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Chapter 1 Introduction
1.1 Metabolomics

1.1.1 Metabolites and metabolism

Metabolites are the intermediates or end products produced by the cellular
processes of a certain organism. Their levels can be regarded as the ultimate responses of
the biological systems to genetic and/or environmental challenges (Fiehn, 2002).
Metabolism is constituted by a set of chemical reactions and transformations which are
needed to maintain life. It comprises two parts, the catabolism which is the breakdown
of molecules to obtain energy and the anabolism which is the synthesis of all
compounds needed by the cells.

The metabolites play critical roles in biological systems due to their involvement
in cellular and physiological energetics, structure, and signaling (Vinayavekhin et al.,
2010). Moreover, unlike RNA and proteins, metabolites are not directly coded into the
genome. Therefore, one of the major goals in human biology is to understand the
biochemical pathways which comprise the human metabolism as well as to study their

relations to different human diseases.

1.1.2 Metabolomics

The ‘omics” technologies, which provide information regarding detailed content

of the cells, tissues, organs or biofluids in large scales with a high throughput manner,



are becoming more popular in biomedical studies (Rochfort, 2005). Metabolome, coined
less than two decades ago (Oliver et al.,, 1998), is similar to other “-ome’ terminologies,
and is defined as the total complement of small-molecule metabolites found in or
produced by an organism (Mayr, 2008). Metabolomics is regarded as the studies of
metabolome, with a view to understanding complex biological systems on a large scale
using high-throughput identification and quantification techniques with statistical
methods to cope with the huge datasets produced. (Brown et al., 2005; Kaddurah-Daouk
et al., 2008; Psychogios et al., 2011).

Over the past few years, the scientific community has witnessed the advent of
this so-called ‘omics’ era. Studies of single genes, single mRNA transcripts, single
proteins and single metabolites have been moved to those encompassed the entire
genomes, transcriptomes, proteomes and metabolomes (Kaddurah-Daouk et al., 2008).
More investigators are now seeking to understand the complex biological systems on a
larger scale other than by simply using the traditional reductionistic approach (Brown et
al., 2005; Mayr, 2008). Along with the other three ‘omics’ —genomics, transcriptomics,
and proteomics-, metabolomics has added a new piece of building block to the fast
emerging field of systems biology. Together, they provide powerful tools with which to
analyses physiological and disease-induced biological states at the molecular level,

taking into account both the organism’s intrinsic properties, i.e. genetic factors, and the



effects of lifestyle, diet, and environment. Many attempts have been made to discover
the link between genetics and metabolite concentrations (Gieger et al., 2008; Illig et al.,
2010; Suhre et al., 2011), whilst other scholars have sought to unveil the association
between metabolite profiles and general phenotypes (Mittelstrass et al., 2011; Wang-
Sattler et al., 2008; Yu et al.,, 2011), In addition to these investigations, various other
studies have attempted to both predict the behavior of diseases (Floegel et al., 2012;
Wang-Sattler et al.,, 2012) and use metabolite concentrations to ascertain the disease
etiology hidden behind the metabolomics data (German et al., 2005a).

However, the scale and coverage of metabolomics is in no comparison to the
other “‘omics’. The exact number of metabolites in human metabolome is still a matter of
debate and numbers ranging from a few thousand to tens of thousands of have been
proposed (Kaddurah-Daouk et al., 2008). Up till now, it has remained impossible to
measure the whole metabolome using one single analytic method. Researchers have had
to carefully choose appropriate technologies based on their desired results from the
metabolome. New fields, such as lipidomics, have come into existence to study the
subgroup instead of the whole metabolome (Shevchenko and Simons, 2010; Wenk,
2005). One of the major reasons behind this limitation is the chemical complexity and the
concentration range in the whole metabolome. In contrast, the building blocks for

genome, transcriptome and proteome are relatively limited. There are four to five



nucleotides and approximately 20 primary amino acids and several of their derivatives
(e.g. methylated nucleotides, phosphorylated proteins), which do not exist in
metabolome. Moreover, the range of the metabolite concentrations varied dramatically
(e.g. from pM to mM) and there is no available instrument that can cover such a range

without differential dilution (Brown et al., 2005).

1.1.3 Techniques used in metabolite concentration measurements

Two analytic methods, namely nuclear magnetic resonance (NMR) and mass
spectrometry (MS) are most widely used in metabolomics studies for different analytical
approaches including profiling-, non-targeted-, and targeted- metabolomics. These
approaches have been developed to meet the distinct requirements for different study
aims (Psychogios et al., 2011).

NMR can detect a wide range of biochemical metabolites and is considered to be
robust and reproducible (Mayr, 2008). However, the NMR technology suffers from low
sensitivity (on the order of 10 pmol/L) and high initial instrument investments (Spratlin
et al, 2009). MS-based methods were used in the metabolomics measurements
represented in this thesis as such platform is available in the Helmholtz Centre Munich.

The mass to charge ratio (m/z) is a dimensionless value used in mass
spectrometric experiments, and is formed by dividing the mass number of an ion by its

charge number. The quantity measured by MS is the mass-to-charge ratio of ions formed



from molecules, usually separated by chromatography because the power of this
technology depends on separation along with detection. The MS technology is highly
sensitive, typically at the pictogram level, which makes the detection of metabolites with
low concentration possible (Spratlin et al., 2009). The current applications of
metabolomics have two major platforms: gas chromatography MS (GC-MS) and liquid
chromatography MS (LC-MS). GC-MS is more suitable when it comes to measuring the
non-polar metabolites with lower molecular weight whilst LC-MS is preferred to
measure those polar ones with higher molecular weight (Artati et al., 2012). In the
metabolomic analysis we presented in this thesis (Mittelstrass et al., 2011; Wang-Sattler
et al., 2012; Yu et al., 2011), targeted metabolite profiling using electrospray ionization
(ESI) tandem mass spectrometry (MS/MS) was also performed. The details of the

platform will be provided in the third section of Chapter 2.

1.2 Epidemiology studies

Epidemiology is the study of the distributions and determinants of health-related
states or events (including diseases), and the application of this study to the control of

diseases and to help improve other health-related problems (Susser, 1973).

1.2.1 Study type in epidemiology

To investigate the questions of disease development and other health-related

problems, it is crucial to choose the appropriate study design. Epidemiological studies



can be classified as either observational or experimental based on whether the
investigator intervenes. In this thesis, analytical observational studies were used.

The three most common types of observational study are, the cross-sectional
study, the case-control study, and the cohort study. In a cross-sectional study, the
measurement of the exposure and effect are conducted at the same time. It is relatively
easy and inexpensive to conduct, although it is difficult to assess the reasons, if any, for
the associations. In a case-control study, people with a disease (or other outcome
variable) of interest are recruited, along with a suitable control group. The aim is to
investigate the causes behind the diseases, and particularly rare diseases. Cohort studies
begin with a group of people who are free of disease or who are classified into
subgroups according to certain exposures. Cohort studies provide the best information
about the causation of disease and the most direct measurement of the risk of
developing disease (Beaglehole et al., 2006). As a variation of the case-control study, the
nested case-control study uses only a subset of controls which are selected for each case
from that case’s risk set from the cohort and compared to cases.

The studies involved in this thesis are one cohort study, one nested case-control

study and population based cross-sectional studies.



1.2.2 Confounders

The disease status and health parameters investigated in epidemiology studies
are generally referred to as phenotypes. Risk factors (i.e. factors which can potentially
change the phenotype status) are referred to as either environmental / genetic /
physiological (age, sex) factors, or as covariates. It should be noted that all non-genetic
factors, including e.g. environmental exposures such as fine dust particles, but also life-
style parameters like smoking and age, are generally termed environmental or
physiological factors. Association analysis quantifies the relation between phenotype
and environmental and/or genetic factors through statistical analysis (e.g. regression).
Estimated effect sizes describe the relative change in the phenotype due to different
covariate values. In association analysis, it is common that a third parameter (i.e. risk
factor) correlates with both the phenotype and the environmental factor. Such a
parameter is referred to as a confounding factor or confounding variable and must be
accounted for in the association analysis to evaluate the real effect of the factor of

interest.

1.3 Statistical and bioinformatical analysis

During the development of ‘omics” studies, statistics as well as bioinformatics,
have become an important tool both in finding effective signals among huge amount of

data and in collecting and integrating information from different sources either for



public use or for the purpose of a specific study. These techniques essentially refer to the
science of managing and analyzing biological data using advanced computing
techniques (German et al., 2005b).

The nature of the data acquired in the metabolomics studies is similar to those in
other “‘omics’ studies: high in dimension with a relatively small number of observations.
The major goal in metabolomics studies related to life science research is to identify
biomarkers and to understand the mechanistic basis for biological difference (e.g.
healthy vs. diseased). The machine learning methods which have been applied for years
are suitable for this purpose with such data property. Both unsupervised (e.g. principle
component analysis (PCA), clustering) and supervised methods (e.g. random forest,
partial least square (PLS)) can be used to find the features, which are crucial to the
phenotypes (e.g. the development of the disease) but which have been buried under the

huge amount of data.

1.4 Metabolomic variations in complex phenotypes

Although the measurements of the metabolome are not as mature as in the other
‘omics’, valuable information is generated from metabolomics. Many studies have
investigated the associations between metabolic variations and different disease such as
metabolic diseases, cancer, and infectious diseases (Spratlin et al., 2009; Vinayavekhin et

al., 2010). However, many studies have also shown that complex phenotypes, including



environmental factors such as cigarette smoking (Wang-Sattler et al., 2008), fasting status
(Rubio-Aliaga et al., 2011), age (Yu et al., 2012), sex (Mittelstrass et al., 2011), body mass
index (BMI) (Jourdan et al., 2012), and physical activity/challenges (Krug et al., 2012)
could all produce influential metabolite concentration levels in the human body.
Moreover, different sample matrices could also affect the final readout of the metabolite
concentrations (Yu et al., 2011). In order to find the real metabolic perturbations related
with disease etiology, specific consideration must be given to those features that can also
contribute to the metabolic variations. In the following chapters we will present our
studies on two sources of these variations, namely the sample matrix and the sex effect

on the metabolite concentration variations.

1.4.1 Metabolomic variations in plasma and serum

One source of the metabolic variations is rooted in the different collection
procedurals of human blood. Human plasma and serum are most commonly used in
biomedical experiments and clinical tests. However, different matrices usually produce
different results in tests (Beheshti et al., 1994) and thus are preferred under different
circumstances. For example, heparin confounds some cardiac troponin I assay and thus
serum is preferred for the measurement of cardiac troponins I and T (Gerhardt et al.,
2000; Jaffe et al., 2000), whereas plasma is favored in oral glucose tolerance tests for type

2 diabetes proposed in the diagnosis guideline (Sacks et al., 2002). As reviewed by



Mannello (Mannello, 2008), the use of an incorrect matrix can lead to an improper
diagnosis.

Blood is composed of two parts: a cellular component consisting of red and
white blood cells and platelets, and a liquid carrier, known as plasma or serum. The
major difference between plasma and serum depends on whether an anti-coagulate
agent is introduced during the blood collection procedure. The coagulation cascade is
blocked in plasma and only centrifugation is required to remove or decant the most
buoyant (non-cellular) portion. In contrast, with regards to serum, the coagulation is
started through a series of interconnected self-amplifying, zymogen-enzyme
conversions that penultimately produce thrombin. In the final step of the coagulation
cascade, Flla hydrolyses fibrinogen into fibrin units which oligomerize into a fine mesh,
which in turn, cases blood to gel or clot (Vogler and Siedlecki, 2009). During the clotting
process, platelets can release proteins (e.g. pro-inflammatory cytokines (Schnabel et al.,
2009)) as well as metabolites (e.g. sphingosine-1-phosphate (Yatomi et al., 1997)) into the
serum. Both plasma and serum are aqueous solutions (approximately 95% water) and
contain a variety of substances including proteins and peptides (such as albumins,
globulins, lipoproteins, enzymes and hormones), nutrients (such as carbohydrates, lipids
and amino acids), electrolytes, organic wastes and a variety of other small organic

molecules suspended or dissolved in them (Psychogios et al., 2011). Several studies have

10



already examined the potential proteomic differences caused by different blood
collecting procedures (Barelli et al., 2007; Tammen et al., 2005). Since metabolomics is a
newly developed discipline compared to the other ‘omics’, there are only a few recent
studies related to this subject (e.g. comparing different biofluids (Bando et al., 2010) as is
also the case for studies comparing plasma and serum from animal blood (Ayache et al.,
2006)). Moreover, two studies using small samples of around 15 human participants
have addressed this issue with conflicting results. Teahan et al. reported minimal
differences between the two matrices while Liu et al. observed changes ranging from
0.03 to 18-fold (Liu et al., 2010; Teahan et al., 2006).

In the third chapter of this thesis, I will present our study (Yu et al., 2011) which
was performed using a targeted metabolomics study of 163 metabolites to compare
plasma and serum samples from 377 individuals. The results showed a good
reproducibility of metabolite concentrations in both plasma and serum, although
somewhat better in plasma. There was also a clear discrimination between the
metabolite profiles of plasma and serum. Metabolite concentrations were generally
higher in serum, yet still highly correlated between the two matrices. Furthermore,
serum revealed more potential biomarkers than plasma when comparisons were made

between different phenotypes.
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1.4.2 Metabolomic variations in sex

I will also explore a second source of metabolic variation in this thesis, namely
the effect brought about by sexual dimorphisms. Sex refers to the classification of males
and females according to their reproductive organs. Historically, the scientific
community assumed that apart from the reproductive system, differences in cellular or
molecular levels did not exist or were not relevant (Wizemann and Pardue, 2001). In a
survey of studies published in 2004 and spanning nine different medical journals found
that only 37% of participants were women (24% when it comes to drug trials) whilst
only 13% of studies analyzed data by sex (Kim et al., 2010). Over the past decades, new
discoveries in basic human biology have made it increasingly apparent that many
normal physiological functions—and, in many cases, pathological functions—are
influenced either directly or indirectly by sex-based differences in biology. Gender
inequalities have been increasingly recognized and different studies showed that there is
a strong correlation between sex and the incidence, prevalence, age at onset, symptoms
and severity of a disease, as well as the reaction to drugs (Fairweather and Rose, 2004;
Mostertz W, 2010).

