle is force and torque free it is possible to obtain the hydrodynamic flow field around the
sphere. In most experimental investigations the flow field is difficult to measure. Therefore,
it is of more general interest to determine the mean velocity of the Janus particle, which is
easier accessible in experiments. It can be obtained straight forwardly by using the so called
reciprocal theorem [105] whose detailed form will be given later in this section.

For a Janus type colloid this approach leads to the mean propulsion velocity [6]

UGolestanian =
kB TL

2
int

4 η

α0

D
. (2.47)
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Here, the surface activity is defined as κ0 = kB TL
2
int/η, similar to the form of a diffusio-

phoretic sphere in section 2.3.2. It shows the same dependence on the interaction length as
the diffusiophoresis in an external gradient. However, in contrast thereto, instead of depending
linearly on the external gradient it depends on the ratio of the production rate at the surface
divided by the diffusion constant of the products.

In this approach it is assumed that the interaction zone described by Lint is small compared
to the length scale relevant for the solution of the Stokes equation. In simulations, like the
ones described in chapter 4, it is not possible to keep this constraint as the boundary layer has
to be modeled explicitly. Otherwise, the simulation has to capture two distinct length scales
which makes it computationally inappropriate. As will be shown in the next section this is,
however, still a good first order approach.

Reciprocal Theorem

In order to derive equation (2.47), the so called reciprocal theorem [106] has been used. As
this is of general interest for objects with surface driven motion, its basic principles will be
described here. The reciprocal theorem is a straight forward approach to obtain the mean
velocity of a propelled object at low Reynolds numbers. However, if further informations
about the object are needed, like its hydrodynamic flow field, alternative approaches like the
streaming function have to be used [66]. The reciprocal theorem has previously been used
in low Reynolds number hydrodynamics [107] but has first been applied to surface driven
swimmers by Stone and Samuel [108]. The basic idea is to consider two solutions of the Stokes
equation with the same boundary condition at infinity. The solutions are given in terms of
the velocity fields u and u′ as well as the shear tensors σ and σ′. The first solution gives a
flow field which is produced by the boundary conditions at the surface S(t) of an immersed
object. The second is produced by a Stokeslet force acting on the object. Due to the principle
of virtual work and the linearity of the Stokes equation it can be shown that∫

S(t)
nσ′ · u dS =

∫
S(t)

nσ · u′ dS, (2.48)

with n the outwards normal of the surface. As the for the solution with an external force
the surface velocity is equal to the propulsion velocity u′ = U′, it does not contribute to the
integral on the right-hand side of equation (2.48), which now becomes the total force of the
first situation and is, hence, zero. If on the left-hand side the surface velocity is decomposed
into the propulsion velocity U and the surface velocity us it yields

F′(t) ·U(t) = −
∫
S(t)

nσ′ · us dS. (2.49)

If it is further used that the force of a Stokeslet is given by F′ = −6πηRU′ and the shear
tensor by σ′ = (−3η/2R) U′, it follows that the mean propulsion of a surface driven swimmer
is

U(t) = − 1

4πR2

∫
S

us dS. (2.50)
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In the case of a selfdiffusiophoretic Janus particle the velocity at the surface is given by the
slip velocity described in equation (2.45),us = vs, yielding

U(t) = − 1

4π

∫
κ(rS)∇||C(R, θ, φ, t)dΩ. (2.51)

This makes it quite easy to obtain the mean propulsion with this approach. However, if
convection disturbs the product concentration considerably, a more general approach should
be applied as described in the next section. Similar to the mean velocity of an object, its
angular velocity can be obtained by the same approach

Ω(t) = − 3

8πR2

∫
S

n× us dS. (2.52)

In the recent years, the reciprocal theorem has been applied to many different kinds of swim-
mers at low Reynolds numbers [105, 109, 110].

2.4.3 Matching Procedure

In order to obtain results behind the assumption of a small surface layer, Sabass and Seifert
explicitly solved the Stokes equation in the interaction zone as well as outside and used a
matching procedure and the Pade approximation to find the mean velocity of a selfdiffusio-
phoretic Janus particle. This approach has previously been used by Anderson and coworkers
to derive the propulsion velocity of a diffusiophoretic particle in an external gradient [101].
For the Stokes equation the boundary conditions here recast the classical ones of a colloid in
a fluid, which are no slip at the surface and zero at infinity

v(r = rS) = U, (2.53)
v(r→∞) = 0. (2.54)

For practical reasons, most calculations are done in the rest frame of the colloid, leading to a
mean velocity of the sphere as [89]

USabass =
kB TL

2
int

3 η

α

D
. (2.55)

It can easily be extended to larger interaction zones

U(λ) ≈ USabass

/[
1 + λ

(
κ0 +

7κ2

2κ1
+
Pe

δ

M

2
+
N

κ1

)]
. (2.56)

It still has to be assumed that the interaction between the colloid and the products has to
take place in an area in which diffusion dominates. However, the condition is not as strict as
in the approach used by Golestanian but has to be λPe � 1. This states that if the Peclet
number becomes larger due to convection, the ratio of the interaction zone height and the
radius of the Janus particle has to decrease.

The results of Golestanian and Sabss only deviate from each other by a prefactor. The factor
κn is defined as in equation (2.31) andM as well as N are similar defined integrals not relevant
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for the result. Finally, δ = cB/cB,∞ is the deviation of the local product concentration from
its concentration at infinity.

With this approach and numerical solutions it is possible to show that for lager interaction
zones the velocity scales less than linearly with its length Lint. Further, the interaction
potential has only a quantitative effect on the propulsion velocity.

2.4.4 Assumptions of the Theory

The general applicability of the theory described in section 2.4.1 is still under debate [111, 112]
as the proposed slip velocity has only been observed experimentally under very strong thermal
gradients [113]. This asks for further experiments, also investigating the other phoretic effects
as for example diffusiophoresis.

The main assumption for the motion of a selfdiffusiophoretic Janus particle is that the Peclet
number is small. It is a necessary condition to ensure that the process in the surface layer,
mainly the equilibration of the product concentration, is dominated by diffusion and not by
convection. Care has to be taken as in the literature [26] the Peclet number has sometimes
been defined using the diffusion constant of the propelled object rather than the of the solutes.
This quantity can be larger than one, as this diffusion constant is significantly smaller than
the one of the solute particles.

In general, a dilute concentration of the solute particles, whether the educts or products, is
assumed, often stated as cA/B a3 � 1, where a is the size of the the solute molecules. Therefore,
it is a valid assumption that the solute molecules only interact via elastic collision and hence
an ideal gas equation of state can be expected. This is justified as in most experiments using
water peroxide, the concentration is below 10%. If H2O2 is used for the propulsion of the
swimmer it can be assumed that from a physical point of view it has the same properties as
H2O. It might be that in a more detailed theory of diffusiophoresis the weakly acid nature of
water peroxide has to be considered. For the effect on the surface tension it has been shown
that there is no significant difference between both constituents [114].

Further, it has to be ensured that the time scale separation necessary for the theory can also
be obtained in the respective experiments. For the problem considered here, the two relevant
time scales are the diffusion time of the solvent molecules τD = R2/DA/B and the rotational
diffusion time τrot = 1/(2Drot). For the theory to be applicable it has to be assured that
τD � τrot. Using the Stokes-Einstein relation this can be recaptured to be a � R. Here a
is the radius of the solvent molecules and R is the colloid radius. In experiments with water
peroxide the solvent size is in the range of ∼ Å and the colloid has a diameter ∼ µm. As the
propulsion mechanism does not affect the time scale separation, it stays a valid approximation.
Otherwise, the rotation of the colloid has to be incorporated in the field equation via an extra
term eθrDrot∂θcA/B.

Finally, for the field theoretical approach given by the Stokes equation to hold, it has to be
ensured that the local equilibrium condition is valid in the fluid as well as in the surface layer.
For the latter it is necessary that the solute molecules are much smaller than the typical height
of the interaction zone a� Lint. The relaxation of the hydrodynamic flow field is much faster
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than the time scale of the particle conversion. Therefore, it can be assumed that in the surface
layer the particle gradient is balanced by a local pressure gradient even though outside the
layer the pressure gradient vanishes.

All the conditions above naturally apply to the experiments done so far. However, to go a
step further, there is an urgent need to develop the standard theory of diffusiophoresis beyond
these approximations. Especially, it would be interesting to extend it further to bigger solvent
molecules where the hydrodynamic description might not be sufficient. Then, such ambitious
approaches as to apply diffusiophoresis to other phenomena like cell division [46] could be
studied in detail.

2.4.5 Motion in Confinement

So far, mainly the mean velocity of a freely moving selfdiffusiophoretic Janus particle has been
considered. In order to use such an artificial swimmer for practical applications, its behavior in
more complex situations has to be analyzed. Using the explicit description of the slip velocity
given in equation (2.45) it was possible to derive expressions for the Janus particle confined
in a spherical environment. For the mean velocity two correction terms have been found due
to the confinement [9]

Ubound = Ufreeχ1(ε)χ2(ε), (2.57)
here ε = Rbound/R is the ratio of the radii of the confinement and the colloid. The hydrody-
namic contribution χ1(ε) < 1 is smaller than one, as vortices can arise due to the confinement,
resulting from the reflection of the hydrodynamic field at the boundaries. This reduces the
hydrodynamic back flow responsible for the propulsion of the swimmer. The diffusive con-
tribution is always greater than one χ2(ε) > 1, as the boundaries lead to an increase of the
particle concentration around the swimmer. For small ε the diffusive contribution dominates,
which can lead to a sustainable increase of the velocity, in contrast to a decrease proposed
in [22]. The effect of the diffusive contribution is only correct for a sufficiently small particle
concentration produced by the swimmer. If the concentration becomes to high, the ideal gas
equation of state of the product particles breaks down as the higher order correlation becomes
significant. In the limit of large ε, both contributions cancel each other out. This can be un-
derstood qualitatively as follows: The hydrodynamic flow field of a phoretic swimmer decays
as O(r−3) and the concentration gradient decays as O(r−2). For the motion of the swimmer,
however, the gradient of the concentration is relevant and hence, both effects decay equally.
The effect of the confinement becomes relevant for both contributions on the same length
scale. Even though there have been experiments on the effect of confinement and complex
geometries on the behavior of the swimmer [7], a detailed experimental study of the velocity
of a Janus particle in confinement is still lacking.

Another interesting question is the effect of a cargo on the swimmer. Using again equation (2.45)
for the slip velocity, this has already been addressed [115]. It was shown that the connection
between the cargo and the colloid is highly relevant for the propulsion speed. Experimentally,
it has been proven that the cargo leads to a decrease of the swimmer velocity [116]. In a
further set of experiments, it has been shown that the cargo leads to a stabilization of the
motion of the swimmer. This can be seen by highly straight trajectories leading to an increase
of the rotation diffusion time [40]. Simulations of a dimer swimmer lead to results confirming
that this kind of motion could be expected [39, 117].
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Figure 2.8: Considering the symmetric and antisymmetric surface pattering separately, different scal-
ings arise on various time scales which cannot be observed for a classical Brownian colloid.
They arise due to the altered particle distributions around the colloid.

2.4.6 Longtime Limit of the Swimmer

In an experiment, it is rather difficult to extract the short time behavior of a swimmer while
the long time behavior can be obtained more easily [6, 7]. In simulation it is vice versa as the
long time limit is much more time consuming than the short time limit and computational
time is always a bottleneck in simulations [117, 118]. From a simulation point of view this
work is the first one which tackles the long time limit of a selfdiffusiophoretic swimmer in
detail.

In most experiments the mean velocity of the swimmer can only be derived through the
mean square displacement of a Brownian particle with an internal velocity v0 [119]. However,
Golestanian [120] was able to derive an expression for the diffusion constant of a surface active
swimmer with an arbitrary surface structure

Deff =
kBT

6πηR︸ ︷︷ ︸
hydrodynamic

+
v2

0τR
3︸ ︷︷ ︸

asymmetric

+
c1α0kBTκ

2
0

3η(πDR)2︸ ︷︷ ︸
symmetric

. (2.58)

Here, c1 = 1.1781 is a numerical constant coming from the derivation and α0 the conversion
rate at the surface. The diffusion constant was obtained using the velocity derived with
the reciprocal theorem. This was used to determine the autocorrelation function of such a
swimmer. With this result, it is straight forward to find the mean square displacement via

∆L2(t) = 〈[r(t)− r(0)]2〉 =

∫ t

0
dt1

∫ t

0
dt2〈v(t1) · v(t2)〉. (2.59)

The hydrodynamic contribution recaptures the Stokes-Einstein relation. While the symmetric
contribution depends on the structure of the surface described by the surface activity κ0 as
well as the conversion rate α0, the asymmetric contribution only depends on the internal
velocity v0. Even though the diffusive regime has been recaptured in the long time limit for
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time scales smaller than the rotation diffusion time t� τrot, various other regimes have been
found, as shown in figure 2.8. This shows that the propulsion cannot only be described by a
colloid driven with an intrinsic velocity as is described in many active systems [121, 122], but
the coupling of the swimmer to the solvent leads to a profound set of new behaviors.

Recently, it has been shown that for a colloid producing particles symmetrically, hydrody-
namic effects have to be incorporated to observe the expected t3/2 regime in the mean square
displacement [123]. With a SRD/MPC simulation this regime should in principle be address-
able. It is, however, quite difficult to match all the necessary time scales in this regime. In
experiments [6, 7, 118] as well as in simulations with SRD/MPC, see chapter 4, the asymmetric
contribution to the diffusion coefficient has been clearly visible.

2.5 Conclusion

In this chapter, the motion of a diffusiophoretic as well as a selfdiffusiophoretic colloid has
been discussed. It has been shown that for both kinds of motion there are experimental
evidences and theoretical approaches explaining their basic properties. However, there are
open questions for both phenomena which have not been consistently explained in literature.

Diffusiophoresis

The classical theory of diffusiophoresis describes the motion of a colloid in an electrolyte as
well as a non-electrolyte particle gradient at low Reynolds numbers. In contrast to a gaseous
environment the propulsion mechanism in such a regime cannot be based on momentum
propagation. Therefore, it is proposed that the colloid is driven by a surface active process
which leads to a relative slip velocity between the fluid and the colloid surface. The slip
velocity as well as the net propulsion velocity of the colloid are proportional to the local
particle gradient. It is assumed that the interaction between the colloid and the particle
gradient takes place at a very narrow region Lint around the colloid which is significantly
smaller than the scale of the flow field around the swimmer. However, the slip velocity scales
with the square of this interaction length. Even though this seems to be a basic approach to
propel objects at low Reynolds numbers only very few experiments have been performed to
study this mechanism in detail. Especially for non-electrolyte gradients, only one experiment
has been conducted by Staffeld and Quinn which confirms that the velocity of the colloids can
be correctly derived from the theory.

The theory of diffusiophoresis, however, has been extended in various directions as e.g. dif-
ferent environments like channels or different kinds of surface structures. However, beside the
experiments of Staffeld and Quinn, there is no systematic study of the motion of particles in
external gradients which try to understand the influence of the environment or other bound-
ary conditions. As a particle gradient is an ideal guiding line for the motion of an object at
low Reynolds numbers, avoiding the drawbacks of mechanically driven swimmers, this exper-
imental gap should be closed. Further, the theory as well as the experiments so far have only
addressed a colloid in a solute gradient with solute molecules significantly smaller than the
colloid itself. However, if the solute particles have a similar size as the colloid, the classical
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theory based on field descriptions should not hold any longer. This could be a possibility to
study the transition from a discrete description to a field equation.

Selfdiffusiophoresis

Inspired by the classical approach of diffusiophoresis, selfdiffusiophoresis has been proposed
as an alternative to propel a swimmer at low Reynolds numbers. Experimentally, Janus
colloids have been used that are able to produce asymmetric particles gradients themselves.
These are mainly latex beads which are half-coated with gold respectively platinum. The
coated hemisphere catalyzes e.g. H2O2 into water and oxygen. It has been observed that
this leads to a significant increase of the diffusion constant which increases with the square
of the intrinsic velocity of the sphere. This has previously been predicted by the theory of
selfdiffusiophoresis [120].

For colloids driven by a self-produced gradient, experiments have been set up which consider
the effect of the environment [7] and their collective behavior [77, 90]. Theoretically, less is
known about such situations as the coupling of the hydrodynamics to the evolution of the
motion driving field is analytically difficult to address. So far, such situations have only
been investigated for colloids coupled to self-produced thermal gradients [55]. However, in
models for chemotaxic bacteria [124], mimicked as brownian spheres with a constant velocity,
interesting new phenomena and collective behavior have been found due to the interaction of
the object with a chemoattractant as well as a repellent [125, 126]. For selfdiffusiophoretic
swimmers, similar behavior can be expected, especially as not only the direction depends on
the particle gradient but also the magnitude of the velocity.
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3 Multiparticle Collision Dynamics

The Navier-Stokes as well as the Stokes equation describe the hydrodynamics of systems in
terms of field variables like the mean velocity v(r, t) or the density n(r, t). Considering smaller
and smaller objects, the discrete nature of the system becomes apparent. The smooth field
variables show small scale thermal fluctuations, paradigmatically shown in the Brownian mo-
tion [127], ubiquitous at length scales in the µm range. The classical simulation techniques to
address hydrodynamic behavior are Lattice Boltzmann Simulations (LB) and Dissipative Par-
ticle Dynamics (DPD). The former is a lattice based method to solve the discrete Boltzmann
equation while the latter is an off-lattice technique using soft potentials. In both techniques
it is rather difficult to incorporate thermal fluctuations. An alternative approach towards
hydrodynamics, used in this work, is Multiparticle Collision Dynamics (MPC) which natu-
rally contains thermal fluctuations. It combines the advantage of a lattice with the one of
an off-lattice approach. It consists of the integration of Newton’s equation of motion in free
space and local collisions of the fluid elements on a lattice. For the local collisions, different
approaches have been introduced. In this chapter, between the two most common ones will
be distinguished. The first one, based on a microcanonical ensemble, is termed Stochastic
Rotation Dynamics (SRD) while the second one, based on a canonical ensemble, is just called
Multiparticle Collision Dynamics (MPC). The simulations performed for chapter 4 are based
on a canonical ensemble and therefore the MPC version is used.

