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Zusammenfassung

Leben kann nur durch einen erstaunlich hohen Grad an Organisation und Diffe-
renzierung existieren. Um diese Ordnung aufrecht zu erhalten, wird ständig Arbeit
an biologischen Systemen verrichtet, die dadurch fernab vom thermischen Gleichge-
wicht operieren. Die daraus folgende Phänomenologie ist hochgradig komplex, sodass
ein tiefgehendes Verständnis dieser Phänomene erhebliche Anforderungen an deren
theoretische Beschreibung stellt.

Diese Dissertation untersucht, wie biologische Systeme Differenzierung aufrechterhal-
ten und warum diese Spezialisierung manchmal durch evolutionäre Prozesse wieder
umgangen wird. Unser Interesse gilt den fundamentalen Mechanismen, die diesen
Phänomenen zugrundeliegen. Wir entwickeln paradigmatische Modelle, die einfach
genug für eine mathematische und physikalische Herangehensweise sind, die aber auf
der anderen Seite die wesentlichen Eigenschaften des jeweiligen Systems beinhalten.

Auf den längsten Zeitskalen unterliegt Differenzierung den Gesetzen der Evolution.
Wie die Differenzierung von Ökosystemen in verschiedene Spezies aufrechterhalten
werden kann, ist noch nicht volländig verstanden. Auf den ersten Blick sollte der Dar-
winschen Evolutionstheorie zufolge nur eine Spezies, die fitteste, überleben. Kürzlich
wurde gezeigt, dass räumliche Korrelationen und nicht-hierarchischer Wettbewerb
die Koexistenz von Spezies fördern können. Anhand eines paradigmatischen Mo-
dells dreier zyklisch wechselwirkender Spezies untersuchen wir die Prozesse, die zur
Aufrechterhaltung von Biodiversität und letztendlich zum Aussterben von Spezies
führen. Durch die Berechnung der vollen Verteilung der Extinktionszeiten zeigen
wir, dass diese Prozesse weit komplexer sind als bisher angenommen. Insbesondere
wird das Aussterben von Spezies durch verschiedene dynamische Zustände auf un-
terschiedlichen Zeitskalen bestimmt. Wir zeigen außerdem, dass die Prozesse, die
zur Aufrechterhaltung von Biodiversität führen, mit den Minima eines “renormier-
ten” Potentials verbunden sind. Diese Minima enthalten Informationen über die
Skalierung der Extinktionszeiten mit der Systemgröße und damit über die Stabilität
von Biodiversität. Ähnlich wie in der statistischen Physik ändert sich diese effektive
freie Energie qualitativ an bestimmten Werten der Mobilität von Individuen und
der Art des Wettbewerbs zwischen Spezies. Wir liefern das vollständige Phasendia-
gramm der Populationsdynamik und analysieren die raumzeitliche Dynamik und die
Extinktionsprozesse in den verschiedenen Phasen.

Anschließend betrachten wir Biodiversität aus einer breiteren Perspektive und fragen
uns, unter welchen Umständen sich Spezialisierung entwickelt und wann diese Spezia-
lisierung durch phänotypische Heterogenität aufgehoben wird. Genetische Diversität
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und phänotypische Heterogenität sind weit verbreitete Merkmale von Bakterien und
Viren. Einige Bakterienarten wechseln zum Beispiel stochastisch zwischen phänotypi-
schen Zuständen um das Extinktionsrisiko durch Antibiotika zu verringern. Motiviert
durch dieses Verhalten untersuchen wir heterogene, stochastische Vielteilchensysteme.
Die zugrundeliegende Idee ist, dass jedes Teilchen in einem solchen System unter-
schiedliche Eigenschaften hat. Zunächst interessiert uns das Wechselspiel zwischen
genetischer Diversität und phänotypischer Heterogenität. Wir zeigen, dass die Per-
sistenz genetischer Diversität und phänotypischer Heterogenität entscheidend von
der Durchmischung des Systems abhängt. Ist Diffusion schwach, so ist pänotypi-
sche Spezialisierung evolutionär vorteilhaft, wohingegen sich im wohldurchmischten
System phänotypische Heterogenität durchsetzt. Die Entwicklung phänotypischer
Heterogenität hängt auch maßgeblich davon ab, ob der Wettbewerb direkt, wie in
Räuber-Beute Beziehungen, ist oder indirekt, vermittelt durch die begrenzte Verfüg-
barkeit von Ressourcen.

Oftmals hat phänotypische Heterogenität auch Einfluss auf die Motilität von Bak-
terien, die zwischen einem motilen Zustand, bei dem sie sich durch Flagellen aktiv
bewegen, und einem immotilen Zustand wechseln. Wir untersuchen deshalb den
Einfluss heterogener Motilität auf fundamentale Fragestellungen der theoretischen
Biologie.

Unter welchen Umständen Kooperation entstehen und bestehen kann, ist eine weit-
hin offene Frage der Evolutionsbiologie. Eine Population von Kooperatoren sollte
eigentlich anfällig für die Übernahme durch defektierende Mutanten sein. Dieses Di-
lemma wird oft im Rahmen der Spieltheorie untersucht, wo solche Situationen durch
das Gefangenendilemma beschrieben werden. Wir zeigen, dass in Populationen mit
heterogener Motilität Kooperation unter erstaunlich harschen Bedingungen bestehen
kann. Die Dynamik ist durch drei Regimes in den Parameterwerten charakterisiert,
die jeweils durch die Möglichkeit für das Überleben von Kooperation und die Selek-
tion der optimalen Motilität innerhalb der Kooperatoren und Defektoren bestimmt
sind.

Heterogene Motilität beeinflusst auch Invasionsprozesse, wie sie in nahezu allen
Bereichen der Naturwissenschaften auftreten. Wir zeigen, dass sich in solchen In-
vasionsprozessen Sektoren homogener Motilität ausbilden und, dass verschiedene
Motilitäten in unterschiedlichen Phasen der Invasion bevorzugt werden. Wir bestim-
men die asymptotische Zusammensetzung der Population und zeigen, dass diese
Zusammensetzung maßgeblich durch stochastische Fluktuationen verändert wird.

Im zweiten Teil dieser Doktorarbeit fragen wir uns, wie funktionale Differenzierung
in der Embryonalentwicklung möglich ist. Wie entwickeln sich Zellen, die alle dieselbe
genetische Information tragen, in solch unterschiedliche Arten wie Nervenzellen oder
Muskelzellen? In der Fruchtfliege ist der erste Schritt zur Differenzierung von Zellen
eine scharfe räumliche Grenze in der Konzentration des Proteins Hunchback. Zellen
in einer Region, in der das Protein vorhanden ist, entwickeln sich später zum Kopf
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der Fliege, während sich Zellen, in denen das Protein fehlt, den Rumpf der Fliege
bilden. Die Stabilität dieser Grenze ist entscheidend für die weitere Entwicklung des
Embryos. Wie kann durch genregulatorische Prozesse eine solche Grenze hergestellt
werden, die sowohl gegenüber extrinsischen Störungen, als auch gegenüber intrinsi-
schem Rauschen stabil ist? Wir entwickeln ein paradigmatisches Modell, das als ein
“vergröbertes” genregulatorisches Netzwerk angesehen werden kann. Dieses Modell
beinhaltet eine bistabile Reaktionskinetik und räumlich inhomogene Aktivierung.
Anhand analytischer Berechnungen bestimmen wir Parameterwerte, die die Robust-
heit dieses Musterbildungsprozesses und seine Stabilität gegenüber extrinsischen
Störungen und intrinsischem Rauschen optimieren. Wir zeigen, dass diese Stabili-
tät zum einen durch eine nichtlineare Modulierung des Positionsignals verbessert
werden kann, zum anderen auch durch eine schwache Kooperativität bei der Selbstak-
tivierung. Weiterhin finden wir einen gegensätzlichen Einfluss der Selbstaktivierung
auf beide Arten der Destabilisierung: das System kann nicht gleichzeitig für beide
Störquellen optimiert werden. Unsere generischen Resultate legen die Prinzipien des
Aufbaus genregulatorischer Netzwerke offen und haben mögliche Auswirkungen auf
Embryogenese, Ökologie und Biotechnologie.

Diese Dissertation ist in zwei Teile gegliedert. Der erste Teil behandelt die Evolution
genetischer Diversität und phänotypischer Heterogenität. Im zweiten Teil untersuchen
wir die Stabilität lokalisierter Domänengrenzen in der Emrbyonalentwicklung.
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Abstract

Life can only exist due to an intriguingly high degree of organization and differen-
tiation. To establish this order, biological systems rely on a constant flux of energy
from their environment and they therefore operate far from thermal equilibrium. The
ensuing phenomenology often is highly complex such that a deep going understanding
poses significant challenges to theoretical science.

In this thesis, we investigate how biological systems maintain functional differen-
tiation and why this specialization is sometimes disfavored by evolution. We are
interested in the fundamental physical mechanisms behind these processes and de-
velop paradigmatic models that are simple enough to be accessible by mathematical
and physical reasoning, but which at the same time capture the principal character-
istics of the biological system under consideration.

On the largest time scales, differentiation is subject to evolutionary forces. How
species differentiation can be maintained is still an open question. Indeed, according
to Darwinian evolution, only a single species - the fittest - should survive. Recent
studies have shown that spatial correlations and nonhierarchical competition promote
species coexistence. We study the processes that lead to the maintenance and loss
of biodiversity in a paradigmatic model of three cyclically interacting species. By
calculating the full distribution of extinction times we show that these processes are
surprisingly rich, comprising several dynamical states on different time scales. We
furthermore argue that the dynamic processes leading to the transient maintenance
of biodiversity are closely linked to minima of a coarse-grained potential. These
minima give information about the scaling of extinction times with the system size
and thereby the stability of biodiversity. Similar as in statistical physics, this effective
free energy landscape changes qualitatively at certain threshold values of the species’
mobility and the relative strength of different types of competition. We provide the
complete phase diagrams for the population dynamics and give a comprehensive
analysis of the spatio-temporal dynamics and routes to extinction in the respective
phases.

We then take a broader perspective on biodiversity and ask, under which condi-
tions specialization arises and when it is circumvented by phenotypic heterogeneity.
Genetic diversity and phenotypic heterogeneity are commonly found in bacterial
populations and viruses. As an example, some bacteria stochastically switch between
phenotypic states to minimize the risk of population extinction due to an attack with
antibiotics. Inspired by these phenomena, we investigate heterogeneous, stochastic
many-particle systems. The basic idea is that each particle is endowed with distinct
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properties. We first study the interplay between genetic diversity and phenotypic
heterogeneity in mobile populations. We find that the persistence of genetic diversity
and phenotypic heterogeneity qualitatively depends on the degree of mixing. For
small diffusion constants, specialization is favored by the evolutionary dynamics,
whereas for for well-mixed systems phenotypic generalization can persist. The sur-
vival of phenotypic heterogeneity also significantly depends on whether competition
is direct, as in predator-prey relations, or indirect, mediated through the limited
availability of resources.

Phenotypic heterogeneity may also influence motility in many bacterial populations.
In these populations, cells switch between a motile state, where swarming is en-
abled by propelling flagella, and a non-motile state. Motivated by these findings we
study the influence of heterogeneous motility on fundamental problems in theoretical
biology.

Understanding the conditions that facilitate the persistence of cooperation is one of
the classic problems in evolution. The dilemma of cooperation expresses the naive
point of view that cooperation should not be robust against “cheating” mutants.
This dilemma is often formulated in the framework of evolutionary game theory,
where such situations are described in terms of the prisoner’s dilemma. We show
that in populations exhibiting heterogeneous motility cooperation is possible under
much harsher conditions as compared to homogeneous populations. We identify three
parameter regimes determined by the probability of the persistence of cooperation and
the selection of optimal values of the motility within the cooperating and defecting
subpopulations.

Heterogeneous motility also influences invasion processes, which arise in nearly all
fields of science. Examples are the range expansion of bacterial populations or the
spreading of diseases. We study the expansion of heterogeneous populations and
observe the formation of homogeneous sectors. Interestingly, at different stages of
the invasion process different combinations of motility and reproduction are favored
by the evolutionary dynamics. We determine the asymptotic composition of the
population and reveal that this composition is intriguingly influenced by fluctuations.

In the second part of this thesis, we ask how functional differentiation is possible in
developmental processes. How can cells, despite all sharing the same genetic informa-
tion, differentiate into forms as diverse as, for example, nerve fibers or muscle cells?
In the fruit fly Drosophila melanogaster, the first step towards cell differentiation
is a sharp separation of the embryo into a region, where the protein Hunchback is
present, and a region where it is absent. Cells in the former region become the fly’s
head, whereas cells in the latter region will form the trunk. The stable positioning
of this border is paramount for the embryo’s fate. How can gene regulatory pro-
cesses establish a sharp border, which is stable to extrinsic perturbations as well
as intrinsic noise? We develop a paradigmatic model resembling a coarse-grained
gene regulatory network which comprises bistability and spatially inhomogeneous
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activation. By analytical calculations, we determine parameter values which optimize
the robustness of the pattern forming process, and the border’s stability to extrinsic
and intrinsic noise. We find that stability is enhanced upon regulating a positional
signal and, surprisingly, also for a low degree of binding cooperativity. We further
show a contrasting impact of self-activation on the stability of the two sources of
destabilization, such that the network can not be optimized for extrinsic and intrinsic
perturbations at the same time. Our general results reveal design principles of gene
regulatory networks and have possible implications for embryogenesis, ecology, and
biotechnology.

The outline of this thesis is as follows. In Chapter 1, we give an introduction on
how functional differentiation is achieved in biological systems on vastly different
scales. Part 1 is concerned with the evolution of genetic diversity and phenotypic
heterogeneity. In Chapter 2, we study how biodiversity is maintained by the spatial
ordering of cyclically competing species. Chapter 3 deals with the interplay between
genetic diversity and phenotypic heterogeneity in several biological contexts. In Part
2, we investigate the stability of localized domain borders in developmental systems.
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1 Introduction

Life is, one might say, an ongoing struggle for order. While the second law of ther-
modynamics predicts that in any closed system the degree of disorder increases with
time, biological systems exhibit a great amount of organization. Indeed, functional
differentiation of the organism’s internal structure is a necessity for the development
of life. Such functional differentiation is established through the formation of complex
patterns. As an example, eukaryotic cells are complex organisms which are, in part,
organized by smaller subunits, the organelles [1]. These organelles are separated from
their surrounding by a lipid membrane and they perform specialized functions within
the cell, cf. Fig. 1.1(a). The most important organelle certainly is the nucleus, which
in most cells encapsulates all genetic information and which controls all activities of
the cell. Mitochondria produce energy from the oxidation of glucose and the release
of adenosine triphosphate, and the endoplasmatic reticulum is responsible for the
translation and folding of proteins and the expression of lipids.

On the level of tissues, the establishment of spatial order is one of the most important
tasks in embryonic development [2]. Starting from a homogeneous cluster, cells
differentiate to a variety of different forms of tissue. But how can cells which share
identical genetic information develop into tissue as different as, for example, nerve
fibers or muscle cells? In the case of the embryogenesis of the fruit fly Drosophila
melanogaster the signal for cell differentiation comes from the mother. She releases
a substance, the morphogen Bicoid, which diffuses into the embryo tissue [3–7]. As a
result of the combined effect of the maternal source, diffusion and degradation, the
concentration decreases monotonically depending on the distance. The morphogen
thereby provides positional information to the gene regulatory network in the cells
constituting the embryo. Such a smooth concentration can, however, not mediate an
unambiguous yes/no decision. To this end, the signal is modulated in a nonlinear way.
Coupled to the signal substance is a protein called Hunchback, whose concentration
decides which cells later develop to the fly’s head and which become part of the
fly’s body. A sharp border arises if the concentration of the protein changes rapidly
within a small, confined region in the cell cluster [8–15]. The division of the embryo
into a region, where the protein Hunchback is present and a region where it is absent
is one of the most striking examples of order in nonequilibrium systems. Hunchback
expression in Drosophila melanogaster provides an example for how spatial patterns
can be established by the spatio-temporal control over the cells’ inner status. An
alternative mechanism for establishing spatial order in cellular populations consists
in changing the relative positions of different cell types [Fig. 1.1(b)].

On even larger time scales, millions of years of evolution have led to a high degree of
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(a) (b) (c)
nucleus

mitochondria

endoplasmic riticulum Golgi apparatus

Figure 1.1: Self-organization in biological systems is a common phenomenon on various
scales. (a) The illustration of a typical animal cell shows that these cells consist of
highly differentiated sub units, the so-called organelles. The nucleus, for example,
stores genetic information and controls the cell’s behavior. The Golgi apparatus
packages proteins before they are sent to their destination. Illustration has been
taken from Ref. [16]. (b) On an inter cellular scale the spatial self-organization
of cells is a basic prerequisite for developmental processes. Cells can arrange by
two different mechanisms. First, the cells’ status may change depending on their
position in the embryo (top). Secondly, different cells may change their relative
positions (bottom). The illustrations have been taken from Ref. [17]. (c) Self-
organization on ecological scales can, for example, be found in vegetation clusters
in the Kalahari. The pictures show satellite images of 4 km2 large regions at
different places in the Kalahari Transect in southern Africa. Black dots indicate
trees. The upper picture is taken at a location with high precipitation and a
high density of trees. The lower picture is taken at a location with less rainfall
and a lower density of vegetation. In both cases, trees tend to form clusters.
Interestingly, the distribution of these clusters obeys a power law, indicating
that the observed patterns can be understood in terms of simple, theoretical
models. The pictures have been taken from Ref. [18].

order in the genetic information carried by organisms. Not only are there mechanisms
to counteract the favor of disorder induced by mutations. Also, evolution has led to
high degree of differentiation and specialization of organisms. The sheer number of
different species becomes strikingly clear, when one considers that a 30-g sample of
soil from a Norwegian forest has been estimated to contain about 20,000 common
bacterial species and about 500,000 rare ones [19]. The huge amount of biodiversity
present on earth seems, however, to contradict Darwin’s principle stating that only the
fittest species survives. Several mechanisms have been proposed for how this seeming
contradiction is circumvented in ecological systems. The most obvious explanation
states that different species occupy different ecological niches and therefore do not
compete for the same resources. However, this is not always the case. A striking
example is given by plankton: a large number of species share the same ecological
niche, in this case solar energy and minerals dissolved in water. At the first glance this
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diversity is counter-intuitive and hence referred to as the paradox of the plankton [20].
Understanding the mechanisms that lead to the maintenance of a species diversity
that is larger than the amount of available ecological niches is still a challenge in
theoretical ecology.

Non-hierarchical interactions between species have been proposed as a facilitator
of biodiversity in spatially extended systems [21–29]. For example, bacterial model
systems comprised of three genetically distinct strains of Escherichia coli have been
shown to exhibit stable three-strain coexistence in spatially extended homogeneous
environments [26, 27]. This basic motif of cyclic dominance is metaphorically de-
scribed by the rock-paper-scissors game, where rock crushes scissors, scissors cut
paper, and paper wraps rock. Recent theoretical studies have explored how spatial
order [28–30], and the structure of the interaction network as well as the strengths
of its links [31] affect the maintenance of species diversity.

All these biological examples evolve on vastly different spatial and temporal scales.
They have in common that spatial order enables functional differentiation. In the
language of statistical physics, these systems produce negative entropy: they reduce
the degree of uncertainty regarding their physical configuration. Indeed, according
to Ludwig Boltzmann a negative flux of entropy may be thought of as a physical
characterization of living systems [32]:

“The general struggle for existence of animate beings is not a struggle
for raw materials – these, for organisms, are air, water and soil, all abun-
dantly available – nor for energy which exists in plenty in any body in the
form of heat, but a struggle for [negative] entropy, which becomes available
through the transition of energy from the hot sun to the cold earth.”

Of course, it is to be understood that the second law of thermodynamics also holds
for biological systems. The entropy that is lost by, for example, establishing the inner
organization of a cell is transported to its environment in the form of heat. As a result,
constantly work is performed on such biological systems and they are therefore out
of equilibrium. The nonequilibrium nature of most biological systems is responsible
for the multitude of fascinating phenomena that can be observed in living systems.
However, the theoretical understanding of such systems is often difficult. While in
equilibrium physics the Boltzmann distribution provides a full characterization of
the steady state, it is still unknown how a corresponding quantity could look like in
systems far from equilibrium.

On the other hand, biological systems are characterized by being inherently stochas-
tic. In other words, random forces are equally important as deterministic forces.
Stochasticity is a theoretical concept that is used when for a system comprising a
large number of degrees of freedom the level of description is reduced to a few relevant
quantities. The remaining degrees of freedom are summarized in random fluctuations
around the average values of these quantities [33, 34]. As an example, a mathematical
model of an ecosystem would comprise only the number of individuals of each species
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1. Introduction

and not the internal functionality of the organisms under consideration. Instead, one
would consider the movement and the times of interaction between individuals as
random such that the species abundances become random variables. Similarly, en-
counters of molecules in subcellular processes, or cell division and motion in bacterial
populations, are considered being randomly distributed. The central limit theorem
states that the amplitude of these fluctuations decreases with one over the square
root of the number of entities in the system. Biological systems typically comprise a
rather small number of constituents as compared to thermodynamic systems, hence
fluctuations are strong and a description purely by average values is not always
feasible.

These two characteristics, being far from equilibrium and the importance of stochastic
fluctuations, are common to many biological systems on a variety of different scales.
This fact suggests that all these processes may be understood in the same theoretical
framework. Mathematically, such a framework is given by stochastic many-particle
systems. For spatially extended systems as they arise in biology, reaction-diffusion
systems provide one of the most important frameworks to study the dynamics of
systems far from equilibrium [35]. Reaction-diffusion systems are simple examples of
nonequilibrium stochastic systems of classical particles. These particles are generally
labeled by their species, A, B, C, . . . , which may be thought of as corresponding
to different chemical reactants, biological species or more abstract entities. As the
name suggests, reaction-diffusion systems comprise two types of dynamics: First,
particles perform Brownian motion with associated diffusion constants DA, DB, DC ,
. . . . Secondly, particles react at prescribed rates according to certain dynamical rules.
These rules are often expressed in the notation of chemical reactions, e.g. A+B → C,
and in the most interesting cases the dynamics that follows from these reactions is
nonlinear. These reactions are diffusion-limited; i.e., they are purely local and the
particles have to diffuse around to find each other and react. In an experimental setup
this could mean that the reactants should not be stirred. Instead one could imagine
allowing the particles to diffuse in a gel or substrate. The potential applications of
these ideas are vast. As the notation implies, reaction-diffusion system are naturally
found in chemistry, but also in biology, geology, physics and ecology.

Simple reaction-diffusion models have been successfully employed to understand a
variety of phenomena in nearly all fields of science [35, 36]. Figure 1.1(c) shows
vegetation patterns in the Kalahari. These patterns are distributed according to a
power law, which indicates that the ecosystem can be understood by simple interac-
tion rules. Another example for the success of simple reaction-diffusion models are
coalescence processes. Particles that perform random walks on a lattice and merge
upon encounter [Fig 1.2(a)] have been used to describe phenomena as diverse as
coagulation of colloids [37, 38] and genealogical trees [39–43]. On the other hand, two-
species processes of the form AB → AA mimic expansion processes [Fig. 1.2(b)], for
example, of advantageous genes or epidemic spreading [36, 44, 45]. Reaction-diffusion
processes comprising three types of particles have become popular as prototype mod-
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(a) Coalescence (b) Invasion (c) Cyclic dominance (d) Directed percolation

Figure 1.2: Simple reaction-diffusion systems have successfully been used to describe a vari-
ety of phenomena. (a) In coalescence processes, diffusing particles merge upon
contact. Such processes have been employed to, for example, understand the
coagulation of colloids or genealogical trees. (b) Invasion processes describe the
spreading of advantageous genes or infectious diseases. Active particles (red)
reproduce upon consumption of inactive particles (green). Cyclic dominance
between three species (red, green, blue) is used as a paradigmatic model for
more complex ecosystems. Each species outcompetes another species in a cyclic
manner. (d) The directed percolation process comprises death, fission and co-
alescence of particles. It is of special importance in nonequilibrium physics as
many other systems behave similarly at certain “critical” parameter values.

els for ecosystems [25, 28–30, 46–73]. In these models, three species A, B, and C
interact cyclically, as in the popular children’s game “Rock-Paper-Scissor”: A beats
B, B beats C, and C again beats A [Fig. 1.2(c)]. For predator-prey type reactions
the dynamics is defined by three dynamical rules,

AB → AA , (1.1a)
BC → BB , (1.1b)
CA→ CC . (1.1c)

Reaction-diffusion models comprising cyclic interactions have recently attracted
considerable attention as they predict the loss of biodiversity above a certain threshold
value in the diffusion constant [28–30, 69, 73]. The dynamics of cyclic reaction-
diffusion systems is surprisingly rich, making these models also interesting from a
purely theoretical point of view. Last, directed percolation models mimic fluid flow
in porous media. The significance of these models lies in the fact that they serve
as prototype models for many nonequilibrium systems. As in equilibrium physics,
nonequilibrium systems behave surprisingly similar near certain “critical” values of
the parameters. Specifically, many nonequilibrium models show the same critical
behavior as models for directed percolation [36]. In fact, directed percolation is
probably the most fundamental class of nonequilibrium phase transitions. As is
depicted in Fig. 1.2(d), a reaction-diffusion representation of directed percolation
comprises three processes,

A→ ∅ , (1.2a)
A→AA , (1.2b)

AA→ A , (1.2c)
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1. Introduction

which can be interpreted as death, fission and coalescence of particles.

In this thesis, we are interested in how order is established andmaintained in biological
systems at cellular and ecological scales. We follow the great tradition of theoretical
science and study biological problems in terms of simple, abstract models. While
these models are not meant to give quantitative descriptions of concrete biological
systems, they enable use to gain a deep understanding of the mechanisms underlying
biological processes. Our general results may explain basic mechanisms of a variety of
biological systems, with possible implications for morphogenesis, cell biology, ecology
and biotechnology.

Biodiversity and evolution

In the first part of this thesis, we are interested in the dynamic processes that lead
to the maintenance of biodiversity and which are responsible for the extinction
of species. The emergence and stability of ecosystems relies on the fact that they
contain a multitude of species. However, how species diversity in ecological systems
can be maintained is still an open question. Mathematically, the loss of biodiversity
corresponds to the system resting in absorbing states of the stochastic dynamics.
These states can be reached, but never be left by the dynamics. Ultimately the system
will always rest in such an absorbing state, which means that biodiversity is lost
inevitably. How these states are reached and on what time scales is highly relevant for
ecology and the understanding of nonequilibrium physics in general. If one is not too
far from equilibrium, fluctuations are governed by the same laws that hold in steady
state and the transient is typically an exponential decay. In absorbing states, however,
no fluctuations are present. For simple reaction-diffusion systems power-law decays
into absorbing states have been found [36]. We investigate the relaxation process into
absorbing states in a paradigmatic ecological model comprising cyclic interactions
between three species. By calculating the full distribution of first passage times into
the absorbing states, we show that the transitions into the states of extinction are
much more complex than previously thought. A theoretical understanding of these
systems is often difficult, because they comprise a large number of degrees of freedom.
We show that a few degrees of freedom suffice to characterize the essential features
of such systems. This approach allows us to obtain new insights into the mechanisms
responsible for the transient maintenance and the ultimate loss of biodiversity.

Genetic diversity and phenotypic heterogeneity

Order does not only play a central role in the spatial organization of ecosystems. As
it can be observed in the high degree of specialization of many organisms, it is a
relevant concept at the genetic level as well. However, a high degree of specialization
makes organisms vulnerable to environmental changes. How can organisms specialize
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to an ecological niche and at the same time be able to survive in a variety of different
conditions? Many bacteria and viruses counteract their genetic specialization by
switching between several phenotypic states [74–98]. As an example, phenotypic
switching is a strategy commonly employed by pathogens to evade a host’s immune
system. Some bacteria stochastically switch between phenotypic states to minimize
the risk of population extinction due to an attack with antibiotics [75, 95]. Inspired
by these phenomena, we ask how genotypic and phenotypic heterogeneity co-evolve
in microbial populations.

To this end, we consider reaction-diffusion systems from a new perspective. We study
heterogeneous, stochastic many-particle systems. The basic idea is that each particle
is endowed with distinct properties. We first consider the interplay between genetic
diversity and phenotypic heterogeneity in spatially extended populations comprising
cyclic interactions and more complex food webs. We find that the survival of genetic
diversity and phenotypic heterogeneity qualitatively depends on the degree of mixing.
For small mobilities, phenotypic specialization is favored by the evolutionary dynam-
ics, whereas for large mobilities phenotypic generalization can persist. The survival of
phenotypic heterogeneity also significantly depends on whether competition is direct,
as in predator-prey relations, or indirect, mediated through the limited availability
of resources.

Understanding the conditions that facilitate the persistence of cooperation is one of
the classic problems in evolutionary biology. The dilemma of cooperation expresses
the naive point of view that cooperation should not be robust against “cheating” mu-
tants. Despite the temptation to defect, cooperation is frequently found in biological
systems. As an example, the metabolism of Pseudomonas aeruginosa relies on the
consumption of iron. These bacteria therefore produce an iron-scavenging siderophore
which may pass the cell membrane and is therefore available to other bacteria. As
siderophore production is metabolically costly the population should in principle
be susceptible to the invasion by mutants who do not produce the siderophore [99].
Mathematically, the dilemma of cooperation is often formulated in the framework
of evolutionary game theory, where such situations are described in terms of the
prisoner’s dilemma.

On the other hand, many bacterial species, such as Bacillus subtilis, are endowed
with flagella which may be utilized to sense the cell’s environment. Most importantly,
flagella are, however, used for locomotion. For B. subtilis it has been found that
in the mid exponential growth phase clonal populations consist of both, swarming
cells that are propelled via flagella, and non-motile cells, which after division do not
separate from each other, thereby forming long chains of cells [84, 94]. Cells in the
motile state do not divide. This bet-hedging strategy allows the population to exploit
its current location and at the same time disperse to new, possibly more favorable
niches. As a result, colonies of B. subtilis are heterogeneous with respect to the cells’
motility. The underlying mechanism behind this behavior is a bistable switch: in
motile cells the alternative sigma factor σD is in the ON state, while for non-motile
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1. Introduction

cells σD is in the OFF state. The switching between these states is purely stochastic.
The statistical weight of the state, and thereby the fractions of the colony in each of
these states, can be biased by the regulatory proteins swrA and swrB [84, 94].

Motivated by these findings, we study the influence of heterogeneous motility on
the persistence of cooperation. We show that with this kind of genetic diversity and
phenotypic heterogeneity cooperation is possible under much harsher conditions. The
composition of the population after many cell cycles qualitatively depends on the cost
of cooperation and the average, initial motility in the population. While defectors
take over the population if the cost for cooperation is high, slow cooperators dominate
for intermediary costs. If, in contrast, the cost for cooperation or the average motility
is low, fast cooperators tend to constitute the majority of the population for large
times.

When bacteria are placed on a petri dish one finds that due to the combined effect of
cell division and motility the populations expands radially. Such expansion processes
have been observed in a variety of biological contexts, from the proliferation of
advantageous genes to the spreading of infectious diseases. As mentioned above, these
processes are often studied in terms of simple reaction-diffusion models mimicking
invasion [45]. Motivated by the discovery of phenotypic heterogeneity in motility, we
finally study heterogeneous versions of invasion processes. We find that the spreading
process favors certain genotypes and ultimately leads to a loss of genetic diversity
in the front region.

Formation of static boundaries

Another example for the importance of functional differentiation arises in the de-
velopment of embryos. Starting from a homogeneous cluster, cells differentiate to a
variety of different forms of tissue. But how can cells which share identical genetic
information develop into tissue as different as, for example, nerve fibers or muscle
cells? In his seminal work, Alan Turing investigated how spatial differentiation can
be achieved out of a spatially uniform state [100]. He showed that the formation
of regular structures is possible by a very simple mechanism comprising diffusion
and nonlinear reactions. His findings provide a mechanism for producing a variety
of regular patterns, ranging from the periodic arrangement of tentacles around the
mouth of the Hydra organism to zebra stripes [35].

In the development of the fruit fly Drosophila melanogaster, the mother releases
a substance which diffuses into the embryo tissue. As the concentration of this
morphogen decreases monotonically in space it provides positional information for
the gene regulatory networks in the the embryo’s cells [3–7]. By nonlinearly processing
the positional signal the embryo is able to establish a sharp border of the protein
Hunchback which again serves as an input for downstream regulatory processes. In
particular, cells, in which the protein Hunchback is present at a sufficiently high
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concentration later form the embryos head, while cells, where this protein is absent,
later form the embryo’s trunk [8–13, 15]. The division of the embryo into a region,
where the protein Hunchback is present and a region where it is absent is one of the
most striking examples of order in nonequilibrium systems. The stable positioning of
this domain border is pivotal to the embryo’s fate. However, it is naturally subject
to extrinsic perturbations due to, for example, a varying temperature, and intrinsic
noise due to a finite number of particle involved in the biochemical reactions. How
does the embryo cope with these two sources of destabilization?

In the second part of this thesis we investigate the problem of domain boundary
formation from a theoretical perspective. We study a broad class of bistable systems
subject to external gradients. These systems can be understood as coarse-grained gene
regulatory networks comprising essential features of the much more complex networks
found in biology. Under certain conditions, these systems allow for the localization of
wave fronts, which then constitute sharp domain boundaries. We study the conditions
under which wave localization is possible and find optimal parameter values for the
stability of such fronts to extrinsic perturbations and intrinsic noise. In particular, we
show that increasing binding cooperativity in self-activation broadens the parameter
regime where wave localization becomes possible and thereby increases the robustness
of the localization mechanism. Interestingly, there is a trade-off between the stability
of the wave front to extrinsic and intrinsic perturbations. While weak self-activation
or low birth rates enhance the stability with respect to extrinsic perturbations,
defocusing due to intrinsic noise is minimized for strong self-activation. The latter also
increases the spatial precision of the signal transmitted by the front to downstream
processes. Moreover, we showed that processing input from external sources with a
cooperative gene activation mechanism generally enhances the front’s stability even
far away from the source. Surprisingly, while cooperativity in external activation
increases the front’s stability with respect to extrinsic perturbations, the opposite
holds true for self-activation.

The conflict between intrinsic and extrinsic stability affects, for example, the design
of gene circuits in developmental systems. We expect these general results to be
important guiding principles in the context of biological pattern forming systems,
such as cell polarization or the segmentation of embryos.
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Part I

Evolution of genetic diversity and phenotypic
heterogeneity in mobile populations
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2 Coexistence in populations of cyclically competing species

Ecosystems can only emerge and persist if they contain a multitude of species. But
how diversity in ecological systems can be maintained is still an open question. Indeed,
Darwin’s principle “survival of the fittest” seems to contradict the rich variety of
species found on earth. As an example, it has been estimated that a 30 g sample of
Norwegian soil contains some 20,000 common bacterial species and about 500,000
rare ones [19]. From a naive understanding of Darwinian evolution, when species
share the same resources they compete and ultimately only the fittest species survives.
This argument was first formulated by G. F. Gause. In theoretical ecology, it is known
as the competitive exclusion principle [101] and it applies to situations where different
species share the same resources. Following this argument, a mechanism allowing for
the coexistence of species could be that different species occupy different ecological
niches. However, this is not always the case. A striking example is given by plankton,
where a huge amount of species share the same ecological niche, in this case solar
energy and minerals dissolved in water. At the first glance this diversity is counter-
intuitive and hence referred to as the paradox of the plankton [20]. Understanding
the mechanisms that lead to the maintenance of a species diversity that is larger than
the amount of available ecological niches is still a challenge in theoretical ecology.

Cyclic interactions can be found in a variety of places in nature. Two prominent
examples include competition between mating strategies of lizards and cyclic domi-
nance in three strains of E.coli bacteria. First, cyclic competition has been observed
in the Inner Coast Range of California, where lizard males can follow three different
mating strategies [Fig. 2.1(a)]. The mating strategies differ in the way lizards defend
territories for mating. The first type of males are little aggressive and guard smaller
territories. These lizards invade populations of “sneaker” males, who do not defend
territories. A third type is aggressive and defends large territories. Lizards of this
type are inferior to the sneakers but they can invade individuals following the first
mating strategy. By evaluating the frequency of the three different strategies over
several years, it was found that these three types of mating behavior stably coexist,
exhibiting oscillations in the relative number of lizards following each strategy [23].
Furthermore, the spatial arrangement of the three mating strategies has been investi-
gated. It was found that lizards of the sneaker type preferably form clusters around
the territories of the aggressive individuals. Probably it is easier for them to invade
the large territories of the aggressive lizards as compared to the small territories of
the less aggressive ones. In interesting detail is that the type of mating strategy a
lizard follows is easily visible by the color of its throat. Cyclic dominance has also
been investigate in a model systems of three strains of E.coli bacteria [Fig. 2.1(b)].
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Figure 2.1: (a) Three types of mating stategies of lizards in California effectively compete
each other cyclically. The mating strategies differ in the way lizards defend
territories for mating. The three types of mating behavior are connected to
skin polymorphisms. Blue throated males (left) are little aggressive and guard
smaller territories. The blue throated lizards invade populations of “Sneaker”
males, who do not defend territories and who can be identified by a yellow
throat (middle). A third type with an orange throat (right) is aggressive and
defends large territories. Lizards of this type are inferior to the sneakers but they
can invade individuals following the first mating strategy. The picture has been
reproduced from Ref. [102]. (b) Three strains of E.coli coexist on a Petri-dish by
forming spatial structures. The three strains, denoted by C, S, and R, compete
cyclically. The pictures have been altered and taken from [27]. (c) The rock-
paper-scissors interaction scheme illustrated for cyclic competing E.coli strains.
Type A carries a “col” plasmid letting them produce the toxin colicin. This toxin
harms colicin-sensitive bacteria (type B). Bacteria of type C are colicin-resisant
at the expense of a lower general fitness level.

E.coli is endowed with plasmids encoding the production and the immunity to cer-
tain toxins, the so called colicins. E.coli strains A producing such colicins harm a
colicin-sensitive strain B of E.coli. The latter strain does not have the metabolic
cost for immunity and therefore it outgrows a third strain C, which is resistant to
the colicin. The C strain again outgrows the colicinogenic A strain, which not only
has cost for producing the colicin, but also for the resistancy against it [27]. Cyclic
interactions in strains of E.coli bacteria are illustrated in Fig. 2.1(c).

2.1 Theoretical studies of cyclically interacting systems

These experimental studies of cyclically interacting species have motivated a large
body of theoretical literature exploring the role of cyclic interactions in ecological sys-
tems [25, 28–30, 46–52, 54–67, 69–71, 103–111]. Most theoretical work on cyclically
interacting systems does not intend to quantitatively describe real biological systems.
Rather, simple, paradigmatic models are employed to understand the basic mecha-
nisms behind the rich variety of phenomena exhibited by these models. Nevertheless,
extended versions of these prototype models are currently used to quantitatively
describe experimental observations in E. coli populations. Most of the theoretical
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2.1 Theoretical studies of cyclically interacting systems

work has focused on two paradigmatic examples of three-species models with cyclic
interactions. In the first class of models, the direct competition between two indi-
viduals leads to the immediate replacement of the weaker species by the stronger
species [25, 46–52, 54–61, 66, 105–109, 112]. This type of competition, where selec-
tion and reproduction are combined into a single process, is similar to the classical
two-species Lotka-Volterra model [113, 114]. The interaction scheme of this cyclic
Lotka-Volterra model may be summarized by a set of chemical reactions between
the three species A, B, and C:

AB → AA, BC → BB, CA→ CC . (2.1)

If the number N of particles is large and for a sufficiently small lattice spacing
stochastic fluctuations can be neglected. The spatio-temporal dynamics is then
described in terms of a set of partial differential equations for the concentrations
a(r, t), b(r, t), and c(r, t),

∂ta = νa(b− c) +D∆a , (2.2a)
∂tb = νb(c− a) +D∆b , (2.2b)
∂tc = νc(a− b) +D∆c , (2.2c)

with ν being the reaction rate.

In the second class of models, originally proposed by May and Leonard [71], selection
and reproduction are two separate processes. An interaction between two individuals
of different type leads to the death of the weaker species and thereby to empty
spaces. Reproduction then follows as a second process which recolonizes this empty
space. Here, competition is mediated through the limited availability of resources.
The ensuing reaction scheme reads:

AB → A∅, BC → B∅, CA→ C∅ , (2.3a)
A∅ → AA, B∅ → BB, C∅ → CC . (2.3b)

In the continuum limit and for a large number of particles the dynamics of the spatial
May-Leonard model is described by a set of reaction-diffusion equations,

∂ta = −σac+ µa(1− ρ) +D∆a , (2.4a)
∂tb = −σba+ µb(1− ρ) +D∆b , (2.4b)
∂tc = −σcb+ µc(1− ρ) +D∆c , (2.4c)

where µ and σ are the rates for reproduction and selection, respectively. Analytical
progress on these equations has been made by a mapping to the complex Ginzburg-
Landau equation [28, 29].
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2.1.1 Stability of cyclic population models

Both of these models exhibit absorbing states corresponding to situations where all
but one species have died out. Due to the inevitable demographic fluctuations in
systems with a finite number of individuals these absorbing states will be reached
within a finite time. The mean first passage times into the absorbing states strongly
depend on the type of model and the ecological scenario under consideration.

The stability of an ecological system can be investigated by studying the scaling of
the mean first passage times into the absorbing states with the system size N . In well-
mixed systems, the typical extinction time T was found to scale linearly with N for
the cyclic Lotka-Volterra model [55, 58, 61, 73, 115, 116] and logarithmically for the
May-Leonard model [28]. The reason for the difference is the different nature of the
phase space orbits characterizing the nonlinear dynamics of these two models [110].
While the phase portrait of the cyclic Lotka-Volterra model exhibits neutrally stable
orbits, the May-Leonard model is characterized by heteroclinic orbits, i.e. these orbits
spiral out from an unstable reactive fixed point and finally end in a stable fixed point.
For neutrally stable orbits, the stochastic dynamics performs an unbiased random
walk which implies that T ∝ N . In contrast, unstable orbits generate a drift of the
trajectories in phase space towards the boundary such that the extinction process
towards the absorbing states is exponentially accelerated with T ∝ lnN [31, 48, 110].

