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1. Zusammenfassung 

In diesem Dissertationsprojekt werden vergleichend-morphologische Studien am Nervensystem 

sowie der Mandibelstruktur und der sensorischen Ausstattung der Mandibeln bei Vertretern der 

Decapoda und Peracarida vorgestellt und im Hinblick auf die Evolution der Taxa interpretiert. Es 

handelt sich um eine kumulative Dissertation und die Ergebnisse wurden in mehreren getrennten 

Veröffentlichungen erarbeitet. Es wurden sowohl larvale als auch adulte Merkmale, sowie die 

Ontogenese bestimmter Merkmale analysiert. Dabei wurden vielseitige Bildgebungstechniken 

angewendet, von einfacher Lichtmikroskopie bis zur detaillierten Ultrastrukturuntersuchung 

mittels Transmissionselektronenmikroskopie. Das Hauptaugenmerk lag auf der Beschreibung 

und Etablierung bisher unbekannter Merkmalskomplexe, welche in eine Rekonstruktion der 

Phylogenie der Crustacea einbezogen werden können.  

Das adulte Nervensystem der Decapoda ist seit langem ausführlich untersucht und zeigt sehr 

spezifische taxon-typische Anpassungen. In der vorliegenden Arbeit wurde nun erstmals auch das 

larvale Nervensystem in seiner Gesamtheit vergleichend untersucht. Mittels computergestützter 

3D-Rekonstruktionen wurden allgemeine und artspezifische Merkmale analysiert und die 

Grundelemente beschrieben, dazu gehören die segmentalen Ganglien und ihre Neuropile sowie 

die segmentalen Hauptnerven. Das larvale Nervensystem zeigt sich in einem Übergangszustand 

zur adulten Organisation wobei die Grundelemente bereits weitgehend ausdifferenziert sind. 

Ebenso spiegelt ein phasenspezifischer Aufbau Anpassungen des larvalen Stadiums wieder. Die 

untersuchten Arten repräsentieren jeweils eine der drei Hauptlinien der Decapoda, d.h. der 

Caridea, Anomura und Brachyura. Unterschiede in der Ausdifferenzierung bestimmter Ganglien 

können vor diesem Hintergrund am besten mit Verschiebungen im zeitlichen Ablauf von 

morphogenetischen Ereignissen, also Heterochronie, erklärt werden.  

Die Untersuchung von Heterochronie als zugrundeliegender Motor von evolutiven Anpassungen 

ist ein weiteres Kernthema der Arbeit. Neben der zuvor beschriebenen Studie wurde dazu auch 

die Morphologie und Feinstruktur der decapoden Mandibel während der Larvalentwicklung 

untersucht. Dies wurde anhand von zwei nahe verwandten Arten, die zudem unterschiedliche 

Ernährungsweisen im ersten Zoea-Stadium zeigen, untersucht. So konnte getestet werden, ob die 

Mandibelmorphologie in den frühen Larvalstadien lediglich von der Ernährungsweise abhängt 

oder ob ein evolutives Grundmuster in der Mandibelmorphologie auch bei Arten erkennbar ist, 

die im ersten Zoea-Stadium nicht fressen. Im Falle eines Vergleichs der Mandibeln, der nur auf 
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die Merkmale des ersten Zoea-Stadiums beschränkt ist, können durch Anpassungen an die 

Ernährungsweise möglicherweise ontogenetische Verschleierungen der taxon-spezifischen 

Merkmale auftreten. Durch detaillierte Betrachtung konnte aber nachgewiesen werden, dass 

sogar im ersten Zoea-Stadium von nicht fressenden Arten die gleichen apomorphen 

Grundmerkmale des zugehörigen Taxons erkannt werden können wie bei „fressenden“ Arten. 

Dies bekräftigt die Hypothese, dass sich in der larvalen Mandibelmorphologie phylogenetisch 

relevante Merkmalsätze finden lassen.  

Die Monophylie der Mandibulata basiert hauptsächlich auf der Hypothese einer Homologie der 

Mandibeln der Myriapoda, Hexapoda und Crustacea, jedoch ist bisher erstaunlich wenig über die 

Sinnesstrukturen des gnathalen Lobus der Mandibeln und noch weniger über ihre Ultrastruktur 

bekannt. Die Erarbeitung dieser Merkmalskomplexe stellt ein weiteres bedeutendes Ziel dieses 

Projekts dar. Dazu wurde die Ultrastruktur des gnathalen Lobus der Mandibeln des ersten Zoea-

Stadiums einer Felsengarnele untersucht. Besonderes Augenmerk wurde dabei, neben der 

äußeren Struktur und Verteilung und der Analyse der modalitätsspezifischen Strukturen 

sämtlicher sensorischer Elemente, im speziellen auf die Merkmale der „Lacinia mobilis“ gelegt. 

Insgesamt konnten sieben verschiedene Typen von Sensillen die durch vier spezielle 

Dendritentypen innerviert werden, beschrieben und verglichen werden. Darunter befinden sich 

(1) mechanorezeptive Haar-Sensillen und (2) mutmaßliche Kontakt-Chemo-Rezeptoren, sowie 

(3) Sensillen ohne äußere Strukturen und (4) Sensillen die mit starren Dornen assoziiert sind. Die 

Ergebnisse liefern neue Einblicke in die funktionelle Morphologie larvaler decapoder Mandibeln 

und stellen einen signifikanten Merkmalskomplex aus Fein- und Ultrastrukturmerkmalen dar. 

Dieser Merkmalskomplex wurde weiterführend mit der Analyse entsprechender Merkmale bei 

einem Vertreter der Peracarida ergänzt. Auch hier konnte ein Überblick der sensorischen 

Elemente der Mandibel dargestellt werden sowie die Ergebnisse einer detaillierteren Analyse der 

Lacinia mobilis, gestützt sowohl auf ultrastrukturelle Merkmale als auch auf Merkmale im 

Zusammenhang mit der Häutung. Im Vergleich kann eindeutig gezeigt werden, dass es sich bei 

der Lacinia mobilis auf der rechten Mandibel der Peracarida, und ebenso bei der entsprechenden 

Struktur der Decapoda, um ein mechanosensitives Sensillum handelt. Die Schlussfolgerungen 

bekräftigen die Hypothese einer möglichen Homologie dieser Strukturen. Für die Strukturen auf 

der linken Mandibel ist eine differenzierte Betrachtung notwendig. Die Ergebnisse lassen hier 

keine eindeutige Interpretation zu und es bleibt zu klären ob die Lacinia mobilis der linken 
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Mandibel ein abgewandeltes Sensillum darstellt oder ob es sich um eine zusammengesetzte 

Struktur mit mehreren Sensillen handelt.  

Durch die Anwendung verschiedenster, teils modernster Techniken und die umfassende 

Diskussion der Ergebnisse konnte ein bedeutender Beitrag zur phylogenetischen Betrachtung der 

Eumalacostraca, wenn nicht Crustacea, geleistet werden. Es konnten Merkmalssätze etabliert 

werden, die verschiedene Organisationsstufen des Arthropodenkörpers umfassen. So konnten 

zunächst phylogenetisch relevante Signale im Grundbauplan des larvalen Nervensystems und der 

Feinstruktur der Mandibeln der Decapoda dargestellt werden. Des Weiteren wurden äußerst 

komplexe und detaillierte Merkmalssätze der Mandibelultrastruktur erarbeitet, die ein 

umfassendes Bild der sensorischen Fähigkeiten einer eumalacostraken Mandibel liefern und im 

Vergleich bereits Rückschlüsse auf die Homologie der Lacinia mobilis zuliessen. Dadurch lassen 

sich auch die phylogenetischen Einordnungen der jeweiligen Taxa bekräftigen.  

 

Summary 

In this dissertation project comparative morphological studies on the nervous system, mandible 

structure and sensory equipment of Decapoda and Peracarida are presented and interpreted with 

regard to the evolution of the taxa. This is a cumulative dissertation and the results were obtained 

in several separate publications. Both larval and adult characters as well as the ontogeny of 

certain features were included and analysed using various sets of imaging techniques ranging 

from conventional light microscopy to ultrastructure research with transmission electron 

microscopy. Attention was focused on the description and development of previously unexplored 

sets of characters which can be included in a reconstruction of crustacean phylogeny.  

The adult nervous system in Decapoda has been extensively studied for a long time and shows 

very specific taxon generic adaptations. In the present thesis now also the larval nervous system 

was comparatively investigated in its entirety for the first time. By use of computer assisted 3D 

reconstruction general and species specific features were analysed and basic elements were 

described, including the segmental ganglia and their neuropils as well as the segmental nerves. 

The larval nervous system is in a transitory stage to the adult organization, already showing well 

differentiated basic elements. Likewise the phase-specific structure reflects adaptations to larval 

life. The studied species respectively represent one of the three decapod main lineages, i.e. 

Caridea, Anomura and Brachyura. Against this background variations in the differentiation of 
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certain ganglia can best be explained with shifts in the timing of morphogenetic events, i.e. 

heterochrony. The studies on heterochrony as motors of evolution are another core topic of this 

project. Along with the latter study also the morphology and finestructure of decapod mandibles 

during larval development was investigated, based on two closely related species, showing 

different feeding modes in the zoea I. Thus, it could be tested whether the mandible structure in 

early larval stages only depends on feeding modes or an evolutionary ground pattern is 

recognizable even in species with non-feeding zoea I. In case of a comparison of mandibles, 

restricted only to the features of the zoea I, adaptations to food preferences may obscure taxon-

specific features. In detailed inspection, however, it could be shown that even in species with 

non- feeding zoea I apomorph basic features of the related taxon can be recognized. This supports 

the hypothesis of the presence of phylogenetic relevant character sets in larval mandible 

morphology. 

The monophyly of the Mandibulata is manly based on hypotheses defending the homology of the 

mandibles in Myriapoda, Hexapoda and Crustacea, nevertheless, knowledge on sensory 

structures located on the gnathal lobe is astonishingly limited, even less is known about their 

ultrastructure. The development of this complex of characteristics represents a further aim of this 

project. For this purpose the ultrastructure of the mandibular gnathal lobe of the zoea I of a 

rockpool prawn was analysed. Besides external structure and location and an analysis of the 

modality specific structures, special attention was paid to the features of the lacinia mobilis. In 

total a number of seven different types of sensilla, innervated by four different types of dendrites, 

could be described and compared, including (1) mechanoreceptive hair-sensilla and (2) putative 

contact-chemo-receptors, as well as (3) sensilla without external structures and (4) sensilla 

associated with inflexible spines. The results reveal new insights into the functional morphology 

of larval decapod mandibles and constitute a significant character complex including fine- and 

ultrastructural features. Following-up the character complex was completed by investigations of 

respective features of a peracarid representative. The results also present an overview of the 

sensory elements of the mandible as well as a detailed analysis of the lacinia mobilis based on 

their ultrastructure and features related to ecdysis. By comparison it can be shown, that the lacinia 

mobilis on the right mandible in Peracarida and also the respective structure in Decapoda are 

mechanosensitive sensilla. In conclusion the hypothesis of a possible homology of the latter 

structures gains further support. Concerning the structures on the left mandible a differentiated 

consideration is necessary. No unambiguous conclusions can be made and it remains to be 
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resolved if the lacinia mobilis on the left mandible is a derived sensillum or a compound structure 

equipped with multiple sensilla. 

With the application of many different state-of-the-art technics and the overall discussion of the 

results an important contribution to eumalacostracan phylogeny, maybe even crustacean 

phylogeny, could be made. Character sets comprising different levels of organization of the 

arthropod body could be established. Primarily phylogenetic relevant signal in the basic elements 

of the larval nervous system and the mandibles in Decapoda could be presented. Furthermore, 

highly complex and detailed character sets of the mandible ultrastructure were developed, 

revealing a comprehensive presentation of the sensory capacities of eumalacostracan mandibles 

and by comparison already allowed conclusions about the homology of the lacinia mobilis. Thus, 

also the phylogenetic position of the respective taxa can be confirmed.  
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2. General introduction  

2.1. Introduction to Decapoda and Peracarida 

The core topics of the present thesis are comparative morphological studies on the decapod larval 

nervous system and on decapod and peracarid mandible structure and sensory equipment. To 

provide previously unexplored sets of characters for reconstructing crustacean phylogeny a 

various set of imaging techniques including conventional light microscopy and computer assisted 

3D reconstruction, as well as scanning and transmission electron microscopy was applied. The 

present chapter therefore introduces the two taxa dealt with, Decapoda and Peracarida, their 

ontogenetic stages and general bauplan and ideas on phylogeny. Subsequently the main aims of 

the study are presented.    

One of the most diverse and common animal groups living on earth are the Crustacea. Belonging 

to the phylum Arthropoda, Crustacea show an impressive diversity and can be found in nearly 

every kind of habitat. Unlike insects, that are the most abundant animals on land, crustaceans 

mainly live in marine ecosystems. The estimated number of described species in Crustacea is 

approximately 52.000 (Martin and Davis, 2001), the largest groups amongst others are 

eumalacostracan taxa, including Decapoda with 15.000 species (De Grave et al., 2009) and 

Peracarida with 12.000 species (Barnes and Ruppert, 2004). The decapods are probably most 

familiar to laymen, because they are edible yet mostly considered as delicacies. There are the 

commonly known lobsters (Astacidae), spiny lobsters (Palinura), shrimps (Caridea) and crabs 

(Brachyura), and furthermore the hermit crabs (Anomura). Rather inconspicuous or with a hidden 

lifestyle are the mud lobsters and ghost shrimps (Thalassinidae) or the coral shrimps 

(Stenopodidae). Among the Dendrobranchiata are the Penaeidae, with the tiger prawn (Penaeus 

monodon) being one of the most important subjects of commercial sea food farming. Updated 

taxonomic surveys are given e.g. in Števčić (2005), Ng et al. (2008), Chan (2010) and De Grave 

and Fransen (2011).  

Although they are also very common in most marine habitats, the peracarids are rather unknown. 

They are mostly small animals of less than 2 cm in length and besides the seas also inhabit 

freshwater environments and sometimes even can get on land, e.g. terrestrial isopods like the 

common woodlouse. Peracarida includes the shrimp-like Mysidacea, the partly superabundant 

and hyperdiverse Amphipoda, Cumacea and Tanaidacea, the already mentioned Isopoda and the 
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freshwater or deep-sea inhabiting Thermosbaenacea, Spelaeogriphacea and Mictacea (Poore, 

2005).  

 

The similarity of the general habitus can be very high between particular members in Decapoda 

and Peracarida, e.g. the shrimp-like body in Caridea and Mysida, however, in both groups also 

highly derived forms can be found. Shared characters are the malacostracan autapomorphies like 

standardized tagmosis with a constant number of head, thorax and abdominal segments, location 

of the female gonopores on the sixth thoracic segment and male gonopores on the eighth and an 

always biramous antenna I. Eumalacostracan autapomorphies present in both groups are the tail 

fan, formed by the uropods and a flattened telson, and the scaphocerit, a flattened exopod of the 

antenna II (Schminke, 2007). Due to the huge ecological license of the malacostracan body plan 

the animals are very well adapted to their specific life style. Consequently, the biodiversity in this 

group of animals is outstanding and in the different orders or infraorders extremely variously 

shaped body forms are present. 

Decapods are predominantly bottom dwelling and most abundant in marine intertidal zones but 

they can also be found from the sublittoral down to the shelf edge and some species in even 

higher depths of the deep sea. However, the primary features of the decapod body are still 

noticeable in all groups. Basically, the body is divided into two tagmata: the cephalothorax and 

the pleon. The cephalothorax is composed by a fusion of the primary cephalon and the following 

eight thoracomeres. It bears several partly strongly modified pairs of limbs or appendages, 

primitively showing a biramous structure with a basal protopod and two attached rami, termed 

endopod and exopod. The biramous antenna I (= antennule) and antenna II (= antenna) on the 1st 

and 2nd somite are followed by the three mouthpart bearing somites with the mandibles and the 

maxilla I (= maxillule) and maxilla II (= maxilla). Posteriorly the appendages of the next three 

somites are maxillipeds, still showing a biramous structure and also with a function in feeding. 

The remaining five pairs of thoracic appendages are the 10 pereopods from which the name 

Decapoda is derived. The pereopods are uniramous and the first one is frequently enlarged and 

distally bears a strong euchela, which is formed by a dactylus that is medially attached on a 

distally elongated propodus and thus both becoming opposable. The following pereopods may be 

chelate as well, then of subchelate type, but usually are stenopodous walking legs. The carapace 

forms a robust shell, dorsally attached to the cephalothorax and laterally enclosing the gills, 

which are modified epipodits of the appendages. The pleon extends posteriorly from the 
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cephalothorax, it is well segmented, the pleopods are biramous swimming legs and a tail fan is 

formed by the appendages of the last pleon segment, the uropods, and the telson. In general there 

are two extreme body forms: the shrimplike (caridoid) form and the crablike (cancroid) form. A 

slightly aberrant habitus or intermediate forms are found in the Anomura (Barnes and Ruppert, 

2004; Schminke, 2007).  

Showing many primitive malacostracan characters, the most distinctive and autapomorph 

character of the peracarids is a female ventral brood pouch, the marsupium. It is formed by 

enlarged, plate-like oostegites extending medially from the posterior thoracic coxae. They also 

mostly have fused anterior thoracic segments to form a cephalothorax and the appendages of 

these segments are maxillipeds. A more delicate but also characteristic feature that can be found 

between the incisor and molar process of the mandible is the lacinia mobilis. A carapace may be 

present or not (Barnes and Ruppert, 2004). 

 

2.2. Phylogeny of Malacostraca 

The primary classification of the Malacostraca was introduced by Calman (1904). The system 

placed the Leptostraca at the basis as sistergroup to all other Malacostraca (the Eumalacostraca). 

Eumalacostraca again are divided in the Hoplocarida (Stomatopoda) and the Caridoida, including 

Syncarida, Pancarida (Thermosbaenacea), Peracarida and Eucarida (Euphausiacea + Decapoda), 

but over a long period many controversial classifications were published (i.a. Giesbrecht, 1913; 

Grobben, 1919; Schram, 1969; Schram, 1981; Bowman and Abele, 1982; Dahl, 1983; Hessler, 

1983; Richter and Scholtz, 2001).  

From the late 19th century on decapod species have frequently served as laboratory model 

organisms in physiological, morphological and behavioral studies (e.g. Huxley, 1884; Bethe, 

1895). Early taxonomic classification divided the decapods into the swimming lineages 

(Natantia) and the crawling lineages (Reptantia) (Boas, 1880). Later Burkenroad (1963; 1981) 

broke with this concept and introduced the suborders Dendrobranchiata and Pleocyemata based 

on gill structure. Since then still many changes and arrangements have been suggested. The 

classification by Bowman and Abele (1982) accepted Burkenroad´s suborders and also several 

modern handbooks abandoned the Natantia concept by elevating the Penaeoidea (prawns) to the 

rank of a separate suborder (the Dendrobranchiata) and placing the rest of the  Natantia (shrimps) 

plus the Macrura Reptantia (marine lobsters, freshwater crayfishes, spiny lobsters, slipper 

lobsters and mud lobsters), plus the Anomura (hermit crabs), plus the Brachyura  (crabs) in the  
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Table 1: Eumalacostracan classification after Martin & Davis (2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

single suborder Pleocyemata (Holthuis, 1993). Holthuis (1993), however, had a critical opinion 
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evolution is not established even to date. With an estimated divergence time of 437 million years 

the origin of the Decapoda is placed in the early Silurian (Porter et al., 2005). This broad 

timescale and the morphological diversity and complexity results in a difficult interpretation of 

the phylogeny and many conflicting hypothesis (see Bracken et al., 2009b). The most recent 

higher classification of living and fossil Decapoda lists 233 families containing 2,725 genera and 

17,635 estimated species (extant and fossil species) (De Grave et al., 2009).  

 

 

 

 

 

Class Malacostraca Latreille, 1802 

Subclass Eumalacostraca Grobben, 1892 

  Superorder Syncarida Packard, 1885 

Order Bathynellacea Chappuis, 1915 

   Order Anaspidacea Calman, 1904 

Superorder Peracarida Calman, 1904 

  Order Spaeleogriphacea Gordon, 1957  

   Order Thermosbaenacea Monod, 1927 

   Order Lophogastrida Sars, 1870 

   Order Mysida, Haworth, 1825 

   Order Mictacea, Bowman et al., 1985 

   Order Amphipoda Latreille, 1816 

   Order Isopoda Latreille, 1817 

   Order Tanaidacea Dana, 1849 

   Order Cumacea Kroyer, 1846 

  Superorder Eucarida Calman, 1904 

   Order Euphausiacea Dana, 1852 

   Order Amphionidacea Williamson, 1973 

   Order Decapoda Latreille, 1802 
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Table 2: Decapod classification after De Grave et al. (2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also the relationships between the orders of Peracarida have long been debated, and also 

different hypotheses about which orders to include or exclude have been proposed (e.g. (Watling, 

1981; Pires, 1987; Wagner, 1994; Hessler and Watling, 1999; Richter and Scholtz, 2001). 

Recently Peracarida are considered monophyletic, concordantly including amongst others 

Amphipoda, Isopoda, Cumacea and Tanaidacea (Poore, 2005; Wills et al., 2009). The 

phylogenetic position of the order Mysida is still unresolved. Mysida and Lophogastrida, 

however, are considered as sister taxa and currently regarded as the most basal clade (Poore, 

2005). To get a general idea, table 1 shows the primary eumalacostran classification after Martin 

& Davis (2001) including extant peracarid orders and in table 2 the specified and currently 

accepted decapod suborders and infraorders are listed after De Grave et al. (2009). The early 

debates described above mainly were based on the results of morphological analyses, but also the 

today existing molecular evidence is often unable to resolve well-supported phylogenies.  

Molecular analyses often concentrate on a phylogenetic classification at family level, like 

amongst others inside Anomura (Ahyong et al., 2009), Caridea (Bracken et al., 2009a; Li et al., 

2011), Thalassinidea (Robles et al., 2009) or Isopoda (Wetzer, 2002; Wilson, 2009) and Mysida 

(Remerie et al., 2004). 

An estimation of the relationships among all of the major decapod infraorders using molecular 

data is given in Porter et al. (2005) and concentrating on Pleocyemata in Tsang et al. (2008). 

Order Decapoda Latreille, 1802 

 Suborder Dendrobranchiata Bate, 1888 

 Suborder Pleocyemata Burkenroa,. 1963 

  Infraorder Stenopodidea Bate, 1888 

  Infraorder Caridea Dana, 1852 

  Infraorder Astacidea Latreille, 1802 

  Infraorder Glypheidea Winkler, 1883 

  Infraorder Axiidea de Saint Laurent, 1979 

  Infraorder Gebiidea de Saint Laurent, 1979 

  Infraorder Achelata Scholtz & Richter, 1995 

  Infraorder Polychelida Scholtz & Richter, 1995 

Infraorder Anomura MacLeay, 1838 

Infraorder Brachyura Linnaeus, 1758
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Combined molecular and morphological analyses also at higher levels recognized that Palinura 

are paraphyletic and placed Polychelida as sister to the remaining Reptantia (Ahyong and 

O’Meally, 2004) or questioned the monophyly of Thalassinidea (Bracken et al., 2009b). 

Conflicting data from different molecular markers as well as incongruences between 

morphological and molecular phylogenies complicate the effort to resolve a well-supported 

eumalacostracan phylogeny (Jenner et al., 2009; Wills et al., 2009). Future insights are likely to 

come from the development of new molecular markers, as well as hard-won data on internal 

anatomy and ultrastructure (Wills et al., 2009). 

 

2.3. History of larval research 

In contrast to the many diverse body forms and life styles during ontogeny all decapods have one 

thing in common: developing indirectly they produce pelagic larvae that may differ entirely in 

their morphology and habits from juvenile and adult conspecifics (Anger, 2001).  

The larvae already drew the interest of the early zoological pioneers, like Linnaeus, who was the 

first to describe a larva (Cancer germanus (Linnaeus, 1767)). However, he believed it to be a new 

species and did not know that he was describing the larval phase of an already known adult. 

Later, Bosc (1802) introduced the term “zoea” in the description of a brachyuran larva (Zoea 

pelagica), also intending to establish the identification of a new species distinct from all other 

genera of the Crustacea known at this time and thus to define the genus Zoea. Only after 

witnessing the hatching of a zoea and the moulting of a megalopa into the first juvenile the 

remarkable dissimilarities between young and adult became obvious and the existence of larval 

phases in Decapoda was recognized. It was Thompson (1828), who made the first deliberate 

account of metamorphosis in Crustacea. In his work he initially cited and discussed Slabbers 

(1778) unaware discovery in a description of a larva which was designated to the species Zoea 

taurus. The studied morphological changes had been supposed to be the result of the inspection 

of an unknown specimen that had been introduced during the change of the sea water in his 

culture and the originally inspected zoea had been lost. Thompson then compared and discussed 

his own observations on moulting zoeae and together with the evidence from the observation of 

hatching Cancer pagurus larvae he proved that decapods undergo a metamorphosis. However, 

not everyone was convinced by Thompson’s argumentation. Westwood (1835) criticized 

Thompsons statements and Milne-Edwards (1835) also maintained a controversy. Only some 

years later it was commonly accepted that there is both direct and indirect development in the 
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ontogeny of decapod species (see Ingle, 1992, for references). Since then the descriptions of 

many larval developments have been published and methods of catching planktonic larvae or 

hatching and rearing larvae in the laboratory have been developed further. Early standard works 

are Gurney´s “Bibliography of the larvae of the decapod Crustacea” (1939), reviewing all 

existing literature at the time and “Larvae of decapod Crustacea” (1942), that covers general 

morphology and taxonomy. Also there was Marie V. Lebour, another British carcinologist active 

at the same time, with her important contribution in several publications (see (Barnich, 1996) for 

a detailed reference list). Also to name are the descriptions of Rice (e.g. Rice, 1964; Rice et al., 

1970; Rice, 1975; Rice, 1979; Rice, 1980a), the identification keys of Williamson (e.g. 

Williamson, 1957, 1969, 1976) or later the bibliographies of Bourdillon-Casanova (1960) and 

then González-Gordillo et al. (2001) and also the illustrated key of Ingle (1992) and the 

comprehensive work on general biology by Anger (2001). The previous paragraph does not 

intend to give a complete listing of the relevant literature but just to name a few important 

examples. 

 

2.4. General morphology and ontogeny 

As stated above, most Decapoda undergo an indirect development. In principle extant Decapoda 

show three distinguishable types of larvae after which the phases in larval development can be 

termed: the nauplius, the zoea and the decapodid. Only in the Dendrobranchiata the nauplius 

hatches from the egg as planktonic larval form, most Pleocyemata pass through this phase inside 

the egg and hatch as a zoea or as a prezoea. The nauplius is characterized by absent thoracic 

somites and absent or rudimentary posterior cephalic appendages. The anterior cephalic 

appendages, the antenna I and antenna II fulfill mainly natatory but also feeding functions. In the 

zoea functional thoracopods and paired compound eyes are present. Starting with the most 

anterior paired cephalic appendages there are the uniramous antennae I and the biramous 

antennae II followed by the mandibles which are the main masticating organs in early zoeae and 

the maxillae I and maxillae II. In first stage zoeas posteriorly may be the first, the second and 

sometimes the third maxillipeds present. The exopods of the maxillipeds are used for swimming 

while the endopods handle food. The larvae moult successively and accompanied by 

morphological changes they pass through several developmental stages. Interestingly, there can 

be an extreme intraspecific variability in the total number of zoeal stages. The final larval phase 

is the decapodid, preceding the metamorphosis to the first juvenile instar. It is characterized by 
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the presence of functional pleopods and a changed function of all cephalic and the anterior 

thoracic appendages as mouthparts. In strictly freshwater species, like most crayfish, 

development is direct, involving an eliminated pelagic larval phase and adult-like juveniles 

hatching from the egg (Anger, 2001). 

In Peracarida the eggs are brooded and hatched in the marsupium. In contrast to Decapoda, the 

development is mostly direct and the juveniles hatch fully developed, already showing the 

complete set of segments and appendages. Only in Isopoda the hatching stage is a manca 

postlarva, characterized by the absence of the last pair of thoracic legs (Johnson et al., 2001; 

Barnes and Ruppert, 2004). In other peracarid taxa, like Caprellidae belonging to Amphipoda, 

however, also a slight derivation from a strict direct development was reported (Lang et al., 

2007).  

