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Summary  
 

Climate change is attracting increasing attention due to its challenge effects on nature and the 

human environment. Global Climate Models (GCMs), the primary tool for climate impact studies, 

have been widely applied in the past decades. Although GCMs are adept at representing the past, 

present and future climate by simulating the general circulation, of the atmosphere and the 

oceans, their coarse spatial resolution is unable to provide reliable information at a finer scale. 

Regional Climate Models (RCMs) nested in GCMs represent better descriptions of local-scale 

characteristics, because of their finer spatial resolution of 10-50 km. This, however, still does not 

satisfy the requirements of hydrological and climatic impact models, which typically run on the 

scale of 0.1-1 km. Furthermore, in the mountain regions, the shortage of observations constrains 

the climate, hydrology, snow, glacial and permafrost researches. Reanalysis products are being 

increasingly applied for climate impact studies, due to its strength for estimating the closest state 

of real atmospheric and land surface characteristics. However, it still does not match the spatial 

resolution of climate and hydrology models. 

To meet this major challenge, this dissertation attempts to evaluate a newly generated reanalysis 

database, the ERA-Interim, produced by the European Centre for Medium-Range Weather 

Forecasts (ECMWF), and to develop a robust temperature downscaling approach that is 

independent of observations in mountainous areas, as well as presenting a new machine learning 

method for precipitation downscaling. Furthermore, the validation and application of ERA-

Interim data and downscaling methods for end users is also presented. 

The large-scale error of ERA-Interim reanalysis data was evaluated by comparing it to gridded 

observations data (E-OBS) derived from the high density of measurements in the central Alps. It 

illustrated that the large-scale error of temperature on a daily scale is generally small, with an 

averaged bias of 0.6 °C. However, ERA-Interim is weak in capturing the extreme temperatures in 

complex terrains. Significant wet seasons (May to August) and dry seasons (November to 

February) were simulated by ERA-Interim. Although ERA-Interim has almost the same standard 

deviation as E-OBS for the inter-annual variability of daily precipitation (1.0 mm day-1), the mean 

absolute error (MAE) was large and varied between 4.5 mm day-1 and 9.5 mm day-1 on wet days 

for the entire area. Therefore, the downscaling and correction is necessary for ERA-Interim 

application in alpine regions.  
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A novel temperature downscaling model was developed using the ERA-Interim internal lapse 

rate. Benchmark methods that use the conventional fixed lapse rate (Kunkel, 1989) and observed 

lapse rate derived from high and low stations were applied for model evaluation. The results 

demonstrated that the fixed lapse rate was not satisfactory and led to a large bias for high 

elevation measurements. The observed lapse rate worked best, but its application was limited, 

because not enough stations in high mountainous and high altitude regions are available to 

provide good lapse rates. The new method, based on the ERA-Interim modeled lapse rate, was 

derived from temperatures and geopotential heights at representative pressure levels and was 

independent of observations. This novel approach showed a convincing performance, especially 

for higher elevations.  

A new machine learning method, Lasso, was introduced for the downscaling of ERA-Interim 

daily precipitation. The benchmark methods, Local downscaling (LOCI) and Quantile-Mapping 

(QM), as well as stepwise regression, were applied for model comparison in the mountainous 

regions. LOCI and QM demonstrated advantages in predicting precipitation occurrence, 

compared to the original ERA-Interim data. Stepwise regression yielded the worst predictions, 

although it applied the same set of local circulation variables as Lasso. The Lasso algorithm, 

combined with variable selection and a sparse model, generated slightly worse variations than 

LOCI and QM, but significantly reduced the relative errors (RMSE and MAE), for some stations 

in particular, only Lasso was effectual.  

Flux tower sites from FLUXNET, which represented various vegetation and climate types in 

several topographic regions, were adopted for ERA-Interim validation. In general, ERA-Interim 

captured flux tower measurements with respect to temperature and precipitation well. 

Temperature downscaling methods were proven valid for micrometeorological stations. Large 

city observations over Europe were also applied for the validation of ERA-Interim in urban areas. 

Along with the rapidly expanding global markets, the world’s largest motor vehicle manufacturer, 

Volkswagen Group and its subsidiary company AUDI AG have recognized that temperature 

distribution and extremes affect the automobiles’ technical design. Therefore, under their urgent 

need, a visual framework for ERA-Interim application was developed, based on GIS for extreme 

temperature distributions. 

In summary, the temperature downscaling method based on ERA-Interim modeled lapse rate 

was applicable for mountainous areas as well as for flux tower sites. In particular, the 

precipitation model was valid for high elevation stations for which the conventional benchmark 

methods did not work. Both downscaling methods are simple and can be easily implemented for 
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in future studies. The ERA-Interim reanalysis data is appropriate for various spatial resolution 

applications, from individual sites up to continental and global scales. 
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Chapter 1  

Introduction 
 

1.1  Background and Motivation 

1.1.1 Climate Change and Global Climate Models 

Climate change is one of the most important long-term issues which the global community has to 

face over coming decades. Negative effects of climate change on nature and the human 

environment, such as temperature increasing and rising sea level have been observed (IPCC, 

2007a; IPCC, 2007c). Therefore, accurate investigations and assessments of the impacts of 

climate change on natural and human systems are highly desired by decision makers and 

stakeholders (IPCC, 2007b).  

Global Climate Models (or general circulation models, GCMs), the primary tool for weather 

forecasting, climate understanding, and projecting climate change for the future have been widely 

applied in the past decades (Gregory et al., 2001; Maraun et al., 2010; Schmidli et al., 2007; Snell 

et al., 2000; Wilby and Wigley, 2000; Xu, 1999). GCMs attempt to represent the past, present or 

future climate by simulating the general circulation of the atmosphere, and the oceans, as well as 

their interaction with powerful computer systems (IPCC, 2007c) (Figure 1.1). GCMs normally 

run on a 3-dimensional grid with a horizontal resolution of 250-600 km, 10 to 20 vertical layers in 

the atmosphere and approximately 30 layers in the oceans (e.g. Flato et al., 2000) (Figure 1.2).  

However, the GCMs are currently unable to provide reliable information for decision makers and 

impact model developers, due to their coarse resolution (Dodson and Marks, 1997; Maurer et al., 

2002; Minder et al., 2010). Specifically, for complex terrain, the GCMs only represent 

characteristics for a mean elevation of a grid box. In reality, the situations from high mountain 

crests to deep valleys differ considerably. Local processes, such as orographic precipitation 

formulation along mountain slopes, as well as snowpack accumulation and melting, are not 

represented by the coarse resolution. Although Regional Climate Models (RCMs) nested in 

GCMs represent better descriptions of local-scale characteristics, based on the finer spatial 
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resolution of 10-50 km, they still do not satisfy the requirements of hydrological and climatic 

impact models, which typically run on the scale of 0.1-1 km (Ahrens, 2003; Charles et al., 2004; 

Maraun et al., 2010; Mauser and Bach, 2009; Xu, 1999). Also, RCMs would require very 

expensive and bring complex computer calculations, making this approach unavailable for many 

potential users. 

 
 

Figure 1.1: Schematic of physical processes in Global Climate Models (IPCC, 2007c). 

 

 

Figure 1.2: Schematic of Global Climate Models spatial resolutions. 
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Motivated by the requirements for finer spatial resolution in impact modeling, the scientific 

community has paid much attention to resolving the scale discrepancy between coarse model 

data and finer local requirements (Bardossy and Plate, 1992; Charlton et al., 2006; Guan et al., 

2009; Hertig and Jacobeit, 2008; Spak et al., 2007). Downscaling procedures – the disaggregation 

of larger scale mean values to sub-grid smaller scale values – can be used to overcome the deficits 

of the coarse scale models and to generate meaningful information for areas without 

meteorological measurements (Maraun et al., 2010; Wilby and Wigley, 1997; Xu, 1999; Zorita and 

von Storch, 1999). Figure 1.3 schematically illustrates the theoretic scaling processes. Dynamic 

atmosphere and ocean processes, as well as hydrology, land use, topography and social systems, 

are considered within the scaling framework. 

 

Figure 1.3: Schematic for a theoretic downscaling and upscaling framework, modified from Viner 

and Hulme (1997). 

Downscaling techniques are classified into two main categories: dynamical downscaling (DD) and 

statistical downscaling (SD). In the past two decades, DD (e.g. Almazroui, 2012; Haensler et al., 

2011) and SD (e.g. Hofer et al., 2010; Huth et al., 2008) have been widely implemented; however, 

an universal method for various variables and complex terrains is still lacking.  

Reanalysis products, surrogates for large-scale observations, have been increasingly applied to 

assess climate impact in the last decade, because they most closely estimate the state of real 
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atmosphere and land surface characteristics (Decker et al., 2012; Simmons et al., 2010). However, 

they are still too coarse for use in the finer spatial resolution of climate and hydrology models 

(Ahrens, 2003).  

In summary, accurate downscaling GCMs and reanalysis data in complex terrain is still a major 

challenge for alpine areas. To meet this challenge, this dissertation attempts to i) evaluate and 

validate a newly generated reanalysis dataset, the ERA-Interim produced by European Centre for 

Medium-Range Weather Forecasts (ECMWF), ii) develop a robust temperature downscaling 

approach which is independent of observations in mountainous areas, iii) introduce a 

precipitation downscaling method based on machine learning in complex terrain, iv) validate 

ERA-Interim in various regions, including large urban area and various vegetation covers, and v) 

illustrate an example of ERA-Interim application in a socio-economic context.   

1.1.2 Downscaling Methods Overview 

1.1.2.1     Dynamical Downscaling 

Dynamical Downscaling (DD, i.e. RCMs) is one downscaling method that is driven by boundary 

conditions derived from a GCM at high-resolution for a limited area (Wilby and Wigley, 1997). 

Compared with GCMs, DD uses two approaches to achieve a better representation of orographic 

effects, land-sea contrast, and land surface characteristics, with the help of finer spatial resolution 

and reduced model time step (Giorgi, 2008; Rummukainen, 2010). One approach is 

straightforward and uses a high-resolution atmospheric global model (Christensen et al., 2007); 

the second approach uses a coarse global model with dense variable-resolution grids in limited-

areas (Lal et al., 2008).  

RCMs have some advantages that are absent in GCMs, such as more detailed local scale 

characteristics. However, large sets of simulations cannot be achieved. Additionally, some 

limitations constrain the model’s accuracy. Firstly, the quality of DD relies on the accurate 

representation of boundary conditions, which include temperature, moisture, and wind speed, 

amongst others. Secondly, GCMs-driven RCMs inherit the systematic bias of boundary 

conditions from GCMs, because of the non-local physical process forcing (Maraun et al., 2010; 

Rummukainen, 2010). Reanalysis-driven RCMs reduce biases because observations are 

assimilated into the reanalysis system. Unfortunately, model evaluations are limited by the 

availability of independent observations. Even though RCMs run with a higher spatial resolution, 

they are still more homogenous in space, compared to actual observations (Rummukainen, 2010).  
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Thirdly, a quite important drawback of RCMs is their high computational demand (Wilby et al., 

2004; Wilby and Wigley, 1997). Although RCMs yield better results by using finer temporal-

spatial resolution, the computation requirements rise accordingly. Expensive computation 

adversely limits the number of grids, spatial resolution, and length of time period under 

investigation (Maraun et al., 2010; Rummukainen, 2010). At present, many RCMs are available 

that have been developed by various research institutes over the world. Table 1.1 shows a small 

selection of previous studies using RCMs. 

Table 1.1: Literature review of dynamical downscaling studies. 

RCMs Predictand Boundary 
forcing 

Vertical/horizontal 
resolution 

Region Reference 

REMO 2 m 
temperature 
Seasonal  
precipitation 

ERA-40 20-level/18 and 50 
km 

South 
African 

(Haensler et 
al., 2011) 

HadRM3 and 
CHRM 

Seasonal 
heavy 
precipitation 

HadAM3 
HRM 

19-level/50 and 20-
level/55 km 

United 
Kingdom 

(Haylock et 
al., 2006) 

RCA1 Monthly 
Precipitation 

HadCM2 
ECHAM4 

19-level/44 km Sweden (Hellstrom 
et al., 2001) 

ECHAM4/ 
ECHAM5 

Annual 
Rainfall 

NCEP 
Reanalysis 

19-level/T42 and 
23-level/T63  

Southern 
Morocco 

(Huebener 
and 
Kerschgens, 
2007) 

CHRM, HadRM3 
and HIRHAM 

Daily 
precipitation 

HRM, 
HadAM3  
and 
HIRHAM4 

20-level/0.5°, 19-
level/0.44° and 19-
level/0.44° 

European 
Alps 

(Schmidli et 
al., 2007) 

MM5 Monthly 
Surface 
temperature 

GISS-GCM 20-level /36 km North 
America 

(Spak et al., 
2007) 

LMDz4 Summer 
rainfall 

ERA-40 19-level/stretched 
grid, 120 points in 
longitude and 91 
points in latitude 

Eastern 
China 

(Zou et al., 
2010) 

UKMO Model Monthly 
temperature 
precipitation  

GCM 19-level/0.44° and 
19-level/2.5°×3.75° 

Europe (Murphy, 
1999) 

 

1.1.2.2 Statistical Downscaling 

Statistical Downscaling (SD) is another form of downscaling that is based on the statistical 

relationship between large-scale variables (e.g. surface pressure from GCMs) and local-scale 

variables (e.g. temperature at a particular site). The established relationship is then used to yield 
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the local variables from large-scale outputs (Wilby and Wigley, 1997). The main assumptions of 

SD methods include: predictors from large-scale data should be skillfully and adequately 

reproduced; the relationships between predictands and predictors remain valid for periods 

outside the fitting period, especially for future climate scenarios (Harpham and Wilby, 2005; 

Wilby et al., 2002; Wilby and Wigley, 1997). Compared to DD, SD methods have lower 

computational demands and they provide site-specific information in an easier way (Wilby et al., 

2002; Wilby et al., 2004; Wilby and Wigley, 1997; Huth, 2004).  

Table 1.2: A summary of the strengths and weaknesses of the main statistical downscaling 

methods, modified from Wilby et al. (2004). 

Methods Strengths Weaknesses Examples 

Weather typing 
(e.g. analogue 
method, hybrid 
approaches, fuzzy 
classification, self 
organizing maps, 
Monte Carlo 
methods) 

1. Yields physically 
interpretable 
linkages to 
surface climate 

2. Versatile (e.g. can 
be applied to 
surface climate, 
air quality, 
flooding, erosion, 
etc.) 

3. Compositing for 
analysis of 
extreme events 

1. Requires 
additional task of 
weather 
classification 

2. Circulation-based 
schemes can be 
insensitive to 
future climate 
forcing 

3. May not capture 
intra-type 
variations in 
surface climate 

(Alexander et 
al., 2009; 
Bardossy et al., 
2005; Vrac et 
al., 2007; Yin 
et al., 2011;) 

Weather 
generators 
(e.g. Markov 
chains, stochastic 
models, spell 
length methods) 

1. Production of 
large ensembles 
for uncertainty 
analysis or long 
simulations for 
extremes 

2. Spatial 
interpolation of 
model parameters 
using landscape 

3. Can generate sub-
daily information 

1. Arbitrary 
adjustment of 
parameters for 
future climate 

2. Unanticipated 
effects to 
secondary 
variables of 
changing 
precipitation 
parameters 

(Charles et al., 
2004; Greene 
et al., 2011; 
Mehrotra and 
Sharma, 2005) 

Regression 
methods 
(e.g. linear/non-
linear regression, 
neural networks, 
canonical 
correlation 
analysis, kriging) 

1. Relatively 
straightforward to 
apply 

2. Employs full 
range of available 
predictor 
variables 

3. “Off-the-shelf” 
solutions and 
software available 

1. Poor 
representation of 
observed variance 

2. May assume 
linearity and/or 
normality of data 

3. Poor 
representation of 
extreme events 

(Harpham and 
Wilby, 2005; 
Huth et al., 
2008; Schoof 
and Pryor, 
2001; Stahl et 
al., 2006) 
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SD methods are classified according to several perspectives. Wilby and Wigley (1997) and Wilby 

et al. (2004) grouped SD methods into three categories: weather classification schemes, regression 

models, and weather generators. An alternative classification was presented by Rummukainen 

(1997) and based on the nature of predictors, namely, prefect prognosis (PP) and model output 

statistics (MOS). Wilby et al. (2004) have summarized the advantages and drawbacks of three SD 

methods (Table 1.2). 

Regression methods are widely used because they are simple and easy to implement. Multiple 

regression (Murphy, 1999), canonical correlation analysis (Vonstorch et al., 1993), and artificial 

neural networks (Cannon, 2007; Crane and Hewitson, 1998) are most frequently applied. Support 

vector machines based on machine learning algorithms, are becoming popular (Anandhi et al., 

2009; Chen et al., 2010; Kumar et al., 2008; Kumar et al., 2009). Based on their strengths, this 

study used regression methods for temperature and precipitation downscaling. To avoid 

repetition, the applied temperature and precipitation downscaling methods are described in 

Chapters 4 and 5, respectively. 

1.1.3 Reanalysis Data – State of the Art 

Reanalysis data is produced by a data assimilation project that incorporates observations into a 

computer model of the atmospheric, land surface, and ocean real system. Data assimilation is 

implemented by analysis cycles. In each analysis cycle, the current (or past) observations are 

combined with the results from a forecast model (e.g. numerical weather prediction model).  The 

uncertainty and bias between observations and forecasts are balanced and optimized in this step, 

and then the advanced model yields new forecasts that are brought into next analysis cycle 

(Figure 1.4).  

 

Figure 1.4: General view of the reanalysis process. 

Reanalysis 

Obser-
vations 

Fore-
casts 

Opti- 

mization 
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At present, reanalysis products are provided by four major centers: the National Centers for 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), the 

European Centre for Medium-Range Weather Forecasts (ECMWF), the National Aeronautics 

and Space Administration (NASA) Goddard Space Flight Center (GSFC), and the Japan 

Meteorological Agency (JMA) & the Central Research Institute of Electric Power Industry 

(CRIEPI). Table 1.3 summarizes the main available reanalysis productions. More details including 

model descriptions can be found in the relevant references. 

The key strengths that reanalysis products contain are: i) data is multivariate, spatially and 

temporally completed and gridded; ii) observations are assimilated; iii) data is physically and 

dynamically modeled. In the past two decades, reanalysis products have been increasingly applied 

in climate impact studies. Typically, they are adopted to provide boundary conditions for regional 

climate models. Although reanalysis products generally estimate the closest state of the real 

atmosphere and of land surface characteristics (Decker et al., 2012; Simmons et al., 2010), there 

are some uncertainties in the reanalysis data, such as observation changes and model 

misrepresentation. Therefore, the quantification of uncertainty and the evaluation of the quality 

of reanalysis data is still a great challenge (Bosilovich et al., 2008; Trenberth et al., 2008). 

Table 1.3:  Main available reanalysis products. 

Production Time Period Producer Reference 

NCEP/DOE 

Reanalysis II 

1979-present NCEP/NCAR (Kanamitsu et al., 2002) 

NCEP/NCAR 

Reanalysis I 

1948-present NCEP/NCAR (Kalnay et al., 1996) 

ERA-15 1978-1994 ECMWF (Gibson et al., 1996) 

ERA-40 Sep. 1957- Aug.2002 ECMWF (Uppala et al., 2005) 

ERA-Interim 1979-present ECMWF (Dee et al., 2011; Simmons 

et al., 2006) 

CFSR 1979-2011 NASA & GSFC (Saha and Coauthors, 2010) 

JRA-25 1979-2004 JMA  & CRIEPI (Onogi et al., 2007) 

JCDAS 2005-present JMA  

ASR 2000-2011 OSU &  BPRC-PMG (Bromwich et al., 2009; 

Hines and Bromwich, 

2008) 

MERRA 1979-present NASA (Rienecker et al., 2011) 

20CR 1871-2010 NOAA & NCEP (Compo et al., 2011) 
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ERA-Interim is the newest-generation reanalysis product from the ECMWF, with an improved 

atmospheric model and assimilation systems. ERA-Interim provides data from 1979 onwards, 

and continues in real time (Berrisford et al., 2009; Dee et al., 2011). The ERA-Interim project was 

launched in order to improve key aspects of ERA-40, such as the representation of the 

hydrological cycle, the quality of the stratospheric circulation, as well as the handling of biases 

and changes in the observing system (Dee and Uppala, 2009; Dee et al., 2011; Simmons et al., 

2006; Uppala et al., 2008). This has been achieved by including many model improvements, such 

as the use of 4-dimensional variation (4D-Var) analysis, a revised humidity analysis, the use of 

bias correction for satellite data, and further improvements in data handling (Berrisford et al., 

2009; Dee et al., 2011).  Figure 1.5 shows the schematic of the revised 4D-Var solution algorithm 

implemented in CY25r4 (a version of ECMWF’s Integrated Forecast System released in 2003). 

4D-Var includes an inner loop and an outer loop, which perform at lower resolution by using 

tangent-linear forecast model (first T95, then T255 resolution) and at high resolution by using a 

non-linear model (T799 resolution), respectively (ECMWF, 2009a). The truncation operator is 

used to interpolate trajectory fields from high to low resolution. The cost function is used for 

measuring the distance between the model trajectory and background or observations in an 

assimilation window (ECMWF, 2009a). 
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Figure 1.5: Schematic of the revised 4D-Var solution algorithm implemented in CY25r4. S 

denotes the truncation operator which takes the trajectory fields from high to low resolution, J 

the cost function and ▽J the gradient of J. x indicates the atmospheric state vector, i the time 

index and k the variable index. xb is the initial input, and xa is the result of the loop. δxi is the 

analysis increment, and S-1(δxi) is the minimum increment of δxi. d is the innovation vector, and y 

is the observation vector. H(xi) indicates the observation operator with low-resolution in the 

vicinity of xi (ECMWF, 2009a). 

Figure 1.6 illustrates the schematic of the data assimilation cycling with the operational early-

delivery configuration. In the delayed cut-off 12-hour 4D-Var computation, 0000 UTC and 1200 

UTC analysis are implemented separately. Observations in the time window 2101-0900 UTC are 

used for 0000 UTC analysis, while observations in the window 0901-2100 UTC are used for 1200 

UTC analysis. A separate surface analysis is run every 6 hours at 0000 UTC, 0600 UTC, 1200 

UTC and 1800 UTC. 4D-Var computation and surface analysis are combined for the final 

analysis. The three-hour forecasts are obtained from 0000 UTC 12-hour 4D-Var analysis based 

on the previous day’s 1800 UTC delayed cut-off analysis, and the forecasts from 1200 UTC 

analysis are obtained from the 0600 UTC. This propagates forwards day to day (ECMWF, 2009a). 

The early-delivery analysis is implemented every 6 hours. The observations in the time window 

2101-0300 UTC and 0901-1500 UTC are possible maxima used for 0000 UTC and 1200 UTC 6-
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hour 4D-Var analysis. The 3-hour 10 days forecasts are obtained from 6-hour 4D-Var analysis, 

combined with the separate surface analysis. 

 

Figure 1.6: Schematic of data assimilation cycling with the operational early-delivery configuration 

(ECMWF, 2009a). Yellow means computation steps, and blue data sets. 

1.2 Research Objectives 

1.2.1 Outline 

Air temperature and precipitation are the most relevant variables for hydrological modeling, and 

they are particularly important for mountainous climate, snow, glacial, and permafrost research 

(Maraun et al., 2010; Schmidli et al., 2007; Xu, 1999). Conventionally, temperature and 

precipitation are collected from meteorological networks. Nevertheless, due to sparse 

observations in complex terrains, particularly at high altitudes such as in mountains, these two 

variables are difficult to obtain, because of difficulties with the installation and maintenance of 

the stations (Clark and Slater, 2006; Guan et al., 2005; Kunkel, 1989; Pages and Miro, 2010; 

Rolland, 2003). This work attempts to downscale new reanalysis data (ERA-Interim) for air 

temperature and precipitation in high mountainous areas, i.e. in the central Alps. Meanwhile, the 

temperature downscaling method is validated for FLUXNET sites over Europe. 
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This thesis is structured into five main chapters. Firstly, the usage of ERA-Interim Reanalysis 

data is investigated in the mountainous areas in Chapter 3. Then, a robust statistical downscaling 

approach for temperature is presented in Chapter 4, followed by a new precipitation downscaling 

method in Chapter 5. Subsequently, the validation of the downscaling method using data from 

micrometeorology station and an application example related to socio-economic work is 

illustrated in Chapter 6 and 7, respectively. Finally, Chapter 8 gives an overall discussion and 

outlook for further research activities. The preceding Chapter 2 describes the data resources. A 

brief description of the core five chapters are presented in the following. 

1.2.2 Evaluation of ERA-Interim Reanalysis Data 

Generally, GCMs are the primary data resource for downscaling, especially for RCMs. Reanalysis 

data, currently used as the surrogate for large-scale observations, has been widely applied in 

downscaling methods such as ERA-40 and NCEP/NCAR reanalysis data (Maraun et al., 2010; 

Mooney et al., 2011; Poli et al., 2010). Reanalysis data was designed to estimate the closest state 

of real atmosphere and land surface characteristics with the assimilation of large numbers of 

observations, which cover complete global and temporal data series. Although reanalysis 

products are improving, previous studies showed that these products contain errors, due to a 

variety of reasons, e.g. observation errors and interpolation errors. Therefore, it is of major 

importance to evaluate reanalysis data against observations before applying them to climate and 

hydrological models (Berg et al., 2003; Decker et al., 2012; Trenberth and Guillemot, 1998). In 

Chapter 3, E-OBS, a new observed gridded dataset that interpolated a high density of 

observations over Europe with finer spatial resolution (0.25°×0.25°) is employed to compare 

with ERA-Interim 2 m temperature and daily total precipitation data. The bias, as well as the 

elevation dependence of temperature and precipitation is analyzed. 

