
Measurement of the Branching
Fraction and Time Dependent CP
Asymmetry in B0→ D∗−D∗+K0

S
Decays at the Belle Experiment

Martin Ritter

München 2013





Measurement of the Branching
Fraction and Time Dependent CP
Asymmetry in B0→ D∗−D∗+K0

S
Decays at the Belle Experiment

Martin Ritter

Dissertation
an der Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Martin Ritter

aus Landsberg am Lech

München, den 29.11.2013



Erstgutachter: Prof. Dr. Christian Kiesling
Zweitgutachter: Prof. Dr. Jochen Schieck
Tag der mündlichen Prüfung: 25.02.2014



Contents

Introduction 1

1 Physics motivation 3
1.1 C, P and T Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Flavour Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Neutral Meson Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 CP violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Unitarity Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Time Dependent CP violation . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Measurement of CP violation . . . . . . . . . . . . . . . . . . . . 14

1.5 Time-Dependent CP violation in B0→ D∗−D∗+K0
S . . . . . . . . . . . . . 17

1.6 Previous Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The Belle Experiment 23
2.1 KEKB Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Belle Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Beam Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Silicon Vertex Detector . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Central Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Aerogel Cherenkov Counter . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 Time of Flight Counter . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.6 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . 32
2.2.7 Solenoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.8 K0

L/µ Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.9 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Event Selection 35
3.1 Data Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 BB Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 CP Side Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Track Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 π0 Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vi CONTENTS

3.4.4 K0
S Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.5 D0 and D± Candidates . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.6 D∗±→ D0π±slow, D+π0

slow Candidates . . . . . . . . . . . . . . . . . . 41
3.4.7 B0→ D∗−D∗+K0

S Candidates . . . . . . . . . . . . . . . . . . . . . . 41
3.4.8 Invariant Mass Windows . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.9 Best B Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Tag Side Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Flavour Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Tag Side Vertexing . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Vertex Quality Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Branching Fraction Measurement 53
4.1 Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Probability Density Functions . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Correctly Reconstructed Events . . . . . . . . . . . . . . . . . . . 57
4.2.3 Misreconstructed Signal Events . . . . . . . . . . . . . . . . . . . 57
4.2.4 Events Reconstructed from Generic BB Decays . . . . . . . . . . 58
4.2.5 Background from Generic qq Events . . . . . . . . . . . . . . . . . 59

4.3 Expected Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Toy Monte Carlo Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Linearity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Control Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.2 Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.3 Changes to the Data Model . . . . . . . . . . . . . . . . . . . . . 65
4.6.4 Control Sample results . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 B0→ D∗−D∗+K0
S Signal Yield . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Corrected Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . 67
4.8.1 Binning of Dalitz Plot . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8.2 Modification of the Data Model . . . . . . . . . . . . . . . . . . . . 71
4.8.3 Final Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . 72

4.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9.1 Number of BB Events . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9.2 Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . . . 73
4.9.3 Daughter Branching Fractions . . . . . . . . . . . . . . . . . . . . 73
4.9.4 Particle Reconstruction and Identification . . . . . . . . . . . . . 74
4.9.5 Model Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9.6 Total Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.10 Final Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS vii

5 CP Violation Measurement 79
5.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Correctly Reconstructed Signal Events . . . . . . . . . . . . . . . 79
5.1.2 Misreconstructed Signal Events . . . . . . . . . . . . . . . . . . . 80
5.1.3 Background Events from BB and qq . . . . . . . . . . . . . . . . . 81

5.2 Toy Monte Carlo Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Linearity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Control Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Results on Partial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 B0 Lifetime from Full Data . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7 CP Parameter Result from Full Data . . . . . . . . . . . . . . . . . . . . 92
5.8 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8.1 Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 94
5.8.2 Flavour Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.8.3 Resolution Function . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.8.4 Model Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.8.5 Physics Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8.6 Fit Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8.7 Tag Side Interference . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8.8 Total Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.9 Final Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Belle II Vertex Detector Simulation 99
6.1 The SuperKEKB Accelerator . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 The Belle II Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Beam Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.3 Pixel Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.4 Silicon Vertex Detector . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Belle II Software Framework . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Configuration Parameters . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Simulation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Common Vertex Detector Geometry . . . . . . . . . . . . . . . . . . . . . 110
6.4.1 Preparation for Alignment Studies . . . . . . . . . . . . . . . . . . 111
6.4.2 Structure of Geometrical Components . . . . . . . . . . . . . . . . 112

6.5 PXD Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5.1 Sensor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5.2 Mechanical Support . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 SVD Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.1 Sensor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.2 Mechanical Support . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.6.3 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.7 Material Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



viii CONTENTS

Conclusion and Outlook 127

A Branching Fraction Measurement 129
A.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2 Control Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.3 Final Results in all Dalitz Bins . . . . . . . . . . . . . . . . . . . . . . . 134

B Belle II Vertex Detector Simulation 139
B.1 Material Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.2 Component Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.3 PXD Endflange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.4 SVD Cooling Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



Zusammenfassung

Warum existieren wir? CP -Verletzung ist ein integraler Bestandteil dieser Frage, da
ihr Verständnis notwendig ist, um die in unserem Universum beobachtete Asymmetrie
zwischen Materie und Antimaterie zu erklären. Dementsprechend wurden bereits mehrere
Experimente zur Vermessung der CP -Verletzung geplant und auch durchgeführt. Mit
Belle II wird bald ein weiteres Experiment diese Messungen verbessern. Belle II basiert
auf dem Design des erfolgreichen Belle Experimentes am KEKB Beschleuniger, der mit
einer Luminosität von 2.11× 1034 cm−2s−1 momentan den Weltrekord hält.

Das System der B-Mesonen weist eine sehr reichhaltige Zerfallsstruktur auf und viele
dieser Zerfallskanäle und ihre CP -Asymmetrie wurden bereits von Belle vermessen. Der
bekannteste davon, B0 → J/ψK0

S, erlaubt eine präzise Vermessung von sin 2φ1. Dieses
Ergebnis hinterlässt aber eine zweifache Ambiguität für den Wert des Winkels φ1 im
CKM-Dreieck. Der Zerfallskanal B0→ D∗−D∗+K0

S ist zwar experimentell wesentlich her-
ausfordernder, erlaubt aber auch die Messung von cos 2φ1 um diese Ambiguität aufzulösen.

In den ersten Kapiteln dieser Arbeit werden wir das Prinzip dieser Messung vorstellen
und präsentieren die Ergebnisse für die Messung des Verzweigungsverhältnisses und
der zeitabhängigen CP -Verletzungs-Parameter mit den endgültigen Daten des Belle
Experiments. Diese enthalten 772 Millionen BB Paare, aufgezeichnet an der Υ(4S)
Resonanz. Für das Verzweigungsverhältnis erhalten wir einen Wert von

B
(
B0→ D∗−D∗+K0

S

)
=
(
5.35+0.35

−0.34(stat)± 0.57(syst)
)
× 10−3,

welcher mit dem aktuellen, weltweiten Mittelwert gut übereinstimmt. Aus einem Drei-
Parameter-Fit, sensitiv auf cos 2φ1, extrahieren wir in der zur Zeit präzisesten Messung
die CP -Parameter

Jc/J0 = 0.37± 0.10(stat)± 0.02(syst),
(2Js1/J0) sin(2φ1) = 0.30± 0.16(stat)± 0.03(syst),
(2Js2/J0) cos(2φ1) = 0.16± 0.16(stat)± 0.03(syst).

Mit diesem Ergebnis können wir, unter der Annahme, dass (2Js2/J0) positiv ist, einen
negativen Wert von cos 2φ1 mit einer Sicherheit von 85% ausschliessen.

Schlussendlich beschreiben wir die Implementierung der Vertexdetektorgeometrie für
das Belle II Experiment. Diese Fortführung des Belle Experiments soll die integrierte
Luminosität vom Belle um einen Faktor 50 erhöhen und erhält unter anderem einen neuen
Vertexdetektor. Um Ereignisse korrekt simulieren zu können, ist eine präzise Beschreibung
der Sensorgeometrie und des Detektormaterials notwendig.
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Abstract

Why do we exist? CP violation is an integral part of this question as its understanding
is crucial to explain the matter-antimatter asymmetry observed in our universe. Several
experiments were designed and carried out to precisely measure CP violation, especially
in the B meson system where large asymmetries where predicted and found. With Belle II
and LHCb, two new experiments are going to improve the existing measurements. Belle II
will be based on the very successful Belle experiment at the KEKB collider, currently
holding the world record on luminosity with 2.11× 1034 cm−2s−1.

The B meson system has a very rich decay topology and many of theses decay modes
and their CP asymmetry parameters have already been measured at Belle. The most
famous decay channel, B0→ J/ψK0

S, poses very tight constraints on sin 2φ1 but leaves a
twofold ambiguity on the actual value of the angle φ1 in the CKM triangle. The decay
mode B0 → D∗−D∗+K0

S, while experimentally much more challenging, offers the unique
possibility to also extract cos 2φ1 and thus resolve this ambiguity.

In the first chapters of this thesis we present the principle of this measurement and
the results for the branching fraction and the time-dependent CP violation parameters
of B0→ D∗−D∗+K0

S decays. These results are obtained from the final data sample of the
Belle experiment containing 772 million BB pairs collected at the Υ(4S) resonance with
the Belle detector at the KEKB asymmetric-energy e+ e−– collider.

We obtain the branching fraction

B
(
B0→ D∗−D∗+K0

S

)
=
(
5.35+0.35

−0.34(stat)± 0.57(syst)
)
× 10−3,

which is in agreement with the current world average. In a 3 parameter fit sensitive to
cos 2φ1, we extract the currently most precise values for the CP parameters

Jc/J0 = 0.37± 0.10(stat)± 0.02(syst),
(2Js1/J0) sin(2φ1) = 0.30± 0.16(stat)± 0.03(syst),
(2Js2/J0) cos(2φ1) = 0.16± 0.16(stat)± 0.03(syst).

This allows us to exclude a negative value for cos 2φ1 at a 85% confidence under the
assumption that that (2Js2/J0) is positive.

Finally, we describe the implementation of the vertex detector geometry for the
upcoming Belle II experiment. The upgrade to Belle aims to increase the integrated
luminosity by a factor of 50 and will receive, among other upgrades, a completely new
vertex detector. To produce simulated events, a precise description of the sensor geometry
and material budget is needed.
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Introduction

Over the last 30 years, particle physics has been a very vivid and successful area of
research, revealing many fundamental and interesting aspects of our universe. Yet many
unresolved mysteries remain.

Cosmology and field theory predict that the universe was created in a Big Bang, with
extremely high temperatures, way beyond the energy scales achievable by present-day
accelerators. This initial ultra-high energy density inevitably gives rise to the creation
of particle-antiparticle pairs which leads to two possible scenarios: either the particle-
antiparticle pairs could annihilate, ultimately leaving a sea of photons in which we
could not exist, or there should be equal amounts of matter and antimatter, somehow
separated to prevent annihilation. Yet, although the observed proton to photon ratio is
about 10−9, no evidence for significant amounts of antimatter could be established over
cosmological distances. Thus, the excess of matter over antimatter has to be explained
by an asymmetry between the way matter and antimatter interact. In 1976, Sakharov
formulated a mechanism to generate this cosmological matter asymmetry based on three
conditions [1]:

• Non-conservation of baryonic charge

• Deviation from the thermal equilibrium

• Breaking of the matter-antimatter symmetry (breaking of the C and CP symmetry)

The Standard Model (SM) of particle physics describes the known elementary particles
and their interactions very successfully and has been verified with high precision [2]. It
contains three generations of fermions: quarks and leptons which are the fundamental
matter particles and possess spin 1

2 . These particles exchange field quanta, called gauge
bosons, which mediate the forces between them. They follow from local gauge invariance
according to the symmetry group of the SM, SUC(3)× SUL(2)× UY (1).

Although the SM has been verified to a high degree of precision there are still some
tensions and aspects which are not completely satisfactory, including the large number of
parameters which can only be deduced by experiments, like for example the ones needed
for the flavour mixing; or the fact that the SM does not describe the Dark Matter and
the Dark Energy and thus only accounts for approx. 5% of the known universe [3–5].

CP violation was discovered in 1964 in the Kaon system [6] and could be integrated
into the SM in 1972 by Kobayashi and Maskawa using only one CP -violating phase, the
KM phase [7]. Since this formalism is only possible for more than two quark generations,



2 Introduction

they predicted a minimum of three quarks in addition to the three quarks known at
that time. Then in 1980, based on the observation of a surprisingly long lifetime of the
B mesons, Bigi, Carter and Sanda pointed out that the B0B0 system may show large
time-dependent CP asymmetries [8–10]. Two dedicated experiments where commissioned
to explore these asymmetries: BABAR [11] in the USA and Belle [12] in Japan. And
indeed, a large CP violation in the B meson sector was observed by 2001 in B0→ J/ψK0

S
decays by both collaborations [13, 14]. This measurement is sensitive to sin(2φ1) so a
twofold ambiguity φ1 → π/2− φ1 remains. The decay mode B0→ D∗−D∗+K0

S addresses
this ambiguity. Although it is experimentally much more challenging than B0→ J/ψK0

S,
theory shows that it might allow to extract cos(2φ1) and solve the ambiguity on φ1.

As it can be shown [15] that the amount of CP violation in the SM cannot explain
the observed matter-antimatter asymmetry and new sources of CP violation are needed
besides the single KM phase now present in the SM:. These sources could enter the
observed CP asymmetries via loop diagrams. This makes CP violation sensitive to detect
new physics in a range from 600GeV to more than ∼ 500TeV, depending on the amount
of flavour violation of these new physics [16]. But to challenge the SM, high precision
measurements with very high statistics are needed. The planned upgrade to Belle, Belle II
[17], will start operation in 2016 and increase the statistics from Belle by a factor of 50
till 2028. For this upgrade, a precise simulation of the detector response is needed which
requires, among other things, a detailed description of the material of all sub-detectors.

In the following chapter, the principles of CP violation measurements will be presented
and the reason to measure the decay channel B0 → D∗−D∗+K0

S will be motivated. An
overview of the Belle experiment will be given in Chapter 2. In Chapter 3 we will
describe the methods used to select and reconstruct B0 → D∗−D∗+K0

S events from the
Belle data. The extraction of the branching fraction, B(B0→ D∗−D∗+K0

S) will be presented
in Chapter 4 and Chapter 5 shows the measurement of the time dependent CP violation
in B0 → D∗−D∗+K0

S decays. Finally, Chapter 6 will give an outlook on the upcoming
Belle II upgrade, focussing on the new vertex detector and the implementation of its
geometry in the simulation.



Chapter 1

Physics motivation

In this chapter, the basic principles of CP violation measurements are developed. Starting
with a short introduction about basic symmetry operations, the time evolution of neutral
mesons is discussed. The principles of CP violation will be presented and the observables
will be defined. A brief outline of the experimental techniques utilized to measure these
observables is given.

1.1 C, P and T Symmetry
Symmetries are very important in physics since every operation which leaves a system
invariant corresponds to a conservation law according to Noether’s theorem [18]. For
example, rotational symmetry corresponds to the conservation of angular momentum
and invariance under translations in space or time corresponds to the conservation laws
of momentum and energy, respectively. Important discrete symmetries in the Standard
Model (SM) are the Charge C, Parity P and Time Conjugation T :

Charge conjugation transforms a particle q into its antiparticle q , leaving mass, mo-
mentum and spin invariant, but inverting the quantum numbers like flavour and
electric charge

C |q〉 = |q〉 (1.1)

Parity transformation is a discrete operation which mirrors the physical system in
space, thus the coordinate x, momentum p and angular momentum l ≡ x × p
transform as follows:

x
P−→ −x p

P−→ −p l
P−→ l (1.2)

It can be seen that we can distinguish between two types of vectors: Polar vectors
V that change their sign and axial vectors A which are invariant under parity
transformation. This also leads to the distinction of scalars S = V ·V = A ·A P−→ S
and pseudoscalars P = V ·A P−→ −P .
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Time conjugation reflects t into −t while leaving x unchanged, thus representing a
reversal of motion

x
T−→ x p

T−→ −p l
T−→ −l (1.3)

Until the 1950s, P and C conservation were believed to be fundamental conservation
laws like the conservations of energy and momentum. Trying to explain the θ− τ puzzle in
1956, Tsung-Dao Lee and Chen Ning Yang pointed out that, while verified in strong and
electromagnetic interactions, parity conservation was hitherto untested in weak decays [19].
They proposed several direct experimental tests and in the same year, Chien-Shiung Wu
et al. demonstrated [20] that parity is violated maximally in weak decays, i.e. the weak
interaction only couples to left-handed particles.

Soon after, Landau pointed out that the combined transformation CP and the time
reversal T are still conserved [21]. This seemed to be very important since it can be shown
quite generally that violation of CPT would also lead to a violation of Lorentz invariance.
To be precise, the CPT theorem states that any Lorentz invariant local quantum field
theory with a Hermitian Hamiltonian must preserve CPT symmetry [22]. Thus if CP is
violated, also T needs to be broken to conserve CPT .

1.2 Flavour Physics
The SM describes the interaction of three generations of quarks and leptopns. The quarks
consist of one up-type and one down-type quark in each generation. Each of these 6
quarks, which are shown in Figure 1.1, is assigned a quantum number called “flavour”.
These quantum numbers are conserved in electromagnetic and strong interaction, but not
in the weak interaction. Cabibbo was the first to explain the long lifetimes of the strange
particles, the kaons, by describing them as a mixing between the known quarks using only
one free parameter, the Cabibbo angle θC = 13.04° [23]:(

d′
s′
)

=
(

cos θC sin θC
− sin θC cos θC

)
︸ ︷︷ ︸

VC

(
d
s

)
(1.4)

d′, s′ are the so called “flavour eigenstates” which are transformed into each other in weak
interactions. Since the squared elements of VC describe the probability for one quark to
transform into another flavour state, probability preservation dictates this matrix to be
unitary. This mixing formalism can be extended to three quark generations as will be
seen in Section 1.4.

1.3 Neutral Meson Mixing
In the Kaon system, decays of both K0 and K0 to the same final state were observed.
This also requires the existence of a transition between K0 and K0. Since K0 and K0 have
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Figure 1.1: Particle-Generations in the Standard Model [24].
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Figure 1.2: Leading Feynman diagrams contributing to Kaon-oscillation.

different flavour, this transition is called flavour mixing. As a consequence, these mesons
may oscillate between particle and antiparticle before decaying, a process of second order
in Weak Interactions. The two leading Feynman diagrams contributing to the Kaon
oscillation are shown in Figure 1.2. This is a rare second order process due to the small
value of the Fermi constant.

For the neutral Kaon system, this oscillation can be described by diagonalizing the
Hamiltonian of the generic two-dimensional wave function

|ψ(t)〉 = ψ1(t) |K0〉+ ψ2(t) |K0〉 =
(
ψ1
ψ2

)
(1.5)

evolving in time according to the Schrödinger equation with the Hamiltonian H consisting
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of the mass and decay matrices M and Γ [25, 26].

i
d

dt

(
ψ1
ψ2

)
=
(
M− i

2Γ
)(

ψ1
ψ2

)
(1.6)

The off-diagonal elements of this Hamiltonian are associated with flavour changing
transitions, K0↔ K0, so H12 = H∗21 is required for CP to be conserved. Assuming that
the K0 couples to itself in the same way as the K0, therefore assuming CPT -invariance, the
diagonal elements have to be equal: H11 = H22 = M − i

2Γ. Diagonalizing the Hamiltonian
yields two eigenvalues with their corresponding eigenstates

µ1,2 = M − i

2Γ±

√√√√(M12 −
i

2Γ12

)(
M∗

12 −
i

2Γ∗12

)
(1.7)

|K1〉 = p |K0〉+ q |K0〉 for µ1

|K2〉 = p |K0〉 − q |K0〉 for µ2
(1.8)

with q

p
=

√√√√M∗
12 − i

2Γ∗12

M12 − i
2Γ12

and the normalization
√
p2 + q2 = 1 (1.9)

These eigenstates represent the physical mass-eigenstates. The masses and lifetimes for
these states can be obtained from the eigenvalues

m1,2 = Re(µ1,2) Γ1,2 = −2 Im(µ1,2) (1.10)

If CP is conserved, it is evident that p = q = 1. From CP |K0〉 = |K0〉 follows

CP |K1〉 = + |K1〉 CP |K2〉 = − |K2〉

Since CP |2π〉 = + |2π〉 and CP |3π〉 = − |3π〉, CP -invariance dictates

K1 → 2π 8 K2 and K1 9 3π ← K2 (1.11)

The mass difference ∆m = m2 − m1 between K1 and K2 is a very small quantity
∆mK/mK ' 7× 10−15 and it is a remarkable achievement of experimental physics and
quantum mechanics that it can be measured at all. The value for ∆m can be determined
by measuring the oscillation frequency.

The lifetime difference ∆Γ = Γ1 − Γ2 is mainly governed by phase space. Since three
pions have an invariant mass of about 420MeV and the K0 with about 500MeV is only
slightly larger, this decay is suppressed fo the Kaon system. The lifetime of the CP -odd
state K2 is roughly 600 times the lifetime of the CP -even state K1, which can decay into
ππ. Assuming CP is conserved, the mass-eigenstates K1 and K2 were are also identified
as CP eigenstates and the identifiers K0

S and K0
L were chosen for the short and the long

lived state, respectively.
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The derivation above can be applied without change to the heavier mesons D and
B. Yet due to their higher masses no phase space restriction applies for the decay. The
differences in lifetime for these mass eigenstates is negligible. Accordingly, the mass
eigenstates in these systems are denoted with subscript H and L for the heavy and light
states, respectively.

The time evolution of the mass eigenstates (or CP eigenstates if CP is conserved) for
any neutral meson M is exponential in time and given by

|M1(t)〉 = e−iµ1t |M1〉 = e−i(m1− i
2 Γ1)t

(
p |M0〉+ q |M 0〉

)
|M2(t)〉 = e−iµ2t |M2〉 = e−i(m2− i

2 Γ2)t
(
p |M0〉 − q |M 0〉

) (1.12)

Using Eq. 1.8 we solve these equations to obtain the time evolution of M0 and M 0

|M0(t)〉 = g+(t) |M0〉+ q

p
g−(t) |M 0〉

|M 0(t)〉 = g+(t) |M 0〉+ p

q
g−(t) |M0〉

(1.13)

with
g± = 1

2
(
e−i(m1− i

2 Γ1)t ± e−i(m2− i
2 Γ2)t

)
(1.14)

Quantitative results for the mixing probabilities for Kaons and B-mesons can be seen
in Figure 1.3. One can clearly see the influence of the lifetime difference in the Kaon
system, since this prevents full oscillation: An initial pure K0 will never convert to a pure
K0, as opposed to the B system.

1.4 CP violation
In 1964, James Cronin, Val Fitch and co-workers found evidence of CP violation [6],
winning the Nobel-Prize in 1980. They intended to set an upper limit to the branching
fraction of K0

L→ ππ but discovered a branching ratio of

B
(
K0

L→ π+π−
)

= (2.0± 0.4)× 10−3 (1.15)

With CP violation established, the mixing parameters p and q are no longer equal, making
it necessary to change the definition of K0

S and K0
L to be mixtures of the CP eigenstates

with a small, complex mixing parameter ε

|K0
S〉 = 1√

1 + |ε|2
(|K1〉 − ε |K2〉)

|K0
L〉 = 1√

1 + |ε|2
(|K1〉+ ε |K2〉)

(1.16)
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Figure 1.3: Mixing probability for a B0 (left) and a K0 (right) as functions of their lifetimes.
The top row shows the probabilities for a ∆m 5 times the measured value (bottom row).

With Equations 1.9 and 1.11, this leads to the following relations

p = 1 + ε√
2(1 + |ε|2)

q = 1− ε√
2(1 + |ε|2)

p

q
= 1− ε

1 + ε
(1.17)

To describe CP violation in the SM, an additional, irreducible complex phase has to
be present in the flavour transition matrix. A unitary, complex n× n matrix contains n2

free parameters, 2n− 1 of these represent global phases which are physically irrelevant.
Apart from the n(n − 1)/2 rotations, the number of remaining parameters which can
contribute to CP violation is given by

nCP = (n− 1)(n− 2)/2 (1.18)

Thus CP violation cannot be explained with only two quark generations since this will
leave only one real angle as parameter. Kobayashi and Maskawa postulated their model
predicting 3 quark generations, which allows for one complex CP -violating phase, in
1972 [7]. This was two years before the discovery of the charm quark, five years before
the discovery of the b-quark and 20 years before the discovery of the t-quark. For this
work, after their scheme was verified with the B system, they were awarded the Nobel
Prize in 2008.