With this in mind, it is important to determine for which aspects and to what
extent gender influences metabolomics. To study the gender effect on metabolomics, I

report the results (Mittelstrass et al., 2011) in the third chapter with a systematical

12



assessment of the effect from sex on serum metabolites in a large population-based

cohort (Holle et al., 2005) and with the replication of most of the findings.

1.5 Identification of type 2 diabetes candidate biomarker

Metabolic disorders such as type 2 diabetes (T2D) are an obvious choice for this
application of metabolomics. Indeed, this is because many of the underlying causes of
these disorders are thought to result from dys-regulation in small molecule metabolism.

T2D is defined by increased blood glucose levels due to pancreatic beta-cell
dysfunction and insulin resistance without evidence for specific causes, such as
autoimmune destruction of pancreatic beta-cells (Krebs et al., 2002; Muoio and
Newgard, 2008; Stumvoll et al., 2005). Diabetes has reached epidemic proportions and as
of 2011 had affects more than 360 million individuals worldwide. Moreover, the number
of people with type 2 diabetes is expected to reach more than 550 million by the year
2030.

A state of pre-diabetes (i.e., impaired fasting glucose (IFG) and/or impaired
glucose tolerance (IGT)) with only slightly elevated blood glucose levels can accompany
an individual for years before the onset of T2D (McGarry, 2002; Tabék et al., 2012) . The
development of diabetes in pre-diabetic individuals can be prevented or delayed by
dietary changes and increased physical activity (Knowler et al., 2002; Tuomilehto et al.,

2001). However, no specific biomarkers that result in an effective prevention have been

13



reported. Metabolomics studies allow metabolites involved in disease mechanisms to be
discovered by monitoring metabolite level changes in predisposed individuals
compared with healthy ones (Newgard et al., 2009; Pietildinen et al., 2011; Rhee et al.,
2011; Shaham et al.,, 2008; Zhao et al., 2010). Altered metabolite levels may serve as
diagnostic biomarkers and enable preventive actions. Previous cross-sectional
metabolomics studies of T2D were either based on small sample sizes (Pietildinen et al.,
2011; Shaham et al., 2008; Wopereis et al., 2009; Zhao et al., 2010) or did not place
sufficient emphasis on the influence of common risk factors of T2D (Newgard et al.,
2009). Recent work based on prospective nested case—control studies with relatively
large samples (Rhee et al., 2011; Wang et al., 2011), five branched-chain and aromatic
amino acids were identified as predictors of T2D (Wang et al., 2011). Here, in the third
section of Chapter 3, I will present our attempt to (i) reliably identify candidate
biomarkers of pre-diabetes and (ii) build metabolite—protein networks to understand
diabetes-related metabolic pathways wusing various comprehensive large-scale

approaches with measured metabolite concentration profiles.
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Chapter 2 Materials and Methods
2.1 Population based KORA cohort

KORA (Cooperative Health Research in the Region Augsburg) was used in the
analysis of this thesis. Written informed consent was obtained from each KORA
participant. The study was approved by the ethics committee of the Bavarian Medical
Association.

KORA is a regional research platform for population-based surveys and
subsequent follow-up studies in the fields of epidemiology, health economics, and
health care research. In 1996, KORA was established to continue and expand the
MONICA (Monitoring of Trends and Determinants of Cardiovascular Disease) project in
Augsburg. The available pool of study participants allows for cohort, case-control and
family studies (Holle et al., 2005).

The individuals of KORA were sampled in a two-stage procedure. In the first
step, Augsburg and the 16 communities were selected using cluster sampling. In a
second step, stratified random sampling was performed in each community (MONICA-
Projekt, Region Augsburg, 1986). Four cross-sectional studies, KORA survey 1 (S1) to
survey 4 (54) were performed at five-year intervals. Follow-up studies of S3 and 54 were

conducted in around seven to ten years after each survey.
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The KORA survey 3 (S3) was conducted in 1994/1995 with a 10 years later
(2004/2005) follow up (F3) while the KORA survey 4 (S4) was conducted in 1999/2001
with a 7 years later (2006/2008) follow-up survey (F4).

In all surveys, baseline information on socio-demographic variables, risk factors
(smoking, alcohol consumption, physical activity, etc.), medical history and family
history of chronic diseases, medication use, and more was gathered by trained medical
staff during an extensive standardized face-to-face interview. In addition, a
standardized medical examination including blood pressure measurements and
anthropometric measurements were performed on all the participants (Holle et al.,
2005).

Three studies in KORA (F3, S4 and F4) were used in the analyses (Mittelstrass et
al., 2011; Wang-Sattler et al., 2012; Yu et al., 2011) presented in this thesis. Plasma and
serum samples collected from 377 participants in the KORA F3 were used to elaborate
the metabolic variation between two different blood matrices. In the study of sex
dimorphism of metabolomics, serum samples from 3080 KORA F4 individuals were
used as discovery population and KORA F3 were served as the replication population.
To find the biomarkers for (pre-) diabetes, 4261 KORA S4 and 3080 KORA F4
individuals were used as discovery population in both cross-sectional and longitudinal

manners.
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2.2 Blood Sample collections

To measure the metabolite concentrations in human blood, plasma and/or serum
samples were collected from the KORA participants. The blood was drawn into S-
Monovettes tubes (SARSTEDT AG & Co. Niimbrecht, Germany) in the morning
between 08:00 and 10:30 after a period of overnight fasting for at least eight hours.
EDTA plasma were shaken gently and thoroughly for 15 minutes followed by
centrifugation at 2750 g for 15 minutes at 15°C. Serum tubes were gently inverted twice,
followed by 30 min resting at room temperature, to obtain complete coagulation. They
were then centrifuged at 2750 g at 15°C for 10 min. Plasma and serum was filled into
synthetic straws, which were stored in liquid nitrogen until the metabolic analyses were
conducted. Plasma and serum samples from KORA F3 participants and serum samples
from KORA 54 and F4 were used in the analysis. (Jourdan et al., 2012; Mittelstrass et al.,

2011; Wang-Sattler et al., 2012; Yu et al., 2011)

2.3 Quantification of metabolite concentration profiles

Two commercially available kits from Biocrates (Biocrates Life Sciences AG,
Innsbruck, Austria) were used in the metabolomics measurements including the

AbsoluteIDQ™ kit p150 and the AbsoluteIDQ™ kit p180.
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2.3.1 Absolute/DQ™ kit p150

The AbsoluteIDQ™ kit p150 used a targeted metabolite profiling named
electrospray ionization (ESI) tandem mass spectrometry (MS/MS). This technique has
been described in detail elsewhere (Weinberger and Graber, 2005; Weinberger, 2008).
Briefly, the assay preparation was done by an automated robotics system (Hamilton
Robotics GmbH) on special double-filter plates with 96 wells. These plates also contain
the isotope labeled non-radioactive internal standards, blank samples (PBS) and quality
controls. Assays used 10ul serum or plasma samples and include phenylisothiocyanate
(PITC)-derivatisation of amino acids, extraction with organic solvent and several liquid
handling steps. Flow injection analysis (FIA) coupled with multiple reaction monitoring
scans (FIA MS/MS) on an API 4000 QTrap instrument (Applied Biosystems) was used
for quantification of amino acids, acylcarnitines, sphingomyelins, phosphatidylcholines,
and hexose. Concentrations were calculated and evaluated in the MetlQ software
provided by the manufacturer. It compared measured analytes in a defined extracted
ion count section to those of specific labeled internal standards or nonlabeled,
nonphysiological standards (semiquantitative) provided by the kit plate. This method
has been proven to be in conformance with the “Guidance for Industry — Bioanalytical

Method Validation” published by the FDA (Food and Drug Administration), which
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implies the proof of reproducibility within a given error range (Altmaier et al., 2011;
Romisch-Margl et al., 2011).
Plasma and serum samples from KORA F3, serum samples from KORA F4 were

measured using this kit for metabolite concentration profiles.

2.3.2 Absolute/DQ™ kit p180

The AbsoluteIDQ™ kit p180 is an upgrade of the AbsoluteIlDQ™ kit p150. It used
the combination of FIA-MS and LC-MS to detect the metabolite concentrations.
Metabolite concentrations measured using the AbsoluteIlDQ™ kit p180 were preceded
according to the manufacturer’s instructions on an API4000™ LC/MS/MS System
equipped with an electrospray ionization source. Samples (10 ul) were pipetted onto the
spots of the kit plate. The plate was centrifuged at 100 g for 2 min, receiving about 250 ul
sample in plate 1 (FIA plate). The upper plate was removed, and 150 ul of each sample
was transferred into a second plate (LC-MS plate). HPLC water (150 ul) was added to
the LC-MS plate, and 500 pl of MS running solvent (Biocrates solvent diluted in
methanol) was added to the FIA plate. The LC-MS plate was measured first by
scheduled multiple reaction monitoring, and the FIA plate was stored at 4°C.
Concentrations were calculated and evaluated in the Analyst/MetlQ software by

comparing measured analytes in a defined extracted ion count section to those of
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specific labeled internal standards or nonlabeled, nonphysiological standards
(semiquantitative) provided by the kit plate. (Schmerler et al., 2012)
The serum samples from KORA S4 were measured using this kit for metabolite

concentration profiles.

2.3.3 Metabolites measured

In total, up to 190 different metabolites were quantified by these two Kkits.
Absolute]DQ™ kit p150 can measure 163 metabolites, including 14 amino acids (13
proteinogenic and ornithine), hexose (sum of hexoses, around 90 — 95% glucose), free
carnitine (C0) and 40 other acylcarnitines (Cx:y), 15 sphingomyelins (SMxy), 77
phosphatidylcholines (PCs, diacyl (aa) and acyl-alkyl (ae)) and 15 lyso-
phosphatidylcholines (LPCs). The lipid side chain composition is abbreviated as Cx:y,
with x denoting the number of carbons in the side chain and y denoting the number of
double-bonds. The AbsoluteIDQ™ kit p180 can measure 186 metabolites, including 21
amino acids (19 proteinogenic, citrulline and ornithine), hexose, free carnitine, 39
acylcarnitines, 15 sphingomyelins, 90 phosphatidylcholines (14 LPCs and 76 PCs) as well
as 19 biogenic amines. The overlap of these two kits is 159 metabolites. Full biochemical
names and abbreviations are provided in Table 1.

Table 1: Full biochemical names, abbreviation, all metabolites measured by Biocrates
AbsoluteIDQ™ kits p150 and p180

Abbrevation Full biochemical name Abbrevation Full biochemical name

Co Carnitine PC aa C36:0 Phosphatidylcholine diacyl C36:0
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C2
C3
C3-OH
C3:1
C4
C4-OH
C4:1
C5
C5-DC
C5-M-DC
C5-OH
C5:1
C5:1-DC
Cé6
Cé6:1
C7-DC
C8
C8:1
9
C10
C10:1
C10:2
C12
C12-DC
C12:1
Cl4
C14:1
C14:1-OH
Cl14:2
C14:2-OH
Cl16
C16-OH
Cle6:1
C16:1-OH
Cl16:2
C16:2-OH
C18
C18:1
C18:1-OH
C18:2
Ala
Arg
Asn
Asp
Cit
Gln
Glu

Acetylcarnitine
Propionylcarnitine
Hydroxypropionylcarnitine
Propenonylcarnitine
Butyrylcarnitine
Hydroxybutyrylcarnitine
Butenylcarnitine
Valerylcarnitine
Glutarylcarnitine
Methylglutarylcarnitine
Hydroxyvalerylcarnitine
Tiglylcarnitine
Glutaconylcarnitine
Hexanoylcarnitine
Hexenoylcarnitine
Pimelylcarnitine
Octanoylcarnitine
Octenoylcarnitine
Nonaylcarnitine
Decanoylcarnitine
Decenoylcarnitine
Decadienylcarnitine
Dodecanoylcarnitine
Dodecanedioylcarnitine
Dodecenoylcarnitine
Tetradecanoylcarnitine
Tetradecenoylcarnitine
Hydroxytetradecenoylcarnitine
Tetradecadienylcarnitine
Hydroxytetradecadienylcarnitine
Hexadecanoylcarnitine
Hydroxyhexadecanoylcarnitine
Hexadecenoylcarnitine
Hydroxyhexadecenoylcarnitine
Hexadecadienylcarnitine
Hydroxyhexadecadienylcarnitine
Octadecanoylcarnitine
Octadecenoylcarnitine
Hydroxyoctadecenoylcarnitine
Octadecadienylcarnitine
Alanine
Arginine
Asparagine
Aspartate
Citrulline
Glutamine

Glutamate

PC aa C36:1
PC aa C36:2
PC aa C36:3
PC aa C36:4
PC aa C36:5
PC aa C36:6
PC aa C38:0
PC aa C38:1
PC aa C38:3
PC aa C38:4
PC aa C38:5
PC aa C38:6
PC aa C40:1
PC aa C40:2
PC aa C40:3
PC aa C40:4
PC aa C40:5
PC aa C40:6
PC aa C42:0
PC aa C42:1
PC aa C42:2
PC aa C42:4
PC aa C42:5
PC aa C42:6
PC ae C30:0
PC ae C30:1
PC ae C30:2
PC ae C32:1
PC ae C32:2
PC ae C34:0
PC ae C34:1
PC ae C34:2
PC ae C34:3
PC ae C36:0
PC ae C36:1
PC ae C36:2
PC ae C36:3
PC ae C36:4
PC ae C36:5
PC ae C38:0
PC ae C38:1
PC ae C38:2
PC ae C38:3
PC ae C38:4
PC ae C38:5
PC ae C38:6
PC ae C40:0