1.2.3 Temperature Downscaling 

A novel method that uses ERA-Interim internal lapse rates for near-surface temperature 

downscaling in high mountain regions is developed in Chapter 4. This study distinguishes itself 

from the previous research by i) rejecting the use of the fixed lapse rate (e.g. -6.5 °C km-1) and 

lapse rates from the literature (Kunkel, 1989), which are unable to capture the variability of 

temperature in high mountain regions; ii) allowing for data reproduction for remote alpine areas 

where no meteorological station exists; iii) making the method flexible and easy to implement 

with the help of the linear regression framework; and iv) allowing for the varied spatial resolution 

downscaling based on a variety of elevation data. 
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1.2.4 Precipitation Downscaling  

Precipitation downscaling is much more difficult than temperature due to its higher spatial and 

temporal variability, especially in complex terrains (Barry, 2008; Guan et al., 2009). Although 

many downscaling methods have been tested, a universal best method does not exist. In Chapter 

5, a new and powerful machine learning technique, “Lasso” (Least absolute shrinkage and 

selection operator), which has the advantage of dealing with large numbers of variables, is 

explored for downscaling daily total precipitation at 50 meteorological stations in the central Alps. 

In order to evaluate the performance of the Lasso algorithm, benchmark methods, such as local 

scaling (LOCI) and quantile-mapping (QM), which are the most frequently used methods for 

climate impact studies, are applied for model comparison. Additionally, stepwise regression, 

which uses the same variables, is applied to evaluate the ability of Lasso to deal with the selection 

of variables.  

1.2.5 Validation of ERA-Interim for FLUXNET Data 

In Chapter 6, 48 FLUXNET tower sites located in the expanses of land with varying topography 

and vegetation covers and climate regimes over Europe are applied to validate ERA-Interim data 

and temperature downscaling methods. FLUXNET is a global network that covers a collection 

of micrometeorological flux observation sites, measuring the exchanges of carbon dioxide, water 

vapor, and energy between the biosphere and atmosphere, using eddy covariance methods, but 

also standard climate data including temperature, relative humidity, precipitation, and radiation 

components (Baldocchi et al., 2001; Gu and Baldocchi, 2002). Besides temperature, 3-hourly 

ERA-Interim precipitation data is also validated by FLUXNET data. 

1.2.6 ERA-Interim Application - A Case Study 

The world’s largest motor vehicle manufacturer, the “Volkswagen Group” and its subsidiary 

company “AUDI AG” recognized that temperature distribution and extremes affect the 

automobiles’ technical design features, such as the engine cooling system and coolant additives. 

Besides, this information is urgently needed for their marketing planning. However, there are 

some difficulties in data collection for their imperative needs, in the global context. For example, 

weather stations are not widely available, especially in the developing countries, which 

correspond with the rapidly emerging markets. ERA-Interim forecast data with significantly 

strengths for the long-term (32 years) and with high temporal resolution (3-hourly) is highly 

desirable. Within a Matlab and GIS framework, the temperature distribution and extremes of 

ERA-Interim are analyzed and presented visually. As the main markets, the accuracy of ERA-
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Interim data for large cities is much important. Therefore, nine large city temperature 

measurements over Europe are applied for validation of ERA-Interim temperature data. This 

validation provides the information on the reliability of ERA-Interim data in this socio-economic 

context. 

 

 



 

 

 

15 
 

Chapter 2  

Datasets 

2.1 Overview 

Throughout this thesis, data from six sources are applied: individual meteorological 

measurements provided by the German Weather Service (DWD), the Bavarian Avalanche 

Warning Service (LWD), the European Climate Assessment & Dataset (ECA&D), and the Swiss 

Federal Office of Meteorology and Climatology (MeteoSwiss); individual micrometeorological 

measurements provided by FLUXNET; gridded observations (E-OBS) provided by ECA&D, 

and the Global Precipitation Climatology Centre (GPCC) gridded data provided by DWD; 

reanalysis data (ERA-Interim) developed by the European Centre for Medium-Range Weather 

Forecasts (ECMWF). In this chapter, each dataset is briefly introduced and data processing 

methods are specifically explained in the corresponding chapters. 

2.2 DWD and LWD Data 

In this study, the observations from two meteorological stations (Zugspitze and Garmisch) 

operated by the German Weather Service (DWD), as well as one station (Zugspitzplatt) operated 

by the Bavarian Avalanche Warning Service (LWD) are used for downscaling tests. All three test 

sites are located in the southern part of Germany, at the Austrian border. The Garmisch site is 

located at the bottom of a valley (Garmisch-Partenkirchen 719m a.s.l.);  the Zugspitze site is close 

the crest of the Zugspitze mountain (2964m a.s.l.) and the Zugspitzplatt site (2250m a.s.l.) is 

located on the side of the mountain (Figure 2.1). The DWD provides hourly data, while the 

LWD operates at 10-minute resolution. The data was aggregated to 3-hourly (T3h) and daily (Td) 

averages for comparison with the ERA-Interim data described in Chapter 4.  
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Figure 2.1: Locations of the DWD and LWD observation sites. 

2.2 MeteoSwiss Data 

MeteoSwiss (the Swiss Federal Office of Meteorology and Climatology) provides extensive 

archive data from its ground level monitoring networks. Registered users can directly access the 

archive through an interactive tool (IDAWEB). The observation data from the beginning of the 

monitoring activities until the preceding day can be obtained in two formats: CSV and Bulletin. 

The main available climatological and meteorological parameters include: cloud cover, lightning, 

ground temperature, vapor pressure, global radiation, atmospheric pressure, air humidity, air 

temperature, precipitation, snow, sunshine duration, wind force, and wind speed. Several 

temporal resolutions data can be freely downloaded, 10-minute, hourly, daily, monthly, annual. 

For hourly data, the measuring and observing time is HH = (HH-1): 41 - HH: 40, for example, 

13 = observation period 12:41 to 13:40. MeteoSwiss also provides the calendar data by data 

interpolation and time shifting (MeteoSwiss, 2013). In this study, hourly air temperature and daily 

total precipitation is obtained and further processed for downscaling applications. The detailed 

process information and the stations used are given in Chapter 4 and 5.  
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2.3 ECA&D Data 

The ECA&D (European Climate Assessment & Dataset) project focused on the changes in 

weather and climate extremes, as well as on the daily dataset needed to monitor and analyze these 

extremes. This project was initiated by the European Climate Support Network (ECSN) and 

supported by the Network of European Meteorological Services (EUMETNET). Currently, 

ECA&D provides a dataset containing 36959 series of observations for 12 elements at 7847 

meteorological stations throughout Europe and the Mediterranean from 61 participants in 62 

countries (ECA&D, 2013, Klein Tank et al., 2002). The 12 elements include maximum, minimum, 

mean temperature, sunshine, snow depth, precipitation amount, humidity, wind gusts, wind speed, 

wind direction and cloud cover. Nine large city sites used for validation of ERA-Interim are listed 

in Chapter 7. Detailed site information is given in Chapter 7. 

2.4 FLUXNET Data 

FLUXNET is a global collection of micrometeorological flux observation sites, measuring the 

exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere, 

using eddy covariance methods, but also standard climate data including temperature and 

precipitation (Baldocchi et al., 2001; Gu and Baldocchi, 2002). The FLUXNET database is 

maintained by the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL 

DAAC). 

 
 

Figure 2.2: Locations of the FLUXNET site towers and their organizational affiliation 

(FLUXNET, 2013). 
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At present, more than 500 tower sites across five continents are operating on a long-term basis 

covering a large variety of climates and biomes (Figure 2.2). The LaThuile dataset is one of the 

FLUXNET synthesis data products, and currently includes data from approximately 250 sites, 

which is available under a “free fair-use” policy (Fluxdata, 2013). From this dataset, 48 sites 

located in Europe and having a continuous record of at least 2 years have been chosen for ERA-

Interim validation. For more details see Chapter 6. 

2.5 E-OBS Data  

The European daily high-resolution gridded dataset of surface temperature (mean, minimum and 

maximum) and precipitation (E-OBS) was developed as part of the European Union Framework 

6 ENSEMBLES project, with the objective of validating RCM models for climate change studies 

(Haylock et al., 2008). The E-OBS dataset was produced for representing the best estimates of 

grid box averages. Gridded 0.25° and 0.5° latitude/longitude data is available, as well as a 0.22° 

and 0.44° rotated pole grid with the North Pole at 39.25N, 162W (E-OBS, 2013). The available 

data covers a large area (all of Europe, without oceans) and a long time period (1950-present).  

The E-OBS dataset was produced from large number of observations. Daily observations of 

maximum, mean and minimum temperature, and precipitation were collected since 1950 by the 

Royal Netherlands Meteorological Institute (KNMI), which also is in charge of European 

Climate Assessment and Dataset (ECA&D). The number of observation stations increased from 

250 at the beginning to currently more than 2300 by incorporation with other datasets, such as 

GCOS (Global Climate Observing System), GHCND (Global Historical Climatology Network), 

and MAP (Mesoscale Alpine Program) (Haylock et al., 2008). The quality of the raw observations 

was controlled and suspicious records were eliminated, based on the criteria of, for example, less 

than zero and more than 300 mm for precipitation and temperatures higher than 60 °C (Haylock 

et al., 2008). The measured time at some stations was shifted forwards or backwards by one day 

between different countries. Maximum and minimum temperatures were calculated from 0000, 

0600, 1200 and 1800 UTC. Precipitation was assumed to be measured at 0900 UTC and 0.5 mm 

threshold was defined for dry/wet day. The values of 0000 and 0600 UTC on the second day 

were added to 1200 and 1800 UTC values on the first day for the first day record (Haylock et al., 

2008). 

E-OBS has significant advantages including high spatial resolution, long-term period, uncertainty 

estimation incorporation and a novel interpolation method. The 0.25° grid of E-OBS is much 
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finer than that of HadGHCND (Caesar et al., 2006), which has global gridded daily data 

projected on a much coarser 2.5° latitude by 3.75° longitude grid as well as that of the MARS-

STAT database, which is based on a 50 km grid. The E-OBS covers a long-term period from 

1950 to the present, whilst HadGHCND data only spans the period of 1946-2000, and MARS-

STAT only started in 1975. Although Alpine precipitation gridded data (Frei and Schar, 1998) 

was developed at a spatial resolution of 25km, it was only available for the period 1971-1990.   

Given its strengths, this study applied the E-OBS dataset to evaluate ERA-Interim data. Daily 

maximum, mean and minimum temperature, and precipitation on a 0.25°×0.25° spatial 

resolution from E-OBS version 6.0, which was released in April 2012 and which covers the 

period from 1950-2011, was retrieved from E-OBS datasets. This evaluation is specifically 

illustrated in Chapter 3. 

2.6 GPCC Data 

The GPCC data is a contribution of the German Weather Service (DWD) to the World Climate 

Research Program (WCRP) and to the Global Climate Observation System (GCOS) (Schneider 

et al., 2011). GPCC represents long-term monthly land surface precipitation derived from rain-

gauges built on the Global Telecommunication System (GTS) and from historic data for global 

and regional climate monitoring and research (Meyer-Christoffer et al., 2011). GPCC data is 

available on a regular latitude/longitude grid with a spatial resolution of 0.25°, 0.5°, 1.0°, and 2.5°. 

In this study, GPCC Climatology Version 2011, based on the 67,200 stations world-wide that 

have record durations of 10 years or longer for the target reference period January 1951 to 

December 2000 is applied for the evaluation of the ERA-Interim precipitation product. The data 

can be downloaded via: ftp://ftp.dwd.de/. 

2.7 ERA-Interim Reanalysis Data 

The European Centre for Medium-Range Weather Forecasts (ECMWF), located in Reading in 

the United Kingdom, is an intergovernmental organization that provides operational medium- 

and extended-range forecasts for 34 states (ECMWF, 2013). ECMWF not only provides the 

state-of-the-art super-computing facility for scientific research, but also collaborates with other 

agencies, such as satellite agencies and the European Commission, in scientific and technical 

matters. In the past, ECMWF has issued three major reanalysis data products: FGGE, ERA-15, 

and ERA-40. ERA-15 was generated from December 1978 to February 1994 at spectral T106 



 

 

 

20 
 

resolution with 31 vertical hybrid levels (ECMWF, 2013). The extended reanalysis data ERA-40 

was generated from September 1957 to August 2002, and has been extensively utilized for 

atmospheric and oceanic processes. ERA-40 was assimilated at T159 spectral resolution (1.125 ° 

× 1.125 °) with 60 vertical hybrid levels. The results were projected on a reduced Gaussian grid 

(N80) with an almost uniform spacing of ~125km, the same as for ERA-15 (Uppala et al., 2005). 

As the second generation of reanalysis data, ERA-40 is superior to ERA-15, which has been well 

illustrated by Uppala et al. (2005).  

Based on ERA-40, ERA-Interim represents a third generation reanalysis product with an 

improved atmospheric model and assimilation system. ERA-Interim provides data from 1979 

onwards, and continues in real time (Berrisford et al., 2009; Dee et al., 2011). The ERA-Interim 

project was launched in order to improve key aspects of ERA-40, such as the representation of 

the hydrological cycle, the quality of the stratospheric circulation, as well as the handling of biases 

and changes in the observing system (Dee and Uppala, 2009; Dee et al., 2011; Simmons et al., 

2006; Uppala et al., 2008). This has been achieved by including many model improvements, such 

as the use of 4-dimensional variation analysis, a revised humidity analysis, the use of variation bias 

correction for satellite data, and other improvements in data handling (Berrisford et al., 2009; 

Dee et al., 2011). Cycle 31r2 of ECMWF’s Integrated Forecast System (IFS) was used for the 

ERA-Interim product. In this configuration, the model comprises 60 vertical levels, with the top 

level at 0.1 hPa; it uses the T255 spectral harmonic representation for the basic dynamical fields 

and a reduced Gaussian grid (N128, Figure 2.3, see section A.1) with an approximately uniform 

spacing of 79 km (Dee et al., 2011; Uppala et al., 2008). For more detailed model description, see 

the series report of ECMWF (ECMWF, 2013).  

The atmospheric component is coupled to an ocean-wave model resolving 30 wave frequencies 

and 24 wave directions at the nodes of its reduced 1°×1° latitude/longitude grid. ERA-Interim 

assimilates four analyses per day at 00, 06, 12 and 18 UTC. Furthermore, two 10-day forecasts 

with a 3-hourly resolution are initialized on the basis of the 00 UTC and 12 UTC analyses. 

Observations from 15 UTC of the previous day to 03 UTC on the present day are used for the 

00 UTC analyses, and observations from 03 UTC to 15 UTC are used for 12 UTC analyses (Dee 

et al., 2011; Uppala et al., 2008). ECMWF provides a variety of data in uniform lat/long grids 

(0.25°, 0.5°, 0.75°, 1°, 1.125°, 1.5°, 2°, 2.5° and 3°). The parameters (excepting vegetation, soil 

type fields, and wave 2D spectra) are interpolated from the original N128 reduced Gaussian grid 

using bilinear methods. Due to the limited scope of this dissertation, only the main research 
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targets - temperature and precipitation - are introduced briefly in the next two sections, based on 

an ECMWF technical series report (ECMWF, 2009b). 

 

Figure 2.3: Reduced Gaussian Grid N128. 

2.7.1 2 m Temperature 

In the ERA-Interim model (IFS CY31r2), the 2 m temperature is interpolated between the lowest 

model level (about 10 m above the surface in the 60-level model) and the surface temperature by 

making use of the profile functions, which are similar for other surface fluxes. The 2 m 

temperature is derived from Eq. 2.1. 

    TcgzTqcs ppdry 1                                                                                               (2.1) 

with 1
pdry

pvap

c

c
                                                                                                                       (2.2) 

where, s and q  are the dry static energy and specific humidity, respectively. pdryc , pvapc  and pc  

are the specific heats at constant pressure of dry air, water vapor, and moist air, separately, and   

is the geopotential. g is the acceleration of gravity. s  and q  at 2 m level are calculated from Eq.  

2.3 and 2.4. 
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where, surfs  and surfq  is the dry static energy and specific humidity at the surface, respectively. 

Similarly, ls and lq are at lowest model level. 
2z is 2 m, 

lz is the height of the lowest model level 

and HWMOz0  and QWMOz0  are roughness lengths, which both equal to 0.003 when larger than 0.03, 

otherwise HWMOz0  equals to Hz0  and QWMOz0  equals to Qz0 . L  is the Obukhov length. 
M  

represents the exchange coefficient for momentum at the surface. The subscript WMO means 

WMO reporting practice (ECMWF, 2009b). 

2.7.2 Total Precipitation 

Total precipitation is comprised of convective precipitation (CP) and large scale precipitation 

(LSP or stratiform precipitation) from various sources, pure ice clouds, pure water clouds and 

mixed phases. Because microphysical processes are different in clear and cloudy skies, the 

precipitation is assimilated in these two parts separately (ECMWF, 2009b). The precipitation (P) 

is summarized by: 

clrcld PPP                                                                                                                           (2.5) 

where, 
cldP is the precipitation in the cloudy situation, while clrP  is for clear sky. They are 

calculated separately, based on Eq. 2.6 and 2.7. 

 dAlHP
A

Pcld

 
1

                                                                                                               (2.6) 

  dAlHP
A

Pclr

  1
1

                                                                                                        (2.7) 
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where,  lH  represents the ratio of cloudy in the grid area A  with the specific humidity l . The 

fraction of precipitation 
pa  in the grid cell is obtained by: 

clr

p

cld

pp aaa                                                                                                                           (2.8) 

   dAPHlH
A

acld

p 
1

                                                                                                           (2.9) 

    dAPHlH
A

aclr

p   1
1

                                                                                                  (2.10) 

Here, only the basic equations for the time change of the grid-box averaged cloud water/ice 

content are given and the cloud fraction is obtained by: 

  preccldstratblconv GESSSlA
t

l





                                                                             

(2.11) 

  evapstratconv aaaaA
t

a
 




                                                                                         (2.12) 

The variables and notations in Eq. 2.11 and 2.12 represent the following processes: 

 lA ,  aA  Rate of change of cloud water/ice and cloud area due to transport 

through the boundaries of the grid volume. 

convS , conva  Rate of formation of cloud water/ice and cloud area by convective 

processes 

stratS , strata  Rate of formation of cloud water/ice and cloud area by stratiform 

condensation processes 

cldE  Rate of evaporation of cloud water/ice 

precG  Rate of generation of precipitation from cloud water/ice 

evapa  Rate of decrease of cloud area due to evaporation 

The formulas for precipitation generation, fallout, evaporation, melting, and freezing processes 

are given specifically in ECMWF (2009b). 
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Chapter 3  

Evaluation of ERA-Interim  

Reanalysis Data 

3.1 Introduction 

Reanalysis products are widely applied in climate impact studies. Typically they are adopted to 

provide boundary conditions for regional climate models. Reanalysis products contain the 

following key strengths: i) data is multivariate, spatially and temporally completed, and gridded; ii) 

observation are assimilated; iii) data is physically and dynamically modeled. Generally, reanalysis 

products estimate the closest state of real atmosphere and land surface characteristics (Decker et 

al., 2012; Simmons et al., 2010). However, there are some uncertainties related to reanalysis data 

such as observation errors and model misrepresentation. The quantification of uncertainty in 

reanalysis data is a serious challenge. At present, reanalysis products are provided by four major 

centers: NCEP/NCAR Reanalysis from the National Centers for Environmental 

Prediction/National Center for Atmospheric Research (NCEP/NCAR), ERA-15, ERA-40 and 

ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF), the 

Climate Forecast System Reanalysis (CFSR) from the National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Center (GSFC), and JAR-15 from the Japan 

Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry 

(CRIEPI) (Table 1.3). 

A number of studies were carried out to evaluate the quality of reanalysis products, from global-

to-continental-to-basin-to-single site. Simmons et al. (2004) compared the monthly air 

temperature trends derived from ERA-40 and NCEP/NCAR against Climate Research Unit 

(CRU) CRUTEM2v datasets at 5°×5° grids globally and continentally. They found a good 

agreement in surface air temperature anomalies between ERA-40 and CRUTEM2v (Simmons et 

al., 2004). The variations in surface atmospheric humidity, temperature (5°×5° grid) and 

precipitation (2.5°×2.5° grid) from ERA-40 and ERA-Interim against CRUTEM3 temperature, 

HadCRUH humidity, and GPCC precipitation datasets were also diagnosed by Simmons et al. 
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(2010), respectively. They found a high temporal correlation (r = 0.997) between CRUTEM3 and 

ERA-Interim temperature for the period from 1989 to 2001 with respect to Europe. It was 

shown that the accordance of ERA-Interim and CRUTEM3 is generally good with respect to 

large-scale patterns and magnitudes (Simmons et al., 2010). For precipitation, ERA-Interim and 

GPCC have the best agreement for all six continents (Europe, Asia, North America, Africa, 

Australia and South America). Their diagnosis also indicated that ERA-Interim has sufficient 

accuracy in continental-scale precipitation for monthly anomalies (Simmons et al., 2010).  

NCEP/NCAR reanalysis data showed significant bias in moisture fields, especially in the tropics 

(Trenberth and Guillemot, 1998).  

Betts et al. (2009) evaluated the performance of ERA-40 and ERA-Interim temperature, 

precipitation and shortwave radiation data against observations from three large river basins 

(Amazon, Mississippi and Mackenzie). The seasonal cycle between two reanalysis data and 

observation are different for diverse variables and basins. For instance, ERA-40 and ERA-

Interim have higher 2 m temperature than observations in the Mississippi basin, whereas ERA-

Interim increases the precipitation and ERA-40 drifts the annual precipitation over the Amazon 

(Betts et al., 2009). ERA-Interim has some improvements over ERA-40, which results in a 

different bias against observations. Belo-Pereira et al. (2011) found ERA-Interim outperformed 

ERA-40 over the Iberian Peninsula in precipitation. However, the total precipitation was strongly 

underestimated, due to the mountainous topography. 

Decker et al. (2012) evaluated air temperature, wind speed, precipitation, downward shortwave 

radiation, net surface radiation, and latent and sensible fluxes from GSFC, NCEP, and ECMWF 

reanalysis datasets, using 33 FLUXNET flux towers. The results showed that ERA-Interim 

performed best in terms of variability for 6-hourly air temperature, and ERA-40 had the lowest 

bias in latent flux and precipitation. The variability of 6-hourly precipitation was best assimilated 

by GLDAS and ERA-Interim datasets (Decker et al., 2012). 

Although reanalysis products are improving, previous studies have shown that these products 

contain errors, due to various reasons. The application of reanalysis data for climate and 

hydrological studies should be done carefully and bias correction strategies are necessary for 

model initiation (Berg et al., 2003; Decker et al., 2012; Trenberth and Guillemot, 1998). 

Furthermore, those atmospheric fields that are crucial for snowpack, permafrost, glacier masses 

balance, or a variety of other geomorphic and ecological considerations in mountain regions, e.g. 

temperature and precipitation, should be evaluated.  
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This study adopts the high spatial resolution (0.25°×0.25°) gridded observation data E-OBS in 

the central Alps to evaluate daily minimum temperature, mean temperature, maximum 

temperature, and daily total precipitation in ERA-Interim products. E-OBS has significant 

advantages, including high spatial resolution, long-term period, uncertainty estimation 

incorporation and a novel interpolation method. This critical evaluation not only provides the 

guidelines for reanalysis product application in climate and hydrological studies, but also for 

reanalysis product downscaling and correction in complex terrain. 

3.2 Datasets 

3.2.1 ERA-Interim Data 

3-hourly ERA-Interim forecast data (03, 06, 09, 12, 15, 18, 21 and 24 UTC), initialized at 00 UTC 

from 1979-2010 and projected on a grid of 0.25°×0.25°, are applied. The 00 UTC data were 

chosen, because the differences between 00 UTC and 12 UTC data are minor and not relevant 

for the results. The used output variables are 2 m temperature, total precipitation, as well as 

surface geopotential.  Daily minimum, average, and maximum temperature were calculated from 

3-hourly values, respectively. The geopotential height was calculated by normalizing of the 

geopotential over the gravity. 3-hourly forecast precipitation was cumulated to daily totally 

precipitation. 

3.2.2 E-OBS Data 

Daily minimum temperature (Tn), daily mean temperature (Tg), daily maximum temperature (Tx) 

and daily total precipitation (rr) are retrieved with a 0.25°×0.25° spatial resolution from E-OBS 

version 6.0 which was released in April 2012 and which covers the period from 1950-2011. The 

time period from 1979-2010 was extracted for a comparison with the 0.25°×0.25° ERA-Interim 

products. ERA-Interim and E-OBS data are shifted in latitudinal and longitudinal directions by 

0.125°. The center point of the E-OBS grid is located at the cross junction of four ERA-Interim 

grid elements (Figure 3.1). The study area is located in the central Alps within 45.5-48°N, 6.25-

11.5°E. The heights of the E-OBS grids are also retrieved from the datasets. 
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Figure 3.1: Location of ERA-Interim and E-OBS grids. The dots are the center points of ERA-

Interim grids, the crosses are the center points of E-OBS grids, and the dashed lines are E-OBS 

grids (in total 210 grids in the study area).  

3.2.3 GPCC Data 

The GPCC data is available on a regular latitude/longitude grid with a spatial resolution of 0.25°, 

0.5°, 1.0°, and 2.5°. In this study, the GPCC Climatology Version 2011 with a spatial resolution 

of 0.25° in 1950-2000 is applied for the evaluation of the ERA-Interim precipitation product 

(Meyer-Christoffer et al., 2011). Note that GPCC only provide the averaged monthly 

precipitation data from 1951-2000, rather than continuous records for one grid. 