Spatially extended systems have been found to exhibit a radically different behavior.
There, the scaling of the mean time to extinction with the population size strongly
depends on the degree of mixing. In particular, it has been shown for both models that
there exists a mobility threshold below which extinction times scale exponentially in
the system size. For the May-Leonard model this has been attributed to the existence
of dynamic spatial patterns, which emerge as a result of the local nature of reactions
and internal noise [28–30, 73]. Above a certain mobility the characteristic wave length
of these patterns exceeds the system size, effectively rendering the dynamics well-
mixed. In this regime, extinction occurs rapidly. In the Lotka-Volterra model, spatial
patterns are unstable as a result of an Eckhaus instability [66, 73]. However, below
a mobility threshold biodiversity is still maintained by strong spatial correlations.
Further work has extended these findings to asymmetric reaction rates [51, 60] and
more complex interaction networks [31, 54, 117, 118]. In a niche model it has been
shown that interaction networks with a high connectivity and a hierarchical or cyclic
interaction structure lead to increased diversity [119, 120]. For the May-Leonard
and the cyclic Lotka-Volterra model it was found that spatially inhomogeneous
reaction rates have only minor effects on the dynamics [56, 63]. For the classical two-
species Lotka-Volterra model, analytical studies have been performed to understand
the underlying mechanism leading to the stabilizing correlations [121, 122]. These
studies argue that the stabilization can by understood by the desynchronization of
diffusively coupled oscillators. The desynchronization is a result of the combined
effect of noise, migration and the dependence of the oscillations’ frequency upon
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Figure 2.2: In our model we consider a coarse-grained lattice in d spatial dimensions. Re-
actions occur within Ld well-mixed volumes, each containing M particles. M
may therefore be viewed as the carrying capacity of the ecosystem. With a
rate ε two particles of neighboring blocks are exchanged, which macroscopically
leads to diffusion with an effective diffusion constant D = εL−2/d. The system
possesses an effective size N = M · L2. As long as the lattice spacing L−1 is
much smaller than the correlation length, two equivalent ways of performing the
thermodynamic limit exist: L→∞ or M →∞.

their amplitude.

2.1.2 Dynamic processes leading to extinction

For the one-dimensional May-Leonard model the dynamics leading to extinction
has been studied in greater detail. If the individuals diffuse only little or do not
diffuse at all, coarse-graining of species’ domains has been identified as the dominant
dynamical process leading to extinction [56, 59, 106, 107]. With increasing diffusion
constant other types of collective excitations become important [69]. The dynamics
to extinction is then surprisingly rich, comprising rapid extinction, global oscillatory
behavior, and traveling waves. The latter involve oscillating overall densities, i.e. the
domain sizes for the different species change periodically. The statistical weights
of these dynamical regimes change qualitatively at threshold values of the mobility
and the system size. Taken together, it has turned out that the dynamics in the
one-dimensional May-Leonard model is highly complex, much more than one would
naively anticipate. For the two-dimensional May-Leonard and cyclic Lotka-Volterra
models we recently provided a comprehensive characterization of the dynamic pro-
cesses leading to extinction [73].

2.1.3 A stochastic lattice gas model

The numerical evaluation of first passage times is computationally extremely costly.
As mentioned earlier, the mean times to extinction scale, in the worst case, expo-
nentially with the system size. We therefore employ a coarse grained model, which
allows us to study system size dependence for reasonably large systems, cf. Fig. 2.1.
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In particular, we consider one- or two-dimensional square lattices and employ peri-
odic boundary conditions. The spatio-temporal dynamics is not significantly altered
when one considers hexagonal lattices. On the other hand, the “macroscopic” lat-
tice structure, i.e. the boundary conditions, may affect the results. On hexagonal
lattices with hexagonal boundaries and corresponding periodic boundary conditions,
the details of some spatio-temporal patterns and the specific critical values change
slightly. However, one observe a very similar behavior of the global dynamics and
the observed attractors. Note, however, that planar waves and the pairwise appear-
ance of spirals are not observed for absorbing boundary conditions. We also studied
the dynamics on percolated lattices, which gives rise to multifractal behavior and
thereby to an entirely new phenomenology. However, understanding the dynamics on
unpercolated square lattices is paramount for understanding the dynamics on more
complex surfaces. The linear dimension of the lattice is taken as the basic length
unit such that the lattice constant a = 1/L with L the number of lattice sites along
each axis. At each site a fixed number M of individuals (A, B, C or empty spaces ∅)
are located. M may be viewed as the carrying capacity of a lattice site, which is here
considered well-mixed. In addition, individuals are also able to move on the lattice.
While the reactions, Eqs. (2.3a)-(2.3b) and (2.1), are assumed to occur on the same
lattice site, the individuals’ mobility is implemented as an exchange process at a rate
ε between neighboring sites, XY ε→ Y X, where X and Y denote species A, B and
C or empty spaces ∅. Macroscopically the nearest neighbor exchange process leads
to diffusion with an effective diffusion constant D = εL−2/2 [28–30]1.

Trajectories of the ensuing stochastic dynamics can be computed by employing a
sequential updating algorithm: At each simulation step an individual is chosen at
random. This individual then either reacts with another randomly chosen individual
from the same site, or it is exchanged with an individual of a neighboring stack; each
stochastic event occurs with probabilities corresponding to the respective reaction
rates µ, σ, ν and ε. Typical snapshots of the stochastic simulations for the May-
Leonard model in two spatial dimensions are shown in Fig. 2.3. The snapshots
demonstrate the variety of spatio-temporal regimes which can be found in models
comprising cyclic interactions.

2.2 Effective free energy

The differentiation of an ecosystem into stably coexisting species is a necessity for
the development of life. Such functional differentiation is established through the
formation of complex patterns. In particular, the maintenance of biodiversity is

1 As two particles are involved in migration, it also induces some additional nonlinear reaction
terms, which we neglect here [123, 124]
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originated in the formation of spatially segregated domains of species [22, 25, 28].
This form of differentiation is contingent upon an ongoing flux of entropy to work
against the increase of entropy. As a result, constantly work is performed on such
systems, which are therefore far from equilibrium. Non-equilibrium systems impose
a challenge for the theoretical physicist: resulting from the absence of time reversal
symmetry the fluctuation probability is not Boltzmann distributed, i.e. there is no
Gibbs measure as in equilibrium systems.

Generally, systems with many degrees of freedom are studied by reducing the de-
scription to few degrees of freedom, which comprise the essential characteristics of
the system. As an example, in statistical physics such a reduction is given by the free
energy as a function of the natural variables. Similar conceptually, the dynamics of
well-mixed nonlinear systems is characterized by attractors in the phase plane. Close
to thermodynamic equilibrium, the Onsager theory states that relaxation towards
equilibrium is described by the same laws that govern thermal fluctuations in the
equilibrium steady state. However, it is still unclear how an appropriate reduced
description could look like for spatially extended stochastic many-particle systems
far from equilibrium.

In our articles, we show that for stochastic many particle systems with absorbing
states such a reduced description is given by attractors of the nonlinear dynamics of
the overall particle concentrations, the global attractors. In particular, to gain insight
into the mechanisms responsible for these qualitatively different spatio-temporal
patterns and how they determine the longevity of biodiversity in the population, we
studied the global phase portrait of the dynamics. The dynamic processes leading
to the transient maintenance of biodiversity are closely linked to attractors of the
nonlinear dynamics for the overall species’ concentrations(

a(t), b(t), c(t)
)

=
∫ (

a(x, t), b(x, t), c(x, t)
)
d2x . (2.5)

The characteristics of these global attractors change qualitatively at certain threshold
values of the mobility, and depend on the relative strength of the different types of
competition between species. The attractors give information about the scaling of
extinction times with the system size and thereby the stability of biodiversity. In
detail, the negative logarithm of the probability P (a, b, c) to find the system in a
specific global state (a, b, c) before reaching one of the absorbing states is projected
onto the invariant manifold: We define an effective free energy as the negative
logarithm of the probability P (a, b, c) to find the system in a specific global state
(a, b, c) before reaching one of the absorbing states,

F(a, b, c) ≡ − lnP (a, b, c), (2.6)

The quantity F can be considered as an effective potential in the following sense:
When instead of the mean-field reaction term, which is in this case given by the
reaction term of the complex Ginzburg-Landau equation, one uses F as a “renor-
malized" potential for a Ginzburg-Landau theory one obtains a reaction-diffusion
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(a) (b) (c) (d)

Figure 2.3: Typical spatial patterns in the May-Leonard model. Color denotes the concen-
tration of species A, B and C, with red signifying a site dominated by species A,
green a site dominated by species B, and blue being a site dominated by species
C. (a) For large diffusion constants (D = 1.5 · 10−3), the we find global oscil-
lations with periodic switching between states with mainly one species present.
(b) For intermediate values of the diffusion constant (D = 5 · 10−4), we observe
planar traveling waves. Here, two of the domains take a characteristic domain
size dictated by the diffusion constant. The third domain then occupies the rest
of the system. (c), (d) For even smaller diffusion constants (D = 3 · 10−4, and
D = 6 · 10−5), pairs of rotating spirals appear. The vertices of these spirals move
very slowly on a time scale much larger than the time scale corresponding to the
propagation speed of their arms. The wave length of the spirals decreases when
the diffusion constant is reduced. The system size for all snapshots was L = 60,
and the carrying capacity for each site was chosen to be M = 8.

equation which gives a good description of the spatio-temporal dynamics. Long-lived
spatio-temporal patterns correspond to regions of high probability on the manifold,
and are termed global attractors of the spatio-temporal dynamics in the following.
Equivalently, adapting terminology from statistical mechanics, these attractors may
be viewed as minima of the “free energy landscape” F . Of course, it is to be under-
stood that these attractors are only metastable, i.e. while the system spends a long
time in these states, ultimately demographic fluctuations will drive the system into
one of the absorbing states. Intuitively, one may visualize those fluctuations as driv-
ing the escape of the dynamics from the minima in the “free energy landscape” into
one of the absorbing states. We will later see that qualitative changes in the shape
of these minima correspond to transitions in the nature of the dynamic processes
leading to extinction and the mean times to extinction. These transitions should not
be confused with non-equilibrium phase transitions. Rather they are to be considered
as bifurcations in the nonlinear dynamics.

Figure 2.4 shows the free energy landscape of the two-dimensional May-Leonard
model projected onto the invariant manifold of the rate equations, Eqs. (2.4a)-(2.4c).
The global attractors correspond different dynamic processes, whose statistical weight
changes with the diffusion constant D. We applied the method of global phase
portraits to a generic class of cyclic populations models. We were able to gain new
insight into the multitude of dynamic processes and transitions which leads to a
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Figure 2.4: Free energy landscapes of the May-Leonard model for various values of the
diffusion constant D. The dynamics of the overall densities a, b, c is strongly
confined to the invariant manifold of the well-mixed model, Eq. (2.4). To study
the mechanisms underlying the distinct spatio-temporal patterns found in the
spatial, stochastic May-Leonard model we projected the probability for the overall
densities onto the invariant manifold of the rate equations (2.4) for different values
of the diffusion constant D. Color denotes the logarithmic probability to find the
system globally in a specific state before reaching one of the absorbing states,
such that red denotes a high probability, yellow a medium probability and blue
a low probability. The absorbing states themselves are not part of the statistics.
For large D, no stable spatial structures can form and the dynamics corresponds
to the well mixed case, Eqs. (2.4). As D becomes smaller than D ≈ 9.5 · 10−4

an attractor of the global dynamics emerges, effectively stabilizing the system
against extinction. This attractor corresponds to planar, traveling waves with
oscillating overall densities, and grows in radius with decreasing D due to a
decreasing wavelength of the planar waves. For D ≤ 3 · 10−4, a second attractor
emerges, corresponding to rotating spirals. As a result of a decreasing wavelength
of the spiral patterns the second attractor’s radius decreases with the diffusion
constant, while the attractor corresponding to the traveling waves diminishes.
Parameters were L = 60 and M = 8. Each plot was averaged over at least 100
realizations of the stochastic spatial dynamics.
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2. Coexistence in populations of cyclically competing species

rather comprehensive understanding of one of the most surprising model classes in
theoretical ecology.

2.3 Manuscripts and publications

2.3.1 Threefold way to extinction in populations of cyclically competing species

In our article “Threefold way to extinction in populations of cyclically competing
species” by Steffen Rulands, Tobias Reichenbach, and Erwin Frey, J. Stat. Mech.
L01003 (2011) we study the transitions to the absorbing states in a paradigmatic
model of cyclically competing species. While extinction has previously been thought
of as a coarsening process we show that these transitions unexpectedly are much
richer. We identify three distinct dynamical regimes, governing the dynamics to ex-
tinction. Performing extensive stochastic simulations we present the full distribution
of first passage times into these absorbing states. Interestingly, this distribution has a
complex functional form, exhibiting two maxima, an intermediary asymptotic power
law and an exponential tail. The scaling of these tails with the system size reveals
a crossover behavior in the processes governing the asymptotic dynamics. Based on
phenomenological arguments we provide calculations yielding the characteristics of
the distribution of first passage times and its scaling with the system size.

2.3.2 Global attractors and extinction dynamics of cyclically competing species

The complex transition into the absorbing states made it clear that new methods
are needed to systematically study the dynamics of cyclic population models in
two spatial dimensions. In the paper “Global attractors and extinction dynamics of
cyclically competing species”, Phys. Rev. E 87, 052710 (2013), by Steffen Rulands,
Alejandro Zielinski, and Erwin Frey we introduce a “coarse grained” level of descrip-
tion which allows us to scrutinize the spatio-temporal dynamics of a generic class of
cyclic population models. We thereby obtain a comprehensive understanding of the
rich dynamic processes and transitions in these models. In particular, we study the
population dynamics of three cyclically interacting species in two spatial dimensions.
The interaction scheme comprises both, direct competition between species as in
the cyclic Lotka-Volterra model, and separated selection and reproduction processes
as in the May-Leonard model. We show that the dynamic processes leading to the
transient maintenance of biodiversity are closely linked to attractors of the nonlinear
dynamics for the overall species’ concentrations. The characteristics of these global
attractors change qualitatively at certain threshold values of the mobility, and de-
pend on the relative strength of the different types of competition between species.
They give information about the scaling of extinction times with the system size and
thereby the stability of biodiversity. Specifically, we define an effective free energy as
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2.3 Manuscripts and publications

the negative logarithm of the probability to find the system in a specific global state
before reaching one of the absorbing states. The global attractors then correspond
to minima of this effective energy landscape and determine the most probable values
for the species’ global concentrations. As in equilibrium thermodynamics, qualitative
changes in the effective free energy landscape indicate and characterize the underly-
ing non-equilibrium phase transitions. We provide the complete phase diagrams for
the population dynamics, and give a comprehensive analysis of the spatio-temporal
dynamics and routes to extinction in the respective phases.

2.3.3 Conclusion and outlook

Our results show that the behavior of spatial population models comprising cyclic
interactions between species is much richer than previously thought. In one spatial
dimension we found that the dynamics into the absorbing states is governed by dif-
ferent dynamic processes, each scaling differently with the system size. We computed
the complete distribution of extinction times and identified distinct scaling regimes
of the asymptotic dynamics.

These surprising results motivated further work on two-dimensional cyclic population
models. The scaling of extinction times with the system size changes abruptly at
certain threshold values of the mobility and the relative strength of the two types of
competition. We show that the dynamic processes leading to the transient mainte-
nance of biodiversity are linked to attractors of an effective free energy of the overall
concentrations. The characteristics of these attractors change upon certain threshold
values, thereby giving insight into the mechanisms underlying these transitions. By
means of extensive numerical simulations we provide the complete phase diagrams,
which are rationalized by scaling arguments based on properties of the complex
Ginzburg-Landau equation.

We believe that the method of global phase portraits and the ensuing effective
free energy landscapes might also give a deeper insight into the dynamics of other
spatial ecological models and reaction-diffusion systems in other fields of biology. In
particular, further studies may apply this method to understand epidemic models,
asymmetric four species models or more complex food webs.
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1. Introduction

Stochastic many-particle systems provide a testing ground for non-equilibrium dynamics.
In nature, systems frequently evolve away from equilibrium and then relax to an
equilibrium steady state. Understanding the relaxation process is a central topic in
non-equilibrium physics. Near-equilibrium fluctuations are governed by the same laws
as hold in the steady state and the transient is typically an exponential decay. Many
systems, however, comprise absorbing states, which can be reached but never be left by
the dynamics. In this case no fluctuations are present in the steady states. Such systems
arise in a broad variety of problems, e.g. physics, chemistry and epidemics [1]. Much effort
has been spent on the investigation of simple, diffusion-limited chemical reactions where
the decay to equilibrium can obey power laws [2].

Understanding transitions into absorbing states is not only fundamental for non-
equilibrium physics, but is also highly relevant for ecology. Here, absorbing states
correspond to the extinction of species. Another characteristic feature of ecological
systems is cyclic interactions. The work of Lotka and Volterra describes, as a classic
example, the dynamics of fish populations in the Adriatic as persistent oscillations due to
predator–prey interactions. Other examples include coral reef invertebrates [3], rodents
in the High Arctic tundra in Greenland [4], cyclic competition between different mating
strategies of lizards [5] and chemical warfare of Escherichia coli bacteria under laboratory
conditions [6].

Recent work has investigated cyclic competition in one-dimensional systems with no
or only weak diffusion of the reacting agents [7]–[10]. Coarse graining of temporally
growing and annihilating domains has been identified as the mechanism that eventually
leads to species extinction. However, an individual’s mobility may be significant and alter
this picture qualitatively.

In this article, we investigate the spatio-temporal dynamics of extinction in a
paradigmatic model of three species in cyclic competition. Individuals are positioned
on a one-dimensional lattice and are equipped with fast mobility that leads to effective
diffusion. The system possesses absorbing states in the form of the extinction of two
of the three species and, because of fluctuations, the dynamics eventually comes to
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rest there. However, the time scales until extinction occurs provide information on the
stability of species diversity [11]. We identify three distinct types of dynamics that lead
to extinction. These types of dynamics arise from the possible influences that intrinsic
fluctuations can have on the coarsening process and on the traveling waves that the
cyclic dynamics induces. The different dynamics lead to characteristic dependences of the
extinction-time probability on the elapsed time t and the system size N . We provide semi-
phenomenological arguments that quantify the functional form and the scaling behavior
of the extinction-time probability. These arguments yield information on the emergence
and characteristics of the different types of dynamics.

2. The model

Consider a stochastic, spatial variant of the May–Leonard model which serves as a
prototype for cyclic, rock–paper–scissors-like species interactions. Three species A, B, C
compete with each other in a cyclic manner, at rate σ, and reproduce at rate μ upon the
availability of empty space ∅:

AB
σ→ A∅, BC

σ→ B∅, CA
σ→ C∅,

A∅ μ→ AA, B∅ μ→ BB, C∅ μ→ CC.
(1)

For increasingly large populations, intrinsic fluctuations eventually become negligible.
If in addition spatial structure is absent, i.e., if every individual can interact with every
other in the population at equal probability, the population dynamics is aptly described
by deterministic rate equations for the densities �s = (a, b, c) of the species A, B and C:

∂tsi = si[μ(1 − ρ) − σsi+2], for i ∈ {1, 2, 3}. (2)

Here the indices are understood as modulo 3 and ρ = a + b + c denotes the total
density. May and Leonard showed that these equations possess four absorbing fixed
points, corresponding to the survival of one of the species and to an empty system [12].
Furthermore a reactive fixed point s∗ = (μ/(σ + 3μ))(1, 1, 1) exists that represents the
coexistence of all three species. Linear stability analysis shows that s∗ is unstable. The
absorbing steady states that correspond to extinction, (1, 0, 0), (0, 1, 0) and (0, 0, 1), are
heteroclinic points. The Lyapunov function L = abc/ρ3 demonstrates that the trajectories
of the deterministic equation (2), when initially close to the reactive fixed point, spiral
outward on an invariant manifold. On this manifold the trajectories then approach the
boundary of the phase space and form heteroclinic cycles, converging to the boundary
and the absorbing states without ever reaching them.

However, intrinsic noise from finite-system sizes [13, 14] and spatial correlations alter
the above behavior [15]–[18]. While fluctuations ultimately drive the system into one of
the absorbing fixed points [19], the formation of spatial patterns can substantially delay
extinction and promote species coexistence [16, 20, 21]. The resulting spatio-temporal
dynamics of extinction is nontrivial and highly interesting.

3. Numerical results

We consider a one-dimensional lattice of L sites with periodic boundary conditions. Each
lattice site hosts a fixed number M of individuals A, B, C and empty spaces ∅, such that the

doi:10.1088/1742-5468/2011/01/L01003 3
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concentrations in the rate equation (2) are given by the number of particles of a specified
type divided by M . M may hence be viewed as the carrying capacity of a lattice site. The
reactions (1) occur between individuals on the same lattice site. Individuals may change
place with another individual or an empty space on a neighboring lattice site at rate ε. In
order to keep the length scale, i.e. the characteristic length scale for diffusion, fixed when
changing the lattice spacing L−1 we have to rescale ε appropriately. In the continuum limit
the exchange processes therefore lead to an effective diffusion of individuals at a diffusion
constant D ≡ εL−2 and thus to coupling between the lattice sites. In our simulations
we implemented a continuous-time Markov process with sequential updating. At each
simulation step an individual is randomly chosen. It then either reacts with a randomly
chosen individual of the same site or changes place with a randomly chosen individual of
the two neighboring stacks, at probabilities corresponding to the rates σ, μ and ε.

The population model introduced above possesses a net system size of N ≡ ML which
plays the role of an overall carrying capacity. For large enough M and L the intrinsic
fluctuations have a strength proportional to the inverse square root of N [22]. Different
equivalent ways therefore exist for taking the thermodynamic limit, e.g., increasing the
number M of individuals per lattice site while keeping the lattice size L fixed or increasing
the lattice size L keeping M fixed. Because for large L a huge amount of exchange
processes take place between the reactions, requiring long computation time, we took the
thermodynamic limit as M → ∞ and kept L = 100 fixed. The insensitivity of the results
to the choice of the limit is supported by recent studies [10]. L was chosen sufficiently
large, such that L−1 was much smaller than the correlation length.

We here consider the case of equal reproduction and selection rates μ = σ = 1. Similar
behavior can be expected for μ �= σ, when D is rescaled appropriately [20], and species
dependent interaction rates [10, 23]. We chose a random initial configuration in which the
density of the species approximately equals those of the internal fixed point s∗ of the rate
equation (2).

Our simulations reveal three distinct classes of dynamics (figure 1). First, at short
time scales stochastic effects lead to the emergence of domains due to coarsening. In
this scenario, after a short coarsening process, domains emerge whose order does not
correspond to the rules of cyclic dominance, leading to oppositely moving fronts and
hence immediate annihilation. Extinction occurs rapidly in this scenario. The coarsening
dynamics to extinction has been extensively studied [7]–[9]. However, our simulations
reveal a much richer dynamics going to extinction. Two more processes dominate the
dynamics for large times. Second, we observe situations where the population is almost
entirely taken over by a species at the cost of a second species, which dies out. A
few individuals of the other surviving species are present in the system and, being
the dominant one, slowly fixate. This scenario is intimately related to the heteroclinic
orbits of the rate equation (2). The global dynamics moves along the boundary of the
invariant manifold of (2). Spatial patterns are of minor importance. Third, the system
can enter a state of propagating waves of cyclically aligned, uniform domains. These
states are only metastable: fluctuating front positions result in domain annihilation and
eventual extinction. For small D this effect was also noted in [10] and corresponds
to the spiral waves found in the two-dimensional model [20]. Rare events at the
leading edge of the fronts cause the tunneling of domains and oscillating overall species
densities.

doi:10.1088/1742-5468/2011/01/L01003 4
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Figure 1. Spatio-temporal dynamics of three exemplary runs that correspond
to the three classes of dynamics (M = 100, L = 600): rapid annihilation (left),
heteroclinic orbits (center), and propagating waves (right). In the latter case
an initially stable wave formation changes periodically at later times, leading to
oscillating total densities. Color encodes the concentrations of the three species
(A, red; B, green; C, blue).

Figure 2(a) provides a concrete picture of the different dynamical processes. The
system’s state probability is projected onto the invariant manifold of the rate equation (2).
The color signifies the logarithmic probability of finding a given net density of species on
the manifold before reaching an absorbing fixed point. We recognize that the system
spends considerable time in the vicinity of the boundary, especially near the corners of
the simplex, corresponding to the heteroclinic orbits occurring in the second scenario.
The stochastic limit cycle around the unstable fixed point reflects the oscillating traveling
waves from the third scenario (see also, e.g., [24]). In the center, single trajectories of
non-oscillating waves are visible.

The influence of mobility is visualized in figure 2(b). The Lyapunov function
L = abc/ρ3 characterizes the system’s behavior: it is zero at the boundaries and increases
monotonically to the unstable fixed point s∗. L therefore provides a measure for the
distance of the system’s state from the boundaries. The logarithmic probability of finding
the system at a certain value of L, depending on the diffusivity D, is given in figure 2(b).
A drastic change in the system’s behavior occurs at a critical mobility Dc ≈ 8 × 10−4.
Above Dc we observe only heteroclinic orbits, characterized by a high probability of finding
the system at small values of L. For very small D the system exhibits traveling waves,
performing random walks in concentration space. Below Dc both types of dynamics are
present. The high probabilities for small values of L indicate heteroclinic orbits, while the
ridge at larger values is caused by oscillating traveling waves.

Quantification of the three different dynamical scenarios is feasible through the
extinction-time probability, P (t), meaning the probability density for two species going
extinct at a certain time t. Mathematically this gives the probability distribution function
for times of first passage to one of the absorbing fixed points. In our simulations we varied
M from 1 to 2800 and set D = 3 × 10−4, i.e. in the region where all types of dynamics
arise simultaneously. Figure 3(a) shows the extinction-time probability distribution for
various system sizes. The sharp peak at small times results from the annihilation of

doi:10.1088/1742-5468/2011/01/L01003 5
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Figure 2. (a) Probability of net densities a, b, c for M = 600, L = 100, projected
onto the invariant manifold of the rate equation (2). Color encodes the logarithm
of the probability of finding the system in a specific state, where red denotes
the highest, yellow an intermediate, and blue a low probability. Note that
the absorbing points themselves have not been included in the statistics. The
graph allows us to identify the reactive fixed point, an attractor for metastable
oscillating waves, and the heteroclinic orbits. (b) The Lyapunov function L
provides a measure for the distance of the system’s state from the boundary
of the simplex. The plot shows the logarithmic probability of net densities for
different values of the diffusion constant D. Above a critical value of D we find
heteroclinic orbits. For very small D we find traveling waves. Below Dc there is a
region where both heteroclinic orbits and traveling waves are present (M = 300,
L = 100).

oppositely propagating waves as a result of the coarsening process, i.e. the first scenario.
The functional form of the extinction-time probability distribution for intermediate and
large times is determined by the heteroclinic orbits and propagating waves, the second
and third types of dynamics. We find an exponentially decaying tail that is, for large
N , preceded by a −3/2 intermediate asymptotic power-law interval. The length of this
intermediate interval scales linearly with N . The plateau or second maximum originates
in the short term dynamics of the latter two scenarios.

4. Semi-phenomenological arguments

The characteristics of the critical behavior shown in figure 2(b) can be understood through
a spatial variant of the rate equation (2). Following [25], the system’s dynamics on the
invariant manifold can, through a nonlinear transformation to variables zA and zB, be
recast in terms of the complex Ginzburg–Landau equation

∂tz = D∇2 + (c1 − iω0)z − c2(1 + ic3)|z|2z, (3)

with c1 ≡ μσ/2(3μ + σ), c2 ≡ σ(3μ + σ)(48μ + 11σ)/56μ(3μ + 2σ), and c3 ≡√
3(18μ + 5σ)/(48μ + 11σ) [26]. The theory of front propagation into unstable states

predicts that (3) always admits traveling waves as stable solutions [27]. Following a

doi:10.1088/1742-5468/2011/01/L01003 6
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(a) (b)

Figure 3. (a) Double-logarithmic plot of the extinction-time distribution P (t)
for several system sizes. A sharp peak at small times is followed by a second
maximum or plateau and by an intermediate t−3/2 power law. The length of the
power-law region scales with N . The tail of the distribution decays exponentially.
(b) Semi-logarithmic plots of the survival probability S(t) = 1 −

∫ t
0 P (t′) dt′ for

different N . S(t) exhibits the same long time exponential decay as P (t). With
the rescaling t/N for large systems (top right, N = 30000–280 000) and t ln(N)−3

for small systems (bottom right, N = 5000–20 000) the exponential tails collapse
onto universal curves, in agreement with our analytical predictions.

classic treatment of the problem of front-speed selection we obtain their wavelength
as λ = −(2πc3

√
D/

√
c1(1 −

√
1 + c2

3)). At the critical diffusivity Dc the wavelength λ
exceeds the system size such that the fronts become unstable. From the condition λ = 1
and accounting for the rescaling factor mentioned in [26] we obtain Dc ≈ 7.6×10−4, which
is in very good agreement with our numerical results.

The behavior of the extinction-time probability distribution can be understood
through semi-phenomenological models. In the following we show how such models yield
the shape of the extinction-time probability distribution and its dependence on N . In
particular, we give an explanation for the scaling behavior of the power-law interval and
the long time exponential decay. We show that, depending on the system size, either
heteroclinic orbits or traveling waves dominate the long time dynamics.

The dynamics of the heteroclinic orbits can be quantified as follows. Consider a
small density a0 ∈ O(N−1) of individuals of species A in a large pool of species B
(b ∈ O(1)). Due to the reproduction of B, empty space is as sparse as A individuals
are: 1 − a − b ∈ O(N−1). Simulations inform us that spatial patterns are not relevant in
this scenario. We therefore consider a well-mixed system of size N . Three reactions lead
to the takeover of the population through the dominating species A:

AB
σ−→ A∅ at rate Nσab ∈ O(1),

B∅ μ−→ BB at rate Nμb(1 − a − b) ∈ O(1),

A∅ μ−→ AA at rate Nμa(1 − a − b) ∈ O(N−1).

doi:10.1088/1742-5468/2011/01/L01003 7
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Here the rates are meant as transitions per unit time. The fast processes are in
equilibrium and can be adiabatically eliminated for large N , yielding a = (μ/σ)(1−a−b).
Species A occurs at the same density as empty sites times μ/σ. A series of reproduction
events remains, each with an exponentially distributed waiting time. In the language
of stochastic processes this is a pure birth process, studied as arising in preferential
attachment problems. The extinction-time probability distribution Ph(t; a0) is thus given
by a convolution over exponential functions. By applying the Laplace transform one can
show that it can be expressed in closed form as

Ph(t; a0) =

N(1−a0)∑

i=0

λie
−λit

N(1−a0)∏

i,j=0,i�=j

λj

λj − λi
, (4)

with rates λi = Nσ(a0 + i/N)2 [28]. One finally has to marginalize over the probability
p(a0) of starting with an initial density a0 of species A to obtain the extinction-time
probability distribution Ph(t) as results from the heteroclinic orbit dynamics:

Ph(t) =

N∑

k=1

Ph

(
t; a0 =

k

N

)
p

(
a0 =

k

N

)
. (5)

For any reasonable p(a0) the asymptotic behavior is dominated by the term for the lowest
initial concentration a0 = 1/N and the lowest reproduction rate λ0: Ph(t) ∼ exp(−σt/N)
for t −→ ∞. We thus find an N−1-dependence of the exponential tail on the system
size. For intermediate times we have to take the full convolution and marginalization
sums of equation (5) into account. Numerical evaluation does indeed yield a −3/2 power-
law interval for uniformly distributed a0. The time of crossover between the power law
and the exponential decay scales with N . We therefore find that the second type of
dynamics, heteroclinic orbits, lead to the intermediate power-law regime in the extinction-
time probability distribution. The exponential tail of this distribution can result either
from heteroclinic orbits or from propagating waves as shown below.

The third type of spatio-temporal dynamics, propagating waves, is metastable. They
disappear only through the rare annihilation of neighboring fronts. By symmetry, the
waves move with the same average velocity. For small D the domain interfaces are
sharp and therefore interact only on distances that are much smaller than the average
domain size. The extinction dynamics in this scenario can therefore be described within
an interface picture, where, in a comoving frame, the wavefronts behave as random
walkers on a one-dimensional lattice with diffusion coefficient Df . For larger D long-range
interactions between the interfaces become important, leading to a tunneling of domains.
However, within the interface picture this merely corresponds to a relabeling of interfaces
and therefore does not influence the extinction dynamics. Numerical simulations validate
the assumption of normal diffusion. For a single series of subsequent A, B, C domains the
survival probability Sw(t), meaning the probability that all three domains still coexist at
time t, follows as the survival probability of a single random walker between absorbing
boundaries at distance l. The probability distribution cw(t, x; x0, l) for the random walker
being at position x and time t when starting at x0 obeys a diffusion equation subject to
absorbing boundary conditions. The solution is well known:

cw(t, x; x0, l) =

∞∑

n=1

An sin
(nπx

l

)
e−(nπ/l)2Df t, (6)

doi:10.1088/1742-5468/2011/01/L01003 8
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with the coefficients An = (2/L) sin(nπx0/l) being determined by the initial condition
cw(x, t; x0, l) = δ(x − x0); see e.g. [29]. Averaging over space, the initial positions x0

and identically distributed interval lengths l yield the survival probability Sw(t) from the
traveling-wave dynamics:

Sw(t) =
8

π2

∞∑

m=0

1

(2m + 1)2

∫ 1

0

e−(2m+1)2π2Df t/l2 dl. (7)

In the asymptotic limit the expression evaluates to Sw(t) ∼ e−4Dfπ
2t, for t −→ ∞. The

extinction-time probability distribution follows as Pw(t) = −dSw(t)/dt. What is the
diffusion constant Df of the domain front? Brunet et al proposed [30] that the diffusion
constant for a broad class of stochastic propagating waves depends on N as Df ∼ ln(N)−3.
Therewith the exponential decay of the extinction-time probability distribution’s tail, as
resulting from the traveling-wave dynamics, is proportional to ln(N)−3. This result is
validated by our numerical simulations; see figure 3(b), bottom right. Heteroclinic orbits
and traveling waves both contribute to the asymptotic limit of the net extinction-time
probability distribution P (t): P (t) ∼ Ph(t)+Pw(t), for t −→ ∞. Both contributions yield
exponential decays at large times, but with different scalings in N . For small systems
the ln(N)−3 term in Pw(t), resulting from the traveling-wave dynamics, dominates. In
contrast, the 1/N -decay in Ph(t) resulting from heteroclinic orbits yields the major
contribution when N is large. In agreement with these analytical results, our numerical
finding is indeed that the exponential decay scales as ln(N)−3 for small N and as 1/N for
large N (figure 3(b)). Numerically we identified the crossover between the two regimes to
occur at N ≈ 20 000.

5. Conclusion

We investigated the spatio-temporal extinction dynamics in a three-species stochastic
population model with cyclic interactions. While previous work has mainly focused on the
coarse graining process that drives the system to extinction we identified two more types
of dynamics that are rare but, due to their lifetime, most important from an evolutionary
perspective. The three classes of dynamics, namely rapid annihilation of domains,
heteroclinic orbits, and traveling waves, are correlated with features of the phase portrait
and leave their fingerprints in the extinction-time probability distribution. The weight of
these processes depends on the degree of mixing as well as on the system size. On the
basis of the different dynamical scenarios, we provided semi-phenomenological calculations
that yield the functional form of this probability distribution and its dependence on the
system size. We believe that our results are of general relevance as we expect a similar
phenomenology in other systems described by the complex Ginzburg–Landau equation.
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[18] Peltomäki M and Alava M, 2008 Phys. Rev. E 78 031906
[19] Parker M and Kamenev A, 2009 Phys. Rev. E 80 021129
[20] Reichenbach T, Mobilia M and Frey E, 2007 Nature 448 1046
[21] Efimov A, Shabunin A and Provata A, 2008 Phys. Rev. E 78 056201
[22] Gardiner C, 2004 Handbook of Stochastic Methods (Berlin: Springer)
[23] Venkat S and Pleimling M, 2010 Phys. Rev. E 81 021917
[24] Bladon A J, Galla T and McKane A J, 2010 Phys. Rev. E 81 066122
[25] Reichenbach T, Mobilia M and Frey E, 2008 J. Theor. Biol. 254 368
[26] Reichenbach T, Mobilia M and Frey E, 2007 Phys. Rev. Lett. 99 238105
[27] van Saarlos W, 2003 Phys. Rep. 386 29
[28] Kannan D, 1979 Introduction to Stochastic Processes (Amsterdam: Elsevier, New York: North-Holland)
[29] Redner S, 2001 A Guide to First Passage Processes (Cambridge: Cambridge University Press)
[30] Brunet E, Derrida B, Mueller A H and Munier S, 2006 Phys. Rev. E 73 056126

doi:10.1088/1742-5468/2011/01/L01003 10



PHYSICAL REVIEW E 87, 052710 (2013)

Global attractors and extinction dynamics of cyclically competing species

Steffen Rulands, Alejandro Zielinski, and Erwin Frey
Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universität

München, Theresienstraße 33, D-80333 München, Germany
(Received 14 January 2013; published 17 May 2013)

Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In
ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics
of three cyclically interacting species. The interaction scheme comprises both direct competition between species
as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard
model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked
to attractors of the nonlinear dynamics for the overall species’ concentrations. The characteristics of these global
attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of
the different types of competition between species. They give information about the scaling of extinction times
with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative
logarithm of the probability to find the system in a specific global state before reaching one of the absorbing
states. The global attractors then correspond to minima of this effective energy landscape and determine the most
probable values for the species’ global concentrations. As in equilibrium thermodynamics, qualitative changes
in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions.
We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the
spatio-temporal dynamics and routes to extinction in the respective phases.
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Absorbing states play an important role in ecology, where
they correspond to the extinction of species [1]. While
any stochastic system will eventually end up in one of its
absorbing states, in nature, one finds a surprisingly long-term
maintenance of biodiversity in ecosystems containing a broad
variety of coexisting species. A structured environment in
combination with cyclic competition between species was
proposed to be a main facilitator of biodiversity [2,3]. Classical
ecological examples for cyclic interactions comprise coral
reef invertebrates [4], rodents in the high arctic tundra in
Greenland [5], and cyclic competition between different
mating strategies of lizards [6]. However, long reproduction
times and large spatial scales involved make it difficult to
quantitatively analyze these ecological systems. To circumvent
these problems, recent experimental studies have turned to
microbial model systems comprising three genetically distinct
strains of Escherichia coli which cyclically dominate each
other like in the children’s game rock-paper-scissors [7,8].

These experimental studies of microbial model systems
have motivated a large body of theoretical literature exploring
the role of cyclic interactions in ecological systems [1,3,9–43].
Most of this work has focused on two paradigmatic examples
of three-species models with cyclic interactions. In a first class
of models, direct competition between two individuals leads
to the immediate replacement of the weaker species by the
stronger one [3,11–18,20–32]. This type of competition, where
selection and reproduction are combined into a single process,
is similar as in the classical two-species Lotka-Volterra model
[44–46]. The interaction scheme of this cyclic Lotka-Volterra
model may be summarized by a set of chemical reactions
between the three species A, B, and C:

AB → AA, BC → BB, CA → CC. (1)

In the second class of models, originally proposed by May
and Leonard [19], selection and reproduction are two separate

processes. An interaction between two individuals with differ-
ent traits (strategies) leads to the death of the weaker species
and thereby to empty spaces. Reproduction then follows as
a second process which recolonizes this empty space. The
ensuing reaction scheme reads:

AB → A∅, BC → B∅, CA → C∅, (2a)

A∅ → AA, B∅ → BB, C∅ → CC. (2b)

Both of these models exhibit absorbing states where all but
one species have died out. Due to the inevitable demographic
fluctuations in systems with a finite number of individuals
these absorbing states will with certainty be reached if one
just waits long enough. How long one has to wait strongly
depends on the type of model and the ecological scenario
under consideration.

In well-mixed systems, the typical extinction time T was
found to scale linearly with the population size N for the cyclic
Lotka-Volterra model [11,12,17,47,48] and logarithmically for
the May-Leonard model [34]. The reason for the difference is
the different nature of the phase space orbits characterizing the
nonlinear dynamics of these two models [1]. While the phase
portrait of the cyclic Lotka-Volterra model exhibits neutrally
stable orbits, the May-Leonard model is characterized by
heteroclinic orbits emerging from orbits which spiral out from
an unstable reactive fixed point. For neutrally stable orbits,
the stochastic dynamics performs an unbiased random walk,
which implies that T ∝ N . In contrast, unstable orbits generate
a drift of the trajectories in phase space towards the boundary
such that the extinction process towards the absorbing states
is exponentially accelerated with T ∝ ln N [1,16,49].

In spatially extended systems, the scaling of T with
population size strongly depends on the degree of mixing.
In particular, it has been shown for both models that there
exists a mobility threshold below which extinction times scale
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exponentially in the system size. For the May-Leonard model
this has been attributed to the existence of spiral waves, which
emerge as a result of the local nature of reactions and internal
noise [33,34,36]. Above a certain mobility the characteristic
wave length of the spirals exceeds the system size, effectively
rendering the dynamics well-mixed. In this regime, extinctions
occurs rapidly. In the cyclic Lotka-Volterra model, spatial
patterns are unstable as a result of an Eckhaus instability
[26]. However, below a mobility threshold biodiversity is still
maintained by strong spatial correlations. Further work has
extended these findings to asymmetric reaction rates [14,29]
and more complex interaction networks [32,49–51]. In a niche
model it has been shown that interaction networks with a high
connectivity and a hierarchical or cyclic interaction structure
lead to increased diversity [52,53]. For the May-Leonard and
the cyclic Lotka-Volterra model it was found that spatially
inhomogeneous reaction rates have only minor effects on the
dynamics [27,39]. For the classical two-species Lotka-Volterra
model, analytical studies have been performed to understand
the underlying mechanism leading to the stabilizing corre-
lations [54,55]. These studies argue that the stabilization
can by understood by the desynchronization of diffusively
coupled oscillators. The desynchronization is a result of the
combined effect of noise, migration, and the dependence of
the oscillations’ frequency upon their amplitude.

For the one-dimensional May-Leonard model the dynamics
leading to extinction has been studied in greater detail. If the
individuals diffuse only little or do not diffuse at all, coarse
graining of species’ domains has been identified as the dom-
inant dynamical process leading to extinction [20,23,24,27].
With increasing diffusion constant other types of collective
excitations become important [38]. The dynamics to extinction
is then surprisingly rich, comprising rapid extinction, global
oscillatory behavior, and traveling waves. The latter involve
oscillating overall densities, i.e., the domain sizes for the
different species change periodically. The statistical weights
of these dynamical regimes change qualitatively at threshold
values of the mobility and the system size. Taken together,
it has turned out that the dynamics in the one-dimensional
May-Leonard model is highly complex, much more than one
would naively anticipate.

In this paper we extend these studies to two-dimensional
models with cyclic competition between species. Specifically,
we study a generic model comprising both direct competition
between species as in the cyclic Lotka-Volterra model, and
separated selection and reproduction processes as in the
May-Leonard model. Our goal is to identify and charac-
terize the dynamic processes which are responsible for the
transient maintenance of biodiversity and which finally lead
to the extinction of all but one species. In particular, we
are interested in how factors like species mobility and the
relative strength of the different competition types govern the
complex spatio-temporal dynamics of the system. Employing
extensive numerical simulations, we show that the dominant
dynamic processes responsible for the transient maintenance
of biodiversity correspond to attractors of the global dynam-
ics, i.e., the overall density of species in the system. The
characteristic features of these attractors give information
about the scaling of extinction times with the system size and
thereby the stability of biodiversity. Importantly, the attractors

change qualitatively at certain threshold values of the mobility
and the relative strength of the different competition types.
The phase transitions at these threshold values correspond
to abrupt changes of the scaling of the extinction time T

with the population size N . These global attractors can be
envisioned as minima in an effective free energy landscape.
As their counterparts from equilibrium thermodynamics, they
give valuable information about the physics underlying the ob-
served transitions and thereby give insight into the mechanisms
leading to the stability of ecosystems. Our numerical studies
are complemented by scaling arguments based on properties
of the complex Ginzburg-Landau equation [26,33,34,36,56].