 

2.5. The bearing of larval morphology on decapod phylogeny 

The biology of decapod larvae still holds a wealth of interesting aspects to study and furthermore 

results of appropriate morphological studies can have an important bearing on phylogenetic 

interpretations. 

Older decapod systematics are mainly based on adult morphology but certain aspects underlying 

larval morphology proved the understanding of larvae to be helpful in classification and also in 

reconstructing decapod phylogeny (Clark, 2009). However, the problem is to recognize or 

exclude similarities that are product of convergences. Phenotypic characters are influenced by a 

genotype-environment interaction, and thus an exclusive analysis of adult characters of species 

that are adapted to different life styles may lead to wrong interpretations. In contrast the larvae of 

all decapod species are adapted to the same habitat, the pelagic zones of the seas. Thus, their 

features are subject to more or less constant selection pressures and may reflect relationships 

better than the morphology of the adults (see also Rice, 1980b; Williamson, 1982). An 

established feature, for example, is the setal pattern on certain appendages, appearing to be 

identical in brachyuran zoeas of congeneric species (see Clark, 2009). The appendage setation 

seems to be conservative and thus may reveal close relationships between larvae even if they 

differ markedly in general appearance (Rice, 1980b).  
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3.  Aims of the thesis 

3.1. Background and general approach  

The main subjects of this cumulative dissertation project are morphological studies of larval 

decapod features and respective analyses in a representative peracarid species to contribute new 

sets of characters that are relevant in comparative analyses and phylogenetic considerations. 

Through integration of ontogenetic processes heterochronic events were analysed as motors of 

evolution. The initial project involved a comparative morphological study on the larval central 

nervous system (CNS) of first stage zoeas in three different decapod species. Next we conducted 

fine structural studies on the mandible development in successive larval stages in the decapod 

species Palaemon elegans Rathke, 1837. The analysis of new character sets involved two levels 

of organization of the body. The CNS study and the mandible ontogeny covered general 

structural organisation at the tissue and organ levels, while the cellular level was included by the 

analysis of internal ultrastructural features when revealing the sensory capacity of 

eumalacostracan mandibles and mandible evolution, with special reference to the lacinia mobilis. 

To achieve this in particular projects the ultrastructure of the mandibles of zoea I in P. elegans 

and the fine- and ultrastructure of the mandibles in the mysid Neomysis integer (Leach, 1814) 

were investigated.  

Although many laboratories and scientists are working with decapod larvae and extensive 

literature has been published describing larval morphology and development (see e.g. González-

Gordillo et al., 2001) there is still much to discover. For instance some Mediterranean species 

remain undescribed and others are just recently dealt with, such as Periclimenes amethysteus 

Risso, 1827, Heterocarpus ensifer ensifer A. Milne-Edwards, 1881 or Gnathophyllum elegans 

(Risso, 1816) (Geiselbrecht and Melzer, 2009; Maria Landeira et al., 2010; Meyer et al., 2014). 

Delicate issues are differences in the quality and standardization of larval descriptions. 

Sometimes crucial characters are omitted because they are not easily observable or require 

dissection, sometimes there are inconsistencies between the descriptions and the illustrations. 

Guidelines were published for improved standards in the description of crab zoeas (Rice, 1979; 

Clark et al., 1998), because early phylogenetic studies based on larval characters repeatedly had 

to be confined to only a few genera with adequate descriptions (e.g. Aikawa, 1937; Guinot, 

1978). Figure 1 shows the lateral view of a zoea I in Gnathophyllum elegans, taken from the  
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Figure 1 (from Meyer, Lehmann, Melzer and Geiselbrecht, 2014): Gnathophyllum elegans, first zoea: (A) LM 
image, lateral view, natural pigmentation visible; insert showing egg just before hatching; (B) SEM image, lateral 
view, arrowhead points to dorsal organ; insert showing detail of dorsal organ. Abbreviations: I-VI, abdominal 
segments; AB, abdomen; AN, antenna; AU, antennule; C, carapace; E, eye; LAB, labrum; MXP 1-3, first to third 
maxillipeds; PER1&2, pereiopods 1&2; PT, pterygostomial spine; R, rostrum; T, telson. Scale bars: A, 200µm; B, 
200µm, insert 20µm. 
 

larval description in Meyer et al. (2014). It is not only nicely visible the general habitus of a 

caridean zoea I but also the differences in details that can be viewed using on the one hand a 
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classical method like light microscopy (LM) and on the other hand a more modern but also more 

laborious method like scanning electron microscopy (SEM).    

 

3.2. Larval nervous systems in 3D 

The state of the art technique enabling detailed analyses of internal anatomical features of small 

specimen is the computer-aided 3D-reconstruction of histological section series. We applied this 

method to deal with the larval central nervous system (CNS) in Decapoda. With its complex 

structure and function the CNS is an organ that keeps scientists fascinated since long. The adult 

decapod nervous system has been studied in great detail (e.g. Bullock and Horridge, 1965; 

Sandeman et al., 1992; Sandeman et al., 1993). Because it can be dissected relatively easy and, 

prepared for electrophysiological measurements, it survives well in isolation, the decapod 

nervous system has been long used as model-organism to study various neurophysiological 

aspects (see e.g.Selverston and Moulins, 1987). In contrast surprisingly little is known about the 

larval CNS. Especially histological studies describing the whole CNS in early larval stages were 

not present. There are few histological studies on the ontogeny of larval osmoregulatory 

structures (Cieluch et al., 2005; Cieluch et al., 2007) and immunocytochemical studies on the 

development of neuroendocrine centers of larval European lobsters (Rotllant et al., 1993; Rotllant 

et al., 1994; Rotllant et al., 1995) or on neurogenesis in Hyas araneus (Linnaeus, 1758) larvae 

(Harzsch and Dawirs, 1994). A detailed histological analysis of the CNS of the megalopa in 

Carcinus maenas (Linnaeus, 1758) was published by Harzsch and Dawirs (1993) and Helluy et 

al. (1993) studied the brain ontogeny in C. destructor Clark, 1936 and Homarus americanus H. 

Milne Edwards, 1837. While there is a survey of the morphology of adult brains of 13 decapod 

species implicating representatives of all decapod taxa (Sandeman et al., 1993), no comparable 

study regarding the larval CNS is present. Many decapod taxa, like Anomura or Caridea, have 

not been studied in this regard at all. 

Accordingly, our study is the first to present and compare the results of a histological analyses of 

the whole CNS of zoea I larvae in three species belonging to Caridea, Anomura and Brachyura, 

providing also basic data on innervation patterns to help understand the results of further projects 

presented in this thesis. Using serial semi-thin sections and digital 3D-reconstructions the aim 

was to investigate detailed features of the minute larval CNS. We analyse and compare the 

histological section images and the 3D-reconstructions with regard to general and species specific 

features. Describing the composition of the basic elements, like the segmental ganglia, their 
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neuropils and the segmental nerves, we pay special attention to the stage of development and 

structure of the particular ganglia during the ongoing differentiation process. We analyse many 

parts of the central nervous system, including the ganglia of the anterior CNS, ganglia of the 

mouthpart, maxilliped, pereion and pleon segments and the segmental nerves. Larvae undergo a 

sequential differentiation of body segments during ontogeny (Anger, 2001) and the results of the 

study should be analysed in relation to the question as to whether this is reflected in the 

development of the nervous system. Hence, does the development of the CNS correspond with 

the development of the respective segmental appendages? 

The three studied species show a different set of developed segmental appendages. Thus, an 

interspecific comparison may reveal differences in the progress of the development of respective 

neuromeres. If such differences can be revealed it should be discussed whether they can be 

attributed to heterochronic mechanisms. Heterochrony refers to a change in the relative timing of 

developmental events in one species relative to an ancestral species (Smith, 2001). First defined 

by Haeckel (1866) the concept was repeatedly reviewed and the definition was changed (e.g. 

Russell, 1917; De Beer, 1940). However it was and still is always important in questions of 

evolutionary developmental biology (McNamara and McKinney, 2005). The most influential 

work on how the concept is used even today is probably Gould´s book Ontogeny and Phylogeny 

(Gould, 1977) followed by the shortly after published paper by Alberch et al. (1979).  

 

3.3. Mandible development in Palaemon elegans 

A heterochronic event also could best be considered as the evolutionary pattern underlying 

certain differences discovered in the study of the mandible development in two phylogenetically 

closely related species. We analyse the morphology and fine structure of the mandibles of the 

larval stages I-V in the two palaemonid shrimp species P. elegans and Macrobrachium 

amazonicum (Heller, 1862). This species pair is very interesting for a comparative ontogenetic 

study because they show different feeding modes in the zoea I. The zoea I in P. elegans is already 

feeding normally (Kumlu and Jones, 1995) and in contrast the zoea I in M. amazonicum is non-

feeding (Anger and Hayd, 2009). Hence, it can be tested whether the mandible morphology in 

early zoeal stages depends on feeding habits only or whether a proposed hypothesis of an 

evolutionary ground pattern in mandible morphology is recognizable even in non-feeding species 

and thus maybe strengthen the validity of the hypothesis. 
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3.4. Fine- and ultrastructure of mandibles in Decapoda and Peracarida 

Using a standardized terminology decapod larval descriptions should include particular 

characters, besides the carapace these are mainly the general features and setal patterns of the 

body appendages starting with the antenna I on the most anterior somite (Clark et al., 1998). 

Furthermore, in Brachyura the zoea of congeneric species may be inseparable using setal 

characters. This can complicate a conclusive classification and emphasizes the relevance of 

finding and using adequate characters (Christiansen, 1973; Rice, 1980b; Clark, 1983). 

Compared to the maxillae, the mandibles were somewhat neglected in the past. Though early 

descriptions were given, e. g. in Gurney (1942), in many larval descriptions they are either not 

resolved in detail or ignored completely. However, mandibles are a key character for 

reconstructions of arthropod phylogenies (e.g. Bitsch and Bitsch, 2004; Edgecombe, 2010; Rota-

Stabelli et al., 2011) and the Mandibulata concept is based on the assumption of a homology of 

the mandibles in Myripoda, Hexapoda and Crustacea (Bitsch, 2001; Edgecombe et al., 2003). 

Decapod larval mandibles are certainly one of the most difficult structures to dissect out for 

detailed examination due to their minuteness, shape and way of insertion on the head. 

Nonetheless, Geiselbrecht & Melzer (2010) analysed the fine structure of mandibles of first stage 

zoeae in nine decapod species and indicated a significance of taxon-specific features in larval 

mandible morphology including the basic form, the form and orientation of the incisor and molar 

processes, and the shape, number and arrangement of certain appendages. A special mandibular 

appendage of peculiar interest is the lacinia mobilis. It is a movable, articulated protrusion on the 

mandible´s gnathal edge, described in various arthropods but, however, with no consensus about 

a homology or non-homology in the different taxa (reviewed in Dahl and Hessler, 1982; Richter 

et al., 2002; Richter and Kornicker, 2006; Mayer et al., 2013).  

Although included in a phylogenetic analysis of the Malacostraca by Richter and Scholtz (2001) 

and scoring equally in all taxa which possess a lacinia mobilis as adults as well as in Caridea, 

which seemed to be the only decapod taxon in which it is present only on the larval mandible, a 

possible homology of the feature in Peracarida, Euphausiacea and Decapoda was questioned 

shortly after by Richter et al. (2002). Instead it was concluded that a lacinia mobilis which is 

present in adults and also asymmetrical on the left and right mandible may rather represent an 

autapomorphy of the Peracarida. In addition the critical arguments contradicting a homology in 

Peracarida, Euphausiacea and Decapoda were based on the knowledge of the presence of the 

feature only in euphausiacean and decapod larvae and also only on one mandible. However, 
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Geiselbrecht & Melzer (2010) could already devaluate two of the mentioned arguments, showing 

that in Caridea a ‘lacinia mobilis’ can be present on both mandibles and they can be dissimilar. 

But still conclusive arguments were missing since no studies were present revealing the nature 

and origin of the lacinia mobilis or respective similar structures.  

 

3.4.1. The fine- and ultrastructure of a decapod larval mandible 

A SEM-analyses already showed features on the larval mandibles in P. elegans and P. 

amethysteus, like the articulation on a basal ring and the presence of an ecdysial pore, suggesting 

that the ‘lacinia mobilis’ of decapod zoeas might be a sensillum (Geiselbrecht and Melzer, 2010). 

Studying the ultrastructure in addition to external features should reveal important findings for 

the understanding of the functional morphology and the origin of the lacinia mobilis by adding 

sets of characters referring to internal architecture to the available body of evidence based only 

on external inspection. Moreover, only little is known about the presence of sensilla on the 

gnathal lobe of arthropod mandibles in general, even less about their ultrastructure (e.g. Ong, 

1969; Whitehead and Larsen, 1976; Tyson and Sullivan, 1981).  

Hence, in one project we studied the ultrastructure of the gnathal lobe of the mandibles of zoea I 

larvae in P. elegans using transmission electron microscopy (TEM). Based on differences in 

ultrastructural and external features we aimed for a description and distinction of the different 

types of sensilla and innervating dendrites the presence of which was to be expected. Besides the 

‘lacinia mobilis’ we analyse several sensillar structures with regard to their modality-specific 

structures, their distribution and external morphology. For each type we discuss the specific 

function, thus, give a comprehensive overview of the sensory equipment of the mandibles of a 

decapod zoea I larva. We also pay special attention to possible morphological specializations of 

the sensilla linked to the robust nature of the mandibles. Concerning the question of homology of 

the lacinia mobilis, the results might reveal features indicating that on the larval mandible in P. 

elegans it is a mechanosensitive sensillum and, thus, providing useful characters in the discussion 

of its origin.   

 

3.4.2. The fine- and ultrastructure and ecdysis of a peracarid mandible 

To follow a consistent argumentation elucidating the derivation of malacostracan mandibular 

appendages the next study should clarify whether the ‘true’ lacinia mobilis in Peracarida is an 

articulated mandibular structure with exclusively mechanical function, as stated by Richter et al. 
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Figure 2: SEM images showing the left lacinia mobilis in (A) Palaemon elegans, zoea-I and (B) adult Neomysis 
integer. Abbreviations: IP, incisor process; LM, lacinia mobilis; MOP, molar process. Scale bars: A, 4µm; B, 20µm. 
 

(2002), or whether it too has sensory capability. Thus, the fine- and ultrastructure of a peracarid 

mandible was studied and published in the final paper. The external features of the lacinia 

mobilis in Peracarida are well studied (De Jong-Moreau et al., 2001b; Richter et al., 2002; Mayer 

et al., 2013), but in no single peracarid species a TEM analysis of the internal features has been 

conducted to date. Therefore, we studied the lacinia mobilis of the mysid Neomysis integer with 

regard to external morphology and ultrastructural features. Using TEM, besides light microscopy 

(LM) and SEM, we conducted the first study providing insight into the sensory equipment of a 

peracarid mandible. The ultrastructural analyses should reveal if the lacinia mobilis on both 

mandibles is a structure innervated by sensory units. Analyzing the modality-specific features 

also the sensitivity of the receptors should be indicated. Furthermore we analyse histological 

changes inside the mandible involved in initiating the molting process. We classify the molting 

type and relate it to the molting of statocyst or aesthetasc sensilla, however with some distinctive 

characteristics. Bringing together the results of both the previous and the present study it should 

be possible to develop new conclusions about the derivation of the lacinia mobilis and draw 

further assumptions on a possible homology in Peracarida and Decapoda. 
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3.5. Specimen collection and methodological background  

During the early phase of the project I tried to collect the larvae from as many different species as 

possible. We made trips to Rovinj in Croatia and to the island Giglio in Italy to collect species by 

hand while snorkeling and with traps and fishing dredges. I also visited the Alfred Wegener 

Institute on Helgoland, where Dr. Klaus Anger maintained a rearing laboratory with several 

different species. The “easiest” way to get the zoea I of a distinct species is to catch an egg 

bearing female that one can identify and then keep the female isolated in an aquarium until the 

larvae hatch. To succeed you need the right timing and a proper amount of luck. However, I 

managed to gather the zoea I of 17 different species and the zoea I-V of two species (Tab. 3). 

The project was partly supported by Sea Life Center München with a grant, including travel 

expenses, laboratory material and aquaristic equipment. Thus, besides collecting trips we could 

maintain an aquarium at the Bavarian State Collection of Zoology in Munich where rearing 

experiments were conducted.  

In the particular projects we worked with the zoea I of Palaemon elegans Rathke, 1837, 

Hippolyte inermis (Leach, 1815), Porcellana platycheles (Pennant, 1777) and Pachygrapsus 

Table 3: List of species with collected zoea I larvae. 

Infraorder Species 

Dendrobranchiata Penaeus monodon Fabricius, 1798 

Caridea Palaemon elegans Rathke, 1837 

Palaemonetes argentinus (Nobili, 1901)  

Hippolyte inermis (Leach, 1815) 

Lysmata seticaudata (Risso, 1816) 

Thoralus cranchii (Leach, 1817) 

Athanas nitiscens (Leach, 1813) 

Crangon crangon (Linnaeus, 1758) 

Gnathophyllum elegans (Risso, 1816) 

Macrobrachium amazonicum (Heller, 1862) 

Astacidea Homarus gammarus (Linnaeus, 1758) 

Thalassinidea Upogebia pusilla (Petagna, 1792) 

Brachyura Amarses miersii (Rathbun, 1897) 

Pachygrapsus marmoratus (Fabricius, 1787) 

Chiromantes eulimine (de Man, in Weber, 1897) 

Perisesarma fasciatum (Lanchester, 1900) 

Maja brachydactyla Balss, 1922 
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marmoratus (Fabricius, 1787) and with the zoea I-V of P. elegans and Macrobrachium 

amazonicum (Heller, 1862) and also with adults of Neomysis integer (Leach, 1814). 

The applied methods were scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), and confocal laser scanning microscopy (CLSM), light microscopy (LM) 

and digital 3D-Reconstruction with Amira® Software. The specimen dissection and preparation 

for microscopy was rather challenging and often required special treatment because of the 

minuteness of the mandibles and their way of insertion on the head.  

 

 
Figure 3: A: Adult Palaemon elegans in its natural habitat. B: Field work with improvised aquarium containing 
cautex vials to isolate collected egg bearing females. C: Cautex vials in the aquarium in Munich. D: Zoea I larvae of 
P. elegans in a separate small aquarium. 
 

Studying the external morphology and fine structures of the larval mandibles I used SEM. It was 

not only quite difficult to dissect the small structures but also to keep them intact and not to lose 

some specimens during the preparation for the SEM. The dissection was necessary to get insight 
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into the otherwise covered structures on the medially oriented gnathal edges. I used thin tungsten 

wires mounted on glass tubes and sharpened with a fine grindstone to dissect the mandibles. 

During the critical point drying process the specimens were put in special tiny glass vials inside 

the usually used microporous specimen containers.  

For the ultrastructural analyses at first I had to prepare series of sagittal ultrathin sections using a 

diamond knife and an ultramicrotome. The challenge was to cover an enormous distance 

comprising the critical region with a section thickness of only 60-70 nm. In P. elegans I had to 

cover about 100 µm and in N. integer about 400 µm, what was only manageable by alternating 

between ultrathin and semithin sections. Afterwards the section series were inspected in a TEM 

and the quantification of the structures was developed by inspecting consecutive sections. 
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ABSTRACT Using serial semi‐thin sections and digital 3D‐reconstructions we studied the nervous systems of
zoea‐I larvae in three decapod species, Hippolyte inermis (Leach, 1815), Porcellana platycheles
(Pennant, 1777), and Pachygrapsus marmoratus (Fabricius, 1787). These taxa represent three
decapod lineages, that is, Caridea, Anomura, and Brachyura, each characterized by specific zoea‐I
morphology. Special attention was paid to development of ganglia, neuropil composition, and
segmental nerves. In all zoeae studied, the overall elements, for example, the segmental ganglia,
their neuropils and most of the nerves of the adult decapod nervous system are present. Ongoing
differentiation processes are observable as well, most obvious in segments with well‐developed
limbs the ganglia are in a more advanced stage of differentiation and more voluminous compared
to segments with only limb buds or without externally visible limb anlagen. Intra‐ and interspecific
comparisons indicate that neuromere differentiation thus deviates from a simple anterior–posterior
gradient as, for example, posterior thoracic neuromeres are less developed than those of the pleon.
In addition, the differences in the progress of the development of ganglia between the studied taxa
can best be attributed to heterochronic mechanisms. Taxon and stage‐specific morphologies
indicate that neuronal architecture reflects both, morphogenesis to the adult stage and specific
larval adaptions, and provides sets of characters relevant to understanding the corresponding
phylogeny. J. Exp. Zool. (Mol. Dev. Evol.) 320B:511–524, 2013. © 2013 Wiley Periodicals, Inc.
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Larvae of animals with indirect development are of peculiar
interest, since they exhibit sets of morphological characters that
differ from those of the adults. These characters often represent
ancestral, but sometimes also derived conditions, and therefore
may be of high relevance for phylogeny reconstructions (see
Anger, 2001; Clark, 2009). Furthermore they represent transitory
stages in the development from embryo to adult, thus may be
indispensable to evo‐devo studies of the morphogenetic changes
that indirectly developing species undergo during ontogeny.
Unlike embryos, which are largely sealed off from external
influences, many larvae live freely exposed to the environment,
occupy their own niches and, therefore, stage‐specific adaptive
plateaus and structure–function relationships are manifested in
their morphology (Anger, 2006).
The immature stages of bottom‐dwelling decapods, representing

the planktonic stages within the pelago‐benthic lifecycles in this
taxon, are classical examples of such larvae. They are found in three
different forms, the nauplius (free larval stages inDecapoda are only
present in Dendrobranchiata), zoea and megalopa (Anger, 2001).
The zoea larvae exhibit distinct, species‐specific features; therefore,
the larvae of numerous species have been described and illustrated
from classical preparations for compound light microscopes
(Gurney, '42; Rice, '80), and recently also using the scanning EM
(Meyer et al., 2006; Geiselbrecht and Melzer, 2010).
The structure and function of the nervous system of adult

decapods has been studied in great detail (e.g., Bullock and
Horridge, '65; Nässel and Elofsson, '87; Sandeman et al., '92, '93;
Harzsch et al., 2012; Strausfeld, 2012). For a few species the
knowledge of larval internal anatomy is comprehensive as well,
comprising histological studies on the ontogeny of larval
osmoregulatory structures (Cieluch et al., 2005; Cieluch
et al., 2007) and immunocytochemical studies on the develop-
ment of neuroendocrine centers of larval European lobsters
(Rotllant et al., '93, '94, '95). The development of the decapod
nervous systems regarding different larval stages has been
thoroughly discussed in several studies. Harzsch and Dawirs
('94, '95, '96a, '96b) studied neurogenesis in Hyas araneus
(Linnaeus, 1758) larvae mainly using immunocytochemical
methods. A detailed histological analysis is available for Carcinus
maenas (Linnaeus, 1758) in Harzsch and Dawirs ('93) and for C.
destructor Clark, 1936 and Homarus americanus H. Milne
Edwards, 1837 in Helluy et al. ('93). However, in those works
the focus is either on later larval stages, for example, on the
megalopa in Harzsch and Dawirs ('93), or only on particular areas
of the nervous system, for example, on the brain in Helluy et al.
('93). And for many decapod taxa, amongst others the Anomura,
such analyses have not been accomplished to date.
Therefore, the value in extending such studies to early zoeal

stages of various decapods is obvious. Furthermore, recent micro‐
morphological analyses of small organisms have benefited from
novel computer‐based reconstruction techniques using visualiza-
tion software like Amira, analySIS or BioVis3D, which allow the

processing of series of semi‐thin sections to 3D views that display
shape, steric arrangement of structural elements and their
connections in great clarity.
We made serial semi‐thin sections of various decapods and

analyzed themwith Amira to contribute to a wider basis of studied
taxa that will allow more detailed comparisons between larvae,
the corresponding adults, and outgroup representatives.
We studied the central nervous system (CNS) and segmental

nerves of zoea‐I larvae in three decapod taxa, Hippolyte inermis
(Leach, 1815), Porcellana platycheles (Pennant, 1777), and
Pachygrapsus marmoratus (Fabricius, 1787). These represent the
three decapod lineages, Caridea, Anomura, and Brachyura, each
characterized by specific zoea‐I morphologies, larval lifestyles,
and ontogenies.
The Caridean H. inermis hatches with the maxillipeds 1–3 fully

developed. The 1st pereiopod is present as an embryonic bud, and
the anlagen of the following appendages are not visible from the
outside. In further postembryonic development eight zoeal stages
are passed until the megalopa stage (Williamson, '57; Bourdillon‐
Casanova, '60; Zupo and Buttino, 2001). In the first zoeal stage of
the anomuran P. platycheles only the 1st and 2nd maxillipeds are
developed. The 3rd maxillipeds are present as biramous buds, the
pereiopods as embryonic buds. P. platycheles possesses only two
zoeal stages preceding the megalopa (Lebour, '43; González‐
Gordillo et al., '96). The brachyuran P. marmoratus also hatches
with the 1st and 2nd maxillipeds developed and the 3rd
maxillipeds are only present as embryonic buds. The anlagen of
the pereiopods are not yet visible externally. In P. marmoratus
there are six zoeal stages (Cuesta and Rodríguez, '94, 2000).
We show that many parts of the CNS, like the ganglia of the

anterior CNS or ganglia of the mouthpart and pleon segments are
well developed in the first‐stage zoeae already, whereas other
parts, like ganglia in particular maxilliped and pereion segments
show a developmental lag. This partly reflects the sequential
differentiation of body segments that larvae undergo during
ontogeny, or corresponds well with the development of the
respective segmental appendages. Comparing the species among
each other differences in the progress of the development of
neuromeres can be observed and revealed as possible hetero-
chronic events, that is, changes in the timing or rate of
developmental events compared to more ancestral relatives (De
Beer, '40; Gould, '77; McKinney andMcNamara, '91). These can be
correlated with the different life histories and number of larval
stages of the studied species.

MATERIALS AND METHODS
Ovigerous females of H. inermis, P. platycheles, and P.
marmoratus were caught near Rovinj (Croatia) in shallow waters
(1m depth) inhabiting seagrass meadows (H. inermis) and the
coastal littoral (P. platycheles and P. marmoratus), and kept in an
aquarium at the laboratory of the Ruper Boškovi�c Institute until
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larvae hatched (see also Meyer et al., 2004). The cuticulae of first
stage zoea larvae were perforated with fine needles in cooled
primary fixative (4% glutaraldehyde in 0.1M sodium cacodylate
buffer, pH 7.1); afterwards the specimens were soaked in primary
fixative for some hours in a refrigerator. Specimens were washed
in sodium cacodylate buffer and then postfixed/postosmicated in
1% osmium tetroxide in buffer. After dehydration over graded
acetone series specimens were embedded in epoxy resin according
to standard procedures (Richardson et al., '60).
Serial semi‐thin sections (1.5mm) were cut with a Diatome

HistoJumbo diamond knife on a Microm HM 360 microtome
(Boeck, '84). Ribbons of semi‐thin sections were obtained using
contact cement as described in Henry ('77) and Ruthensteiner
(2008), stained after Richardson et al. ('60), and embedded in DPX
(Fluka, Buchs, Switzerland). One specimen of each species was cut
throughout in transversal plane. Photographs of the sections were
taken with a ProgRes® Speed XT core5 camera mounted on a Leica
DM5000B microscope. After editing (resize, change to gray scale,
unsharp mask) in Adobe Photoshop (Adobe Systems, Mountain
View, CA, USA), photo stacks covering the volume of the CNS and
containing the images of every single section were imported in
Amira 5.2.0 software (Visage Imaging, Berlin, Germany) and
aligned. Then, corresponding structures were extracted, labeled,
and visualized by surface rendering. The program also provides
the opportunity to conduct volume measurements of the labeled
materials, what we used to measure the volume of the different
neuropils. To display the whole CNS as well as the details in every
species, two photo stacks of different magnification (H. inermis:
20� and 40�; P. platycheles: 5� and 20�; P. marmoratus: 10�
and 40�) were processed separately.
The terminology in this manuscript is based on Sandeman et al.