Phosphatidylcholine diacyl C36:1
Phosphatidylcholine diacyl C36:2
Phosphatidylcholine diacyl C36:3
Phosphatidylcholine diacyl C36:4
Phosphatidylcholine diacyl C36:5
Phosphatidylcholine diacyl C36:6
Phosphatidylcholine diacyl C38:0
Phosphatidylcholine diacyl C38:1
Phosphatidylcholine diacyl C38:3
Phosphatidylcholine diacyl C38:4
Phosphatidylcholine diacyl C38:5
Phosphatidylcholine diacyl C38:6
Phosphatidylcholine diacyl C40:1
Phosphatidylcholine diacyl C40:2
Phosphatidylcholine diacyl C40:3
Phosphatidylcholine diacyl C40:4
Phosphatidylcholine diacyl C40:5
Phosphatidylcholine diacyl C40:6
Phosphatidylcholine diacyl C42:0
Phosphatidylcholine diacyl C42:1
Phosphatidylcholine diacyl C42:2
Phosphatidylcholine diacyl C42:4
Phosphatidylcholine diacyl C42:5
Phosphatidylcholine diacyl C42:6
Phosphatidylcholine acyl-akyl C30:0
Phosphatidylcholine acyl-akyl C30:1
Phosphatidylcholine acyl-akyl C30:2
Phosphatidylcholine acyl-akyl C32:1
Phosphatidylcholine acyl-akyl C32:2
Phosphatidylcholine acyl-akyl C34:0
Phosphatidylcholine acyl-akyl C34:1
Phosphatidylcholine acyl-akyl C34:2
Phosphatidylcholine acyl-akyl C34:3
Phosphatidylcholine acyl-akyl C36:0
Phosphatidylcholine acyl-akyl C36:1
Phosphatidylcholine acyl-akyl C36:2
Phosphatidylcholine acyl-akyl C36:3
Phosphatidylcholine acyl-akyl C36:4
Phosphatidylcholine acyl-akyl C36:5
Phosphatidylcholine acyl-akyl C38:0
Phosphatidylcholine acyl-akyl C38:1
Phosphatidylcholine acyl-akyl C38:2
Phosphatidylcholine acyl-akyl C38:3
Phosphatidylcholine acyl-akyl C38:4
Phosphatidylcholine acyl-akyl C38:5
Phosphatidylcholine acyl-akyl C38:6
Phosphatidylcholine acyl-akyl C40:0
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Gly
His
Ile
Leu
Lys
Met
Orn
Phe
Pro
Ser
Thr
Trp
Tyr
Val
xLeu
Ac Orn
ADMA
SDMA
total DMA
alpha AAA
Carnosine
Creatinine
Histamine
Kynurenine
Met SO
Nitro-Tyr
OH-Pro
PEA
Putrescine
Sarcosine
Serotonin
Spermidine
Spermine
Taurine
PC aa C24:0
PC aa C26:0
PC aa C28:1
PC aa C30:0
PC aa C30:2
PC aa C32:0
PC aa C32:1
PC aa C32:2
PC aa C32:3
PC aa C34:1
PC aa C34:2
PC aa C34:3
PC aa C34:4

Glycine
Histidine
Isoleucine

Leucine

Lysine
Methionine
Ornithine
Phenylalanine
Proline
Serine
Threonine
Tryptophan
Tyrosine
Valine
Leucine/Isoleucine
Acetylornithine
Asymmetric dimethylarginine
Symmetric Dimethylarginine
Sum of ADMA and SDMA
alpha-Aminoadipic acid
Carnosine
Creatinine
Histamine
Kynurenine
Methioninesulfoxide
Nitrotyrosine
Hydroxyproline
Phenylethylamine
Putrescine
Sarcosine
Serotonin
Spermidine
Spermine
Taurine

Phosphatidylcholine diacyl C24:0
Phosphatidylcholine diacyl C26:0
Phosphatidylcholine diacyl C28:1
Phosphatidylcholine diacyl C30:0
Phosphatidylcholine diacyl C30:2
Phosphatidylcholine diacyl C32:0
Phosphatidylcholine diacyl C32:1
Phosphatidylcholine diacyl C32:2
Phosphatidylcholine diacyl C32:3
Phosphatidylcholine diacyl C34:1
Phosphatidylcholine diacyl C34:2
Phosphatidylcholine diacyl C34:3
Phosphatidylcholine diacyl C34:4

PC ae C40:1
PC ae C40:2
PC ae C40:3
PC ae C40:4
PC ae C40:5
PC ae C40:6
PC ae C42:0
PC ae C42:1
PC ae C42:2
PC ae C42:3
PC ae C42:4
PC ae C42:5
PC ae C44:3
PC ae C44:4
PC ae C44:5
PC ae C44:6
LPC a C14:0
LPC a C16:0
LPC a Cl16:1
LPCaC17:0
LPCa C18:0
LPC a C18:1
LPC a C18:2
LPC a C6:0
LPC a C20:3
LPC a C20:4
LPC a C24:0
LPC a C26:0
LPC a C26:1
LPC a C28:0
LPC a C28:1
SM C16:0
SM C16:1
SM C18:0
SM C18:1
SM C20:2
SM C22:3
SM C24:0
SM C24:1
SM C26:0
SM C26:1
SM (OH) C14:1
SM (OH) C16:1
SM (OH) C22:1
SM (OH) C22:2
SM (OH) C24:1
H1

Phosphatidylcholine acyl-akyl C40:1
Phosphatidylcholine acyl-akyl C40:2
Phosphatidylcholine acyl-akyl C40:3
Phosphatidylcholine acyl-akyl C40:4
Phosphatidylcholine acyl-akyl C40:5
Phosphatidylcholine acyl-akyl C40:6
Phosphatidylcholine acyl-akyl C42:0
Phosphatidylcholine acyl-akyl C42:1
Phosphatidylcholine acyl-akyl C42:2
Phosphatidylcholine acyl-akyl C42:3
Phosphatidylcholine acyl-akyl C42:4
Phosphatidylcholine acyl-akyl C42:5
Phosphatidylcholine acyl-akyl C44:3
Phosphatidylcholine acyl-akyl C44:4
Phosphatidylcholine acyl-akyl C44:5
Phosphatidylcholine acyl-akyl C44:6
lysoPhosphatidylcholine acyl C14:0
lysoPhosphatidylcholine acyl C16:0
lysoPhosphatidylcholine acyl C16:1
lysoPhosphatidylcholine acyl C17:0
lysoPhosphatidylcholine acyl C18:0
lysoPhosphatidylcholine acyl C18:1
lysoPhosphatidylcholine acyl C18:2
lysoPhosphatidylcholine acyl C6:0
lysoPhosphatidylcholine acyl C20:3
lysoPhosphatidylcholine acyl C20:4
lysoPhosphatidylcholine acyl C24:0
lysoPhosphatidylcholine acyl C26:0
lysoPhosphatidylcholine acyl C26:1
lysoPhosphatidylcholine acyl C28:0
lysoPhosphatidylcholine acyl C28:1
Sphingomyeline C16:0
Sphingomyeline C16:1
Sphingomyeline C18:0
Sphingomyeline C18:1
Sphingomyeline C20:2
Sphingomyeline C22:3
Sphingomyeline C24:0
Sphingomyeline C24:1
Sphingomyeline C26:0 *
Sphingomyeline C26:1
Hydroxysphingomyeline C14:1
Hydroxysphingomyeline C16:1
Hydroxysphingomyeline C22:1
Hydroxysphingomyeline C22:2
Hydroxysphingomyeline C24:1
Hexose
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2.3.4 Quality controls for metabolomic measurements

2.3.4.1 KORA F3

The plasma and serum samples measured using Biocrates p150 kit had 83
individuals with duplicated measurements (for both plasma and serum). We therefore
used the following criteria for data quality control: a metabolite is used in further
analysis only if (I) the average value of the coefficient of variance (CV) of the three
quality control samples (representing human plasma samples provided by the
manufacturer in each kit plate) was smaller than 0.25; (II) the mean concentration of the
metabolite over all samples was above 0.1 uM or over 90% of the samples have their
metabolite concentration above the limit of detection (LOD). The LODs were set to three
times the values of zero samples; (III) the Pearson’s correlation coefficient (r) between
the two repeated measurements of the 83 samples in either specimen exceeded 0.5.
Altogether, 25 quantified and 97 semi-quantified metabolites passed all three criteria

(Table 2).
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2.3.4.2 KORA S4

For each kit plate, five references (human plasma pooled material, Seralab) and
three zero samples (PBS) were measured in addition to the KORA samples. To ensure
data quality, each metabolite had to meet the following two criteria: (1) the coefficient of
variance (CV) for the metabolite in the total 110 reference samples should be smaller
than 25%. In total, seven outliers were removed because their concentrations were larger
than the mean plus 5s.d.; (2) 50% of all measured sample concentrations for the
metabolite should be above the limit of detection (LOD), which is defined as 3 times
median of the three zero samples. In total, 140 metabolites passed the quality controls
(Table 3): one hexose (H1), 21 acylcarnitines, 21 amino acids, 8 biogenic amines, 13 SMs,
33 diacyl (aa) PCs, 35 acyl-alkyl (ae) PCs and 8 LPCs. Concentrations of all analyzed
metabolites are reported in mM.
Table 3: Characteristics of the 188 targeted metabolites in KORA S4 measured by

AbsoluteIDQ™ kit p180 and the 163 metabolites in KORA F4 measured by
AbsoluteIDQ™ kit p150

KORA S4 KORA F4
Abbreviation CV (%) % >LOD Application r % >LOD cv Application
Co 5.8 99.63 Used 0.88 100.00 6.7% Used
C2 6.3 99.63 Used 0.94 100.00 9.4% Used
C3 10.0 99.63 Used 0.86 100.00 8.0% Used
C3:1 32.8 3.72 Excluded 0.05 0.36 76.6% Excluded
C3-OH 447 2.85 Excluded -0.11 0.10 37.5% Excluded
C4 9.7 99.63 Used 0.89 100.00 8.8% Used
C4:1 22.2 46.25 Excluded 0.04 5.65 34.7% Excluded
C4-OH (C3-DC) 21.1 18.95 Excluded 0.47 8.40 35.5% Excluded
C5 10.8 98.70 Used 0.81 95.56 14.2% Used
C5:1 22.9 1.80 Excluded 0.37 0.75 26.1% Excluded
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C5:1-DC
C5-DC (C6-OH)
C5-M-DC
C5-OH (C3-DC-
M)
C6(C4:1-DC)
Co6:1
C7-DC
C8
C8:1
9
C10
C10:1
C10:2
C12
C12:1
C12-DC
Cl14
C14:1
C14:1-OH
C14:2
C14:2-OH
C16
Cl6:1
C16:1-OH
C16:2
C16:2-OH
C16-OH
C18
C18:1
C18:1-OH
C18:2
Ala
Arg
Asn
Asp
Cit
GIn
Glu
Gly
His
Ile
Leu
xLeu
Lys
Met
Orn
Phe
Pro

40.0
294
28.0

26.9

21.8
30.7
18.4
13.2

23.6
11.7
11.2
16.0
12.2
15.2
12.3
15.8
11.4
28.9
18.3
35.1
11.3
18.1
26.5
34.0
30.1
33.0
15.7
9.7
44.6
10.5
13.7
13.2
11.1
12.2
12.7
12.8
15.8
13.2
12.9
13.9
12.9

15.5
13.5
14.9
12.2
11.8

24.83
61.36
248

19.69

65.33
5.20
70.53
60.62

97.28
99.07
74.80
94.86
96.41
26.75
0.00
96.66
99.63
74.92
98.33
47.00
99.63
77.83
26.01
87.49
5.76
16.28
99.63
99.57
7.37
99.57
99.50
99.26
99.57
99.44
99.44
99.57
99.57
99.50
99.38
99.63
98.58

99.69
99.69
99.63
99.57
99.63

Excluded
Excluded
Excluded

Excluded

Used
Excluded
Used
Used

Used
Used
Used
Used
Used
Excluded
Excluded
Used
Used
Excluded
Used
Excluded
Used
Used
Excluded
Excluded
Excluded
Excluded
Used
Used
Excluded
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used

Used
Used
Used
Used
Used

0.13
0.15
0.18

0.25

0.85
0.07
0.79
0.89
0.92
0.84
0.93
0.83
0.51
0.86
0.73
0.05
0.54
0.81
0.70
0.87
0.27
0.84
0.71
0.38
0.57
0.32
0.20
0.69
0.87
0.06
0.81

0.59

0.62

0.89
0.69

0.74

0.53
0.75
0.62
0.89

12.48
27.06
0.95

55.10

76.67
0.33
61.34
51.54
96.01
83.73
94.08
48.66
50.49
87.35
13.69
0.00
51.67
100.00
67.35
98.82
38.04
100.00
2.78
2.25
70.69
4.67
3.33
99.80
98.33
0.95
100.00

100.00

100.00

100.00
100.00

100.00

100.00
100.00
100.00
100.00

42.4%
21.0%
42.9%

28.7%

13.6%
32.4%
34.4%
16.3%
8.4%
20.8%
11.4%
10.4%
14.5%
10.4%
13.0%
12.2%
12.6%
16.9%
16.4%
11.6%
17.4%
8.9%
10.2%
17.5%
19.4%
16.6%
24.1%
13.7%
10.2%
33.4%
9.4%

