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Zusammenfassung

Seismische Tomographie ist die eindrücklichste und intuitivsteMeth-
ode, Informationen über das tiefe Erdinnere, von der Kruste bis an
die Kern-Mantel-Grenze zu erlangen. Die von entfernten Erdbeben
aufgezeichneten Bodenbewegungenwerdenmit den ür ein einfaches
Erdmodell vorhergesagten verglichen, um ein verbessertesModell zu
erhalten. Dieses dreidimensionale Modell kann dann geodynamisch
oder tektonisch interpretiert werden.
Durch die Entwicklung leistungsähiger Computersysteme kann die
Ausbreitung seismischerWellenmilerweile im gesamtenmessbaren
Frequenzbereich simuliert werden, sodass dieses gesamte Spektrum
der Tomographie zur Verügung steht.
Die vorliegende Arbeit beschäigt sich mit der Verbesserung der
Wellenformtomographie. Zum einenwird die Nutzbarkeit eines kom-
plexen Typs seismischer Wellen, der in der Mantelübergangszone
zwischen  und  km Tiefe gestreuten triplizierten Wellen ge-
zeigt. Diese Wellen versprechen eine erheblich bessere Auflösung
der geodynamischwichtigenDiskontinuitäten zwischen oberemund
unterem Mantel als bisher verwendete teleseismische Wellen.
Zum anderen wird der nichtlineare Einfluss des Erdbebenmodells
auf die Wellenformtomographie untersucht. Miels Bayesianischer
Inferenz werden Wahrscheinlichkeitsdichten ür die Herdparameter
des Erdbebens, wie Tiefe, Momententensor und ellfunktion bes-
timmt. Dazu wird zuvor ein Modell der Messunsicherheit und des
Modellierungsfehlers in der Herdinversion bestimmt, das bis dato
nicht vorlag.
Dabei zeigt sich im Weiteren, dass der Effekt der Unsicherheit im
Herdmodell eine nichtlineare und bisher weitgehend ignorierte Feh-
lerquelle in der seismischen Tomographie ist. Dieses Ergebnis er-
möglicht es, die Varianz seismischer Laufzeit- und Wellenformmes-
sungen sowie die Kovarianz zwischen einzelnen Messstationen zu
bestimmen.
Die Ergebnisse dieser Arbeit können in Zukun erheblich dazu beitra-
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gen, die Unsicherheiten der seismischen Tomographie quantitativ zu
bestimmen, um eventuell vorhandene Artefakte zu zeigen und damit
geologischen Fehlinterpretationen tomographischer Ergebnisse vor-
zubeugen.



Summary

Seismic tomography is the most impressive method of inferring a
picture of the deep interiour of the Earth, from the lower crust to
the core mantle boundary. Recordings of ground motions caused
by distant earthquakes are used to refine an existing earth model,
employing difference between measured and predicted data. e re-
sulting three-dimensional models and images can be interpreted in
terms of tectonics and large-scale geodynamics.
e increase in computing power in the last decade has lead to an
enormous progress in tomographic methods, which can now sim-
ulate and therefore exploit the whole frequency range of seismo-
graphic measurements.
is thesis refines waveform tomography in its flavour of finite-freq-
uency tomography. It first shows that complex wave types, like the
those perturbed by the discontinuities in the mantle transition zone
can be used for waveform tomography. Using these waves promise
an improved resolution of the geodynamically important transition
zone compared to the hitherto used teleseismic waves.
A second part checks the nonlinear influence of the source model
on waveform tomography. By the method of Bayesian inference,
probability density functions of the source parameters depth, mo-
ment tensor, and the source time function are determined. For that,
a model of the measurement uncertainties is necessary, which was
hitherto not available and is derived from a large catalogue of source
solutions.
e results of the probabilistic source inversion allow to quantify the
effect of source uncertainty on seismic tomography. is allows to
estimate the variance of seismic traveltimes and waveforms and also
the covariance between different seismographic stations.
e results of this work could improve uncertainty estimation in
seismic tomography, show potential artefacts in the result and there-
fore avoid misinterpretation of tomographic images by geologists
and others.
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I have been insisting for about  years that the claim of finality for any
scientific inference is absurd.

(Jeffreys, )

1
Introduction

1.1 Historic overview and state of the art

e curious task of Earth Sciences is to infer a four-dimensional model of our
whole planet in time, solely by measurements on the two-dimensional surface
of it. Compared to the eons in which geological processes unfold, these mea-
surements are quasi instantaneous. So if there ever was a perfect example for
an inverse problem, it is the reconstruction of the tectonic history of the Earth’s
crust, mantle and core.
One of the most important tools to infer the structure of the Earth’s mantle is
seismology. e original interest was to explain the devastating ground shaking.
e invention of the seismograph allowed tomeasure thesemotions and quantify
them. In , seismographs in Potsdam and Wilhelmshaven recorded a signal
from an earthquake in Japan and showed that seismic waves travel through the
whole planet (Von Rebeur-Paschwitz, ). Two decades later, double arrivals
of seismic waves from an earthquake in Zagreb led Andrija Mohorovicic to pos-
tulate the existence of a geological boundary in a depth of  km (Mohorovičić,
), which later proved to be a global feature, namely the geological boundary
between the crust and the mantle. At the turn of the centuries, Richard Old-
ham first separated body waves and surface waves in the seismic record (Old-
ham, ) and later discovered a delay on body waves (Oldham, ), which
he speculated to result from the iron core predicted by Wiechert from obser-
vations on the density and inertia of the earth (Wiechert, , ). Using
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much clearer seismographic records, Benno Gutenberg inferred the existence of
a strong discontinuity in  km depth from seismic records (Gutenberg, ),
which Harold Jeffreys interpreted as the boundary between the solid mantle and
the liquid outer core of the earth, when he was unable to find shear waves pass-
ing through the core (Jeffreys, ). In the same year, Gutenberg proposed a
low velocity layer in around km depth (Gutenberg, ), which remained a
topic of discussion for decades (Lehmann, ), but is nowadays called the as-
thenosphere. Inge Lehmann finished the fundamental earth model, when she ex-
plained the hitherto inexplicable phase P’ (today: PKIKP) with it a high-velocity
solid inner core (Lehmann, ). e work on a spherically symmetric earth
was in principle completed with the huge seismic travel time tables of Jeffreys
and Bullen in  (Jeffreys and Bullen, ).
e nuclear race and the monitoring of nuclear tests radically changed the disci-
pline. e Vela Uniform project of the Eisenhower administration (Bates, )
increased US federal funding by a factor of  between  and . Even
though this funding was motivated by military considerations, i.e. the estima-
tion of Soviet nuclear strength and the monitoring of underground nuclear tests,
it lead to an enormous increase in number and quality of seismic facilities avail-
able for research. Seismic arrays, first installed as military facilities improved
the signal-to-noise ratio of seismic records and allowed the refinement of travel
time tables, partially even by using data from nuclear explosions (Jeffreys, ;
Wright andMuirhead, ). e entanglementwith themilitary-industrial com-
plex lead the discipline slightly astray, when even the leading seismologists of
the time demanded several “clean“ and peaceful Megaton nuclear explosions to
reduce uncertainties on seismically inactive regions in the world (Bullen, ;
Griggs and Press, ). In the context of the Vela Uniform project, seven under-
ground nuclear explosions with a yield of  kt and less were conducted specif-
ically for the case of seismic monitoring and research. For a very interesting
sociological perspective, see Barth ().
However, since the interests of the military was to refine source estimation,
which was one of the stated goals of the scientific community at that time any-
way, seismology in general flourished. e aermath of Vela Uniformwas a huge
increase in the number and size of institutes, the World-Wide Standard Seismo-
graphNetwork (WWSSN), which homogenized the quality of seismic recordings,
the first ocean boom seismometers and large seismic arrays with centralized
computer facilities, where for the first time, seismograms were recorded digi-
tally. Especially the laer allowed completely new seismic observations, because
it enabled digital filtering and postprocessing of data, which in the end led to the
methods applied in this Ph.D. thesis.
e inversion of large sets of seismic travel-times allowed for the first time to
produce first regionalized (Dziewoński et al., ) models of the earth’s mantle.
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Together with the advances in numerical prediction of seismic waveforms and
computational power first three-dimensional models (Dziewoński et al., ;
Woodhouse and Dziewoński, ; Dziewoński, ) of the upper mantle were
derived and showed velocity anomalies related to plate subduction. e digital
recordings also allowed for the first time an automated calculation of a catalogue
of earthquake parameters (Dziewoński et al., ) including the moment tensor.
At the same time, the automated collection of very large travel time datasets in
the International Seismic Catalogue (ISC) allowed to refine spherically symmet-
ric earth models, culminating in the incredibly enduring Preliminary Reference
Earth Model Dziewoński and Anderson (), which - older than the author - is
still the reference model for seismology and geodynamics alike.
e explosion of computational power in the last decades brought an huge in-
crease in tomographic studies, which were able to confirm a lot of geological
assumptions, especially in the context of mantle convection (van der Hilst et al.,
) or continental evolution (Ritsema et al., ).
Up to the year , tomographic studies were assuming a ray-theoretical model
based on the Eikonal equation. It assumes that the travel time of a seismic wave
can be defined and measured as the arrival of the first energy in the seismic
time series. From that follows that the sensitivity of the travel time to three-
dimensional perturbations in the velocity model is confined to an infinitesimally
narrow ray path (Kenne, ). Two ideas challenged this assumption:

• Full waveform inversion

• Fresnel zone / Fréchet kernels

1.2 State of the art in seismic tomography
e rapid progress in computing power has made it possible to simulate the seis-
mic wavefields of an earthquake with almost arbitrary precision. e preferred
method on a global scale is the spectral element method (Komatitsch and Viloe,
), since it combines numerical efficiency with a natural handling of the free-
surface boundary condition. With current high-performance computing capaci-
ties, it is possible to simulate the complete seismic wavefield in the whole earth
for up to . Hz in a three-dimensional velocity model (with the SpecFEM code
presented in Komatitsch and Tromp (a)) or even above  Hz in an axially
symmetric model (Nissen-Meyer et al., ). Since meaningful measurements
on teleseismic waves rarely exceed  Hz, we might assume that any measured
information in a seismogram can in principle already be simulated¹

¹Unfortunately, the assumption of axial symmetry (or even radial symmetry) is only valid in
certain regions of the earth, especially in he lower mantle, which seems to be radially symmetric
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Figure .: Shown is a the volume which affects the recording of a seismic trav-
eltime in northern Mexico for an earthquake in  km depth at the north pole.
e kernel is calculated in a s log-Gabor passband and projected on a global
tetrahedral inversion mesh. Shown are only elements with a value of more than
 per cent of the maximum value of the kernel. Note that the fine structure of
the kernel gets lost due to coarse inversion mesh. Nevertheless, it is obvious that
a ray approximation would not be sufficient here.

is progress has rendered approximations like ray theory to approximate seis-
mograms unnecessary and has allowed to extract as much information from the
seismogram as possible, by fiing whole waveforms instead of just arrival time
picks. ese techniques are advertised by a plethora of names, but can be mainly
divided by two factors: . e forward simulation they use, waveform based or
ray-theoretical and . the inversion seme, which can be iterative-linearised
or a one-step-linear inversion. Both have merits and drawbacks, which I want
to classify and motivate my selection for this thesis:

linear, ray-based ismethod formed the bulk of inversions before the paradigm-
shi towards banana-doughnut methods. An advantage is that the huge

to a degree of a few percent (Ritsema et al., ). e crust is provably very heterogeneous
(Bassin et al., ; Molinari and Morelli, ). e seismic anomalies of the asthenosphere and
upper mantle are disputed, but are probably in the range of less than % on large scales (Becker
and Boschi, ). e inner core might be strongly heterogeneous, but the data is yet poorly
constrained due to likely modelling errors in the lowermost mantle (Tromp, ; Tkalčić et al.,
).
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archive of millions of hand-picked travel-times, which was collected over
decades by the ISC can be used.

iterative, ray-based is is somewhat more difficult, since it requires to update
the Fréchet-derivatives of the model towards the observables for a new
model, one method for which is D ray tracing (e.g. Qin et al., ; Rawl-
inson and Sambridge, ). is method is preferred for regional studies,
where a very heterogeneous velocity structure can be expected and a lot
of high-frequency (short-period) recordings are available, for which the
infinite-frequency ray approximation has a certain plausibility.

linear, wavefield-based ismethod calculates the Fréchet derivatives in a spher-
ically symmetric earth model, which allows to the full frequency range of
global seismology. e derivations of the true model from this earth model
are assumed to be small, so that the problem can be treated as linear. e
method was in principle conceived in the late nineties (Marquering et al.,
; Dahlen et al., ), let to considerable controversy, but was applied
with roaring success in the following decade to refine existing models of
the mantle (Montelli et al., ; Sigloch, ; Tian et al., ), shed new
light on the plume debate (Montelli et al., ) or reinterpret continen-
tal scale tectonic history (Sigloch and Mihalynuk, ). e Fréchet ker-
nels for the above-mentioned studies were calculated using ray-theoretical
phase delays for different scaerer locations. Nissen-Meyer () pro-
posed to calculate those from the full seismic wavefield and to calculate
this in a D to D reduction strategy valid for spherically symmetric earth
models. is has so far not been applied, but preparations for it are part of
this thesis.

iterative, wavefield-based An alternative and rather en vogue technique goes
under names as Full Waveform Inversion (Virieux and Operto, ), Full
Waveform Tomography (Fichtner et al., ) or Adjoint tomography (Tape
et al., ). Common is a combination of Fréchet derivatives calculated
from the full seismic wavefield via the adjoint method and an iterative
method (Newton-based or conjugate-gradient) to reduce the objective func-
tion (misfit) (Boehm and Ulbrich, ). An advantage is that this method
allows for a clean and natural strategy to simulate waveforms and directly
use the misfit to drive an optimization strategy. A disadvantage is that this
strategy has no natural way to infer the uncertainties of the final model.
All strategies are based on the Hessian of the misfit in terms of the model
(Fichtner and Trampert, ), but this assumes Gaussian noise and can
only estimate the resolution of the final inversion step and therefore only
about the model space close to the final model.
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e last and to a smaller extend the third technique are currently gaining most
aention in the seismological community, but also in the exploration context.
While the idea of a full waveform technique, which includes all physics into the
simulation seems tempting, it should be objected that this is simply impossible
and certain a number of approximations is always necessary. Handling these ap-
proximations, like corrections for topography and the crust, consciously, might
be more reliable than just increasing the number of free model parameters.

1.3 Objectives of this thesis

e work presented in this thesis aims at improving the possibilities of seismic
waveform tomography to resolve structural features in the Earth and to deter-
mine the uncertainties thereof. It is based on the linearised approach presented
by Sigloch (), but tries to address problems found in this work:

. e kernel calculation method by Dahlen et al. () is only applicable
to teleseismic bodywaves which are clearly separated from other phases.
ese are especially P in a range between  and  degrees, SH in a range
between  and  degrees, SV between  and  degrees and PP and SS.
eir vertical resolution in the upper mantle is limited, due to the steep
angle. It would therefore be beneficial to use regional body waves, which
have a beer vertical resolution. ey can be calculated using the wave-
field based method by Nissen-Meyer (). Chapter  will describe the
potential to model triplicated waveforms and to use them for tomography.

. Seismic tomography uses earthquakes as wave-sources. e source model
of the earthquake has a big influence on the estimate of the travel-time
misfit and therefore on the inversion itself. e broadband waveform in-
version requires a model of the temporal evolution of the earthquake in
form of a so-called source time function. e estimation of the depth, the
moment tensor and the source time function is a non-linear inverse prob-
lem. Using a Bayesian inversion scheme described in chapter , I inverted
for probability density functions of the source parameters.

. Bayesian inference requires a model of the data variances. e variance
of seismological measurements is rather unknown. For the application of
probabilistic source inversion, I propose in chapter  to estimate the data
variance for this specific problem from a large dataset of existing source
solutions and employ these variances and covariances in a Bayesian frame-
work.
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. e uncertainty of the estimated travel-time misfits, which are the input
parameters of the seismic tomography have hitherto been set to a fixed
value or have been estimated heuristically from the signal-to-noise ratio
of a seismogram. From the probabilistic source inversion, we can directly
estimate the variance of each travel-time and the covariance between all
travel-times for one earthquake. Probabilistic traveltime estimations are a
completely new dataset for seismic tomographers, which allow a straight-
forward handling of correlated seismic recordings of varying quality.
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Using triplicated waveforms for

tomography

is chapter was published in Solid Earth in September  under
the title Triplicated P-wave measurements for waveform tomography
of the mantle transition zone (Stähler, Sigloch, and Nissen-Meyer,
)

Abstract

Triplicated body waves sample the mantle transition zone more ex-
tensively than any other wave type, and interact strongly with the
discontinuities at  km and  km. Since the seismograms bear
a strong imprint of these geodynamically interesting features, it is
highly desirable to invert them for structure of the transition zone.
is has rarely been aempted, due to a mismatch between the com-
plex and band-limited data and the (ray-theoretical) modellingmeth-
ods. Here we present a data processing and modelling strategy to
harness such broadband seismograms for finite-frequency tomogra-
phy. We include triplicated P-waves (epicentral distance range be-
tween  and °) across their entire broadband frequency range, for
both deep and shallow sources. We show that is it possible to predict
the complex sequence of arrivals in these seismograms, but only af-
ter a careful effort to estimate source time functions and other source
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Figure .: Snapshot of the seismic wavefield  seconds aer an earthquake.
Straintrace is in reddish colours and curl in blueish. ree P-wavefronts are
visible.

parameters from data, variables that strongly influence the wave-
forms. Modelled and observed waveforms then yield decent cross-
correlation fits, from which we measure finite-frequency traveltime
anomalies. We discuss two such data sets, for North America and
Europe, and conclude that their signal quality and azimuthal cover-
age should be adequate for tomographic inversion. In order to com-
pute sensitivity kernels at the pertinent high body wave frequencies,
we use fully numerical forward modelling of the seismic wavefield
through a spherically symmetric Earth.