I. A GENERIC MODEL OF CYCLICALLY INTERACTING
SPECIES

We consider a spatially extended population consisting of
three distinct species A, B, and C that compete with each
other cyclically in two different ways: either by immediately
replacing the competitor by an individual of its own kind, or
by killing the inferior species and creating an empty site ∅. In
addition, individuals may also reproduce if empty spaces are
available. These processes are summarized by the following
reaction scheme:

AB
σ→ A∅, A∅ μ→ AA, AB

ν→ AA, (3a)

BC
σ→ B∅, B∅ μ→ BB, BC

ν→ BB, (3b)

CA
σ→ C∅, C∅ μ→ CC, CA

ν→ CC. (3c)

The reaction rules (3) describe two competing types of
selection processes: On the one hand, with rates σ and μ,
selection and reproduction are separate processes. Selection
produces empty sites which are in turn required for repro-
duction. An empty space is not necessarily occupied by the
individual who produced it. We refer to these processes as
May-Leonard processes. On the other hand, Lotka-Volterra
processes, with a rate ν, couple selection and reproduction:
success in competition directly translates into reproduction. In
the following, when we use the term Lotka-Volterra process,
this will always imply that the reactions are cyclic. There
are two limiting cases which correspond to well-established
models: for ν → 0 and for μ = σ = 0 we recover the May-
Leonard model [19] and a three species model with cyclic
interactions of Lotka-Volterra type [9,44,45], respectively.

A. Stochastic lattice gas model

We consider a two-dimensional square lattice and employ
periodic boundary conditions [57]. The linear dimension of
the lattice is taken as the basic length unit such that the lattice
constant a = 1/L with L the number of lattice sites along each
axis. At each site a fixed number M of individuals (A, B, C or
empty spaces ∅) are located. M may be viewed as the carrying
capacity of a lattice site. In addition, individuals are also able
to move on the lattice. While the reactions, Eqs. (3a)–(3c),
are assumed to occur on the same lattice site, the individuals’
mobility is implemented as an exchange process at a rate ε

between neighboring sites, XY
ε→ YX, where X and Y denote

species A, B, and C or empty spaces ∅. Macroscopically
the nearest-neighbor exchange process leads to diffusion with

052710-2



GLOBAL ATTRACTORS AND EXTINCTION DYNAMICS OF . . . PHYSICAL REVIEW E 87, 052710 (2013)

an effective diffusion constant D = εL−2/2 [33,34,36]. As
two particles are involved in migration, it also induces some
additional nonlinear reaction terms, which we neglect here
[58,59].

We performed extensive simulations of the ensuing stochas-
tic particle dynamics employing a sequential updating al-
gorithm: At each simulation step an individual is chosen
at random. It then either reacts with another also randomly
chosen individual from the same site, or is exchanged with an
individual of a neighboring stack; each stochastic event occurs
with probabilities corresponding to the respective reaction
rates μ, σ , ν, and ε. Typical snapshots of the stochastic
simulations for the May-Leonard model are shown in Fig. 1.

The effective size of the system is N = M · L2. If M and
L are large enough, the strength of fluctuations is proportional
to 1/

√
N [60]. The simulation results therefore do not depend

on the specific choice of M and L, as long as both are not too
small and the net system size is kept constant. In particular,

(a) (b)

(c) (d)

FIG. 1. (Color online) Typical spatial patterns in the May-
Leonard model. Color (gray scale) denotes the concentration of
species A, B, and C, with red (medium gray) signifying a site
dominated by species A, green (light gray) a site dominated by species
B, and blue (dark gray) being a site dominated by species C. (a)
For large diffusion constants (D = 1.5 × 10−3), the dynamics shows
global oscillations with periodic switching between states with mainly
one species present. (b) For intermediate values of the diffusion
constant (D = 5 × 10−4), we observe planar traveling waves. Here
two of the domains take a characteristic domain size dictated by the
diffusion constant. The third domain then occupies the rest of the
system. (c), (d) For even smaller diffusion constants (D = 3 × 10−4

and D = 6 × 10−5), pairs of rotating spirals appear. The vertices of
these spirals move very slowly on a time scale much larger than
the time scale corresponding to the propagation speed of their arms.
The wave length of the spirals decreases when the diffusion constant
is reduced. The system size for all snapshots was L = 60, and the
carrying capacity for each site was chosen to be M = 8.

the lattice spacing a = L−1 must be much smaller than the
correlation length ξ .

Different reaction rates for the species should not limit
the validity of our results, as long as the differences between
the species are not too large. It has recently been shown
that small asymmetries in the reaction rates do not alter the
dynamics [35]. A general discussion of species-dependent
reactions rates is given in Refs. [27,29]. In the following we
will also set μ = σ . While the relation between the selection
and reproduction rates in the May-Leonard model affects
certain properties of the dynamics (such as the wavelength and
velocity of spiral waves), qualitatively the results remain the
same [36]. This view is supported by some sample runs that we
carried out for different values of μ/σ . It is, however, important
to note that our results are not valid for extreme choices of
the rate, corresponding, for example, to two species predator
prey models [46,61,62]. In all simulations the initial condition
was chosen to be a randomly populated lattice with average
concentrations corresponding to the reactive fixed point of the
well-mixed model.

We fixed the time scale by setting μ = σ = 1 for the
May-Leonard and ν = 1 for the Lotka-Volterra limit. The
diffusion constant D then gives the mean square displacement
of an average particle between two reactions. As an example,
with the system size as the unit length a value of D = 10−3

implies that a particle covers an area of one thousandth of
the system size between two succeeding reactions. We study
a regime where the correlation length is much larger then the
lattice spacing. As a result, the lattice spacing is irrelevant as
a length scale. The only relevant quantity is the ratio of the
characteristic length of spatial patterns given by D and the
system size.

B. Well-mixed limit and invariant manifolds

For large populations, intrinsic fluctuations are negligible in
our stochastic lattice gas model. If in addition every individual
can interact with every other individual with equal probability,
i.e., for a well-mixed system, the dynamics is aptly described
by deterministic rate equations for the densities a, b, and c of
the species A, B, and C, respectively:

∂ta = −σac + μa(1 − ρ) + νa(b − c), (4a)

∂tb = −σba + μb(1 − ρ) + νb(c − a), (4b)

∂tc = −σcb + μc(1 − ρ) + νc(a − b). (4c)

Here ρ = a + b + c is the total density of species and
0 � a,b,c,ρ � 1. Equation (4) exhibits three absorbing fixed
points: (1,0,0), (0,1,0), and (0,0,1). They correspond to the
extinction of two of the three species. Another fixed point
at (0,0,0) corresponds to the extinction of all three species.
However, this fixed point cannot be reached by the stochastic
dynamics from the initial conditions we study here. In addition,
there is a reactive fixed point

(a∗,b∗,c∗) = μ

3μ + σ
(1,1,1) (5)

at which all three species coexist. The dynamics in the vicinity
of the reactive fixed point can be studied by linearizing Eq. (4)
around (a∗,b∗,c∗) and by determining the eigenvalues of the
corresponding Jacobian. We find that the dynamics close
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to the reactive fixed point is characterized by an attractive
eigendirection with a negative eigenvalue κ0 = −μ and two
further eigendirections with eigenvalues

κ± = 1

2

μ

3μ + σ
[(1 ± i

√
3)σ ± i 2

√
3ν]. (6)

Therefore, the eigenvectors corresponding to κ± span, to
linear order, an invariant manifold onto which the dynamics
relaxes exponentially fast. To obtain an approximation for the
invariant manifold, valid to second order in the concentrations,
we follow the steps given in Ref. [36]. We first transform to a
new reference frame whose origin is the unstable fixed point,
(xA,xB,xC) = (a − a∗,b − b∗,c − c∗). Further, we choose the
eigendirections of the fixed point as basis vectors for our new
reference frame. To this end, we employ a rotation of the
coordinate system:

y = 1

3

⎛
⎝

√
3 0 −√

3
−1 2 −1
1 1 1

⎞
⎠ x. (7)

The stable eigendirection corresponding to κ0 is then given by
the yC direction, while yA and yB span the invariant manifold
to linear order. We parametrize the invariant manifold by
yC = G(yA,yB). Using the ansatz G(yA,yB) ∼ y2

A + y2
B and

determining the proportionality constant such that

∂tG(yA(t),yB(t)) = ∂yA
G · ∂tyA + ∂yB

G · ∂tyB
!= ∂tyC |yC=G,

we find that G(yA,yB ) is, to second order, given by

G(yA,yB) = σ

4μ

3μ + σ

3μ + 2σ

(
y2

A + y2
B

)
. (8)

This equation is valid only for μ �= 0. In the limit
of a cyclic Lotka-Volterra model, μ = 0 = σ , we find
Gμ=0,σ=0(yA,yB) = 0, and the invariant manifold is given by
the unit simplex defined by a + b + c = 1. This result can also
be directly inferred from the Lotka-Volterra reactions, which
preserve the total density and thereby lead to dynamics on an
invariant manifold given by a(t) + b(t) + c(t) = 1.

The rate equations in the new reference frame read

∂tyA =
√

3

4
(2ν + σ )

(
y2

A − y2
B

)
+

√
3

2
(2ν + σ )yB

(
μ

3μ + σ
+ yC

)

+ yA {μσ − (3μ + σ ) [σyB + (6μ + σ )yC]}
2(3μ + σ )

+
√

3(2ν + σ )yB [μ + (3μ + σ )yC]

2(3μ + σ )
, (9a)

∂tyB = −1

4
σ 2

(
y2

A − y2
B

)
−

√
3(2ν + σ )

2
yA

(
μ

3μ + σ
+ yB + yC

)

+ yB

2(3μ + σ )
[μσ − (3μ + σ )(6μ + σ )yC], (9b)

∂tyC = −μyC − (3μ + σ )y2
C + σ

4

(
y2

A + y2
B

)
. (9c)

What is the simplest differential equation that captures the
essential features of the rate equations (4)? Such a differential
equation is called normal form, and is obtained by a nonlinear
transformation which eliminates the quadratic terms. Follow-
ing the steps in Ref. [36], one makes a quadratic ansatz for the
transformation and determines the coefficients canceling the
quadratic terms. We find that the transformation is given by

zA = yA + α1
(√

3y2
A + α2yAyB −

√
3y2

B

)
, (10a)

zB = yB + α1

(
α2

2
y2

A − 2
√

3yAyB − α2

2
y2

B

)
, (10b)

with prefactors

α1 = 3μ + σ

28μ

7(2ν + σ )σ

27ν2 + 27νσ + 7σ 2
, (11a)

α2 = 10 + 18ν

σ
− 2ν

2ν + σ
. (11b)

Upon introducing a complex variable z = zA + izB and ne-
glecting terms of order O(z4), the dynamics can finally be
written in the form

∂tz = (c1 − iω)z − c2(1 − ic3)|z|2z , (12)

where

ω =
√

3

2

μ(2ν + σ )

3μ + σ
, (13a)

c1 = 1

2

μσ

3μ + σ
, (13b)

c2 = σ (3μ + σ )

56μ(3μ + 2σ )

× σ 2(48μ + 11σ ) + 3ν(60μ + 13σ )(ν + σ )

σ 2 + 27
7 ν(ν + σ )

, (13c)

c3 = 1

c2

(3μ + σ )
√

3(2ν + σ )

56μ(3μ + 2σ )

× σ 2(18μ + 5σ ) + 9ν(6μ + σ )(ν + σ )

σ 2 + 27
7 ν(ν + σ )

. (13d)

While the limiting case of a May-Leonard model is found
by simply setting ν = 0, the cyclic Lotka-Volterra model is
recovered by first taking the limit σ → 0 and then μ → 0.
Other ways for performing this limit are possible. However,
taking the limit in σ first, ensures that we obtain the established
cyclic Lotka-Volterra model, which does not comprise empty
sites: a + b + c = 1 [63].

C. Spatially extended continuum model

In a continuum formulation, the nearest neighbor exchange
process macroscopically leads to diffusion with a diffusion
constant D = εL−2/2. The ensuing diffusion-reaction equa-
tions are simply obtained from the rate equations (4) by
supplementing them with diffusion terms D∇2a, D∇2b, and
D∇2c, respectively [26,33,34,36]. Then, upon applying the
above transformations to the diffusion terms one obtains

∂tz = D[∇2z − i(∇z∗)2] + reaction terms, (14)

where we have neglected gradient terms of order O[(∇z)3]. We
expect that the dynamics is dominated by the long wavelength
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modes, and therefore only keep the leading order gradient term,
leading to normal diffusion in the complex concentration z.
This finally leads to the complex Ginzburg-Landau equation,

∂tz = D∇2z + (c1 − iω)z − c2(1 − ic3)|z|2z, (15)

a paradigmatic equation in nonlinear dynamics [56].

II. THE MAY-LEONARD LIMIT

The May-Leonard model, obtained in the limit ν → 0, is
characterized by the following reduced set of reaction rules:

AB
σ→ A∅, BC

σ→ B∅, CA
σ→ C∅, (16a)

A∅ μ→ AA, B∅ μ→ BB, C∅ μ→ CC. (16b)

For large systems in the well-mixed limit, the dynamics is
described by the May-Leonard equations [19],

∂ta = −σac + μa(1 − ρ), (17a)

∂tb = −σba + μb(1 − ρ), (17b)

∂tc = −σcb + μc(1 − ρ). (17c)

The nonlinear dynamics of these equations is characterized
by the same types of fixed points and invariant manifold as
the general model (4). The reactive fixed point (a∗,b∗,c∗)
is globally unstable, as manifested by the existence of the
Lyapunov function L = abc/ρ3. When starting in the vicinity
of the unstable fixed point, the trajectories spiral outward on the
invariant manifold and form heteroclinic cycles, approaching
the boundary of the phase space and the absorbing states
without ever reaching them [19]. However, intrinsic noise
due to the stochastic nature of the interactions, and spatial
structure drastically alter the observed behavior. While in
well-mixed systems stochastic fluctuations drive the system
into one of the absorbing states within a short time proportional
to the logarithm of the system size [11,12,14,15,17,18,64],
spatial structures may effectively delay extinction by orders of
magnitude [3,34].

Similar to the previously studied one-dimensional case [38],
the two-dimensional, stochastic May-Leonard model exhibits
distinct dynamical regimes as a function of the diffusion
constant D (Fig. 1). From our simulations we find the following
phenomenology: For large values of D, we observe that the
system (after some initial transient) is first almost entirely
taken over by one species, but with a few individuals of
a second species surviving, which dominates over the more
abundant species. This second species will then slowly take
over the system and thereby lead to a dynamical behavior that
is reminiscent of the heteroclinic orbits of the deterministic,
well-mixed system, where the global dynamics approaches
the boundary of the invariant manifold. In this regime, spatial
patterns are of minor importance and the dynamics can be
understood in terms of a quadratic coagulation process as
outlined in Ref. [38]. With decreasing diffusion constant we
observe planar waves of cyclically aligned uniform domains as
well as rotating spiral waves [Figs. 1(b)–1(d)]. In planar waves
the overall concentrations may be constant, corresponding to
stable domain borders, or change periodically, as a result
of “tunneling” events in the leading edges of the fronts.
The leading edges of the fronts may reach into second next
domains, i.e., there is a finite probability for particles to

penetrate domains of prey via “tunneling” events [38]. As
a consequence domain sizes oscillate periodically between
characteristic length scales, thereby leading to oscillating
overall densities. The dynamics of rotating spirals has been
extensively studied in Refs. [34,35]. Both planar waves and
rotating spirals are only metastable, as stochastic fluctuations
eventually lead to the annihilation of neighboring fronts and
the dynamics will ultimately end in one of the three absorbing
states which correspond to the extinction of two of the three
species. The dynamics into the absorbing states has been found
to be highly nontrivial, as the dynamical regimes described
above lead to transitions into the absorbing states on different
time scales. Furthermore, their statistical weight heavily
depends on the diffusion coefficient D [30,33,34,38,41].

A. Global attractors and “free energy landscape” of the
spatio-temporal dynamics

To gain insight into the mechanisms responsible for these
qualitatively different spatio-temporal patterns and how they
determine the longevity of biodiversity in the population, we
studied the global phase portrait of the dynamics. Figure 2
shows histograms for the overall concentrations

(a(t),b(t),c(t)) =
∫

[a(x,t),b(x,t),c(x,t)] d2x (18)

of the three species on the invariant manifold of the rate
equations, Eqs. (17a)–(17c). In detail, the negative logarithm of
the probability P (a,b,c) to find the system in a specific global
state (a,b,c) before reaching one of the absorbing states is
projected onto the invariant manifold:

F(a,b,c) ≡ − ln P (a,b,c). (19)

The quantity F hence gives the logarithmic density of global
trajectories in phase space, and it can be considered as an
effective potential in the following sense: When instead of
the mean-field reaction term, as given by the right-hand side
of Eq. (15), one uses F as a “renormalized” potential for
a Ginzburg-Landau theory, one obtains a reaction-diffusion
equation, which gives a good description of the spatio-
temporal dynamics. Long-lived spatio-temporal patterns cor-
respond to regions of high probability on the manifold and
are termed global attractors of the spatio-temporal dynamics
in the following. Equivalently, adapting terminology from
statistical mechanics, these attractors may be viewed as
minima of the “free energy landscape” F . Of course, it is
to be understood that these attractors are only metastable,
i.e., while the system spends a long time in these states,
ultimately demographic fluctuations will drive the system into
one of the absorbing states. Intuitively, one may visualize
those fluctuations as driving the escape of the dynamics from
the minima in the “free energy landscape” into one of the
absorbing states. We will later see that qualitative changes in
the shape of these minima correspond to transitions in the
nature of the dynamic processes leading to extinction and
the mean times to extinction. These transitions should not be
confused with nonequilibrium phase transitions. Rather they
are to be considered as bifurcations in the nonlinear dynamics.

Figure 2 shows that the shape of these global attractors
strongly depends on the magnitude of the diffusion constant
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FIG. 2. (Color online) Free energy landscapes of the May-Leonard model for various values of the diffusion constant D. The dynamics of
the overall densities a, b, c is strongly confined to the invariant manifold of the well-mixed model, Eq. (17). To study the mechanisms underlying
the distinct spatio-temporal patterns found in the spatial, stochastic May-Leonard model we projected the probability for the overall densities
onto the invariant manifold of the rate equations (17) for different values of the diffusion constant D. Color (gray scale) denotes the logarithmic
probability to find the system globally in a specific state before reaching one of the absorbing states, such that red (medium gray) denotes a high
probability, yellow (light gray) a medium probability, and blue (dark gray) a low probability. The absorbing states themselves are not part of
the statistics. For large D, no stable spatial structures can form and the dynamics corresponds to the well-mixed case, Eqs. (17). As D becomes
smaller than D ≈ 9.5 × 10−4 an attractor of the global dynamics emerges, effectively stabilizing the system against extinction. This attractor
corresponds to planar, traveling waves with oscillating overall densities, and grows in radius with decreasing D due to a decreasing wavelength
of the planar waves. For D � 3 × 10−4, a second attractor emerges, corresponding to rotating spirals. As a result of a decreasing wavelength of
the spiral patterns the second attractor’s radius decreases with the diffusion constant, while the attractor corresponding to the traveling waves
diminishes. Parameters were L = 60 and M = 8. Each plot was averaged over at least 100 realizations of the stochastic spatial dynamics.

D. For D > 10−3, there are no attractors other than the regions
in the immediate vicinity of the three absorbing states. All
trajectories describing the global dynamics quickly leave the
unstable fixed point (a∗,b∗,c∗) and approach the boundaries
of the invariant manifold. Therefore, the probability is highest
in the center (because the dynamics starts there) and at the
boundaries. In this regime, the system can be considered as
well-mixed. The heteroclinic orbits in the global phase portrait
then correspond to spatially uniform oscillations between
states where one of the three species dominates; cf. Fig. 1(a).
With decreasing diffusion constant D the nature of the global
attractor changes qualitatively. Starting at the center of the
manifold, the free energy develops a distinct local minimum
which then evolves into a triangular shaped closed region;
see Figs. 2(a)–2(c). In other words, the phase portrait of
the global population dynamics changes from an unstable
fixed point with heteroclinic orbits to a pronounced limit
cylce. Inspecting the spatio-temporal patterns as obtained from
our stochastic simulations, we find that this limit cycle of
the global dynamics corresponds to planar traveling waves;
see also Fig. 1(b). The triangular shape is the result of
oscillating overall densities. In the following we will refer
to this particular limit cycle as the wave attractor. Further
lowering the diffusion constant, a second global attractor
emerges as a smaller triangle inside the triangle corresponding
to the planar waves; cf. Figs. 2(d)–2(f). The inner triangular

attractor corresponds to rotating spirals and will henceforth be
denotes as the spiral attractor. We find that in this regime
of diffusion constants the two attractors coexist, meaning
that we observe both planar waves and rotating spirals. Both
processes may even be found within the same realization. With
even further decreasing the diffusion constant, the weight of
the triangular-shaped attractor corresponding to planar waves
decreases, and the attractor eventually disappears completely.
As a consequence, the attractor of spiral waves gains weight,
such that the dynamics at low mobilities is dominated by spiral
waves. Taken together, we find that the phase portrait of the
global dynamics changes qualitatively upon decreasing the
diffusion constant, and that those qualitative changes have
a one-to-one correspondence with distinct spatio-temporal
patterns in the population dynamics. As a consequence, the
free energy landscape on the invariant manifold can be taken
as a fingerprint of the spatio-temporal dynamics. We will use
it in the following to identify transitions between different
patterns and analyze the ensuing changes in the dependence
of the extinction times on system size.

B. Pattern selection and extinction times

The attractors in Fig. 2 show a triangular symmetry. A
reduced representation for the global dynamics on the invariant
manifold can therefore be obtained in terms of a properly
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FIG. 3. (Color online) Free energy landscape of the global
dynamics of the two-dimensional May-Leonard system. The value of
the Lyapunov function L is a measure of how close a specific state is
to the boundary of the invariant manifold (L = 0). Color (gray scale)
denotes the logarithmic probability to find the system at a specific
value of L, i.e., the free energy formally defined in Eq. (19). Red
(medium gray) signifies small values of the free energy (minima of
the potential) and thereby an attractor of the global dynamics. Yellow
(light gray) denotes intermediate values, and blue large values of the
free energy. The free energy landscape changes qualitatively at two
threshold values for the diffusion constant D. For large values of D

the effective free energy has minima in the center (L = 0.037), where
the dynamics starts, and at the boundaries of the invariant manifold
(L = 0). At a first threshold D1 ≈ 9 × 10−4 an attractor emerges,
which moves away from the reactive fixed point (L = 0.037) with
decreasing values of D. Below a second threshold, D ≈ 4.5 × 10−4,
a second attractor emerges near the reactive fixed point, coexisting
with the first one. For even smaller mobilities the dynamics is solely
determined by the attractor near the reactive fixed point. Comparing
with our simulations we find that these attractors correspond to global
oscillations (heteroclinic orbits), planar waves, and rotating spirals,
respectively. The stochastic simulations were performed on a square
lattice of linear size L = 60 and with a carrying capacity M = 8 for
each site. For each values of D, the histogram was averaged over at
least 100 realizations.

defined radial variable. A convenient choice is the Lyapunov
function

L ≡ a b c

(a + b + c)3
(20)

evaluated with the global concentrations a, b, c. It measures
the distance of a global state to the boundaries of the invariant
manifold and is approximately constant along the attractor
for the planar waves. Figure 3 shows the effective free
energy F(a,b,c) as a function of the Lyapunov function and
the diffusion constant. One easily identifies two threshold
values of the diffusion constant where there are qualitative
changes in the free energy landscape. We recover a threshold
value D1 ≈ 9 × 10−4 marking a transition from a well-mixed

dynamics to a dynamics with spatio-temporal patterns [33,34].
However, the range of patterns is much richer than previously
noted. Actually, the first threshold D1 marks a transition from
spatially uniform oscillations between states dominated by
a single species to planar waves where the three species
cyclically chase each other. Note that the global oscillations
still form part of the dynamics, albeit with a lower probability.
Upon lowering the diffusion constant below a second threshold
value, D2 ≈ 4.5 × 10−4, the histogram of system trajectories
becomes bimodal with a second metastable attractor emerging
which is located close to the center of the invariant manifold.
It can hence be identified with the inner, triangular attractor
on the invariant manifold. As discussed before, this second
attractor corresponds to rotating spiral waves. The coexistence
of two attractors in this regime of mobilities means that both,
planar waves and rotating spirals, are observed. Depending on
the choice of initial conditions, the dynamics may at first end up
in either one of the two attractors. Due to stochastic fluctuations
it may, however, from time to time switch between the two
attractors akin to thermal fluctuations causing rare transitions
between different potential minima. With further decreasing
D we observe that the metastable attractor corresponding to
planar waves dissolves, and only the attractor corresponding
to rotating spirals remains.

To further scrutinize the effect of these spatio-temporal
patterns and the ensuing metastable global attractors on the
system’s dynamics, we analyzed the mean first passage time
into the absorbing states as a function of D; see Fig. 4. We
find that the mean time to extinction increases abruptly at

FIG. 4. (Color online) Mean lifetimes (dark dots) and coefficient
of variation (gray squares) of the two-dimensional May-Leonard
system as a function of the diffusion constant D. The mean lifetime
increases abruptly at a first threshold value D1 (indicated by a
dashed line) where planar waves form. After passing through a
maximum the lifetime decreases again. This is due to planar waves
which become unstable with decreasing correlation length. At the
second threshold D2 (dashed line) rotating spirals become possible.
With further decreasing diffusion constant the mean lifetime is
asymptotically described by a power law D−2. The coefficient
of variation is a dimensionless measure for the dispersion of the
probability distribution of T . The dispersion near the upper threshold
D1 becomes large, i.e., we observe dynamical regimes on a variety
of different time scales.
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D1, where the global attractor of planar waves emerges. After
passing a peak value the mean lifetime then decreases again, as
the wavelength of the planar waves becomes smaller. Then, as
a result, these waves become more prone to fluctuations, and
the rate of domain annihilation increases. Finally, below D2 the
lifetime increases again, which we attribute to the emergence
of stable spiral waves. For small values of D the mean
lifetime follows a power law 〈T 〉 ∝ D−2. This dependence
can be understood by a simple scaling argument: Since spirals
annihilate pairwise as they meet, the mean lifetime should
scale quadratically with their number, 〈T 〉 ∝ (nspirals)2. The
number of spirals in the system scales with their wavelength
as nspirals ∝ λ−2. With λ ∝ √

D we then infer that the mean
lifetime scales as 〈T 〉 ∝ D−2, which is in good agreement with
our numerical results.

Figure 4 also shows the coefficient of variation, defined as
the standard deviation divided by the mean:

cv ≡
√

〈(T − 〈T 〉)2〉/〈T 〉. (21)

It gives a dimensionless measure for the dispersion of the
probability distribution of T . We find that the dispersion
increases drastically right at the threshold D1. In this regime
the standard deviation is much larger than the mean. From
the spatio-temporal dynamics observed in our simulations
we infer that this is due to the fact that there are several
distinct dynamic processes driving the system towards an
absorbing state and that these processes occur on greatly
different time scales. There are rapid extinction processes,
where, after a short transient, domains in a planar wave
are aligned in a noncyclic order and thus immediately
annihilate. We also find a process, where the global dynamics
performs heteroclinic orbits. Last, one observes metastable
planar waves; cf. Fig. 1. Note that although the planar
waves process is metastable, it does not necessarily mean
that it dominates the long time properties of the system.
In Ref. [38] it has been shown for the one dimensional
model that the probability of extinction scales differently
with system size for these two processes. In particular, one
observes a crossover, such that for small systems planar waves
determine the long time tails, while for very large systems
global heteroclinic orbits are responsible for the longest living
states. The relative weight of these processes depends on the
diffusion coefficient D. As we have already learned from
the above analyses, below the lower threshold value, D2, there
are also spiral waves emerging. With decreasing D, spirals
become the dominant patterns while all the other dynamic
processes become less and less probable. As a result, the mean
time to extinction is dominated by an escape out of the spiral
attractor. The dispersion therefore decreases again.

The probability distributions of first passage times of the
above dynamical processes leading into the absorbing states
show significantly different scaling behavior with the system
size; cf. Ref. [38]. From an evolutionary perspective, the
tails of these distributions are most relevant because they
correspond to rare, but extremely long-living communities
maintaining biodiversity. The reason for their relevance is that
the probability to observe a short-living (transient) ecosystem
in nature is much lower than the probability to observe an
ecosystem which persists for a long time. In Ref. [38] two

of the authors showed that the tail of the distributions of first
passage times of heteroclinic orbits scale like exp(T/N ), while
for traveling waves the tail scales like exp[T/(ln N )3]. As a
consequence, there is a crossover in the tail of the overall
distribution of first passage times. Interestingly, while for small
systems the long time dynamics is dominated by traveling
waves, for large systems it is dominated by heteroclinic orbits.
Although the computation of the distribution of first passage
times is not feasible in two dimensions, we expect that similar
arguments will hold here, as well.

As shown in Refs. [33,34], there is a transition from
a spatially uniform dynamics reminiscent of a well-mixed
system to a dynamics dominated by spatio-temporal patterns
when the wavelength of the pattern exceeds the system
size. Following the classical theory of front propagation into
unstable states [65], the wavelength of the traveling and spiral
waves can be determined using the complex Ginzburg-Landau
equation (15) [33,36]:

λ = − 2πc3

√
c1

(
1 −

√
1 + c2

3

) √
D. (22)

Due to the difference in geometry between planar and spiral
waves this implies two distinct thresholds, D1 and D2. For
planar waves on a square lattice we simply have the condition
that the wavelength equals the system size, λ(D1) = 1. In
Refs. [33,34] it was found that the calculated wavelength
deviates by a constant factor of 1.6 from the numerical value
of the wavelength. This rescaling factor accounts for the
renormalization of the reaction term due to spatio-temporal
correlations, as captured by the global attractors. Using this
rescaling factor we find a threshold value D1 ≈ 7.6 × 10−4,
in good agreement with the numerically found value, D1 ≈
9 × 10−4; cf. Fig. 3. The very same threshold is also found in
the one-dimensional model [38]. There planar waves are the
only possible spatial pattern and the threshold stems from
their wavelength outgrowing the system size. Remarkably,
the numerical values for D1 coincide in both, one and two
spatial dimensions, as the complex Ginzburg-Landau equation
predicts equal wavelengths for both cases; see further below.
Since spirals always arise as pairs of antirotating spirals, stable
pairs are possible, as long as the minimum distance dmin

between two vertices of the spirals is smaller than half of
the system size. In other words, the threshold D2 is given
by dmin(D2) = 1/2. To obey geometric constrains dictated by
the periodic boundary conditions and the spirals’ wavelength,
the minimum distance of two antirotating spirals is dmin =
2/3λ(D); cf. also Fig. 1(d). This implies a threshold value
of λ = 3/4, which is close to λ ≈ 0.8 obtained numerically
in Ref. [34]. Hence, from 2/3λ(D2) = 1/2 we obtain D2 ≈
4.3 × 10−4, in good agreement with the numerical results
shown in Fig. 3.

In the following we provide a scaling argument giving the
scaling of the size of the wave attractor with the mobility D.
In the intermediate regime between the two threshold values
of D the wavelength of the planar wave patterns is of the same
order as the system size. Hence, in this regime the finite spatial
extension of the system is important. In our case, periodic
boundary conditions allow stationary domain profiles only for
certain values of the wave length, λ = 1/n, n = 1,2, . . . [66].
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If the wavelength does not match any of these values, we
observe oscillations in the overall concentrations, correspond-
ing to the triangular attractor in Fig. 2. In the intermediate
regime, D1 > D > D2, where λ is slightly smaller than 1, two
domains take the characteristic domain size dictated by D,
and the third domain occupies the rest of the system. We now
employ these intuitive observations to obtain the scaling of the
wave attractor. Our numerical simulations reveal that the radius
of the wave attractor increases with D according to a power
law with an exponent of approximately 0.9, meaning that the
corresponding values of the Lyapunov function increases with
this exponent. If the system size is not a multiple of λ ∼ D1/2

one of the three domains will be of different wavelength.
Assuming the concentration of empty sites is independent
of D we set without loss of generality a = b ∼ D−1/2 and
c ∼ 1 − 2D−1/2. Upon inserting these concentrations into the
Lyapunov function, we obtain L ∼ D − 2D3/2, which is to
leading order in agreement with our results [67].

Summarizing, we find that the spatio-temporal dynam-
ics changes qualitatively at certain threshold values of the
diffusion constant. These changes are finite size effects in
the sense that they arise as a result of the comparison of
certain length scales. We use the term “transition” for this
behavior in the sense that macroscopic properties of the system
change qualitatively and abruptly at these threshold values.
This is particularly evident in the mean first passage times to
extinction. In the language of nonlinear dynamics the system
undergoes bifurcations as a function of the mobility.

III. THE CYCLIC LOTKA-VOLTERRA LIMIT

In the limit σ → 0, μ → 0 only reactions remain, where
the replication of predators does not require the availability of
empty spaces. The resulting model is then of the Lotka-Volterra
type [44,45], and characterized by a reduced set of chemical
reactions:

AB
ν→ AA, BC

ν→ BB, CA
ν→ CC . (23)

This model is often referred to as the three-species Lotka-
Volterra model. Although at a first glance there are no dramatic
differences to the May-Leonard reactions, Eq. (16), the ensuing
nonlinear dynamics is vastly different. The deterministic rate
equations read

∂ta = νa(b − c), ∂tb = νb(c − a), ∂t c = νc(a − b).

(24)

Without loss of generality, we also fix the normalization of
total concentrations: a + b + c = 1. The nonlinear dynamics
of the well-mixed cyclic Lotka-Volterra model again exhibits
the same absorbing fixed points as the general model (3). The
reactive fixed point is now given by

(a∗,b∗,c∗) =
(

1

3
,
1

3
,
1

3

)
. (25)

It is, however, neutrally stable as the real parts of the
eigenvalues, Eq. (6), are zero. In fact, L̇ = 0 for any a, b,
and c, such that starting from any point on the phase plane, the
trajectories form neutrally stable cycles.

FIG. 5. (Color online) Illustration of the instability of wave fronts
in the cyclic Lotka-Volterra system. The initial condition at t = 0 was
chosen as three domains of equal size in cyclic order. The pictures
show snapshots at times t = 135, 180, and 300. Color (gray scale)
denotes species concentrations as described in Fig. 1. Parameters
were D = 10−4, M = 8, and L = 80.

Similar to the May-Leonard model, species’ mobility dras-
tically alters the system’s collective dynamics [26]. However,
the ensuing spatio-temporal dynamics of the cyclic Lotka-
Volterra and the May-Leonard model differ qualitatively. This
behavior can be understood upon considering the dynamics of
domain boundaries separating different species. In the May-
Leonard model the separation of selection and reproduction
processes is counteracting the roughening of these domain
boundaries due to stochastic fluctuations: If a species from
one domain enters the other species’ domain, it first creates
empty sites. Since these empty sites are occupied with a
higher probability by offsprings of individuals from the
invaded species rather than by invaders, the invasion process
is unlikely to be successful. This stabilizes spatially separated
domains in the May-Leonard model. In contrast, in the cyclic
Lotka-Volterra model an invader directly replaces the invaded
species such that it has a higher probability of success. As
illustrated in Fig. 5, this leads to a roughening instability of
planar wave fronts. However, this does not imply the total loss
of any spatial correlations. To the contrary, there are still strong
correlations and they play a fundamental, yet subtle, role in
the spatio-temporal dynamics and the processes leading to the
extinction of all but one species.

In our simulations we observe different dynamic processes
depending on the mobility. For large diffusion constants, where
the system can be considered well-mixed, we recover the ho-
mogeneous oscillations as predicted by the rate equations (24).
We still find homogeneous oscillations if the mobility is
decreased. However, as we will see below, these system-wide
oscillations are of entirely different nature as the neutrally
stable orbits found in the well-mixed system. For even lower
mobility we finally find a seemingly random appearance and
dissolution of spatial clusters. These clusters are convectively
unstable spiral waves, which, due to a roughening transition
associated with an Eckhaus instability, appear, move and
annihilate.

A. Extinction times and extinction probabilities

As discussed previously [26,33,34], a convenient measure
to characterize the stability of the system is the probability
Pext that the system has reached an absorbing state within a
time proportional to the system size N . The simulations for
our model reproduce the results found in Ref. [26]. For large
D our result coincides with the analytically obtained value
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FIG. 6. (a) Probability that the system with Lotka-Volterra reactions reaches an absorbing state before t = N . We observe a sharp transition
from survival to extinction at D ≈ 3 × 10−3. In the well-mixed limit the extinction probability converges to a finite value of 0.8 (M = 8,
L = 60). (b) and (c) The scaling of the mean first passage time into any of the absorbing states with the system size N . Two phases can be
identified. For D < 3 × 10−3 the scaling becomes exponential, hinting at an escape process from a metastable state. In the well-mixed case
(D = 100) the scaling is linear, in agreement with the escape out of a neutrally stable state. In the intermediary regime our results are in
agreement with both a logarithmic and a linear scaling.

found for the nonspatial system [17]; see Fig. 6(a). For low
mobilities the extinction probability is close to zero. Hence,
the system is in a metastable state with extinction times scaling
exponentially in the system size, cf. Fig. 6(b). At a threshold
value Dc ≈ 3 × 10−3, there is a sharp transition to Pext ≈ 1
indicating that extinction times scale logarithmically in the
system size N . Indeed, Fig. 6(c) indicates that the scaling
of mean first passage times is sublinear. For even larger
values of the diffusion constant, the extinction probability
decreases again until it reaches a value of 0.8 in the well-mixed
limit. Here, extinction times scale linearly, as demonstrated by
Fig. 6(c). Hence, the global dynamics is characterized by the
escape out of a neutrally stable state. We conclude that spatial
correlations increase the system’s stability for small D and
destabilize it above a threshold value Dc.

B. Global attractors and free energy landscapes

As for the May-Leonard model we now employ a study
of the global phase portraits to gain a deeper understanding
of the ambiguous impact of spatial structures on the longevity
of biodiversity. The existence of metastable states below a
certain mobility threshold, suggested by the scaling of extinc-
tion times with system size, is supported by histograms of the
global dynamics. Figure 7 shows the free energy landscape
projected onto the invariant manifold of Eqs. (24). For very
small values of D we find an attracting region in the center
of the simplex. This attractor corresponds to convectively
unstable spirals. As mentioned before, smooth domain borders
are subject to roughening and therefore become unstable in
the Lotka-Volterra model. However, while spatial patterns can
not be maintained, strong correlations exist and effectively
render the global dynamics metastable. With increasing values
of D we observe that the trajectories describing the overall
dynamics of the system are attracted towards a limit cycle,
which grows in radius and eventually reaches the boundary
of the invariant manifold. This limit cycle corresponds to
system-wide oscillations. As these oscillations are linked to a
metastable attractor, they are much more long-lived compared
to the neutrally stable oscillations found in the well-mixed
case, i.e., their mean lifetime scales exponentially with the
system size. At some threshold value of the diffusion constant

the attractor coincides with the boundary of the simplex. Then,
the absorbing states are embedded within the limit cycle. As
a consequence, the global dynamics is effectively attracted
towards the boundaries of the phase plane once it reaches the
limit cycle’s basin of attraction, and therefore rapidly reaches
one of the absorbing fixed points. The global dynamics is
therefore effectively heteroclinic and approaches the absorbing
states exponentially fast. Hence, in this regime spatial structure
destabilize the system, which explains the sub linear scaling
of extinction times as shown in Figs. 6(a) and 6(c). For large
D, the attractor lies outside of the simplex, such that the global

FIG. 7. (Color online) Probability to find the system globally in
a specific state before reaching one of the absorbing states. Red
(medium gray) denotes a high probability, yellow (light gray) a
medium probability, and blue (dark gray) a low probability. One
observes the emergence of an attracting limit cycle of the global
dynamics. The attractor grows in radius with increasing D and
eventually reaches the boundaries of the invariant manifold. For even
larger values of the diffusion constant the attractor lies outside of
the invariant manifold and the global dynamics is essentially neutral.
The histograms were sampled over 100 trajectories until T = N .
Parameters were M = 8 and L = 60.

052710-10



GLOBAL ATTRACTORS AND EXTINCTION DYNAMICS OF . . . PHYSICAL REVIEW E 87, 052710 (2013)

FIG. 8. (Color online) The global phase portrait of the Lotka-
Volterra system. For each diffusion constant D we plot (in color code
or gray scale) the probability to find the system before t = N at a
specific value of the Lyapunov function L = abc. Red (medium gray)
denotes a high probability, yellow (light gray) a medium probability,
and blue (dark gray) a low probability. Three dynamical regimes
corresponding to neutrally stable orbits, system-wide oscillations,
and convectively unstable spirals can be identified and linked to
their corresponding attractors of the global dynamics. Note that
the attractor vanishes at D ≈ 3 × 10−3 corresponding to the abrupt
increase of extinction probabilities in Fig. 6. The simulations were
done with M = 8 and L = 60, and, for numerical reasons, stopped at
T = N . For each of roughly 20 data points in D we averaged over
approximately 100 trajectories.

dynamics on the simplex is essentially governed by neutrally
stable orbits.

Figure 8 illustrates the different dynamical regimes by
means of the effective free energy F for the cyclic Lotka-
Volterra model. We identify three distinct regime, which are
characterized by the shape of the effective free energy. For
the well-mixed system, D > Dc ≈ 3 × 10−3, the potential is
flat and the global dynamics is neutrally stable as predicted
by the rate equations (24). At Dc an attractor emerges, which
at this point coincides with the boundaries of the simplex
(L = 0). With decreasing values of D the attractor is located at
increasingly large values of the Lyapunov function until at D ≈
4 × 10−4 it coincides with the reactive fixed point of the rate
equations (24). Comparing with our simulations we therefore
identify three regimes: neutrally stable orbits, metastable
system-wide oscillations, and convectively unstable spirals.
In conclusion, the behavior of the attractors of the global
dynamics provides an intuitive explanation for the observed
transitions in the extinction probabilities.

IV. THE INTERMEDIATE REGIME

While the previous sections considered important limiting
cases of the reactions (3), we now study the general case with

σ,μ,ν �= 0. We will use the following parametrization, which
allows one to tune the relative weight of Lotka-Volterra-type
reactions and May-Leonard-type reactions:

ν(s) ≡ s, μ(s) ≡ 1, σ (s) ≡ 1 − s. (26)

Here the parameter s is the fraction of Lotka-Volterra
type reactions and is varied between 0 and 1. This choice
of parametrization has two important properties: First, it
conserves the limits discussed in the previous sections and
makes them comparable. In the Lotka-Volterra limit and
in the May-Leonard limit per time step each individual
performs, on average, one active selection process or pas-
sive process, respectively. This holds for any value of s.
Second, our simulations show that the correlation length of
species concentrations stays approximately constant when
changing s (data not shown here). This is because in our
parametrization we fix the relevant time scale, and thereby
by dimensional analysis, for a given mobility, the correlation
length.