('92) with a modification of the terminology of the optic neuropils
as suggested by Harzsch (2002) and standard neuroanatomical
terminology is adjusted to Richter et al. (2010). Generally several
nerves leave the neuropils of each segment, containing sensory
and motor neurons of the peripheral nervous system (Sandeman
et al., '93). In this study, the 3D‐reconstructions mainly depict the
nerves innervating the segmental appendages, and these nerves
are named either after the respective appendage, for example,
antenna I nerve, or after a segmental nerve in more general
context. For a better understanding we decided to distinguish the
usually termed thoracic ganglia 1–8 in 1st to 3rd maxilliped
ganglion and pereion ganglion 1–5 in reference to the segment
appendage.

RESULTS

General Features of the Larval Central Nervous System
The anterior CNS of the studied first‐stage zoeae is composed of
well‐developed ganglia, with neurites forming a central neuropil
and a surrounding cell‐body cortex. Within the brain the proto‐,
deuto, and tritocerebrum are prominent (Fig. 1); nerves or tracts

can be found connecting these neuropils with sense organs and/or
appendages of the head, like the compound eyes, antennae I,
antennae II, and labrum (Figs. 1 and 2). Following the
tritocerebrum, the esophageal connectives project posteriorly to
the ganglia of the mandibular and maxilla I and maxilla II
segments, followed again by the ganglia and/or anlagen of the
three maxilliped and the five pereion segments (Figs. 1 and 3). By
virtue of very short connectives ambilaterally joining consecutive
ganglia, the neuropils are fused in anterior–posterior direction
resulting in a composite structure that combines elements in
various stages of differentiation (Figs. 1 and 3). By contrast,
connectives between the posteriormost pereion and the 1st pleon
ganglion and between the subsequent pleon ganglia are well
distinguishable. Thus, the respective ganglia can be recognized
individually and form a classical ventral nerve cord located in the
pleon segments (Figs. 1 and 4).

The Protocerebrum. The supraesophageal neuropils are almost
completely surrounded by a cell‐body cortex (Figs. 5A–C, 6A,
and 7A and B). Within the optic lobes, the optic neuropils form
in the transversal plain obliquely arranged rows that taper
medially (Fig. 2). The optic neuropils comprise—from exterior to
interior—a well‐developed lamina of convex form, a kidney‐
shaped medulla, a globular lobula, and a pronounced medulla
terminalis (Figs. 2, 5A and B, 6A, and 7A and B). Postero‐ventrally
there follows the median protocerebrum, connected via the
protocerebral tracts (Figs. 1C, 5B, and 7B). The median proto-
cerebrum is also composed of units, the dorsal (Figs. 5B and 7B),
lateral (Fig. 6C), and median optic neuropils (Figs. 2, 5C, and 6B).
The most anterior parts are the paired dorsal optic neuropils,
followed ventro‐laterally by the also paired lateral optic neuropils.
The two portions of the median optic neuropils are medially
fused. In this region also the central body is located (Fig. 6B), a
clearly distinguishable neuropil with transversally extending
neurites.

The Deutocerebrum. Posterior to the protocerebral region the brain
divides and the two hemiganglia of the deutocerebrum continue
posteriorly on both sides (Fig. 1). The main elements are the
laterally expanding globular olfactory lobes (Figs. 1C, 2A and
C, 5C, 6C, and 7C). Connecting the deuto‐ and protocerebrum the
olfactory globular tracts leave the olfactory lobes medially
(Fig. 6C). Posteriorly ascending from the antennae I, the antenna
I nerves enter the olfactory lobes (Figs. 2 and 7C).

The Tritocerebrum. Posteriorly to the deutocerebrum but
without a distinct demarcation, the tritocerebrum is present
(Fig. 1). The tritocerebral hemiganglia are oriented paralaterally
to the esophagus (Fig. 5D). Three conspicuous nerves connect the
tritocerebrum with various sections and appendages of the
tritocerebral segment on both sides: ventro‐laterally the antenna
II nerve is inserted (Figs. 1C and 2A–C), anteriorly the labral
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nerve (Fig. 2B), and dorsally the tegmentum nerve (Fig. 1B). The
small esophageal ganglion is situated antero‐medially to the
esophagus (Figs. 1A and C and 2A–C). It is connected to both
hemiganglia of the tritocerebrum via lateral nerves (Fig. 2B), and
the stomatogastric nerve is running dorsally forming the
connection to the stomatogastric ganglion (Figs. 1A–C, 2A–
C, 5C, and 6C), which is located anterio‐medially to the stomach.
Posterior to the esophagus the postesophageal commissure
connects the two hemiganglia of the tritocerebrum (Figs. 1A–C
and 6D).

The Ganglia of the Mandible, Maxilla I, Maxilla II and Maxilliped
1–3 Segments. The ganglia of these six segments are of a globular
shape, they are longitudinally and transversally fused, and
connectives as well as commissures are very short and not visible
in reconstructed external view (Figs. 1 and 3). Sections in this area,
however, show the presence of dorsal and ventral commissures
connecting the segmental hemiganglia transversally (Fig. 6E) but
the connectives cannot be distinguished due to the transversal
sectioning plane. The cell‐body cortex ismost prominent ventrally
(Figs. 6E and 7E). The ganglia receive input via lateral segmental

Figure 1. 3D‐reconstructions of CNS. (A) Hippolyte inermis. (B) Porcellana platycheles. (C) Pachygrapsus marmoratus. (a) Lateral view,
showing surface of cell‐body cortex (bar¼ 200mm). (b) Dorsal view, showing surface of cell‐body cortex (bar¼ 200mm). (c) Dorsal view,
showing cell‐body cortex in reduced transparency, and neuropils and nerves (bar¼ 100mm).
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nerves, that is, those of the mandibles, maxillae I, maxillae II, and
the three maxillipeds (Fig. 3A, C, and E).

The Ganglia of the Pereion and Pleon Segments. The ganglia of the
pereion segments do not show any feature common to all three
species. Contrary to this, all six pleon segments in all species
exhibit a distinct ganglion with a short commissure and long
intersegmental connectives, but no segmental nerves can be
detected (Fig. 1).

Species‐Specific Characteristics
Hippolyte inermis. The cell‐body cortex of the optic lobes is
medially fused (Figs. 1A, 2A, 3A and B, and 5). The lamina is
approximately half the size compared to the other species. A small
accessory neuropil is located ventrally between the internal and
external medulla. The ganglia of the 1st, 2nd, and 3rd maxilliped
segments are well developed, each with a distinct segmental nerve
projecting postero‐laterally. The neuropil of the ganglion of the 1st
pereion segment (VR¼ 2.72) is about one‐fifth the size of the 3rd
maxilliped neuropil (VR¼ 13.64) (Figs. 2B, 8A and B and Table 1),
but the segmental nerve is also well developed. In the following
pereion segments the segmental composition is obvious, as slender

commissures are found between the neuropil portions but no
distinct segmental nerves can be detected (Fig. 3A). The cell‐body
cortex of the pleon ganglia extends laterally, resulting in a wing‐
like shape.

Porcellana platycheles. The cell‐body cortex of the optic lobes
is also fused but with an observable medial demarcation
(Figs. 1B, 2B, 3C, D, and 6). Also, a small accessory neuropil
is located ventrally between the internal and external medulla.
The ganglia of the 1st and 2nd maxillipeds are well developed,
with a segmental nerve projecting postero‐laterally. The neuropil
as well as the nerve of the segment of the 3rd maxilliped is of
distinctly smaller size (VR¼ 5.78), whereas the size of the neuropil
of the 1st pereion segment (VR¼ 5.04) is similar to that of the 3rd
maxilliped segment (Figs. 3D and 8C and D and Table 1). The
ganglia of pereion segments 1–5 are evenly developed, each with a
slender commissure connecting the two hemiganglia. A distinct
nerve innervating the pereiopod buds can be detected in each
segment (Fig. 3C). Displaying only very short connectives, the 1st
pleon ganglion is closely spaced to that of the 5th pereion
segment.

Pachygrapsus marmoratus. The median portions of the two optic
lobes show no direct contact (Figs. 1C, 2C, 3E and F, and 7). The
antenna I nerve enters the olfactory lobes dorsally (Figs. 1C
and 7C). Following the mandible, maxilla I and maxilla II
segments, only the ganglia of the segments of the 1st and 2nd
maxillipeds are well developed and show a distinct segmental
nerve. The cell‐body cortex in this area is enlarged laterally and
ventrally, resulting in a globular shape. The ganglion of the
segment of the 3rd maxilliped is less developed and the
respective nerve is not definable. The neuromeres of the future
pereion segments 1–5 are not yet differentiated and not
definable.

DISCUSSION

Methodological Approach
Various recent studies have shown that the method of computer‐
aided 3D‐reconstruction of the inner organization of small
animals using serial semi‐thin sections has been developed to a
level that makes it a useful method. Not only long‐known facts
can be depicted in a nice way, but also new insights into the forms,
steric arrangement and structural connections of organs, organ
systems and any kind of elements of amorphological structure can
be gained (e.g., Neusser et al., 2006; Fritsch and Richter, 2010;
Sombke et al., 2011). The application of the method to the nervous
system of decapod larvae, as in the present article, seems to
support this notion, although in many parts of the CNS we show
the segmental composition of ganglia, neuropils and connecting
tracts that is described for decapod adults and has been
well known from zoology textbooks for a long time (e.g.,

Figure 2. 3D‐reconstruction of protocerebrum in frontal view,
showing optic neuropils. Cell‐body cortex displayed in reduced
transparency (bars¼ 100mm). (A) Hippolyte inermis. (B) Porcel-
lana platycheles. (C) Pachygrapsus marmoratus.
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Hanström, '47; Bullock and Horridge, '65). Hence, many of the
structures described here are miniature versions of the later adult
configurations, and represent plesiomorphic character states at
least for Decapoda, but partly even for Crustacea, Mandibulata,
and/or Euarthropoda.
However, some of the observations that could be documented in

great detail and clarity with our 3D‐reconstructions advance the
understanding of the specific aspects of larval morphogenesis
summarized at the beginning. We will, thus, mainly discuss the
points that are relevant in this context.

General Features of the Larval CNS
The basic elements of a typical adult decapod CNS, as shown in
Sandeman et al. ('93), are already recognizable in all first‐stage
zoeae, for example, the segmental ganglia, their neuropils and the
segmental nerves. The proto‐, deuto‐, and tritocerebrum are well
differentiated; a stomatogastric ganglion and an esophageal
ganglion could be detected as parts of the stomatogastric nervous
system. Following posteriorly in all species the ganglia of the
maxilla I, maxilla II, mandible and 1st and 2nd maxilliped
segments are evenly developed and innervated by distinct

Figure 3. 3D‐reconstruction of mandible, maxilla I and II and maxilliped ganglia in dorsal view, showing neuropils and segmental nerves.
Cell‐body cortex displayed in reduced transparency. (A and B) Hippolyte inermis (bars¼ 50mm). (C and D) Porcellana platycheles
(bars¼ 100mm). (E and F) Pachygrapsus marmoratus (bars¼ 50mm).
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segmental nerves. The general and structural organization of the
CNS of a first‐stage zoea also corresponds well with that described
for later developmental stages, for example, for themegalopa in C.
maenas (see Harzsch and Dawirs, '93). Both developmental stages,
the zoea‐I and the megalopa, are characterized by a coherent cell‐
body cortex surrounding the neuropil, in contrast to the adult
situation, where the cell somata in the brain are arranged in clearly
recognizable clusters (Sandeman et al., '92). However, in the first‐
stage zoea the protocerebral tracts are short and the optic lobes
are located close to the median part of the protocerebrum. In the
C. maenas megalopa the protocerebral tracts stretch laterally and
the optic lobes move away from the brain in association with the
growth of the larval eye stalks. The differences in development
between the 3rd maxilliped and/or the pereion ganglia detected in
the first‐stage zoeae studied here, and discussed in detail below,
are not observable in the megalopa (Harzsch and Dawirs, '93).
Furthermore, we could not identify the median connective that

is found in manymalacostracans and some other crustaceans (see,

e.g., Harzsch et al., '97; Stegner and Richter, 2011; and revision in
Harzsch, 2003). We assume that it was not detectable in our
transversal semi‐thin sections due to its longitudinal orientation
and the small body volume of the first‐stage zoea. Very delicate
nerves such as the labral and tegmentum nerves only could be
clearly distinguished in P. platycheles. The ganglia, however,
connected by these nerves were observed in all three species.
In contrast, we could find structures that are not described from

other species or from adult decapods, such as the small accessory
optic neuropils in H. inermis and P. platycheles. The connections
of these paired neuropils remain unclear, but similar structures are
described from other arthropods, for example, from Chaoborus
crystallinus, a dipteran species (Melzer, 2009), or from Nebalia
herbstii, a leptostracan (Kenning et al., 2013). In Hexapoda, the
accessory neuropils are connectedwith stemmata or larval eyes. In
the crustaceans studied so far, no such connections have been
found. The accessory neuropils might be a shared character of the
Tetraconata, but this question remains to be addressed by a
detailed comparative study (see discussion in Melzer, 2009).

Inter‐ and Intraspecific Comparison of Morphogenesis
On the neuronal level segmental ganglia and nerves reflect
different developmental plateaus of the larval body segments and
tagmata; for example, segments with already well‐developed
appendages possess well‐developed ganglia as well, whereas in
segments without limbs or limb buds the morphogenesis of
ganglia is also at a less advanced stage. Different sets of nervous
system characters are thus revealed for the studied species,
correlated with different types of external zoea‐I morphology
(Table 1). Furthermore, the occurring taxon‐specific differences
are relevant under the aspects of (1) comparing different taxa and
(2) analysis of ontogeny.
In H. inermis maxillipeds 1–3 are well developed and the 1st

pereiopod is present as an embryonic bud; accordingly the ganglia
and nerves of the three maxilliped segments are evenly developed
and the ganglion of the 1st pereiopod segment is proportionally
less. In P. platycheles a similar developmental divergence among
the ganglia is observable when the 1st and 2nd maxilliped
segments are compared with the 3rd. Here the 3rd maxilliped is
only present as a biramous bud, but the pereiopods are already
present as embryonic buds as well. Also the corresponding ganglia
and nerves of these segments are evenly developed, but less
so compared to the 1st and 2nd maxilliped segments. In
P. marmoratus the 3rd maxilliped is only present as an embryonic
bud and pereiopods are completely undeveloped, which is
reflected in rather undeveloped neuromeres of the respective
segments. Studying H. araneus and H. americanus Harzsch et al.
('98) described the effects of a correlation between the degree of
maturation and the use of segmental appendages and by
comparing the neurogenesis in the ventral nerve cords of
brachyuran larvae, lobster larvae and crayfish larvae, which
exhibit different modes of embryonic and larval development,

Figure 4. 3D‐reconstruction of zoea I of Porcellana platycheles in
lateral and ventral view, showing the CNS and its position within
the body (bar¼ 400mm). Note realistic display of body shape and
its segmental appendages. Surface of body displayed with reduced
transparency.
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temporal patterns of neurogenesis could be detected (Harzsch,
2003). Together, these results strengthen the claim that the
patterns of neurogenesis in the ventral ganglia of decapod
crustaceans are intimately related to the development of the
segmental appendages and maturation of motor behaviors. In
H. araneus, which hatches with thoracic segments 3–8 bearing
only embryonic limbs, neurogenic activity persists into the
larval stages. In H. americanus, which hatches with functional
appendages on all eight thoracic segments, the neuroblast
proliferation already ceases when embryogenesis is 80% complete
(Harzsch and Dawirs, '94; Harzsch et al., '98). The species studied

here also show differences in the number of functional
appendages at hatching, which appear to be related to variation
in state of neuromere differentiation and/or size in the ventral
ganglia. It seems that the temporal patterns of neurogenesis as
observed by Harzsch et al. ('98) and by Sullivan and MacMillan
(2001), and the differences observed here, are two facets of the
same phenomenon, that is, that timing of developmental processes
is an important factor forming segment‐specific adaptions during
ontogeny, and also differences between taxa.
Usually during development of the ventral nerve cord

additional neuromeres and their commissures emerge in an

Figure 5. Transversal semi‐thin sections of zoea I of Hippolyte inermis (bars¼ 50mm). (A) Optic neuropils within optic lobe, (B) optic lobe
and median protocerebrum, (C) median protocerebrum, (D) tritocerebrum, (E) ganglion of mandibular segment, (F) ganglion of 4th pleon
segment.
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anterior–posterior gradient (Vilpoux et al., 2006; Fritsch and
Richter, 2010; Ungerer et al., 2011). This is well reflected here in the
progress of neuromere development of the successive thoracic
segments, but not in the whole body: While the ganglia in the
posteriormost pereion segments are the least developed, all species
show a well‐developed ventral nerve cord in the pleon segments;
therefore, in our zoeae the anterior–posterior gradient is
interrupted in the pereion neuromeres of segments with
underdeveloped limbs. This, however, can be correlated with the
life style of the planktonic larvae: while swimming with the
exopods of the present maxillipeds (Gurney, '42), they additionally

all show an escape behavior through a complex mechanism of
rapid strokes of the pleon (Dahl, '83). Hence it is obvious that both
the maxilliped and the pleon musculature and its innervating
nervous system should be well developed, and similarly so in all
species, while the remaining thoracic neuromeres can be retained
at a less differentiated state until the corresponding limbs are
differentiated.
Conspicuous interspecific differences are found when ganglia,

neuropils and segmental nerves of the 3rd maxilliped segment are
compared. The different external morphologies, as described
above, are reflected in different developmental stages of the

Figure 6. Transversal semi‐thin sections of zoea I of Porcellana platycheles (bars¼ 100mm). (A) Optic neuropils within optic lobe. (B) Median
protocerebrum and olfactory lobe. (C) Fiber bundle of olfactory globular tract leaving olfactory lobe. (D) Postesophageal commissure. (E)
Ganglion of maxilla II segment. (F) Ganglion of 5th pleon segment and pereiopod buds.
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nervous system (Table 1). Correspondingly, the 3rd maxilliped
ganglion, neuropil and segmental nerve are well developed in H.
inermis, whereas in P. platycheles they are also well developed but
proportionally smaller and in P. marmoratus this neuromere is not
definable, that is, undeveloped. Comparison of the pereion
segments reveals a similar correlation between limb and neuro-
mere development. Only in P. platycheles the pereiopods 2–5 are
present as embryonic buds, what is also reflected by well‐
developed ganglia and segmental nerves in the respective
segments. In H. inermis and P. marmoratus, ganglia and nerves
are developed to a much lesser extent in segments lacking
pereiopod buds.

A Case of Heterochrony?
The differences observed within and between species concerning
the stage of development of neuromeres and nerves are paralleled
by the respective appendage development. This variation can be
explained best by shifts in the timing of morphogenetic events, for
example, like the early appearance and rapid maturation of the
accessory lobes in the freshwater crayfish C. destructor compared
with the lobster H. americanus (Helluy et al., '93). Another such
example is the stage‐specific timing of appearance and rate of
development of certain setae and other characters occurring
during development in different species of pilumnine crabs
(Clark, 2005).

Figure 7. Transversal semi‐thin sections of zoea I of Pachygrapsus marmoratus (bars¼ 50mm). (A) Optic neuropils within optic lobe. (B)
Optic lobe and median protocerebrum. (C) Olfactory lobe. (D) Ganglion of maxilla II segment. (E) Ganglion of 2nd maxilliped segment. (F)
Ganglion of 1st and 3rd pleon segment.
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In a few other decapod species, detailed analyses have shown
that these differences in ganglion/limb development disappear
during later development. In H. araneus, H. americanus, and C.
destructor (Sullivan and MacMillan, 2001; Harzsch, 2003),

neurogenic activity ceases during or before molting to the stage
in which the appendage of a segment is first used in coordinated
movements. Considering the species studied here, all the limbs that
are underdeveloped in the first‐stage zoea are well developed and

Figure 8. Transversal semi‐thin sections of zoea I of Hippolyte inermis (A and B, bars¼ 50mm) and Porcellana platycheles (C and D,
bars¼ 100mm), showing respective proportions of 3rd maxilliped neuropils and 1st pereion neuropils.

Table 1. Taxon‐specific features of zoea‐I morphologies and neuropil volumes (x, present; o, absent).

Hippolyte inermis Porcellana platycheles Pachygrapsus marmoratus

Appendages
MXP1 x x x
Mxp2 x x x
Mxp3 x Biramous bud Embryonic bud
PER1 Embryonic bud Embryonic bud o
PER2 o Embryonic bud o

Pleon (somites) 5þ T 5þ T 5þ T
Volume (mm3)
SEGþ TG‐NP 334905 1571547 179676
MXP3‐NP 45673 90771 —

PER1‐NP 9098 79202 —

Volume ratio (%)
MXP3‐NP 13.64 5.78 —

PER1‐NP 2.72 5.04 —

Larval stages ZI‐VIII, M ZI‐II, M ZI‐VI, M
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become functional during subsequent larval development. In
H. inermis this concerns the 1st pereiopod in zoea III (Zupo
and Buttino, 2001), in P. platycheles the 3rd maxilliped and the
1st pereiopod in zoea II (González‐Gordillo et al., '96), and in
P. marmoratus the 3rd maxilliped and the 1st pereiopod in zoea VI
(Cuesta and Rodríguez, 2000). It can be expected that the
underdeveloped ganglia of the first‐stage larvae accordingly
develop in the later stages.
Since the decapod lineages of our studied species, represent

both ancestral and derived character states (Bracken et al., 2009),
plausible explanations for the phenomena are differences in the
timing of morphogenesis, that is, heterochrony, a classical concept
developed by Haeckel (1866) (review in Smith, 2001) and proposed
as a general evolutionary pattern (e.g., Richardson and
Oelschläger, 2002; Maxwell et al., 2010), as well as in various
studies used to explain how ontogenetic shifts can result in stage‐
specific adaptions and evolutionary diversification (e.g., Helluy
et al., '93; Clark, 2005; Tills et al., 2011).

Relevance for Reconstruction of Phylogeny
Comparison of the three taxa studied here indicates that clear
taxon‐specific differences can be detected, and even in the first
zoeal stage the studied species can be distinguished according to
the specific configuration of the nervous system. It seems that
phylogenetically relevant signal may be found not only in limb
development, but also in the morphogenesis of segmental ganglia,
for example, in different segment‐ or tagma‐specific ways of
delayed ganglion and limb development at the zoea I stage.
Nevertheless, it is not possible at this time to recognize an
unambiguous evolutionary trend from more basally branching
lineages like the Caridea to more derived ones like the Anomura
and Brachyura (e.g., see Bracken et al., 2009 and older works cited
therein), since the delay in neuromere differentiation seems long
in Caridea, shorter in Anomura, and greatest in Brachyura. The
picture is complicated even more by the fact that in Astacideans
like Homarus, the first free‐living larval stage (the mysis 1)
hatches with all pereiopods and respective segmental ganglia well
developed (Helluy and Beltz, '91) and therefore the delay seems to
be at zero. Thus, other groups need to be studied, for example,
the Stenopodidea and Thalassinidea, to get a better idea of the
evolutionary processes.
With respect to the ontogenetic dimension one can say that

ganglia undergo development at different tempos depending
on general larval morphogenesis, and only those elements seem
to be fully differentiated that are actually “needed” at a given
developmental stage (Harzsch et al., '98; Sullivan and MacMillan,
2001). This leads to differences between segments and/or tagmata
within single species, but also between different taxa. On the one
hand the CNS of decapod zoea‐I larvae is a stage‐specific system
reflecting adaptations to larval life, on the other hand a transitory
stage to the adult organization. Constraints superimposed by both
aspects can be detected in the zoea‐I CNS.
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Running title: Heterochrony in mandible development 

 

ABSTRACT  Mandible development in the larval stages I-V of two palaemonid shrimp 

species, Palaemon elegans and Macrobrachium amazonicum, was analysed mainly with 

scanning electron microscopy and additionally with light microscopy and confocal laser 

scanning microscopy. In contrast to the zoea I of P. elegans, first-stage larvae of M. 

amazonicum are non-feeding. At hatching, the morphology of the mandibles is fully 

expressed in P. elegans, while it appears underdeveloped in M. amazonicum, presenting only 

small precursors of typical caridean features. In successive zoeal stages, both species show 

similar developmental changes, but the mandibular characters of the larvae in M. amazonicum 

were delayed compared to the equivalent stages in P. elegans, especially in the development 

of submarginal setae and mandible size. In conclusion, our results indicate heterochrony 

(postdisplacement) of mandible development in M. amazonicum compared to that in P. 

elegans, which is related to initial lack of mandible functionality or planktivorous feeding at 

hatching, respectively. This conclusion is supported by comparison with other palaemonid 

zoeae exhibiting different feeding modes. Our data suggest that an evolutionary ground 

pattern of mandible morphology is present even in species with non-feeding first-stage larvae. 

 

Keywords: Macrobrachium amazonicum, Palaemon elegans, heterochrony, larval development, mandible 

morphology, zoea 
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INTRODUCTION 

Among the body appendages of the zoea larvae of decapod crustaceans, the mandibles have 

been least studied, mainly due to their minuteness and disadvantageous position on the head 

capsule, which render their microscopical examination technically difficult. In morphological 

descriptions of zoeae, the mandibles are therefore often omitted or shown in insufficient detail 

(for review, see Rice 1979, 1980; Ingle, 1983, 1992; and older literature cited therein). For 

brachyurans, Clark et al. (1998) considered the mandibular palp and the setation on the 

margin in the megalopa as the only relevant feature of larval mandibles. In consequence, 

detailed light-microscopic analyses of zoeal mandibles exist for only a limited number of 

species (e.g., Martin and Goy 2004; dos Santos et al. 2004; Bolaños et al. 2005). Scanning 

electron microscopy (SEM), which allows more detailed analyses of small structures and their 

steric arrangement at high resolution, has hardly been used in studies of zoeal mandibles 

(Greenwood and Fielder 1979; Minagawa and Takashima 1994). Such analyses are needed, 

however, not only for complete morphological descriptions but also in phylogenetic 

reconstructions using “mandibulate” mandibles as key characters (e.g., Dahl and Hessler 

1982; Bitsch 2001; Richter et al 2002; Edgecombe et al. 2003; Bitsch and Bitsch 2004; Rota-

Stabelli et al 2010). 

In recent studies, Meyer et al. (2006) and Geiselbrecht and Melzer (2009) used SEM analyses 

for detailed descriptions of zoeal mandibles, and Geiselbrecht and Melzer (2010) compared 

the mandibles of nine decapod species with different types of zoeal morphology, and found 

distinct taxon-specific features. The authors concluded that certain sets of zoeal mandible 

characters, including the basic form and the presence, structure and position of certain 

appendages, provide phylogenetically relevant signals. Moreover, they analysed the 

ultrastructure of zoeal mandibles in Palaemon elegans Rathke, 1837 using for the first time 

transmission electron microscopy (TEM), and demonstrated eleven sensillar units on the 

gnathal edge of the mandibles (Geiselbrecht and Melzer 2013). These findings allow a 

differentiation between innervated setae, innervated spines, and non-innervated spines, which 

helps to improve the terminology for different mandible structures.  

However, the morphology and development of crustacean mandibles depends also on feeding 

habits (Mekhanikova 2010). This implies that different food sources may be associated with 

differences in zoeal mandible structures of closely related species, veiling phylogenetically 

relevant characters, and contradicting hypotheses presented by Geiselbrecht and Melzer 

(2010). 
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In the present study, zoeae of two phylogenetically closely related species are compared to 

study the influence of differential modes of feeding on mandible structure. Being part of the 

plankton, zoea larvae are generally known to feed on a vast variety of particulate food sources 

such as zooplankton (including other larvae, De Araujo and Valenti 2007; Paul et al. 1989), 

detritus (Schembri 1982) and phytoplankton (Paul et al. 1989). Thus, the mandibles of  the 

earliest zoea larvae are used as main masticating organs for processing a broad spectrum of 

food with different qualities. 

In some taxa, non-feeding zoeae are known, e.g. in the palaemonid genera Macrobrachium, 

Pseudopalaemon and Palaemonetes (Anger 2001). In these limnic shrimps, early zoeae may 

migrate or disperse downstream, so that the zoea II can start feeding in plankton-rich 

estuarine or coastal waters. In the most Palaemonidae, e.g. in the mostly marine genus 

Palaemon, already the newly hatched zoea I is a feeding stage (Kumlu and Jones 1995). 