Their model is an extension of the Cabibbo mixing (Eq. 1.4) for three generations
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with a 3× 3 mixing matrix, the CKM-matrix.d′
s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


︸ ︷︷ ︸

CCKM

d
s
b

 (1.19)

This CKM matrix has a non-vanishing complex phase (δ13) and three real Euler angles
θ12, θ23, θ13. The standard parametrization [3] of this matrix is given by

CCKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

 (1.20)

where sij and cij are the sines and the cosines of the three mixing angles θ12, θ23, θ13. The
angle θ12 is identical to the Cabibbo angle θC = 13.04°. The structure of CP violation
can better be seen in the Wolfenstein representation [27], which expands the CKM matrix
in orders of λ = sin θc = 0.2257+0.0009

−0.0010 and is written in terms of three other parameters
A = 0.814+0.814

−0.022, ρ = 0.135+0.031
−0.016 and η = 0.349+0.015

−0.017. This parametrization is unitary to
all orders of λ [3].

CCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.21)

1.4.1 Unitarity Triangle
The unitarity requirement for the CKM matrix can be used to establish relations among
the different matrix elements, such as∑

k

VikV
∗
jk = 0 (1.22)

Since the matrix contains complex values, these constraints can be visualized as triangles
in the complex plane with the sides VikV ∗jk. It can be shown that all unitarity triangles
have the same area [28], which is proportional to the amount of CP violation in the SM.
By looking at the Wolfenstein parametrization one can see that this triangle is almost
degenerate for the relations between adjacent columns. Whereas the sides of the triangle

VudV
∗
ub

O(λ3)
+VcdV

∗
cb

O(λ3)
+VtdV

∗
tb

O(λ3)
= 0 (1.23)

are all of the same order in λ. Therefore, the angles in this triangle have to be naturally
large. Due to this, [8–10] predicted large CP asymmetries for some decay of B mesons
due to the comparable size of the decay and oscillation amplitudes.

It is convenient to normalize this triangle by the real number (VcdV ∗cb), which results
in this side being exactly (0, 0) to (1, 0) in the complex plane. Since the imaginary part of
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Figure 1.4: Current constraints on the CKM Triangle [29].

VcdV
∗
cb is almost zero except for higher order contributions ∼ O(λ5), this normalization

can be approximated as a simple scaling of the triangle. The coordinates of the top corner
(ρ, η) and the angles of the rescaled triangle are given by

ρ ≡
(

1− λ2

2

)
ρ η ≡

(
1− λ2

2

)
η (1.24)

φ1 ≡ arg
(
−VcdV

∗
cb

VtdV
∗
tb

)
φ2 ≡ arg

(
− VtdV

∗
tb

VudV
∗
ub

)
φ3 ≡ arg

(
−VudV

∗
ub

VcdV
∗
cb

)
(1.25)

Since sides and angles of this triangle can be measured using the B meson system and
the triangle is supposed to be well conditioned, the SM can be tested by verifying the
closing of this triangle. If any of the possible unitarity triangles does not close exactly,
the unitarity of the CKM matrix would be broken, proving the incompleteness of the
SM and therefore the existence of new physics beyond the SM. The current results of
these measurements can be seen in Figure 1.4. So far, the results are in good agreement
with the CKM model within the uncertainties, yet discrepancies could show up once the
constraints are tightened further [30]. To achieve this, high precision measurements with
very high statistics are needed.
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1.4.2 Time Dependent CP violation
The time evolution for neutral B mesons is given by Equation 1.13

|B0(t)〉 = g+(t) |B0〉+ q

p
g−(t) |B0〉

|B0(t)〉 = g+(t) |B0〉+ p

q
g−(t) |B0〉

(1.26)

With the average mass m = (mH +mL)/2 and the average lifetime Γ = (ΓH + ΓL)/2, the
functions g± (see Eq. 1.14) can be written as

g± = 1
2e
−imte−

1
2 Γt
(
ei∆mt/2e−∆Γt/4 ± e−i∆mt/2e∆Γt/4

)
(1.27)

Since ∆Γ/Γ ∼ O(10−3) in the B0 system, the lifetime difference between the two mass
eigenstates can be ignored (∆Γ = 0). The lifetime is redefined as Γ ≡ Γ = ΓL = ΓH and
Equation 1.27 becomes

g± = e−Γt/2 e
i∆mt/2 ± e−i∆mt/2

2 (1.28)

where e−imt is removed by a phase convention. Thus the time evolution of the B0 and the
B0 is

|B0(t)〉 = e−Γt/2
(

cos(∆mt
2 ) |B0〉+ i

q

p
sin(∆mt

2 ) |B0〉
)

|B0(t)〉 = e−Γt/2
(

cos(∆mt
2 ) |B0〉+ i

p

q
sin(∆mt

2 ) |B0〉
) (1.29)

Consider the case where both B0 and B0 decay into the same CP eigenstate fCP . The
decay amplitudes can be written as

ACP = 〈fCP |B0〉 ACP = 〈fCP |B0〉 (1.30)

Using the time evolution from Equation 1.29, the time-dependent decay amplitudes are

ACP (t) = ACP e
−Γt/2

(
cos(∆mt

2 ) + iλCP sin(∆mt
2 )

)

ACP (t) = ACP e
−Γt/2

(
cos(∆mt

2 ) + i

λCP
sin(∆mt

2 )
) (1.31)

with
λCP = q

p

ACP
ACP

. (1.32)

With Equation 1.32, three distinct types of CP violation can be distinguished. Typical
Feynman diagrams for each type of CP observable can be seen in Figure 1.5. These types
can be classified as



12 1. Physics motivation

CP violation in decay or direct CP violation occurs when |Af/Af | 6= 1. This is the
only type of CP violation possible in charged meson decays (since they cannot mix
with their antiparticles).

CP violation in mixing or indirect CP violation is defined by |p/q| 6= 1. This is the
case for the first observed CP violation in the Kaon system and corresponds to an
asymmetry in the flavour oscillation M0→M 0→M0.

CP violation by interference of mixing and decay can be observed in neutral de-
cays where B0 and B0 have a common final state f , preferentially a pure CP
eigenstate. A non-vanishing interference between a direct decay M0 → f and a
decay via mixing M0→M 0→ f is expected when

Im (λCP ) 6= 0

The B0-oscillations are dominated by top-quark contributions because of Vtb � Vcb �
Vub and GIM cancellations [31]. This leads to p/q ' 1 and allows to write λCP in the
B-System as

|λCP |2 = |ACP |
2

|ACP |2
(1.33)

Finally, the time dependent decay rates can be obtained from Equation 1.31

Γ
(
B0→ fCP

)
= | 〈fCP |B0(t)〉 |2

= e−Γt

2 |ACP |
2
[
(|λCP |2 + 1)− (|λCP |2 − 1) cos(∆mt)− 2 Im(λCP ) sin(∆mt)

]
Γ
(
B0→ fCP

)
= | 〈fCP |B0(t)〉 |2

= e−Γt

2 |ACP |
2
[
(|λCP |2 + 1)− (|λCP |2 − 1) cos(∆mt) + 2 Im

( 1
λCP

)
sin(∆mt)

]
(1.34)

With CP violation, a difference between the time dependent decay rates (Eq. 1.34)
of B0 to B0 to the same finalstate fCP can be observed. Since these effects are expected
to be small, it is advantageous to look at the asymmetry between these decays. Many
systematic errors will be canceled in this measurement. This time-dependent asymmetry
is then given by

aCP (t) =
Γ
(
B0→ fCP ; t

)
− Γ (B0→ fCP ; t)

Γ
(
B0→ fCP ; t

)
+ Γ (B0→ fCP ; t)

(1.35)

Using Equations 1.31 and 1.34, this asymmetry can be expressed using two CP parameters

aCP (t) = ACP sin (∆mt) + SCP cos (∆mt) (1.36)

ACP = |λCP |
2 − 1

|λCP |2 + 1 SCP = 2 Im(λCP )
|λCP |2 + 1 (1.37)
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Figure 1.5: Examples for the three different types of CP observables. CP violation can
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and B0.
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In this asymmetry, ACP corresponds to effects of direct CP violation and SCP to the
mixing-induced CP violation. This is because ACP will only differ from zero if |λCP |2 6= 1.
From Equation 1.33 then follows |ACP/ACP | 6= 1.

1.4.3 Measurement of CP violation
Due to the short lifetime of the B0 of about 1.5 ps, it is impossible to resolve the CP
asymmetry by a time measurement. Furthermore, the time-dependent decay asymmetry
(Eq. 1.36) requires that the flavour of the B meson is known. For a CP eigenstate, both
B0 and B0 can decay into the same final state. Therefore the knowledge whether the B0

or the B0 has decayed into the CP eigenstate fCP is a non-trivial experimental issue.
To create B-mesons in an e+e− machine with low background, BB pairs are produced

at the Υ(4S) resonance. The Υ(4S) is one of the hadronic bb resonances (see Figure 1.6)
and is exactly at the production threshold for BB meson pair production. This is the
lowest energy where B mesons can be produced and they are therefore essentially at rest
in the center of mass system. Running at the Υ(4S) also has the benefit of high BB yields
as about one third of all hadron events at that energy are BB events.

The two B mesons are in a state with quantum numbers JPC = 1−− from the Υ(4S)
since P and C are conserved in strong interactions. Due to B0 being a pseudoscalar
particle, the BB system must have an orbital angular momentum L = 1 (p-wave). This
state must be antisymmetric, therefore Bose-Einstein statistics forbids the states B0B0

and B0B0 which necessarily must be a symmetric state. As a consequence, the two B
mesons cannot oscillate independently, so that a state B0B0 or B0B0 cannot occur at any
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time: The B0B0 pair therefore must oscillate coherently,

|B1(t1),B2(t2)〉 = 1√
2
(
|B0

1(t1)〉 |B0
2(t2)〉 − |B0

1(t1)〉 |B0
2(t2)〉

)
. (1.38)

Substitution of Equation1.31 and ∆t = t2 − t1 yields

|B1(t1),B2(t2)〉 = 1√
2
e

−Γ(t1+t2)
2

[
cos

(∆m∆t
2

)(
|B0

1〉 |B0
2〉 − |B0

1〉 |B0
2〉
)

+ i sin
(∆m∆t

2
)(q
p
|B0

1〉 |B0
2〉 −

p

q
|B0

1〉 |B0
2〉
)]

(1.39)

Once one of the two mesons decays, the other one is free to oscillate. If we can measure
the flavour of one of the two B’s, determined by a flavour-specific decay, which is called
“tag side”, the exact flavour and time evolution of the other B is known. In the specific
case where one B meson decays to a flavour specific state Btag and the other B decays to
a CP eigenstate, BCP , the time-dependent decay rates become

Γ(fCP , ftag) =| 〈fCP , ftag|BCP(tCP),Btag(ttag)〉 |2

=1
4e
−Γ(tCP+ttag)A2

CPA
2
tag[

(|λCP |2 + 1)− (|λCP |2 − 1) cos(∆m∆t)− 2 Im(λCP ) sin(∆m∆t)
]

Γ(fCP , f tag) =| 〈fCP , f tag|BCP(tCP),Btag(ttag)〉 |2

=1
4e
−Γ(tCP+ttag)A2

CPA
2
tag|

p

q
|2[

(|λCP |2 + 1) + (|λCP |2 − 1) cos(∆m∆t) + 2 Im(λCP ) sin(∆m∆t)
]

(1.40)

with the decay amplitude Atag = 〈ftag|B0〉 = 〈f tag|B0〉. The resulting time-dependent CP
asymmetry,

aCP (∆t) =
Γ
(
fCP , f tag

)
− Γ (fCP , ftag)

Γ
(
fCP , f tag

)
+ Γ (fCP , ftag)

= ACP sin (∆m∆t) + SCP cos (∆m∆t) ,

(1.41)

retains its form in ∆t when compared to Equation 1.35. The CP -violating parameters can
be extracted as a physical observable if ∆t and the flavour of Btag can be determined. If
Equation 1.40 is normalized to unity in the region −∞ < ∆t <∞ we obtain the probability
of finding fCP at time ∆t and a given flavour tag q = +1 (−1) for Btag = B0 (B0),

P(∆t, q) = e
−|∆t|/τB0

4τB0

[
1 + q

(
ACP cos (∆m∆t) + SCP sin (∆m∆t)

)]
. (1.42)

Figure 1.7 shows this probability for two different, arbitrary values for the CP parameters
ACP and SCP and the resulting CP asymmetry aCP
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Figure 1.7: Two different examples how CP violation can manifest in the probability
P(∆t, q) and the resulting CP asymmetry aCP . In the case of no CP violation the
distributions for q = +1 and q = −1 would match and the asymmetry would disappear.

Using asymmetric beam energies, the Υ(4S) system is boosted in beam direction (z
in Belle). As the B mesons have very low momentum the Υ(4S) frame they fly almost
parallel to the boost direction. This makes it possible to measure the distance ∆z between
the decay vertices of the B . Since the boost of the system is known, the time ∆t can be
determined using

∆t = ∆z
〈βγ〉c

(1.43)

Yet even for a boost of βγ = 1, the mean flight distance of the B0 is only ∼ 400 µm. High
precision vertexing using silicon technology is required to be able to determine ∆z.

A schematic decay of B0→ J/ψK0
S is shown in Figure 1.8. Due to the low theoretical

uncertainties, the large branching fraction and the high reconstruction efficiencies [33], this
channel can be considered a golden mode for the time dependent the CP measurement.
The dominant Feynman diagrams contributing to this channel can be seen in Figure 1.5(c)
In Figure 1.8, the flavour of the tag side B0 meson can be obtained using a semileptonic
tag: Charge conservation dictates that a single lepton emitted from a B0 decay has to be
positively charged and vice versa for B0. Therefore semileptonic decays can be used to
determine the flavour of one of the two B0 mesons.
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Figure 1.8: Simple schematic of B0B0 decaying in the case of the golden channel J/ψK0
S.

1.5 Time-Dependent CP violation in B0→ D∗−D∗+K0
S

The leading process for B0 → D∗−D∗+K0
S is shown in Figure 1.9. Like B0 → J/ψK0

S, it
contains the b→ ccs transition. However, due to the external emission of the W boson,
this process is not colour suppressed, and the branching fraction is enhanced relative to
B0 → J/ψK0

S. According to [34] the penguin contribution is expected to be negligible,
meaning that no direct CP violation is expected.

The D∗ is a vector (spin 1) resonance. For vector-vector decay modes the final state in
general is an admixture of CP odd and even eigenstates, because s, p and d partial waves
with different CP parities can contribute [34]. This tends to dilute or cancel the overall
asymmetry. Furthermore there is an additional dilution if there is a resonance in the final
state. The decay amplitudes B→ f and B → f differ because the resonance bands in the
Dalitz plot can be populated differently. This causes additional mismatch of the B and B
amplitudes which further dilutes the CP asymmetry.

However, if there is a resonant contribution it may be used to extract cos(2φ1). Since
other decay channels are only sensitive to sin(2φ1) there is a φ1 → π/2− φ1 ambiguity.
Being potentially sensitive to cos(2φ1) makes this decay mode so interesting despite the
experimental difficulties as it can be used to resolve this ambiguity on φ1.

Following [34], we define amplitudes which take into account the polarisation of the
D∗± mesons,

Aλ1,λ2 ≡ A
[
B0(p)→ D∗+λ1 (p+)D∗−λ2 (p−)K0

S(pk)
]

Aλ1,λ2 ≡ A
[
B0(p)→ D∗+λ1 (p+)D∗−λ2 (p−)K0

S(pk)
]
,

(1.44)

where p, p+, p− and pk are the 4-momenta of B0, D∗+, D∗− and K0
S, and λ1 and λ2 are the

polarisation indices of the D∗+ and D∗−, respectively. Using the time-dependent amplitude
for an oscillating B0 (B0) from equation 1.31 and λCP = e−i2φ1 , we obtain

Aλ1,λ2(t) = Aλ1,λ2 cos(∆mt
2 ) + ie−2iφ1Aλ1,λ2 sin(∆mt

2 )

Aλ1,λ2(t) = Aλ1,λ2 cos(∆mt
2 ) + ie2iφ1Aλ1,λ2 sin(∆mt

2 )
(1.45)
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dropping the e−Γt/2 for convenience. Integrating over the phase space angles and summing
over the polarisations, the time-dependent squared amplitude becomes

|A(s+, s−; t)|2 = 1
2
[
G0(s+, s−) +Gc(s+, s−) cos(∆mt)−Gs(s+, s−) sin(∆mt)

]
|A(s−, s+; t)|2 = 1

2
[
G0(s−, s+)−Gc(s−, s+) cos(∆mt) +Gs(s−, s+) sin(∆mt)

] (1.46)

with

G0(s+, s−) = |A(s+, s−)|2 + |A(s+, s−)|2

Gc(s+, s−) = |A(s+, s−)|2 − |A(s+, s−)|2

Gs(s+, s−) = −2 sin(2φ1) Re(AA∗) + 2 cos(2φ1) Im(AA∗)
= −2 sin(2φ1)Gs1(s+, s−) + 2 cos(2φ1)Gs2(s+, s−)

(1.47)

and the Dalitz variables s+ = (p+ + pk)2 and s− = (p− + pk)2. It is more convenient to
replace s+ and s− by y = cos θ and Ek where θ is the angle between the D∗+ and the
K0

S in the rest frame of the two D∗ mesons (see Figure 1.10) and Ek is the K0
S energy in

the B0 rest frame. Note that s+ ↔ s− corresponds to y ↔ −y. If we neglect penguin
contributions to the amplitude there is no CP violation which implies that

A(p′k, Ek) = A(−p′k, Ek) (1.48)

where p′k is the momentum of the K0
S in the boosted frame. This leads to

G0(y, Ek) = G0(−y, Ek)
Gc(y, Ek) = −Gc(−y, Ek)
Gs1(y, Ek) = Gs1(−y, Ek)
Gs2(y, Ek) = −Gs2(−y, Ek).

(1.49)

Integration of Equation 1.46 over half of the phase space region, taken as y ≥ 0 (y ≤ 0)
for B0 (B0) decay, yields

Γ(t, y ≥ 0) = 1
2
[
J0 + Jc cos(∆mt) + 2Js1 sin(2φ1) sin(∆mt)− 2Js2 cos(2φ1) sin(∆mt)

]
Γ(t, y ≤ 0) = 1

2
[
J0 + Jc cos(∆mt)− 2Js1 sin(2φ1) sin(∆mt)− 2Js2 cos(2φ1) sin(∆mt)

]
(1.50)

where J0, Jc, Js1 and Js2 represent the integrated functions G0(y, Ek), Gc(y, Ek), Gs1(y, Ek)
and Gs2(y, Ek) over the half phase space region y ≥ 0 which is equivalent to s+ ≥ s−.
Finally we can write down the time-dependent CP asymmetry as

Γ(t)− Γ(t)
Γ(t) + Γ(t)

= ηy
Jc
J0

cos(∆mt)−
(2Js1
J0

sin(2φ1) + ηy
2Js2
J0

cos(2φ1)
)

sin(∆mt) (1.51)
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Figure 1.9: Leading Feynman diagrams for B0→ D∗−D∗+K0
S.

θ

p′+
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Figure 1.10: Schematics of the D∗+ D∗− rest frame and the definition of θ. p′+, p− and p′k
are the boosted 4-momenta of the D∗+, D∗− and K0

S in this frame.
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with ηy = +1 (−1) for s+ ≥ s− (s+ ≤ s−). From this distribution we can extract the
time-dependent CP violating parameters Jc/J0, (2Js1/J0) sin(2φ1), (2Js2/J0) cos(2φ1) for
B0→ D∗−D∗+K0

S. Similar to Equation 1.42, the probability of finding fCP at time ∆t for
a given flavour tag q is given by

P(∆t, q) = exp−|∆t|/τB0

4τB0

{
1 + q

[
ηy
Jc
J0

cos(∆mt)

−
(2Js1
J0

sin(2φ1) + ηy
2Js2
J0

cos(2φ1)
)

sin(∆mt)
]}
. (1.52)

Js2 measures the overlap of the imaginary part of the amplitudes for B0→ D∗−D∗+K0
S

and B0→ D∗−D∗+K0
S. If this would be a pure 3-body decay then Js2 = 0 would render a

measurement of cos(2φ1) impossible. Measurement of Js2 itself would require a complicated
3-body angular analysis which is beyond the scope of this thesis. But [34] predicts 2Js2/J0
to be positive. This allows us to determine the sign of cos(2φ1) and resolve the two-fold
ambiguity φ1 → π/2− φ1.

1.6 Previous Measurements
In 2006, the BABAR collaboration reported the following results [35],

B(B0→ D∗−D∗+K0
S) =

(
4.4± 0.4(stat)± 0.7(syst)

)
× 10−3 (1.53)

They assumed no direct CP violation and did not search for it explicitly. For the
time-dependent CP analysis using equation 1.51 they measured

Jc/J0 = 0.76± 0.18(stat)± 0.07(syst)
(2Js1/J0) sin(2φ1) = 0.10± 0.24(stat)± 0.06(syst)
(2Js2/J0) cos(2φ1) = 0.38± 0.24(stat)± 0.05(syst)

(1.54)

and excluded a negative sign of cos(2φ1) at the 94% confidence level.
In 2011, the BABAR collaboration did a measurement of the branching fractions of

multiple decay modes with a result of [36]

B(B0→ D∗−D∗+K0) =
(
8.26± 0.43(stat)± 0.67(syst)

)
× 10−3 (1.55)

where K0 decays with 50% into K0
S or K0

L. This measurement is consistent with their
previous result but has significantly smaller errors. No attempt was made to improve the
time-dependent CP analysis.

Belle published performed an analysis of this channel in 2007 using 414 fb−1 (∼ 60%
of the final data) [37] and measured

B(B0→ D∗−D∗+K0
S) =

(
3.4± 0.4(stat)± 0.7(syst)

)
× 10−3 (1.56)
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They explicitly checked for direct CP violation but found no evidence. In the 3-parameter
fit performed int the half-Dalitz space they obtained

Jc/J0 = 0.60+0.25
−0.28(stat)± 0.08(syst)

(2Js1/J0) sin(2φ1) = −0.17+0.42
−0.42(stat)± 0.09(syst)

(2Js2/J0) cos(2φ1) = −0.23+0.43
−0.41(stat)± 0.13(syst).

(1.57)

Due to the large errors on (2Js2/J0) cos(2φ1) no conclusion was drawn concerning the sign
of cos(2φ1).

As there is no significant constraint on the sign of cos(2φ1) from Belle this is an excellent
opportunity to repeat the analysis with the final data set. In addition to the increased
statistics since the previous analysis we can profit from an improved reconstruction method
for charged particles, especially in the low momentum range.
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Chapter 2

The Belle Experiment

The Belle Experiment has been built specifically to make high-precision measurements of
the CKM parameters using BB decays. It is stationed at the KEKB collider, part of the
KEK Research Center in Tsukuba, Japan, and is currently holding the world record on
luminosity of 2.11× 1034 cm−2s−1 [38], exceeding the design luminosity by more than a
factor of two. In its runtime from 1999 to 20120, the experiment has accumulated 1 ab−1

of integrated luminosity (Figure 2.1) at the various Υ(nS) resonances, with the majority
of data at the Υ(4S) resonance which translates into 772 million BB pairs.

2.1 KEKB Accelerator
The KEKB-Accelerator [39, 40] is an asymmetric e+e−-storage ring with a center of mass
energy of

√
s = 10.58GeV, the Υ(4S)-resonance. It consists of one high-energy ring (HER)

at 8GeV and one low-energy ring (LER) at 3.5GeV. These rings have a circumference of
roughly 3 km and are located 10m below ground. A linear accelerator is used to bring the
electrons and positrons to the required energy before injecting them into the storage rings.

There is one interaction region in which the two beams cross with an angle of 22mrad
to minimize bunch-bunch interactions in the interaction region. Due to the asymmetric
beam energies the B mesons have a boost of βγ = 0.425, which results in a mean
〈∆z〉 = 200 µm (see Eq. 1.43) which has to be resolved in order to measure time dependent
CP asymmetries.

2.2 Belle Detector
The Belle detector [12, 41] aims at full reconstruction of all particles and follows the
standard layout of most detectors in high-energy physics. It covers an acceptance from
θ = 17° to 150°, corresponding to 92% of the solid angle. The basic layout can be seen in
Figure 2.3.

The coordinate system used in Belle is defined as right-handed coordinate system with
x, y and z axes and the origin at the nominal interaction point (IP). z is defined as being
the direction opposite the positron beam and y is pointing upwards. The radial distance,
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Figure 2.1: Daily recorded luminosity for KEKB.