Figure 9 shows that with increasing values of s spiral
patterns become convectively unstable, i.e., the vertices start
to move and annihilate. The destabilizing effect of Lotka-
Volterra reactions on spiral patterns can also be visualized by
considering the absolute value of the coordinates defined in
Eq. (7), |y(a,b,c)|. It gives a measure of how far the system
is locally away from the reactive fixed point. Low values of
|y| correspond to a locus where each species is present at
approximately equal concentrations, and therefore indicate
the position of spiral vertices. In Figs. 9(d)–9(f) black dots
correspond to positions, where this absolute value is smaller
than 0.13 [68]. We thus infer that the spirals become unstable
with increasing s. Indeed, the complex Ginzburg-Landau
equation (15) predicts an Eckhaus instability, implying that the

FIG. 9. (Color online) (a)–(c) Snapshots of the spatial distribution
of species for different values of the fraction of Lotka-Volterra
reactions s indicated in the graph. Color denotes (gray scale) the
concentration of the species A, B, and C, as described in Fig. 1.
With increasing s spirals become convectively unstable, i.e., they
move, annihilate, and then appear again. (d)–(f) To illustrate the
destabilization of spiral waves we computed for each lattice site
the distance from the reactive fixed point |y(a,b,c)|. Dark points
show sites where |y(a,b,c)| is below a certain threshold, thereby
indicating the position of spiral vertices. Parameters were D = 10−4

(corresponding to the regime, where spirals and waves are possible
in the May-Leonard model), M = 8, and L = 80.
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spirals vertices become convectively unstable [26], i.e., they
move, annihilate, and appear again constantly above a certain
value of s. To determine this value we follow the steps given in
Ref. [56], where the stability of planar wave solutions was stud-
ied. The waves are stable, as long as the generalized Eckhaus
criterion,

1 − 2

(
1 + c2

3

)
Q2

1 − Q2
> 0, (27)

holds, where Q is the selected wave vector:

Q = 2π

λ

√
D

c1(s)
=

√
1 + c3(s)2 − 1

c3(s)
. (28)

Inserting c3(s) and solving for s we find a critical value
of sE ≈ 0.32. The breakdown of stable spatial structures as
the result of a roughening transition is indeed confirmed
by our numerical simulations. In contrast to the transitions
in D, the Eckhaus instability is independent of the size of
spatial patterns, and it can therefore be considered a transition
in the strict thermodynamic sense. It has significant, yet
ambiguous, implications for the stability of biodiversity, as
will be discussed in the following.

A. Extinction times

Figure 10 shows the mean first passage time to one of the
absorbing states as a function of D and s. The color code as
indicated in the figure is chosen such that red corresponds to
large and blue to short extinction times. Dark red indicates
the longest time simulated, t = 107. The limits s = 0 and
s = 1 correspond to the May-Leonard and Lotka-Volterra
models, respectively. Varying s, however, does not simply
interpolate between these two limits, but leads to a rather
rich and complex dynamics. In particular, there is a local
maximum in the mean extinction time for finite values of s

below sE . We infer from our simulations that this maximum is
linked to the emergence of planar traveling waves. In contrast
to the May-Leonard model (s = 0), planar waves seem to
be increasingly important in this regime: They dominate the
dynamics for a rather broad range in the diffusion coefficient.
Moreover, they seem to be much more stable as compared to
the May-Leonard case, which can be seen by comparing Figs. 4
and 10. While the exact reason for this remains unclear, the
stabilization of planar waves seems to be related to a change
in the wavelength and thereby a reduction in the oscillations
of the global concentrations. This can be inferred from the
global phase portraits, as discussed below. For small D, we
again find metastable rotating spirals. For the well-mixed
system we find short first passage times. The concentrations
there perform homogeneous oscillation, which we identified
with heteroclinic orbits of the global trajectories for the
May-Leonard case s = 0. These orbits cover a broad parameter
regime. In particular, they also arise for values of s, where most
of the reactions are of Lotka-Volterra type. The reason for this
can be inferred from the stability of the reactive fixed point
of the rate equations (4). The corresponding eigenvalues (6)
retain a nonvanishing positive real part. The trajectories of
the global dynamics are therefore driven to the vicinities of

FIG. 10. (Color online) Average first passage time into any of the
absorbing states as a function of the diffusion constant D and the
fraction of Lotka-Volterra reactions s. Red (medium gray) denotes a
large lifetime, yellow (light gray) a medium lifetime, and blue (dark
gray) a small lifetime. For s = 0 we obtain the mean lifetimes shown
in Fig. 4. The dynamics is essentially governed by heteroclinic orbits,
traveling waves, and rotating spirals. With increasing s the planar
waves become more and more stable and dominate the dynamics for
a full order of magnitude in D. The prominence of traveling waves
leads to a local maximum in the mean lifetimes. For even higher
s the system undergoes an Eckhaus instability (the analytical value
is denoted by a dashed line), where planar waves become unstable.
The dynamics is roughly comparable to the heteroclinic orbits in the
May-Leonard model. Neutral orbits are driven to the boundary of the
invariant manifold by a limited fraction of May-Leonard reactions.
For s = 1 we again recover the dynamics of the Lotka-Volterra model
studied in Sec. III. For each of the approximately 400 data points
averages were taken over about 100 trajectories. Due to numerical
constrains simulations were stopped at T = 107. Parameters were
M = 8 and L = 60.

the absorbing points exponentially fast. As a result, even for
s ≈ 0.9 the global dynamics is determined by a tiny fraction
of May-Leonard reactions.

The roughening transition is complicated by threshold
values in D, corresponding to the onset of planar waves and
spirals, and the dissolution of the former. These threshold
values take the same values as in the limiting case of only May-
Leonard reactions. As the value of s exceeds the roughening
transition (Eckhaus instability) we observe a sharp transition
between long extinction times for small values of D and short
extinction times for large values of D. In the latter regime,
spirals and planar waves become convectively unstable as
predicted by the complex Ginzburg-Landau equation (15). For
spiral waves this is illustrated by Fig. 9. Nevertheless, strong
correlations exist, and mean times to extinction are large in
this regime. From our simulations we infer that the dominant
dynamic process in this regime can be identified as the
convectively unstable spirals also found in the Lotka-Volterra
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FIG. 11. (Color online) Probability to find the system in a specific state before reaching one of the absorbing fixed points for fixed
D = 3 × 10−4. The histogram is projected onto the invariant manifold of the rate equations (4). We varied the fraction of Lotka-Voltera
reactions from s = 0 (top left) to s = 1 (bottom right). Starting at the classic May-Leonard model (s = 0), where attractors for planar waves
and rotating spirals can be identified, the attractor for the spirals disappears with growing s. The remaining attractor contracts to the reactive
fixed point and also, when the system undergoes an Eckhaus instability, dissolves. For an even larger fraction of Lotka-Volterra reactions
the global dynamics is driven outward by a limited fraction of May-Leonard reactions and is comparable to the heteroclinic orbits found in
the May-Leonard model. When a majority of the reactions are of Lotka-Volterra type, i.e., for s not much smaller than 1, we again observe the
emergence of an attracting limit cycle corresponding to system-wide oscillations. Parameters where M = 8 and L = 60.

limit. Note, however, that due to a truncation of simulation
times not all details may be resolved in this regime.

B. Effective free energy and Lotka-Volterra limit

To study how the Lotka-Volterra limit is reached, we
computed the effective free energy F as a function of L. We
focus on the case D = 3 × 10−4, which entails the regime
of stable planar waves,; cf. Fig. 10. In the May-Leonard

model this corresponds to the regime shortly below the
lower critical point in the diffusion constant, where the
wave attractor and the spiral attractor coexist. Figure 11
demonstrates that the observed changes in extinction times
are related to the emergence, disappearance, and changes in
the characteristics of attractors of the global dynamics. The
limit of the May-Leonard model (s = 0) was already discussed
in Sec. II. Attractors for rotating spirals and planar waves
are visible. When the fraction of Lotka-Volterra reactions is
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slightly increased the spiral attractor disappears while the
wave attractor remains; see Fig. 11(b). The latter shrinks in
size, hinting at an increasing wave length [Figs. 11(c)–11(e)].
The attractor then contracts towards the reactive fixed point
[Figs. 11(d)–11(f)]. In Fig. 10 this regime corresponds to the
local maximum in extinction times. At the point, where the
system undergoes an Eckhaus instability, the attractor dis-
solves [Figs. 11(g) and 11(h)]. The dynamics is then dominated
by global oscillations which are driven outward by a limited
number of May-Leonard reactions [Figs. 11(h) and 11(i)]. This
regime is therefore closely related to the heteroclinic orbits
found in the May-Leonard model. For an even larger fraction of
Lotka-Volterra reactions a new attracting limit cycle emerges,
corresponding to the system-wide oscillations found in
Sec. III [Figs. 11(j)–11(l)].

The results are summarized in a free energy landscape as
a function of s; cf. Fig. 12. For s = 0 we find the attractors
of the planar and spiral waves of the May-Leonard model;
cf. Fig. 3. When the fraction s of Lotka-Volterra reactions is

FIG. 12. (Color online) To study the most intriguing line of
Fig. 10, D = 3 × 10−4, in more detail we computed the effective
free energy F at specific values of the Lyapunov function L for
different values of s. Red (dark gray) denotes minima of the potential
and thereby attractors of the global dynamics. Yellow (light gray)
signifies intermediate values, and blue (dark gray) large values of
the effective free energy. We identify several regimes depending
on the relative strength s of the different types of competition. For
s = 0 we recover the coexisting wave and spiral attractors of the
May-Leonard model. With increasing values of s only the wave
attractor remains and approaches the reactive fixed point of the global
dynamics (L = 0.037). At the Eckhaus instability (dashed line) the
wave attractor dissolves. Instead, an attractor corresponding to global
heteroclinic orbits emerges. Only when almost all reactions are of
Lotka-Volterra type does an attractor close to the reactive fixed point
emerge. The latter corresponds to the limit cycle found in the cyclic
Lotka-Volterra model; see Sec. III. Comparing with our simulations
we find that these attractors are linked to rotating spirals, planar waves,
global, heteroclinic orbits, and system-wide oscillations. Simulation
parameters were M = 8 and L = 60.

increased the attractor of planar waves shrinks to the center
of the manifold. As a result, there are no oscillations in the
overall densities, which is in contrast to the May-Leonard
model, where these oscillations stem from waves having a
wavelength close but unequal to the system size. As a result
of the lack of oscillations, planar waves become increasingly
stable in this regime. At the Eckhaus instability, sE , spatial
patterns become unstable. The dynamics can then be best
described as heteroclinic orbits. The system globally performs
orbits, which are driven to the boundary of the manifold by the
reactions of May-Leonard type. Hence, even a tiny fraction
of May-Leonard reactions determines the global dynamics
in this regime. This is not surprising, as the conservation
law associated with the cyclic Lotka-Volterra model holds
precisely only in the case s = 1. For values of s close to 1
reactions involving empty sites become unimportant. We then
find the attractor corresponding to system-wide oscillations,
cf. Fig. 8. Summarizing, in the model with direct and indirect
competition we find a surprisingly rich variety of dynamic
processes affecting the longevity of biodiversity in a much
more complex manner than one would naively expect from
an Eckhaus instability. In particular, we observed a local
maximum in mean lifetimes if direct competition is weak but
nonvanishing.

V. CONCLUSION

We studied the population dynamics of three-species mod-
els where species interact with each other cyclically through
both direct and indirect competition. In the limiting cases of
only direct or indirect competition our model reduces to the
cyclic Lotka-Volterra or May-Leonard model, respectively.
For a well-mixed system, the nonlinear dynamics of these
models differs significantly. While in both cases the trajectories
lie on two-dimensional invariant manifolds comprising the
absorbing states of extinction, their phase portraits differ
qualitatively. The dynamics of the cyclic Lotka-Volterra model
is characterized by neutrally stable orbits. In contrast, the
dynamics of the May-Leonard model features an unstable fixed
point in the center of the invariant manifold and heteroclinic
orbits which approach the boundaries of the invariant manifold
and hence the absorbing states exponentially fast. In the spatial
versions of these models, these attractors of the well-mixed
system still act locally on each lattice site. However, if one
views the spatially extended system as a set of interconnected
local patches, the coupling between these patches due to
diffusion may lead to qualitative changes in the type and
stability of these attractors.

Indeed, numerical simulations show that in spatially ex-
tended systems there is a rich diversity of spatio-temporal
patterns depending on the systems’ parameters. The goal of this
work was to identify and characterize the dynamic processes
responsible for the transient maintenance of biodiversity and
ultimately leading to extinction in the spatial models. To
this end, we investigated the phase portrait of the overall
concentrations for the species comprising the system and
analyzed the ensuing global attractors of the dynamics and how
they are connected with the different types of spatio-temporal
dynamics. Moreover, based on a statistical analysis of the
system trajectories on the global phase portrait, we defined
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an effective free energy which gave us valuable information
about the scaling of extinction times with the system size.
In particular, the minima of the free energy correspond to
metastable dynamical processes.

In the limit corresponding to the spatial May-Leonard
model, the minima in the effective free energy landscape
of the global phase portrait are linked to three distinct
spatio-temporal patterns: (i) spatially homogeneous oscillatory
behavior, (ii) planar traveling waves, and (iii) rotating spirals.
Importantly, the characteristics of the global attractors change
qualitatively at certain threshold values of the mobility. This
means that the length scales associated with the spatial
patterns changes, which affects their stability and thereby the
probability to find the system in such a state. In particular,
below an upper threshold value of the mobility a triangular
attractor corresponding to traveling waves emerges. This
attractor can be regarded as a limit cycle of the global
dynamics. It grows in size for decreasing mobility, reflecting
a decreasing wavelength. At a lower threshold value of the
mobility a second limit cycle of the global concentrations is
found, which is located inside the attractor of the traveling
waves. There, rotating spirals emerge. In this regime we
observe the coexistence of two dynamic processes, planar
waves and rotating spirals. Which of the two dynamic regimes
is actually realized is determined by stochasticity and the
initial conditions. For even lower mobility, the attractor of
the traveling waves dissolves, as the correlation length is too
small compared to the system size to maintain planar domain
borders. In this regime only the attractor of rotating spirals
remains, which dominates the dynamics predominantly.

As opposed to this behavior, in the limit of reactions of
Lotka-Volterra type only, the system does not exhibit stable
spatial patterns. However, there are strong spatial correlations,
and they manifest themselves in an attractor of the global
dynamics. This attractor has the form of a rounded triangle
around the reactive fixed point and corresponds to a limit cycle
of the global concentrations. The radius of the limit cycle grows
with increasing mobility: when the attractor, with increasing
mobility, reaches the boundaries of the invariant manifold
the dynamics passes from metastability (exponential scaling
of extinction times with the system size) to rapid extinction
(sublinear scaling of extinction times with the system size).
For even larger mobilities, the radius of the global limit cycle
outgrows the boundaries of the simplex. The mean time to
extinction then scales linearly with the system size. Hence, in
contrast to the May-Leonard model a single attractor here is
responsible for three distinct scaling regimes.

Finally, we found a remarkably complex behavior when
varying the relative strengths of direct (Lotka-Volterra) and

indirect (May-Leonard) competition. If direct competition is
weak compared to indirect competition, planar traveling waves
are an increasingly important constituent of the extinction
dynamics as compared to the May-Leonard case. These planar
waves are very stable, leading to a local maximum of extinction
times in the phase diagram. Simultaneously, we observe that
in contrast to the May-Leonard model rotating spirals do
not form for intermediary mobilities. This is reflected in the
dissolution of the corresponding attractor. At a specific fraction
of Lotka-Volterra reactions the system undergoes an Eckhaus
instability: traveling waves and rotating spirals become unsta-
ble. The Eckhaus instability manifests itself in the vanishing of
the attractors of planar waves and rotating spirals. Beyond the
Eckhaus instability, a new attractor emerges, corresponding to
global oscillatory behavior for high mobility and convectively
unstable spirals for low mobilities. Summarizing, we find that
the spatio-temporal dynamics of cyclic populations models
with both direct and indirect competition is surprisingly rich
and differs qualitatively from the cyclic Lotka-Volterra and
May-Leonard models. We identified several threshold values
of the mobility and the relative strength of the two types of
competition.

In conclusion, the scaling of extinction times with the
system size changes abruptly at certain threshold values of
the mobility and the relative strength of the two types of
competition. We showed that the dynamic processes leading
to the transient maintenance of biodiversity are linked to
attractors of an effective free energy of the overall con-
centrations. The characteristics of these attractors change
upon certain threshold values, thereby giving insight into the
mechanisms underlying these phase transitions. By means
of extensive numerical simulations we provide the complete
phase diagrams, which are rationalized by scaling arguments
based on properties of the complex Ginzburg-Landau equation.

We believe that the method of global phase portraits and
the ensuing effective free energy landscapes (renormalized
reaction terms) might also give a deeper insight into the
dynamics of spatial ecological models and reaction-diffusion
systems in other fields of biology. In particular, further
studies may apply this method to understand epidemic models,
asymmetric four species models or more complex food webs.
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[46] U. Dobramysl and U. C. Täuber, Phys. Rev. Lett. 101, 258102

(2008).
[47] R. P. Boland, T. Galla, and A. J. McKane, Phys. Rev. E 79,

051131 (2009).
[48] M. Parker and A. Kamenev, Phys. Rev. E 80, 021129 (2009).
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3 Phenotypic heterogeneity and genetic diversity in mobile
populations

Genotypic diversity and phenotypic heterogeneity are both commonly found in mi-
crobial and viral populations [74, 76, 77, 81, 83, 90, 95]. They are frequently used
strategies to rapidly adapt to new environment, or to evade a host’s immune sys-
tem [87, 88]. However, in a homogeneous environment without niches, genotypic
diversity is difficult to maintain. In the first part of this thesis we showed that cyclic
dominance between genotypes is one factor promoting biodiversity in spatially ex-
tended systems [23–29, 69, 73]. For example, bacterial model systems comprised of
three genetically distinct strains of Escherichia coli have been shown to exhibit stable
three-strain coexistence in spatially extended homogeneous environments [26]. Recent
theoretical studies have explored how demographic noise [28, 29, 50, 55, 61, 69, 125],
mobility of individuals [28–30, 69, 73], and the structure of the interaction network
as well as the strengths of its links [31] affect the maintenance of genotypic diversity.
All of these studies assume that genotypes are linked to a single phenotype. But
what happens if an individual microbe is able to change it’s strategy, or in other
words shows phenotypic heterogeneity? Some bacteria use a bet-hedging strategy by
stochastically switching between different phenotypic states to minimize the risk of
population extinction due to an attack with antibiotics [75, 81]. Does such pheno-
typic heterogeneity favor or disfavor genetic diversity and how does the population
dynamics depend on the mobility of individuals and the type of interaction between
them?

There are many ways in which phenotypic heterogeneity may affect the evolutionary
dynamics. Phenotypic heterogeneity may influence the growth rates of bacteria, but
also their motility. It may alter the the frequencies of different kinds of behaviors and
the way they interact in general. In this chapter, we will investigate how all these
types of heterogeneity affect the evolutionary dynamics in mobile populations. To
this end, we study simple, paradigmatic models whose homogeneous versions have
been successfully employed to understand a variety of biological phenomena. We show
that heterogeneity sheds a new light on these models. We find a variety of intriguing
phenomena which are not only relevant biologically, but are also interesting from
the perspective of theoretical nonequilibrium physics. In the following, we will first
give a short overview over some examples of where phenotypic heterogeneity arises
in biology. We will then introduce paradigmatic models which allow us to investigate
the influence heterogeneity on a variety of biological systems.
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3. Phenotypic heterogeneity and genetic diversity in mobile populations

3.1 Biological foundations of phenotypic heterogeneity

Phenotypic heterogeneity has several origins. First, it can be a direct result of genetic
alterations, the most prominent form of which are mutations. However, mutations
are undirected and they are effective on the phenotypic level only on very large
time scales. In many scenarios it is advantageous if phenotypes can be changed
rapidly. Indeed, the rapid phenotypic changes is a strategy often used by pathogens
to evade a host’s immune system. Genetic alterations can be a result of the reversible
rearrangement of specific DNA fragments. Such mechanisms allow phenotypic changes
on a shorter time scale and they are used, for example, in Escheria coli, Influenza and
Salmonella [87, 88]. As an example, phenotypic heterogeneity can be induced by a
change in the number of repeats of short DNA sequence units. If the location of these
repeats is in such a way that either transcription or translation is affected changes
in the number of repeats can influence the phenotypic state [88]. Other mechanisms
for the rearrangement of DNA fragments include the inversion of DNA fragments,
intramolecular recombination or recombination on pre-mRNA level.

A second source for phenotypic heterogeneity is the heterogeneous expression of
genes. Sometimes changes in the genome, such as DNA methylation and histone
modification, do not involve modifications in the DNA sequence itself, but neverthe-
less influence the expression of genes. On the other hand, as the number of particles
involved in gene expression is relatively low, these processes are inherently stochas-
tic [126, 127]. In multistable genetic circuits, switching between phenotypic states
may therefore be entirely driven by extrinsic and intrinsic noise [84].

In the following, we introduce several examples of phenotypic heterogeneity in bac-
terial populations.

Persister cells

As an example, several bacteria employ phenotypic heterogeneity as a bet hedging
strategy to survive antibiotic attacks. Some cells in a clonal population enter a
dormant “persister” state in which these cells stop growing and thereby escape death
caused by certain antibiotics [75, 81]. The dormant state is not caused by mutant
microbes and it is non-inheritable. Rather, dormant cells arise spontaneously and at
very low abundances. In E. coli populations, for example, they constitute a fraction
of 10−6 to 10−5 of the overall colony [97]. It is believed that the development of
dormancy is the result of stochastic switching in a bistable genetic circuit. For E.
coli bacteria, the molecular mechanism has been understood in greater detail [97].
There, the persistence factor hipA has been identified to induce dormancy. The low
frequency of persister cells is a result of the repressor hipB, which binds to hipA and
thereby inactivates it [92].
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3.1 Biological foundations of phenotypic heterogeneity

Competence switching

Phenotypic switching is also responsible for the development of competence for
DNA transformation. DNA transformation denotes the ability of bacteria to uptake,
incorporate and express exogeneous DNA strands from the environment. To be able to
transform DNA bacteria must be in a specific physiological state called ‘competence’.
Being in the state of competence is energetically costly for bacteria, but it becomes
important in situations that likely induce DNA damage. As an example, in Bacillus
subtilis DNA transformation is increased by UV light [128]. In B. subtilis, competence
development is regulated through a nonlinear positive feedback of a transcriptional
master regulator. The ensuing nonlinear dynamics is bistable and bacteria may
stochastically switch between the two states of competence [86]. Interestingly, the
switching probability can be tuned by controlling noise in the transcription of the
master regulator, the timing of its expression, or by a rewiring of the corresponding
regulatory network [86, 91, 93].

White-opaque (mating type) switching in Candida albicans

Candida albicans is a yeast which naturally resides in various locations in the body
of many healthy people [90, 96]. In people with a weak immune system, such as
HIV patients, the pathogen can infect nearly all body locations. This variability is
paramount for C. albicans’ pathogenity and it is partly attributed to phenotypic
switching. Most prominently, upon environmental cues the pathogen switches from
the budding yeast form to filamentous growth forms. Interestingly, mutants which
are locked in any of these growth forms loose virulence to a certain degree.

In addition to this so called yeast-hyphal dimorphism, C. albicans can also switch
between two different morphologies: the normal, round cell shape (termed white) and
an elongated cell shape with an altered surface structure (termed opaque). White-
opaque switching helps the pathogen to adapt to new host niches. While cells in
the white state have a high virulence when infected intravenously, opaque cells are
better able to infect the skin. Withe-opaque switching can occur spontaneously at
a low rate, such that in a white or opaque colony a percentage of 0.1% is in the
opposite phenotypic state. Furthermore the switching can be induced by anaerobic
environmental conditions [90]. As the the phenotypic state is inherited the molecular
basis of the switching is believed to be an epigenetic mechanism.

Being in one of the phenotypic states ‘white’ or ‘opaque’ is also closely related
to mating. Opaque cells are the mating competent form of C. albicans with an
approximately 106 times higher frequency of mating as compared to white cells.
The white-opaque switch, and thereby the mating types denoted by a and α, are
strictly regulated by genes present at the Mating-Type Like (MTL) locus. As a
result, only MTLa or MTLα strains can switch from the white to the opaque form,
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3. Phenotypic heterogeneity and genetic diversity in mobile populations

while heterogeneous MTLa|α strains are exclusively present in the white state [96].
On a molecular level, white-opaque switching is induced if the transcription factor
WOR1 exceeds a certain threshold value in its concentration.

The core switching system of Candida glabrata

Candida glabrata is a widespread pathogenic yeast which can be carried by a variety
of body locations. Like Candida albicans, it performs high-frequency phenotypic
switching, allowing the pathogen to rapidly adapt to a a variety of environmental
conditions. Of course, rapid adaptation makes medical treatment difficult. Specifically,
it was found that C. glabrata switches with high frequency between four phenotypic
states, which are named according to their color on CuSO4 containing agar: White,
Light Brown, Dark Brown, and very Dark Brown [74, 79]. From a specific phenotypic
state not all other states are equally accessible. Indeed the switching rates between
these phenotypic states vary over several time scales [74]. Figure 3.1(a) shows the
resulting transition graph. For example, the switching rate from the White state to
the Light Brown state is roughly 100 times higher than the rate to switch from the
White state to the very Dark Brown state.

Heterogeneous motility in populations of Bacillus subtilis

As many other bacterial species Bacillus subtilis is endowed with flagella which may
be utilized to sense the cell’s environment. Most importantly, flagella are, however,
used for locomotion. It has been found that in mid exponential growth phase clonal
populations consist of both, swarming cells that are propelled via flagella, and non-
motile cells, which after division do not separate from each other, thereby forming
long chains of cells. This bet hedging strategy allows the population to exploit its
current location and at the same time disperse to new, possibly more favorable
niches. As a result, colonies of B. subtilis are heterogeneous with respect to the
cells’ motility. The underlying mechanism behind this behavior is a bistable switch:
in motile cells the alternative sigma factor σD is in the ON state, while for non-
motile cells σD is in the OFF state. The switching between these states is purely
stochastic. The statistical weight of the each state, and thereby the fractions of the
colony exhibiting each state, can be biased by the regulatory proteins swrA and
swrB [84, 94]. Specifically, it has been found that the fraction of motile cells in the
wild type strain 3610 differs significantly from laboratory strains [94]. Similarly, in
populations of Salmonella motility is regulated through the production of the protein
flagellin, which is expressed by a bistable gene regulatory network [89].
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(a) (b) (c)

Figure 3.1: (a) The core switching system of Candida glabrata allows transitions between
four distinct phenotypic states: White, Light Brown, Dark Brown and very Dark
Brown. The arrows denote possible directions of switching and are labeled with
the corresponding frequencies. The illustration was taken from Ref. [74]. (b)
Switching between different morphologies in in Candida albicans. Cells can be in
a round [white, (top)] or elongated [opaque, (bottom)] shape. The pictures were
taken from Ref. [96]. (c) Populations of Bacillus subtilis consist of swarming
cells (green) and non-motile cells (red). Non-motile cells do not separate after
division and therefore form chains. In the wild type (top) a high fraction of
the population is in the motile state, whereas in swrA mutants (bottom) the
motile state occurs at a lower rate. Hence, the bistable switch responsible for
phenotypic heterogeneity is biased by the regulatory protein swrA. The pictures
have been taken from Ref. [94]

3.2 Paradigmatic models for heterogeneous populations

Mathematically, bacterial colonies are often studied in the framework of stochastic
many-particle systems. Motivated by the biological examples introduced above we
now are interested in stochastic many-particle systems, where each particle can be
in a distinct phenotypic state. To this end, we consider populations, which exhibit
phenotypic heterogeneity. At the same time, we also assume the population to be
genetically diverse. In other words, the probability to be in a specific phenotypic
state depends on a particle’s genotype. Our approach to heterogeneous populations
makes use of simple mathematical models. These models are simple enough to gain a
theoretical understanding of the ensuing phenomenology, but on the other hand allow
us to obtain a deep insight into the mechanisms acting in real biological systems.
However, the language of mathematics does on first sight not seem to be adequate to
describe systems lacking any symmetry in the properties of its constituents. Indeed,
the mathematical description of heterogeneous many particles systems is difficult
and, in most cases, impossible. In the following, we give an idea of how these models,
despite the vast number of degrees of freedom and the apparent lack of symmetry in
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3. Phenotypic heterogeneity and genetic diversity in mobile populations

the interactions, can be formulated mathematically. Already in 1916 Smoluchowski
began investigating the dynamics of a system where heterogeneity arises as a result
of the dynamics [37, 38]. In the following, we present several classes of mathematical
models for heterogeneous populations. Starting with Smoluchowski’s seminal work
on coagulation, we will develop models for genetically diverse and phenotypically
heterogeneous populations. We introduce analytic approaches for understanding
the often highly complex dynamics in these models. However, the spatio-temporal
dynamics can in most cases only be assessed via stochastic simulations.

3.2.1 Smoluchowski’s coagulation equation

Smoluchowski studied the coagulation processes of colloids. There, heterogeneity in
the particles’ radii and mobilities was a result of the system’s dynamics. He investi-
gated a situation, where initially the system consists of identical, spherical monomers
performing Brownian motion. If two particles approach closer than a certain dis-
tance they may stick together and form a polymer with a mass corresponding to the
combined masses of the monomers. This new polymer is now considered identical
to any other particle, but, as a result of its larger mass, it moves more slowly. It
may again coagulate with other particles, monomers and polymers, thereby forming
larger and larger compounds. This process continues until a single polymer remains.
Smoluchowski’s idea was to change into the reference frame of one of the particles,
which thereby could be considered as a “trap” for the other particles.

In a mathematical formulation of this process we are interested in the number of
particles of mass k at time t, denoted by n(k, t). The time evolution of n(k, t) was
first studied by Smoluchowski [37, 38] and it is today usually written in the form

ṅ(k, t) = 1
2

k−1∑
j=1

K(j, k − j)n(j, t)n(k − j, t)− n(k, t)
∞∑
j=1

K(j, k)n(j, t). (3.1)

K(k, j) gives the rate at which particles of mass k coagulate with particles of mass
j and it is known as the coalescence kernel. In Smoluchowski’s seminal paper K was
proportional to the mean diffusion constant times the mean radii of the reaction
particles, K(k, j) = 1/2(Dk +Dj)(Rk +Rj). The mathematical difficulty of Eq. (3.1)
stems from the fact that it is an infinitely dimensional nonlinear differential equation
and, in particular, it involves an infinite series on its right hand side. As a result, the
theory of ordinary differential equations does not apply to Eq. (3.1).

In continuous form, Smoluchowski’s coagulation equation can be expressed as an
inetrgo-differential equation,

ṅ(x, t) = 1
2

∫ x

0
K(y, x− y)n(y, t)n(x− y, t)dy − n(x, t)

∫ ∞
0

K(x, y)n(y, t) . (3.2)
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Analytic solutions for integro-differential equations of this form only exist for three
very simple types of kernels, namely K = 1, K = x+ y, and K = xy [16]. In general,
the analytical solution of heterogeneous many particle systems, in particular those
involving spatial degrees of freedom, is hardly feasible. Here, Monte Carlo simulations
can give further insight into the dynamics and they often give indication of how these
systems can be described in terms of a reduced mathematical theory.

3.2.2 Genetic diversity and phenotypic heterogeneity in mobile populations

We are now interested in how phenotypic heterogeneity and genetic diversity influ-
ence the spatio-temporal dynamics of cyclically interacting species. To this end, we
consider a spatially extended population of N individuals exhibiting phenotypic het-
erogeneity. Each individual can stochastically switch between M phenotypic states
(s1, . . . , sM ). The probability to be in any of these states is determined by one of G
different genotypes α ∈ {1, . . . , G}, which are here represented by probability distri-
butions ~pα =

(
p1
α, . . . , p

M
α

)
. When individuals engage they interact based on their

stochastically chosen phenotypic state. The nature of this interaction is determined
by an interaction network, which encodes the outcome of pairwise competition among
phenotypes. Mathematically, such an interaction network can be described in terms
of a matrix A, where ass′ = 1 if the phenotype s dominates the phenotype s′ and
ass′ = 0 otherwise. This specific choice for A fixes the time scale. As an example,
consider three cyclically interacting phenotypes (M = 3), such that s1 dominates s2,
s2 dominates s3 and s3 in turn dominates s1. The interaction matrix A is then given
by

A =

0 1 0
0 0 1
1 0 0

 .
The probability for an individual with genotype α to dominate an individual β after
many interactions is given by wαβ ≡ ~pT

αA~pβ , which effectively leads to a net transition
rate between genotypesWαβ ≡ wαβ−wβα. In a spatial setting,Wαβ therefore can be
understood as the invasion speed per concentration between domains of genotypes
α and β.

There are two prominent ways of defining competition between phenotypes on a
microscopic level. Firstly, phenotypes may compete directly. When two individuals
of genotypes α and β react, the dominating individual replaces the other one with
a rate ωαβ, in chemical notation α + β

wαβ−−→ α + β. The genotype ~pα is inherited
to the newly produced individual. This replacement scheme mimics predator-prey
relations and is related to the established class of Lotka-Volterra models [113, 114].
Secondly, in indirect competition the vanished individual β is replaced by an empty
site, α + β

wαβ−−→ α + ∅. In the context of ecology these empty sites account for
the limited availability of resources. Independently, empty sites are then used for
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Figure 3.2: Illustration of our model for phenotypic switching in genetically diverse popula-
tions. When particles with genotypes α and β engage, their phenotypic states
sα and sβ are chosen randomly according to the probability distributions ~pα
and ~pβ . The reaction channel is then determined by the interaction matrix A:
in the LV model the individual with genotype β is replaced by an offspring with
genotype α with probability Asαsβ , and vice versa.

reproduction at a rate µ, α+∅ µ−→ α+α. This way of replacement is often referred to
as May-Leonard type [28, 71]. Thus, at any time t the state C of the system is given by
the genotypes αi and the position ri(t) of each individual, C(t) = ({αi, ri(t)})i=1,...,N .

The dynamics of this model can be studied by stochastic simulations. In these simula-
tions, particles are located on a two-dimensional square lattice of linear size L =

√
N

with periodic boundary conditions and sequential updating. Initially, the genotypes
are chosen randomly according to a uniform distribution of genotypes on the unit
simlex ∆2. Interactions occur between individuals on neighboring sites. Mobility
was implemented as a nearest neighbor exchange process at a rate ε, XY → Y X,
where X and Y denote individuals or empty spaces ∅. Macroscopically the nearest
neighbor exchange process leads to diffusion with an effective diffusion constant
D = εN−1/2 [28]1.

Mean field equations for reactions of Lotka-Volterra type

Analytical progress can be made by considering a well-mixed system in the mean field
limit. We require that the total number of particles,N , is much larger than the number
G of distinct genotypes at t = 0, N � G. We then may define concentrations xα,
α = 1, . . . , G such that Nxα gives the number of individuals with a certain genotype
~pα. How are these concentrations affected by the reactions between individuals? The
probability for a genotype α to outcompete a genotype β is given by wαβ = ~pαA~pβ,
where A is the interaction matrix. This implies a net transition rate per unit time

1 As compared to a single particle Brownian motion the nearest neighbor exchange process induces
additional nonlinear reaction terms, which are commonly neglected.
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and concentration between two genotypes, Wαβ = wαβ − wβα = ~pT
α(A − AT)~pβ.

Competition with a genotype β therefore changes the concentration of genotype α
by Wαβxαxβ . Including competition with any genotype we arrive at G coupled rate
equations,

ẋα = xα

G∑
β=1

Wαβxβ, α = 1, . . . , G . (3.3)

As, by definition, U ≡ A−AT and therebyW are skew-symmetric matrices, Eq. (3.3)
conserves the sum over all species concentrations,

∑G
α=1 xα = 1. We can therefore

interpret Eq. (3.3) as the replicator equation of a conservative Lotka-Volterra system
of G competing species. As a result of the conservation of concentrations, 4G is
invariant under the dynamics of Eqs. (3.3).

To study the nonlinear dynamics of Eqs. (3.3) we are now interested in further
quantities which are conserved by the dynamics2. In analogy to non heterogeneous
Lotka-Volterra models [31] we assume that these conserved quantities are of the form

κ =
G∏
α=1

xcαα , c ∈ RG . (3.4)

We take the derivative with respect to t to obtain the time evolution of κ,

κ̇ =
G∑
α=1

cα
κ

xα
ẋα = κ

G∑
α=1

G∑
β=1

cαxβWαβ = −κ
N∑
β=1

xβ
(
Wc

)
β
. (3.5)

Therefore, if κ is a conserved quantity c must be positive and in the kernel of W :
Wc = 0. For now, we assume that the kernel ofW has positive elements. An argument
for this is given further below. The dimension of the kernel of W hence gives the
number of conserved quantities. Employing the rank-nullity theorem, we obtain

rank(W ) + dim[ker(W )] = G . (3.6)

Let Λ be the matrix containing all genotypes, Λ = (~p1, . . . , ~pG) ∈ RM×G with M
being the number of distinct phenotypic states. With this definition we can write
W = ΛTUΛ. In the following, we assume that the number of genotypes is greater
or equal the number of phenotypic states, G ≥ M . Λ has M linearly independent
columns, in the language of linear algebra rank(Λ) = M . We infer

rank(W ) ≤ min{rank(U), rank(Λ)} = rank(U) , (3.7)

2 We here sketch a proof that goes back to a collaborative work with David Jahn and Johannes
Knebel.
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and, by substituting Eq. (3.6),

dim[ker(W )] ≥ G− rank(U) . (3.8)

Hence, the number of conserved quantities is greater than the number of distinct
genotypes minus the rank of U . In other words, the number of the degrees of freedom
G − dim[ker(W )] is bounded above by the structure of the interaction network
determined by U . We conjecture that adding a new genotype to the population also
yields an additional conserved quantity.

Conserved quantities are particularly relevant, if the kernel is positive, i.e. cα > 0.
For G → ∞, the mean reaction rate is zero,

∑
βWαβ → 0, and 1/G(1, . . . , 1)T is a

fixed point of the dynamics, and thereby a positive element of the kernel of W . From
this we infer that there exist further kernel elements in the surrounding of this fixed
point 3.

As an example, consider three cyclically competing phenotypes. The dimension of the
image of U is two, rank(U) = 2. We obtain dim[ker(W )] ≥ G− 2, which tells us that
the system comprises at least G− 2 conserved quantities. Equivalently, the number
of degrees of freedom is less or equal 2. Together with particle number conservation
this proofs the existence of G − 1 conserved quantities. As W is skew-symmetric,
the eigenvalues of the Jacobian of Eq. (3.3) are imaginary [31, 129]. Hence, the
conserved quantities correspond to neutrally stable periodic orbits. The numerical
evaluation of Eq. (3.3) shows that the amplitude of oscillations in the component α
scales linearly with the standard deviation of the corresponding net transition rates,√
Var(Wαβ). The standard deviation again increases with the degree of specialization

of the genotype ~pα. We conclude that the mean first passage times to extinction are
smallest for specialists and largest for generalists. We therefore expect that in the
stochastic system the population is asymptotically dominated by bet hedgers, which
is confirmed by stochastic simulations.

Mean field equations for reactions of May-Leonard type

In models of May-Leonard type competition is mediated through the limited avail-
abiligy of resources. A definition of the homogeneous model and a summary of the
large body of theoretic work on the three cyclically competing species was given in
the aforegoing chapter. In the thermodynamic limit and for well-mixed systems the
dynamics of the heterogeneous May-Leonard model is aptly described by G coupled

3 In this form, the argument was first formulated by Johannes Knebel.
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differential equations for the concentrations of the genotypes α,

ẋα = xα

µ
1−

G∑
β=1

xβ

− ~pT
αA

T
G∑
β=1

xβ~pβ

 , α ∈ 1, . . . , G . (3.9)

To study the nonlinear dynamics we multiply Eq. (3.9) with ~pα and then sum over
α,

∑
α

~pαẋα = µ
∑
α

~pαxα

1−
∑
β

xβ

−∑
α

xα~pα · ~pT
αA

∑
β

~pβxβ . (3.10)

We define the “moments” of ~pα by σk ≡
∑
α (~pα)k xα. σ0 ≡

∑
α xα then is the

total concentration of individuals. The first moment gives the mean genotype, ~σ1 ≡∑
α ~pαxα. The second moment, σ2 ≡

∑
α xα~pα · ~pα, can be interpreted as the genetic

variety in the population. Using these definition we obtain the time evolution of the
average state of the system,

~̇σ1 = µ~σ1(1− σ0)−
(∑

α

xα~pα · ~pT
α

)
A~σ1 (3.11)

= µ~σ1(1− σ0)− σ2A~σ1 . (3.12)

We now expand ~pα · ~pα to first order around the bet hedging genotype, given by an
equal probability to be in any of the G phenotypic states, (1/G, 1/G, . . . , 1/G). We
obtain ∑

α

xα~pα · ~pα ≈
2
G

∑
α

∑
j

xαp
j
α −

1
G
. (3.13)

With this we can express the time evolution of the average genotype as

~̇σ1 = µ~σ1(1− σ0)−
(2

3~σ1 · I−
1
3

)
AT~σ1 . (3.14)

Interesingly, for three cyclically competing species, this equation is structurally similar
to the classic May-Leonard equation (G=3) [71]. However, while the dynamics of the
May-Leonard equation comprises a nonlinear invariant manifold, the time evolution of
the mean genotype takes place on the unit simplex ∆2. From the formal similarity of
the nonlinear terms on the right hand side we infer, that the fixed point (1/3, 1/3, 1/3)
is unstable to perturbations and the dynamics is driven towards the boundaries
of the simplex performing heteroclinic orbits. This is indeed in agreement with
Monte Carlo simulations of the stochastic system. What can we conclude for the
dynamics of the concentrations xα? We consider intitial conditions corresponding to
σ1(t = 0) = (1/3, 1/3, 1/3). As the dynamics of σ1 is characterized by heteroclinic
orbits out of this fixed point and the genotypes ~pα do not depend on time we find
that small differences in the concentrations are amplified by the nonlinear dynamics.
Therefore, also the dynamics of Eqs. (3.9) is unstable.
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3.2.3 Heterogeneous motility

As mentioned before, heterogeneous motility is a common feature of bacterial popula-
tions. We are therefore interested in models, which comprise heterogeneity in individ-
uals’ motilities. Consider the case of an infinite system size. We also require that each
genotype, here given by its diffusion constant D, is present in a macroscopic number
of individuals. We may then again define concentrations uD = (u1

D, u
2
D, . . . , u

S
D) giv-

ing the fraction of individuals of S different species and with diffusion constant D.
We assume that the diffusion constant densely fill an interval I on R. In this case we
can give a general form of partial integro-differential equations describing the time
evolution of diffusively heterogeneous systems,

∂tuD(r, t) = D∆uD(r, t) +
∫
I
K(D,D′)f(uD,uD′)dD′ , (3.15)

where D is a diagonal matrix with entries D. K(D,D′) is a diagonal interaction
matrix whose diagonal elements give the reaction rate per concentration between
individuals with diffusion constants D and D′ for each species i. Last, f is a (non-
linear) function defining the dynamics. We now introduce two paradigmatic models
comprising heterogeneous mobility. The homogeneous versions of each of these mod-
els has been used to study fundamental questions in theoretical biology. But how
does phenotypic heterogeneity affect the answers to these questions?