This chapter introduces the MPC as well as the SRD algorithm, describes their basic properties
and discusses the differences. It will be shown that both algorithms lead to thermodynamically
consistent results and exhibit hydrodynamic behavior in the long time limit. The details of the
implementation will be explained, with a focus on the necessary parameter to obtain the correct
hydrodynamic behavior. It will be described how the results of a simulation can be mapped
to the "real world" which requires an understanding of the meaning of units in simulations.
Finally, the advantages of the MPC approach towards alternative techniques, especially LB
and DPD, will be discussed. There is an increasing literature of applications of the MPC
algorithm to many soft matter systems, making it a field of intensive research. In order
to appreciate the results of these applications a profound understanding of the underlining
technique is necessary.

3.1 The Basic Principles

The MPC approach is a particle based simulation technique consisting of N point particles.
Their velocity and space coordinates are updated through a streaming and a collision step. In
the streaming step, the particles can move freely in space according to Newton’s equation of
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Figure 3.1: Basic scheme of a MPC/SRD algorithm. (a) Updating of the particles according to New-
ton’s equation. (b) Imposing a grid for the collision step. (c) Local rotation of the particle
velocities conserving total momentum.

motion

ri(t+ ∆t) = ri(t) + vi(t)∆t+
fext
2m

∆t2, (3.1)

vi(t+ ∆t) = vi(t) +
fext
2m

∆t, (3.2)

where fext can be an arbitrary external force like gravity. In most situations treated in this
work, fext will simply be zero. During the streaming step the particles do not feel each other
and can cross the path of other particles without interactions. In order to mimic the collisions
between particles, relevant for the behavior of a real fluid, a multi-particle collision step has
to be applied. Therefore, the particles are sorted into a cubic lattice with a lattice constant
a0. For a simulation to show hydrodynamic behavior the total momentum of a system has to
be conserved if no external force is applied. As in the MPC approach all particles have the
same mass this is equivalent to conserve the mean velocity. This is naturally received as the
collision operator is only applied to the velocity of each particle relative to the mean velocity
vi,c = vi − vCξ in the respective cell. Therefore, the new velocity of a particle is given as

vi(t+ δtc) = vCξ + Ω[vi,c]. (3.3)

Here ξ is the cell coordinate to which a particle is assigned. The detailed form of the collision
operator Ω depends on the approach used and will be discussed in the next section. The
collision operator stochastically changes the particle velocity as a coarse grained description
of their various interactions while it preserves the total momentum. The MPC approach is
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a generalization of the Direct Simulation Monte Carlo Method (DSMC) pioneered by Bird
[128], which instead uses only two particle collisions.

The particles of this approach should not be considered as fluid atoms like in a Molecular
Dynamic Simulation (MD). They should, similar to the DPD approach, be considered as
the collective effect of many fluid molecules, like the "Blobs" introduced in polymer theory
by de Gennes as a coarse grained level of description [129]. In de Gennes argument, large
segments of a polymer are treated due to their resulting effect onto the macroscopic behavior
of it. Here, the fluid particles are mainly carrying the momentum of the fluid.

3.1.1 Microcanonical Collision Step (SRD)

A first microcanonical collision operator Ω was introduced by Malevanets and Kapral around
2000 [130, 131]. This approach will be termed Stochastical Rotation Dynamics (SRD) in this
work as has become common in literature. They suggested the use of a set of rotation matrices
ωαi as these naturally conserve momentum and energy. The precise form of the rotation and the
rotation axis can be chosen arbitrary as long as semi-detailed balance is satisfied, which will be
explained in the context of the thermodynamic properties of the algorithm in section 3.3. In
practice, two implementations have been widely used. In one, it is randomly chosen between
rotations around the three coordinate axes with an angle ±α. In the second, the rotation axis
is drawn completely random. Both models lead practically to the same results [132]. Non of
these algorithms conserve angular momentum. The consequence thereof will also be discussed
together with the hydrodynamic properties of the algorithm in section 3.3. Nevertheless, it is
possible to modify the approach towards angular momentum conservation.

In SRD, the rotation angle α is a free parameter which defines the transport coefficients of the
fluid like its diffusion constant or viscosity. The global behavior of a fluid depends on a set of
transport coefficient e.g. to distinguish between a laminar and a turbulent flow. Therefore, the
parameter can be used to tune the simulation. However, as all transport coefficients depend
on this parameter, certain restrictions in the chosen regime occur as will be discussed in detail
in section 3.2. As the SRD approach also conserves energy if an external field is applied,
the fluid temperature increases due to viscous heating. In order to overcome this, isothermal
(canonical) approaches have been suggested like the ones described in the next section. Most
of these are, however, significantly slower than the classical SRD approach.

3.1.2 Canonical Collision Step (MPC)

There are two distinct approaches towards an isothermal algorithm. The first one consists of
a simple rescaling of the particle with respect to a certain temperature or energy distribution.
The other one applies the Anderson thermostat to the relative velocities.
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Rescaled SRD - Collision

The rescaling approach conserves the temperature in a system by multiplying the relative
velocities of the particles after the collision step with a constant α as follows

vnewi,c = αvi,c. (3.4)

This rescaling factor can be determined locally or globally. As the rescaling factor is applied to
the relative velocities the profile of the flow field is not alter. Such a schemes is termed profile-
unbiased. In general, the rescaling factor is determined with respect to a given temperature T

α =

√
3(Nc − 1)kB T

m
∑Nc

i=1 v2
i,c

, (3.5)

where Nc is the number of rescaled particles. This leads to a local Maxwell-Boltzmann distri-
bution of the relative velocity but neglects particle fluctuations. Further, the energy as well
as the particle density are not reproduced correctly [133]. Nevertheless, it gives the viscosity
within a sufficient error and flow profiles can be reproduced correctly. As the approach is
additionally relatively fast, it might be applied in situations where the local distributions are
not crucial.

A further rescaling possibility is the so called Maxwell-Boltzmann-scaling thermostat (MBS).
Here, the velocities are rescaled with respect to a fluctuating local kinetic energy

αMBS =

√
2E′k

m
∑Nc

i=1 v2
i,c

, (3.6)

where Ek is drawn from the energy distribution obtained from the local Maxwell-Boltzmann
distribution for the relative velocities

P (Ek) =
1

Ek Γ((3(NC − 1)/2))

(
Ek
kB T

) 3(Nc−1)
2

exp

(
− Ek
kB T

)
, (3.7)

with Γ being the Gamma function. This approach reproduces the correct local distribution of
the relative velocities including the particle fluctuations. Further, the distribution of energy
and particle density are obtained correctly. However, drawning the fluctuating energy from the
corresponding probability distribution is computationally extremely costly. The effect on the
correlation functions and transport coefficients of the system will be discussed in section 3.4.

MPC Collsion

Instead of a rescaling procedure, a thermostat can directly be applied to the fluid during the
collision step. Therefore, the so called Anderson thermostat is used, which randomly draws
the new relative velocities vran

j directly from a Maxwell-Boltzmann distribution characterized
by the desired velocity

vi(t+ δtc) = vCξ + vran
i −

∑
j∈cell

vran
j

NC
. (3.8)
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with NC being the number of particles in a cell [134]. The last term on the right side ensures
that the momentum is conserved. Due to historical reasons, this approach will be called
Multiparticle Collision Step (MPC) in this work. In literature, the terms SRD and MPC are
not distinguished as strictly as will be done here.

The Anderson thermostat approach is related to the Langevin thermostat given by the classical
Langevin equation which samples the velocity fluctuations around a steady state arising due
to white noise. It can be shown that these two thermostats are equal in certain regimes if
momentum conservation is imposed on the Langevin approach. Actually, there has been an
MPC algorithm introduced based on a Langevin thermostat. It has, however, not gained
significantly attention as it has similar properties as the Anderson thermostated version [135].

As in the MPC algorithm a random number for each velocity component has to be drawn per
particle, the approach is up to a factor of two slower than the SRD version, where only one
random number per cell has to be obtained. However, the loss of speed can be compensated
as the relaxation time of the MPC fluid decays with the number of particles as ln(N)−1 where
in SRD the relaxation times increases. For the SRD, the particle number per cell should be
between 3− 20 to ensure that the internal relaxation can be neglected [136] for MPC no such
limitation exists. The differences in the transport coefficients between the SRD and MPC
approach will be discussed in section 3.4.

3.1.3 Anguar Momentum Conservation

In contrast to Dissipative Particle Dynamics the MPC and SRD algorithms do not conserve
angular momentum. The procedures can, however, be extend to an angular conserving version
straight forwardly [137] by introducing an additional term

vi(t+ δtc) = vCξ + Ω[vi,c] +mΠ−1
∑
j∈cell

{rj,c × (vj,c −Ω[vj,c])} × ri,c. (3.9)

Here, Π is the moment of inertia tensor of the particles in the cell and ri,c = ri − rCξ and
vi,c = vi−vCξ are again the coordinate as well as the velocity with respect to the center of mass
of the particular box. In the case of the SRD collision, this extension does not preserve energy
anymore. This can only be adjusted by a further rescaling step as discussed above [133]. In
the following, the angular and non angular momentum conserving versions of the algorithms
are distinguished by adding ±a, as has become conventional in literature.

The momentum propagation in a classical fluid is described by a symmetrical stress tensor.
If angular momentum is not conserved a further asymmetric contribution arises. The Navier-
Stokes equation can be derived from the stress tensor but is only indirectly affected. The
asymmetric contribution leads to a further contribution to the viscosity but does not change
the general form of the equation. Hence, the resulting flow field does qualitatively show the
correct behavior even though there might be small quantitative deviations. Also, the transport
coefficients of the fluid are affected by the angular momentum conservation as can be seen in
figure 3.2 (a).

The shape of the flow field is not effected if the boundary conditions are given by velocities,
but in the case of force boundary conditions spurious effects can occur. If the system of a
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Figure 3.2: (a) The diffusion constant D depending on the mean free path λ, measured in units of
the grid size a0. The red circles are MPC+a simulations and the blue squares are MPC−a
simulations performed for this work. Both are in excellent agreement with the analytical
results. The angular momentum conservation leads to an increase of the diffusion constant.
(b) The radial distribution function g(r) of a SRD+a and a MPC+a fluid, as was given
previously in the literature, figure adapted from Nouguchi et al. [137]. Only the MPC
approach, depicted by the red curve, shows the flat behavior expected from analytical
results. All other techniques lead to deviations for small distances. Here, lc is the mesh
size of the grid.

Couette flow is investigated where an inner and an outer cylinder rotate with the same angular
velocity Σ, no torque should act on the cylinders. However, for simulations without angular
momentum conservation significant torques have been observed at the inner and out boundary
[138]. The inner and outer torque do not match which is attributed to a finite-size effect.

It has further been shown by Noguchi [137], that the radial distribution g(r) significantly
differs between SRD+a and MPC+a as can be seen in figure 3.2 (b). The radial distribution
measures the density modulation of a system. For a system with an ideal gas equation of state
like the SRD and MPC approaches it should be flat. For SRD+a this is clearly not the case.
For a small mean free path significant deviations from the flat curves appear. These decrease
with the particle number per cell but still persist. These small time steps are necessary to
observe the correct fluid like behavior as is described in section 3.4.2. This effect has previously
been observed in DPD simulations [139]. It arises due to the lack of time reversibility of the
SRD+a algorithm in contrast to all versions of MPC±a. Therefore, the SRD+a algorithm
should not be applied for small collision times.

In most simulations of soft matter systems like vesicles [140] or bacteria [141] a low Reynolds
number is needed which only can be obtained with small collision times. Therefore, in this
work the MPC+a algorithm is used.
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Figure 3.3: (a) If a flow in x direction is imposed on the system without grid shifting the diffusion
constant depends on the direction. This effect vanishes with increasing mean free path λ,
measured in units of the grid constant a0. The simulations shown here use a MPC−a
algorithm with a particle density n = 10.

3.1.4 Grid Shifting

As the MPC algorithm is a mixture of a lattice and an off-lattice algorithm, it suffers from
similar drawbacks as the Lattice Boltzmann (LB) approach, namely a lack of Galilean in-
variance imposed by the grid. If the mean free path λ of the particles is smaller than the
cell size a0 certain particles are in the same collision cell for consecutive steps, which leads
to a break down of the molecular chaos assumption. As the mean square path is given by
λ = δtc

√
kB T/m, this effect is especially significant for small collision times. The particles

are pre-correlated before a collision step. Their correlation depends on the imposed flow field.
This can be seen by the self diffusion coefficient of a system with homogenous flow along one
direction, as shown in figure 3.3 (a).

In order to overcome this artificial behavior, Ihle and Kroll suggested a grid shifting procedure
[142]. Before each collision step, the grid is shifted by a random value between (−a0/2, a0/2),
such that each fluid particle is rotated in a new environment. They could show that this
procedure significantly reduces spurious lattice effects for systems with and without flow [143].

So far, the basic constituents of the MPC as well as SRD algorithm have been described.
It has been shown that it is based on simple principles which make it an efficient approach
towards hydrodynamics. In section 3.3.2, it will be shown that based on these principles it can
be proven that the algorithm reproduces the correct hydrodynamic as well as thermodynamic
behavior. This is important, as it ensures that the proposed algorithm gives reliable results
even for problems where a comparison with analytical results is no longer possible.
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3.2 Hydrodynamic Numbers in SRD/MPC

In order to describe the behavior of a fluid, hydrodynamic numbers have been introduced to
distinguish different regimes. For an SRD fluid the significance of these numbers has first
been discussed by Padding and Louis [144]. Here, a brief review will be given discussing the
properties of the most important ones as well as their constraints in the MPC algorithm.

Mach Number

The Mach number compares the velocity of a flow of the fluid or of an immersed object with
the sound propagation in the medium

Ma =
vS
cS
. (3.10)

Hence, it is not an intrinsic property of the fluid but depends on the situation investigated. The
sound propagation in a classical fluid is extremely fast, in the order of 103 m/s. However, as will
be discussed in section 3.3.3, particle based simulation techniques are much more compressible
than Navier-Stokes fluids and, therefore, have a reduced speed of sound propagation. This
leads also to an increase of the Mach number. Effects of the Mach number, however, scale
only with Ma2. Hence these effects can be neglected if the square of the Mach number is
smaller or equal to the Reynolds number [145]. The Mach number does not have to be as
small as for a real fluid, but in order to keep it sufficiently short, the following constraint of
the flow velocity in a MPC fluid vS ≤ 0.1 cS has been proposed in literature [144] and holds for
most applications [146, 147]. Here, the sound velocity can be derived form the equipartition
theorem as the MPC fluid only contains kinetic energy. If applications with higher velocities
should be considered, the MPC extensions described in section 3.3.3 should be used.

Knudsen Number

The Knudsen number compares the typical mean free path λ of the fluid components with the
typical length scales in a system Ltyp, e.g. the radius of an colloid

Kn =
λ

Ltyp
. (3.11)

It is the relevant parameter for the Chapman-Enskog expansion discussed in section 3.3.2.
From literature it is known that for Kn ≥ 10, the continuum description of the Navier-Stokes
equation breaks down. However, even for Kn ≥ 0.1, significant effects of the discrete nature
of the fluid can be observed [144]. In water at room temperature, the mean free path is of the
order of 3 · 10−10 m. If a colloid of micrometer size is considered in the fluid, the Knudsen
number is Kn ≈ 10−4. In the SRD/MPC algorithm, this can only be achieved with a very
small mean free path or large colloids. Such a simulation would be extremely time consuming.
In the simulations considered in this work, the Knudsen number is between Kn ≈ 0.1− 0.01,
which means that the discrete nature of the fluid should become apparent by fluctuation of
the relevant variables.
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Reynolds Number

The most famous hydrodynamic number is the Reynolds number, which compares the inertial
to the viscous effects in a fluid. It is classically given by

Re =
vtyp Ltyp

ν
. (3.12)

Here, vtyp and Ltyp are the typical velocity respectively length scale in a system and ν the
kinematic viscosity. It should be recaptured, that the kinematic viscosity has the unit of a
diffusion constant and measures the diffusion of velocity fluctuations. For small Reynolds
numbers, the system is dominated by viscous effects which damp all kind of motion immedi-
ately and reduce the Navier-Stokes equation to the much simpler Stokes equation as time and
convective derivative vanish(

∂v

∂t
+ (v · ∇)v

)
︸ ︷︷ ︸

∼Re

= ν∆v +
∇p
ρ

+
f

ρ
. (3.13)

For biological or nanotechnological applications, the Reynolds number is of the order of
Re ∼ 10−6, which is not feasible in particle based simulation techniques like the SRD/MPC ap-
proach. In most applications of the algorithm the Reynolds number is between Re ∼ 0.1−10.
This means, deviations in the stream lines of hydrodynamic flows can be observed due to
inertial effects [144].