8.2%

9.9%

7.9%
8.3%

8.2%

9.7%
9.4%
8.4%
7.4%

Excluded
Excluded
Excluded

Excluded

Used
Excluded
Excluded

Used

Used

Used

Used

Used

Used

Used

Used
Excluded

Used

Used

Used

Used
Excluded

Used

Used
Excluded

Used
Excluded
Excluded

Used

Used
Excluded

Used

Used

Used

Used
Used

Used

Used
Used
Used
Used
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Ser
Thr
Trp
Tyr
Val
Ac-Orn
ADMA
SDMA
total-DMA
alpha-AAA
Carnosine
Creatinine
Histamine
Kynurenine
Met-SO
Nitro-Tyr
OH-Pro
PEA
Putrescine
Sarcosine
Serotonin
Spermidine
Spermine
Taurine
DOPA
Dopamine
LPC a C14:0
LPC a C16:0
LPCaCl6:1
LPCaC17:0
LPC a C18:0
LPC a C18:1
LPCaC18:2
LPC a C20:3
LPC a C20:4
LPC a C24:0
LPC a C26:0
LPC a C26:1
LPC a C28:0
LPCaC28:1
LPC a C6:0
PC aa C24:0
PC aa C26:0
PC aa C28:1
PC aa C30:0
PC aa C30:2
PC aa C32:0
PC aa C32:1
PC aa C32:2

13.6
18.3
12.9
14.7
13.5
20.8
17.4
32.4
20.3
32.0
89.8
14.7
43.5
11.3
20.9
58.4
NA
NA
53.2
28.7
38.0
241
8.5
13.7
19.5
NA
6.8
6.9
7.0
7.3
7.2
6.8
6.9
8.8
7.3
32.0
444
9.5
37.0
35.5

459
27.2
9.5
9.4
89.9
8.4
9.2
12.3

99.44
99.13
99.63
99.57
99.63
79.07
66.50
97.34
99.20
97.34
4.02
99.38
89.97
97.28
96.66
7.55
2.11
0.56
93.75
4.40
99.32
98.51
9.29
96.90
44.58
0.06
0.00
99.81
99.69
99.63
99.81
99.75
99.75
99.63
99.69
23.22
43.72
0.00
23.47
98.64

69.35
5.63
99.63
99.63
31.33
99.81
99.81
99.81

Used
Used
Used
Used
Used
Used
Used
Excluded
Used
Excluded
Excluded
Used
Excluded
Used
Used
Excluded
Excluded
Excluded
Excluded
Excluded
Excluded
Used
Excluded
Used
Excluded
Excluded
Excluded
Used
Used
Used
Used
Used
Used
Used
Used
Excluded
Excluded
Excluded
Excluded
Excluded

Excluded
Excluded
Used
Used
Excluded
Used
Used
Used

0.62
0.71
0.51
0.66
0.69

0.45
0.75
0.84
0.84
0.80
0.84
0.93
0.77
0.87
0.09
0.09
-0.04
0.17
0.29
-0.14
0.11
0.09
0.87
0.89
0.12
0.83
0.96
0.91

100.00
100.00
100.00
100.00
100.00

21.24
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

12.45

59.58

0.00

49.61

99.84

33.33

72.55

11.54
100.00
100.00

4.22
100.00
100.00

99.93

9.6%
12.1%
7.5%
8.6%
19.6%

23.8%
8.8%
8.6%

12.7%
9.7%
9.2%
8.8%
9.0%
9.0%

21.1%

31.0%
7.9%

29.1%

22.6%

62.5%

26.5%

32.9%
9.8%
7.8%

81.6%
7.1%
7.4%

11.1%

Used
Used
Used
Used
Used

Excluded
Used
Used
Used
Used
Used
Used
Used
Used

Excluded

Excluded

Excluded

Excluded

Excluded

Excluded

Excluded

Excluded
Used
Used

Excluded
Used
Used
Used
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PC aa C32:3
PC aa C34:1
PC aa C34:2
PC aa C34:3
PC aa C34:4
PC aa C36:0
PC aa C36:1
PC aa C36:2
PC aa C36:3
PC aa C36:4
PC aa C36:5
PC aa C36:6
PC aa C38:0
PC aa C38:1
PC aa C38:3
PC aa C38:4
PC aa C38:5
PC aa C38:6
PC ae C40:0
PC aa C40:1
PC aa C40:2
PC aa C40:3
PC aa C40:4
PC aa C40:5
PC aa C40:6
PC aa C42:0
PC aa C42:1
PC aa C42:2
PC aa C42:4
PC aa C42:5
PC aa C42:6
PC ae C30:0
PC ae C30:1
PC ae C30:2
PC ae C32:1
PC ae C32:2
PC ae C34:0
PC ae C34:1
PC ae C34:2
PC ae C34:3
PC ae C36:0
PC ae C36:1
PC ae C36:2
PC ae C36:3
PC ae C36:4
PC ae C36:5
PC ae C38:0
PC ae C38:1
PC ae C38:2

9.2
7.1
7.0
6.3
6.8
11.6
6.9
6.6
6.5
6.3
6.7
9.5
8.8
27.0
6.9
5.7
5.6
6.9

11.7
14.9
13.9
6.8
6.5
6.1
9.2
12.0
13.5
11.0
11.3
10.7
19.7
77.9
25.2
9.3
12.2
9.6
7.4
7.2
6.9
22.7
7.9
7.0
7.1
6.3
6.1
8.1
14.7
11.7

99.75
99.88
99.88
99.88
99.81
99.63
99.88
99.88
99.88
99.94
99.81
99.75
99.63
99.75
99.88
99.88
99.88
100.00

14.24
99.63
99.75
99.81
99.75
99.63
99.88
99.69
99.69
99.81
99.69
95.42
99.57
82.35
99.57
99.81
99.63
99.81
99.81
99.88
99.88
99.63
99.75
99.88
99.88
99.88
99.81
99.63
99.50
99.75

Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Excluded
Used
Used
Used
Used

Excluded
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used

Excluded

Excluded
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used

0.79
0.83
0.75
0.91
0.92
0.74
0.84
0.80
0.86
0.87
0.82
0.89
0.86
0.34
0.86
0.88
0.83
0.93
0.87
0.51
0.51
0.60
0.86
0.89
0.93
0.85
0.72
0.56
0.51
0.75
0.62
0.76
0.18
0.65
0.83
0.77
0.82
0.87
0.90
091
0.35
0.85
0.92
0.86
0.87
0.89
0.81
0.48
0.73

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
99.84

100.00
100.00
100.00
100.00

1.05
8.66

100.00
100.00
100.00
100.00
100.00
99.97

100.00
100.00
100.00
100.00
60.16

98.86

94.12

86.34

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

8.9%
7.2%
7.7%
8.6%
8.0%
17.4%
8.5%
6.7%
7.5%
7.8%
8.6%
11.1%
13.8%
18.1%
7.6%
7.3%
7.9%
8.1%
4.8%
13.5%
11.7%
11.2%
7.6%
7.0%
7.1%
12.3%
14.8%
14.6%
11.7%
10.6%
12.5%
18.1%
41.7%
17.5%
8.0%
11.6%
7.9%
7.6%
7.6%
7.9%
35.6%
9.8%
8.3%
8.1%
7.9%
8.0%
10.8%
12.4%
10.3%

Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Excluded
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Used
Excluded
Used
Used
Used
Used
Used
Used
Used
Excluded
Used
Used
Used
Used
Used
Used
Used
Used
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PC ae C38:3 7.0 99.94 Used 0.85 100.00 9.2% Used
PC ae C38:4 6.1 100.00 Used 0.82 100.00 8.6% Used
PC ae C38:5 5.9 100.00 Used 0.82 100.00 8.3% Used
PC ae C38:6 6.5 99.88 Used 0.85 100.00 8.1% Used
PC ae C40:1 11.1 99.63 Used 0.68 100.00 10.5% Used
PC ae C40:2 8.3 99.88 Used 0.85 100.00 9.5% Used
PC ae C40:3 9.0 99.94 Used 0.73 100.00 9.5% Used
PC ae C40:4 8.7 99.63 Used 0.82 100.00 9.6% Used
PC ae C40:5 6.5 99.88 Used 0.78 100.00 8.3% Used
PC ae C40:6 6.9 99.94 Used 0.88 100.00 8.6% Used
PC ae C42:0 13.8 36.35 Excluded 0.60 14.87 15.7% Used
PC ae C42:1 16.0 99.57 Used 0.51 100.00 11.5% Used
PC ae C42:2 11.5 99.69 Used 0.69 100.00 12.8% Used
PC ae C42:3 9.8 99.88 Used 0.80 100.00 10.8% Used
PC ae C42:4 7.8 99.63 Used 0.78 100.00 9.2% Used
PC ae C42:5 7.4 99.57 Used 0.86 99.97 7.4% Used
PC ae C44:3 243 99.69 Used 0.50 100.00 12.5% Used
PC ae C44:4 12.1 99.69 Used 0.71 100.00 11.4% Used
PC ae C44:5 7.4 99.69 Used 0.86 100.00 8.0% Used
PC ae C44:6 7.8 99.63 Used 0.89 100.00 7.7% Used
SM (OH) C14:1 11.0 99.63 Used 0.91 100.00 7.7% Used
SM (OH) C16:1 11.0 100.00 Used 0.86 100.00 8.8% Used
SM (OH) C22:1 11.2 99.88 Used 0.82 100.00 11.2% Used
SM (OH) C22:2 11.2 99.88 Used 0.87 100.00 10.3% Used
SM (OH) C24:1 15.1 99.75 Used 0.75 100.00 15.1% Used
SM C16:0 10.6 99.88 Used 0.73 100.00 8.0% Used
SM C16:1 9.9 99.88 Used 0.84 100.00 7.5% Used
SM C18:0 9.8 99.81 Used 0.79 100.00 9.0% Used
SM C18:1 9.4 99.88 Used 0.84 100.00 8.2% Used
SM C20:2 16.2 99.81 Used 0.61 99.93 12.6% Used
SM C22:3 NA 0.37 Excluded -0.04 55.85 57.6% Excluded
SM C24:0 11.9 99.75 Used 0.78 100.00 10.7% Used
SM C24:1 12.1 99.88 Used 0.75 100.00 10.0% Used
SM C26:0 31.8 99.81 Excluded 0.46 100.00 67.8% Excluded
SM C26:1 21.2 99.75 Used 0.69 100.00 20.8% Used
Hi1 5.2 99.81 Used 0.69 100.00 6.3% Used
2.3.4.3 KORA F4

To ensure data quality, metabolites had to meet three criteria: (1) average value

of coefficient of variance (CV) of the three QCs should be smaller than 25%. (2) 90% of all

measured sample concentrations should be above the limit of detection (LOD). (3)
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Correlation coefficients between two duplicated measurements of 144 re-measured
samples should be above 0.5 (Table 3). In total, 131 metabolites passed the three quality

controls.

2.4 Gene expression profiling

Peripheral blood was drawn under fasting conditions from 599 KORA S4
individuals at the same time as the serum samples used for metabolic profiling were
prepared. Blood samples were collected directly in PAXgene (TM) Blood RNA tubes
(PreAnalytiX). The RNA extraction was performed using the PAXgene Blood miRNA kit
(PreAnalytiX). Purity and integrity of RNA was assessed on the Bioanalyzer (Agilent)
with the 6000 Nano LabChip reagent set (Agilent). In all, 500 ng of RNA was reverse-
transcribed into cRNA and biotin-UTP labeled, using the Illumina TotalPrep-96 RNA
Amplification Kit (Ambion). In all, 3000 ng of cRNA was hybridized to the Illumina
HumanHT-12 v3 Expression BeadChip. Chips were washed, detected and scanned
according to manufacturer’s instructions. Raw data were exported from the Illumina
‘GenomeStudio” Software to R. The data were converted into logarithmic scores and
normalized using the quantile method (Bolstad et al., 2003). The sample sets comprised
383 individuals with NGT, 104 with IGT and 26 with dT2D. The known T2D individuals

were removed as had been done for the metabolomics analysis.
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2.5 Statistical analysis

All statistical calculations were performed under the R statistical environment

(http://www.r-project.org/).

2.5.1 Delta (difference in metabolite concentration means for males
and females).

For comparison of metabolite concentrations between males and females we
used the delta (A), as it describes the difference in concentration means for males and
females for a specific metabolite relative to the mean metabolite concentration in males.
Therefore the difference of mean metabolite concentration in males and mean metabolite
concentration in females is calculated and then divided by the mean metabolite
concentration in males. For example, a value of A =50% means that the mean metabolite

concentration in females is 50% lower than that in males.

2.5.2 Correlations

A correlation exists between two variables when one of them is related to the
other. Pearson’s (product moment) correlation coefficient (r) measures the strength of
the linear relationship between the paired x- and y-quantitative values in a sample

(Triola et al., 2006). Its value is computed as:

. nyxy—QEx)Xy)
JnZx?) — Z0)%/nEy?) - T y)?

Where n is the number of pairs of data present.
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In order to investigate how strong the different metabolites correlate with each
other and the sex-specific effects propagate through the underlying metabolic network,
we calculated full-order partial correlation coefficients between all pairs of metabolites.
The resulting partial correlation networks are commonly referred to as Gaussian
graphical models (GGMs), which we have previously demonstrated to be useful for the
analysis of direct metabolite-metabolite effects in the same population cohort (Krumsiek

et al,, 2011).

2.5.3 Regression
2.5.3.1 Linear regression

Metabolite concentration differences between males and females were
investigated by linear regression analysis. The basic model contains the log-transformed
metabolite as dependent variable and sex as explanatory variable with both age and BMI
as covariates. To correct for multiple testing, the Bonferroni-correction was applied. The
P-value cutoff for significance was set at 0.05/131 = 3.84E-4. In the replication, we also
applied Bonferroni-correction.

Moreover, we also analyzed the influence of anthropometric phenotypes,
diseases and environmental factors by including different covariates to the linear
regression and comparison of the structure of the results. Four models which differed in
the use of one or more additional covariates were performed. The covariates in each

model beside age are waist hip ratio (WHR), lipid parameters (HDL and LDL

38



cholesterol, triglycerides), T2D, alcohol consumption and smoking. Furthermore, a
meta-analysis of the discovery and the replication sample with a fixed effect model was
analyzed to reveal the sex-specific effects of metabolite concentrations.