Figure 2.2: Schematic view of the KEKB accelerator.
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r =
√
x2 + y2, is the distance projected on the xy-plane, θ is the polar angle to the z-axis

and φ is the azimuthal angle with respect to the positive x-axis.

Figure 2.3: Layout of the Belle detector.

2.2.1 Beam Pipe
Although technically not part of the Belle detector, the beam pipe around the interaction
point (IP) is the first piece of material all particles must traverse before reaching the
detector. Since Coulomb scattering affects track resolution, it is important to minimize
the impact of the beam pipe on particle trajectories by choosing a thin material with a low
atomic number. In addition, vertexing performance is reduced with increasing distance of
the vertex detector from the IP (see below), requiring the diameter of the beam pipe to
be as small as possible.

With these considerations in mind, a beryllium beam pipe was chosen, which consists
of a dual layer cylinder where the gap between the walls is used as cooling channel. A
20 µm gold foil covers the outer surface to shield low energy X-ray background which
otherwise might generate background in the vertex detectors. The total material of the
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beam pipe corresponds to 0.3% and 0.6% of the radiation length X0 for the beryllium
and the gold foil respectively [12].

The initial beam pipe had an outer radius of 24.25mm but was replaced after the first
152× 106 BB pairs when the inner detector was re-designed and placed closer to the IP.
The new beam pipe has an outer radius of 16.25mm and a gold foil plating of 10 µm.

2.2.2 Silicon Vertex Detector

(a) front view (b) side view

Figure 2.4: Structure of the SVD2 [42]. The front view also shows the inner wires of the
Drift Chamber.

The Silicon Vertex Detector (SVD) is the innermost subsystem of the Belle detector.
Its primary purpose is to determine the decay vertices of the B mesons, making it one of
the most important sub-detectors for the measurement of time dependent CP asymmetries.
It also contributes to improve the momentum resolution of charged particles.

The original vertex detector (SVD1) consisted of three layers of double sided silicon-
strip detectors (DSSD). It was redesigned with four layers (SVD2) in 2001 due to problems
with radiation hardness. The main parameters are shown in Table 2.1.

A DSSD is basically a pn-junction with a bias voltage of 75V applied to the n-side
while the p-side is grounded. The n strips are interleaved with p-implants to electrically
separate the consecutive strips. A charged particle passing through the n bulk silicon
creates electron-hole pairs. The electrons and holes drift to their corresponding biased
side of the DSSD, potentially making a 2-dimensional hit signal, as seen in Figure 2.5.

In the SVD2 the number of modules increased by more than a factor of two. To
keep the number of readout channels compatible with the existing hardware, the readout
channels of all modules in the forward/backward half of one ladder are added together.
As a result, complete tracking is required to determine the position of a SVD2 cluster
since it may originate from up to three modules.

An important performance indication for the SVD is the resolution of the reconstructed
vertex position in rφ and z direction. These impact parameters are determined using
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Figure 2.5: Schematic of the working principle of a double sided strip detector.

SVD1 SVD2
Beam pipe radius (mm) 20 15
Layers 3 4
Radii of layers (mm) 30.0/45.5/60.5 20.0/43.5/70.0/88.8
Ladders per layer 8/10/14 6/12/18/18
Modules per ladder 2/3/4 2/3/5/6
Number of Modules 102 246
Module width (mm) 32.0 25.6 (33.28 for layer 4)
Module length (mm) 54.5 76.8 (74.75 for layer 4)
Module thickness (µm) 300 300
Pitch rφ (µm) 25 50 (65 for layer 4)
Pitch z (µm) 84 75 (73 for layer 4)

Table 2.1: Parameters of the two different vertex detector configurations [12, 42].
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cosmic muons. The resolution of the SVD2 is determined as [42]

σrφ = 22⊕ 36/
(
pβ sin(θ)3/2

)
µm

σz = 28⊕ 32/
(
pβ sin(θ)5/2

)
µm,

where p is the momentum and β is the velocity.

Figure 2.6: Impact parameters of the SVD2 compared to the SVD1 [42]

2.2.3 Central Drift Chamber
The Central Drift Chamber (CDC) is the main tracking subsystem of the Belle detector
for measuring the momentum of particles from their curvature in the magnetic field of
1.5T produced by the solenoid. The CDC also measures dE/dx with an accuracy of 6%
to provide particle identification together with the dedicated ACC and TOF subsystems
(see below).

The layout of the CDC can be seen in Figure 2.7. It is filled with a gas mixture
consisting of 50% helium and 50% ethane. The low-Z gas is chosen to minimize multiple
Coulomb scattering and thus ensuring good momentum resolution, especially for low
momentum tracks. The CDC contains a total of 8400 drift cells organized in 50 cylindrical
layers (Figure 2.8). A drift cell is made up of eight negatively biased field wires providing
an electric field which surrounds a positively biased sense wire. Approximately half of
the wires are in z direction to provide measurement of the transversal momentum pt,
while the other half is slanted by a small angle of ±50mrad. These stereo wires allow to
measure the polar angle of the track. The longitudinal momentum can be determined
from the measured transversal momentum and the polar angle.
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Figure 2.7: Layout of the Central Drift Chamber [12].

When a charged particle passes a drift cell, ionisation electrons from the gas drift
towards the sensor wire. Due to the very small diameter of the sense wires (30 µm),
the strong electric field close to the wire accelerates the electrons sufficiently to cause
secondary ionisations which in turn cause further ionisations resulting in a cascade of
charge. This process, called gas amplification, increases the signal by more than 106.
Before amplification, the electrons have a specific drift velocity, so the measured pulse
height and drift time are related to the energy deposit and distance from the sense wire
respectively. The resolution of the transverse momenta is [12]

σ(pt) = 0.201%pt ⊕ 0.290%β,

where β is the velocity. From the energy deposition and the closest distance to the sensor
wire, the drift distance, we can calculate the energy loss dE/dx. The distribution of dE/dx
versus momentum is different for different particle types as can be seen in Figure 2.9.
For kaons and pions with a momentum between 0.4GeV/c and 0.6GeV/c a separation of
three standard deviations (σ) can be obtained.

2.2.4 Aerogel Cherenkov Counter
The Aerogel Cherenkov Counter (ACC) is used for particle identification in a momentum
range between 1.0GeV/c and 4.0GeV/c. It utilizes the effect that particles will emit
Cherenkov light when their speed exceeds the speed of light in a medium with refractive
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Figure 2.8: Wire configuration in the Drift Chamber [12].

Figure 2.9: Measured dE/dx versus momentum in the CDC [12].
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index n
n ≥ 1

β
= 1√

1 +
(
m
p

)2
(2.1)

Due to the different masses, pions can be distinguished from kaons by selecting a
material with appropriate refractive index n < n0 so that pions will emit Cherenkov light
in the momentum range given above, while the heavier kaons will not. Thus the ACC
works as a “threshold Cherenkov counter”

The ACC has 960 separate modules in the barrel region and 228 in the forward endcap,
each consisting of an aluminum encased block of silica aerogel with refractive indices of
1.010, 1.013, 1.015, 1.020, 1.028 or 1.030, depending on the polar angle. The layout can
be seen in Figure 2.10. One or two photomultiplier tubes are attached to each block to
detect the Cherenkov light pulses.

Figure 2.10: Arrangement of the ACC modules [12].

For particles with momenta up to 4GeV/c, the kaon identification efficiency is 80% or
more while the pion fake rate remains below 10%. Below the pion threshold of 1GeV/c
electron identification is possible as well.

2.2.5 Time of Flight Counter
The Time of Flight Counter (TOF) gives particle identification for particles below
1.2GeV/c. The mass m of a particle can be determined from the time T needed to
reach the TOF at L = 1.2m from the interaction point, which can be expressed as

m2 =
(

1
β2 − 1

)
p2 =

((
cT

L

)2
− 1

)
(2.2)
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using the momentum p obtained from the CDC measurement. Figure 2.11 shows the mass
distribution for each track in hadron events. Clear peaks corresponding to pions, kaons
and protons can be seen.

Figure 2.11: Particle identification using TOF measurements showing a clear separation
between π, K and p [12].

There are 64 TOF modules in the barrel region, covering the polar region of 33° <
θ < 121°. Each of the modules consists of plastic scintillation counters attached to
photomultiplier tubes and has a time resolution of 100 ps. The TOF also provides fast
timing signals for the trigger system. In order to sustain high trigger rates, thin trigger
scintillation counters (TSC) are placed just before the TOF modules.

When combining the information from the TOF measurement with the ACC and CDC
information on dE/dx described before, a 3σ separation between charged kaons and pions
is obtained for a momentum range up to 3.5GeV/c.

2.2.6 Electromagnetic Calorimeter
The Electromagnetic Calorimeter (ECL) serves to identify electrons and photons by
measuring their electromagnetic showers. The ECL consists of 8736 thallium-doped
Caesiumiodide (CsI(Tl)) crystal counters. The tower-shaped CsI(Tl) crystals are 30 cm
long, which corresponds to 16.2 radiation lengths. Each crystal is positioned to point
towards the IP. The ECL is divided into a barrel and end cap part. The barrel part
consists of 6624 crystals and the end cap part contains 1152 (960) crystals in the forward
(backward) directions. The geometry of the ECL is shown in Figure 2.12.

When an electron or photon hits a crystal, its energy is deposited in electromagnetic
showers produced by bremsstrahlung and pair production. Heavy charged particles (pions,
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Figure 2.12: Schematics of the Belle Electromagnetic Calorimeter [12].

muons, etc.) deposit only a small amount of energy by ionisation (hadrons only have a
small probability to deposit their entire energy in the ECL). Therefore, the ratio of the
cluster energy measured by the ECL to the momentum of the charged track momentum
as measured by the CDC, E/p, is close to unity for electrons and lower for other particles.
In this way, electron identification can be performed.

The energy and position resolutions are given by [12]

σE = 1.3%√
E

σpos =
(

0.27 + 3.4
E1/2 + 1.8

E1/4

)
mm

2.2.7 Solenoid
The superconducting solenoid provides a magnetic field of 1.5T parallel to the z direction.
The coil consists of a single layer niobium-titanium-copper alloy embedded in a high
purity aluminium stabilizer and is wound around the inner surface of an aluminium
support cylinder measuring 3.4m in diameter and 4.4m in length. Cooling is provided by
circulating liquid helium through a tube on the inner surface of the aluminium cylinder.

2.2.8 K0
L/µ Detector

The K0
L/µ-Detector (KLM) which is housed in the flux return yoke surrounding the magnet

is used to provide µ identification for tracks which reach the KLM (pt > 0.6GeV/c). It is
also able to detect the neutral K0

L. A lot of material is needed to detect these particles
efficiently due to their small interaction probability with material.
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The KLM is realized as sampling calorimeter consisting of 15 superlayers of resistive
plate counters (RPC) interleaved with 14 layers of 4.7 cm thick iron plates. The iron
layers also serve as return-yoke for the magnetic field produced by the solenoid. Each
RPC superlayer consists of two RPC modules to provide two-dimensional hit information.

Hadrons interacting with the iron plates may produce a shower of ionizing particles
that are detected by the RPC layers, resulting in a cluster of hits in the KLM. A K0

L
candidate can be distinguished from other charged hadrons because it will not leave an
associated track in the CDC. Although muons leave a track in the CDC, they can still be
distinguished because they do not feel strong interaction and therefore leave an energy
according to a minimum ionizing particle.

2.2.9 Trigger System
A large part of the events seen by the Belle detector are not of interest as they originate
from background processes like cosmic ray events, synchrotron radiation, beam-gas and
beam-beam interactions. During normal operation (luminosity of L = 1034 cm−2s−1) the
total event rate is around 200Hz. Out of this rate, 100Hz are physically interesting events.
Besides hadronic events which could originate from a BB pair, events of interest are also
two photon events, Bhabha scattering and µ pair production as these are also used for
luminosity measurements and detector calibration.

A trigger system is used distinguish between interesting events which should be
recorded and those to be discarded. It consists of a level 1 hardware trigger, a real-time
level 3 software trigger and an off-line level 4 software trigger and obtains an efficiency of
more than 99% for BB events.

The Global Decision Logic (GDL) collects trigger signals from the sub-detectors and
issues the level 1 decision within 2.2 µs of the beam crossing. It uses track information
from CDC and TSC, information about the energy deposit in the ECL and information
about muon hits in the KLM. The normal trigger rate is 200Hz to 250Hz but the system
is designed to sustain a maximum trigger rate of 500Hz.

The level 3 trigger is software based and used to further reduce the number of events
to be stored. It performs a fast track reconstruction to discard events with do not contain
a track originating close to the IP. All events which pass the level 3 criteria are stored.
After offline reconstruction a level 4 trigger is applied. This trigger works similar to level
3 but can impose stricter requirements.



Chapter 3

Event Selection

This chapter describes how we select the decay B0→ D∗−D∗+K0
S from the recorded Belle

data. For each event, Belle records the response from all sub detectors. The reconstruction
software analyses these responses and provides, among other things, all reconstructed
tracks from charged particles and a list of reconstructed photons in the calorimeter. Using
this information, we now have to identify events which contain the decay B0→ D∗−D∗+K0

S
and reconstruct the B0 meson for these events.

Although Belle is running at the Υ(4S), not all events will contain a BB pair. In
fact, only about a third of all hadronic events will produce a BB pair, the others will
produce uu, dd, ss and cc pairs from e+e− annihilation, referred to as qq or continuum.
A fraction of events will not contain hadrons at all but may come from QED processes,
electron positron scattering, two photon processes or background processes like beam gas
scattering or synchrotron radiation [43]. Even if we select BB events, only a small fraction
of those B mesons will decay into D∗−D∗+K0

S.
In order to optimize the selection of B0 → D∗−D∗+K0

S events we will use simulated
events. This provides us a clean sample of events and allows to estimate the reconstruction
efficiency (fraction of all signal events that we actually select). By optimizing the selection
and the analysis on simulated events we avoid a possible bias: Knowing the input to the
simulation, we can check if we are able to reproduce the correct values.

3.1 Data Sample

For this analysis we use the full data recorded by Belle running at the Υ(4S) between 2000
and 2008, a total of 703 fb−1 which is equivalent to (771.581 ± 10.566) × 106 BB pairs.
This data is divided into two parts: (151.965± 1.241)× 106 BB pairs (141 fb−1) collected
with the old vertex detector SVD1 and (619.620± 9.441)× 106 BB pairs (563 fb−1) with
the newer SVD2 vertex detector.
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Decay relative B generated B
B0 → D∗+D∗−K0

S + cc (0.41± 0.35) % 100.00%
D∗+ → D0π+

slow (67.70± 0.50) % 68.80%
→ D+π0

slow (30.70± 0.50) % 32.20%
D0 → K−π+ (3.87± 0.05) % 15.03%

→ K−π+π0 (13.90± 0.50) % 53.71%
→ K−π+π+π− (8.07± 0.20) % 31.26%

D+ → K−π+π+ (9.13± 0.19) % 100.00%
K0

S → π+π− (69.20± 0.05) % 100.00%

Table 3.1: World average branching fractions according to [46] and generated branching
fractions for the signal B0. The generated branching fractions are the central values of
the measured ones normalized to 100%. For the charged conjugates for D mesons (D∗−,
D0, D−) the charges of pions and kaons are reversed.

3.2 Event Generation
As mentioned, we perform reconstruction and analysis first on simulated B0→ D∗−D∗+K0

S
events. This signal Monte Carlo (MC) production occurs in two stages. Firstly, the
physical decay process is simulated using EvtGen[44]. In a second step the response of
the Belle detector is modelled with GEANT[45], a software package designed to simulate
interactions between particles and matter. GEANT traces the particles provided by
EvtGen through a simulated detector and returns a signal event resembling a real detector
output.

The signature of B0 → D∗−D∗+K0
S decays may differ for both versions of the SVD,

so signal MC was generated under both, SVD1 and SVD2 conditions. A set of 15× 106

events was simulated for each SVD.
We generated exclusively events which contain Υ(4S)→ B0B0. One B meson decays

generically and the other decays exclusively into B0→ D∗−D∗+K0
S where the products will

continue to decay as seen in Table 3.1. We generate the events without CP violation and
distributed flat in phase space.

3.3 BB Event Selection
A standard set of selection criteria, defined in [43], is used to suppresses non-hadronic
and hadronic events.

• At least three “good” charged tracks must exist. A “good” charged track is defined
as

pT > 0.1GeV/c dr < 2.0 cm |dz| < 4.0 cm



3.4 CP Side Reconstruction 37

where pT is the transverse momentum, dr and dz are the radial and the z distance
of the closest approach to the IP.

• At least two “good” neutral cluster in the barrel region of the ECL, defined as

Ecluster > 0.1GeV −0.7 < cos θ < 0.9

where Ecluster is the energy deposit and θ is the polar angle

• The sum of momentum magnitudes in the z direction calculated in the Υ(4S) rest
frame, pCMS

z , must be less than half the total available energy,
√
s,

∑
|pCMS
z | ≤ 0.5

√
s

• The primary vertex calculated from the “good” charged tracks must satisfy

dr <1.5 cm |dz| <3.5 cm

• Assuming the pion mass for “good” charged tracks, the total visible energy in the
Υ(4S) rest frame, ECMS

vis , should be,

ECMS
vis > 0.18

√
s

• The total energy of “good” neutral clusters in the Υ(4S) rest frame, ECMS
cluster, has to

be inside,
0.1
√
s <

∑
ECMS
cluster < 0.8

√
s

• The invariant mass of the particles in each hemisphere defined as perpendicular to
the boost, Mjet, must satisfy,

Mjet > 1.8GeV/c2

These selection criteria retain more than 99% of BB events while reducing the contami-
nation from non-hadronic processes to less than 5%. The fraction of non-BB hadronic
events (qq , continuum) is reduced by 20%

3.4 CP Side Reconstruction
As mentioned in Section 1.4.3 we have two B0 mesons. The one decaying into the final-
state B0 → D∗−D∗+K0

S, is called the CP side, BCP. This is the B0 meson we will fully
reconstruct. The other B meson is called the tag side, Btag.
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Figure 3.1: Momentum spectrum in the lab frame for slow pions from D∗+→ D0π±slow for
generated and correctly reconstructed tracks.

3.4.1 Track Selection
In this analysis we differentiate between two distinct classes of pions: “normal” pions used
in the reconstruction of D and K0

S mesons and “slow” pions which are used to reconstruct
D∗ mesons. Those two classes of pions are in a very different momentum range so that we
have to apply different cuts to them.

For “normal” tracks, a loose selection criteria is applied to reject poorly reconstructed
tracks,

dr <0.4 cm |dz| <5 cm
where dr and |dz| represent the distance of closest approach between the track and the IP
in the xy plane and the z direction respectively. Due to the small mass difference between
D∗± and D mesons, the pions from the decay D∗± → D0π±slow are almost at rest in the
D∗± frame. Phase space restrictions in B0 → D∗−D∗+K0

S also causes the D∗± mesons to
have a low momentum so that the maximum momentum of these slow pions in the lab
system is around 250MeV/c (see Figure 3.1). Since one or two of these are required for
the reconstruction of each event, an extra tracking algorithm, which tries to reconstruct
tracks only from hits in the SVD, is enabled for this analysis. However, this leads to
a higher fake track rate so these SVD only tracks are not taken into account for the
reconstruction of D mesons as the momentum of their children is high enough that the
SVD only tacking does not give significant improvement.

No cut on dr and |dz| is performed and no SVD hits are required for slow pion tracks
but the momentum of those tracks is restricted to be

p(π±slow) < 0.3GeV/c.
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3.4.2 Particle Identification
Pions and kaons cannot be distinguished unambiguously. However, the CDC, ACC and
TOF sub-detectors are able to provide a likelihood that a charged track is one or the
other, a likelihood ratio is constructed,

P (K : π) = LK

LK + Lπ
.

P (K : π) is the likelihood that a track is a kaon compared against a pion hypothesis. Li
(i = K, π) is the likelihood that the particle is of type i and is calculated as

Li = LCDCi × LTOFi × LACCi

where each component LDETi is the likelihood that the particle is of type i in the respective
sub-detector. The resulting likelihood ratio for all reconstructed tracks is shown in
Figure 3.2

0.0 0.2 0.4 0.6 0.8 1.0

P(K : π) =
LK

LK+Lπ

10−3

10−2

10−1

100

accepted as K±accepted as K±

accepted as π±accepted as π±

Figure 3.2: Particle identification likelihood ratio for all reconstructed tracks. The peak
at 0.5 is caused by tracks for which no particle id information is available, such as tracks
reconstructed only in the SVD.

For a track to be accepted as a pion it must satisfy

P (K : π) < 0.9

which means the track will be accepted as a pion unless there is a greater than 90%
likelihood that the track is a kaon. For a track to be accepted as a kaon

P (K : π) > 0.1
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Momentum (GeV) dr (cm) dφ (rad) zdist (cm) fl (cm)
< 0.5 > 0.05 < 0.30 < 0.8 –

0.5− 1.5 > 0.03 < 0.10 < 1.8 > 0.08
> 1.5 > 0.02 < 0.03 < 2.4 > 0.22

Table 3.2: The “goodKs” cuts. dr is the shortest radial distance between any of the two
daughter tracks and the IP, dφ is the azimuthal angle between the momentum vector and
decay vertex of a K0

S candidate, zdist is the distance between the two K0
S daughter tracks

at their point of interception and fl is the flight length of the K0
S in the xy plane.

This cuts are quite loose and therefore there is a region of overlap where tracks can be
considered to be both, a pion and a kaon. No particle identification (PID) cut is applied
for slow pion tracks due to their low momentum and possible SVD-only reconstruction,

3.4.3 π0 Candidates
The π0 is reconstructed as

π0→ γγ

and is subject to the following cuts:

Eγ > 0.03GeV

p(π0) >0.2GeV/c p(π0
slow) <0.3GeV/c

where Eγ is the energy of each γ and p(π0) the momentum of the reconstructed π0, both
in the laboratory frame. These cuts help to reduce the effects of misreconstruction as they
remove contributions from noise in the calorimeter. A cut on the invariant mass was also
applied. It will be discussed in Section 3.4.8.

3.4.4 K0
S Candidates

K0
S candidates are already provided by the Belle software. They are reconstructed from

two charged tracks without any particle ID requirement and only a loose mass window
of ±30MeV/c2 around the PDG mass value is applied. In addition, we require all K0

S
candidates to pass the “goodKs” criteria [47], which are momentum dependent cuts on
several variables of the reconstructed K0

S; they are summarized in in Table 3.2. Furthermore
the invariant mass is subject to a cut similar to the π0; see Section 3.4.8.

3.4.5 D0 and D± Candidates
D0 and D± mesons are reconstructed by combining pion and kaon tracks according to the
decay channels in Table 3.1 and applying a cut on the invariant mass. This cut will be
discussed in Section 3.4.8.
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A vertex fit is performed on the resulting D candidate to get the optimal vertex
resolution.

To achieve a good vertex resolution only tracks with a sufficient amount of hits in the
vertex detector are selected for vertexing of D mesons. The number of associated hits,
NSV D, must be

NSV D
rφ ≥ 1 NSV D

z ≥ 2.

All tracks used for in the D reconstruction that satisfy this condition are fitted on a
common vertex and all other tracks are constrained to originate from the same vertex.
Then a new D momentum is calculated using the updated track information. No vertex
fit is performed if less than two tracks fulfil this requirement.

3.4.6 D∗±→ D0π±slow, D+π0
slow Candidates

The D∗± is reconstructed from a D meson and a slow pion. As mentioned, the π±slow
is not subject to PID or track quality cuts and also the π0

slow is not subject to the π0

momentum threshold cut. Both, π±slow and π0
slow are required to have a momentum smaller

than 0.3GeV/c. In the case of D∗± it is better to cut on the mass difference between
the reconstructed D∗± and the daughter D meson as the resolution of the resulting
distribution is much better. The cut on the mass difference will be explained in more
detail in Section 3.4.8.

The lifetime of the D∗± is less than 10−23 s so we can safely assume its vertex position
to be identical with that of the B meson. Since the momentum resolution of the slow
pions is poor compared to the tracks used to reconstruct the D vertex we do not perform
a vertex fit at this point as it would not improve the vertex resolution.

3.4.7 B0→ D∗−D∗+K0
S Candidates

Now we can reconstruct B0 → D∗−D∗+K0
S from all D∗± and K0

S candidates. To reduce
background, only one of the D∗± mesons may decay into D±π0

slow. The B0 vertex is
determined by fitting only the granddaughter D pseudo tracks for which the vertex fit was
successful. The K0

S is excluded due to it’s long flight length and the π±slow are excluded due
to their bad momentum resolution. To improve the vertex position we constrain the fit to
be consistent with the IP Profile [48], which is modelled as a three dimensional gaussian
and determined from hadronic events every 10 000 to 60 000 events. Its size is typically

σx = 100 µm σy = 5 µm σz = 3mm.

