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Chapter 1 Introduction 

1.1 Metabolomics 

1.1.1 Metabolites and metabolism 

Metabolites are the intermediates or end products produced by the cellular 

processes of a certain organism. Their levels can be regarded as the ultimate responses of 

the biological systems to genetic and/or environmental challenges (Fiehn, 2002). 

Metabolism is constituted by a set of chemical reactions and transformations which are 

needed to maintain life. It comprises two parts, the catabolism which is the breakdown 

of molecules to obtain energy and the anabolism which is the synthesis of all 

compounds needed by the cells.  

The metabolites play critical roles in biological systems due to their involvement 

in cellular and physiological energetics, structure, and signaling (Vinayavekhin et al., 

2010). Moreover, unlike RNA and proteins, metabolites are not directly coded into the 

genome. Therefore, one of the major goals in human biology is to understand the 

biochemical pathways which comprise the human metabolism as well as to study their 

relations to different human diseases.  

1.1.2 Metabolomics 

The ‘omics’ technologies, which provide information regarding detailed content 

of the cells, tissues, organs or biofluids in large scales with a high throughput manner, 
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are becoming more popular in biomedical studies (Rochfort, 2005). Metabolome, coined 

less than two decades ago (Oliver et al., 1998), is similar to other ‘-ome’ terminologies, 

and is defined as the total complement of small-molecule metabolites found in or 

produced by an organism (Mayr, 2008). Metabolomics is regarded as the studies of 

metabolome, with a view to understanding complex biological systems on a large scale 

using high-throughput identification and quantification techniques with statistical 

methods to cope with the huge datasets produced. (Brown et al., 2005; Kaddurah-Daouk 

et al., 2008; Psychogios et al., 2011).  

Over the past few years, the scientific community has witnessed the advent of 

this so-called ‘omics’ era. Studies of single genes, single mRNA transcripts, single 

proteins and single metabolites have been moved to those encompassed the entire 

genomes, transcriptomes, proteomes and metabolomes (Kaddurah-Daouk et al., 2008). 

More investigators are now seeking to understand the complex biological systems on a 

larger scale other than by simply using the traditional reductionistic approach (Brown et 

al., 2005; Mayr, 2008). Along with the other three ‘omics’ –genomics, transcriptomics, 

and proteomics-, metabolomics has added a new piece of building block to the fast 

emerging field of systems biology. Together, they provide powerful tools with which to 

analyses physiological and disease-induced biological states at the molecular level, 

taking into account both the organism’s intrinsic properties, i.e. genetic factors, and the 
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effects of lifestyle, diet, and environment. Many attempts have been made to discover 

the link between genetics and metabolite concentrations (Gieger et al., 2008; Illig et al., 

2010; Suhre et al., 2011), whilst other scholars have sought to unveil the association 

between metabolite profiles and general phenotypes (Mittelstrass et al., 2011; Wang-

Sattler et al., 2008; Yu et al., 2011), In addition to these investigations, various other 

studies have attempted to both predict the behavior of diseases (Floegel et al., 2012; 

Wang-Sattler et al., 2012) and use metabolite concentrations to ascertain the disease 

etiology hidden behind the metabolomics data (German et al., 2005a). 

However, the scale and coverage of metabolomics is in no comparison to the 

other ‘omics’. The exact number of metabolites in human metabolome is still a matter of 

debate and numbers ranging from a few thousand to tens of thousands of have been 

proposed (Kaddurah-Daouk et al., 2008). Up till now, it has remained impossible to 

measure the whole metabolome using one single analytic method. Researchers have had 

to carefully choose appropriate technologies based on their desired results from the 

metabolome. New fields, such as lipidomics, have come into existence to study the 

subgroup instead of the whole metabolome (Shevchenko and Simons, 2010; Wenk, 

2005). One of the major reasons behind this limitation is the chemical complexity and the 

concentration range in the whole metabolome. In contrast, the building blocks for 

genome, transcriptome and proteome are relatively limited. There are four to five 
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nucleotides and approximately 20 primary amino acids and several of their derivatives 

(e.g. methylated nucleotides, phosphorylated proteins), which do not exist in 

metabolome. Moreover, the range of the metabolite concentrations varied dramatically 

(e.g. from pM to mM) and there is no available instrument that can cover such a range 

without differential dilution (Brown et al., 2005). 

1.1.3 Techniques used in metabolite concentration measurements 

Two analytic methods, namely nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) are most widely used in metabolomics studies for different analytical 

approaches including profiling-, non-targeted-, and targeted- metabolomics. These 

approaches have been developed to meet the distinct requirements for different study 

aims (Psychogios et al., 2011).  

NMR can detect a wide range of biochemical metabolites and is considered to be 

robust and reproducible (Mayr, 2008). However, the NMR technology suffers from low 

sensitivity (on the order of 10 μmol/L) and high initial instrument investments (Spratlin 

et al., 2009). MS-based methods were used in the metabolomics measurements 

represented in this thesis as such platform is available in the Helmholtz Centre Munich. 

The mass to charge ratio (m/z) is a dimensionless value used in mass 

spectrometric experiments, and is formed by dividing the mass number of an ion by its 

charge number. The quantity measured by MS is the mass-to-charge ratio of ions formed 
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from molecules, usually separated by chromatography because the power of this 

technology depends on separation along with detection. The MS technology is highly 

sensitive, typically at the pictogram level, which makes the detection of metabolites with 

low concentration possible (Spratlin et al., 2009). The current applications of 

metabolomics have two major platforms: gas chromatography MS (GC-MS) and liquid 

chromatography MS (LC-MS). GC-MS is more suitable when it comes to measuring the 

non-polar metabolites with lower molecular weight whilst LC-MS is preferred to 

measure those polar ones with higher molecular weight (Artati et al., 2012). In the 

metabolomic analysis we presented in this thesis (Mittelstrass et al., 2011; Wang-Sattler 

et al., 2012; Yu et al., 2011), targeted metabolite profiling using electrospray ionization 

(ESI) tandem mass spectrometry (MS/MS) was also performed. The details of the 

platform will be provided in the third section of Chapter 2. 

1.2 Epidemiology studies 

Epidemiology is the study of the distributions and determinants of health-related 

states or events (including diseases), and the application of this study to the control of 

diseases and to help improve other health-related problems (Susser, 1973). 

1.2.1 Study type in epidemiology 

To investigate the questions of disease development and other health-related 

problems, it is crucial to choose the appropriate study design. Epidemiological studies 
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can be classified as either observational or experimental based on whether the 

investigator intervenes. In this thesis, analytical observational studies were used. 

The three most common types of observational study are, the cross-sectional 

study, the case-control study, and the cohort study. In a cross-sectional study, the 

measurement of the exposure and effect are conducted at the same time. It is relatively 

easy and inexpensive to conduct, although it is difficult to assess the reasons, if any, for 

the associations. In a case-control study, people with a disease (or other outcome 

variable) of interest are recruited, along with a suitable control group.  The aim is to 

investigate the causes behind the diseases, and particularly rare diseases. Cohort studies 

begin with a group of people who are free of disease or who are classified into 

subgroups according to certain exposures. Cohort studies provide the best information 

about the causation of disease and the most direct measurement of the risk of 

developing disease (Beaglehole et al., 2006). As a variation of the case-control study, the 

nested case-control study uses only a subset of controls which are selected for each case 

from that case’s risk set from the cohort and compared to cases. 

The studies involved in this thesis are one cohort study, one nested case-control 

study and population based cross-sectional studies. 
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1.2.2 Confounders 

The disease status and health parameters investigated in epidemiology studies 

are generally referred to as phenotypes. Risk factors (i.e. factors which can potentially 

change the phenotype status) are referred to as either environmental / genetic / 

physiological (age, sex) factors, or as covariates. It should be noted that all non-genetic 

factors, including e.g. environmental exposures such as fine dust particles, but also life-

style parameters like smoking and age, are generally termed environmental or 

physiological factors. Association analysis quantifies the relation between phenotype 

and environmental and/or genetic factors through statistical analysis (e.g. regression). 

Estimated effect sizes describe the relative change in the phenotype due to different 

covariate values. In association analysis, it is common that a third parameter (i.e. risk 

factor) correlates with both the phenotype and the environmental factor. Such a 

parameter is referred to as a confounding factor or confounding variable and must be 

accounted for in the association analysis to evaluate the real effect of the factor of 

interest.  

1.3 Statistical and bioinformatical analysis 

During the development of ‘omics’ studies, statistics as well as bioinformatics, 

have become an important tool both in finding effective signals among huge amount of 

data and in collecting and integrating information from different sources either for 
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public use or for the purpose of a specific study. These techniques essentially refer to the 

science of managing and analyzing biological data using advanced computing 

techniques (German et al., 2005b). 

The nature of the data acquired in the metabolomics studies is similar to those in 

other ‘omics’ studies: high in dimension with a relatively small number of observations. 

The major goal in metabolomics studies related to life science research is to identify 

biomarkers and to understand the mechanistic basis for biological difference (e.g. 

healthy vs. diseased). The machine learning methods which have been applied for years 

are suitable for this purpose with such data property. Both unsupervised (e.g. principle 

component analysis (PCA), clustering) and supervised methods (e.g. random forest, 

partial least square (PLS)) can be used to find the features, which are crucial to the 

phenotypes (e.g. the development of the disease) but which have been buried under the 

huge amount of data. 

1.4 Metabolomic variations in complex phenotypes 

Although the measurements of the metabolome are not as mature as in the other 

‘omics’, valuable information is generated from metabolomics. Many studies have 

investigated the associations between metabolic variations and different disease such as 

metabolic diseases, cancer, and infectious diseases (Spratlin et al., 2009; Vinayavekhin et 

al., 2010). However, many studies have also shown that complex phenotypes, including 
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environmental factors such as cigarette smoking (Wang-Sattler et al., 2008), fasting status 

(Rubio-Aliaga et al., 2011), age (Yu et al., 2012), sex (Mittelstrass et al., 2011), body mass 

index (BMI) (Jourdan et al., 2012), and physical activity/challenges (Krug et al., 2012) 

could all produce influential metabolite concentration levels in the human body. 

Moreover, different sample matrices could also affect the final readout of the metabolite 

concentrations (Yu et al., 2011). In order to find the real metabolic perturbations related 

with disease etiology, specific consideration must be given to those features that can also 

contribute to the metabolic variations. In the following chapters we will present our 

studies on two sources of these variations, namely the sample matrix and the sex effect 

on the metabolite concentration variations. 

1.4.1 Metabolomic variations in plasma and serum 

One source of the metabolic variations is rooted in the different collection 

procedurals of human blood. Human plasma and serum are most commonly used in 

biomedical experiments and clinical tests. However, different matrices usually produce 

different results in tests (Beheshti et al., 1994) and thus are preferred under different 

circumstances. For example, heparin confounds some cardiac troponin I assay and thus 

serum is preferred for the measurement of cardiac troponins I and T (Gerhardt et al., 

2000; Jaffe et al., 2000), whereas plasma is favored in oral glucose tolerance tests for type 

2 diabetes proposed in the diagnosis guideline (Sacks et al., 2002). As reviewed by 
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Mannello (Mannello, 2008), the use of an incorrect matrix can lead to an improper 

diagnosis. 

Blood is composed of two parts: a cellular component consisting of red and 

white blood cells and platelets, and a liquid carrier, known as plasma or serum. The 

major difference between plasma and serum depends on whether an anti-coagulate 

agent is introduced during the blood collection procedure. The coagulation cascade is 

blocked in plasma and only centrifugation is required to remove or decant the most 

buoyant (non-cellular) portion. In contrast, with regards to serum, the coagulation is 

started through a series of interconnected self-amplifying, zymogen-enzyme 

conversions that penultimately produce thrombin. In the final step of the coagulation 

cascade, FIIa hydrolyses fibrinogen into fibrin units which oligomerize into a fine mesh, 

which in turn, cases blood to gel or clot (Vogler and Siedlecki, 2009). During the clotting 

process, platelets can release proteins (e.g. pro-inflammatory cytokines (Schnabel et al., 

2009)) as well as metabolites (e.g. sphingosine-1-phosphate (Yatomi et al., 1997)) into the 

serum. Both plasma and serum are aqueous solutions (approximately 95% water) and 

contain a variety of substances including proteins and peptides (such as albumins, 

globulins, lipoproteins, enzymes and hormones), nutrients (such as carbohydrates, lipids 

and amino acids), electrolytes, organic wastes and a variety of other small organic 

molecules suspended or dissolved in them (Psychogios et al., 2011). Several studies have 
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already examined the potential proteomic differences caused by different blood 

collecting procedures (Barelli et al., 2007; Tammen et al., 2005). Since metabolomics is a 

newly developed discipline compared to the other ‘omics’, there are only a few recent 

studies related to this subject (e.g. comparing different biofluids (Bando et al., 2010) as is 

also the case for studies comparing plasma and serum from animal blood (Ayache et al., 

2006)). Moreover, two studies using small samples of around 15 human participants 

have addressed this issue with conflicting results. Teahan et al. reported minimal 

differences between the two matrices while Liu et al. observed changes ranging from 

0.03 to 18-fold (Liu et al., 2010; Teahan et al., 2006).  

In the third chapter of this thesis, I will present our study (Yu et al., 2011) which 

was performed using a targeted metabolomics study of 163 metabolites to compare 

plasma and serum samples from 377 individuals. The results showed a good 

reproducibility of metabolite concentrations in both plasma and serum, although 

somewhat better in plasma. There was also a clear discrimination between the 

metabolite profiles of plasma and serum. Metabolite concentrations were generally 

higher in serum, yet still highly correlated between the two matrices. Furthermore, 

serum revealed more potential biomarkers than plasma when comparisons were made 

between different phenotypes. 
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1.4.2 Metabolomic variations in sex 

I will also explore a second source of metabolic variation in this thesis, namely 

the effect brought about by sexual dimorphisms. Sex refers to the classification of males 

and females according to their reproductive organs. Historically, the scientific 

community assumed that apart from the reproductive system, differences in cellular or 

molecular levels did not exist or were not relevant (Wizemann and Pardue, 2001). In a 

survey of studies published in 2004 and spanning nine different medical journals found 

that only 37% of participants were women (24% when it comes to drug trials) whilst 

only 13% of studies analyzed data by sex (Kim et al., 2010). Over the past decades, new 

discoveries in basic human biology have made it increasingly apparent that many 

normal physiological functions—and, in many cases, pathological functions—are 

influenced either directly or indirectly by sex-based differences in biology. Gender 

inequalities have been increasingly recognized and different studies showed that there is 

a strong correlation between sex and the incidence, prevalence, age at onset, symptoms 

and severity of a disease, as well as the reaction to drugs (Fairweather and Rose, 2004; 

Mostertz W, 2010).  

With this in mind, it is important to determine for which aspects and to what 

extent gender influences metabolomics. To study the gender effect on metabolomics, I 

report the results (Mittelstrass et al., 2011) in the third chapter with a systematical 
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assessment of the effect from sex on serum metabolites in a large population-based 

cohort (Holle et al., 2005) and with the replication of most of the findings. 

1.5 Identification of type 2 diabetes candidate biomarker 

Metabolic disorders such as type 2 diabetes (T2D) are an obvious choice for this 

application of metabolomics. Indeed, this is because many of the underlying causes of 

these disorders are thought to result from dys-regulation in small molecule metabolism. 

T2D is defined by increased blood glucose levels due to pancreatic beta-cell 

dysfunction and insulin resistance without evidence for specific causes, such as 

autoimmune destruction of pancreatic beta-cells (Krebs et al., 2002; Muoio and 

Newgard, 2008; Stumvoll et al., 2005). Diabetes has reached epidemic proportions and as 

of 2011 had affects more than 360 million individuals worldwide. Moreover, the number 

of people with type 2 diabetes is expected to reach more than 550 million by the year 

2030. 