2.1 Introduction

e mantle transition zone (MTZ) is of great interest geodynamically, since its
properties determine the extent to which material and heat gets exchanged be-
tween the upper and lower mantle. In the seismological view, the MTZ extends
from the discontinuity at  km depth to one at  km – both discontinuities
are characterized by marked jumps in seismic velocity. e sharpness and to-
pographic undulations of these discontinuities can be linked to mineral physics
laboratory experiments in order to infer material properties and mantle rheol-
ogy.

e seismic waves that sample the MTZ most extensively are regional body
waves, i.e., refracted waves that turn within the MTZ. Travelling only moder-
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ate distances of∆ ≈– km (i.e. –°), these waves are recorded strong
and clear on seismic stations, delivering by far the highest signal to noise ratio of
any wave type that could be used to study the transition zone. Yet these phases
have rarely been used in general, and for seismic tomography in particular, in
sharp contrast to teleseismic phases (∆ > 30°). e reason is that these regional
waves generate more complex signals than teleseismic ones as they have inter-
acted more extensively with the MTZ discontinuities. Such observations do not
lend themselves to abstraction into isolated pulses and the associated, idealized
modelling by ray theory. Conversely we may suspect that if we succeed at mod-
elling and inverting these waveforms, we will be able to learn a great deal about
the mantle structures that are leaving such a strong imprint on them. Here we
demonstrate that this should be possible.

Regional P and S waves are commonly termed triplicated waves, since ev-
ery interaction with a discontinuity spawns three distinguishable phases. We
investigate triplicated P-waves, which occur at epicentral distances of ° to °,
and sample the MTZ in some interval halfway between source and receiver. Our
aim is to use them in finite-frequency waveform inversion for transition zone
structure.

Finite-frequency modelling as originally conceived by Dahlen et al. () is
feasible across the entire relevant frequency range of body waves, but has been
limited to interpreting direct and reflected teleseismic phases (Montelli et al.,
; Sigloch et al., ; Zhou et al., , ; Tian et al., ), due to the
applicability limitations of paraxial ray tracing for computing sensitivity ker-
nels. Here we present kernels that overcome this limitation. ey are obtained
from fully numerical forward computations of the seismic wavefield, using the
spectral element code of (Nissen-Meyer et al., b). Exploitation of the near-
spherical symmetry of the -D Earth uses the currently available computational
resources very efficiently, allowing access to the entire relevant broadband range
of the wavefield (. to Hz), like the original Dahlen method.

Triplicated body waves carry a very strong imprint of their interaction with
transition zone discontinuities, which is both an advantage and a challenge. Not
only do the triplicated arrivals overlap each other in time, due to the finite-
frequency nature of real data, but for shallow earthquakes they additionally
overlap the depth phases pP and sP, which get triplicated themselves. Hence
an integral part of modelling the waveforms is the careful estimation of source
parameters (since they determine the shape of the synthetic Green’s function),
and of the source time function.

e differential moveout of the triplicated phases has since long been used
to derive one-dimensional velocity models(Grand, ), which required a large
number of seismic stations in a narrow azimuth range. Modelling of individ-
ual triplicated waveforms has been successfully used to sample localized het-
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erogeneities in the MTZ (Tajima and Grand, ; Melbourne and Helmberger,
; Tajima et al., ). A few studies that included picked arrival times into ray
theoretical inversions demonstrated the potential of triplicated waves for tomog-
raphy (Grand, ), but so far they have rarely been used. Only very recently,
Zhu et al. () used triplicated phases, amongst others, for a European regional
tomography, albeit at lower frequencies.

Regional body waves are complementary to all phases currently used for
MTZ studies. Teleseismic body waves also offer good signal-to-noise ratios, but
have comparably low sensitivity in the MTZ, which they traverse at steep an-
gles. Hence they constrain the MTZ beneath sources and/or station, whereas
triplicated waves sample it extensively midway between sources and receivers.
So it would be highly beneficial to combine them in one inversion.

Other methods for sampling transition zone discontinuities have much lower
signal-to-noise ratios (SNR). Receiver functions exploit P-to-S or S-to-P con-
verted energy of body waves, which require stacking numerous seismograms.
eir migration from the time domain to depth depends on a velocity structure
model, which either must have been obtained independently or is neglected, with
corresponding systematic errors in the result.

PP and SS precursors, i.e., body waves reflected at the undersides of MTZ
discontinuities, have also been used in structural studies, (Shearer and Masters,
; omas and Billen, ; Deuss et al., ; Deuss, ). eir SNR is low,
so that only the rare strong earthquakes that are recorded on seismic arrays can
be used. Distinguishing between the signal of an undulated discontinuity and a
volumetric velocity perturbation is challenging (Chaljub and Tarantola, ), as
for receiver functions.

Surface waves have lower image resolution than body waves. Only their
higher modes have significant sensitivity to the MTZ, but higher modes carry
lile energy, and are more difficult to process. Hence surface wave tomography
is largely limited to depths above the MTZ.

We start with a discussion of the nature of triplicated body waves, and of
their expression in actual seismic broadband data (Sect. ..). Section .. and
.. demonstrate how we model these waveforms; this covers the computa-
tions of Green’s functions and the inversion for source time functions and source
mechanisms. We then explain the concept of wavefield kernels (Sect. .), and
show how passband-filtering to different frequency bands significantly increases
the resolution in the transition zone, by comprehensively exploiting information
across the entire broadband range (Sect. ..). e sizeable andwell-instrumented
continents of Europe and North America currently offer the most favourable
source-receiver combinations of criss-crossing regional body waves for tomog-
raphy. Section . discusses the two data sets that we have assembled for these
two regions, with a focus on the USArray. We conclude with a discussion of the
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Figure .: Observed waveforms and nominal ray paths of regional P-waves, for
a magnitude . earthquake off the coast of Mexico (// ::, Lat:
. Lon: –., Depth:  km). Ray colouring in the le figure corresponds
to the colouring of the waveform clusters in the right figure. Our automated
clustering algorithm sorts the different kinds of triplicated phases into different
groups, based on similarity of the broadband waveforms. e waveform below
each seismogram group is thewaveform stack. is empirical sorting into groups
coincides with the epicentral distance bins predicted by theory (see text for de-
tails). is demonstrates that we are dealing with a robust signal that waveform
tomography should be able to interpret.

results, and the prospects of inverting these data for MTZ structure (Sects. .
and .).

2.2 Regional P-waves

.. Triplications

e term triplication refers to three seismic wave phases that have similar ray
parameters and arrive closely spaced in time. e concept is rooted in ray theory.
While our data processing and kernel computations are targeted at interpreting
the full waveforms, it is useful to consider their ray theoretical approximation
first, in order to appreciate the nature of triplicated waves. It assumes that the
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Figure .: Triplication of P-wave traveltimes in IASP (Kenne and Engdahl,
). e triplication C to D is produced by the discontinuity at  km depth,
the one from E to F by the discontinuity at  km. e AB triplication originates
from the  km discontinuity, which is only of second order in IASP. is
triplication can hardly be observed, especially since it overlaps with the one from
 km.

wave from one source to one receiver travels along an infinitesimally narrow ray
path, which is described by the eikonal equation (e.g., Kenne, ). Strictly
speaking, the approximation only holds for the case of a non-dispersive medium.
Even when the medium is not intrinsically dispersive, velocity heterogeneities
may introduce a frequency-dependent group velocity, which is the motivation
for finite-frequency tomography.

In a layered velocity model c(r), the traveltime τ and the angular distance∆
of a direct phase (e.g., a P-wave) depend only on the ray parameter ℘.

∆(℘) =

∫
dr

r
√

r2/(℘c(r))2 − 1
(.)

τ(℘) =

∫
dr

c(r)
√

1− (℘c(r))2/r2
(.)

If the velocity gradientwith respect to depth is smooth, τ and∆ increasemonoto-
nously with decreasing ℘, i.e. stations at a larger distance from the earthquake
record the P-phase at later times. If the velocity profile contains strong gradients,
or even discontinuities with positive velocity jumps, d∆

d℘ changes sign, so that

rays of smaller ℘ arrive closer to the source¹. Because dτ(℘)
d℘ < 0 in either case,

two rays arrive at the same distance at different times. If dc
dr < 0, ∆(℘) is still

continuous. e turning points of ∆(℘) mark the transition (with decreasing ℘)
first from a ray travelling above the discontinuity to one being critically reflected
at the discontinuity and then to one travelling below it. In the traveltime-distance

¹e literature does not provide any hard constraints for a triplication to occur. However, it
is clear that a discontinuity in c(r) or dc/dr will be sufficient.
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Figure .: Schematic composition of a triplicated broadband P-wave signal: (A)
Arrival times (top row) and nominal ray paths (boom row) of the direct P-waves.
ree pulses arrive, two of which are refracted above and below the discontinuity
(here ), and the third reflected by it. (B) If the earthquake is shallow, additional
depth phases arrive (pP and sP), which get triplicated themselves. (C) Real-world
seismograms do not resemble sequences of dirac pulses. Rather, the pulses of
the Green’s functions are dispersed and the source time function (boom row)
convolves into all of them. (D) e sum of all contributions is the predicted
seismogram (top), which may be compared to the observed seismogram (boom
row), in order to extract measurements for waveform tomography. Even though
the waveform is complex, it can be modelled sufficiently well using a layered
background model.

relation τ(∆), which is also continuous, a paern called triplication emerges
(Fig. .).

e velocity discontinuities in seismic velocity in the upper mantle (at 
and  km depth in the IASP reference model (Kenne and Engdahl, ),
henceforth termed  and , produce triplications: Neglecting crustal phases
and the weakly developed -km discontinuity, we receive one P phase up to a
distance of °, which has travelled through the upper mantle. At ° another P-
phase arrives  seconds later (point D in Fig. .), being reflected at the . is
branch bifurcates into one reflected path (DC), and one refracted below (DE).
e refraction branch continues to ° distance (E), while the uppermost-mantle
branch meets with the reflected one at .° (C) and ends there. From .° (F) on
there are also reflection and refraction branches from the . e -reflection
branch (EF) meets with the -refraction branch (DF) at .° (E), where they
both end. Only the  refraction branch can be measured at distances exceeding
.°.

With this conceptual knowledge, consider the real data in Fig. .. It shows
broadband P-waveforms in a  s window, starting  s before the first arrival
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predicted by IASP. e  waveforms from stations in the western United
States are aligned (VanDecar and Crosson, ) and clustered by similarity as
described by Sigloch and Nolet (). is clustering results purely from the
waveform shapes and does not use meta-information such as station distance or
azimuth from the source. e clusters show a clear zonation by distance, caused
by the triplications from the transition zone discontinuities. e figure can best
be understood by first considering the most distant group of P-waveforms (pink).
e stations are mainly located beyond ° epicentral distance, so that the sig-
nal contains no triplications. e secondary pulse, arriving  s aer the first one,
can therefore be recognized as a reflection from the ocean surface near the source
(pwP).

In the distance bin closest to the source, from ≈° to ° (red), the tripli-
cated phases overlap so that just one broadened pulse arrives. In the second
group (yellow), the arrivals are further spread so that a first arriving pulse, a sur-
face reflected phase (at  s) and multiple triplicated phases can be distinguished.
Additionally, we observe an arrival≈ s aer the first one, which is a reflection
from the  (FE branch in Fig. .). In the third group (green), this reflection is
already closer to the first arrival, and the first-arriving pulse is a superposition of
the DE branch from the transition zone and the BC phase from the upper mantle
and depth phases. e next group (dark blue) is quite heterogeneous and marks
the transition from  triplications to  triplications.

In the cyan group, beginning at °, the refractions above and below the 
arrive almost at the same time and collapse into a single pulse. e reflected
phase is usually quite weak and not visible at all here. e two clearly separated
arrivals hence correspond to P (two overlapping refractions) and pwP (another
two refractions). In the next two groups (grass green and purple), the refracted
phase from above and below the  begin to separate, so that they spill into pwP
once more. e most distant group (pink) shows clearly separated P and pwP
pulses no longer affected by triplications. e shape of this teleseismic waveform
does not change much out to ≈ ° distance.

Hand-picked arrival times of the different triplication branches have been
used in a few tomographic studies (Grand, , ), although this approach
fails to take into account the finite frequencies of seismic waves. As Fig. .
demonstrates, the triplications are oen not clearly separated, due to several
factors. e finite duration of the source rupture has a low-passing effect. Earth’s
intrinsic aenuation disperses the P-wave pulse, which does not contain much
energy above Hz. Additionally, waves of a finite wavelength λ are influenced
by scaerers off of the direct path, if the detour to reach the scaerer is less than
λ/2, which is the definition of the Fresnel zone. is argument is continued in
Sect. ..
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.. Waveform modeling

We download broadband seismograms from the IRIS and ORFEUS data manage-
ment centres. e waveforms are corrected are band-passed between .Hz
and .Hz, de-trended, and transferred to ground displacement by deconvolving
the instrument responses. A time window is cropped from  s before to  s
aer the theoretical P arrival. Noisy seismograms are singled out by a clustering
algorithm and removed manually.

In order to do cross-correlation measurements for waveform tomography,
it is necessary to compare a synthetic waveform to the observed seismogram.
Synthetic seismograms are calculated using the reflectivity method of Fuchs and
Müller (). As a reference model we use IASP (Kenne and Engdahl, ),
together with the density and intrinsic aenuation of PREM (Dziewoński and
Anderson, ).

Fig. . demonstrates the challenge ofmodelling regional P-waveforms. Within
a short timewindow, three to five triplicated phases arrive (Fig. .a). If the earth-
quake is shallow, as most earthquakes are, the surface-reflected phases pP, sP or
pwP arrive within a few seconds of P, and are themselves triplicated (Fig. .b).
For an earthquake at ° epicentral distance, ten phases arrive within less than
 s, triplicated by both the  and the  discontinuities. e polarity of the re-
flected phases is negative compared to the refracted phases, and the depth phases
may have reversed polarity depending on the source plane orientation. Hence
the overall waveform is highly sensitive to the exact depth, mechanism, and dis-
tance of the earthquake.

Additionally, the finite duration of the source process is imprinted on the
seismogram, which is the convolution of the moment rate function ṁ, termed
source time function (STF), with the Green’s function ~G(~rs, ~rr, τ). Since duration
of the STF is usually of several seconds, it can change the waveform completely.

If the maximum frequency in the seismograms is f � 1/T , where T is the
duration of earthquake rupture, then the source time function is sometimes ap-
proximated by a Dirac delta, a triangular function or a Gaussian. is is usually
done in surface wave tomography and long-period waveform inversion. We use
earthquakes of moment magnitudes between . and ., where T is between
one and several tens of seconds, and we want to invert up to dominant periods
of up to  s. Hence this approximation is too rough for our purposes, and we
need explicit estimates of each STF in order to construct the matched filter.

.. Source inversion

As seen in the previous section, waveform tomography requires an inversion
for the temporal and spatial parameters of the earthquake sources prior to the
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Figure .: Flowchart of the source inversion procedure as described in (Sigloch
and Nolet, ).

actual tomographic inversion. For the deconvolution of the STF, we use teleseis-
mic P-waves rather than the complex, triplicated regional waves. We briefly
describe the procedure here and in Fig. ., for details see Sigloch and Nolet
(): We remove obviously problematic stations and align all waveforms to
the arrival of the P-phase (VanDecar and Crosson, ). We then choose a rea-
sonable candidate depth range to survey, – km for shallow events and NEIC
depth ±30 km for deep events. en we execute the following scheme for each
candidate depth: First a joint deconvolution of the synthetic seismograms, cal-
culated with the NEIC moment tensor M0 from the measured seismograms is
done, resulting in an STF estimate ṁ(τ). Source orientation is assumed to be
constant during the rupture, so that ṁ(τ) is identical for all components of the
moment tensor. Second, with this STF, an update for the moment tensor δM is
calculated and the amplitudes of all stations are corrected individually. e new
moment tensorM0+δM and the amplitude corrections are used to derive a new
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STF estimation and this is repeated, until the RMS misfit between synthetics and
broadband seismograms has converged.