Peclet Number

The Peclet number is closely related to the Reynolds number as it measures the significance
of directed motion over diffusion

Pe =
vtyp Ltyp

D
. (3.14)

Here again vtyp and Ltyp are the typical velocity and length scale in a system. However, in
the literature some confusion can be found discussing the nature of the diffusion constant.
Considering swimmers or bacteria, the diffusion constant is the one of the object embedded in
the fluid, which typically leads to a Peclect number in the order of Peswim ∼ 102 [29, 40, 141].
This means, the direct transport is considerably stronger than the diffusion. On the other
hand, if surface effects are of interest like for a selfdiffusiophoretic swimmer, considered later
in this work, the diffusion constant considered is the one of the components of the fluid. This
leads to a Peclet number in the order Pe ∼ 10−2 [89, 105]. In a SRD/MPC fluid, the Peclect
number ranges for a swimmer or a Colloid from Pe ≈ 102 − 103 and for the fluid itself from
Pe ≈ 10−1 − 102.

Schmidt Number

The Schmidt number will be discussed in detail in section 3.4.2 to distinguish between the
collective and the Brownian regime of the velocity autocorrelation function. It is given by

Sc =
ν

D
, (3.15)



42 3. Multiparticle Collision Dynamics

comparing the diffusive velocity transport given by the kinetic viscosity to the mass transport
due to diffusion. As will be described in section 3.4.2 for Sc ≈ 1 the system behaves gas
like, while for Sc � 1 fluid like behavior is observed. The Schmidt number is inversely
proportional to the square of the mean free path of the SRD/MPC approach Sc ∼ 1/λ2. For
classical simulation parameters of λ ≈ 0.1 − 0.01, Schmidt numbers between Sc ≈ 101 − 102

can be obtained. This is sufficient to simulate hydrodynamic behavior with the algorithm
and of the same order as other approaches like Lattice Boltzmann and Dissipative Particle
Dynamics.

Relations between the Hydrodynamic Numbers

So far five, hydrodynamic numbers have been discussed, describing a plethora of different
hydrodynamic regimes. However, these numbers cannot be varied independently from each
other. It can be shown that they are related by the following relations [144]

Sc ∼ λ−2, (3.16)
Re ∼Ma ·R · λ, (3.17)

Pemax ∼ λ−2 ·Re ∼ λ−1 ·Ma, (3.18)

here again, R is the radius of an embedded colloid and λ the mean free path of the fluid.
As has been discussed previously, the Mach number should be kept small by considering only
systems with sufficiently slow hydrodynamic flows. Further, in order to guarantee sufficient
small Schmidt and Reynold numbers, a small mean free path should be used. This also leads
to an increase in the Peclet number. As the mean free path is given by the collision time of the
algorithm, it could be decreased arbitrarily. However, for reasons of computational efficiency,
collision times between τ ≈ 0.1− 0.01 are used.

3.3 Thermodynamic and Hydrodynamic Properties

In order to prove that the SRD/MPC fluid recaptures the static and dynamic properties of a
classical Navier-Stokes fluid, the following points have to be clarified

(i) Does the simulation show the expected equilibration behavior?

(ii) Does the algorithm show Navior-Stokes-like behavior on large length scales?

(iii) Does the approach obey an ideal gas equation of state?

The first two issues will be addressed naturally while investigating the dynamics of the algo-
rithm. The last point is a first step towards an interpretation of the fluid, extensively done in
section 3.4.

3.3.1 Equilibration of the SRD/MPC Fluid

Different approaches have been used to investigate the theoretical foundations of the SRD/MPC
fluid. Here, kinetic theory is used to discuss the equilibration of the fluid model [148]. The
basic principles of the theory will be outlined briefly and applied to the SRD/MPC algorithm.
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The starting point of the investigation is the Liouville equation, first introduced by Malevanets
and Kapral [130] and later refined by Ihle [149]

P (V(N),X(N) + V(N)δtc, t+ δtc) = CP (V(N),X(N), t). (3.19)

This equation describes the evolution of the complete probability distribution of the system
during the streaming and collision step where X(N) = {x1, . . . ,vN} and V(N) = {v1, . . . ,vN}
are the positions and velocities of the constituents of the fluid. The collision operator on the
right-hand side is given by

CP (V(N),X(N), t) =
1

‖Ω‖L
∑
ΩL

1

ad

∫ a

0
db(d)

∫
dV(N)(t+ δtc)P (V(N)(t+ δtc),X

(N), t)

(3.20)

×
N∏
i=1

δ(vi − Vζ − ω̂ζ [v̂i −Vζ ]).

The delta function gives the selected operator for a particular collision and
∫ a

0 db(d) is the
integration over the possible shifting vectors discussed in section 3.1.4. The center of mass
velocity Vζ depends explicitly on the shifting procedure as this decides which particles are in
the same cell.

The central equation of the kinetic theory is the Boltzmann equation, which describes the
evolution of the one particle distribution function of the system. This distribution gives the
probability that there is a particle at certain point in the system. The Boltzmann equation
can be derived from the Liouville equation using the assumption of molecular chaos, which
states

P (V(N),X(N), t) =

N∏
i=1

P1(vi,xi, t). (3.21)

It is assumed that the distribution of the system can be rewritten as the product of one-particle
distribution functions neglecting correlation between the particles. For the SRD/MPC fluid,
this assumption is justified for mean free paths of the fluid particles being larger than the grid
constant a0. For simulations with smaller mean free paths, there is an effect on the transport
coefficients which will be discussed in section 3.4. One aspect often not discussed when using
the molecular chaos assumption, is that it neglects the hydrodynamic back-flow effect which
leads to the long time tails in many autocorrelation functions. The contribution of the back
flow to the response coefficients of the SRD/MPC fluid will also be stated in section 3.4.

The distribution above can be written in terms of the one particle distribution function
f(vi,xi, t) = N ∗ P1(vi,xi, t). Here N is the total number of particles in the system as
P1 in contrast to f distinguishes between different particles. The Boltzmann equation can
now be obtained as

f(v,x + vδtc, t+ δtc) = CBf(v,x, t). (3.22)
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The collision operator here is

CBf(v,x, t) =

∞∑
n=1

e−ρζ

n !

1

ad

∫ a

0
db(d)

∫
dV(N)(t+ δtc)

n∏
i=1

fi(v(t+ δtc),x, t) (3.23)

1

‖Ω‖
∑

Ω

δ(v − Vζ − ω̂ζ [v̂ −Vζ ]).

The prefactor on the right-hand side accounts for the fact that the number of particles in a
cell is Poisson distributed. The density ρζ is the one of a particular cell with coordinates ζ.

One of the major results of the classical kinetic theory for gases is the H-Theorem which shows
that the following inequality is correct

H(t) ≥ H(t+ δt), (3.24)

with the functional H(t) defined as

H(t) =

∫
dv(t)dxf(v(t),x, t+ δtc) ln(f). (3.25)

The functional H(t) decreases continuously during the evolution of the distribution f(t) of
a closed system. It can be shown that this is equivalent to the statement that the entropy
increases. If it can further be shown that particle density, momentum and energy are conserved
quantities, a Gibbs distribution is the lower bound of the H-Function. Using the Boltzmann
equation 3.22 for the SRD fluid a H-Theorem can be proven as the SRD fluid is constructed to
conserve these moments. The microcanonical distribution function of this approach is given
by

P (V(N),X(N), t) = Aδ

(
β

2N

N∑
i=1

‖vi‖2 −
d

2

)
δ

( N∑
i=1

[vi − u]

)
, (3.26)

with u being the mean velocity of the system, which converges to a Maxwell - Boltzmann
distribution in the limit N → ∞. The MPC is constructed to give this kind of distribution
at equilibrium. Numerical results indicate that the algorithm is ergodic and sample this
distribution homogeneously. A necessary condition for ergodicity is that the phase space
measure is invariant under the flow resulting from the streaming and collision step. For the
streaming step, the invariance is obvious as it only shifts the space coordinate. In order to
prove the invariance for the collision step two conditions have to be fulfilled. The probability
of a certain collision operator must not depend on the velocity of any particle and the semi-
detailed balance condition has to hold∑

j

Wj i = 1 ,∀i. (3.27)

That means the total flux towards every microscopic state of the system is equal [150]. Both
conditions are satisfied by the algorithm with the following transition probability

Wj i = p
(
V(N)(t+ δtc) = ω̂(V(N)(t)) |V(N)(t)

)
, (3.28)

with ω̂ a specific rotation matrix. For lattice gases, Henon has shown that semi-detailed
balance is a sufficient condition for an H-Theorem [151]. So far, it has been shown that the
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algorithm obeys an H-Theorem if the molecular chaos approximation is correct. However, as
has been stated previously, that is not always the case for the algorithm. A more general
prove would be to show that the simulation obeys detailed balance which is a necessary and
sufficient condition for an H-Theorem

PiWi j = PjWj i. (3.29)

This equation states that there is no probability flux in the system at equilibrium. If detailed
balance is fulfilled, semi-detailed balance is also given but not vice versa. For other simulation
techniques, like e.g. DPD, detailed balance has been proven for various circumstances [152,
153]. There exists no such general proof of detailed balance for the SRD/MPC algorithm yet.

For a 2D MPC system with rotation angle ±α detailed balance can be proven [154]. Basically,
it has to be shown that the inverse rotation occurs with the same probability as the forward
rotation. This assumption can be made for all version of the SRD/MPC fluid as far as
boundary conditions can be neglected.

So far, it has been shown that under certain conditions it can be assumed that the SRD/MPC
algorithm leads to the correct equilibration behavior while no general proof exists. Therefore,
in order to ensure that the results of a simulation show the correct equilibrium behavior, care
has to be taken.

3.3.2 Hydrodynamic Behavior of the Algorithm

Even though the algorithm conserves momentum by construction this does not necessarily
mean that on large length scales a Navier-Stokes behavior can be observed. However, here
it will be shown that the SRD/MPC technique leads to the correct large scale behavior even
if, as will be discussed later on, the stress tensor of the algorithm is not symmetric in every
circumstance.

Basically, two approaches have been applied to deduce the Navier-Stokes equation from the
algorithm, on the one hand discrete projection operator techniques [131], on the other hand
a Chapman-Enskog expansion [130]. Here the approach of Ihle [149] for an Chapman-Enskog
expansion [155] is outlined shortly as it also accounts the collision contribution for transport
coefficients in contrast to the older approach by Malevanets and Kapral [130]. For the details
of the collision contribution see section 3.4.1. A Chapmann-Enskog expansion leads to the
same results as the projection method and is more straight forward to apply. Further, it can
be used for a broader field of systems like for active ones as the complete gradient expansion
of a set of field equations can be derived.

The starting point of the Chapman-Enskog equation is the Boltzmann equation discussed in
the previous section 3.3.1. Instead of the collision term, there, a pre-averaged expression is
used

CE(f(v,x, t)) =
1

‖Ω‖
〈〈〈
∞∑
n=1

e−Mζ

n!
n f(v̂1, x, t)δ(v −Uζ − [v̂1 −Uζ ]) (3.30)

×
n∏
i=2

f(v̂i, xi, t)〉v̂〉x〉b.
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The first average 〈. . . 〉v̂ is over all pre-collision velocities, the second 〈. . . 〉x is over all positions
of the n = 2 . . . N other particles in a collision. Finally, the last term sums over all possible
shifts of the grid.

The Chapman-Enskop expansion is based on the assumption of a small parameter ε, which can
be related to the Knudsen number Kn. For a discussion of the Knudsen number see section
3.2. As a first step the left-hand side of the Boltzmann equation is expanded in terms of the
collision time δtc, leading to

f(v,x + vδtc, t+ δtc) =
∞∑
k=0

τk

k!
(∂τ + uα ∂)f(v,x, t). (3.31)

From here on, it is assumed that ∂τ = ∂t. After rescaling the spatial ∂α → ε ∂α and temporal
∂t → ε ∂t derivative in terms of the expansion factor ε, the latter is expanded in the same
parameter

∂t = ε ∂t1 + ε2 ∂t2 , (3.32)

where t1 can be treated as a convective time scale and t2 as diffusive time scale. Finally, the
collision term and the distribution function are also expanded leading to the Enskog equation

∞∑
k=0

(ε τ)k

k !
(∂t0 + ε ∂t1 + · · ·+ vα ∂α)k [f0 + ε f1 + ε2 f2 + . . . ]︸ ︷︷ ︸

=f

(3.33)

= C0 + ε C1 + ε2 C2 + . . .︸ ︷︷ ︸
=CE

.

Defining the operator L = ∂t0 + vα∂α and collecting terms of the same power in ε leads to

O(ε0) f0 = C0, (3.34)

O(ε1) τ L f0 + f1 = C1, (3.35)

O(ε2) τ ∂t1 f0τ L f1 +
τ2

2
L2 f0 + f2 = C2. (3.36)

As f0 is the equilibrium distribution equation 3.34 shows that it is a fixed point of the collision
operator C0. The local collision invariants of the algorithm are Jk = {1,v, v2

2 }. Multiplying
each of them with the equation of the order ε and performing a thermal average leads to the
dissipativeless Euler equation. In order to get the Navier Stokes equation the first and the
second order term in ε have to be combined,

τ [∂t1 f0 +
1

2
L (f1 + C1)] + f2 = C2. (3.37)

Multiplying this equation again with the collision invariants and performing a thermal average
gives

∂tρ+ ∂α(ρuα) = 0, (3.38)

∂t(ρuα) + ∂β(ρuαuβ) + ∂α − ∂β(σcollαβ + σkinαβ ) = 0, (3.39)

∂te+ ∂β(uβ[e+ p]− uα)[σcollαβ + σkinαβ ]− [κcoll + κkin])∂βT ) = 0. (3.40)
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For detailed expressions of the moments 〈JnCm〉 necessary to find these expressions see [149].
During the derivation it has been assumed that the SRD/MPC fluid obeys an ideal gas equa-
tion of state p = ρkBT . For a justification therefore see the next section 3.3.3.

Here, the kinetic contribution of the macroscopic stress tensor is symmetric and can be iden-
tified as

σkinαβ = ρ(x)νkin
(
∂αuβ + ∂βuα −

2

d
δαβ∂γuγ

)
. (3.41)

This result recaptures the stress tensor of a Navier-Stokes fluid with a bulk viscosity γ = 0
and the kinematic viscosity defined as ν = η/ρ. The collision part, however, is in contrast to
its classical result asymmetric

σcollαβ = ρ(x)νcoll∂βuα(x). (3.42)

It can be shown that νcoll = νcollsymm + νcollasymm consists of a symmetric and an asymmetric
contribution.

This is one of the fundamental differences between a Navier-Stokes and a SRD/MPC fluid
and arises because the simplest version of the latter does not conserve angular momentum
due to the multi-collision step. This result has been obtained previously with different ap-
proaches [156, 157]. If the angular conserving version of the SRD/MPC fluid is considered, the
asymmetric contribution to the collisional stress tensor vanishes [138]. The Chapman-Enskog
procedure can give an expression for the response coefficients in terms of the microscopic
parameters of the simulation. Their detailed form will be discussed in section 3.4.

3.3.3 The Equation of State

One result from the Chapman-Enskog expansion, which is not obvious from the brief outline
given here, is that the SRD/MPC algorithm obeys an ideal gas equation of state [158]

p = ρkBT. (3.43)

As a consequence, the fluid is, in contrast to a classical Navier-Stokes fluid, compressible,
as there are no internal forces between the fluid particles beside the collisions. One effect
arising from this is that the sound velocity in this kind of approach is slower than in a real
fluid. Further, this means that there is a maximum speed in the simulation after which the
simulation is not applicable, since the Mach number has to be kept small, as discussed in
section 3.2.

If a incompressible fluid or dense gas is investigated, an intermolecular potential has to be
mimicked in the spirit of a viral expansion

P = ρkBT +
1

3V

∑
i

〈ri · Fi〉, (3.44)

where Fi is the force onto a particle exerted by all other particles in the system. In a standard
SRD/MPC fluid this force is obviously zero. However, introducing a further step in the
collision procedure can lead to a non-ideal contribution to the equation of state

P = ρkBT +

(
1

2
√

2
+

1

4

)
AM2

2

kBT

a∆t
+O(A3T 2). (3.45)
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(a) (b)

Figure 3.4: (a) The lattice with lattice constant 2 a0 has four different collision possibilities: horizontal
σ1 and horizontal σ2 as well as diagonal σ3 and σ4. From: [159]
(b) The static structure factor S(k, t = 0) obtained from derivatives of the pressure (open
ciricles) and directly from the density correlation function (filled circles). The solid line
shows the analytic prediction. From: [160]

The non-ideal pressure term comes from the following additional procedure

• impose a second grid with box length 2 a

• apply a grid shifting procedure as in the classical SRD/MPC algorithm

• select two cells according to figure 3.4 (a) and determine the center of mass velocity un

• project the the difference of the center of mass velocities on the vector connecting the
two cell centers ∆u = d12 · (u1 − u2)

• if ∆u < 0, no collision is performed, otherwise the probability of a collision is drawn
from the probabilty

pA = Θ(∆u) tanh(Λ), Λ = A∆uN1N2. (3.46)

Here, N1/2 are the numbers of particles in the respective cells. The constant A can be tuned
to alter the non-ideal contribution in the equation of state. As a collision rule, there are the
same procedures possible as for a classical SRD/MPC algorithm. As the algorithm inherits the
dynamic properties of the underlining MPC/SRD approach the algorithm is able to reproduce
hydrodynamic behavior. In oder to prove that it leads to the correct thermodynamic results,
the following equation can be used

S(k, t = 0) = ρkBT
∂ρ

∂p

∣∣∣∣
T

. (3.47)

The left-hand side is the structure factor. It is the Fourier transform of the density correlation
function. On the right-hand, side thermodynamic quantities are given. Both sides can be
measured with the algorithm and compared as has been done in figure 3.4 (b), which shows
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an agreement of both results. Finally, it is not clear that the extended procedure conserves
detailed balance. The proof used for the classical algorithm cannot be used as this approach
has a velocity depended collision step and leads to a contraction of the phase space volume.
Nevertheless, using projector methods the transport coefficients of the simulation have been
obtained in terms of the parameters of the algorithm. They nicely agree with simulation
results. Therefore, the extended algorithm can be considered as a first step towards simulations
of fluids with higher speed of sound which would be necessary to investigate the effect of
pressure gradients.