Range expansion of heterogeneous populations

Waves propagating into an unstable state are an ubiquitous phenomenon in nature.
They describe, for example, the spreading of advantageous genes [44] or infectous
diseases [130]. Recently, they have attracted considerable attention as a model for
the range expansion of bacterial populations [131–133]. How does phenotypic hetero-
geneity in bacteria’s motility affect the expansion process?

To study the expansion of heterogeneous populations, we consider individuals A
on a d-dimensional lattice who exhibit phenotypic heterogeneity in their rates to
migrate and reproduce. The population is also genetically diverse in the sense that
the probabilities to be in the motile or non motile state depend on the individual.
An individual i may reproduce with a rate µi upon consumption of resources B,
in chemical notation AiB

µi−→ AiAi. Upon reproduction, an individual’s genotype
is inherited to its offspring. In addition, individuals perform random walks with
a rate εi. Motivated by the behavior of B. subtilis we assume that migration and
reproduction are complementary skills, i.e. individuals with a high motility reproduce
less often. In particular, the characteristic time for individuals to react or migrate
is set equal for all individuals, 1/(εi + µi) = 1. This choice fixes the time scale.
We here consider a stochastic lattice gas model in one and two dimensions. Each
site can be occupied by an arbitrary number of individuals. While reproduction
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x0

v v

Figure 3.3: Illustration of the model for heterogeneous range expansion. Each lattice site is
occupied by mobile individuals A (blue circles) and immobile resources B (white
circles). Individuals perform random walks on the lattice with an individual based
rate εi. They may reproduce with a rate 1− εi upon consumption of resources on
the same site. The new individual inherits the rates for reproduction and hopping.
Our model comprises an unstable state corresponding to an unpopulated lattice,
and a stable state corresponding to a lattice fully occupied by individuals A. If
the unstable state is perturbed the perturbation grows exponentially and one
observes the propagation of a front into the unstable state.

happens locally, i.e. the descendant is placed on the same lattice site, migration is
implemented as a hopping process on neighboring sites. The total number of particles
A and B is conserved by the reaction. With Ω being the average number of particles
per site in the mean field theory, we may define concentrations a(r, t) and b(r, t) by
NA(r, t) ≡ a(r, t)Ω and NB(r, t) ≡ b(r, t)Ω. Here, r ∈ Zd denotes the position on
the lattice and NA and NB are the local number of particles of types A and B. The
spatio-temporal dynamics is then described by partial integro-differential equations
of the form (3.15), with diag D ≡ [ε/(2d), 0], diag K(ε, ε′) ≡ [(1−ε)δ(ε−ε′), 1−ε], and
f(uε,uε′) ≡ (u1

εu
2
ε′ ,−u1

εu
2
ε′). We here parametrized the genotypes with the individual

based rate for the random walk, ε = 2dD, to parametrize the genotypes. We obtain

∂taε(r, t) = ε

2d∆aε(r, t) + (1− ε)aε(r, t)b(r, t) (3.16a)

∂tb(r, t) = −b(r, t)
∫ 1

0
(1− ε)aε(r, t) dε . (3.16b)

These equations comprise an unstable homogeneous solution corresponding to an
empty lattice,

∫ 1
0 aε(x, t),dε = 0, b(x, t) = 1, whereas the state aε(x, t) = 0 and

b(x, t) = 1 is a stable solution. This can be seen by considering the dynamics of the
total concentration of particles of type A,

∂t

∫ 1

0
aε dε =

∫ 1

0
(1− ε)aε dε(1−

∫ 1

0
aε dε) . (3.17)

Hence, small perturbations to the unstable state will grow and eventually lead the
propagation of the stable phase into the unstable phase. Fronts propagating into un-
stable state have been subject to extensive studies [45, 134]. However, the dynamics
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Figure 3.4: (a) Typical configuration of a stochastic simulation for a circularly expanding
population (t = 490). Color denotes the local average mobility 〈ε〉, such that
blue signifies a low mobility, yellow a medium mobility and red a high mobility.
We observe the formation of homogeneous sectors. (b) The same situation, but
plotted is the local genetic heterogeneity, such that blue sites are homogeneous
and red sites are heterogeneous. We find that genetic diversity is rapidly lost
during the expansion process. The population remains diverse at the origin and
at sector boundaries. In this figure, space is measured in units of the lattice
spacing. Simulations were run on a hexagonal lattice with L2 = 5002, Ω = 100,
and t = 490.

is much more complex for heterogeneous fronts. We studied the range expansion of
heterogeneous populations by means of stochastic simulations and finite difference
simulations of Eq. (3.16). Figure 3.4 shows that homogeneous sectors form of individ-
uals with the same genotype. During the expansion process genetic diversity in the
front region is lost. Interestingly, the expansion process can be divided into different
stages, where different evolutionary forces select distinct genotypes. Specifically, for
small times a low motility is favored, while for large times individuals with a bal-
ance between reproduction and migration dominate the population. Asymptotically,
the evolutionary dynamics selects certain genotypes which dominate the population
with a high probability. These genotypes correspond to individuals who migrate
and reproduce at an equal rate. Interestingly, the asymptotic behavior is altered by
fluctuations both due to random nature of reactions and diffusion.

Heterogenous motility in the prisoner’s dilemma

Understanding the conditions that facilitate the persistence of cooperation is one of
the classic problems in evolutionary biology. The dilemma of cooperation expresses
the naive point of view that cooperation should not be robust against “cheating” mu-
tants. However, cooperation is frequently found in biological systems. As an example,
the metabolism of Pseudomonas aeruginosa relies on the consumption of iron. These
bacteria therefore produce an iron-scavenging siderophore which may pass the cell
membrane and is therefore available to other bacteria. As siderophore production is
metabolically costly the population should in principle be susceptible to the invasion
by mutants who do not produce the siderophore [99]. Mathematically, the dilemma
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C D
C b− c −c
D b 0

Table 3.1: The payoff matrix defines how much two individuals gain or loose as a result of
an interaction. In the prisoner’s dilemma, if both players are distinct, the defector
collects a benefit b, while the cooperator has a cost c with 0 < c < b for providing
a public good. A cooperator engaging a cooperator results in a payoff b − c for
both, while defectors do not profit from a mutual interaction.

of cooperation is often formulated in the framework of evolutionary game theory,
where such situations are described in terms of the so-called prisoner’s dilemma [135].
Spatial structures have been identified as a key promoter of cooperation [136–138],
while even a low mobility has been shown to jeopardize cooperation in spatially
extended populations [139].

How does heterogeneity in the individuals’ motility influence the chances for the
persistence of cooperation? We study a heterogeneous version of the proisoner’s
dilemma. The stochastic dynamics is described by a Moran process: Each individual
is either a cooperator (C) or defector (D). Individuals can interact (‘play’) with other
individuals on the same lattice site at a rate r. The profit they gain from such an
interaction is encoded in a so-called payoff matrix describing how much each reactant
benefits from the reaction. If both players are distinct, the defector collects a benefit
b, while the cooperator has, in addition, a cost 0 < c < b for providing a public good.
A cooperator engaging a cooperator yields a payoff b−c for both, while two defectors
collect payoff 0. The payoff matrix is summarized in Table 3.1. How well does an
individual perform compared to others? The average payoff an individual collected
is called accumulated fitness,

fi = f0 + 1
n

n∑
l=1

p
(l)
j , (3.18)

where pli is the payoff that was collected in the lth interaction. Success in interactions
translates into a high reproduction rate, which is proportional to fi. Upon repro-
duction, individuals replace a randomly chosen individual on the same lattice site.
Each individual is therefore characterized by a ‘genotype’ g ∈ {C,D} × {ε1, ε2, ...}
consisting of the type and the individual mobility. Upon reproduction, the newly
produced individuals inherit these traits of their ancestor. Last, individuals perform
random walks with an individual rate εi. We assume that initially motility is assigned
randomly to each individual according to a uniform distribution on [0, 2ε0]. ε0 is the
initial average mobility in the population.

For infinitely small lattice spacing the spatial variables can be regarded continu-
ous. Macroscopically, the hopping processes then effectively lead to diffusion with a
diffusion constant ε

/
(2L2) , with L being the linear dimension of the lattice. If, in
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addition, the number of individuals is large, we can consider the local concentrations
cε(r, t) and dε(r, t) of cooperators and defectors with a given mobility ε. Neglect-
ing fluctuations the dynamics is then aptly described by partial integro-differential
equations,

∂tcε = N

2ε0

∫ 2ε0

0
Kc(ε, ε′) cεdε′ +

ε

2L2∇
2cε , (3.19a)

∂tdε = N

2ε0

∫ 2ε0

0
Kd(ε, ε′) dεcε′ +

ε

2L2∇
2dε . (3.19b)

The interaction kernels Kc(ε, ε′) and Kd(ε, ε′) can be expressed by approximating
an individuals fitness by the average fitness f of all individuals with the same
genotype. We obtain Kc(ε, ε′) = f

c
ε − f

d
ε′ and Kd(ε, ε′) = f

d
ε − f

c
ε′ with f

c
ε(r, t) =

f0 + bcε(r, t) − c and f
d
ε (r, t) = f0 + bcε(r, t). Equations (3.19) possess infinitely

many stable spatially, uniform states corresponding to a system fully occupied by
individuals of any genotype. In our stochastic model these states are absorbing
states, i.e. they are reached with probability one after a finite time. The probability
distribution of which of these states is reached asymptotically and the corresponding
time scale depend qualitatively on the average mobility ε0 in the initial condition
and the cost for cooperation c.

3.3 Manuscripts and publications

3.3.1 Speciation and bet hedging in heterogeneous populations

In the manuscript “Speciation and bet hedging in heterogeneous populations” by
David Jahn, Steffen Rulands, and Erwin Frey we studied the interplay between ge-
netic diversity and phenotypic heterogeneity in mobile populations. We showed that
the evolutionary dynamics is reflected in the rate of decrease in genetic diversity.
Remarkably, we found that individuals’ mobility and the type of competition qualita-
tively affect the the survival of phenotypic heterogeneity. For direct competition we
identified threshold values in the mobility determining the characteristics of evolu-
tionarily successful genotypes: if the system is well-mixed we observe the survival of
bet-hedgers, while for little or no diffusion specialists take over the population. In a
third regime biased bet-hedgers turned out to be the most successful individuals. In
contrast, for direct competition, specialists asymptotically constitute the population.
We observed the same transitions in a more complex foodweb comprising four species.
We therefore expect that our findings are generic in the sense that they only rely on
basic properties of the underlying nonlinear dynamics.
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3.3.2 Heterogeneous motility facilitates the persistence of cooperation

In the manuscript “Heterogeneous motility facilitates the persistence of coopera-
tion” by Steffen Rulands, Jörg Martin and Erwin Frey we investigated under which
conditions cooperation is possible in heterogeneous populations. By studying a ver-
sion of the spatial prisoner’s dilemma, where individuals are endowed with distinct
motility we showed that heterogeneity may significantly promote the persistence of
cooperation. In particular, we identified three regimes which qualitatively differ in
the dynamics and in the genetic composition of the population at large times. In
analogy to previous work on the homogeneous model we found that if the cost for
cooperation is high defectors dominate the population at large times. As opposed
to this, for very low costs, fast cooperators take over the population. Importantly,
for intermediate values of the cost for cooperation, slow cooperators may persist and
even constitute the majority of the population at large times.

3.3.3 Range expansion of heterogeneous populations

Invasion fronts arise in nearly all fields of science. They describe phenomena as
diverse as combustion fronts, epidemic spreading or range expansion in bacterial
populations. In the manuscript “Range expansion of heterogeneous populations” by
Matthias Reiter, Steffen Rulands, and Erwin Frey we studied the range expansion
of a population that exhibits heterogeneous motility and reproduction rates. We
showed that the expansion process decreases genetic diversity in the front region.
This selection is driven by fitness differences of different genotypes. We identify
distinct temporal regimes characterized by different evolutionary forces acting on the
foremost individuals. Interestingly, stochastic fluctuations play an intriguing role in
the selection of the genotype that ultimately dominates the population. While a finite
particle number tends to favor individuals who reproduce with higher probability,
noise due to diffusion favors individuals with a higher mobility.

3.3.4 Conclusion and outlook

Genotypic and phenotypic heterogeneity are commonly found in bacterial populations
and viruses. As an example, viruses switch between phenotypic states to evade a host’s
immune system. Some bacteria stochastically switch between phenotypic states to
minimize the risk of population extinction due to an attack with antibiotics. Inspired
by these phenomena we investigated heterogeneous, stochastic many-particle systems.
The basic idea was that each particle should be endowed with distinct properties. This
field of research becomes increasingly fascinating, yielding a multitude of interesting
phenomena.

We studied the interplay between genetic diversity and phenotypic heterogeneity in
spatially extended populations comprising cyclic interactions and more complex food
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webs. In our model, individual can be in different phenotypic states. The probability
to be in any of these state is given by an individual’s genotype. We found that the
survival of genetic diversity and phenotypic heterogeneity qualitatively depends on
the degree of mixing. For small mobilities, phenotypic specialization is favored by
the evolutionary dynamics, whereas for large mobilities phenotypic generalization
can persist. The survival of phenotypic heterogeneity also significantly depends on
whether the competition is direct, as in predator-prey relations, or indirect, mediated
through the limited availability of resources. Our results are not restricted to the
models we studied. Rather, we expect that they show a generic behavior which only
depends of on basic properties of the attractors of the underlying nonlinear dynamics.

Another fundamental problem in biology is the evolution of cooperation. Experimen-
tal studies show that many bacterial populations exhibit phenotypic heterogeneity
with respect to individuals’ mobilities. As an example, Pseudomonas aeruginosa pro-
duces an iron scavenging enzyme that is also available for neighboring cells. How can
cooperation persist in situations, where cheating individuals should have a reproduc-
tive advantage? This dilemma of cooperation is often formulated in the framework
of evolutionary game theory, where such situations are described in terms of the
prisoner’s dilemma. We investigated how cooperation can evolve in heterogeneous
populations. To this end we studied the heterogeneous version of the prisoner’s
dilemma, where each player was endowed with a distinct mobility. We showed that
under these circumstances cooperation is significantly enhanced in the spatial pris-
oner’s dilemma. The asymptotic composition of the population qualitatively depends
on the average initial mobility and the cost for cooperation. In particular, we iden-
tified three regimes which differ by the probability for the survival of cooperation
and the average mobility of cooperators and defectors at large times. Importantly,
cooperation is significantly enhanced for a broad range of parameters. Our findings
contribute to a better understanding of the evolution of cooperation in biological
systems.

Finally, we studied heterogeneous versions of invasion processes, which arise, for
example, in the range expansion of bacterial colonies or the spreading of diseases.
Motivated by phenotypic heterogeneity found in populations of Bacillus subtilis we
studied the range expansion of a population, where each individual can be in a motile
or reproductive state with distinct probabilities. We observed a radial spreading
process and the formation of homogeneous sectors in the expanding populations.
The spreading process favors certain genotypes at different stages and ultimately
leads to a loss of genetic diversity. The asymptotic behavior of the front is significantly
influenced by stochastic fluctuations.

Heterogeneous, stochastic many-particle systems proved to be a fascinating field of
research. An interesting extension of the models we studied here would be to introduce
temporal correlations in the switching between phenotypic states. Further work might
also extend our findings to other models of theoretical biology. For example, the
snowdrift game with heterogeneous mobilities might by worth looking at. In addition,

68



3.3 Manuscripts and publications

studying other forms of phenotypic heterogeneity could yield an entirely different
phenomenology. How could one, for example, study the phenotypic heterogeneity
in the competence for DNA transformation in the framework of stochastic many-
particle systems? In addition, one could study heterogeneity in the way individuals
interact with each other. Such a model could comprise, for example, direct competition
and indirect competition, such as in the Lotka-Volterra and May-Leonard model,
respectively.
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Speciation and bet hedging in heterogeneous populations

David Jahn,∗ Steffen Rulands,∗ and Erwin Frey†
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We study the interplay between genetic diversity and phenotypic heterogeneity in mobile popula-
tions. In particular, we consider three and four species models with direct or indirect competition.
We show that individuals’ mobility and the type of competition qualitatively influence the loss of
genetic diversity and the persistence of phenotypic heterogeneity. For direct competition, as in
Lotka-Volterra models, we identify three distinct regimes determining the characteristics of evolu-
tionarily successful genotypes.

PACS numbers: 87.23.Cc, 05.40.-a, 02.50.Ey

Genotypic and phenotypic heterogeneity are both com-
monly found in microbial and viral populations [1–7].
However, in a constant environment without niches,
genotypic heterogeneity is difficult to maintain. Cyclic
dominance between genotypes has been identified as one
factor promoting biodiversity in spatially extended sys-
tems [8–14]. For example, bacterial model systems com-
prised of three genetically distinct strains of Escherichia
coli have been shown to exhibit stable three-strain coex-
istence in spatially extended homogeneous environments
[11]. In this system, a strain releasing a toxin kills a
sensitive strain but not a resistant strain. The sensitive
strain grows faster than the resistant strain which in turn
grows faster than the toxin-producing strain. This basic
motif of cyclic dominance is metaphorically described by
the rock-paper-scissors game, where rock crushes scissors,
scissors cut paper, and paper wraps rock. Recent ex-
perimental studies have explored how demographic noise
[13–19], mobility of individuals [13, 14, 20], and the struc-
ture of the interaction network as well as the strengths
of its links [21] affect the maintenance of genotypic di-
versity. All of these studies assume that genotypes are
linked to a single phenotype. But what happens if an
individual microbe is able to change it’s strategy, or in
other words shows phenotypic heterogeneity? Some bac-
teria use a bet-hedging strategy by stochastically switch-
ing between different phenotypic states to minimize the
risk of population extinction due to an attack with antibi-
otics [2, 22]. Does such phenotypic heterogeneity favor or
disfavor population heterogeneity and how does the pop-
ulation dynamics depend on the mobility of individuals
and the type of interaction between them?

Here we address these questions by studying the dy-
namics of spatially extended populations which initially
contains N individuals of G different genotypes. Each
of these genotypes α ∈ {1, . . . , G} is defined by its de-
gree of phenotypic heterogeneity, i.e. a set of probabili-
ties ~pα =

(
p1
α, . . . , p

M
α

)
with pmα signifying the probabil-

ity that genotype α is in a particular phenotypic state
sm ∈ {s1, . . . , sM}. Biologically, phenotypic heterogene-
ity is often the result of stochastic fluctuations of critical
cellular components within metabolic pathways or regu-

latory circuits of microbes, and the values of the prob-
abilities reflect differences in the rates or architectures
of these pathways and circuits. For specificity, we will
mainly focus on systems with M = 3 states and defer a
discussion of a larger number of states to the Supplemen-
tary Material. Then, the phenotypes sm may, for exam-
ple, refer to one of the three phenotypic traits of E. coli
discussed above [11]. We will consider two distinct eco-
logical scenarios with cyclic dominance. In the first class
of models, termed Lotka-Volterra (LV) model [23, 24], se-
lection and reproduction is combined into a single event
where the competition between two individuals leads to
the immediate replacement of the weaker by the stronger
individual: I +J → I + I. In the second class of models,
originally proposed by May and Leonard (ML) [25], se-
lection and reproduction are two separate processes. An
interaction between two individuals with different phe-
notypes leads to the death of the weaker phenotype and
thereby to empty spaces: I + J → I + ∅. Reproduction
then follows as a second process which recolonizes this
empty space with a birth rate µ: I + ∅ → I + I. In
an ecological context these empty sites account for the
limited availability of resources. In each of these models,
the genotype αi of individual I is inherited to the newly
produced individual.

As®s¯

As¯s®

s®» p®

s¯» p¯

¯

® ®®

¯¯

FIG. 1. (Color online) Illustration of the model. When in-
dividuals with genotypes α and β engage, their phenotypic
states sα and sβ are chosen randomly according to the prob-
ability distributions ~pα and ~pβ . The reaction channel is then
determined by the interaction matrix A: in the LV model the
individual with genotype β is replaced by an offspring with
genotype α with probability Asαsβ , and vice versa.
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We show that individuals’ mobility and the type of
competition qualitatively influence the loss of genetic
diversity and the persistence of phenotypic heterogene-
ity. For direct competition, as in the class of Lotka-
Volterra models, we observe three regimes in the mobility.
While permanent local environments promote specializa-
tion, fast changing local environments enhance pheno-
typic generalization.

At a given time t, the state C of the population is
characterized by a set of genotypes ~pαi (short: αi) and
lattice positions ri(t) for each individual i ∈ {1, . . . , N}:
C(t) = {αi, ri(t)}i=1,...,N . We assume that each lattice
site on a two-dimensional square lattice with L2 sites
is occupied by at most one individual. The linear di-
mension L of the lattice is taken as the basic length
unit such that the lattice constant a= 1/L [26]. Every
time two neighboring individuals engage in an interac-
tion they each randomly choose a phenotype according
to their respective probability vectors. The outcome of
the pairwise competitions among phenotypes is described
in terms of an interaction matrix A where its entries Ass′
denotes the rate at which phenotype s outcompetes phe-
notype s′. For simplicity, we choose a symmetric model
where all finite rates are the same, and equal to 1 to
fix the time scale [27]. Mobility of individuals is imple-
mented as a nearest neighbor exchange process at a rate
ε, I + J → J + I, where I and J denote individuals or
also empty spaces ∅. Macroscopically this nearest neigh-
bor exchange process leads to diffusion with an effective
diffusion constant D=εa2/2 [13]. The diffusion constant
D then gives the mean square displacement of an aver-
age particle between two reactions. As an example, with
the system size as the unit length a value of D = 10−3

implies that a particle covers an area of one thousandth
of the system size between two succeeding reactions.

We performed stochastic simulations of both lattice
gas model employing periodic boundary conditions and
a sequential updating algorithm, where at each time step
a random pair of neighboring individuals is chosen. All
simulations were started from an initial condition where
G genotypes were chosen randomly according to a uni-
form distribution on the unit simplex ∆2, and then dis-
tributed randomly over the lattice. As time progresses
the competition between these genotypes reduces genetic
heterogeneity in the population. This is illustrated in
Figs. 2 (a) and (c) which show the number of different
genotypes, H(t), averaged over many realizations C of the
population dynamics. Concomitant with the loss of ge-
netic diversity spatio-temporal patterns and correlations
develop. How genetic diversity is lost as well as the na-
ture of these patterns and correlations depend strongly
on the type of model and the value of the diffusion con-
stant. While for large diffusion constants both models
quickly reach a state where only one genotype is left
in the population, there are quite long-lived metastable
states containing three distinct genotypes [Fig. 2 (a) and
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FIG. 2. (Color online) The average decay of genotypic het-
erogeneity 〈H(t)〉C gives information about the evolutionary
processes going on in different temporal regimes. (a) In the
ML model we find an initial decay according to a power law
t−1, in accordance with neutral evolution. After a character-
istic time t1 ≈ 102 (dashed line) we find that an evolutionary
drift accelerates the loss of heterogeneity. For large times, the
number of surviving genotypes takes values of 1 or 3 depend-
ing on the diffusion constant. (b) A typical configuration of
the ML model for large times [t = 660, dotted line in (a)]
and a low value of the diffusion constant (D = 10−4). Dif-
ferent colors (gray scales) signify the probability to be in any
of three phenotypic states: red (light gray), green (medium
gray) or blue (dark gray) denotes a high probability to be in
the phenotypic states s1, s2 or s3, respectively. We observe
spiral waves of individuals with a high probability to be in
one of the phenotypic states (L = 250). (c) Surprisingly, in
the LV model the neutral regimes lasts much longer than ex-
pected. After a characteristic time, t1 ≈ 103 (dashed line),
the heterogeneity takes stationary values of 1 or 3, depending
on the diffusion constant. (d) In a typical configuration of the
LV model we find for large times [t = 103, dotted line in (c)]
a multitude of different genotypes (L = 100).

(c)]. For the ML model this transient biodiversity is
maintained by spiral waves as previously found for the
ML model with three cyclically competing homogeneous
species [13] [Fig. 2(b)]. In contrast, for the LV model a
high degree of genetic diversity remains [Fig. 2(d)].

Quite model independent we observe that initially
genotypic heterogeneity decreases like a power law,
〈H(t)〉C ∝ t−1. Because genotypic heterogeneity is high
selection occurs irrespectively of the genotype, and the
decrease of H is described by a neutral coalescence pro-
cess, A+A→ A; the rate is given by the probability that
the two competing individuals are in a different pheno-
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typic state, k = 2/3. Fluctuations can be neglected and
the dynamics of this process is aptly described in terms of
mean field reaction kinetics, Ḣ = −kH2, which is solved
by H(t) = N/(kt+ 1) and agrees well with our numeri-
cal results [solid lines in Fig. 2].

For intermediate times, t1 < t < t2, we find a rapid
decrease in genetic heterogeneity, which is most promi-
nent for the ML model. Here, the genealogical dynamics
is driven by evolutionary forces, i.e. success in reproduc-
tion depends on an individual’s genotype. To understand
this, note that in the model involving empty sites, small
differences in the concentrations are amplified by the evo-
lutionary dynamics. In other words, for large values D
the ML model is characterized by the escape out of an
unstable state, resulting in the acceleration of the de-
crease of heterogeneity. The characteristic time t1 is
therefore given by the time in which fluctuations drive
the system globally out of an unstable fixed point. This
view is supported by the logarithmic scaling of t1 with
the system size, t1 ∝ lnN , cf. Supplemental Material.

We also find that in the ML model the rate of decrease
of the heterogeneity changes with the diffusion constant
D: the smaller D the slower the extinction of genetic di-
versity. Hence, spatial structures not only stabilize sys-
tems of cyclically interacting species [13, 19, 20, 28, 32],
but also promote genotypic heterogeneity therein. The
reason for this remarkable behavior is that spatial struc-
tures consist of genetically identical individuals. Reac-
tions between different genotypes therefore only happen
at the boundaries of domains and thereby globally at a
lower rate.

The amplification of perturbations in the reactive fixed
point is not present in the model of LV type. In the Sup-
plemental Material we show that the LV model comprises
N conserved quantities corresponding to neutrally stable
orbits. Here, the approach of the absorbing states is
purely driven by fluctuations and therefore occurs on a
larger time scale and is less pronounced. This is sup-
ported by the scaling of t1 with the system size, namely
t1 ∝ N , see Supplemental Material.

For times larger than a second characteristic time t2,
genetic heterogeneity reaches a stationary level. We find
two qualitatively different regimes. For low diffusion con-
stants, we observe a metastable state comprised of three
distinct genotypes. As discussed below, they are anal-
ogous to metastable states found previously in models
lacking phenotypic heterogenetity [13, 20, 28, 32]. In
contrast, for high diffusion constants, the dynamics end
in absorbing states corresponding to the extinction of
all but one genotype, which we will call the asymptotic
genotype ~π.

What kind of asymptotic genotypes will dominate and
how does this depend on the kind of competition between
individuals? To answer this question we consider many
realizations C of the population dynamics and determine
the probability density P∞(~π) of asymptotic genotypes

on the unit simplex ~π ∈ ∆2 [Figs. 3(a,b)]; maxima of P∞
identify those genotypes which are evolutionarily most
successful [29].

Interestingly, we find that the type of evolutionary suc-
cessful genotypes qualitatively depend on the mobility.
We identify three distinct regimes: If diffusion is weak,
we observe a high probability in the corners of the unit
simplex [Fig. 3(a), top left], i.e. it is evolutionarily most
advantageous to specialize to one of the three phenotypes.
In contrast, for large diffusion constants, the most suc-
cessful individuals are bet-hedgers, i.e. have a genotype
with (nearly) equal probabilities for each of the three phe-
notypes [Fig. 3(a), bottom right]. For intermediate values
of D, the most successful individuals adopt a bet-hedging
strategy that is biased towards any of the three pheno-
types. The boundaries between these three qualitatively
different regimes, D1 and D2, can be clearly identified
from Fig. 3(b) which shows the marginal distribution in
any of the three components of ~π [30]

For large diffusion constants, D > D2, the character-
istic length scale of spatial patterns is larger than the
system size [13, 28], and therefore the dynamics are ef-
fectively that of a well-mixed system. In such an en-
vironment the interaction between individuals with two
different genotypes can be described by a mean-field
approximation: the probability that an individual of
genotype α outcompetes one of genotype β is given by
wαβ = ~pT

αA~pβ = p1
αp

2
β +p2

αp
3
β +p3

αp
1
β . This implies a net

transition rate between genotypes Wαβ = wαβ − wβα,
such that the fraction xα of individuals with genotype α
obeys the rate equation

∂txα(t) = xα(t)
G∑

β=1

Wαβ xβ(t) . (1)

Since W is a skew-symmetric matrix, this corresponds
to the replicator equation of a G-species conservative LV
model whose dynamics has recently been classified [21].
Obviously, a bet-hedging strategy with ~pb = ( 1

3 ,
1
3 ,

1
3 ) is

a fixed-point of this rate equation; since Wbβ = 0 it can
not be outcompeted by any other genotype β. More-
over, the particular form of W implies that all orbits
x(t) ∈ ∆G−1 are neutrally stable periodic orbits. For fi-
nite system sizes, the mean first passage time into the ab-
sorbing states is therefore longest for bet-hedgers which,
as a result, constitute the majority of the population for
large times [16, 31].

For small diffusion constants, D < D1, we observe that
the dynamics reaches a metastable state comprised of
three distinct genotypes which are specialized to one of
the three phenotypic states, respectively [Fig. 3(b)]. Ac-
tually the origin of this regime is due to a separation in
time scales between the exchange rate ε and the reaction
rates, ε � 1. This is clearly indicated by the scaling of
the threshold value with system size, ε1 ∼ D1 · N ∼ 1
[Fig. 3 (c)]. As a consequence, a domain boundary be-
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FIG. 3. (Color online) (a) To study the dependence of the asymptotic states on the individuals’ mobility, we computed
the probability density P∞ of the asymptotic genotypes for four different values of the diffusion coefficient D. Color (gray
scale) denotes the value of P∞, such that white signifies a high value and black a low value. The maxima of P∞ identify
successful genotypes. For very low diffusion constants specialization to one of the phenotypic states is most successful (top
left). In contrast, for high diffusion constants, P∞ is highest in the center of the simplex, i.e. the longest living individuals are
generalists who choose each phenotype with equal probability (bottom right). For intermediate values of D we find a maximum
corresponding to a biased bet hedging strategy (top right and bottom left). Dashed lines denote perpendicular bisectors. (b)
Phase portrait of the marginal distribution in any of the components of ~π. We identify two threshold values D separating
different outcomes of the evolutionary dynamics. Below a first threshold value D1 ≈ 1.5 · 10−5 mostly non-heterogeneous
genotypes survive. In between D1 and a second threshold D2 ≈ 1.25 · 10−3 a bimodal distribution is found, corresponding
to biased bet-hedgers. For D > D2 bet-hedgers dominate the population for large times. Averages were computed over 106

trajectories (L = 80). (c) The scaling of the threshold values with the system size gives information about the origin of the
phase transitions. D1 ∝ N−1 indicates that the underlying mechanism is of local nature, while D2 ∝ const. suggests that this
transition has its origin in changes in certain length scales.

tween two different genotypes changes mainly due to
competitive takeover and not mutual exchange of lattice
sites. This leads to rather smooth domain boundaries
which move at a speed proportional to the net transition
rate Wαβ . The invasion speed of domains of special-
ists into any domain is maximal. Likewise, by the skew-
symmetry of W, also the invasion speed any domain into
domains of specialists is maximal. On first sight the
invasion speed should therefore not be a distinguishing
mark of successful genotypes. However, fast invasion al-
lows the corresponding individuals privileged access to
limited prey. Following a ”first come first served” princi-
ple specialized genotypes therefore outcompete their bet
hedging counterparts. For large times, the dynamics
hence comprises cyclic competition between three spe-
cialized genotypes.

In the parameter regime D1 < D < D2, we again find
a prolonged metastable state where clusters of similar
genotypes emerge. As opposed to the specialists observed
for D < D1, these genotypes now favor one phenotype
but still keep a non-vanishing probability to be in the
other states [Fig. 3(a), bottom left]. Since now diffusion
mediated by site exchange occurs at the same time scale
as competitive interactions the domain boundaries are
fuzzy, and, as a result of an increasing mean path length
associated with D, domains are frequently intruded by
particles with a distinct genotype. As a result, the sur-
viving genotypes are characterized by a trade-off between
invasion speed given by W and robustness against hos-

tile invasion given by a broad distribution of phenotypic
states.

The degree of bet hedging is not only determined by
the radial dimension on the simplex. We observe that
the probability is highest in three of the six triangles
defined by the perpendicular bisectors of the simplex,
cf. Fig. 3(a), bottom left. Interestingly, these genotypes
obey a hierarchy in the components of the probability
distributions ~pα: They have a relatively high probability
to be in one phenotypic state, the genotype’s bias. The
ensuing phenotype with the highest rate of being domi-
nated takes the second largest value. Last, the compo-
nent which is dominated by the genotype’s bias has the
lowest probability. Mathematically speaking, the compo-
nents obey p1

α > p3
α > p2

α, or cyclically. This hierarchy of
phenotypic states ensures that domains are less suscep-
tible to invasion by the most aggressive genotypes.

The genotypes in these triangles (bet hedging trian-
gles) are characterized by outcompeting a large number
of genotypes at a lower average rate. As opposed to this,
genotypes in the remaining triangles outcompete fewer
genotypes, but with a higher average rate. To under-
stand this, we assume that a domain of genotype α is
randomly invaded by genotypes β, which are uniformly
drawn from the simplex ∆2. The intersection of the ker-
nel of the linear form ~pα(A −AT) with the simplex ∆2

defines genotypes, which are mutually non interacting:
Wαβ = 0. Note that the bet hedging genotype ~b is in
this kernel for any genotype α. By linearity the result-
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ing line divides the simplex into two regions: ∆+
α , where

Wαβ is positive and ∆−α where Wαβ is negative. If α
is in one of the bet hedging triangles the number Z+

of genotypes in ∆+
α is greater than the number Z− of

genotypes in ∆−α . In particular, one easily finds that
1 < Z+/Z− < 5/4. For genotypes α′ from the remaining
triangles we find 4/5 < Z+

α′/Z
−
α′ < 1. As the mean con-

sumption rate
∑
β∈∆+

α
Wαβ only depends on the degree

of specialization, genotypes α in the bet hedging trian-
gles have a lower average invasion rate as compared to
genotypes α′ in the remaining triangles:

(Z+
α )−1

∑

β∈∆+
α

Wαβ < (Z+
α′)
−1

∑

β∈∆+

α′

Wα′β (2)

We conclude that the surviving genotypes achieve robust-
ness against random invaders by outcompeting a larger
set of genotypes in cost of a lower average invasion rate.

For indirect competition, we find a remarkably differ-
ent behavior. There, for any value of D, the population
is asymptotically dominated by specialists, see Supple-
mentary Material. Phenotypic heterogeneity does not
provide an evolutionary advantage in this setting. In
particular, below a threshold value in D, we observe a
metastable state of the three specialists. As opposed
to this, for large values of D, only a single specialist
survives. The reason for the different number of sur-
viving genotypes is that coexistence of cyclically com-
peting species strongly depends on the degree of mix-
ing [13, 19, 20, 32]. To understand the success of special-
ists under indirect competition, note that interactions be-
tween genetically identical individuals potentially are of
disadvantage, as they involve the creation of empty sites.
These empty sites can independently be used for repro-
duction by individuals with different genotypes. The re-
action rate wii = 1−~p2

i of genetically identical genotypes
is zero, if ~pi has probability one in any of its components.
Specialists are therefore generally better off in indirect
competition. This effect is even stronger, for low mobili-
ties. There, the formation of stable spatial structures is
inhibited by reactions between identical genotypes.

In conclusion, we studied the interplay of genetic and
phenotypic diversity in spatial populations. We showed
that the evolutionary dynamics is reflected in the rate of
decrease in genetic diversity. Remarkably, we found that
individuals’ mobility and the type of competition qualita-
tively affect the the survival of phenotypic heterogeneity.
For direct competition we identified threshold values in
the mobility determining the characteristics of evolution-
ary successful genotypes: if the system is well-mixed we
observe the survival of bet-hedgers, while for little or no
diffusion specialists take over the population. In a third
regime biased bet-hedgers turned out to be the most suc-
cessful individuals. In contrast, for direct competition,
specialists asymptotically constitute the population. We
observed the same transitions in a more complex food-
web comprising four species. We therefore believe that

our findings are generic in the sense that they only rely
on basic properties of the underlying nonlinear dynamics.

The impact of mobility and the type of competition on
the survival of phenotypic heterogeneity is not restricted
to the models discussed here. We believe that qualita-
tively similar results hold for any model as long as the
basic properties of the nonlinear dynamics are conserved.
In the Supplementary Material we show that our results
also hold true for a more complex food web comprising
four species.
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Supplementary Material

In the Supplementary Material we provide calculations and numerical results the arguments presented in the main
text.

CONSERVED QUANTITIES IN HETEROGENEOUS LOTKA-VOLTERRA SYSTEMS

Consider a well-mixed population of Lotka-Volterra type. For a mean field description we require that the total
number of particles, N , is much larger than the number G of distinct genotypes at t = 0, N � G. We then may define
concentrations xα, α = 1, . . . , G such that Nxα gives the number of individuals with a certain genotypes pα. How are
these concentrations affected by the reactions between individuals? The probability for a genotype α to outcompete
a genotype β is given by wαβ = ~pαA~pβ , where A is the interaction matrix. This implies a net transition rate per unit
time and concentration between two genotypes, Wαβ = wαβ−wβα = ~pTα(A−AT)p̃β . Competition with a genotype β
therefore changes the concentration of genotype α by Wαβxαxβ . Including competition with any genotype we arrive
at G coupled rate equations,

ẋα = xα

G∑

β=1

Wαβxβ , α = 1, . . . , G . (1)

As, by definition, U ≡ A − AT and thereby W are skew-symmetric matrices, Eq. (1) conserves the sum over all

species concentrations,
∑G
α=1 xα = 1. We can therefore interpret Eq. (1) as the replicator equation of a conservative

Lotka-Volterra system of G competing species. As a result of the conservation of concentrations, 4G is invariant
under the dynamics of Eqs. (1).

To study the nonlinear dynamics of Eqs. (1) we are now interested in further quantities which are conserved by the
dynamics. In analogy to non heterogeneous Lotka-Volterra models we assume that these conserved quantities are of
the form

κ =
G∏

α=1

xcαα , ~c ∈ RG . (2)

We take the derivative with respect to t to obtain the time evolution of κ,

κ̇ =
G∑

α=1

cα
κ

xα
ẋα = κ

G∑

α=1

G∑

β=1

cαxβWαβ = −κ
N∑

β=1

xβ (W~c)β . (3)

Therefore, if κ is a conserved quantity ~c must be in the kernel of W: W~c = 0. The dimension of the kernel of W
hence gives the number of conserved quantities. Employing the rank-nullity theorem, we obtain

rank(W) + dim[ker(W)] = G . (4)

Let Λ be the matrix containing all genotypes, Λ = (~p1, . . . , ~pG) ∈ RM×G with M being the number of distinct
phenotypic states. With this definition we can write W = ΛTUΛ. In the following, we assume that the number of
genotypes is greater or equal the number of phenotypic states, G ≥ M . Λ has M linearly independent columns, in
the language of linear algebra rank(Λ) = M . We infer

rank(W) ≤ min{rank(U), rank(Λ)} = rank(U) , (5)

and by substituting Eq. (4)

dim[ker(W)] ≥ G− rank(U) . (6)

Hence, the number of conserved quantities is greater than the number of distinct genotypes minus the rank of U.
In other words, the number of the degrees of freedom G − dim[ker(W̃)] is bounded above by the structure of the
interaction network determined by U. We infer that adding a new genotype to the population also yields an additional
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conserved quantity. Hence, for well-mixed systems the number of degrees of freedom of the heterogeneous model and
its homogeneous version are equal.

Conserved quantities are particularly relevant, if the kernel is positive, i.e. cα > 0.
As an example, consider three cyclically competing species. The dimension of the image of U is two, rankU = 2.

We obtain dim[ker(W)] ≥ G − 2, which tells us that the system comprises at least G − 2 conserved quantities.
Equivalently, the number of degrees of freedom is less or equal 2. Together with particle number conservation this
proofs the existence of G−1 conserved quantities. As W is skew-symmetric, the eigenvalues of the Jacobian of Eq. (1)
are imaginary [1, 2]. Hence, the conserved quantities correspond to neutrally stable periodic orbits.

The numerical evaluation of Eq. (1) shows that the amplitude of oscillations in the component α scales linearly
with the standard deviation of the corresponding net transition rates,

√
Var(Wαβ). The standard deviation increases

with the degree of specialization of the genotype ~pα. The reason for this is discussed further below.

A GEOMETRIC INTERPRETATION OF THE NET TRANSITION RATES

In this section we give a geometric interpretation of the transition rates Wαβ , which in spatially structured systems
determine the propagation speed of domain borders. In particular, the sign of Wαβ gives the direction of invasion and
thereby the net outcome of competition.

The matrix of net transition rates W is defined as Wαβ = ~pTα(A −AT)~pβ . We hence consider the bilinear form
U(~pα, ~pβ) given by the matrix U = A− AT. U therefore gives the net transition rate as a function of the genotypes
~pα and ~pβ . Due to the linearity of U , and as ∆2 is flat we know that the iso lines of equal values of U are straight
lines. One also easily finds that U(~pα, ~pα) = 0 and U((1/3, 1/3, 1/3), ~pβ) = 0 for any genotype ~pβ . We infer that the
iso lines of equal transition rates are parallel to the straight line through the vector ~pα itself and the center of the
simplex ∆2, (1/3, 1/3, 1/3). We denote this particular line corresponding to vanishing net transition rate by I0α and
its parallel lines corresponding values U = s by Isα. Figure 1 shows I0α for the three specialist genotypes.

Consider a genotype ~pα and any iso line Isα. As U is linear in its arguments we infer that vectors ~pβ left of Isα
have higher net transition rates then vectors right of Isα. Here, we defined the direction as going from ~pα through
(1/3, 1/3, 1/3). The biological interpretation is that genotypes left of Isα perform better in competition against ~pα
than genotypes left of this line.

From this geometric interpretation we can follow, that the best response to any genotype ~pα ∈ 42 is a genotype
on the boundary of 42. The maxima and minima of U are always those points in 42 that have the largest distance
from the line I0α. If this line is not parallel to one of the borders, the best response against the genotype ~pα is one of
the three specialist genotypes. In conclusion, the best and worst responses to nearly all genotypes are specialists.

σ1 σ2

σ3

FIG. 1. Geometric interpretation for the net transition rates Wαβ . Genotypes correspond the vectors on the two dimensional
simplex 42. Genotypes ~pα in green regions have a positive net transition rate U(~pα, ~ei) for two specialist genotypes ~ei, whereas
genotypes in the red regions have negative net transition rates when competing with two specialist genotypes.

We now show how the geometric interpretation for the net transition rates helps understanding the observed
transitions in the asymptotic genotypes. The green regions in Fig. 1 are particularly significant. Genotypes in
these regions outcompete two specialist genotypes, while genotypes in the red region outcompete only one specialist
genotype.