The Palaemonidae are thus ideal for testing the above mentioned hypotheses. In the present 

study we therefore analyzed the mandible development in zoeal stages I to V of two 

palaemonid shrimp, Palaemon elegans and Macrobrachium amazonicum (Heller, 1862), 

which show different life styles and feeding modes. Palaemon elegans is a marine species 

that lives in shallow coastal European waters, whereas M. amazonicum inhabits rivers and 

estuaries along the northeastern coasts of South America (Hayd and Anger 2013). During the 

zoea I stage, the larvae of M. amazonicum are lecithotrophic (non-feeding; Anger and Hayd 

2009), whereas those of P. elegans are planktivorous (Fincham 1977). 

M. amazonicum passes through an extended larval development with 9-11 stages (Magalhães 

1985; Anger and Hayd 2009), which is a typical pattern in estuarine species of 

Macrobrachium (for review, see Anger 2013). Its larvae need higher salinities than the adults, 

indicating an early larval transport to estuarine or coastal marine habitats (Charmantier and 

Anger 2011). During the downstream transport in fast-flowing river water, the larvae are 

presumably faced with food limitation due to low or unpredictable mesozooplankton 

production in lotic environments (Anger and Hayd 2009). In the initial postembryonic stage, 

the non-feeding larvae of M. amazonicum utilize internal energy reserves that originate from 

an enhanced maternal investment into egg production. In P. elegans, a variable number of 4-9 

zoeal stages has been reported (Fincham 1977; Fincham and Williamson 1978; Sanders et al. 

2005), however, the onset of larval feeding occurs already at hatching (Fincham 1977; Kumlu 

and Jones 1995). Extended and fully planktivorous patterns of larval development are 

generally considered as the ancestral state in decapod crustaceans, whereas tendencies 

42



JOURNAL OF MORPHOLOGY (Manuscript under review) 

 

towards an abbreviation and lecithotrophy are believed to represent derived conditions (for 

discussion, see Jalihal et al. 1993; Anger 2013). 

Different life-history traits observed in two closely related species raise the question if they 

are paralleled by modifications in the patterns of morphological development. Shifts in the 

timing of morphogenetic events compared to more ancestral relatives are known as 

heterochrony (Haeckel 1866; McKinney and McNamara 1991; for recent discussion, see Tills 

et al. 2011). Heterochrony appears to be a pervasive evolutionary feature (Gould 1979), 

especially in vertebrate phylogeny (Richardson and Oelschläger 2002; Maxwell et al. 2010; 

Tills et al. 2011). It was also shown that abbreviated zoeal development can affect the timing 

of appearance and rates of character development in brachyuran zoeae (Clark 2005).  

The principal aim of the present study was to examine whether early zoeal mandibles of P. 

elegans and M. amazonicum differ significantly in morphology and development, reflecting 

different modes of feeding at hatching. Besides differential adaptive traits, we expected to 

find features representing common developmental patterns in Caridea or Palaemonidae. Since 

our findings are based on only two species and other SEM studies on zoeal mandible 

development are lacking, we compare our results not only between these two species, but also 

with earlier light-microscopical results on other palaemonid zoeae with differing feeding 

habits, in order to avoid the “two-species-trap” (Garland and Adolph 1994). 

 

MATERIAL AND METHODS 

Larval rearing, fixation and staging 

Larvae of Palaemon elegans Rathke, 1837 and Macrobrachium amazonicum (Heller, 1862) 

were reared in the laboratory to obtain different stages of larval development. Rearing 

experiments with P. elegans were conducted at the Bavarian State Collection of Zoology and 

the Sea Life Center in Munich. Newly hatched larvae were individually transferred to and 

subsequently reared in non-aerated 100ml plastic vials kept at room temperature (24-26°C) 

and a constant salinity of 35PSU. Larvae were fed newly hatched nauplii of Artemia sp., and 

water was changed every second day. Macrobrachium amazonicum originating from the 

Amazon Delta were mass-reared at the Helgoland Marine Biological Laboratory (BAH) using 

aerated 1-L beakers, a constant temperature of 29°C, salinity 10, and an artificial 12:12h 

light:dark cycle (for more details of rearing techniques, see Anger et al. 2009; Charmantier 

and Anger 2011). 

Every two to three days, larvae were separated from the cultures and fixed in a graded ethanol 

series following Meyer and Melzer (2004): 30% EtOH for 30 min, 50% for 7 hours and 70%, 
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with repeated rinsing to remove remnants of salts. Fixed larvae of both species were 

microscopically checked and staged using the larval descriptions provided by Fincham (1977) 

and Magalhães (1985), respectively. 

Fixed reference larvae are deposited at the ZSM under the following registration numbers: 

Macrobrachium amazonicum: ZSM A20120307-311; Palaemon elegans: ZSM A20080754. 

SEM preparations are deposited under following numbers: Palaemon elegans: ZSM 

A20080755-757 and ZSM A20120316-319; Macrobrachium amazonicum: ZSM A20120320-

324. 

SEM preparation and microscopy 

Specimens were dissected under a stereo microscope using thin tungsten wires and forceps. 

Mandibles were isolated completely or attached to the carapace in order to facilitate SEM 

preparation. Mandibles and whole zoeae were incubated for 30 min in 36% hydrogen-

peroxide to remove dirt particles. For SEM preparation, specimens were dehydrated in a 

graded acetone series (70%, 80% and 90% each for 10 min, 3 times 20 min in 100%) and then 

critical-point-dried in a Baltec CPD 030. Dried specimens were mounted on SEM stubs with 

self-adhesive carbon stickers and sputtered with gold on a Polaron E 5100. Whole larvae and 

mandibles were studied with a LEO 1430VP SEM at 15 kV. Left and right mandibles (n = 10-

20) of each stage were studied and compared with focus on length, number of teeth, denticles, 

spines and setae. Every specimen was scanned under different angles. 

Morphometric analyses  

Mandible size (length of gnathal edges), the sizes of incisor process, ‘lacinia mobilis’ and the 

first small spine on the molar process of P. elegans and M. amazonicum were measured on the 

left and right mandible. Based on SEM pictures with lateral or frontal views, mandible size 

was measured using automatically inserted scales and measuring function in Adobe 

Photoshop. Data on total length (TL) of larval stages was taken from Fincham (1977) and 

Anger et al. (2009). Data was analyzed and graphs produced with Excel 2010. [P. elegans; 

mandible size in stages: I (n=19), II (n=10), III (n=16), IV (n=14), V (n=5); ‘lacinia mobilis’ 

in stages: I (n=11), II (n=9), III (n=14), IV (n=13), V (n=2); incisor process in stages: I (n=9), 

II (n=11), III (n=11), IV (n=9), V (n=2); first small spine in stages: I (n=10), II (n=11), III 

(n=10), IV (n=12), V (n=2); M. amazonicum; mandible size in stages: I (n=6), II (n=10), III 

(n=23), IV (n=11), V (n=6); ‘lacinia mobilis’ in stages: I (n=9), II (n=7), III (n=14), IV 

(n=10), V (n=7); incisor process in stages: I (n=6), II (n=3), III (n=6), IV (n=8), V (n=4); first 

small spine in stages: I (n=7), II (n=8), III (n=11), IV (n=8), V (n=6); see also table 1]. 
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Terminology 

Cuticular processes on the mandibles are basically named according to definitions given in 

Watling (1989) and Garm (2004). In a recent ultrastructural study using TEM, however, 

Geiselbrecht and Melzer (2013) showed for Palaemon elegans that not only slender 

processes, in particular the ‘lacinia mobilis’, with a distinct movable socket are innervated 

(consistently termed “setae”). In some cases, an innervation was detected also in stout 

processes lacking a movable socket. Therefore an updated terminology is used here, referring 

to such structures as “sensory spines”. Moreover, appendages that were seta shaped, but on 

which we could not detect an unequivocal basal ring, are referred to as processes. The line 

drawing in figure 1 is a schematic showing the different types of mandibular appendages 

described in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS 

 

Fig. 1. Gnathal edge of a larval mandible in schematic drawing. Illustrated are different types of 
appendages independently of actual position (bar 20 µm). Abbreviations: Asterisk, ‘lacinia 
mobilis’; D, dorsal; IP, incisor process; MOP, molar process; SP, sensory spine; SPR, submarginal 
process; ST, submarginal seta; V, ventral. 
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Palaemon elegans Rathke, 1837 

Zoea I (Fig. 2A, B) 

The basic form of the mandible is a distally flattened and bent tube. Molar and incisor process 

well developed, nearly merging into each other. Both processes oriented medially. Incisor 

process forming a fork-like structure with several spines. Size measured on gnathal edges 53 

µm (SD=4.6), incisor process 30 µm (SD=2.2), length of ‘lacinia mobilis’ 21 µm (SD=1.6), 

first ventral small spine on molar process 11 µm (SD=1.9). 

Right mandible (Fig. 2A): Fork-like incisor process with a ventral row of 3 acute 

spines. One submarginal robustly built sensory spine (SP) between incisor process and a 

spine-like ‘lacinia mobilis’. ‘Lacinia mobilis’ articulated on a basal ring and a pore at the 

base. Molar process with 9-11 small spines, medial spine bigger than the following ones, on 

the dorsal margin a row of 3 spines. 

Left mandible (Fig. 2B): Incisor process with a ventral row of 5 spines, a fan-shaped, 

serrated ‘lacinia mobilis’ located nearby. ‘Lacinia mobilis’ articulated on a basal ring and a 

pore at the base. Molar process with a dorsal row of 4 marginal spines and 6-8 small 

submarginal spines, medially two spines bigger than the other ones. 

Zoea II (Fig. 2C, D) 

Basic form as in zoea I. Size measured on gnathal edges 57 µm (SD=4.8), incisor process  34 

µm (SD=5.4), length of ‘lacinia mobilis’  21 µm (SD=2.75), first ventral small spine on molar 

process 11 µm (SD=0.96). 

Right mandible (Fig. 2C): Fork-like incisor process with a ventral row of 3 acute 

spines. One submarginal sensory spine between incisor process and a spine-like ‘lacinia 

mobilis’. Molar process with 9-11 small spines, medially spine bigger than the following 

ones, on the dorsal margin a row of 3 spines.  

Left mandible (Fig. 2D): Incisor process with a ventral row of 5 spines. Nearby a fan-

shaped, serrated ‘lacinia mobilis’ and a proximate submarginal serrated seta (ST). Molar 

process on the dorsal margin with a row of 4 spines and 6-8 small submarginal spines, 

medially two spines bigger than the other ones.  

For the following stages, only changes in structure are mentioned. 

Zoea III (Fig. 2E, F) 

Length of gnathal edge 64 µm (SD=4.48), incisor process 42 µm (SD=2.83), ‘lacinia mobilis’ 

23 µm (SD=2.8), first ventral spine on molar process 11 µm (SD=1.83).  
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Left mandible (Fig. 2F): The serrated submarginal seta (ST) located dorsally to the 

‘lacinia mobilis’ is larger and well developed. In some specimens (12.5%) a second 

submarginal seta (SST) was observed dorsally to the serrated seta. 

 

 

 

 

 

 

Fig. 2 Palaemon elegans, zoea I - III. A. Zoea I; frontal view of right mandible (bar 10 µm). B. 
Zoea I; frontal view of left mandible (bar 10 µm). C. Zoea II; outer posterior view of right 
mandible (bar 20 µm). D. Zoea II; outer posterior view of left mandible (bar 20 µm). E. Zoea III; 
outer posterior view of right mandible (bar 20 µm). F. Zoea III; inner anterior view of left 
mandible (bar 20 µm). Abbreviations: A, anterior; arrowhead, pore; asterisk, ‘lacinia mobilis’; D, 
dorsal; IP, incisor process; MOP, molar process; P, posterior; SP, sensory spine; ST, submarginal 
seta; V, ventral.  
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Zoea IV (Fig. 3A, B) 

Length of gnathal edge 68 µm (SD=3.52), ‘lacinia mobilis’ 27 µm (SD=4.52), incisor process 

46 µm (SD=4.19), first small ventral spine on molar process 11 µm (SD=1.49). 

Left mandible (Fig. 3B): In about one half of our specimens (45%), a second 

submarginal seta (SST) was observed, in some mandibles well developed. 

Zoea V (Fig. 3C,D) 

Length of gnathal edge 77 µm (SD=3.32), ‘lacinia mobilis’ 25 µm (SD=5), incisor process 49 

µm (SD=1), first small ventral spine on molar process 11 µm (SD=1). 

Right mandible (Fig. 3C): A second submarginal process (SPR) develops between the 

‘lacinia mobilis’ and the molar process (observed in 77% of our specimens).  

Left mandible (Fig. 3D): Most specimens (83%) showed a second submarginal seta (SST) 

near the first one (Fig. 6F). 
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Fig. 3 Palaemon elegans, zoea IV - V. A. Zoea IV; frontal view of right mandible. B. Zoea IV; 
frontal view of left mandible. C. Zoea V; frontal view of right mandible. D. Zoea V; frontal view of 
left mandible (bars 20 µm). Abbreviations: A, anterior; asterisk, ‘lacinia mobilis’; D, dorsal; IP, 
incisor process; MOP, molar process; P, posterior; SP, sensory spine; SPR, submarginal process; 
ST, submarginal seta; SST, second submarginal seta; V, ventral.  
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Macrobrachium amazonicum (Heller, 1862) 

Zoea I (Fig. 4A, B) 

The basic form of the mandibles is mitten-like. Incisor process and molar process can be 

distinguished, being separated by a thin central notch. Both show processes such as spines and 

a ‘lacinia mobilis’. Length of gnathal edge 38 µm (SD=1.67), incisor process of both 

mandibles 16 µm (SD=1.37), ‘lacinia mobilis’ 9 µm (SD=0.8), first small ventral spine on 

molar process 5 µm (SD=0.45).  

Right mandible (Fig. 4A): Incisor process ventrally to molar process, with three small 

spines. Small ‘lacinia mobilis’ between incisor process and molar process. Molar process 

wide, with 6 small spines (SS).  

Left mandible (Fig. 4B): Incisor process with 5 small spines, a ‘lacinia mobilis’ in the 

form of an articulated simple seta with a basal pore (Fig. 7F) on the lower edge of the incisor 

process. Molar process wider than incisor process, with 6 small spines. 

Zoea II (Fig. 4C, D) 

Flattened anterior-posteriorly to its distal edge, with a central notch. Molar process located 

dorsally, wider than the incisor process. Incisor process forming a thin, fork-like structure 

with several spines. Length of gnathal edge 52 µm (SD=2.72), incisor process 28 µm 

(SD=2.05), ‘lacinia mobilis’ 19 µm (SD=1.12), first small ventral spine on molar process 8 

µm (SD=1.21). 

Right mandible (Fig. 4C): Fork-like incisor process with a ventral row of 3 spines, 

central spine smaller than the outer ones. One submarginal small sensory spine (SP) with 

basal pore between a spine-like ‘lacinia mobilis’ and the incisor process. Molar process with 

6-7 small spines, two spines at the dorsal margin, 4-5 at the anterior margin. 

Left mandible (Fig. 4D): Incisor process with a ventral row of 5 spines and a fan-like, 

serrated ‘lacinia mobilis’ nearby. Molar process with 6-7 small spines, two spines at the 

dorsal margin, 4-5 at the anterior margin.  

For the following stages, only changes in structure are mentioned.  

Zoea III (Fig. 4E, F) 

Length of gnathal edge 58 (SD=2.48), incisor process 30 µm (SD=2.98), ‘lacinia mobilis’ 22 

µm (SD=1.66), first small ventral spine on molar process 11 µm (SD=1.31). 

Left mandible (Fig. 4F): All left mandibles with a second bristly process (SPR) 

between the ‘lacinia mobilis’ and the molar process. 
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Fig. 4 Macrobrachium amazonicum, zoea I - III. A. Zoea I; frontal view of right mandible. B. Zoea 
I; frontal view of left mandible. C. Zoea II; frontal view of right mandible. D. Zoea II; Inner 
anterior view of left mandible. E. Zoea III; outer posterior view of left mandible. F. Zoea III; inner 
anterior view of left mandible (bars 20 µm). Abbreviations: A, anterior; asterisk, ‘lacinia mobilis’; 
D, dorsal; IP, incisor process; MOP, molar process; P, posterior; SP, sensory spine; SS, small 
spines of molar process; ST, submarginal seta; V, ventral.  
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Zoea IV (Fig. 5A, B) 

Length of gnathal edge 63 µm (SD=2.12), incisor process 39 µm (SD=1.39), ‘lacinia mobilis’ 

22 µm (SD=1.66), first small ventral spine on molar process 11 µm (SD=1). 

Right mandible (Fig. 5A): Most mandibles (60%) with a second small process (SSPR) 

between the ‘lacinia mobilis’ and the molar process.  

Left mandible (Fig. 5B): one third of our specimens with a second process (SSPR) 

between the ‘lacinia mobilis’ and the molar process. 

Zoea V (Fig. 5C, D) 

Length of gnathal edge 71 µm (SD=4.78), incisor process 40 µm (SD=1.48), ‘lacinia mobilis’ 

30 µm (SD=5.01), first small ventral spine on molar process 13 µm (SD=1.79). 

Right mandible (Fig. 5C): All mandibles with a second small process between the 

‘lacinia mobilis’ and the molar process. 

Fig. 5 Macrobrachium amazonicum, zoea IV – V. A. Zoea IV; outer posterior view of right 
mandible. B. Zoea IV; outer posterior view of left mandible. C. Zoea V; outer posterior view of 
right mandible. D. Zoea V; outer posterior view of left mandible (bars 20 µm). Abbreviations: A, 
anterior; asterisk, ‘lacinia mobilis’; D, dorsal; IP, incisor process; MOP, molar process; P, 
posterior; SP, sensory spine; SPR, submarginal process; ST, submarginal seta; SSPR, second 
submarginal process; SST, second submarginal seta; TSPR, third submarginal process; V, ventral. 
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Left mandible (Fig. 5D): 62% of specimens with a third process (TSPR), 12% with a 

fourth process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Detailed views of mandibles in P. elegans and M. amazonicum. A. M. amazonicum stage IV; 
inner view of right mandible. B. M. amazonicum stage III; outer view of incisor process of right 
mandible. C. M. amazonicum stage IV; outer view of molar process of right mandible. D. M. 
amazonicum stage IV; frontal view of incisor process of left mandible. E. M. amazonicum stage 
IV; detail of pore at ‘lacinia mobilis’ of left mandible. F. P. elegans stage V; frontal view of incisor 
process of left mandible with basal articulation of ‘lacinia mobilis’ (arrow); (bars 10 µm). 
Abbreviations: Arrowhead, pore; asterisk, ‘lacinia mobilis’; IP, incisor process; MOP, molar 
process; SP, sensory spine; SPR, submarginal process; ST, submarginal seta; SST, second 
submarginal seta. 
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Fig. 7 Comparison of development of left mandibles in P. elegans and M. amazonicum. A-E. P. 
elegans stage I (A) to stage V (E) (A, from Geiselbrecht and Melzer (2010)). F-J. M. amazonicum 
stage I (F) to stage V (J) (bars 20 µm). Abbreviations: A, anterior; asterisk, ‘lacinia mobilis’; D, 
dorsal; IP, incisor process; MOP, molar process; P, posterior; SPR, submarginal process; SSPR, 
second submarginal process; ST, submarginal seta; SST, second submarginal seta; V, ventral.  
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Analysis of morphogenetic development of M. amazonicum and P. elegans 

In order to determine characteristic features for each larval stage, special attention was given 

to the morphogenetic development of the mandibles, measuring in both mandibles the length 

of the gnathal edges, the incisor process, the ‘lacinia mobilis’, and the first ventral spine on 

the molar process (see above, and Table 1).  

The direction of the morphogenetic development of the mandibles, e.g., growth of the gnathal 

edges, the ‘lacinia mobilis’, and the incisor process as well as the development of submarginal 

setae, is similar in both species. However, this development is initially retarded in M. 

amazonicum, lagging behind that observed in P. elegans. In later larval stages, a similar level 

is eventually reached, reflecting a faster rate of developmental change in M. amazonicum 

(Figs. 7, 8, 9). This is indicated in the graphs by different gradients of the length-to-stage 

curves in early zoeae that later become parallel lines. 

 

 

 

Larval 
stage 

Species 
Size in µm 
(n) 
mandible 

Size in µm 
(n) ‘lacinia 
mobilis’ 
left 

Size in µm 
(n) ‘lacinia 
mobilis’ 
right 

Size in µm 
(n) Pars 
incisivus 

Size in µm 
(n) first 
ventral 
spine at 
pars molaris 

Mandible 
with first 
submarginal 
seta 

Mandible 
with second 
submarginal 
seta 

Zoea I 

P. elegans  53 (19)  22 (7)  21 (4)  30 (9)  11 (10)  0%  0% 

M. 
amazonicum 

38 (6)  10 (5)  9 (5)  16 (6)  5 (7)  0%  0% 

Zoea II 

P. elegans  57 (10)  23 (5)  19 (4)  34 (9)  11 (10)  100%  0% 

M. 
amazonicum 

52 (10)  19 (3)  19 (4)  28 (3)  8 (8) 
0 % left, 100 
% right 

0% 

Zoea 
III 

P. elegans  64 (16)  26 (15)  22 (9)  42 (11)  11 (10)  100% 
13 % left,       
0 % right 

M. 
amazonicum 

58 (23)  23 (9)  20 (5)  30 (6)  11 (11)  100%  0% 

Zoea 
IV 

P. elegans  68 (14)  30 (7)  23 (6)  46 (09)  11 (12)  100% 
44 % left,       
0 % right 

M. 
amazonicum 

63 (11)  24 (3)  21 (7)  39 (8)  11 (8)  100% 
33 % left,     
60 % right 

Zoea V 

P. elegans  77 (5)  30 (1)  20 (1)  49 (2)  11 (2)  100% 
83 % left,     
78 % right 

M. 
amazonicum 

71 (6)  32 (4)  25 (3)  40 (4)  13 (6)  100% 
63 % left,   
100 % right 

 

 

Macrobrachium amazonicum reached the mandibular size of P. elegans zoea I only in stage 

III. At stage V, however, the two species showed similar lengths of the gnathal edges. 

Similarly, the ‘lacinia mobilis’ in first-stage P. elegans showed twice this size than that of M. 

amazonicum. At larval stage II, however, size difference had disappeared. The same accounts 

Table 1: Summary of morphogenetic development of several features of zoea I-V in P. elegans 
and M. amazonicum (n = number of mandibles measured) 
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for the first spine on the molar process. In stage I P. elegans it already had its final size, while 

in Macrobrachium amazonicum it was fully developed in stage III. The incisor process of 

stage I in M. amazonicum was less than half the length of that observed in P. elegans. The 

subsequent rate of growth per stage, however, was faster in M. amazonicum. Nevertheless, 

during the period of larval development studied here (stages I-V), the incisor process in M. 

amazonicum reached never the same size as in P. elegans. The appearance of submarginal 

setae did not always correspond to a specific zoeal stage. In larvae being in the same stage, 

some mandibles showed submarginal setae, while others did not. But in all cases the 

development followed the same sequence. A summary of the morphological features of zoeal 

stages I-V of both species is given in Table 2. 

To make clear that the observed size differences are not correlated with the overall growth 

rates of the larval body, we used total body length of zoea larvae in the two species as 

reference size. Figures 10 and 11 show the ratio of length of mandible appendages (lacinia 

mobilis and spine on molar process) to total length (TL) in zoea stage I-V. These graphs show 

that relative size of the appendages and growth rate strongly differ between M. amazonicum 

and P. elegans until zoea II and III, respectively. Values of relative appendage lengths of the 

subsequent stages indicate a more or less parallel development in the two species, which 

means that the degree of underdevelopment in M. amazonicum decreased. 

 

 

 

 

  Zoea I Zoea II Zoea III-V 

P. elegans IP 

MOP 

Sp MOP 

Dorsal row at 

MOP 

Fan-like structures 

fork-like 

slender 

9-11 right, 6-8 left, small 

3 small spines 

 

only ‘l. mobilis’ 

fork-like 

slender 

9-11 right, 6-8 left, small 

3 small spines 

 

only ‘l. mobilis’ 

fork-like 

slender 

9-11 right, 6-8 left, small 

3 small spines 

 

only ‘l. mobilis’ 

M. amazonicum IP 

MOP 

Sp MOP 

Dorsal row at 

MOP 

Fan-like structures 

mitten form 

mitten form 

6 small spines 

2 small spines 

 

only ‘l. mobilis’ 

fork-like 

slender 

6 -7, small spines 

2 small spines 

 

only ‘l. mobilis’ 

fork-like 

slender 

6 -7, small spines 

2 small spines 

 

only ‘l. mobilis’ 

 

 

 

Table 2: Summary of morphological features of mandibles of P. elegans and M. amazonicum 
(abbreviations: IP, incisor process; MOP, molar process; Sp MOP, spine on molar process) 
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Discussion 

General and taxon-specific features of mandibles 

The larval mandibles of P. elegans and M. amazonicum show similar features as previously 

described for larval mouth parts in other caridean shrimp (e.g., Fielder 1970; Dos Santos et al. 

2004; Yang 2005; Geiselbrecht and Melzer 2010). This includes in particular an absence of 

mandibular palps and the presence of an incisor process, molar process, as well as particular 

spines, teeth, and a ‘lacinia mobilis’. Also, an asymmetrical morphology of left and right 

mandibles seems to be common. 

Further clarification of terminology is required for the ‘lacinia mobilis’ and the additional 

processes on the left mandible, which also show a basal articulation and cuticular pores (Fig. 

6D-F). The structural similarity of these features, corresponding to the innervated structures 

shown in Geiselbrecht and Melzer (2013), indicates presence of respective sensory 

equipment. The same accounts for respective structures in the successive larval stages and in 

M. amazonicum. These processes are therefore also referred to as “setae” rather than “spines”. 

The part of the mandible referred to as ‘lacinia mobilis’ is a conspicuous, with an innervated 

setal structure that was found also in previous studies of decapod zoeal mandibles (Konishi 

2007; Geiselbrecht and Melzer 2010, 2013). The debate is, whether this should be referred to 

as “movable element” or “lacinia mobilis”? This is dependent on whether or not it is 

considered as a homologue of the lacinia mobilis in the Peracarida (Dahl and Hessler 1982; 

Richter et al. 2002; Geiselbrecht and Melzer 2010). In the present study of M. amazonicum, 

we describe a zoea with a ‘lacinia mobilis’ on both mandibles. This contradicts one of the 

non-homology arguments stressed by Richter et al. (2002), saying that a ‘lacinia mobilis’ can 

only be found on a single mandible in decapods. In both species studied here, additional 

processes in form of sensory spines and setae appear during the course of larval development 

in a position near the base of the incisor process. Similar situations were shown for 

Periclimenes sagittifer (dos Santos et al. 2004) and Crangon uritai (Li and Hong 2004), 

suggesting that this may be common in the mandible development of caridean larvae. These 

structures might represent developing parts of the spine-row, a synapomorphic feature of the 

Caridoida (Eumalacostraca excl. Stomatopoda; e.g., Hessler 1983; Richter and Scholtz 2001). 

This also accounts for the peracarid lacinia mobilis on the right mandible, while the origin of 

the lacinia mobilis on the left mandible is as yet not clear (Dahl and Hessler 1982; Richter et 

al. 2002, Geiselbrecht and Melzer 2014). Hence, we here use the term ‘lacinia mobilis’, for 

the time being, in quotation marks. 
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The results of this study, together with those previously presented by Geiselbrecht and Melzer 

(2009, 2010), reveal through SEM analysis new features for first-stage larval mandibles of 

three palaemonid species, P. elegans, M. amazonicum and Periclimenes amethysteus. The 

mandibles of these species show great similarities including the same basic form, a fork-like 

incisor process, a fan-like ‘lacinia mobilis’ on the left mandible, and a slender molar process 

comprising a number of small spines with a row of spines at the dorsal edge. Comparing 

zoeae of three species belonging to different genera within the same family, common 

mandibular features appear to show taxon-specificity on the family level. Furthermore, we 

show here that such taxon-specific features do not change during the early zoeal development 

of P. elegans and M. amazonicum. 

 

Comparison of mandible development in P. elegans, M. amazonicum and other 

palaemonids 

Compared to P. elegans and other Palaemonidae, the zoea I of M. amazonicum shows 

untypical mandible structures. Its mitten form with small processes was also described by 

Magalhães and Walker (1988) and Queiroz et al. (2011). During the subsequent larval 

development, the main changes comprise an increase in the size of the gnathal edges and 

processes and an appearance of additional submarginal setae. In M. amazonicum these 

developmental changes lag initially one stage behind those observed in P. elegans. Retarded  

morphogenesis is also visible in length measurements of the gnathal edges, the ‘lacinia 

mobilis’, incisor process, and the first molar spines. Our results show that the mandibles of 

stage-I larval M. amazonicum are conspicuously smaller than in P. elegans, but the 

subsequent growth rate is higher in M. amazonicum, resulting in a similar size and 

developmental condition at stage V in both species. 