3.4 Response Coefficients and Correlation Functions

In the previous sections, the static and dynamic behavior of the fluid have been investigated.
It has been found that the SRD/MPC fluid shows the correct long time limit and has an
ideal gas equation of state. In the dynamic equations response coefficients like the viscosity
have been introduced merely phenomenologically. Here, these coefficients are related to the
microscopic parameters of the algorithm giving the possibility to distinguish certain regimes
of the simulation. Further, it will be discussed how well these analytic expressions agree with
numerical results.

The analytic expressions can be derived through various approaches like kinetic theory or
Chapman-Enskog expansion. Here, they are obtained through Green-Kubo relation [161].
This shows the natural connection between the response coefficients and the corresponding
autocorrelation function.

3.4.1 Viscosity

The viscosity η is determined using the Green-Kubo relation (GK) for the shear correlation
function, depicted in figure 3.5(b),

η =
ρ τ

N kB T

∞∑
n=1

〈σxy(0)σxy(n τ)〉e, (3.48)

here, σxy is the macroscopic stress tensor of the system of interest. The ensemble average
is over an equilibrium distribution as it is assumed that the system is only slightly out of
equilibrium. Otherwise, the GK relations are not applicable. For the SRD/MPC fluid the
derivation of the viscosity uses the microscopic expression for the stress tensor known from
kinetic theory. Also, this expression can be split in a kinetic and a collision part [162]

σkinxy = −
∑
j

vjx(n τ) vjy(n τ), (3.49)

σcollxy = −1

τ

∑
j

vjx(n τ)Bjy(n τ). (3.50)

This directly links the stress to momentum flux. The kinetic part describes the flux due to
the streaming step. The collision contribution arises because of the grid shifting during the
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Figure 3.5: The simulations shown here are based on a MPC−a algorithm developed for this work.
All simulations use a 24a0 × 24a0 × 24a0 grid with a particle density n = 5.
(a) The viscosity η increases with the mean free path λ, measured in units of the grid
constant a0. For large mean free paths there are significant error bars as the Green-Kubo
relation used here does not converge sufficiently. Better results could e.g. be obtained
using the mean square displacement of the colloid.
(b) The shear correlation function shows a significant decay on a short length scale for
λ = 0.1 (red) and λ = 1.0 (blue). The anticorrelation, well reported in literature, is less
strong for smaller mean free paths.

multicollision step. The stochastic variable [162]

Bjβ(n τ) = ζsjβ((n+ 1) τ)− ζsjβ((n τ)− τvjβ(n τ), (3.51)

takes the underlying lattice structure into account. Here ζs is the cell coordinate during the
shifting procedure. It has the following temporal correlation

〈Bjα(n τ)Bjβ(mτ)〉e =
a2

12
δαβ(1 + δij)(2δn,m − δn,m+1 − δn,m− 1). (3.52)

Further, it was shown numerically that 〈Bjβ(n τ)〉 = 0 [157]. The kinetic as well as the
collisional contributions to the shear tensor do not depend on the cell coordinate during the
streaming even though it has been reported in literature otherwise [142]. However, that was
expected because if the grid shifting procedure reproduces Galilean invariance there should
not be any dependence on the lattice structure. The appearance of the coordinates of the
shifted lattice do not conflict with this as it only approximates for the momentum flux.

This becomes more obvious if the origin of the two contributions is considered. Therefore,
instead of the viscosity the kinematic viscosity is used ν = η/ρ, which rescales the former with
the local density. It has the unit length square per time and, hence, can be considered as a
diffusion constant of the momentum flux

∂δv

∂t
= (νkin + νcol)︸ ︷︷ ︸

ν

∇2δv. (3.53)
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In appendix A it is shown that the kinetic contribution scales like

νkin ∼ λ

δtc
, (3.54)

where λ is the mean free path. This dependence indicates that the kinetic part accounts for
the random walk like motion of the particles in the fluid carrying momentum with them.

The collisional contribution to viscosity scales like

νcol ∼ a0

δtc
, (3.55)

where a0 is the cell length of the grid. The momentum "jumps" from one cell to the next
without mass transport. Nevertheless, both parts contribute to the momentum diffusion in
system as can be seen from equation (3.49).

It should be mentioned that the temperature dependence differs between a Navier-Stokes
fluid and a SRD/MPC fluid. For the former one, the kinetic part of the viscosity scales with
the square root of the temperature νkinNSF ∼

√
T , while for the latter one, it scales linearly

νkinSMF ∼ T . This behavior results from the possibility of the latter to tune the mean free path
independently from the density as in the streaming step particles do not feel each other.

From the expression above it is obvious that the kinetic contribution dominates for λ � a0,
while the collisional contribution dominates in the opposite regime. In general, in both regimes
the analytical expressions agree very well with the numerical results [132, 135, 163]. Even the
long time tail of the shear stress correlation could be reproduced [164],

〈σxy(0)σxy(t)〉 ∼
(kB T )2

ρd(d+ 2)

(
d2 − 2

(8πνt)d/2
+

1

(4πΓ)d/2

)
, (3.56)

where d is the dimension and Γ is the sound attenuation, which will be explained in detail
together with the thermal diffusion coefficient later in this section.

3.4.2 Diffusion Constant

The diffusion constant of the fluid can either be obtained from the mean square displacement
〈(ri(t)− ri(0)〉 or via a GK relation, given by the decay of the velocity correlation function in
figure 3.6

D =
τ

2m

∞∑
n=0

〈vi(0) · vi(n τ)〉. (3.57)

The general form of the diffusion constant of the SRD/MPC algorithm is given by

D =
kBTδtc
m

(
1

sm
− 1

2

)
, (3.58)

where sm is given by the decay of velocity autocorrelation function of the particular method
and depends on its parameters. As the mean free path is given by λ = (δtc/a0)

√
kBT/m, it

can be seen that the diffusion constant scales similarly to the kinetic part of the viscosity. As
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Figure 3.6: (a) The simulations shown here are based on a MPC−a algorithm developed for this work.
They use a 24a0 × 24a0 × 24a0 grid with a particle density n = 10.
The velocity autocorrelation function CV (t) =< v(0) · v(t) > / < v(0)2 > is obtained with
the MPC algorithm for a mean free path λ = 1.0 a0 (red dots) and λ = 0.1 a0 (blue
squares), where the latter decays significantly faster. The long time tail cannot be seen
clearly.
(b) Simulations of the autocorrelation functions with the SRD algorithm. As for MPC,
the simulation with the smaller mean free path decays faster and for it, the long time tail
can be guessed, leading to a slower decay on longer time scales. From: [165].

expected, there is no collisional contribution to the diffusion as the multiparticle step does not
lead to a particle motion.

Nevertheless, there are two distinguishable regimes in the velocity autocorrelation function
defined by the Schmidt number Sc = ν/D, see section 3.2. For a small Schmidt number the
relaxation of velocity fluctuations in the fluid is dominated by diffusion as would be expected
in a gas like system. For a larger Schmidt number collective effects have to be accounted and
fluid like behavior arises. In SRD, the dependence of the Schmidt number from the mean free
path is given by [144]

Sc ≈ 1

3
+

1

18λ2
. (3.59)

That explains the decay of the velocity autocorrelation function of a SRD algorithm in figure
3.6(b). For small mean free paths, the system behaves fluid-like. This has two effects. First of
all, the diffusion constant decreases which leads to a faster decay of the correlation function
as 〈v(0) · v(t)〉 ∼ e−D t. Second, the hydrodynamic long time tail ∼ t−3/2 is approached
early and slows down the decay. This can be seen in the break down of the molecular chaos
approximation for simulations with mean free path below λ < 0.5. From the short time decay
of the autocorrelation function it would be assumed that the equation (3.57) is dominated
by the exponential decay. However, for small λ the long time tail significantly contributes to
the time average. In the MPC algorithm this effect is not as distinct as in SRD, as shown in
3.6(a). However, as it is neglected in the derivation of the analytic expression for the diffusion
coefficient in SRD as well as MPC considerable deviations can be observed as can be seen
in figure 3.7 (a). If, however, the effect of correlation due to consecutive collision with the
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Figure 3.7: (a) The MPC+a algorithm, developed for this work, shows a deviation from the analytic
result for small mean free paths λ. The diffusion constant is measured by the decay of
the velocity autocorrelation function. Here, the relative deviation of the analytical result
from the measured one is shown. For the simulation a grid of size 24a0 × 24a0 × 24a0 is
used with a particle density n = 10.
(b) It was previously reported in literature that the SRD−a algorithm shows similar
deviations from the analytic result. From: [165]

same particles in a collision box is incorporated this deviation decays. As both algorithms are
developed to investigate hydrodynamics in soft matter systems it is important to incorporate
higher order correlations in the system and hence use the approach in the collective regime
with a sufficient high Schmidt number.

3.4.3 Thermal Diffusion Constant

The thermal diffusion constant, describing the energy transport in the system, is derived from
the following Green Kubo relation

DT =
τ

5 ∗ cp V kB T

∞∑
n=0

〈Jq(0) · Jq(n τ)〉, (3.60)

with Jq the energy flux of the fluid and cp the specific heat at constant pressure. As there
are, beside the multiparticle collisions, no interactions between the constituents of the fluid
the energy flux Jq has the following form [132]

Jq(n τ) =
∑
i

[(
cv T −

v2
i (n τ)

2

)
∆ζi(n τ)

τ︸ ︷︷ ︸
streaming

+
1

2
∆v2

i (n τ)
∆ζSi (n τ)

τ︸ ︷︷ ︸
collisional

(3.61)

kB T vi(n τ)︸ ︷︷ ︸
mechanical

]
.
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Figure 3.8: The normalized structure factor shows very good agreement between analytical results
(lines) and simulations (symbols) with a thermostated SRD−a algorithm. The use of the
MBS thermostat leads to decreasing sound peaks and even stronger decreasing thermal
peaks. The former are also shifted to higher frequences. From: [166].

The first and second contribution are the change of the internal energy due to the streaming
and collisional motion. The third part is the mechanical contribution per particles as discussed
before due to the ideal gas equation of state, see 3.3.3.

In contrast to the density, the energy can be transported through the collision and the stream-
ing step. Therefore, the thermal diffusion constant has two contributions. For a 3D SRD fluid,
one obtains for the kinetic part

Dkin
T =

kBTδtc
2m

(
3

1− cos(α)− 1
+

6

ρ

[
4

5
− 1

4
csc2(

α

2
)

])
, (3.62)

and for the collisional part

Dcol
T =

a2

15 ρ δtc

(
1− 1

ρ

)
[1− cos(α)]. (3.63)

Both contributions scale similar to the respective counterpart for the viscosity, which shows
that the same physical transport phenomena contribute to them.

Classically, this transport coefficient has been measured with the Green-Kubo relation given
above [157, 162] or in terms of kinetic theory [156, 167], where in the latter the thermal
conductivity κ is measured and the relation κ = cV DT is used. Here, cV is the specific heat
capacity at constant volume. Contrary to the viscosity and the diffusion constant which are
not affected by a rescaling procedure, strong effects have been found on the thermal diffusion
constant. In order to understand these effects an alternative approach to measure the thermal
diffusion has been introduced based on the dynamic correlation function respectively the
Laplace transformed

SAiAj (k, ω) =

∫ ∞
0

dt

∫
d(r− r′) eiωt−ik·(r−r

′)
〈
[Ai(r, t)− 〈Ai〉] [Aj(r

′, 0)− 〈Aj〉]
〉
, (3.64)
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where Ai is a hydrodynamic variable like the density ρ or the momentum density g. This
function can be used to analyze the hydrodynamic modes contained in a system [168]. The
density-density correlation function is called the dynamical structural factor and has the fol-
lowing well known form [91]

Sρρ(k, ω) = 2kBTρ

(
∂ρ

∂p

)
T

[
(cv/cp)c

2k4Γ

(ω2 − c2k2)2 + (ωk2Γ)2
+

(1− cv/cp)k2Dt

ω2 + (k2DT )2
− (3.65)

(
1− cv

cp

)
(ω2 − c2k2)k2DT

(ω2 − c2k2)2 + (ωk2Γ)2

]
.

Here, cp/v is the heat capacity at fixed pressure respectively volume, c is the speed of sound
and Γ is the sound attenuation. Since the SRD/MPC fluid has an ideal gas equation of state
the capacities are given by the classical result cp = kB/m + cv = (d + 2)kB/2m. The sound
attenuation of the algorithm deviates slightly from the ideal fluid

Γ = DT

(
cp
cv
− 1

)
+ 2

(
d− 1

d

)
νkin + vcol. (3.66)

In the ideal fluid the prefactor of the kinetic contribution would apply for the total kinematic
viscosity ν. As can be seen from figure 3.8, the dynamical structure factor has three maxima
which correspond to three longitudinal modes in the system

ωtherm = −iDT k
2 and ωsound = ±c k − i

2
Γ k2. (3.67)

The width of the peaks is given by DT k
2 and Γ k2 for the thermal (Rayleigh) and the sound

(Brillouin) mode. In the hydrodynamic limit k → 0 the thermal peak is at ωtherm = 0 and the
sound one ωsound = ±c k. If for the thermal diffusion and the kinetic viscosity the analytically
obtained results are used and the sound viscosity is given by c =

√
2kBT/m the structure

factor nicely agrees with simulation results for an SRD thermostat without a fit parameter.

However, the result significantly alters if a thermostat is applied to the fluid as in the case
of MPC or an SRD fluid with an MBS procedure described in section 3.1.2. For an MBS
thermostat fluid it has first been shown by Huang and coworkers [133] that the central peak of
the structure factor vanishes and Brillouin peaks are shifted towards a smaller frequency. This
shift shows that the sound mode propagates with the isothermal sound velocity cT instead of
the adiabatic velocity cS . Both velocities are related through the relation cS =

√
γ cT with

γ = cp/cV . The vanishing of the central peak was attributed to the lack of energy transport as
the thermostat leads to the correct energy distribution on the cell level. However, it was shown
by Hijar and Sutmann [166] that it is a bit more subtle. They applied the MBS thermostat
not every time step τ but every ntherm > 1 step. Based on the fluctuating hydrodynamics
formalism introduced by Landau and Lifschitz [169], they extended the linear hydrodynamic
equations by a periodically applied fluctuating energy source and were able to derive an
expression for the structure factor Sρρ which depends on the periodicity of the thermostat.
Using this result they were able to show that none of the transport coefficients of the SRD fluid
are effected by the thermostating procedure even not the thermal diffusion constant. Hence,
the procedure neither influences the momentum nor the energy flux of the fluid model. The
central diffusive peak disappears due to the modification of the relaxation time scale due the
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thermostating procedure. In classical Navier Stokes fluid the typical relaxation rates are given
by τ−1

S = cTk for the relaxation due to sound modes and τ−1
l = Dlk

2 and τ−1
therm = γ DTk

2

for the diffusive longitudinal momentum and thermal relaxation. They satisfy the following
relations

τ−1
S � τ−1

l , τ−1
therm, (3.68)

which show that sound modes relax much faster than the diffusive modes. In a thermostated
SRD fluid there is a further contribution to the thermal relaxation rate τ−1

therm = γ DTk
2 +τ−1

which arises due to the application of the thermostat. In the limit ntherm → ∞ the classical
fluid is recaptured. However, in a strongly thermostated case ntherm = 1 the ordering of the
time scales is changed

τ−1
therm � τ−1

l , τ−1
S , (3.69)

which shows that the thermal relaxation is significantly reduced. With the intermediate
periodicity the decrease of the central peak in figure 3.8 can be understood.

In this section the basic transport coefficients of the MPC fluid have been described and
related to their corresponding autocorrelation. The physical properties of the fluid have been
outlined and different regimes have been identified depending on the form of the transport
coefficient. Finally, the deviations from a Navier-Stokes equation have been explained.

3.5 Imbedded Objects

In simulations, complex objects are implemented in a fluid either as an excluded volume [44]
or as being composed of spheres with a central potential [170]. In contrast, in direct solutions
of the Navier-Stokes equation objects can be introduced via boundary conditions. Here, it is
in general assumed that at these boundaries the velocity of the fluid flow field decays to the
velocity of the object on a length scale not resolvable through the Navier-Stokes equation and
is practically identical to it. In simulation approaches like MPC the hydrodynamic velocity
is obtained by averaging over a set of fluid particles and, hence, it it cannot be assumed that
their velocity decays fast enough to the velocity of a boundary and, therefore, there could be
a relative velocity between the fluid and the object called slip velocity. Even though there are
application were a slip velocity is proposesd [98, 171] e.g. to ensure propulsion, this has to be
introduced in a controlled way and not as a spurious effect of the simulation approach. In the
following section, it will be shown how to avoid slip due to artifacts of the simulations and its
impact on behavior of an object, here a spherical colloid, is explained.