The invasion speed of a boundary between genotypes is proportional to U(~pi, ~pj). A fast invasion speed is the
distinguishing mark of succesful genotypes in the regime D < D1 which explains the survival of specialists for
whom U(~pα, ·) is maximal. In the regime in between the fractal like structures of the clusters threatens individuals
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which specialized only one pronounced phenotype. Individuals, which are on the one hand specialized to one of the
phenotypic states but on the other hand are able to switch their phenotypic state have the advantage that they are
able to win on average in more heterogeneous neighborhoods.

FINITE SIZE SCALING OF THE CHARACTERISTIC TIME t1

The rate of decrease of the number of distinct genotypes in the population gives information about the underlying
evolutionary dynamics. We here study the scaling of the characteristic time t1, which marks the crossover from neutral
evolution to selection driven evolution, with the system size.

For the model comprising direct competition (Lotka-Volterra type) we find that the mean value of t1 scales linearly
with the system size, 〈t1〉 ∝ N . This result suggests that for t < t1 the dynamics is characterized by the escape
out of a neutrally stable fixed point. Indeed, for large D, the rate equations (1) comprise neutrally stable, periodic
oscillations. This result also pertains to smaller values of D as for small times spatial structures can be neglected. For
the model with reactions of May-Leonard type we find that the mean value of t1 scales logarithmicaly with the system
size, 〈t1〉 ∝ ln(N). We infer that the underlying dynamics is characterized by the fluctuation driven escape out of an
unstable fixed point. In both models, the absolute value of the heterogeneity scales linearly with N . Employing the
scaling behavior we may write the heterogeneity H(t,N) as

HLV(t,N) = Nt−1hLV

(
t

N

)
, (7)

and

HML(t,N) = Nt−1hML

(
t

lnN

)
, (8)

where hLV and hML are universal scaling functions of the heterogeneous Lotka-Volterra and the May-Leonard model,
respectively. Figure 2 shows the universal scaling functions and, as the curves overlap lie on top of each other, confirm
the measured scaling behavior.
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FIG. 2. The universal scaling functions h for the Lotka-Volterra (left) and the May-Leonard model (right). The collapse of
the curves for different values of N confirms the scaling of the characteristic time t1. For the direct competition, as in the
Lotka-Volterra model we find 〈t1〉 ∝ N (left), whereas for indirect competition, as in the May-Leonard model, the scaling is
logarithmic, 〈t1〉 ∝ ln(N). The simulations were performed for well-mixed systems.
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The presence of cooperation in nature is a fundamental, still unsolved problem in modern biology.
We here study the evolution of cooperation in populations exhibiting heterogeneous motility. We
show that under these circumstances cooperation can persist under surprisingly harsh conditions.
We identify three distinct parameter regimes which are characterized by the possibility for the
persistence of cooperation and the average motility dominating at large times.

PACS numbers: 87.23.Kg, 05.40.-a, 64.60.ah, 02.50.Le

Understanding the conditions that facilitate the persis-
tence of cooperation is one of the classic problems in evo-
lutionary biology. The dilemma of cooperation expresses
the naive point of view that cooperation should not be ro-
bust against “cheating” mutants. However, cooperation
is frequently found in biological systems. As an exam-
ple, the metabolism of Pseudomonas aeruginosa relies on
the consumption of iron. These bacteria therefore pro-
duce an iron-scavenging siderophore which may pass the
cell membrane and is therefore available to other bacte-
ria. As siderophore production is metabolically costly the
population should in principle be susceptible to the inva-
sion by mutants who do not produce the siderophore [1].
Mathematically, the dilemma of cooperation is often for-
mulated in the framework of evolutionary game theory,
where such situations are described in terms of the pris-
oner’s dilemma [2–7]. Among other mechanisms such
as direct and indirect reciprocity, spatial structures have
been identified as a key promoter of cooperation [8–11].
However, even a low mobility has been shown to jeopar-
dize cooperation in spatially extended populations [12].

Recent advances in microbiology have made it possible
to investigate the phenotypic status of a population on
the level of individual bacteria. It has been found that
even clonal populations may be heterogeneous in their
phenotypic properties [13]. As an example, many bacte-
rial species are endowed with flagella which may be uti-
lized to sense the cell’s environment. Most importantly,
flagella are, however, used for locomotion. For Bacillus
subtilis it has been found that in mid exponential growth
phase clonal populations consist of both, swarming cells
that are propelled via flagella, and non-motile cells, which
after division do not separate from each other, thereby
forming long chains of cells [14]. Cells in the motile state
do not divide. This bet hedging strategy allows the pop-
ulation to exploit its current location and at the same
time disperse to new, possibly more favorable niches. As
a result, colonies of B. subtilis are heterogeneous with
respect to the cells’ motilities. The underlying mecha-
nism behind this behavior is a bistable switch: in motile
cells the alternative sigma factor σD is in the ON state,
while for non-motile cells σD is in the OFF state. The

switching between these states is purely stochastic. The
statistical weight of the state, and thereby the fractions
of the colony in each of these states, can be biased by the
regulatory proteins swrA and swrB [13, 14].

Motivated by these findings we study the influence of
heterogeneous motility on the persistence of cooperation.
We show that phenotypic heterogeneity significantly en-
hances the conditions for the persistence of cooperation.
Moreover, we identify parameter regimes being character-
ized by the the possibility of the survival of cooperators
or defectors and the average motility in the subpopula-
tions at large times.

Specifically, we study the spatial prisoner’s dilemma
game where, in contrast to previous work, each individ-
ual is endowed with a distinct motility. The stochastic
dynamics is described by a Moran process. Consider N
individuals on a two-dimensional lattice with L×L sites.
Each site can be occupied by an arbitrary number of in-
dividuals, which are either cooperators (C) or defectors
(D). Individuals can interact (‘play’) with other indi-
viduals on the same lattice site at a rate r. The profit
they gain from such an interaction is encoded in a so-
called payoff matrix whose elements give the payoff two
individuals earn upon an interaction. If both players are
distinct, the defector collects a benefit b, while the coop-
erator has a cost 0 < c < b for providing a public good.
A cooperator engaging a cooperator yields a payoff b− c
for both, while two defectors collect payoff 0. How well
does an individual perform compared to others? The av-
erage payoff an individual collects is called accumulated
fitness,

fi = f0 +
1

n

n∑

l=1

p
(l)
j , (1)

where pli is the payoff that was collected in the lth in-
teraction. Success in interactions translates into a high
reproduction rate, which is proportional to fi. Upon re-
production, individuals replace a randomly chosen indi-
vidual on the same lattice site. Last, individuals per-
form random walks with an individual based rate µi.
For infinitely large lattices the spatial variables can be
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Figure 1. (Color online) Snapshots of a representative run
of the stochastic simulation. Color (gray scale) denotes the
concentration of cooperators and defectors on each lattice site,
such that blue (dark gray) and red (medium gray) denote
the predominance of cooperators and defectors, respectively.
Initially, cooperators and defectors are randomly distributed.
After a short time, defectors seem to take over the system.
However, cooperators are able to form clusters and establish
the majority of the population for large times. Parameters
were c = 0.16, µ0 = 1.25.

regarded continuous. Macroscopically, the hopping pro-
cesses then effectively lead to diffusion with a diffusion
constant µ

/
(2L2) . In summary, each individual is char-

acterized by a ‘genotype’ {C,D}×{µ1, µ2, ...} consisting
of its type and the individual based mobility. Upon re-
production, the newly produced individuals inherit these
genotypes from their ancestor.

If the number of individuals is large, we may define lo-
cal concentration densities cµ(~x, t) and dµ(~x, t) of coop-
erators and defectors with a given mobility µ. Neglecting
fluctuations the dynamics is described by partial integro-
differential equations of the form,

∂tcµ =
N

2µ0

ˆ 2µ0

0

Kc(µ, µ
′) cµdµ′ +

µ

2L2
∇2cµ , (2a)

∂tdµ =
N

2µ0

ˆ 2µ0

0

Kd(µ, µ
′) dµcµ′ +

µ

2L2
∇2dµ . (2b)

The interaction kernels Kc(µ, µ
′) and Kd(µ, µ

′) can be
expressed by approximating an individual’s fitness by the
average fitness f of all individuals with the same geno-
type.We obtain Kc(µ, µ

′) = f
c

µ − f
d

µ′ and Kd(µ, µ
′) =

f
d

µ − f
c

µ′ with f
c

µ(x, t) = f0 + bcµ − c and f
d

µ(x, t) =

f0 + bcµ. Equations (2) posses infinitely many stable,
spatially uniform states corresponding to a system fully
occupied by individuals of any genotype. In our stochas-
tic model these states are absorbing states, i.e. they are
reached with probability 1 after a finite time. As we will
show below, the probability distribution of which of these
states is reached asymptotically and the corresponding
time scale depend qualitatively on the average mobility
µ0 in the initial condition and the cost for cooperation c.

We performed extensive stochastic simulations employ-
ing Gillespie’s algorithm with parallel updating. Individ-
uals are located on a two-dimensional square lattice of
linear size L with periodic boundary conditions. Each
lattice site can host an arbitrary number of individuals.
Initially, motility is assigned randomly to each individual
according to a uniform distribution on [0, 2µ0], where µ0

is the mean mobility at t = 0. For all our simulations
we set b = 1, r = 5, L = 50, and N = 2 · 105. Figure 1
shows typical configurations at four different times. We
find that after a short transient clusters of cooperators
form. The overall concentration of defectors increases
at intermediary times but then decreases again for large
times. For this particular realization, the population is
asymptotically dominated by cooperators.

To which extend is cooperation possible in heteroge-
neous populations? The cost c∗ up to which coopera-
tion persists is a measure for how robust cooperation is
under harsh conditions. To determine the critical cost
c∗ we numerically computed stochastic trajectories and
calculated the overall concentrations of cooperators and
defectors at a large time t = 103. The critical cost was
then determined as the minimal value of c for which the
population at large times is composed of more than one
half of defectors. In Fig. 2(a) the solid line shows c∗
depending on the mean, initial mobility µ0. All combi-
nations of c and µ0 lying below this line allow for the
persistence of cooperation. For low motility the lattice
disintegrates into uncoupled, well-mixed patches. In this
limit, our model corresponds to earlier studied models
for the spatial prisoner’s dilemma [12] and we obtain a
constant value of c∗. The shaded area denotes parameter
values, where cooperation can persist in the prisoner’s
dilemma with homogeneous motility [12]. Importantly,
we find that the critical cost is significantly increased if
µ0 is on the same scale or a larger scale as the reaction
rates. In particular, while for homogeneous systems the
critical cost decreases with the mobility [12], we find for
heterogeneous systems that the critical cost only weakly
depends on the mean mobility for large values of µ0. The
critical cost of the homogeneous model also affects the dy-
namics in the heterogeneous model. The lines for the crit-
ical costs in the homogeneous and in the heterogeneous
model divide the parameter space into three regions, de-
noted by I, II, and III. These regions qualitatively differ
in the attractors of the global concentrations (i.e. the
possibility for the persistence of cooperation), and the
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Figure 2. (Color online) (a) The behavior of the heterogeneous, spatial prisoner’s dilemma qualitatively changes with the mean
initial mobility µ0 and the cost for cooperation c. The solid line is the critical cost c∗ below which cooperation can persist.
The shaded area denotes parameter values, for which the homogeneous, spatial prisoner’s dilemma allows for the survival of
cooperation. We find that cooperation is significantly enhanced if µ0 is not too small. We identify three parameter regimes
determined by the probability for the persistence of cooperation and the selection of optimal values of the motility within the
cooperating and defecting subpopulations. While the solid line marks an absorbing state phase transition, the dashed lines
denote a crossover behavior. (b) The overall concentrations evolve differently in each of the three regimes. In Regime I, we
observe the rapid domination of defectors (red, grey), while in Regime II cooperators (black) rapidly take over the population.
In Regime III, defectors dominate the population at small times. At a characteristic time t1 the fraction of cooperators increases
again and the overall concentrations approach algebraically the value 1. (c) To investigate in how far the three regimes influence
the selection of genotypes in the subpopulations we computed histograms of the mobilities at times shortly before an absorbing
state is reached. In Regime I, the extinction of cooperators happens on a shorter time scale than the evolution of the internal
structure of the subpopulations. In Regime II slow defectors and fast cooperators survive, while in Regime III slow cooperators
and fast defectors take over the respective subpopulations.

distribution of genotypes that asymptotically dominate
the two subpopulations.

In Regime I, the cost for cooperation is high. Ulti-
mately, defectors take over the population. A typical tra-
jectory of the global concentrations is shown in Fig. 2(b),
left. During the evolutionary dynamics, selection does
not only happen between cooperators and defectors, but
also on the genotypes present in each subpopulation. We
find that in Regime I slow cooperators are selected, while
the selection of defectors happens on much larger time
scales as the first passage time into the absorbing state
[Fig. 2(c), left]. Regime II corresponds to the persistence
of cooperators in the homogeneous model. We find that
also in the heterogeneous case cooperators dominate the
population at large times [Fig. 2 (b), middle]. Interest-
ingly, in this region fast cooperators and slow defectors
dominate the subpopulations at large times [Fig. 2(c),
middle]. The reason for this behavior is that slow defec-
tors may form clusters and thereby have a lower chance
of being replaced by cooperators - who generally have a
higher fitness in this regime. Cooperators, on the other
hand, can only take over the entire population by in-
vading these clusters and outperforming the defectors.
Regime III denotes parameter values, where cooperation
is possible in the heterogeneous model, but not in the ho-

mogeneous model. We here find an initial decrease in the
total concentration of cooperators. However, after a char-
acteristic time t1, the subpopulation of cooperators grows
again and asymptotically dominates the overall popula-
tion [cf. Fig. 1 and Fig. 2(b), right]. Asymptotically, the
cooperators have a high probability to be slow, while de-
fectors tend to be fast [Fig. 2(c), right]. The dynamics on
the critical line c∗(µ0) is characterized by the long term
coexistence of cooperators and defectors. In particular,
we find oscillations in the total concentrations c(t) and
d(t), with exponentially decreasing frequency. While the
critical line c∗ marks a continuous phase transition [12],
the boundary between Regime I and II (dashed lines) is
a crossover.

Regime III is of special interest, as it defines parameter
values, where the persistence of cooperation is facilitated
by heterogeneous motility. In the following, we scruti-
nize the spatio-temporal dynamics leading to the per-
sistence of cooperators in Region III. Figures 1 and 2(c),
right, demonstrate that, as in the homogeneous prisoner’s
dilemma, defectors at small times outgrow cooperators.
Interestingly, after a characteristic time t1, the overall
concentration of cooperators then increases again. Fig-
ure 3(a) shows that this behavior involves the decrease of
the average motility 〈µ〉 of cooperators. Slow cooperators
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may form tight clusters, which allow them to play with a
higher probability against other cooperators rather than
defectors. Their average payoff therefore increases, which
leads to an increase in the average fitness of the over-
all cooperator population as is shown in Fig. 3(b). As
a result, cooperators have an increased average growth
rate and constitute an increasingly large fraction of the
overall population. Finally, after the time t2, as a reac-
tion to the formation of clusters of cooperators, a selec-
tion pressure on defectors begins to act. Fast defectors,
may invade these clusters and they benefit from interac-
tions with cooperators. As a result, the average motility
of defectors increases and so does their average fitness.
However, overall cooperators benefit more from hetero-
geneous motility than defectors. For fast moving indi-
viduals the possible gain in fitness is limited. No further
increase in fitness can be achieved when the length scale
associated with the diffusion coefficient becomes much
larger than the correlation length of cooperators.

Our model comprises a genetically diverse population.
Genealogical processes, i.e. the dynamics of lineages in
the population, therefore become important. At each
time t we define h(t) to be the number of distinct geno-
types that can be found in the population divided by the
population size N . In other words, at the time t the pop-
ulation is descended from Nh(t) of common ancestors.
h(t) therefore is a measure of the degree of diversity in
the population. In the following, we are interested in
the genetic diversity hc,t within each the two subpopula-
tions consisting of cooperators and defectors, such that,
for example, Nc(t)hc(t) is the number of common ances-
tors of cooperators. As there is no mechanism for creat-
ing new genotypes, genetic diversity decreases monoton-
ically. The rate of decrease, however, gives information
about the characteristics of the underlying evolutionary
dynamics. Specifically, a decrease according to a power
law hc,d(t) ∝ t−1 indicates neutral evolution, as the pro-
cess is aptly described by a neutral coalescence process,
AA → A. Since spatial structures can be neglected it is
sufficient to consider the high density regime where the
density of particles A decreases according to a power law
t−1 [15]. As opposed to this, a faster decrease of diversity
is observed for processes, where particles coalesce at dif-
ferent rates. In the language of biology, this would mean
the evolution is driven selective advantage. Figure 3 (c)
shows hc,d(t) for two values of the cost c. If the cost is
high, we observe that for t1 < t < t2 evolution is neutral
for defectors, while cooperators are subject to evolution-
ary pressure. At large times, t > t2, cooperators have
formed tight clusters, such that the loss of genetic diver-
sity of cooperators decelerates, whereas selection plays
an increasingly important role for defectors. If the cost
is low, evolution is neutral for cooperators, while defec-
tors are subject to selection.

Interestingly, we observe a trapping of defectors in co-
operator clusters. As a consequence, cooperators tend to
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Figure 3. (Color online) (a) To understand the survival of
cooperators in Regime III, we computed the average normal-
ized mobility 〈µ〉/(2µ0) of cooperators (black) and defectors
(red, gray) as a function of time. At a characteristic time
t1 ≈ 25 the mean mobility of cooperators decreases rapidly.
At a second time t2 ≈ 100 this decrease follows a power law,
〈µ〉 ∝ t−1/2, while the average mobility of defectors increases.
(b) The average fitness fc,d of cooperators and defectors indi-
cates the potential of the subpopulations to grow. As a result
of the decrease of their average mobility cooperators may form
tight clusters and they predominantly play with other coop-
erators. As a result, their fitness increases. In response, the
average mobility of defectors increases, such they can invade
clusters of cooperators (c = 0.1, µ0 = 2.5, b = 1). (c) The
rate of the loss of genetic diversity in the two subpopulations,
hc,t(t), gives information about the underlying evolutionary
dynamics. If hc,t(t) ∝ t−1 evolution is neutral, which is the
case for cooperators if the cost is low and for defectors if the
cost is high. A faster decay indicates that a population is
subject to evolutionary forces, such as cooperators for high
costs and defectors for low costs.

form piles in the ‘vertical’ direction. Statistical evidence
is given in the Supplemental Material. The reason for
this ‘honeypot effect’ is that once cooperators form tight
clusters, their fitness is, in average, higher than the aver-
age fitness of defectors. The latter can only gain payoff
when playing with cooperators. When fast defectors en-
ter clusters of cooperators and die they are with a high
probability replaced by cooperators with a small mobil-
ity, who then stay in the cluster.

In conclusion, we showed that heterogeneous motil-
ity significantly enhances cooperation in the spatial pris-
oner’s dilemma. The asymptotic composition of the pop-
ulation qualitatively depends on the average initial motil-
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ity and the cost for cooperation. In particular, we iden-
tified three regimes which differ by the probability for
the survival of cooperation and the average motility of
cooperators and defectors at large times. Importantly,
cooperation is significantly enhanced for a broad range
of parameters. Our findings contribute to the under-
standing of the persistence of cooperation in biological
systems.
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We study range expansion of populations exhibiting phenotypic heterogeneity in motility and
growth rates. We observe the formation of homogeneous sectors and we show that at different tem-
poral regimes in the range expansion process different combinations of motility and reproduction are
favored by the evolutionary dynamics. We determine the asymptotic composition of the population
and reveal that this composition is intriguingly influenced by fluctuations.

PACS numbers: 87.17.Pq, 87.18.Tt, 02.50.Ey, 05.45.-a

Waves propagating into an unstable state are an ubiq-
uitous phenomenon in nature. They describe, for exam-
ple, the spreading of advantageous genes [1] or infectous
diseases [2]. Recently, they have attracted considerable
attention as a model for the range expansion of bacterial
populations [3–5]. A key observation were gene segrega-
tion phenomena in populations subject to neutral ran-
dom mutations [3–6]. This genetic drift appears to affect
the diversity of the population [4]. Recent advances in
microbiology have made it possible to investigate the phe-
notypic status of a population on the level of individual
bacteria. It has been found that even clonal populations
may be heterogeneous in their phenotypic properties [7].
As an example, many bacterial species are endowed with
flagella which may be utilized to sense the cell’s environ-
ment. Most importantly, flagella are, however, used for
locomotion. For Bacillus subtilis it has been found that
in mid exponential growth phase clonal populations con-
sist of both, swarming cells that are propelled via flagella,
and non-motile cells, which after division do not separate
from each other, thereby forming long chains of cells [8].
Cells in the motile state do not divide. This bet hedg-
ing strategy allows the population to exploit its current
location and at the same time disperse to new, possibly
more favorable niches. As a result, colonies of Bacillus
subtilis are heterogeneous with respect to the cells’ motil-
ities. The underlying mechanism behind this behavior is
a bistable switch: in motile cells the alternative sigma
factor σD is in the ON state, while for non-motile cells
σD is in the OFF state. The switching between these
states is purely stochastic. The statistical weight of the
state, and thereby the fractions of the colony in each
of these states, can be biased by the regulatory protein
swrA and swrB [7, 8].

Motivated by these findings we here study a generic
model for the expansion of heterogeneous populations.
In particular, our model comprises particles which are
endowed with distinct mobilities. These particles may
reproduce upon consumption of limited resources. As in
B. subtilis, motility and reproduction are complimentary
skills. We observe the formation of homogeneous sectors
and we show that at stages of the range expansion pro-

cess different combinations of motility and reproduction
are favored by the evolutionary dynamics. We deter-
mine the asymptotic composition of the population and
reveal that this composition is intriguingly influenced by
stochasticity.

Specifically, we study a spatially extended population,
where each individual A is endowed with a distinct geno-
type, which encodes rates to migrate and reproduce. In
particular, an individual i may reproduce with a rate µi
upon consumption of resources B, in chemical notation
AiB

µi−→ AiAi. Upon reproduction, an individual’s geno-
type is inherited to its offspring. In addition, individuals
perform random walks with a rate εi. Motivated by the
behavior of bacterial populations we assume that migra-
tion and reproduction are complementary skills. In par-
ticular, we set the characteristic time for individuals to
react or migrate equal for all individuals, 1/(εi+µi) = 1.
This choice fixes the time scale in our model. We here
consider a stochastic lattice gas model in one and two
dimensions, where site can be occupied by an arbitrary
number of individuals. While reproduction happens lo-
cally, i.e. the descendant is placed on the same lattice
site, migration is implemented as a hopping process on
neighboring sites.

The total number of particles A and B is conserved
by the reaction. Therefore, with Ω being the mean
number of particles per site, we may define a concen-
tration density aε(r, t) and a concentration b(r, t) by
N ε
A(r, t) ≡ Ωaε(r, t) and NB(r, t) ≡ Ωb(r, t). Here, N ε

A

and NB are the local number of particles of types A
with mobility ε, or B, respectively. r denotes the po-
sition on a d-dimensional lattice. We assume that the
mean field particle number Ω is large, and, in particu-
lar, much larger than the number of genotypes G. We
also suppose that initially the population is genetically
diverse, i.e. we consider the situation Ω � G � 1. The
spatio-temporal dynamics is then described by two cou-
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Figure 1. (Color online) (a) Typical configuration of a
stochastic simulation for a circularly expanding population
(t = 490). Color (gray scale) denotes the local average mo-
bility 〈ε〉, such that blue (dark gray) signifies a low mobility,
yellow (light gray) a medium mobility and red (medium gray)
a high mobility. We observe the formation of homogeneous
sectors. (b) The same situation, but plotted is the local ge-
netic heterogeneity, such that blue sites are homogeneous and
red sites are heterogeneous. We find that genetic diversity
is rapidly lost during the expansion process. The popula-
tion remains diverse at the origin and at sector boundaries.
Simulations were run on a hexagonal lattice with L2 = 5002,
Ω = 100, and t = 490.

pled integro difference-differential equations

∂taε(r, t) =
ε

2dδ2
∆aε(r, t) + (1− ε)aε(r, t)b(r, t) (1a)

∂tb(r, t) = −b(r, t)
ˆ 1

0

(1− ε)aε(r, t) dε , (1b)

where d is the spatial dimension, δ is the lattice constant
and ∆ is the lattice Laplacian. These equations com-
prise a stationary, spatially homogeneous state a− given
by a(r, t) ≡

´ 1

0
aε(r, t) dε = 0 and b(r, t) = 1 for all r. A

linear stability analysis reveals that the state a− is lo-
cally unstable: small perturbations grow exponentially.
This growth is limited by the availability of resources
b(r, t). In particular, it saturates when the total con-
centration reaches a level a+ corresponding to concen-
trations a(r, t) = 1, b(r, t) = 0. Equations (1) therefore
also comprise stable fixed points describing situations,
where the system is locally fully occupied by individu-
als A. From the classical theory of front propagation we
conclude that small perturbations in the homogeneous
state a− grow exponentially and asymptotically ensue
solutions corresponding to traveling wave fronts in the
total concentrations a(r, t). Such front solutions are a
unifying property of equations belonging to the FKPP
class [9]. Our stochastic simulations indeed show prop-
agating waves solutions. The spatio-temporal dynamics
is, however, much more complex than in the case of ho-
mogeneous range expansion.

We performed extensive simulations of the stochastic
lattice gas model and Eqs. (1). For our stochastic sim-
ulations, we implemented Gillespie’s algorithm with se-
quential updating on square and hexagonal lattices. For

the numerical solution of Eqs. (1) an ordinary Euler fi-
nite difference scheme was used. Initially, a small area
in the origin is populated by individuals of type A while
the rest of the system is occupied by resources B. The
mobilities in the initial population are randomly drawn
from a uniform distribution on ]0, 1[.

Figure 1(a) shows a typical configuration of the
stochastic model in two spatial dimensions. We observe
the expansion of a circular front out of the center. Af-
ter a short time homogeneous sectors form. Our simula-
tions show that for intermediate times genetic diversity is
lost in the front region. However, a variety of genotypes
manage to survive “surfing” on the tip of the front. For
large times, genetic diversity is only maintained in the
homeland and the front is dominated by multiple homo-
geneous sectors. As opposed to this behavior, in one spa-
tial dimension, the selection process is irreversible since
the two directions of propagation are strictly separated.
While gene surfers manage to survive on intermediate
time scales, each spatial direction is dominated by one
genotype for large times.

The loss of genetic diversity in colonization processes
has been observed in a variety of biological contexts, such
as the human expansion out of Africa or bacterial inva-
sion processes [3, 10–12]. While the overall number of
distinct genotypes is constant, the relative fractions of
different genotypes in the population changes during the
expansion process. The rate at which genetic diversity
is lost during expansion gives information about the un-
derlying dynamic processes. Specifically relevant is the
genetic diversity in the front region, as these individuals
constitute the gene pool for the further expansion pro-
cess [4]. We define the front as those points, where the
concentration b of resources exceeds a value of 1/2. In
polar coordinates, this yields a parametrization r(ϕ) of
the front, giving its distance from the origin as a func-
tion of the angle ϕ. We computed the temporal evolution
of the average number Hf (t) of distinct genotypes in a
region r(ϕ) ± ∆, where ∆ is proportional to the typi-
cal length scale of the front, ∆ ∝

√
〈ε〉/[2dδ2(1− 〈ε〉)].

Figure 2(a) shows Hf (t) for the two-dimensional system.
We identify two temporal regimes, which are character-
ized by different kinds of selection pressure acting on the
individuals. After a short transient, for 10 . t . 100, the
decrease of diversity in the front region follows a power
law, Hf (t) ∝ t−α with α ≈ 1.4. Hence, genetic diversity
is lost faster then one would expect for neutral evolution.
In this case, the theory of neutral coalescence processes
predicts an exponent −1 [13]. We conjecture that in this
regime the coalescence process is biased, meaning that
some genotypes in the front region have a higher proba-
bility to go extinct than others. For even larger times, the
genetic diversity in the front corresponds to the number
of homogeneous sectors and genotypes in the front region
are lost by the annihilation of sector boundaries. As a
result, Hf decreases at a lower rate.
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This behavior leaves two questions: First, what is
the asymptotic composition of the population? Sec-
ond, which dynamic processes characterize these tempo-
ral regimes?

To investigate which genotypes are selected by the ex-
pansion process we calculated the genetic composition
of the population at large times, i.e. the probability
that an individual has mobility ε and a reproduction rate
µ = 1− ε, [Fig. 1(c)]. We find that successful genotypes
migrate and reproduce with approximately equal prob-
ability. “Specialists”, who either reproduce or migrate
at a high rate do not successfully colonize. The average
mobility is, however, slightly shifted towards a higher re-
production rate, 〈ε〉 ≈ 0.46 for d = 1 and 〈ε〉 ≈ 0.44
for d = 2. While these values are characteristic for the
behavior at large times, we will show that they do not
necessarily represent the asymptotic composition of the
population.

We now scrutinize the evolutionary dynamics of the ex-
panding population and determine the asymptotic com-
position of the population. We then demonstrate the
intriguing influence of intrinsic noise. To understand the
role of evolutionary forces in the population we computed
the temporal evolution of the mean mobility 〈ε〉 in the
population, both from stochastic simulations and from
the numerical solution of Eqs. (1), cf. Supplementary
Material. Figure 2(c) shows that the mean mobility de-
creases at small times and then increases again. At large
times 〈ε〉 takes a stationary value depending on the lattice
spacing δ and the mean particle number Ω, cf. Fig. 3(a)
and (b).

For small times t . 15, 〈ε〉 decreases rapidly. Hence,
there is a selective advantage for individuals with a high
reproduction rate. To understand this, note that for
small times the population dynamics is governed by a
competition for resources [14]. In order to dominate
the front, a potentially successful genotype must initially
be capable of efficiently outgrowing its competitors by
consumption of the majority of resources at the tip of
the front. This necessity gives precedence to higher re-
production rates in this first regime, where Hf remains
large and concentrations remain relatively small. Con-
sequently genotypes with faster growth rate are advan-
tageous and 〈ε〉 decreases and reaches a minimum. This
effect occurs independently of the spatial dimension and
even in the deterministic limit, as direct numerical sim-
ulations of Eqs. (1) using an ordinary Euler finite dif-
ference scheme reveal. The minimum is always existent,
even though its position and depth depend on the initial
configuration.

In an intermediary regime 15 . t . 100 macroscopic
differences in the concentrations have formed and a prop-
agating front in the overall concentration a has been
established. To gain access to resources, it is essential
to balance reproduction with diffusion. This is reflected
in an increasing average mobility in the population, cf.
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Figure 2. (a) Decrease of genetic diversity Hf (t) in the front
region for one and two spatial dimensions. After a short tran-
sient genetic diversity decreases rapidly. For d = 1 it reaches
an asymptotic value, Hf (t) = 1. For d = 2 the decrease
of Hf slows down for large times, which can be attributed
to the formation of homogeneous sectors. (b) Probability to
find a certain mobility at a large time t = 220. We find that
the populations is dominated by individuals with an approx-
imately equal probability to migrate or reproduce. The bias
towards a lower mobility is a stochastic effect as is discussed
in the text. The histograms were averaged over 103 sample
runs with Ω = 100. (c) To investigate which genotypes are
selected by the evolutionary dynamics at specific times we
numerically solved Eqs. (1) for various values of δ and com-
puted the average mobility 〈ε〉 in the population. We find
that for small times, t . 15, 〈ε〉 decreases. For larger times,
it increases again until it approaches a stationary value. This
value decreases with increasing values of the lattice spacing
δ.

Fig. 2(c). In the following, we will argue that this behav-
ior can be understood by considering the spreading veloc-
ities of uncoupled Fisher waves. Equations (1) show that
different genotypes are coupled only indirectly via the
availability of resources b. The velocity of a front is de-
termined by its leading edge, where b ≈ 1 [9]. Following
the theory of front propagation [9, 15], we assume that
traveling wave solutions aε(r, t) = aε(r − vt) = aε(z) de-
cay continuously and exponentially at the leading edge of
the front, aε(z) ∼ exp (−γz) for z →∞. We also assume
that at the leading edge b ≈ 1−a. Substituting the expo-
nential ansatz into Eqs. (1) we may employ a saddle point
approximation to the integrals and the equations for dif-
ferent values of ε uncouple. Keeping only the highest
order exponential terms, we obtain a dispersion relation
v(γ) = γ−1 {ε/d [cosh(δγ)− 1] + 1− ε}. The theory of
front propagation into unstable states predicts that for
sufficiently steep initial conditions the front solution with
minimal velocity v(γ0) is selected [9, 16]. For a radially
expanding front in two spatial dimensions, v(γ0) is ap-
proached asymptotically for r →∞ [17]. We find that a
homogeneous subpopulation with mobility

ε∗ =
[√

2/(dδ2) + 1 arccosh
(
1 + dδ2

)]−1
(2)
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has the highest invasion speed. For δ → 0, ε∗ converges
to 1/2. For the stochastic lattice gas model δ = 1 was
used and hence ε∗ ≈ 0.438 for d = 1 and ε∗ ≈ 0.401
for d = 2. As the growth rate of a subpopulation is
proportional to its invasion speed, the fastest propagating
subpopulation will take an increasingly large fraction of
the colony. The mean mobility therefore increases in the
intermediary regime. Figure 3(a) shows ε∗ for d = 1 and
d = 2 and various values of δ. We find that the optimal
mobility decreases with an increasing lattice spacing.

For large times, t & 100, the deterministic behavior
differs qualitatively in one and two spatial dimensions.
For d = 1, the selection process is irreversible, as the
spatial directions are strictly separated and the front fix-
ates, as apparent from Fig. 2(a). As opposed to this,
for d = 2, homogeneous sectors have formed and the
loss of genetic diversity in the front region is governed
by the merging of neighboring sector boundaries. The
movement of the sector boundaries is influenced by de-
terministic and stochastic forces. We will first investigate
the former and then ask which of both forces dominates
boundary movement.

To study the deterministic movement of sector bound-
aries we consider two adjacent sectors of a circular front.
The trajectory of the boundary is described by its angle
ϕ(r) and without loss of generality we assume that ini-
tially ϕ(r0) = 0 and r0 = 1. The sectors propagate at
constant velocities v1 and v2 > v1. Neglecting fluctua-
tions the angle ϕ satisfies the differential equation [18]

rϕ′(r) = −
√
v22/v21 − 1 , (3)

which is solved by ϕ(r) = −
√
v22/v

2
1 − 1 ln(r). Hence,

the sector boundary moves logarithmically into the di-
rection of the slower domain. For a front consisting of
multiple sectors we conjecture that the population is ul-
timately dominated by the genotype with the fastest ve-
locity. This genotype is given by Eq. (2). Specifically, we
obtain 〈ε〉 → 1/2 for Ω→∞ and δ → 0 and we infer that
asymptotically Hf = 1. This argument is supported by
Fig. 3(a), which compares the mean genotype 〈ε〉 to the
genotype ε∗ with the fastest homogeneous front velocity
at large times for various values of δ. These two quanti-
ties only differ by a constant, which can be attributed to
the fact that ε∗ is an asymptotic quantity while 〈ε〉 was
measured at a finite simulation time.

Each biological system consists of a finite num-
ber of individuals and is therefore subject to stochas-
tic fluctuations. The stochastic motion of domain
boundaries is strongly influenced by the roughness of
the front [19]. We measured the roughness w(t) =√
〈[r(x, t)− 〈r(x, t)〉x]

2〉x in stochastic simulations of the
sector boundaries of a planar, homogeneous front [20].
The roughness increases according to a power law, w(t) ∝
tβ . For large times we obtain β ≈ 0.34 which confirms
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Figure 3. (a) The solid (dashed) line illustrates the analytical
result for the genotype ε∗ with the optimal front velocity in
one (two) spatial dimensions, [Eq. (2)]. Triangles indicate the
average genotype 〈ε〉 obtained from the numerical solution of
Eqs. (1), evaluated at a large time t = 3000 for d = 1. We
added a constant value to 〈ε〉 to account for the finite simu-
lation time. We find an excellent agreement of the ε∗ and 〈ε〉
and conjecture that the asymptotic genotype is determined
by the velocity of the corresponding homogeneous fronts. (b)
and (c) To investigate the dependence of the asymptotic com-
position of the population on the strength of reaction noise,
we computed 〈ε〉 and ε∗ via stochastic simulations. We find
that both values decrease with Ω and they only differ by a
value independent of δ. Hence, also for finite populations
the asymptotic genotype is determined by the velocity of ho-
mogeneous fronts (δ = 1). However, in d = 1 the shift ∆
saturates at a finite value as the initial decrease of 〈ε〉 is not
fully reversible.

that the homogeneous sectors belong to the KPZ univer-
sality class [19, 21]. As a result, the stochastic move-
ment of domain boundaries is super-diffusive, i.e. its
rooted mean square displacement increases according to
tα. For a sector boundary in a planar front we measured
α ≈ 0.63. Hence, the mean fluctuation driven displace-
ment of the sector boundary scales with rα, while the
displacement due to different front velocities scales with
r ln r. As rα/(r ln r)→ 0 for r →∞ we find that for large
times these tangential fluctuations of domain boundaries
become negligible in comparison to their deterministic
drift given by Eq. (3).

Our stochastic model comprises two sources of noise.
First, fluctuations due to reactions between particles are
proportional to Ω−1/2. Second, a finite lattice constant δ
represents an imperfect spatial continuum limit, result-
ing in fluctuations from the Brownian motion of individ-
uals which scale proportional to δ1/2. Surprisingly, we
find that both types of noise have contrasting influence
on the genotype with the maximal velocity of a homoge-
neous front and the genotype ultimately dominating the
population.

The effect of reaction noise on propagating fronts has
been subject to extensive studies [15, 22–26]. To study
the effect of reaction noise on the evolutionary dynamics
we performed stochastic simulations for different values
of the system size Ω. We find that noise stemming from
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the stochastic nature of reproduction significantly influ-
ences the dynamics at large times. In particular, the
asymptotic value of 〈ε〉 and the genotype ε∗ with the
highest velocity of homogeneous fronts both descrease
with Ω. In fact, 〈ε〉 and ε∗ differ only by a small con-
stant, which can be attributed to the fact that 〈ε〉 was
measured at a finite time. This observation underscores
our argument that 〈ε〉 is mainly determined by ε∗.

In conclusion, we studied the range expansion of het-
erogeneous populations in one and two spatial dimen-
sions. For the latter case we observed a radial spread-
ing process and the formation of homogeneous sectors.
Different genotypes are favored at different stages of
the spreading process, which ultimately leads to a loss
of genetic diversity in the front region. We deter-
mined the asymptotic composition of the population and
showed that this composition is significantly influenced
by stochastic fluctuations.
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nich’ and the German Research Foundation via contract
FR 850/9-1. We thank Madeleine Leisner and David
Jahn for fruitful discussions.
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Supplementary Material

We here provide additional material and calculations supporting the arguments provided in the main text.

OPTIMAL VELOCITY FOR Ω→∞

In this section we provide the mathematical steps to obtain the mobility ε∗ for which a homogeneous front attains
the highest velocity. In the thermodynamic limit Ω→∞ our model is described by the equations

∂taε(~r, t) =
ε

2dδ2
∆aε(~r, t) + (1− ε)aε(~r, t)b(~r, t) (1a)

∂tb(~r, t) = −b(~r, t)
∫ 1

0

(1− ε)aε(~r, t) dε , (1b)

where d ∈ {1, 2} denotes the spatial dimension and ∆ is the discrete laplacian for a lattice spacing δ, i.e.

∆aε(x, t) = aε(x− δ, t) + aε(x+ δ, t)− 2aε(x, t), d = 1 (2a)

∆aε(r, t) = aε(r − δ, t) + aε(r + δ, t)− 2aε(r, t) +
δ

r
[aε(r − δ, t)− aε(r + δ, t)] , d = 2. (2b)

For d = 2 we consider a rotationally symmetric population aε(~r, t) = aε(r, t), with r = |~r|. According to the theory
of fronts propagating into unstable states the front’s velocity is determined by the leading edge of the fronts, where
concentrations are low. We make the traveling wave ansatz aε(r, t) = aε(z), with z = r − vt. It is natural to
assume an exponentially decaying front profile in this region, aε(z) ∼ exp (−γz). At the leading edge of the front

b ≈ 1−
∫ 1

0
aε(~r, t) dε. Employing a saddle point approximation we obtain b ≈ 1−a∗ε (z), where ε∗ denotes the genotype

with the least steep decay of the front.
Using this approximation in Eq. (1) yields

∂taε(~r, t) ≈
ε

2dδ2
∆aε(~r, t) + (1− ε)aε(~r, t) (1− aε∗(~r, t)) . (3)

Neglecting second order terms in the concentrations we obtain the linear dynamics in the region corresponding to the
tip of the front,

∂taε(~r, t) ≈
ε

2dδ2
∆aε(~r, t) + (1− ε)aε(~r, t). (4)

The essential point here is that in the tip of the front the dynamics for the different genotypes uncouple. With the
exponential profile aε(z) ∼ exp (−γz) = exp (γ(vt− r)) we obtain:

γv eγ(r−vt) ≈
[ ε

2dδ2
(
e−γδ + eγδ − 2

)
+ (1− ε)

]
eγ(r−vt), d = 1 (5a)

γv eγ(r−vt) ≈
[

ε

2dδ2
(
e−γδ + eγδ − 2

)
+
δ

r

(
e−γδ + eγδ

)
+ (1− ε)

]
eγ(r−vt), d = 2. (5b)

In the limit of large radius the terms proportional to r−1 vanish in the laplacian for d = 2 and therefore both equations
become identical and independent of r after canceling the first order exponential terms. Solving for v one obtains the
dispersion relation

v(γ, ε) = γ−1
{ ε
d

[cosh(δγ)− 1] + 1− ε
}
. (6)

For fixed ε the selected front solution has minimal velocity [1, 2] and therefore obeys ∂
∂γ
v(γ, ε) = 0. This condition

relates ε and γ in the form

ε(γ) =
δ

δγ + [1 + dδ2 − cosh(δγ)] sinh−1(δγ)
. (7)
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FIG. 1. (a) Configuration of a stochastic planar front propagating in positive and negative y direction at t = 580. The size
of the initial population is indicated by the dashed rectangle. The population initially consists of two equally sized sectors of
evolutionary neutral genotypes with mobility ε = 1/2. Colors represent the absolute deviation of the concentration of aB from
1/2, i.e. |aB−1/2|. The definition of the lateral boundary position Xb(t) is indicated in the figure. Paramters of the simulation
were δ = 1, Ω = 100. (b) Rooted mean square displacement of the boundary position Xb averaged over 100 simulations.
Moreover the growth of the roughness w(t) in a planar, homogeneous front, averaged over 500 simulations, is given. For large

times both graphs follow a power law. We find
√
〈x2b(t)〉 ∼ tα, with α ≈ 0.63 and w(t) ∼ tβ , with β ≈ 0.34.

The mobility which maximizes the selected front velocity is therefore given by ε∗ = ε(γ∗), with γ∗ defined by
d
dγ v(γ, ε(γ))

∣∣∣
γ∗

= 0. Performing these steps gives the result

ε∗ =

[√
2

(dδ2)
+ 1 arccosh

(
1 + dδ2

)
]−1

, (8)

v∗ = v(γ∗, ε∗) = δ log−1
[
1 + dδ2 + δ

√
d (2 + dδ2)

]
. (9)

Due to the mentioned approximations this result is valid in for d = 1 and in two spatial dimensions for r →∞.