3.3 Methods 

3.3.1 2 m Temperature 

To compare the ERA-Interim temperature with the E-OBS dataset at different grid heights, 

ERA-Interim data first have to be interpolated at the heights of the E-OBS grids. The 

interpolation scheme is implemented in four steps. Because ERA-Interim and E-OBS data are 

shifted in latitude and longitude direction by 0.125°, the pair-wise high correlations were first 
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analyzed for every four ERA-Interim points, and then the average values of the four surrounding 

ERA-Interim points were equal-weighted averaged for the corresponding E-OBS value. Secondly, 

the averaged ERA-Interim data is interpolated based on lapse rates (Г). The lapse rate (Г) that 

describes the decrease of temperature with elevation is used for interpolation according to Eq. 

3.1.  

hTT reft                                                     (3.1) 

Tref is the reference temperature, which is defined by the ERA-Interim 2 m temperature (TERA_2m). 

h  is the elevation difference between ERA-Interim and E-OBS grid height. This study used the 

specific monthly lapse rate, which is calculated from the monthly mean maximum and minimum 

temperature derived from station data published by Kunkel (1989) and Liston and Elder (2006) 

(Table 3.1). These values are widely applied in earth surface modeling and their temporal 

resolution of one month can be seen as a standard with respect to generalized lapse rates 

(Bernhardt and Schulz, 2010; Liston et al., 2008; Mernild et al., 2009).  

Table 3.1:  Fixed monthly lapse rates (°C km-1) extracted from Kunkel (1989) and Liston and 

Elder (2006). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Г  -4.4 -5.9 -7.1 -7.8 -8.1 -8.2 -8.1 -8.1 -7.7 -6.8 -5.5 -4.7 

 

Subsequently, daily minimum, average and maximum temperatures, as well as quantiles (1 %, 5 %, 

50 %, 95 %, and 99 %) and mean values are calculated from 3-hourly records. The “observation 

minus reanalysis” (OMR) method is used to evaluate the anomaly between observation and 

reanalysis data, which has previously been demonstrated to be a simple and effective method 

(Kalnay and Cai, 2003; Kalnay et al., 2006; Lim et al., 2008). The root mean square error (RMSE) 

and mean absolute error (MAE) are used for an assessment of the differences between ERA-

Interim and E-OBS (Eq. 3.2 and 3.3).  

 
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with Tt
ERA = ERA-Interim temperature at time t, Tt

EOBS = E-OBS temperature at time t, and N = 

number of records.  
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3.3.2 Daily Total Precipitation 

Like temperature, ERA-Interim daily total precipitation is simply first averaged, using the four 

surrounding ERA-Interim grids (Figure 3.1). Occurrence and amount as the most important 

precipitation characteristics are analyzed. In term of occurrence, this study used several threshold 

values (0.5, 1, 5, 10 and 20 mm) to define wet/dry days. 10 mm and 20 mm thresholds represent 

the heavy events. The Correspondence Ratio (CR) is introduced for occurrence assessment (Eq. 

3.4), which represents the ratio of dry and wet days that occurred on the same day in both ERA-

Interim and E-OBS (Belo-Pereira et al., 2011). The RMSE and MAE are also adopted for daily 

precipitation amount evaluation. In addition, the annual cycle of precipitation is diagnosed with 

respect to daily and monthly total precipitation. 

N

nn
CR

wetdry 
                                                                                                                        (3.4) 

where dryn and wetn  are the dry and wet days that occurred simultaneously in ERA-Interim and 

E-OBS, respectively, N is the number of days in the entire period from 1979-2010. The value of 

occurrence is 1 on wet days and 0 on dry days above/below various threshold values.  

3.4 Results 

3.4.1 2 m Temperature 

The correlations of the four ERA-Interim grid elements are first analyzed pair-wisely to check 

whether there are some large errors (or outliers). The four surrounding ERA-Interim points are 

sequentially numbered 1 to 4 from northwest corner to southeast corner. Thus, there are six pairs. 

Figure 3.2 shows the histograms of the pair-wise correlations of four ERA-Interim points for 

each E-OBS grid (entire 210 grids in the study area). High correlations (close to 1) are found for 

temperature and precipitation, especially in three temperature fields (Figure 3.2). The grids in the 

same latitude (e.g. 1 & 2 and 3 & 4) are most agreeable. The two points on the diagonal (1 & 4) 

are correlated worst. Here, the average value of the four surrounding ERA-Interim points is 

applied for the corresponding E-OBS grid. 
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Figure 3.2: Histogram of the pair-wise correlations of four ERA-Interim points for each E-OBS 

grid. (a) is for Tn, (b) is for Tg, (c) is for Tx and (d) is for rr.  

Figure 3.3 shows the correlations and mean anomalies in daily minimum temperature between 

ERA-Interim and E-OBS with a spatial resolution of 0.25°×0.25° over 1979-2010. The mean 

anomaly was calculated by the OMR method. The correlations between two datasets change 

from 0.94 to 0.98 and the mean anomalies vary between -1.4 and 3.4 °C. Generally, ERA-Interim 

overestimates in low altitudes and underestimates in high elevation areas. The lower correlations 

and positive anomalies are distributed along the mountain crest, while higher correlation and 

negative anomaly occur in the lower elevation areas in the northeast of mountain ridge. The high 

mountain barrier effect possibly leads to the positive anomaly in the southeast of the mountains. 

A similar situation is found for Tg in Figure 3.4. The correlations fall within a range 0.96 to 1 and 

the mean anomalies range from -0.8 to 2.4 °C. The average anomaly of whole area is 0.6 °C for 

both Tn and Tg, which indicates the good agreement between ERA-Interim and E-OBS dataset. 

The correlations and mean anomalies for Tx are shown in Figure 3.5. It is interesting that the 

lower correlations not only occur in the mountain crest, but also distribute parallel to the 

mountain ridge from southwest to northeast. The correlations vary from 0.95 to 0.99 and the 
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anomalies change between -0.4 and 2.1 °C. However, ERA-Interim underestimates Tx over the 

majority of grids (around 95 %), with an average of 0.9 °C for the whole area. This comparison 

demonstrates that the ERA-Interim product generally agrees well with E-OBS dataset, with the 

average anomalies of 0.6 °C both for Tn and Tg, and 0.9 °C for Tx. However, Tn and Tg are 

overestimated by ERA-Interim at the low altitude and are underestimated in the high mountain 

crest. Around 95 % of the study area is underestimated for Tx. It is worth noting that the 

interpolation based on monthly fixed lapse rate also contributes to the anomalies.  

 

Figure 3.3: Correlations and anomalies of daily minimum temperature between ERA-Interim and 

E-OBS dataset from 1979-2010. The mean anomalies are labeled in the grids. 
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Figure 3.4: Correlations and anomalies of daily average temperature between ERA-Interim and 

E-OBS dataset from 1979-2010. The mean anomalies are labeled in the grids. 

 

Figure 3.5: Correlations and anomalies of daily maximum temperature between ERA-Interim and 

E-OBS dataset from 1979-2010. The mean anomalies are labeled in the grids. 

Figure 3.6 shows the anomalies of five quantiles (1 %, 5 %, 50 %, 95 %, and 99 %) between 

ERA-Interim and E-OBS dataset for Tn, Tg and Tx for the whole study area. In general, the 
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anomalies vary in a similar range from -6 to 4 °C, especially for 25 % to 75 % range within -2 to 

2 °C.  Tx has more outliers than Tn and Tg. The extreme quantiles 1 % and 99 % as well as 95 % 

have much higher deviations than the median values. This again illustrates that ERA-Interim is 

less able to capture extreme temperature in complex terrains. 

 

Figure 3.6: Boxplots of the anomalies of five quantiles (1 %, 5 %, 50 %, 95 %, and 99 %) for Tn 

(left), Tg (middle), and Tx (right) from 1979-2010 for the whole area. Thick horizontal lines in the 

boxes represent the median values. Boxes indicate the inner-quantile range (25 % to 75 %) and 

the red crosses show the outliers. 

Figure 3.7 presents the monthly anomalies and 12 month running mean anomalies for Tn, Tg and 

Tx over the entire area. The monthly anomaly is defined with respect to the monthly average 

anomaly and is also standardized from 1979-2010. After this adjustment, the inter-annual 

variability and long-term shifts are easy to compare. Figure 3.7 illustrates that ERA-Interim and 

E-OBS identify generally similar inter-annual variations over the long-term period. The anomalies 

are generally small and show a slight drift over time. For three temperature fields, the negative 

anomalies occurred from 1979-1985, and then turned to positive beginning in 1986 and ending 

around 1991. From 1986-1991, the trends, in particular for Tg, are significantly changed for ERA-

Interim. However, the underlying reason for this trend mutation cannot yet be explained; it is 

possibly related to ERA-Interim data assimilation system. In addition, Tn has a much longer 

positive anomalies in the middle of the 1990s, and a longer negative anomalies in late 2000s. 

ERA-Interim underestimated Tx in the last ten years. 
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Figure 3.7: Monthly anomalies (grey dots) and twelve-month running averages (black solid line) 

over entire area from 1979-2010. The monthly anomaly is defined with respect to the monthly 

average anomaly and is also standardized from 1979-2010. a) is for Tn, b) is for Tg and c) is for Tx.  

3.4.2  Daily Total Precipitation 

3.4.2.1 Annual Cycle for the Entire Area 

Figure 3.8 presents the mean annual cycle of daily total precipitation for the whole area for the 

period 1979-2010. The black line is for E-OBS while the blue line is for ERA-Interim, both from 

1979-2010. ERA-Interim has almost the same standard deviation of the inter-annual variability of 

daily precipitation as E-OBS, 1.0 mm day-1. Generally, ERA-Interim has wet biases throughout 

the warm season and dry biases in the cold season. The largest biases occur during May to August 

with a range of 0.6-0.8 mm day-1. The same results are found for monthly total precipitation. 
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Figure 3.8: Mean annual cycle of daily total precipitation for the whole area from 1979-2010. 

Overall, the standard deviation of the inter-annual variability of monthly precipitation from 1979-

2010 is similar for both ERA-Interim and E-OBS, 32.5 mm month-1 and 31.1 mm month-1, 

respectively. Figure 3.9 shows the comparison of mean annual cycle of monthly total 

precipitation for the whole area. ERA-Interim underestimates the total precipitation compared to 

E-OBS in the cold season (November to February) and overestimates in the warm season (April 

to September). ERA-Interim has a significant wet bias, particularly from May to August, with 

approximately 19.3 % more precipitation than E-OBS. March and October have the lowest dry 

bias between ERA-Interim and E-OBS, 1.5 % and 0.8 % respectively. The GPCC monthly 

precipitation (Version 2011) (Meyer-Christoffer et al., 2011), as the reference data, is presented in 

Figure 3.9 as well. The GPCC represents long-term (1951-2000) monthly land surface 

precipitation derived from rain gauges built on GTS (The Global Telecommunications System) 

and the historic data (Meyer-Christoffer et al., 2011). Although the time series differs from ERA-

Interim, it has little effect on the annual variability. ERA-Interim has also a wet bias (12.2 %) 

against GPCC from May to August. ERA-Interim underestimates in November, January, and 

February, and overestimates for the other months. January has the lowest bias, whilst July has the 

greatest. The annual cycle comparison provides a basic confidence in the ability of ERA-Interim 

to capture precipitation variability in the cold season, which is of special interest for snowpack 

and glacial studies. However, some biases corrections depend on the period of years are still 

necessary. 
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Figure 3.9: Mean annual cycle of monthly total precipitation for the whole area. The time period 

of ERA-Interim and E-OBS dataset is from 1979-2010, and GPCC’s time period is from 1951-

2000. 

3.4.2.2 Precipitation Spatial Variability 

Figure 3.10 shows the E-OBS annual precipitation distribution from 1979-2010. The annual 

precipitation varies from 600 to 2000 mm, with higher precipitation distributed along the higher 

elevation mountain area. ERA-Interim precipitation did not capture the variability of E-OBS well 

with respect to the same period (Figure 3.11). The link between elevation and precipitation is 

weakly reflected by ERA-Interim. Figure 3.12 illustrates the annual precipitation difference 

between E-OBS and ERA-Interim. ERA-Interim underestimates the annual precipitation in the 

high mountainous area and clearly overestimates in the lower elevation areas. The largest bias is -

120 % in the southeast of the study area in Figure 3.12. The ERA-Interim data should be 

corrected for further hydrological application, because of the annual bias has been demonstrated 

in the Figure 3.12.  
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Figure 3.10: Annual precipitation of E-OBS data from 1979-2010. 

 

Figure 3.11: Annual precipitation of ERA-Interim data from 1979-2010. 
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Figure 3.12: Annual precipitation bias between E-OBS and ERA-Interim from 1979-2010. 

Figure 3.13 displays the monthly mean anomaly of daily total precipitation between E-OBS and 

ERA-Interim from 1979-2010. Here, based on monthly mean daily total precipitation, it is easy to 

investigate the variability of the seasons, which is of great interesting for hydrologists. In general, 

ERA-Interim remarkably underestimates the daily total precipitation in the winter season from 

November to March in the high elevation areas (Southeast of Switzerland), with a range of 2.5-

3.4 mm day-1 and significantly overestimates in the summer season from April to August in the 

lower elevations, with a range of 2.1-3.3 mm day-1. September and October have relative small 

biases within the range of -1.7-1.9 mm day-1. The potential cause of these biases is that snow 

accumulation in the winter and melting in summer modeled inaccurately in the ERA-Interim 

forecast model. 
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Figure 3.13: Monthly mean anomaly of daily total precipitation between E-OBS and ERA-

Interim from 1979-2010.  
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3.4.2.3 Precipitation Occurrence and Amount 

Figure 3.14 shows the correspondence ratio (CR) for various precipitation threshold values: 0.5, 1, 

5, 10 and 20 mm. The grids are sequentially numbered 1 to 210 from northwest corner to 

southeast corner. The CR increases with higher thresholds over the whole study area. 0.5 mm 

and 1 mm threshold have similar occurrences in ERA-Interim and E-OBS, particularly the same 

fluctuation in low elevation grids. These fluctuations become indistinguishable for 10 mm and 20 

mm, which illustrate that ERA-Interim capture the occurrence of heavy amount well, compared 

to E-OBS. The CRs vary between 0.93 and 0.99 for 20 mm threshold. Figure 3.15 illustrates the 

CRs distribution for the 0.5 mm threshold. The low CRs occurred in the same places where the 

large anomalies were found in the summer season, from May to August. These two figures imply 

that ERA-Interim has some bias for summer precipitation assimilation, both in occurrence and 

amount. In contrast, MAE and RMSE show significant fluctuations for higher thresholds (Figure 

3.16 and 3.17). The grids have larger MAE and RMSE are consistent with the grids that have 

shown larger monthly mean daily total precipitation anomalies in Figure 3.13. Figure 3.18 shows 

the mean absolute error (MAE) for 0.5 mm threshold values for all grids.  

 

Figure 3.14: Correspondence ratio (CR) for various threshold values for all grids. The grids are 

sequentially numbered 1 to 210 from northwest corner to southeast corner. 
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Figure 3.15: Correspondence ratio (CR) for 0.5 mm threshold values for all grids. 

 

Figure 3.16: Mean absolute error (MAE) for various threshold values for all grids. The grids are 

sequentially numbered 1 to 210 from northwest corner to southeast corner. 
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Figure 3.17: Root mean square error (RMSE) for various threshold values for all grids. The grids 

are sequentially numbered 1 to 210 from northwest corner to southeast corner. 

 

Figure 3.18: Mean absolute error (MAE) for 0.5 mm threshold values for all grids. 
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3.4.3 Elevation Dependence of Temperature and Precipitation 

The empirical relationship between elevation and temperature and precipitation is always applied 

prior to interpolation and disaggregation (e.g. Im et al., 2009). Figure 3.19-3.21 show the linear 

regression between elevation and Tn, Tg and Tx for 5 quantiles and the mean value from E-OBS 

dataset, respectively. Note that each quantile is calculated from the distribution over 1979-2010 

for each grid. The slopes in figures reflect the gradient of temperature decrease. Overall, the 

relationship between elevation and temperature is strong (R2 varied from 0.78 to 0.94), in other 

words, elevation is the key factor that affects temperature changes. Tx has a higher gradient than 

Tn on average. Low quantiles have more scatter grids than high quantiles for all three temperature 

fields (1 % quantile have lowest R2 for three temperature fields). This illustrates that ERA-

Interim is relatively poor in capturing the variation in lower temperatures. Meanwhile, these 

slopes confirmed that proved a fixed lapse rate (-6.5 °C km-1) for the whole period is 

inappropriate. 

 

Figure 3.19:  Linear regression between elevation and Tn for 5 quantiles and mean value for all 

grids from 1979-2010. 
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For Tn, the slope ranges from -4.68 to -4.39 °C km-1. 1 % and 5 % quantiles show the larger 

dispersive feature in the lower elevations (lower R2). In contrast, 95 % and 99 % quantiles are 

converged in the higher areas. The points above the fitting line represents the grids in the 

southeast of mountain and the below points represents the grids in the northwest of the 

mountain. In term of Tg, the slope ranges from -5.70 to -4.66 °C km-1. The 5 % quantile of Tg 

shows the lowest gradient, whereas 99% demonstrates the highest gradient. Generally, as for Tn, 

the low quantiles (1 % and 5 %) distributed with more scatter in the lower locations than in 

higher elevation areas. For Tx, the slope ranges from -6.89 to -4.66 °C km-1. The lowest and 

highest gradients occur in the 5 % and 99 % quantile, like Tg, respectively. There are significant 

differences between high quantile and low quantile for Tx. Again, the linear regressions show that 

elevation is the key factor that determines the temperate variation. However, the fixed lapse rate 

is not inappropriate in the complex terrain.  

 

Figure 3.20: Linear regression between elevation and Tg for 5 quantiles and mean value for all 

grids from 1979-2010. 

Figure 3.22 illustrates the seasonal dynamic of E-OBS (ГE-OBS) and Kunkel lapse rates (ГKunkel, 

Table 3.1) for Tn, Tg and Tx for the whole area from 1979-2010, respectively. The ГKunkel do not 
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show any inter-monthly variability since they are defined by a single value for each month. 

Generally, ГE-OBS in winter (October-February) are smaller but with higher variability. Lapse rates 

in warm months varied in lower inter-monthly variability, especially from May to August. For 

Tnand Tg, in most of 12 months, ГKunkel is larger than ГE-OBS, in particular in summer. In the 

contrast, ГKunkel is closest to ГE-OBS for Tx. The lapse rate comparison between ГKunkel and ГE-OBS 

implied that using a fixed monthly lapse rate to downscale ERA-Interim is problematic. The 

temperature bias between ERA-Interim and E-OBS also results from the applied lapse rate 

during interpolation. Therefore, an appropriate lapse rate determines the downscaling accuracy. 

This issue will be discussed in the Chapter 4, in which, a new robust approach based on ERA-

Interim lapse rate is developed. 

 

Figure 3.21: Linear regression between elevation and Tx for 5 quantiles and mean value for all 

grids from 1979-2010. 
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a)

 b) 

 c) 

Figure 3.22: Boxplots of monthly lapse rates. a) for Tn, b) for Tg, and c) for Tx. Thick horizontal 

lines in the boxes represent the median values from 1979-2010. Boxes indicate the inner-quantile 

range (25 % to 75 %) and the whiskers show the full range of the values. 
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Figure 3.23 shows the correlation between elevation and annual precipitation. The linear link is 

weak between these two variables, with an R2 of only 0.14. This relationship does not work in 

this complex terrain. This again confirms the results that have been presented by Barry (2008), 

that it is difficult to find a general relationship between precipitation and elevation, due to the 

great variability in the interaction between atmosphere circulation and complex topographical 

characteristics. Therefore, in precipitation downscaling, variables representing atmosphere 

circulation should be considered, such as humidity. 

 

Figure 3.23: Linear regression between elevation and annual precipitation. 

3.5 Discussion and Conclusion 

This study evaluated the daily temperature and precipitation data from ERA-Interim, which is the 

latest reanalysis product developed by ECMWF. ERA-Interim daily total precipitation is 

compared with a high resolution gridded observation dataset (E-OBS) at 0.25°×0.25° grids for 

the period 1979-2010, over the central Alps (45.5-48°N, 6.25-11.5°E). The differences of 

temperature and precipitation within these two datasets are small in general. The correlations fall 

with a range of 0.96 to 1 and the mean anomaly ranges from -0.8 to 2.4 °C for Tg . The average 

anomaly of the whole area is 0.6 °C for both Tn and Tg, and 0.9 °C for Tx. Tn and Tg are 

overestimated by ERA-Interim at low altitudes and are underestimated on high mountain crests. 

The quantile analysis showed that, in general, the ERA-Interim data product generally agrees well 

with E-OBS observations, but ERA-Interim is less able to capture extreme temperature in 

complex terrains. 
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The linear regression between elevation and temperature showed that elevation effects between 

ERA-Interim geopotential heights and E-OBS grid heights could explain the main bias. 

Nevertheless, elevation is not the only factor. The fixed lapse rate may results in the bias. In 

addition, the ERA-Interim data has the large-scale errors, such as observation errors, model 

background errors, operator errors, and errors resulting from the interpolation from the original 

N128-reduced Gaussian grid to lat/long grids (Dee, 2005). In addition, although the best 

interpolation method has been tested and applied for E-OBS, the bias is difficult to eliminate, 

due to the limited observations and inconsistent time periods (Caesar et al., 2006; Hofstra et al., 

2009; Kysely and Plavcova, 2010).  

For precipitation, the effect of elevation is certainly not the main factor (with a low R2 of 0.14). 

Dry/wet days are defined using several threshold values (0.5 mm, 1 mm, 5 mm, 10 mm and 20 

mm). The result shows that ERA-Interim captures precipitation occurrence well, with a range of 

CR from 0.65 to 0.99 for 0.5 mm to 20 mm thresholds. However, the bias for the precipitation 

amount increases with increasing thresholds. The mean absolute error (MAE) varies between 4.5 

mm day-1 and 9.5 mm day-1 on wet days for the entire area.  In terms of mean annual cycle, ERA-

Interim has almost the same standard deviation of the inter-annual variability of daily 

precipitation as E-OBS, 1.0 mm day-1. Significant wet biases occurred in ERA-Interim 

throughout the warm season (May to August) and dry biases in the cold season (November to 

February).  

The spatial distribution of mean annual daily precipitation shows that ERA-Interim significantly 

underestimates precipitation amount in high mountains and on the northern flank of the Alpine 

chain from November to March, whilst pronounced overestimation occurs for in the southern 

flank of the Alps. The poor representation of topographical characteristic such as grid height of 

the ERA-Interim model is possibly responsible for the bias (Decker et al., 2012). The comparison 

demonstrates that ERA-Interim precipitation amount needs bias correction for further alpine 

climate studies, although it reasonably captures precipitation occurrence. This critical evaluation 

not only diagnosed the data quality of ERA-Interim, but also provided evidence for effective 

reanalysis product downscaling and bias correction in complex terrains. 
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Chapter 4  

Downscaling Temperature Based on 

Modeled Lapse Rate 

 

An edited version of this chapter is published as 

 Gao, L., Bernhardt, M., and Schulz, K.: Elevation correction of ERA-Interim temperature 

data in complex terrain. Hydrology and Earth System Sciences, 16, 4661-4673, 

doi:10.5194/hess-16-4661-2012, 2012. 

 

4.1 Introduction 

The near surface air temperature (Ta) is an important control for a large variety of environmental 

processes and influences the local as well as the global water, energy and matter cycle (Bolstad et 

al., 1998; Prihodko and Goward, 1997; Prince et al., 1998). Changes in Ta have a distinct influence 

on biogeochemical processes, the turbulent exchange between surface and atmosphere as well as 

on plant growth and many other components at the interface between earth surface and 

atmosphere (Bolstad et al., 1998; Nieto et al., 2011; Regniere, 1996; Stahl et al., 2006). Therefore, 

historic, current and future temperature time series are needed for analyzing possible changes and 

impacts on the environment (Barry, 1992; Pepin and Seidel, 2005). They can also provide reliable 

data for decision-makers (e.g. tourism planning) and model developers (Dodson and Marks, 

1997; Maurer et al., 2002; Minder et al., 2010; Mooney et al., 2011).  

The most common sources for Ta time series are meteorological stations. However, 

meteorological networks are sparse in complex terrains, in particular at high altitudes, such as in 

mountains. This is mainly due to difficulties with the installation and maintenance of the stations 

(Kunkel, 1989; Rolland, 2003). Hence, information about Ta has to be calculated on the basis of 

surrounding stations, which are usually far away from the point of interest. The Ta can also be 

calculated with the help of climate models, which usually have a limited spatial resolution 
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(Dodson and Marks, 1997; Ishida and Kawashima, 1993; Vicente-Serrano et al., 2003). Both 

methods tend to work well in homogeneous terrains, but tend to fail in heterogeneous terrains, 

where changes in the surface temperature can occur over short distances. Reasons for failure are 

the misrepresentations of key relationships between Ta and elevation (DeGaetano and Belcher, 

2007) and the limitations of climate models to consider small-scale variations of the land surface. 