A state of pre-diabetes (i.e., impaired fasting glucose (IFG) and/or impaired 

glucose tolerance (IGT)) with only slightly elevated blood glucose levels can accompany 

an individual for years before the onset of T2D (McGarry, 2002; Tabák et al., 2012) . The 

development of diabetes in pre-diabetic individuals can be prevented or delayed by 

dietary changes and increased physical activity (Knowler et al., 2002; Tuomilehto et al., 

2001). However, no specific biomarkers that result in an effective prevention have been 



 

 

14

reported. Metabolomics studies allow metabolites involved in disease mechanisms to be 

discovered by monitoring metabolite level changes in predisposed individuals 

compared with healthy ones (Newgard et al., 2009; Pietiläinen et al., 2011; Rhee et al., 

2011; Shaham et al., 2008; Zhao et al., 2010). Altered metabolite levels may serve as 

diagnostic biomarkers and enable preventive actions. Previous cross-sectional 

metabolomics studies of T2D were either based on small sample sizes (Pietiläinen et al., 

2011; Shaham et al., 2008; Wopereis et al., 2009; Zhao et al., 2010) or did not place 

sufficient emphasis on the influence of common risk factors of T2D (Newgard et al., 

2009). Recent work based on prospective nested case–control studies with relatively 

large samples (Rhee et al., 2011; Wang et al., 2011), five branched-chain and aromatic 

amino acids were identified as predictors of T2D (Wang et al., 2011). Here, in the third 

section of Chapter 3, I will present our attempt to (i) reliably identify candidate 

biomarkers of pre-diabetes and (ii) build metabolite–protein networks to understand 

diabetes-related metabolic pathways using various comprehensive large-scale 

approaches with measured metabolite concentration profiles. 
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Chapter 2 Materials and Methods 

2.1 Population based KORA cohort 

KORA (Cooperative Health Research in the Region Augsburg) was used in the 

analysis of this thesis. Written informed consent was obtained from each KORA 

participant. The study was approved by the ethics committee of the Bavarian Medical 

Association. 

KORA is a regional research platform for population-based surveys and 

subsequent follow-up studies in the fields of epidemiology, health economics, and 

health care research. In 1996, KORA was established to continue and expand the 

MONICA (Monitoring of Trends and Determinants of Cardiovascular Disease) project in 

Augsburg. The available pool of study participants allows for cohort, case-control and 

family studies (Holle et al., 2005). 

The individuals of KORA were sampled in a two-stage procedure. In the first 

step, Augsburg and the 16 communities were selected using cluster sampling. In a 

second step, stratified random sampling was performed in each community (MONICA-

Projekt, Region Augsburg, 1986). Four cross-sectional studies, KORA survey 1 (S1) to 

survey 4 (S4) were performed at five-year intervals. Follow-up studies of S3 and S4 were 

conducted in around seven to ten years after each survey.  
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The KORA survey 3 (S3) was conducted in 1994/1995 with a 10 years later 

(2004/2005) follow up (F3) while the KORA survey 4 (S4) was conducted in 1999/2001 

with a 7 years later (2006/2008) follow-up survey (F4).  

In all surveys, baseline information on socio-demographic variables, risk factors 

(smoking, alcohol consumption, physical activity, etc.), medical history and family 

history of chronic diseases, medication use, and more was gathered by trained medical 

staff during an extensive standardized face-to-face interview. In addition, a 

standardized medical examination including blood pressure measurements and 

anthropometric measurements were performed on all the participants (Holle et al., 

2005). 

Three studies in KORA (F3, S4 and F4) were used in the analyses (Mittelstrass et 

al., 2011; Wang-Sattler et al., 2012; Yu et al., 2011) presented in this thesis. Plasma and 

serum samples collected from 377 participants in the KORA F3 were used to elaborate 

the metabolic variation between two different blood matrices. In the study of sex 

dimorphism of metabolomics, serum samples from 3080 KORA F4 individuals were 

used as discovery population and KORA F3 were served as the replication population. 

To find the biomarkers for (pre-) diabetes, 4261 KORA S4 and 3080 KORA F4 

individuals were used as discovery population in both cross-sectional and longitudinal 

manners. 
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2.2 Blood Sample collections 

To measure the metabolite concentrations in human blood, plasma and/or serum 

samples were collected from the KORA participants. The blood was drawn into S-

Monovettes tubes (SARSTEDT AG & Co., Nümbrecht, Germany) in the morning 

between 08:00 and 10:30 after a period of overnight fasting for at least eight hours. 

EDTA plasma were shaken gently and thoroughly for 15 minutes followed by 

centrifugation at 2750 g for 15 minutes at 15°C. Serum tubes were gently inverted twice, 

followed by 30 min resting at room temperature, to obtain complete coagulation. They 

were then centrifuged at 2750 g at 15°C for 10 min. Plasma and serum was filled into 

synthetic straws, which were stored in liquid nitrogen until the metabolic analyses were 

conducted. Plasma and serum samples from KORA F3 participants and serum samples 

from KORA S4 and F4 were used in the analysis. (Jourdan et al., 2012; Mittelstrass et al., 

2011; Wang-Sattler et al., 2012; Yu et al., 2011) 

2.3 Quantification of metabolite concentration profiles 

Two commercially available kits from Biocrates (Biocrates Life Sciences AG, 

Innsbruck, Austria) were used in the metabolomics measurements including the 

AbsoluteIDQTM kit p150 and the AbsoluteIDQTM kit p180. 
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2.3.1 AbsoluteIDQTM kit p150

The AbsoluteIDQTM kit p150 used a targeted metabolite profiling named 

electrospray ionization (ESI) tandem mass spectrometry (MS/MS). This technique has 

been described in detail elsewhere (Weinberger and Graber, 2005; Weinberger, 2008). 

Briefly, the assay preparation was done by an automated robotics system (Hamilton 

Robotics GmbH) on special double-filter plates with 96 wells. These plates also contain 

the isotope labeled non-radioactive internal standards, blank samples (PBS) and quality 

controls. Assays used 10μl serum or plasma samples and include phenylisothiocyanate 

(PITC)-derivatisation of amino acids, extraction with organic solvent and several liquid 

handling steps. Flow injection analysis (FIA) coupled with multiple reaction monitoring 

scans (FIA MS/MS) on an API 4000 QTrap instrument (Applied Biosystems) was used 

for quantification of amino acids, acylcarnitines, sphingomyelins, phosphatidylcholines, 

and hexose. Concentrations were calculated and evaluated in the MetIQ software 

provided by the manufacturer. It compared measured analytes in a defined extracted 

ion count section to those of specific labeled internal standards or nonlabeled, 

nonphysiological standards (semiquantitative) provided by the kit plate. This method 

has been proven to be in conformance with the “Guidance for Industry — Bioanalytical 

Method Validation” published by the FDA (Food and Drug Administration), which 
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implies the proof of reproducibility within a given error range (Altmaier et al., 2011; 

Römisch-Margl et al., 2011).  

Plasma and serum samples from KORA F3, serum samples from KORA F4 were 

measured using this kit for metabolite concentration profiles. 

2.3.2 AbsoluteIDQTM kit p180 

The AbsoluteIDQTM kit p180 is an upgrade of the AbsoluteIDQTM kit p150. It used 

the combination of FIA-MS and LC-MS to detect the metabolite concentrations. 

Metabolite concentrations measured using the AbsoluteIDQTM kit p180  were preceded 

according to the manufacturer’s instructions on an API4000™ LC/MS/MS System 

equipped with an electrospray ionization source. Samples (10 μl) were pipetted onto the 

spots of the kit plate. The plate was centrifuged at 100 g for 2 min, receiving about 250 μl 

sample in plate 1 (FIA plate). The upper plate was removed, and 150 μl of each sample 

was transferred into a second plate (LC-MS plate). HPLC water (150 μl) was added to 

the LC-MS plate, and 500 μl of MS running solvent (Biocrates solvent diluted in 

methanol) was added to the FIA plate. The LC-MS plate was measured first by 

scheduled multiple reaction monitoring, and the FIA plate was stored at 4°C. 

Concentrations were calculated and evaluated in the Analyst/MetIQ software by 

comparing measured analytes in a defined extracted ion count section to those of 
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specific labeled internal standards or nonlabeled, nonphysiological standards 

(semiquantitative) provided by the kit plate. (Schmerler et al., 2012) 

The serum samples from KORA S4 were measured using this kit for metabolite 

concentration profiles. 

2.3.3 Metabolites measured 

In total, up to 190 different metabolites were quantified by these two kits. 

AbsoluteIDQTM kit p150 can measure 163 metabolites, including 14 amino acids (13 

proteinogenic and ornithine), hexose (sum of hexoses, around 90 – 95% glucose), free 

carnitine (C0) and 40 other acylcarnitines (Cx:y), 15 sphingomyelins (SMx:y), 77 

phosphatidylcholines (PCs, diacyl (aa) and acyl-alkyl (ae)) and 15 lyso-

phosphatidylcholines (LPCs). The lipid side chain composition is abbreviated as Cx:y, 

with x denoting the number of carbons in the side chain and y denoting the number of 

double-bonds. The AbsoluteIDQTM kit p180 can measure 186 metabolites, including 21 

amino acids (19 proteinogenic, citrulline and ornithine), hexose, free carnitine, 39 

acylcarnitines, 15 sphingomyelins, 90 phosphatidylcholines (14 LPCs and 76 PCs) as well 

as 19 biogenic amines. The overlap of these two kits is 159 metabolites. Full biochemical 

names and abbreviations are provided in Table 1. 

Table 1: Full biochemical names, abbreviation, all metabolites measured by Biocrates 
AbsoluteIDQTM kits p150 and p180 

Abbrevation Full biochemical name Abbrevation Full biochemical name
C0 Carnitine PC aa C36:0 Phosphatidylcholine diacyl C36:0 
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C2 Acetylcarnitine PC aa C36:1 Phosphatidylcholine diacyl C36:1 
C3 Propionylcarnitine PC aa C36:2 Phosphatidylcholine diacyl C36:2

C3-OH Hydroxypropionylcarnitine PC aa C36:3 Phosphatidylcholine diacyl C36:3 
C3:1 Propenonylcarnitine PC aa C36:4 Phosphatidylcholine diacyl C36:4
C4 Butyrylcarnitine PC aa C36:5 Phosphatidylcholine diacyl C36:5 

C4-OH Hydroxybutyrylcarnitine PC aa C36:6 Phosphatidylcholine diacyl C36:6 
C4:1 Butenylcarnitine PC aa C38:0 Phosphatidylcholine diacyl C38:0
C5 Valerylcarnitine PC aa C38:1 Phosphatidylcholine diacyl C38:1 

C5-DC Glutarylcarnitine PC aa C38:3 Phosphatidylcholine diacyl C38:3
C5-M-DC Methylglutarylcarnitine PC aa C38:4 Phosphatidylcholine diacyl C38:4 

C5-OH  Hydroxyvalerylcarnitine PC aa C38:5 Phosphatidylcholine diacyl C38:5
C5:1 Tiglylcarnitine PC aa C38:6 Phosphatidylcholine diacyl C38:6 

C5:1-DC Glutaconylcarnitine PC aa C40:1 Phosphatidylcholine diacyl C40:1 
C6 Hexanoylcarnitine PC aa C40:2 Phosphatidylcholine diacyl C40:2 

C6:1 Hexenoylcarnitine PC aa C40:3 Phosphatidylcholine diacyl C40:3 
C7-DC Pimelylcarnitine PC aa C40:4 Phosphatidylcholine diacyl C40:4

C8 Octanoylcarnitine PC aa C40:5 Phosphatidylcholine diacyl C40:5 
C8:1 Octenoylcarnitine PC aa C40:6 Phosphatidylcholine diacyl C40:6
C9 Nonaylcarnitine PC aa C42:0 Phosphatidylcholine diacyl C42:0 

C10 Decanoylcarnitine PC aa C42:1 Phosphatidylcholine diacyl C42:1 
C10:1 Decenoylcarnitine PC aa C42:2 Phosphatidylcholine diacyl C42:2 
C10:2 Decadienylcarnitine PC aa C42:4 Phosphatidylcholine diacyl C42:4 
C12 Dodecanoylcarnitine PC aa C42:5 Phosphatidylcholine diacyl C42:5

C12-DC Dodecanedioylcarnitine PC aa C42:6 Phosphatidylcholine diacyl C42:6 
C12:1 Dodecenoylcarnitine PC ae C30:0 Phosphatidylcholine acyl-akyl C30:0
C14 Tetradecanoylcarnitine PC ae C30:1 Phosphatidylcholine acyl-akyl C30:1 

C14:1 Tetradecenoylcarnitine PC ae C30:2 Phosphatidylcholine acyl-akyl C30:2 
C14:1-OH Hydroxytetradecenoylcarnitine PC ae C32:1 Phosphatidylcholine acyl-akyl C32:1 

C14:2 Tetradecadienylcarnitine PC ae C32:2 Phosphatidylcholine acyl-akyl C32:2 
C14:2-OH Hydroxytetradecadienylcarnitine PC ae C34:0 Phosphatidylcholine acyl-akyl C34:0

C16 Hexadecanoylcarnitine PC ae C34:1 Phosphatidylcholine acyl-akyl C34:1 
C16-OH Hydroxyhexadecanoylcarnitine PC ae C34:2 Phosphatidylcholine acyl-akyl C34:2

C16:1 Hexadecenoylcarnitine PC ae C34:3 Phosphatidylcholine acyl-akyl C34:3 
C16:1-OH Hydroxyhexadecenoylcarnitine PC ae C36:0 Phosphatidylcholine acyl-akyl C36:0

C16:2 Hexadecadienylcarnitine PC ae C36:1 Phosphatidylcholine acyl-akyl C36:1 
C16:2-OH Hydroxyhexadecadienylcarnitine PC ae C36:2 Phosphatidylcholine acyl-akyl C36:2 

C18 Octadecanoylcarnitine PC ae C36:3 Phosphatidylcholine acyl-akyl C36:3 
C18:1 Octadecenoylcarnitine PC ae C36:4 Phosphatidylcholine acyl-akyl C36:4 

C18:1-OH Hydroxyoctadecenoylcarnitine PC ae C36:5 Phosphatidylcholine acyl-akyl C36:5
C18:2 Octadecadienylcarnitine PC ae C38:0 Phosphatidylcholine acyl-akyl C38:0 
Ala Alanine PC ae C38:1 Phosphatidylcholine acyl-akyl C38:1
Arg Arginine PC ae C38:2 Phosphatidylcholine acyl-akyl C38:2 
Asn Asparagine PC ae C38:3 Phosphatidylcholine acyl-akyl C38:3 
Asp Aspartate PC ae C38:4 Phosphatidylcholine acyl-akyl C38:4 
Cit Citrulline PC ae C38:5 Phosphatidylcholine acyl-akyl C38:5 
Gln Glutamine PC ae C38:6 Phosphatidylcholine acyl-akyl C38:6
Glu Glutamate PC ae C40:0 Phosphatidylcholine acyl-akyl C40:0 
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Gly Glycine PC ae C40:1 Phosphatidylcholine acyl-akyl C40:1 
His Histidine PC ae C40:2 Phosphatidylcholine acyl-akyl C40:2
Ile Isoleucine PC ae C40:3 Phosphatidylcholine acyl-akyl C40:3 

Leu Leucine PC ae C40:4 Phosphatidylcholine acyl-akyl C40:4
Lys Lysine PC ae C40:5 Phosphatidylcholine acyl-akyl C40:5 
Met Methionine PC ae C40:6 Phosphatidylcholine acyl-akyl C40:6 
Orn Ornithine PC ae C42:0 Phosphatidylcholine acyl-akyl C42:0
Phe Phenylalanine PC ae C42:1 Phosphatidylcholine acyl-akyl C42:1 
Pro Proline PC ae C42:2 Phosphatidylcholine acyl-akyl C42:2
Ser Serine PC ae C42:3 Phosphatidylcholine acyl-akyl C42:3 
Thr Threonine PC ae C42:4 Phosphatidylcholine acyl-akyl C42:4
Trp Tryptophan PC ae C42:5 Phosphatidylcholine acyl-akyl C42:5 
Tyr Tyrosine PC ae C44:3 Phosphatidylcholine acyl-akyl C44:3 
Val Valine PC ae C44:4 Phosphatidylcholine acyl-akyl C44:4 

xLeu Leucine/Isoleucine PC ae C44:5 Phosphatidylcholine acyl-akyl C44:5 
Ac Orn Acetylornithine PC ae C44:6 Phosphatidylcholine acyl-akyl C44:6
ADMA Asymmetric dimethylarginine LPC a C14:0 lysoPhosphatidylcholine acyl C14:0 
SDMA Symmetric Dimethylarginine LPC a C16:0 lysoPhosphatidylcholine acyl C16:0

total DMA Sum of ADMA and SDMA LPC a C16:1 lysoPhosphatidylcholine acyl C16:1 
alpha AAA alpha-Aminoadipic acid LPC a C17:0 lysoPhosphatidylcholine acyl C17:0 
Carnosine Carnosine LPC a C18:0 lysoPhosphatidylcholine acyl C18:0 
Creatinine Creatinine LPC a C18:1 lysoPhosphatidylcholine acyl C18:1 
Histamine Histamine LPC a C18:2 lysoPhosphatidylcholine acyl C18:2