FRONT ROUGHNESS AND STOCHASTIC MOVEMENT OF SECTOR BOUNDARIES

As explained in the main text, the stochastic properties of the lateral movement of sector boundaries determine its
influence on the asymptotic configuration and the decrease of heterogeneity. We measured the statistics of the lateral
position Xb(t) of a sector boundary separating two neutral genotypes, i.e. with identical mobility and reproduction
rate. The measurement was done in a linearly expanding front in 2 spatial dimensions, as shown in Fig. 1(a). Due to
neutrality of the two populations 〈Xb(t)〉 = 0 in an ensemble average 〈·〉. For the rooted mean square displacement
of the boundary position we obtain the curve in Fig. 1(b). For large times the best fit yields

√
〈x2b(t)〉 ∼ tα, with

α ≈ 0.63. Since α > 0.5 our result indicates that the meandering tangential to the front is superdiffusive. This
coincides with the observations in [3], even though the measured growth exponent is slightly different. According
to [3], this superdiffusive behaviour may be attributed to the roughness of the front.

The roughness is defined as w(t) =
√
〈[r(ϕ, t)− 〈r(ϕ, t)〉ϕ]

2〉ϕ for a radially expanding front parametrized by the

polar angle ϕ and w(t) =

√
〈[y(x, t)− 〈y(x, t)〉x]

2〉x for a planar front parametrized by the x-coordinate as shown in
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Fig. 1(a), respectively. Following Ref. [4] the roughness is expected to grow according to a power law, w(t) ∼ tβ .
We measured the growth law as shown in Fig. 1(b) for a planar, homogeneous front. Measurement in a planar,
homogenenous front ensures that the result is neither distorted by lattice artifacts nor by large scale structures from
multiple sectors propagating at distinct velocities. From a fit for t ≥ 100 we obtain β ≈ 0.34, confirming that
homogeneous fronts of Fisher type belong to the KPZ universality class with respect to the statistical properties of
the front. The KPZ class predicts β = 1/3 [4]

[1] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves (American Mathematical Society,
Providence, 1983).

[2] W. van Saarloos, Phys. Rep. 386, 29 (2003).
[3] A. Ali and S. Grosskinsky, Adv. Complex Syst. 13, 349 (2010).
[4] A.-L. Barabási and H. E. Stanley, Fractal concepts in surface growth (Cambridge university press, Cambridge, 1995).
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4 Stability of localized wave fronts in bistable Systems

Bistable systems are ubiquitous in nature. For example, genetic switches are bistable
systems that store the activation state of a gene [1, 140]. On the other hand, in
population dynamics, a minimum population size is often needed to establish a
stable population. In this case one says that the population is subject to a strong
Allee effect [141]. The spatial versions of such systems admit traveling wave solutions,
describing for example the outbreak of viruses or the colonization of territory [142–
144]. If bistable systems are subject to external spatial gradients, traveling waves
may localize in restricted spatial domains [145–147]. An important example arises in
early embryogenesis ofDrosophila melanogaster where maternal morphogen gradients
provide positional information for gene regulation [3, 5, 6, 12]. The morphogen Bicoid
is present as a monotonically decreasing concentration in the embryo and controls the
step-like activation of the gene Hunchback, which also enhances its own activation,
thereby effectively producing a bistable system. The exact position of the Hunchback
front is pivotal to the embryo’s fate [12]. Hence, the front’s stability to extrinsic
perturbations or internal noise is paramount. Wave localization and the stability
of the front also play an important role in other contexts. In ecology, birth rates
may have spatial dependence, for example due to spatial variance in temperature or
resource availability [148, 149]. The localized boundaries between species are subject
to large fluctuations due to the low number of individuals in the boundary region.
This may eventually lead to the extinction of one of the species due to demographic
stochasticity [150]. Last, in bio-technological applications, this mechanism might be
used to create localized fronts of proteins [151].

Motivated by these processes, we investigate a broad class of bistable diffusion-
reaction models with reaction terms comprising self-activation, external activation,
and degradation. While self-activation and degradation are assumed to be spatially
uniform, the external activation is taken to be position-dependent. We consider two
qualitatively different types of external gradients and determine the parameter range
for which wave localization is possible. Moreover, we ask how stable these localized
fronts are with respect to extrinsic and intrinsic noise, and we determine optimality
conditions minimizing the front’s susceptibility to such perturbations.

In this chapter, we will first give an introduction to bistable systems and their spatially
extended versions. In Section 4.3 we introduce a paradigmatic class of bistable models
and show that under certain circumstances it admits the localization of trigger waves.
We then investigate the robustness of this mechanism and the susceptibility of the
localized wave to extrinsic and intrinsic perturbations (Section 4.4).
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4. Stability of localized wave fronts in bistable Systems

4.1 Bistability in nature

Bistability is one of the most fundamental concepts in nature. A system is said to
be bistable if it can rest in either of two stable states. Small perturbations to such
states result in an exponentially fast relaxation process back into these states [152].

One of the most fundamental examples of bistability is a toggle switch. In nature,
switches arise in gene regulatory networks, where they store the activation state of a
gene [1, 140]. As a prominent example, the mode of growth of bacteriophage λ in an
E.coli host is determined by a bistable regulatory system. [1]. In the prophage state
a repressor protein is synthesized, which activates its own synthesis and turns off
the synthesis of the Cro protein. In a second state, the lytic state, the bacteriphage
produces the Cro protein which deactivates the repressor protein. In this state, viral
DNA replicates in the E.coli bacterium and, by producing bacteriophage particles,
eventually kills it. In ecology, bistability may arise if the rate of reproduction is small
below a certain population size, increases above this threshold value and saturates
for large populations. Then, a critical populations size must be exceeded in order to
establish a stable population. This behavior is often referred to as the strong Allee
effect [141, 142, 144, 145, 153].

Biological systems are often highly complex, involving a multitude of different inter-
acting species and time scales. However, two key requirements have been identified as
a requirement for a system to exhibit bistability [76, 80, 154]: first, particles should
amplify the production of particles of the same type, which is known as positive
feedback. Second, the system needs to display nonlinear kinetics. In gene regulatory
networks, such nonlinearities can arise as the result of multimerization, cooperative
binding to target sequences on the DNA, or phosphorylation of certain amino acid
residues [80] and it manifests itself as a sharp increase in transcription rates when a
certain threshold concentration is reached.

Mathematically, bistable systems are studied in the framework of the theory of
dynamic systems and their temporal evolution is described by nonlinear differential
equations for the concentrations,

u̇ = f(u) . (4.1)

Here, f(u) is a nonlinear function determining concentration dependent reaction
rates. Equations 4.1 describe a multistable system, if the potential V(u) ≡

∫
f(u)da

has local minima separated by potential wells.

4.2 Spatially extended bistable systems admit traveling waves solutions

In many biological applications, individuals or particles are endowed with mobility.
As it has been shown in the first part of this thesis, the spatial arrangement of
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4.2 Spatially extended bistable systems admit traveling waves solutions

particles is paramount for many biological systems. The simplest form of mobility is
Brownian motion, which leads to diffusion on a macroscopic scale. The connection be-
tween mobility and diffusion is a prominent application of the fluctuation-dissipation
theorem and it is best known in the form of the Einstein-Smoluchowski relation,

D = kBTµ, (4.2)

linking the diffusion constant D and the mobility µ.

4.2.1 The Turing instability

The combined effects of nonlinear reactions and diffusion have gathered much interest
in the context of pattern forming systems. Such systems have successfully been
employed to understand a broad variety of developmental processes, cf. Fig. 4.1. In
his visionary work, Alan Turing investigated the stability of the simplest possible
reaction-diffusion system which is capable of forming a pattern from a uniform
state [100].

1. First, at least two interacting species are needed for the formation of spatial
patterns.

2. While diffusion is naively thought of as a process smoothing out differences
in the concentration of reacting species, Turing showed that it can actually
lead to the destabilization of uniform states and thereby to the occurrence of
patterns.

3. This diffusion-induced instability can cause the formation of structures of
a particular wavelength. The significance of this result is that it provides
a mechanism for producing a variety of regular patterns, ranging from the
segmentation patterns in the fruit fly to the periodic arrangement of tentacles
around the mouth of the Hydra organism, or zebra stripes [35].

4. Last, pattern formation requires the separation of the length scales correspond-
ing to the mobile species. In other words, the respective diffusion constants
must differ substantially.

Turing’s model comprises two species, an activator A and an inhibitor B. The activa-
tor and the inhibitor are, due to diffusion, linked to length scales lA and lB. Turing
assumes that the activator diffuses much more slowly than the inhibitor, lA � lB.
Furthermore, the activator A is auto-catalytic and also enhances the production
of the inhibitor B. On the other hand, the inhibitor represses the activation of A.
These reaction locally yield a linear stable state. How does the system react to a
small spatial perturbation? Due to the different length scales associated with the
activator and the inhibitor, the latter will spread out of the region of the perturba-
tion, yielding to a relatively higher concentration of the activator as compared to
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4. Stability of localized wave fronts in bistable Systems

the inhibitor. As a result, the repressive effect of the inhibitor on the production of
the activator is decreased, resulting in a growing concentration of the activator. At
some concentration the concentration of the activator saturates as a result of nonlin-
earities in the reactions. As opposed to this, in the outer region there is a relative
surplus of inhibitors, i.e. the concentration of activators is decreased as compared to
the inhibitor. In conclusion, short-range activation in combination with long range
inhibition yields the growing of instabilities to stable spatial patterns. The locally
stable state looses its stability due to diffusive transport.

4.2.2 Bistable excitable media

While in Turing’s simple model the locally stable state looses its stability due to
diffusive transport, we are here interested in how pattern formation is possible if the
stable state is globally stable to small perturbations. Such systems are commonly
called excitable media and they arise in a variety of fundamental problems in biol-
ogy, chemistry, physiology and medicine [35]. As we will see, excitable media may
admit the propagation of waves. These waves are paramount for some of the most
fundamental processes in living organisms [35]: Excitable electrical waves are used
by some single cell organisms such as Paramecium to control the mechanical rota-
tion of their cilia, allowing them to adjust their swimming motions. Such excitable
electrical waves also prevent multiple sperm cells from merging with an egg. When
a first sperm has entered the egg an excitable wave triggers a rapid change in the
egg’s membrane preventing other sperms from entering. In the nervous system of
multi-cellular organisms excitable electrical waves enable the reliable transport of in-
formation over large distances. The Hodgkin-Huxley model of action potentials is the
most widely used model for transmission of information between neurons. FitzHugh
and Nagumo introduced a reduced version of the Hodgkin-Huxley model which has
become a paradigmatic model for excitable media [35],

∂tu = f(u, v) +D∆u , (4.3)
∂tv = g(u, v) , (4.4)

with reaction rates f(u, v) = η−1(3u− u3 − v) and g(u, v) = u− a− bv. Finally, on
an even larger scale, invasion processes of species subject to a strong Allee effect can
be understood in terms of excitable dynamics [142, 144, 145, 153].

For large particle numbers, the dynamics of spatially extended system of reacting
and diffusing particles is aptly described by partial differential equations of the form

∂tu(x, t) = f(u(x, t)) +D∆u(x, t) . (4.5)

Here, the first term on the right hand side accounts for concentration changes due
to reactions. The second term is the diffusion term, punishing spatial fluctuations in
the field u. The diagonal matrix D contains the diffusion constants of the respective
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4.2 Spatially extended bistable systems admit traveling waves solutions

species. Such reaction-diffusion systems have recently gathered much interest as
prototype models for pattern forming systems. There, the combined effect of nonlinear
reactions and diffusion allows for the stable establishment of spatial patterns. The
most prominent example certainly is Turing’s model [100].

What can we infer about the solutions of Eq. (4.5) if the reaction term is bistable?
For the sake of simplicity we now consider a single species in one spatial dimension.
In dimensionless form we may write the correponding reaction diffusion equation as
∂tu(x, t) = f(u(x, t)) + D∆u(x, t). If the potential V (u) =

∫
f(u)du has two local

maxima at concentrations u− and u+ seperated by a minima, i.e. the reaction term
is bistable, solutions are stationary profiles moving with a constant velocity c,

u(x, t) = φ(ξ), ξ = x− ct , (4.6)

with φ(ξ ±∞) = u±. The shape φ(ξ) of the front profile can be obtained by solving
the stationary differential equation, ∂xxφ + ∂φV (φ) = 0. Such solutions are called
traveling wave solutions and they allow us to formulate Eq. (4.5) in terms of an
ordinary differential equation, namely

φ′′ + cφ′ + ∂φV (φ) = 0 . (4.7)

Here, the prime denotes derivatives with respect to ξ. Equation (4.7) can be inter-
preted in terms of an analogous mechanical problem: it may be interpreted as a force
balance equation for a particle (sliding ball) with mass 1, friction c and potential
V (φ). The boundary conditions are determined by the asymptotic values u± of the
front profile, i.e. the ball starts at one maximum and ends at the other maximum.
To determine the front’s velocity we have to solve the Eigenvalue problem defined by
Eq. (4.7). In the language of the sliding ball analogy, this problem can be formulated
as follows: for which friction c does the ball, when starting at the maximum u+

at high concentrations, stop exactly at the maximum u− at low concentrations? If
the friction is positive, solutions are traveling waves propagating in the positive x
direction. On the other hand, if the friction is negative, the front propagates into the
negative x direction.

To derive and expression for the front’s velocity we multiply Eq. (4.7) with φ′ and
integrate over ξ. We obtain∫ ∞

−∞
f(φ)dφ

dξ dξ +
∫ ∞
−∞

φ′′φ′dξ + c

∫ ∞
−∞

(φ′)2dξ = 0 . (4.8)

From the asymptotic values of the front solution, φ(±∞) = u± we find that the first
term on the left hand side equals −

∫ u+

u− f(φ)dφ ≡ −∆V . The second integral on the
left hand side vanishes, as one may see by employing the substitution law. We obtain
an expression for the front’s velocity,

c = ∆V∫∞
−∞(φ′)2dξ . (4.9)
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(a) (b) (c)

Figure 4.1: Examples for spatial patterns in nature. (a) The stripe like patterns in the
angelfish Pomacanthus semicirculatus have been proposed as a biological mani-
festation of the Turing mechanism [155]. The picture has been taken from [16].
(b) An embryo of Drosophila melanogaster in mid-nuclear cleavage cycle 11A.
The concentrations of Bicoid (green) and Hunchback (blue) have been made
visible by immunostaining. The picture shows that from a smooth gradient of
the maternal morphogen Bicoid a sharp boundary in the concentration of Hunch-
back is created. The picture has been taken from Ref. [12]. (c) Polarization in
the C. elegans cygote. The proteins PAR-2 (green) and PAR-3 (red) localize at
separate anterior and posterior domains. Anterior is to the left. The picture has
been taken from Ref. [156].

Therefore, two factors determine the speed of the propagating wave front: the differ-
ence in potential between the stable states gives the direction of propagation and
the absolute value of the velocity. If ∆V is positive, the front propagates into the
positive x-direction and vice versa for negative values of ∆V . The denominator can
be thought of as a measure for the maximum steepness of the front. We infer that
steep fronts move slower than shallow fronts.

4.3 Localization of wave fronts

We will now show that if bistable systems are subject to external spatial gradients,
traveling waves may localize in restricted spatial domains [145–147].

4.3.1 Morphogenesis in Drosophila melanogaster

During the development of an embryo cells differentiate into a variety of distinct cell
types, such as nerve cells, phosphoreceptor cells of the retina in the eye, or muscle
cells. How form and patterns emerge from a homogeneous cluster of cells has already
fascinated Aristotle in the fourth century B.C.. He described the multiple forms of
morphogenesis in birds, plants and cephalopods, already noting that an animal’s egg
contained the “potential” for its later differentiation. In 1969, Lewis Wolpert was the
first to propose that asymmetric concentrations of a chemical signal (morphogens)
provide positional information for the developmental system [157]. The positional
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signal serves as an input to the gene regulatory system allowing the cell or nucleus
to differentiate accordingly.

An important example arises in the early embryogenesis of Drosophila melanogaster
where maternal morphogen gradients provide positional information for downstream
gene regulatory processes [3, 5, 6, 12]. The morphogen Bicoid is translated from RNA
which is located at the anterior end of the egg. The combined effect of this source,
degradation and diffusion leads to an exponentially decreasing concentration of
Bicoid. This gradient defines an anterior-posterior axis, thereby providing positional
information to processes determining cell differentiation.

The first gene activated by Bicoid is called Hunchback, which is expressed at the
anterior end of the embryo. Importantly, it exhibits a sharp on-off boundary changing
from its largest to its lowest concentration in only one tenth of the egg’s length along
the anterior-posterior axis [Fig. 4.1(b)]. Experimental studies have shown that the
production of Hunchback is governed by cooperative self-activation and cooperative
activation by Bicoid [9, 10, 12, 14]. As Hunchback again serves as a positional signal
for downstream developmental processes, such as the formation of the gap genes
giant, krüppel and knirps, the exact position of the Hunchback front is pivotal to
the embryo’s fate [12]. Hence, the boundary’s stability to extrinsic perturbations or
internal noise is paramount.

Spatially inhomogeneous activation is also relevant in other contexts. In ecology, birth
rates may have spatial dependence, e.g. due to spatial variance in temperature or
resource availability [148, 149]. In cell biology, bistability and spatially inhomogenous
activation has been proposed as a mechanism responsible for the polarization of
cells [146, 147, 158].

4.3.2 A paradigmatic class of bistable models

Motivated by these processes, we investigate a broad class of bistable diffusion-
reaction models with reaction terms comprising self-activation, external activation,
and degradation. While self-activation and degradation are assumed to be spatially
uniform, the external activation is taken to be position-dependent.

In the tradition of theoretical science it is not our goal to give a quantitative descrip-
tion of a specific biological system. Indeed, the details of gene regulatory networks
in embryogenesis are not fully understood, even today. A quantitative analysis of a
model comprising many parameters is therefore not always the best strategy. One
might argue that the amount of insight one gains from a theoretical description
decreases with the complexity of the model and it vanishes at a point, where one
ends in a purely statistical fitting of experimental data. Although this approach has
its raison d’être and it is increasingly becoming popular, we here follow the philoso-
phy of Turing who opened his seminal paper on morphogenesis with the following
words [100]:
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“In this section a mathematical model of the growing embryo will be
described. This model will be a simplification and an idealization, and
consequently a falsification. It is to be hoped that the features retained
for discussion are those of greatest importance in the present state of
knowledge.”

In this spirit, we here study the simplest model allowing for the stable establishment
of a sharp boundary. In the context of embryogenesis it can be thought of as a
coarse grained biochemical network, which despite being simple comprises essential
characteristics of the more complex networks found in biology. Specifically, we con-
sider a one-dimensional system where diffusing particles are subject to three types of
reactions: First, there are gain processes with a concentration-dependent rate that
accounts for self-activation in gene regulatory systems or reproduction in population
dynamics. Typically, these rates are small for low concentrations, then rise and finally
saturate at high concentrations. In populations dynamics, this behavior is referred to
as the strong Allee effect [141, 144]. In gene regulation, it can be due to cooperative
transcription factor binding to a gene promoter. A common choice for the overall
reaction rate is krRna0(a) with the Hill function Rna0(a) ≡ an/(an0 + an) , kr the maxi-
mum intrinsic production rate, and a the particle concentration. The Hill coefficient
n measures the degree of cooperative binding in the promoter region, or, in ecology,
the strength of an Allee effect. Second, we account for loss processes, where particles
vanish with a certain rate λ. Third, in addition to self-activation, there may also be
external sources for particle production. Here, we are interested in systems where
this source is position-dependent and characterized by the overall rate kMM(x). The
prefactor kM denotes the maximum rate of external activation, and M(x) is a mono-
tonically decreasing positive density profile with normalization M(0) = 1. In the
simplest case, where the profile results from a source-degradation dynamics [7, 159],
it is exponential M(x) = e−x/ξ with the decay length ξ, cf. Fig. 4.2 (a). Prominent
examples are the concentration profile of Bicoid in Drosophila [7] and temperature or
nutrient gradients in population dynamics [153]. Since the production of Hunchback
by Bicoid is mediated by cooperative binding, the profile M(x) entering the overall
production rate is commonly described by M(x) ∼ RmI0

(e−x/ξ) [10]. The exponen-
tially decaying signal induced by maternal source-degradation dynamics serves as
an input to the gene regulation system. The latter is described by a Hill coefficient
m typically in the range from 1 to 5, and an activation threshold I0. The model is
summarized in Fig. 4.2(a).

In the limit of a large system size, fluctuations are of minor importance and the
spatio-temporal dynamics is then aptly described by a reaction-diffusion equation,
which in dimensionless form reads

∂tu = f(u, x) + ∂xxu . (4.10)

Here f(u, x) ≡ rRnu0(u)+M(x)−u comprises self-activation, external activation and
degradation. Concentration u, time t, and space x are measured in units of kM/λ,
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1/λ and
√
D/λ, respectively. The ratio r ≡ kr/kM denotes the relative amplitude of

self-activation and external activation mediated through M(x).

4.3.3 Sliding ball analogy for inhomogeneous systems

Traveling wave solutions of Eq. (4.5) may be localized due to the combined effect
of spatially varying external sources and bistability [145–147]. The basic mechanism
can be best understood in terms of the well-known sliding ball analogy [35], which
here is complicated by the fact that the reaction term is space-dependent. Since
in most biological situations a steep profile in u is induced by a smooth external
profile M(x), we may assume a separation of length scales ξ �

√
D/λ and ξ much

smaller than the system size. Then one can make a generalized traveling wave ansatz
U = U(x − q(t), y), where x is a fast varying variable describing changes in the
concentration profile, y = x/ξ is a slowly varying variable describing changes in
the external profile M(x), and q(t) denotes the front position. Substituting the
generalized traveling wave ansatz into Eq. 4.10 we obtain to leading order in the
inverse length of the external gradient,

− q̇∂xU = ∂xxU + ∂UV (U, y) +O(ξ−1) . (4.11)

This differential equation may be interpreted as a force balance for a particle (sliding
ball) with mass 1, friction q̇ and potential V (u, y) =

∫ u f(ũ, y)dũ. Importantly, the
potential parametrically depends on y, see Fig. 4.2(b). For parameter regimes where
V has two maxima at u+(x) and u−(x), and a local minimum at us(x), the velocity
q̇ must be chosen such that the sliding ball starting from the upper branch u+

ends up at the lower branch u−. The front speed is proportional to the difference
between the two maxima of V (u, y) and becomes zero if the Maxwell condition
∆V (y) ≡

∫ u+

u− f(u, y)du = 0 is satisfied. More quantitatively, in analogy to the
homogeneous case [13, 35, 160], one finds

q̇ ≈ ∆V (q)∫∞
−∞[∂xU(x− q, y)]2dx ≡ c(q) , (4.12)

where U(x− q, y) is the traveling wave solution. The denominator roughly equals the
maximum steepness of the front profile, and implies that steep fronts move slower [35].
One may also arrive at this equation employing a variational ansatz called Whitham
principle [13, 160].

In our class of models, a single branch of stable solutions at high concentrations
typically undergoes a fold bifurcation for growing x, where the system is bistable
on a confined spatial interval, see Fig. 4.2 (d). For large x, a single branch at low
concentrations remains. Within the bistable regime, the velocity c(q) may change
sign and thereby lead to a localization of the traveling wave front.
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4.3.4 Derivation of the localization position

Where does a propagating front in an inhomogeneous, strictly monotonic medium
localize? Equation (4.10) admits traveling waves solutions if the potential V (u, x) =∫ u dũ f(ũ, x) exists locally. In our case we obtain

V (u, x) = −u
[
u

2 −M(x)− r + F

(
un

un0

)]
, (4.13)

where F (z) ≡ 2F1(1, 1/n, 1 + 1/n,−z) and 2F1 is the Gauss hypergeometric function.
The wave localizes if the difference in the maximum values of the potential is zero,
∆V (q0) ≡

∫ u+

u−
du f(u, q0) = 0. Using the linearized stable states u+(x) ≈M(x) + r

and u−(x) ≈M(x) gives an expression for the difference between the two maximum
values of the potential,

∆V (q) = V (u+(q))− V (u−(q)) (4.14a)

= 1
2r
[
r + 2M(q)F

(
M(q)n

un0

)
− 2

(
M(q) + r

)
F

(
(M(q) + r)n

un0

)]
. (4.14b)

As ∆V is to a good approximation linear in M(x) we linearize around M(x) = 0,

∆V (x) ≈ 1
2r

r +M(x)

2− 2
1 +

(
r
u0

)n
− 2rF

(
rn

un0

) . (4.15)

The localization position q0 is then determined by ∆V (q0) = 0. Solving this equation
for the concentration of the external source at which the front localizes, M(q0), we
find

M0 ≡M(q0) ≈ 1
2r
[
1 +

(
r

u0

)n](u0
r

)n [
2F
(
rn

un0

)
− 1

]
. (4.16)

To obtain an intuitive understanding of the expression for the front position M0 we
investigate the dependence of M0 on the parameters r and u0. To this end, we first
take the derivative with respect to r,

∂rM0 = 1
2

(
u0
r

)n [
1 + n−

(
r

u0

)n
− 2nF

(
rn

un0

)]
. (4.17)

In bistable systems the relative amplitude of self-activation r is typically greater than
the activation threshold u0. Noting that F (z) ∼ 1/z for z →∞ we get ∂rM0 ≈ 1/2 ,
proving that M0 is linear in r. On the other hand, taking the derivative with respect
to u0 we get

∂u0M0 = 1
2

(
u0
r

)n−1
{

2
[
1 + n+

(
r

u0

)n]
F

(
rn

un0

)
− 2− n

}

≈ 1
2

(
u0
r

)n−1
· 2
(
r

u0

)n
·
(
u0
r

)
(4.18)

= 1 ,
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Figure 4.2: (a) Our paradigmatic model comprises self-activation with a rate krRna0
(a) de-

pending nonlinearly on the concentration a, degradation with a rate λ and
activation by an external positional signal M(x). (b) Two types of gradients:
exponential decay (dashed line) and a sigmoidal profile ensuing from regulating
an exponentially decaying input (solid line). (c) The potential for different values
of the front position q. The sliding ball analogy states that the front localizes
where the two maximum values of the potential are equal. (d) Sketch of the
bifurcation diagram and traveling wave solution of Eq. (4.5). Blue lines denote
stable solutions while the dashed (red) line corresponds to the unstable branch.
Wave fronts (black lines and shaded area) penetrating the bistable region slow
down and eventually come to rest at a stable fixed point of the front dynamics.

which proves that M0 is also linear in u0. Note that although the arguments above
strictly hold in the limit n→∞ we numerically found that they are valid even for
relatively small values of n. In conclusion, we showed that M0 can be approximated
by a linear function of the form g(n) · (u0 − r/2), where the pre factor g(n) only
depends on n. By taking the limit n→∞ first, and then doing the above calculations
we find that g(n)→ 1 for n→∞.

4.4 Stability of localized wave fronts

The development of many biological systems comprising localized fronts essentially
depends on their stability to perturbations. As an example, the fate of the Drosophila
embryo crucially depends on the exact location of the Hunchback boundary. Failure
in the establishment of a sharp Hunchback boundary results in a deformed embryo,
hence the name Hunchback. In the following, we ask how much different kinds of
perturbations affect the position of the localized front and which design principles we
can infer for gene regulatory networks creating the boundary. In particular, we first
study the conditions under which wave localization is possible and robust. We then
consider two kinds of perturbations: extrinsic perturbations refer to perturbations
to the front or the driving signal stemming from sources outside the model. Intrinsic
perturbations are fluctuation arising due to a finite particle number and the random
nature of reactions and diffusion. We will show that stability is enhanced upon
regulating a positional signal and, surprisingly, also for a low degree of binding
cooperativity. We further show a contrasting impact of self-activation to the stability
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Figure 4.3: Illustration of the condition for bistability. There exists a bistable region in the
bifurcation diagram, if for some value M∗ ofM(x) the reaction term of Eq. (4.5)
has three real valued roots.

of these two sources of destabilization.

4.4.1 Robustness of the mechanism

Under which conditions is wave localization possible and robust? In Drosophila, the
parameters r, u0 and n are of special importance as they are main determinants of the
gene regulation network [12]. Wave localization is possible if there exists a bistable
region in the bifurcation diagram. We treat M(x) as a parameter and investigate if
M(x) takes values such that the reaction term f(u, x) has three real roots. Such a
value for M(x) exists, if the maximum value of the derivative of f(u, x) is greater
than zero, maxu ∂uf(u, x) > 0. For an illustration, see Fig. 4.6 (a). The reaction
term is steepest at the steepest point of the Hill function, which is given by

u∗ =
(
n− 1
n+ 1

)1/n
u0 . (4.19)

From ∂uf(u, x)|u=u∗ ≥ 0 we obtain a first condition for the parameters, which allow
the localizetion of wave fronts,

u0
r
≤ n2 − 1

4n

(
n+ 1
n− 1

)1/n
. (4.20)

Further conditions can be obtained by the constraints onM(x) given by the definition
of the model, namely 0 < M(x) ≤ 1. The range of parameters is bounded below
by the condition M0 > 0. Inverting Eq. (4.16) we obtain u0/r ≥

[
−F−1 (1/2)

]−1/n
,

where F−1(1/2) denotes the inverse of F evaluated at the point 1/2. From above the
range of parameters is approximately bounded by u0/r ≤ 1/2 + 1/r .

4.4.2 Stability with respect to extrinsic perturbations

We are now interested in how the front reacts to extrinsic perturbations. By de-
termining the parameters optimizing the front’s stability to such perturbations we
identify possible design principles in the construction of gene regulatory networks.
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Figure 4.4: Phase diagrams for wave localization in models with different Hill coefficient n.
The shaded areas denote possible parameter values allowing the localization of
wave fronts. The parameter range and thereby the robustness of the mechanisms
increases with the Hill coefficient n.

Perturbations in the front positions

To be stable against extrinsic perturbations the front should both relax back quickly
into its equilibrium position and be insensitive to perturbations in the driving signal
M(x). Since a high relaxation rate implies that a front can follow changes in the
signal quickly, the two stability criteria seem to be somewhat at odds. However, as
shown below, they are in full accordance with the latter being less restrictive.

The relaxation rate of the front back into its equilibrium position q0 can be assessed
within the framework of a linear stability analysis [152]. Mathematically, the relax-
ation rate is obtained by expanding Eq. (4.12) at q0: c(q) = −σ(q− q0) +O(q− q0)2,
where σ ≡ − ∂qc(q)

∣∣
q=q0

. The quantity σ measures the stability of the fixed point
q0, such that large values of σ correspond to a stably localized front. Taking the
derivative of Eq. 4.12 with respect to the position q we find

σ = −
∂M(q)∆V (M(q)) · ∂qM(q)∫∞

−∞[∂xU(x− q)]2dx

∣∣∣∣∣
q=q0

(4.21)

revealing that extrinsic stability is determined by three factors: In the numerator,
the first factor describes how sensitively the potential difference of the stable states
depends on the external source. The second factor, µ ≡ |∂M(q)/∂q |q0

, gives the
steepness of the external profile at the localization position. While, therefore, a
steeper source profile enhances front stability, the steepness of the front profile, given
by the denominator, has the opposite effect. The reason simply is that according to
Eq. (4.12), steeper fronts move slower and therefore also relax back more slowly.

In the following we derive analytical results for two important cases of spatial in-
homogeneities by making use of the approximate expressions for the stable states,
u+(x) and u−(x). As an ansatz for the stationary solution of Eq. (4.5) we assume a
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connection of the stable states as shown in Fig. 4.2(d),

U(x− q) = M(x) + r

{
1− 1

2e
x−q (x < q)

1
2e
−(x−q) (x ≥ q) , (4.22)

which is a good approximation for n is not too small. Indeed, usingM(q0) ≈ u0− r/2
we find that un/(un0 + un) evaluates to 1 for q < q0 and 0 for q > q0. Hence,
f(U, x) + ∂xxU = ∂xxM(x) ∼ ξ−2 ≈ 0. This confirms that U is an approximate
stationary solution of Eq. (4.10).

For exponentially decaying external profiles we assume that M(x) is constant for
negative values of x. As a result negative values of x do not contribute to the integrals.
For large ξ we obtain for the stability to external perturbations

σe ≈
−8rM0 [Mn

0 − (r +M0)n]un0
(4 + r2ξ + 16rM0) (Mn

0 + un0 ) [(r +M0)n + un0 ] . (4.23)

For sigmoidal gradients, after expanding the integrand in to first order in the inverse
length ξ−1 of the morphogen, we obtain

σs ≈
−4m

(
k̃ −M0

)
M0 [Mn

0 − (r +M0)n]un0[
(k̃ − 1)m+ k̃rξ

]
(Mn

0 + un0 ) [(r +M0)n + un0 ]
. (4.24)

For both types of gradients we find that σ > 0 such that q0 is a stable fixed point.
For large ξ, the extrinsic stability decreases linearly with ξ−1 (σe ∼ ξ−1, σs ∼ mξ−1),
and ξ−1 is a measure for the steepness of the external source.

Figure 4.5 shows the results of the numerical evaluation of σ for both types of external
sources. For both types of gradients we find that the localized wave front is most
stable if r is small, i.e if self-activation is weak or birth rates are low compared to the
strength of the external source [Figs. 4.5 (a) and (b)]. This can mainly be attributed
to a decreased front steepness: reducing self-activation relative to external activation
decreases the distance between the fixed points u± and thereby the steepness of the
wave front. The front’s stability is further optimized if it is localized at the steepest
position of the external signal. For signals with a sigmoidal profile, this corresponds
to M0 ≈ 1/2, and with M0 ≈ u0 − r/2 in dimensionless form, it implies a relation
between the degradation rate and the activation rates: a0λ = (kr + kM )/2. Similarly,
for an exponential profile with M0 = 1 one finds a0λ = kr/2 + kM . We can then
give the following, biologically more meaningful form: For exponential gradients the
degradation rate at the threshold should equal the maximum external production
rate plus half of the maximum internal production rate. For sigmoidal gradients the
degradation rate at the threshold should equal the average of the maximum internal
and external production rates.

How does cooperative binding influence stability? Since cooperativity in the kinetics
of the external source implies a steeper sigmoidal profile, large values for the Hill
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Figure 4.5: Stability ξσ, normalized to the steepness of the external profile, for (a) exponential
and (b) sigmoidal [m = 5] external profiles; the Hill coefficient for self-activation
is n = 5. Stability increases from blue to red: values of ξσ on lines of equal
stability are indicated in the graph. While in both cases stability is optimized
for weak self-activation r, they differ in the spatial position of the localized
front as measured by the value of M0. (c) For sigmoidal profiles, small Hill
coefficients n for self-activation are optimal for front stability. Parameters for
plots (a-c) were ξ = 100, and k = 0.2. (d) To study if regulation of an exponential
signal is biologically beneficial we determined the optimal stabilities which can
be achieved for a front localized at a specific position. For each q0 there are
parameters r, k and M0 such that the linear stability σ is maximal. Parameters
were n = 5, 2 ≤ r ≤ 6, 0.1 ≤ k ≤ 1. The plot shows the corresponding optimal
values for σ for exponential (dashed line) and sigmoidal external profiles (solid
line, m indicated in the graph). Sigmoidal gradients are generally more stable
and in addition allow stable localization of fronts in a significant distance from
the gradients source at x = 0.

coefficient m increase the front’s stability; see also the explicit expression for σ
above. Conversely, we find that stability is optimized for small values of n, i.e a low
degree of cooperativity in the self-activation reaction [Fig. 4.5 (c)] 1. This somewhat
counterintuitive result can be attributed to a less steep front profile for small n.
Experimental data for Hunchback indeed indicate that the Hill coefficient n for
self-activation is rather low [9, 12]. Figure 4.5 (d) shows that stability for sigmoidal
external gradients is, all other things being equal, generally higher than for exponential
gradients. This implies that regulating an external positional signal is advantageous
to the front’s stability, since in this case the non-linear amplification of the signal
makes it possible to create a steep signal even far away from the origin.

Sensitivity with respect to changes in the positional signal

The localized front might be subject to perturbations in the positional signal M(x).
In the context of embryogenesis one can argue that the front should be insensible to

1 This statement applies for exponential as well as sigmoidal external profiles
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these changes. In the following we investigate the properties of this kind of stability.
We show that the optimal parameters for the extrinsic stability also optimize the
front’s insensitivity with respect to perturbations in the positional signal.

Intuitively two points become immediately clear: Firstly, perturbations in the driving
signal that are outside the front region do not affect the front position. They merely
result in a change in the shape of the front profile. Hence, the front position q0
can only be shifted due to changes in the concentration of the external signal at
position q0. In other words, q0[M(x)] ≡

∫ 1
0 M

−1(m)δ(m−M0)dm ≡ q0(M0). Secondly,
the front position depends strongly on changes in M(x) if M(x) is shallow at the
localization position. On the other hand, if the driving signal is steep at the front
position, perturbations will only have a small effect on the front position. Hence, the
influence of perturbations in the external signal on the front position is described
by dq0(M)/dM |M0

. This can also be seen by evaluating the variation of q0 with
respect to M(x).

Stability of the front with respect to changes in M(x) implies that the front averages
out perturbations in the external signal. We therefore investigate the inverse of the
magnitude of change in the front position in response to a change in the driving signal,∣∣∣[dq(M)/dM ]−1

∣∣∣
M0

. This expression is equal to |dM(q)/dq |q0
, the insensitivity to

perturbations in the external signal is given by the steepness of the external signal
at the localization position. As demonstrated by Eq. (4.21) extrinsic stability also
depends on the signal’s steepness. We therefore expect that properties of Eq.(4.21),
which are independent of the front profile, translate into properties for the tracking
of the positional signal. This is indeed the case. As shown in Fig. 4.7(a) and (b)
insensitivity is optimal for M0 = 1 and M0 = 1/2 for exponential gradients and
sigmoidal gradients, respectively. In both cases, insensitivity is indifferent to changes
in the parameters r or n.

Summarizing, if the gene regulatory network is optimized to cope with extrinsic
perturbations, this also implies optimality in the insensitivity to changes in the
external signal.

4.4.3 Stability with respect to intrinsic noise

In each biological system intrinsic noise naturally arises due to the finite number
of particles and the stochastic nature of interactions. As a result, the front fluctu-
ates around its equilibrium position. One can therefore formally assign a diffusion
constant Df to the fluctuating front. Comparing the front’s diffusion constant with
the particles’ diffusion constant gives a measure for the stability to intrinsic noise.
Several ways exist to calculate Df .

To describe the stochastic dynamics we consider a lattice with lattice spacing h.
The vector s = {s1, . . . , si, . . . , sL} gives the number of particles on the lattice sites
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enumerated by i. We introduce a multivariate probability distribution function P (s, t)
such that P (s, t)dsdt gives the probability that the system is in state s at time t.
The time evolution is given by a set of Master equations,

∂tP (s, t) =
∑
i

{[
kMMi(si − 1) + krR

n
k0(si − 1)

]
P ({s1, . . . , si − 1, . . . , sL} , t)

+λ(si + 1)P ({s1, . . . , si + 1, . . . , sL} , t)

−
[
si(λ+ kMMi) +Rnk0(si)

]
P (s, t)

}
(4.25)

+ D

h2

∑
i

{
(si−1 + 1)P ({s1, . . . , si−1 + 1, si − 1, . . . , sL} , t)

+(si+1 + 1)P ({s1, . . . , si − 1, si+1 + 1, t, . . . , sL})− 2siP (s, t)
}
.

Here, the first sum gives probability currents flowing inward and outward of each
state due to the local interactions. The second sum accounts for changes of particle
numbers due to diffusion. If the typical number of particles N is large we may employ
a truncated expansion in N and arrive at the Fokker-Planck equation, given the time
evolution of the the probability for the concentrations a = s/N as the combined
effect of drift and diffusion terms. We obtain

∂tP (a, t) =−
∑
i

∂ai

{[
kMMi + krR

n
a0(ai)− λai

]
P (a, t)

− 1
2K∂ai

[
kMMi + krR

n
a0(ai) + λai

]
P (a, t)

}
(4.26)

+D

h2

∑
i

(
∂ai − ∂ai+1

) [
(ai − ai+1)P (a, t) + ai − ai+1

2K (∂ai − ∂ai+1)P (a, t)
]
,

where h is the lattice constant and the large parameter K is the typical local popu-
lation size. The Fokker-Planck equation is equivalent to a Langevin equation [161],

∂ta =krRna0(a) + kMM(x)− λa+D∂xxa (4.27)

+

√
h

K

{√
λa+ krRna0(a) + kMM(x)η(x, t) + ∂x

[√
2aχ(x, t)

]}
. (4.28)

η and χ are independent Gaussian noises with zero mean and correlations

〈η(x, t)η(x′, t′)〉 = 〈χ(x, t)χ(x′, t′)〉 = δ(x− x′)δ(t− t′) , (4.29)

and h is the lattice spacing as measured in units of the the typical length scale
associated with the diffusion of particles A. In Equation (4.28), the first four terms
on the right hand side give the deterministic evolution due to reactions and diffusion.
These terms correspond the dimensional form of Eq. (4.10). The term proportional

115



4. Stability of localized wave fronts in bistable Systems

to η(x, t) describes multiplicative noise stemming from the local reactions. The last
term has the form of a flux and it accounts for noise stemming from the random
walks of particles. The magnitude of these two sources of noise is comparable. We
rescale t, x and a by 1/λ,

√
D/λ and kM/λ, respectively, and obtain

∂tu = f(u, x) + ∂xxu+N−1/2R(x, t, u) . (4.30)

R(x, t, u) summarizes the noise terms,

R(x, t, u) ≡
√
rRnu0(u) +M(x) + u η(x, t) + ∂x

[√
2uχ(x, t, u)

]
. (4.31)

The prefactorN−1/2 withN = K
√
D/λ/h gives the magnitude of noise. The intuitive

meaning of N can be understood by noting that
√
D/λ is the length scale associated

with diffusion. In other words,
√
D/λ is the length in which the front changes from its

maximum value to its minimum value. Therefore,
√
D/λ/h is the number of lattice

sites in the front region.