Hence, lapse rates (Г), which display the empirical relationship between Ta and altitude, are often 

used to interpolate measurements or to scale model results of Ta with respect to elevation as well 

as for generating the required small-scale information of Ta (e.g. Wörlen et al., 1999). One has to 

distinguish between near surface temperature and free air lapse rates in general. The first one is 

influenced by the surface energy balance and adiabatic effects while the second one is dependent 

on the adiabatic effect and the current stratification of the atmosphere (Cullen and Marshall, 2011; 

Marshall et al., 2007). Both kinds of lapse rates are used in this study and investigate their 

performance with respect to a correction of ERA-Interim model results. The most common 

methods typically assume lapse rates in the range of -6.0 °C km-1 (e.g. Dodson and Marks, 1997) 

to -6.5 °C km-1 (e.g. Lundquist and Cayan, 2007; Maurer et al., 2002; Stahl et al., 2006), consider 

some similarity to the theoretical pseudo adiabatic lapse rate (Hamlet and Lettenmaier, 2005) or 

to the monthly variability of the temperature gradient within the atmosphere (Kunkel, 1989; 

Liston and Elder, 2006). However, many studies have proven that a fixed lapse rate may be 

problematic since the values of the lapse rate can vary significantly within short time periods of 

less than a month (Lundquist and Cayan, 2007; Minder et al., 2010; Rolland, 2003). The reason 

for these variations can be traced back to topographical characteristics of an area (Cullen and 

Marshall, 2011; Mahrt, 2006), the synoptic circulation (Blandford et al., 2008; Cullen and Marshall, 

2011; Marshall et al., 2007; Pages and Miro, 2010), the activity of the vegetation  (Laughlin, 1982), 

seasonal variations with respect to the incoming radiation (Blandford et al., 2008; Rolland, 2003) 

and diurnal variations, e.g. due to a changing cloud cover (Minder et al., 2010). This lapse rate 

variability can only be monitored by dense meteorological station networks or by using 

alternative strategies that are able to cover the temporal and spatial variability of air temperature.  

One of such strategies is using global or regional scale climate model temperature outputs (e.g. 

reanalysis data) for different pressure levels that can also be used for a characterization of lapse 

rates and a subsequent downscaling of modeled temperatures without a direct use of  

observations (Maraun et al., 2010). Mokhov and Akperov (2006) used NCEP/NCAR reanalysis 

temperature profiles to investigate the relationship of tropospheric lapse rates and global averages 

of monthly surface temperatures. However, they focused on large scale patterns rather than 
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testing this approach against local site data. In a similar way, Gruber (2012) applied the lowest 

seven pressure levels of NCEP data for the calculation of corrected surface temperatures. 

However, a detailed analysis of the quality of the method was not a focus.  

This chapter presents and tests a newly developed elevation correction approach that is based on 

the European Centre for Medium Range Weather Forecast (ECMWF) reanalysis product ERA-

Interim (Berrisford et al., 2011; Dee et al., 2011) with a focus on often critical Alpine 

environments. The method accounts for the temporal variability of lapse rates by using model 

internal temperature profiles. It allows for a scaling of 0.25°, 3-hourly ERA-Interim data to the 

point scale, and is tested and validated against two different, standard correction methods (one 

based on station measurements, and another one that uses fixed data from literature) at twelve 

meteorological stations located in mountainous environments in the German and the Swiss Alps. 

4.2 Data and Methods 

4.2.1 ERA-Interim data 

ERA-Interim provides a variety of data in uniform latitude/longitude grids (0.25°, 0.5°, 0.75°, 1°, 

1.125°, 1.5°, 2°, 2.5° and 3°). The parameters (except vegetation, soil type fields and wave 2D 

spectra) are interpolated from the original N128 reduced Gaussian grid using bilinear methods. 

The elevation dependency of the 2m temperature is not considered within the interpolation 

scheme. 3-hourly forecast data (03, 06, 09, 12, 15, 18, 21 and 24 UTC) initialized at 00 UTC from 

1979-2010 which are projected on a grid of 0.25°×0.25° is applied. The used output variables are 

2m temperature, surface geopotential, as well as temperature and geopotential height at 925 hPa, 

850 hPa and 700 hPa levels. The geopotential height is calculated by the normalization of the 

geopotential over the gravity. 

4.2.2 Test sites 

The data from twelve test sites, all located in the German and Swiss Alps, have been used in the 

analysis. The stations are located within four different ERA-Interim grid elements. The stations 

can be seen as four clusters of three stations (one at the valley bottom, one at the crest region and 

a station in between). A detailed description of the measurements and of the location of the 

different stations is given in Figure 4.1 and Table 4.1. All measurements were aggregated to 3-

hourly (T3h) and daily (Td) data for a later comparison with ERA-Interim data (Table 4.1). Days 

with missing values were excluded and were not used for any further analysis.  
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Figure 4.1: Location of the twelve meteorological stations (triangles), and ERA-Interim 

0.25°×0.25° grids (dashed line). Twelve stations were clustered into four groups according to the 

different ERA-Interim grids. The elevation ranges from 22 to 4783 m a.s.l., with a DEM 

resolution of 90 m.  

One important but difficult to answer question is, whether individual stations might be used by 

ERA-Interim for assimilation purposes. If assimilated, the ERA-interim predictions are not fully 

independent from the observed data which are subsequently used for calibration and validation 

of the suggested downscaling methods. However, even a direct contact with the ECMWF 

personnel could not give a clear answer to this question (Pappenberger, 2012). It is probable that 

the data of the stations Zugspitze, Garmisch and Sion are used for assimilation, given their status 

as WMO SYNOP stations (Dee et al., 2011; Simmons et al., 2010). According to the information 

of  the ECMWF it can be assumed that at least the majority of the stations at Zugspitzplatt, Fey, 

Les Diablerets, Engelberg, Gütsch ob Andermatt, Titlis, Scuol, Buffalora and Naluns/Schlivera 

are not used by ERA-Interim and therefore represent fully independent dataset. 
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Table 4.1: Test sites information (ERA_height is the ERA-Interim model elevation). 

 Site latitude longitude Altitude 

(m a.s.l) 

ERA_ height 

(m a.s.l) 

Time Series 

Group 1 Garmisch 47.48 11.07 719 1287 1979-2010 

Zugspitzplatt 47.41 11.00 2250 1999-2010 

 Zugspitze 47.42 10.99 2964  1979-2010 

Group 2 Sion 46.22 7.33 482 1408 2002-2004 

Fey 46.19 7.27 737  

Les Diablerets 46.33 7.20 2966  

Group 3 Engelberg 46.82 8.41 1036 1432 1994-2010 

Gütsch ob 
Andermatt 

46.65 8.62 2287  

Titlis 46.77 8.43 3040  

Group 4 Scuol 46.79 10.28 1304 1818 1999-2010 

 Buffalora 46.65 10.27 1968  

Naluns/Schlivera 46.82 10.26 2400  

 

4.2.3 Downscaling Methods 

Lapse rates (Г) describe the decrease of Ta with elevation. Equation 3.1 is used for all of the four 

presented correction methods, but the calculation of Tref and Г varied. In this chapter, Tref is the 

reference temperature, which was either defined by the ERA-Interim 2 m temperature (TERA_2m) 

or the ERA-Interim temperature at the 850 hPa pressure level (TERA_850). 

This test used four different methods for calculating Г, Method I) specific monthly lapse rates (ГS) 

extracted from the literature, Method II) measured lapse rates (ГM), which were calculated on the 

basis of two meteorological stations covering the maximum elevation range of the area, and 

Method III) and IV) ERA-Interim lapse rates (Г700_925 and Г850_925/Г700_850) which were calculated 

on the basis of ERA-Interim temperatures at different pressure levels. Method I made use of 

monthly values of ГS, which are calculated from the monthly mean maximum and minimum 

temperature derived from stations published by Kunkel (1989) and Liston and Elder (2006) 

(Table 3.1).  
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Method II used measured data from two meteorological stations for calculating 3-horly and daily 

lapse rates. The highest and lowest elevated stations per group for this calculation are used (Table 

4.1). The lower elevated station represents the conditions at the valley bottom while the higher 

elevated station is representative for the crest region. Method II was used as a benchmark to 

compare to all other methods. Since stations at high elevation that are able to properly represent 

the meteorology are rare, other correction methods that are independent of surface 

measurements have to be developed (Blandford et al., 2008; Pages and Miro, 2010; Rolland, 

2003).  

In the following, two methods are introduced based on ERA-Interim internal temperature 

gradients for addressing this need. Temperatures as well as the geopotential heights of the 700 

hPa, 850 hPa and 925 hPa levels were used for calculating Г700_925, Г850_925 and Г700_850. This was 

done by calculating temperature differences between the 700 hPa and 850 hPa (Г700_850), 700 hPa 

and 925 hPa (Г700_925), as well as 850 hPa and 925 hPa (Г850_925) level (Figure 4.2) and by dividing 

through the differences in the corresponding geopotential heights. 

 

Figure 4.2: Schematic illustration of measured lapse rate and ERA-Interim derived lapse rates for 

Group 1. Гm was calculated based on the two largest-elevation-difference stations (e.g. Garmisch 

and Zugspitze station). Temperatures as well as the geopotential heights of the 700 hPa, 850 hPa 

and 925 hPa levels were used for calculating Г700_925, Г850_925 and Г700_850. The dashed line represents 

the mean geopotential height of the corresponding pressure level (for the period 1979-2010). 

A differentiation into Г850_925 and Г700_850 was introduced to accommodate for different 

atmospheric conditions and therefore dominant controls on surface temperature. While low 
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altitudes are often influenced by local circulation patterns (represented by Г850_925), temperature 

conditions at higher elevations (represented by Г700_850) are more representative to free air flow 

conditions (Mahrt et al., 2001; Pepin and Seidel, 2005). Tabony (1985) noted that the transition 

from local circulation dominated to free air-dominated temperatures could be found at 

approximately 1400 m a.s.l. within the Austrian Alps. This estimate is used for splitting up the 

temperature gradient into a lower, local flow dominated and a higher, free air flow dominated, 

gradient. For test sites, the 850 hPa level varying around 1500 m a.s.l., was used as a transition 

level dividing the local circulation dominated zone, from the free air flow dominated zone. This 

study used TERA_850 instead of TERA_2m as a basis for the calculation of the elevation correction for 

locations higher than 1500 m. Figure 4.2 illustrates (for stations in group 1 as an example) the 

different parameters used in Eq. 3.1. Method III uses TERA_2m and Г700_925 for the calculation of the 

temperature (Ta) at Garmisch station and TERA_850 and Г700_925 for Zugspitze and Zugspitzplatt 

stations. In Method IV, TERA_2m and Г850_925 are the basis for the calculation of Ta at Garmisch 

station and TERA_850 as well as Г700_850 for Zugspitze and Zugspitzplatt stations (Table 4.2). 

Table 4.2:  Applied lapse rate (Г) and reference temperature (Tref) of four correction methods for 

twelve test stations.  

Method Г Tref Station 

Method I ГS TERA_2m  All  

Method II Гm  TERA_2m All  

Method III Г700_925 TERA_2m < 1500 m a.s.l. 

Г700_925 TERA_850 > 1500 m a.s.l. 

Method IV Г850_925 TERA_2m < 1500 m a.s.l. 

Г700_850 TERA_850 > 1500 m a.s.l. 

 

4.3 Results 

4.3.1 Validation of the original ERA-Interim temperature data 

In a first step, the quality of the uncorrected ERA-Interim data was analysed. A very good 

agreement between ERA-Interim and E-OBS data with high correlation values was found in 

Chapter 3. The mean average error (MAE) between the two datasets becomes larger in the 

Alpine parts of the test area and can be connected to elevation differences between ERA-Interim 
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model elevations and E-OBS grid elevations. The elevation-dependent analysis shows that the 

existing errors can be well connected to elevation effects and that the large scale error of ERA-

Interim is small in general. A comparison of ERA-Interim results with the available 

meteorological stations underlines these results (Figure 4.3). It can be seen that the 0.25° ERA-

Interim results show large deviations with respect to point measurements. This is especially true 

in case the elevation of the stations differ significantly from mean elevation of the corresponding 

ERA-Interim grid elements. The largest biases for the higher elevated stations are found, while 

the stations located at the valley bottom show the highest accordance to the model (Table 4.3).  

 

Figure 4.3:  The scatter plots show the comparison of 3-hourly ERA-Interim 2 m temperature 

and meteorological stations for Group 1, (a) Garmisch station (1979-2010), (b) Zugspitzplatt 

station (1999-2010) and (c) Zugspitze station (1979-2010). All the related accuracy measures can 

be found in Table 4.3.  
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Table 4.3: Comparison of ERA-Interim 2 m temperature with 3-hourly and daily data of twelve 

meteorological stations. The NSE, as well as the RMSE and MAE in °C are also listed, and the 

elevations (m) are labeled in brackets. 

Group 1 Garmisch (719 m) Zugspitzplatt (2250 m) Zugspitze (2964 m) 

 NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h 0.85 3.45 2.93 0.45 5.55 4.84 -1.00 9.92 9.22 

Td 0.85 3.03 2.76 0.51 4.95 4.47 -0.93 9.52 9.09 

Group 2 Sion (482 m) Fey (737 m) Les Diablerets (2966 m) 

 NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h 0.50 6.20 5.76 0.48 5.77 5.32 -0.79 8.61 7.78 

Td 0.43 6.00 5.74 0.47 5.51 5.30 -0.74 8.20 7.59 

Group 3 Engelberg (1036 m) Gütsch ob Andermatt (2287 m) Titlis (3040 m) 

 NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h 0.84 3.15 2.53 0.50 4.96 4.40 -0.93 9.41 8.65 

Td 0.87 2.69 2.22 0.57 4.49 4.14 -0.88 9.00 8.51 

Group 4 Scuol (1304 m) Buffalora (1968 m) Naluns/Schlivera (2400 m) 

 NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h 0.78 4.15 3.60 0.87 3.44 2.49 0.80 3.35 2.78 

Td 0.78 3.77 3.49 0.91 2.52 1.83 0.86 2.73 2.39 

 

4.3.2 Temporal variability of the lapse rates 

The different lapse rates (ГS, ГM, Г700_925 and Г850_925/Г700_850) show a different annual variability. 

Figure 4.4 illustrates the seasonal dynamics of measured and modeled lapse rates as well as those 

obtained from the literature. The latter ones do not show any inter-monthly variability as they are 

defined by a single value per month. It can be seen that the lapse rates are generally smaller in 

winter but showed a higher variability during these colder months (October to February). 

Warmer months are characterized by lapse rates in the range of -6 °C km-1 to -7 °C km-1and by a 

low inter-monthly variability (April-August). March and September represent transition months, 

where the regime changed from winter to summer or from summer to winter conditions. The 

between-group-variability of the derived lapse rates also varies significantly. Group 2 shows the 
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lowest variability, due to the very short time period of data availability. ГS generally represents the 

largest temperature gradient and is significantly different from the measurements, especially 

during the summer months. Г700_925 and Г850_925/Г700_850 show larger variations during winter time 

and dynamics which are closer to the measurements (ГM). Only the temporal dynamics of Group 

4 are not well covered by the ERA-Interim lapse rates. This group is located in the central Alps 

were the respective ERA-Interim grid elements do also show a large deviation to the E-OBS data. 

The overall difference between measured and modeled lapse rates is in general small in 

summertime (June-August) and shows stronger deviations in winter time (November-February), 

possibly due to frequent local inversion events during winter months that cannot be reproduced 

by the ERA-Interim model. 

 

Figure 4.4. Boxplots of monthly lapse rates for (a) Group 1(1979-2010), (b) Group 2 (2002-2004), 

(c) Group 3 (1994-2010) and (d) Group 4 (1999-2010). ГS (short horizontal line), ГM (light gray), 

Г700_925 (medium gray) and Г850_925 /Г700_850 (dark gray). Thick horizontal lines in boxes show the 

median values. Boxes indicate the inner-quantile range (25 % to 75 %) and the whiskers show the 

full range of the values. 
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4.3.3 Evaluation of downscaling methods 

In order to evaluate the presented correction methods, three statistical accuracy measures were 

used. The root mean square error (RMSE) and mean absolute error (MAE) are used for an 

assessment of the bias between downscaled temperature and observation (Eq. 3.2 and 3.3). The 

Nash-Sutcliffe efficiency coefficient (NSE) evaluates the performance of the correction methods 

using Eq. 4.1, which ranges from 1 (perfect fit) to minus infinity. A negative value of the NSE 

indicates that the model is a worse estimator than the mean of the observed data (Nash and 

Sutcliffe, 1970).  
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with Tt
o = observed temperature at time t, Tt

d = downscaled temperature at time t, and N = 

number of records.  

In term of overall performance, 4 methods are compared by averaging NSE, RMSE and MAE 

statistics for all 12 test sites (Table 4.4). Method III and IV outperformed Method II moderately 

regardless of T3h and Td and Method I work worst. The specific performance of the four 

correction methods with respect to 3-hourly temperature data is summarized in Table 4.5. Figure 

4.5 shows the results by taking Group 1 as the example. Method I work well for stations located 

in the valley bottom, show only moderate improvements for the average altitude stations and 

even failed for the higher elevated stations (Table 4.5 and Figure 4.5). Station Fey is an exception 

here showing the second best results when method I is applied. Method II delivered the best 

results for the valley stations, but showed also acceptable results for the average altitude and high 

altitude stations. However, Method III and IV outperformed Method II for seven out of eight 

average and high altitude stations. The reduction of the MAE for the valley stations was between 

34.0 % (Engelberg) and 73.6 % (Sion), when using Method II. The MAE could be also improved 

for the average altitude stations (improvement between 53.8 % and 59.7 %) with the exception of 

Buffalora were less accurate than the original ERA-Interim results (2.49°C, method I; 2.67°C, 

Method II). The MAE at the high altitude stations was reduced between 1.2°C (Naluns/Schlivera) 

and 7.8°C (Zugspitze). Methods III and IV performed almost as well as our benchmark Method 

II, with particular good results for average and high altitude stations. Another interesting result 

can be found at the high altitude station Titlis. Method II provided lapse rates without any 

outliers while the other methods show significant outliers for the period from to December 4 
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1995 to February 28 1996. The measurements show frequent and rapid changes with respect to 

temperature. The temperatures are reaching high values around 30 °C and fall back to normal 

values afterwards while the surrounding station does not show any anomalies. Therefore, a 

measurement error at station Titlis has to be expected. Method II which is based on the 

measurements is consequently forcing the model results into the direction of the nonconforming 

measurements. The other methods which are independent of the station measurements do not 

reproduce this error. This is another example why methods which are independent of surface 

data of value in high alpine areas were error-prone measurements are common. Furthermore, 

Methods III and IV performed very well in case the gap between measurement and model 

became bigger. The MAE at the average altitude stations could be reduced by 57.9 % to 74.7 % 

and by 59.4 % to 87.9 % for the high altitude stations. Nevertheless, the differences between 

methods III and IV are negligible and an application of the simpler Method III seems to be 

sufficient, at least for the stations used in here.  

Table 4.4:  Comparison of measurements with downscaled 3-hourly and daily data for 4 methods 

by averaging NSE, RMSE and MAE statistics for all 12 test sites. 

 T3h   Td   

Method NSE RMSE MAE NSE RMSE MAE 

I 0.78 3.37 2.60 0.85 2.59 2.09 

II 0.91 2.31 1.77 0.95 1.63 1.25 

III 0.92 2.21 1.64 0.95 1.57 1.15 

IV 0.92 2.21 1.65 0.95 1.56 1.14 
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Table 4.5: Comparison of measurements with downscaled 3-hourly and daily data for group 1-4. 

The NSE as well as the RMSE and MAE in °C are also listed. 

Group 1   Garmisch Zugspitzplatt Zugspitze 

 Method NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h I 0.91 2.70 2.13 0.71 4.07 3.11 0.59 4.47 3.46 

 II 0.96 1.84 1.40 0.88 2.56 1.95 0.93 1.84 1.40 

 III 0.92 2.44 1.87 0.91 2.31 1.74 0.96 1.45 1.12 

 IV 0.91 2.62 1.99 0.91 2.29 1.73 0.94 1.73 1.33 

Td I 0.94 2.00 1.64 0.79 3.22 2.61 0.74 3.47 2.89 

 II 0.98 1.07 0.82 0.94 1.76 1.37 0.98 1.07 0.82 

 III 0.95 1.69 1.29 0.96 1.36 1.07 0.98 1.00 0.78 

 IV 0.94 1.91 1.43 0.97 1.31 1.03 0.96 1.32 1.00 

Group 2  Sion Fey Les Diablerets 

 Method NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h I 0.92 2.47 1.98 0.90 2.60 2.00 0.46 4.74 3.68 

 II 0.94 2.03 1.52 0.83 3.21 2.46 0.90 2.03 1.52 

 III 0.92 2.45 1.89 0.87 2.88 2.24 0.89 2.13 1.31 

 IV 0.93 2.32 1.81 0.90 2.55 1.99 0.90 2.04 1.25 

Td I 0.94 1.92 1.54 0.93 1.94 1.47 0.60 3.91 3.26 

 II 0.96 1.56 1.15 0.89 2.46 1.90 0.94 1.56 1.15 

 III 0.94 1.90 1.46 0.92 2.18 1.64 0.92 1.79 1.02 

 IV 0.95 1.74 1.35 0.94 1.83 1.40 0.93 1.62 0.86 
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Table 4.5: continued 

Group 3  Engelberg Gütsch ob Andermatt Titlis 

 Method NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h I 0.89 2.60 2.01 0.78 3.33 2.52 0.56 4.50 3.44 

 II 0.92 2.19 1.67 0.89 2.35 1.78 0.89 2.19 1.67 

 III 0.90 2.51 1.89 0.95 1.54 1.18 0.92 1.92 1.18 

 IV 0.90 2.48 1.86 0.95 1.50 1.16 0.92 1.94 1.24 

Td I 0.93 2.02 1.61 0.86 2.57 2.05 0.70 3.57 2.89 

 II 0.96 1.53 1.18 0.95 1.59 1.19 0.95 1.53 1.18 

 III 0.94 1.82 1.38 0.98 1.01 0.77 0.95 1.48 0.88 

 IV 0.94 1.85 1.41 0.98 0.96 0.74 0.95 1.51 0.97 

 Group 4 Scuol Buffalora Naluns/Schlivera 

 Method NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE 

T3h I 0.94 2.26 1.80 0.89 3.21 2.46 0.79 3.45 2.66 

 II 0.95 2.00 1.57 0.86 3.51 2.67 0.93 2.00 1.57 

 III 0.94 2.23 1.75 0.89 3.22 2.46 0.96 1.47 1.10 

 IV 0.93 2.38 1.87 0.89 3.16 2.42 0.96 1.51 1.13 

Td I 0.97 1.43 1.14 0.93 2.21 1.59 0.85 2.85 2.34 

 II 0.97 1.51 1.23 0.92 2.43 1.72 0.96 1.51 1.23 

 III 0.97 1.49 1.18 0.93 2.18 1.57 0.98 0.99 0.78 

 IV 0.96 1.58 1.23 0.94 2.14 1.55 0.98 0.95 0.75 

 

Figure 4.6 illustrates the performance of all 4 methods with respect to daily average temperatures 

also by taking Group 1 as the example. While the accuracy of the correction results was similar 

when compared to the use of 3-hourly data, some additional interesting aspects can be analyzed 

for the aggregated data. For example, daily averages as well as daily minima and maxima 

temperature data are often used for characterizing local sites given current or predicted future 

climate conditions. Figure 4.6 clearly shows that the results at the lower end of the temperature 

spectrum were overestimated while warmer temperatures were underestimated. The extrapolation 

of the original ERA-Interim data or of data downscaled using Method I would therefore lead to a 
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systematic misinterpretation of minimum and maximum values. This effect could only be 

eliminated when site specific lapse rates are used. This again is a strong argument against a 

general application of lapse rates, which are only oriented on stationary temperature gradient, but 

which do not factor in the local characteristics of a specific site. 

 

Figure 4.5: The scatter plots show the comparison of measured and modeled 3-hourly 

temperatures for Group 1. (a) shows the results of Method I for Garmisch from 1979-2010, (b) 

shows the results of  Method I  for Zugspitzplatt from 1999-2010 and (c) shows the results of 

Method I for Zugspitze from 1979-2010. (d)-(f) show the results for Method II, (g)-(i) for 

Method III and (j)-(l) those for Method IV. All the related accuracy measures can be found in 

Table 4.5.  
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Figure 4.6: The scatter plots show the comparison of measured and modeled daily temperatures 

for Group 1. (a) shows the results of Method I for Garmisch from 1979-2010, (b) shows the 

results of  Method I  for Zugspitzplatt from 1999-2010 and  (c) shows the results of Method I for 

Zugspitze from 1979-2010. (d)- (f) show the results for Method II, (g)-(i) for Method III and (j)-(l) 

those for Method IV. All the related accuracy measures can be found in Table 4.5. 

Figure 4.7 shows downscaled ERA-Interim temperatures in unobserved area using Method III 

based on DEM (90 m) at January 1 1979 12 UTC. Taking Group 1 as the example, the gridded 

ERA-Interim temperature is -11.5 °C, which significantly overestimated for Zugspitze (-21 °C) 

and underestimated for Garmisch (-9 °C). Using Method III, ERA-Interim temperature was 

downscaled into 90 m grid (DEM resolution). The downscaled temperature for Zugspitze was -

23.9 °C while for Garmisch was -7.7 °C. The biases are both improved by downscaling model, 

especially for Zugspitze station. Zugspitzplatt station, which has no record at January 1 1979 12 

UTC, but the downscaled temperature was obtained by the model, -19.6 °C. This again illustrated 

that the downscaling model based on ERA-Interim internal lapse rate is independent of 

observations.  
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Figure 4.7: Downscaling ERA-Interim temperature at 90 m grid using Method III. Data time: 

January 1 1979 12 UTC, ERA-Interim gridded mean temperature: -11.5 °C, Zugspitze 

temperature: -21 °C, Garmisch temperature: -9 °C, and no records for Zugspitzplatt. 

4.4 Conclusion 

In the previous sections correction methods for ERA-Interim temperature data on the basis of 

lapse rates have been described and analyzed. Certainly, the total error between a station 

measurement and an ERA-Interim prediction is not only due to the elevation difference between 

the ERA-Interim grid average and the individual site. Other factors like large scale biases of 

ERA-Interim, observation errors, model background errors, operator errors, errors resulting 

from the interpolation from original N128 reduced Gaussian grid to latitude/longitude grids and 

others can affect the observed difference between model and measurements (Dee, 2005; Dee et 

al., 2011).  