Associations between metabolite concentrations and 2-h glucose value were also
explored by linear regression. 3 estimates were calculated from the regression analyses.
The concentration of each metabolite was log-transformed and normalized to have a
mean of zero and a standard deviation (s.d.) of one. Various risk factors in the linear
regression were added as covariates, and the same significance level 3.6E-4 was

adopted.

2.5.3.2 Logistic regression

Logistic regression was used to identify metabolites showed significantly
different concentrations between groups when we look for early biomarkers of T2D.
Odds ratios (ORs) for single metabolites were calculated between two groups. The
concentration of each metabolite was scaled to have a mean of zero and an s.d. of one;
thus, all reported OR values correspond to the change per s.d. of metabolite
concentration. Various T2D risk factors were added to the logistic regression analysis as
covariates. To handle false discovery from multiple comparisons, the cutoff point for
significance was calculated according to the Bonferroni correction, at a level of 3.6E-4
(for a total use of 140 metabolites at the 5% level). Because the metabolites were

correlated within well-defined biological groups (e.g., 8 LPCs, 33 diacyl PCs, 35 acyl-
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alkyl PCs and 13 SMs), this correction was considered conservative. Additionally, the
categorized metabolite concentrations and combined scores (see below) were analyzed,
and the ORs were calculated across quartiles. To test the trend across quartiles, we
assigned all individuals either the median value of the concentrations or the combined

scores, and obtained the P-values using the same regression model.

2.5.3.3 Combination of metabolites

After identified early biomarkers for T2D, we obtain the combined scores of
these metabolites, the scaled metabolite concentrations (mean = 0, s.d. = 1) were first
modeled with multivariate logistic regression containing all confounding variables. The
coefficients of these metabolites from the model were then used to calculate a weighted
sum for each individual. In accordance with the decreasing trend of glycine and LPC

(18:2), we inverted these values as the combined scores.

2.5.3.4 Residuals of metabolite concentrations

To avoid the influence of other confounding factors when plotting the
concentration of metabolites, we used the residuals from a linear regression model.
Metabolite concentrations were log-transformed and scaled (mean = 0, s.d. = 1), and the
residuals were then deduced from the linear regression that included the corresponding

confounding factors.
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2.5.4 Machine learning methods
2.5.4.1 Random forest stepwise selection methods and candidate biomarker selection

To select candidate biomarkers, we applied two more methods, the random
forest (Breiman, 2001) and stepwise selection, which assess the metabolites as a group
while logistic regression evaluates one metabolite at a time.

Between the NGT and the IGT groups, supervised classification method random
forest was first used to select the metabolites among the 30 highest ranking variables of
importance score, meaning they can best separate the individuals between the two
groups. These metabolites showed most impact on whether or not individuals can be
assigned correctly to their diabetes status in the internal permutation test of random
forest. T2D risk indicators (i.e. age, sex, BMI, physical activity, alcohol intake, smoking,
systolic BP, HDL cholesterol, HbAu., fasting glucose, fasting insulin) were also included
in this method with all the metabolites.

We further select the metabolites using stepwise selection on the logistic
regression model. Metabolites which showed significantly different concentrations
between the compared groups in logistic regression and also being selected using
random forest were used in this model along with all the risk indicators. They were
added and dropped from the model one by one. Akaike’s Information Criterion (AIC)
was used to evaluate the performance of these subsets of metabolites used in the models.
The model with minimal AIC was chosen and metabolites left in this model are the

potential independent markers to best distinguish IGT from NGT individuals and the
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correlated metabolites with less separation power were dropped. The area under the
receiver-operating-characteristic curves (AUC) was used to evaluate the models and a

likelihood ratio test was used to compare the models.

2.5.4.2 Partial least square analysis

Partial least square (PLS) (Lorber et al., 1987), or projection to latent structures by
means of partial least squares is a supervised machine learning method. It relates a
matrix X to a vector y (or to a matrix Y). The x-data are transformed into a set of a few
intermediate linear latent variables (components) using linear combination. The purpose
is to maximize the covariance between the components and the vector y (or matrix Y).

The PLS analysis was carried out using the R package pls to investigate the
metabolic profiles serum and plasma as well as of males and females. The concentrations
of each metabolite were transformed into a mean of zero and an s.d. of one before the
analysis. Data was visualized by plotting the scores of the first two components against
each other, where each point represented an individual (serum/plasma or male/female)

sample.

2.5.5 Network analysis

Metabolite—protein interactions from the Human Metabolome Database (HMDB)
(Wishart et al., 2009) and protein—protein interactions in the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) (Szklarczyk et al., 2011) were used to construct a

network containing relationships between metabolites, enzymes, other proteins and

42



T2D-related genes. The candidate metabolites were assigned to HMDB IDs using the
metaP-Server (Kastenmdiller et al.,, 2011), and their associated enzymes were derived
according to the annotations provided by HMDB. These enzymes were connected to the
46 T2D related genes (considered at that point), allowing for one intermediate protein
(proteins other than the T2D related genes or the integrating enzymes) through STRING
protein functional interactions and optimized by eliminating edges with a STRING score
of 0.7 and undirected paths. The sub-networks were connected by the shortest path from

metabolites to T2D-related genes.
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Chapter 3 Results

This chapter is divided into three parts. The first two parts clarify the potential
influence of blood matrices and sex on metabolic variation. The third part presents the
results on finding early biomarker for T2D as well as the attempts to find the potential

underlying mechanism.

3.1 Metabolomics differences between EDTA plasma and serum

We analyzed the concentrations of 122 metabolites after quality control in both
EDTA plasma and serum collected from 377 German participants of the KORA F3 study
(Holle et al., 2005; Wang-Sattler et al., 2008). These plasma and serum samples were
measured separately in 10 plates. In order to reduce potential bias and authenticate our
findings, we randomly chose 83 participants from these 377 individuals and measured
the metabolite concentration profiles in two further plates with the same technology, this
time, including both plasma samples and their corresponding serum samples from each
person within the same plates. All these relatedly measured samples were randomly

distributed on the plates.

3.1.1 Good reproducibility in serum and better in plasma

Both plasma and serum samples which displayed good stability in the
metabolites were measured. The metabolite concentrations from the repeated
measurements on the 83 samples showed a high correlation between the first and the
second measurements (Figure 1) with mean Person’s correlation coefficients (r) of all the
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122 metabolites being 0.83 and 0.80 for plasma and serum, respectively. Most of the
metabolites showed an r value higher than 0.6 except for a few outliers. The
reproducibility was significantly better for plasma than for serum (P = 0.01, paired t-

test), despite that the absolute mean differences in r values were rather small.
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Figure 1: Correlation between repeated measurements of plasma and serum
metabolites.

Pearson’s correlation coefficients (r) between repeated measurements of metabolite
concentrations were plotted. r values in serum are plotted against r values in plasma. Different
shapes represent different groups of metabolites: solid circle for acylcarnitines, triangle for amino
acids, cross for hexose, and square for glycerophospholipid. Different colors of squares represent
different subgroups of glycerophospholipids: blue for lyso-phosphatidylcholine, red for
phosphatidylcholine, and green for sphingomyeline.
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3.1.2 High correlation between plasma and serum metabolite
concentrations and higher concentrations in serum.

Results showed that metabolite concentrations were generally higher in serum
than in plasma (Figure 2). Out of the 122 metabolites we analyzed, 104 (85%) have
significantly higher concentrations (t-test) in serum and the average value of the relative

difference over all metabolites was around 11.7% higher in serum.
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Figure 2: Relative concentration differences and correlation coefficients between
plasma and serum for individual metabolites

The X-axis indicates the mean value of the relative concentration difference. Shapes represent
different groups of metabolites: Acylcarnitines (®), Amino acids (4 ), Hexose (+), and
Glycerophospholipid (*). Colors represent different subgroups of glycerophospholipids:
lysoPhosphatidylcholine (blue), Phosphatidylcholine (red), and Sphingomyeline (green).
Metabolite names are indicated for metabolites with a mean relative concentration difference
larger than 20%.
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We also performed a PLS analysis on 377 KORA individuals. The result
demonstrated that plasma samples were clearly separated from serum samples (Figure
3). In addition, we observed an overall high correlation (mean r = 0.816 + 0.1) between
the values in these two matrices, indicating that the differences of metabolite
concentrations between both matrices are due to systematic changes across all
individuals. This is especially true for most acylcarnitines (mean r = 0.866 + 0.09) and
glycerophospholipids (mean r = 0.826 + 0.09). However, for amino acids, the correlation
between the two matrices was significantly lower (mean r = 0.676 + 0.13) compared to all
the metabolites (p = 0.004, t-test) (Figure 2). Among the metabolites with significantly
higher concentrations in serum, nine metabolites had relative concentration differences
greater than 20% (Figure 2). Arginine had the highest concentration difference,
displaying a nearly 50% higher concentration in serum with a lower correlation (r = 0.50)
between the two matrices, while diacyl PC C38:1, which was 26% higher in serum than
in plasma, still kept a good correlation (r = 0.88). Four LPC (C16:0, C17:0, C18:0, C18:1)
and three other amino acids (serine, phenylalanine, glycine) were also found to have
more than 20% higher concentrations in serum. Moreover, from the PLS result (Figure 3)
we observed similar shapes of both the serum samples and the plasma samples, even
though they were clustered into two groups. The size of the group of serum samples

was larger than that of the plasma group. These observations were consistent with the

47



high correlation between metabolite concentrations in plasma and serum and a higher

absolute concentration in serum.
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Figure 3: Separation of plasma and serum metabolite profiles

The dot plot presented the results from the partial least squares (PLS) analysis. Scores of the first
two PLS components were plotted against each other. Each point indicates either a plasma (red)
or serum (blue) sample.

3.1.3 Higher sensitivity in serum

We also noticed that serum provided higher sensitivity than plasma, when
metabolite concentrations were compared between subjects with different phenotypes.
For example, 40 metabolites in serum were identified to have a significantly different
mean concentration in T2D patients vs. non-diseased individuals, while plasma only

revealed 25. Similar results were also observed when comparing male against female
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individuals, as well as when comparing smokers against nonsmokers, serum always
containing larger number of significantly different metabolites (Table 4). Furthermore,
for each of the three phenotypes, all significantly different metabolites that were
identified using plasma were among those identified using serum. The metabolites that
failed to be identified in plasma were, nevertheless, close to the borderline of
significance.

Table 4: Numbers of significant different metabolite in plasma and serum

Plasma (n=377) Serum (n=377)

T2D (n=>51)vs. non-T2D (n =. 326) 25 40
Males (n =197) vs. Female (n = 180) 62 69
Smoker (n = 45) vs. non-smoker (n = 332) 4 6

3.2 Sexual dimorphisms in metabolomics
3.2.1 Phenotypic metabotype differences between males and females

All phenotypic analysis steps were performed on population based cohort data
of KORA F4 (1452 males and 1552 females) and KORA F3 (197 males and 180 females)
with fasting serum concentrations of 131 metabolites after quality control. The
metabolites covered a biologically relevant panel that could be divided into five
subgroups such as amino acids, hexose, acylcarnitines and phospholipids. A PLS
analysis of all metabolites showed that there were major differences in serum metabolite
concentrations between males and females, as the first two components from the PLS
analysis showed clearly clustered pattern for different sexes (Figure 4). This is true for

both the KORA F4 population and the replication samples in KORA F3.
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Figure 4: Separation of males and females metabolite profiles

Partial least square analyses show that males and females are clustered into two different groups
using the 131 metabolite concentrations in males and females. (A) in KORA F4. (B) in KORA F3.
Each point represents an individual and different color stands for different gender: green for
female and blue for male.

Motivated by the global gender differences in metabolite concentrations shown
by PLS analysis, we further investigate the effect of sex on each metabolite. We
performed linear regression with the log-transformed concentration as dependent and
sex as the explanatory variable for each metabolite. In the regression model, age and
BMI were also used as covariates. The regression results revealed in 102 of the total 131
metabolites (p-value below the Bonferroni-corrected significance level of 3.86x10+)
significant effects of gender. Moreover, at least one metabolite in each subgroup
including amino acids, acylcarnitines, PCs, LPCs and SMs showed significant sex-

specific differences in metabolite concentrations.
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The linear regression analysis showed that the concentrations of most amino
acids were significantly higher in males except for glycine (effect of sex: 3 = -0.13, P-
value = 2.36 x 10#°) and serine (effect of sex: 3 = -0.13, P-value = 1.0 x 10-?). Both of them
exhibited higher concentrations in females. The relative sex-specific difference for
glycine was A = 214%, which means that the mean concentration in men was 114% lower
than that in women. The levels of most serum acylcarnitines were significantly higher in
males compared to females. The concentrations of PC (both PC ae Cx:y and PC aa Cx:y)
tended to be significantly lower in males compared to females. The most significant
difference between the two sexes could be seen for the PC aa C32:3 (A =217.9%, P-value
= 4.4 x 10%), whereas LPC concentrations were higher in males compared to females. In
contrast, the concentrations of most sphingomyelins were significantly lower in males
than in females. The concentration of hexose, which is the sum of Cé6-sugars, was
significantly higher in males compared to females (A =7.3%, p-value = 6.2 x 10%).