3.5.1 Colloids

In this section, the three most common implementations of a colloid into an SRD/MPC fluid
are described. For the sake of completeness first of all a Lenard-Jones object is described,
which, however, is not relevant for the rest of this work. Afterwards, two implementations for
an excluded volume object are explained and simulation results of them are compared.
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Lennard-Jones Objects

In principle, colloids can be implemented in a SRD/MPC algorithm as heavy point like par-
ticles interacting with a Lennard Jones potential or a similar central potential

β Vci(r) = εci

[(σci
r

)2n
−
(σci

r

)n
+

1

4

]
(r ≤ 2

1
n σ), (3.70)

here {Vcc, σcc, n = 24} describes the interaction between the colloids and {Vcf, σcf, n = 6}
between colloid and fluid particles. This approach has successfully been used to investigate
colloids systems [172, 173]. Further, with a modified potential between the colloids it can be
used to build up more structures like rods [174], polymers [11, 175, 176] and even more complex
structures like a lipid bilayer membrane [177]. As the fluid particles are only reflected by the
potential this leads to an effective slip between the object and fluid [178]. In average half of
the fluid particles are approaching the colloid while half are reflected, such that the normal
component vanishes on average while a tangential component sustain. A further drawback
of this approach is that for a single colloid there is no angular transfer, which, however, is
necessary to investigate rotating objects.

Stochastic Reflection Boundary Condition

An alternative approach is to model a colloid as an excluded volume and define collision rules
for a fluid particle passing the boundary between the object and the fluid. A real colloid does
not have a smooth surface but a rather rough one as there can be grafted polymers or co- and
counter ions. Therefore, if a fluid particle crosses the surface of the colloid its new velocity is
determined by the following distributions

p(vn) =
mvn
kB T

exp

(
mv2

n

2kB T

)
, (3.71)

p(vt) =

√
m

2 kB T
exp

(
mv2

t

2kB T

)
, (3.72)

where n denotes the direction normal to the surface and t the perpendicular one.The normal
component can be obtained by calculating

√
x2

1 + x2
2 of two independent Gaussian distributed

random variables [179]. One advantage of this approach is that the colloid acts as a thermostat
for the fluid.

Bounce Back Boundary Condition

In order to obtain real non-slip boundary conditions the velocity of the fluid particles has to
be reverted when hitting the surface. In a homogenous fluid that means half of the particles
are approaching the wall while the other half is reflected and moves away from the wall which,
at the length scale of the Navier-Stokes equation, leads on average to no slip tangential to the
wall. In the case of a moving object the local surface velocity has to be taken into account

vnew
i = vold

i + 2vs, (3.73)
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Figure 3.9: The angular correlation function 〈ω(0)ω(t)〉 of a colloid of radius R = 3 in a MPC+a fluid
with a particle density of n = 5.
(a) Comparison of the Stochastic Reflection Boundary Condition (blue squares) and the
Bounce Back Boundary Condition (red dots) with λ = 1.0, measured in units of the grid
constant a0. While the latter approaches the long time limit as would be expected, the
former is not approaching it smoothly. This has previously been described in literature
[180]. However, it was also reported that the Stochastic Reflection Boundary leads to a
slower decay, which could not be confirmed here.
(b) The angular correlation function of λ = 1.0 (blue squares) and λ = 0.29 (red dots)
with Bounce Back Boundary Condition both approach the long time as well as short time
limit correctly.

with vs being the surface velocity, defined as

vs(r
∗ −Rcoll) = vcoll + Ω× (r∗ −Rcoll). (3.74)

Here, r∗ is the collision point of the fluid particle at the surface. Like for the virtual particles
in the collision step momentum and angular momentum are transferred to the colloid.

Comparison of the Boundary Conditions

It can be shown that both implementations of the boundary conditions lead to correct behavior
of the velocity as well as the angular velocity autocorrelation function. The long time limit of
the correlation functions is obtained from mode coupling theory to be

lim
t→∞
〈v(t) v(0)〉 =

kB T

12mρ(π(ν +Dc)t)3/2
, (3.75)

lim
t→∞
〈ω(t)ω(0)〉 =

kB T

mρ(4π(ν +Dc)t)5/2
. (3.76)

Here, ρ is the particle density, ν is the kinetic viscosity of the fluid and Dc is the diffusion
constant of the colloid. As can be seen in figure 3.9(a) and 3.10(a), both boundary conditions
lead to the correct decay. It has to be stressed that there is no fitting parameter in these
results as the parameters can be calculated for SRD as well as MPC.
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Figure 3.10: The velocity correlation function 〈v(0) v(t)〉 of a colloid of radius R = 3 in a MPC+a
fluid with a particle density of n = 5.
(a) In contrast to what has been proposed previously in literature [180], no significant
deviation is observed for the correlation function of the Stochastic Reflection Boundary
Condition (blue squares) and the Bounce Back Boundary Condition (red dots) for a mean
free path λ = 1.0, given in units of the grid size a0.
(b) The simulations with Bounce Back Boundary Condition for λ = 1.0 (blue squares)
and λ = 0.29 (red dots) both approach the long time as well as the short time limit.

The short time limit can be obtained from Enskog theory of dense gases which assumes that
the autocorrelation function decay exponentially because of momentum transfer due to binary
collision

lim
t→0
〈v(t) v(0)〉 = 〈V2〉 exp

(
− ζVENSt

)
, (3.77)

lim
t→∞
〈ω(t)ω(0)〉 = 〈ω2〉 exp

(
− ζωENSt

)
, (3.78)

with 〈V2〉 = kB T/M as well as 〈ω2〉 = kB T/I and the Enskog friction coefficients given by

ζVENS =
8

3

(
2π kB T mM

m + M

)1/2 ρR2

M

1 + 2χ

1 + χ
, (3.79)

ζωENS =
8

3

(
2π kB T mM

m + M

)1/2 ρR2

M

1

1 + χ
, (3.80)

where χ = I/(MR2) = 2/5 being the gyration radius. It has first been stressed by Padding
and coworkers [181] that, in contrast to the Brownian approach with the hydrodynamic friction
coefficients ζVh = 6πηR/M and ζωh = 8πηR3/I, the velocity autocorrelation decays faster than
the angular velocity correlation function. They further proved that for small diameters of the
colloid the frictions coefficients cannot be added in parallel to obtain the total friction. While
for colloids with a radius σ > 2 a0 it was shown that this is reliable

1

ζ
=

1

ζENS
+

1

ζh
. (3.81)

Therefore, it is recommended to use colloid with a diameter bigger than two. It has further
been shown that if the virtual particles, explained in detail in the next section 3.5.2, are
neglected, the Enskog contribution to the friction is significantly underestimated [182].
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It has been proposed [144] that as both versions of the boundary conditions lead to the correct
long time and short time decay of the correlation functions, this is a proof that both lead to
non-slip boundary conditions. However, recently, it has been shown that these two correlation
functions are not sufficient to distinguish slip from non slip boundary conditions and it was
highly doubted that Stochastic Reflection Boundary conditions are sufficient to yield non slip
boundary conditions [180]. To incorporate a defined slip velocity a modified version of the
bounce back condition is used

vnew
n = −vold

n , (3.82)

vnew
t = (2Γ− 1) vold

t , (3.83)

where the subscribed t and n denotes the tangential and normal component of the velocity.
The slip parameter varies between Γ = 0 for no slip and Γ = 1 for perfect slip boundary
conditions. It was found that the variation of this parameter does not alter the long time tail
of the correlation functions, but the Enksog friction as well as the the cross over behavior is
affected. It was empirically found that the Stochastic Rotation Boundary conditions match
simulations with a parameter between Γ ∈ [0.6, 0.8] and hence produce spurious slip. This
was further confirmed with simulations of a Poiseuille flow, which will be discussed in the next
section. However, this could not fully been confirmed by our simulations, see figure 3.9(a) and
3.10(a). Only for the angular velocity autocorrelation function deviations could be observed
in the crossover region.

Nevertheless, to ensure that the colloid shows no slip boundary conditions and guarantee the
correct angular momentum transfer from the fluid to the colloid Bounce Back Boundary Con-
ditions should be used. This is especially true in the simulations where rotation is significant,
as is described in chapter 4.

3.5.2 Virtual Particles

In simulations of a flow in a channel driven by an external gravity field (Poiseuille flow) it was
first realized by Lamura and coworker [134, 143] that even applying the Bounce Back rule at
the walls of the channel leads to spurious slip in the SRD fluid. It has later been shown that
this is a generic problem if boundaries are incorporated in a SRD/MPC fluid [180, 182]. The
effect can be explained as follows; in the collision step the shifting of the grid leads to partially
filled cells at the boundaries. In these cells, the viscosity is locally reduced, resulting in a slip
velocity.

Therefore, the concept of virtual particles was introduced. If a cell overlaps with a boundary
after the grid shifting procedure, this cell is filled virtually with particles whose velocity is
drawn from a Maxwell-Boltzmann equation. The virtual particles, hence, only interact with
fluid particles during the collision step as they contribute to the new mean velocity in the cell

vCζ =

∑nfluid
i=1 vi +

∑nVP
i=1 vVP

i

nfluid + nVP
. (3.84)

If the angular momentum is neglected during the collision step the detailed positions of the
virtual particles can be neglected. Further, as the sum over Gaussian variables is again
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Figure 3.11: (a) A Poiseuille flow in a channel with geometry 25a0 × 25a0 × 50a0 is simulated with a
SRD−a algorithm using a rotation angle α = π/2, a density n = 32 and a mean free path
λ = 0.2a0. Different boundary conditions are compared, which are described in detail in
the text. Even though the phenomenological flow profile is received with all approaches,
significant differences can be observed in the absolute values of the profile. From: [180].
(b) The mean square displacement of a colloid of radius R = 3 with (blue) and without
(red) virtual particles, was simulated with a MPC+a algorithm. The fluid had a mean
free path of λ = 0.29, given in units of the grid constant a0, and a particle density n = 5.
Both simulations approach the analytical result (black).

Gaussian distributed, instead of drawing the velocity of each virtual particle one random
vector a can be added to the mean velocity. This random vector has a distribution with an
average of zero and variance nVP kB T . If, however, angular momentum should be conserved
more care has to be taken, as will be discussed in the subsequent.

Poiseuille Flow

After the first simulation of Lamura [143], the Poiseuille flow has been investigated in detail for
SRD/MPC fluids with Stochastic Reflection Conditions as describes in [182] as well as Bounce
Back conditions [180]. In general, it has been shown that, similar to the results of the colloid,
Stochastic Reflection Boundary conditions are not able to recapture no slip boundary neither
with or without virtual particles [182]. However, even for Bounce Back Boundary conditions
special care has to be taken to a detailed implementation of the virtual particles. Here, the
results of Whitmer and Luijten will be recaptured as they are the basis of the simulation
performed in the rest of this work.

Four different implantations of the virtual particles can be distinguished

• Bulk Filling Rule (BFR)
This is the original implementation of virtual particles introduced by Lamura and Gomp-
per [143]. If the number of particles in cell overlapping with a cell is smaller than the
average particle density, the boundary cell is filled with virtual particles. This, however
leads to an increase in the particle density at the boundary as the number of particles
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in the bulk cells fluctuates but in the boundary only fluctuations to a density above the
average are allowed.

• Symmetrized Bulk Filling Rule (SBR)
In order to avoid the higher density of the particles induced by the (BFR), a symmetrized
version has been proposed, where, if the particle number is higher than the average
density, the contribution of the virtual particles is subtracted from the mean velocity.

• Simple Rescaling Rule (SRR)
Instead of inducing virtual particles, the mean velocity is rescaled by nfluid/nav.

• Virtual Particle Conditions (VPC)
This approach has been introduced together with an angular conservation in SRD/MPC
algorithms [138]. Instead of applying the virtual particles to each cell, only the total
number of virtual particles in an object is fixed. Their position is drawn randomly.
This leads to a distribution of particles which fluctuates on the cell level. However, for
complex geometries it is difficult to obtain the correct particle distribution.

In figure 3.11(a) the different implementation of the virtual particles are compared. It is
obvious that the VPC-SRD nicely agrees with the analytic result. The SRR-SRD algorithm
seems to fit the analytic curve also quite well, but this is only obtained for a certain parameter
set, while the other results are quite robust.

Colloid

For an algorithm without angular conservation the position of the particles must not be
determined. As has been discussed above, only the local density of the virtual particles
matters. However, if angular momentum is important, as e.g. for a rotating object like a
colloid, the detailed position of each particle is significant. Different possibilities have been
discussed of placing the particles [138]. In this work, according to [138, 180], the particles are
placed randomly inside the object a distance

√
3 a0 from the boundary with a global density

equally to the bulk. This is similar to the VPC rules discussed above. The velocity of the
virtual particles is drawn form a Maxwell-Boltzmann distribution but the local velocity of the
boundary is added afterwards.

After the collision step, the momentum and angular momentum change of the virtual particles
is ascribed to the immersed object. In the case a colloid that means the respective momenta
are changed as follows

∆P =
∑
i∈VP

m (vold
i − vnew

i ), (3.85)

∆L =
∑
i∈VP

m (roldi −Rcoll)× (vold
i − vnew

i ). (3.86)

It has to be stressed that the angular momentum is obtained with respect to the center of the
colloid. If it is calculated with respect to the center of mass of the local collision box this leads
to a wrong decay of the orientation correlation function which is essential for the investigation
of a Janus particle.
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Finally, it has been shown that if virtual particles are neglected the friction of the colloid is
significantly underestimated if analytical results are compared to simulations [182]. However,
as can be seen in figure 3.11(b), for the mean square displacement no significant deviation
between simulations with and without virtual particles can be observed.

3.6 Binary Fluid

There have been two distinct approaches to simulate binary SRD/MPC fluids. The first
algorithm introduces a velocity dependent second collision step which leads to a non-ideal
equation of state and will be called Multiphase Multiparticle Collision Dynamics (MMPC) in
the subsequent. The second one generalizes the Multiparticle Collision Step towards different
particle types A and B. This algorithm inherits the ideal gas equation of the state from the
original algorithm and will be called Reactive Multiparticle Collision Dynamics (RMPC) in
the rest of the work. In this section, both approaches will be explained and their applications
will be discussed.

3.6.1 Multiphase Multiparticle Collision Dynamics (MMPC)

If a binary mixture consists of two immiscible components quenching the system can lead to
domains of the either of these. This is known as spinodal decomposition [91]. Depending on
the temperature there is metastable state in which the densities of the two phases module
through the system or a stable one in which droplet formation occurs. Here, the latter one
will be considered. The droplet formation arises due to a nucleation process which is driven
by the surface tension between the two phases. For a surface tension to exist there must be
an attractive force between particles of the same type and a repulsive force between particles
of different types. This would lead to an equation of state which is not ideal and, hence, not
straight forwardly introduced in a SRD/MPC fluid. In order to introduce surface tension,
a first approach was given by Hashimoto and coworkers [183]. They incorporated a further
collision step in the scheme which orientated the mean particle flow of one type in the direction
of density gradient of this type. The approach leads to the formation of droplets with a surface
curvature described by Laplace Law ∆p ∼ 1/R. This states that the curvature is proportional
to the pressure difference between the two phases. The approach has been further extended
to a more general collision rule [184] and to amphiphilic fluids, consisting of a binary fluid and
objects with a hydrophilic and hydrophobic part [185]. Although the extension of the MPC
approach described so far conserves energy and momentum, it has not yet been proven that
it leads to thermodynamically consistent results.

In order to derive a thermodynamically consistent version of the multiphase SRD/MPC fluid,
Tüzel and coworkers extend the SRD/MPC approach with a non-ideal equation of state de-
scribed in section 3.3.3 to a binary mixture [186]. The collision imposed between the particles
in the larger grid is not applied to all particles in the cells but to different particle types in
each of the cells. This leads to a momentum flux between the two particles types and to
a net attraction between particles of the same type and a repulsion of particles of opposite
type. They could show that this approach also leads to the Laplace Law. However, it can be
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shown that this approach leads to a thermodynamically consistent non ideal contribution to
the pressure which can be related to parameter of the simulation. Further the algorithm leads
to the correct fluctuation dissipation theorem at the boundary of the two phases. Like in the
non-ideal SRD/MPC approach, in 3.3.3, the diffusion constants [187] and the viscosity [160]
can be obtained.