The results demonstrates that the large scale biases of ERA-Interim for temperature are very 

small except for regions were the elevation differences between model grid and real world are 

high, as for example in the central Alps. Also, the total integral error between model and 

measurement was strongly reduced by using lapse rate approaches for elevation correction. In 

that context ERA-Interim internal lapse rate showed a better performance than observed lapse 

rate and reduced the RMSE and MAE for high altitudes. However, it has to be noted that still for 
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some periods and locations significant differences between modeled and observed lapse rates 

could be observed.  

The comparison between ERA-Interim 2 m temperature and E-OBS gridded data for the period 

from 1979 to 2010 indicates that elevation is the driving force for the observed error which 

should be therefore correctable via elevation based approaches like lapse rates. Subsequently, 

0.25°×0.25° 3-hourly and daily ERA-Interim 2 m temperature data were compared with local 

measurements at twelve stations within the German and Swiss Alps. The comparison has 

illustrated that there is a need for a correction of ERA-Interim data if it should be used at a given 

point in the mountains. The results in Table 4.3 make clear that a correction is heavily needed for 

accounting for elevation driven temperature variations in heterogeneous mountain terrain, which 

cannot be represented by the original ERA-Interim grid.  

Four different methods were used to derive the needed lapse rates Г: a fixed monthly lapse rate 

(ГS) extracted from the literature (Method I); a measured lapse rate (ГM) (Method II); and ERA-

Interim model internal lapse rates (Г700_925 and Г850_925/Г700_850) derived from predictions at 

different pressure levels (Method III and IV).  

Observed changes of lapse rates with elevation and with time, demonstrated that the use of fixed 

lapse rates (ГS) were not satisfactory and led to large biases between corrected and locally 

measured temperature values, especially for high elevation stations. Method II represented an 

almost ideal situation where the complete vertical elevation/temperature gradient is covered by 

two stations providing continuously measured lapse rates. While this approach provided the best 

results, it would be interesting to analyze how far these measured lapse rates could be 

extrapolated in a spatial context. A major disadvantage of Method II is its dependency on the 

availability of meteorological stations; only very few places in mountainous and high altitude 

regions worldwide can offer such a station setup. Furthermore, the usage of measured lapse rates 

can lead to the fact that the model is forced into the direction of implausible temperatures if one 

of the stations which are used for calculating the lapse rate delivers incorrect measurements. 

Method III and IV represent alternatives for deriving temperature lapse rates by using (global 

climate) model (here ERA-Interim) internal lapse rates from representative pressure levels. Both 

methods showed a convincing performance when compared to measured data of the twelve 

stations, again especially for those in higher elevations. The ERA-Interim internal lapse rate is a 

useful tool for correcting the original output data to the station scale, even if they 

underestimating the observed lapse rates for the whole season with all of the occurring variations. 
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The additional implementation of an internal baseline at approximately 1500 m and the 

calculation of separate lapse rates above and below (Method IV), allowed a vertical differentiation 

and the consideration of local circulation effects (below) and the dominance of free air conditions 

(above) on the temperature distribution (Blandford et al., 2008; Mahrt et al., 2001; Rolland, 2003) . 

However, results only showed minimal differences between Method III and IV for the used test 

sites. Further validation is carried out with help of FLUXNET tower observations in Chapter 6.
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Chapter 5  

Downscaling Precipitation Using 

Lasso Algorithm  
 

5.1 Introduction 

Precipitation is one of the most sensitive variables for a large variety of environmental processes 

and it influences the local as well as the global water, energy and matter cycle (Beuchat et al., 2011; 

Chandler and Wheater, 2002; Guan et al., 2009). Precipitation variations in spatial distribution 

and amount directly influence the water resources on the local, the regional and the global scale, 

which adversely affect the socio-economic-ecological aspects (Benestad et al., 2007; Bray et al., 

2011; Lamptey, 2008). Precipitation is also an essential input parameter for land surface models in 

fields such as in hydrology, ecology and climatology (Daly et al., 2008; Fealy and Sweeney, 2007; 

Ferraris et al., 2003). Traditionally, precipitation is measured by rain gauge stations. However, 

most of them are located in homogeneous terrains. In complex terrains, few gauge stations exist 

due to difficulties with snow depth measuring and maintenance of stations which result in lack of 

long-term and high spatial resolution records (Anders et al., 2007). In order to meet this challenge, 

in the past decades, GCMs have been widely applied to meet the specific needs of environmental 

impact models by providing time series of precipitation and plausible scenarios of change (Fealy 

and Sweeney, 2007).  

However, a defect related to coarse spatial resolution (~300 km) in GCMs limits their provision 

of reliable information for decision makers and impact model developers (Dodson and Marks, 

1997; Maurer et al., 2002; Minder et al., 2010). Specifically, the GCMs only represent 

characteristics on a mean elevation of a grid box, which runs counter to the reality. Local 

processes, such as orographic precipitation formulation along mountain slopes, as well as 

snowpack accumulation and melting, are not represented in the coarse grids. Although RCMs 

nested in GCMs represent better descriptions of local scale characteristics, based on the finer 

spatial resolution of 10-50 km, they still do not satisfy the requirement of hydrological and 
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climatic impact models, which typically run on the scale of 0.1-1 km (Ahrens, 2003; Charles et al., 

2004; Maraun et al., 2010; Xu, 1999).  

Thus, the methods that attempt to bridge the scale discrepancy between coarse model data and 

finer local requirements are receiving much attention (Charlton et al., 2006; Guan et al., 2009; 

Hertig and Jacobeit, 2008; Spak et al., 2007). Dynamical downscaling and statistical downscaling 

are the two main approaches. The former is also called regional climate model (RCM). Chapter 1 

gives a literature review for dynamical downscaling methods (Table 1.1). The latter approach 

establishes the statistical connections between large-scale circulation variables (predictors) and 

local observed variables (predictands) (Wilby and Wigley, 1997; Zorita and von Storch, 1999). 

Wilby and Wigley (1997) and Wilby et al. (2004) grouped SD methods into three categories: 

weather classification schemes, regression models and weather generators. Wilby et al. (2004) 

summarized the advantages and drawbacks of three SD methods (Chapter 1, Table 1.2).  

Unlike temperature, it is difficult to find a general relationship between precipitation and 

elevation, due to the great variability in the interaction between atmosphere circulation and 

complex topographical characteristics (Barry, 2008). Maraun et al. (2010) reviewed precipitation 

downscaling methods comprehensively from the point of view of end users. For example, local 

scaling (LOCI) and quantile-mapping (QM) are the representative methods that directly correct 

GCMs or RCMs for local observations (Maraun et al., 2010), although some drawbacks are 

contained in LOCI and QM. Specifically, LOCI weakens the variation of future data because it 

adjusts the mean and variance of future precipitation time series while QM is less able to derive 

new extremes from observed distributions (Maraun et al., 2010). Other methods (not directly 

correction methods) have focused on investigating the relationship between local precipitation 

and large-scale atmosphere circulation, using variables that varied from simple linear regression to 

complicated non-linear models. Table 5.1 lists a small selection of previous studies on 

precipitation downscaling based on a variety of model datasets and methods.  

Table 5.1: Literature review of precipitation downscaling methods. 

Method Predictor Predictand Region Reference 

Extended non-
homogeneous 
hidden Markov 
Model (extended-
NHMM) 

gradient of sea level 
pressure, dew-point 
temperature depression at 
850 hPa from NCEP-
NCAR reanalysis 

Daily 
precipitation 

Southwest 
Australia 

(Charles et 
al., 2004) 

Auto-searched 
orographic 
and Atmospheric 

Precipitation-elevation, 
aspect, and spatial gradient 
of atmospheric moisture  

Monthly 
precipitation 

Northern New 
Mexico 

(Guan et 
al., 2005) 
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Effects Detrended 
Kriging 
(ASOADek) 

CCA and multiple 
regression 

1000 hPa/500 hPa 
geopotential heights, and 
1000  hPa specific humidity 
from NCEP-NCAR 
reanalysis 

Monthly 
precipitation 

Mediterranean (Hertig and 
Jacobeit, 
2008) 

ANN to an analog 
model 

mean sea-level pressure, 700 
hPa relative humidity, 700 
hPa horizontal wind 
components, and 500 hPa 
geopotential height data 
precipitation from the 
NCEP-NCAR Reanalysis 

Daily 
precipitation 

British of 
Canada 

(Cannon, 
2007) 

Regression adding 
Inflation model  

500 hPa geopotential height, 
850 hPa temperature and 
700 hPa specific humidity 

Daily 
precipitation 

Germany (Burger and 
Chen, 
2005; Yang 
et al., 2010) 

Artificial Neural 
Network 

Potential temperature, 
vertical component of the 
wind, specific humidity, air 
temperature, precipitable 
water, relative vorticity and 
moisture divergence flux 

Daily 
rainfall 

Paulo State, 
Brazil 

(Ramirez et 
al., 2005) 

CCA, and 
multivariate linear 
regression with ICA 
and PCA 

500 hPa and 700 hPa 
geopotential heights, sea-
level pressures, 500 hPa 
vertical pressure velcocities 
and 500-1000hPa 
geopentential thicknesses 

Monthly 
precipitation 

Turkey (Tatli et al., 
2004) 

Censored quantile 
regression 

Daily means of relative 
vorticity and vertical 
velocity, both at the 850 hPa 
pressure level and 
precipitable water  from 
NCEP-NCAR Reanalysis 

Extreme 
precipitation  

Germany (Friederichs 
and Hense, 
2007) 

ANN (RBF and 
MLP), SDSM 

Vorticity at the surface and 
850 hPa, specific humidity 
at 500 hPa,  

Heavy daily 
precipitation 
occurrence 
and amounts 

England (Harpham 
and Wilby, 
2005) 

Statistical 
Downscaling model 
(SDSM) 

Specific humidity at 500 hPa 
for both two regions. Near-
surface relative humidity 
and near-surface southerly 
wind and near-surface 
vorticity 

Daily 
precipitation 

Eastern 
England and 
the Scottish 
Borders 

(Wilby et 
al., 2003) 

Regression model 
and ANNs 

500 and 700 hPa height, 850 
hPa temperature, sea level 
pressure, column relative 
humidity 

Total daily and 
monthly 
precipitation 

Indianapolis, 
USA 

(Schoof 
and Pryor, 
2001) 
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Geostatistical 
methods and 
regression model 

Latitude, distance to 
Cantabrian sea, Maximum 
elevation in northward 
direction with a radius of 5 
km, mean elevation with 
radius of 25km 

Annual 
precipitation  

Ebro Valley, 
Spain 

(Vicente-
Serrano et 
al., 2003) 

Support Vector 
Machine (SVM) 

Mean sea level pressure, 
pressure temperature, 
vorticity, divergence, wind 
direction, geopotential 
height, specific humidity, 
relative humidity etc. 

Daily/Monthly 
precipitation 

Taiwan, India (Chen et 
al., 2010; 
Ghosh and 
Mujumdar, 
2008; 
Kumar et 
al., 2008) 

Stepwise linear 
regression 

Mean sea level pressure, 
max and min temperature, 
dry and wet bulb 
temperature, relative 
humidity, vapor pressure 
etc. 

Daily rainfall 
 

Karnataka in 
India 

(Agnihotri 
and 
Mohapatra, 
2012; 
Benestad et 
al., 2007) 

Generalized linear 
model 

Mean temperature, Mean 
sea level pressure, 
geopotential height, relative 
humidity etc. 

Daily 
precipitation 

Ireland, 
Mediterranean 

(Fealy and 
Sweeney, 
2007; 
Hertig and 
Jacobeit, 
2013) 

 

Although numerous studies were carried out for different temporal precipitation and for varied 

locations, a general precipitation downscaling method still does not exist, especially in complex 

terrains. A separate predictor selection process (e.g. principal components analysis, empirical 

orthogonal functions and cluster analysis) was usually implemented before downscaling, in order 

to search for the most sensitive variables in precipitation regimes (Ghosh and Mujumdar, 2006; 

Harpham and Wilby, 2005; Hessami et al., 2008; Lundquist and Cayan, 2007; Schmidli et al., 2001; 

Schoof and Pryor, 2001; Wilby and Wigley, 2000). These procedures reduced the dimensionality 

of models by removing less relevant variables while some potential variables were excluded, due 

to their nonlinear interactions.  

Here, a new machine learning method, the Lasso algorithm (Least absolute shrinkage and 

selection operator), is introduced for downscaling ERA-Interim precipitation data. Compared to 

the normal downscaling approach, Lasso is well-suited for sparse and possibly under-determined 

linear regression problems, as well as for joint estimation and continuous variable selection. Lasso 

allows for a scaling of 0.25°, daily ERA-Interim data to the point scale, and was tested and 

validated against three different methods, -LOCI, QM and stepwise regression- at 50 

meteorological stations located in the high mountainous region of the central Alps. 
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5.2 Datasets  

5.2.1 ERA-Interim 

3-hourly forecast data (03, 06, 09, 12, 15, 18, 21 and 24 UTC) initialized at 00 UTC from 1983-

2010, which are projected on a grid of 0.25°×0.25°, is applied here. 3-hourly forecasts data are 

aggregated into daily temporal scales according to observation measuring time. The 20 used 

output variables used are listed in Table 5.2. 

Table 5.2: Used predictors from ERA-Interim dataset. 

Abbreviation Predictors 

Surface variables  

PERA ERA-Interim precipitation (mm) 

MSLP Mean sea-level pressure (hPa) 

TCW Total column water (mm) 

U10 10 meter U wind component (m s-1) 

V10 10 meter V wind component (m s-1) 

WS10 Wind speed derived from 2

10

2

1010 VUWS    (m s-1) 

FG10 10 meter wind gust (m s-1) 

LSP Large scale precipitation (mm) 

Upper-atmosphere variables  

H850, H700, H500 Geopotential height at 850 hpa, 700 hpa and 500 hpa (m) 

T850, T700, T500 Temperature at 850 hpa, 700 hpa and 500 hpa (°C) 

RH850, RH 700, RH 500 Relative humidity at 850 hpa, 700 hpa and 500 hpa (%) 

SH850, SH 700, SH 500 Specific humidity at 850 hpa, 700 hpa and 500 hpa (g kg-1) 

5.2.2 Test sites 

Daily total precipitation in the period 1983-2010 at 50 meteorological stations were downloaded 

through the interactive tools of IDAWEB, which is designed by MeteoSwiss (the Swiss Federal 

Office of Meteorology and Climatology) providing freely available and extensive archive data of 

ground level monitoring networks. Table 5.3 lists the information about stations and Figure 5.1 

shows the locations of test sites. The observations and ERA-Interim data are processed for the 

time shift. The time period is partitioned into 1983-1994 for calibration and 1999-2010 for 

validation. The dry/wet day is defined using a 1 mm threshold. ERA-Interim grid data in which 
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test sites are located in are extracted from the datasets according to the coordinates of the sites. It 

is necessary to note that the data of the stations GUE, PAY and GVE are used for precipitation 

assimilation, given their status as WMO SYNOP stations (Dee et al., 2011; Simmons et al., 2010). 

According to the information of the ECMWF it can be assumed that the majority of the stations 

(47 of 50 sites) are not used by ERA-Interim and therefore represent a fully independent dataset. 

Table 5.3: Test sites information. ERA-Interim grid height is also listed. 

ID Sites Latitude Longitude Elevation (m) Grid height (m) 

COV Piz Corvatsch 46.42 9.82 3305 1618 

WFJ Weissfluhjoch 46.83 9.81 2690 1722 

SAE Säntis 47.25 9.34 2502 1154 

GSB Col du Grand St-Bernard 45.87 7.17 2472 1493 

GUE Gütsch ob Andermatt 46.65 8.62 2287 1432 

PIL Pilatus 46.98 8.25 2106 1154 

MLS Le Moléson 46.55 7.02 1974 1193 

SAM Samedan 46.53 9.88 1709 1661 

DOL La Dôle 46.42 6.10 1670 699 

CIM Cimetta 46.20 8.79 1661 1281 

SBE S. Bernardino 46.46 9.18 1639 1532 

ZER Zermatt 46.03 7.75 1638 1552 

CHA Chasseral 47.13 7.05 1599 669 

DAV Davos 46.81 9.84 1594 1722 

MVE Montana 46.30 7.47 1427 1470 

NAP Napf 47.00 7.93 1403 1115 

ULR Ulrichen 46.50 8.30 1345 1435 

SCU Scuol 46.80 10.28 1303 1818 

FRE Bullet / La Frétaz 46.83 6.58 1205 818 

DIS Disentis / Sedrun 46.70 8.85 1197 1479 

ROB Poschiavo / Robbia 46.35 10.07 1078 1394 

ENG Engelberg 46.82 8.42 1035 1432 

CDF La Chaux-de-Fonds 47.08 6.80 1018 770 

PIO Piotta 46.52 8.68 990 1447 

STG St. Gallen 47.43 9.40 775 1027 

VIS Visp 46.30 7.85 639 1498 

RUE Rünenberg 47.43 7.88 611 701 

FAH Fahy 47.42 6.93 596 554 

INT Interlaken 46.67 7.87 577 1325 

CHU Chur 46.87 9.53 556 1668 

SMA Zürich / Fluntern 47.38 8.57 555 780 

BER  Bern / Zollikofen 46.98 7.47 552 1008 

TAE Aadorf / Tänikon 47.48 8.90 539 897 

GLA Glarus 47.03 9.07 516 1312 

PAY Payerne 46.82 6.95 490 1030 
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WAE Wädenswil 47.22 8.68 485 1011 

NEU Neuchâtel 47.00 6.95 485 849 

SIO Sion 46.22 7.33 482 1408 

VAD Vaduz 47.13 9.52 457 1226 

PUY Pully 46.52 6.67 455 1100 

CGI Nyon / Changins 46.40 6.23 455 835 

LUZ Luzern 47.03 8.30 454 1154 

REH Zürich / Affoltern 47.43 8.52 443 780 

GUT Güttingen 47.60 9.28 440 962 

SHA Schaffhausen 47.68 8.62 438 662 

ALT Altdorf 46.88 8.62 438 1193 

KLO Zürich / Kloten 47.48 8.53 426 780 

WYN Wynau 47.25 7.78 422 827 

GVE Genève-Cointrin 46.25 6.13 420 973 

AIG Aigle 46.33 6.92 381 1346 

 

 

Figure 5.1: Location of the MeteoSwiss sites (triangles), and ERA-Interim 0.25°×0.25° points 

(dots). The elevation ranges from 22 to 4783 m a.s.l., with a DEM resolution of 90 m. 



 

 

 

78 
 

5.3 Methods 

5.3.1 Local Scaling 

Local Scaling is a robust method to directly correct GCM or RCM outputs for local observations. 

Although GCMs or RCMs are partly unrealistic due to their coarse resolution, they contain 

valuable information about the actual precipitation (Maraun et al., 2010). The assumption is 

realized by a so-called scaling factor, calculated from observation and climate model data of a 

reference period, which then is expanded to scenarios data. Here, LOCI is applied as the 

benchmark method for comparison with Lasso. LOCI was developed by Widmann and 

Bretherton (2000). Widmann et al. (2003) used it for scenario precipitation corrections. Not only 

GCMs, but also RCMs were corrected using the LOCI approach (Engen-Skaugen, 2007; Graham 

et al., 2007; Leander et al., 2008). Schmidli et al. (2006) further modified LOCI for precipitation 

occurrence and amount correction, separately. In this study, LOCI is implemented based on a 

monthly scaling factor which is calculated in three steps as follows: 

    thres

obsobs

thres

ERAERA PPFrePPFre                                                                                         (5.1) 

 
 
  thres

ERA

thres

ERAERA

thres

obs

thres

obsobs

PPP

PPP
SF




                                                                                                      (5.2)   

  0,max thres

ERA

Val

ERA

thres

obst PPSFPP                                                                                          (5.3) 

where tP is the target station precipitation, 
Val

ERAP is the undownscaled ERA-Interim data for 

validation, 
thres

ERAP  ERA-Interim precipitation threshold, thres

obsP  the observation threshold, and the 

brackets present the frequency condition judgment function. Here, 1 mm is used to define 

wet/dry days and SF is the scaling factor. In the first step, an adjusted threshold for ERA-

Interim data is found that matches the occurrence of wet/dry days, based on the 1 mm threshold 

of observation. In a second step, the scaling factor is obtained and then, finally, the target station 

precipitation is calculated.  

5.3.2 Quantile-Mapping 

Quantile-Mapping (QM) introduced by Panofsky and Brier (1968), is a popular statistical 

transformations approach to correct GCM and RCM outputs straightforwardly (Boe et al., 2007; 

Dobler et al., 2012; Gudmundsson et al., 2012; Hashino et al., 2007; Piani et al., 2010; Themeßl et 
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al., 2012; Themeßl et al., 2011; Wood et al., 2004). The distribution function (e.g. cumulative 

distribution function, cdf) of model precipitation is first adjusted to match the distribution of 

observations. Subsequently, this matched distribution is used for unbiased model (or future 

scenario) data. On this assumption, new extremes in the distribution are limited (Boe et al., 2007). 

The mapping is usually implemented based on empirical quantiles or quantiles of gamma 

distributions (Maraun et al., 2010; Themeßl et al., 2011). In this study, the corrected ERA-Interim 

can be obtained via 

fPP Val

ERAt                                                                                                                           (5.4) 

)()( 1

,

1

, pfpff calERAcalobs

                                                                                                                           (5.5) 

)(,

Val

ERAcalERA Pfp                                                                                                                      (5.6) 

where,
1

,



calobsf  and 
1

,



calERAf  is the inverse cdf (quantile function) of observations and ERA-Interim 

for calibration, respectively, calERAf ,  is the cdf (quantile function) of Val

ERAP . 

5.3.3 Stepwise Regression 

Stepwise Regression (Stepwise hereafter) is an automatic procedure that combines a normal 

regression (Eq. 5.7) with predictor variable selection. Three main approaches are used in Stepwise 

according to the relevant selection sequence: forward selection, backward elimination or 

bidirectional elimination. Usually, forward selection starts without any variable and adds the most 

statistically significant variables until all resting variables are tested. The statistical criteria can be 

F-tests or other tests such as t-tests and R-square. In contrast, backward elimination starts with 

all variables and then removes the least significant (t-tests or R-square) variable until the end. 

Bidirectional elimination is a combination of these two methods. The advantage of stepwise 

regression is easily explained and implemented, even though it involves some risks. For example, 

test criticism (e.g. F-tests) and the initial model affect the variable selection. Several previous 

studies have used stepwise regression for different purposes. For example, Harpham and Wilby 

(2005), Hessami et al. (2008) and Huth (2002) adopted Stepwise for predictor selection; Agnihotri 

and Mohapatra (2012) applied it to occurrence estimation of daily summer monsoon 

precipitation. In this study, stepwise regression is adopted to test Lasso performance. Stepwise 

regression is implemented using the forward selection method (with an exit tolerance value 0.1) 

in MATLAB®  
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  jiji xy                                                                                                                           (5.7) 

where y  is the 1i  response (dependent) vector, x is the ji  variable (independent) vector,   

is the 1j  parameter vector and  the random errors.  Note that the set of 20 variables used for 

stepwise regression and Lasso remains the same, for the comparison.  

5.3.4 Lasso 

Least absolute shrinkage and selection operator (Lasso) is an alternative regularized version of 

least squares, which is useful for feature selection and to avoid over-fitting problems. Lasso 

shrinks the estimates of the regression coefficients towards zero to prevent over-fitting problem 

and to reduce variables by using a penalty parameter. To simplify understanding, the history of 

Lasso is introduced briefly. Equation 5.7 presents the ordinary least squares regression (OLS) that 

tries to minimize the error RSS (Root of Sum of Squares), which is calculated from Eq. 5.8.  
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                                                                              (5.8) 

OLS is not always satisfactory for minimizing the RSS, especially when x contains a large number 

of variables, although it is simply implemented. Hoerl and Kennard (1970a) and Hoerl and 

Kennard (1970b) introduced ridge regression to yield better prediction with the help of a 

constraint (Eq. 5.9).  
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where p is the number of variables and t is a specified constraint. The Lagrangian form of Eq. 5.9 

is 
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Based on ridge regression, Frank and Friedman (1993) developed bridge regression using a 

revised constraint t
p

j

j 
1

 with 0 . 
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If 2 , bridge regression equals ridge regression. The values of   determine the constrained 

area in parameter space. However, Frank and Friedman (1993) did not discuss all the possibilities 

of  . Tibshirani (1996) developed the Lasso framework defining 1 (Eq. 5.12 and 5.13).  
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Lagrangian form: 
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An efficient algorithm for solving Lasso is given as follows (Fu, 1998):  
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3. Repeat until convergence 

Compared to bridge regression, Lasso performs not only shrinkage, but also performs variable 

selection. Figure 5.2 shows how Lasso works. If only 2 predictors (
1  and

2  ) are input into the 

model, the center point 


  in the ellipse contours, which means that the residual sum of squares 

is minimized. The residual sum of squares will increase when the points move away from the 

center point


 . Although the residual sum of squares increases, the RSS are the same for the 

points on the same elliptical contour. The cyan square represents the set of vectors that satisfy 
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the constraint t
p

j

j 
1

  (Weisberg, 2012). The Lasso estimator points are in this cyan square, 

with the smallest residual sum of squares for a tolerant t. In the Lasso solution, the first point is 

the intersection point of the rotated square and elliptical contour. Sometimes, the estimator 

points occur on the corner, in which case the vector is set exactly to zero and others are non-zero 

(Tibshirani, 1996; Weisberg, 2012).  

 
 

Figure 5.2: Estimation graphic for Lasso theory (Tibshirani, 1996; Weisberg, 2012). 