In conventional light-microscopical analyses of zoeae of Macrobrachium, mandibles of the 

non-feeding zoea I stage have been described as rudimentary (review in Queiroz et al. 2011). 

This does not mean that appendages on the gnathal edge are absent, as they are found in the 

form of minute precursors of the feeding stages appendages. Figures 1 and 2 in Queiroz et al 

(2011) show that the mandibular appendages develop after the moult from zoea I (non-

feeding) to zoea II (feeding). This fits well with the results of the present study. 
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For more than 200 species of adult Macrobrachium described to date, different developmental 

modes have been observed ranging from an amphidromous strategy with a lecithotrophic zoea 

I or abbreviated larval to benthic and fully lecitotrophic development (Anger 2013). Only M. 

intermedium is fully marine and has a feeding, non-lecitotrophic zoea I (Williamson 1972). 

This species has the same mandible appendages as M. niloticum, a limnic species, but figures 

1 and 6 show that the mandible appendages in the latter species are much smaller than in M. 

intermedium. This supports our observations and conclusions. In addition to species of 

Macrobrachium, migratory strategies are found in species of Pseudopalaemon and 

Palaemonetes (Anger 2001). Conversely, in Palaemon spp., which are almost exclusively 

marine, first-stage zoeae have well developed mandibles (e.g., Fincham 1983, 1985). 

Fig. 8 Mandible size and ‘lacinia mobilis’ size in P. elegans and M. amazonicum during zoeal 
stages I to V.  
Fig. 9 Size of incisor process and first ventral spine at molar process in P. elegans and M. 
amazonicum during development from zoeal stage I to V. 
Fig. 10 Ratio of length of lacinia mobilis to total length in stages I-V in P. elegans and M. 
amazonicum. 
Fig. 11 Ratio of length of first spine on molar process to total length in stages I-V in P. elegans and 
M. amazonicum.  
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Although detailed mandible analysis in palaemonid zoeae are available for a few species only, 

we suggest that different feeding modes are reflected in zoeal mandible morphology as 

described in the present study. The mandibles differ in size, but not in the presence of gnathal 

appendages. It seems that a well developed zoea I mandible is found in marine forms, while it 

is underdeveloped in limnic forms. Phylogenetic relationships among Macrobrachium, 

Palaemon and Palaemonetes have been studied by Murphy and Austin (2004).  They suggest 

that large-scale dispersal rather than regional adaptive radiation is the main motor of 

evolutionary diversification in Macrobrachium. Of peculiar interest here is the outgroup 

comprising species of Palaemon, Palaemonetes, and Macrobrachium intermedium. The latter 

is the only species of Macrobrachium that is fully marine and has well-developed zoea I 

mandibles (Williamson 1972). The zoea I of the freshwater inhabiting species Palaemon 

pandaliformis also seems to show an underdeveloped mandible (Gamba 1998; see Fig. 2), and 

Ashelby et al. (2012) place this species outside of Palaemon and closer to Macrobrachium. 

The underdevelopment of zoeal mandibles therefore might be a morphological correlate of the 

marine-limnic transition, and therefore represent a key character for the understanding of 

palaemonid phylogeny. 

Our comparative study indicates heterochrony in mandible morphogenesis of M. amazonicum 

when compared to P. elegans and, in a more general way, between feeding and non-feeding 

palaemonid zoeae. Heterochrony is defined as an altered timing in phenotypic development 

compared to ancestors or close relatives (Haeckel 1866; Gould 1979; McKinney and 

McNamara 1991; Smith 2001; Horder 2001). Recent phylogenetic studies propose 

heterochrony as a general evolutionary pattern (e.g., Richardson et al. 2002; Maxwell et al. 

2010). Tills et al. (2011), for example, analyzed intraspecific heterochrony in a gastropod, 

Radix balthica, and reported significant differences in the genetic distance between 

individuals with altered timing of phenotypic developmental events. This suggests that 

heterochrony, associated with genetic diversification and natural selection, may eventually 

lead to speciation. Of the two closely related species compared here, P. elegans may be 

considered as being closer to the ancestral mode of development, with planktotrophic 

behavior beginning at hatching, while tendencies towards lecithotrophy (as in M. 

amazonicum, see Anger and Hayd 2010) are considered as a derived condition (for discussion 

and references, see e.g., Greenwood et al. 1976; Jalihal et al. 1993; Signoret et al. 2000; 

Ashelby et al. 2012; Anger 2013). However, also an opposite view has been proposed 

(Murphy and Austin 2004). The delayed development of mandible structures observed in M. 

amazonicum shows thus the characteristics of two heterochronic processes referred to as 
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postdisplacement (i.e. later onset of appearance) and acceleration (development at a higher 

rate; for definitions of terms, see McKinney and McNamara 1991; Horder 2001). While the 

former phenomenon causes an initial delay in mandible development of M. amazonicum, the 

latter is responsible for an increasing similarity between equivalent successive larval stages of 

the two species compared here. 

It is possible that heterochronic shifts may also play a role in the diversification within the 

Macrobrachium amazonicum species complex, in which ongoing speciation is currently under 

debate (Hayd and Anger 2013; Anger 2013; dos Santos et al. 2013). The postdisplacement of 

mandible development in M. amazonicum saves energy invested in embryonic 

morphogenesis, as the first larval stage does not use its mandibles for feeding (Odinetz Collart 

and Magalhães 1994; de Araujo and Valenti 2007; Anger and Hayd 2010). In later zoeal 

stages of this species, which feed on zooplankton, the mandibles develop rapidly, showing 

both family-specific and species-specific features. This supports the hypothesis of an 

evolutionary ground pattern of spines and protrusions (Geiselbrecht and Melzer 2010). In 

order to detect and analyze the presumably ongoing diversification among the various 

estuarine, coastal and fully limnic inland populations assigned to the M. amazonicum 

complex, future comparative research on mandible development in larvae from different 

regions (e.g. upper vs. lower Amazon) may add further evidence for speciation. 

 

Conclusions 

Our study supports the hypothesis proposing that larval mandible morphology provides 

phylogenetically important information (Geiselbrecht and Melzer 2010). Underlying species- 

and stage-specific adaptations to mandibular function, an evolutionary ground pattern in the 

basic mandibular form and armature is present even in species with non-feeding larval stages 

such as M. amazonicum. In a comparison of larval mandibles in P. elegans and M. 

amazonicum using exclusively first-stage zoeae, great morphological differences associated 

with differential modes of feeding would obscure the apomorphous features of palaemonids. 

These become conspicuous only in an analysis of mandible development through various 

successive larval stages (here: zoea I-V). 

Heterochrony seems to be a mechanism that can bring about differential evolutionary 

adaptations to specific selection pressures such as food limitation. This may be most simply 

described by the notion that animals differentiate a structure only when it is needed. Thus, in a 

phylogenetic analysis of two closely related taxa showing heterochronic shifts, it may not be 

useful to compare the same developmental stage (e.g., the zoea I). In our case we find the 
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relevant phylogenetic information when we compare the zoea I of P. elegans with the zoea II 

or III of M. amazonicum. This, however, requires unequivocal identification of larval stages 

and an identification of morphogenetic hallmarks allowing for comparing different 

ontogenies. It presents an example for understanding holomorphology (Hennig 1966) of a 

given taxon, viz. the characters found in all stages of mandible development, and the 

underlying mechanisms that result in different developmental speed in related taxa. 

 

Acknowledgements: 

This study was supported by the Sea Life Center (Munich) and a grant 

(Graduiertenstipendium; BayEFG) given to H. Geiselbrecht. Special thanks are due to Uwe 

Nettelmann (Biologische Anstalt Helgoland) for providing M. amazonicum zoeae in various 

stages. Moreover we thank Stefan Friedrich (Munich) for expert technical assistance. Roland 

Gerstmeier and the faculty of Biology of Technical University of Munich are kindly 

acknowledged for their support of this ZSM-TUM-BAH cooperation. 

Conflict of interest 

All authors of this article confirm that no conflict of interest of any potential source is present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61



JOURNAL OF MORPHOLOGY (Manuscript under review) 

 

References 

Anger K. 2001. The biology of decapod crustacean larvae. Crustacean Issues 14. A.A. 

Balkema, Lisse. 419 p. 

Anger K. 2013. Neotropical Macrobrachium (Caridea: Palaemonidae): on the biology, origin, 

and radiation of freshwater-invading shrimp. Journal of Crustacean Biology 33(2):151-183. 

Anger K, Hayd L. 2009. From lecithotrophy to planktotrophy: ontogeny of larval feeding in 

the Amazon River prawn Macrobrachium amazonicum. Aquatic Biology 7(1):19-30. 

Anger K, Hayd L. 2010. Feeding and growth in early larval shrimp Macrobrachium 

amazonicum from the Pantanal, southwestern Brazil. Aquatic Biology 9(3):251-261. 

Anger K, Hayd L, Knott J, Nettelmann U. 2009. Patterns of larval growth and chemical 

composition in the Amazon River prawn, Macrobrachium amazonicum. Aquaculture 

287(3):341-348. 

Ashelby CW, Page TJ, De Grave S, Hughes JM, Johnson ML. 2012. Regional scale 

speciation reveals multiple invasions of freshwater in Palaemoninae (Decapoda). Zoologica 

Scripta 41(3):293-306. 

Bitsch C, Bitsch J. 2004. Phylogenetic relationships of basal hexapods among the 

mandibulate arthropods: a cladistic analysis based on comparative morphological characters. 

Zoologica Scripta 33(6):511-550. 

Bitsch J. 2001. The arthropod mandible: morphology and evolution. Phylogenetic 

implications. Société entomologique de France. p 305-321. 

Bolaños J, Rivero W, Hernández J, Magán I, Hernández G, Cuesta JA, Felder DL. 2005. 

Abbreviated larval development of the pea crab Orthotheres barbatus (Decapoda: Brachyura: 

Pinnotheridae) described from laboratory-reared material, with notes on larval characters of 

the Pinnotherinae. Journal of Crustacean Biology 25(3):500-506. 

Charmantier G, Anger K. 2011. Ontogeny of osmoregulatory patterns in the South American 

shrimp Macrobrachium amazonicum: Loss of hypo-regulation in a land-locked population 

indicates phylogenetic separation from estuarine ancestors. Journal of Experimental Marine 

Biology and Ecology 396(2):89-98. 

Clark PF. 2005. The evolutionary significance of heterochrony in the abbreviated zoeal 

development of pilumnine crabs (Crustacea : Brachyura : Xanthoidea). Zoological Journal of 

the Linnean Society 143(3):417-446. 

Clark PF, Calazans DK, Pohle GW. 1998. Accuracy and standardization of brachyuran larval 

descriptions. Invertebrate Reproduction and Development 33(2-3):127-144. 

62



JOURNAL OF MORPHOLOGY (Manuscript under review) 

 

Dahl E, Hessler RR. 1982. The crustacean lacinia mobilis: a reconsideration of its origin, 

function and phylogenetic implications. Zoological Journal of the Linnean Society 74(2):133-

146. 

de Araujo MC, Valenti WC. 2007. Feeding habit of the Amazon river prawn Macrobrachium 

amazonicum larvae. Aquaculture 265(1):187-193. 

dos Santos A, Calado R, Bartilotti C, Narciso L. 2004. The larval development of the partner 

shrimp Periclimenes sagittifer (Norman, 1861)(Decapoda: Caridea: Palaemonidae: 

Pontoniinae) described from laboratory-reared material, with a note on chemical settlement 

cues. Helgoland Marine Research 58(2):129-139. 

dos Santos A, Hayd L, Anger K. 2013. A new species of Macrobrachium Spence Bate, 1868 

(Decapoda, Palaemonidae), M. pantanalense, from the Pantanal, Brazil. Zootaxa 3700(3): 

534–546. 

Edgecombe GD, Richter S, Wilson GD. 2003. The mandibular gnathal edges: homologous 

structures throughout Mandibulata? African Invertebrates 44(1):115-135. 

Fielder D. 1970. The larval development of Macrobrachium australiense Holthuis, 1950 

(Decapoda, Palaemonidae), reared in the laboratory. Crustaceana 18(1):60-74. 

Fincham A. 1977. Larval development of British prawns and shrimps (Crustacea: Decapoda: 

Natantia). I. Laboratory methods and a review of Palaemon (Paleander) elegans Rathke, 

1837. Bulletin of the British Museum and national History (Zool.) 32:1-28. 

Fincham A. 1983. Larval development of British prawns and shrimps (Crustacea: Decapoda: 

Natantia). 4. Palaemon (Palaemon) serratus (Pennant, 1777) and functional morphology of 

swimming. Bulletin of the British Museum (Natural History) Miscellanea Zoology Series 

44:125-161. 

Fincham A. 1985. Larval development of British prawns and shrimps (Crustacea, Decapoda, 

Natantia). V. Palaemon (Palaemon) adspersus (Rathke, 1873). Bulletin of the British 

Museum (Natural History) Zoology 48:215-231. 

Fincham A, Williamson DI. 1978. Crustacea decapoda: larvae, 6: Caridea, families: 

Palaemonidae and Processidae. Fiches d'identification du zooplancton. 

Gamba AL. 1998. The Larval Development of a Fresh-Water Prawn, Palaemon pandaliformis 

(Stimpson, 1871), under Laboratory Conditions (Decapoda, Palaemonidae). Crustaceana 

71(1):9-35. 

Garland T, Adolph SC. 1994. Why not to do two-species comparative studies: limitations on 

inferring adaptation. Physiological Zoology 64(4):797-828.  

63



JOURNAL OF MORPHOLOGY (Manuscript under review) 

 

Garm A. 2004. Revising the definition of the crustacean seta and setal classification systems 

based on examinations of the mouthpart setae of seven species of decapods. Zoological 

Journal of the Linnean Society 142:233-252. 

Geiselbrecht H, Melzer RR. 2009. Morphology of the first zoeal stage of the partner shrimp 

Periclimenes amethysteus Risso, 1827 (Decapoda: Caridea: Palaemonidae: Pontoniinae) 

studied with the Scanning EM. Zootaxa 2140:45-55. 

Geiselbrecht H, Melzer RR. 2010. Mandibles of zoea-I-larvae of nine decapod species. A 

scanning EM analysis. Spixiana 33(1):27-47. 

Geiselbrecht H, Melzer RR. 2013. How do mandibles sense?-The sensory apparatus of larval 

mandibles in Palaemon elegans Rathke, 1837 (DECAPODA, PALAEMONIDAE). 

Arthropod Structure and Development 42:1-16. 

Geiselbrecht H, Melzer RR. 2014. Fine structure and ecdysis of mandibular sensilla 

associated with the lacinia mobilis in Neomysis integer (Leach, 1814) (CRUSTACEA, 

MALACOSTRACA, PERACARIDA). Arthropod Structure and Development (published 

online 7 February 2014). 

Gould SJ. 1979. On the Importance of Heterochrony for Evolutionary Biology. Systematic 

Zoology 28(2):224-226. 

Greenwood J, Fielder D. 1979. The zoeal stages and megalopa of Portunus rubromarginatus 

(Lanchester)(Decapoda: Portnnidae), reared in the laboratory. J Plankton Res 1(2):191-205. 

Greenwood J, Fielder D, Thorne M. 1976. The larval life history of Macrobrachium 

novaehollandiae (De Man, 1908) (Decapoda, Palaemonidae), reared in the laboratory. 

Crustaceana:252-286. 

Haeckel E. 1866. Generelle Morphologie der Organismen: allgemeine Grundzüge der 

organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin 

reformirte Descendenz-Theorie: G. Reimer. 

Hayd L, Anger K. 2013. Reproductive and morphometric traits of Macrobrachium 

amazonicum (Decapoda: Palaemonidae) from the Pantanal, Brazil, suggests initial speciation. 

Revista de Biología Tropical 61(1):39-57. 

Hennig W. 1966. Phylogenetic systematics. Translated by Davis DD and Zangerl, R. Univ of 

Illinois Press: Urbana, Chicago and London. 263 p. 

Hessler RR. 1983. A defense of the cardioid facies: wherein the early evolution of the 

Eumalacostraca is discussed. In: Schram, F. R. (ed.) Crustacean Phylogeny. Crustacean Issues 

1. A.A. Balkema, Rotterdam, p. 145-164. 

Horder T. 2001. Heterochrony. eLS: John Wiley and Sons, Ltd. 

64



JOURNAL OF MORPHOLOGY (Manuscript under review) 

 

Ingle R. 1983. A comparative study of the larval development of Monodaeus couchi (Couch), 

Xantho incisus Leach and Pilumnus hirtellus (Linnaeus)(Crustacea: Brachyura: Xanthidae). 

Journal of Natural History 17(6):951-978. 

Ingle R. 1992. Larval stages of Northeastern Atlantic crabs. An illustrated key. Hall Ca, 

editor. London. 388 p. 

Jalihal D, Sankolli K, Shenoy S. 1993. Evolution of larval developmental patterns and the 

process of freshwaterization in the prawn genus Macrobrachium Bate, 1868 (Decapoda, 

Palaemonidae). Crustaceana:365-376. 

Klaus A, Kulasekera V, Schawaroch V. 2003. Three‐dimensional visualization of insect 

morphology using confocal laser scanning microscopy. Journal of Microscopy 212(2):107-

121. 

Konishi K. 2007. Morphological notes on the mouthparts of decapod crustacean larvae, with 

emphasis on palinurid phyllosomas. Bulletin fisheries research agency Japan 20:73. 

Kumlu M, Jones DA. 1995. Feeding and digestion in the caridean shrimp larva of Palaemon 

elegans Rathke and Macrobrachium rosenbergii (De Man) (Crustacea: Palaemonidae) on live 

and artificial diets. Aquaculture Nutrition 1(1):3-12. 

Li H and Hong S. 2004. Larval development of Crangon uritai (Decapoda: Crangonidae) 

reared in the laboratory. Journal of Crustacean Biology 24(4):576-591. 

McKinney ML, McNamara KJ. 1991. Heterochrony: the evolution of ontogeny. New York 

[etc.]: Plenum. 

Magalhães C. 1985. Desenvolvimento larval obtido em laboratorio de palaemonideos da 

Região Amazônica. I. Macrobrachium amazonicum (Heller, 1862)(Crustacea, Decapoda). 

Amazoniana 9(2):247-274. 

Magalhães C, Walker I. 1988. Larval development and ecological distribution of central 

Amazonian palaemonid shrimps (Decapoda, Caridea). Crustaceana:279-292. 

Martin JW, Goy JW. 2004. The first larval stage of Microprostema semilaeve (Von Martens, 

1872) (Crustacea: Decapoda: Stenopodidea) obtained in the laboratory. Gulf and Caribbean 

Research 16:19-25. 

Maxwell EE, Harrison LB, Larsson HC. 2010. Assessing the phylogenetic utility of sequence 

heterochrony: evolution of avian ossification sequences as a case study. Zoology 113(1):57-

66. 

Mekhanikova IV. 2010. Morphology of mandible and lateralia in six endemic amphipods 

(Amphipoda, Gammaridea) from Lake Baikal, in relation to feeding. Crustaceana 83(7):865. 

65



JOURNAL OF MORPHOLOGY (Manuscript under review) 

 

Meyer R, Melzer RR.  2004. Scanning EM Diagnosis of Marine Decapoda Larvae: A 

Comparison of Preparation Techniques. Crustaceana 77(7):883-886. 

Meyer R, Wehrtmann IS, Melzer RR. 2006. Morphology of the first zoeal stage of Portunus 

acuminatus Stimpson, 1871 (Decapoda : Portunidae : Portuninae) reared in the laboratory. Sci 

Mar 70(2):261-270. 

Minagawa M, Takashima F. 1994. Developmental changes in larval mouthparts and foregut 

in the red frog crab, Ranina ranina (Decapoda: Raninidae). Aquaculture 126(1):61-71. 

Murphy NP and Austin CM. 2004. Phylogenetic relationships of the globally distributed 

freshwater prawn genus Macrobrachium (Crustacea: Decapoda: Palaemonidae): 

biogeography, taxonomy and the convergent evolution of abbreviated larval development. 

Zoologica Scripta 34:187–197. 

Odinetz Collart O, Magalhães C. 1994. Ecological constraints and life history strategies of 

palaemonid prawns in Amazonia. 

Paul A, Paul J, Coyle K. 1989. Energy sources for first-feeding zoeae of king crab 

Paralithodes camtschatica (Tilesius)(Decapoda, Lithodidae). Journal of Experimental Marine 

Biology and Ecology 130(1):55-69. 

Queiroz LD, Abrunhosa FA, Maciel CR. 2011. Ontogenesis and functional morphology of the 

digestive system of the freshwater prawn, Macrobrachium amazonicum (Decapoda: 

Palaemonidae). Zoologia (Curitiba) 28:395-402. 

Rice A. 1979. A plea for improved standards in descriptions of crab zoeae. Crustaceana 

37(2):214-218. 

Rice AL. 1980. Crab zoeal morphology and its bearing on the classification of the Brachyura. 

The Transactions of the Zoological Society of London 35(3):271-372. 

Richardson MK, Oelschläger HH. 2002. Time, pattern, and heterochrony: a study of 

hyperphalangy in the dolphin embryo flipper. Evolution and Development 4(6):435-444. 

Richter S, Edgecombe GD, Wilson GDF. 2002. The lacinia mobilis and Similar Structures – a 

Valuable Character in Arthropod Phylogenetics? Zoologischer Anzeiger - A Journal of 

Comparative Zoology 241(4):339-361. 

Richter S, Scholtz G. 2001. Phylogenetic analysis of the Malacostraca (Crustacea). Journal of 

Zoological Systematics and Evolutionary Research 39(3):113-136. 

Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, 

Pisani D, Philippe H, Telford MJ. 2011. A congruent solution to arthropod phylogeny: 

phylogenomics, microRNAs and morphology support monophyletic Mandibulata. 

Proceedings of the Royal Society B: Biological Sciences 278(1703):298-306. 

66



JOURNAL OF MORPHOLOGY (Manuscript under review) 

 

Sanders MB, Billinghurst Z, Depledge MH, Clare AS. 2005. Larval development and vitellin-

like protein expression in Palaemon elegans larvae following xeno-oestrogen exposure. 

Integrative and Comparative Biology 45(1):51-60. 

Schembri P. 1982. Locomotion, feeding, grooming and the behavioural responses to gravity, 

light and hydrostatic pressure in the stage I zoea larvae of Ebalia tuberosa (Crustacea: 

Decapoda: Leucosiidae). Mar Biol 72(2):125-134. 

Signoret G, Ortega A, Brailovsky D. 2000. Partially abbreviated larval development in an 

undescribed freshwater palaemonid prawn of the genus Macrobrachium from Chiapas, 

Mexico. Crustaceana 73:273-282. 

Smith KK. 2001. Heterochrony revisited: the evolution of developmental sequences. 

Biological Journal of the Linnean Society 73(2):169-186. 

Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI. 2011. A genetic basis for 

intraspecific differences in developmental timing? Evolution and Development 13(6):542-

548. 

Watling L. 1989. A classification system for crustacean setae based on the homology concept. 

Crustacean Issues 6:15-26. 

Yang HJ. 2005. Larval development of Latreutes anoplonyx (Decapoda: Hippolytidae) reared 

in the laboratory. Journal of Crustacean Biology 25(3):462-479. 

 

67



6. Paper III 

 

Geiselbrecht, H., Melzer, R.R., 2013b. How do mandibles sense? The sensory apparatus of larval 

mandibles in Palaemon elegans Rathke, 1837 (DECAPODA, PALAEMONIDAE). Arthropod 

Structure & Development 42, 1-16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68



at SciVerse ScienceDirect

Arthropod Structure & Development 42 (2013) 1e16
Contents lists available
Arthropod Structure & Development

journal homepage: www.elsevier .com/locate/asd
How do mandibles sense? e The sensory apparatus of larval mandibles in
Palaemon elegans Rathke, 1837 (Decapoda, Palaemonidae)

Hannes Geiselbrecht a,b,*, Roland R. Melzer a

aBavarian State Collection of Zoology, Münchhausenstrasse 21, 81247 Munich, Germany
bDepartment Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
a r t i c l e i n f o

Article history:
Received 20 July 2012
Accepted 5 September 2012

Keywords:
Sensilla
Mandible
Zoea
Decapoda
Sensory system
Lacinia mobilis
* Corresponding author. Bavarian State Collection o
Münchhausenstrasse 21, 81247 Munich, Germany. Te
898107300.

E-mail address: geiselbrecht@zsm.mwn.de (H. Gei

1467-8039/$ e see front matter � 2012 Elsevier Ltd.
http://dx.doi.org/10.1016/j.asd.2012.09.001
a b s t r a c t

The mandibles of decapod zoea-I larvae are robustly built masticating mouthparts equipped with several
processes and spines. Superficial examination of these sturdy, inflexible structures can suggest that they
are lacking sensory receptors. However, detailed TEM analysis of their ultrastructure revealed up to 11
sensillar cell clusters on the gnathal edges of the mandibles of the zoea-I in Palaemon elegans Rathke,
1837. Based on ultrastructural criteria we distinguish 7 types of sensilla: mechanoreceptors, chemore-
ceptors and mechano- and chemoreceptors. One sensory unit located at the base of the ‘lacinia mobilis’
exhibits the typical features of a crustacean mechanosensitive sensillum with an external seta and
corresponding ultrastructure. Another unit shows features indicating bimodal contact chemosensitivity.
A third one is similar to known olfactory chemoreceptors.

Using the concept of modality-specific structures we analyse the structure and functional morphology
of each sensillum, and give a comprehensive overview of the sensory abilities of zoea mandibles. We take
a closer look at the ultrastructure of the ‘lacinia mobilis’, providing further features to trace its evolu-
tionary history in Decapoda, and thus contributing to a better understanding of malacostracan
phylogeny.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Crustacean sensory structures, with their distinct and variously
shaped external and internal ultrastructure, are well studied
features in the field of crustacean morphology (e.g. Ball and Cowan,
1977; Tyson and Sullivan, 1979; Altner et al., 1983; Schmidt and
Gnatzy, 1984; Schmidt, 1990; Garm and Høeg, 2006; Hallberg and
Skog, 2011). Besides a multitude of cuticular structures, setal
morphology and steric arrangement of sensilla are important
features in crustacean taxonomy (e.g. Watling, 1989; Ingle, 1992;
Garm, 2004b). Nevertheless, one still can make new discoveries in
this area, as we aim to show in the present work by studying the
ultrastructure of the mandibles of the zoea-I larva in Palaemon
elegans, a caridean decapod shrimp.

In this species, the gnathal edges of the larval mandibles are
equipped with various forms of appendages, described as acute
spines or denticles (Geiselbrecht and Melzer, 2010), that are
non-articulated outgrowths of the cuticle (Ingle, 1992). This
f Zoology, Arthropoda varia,
l.: þ49 898107141; fax: þ49
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observation at first does not suggest these structures to be sensilla.
However, Factor (1978) stated that mandibular ‘teeth’ of first-stage
larvae ofHomarus americanus have a lumen and thick, cuticularized
walls, and in this regard appear similar to some types of setae, viz.
sensory receptors. Recently a comparative SEM analysis of the
mandibles of zoea-I larvae in various decapod taxa indicated the
presence of sensillar structures. For example, cuticular pores
similar to the ends of ecdysial canals were found, either located on
the mandible’s surface or associated with seta-like cuticular
protrusions (Geiselbrecht and Melzer, 2010).