3.6.2 Reactive Multiparticle Collision Dynamics (RMPC)

In the case of miscible binary fluids like the ones relevant for the reaction diffusion system,
it can be assumed that the system obeys an ideal gas equation of state and therefore the
SRD/MPC algorithm can be extended straight forwardly. Each type α of particles is first
rotated with respect to the particle specific mean velocity

Vα
ζ =

∑Nζ
i=1 Θαvi
Nα
ζ

. (3.87)

Here, Nζ is the total particle number. The function Θα
i is one if a particle is of type α and

zero otherwise. Afterwards, a rotation is applied to all particles types together. This leads to
the new velocity [188]

vnew
i = Vζ + ωζ(Θ

α
i Vα

ζ −Vζ) +
∑
α

(ωαζ ωζ(vi −Vα
ζ )). (3.88)

As this approach shares the basic structure with the classical SRD/MPC approach it is straight
forward to extend the Liouville equation of the phase space density towards different particle
types [188]

∂

∂t
P (V(N),X(N)) = (−L0 + C − 1)P (V(N),X(N)), (3.89)

where the streaming operator is given by the Liouville operator for each type

L0 =
∑
α

N∑
i=1

θαi (vi · ∇i). (3.90)

The collision is similar to the SRD/MPC collision but contains a further contribution including
all particle types

CP (V(N),X(N)) =
1

|Ω|L
∑
ΩL

∞∑
m=0

δ(t−mτ)

∫
dV′(N)P (V′(N),X(N), t) (3.91)

∏
α

N∏
i=1

Θα
i δ(vi −V′ζ − ωζ(V′

α
ζ −V′ζ))

ωαζ ωζ(v
′
i −V′zeta).
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As the algorithm conserves momentum and velocity as the original approach, it clearly is
described by a microcanonical distribution at equilibrium

P0(V(N),X(N)) =N δ
(

1

2N

N∑
i=1

∑
α

θαi m
α|vi|2 −

d

2β

)
(3.92)

×
( N∑
i=1

∑
α

θαi m
α(vi − vequi)

)
,

whereN is just a normalization constant. In the limit of largeN this converges to a Boltzmann
distribution which has been observed numerically [188]. A formal H-Theorem has not been
given in literature yet but as this approach inherits the structure of the classical approach
and a Boltzmann distribution has been obtained in the stationary state it can be assumed
that the algorithm leads to the correct equilibration behavior. The transport coefficients can
be derived using Green-Kubo relations where the only difference is that the viscosity must be
considered for the total fluid while the diffusion constant of each component depends only on
the density of this particle type. The diffusion of each of the particles can be further controlled
by only considering a fraction γ of the particles of one type for the collision step with the other
components [189].

The next step is to allow reactions between different species in the algorithm. Reactions are
treated as birth-death stochastic processes where particles can be deleted or created with a
certain probability. This approach does not conserve momentum and energy in general, which
has to be incorporated separately. Here, first of all the theoretical foundation of this extension
will be described. Afterwards, it will be discussed how to implement this approach practically.

In order to introduce arbitrary reactions between the different components a further reaction
step has to be incorporated in the Liouville equation of the system

∂

∂t
P (V(N),X(N)) = (−L0 +R(C − 1))P (V(N),X(N)), (3.93)

with the operator R including the reactions in the Liouville equation. A particular reaction
is given by

Rµ :
s∑
l=1

νµl Xl
kµ−→

s∑
l=1

ν̄µl Xl, (3.94)

where Xl ∈ {1..s} is one of the s species and νµl and ν̄µl are the stoichiometric coefficients
[190]. It can be constructed as following:

• Assume that PC(V(N),X(N), t) is the probability distribution after the collision step.

• The probability that a certain reaction occurs in a given cell and leads to particles with
a given velocity is

P (VNζ ,XNζ , t)µ,ζ = pζµ(N ′
ζ
)

s∏
l=1

δ
Nζ
l ,N

′ζ
l +∆µ

l

−∆µ
l∏

k=1

∫
dx

Nζ
l+k

∫
dv

Nζ
l+k

(3.95)

∆µ
l∏

j=1

1

VC
φ0(v

N ′ζl+j
)PC(V(N),X(N), t).
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Here, pζµ(N ′ζ) is the probability that the reaction takes place, which will be discussed
in detail below. The probability φ0 for a given velocity is a Boltzmann distribution and
∆µ
l = ν̄µl − ν

µ
l is the change in the number of particles of a given type l.

• Finally, the reaction operator is given by

RPC(V(N),X(N)) =
∑
N ′

Nc∏
ζ=1

r∑
µ=0

P (VNζ ,XNζ , t)µ,ζ︸ ︷︷ ︸
any reaction r occurs in a cell ζ︸ ︷︷ ︸

the reaction occurs in any cell︸ ︷︷ ︸
the total number of particles in the system is N ′

. (3.96)

Even though this operator looks very complicated, it is just the probability that the state of
the system is altered due to a reaction. The only thing still missing is an expression for the
probability pζµ(N ′ζ), which states if a certain reaction occurs or not. As it is assumed that
the reactions are birth-death processes it is straight forward to show that

pζµ(N ′
ζ
, τ)) =

aζµ

aζ0
(1− e−a

ζ
0τ ), (3.97)

with τ being the collision time and the factor

aζµ = kµ

s∏
l=1

N ζ
l !

(N ζ
l − ν

µ
l )!

, (3.98)

containing the reaction constant and the combinatorial factor which counts the number of
possible reactions in a cell. For this extension of the SRD/MPC approach, even though the
Liouville equation can be derived as has been discussed, a H-Theorem has not been derived.
This is supposed to be not as easily possible as in the classical as due to the birth-death
structure of the reaction phase space is not conserved as momentum and energy fluctuate due
to a Boltzmann distribution. However, for various reactions, extensions have been proposed
that are capable of conservating both [190]. For the Janus swimmer treated in this work, the
reaction operator significantly simplifies as a conversion of particles always occurs in a certain
region.

In the application of the algorithm, in order to decide if a certain reaction should take place
in a cell of the grid, a Gillespie algorithm is applied. This is a very effective way to solve a
master equation for a stochastic process [191] .

3.6.3 Application of the RMPC Algorithm

The algorithm described here has successfully been applied to various systems like motile and
no motile enzymes [188, 192] as well as to the Selkov model. The latter is a simple model
of the phosphofructokinase, part of the glycolytic cycle, and consists of six separate reactions
[190]. Here, a cubic autocatalytic reaction is used as a benchmark for the code developed for
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Figure 3.12: A binary MPC fluid with an autocatalytic reaction A + 2B → 3B shows propagating
waves. The initial conditions were nA/B = 0, 10 for x < L/2 and nA/B = 10, 0 for
x > L/2 with a temperature kB T = 1/3 and L = 1000 a0. For small simulation times,
the simulation (blue) fits the analytic results (red) very well. For lager times, deviations
occur as reflecting boundaries have been used.

this work, which has previously been reported in literature [189]. Two types of particles are
restricted to separated halves of the simulation box. If they meet within one box a Gillespie
algorithm with the reaction rate k is applied to the following reaction

A+ 2B → 3B. (3.99)

The continuum equation for the density of this system

∂

∂t
nA(r, t) = −k nA n2

B +D∇2nA, (3.100)

can be solved in the frame moving with the boundary between the two compartments ξ = x−ct.
This leads to the solution

nA(ξ) = n0(1 + e−cξ/D)−1, (3.101)

with the front speed c =
√
Dk n2

0/2. In this model there is no fit parameter as the diffusion
constant can be calculated, as has been described in section 3.4.2, and the density as well as
the reaction constant are free parameters. It is expected that at the boundary between particle
of type A and B, due to the autocatalytic reaction, a propagating wave can be observed. As
can bee seen in figure 3.12, the code satisfactorily reproduces the front propagation within the
error bars. In contrast to the literature [189], instead of open boundary conditions periodic
ones have been used. It can be seen that for a small system finite size effects occur at short
time scales while for larger systems it takes the system significantly longer until it shows effects
of the finite size.

In this section, two extensions of the classical SRD/MPC approach have been described for
multiphase systems. While the first can be used to simulate immiscible fluids and leads to
a non-ideal equation of state, the second one gives a miscible fluid with an ideal equation of
state. The latter one can be straight forwardly extended to reactive fluids which will be used
in the rest of this work.
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3.7 Units in SRD/MPC

The basic units to describe a physical system neglecting electric currents are length, time,
mass, particle number and thermodynamic temperature. As has nicely been discussed by
Padding and Louis [144], this is not the case for a SRD/MPC fluid as well as for other
simulation techniques like Lattice Boltzmann. Special care has to be taken if a simulated
system is compared to a real physical system investigated in an experiment.

Further, as the SRD/MPC algorithm was developed to mediate between the microscopic and
macroscopic time scales that can occur in soft matter systems, it has to be assured that during
the mapping the time ordering of the system is conserved, as given in table 3.13, even though
the time scales in the simulation are closer together than in a real physical system.

3.7.1 Units

In order to distinguish between basic units and derived units, the length can be measured in
terms of the cell length a0, the energy as a thermal energy kB T and the mass as the one of the
fluid particle m. As there is no interaction between the fluid particles besides the collisions,
the fluid, as has been discussed previously 3.4.3, only contains kinetic energy. Therefore, the
following relation, derived from the kinetic energy,

m0

(
a0

t0

)2

= kB T, (3.102)

describes the relation between the units. This makes the time in contrast to every intuition a
derived unit that has to be rescaled if for example the temperature of the simulation is altered.

3.7.2 Mapping into the Real World

As has been discussed above, the units of a simulation do not correspond to the units of a real
world system but have to be mapped onto each other. Further, the hydrodynamic numbers
are not related to the absolute values of transport coefficient but only to their ratio. This

Basic Units Derived Units Transport coefficients

Length: a0 Time: t0 = a0

√
m
kBT

Diffusion constant: D0 =
a20
t0

= a0

√
kBT
m

Energy: kBT particle density: n = n0

a30
Kinematik viscosty: ν0 =

a20
t0

= a0

√
kBT
m

Mass: m Viscosity: η = m
a0t0

=
√
mkBT
a20

Figure 3.13: In the MPC approach, the basic units are length, mass and energy. In contrast to the
Si units, here, time and density become derived units. Therefore, also the transport
coefficients have to be given in terms of the simulation units.
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Solvent time scales Brownian time scales

Solvent collision time τcol Fokker Planck time τFP

Solvent relaxation time τf Enskog relaxation time τE = MC
ζE

Hydrodynamic time scales Browninan relaxation time τB = MC
ζB

Sonic time τcs = R
cS

Colloid diffusion time τD = R2

Dcol

Kinematic time τν = R2

ν

Stokes time τS = R
vS

Time ordering

τcol < τf , τFP < τE , τcs < τB < τν < τD, τs

Figure 3.14: The relevant time scales in a fluid and their relations. A simulation approach will not be
able to give the correct numbers of the time scales but should sustain their relations.

means, if the hydrodynamic numbers are the same, e.g. in a lava or honey flow, even though
the absolute values of their material properties differs significantly, their physical properties
are similar. The following rescaling scheme should be kept in mind to map simulation results
onto real physical problems.

Simulation Re,Pe,a0,t0←→ Dimensionless System
Re,Pe,aPi ,tPi←→ Physical System (Pi)

Here, Pi can be a different physical system that is obtained by different scaling factors aPi , tPi
but has the same hydrodynamic numbers.

Consider an example originally given in the work of Padding and Louis [144] to clarify this
condition. The diffusive behavior of a colloid with diffusion time tD = 5s should be investi-
gated. In the simulation, a colloid with radius R = 2a0 is used which leads to a size of the real
world sphere of diameter aPi = 0.5µm and to a time scale tPi = 0.02s. The time scale as has
been described above can no longer be chosen freely as it is a derived unit. The simulation
parameters now do not have to be chosen to lead to the correct other time scale but only to
capture the basic relation like for example for the kinematic time τν < τD.

3.8 Alternative Simulation Techniques

Beside the Multiparticle Collision approach, two further techniques are used to simulate low
Reynolds number hydrodynamics which are Lattice Boltzmann Simulations (LB) [193] and
Dissipative Particle Dynamics (DPD) [194]. The LB fluid model solves the discrete Boltzmann
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equation on a lattice while the DPD approach is an off-lattice technique solving Netwon’s
equation of motion with a particular set of forces. Here both techniques are outlined shortly
and compared to MPC.

3.8.1 Lattice Boltzmann Simulations

One of the classical techniques for simulating hydrodynamics is the Lattice Boltzmann method
(LB) which evolved from Lattice Gas Automata (LGA). The latter are particle based lattice
simulations in which a lattice node can be occupied by a particle or being empty. Each particle
move in a streaming step with its velocity and if two or more particles approach a node at the
same instance, they collide with a prescribed collision rule. As these kinds of simulations are
stochastic because of the finite number of particles a lot of averaging has to be done to arrive
at the description level of Navier-Stokes hydrodynamics. Nevertheless, it has been proven that
LGAs are capable of reproducing Navier-Stokes like behavior.

In order to avoid this amount of averaging Lattice Boltzmann Simulations are working on
the level of the discrete one-particle distribution function fi(x) with i ∈ {1, . . . , β} giving the
lattice direction. The distribution on each node evolves according to a discrete Boltzmann
equation

fi(x + ci, t+ ∆t) = fi(x, t)︸ ︷︷ ︸
streaming

+Lij(fj(x, t)− feq(x, t))︸ ︷︷ ︸
collision

. (3.103)

From the distribution function, the hydrodynamic fields can be obtained straight forwardly by
summing over the discretized velocity e.g. ρ(x) =

∑β
i=1 f(x)i and p(x) =

∑β
i=1 cif(x)i. The

form of the equilibrium distribution feq(x, t) can be obtained analytically. As the simplest
version of the Collision operator Lij the Bhatnagar, Gross and Krook (BGK) matrix Lij =
δij/τ can be used where τ is the collision parameter.

However, Lattice Boltzmann suffers from the lack of Galilean invariance as it is lattice based.
This drawback can be diminished by certain lattice types which are also relevant for the
hydrodynamic limit as this depends significantly on the chosen lattice type.

Hydrodynamic and Thermodynamic Properties

As the LB approach uses a discrete Boltzmann equation it is straight forward to prove that
the technique reproduces Navier-Stokes like behavior in the long time limit and it obeys an
H-Theorem. The simplest version, similar to the MPC approach, has an ideal gas equation
of state and is, hence, a compressible fluid. However, for small Mach numbers Ma < 0.2 this
effect can be neglected.

Fluctuations in LBM

The classical Lattice Boltzmann approach does not contain thermal fluctuations. Stochasticity
only arises through the initial conditions of the simulations. As fluctuations can not be
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neglected at mesoscopic scales relevant for many soft matter systems they can be incorporated
into LBM in the spirit of fluctuating hydrodynamics.

The first approach by Ladd [195] added a Gaussian random variable to the discretized Boltz-
mann equation (3.8.1). This leads to a correct behavior in the limes of small wavelengths, but
for other modes can lead to spurious effects. Further, it is known that under certain conditions
the algorithm does not relax towards equilibrium. Therefore, for each simulation using this
algorithm an extensive testing is necessary. In order to ensure this relaxation process Adhikari
et. al. [196] proposed a fluctuating Lattice Boltzmann approach which is similar to Ladd’s
but whose stochastic variable ξi is linked by its Fluctuation Dissipation Theorem (FDT) to
all dissipative processes in the simulation. It must further be ensured that the fluctuation in
ξi exactly conserves density and momentum.

Boundary Conditions

In order to simulate e.g. colloids, the lattice based approach has to be coupled to boundaries
which can be freely orientated in space. Various approximations have been proposed to mimic
the local interaction with the fluid model [197] and to incorporate local Brownian forces.
Nevertheless, these interactions are only correct to the first order.

Even though the MPC approach shares hydrodynamic as well as thermodynamic properties
with the LB technique, its advantage is that it naturally contains thermal fluctuations and
boundaries can be implemented straight forwardly without applying approximation schemes.

3.8.2 Dissipative Particle Dynamics

One of the widely used off-lattice simulations for hydrodynamics which naturally contain
thermal fluctuations is Dissipative Particle Dynamics (DPD). Here, the fluid is modeled by
discrete particles which are not considered to be an atomistic representation of the fluid but
mesoscopic clumps of the liquid. Their dynamic is governed by Newtons equations of motion

d ri
d t

= vi,
dvi
d t

= fi. (3.104)

The difference towards Brownian Dynamic Simulations (BD) or Molecular Dynamic Simula-
tions (MD) lies in the choice of the force fi which is chosen such that it guaranties momentum
conservation

fi =
∑
j 6=i

( FC
ij︸︷︷︸

Conservative Force

+ FD
ij︸︷︷︸

Dissipative Force

+ FR
ij︸︷︷︸

Random Force

). (3.105)

The conservative force is derived from a soft potential leading to a repulsion between the fluid
particles. A commonly used form is

FC
ij =

{
aij(1− rij) r̂ij , if (rij < 1),

0 if (rij ≥ 1).
(3.106)

As a friction or drag force
FD
ij = −γ wd(rij) (r̂ij · vij) r̂ij, (3.107)
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is used. Finally, a Random Force

FR
ij = σ wR(rij) θij(t) r̂ij, (3.108)

is applied. The Gaussian variable θij is defined via

〈θij(t)〉 = 0, 〈θij(t) θkl(t′)〉 = (δik δjl + δil δjk) δ(t− t′). (3.109)

As the forces are antisymmetric momentum is conserved in the standard algorithm. Energy
conservation, however, is not guaranteed which does not matter as long as the system is
isothermal.