The adjustment for different covariates (e.g. waist-hip ratio (WHR), HDL (high
density lipoprotein), LDL (low density lipoprotein), triglycerides, T2D, smoking, and
high alcohol consumption) did not affect the sex-specific differences in the metabolite
concentrations extensively. The majority of the high significant sex-effects remained
significant. In particular, the adjustments for lipid parameter (HDL, LDL and
triglycerides), T2D, smoking, and high alcohol consumption did not influence our main

findings. If WHR was included into the linear regression model as covariate instead of
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BMI or as an additional covariate in addition to BMI, the P-values of the sex-effect on
metabolites changed, but for most metabolites the gender differences remained
significant. Interestingly, seven PC aa Cxiys and LPC a C17:0 showed significant
differences between sexes while adjusting for age and WHR but not for age and BMI
adjustment. We refer the interested reader to Table 6. As replication the same linear
regression approach (covariates: age, BMI) was applied to the KORA F3 cohort which
included 377 individuals. Despite this smaller sample size for 63 of 102 metabolites with
a significant effect of sex in KORA F4, the effect of sex in KORA F3 had the same
direction and a significant P-value lower than the Bonferroni-corrected replication
significance level corrected for the 102 metabolites taken forward to replication (0.05/102
= 4.9 x 10#). That means 61.8% of the sex-specific differences could be replicated. A
combined meta-analysis of KORA F4 and KORA F3 revealed 113 metabolites with a
significant effect of sex (Bonferroni-corrected meta-analysis significance level: P-value <

3.86 x 104).

3.2.2 Sex-Specific Effects in the Metabolic Network

We further investigated how groups of metabolites share pairwise correlations,
that mean similar effects, and how the sex specific effects propagate through the
metabolic network. Therefore we calculated a partial correlation matrix between all
metabolites, corrected against age, sex and BMI (Krumsiek et al., 2011). The resulting

network, which is also referred to as a Gaussian graphical model, was annotated with
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the results from the linear regression analysis to get a comprehensive picture of sex-
effects in this data-driven metabolic network (Figure 5). We applied a cut-off of r = 0.3 (r
represents the partial correlation coefficient) in order to emphasize strong inter-
metabolite effects. We observed a general structuring of the network into members from
similar metabolic classes, e.g. the amino acids, the PC, SM and acylcarnitines (Figure 6).
Direct correlations between metabolites, as represented by partial correlation
coefficients, are rare in this metabolite panel with only around 1% of all partial
correlations showing a strong effect above r = 0.3. For this specific cut-off we obtained 14
non-singleton groups, which can be regarded as independently regulated phenotypes
within the measured metabolite panel. Detailed description of the distribution of partial
correlations and the group structure in the network can be found in Figure 6 and Figure
7. The low connectedness of the network is in line with previous findings (Krumsiek et
al., 2011) which demonstrated that Gaussian graphical models are sparsely connected on

the one hand, but specifically exclude indirect metabolic interactions on the other hand.
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Figure 5: Gaussian graphical model of all measured metabolites illustrating the
correlation strength and the propagation of gender-specific effects through the
underlying metabolic network

Each node represents one metabolite whereas edge weights correspond to the strength of partial
correlation. Only edges with a partial correlation above r = 0.3 are shown. Node coloring
represents the strength of association (measured using 3 from linear regression analysis) towards
either males or females. Metabolite names marked with a star * represent significantly different
metabolites between genders. Yellow highlighted pairs of metabolites differ by a C18:0 fatty acid
residue.

54



25

20f

15

10f

# of groups (singletons excluded)

I
1
I
1
I
1
I
1
1
I
1
1
I
1
I
1
I
1
1

00 0.2 0.4 0.6 0.8 1
absolute partial correlation cutoff
Figure 6: Distribution of partial correlation coefficients

Partial correlations centered around zero with a shift towards positive high values. When
applying a correlation cutoff of » = 0.3, we are left with 109 out of 8515 correlation values (1.28%)
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Figure 7: Numbers of clustered groups in the GGM as a function of the absolute
partial correlation cutoff
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Note that we did not count singleton metabolites without any partial correlation above threshold
here. Most non-singleton groups emerge in the cutoff range between 0.3 and 0.7, which
corresponds to the Figure in the main manuscript. For our lower cutoff of 0.3, we obtain 14
groups, which can here be regarded as independent phenotypes in the metabolite pool

Strikingly, sex-specific effects appear to be localized with respect to metabolic
classes and connections in the partial correlation matrix. For instance, while most
sphingomyelin concentrations have been shown to be higher in females, we also observe
them to be a connected component in the GGM. Similarly, acylcarnitines are higher in
males and also share partial correlation edges, mostly with other acylcarnitines (Figure
5). Interestingly, we observed three metabolite pairs from the PC aa and LPC classes,
respectively, which constitute a side chain length difference of 18 carbon atoms (yellow

shaded metabolite pairs, Figure 5).

3.3 Detecting novel pre-diabetic markers using metabolomics
approach

3.3.1 Study participants

Individuals with known T2D were identified by physician validated self-
reporting (Rathmann et al., 2010) and excluded from our analysis, to avoid potential
influence from anti-diabetic medication with non-fasting participants and individuals

with missing values (Figure 8A).
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KORA S4 cross-sectional sh.ldy‘

n=4261 Overlapped Fasting samples
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MNon-fasting (n=2863)
Missing values (n=63) F4
Known T2D (n=38) n=1010 n=2962
MNon-T2D (n=1206)
NGT i-IFG IGT dT2D
n=866 n=102 n=238 n=91
C Follow-up F4 D Follow-up F4

Baseline S4

incident T2D
n=91

Baseline 54 incident IGT
n=118

Figure 8: Population description

Metabolomics screens in the KORA cohort, at baseline S4 (A), overlapped between S4 and F4 (B)
and prospective (C, D). Participant numbers are shown. Normal glucose tolerance (NGT),
isolated impaired fasting glucose (i-IFG), impaired glucose tolerance (IGT), type 2 diabetes
mellitus (T2D) and newly diagnosed T2D (dT2D). Non-T2D individuals include NGT, i-IFG and
IGT participants.

Based on both fasting and 2-h glucose values (i.e., 2 h post oral 75 g glucose
load), individuals were defined according to the WHO diagnostic criteria to have
normal glucose tolerance (NGT), isolated IFG (i-IFG), IGT or newly diagnosed T2D
(dT2D) (Meisinger et al., 2010; Rathmann et al., 2009) (Table 5). The sample sets include
91 dT2D patients and 1206 individuals with non-T2D, including 866 participants with
NGT, 102 with i-IFG and 238 with IGT, in the cross-sectional KORA S4 (Figure 8A; study
characteristics are shown in Table 6). Of the 1010 individuals in a fasting state who
participated at baseline and follow-up surveys (Figure 8B, study characteristics of the

KORA F4 survey are shown in Table 7), 876 of them were non-diabetic at baseline. Out
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of these, about 10% developed T2D (i.e., 91 incident T2D) (Figure 8C). From the 641
individuals with NGT at baseline, 18% developed IGT (i.e., 118 incident IGT) 7 years
later (Figure 8D). The study characteristics of the prospective KORA S4-F4 are shown in
Table 8.

Table 5: Classification based on fasting and 2-h glucose values according to the WHO
diagnostic criteria

Abbreviations: NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose, IGT,
impaired glucose tolerance; dT2D, newly-diagnosed type 2 diabetes.

Fasting glucose values (mg/dl) 2-h glucose values (mg/dl)
NGT <110 and <140
i-IFG 110 < and <126 and <140
IGT <126 and 140 < and <200
dT2D >126 and /or >200

Table 6: Characteristics of the KORA S4 cross-sectional study sample

Abbreviations: NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose; IGT,
impaired glucose tolerance; dT2D, newly-diagnosed type 2 diabetes; BP, blood pressure; HDL,
high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means + SD
are given for each variable and each group (NGT, i-IFG, IGT and dT2D).

Clinical and laboratory parameters NGT i-IFG IGT dT2D

N 866 102 238 91

Age (years) 63.5+5.5 64.1+£52 65.2+5.2 659 +54
Sex (female) (%) 52.2 30.4 449 41.8
BMI (kg/m?) 27.7+4.1 292 +4 29.6 +4.1 30.2+3.9
Physical activity (% >1h per week) 46.7 35.3 39.9 36.3
Alcohol intake* (%): 20.2 20.5 25.2 24.2
Current smoker (%) 14.8 10.8 10.9 23.1
Systolic BP (mm-Hg) 131.7+189  1389+179  140.7+19.8 146.8 +21.5
HDL cholesterol (mg/dl) 60.5+16.4 55.7 +15.9 55.7 +15.1 50.0 £ 15.8
LDL cholesterol (mg/dl) 154.5 +39.8 152.1+37.7 155.2 + 38.6 146.1 +44.6
Triglycerides (mg/dl) 120.7 +68.3 145.0 £ 96.0 146.6 + 80.0 170.6 +107.1
HbA1c (%) 5.56 +0.33 5.62+0.33 5.66 +0.39 6.21£0.83
Fasting glucose (mg/dl) 95.6 £7.1 1142 £3.7 104.5+9.7 133.2+31.7
2-h glucose (mg/dl) 102.1 +21.0 109.3 +18.7 163.4+16.4 232.1+£63.7
Fasting insulin (uU/ml) 10.48 +7.28 16.26 +9.67 13.92 +9.53 17.70 +12.61

* > 20g/day for women; > 40g/day for men.
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Table 7: Cross-sectional analysis: Characteristics of the KORA F4 follow-up study
sample

Abbreviations: NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose, IGT,
impaired glucose tolerance; dT2D, newly-diagnosed type 2 diabetes; BP, blood pressure; HDL,
high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means + SD
are given for each variable and each group (NGT, i-IFG, IGT and dT2D).

Clinical and laboratory

NGT i-IFG IGT dT2D
parameters
N 2134 112 380 113
Age (years) 52.8 £12.6 61.2 + 109 63.8 + 10.9 65.4+10.3
Sex (female) (%) 54.4 33.9 51.3 40.7
BMI (kg/m?) 26.6+4.3 299 +4.6 29.7+4.9 309+4.4
Physical activity 58.1 455 503 478
(% >1h per week)
Alcohol intake* (%) 17.4 20.5 17.4 21.2
Smoker (%) 20.6 9.6 8.7 13.3
Systolic BP (mm-Hg) 1192+174  130.8+19.5 127.6 £ 18.6 131.8+17.6
HDL cholesterol (mg/dl) 57.6+14.4 50.7+13.5 543 +14.4 482 +12.5
LDL cholesterol (mg/dl) 134.9 £34.2 1452 +36.1 144.2 £ 35.7 138.2 +34.6
Triglycerides (mg/dl) 110.9 +74.5 154.5+87.7 1459 +£85.9 129.2 +162.3
HbA1c (%) 5.36 +0.30 5.69 +0.32 5.64+0.35 6.24 +0.98
Fasting glucose (mg/dl) 91.7+7.6 113.8+3.5 100.1 +10.6 123.7 +28.6
2-h glucose (mg/dl) 97.7£20.8 109.9 +17.1 161.7 +17.1 219.9 +60.9

*>20 g/day for women; > 40 g/day for men

Table 8: Characteristics of the KORA S4 — F4 prospective study samples

Abbreviations: BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Percentages of individuals or means + SD are given for each variable and each group.

NGT at baseline (n=589) Non-T2D at baseline (n=876)

Remained Developed Remained Developed
NGT at IGT at follow- Non-T2D at T2D at follow-
follow-up up follow-up up
N 471 118 785 91
Age (years) 62.4+54 63.9+55 629+54 65.5+5.2
Sex (female) (%) 52.2 55.9 50.8 34.1
BMI (kg/m2) 272+38 282+3.9 279 +4 302 +3.6
Physical activity
529 43.2 52.2 58.2
(% >1h per week)
Alcohol intake* (%) 19.9 20.3 20.6 19.8
Smoker (%) 14.6 9.3 12.0 14.3
Systolic BP (mm-Hg) 129.6 +18.2 134.2 +18.7 132.4 +18.6 137.8 +19
HDL cholesterol (mg/dl) 61.3+16.8 58.9 +16.2 60.0 £16.5 51.9+124
LDL cholesterol (mg/dl) 153.9+38.4 156.9 +42.7 154.5+39.5 157.7 +41.6
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Triglycerides (mg/dl) 118.1 £63.9 129.5+£79.0 125.0£70.0 151.2+74.2

HbA1c (%) 5.54 +£0.33 5.59 +0.34 56+0.3 58+04
Fasting glucose (mg/dl) 94.7 £6.9 96.6 +7.1 97.7 £ 8.8 106.1 £10.1
2-h glucose (mg/dl) 98.2+20.5 109.9 +16.8 109.3 +28 1459+32.3
Fasting insulin (uU/ml) 9.91 +6.48 11.79 + 8.83 11.0+£7.6 16.2+9.6

* >20g/day for women; > 40g/day for men

3.3.2 Analyses strategies

We first screened for significantly differed metabolites concentrations among
four groups (dT2D, IGT, i-IFG and NGT) for 140 metabolites with cross-sectional studies
in KORA 54, and for 131 metabolites in KORA F4. Three IGT-specific metabolites were
identified and further investigated in the prospective KORA S4-F4 cohort, to examine
whether the baseline metabolite concentrations can predict incident IGT and T2D, and
whether they are associated with glucose tolerance 7 years later. Our results are based
on a prospective population-based cohort, which differed from previous nested case—
control study (Wang et al., 2011). We also performed analysis with same study design
using our data. The obtained results provided clues to explain the differences between
the two sets of biomarkers. The three metabolites were also replicated in an independent
European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort
(Wang-Sattler et al., 2012). Finally, the relevance of the identified metabolites was
further investigated using bioinformatical analysis to construct the protein-metabolite

interaction networks which also combined with the gene expression data.
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3.3.3 Identification of novel pre-diabetes metabolites distinct from
known T2D risk indicators

To identify metabolites with altered concentrations between the individuals with
NGT, i-IFG, IGT and dT2D, we first examined five pairwise comparisons (i-IFG, IGT and
dT2D versus NGT, as well as dT2D versus either i-IFG or IGT) in the cross-sectional
KORA S4. Based on multivariate logistic regression analysis, 26 metabolite
concentrations differed significantly (P-values < 3.6 x 10) between two groups in at least
one of the five comparisons (Figure 9A; odds ratios (ORs) and P-values are shown in
Table 9). These associations were independent of age, sex, body mass index (BMI),
physical activity, alcohol intake, smoking, systolic blood pressure (BP) and HDL
cholesterol (model 1). As expected, the level of total hexose H1, which is mainly
represented by glucose (Pearson’s correlation coefficient value r between H1 and fasting
glucose reached 0.85; Table 10), was significantly different in all five comparisons. The
significantly changed metabolite panel differed from NGT to i-IFG or to IGT. Most of the
significantly altered metabolite concentrations were found between individuals with

dT2D and IGT as compared with NGT (Table 11A).
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Figure 9: Differences in metabolite concentrations from cross-sectional analysis of
KORA S$4

Plots (A, B) show the names of metabolites with significantly different concentrations in
multivariate logistic regression analyses (after the Bonferroni correction for multiple testing
withPo03.6104) in the five pairwise comparisons of model 1 and model 2. Plot (C) shows the
average residues of the concentrations with standard errors of the three metabolites (glycine, LPC
(18:2) and acetylcarnitine C2) for the NGT, IGT and dT2D groups. Plot (A) shows the results with
adjustment for model 1 (age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and
HDL cholesterol), whereas plots (B, C) have additional adjustments for HbAlc, fasting glucose
and fasting insulin (model 2). Residuals were calculated from linear regression model (formula:
metabolite concentration ~ model 2). For further information, see Supplementary Table 13.