To account for the finite flight length of the B meson and avoid a bias on the z position
of the vertex, the IP profile is added to the fit as a virtual straight track along the boost
axis called IP tube. The position uncertainty of this tube is size of the IP profile in the
xy plane, smeared by an additional

IPsmear = 21 µm
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to account for the transverse B decay length. After the vertex fit, the excluded K0
S and

the slow pions are constrained to come from the same vertex and the B0 momentum is
calculated using these updated momenta.

From 2-body kinematics we know that the energy of the B meson in the Υ(4S) frame,
ECMS

B must be half the total energy of the e+e− system in this frame: the beam energy
ECMS

beam . We can thus increase the resolution of the invariant mass of the B by not using
the measured energy but by constraining it to the beam energy (beam constrained mass,
Mbc):

Mbc =
√(

ECMS
beam

)2
−
(
pCMS

B

)2
. (3.1)

The difference between Mbc and the invariant mass is shown in Figure 3.3. One can clearly
see the big improvement when using Mbc instead of the invariant mass. In addition, we
use the difference between the reconstructed energy and the beam energy,

∆E = ECMS
B − ECMS

beam . (3.2)

We retain only candidates which satisfy

5.24GeV/c2 ≤Mbc ≤ 5.30GeV/c2 and −0.15GeV ≤ ∆E ≤ 0.10GeV. (3.3)
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Figure 3.3: Comparison between the beam constrained mass (Mbc, red) and the invariant
mass of the B0 candidate for correctly reconstructed signal MC events.

Due to the combinatorial nature of the reconstruction there is a possibility that more
than one B0 can be reconstructed per event. This is called “B0 multiplicity” and for
signal MC it is 2.3 (see Figure 3.4). However, there can only be one reconstructed
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Figure 3.4: The number of reconstructed B0 candidates per event in signal Monte Carlo.

B0→ D∗−D∗+K0
S per event. So it is necessary to choose the best candidate using the so

called “Best B” selection which will be detailed in Section 3.4.9.
One B0 is considered “correct” in signal MC when all tracks which were used to

determine the vertex can be matched to a corresponding generated particle. Thus the K0
S,

the slow pions and any π0 are not required to be correctly reconstructed. This results in
a correct reconstruction efficiency of 75.1% on signal MC.

3.4.8 Invariant Mass Windows
To avoid systematic uncertainties due to a possible difference between MC and real data
the invariant mass windows for π0, K0

S, D and D∗± were determined from an inclusive data
sample and chosen to be large enough that any remaining difference between MC and
data can be ignored. We selected 10 million events from the complete Belle data, evenly
distributed over the recorded luminosity. Reconstruction was performed identical to the
analysis reconstruction described so far but only up to and including D∗± reconstruction
using very wide mass windows in all channels.

The invariant mass of the particles is then modeled using

P(m) = fsig · Psig(m) + (1− fsig)Pbkg(m) (3.4)

where Psig(m) is a sum of Gaussian distributions (see Section 4.2.1),

Psig(m) =
N∑
i

wi ·G(m;σi, µi)/
N∑
i

wi, (3.5)
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and Pbkg(m) is either a linear function in case of π0, K0
S or D or a threshold function in

case of D∗±,

Pbkg(m) =
p0 ·m+ p1 for π0, K0

S or D,
mp0 · ep1m+p2m2 for D∗±.

(3.6)

The mass window is then determined from this distributions by taking the symmetric area
around the maximum of Psig(m) which contains 95% of the area of Psig(m) The different
fits for all decay channels can be seen in Figures 3.5, 3.6 and 3.7.
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Figure 3.5: Mass limits for π0 and K0
S candidates. Red line denotes the background

distribution, Pbkg(m), and the other lines show the separate gaussian distributions of
Psig(m).
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Figure 3.6: Mass limits for D candidates. Red line denotes the background distribution,
Pbkg(m), and the other lines show the separate gaussian distributions of Psig(m).
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Figure 3.7: Mass limits for D∗ candidates. Red line denotes the background distribution,
Pbkg(m), and the other lines show the separate gaussian distributions of Psig(m).
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SVD1 SVD2
Candidate N center width center width
π0 3 0.1349 0.0288 0.1346 0.0267
K0

S 5 0.4977 0.0146 0.4975 0.0132
D0→ K−π+ 3 1.8652 0.0185 1.8648 0.0137
D0→ K−π+π0 2 1.8642 0.0343 1.8642 0.0339
D0→ K−π+π+π− 3 1.8650 0.0239 1.8637 0.0234
D±→ K∓π±π± 3 1.8701 0.0143 1.8690 0.0103
D∗± from D0→ K−π+ 3 0.1454 0.0018 0.1454 0.0026
D∗± from D0→ K−π+π0 3 0.1454 0.0041 0.1454 0.0038
D∗± from D0→ K−π+π+π− 3 0.1454 0.0018 0.1454 0.0020
D∗± from D±→ K∓π±π± 1 0.1406 0.0012 0.1407 0.0014

Table 3.3: Mass limits in GeV/c2 for all reconstructed candidates given as the center value
and the width accepted on each side. N denotes the number of Gaussians used for the
signal shape in the fit to the inclusive data sample.

3.4.9 Best B Selection
For the Best B selection we use the mass likelihoods defined in Equation 3.5 to construct
a likelihood for the B candidate:

LB0 = PD∗+

sig × P
D(+)
sig × PD∗−

sig × P
D(−)
sig × PK0

S
sig (3.7)

where D(±) denotes to the daughter D of the corresponding D∗± and can either be a D0

or D± depending on the reconstruction chain. The B candidate with the larges likelihood
is taken as the correct B candidate. On signal MC this procedure results in the selected
B candidate to be the correctly reconstructed (see Section 3.4.7) on 91.8% of the time.
The likelihoods for D and D∗± candidates can be seen in Figure 3.8.

Figure 3.9 shows a flow chart of the full reconstruction of the B0 meson CP side to
give a quick overview of all cuts and reconstruction steps.

3.5 Tag Side Reconstruction
After successful reconstruction of the BCP, all remaining tracks are assumed belong to the
Btag meson. To be able to extract CP information we need to determine the flavour and
the decay vertex of this Btag.

3.5.1 Flavour Tagging
First, we try to determine the flavour of the Btag by using a flavour tagging algorithm called
Hamlet [49]. It uses a binned multi dimensional likelihood method to estimate the flavour
q and expected flavour dilution factor r which ranges from zero for no discrimination up
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Figure 3.8: Likelihood for D±, D0 and D∗± candidates used in BestB selection.

to one for unambiguous flavour assignment. Using a multi-dimensional lookup table, the
signed probability, q · r, is given by

q · r = N(B0)−N(B0)
N(B0) +N(B0)

(3.8)

where N(B0)
(
N(B0)

)
are the number of B0(B0) events in the corresponding bin of the

lookup table prepared from a large sample of simulated events.
In a first stage all tracks are classified into four categories, Λ-like, slow-pion-like,

lepton-like and kaon-like, and (q · r)X is estimated using a set of kinematic variables for
each category as discriminants. In the second stage, the (q · r)X with the largest modulus
is taken from the slow-pion-like and lepton-like categories while the kaon-like and Λ-like
categories are combined using

(q · r)K/Λ =
∏[1 + (q · r)i]−

∏[1− (q · r)i]∏[1 + (q · r)i] +∏[1− (q · r)i]
(3.9)

to account for the cases with multiple s quarks in an event. These variables are used to
estimate the final event q · r from a second lookup table.

The flavour tagging procedure is not unambiguous. Depending on the flavour dilution
factor, r, there is a certain fraction of events for which the flavour tag will be wrong.
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candidates.
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SVD1 SVD2
region of r w ∆w w ∆w
0.0 – 0.1 0.5 0.0 0.5 0.0
0.1 – 0.25 0.419 0.057 0.419 -0.009

0.25 – 0.5 0.330 0.013 0.319 0.010
0.5 – 0.625 0.234 -0.015 0.223 -0.011

0.625 – 0.75 0.171 -0.001 0.163 -0.019
0.75 – 0.875 0.100 0.009 0.104 0.002

0.875 – 1.0 0.023 0.005 0.025 -0.004

Table 3.4: Wrong tag fractions and differences, w and ∆w, for SVD1 and SVD2 determined
from B0→ D∗−`+ν and its charge conjugate.

Furthermore this fraction might be different for q = +1 and q = −1 tags because the
detector may not be completely charge-symmetric. This fraction is called wrong tag
fraction, w, with the difference ∆w = wq=+1 − wq=−1.

Since the flavour tagging procedure is independent of the CP side we can determine w
by looking at the decay of a flavour eigenstate instead of a CP eigenstate on the CP side
and compare the flavour tag to the reconstructed flavour. In Belle the wrong tag fractions
and differences, w and ∆w are determined for seven different regions of r. For events
with |r| ≤ 0, 1, there is negligible flavour discrimination so the wrong tag fraction is set to
w0 = 0.5. In all other regions, w and ∆w are determined directly from data using the
semi-leptonic decay B0→ D∗−`+ν and its charge conjugate.

3.5.2 Tag Side Vertexing
After successful flavour tagging, the tag side vertex is determined. For this we use all
tracks which were not used to reconstruct BCP and fulfill the following requirements [50]:

• The number of hits, NSV D, in the vertex detector associated with the track needs
to be

NSV D
rφ ≥ 1 NSV D

z ≥ 2

• The z-resolution of the track, σz, is required to fulfill
σz < 500 µm.

• The radial distance to the BCP vertex, drCP , has to be
drCP < 500 µm.

Using the same IP tube constraint described in Section 3.4.7, those tracks are fitted on
a combined vertex. While the χ2 per degree of freedom is larger than 20, the track with
the highest contribution to the χ2 is removed and the fit is repeated. Tacks which have
been identified as high pT leptons are never discarded as they have a high probability to
originate from the Btag vertex.
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3.6 Vertex Quality Cuts
Time dependent CP parameters are extracted from the ∆t distribution which can be
calculated from the z distance between the BCP and Btag vertices,

∆t = ∆z
βγc

= zCP − ztag

βγc
(3.10)

where βγ = 0.425 is the Lorentz boost of the Υ(4S).
Normally, the quality of the vertex fit is determined by the standard χ2/ndf of the

vertex fit. However, this value is correlated with the z-position of the vertex due to the IP
constraint in the xy plane and would bias the ∆t distribution if used as quality indicator.
We therefore introduce a new measure of vertex quality

h =
∑n
i=1 χ

2
i

2n− 2 (3.11)

with n, χ2
i being the number of tracks and the χ2 contribution of the ith track respectively.

This basically corresponds to the reduced χ2 without the IP constraint taken into account
and has been shown to be unbiased [51].

The following selection criteria are imposed on the vertex quality for both CP side
and tag side vertices [50]

• Vertexing procedure has to be successful.

• The z-error of the vertex, σz, has to fulfil σz < 0.2mm and we require h < 50 for
multi track vertices.

• For single track vertices we require σz < 0.5mm.

and in addition we impose
−70 ps ≤ ∆t ≤ 70 ps. (3.12)
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Chapter 4

Branching Fraction Measurement

The branching fraction of B0 → D∗−D∗+K0
S assuming equal production of B0–B0 and

B+–B− pairs is given by,

B
(
B0→ D∗−D∗+K0

S

)
= Y (B0→ D∗−D∗+K0

S)
ε (B0→ D∗−D∗+K0

S)N(BB)
. (4.1)

The signal yield, Y (B0→ D∗−D∗+K0
S), is the number of B0→ D∗−D∗+K0

S events found in
the total data set, N(BB). Since we will not be able to reconstruct all signal events that
may have occurred we also need to evaluate the efficiency ε(B0→ D∗−D∗+K0

S). This term
is the probability of detecting any B0→ D∗−D∗+K0

S event. It also includes the fact that
we only reconstruct a small part of the possible B0→ D∗−D∗+K0

S decay modes.
Normally, one global reconstruction efficiency is used. But in our case the structure in

the Dalitz plot in data is not known and the reconstruction efficiency is dependent on the
Dalitz variables. Because of this the reconstruction efficiency has to be determined as
function of the Dalitz variables. Since we need a first estimation of the reconstruction
efficiency we will assume flat phase space distribution for now and correct the efficiency
once the Dalitz structure can be determined (see Section 4.8.

4.1 Reconstruction Efficiency
The raw reconstruction efficiency can be obtained easily by counting the number of events
which were reconstructed correctly and divide it by the number of total simulated events

ε(SVD1)
raw = (1.862± 0.011)× 10−3 ε(SVD2)

raw = (6.943± 0.022)× 10−3. (4.2)

However, not all possible decays for B0→ D∗−D∗+K0
S are reconstructed. In fact, only a

very small fraction of those decays can be reconstructed efficiently. Since we only simulate
these specific decay modes we have to weight the raw reconstruction efficiency with the
branching fraction of decay modes that we actually simulated with respect to the total
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B0→ D∗−D∗+K0
S branching fraction. Given the simulated branching ratios for D∗+,

Bsim
(
D∗+→ D0π+

slow

)
= B

(
D∗+→ D0π+

slow

)
×
∑
i

B
(
D0

i

)
(4.3)

Bsim
(
D∗+→ D+π0

slow

)
= B

(
D∗+→ D+π0

slow

)
×
∑
i

B
(
D+

i

)
(4.4)

where D+
i and D0

i denote to the ith reconstructed decay channel for the D meson, and
assuming the same branching fraction for the charge conjugated decays it follows that

Bsim
(
B0→ D∗−D∗+K0

S

)
=(

Bsim
(
D∗+→ D0π+

slow

)
+ Bsim

(
D∗+→ D+π0

slow

))2
× B

(
K0

S→ π+π−
)
. (4.5)

With the individual branching ratios given in Table 3.1, the simulated fraction of the total
B0→ D∗−D∗+K0

S branching ratio is

Bsim
(
B0→ D∗−D∗+K0

S

)
= 2.851× 10−2 (4.6)

and the total reconstruction efficiency for Monte Carlo is:

ε
(SVD1)
MC = (5.309± 0.032)× 10−5 ε

(SVD2)
MC = (19.792± 0.061)× 10−5. (4.7)

The large difference between SVD1 and SVD2 can be explained by the SVD only track
finding which is only possible for SVD2.

Due to small differences between simulated events and real data the efficiency can be
different between MC and data. To correct for this effect we define an correction factor,

ξCF = εData

εMC

, (4.8)

which is defined for a given set of cuts and has to be determined in a separate study. Four
methods used in this analysis have associated correction factors: particle identification [52],
low momentum tracking [53, 54], π0 reconstruction [55] and K0

S reconstruction [56]. All
these corrections are provided for given momentum spectra of the final state particles used
for reconstruction. For each possible decay we calculate the correction factors using the
corresponding momentum spectra from signal MC and then calculate a weighted average
between all the decay channels. We use the number of reconstructed events in one channel
over the number of total reconstructed events as weight. The total correction factor for
the reconstruction efficiency is simply the product of all ξiCF and the final reconstruction
efficiency becomes

εData = εMC

∏
i

ξiCF , (4.9)

with the individual ξiCF from table 4.1. So assuming flat phase space distribution for
B0→ D∗−D∗+K0

S events, the total, corrected reconstruction efficiency for data is

ε
(SVD1)
Data = (5.026± 0.030)× 10−5 ε

(SVD2)
Data = (17.902± 0.055)× 10−5. (4.10)
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SVD1 SVD2
particle identification 0.973 0.992
track reconstruction 0.972 0.927
π0 reconstruction 1.023 1.004
K0

S reconstruction 0.978 0.979
combined 0.947 0.905

Table 4.1: Reconstruction efficiency correction factors between MC and data for different
sources obtained from control studies.

4.2 Data Model
The branching fraction is extracted from the data using a two dimensional extended
unbinned maximum likelihood fit to Mbc and ∆E. The fit is performed the whole range
accepted by the event selection (see Eq. 3.3) to determine the signal yield Y (B0 →
D∗−D∗+K0

S).
With multiple components l which each have a probability density function (PDF)

Pl(x; θ) and a yield Yl, the likelihood for a given set of parameters θ and yields Yl is
defined as

L(θ, Yl) = (∑l Yl)N e−
∑

l
Yl

N !

N∏
i=1

∑
l YlPl(xi; θ)∑

l Yl
, (4.11)

but it is more convenient to work with the logarithmic likelihood

lnL(θ, Yl) =
N∑
i=0

ln
(∑

l

YlPl(xi; θ)
)
−
∑
l

Yl − lnN ! (4.12)

where we drop the constant term lnN ! and finally minimize the objective function,

−2 lnL(θ) = 2
(∑

l

Yl −
N∑
i=0

ln
(∑

l

YlPl(xi; θ)
))

, (4.13)

using the MINUIT software [57].
The two parts of the Belle data for SVD1 and SVD2 have different shapes in Mbc and

∆E due to the different vertex detector and tracking algorithms. Because of this we have
a separate model for SVD1 and SVD2 and perform a simultaneous fit on both datasets.
Unless otherwise stated, the two datasets have the same model but an independent set
of parameters. For convenience we will only show the sum of both models and datasets.
Separate plots for SVD1 and SVD2 can be found in Appendix A.1.

4.2.1 Probability Density Functions
A probability density function (PDF) describes the relative likelihood for a continuous
random variable to take a given value. As such a PDF is nonnegative and is normalized
to unity over the whole range. We will quickly define the different base PDFs used to
construct the full Data Model.
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Gaussian Distribution

The standard Gaussian PDF is defined as

G(x;µ, σ) = 1
N
· e−

(x−µ)2
2σ (4.14)

with a suitable normalization factor N . As an extension, we introduce an bifurcated
gaussian

Gb(x;µ, σL, σR) = 1
N
· e−

(x−µ)2
2σ , σ =

σL if x ≤ µ,
σR otherwise,

(4.15)

which is is similar to the normal distribution but has a different width σL, σR on the left
or ride side of the mean respectively.

Argus Distribution

The Argus Distribution is an empirical function introduced by the ARGUS collabora-
tion [58] and is used to model the invariant mass of a decayed particle on continuum
background. It is defined as

Argus(x; a, c) = 1
N
· x ·

√
1− x2

c2 e
a·
(

1−x
2
c2

)
, (4.16)

with the curvature parameter a < 0 and the cut-off energy c > 0 with a suitable
normalization factor N .

In our case the cut-off parameter is the beam energy which is an event dependent
variable so we will omit it in the future

Argus(x; a) = Argus(x; a,Ebeam) (4.17)

Chebychev Polynomials

Chebychev Polynomials [59] are an orthogonal set of polynomials which can be used
to approximate any function in a given interval using a sufficient high order. We use
Chebychev Polynomials of the first kind which are defined as

Chebn(x; c1, c2, . . . , cn) = 1
N
·
(
T0(x) +

n∑
i=1

ci · Ti(x)
)
, (4.18)

where N is a suitable normalization factor and the Ti(x) are defined using the recurrence
relation

T0(x) = 1 T1(x) = x Tn+1(x) = 2x · Tn(x)− Tn−1(x) (4.19)
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Component ρMbc,∆E

Signal 0.089
Misreconstructed 0.039
BBbar 0.011
Continuum 0.008

Table 4.2: Pearson correlation coefficients between Mbc and ∆E for all model components.

4.2.2 Correctly Reconstructed Events
The main signal model is determined from correctly reconstructed signal MC events (see
Section 3.4.7). The correlations between the fit variables in this category are shown in
Table 4.2. There is a significant correlation between Mbc and ∆E.

To model the core, we use the sum of three Gaussians in ∆E,

Psig,core(∆E) =
3∑
i=0

fiG(∆E;µi + µCF∆E, σi · σCF∆E)/
3∑
i=1

fi, (4.20)

and two Gaussians in Mbc. To account for the correlation between Mbc and ∆E, the
wider Gaussian in Mbc is correlated with ∆E using a linear dependence for the mean and
a quadratic dependence for the width,

Psig,core(Mbc|∆E) = f ·G(Mbc;µ1 + µCFMbc
, σ1)

+ (1− f) ·G
(
Mbc;µ2 + µCFMbc

+ µ′2 ·∆E, (σ2 + σ′2 ·∆E2) · σCFMbc

)
. (4.21)

µCFMbc
, µCF∆E, σCFMbc

and σCF∆E are correction parameters to account for possible differences
between the shape in data and MC. When estimating the shape from MC these parameters
are fixed to zero for the mean correction (µCFMbc

, µCF∆E) and one for the width correction
(σCFMbc

, σCF∆E) but they are then freed in the final fit to the data. Due to the low number of
expected signal events for SVD1 these correction parameters are shared between SVD1
and SVD2, so both models have the same value for all correction parameters.

To model the outliers we use an Argus function in Mbc and a single gaussian in ∆E,

Psig,outlier(Mbc,∆E) = Argus(Mbc; a)×G(∆E;µ1, σ1), (4.22)

and the complete signal model is then given as

Psig(Mbc,∆E) =fcore · Psig,core(∆E)× Psig,core(Mbc|∆E)
+ (1− fcore) · Psig,outlier(Mbc,∆E)

(4.23)

and the results of the fit to signal MC events can be seen in Figure 4.1.

4.2.3 Misreconstructed Signal Events
Events which were reconstructed from signal MC but are not correctly reconstructed are
classified as Misreconstructed. To model the core part we use a single Gaussian in ∆E
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Figure 4.1: Projections to Mbc and ∆E after fitting the Signal component to MC.

and a bifurcated Gaussian in Mbc

Pmis,core(Mbc,∆E) = GB(Mbc;µ1, σ1L, σ1R)×G(∆E;µ2, σ2) (4.24)

and for the outliers we use an Argus function in Mbc and a single gaussian in ∆E as we
did for the signal component

Pmis,outlier(Mbc,∆E) = Argus(Mbc; a)×G(∆E;µ1, σ1) (4.25)

resulting in a total PDF given by

Pmis(Mbc,∆E) =f · Pmis,core(Mbc,∆E) + (1− f) · Pmis,outlier(Mbc,∆E). (4.26)

and shown in 4.2. We fix the yield of misreconstructed events, Ymis, relatively to the
signal yield, Ysig, from MC,

Ymis = fmis · Ysig, (4.27)

where fmis turns out to be 0.998 for SVD1 and 0.161 for SVD2.

4.2.4 Events Reconstructed from Generic BB Decays
To model events from other B decay channels we reconstructed generic BB MC provided
by the Belle-Collaboration with ten times the statistics compared to real data. We use
“mixed” and “charged” MC which contains B0 and B+ pairs decaying to generic charm
final states. We combine these to MC sets into a single component called BBbar.



4.2 Data Model 59

0

100

200

300

400

500

600

700

800

E
nt

ri
es

/(
0.

00
1

G
eV

)

SVD1 + SVD2

5.24 5.25 5.26 5.27 5.28 5.29 5.30
MBC/(GeV/c2)

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s 0

100

200

300

400

500

600

700

E
nt

ri
es

/(
0.

00
5

G
eV

)

SVD1 + SVD2

−0.15 −0.10 −0.05 0.00 0.05 0.10

∆E/GeV

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s

Figure 4.2: Projections to Mbc and ∆E after fitting the Misreconstructed component to
MC.

Events from BBbar are mainly modelled using an Argus function in Mbc and a
Chebychev polynomial of second order in ∆E,

Pbb,main(Mbc,∆E) = Argus(Mbc; abb)× Cheb2(∆E; c1, c2). (4.28)

On top of this a small fraction of events are peaking at Mbc ∼ 5.28 and ∆E ∼ 0 and
are modelled as a single gaussian in Mbc and ∆E,

Pbb,peak(Mbc,∆E) = G(Mbc;µ1, σ1)×G(∆E;µ2, σ2) (4.29)

resulting in the total PDF,

Pbb(Mbc,∆E) = f · Pbb,main(Mbc,∆E) + (1− f) · Pbb,peak(Mbc,∆E). (4.30)

Figure 4.3 shows the result for the fit to the Monte Carlo data.

4.2.5 Background from Generic qq Events
To estimate background from generic qq interactions we can use a special feature of
the Belle experiment. Since we run at the BB production threshold we can lower the
beam energies to get below this threshold. The resulting events should be very similar to
events from normal operation except that no B mesons can be produced. Belle collected
“off-resonance” events at an energy of 60MeV below the Υ(4S). The recorded luminosity
amounts to around one tenth of the collected Υ(4S) luminosity.