Aer all depths have been treated, we manually choose the depth, at which
the RMS misfit is minimal and the STF does not contain any significant negative
parts, which would be unphysical. e STF and moment tensor results for this
“most likely” depth are retained for kernel calculation and tomography.

e teleseismic Green’s functions are calculated by the WKBJ code of Chap-
man (), using IASP as reference model. For source inversion we use only
waveforms from globally distributed, reliable broadband stations (GSN and Geo-
scope networks). For typical earthquakes, around  of these stations are located
within teleseismic range. Since STF deconvolution is a numerically sensitive op-
eration, we deliberately use only this small, high-quality ensemble, rather than
all available broadband stations. e spatial distribution of these permanent, in-
ternational network stations is relatively even, whereas a deconvolution from
all IRIS stations would always be dominated by the + receivers located in
North America. eir waveforms and misfits are highly correlated, so that the
additional information content with regard to the source is low. However, all
available stations will later be used for tomography.

We always aempt to invert for a single STF that fits all global teleseismic
data, but in about one out of three earthquakes, we need to allow for two or more
regional STF solutions, e.g., when the European station cluster cannot be fit to
the same STF as the North American cluster. is may be due to structure close
to the source, like a subducting slab or be an effect of source directivity. Our
view of a “source time function” is pragmatic: we want it to absorb all signal
that is common to all seismograms, even when that signal does not derive from
the source rupture sensu stricto. e remaining signal can then be interpreted
as an imprint of the structure along the wave-path.

2.3 Sensitivities

.. Waveform tomography – direct phases

e concept of arrival time of a phase, which may be picked manually by an an-
alyst, assumes a broadband minimum-phased signal. In a heterogeneous Earth,
scaering off of the “direct” path adds a small, frequency-dependent component
to the direct waveform. Hence scaering introduces a nonlinear dispersion even
if the medium is perfectly viscoelastic (Dahlen et al., ; Nolet, ). is dis-
persion reflects the scale-dependent interaction of different finite wavelengths
with the mantle heterogeneities that we want to image. Hence it embodies the
information that waveform inversion captures above and beyond the ray theo-
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retical approximation. We measure this dispersion by the method of matched
filtering (Sigloch and Nolet, ).

A predicted waveform ~u(t) is synthesized from six partial Green’s functions
~Gj(~rs, ~rr, t), weighted by the six independent components of the moment tensor
Mj , and convolved by the source time function ṁ(t). e broadband ~u(t) is im-
mediately bandpass filtered to ~uk(t), through convolution with a filter response
fk(t) (k is the frequency band index). Hence the finite-frequency synthetic is

~uk(t) =
6∑

j=1

~Gj(~rs, ~rr, t) · ṁ(t) ·Mj · fk(t), (.)

which must be compared to an accordingly filtered observed waveform ~uo
k(t).

For this we parametrize ~uk(t) by the two observables (misfit measures) that we
want to estimate: the traveltime anomaly δTk and the amplitude anomaly δAk,

~̂uk(t) = Ak~u
o(t− δTk). (.)

~̂uk(t) is the matched filter, and the optimal δTk, δAk are obtained by minimizing
the RMS misfit between ~̂uk(t) and ~uo

k(t). is is equivalent to finding the time
shi δT that maximizes the cross correlation between ~̂uk(t) and ~uo

k(t).
With this method, we obtain up to 2 · k frequency-dependent misfit observ-

ables δTk, δAk from one broadband P-wave seismogram. e derivative of these
misfits with respect to the Earth model can be expressed in so-called sensitiv-
ity kernels Ki(~rx). ese represent the sensitivity of the traveltime misfit or the
amplitude misfit with respect to changes in P-wave velocity ∆VP/VP at a given
point ~rx. e traveltime anomaly δTk is then modelled as

δTk =

∫
⊕Kk(~rx)

∆VP

VP
(~rx) d

3~rx. (.)

Obviously, this kernel has to be calculated using a reference velocity model.
Equation . and the construction of the kernel Kk contain the assumption that
the traveltime anomaly δTk originates exclusively from single scaering off of
anomalies ∆VP/VP, which quantify the difference between the reference model
and true Earth structure. is so-called Born approximation is justified by the ob-
servation that the magnitude of lateral mantle heterogeneities ∆VP/VP is small,
typically on the order of a few percent, so that multiple scaering can be ne-
glected. Kernel Kk is the first Fréchet derivative of δTk towards ∆VP(~rx) (Mar-
quering et al., ).

Dahlen et al. () proposed a fast algorithm to derive kernels for teleseismic
body waves by paraxial ray tracing. is effectively uses ray theory to go beyond
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the limits of ray theory, since it synthesizes sensitivity kernels of finite volume
from the interaction of an infinity of rays. e method has been applied to tele-
seismic body waves with great success (Montelli et al., ; Sigloch et al., )
and was extended to surface waves (Zhou et al., , ; Tian et al., ) but
its scope is limited to phases without caustics, diffractions or other wave effects
(Dahlen et al., ; Nissen-Meyer et al., a).

.. Waveform tomography – arbitrary phases

Triplicated waveforms, with their interactions of refracted and reflected phases
around the discontinuity, are not adequately modelled by the ray theoretical for-
malism. e caustics at turning points A–F (Fig. .) would lead to infinite am-
plitudes at the corresponding distances. Moreover, the ray-centred approach by
Dahlen et al. () works strictly speaking only in a continuous velocity model.
Hence we need to calculate the kernels from the full wavefield instead.

Computing the first order perturbation δ~u(t) of a seismic waveform ~u(t) in-

volves the wavefield from source to every possible scaering location
→

~u (t, ~r),
and of the scaered wavefield to the receiver. anks to source-receiver reci-
procity, this second wavefield may instead be replaced by the back-propagating

wavefield
←

~u (t, ~r) from receiver to scaerers, which is generally much cheaper
computationally (Nissen-Meyer et al., a, eqn. ). is is conceptually simi-
lar to the adjoint method (Tromp et al., ).

δu = −
∫
⊕
[
δρ
→
v i·

←
v i+

→

E ij·
←

EklδCijkl

]
d3~r. (.)

→

~v = ∂t
→

~u is the velocity field of the forward propagating wave and
→

E ij =
1
2

[
∂
→
ui

∂rj
+

∂
→
uj

∂ri

]
is the strain tensor. Note that this is index notation, so summation

over repeat indices is implied. e arrows serve as a reminder of the forward
and backward nature of the wavefields and strains. For an isotropic medium, the
dependence on the Lamé parameters is

δu = −
∫
⊕
[
δρ
→
v i·

←
v i+

→

E ii·
←

Ejjδλ+ 2
→

E ij·
←

E ijδµ
]
d3~r. (.)

If the inversion is for δVP and δVS rather than for the Lamé parameters δλ, δµ,
we replace them:

δµ = V 2
S δρ+ 2VSρ δVS (.)

δλ =
(
V 2
P − 2V 2

S

)
δρ+ 2VPρδVP − 4VSρ δVS (.)
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Replacing δµ and δλ in Eq. (.), we have

δu =

−
∫
⊕
[
δρ
(
→
v i·

←
v i +

(
V 2
P − 2V 2

S

)
·
→

E ii·
←

Ejj + V 2
S ·
→

E ij·
←

E ij

)
+ δVP

(
2ρVP ·

→

E ii·
←

Ejj

)
+ δVS

(
−4ρVS ·

→

E ii·
←

Ejj + 2ρVS ·
→

E ij·
←

E ij

)]
d3~r

Equation . shows that VP-kernels are straightforward to calculate because
they only involve the diagonal elements of the strain tensor, which is equiva-

lent to the divergence of the displacements:
→

E ii =
∂
→
ui

∂ri
= ∇

→

~u. Hence for P-wave
tomography, we need to store only the displacement field ~u(~r), rather than the
full strain tensor Eij(~r). e exact expression of the kernel now depends on the
chosen misfit criterion. We prefer the cross-correlation traveltime misfit mea-
sured on one component i (in the case of P-waves usually BHZ), defined as

δT = −
<
∫∞
0

iωui(ω)δui(ω)dω∫∞
0

ω2ui(ω)ui(ω)dω
. (.)

Withui(ω) = Gij(~rs, ~rr, ω)ṁ(ω)Mj , we can calculate the sensitivity of δT w.r.t. δVP.
Using the definition of the kernel in Eq. (.), we arrive at

K(~rx) =
6∑

j=1

2VP(~rx)ρ(~rx)∫∞
0

ω2|Gsr,ij(ω)ṁ(ω)|2dω
·Mj (.)

·<
∫ ∞

0

iω Gsr,ij(ω)|ṁ(ω)|2

∇
→

~Gj(~rx, ω)∇
←

~Gj(~rx, hω)dω.

e term |ṁ(ω)|, which Dahlen et al. () originally denoted as the source
term, contains the source spectrum, but also the bandpass filters. Gsr(ω), the
Green’s function from source to receiver, introduces any intrinsic aenuation of
the reference Earth model into the kernel.

.. Spherical Earth kernels

e calculation of a global wavefield at a dominant period of  s requires around
104 CPUh when a full -D forward solver like SPECFEM (Komatitsch and Tromp,
b) is used. For a realistic iterative global tomography using > 105 wave-
forms, the calculation cost would be � 109 CPUh, which is completely pro-
hibitive. In a spherically symmetric background model, this cost can be reduced
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 second dominant period

 second dominant period

Figure .: Traveltime sensitivity kernels for ∆VP/VP, calculated by the Axisem
spectral element code. Sensitivities are for a cross-correlation traveltime misfit,
in the time window of 5 s before to 15 s aer the estimated arrival. Dominant
period is 10 s for the upper two rows, and 20 s for the lower two rows. Distances
(from top le): °, °, °, °, °, °. Background model: IASP; source: ex-
plosion; receiver: z-component. e -discontinuity is marked by the dashed
line, the  by the dashed-doed line. Note that most kernels do not feature the
famous doughnut hole, which is filled in by the sensitivities to the two disconti-
nuities.
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Figure .: Nominal ray paths of first arriving P-waves in IASP. None of the
rays boom out in the lower part of the transition zone. Contrast this to the
realistic (finite-frequency) sensitivities of Fig. ., which extend broadly across
the entire MTZ.

dramatically: -D wavefields in a layered Earth can be computed at the cost of
the equivalent -D wavefields, since the symmetry implies that one dimension
may be calculated analytically (Nissen-Meyer et al., a). Forward wavefields
are pre-computed for reasonable depth increments (e.g. increments of  km for
depths from  to  km, and increments of  km from  to  km, requiring
 simulations). e backward wavefield needs to be calculated just once, as-
suming that all receivers are located at the surface or within one P-wavelength
of it. e  forward calculations need to be done four times (Nissen-Meyer
et al., a, p. ) for

. a Mzz monopole source

. a 1
2
(Mxx +Myy) monopole source

. a Mxz dipole source

. a Mxy quadrupole source.

Since the response of a station at azimuth φ to a Mxz-source equals that of a
station at φ − π/2 to a Myz-source, and response of a (Mxx −Myy)-source at
φ equals that of a Mxy-source at φ − π/4, we can reconstruct the response of
a spherically symmetric Earth to an arbitrary moment tensor from these four
calculations. e backward propagation needs to be done twice:

. pz monopole source for the Z-component of the seismogram

. px or py dipole source for the E- or N-component of the seismogram

Again, px or py are equivalent if the receiver location is rotated by π/2. Using
the -D to -D reduction strategy applied in the SEM-codeAxisem (Nissen-Meyer
et al., b, ), the computation cost for a -D global wavefield of dominant
period T = 5 s is around  CPUh on an i machine, or ≈ 104 CPUh for the
entire wavefield library. Since the calculation grows at O(1/T 3), a library of
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dominant period . s would still require less than 106 CPUh, which is easily
feasible nowadays. From these  pre-computed wavefields, kernels for any
arbitrary time window in the seismogram can be calculated on the fly in the
frequency domain, which is memory intensive but computationally cheap.

Time window choices for these kernels are not limited to any specific phase
arrivals or wave types, although it is certainly judicious to chose parts of the
seismogram that contain significant seismic energy rather than noise. e win-
dow length should be chosen with care. A window that is too long will contain
more noise than necessary, and the diameter of the kernel will grow, since longer
detours from the direct path are allowed. e outer parts of the kernel will con-
tain the higher-order Fresnel zones, which oscillate rapidly and are unlikely to
meaningfully contribute in the inversion. Windows too short will contain too lit-
tle signal and be more prone to cycle skips. e window length should probably
be no shorter than twice the dominant period of the bandpass filter. It will not be
possible to calculate kernels separately for each of the triplicated phases, since
in real data they overlap in time (cf. Fig. .). However, it is neither necessary
or even desirable to revert to this Dirac-type, ray-theoretical way of process-
ing. e kernel formalism ensures the proper interpretation of the waveforms,
as long as the actual measurements use the same window lengths and filters as
the wavefield computations.

.. Kernel gallery

A selection of VP-kernels at dominant periods of  s and  s are ploed in
Fig. ., for an explosive source at the surface and the z-component of the seis-
mogram. Especially at ° epicentral distance, the two frequency bands differ
significantly in their sampling of the MTZ. While the  s kernel samples the
regions directly below the  and the , the  s kernel samples mainly the
region above the . is is particularly striking when compared to the sen-
sitivity of the first arriving rays (Fig. .), which is completely confined to the
region directly below the discontinuities. e ° and ° kernels in the  s band
have nearly complementary sampling characteristics in the transition zone. e
° kernel is negative where the ° one has its largest positive values. With
dense arrays like the USArray, we obtain many ° and ° recordings for the
same earthquake, which thus should yield good constraints on the MTZ. e
° to ° kernels in the second and forth row look more similar to teleseismic
kernels, even though clear imprints of the MTZ remain even for a ° kernel, re-
sulting in an appearance quite different from the ° kernel of the original Dahlen
method (Dahlen et al., ). Geodynamically interesting regions just above the
discontinuities, where effects of fluid release might be present (Ohtani, ),
can classically be sampled only by teleseismic waves. Since they traverse the
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Figure .: Source and stations in two regional data sets for North America and
Europe. e rays connect source-receiver combinations at distances between 
and  degrees. Earthquake locations are shown as beachballs. Station colour
codes for the goodness of fit between to observed and modelled waveforms at
each station. Red denotes median cross-correlation coefficient of CCmax > 0.8,
which we consider a reasonable threshold for accepting any individual measure-
ment. Orange and yellow colours indicate a lower median fit, which means that
only some waveforms at this station may be used. Marker size is proportional to
the number of events recorded by the station.

MTZ at steep incidence angles, their vertical resolution is quite limited, in con-
trast to triplicated phases. Topography on the discontinuities may also influence
the waveforms, an effect for which sensitivities may be computed from from the
same wavefields (Nissen-Meyer et al., a; Colombi et al., ). Ultimately
it will be desirable to separate topography effects from those of the volumetric
velocity structure, by integrating both kinds of kernels into a joint inversion.

2.4 The data sets
We identified two regions that appear particularly suited to tomography of the
transition zone using triplicated body-waves: North America and Europe. ey
are densely instrumented, decently surrounded by earthquake sources, and large
enough for wave paths to penetrate the MTZ on their way from source regions
to receivers.



. e data sets 

Figure .: e fit between a triplicated P-wave and its synthetic, filtered into
frequency pass bands. e epicentral distance is .°, so that the waveform
contains triplications from both the  and  discontinuities. is example
uses the same broadband waveforms as seen in Fig. .; the seismic station is
VALT (Mount St. Helens crater rim).

.. North America

Since the advent of USArray, North America is clearly the best-instrumented
large landmass on Earth. USArray stations are spaced by ≈ km on a regular
grid and deliver superb broadband waveforms.

e data from the first year of instalment already brought new insights into
the subduction history of the Farallon plate and the formation of the Rocky
mountains (Sigloch et al., ) or to fluid transport in the Gorda subduction
system (Cao and Levander, ). e recent move of the deployment into the
Great Plains has brought the seismicities of the Guerrero subduction and along
the western Canadian margin into distances of ° to °, creating large numbers
of crossing paths in triplication range. USArray recordings are supplemented by
permanent networks in the US, Canada, andMexico, and by data from temporary
experiments. All North American data was downloaded from the IRIS data man-
agement center (DMC). Currently IRIS delivers about  global stations per
event, of which ≈ are located in larger North America, i.e. between °W
and °W in the Northern Hemisphere.