Lasso imposes intentionally that many of the coefficients to be zero, thus achieving a sparse 

model. This sparse model is therefore easy to interpret. The penalty parameter (regularizer)   

controls the level of sparsity of the resulting model. A larger   can produce a model that is 

sparser. In this study, the Lasso framework is implemented in MATLAB® software (Pendse, 2011, 

codes can be found in A.2). 

5.4 Results 

5.4.1 Validation of the original ERA-Interim precipitation data 

The root mean square error (RMSE) and mean absolute error (MAE) are used for an assessment 

of the precipitation amount and CR is applied for the evaluation of occurrence (for equations see 

Eq. 3.2-3.4). In Chapter 3, original 0.25° ×0.25° ERA-Interim precipitation data was analyzed by 
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comparing it with observed gridded datasets, E-OBS and GPCC. ERA-Interim has the same 

standard deviation of the inter-annual variability of daily precipitation as E-OBS for the mean 

annual cycle. Significant wet biases occurred in ERA-Interim throughout the warm season (May 

to August) and dry biases in the cold season (November to February). ERA-Interim significantly 

underestimates precipitation amount in high mountains and on the northern flank of the Alpine 

chain from November to March and overestimates on the southern flank of the Alps.   

Table 5.4: Comparison of ERA-Interim daily precipitation with observations at 50 meteorological 

stations from 1983-2010. The CR, as well as the RMSE and MAE in mm day-1 are listed. Because 

the elevations of sites are different with ERA-Interim grid heights, the altitude differences (Δh, 

elevation minus ERA-Interim grid height) are also labeled. 

ID Sites CR RMSE MAE Δh 

COV Piz Corvatsch 0.76 4.69 2.35 1687 

WFJ Weissfluhjoch 0.79 5.86 2.92 968 

SAE Säntis 0.84 11.15 5.18 1348 

GSB Col du Grand St-Bernard 0.83 10.88 4.58 979 

GUE Gütsch ob Andermatt 0.79 6.98 3.29 855 

PIL Pilatus 0.82 9.20 3.95 952 

MLS Le Moléson 0.79 5.44 2.72 781 

SAM Samedan 0.68 4.88 2.59 48 

DOL La Dôle 0.86 6.06 2.74 971 

CIM Cimetta 0.76 8.99 3.43 380 

SBE S. Bernardino 0.74 9.18 3.89 107 

ZER Zermatt 0.74 5.37 2.61 86 

CHA Chasseral 0.80 5.26 2.55 930 

DAV Davos 0.76 5.14 2.67 -128 

MVE Montana 0.75 5.54 2.72 -43 

NAP Napf 0.82 5.72 2.76 288 

ULR Ulrichen 0.75 6.36 3.11 -90 

SCU Scuol 0.69 5.03 2.71 -515 

FRE Bullet / La Frétaz 0.82 5.11 2.44 387 

DIS Disentis / Sedrun 0.75 6.16 3.03 -282 

ROB Poschiavo / Robbia 0.77 5.48 2.48 -316 

ENG Engelberg 0.81 5.93 2.99 -397 

CDF La Chaux-de-Fonds 0.84 4.89 2.31 248 

PIO Piotta 0.72 8.20 3.54 -457 

STG St. Gallen 0.81 5.51 2.72 -252 

VIS Visp 0.68 5.69 2.94 -859 

RUE Rünenberg 0.79 4.66 2.35 -90 

FAH Fahy 0.81 4.44 2.19 42 

INT Interlaken 0.79 5.27 2.67 -748 

CHU Chur 0.72 5.22 2.78 -1112 
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SMA Zürich / Fluntern 0.80 4.88 2.41 -225 

BER  Bern / Zollikofen 0.78 5.10 2.56 -456 

TAE Aadorf / Tänikon 0.80 4.94 2.53 -358 

GLA Glarus 0.80 5.57 2.84 -796 

PAY Payerne 0.77 5.48 2.82 -540 

WAE Wädenswil 0.81 5.57 2.69 -526 

NEU Neuchâtel 0.77 5.11 2.56 -364 

SIO Sion 0.69 5.22 2.77 -926 

VAD Vaduz 0.76 5.14 2.67 -769 

PUY Pully 0.80 5.79 2.76 -645 

CGI Nyon / Changins 0.79 5.02 2.53 -380 

LUZ Luzern 0.78 5.49 2.77 -700 

REH Zürich / Affoltern 0.79 4.77 2.40 -337 

GUT Güttingen 0.77 5.04 2.64 -522 

SHA Schaffhausen 0.78 4.51 2.30 -224 

ALT Altdorf 0.77 5.35 2.71 -755 

KLO Zürich / Kloten 0.78 4.86 2.47 -354 

WYN Wynau 0.79 4.74 2.34 -405 

GVE Genève-Cointrin 0.78 5.16 2.58 -553 

AIG Aigle 0.79 4.85 2.41 -965 

 

Table 5.4 shows the comparison of ERA-Interim daily precipitation with observations at 50 

meteorological stations from 1983-2010. The CR, as well as the RMSE and MAE in mm day-1 are 

listed. CR varies from 0.68 to 0.86 and RMSE changes in the range of 4.69-11.15 mm day-1, while 

MAE ranges of 2.31 to 5.18 mm day-1. The altitude differences change sharply in a large interval. 

The COV station is 1687 m higher than ERA-Interim grid height while SCU is 515 m lower than 

grid height. ERA-Interim results show good agreement with occurrence observations (0.68 to 

0.86), but large deviations with respect to precipitation amount, in general. However, unlike 

temperature, the altitude difference is unable to explain the bias. For example, The DOL site has 

the highest CR with the value of 0.86, but with a large elevation difference of 971 m. The ZER 

has a CR of 0.74 but its elevation matches the grid height very well with an altitude gap of only 

86 m. Thus, this again proves that the general relationship between precipitation and elevation is 

not easy to obtain, due to the great variability in the interaction between atmosphere circulation 

and complex topographical characteristics (Barry, 2008). 

Figure 5.3 illustrates the percentage of annual precipitation bias between ERA-Interim and 

stations from 1983-2010. Positive values indicate that annual precipitations were overestimated 

by ERA-Interim and vice versa. In general, ERA-Interim data overestimated observed annual 

precipitation for the majority of test sites, and 7 of 50 sites were underestimated. Among them, 
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GSB has the largest negative bias with a value of -44.2 %. 5 of 50 sites showed overestimation of 

more than 100 %. WFJ and DAV are located in the same ERA-Interim grid. However, ERA-

Interim overestimated for WFJ with 7.5 % and, significantly, for DAV with a value of 45.6 %. 

Besides, PIL and LUZ are also in the same ERA-Interim grid. ERA-Interim underestimated for 

PIL with 25.2 %. In the contrast, ERA-Interim overestimated for LUZ with a value of 28.6 %. 

This distinct difference implied again that the small-scale topographic features, such as slope and 

aspect, as well as the local circulations affect the precipitation formation and distribution. 

Obviously, the original ERA-Interim precipitation data possibly cause the uncertainties for 

hydrological modeling and magnify or reduce the risk of flood. The most lower stations located 

in the front of the Alps are underestimated by ERA-Interim, which indicate that ERA-Interim 

underestimate precipitation in the region affected by the air circulation in Atlantic.  

 

Figure 5.3: Percentage of annual precipitation bias between ERA-Interim and MeteoSwiss 

stations in the period 1983-2010. Positive values indicate the annual precipitations were 

overestimated by ERA-Interim and vice versa. 

5.4.2 Evaluation of downscaling methods 

Besides the criteria, CR, RMSE, and MAE, Taylor diagrams that provide a visual framework for 

modeling results to observations were applied for evaluating four downscaling models. The 
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weighted pattern correlation (COR), the normalized root-mean-square differences (RMSD), and 

the amplitude of variations (standard deviations, STD) are quantified in the diagram (Taylor, 

2001). The COR represents the weighted correlation between modeled results and observations. 

Different with RMSE, RMSD characterizes the differences of root-mean-square. These three 

criteria do not provide the overall biases, but solely characterize the centered pattern error 

between modeled data and observations. The COR, RMSD and STD are computed as: 
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where oP  and mP is observed and modeled precipitation at time t, respectively. N = number of 

records in the validation period.  

The overall performance of four downscaling methods, as well as the ERA-Interim original data 

in the validation period 1999-2010 is summarized in Table 5.5. Generally, the straightforward 

methods, LOCI and QM, captured the occurrence best. Lasso performs than the original ERA-

Interim. Lasso performed best compared to other methods on the reduction of error; 12.2 % of 

RMSE and 17.2 % of MAE, respectively. Whereas QM and Stepwise were the worst methods, 

especially Stepwise had a larger MAE than LOCI, QM and Lasso methods (Table 5.5). 

The specific performance of four downscaling methods is summarized in Table 5.6. LOCI and 

QM outperformed for occurrence (CR) for all test sites. CR for LOCI ranged from 0.81 to 0.88 

and for QM varied from 0.82 to 0.88. Both methods did not consider the local circulation 

characteristics but only the historical records (calibration data). Stepwise generated the worst CR, 

with a range of 0.47-0.85. The sites, MVE, ULR, and VIS have the smallest CRs: lower than 0.5. 

Lasso modeled the CR from 0.70 to 0.84, and half of 50 sites better than original ERA-Interim 

but worse than the LOCI and QM benchmarks. In summary, LOCI and QM had the advantages 

on occurrence modeling and Lasso captured the occurrence in general. In terms of RMSE, Lasso 

yielded the best results for almost all test sites, with a RMSE of 3.11 to 9.77 mm day-1, except 

MLS, CHA, LUZ and KLO. For MLS, Lasso showed approximately the same performance as 
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Stepwise. But for CHA, the original ERA-Interim was the best and none other downscaling 

methods worked efficiently. Stepwise yielded the best results for LUZ and KLO. Lasso was a 

little worse than Stepwise for these two sites. For WFJ, CIM, ROB, ENG, and GLA sites, only 

Lasso reduced the errors significantly, in contrast to increasing RMSE by LOCI, QM and 

Stepwise. For 50 % of all sites, QM produced the worst results, with increasing RMSE compared 

to the original ERA-Interim data, while Stepwise had similar RMSE results for 6 sites. Lasso had 

the lowest RMSE for 46 sites. For MAE, Lasso reduced the errors most with an average 17.2 % 

of MAE, following by LOCI with 15.8 %. Stepwise performed worst (1.1 %). The original ERA-

Interim was better than downscaling methods for DOL on RMSE and for CHA on MAE.  

Table 5.5: Comparison of observations with downscaled daily precipitation for four downscaling 

methods, as well as the original ERA-Interim data in the validation period 1999-2010 by 

averaging CR, RMSE and MAE in mm day-1 of all 50 test sites. 

 
CR RMSE MAE 

ERA 0.77 5.86 2.85 

LOCI 0.85 5.65 2.40 

QM 0.85 5.81 2.44 

Stepwise 0.72 5.67 2.82 

Lasso 0.78 5.14 2.36 

 

 

Figure 5.4: Percentage of annual precipitation bias between observations and four downscaled, as 

well as the original ERA-Interim data in the validation period 1999-2010. 
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Figure 5.4 illustrates the comparison of observations with downscaled annual precipitation for 

the four methods, as well as the original ERA-Interim data in the validation period 1999-2010. 

Lasso predicted the annual precipitation best, with percentage bias values of -21 % to 30.8 %. In 

general, LOCI and QM modeled drier and Stepwise modeled wetter results. 34 out of 50 sites 

were underestimated by Lasso with the range from -21 % (KLO) to -0.1 % (CDF) while 16 sites 

were overestimated by 0.7 % (DIS) to 30.8 % (MLS). The majority of sites were underestimated 

by LOCI (46 out of 50 sites) and QM (44 out of 50 sites) while 27 of 50 sites were 

underestimated by Stepwise. Stepwise performed unstable for different sites and had large 

amplitude of error. In particular, for SIO station, Stepwise had the largest error with value of 

158 %. 
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Figure 5.5 shows the Taylor diagrams of observations with downscaled daily precipitation for 

four methods as well as the original ERA-Interim data in the validation period 1999-2010 by 

taking the four highest stations as examples. The Taylor diagrams for all 50 sites can be found in 

A.3. Three statistics (COR, RMSD and STD) were computed for four methods as well as for the 

original ERA-Interim data, and a letter was assigned to each method considered. The location of 

each method in the diagram depicts how well the downscaled precipitation matches observations. 

For example, for the WFJ site, F (Lasso) has the highest pattern correlation with observations, 

about 0.75, while other methods ranged between 0.6-0.7. The normalized root-mean-square 

difference (RMSD) is proportional to the distance to the point A, which represents observations. 

The green contours indicate the RMSD values. It can be seen that F (Lasso) has RMSD of 

around 5.5 mm day-1. Larger RMSD (around 6 mm day-1) results for the other methods are found. 

The standard deviation of the modeled pattern is proportional to the radial distance from the 

point of origin. All methods had lower standard deviations than the observations, which are 

indicated by the gray arc at the observed value of 8.1 mm day-1. In general, the methods that lie 

nearest to observations (point A) have relatively high correlations and low RMSD errors. The 

models lying closer to the arc in which observations are located in have relatively correct standard 

deviations, which indicate that the methods have smaller amplitude of pattern variations. 

In Figure 5.5 and A.3, it can be seen that Lasso outperformed the other methods for most test 

sites. Stepwise seems to be the worst method having lower pattern correlation and larger RMSD 

errors. As benchmarks, LOCI and QM performed better on the amplitude of variations, because 

they inherited the variations from the calibration periods. Lasso smoothed the variation when it 

performed shrinkage function (regularized with λ parameter). The ERA-Interim local circulation 

variables also contributed to the variation error (deviation difference with observations). Heavy 

events, for example, are not represented by ERA-Interim data. 

Table 5.7 shows the used variables in Stepwise and Lasso. Lasso selected more variables than 

Stepwise regression, and the latter method eliminated more variables. For the Lasso, geopotential 

height, temperature, and wind speed variables are the most frequently (all test sites) used variables. 

Specific humidity fields are least frequently (23 out of 50 sites) applied by Lasso. For Stepwise, in 

contrast, PERA is the only variable for all test sites; pressure level variables, such as H500 (only 12 % 

of the sites), T700 (16 % of the sites), RH500 (16 % of the sites) and SH500 (20 % of the sites) are 

rarely used. Four test sites (DOL, FRE, RUE, and FAH) have the smallest number of variables 

(16 variables) in the Lasso method. Stepwise method applied most variables (16 out of 20 

variables) only for PIO site, and only 3 variables for INT and ALT sites. 32 out of 50 sites 
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selected fewer than 10 variables in Stepwise method. This demonstrates that Stepwise trends to 

exclude much more variables due to its test criteria. 

  

COV WFJ 

  

SAE GSB 

Figure 5.5: Taylor diagram of observations with downscaled daily precipitation for four 

downscaling methods, as well as the original ERA-Interim data for COV, WFJ, SAE and GSB 

stations in the validation period 1999-2010. A= observation, B= original ERA-Interim, C= 

LOCI, D= QM, E= Stepwise and F= Lasso. 

 

5.5 Discussion and Conclusion 

The comparison between ERA-Interim and observations showed that ERA-Interim has a large 

error (MAE ranges of 2.31 to 5.18 mm day-1) in the central Alps (Table 5.4). Thus, there is a great 
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need for the correction and downscaling of ERA-Interim data. This study compared four 

downscaling methods, LOCI, QM, Stepwise and Lasso, for downscaling of ERA-Interim daily 

precipitation data in the central Alps. 

As a frequent input variable for hydrological models, daily precipitation is always corrected or 

downscaled due to the limits of rain gauges. In the previous studies (e.g. Themeßl et al., 2012 and 

Schmidli et al., 2006), LOCI and QM methods have been widely used for the bias correction with 

the advantages of maintaining the variation and distribution of historical data. Table 5.6 and 

Figure 5.5 illustrated that LOCI and QM methods captured the best estimation of daily 

precipitation occurrence and variation. However, the reduction of error is not significant by these 

two methods, and even worse than the original ERA-Interim data for 19 out of 50 sites (Table 

5.6, Figure 5.5). It demonstrates that straightforward methods are not always suitable for 

downscaling observations in complex terrain.  

Stepwise regression took local circulations such as wind components and pressures into account 

by selecting variables automatically. However, Stepwise trends to exclude some relevant variables. 

Lasso selected more variables than Stepwise regression during coefficients shrinkage procedure 

(Table 5.7). For example, geopotential height, temperature, and wind speed variables are applied 

in the algorithm for all test sites. Specific humidity fields are least frequently (22 out of 50 sites) 

applied by Lasso. In contrast, only for PIO site, most variables (16 out of 20 variables) applied by 

Stepwise method. As many as 32 sites selected fewer than 10 variables in Stepwise, and PERA is 

the only variable for all test sites. Fewer variables considered in Stepwise resulted in the worst 

downscaling on daily precipitation occurrence and amount, as well as annual precipitation 

amount. 

Although the Lasso algorithm did not simulate the occurrence of daily precipitation as well as 

LOCI and QM, it captured the occurrence for all test sites generally. Compared to the other three 

downscaling methods, it reduced the amount error most, to 12.2 % of RMSE and 17.2 % of 

MAE. Furthermore, only Lasso could reduce the error for certain sites, e.g. WFJ, CIM, ROB, 

ENG, and GLA sites. In Taylor diagrams, the outperformance of Lasso could be directly and 

visually demonstrated, with relatively high correlation with observations and lower RMSDs, in 

the comparison of four downscaling methods. The performance on the variation was relatively 

weak for Lasso, compared to LOCI and QM, both of which had the same distribution as the 

calibration data.  
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Although the Lasso algorithm has been developed for more than 15 years by statistician, the 

application in geosciences is still at the early-stage (e.g. Ebtehaj et al., 2012). A main practical 

challenge in applying Lasso for precipitation downscaling is that precipitation in heterogeneous 

terrain is such a complex process which tends to use more variables and to overestimate. To 

avoid the over-fitting problem, the penalty (or regularization) parameter λ plays a key role. A large 

λ can reduce the dimension of regression problem and produce a sparse model by estimating the 

coefficients to be zero. The cross-validation and hundreds of runs are necessary to find an 

appropriate penalty parameter. Therefore, Lasso is a little bit time-consuming compared to LOCI, 

QM and Stepwise methods.  

So far, the work presented herein has been limited to the central Alps with 50 meteorological 

stations providing calibration/validation data sets for testing the Lasso algorithm. It would be 

necessary to extend the Lasso method to other high mountainous areas around the world. A 

limited number of variables (20 variables in this study) derived from ERA-Interim data were 

applied for Lasso; however, it should also be investigated whether other potential variables such 

as cloud cover can be used in the presented approach. This study focused on the daily total 

precipitation. Certainly, higher temporal resolution data, such as 3-hourly, would be of great 

interest in further investigations. Besides, using Lasso method to downscale heavy event features 

like intensity and frequency is of special interest to hydrologists. Although dynamic downscaling 

methods always demand more computations, it is worth comparing them to the Lasso method. 
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Chapter 6  

Downscaling and Validation of ERA-

Interim Data Using FLUXNET Sites  

6.1 Motivation 

Reanalysis data evaluation and validation is becoming more and more important due to its 

increasing applications in many fields. In Chapter 3 to Chapter 5, ERA-Interim data has been 

evaluated with E-OBS gridded observation data and local individual meteorological stations in 

Germany and Switzerland. However, these evaluations are carried out in similarly complex 

terrains and climate regimes. Observations near the land surface in dissimilar topographic regions 

experiencing a variety of climate regimes are deficient for validating reanalysis data. Thus, data 

from FLUXNET, a global network of micrometeorological flux observation sites, measuring the 

exchanges of carbon dioxide, water vapor and energy between the biosphere and atmosphere has 

been adopted for the validation of ERA-Interim data. Flux towers in FLUXNET are located in a 

broad range of climate regimes and vegetation zones, which is particularly favorable for the 

validation. This chapter tries to meet the challenges of validation of ERA-Interim temperature 

and precipitation data in different topographic regions. Also, the temperature downscaling 

approach is extended to flux towers.  

6.2 Data and Method 

6.2.1 ERA-Interim Data 

ERA-Interim 2 m temperature and precipitation 3-hourly forecast data (03, 06, 09, 12, 15, 18, 21 

and 24 UTC), initialized at 00 UTC from 1979-2010 and projected on a grid of 0.25°×0.25°, are 

applied here (details see Chapter 2). The surface geopotential height is also retrieved for grid 

height calculation. Temperature, as well as geopotential height at 950 hPa, 850 hPa and 700 hPa, 

is derived from the ERA-Interim dataset. The corresponding ERA-Interim grid is retrieved 
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according to the coordinates of the flux tower. The time period and temporal resolution are kept 

consistent with observations. 

6.2.2 FLUXNET sites 

48 flux tower sites located in Europe have been selected. There are three criteria for site selection: 

i) a continuous record of at least 2 years; ii) no gap in the records and iii) both temperature and 

precipitation have been recorded. Air temperature, precipitation, and elevation values are 

extracted from selected sites. The flux site locations are shown in Figure 6.1 and the basic 

information is listed in Table 6.1. More information about the tower sites such as vegetation and 

climate type can be found in the A.4. Temperature and precipitation data averaged at 30-minute 

intervals are converted to a 3-hourly temporal resolution. Daily precipitation also was compared 

to ERA-Interim precipitation data. Note that the heights of temperature and precipitation 

equipments range from 2 m to 10 m, which are ignored in this study. For temperature, 

correlation and NSE are used for model evaluation, whilst RMSE and MAE are used for error 

comparison. In terms of precipitation, a ratio criterion (Correspondence ratio, CR) is applied for 

occurrence and RMSE and MAE for amount of error validation (see Chapter 5), respectively. 

 

Figure 6.1: Location of FLUNXET site.  
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Table 6.1: Flux tower site information (the ERA-Interim grid heights are also listed, * indicates 

sites with different time period from precipitation. The precipitation period is labeled in brackets). 

The sites in bold type are selected for further temperature downscaling method validation. 

ID Name Latitude Longitude Elevation Grid height Time period 

AT-Neu Neustift 47.12 11.32 970 1608 
2002-2006* 
(2002-2005) 

BE-Bra Brasschaat 51.31 4.52 16 40 2000-2002 

BE-Lon Lonzee 50.55 4.74 167 166 2005-2006 

BE-Vie Vielsalm 50.31 6.00 450 327 1997-2006 

CH-Oe1 Oensingen1 47.29 7.73 450 827 2002-2006 

DE-Bay Bayreuth 50.14 11.87 775 464 1997-1999 

DE-Geb Gebesee 51.10 10.91 162 337 2004-2006 

DE-Gri Grillenburg 50.95 13.51 385 299 2005-2006 

DE-Hai Hainich 51.08 10.45 430 338 2000-2006 

DE-Kli Klingenberg 50.89 13.52 480 299 2005-2006 

DE-Meh Mehrstedt1 51.28 10.66 286 301 2004-2006 

DE-Tha Anchor Station 50.96 13.57 380 299 
1996-2006* 
(1998-2006) 

DE-Wet Wetzstein 50.45 11.46 785 408 2002-2006 

DK-Lva Lille Valby 55.68 12.08 15 12 2005-2006 

DK-Ris Risbyholm 55.53 12.10 10 12 2004-2005 

DK-Sor 
Soroe- 
LilleBogeskov 

55.49 11.65 40 10 1997-2006 

ES-ES1 El Saler 39.35 -0.32 10 203 1999-2006 

ES-ES2 El Saler_Sueca 39.28 -0.32 10 203 2005-2006 

ES-LMa Las Majadas 39.94 -5.77 260 654 2004-2006 

ES-VDA Vall d'Alinya 42.15 1.45 1770 997 
2004-2006* 

(2004-20065 

FR-Gri Grignon 48.84 1.95 125 138 2005-2006 

FR-Hes Hesse Forest 48.67 7.06 300 318 2001-2006 

FR-LBr Le Bray 44.72 -0.77 61 20 2003-2006 

FR-Lq1 Laqueuille 45.64 2.74 1040 634 2004-2006 

FR-Pue Puechabon 43.74 3.60 270 399 2000-2006 

HU-Bug Bugacpuszta 46.69 19.60 140 107 2003-2006 

IE-Ca1 Carlow1 52.86 -6.92 50 108 2004-2006 

IE-Dri Dripsey 51.99 -8.75 187 91 2003-2005 

IT-Amp Amplero 41.90 13.61 884 621 2003-2006 

IT-BCi Borgo Cioffi 40.52 14.96 20 362 2005-2006 

IT-Col Collelongo 41.85 13.59 1550 601 
1997-2003* 
(1998-1999) 

IT-Cpz Castelporziano 41.71 12.38 68 254 2001-2006 

IT-LMa La Mandria 45.15 7.58 350 1261 
2003-2004* 
(2003-2006) 

IT-MBo Monte Bondone 46.02 11.05 1550 1088 2003-2006 
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IT-Non Nonantola 44.69 11.09 25 203 
2001-2003* 
(2001-2002) 

IT-PT1 Zerbolo 45.20 9.06 60 309 2003-2004 

IT-Ren Renon/Ritten  46.59 11.43 1730 1515 
1999-2006* 
(2000-2002) 

IT-Ro1 Roccarespampani1 42.41 11.93 235 320 
2001-2006* 
(2002-2006) 

IT-Ro2 Roccarespampani2 42.39 11.92 224 320 2002-2006 

IT-SRo San Rossore 43.73 10.28 4 163 
1999-2006* 
(2003-2006) 

NL-Ca1 Cabauw 51.97 4.93 1 2 2003-2006 

NL-Hor Horstermeer 52.03 5.07 -2 2 2005-2006 

NL-Loo Loobos 52.17 5.74 25 10 1997-2006 

PT-Esp Espirra 38.64 -8.60 95 131 2002-2004 

PT-Mi1 Mitra (Evora) 38.54 -8.00 250 180 2003-2006 

PT-Mi2 Mitra IV Tojal 38.48 -8.02 190 180 2005-2006 

SE-Deg Degero 64.18 19.55 270 215 2001-2005 

UK-Gri Griffin-Aberfeldy 56.61 -3.80 340 275 2005-2006 

 

Due to the effect of elevation on temperature, the lapse rate, based on altitude difference, is the 

most frequently applied for temperature correction and interpolation (see section 4.1). Here, an 

adjusted method based on ERA-Interim internal lapse rate (Method III and IV in Chapter 4) is 

adopted for ten FLUXNET towers (see Table 6.1). The selected ten flux sites are located higher 

than 500 m a. s. l (approximately the geopotential height at 950 hPa) except Station IT-LMa. 