Due to the high track multiplicity of B0 → D∗−D∗+K0
S, only very few events are

reconstructed from this off-resonance data. Due to the low statistics so we do not have
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Figure 4.3: Projections to Mbc and ∆E after fitting the BBbar component to MC.
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Figure 4.4: Projections to Mbc and ∆E after fitting the Continuum component to MC.
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Component SVD1 SVD2
Signal 31 (34) 455 (96)
Misrecon 3 70
BBbar 140 5470
Continuum 20 760

Table 4.3: Approximate number of expected Events for the final fit for correctly recon-
structed signal events (Signal), misreconstructed signal events (Misrecon), reconstructed
events from other BB decays (BBbar) and events reconstructed from generic qq decays
(Continuum). The numbers in parentheses represent the yield obtained in the old Belle
analysis [37].

sufficient statistics to determine the model independently from BBbar. We chose to model
the Continuum as a horizontal line in ∆E and an Argus in Mbc where the curvature
parameter of the Argus is taken from BBbar component,

Pqq(Mbc,∆E,∆t) = Argus(Mbc; abb)× Cheb0(∆E). (4.31)

Due to the expected low statistics of this component and the similarity to BBbar events,
the yield of Continuum events, Yqq, is fixed relatively to the yield of BBbar events, Ybb

Yqq = fqq · Ybb. (4.32)

We fix this fraction from MC and the scaling factor between on and off-resonance data.

4.3 Expected Yields
Using the reconstruction efficiency from Equation 4.7 and Equation 4.1 we can obtain a
number of expected signal events from the real dataset,

Y
(
B0→ D∗−D∗+K0

S

)
= B

(
B0→ D∗−D∗+K0

S

)
ε
(
B0→ D∗−D∗+K0

S

)
×N(BB). (4.33)

For the other components we know the ratio between MC and data so we can estimate the
expected number of events in the final dataset. The expected yields for all components
can be seen in Table 4.3

4.4 Toy Monte Carlo Studies
To validate the full model we performed toy Monte Carlo studies. For these studies we
generated many datasets with the number of events expected in the real data for each
component. For each event we randomly picked the Mbc and ∆E values from a fully
simulated event. Due to the limited statistics for continuum events we generate these
events from PDF.
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Figure 4.5: Results of the ToyMC tests for the branching fraction. On the left are shown
the raw fit results and on the right is the pull distribution. The mean and width of the
distributions are determined from a single gauss fit.

We set the branching fraction to the current world average value and generated 2000
experiments. We then fitted each of these experiments. In these fits, we only free the
yields for the Signal and BBbar components. The results can be seen in Figures 4.5, the
raw fit result on the left and the pull distribution on the right side. The pull distribution
is defined as the error weighted residuals between the fit input and output value

Pull(x) = xout − xin
∆x , (4.34)

and for unconstrained fit parameters this should yield a standard normal distribution,
that is a gaussian distribution with a mean of zero and a width of one.

It can be clearly seen that the fit result reproduces the input value with good precision.
The pull distribution is in agreement with a standard normal distribution and only a very
small bias of 0.1 standard deviations can be observed. The width of the result distribution
is equal the expected statistical error of the final fit and it is noteworthy that the expected
errors are half of the errors obtained in the previous analysis [37].

4.5 Linearity Tests
The ToyMC test only shows that the result is unbiased if the branching fraction we
measure is close to the world average. To verify that the fit also works for different values
we performed linearity tests. We created 20 000 experiments where the branching fraction
is generated uniform between 2.0× 10−3 and 6.0× 10−3. From the results in Figure 4.6
we can conclude that the fit reproduces the input branching fraction over a large range
with only an insignificant bias of less then 0.2 σ over the full range.
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4.6 Control Sample
A valuable source for cross checking the analysis is the use of a control sample which
servers two purposes. First to gain confidence in the chosen analysis method by being able
to produce expected results in the control sample. Possible problems with the method
intended for the mode of interest can be seen on time and rectified. In addition, the
control sample shares many properties with the mode of interest and may thus aid in the
physics parameter extraction.

A perfect control sample would have certain properties

• It should have roughly an order of magnitude more events

• It must topologically resemble the mode of interest

• It should show the same sensitivity to CP violation

• It must contain all the combinations of daughter decays as the mode of interest

The most obvious choice for a control sample would be B+→ D∗−D∗+K+ but this mode is
colour suppressed. This means its branching fraction is too small to be useful. Furthermore,
the requirement on the topology rules out everything except double charm decays.

The 3-body decay B0 → D∗−D∗+K0
S is sensitive to CP violation but if it contains a

resonance in D∗+ K0
S it ceases to be a CP eigenstate and thus the indirect CP asymmetry

is lost. Therefore the control sample must also contain a 3-body decay. Applying also the
last requirement, B0→ D∗−D0K+ remains the only sensible solution.

4.6.1 Event Selection
Signal MC for the control sample was generated the same way as for the mode of interest,
assuming flat phase space distribution and no CP violation. Since there is only one D∗,
the reconstruction efficiency is much higher so we generated only two million events for
each SVD1 and SVD2.

Apart from that, the event selection criteria is exactly the same as for the signal
channel, described in Chapter 3.3. The Best B likelihood in Equation 3.7 is adapted by
dropping the second D∗ likelihood.

4.6.2 Reconstruction Efficiency
There are two differences in the control sample which directly effect the reconstruction
efficiency: There is only one D∗ and no K0

S. This means that there are two fewer tracks
to be reconstructed and the remaining tracks will have higher momentum on average,
increasing the reconstruction efficiency. So, assuming flat phase space distribution of the
events, we can determine the raw reconstruction efficiency analog to Section 4.1,

ε(SVD1)
raw = (18.568± 0.096)× 10−3 ε(SVD2)

raw = (33.383± 0.129)× 10−3. (4.35)
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SVD1 SVD2
particle id 0.973 1.000
track reconstruction 0.992 0.968
π0 reconstruction 1.012 1.003
combined 0.977 0.971

Table 4.4: Reconstruction efficiency correction factors between MC and data for the
control sample.

Following the same procedure of calculating the simulated branching fraction and using
the world averages from [46] as in Section 4.1, we obtain

Bsim
(
B0→ D∗−D∗+K0

S

)
= 5.245× 10−2, (4.36)

which results in a total reconstruction efficiency of

ε
(SVD1)
MC = (97.382± 0.505)× 10−5 ε

(SVD2)
MC = (175.082± 0.678)× 10−5 (4.37)

for the control sample. One can clearly see that there is less difference between SVD1 and
SVD2 as for the signal mode. This is to be expected as the SVD only tracking is only
used to improve the slow pion efficiency and we have only one slow pion in the control
sample.

As for the mode of interested the reconstruction efficiency has to be corrected to
account for differences between MC and data (see Section 4.1). As there is no K0

S in the
control sample only corrections for particle identification, tracking and π0 reconstruction
are needed. With the corrections from Table 4.4 the final reconstruction efficiency is

ε
(SVD1)
data = (95.143± 0.494)× 10−5 ε

(SVD2)
data = (169.969± 0.658)× 10−5 (4.38)

With these numbers we can estimate the expected signal yield for the control sample,
see Table 4.5. Compared to the expectation from the mode of interest the signal yield
is a factor 10 (5) higher for SVD1 (SVD2). But we also notice that the yields from the
backgrounds increased dramatically by more than two orders of magnitudes. Nevertheless
we chose to keep the event selection criteria unchanged for the control sample to have
minimal differences to the real analysis.

4.6.3 Changes to the Data Model
The data model for the control channel is kept as similar to the signal mode as possible.
The only change is that there is a small peak in the distribution of BBbar events
at Mbc ≈ 5.28GeV/c2 and ∆E ≈ −0.15GeV which has been added to the PDF in
Equation 4.28 as an uncorrelated, 2D Gaussian,

Pbb,main(Mbc,∆E) = f ·
(
Argus(Mbc; c)× Cheb2(∆E; c1, c2)

)
+ (1− f) ·

(
G(Mbc;µ1,peak, σ1,peak)×G(∆E;µ2,peak, σ2,peak)

)
. (4.39)
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Figure 4.7: Results for the control sample: Top row shows the data (left) and the total
PDF (right) for the full fit region in Mbc and ∆E. The bottom row shows the projections
on Mbc and ∆E. Due to the high background levels, the projections are limited to
Mbc > 5.26GeV/c2 and −0.05GeV < ∆E < 0.05GeV, marked by the black rectangle.
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Component SVD1 SVD2
Signal 360 2600
Misreconstructed 90 900
BBbar 27000 340000
Continuum 6400 120000

Table 4.5: Approximate number of expected Events for the different components for the
final fit of the control sample.

4.6.4 Control Sample results
The fit is performed by freeing the yields for signal and background components as well
as the correction parameters for the signal shape. We obtain

B(B0→ D∗−D0K+) = (2.276± 0.131)× 10−3 (4.40)

where the error is statistical only. This result is compatible with the world average of
B(B0→ D∗−D0K+) = (2.47±0.21)×10−3 within 1.5 standard deviations (σ). The method
can then be considered approved. Even in a much less clean environment we were able to
reproduce the world average result.

4.7 B0→ D∗−D∗+K0
S Signal Yield

To finally obtain the signal yield, we perform the fit to the real data. We free the signal
yield, the number of BBbar events and the correction factors for the signal shape. As
mentioned, the ratio between the Signal and Misreconstructed yields as well as the ratio
between the BBbar and Continuum yields remain fixed. The results for the signal yields
are

Y SVD1
sig = 32.433+7.677

−6.861 Y SVD2
sig = 714.370+48.492

−46.772. (4.41)

Figure 4.8 shows the projections of this fit in Mbc and ∆E.
As mentioned in 4.2.2, the overall mean and width of the signal shape are free in the

final fit. While the mean and width in Mbc and the mean in ∆E are consistent with
the values obtained from the fit to MC, the width of the signal shape in ∆E (51± 13)%
wider than in MC which is an deviation of almost 4σ. Also the yield for SVD2, which we
estimated to be around 450 events assuming flat phase space distribution, is higher than
expected.

4.8 Corrected Reconstruction Efficiency
As stated in Section 4.8.3, we have to correct the reconstruction efficiency to account for a
possible difference between the Dalitz distribution in MC and data. To do this, we chose
to bin the Dalitz plot into several bins with similar reconstruction efficiency. To maximize
significance we chose to aim for similar signal yield in each bin.
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Figure 4.8: Results of the fit for the B0→ D∗−D∗+K0
S signal yield in the full dataset.
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4.8.1 Binning of Dalitz Plot
When looking at the raw reconstruction efficiency with respect to the Dalitz variables we
see a strong dependence as shown in Figure 4.9(a). To avoid statistical fluctuations, we
smooth this distribution using a bivariate cubic spline fit [60, 61] (Figure 4.9(b)).
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Figure 4.9: Raw reconstruction efficiency in percent with respect to the Dalitz variables. To
remove statistical fluctuations we performed a bivariate cubic spline fit on the distribution
obtained from signal MC.

For correction of the reconstruction efficiency obtained in Section 4.8.3 we have to
determine the signal yield in areas of similar reconstruction efficiency. This allows us to
calculate a weighted average of the reconstruction efficiencies in all areas using the yields
as weights. How we define these areas is arbitrary but the error of an weighted average
will be minimal if all weights are of equal size. Because of that we decided to aim for
comparable signal yield in all bins.

To get a rough idea of the Dalitz distribution for signal events we can produce a
background subtracted Dalitz plot using the sPlot technique [62]. Note that the background
subtraction is not necessarily correct as the Dalitz variables are not statistically independent
to Mbc and ∆E. But we use the background subtracted Dalitz plot only as a hint to
determine the bin boundaries. The yield in all bins will be determined in a separate fit to
the data. Figure 4.10 shows the full Dalitz plot and the background subtracted version.

We choose contour levels on the spline fit to the reconstruction efficiency (Figure 4.9(b))
in such a way that the sum of entries in the background subtracted Dalitz plot (Fig-
ure 4.10(b)) is equal for each bin. Based on the obtained signal yield (Equation 4.41) we
chose 7 bins to have an expected yield of roughly 100 events in each bin. The resulting
bin boundaries can be seen in Figure 4.11.
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Figure 4.10: Dalitz distribution of the data.
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Figure 4.11: Binning of the Dalitz region to correct reconstruction efficiency. The black
line shows the analytical Dalitz boundary.
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4.8.2 Modification of the Data Model
Since we do not require a mass fit on the B0, there is a correlation between ∆E and
the Dalitz variables, s+ = m(D∗+K0

S)2 and s− = m(D∗−K0
S)2. This correlation can be

best seen in the BBbar component but is to a lesser degree also present in the other
components. Figure 4.12 shows the BBbar MC shapes of ∆E in all Dalitz bins. For the
Dalitz bin with the lowest reconstruction efficiency (bin 6, shown in black) we see a strong
deviation with respect to the shape of the other bins. Also for bin 5 we see a slight drop
off for events with negative ∆E. The Signal and Misreconstructed components show a
similar behaviour but due to the prominent peak at ∆E = 0GeV the effect is much less
pronounced. We modified the data model to correct for this dependency.

5.24 5.25 5.26 5.27 5.28 5.29 5.30
Mbc / GeV

0.00

0.01

0.02

0.03

0.04

0.05
BBbar background

dbin 0
dbin 1
dbin 2
dbin 3
dbin 4
dbin 5
dbin 6

−0.10 −0.05 0.00 0.05 0.10
∆E / GeV

0.00

0.01

0.02

0.03

0.04

0.05

0.06
BBbar background

Figure 4.12: Normalized Mbc (left) and ∆E (right) distributions for reconstructed BBbar
MC events for each Dalitz bin.

The model for the Signal component is unchanged but we introduce a separate set of
parameters for the ∆E shape in the last bin. All other bins still share the same shape
parameters. For the Misreconstructed component the expected statistics are small enough
that the effect is not significant and all bins share the same shape.

For the BBbar we change the model in the last bin, common for SVD1 and SVD2. In
Mbc we describe the shape using a single Argus function and in ∆E we use a scaled and
slightly shifted Chebychev polynomial of the third order where zeroth, first and second
order terms are fixed to zero,

Pbb,bin7(Mbc,∆E) = Argus(Mbc; abin6)× Cheb3
(
cscale · (∆E + cshift); 0, 0, c3

)
. (4.42)

In bin 6 we do not modify the shape but use a separate set of parameters for the Chebychev
polynomial in ∆E to account for the drop for negative ∆E seen in Figure 4.12. All other
parameters are shared with the other bins which retain the model defined in Section 4.2.4.
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For Continuum we do not have enough statistics to estimate a corrected model. We
repeated the fit to obtain the signal yield where we fixed the fraction of Continuum events,
fqq, to zero. The result is compatible with the yield obtained in the original fit within
0.2 σ and all Continuum events are absorbed into BBbar. As such we chose to remove
the continuum events when determining the yield in each Dalitz bin.

4.8.3 Final Reconstruction Efficiency
To determine the yield in each Dalitz bin we perform a simultaneous fit to all Dalitz bins
where we free the yields, Y i

l , for signal and background in all bins but constrain the sum
of the yields to be unchanged from the previous result,

Ysig =
∑

Y i
sig. (4.43)

Due to the low statistics in SVD1 we share the yield fractions, f isig = Y i
sig/Ysig, between

SVD1 and SVD2. Results for the fit in each bin can be seen in Appendix A.3. In addition
to the fractions itself we obtain and their corresponding covariance matrix, cov(f isig, f

j
sig).

Following Sections 4.1 we can now determine the reconstruction efficiency in each Dalitz
bin and calculate a weighted average using the obtained Yields as weights.

For a given set of uncorrelated variables xi with a given error ∆xi, weights wi and a
covariance matrix for the weights cov(wi, wj), the weighted average is defined as

x =
∑
iwi · xi∑
iwi

(4.44)

and the error on this value, ∆x, can be computed using

∆x =

√
(wi ·∆xi)2 +∑

i

∑
j(xi − x)(xj − x)cov(wi, wj)∑

iwi
. (4.45)

Using the results from Table 4.6 this leads to the Dalitz corrected reconstruction efficiency
for data,

ε
(SVD1)
Data = (5.818± 0.068)× 10−5 ε

(SVD2)
Data = (21.109± 0.220)× 10−5, (4.46)

which is 15% and 18% higher than the value for SVD1 and SVD2 from Equation 4.10
when assuming flat phase space distribution.

4.9 Systematic Uncertainties
In addition to the statistical error we have to consider several sources of systematic
uncertainties which have to be added to the final result.
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SVD1 SVD2
f isig εMC/10−5 ξCF εData/10−5 εMC/10−5 ξCF εData/10−5

bin 0 0.16 7.28± 0.15 0.969 7.05± 0.15 27.62± 0.30 0.922 25.46± 0.28
bin 1 0.14 6.47± 0.16 0.965 6.24± 0.16 25.88± 0.33 0.922 23.86± 0.30
bin 2 0.17 6.60± 0.11 0.962 6.35± 0.11 24.54± 0.22 0.918 22.53± 0.20
bin 3 0.15 6.04± 0.13 0.953 5.76± 0.12 23.89± 0.25 0.910 21.74± 0.23
bin 4 0.15 5.92± 0.10 0.952 5.64± 0.09 22.29± 0.19 0.907 20.21± 0.18
bin 5 0.16 5.22± 0.05 0.941 4.91± 0.05 19.13± 0.10 0.900 17.21± 0.09
bin 6 0.07 3.71± 0.05 0.943 3.50± 0.05 13.42± 0.10 0.896 12.03± 0.09
total 6.08± 0.07 0.956 5.82± 0.07 23.12± 0.23 0.912 21.11± 0.22

Table 4.6: Yield fraction, reconstruction efficiency on MC, Efficiency correction and
reconstruction efficiency for data in all Dalitz bins for SVD1 and SVD2. The last row
shows the weighted average for all bins. The errors on the efficiencies in each are the
statistical uncertainties.

4.9.1 Number of BB Events

The total number of BB events in the Belle data is determined using off-resonance data
which has been recorded 60MeV below the Υ(4S). Due to the small energy difference
these events should behave identical to on-resonance data except for the fact that no BB
pairs can be produced. A scale factor between on-resonance and off-resonance data is
determined by comparing the number of e+e−→ µ+µ− events. To determine the number
of BB events, the scaled number of off-resonance events is subtracted from the number of
on-resonance events. This total number of BB events is used to determine the branching
fraction B(B0→ D∗−D∗+K0

S) in equation 4.1. As such, the error of ∆N(BB) = 1.37% is
considered as an systematic error on the branching fraction.

4.9.2 Reconstruction Efficiency

The reconstruction efficiency is determined by counting the number of reconstructed
events over the number of generated events. As the number of generated events is
not infinite, the efficiency has a statistical error and, since we use the reconstruction
efficiency ε(B0→ D∗−D∗+K0

S) in Equation 4.1 to determine the branching fraction, it is
also considered to be a source of systematic errors. This also includes the uncertainties
from the yield fractions in each Dalitz bin as explained in Section 4.8.3.

4.9.3 Daughter Branching Fractions

All branching ratios used in Equation 4.5 have an error associated with their world average,
given in [46]. These branching ratios, B, and their errors, ∆B, are shown in Table 3.1 and
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can be written as

B =



B
(
D∗+→ D0π+

slow

)
B
(
D∗+→ D+π0

slow

)
B
(
D0→ K−π+

)
B
(
D0→ K−π+π0

)
B
(
D0→ K−π+π+π−

)
B
(
D+→ K−π+π+

)
B
(
K0

S→ π+π−
)


=



67.7± 0.5
30.7± 0.5
3.87± 0.05
13.9± 0.5
8.07± 0.2
9.13± 0.19
69.2± 0.05


× 10−2. (4.47)

As such, the total simulated branching ratio, Bsim(B0→ D∗−D∗+K0
S), also has an error

which we need to take into consideration. From global fits performed by [46], which
constrain the sum of all branching fractions for a given particle to unity, we can obtain
correlations between the daughter branching fractions of D∗+ and D0 used in this analysis.
We assume that all branching ratios are uncorrelated to the branching ratios of different
particles. This allows us to obtain the correlation matrix between all daughter branching
fractions from [46]:

corr (B) =



1 −0.66 0 0 0 0 0
−0.66 1 0 0 0 0 0

0 0 1 −0.04 0.22 0 0
0 0 −0.04 1 0.55 0 0
0 0 0.22 0.55 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


. (4.48)

The error on the total simulated branching ratio Bsim
(
B0 → D∗−D∗+K0

S

)
can then be

calculated using standard error propagation,

∆y =
√√√√ n∑
i=1

n∑
j=1

(
∂y

∂xi

)(
∂y

∂xj

)
· cov(xi, xj), (4.49)

were the covariance matrix, cov(B), is obtained by multiplying the correlation matrix
corr(B) with a diagonal matrix containing the errors on the branching fractions, diag(∆B)
from both sides

cov(B) = diag(∆B)corr(B)diag(∆B) (4.50)
With Equations 4.5 and 4.49 the total error turns out to be

∆Brec
(
B0→ D∗−D∗+K0

S

)
= 4.4%. (4.51)

4.9.4 Particle Reconstruction and Identification
When calculating the reconstruction efficiency we introduced correction factors to account
for differences between MC and data which were obtained from separate studies. Since
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these studies are also limited in their statistics and methods, all these correction factors
have an associated error which we have to take into account. Similar to section 4.1, we
separately determine the errors for particle identification [52], low momentum tracking [53,
54], π0 reconstruction [55] and K0

S reconstruction [56] for each particle in each decay
channel from signal MC. The errors in each decay channel are added linearly and we
form an weighted average between all channels where we use the number of reconstructed
events in each channel as weight.

4.9.5 Model Uncertainties
The data model was obtained from fits to simulated events and all parameters used in
these fits have associated uncertainties which have to be taken into account. For each
component we obtain a covariance matrix of the parameters from the fit to the simulated
data. Assuming that the parameters between different models are uncorrelated we can
thus create a global covariance matrix for all model parameters.

We now performed 20 000 fits to the data where the model parameters are varied
randomly using a correlated, multidimensional gaussian distribution between all param-
eters. The resulting yield distribution for SVD1 and SVD2 can be seen in Figure 4.13.
To estimate the spread of these distributions we fit them using a bifurcated gaussian
(see Section 4.2.1) and choose the larger width as an systematic error on the model
uncertainties.
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Figure 4.13: Yield distribution for SVD1 and SVD2 when repeating the fit to the data
while varying the model parameters according to their covariance matrix

4.9.6 Total Systematics
Table 4.7 shows an overview of all the systematic errors. For some categories a systematic
error was calculated for SVD1 and SVD2 and in these cases the systematic is determined
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Category SVD1 SVD2
Number of BB events ±1.37
Reconstruction efficiency ±1.18 ±1.05
Daughter branching fractions ±4.40
Particle identification ±3.70 ±5.70
Tracking efficiency ±7.23 ±4.39
π0 reconstruction ±7.64 ±5.46
K0

S reconstruction ±1.20 ±1.17
Model uncertainties ±3.75 ±1.90
Total ±10.58

Table 4.7: Systematic uncertainties for the Branching fraction, given in percent of the
measured value. The total systematic error is the quadratic sum of all contributions.

by taking the weighted average using the number of BB events multiplied with the
reconstruction efficiency as weights. The total systematic error is then calculated by
summing the systematic uncertainties of each category in quadrature.

4.10 Final Result
With the yields from Equation 4.41 and the corrected reconstruction efficiency from
Equation 4.46 we calculate the branching ratio for SVD1 and SVD2 using Equation 4.1,

BSVD1 = 3.667+0.868
−0.776 × 10−3 BSVD2 = 5.460+0.371

−0.357 × 10−3. (4.52)

To obtain the final result, we form a weighted average between SVD1 and SVD2 where
we use the number of BB pairs multiplied with the reconstruction efficiency as weights,

B(B0→ D∗−D∗+K0
S) =

(
5.35+0.35

−0.34(stat)± 0.57(syst)
)
× 10−3. (4.53)

Compared to the previous result from Belle the obtained branching ratio is significantly
higher. It is interesting to see that the branching ratio from SVD1 is in very good
agreement with the old analysis so the difference seems to mainly originate from the
SVD2 data. The reconstruction algorithm and systematic studies have been changed
significantly between these two results so they have to be considered independent which
leads to an agreement within 2 σ. The agreement with the results from BABAR is also
within 2 σ.

The statistical error improved from 11.7% to 6.5% which is roughly consistent with
the increase in statistics. In contrast to the previous analysis the width and mean of the
signal peak are free in the final fit which slightly diminishes the separation power between
signal and background but helps to avoid systematic error due to shape differences between
MC and data.
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The systematic errors changed from 19.8% to 10.7%. This is in part due to new
studies for track reconstruction and the inclusion of correlations for the calculation of the
error on the daughter branching fraction.
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Chapter 5

CP Violation Measurement

Using the result from the last chapter we can now determine the CP violation parameters
defined in Section 1.5. To do this we extend the data model from Section 4.8.2 to also
include the lifetime difference ∆t.