Kynurenine Kynurenine LPC a C6:0 lysoPhosphatidylcholine acyl C6:0 
Met SO Methioninesulfoxide LPC a C20:3 lysoPhosphatidylcholine acyl C20:3

Nitro-Tyr Nitrotyrosine LPC a C20:4 lysoPhosphatidylcholine acyl C20:4 
OH-Pro Hydroxyproline LPC a C24:0 lysoPhosphatidylcholine acyl C24:0 

PEA Phenylethylamine LPC a C26:0 lysoPhosphatidylcholine acyl C26:0 
Putrescine Putrescine LPC a C26:1 lysoPhosphatidylcholine acyl C26:1 
Sarcosine Sarcosine LPC a C28:0 lysoPhosphatidylcholine acyl C28:0
Serotonin Serotonin LPC a C28:1 lysoPhosphatidylcholine acyl C28:1 

Spermidine Spermidine SM C16:0 Sphingomyeline C16:0
Spermine Spermine SM C16:1 Sphingomyeline C16:1 
Taurine Taurine SM C18:0 Sphingomyeline C18:0

PC aa C24:0 Phosphatidylcholine diacyl C24:0 SM C18:1 Sphingomyeline C18:1 
PC aa C26:0 Phosphatidylcholine diacyl C26:0 SM C20:2 Sphingomyeline C20:2 
PC aa C28:1 Phosphatidylcholine diacyl C28:1 SM C22:3 Sphingomyeline C22:3 
PC aa C30:0 Phosphatidylcholine diacyl C30:0 SM C24:0 Sphingomyeline C24:0 
PC aa C30:2 Phosphatidylcholine diacyl C30:2 SM C24:1 Sphingomyeline C24:1
PC aa C32:0 Phosphatidylcholine diacyl C32:0 SM C26:0 Sphingomyeline C26:0 # 

PC aa C32:1 Phosphatidylcholine diacyl C32:1 SM C26:1 Sphingomyeline C26:1
PC aa C32:2 Phosphatidylcholine diacyl C32:2 SM (OH) C14:1 Hydroxysphingomyeline C14:1 
PC aa C32:3 Phosphatidylcholine diacyl C32:3 SM (OH) C16:1 Hydroxysphingomyeline C16:1 
PC aa C34:1 Phosphatidylcholine diacyl C34:1 SM (OH) C22:1 Hydroxysphingomyeline C22:1 
PC aa C34:2 Phosphatidylcholine diacyl C34:2 SM (OH) C22:2 Hydroxysphingomyeline C22:2 
PC aa C34:3 Phosphatidylcholine diacyl C34:3 SM (OH) C24:1 Hydroxysphingomyeline C24:1
PC aa C34:4 Phosphatidylcholine diacyl C34:4 H1 Hexose 
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2.3.4 Quality controls for metabolomic measurements 

2.3.4.1 KORA F3 

The plasma and serum samples measured using Biocrates p150 kit had 83 

individuals with duplicated measurements (for both plasma and serum). We therefore 

used the following criteria for data quality control: a metabolite is used in further 

analysis only if (I) the average value of the coefficient of variance (CV) of the three 

quality control samples (representing human plasma samples provided by the 

manufacturer in each kit plate) was smaller than 0.25; (II) the mean concentration of the 

metabolite over all samples was above 0.1 μM or over 90% of the samples have their 

metabolite concentration above the limit of detection (LOD). The LODs were set to three 

times the values of zero samples; (III) the Pearson’s correlation coefficient (r) between 

the two repeated measurements of the 83 samples in either specimen exceeded 0.5. 

Altogether, 25 quantified and 97 semi-quantified metabolites passed all three criteria 

(Table 2). 
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2.3.4.2 KORA S4 

For each kit plate, five references (human plasma pooled material, Seralab) and 

three zero samples (PBS) were measured in addition to the KORA samples. To ensure 

data quality, each metabolite had to meet the following two criteria: (1) the coefficient of 

variance (CV) for the metabolite in the total 110 reference samples should be smaller 

than 25%. In total, seven outliers were removed because their concentrations were larger 

than the mean plus 5s.d.; (2) 50% of all measured sample concentrations for the 

metabolite should be above the limit of detection (LOD), which is defined as 3 times 

median of the three zero samples. In total, 140 metabolites passed the quality controls 

(Table 3): one hexose (H1), 21 acylcarnitines, 21 amino acids, 8 biogenic amines, 13 SMs, 

33 diacyl (aa) PCs , 35 acyl-alkyl (ae) PCs and 8 LPCs. Concentrations of all analyzed 

metabolites are reported in mM. 

Table 3: Characteristics of the 188 targeted metabolites in KORA S4 measured by 
AbsoluteIDQTM kit p180 and the 163 metabolites in KORA F4 measured by 
AbsoluteIDQTM kit p150 

 KORA S4 KORA F4 

Abbreviation CV (%) % > LOD Application r % > LOD CV Application 

C0 5.8 99.63 Used 0.88 100.00 6.7% Used 
C2 6.3 99.63 Used 0.94 100.00 9.4% Used
C3 10.0 99.63 Used 0.86 100.00 8.0% Used 

C3:1 32.8 3.72 Excluded 0.05 0.36 76.6% Excluded
C3-OH 44.7 2.85 Excluded -0.11 0.10 37.5% Excluded 

C4 9.7 99.63 Used 0.89 100.00 8.8% Used 
C4:1 22.2 46.25 Excluded 0.04 5.65 34.7% Excluded

C4-OH (C3-DC) 21.1 18.95 Excluded 0.47 8.40 35.5% Excluded 
C5 10.8 98.70 Used 0.81 95.56 14.2% Used

C5:1 22.9 1.80 Excluded 0.37 0.75 26.1% Excluded 
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C5:1-DC 40.0 24.83 Excluded 0.13 12.48 42.4% Excluded 
C5-DC (C6-OH) 29.4 61.36 Excluded 0.15 27.06 21.0% Excluded

C5-M-DC 28.0 2.48 Excluded 0.18 0.95 42.9% Excluded 
C5-OH (C3-DC-

M) 
26.9 19.69 Excluded 0.25 55.10 28.7% Excluded 

C6(C4:1-DC) 21.8 65.33 Used 0.85 76.67 13.6% Used 
C6:1 30.7 5.20 Excluded 0.07 0.33 32.4% Excluded

C7-DC 18.4 70.53 Used 0.79 61.34 34.4% Excluded 
C8 13.2 60.62 Used 0.89 51.54 16.3% Used

C8:1    0.92 96.01 8.4% Used 
C9 23.6 97.28 Used 0.84 83.73 20.8% Used
C10 11.7 99.07 Used 0.93 94.08 11.4% Used 

C10:1 11.2 74.80 Used 0.83 48.66 10.4% Used 
C10:2 16.0 94.86 Used 0.51 50.49 14.5% Used 
C12 12.2 96.41 Used 0.86 87.35 10.4% Used 

C12:1 15.2 26.75 Excluded 0.73 13.69 13.0% Used
C12-DC 12.3 0.00 Excluded 0.05 0.00 12.2% Excluded 

C14 15.8 96.66 Used 0.54 51.67 12.6% Used
C14:1 11.4 99.63 Used 0.81 100.00 16.9% Used 

C14:1-OH 28.9 74.92 Excluded 0.70 67.35 16.4% Used 
C14:2 18.3 98.33 Used 0.87 98.82 11.6% Used 

C14:2-OH 35.1 47.00 Excluded 0.27 38.04 17.4% Excluded 
C16 11.3 99.63 Used 0.84 100.00 8.9% Used

C16:1 18.1 77.83 Used 0.71 2.78 10.2% Used 
C16:1-OH 26.5 26.01 Excluded 0.38 2.25 17.5% Excluded

C16:2 34.0 87.49 Excluded 0.57 70.69 19.4% Used 
C16:2-OH 30.1 5.76 Excluded 0.32 4.67 16.6% Excluded 
C16-OH 33.0 16.28 Excluded 0.20 3.33 24.1% Excluded 

C18 15.7 99.63 Used 0.69 99.80 13.7% Used 
C18:1 9.7 99.57 Used 0.87 98.33 10.2% Used

C18:1-OH 44.6 7.37 Excluded 0.06 0.95 33.4% Excluded 
C18:2 10.5 99.57 Used 0.81 100.00 9.4% Used
Ala 13.7 99.50 Used     
Arg 13.2 99.26 Used 0.59 100.00 8.2% Used
Asn 11.1 99.57 Used     
Asp 12.2 99.44 Used     
Cit 12.7 99.44 Used     
Gln 12.8 99.57 Used 0.62 100.00 9.9% Used 
Glu 15.8 99.57 Used  
Gly 13.2 99.50 Used 0.89 100.00 7.9% Used 
His 12.9 99.38 Used 0.69 100.00 8.3% Used
Ile 13.9 99.63 Used     

Leu 12.9 98.58 Used     
xLeu    0.74 100.00 8.2% Used 
Lys 15.5 99.69 Used     
Met 13.5 99.69 Used 0.53 100.00 9.7% Used
Orn 14.9 99.63 Used 0.75 100.00 9.4% Used 
Phe 12.2 99.57 Used 0.62 100.00 8.4% Used
Pro 11.8 99.63 Used 0.89 100.00 7.4% Used 
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Ser 13.6 99.44 Used 0.62 100.00 9.6% Used 
Thr 18.3 99.13 Used 0.71 100.00 12.1% Used
Trp 12.9 99.63 Used 0.51 100.00 7.5% Used 
Tyr 14.7 99.57 Used 0.66 100.00 8.6% Used
Val 13.5 99.63 Used 0.69 100.00 19.6% Used 

Ac-Orn 20.8 79.07 Used     
ADMA 17.4 66.50 Used  
SDMA 32.4 97.34 Excluded     

total-DMA 20.3 99.20 Used  
alpha-AAA 32.0 97.34 Excluded     
Carnosine 89.8 4.02 Excluded  
Creatinine 14.7 99.38 Used     
Histamine 43.5 89.97 Excluded     

Kynurenine 11.3 97.28 Used     
Met-SO 20.9 96.66 Used     

Nitro-Tyr 58.4 7.55 Excluded  
OH-Pro NA 2.11 Excluded     

PEA NA 0.56 Excluded  
Putrescine 53.2 93.75 Excluded     
Sarcosine 28.7 4.40 Excluded     
Serotonin 38.0 99.32 Excluded     

Spermidine 24.1 98.51 Used     
Spermine 8.5 9.29 Excluded  
Taurine 13.7 96.90 Used     
DOPA 19.5 44.58 Excluded  

Dopamine NA 0.06 Excluded     
LPC a C14:0 6.8 0.00 Excluded 0.45 21.24 23.8% Excluded 
LPC a C16:0 6.9 99.81 Used 0.75 100.00 8.8% Used 
LPC a C16:1 7.0 99.69 Used 0.84 100.00 8.6% Used 
LPC a C17:0 7.3 99.63 Used 0.84 100.00 12.7% Used
LPC a C18:0 7.2 99.81 Used 0.80 100.00 9.7% Used 
LPC a C18:1 6.8 99.75 Used 0.84 100.00 9.2% Used
LPC a C18:2 6.9 99.75 Used 0.93 100.00 8.8% Used 
LPC a C20:3 8.8 99.63 Used 0.77 100.00 9.0% Used
LPC a C20:4 7.3 99.69 Used 0.87 100.00 9.0% Used 
LPC a C24:0 32.0 23.22 Excluded 0.09 12.45 21.1% Excluded 
LPC a C26:0 44.4 43.72 Excluded 0.09 59.58 31.0% Excluded 
LPC a C26:1 9.5 0.00 Excluded -0.04 0.00 7.9% Excluded 
LPC a C28:0 37.0 23.47 Excluded 0.17 49.61 29.1% Excluded
LPC a C28:1 35.5 98.64 Excluded 0.29 99.84 22.6% Excluded 
LPC a C6:0  -0.14 33.33 62.5% Excluded
PC aa C24:0 45.9 69.35 Excluded 0.11 72.55 26.5% Excluded 
PC aa C26:0 27.2 5.63 Excluded 0.09 11.54 32.9% Excluded 
PC aa C28:1 9.5 99.63 Used 0.87 100.00 9.8% Used 
PC aa C30:0 9.4 99.63 Used 0.89 100.00 7.8% Used 
PC aa C30:2 89.9 31.33 Excluded 0.12 4.22 81.6% Excluded
PC aa C32:0 8.4 99.81 Used 0.83 100.00 7.1% Used 
PC aa C32:1 9.2 99.81 Used 0.96 100.00 7.4% Used
PC aa C32:2 12.3 99.81 Used 0.91 99.93 11.1% Used 
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PC aa C32:3 9.2 99.75 Used 0.79 100.00 8.9% Used 
PC aa C34:1 7.1 99.88 Used 0.83 100.00 7.2% Used
PC aa C34:2 7.0 99.88 Used 0.75 100.00 7.7% Used 
PC aa C34:3 6.3 99.88 Used 0.91 100.00 8.6% Used
PC aa C34:4 6.8 99.81 Used 0.92 100.00 8.0% Used 
PC aa C36:0 11.6 99.63 Used 0.74 100.00 17.4% Used 
PC aa C36:1 6.9 99.88 Used 0.84 100.00 8.5% Used
PC aa C36:2 6.6 99.88 Used 0.80 100.00 6.7% Used 
PC aa C36:3 6.5 99.88 Used 0.86 100.00 7.5% Used
PC aa C36:4 6.3 99.94 Used 0.87 100.00 7.8% Used 
PC aa C36:5 6.7 99.81 Used 0.82 100.00 8.6% Used
PC aa C36:6 9.5 99.75 Used 0.89 100.00 11.1% Used 
PC aa C38:0 8.8 99.63 Used 0.86 100.00 13.8% Used 
PC aa C38:1 27.0 99.75 Excluded 0.34 99.84 18.1% Excluded 
PC aa C38:3 6.9 99.88 Used 0.86 100.00 7.6% Used 
PC aa C38:4 5.7 99.88 Used 0.88 100.00 7.3% Used
PC aa C38:5 5.6 99.88 Used 0.83 100.00 7.9% Used 
PC aa C38:6 6.9 100.00 Used 0.93 100.00 8.1% Used
PC ae C40:0    0.87 1.05 4.8% Used 
PC aa C40:1 11.7 14.24 Excluded 0.51 8.66 13.5% Used 
PC aa C40:2 14.9 99.63 Used 0.51 100.00 11.7% Used 
PC aa C40:3 13.9 99.75 Used 0.60 100.00 11.2% Used 
PC aa C40:4 6.8 99.81 Used 0.86 100.00 7.6% Used
PC aa C40:5 6.5 99.75 Used 0.89 100.00 7.0% Used 
PC aa C40:6 6.1 99.63 Used 0.93 100.00 7.1% Used
PC aa C42:0 9.2 99.88 Used 0.85 99.97 12.3% Used 
PC aa C42:1 12.0 99.69 Used 0.72 100.00 14.8% Used 
PC aa C42:2 13.5 99.69 Used 0.56 100.00 14.6% Used 
PC aa C42:4 11.0 99.81 Used 0.51 100.00 11.7% Used 
PC aa C42:5 11.3 99.69 Used 0.75 100.00 10.6% Used
PC aa C42:6 10.7 95.42 Used 0.62 60.16 12.5% Used 
PC ae C30:0 19.7 99.57 Used 0.76 98.86 18.1% Used
PC ae C30:1 77.9 82.35 Excluded 0.18 94.12 41.7% Excluded 
PC ae C30:2 25.2 99.57 Excluded 0.65 86.34 17.5% Used
PC ae C32:1 9.3 99.81 Used 0.83 100.00 8.0% Used 
PC ae C32:2 12.2 99.63 Used 0.77 100.00 11.6% Used 
PC ae C34:0 9.6 99.81 Used 0.82 100.00 7.9% Used 
PC ae C34:1 7.4 99.81 Used 0.87 100.00 7.6% Used 
PC ae C34:2 7.2 99.88 Used 0.90 100.00 7.6% Used
PC ae C34:3 6.9 99.88 Used 0.91 100.00 7.9% Used 
PC ae C36:0 22.7 99.63 Used 0.35 100.00 35.6% Excluded
PC ae C36:1 7.9 99.75 Used 0.85 100.00 9.8% Used 
PC ae C36:2 7.0 99.88 Used 0.92 100.00 8.3% Used 
PC ae C36:3 7.1 99.88 Used 0.86 100.00 8.1% Used 
PC ae C36:4 6.3 99.88 Used 0.87 100.00 7.9% Used 
PC ae C36:5 6.1 99.81 Used 0.89 100.00 8.0% Used
PC ae C38:0 8.1 99.63 Used 0.81 100.00 10.8% Used 
PC ae C38:1 14.7 99.50 Used 0.48 100.00 12.4% Used
PC ae C38:2 11.7 99.75 Used 0.73 100.00 10.3% Used 
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PC ae C38:3 7.0 99.94 Used 0.85 100.00 9.2% Used 
PC ae C38:4 6.1 100.00 Used 0.82 100.00 8.6% Used
PC ae C38:5 5.9 100.00 Used 0.82 100.00 8.3% Used 
PC ae C38:6 6.5 99.88 Used 0.85 100.00 8.1% Used
PC ae C40:1 11.1 99.63 Used 0.68 100.00 10.5% Used 
PC ae C40:2 8.3 99.88 Used 0.85 100.00 9.5% Used 
PC ae C40:3 9.0 99.94 Used 0.73 100.00 9.5% Used
PC ae C40:4 8.7 99.63 Used 0.82 100.00 9.6% Used 
PC ae C40:5 6.5 99.88 Used 0.78 100.00 8.3% Used
PC ae C40:6 6.9 99.94 Used 0.88 100.00 8.6% Used 
PC ae C42:0 13.8 36.35 Excluded 0.60 14.87 15.7% Used
PC ae C42:1 16.0 99.57 Used 0.51 100.00 11.5% Used 
PC ae C42:2 11.5 99.69 Used 0.69 100.00 12.8% Used 
PC ae C42:3 9.8 99.88 Used 0.80 100.00 10.8% Used 
PC ae C42:4 7.8 99.63 Used 0.78 100.00 9.2% Used 
PC ae C42:5 7.4 99.57 Used 0.86 99.97 7.4% Used
PC ae C44:3 24.3 99.69 Used 0.50 100.00 12.5% Used 
PC ae C44:4 12.1 99.69 Used 0.71 100.00 11.4% Used
PC ae C44:5 7.4 99.69 Used 0.86 100.00 8.0% Used 
PC ae C44:6 7.8 99.63 Used 0.89 100.00 7.7% Used 