We found that between // and //,  regional earthquakes
generated triplicated P-wave recordings of acceptable signal-to-noise ratio. is
yielded   unique, acceptable wave paths and broadband waveforms in total.
We applied Gabor bandpass filters (bandwidth one octave) at centre periods of
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Northern American data set
CClim . . . . . .
 s           
 s          
 s        
. s      
. s      
total           
broadband        

European data set
CClim . . . . . .
 s      
 s      
 s      
. s      
. s      
total       
broadband      

Table .: Number of acceptable traveltime measurements in the various fre-
quency bands, as a function of the chosen rejection threshold CClim. In total
 (NA) and  (Europe) broadband seismograms were available.
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Figure .: Measured traveltime anomalies δT for all paths in the North Amer-
ican data set, in all five frequency bands (distinguished by colour). Only data
whose fit exceeds CCmax > 0.8 are ploed. e histograms are normalized so
that at δT = 0, each bar has value .

 s,  s,  s, . s, . s. Since we make cross-correlation measurements, the
correlation coefficient between observed (filtered) waveforms and their synthet-
ics using IASP serves as the primary measure of goodness of fit. We denote by
δT the time shi that maximizes the cross-correlation between observed seismo-
gram and matched filter as in Eq. (.), and by CCmax the correlation coefficient
at this optimum time shi. Hence CCmax acts as a quality measure, and δT is the
actual finite-frequency observable to be interpreted by tomography. Previous ex-
perience (Sigloch and Nolet, ; Sigloch, ) lets us assume that CClim ≥ 0.8
is a good threshold for acceptance. If we only accept filtered waveforms with
CCmax ≥ 0.8,   out of   remain (Table .). Fiing waveforms in the
five separate frequency bands thus increases the number of usable datamore than
fourfold, compared to fiing only the broadband seismograms. In particular, we
can oen accept at least one passband measurement even when the CCmax of
the broadband measurement is clearly too low – this salvages many important
wave paths. For teleseismic waves, another frequency band below  smight rea-
sonably be added, but for regional P-waves this is less interesting, since the  s
kernels already fill up the entire depth range of the transition zone (see Fig. .).

Figure . shows a comparison between matched filters and real waveforms
for the seismograph station at Mount St. Helens crater, which is by no means an
ideal station. Still three out of five bands haveCCmax > 0.8 and could contribute
to tomography. ese seismogramswere calculated using IASP velocity model.
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For an actual tomography of Northern America it may be beneficial to calculate
matched filters and kernels in a regional -D model; for a recent model and a
comparison between previous results see Chu et al. ().

Figure . shows that the average absolute traveltime anomaly δT is simi-
lar in all bands, with a standard deviation of ≈. s. From our experience with
teleseismic P-waves, we know that a large part of this δT signal is due to mislo-
cated sources rather than to mantle heterogeneity; both contributions are jointly
inverted for by our tomography soware.

ese δT measurements on triplicated data will be embedded into a larger
data set of teleseismic P-wave data (Sigloch, ). e laer have beer az-
imuthal coverage, since they include earthquakes from the east (mid-Atlantic
ridge and southern Europe). Unfortunately, very few seismic sources east of
North America are located at regional distances.

.. Europe

Compared to North America, the European seismic networks are less homoge-
neous, even though the NERIES initiative brought a great advance. We down-
loaded our waveforms from the ORFEUS DMC. is archive currently contains
around  seismic stations, mainly in Europe, but also several temporary instal-
lations by European agencies, e.g. in Indonesia. Figure . shows that data cover-
age is quite uneven. Several large countries like France and Poland are sparsely
instrumented, other networks do not share their data yet. ere have been sev-
eral large temporary installations in Central Europe and Scandinavia, data which
would be very interesting but are being released only slowly. e IRIS DMC
holds hardly any broadband stations above and beyond the ORFEUS DMC. On
the other hand, the geometry and seismicity of Europe is more favourable than
for North America. Hellenic seismicity is recorded over a large azimuthal range
from Spain to Russia and produces many crossing paths, together with West-
ern Mediterranean seismicity recorded in Central Europe, and seismicity on the
North Atlantic ridge between Iceland and Svalbard. One of the most interesting
features in the transition zone are the slab remnants below the Northern Balkans
and the Carpathians, which cannot be easily connected to the established sub-
duction regimes. Sampling of the MTZ by triplicated waves is very good in this
region, and should help in further illuminating its mantle processes. A clear dif-
ference to the North American data is that few earthquakes above magnitude
 are recorded in Europe. Since we obtain best correlations between data and
synthetics at around magnitude ., the data quality is generally lower than in
North America. In total, the number of available stations in larger Europe (de-
fined as the region between °W and ° E in the northern hemisphere) is .
Our dataset contains  earthquakes, which recorded  broadband seismo-



. e data sets 

grams (unique wave paths).  out of   passband measurements have a
data-synthetic fit that exceeds CCmax > 0.8. Compared to the North America,
we obtain about five times fewer waveforms, and seven times fewer acceptable
δT measurements. is lower average signal quality seems to be mainly due to
the weaker seismicity around Europe.

.. Information content of triplicated P-waveforms

Before embarking on tomographic inversions, we want to convince ourselves
that triplicated waveforms do indeed contain coherent and usable structural in-
formation. e broad footprint of USArray may be sliced up into dense seismic
profiles at various back-azimuths, each featuring dozens of stations. Here we
consider one such quasi linear section, generated by an earthquake from Guer-
rero, Mexico. Figure . shows the P-waveforms of  displacement seismo-
grams in a range between  and ° distance. e traces are color coded, where
green means zero displacement, blue is negative displacement, and red is posi-
tive. Traces are time-aligned on the IASP-predicted arrivals of the first P-phase.

e first arrival in the real seismograms occurs around + s for all traces, a
systematic bias w.r.t. to IASP that is most likely due to source mislocation. e
blue triangular move-outs (e.g. to + s at ° distance) are the triplicated phases
of P. Starting at + s, the whole P-arrival sequence is “echoed” (also in blue) –
this is the depth phase pP, in itself triplicated, for this shallow event ( km deep).

If the Earth were truly spherically symmetric, the P-arrivals would be aligned
smoothly – if not along a vertical line of t = 0, then along some other smooth
line of steep move-out. is is clearly not the case, signalling the kind of lateral
mantle heterogeneity that seismic tomography targets. Strong unevenness is for
example observed between  and ° distance, where the P-onset varies between
 s and + s.

e largest delays are present between  and ° distance. is might be
explained by a low-velocity anomaly directly below the , since only waves of
this distance range boom there (see Fig. .). Recordings at more distant sta-
tions would be less influenced by this hypothetical anomaly, since they traverse
it at a steeper angle, with correspondingly lower sensitivity. However, a second
observation leads to another explanation: e second triplication (here arriving
at≈ s at °), represents the phase booming directly above the . According
to IASP, it should be recorded only to a distance of .°, but here we observe
it to distances exceeding °. is could be explained by a depression of the -
km discontinuity to a depth of  km, which would also explain the delay of the
first phase at this distance. A depressed  in this region of subduction is plau-
sible, since the lower temperatures of the slab would shi the phase transition to
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higher pressures and deeper depths. Indeed, studies from SS precursors Houser
et al. () showed a  depressed to – km in Northern Mexico.

e second subplot of Fig. . shows several stations at  to ° distance,
where the second triplication should not be recorded. We do observe the phase,
but only at some of the stations (at + to + s), which suggests that the depression
of the  is quite localized. From the azimuthal spread of the stations, we can
estimate their booming points to be spaced only by tens of kilometres, and yet
the imprint of the  in the seismograms is quite variable. Since the maximum
frequencies in these waveforms are less than Hz, the scale of the undulations on
the  must be close to the resolution limit of these waves. e aforementioned
precursor study lacked the resolution to resolve such small features.

2.5 Discussion

Using triplicated P-waves fills an important gap in waveform tomography. Tele-
seismic waves have relatively poor depth resolution in the MTZ, and lile sen-
sitivity to the discontinuities themselves. Since regional waves have this resolu-
tion, we hope to greatly increase the resolution of future P-wave models in the
transition zone. So far, triplicated body waves have hardly ever been used for to-
mography, since they are not well modelled by classical ray theory. e appear-
ance of the actually measured waveform has a clear finite-frequency character
rather than resembling a sequence of Dirac pulses.

Our choice ofmisfit criterion is the cross-correlation traveltime – effectively a
phase shimeasurement, given our relatively narrowpass-bands. Cross-correlation
is the optimal strategy for the detection and estimation of a known signal (the
synthetic waveform or “matched filter”) in a noisy version of the same signal (the
measured waveform), where the noise is assumed to be white additive Gaussian
noise in each passband. Intuitively it might seem that cross-correlation may not
be a suitable misfit for triplicated waves, since for all but the highest frequen-
cies, the time window will necessarily encompass all three triplicated phases,
each of which has different spatial sensitivity. Hence calculating one traveltime
delay on all three overlapping phases may seem unphysical. We believe that this
understanding of the cross-correlationmisfit is misguided by (ray-theoretical) in-
tuition. While it is true that one cross-correlation applied to a broadband signal
only calculates one delay time for the whole broadband time series, this is actu-
ally not what we propose to do. When spliing the signal intomultiple frequency
bands k and calculating separate δTk, several, ideally independent measurements
are done on the waveform. e corresponding sensitivity kernels describe the
sensitivity of the model towards each of these measurements. It does not de-
scribe the sensitivity towards the traveltime of one particular (ray-theoretical)
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Figure .: Evidence of -D structural information contained in triplicated P-
waves. Top: we extract a quasi -D profile of  USArray stations, recording
an earthquake in Mexico (Event: // ::, Mag: ., Lat: ., Lon:
–., Depth:  km). Middle: Section of broadband seismograms at triplication
distances (between  and °, green in the map plot). Z-component, colour
coded, green is zero displacement, blue negative, red positive. e traces are
normalized separately, and aligned to the first arriving P-wave as predicted by
IASP. See text for discussion. Boom: Seismograms from the ensemble of
stations at quasi-constant distance of  to ° (red triangles in map plot). e
second P-triplication is observed on some of the traces (at t = – s) but not on
others, pointing to variations on the -km discontinuity.
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phase. e kernel computation formalism ensures that the proper sensitivity
for each window and filter is computed, whatever they may be, meaning a time
window containing triplicated waves can be used just as any other time window.
One should just not expect a ray-theoretically intuitive meaning corresponding
to each measurement.

e calculation of full wavefields in a laterally heterogeneous -D Earthmodel
is still prohibitively expensive for frequencies above 0.05 Hz. Hence waveform
tomography must currently choose between one of two compromises:

. In a laterally heterogeneous Earth model, calculate low frequency wave-
fields (< 0.05 Hz), since high frequencies are not affordable. is means
focusing on surface waves and the low-frequency part of body waves. Due
to the large wavelengths of body waves, their low-frequency part offers
lile resolution in the mantle transition zone (already at a dominant pe-
riod of  s, the kernel fills the entire transition zone). e high cost of
wavefield calculations mandates that they need not be done too oen. e
adjoint method proposed by Tarantola (), and applied in continental-
scale seismology by Tromp et al. (), Fichtner et al. () and Zhu et al.
(), offers an efficient solution by calculating wavefields only once per
source, resulting in composite, so-called event kernels, which indicate the
descent direction for the (linearised) gradient search. Several iterations
are possible and customary, since wavefields can be computed in arbitrary
Earth models, in particular also the updated ones.

. In a spherically symmetric Earth model, calculate kernels that span any or
all parts of the seismically relevant frequency spectrum. is broadband
capacity has defined “finite-frequency tomography” since Dahlen et al.
(). Nissen-Meyer et al. (b) showed that full wavefield kernel com-
putations are feasible for frequencies up to Hz, due to the extreme compu-
tational savings that result from smart exploitation of the spherical symme-
try. e use of high-frequency waves promises accordingly higher image
resolution. emethod is so efficient that all source-to-receiver kernels are
explicitly calculated, turning the problem into one of matrix inversion, for
which powerful analysis concepts and computational tools arewell known.
e disadvantage is that several iterations are not possible, since the Earth
model would lose its spherical symmetry aer the first update. is might
be a serious drawback in media with heterogeneity of strong magnitude,
where the single-scaering (Born) approximation starts breaking down,
but where several linearised iterations might still lead significantly closer
to the global misfit minimum than a single one.
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We believe that the finite-frequency approach is currently beer suited to
tomography of the upper mantle and the transition zone, since (a) being able to
use the highly resolving body waves across their entire frequency range should
be a big advantage, and (b) all previous studies let us expect only relatively weak
perturbations from a layered background model like IASP, on the order of a
few percent, so that the single-scaering approximation should be completely
adequate.

A global reference model may not be best suited for a regional study. Rather,
careful selection of a suitable regional reference model is a crucial step of a to-
mography.

We note that the mixed use of forward modelling codes (WKBJ, reflectiv-
ity method) has historical reasons and reflects an unfinished (though functional)
stage of development. Ultimately all steps will be carried out with the most com-
plete method, Axisem. For inversion of source time functions from teleseismic
data, WKBJ has been an efficient tool since (Sigloch and Nolet, ). It is com-
pletely adequate for teleseismic waves, and this STF inversion step is treated as
independent from the modelling of triplicated waveforms. Reflectivity is used
for efficient forward modelling of the triplicated broadband seismograms (WKBJ
cannot easily compute triplicated phases, and Axisem is not yet set up to do true
broadband computations efficiently for the number of computations needed). In
order to compute sensitivity kernels, the full wavefield is needed, and we obtain
it from full numerical forward modelling using Axisem (but not yet routinely up
to frequencies of  Hz).

Analysis of triplicated waveforms has so far been mostly applied to deep
events (Tajima andGrand, ; Tajima et al., ), in order to separate the influ-
ence of the discontinuities from the depth phases. We have shown that shallow
events can be modelled when source parameters are carefully estimated. Rou-
tine catalogue estimates (Global CMT (Dziewoński et al., ) or NEIC) do not
deliver all the parameter we need (source time function), or not to the required
accuracy (e.g., source depth).

However, using our own source inversion results from teleseismic P-waves,
we can model the sources sufficiently well for our purposes. e ability to use
shallow earthquakes enlarges the data base enormously, since most earthquakes
occur shallower than  km depth. In particular, good tomographic resolution
requires good azimuthal coverage by sources, but few regions on Earth are sur-
rounded by subduction zones to generate deep earthquakes from all directions.

e regional data sets are promising, both for North America and for Eu-
rope. eywill be seamlessly embedded into a global inversion that also contains
teleseismic P-wave measurements Sigloch (). A regional tomography of Eu-
rope can thus still benefit from events in eastern Asia, i.e. beyond the triplicated
range. Hence the fact that the regional seismocity around Europe is weaker than
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in North America, is compensated by the superiour azimuthal coverage at tele-
seismic distances. Nevertheless, the European network is nowhere as dense as
the USArray, which will make any American mantle structure far beer resolved
in the foreseeable future. Average waveform cross-correlation is poorer in the
European data set than in the North American one. ree possible explanations
come into mind:

. Station quality might be lower. We do not believe this is generally the case,
even though the average distance to the nearest coast is smaller in Europe
than in North America.

. European mantle structure could be more complicated than under North-
ern America, generating a larger mismatch between observed and mod-
elled waveforms. e tectonic history of Europe is oen thought to be
more complex, but tomographic studies since the advent of USArray have
also revealed very heterogeneous mantle structure under North America
(Pavlis et al., ; Becker, ). Hence it is unlikely that the true seismic
velocity structure in the mantle under Europe deviates significantly more
from a layered model than under North America.

. Earthquake sources around Europe may be less suited. We think this is the
main issue. In North America, we can use rather strong strike-slip events
along the west coast, and numerous deep events along the Guerrero sub-
duction zone, many of them exceeding magnitude . European seismicity
is weaker in magnitude and tends to consist of complicated events in the
Aegean subduction and along the Anatolian fault; strike-slip events along
the Atlantic ridge are rather weak. Since some of these events are not con-
tained in the IRIS WILBER archive and thus only the ORFEUS stations were
available to us, our source inversion for them might be more error prone
as well.

e seismic section from the Mexican earthquake demonstrates the high sig-
nal quality of USArray recordings (Fig. .). e discussed strong imprint of a
depressed  in this signal shows that we may need to be careful to properly
parametrize the inversion such that depressed or elevated discontinuities are de-
tected and become part of the tomography result, rather than smearing into bulk
velocity structure. In order to separate the two effects, we are considering the
use of boundary topography kernels (Colombi et al., ), in addition to the
volumetric velocity kernels shown in Fig. ..
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2.6 Conclusion
We conclude that regional body waves should be usable and useful for waveform
tomography. We plan to invert these data using finite-frequency tomography
and kernels from full numerical wavefield computations (Nissen-Meyer et al.,
b), but our conclusions about the nature of the data have broader validity.

Aer careful deconvolution of the source time function and other source
parameters from teleseismic waveforms, we obtain good cross-correlations be-
tween observed and modelled triplicated seismograms, across the broadband
range and even for shallow sources. Due to the much more complex nature of
the waveforms, these fits are lower than what we obtain for teleseismic P-waves,
but are still sufficient to assemble two decently sized tomography data sets for
North America and Europe. e inclusion of these data greatly increase and
complement the sensitivity to transition zone structure, and in particular to the
discontinuities at  km and  km, which so far must be investigated using
waves of far lower signal-to-noise ratio. e abundance and high quality of data
from USArray make the transition zone under North America the natural target
for a first waveform inversion using triplicated P-waves.