5.1 Data Model
The CP violation parameters are extracted from a three dimensional unbinned maximum
likelihood fit to Mbc, ∆E and ∆t. All parameters of the model on Mbc and ∆E are
fixed to the values obtained in the branching fraction measurement. Since there are
no significant correlations between ∆t and Mbc or ∆E, the PDF for each component,
Pl(Mbc,∆E), can easily be extended to

Pl(Mbc,∆E,∆t) = Pl(Mbc,∆E)× Pl(∆t) (5.1)

5.1.1 Correctly Reconstructed Signal Events
Considering the effects of incorrectly tagging a B meson, the theoretical time-dependent
∆t distribution from Equation 1.52 becomes

Psig(∆t, q, ηy) = e
−|∆t|/τB0

4τB0

{
1− q∆w + q(1− 2w)×

[
ηy
Jc
J0

cos(∆md∆t)

−
(2Js1
J0

sin(2φ1) + ηy
2Js2
J0

cos(2φ1)
)
· sin(∆md∆t)

]}
(5.2)

where q is the flavour determined for the Btag meson as described in Section 3.5, w is the
probability that this flavour tag is incorrect and ∆w is the difference of the wrong tag
probability between B0 and B0. ηy contains the phase space information and is defined as

ηy = +1 (−1) for s+ ≥ s− (s+ ≤ s−) s+ = (pD∗+ + pK0
S
)2 s− = (pD∗− + pK0

S
)2. (5.3)

Jc/J0, (2Js1/J0) sin(2φ1) and (2Js2/J0) cos(2φ1) represent the CP parameters need to be
measured. Note how Jc/J0 and (2Js2/J0) cos(2φ1) manifest in the asymmetry q · ηy while
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(2Js1/J0) sin(2φ1) is only dependent on q. To be able to observe all three parameters
we have to consider the asymmetry between events with q · ηy = +1 and q · ηy = −1 in
addition to the normal CP asymmetry as explained in Section 1.4.3.

To account for detector and reconstruction effects, Psig is convoluted with a decay
mode independent resolution function [48],

Psig(∆t, q, ηy) = (Rsig ∗ Psig)(∆t, q, ηy) =
∫ ∞
−∞

Rsig(τ)Psig(∆t− τ, q, ηy) dτ. (5.4)

This resolution function consists of three components,

Rsig = Rdet ∗RNP ∗RK , (5.5)

where Rdet represents the detector resolution, RNP describes the smearing due to re-
constructing the Btag vertex from non-primary tracks and RK models the effects of the
kinematic approximation that neglects the transverse momentum of the B mesons in the
centre of mass system.

The result in Figure 5.1 shows a slight problem for SVD2 in the central region. As the
amount of simulated data amounts to approximately 200 times the real data we think
that this result can be tolerated.
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Figure 5.1: Fit to ∆t for correctly reconstructed signal MC, integrated over all q and ηy.

5.1.2 Misreconstructed Signal Events
The same lifetime PDF for signal events (Section 5.1.1) is used to model misreconstructed
events. The CP parameters are shared with the Signal component. Misreconstruction has
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been defined as signal events where at least one track used to determine the BCP vertex is
incorrect. As such, there is a high chance that at least one track tends to be taken from
the Btag meson. This will shift the reconstructed vertex closer to that of the Btag meson
and the effective lifetime of the BCP meson will appear smaller. To account for this effect
we free the B0 lifetime for misreconstructed events when creating the model from MC,
resulting in τmis ∼ 1 ps.

As with correctly reconstructed events, the fit to MC in Figure 5.2 shows small slight
problem in the describing of the central area for the SVD2. Again, we consider this not
significant due to the much higher statistics of the MC sample.
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Figure 5.2: Fit to ∆t for misreconstructed signal MC, integrated over all q and ηy.

5.1.3 Background Events from BB and qq
To describe ∆t for the background components, we use an empirical function consisting
of two parts: an prompt part for vertices without a lifetime and an exponential decaying
part for reconstructed particles which decay with an effective lifetime τbkg,

Pbkg(∆t) = fδ · δ(∆t− µδ) + (1− fδ) · e|∆t−µbkg |/τbkg , (5.6)

where δ(x) is the Dirac delta function. This function is convoluted with a resolution
function to account for the vertex resolution. As the vertex resolution depends on the
number of tracks used in the vertex fit we distinguish between two different kinds of
events: “Multi-track” events where more than one track is used for the determination of
the vertex for Btag and BCP and “Single-track” events where at least one of the two vertices
was determined using only one track. For both kinds we assume an double gaussian as
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resolution function,

Rbkg(∆t) = (1− ftail) ·G(∆t, 0, σ · smain) + ftail ·G(∆t, 0, σ · smain · stail), (5.7)

where σ =
√
σ2
CP + σ2

tag is the quadratic sum of the vertex errors given by the reconstruc-
tion.

The full lifetime PDF for background events is the convolution of Pbkg(∆t) and
Rbkg(∆t),

Pbkg(∆t) = (Rbkg ∗ Pbkg)(∆t) =
∫ ∞
−∞

Rbkg(τ)Pbkg(∆t− τ) dτ. (5.8)

To avoid systematics and due to low statistics in the off-resonance data and possible
differences between MC and data, the parameters for the background lifetime function
are extracted from a sideband of the real data: A fit is performed on all events outside
the signal region,

Mbc > 5.26GeV/c2 −0.05GeV < ∆E < 0.05GeV, (5.9)

to determine the shape of the background lifetime PDF. The result can be seen in
Figure 5.3
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Figure 5.3: Fit to ∆t for sideband data, integrated over all q and ηy.

5.2 Toy Monte Carlo Studies
To validate the full model we also performed toy MC studies. We set the CP parameters
to the current world average and generated 2000 experiments where lifetime distributions
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are generated from PDF and Mbc and ∆E are taken randomly from simulated events.
We then fitted each of the 2000 experiments freeing only the CP parameters. In contrast
to the final fit we also free the B0 lifetime for the Signal component to check that the
nominal B0 lifetime used as input for the simulation, τB0 = 1.53 ps, can be reproduced.
The results can be seen in Figure 5.4 and 5.5, the raw fit results on the left and the pull
distributions on the right side.
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Figure 5.4: Results of the ToyMC tests for the B lifetime. On the left is shown the raw fit
result and on the right is the pull distribution. The mean and width of the distributions
are determined from a single gauss fit.

It can be seen clearly that for all parameters the fit output is in good agreement with
the input values. The pull distribution is consistent with a standard normal distribution
and no significant bias can be observed. The width of the result distribution is equal the
expected statistical error of the final fit and are half of the errors obtained in the previous
analysis [37].

5.3 Linearity Tests
As for the branching fraction measurement we also performed linearity tests to validate
the fit procedure over the whole parameter range. We created 20 000 experiments where
the CP parameters for each experiment are generated uniformly inside of the unit sphere
so that (

Jc/J0
)2

+
(
(2Js1/J0) sin(2φ1)

)2
+
(
(2Js2/J0) cos(2φ1)

)2
≤ 1 (5.10)

and the B0 lifetime is fixed to its nominal value.
From the results in Figures 5.6 and 5.7 we can conclude that the fit shows a

good behaviour, especially for the CP parameter Jc/J0. For (2Js1/J0) sin(2φ1) and
(2Js2/J0) cos(2φ1) a small bias of 11% and 14% of the statistical error can be observed
over the full range which will be considered as an systematic error.



84 5. CP Violation Measurement

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

JC/J0

0

50

100

150

200

250

E
nt

ri
es

/0
.0

3

µ = 0.702± 0.003

σ = 0.125± 0.002

fit results, input=0.71

−4 −2 0 2 4

Pull(JC/J0)

0

20

40

60

80

100

E
nt

ri
es

/0
.1

µ = −0.043± 0.022

σ = 1.000± 0.016

pull distribution

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(2Js1/J0) sin(2φ1)

0

20

40

60

80

100

120

140

E
nt

ri
es

/0
.0

3

µ = 0.029± 0.005

σ = 0.208± 0.003

fit results, input=0.03

−4 −2 0 2 4

Pull((2Js1/J0) sin(2φ1))

0

20

40

60

80

100
E

nt
ri

es
/0

.1
µ = (−4.250± 23.234)× 10−3

σ = 1.039± 0.016

pull distribution

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(2Js2/J0) cos(2φ1)

0

20

40

60

80

100

120

140

160

E
nt

ri
es

/0
.0

3

µ = 0.241± 0.005

σ = 0.206± 0.003

fit results, input=0.24

−4 −2 0 2 4

Pull((2Js2/J0) cos(2φ1))

0

20

40

60

80

100

120

E
nt

ri
es

/0
.1

µ = 0.011± 0.023

σ = 1.027± 0.016

pull distribution

Figure 5.5: Results of the ToyMC tests for the CP parameters Jc/J0 (top),
(2Js1/J0) sin(2φ1) (middle) and (2Js2/J0) cos(2φ1) (bottom). On the left are shown the
raw fit results and on the right is the pull distribution. The mean and width of the
distributions are determined from a single gauss fit.
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Figure 5.7: Results of the linearity tests for the CP parameters (2Js1/J0) sin(2φ1) (left)
and (2Js2/J0) cos(2φ1) (right). On the top are the fit results and the residuals, at the
middle and bottom is the mean and the width of the pull distribution respectively.
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5.4 Control Sample
To validate that the fit can produce the expected results on data we performed the
CP violation analysis on the control sample already used in the branching fraction
measurement 4.6.

The lifetime PDF used for the mode of interest does not allow for an unequal distribu-
tion of ηy = +1 and ηy = −1. This is no problem for the signal channel as the Dalitz plot
is symmetric but for the control channel the second D∗ is replaced by a D meson and the
symmetry is lost. Because of that, we chose to change the ∆t PDF for signal components
(Eq. 5.2) to the more common PDF with only two parameters (Eq. 1.42), removing the ηy
dependence:

Psig(∆t, q, ηy) = e
−|∆t|/τB0

4τB0

{
1− q∆w + q(1− 2w)

×
[
ACP cos(∆md∆t) + SCP · sin(∆md∆t)

]}
. (5.11)

Everything else is kept identical to the mode of interest. From the fit result shown in
Figure 5.8 we obtain

ACP = 0.134± 0.092
SCP = −0.028± 0.131,

(5.12)

which is in agreement with the expectation of no CP violation within 1.8σ. The background
subtracted CP asymmetry for the control channel can be seen in Figure 5.9 and also
shows no evidence for CP violation.

In addition we perform a fit where only the B0 lifetime is free and we obtain

τB0 = 1.342± 0.099 (5.13)

which is consistent with the current world average, τB0 = 1.519± 0.007 [46], within 1.8 σ.
To further check the stability of this result against possible problems with the modelling

of the background lifetime PDF, especially considering the high background level, we
repeated the fit of the B0 lifeftime 1000 times while varying the fδ and τbkg parameters
of the background PDF within their errors. The results can be seen in Figure 5.10 and
shows that the changes to the B0 lifetime with the variation of the background description
amount to 34% of the statistical error. Given the very large amount of background events
in this control sample compared to the mode of interest we can conclude that the extracted
lifetime is stable against variations of the background shape.
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Figure 5.8: Signal enhanced results for the lifetime fit on the control channel, integrated
over all q. To enhance the signal fraction we only show the distribution only for events
which satisfy Mbc > 5.26GeV/c2 and −0.05GeV < ∆E < 0.05GeV.
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Figure 5.9: Background subtracted ∆t lifetime (top) and CP asymmetry (bottom) for
the control channel. Left side shows the asymmetry for all events and the right side shows
the asymmetry for events with a high quality flavour tag, |r| > 0.5.
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Figure 5.10: Study of the effect on B0 lifetime when varying the background ∆t model.
We performed 1000 fits where fδ and τbkg were varied within their errors. The resulting
B0 lifetime can be seen on the right and the pull distribution versus the world average on
the left. The dotted line shows the position of the world average.

5.5 Results on Partial Data
As a next step we performed the CP analysis on the data which has already been analyzed
in the previous analysis[37]. This data contains 449 million BB pairs and accounts for
58% of the full data. Due to the improved reconstruction efficiency in SVD2, especially
the addition of the SVD-only track reconstruction, since the previous analysis we expect
a significant increase in statistics compared to the previous analysis.

To perform the CP analysis we first repeat the branching fraction measurement on
the partial data for SVD2 and obtain

Y SVD2
sig,partial = 314.910+32.986

−31.148, (5.14)

which is more than three times larger than the total yield for SVD2 in the previous
analysis. We use this result for the fit to the CP parameters. The result of the ∆t fit is
shown in Figure 5.11 and we extract

Jc/J0 = 0.197+0.155
−0.159,

(2Js1/J0) sin(2φ1) = 0.051+0.228
−0.225,

(2Js2/J0) cos(2φ1) = 0.356+0.221
−0.232.︸ ︷︷ ︸

this analysis


Jc/J0 = 0.60+0.25

−0.28 ± 0.08
(2Js1/J0) sin(2φ1) = −0.17+0.42

−0.42 ± 0.09
(2Js2/J0) cos(2φ1) = −0.23+0.43

−0.41 ± 0.13


︸ ︷︷ ︸

previous Belle measurement

(5.15)

Compared to the previous results we notice that Jc/J0 is significantly closer to zero
but agrees within 2.5 σ. (2Js1/J0) sin(2φ1) and (2Js1/J0) sin(2φ1) are in good agreement
with the previously published results. The background subtracted CP asymmetries are
shown in Figures 5.12 and 5.13 for all events and for events with good flavour tag quality
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Figure 5.11: Results for the lifetime fit on the partial data containing the first 449 million
BB events, integrated over all q and ηy.

respectively. In both asymmetries we see a good agreement between the data and the
PDFs obtained from the fit.

Similar to the Control channel we also perform a fit to estimate the B0 lifetime. The
result,

τB0 = 1.601+0.146
−0.137, (5.16)

is in very good agreement with the current world average, τB0 = 1.519± 0.007 [46], within
0.6 σ.

5.6 B0 Lifetime from Full Data

As a final check we extracted the B0 lifetime from the full data. For this we first perform
a fit of the lifetime with blinded CP parameters and then repeat the fit with a free B0

lifetime for the signal component (shown in Figure 5.14). We extract a lifetime of

τB0 = 1.472± 0.095, (5.17)

which is again in very good agreement with the world average (within 0.5σ).
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Figure 5.12: Background subtracted ∆t lifetime (top) and CP asymmetry (bottom)
extracted from the partial data containing the first 449 million BB events. Left side
shows the asymmetry between different Btag flavour tag, q and the right side shows the
asymmetry between the product q · ηy.
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Figure 5.13: Background subtracted ∆t lifetime (top) and CP asymmetry (bottom)
extracted from the partial data for events with good flavour tag quality, |r| > 0.5. Left
side shows the asymmetry between different Btag flavour tag, q and the right side shows
the asymmetry between the product q · ηy.
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Figure 5.14: Results for the lifetime fit on the full data, integrated over all q and ηy.

5.7 CP Parameter Result from Full Data
Finally we perform the lifetime fit on the full data. We obtain a result of

Jc/J0 = 0.37± 0.10,
(2Js1/J0) sin(2φ1) = 0.30± 0.16,
(2Js2/J0) cos(2φ1) = 0.16± 0.16,︸ ︷︷ ︸

this analysis


Jc/J0 = 0.60+0.25

−0.28 ± 0.08
(2Js1/J0) sin(2φ1) = −0.17+0.42

−0.42 ± 0.09
(2Js2/J0) cos(2φ1) = −0.23+0.43

−0.41 ± 0.13


︸ ︷︷ ︸

previous Belle measurement

(5.18)

which is consistent with the result from the partial data within less then two standard
deviations for all three values. Nevertheless we see relative large differences when comparing
to the partial data. (2Js1/J0) sin(2φ1), which was compatible with zero to a very high
precision, now shows a deviation of almost two standard deviations. Further studies are
needed to verify that this is a statistical fluctuation and no systematic effect.

Figures 5.15 and 5.16 shows the background subtracted data together with the lifetime
PDFs for signal events as well as their asymmetries for all events and for events with good
vertex tagging, |r| > 0.5. In all cases we see a very good agreement between the data
points and the lifetime PDF.

5.8 Systematic Uncertainties
As for the branching ratio measurement we have to consider different sources of systematic
errors in addition to the statistical error obtained from the fit. Main contributions arise
from the vertexing procedure as well as the flavour tagging procedure. But also the
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Figure 5.15: Background subtracted ∆t lifetime (top) and CP asymmetry (bottom)
extracted from the full data. Left side shows the asymmetry between different Btag flavour
tag, q and the right side shows the asymmetry between the product q · ηy.
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Figure 5.16: Background subtracted ∆t lifetime (top) and CP asymmetry (bottom)
extracted from full data for events with good flavour tag quality, |r| > 0.5. Left side
shows the asymmetry between different Btag flavour tag, q and the right side shows the
asymmetry between the product q · ηy.
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parametrization of the resolution function for signal and background components as well
as the uncertainties on the used physics parameters have to be considered.

Unless otherwise stated, the systematic errors are estimated by varying certain cuts
or input values to the fit in a specified interval. We repeat the fit with the new values
and the larger deviation from the original fit result is then taken as systematic error. If
more than one parameter or cut is varied for a given category the combined systematic is
calculated by adding the larger deviation for each parameter in quadrature.

5.8.1 Vertex Reconstruction
Vertex reconstruction plays an essential role in CP violation analysis. As such we have to
consider the effect of the vertexing procedure and the applied cuts on the final result

IP Profile

The vertices of the BCP and Btag mesons were reconstructed using an IP tube constraint
(see Section 3.4.7). To estimate the systematic error we varied IPsmear by ±10 µm.

Btag Track Selection

The track selection cuts for the Btag vertex described in Section 3.5.2 could also influence
the final result so we repeated the analyis and varied the cuts on the z-resolution and
rφ-distance by ±10%.

Vertex Quality Cuts

We also required a vertex quality cuts for both vertices, Btag and BCP, as described in
Section 3.6. For the estimation of the systematic error we repeated the fit with h < 25
and h < 100 and varied the requirements on σz by ±10%.

∆t Range

In Section 3.6 we also imposed |∆t| to be within 70 ps. To validate the result against this
requirement we repeat the fit with |∆t| ≤ 40 ps and |∆t| ≤ 100 ps.

Misalignment and possible ∆z bias.

We have to take into account the possible effects of misalignment for our result. Two
possible sources are the internal misalignment within the SVD and a relative misalignment
between the SVD and CDC which might cause a bias in the ∆z distribution. Both effects
can be studied using MC samples with and without misalignment and taking the difference
as systematic error. However, these effects are considered to be mode independent so
their contribution is taken from the B0→ J/ψK0

S study [63].
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5.8.2 Flavour Tagging
The wrong tag fractions, w, and the B0– B0 wrong tag fraction difference, ∆w are described
in Section 3.5.1. These fractions are determined from control samples and also have an
uncertainty. We estimate the systematic uncertainty by varying the value for w and ∆w
for each region of r separately and summing the differences in quadrature.

5.8.3 Resolution Function
We vary all parameters used in the resolution function for signal events according to their
errors given in [48]. Again, we sum all differences in quadrature.

5.8.4 Model Uncertainties
As for the branching fraction measurement we have to account for the uncertainties in
our model parameters. Following the same procedure as described in Section 4.9.5 we
estimate the systematic uncertainty arising from model uncertainties by performing 20 000
fits to the data where we vary all model parameters according to their covariance matrix.
This includes the uncertainties on the yields from the branching fraction measurement
and the shape of the background lifetime obtained from sideband. Figure 5.17 shows the
deviation from the original result when varying the model parameters for all three CP
parameters. We fitted a bifurcated Gaussian to the resulting distribution and took the
larger width as systematic error.
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Figure 5.17: Deviations from the CP fit result when randomly varying all model parameters
according to their covariance matrix for Jc/J0 (left), (2Js1/J0) sin(2φ1) (middle) and
(2Js2/J0) cos(2φ1) (right).
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Category ∆Jc/J0 ∆(2Js1/J0) sin(2φ1) ∆(2Js2/J0) cos(2φ1)
Vertex reconstruction
IP profile 0.0002 0.0020 0.0130
Btag track selection 0.0110 0.0068 0.0049
Vertex quality cuts 0.0084 0.0114 0.0160
∆t range 0.0001 0.0005 0.0003
Misalignment 0.0041 0.0024 0.0024
∆z bias 0.0050 0.0039 0.0039
Flavour tagging 0.0014 0.0016 0.0014
Resolution function 0.0100 0.0145 0.0140
Model uncertainties 0.0103 0.0174 0.0206
Physics parameters 0.0010 0.0004 0.0001
Fit bias 0.0030 0.0079 0.0015
Tag side interference 0.0011 0.0015 0.0017
Total 0.0213 0.0280 0.0331

Table 5.1: Absolute values for the systematic uncertainties from different sources for the
CP violation measurement. We calculated the total by summing all contributions in
quadrature.

5.8.5 Physics Parameters

The world averages for ∆md = (0.507± 0.004) ps−1 and τB0 = (1.519± 0.007) ps [46] are
used in the lifetime PDF in Equation 5.2. We calculate the associated systematic error by
varying their values within the errors.

5.8.6 Fit Bias

The toy MC linearity test in Section 5.3 showed a small bias for (2Js1/J0) sin(2φ1) and
(2Js2/J0) cos(2φ1). The expected deviations from the real values are taken as a systematic
error.

5.8.7 Tag Side Interference

While the flavor of the Btag is usually determined using flavour specific events there
contributions CKM-suppressed decays. The interference between these amplitudes gives
deviations from the standard time evolution [64]. The correction to the time-dependent
PDF is estimated with a B0→ D∗`ν sample. Toy MC is generated with and without tag
side interference and the difference is taken as the systematic error.
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5.8.8 Total Systematics
A summary of all obtained systematics for the time-dependent CP analysis is given in
Table 5.1. The different contributions are summed in quadrature.

5.9 Final Result
Together with the values from Equation 5.18 and the systematic errors from Table 5.1 we
obtain a fnal result of

Jc/J0 = 0.37± 0.10(stat)± 0.02(syst)
(2Js1/J0) sin(2φ1) = 0.30± 0.16(stat)± 0.03(syst)
(2Js2/J0) cos(2φ1) = 0.16± 0.16(stat)± 0.03(syst).

(5.19)

These measurements agree with the previous results from BABAR [35]:

Jc/J0 = 0.76± 0.18(stat)± 0.07(syst),
(2Js1/J0) sin(2φ1) = 0.10± 0.24(stat)± 0.06(syst),
(2Js2/J0) cos(2φ1) = 0.38± 0.24(stat)± 0.05(syst),

and Belle [37],

Jc/J0 = 0.60+0.25
−0.28(stat)± 0.08(syst),

(2Js1/J0) sin(2φ1) = −0.17+0.42
−0.42(stat)± 0.09(syst),

(2Js2/J0) cos(2φ1) = −0.23+0.43
−0.41(stat)± 0.13(syst).

within two standard deviations. The statistical uncertainties of our measurement are less
than half of the previous Belle result. We could also decrease the systematic uncertainties
by roughly a factor of two due to improvements in the reconstruction and vertexing
procedures. This currently the most precise measurement of the time dependent CP
violation parameters for B0→ D∗−D∗+K0

S decays.
As Js2/J0 is predicted to be positive [34] we can determine an exclusion limit for a

negative sign for cos(2φ1). We perform a series of fits where (2Js2/J0) cos(2φ1) is fixed to
different values and record the likelihood. We convolute this distribution with using a
gaussian distribution with a width of σ = 0.033 to account for the systematic error, shown
in Figure 5.18. From this result we can exclude a negative result for (2Js2/J0) cos(2φ1)
with a significance of 1.03 σ. This corresponds to a confidence level of 85%.

Although our measurement of (2Js2/J0) cos(2φ1) has smaller uncertainties, the central
value is closer to zero when compared to the BABAR results. Because of this our constraint
on the sign of cos(2φ1) is weaker then the one obtained by BABAR (94%).
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Figure 5.18: Likelihood distribution for (2Js2/J0) cos(2φ1), full range (left) and around
the minimum (right). The black line is the likelihood distribution obtained from the fit
and the red line shows the final result including systematic errors.