Of peculiar interest in this context is the ‘lacinia mobilis’,
a movable appendage of the larval mandible in ancestral decapods.
The question of homology between this structure and the laciniae
in other malacostracan crustaceans is still unresolved (Richter et al.,
2002). However, our SEM analyses of P. elegans and Periclimenes
amethysteus showed features (articulation on a basal ring, presence
of an ecdysial pore) suggesting that the ‘lacinia mobilis’ of decapod
zoeas might be a sensillum. Therefore, studying the lacinia’s
ultrastructure in addition to external features is important for the
understanding of its functional morphology and evolutionary
origin. Moreover, it would be interesting to know if there are even
more sensory structures on the mandibles, how they are distrib-
uted, and what their sensory modalities might be.
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Very little is known about the presence, and even less about the
ultrastructure, of sensilla located on the gnathal lobe of arthropod
mandibles (Ong, 1969; Friedman and Strickler, 1975; Whitehead
and Larsen, 1976; Tyson and Sullivan, 1981; Hunter and Ullman,
1992). Most works on this topic either cover external setal
morphology only (Factor, 1978; Chauvin and Faucheux, 1981;
Lavalli and Factor, 1992; Faucheux, 1995; Garm et al., 2004; Garm,
2004a; Davoodi et al., 2009) or do not analyse the gnathal lobe
and its processes (Sutcliffe and McIver, 1982; Honomichl, 1982,
2008; Sinitsina et al., 2003; Garm and Høeg, 2006).

It is hardly possible to detect and conclusively document
a sensillum by means of external examination only. Arthropod
sensilla have cuticular components, usually expressed as hairs
(setae) or hair-derived structures, with distinct properties indicating
a common origin (Watling, 1989). These features can be hard to
detect, however, and derived structures can be extremely modified
and difficult to interpret correctly. Using SEM, the only observable
characters are pores and the basal rings of setae. Thus, to prove that
a certain structure has a sensory function an ultrastructural analysis
is required. Here, the scientific concepts of necessary and sufficient
conditions come into play. In many SEM studies a sensillum is
assumed based on the presence of an articulated hair arising above
a pore, but these features are necessary but not sufficient here. The
only feature that is both necessary and sufficient is the presence of
a bipolar neuron with a dendrite that is a modified cilium. In this
regard, too, the present study is meant as a contribution to our
knowledge on sensory capacities of arthropodmandibles in general.

We studied the ultrastructure of the gnathal lobe of the
mandibles of zoea-I larvae in P. elegans using transmission electron
microscopy. Several sensillar structures were analysed with regard
to their modality-specific structures, their distribution and external
morphology, and to morphological specialisations of the sensilla
linked to the robust nature of the mandibles. Based on differences
in ultrastructural and external features we distinguish 7 types of
sensilla that are innervated by 4 different types of dendrites. For
each type we discuss the specific function, thus give a compre-
hensive overview of the sensory equipment of the mandibles of
a decapod zoea-I larva.

2. Material & methods

2.1. Animals

Ovigerous females of P. elegans were collected from intertidal
rock pools in Cross Bay, Rovinj (Croatia), during a student excursion
to RuCer Bo�skovi�c Institute in August/September 2009. Animals
were kept individually in 500 ml Cautex vials. The caps of the vials
were replaced with gauze, and all vials placed together in a 250 l
tank supplied with fresh seawater. Larvae hatched overnight and
were fixed immediately.

2.2. Transmission electron microscopy (TEM)

After dissection of antennae and telson the animals were fixed
in 4% glutardialdehyde in 0.1 M cacodylate buffer at 4 �C, post-
osmicated in 1% OsO4 in buffer, and embedded in epoxy resin.
Ultra-thin sections of 60e70 nm thickness were made with a dia-
mond knife on a RMC-MTXL ultramicrotome. Sections were
double-stained with uranyl acetate and lead citrate, and inspected
in a FEI Morgagni transmission EM at 80 kV. For quantitation of the
single features of each sensillum we prepared complete saggittal
serial sections of both mandibles of one specimen and inspected
the whole series. We sectioned two more specimens and only
inspected critical sections to check the number and quality of the
sensilla.
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2.3. Light microscopy (LM)

Specimens were dissected, fixed and embedded in epoxy resin
as described above for TEM. Semi-thin sections of 1.5 mm were
made with a diamond knife on a RMC MT-XL ultramicrotome.
Sections were stained with Richardson’s stain (Richardson et al.,
1960), covered with cover glasses with DPX, and photographed
with a digital camera mounted on a Leica stereomicroscope.

2.4. Scanning electron microscopy (SEM)

Dissectedmandibles were dehydrated in a graded acetone series
(70%, 80%, 90% for 10 min each, plus 3 times 100% for 20 min each),
then critical point-dried in a Baltec CPD 030. Because most
mandible dimensions were below 100 mm, specimen containers
with smaller pore dimension were used. Dried specimens were
mounted on SEM stubs with self-adhesive carbon stickers, and
sputtered with gold on a Polaron E 5100. Mandibles were studied
with a LEO 1430VP SEM at 15 kV (left mandible: n ¼ 12; right
mandible: n ¼ 13)

2.5. Sensillum terminology

We named each sensillum (S) according to the assigned
sensillum type in random order, and denoted the number of
sensory cells by a subscript. The S12 sensillum, for example, is a type
1 sensillum that has two sensory cells.

3. Results

3.1. External morphology and general ultrastructure of mandibular
sensilla

We found surprisingly high numbers of sensillar structures
located on the gnathal lobe of the larval mandibles. Fig. 1 shows an
SEM overview of the mouth region illustrating the position and
structure of the mandibles. Using the TEM we detected 10 sensillar
cell clusters on the left mandible and 11 on the right mandible in
equal measure in all studied specimens (n ¼ 3). Correlations with
external structures viewed by SEM indicate that these sensilla (1)
are of articulated, solid seta-like structure, i.e. constitute ‘laciniae
mobiles’, or (2) are found in the form of non-articulated, solid
spines, or (3) do not show special external cuticular structures. An
overview of the respective positions of the external structures as
well as the corresponding innervating cells is given in Figs. 2 and 3.

Each sensillum is innervated by 1e3 ciliary dendrites, each
inserted on one bipolar sensory cell respectively. The perikarya of
the neurons lie near the proximal part of the gnathal lobe (Fig. 3E).
Dendrites are composed of an inner (IDS), a ciliary (CDS) and an
outer (ODS) dendrite segment. Each IDS is approximately 25 mm
long, extends distally from the respective cell body, and indepen-
dently from each other in the direction of the gnathal edge. In its
apical region an accumulation of mitochondria (Figs. 4F, 7F) and
small vesicles is conspicuous (Fig. 7E, F). At the distal tip of each IDS
a single basal body can be found (Figs. 7E, 9D). Usually it consists of
9 microtubule triplets embedded in an osmiophilic matrix (McIver,
1975; Schmidt and Gnatzy, 1984; Grünert and Ache, 1988). Except
in type 4 sensilla, a proximal ciliary rootlet originates from the basal
body. Each inner segment gives rise to one outer segment con-
nected by a ciliary segment. Within this ciliary region microtubules
are arranged in 9 peripheral doublets forming the typical 9 � 2 þ 0
pattern. Central tubules are lacking (Figs. 4D, 6C and 7E, 8C, 9D).
Basally, microtubules connect with the basal body; distally they
extend into the ODSs with no distinct pattern, and are more or less
densely packed.



Fig. 1. Scanning electron micrograph showing overview of mouth region and position and structure of mandibles of zoea-I-larva in Palaemon elegans. To provide better insight
specimen has been dissected and following mouthparts like paragnaths and maxillae have been removed. Abbreviations: AN, antenna; AU, antennule; E, eye; GL, gnathal lobe; IP,
incisor process; LAB, labrum; LL, lateral lobe; M, mandibular muscle; MNl, left mandible; MNr, right mandible; MOP, molar process.
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According to further ultrastructural criteria four types of
dendrites can be distinguished. The features that characterize
a dendrite as type I (Figs. 4, 5 and 8) are the presence of a micro-
tubule accumulation in the ODS, A-tubules with a dense core and
arms in the CDS, and a strong ciliary rootlet. A type II dendrite
(Figs. 5, 9 and 10) is characterized by a short CDS, A-tubules without
arms, and by a more delicate ciliary rootlet (terminology after
Schmidt and Gnatzy, 1984). The type III dendrite (Fig. 6) is char-
acterized by a relatively thin ODS with just a few microtubules, A-
tubules without arms, and by a short but compact ciliary rootlet.
Type IV dendrites (Fig. 7) have branched ODS, short CDS, A-tubules
without arms, and no distinct ciliary rootlet. Besides microtubules
no other organelles were noticeable throughout the ODSs.

Two inner enveloping cells (EC) closely surround the inner and
outerdendrite segments (Figs. 4e10). Except in type 4, the innermost
EC forms a tubular envelope enclosing the dendrites and an extra-
cellular space, the receptor lymphcavity (RLC). TheRLChas its largest
extension in the ciliary region of the dendrites (Figs. 4D, 5E and 8C).
Distally the innermost EC forms finger-like evaginations that extend
beyond thebase of thedendrite sheath (Figs. 4B, 5B). The secondEC is
completelywrapped around the innermost one. Prevalentorganelles
in the distal part of the EC are numerous microtubules and vesicles.
Mitochondria were discovered only proximal of the transitional
region. The EC adhere to each other by numerous septate junctions
(Figs. 4B, 5B, 7B and 7D); the IDS are connected to the innermost EC
by well developed desmosomal junctions (Figs. 4E, 5E, 6D, 8D and
9E). In the examined region no endoplasmatic reticulum or Golgi
apparatus could be detected inside the EC.

3.2. The different types of sensilla

3.2.1. The type 1 sensillum (S12) (‘lacinia mobilis’)
This sensillum exhibits a hair-like cuticular structure, and is

articulated on a basal ring with a basal pore. It appears as a serrate
71
seta on the left mandible (Fig. 3D) and as a simple seta on the right
mandible (Fig. 2C); both setae are solid, i.e. lack an inner lumen, and
are composed of 2 cuticle layers, an outer epicuticle and an inner
exocuticle. S12 is innervated by two equal sensory cells with one
type I dendrite each. ODSs measure about 16.4 mm in length and
about 0.25 mm in diameter. The two unbranched dendrites extend
to the blind ending of a canal in the cuticle of the hair base, where
they terminate (Fig. 4A). No structures connecting the dendrite
membranes and the canal wall could be seen. A plug of electron-
dense material overlaps the tips of the dendrites and fills the
ending of the canal. Accumulations of about 25 microtubules each
are present all along the ODSs. Proximally dendrites are enclosed in
a dendrite sheath, consisting of homogeneous, electron-dense
material (Fig. 4B). The dendrite sheath extends over about 3.2 mm
and ends approximately 13 mm above the ciliary bases. CDSs
measure about 1.5 mm. The nine microtubule doublets are
composed of an A-tubule, with an electron-dense core and two
small dynein arms, and a B-tubule (Fig. 4D). Both dendrites have
a strong ciliary rootlet reaching about 2.5 mm into the IDSs (Fig. 4E).
A scolopale, an intracellular structure composed of longitudinally
oriented microtubules that are enclosed by electron-dense mate-
rial, is present in the innermost enveloping cell. In cross section it
appears discontinuous, like columns spaced all around the cell
body; extending between the transitional region and the base of
the dendrite sheath it is most prominent in the ciliary region
(Fig. 4C, D).

3.2.2. The type 2 sensillum (S22)
The external appearance of this sensillum is that of an inflexible

spine. Located on the processus incisivus (IP) of the left and the
right mandible (Figs. 2A, 3B and 3D), the spine is solid at its apical
end, whereas proximally it consists of 3 cuticular layers and
a lumen (Fig. 5A, B). Fine processes of the second EC project far into
the distal part of the spine (Fig. 5A). The S22 is innervated by two



Fig. 2. Scanning (AeD) and transmission (E) electron micrographs showing external morphology and overview of sensillar arrangement of right mandible. A: Inner view
(bar ¼ 10 mm) B: Detail of incisor process showing the S1 and S7 sensilla (bar ¼ 2 mm). C: Posterior view showing termination regions (dashed circles) of S3 and S4 (bar ¼ 10 mm). D:
Ventral view of incisor process showing termination region of S3 (bar ¼ 3 mm). E: Cross section of mandible (bar ¼ 2 mm). Specimen orientation: A, anterior; D, dorsal; P, posterior;
V, ventral. Pins labelled “S1” to “S7” indicate positions of sensilla. Asterisk, ‘lacinia mobilis’; arrowhead, pore. Abbreviations: IP, incisor process; MOP, molar process.
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Fig. 3. Transmission (A), scanning electron (BeD), and light (E) micrographs showing external morphology and overview of sensillar arrangement of left mandible. A: Cross section
of mandible (bar ¼ 2 mm). B: Inner view (bar ¼ 10 mm). C: Detail of molar process showing S5 and S6 (bar ¼ 3 mm). D: Dorsal view showing S1 and S2 (bar ¼ 6 mm). E: Longitudinal
semithin section showing a dendrite (arrow) and cell body (bar ¼ 10 mm). Specimen orientation: A, anterior; D, dorsal; P, posterior; V, ventral. Pins labelled “S1” to “S7” indicate
positions of sensilla. Asterisk, ‘lacinia mobilis’; arrowhead, pore. Abbreviations: CB, cell body; IP, incisor process; MOP, molar process.
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Fig. 4. The S12 sensillum; cross sections of mandible at different levels. A: Termination region of two type I dendrites in cuticular canal near the hair base (bar ¼ 0.5 mm). B: ODSs
proximal to hair base surrounded by dendrite sheath and evaginations of EC1 (bar ¼ 0.5 mm). C: ODSs distal to transitional region (bar ¼ 0.5 mm). D: Ciliary dendrite segments in
receptor lymph cavity (bar ¼ 0.5 mm). E: Transitional region with ciliary rootlets of dendrites and desmosomal junctions (arrowheads) with inner enveloping cell (bar ¼ 1 mm). F:
IDSs proximal to transitional region (bar ¼ 1 mm). Arrow, septate junction; Cu, cuticle; DI, type I dendrite; DS, dendrite sheath; EC1, EC2, enveloping cell 1, 2; R, rootlet; RLC, receptor
lymph cavity; Sc, scolopale.
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Fig. 5. The S22 sensillum; cross sections of mandible at different levels. A: Termination region of one type I and one type II dendrite in cuticular canal in distal part of spine
(bar ¼ 1 mm). B: Two ODSs with different densities of microtubules in proximal part of spine surrounded by dendrite sheath and evaginations of EC1 (bar ¼ 0.5 mm). C: ODSs distal to
transitional region; dendrite swelling of type II dendrite (bar ¼ 0.5 mm). D: ODSs in receptor lymph cavity distal to transitional region (bar ¼ 0.5 mm). E: Ciliary dendrite segments
distal to transitional region (bar ¼ 0.5 mm). F: CDS of DII and DI already in transitional region (bar ¼ 0.5 mm). G: Transitional regionwith ciliary rootlets of dendrites and desmosomal
junctions (arrowheads) with inner enveloping cell (bar ¼ 1 mm). Arrow, septate junction; Cu, cuticle; DI, DII, dendrite of type I, II; DS, dendrite sheath; EC1, EC2, enveloping cell 1, 2;
R, rootlet; RLC, receptor lymph cavity; Sc, scolopale.
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types of sensory cells differing in the number of microtubules
present in the ODSs; type I cells have about 23 microtubules, type II
cells have around 10. The two unbranched ODSs terminate in the
proximal part of the spine enclosed in a dendrite sheath (Fig. 5A, B).
No conspicuous pore could be detected in this region, neither with
the TEM nor by scanning electron microscopy. The dendrite sheath
extends proximally for about 19 mm. Compared to the S12 sensillum
the ODSs are approximately twice as long, each measuring about
30 mm in length and 0.3 mm in diameter. Between the CDSs and the
75
part that is enclosed by the dendrite sheath, the ODS of the type II
dendrite sequentially shows two extreme dilatations of the
dendrite membrane (Fig. 5C). The CDS of the type I dendrite is
approximately 4.3 mm long, the microtubule doublets have A-
tubules with an electron-dense core and dynein arms (Fig. 5E), and
the ciliary rootlet is compact, strong and about 3.4 mm long
(Fig. 5G). The CDS of the type II dendrite is approximately 0.6 mm
long, the microtubule doublets are composed of two equal tubules
with no electron-dense core and no dynein arms (Fig. 5F). The



Fig. 6. The S32/3 sensillum; cross sections of mandible at different levels (bars ¼ 0.5 mm). A: Termination region of three type III dendrites ventrally on the IP. B: ODSs surrounded by
EC1. C: CDSs and evaginations of IDSs; insert: CDS with 9 � 2 þ 0 pattern of microtubules and A-tubules lacking arms (bar ¼ 0.125 mm). D: IDSs with ciliary rootlets and desmosomal
junctions (arrowheads) proximal to transitional region. Cu, cuticle; DIII, type III dendrite; DS, dendrite sheath; EC1, 2, enveloping cell 1, 2; ids, inner dendrite segment; R, rootlet; Sc,
scolopale.
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ciliary rootlet is delicate, branched and about 3.0 mm long (Fig. 5G).
Somewhat overlapping the ciliary region there is a distinct scolo-
pale in the EC1 (Fig. 5D).

3.2.3. The type 3 sensillum (S32/3)
No special external cuticular structure is associated with the

S32/3 sensillum (Figs. 2A, 3B). It may be innervated by either two or
three sensory cells, but all the latter have the same ultrastructure
and type III dendrites. On both mandibles the S32/3 sensillum with
three dendrites appears ventrally on the IP, and the S32/3 sensillum
with two dendrites appears posteriorly on the IP. The dendrites
extend longitudinally in the direction of the gnathal edge, but the
distalmost part is curved outwards and terminates directly under
the lateral cuticle (Fig. 2C, D). The ODSs are accompanied by several
processes of the EC1, and the distal part is surrounded by a dendrite
sheath (Fig. 6A). The TEM analysis showed that the dendrite sheath
and the cuticle are in contact, but no conspicuous pores could be
detected in the particular regions by SEM (Fig. 2C, D). The EC1 is
virtually curled up around the ODSs (Fig. 6B). ODSs measure about
20 mm in length and about 0.15 mm in diameter. 3e5 microtubules
pass longitudinally through the ODSs. CDSs extend for about 1.7 mm,
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A-tubules lack dynein arms (Fig. 6C), and the ciliary rootlets are
compact, round and about 1.1 mm long (Fig. 6D). There are annular
protuberances of the IDSs respectively overlapping the proximal
parts of the CDSs (Fig. 6C).

3.2.4. The type 4 sensillum (S42)
As with the S32/3, no special external cuticular structure is

associated with this sensillum (Fig. 2A). The S42 is innervated by
two sensory cells with one type IV dendrite each. The ODSs of the
dendrites branch repetitively, resulting in about 7e8 fine branches
per dendrite that terminate ventrally on the IP on both mandibles
(Fig. 7B). The terminal ends of the branches contact an invagination
of the cuticle, but no pore could be detected (Figs. 2C, 7A). The ODSs
measure about 6.5 mm in length, their diameter is about 0.5 mm
proximally, and distally the fine branches measure about 0.15 mm.
The EC1 and EC2 are wrapped around the dendrites from proximal
to the CDSs to the distal end of the ODSs. No dendrite sheath is
present, and the dendrites nearly fill the entire volume of the RLC
(Fig. 7D). Only a small number of scattered microtubules can be
found throughout the ODSs. The very short CDSs of about 180 nm
are embedded inside the dendrites. The microtubule doublets lack



Fig. 7. The S42 sensillum; cross sections of mandible at different levels (bars ¼ 0.5 mm). A: Termination region of two ODSs near cuticular invagination ventral on the IP. B: two
branched ODSs. C: ODSs at the level of initial branching. D: ODSs distal to transitional region. E: Transitional region with very short CDS (insert; bar ¼ 0.125 mm) and basal body. F:
IDSs proximal to transitional region. Arrow, septate junction; BB, basal body; Cu, cuticle; DIV, type IV dendrite; EC1, 2, enveloping cell 1, 2; M, mitochondrium.
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Fig. 8. The S52 sensillum; cross sections of mandible at different levels (bars ¼ 0.5 mm). A: Triplet of sensilla on dorsal part of MOP; termination region of two type I dendrites in
cuticular canal near the spine base; note comb-like structure of cuticle. B: ODSs proximal to spine base surrounded by dendrite sheath and two ECs. C: CDSs distal to transitional
region; insert: CDS with 9 � 2 þ 0 pattern of microtubules and A-tubules with arms (bar ¼ 0.125 mm). D: Transitional region with ciliary rootlets of dendrites and desmosomal
junctions (arrowheads) with inner enveloping cell. Cc, cuticular canal; Cu, cuticle; DI, type I dendrite; DS, dendrite sheath; EC1, 2, enveloping cell 1, 2; R, rootlet; RLC, receptor lymph
cavity; Sc, scolopale.
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dynein arms, but each doublet is connected to the membrane by
a fine fibrillary structure (Schmidt and Gnatzy, 1984: “ciliary
necklace structure”) (Fig. 7E). No distinct ciliary rootlets could be
detected. Apart from a high amount of vesicles no prominent
intracellular structure is present in the enveloping cells (Fig. 7BeF).

3.2.5. The type 5 sensillum (S52)
This type of sensillum can be found in two positions on the

processus molaris (MOP) of each mandible (Figs. 2A, 3B and 3C).
The MOP is equipped with a group of inflexible small spines. There
is a pair of sensilla on the ventral part of the MOP of which one is
a S52 sensillum; more dorsally located there is a triplet of sensilla
also including one S52 sensillum (Fig. 8A). Two ecdysial pores could
be found in the termination region on the ventral part of the MOP
(Fig. 3C). The two sensory cells each display a type I dendrite that
terminates below the base of the corresponding inflexible spine
(Fig. 8A). The unbranched ODSs measure about 24 mm in length and
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about 0.25 mm in diameter, and reach into blind cuticular canals.
Proximally the dendrites are enclosed in a dendrite sheath (Fig. 8B)
that extends for about 3.2 mm and ends approximately 14.5 mm
above the ciliary bases. Accumulations of about 20microtubules are
present in the ODSs. CDSs measure about 1.5 mm. The nine micro-
tubule doublets are composed of an A-tubule, with an electron-
dense core and two small dynein arms, and a B-tubule (Fig. 8C).
Both dendrites have a strong ciliary rootlet reaching about 2.3 mm
into the IDSs (Fig. 8D). A scolopale is present in the innermost
enveloping cell and most prominent in the ciliary region (Fig. 8C).

3.2.6. The type 6 sensillum (S62)
This type of sensillum can be found in the same two positions on

the processus molaris (MOP) of each mandible as the S52 sensilla
(Figs. 2A, 3B and 3C). The pair of sensilla is composed of a S52 and
a S62; the more dorsally located triplet includes two S62 sensilla.
Two sensory cells each display a type II dendrite. These terminate in



Fig. 9. The S62 sensillum; cross sections of mandible at different levels (bars ¼ 0.5 mm). A: Termination region of two type II dendrites in cuticular canal near the spine base. B: ODSs
proximal to spine base surrounded by dendrite sheath and two ECs. C: ODSs distal to transitional region. D: CDS of one dendrite, the other one already in transitional region; insert:
CDS with 9 � 2 þ 0 pattern of microtubules and A-tubules lacking arms (bar ¼ 0.125 mm). E: Transitional region with ciliary rootlets of dendrites and desmosomal junctions
(arrowheads) with inner enveloping cell. F: IDSs proximal to transitional region. BB, basal body; Cc, cuticular canal; Cu, cuticle; DII, type II dendrite; DS, dendrite sheath; EC1, 2,
enveloping cell 1, 2; M, mitochondrium; R, rootlet; RLC, receptor lymph cavity; Sc, scolopale.
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the same regions as with the S52 sensilla. The unbranched ODSs
measure about 20 mm in length and about 0.2 mm in diameter; these
also reach into blind cuticular canals (Fig. 9A). Proximally dendrites
are enclosed in a dendrite sheath extending for about 3.2 mm
(Fig. 9B). Only about 6e8 microtubules are present in the ODSs
(Fig. 9C), and similarly to the S22 sensillum the dendrites some-
times show extreme dilatations of the dendrite membrane in the
region between the CDSs and the part enclosed by the dendrite
sheath. CDSs measure about 1.1 mm. The nine microtubule doublets
lack dynein arms (Fig. 9D), and both dendrites have a delicate and
branched ciliary rootlet reaching about 0.7 mm into the IDSs
(Fig. 9E). As with the S52, a scolopale is present in the innermost
enveloping cell.

3.2.7. The type 7 sensillum (S71)
We found this type of sensillum only on the right mandible,

associatedwith an inflexible spine on the IP that has no counterpart
on the contralateral mandible (Fig. 2A, B). The spine has a solid cusp
and a lumen in the proximal part (Fig. 10B). No conspicuous pore
could be detected. The sensillum is innervated by one sensory cell
displaying a type II dendrite that is unbranched and reaches the
proximal part of the spine (Fig. 10A). The ODS measures about
25 mm in length and 0.3 mm in diameter; about 10 microtubules are
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present (Fig. 10C). The distal part is surrounded by a dendrite
sheath (Fig.10B). The CDS is very short, though its exact dimensions
could not be resolved (Fig. 10D). The ciliary rootlet is delicate and
branched (Fig. 10E); again the exact dimensions could not be
resolved. A scolopale is present in the innermost enveloping cell
(Fig. 10D).

4. Discussion

The sensory units show ultrastructural features that allow us to
distinguish 7 types of sensilla on the gnathal lobe of the mandibles
of the studied specimens. Their differences are interpreted as
reflecting the mechanisms of stimulation the respective sensory
unit is adapted for. A summary of the character sets of the different
types of sensilla is given in Table 1.

Combined morphological and physiological analyses have
shown that structural features can be good indicators of the
modality of sensory neurons innervating arthropod sensilla (e.g.
Altner et al., 1983; Schmidt and Gnatzy, 1984; Altner et al., 1986;
Cate and Derby, 2002). In some sensillawe did find combinations of
structures that strongly suggest a specific modality, but others were
lacking such unequivocal features. We did not perform physiolog-
ical experiments and could not find corresponding references.



Fig. 10. The S71 sensillum; cross sections of mandible at different levels. A: Termination region of one type II dendrite in cuticular canal in distal part of spine (bar ¼ 0.5 mm). B: ODS
in proximal part of spine surrounded by dendrite sheath (bar ¼ 2 mm). C: ODS distal to transitional region (bar ¼ 0.5 mm). D: CDS in receptor lymph cavity distal to transitional region
(bar ¼ 0.5 mm). E: Transitional region with ciliary rootlet of the dendrite (bar ¼ 0.5 mm). En, endocuticle; Ex, exocuticle; DII, type II dendrite; DS, dendrite sheath; EC1, 2, enveloping
cell 1, 2; R, rootlet; RLC, receptor lymph cavity; Sc, scolopale.
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Therefore, where the evidence is insufficient for definitive assign-
ment of the respective sensillum, we can only discuss assumptions
of its modality. Fig. 11 presents a schematic illustration of the
specific features of each type of sensillum.

The sensory units we found all show the internal features typical
of arthropod sensilla (McIver, 1975; Hallberg and Hansson, 1999).

S12 (the ‘lacinia mobilis’) exhibits the characteristics of a crus-
tacean mechanoreceptive hair sensillum (Crouau, 1997, 2001).
Features that have been correlated with mechano-sensitivity are
the dense packing of microtubules in the outer dendrite segment,
the presence of dense A-tubules with two arms (most probably
‘dynein’) in the ciliary segment, the distinct ciliary rootlet within
the IDS, the scolopale in the innermost enveloping cell, and the
tight connection of the IDS to this cell by desmosomal junctions
(Schmidt and Gnatzy,1984; Altner et al., 1986,1983). Both dendrites
show these features, representing the type I cell. Hence, the S12
sensillum seems to be a mechanoreceptor. Only one type of
chemoreceptors is known to have type I cells, in the horseshoe crab
Limulus polyphemus (Hayes, 1971).
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The ultrastructural arrangement of the S22 exhibits features
suggestive of a bimodal contact chemoreceptor. The innervation of
the sensillum by one type I and one type II cell, and the particular
ultrastructural features of the dendrites agree well with the
descriptions of crustacean bimodal chemo- and mechanoreceptors
(Altner et al., 1983; Schmidt and Gnatzy, 1984; Cate and Derby,
2002). On the other hand we found no signs of a single pore at
the tip or the base of the setal spine or of any multiporous cuticular
structure in the termination region of the dendrites; at least one of
these features has been recorded from several studied crustacean
contact chemoreceptors (Altner et al., 1983; Schmidt and Gnatzy,
1984; Schmidt, 1989; Cate and Derby, 2002; Garm and Høeg,
2006). However, the type II cell also shows features that could
indicate a mechanosensory rather than a chemosensitive function,
i.e. the ciliary rootlet and the desmosomal junction to the inner
enveloping cell in this region. The presumed chemosensory
neurons in crustacean bimodal sensilla usually do not show this
connection (Altner et al., 1983; Schmidt and Gnatzy, 1984; Cate and
Derby, 2002). Assuming that both neurons in the S22 sensillum are



Table 1
Morphological features of mandibular sensilla of the zoea-I larva in Palaemon elegans. CDS, ciliary dendrite segment; CR, ciliary rootlet; IP, incisor process; MN r & l, right and
left mandible; MOP, molar process; MT, microtubule; ODS, outer dendrite segment.