2.7 Further reading
In the compilation of this work, further articles were consulted, which have not
been cited explicitly so far: (Fukao, Obayashi, and Nakakuki, ; Müller, ;
Ringwood, )
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Seeed, in: Tide is High

3
Probabilistic seismic source inversion

is chapter was published in Solid Earth Discussions in July 
under the title Fully probabilistic seismic source inversion – Part :
Efficient parametrisation (Stähler and Sigloch, )

Abstract

Seismic source inversion is a non-linear problem in seismologywhere
not just the earthquake parameters themselves, but also estimates of
their uncertainties are of great practical importance. Probabilistic
source inversion (Bayesian inference) is very adapted to this chal-
lenge, provided that the parameter space can be chosen small enough
to make Bayesian sampling computationally feasible. We propose a
framework for PRobabilistic Inference of SourceMechanisms (PRISM)
that parameterises and samples earthquake depth, moment tensor,
and source time function efficiently by using information from previ-
ous non-Bayesian inversions. e source time function is expressed
as a weighted sum of a small number of empirical orthogonal func-
tions, whichwere derived from a catalogue of> 1000 STFs by a prin-
cipal component analysis. We use a likelihood model based on the
cross-correlation misfit between observed and predicted waveforms.
e resulting ensemble of solutions provides full uncertainty and co-
variance information for the source parameters, and permits to prop-
agate these source uncertainties into travel time estimates used for
seismic tomography. e computational effort is such that routine,
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global estimation of earthquake mechanisms and source time func-
tions from teleseismic broadband waveforms is feasible.

3.1 Introduction

Seismic source inversion is one of the primary tasks of seismology, and the need
to explain devastating ground movements was at the origin of the discipline. e
interest is to locate the earthquake source using seismogram recordings, and to
combine this information with geological knowledge, in order to estimate the
probability of further earthquakes in the same region. is purpose is served
well by a variety of existing source catalogues, global and regional. Large earth-
quakes and those in densely instrumented areas are being studied in detail, using
extended-source frameworks like finite-fault or back-projection.

Smaller earthquakes (MS ≤ 7.5), and especially remote events with sparse
data coverage, are beer parameterised by a point source. Most catalogues de-
termine only a location and a moment tensor solution, which oen allows for
identification of the associated fault. But the waveform data contain additional
information: for earthquakes exceeding MS ≥ 5.5, it is generally possible to in-
vert for the temporal evolution of the rupture, described by a time series called
the source time function (STF) (Ruff, ; Houston, ; Sigloch and Nolet,
). While the STF may further aid the understanding of fault characteris-
tics and hazard or the interpretation of an event in a mining context (Gibowicz,
), our primary motivation for estimating it is a different one: the STF con-
volves the broadband Green’s function and strongly affects its waveform. Wave-
form tomography estimates three-dimensional earth structure by optimising the
fit of observed to predicted waveforms, but at high frequencies (e.g., exceeding
. Hz), such fits can only succeed when the source time function is incorpo-
rated into the predicted waveform (Sigloch and Nolet, ; Stähler et al., ).
Hence the purpose here is to develop an automated procedure to routinely esti-
mate broadband source time functions and point source parameters from global
seismogram recordings, including a full treatment of parameter uncertainties.

A few recent catalogues now include STF estimates (Vallée et al., ; Garcia
et al., ), but the treatment of parameter uncertainties is still incomplete. Un-
certainties in the STF correlate most strongly with source depth estimates, espe-
cially for shallow earthquakes (Sigloch and Nolet, ), where surface-reflected
phases (pP, sP) inevitably enter the time window for STF estimation (see Fig..).
Inversion for the STF and the moment tensor is linear, whereas inversion for
depth is inherently non-linear. Hence gradient-free optimisation techniques like
Simulated Annealing (Kirkpatrick et al., ) or the first stage of the Neighbour-
hood Algorithm (Sambridge, a) have become popular; Table . presents an
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overview of gradient-free source inversion algorithms from recent years. ese
optimisation algorithms provide only rudimentary uncertainty estimates.

A natural alternative, pursued here, is Bayesian sampling, where an ensemble
of models is generated. e members of this ensemble are distributed according
to the posterior probability density P (~m), where ~m is the model parameter vec-
tor to estimate. Integrating over certain parameters of this joint posterior P (~m),
or linear combinations thereof, yields marginal distributions over arbitrary in-
dividual parameters or parameter combinations. To the best of our knowledge,
ensemble sampling in the context of source parameter estimation has been tried
twice so far (Wéber, ; Dȩbski, ), and has been limited to a few events in
either case.

A hurdle to using sampling algorithms has been the efficient parameterisa-
tion of the source time function. We propose a parameterisation based on em-
pirical orthogonal wavelets (Sect. ..), which reduces the number of free pa-
rameters to less than  for the STF, and to around  in total. We show that this
makes Bayesian sampling of the entire model space computationally feasible.

A normalised moment tensor is sampled explicitly, and the scalar moment
and absolute values for Mj are derived from the amplitude misfit (Sect. ..).
Section . introduces Bayesian inference as a concept and explains the model
space and prior assumptions. e ensemble inference is done with the Neigh-
bourhood Algorithm (Sambridge, a,b). In Sect. ., the code is applied to a
magnitude . earthquake in Virginia, . Section . discusses aspects of our
algorithm and potential alternatives. We compare to related studies by other
workers in Sect. .. and in the appendix.

Our procedure is called PRISM (PRobabilistic Inference of Source Mecha-
nisms), by applying it routinely, we plan to publish ensemble solutions for intermediate-
size earthquakes in the near future. A usage of uncertainty information gained
from the ensemble is demonstrated in Sect. .., where the influence of source
uncertainties on tomographic travel time observables is estimated. Further in-
vestigations of noise and of inter-station covariances are presented in a compan-
ion paper (Stähler et al., ).

3.2 Method

.. Parametrisation of the source time function

Source time function (STF) is a synonym for the moment rate ṁ(t) of a point
source, denoting a time series that describes the rupture evolution of the earth-
quake. It is related with u(t), the vertical or transverse component of the dis-
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Figure .: Source time function solutions for a MW5.7 earthquake in Virginia,
USA (//) obtained from joint inversion for STF and moment tensor ~M ,
using the iterative linearised optimisation algorithm of Sigloch and Nolet ().
Trial source depths ranged from  km to  km, in increments of  km, and each
deconvolution was based on the same  broadband, teleseismic P-waveforms.
Note the strong changes in STF and moment tensor as a function of depth. Top
le shows the moment tensor solution from the NEIC catalogue for comparison.
For every candidate solution, the percentage of “non-negative” energy is given,
a proxy for how oscillatory (and thus inherently non-physical) the solution is.
e third number gives the average cross-correlation coefficient between ob-
served and predicted waveforms achieved by each solution. At depths between
 and  km, the STF is pulse-like, simple, non-negative, and waveform cross-
correlation aains its maximum, signalling the most likely depth range for this
event. e present study offers an approach to quantify these qualitative trade-
offs and judgements.
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placement seismogram observed at location ~rr by convolution with the Green’s
function:

u(t) =
3∑

j=1

3∑
k=1

∂Gj

∂xk

(~rs, ~rr, t) ∗ s(t) ·Mj,k (.)

where ; s(t) ≡ ṁ(t) is the STF; Mj,k denotes the elements of the symmetric,
3 × 3 moment tensor, M; and G(~rs, ~rr, t) is the Green’s function between the
hypocenter ~rs and receiver location ~rr.

Due to the symmetry of M, we can reduce eq. . to a simpler form:

u(t) =
6∑

j=1

gl(t) ∗ s(t) ·Ml, (.)

where Ml are the unique moment tensor elements and gl are the respective
derivatives of the Greens function. e elements gj are no -D vectors because
we compute either only its vertical component (for P waves) or its transverse
component (for SH waves). In either case, ~g is a superposition of six partial
functions gj , corresponding to contributions from six unique moment tensor el-
ements Ml, with a weighting for the nondiagonal elements of M, that appear
twice in eq. .. e orientation of the source is considered to remain fixed dur-
ing the rupture, i.e., Ml does not depend on t, so that a single time series s(t) is
sufficient to describe rupture evolution.

For intermediate-size earthquakes (5.5 < MW < 7.0) the STF typically has a
duration of several seconds, which is not short compared to the rapid sequence
of P-pP-sP or S-sS pulses that shallow earthquakes produce in broadband seis-
mograms. Most earthquakes are shallow in this sense, i.e., shallower than  km.
In order to assemble tomography-sized data sets, it is therefore imperative to ac-
count for the source time function in any waveform fiing aempt that goes to
frequencies above ≈. Hz (Sigloch and Nolet, ).

Equation . is linear in s(t), so that s(t) can be determined by deconvolving
~G from ~u if Mj in considered fixed. However, ~G depends strongly on source
depth (third component of vector ~rs), so that a misestimated source depth will
strongly distort the shape of the STF, as demonstrated by Fig. .. Another com-
plication is present in the fact that observed seismograms ~u(t) (as opposed to
the predicted Green’s functions) are time-shied relative to each other due to
-D heterogeneity in the earth, and should be empirically aligned before decon-
volving s(t).

ese issues can be overcome by solving iteratively for s(t) and Mj (Sigloch
and Nolet, ; Stähler et al., ), but the approach requires significant human
interaction, which poses a challenge for the amounts of data now available for
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regional or global tomography. Moreover, such an optimisation approach does
not provide systematic estimates of parameter uncertainties.

Monte Carlo sampling avoids the unstable deconvolution and permits straight-
forward estimation of full parameter uncertainties and covariances. However,
the model space to sample grows exponentially with the number of parameters,
and the STF adds a significant number of parameters. In a naive approach, this
number could easily be on the order of , i.e., computationally prohibitive. For
example, the STFs deconvolved in Fig. . were parameterised as a time series of
 s duration, sampled at  Hz, and thus yielding  unknowns – not efficient,
since neighbouring samples are expected to be strongly correlated. is raises
the question of how many independent parameters or degrees of freedom this
problem actually has.

Due to intrinsic aenuation of the earth, the highest frequencies still signif-
icantly represented in teleseismic P-waves are around  Hz. If from experience
we require a duration of  s to render the longest possible STFs occurring for
our magnitude range (Houston, ), then the time-bandwidth product is  Hz
*  s = , and the problem cannot have more degrees of freedom than that.

Efficient parametrisation then amounts to finding a basis of not more than
 orthogonal functions that span the subspace of the real-world, band-limited
STFs just described. In fact, we can empirically decrease the number of param-
eters even further. By the method of Sigloch and Nolet (), we have semi-
automatically deconvolved more than  broadband STFs while building data
sets for finite-frequency tomography. Of these, we propose to use the  STFs
that we consider most confidently determined as prior information for what the
range of possible STFs looks like, for earthquakes of magnitude 5.5 < MW < 7.5.
By performing a Principal Component Analysis on this large set of prior STFs,
we find that only around  empirical orthogonal wavelets are needed to satis-
factorily explain almost all of the STFs, as shown in figure .. In concrete terms,
we applied the MATLAB function princomp.m to a matrix containing the 
prior STFs in its rows. e mean over the matrix columns (time samples) was
subtracted prior to performing the decomposition, and is shown in Fig. .a as
wavelet s0(t). Principal Component Analysis then determines s1(t) as the func-
tion orthonormal to s0(t) that explains as much of the variance in the matrix
rows as possible. Aer subtracting (optimally weighted) s1(t) from each row,
function s2(t) is determined such that it is orthonormal to s0(t) and s1(t), and
explains as much as possible of the remaining variance. Each subsequent itera-
tion generates another orthonormal si until i = 256, the number of time samples
(matrix columns). e source time function can now be expressed as

s(t) =
255∑
i=1

aisi(t) + s0(t). (.)
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Figure .: Efficient parametrisation of the STF in terms of empirical orthog-
onal functions, computed from a large set of manually deconvolved STFs that
effectively serve as prior information. (a) First  members of the basis of empir-
ical orthogonal functions. (b) Median RMS misfit between members of the prior
STF catalogue and their projection on a subspace of the model space spanned
by the first wavelet basis functions. (c) A typical STF from the catalogue, and
its projection onto several subspaces spanned by the first few basis functions
(N = [4, 8, 12]).
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In this parametrisation, the new unknowns to solve for during source estima-
tion are the ai. Since Principal Component Analysis has sorted the ai by their
importance to explaining a typical STF, we may choose to truncate this sum at a
relatively low value N � 256:

sN(t) =
N∑
i=1

aisi(t) + s0(t), (.)

In practice,N will be chosen based on the residual misfit between s(t) and sN(t)
that one is willing to tolerate. Figure .(b) shows the dependence of this misfit
on N . If we tolerate an average misfit of % in total signal variance, N = -
basis functions are sufficient. In the following we use N = 12.

.. Parametrisation of the moment tensor

e orientation of the source can either be parametrised by a moment tensor
using  parameters, or as a pure shear displacement source (Aki and Richards,
, p.) with strike, slip and dip (to which a term for an isotropic component
might be added).
Here we want to estimate the non-double-couple content of the solutions, and
hence we sample the full moment tensor. e scalar moment is fixed to , so that
only relative Mj are estimated. is is equivalent to sampling a hypersphere in
the six-dimensional vector space {Mxx,Myy,Mzz,Mxy,Myz,Mxz} with

M0 = 1/
√
2
√
M2

xx +M2
yy +M2

zz + 2(M2
xy +M2

yz +M2
xz) = 1. (.)

Uniform sampling on an-D hypersphere can be achieved by themethod of Tashiro
(), which transforms n−1 uniformly distributed random variables xi to pro-
duce n random variables ri that are distributed uniformly on a hypersphere with√∑6

i=1 r
2
i = 1. We identify ri with the moment tensor components and note

that the non-diagonal elements Mkl, k 6= l appear twice in the sum (thus we
actually sample an ellipsoid rather than a hypersphere). We then have

xi ∼ U(0, 1), i = 1, 2, . . . , 5

Y3 = 1; Y2 =
√
x2; Y1 = Y2x1
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Mxx/M0 =
√

Y1 · cos(2πx3)
√
2

Myy/M0 =
√

Y1 · sin(2πx3)
√
2 (.)

Mzz/M0 =
√

Y2 − Y1 · cos(2πx4)
√
2

Mxy/M0 =
√

Y2 − Y1 · sin(2πx4)

Myz/M0 =
√

Y3 − Y2 · cos(2πx5)

Mzx/M0 =
√

Y3 − Y2 · sin(2πx5)

.. Forward simulation

Broadband, teleseismic Green’s functions for P-pP-sP and S-sS wave trains are
calculated by the WKBJ code of Chapman (), using IASP (Kenne and En-
gdahl, ) as spherically symmetric reference model for the mantle. e refer-
ence crust at the receiver site is replaced by the two-layered crust predicted by
model CRUST. (Bassin et al., ). Values for intrinsic aenuation are taken
from the spherically symmetric earth model PREM (Dziewoński and Anderson,
). e synthetic waveforms are compared to the observed seismograms in
timewindows that start  s before the theoretical P-wave arrival time (according
to IASP) and end . seconds aer.

3.3 Source parameter estimation byBayesian sam-
pling

.. Bayesian inversion

Bayesian Inversion is an application of Bayes’ Rule

P (~m|~d) = P (~d|~m)P (~m)

P (~d)
, (.)

where ~m is a vector of model parameters (in our case depth, moment tensor
elements Mj and STF weights ai), and ~d is a vector of data, i.e., a concatenation
of P- and SH-waveforms. ese quantities are considered to be random variables
that follow Bayes’ Rule. We can then identify P (~m) with the prior probability
density of a model. is is the information on the model parameters that we
have independent of the experiment. e conditional probability of ~d given ~m,
P (~d|~m), also called L(~m|~d), is the likelihood of a model ~m to produce the data ~d.
Term P (~d) is constant for all models and is therefore dropped in what follows.
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P (~m|~d) is called the posterior probability density (short, “the posterior”), and
denotes the probability assigned to a model ~m aer having done the experiment.

P (~m|~d) = P (~m)L(~m|~d)k−1 (.)

Since the posterior P (~m|~d) may vary by orders of magnitude for different ~d, we

work with its logarithm. We introduce the quantityΦ( ~
m|~d) to denote some kind

of data misfit such that the likelihood can be wrien as L(~m) = exp[−Φ(~m|~d)].

ln
(
P (~m|~d)

)
= −Φ(~m|~d) + lnP (~m)− ln k. (.)

e normalisation constant k is

k =

∫
exp[−Φ(~m|~d)]P (~m)d~m (.)

and calculated by the Neighbourhood Algorithm in the ensemble inference stage.
In case of Gaussian-distributed noise on the data with a covariance matrix SD

~d = g(~m) + ε, ε ∼ N (0, SD) (.)

where g(~m) is the data predicted by model ~m, we would obtain the familiar ex-
pression

Φ(~m|~d) = k′
(
1

2
(~d− g(~m))TS−1

D (~d− g(~m))

)
. (.)

is term is usually called Mahalanobis distance or `2 misfit. We do not choose
this sample-wise difference between observed and predicted waveforms as our
measure of misfit, since for tomography we do not use it either. ere are ques-
tions about the Gaussian noise assumption for real data, but mainly we consider
there to be a measure that is more robust and adapted to our purpose, the cross-
correlation (mis-)fit between data and synthetics (Sigloch and Nolet, ; Nolet,
), which essentially quantifies phase misfit. In the optimisation-based, lin-
earised approach to tomography, fiing the phase shi between two waveforms
remains a near-linear problem in a wider range around the reference model than
fiing the waveforms sample-wise. e cross-correlation fit is defined as:

CC(∆Ti) =

∫
t
(uc

i(t−∆Ti) · ui(t)dt)∫
t
uc
i(t−∆Ti)dt ·

∫
t
ui(t−∆Ti)

(.)

where ui(t) is the measured and uc
i(t) is the synthetic waveform for a model ~m at

station i. In general, CC is a function of the time lag∆Ti for which we compare
the observed and predicted waveforms, but here we imply that ∆Ti has already
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been chosen such as to maximise CC(∆Ti). (is value of ∆Ti that maximises
the cross-correlation is called the “finite-frequency travel time anomaly” ofwave-
form ui(t) , and represents the most important observable for finite-frequency
tomography (Nolet, ; Sigloch and Nolet, ). Section .., which discusses
error propagation from source inversion into tomographic observables, should
clarify this motivation of the cross-correlation criterion further.)