Chapter 6

Belle II Vertex Detector Simulation

The SuperKEKB project [65, 66] , which is scheduled to start data-taking in 2016,
is an upgrade of the original Belle Experiment. The accelerator will be upgraded to
SuberKEKB [17, 67] and targets a luminosity of 8× 1035 cm−2s−1. To exploit this
luminosity the Belle detector will be upgraded [17, 42]. Among these changes there is a
completely new vertex detector which consists of a two layer pixel detector (PXD) and a
four layer double sided strip detector (SVD). With this new configuration we expect an
improvement of more than a factor of two for the single track impact parameter resolution
compared to Belle.

To be able to simulate events we need to implement a precise description of the
geometry and material in the Belle II software framework. The simulation for Belle II is
based on Geant4 [68], an improved C++ version of the GEANT toolkit used for Belle.

This chapter presents the implementation of the simulation geometry for the combined
Belle II vertex detector (VXD).

6.1 The SuperKEKB Accelerator

In order to achieve the targeted luminosity of 8× 1035 cm−2s−1, the SuperKEKB accelera-
tor will employ the “Nano-beam” scheme [69], which was first proposed for the Super B
factory in Italy [70]. A relatively large crossing angle of 83mrad between the two beams
and a very small horizontal emittance allow to minimize the longitudinal overlap region of
the two beams at the interaction point. New superconducting quadrupole systems close
to the vertex allow to squeeze the vertical beta function at the IP, β∗y , by almost a factor
of 20 compared to Belle.

In addition, the beam energies have been changed to 7.0GeV for the electron beam
and 4.0GeV for the positron beam compared to 8.0GeV and 3.5GeV at Belle. This is
due to decrease the effects from Touschek (intra-beam) scattering [71] which limits the
beam lifetime.
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6.2 The Belle II Detector
The Belle II detector will retain the basic layout of the Belle detector. An overview of all
sub-detectors is shown in Figure 6.1. It consists of a pixel detector and a double sided
strip detector to determine the vertices and a central drift chamber (CDC) for tracking of
charged particles. The Belle particle ID systems TOF and ACC are replaced by a time
of propagation counter (TOP) in the barrel region and an Aerogel RICH detector in the
forward endcap. These are encased by the electromagnetic calorimeter (ECL), the 1.5T
solenoid and the K0

L/µ detection system (KLM). The ECL, solenoid and KLM get reused
from Belle but receive significant updates. In this section we will focus only on the vertex
detectors. More information on the other sub-detectors can be found in [17].

Figure 6.1: Overview of the Belle II detector.

6.2.1 Coordinate system
The global coordinate system of Belle II is defined as a right-handed coordinate system
with x, y and z-axes. The origin is located at the nominal interaction point (IP) with the
z-axis pointing along the axis of the magnetic solenoid. The y axis is pointing upwards
and the x-axis lies in the accelerator plane and points away from the accelerator center.
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The radial distance, r =
√
x2 + y2, is the distance to the origin projected on the xy-plane,

θ is the polar angle to the z-axis and φ is the azimuthal angle with respect to the positive
x-axis. As for Belle, the acceptance is defined as

17° ≤ θ ≤ 150°. (6.1)

The directions forward and backward denote the z > 0 and z < 0 sides of the detector
respectively. Both beams have an inclination of 41.5mrad with respect to the z axis
while the electron beam goes in the forward direction and the positron beam goes in the
backward direction.

For local coordinates of the sensors in the PXD and SVD, the convention is the
right-handed coordinate system with the axes u, v and w. u points along the global rφ
direction, v is in the direction of the global z axis and w is pointing away from the IP.

IP

x

z

y

φ

θ

r

e− e+

(a) Global coordinates.

v

u

w

global z
IP

(b) Local coordinates.

Figure 6.2: Belle II coordinate system.

6.2.2 Beam Pipe
The beam pipe design for Belle II is very similar to the one used in Belle (Section 2.2.1): A
dual layer of Beryllium cylinders with a cooling gap in between and a 10 µm gold plating
on the inside to shield low energy X-ray background. In contrast to Belle, the outer radius
has been reduced from 16.25mm to 12.0mm.

6.2.3 Pixel Detector
The pixel detector is a completely new sub-detector in Belle II. It consists of two layers of
DEPFET [72, 73] pixel sensors. A schematic view of the geometrical sensor arrangement
can be found in Figure 6.3 and a detailed description of all the PXD components can be
found in [74].



102 6. Belle II Vertex Detector Simulation

VON EINEM AUTODESK-SCHULUNGSPRODUKT ERSTELLT

VON EINEM AUTODESK-SCHULUNGSPRODUKT ERSTELLT

V
O

N
 
E

I
N

E
M

 
A

U
T

O
D

E
S

K
-
S

C
H

U
L
U

N
G

S
P

R
O

D
U

K
T

 
E

R
S

T
E

L
L
T

V
O

N
 
E

I
N

E
M

 
A

U
T

O
D

E
S

K
-
S

C
H

U
L
U

N
G

S
P

R
O

D
U

K
T

 
E

R
S

T
E

L
L
T

Figure 6.3: Schematic view of the geometrical arrangement of the sensors for the PXD.
The light gray surfaces are the sensitive pixel area. The yellow and red structures are the
readout chips placed directly on the pixel sensor.

The first layer of sensors is at a distance of 14mm from the IP and the second layer
is at 22mm. The PXD has 40 sensors and a total of 7.68 million pixels. The pixel size
is 50 µm in rφ direction for both layers. In z direction, the sensors are segmented and
have two different pixel sizes, where the smaller pixels are closer to the center of the
detector. The size of the pixels in z direction ranges from 55 µm to 85 µm and the actual
values are summarized in Table 6.1. Each sensor is read out row by row from one side and
is equipped with different kinds of readout chips: eight chips at the end for the actual
readout and six along the sensor side to control the readout of different rows, so-called
switchers (Figure 6.4).

To reduce the amount of material, the sensitive area of the silicon sensors, which
contains the actual pixels, is thinned down to 75 µm. Around the sensitive area, the silicon
retains a thickness of 525 µm to provide mechanical stability as can be seen in Figure 6.5.
This figure also shows how two sensors are glued together using an adhesive joint to form
one ladder. This joint is reinforced using small ceramic inserts to increase the mechanical
stability. Apart from these inserts, the silicon sensors are self-supporting: no additional
mechanical structure is present within the acceptance region.

Eight (twelve) of these ladders are placed radially around the z-axis to form the inner
(outer) layer of the PXD. In forward and backward directions, both layers are mechanically
supported by a common endflange outside of the acceptance region. This endflange also
provides cooling for the readout chips using liquid CO2 flowing through internal channels
(see Figure 6.6). For cooling of the switcher chips in the acceptance region a number of
small carbon tubes are running between the forward and backward endflanges and provide
cold air through small holes along their sides.
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endflange made of stainless steel

multi layer Kapton cables for readout

carbon pipes for air flow

reinforced adhesive joint

active area, thinned to 75 µm

air and liquid CO2 cooling

switcher chips

readout chips

Figure 6.4: Rendering of the mechanic design of the PXD. A part of the the sensors in the
outer layer has been cut away to show the endlange and the carbon tubes for air cooling.

ceramic insets

adhesive joint

sensor balcony

sensitive area

Figure 6.5: Back view of the joint between two PXD sensors. The connection is done with
an adhesive joint, reinforced using three small ceramic inserts. In addition, one can see
the thinning of the active area compared to the sensor border.
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Figure 6.6: Mechanical design of the PXD endflange. The internal blue lines are the for
liquid CO2 cooling and green and yellow lines are for airflow cooling.

6.2.4 Silicon Vertex Detector
The silicon vertex detector (SVD) shares some similarities with the Belle SVD described
in Section 2.2.2: It uses a double sided strip technology and has four layers of silicon
sensors. However, the distance to the IP has been increased to provide sufficient space for
the PXD. In all but the innermost layer, the forward region is slanted towards the z-axis,
as can be seen in Figure 6.7, to reduce the number of required sensors. The parameters
for the different layers is summarized in Table 6.1.

In the SVD, one ladder consists of two to five silicon sensors which are glued on two
composite sandwich carbon fiber ribs. Both ribs are made of a 3mm core of low mass,
but rigid foam (Airex). A 140 µm thick layer of carbon fiber is laminated on each side.

To read out the central sensors in each ladder, the SVD employs the so-called “Origami
chip-on-sensor” concept [17]: The readout chips of both sides are placed on a single flexible
circuit, mounted on the top of the sensor. The strips on the top side (measuring the z
coordinate) are connected by a pitch adapter and the strips on the opposite side (for rφ
measurement) are attached by small flexible fanouts wrapped around the edge of the
sensor. Figure 6.8 shows drawings of top and side views for an Origami chip-on-sensor
module, including the mechanical support ribs. A stainless steal cooling pipe with an
outer diameter of 1.5mm and a wall thickness of 50 µm is placed on top of the readout
chips to provide sufficient cooling using liquid CO2.

The outer sensors are read out using readout boards outside of the acceptance. The
complete ladders are fixed on stainless steel endrings (see Figure 6.9), which also provide
cooling for the readout boards. A carbon fiber structure, which can be seen in Figure 6.10,
is used to connect all the endrings and encase the SVD.
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K-K ( 1 : 3 )

M-M ( 1 : 2,5 )
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(a) front view without slanted sensors (b) isometric projection
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Figure 6.7: Schematic view of the geometrical arrangement of the sensors for the SVD.
Only the silicon sensors are shown, all other components have been omitted.

layer radius slant ladders sensors pitch pitch width length
(mm) angle /ladder rφ (µm) z (µm) (mm) (mm)

PXD 1 14 - 8 2 50 55, 60 12.5 44.80
2 22 - 12 2 50 70, 85 12.5 61.44

SVD

3 38 - 7 2 50 160 38.52 120.02
4 80 11.9° 10 3 75 240 57.72 122.90
5 105 16.0° 12 4 75 240 57.72 122.90
6 135 21.1° 16 5 75 240 57.72 122.90

Table 6.1: Belle II vertex detector configuration. The width and length are only for the
sensitive area. The slanted sensors are trapezoidal shaped and have a variable rφ pitch
from 50 µm to 75 µm, a sensitive width from 38.42mm to 57.59mm and a sensitive length
of 122.76mm.
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a) Top view:

b) Side view (cross section):

side view (below)

APV25 chips
(thinned to 100µm)

3-layer kapton hybrid

(integrated) fanout for n-side (z)

DSSD

double-layer flex
wrapped to p-side (r-phi)

cooling pipe
CF sandwich ribs
(mech. support)

APV25
(thinned to 100µm)

CF sandwich ribs
(mech. support)

cooling pipe

DSSD
Rohacell
Kapton

wrapped
flex fanout

Figure 6.8: Top and side views of the Origami chip-on-sensor concept. The flex pieces to
be wrapped around the sensor edge are unfolded in the top view [17].
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Figure 6.9: Rendering of endring stucture for the SVD. The readout boards (green) for
the outer modules are places directly on these endrings.

Figure 6.10: Rendering of the mechanical design of half the SVD including all components.
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6.3 Belle II Software Framework
The Belle II software framework is called basf2 [75]. It is a modular C++ framework
utilizing the recent C++11 standard [76]. All tasks like reading and writing data files, sim-
ulation, reconstruction or user analysis are performed by so-called “Modules”. Figure 6.11
shows the basic data flow during computation. The Modules can write and read objects
to and from a common data store. So-called “Paths” are used to define the execution
order of different Modules and conditions can be set to switch between Paths depending
on the result in each Module.

(a) Module execution (b) Path conditions

Figure 6.11: Schematic view of the execution flow in the Belle II software framework.
Code is divided into modules which can be placed in Paths. Modules can (a) communicate
by reading from and writing to a common DataStore and (b) return a result to change
the execution flow between different paths.

6.3.1 Configuration Parameters
For unified access to configuration parameters, basf2 provides a module called “Gear-
box” [75]. This module provides a simple interface to query a tree structure of parameters
using a subset of the XML Path Language, XPath [77]. At the time of this writing, the
configuration parameters are stored in plain human-readable XML files [78]. Configura-
tions for different sub-detectors reside in separate files and are included into the global
configuration space using the XInclude [79] mechanism to decouple the parameters for
different sub-detectors.

Usage of the generic XPath language allows each each sub-detector to freely choose the
configuration parameters and structure best suited for them. This allows us to parametrize
the geometry of the PXD and SVD in an optimal way and independently of any other
sub-detector.
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6.3.2 Simulation Geometry
The overall detector geometry used in the Belle II simulation is implemented using the
geometry primitives provided by Geant4 [68]. Geant4 utilises “constructive solid geometry”.
Basic, simple primitives like box, sphere or tube are provided and more complicated shapes
can be created using the boolean operations union, intersection and difference as shown
in Figure 6.12. Finally, a nested structure of volumes is created where each volume is the
combination of a shape with a physical material and is placed inside a mother volume.
To improve efficiency, volume hierarchies can be reused and placed multiple times.

Figure 6.12: Principle of constructive solid geometry [80]. Complicated shapes are
constructed using intersection (∩), union (∪), and difference (−) between different shapes.

The integration of the geometry from all sub-detectors into a common data structure
is done by a common module simply called “Geometry”. This module is responsible for
setting up the world volume in which all other volumes will be placed. The Geometry
module then reads the configuration parameters to determine what materials should be
created and how to call the sub-detector specific code responsible for the creation of the
respective geometry.

6.3.3 Materials
All Materials used in the simulation have to be created with the correct atomic properties.
Geant4 already defines all known chemical elements using the isotopic abundances and
properties derived from the NIST database on Atomic Weights and Isotopic Composi-
tions [81]. For each element Geant4 also defines a pure material using the NIST database of
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material properties. In addition, a number of frequently used materials are also predefined.
This means that the definition of new materials usually just requires to specify the correct
composition of the already defined materials.

We implemented a Material provider which is responsible for the creation of new
materials from the configuration parameters and then providing an easy access to all
defined Materials. The definition for each new material provides a name and a weighted
list of chemical elements or already defined materials. Optionally, the density, temperature
and pressure can be specified. An overview of all available parameters can be found in
AppendixB.1

6.4 Common Vertex Detector Geometry
Very detailed, three-dimensional mechanical designs already exist for both vertex detectors,
PXD and SVD. However we chose not to attempt to directly use these in the simulation
for various reasons:

• Although a software exists to convert mechanical designs to Geant4 geometry [82],
this approach has some drawbacks. In its current implementation all shapes would
be converted to polygon meshes. This would either greatly increase the number of
required primitives or result in a loss of precision.
In addition, the current Belle II tracking software also needs a geometry description
to account for material effects but uses a different representation. This representation
can be automatically generated from Geant4 objects but does not support the use
of polygon meshes.

• The mechanics were designed were created with a focus on the assembly and the
manufacturing processes. This does not necessarily coincide with the optimal
structure for a simulation geometry. For example, a certain part might be modelled
in the mechanical design by removing material from a base object to mimic the
actual production process. In the simulation geometry, instead, it might be much
easier to just build the same part using a few simple, adjacently placed geometrical
objects.

• The simulation geometry should not be to complex to not needlessly slow down the
speed of simulation while the mechanical design needs to be as detailed as possible.

Nevertheless, close collaboration with the mechanical engineers is very important for
the decision about how to implement the simulation geometry. For example, information
about the mechanical tolerances and degrees of freedom for different parts can help to
optimize the geometry implementation for alignment purposes. Moreover familiarity with
the details of the mechanical design helps to avoid errors and easily identify the common
structures in both sub-detectors:

• Both have a number of layers.
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• Each layer consists of identical structures called ladders placed around the IP in a
so-called “windmill” structure in rφ direction.

• The ladders of each layer consist of two to four separate silicon sensors and there is
only a small number of different sensor layouts for PXD and SVD.

• Additional structures like readout cables or chips might be placed on top or bottom
of the sensor.

• For mechanical and assembly reasons, both detectors are divided into two halves.
The PXD is split horizontally while the SVD is divided vertically.

• Each detector half has an independent structure to mechanically support all layers
and ladders.

Of course, there are also differences or unique features in the design of both sub-
detectors:

• The PXD has a common mechanical support for all layers in each half while the
SVD separately supports each layer on separate endrings.

• The ladders of the PXD are self supporting while the SVD ladders need an additional
mechanical support structure.

• Controlled air cooling is provided only for the PXD using small carbon tubes between
both layers.

• The SVD employs liquid CO2 cooling for the readout chips using stainless steel
pipes along the ladders of the outer three layers.

• The PXD sensors are thinned down to 75 µm in the sensitive area.

Since none of the differences are strongly conflicting we decided to develop a common
code which is able to create both geometries. This slightly increases the complexity of
the code but simplifies the validation and greatly increases the maintainability as code
duplication between the two sub-detectors can be avoided.

6.4.1 Preparation for Alignment Studies
The final detector assembly can only be performed with finite precision, leading to
deviations from the nominal positions for all sensors. To achieve an optimal vertex
performance this effect has to be taken into account. This is usually done using track
based alignment procedures [83–88].

These procedures can benefit from additional knowledge about the expected mechanical
tolerances. For example, the internal structure of one ladder is very rigid so it is unlikely
that large displacements will occur between the sensors in one ladder but it is very
plausible that the whole ladder might be displaced relative to the other ladders in the
layer.
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To allow for studies of the alignment procedure we prepared the simulation geometry
for misplacement with respect to the nominal position. We defined a hierarchy of position
corrections for all geometrical components: sensors, ladders, half-layers and the whole
sub-detector. Each of these components has six degrees of freedom: three displacements
from the nominal position and three rotations around the local coordinate axes. All of
these position corrections are applied relative to the nominal position of the containing
structure. A misplacement of a ladder will also shift all sensors in that ladder and a
misplacement of the whole detector will affect all structures simultaneously.

Care has to be taken to make sure that these position corrections do not cause an
overlap between different volumes as this leads to undefined behaviour of Geant4. To avoid
that we made sure that there is always sufficient distance between different components.
This should guarantee an overlap free geometry for small displacements as expected from
alignment. For larger displacements, the volumes of the PXD and SVD need to be checked
for overlaps prior to simulation.

6.4.2 Structure of Geometrical Components
The geometry of both detectors can be described using a common hierarchy: We have to
distinguish between components placed on sensors, single sensors, ladders, half layers and
half detectors. For all of these we define a common set of parameters for PXD and SVD.

Component

A number of additional components like readout cables and chips might be placed directly
on the sensors, either on top or below. In addition, the thinning of the PXD Sensors and
the ceramic inserts have to be taken into account.

All components used in the current design can be approximated by rectangular or
trapezoidal outline with a certain thickness and a given material. For the thinning of the
sensitive area of the PXD sensors we also need to allow for tapering of the component
along w.

We define a set of parameters to describe all components placed on or in the sensor,
summarized in Table 6.2. Each component definition can contain zero or more sub-
components. These sub-components are placed relative to the center of their parent
component using the parameters shown in Table 6.3. Figure 6.13 illustrates the parameters
for component definition and placement. An example an be found in Appendix B.2.

Sensor Definition

For both sub-detectors we need to define all existing sensors. A sensor is one piece of
silicon which has an active area where the detector is sensitive to traversing particles. In
addition, a number of components like readout cables and chips might be placed directly
on the sensor, either on top or below. To implement and the thinning of the PXD Sensors
and the ceramic inserts we also may need to place components inside the sensor volume.
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Parameter Description
name Unique name to identify the component
Material Name of the material to be used
width Size of the component in u direction at the backward side
width2 Width at the forward side. If not present, the value of width is

taken to create a rectangular outline
length Size of the component in z direction
height Thickness of the component
angle Angle for tapering. If not specified, no taper is assumed

Table 6.2: Parameters defined for the creation of components.

Parameter Description
type Name of the component to be placed
u Local u coordinate where the component should be placed with

respect to the center of the parent component
v Local v coordinate where the component should be placed with

respect to the center of the parent component
w Vertical placement, can have one of the values “above”, “top”,

“center”, “bottom” and “below” to place the component either
above the parent component, inside the parent component and
aligned to the top, center or bottom or below the parent component
respectively

Table 6.3: Parameters defined for the placement of components.
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Figure 6.13: Illustration of the parameters for (a) component definition and (b) component
placement.

Exploiting the definition of components above, we can define a sensor using the same
parameters shown in Table 6.2. In addition, we require exactly one additional component,
the active area, and allow for zero or more components placed on or in the sensor. Each
sensor definition has a unique name which allows easy placement on the ladders.

Ladder Definition

One ladder configuration is needed for each layer to specify where to place the sensors
of each ladder, summarized in Table 6.4. For each ladder we need to know the shift
in rφ direction to create the windmill structure and the radial distance from the IP.
Furthermore we need to know the sensor types and their z position in each ladder. For
the slanted sensors, we additionally need to declare its inclination angle and the radial
distance of the sensor center to the z-axis. Finally, each sensor in a ladder is given
a numerical id, starting at one for the forward sensor and increasing along opposite z
direction. Figure 6.14 illustrates all these parameters.

Additionally, the PXD sensors of each ladder are mirror-symmetric and the inner
layer is facing towards the IP. To facilitate this, we also define three parameters to allow
reflection of the sensors when placing them in the ladder. To make sure that the active
area conforms to the local coordinate definition in Section 6.2, the reverse transformation
is applied to the active area when it is placed in the sensor volume.
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Parameter Description
shift Offset of the ladder center when placing
radius Distance of the sensor to the IP
slanted.angle Inclination angle for the slanted sensor
slanted.radius Distance of the slanted sensor center to the IP
sensor.type Name of the sensor type
sensor.id numerical ID if the sensor within the ladder
sensor.z global z position of the sensor center with respect to the IP
sensor.flipU if present, mirror the sensor at the vw plane
sensor.flipV if present, mirror the sensor at the uw plane
sensor.flipW if present, mirror the sensor at the local uv plane

Table 6.4: Parameters for the definition of ladders. The parameters prefixed with “sensor.”
need to be specified for each sensor in the ladder. If slanted.angle and slanted.radius are
given, the first sensor in the ladder will be slanted. Otherwise all sensors will be placed
along z

shift

ra
di
us

IP x

φ

IP z

sensor.z

ra
di
us

slanted.radius

slanted.angle

(a) xy view (b) rz view

Figure 6.14: Illustration of the parameters used to define the ladders for each layer.



116 6. Belle II Vertex Detector Simulation

Layer definition

As both detectors are divided into two halves we also define the ladder position per half
layer as a list of the polar angle, φ, and the numerical id of each ladder. Ladders are
numbered per full layer, starting at one for the sensor with the smallest positive polar
angle and increasing along rφ direction.

The layers for each detector half share a common numbering for PXD and SVD. With
increasing distance from the IP, the PXD layers are defined as one and two and the SVD
layers start at three and go up to the outer most layer with number six.

6.5 PXD Geometry
Using the scheme described above we implemented the full PXD geometry, including
the complete mechanical support close to the acceptance. Readout cables and support
structures further away from the IP than the ladder endflange are not implemented at
this stage.

6.5.1 Sensor Design
We only have two different sensor types for the PXD, one for the inner and one for
the outer layer. However, each ladder consists out of two sensors, one mirrored at the
uw-plane. In addition, the inner layer faces inward (readout chips point towards the IP)
while layer 2 points outward. For both layers we implemented only one sensor facing
outward and apply the appropriate reflection along the uw and or vw plane when placing
them in the ladder.

Each sensor is equipped with different of readout chips, eight at the end to do the actual
readout and six along the side to switch the readout between different rows. Figure 6.15
shows the resulting simulation geometry for one ladder from layers 1 and two where the
inner ladder has been rotated by φ = 180° to show the top side.

The thinning of the PXD sensitive area to a thickness of 75 µm has been implemented
by placing an appropriately sized component containing air inside the sensor volume and
the ceramic inserts are separated for each sensor. The ceramic inserts, which span across
two sensors in the mechanical design, have been split into independent parts for each
sensor.

6.5.2 Mechanical Support
The PXD ladders are self-supporting, so no additional structures apart from the small
inserts are needed for mechanical stability. Only the forward and backward endflange
shown in Section 6.2.3 has to be provided.

To implement the shape in the simulation we produced a simplified version using the
CAD system used for the mechanical design of the PXD. This allowed us to derive the
dimensions directly from the original design. We omitted the holding arms and the cooling
inlets and smoothed the contact surface for the outer layer. The contact surfaces for
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z x

y

Figure 6.15: Ladder geometry for both PXD ladders. The smaller ladder represents layer 1
and has been rotated by φ = 180°. Each ladder consists of two sensors joined at the
middle. The sensitive area is shown in light gray and the different readout chips are in
dark gray, yellow and red.

the inner layer were implemented by intersecting box shaped volumes with a rotational
symmetric shape. Figure 6.16 shows a comparison between the original endflange and the
simplified version used for the simulation geometry. Appendix B.3 lists the parameters
for this simplified version.
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(a) mechanical design (b) simplified shape (d) cut along xy  plane

(c) cut along yz plane

Figure 6.16: Comparison between the original mechanical endflange design and our
simplified geometry. In (c) and (d) the mechanical design is shown in black while the
simplified geometry is overlaid in red.