S12 S22 S32/3 S42 S52 S62 S71

Position Dorsal of IP
of MN r & l

IP of MN r & l Ventral and posterior
on IP of MN r & l

Ventral on IP
of MN r & l

MOP of MN r & l MOP of MN r & l Dorsal of IP
of MN r

External structure Articulated seta Inflexible spine None None Inflexible spines Inflexible spines Inflexible
spine

Pore Basal pore ?? ?? Yes Yes Yes ??
Sensory cells 2 2 3/2 2 2 2 1
Dendrite number 2 2 3/2 2 2 2 1
Dendrite type I I and II III IV I II II
Dendrites equal/diff. Equal Different Equal Equal Equal Equal e

ODS
Termination Hair base Proximal part of spine Ventral/posterior

on IP
Ventral on IP Spine base Spine base Proximal part

of spine
Dimension c. 16.4 mm c. 30 mm c. 20.5 mm c. 6.5 mm c. 24 mm c. 20 mm c. 25 mm
MT in apical region c. 25 DI ¼ 23; DII ¼ 11 3e5 Few c. 20 6e8 9e11
Branching yes/no No No No Yes No No No
CDS
Dimension

(BB þ cil. seg.)
c. 1.5 mm DI ¼ c. 4.3 mm;

DII ¼ c. 0.6 mm
c. 1.7 mm c. 180 nm c. 3.6 mm c. 1.1 mm Very short

MT pattern 9 � 2 þ 0 with a
rms

DI ¼ 9 � 2 þ 0
with arms;
DII ¼ 9 � 2 þ 0 no
arms

9 � 2 þ 0 no arms 9 � 2 þ 0 no arms 9 � 2 þ 0 with
arms

9 � 2 þ 0 no
arms

e

CR dimension c. 2.5 mm DI ¼ c. 3.4 mm;
DII ¼ c. 3 mm

c. 1.1 mm e c. 2.3 mm c. 700 nm e

CR morpho Compact strong DI ¼ compact strong;
DII ¼ branched

Compact round No distinct rootlet Compact strong Branched Branched

Enveloping cells
Dendrite sheath Yes Yes Yes No Yes Yes Yes
Scolopale Yes Yes Yes No Yes Yes Yes
Putative physiolog.

function
Mechanoreceptor Contact-chemoreceptor Mechanoreceptor Unimodal

chemoreceptor
Mechanoreceptor Mechano- or

chemoreceptor
Mechano- or
chemoreceptor
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mechanosensitive, the lower density of microtubules throughout
the ODS of one dendrite could indicate a lower sensitivity to
mechanical stress. Ciliary microtubules are thought to play a central
role in signal transmission in crustacean mechanoreceptors
(Crouau, 2001), and dense microtubules in the ODS are believed to
enhance the sensitivity (Garm and Høeg, 2006). Furthermore, our
findings resemble very much the description of the sensory cells of
a chordotonal organ, which is thought to be strictly mechano-
sensitive, in the legs of Carcinus maenas (Whitear, 1962). Therefore,
although it seems more likely that the S22 is a contact chemore-
ceptor, we cannot exclude the possibility that it is a mere mecha-
noreceptor and that the structural differences between the
dendrites indicate different sensitivity to mechanical stress. Dila-
tations of the ODS similar to those in the type II cells have been
described from the funnel-canal organs of C. maenas (Schmidt and
Gnatzy, 1984) and as spindle-shaped swellings in the aesthetasc
sensilla of Panulirus argus (Grünert and Ache, 1988) and Panulirus
interruptus (Spencer and Linberg, 1986). While the functional
significance of those dilatations remains unknown, the possibility
that they are fixation artefacts has been ruled out (Frisch and
Everingham, 1972).

In the S32/3 sensillum we could find both features that are
correlated with mechanosensitivity, but also features that rather
indicate chemosensitivity. The scolopale in the inner EC and the
distinct ciliary rootlets are modality-specific features of crustacean
mechanoreceptors (Altner et al., 1983; Schmidt and Gnatzy, 1984).
While the shape and dimension of the ciliary rootlets clearly are
different, the dimensions of the CDSs rather correspond to the
previously described mechanoreceptors (see Table 1). However,
further features indicating mechanosensitivity, such as densely
packed microtubules in the ODS and dense A-tubules with arms in
the CDS, are lacking. The absence of these features is reported for
chemoreceptive cells (Altner et al., 1983; Grünert and Ache, 1988;
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Cate and Derby, 2002). With this combination of features, and in
the absence of physiological data, the evidence on the modality of
the S32/3 sensillum is insufficient. No description of any similar
crustacean sensillum has been found; thus the type III dendrite
might exhibit an unknown character until now.

Our results on the S42 sensillum suggest the presence of
a sensillum located ventrally on the incisor process of both
mandibles with features, such as the branched ODSs, mostly
resembling those of olfactory sensilla (Spencer and Linberg, 1986;
Grünert and Ache, 1988). But in Crustacea, olfactory sensilla, with
a unimodal chemosensitivity, are considered to comprise only the
antennal aesthetascs and male-specific sensilla (Hallberg et al.,
1997). Also there are certain differences of the S42 sensillum
from the aesthetasc structure, like the absence of an external
cuticular structure and a ciliary rootlet, and the presence of only
one basal body and one branched ODS per sensory cell. In our
cases the apical ends of the dendrites stay in contact with the
cuticle in some way, but no distinct pore or spongy area was found.
This could be due to dirt particles obscuring the critical cuticle
areas. However, there would have to be some kind of permeable
structure allowing adequate molecules to pass the cuticular barrier
and be detected by the sensory cells, but in crustacean this spongy
structure can hardly be detected by SEM. Features that are indi-
rectly correlated with chemosensitivity are the absence of
a dendrite sheath, the absence of a scolopale, and the very short
CDS (Grünert and Ache, 1988). Unlike Schmidt and Mellon (2011)
we see ‘olfaction’ as term referring to function of sensilla and do
not restrict its use to describe those sensilla that innervate the
“olfactory lobe” of the brain. From our functional perspective we
refer to the S42 sensillum as olfactory chemosensillum. And
furthermore this unimodal chemosensillum is located uncharac-
teristically in Crustacea on the mandible and precisely not on the
antennule.



Fig. 11. Schematic drawings showing the 7 different types of sensilla. 1: S12, the ‘lacinia mobilis’ (depicted here like on the left mandible), a mechanoreceptive hair-sensillum. 2: S22,
putative contact-chemo-receptor. 3: S32/3, mechanosensitive sensillum with possible proprioceptive function, without external structure. 4: S42, unimodal chemoreceptor without
external structure. 5: S52, mechanoreceptor with inflexible spine. 6: S62, chemoreceptor or mechanoreceptor with inflexible spine. 7: S71, chemoreceptor or mechanoreceptor with
inflexible spine. 8: diagram showing external morphology and arrangement of sensillar types 1e7 on right mandible (Specimen orientation: A, anterior; D, dorsal; P, posterior; V,
ventral). A, Axon; BB, basal body; Bods, branched outer dendrite segment; BR, basal ring; CB, cell body; CDS, ciliary dendrite segment; CR, ciliary rootlet; Cu, cuticle; DIeDIV,
dendrites of types IeIV; DS, dendrite sheath; Dsw, dendrite swelling; EC1, inner enveloping cell; EC2, second enveloping cell; HS, hair shaft; IDS, inner dendrite segment; IP, incisor
process; Lcds, long ciliary segment; MOP, molar process; ODS, outer dendrite segment; P, pore; RLC, receptor lymph cavity; SC, scolopale; Scds, short ciliary segment; Scr, short
ciliary rootlet; SP, spine.
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Both dendrites innervating the S52 sensillum are type I
dendrites showing the typical features that are modality-specific
for mechanosensitivity. Therefore, the S52 seems to be a mecha-
noreceptor. In contrast to the S12 sensillum the cuticular structure
that seems to be part of the sensillar unit here is a non-articulated,
small and robust spine (see Table 1). The pore we found near the
base of the spine is an ecdysial pore that plays a role during
moulting (Kouyama and Shimozawa, 1984).

The accompanying structures of the S62 sensillum correspond
approximately to the ones discussed for the S52 sensillum, but in
contrast the two dendrites are both type II dendrites (see Table 1).
Concerning the functional properties of this sensillum the same
dilemma occurs as in the S22. The S62 could either be a mechano-
receptor sensitive to a different stimulus intensity like the S52, or
the former is strictly chemosensitive and a bimodality results from
the combination of the S52 and S62 sensilla.
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The structure of the S71 sensillum presents a new aspect in the
discussion of the functional properties of the type II dendrites. The
single dendrite innervating the S71 shows features classifying it as
a type II dendrite. If the modality of all type II dendrites examined
in this study is chemosensitive as suggested by Schmidt and Gnatzy
(1984) for similar dendrites in funnel-canal organs of the shore
crab, C. maenas, then the presence of a scolopale is of interest. The
scolopale is thought to be associated with mechanosensitivity
(Schmidt and Gnatzy, 1984; Altner et al., 1986, 1983); therefore its
presence in this dendrite either contradicts the other features or
a scolopale can be similarly correlated with both, mechano- and
chemosensitivity. Therefore, our argument that a type II dendrite
could also be mechanosensitive could hold true for the S71
sensillum as well. All features correlated with mechanosensitivity
can be found, except for a dense packing of microtubules in the
ODS. According to the literature the relatively short CDS is the main



H. Geiselbrecht, R.R. Melzer / Arthropod Structure & Development 42 (2013) 1e16 15
feature indicating chemosensitivity (Schmidt and Gnatzy, 1984;
Altner et al., 1986). However, we could not detect any pore or
porous structure in the cuticule at the tip or base of the spine in this
case either. But as already mentioned above, this is no argument
against a possible chemosensitivity. Hence, the respective func-
tional significance of the S71 sensillum being innervated by one
type II dendrite, of all other sensilla having type II dendrites, and of
the S32/3 sensillum with its type III dendrites is not obvious at this
point.

The different number of sensilla on the left and the right
mandible, hence a cellular difference, is connected to an also
external dissimilarity between the left and the right mandible
known in decapod larvae (Ingle, 1992). The submarginal spine, that
is associated with the S7-sensillum on the right mandible, is not
present on the left mandible.

In summary, we could show that the zoea-I mandibles studied
here are equipped with a relatively high number of diverse sensory
structures. The latter include not only classical movable setae with
a basal ring (S12), but also unarticulated spines (S22, S52, S62, S71)
and other cuticular structures (S32/3, S42). In earlier studies these
appendages have been seen as massive cuticular ornamentations
functioning as teeth without any sensory capacities (Ingle, 1992).
We show here that they are in fact connected to sensory units. Since
themandibles are themainmasticating organs of the larvae (Factor,
1989), the obvious interpretation is that their equipment with
sensilla allows the animal to monitor food quality and the
mechanical forces occurring during the masticating process. The
adequate stimuli for the mechanoreceptors most likely are the
deflection of the hair (S12) and pressure or tension on the surface
and the resulting deformation of the cuticle. The S32/3 sensillum
seems a good candidate for proprioceptor-like function. The
presumed chemoreceptors in the S22, S62 and S71 sensilla might
detect direct chemical stimuli of food components, and the S44
sensillum might detect odour molecules from a distance.

It can be assumed that the main function of the mandibles leads
to their robustness, and brings about uncommon cuticular outer
structures of sensilla that are hard to detect by SEM. There is
a multitude of cuticular projections in Crustacea that are referred to
as setae under various definitions of the latter term. The presence of
an articulated basis with a basal ring is generally implied (Watling,
1989). Garm (2004) added some defining internal characteristics e
a continuous lumen and semicircular sheath cells e and proposed
innervation and sensory function as additional important elements
of all setae. However, in our case of the S12 sensillum in P. elegans
the connected seta does not show a lumen, whereas on the other
hand we found cuticular structures associated with sensory struc-
tures (S22, S52, S62, S71) that would not be classified as setae when
observed externally because of their extreme modification. This
‘robust’ version of cuticular structures of sensilla further increases
the already multifaceted wealth of seta-derived sensilla known
from arthropods.

To date there is no comprehensive and well documented
concept of the sensory capacity of crustacean mandibles. For
certain appendages, e.g. the lacinia mobilis, homology and function
are still being discussed. In our studies, what was presumed
initially due to external examination (Geiselbrecht and Melzer,
2010) now could be proven by analysis of the ultrastructure: The
‘lacinia mobilis’ on the larval mandible in P. elegans is a mechano-
sensitive sensillum. Though, it is impossible to decide with
certainty whether a seta or cuticular structure is a primary
sensillum that always has been connected to sensory cells or the
connection to a sensillar cell cluster happened secondarily. It also
remains uncertainwhether the ‘true’ lacinia mobilis in Peracarida is
an articulated mandibular structure with exclusively mechanical
function, or whether it too has sensory capability. To answer this
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question should be the next step, and the combined results of the
present and such future studies should elucidate the derivation of
malacostracan mandibular appendages such as the lacinia mobilis.

In conclusion, the present findings contribute to our knowledge
of the functional morphology of zoeal mouthparts, and provide
a complex set of characters, including external and internal ultra-
stuctural features, of decapod larval mandibles. They can help along
the discussion of the homology of the ‘lacinia mobilis’ and other
mandibular characters with respect to decapod phylogeny. Using
the TEM, a much more detailed comparison of mandibular struc-
ture in different species will be possible than with the SEM alone.
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Highlights Q1

� Mandibles of adult Neomysis integer were studied using light and electron microscopy.
� We describe the external and internal structure with special reference to the lacinia mobilis and characteristics of the ecdysis.
� Our analysis showed the presence of sensory cells revealing that both laciniae mobiles are mechanosensory organs.
� We discuss the classification of the lacinia mobilis as a sensillar appendage and a possible homology in Peracarida and Decapoda.
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a b s t r a c t

The external and internal structures of adult Neomysis integer mandibles were studied using light and
electron microscopy with special reference to the lacinia mobilis, a highly specialized appendage on the
gnathal edge of many crustaceans. The right and left lacinia mobilis were equipped with ciliary primary
sensory cells revealing that both laciniae are also mechanosensory organs in addition to their mechanical
function during mastication. A detailed character analyses indicated that the right lacinia was probably a
highly derived sensory seta, whereas two alternative interpretations were considered for the left lacinia;
it could be a sensillar appendage equipped with two mechanosensory units, or it could be a movable
appendage of the incisor process containing two sensilla deprived of external appendages. The ecdysis of
the lacinia mobilis corresponded very well to type I sensillar ecdysis, suggesting classification as a
sensillar appendage. These features support a possible homology of the right lacinia mobilis in Peracarida
and Decapoda, tracing them to an origin as a member of the setal row. Whether the left lacinia mobilis is
a sensillum or an appendage with sensilla cannot be resolved presently.

� 2014 Published by Elsevier Ltd.

1. Introduction

The lacinia mobilis is a distinctive structure among various ap-
pendages arming the gnathal edges of mandibles in Peracarida. The
lacinia mobilis on the left mandible is described as an extremely
developed, jointed structure resembling the toothed shape of the
adjacent incisor process. The lacinia on the right mandible seems to
be smaller and variously shaped but is also articulated (De Jong-
Moreau et al., 2001; Mayer et al., 2013). Similar seta-like structures
have been described in other eumalacostracan taxa such as
Euphausiacea and Decapoda, but only in larvae (i.a. Weigmann-
Haass, 1977; Maas and Waloszek, 2001; Yang, 2005; Dupré et al.,
2008). Hypotheses about the origins of these structures, including
assumptions about their possible homology, are still not discussed
(Dahl andHessler,1982;Richteret al., 2002;Geiselbrecht andMelzer,
2010). A wealth of studies has analyzed the external features of the
lacinia mobilis, but a transmission electron microscopic (TEM)
analysis of the internal features hasnot been conducted. Richter et al.

(2002) presumed that the incisor process, the setal row and the
lacinia mobilis, are simple cuticular outgrowths and indicated that
detailed histological or electron microscopic comparisons would
have questionable value. However, they considered a different origin
for the left and the right laciniamobilis. This is of peculiar interest as
mandiblesofdecapodzoeahavea largenumberof sensorystructures
as detected by Geiselbrecht andMelzer (2013) and the gnathal edge
appendage, also referred to as “laciniamobilis”, hasbeen shown tobe
among these sensorystructures in these larvae.Given theunresolved
question of homology, an electron microscopic analysis of the ul-
trastructure of a peracarid lacinia mobilis should resolve some of
these issues. Therefore, we studied the lacinia mobilis of Neomysis
integer with regard to external morphology and ultrastructural fea-
tures. We also studied histological changes inside the mandible
involved in initiating the molting process.

2. Materials and methods

2.1. Animals

Living adult specimens of N. integer (Leach, 1814) were pur-
chased from a commercial supplier (Aquarium-Center Wildenauer,

* Corresponding author. Zoologische Staatssammlung München, Arthropoda
Varia, Münchhausenstraße 21, 81247 München, Germany. Tel.: þ49 898107138;
fax: þ49 898107300.
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Munich, Germany). The animals were collected in the area around
the Elbe estuary, North Sea, Germany. Specimens were identified
according to Makings (1977). Mandibles of specimens in the
intermolt stage and mandibles of specimens showing signs of
imminent ecdysis were studied. The molting process can be
assigned to stage D0 and D1, indicating early or late apolysis, or D3
and D4, which are distinguishable by visible secretion of the new
exocuticle molting stages after Drach and Tchernigovtzeff (1967).
This classification was carried out individually in each studied
specimen corresponding to these criteria because the animals had
not been staged previously.

2.2. Light microscopy (LM) and TEM

After dissecting the antennae and whole posterior body
following the maxillary segments, the specimens were fixed in 4%
glutaraldehyde in 0.1 M cacodylate buffer at 4 �C, post-osmicated in
1% OsO4 in buffer, and embedded in epoxy resin (Glycidether 100).
A series of semi- and ultra-thin sagittal sections were cut alter-
nately in the area covering the gnathal edges. Semi-thin sections of
1.5 mm were made with a diamond knife on a RMC MT-XL ultra-
microtome. The sections were stained with Richardson’s stain
(1960), embedded in DPX, covered with cover glass, and photo-
graphed with a digital camera mounted on a Leica stereomicro-
scope. Up to five pictures with different focal depth were combined
into a single respective image with a greater field of depth using
Syncroscopy Auto Montage software. Ultra-thin sections of 60e
70 nm thickness were made with a diamond knife on an RMC MT-
XL ultramicrotome. The sections were double-stained with 4%
uranyl acetate and 0.7% lead citrate and inspected using an FEI
Morgagni transmission electron microscope at 80 kV (LM and TEM:
right mandible: n ¼ 4; left mandible: n ¼ 2; plus LM only: left
mandible: n ¼ 1).

2.3. Scanning electron microscopy (SEM)

The dissected mandibles were dehydrated in a graded acetone
series (70, 80, and 90% for 10 min each, plus three times in 100% for
20 min each), then critical point-dried in a Baltec CPD 030. The
dried specimens were mounted on SEM stubs with self-adhesive
carbon stickers and sputtered with gold on a Polaron E 5100. The
mandibles were studied with a LEO 1430VP SEM at 15 kV (right
mandible: n ¼ 4; left mandible: n ¼ 5).

2.4. Terminology

Cuticular processes on the mandibles were named according to
definitions given in Watling (1989) and Garm (2004). This applied
to use of the term “setal row” instead of the formerly used “spine
row” (see also Mayer et al., 2013). In a recent ultrastructural study,
we showed that the “lacinia mobilis”, a structure with a distinct
movable socket and basal pore, is innervated (consistently termed
“seta”) in larvae of the decapod Palaemon elegans (Geiselbrecht and
Melzer, 2013). However, innervation was also detected in stout
processes lacking a movable socket. According to Watling’s and
Garm’s classical morphological definition, these processes would
be named “spines”. Considering the new findings, updated termi-
nology is used here, referring to such structures as “sensory spines”.

3. Results

3.1. External structure of the mandibles

The mandibles of N. integer are composed of two distinct main
portions, the mandibular palp and a medially extending coxal

endite forming the gnathal edge (Fig. 1). The gnathal edge is armed
with different processes and appendages (Figs. 2A and 4A). The
molar process is dorsally situated closest to the mouth. It is a flat-
tened oval structure densely covered with small setae. The margin
of the gnathal edge becomes narrower ventrally and a series of
setae form the “setal row”. The lacinia mobilis is located between
the “setal row” and the incisor process, a ventral marginal protru-
sion armed with a row of four acute sensory spines (Fig. 2A and C).
The completely different shape of the left and the right lacinia
mobilis is a key feature distinguishing the left and right mandibles.

3.2. Fine structure of the right and left lacinia mobilis

The lacinia mobilis on the right mandible is an articulated
cuticular structure with a short shaft on a broader basis but be-
comes comb-shaped distally owing to two rows of small spine-like
extensions (Fig. 2B). A pore is located proximally on the shaft. The
right lacinia mobilis appears solid and strongly sclerotized when
viewed in cross section in the shaft region (Fig. 2C and D). The
cuticle is composed of three layers, and the endocuticle shows areas
with aligned filaments and areas with more diffuse filaments,
resulting in sponge-like tissue. No cellular processes reach into the
shaft except a sensillar cell cluster. The unbranched outer dendritic
segments (ODSs) of two ciliary dendrites terminate proximally in
the central region of the lacinia shaft (Fig. 2D) and are enclosed in a
cuticular canal (Fig. 3B). The surrounding tissue becomes cellular
below the lacinia base and the ODSs are enclosed in a dendrite
sheath, consisting of homogenous, electron-dense material
(Fig. 3C) which is closely surrounded by two enveloping cells. The
ODSs measure about 55 mm in length and about 0.25 mm in diam-
eter. Numerous microtubules run longitudinally along the ODSs.
The microtubules are arranged in nine peripheral doublets in the
ciliary dendritic segment (CDS), which are composed of an A-tu-
bule with small dynein arms and a B-tubule (Fig. 3F). The typical
9 � 2 þ 0 pattern is displayed with the absence of central tubules.
The receptor lymph cavity (RLC) is wider in this region and filled
with electron-dense material. A scolopale is present in the inner-
most enveloping cell (Fig. 3D and F). The scolopale is composed of
longitudinally oriented microtubules embedded in actin filament
bundles and extends between the transitional region and the
proximal end of the dendrite sheath. Each ODS arises from one
inner dendritic segment (IDS) connected by the CDS. An accumu-
lation of mitochondria is found in the apical region of the IDS
(Fig. 3G).

The lacinia mobilis on the left mandible is also a movable, ar-
ticulated cuticular structure (Fig. 4A and B). It is clearly bigger than
the right one because of its massive, claw-like shape almost
reaching the size of the incisor process. The left lacinia bears four
strong and acute, spine-like extensions (Fig. 4C). It also appears
strongly sclerotized when viewed in cross section (Fig. 4D). How-
ever, in the proximal region of the lacinia (Fig. 4D), the endocuticle
seems to have a demarcation inwards, leaving a central lumen.
Cellular processes reach proximally into the lumen, but perikarya
are located below the lacinia base (Fig. 4E). No conspicuous pore
was found on external examination. However, ultrastructural ana-
lyses showed that two sensillar cell clusters are associated with the
left lacinia mobilis.

Cluster 1 shows two unbranched ciliary dendrites terminating
proximally in the central region of the lacinia enclosed in a cuticular
canal (Figs. 4D and 5A). The ODSs measure about 69 mm in length
and about 0.3 mm in diameter. Longitudinally extending microtu-
bules are present in the ODSs, and a dendrite sheath encloses the
distal region (Fig. 5A and B). The short CDSs stretch over about
5.2 mm, and the microtubules are arranged in the 9 � 2 þ 0 pattern
composed of A-tubules with small dynein arms and B-tubules. The
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RLC is wider in the region of the CDSs and filled with electron-
dense material. A prominent scolopale is present in the inner-
most enveloping cell (Fig. 5G). Each ODS arises from one IDS where
an accumulation of mitochondria are found in the apical region
(Fig. 5H).

Cluster 2 shows three unbranched ciliary dendrites terminating
proximally near the dendrites of cluster 1. The ODSs measure about
53 mm in length and about 1.5 mm in diameter. Longitudinally
extending microtubules in the ODSs and an enclosing dendrite
sheath in the distal region are present (Fig. 5B). The short CDSs
extend only about 2.5 mm but also show the 9 � 2 þ 0 microtubule
pattern with armed A-tubules. The inner enveloping cell encloses a
wide RLC filled with electron-dense material and shows a promi-
nent scolopale (Fig. 5E and F).

3.3. Ecdysis

During the intermolt phase the epidermal tissue of themandible
directly touches the endocuticle inwards. The region proximally to
the bases of the mandibular processes is completely filled with cell
bodies of the epidermis and sheath cells when viewed in cross
section (Fig. 6A). During molting (stage D0eD1, sensu (Drach and
Tchernigovtzeff, 1967)) the cellular tissue is initially withdrawn
from the old cuticle, an extensive exuvial space expands, and is

filled with exuvial fluid (Fig. 6B). The condensed cellular areas, not
yet clearly demarcated, are distinguished and correlated with the
respective external structures. In the later phase (stage D3eD4) a
new cuticle is secreted by the epidermal and sheath cells, and the
future lacinia mobilis, incisor process, and members of the setal
row lie underneath the old external structures already assuming
their definitive shape (Fig. 6CeE). No back-folded structures of the
new cuticle were recognized. ODSs penetrating the new cuticle of
the future left and right lacinia mobilis are detectable on their
ascending path in specimens that document this phase (Fig. 6H).
The ODSs stay connected with the old cuticular structures running
through the exuvial space within the dendrite sheaths (Figs. 6E, G
and 7). However, it seems that the ODSs are slightly retracted
because they do not reach the distal region of the cuticular canal, at
least in the right lacinia (Figs. 6F and 7). These cuticular structures
in the proximal shaft region of the right lacinia look the same
during the molting phase. However, the lumen of the left lacinia
seems to be entirely filled with exuvial fluid. Members of the “setal
row” also show associated sensory cell clusters that can be detected
penetrating the new cuticle (Fig. 6D, insert), in which two uniform
ODSs filled with longitudinally oriented microtubules become
visible and can be viewed in detail. The ODSs also seem to be
ascending through the exuvial space enclosed by a dendrite sheath
(Fig. 6D).

Fig. 1. Mouthpart region of Neomysis integer. Scanning electron micrograph showing ventral view of the mandibles from a dissected specimen (scale, 200 mm). Abbreviations: EN,
coxal endite; LAB, labrum; MNl, left mandible; MNr, right mandible; MP, mandibular palp.
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4. Discussion

The basic form of the mandibles and laciniae mobiles as well as
their asymmetry correspond well with the descriptions for Bor-
eomysis inermis and Hemimysis speluncola (De Jong-Moreau et al.,
2001) and also for some gammaridean species (Mayer et al., 2013).
The strong toothed structure of the lacinia mobilis on the left
mandible and a smaller and seta-like structure on the right
mandible seem common. Our results agree with most of the fea-
tures described by Richter et al. (2002) who studied the external
morphology of the mandibles in N. integer, such as position,
orientation, and shape of the laciniae on both mandibles or the
similar look of the left lacinia and the left incisor process. However,
the position of the right lacinia appeared slightly separate from the

setal row in our results and we rather rate the right lacinia as
separately articulated, as it is shaped with more complexity but a
certain similarity.