Correlation CC(∆Ti) measures goodness of fit, so we choose decorrelation
Di = 1 − CC(∆Ti) as our measure of misfit (one scalar per wavepath i). From
the large set of pre-existing deterministic source solutions described in Sect. ..,
we estimated the distribution of this misfitDi, based on our reference data set of
about  very confidently deconvolved STF solutions. For this large and highly
quality-controlled set of earthquakes, we empirically find that the decorrelation
Di of its associated seismograms ui(t)− uc

i(t) follows a log-normal distribution
in the presence of the actual noise and modelling errors. e statistics of this
finding are discussed further in the companion paper (Stähler et al., ), but
here we use it to state our likelihood function L, which is the multivariate log-
normal distribution:

L =
exp

(
−1

2

(
ln( ~D)− ~µ

)T
S−1
D

(
ln( ~D)− ~µ

))
(2π)

n
2

√
| det(SD)|

(.)

~D is the decorrelation vector into which n decorrelation coefficientsDi are gath-
ered. Each Di was measured on a pair of observed/predicted broadband wave-
forms that contained either a P- or an SH-arrival. e parameters of this multi-
variate log-normal distribution are its mean vector ~µ containing nmeans µi and
its covariance matrix SD. Empirically we find that the µi and the standard devi-
ations σi (diagonal elements of SD) depend mainly on the signal-to-noise-ratio
(SNR) of waveform ui. e data covariance between two stations i and j (off-
diagonal elements in SD) is predominantly a function of the distance between
station i and station j. We estimate their values from the data set of the 
trustworthy STF solutions, i.e., from prior information, and proceed to use these
~µ and SD in our Bayesian source inversions.

It follows from Eq. . that the misfit Φ is

Φ =
1

2

(
n∑
i

m∑
j

(
ln(Dj)− µj

)T
S−1
D,ij

(
ln(Dj)− µj

))
+

1

2
ln
(
(2π)n| det(SD)|

)
(.)

.. Construction of the prior probability density

A crucial step in Bayesian inference is the selection of prior probabilities P (~m)
on the model parameters ~m. Our model parameters are:
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Figure .: Principle of the Neighbourhood Algorithm, demonstrated for a two-
dimensional toy problem (the underlying distributions are fictional and chosen
for demonstration purposes). Top: In the pre-mapping stage, only the prior dis-
tribution is evaluated, resulting in amap of startingmodels that cluster in regions
of high prior probability (marked by lighter shades of red). Middle: Next, the NA
loads this map, evaluates the posterior probability for every sample, and refines
the map only in the best fiing Voronoi cells. Lighter shades of blue correspond
to a higher posterior probability. Boom: In the sampling or appraisal stage,
the value of the posterior is interpolated to the whole Voronoi cell. e Gibbs
sampler uses this map to produce an ensemble. is ensemble can be used to
calculate integrals over the model space, like the mean or mode of selected pa-
rameters.
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i range i range i range
 ±1.5  ±0.7  ±0.4
 ±1.0  ±0.7  ±0.4
 ±0.9  ±0.6  ±0.3
 ±0.8  ±0.5  ±0.3
 ±0.8  ±0.5  ±0.3

Table .: Sampling of the prior probability distribution: range of STF weights
ai that are permied in the first stage of the Neighbourhood Algorithm.

• m1: source depth. We assume a uniform prior based on the assumed depth
of the event in the NEIC catalogue. If the event is shallow according to the
ISC catalogue (< 30 km), we draw from depths between 0 km and 50 km,
i.e., m1 ∼ U(0, 50). For deeper events, we draw from depths between
20 km and 100 km. Events deeper than 100 km have to be treated sep-
arately, using a longer time window in eq. . that should include the
surface reflected phases pP and sP.

• m2, ...,m13 = a1, ..., a12, the weights of the source time function (Eq. .).
e samples are chosen from uniform distributions with ranges shown in
table ., but are subjected to a prior πSTF (see below).

• m14, ...,m18 = x1, ...x5, the constructor variables for the moment tensor
(Eq. .). xi ∼ U(0, 1), but they are subjected to two priors πiso and πCLVD

(see below).

An earthquake is caused by the release of stress that had built up along a fault,
driven by shear motion in the underlying, viscously flowing mantle. Hence
the rupture is expected to proceed in only one direction, the direction that re-
leases the stress. e source time function is defined as the time-derivative of
the moment, s(t) = ṁ(t). e moment is proportional to the stress and thus
monotonous, and hence s(t) should be non-negative. In practice, an estimated
STF is oen not completely non-negative (unless this characteristic was strictly
enforced). e reason for smaller amounts of “negative energy” (time samples
with negative values) in the STF include reverberations at heterogeneities close
to the source, which produce systematic oscillations that are present in most or
all of the observed seismograms. Motivated by waveform tomography, our pri-
mary aim is to fit predicted to observed waveforms. If a moderately non-negative
STF produces beer-fiing synthetics, then our pragmatic approach is to accept
it, since we are not interested in source physics per se. However, we still need
to moderately penalise non-negative samples in the STF, because otherwise they
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creep in undulywhen the problem is underconstrained, due to poor azimuthal re-
ceiver coverage. In such cases, severely negative STFs oen produce marginally
beer fits by fiing the noise.

Our approach is to punish slightly non-negative STF estimates only slightly,
but to severely increase the penalty once the fraction of “negative energy” I ex-
ceeds a certain threshold I0. To quantify this, we define I as the squared negative
part of the STF divided by the entire STF squared:

I =

∫ T

0
sN(t)

2 ·Θ(−sN(t))dt∫ T

0
sN(t)2

,where (.)

sN = s0(t) +
N∑
i=1

aisi(t) (.)

and Θ is the Heaviside function. Based on I , we define a prior πSTF:

πSTF(m2, ...,m13) = exp

[
−
(
I

I0

)3
]
, (.)

where the third power and I0 = 0.1 have been found to work best. In other
words, we do not mind if up to % of STF variance is contributed by negative
samples (mostly oscillations), but we do not tolerate more negative samples than
that.
e Neighbourhood Algorithm supports only uniform distributions on parame-
ters. e introduction of πSTF defined by Eq. . leads to a certain inefficiency,
in that parts of the model space are sampled that are essentially ruled out by the
prior. We carefully selected the ranges of the ai by examining their distributions
for the  catalogue solutions. A test was to count which fraction of random
models were consistent with I < 0.1. For the ranges given in Table ., we found
that roughly % of the random STF estimates had I < 0.1.
A second prior constraint is that earthquakes caused by stress release on a fault
should involve no volume change, meaning that the isotropic componentMiso =
Mxx + Myy + Mzz of the moment tensor should vanish. Hence we introduce
another prior constraint

πiso(m14, ...,m18) = exp

[
−
(
Miso/M0

σiso

)3
]

(.)

where M0 is the scalar moment, and σiso = 0.1 is chosen empirically.

ird, we also want to encourage the source to be double-couple-like. A suit-
able prior is defined on the Compensated Linear Vector Dipole (CLVD) content,
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which is the ratio ε = |λ3|/|λ1| between smallest and largest deviatoric eigen-
values of the moment tensor:

πCLVD(m14, ...,m18) = exp

[
−
(

ε

σCLVD

)3
]

(.)

A moment tensor with ε = 0.5 corresponds to a purely CLVD source, while
ε = 0 is a pure DC source. Again we have to decide on a sensible value for the
characteristic constant σCLVD. For intermediate-sized earthquakes of the kind we
are interested in, ε ≤ 0.2 seems to be a reasonable value (Kuge and Lay, ).
e total prior probability density is then

P (~m) = πSTF(m2, ...,m13) (.)

+ πiso(m14, ...,m18) + πCLVD(m14, ...,m18)

.. Sampling with the Neighbourhood Algorithm

Our efficient wavelet parametrisation of the STF reduces the total number of
model parameters to around , but sampling this space remains non-trivial. e
popular Metropolis-Hastings-algorithm (Hastings, ) can handle problems of
this dimensionality, but is nontrivial to use for sampling of multimodal distribu-
tions (see the discussion for details). Beer suited and faster is a Gibbs sampler,
but it needs to know the conditional distribution p(xj|x1, ...xj−1, xj+1, xn) along
parameter xj in the n-dimensional model space (Geman and Geman, ). is
conditional distribution is usually not available, especially not for nonlinear in-
verse problems.
To overcome the problemof navigation in complex high-dimensionalmodel spaces,
the Neighbourhood Algorithm uses Voronoi cells (Sambridge, ) to approxi-
mate a map of the misfit landscape (Sambridge, a, first stage), followed by
a Gibbs sampler to appraise an ensemble based on this map (Sambridge, b,
second stage).

In order to point the map-making first stage of the NA into the direction
of a priori allowed models, we use a pre-calculated set of starting models. For
that, the NA is run without forward simulations and without calculating the
likelihood, so that only a map of the prior landscape is produced, from ,
samples (Fig. .a). e resulting , Voronoi cells are used as a starting set
to produce a map of the posterior landscape. is means that from the start,
the map will be more detailed in a priori favourable regions, and avoids that
the algorithm will waste too much time refining the map in regions that are
essentially ruled out by the prior.

Next, the prior landscape is loaded and a forward simulation is run for each
member in order to evaluate its posterior probability. en this map is further
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VP VS ρ depth
Upper crust: . km/s . km/s . Mg/m³ . km
Lower crust: . km/s . km/s . Mg/m³ . km

Table .: Crustal model assumed for the source region of the  Virginia earth-
quake (CRUST.).

Credible intervals for source parameters:
st decile median th decile

depth . . 
MW . . .

Mtt -. . .
Mtp -. -. -.
Mrt -. -. .
Mpp -. -. -.
Mrp -. -. .
Mrr . . .

Table .: Credible intervals for source parameters of the Virginia earthquake.
e moment tensor components Mkl need to be multiplied by 1016 Nm.

refined by  forward simulations around the  best models. is is repeated
until a total of , models have been evaluated.
In the second stage of the NA, which is the sampling stage, , ensemble
members are drawn according to the posterior landscape from the first step. is
process runs on a  core Xeon machine and takes around  hours in total per
earthquake.

3.4 A fully worked example

.. // Virginia earthquake

In the following we present a fully worked example for a Bayesian source in-
version, by applying our soware to the MW5.7 earthquake that occurred in
Central Virginia on  August  (figures . and ., also compare to figure
.). While not considered a typical earthquake region, events from this area
have nevertheless been recorded since the early days of quantitative seismology
(Taber, ). Due to its occurrence in a relatively unusual but densely populated
area, this relatively small earthquake was studied in considerable detail, afford-
ing us the opportunity to compare to results of other workers. Moderate-sized
events of this kind are typical for our targeted application of assembling a large
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Figure .: Waveform data and source estimates for the // Virginia
earthquake (MW 5.7). Top row: Distribution of  and  teleseismic broad-
band stations that recorded P- and S-waveforms, respectively. Station colour
corresponds to the signal-to-noise ratio in the relevant waveform window. Mid-
dle row: Synthetic broadband waveforms (red), compared to the data for the
best fiing model. Black waveforms are P-seismograms, blue waveforms are SH-
seismograms. e time windows are 51.2 s long and start 5 s before the theoreti-
cal phase arrival time. e amplitudes of all P- and SH-waveforms have been nor-
malised. Boom le: posterior marginal distribution of estimated source depth.
Boom right: posterior marginal distribution of the source time function. Prob-
ability densities are marked by colour and are highest in the areas shaded red.



 . Probabilistic seismic source inversion

Figure .: Bayesian beach ball: Probabilistic display of focal mechanism solu-
tions for the  Virginia earthquake.

catalogue. e greatest abundance of suitable events is found just below magni-
tude 6; toward smaller magnitudes, the teleseismic signal-to-noise ratio quickly
deteriorates below the usable level.

For the inversion, we used a set of  P waveforms and  SH waveforms
recorded by broadband stations at teleseismic distances (fig. .). For waveform
modelling, the crustal structure of model CRUST . (Bassin et al., ) was as-
sumed around the source region; values are given in table .. e algorithm
ran , forward simulations to generate a map of the posterior landscape,
and produced an ensemble of , members in the second step. From this
ensemble, the source parameters were estimated. Table . shows the estimated
credible intervals and the mode of the depth and the moment tensor. ese quan-
tiles represent only a tiny part of the information contained in the ensemble, i.e.,
two statistics of -dimensional marginals derived from a -dimensional proba-
bility density function. Some credible intervals are large, for example we cannot
constrain the depth to a range of less than  km with % credibility. Using
such credible interval estimates, routine production runs of our soware should
be able to clarify whether depth uncertainties in existing catalogues tend to be
overly optimistic or pessimistic. e completemarginal distribution of the source
depth estimate is shown in figure ., boom le.

We aim for additional, informative ways of summarising and conveying the
resulting ensemble. Figure . is what we call a “Bayesian beach ball”: an over-
lay of  focal mechanisms drawn from the ensemble at random. e thrust
faulting character of the event is unambiguous, but the direction of slip is seen
to be less well constrained. e estimate of the source time function and its un-
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certainty are displayed in figure ., boom right. Within their frequency limits,
our teleseismic data prefer a single-pulsed rupture of roughly  s duration, with a
certain probability of a much smaller foreshock immediately preceding the main
event. Smaller aershocks are possible, but not constrained by our inversion.

.. Comparison to source estimates of other workers

Our solution is consistent with the solution from the SCARDEC catalogue (Val-
lée, ), which puts the depth of this event at  km, and its STF duration at
. s. Chapman () studied the source process of the  Virginia event in
great detail. He argues for three sub-events having occurred within . s at a
depth of - km, and spaced less than  km apart. is is compatible with our
solution: since teleseismic waveforms contain lile energy above frequencies of
 Hz, we would not expect to resolve three pulses within . s with the method
presented here. Chapman () used both local and teleseismic recordings, and
was therefore able to exploit high frequencies recorded close to the source. His
local crustal model featured an upper crustal velocity that was % higher than
ours, which may explain why he estimates the source - km deeper than our
most probable depth of . km (figure ., boom le).

.. Uncertainty propagation into tomographic observables

We are interested in source estimation primarily because we want to account
for the prominent signature of the source wavelet in the broadband waveforms
that we use for waveform tomography. Input data for the inversion, primarily
traveltime anomalies ∆Ti, where i is the station index, are generated by cross-
correlating observed seismograms with predicted ones. A predicted waveform
consists of the convolution of a synthetic Green’s function with an estimated
source time function (eq. .). us uncertainty in the STF estimate propagates
into the cross-correlation measurements that generate our input data for tomog-
raphy. Previous experience has led us to believe that the source model plays a
large role in the uncertainty of ∆Ti. e probabilistic approach presented here
permits to quantify this influence by calculating ∆Ti,j for each ensemble mem-
ber j. From all values for one station, the ensemble mean ∆Ti and its standard
deviation σi can then be used as input data for the tomographic inversion. us
we obtain a new and robust observable: Bayesian traveltime anomalies with full
uncertainty information.

Figure . shows the standard deviation σi of P-wave ∆Ti at all stations.
Comparison to the signal-to-noise ratios of fig. . shows no overall correla-
tion, except for South American stations, where a higher noise level is correlated
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Figure .: Standard deviations σi of P-wave travel times∆Ti, as calculated from
the ensemble of solutions. e travel time estimates are by-products of using
waveform cross-correlation as themeasure for goodness of fit, and they represent
our main input data for tomographic inversions. e unit on the colour scale is
seconds.

with a somewhat larger uncertainty on ∆Ti. By contrast, European stations all
have good SNR, but uncertainties in the travel times are large nonetheless, be-
cause source uncertainty happens to propagate into the estimates of ∆Ti more
severely in this geographical region. is informationwould not have been avail-
able in a deterministic source inversion and could strongly affect the results of
seismic tomography.

3.5 Discussion

.. Performance of the empirical orthogonal basis for STF parametri-
sation

We choose to parametrise the source time function in terms of empirical orthog-
onal functions (eofs), which by design is the most efficient parametrisation if
the characteristics of the STFs are well known. We think that they are, having
semi-automatically deconvolved thousands of STFs in prior work (Sigloch and
Nolet, ; Sigloch, ) and compared them with other studies (Tanioka and
Ruff, ; Houston, ; Tocheport et al., ). e flip side of this tailored ba-
sis is that it might quickly turn inefficient when atypical STFs are encountered.
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From the appearance of the eofs in Fig. .a, it is for example obvious that STFs
longer than  s could not be well expressed well as a weighted combination of
only  eofs. Hence the STFs of the strongest earthquakes considered (around
MW .) might not be fit quite as well as the bulk of smaller events, which con-
tributed more weight to defining the eof base. For our tomography application,
this behaviour is acceptable and even desirable, since the largest events are no
more valuable than smaller ones (oen quite the opposite, since the point source
approximation starts to break down for large events).