SM (OH) C14:1 11.0 99.63 Used 0.91 100.00 7.7% Used 
SM (OH) C16:1 11.0 100.00 Used 0.86 100.00 8.8% Used 
SM (OH) C22:1 11.2 99.88 Used 0.82 100.00 11.2% Used
SM (OH) C22:2 11.2 99.88 Used 0.87 100.00 10.3% Used 
SM (OH) C24:1 15.1 99.75 Used 0.75 100.00 15.1% Used

SM C16:0 10.6 99.88 Used 0.73 100.00 8.0% Used 
SM C16:1 9.9 99.88 Used 0.84 100.00 7.5% Used 
SM C18:0 9.8 99.81 Used 0.79 100.00 9.0% Used 
SM C18:1 9.4 99.88 Used 0.84 100.00 8.2% Used 
SM C20:2 16.2 99.81 Used 0.61 99.93 12.6% Used
SM C22:3 NA 0.37 Excluded -0.04 55.85 57.6% Excluded 
SM C24:0 11.9 99.75 Used 0.78 100.00 10.7% Used
SM C24:1 12.1 99.88 Used 0.75 100.00 10.0% Used 
SM C26:0 31.8 99.81 Excluded 0.46 100.00 67.8% Excluded
SM C26:1 21.2 99.75 Used 0.69 100.00 20.8% Used 

H1 5.2 99.81 Used 0.69 100.00 6.3% Used 
 

2.3.4.3 KORA F4 

To ensure data quality, metabolites had to meet three criteria: (1) average value 

of coefficient of variance (CV) of the three QCs should be smaller than 25%. (2) 90% of all 

measured sample concentrations should be above the limit of detection (LOD). (3) 
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Correlation coefficients between two duplicated measurements of 144 re-measured 

samples should be above 0.5 (Table 3). In total, 131 metabolites passed the three quality 

controls. 

2.4 Gene expression profiling 

Peripheral blood was drawn under fasting conditions from 599 KORA S4 

individuals at the same time as the serum samples used for metabolic profiling were 

prepared. Blood samples were collected directly in PAXgene (TM) Blood RNA tubes 

(PreAnalytiX). The RNA extraction was performed using the PAXgene Blood miRNA kit 

(PreAnalytiX). Purity and integrity of RNA was assessed on the Bioanalyzer (Agilent) 

with the 6000 Nano LabChip reagent set (Agilent). In all, 500 ng of RNA was reverse-

transcribed into cRNA and biotin-UTP labeled, using the Illumina TotalPrep-96 RNA 

Amplification Kit (Ambion). In all, 3000 ng of cRNA was hybridized to the Illumina 

HumanHT-12 v3 Expression BeadChip. Chips were washed, detected and scanned 

according to manufacturer’s instructions. Raw data were exported from the Illumina 

‘GenomeStudio’ Software to R. The data were converted into logarithmic scores and 

normalized using the quantile method (Bolstad et al., 2003). The sample sets comprised 

383 individuals with NGT, 104 with IGT and 26 with dT2D. The known T2D individuals 

were removed as had been done for the metabolomics analysis. 
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2.5 Statistical analysis 

All statistical calculations were performed under the R statistical environment 

(http://www.r-project.org/). 

2.5.1 Delta (difference in metabolite concentration means for males 
and females).  

For comparison of metabolite concentrations between males and females we 

used the delta ( ), as it describes the difference in concentration means for males and 

females for a specific metabolite relative to the mean metabolite concentration in males. 

Therefore the difference of mean metabolite concentration in males and mean metabolite 

concentration in females is calculated and then divided by the mean metabolite 

concentration in males. For example, a value of  = 50% means that the mean metabolite 

concentration in females is 50% lower than that in males. 

2.5.2 Correlations 

A correlation exists between two variables when one of them is related to the 

other. Pearson’s (product moment) correlation coefficient (r) measures the strength of 

the linear relationship between the paired x- and y-quantitative values in a sample 

(Triola et al., 2006). Its value is computed as: 

 

Where n is the number of pairs of data present. 
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In order to investigate how strong the different metabolites correlate with each 

other and the sex-specific effects propagate through the underlying metabolic network, 

we calculated full-order partial correlation coefficients between all pairs of metabolites. 

The resulting partial correlation networks are commonly referred to as Gaussian 

graphical models (GGMs), which we have previously demonstrated to be useful for the 

analysis of direct metabolite-metabolite effects in the same population cohort (Krumsiek 

et al., 2011).  

2.5.3 Regression 

2.5.3.1 Linear regression 

Metabolite concentration differences between males and females were 

investigated by linear regression analysis. The basic model contains the log-transformed 

metabolite as dependent variable and sex as explanatory variable with both age and BMI 

as covariates. To correct for multiple testing, the Bonferroni-correction was applied. The 

P-value cutoff for significance was set at 0.05/131 = 3.84E-4. In the replication, we also 

applied Bonferroni-correction.  

Moreover, we also analyzed the influence of anthropometric phenotypes, 

diseases and environmental factors by including different covariates to the linear 

regression and comparison of the structure of the results. Four models which differed in 

the use of one or more additional covariates were performed. The covariates in each 

model beside age are waist hip ratio (WHR), lipid parameters (HDL and LDL 
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cholesterol, triglycerides), T2D, alcohol consumption and smoking. Furthermore, a 

meta-analysis of the discovery and the replication sample with a fixed effect model was 

analyzed to reveal the sex-specific effects of metabolite concentrations. 

Associations between metabolite concentrations and 2-h glucose value were also 

explored by linear regression.  estimates were calculated from the regression analyses. 

The concentration of each metabolite was log-transformed and normalized to have a 

mean of zero and a standard deviation (s.d.) of one. Various risk factors in the linear 

regression were added as covariates, and the same significance level 3.6E-4 was 

adopted. 

2.5.3.2 Logistic regression 

Logistic regression was used to identify metabolites showed significantly 

different concentrations between groups when we look for early biomarkers of T2D. 

Odds ratios (ORs) for single metabolites were calculated between two groups. The 

concentration of each metabolite was scaled to have a mean of zero and an s.d. of one; 

thus, all reported OR values correspond to the change per s.d. of metabolite 

concentration. Various T2D risk factors were added to the logistic regression analysis as 

covariates. To handle false discovery from multiple comparisons, the cutoff point for 

significance was calculated according to the Bonferroni correction, at a level of 3.6E-4 

(for a total use of 140 metabolites at the 5% level). Because the metabolites were 

correlated within well-defined biological groups (e.g., 8 LPCs, 33 diacyl PCs, 35 acyl-
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alkyl PCs and 13 SMs), this correction was considered conservative. Additionally, the 

categorized metabolite concentrations and combined scores (see below) were analyzed, 

and the ORs were calculated across quartiles. To test the trend across quartiles, we 

assigned all individuals either the median value of the concentrations or the combined 

scores, and obtained the P-values using the same regression model.  

2.5.3.3 Combination of metabolites 

After identified early biomarkers for T2D, we obtain the combined scores of 

these metabolites, the scaled metabolite concentrations (mean = 0, s.d. = 1) were first 

modeled with multivariate logistic regression containing all confounding variables. The 

coefficients of these metabolites from the model were then used to calculate a weighted 

sum for each individual. In accordance with the decreasing trend of glycine and LPC 

(18:2), we inverted these values as the combined scores. 

2.5.3.4 Residuals of metabolite concentrations 

To avoid the influence of other confounding factors when plotting the 

concentration of metabolites, we used the residuals from a linear regression model. 

Metabolite concentrations were log-transformed and scaled (mean = 0, s.d. = 1), and the 

residuals were then deduced from the linear regression that included the corresponding 

confounding factors. 
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2.5.4 Machine learning methods 

2.5.4.1 Random forest stepwise selection methods and candidate biomarker selection 

To select candidate biomarkers, we applied two more methods, the random 

forest (Breiman, 2001) and stepwise selection, which assess the metabolites as a group 

while logistic regression evaluates one metabolite at a time.  

Between the NGT and the IGT groups, supervised classification method random 

forest was first used to select the metabolites among the 30 highest ranking variables of 

importance score, meaning they can best separate the individuals between the two 

groups. These metabolites showed most impact on whether or not individuals can be 

assigned correctly to their diabetes status in the internal permutation test of random 

forest. T2D risk indicators (i.e. age, sex, BMI, physical activity, alcohol intake, smoking, 

systolic BP, HDL cholesterol, HbA1c, fasting glucose, fasting insulin) were also included 

in this method with all the metabolites. 

We further select the metabolites using stepwise selection on the logistic 

regression model. Metabolites which showed significantly different concentrations 

between the compared groups in logistic regression and also being selected using 

random forest were used in this model along with all the risk indicators. They were 

added and dropped from the model one by one. Akaike’s Information Criterion (AIC) 

was used to evaluate the performance of these subsets of metabolites used in the models. 

The model with minimal AIC was chosen and metabolites left in this model are the 

potential independent markers to best distinguish IGT from NGT individuals and the 
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correlated metabolites with less separation power were dropped. The area under the 

receiver-operating-characteristic curves (AUC) was used to evaluate the models and a 

likelihood ratio test was used to compare the models. 

2.5.4.2 Partial least square analysis 

Partial least square (PLS) (Lorber et al., 1987), or projection to latent structures by 

means of partial least squares is a supervised machine learning method. It relates a 

matrix X to a vector y (or to a matrix Y). The x-data are transformed into a set of a few 

intermediate linear latent variables (components) using linear combination. The purpose 

is to maximize the covariance between the components and the vector y (or matrix Y).  

The PLS analysis was carried out using the R package pls to investigate the 

metabolic profiles serum and plasma as well as of males and females. The concentrations 

of each metabolite were transformed into a mean of zero and an s.d. of one before the 

analysis. Data was visualized by plotting the scores of the first two components against 

each other, where each point represented an individual (serum/plasma or male/female) 

sample. 

2.5.5 Network analysis 

Metabolite–protein interactions from the Human Metabolome Database (HMDB) 

(Wishart et al., 2009) and protein–protein interactions in the Search Tool for the Retrieval 

of Interacting Genes/Proteins (STRING) (Szklarczyk et al., 2011) were used to construct a 

network containing relationships between metabolites, enzymes, other proteins and 
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T2D-related genes. The candidate metabolites were assigned to HMDB IDs using the 

metaP-Server (Kastenmüller et al., 2011), and their associated enzymes were derived 

according to the annotations provided by HMDB. These enzymes were connected to the 

46 T2D related genes (considered at that point), allowing for one intermediate protein 

(proteins other than the T2D related genes or the integrating enzymes) through STRING 

protein functional interactions and optimized by eliminating edges with a STRING score 

of 0.7 and undirected paths. The sub-networks were connected by the shortest path from 

metabolites to T2D-related genes. 
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Chapter 3 Results 
This chapter is divided into three parts. The first two parts clarify the potential 

influence of blood matrices and sex on metabolic variation. The third part presents the 

results on finding early biomarker for T2D as well as the attempts to find the potential 

underlying mechanism. 

3.1 Metabolomics differences between EDTA plasma and serum 

We analyzed the concentrations of 122 metabolites after quality control in both 

EDTA plasma and serum collected from 377 German participants of the KORA F3 study 

(Holle et al., 2005; Wang-Sattler et al., 2008). These plasma and serum samples were 

measured separately in 10 plates. In order to reduce potential bias and authenticate our 

findings, we randomly chose 83 participants from these 377 individuals and measured 

the metabolite concentration profiles in two further plates with the same technology, this 

time, including both plasma samples and their corresponding serum samples from each 

person within the same plates. All these relatedly measured samples were randomly 

distributed on the plates.  

3.1.1 Good reproducibility in serum and better in plasma 

Both plasma and serum samples which displayed good stability in the 

metabolites were measured. The metabolite concentrations from the repeated 

measurements on the 83 samples showed a high correlation between the first and the 

second measurements (Figure 1) with mean Person’s correlation coefficients (r) of all the 
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122 metabolites being 0.83 and 0.80 for plasma and serum, respectively. Most of the 

metabolites showed an r value higher than 0.6 except for a few outliers. The 

reproducibility was significantly better for plasma than for serum (P = 0.01, paired t-

test), despite that the absolute mean differences in r values were rather small. 

 

Figure 1: Correlation between repeated measurements of plasma and serum 
metabolites. 

Pearson’s correlation coefficients (r) between repeated measurements of metabolite 
concentrations were plotted. r values in serum are plotted against r values in plasma. Different 
shapes represent different groups of metabolites: solid circle for acylcarnitines, triangle for amino 
acids, cross for hexose, and square for glycerophospholipid. Different colors of squares represent 
different subgroups of glycerophospholipids: blue for lyso-phosphatidylcholine, red for 
phosphatidylcholine, and green for sphingomyeline. 
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3.1.2 High correlation between plasma and serum metabolite 
concentrations and higher concentrations in serum. 

Results showed that metabolite concentrations were generally higher in serum 

than in plasma (Figure 2). Out of the 122 metabolites we analyzed, 104 (85%) have 

significantly higher concentrations (t-test) in serum and the average value of the relative 

difference over all metabolites was around 11.7% higher in serum.  