Thermodynamic and Hydrodynamic Properties

It has been proven that on long length and time scales DPD resembles Navier-Stokes behavior
for the density and the velocity fields [198]. That does not necessarily show that also the
thermodynamic properties of a fluid can be expected. As there is no energy conservation it is
obvious that heat conduction is not captured by the DPD model. However, in 1995 Español
[199] formulated a Fokker-Planck equation for a N-particle distribution function of the DPD
algorithm

∂ρ

∂t
= LCρ+ LDρ. (3.110)

Here, LC is the classical Liouville operator of an Hamiltonian system and LD contains the
dissipative as well as stochastic contributions of the dynamic. It has been shown that in
order obtain a Gibbs-Boltzmann distribution in the stationary state a sufficient condition is
LDρ = 0. That leads naturally to a condition for the weight functions of the dissipative and
random forces as well as a Fluctuation Dissipation theorem

wD(r) = wR(r)2 and σ2 = 2 kBT γ. (3.111)

The detailed expression for the weight functions can, however, be chosen freely. A commonly
used form is

wDr =

{
(1− r)2 , if (r < 1),

0 if (r ≥ 1).
(3.112)

Further, under the assumption of continuous time, a Boltzmann equation for the DPD schema
has been derived [152] and a H-Theorem been proven. This shows that the technique provides
the correct evolution towards equilibrium and that thermodynamic relations can be used to
derive for example transport coefficients. Therefore, similar to the MPC approach, different
hydrodynamic regime, characterized through their set of hydrodynamic numbers, can be in-
vestigated. However, care has to be taken for the Schmidt number which in the classical DPD
approach is rather small. Even though techniques have been proposed to reach higher Schmidt
numbers this is still a crucial point in DPD [200].
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Boundary Coniditions

The investigation of composed systems like colloids or polymers [194, 201] is straight forward
in DPD. Boundaries can be implemented in the same way as for a MPC code [202]. In order
to compare the possibility to implement multi component systems see [203].

As MPC as well as DPD are both off-lattice simulations concerning the streaming step many
methods, like the implementation of boundaries, can be interchanged between both. However,
DPD has the major drawback that the effect of the Schmidt number has be investigated
carefully as it does not necessarily lead to the correct behavior.

3.9 Conclusion

Simulating low Reynolds number hydrodynamics is a challenging task. Even though it is a
topic which has been addressed by physicists for many years, there is still no "one for all
solution". Especially in biological as well as soft matter systems, there is an urgent need for
techniques which can further incorporate thermal fluctuations, ubiquitous in these systems.
In this chapter, the MPC technique has been introduced, which is a particle based Navier-
Stokes solver, containing thermal fluctuations naturally. It is a combination of a lattice and
an off-lattice approach, as it solves the Newton equations of the fluid particles in free space.
The interaction between the particles is, however, mimicked by a lattice collision step. This
step can be chosen freely and canonical as well as microcanonical approaches exist. In the
rest of this work, the canonical approach is used. Even though it is slightly slower than the
microcanonical one, it has been shown that it is straight forward to implement and no special
care has to be taken concerning the correlation functions. Further, it naturally conserves
temperature locally even if an interaction between the colloid and the fluid takes place.

The basic MPC algorithm is neither Galilean invariant nor does it conserve angular momen-
tum. Both effects can be incorporated into the code. The former can be received by a grid
shifting procedure during the collision and the latter by an extension of the collision step itself.
Their effect on the algorithm can be observed in the transport coefficients like e.g. the diffu-
sion constant or the viscosity of the fluid. In general, the transport coefficients of the various
versions of the technique can be obtained analytically. It is shown that in the simulations done
for this work, the simulation results nicely fit the analytical results. The analytical results of
the transport coefficients should not be confused with properties of a real fluid. In order to
map an MPC fluid onto a system investigated by an experiment care has to be taken. As the
approach aims to close the gap between the various time scales of a hydrodynamic problem
just certain properties can be mapped and others have to be treated only qualitatively. It
is shown that especially the Reynolds number is of an order of magnitude larger than in a
real fluid. Further, the approach is only capable of simulating systems with sufficiently small
velocities as the Mach number is not obtained correctly because the MPC approach only sim-
ulates a compressible fluid. Therefore, care has to be taken if a system dealing with sound
propagation should be investigated.

In order to implement complex objects in a MPC fluid special care has to be taken which
boundary conditions should be applied. It is shown that the Bounce Back Boundary Condi-
tions lead to the correct long time as well as short time behavior of the velocity and angular
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velocity autocorrelation function. Even the power law of both long time behaviors can be
resolved correctly. If a boundary is immersed in the fluid spurious effects can arise because of
the grid shifting procedure. It leads on average to only partially filled cells in the region close
to the boundary. Therefore, virtual particles have to be introduced in the region where the
grid overlaps with the boundary. This can especially be seen by a Poiseuille flow in a channel
driven by an external force.

Finally, the MPC algorithm can be extended to more complex objects like e.g. fluids con-
stituted of different particle types. Here, it has to be distinguished between immiscible and
miscible components. While for the former it is important to obtain the correct surface tension
between the fluid phases, for the latter the constituents can mix. In order to simulate the
motion of a selfdiffusiophoretic swimmer an miscible approach has to be used, in which the
constituents are also able to interact with each other. This approach is called Reactive Multi-
particle Collision Dynamics (RMPC). It can also be used to investigate e.g. wave propagation
in binary mixtures.

It has been shown that the MPC approach is a valuable tool to investigate systems at low
Reynolds numbers. As it is straight forward to implement even complex objects as well as
different particle types, it is an ideal technique to consider the selfdiffusiophoretic swimmer
discussed in section 2.



4 Selfdiffusiophoretic Swimmer

The controlled motion of objects at small length scales is an active field of research. Inspired
by the motion of bacteria, many systems have been suggested which can propel themselves
through a fluid at low Reynolds numbers. As most of the proposed approaches are based on a
mechanically driven propulsion it is, due to their size, experimentally very difficult to control
them. Alternatively, gradient driven systems can be used which move along external or self-
produced gradients. In chapter 2 such systems have been described extensively, recapturing
the experimental as well as theoretical literature. In the latter, mainly the propulsion of
swimmers which rely on steady-state arguments has been addressed. In order to understand
the motion of a swimmer in a broader context, simulations have to be performed which can
investigate the swimmer from its initial phase to its long time limit. Here, simulations based
on the Multiparticle Collision approach are performed which are able to investigate, especially,
a Janus colloid in a self-produced particle gradient.

This chapter is organized as follows. In the first section, the basic model is described. Af-
terwards, its relevant parameters are discussed and related to the relevant hydrodynamic
numbers, described previously in section 3.2. The principles of the propulsion mechanism are
explained and the role of the gradient is discussed. Finally, the long time limit is investigated.
It will be shown that the simulations performed are the first which are able to reproduce the
experimentally observed results.

4.1 Model

In the simulations of objects based on the MPC technique, two approaches have been used.
The first one builds up complex objects with Lennard-Jones spheres as described section 3.5.1.
Such simulations have e.g. been used to investigate the collective behavior of self-propelled
rods and flagella [204]. The details of the hydrodynamic flow field around such an object,
however, cannot be resolved due to the coarse graining. As it is assumed that the collective
effects of such objects arise mainly due to excluded volume, such an approach seems to be
justified. In order to describe the interaction around an object a hard sphere object has to be
considered as has e.g. been done in studies of the squirmer model [147]. In such an approach,
the surface interaction of the swimmer with the fluid can be modeled correctly, first of all to
distinguish between a slip and a non slip boundary condition and further to ensure the correct
angular momentum transition from the fluid to the object an vice versa. The model is set up
as follows

• Colloid with excluded volume and Bounce Back Boundaries, as described in section 3.5.1

• Binary fluid composed of two components A and B with equal physical properties, as
described in section 3.6.2
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• In a region L < R smaller than the colloid radius R = 3a0 the two particle types are
converted according to A→ B with a probability pC

• The particles of type B interact with the colloid through a potential φ, given by

φ = ε e−r/L, (4.1)

which is a short range potential used previously in analytical treatment [89]. The A
particles only interact via a hardcore potential.

• For the system of size 24a0 × 24a0 × 24a0, periodic boundaries are applied. If particles
of type B are crossing the outer boundary they are reconverted in particles of type A

Most of the analytic investigations of Janus colloids whose motion is based on self-produced
gradients rely on the implementation of a slip velocity at the surface between a colloid and
the fluid. In simulations, such an approach can only be used if the slip velocity is independent
of the interaction with the fluid, as for example in the squirmer model [141]. In the literature,
two possibilities have been introduced to address a selfphoretic Janus colloid analytically. The
first one uses an explicit form of the slip velocity while the second is based on a matching
procedure. The former one uses the explicit expression

vS(x) = −κ
∂C||(x)

∂x
. (4.2)

Such an approach is not feasible for a simulation approach as it is not clear how to define a
particle gradient in such a coarse grained description, while it is straight forward in a field
equation approach as described in chapter 2. Therefore, the latter approach has to be used
and the interaction between the fluid and the solid body has to be modeled explicitly, as is
done here.

A

B

Figure 4.1: On the left, the swimmer is depicted schematically. On the coated hemisphere (red) of
the Janus colloid the particles of type A are converted into particles of type B. Inside the
dashed circle a potential of mean force φ acts on the particles of type B leading to a net
propulsion. As shown on the right-hand side, on length scales accessible in experiments
mainly the path of the swimmer is observable, which shows diffusive behavior but with a
significantly increased diffusion constant.
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Figure 4.2: Time evolution of the averaged surface production rate κ of a Janus colloid with the inter-
action length L = 2 a0 (blue) and L = 0.5 a0 (red). At the initial phase, the production
rate increases significantly due to the predominance of A particles. Afterwards, it decays
to a continuous production rate for both interaction lengths.

4.2 Hydrodynamic Numbers in the Simulation

As has been described in section 3.2, the regime of a hydrodynamic system can be defined by
a set of hydrodynamic numbers. In the simulation for this work they can be estimated as

• Knudsen Number Kn = λ
R ≈ 0.01

The discrete nature of the fluid leads to fluctuation effects not present in a continuums
description

• Schmidt Number Sc = ν
D ≈ 32

The MPC algorithm is clearly in a fluid like regime

• Reynolds Number Re = U R
ν ≈ 0.05 . . . 0.4

It can be assumed that the fluid around the swimmer can be described by low Reynolds
hydrodynamics

• Peclet Number Pe = U R
D ≈ 1.7 . . . 11.4

While for small velocities of the swimmer it can be assumed that diffusion contributes
to the relaxation of the fluid, for larger velocities this cannot be ensured

The hydrodynamic numbers are all in the regime expected for a MPC algorithm describing
low Reynolds number hydrodynamics. Care has only to be taken in the case of the Peclet
number which can become high for a swimmer with a large mean velocity.

4.3 Propulsion

As the simulations are performed at low Reynolds numbers it cannot be assumed that the
interaction between the B particles and the Janus colloid is sufficient to propel the swimmer.
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Figure 4.3: (a) The mean propulsion velocity < v > of a Janus colloid depending on the interaction
length L. The red dots are simulation results while the green curve is a quadratic fit.
Initially, at L = 0 the mean propulsion velocity of a Brownian colloid is shown, which is
zero as would be expected.
(b) The mean square propulsion < v2 > depending on the interaction length L. Again,
the red dots correspond to simulation data, the green curve depicts L3. The blue line is
the analytic result for a Brownian particle. For small values of L the error bars are smaller
than the symbol size.

It could be guessed that the motion of the swimmer is immediately damped. Further, it is not
assured a priori that the swimmer reaches a steady-state. Therefore, it has to be ensured that
the swimmer can build up a net propulsion and reaches a steady-state before looking into the
details of averaged quantities necessary to understand the long time limit.

Initial Phase

As the initial configuration of the fluid consists of a homogenous concentration of A particles
with nA = 5, the simulation has to relax into a steady-state. As an observable to control this
process the surface production rate κ can be used. It is the number of particles converted from
A to B during one time step τ normalized to the surface of the swimmer. Its time evolution,
given in figure 4.2, is averaged of many realizations of a single moving Janus colloid. After an
initial phase of 1000 to 2000 time steps the rate has on average decayed to a constant rate.
The initial burst of the production rate can be attributed to the initial configuration of the
system.

Velocity of the Swimmer

The mean velocity of a Brownian colloid has to be zero < v >= 0. The particle has no
intrinsic velocity at all and it moves only due to diffusion. A straight forward extension of
a classical Brownian colloid would be a particle with a velocity v0 along a predefined axis
which only changes its direction due to rotational diffusion. It is a well known result that this
leads to an increase in the diffusion constant of the swimmer as well as a short time ballistic
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regime of its mean square displacement [119]. In the case of the Janus colloid considered
here, the intrinsic velocity itself becomes a fluctuating observable as it depends on the particle
gradient surrounding the colloid. Its direction is given by the normal of the surface separating
the active and non-active hemisphere of the swimmer. For convention, it is assumed that it
points in the non-active half-sphere such that it describes the direction away form the cloud
of produced particles.

In figure 4.3(a), the mean velocity of a Janus colloid is plotted against the interaction length
L in which the solute particles are converted. Obviously, the velocity depends significantly
on this quantity. A quadratic dependence can be fitted as has previously been proposed in
literature [8] and discussed in chapter 2. Further, it can be found that the absolute values
of the velocity of the simulation are significantly lower than the analytical results. This was
expected as the simulation aims to give a coarse grained description of the system. It conserves
the order of the relevant time scales but not their absolute values as has been discussed in
section 3.7. One necessary condition to obtain the analytical results is that the diffusion time
of the solute molecules is much smaller than the rotation diffusion time of the colloid τD � τR.
It has been shown in section 2.4.4 that this is equivalent to a/R � 1, here a is the radius of
the solute molecules and R the radius of the colloid. For a colloid with the size in the µm
range these time scales are separated by three orders of magnitude τD/τR ≈ 10−3 [120]. In
the simulations of Janus colloid investigated with the MPC technique both time scales are
of the same order. This means that the local solute concentration cannot fully equilibrate
until the colloid has already started to reorientate itself such that it disturbs the solute cloud.
There are two ways to avoid this. The first would be an increased radius of the colloid which
leads to an increase of the rotation diffusion time. However, this is computational extremely
costly, as also the system size has to be increased to avoid finite size effects. Alternatively, the
hydrodynamic radius of the solute molecules could be reduced. As this scales as a ∼ n−1 [144],
inverse with the particle density, in order to derive a substantial decrease of the ratio of the
diffusion and rotational diffusion time the particle density must be increased by a factor of 10.
This would lead to a tremendously longer computational time. Therefore, the mean velocity
of the Janus colloid as well as its local behavior should be treated with care if investigated
with a MPC approach. However, the long time limit as discussed in the next section is not
effected by this problem as the details of the interaction of the swimmer with the fluid are not
relevant and only the fluctuating behavior of it is of interest.

As the MPC fluid only contains kinetic energy, the temperature of the system is proportional
to the mean square velocity of an immersed Brownian colloid due to the equipartition theorem
3 kB T = M < v2 >, with M being the mass of the colloid. For active systems, it has been
shown that an effective temperature of the colloid can be defined [77, 205] as a non-equilibrium
counterpart of the equilibrium temperature, which scales as kB Teff ∼ Pe2. As in the system
described here, the only constitute of the Peclect number which alters is the mean velocity and
this is proportional to the square of the interaction length, it can be assumed that it scales
with L4. However, as is shown in figure 4.3(b), only a scaling with L3 is observed. It can be
assumed that this is due to the non-constant magnitude of the intrinsic velocity. In previous
approaches [205], it has always been assumed to be constant.

For both quantities discussed here, the MPC approach is only sufficient to reproduce the
scaling behavior while a fit to analytical results is not possible due to the shrinked time
ordering. However, the details of this microscopic behavior are not relevant for the long time
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Figure 4.4: The red line shows the path of the center of a Janus colloid. The green curve gives the
corresponding path of the center of mass of the solute particles cloud produced by the
colloid. It clearly follows the motion of the Janus particle as it also moves down its own
particle gradient.

limit of the swimmer if it is compared to experimental results.

4.4 The Particle Gradient

It is important to understand that the gradient driven swimmer described in this work is
surrounded by a low Reynolds number fluid. Its motion should not be confused with the
one of a rocket which moves through momentum it obtains by throwing mass in the opposite
direction of its motion. In low Reynolds number hydrodynamics, such a motion is damped
immediately. Therefore, the motion along the gradient is based on the gradient of the chemical
potential along the swimmer. This difference becomes clear if the motion of the product cloud
is considered. In a rocket, the center of mass of the vast products moves opposite to the rocket.
In the gradient driven motion described here, it moves in the same direction as the swimmer.
This can be understood as the relaxation of the gradient is diffusive and occurs on a time scale
shorter than the one of the motion of the colloid. If it is assumed that the colloid is at rest
during the relaxation of the product particles, it is obvious that it is entropically favorable that
the product particles diffuse around the colloid leading to a homogenous distribution around
the colloid. As, however, the colloid moves, the gradient cannot relax completely around it.
Therefore, the center of mass of the product follows the motion of the swimmer as can be seen
in figure 4.4. This is a necessary condition to ensure that the swimmer shows the correct long
time behavior. If the cloud is not moving in the same direction as the swimmer it has to be
assumed that the motion is based on a pressure gradient which arises due to artifacts of the
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Figure 4.5: The angular correlation function 〈ω(0)ω(t)〉 of a Brownian particle can be characterized
by its value for t→ 0 and a long time tail t−5/3, both shown here in black. They are also
seen in the correlation functions of the Janus colloid as its angular diffusion is not affected
by the catalytic reaction of the fluid particles. The interaction length L has no significant
effect on the correlation function. Here, L = 0 denotes a Brownian colloid which only
interacts with the fluid through a hardcore potential.

simulation technique used, as most approaches are not able to produce a correct incompressible
fluid.