As N is large, the magnitude of intrinsic noise is small compared to changes in the
concentration due to the deterministic reaction and diffusion terms. In analogy to
the steps in Refs. [150, 162, 163] we proceed by solving Eq. (4.30) perturbatively
around a generalized traveling wave solution U0(x−q(t)−X(t), y) of the deterministic
reaction-diffusion equation (4.10), where X(t) denotes the noise driven displacement
of the front and y = x/ξ describes the dependence on the slowly varying spatial
variable. We make the ansatz

U(x− q(t)−X(t), y, t) = U0(x− q(t)−X(t), y) + U1(x− q(t)−X(t), y, t) , (4.32)

assuming that the contribution explicitly depending on t is small compared to the
stationary profile, |U1| � U0. We substitute (4.32) into Eq. 4.30 and linearize around
U0. We obtain 2

∂tU1 = L̂U1 + Ẋ∂xU0 +N−1/2R(x, t, U0) +O(ξ−1) , (4.33)

with the differential operator L̂ given by

L̂ = ∂xx + q(t)∂x + ∂Uf(U0, y) . (4.34)

We are interested in the probability distribution for the stochastic displacement X.
To this end, we calculate Ẋ, which is determined by the solvability of Eq. (4.33). We
expand U1 in eigenmodes of the hermitian operator L̂,

U1(ξ, y, t) =
∑
l

bl(t)ϕ(ξ, y) , with ξ = x− q(t) , (4.35)

2 We made use of the fact that U0 solves Eq. (4.10) and that U ′ = ∂xU + O(ξ−1), where the prime
denotes derivatives with respect to the first argument.
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and fix the definition of X by setting b0(t) = 0. In analogy to the deterministic case
we now multiply Eq. (4.33) by eq̇(t)[x−q(t)] and integrate over x. One obtains 3

Ẋ =
∫∞
−∞ dx∂xU0e

q̇(t)[x−q(t)]R(x, t, U0)
N1/2 ∫∞

−∞ dx (∂xU0)2 eq̇(t)[x−q(t)]
. (4.36)

To asses how much intrinsic noise affects the front’s position we calculate the growth
rate of the mean square displacement. If the mean square displacement grows linearly
with time, we can formally assign a diffusion constantDf to the front in the co-moving
frame. From Ẋ the front’s diffusion constant can be obtained by

Df = lim
t→∞

∫ t
0 dt1

∫ t
0 dt2〈Ẋ(t1)Ẋ(t2)〉

2t . (4.37)

The evaluation of the integral is in full analogy to the calculations presented in
Ref. [150]. The result is

Df

D
=

∫∞
−∞ dx

{
1
2

[
(∂xU0)eq̇(t)[x−q(t)]

]2 [
Rnu0(U0) +M(x) + U0

]}
N
[∫∞
−∞ dx (∂xU0)2

]2
eq̇(t)[x−q(t)]

+
∫∞
−∞ dx+ U0∂x

[
(∂xU0)eq̇(t)[x−q(t)]

]2
N
[∫∞
−∞ dx (∂xU0)2

]2
eq̇(t)[x−q(t)]

. (4.38)

The diffusivity Df of the front is a measure for the front’s susceptibility to intrinsic
noise. We therefore compare Df to the diffusion constant of the particles, D. The
inverse, D/Df , gives a measure of how much the front ins displaced by intrinsic noise.
We are here interested in fronts which are localized, q(t) = q0 and q̇(t) = 0. In this
case, the expression for the front’s stability to intrinsic noise reduces to

D

Df
= N

[∫∞
−∞ dx (∂xU0)2

]2
∫∞
−∞ dx

[
1
2(∂xU0)2

(
Rnu0(U0) +M(x) + U0

)
+ U0(∂xxU0)2

]∣∣∣∣∣
q=q0

. (4.39)

where U is a stationary solution of Eq. (4.5) and we omitted the explicit dependence
on x in the notation for the stationary solution U . Generally, the front’s diffusion
constant is smaller than the particle’s diffusion constant by a factor N , which cor-
responds to the typical number of particles in the front region. The integral in the
numerator gives the maximum steepness of the front. Hence, as opposed to extrinsic
stability, intrinsic stability is optimal for steep fronts. Shallow fronts are prone to
stochastic switching, as the entropy barrier between the stable states is reduced in
the front region. The terms in the denominator account for the reaction and diffusion
noise.

3 As L̂ is hermitian the different eigenmodes are proportional if weighted with eq̇(t)[x−q(t)], i.e.∫∞
−∞ dxϕlϕkeq̇(t)[x−q(t)] = δkl.
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Figure 4.6: (a) Stability to intrinsic noise for an exponential gradient. Color denotes intrinsic
stability, such that red means high stability and blue means low stability. In
contrast to extrinsic stability, intrinsic stability is maximized for strong self
activation. (b) Qualitatively the same holds for sigmoidal gradients (n = 5,
m = 5). Parameters for all plots were ξ = 10, k = 0.2.

In the following, we provide explicit analytical results supporting these statements.
The only problematic integral involved in Eq. (4.39) is

∫∞
−∞ dx (U ′)2Rnu0(U). If n

is sufficiently large we see that Rnu0(U) is small for U > u0. Further, we note that
U(q0, q0) = M(q0) + r/2 . By using the approximate expression for the localization
position, M(q0) ≈ u0 − r/2 , we find that U(q0, q0) ≈ u0. Hence, we can rewrite the
integral as ∫ ∞

−∞
dx (U ′)2Rnu0(U)

∣∣∣∣
q=q0

≈
∫ q0

−∞
dx (U ′)2 . (4.40)

For exponentially decreasing external sources the analytical result can be brought
to a short form by only keeping the dominant terms in ξ,

D

D f
≈

3Nr2
(
4 + r2ξ + 16rM0

)
2 {8 + 12r + 5r3ξ + 6rM0 [r(7 + ξ) + 6M0]} . (4.41)

For sigmoidal profiles, we expand M(x) to first order in the inverse lengthscale of
the external gradient ξ−1, M(x) ≈ 1− kmmx/[ξ(1 + km)] . We can now perform the
integrals in (4.39) analytically and obtain

D

D f
≈ 3N(8(k̃ − 1)m+ k̃rξ)2

2k̃ξ2
[
k̃ (6 + 5r)− 6(k̃ − 1) ln

(
k̃−M0

(k̃−1)M0

)] . (4.42)

In both cases we find a linear increase in stability to intrinsic noise with the relative
amplitude of self-activation, r. Figure 4.6 (b) and (c) show the results of the numerical
evaluation of Eq. (4.39). It confirms the linear increase of stability with r. In contrast
to extrinsic stability, we here find that the front is most robust against fluctuations
for strong self-activation r. The reason for this is that, as r determines the amount of
reactions necessary to locally switch between the stable states, the rate of stochastic
switching decreases for large r.
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Figure 4.7: (a) Insensitivity ξ
∣∣∣[dq(M)/dM ]−1

∣∣∣
M0

to perturbations in the driving signal
normalized to the steepness of the external source. Color is chosen, such that red
denotes a high insensitivity and blue a low insensitivity. The numbers denote the
values on the lines of equal insensitivity. For exponential sources the optimal value
for M0 is 1, in correspondence to the results for the relaxation rate. Insensitivity
is indifferent to the specific choice of r (n = 5, ξ = 10). (b) For sigmoidal
gradients the optimal value of M0 is 1/2 (n = 5, ξ = 10, m = 5, k = 0.5).
(c) Stationary solutions for different values of n for sigmoidal gradients (r = 6,
u0 = 3.5, m = 5, k = 0.2, ξ = 10). The steepness of the front increases with the
degree of cooperative binding.

4.4.4 Sharpness of the front

In many applications the front serves as a signal for further downstream processes,
e.g. to determine stripe-like patterning of the Drosophila embryo [4, 164]. In those
instances it is also important that a front is not only stable against perturbations, but
also sharply distinguishes between active and inactive regions. This requires a steep
front. Starting from the stationary solution, Eq. (4.22), we find that the steepness
of the front is given in dimensional form by

kMM
′(q0)− kr

2kM

√
λ

D
. (4.43)

Hence, three factors determine the steepness of the front. Firstly, the steepness of the
front is increased, when the amplitude of internal activation compared to external
activation is strong. Secondly, a high degradation rate and a small diffusion constant
result in steep fronts. Last, the steepness of the external source at the front position
is important. The dependence of the front’s steepness on the binding cooperativity
is not captured by the stationary solution, as it is the result of a large n expansion.
Here, nonlinear corrections to the linear approximation of the stable states have the
effect, that for small n the front becomes shallower, as demonstrated in Fig. 4.7 (c).

The front’s steepness effects extrinsic and intrinsic stability in different ways. Gener-
ally, steep fronts move slower, as demonstrated by Eq. 4.12. The reason for this is,
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that as, opposed to shallow fronts, for steep fronts the total rate of reactions moving
the front forward is lower. As a result, steep front also relax back to their equilibrium
position more slowly and are therefore less stable to extrinsic perturbations.

On the other hand, steep fronts are less susceptible to intrinsic fluctuations, as
demonstrated by Eq. (4.39). Intuitively this becomes clear if one notes that for
stochastic switching to happen, an entropy barrier between the stable states has
to be overcome. Hence, the rate of stochastic switching increases, if this barrier is
low. This is the case for shallow fronts. where due to diffusion or properties of the
bifurcation diagram the entropy barrier is decreased on a larger portion of the front.

In summary, a steep front is generally obtained if self-activation is strong compared
to external activation and, to a lesser degree, if binding cooperativity is strong. Sharp
fronts, however, are susceptible to extrinsic fluctuations and one has to sacrifice front
stability for the precision of the transmitted signal.

4.5 Papers and Manuscripts

4.5.1 Stability of localized wave fronts in bistable systems

In our article “Stability of localizaed wave front in bistable systems” by Steffen
Rulands, Ben Klünder, and Erwin Frey, Phys. Rev. Lett. 110, 038102 (2013) we
investigate how stable domain borders can be established by the combined effect
of bistability and spatially inhomogeneous activation. In particular, we study a
broad class of bistable models subject to self-activation, degradation and spatially
inhomogeneous activating agents. We determine the conditions under which wave-
front localization is possible and analyze the stability thereof with respect to extrinsic
perturbations to front or the driving signal on the one hand, and intrinsic noise on
the other hand. It is found that extrinsic stability is enhanced upon regulating
a positional signal and, surprisingly, also for a low degree of binding cooperativity.
Importantly, we find that the design of the underlying gene regulatory network cannot
be simultaneously be optimized for both, intrinsic and extrinsic perturbations.

4.5.2 Conlusion and Outlook

In a paradigmatic model we studied how stable domain borders can be established by
bistability and a gradient providing positional information. We identified conditions
optimizing the stability and robustness of localized wave fronts for different types
of perturbations. We calculated the phase diagram of parameter values allowing the
localization of wave fronts. Increasing cooperativity in self-activation enhances the
robustness of the localization mechanism. Our calculations also reveal that there is
a trade-off between the stability of the wave front to extrinsic perturbations and
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intrinsic noise stemming from the random nature of the reactions and diffusion. While
weak self-activation or low birth rates enhance the stability with respect to extrinsic
perturbations to the front or the driving signal, stochastic defocussing is minimized
for strong self-activation. The latter also increases the spatial precision of the signal
transmitted by the front to downstream processes.

From conflict between the optimal parameters for extrinsic and intrinsic stability we
conclude that the design of the underlying gene regulatory network cannot be opti-
mized to suppress intrinsic and extrinsic perturbations at the same time. This affects,
for example, the design of gene circuits in developmental systems. If a large number
of molecules is involved in the system, intrinsic noise becomes irrelevant and the
parameters of the genetic network may be optimized for robustness against external
perturbations. This is achieved by weak self-activation and strong cooperativity in
external activation. Conversely, if particle numbers are low, robustness against intrin-
sic noise requires strong and cooperative self-activation. To also safeguard against
external perturbation then requires additional mechanisms beyond those included
in our simplified model. Beyond these results we showed that the stability of fronts
localized far away from the morphogen’s source can be enhanced by a cooperative
preprocessing step of the positional signal.

These general results were obtained for a generic class of bistable models. We therefore
expect our results to apply to be important guiding principles in the context of
biological pattern forming systems, such as cell polarization or the segmentation of
embryos. Further work may extend these results to match specific biological systems.
What are, for example, the minimal ingredients that are necessary to quantitatively
describe the formation of the Hunchback kink in the embryogenesis of Drosophila
melanogaster? Employing analytical results could also make it possible to implement
evolutionary optimization algorithms to infer the parameters of the gene regulatory
network.
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Localized wave fronts are a fundamental feature of biological systems from cell biology to ecology.

Here, we study a broad class of bistable models subject to self-activation, degradation, and spatially

inhomogeneous activating agents. We determine the conditions under which wave-front localization is

possible and analyze the stability thereof with respect to extrinsic perturbations and internal noise. It is

found that stability is enhanced upon regulating a positional signal and, surprisingly, also for a low degree

of binding cooperativity. We further show a contrasting impact of self-activation to the stability of these

two sources of destabilization.

DOI: 10.1103/PhysRevLett.110.038102 PACS numbers: 87.17.Pq, 02.50.Ey, 05.45.�a, 87.18.Tt

Bistable systems are ubiquitous in nature. For example,
genetic switches are bistable systems that store the activa-
tion state of a gene [1,2]. In population dynamics, a mini-
mum population size is often needed to establish a stable
population [3]. The spatial versions of such systems admit
traveling wave solutions, e.g., describing the outbreak of
viruses or the colonization of territory [4–7]. If bistable
systems are subject to external spatial gradients, traveling
waves may localize in restricted spatial domains [8–10].
An important example arises in early embryogenesis of
Drosophila melanogaster where maternal morphogen gra-
dients provide positional information for gene regulation
[11–14]. The morphogen Bicoid is present as a monotoni-
cally decreasing concentration in the embryo and controls
the steplike activation of the gene hunchback, which also
enhances its own activation, effectively producing a bi-
stable system. The exact position of the hunchback front is
pivotal to the embryo’s fate [13]. Hence, the front’s stabil-
ity to extrinsic perturbations or internal noise is paramount.
Wave localization and the stability of the front also play an
important role in other contexts. In ecology, birth rates may
have spatial dependence, e.g., due to spatial variance in
temperature or resource availability [15,16]. The localized
boundaries between species are subject to large fluctua-
tions due to the low number of individuals in the boundary
region. This may eventually lead to the extinction of one of
the species due to demographic stochasticity [17]. Last, in
biotechnological applications, this mechanism might be
used to create localized fronts of proteins [18].

Motivated by these processes, we investigate a broad
class of bistable diffusion-reaction models with reaction
terms comprising self-activation, external activation, and
degradation. While self-activation and degradation are
assumed to be spatially uniform, the external activation is
taken to be position-dependent. We consider two qualita-
tively different types of external gradients and determine
the parameter range for which wave localization is pos-
sible. Moreover, we ask how stable these localized fronts

are with respect to extrinsic and intrinsic noise, and we
determine optimal conditions minimizing the front’s sus-
ceptibility to such perturbations.
Specifically, we consider a one-dimensional system

where diffusing particles are subject to three types of
reactions: First, there are gain processes with a
concentration-dependent rate that accounts for self-
activation in gene regulatory systems or reproduction in
population dynamics. Typically, these rates are small for
low concentrations, then rise and finally saturate at high
concentrations. In populations dynamics, this is referred to
as the strong Allee effect [3,6]. In gene regulation, it can be
due to cooperative transcription factor binding to a gene
promoter. A common choice for the overall reaction rate is
krR

n
a0ðaÞ with the Hill function Rn

a0ðaÞ � an=ðan0 þ anÞ, kr
the maximum intrinsic production rate, and a the particle
concentration. The Hill coefficient n measures the degree
of cooperative binding in the promoter region or, in
ecology, the strength of an Allee effect. Second, we
account for loss processes, where particles vanish with a
certain rate �. Third, in addition to self-activation, there
may also be external sources for particle production. Here,
we are interested in systems where this source is position-
dependent and characterized by the overall rate kMMðxÞ.
The prefactor kM denotes the maximum rate of external
activation, andMðxÞ is a monotonically decreasing positive
density profile with normalization Mð0Þ ¼ 1. In the
simplest case, where the profile results from a source-

degradation dynamics [19,20], it is exponential MðxÞ ¼
e�x=� with the decay length �, cf. Fig. 1(a). Prominent
examples are the concentration profile of Bicoid in
Drosophila [19] and temperature or nutrient gradients in
population dynamics [21]. Since the production of hunch-
back by Bicoid is mediated by cooperative binding,
the profile MðxÞ entering the overall production rate is

commonly described by MðxÞ � Rm
I0
ðe�x=�Þ [22]. The

exponentially decaying signal induced by maternal
source-degradation dynamics serves as an input to the
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gene regulation system. The latter is described by a Hill
coefficient m typically in the range from 1 to 5 and with an
activation threshold I0.

In the limit of a large system size, fluctuations are of
minor importance and the spatiotemporal dynamics is then
aptly described by a reaction-diffusion equation, which in
dimensionless form reads

@tu ¼ fðu; xÞ þ @xxu: (1)

Here, fðu; xÞ � rRn
u0ðuÞ þMðxÞ � u comprises self-

activation, external activation, and degradation.
Concentration u, time t, and space x are measured in

units of kM=�, 1=�, and
ffiffiffiffiffiffiffiffiffiffi

D=�
p

, respectively. The ratio r �
kr=kM denotes the relative amplitude of self-activation and
external activation mediated through MðxÞ.

Traveling wave solutions of Eq. (1) may be localized due
to the combined effect of spatially varying external sources
and bistability [8–10]. The basic mechanisms can be best
understood in terms of the well-known sliding ball analogy
[23], which here is complicated by the fact that the reaction
term is space-dependent. Since in most biological situ-
ations a steep profile in u is induced by a smooth external
profile MðxÞ, we may assume a separation of length scales

� � ffiffiffiffiffiffiffiffiffiffi

D=�
p

and �much smaller than the system size. Then
one can make a generalized traveling wave ansatz U ¼
Uðx� qðtÞ; yÞ, where x is a fast-varying variable describ-
ing changes in the concentration profile, y ¼ x=� is a
slowly varying variable describing changes in the external
profileMðxÞ, and qðtÞ denotes the front position. To leading
order, this gives

� _q@xU ¼ @xxUþ @UVðU; yÞ þOð��1Þ; (2)

which may be interpreted as a force balance for a particle
(sliding ball) with mass 1, friction _q, and potential
Vðu; yÞ ¼ R

u fð~u; yÞd~u. Importantly, the potential para-
metrically depends on y; see Fig. 1(b). For parameter

regimes where V has two maxima at uþðxÞ and u�ðxÞ
and a local minimum at usðxÞ, the velocity _q must be
chosen such that the sliding ball starting from the upper
branch uþ ends up at the lower branch u�. The front speed
is proportional to the difference between the two maxima

of Vðu; yÞ and becomes zero if the condition �VðyÞ �
R
uþ
u� fðu; yÞdu ¼ 0 is satisfied. More quantitatively, follow-

ing standard steps [23–25], one finds [26]

_q � �VðqÞ
R1
�1½@xUðx� q; yÞ�2dx � cðqÞ; (3)

where U is the traveling wave solution. The denominator
roughly equals the maximum steepness of the front profile
and implies that steep fronts move slower [23].
In our class of models, a single branch of stable solutions

at high concentrations typically undergoes a fold bifurca-
tion for growing x, where the system is bistable on a
confined spatial interval; see Fig. 1(c). For large x values,
a single branch at low concentrations remains. Within the
bistable regime, the velocity cðqÞ may change sign and
thereby lead to a localization of the traveling wave front.
We first determine the localization position q0 of the

front from �Vðq0Þ ¼ 0. Approximations for u�ðxÞ can
be obtained by expanding f as Taylor or Laurant
series: u�ðxÞ ¼ MðxÞ þOðunÞ and uþðxÞ ¼ MðxÞ þ rþ
Oðu�nÞ. For a given external profile MðxÞ, the potential
reads Vðu;xÞ¼�u½u=2�MðxÞ�rþrFðun=un0Þ�, where

FðzÞ � 2F1ð1; 1=n; 1þ 1=n;�zÞ and 2F1 signifies the
hypergeometric function. Keeping the dominant terms of
MðxÞ in �V we then obtain an expression forM0 � Mðq0Þ
determining the localization position q0,

M0 � 1

2
r

�

1þ
�

r

u0

�
n
��

u0
r

�
n
�

2F

�

rn

un0

�

� 1

�

:

This is well approximated by a linear function of the form
gðnÞðu0 � r=2Þ and converges to u0 � 1

2 r for n ! 1. For

FIG. 1 (color online). (a) Two types of gradients: exponential decay (dashed line) and a sigmoidal profile ensuing from regulating an
exponentially decaying input (solid line). (b) The potential for different values of the front position q. The sliding ball analogy states
that the front localizes where the two maximum values of the potential are equal. (c) Sketch of the bifurcation diagram and traveling
wave solution of Eq. (1). Blue (dark gray) lines denote stable solutions whereas the dashed (red) line corresponds to the unstable
branch. Wave fronts (black lines and shaded area) penetrating the bistable region slow down and eventually come to rest at a stable
fixed point of the front dynamics. (d) Phase diagrams of possible parameter values allowing wave localization. The parameter range of
wave localization increases with the Hill coefficient n.
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exponentially decaying gradients, the equilibrium front
position is then given by q0 ¼ � lnM0. For sigmoidal

gradients, MðxÞ � ~kRm
k ðe�x=�Þ with dimensionless thresh-

old k and normalization factor ~k � km þ 1, the front local-

izes at q0 ¼ �=m lnfð~k�M0Þ=½ð~k� 1ÞM0�g.
Under which conditions is wave localization possible

and robust? In Drosophila, the parameters r, u0, and n are
of special importance as they are main determinants of the
gene regulation network [13]. The wave localizes if there is
a bistable region in the bifurcation diagram, i.e., if for some
x, the reaction term in Eq. (1) has three real roots. Such
values of x exist if the maximum value of the derivative of
Ru0
n ðuÞ � u is greater than zero. We obtain an approximate

expression for the phase boundaries

� ½F�1ð1=2Þ�1=n & u0
r
&

n2 � 1

4n

�

nþ 1

n� 1

�
1=n

(4)

and u0
r & 1

2 þ 1
r . Figure 1(d) shows that the range of allowed

parameters grows with n. For large n values, the phase
boundaries are well approximated by 1

2 � u0
r � 1

2 þ 1
r . This

translates to a0� � kr; i.e., for front localization, the over-
all degradation rate at the threshold must be of the same
order as the maximum production rate.

To be stable against extrinsic perturbations, the front
should both relax back quickly into its equilibrium position
and be insensitive to perturbations in the driving signal
MðxÞ. Since a high relaxation rate implies that a front can
follow changes in the signal quickly, the two stability
criteria seem to be somewhat at odds. However, as shown
below, they are in full accordance with the latter being less
restrictive.

The relaxation rate of the front back into its equilibrium
position q0 can be assessed within the framework of a
linear stability analysis. Mathematically, this is given by

expanding Eq. (3) at q0: cðqÞ¼��ðq�q0ÞþOðq�q0Þ2,
where � � �@qcðqÞjq¼q0 . The quantity � measures the

stability of the fixed point q0, such that large values of �
correspond to a stably localized front. We find

� ¼ �@MðqÞ�VðMðqÞÞ@qMðqÞ
R1
�1½@xUðx� qÞ�2dx

�
�
�
�
�
�
�
�q¼q0

; (5)

revealing that extrinsic stability is determined by three
factors: In the numerator, the first factor describes how
sensitively the potential difference of the stable states
depends on the external source. The second factor, � �
j@MðqÞ=@qjq0 , gives the steepness of the external profile at
the localization position. Whereas, therefore, a steeper
source profile enhances front stability, the steepness of
the front profile (denominator) has the opposite effect.
The reason simply is that steeper fronts move slower and
therefore also relax back more slowly; cf. Eq. (3).
Figure 2 shows the results of the numerical evaluation of

� for both types of external sources; analytical results are
given in the Supplemental Material [27]. For both types of
gradients we find that the localized wave front is most
stable if r is small, i.e., if self-activation is weak or birth
rates are low compared to the strength of the external
source [Figs. 2(a) and 2(b)]. This can mainly be attributed
to a decreased front steepness: reducing self-activation
relative to external activation decreases the distance
between the fixed points u� and thereby the steepness of
the wave front. The front’s stability is further optimized if
it is localized at the steepest position of the external signal.
For signals with a sigmoidal profile, this corresponds to
M0 � 1=2, and with M0 � u0 � r=2 in dimensionless
form, it implies a relation between the degradation rate
and the activation rates, a0� ¼ ðkr þ kMÞ=2. Similarly, for

FIG. 2 (color online). Stability ��, normalized to the steepness of the external profile, for (a) exponential and (b) sigmoidal [m ¼ 5]
external profiles; the Hill coefficient for self-activation is n ¼ 5. Stability increases from blue to red (grayscale is from dark gray over
light gray to medium gray): values of �� on lines of equal stability are indicated in the graph. While in both cases stability is optimized
for weak self-activation r, they differ in the spatial position of the localized front as measured by the value of M0. (c) For sigmoidal
profiles, small Hill coefficients n for self-activation are optimal for front stability. Parameters for plots (a)–(c) were � ¼ 100 and
k ¼ 0:2. (d) To study if regulation of an exponential signal is biologically beneficial, we determined the optimal stabilities that can be
achieved for a front localized at a specific position. For each q0, there are parameters r, k, and M0 such that the linear stability � is
maximal. Parameters were n ¼ 5, 2 � r � 6, 0:1 � k � 1. The plot shows the corresponding optimal values for � for exponential
(dashed line) and sigmoidal external profiles (solid line,m indicated in the graph). Sigmoidal gradients are generally more stable and in
addition allow stable localization of fronts a significant distance from the gradients source at x ¼ 0.
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an exponential profile with M0 ¼ 1, one finds
a0� ¼ kr=2þ kM.

How does cooperative binding influence stability? Since
cooperativity in the kinetics of the external source implies
a steeper sigmoidal profile, large values for the Hill coef-
ficient m increase the front’s stability; see also the explicit
expression for � in the Supplemental Material [27].
Conversely, we find that stability is optimized for small
values of n, i.e., a low degree of cooperativity in the self-
activation reaction [Fig. 2(c)] [28]. This somewhat coun-
terintuitive result can be attributed to a less steep front
profile for small n; see the Supplemental Material [27].
Experimental data for the hunchback gene indeed indicate
that the Hill coefficient n for self-activation is rather low
[13,29]. Figure 2(d) shows that stability for sigmoidal
external gradients is, all other things being equal, generally
higher than that for exponential gradients. This implies that
regulating an external positional signal is advantageous to
the front’s stability, since in this case the nonlinear ampli-
fication of the signal makes it possible to create a steep
signal even far from the origin.

To ensure stable localization, the front must also be
robust against perturbations in MðxÞ. Specifically, its posi-
tion q0 should only weakly depend on the local signal
strength, j@q0ðMÞ=@MjM0

	 1. This condition is equiva-

lent to a steep source profile, � ¼ j@MðqÞ=@qjq0 � 1, and

hence in full accordance with a large relaxation rate�. It is,
however, less restrictive since it is indifferent to changes in
parameters that mainly affect the shape of the front, e.g.,
the rate of self-activation r and the Hill coefficient n; see
Supplemental Material [27].

In many applications, the front serves as a signal for
further downstream processes, e.g., to determine stripelike
patterning of the Drosophila embryo [30,31]. In those
instances, it is also important that a front is not only stable
against perturbations but also sharply distinguishes
between active and inactive regions. This requires a steep
front that is generally obtained if self-activation is strong
compared to external activation and, to a lesser degree, if
binding cooperativity is strong; see the Supplemental
Material [27]. Sharp fronts, however, are susceptible to
extrinsic fluctuations, and one has to sacrifice front stabil-
ity for the precision of the transmitted signal.

Intrinsic noise resulting from small copy number fluc-
tuations also affects the stability of the localized wave
front. In this case, stability can be measured in terms of
the ratio D=Df between the individual particle’s and the

front’s diffusion constants. The latter can be calculated
following the steps outlined in Ref. [17],

D

Df
¼ N½R1

�1 dxðU0Þ2�2
R1
�1 dx½12 ðU0Þ2hðUÞ þUðU00Þ2�

�
�
�
�
�
�
�
�q¼q0

; (6)

where hðUÞ � Rn
u0ðUÞ þMðxÞ þU, and U denotes the

stationary solution. Generally, the front’s diffusion con-
stant is smaller than the particle’s diffusion constant by a

factor N, which corresponds to the typical number of
particles in the front region. The integral in the numerator
gives the maximum steepness of the front. Hence, as
opposed to extrinsic stability, intrinsic stability is optimal
for steep fronts. Shallow fronts are prone to stochastic
switching, as the entropy barrier between the stable states
is reduced in the front region. The terms in the denominator
account for the reaction and diffusion noise. In contrast to
extrinsic stability, we here find that the front is most robust
against fluctuations for strong self-activation r. The reason
for this is that, as r determines the amount of reactions
necessary to locally switch between the stable states, the
rate of stochastic switching decreases for large r values.
Explicit analytical results can be found in the
Supplemental Material [27].
In conclusion, we identified conditions optimizing the

stability and robustness of localized wave fronts for differ-
ent types of perturbations. We find that increasing cooper-
ativity in self-activation broadens the parameter regime
where wave localization becomes possible and thereby
increases the robustness of the localization mechanism.
Interestingly, there is a trade-off between the stability of
the wave front to extrinsic and intrinsic perturbations.
While weak self-activation or low birth rates enhance the
stability with respect to extrinsic perturbations, stochastic
defocusing is minimized for strong self-activation. The
latter also increases the spatial precision of the signal trans-
mitted by the front to downstream processes. Moreover, we
showed that processing input from external sources with a
cooperative gene activation mechanism generally enhances
the front’s stability even far from the source. Surprisingly,
while cooperativity in external activation increases the
front’s stability with respect to extrinsic perturbations, the
opposite holds true for self-activation.
The conflict between intrinsic and extrinsic stability

affects, for example, the design of gene circuits in devel-
opmental systems. Our results suggest different design
principles depending on the particle number. If the number
of involved particles is large, intrinsic noise is irrelevant.
Then the parameters of the genetic network may be opti-
mized for robustness against external perturbations, which
is achieved by weak self-activation and strong cooperativ-
ity in external activation. Conversely, if particle numbers
are low, robustness against intrinsic noise requires strong
and cooperative self-activation. To also safeguard against
external perturbation then requires additional mechanisms
beyond those included in our simplified model. We expect
these general results to be important guiding principles in
the context of biological pattern-forming systems, such as
cell polarization or the segmentation of embryos.
This research was supported by the German Excellence

Initiative via the program ‘‘Nanosystems Initiative
Munich’’ and the German Research Foundation via the
SFB 1032 ‘‘Nanoagents for Spatiotemporal Control of
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Supplementary Material

We here provide more detailed calculations yielding the results presented in the main text.

DERIVATION OF THE LOCALIZATION POSITION

We consider the reaction-diffusion equation

∂tu = f(u, x) + ∂xxu , (1)

with f(u, x) ≡ rRnu0
(u) + M(x) − u. Equation (1) admits traveling waves solutions if the potential V (u, x) =

´ u
dũ f(ũ, x) exists locally. In our case we obtain

V (u, x) = −u
[
u

2
−M(x)− r + F

(
un

un0

)]
, (2)

where F (z) ≡ 2F1(1, 1/n, 1 + 1/n,−z) and 2F1 is the Gauss hypergeometric function. The wave localizes if the
difference in the maximum values of the potential is zero, ∆V (q0) ≡

´ u+

u−
du f(u, q0) = 0. Using the linearized stable

states u+(x) ≈M(x) + r and u−(x) ≈M(x) gives an expression for the difference between the two maximum values
of the potential,

∆V (q) = V (u+(q))− V (u−(q)) =
1

2
r

[
r + 2M(q)F

(
M(q)

n

un0

)
− 2
(
M(q) + r

)
F

(
(M(q) + r)n

un0

)]
. (3)

As ∆V is to a good approximation linear in M(x) we linearize around M(x) = 0,

∆V (x) ≈ 1

2
r



r +M(x)


2− 2

1 +
(
r
u0

)n


− 2rF

(
rn

un0

)
 . (4)

The localization position q0 is then determined by ∆V (q0) = 0. Solving this for the concentration of the external
source at which the front localizes, M(q0), we find

M0 ≡M(q0) ≈ 1

2
r

[
1 +

(
r

u0

)n](u0
r

)n [
2F

(
rn

un0

)
− 1

]
. (5)

To get an insight into the behavior of the front position we study the dependence of M0 on the parameters r and u0.
To this end, we first take the derivative with respect to r,

∂rM0 =
1

2

(u0
r

)n [
1 + n−

(
r

u0

)n
− 2nF

(
rn

un0

)]
. (6)

For bistability the relative amplitude of self-activation r is typically greater than the activation threshold u0. Noting
that F (z) ∼ 1/z for z → ∞ we get ∂rM0 ≈ 1/2 , proving that M0 is linear in r. On the other hand, taking the
derivative with respect to u0 we get

∂u0
M0 =

1

2

(u0
r

)n−1{
2

[
1 + n+

(
r

u0

)n]
F

(
rn

un0

)
− 2− n

}

≈ 1

2

(u0
r

)n−1
· 2
(
r

u0

)n
·
(u0
r

)
(7)

= 1 ,

proving that M0 is also linear in u0. Note that although the arguments above strictly hold in the limit n → ∞
we numerically found that they are valid even for small values of n. In conclusion, we showed that M0 can be
approximated by a linear function of the form g(n) · (u0 − r/2), where the pre factor g(n) only depends on n. By
taking the limit n→∞ first, and then doing the above calculations we find that g(n)→ 1 for n→∞.
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Figure 1. (Color online) (a) Illustration of the condition for bistability. There exists a bistable region in the bifurcation diagram,
if for some value M∗ of M(x) the reaction term of Eq. (1) has three real roots. Such an M∗ exists if the maximum value of
the derivative of f(u, x) with respect to u is greater than zero. (b) Intrinsic stability for exponential gradient. Color denotes
intrinsic stability, such that red means high stability and blue means low stability. In contrast to extrinsic stability, intrinsic
stability is maximized for strong self activation. (c) Qualitatively the same holds for sigmoidal gradients (n = 5, m = 5).
Parameters for all plots were ξ = 10, k = 0.2.

DERIVATION OF THE PHASE DIAGRAM

Wave localization is possible if there exists a bistable region in the bifurcation diagram. We treat M(x) as a
parameter and investigate if M(x) takes values such that the reaction term f(u, x) has three real roots. Such a value
for M(x) exists, if the maximum value of the derivative of f(u, x) is greater than zero, maxu ∂uf(u, x) > 0. For an
illustration, see Fig. 1 (a). The reaction term is steepest at the steepest point of the Hill function, which is given by

u∗ =

(
n− 1

n+ 1

)1/n

u0 . (8)

From ∂uf(u, x)|u=u∗ ≥ 0 we obtain a first condition for the parameters, which allow the localizetion of wave fronts,

u0
r
≤ n2 − 1

4n

(
n+ 1

n− 1

)1/n

. (9)

Further conditions can be obtained by the constrains on M(x) given by the definition of the model, namely 0 <
M(x) ≤ 1. The range of parameters is bounded below by the condition M0 > 0. Inverting Eq. (5) we obtain
u0/r ≥

[
−F−1 (1/2)

]−1/n, where F−1(1/2) denotes the inverse of F evaluated at the point 1/2. From above the
range of parameters is approximately bounded by u0/r ≤ 1/2 + 1/r .

STABILITY TO EXTRINSIC PERTURBATIONS

In the following we present analytical results for two important cases of spatial inhomogeneities by making use
of the approximate expressions for the stable states, u+(x) and u−(x). As an ansatz for the stationary solution of
Eq. (1) we assume a connection of the stable states as shown in Fig. 1 (b),

U(x− q) = M(x) + r

{
1− 1

2e
x−q (x < q)

1
2e
−(x−q) (x ≥ q) , (10)

which is a good approximation for n is not too small. For exponential external profiles we assume that M(x) is
constant for negative values of x. As a result negative values of x do not contribute to the integrals. For large ξ we
obtain for the stability to external perturbations

σe ≈
−8rM0 [Mn

0 − (r +M0)
n
]un0

(4 + r2ξ + 16rM0) (Mn
0 + un0 ) [(r +M0)

n
+ un0 ]

.

For sigmoidal gradients, after expanding the integrand in to first order in ξ−1, we obtain

σs ≈
−4m

(
k̃ −M0

)
M0 [Mn

0 − (r +M0)
n
]un0[

(k̃ − 1)m+ k̃rξ
]

(Mn
0 + un0 ) [(r +M0)

n
+ un0 ]

.
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In both cases, σ > 0 such that q0 is a stable fixed point. For large ξ, the extrinsic stability decreases linearly with
ξ−1 (σe ∼ ξ−1, σs mξ−1), and ξ−1 is a measure for the steepness of the external source.

SENSITIVITY WITH RESPECT TO CHANGES IN THE POSITIONAL SIGNAL

The localized front might be subject to perturbations in the positional signalM(x). In the context of embryogenesis
one can argue that the front should be insensible to these changes. In the following we investigate the properties
of this kind of stability. We show that the optimal parameters for the extrinsic stability also optimize the front’s
insensitivity with respect to perturbations in the positional signal.

Intuitively two points become immediately clear:

• Firstly, perturbations in the driving signal that are outside the front region do not affect the front position.
They merely result in a change in the shape of the front profile. Hence, the front position q0 can only be
shifted due to changes in the concentration of the external signal at position q0. In other words, q0[M(x)] ≡
´ 1

0
M−1(m)δ(m−M0)dm ≡ q0(M0).

• Secondly, the front position depends strongly on changes in M(x) if M(x) is shallow at the localization position.
On the other hand, if the driving signal is steep at the front position, perturbations will only have a small effect
on the front position.

Hence, the influence of perturbations in the external signal on the front position is described by dq0(M)
dM

∣∣∣
M0

. This can

also be seen by evaluating the variation of q0 with respect to M(x).
Stability of the front with respect to changes in M(x) implies that the front averages out perturbations in the

external signal. We therefore investigate the inverse of the magnitude of change in the front position in response to a

change in the driving signal,
∣∣∣∣
(

dq(M)
dM

)−1∣∣∣∣
M0

. This expression is equal to
∣∣∣ dM(q)

dq

∣∣∣
q0
, the insensitivity to perturbations

in the external signal is given by the steepness of the external signal at the localization position. As demonstrated by
Eq. (5) extrinsic stability as defined in the manuscript also depends on the signal’s steepness. We therefore expect
that properties of Eq. (5), which are independent of the front profile, translate into properties for the tracking of the
positional signal. This is indeed the case. As shown in Fig. 2 (a) and (b) insensitivity is optimal for M0 = 1 and
M0 = 1/2 for exponential gradients and sigmoidal gradients, respectively. In both cases, insensitivity is indifferent to
changes in the parameters r or n.

In conclusion, optimality in sigma implies optimality in the insensitivity to changes in the external signal.

STABILITY WITH RESPECT TO INTRINSIC NOISE

As each biological system intrinsic noise naturally arises due to the finite number of particles and the stochastic
nature of interactions. As a result, the front fluctuates around its equilibrium position. One can therefore formally
assign a diffusion constant Df to the fluctuating front. Comparing the front’s diffusion constant with the particles’
diffusion constant gives a measure for the stability to intrinsic noise. Several ways exist to calculate Df . Following
the steps in Ref. [17] we may employ a generalized traveling wave ansatz and obtain an expression for the front’s
stability with respect to intrinsic noise,

D

Df
= N

[
´∞
−∞ dx (U ′)2

]2
´∞
−∞ dx

[
1
2 (U ′)2

(
Rnu0

(U) +M(x) + U
)

+ U(U ′′)2
]
∣∣∣∣
q=q0

. (11)

where U is a stationary solution of Eq. (1) and we omitted the explicit dependence on x in the notation for the
stationary solution U . Using M(q0) ≈ u0− r/2 we find that un/(un0 + un) evaluates to 1 for q < q0 and 0 for q > q0.
Hence, f(U, x) + ∂xxU = ∂xxM(x) ∼ ξ−2 ≈ 0. This confirms that U is an approximate stationary solution of Eq. (1).

The only problematic integral involved in Eq. (11) is
´∞
−∞ dx (U ′)2Rnu0

(U). If n is sufficiently large we see that
Rnu0

(U) is small for U > u0. Further, we note that U(q0, q0) = M(q0) + r/2 . By using the approximate expression
for the localization position, M(q0) ≈ u0 − r/2 , we find that U(q0, q0) ≈ u0. Hence, we can rewrite the integral as

ˆ ∞

−∞
dx (U ′)2Rnu0

(U)

∣∣∣∣
q=q0

≈
ˆ q0

−∞
dx (U ′)2 . (12)
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Figure 2. (a) Insensitivity ξ
∣∣( dq(M)/ dM )−1

∣∣
M0

normalized to the steepness of the external source. Color is chosen, such that
red denotes a high insensitivity and blue a low insensitivity. The numbers denote the values on the lines of equal insensitivity.
For exponential sources the optimal value for M0 is 1, in correspondence to the results for the relaxation rate. Insensitivity is
indifferent to the specific choice of r (n = 5, ξ = 10). (b) For sigmoidal gradients the optimal value of M0 is 1/2 (n = 5, ξ = 10,
m = 5, k = 0.5). (c) Stationary solutions for different values of n for sigmoidal gradients (r = 6, u0 = 3.5, m = 5, k = 0.2,
ξ = 10). The steepness of the front increases with the degree of cooperative binding.

For exponentially decreasing external sources the analytical result can be brought to a short form by only keeping
the dominant terms in ξ,

D

D f
≈ 3Nr2

(
4 + r2ξ + 16rM0

)

2 {8 + 12r + 5r3ξ + 6rM0 [r(7 + ξ) + 6M0]} .

For sigmoidal profiles, we expand M(x) to first order in ξ−1, M(x) ≈ 1− kmmx
ξ(1+km) . We can now perform the integrals

in (11) analytically and obtain

D

D f
≈ 3N(8(k̃ − 1)m+ k̃rξ)2

2k̃ξ2
[
k̃ (6 + 5r)− 6(k̃ − 1) ln

(
k̃−M0

(k̃−1)M0

)] .

In both cases we find a linear increase in stability to intrinsic noise with the relative amplitude of self-activation,
r. Figure 1 (b) and (c) show the results of the numerical evaluation of Eq. (11). It confirms the linear increase of
stability with r.

STEEPNESS OF THE FRONT

In some applications, for example in Drosophila embryogenesis, the steepness of the front itself is an important
quantity. Starting from the stationary solution, Eq. (10), we find that the steepness of the front is given in dimensional
form by

kMM
′(q0)− kr

2kM

√
λ

D
.

Hence, three factors determine the steepness of the front. Firstly, the steepness of the front is increased, when the
amplitude of internal activation compared to external estivation is strong. Secondly, a high degradation rate and
a small diffusion constant result in steep fronts. Last, the steepness of the external source at the front position is
important. The dependence of the front’s steepness on the binding coperativity is not captured by the stationary
solution, as it is the result of a large n expansion. Here, nonlinear corrections to the linear approximation of the
stable states have the effect, that for small n the front becomes shallower, as demonstrated in Fig. 2 (c).

The front’s steepness effects extrinsic and intrinsic stability in different ways. Generally, steep fronts move slower,
as demonstrated by Eq. (3) in the main text. The reason for this is, that as, opposed to shallow fronts, for steep
fronts the total rate of reactions moving the front forward is lower. As a result, steep front also relax back to their
equilibrium position more slowly and are therefore less stable to extrinsic perturbations.



5

On the other hand, steep fronts are less susceptible to intrinsic fluctuations, as demonstrated by Eq. (11). Intuitively
this becomes clear if one notes that for stochastic switching to happen, an entropy barrier between the stable states
has to be overcome. Hence, the rate of stochastic switching increases, if this barrier is low. This is the case for shallow
fronts. where due to diffusion or properties of the bifurcation diagram the entropy barrier is decreased on a larger
portion of the front.
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