 

Figure 2: Relative concentration differences and correlation coefficients between 
plasma and serum for individual metabolites 

The X-axis indicates the mean value of the relative concentration difference. Shapes represent 
different groups of metabolites: Acylcarnitines (•), Amino acids ( ), Hexose (+), and 
Glycerophospholipid ( ). Colors represent different subgroups of glycerophospholipids: 
lysoPhosphatidylcholine (blue), Phosphatidylcholine (red), and Sphingomyeline (green). 
Metabolite names are indicated for metabolites with a mean relative concentration difference 
larger than 20%. 
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We also performed a PLS analysis on 377 KORA individuals. The result 

demonstrated that plasma samples were clearly separated from serum samples (Figure 

3). In addition, we observed an overall high correlation (mean r = 0.816 ± 0.1) between 

the values in these two matrices, indicating that the differences of metabolite 

concentrations between both matrices are due to systematic changes across all 

individuals. This is especially true for most acylcarnitines (mean r = 0.866 ± 0.09) and 

glycerophospholipids (mean r = 0.826 ± 0.09). However, for amino acids, the correlation 

between the two matrices was significantly lower (mean r = 0.676 ± 0.13) compared to all 

the metabolites (p = 0.004, t-test) (Figure 2). Among the metabolites with significantly 

higher concentrations in serum, nine metabolites had relative concentration differences 

greater than 20% (Figure 2). Arginine had the highest concentration difference, 

displaying a nearly 50% higher concentration in serum with a lower correlation (r = 0.50) 

between the two matrices, while diacyl PC C38:1, which was 26% higher in serum than 

in plasma, still kept a good correlation (r = 0.88). Four LPC (C16:0, C17:0, C18:0, C18:1) 

and three other amino acids (serine, phenylalanine, glycine) were also found to have 

more than 20% higher concentrations in serum. Moreover, from the PLS result (Figure 3) 

we observed similar shapes of both the serum samples and the plasma samples, even 

though they were clustered into two groups. The size of the group of serum samples 

was larger than that of the plasma group. These observations were consistent with the 
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high correlation between metabolite concentrations in plasma and serum and a higher 

absolute concentration in serum. 

 

 

 

Figure 3: Separation of plasma and serum metabolite profiles 

The dot plot presented the results from the partial least squares (PLS) analysis. Scores of the first 
two PLS components were plotted against each other. Each point indicates either a plasma (red) 
or serum (blue) sample. 

 

3.1.3 Higher sensitivity in serum 

We also noticed that serum provided higher sensitivity than plasma, when 

metabolite concentrations were compared between subjects with different phenotypes. 

For example, 40 metabolites in serum were identified to have a significantly different 

mean concentration in T2D patients vs. non-diseased individuals, while plasma only 

revealed 25. Similar results were also observed when comparing male against female 
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individuals, as well as when comparing smokers against nonsmokers, serum always 

containing larger number of significantly different metabolites (Table 4). Furthermore, 

for each of the three phenotypes, all significantly different metabolites that were 

identified using plasma were among those identified using serum. The metabolites that 

failed to be identified in plasma were, nevertheless, close to the borderline of 

significance. 

Table 4: Numbers of significant different metabolite in plasma and serum 

 Plasma (n=377) Serum (n=377) 
T2D (n = 51)vs. non-T2D (n =. 326) 25 40 
Males (n = 197) vs. Female (n = 180) 62 69 
Smoker (n = 45) vs. non-smoker (n = 332) 4 6 

 

3.2 Sexual dimorphisms in metabolomics 

3.2.1 Phenotypic metabotype differences between males and females  

All phenotypic analysis steps were performed on population based cohort data 

of KORA F4 (1452 males and 1552 females) and KORA F3 (197 males and 180 females) 

with fasting serum concentrations of 131 metabolites after quality control. The 

metabolites covered a biologically relevant panel that could be divided into five 

subgroups such as amino acids, hexose, acylcarnitines and phospholipids. A PLS 

analysis of all metabolites showed that there were major differences in serum metabolite 

concentrations between males and females, as the first two components from the PLS 

analysis showed clearly clustered pattern for different sexes (Figure 4). This is true for 

both the KORA F4 population and the replication samples in KORA F3. 
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Figure 4: Separation of males and females metabolite profiles 

Partial least square analyses show that males and females are clustered into two different groups 
using the 131 metabolite concentrations in males and females. (A) in KORA F4. (B) in KORA F3. 
Each point represents an individual and different color stands for different gender: green for 
female and blue for male. 

 

Motivated by the global gender differences in metabolite concentrations shown 

by PLS analysis, we further investigate the effect of sex on each metabolite. We 

performed linear regression with the log-transformed concentration as dependent and 

sex as the explanatory variable for each metabolite. In the regression model, age and 

BMI were also used as covariates. The regression results revealed in 102 of the total 131 

metabolites (p-value below the Bonferroni-corrected significance level of 3.86×10-4) 

significant effects of gender. Moreover, at least one metabolite in each subgroup 

including amino acids, acylcarnitines, PCs, LPCs and SMs showed significant sex-

specific differences in metabolite concentrations.  
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The linear regression analysis showed that the concentrations of most amino 

acids were significantly higher in males except for glycine (effect of sex:  = -0.13, P-

value = 2.36 x 10-46) and serine (effect of sex:  = -0.13, P-value = 1.0 x 10-12). Both of them 

exhibited higher concentrations in females. The relative sex-specific difference for 

glycine was  = 214%, which means that the mean concentration in men was 114% lower 

than that in women. The levels of most serum acylcarnitines were significantly higher in 

males compared to females. The concentrations of PC (both PC ae Cx:y and PC aa Cx:y) 

tended to be significantly lower in males compared to females. The most significant 

difference between the two sexes could be seen for the PC aa C32:3 (  = 217.9%, P-value 

= 4.4 x 10-108), whereas LPC concentrations were higher in males compared to females. In 

contrast, the concentrations of most sphingomyelins were significantly lower in males 

than in females. The concentration of hexose, which is the sum of C6-sugars, was 

significantly higher in males compared to females (  = 7.3%, p-value = 6.2 x 10-27). 

The adjustment for different covariates (e.g. waist-hip ratio (WHR), HDL (high 

density lipoprotein), LDL (low density lipoprotein), triglycerides, T2D, smoking, and 

high alcohol consumption) did not affect the sex-specific differences in the metabolite 

concentrations extensively. The majority of the high significant sex-effects remained 

significant. In particular, the adjustments for lipid parameter (HDL, LDL and 

triglycerides), T2D, smoking, and high alcohol consumption did not influence our main 

findings. If WHR was included into the linear regression model as covariate instead of 
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BMI or as an additional covariate in addition to BMI, the P-values of the sex-effect on 

metabolites changed, but for most metabolites the gender differences remained 

significant. Interestingly, seven PC aa Cx:ys and LPC a C17:0 showed significant 

differences between sexes while adjusting for age and WHR but not for age and BMI 

adjustment. We refer the interested reader to Table 6. As replication the same linear 

regression approach (covariates: age, BMI) was applied to the KORA F3 cohort which 

included 377 individuals. Despite this smaller sample size for 63 of 102 metabolites with 

a significant effect of sex in KORA F4, the effect of sex in KORA F3 had the same 

direction and a significant P-value lower than the Bonferroni-corrected replication 

significance level corrected for the 102 metabolites taken forward to replication (0.05/102 

= 4.9 x 10-4). That means 61.8% of the sex-specific differences could be replicated. A 

combined meta-analysis of KORA F4 and KORA F3 revealed 113 metabolites with a 

significant effect of sex (Bonferroni-corrected meta-analysis significance level: P-value < 

3.86 x 10-4). 

3.2.2 Sex-Specific Effects in the Metabolic Network 

We further investigated how groups of metabolites share pairwise correlations, 

that mean similar effects, and how the sex specific effects propagate through the 

metabolic network. Therefore we calculated a partial correlation matrix between all 

metabolites, corrected against age, sex and BMI (Krumsiek et al., 2011). The resulting 

network, which is also referred to as a Gaussian graphical model, was annotated with 
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the results from the linear regression analysis to get a comprehensive picture of sex-

effects in this data-driven metabolic network (Figure 5). We applied a cut-off of r = 0.3 (r 

represents the partial correlation coefficient) in order to emphasize strong inter-

metabolite effects. We observed a general structuring of the network into members from 

similar metabolic classes, e.g. the amino acids, the PC, SM and acylcarnitines (Figure 6). 

Direct correlations between metabolites, as represented by partial correlation 

coefficients, are rare in this metabolite panel with only around 1% of all partial 

correlations showing a strong effect above r = 0.3. For this specific cut-off we obtained 14 

non-singleton groups, which can be regarded as independently regulated phenotypes 

within the measured metabolite panel. Detailed description of the distribution of partial 

correlations and the group structure in the network can be found in Figure 6 and Figure 

7. The low connectedness of the network is in line with previous findings (Krumsiek et 

al., 2011) which demonstrated that Gaussian graphical models are sparsely connected on 

the one hand, but specifically exclude indirect metabolic interactions on the other hand. 
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Figure 5: Gaussian graphical model of all measured metabolites illustrating the 
correlation strength and the propagation of gender-specific effects through the 
underlying metabolic network 

Each node represents one metabolite whereas edge weights correspond to the strength of partial 
correlation. Only edges with a partial correlation above r = 0.3 are shown. Node coloring 
represents the strength of association (measured using  from linear regression analysis) towards 
either males or females. Metabolite names marked with a star * represent significantly different 
metabolites between genders. Yellow highlighted pairs of metabolites differ by a C18:0 fatty acid 
residue. 
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Figure 6: Distribution of partial correlation coefficients 

Partial correlations centered around zero with a shift towards positive high values. When 
applying a correlation cutoff of r = 0.3, we are left with 109 out of 8515 correlation values (1.28%) 

 

 

Figure 7: Numbers of clustered groups in the GGM as a function of the absolute 
partial correlation cutoff 
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Note that we did not count singleton metabolites without any partial correlation above threshold 
here. Most non-singleton groups emerge in the cutoff range between 0.3 and 0.7, which 
corresponds to the Figure in the main manuscript. For our lower cutoff of 0.3, we obtain 14 
groups, which can here be regarded as independent phenotypes in the metabolite pool 

 

Strikingly, sex-specific effects appear to be localized with respect to metabolic 

classes and connections in the partial correlation matrix. For instance, while most 

sphingomyelin concentrations have been shown to be higher in females, we also observe 

them to be a connected component in the GGM. Similarly, acylcarnitines are higher in 

males and also share partial correlation edges, mostly with other acylcarnitines (Figure 

5). Interestingly, we observed three metabolite pairs from the PC aa and LPC classes, 

respectively, which constitute a side chain length difference of 18 carbon atoms (yellow 

shaded metabolite pairs, Figure 5). 

3.3 Detecting novel pre-diabetic markers using metabolomics 
approach

3.3.1 Study participants 

Individuals with known T2D were identified by physician validated self-

reporting (Rathmann et al., 2010) and excluded from our analysis, to avoid potential 

influence from anti-diabetic medication with non-fasting participants and individuals 

with missing values (Figure 8A). 
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Figure 8: Population description 

Metabolomics screens in the KORA cohort, at baseline S4 (A), overlapped between S4 and F4 (B) 
and prospective (C, D). Participant numbers are shown. Normal glucose tolerance (NGT), 
isolated impaired fasting glucose (i-IFG), impaired glucose tolerance (IGT), type 2 diabetes 
mellitus (T2D) and newly diagnosed T2D (dT2D). Non-T2D individuals include NGT, i-IFG and 
IGT participants. 

 

Based on both fasting and 2-h glucose values (i.e., 2 h post oral 75 g glucose 

load), individuals were defined according to the WHO diagnostic criteria to have 

normal glucose tolerance (NGT), isolated IFG (i-IFG), IGT or newly diagnosed T2D 

(dT2D) (Meisinger et al., 2010; Rathmann et al., 2009) (Table 5). The sample sets include 

91 dT2D patients and 1206 individuals with non-T2D, including 866 participants with 

NGT, 102 with i-IFG and 238 with IGT, in the cross-sectional KORA S4 (Figure 8A; study 

characteristics are shown in Table 6). Of the 1010 individuals in a fasting state who 

participated at baseline and follow-up surveys (Figure 8B, study characteristics of the 

KORA F4 survey are shown in Table 7), 876 of them were non-diabetic at baseline. Out 
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of these, about 10% developed T2D (i.e., 91 incident T2D) (Figure 8C). From the 641 

individuals with NGT at baseline, 18% developed IGT (i.e., 118 incident IGT) 7 years 

later (Figure 8D). The study characteristics of the prospective KORA S4-F4 are shown in 

Table 8. 

Table 5: Classification based on fasting and 2-h glucose values according to the WHO 
diagnostic criteria 

Abbreviations: NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose, IGT, 
impaired glucose tolerance; dT2D, newly-diagnosed type 2 diabetes.  

 Fasting glucose values (mg/dl)  2-h glucose values (mg/dl) 

NGT <110 and <140
i-IFG 110   and < 126 and <140
IGT <126 and 140   and < 200 
dT2D  126 and / or  200

 

Table 6: Characteristics of the KORA S4 cross-sectional study sample 

Abbreviations: NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose; IGT, 
impaired glucose tolerance; dT2D, newly-diagnosed type 2 diabetes; BP, blood pressure; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means ± SD 
are given for each variable and each group (NGT, i-IFG, IGT and dT2D). 

Clinical and laboratory parameters NGT i-IFG  IGT  dT2D 

N 866 102 238 91
Age (years) 63.5 ± 5.5 64.1 ± 5.2 65.2 ± 5.2 65.9 ± 5.4
Sex (female) (%) 52.2 30.4 44.9 41.8
BMI (kg/m²) 27.7 ± 4.1 29.2 ± 4 29.6 ± 4.1 30.2 ± 3.9
Physical activity (% >1h per week) 46.7 35.3 39.9 36.3
Alcohol intake* (%):  20.2 20.5 25.2 24.2
Current smoker (%) 14.8 10.8 10.9 23.1
Systolic BP (mm-Hg) 131.7 ± 18.9 138.9 ± 17.9 140.7 ± 19.8 146.8 ± 21.5
HDL cholesterol (mg/dl) 60.5 ± 16.4 55.7 ± 15.9 55.7 ± 15.1 50.0 ± 15.8
LDL cholesterol (mg/dl) 154.5 ± 39.8 152.1 ± 37.7 155.2 ± 38.6 146.1 ± 44.6
Triglycerides (mg/dl) 120.7 ± 68.3 145.0 ± 96.0 146.6 ± 80.0 170.6 ± 107.1
HbA1c (%) 5.56 ± 0.33 5.62 ± 0.33 5.66 ± 0.39 6.21 ± 0.83
Fasting glucose (mg/dl) 95.6 ± 7.1 114.2 ± 3.7 104.5 ± 9.7 133.2 ± 31.7
2-h glucose (mg/dl) 102.1 ± 21.0 109.3 ± 18.7 163.4 ± 16.4 232.1 ± 63.7
Fasting insulin (μU/ml) 10.48 ± 7.28 16.26 ± 9.67 13.92 ± 9.53 17.70 ± 12.61

*  20g/day for women;  40g/day for men.  
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Table 7: Cross-sectional analysis: Characteristics of the KORA F4 follow-up study 
sample 

Abbreviations: NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose, IGT, 
impaired glucose tolerance; dT2D, newly-diagnosed type 2 diabetes; BP, blood pressure; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means ± SD 
are given for each variable and each group (NGT, i-IFG, IGT and dT2D). 

Clinical and laboratory  
parameters NGT i-IFG  IGT  dT2D  

N 2134 112 380 113 
Age (years) 52.8 ± 12.6 61.2  ±  10.9 63.8  ±  10.9 65.4 ± 10.3 
Sex (female) (%) 54.4 33.9 51.3 40.7 
BMI (kg/m²) 26.6 ± 4.3 29.9 ± 4.6 29.7 ± 4.9 30.9 ± 4.4 
Physical activity  
(% >1h per week) 

58.1 45.5 50.3 47.8 

Alcohol intake* (%) 17.4 20.5 17.4 21.2 
Smoker (%) 20.6 9.6 8.7 13.3 
Systolic BP (mm-Hg) 119.2 ± 17.4 130.8 ± 19.5 127.6 ± 18.6 131.8 ± 17.6 
HDL cholesterol (mg/dl) 57.6 ± 14.4 50.7 ± 13.5 54.3 ± 14.4 48.2 ± 12.5 
LDL cholesterol (mg/dl) 134.9 ± 34.2 145.2 ± 36.1 144.2 ± 35.7 138.2 ± 34.6 
Triglycerides (mg/dl) 110.9 ± 74.5 154.5 ± 87.7 145.9 ± 85.9 129.2 ± 162.3 
HbA1c (%) 5.36 ± 0.30 5.69 ± 0.32 5.64 ± 0.35 6.24 ± 0.98 
Fasting glucose (mg/dl) 91.7 ± 7.6 113.8 ± 3.5 100.1 ± 10.6 123.7 ± 28.6 
2-h glucose (mg/dl) 97.7 ± 20.8 109.9 ± 17.1 161.7 ± 17.1 219.9 ± 60.9 
*  20 g/day for women;  40 g/day for men 
 

Table 8: Characteristics of the KORA S4  F4 prospective study samples 

Abbreviations: BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. 
Percentages of individuals or means ± SD are given for each variable and each group. 