These ten towers also represent different topographic features. In the Alps, a transition level 

from local circulation-dominated to free air-dominated temperatures was defined at 

approximately 1400 m a.s.l. according to Tabony (1985). In this validation, the mean geopotential 

height at 850 hPa (H850) is again used to judge the lapse rate and reference temperature. Note that 

here the lowest pressure level 950 hPa is used due to the geopotential height close to lowest site. 

Table 6.2. Applied lapse rate (Г) and reference temperature (Tref) for ten test stations.  

Method Г Tref Station 

Method III Г700_950 TERA_2m < mean H850 

Г700_950 TERA_850 > mean H850 

Method IV Г850_950 TERA_2m < mean H850 

Г700_850 TERA_850 > mean H850 
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6.3 Results 

6.3.1 2 m Temperature 

The performance of ERA-Interim data against 48 flux sites with respect to 3-hourly temperature 

is summarized in Table 6.3. The correlation with values ranges from 0.88 to 0.98. An average 

value of 0.96 for all sites suggests that ERA-Interim agrees in general, with flux observations. The 

NSE ranges from 0.2 to 0.97 and the average value is 0.86 for all flux sites. Only 3 sites (ES-VDA, 

IT-Col and IT-LMa) have NSEs lower than 0.7. 41 of 48 sites have an NSE greater than 0.8, 

which indicates a good performance of the model. In terms of error, RMSE and MAE vary from 

1.33-7.97 °C and 0.99-7.47 °C, respectively. 18 sites have RMSE larger than the average value of 

2.68 °C, while 17 sites have a MAE larger than 2.15 °C.  

Table 6.3: Comparison of ERA-Interim 2 m temperature with 3-hourly data of 48 FLUXNET 

sites. The correlation, NSE, as well as the RMSE and MAE in °C are also listed.  

ID Correlation NSE RMSE MAE ID Correlation NSE RMSE MAE 

AT-Neu 0.96 0.78 4.41 3.79 FR-Pue 0.97 0.92 2.09 1.68 

BE-Bra 0.97 0.94 1.48 1.12 HU-Bug 0.95 0.89 3.42 2.57 

BE-Lon 0.98 0.95 1.68 1.24 IE-Ca1 0.95 0.91 1.64 1.19 

BE-Vie 0.97 0.92 2.07 1.59 IE-Dri 0.96 0.84 1.71 1.37 

CH-Oe1 0.96 0.91 2.59 2.11 IT-Amp 0.91 0.75 4.91 3.68 

DE-Bay 0.96 0.86 2.93 2.47 IT-BCi 0.96 0.77 3.41 2.91 

DE-Geb 0.98 0.94 1.99 1.60 IT-Col 0.93 0.48 5.50 4.95 

DE-Gri 0.97 0.93 2.29 1.68 IT-Cpz 0.95 0.88 2.40 1.84 

DE-Hai 0.97 0.93 2.14 1.65 IT-LMa 0.95 0.20 7.97 7.47 

DE-Kli 0.98 0.92 2.36 1.92 IT-MBo 0.96 0.84 3.15 2.66 

DE-Meh 0.98 0.97 1.45 1.11 IT-Non 0.96 0.91 2.89 2.21 

DE-Tha 0.97 0.94 2.04 1.54 IT-PT1 0.97 0.90 2.91 2.34 

DE-Wet 0.96 0.84 3.30 2.87 IT-Ren 0.95 0.87 2.69 1.92 

DK-Lva 0.98 0.96 1.47 1.11 IT-Ro1 0.97 0.88 2.60 2.06 

DK-Ris 0.96 0.88 2.38 1.83 IT-Ro2 0.96 0.87 2.54 1.95 

DK-Sor 0.96 0.88 2.38 1.83 IT-SRo 0.94 0.88 2.48 1.98 

ES-ES1 0.96 0.89 2.05 1.64 NL-Ca1 0.98 0.96 1.33 0.99 

ES-ES2 0.91 0.81 2.89 2.34 NL-Hor 0.95 0.91 2.20 1.59 

ES-LMa 0.98 0.91 2.81 2.40 NL-Loo 0.98 0.95 1.56 1.10 

ES-VDA 0.88 0.58 4.89 4.15 PT-Esp 0.95 0.90 2.12 1.59 

FR-Gri 0.98 0.96 1.57 1.15 PT-Mi1 0.98 0.94 1.79 1.39 

FR-Hes 0.98 0.95 1.75 1.30 PT-Mi2 0.97 0.88 2.93 2.36 

FR-LBr 0.98 0.95 1.75 1.30 SE-Deg 0.92 0.84 4.29 2.93 

FR-Lq1 0.93 0.78 3.61 3.11 UK-Gri 0.94 0.87 1.94 1.47 
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Figure 6.2: The scatter plots show a comparison of flux sites and ERA-Interim 3-hourly 

temperatures for IT-LMa from 2002-2006. 

 

Figure 6.3: Correlation of MAEs and elevation differences (grid height minus site elevation) for 

3-hourly temperature. The y-axis is MAE (°C) and the x-axis is elevation difference (km). Red 

dots are the flux sites higher than ERA-Interim grid heights and blue dots are the sites lower than 

grid heights. 

IT-LMa has the largest RMSE and MAE and lowest NSE. However, the correlation of the two 

datasets is 0.95, which means ERA-Interim captures the fluctuation of the observatons very well 

with observations. Figure 6.2 shows that ERA-Interim significantly underestimates observations, 

in particular for lower temperatures. The most likely reason for the error is that the grid height 
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modeled in ERA-Interim (1261 m) is much higher than its elevation of only 350 m (Table 6.1). 

The grid height of ERA-Interim modeled is determined by the modeled geopotential and surface 

pressure. 

Figure 6.3 illustrates the trend with which MAE increases with increasing elevation differences. 

The y-axis is MAE (°C) and the x-axis is elevation difference (km). 48 sites are divided into two 

groups according to their elevation with respect to grid heights. 24 flux sites (red dots) higher 

than ERA-Interim grid heights showed less dependence (R2=0.73) of elevation than the ones 

lower than grid heights (R2=0.84). A possible reason is that the temperature at higher elevations 

is modeled according to free air-dominated circulation. In the ERA-Interim model, the 2 m 

temperature is interpolated from the lowest model level to higher pressure level (see Chapter 2). 

Therefore, the model level that is higher than the grid height is more related to free air-

dominated circulations. 

Table 6.4 summarizes the performance of two downscaling methods for 10 flux sites. In general, 

the two downscaling methods outperformed the original ERA-Interim data, with greater NSEs. 

The downscaling ability of Method III and IV is approximately the same for all flux sites. 

Although some sites have higher NSEs with lower correlations, the errors are reduced. Method 

III and IV reduced MAE of 29.2 % and 27.5 % for all test sites, respectively. For all high 

elevation sites, the downscaling methods worked very well. For example, IT-Col has the most 

significant improvement. The reduction of the RMSE and MAE is 36.9 % and 45.1 % using 

Method III, and 37.2 % and 45.5 % for Method IV, respectively. IT-Amp and IT-LMa show the 

least improvement, especially the latter. Only 6.5 % of RMSE and 7.4 % of MAE are reduced by 

Method III for the IT-LMa site. IT-LMa is located at the foot of a high mountainous region in 

the northwest of Italy. The result demonstrates that the downscaling methods have excellent 

transferability and worked well in high mountainous areas as well as at single flux site in various 

locations, which is very useful for climate impact models. 
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Table 6.4: Comparison of measurements with the original ERA-Interim 3-hourly 2 m 

temperatures and downscaled results for 10 flux sites. The correlation, NSE, as well as the RMSE 

and MAE in °C are also listed. 

 AT-Neu (970 m) DE-Bay (775 m) 

Method Correlation NSE RMSE MAE Correlation NSE RMSE MAE 

Original 0.96 0.78 4.41 3.79 0.96 0.86 2.93 2.47 

III 0.96 0.91 2.77 2.07 0.96 0.91 2.29 1.64 

IV 0.95 0.89 3.10 2.33 0.96 0.92 2.26 1.59 

 DE-Wet (785 m) ES-VDA (1770 m) 

 Correlation NSE RMSE MAE Correlation NSE RMSE MAE 

Original 0.96 0.84 3.30 2.87 0.88 0.58 4.89 4.15 

III 0.96 0.91 2.44 1.80 0.83 0.67 4.31 3.30 

IV 0.96 0.91 2.44 1.77 0.83 0.68 4.26 3.26 

 FR-Lq1(1040 m) IT-Amp (884 m) 

 Correlation NSE RMSE MAE Correlation NSE RMSE MAE 

Original 0.93 0.78 3.61 3.11 0.91 0.75 4.91 3.68 

III 0.94 0.88 2.68 2.02 0.91 0.80 4.37 3.43 

IV 0.96 0.92 2.21 1.64 0.90 0.79 4.54 3.60 

 IT-Col (1550 m) IT-LMa (350 m) 

 Correlation NSE RMSE MAE Correlation NSE RMSE MAE 

Original 0.93 0.48 5.50 4.95 0.95 0.20 7.97 7.47 

III 0.89 0.80 3.47 2.72 0.95 0.30 7.45 6.92 

IV 0.89 0.80 3.45 2.70 0.95 0.31 7.42 6.89 

 IT-MBo (1550 m) IT-Ren (1730 m) 

 Correlation NSE RMSE MAE Correlation NSE RMSE MAE 

Original 0.96 0.84 3.15 2.66 0.95 0.87 2.69 1.92 

III 0.95 0.89 2.63 2.11 0.96 0.92 2.07 1.57 

IV 0.95 0.89 2.63 2.10 0.96 0.92 2.08 1.59 
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6.3.2 Precipitation 

A threshold value of 1 mm 3-hourly-1 was applied to define dry/wet days. The comparison of 

ERA-Interim precipitation with 3-hourly and daily data of 48 flux sites is summarized in Table 

6.5. For 3-hourly precipitation, ERA-Interim captures the occurrence very well, with a CR that 

ranged from 0.85 to 0.96. The averaged CR is 0.92 for all flux sites. ERA-Interim accurately 

estimated the dry/wet situation in 33 out of 48 sites for 90 % of the time period. ES-ES1 and 

ES-ES2 are two close sites located in the same ERA-Interim grid and they have the same CR 

with respect to different time periods. PT-Mi1 and PT-Mi2 are in a similar situation. IT-Ren, 

located in a high mountainous region (elevation 1730 m), has the worst CR performance. For 

error, RMSE ranges from 0.73 to 2.64 mm 3-hourly-1 while MAE varies from 0.15 to 0.54 mm 3-

hourly-1. The worst RMSE occurred at the IT-BCi site, with a value of 2.64 mm 3-hourly-1, and 

the best RMSE occurred in FR-Gri, with a value of 0.73 mm 3-hourly-1. MAE performs 

differently than RMSE. The highest MAE (0.54 mm 3-hourly-1) appeared in IT-BCi, which is 

located close to the ocean and the lowest MAE (0.15 mm 3-hourly-1) occurred in PT-Mi1, which 

is located in a homogenous plain. 

Table 6.5: Comparison of ERA-Interim precipitation with 3-hourly and daily data of 48 flux sites. 

The CR as well as the RMSE and MAE in mm 3-hourly-1 are also listed.  

ID 3-hourly Daily 

CR RMSE MAE CR RMSE MAE 

AT-Neu 0.87 1.94 0.52 0.70 7.46 3.49 

BE-Bra 0.91 1.53 0.29 0.83 5.65 1.71 

BE-Lon 0.91 0.98 0.24 0.79 3.08 1.51 

BE-Vie 0.89 0.97 0.29 0.77 3.91 1.89 

CH-Oe1 0.89 1.49 0.41 0.81 5.79 2.55 

DE-Bay 0.90 1.33 0.32 0.81 4.40 2.04 

DE-Geb 0.93 0.96 0.19 0.78 3.29 1.39 

DE-Gri 0.92 1.16 0.24 0.83 3.83 1.50 

DE-Hai 0.92 0.99 0.24 0.83 3.18 1.44 

DE-Kli 0.92 1.06 0.21 0.79 3.39 1.43 

DE-Meh 0.94 0.82 0.17 0.80 2.55 1.21 

DE-Tha 0.91 1.11 0.26 0.82 4.23 1.61 

DE-Wet 0.91 1.66 0.32 0.81 7.60 2.25 

DK-Lva 0.91 1.41 0.33 0.80 4.71 2.09 

DK-Ris 0.93 0.99 0.21 0.77 3.54 1.50 

DK-Sor 0.92 1.35 0.29 0.81 4.94 1.88 

ES-ES1 0.96 1.81 0.19 0.90 7.20 1.32 

ES-ES2 0.96 1.60 0.21 0.88 5.99 1.56 
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ES-LMa 0.95 1.43 0.23 0.90 6.14 1.54 

ES-VDA 0.91 1.80 0.36 0.75 7.34 2.72 

FR-Gri 0.93 0.73 0.19 0.84 2.41 1.14 

FR-Hes 0.90 1.16 0.30 0.83 4.00 1.75 

FR-LBr 0.92 1.34 0.29 0.84 4.47 1.73 

FR-Lq1 0.90 1.38 0.35 0.81 5.09 2.03 

FR-Pue 0.94 1.76 0.31 0.86 6.46 1.87 

HU-Bug 0.93 1.00 0.21 0.81 3.84 1.49 

IE-Ca1 0.91 1.10 0.25 0.81 4.24 1.72 

IE-Dri 0.91 1.00 0.30 0.84 3.71 1.74 

IT-Amp 0.90 1.35 0.35 0.77 6.19 2.39 

IT-BCi 0.90 2.64 0.54 0.82 10.42 3.42 

IT-Col 0.88 1.87 0.45 0.77 8.03 2.98 

IT-Cpz 0.92 1.60 0.32 0.81 5.15 1.90 

IT-LMa 0.90 1.49 0.35 0.73 6.69 2.47 

IT-MBo 0.86 1.53 0.44 0.70 6.71 3.15 

IT-Non 0.90 1.92 0.44 0.82 6.51 2.45 

IT-PT1 0.94 1.10 0.22 0.85 4.32 1.46 

IT-Ren 0.85 1.18 0.41 0.74 5.31 2.76 

IT-Ro1 0.92 1.64 0.31 0.82 5.82 1.95 

IT-Ro2 0.92 1.64 0.32 0.82 5.83 1.95 

IT-SRo 0.94 1.59 0.26 0.85 5.70 1.76 

NL-Ca1 0.92 1.14 0.23 0.84 3.47 1.37 

NL-Hor 0.90 1.36 0.33 0.85 4.63 1.73 

NL-Loo 0.91 1.05 0.28 0.85 3.29 1.58 

PT-Esp 0.94 0.90 0.19 0.93 2.75 0.94 

PT-Mi1 0.96 0.86 0.15 0.94 2.72 0.76 

PT-Mi2 0.96 1.23 0.20 0.94 3.51 1.04 

SE-Deg 0.92 0.85 0.21 0.75 3.34 1.54 

UK-Gri 0.89 1.43 0.29 0.65 5.35 2.42 

 

Figure 6.4 gives a more detailed visualization of the 3-hourly precipitation at the ES-ES1 and ES-

ES2 sites, as well as ERA-Interim in 2006. ES-ES1 and ES-ES2 are located close to the 

Mediterranean Sea and are only separated by about 8 km. ERA-Interim significantly 

overestimates precipitation over two flux sites in the winter time (December, January and 

February), in particular for the ES-ES2 site. From March to June, ERA-Interim underestimates 

for two sites. ERA-Interim did not capture the heavy events, especially for ES-ES1. ES-ES1 was 

affected more by the ocean circulation which could not be represented by the ERA-Interim 

model. From August to November, ES-ES2 has much more precipitation than ES-ES1, and this 

was captured well by ERA-Interim, generally. Figure 6.4 shows the comparison of 3-hourly 

precipitation between ES-ES1 and ES-ES2 sites and ERA-Interim data. The local circulations, 
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including the distance to the ocean affect the precipitation occurrence and amount. The fractional 

land cover (land or ocean is defined by a threshold of 0.5) is another potential factor that 

produces error in the ERA-Interim model (ECMWF, 2009b). 

 

Figure 6.4: Plot of 3-hourly precipitation at the ES-ES1 and ES-ES2 sites as well as ERA-Interim 

data in 2006. 

Daily precipitation has a different performance, because it reduces the variability by summing of 

eight 3-hourly precipitation events. CR ranges from 0.65 to 0.94 and has a lower average value of 

0.81. PT-Mi1 and PT-Mi2 still have the high CRs. UK-Gri has the worst occurrence estimation. 

The highest RMSE for daily precipitation occurred at IT-BCi and the lowest at FR-Gri with 

values of 2.41 and 10.42 mm day-1, respectively. PT-Mi1 has the smallest MAE of 0.76 and AT-

Neu has the largest MAE of 3.49 mm day-1.  

Compared to 3-hourly precipitation, RMSE and MAE increased for daily precipitation because of 

the amount accumulation. It is difficult to judge which site has the best performance, due to the 

different time periods. However, the variation of the errors could be analyzed by RMSE and 

MAE. The larger difference between RMSE and MAE means larger variation in the magnitude of 

the errors and significant bias. IT-BCi has the largest difference between RMSE and MAE while 

FR-Gri has the lowest with respect to 3-hourly and daily precipitation. 
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A more detailed visualization of the daily precipitation is given in Figure 6.5. The large bias 

between ERA-Interim and IT-BCi is very clear. Although ERA-Interim captured the heavy event 

of March 11 at IT-BCi, it missed most of the heavy precipitation from September to December. 

On October 21, the heaviest precipitation occurred, with 124.2 mm, but only 4.3 mm was yielded 

in ERA-Interim. Apart from this heavy event, four other days experienced intense rainfall in 

excess of 40 mm, and these are recorded on September 17 and 25, November 12 and December 

18. For FR-Gri, in general, the magnitude of the bias is more moderate than for IT-BCi. ERA-

Interim underestimated 9.9 mm for the heavy event on June 25 and overestimated 11.2 mm on 

November 24. The reason for the differences in performance lies in the climate regime.  

Unlike temperature, the correlation between MAE and elevation differences is not significant 

(Figure 6.6). 24 Flux sites (red dots) higher than ERA-Interim grid heights showed less 

dependence (R2=0.50) of elevation than those lower than grid heights (R2=0.25). This 

demonstrates that elevation differences only explain a small part of the errors. Therefore, more 

local effects should be taken into account. In particular, for the flux sites near the ocean or in the 

valleys of high mountains, the local circulations, such as wind and land-sea breezes, always play 

important roles in condensation of atmospheric water vapor and occur on a short time scale. 

 

Figure 6.5: Correlation of MAEs and elevation differences (grid height minus site elevation) for 

3-hourly precipitation. The y-axis is MAE (mm) while the x-axis is the elevation difference (km). 

Red dots are the flux sites higher than ERA-Interim grid heights and blue dots are the sites lower 

than grid heights. 
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Figure 6.6: Plot of daily precipitation at the IT-BCi (upper) and FR-Gri (lower) sites, as well as 

ERA-Interim in 2006. 
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6.4 Discussion and Conclusion 

It is important and necessary to investigate the performance of reanalysis data against the 

observations from different topographic regions experiencing various climate regimes and with 

different land use characteristics. In this study, temperature and precipitation of 48 flux tower 

sites from FLUXNET were adopted to evaluate the ERA-Interim data and to validate the 

performance of temperature downscaling approach.  

For temperature, high temporal correlations, with values from 0.88 to 0.98 and an averaged value 

of 0.96 for all sites were found between ERA-Interim and flux observations. ERA-Interim 

performs well for 85 % of the sites, with the NSE greater than 0.8. The errors were assessed by 

RMSE and MAE, and varied from 1.33-7.97 °C and 0.99-7.47 °C, respectively. Although the 

errors are not only affected by the elevation differences between ERA-Interim grid heights and 

flux towers, the downscaling methods based on the ERA-Interim internal lapse rate (Method III 

and IV in chapter 4) reduced errors for the selected 10 flux sites (averaged 28.3 % MAE). The 

results illustrate that the downscaling methods worked well in high mountainous areas as well as 

for individual flux sites. For certain sites (e.g. IT-LMa), ERA-Interim did not perform well, due 

to its much higher grid height.  

For precipitation, ERA-Interim captures the occurrence very well in general, with high CRs 

ranging from 0.85 to 0.96 for 3-hourly and from 0.65 to 0.94 for daily precipitation, based on the 

1 mm 3-hourly-1 threshold. The topography features (e.g. in the valley of mountainous and near 

the ocean) determined the errors. Unlike temperature, the elevation effects only explain a small 

part of the precipitation errors. Even two flux sites located close to each other in the same ERA-

Interim grid had different occurrence and amount of total precipitation (Figure 6.4). The distance 

to the ocean was a major factor affecting the precipitation. For example, IT-BCi flux sites 

experiences the typical Mediterranean climate (Csa) with little precipitation in the summer and 

heavy rains in the winter. This characteristic was not captured by ERA-Interim, especially the 

high amount in October. Other variables representing the local circulations, such as wind speed 

and direction, humidity, pressure, amongst others, should be incorporated into the precipitation 

correction and downscaling. 
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Chapter 7  

ERA-Interim Data Application 

7.1 Background 

Along with the rapidly expanding global markets, the world’s largest motor vehicle manufacturer, 

Volkswagen Group (hereafter VW) and its subsidiary company AUDI AG (hereafter AUDI) 

have recognized that temperature distribution and extremes affect the automobiles’ technical 

design, for example, the engine cooling system or coolant additives. Therefore, VW and AUDI 

urgently need knowledge about temperature distributions and extremes for their emerging 

markets. 

Normally, long-term time series of data are provided by local meteorological stations or by 

national meteorological services (e.g. DWD in Germany). However, there are some difficulties in 

data collection in the global context. Firstly, weather stations are not widely available, especially in 

the developing countries, where rapidly emerging markets for VW and AUDI are located. 

Secondly, weather stations are distributed unevenly and some regions have only a low station 

density. Thirdly, records are not consistent, for example, the measuring equipment and measured 

heights differ. Finally, acquiring long-term and high temporal resolution data is very time-

consuming and costly. For these reasons, ERA-Interim data has significant strengths that can 

meet these challenges. Within a Matlab and GIS framework, the temperature distribution and 

extremes of ERA-Interim are analyzed and presented visually. These global and regional thematic 

maps help VW and AUDI with their fast marketing planning. 

However, the accuracy of ERA-Interim data for large cities, which are the main car markets, 

should be tested. In order to validate the ERA-Interim temperature data, nine large city 

measurements, from ECA&D are adopted. This validation provides the information on the 

reliability of ERA-Interim data in this socio-economic application. This chapter is partitioned 

into two parts: temperature distribution maps based on ERA-Interim data for the globe and 

regions and comparison of ERA-Interim data with measurements of large cities.  
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7.2 Thematic Map Making 

7.2.1 ERA-Interim Data 

3-hourly forecast temperature data (03, 06, 09, 12, 15, 18, 21 and 24 UTC) initialized at 00 UTC 

from 01.10.1989 to 31.12.2009 which are projected on a reduced Gaussian grid (N128) with an 

approximately uniform 79 km spacing for the surface is applied here. The extreme temperatures 

are represented by quantiles: 0.1 %, 0.5 %, 1 % and 5 % quantiles for lower temperatures and 

95 %, 99 %, 99.5 % and 99.9 % quantiles for higher temperatures, respectively. According to the 

time period and record steps, the individual quantiles correspond to time periods per year the 

quantile values are exceeded or fallen short of (Table 7.1). For example, 0.1 % quantile 

temperature represents temperatures lower than 0.1 % quantile temperature is less than 9 hours 

per year. In contrast, higher 99.9 % quantile temperatures last less than 9 hours per year (Table 

7.1). 

Table 7.1: Duration per year the quantile values exceeded or fallen short of for each quantile 

according to the time period and record steps. 

  0.1 % 0.5 % 1 % 5 % 95 % 99 % 99.5 % 99.9 % 

Duration (h) 9 45 90 450 450 90 45 9 

 

7.2.2 Map Making Method 

ArcMap, the main component of Esri's ArcGIS® suite of geospatial processing programs, is 

applied for thematic map making. First, the quantile data and region boundaries are entered into 

ArcMap, and then the Data Management Tools are used to adjust all data to the same projection. 

Second, the Spatial Analyst Tools are applied to interpolate quantile data and extract the regional 

interpolation data from globe dataset. Finally, the appropriate classification and layout functions 

adding scale bar, legend, and titles are used to export the maps in different formats. Figure 7.1 

shows the technical flow of map-making in ArcMap Version 9.3. The thematic maps provide a 

clear and rapid review process regarding the classification of regions according to the temperature 

extremes. 
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Figure 7.1: Technical flow of map production. 