Table 9: Odds ratios (ORs) and P-values in five pairwise comparisons with two
adjusted models in the KORA S4

ORs were calculated with multivariate logistic regression analysis with adjustment for age, sex,
BMI, physical activity, alcohol intake, smoking, systolic BP and HDL cholesterol in model 1;
model 2 includes those variable in model 1 plus HbAue, fasting glucose and fasting insulin. CI
denotes confidence interval.

Metabolite Model 1 Model 2
OR (95% CI), OR (95% CI),
P-value P-value
per SD per SD
238 IGT vs. 866 NGT
Glycine 0.65(0.53-0.78) 5.6E-06 0.67(0.54-0.81) 8.6E-05
LPC (18:2) 0.58(0.47-0.7) 1.3E-07 0.58(0.46-0.72) 2.1E-06
C2 1.37(1.18-1.59) 3.8E-05 1.38(1.16-1.64) 2.4E-04

91 dT2D vs. 866 NGT
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Glycine 0.47(0.33-0.65) 1.1E-05 0.44(0.22-0.83) 1.6E-02

LPC (18:2) 0.62(0.44-0.85) 4.1E-03 0.61(0.32-1.07) 1.1E-01

2 1.17(0.94-1.45) 1.5E-01 1.71(1.14-2.52) 6.8E-03
91 dT2D vs. 234 IGT

Glycine 0.81(0.61-1.07) 1.5E-01 0.76(0.51-1.1) 1.6E-01

LPC (18:2) 0.91(0.69-1.19) 4.8E-01 0.84(0.57-1.22) 3.7E-01

2 0.93(0.71-1.2) 5.9E-01 1.27(0.87-1.86) 2.2E-01
102 i-IFG vs. 866 NGT

Glycine 0.75(0.57-0.98) 3.9E-02 0.62* 1.0E+00

LPC (18:2) 0.99(0.77-1.26) 9.6E-01 0.79* 1.0E+00

2 1.2(0.99-1.46) 5.9E-02 0.18 * 1.0E+00
91 dT2D vs. 102 i-IFG

Glycine 0.62(0.43-0.87) 7.8E-03 0.62(0.4-0.93) 2.5E-02

LPC (18:2) 0.62(0.43-0.89) 1.1E-02 0.54(0.33-0.84) 8.9E-03

2 0.92(0.66-1.27) 6.2E-01 1.23(0.82-1.85) 3.1E-01

* Fasting glucose values were added as co-variants to the model 2, resulting in a perfect separation between

i-IFG and NGT.
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To investigate whether HbAlc, fasting glucose and fasting insulin levels mediate
the shown associations, these were added as covariates to the regression analysis (model
2) in addition to model 1 (Figure 9B).We observed that, under these conditions, no
metabolite differed significantly when comparing individuals with dT2D to those with
NGT, suggesting that these metabolites are associated with HbAlc, fasting glucose and
fasting insulin levels (r values are shown in Table 10). Only nine metabolite
concentrations significantly differed between IGT and NGT individuals (Table 9; Table
11B). These metabolites therefore represent novel biomarker candidates, and are
independent from the known risk indicators for T2D. The logistic regression analysis
was based on each single metabolite, and some of these metabolites are expected to
correlate with each other. To further assess the metabolites as a group, we employed two
additional statistical methods (the non-parametric random forest and the parametric
stepwise selection) to identify unique and independent biomarker candidates. Out of the
nine metabolites, five molecules (i.e., glycine, LPC (18:2), LPC (17:0), LPC (18:1) and C2)
were select after random forest, and LPC (17:0) and LPC (18:1) were then removed after
the stepwise selection. Thus, three molecules were found to contain independent
information: glycine (adjusted OR = 0.67 (0.54 - 0.81), P = 8.6 x 10-5), LPC (18:2) (OR =
0.58 (0.46 - 0.72), P = 2.1 x 10-6) and acetylcarnitine C2 (OR =1.38 (1.16 - 1.64), P =2.4 x
10-4) (Figure 9C). Similar results were observed in the follow-up KORA F4 study (Figure

10). For instance, when 380 IGT individuals were compared with 2134 NGT participants,
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these three metabolites were also found to be highly significantly different (glycine, OR
=0.64 (0.55 - 0.75), P = 9.3 x 10-8; LPC (18:2), OR = 0.47 (0.38 - 0.57), P = 2.1 x 10-13; and

C2, OR = 1.33 (1.17 - 1.49), P = 4.9 x 10 -6) (Table 12).

B ™ -
A [KORA F4 cross-sectional (n=3080)] ! II HES, [[
Excluded: B H1, €2, C18, C18:1, C18:1, xLeu, PC aa C32:0, PC 2aC32:1,
Non-fasting (n=18) + | PCaaCa41, PC aa C36:1, PC aa C36:3, PC aa C364, 4T20
Missing values (n=100) N§34 PC aa C38:3, PC aa C384, PC aa G385, PC aa C404, PC aa CA05 | o1 | H1b | 1o
= h= ; =
Non-T2D (n=2626) Known T20 (n=223) Glycine, Gin, €8, LPC (18:2), LPC (17:0), LPC (18:1)} =380
H1, C18:1, C18:1, xLeu, PC aa C32:1, PC aa C38:4, PC aa G38:3, PC aaC38:4}
NGT i-IFG IGT dT2D -
o - b _ Glycine, Gin, LPC (18:2), LPC (17:0), PC ae C34:3, PC ae C36:2,
\&‘ n=112 | (n=380 n=113 SM (OH) C14:1, SM (OH) C22:2 '
D g C iFG_ |
§= | n=112
= o —— Glycine
= - . €2, C14, C14:1, C16, C18:1, C18:2, G181,
&= e NGT PC aa C32.0, PC aa G32:1, PC aa G34:1, PC aa C36:3 6T dr20
% s v p=2134 Glycine, Gin, C9, LPC (18:2), LPC (17:0), LPC (18:1)1 n=380 n=113
c < — L
§ ? )I;h? cie2 4
=  NGT IGT dT2D -~

Figure 10: Differences in metabolite concentrations from cross-sectional analysis in
KORA F4

Plot A demonstrates the study population in the KORA F4. Plots B and C show the names of
metabolites with significantly different concentrations in multivariate logistic regression analyses
(after the Bonferroni correction for multiple testing with P < 3.6 x 10#) in the five pairwise
comparisons. The plot shows the results with adjustment for model 1 (age, sex, BMI, physical
activity, alcohol intake, smoking, systolic BP and HDL cholesterol), whereas plots B and D
additionally show the adjustment for HbAlc and fasting glucose (model 2). Plot D shows the
average residues of the concentrations with standard errors of glycine, LPC (18:2) and
acetylcarnitine C2, as well as xLeu (isoleucine and leucine), valine, phenylalanine and tyrosine,
for the NGT, IGT and dT2D groups.

Table 12: Cross-sectional analysis: ORs and P-values in five pairwise comparisons
with two adjusted models in the KORA F4

ORs were calculated with multivariate logistic regression analysis with adjustment for age, sex,
BMI, physical activity, alcohol intake, smoking, systolic BP and HDL cholesterol in model 1;

model 2 includes model 1 and additionally HbAic and fasting glucose. CI denotes confidence
interval.

Metabolite Model 1 Model 2
OR (95% CI), per

OR (95% CI), per SD P-value SD

P-value
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380 IGT vs. 2134 NGT

Glycine 0.64(0.55-0.74) 1.0E-08 0.64(0.55-0.75) 9.3E-08

LPC (18:2) 0.47(0.39-0.57) 3.0E-14 0.47(0.38-0.57) 2.1E-13

2 1.29(1.15-1.44) 1.2E-05 1.33(1.17-1.49) 4.9E-06
113 dT2D vs. 2134 NGT

Glycine 0.45(0.33-0.61) 9.0E-07 0.42(0.23-0.70) 1.8E-03

LPC (18:2) 0.40(0.27-0.57) 1.6E-06 0.34(0.17-0.63) 1.0E-03

2 1.24(1.12-1.61) 1.6E-03 1.36(0.99-1.85) 5.0E-02

113 dT2D vs. 380 IGT

Glycine 0.78(0.60-1.00) 5.6E-02 0.74(0.54-1.01) 6.4E-02

LPC (18:2) 0.90(0.69-1.15) 4.0E-01 0.68(0.48-0.95) 2.6E-02

2 1.07(0.85-1.34) 5.4E-01 1.08(0.80-1.46) 6.0E-01
112 i-IFG vs. 2134 NGT

Glycine 0.85(0.65-1.08) 2.0E-01 3.97* 1.0E+00

LPC (18:2) 0.76(0.57-1.01) 6.7E-02 1.29* 1.0E+00

2 1.05(0.86-1.26) 6.4E-01 0.91* 1.0E+00
113 dT2D vs. 112 i-IFG

Glycine 0.71(0.51-0.95) 2.4E-02 0.78(0.56-1.08) 1.4E-01

LPC (18:2) 0.66(0.45-0.93) 2.0E-02 0.65(0.42-0.96) 3.5E-02

2 1.34(1.00-1.85) 5.7E-02 1.35(0.97-1.90) 7.7E-02

Table 13 Prediction of IGT and T2D in the KORA cohort

Odds ratios (ORs, 95% confidence intervals) and P-values of multivariate logistic regression
results are shown in (A) and (B) for IGT, and in (C) and (D) for T2D, respectively, whereas 3
estimates and P-values from linear regression analysis between metabolite concentration in
baseline KORA S4 and 2-h glucose values in follow-up KORA F4 are shown in (E). All models
were adjusted for age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL
cholesterol.

Model Glycine LPC (18:2) C2 Glycine, LPC
(18:2), C2

A. Metabolite as continuous variable (n = 589)

Per SD 0.75 (0.58-0.95) 0.72 (0.54-0.93) 0.92 (0.73-1.14) 0.36 (0.20-0.67)

p 0.02 0.02 0.50 0.001

B. Metabolite as categorical variable (n = 589)

1st quartile 1.0 (reference) 1.0 (reference) 1.0 (reference) 1.0 (reference)

2nd quartile 1.0 (0.80-1.46) 0.96 (0.73-1.27) 0.89 (0.66-1.23) 0.54 (0.30-0.97)

3rd quartile 1.0 (0.74-1.34) 0.71 (0.51-0.99) 0.93 (0.69-1.26) 0.66 (0.37-1.18)

4th quartile 0.78 (0.55-1.06)  0.78 (0.54-1.12) 0.99 (0.73-1.35) 0.36 (0.19-0.69)

P for trend 0.06 0.05 0.79 0.0082

C. Metabolite as continuous variable (n = 876)

Per SD 0.73 (0.55-0.97) 0.70 (0.51-0.94) 0.94 (0.74-1.18) 0.39 (0.21-0.71)
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P 0.04 0.02 0.59 0.0002
D. Metabolite as categorical variable (n = 876)

1st quartile 1.0 (reference) 1.0 (reference) 1.0 (reference) 1.0 (reference)
2nd quartile 0.87 (0.71-1.07)  0.95 (0.77-1.17) 1.05 (0.85-1.31) 0.50 (0.33-0.76)
3rd quartile 0.82 (0.67-1.01) 0.70 (0.56-0.88) 0.97 (0.78-1.19) 0.57 (0.38-0.88)
4th quartile 0.67 (0.54-0.84)  0.68 (0.54-0.88) 1.21 (0.98-1.50) 0.33 (0.21-0.52)
P for trend 0.00061 0.00021 0.19 1.8E-05

E. Linear regression (n = 843)

B estimates*(95%

CI)

P 0.026 0.00013 0.59 8.8E-05

*f3 estimate indicates the future difference in the glucose tolerance corresponding to the one SD differences
in the normalized baseline metabolite concentration.