 NGT at baseline (n=589) Non-T2D at baseline (n=876) 

 
Remained 
NGT at 
follow-up 

Developed 
IGT at follow-
up 

Remained 
Non-T2D at 
follow-up  

Developed 
T2D at follow-
up 

N 471 118 785 91 
Age (years) 62.4 ± 5.4 63.9 ± 5.5 62.9 ± 5.4 65.5 ± 5.2
Sex (female) (%) 52.2 55.9 50.8 34.1 
BMI (kg/m²) 27.2 ± 3.8 28.2 ± 3.9 27.9 ± 4 30.2 ± 3.6
Physical activity  
(% >1h per week) 

52.9 43.2 52.2 58.2 

Alcohol intake* (%) 19.9 20.3 20.6 19.8 
Smoker (%) 14.6 9.3 12.0 14.3 
Systolic BP (mm-Hg) 129.6 ± 18.2 134.2 ± 18.7 132.4 ± 18.6 137.8 ± 19
HDL cholesterol (mg/dl) 61.3 ± 16.8 58.9 ± 16.2 60.0 ± 16.5 51.9 ± 12.4
LDL cholesterol (mg/dl) 153.9 ± 38.4 156.9 ± 42.7 154.5 ± 39.5 157.7 ± 41.6
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Triglycerides (mg/dl) 118.1 ± 63.9 129.5 ± 79.0 125.0 ± 70.0 151.2 ± 74.2
HbA1c (%) 5.54 ± 0.33 5.59 ± 0.34 5.6 ± 0.3 5.8 ± 0.4
Fasting glucose (mg/dl) 94.7 ± 6.9 96.6 ± 7.1 97.7 ± 8.8 106.1 ± 10.1
2-h glucose (mg/dl) 98.2 ± 20.5 109.9 ± 16.8 109.3 ± 28 145.9 ± 32.3
Fasting insulin (μU/ml) 9.91 ± 6.48 11.79 ± 8.83 11.0 ± 7.6 16.2 ± 9.6

      *  20g/day for women;  40g/day for men 

 

3.3.2 Analyses strategies 

We first screened for significantly differed metabolites concentrations among 

four groups (dT2D, IGT, i-IFG and NGT) for 140 metabolites with cross-sectional studies 

in KORA S4, and for 131 metabolites in KORA F4. Three IGT-specific metabolites were 

identified and further investigated in the prospective KORA S4-F4 cohort, to examine 

whether the baseline metabolite concentrations can predict incident IGT and T2D, and 

whether they are associated with glucose tolerance 7 years later. Our results are based 

on a prospective population-based cohort, which differed from previous nested case–

control study (Wang et al., 2011). We also performed analysis with same study design 

using our data. The obtained results provided clues to explain the differences between 

the two sets of biomarkers. The three metabolites were also replicated in an independent 

European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort 

(Wang-Sattler et al., 2012). Finally, the relevance of the identified metabolites was 

further investigated using bioinformatical analysis to construct the protein-metabolite 

interaction networks which also combined with the gene expression data. 
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3.3.3 Identification of novel pre-diabetes metabolites distinct from 
known T2D risk indicators 

To identify metabolites with altered concentrations between the individuals with 

NGT, i-IFG, IGT and dT2D, we first examined five pairwise comparisons (i-IFG, IGT and 

dT2D versus NGT, as well as dT2D versus either i-IFG or IGT) in the cross-sectional 

KORA S4. Based on multivariate logistic regression analysis, 26 metabolite 

concentrations differed significantly (P-values < 3.6 x 10-4) between two groups in at least 

one of the five comparisons (Figure 9A; odds ratios (ORs) and P-values are shown in 

Table 9). These associations were independent of age, sex, body mass index (BMI), 

physical activity, alcohol intake, smoking, systolic blood pressure (BP) and HDL 

cholesterol (model 1). As expected, the level of total hexose H1, which is mainly 

represented by glucose (Pearson’s correlation coefficient value r between H1 and fasting 

glucose reached 0.85; Table 10), was significantly different in all five comparisons. The 

significantly changed metabolite panel differed from NGT to i-IFG or to IGT. Most of the 

significantly altered metabolite concentrations were found between individuals with 

dT2D and IGT as compared with NGT (Table 11A). 
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Figure 9: Differences in metabolite concentrations from cross-sectional analysis of 
KORA S4 

Plots (A, B) show the names of metabolites with significantly different concentrations in 
multivariate logistic regression analyses (after the Bonferroni correction for multiple testing 
withPo3.6104) in the five pairwise comparisons of model 1 and model 2. Plot (C) shows the 
average residues of the concentrations with standard errors of the three metabolites (glycine, LPC 
(18:2) and acetylcarnitine C2) for the NGT, IGT and dT2D groups. Plot (A) shows the results with 
adjustment for model 1 (age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and 
HDL cholesterol), whereas plots (B, C) have additional adjustments for HbA1c , fasting glucose 
and fasting insulin (model 2). Residuals were calculated from linear regression model (formula: 
metabolite concentration ~ model 2). For further information, see Supplementary Table 13. 

 

Table 9: Odds ratios (ORs) and P-values in five pairwise comparisons with two 
adjusted models in the KORA S4 

ORs were calculated with multivariate logistic regression analysis with adjustment for age, sex, 
BMI, physical activity, alcohol intake, smoking, systolic BP and HDL cholesterol in model 1; 
model 2 includes those variable in model 1 plus HbA1c, fasting glucose and fasting insulin. CI 
denotes confidence interval. 

Metabolite Model 1 Model 2 

 
OR (95% CI),  

per SD 
P-value   

OR (95% CI), 
per SD 

P-value 

238 IGT vs. 866 NGT 
Glycine 0.65(0.53-0.78) 5.6E-06 0.67(0.54-0.81) 8.6E-05
LPC (18:2) 0.58(0.47-0.7) 1.3E-07   0.58(0.46-0.72) 2.1E-06 
C2 1.37(1.18-1.59) 3.8E-05  1.38(1.16-1.64) 2.4E-04 

91 dT2D vs. 866 NGT
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Glycine 0.47(0.33-0.65) 1.1E-05  0.44(0.22-0.83) 1.6E-02 
LPC (18:2) 0.62(0.44-0.85) 4.1E-03   0.61(0.32-1.07) 1.1E-01 
C2 1.17(0.94-1.45) 1.5E-01 1.71(1.14-2.52) 6.8E-03

91 dT2D vs. 234 IGT
Glycine 0.81(0.61-1.07) 1.5E-01 0.76(0.51-1.1) 1.6E-01
LPC (18:2) 0.91(0.69-1.19) 4.8E-01   0.84(0.57-1.22) 3.7E-01 
C2 0.93(0.71-1.2) 5.9E-01 1.27(0.87-1.86) 2.2E-01

102 i-IFG vs. 866 NGT
Glycine 0.75(0.57-0.98) 3.9E-02 0.62 * 1.0E+00
LPC (18:2) 0.99(0.77-1.26) 9.6E-01   0.79 * 1.0E+00 
C2 1.2(0.99-1.46) 5.9E-02  0.18 * 1.0E+00 

91 dT2D vs. 102 i-IFG
Glycine 0.62(0.43-0.87) 7.8E-03  0.62(0.4-0.93) 2.5E-02 
LPC (18:2) 0.62(0.43-0.89) 1.1E-02 0.54(0.33-0.84) 8.9E-03
C2 0.92(0.66-1.27) 6.2E-01  1.23(0.82-1.85) 3.1E-01 

* Fasting glucose values were added as co-variants to the model 2, resulting in a perfect separation between 
i-IFG and NGT.  
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To investigate whether HbA1c, fasting glucose and fasting insulin levels mediate 

the shown associations, these were added as covariates to the regression analysis (model 

2) in addition to model 1 (Figure 9B).We observed that, under these conditions, no 

metabolite differed significantly when comparing individuals with dT2D to those with 

NGT, suggesting that these metabolites are associated with HbA1c, fasting glucose and 

fasting insulin levels (r values are shown in Table 10). Only nine metabolite 

concentrations significantly differed between IGT and NGT individuals (Table 9; Table 

11B). These metabolites therefore represent novel biomarker candidates, and are 

independent from the known risk indicators for T2D. The logistic regression analysis 

was based on each single metabolite, and some of these metabolites are expected to 

correlate with each other. To further assess the metabolites as a group, we employed two 

additional statistical methods (the non-parametric random forest and the parametric 

stepwise selection) to identify unique and independent biomarker candidates. Out of the 

nine metabolites, five molecules (i.e., glycine, LPC (18:2), LPC (17:0), LPC (18:1) and C2) 

were select after random forest, and LPC (17:0) and LPC (18:1) were then removed after 

the stepwise selection. Thus, three molecules were found to contain independent 

information: glycine (adjusted OR = 0.67 (0.54 - 0.81), P = 8.6 × 10-5), LPC (18:2) (OR = 

0.58 (0.46 - 0.72), P = 2.1 × 10-6) and acetylcarnitine C2 (OR = 1.38 (1.16 - 1.64), P = 2.4 × 

10-4) (Figure 9C). Similar results were observed in the follow-up KORA F4 study (Figure 

10). For instance, when 380 IGT individuals were compared with 2134 NGT participants, 
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these three metabolites were also found to be highly significantly different (glycine, OR 

= 0.64 (0.55 - 0.75), P = 9.3 x 10-8; LPC (18:2), OR = 0.47 (0.38 - 0.57), P = 2.1 x 10-13; and 

C2, OR = 1.33 (1.17 – 1.49), P = 4.9 x 10 -6) (Table 12). 

 

Figure 10: Differences in metabolite concentrations from cross-sectional analysis in 
KORA F4 

Plot A demonstrates the study population in the KORA F4. Plots B and C show the names of 
metabolites with significantly different concentrations in multivariate logistic regression analyses 
(after the Bonferroni correction for multiple testing with P < 3.6 x 10-4) in the five pairwise 
comparisons. The plot shows the results with adjustment for model 1 (age, sex, BMI, physical 
activity, alcohol intake, smoking, systolic BP and HDL cholesterol), whereas plots B and D 
additionally show the adjustment for HbA1c and fasting glucose (model 2). Plot D shows the 
average residues of the concentrations with standard errors of glycine, LPC (18:2) and 
acetylcarnitine C2, as well as xLeu (isoleucine and leucine), valine, phenylalanine and tyrosine, 
for the NGT, IGT and dT2D groups. 

 

Table 12: Cross-sectional analysis: ORs and P-values in five pairwise comparisons 
with two adjusted models in the KORA F4 

ORs were calculated with multivariate logistic regression analysis with adjustment for age, sex, 
BMI, physical activity, alcohol intake, smoking, systolic BP and HDL cholesterol in model 1; 
model 2 includes model 1 and additionally HbA1c and fasting glucose. CI denotes confidence 
interval. 

Metabolite Model 1 Model 2  

 OR (95% CI), per SD P-value   OR (95% CI), per 
SD 

P-value 
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380 IGT vs. 2134 NGT 
Glycine 0.64(0.55-0.74) 1.0E-08 0.64(0.55-0.75) 9.3E-08
LPC (18:2) 0.47(0.39-0.57) 3.0E-14   0.47(0.38-0.57) 2.1E-13 
C2 1.29(1.15-1.44) 1.2E-05 1.33(1.17-1.49) 4.9E-06

113 dT2D vs. 2134 NGT
Glycine 0.45(0.33-0.61) 9.0E-07  0.42(0.23-0.70) 1.8E-03 
LPC (18:2) 0.40(0.27-0.57) 1.6E-06 0.34(0.17-0.63) 1.0E-03
C2 1.24(1.12-1.61) 1.6E-03  1.36(0.99-1.85) 5.0E-02 

113 dT2D vs. 380 IGT
Glycine 0.78(0.60-1.00) 5.6E-02 0.74(0.54-1.01) 6.4E-02
LPC (18:2) 0.90(0.69-1.15) 4.0E-01   0.68(0.48-0.95) 2.6E-02 
C2 1.07(0.85-1.34) 5.4E-01 1.08(0.80-1.46) 6.0E-01

112 i-IFG vs. 2134 NGT
Glycine 0.85(0.65-1.08) 2.0E-01  3.97 * 1.0E+00 
LPC (18:2) 0.76(0.57-1.01) 6.7E-02 1.29 * 1.0E+00
C2 1.05(0.86-1.26) 6.4E-01  0.91 * 1.0E+00 

113 dT2D vs. 112 i-IFG
Glycine 0.71(0.51-0.95) 2.4E-02 0.78(0.56-1.08) 1.4E-01
LPC (18:2) 0.66(0.45-0.93) 2.0E-02   0.65(0.42-0.96) 3.5E-02 
C2 1.34(1.00-1.85) 5.7E-02 1.35(0.97-1.90) 7.7E-02

 

 

Table 13 Prediction of IGT and T2D in the KORA cohort 

Odds ratios (ORs, 95% confidence intervals) and P-values of multivariate logistic regression 
results are shown in (A) and (B) for IGT, and in (C) and (D) for T2D, respectively, whereas  
estimates and P-values from linear regression analysis between metabolite concentration in 
baseline KORA S4 and 2-h glucose values in follow-up KORA F4 are shown in (E). All models 
were adjusted for age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL 
cholesterol. 

Model Glycine LPC (18:2) C2 
Glycine, LPC 
(18:2), C2 

A. Metabolite as continuous variable (n = 589)
Per SD 0.75 (0.58-0.95) 0.72 (0.54-0.93) 0.92 (0.73-1.14) 0.36 (0.20-0.67) 
P 0.02 0.02 0.50 0.001 
B. Metabolite as categorical variable (n = 589)  
1st quartile 1.0 (reference) 1.0 (reference) 1.0 (reference) 1.0 (reference) 
2nd quartile 1.0 (0.80-1.46) 0.96 (0.73-1.27) 0.89 (0.66-1.23) 0.54 (0.30-0.97) 
3rd quartile 1.0 (0.74-1.34) 0.71 (0.51-0.99) 0.93 (0.69-1.26) 0.66 (0.37-1.18) 
4th quartile 0.78 (0.55-1.06) 0.78 (0.54-1.12) 0.99 (0.73-1.35) 0.36 (0.19-0.69)
P for trend 0.06 0.05 0.79 0.0082 
C. Metabolite as continuous variable (n = 876)
Per SD 0.73 (0.55-0.97) 0.70 (0.51-0.94) 0.94 (0.74-1.18) 0.39 (0.21-0.71) 
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P 0.04 0.02 0.59 0.0002 
D. Metabolite as categorical variable (n = 876)
1st quartile 1.0 (reference) 1.0 (reference) 1.0 (reference) 1.0 (reference) 
2nd quartile 0.87 (0.71-1.07) 0.95 (0.77-1.17) 1.05 (0.85-1.31) 0.50 (0.33-0.76) 
3rd quartile 0.82 (0.67-1.01) 0.70 (0.56-0.88) 0.97 (0.78-1.19) 0.57 (0.38-0.88)
4th quartile 0.67 (0.54-0.84) 0.68 (0.54-0.88) 1.21 (0.98-1.50) 0.33 (0.21-0.52) 
P for trend 0.00061 0.00021 0.19 1.8E-05 
E. Linear regression (n = 843) 

 estimates*(95% 
CI) 

-2.47 (-4.64,-0.29) -4.57 (-6.90,-2.24) 1.02 (-1.11,3.15) -4.23 (-6.52,-2.31) 

P 0.026 0.00013 0.59 8.8E-05 
*ß estimate indicates the future difference in the glucose tolerance corresponding to the one SD differences 
in the normalized baseline metabolite concentration. 