As the simplified geometry is smaller than the original design we used the CAD system
to calculate the volume of the original endflange, VCAD, and our simplified geometry, Vsim.
We then scaled the density of the material in the simulation by the ratio between these
volumes,

ρsim = ρsteel ·
VCAD

Vsim
, (6.2)
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to obtain the correct mass in the simulation.
We also added the air cooling tubes running between the forward and backward

endflange to the simulation. The full mechanical support and cooling implemented for
both halves can be seen in Figure 6.17. This figure also shows all ladders for the lower
half of the PXD.

z x

y

Figure 6.17: Simulation geometry of the PXD mechanical support, together with all
ladders in the lower half. The large, light gray structures are the stainless steel endflanges
and the black lines between them are carbon tubes for air cooling.

6.6 SVD Geometry
The geometry of the SVD is much more complex as the SVD has four layers with up to
five sensors per ladder. Instead of two distinct sensors and combined support for both
layers, as for the PXD, we have seven different sensors, separate support structures for
each layer and additional mechanical support for each layer.

6.6.1 Sensor Design
The design of the sensors for layer 3 is straightforward. We have two identical sensors
per ladder and the readout is done to the side, outside of the acceptance. For layers
four to six we have a trapezoidal shaped sensor in the forward direction and two to four
identical, rectangular sensors along the ladder. But we also have to distinguish between
the edge sensors, which are read out to the side, and the central sensors using the Origami
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chip-on-sensor concept. In addition, there is a different number of readout cables on top
of each sensor depending on its position inside the ladder since the data of the central
sensors has to pass along the outer sensors. This results in a total of seven different sensor
types.

z x

y

Figure 6.18: Simulation geometry showing top and bottom for an Origami sensor. Silicon is
shown in red, Origami hybrid in blue, readout chips in gray and the flex cables connecting
the bottom strips in orange. One can see that the flex cables slightly extend over the
sensor edge to emulate the bending around the sensor.

For Origami readout, we have two additional Kapton flex cables to connect the strips
on the bottom side to the readout chips. We implemented these cables using two pieces of
Kapton, one on top and one on bottom, which are extended slightly over the sensor edge.
We simplified the form of these cables to be rectangular instead of the more complicated
shape in the drawings (Figure 6.8) but kept the surface area identical. Figure 6.18 shows
one of these Origami sensors as implemented in the simulation geometry.

6.6.2 Mechanical Support
All ladders in the SVD have additional mechanical support but at the time of this
implementation there was no design for the support of layer 3. For all other layers, we
implemented the support rib structure described in Section 6.2.4 as a union of simple box
shapes for the straight and the slanted part.

The readout boards for the readout on of the edge sensors is not implemented in the
current geometry. As these boards are outside of the acceptance region we deem this
acceptable for now.

Figure 6.19 shows layer 6 ladders with silicon sensors shown in red. The readout cables
for the Origami sensors are colored blue while the flex cables for the Origami readout are
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colored orange. One can also see the readout chips on the three center modules and the
Airex/carbon fiber ribs for mechanical support.

z x

y

Figure 6.19: Simulation geometry for two ladders from layer 6 including the mechanical
support ribs. The inner sensors use the Origami concept while the edge sensors are read
out to the forward and backward side.

All ladders are mounted on stainless steel endrings at both sides which are glued on
a carbon fiber structure as shown in Figure 6.20 together with the first ladder in each
layer. Notice that the endrings and support structure are divided vertically to allow
displacement between the two detector halves. We also added a small gap between the
base of the endrings and the carbon fiber support structures to allow for misalignment of
the complete half layers.

The SVD also has an outer cover made out of an Airex cylinder with carbon fiber
laminated on both sides. This outer cover connected to the lower support structure using
an endflange outside of the acceptance region in forward and backward direction (see
Figure 6.10). We included the outer cover in the simulation geometry but no design was
available for the forward and backward endflange so they were omitted from the current
implementation.

6.6.3 Cooling
The SVD uses liquid CO2 to cool the readout chips. The cooling for the edge modules
provided by the endrings so no additional geometry components were necessary. For the
Origami modules the CO2 flows through a stainless steel pipe with an outer diameter
of 1.5mm and a wall thickness of 50 µm, placed directly on the chips. One meandering
pipe is used per half layer to cool all ladders. Both ends of this pipe are connected at the
backward side. The simulation geometry for the two cooling pipes of layer 6 together with
one ladder are show in Figure 6.21. There is ongoing discussion about the thickness and
material of these cooling pipes and a switch to titanium pipes with 100 µm wall thickness
seems likely. As the thickness and materials are defined in the parameter files the change
in the simulation geometry would be trivial (see Appendix B.4).
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z x

y

Figure 6.20: Simulation geometry of the SVD carbon support structure including endrings.
In addition we show the first ladder of each layer.

z x

y

Figure 6.21: Simulation geometry of the two CO2 cooling pipes for layer 6 together with
one layer 6 ladder.



122 6. Belle II Vertex Detector Simulation

Finally, Figure 6.22 shows one half of the complete simulation geometry for PXD and
SVD including the SVD outer cover.

z x

y

Figure 6.22: Cut view of the final vertex detector simulation geometry, including the SVD
outer cover.

6.7 Material Budget
The simulation geometry for PXD and SVD shown in Figure 6.22 can be used to study the
amount of material that a particle has to pass when traversing the detector, the so-called
“material budget”. In order to achieve this, we simulate virtual particles called “Geantino”.
These particles do not interact with any matter or field but can be used to record the
amount of material they encounter.

To determine the material budget we generate a large number of these virtual particles
at the IP and shoot them uniformly in θ and φ, covering the full acceptance. For each
particle, we collect the amount of material it passed when traversing the detector.

Figure 6.23 shows the material budget over the full acceptance in units of radiation
length, X0, versus the polar angle, θ, and averaged over the polar angle, φ. For PXD
and SVD the material budget is divided into different categories: silicon sensors, readout
cables, readout chips, mechanical support and cooling structures. Table 6.5 summarizes
the respective contributions in percent of one radiation length for perpendicular incident
and averaged over the whole acceptance. For both detectors, the silicon itself (blue) is the
biggest contribution to the overall material budget.
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Figure 6.23: Cumulative material budget in units of radiation length, X0 versus the polar
angle, θ, for PXD and SVD.

In the PXD, we can see the ceramic inserts around the joint region (40° to 60°) in
red. The silicon material is also enhanced in this region as the thinning of the active area
does not extend directly to the sensor edge (see Figure 6.5). The contributions from the
switcher chips (green) are clearly visible while the carbon fibers for air cooling (purple)
are not significant.

In the SVD, the material budget is much more homogeneous. The dip at around 30°
is due to the transition from slanted to straight sensors. On top of the silicon, we have a
relative large contribution from the readout cables (cyan) which increases in backward
direction (large θ values). This is due to the fact that most Origami sensors are read
out on the backward side and so the number of cables on top of the sensors in backward
direction is higher. The SVD readout chips (green) are thinned down to 100 µm so they
are barely visible. The CO2 cooling pipes (purple) do not extend below 30° due to the
meandering structure which is only connected at the backward side.

The Belle II technical design report [17] quotes a value of 0.55% X0 for one Origami
sensor at perpendicular incident. This would naively result in a total Material budget of
2.2% X0 for the four layers of the SVD. However, this calculation assumes perpendicular
incident on φ and θ and does not take into account any overlaps. Furthermore, the outer
cover is missing from the calculation and some of the design parameters seem to have
changed in the mechanical design so that the overall budget of 3.2% X0 seems reasonable.

This is similar for the PXD where a number of 0.19% X0 is given per sensor. In the
calculation, the switchers are averaged over the full sensor and the cooling pipes are not
included so that we can reproduce the quoted value to a good precision.
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θ = 90° full acceptance
Category PXD SVD PXD SVD
silicon sensors 0.32 1.52 0.46 1.97
readout cables - 0.65 - 1.00
readout chips 0.14 0.05 0.08 0.02
mechanical support 0.00 0.93 0.03 1.27
cooling structures 0.01 0.06 0.02 0.07
total 0.48 3.21 0.59 4.33

Table 6.5: Material budget in percent of one radiation length for PXD and SVD at
perpendicular incident, θ = 90°, and averaged over the full acceptance.

Finally, Figure 6.24 shows the overall material budget for both vertex detectors and
the beam pipe. We estimate the total material budget for perpendicular incident to
4.5% X0, which contains the beam pipe contribution of 0.8% X0. Averaged over the
whole acceptance we obtain 6.0% X0 (beam pipe: 1.1% X0). Since the mechanical
support for layer 3 is still missing these numbers will increase slightly for the final detector
design.

This simulation geometry also provides the basis for the estimation of the PXD
occupancy: the fraction of fired pixels per readout cycle. This occupancy is dominated
by background, most prominently QED processes. The PXD readout system cannot
sustain more than 3% of occupancy, so detailed studies are necessary to guarantee a save
operation of the device. The current estimation of the occupancy is around 1% (0.5%)
for layer 1 (layer 2) [74] and thus well in the limits for safe operation.
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Figure 6.24: Cumulative material budget for the beam pipe, the PXD and the SVD in
units of radiation length, X0 versus the polar angle, θ.
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Conclusion and Outlook

Two different subjects have been presented in this thesis: the measurement of the branching
ratio and of the time dependent CP violation parameters for the decay B0→ D∗−D∗+K0

S
and the implementation of the vertex detector geometry for Belle II experiment.

For the study of the B0→ D∗−D∗+K0
S decay mode we measured the branching fraction

B
(
B0→ D∗−D∗+K0

S

)
=
(
5.35+0.35

−0.34(stat)± 0.57(syst)
)
× 10−3.

Although still compatible with the previous measurements at 2.9σ, this measurement is
larger than previously measured. Compared to the previous Belle analysis, the relative
statistical and systematic uncertainties could be improved by almost a factor of 2.

Performing a three parameter time dependent analysis fit sensitive to cos(2φ1), we
extract the CP asymmetry parameters:

Jc/J0 = 0.37± 0.10(stat)± 0.02(syst),
(2Js1/J0) sin(2φ1) = 0.30± 0.16(stat)± 0.03(syst),
(2Js2/J0) cos(2φ1) = 0.16± 0.16(stat)± 0.03(syst),

which are in agreement with the previous results from BABAR and the previous Belle
measurement within two standard deviations. Since (2Js2/J0) is predicted to be positive,
we can exclude a negative sign of cos(2φ1) at a 85% confidence level. Although we can
significantly improve the statistical and systematical error compared to both previous
analyses, our exclusion limit is weaker than the 94% quoted by BABAR: the reason is
the smaller significance of (2Js2/J0) cos(2φ1) as positive value (BABAR measured a much
larger value of 0.38± 0.24± 0.05).

Concerning the branching ratio measurement: this result is limited by the systematic
uncertainties. We plan to investigate strategies to further reduce them. For example, the
systematic error coming from the π0-reconstruction in the D decay is one of the dominant
contributions. It might be beneficial then to exclude the decay modes with more than
one π0 from the event selection. As this would affect the reconstruction efficiency, thus
increasing the statistical error, we need to perform a detailed study to determine if the
overall significance would be improved.

As for the CP violation parameters, we also performed the time dependent CP analysis
on the same data used in the previous Belle analysis. These results are compatible within
two standard deviations with those from full data. The results need then to be examined
carefully in order to be sure that they are statistically acceptable. In the future, we
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plan to perform additional checks: one possibility might be to generate MC data with
significant CP violation to verify the procedure.

In the last part of the thesis, the implementation of the full vertex detector geometry
in the Belle II software is presented. We developed a parameter-driven description of the
vertex detector geometry which makes it possible to change most aspects of the simulation
geometry with minimal modifications of the code.

All the material inside the acceptance region has been implemented except for the
mechanical support of layer three as no design was present at the time of this study, but
has been made available in the meantime. Moreover some detector components outside
the acceptance region have been omitted in the implementation presented here. In the
future, we plan to update the geometry description for both detectors using the latest
design iterations and complete the remaining components, most prominently the support
for layer three.

Finally, studies of the material budget for the new geometry are presented. We
obtained 0.6% of a radiation length, X0, for the pixel detector and 4.3% X0 for the silicon
strip detector. These values are determined using rays originating at the interaction point
and are averaged over the full acceptance region. These results are consistent with the
analytical calculated values for one sensor under perpendicular incident of 0.19% X0 for
the pixel detector and 0.55% X0 for the silicon strip detector.

Precise knowledge of the material budget is essential for optimizing the tack impact
parameters and vertex resolution, which could be shown to improve a factor of 2 with
respect to the Belle experiment.



Appendix A

Branching Fraction Measurement

A.1 Data Model
In Section 4.2 we showed the combined results of the fits for all model components to MC.
In addition, separate results for SVD1 and SVD2 are provided for the components Signal
(Figures A.1 and A.2), Misreconstructed, (Figures A.3 and A.4) and BBar (Figures A.5
and A.6). Due to the low statistics from off-resonance data for SVD1 we omit the separate
results for the Continuum component.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
nt

ri
es

/(
0.

00
1

G
eV

)

×103 SVD1

5.24 5.25 5.26 5.27 5.28 5.29 5.30
MBC/(GeV/c2)

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
nt

ri
es

/(
0.

00
5

G
eV

)

×103 SVD1

−0.15 −0.10 −0.05 0.00 0.05 0.10

∆E/GeV

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s

Figure A.1: Projections to Mbc and ∆E after fitting the Signal component to MC. Only
SVD1.
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Figure A.2: Projections to Mbc and ∆E after fitting the Signal component to MC. Only
SVD2.
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Figure A.3: Projections to Mbc and ∆E after fitting the Misreconstructed component to
MC. Only SVD1.
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Figure A.4: Projections to Mbc and ∆E after fitting the Misreconstructed component to
MC. Only SVD2.
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Figure A.5: Projections to Mbc and ∆E after fitting the BBbar component to MC. Only
SVD1.
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Figure A.6: Projections to Mbc and ∆E after fitting the BBbar component to MC. Only
SVD2.

A.2 Control Sample
Figures A.7, A.8, A.9 and A.10 show the control sample result of the Signal, Misrecon-
structed, BBar and Continuum components when fitting the model to MC.
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Figure A.7: Control sample: Projections toMbc and ∆E after fitting the Signal component
to MC.
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Figure A.8: Control sample: Projections toMbc and ∆E after fitting the Misreconstructed
component to MC.

0.0

0.2

0.4

0.6

0.8

1.0

E
nt

ri
es

/(
0.

00
1

G
eV

)

×104 SVD1 + SVD2

5.24 5.25 5.26 5.27 5.28 5.29 5.30
MBC/(GeV/c2)

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s 0.0

0.2

0.4

0.6

0.8

E
nt

ri
es

/(
0.

00
5

G
eV

)

×104 SVD1 + SVD2

−0.15 −0.10 −0.05 0.00 0.05 0.10

∆E/GeV

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s

Figure A.9: Control sample: Projections toMbc and ∆E after fitting the BBbar component
to MC.
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Figure A.10: Control sample: Projections to Mbc and ∆E after fitting the Continuum
component to MC.

A.3 Final Results in all Dalitz Bins
After modifying the data model to incorporate the Dalitz bin dependency in Section 4.8.2,
we performed a simultaneous fit to extract the yield fraction for each Daltiz bin. Figures
A.11 to A.17 show the fit projections on Mbc and ∆E in each Dalitz bin.
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Figure A.11: Projections to Mbc and ∆E for the fit to the data in Dalitz bin 0.
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Figure A.12: Projections to Mbc and ∆E for the fit to the data in Dalitz bin 1.
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Figure A.13: Projections to Mbc and ∆E for the fit to the data in Dalitz bin 2.
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Figure A.14: Projections to Mbc and ∆E for the fit to the data in Dalitz bin 3.
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Figure A.15: Projections to Mbc and ∆E for the fit to the data in Dalitz bin 4.
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Figure A.16: Projections to Mbc and ∆E for the fit to the data in Dalitz bin 5.

0

5

10

15

20

25

30

35

40

E
nt

ri
es

/(
0.

00
1

G
eV

)

SVD1 + SVD2

5.24 5.25 5.26 5.27 5.28 5.29 5.30
MBC/(GeV/c2)

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s 0

10

20

30

40

50

60

E
nt

ri
es

/(
0.

00
5

G
eV

)

SVD1 + SVD2

−0.15 −0.10 −0.05 0.00 0.05 0.10

∆E/GeV

−2

0

2

no
rm

al
iz

ed
re

si
du

al
s

Figure A.17: Projections to Mbc and ∆E for the fit to the data in Dalitz bin 6.
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Appendix B

Belle II Vertex Detector Simulation

B.1 Material Definition

The creation of new materials in the Belle II Software framework was summarized in
Section 6.3.3. All parameters available for the definition of new materials are listed in
Table B.1. Each material is constructed of chemical elements or other materials. For each
constituent the name and relative fraction have to be specified. Figure B.1 shows example
code for the definition of three materials: ethane, the gas mixture used in the CDC and
the material used for the quartz bars of the TOP detector.

Parameter Description
name Unique name to identify the material
density Density of the material. If this material is constructed by combining

already defined materials it can be omitted. The weighted average
of the densities from all components will be used

state Physical state of the material. Can be one of “gas”, “liquid”, “solid”
or “undefined”

temperature Temperature of the material in Kelvin. If this parameter is omitted
a standard temperature of 273.15K is assumed.

pressure Pressure in atm. If omitted, 1.0 atm is used.
Components list of at least one element or material which should be used to

construct the new material
Property additional energy-dependent optical properties like the refractive

index. Each property has a name and a list of energy/value pairs.

Table B.1: Parameters defined for the creation of components.
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<?xml version ="1.0" encoding ="utf -8"?>
<Materials >

<Material name=" Ethane ">
<state >Gas </state >
<density unit="g/cm3">1.356e-3</ density >
<temperature >273 </ temperature >
<pressure >1.0 </ pressure >
<Components >

<Element fraction =" 0.7989 ">C</ Element >
<Element fraction =" 0.2011 ">H</ Element >

</ Components >
</ Material >
<Material name=" CDCGas ">

<state >Gas </state >
<density unit="g/cm3">7.67e-4</ density >
<Components >

<Element fraction ="0.500">He</ Element >
<Material fraction ="0.500">Ethane </ Material >

</ Components >
</ Material >
<Material name=" TOPSiO2 ">

<state >Solid </state >
<density unit="g/cm3">2.62 </ density >
<Components >

<Element fraction =" 0.5326 ">O</ Element >
<Element fraction =" 0.4674 ">Si</ Element >

</ Components >
<Property name=" RINDEX " unit="eV">

<value energy =" 1.39999998 ">1.45196021 </value >
<value energy =" 1.40999997 ">1.45205235 </value >
<value energy =" 1.41999996 ">1.45214438 </value >
<!-- additonal entries omitted for readability -->
<value energy =" 3.97999763 ">1.48473752 </value >
<value energy =" 3.98999763 ">1.48493171 </value >
<value energy =" 3.99999762 ">1.48512673 </value >

</ Property >
</ Material >

</ Material >

Figure B.1: Example XML code for a material definition.
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B.2 Component Definition
To provide an example for the component definition presented in Section 6.4.2 we show
the XML code defining the Kapton flexes on the underside of the SVD Orgiami sensors in
Figure B.2. Notice that the material for material was omitted the “OrigamiPitchAdapter”
component. This means that the default material for the SVD, cold air, will be used.
Also shown is the possibility to define the components directly as sub-components inside
of another component. In this case all parameters shown in Tables 6.2 and 6.3 can be
used instead of the “type” parameter.

<?xml version ="1.0" encoding ="utf -8"?>
<!-- Origami flexes on bottom of sensors . The real shape is

more complicated but we approximate it by using
rectangular shapes -->

<Component name=" OrigamiPitchAdapter ">
<width unit="mm">54.891 </width >
<length unit="mm">116.154 </ length >
<Component name=" LongOrigamiPitchAdapter ">

<Material >SVD - KaptonPitchAdapter </ Material >
<u unit="mm"> 0.000 </u>
<v unit="mm"> -48.890 </v>
<width unit="mm"> 54.891 </width >
<length unit="mm"> 18.374 </ length >
<height unit="mm"> 0.100 </ height >

</ Component >
<Component name=" ShortOrigamiPitchAdapter ">

<Material >SVD - KaptonPitchAdapter </ Material >
<u unit="mm"> -13.800 </u>
<v unit="mm"> 49.477 </v>
<width unit="mm"> 27.291 </width >
<length unit="mm"> 17.200 </ length >
<height unit="mm"> 0.100 </ height >

</ Component >
</ Component >

Figure B.2: Definition for the Kapton flexes on the underside of SVD Origami sensor.

B.3 PXD Endflange
The simplified shape for the PXD endflange (see Section 6.5.2) is created from a rotational
symmetric shape around the z axis. In Figure B.3 we define an inner and outer radius at
various z positions. These points are combined to form an outline. If we rotate this outline
around the z axis between a given start and end angle φ we obtain the base volume of
the PXD endflange. To make room for the PXD ladders we have to cut away rectangular
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shapes by intersecting the base volume with appropriately sized box volumes. The width,
height, radius and φ position of these boxes are defined in B.4. The length is calculated
automatically to extend along the full endflange.

<?xml version ="1.0" encoding ="UTF -8"?>
<Endflange name=" backward ">

<Material >PXD - Support </ Material >
<minPhi unit="deg"> -7.125 </ minPhi >
<maxPhi unit="deg">168.049 </ maxPhi >
<Plane >

<posZ unit="mm"> -66.580 </posZ >
<innerRadius unit="mm"> 21.080 </ innerRadius >
<outerRadius unit="mm"> 21.080 </ outerRadius >

</ Plane >
<Plane >

<posZ unit="mm"> -60.520 </posZ >
<innerRadius unit="mm"> 14.940 </ innerRadius >
<outerRadius unit="mm"> 21.080 </ outerRadius >

</ Plane >
<Plane >

<posZ unit="mm"> -38.933 </posZ >
<innerRadius unit="mm"> 14.940 </ innerRadius >
<outerRadius unit="mm"> 21.080 </ outerRadius >

</ Plane >
<Plane >

<posZ unit="mm"> -31.000 </posZ >
<innerRadius unit="mm"> 14.940 </ innerRadius >
<outerRadius unit="mm"> 16.420 </ outerRadius >

</ Plane >
</ Endflange >

Figure B.3: Definition of the base shape for the PXD backward endflange.

B.4 SVD Cooling Pipes
To emphasize the simplicity of the change of the SVD cooling pipes (see Section 6.6.3) the
parameters for the SVD cooling pipes are shown in Figure B.5. The geometry code just
requires the number of pipes, the radius, the start angle and angle between neighboring
pipes and the z position of the start for the forward and backward winding. The winding
itself will be calculated automatically.
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<?xml version ="1.0" encoding ="UTF -8"?>
<Cutout >

<count >5</count >
<width unit="mm">17.073 </width >
<height unit="mm">2.520 </ height >
<rphi unit="mm"> 13.680 </rphi >
<shift unit="mm"> -3.084 </shift >
<startPhi unit="deg"> -135.000 </ startPhi >
<deltaPhi unit="deg">45.000 </ deltaPhi >

</ Cutout >

Figure B.4: Definition of the boxes intersecting with the base shape for the PXD endflange.

<?xml version ="1.0" encoding ="utf -8"?>
<CoolingPipes >

<Material >StainlessSteel </ Material >
<outerDiameter unit="mm">1.500 </ outerDiameter >
<wallThickness unit="mm">0.050 </ wallThickness >
<Layer id="4">

<!-- number of pipes for this layer/ halfshell -->
<nPipes >5</ nPipes >
<!-- phi angle of the center of the first pipe -->
<startPhi unit="deg"> -71.118 </ startPhi >
<!-- phi angle between two pipes -->
<deltaPhi unit="deg"> 36.000 </ deltaPhi >
<!-- distance between IP and center of the pipes -->
<radius unit="mm"> 87.000 </ radius >
<!-- beginning of pipe in z -->
<zstart unit="mm"> -155.100 </ zstart >
<!-- end of pipe in z -->
<zend unit="mm"> 96.880 </zend >

</ Layer >
<!-- the definitions for layers 5 and 6 have been omitted for

readability -->
</ CoolingPipes >

Figure B.5: Cooling pipe parameters defined for the SVD.
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