The sensory capability of crustacean mandibles is surprisingly
poorly studied. Ong (1969) first described the mandibular sensory
receptors in the copepod Gladioferens pectinatus and recently a
detailed survey of the sensory apparatus of larval mandibles in P.
elegans was published by Geiselbrecht and Melzer (2013). This
study now follows up the latter and provides insight into the sen-
sory equipment of a peracarid mandible. We clearly show that the
lacinia mobilis on both mandibles in N. integer is a structure
innervated by sensory units. The ultrastructural analyses of the
sensillar cell clusters showed features indicating the modality of
the respective sensory neurons. Because of the alternating ultra-

Fig. 2. Right mandible of Neomysis integer. A: Scanning electron micrograph (SEM) showing the inner view of the gnathal edge (scale, 40 mm). B: SEM showing the lacinia mobilis
(scale, 10 mm) and detail of the pore (insert; scale, 2 mm). C: Light micrograph of a semi-thin section showing proximal region of the lacinia mobilis and five sensory cell clusters
associated with the incisor process (arrowheads) (scale, 20 mm). D: Transmission electron micrographs showing the termination region of dendrites (arrowhead) and cuticular
structure in the proximal region of the lacinia mobilis. Abbreviations: CU, cuticle; IP, incisor process; LM, lacinia mobilis; MOP, molar process; SR, ‘setal row’.
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Fig. 3. Transmission electron and light micrographs showing ultrastructure of the lacinia mobilis on the right mandible. A: Lacinia basis with sensillar cell cluster (arrowhead)
(scale, 5 mm). B: Distal region of the ODSs enclosed in the cuticular canal (scale, 0.5 mm). C: ODSs proximal to the lacinia basis surrounded by a dendrite sheath and enveloping cells
(scale, 0.5 mm). D: ODSs distal to the transition region (scale, 0.5 mm). E: Cross section of the mandible showing epidermal tissue and enveloping cells with cut perikarya (square
mark indication) (scale, 20 mm). F: Ciliary dendritic segments in receptor lymph cavity (scale, 1 mm). G. IDSs proximal to the transition region (scale 1 mm). Abbreviations: Cc,
cuticular canal; CDS, ciliary dendritic segment; CU, cuticle; D, dendrite; Ds, dendrite sheath; EC, enveloping cell; IDS, inner dendritic segment; ODS, outer dendritic segment; LAB,
labrum; RLC, receptor lymph cavity; Sc, scolopale.
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Fig. 4. Left mandible of Neomysis integer. A: Scanning electron micrograph (SEM) showing inner view of the gnathal edge (scale, 40 mm). B: SEM showing lacinia mobilis and “setal
row” (scale, 40 mm). C: SEMmicrograph showing lacinia mobilis (scale, 20 mm). D: Light micrograph showing cross section of the lacinia mobilis and incisor process (scale, 40 mm). E:
Cross section of the mandible showing epidermal tissue and enveloping cells proximal to lacinia basis and sensillar cell clusters in the incisor process (arrowheads) (scale, 40 mm).
Abbreviations: Cu, cuticle; IP, incisor process; LM, lacinia mobilis; MOP, molar process; SR, ‘setal row’.
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Fig. 5. Transmission electron and light micrographs showing ultrastructure of the lacinia mobilis on the left mandible. A: ODSs of cluster 1 in the termination region enclosed in the
cuticular canal (scale, 0.5 mm). B: ODSs of cluster 2 in the termination region enclosed in the cuticular canal (scale, 0.5 mm). C: Cross section of the mandible proximal to the lacinia
basis showing the position of sensillar cell clusters (arrowheads) (scale, 20 mm). D: ODSs and enveloping cells distal to transition region (scale, 2.5 mm). E: ODSs of cluster 2 distal to
the transition region (scale, 1 mm). F: Ciliary dendritic segment of cluster 2 in the receptor lymph cavity (scale, 0.5 mm). G: Ciliary dendritic segments of cluster 1 in the receptor
lymph cavity (scale, 1 mm). H: Inner dendritic segments of cluster 1 proximal to the transition region (scale, 1 mm). Abbreviations: Cc, cuticular canal; CDS, ciliary dendritic segment;
CU, cuticle; D, dendrite; Ds, dendrite sheath; EC, enveloping cell; IDS, inner dendritic segment; ODS, outer dendritic segment; RLC, receptor lymph cavity; Sc, scolopale.
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Fig. 6. Light and transmission electron micrographs showing the mandible of Neomysis integer during different phases of ecdysis. A: Right mandible during the intermolt phase
(scale, 20 mm). B: Left mandible in stage D0eD1 (scale, 20 mm). C: Right mandible in stage D3eD4; future lacinia mobilis, incisor process, and members of the “setal row” lie
underneath the old external structures (scale, 20 mm). D: Future “setal row” of the right mandible and associated sensory cell clusters (arrowheads) (scale, 10 mm); insert: two ODSs
penetrating the new cuticle (scale, 0.5 mm). E: Left mandible in stage D3eD4; square mark indicates picture detail of G. F: Distal region of the cuticular canal in the right lacinia
mobilis (scale, 0.5 mm). G: Left mandible, ODSs of cluster 1 inside newly secreted cuticle and cluster 2 outside the exuvial space (scale, 2 mm). H: ODSs of cluster 1 penetrating the
new cuticle on their ascending path (scale 2 mm). Abbreviations: Cc, cuticular canal; Cu, cuticle; D, dendrite; DS, dendrite sheath; EX, exuvial space; IP, incisor process; LM, lacinia
mobilis; ODS, outer dendritic segment; nCu, new cuticle; SR, “setal row”.
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and semi-thin sectioning, we could not show the overall features of
each sensory neuron. The combined features of all units that have
been correlated with mechanosensitivity are the dense packing of
microtubules in the ODSs, the presence of A-tubules with two arms
in the CDS, and the prominent scolopale in the innermost envel-
oping cell (Schmidt and Gnatzy, 1984; Altner et al., 1986). Hence,
these sensilla seem to be mechanoreceptors exclusively. Also the
features agree with chordotonal-type cells, typical mechanosensi-
tive neurons in aquatic crustaceans (Crouau, 1997). The stimulatory
mechanism may be related with articulation of the external
structures. Mayer et al. (2013) discussed the functional aspects of
the lacinia mobilis in six gammaridean species. An important part
of the biting mechanism is attributed to the laciniae mobiles with
an interaction between the left and right lacinia involving extreme
deflections. Because the external morphology of the gammaridean
laciniae mobiles and those studied here are comparable, the pri-
mary stimuli of the sensilla are most likely the tilt of structures. The
capability of sensing the position or the degree of deflection is
consequently of high value.

Separate considerations are necessary concerning the compar-
ative discussion of ecdysis and the origin or derivation of the laci-
niae mobiles. Two molting types have been described in
Arthropoda differing in general characteristics of the ecdysis. The
first type is characterized by sensory cells that stay connected with
the old cuticular structure. Encased within a dendrite sheath,
elongated ODSs penetrate the newly secreted cuticle and run
through the exuvial space to their termination region. Thus, the
sensilla remain functional until ecdysis. Originally described in
insects (e.g. Altner and Thies, 1972; Moran et al., 1976; Gnatzy and
Tautz, 1977), this type is also reported for molting of the statocyst
and aesthetasc sensilla in N. integer (Guse, 1980a; Espeel, 1986). In
the second type, the dendrites lose the connection and withdraw
together with the sheath cells and epidermis during apolysis
(Altner and Thies, 1972). Thus, the condition during molting of the
lacinia mobilis can be attributed to type I, but there are certain
differences compared with molting of the statocyst or aesthetasc
sensilla. A specific characteristic is the enormous expansion of the
exuvial space in the region of the incisor process, the lacinia mobilis
and the setal row. Such an expansion was not found in other sec-
tions of the body in our specimens. Concerning the lacinia mobilis
in particular, we did not notice an invagination within the
epidermal tissue in the studied molting stages as generally
described during the sensilla molting process (Guse, 1980b, 1983;
Kouyama and Shimozawa, 1984; Espeel, 1986). It can be assumed
that the mode of molting provoked the unusual extreme expansion
of the exuvial space, with the new structure lying underneath the
old cuticle in its definitive shape, and this shape was complex.

Underlying the preceding considerations is the question of
whether the lacinia mobilis is derived from a classical seta or not,
which leads us to the crucial point of the discussion.We showed that
the lacinia mobilis on both mandibles is a sensory structure. The
lacinia on the right mandible exhibits many features that define an
appendage derived from a classical sensory seta: (1) the structure is
articulated on a basal ring; (2) ciliary sensory dendrites given rise by
primary neurons terminate distally of the base; (3) the sensory unit
is accompanied by enveloping cells; (4) the condition of the ODSs
and theenveloping cells during themolt; and (5) and thepresence of
an ecdysial pore. By comparing external features, Dahl and Hessler
(1982) and also Richter et al. (2002) believed that the origin of the
right laciniawasmost likely from the setal row. A similar association
with sensory cell clusters and the similar molting type presented

Fig. 7. Schematic drawing of the right lacinia mobilis during ecdysis. Abbreviations: Cc,
cuticular canal; Ds, dendrite sheath; EC, enveloping cell; ECI, inner enveloping cell;

EnCu, endocuticle; EpCu, epicuticle; EX, exuvial space; ExCu, exocuticle; IDS, inner
dendritic segment; nCu, new cuticle; ODS, outer dendritic segment; P, pore; Sc,
scolopale.
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here provide additional support for this idea. Furthermore, some of
the features of the right laciniamobilis listed above correspondwell
with those described for the decapod zoea of P. elegans (Geiselbrecht
and Melzer, 2013) and thus also support the view that these struc-
turesmight be homologous. The situation is more complexwith the
left lacinia mobilis. The basal articulation, the presence of sensory
structures and ecdysial pores, here indicated by the ODSs pene-
trating the newcuticle during themolting process, and the positions
of the sheath cell body and nucleus below the base support the
conclusion that the left lacinia mobilis is also a very high derived
seta.However, thefinding that there are twodiscrete sensoryunits is
very uncommon. Complex sensillawithmore than one sensory unit
are usually found in chemoreceptors such as the chemosensorycone
of insect larvae (Nicastro et al., 1998), and not in mechanoreceptors.
Thus, an alternative explanation could be that the left laciniamobilis
is a non setal,movable appendagewith twoassociated sensory units
without extra external structures, or the innervation could suggest
that the left lacinia is a compound structure that became movable
and is armed with two sensory spines, considering evolution from
the incisor process (Richter et al., 2002). This point cannot be
resolved currently and needs developmental studies, investigating
the formation of the structure and further external and internal
studies of features in other peracarid species as well as in Eumala-
costraca in general.

4.1. Conclusions

With the present and our earlier study (Geiselbrecht andMelzer,
2013) we show that the mandible is a masticating organ with
multifaceted sensory equipment, including highly aberrantly
structured sensilla, e.g., stout sensory spines of considerable size
optimized for robustness. Second, the lacinia mobilis in N. integer is
also a sensory structure with highly distinct features that are very
helpful for comparative analyses at the histological level. This study
of the lacinia mobilis demonstrates that histological features and
their comparative analysis can bring crucial arguments into the
study and classification of crustacean body appendages. Future
studies should be conducted by including more taxa and the
ontogeny in addition to external analyses that will help understand
the evolution and homologies of the laciniae mobiles.
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8.  General discussion 

8.1. Methodological approach 

The present thesis provides previously unknown insights into general decapod larval morphology 

and morphogenesis, and a detailed view on the sensory capacity of a larval decapod and an adult 

peracarid mandible. The applied methods offer comprehensive tools for morphological analyses. 

Compared to the LM, the usually applied method for larval descriptions, the SEM technique is 

advantageous due to a higher maximum of possible magnification and the high resolution power. 

Besides the usually described characters it is thus possible to analyse additional significant fine 

structural features, like also shown in some previous larval studies (Greenwood and Fielder, 

1979; Meyer et al., 2006; Geiselbrecht and Melzer, 2009). The external features that suggested a 

sensillar nature of the ‘lacinia mobilis’ in the P. elegans zoea I could only be detected and 

depicted with the SEM and also the small precursors of the typical caridean features of the zoea I 

in M. amazonicum. However, the sensillar nature of an articulated appendage can only be proven 

by an ultrastructural analysis using TEM.  

The 3D visualization of internal features by surface rendering is a useful method for comparative 

and descriptive studies of small specimens. It allows not only to depict and compare certain 

morphological features in detail but also to calculate and compare volumes and surfaces. 

Although the method is complex in the required laboratory equipment and the application is quite 

time consuming the results speak in favor of it. 

 

8.2. The decapod larval CNS 

The decapod nervous system in general shows the typical arthropod structure with well-

developed segmental ganglia, neurites forming a central neuropil and a surrounding cell-body 

cortex (Hanström, 1947). It includes the central nervous system (CNS), consisting of the brain 

and ventral nerve cord, and the peripheral nervous system (PNS), consisting of the segmental 

nerves connecting muscles and sensory organs with the CNS (Barnes and Ruppert, 2004). The 

main elements of a typical adult decapod CNS can already be recognized in the zoea I. The 

comparative analysis of the histological sections of the zoea I clearly showed that the larval CNS 

also bears taxon specific characters. The studied species, belonging to three different decapod 

main lineages, i.e. Caridea, Anomura and Brachyura, can be clearly distinguished according to 

the specific configuration of the nervous system. Another phenomenon that could be observed is 
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a differing stage of development of neuromeres and nerves within and between species. Ganglia 

develop at different tempos depending on general larval morphogenesis. The differences in the 

developmental stages of certain ganglia are paralleled by respective peculiarities in the 

development of the segmental appendages. This is most obvious in segments with well-

developed limbs, where the ganglia are in a more advanced stage of differentiation and more 

voluminous compared to segments with only limb buds or without externally visible limb 

anlagen. Observing variations like this in the comparison of closely related species, representing 

both ancestral and derived characters states, can most plausibly be explained being effected by 

heterochronic events, in the meaning of shifts in the timing of morphogenesis (review in Smith, 

2001). With the present results it is not possible to recognize an unambiguous evolutionary trend 

from basally branching lineages like the Caridea to more derived ones like the Anomura and 

Brachyura (Bracken et al., 2009b). However, this should be accomplishable by including all 

remaining decapod main taxa, like e.g. Stenopodidea, Astacidea, Glypheidea or Achelata. A 

phylogenetically relevant signal may then be found in the morphogenesis of the segmental 

ganglia.  

 

8.3. Mandible development in decapod zoea larvae 

Studying the larval mandibular fine structure in different decapod species Geiselbrecht and 

Melzer (2010) suggested the hypotheses of significant phylogenetic signal present in certain sets 

of zoeal mandible characters and an evolutionary trend from a slender mandible with ‘lacinia 

mobilis’ in Caridea to a more oval or even massive and rotund mandible without ‘lacinia mobilis’ 

in Anomura and Brachyura. However, the morphology of crustacean mandibles depends also on 

feeding habits, Mekhanikova (2010) reported this for six amphipod species with different food 

sources and De Jong-Moreau et al. (2001a) in several species of Mysidacea and Euphausiacea. 

Certainly, this influence was not investigated in decapod larvae until now. The individual features 

in different taxa may indeed represent morphological adaptations to food preferences produced 

by functional constraints but in the present study in the non-feeding species small precursors of 

the typical caridean features as well as the according basic mandibular form could be 

demonstrated, corroborating the hypothesis of an evolutionary ground pattern in mandible 

morphology. The morphological differences between the zoea I in the two species associated 

with different feeding modes obscured the apomorph features of palaemonids. These become 

conspicuous only in the detailed analysis of the developing mandible. Showing a somewhat 
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retarded appearing mandible in zoea I, in M. amazonicum the developmental changes lag always 

one stage behind the equivalent in P. elegans. This variation can also be best attributed to 

heterochronic effects. Related to the initial lack of mandible functionality, the mandible 

development in M. amazonicum is postdisplaced compared to that in P. elegans. 

 

8.4. How do mandibles sense? 

8.4.1. Decapoda  

The mandibles of the zoea I in P. elegans are equipped with a relatively high number of diverse 

sensory structures. Among these are mechanoreceptive hair-sensilla, putative contact-chemo-

receptors, mechanosensitive sensilla and unimodal chemoreceptors without external structure and 

mechano- and chemoreceptors associated with inflexible spines. Besides classical seta-like 

structures with a movable socket also unarticulated spines are proved to be sensory structures. 

This refutes the so far claimed assumption that the mandibular armature are just simple teeth 

deprived of a sensory function (Ingle, 1992). The function of the larval mandibles as masticating 

organ requires a robust building and this robustness brings about uncommon structures or 

extreme modifications in the sensory equipment. These ‘robust’ versions increase the already 

multifaceted wealth of seta-derived sensilla known from arthropods. The results provide new 

insights in the functional morphology of zoeal mandibles and also constitute a complex set of 

fine- and ultrastructural characters. Thus, it could be proven that the ‘lacinia mobilis’ on the 

larval mandible in P. elegans is a mechanosensitive sensillum, providing new evidence in the 

question of homology of the ‘true’ lacinia mobilis in Peracarida and the structure found on larval 

caridean mandibles. 

 

8.4.2. Peracarida    

Primarily considered as a diagnostic feature of the Peracarida, the lacinia mobilis for a long time 

attracted the attention of quite a few morphological studies. These included functional 

considerations as well as reviewing surveys and detailed discussions of its origin and possible 

homology with similar structures e.g. found in Decapoda (Dahl and Hessler, 1982; Richter et al., 

2002; Mayer et al., 2013). Surprisingly no ultrastructural analyses revealing the sensory capacity 

were present so far. This knowledge gap could be filled now. The lacinia mobilis in the mysid N. 

integer is a sensory structure on both mandibles. The different external structure on the left and 

right mandible was already known, now in addition also ultrastructural differences could be 
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found. Accordingly the right lacinia is probably a highly derived sensory seta, whereas two 

alternative interpretations have to be suggested for the left lacinia; it could be also a derived 

sensillar appendage equipped with two mechanosensory units, or it could be a movable 

appendage of the incisor process containing two sensilla deprived of external appendages. Hence, 

these results support a possible homology of the right lacinia mobilis in Peracarida and Decapoda 

with a common origin as a member of the setal row. Concerning the left lacinia mobilis questions 

on the origin and possible homology remain unsettled, because whether it is also a derived 

sensillum or an appendage with two sensilla cannot be resolved presently. 

 

9. Conclusions and outlook 

The examination of the sensory system included an overall study of the larval central nervous 

system and the peripheral nerves, followed by a more detailed description of the presence and 

distribution of sensory structures on a larval decapod and an adult mysid mandible. Finally the 

external finestructure and the internal ultrastructure of single sensilla were analysed. Differences 

in the modality specific structures could be presented and accordingly various types of receptors 

could be described and compared. In addition ontogenetic considerations could be made in the 

analysis of the CNS and a developmental study was conducted investigating and comparing the 

mandibular morphology in different larval stages. The main results and conclusions present 

themselves in the following way. 

The CNS in decapod zoea I larvae is in a transitory stage to the adult organization. The basic 

main elements of a typical adult decapod nervous system can already be clearly identified, 

however, certain differences are present; (1) in the cell body cortex, whereas it completely 

surrounds the neuropil in the young, in the adult there are cell body clusters, (2) in the position of 

the optic neuropils, that stretch in adults into the eyestalks, are located close to the median part of 

the protocerebrum in the larvae, and (3) in the complete set of ganglia that is not entirely present 

or partially less developed in the larvae. The larval CNS is also a stage specific system reflecting 

adaptations to larval life. The morphogenesis of ganglia can be in a different stage of 

development. An anterior-posterior gradient is recognizable in the progress of neuromere 

development of the successive thoracic segments. But considering the whole body an interruption 

of the anterior-posterior gradient can be recognized: While the ganglia in the posteriormost 

pereion segments are the least developed, all species show a well-developed ventral nerve cord in 

the pleon segments; therefore, in our zoeae the gradient is interrupted in the pereion neuromeres 
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of segments with underdeveloped limbs. This can be correlated with the life style of the 

planktonic larvae: while swimming with the exopods of the present maxillipeds (Gurney, 1942), 

they additionally all show an escape behavior through a complex mechanism of rapid strokes of 

the pleon (Dahl, 1983).  

The studied species belong to three of the decapod main lineages, i.e. Caridea, Anomura and 

Brachyura. They represent closely related taxa but with more ancestral character states in 

Caridea, that are considered as the most basal taxon of the three, and more derived character 

states in Anomura and Brachyura (Bracken et al., 2009b). The differences observed within and 

between species concerning the stage of development of neuromeres and nerves can best be 

explained by shifts in the timing of morphogenetic events. In the different species the zoea I 

larvae show a different set of appendages and in segments with well-developed limbs the ganglia 

are in a more advanced stage of differentiation compared to segments with only limb buds or 

without externally visible limb anlagen. Relating these phenomena to the phylogeny of the taxa, 

representing both ancestral and derived characters states, a plausible explanation is heterochrony 

in ganglion development. These specific features indicate that also in the larval decapod CNS 

phylogenetic relevant signal can be found. With a broader data basis of studied taxa it should be 

possible to classify decapod infraorders by reference to the specific shape of larval neuronal 

structures. The relevance of brain architecture in understanding of arthropod phylogeny was 

already early explored by the Swedish pioneers Nils Holmgren (1916) and Bertil Hanstrom 

(1928) and currently also treated by Strausfeld (2012) (see also Harzsch, 2006; Harzsch 2007; 

and specifically for Decapoda Sandeman et al., 1993).   

Heterochrony effects can also be recognized in the development of the mandibles in the 

comparison of two closely related decapod species showing different feeding modes. The 

mandibles in the zoea I of the non-feeding species M. amazonicum appear retarded compared to 

the ones of the already feeding zoea I in P. elegans. During the progressing development both 

species show comparable morphological changes in the mandibular finestructure but with M. 

amazonicum larvae always lagging one stage behind. Hence, in a comparison of the mandible 

morphology limited to the zoea I of a species pair, adaptations to food preference can obscure the 

taxon specific characters. However, in a detailed analyses the hypothesis suggesting phylogenetic 

relevant signal sets of characters on the larval mandible (Geiselbrecht and Melzer, 2010) could be 

strengthened by proving the presence of basic features representing caridean apomorphies even in 

species with aberrant feeding modes in the zoea I stage.   
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The common notion of the two studies at first is that animals differentiate a structure only when it 

is needed. But, looking closely it is indicated, that early larval stages already bear taxon and 

possibly even species specific characters, on the one hand in the composition and the 

developmental stage of the CNS and also in the finestructure and basic form of the mandibles. In 

the future more species of the current taxa and also representatives of the remaining decapod 

main lineages like i.a. Dendrobranchiata, Stenopodidea, Astacidea, or Polychelida to strengthen 

this notion have to be analysed. 

Furthermore, when comparing the ontogeny of two closely related species representing ancestral 

and derived conditions the timing of the appearance of certain characters can be shifted. These 

shifts can be attributed to heterochronic mechanisms like predisplacement or postdisplacement 

(McNamara, 1986; McKinney and McNamara, 1991) and can bring about differential 

evolutionary adaptations to specific selection pressures such as food limitation.  

All this advocates the importance of a holomorphological approach in comparative studies. The 

concept of ‘holomorphology’, first introduced by Hennig (1966), incorporates the sum total of an 

organism's morphological information, over its entire anatomy and life history (Kaplan, 2001). 

Thus, comparable larval characters can appear in different stages and relationships only become 

intelligible by comparing the appropriate stages.  

When it comes to certain characters, like sensory structures, also the ultrastructure should be part 

of a holomorphological approach. The cellular elements of arthropod sensilla are bipolar neurons 

with an axon and a dendrite derived from a cilium plus surrounding auxiliary cells. 

Mechanosensitive neurons are mostly associated with external structures, i.e. hair-derived setae 

(McIver, 1975). In the course of evolution arthropods developed sensilla comprised of these 

elements on every imaginable position on the body and in the separate main lineages sensilla 

underwent stepwise changes in their ultrastructural features (Nicastro et al., 1998; Crouau, 2001). 

In Crustacea some features in the ultrastructure of mechanosensitive sensilla are conservative, 

like the axoneme-like structure without central tubules (9 x 2 + 0), or the presence of a scolopale 

in the inner sheath cell (Crouau, 1997). In case of suggested homologies based on location or 

distribution pattern and ultrastructural features, phylogenetic conclusions can be made using 

these characters (Nicastro et al., 1998).  

The sensilla on the mandibles of the zoea I in the decapod P. elegans and of the adult mysid N. 

integer showed common features that allow certain conclusions. Eumalacostracan mandibles are 

masticating organs with multifaceted sensory equipment. Adaptations to the function of the 
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mandibles can be observed in the presence of highly aberrantly structured sensilla showing a 

robust spine-like external structure. ‘Sensory spine’ is a new term that was introduced describing 

these types of sensilla. The results of both studies showing a variety of sensilla associated with 

the incisor process suggest the stout and sharp protrusions formerly described as simple cuticular 

outgrowth and termed ‘spines’ or ‘teeth’ (e.g. Factor, 1978; Ingle, 1992) are in many cases 

sensory structures and in the future should be termed ‘sensory spines’. This demonstrates that 

histological features and their comparative analysis can bring crucial arguments into the study 

and classification of crustacean body appendages. 

The ultrastructural analyses also brought new arguments into the discussion of a possible 

homology between the ‘true’ lacinia mobilis in Peracarida and the ‘lacinia mobilis’ found on 

larval decapod mandibles. In both taxa studied in this project the structures on the right 

mandibles exhibit features that define appendages derived from classical sensory setae: (1) the 

articulation on a basal ring and the presence of an ecdysial pore; (2) the presence of ciliary 

dendrites given rise by primary sensory cells terminating distally of the base; (3) the sensory unit 

is accompanied by enveloping cells. These features also provide additional support for the idea of 

an origin of the right lacinia as a member of the setal row (Dahl and Hessler, 1982; Richter et al., 

2002). Furthermore, in both studied taxa the position at the base of the incisor process is the same 

and also corresponding modality specific features of the sensilla respectively suggest 

mechanosensitivity. Consequently, the view that these structures might be homologous gained 

strong support. Because the origin and the derivation of the left lacinia mobilis could not be 

evaluated clearly, no according conclusions can be made at this point. Here, further 

developmental and comparative studies, also in other peracarid and eumalacostracan species need 

to be accomplished. 

 

It astonishes that in Mandibulata, the largest of all animal groups, to date nearly nothing is known 

in detail about the sensory capabilities and the ultrastructure of the mandibular ganthal edges. 

Even though the presence of mandibles has been regarded as such important characteristic, 

morphologically and functionally, that it has been used to define a clade Mandibulata (Bitsch, 

2001). Concerning Crustacea, there are some studies describing the presence of sensory receptors 

on the mandible, sometimes with more (Ong, 1969), sometimes with less notes on ultrastructural 

features (Friedman and Strickler, 1975), but mostly only including external examinations limited 

to the mandibular palp (e.g. Garm, 2004; Garm and Høeg, 2006). Also in Hexapoda and 
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Myriapoda knowledge is limited (see e.g. Zacharuk and Albert, 1978; Albert, 1980; Stoffolano 

and Yin, 1983; LeSage, 1984; Masuko, 1986). In this thesis at first a comprehensive description 

of the ultrastructure of mandibular sensilla and the overall sensory capability of the mandibles in 

a decapod larva could be presented. The analysis of the modality specific structures revealed 

seven different types of sensilla, including mechanoreceptors, chemoreceptors and bimodal 

mechano-chemoreceptors, presenting the mandible as a masticating organ with multifaceted 

sensory equipment and a set of characters relevant also in a phylogenetic context. Positional and 

structural correspondence in general features and in structural details of incisor and molar 

processes already supported a general homology of the mandibular gnathal edges throughout 

Mandibulata (Edgecombe et al., 2003). The ongoing discussion about the homology of the lacinia 

mobilis, a distinctive mandibular feature in several arthropod taxa, now could be added with new 

conclusions. A possible homology of the feature in Decapoda and Peracarida gained further 

support based on the analyses of ultrastructural features. Hence, new features could be described 

that, placed on a broader basis by the analyses of more taxa, can strengthen the phylogenetic 

position of Peracarida and Decapoda. This again shows the importance and phylogenetic 

relevance of such character analyses.   

After a period with excessive practice of partly exclusive molecular phylogeny Wheeler (2008) 

and Sudhaus (2007) emphasized the importance of morphology and of comparative 

morphological studies, that provide complex information-rich characters. . Besides the 

application of powerful new digital tools, like computer aided 3D-reconstruction, still the 

combination of these modern with classical methods contributes to a progress in our knowledge 

of species, phylogeny and classification. Combining classical morphology and molecular 

analyses in the concept of integrative taxonomy will undoubtedly result in better supported 

phylogenies and in most profound science (Dayrat, 2005; Will et al., 2005; Valdecasas et al., 

2008). For that reason new morphological characters must be explored and documented further 

on and like indicated by the results presented here there is still a wealth of unknown features to 

discover, to describe, and to compare.   
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