 

3.3.4 Predicted risks of IGT and T2D  

To investigate the predictive value for IGT and T2D of the three identified 

metabolites, we examined the associations between baseline metabolite concentrations 

and incident IGT and T2D using the prospective KORA S4  F4 cohort (Table 8). We 

compared baseline metabolite concentrations in 118 incident IGT individuals with 471 

NGT control individuals. We found that glycine and LPC (18:2), but not C2, were 

significantly different at the 5% level in both adjusted model 1 and model 2 (Table 13 

and Table 14). Significant differences were additionally observed for glycine and LPC 

(18:2), but not for C2, at baseline concentrations between the 91 incident T2D individuals 

and 785 participants who remained diabetes-free (non-T2D). Each standard deviation 

(SD) increment of the combinations of the three metabolites was associated with a 33% 

decreased risk of future diabetes (OR = 0.39 (0.21-0.71), P = 0.0002). Individuals in the 

fourth quartile of the combined metabolite concentrations had a three-fold lower chance 
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of developing diabetes (OR = 0.33 (0.21-0.52), P = 1.8 x 10-5), compared to those whose 

serum levels were in the first quartile (i.e. combination of glycine, LPC (18:2) and C2), 

indicating a protective effect from higher concentrations of glycine and LPC (18:2) 

combined with a lower concentration of C2. With the full adjusted model 2, consistent 

results were obtained for LPC (18:2) but not for glycine (Table 18). When the three 

metabolites were added to the fully adjusted model 2, the area under the receiver-

operating-characteristic curves (AUC) increased 2.6% (P = 0.015) and 1% (P = 0.058) for 

IGT and T2D, respectively (Figure 11, Table 19). Thus, this provides an improved 

prediction of IGT and T2D as compared to T2D risk indicators.  

Table 14: Prospective analysis: prediction of IGT and T2D in the KORA cohort with 
full adjustment model 

ORs were calculated with multivariate logistic regression analysis with adjustment for age, sex, 
BMI, physical activity, alcohol intake, smoking, systolic BP, HDL cholesterol HbA1c, fasting 
glucose and fasting insulin. CI denotes confidence interval. 

 Incident IGT Incident T2D 
OR (95% CI), per SD, P-value OR (95% CI), per SD P-value 

Glycine 0.77 (0.60, 0.97) 0.031 0.85 (0.62, 1.14) 0.29 
LPC (18:2) 0.70 (0.53, 0.92) 0.011 0.69 (0.49, 0.94) 0.022 
C2 0.97 (0.77, 1.20) 0.79 0.90 (0.70, 1.14) 0.40 
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Figure 11: Prospective analysis: prediction of IGT and T2D using two adjustment 
models 

Plots A-D show the AUC values predicting IGT or T2D using known T2D risk factors (model 1 or 
model 2) alone and in combination with three metabolites (glycine, LPC (18:2) and C2) and the P-
values from likelihood ratio test comparing the two values. 

Model 1 includes age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL. 
Model 2 includes the risk factors from model 1 plus HbA1c, fasting glucose and fasting insulin. 
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Table 15: Prospective analysis: the area under the receiver-operating-characteristic 
curves (AUC) values for each metabolite and each diabetes risk indicator and their 
combinations 

Model 1 includes age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL 
cholesterol, and model 2 includes model 1 plus HbA1c, fasting glucose and insulin. 

 IGT
(118 incident IGT vs.  

471 NGT) 

T2D 
(91 incident T2D vs.   

885 non-T2D) 
Metabolite   
Glycine 0.546 0.604 
LPC (18:2) 0.610 0.606 
C2 0.521 0.53 
Glycine + LPC (18:2) + C2 0.622 0.634 
Single T2D risk indicator   
Age 0.580 0.629 
Sex 0.519 0.584 
BMI 0.576 0.685 
Physical activity 0.550 0.53 
Alcohol intake 0.501 0.505 
Smoking 0.527 0.512 
Systolic BP 0.569 0.583 
HDL cholesterol 0.544 0.652 
HbA1c 0.538 0.688 
Fasting glucose 0.575 0.735 
Fasting insulin 0.562 0.707 
Combined T2D risk indicators   
Model 1  0.638 0.742 
Model 2  0.656 0.818 
Metabolites combined with T2D 
risk indicators 

  

Glycine + LPC (18:2) + C2 + Model 
1 

0.671 0.754 

Glycine + LPC (18:2) + C2 + Model 
2 

0.683 0.828 

 

3.3.5 Baseline metabolite concentrations correlate with future 
glucose tolerance 

We next investigated the associations between the baseline metabolite 

concentrations and the follow-up 2-h glucose values after an oral glucose tolerance test. 

Consistent results were observed for the three metabolites: glycine and LPC (18:2), but 
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not acetylcarnitine C2 levels, were found to be significantly associated, indicating that 

glycine and LPC (18:2) predict glucose tolerance. Moreover, the three metabolites 

(glycine, LPC (18:2) and C2) revealed high significance even in the fully adjusted model 

2 in the cross-sectional KORA S4 cohort (Table 16). As expected, a very significant 

association (P = 1.5 x 10-22) was observed for hexose H1 in model 1, while no significance 

(P = 0.12) was observed for it in the fully adjusted model 2 (Table 16).  

Table 16: Cross-sectional analysis: linear regression analysis between metabolite 
concentration and 2-h glucose values in the KORA S4 (n = 1297) 

Beta estimates were calculated with multivariate linear regression analysis with adjustment for 
model 1 (age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL 
cholesterol), and model 2 includes model 1 plus HbA1c, fasting glucose and fasting insulin. CI 
denotes confidence interval.  

 Model 1 Model 2 
 estimates* (95% CI) P-value  estimates* (95% CI) P-value 

Glycine -5.96 (-7.69, -4.24) 1.7E-11 -4.93 (-6.61, -3.26) 9.8E-09 
LPC (18:2) -6.98 (-8.82, -5.14) 1.9E-13 -6.47 (-8.24, -4.70) 1.4E-12 
C2 3.93 (2.24, 5.63) 5.5E-06 3.81 (2.17, 5.45) 5.8E-06 
H1 8.57 (6.88, 10.26) 1.5E-22 2.08 (-0.56, 4.72) 0.12 
Isoleucine 0.017 (-1.89, 1.93) 0.99 -0.06 (-1.96, 1.85) 0.95 
Leucine -0.67 (-2.52, 1.20) 0.48 -0.71 (-2.56, 1.15) 0.45 
Valine 0.68 (-1.15, 2.52) 0.46 0.03 (-1.75, 1.80) 0.98 
Tryosine -0.57 (-2.32, 1.18) 0.52 -1.09 (-2.81, 0.63) 0.21 
Phenylalanine -0.77 (-2.50, 0.97) 0.38 -0.90 (-2.59, 0.78) 0.29 

*ß estimate indicates the future difference in the glucose intolerance corresponding to the one SD differences 
in the normalized baseline metabolite concentration. 

 

3.3.6 Prospective population-based versus nested case-control 
designs  

To investigate the predict value of the five branched-chain and aromatic amino 

acids (isoleucine, leucine, valine, tyrosine and phenylalanine) (Wang et al, 2011) in our 

study, we correlated the baseline metabolite concentrations with follow-up 2-h glucose 
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values. We found none of them to be associated significantly, indicating that the five 

amino acids cannot predict risk of IGT (  estimates and P-values are shown in Table 17). 

Furthermore, none of these five amino acids showed associations with 2-h glucose 

values in the cross-sectional KORA S4 study (Table 16).  

To replicate the identified five branched-chain and aromatic amino acids (Wang 

et al, 2011), we matched our baseline samples to the 91 incident T2D using the same 

method described previously (Wang et al, 2011). We replicated four out of the five 

branched-chain and aromatic amino acids (characteristics of the case-control and non-

T2D samples are shown in Table 18; ORs and P-values are given in Table 19). As 

expected, the three identified IGT-specific metabolites did not significantly differ 

between the matched case control samples, because the selected controls were enriched 

with individuals accompanied by high-risk features such as obesity and elevated fasting 

glucose as described by Wang et al (Wang et al, 2011). In fact, the 91 matched controls 

include about 50% pre-diabetes individuals, which is significantly higher than the 

general population (about 15%). 

Table 17: Prospective analysis: linear regression analysis between metabolite 
concentration in the KORA S4 and 2-h glucose values in the KORA F4 (n = 843) 

Beta estimates were calculated with adjustment for age, sex, BMI, physical activity, alcohol 
intake, smoking, systolic BP and HDL cholesterol.  

  estimates (95% CI) P-value 
Isoleucine 1.10 (-1.38, 3.59) 0.38 
Leucine 1.58 (-0.85, 4.02) 0.20 
Valine 1.26 (-1.12, 3.64) 0.30
Tryosine 0.13 (-2.18, 2.44) 0.91 
Phenylalanine 1.65 (-0.65, 3.94) 0.16
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Table 18: Prospective analysis: characteristics of prospective nested case-control 
sample at baseline KORA S4 

Abbreviations: BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. 
Percentages of individuals or means ± SD are given for each variable and each group (T2D at 
follow-up, matched controls and non-T2D). 

Clinical and laboratory  
parameters 

Case (T2D at  
follow-up) 

Matched  
Controls  

Non-T2D 

N 91 91 1206 
Age (years) 65.5 ± 5.2 65.3 ± 5.0 63.9 ± 5.5 
Sex (female) (%) 33.1 33.1 0.49 
BMI (kg/m²) 30.2 ± 3.6 30.0 ± 3.4 28.1 ± 4.2 
Physical activity (% >1h per week) 58.2 54.4 55.5 
Alcohol intake* (%) 19.8 24.4 21.2 
Smoker (%) 14.3 4.4 13.7 
Systolic BP (mm-Hg) 137.8 ± 19.0 137.5 ± 15.9 134.1 ± 19.4 
HDL cholesterol (mg/dl) 51.9 ± 12.7 55.7 ± 16.1 59.1 ± 16.3 
LDL cholesterol (mg/dl) 157.7 ± 41.6 155.7 ± 37.3 154.4 ± 39.4 
Triglycerides (mg/dl) 151.2 ± 74.3 130.0 ± 71.2 127.9 ± 74.3 
HbA1c (%) 5.81 ± 0.39 5.64 ± 0.29 5.58 ± 0.35 
Fasting glucose (mg/dl) 106.1 ± 10.0 105.4 ± 9.0 98.9 ± 9.5 
2-h glucose (mg/dl) 145.9 ± 32.3 116.5 ± 28.7 114.8 ± 31.4 
Fasting insulin (μU/ml) 16.21 ± 9.6 12.9 ± 7.2 11.6 ± 8.2 

*  20 g/day for women;  40 g/day for men 

 

Table 19: Prospective analysis: ORs and P-values in the comparison between 
prospective nested case-control samples 

ORs were calculated with conditional multivariate logistic regression analysis with adjustment 
for age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP, HDL cholesterol in 
model 1; model 2 includes model 1 plus HbA1c and fasting glucose and fasting insulin. CI 
denotes confidence interval. 

  Model 1 Model 2 
  ORs (95% CI), per SD P-value ORs (95% CI), per SD P-value
Isoleucine  1.84 (1.25-2.71) 0.002 1.73 (1.15-2.60) 0.008
Leucine  1.51(1.06-2.14) 0.02  1.43(0.98-2.08) 0.06 
Valine  1.52(1.08-2.13) 0.02 1.48(1.03-2.13) 0.03
Tryosine  1.50(1.06-2.14) 0.02  1.52(1.03-2.24) 0.03 
Phenylalanine  1.21(0.88-1.67) 0.23 1.11(0.80-1.55) 0.53
Glycine  0.95(0.69-1.31) 0.76  1.03(0.74-1.44) 0.86 
LPC (18:2)  0.77(0.55-1.10) 0.14  0.78(0.56-1.14) 0.21 
C2  0.81(0.59-1.13) 0.22  0.80(0.57-1.14) 0.21 
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3.3.7 Metabolite-protein interaction networks confirmed by 
transcription levels  

To investigate the underlying molecular mechanism for the three identified IGT 

metabolites, we studied their associations with T2D-related genes by analyzing protein-

metabolite interaction networks (Szklarczyk et al, 2011; Wishart et al, 2009). Seven out of 

the 46 known T2D-related genes (PPARG, TCF7L2, HNF1A, GCK, IGF1, IRS1 and IDE) 

were linked to these metabolites through related enzymes or proteins (Figure 12A; the 

list of 46 genes is shown in Table 20). To validate the networks, the links between 

metabolites, enzymes, pathway-related proteins and T2D-related genes were manually 

checked for biochemical relevance and classified into four groups: signaling regulation, 

transcription, physical interaction and the same pathway (Table 21). 

 

Figure 12: Three candidate metabolites for IGT associated with seven T2D-related 
genes  

(A)Metabolites (white), enzymes (yellow), pathway-related proteins (grey) and T2D-related 
genes (blue) are represented with ellipses, rectangles, polygons, and rounded rectangles, 
respectively. Arrows next to the ellipses and rectangles indicate altered metabolite concentrations 
in persons with IGT as compared to NGT, and enzyme activities in individuals with IGT. The 21 
connections between metabolites, enzymes, pathway-related proteins and T2D-related genes 
were divided after visual inspections into four categories: physical interaction (purple solid line), 
transcription (blue dash line), signaling regulation (orange dash line), and same pathway (grey 
dot and dash line). The activation or inhibition is indicated. For further information see Table 25. 
(B) Log-transformed gene expression results of the probes of CAC, CrAT, ALAS-H and cPLA2 in 



 

78 

383 individuals with NGT, 104 with IGT and 26 patients with dT2D are shown from cross-
sectional analysis of the KORA S4 survey. The P-values were adjusted for sex, age, BMI, physical 
activity, alcohol intake, smoking, systolic BP, HDL cholesterol, HbA1c and fasting glucose when 
IGT individuals were compared with NGT participants. 
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Gene expression analysis in whole-blood samples of participants from the KORA S4 

survey revealed significant variations (P-values ranging from 9.4 × 10-3 to 1.1 × 10-6) of 

transcript levels of four enzymes, namely, carnitine/acylcarnitine translocase (CAC), carnitine 

acetyltransferase (CrAT), 5-aminolevulinate synthase 1 (ALAS-H) and cytosolic phospholipase 

A2 (cPLA2), which are known to be strongly associated with the levels of the three metabolites 

(Figure 12B). The clear relationship between changes in metabolites and transcription levels of 

associated enzymes strongly suggests that these metabolites are functionally associated with T2D 

genes in established pathways. 
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Chapter 4 Discussion 

4.1 Plasma and serum 

In the first part of the results chapter, we presented a robust analysis based on a 

large size of samples and highly reliable measurements of metabolites with stringent 

quality controls. The method, based on FIA MS/MS has been proven to be in 

conformance with the FDA-Guideline “Guidance for Industry - Bioanalytical Method 

Validation (May 2001)”, which implies proof of reproducibility within a given error 

range.  

Our results give support to the good reproducibility of metabolite measurements 

in both plasma and serum. Moreover, plasma demonstrates to have a better 

reproducibility than serum, which may result from the less complicated collecting 

procedure for plasma, as it does not require time to coagulate and thus leads to less 

exposure time at the room temperature. The large sample size is not only powerful 

enough to detect metabolite concentration differences between the two matrices but also 

makes it possible to further characterize the relationship between them.  

We observed that metabolite concentrations were generally higher in serum and 

this phenomenon may partly be explained by the so called volume displacement effect 

(Kronenberg et al., 1998) which means that deproteinization of serum eliminates the 

volume fraction of proteins and distributes the remaining small molecular weight 

constituents in a smaller volume, thus making them more concentrated and leading to a 
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higher serum concentration. However, the volume displacement effect usually accounts 

for about 5% difference of the concentration, which means there are other reasons 

causing the differences we observed. Concentration differences in some metabolites 

were similar to those reported in previous studies and some differences were related to 

coagulation processes. The higher arginine concentration in serum has been observed 

before (Teerlink et al., 2002). The release of arginine from platelets during the 

coagulation process might account for this difference. 

Our observations that concentrations of some LPCs were higher in serum are 

consistent with a former study (Aoki et al., 2002), who reported increased LPC 

concentrations, due to the release of phospholipases by platelets activated by thrombin, 

a process that also occurs upon coagulation. Glucose, which comprise the majority of 

hexose, was found in an earlier study (Ladenson et al., 1974) to be 5% lower in plasma 

than in serum. A similar difference was observed for hexose in our measurements. 

Although the exact reason for this observation is not clear, a shift in fluid from 

erythrocytes to plasma caused by anticoagulants might play a role (Sacks et al., 2002). 

Serum also demonstrated a higher sensitivity in biomarker detection in the three 

phenotypes (gender, diabetic status, smoking status) we chose. The generally higher 

metabolite concentrations in serum than in plasma could contribute to this advantage. 