At first glance it might seem unintuitive that the basis functions have oscil-
latory character and thus negative parts, rather than resembling a set of non-
negative basis functions (a set of triangles would be one such set). Remember
however that the training collection to which the Principal Components Analy-
sis was applied did consist of predominantly non-negative functions, which by
construction are then represented particularly efficiently, even if the eofs may
not give this appearance. On top of this, we explicitly encourage non-negativity
of the solution via the prior πSTF (Eq. .). A rough estimation showed that
roughly % of the model space are “forbidden” by the condition that the source
should have a vanishing negative part.

We wanted to know how many basis functions of a more generic basis (e.g.,
wavelets) would be required in order to approximate the STF collection equally
well as with the eofs. A trial with a basis of sinc-wavelets showed that  ba-
sis functions were needed to achieve the same residual misfit as delivered by our
optimised basis of only  eofs. Since the size of the model space grows exponen-
tially with the number of parameters, avoiding  additional parameters makes a
big difference in terms of sampling efficiency.

.. Moment tensor parametrisation

e parametrisation of the moment tensor is a technically non-trivial point. We
discuss the pros and cons of possible alternatives to our chosen solution:

• Parameterisation in terms of strike φf , slip λ and dip δ is problematic for
sampling. Strike and dip describe the orientation of the fault plane; an
equivalent description would be the unit normal vector ~n on the fault.

~n =

 − sin δ sinφf

− sin δ cosφf

cos δ

 (.)

All possible normal vectors form a unit sphere. In order to sample uni-
formly on this unit sphere, samples have to be drawn from a uniform volu-
metric density (Tarantola, , .). Since the Neighbourhood Algorithm
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(and most other sampling algorithms) implicitly assume Cartesian coor-
dinates in the model space, the prior density has to be multiplied by the
Jacobian of the transformation into the actual coordinate system, in our
case 1/ sin δ. To our knowledge, this consideration is neglected in most
model space studies, but it would be more severe in ensemble sampling
than in gradient-based optimisation.

• A different issue with strike-dip parametrisation is the following: the Eu-
clidean distances applied to {φf , λ, δ} by the NA and similar, Cartesian-
based algorithms are in fact a rather poor measure of the similarity of two
double couple sources. A more suitable measure of misfit is the Kagan an-
gle (Kagan, ) or the Tape measure (Tape and Tape, ), which is the
smallest angle required to rotate the principal axes of one double couple
into the corresponding principal axes of the other.
is is an issue in model optimisation with the first stage of the Neigh-
bourhood Algorithm (Kenne et al., ; Sambridge and Kenne, ;
Vallée et al., ). Wathelet () has introduced complex boundaries to
the NA, but unfortunately no periodic ones.

• An alternative would be to sample {Mxx,Myy,Mzz,Mxy,Myz,Mxz} inde-
pendently, but this is inefficient because the range of physically sensible
parameters spans several orders of magnitude.

• Finally, one might choose not to sample the moment tensor at all. Instead,
one might sample only from the {Si, d} model space, followed by direct,
linear inversion of the six moment tensor elements corresponding to each
sample. is would speed up the sampling considerably since the dimen-
sionality of the model space would be reduced from  to . Moment
tensor inversion is a linear problem (Eq. .), and hence we would not lose
much information about uncertainties. In a potential downside, moment
tensor inversion can be unstable in presence of noise or bad stations, but
from our experience with supervised, linear inversions, this is typically not
a severe problem in practice. erefore we are considering this pragmatic
approach of reduced dimensionality for production runs.

.. Neighbourhood Algorithm

e Neighbourhood Algorithm avoids some of the pitfalls of other sampling al-
gorithms. Compared to the popular Metropolis-Hastings-algorithm (MH), we
see several advantages for our problem: e Neighbourhood Algorithm avoids
some of the pitfalls of other sampling algorithms. Compared to the popular
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Metropolis-Hastings-algorithm (MH), we see several advantages for our prob-
lem:

• e MH is difficult to implement for multivariate distributions. is is
especially true, when the parameters are different physical quantities and
follow different distributions as is the case in our study.

• As the MH is a random-walk algorithm, the step width is a very delicate
parameter. It affects the convergence rate and also the correlation of mod-
els, which has to be taken into account, when estimating PDFs from the
ensemble. is is a bigger problem than for the Gibbs sampler, which the
NA is based on.

• e MH is rather bad at crossing valleys of low probability in multimodal
probability distributions. We are expecting such, especially for the source
depth.

ese problems are less severe for a Gibbs sampler, on which the first stage of
the NA is based. In theory, the first stage of the NA could be replaced by a
completely separate mapping algorithm, like Genetic Algorithms or Simulated
Annealing, which are no sampling algorithms. Like the first stage of the NA, they
only explore the model space for a best-fiing solution. eir results however
might be used as input for the second stage of the NA. We are not aware of
any examples. Compared to those, the NA uses only two tuning parameters,
which control (a) how many new models are generated in each step and (b) in
how many different cells these models are generated. As in every optimisation
algorithm, they control the tradeoff between exploration of the model space, and
exploitation of the region around the best models.

ere is no hard and fast rule for choosing values for these tuning parameters.
Since we do not want to optimise for only one “best” solution, we tend towards
an explorative strategy and try to map large parts of the model space. Compared
to other source inversion schemes, we are explicitly interested in local minima in
the misfit landscape. Local minima are oen seen as nuisance, especially in the
rather aggressive iterative optimisation frameworks, but in our view, they con-
tain valuable information. What may appear as a local minimum to the specific
data that we are using for inversion, might turn out to be the preferred solution
of another source inversion method (e.g., surface waves, GPS or InSAR).

However, an ensemble that does not resolve the best fiing model is equally
useless. e posterior of all models gets normalised aer all forward simulations
have been done (see Eq. .). If one peak (the best solution) is missing, the
normalisation constant Z will be too small, and therefore P (~m|~d) will be too
high for all models, meaning that the credibility bounds will be too large. It
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is possible that other sampling schemes, such as parallel tempering, might find
beer compromises between exploration and exploitation, which could be a topic
of further study.

.. Comparison with other source inversion semes

Table . shows a list of other point source inversion algorithms proposed and
applied over the past  years. Most widely used is probably the Global Centroid
Moment Tensor (CMT) catalogue (Dziewoński et al., ; Ekström et al., ),
which is mostly based on intermediate-period (> 40 s) waveforms to determine
a centroid moment tensor solution. Its results are less applicable to short-period
body wave studies, since waveforms in the laer are dominated by the hypocen-
ter, which may differ significantly from the centroid. Another classical cata-
logue is the ISC bulletin (Bondár and Storchak, ), which goes back as long as
. e ISC catalogue focuses on estimating event times and locations, neither
of which are the topic of this study. e ISC recently adopted a global search
scheme based on the first stage of the NA, similar to Sambridge and Kenne
(), followed by an aempt to refine the result by linearised inversion, in-
cluding inter-station covariances. Garcia et al. () and Tocheport et al. ()
use Simulated Annealing to infer depth and moment tensor. A STF is estimated
from the P-waveforms. By neglecting all crustal contributions and reducing the
forward simulation to mantle aenuation, this approach is very efficient.

Similarly, Kolář () used a combination of Simulated Annealing and boot-
strapping to estimate uncertainties of the moment tensor, depth and a source
time function. e study was limited to two earthquakes and was never ex-
tended.

Kenne et al. () used the first stage of the NA to optimise for hypocenter
depth, moment tensor, and the duration of a trapezoidal STF, using essentially
the same kind of data as the present study, and an advanced reflectivity code for
forward modelling. However, no uncertainties were estimated.

Dȩbski () is one of the only two studies we are aware of that did Bayesian
inference of the source time function. He studied magnitude  events in a copper
mine in Poland. By using the Empirical Green’s Functions (EGF) method, it was
not necessary to do an explicit forward simulation. e study was limited to
inverting for the STF, which he parametrised sample-wise. is was possible
since the forward problem was computationally very inexpensive to solve.

e second sampling study is Wéber (), which used an Octree impor-
tance sampling algorithm to infer probability density functions for depth and
moment tensor rate function. e resulting ensemble was decomposed into fo-
cal mechanisms and source time functions, a nontrivial and nonunique problem
(Wéber, ). With this algorithm, a catalogue of Hungarian seismicity was
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produced until , but apparently this promising work was not extended to a
global context.

e most recent global source catalogue is the SCARDEC method by Vallée
et al. (). It uses the first stage of the Neighbourhood Algorithm to optimise
the parameters source depth, strike, dip and rake. For each model and each sta-
tion, a Relative Source Time Function is calculated. e misfit is comprised of a
waveform misfit and the differences between the RSTF at different stations. Un-
certainties of the parameters are estimated by the variation of the misfit along
different parameters.

e PRISM algorithm as presented here is the first to enable Bayesian infer-
ence of seismic source parameters on a global scale and in a flexible framework.
It allows for sampling of the source time function by a set of optimised, wavelet-
like basis functions. By producing a whole ensemble of solutions, arbitrary pa-
rameters, like the uncertainty of travel time misfits can be estimated from the
ensemble aerwards, at lile additional cost.

3.6 Conclusions
We showed that routine Bayesian inference of source parameters from teleseis-
mic body waves is possible and provides valuable insights. From clearly stated
a priori assumptions, followed by data assimilation, we obtain rigorous uncer-
tainty estimates of the model parameters. e resulting ensemble of a posteriori
plausible solutions permits to estimate the propagation of uncertainties from the
source inversion to other observables of practical interest to us, such as travel
time anomalies for seismic tomography.
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ere are known knowns; there are things we know that we know.
ere are known unknowns; that is to say, there are things that we now
know we don’t know.
But there are also unknown unknowns – there are things we do not know
we don’t know.”

United States Secretary of Defense, Donald Rumsfeld

4
Estimating the data uncertainties in

seismic source inversion

is chapter is in preparation for submission to Solid Earth under
the title Fully probabilistic seismic source inversion – Part : Data (co)
variances (Stähler, Zhang, and Sigloch, )

Abstract

Probabilistic source inversion in seismology is made difficult by the
inherent nonlinearity of the problem. Also, once the Source Time
Function is taken into account the dependence of a large number of
free parameters makes ensemble samplingmethods prohibitively ex-
pensive. We propose a framework to sample the earthquake depth,
focal mechanism and source time function efficiently by using infor-
mation fromprevious classical inversions. e Source Time Function
is expressed as a weighted sum of several empirical wavelets derived
from a catalogue of > 1000 STFs by Principal Component Analysis.
Since we do not see a model of additive Gaussian noise on a wave-
form as sufficient, we reject misfit models as the `2-norm and rather
use a waveform measure like the Cross-correlation or the Mean Co-
herence. To determine the Likelihood function for the Bayesian sam-
pling, we look at the distribution of this waveform measure for cat-
alogue results of source inversion.
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~m geophysical model vector
g(~m) forward operator acting on amodel vec-

tor ~m
u(t) recorded seismogram
ui discrete version of u(t)
uc(t) synthetic seismogram predicted by a

model m and a forward operator g(m)
uc
i discrete version of uc(t)

Table .: Symbols frequently used in this paper

4.1 Introduction

e derivation of source parameters is a classical inverse problem in seismology.
Since it is inherently non-linear if the source location is not known, global search
methods are useful and since the model parameters are strongly correlated, en-
semble sampling can offer valuable insights. In a companion paper Stähler and
Sigloch () we presented a way to reduce the model space to make a prob-
abilistic inversion for source depth, moment tensor and source time function
feasible. When using waveforms as data, the selection of a suited misfit crite-
rion is important, since the individual samples of one seismogram are strongly
correlated and the misfit at multiple stations is correlated as well (Bondár and
McLaughlin, ). is paper shall motivate, why theMahalanobis distance (aka
`2-norm) is not an optimal misfit for seismological waveform data and present as
an alternative the waveform coherence. For Bayesian inference, it is necessary
to know the relation between this misfit and the likelihood of measured data and
a model. We infer this relation empirically from a large set of source solutions
derived by a deterministic inversion.

4.2 Noise and misfit criteria

.. Likelihood

Bayesian inference derives the posterior distribution of the parameters using the
prior distribution of the parameters and the likelihood of the given data. A likeli-
hood L(m, d) is a function of the model parameters m given the observations d.
It is equivalent to the probability distribution p(d|m) of data d given the model
parameters m (Gilks et al., ). In geophysical inverse problems the data is
defined as the difference between the measurements d and predicted data calcu-
lated using the given parameters m and the forward operator g(m).
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To facilitate further discussion, we will introduce a quantity called misfit
Φ(~d, g(~m)) = − ln(L(m, d)).

.. Misfit criteria

When estimating the parameters, the data is oen assumed to be Gaussian dis-
tributed

~d = g(~m) + ε, ε ∼ N (0, SD) (.)

, and the method of least square is applied to calculate the misfit.

Φ(~m|~d) = k′
(
1

2
(~d− g(~m))TS−1

D (~d− g(~m))

)
. (.)

e data covariance matrix SD describes the correlation between the error of
single measurements. In the case of seismic data, this is mainly the limited spec-
trum of environmental noise and the correlation of noise at different receivers
(see Bodin et al. () for an example of how to construct this matrix).
is misfit criterion is very sensitive to data di deviating strongly from the pre-
diction gi(~m). erefore, in noisy seings, other authors have oen used the
`1 norm of the data to estimate the parameter distributions, where the noise on
each datum di is assumed be independently Laplace-distributed.

~d = g(~m) + ~ε, εi ∼ Laplace(0, bi) (.)

Φ(~m|~d) = −
∑
i

|di − gi(~m)|
bi

. (.)

e `1-norm ismore robust against outliers in the data, however there is no viable
way of describing correlated measurements with it. e derivation of applicable
multivariate Laplace distributions is ongoing work (Kotz et al., ; Kozubowski
et al., ). e resulting probability density functions are yet to complex to be
used in ensemble inference.

However, in Bayesian context, the likelihood can be chosen from any dis-
tributions p(F ) that best fit the data. For sampling, we can just as well de-
fine a Likelihood from the probability of any functional F : ℝ2×n 7→ unit on
u(t), uc(t) ∈ ℝn. To make sense as a misfit, it should fulfil the following condi-
tions:

. For u(t) = uc(t), it should take a fixed value, say .

. With decreasing similarity of u(t) and uc(t), it should increase (however
we define similarity here).
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. It should be robust against time shis or amplitude errors, i.e.
F (a · u(t+ τ), uc(t)) ≈F (u(t), uc(t)) for any a, τ ∈ℝ.

Additionally, we would have to know how the values of F are distributed for a
typical waveform in presence of the three error sources mentioned above.
e number of misfit criteria has vastly increased in the last years. Among the
most popular are cross-correlation travel-time misfits (Sigloch and Nolet, )
or other time-frequency-misfits, which separate the phase and amplitude differ-
ence (Fichtner et al., ) or multitaper analysis of the transfer function (Tape
et al., ). For a deeper discussion see Kenne and Fichtner (). While these
are well suited for optimization problems, they cannot be used directly to infer
posterior probabilities, since there is no analytical way to estimate their statistics.
is fact has sometimes been implicitly ignored in recent literature (Fichtner and
Trampert, ).
We instead choose the signal decorrelation D as a misfit criterion, defined as
D := 1− CC(∆T ). Here,

CC(∆T ) =

∫ T2

T1

(
uc(t−∆T ) · u(t)dt

)
(.)

is the maximum of the cross-correlation functionCC(τ) between u(t) and uc(t).
D fulfils all three criteria defined above:

. It takes the value  for identical signals.

. For differing signals, D takes a value between  and  for exactly inverse
signals. (e laer value is not reached for a finite signal and instead
the smallest possible value is  minus the minimum of the autocorrelation
function of the signal.)

. is is equivalent to showing thatCC(∆T ) for u(t), uc(t)is approximately
equal to CC ′(∆T − τ) for u(t+ τ), uc(t).

CC(∆T ) =

∫ T2

T1

(
uc(t−∆T ) · u(t)dt

)
=

∫ T2−τ

T1−τ

(
uc(t−∆T + τ) · u(t+ τ)dt

)
=

∫ T1

T1−τ

. . . dt−
∫ T2

T2−τ

. . . dt︸ ︷︷ ︸
≈0

+

∫ T2

T1

. . . dt (.)

≈
∫ T2

T1

(
uc(t− (∆T − τ)) · u(t+ τ)dt

)
= CC ′(∆T − τ)
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Assuming small time shis compared to the window length and a vanish-
ing synthetic signal at the limits of the time window (limt→T1,T2 u

c(t) =
0; τ � (T2 − T1)).

While the cross-correlation coefficient has been used extensively in seismology
to detect predicted waveforms in noisy signals, to filter bad recordings or detect
temporal changes in repeating signals (Larose et al., , e.g.), it has very seldom
been used directly as a misfit criterion in source inversion (we are only aware of
Kikuchi and Kanamori () and Marson-Pidgeon and Kenne ()), mainly
because its statistics are hard to assess. In the following section we present a
novel approach using the decorrelation D as data.