4.5 Short Time Limit

The short time limit of a non-active colloid can be investigated by the velocity and angular
velocity autocorrelation function. It has been shown by analytical as well as simulation ap-
proaches that both correlation functions show a similar behavior [181]. On short time scales,
both correlation functions decay exponentially as the velocities are altered by stochastic in-
teractions with the solvent as predicted by the Enskog theory for dense gases. In the long
time limit, a power law decay with t−3/2 for the velocity autocorrelation function and for the
angular velocity autocorrelation function t−5/2 is predicted by mode coupling theory due to
the momentum conservation in the fluid. In section 3.5.1 it has been shown that the MPC
approach is able to reproduce these correlation functions correctly in the long time as well as
short time limit.

Angular Correlation Function of the Swimmer

For the swimmer with different interactions lengths L the propulsion has only minor effects on
the angular velocity autocorrelation function, as can be seen in figure 4.5. There is a slightly
slower decrease in the exponential decay as for the Brownian colloid which increases with the
length L. This effect, however, is extremely small and can be as well an artifact of the discrete
nature of the simulation technique which has previously been reported in literature for other
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Figure 4.6: The velocity correlation 〈v(0) v(t)〉 of a Brownian particle, here denoted by L = 0, can also
be described by the limit t → 0 and a power law decay as t−3/2 which is reproduced by
the MPC algorithm. However, for a Janus colloid the long time limit cannot be observed
due to the increase of the velocity correlations produced by the propulsion mechanism,
leading to an increased ballistic behavior at short length scales.

correlation functions [141]. The long time tail shows slightly higher correlation than would be
expected for a non-driven colloid. This effect is rather small and does not lead to a significant
effect which would be sustained in the long time behavior of the swimmer. This proves that
the propulsion mechanism only slightly effects the rotational behavior of the swimmer and on
length scales reachable in experiments such effects should not be visible.

Velocity Correlation Function of the Swimmer

The velocity correlation function shows significant deviations from the behavior known for a
Brownian colloid in a fluid, as shown in figure 4.6. The short time relaxation of the non-
driven colloid vanishes in the propelled case and the correlation of the velocity sustains over
very long time scales. In the regime where for a non-driven colloid already the long time tail
can be observed, the driven particle shows very strong velocity correlations. This proves that
in the ballistic regime the velocity of the swimmer is significantly increased for the self-driven
swimmer. The fluid surrounding the swimmer needs highly increased time scales to alter the
velocity of the swimmer. As can be further seen, the thermal energy associated with the
initial value of the swimmer < v(0) · v(0) > increases with the interaction length L due to
the activity of the swimmer. This behavior can also be observed in the behavior of the mean
square displacement described in the next section.

Orientation Correlation Function

The orientation correlation function confirms the conclusion drawn from the angular velocity
correlation function. The propulsion mechanism leads to a faster decay of the orientation cor-
relation function, shown in figure 4.7(a). This effect is very weak and does not influence the
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Figure 4.7: (a) The orientation correlation 〈n(0)n(t)〉 of the Janus colloid shows the same exponential
decay as the one of a Brownian particle, denoted by L = 0. There are deviations in the
long run which are beyond the error bars, not depicted here.
(b) The rotation diffusion time does not show any dependence on the interaction length L.
The deviation from the Brownian analytical result has been reported previously in litera-
ture and is based on discretization effects.

long time behavior of the swimmer. From the decay of the orientation correlation function,
the rotation diffusion time can be obtained by an exponential fit. The value deviates signifi-
cantly from the result obtained from the Brownian theory, see figure 4.7(b). However, it has
previously been reported that this can arise from discretization effects of the algorithm [141].
Further, is has been proposed that the short time decay of the algorithm should be analyzed
with the Enskog theory for dense gases [182, 206] which differs slightly from the Brownian
theory [181]. Nevertheless, there is no significant effect of the propulsion mechanism on the
orientation correlation function. This confirms the theory of selfdiffusiophoresis, described
in [105].

4.6 Long Time Limit

So far, it has been shown that the Janus colloid simulated with an MPC approach is able
to reproduce the qualitative behavior which would be expected from a theoretical point of
view. In order to use it as a model to learn more about the real world, it should match the
known experimental results. The short time behavior is difficult to address in an experiment
due to the resolution of the applied techniques. The main conclusions drawn from the experi-
ments described in section 2.2 have been derived from the long time limit of the mean square
displacement. For this regime it is possible to show that the Janus particle moves due an
enhanced diffusion, described by the diffusion constant

Deff = 2D0 + V 2 τr. (4.3)

As has been shown above, the rotation diffusion time is not affected by the selfduffusiophoretic
propulsion mechanism. Using the velocities derived from the simulation it is possible to find
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Figure 4.8: The mean square displacement 〈∆x2〉 of a Brownian particle (red curve, L = 0) compared
to the ones of Janus colloids with different interaction lengths L. Even for a very short
interaction length L a significant increase of the diffusion constant can be observed. The
diffusion constants for all colloids match the analytically expected values for time scales
larger than the rotation diffusion time τR. The second depicted time τD is the diffusion
time of the fluid elements, which describes the time it needs to diffusive a length of the
radius of the colloid. The black dashed line shows the initial ballistic regime which is not
significantly extended due to the propulsion. The crossover between both regimes seems
to be significantly reduced.

the enhanced diffusion constants, as can be seen in figure 4.8. Even for the smallest interaction
zone, the diffusion constant is enhanced by a factor of the order of 102. This is comparable to
the increase observed in experiments of Janus colloids [6, 7]. The diffusion time of the colloids
as well as the rotation diffusion time are not altered by the propulsion. However, the swimmer
shows a sharper transition from the short time ballistic regime to the diffusion regime than
the Brownian particle.

For length scales of the interaction zone up to L = 1.2 the simulation reproduces the expected
diffusion behavior. The velocity of the particle is strongly increased and the diffusive regime
in the mean square displacement cannot be resolved accurately. This might result from the
necessity of better statistics or due to a significantly increased Peclet number and the need to
consider convective effects.

This shows that the simulations, shown so far, completely describe the long time limit of a
selfdiffusiophoretic Janus colloid. It describes the increase of the diffusion constant correctly
also observed in experiments which have so far not been explained by other approaches. As
it seems to be difficult to extend the analytical results even further, this might be a good
starting point for further investigations. Also, it clarifies the necessary assumptions which
have to be made in analytic approaches.
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Figure 4.9: The mean square displacement 〈∆x2〉 for L = 1 (green), L = 1.5 (blue), L = 1.7 (red) and
L = 2.0 (yellow). For interaction lengths larger than L = 1 it is not possible to observe
the long time diffusion limit accurately.

4.7 Conclusion

The simulations of the MPC fluid and a selfdiffusiophoretic Janus colloid show that the ap-
proach is capable of explaining the phenomenological behavior of this kind of swimmers.
Most analytical results for such a system consider the mean propulsion velocity of the colloid.
The main result is that the velocity of a selfdiffusiophoretic swimmer is proportional to the
square of its interaction length [8, 89]. This behavior can also be observed in the simulations
performed for this work. However, quantitative deviations can be observed. This was to be
expected as the analytical approaches are based on a time and length scale separation between
the interaction zone around the swimmer and the overall evolution of the flow field as well as
the product particle density around the swimmer. The MPC technique as a coarse graining
approach aims to reduce the time scale separation in a hydrodynamic system in order to make
them treatable with a simulation. Therefore, it has to be decided which length and time scale
should be resolved accurately and which has to be implemented rather phenomenologically. In
order to ensure the qualitatively correct behavior on small length scales it has to be ensured
that the mechanism of propulsion leads to the expected results.

It is shown that the colloid indeed behaves like a low Reynolds number swimmer. This
becomes obvious if the motion of the cloud of product particles is considered. In contrast
to the expected behavior in a gaseous environment, its center of mass moves in the same
direction as the Janus colloid. This can be understood as also the particle cloud moves under
low Reynolds number conditions, and it is not pushed away form the swimmer but moves along
the self-produced gradient. The colloid itself shows a reduced decay of the velocity correlation
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function which shows that the propulsion mechanism leads to an increased persistence of the
intrinsic velocity. As has been discussed previously, the rotation diffusion of the object is not
effected by the propulsion mechanism. On the one hand, the angular velocity autocorrelation
function shows the power law decay expected from Enskog theory [181]. On the other hand,
the rotation diffusion time is not affected.

In experiments concerning Janus swimmers, mostly the long time limit is investigated [6, 7].
Therefore in this work, the focus is on the diffusive behavior of the colloid. In experiments
it was observed that even though the rotation diffusion time is not altered by the propulsion
the diffusion constant is significantly increased, as it scales with the square of the intrinsic
velocity. The observed increase of the diffusion constant was up to an order of O(102). In this
work, similar results have for the first time also been observed in simulations.

It shows that diffusiophoresis is a fascinating topic, which has not yet been fully understood.
Due to the coupling of hydrodynamics with the motion of a particle gradient, it is a complex
phenomenom at the foundation of soft matter physics. It could be a model system not only
to build highly controllable swimmers at low Reynolds numbers, but also to investigate the
applicability of field theoretical approaches in statistical mechanics.



5 Outlook

As has been shown in this work, the MPC approach is an ideal tool to investigate even complex
soft matter systems like selfdiffusiophoretic Janus colloids. However, care has to be taken with
the implementation of the approach. As has been described in chapter 3, it has to be ensured
that the correct hydrodynamic regime is considered, described by the relevant hydrodynamic
numbers. Even though the algorithm can simulate systems with low Reynolds as well as
Peclet numbers, both are never as low as would be found in experiments. Further, only
slow hydrodynamic flows can be investigated, as the MPC fluid is compressible and, hence,
cannot resolve the sound propagation in a medium correctly. This is a problem it shares with
competing approaches like Lattice Boltzmann. First approaches are trying to overcome this
drawback. Further investigation is needed to develop more universal fluid models.

In this work, it has been shown that the MPC approach is able to reproduce qualitatively the
expected behavior of a Janus colloid, especially the scaling behavior of the mean propulsion v
with the interaction length L. It has been proven that the swimmer model is a low Reynolds
swimmer, as the motion is based on the interaction of the colloid with the produced particle
cloud and not on inertia effects. The center of mass of the solute cloud moves in the same
direction as the swimmer and not opposite to it. Further, the swimmer interacts with the
cloud only via a short range surface potential as has been assumed in the analytical work
investigating such a system [89]. As it is an interfacial effect, careful separation of the time
scales of the fluid and the colloid is needed. In order to go one step beyond the long time limit
described in this work, simulations have to be developed which are able to reproduce the correct
solute cloud around the swimmer, especially if collective effects should be addressed. This has
not been achieved with the approaches used so far and any result given in literature should be
considered carefully. In general, as the MPC particles are only a coarse grained description of
the fluid with a typical density between n = 5−20, the concentration of different particle types
is of the same order. In most analytical approaches, however, it is assumed that the solute
concentration is much lower than the solvent concentration. In the simulation performed for
this work, the diffusive time scale of the fluid and the rotational diffusion time scale of the
swimmer are of the same order where in experiment they are separated by a order of O(102).
The discrepancy arises as in the simulations the ratio of the radius of the fluid particles and
the colloid is not as small as assumed in analytical as well as experimental results known so
far. Therefore, the simulations done in this work can be considered as a first step towards a
more general treatment of selfdiffusiphoresis in which the constraint of small solute particles
can be disregarded.

For the long time limit the details of the simulations are less relevant. It has been shown that
the diffusion constant of a Janus colloid significantly increases due to the propulsion gained
from the interaction with the solute particles. The effect is of the same order of magnitude as
has been previously observed in experiments [6, 7]. It would be elucidate for further work to
compare the results obtained by simulations in detail with the experimental data.
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A Transport Coefficients

Transport coefficients of the SRD as well as the MPC algorithm can be derived analytically by
various approaches like Green-Kubo relations or kinetic theory. As these are the fundamental
quantities to control the quantitative results of a new algorithm, here, the two most important
ones are recaptured. Taking the forms from literature, care has to be taken as there are some
misprints which would lead to slight deviations. In the following, δtc is the collision time and
a0 is the cell size. The parameter d is the dimension in which the algorithm is applied. The
expressions cm, fm and sm depend on the algorithm applied and are functions of the particle
density n.

The prefactors of the functions are

Algorithm A B
SRD−a 2

d(1− cos(θ))
1− cos(2 θ)

SRD+a 2
5(2− cos(θ)− cos(2 θ))

MPC−a 1 1MPC+a

A.1 Viscosity

The general form of the viscosity can be given as

η = ηkin + ηcol, (A.1)

=
nkB Tδtc

ad0

(
1

cm
− 1

2

)
+

m

ad0 δtc
fm. (A.2)

The algorithm specific functions cm and fm are given by
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Algorithm cm fm

SRD−a B (n−1+e−n)
n

Aa0 (n−1+e−n)
12MPC−a

B(−e−n(1 + n))
SRD+a Aa20

24

(
n− 7

5 + e−n
(

7
5 + 2n

5 −
3n2

10

))
+

(
Ad− B(3d+2)

2

)
1−e−n(1+n+n2/2)

2n

MPC+a B(1− e−n(1 + n)) +

(
A+ B

d

)
n e−n

d+2 Aa20
24

(
n− 7

5 + e−n
(

7
5 + 2n

5 +

(
1
d −

3
10

)
n2

))
+

(
Ad− B(3d+2)

2

)
1−e−n(1+n+n2/2)

2n

A.2 Diffusion Constant

The general form of the diffusion is given by

D =
kbT δtc
m

(
1

sm
− 1

2

)
. (A.3)

The algorithm specific function sm is given by

Algorithm sm

SRD−a A (n−1+e−n)
dn − 1

SRD+a A

(
1− d+1

2n + e−n

2

(
(d−3)n

2 + d− 1 + d+1
n

))
MPC−a A (n−1+e−n)

n

MPC+a A

(
1− d+1

2n + e−n

2

(
(d−1)(d−2)n

2 + d− 1 + d+1
n

))



B Solving Hydrodynamic Problems

The MPC and SRD approaches are constructed to investigate fluctuating hydrodynamics.
However, in certain regimes they should recapture the results from classical low Reynolds
number hydrodynamics. Hence, in order to test the validity of an algorithm, classical problems
of hydrodynamics can be used as a benchmark. Here, three typical approaches are described
shortly to solve problems in low Reynolds number hydrodynamics. Other approaches exist as
well but these are the mostly used ones.

B.1 Streaming Function

In analogue to electrodynamics, for an incompressible fluid with ∇ · v = 0, a vector potential
can be defined as [13]

v = ∇× ψ. (B.1)

In the case of a three dimensional problem there is no ease by expressing one vector potential
by another. If the problem can be reduced, due to symmetry, to two dimensions, the velocity
field can be deduced by one component of the vector field ψz = ψ. In the case of a spherical
problem the velocity field becomes [66]

vr = − 1

r2 sin(θ)

∂ψ

∂θ
, (B.2)

vθ = − 1

r sin(θ)

∂ψ

∂r
. (B.3)

The function ψ is called streaming function as it is constant along streamlines of the fluid.
Solutions of the streaming function can for example be obtained by the Ansatz

ψ = sin2(θ)

(
A1r

4 +A2r
2 +A3r +

A4

r4

)
, (B.4)

where the set of parameters {A1, . . . , A4} can be deduced from boundary conditions. Even
though the applicability of the approach is only restricted to two dimensional problems, it
is an easy way to find the flow field of simple problems and compare their decay with the
momentum expansion of a hydrodynamic flow field [207, 208].

B.2 Faxen Theorem

In order to iterate the hydrodynamic interaction between objects in fluid, different approxi-
mation schemes have been proposed. As the fluid mediates the interaction between immersed
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objects, hydrodynamic problems become retarded problems as the effect of one object onto
the flow field can be reflected by other objects. Therefore, most schemes investigating hydro-
dynamics only contain the interaction up to a certain order, while the MPC algorithm, as it
explicitly models the fluid, captures all hydrodynamic interactions.

In order to obtain the velocity of a sphere in a fluid the Faxen Theorem can be used [209]

vp = − 1

6π η R
Fh
p + u0(rp) +

1

6
R2∇2

pu0(rp). (B.5)

Here, u0 is the hydrodynamic flow field at the position of the sphere and Fh
p is the force onto

the object. In the case u0 = 0, this resembles Stokes law of a sphere and can, hence, be
considered as a first order extension of it. In the case of more complex objects the pre-factor
of the force has to be substituted by the respective motility coefficient. The Faxen theorem
can be used as the basis of iterative schemes like the method of reflection which incorporates
higher order hydrodynamics.

B.3 Rodne-Prager Tensor

In the introduction, the Oseen tensor, as the fundamental solution of a delta force, has been
given. Due to the linearity of the Stokes equation, complex objects, like polymers, can be
composed from the superposition of such point forces [15]. These approaches are only consid-
ering the first order hydrodynamics. In order to go one step further, the Rode-Prager motility
matrix can be used which contains already the effect of the first reflexion of the hydrodynamic
interaction. The velocity can, similar to the Oseen, tensor be written as

v = M(r) · F, (B.6)

with the Rodne-Prager Tensor

M(r) =
3

4

R

r

(
1 +

rr

r2

)
+

1

4

(
R

r

)3(
1 + 3

rr

r2

)
, (B.7)

with R being the radius of the sphere.

All the approaches described here are iterative schemes to tackle the effect of hydrodynamics
at low order. There are situations where this is sufficient as the higher order contributions
decay considerably fast and the exact local hydrodynamic interaction is not relevant for the
problem considered. However, most of these schemes are computationally demanding in com-
plex situations. Therefore, simulations directly introducing a fluid model like DPD or MPC
are more efficient to implement and automatically contain the complete hydrodynamics.
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