7.2.3 Global and Regional Maps 

This comparison illustrates that calculating ERA-Interim data in different quantiles with 3-hourly 

temporal resolution and over the long term period 1989-2009, as well as interpolating quantile 

data from the original N128 grid to defined areas, and finally, creating thematic maps for each 

area and each quantile global and local areas (Australia, China, Germany, Japan, India, southern 

North America and southern Europe). Here, only the global and southern Europe thematic maps 

are shown as the examples (see A.4). Figure 7.2 displays the global temperature distribution for 

the 0.1 % and 99.9 % quantile on an interpolated grid of 100×100 km2. The individual quantiles 

correspond to time periods per year the quantile values are exceeded or fallen short of according 

to the time period and record steps. Generally, high latitude countries, such as Russia and Canada 

have extremely low temperatures, and Equatorial countries experience the extremely high 

temperatures. Figure 7.3 shows the southern European temperature distribution for 0.1 % and 

99.9 % quantiles on 25 km grids. Note that all final thematic maps are derived from the original 

N128 grid (about 79 km) and that ArcMap software constrains the grid number (i.e. spatial 

resolution) that can be processed. 
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Figure 7.2: Global temperature distribution for 0.1 % and 99.9 % quantiles (Geographical 

Coordinate System: WGS 1984, Projection System: World Robinson, spatial resolution: 100 km, 

original ERA-Interim spatial resolution: ~79 km). 
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Figure 7.3: Southern European temperature distribution for 0.1 % and 99.9 % quantiles 

(Geographical Coordinate System: European 1950, Projection System: Lambert Conformal Conic, 

spatial resolution: 25 km, original ERA-Interim spatial resolution: ~79 km). 
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7.3 Validation of the ERA-Interim Temperature for Large Cities 

7.3.1 ECA&D Data 

Nine large representative cites (Berlin, Dublin, Istanbul, Kiev, Madrid, Moscow, Munich, Paris, 

and Vienna) located over a wide range of longitude in Europe, have been chosen from the 

ECA&D dataset and compared for daily minimum, maximum and mean temperature with the 

nearest ERA-Interim grid data from October 1 1989- December 31 2009. The altitude difference 

between ERA-Interim grid height and the elevations of the cities ranges from -36 to 164 m 

(Table 7.2). Munich has the largest altitude difference, due to its location close to the Alps. 

Generally, these differences are small and the effect on temperature resulting from the altitude 

gap could be ignored in the comparison. NSE, RMSE, and MAE are again adopted for data 

evaluation. 

Table 7.2: City information (the corresponding nearest ERA-Interim grid heights also are listed). 

Sites Latitude Longitude Elevation (m) Grid height (m) 

Berlin 52.50 13.38 34 57 

Dublin 53.35 -6.25 9 82 

Istanbul 41.01 28.95 28 73 

Kiev 50.45 30.52 169 133 

Madrid 40.38 -3.72 667 811 

Moscow 55.75 37.62 151 179 

Munich 48.13 11.57 519 683 

Paris 48.85 2.35 35 138 

Vienna 48.21 16.37 346 323 

 

7.3.2 Validation Results 

The comparison of ERA-Interim 2 m temperature with daily data of nine meteorological stations 

is summarized in Table 7.3. ERA-Interim data agree well with observations with respect to daily 

minimum, mean and maximum temperature. The Berlin station has the smallest bias (MAE) with 

the values of 1.03, 0.75 and 1.26 °C for minimum, mean and maximum temperature, respectively. 

The Kiev and Moscow stations have the same performances for NSE and similar RMSEs and 

MAEs. Dublin has the worst NSE for minimum temperature while Istanbul has the worst NSE 

and MAE for maximum temperature. In terms of MAE, Paris has the largest bias (2.09 °C) with 

regard to minimum temperature. For mean temperature, ERA-Interim performs well for all cities, 
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and the NSE ranges from 0.90 to 0.98. Figure 7.4 and 7.5 give a more detailed visualization of the 

results for Berlin and Istanbul, separately.  

 

Figure 7.4: The scatter plots show the comparison of daily ERA-Interim 2 m temperatures and 

measurements for Berlin, minimum temperature (left), mean (middle) and maximum (right). 

 

Figure 7.5: The scatter plots show the comparison of daily ERA-Interim 2 m temperatures and 

measurements for Istanbul, minimum temperature (left), mean (middle) and maximum (right). 
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Table 7.3: Comparison of ERA-Interim 2 m temperature with daily data of nine meteorological 

stations. The NSE, as well as the RMSE and MAE in °C, are also listed. 

Site NSE RMSE MAE 

 min mean max min mean max min mean max 

Berlin 0.96  0.98  0.97  1.35  0.97  1.59  1.03  0.75  1.26  

Dublin 0.77  0.92  0.85  2.21  1.26  1.93  1.73  1.01  1.60  

Istanbul 0.91  0.94  0.79  2.09  1.78  3.84  1.65  1.42  3.21  

Kiev 0.96  0.98  0.97  1.66  1.30  1.80  1.25  1.00  1.37  

Madrid 0.87  0.91  0.93  2.28  2.23  2.36  1.92  1.95  1.98  

Moscow 0.96  0.98  0.97  2.00  1.37  2.03  1.50  1.05  1.55  

Munich 0.92  0.94  0.90  1.95  1.80  2.80  1.45  1.47  2.30  

Paris 0.81  0.90  0.92  2.49  2.07  2.15  2.09  1.82  1.85  

Vienna 0.87  0.91  0.93  2.58  2.49  2.56  2.06  1.89  2.15 

 

7.4 Conclusion 

Based on ERA-Interim data, Matlab and a GIS framework, the thematic maps of temperature 

distribution and temperature extremes (represented by quantiles) were produced for globe and 

regions. These direct viewing maps could help users to rapidly judge the temperature distribution 

and extremes. The application of VW and AUDI is a good example of ERA-Interim data 

application to socio-economic context.  

It is necessary to validate the ERA-Interim data for large cities, which are the main markets for 

automobiles. Nine large city measurements have been compared to ERA-Interim with respect to 

daily minimum, mean and maximum temperatures. In general, ignoring the elevation difference 

effects (only 23-164 m altitude differences), ERA-Interim agrees well with observations in nine 

large cities (Table 7.3). The average MAEs is 1.03, 0.75 and 1.26 °C for minimum, mean and 

maximum temperature, respectively. However, there is bias for individual large city, for large-

scale analysis, the original ERA-Interim data projected on the reduced Gaussian grid of N128 is 

appropriate and sufficient with respect to its long-term period and 3-hourly temporal resolution. 
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Chapter 8  

Conclusions and Outlook 

8.1 Conclusions 

The aim of this thesis was to resolve the spatial resolution discrepancy between reanalysis data 

(ERA-Interim) and local measurements, using simple and novel statistical downscaling 

approaches with respect to temperature and precipitation, which are the most important input 

variables for hydrological and climate models.  

Firstly, the large-scale error of ERA-Interim reanalysis data was evaluated for the central Alps by 

comparing it to gridded observations data (E-OBS) derived from the high density of 

measurements on a 0.25° grid from 1979-2010. It can be pointed out that the large-scale error of 

temperature is generally small, which agreed with previous studies (e.g. Simmons et al., 2010). 

The average anomaly of the entire area is 0.6 °C for both Tn and Tg, and 0.9 °C for Tx. However, 

the quantile analysis showed that ERA-Interim is weak in capturing the extreme temperature in 

complex terrains. The analysis of elevation dependence has shown that the error could be 

reduced significantly by using an appropriate lapse rate. This is also the theoretical principle of 

the temperature downscaling model (Chapter 4). ERA-Interim has significant bias in the wet 

season (May to August) and the dry season (November to February), compared to observations. 

Although ERA-Interim has almost the same standard deviation as the inter-annual variability of 

daily precipitation with E-OBS: 1.0 mm day-1, the mean absolute error (MAE) was large and 

varied between 4.5 mm day-1 and 9.5 mm day-1 in wet days for the entire area. Precipitation is 

more complex than temperature in the high mountainous regions, which implies that the 

elevation is not the only factor to be considered for downscaling. Other variables such as wind 

components and humidity fields also play significant roles in the precipitation process. 

A new and novel temperature downscaling approach was presented, based on the ERA-Interim 

internal lapse rate. The method’s performance has been compared to benchmark methods that 

use the conventional fixed lapse rate (Kunkel, 1989) and the observed lapse rate derived from 

high and low stations. The results demonstrated that using a fixed lapse rate was not satisfactory 

and led to a large bias for high elevations. The observed lapse rates worked best but its 
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acquisition is generally limited, because only a small number of stations in high mountainous 

regions and in high altitude regions exist and thus cannot provide an appropriate lapse rate. 

Furthermore, the usage of measured lapse rates can lead to the fact that the model is forced into 

the direction of implausible temperatures if one of the stations which are used for calculating the 

lapse rate delivers incorrect measurements. The new method, based on ERA-Interim modeled 

lapse rate, which is derived from temperatures and geopotential heights at representative pressure 

levels (925 hPa, 850 hPa, and 700 hPa), was independent of observations. This novel approach 

showed a convincing performance, especially for higher elevations. The ERA-Interim internal 

lapse rate is a useful tool for correcting the original output data to the station scale, even if they 

underestimating the observed lapse rates for the whole season with all of the occurring variations 

(see Chapter 4). An extended test was carried out for flux tower sites, which again proved that 

the ERA-Interim internal lapse rate is a useful tool for correcting the original output data to the 

station scale (see Chapter 6). 

A new machine learning method, Lasso, was introduced for downscaling ERA-Interim daily 

precipitation. It is useful for variable selection and prevention of the over-fitting. These 

advantages were implemented by adding a penalty parameter into the ordinary least-squares 

regression model. Benchmark methods, LOCI and QM, as well as Stepwise regression, were 

applied for method comparison in a high mountainous region, the central Alps. LOCI and QM 

showed advantages in predicting precipitation occurrence but led to a large error, compared to 

the original ERA-Interim data. Nevertheless, even though Stepwise considered the same set of 

local circulation variables as Lasso, it yielded the worst predictions, due to its flaws in variable 

selection and regression shrinkage. The Lasso algorithm generated a slightly worse variation when 

compared with LOCI and QM but a precipitation occurrence similar to the original ERA-Interim. 

The error that was reduced by Lasso was significant (12.2 % RMSE and 17.2 % of MAE), 

especially for some stations for which only Lasso was effectual (see Chapter 5). In summary, 

Lasso is well-suited for sparse and possibly under-determined linear regression problems, as well 

as for joint estimation and continuous variable selection. 

Information from FLUXNET tower sites, which represented various vegetation and climate 

types in different topographic regions, were adopted for ERA-Interim validation. The analysis 

illustrated that ERA-Interim captures temperature and precipitation well for micrometeorological 

stations, in general. However, errors still existed, due to complex reasons, such as ERA-Interim 

grid height errors. The novel temperature downscaling methods were validated for ten flux tower 

sites, which illustrated that they have a good transferability. MAE was reduced 28.3 % by the 
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downscaling methods. Consequently, ERA-Interim temperature data is suitable for large-scale 

application, which was also furthermore demonstrated by a socio-economic example. The 

temperature quantile maps for the globe and regions provide the visual information for VW and 

AUDI’s marketing planning. As the main markets, nine large cities were applied for validation of 

ERA-Interim data. The average MAEs for minimum, mean and maximum temperatures are 1.03, 

0.75 and 1.26 °C, respectively. However, there is bias for individual large city, for large-scale 

analysis, the original ERA-Interim data projected on the reduced Gaussian grid of N128 is 

appropriate and sufficient with respect to its long-term period and 3-hourly temporal resolution. 

In sum, the temperature downscaling method based on ERA-Interim modeled lapse rate was 

applicable for mountainous areas as well as other areas. The precipitation model was valid for 

high elevation stations, for which, in particular, the conventional benchmark method did not 

work. Both downscaling methods are simple and easily implemented for further studies. ERA-

Interim reanalysis data is appropriate for various spatial resolution applications, from individual 

site to continental and global scales.  

8.2 Outlook 

Although novel and efficient downscaling methods for temperature and precipitation have been 

provided, several considerations for model extensions or improvements can be foreseen. First of 

all, even though this thesis focused on ERA-Interim reanalysis data, there are other mature 

reanalysis products provided by different institutions in the world, such as NCEP/NCAR data 

(Table 1.3). It is of great interest and valuable to investigate other reanalysis products that 

represent different land surface regimes. Different assimilation models could result in various 

results in complex terrains. Besides, this study used only 0.25° grid data, and other spatial 

resolutions also are worth testing, which could help users to investigate the errors arising from 

grid interpolation. 

Secondly, for temperature downscaling methods, a transition dividing local circulation and free-

air dominant circulation was used in the central Alps. How this transition level changes with 

respect to various topographies should be further tested. Furthermore, temperature and 

geopotential heights at 925 hPa, 850 hPa and 700 hPa were applied for computing the internal 

lapse rate. Do other pressure levels work equally well? It would also be worthwhile to investigate 

this interesting question. Additionally, the characteristics of vertical lapse rates from ERA-Interim 

are also important for downscaling model extensions. 
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Thirdly, for the Lasso algorithm, due to its fewer applications in precipitation downscaling, many 

more validation tests should be implemented in the future. More relevant variables (e.g. variables 

used in previous studies) and higher temporal resolution (sub-daily) tests would be helpful for 

model improvement. More input data means more computation demands. Thus, the computing 

time and efficiency also are worth evaluating. Numerous methods for precipitation have been 

employed in the previous studies. This thesis selected only three representative approaches for 

comparison. The evaluation of other methods, in particular non-linear models, such as support 

vector machine (SVM), is of great interest to end users.  

Last but not least, apart from temperature and precipitation, other variables, including wind 

components, soil moisture, and snow depth, also must be downscaled for model application. The 

performance of hydrological models in certain catchments, especially for high elevation 

watersheds driven by downscaled input variables, should be tested. This is the ultimate aim for 

the further development of downscaling methods. 
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A  

Appendix 

A.1 Reduced Gaussian Grid N128 

Gaussian grids are not regular by spacing of the lines of latitude symmetrically about the Equator. 

Different Gaussian grids are referred by the number “N”, which is the number of latitude lines 

from Equator to Pole.  The longitude points distribute even space along each line of latitude. For 

reduced Gaussian grid, the number of longitude is specified, although latitudes are differing 

number of points. Table A.1 shows the N128 Reduced Gaussian grid. 

 
Table A.1: N128 Reduced Gaussian grid. 

Latitude 
number 

Reduced 
points 

Regular 
points  

Latitude   Latitude 
number 

Reduced 
points 

Regular 
points  

Latitude  

1 18 512 89.46282  129 512 512 -0.35087 
2 25 512 88.76695  130 512 512 -1.05262 
3 36 512 88.06697  131 512 512 -1.75438 
4 40 512 87.36606  132 512 512 -2.45613 
5 45 512 86.66480  133 512 512 -3.15788 
6 50 512 85.96337  134 512 512 -3.85964 
7 60 512 85.26184  135 512 512 -4.56139 
8 64 512 84.56026  136 512 512 -5.26314 
9 72 512 83.85863  137 512 512 -5.96490 
10 72 512 83.15698  138 512 512 -6.66665 
11 80 512 82.45531  139 512 512 -7.36840 
12 90 512 81.75363  140 512 512 -8.07016 
13 90 512 81.05194  141 512 512 -8.77191 
14 100 512 80.35023  142 512 512 -9.47366 
15 108 512 79.64852  143 512 512 -10.17541 
16 120 512 78.94681  144 512 512 -10.87717 
17 120 512 78.24509  145 512 512 -11.57892 
18 125 512 77.54336  146 512 512 -12.28067 
19 128 512 76.84163  147 512 512 -12.98243 
20 144 512 76.13990  148 512 512 -13.68418 
21 144 512 75.43817  149 512 512 -14.38593 
22 150 512 74.73644  150 512 512 -15.08768 
23 160 512 74.03470  151 512 512 -15.78944 
24 160 512 73.33296  152 512 512 -16.49119 
25 180 512 72.63123  153 512 512 -17.19294 
26 180 512 71.92949  154 512 512 -17.89470 
27 180 512 71.22774  155 500 512 -18.59645 
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28 192 512 70.52600  156 500 512 -19.29820 
29 192 512 69.82426  157 500 512 -19.99996 
30 200 512 69.12252  158 500 512 -20.70171 
31 216 512 68.42077  159 500 512 -21.40346 
32 216 512 67.71903  160 500 512 -22.10521 
33 216 512 67.01728  161 500 512 -22.80697 
34 225 512 66.31554  162 486 512 -23.50872 
35 240 512 65.61379  163 486 512 -24.21047 
36 240 512 64.91204  164 486 512 -24.91223 
37 240 512 64.21030  165 480 512 -25.61398 
38 250 512 63.50855  166 480 512 -26.31573 
39 250 512 62.80680  167 480 512 -27.01748 
40 256 512 62.10505  168 480 512 -27.71924 
41 270 512 61.40330  169 480 512 -28.42099 
42 270 512 60.70156  170 480 512 -29.12274 
43 288 512 59.99981  171 480 512 -29.82449 
44 288 512 59.29806  172 480 512 -30.52625 
45 288 512 58.59631  173 480 512 -31.22800 
46 300 512 57.89456  174 480 512 -31.92975 
47 300 512 57.19281  175 450 512 -32.63150 
48 320 512 56.49106  176 450 512 -33.33326 
49 320 512 55.78931  177 450 512 -34.03501 
50 320 512 55.08756  178 450 512 -34.73676 
51 320 512 54.38581  179 450 512 -35.43851 
52 324 512 53.68406  180 432 512 -36.14027 
53 360 512 52.98231  181 432 512 -36.84202 
54 360 512 52.28056  182 432 512 -37.54377 
55 360 512 51.57881  183 432 512 -38.24552 
56 360 512 50.87705  184 432 512 -38.94728 
57 360 512 50.17530  185 432 512 -39.64903 
58 360 512 49.47355  186 432 512 -40.35078 
59 360 512 48.77180  187 405 512 -41.05253 
60 375 512 48.07005  188 400 512 -41.75428 
61 375 512 47.36830  189 400 512 -42.45604 
62 375 512 46.66655  190 400 512 -43.15779 
63 375 512 45.96479  191 400 512 -43.85954 
64 384 512 45.26304  192 384 512 -44.56129 
65 384 512 44.56129  193 384 512 -45.26304 
66 400 512 43.85954  194 375 512 -45.96479 
67 400 512 43.15779  195 375 512 -46.66655 
68 400 512 42.45604  196 375 512 -47.36830 
69 400 512 41.75428  197 375 512 -48.07005 
70 405 512 41.05253  198 360 512 -48.77180 
71 432 512 40.35078  199 360 512 -49.47355 
72 432 512 39.64903  200 360 512 -50.17530 
73 432 512 38.94728  201 360 512 -50.87705 
74 432 512 38.24552  202 360 512 -51.57881 
75 432 512 37.54377  203 360 512 -52.28056 
76 432 512 36.84202  204 360 512 -52.98231 
77 432 512 36.14027  205 324 512 -53.68406 
78 450 512 35.43851  206 320 512 -54.38581 
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79 450 512 34.73676  207 320 512 -55.08756 
80 450 512 34.03501  208 320 512 -55.78931 
81 450 512 33.33326  209 320 512 -56.49106 
82 450 512 32.63150  210 300 512 -57.19281 
83 480 512 31.92975  211 300 512 -57.89456 
84 480 512 31.22800  212 288 512 -58.59631 
85 480 512 30.52625  213 288 512 -59.29806 
86 480 512 29.82449  214 288 512 -59.99981 
87 480 512 29.12274  215 270 512 -60.70156 
88 480 512 28.42099  216 270 512 -61.40330 
89 480 512 27.71924  217 256 512 -62.10505 
90 480 512 27.01748  218 250 512 -62.80680 
91 480 512 26.31573  219 250 512 -63.50855 
92 480 512 25.61398  220 240 512 -64.21030 
93 486 512 24.91223  221 240 512 -64.91204 
94 486 512 24.21047  222 240 512 -65.61379 
95 486 512 23.50872  223 225 512 -66.31554 
96 500 512 22.80697  224 216 512 -67.01728 
97 500 512 22.10521  225 216 512 -67.71903 
98 500 512 21.40346  226 216 512 -68.42077 
99 500 512 20.70171  227 200 512 -69.12252 
100 500 512 19.99996  228 192 512 -69.82426 
101 500 512 19.29820  229 192 512 -70.52600 
102 500 512 18.59645  230 180 512 -71.22774 
103 512 512 17.89470  231 180 512 -71.92949 
104 512 512 17.19294  232 180 512 -72.63123 
105 512 512 16.49119  233 160 512 -73.33296 
106 512 512 15.78944  234 160 512 -74.03470 
107 512 512 15.08768  235 150 512 -74.73644 
108 512 512 14.38593  236 144 512 -75.43817 
109 512 512 13.68418  237 144 512 -76.13990 
110 512 512 12.98243  238 128 512 -76.84163 
111 512 512 12.28067  239 125 512 -77.54336 
112 512 512 11.57892  240 120 512 -78.24509 
113 512 512 10.87717  241 120 512 -78.94681 
114 512 512 10.17541  242 108 512 -79.64852 
115 512 512 9.47366  243 100 512 -80.35023 
116 512 512 8.77191  244 90 512 -81.05194 
117 512 512 8.07016  245 90 512 -81.75363 
118 512 512 7.36840  246 80 512 -82.45531 
119 512 512 6.66665  247 72 512 -83.15698 
120 512 512 5.96490  248 72 512 -83.85863 
121 512 512 5.26314  249 64 512 -84.56026 
122 512 512 4.56139  250 60 512 -85.26184 
123 512 512 3.85964  251 50 512 -85.96337 
124 512 512 3.15788  252 45 512 -86.66480 
125 512 512 2.45613  253 40 512 -87.36606 
126 512 512 1.75438  254 36 512 -88.06697 
127 512 512 1.05262  255 25 512 -88.76695 
128 512 512 0.35087  256 18 512 -89.46282 
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A.2 Lasso Algorithm MATLAB® codes 

%  Modified from Pendse, G.V., 2011. A tutorial on the LASSO and the shooting algorithm. 
URL http://www.gautampendse.com/software/lasso/webpage/lasso_shooting.html. 
 
%   ---------estimate Lasso Lambda function ---------------------------------------- 
 

function z = estimateLassoLambda(y, X, kfold, lambda_vec ) 

% Fu, W.J., 1998. Penalized Regressions: The Bridge versus the Lasso. Journal of Computational 

and Graphical Statistics, 7(3): 397-416. 

  

[n, p] = size(X); 

CVO = cvpartition(n, 'kfold' , kfold ); 

MSEerror = zeros( length(lambda_vec), 1 ); 

  

for k = 1:length( lambda_vec ) 

  % vector to store MSE error for each fold   

  err = zeros(CVO.NumTestSets,1); 

  for i = 1:CVO.NumTestSets 

      % get ith training set 

      trIdx = CVO.training(i); 

      % get ith test set 

      teIdx = CVO.test(i); 

      % train LASSO using training set 

      sL = solveLasso( y(trIdx), X(trIdx,:), lambda_vec(k) ); 

      % test using testing set           

      ypred = X(teIdx,:) * sL.beta; 

      % calculate MSE error             

      temp = y(teIdx) - ypred; 

      % clear ypred 

      clear ypred; 

      % calculate average error for the ith test set 

      err(i) = (temp'*temp)/length(temp);   

  end 

  % calculate the mean error over all test sets 

  MSEerror(k) = mean(err); 
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end      

% where get the smallest MSE 

min_index = find( MSEerror == min(MSEerror) ); 

min_index = min_index(1); 

z.lambda = lambda_vec( min_index ); 

z.lambda_vec = lambda_vec; 

z.MSEerror = MSEerror; 

z.min_index = min_index; 

z.CVO = CVO; 

z.y = y; 

z.X = X; 

z.kfold = kfold; 

 
%   --------solve Lasso function--------------------------------------------------------------------------------- 

 

function z = solveLasso( y, X, lambda ) 

[n1, p1] = size(y); 

[n, p] = size(X); 

beta = (X'*X + 2*lambda) \ (X'*y);  

% convergence flag 

found = 0; 

% convergence tolerance 

TOL = 1e-6; 

while( found == 0 ) 

    % save current beta 

    beta_old = beta; 

    % optimize elements of beta one by one 

    for i = 1:p 

        xi = X(:,i); 

        % get residual excluding ith col 

        yi = (y - X*beta) + xi*beta(i);            

        % calulate xi'*yi and see where it falls 

        deltai = (xi'*yi); % 1 by 1 scalar 

        if ( deltai < -lambda ) 
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            beta(i) = ( deltai + lambda )/(xi'*xi);  

        elseif ( deltai > lambda ) 

            beta(i) = ( deltai - lambda )/(xi'*xi);  

        else 

            beta(i) = 0; 

        end 

    end 

    % check difference between beta and beta_old 

    if ( max(abs(beta - beta_old)) <= TOL ) 

        found = 1; 

    end 

end 

z.X = X; 

z.y = y; 

z.lambda = lambda; 

z.beta = beta; 
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A.3 Taylor diagrams for all 50 MeteoSwiss stations  
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Figure A.1: Taylor diagrams of observations with downscaled daily precipitation for four 

downscaling methods, as well as the original ERA-Interim data for all 50 MeteoSwiss sites in 

the validation period 1999-2010. A= observation, B= original ERA-Interim, C= LOCI, D= 

QM, E= Stepwise and F= Lasso. 
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A.4 Quantile maps for the globe and southern Europe 
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Figure A.2: Global temperature distribution for 0.1 %, 0.5 %, 1 %, 5 %, 95 %, 99 %, 99.5 % and 

99.9 % quantiles (Geographical Coordinate System: WGS 1984, Projection System: World 

Robinson, spatial resolution: 100 km, original ERA-Interim spatial resolution: ~79 km). 
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Figure A.3: Southern European temperature distribution for 0.1 %, 0.5 %, 1 %, 5 %, 95 %, 99 %, 

99.5 % and 99.9 % quantiles (Geographical Coordinate System: European 1950, Projection 

System: Lambert Conformal Conic, spatial resolution: 25 km, original ERA-Interim spatial 

resolution: ~79 km). 
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