4.3 Empirical Likelihood Function

.. Empirical Likelihood

How can we produce a Likelihood in absence of an analytically describable noise
model?
A solution would be to leave the Bayesian interpretation for a moment and take
a Frequentist’s view:
We could see the measurements of the misfit functional F (~m|~d) at many stations
for one earthquake as realisations of a random process, which follows a so-far
unknown probability distribution p(F ). If we were able to look at a large number
of representations of F for a “true” model ~m0, we could use the distribution of
F (~m0|~d) as the probability distribution Pr(F ) of the functional F for the true
model ~m in presence of the noise and modelling errors on ~d.
Furthermore, we would have to find an analytical probability density function p,
so that

Pr[a ≤ F ≤ b] =

∫ b

a

p(x) dx. (.)

To produce a likelihood function from this misfit functional F , its distribution
p(F ) has to be known.

L(m|d) = p (F (d|m)) , (.)

where
F (d|m) = D(d|m) = 1−max{CC(u(t)uc(t))}. (.)

To estimate p(F ), we would need a large number of solutions for our inverse
problem, where the distribution of p is only influenced by noise and modelling
error, but not by the model parameters themselves. A source could be the results
of a reliable deterministic inversion. If the deterministic inversion algorithm has
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Figure .: Distribution of D for the stations of one earthquake with magnitude
. compared with a different distributions as a histogram (le) and as a quantile-
quantile plot (right).
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reduced F as far as possible, all residual should be due to the three error sources
from section ...
erefore, we calculated D from seismograms and synthetic waveforms for 
earthquakes with over  stations each. As model parameters for the synthetic
seismograms, we used the ones obtained from a linearized inversion as described
in Sigloch and Nolet () and Stähler et al. (). A typical distribution of D
is shown in Fig. .a.
To determine an appropriate likelihood for the data D we consider positive dis-
tribution functions such as the beta, exponential and the log-normal distribu-
tions, which have lile tail probability beyond  that can be neglected. Using
empirical QQ-plots and empirical probability density plots we found out that the
log-normal distribution

f(x) =
1

x
√
2πσ2

exp
(
−(lnx− µ)2

2σ2

)
(.)

fits the data best, as shown in Fig. .b. e beta and the exponential distribu-
tion seem to overestimate the number of very small values for D (i.e. values of
CCmax ≈ 1). In turn, this would mean that such a distribution would await more
very good waveform fits than realistic. e likelihood of actually good fiing
waveforms would be estimated too low.

From fig. .b, we chose the log-normal distribution to derive the likelihood.
If the parameter D is a random variable distributed according to a log-normal
distribution with parameters σ, µ, its logarithm ln(D) is normal distributed with
the same parameters. is allows us to easily incorporate inter-station covari-
ances in form of a covariance matrix SD. e likelihood formula is then

LD =
exp

(
−1

2

∑m
i=1 (ln(Di)− µi)

T S−1
D (ln(Di)− µi)

)
(2π)

m
2

√
| det(SD)|

, (.)

which is the Mahalanobis distance (Mahalanobis, ), not of two waveforms,
but of the decorrelation D and its expectation value µ.

.. Distribution coefficients and signal-to-noise-ratio

e argument so far seemed to assume that one distribution should fit D for
all seismic stations and all earthquakes. is is an oversimplification. e noise
level at stations varies hugely over the year and the day and is higher for stations
close to a coast or a city (Stutzmann et al., ). erefore, we might expect
different goodnesses of fit at different stations. To reflect that, we could use
separate distributions.
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Figure .: D-histogram of the density of D (le) and ∆log(A) (right) for differ-
ent Signal to noise ratios. e density of D and ∆log(A) was calculated in SNR
windows of width , centred on integer values. Each SNR window was normal-
ized individually. Basically fig. . repeated for  SNR windows.

One possibility could be a database of noise levels for all stations. However, the
fit quality is also influenced by the magnitude of the earthquake and azimuth
and distance of the station, so we might want a criterion, which is based on the
individual source and station.
An idea is to take the Signal-to-Noise Ratio (SNR) of the body wave recording.
is is defined here as the integrated spectral energy of the signal time window
divided by that of a noise window s before the arrival of the first body wave
energy.
is means that the noise window before the P-wave contains only background
noise, while the one for the SH-wave alsomay contain P-coda or phases like PP or
PcP. In a spherically symmetric earth, like the one our forward solver is assuming,
P-SV and SH should be decoupled and there should be no energy arriving on the
transversal (SH) component before SH, but lateral heterogeneities and anisotropy
convert some P-energy into transversal motion, so that the SH-phase is usually
preceded by some signals on the transversal component.

Figure . shows the density of D for different SNRs. e distribution of D
is narrower for high SNRs and centered on higher values, which seems both
plausible. For each SNR window, we determined µ and σ of the best-fiing log-
normal distribution.

e distribution parameters were calculated for SNRs from  to  (SH)
resp.  (P). Fit functions h(SNR) = a1 + a2 · exp(a3 · SNR) were used for
µP(SNR), µSH(SNR), σP(SNR), σSH(SNR) (see chapter .). With these, expec-
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tation values µi and standard deviations σi for each station i are calculated from
its Signal-to noise ratio SNRi.

µi = aµ,1 + aµ,2 · exp(aµ,3 · SNRi)

σi = aσ,1 + aσ,2 · exp(aσ,3 · SNRi) (.)

.. Covariance information

To realistically estimate the model uncertainties, it is not sufficient to treat the
measurements at different stations as independent. Under the assumption that
the modelling errors which produce the likelihood distribution are a result of the
earth structure differing from the (layered) model we used for forward calcula-
tion, this should influence multiple stations at once. A first guess would be that
the effect is strongest for stations with similar azimuth from the source, since
their ray paths “see” similar regions of the earth.
To check this influence, we calculated the Pearson correlation coefficient r(ϑ)
in dependence of azimuthal distance ϑ as follows. For each event, the azimuthal
difference between all station pairs i, j was calculated and the pairs were binned
according to it. e set {i, j}ϑ then contains all stations for one event, which
have the same azimuthal difference (in bins of 5° width). e standard score
zi = (ln(Di)− µi) /σi of each station i was calculated using the mean µi and
standard deviation σi expected for it according to its SNR.
en the correlation coefficient was calculated for each azimuthal bin ϑ using all
nϑ pairs {i, j}ϑ in this bin.

r(ϑ) =
1

nϑ − 1

∑
{i,j}ϑ

zizj (.)

e values for r(ϑ) are fit by a function g(ϑ) = b1+ b2 · exp(−b3ϑ
2) (see chapter

..).
is correlation coefficient in dependence of the azimuth can be used to fill

the elements of the covariance matrix SD in eq. .

SDi,j = (.)

An example of such a covariance matrix for the Virginia event is shown in figure
..

.. Amplitudes

Readers familiar with Source inversion will have noticed that the signal ampli-
tudes were blatantly ignored so far, even though they are crucial for constraining
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Figure .: Covariance matrix of eq. . for the Virginia event. e block struc-
ture results from the fact that P and SH-waves are being treated as uncorrelated.
Since stations are sorted by azimuth, the values close to the main diagonal are
biggest.

the source orientation. To use them, a second measurement is done on the wave-
form, which is simply to compare the logarithmic energy content ln(A) in a s
time window around the peak of the signal and the synthetic. Again, we have to
check the distribution of this misfit to determine a likelihood. e distribution
of ∆ ln(A) is almost symmetric around  (see fig. .) and there is no physical
reason, why it should not be, so we try to fit |∆ ln(A)|, since we have more data
this way.
e amplitude misfit |∆ ln(A)| follows an exponential distribution, where the
parameter k does not vary much with SNR (see sect. ..).

LAmp =
1

k
exp

(
−|∆ ln(A)|

k

)
(.)

4.4 Bayesian Inference
We apply Bayes’ rule to obtain the posterior distribution

π(~m|~d) = L(~d|~m)p(~m)

p(~d)
. (.)

Here, the unknown parameter vector ~m consists of depth, five moment tensor
parameters and ten STF weights (Stähler and Sigloch, ) and is to be updated
during the MCMC steps. e quantity ~d denote the realization of the random
variables D for the data. For the prior distribution p(m) we assume the follows:
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Figure .: Noise model assumed by the `2 norm. A coloured noise (green) is
added to the synthetic waveform (red), which is otherwise identical to the Earth’s
Greens function.

+=

·*

Figure .: More realistic noise model: e Earth’s Greens function is the syn-
thetic waveform convolved with a transfer function plus background noise.

• m1 ∼ U(dmin, dmax), the depth is distributed uniformly between dmin and
dmax, which are chosen manually.

• e isotropic and CLVD content of the moment tensor should be as small
as possible.

• e STF should have a vanishing negative part.

For the exact implementation, see Stähler and Sigloch () (Chapter  in this
thesis). For the sake of this study, it is important to state that the velocity model
is fixed and the same as in the production of the distributions of D.
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4.5 Discussion

.. Comparing waveforms

Traditionally, when comparing measured seismograms u(t)with calculated syn-
thetic waveforms uc(t), we apply the `2-norm, i.e. the Mahalanobis distance
LM(u(t), uc(t)) with a covariance matrix S,

LM(u(t), uc(t)) =
√
(u(t)− uc(t))TS−1(u(t)− uc(t)). (.)

e assumption behind this misfit however, is that the measured signal d is the
signal predicted from the model g(m) plus additional multivariate normal dis-
tributed noise, d ∼ N (0, S) with the covariance matrix S. For one waveform of
one seismic station, S is a Toeplitz-matrix, where the elements are the autocor-
relation functionRnn of the (discrete) noise time series n(t) = n(t0+∆t · i) = ni

sj = Sk,k+j = Rnn(j) =
∑
i

nini−j (.)

is covariance matrix S describes mainly the band-limitedness of the back-
ground noise n(t) at this station. If more than one station is involved, it is a
block diagonal matrix, if the noise between the stations is uncorrelated or more
complicated, if the noise between the stations is correlated.
What this approach fails to aend is that the difference between a synthetic and
a real seismogram comes not only from the presence of background noise. Due
to characteristics of the data errors we consider as major factors that cause the
difference between synthetic and real seismogram:

. Baground noise: is is noise from human or natural sources around
the receiver, be it ocean generated or the archetypical truck or sawmill.
is noise can be described very well by an additional term of like εnoise ∼
N (0, S).

. Modelling error: e velocity model used by the forward solver is not
identical to the velocity of the earth on the scale of the smallest wave-
lengths used. erefore, the synthetic waveform can never be identical to
the real one, even in absence of background noise. Tarantola and Valee
(, sect. ) called this the theoretical density function and proposed an-
other Gaussian term for it. We think that the modelling error should not
be described by an additive term. Since the earth can be described as a
linear operator acting on the source wavelet (aka the Green’s Function),
this error takes the form of a transfer function, denoted by Tmodel(t), be-
tween the real seismogram u(t) and the synthetic seismogram of the true
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sourcemodel uc(t). is error includes the site response, which has usually
largest influence on the amplitude of the waveform.

. Instrument error: A seismometer has its own impulse response, which
distorts the real seismogram further. is error can also be described by
a transfer function Tinst(t). e determination of Tinst(t) is a science in its
own (Bogert, ). For permanent stations, the correction of the instru-
ment error should be reliable, however, we still find it to be wrong for
around one station in a thousand.

To conclude, while the `2-norm with a covariance matrix assumes that the mea-
sured signal u(t) is the ”true” signal plus a noise term εnoise, the reality is that the
measured signal is the true signal convolved with a transfer function from the
modelling error and one from the instrument response.

u(t) = uc(t) ∗ Tmodel(t) ∗ Tinst(t) + εnoise (.)

is may seem as bad news, since we do not have any way to determine Tmodel(t)
analytically. If our forward solver was using the true velocity model of the earth
and if it incorporated all the physics of the source process, this term would be
the identity operator. For a simplified earth model like IASP, it is obviously far
from that. Using a more sophisticated D velocity model of the earth, we could
push Tmodel(t) so far towards identity, that we could neglect it and concentrate
on the background noise. However, it is far cheaper computationally to calculate
seismograms in a D earth model, with some crustal corrections, so in terms of
Bayesian inference by sampling, it might be worth to use a bad model but draw
a lot more samples from the model space¹. erefore, we find the pragmatic
definition of (Scales et al., ) rather useful:

Noise is the part of data we choose not to explain.

And what we do not explain is anything in the predicted data that cannot be
improved by changing model parameters.

4.6 Likelihood distribution parameters

.. µ and σ

To estimate the likelihood distribution of new earthquakes, we need to have an
analytical fit function of the distribution parameters µP, µSH, σP, σSH in depen-
dence of SNR. Figure . show the parameters with fit functions h(SNR) =

¹In fact, we do not have a choice here. It is just not possible to include all physics into our
forward simulation, even with more and more detailed velocity models.
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Figure .: Distribution of parameters µP, µSH, σP, σSH for different SNR, com-
pared with the fiing function h(SNR) = a1 + a2 · exp(−a3 · SNR) (red dashed).
e doed lines show confidence intervals of the parameters estimated by the
bootstrapping method.
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Figure .: Dependance of Pearson covariance between the decorrelation D on
the distance ϑ.
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a1 a2 a3
µP −2.06 0.51 0.031
σP 0.6 −0.093 2.8 · 10−3

µSH −1.12 0.28 0.24
σSH 6.7 −6.3 −2.7 · 10−4

Table .: Fit parameters to calculate µ and σ for the waveform misfit coefficient
given a SNR.

b1 b2 b3
r(ϑ) 0.049 0.31 2.17 · 10−4

Table .: Parameters b1, b2, b3 to calculate the inter-station correlation depend-
ing on azimuthal distance

a1 + a2 · exp(−a3 · SNR). e confidence intervals were estimated using the
bootstrapping method.

.. Station correlation

e inter-station correlation was calculated as described in section .. and is
shown in fig. .. To fit it, the function g(ϑ) = b1 + b2 · exp(−b3 · ϑ2) was used,
with the following parameters as a result: e fit function follows the values
well, although there is a non-explained rise from 160° on. We think that this is
an artefact of imperfectly determined focal mechanisms. Especially strike-slip
events have a quadrupole radiation paern, where errors in the strike parameter
will influence stations at 0°, 90°, 180° and 270°. If that explanation was true, there
should be another peak at 90°, which is lost here.

.. Amplitudes

eamplitudemisfit follows an exponential distribution |∆Ai−median(∆Ai)| ∼
Exp(k), where k takes the values 0.2 and 0.1 for P and SH respectively.

4.7 Conclusions
is chapter presents an approach to employ Bayesian inference in the presence
of unknown noise. From a large set of established solutions to the source inver-
sion problem, we derived the distribution of a waveform misfit parameter (the
correlation coefficient) due to modelling error and noise. is approach allows to
infer a Likelihood function without a noise model at hand. is approach could
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replace simplistic assumptions on data variance in other seismological inverse
problems, especially seismic tomography.



And it shall be, when thou hast made an end of reading this book, that
thou shalt bind a stone to it, and cast it into the midst of Euphrates

Jeremiah :

5
Conclusion

e scope of the thesis was to improve finite-frequency tomography from the
original ray-bases kernels for simple waves to more arbitrary ones, especially
triplicated ones from the mantle transition zone. Using the reflectivity method
for seismogram simulation, this has been shown to be possible. With the AxiSEM
spectral-element solver, it is fundamentally possible to calculate sensitivity ker-
nels for a seismic tomography. is has also been shown in chapter . However,
it was not yet possible to do an actual tomography using these waveforms. is
will be the obvious next step aer the work presented in this thesis.

Such a tomography should then also include the probabilistic traveltime esti-
mates from the Bayesian source inversion presented in chapters  and . A reg-
ular, linear inversion will profit from a correct estimation of the data covariance
matrix, but at a later stage, a probabilistic for a model with reduced dimension-
ality would be possible to directly invert for the answer to geological questions,
like “is there a plume under La Réunion and where does it start?”.

In themselves, the results of the probabilistic source inversion can be given
to the seismological community in form of a source catalogue containing not
only best-fiing models, but also correct uncertainties. When the whole statis-
tical ensemble of possible source solutions for a large number of earthquakes is
used, the whole power of Bayesian inference can be used for the analyses of the
distribution of earthquake parameters. ese studies have hitherto been uncon-
sciously affected by the reduction of probability density functions to just one
“best solution”, by someone else.
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is is a benefit for geological and tectonic interpretation of earthquake source
parameters as well. Working with probability density functions, combination
with completely different data, like surface fault expression is possible andwould
allow true hypothesis testing. Inverse problems in Earth sciences seem to have a
high dimensionality, which makes them difficult to solve. However, the intrin-
sic dimensionality is oen rather small, if the problem is reduced to accepting or
rejecting hypotheses.

While this thesis alone has not improved our understanding of the Earth, it
will give seismologists and other earth scientists new tools for the next years to
continue their curious task of inferring a four-dimensional system from some
time series on a two-dimensional plane.
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