Metabolite measurements in both matrices are subject to a certain level of background 

noise, which might affect measurement accuracy, especially for metabolites with low 
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concentrations. Thus plasma is more prone to this effect than serum, where metabolite 

concentrations are generally higher. It was also proposed that the lower protein content 

in serum might benefit small molecule analyses and improve overall sensitivity (Denery 

et al., 2011). However, in our comparisons, the metabolites that differed significantly 

between two phenotypes in serum but not in plasma are, nevertheless, close to the 

significance level when plasma was used, an observation that is in agreement with the 

existence of high correlations between both matrices. The high correlations between 

plasma and serum measurements suggest that the shift in metabolite concentrations per 

se does not necessarily introduce a bias in epidemiological studies, although the higher 

concentrations in serum may provide some advantages. In general, our data indicate 

that metabolite profiles from either matrix can be analyzed, as long as the same blood 

sample is used. However, the better reproducibility in plasma and higher sensitivity in 

serum need to be taken into account, as they might influence the results for the 

identification of diagnostic biomarkers. Naturally, the metabolites we measured in our 

experiment represent only a small part of the human blood metabolome. Accordingly, it 

is yet to be determined in future studies whether similar observations can be made for 

other metabolites. 

4.2 Sex dimorphism 

There have been only a few studies addressing metabolic differences between 

males and females, and most of these studies were rather small in sample size and 
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determined only a small number of metabolites (Döring et al., 2008; Geller et al., 2006). 

We investigated a number of 131 metabolites in a large population based study with 

sufficient statistical power to examine associations within subgroups. Our findings shed 

light on the sex-specific architectures of human metabolome and provided clues on 

biochemical mechanisms that might explain observed differences in susceptibility and 

time course of the development of common diseases in males and females. Our data 

provided new insights into sex-specific metabotype differences. Combining results from 

linear regression with partial correlation analysis (resulting in a Gaussian graphical 

model) yielded interesting insights into how sex-specific concentration differences 

spread over the metabolic network (Figure 3). The analysis suggests that sex-specific 

concentration differences affect whole metabolic pathways rather than being randomly 

spread over the different metabolites. In addition, we found three interesting inter-class 

associations between PCaa/PCae species and LPC species (highlighted in yellow in 

Figure 5). Those pairs shared a strong partial correlation but displayed differential 

concentration patterns with respect to gender effects. Furthermore, these pairs displayed 

a fatty acid residue difference of C18:0, indicating that this fatty acid species might be a 

key compound giving rise to opposing metabolic gender effects. Direct experimental 

evidence indicated a role for sphingolipids (SMs and ceramides) in several common 

complex chronic disease processes including atherosclerotic plaque formation, 

myocardial infarction, cardiomyopathy, pancreatic beta cell failure, insulin resistance, 
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coronary heart disease and T2D (Holland and Summers, 2008; Yeboah et al., 2010). 

Evidences showed that in young children (between birth and 4 years old, with low 

levels of sex-hormones) there may already have been significant sex-specific differences 

in plasma sphingolipid concentrations (Nikkilä et al., 2008). Our observations described 

new sex-specific differences, while other lipid-derived molecules, like bile acids, were 

already demonstrated not to be sex-specific (Rodrigues et al., 1996). Therefore 

sphingomyelins represent important intermediate phenotypes. The concentration 

differences between males and females of acylcarnitines described in this study coincide 

with previous findings showing that carnitine (C0) and acetylcarnitine (C2) 

concentrations were higher in males than in females (Reuter et al., 2008; Slupsky et al., 

2007). Phosphatidylcholines, as demonstrated in this study, are another gender-specific 

phenotype. Ghrelin (controlling energy homeostasis and pituitary hormone secretion in 

humans) levels have been shown to be similar in men and women and did not vary by 

menopausal status or in association with cortisol levels (Purnell et al., 2003). These 

findings of our and other studies urgently suggest when using metabolites for disease 

prediction sex has to be strictly taken into account. As global ‘omics’-techniques are 

more and more refined to identify more compounds in single biological samples, the 

predictive power of these new technologies will greatly increase. Metabolite 

concentration profiles can be used as predictive biomarkers to indicate the presence or 

severity of a disease depending on sex. Our study provides new important insights into 
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sex-specific differences of cell regulatory processes and underscores that studies should 

consider gender-specific effects in design and interpretation. Our findings also help to 

understand the biochemical mechanisms underlying sexual dimorphism, a phenomenon 

which may explain the differential susceptibility to common diseases in males and 

females. 

4.3 Novel markers for pre-diabetes 

Using a cross-sectional approach (KORA S4, F4), we analyzed 140 metabolites 

and identified three (glycine, LPC (18:2) and C2) that are IGT-specific metabolites with 

high statistical significance. Notably, these three metabolites are distinct from the 

currently known T2D risk indicators (e.g., age, BMI, systolic BP, HDL cholesterol, 

HbA1c, fasting glucose and fasting insulin). A prospective analysis (KORA S4-F4) shows 

that low levels of glycine and LPC at baseline predict the risks of developing IGT and/or 

T2D. Glycine and LPC especially were shown to be strong predictors of glucose 

tolerance, even 7 years before disease onset. Moreover, those two metabolites were 

independently replicated in the EPIC-Potsdam cross-sectional study. Finally, based on 

our analysis of interaction networks, and supported by gene expression profiles, we 

found that seven T2D-related genes are functionally associated with the three IGT 

candidate metabolites. 
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4.3.1 Different study designs reveal progression of IGT and T2D 

From a methodological point of view, our study is unique with respect to the 

large sample sizes and the availability of metabolomics data from two time points. This 

allowed us to compare results generated with cross-sectional and prospective 

approaches directly, as well as with results from prospective population-based cohort 

and nested case–control designs. We found that individuals with IGT have elevated 

concentrations of the acetylcarnitine C2 as compared with NGT individuals only in the 

cross-sectional study, whereas C2 was unable to predict IGT and T2D seven years before 

the disease onset. We speculate that the acetylcarnitine C2 might be an event with a 

quick effect.  

Our analysis could replicate four out of the five branched-chain and aromatic 

amino acids recently reported to be predictors of T2D using a nested case–control study 

design (Wang et al., 2011). However, the population-based prospective study employed 

in our study revealed that these five amino acids are in fact not associated with future 2-

h glucose values. It should be taken into account, however, that more pre-diabetes 

individuals (~ 50%) were in the control group of that study design, and that these 

markers were unable to be extended to the general population (with only 0.4% 

improvement from the T2D risk indicators as reported in the Framingham Offspring 

Study) (Wang et al., 2011). Most likely, changes in these amino acids happen at a later 

stage in the development of T2D (e.g., from IGT to T2D); indeed, similar phenomenon 
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was also observed in our study (Figure 10D). In contrast, we found that combined 

glycine, LPC (18:2) and C2 have 2.6 and 1% increment in predicting IGT and T2D in 

addition to the common risk indicators of T2D. This suggests they are better candidate 

for early biomarkers, and specifically from NGT to IGT, than the five amino acids. 

4.3.1 IFG and IGT should be considered as two different phenotypes 

By definition (WHO, 1999; ADA, 2010), individuals with IFG or IGT or both are 

considered as pre-diabetics. Yet we observed different behaviors regarding the change 

of the metabolite panel from NGT to i-IFG or to IGT, indicating that i-IFG and IGT are 

two different phenotypes. For future studies, we therefore suggest separating IFG from 

IGT. 

4.3.2 Glycine 

The observed decrease in the serum concentration of glycine in individuals with 

IGT and dT2D may result from insulin resistance (Pontiroli et al., 2004). It was already 

reported that insulin represses ALAS-H expression (Phillips and Kushner, 2005). As 

insulin sensitivity progressively decreases during diabetes development (Færch et al., 

2009; McGarry, 2002; Stumvoll et al., 2005; Tabák et al., 16), it is expected that the 

expression levels of the enzyme increase in individuals with IGT and dT2D, since ALAS-

H catalyzes the condensation of glycine and succinyl-CoA into 5-aminolevulinic acid 

(Bishop, 1990). This may explain our observation that glycine was lower in both 

individuals with IGT and those with dT2D. However, the level of fasting insulin in IGT 
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and T2D individuals was higher than in NGT participants in the KORA S4 study, 

suggesting that yet undetected pathways may also play roles here. 

4.3.3 Acetylcarnitine C2 

Acetylcarnitine is produced by the mitochondrial matrix enzyme, CrAT, from 

carnitine and acetyl-CoA, a molecule that is a product of both fatty acid -oxidation and 

glucose oxidation and can be used by the citric acid cycle for energy generation. We 

observed higher transcriptional level of CrAT in indivi duals with IGT and T2D, most 

probably due to an activation of the peroxisome proliferator activated receptor alpha 

(PPAR-a) pathway in peroxisomes (Horie et al., 1981). Higher expression of CrAT would 

explain the elevated levels of acetylcarnitine C2 in IGT individuals. Although it is not 

clear if mitochondrial CrAT is overexpressed when there is increased fatty acid b-

oxidation (e.g., in diabetes; Noland et al, 2009), it is expected that additional 

acetylcarnitine will be formed by CrAT due to increased substrate availability (acetyl-

CoA), thereby releasing pyruvate dehydrogenase inhibition by acetyl-CoA and 

stimulating glucose uptake and oxidation. An increase of acylcarnitines, and in 

particular of acetylcarnitine C2, is a hallmark in diabetic people (Adams et al., 2009). 

Cellular lipid levels are increased in humans with IGT or overt T2D who also may have 

altered mitochondrial function (Szendroedi et al., 2007). Together, these findings reflect 

an important role of increased cellular lipid metabolites and impaired mitochondrial b-
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oxidation in the development of insulin resistance (Koves et al., 2008; McGarry, 2002; 

Szendroedi et al., 2007). 

4.3.4 LPC (18:2) 

In our study, individuals with IGT and dT2D had lower cPLA2 transcription 

levels, suggesting reduced cPLA2 activity. As a result, a concomitant decrease in the 

concentration of arachidonic acid (AA), a product of cPLA2 activity, is expected. AA has 

been shown to inhibit glucose uptake by adipocytes (Malipa et al., 2008), in a mechanism 

that is probably insulin independent and that involves the GLUT-1 transporter. 

Therefore, our findings may point to regulatory effects in individuals with IGT, since the 

inhibition of AA production would result in an increased glucose uptake. 

4.3.5 Limitations 

While our metabolite profiles provide a snapshot of human metabolism, more 

detailed metabolic profile follow-ups, with longer time spans and more time points, are 

necessary to further evaluate the development of the novel biomarkers. Moreover, the 

influence from long-term dietary habits should not be ignored, even though we used 

only serum from fasting individuals (Altmaier et al., 2011; Primrose et al., 2011). 

Furthermore, additional tissue samples (e.g., muscle and adipocytes) and experimental 

approaches are needed to characterize the causal pathways in detail. 
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4.3.6 Conclusions 

Three novel metabolites, glycine LPC (18:2) and C2, were identified as pre-

diabetes-specific markers. Their changes might precede other branched-chain and 

aromatic amino acids markers in the progression of T2D. Combined levels of glycine, 

LPC (18:2) and C2 can predict risk not only for IGT but also for T2D. Targeting the 

pathways that involve these newly proposed potential biomarkers would help to take 

preventive steps against T2D at an earlier stage. 
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Summary
This thesis presented three metabolomics studies using the KORA cohort. The 

main aim of the thesis was to more thoroughly understand the role of the metabolome in 

complex phenotypes including differences in blood matrix, sex, and how the metabolite 

profiles change in a complex disease like type 2 diabetes (T2D). 

All measured metabolites were filtered using strict quality controls to exclude 

artifacts. By collecting serum and plasma samples from the same 377 individuals, we 

found that the concentrations in plasma and serum were highly correlated, with both 

providing good reproducibility, although plasma was slightly better. On the contrary, 

serum showed higher concentrations and therefore is more likely to detect differences in 

the metabolite concentrations in serum.  

With regards to the second topic of the thesis, we also demonstrated that 102 of 

131 metabolites had significantly different metabolite concentrations by comparing 

males and females. Altogether, more than 3300 KORA individuals were analyzed and all 

analyses were Bonferroni corrected. 

Furthermore, we quantified 140 metabolites in 4297 fasting serum samples from 

KORA with a view to identifying the candidate biomarkers of pre-diabetes. Three 

metabolites (glycine, LPC 18:2 and acetylcarnitine) were found to have significantly 

altered levels in impaired glucose tolerance (IGT) individuals. Lower levels of glycine 

and LPC were also proven to be predictive for IGT as well as for T2D. All these 
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identified metabolites were independent of previously identified diabetes risk factors. 

Further investigations including a systems biology approach were performed and we 

identified seven T2D-related genes which were linked to T2D through functional related 

enzymes; a theory which was confirmed by expression data. 

Metabolomics, which studies the intermediates and end products of biological 

processes, is a useful tool in biomedical research, particularly for metabolic diseases. 

When proper quality controls are applied and the effects of the complex confounders 

(e.g. sex) are unveiled, the relationships between the metabolome and the diseases 

become even clearer. The findings in our T2D study proved that mining the metabolite 

profiles can help to detect novel disease markers as well as new pathways which can 

potentially be targeted to prevent the disease. 
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Zusammenfassung 
In dieser Doktorarbeit werden drei Metabolomics-Studien der KORA Kohorte 

behandelt. Das Ziel dieser Doktorarbeit war es, ein besseres Verständnis der Rolle des 

Metabolismus von komplexen Phänotypen anhand von Unterschieden im Blutbild, des 

Geschlechts und anhand von Veränderungen des Metabolitenprofils bei 

multifaktoriellen Krankheiten wie Typ 2 Diabetes mellitus zu erhalten. 

Um Artefakte auszuschließen wurden strikte Qualitätskontrollen aller 

gemessenen Metaboliten durchgeführt. Durch die Analyse von Blutplasma und -serum 

von 377 Personen konnten wir zeigen, dass die Konzentrationen der Metaboliten in 

Blutplasma und -serum stark korrelieren und darüber hinaus eine hohe 

Reproduzierbarkeit zeigen, bei der Blutplasma besser abschneidet. Im Gegensatz dazu 

zeigt das Blutserum höhere Metabolitenkonzentrationen und könnte deswegen besser 

für den Nachweis von Konzentrationsunterschieden geeignet sein. 

Ein weiteres Ergebnis dieser Doktorarbeit war der Nachweis von signifikanten 

geschlechtsspezifischen Unterschieden der Konzentrationen von 102 der ausgewerteten 

131 Metaboliten. Dabei wurden die Daten von mehr als 3300 Personen der KORA 

Kohorte verwendet und die Analysen einer konservativen Bonferroni-Korrektur 

unterzogen. 

Darüber hinaus identifizierten wir potentielle Biomarker für Prä-Diabetes durch 

die Analyse von 140 Metaboliten in nüchtern abgegebenen Blutseren von 4297 Personen 
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der KORA Kohorte. Wir konnten zeigen, dass Personen mit gestörter Glukosetoleranz 

(IGT) signifikant unterschiedliche Konzentrationen von drei Metaboliten (Glycin, 

lysoPhosphatidylcholine (LPC) 18:2 und acetylcarnitine) im Vergleich zu gesunden 

Personen aufweisen. Darüber hinaus konnten wir nachweisen, dass geringere 

Konzentrationen der Metaboliten Glycin und LPC bei Probanden mit Typ 2 Diabetes 

oder IGT vorhanden sind. Die in dieser Studie identifizierten Metaboliten sind 

biologisch unabhängig von zuvor entdeckten Diabetes Risikofaktoren. Durch weitere 

Analysen und die Einbeziehung systembiologischer Ansätze entdeckten wir sieben 

Diabetesrisiko Susseptibilitätsgene, welche durch Expressionsdaten bestätigt wurden. 

Metabolomics welches auf der Analyse von Stoffwechselzwischen- und 

Endprodukten basiert, ist eine wertvolle Methode besonders in der biomedizinischen 

Forschung, um Krankheitsmechanismen aufzuklären. Nachdem angemessene 

Qualitätskontrollen etabliert und der Einfluss von komplexen Störfaktoren (z.B. das 

Geschlecht) aufgeklärt wurden, konnte der Zusammenhang zwischen Krankheit und 

Metabolismus weiter an Klarheit gewinnen. Die Entdeckungen in unserer T2D Studie 

zeigen, dass die Analyse von Konzentrationsprofilen helfen kann neue 

Krankheitsrisikomarker genauso wie neue Wirkungspfade zu identifizieren, die 

möglicherweise das Ziel zur Heilung einer Krankheit sein könnten. 
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