247 (-4.64,-029) -457 (-6.90,-2.24)  1.02 (-1.11,3.15) -4.23 (-6.52,-2.31)

3.3.4 Predicted risks of IGT and T2D

To investigate the predictive value for IGT and T2D of the three identified
metabolites, we examined the associations between baseline metabolite concentrations
and incident IGT and T2D using the prospective KORA S4 — F4 cohort (Table 8). We
compared baseline metabolite concentrations in 118 incident IGT individuals with 471
NGT control individuals. We found that glycine and LPC (18:2), but not C2, were
significantly different at the 5% level in both adjusted model 1 and model 2 (Table 13
and Table 14). Significant differences were additionally observed for glycine and LPC
(18:2), but not for C2, at baseline concentrations between the 91 incident T2D individuals
and 785 participants who remained diabetes-free (non-T2D). Each standard deviation
(SD) increment of the combinations of the three metabolites was associated with a 33%
decreased risk of future diabetes (OR = 0.39 (0.21-0.71), P = 0.0002). Individuals in the

fourth quartile of the combined metabolite concentrations had a three-fold lower chance
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of developing diabetes (OR = 0.33 (0.21-0.52), P = 1.8 x 10°°), compared to those whose
serum levels were in the first quartile (i.e. combination of glycine, LPC (18:2) and C2),
indicating a protective effect from higher concentrations of glycine and LPC (18:2)
combined with a lower concentration of C2. With the full adjusted model 2, consistent
results were obtained for LPC (18:2) but not for glycine (Table 18). When the three
metabolites were added to the fully adjusted model 2, the area under the receiver-
operating-characteristic curves (AUC) increased 2.6% (P = 0.015) and 1% (P = 0.058) for
IGT and T2D, respectively (Figure 11, Table 19). Thus, this provides an improved
prediction of IGT and T2D as compared to T2D risk indicators.

Table 14: Prospective analysis: prediction of IGT and T2D in the KORA cohort with
full adjustment model

ORs were calculated with multivariate logistic regression analysis with adjustment for age, sex,
BMI, physical activity, alcohol intake, smoking, systolic BP, HDL cholesterol HbA1., fasting
glucose and fasting insulin. CI denotes confidence interval.

Incident IGT Incident T2D
OR (95% CI), per SD, P-value OR (95% CI), per SD P-value
Glycine 0.77 (0.60, 0.97) 0.031 0.85 (0.62, 1.14) 0.29
LPC (18:2) 0.70 (0.53, 0.92) 0.011 0.69 (0.49, 0.94) 0.022
2 0.97 (0.77, 1.20) 0.79 0.90 (0.70, 1.14) 0.40
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Plots A-D show the AUC values predicting IGT or T2D using known T2D risk factors (model 1 or
model 2) alone and in combination with three metabolites (glycine, LPC (18:2) and C2) and the P-
values from likelihood ratio test comparing the two values.

Model 1 includes age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL.
Model 2 includes the risk factors from model 1 plus HbAu1., fasting glucose and fasting insulin.
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Table 15: Prospective analysis: the area under the receiver-operating-characteristic
curves (AUC) values for each metabolite and each diabetes risk indicator and their
combinations

Model 1 includes age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL
cholesterol, and model 2 includes model 1 plus HbA., fasting glucose and insulin.

IGT T2D
(118 incident IGT vs. (91 incident T2D vs.
471 NGT) 885 non-T2D)

Metabolite
Glycine 0.546 0.604
LPC (18:2) 0.610 0.606
2 0.521 0.53
Glycine + LPC (18:2) + C2 0.622 0.634
Single T2D risk indicator
Age 0.580 0.629
Sex 0.519 0.584
BMI 0.576 0.685
Physical activity 0.550 0.53
Alcohol intake 0.501 0.505
Smoking 0.527 0.512
Systolic BP 0.569 0.583
HDL cholesterol 0.544 0.652
HbAic 0.538 0.688
Fasting glucose 0.575 0.735
Fasting insulin 0.562 0.707
Combined T2D risk indicators
Model 1 0.638 0.742
Model 2 0.656 0.818
Metabolites combined with T2D
risk indicators
Glycine + LPC (18:2) + C2 + Model 0.671 0.754
1
Glycine + LPC (18:2) + C2 + Model 0.683 0.828

2

3.3.5 Baseline metabolite concentrations correlate with future
glucose tolerance

We next investigated the associations between the baseline metabolite
concentrations and the follow-up 2-h glucose values after an oral glucose tolerance test.

Consistent results were observed for the three metabolites: glycine and LPC (18:2), but
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not acetylcarnitine C2 levels, were found to be significantly associated, indicating that
glycine and LPC (18:2) predict glucose tolerance. Moreover, the three metabolites
(glycine, LPC (18:2) and C2) revealed high significance even in the fully adjusted model
2 in the cross-sectional KORA S4 cohort (Table 16). As expected, a very significant
association (P = 1.5 x 10-%?) was observed for hexose H1 in model 1, while no significance
(P =0.12) was observed for it in the fully adjusted model 2 (Table 16).

Table 16: Cross-sectional analysis: linear regression analysis between metabolite
concentration and 2-h glucose values in the KORA S4 (n =1297)

Beta estimates were calculated with multivariate linear regression analysis with adjustment for
model 1 (age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL
cholesterol), and model 2 includes model 1 plus HbAlc, fasting glucose and fasting insulin. CI
denotes confidence interval.

Model 1 Model 2

f estimates™ (95% CI) P-value f estimates* (95% CI)  P-value
Glycine -5.96 (-7.69, -4.24) 1.7E-11 -4.93 (-6.61, -3.26) 9.8E-09
LPC (18:2) -6.98 (-8.82, -5.14) 1.9E-13 -6.47 (-8.24, -4.70) 1.4E-12
c2 3.93 (2.24, 5.63) 5.5E-06 3.81 (2.17, 5.45) 5.8E-06
H1 8.57 (6.88, 10.26) 1.5E-22 2.08 (-0.56, 4.72) 0.12
Isoleucine 0.017 (-1.89, 1.93) 0.99 -0.06 (-1.96, 1.85) 0.95
Leucine -0.67 (-2.52, 1.20) 0.48 -0.71 (-2.56, 1.15) 0.45
Valine 0.68 (-1.15, 2.52) 0.46 0.03 (-1.75, 1.80) 0.98
Tryosine -0.57 (-2.32, 1.18) 0.52 -1.09 (-2.81, 0.63) 0.21
Phenylalanine -0.77 (-2.50, 0.97) 0.38 -0.90 (-2.59, 0.78) 0.29

*$3 estimate indicates the future difference in the glucose intolerance corresponding to the one SD differences
in the normalized baseline metabolite concentration.

3.3.6 Prospective population-based versus nested case-control
designs

To investigate the predict value of the five branched-chain and aromatic amino
acids (isoleucine, leucine, valine, tyrosine and phenylalanine) (Wang et al, 2011) in our

study, we correlated the baseline metabolite concentrations with follow-up 2-h glucose
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values. We found none of them to be associated significantly, indicating that the five
amino acids cannot predict risk of IGT (3 estimates and P-values are shown in Table 17).
Furthermore, none of these five amino acids showed associations with 2-h glucose
values in the cross-sectional KORA 5S4 study (Table 16).

To replicate the identified five branched-chain and aromatic amino acids (Wang
et al, 2011), we matched our baseline samples to the 91 incident T2D using the same
method described previously (Wang et al, 2011). We replicated four out of the five
branched-chain and aromatic amino acids (characteristics of the case-control and non-
T2D samples are shown in Table 18; ORs and P-values are given in Table 19). As
expected, the three identified IGT-specific metabolites did not significantly differ
between the matched case control samples, because the selected controls were enriched
with individuals accompanied by high-risk features such as obesity and elevated fasting
glucose as described by Wang et al (Wang et al, 2011). In fact, the 91 matched controls
include about 50% pre-diabetes individuals, which is significantly higher than the
general population (about 15%).

Table 17: Prospective analysis: linear regression analysis between metabolite
concentration in the KORA S4 and 2-h glucose values in the KORA F4 (n = 843)

Beta estimates were calculated with adjustment for age, sex, BMI, physical activity, alcohol
intake, smoking, systolic BP and HDL cholesterol.

B estimates (95% CI) P-value

Isoleucine 1.10 (-1.38, 3.59) 0.38
Leucine 1.58 (-0.85, 4.02) 0.20
Valine 1.26 (-1.12, 3.64) 0.30
Tryosine 0.13 (-2.18, 2.44) 091
Phenylalanine 1.65 (-0.65, 3.94) 0.16
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Table 18: Prospective analysis: characteristics of prospective nested case-control
sample at baseline KORA S4

Abbreviations: BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Percentages of individuals or means + SD are given for each variable and each group (T2D at
follow-up, matched controls and non-T2D).

Clinical and laboratory Case (T2D at Matched Non-T2D
parameters follow-up) Controls

N 91 91 1206
Age (years) 65.5+5.2 65.3+5.0 63.9+5.5
Sex (female) (%) 33.1 33.1 0.49
BMI (kg/m?) 30.2+3.6 30.0+3.4 28.1+4.2
Physical activity (% >1h per week) 58.2 54.4 55.5
Alcohol intake* (%) 19.8 244 21.2
Smoker (%) 14.3 44 13.7
Systolic BP (mm-Hg) 137.8 +19.0 137.5+15.9 134.1+19.4
HDL cholesterol (mg/dl) 51.9+12.7 55.7 £16.1 59.1+16.3
LDL cholesterol (mg/dl) 157.7 +41.6 155.7 +37.3 154.4 +39.4
Triglycerides (mg/dl) 151.2 +74.3 130.0 +71.2 127.9 +74.3
HbA 1 (%) 5.81+0.39 5.64 +0.29 5.58 +0.35
Fasting glucose (mg/dl) 106.1 +10.0 105.4£9.0 98.9£9.5
2-h glucose (mg/dl) 1459 +32.3 116.5+28.7 114.8 +31.4
Fasting insulin (uU/ml) 16.21+9.6 129+7.2 11.6 +8.2

*>20 g/day for women; > 40 g/day for men

Table 19: Prospective analysis: ORs and P-values in the comparison between
prospective nested case-control samples

ORs were calculated with conditional multivariate logistic regression analysis with adjustment
for age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP, HDL cholesterol in
model 1; model 2 includes model 1 plus HbAlc and fasting glucose and fasting insulin. CI
denotes confidence interval.

Model 1 Model 2
ORs (95% CI), per SD P-value ORs (95% CI), per SD P-value
Isoleucine 1.84 (1.25-2.71) 0.002 1.73 (1.15-2.60) 0.008
Leucine 1.51(1.06-2.14) 0.02 1.43(0.98-2.08) 0.06
Valine 1.52(1.08-2.13) 0.02 1.48(1.03-2.13) 0.03
Tryosine 1.50(1.06-2.14) 0.02 1.52(1.03-2.24) 0.03
Phenylalanine 1.21(0.88-1.67) 0.23 1.11(0.80-1.55) 0.53
Glycine 0.95(0.69-1.31) 0.76 1.03(0.74-1.44) 0.86
LPC (18:2) 0.77(0.55-1.10) 0.14 0.78(0.56-1.14) 0.21
C2 0.81(0.59-1.13) 0.22 0.80(0.57-1.14) 0.21
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3.3.7 Metabolite-protein interaction networks confirmed by
transcription levels

To investigate the underlying molecular mechanism for the three identified IGT
metabolites, we studied their associations with T2D-related genes by analyzing protein-
metabolite interaction networks (Szklarczyk et al, 2011; Wishart et al, 2009). Seven out of
the 46 known T2D-related genes (PPARG, TCF7L2, HNF1A, GCK, IGF1, IRS1 and IDE)
were linked to these metabolites through related enzymes or proteins (Figure 12A; the
list of 46 genes is shown in Table 20). To validate the networks, the links between
metabolites, enzymes, pathway-related proteins and T2D-related genes were manually
checked for biochemical relevance and classified into four groups: signaling regulation,

transcription, physical interaction and the same pathway (Table 21).

A B cac CrAT ALAS-H cPLA2
1 @ 4 @ i ILMN_1667429 ILMN_1737992 ILMN_23B5647 ILMN_1803561

O Metabolite ] . o ] [
D Enzyme & 2 B - II_ H LI d
Pathway-related 2 T |
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Figure 12: Three candidate metabolites for IGT associated with seven T2D-related
genes

(A)Metabolites (white), enzymes (yellow), pathway-related proteins (grey) and T2D-related
genes (blue) are represented with ellipses, rectangles, polygons, and rounded rectangles,
respectively. Arrows next to the ellipses and rectangles indicate altered metabolite concentrations
in persons with IGT as compared to NGT, and enzyme activities in individuals with IGT. The 21
connections between metabolites, enzymes, pathway-related proteins and T2D-related genes
were divided after visual inspections into four categories: physical interaction (purple solid line),
transcription (blue dash line), signaling regulation (orange dash line), and same pathway (grey
dot and dash line). The activation or inhibition is indicated. For further information see Table 25.
(B) Log-transformed gene expression results of the probes of CAC, CrAT, ALAS-H and cPLA2 in
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383 individuals with NGT, 104 with IGT and 26 patients with dT2D are shown from cross-
sectional analysis of the KORA S4 survey. The P-values were adjusted for sex, age, BMI, physical
activity, alcohol intake, smoking, systolic BP, HDL cholesterol, HbAic and fasting glucose when
IGT individuals were compared with NGT participants.
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Gene expression analysis in whole-blood samples of participants from the KORA S4

survey revealed significant variations (P-values ranging from 9.4 x 102 to 1.1 x 10°) of

transcript levels of four enzymes, namely, carnitine/acylcarnitine translocase (CAC), carnitine
acetyltransferase (CrAT), 5-aminolevulinate synthase 1 (ALAS-H) and cytosolic phospholipase
A2 (cPLA2), which are known to be strongly associated with the levels of the three metabolites
(Figure 12B). The clear relationship between changes in metabolites and transcription levels of
associated enzymes strongly suggests that these metabolites are functionally associated with T2D

genes in established pathways.
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Chapter 4 Discussion

4.1 Plasma and serum

In the first part of the results chapter, we presented a robust analysis based on a
large size of samples and highly reliable measurements of metabolites with stringent
quality controls. The method, based on FIA MS/MS has been proven to be in
conformance with the FDA-Guideline “Guidance for Industry - Bioanalytical Method
Validation (May 2001)”, which implies proof of reproducibility within a given error
range.

Our results give support to the good reproducibility of metabolite measurements
in both plasma and serum. Moreover, plasma demonstrates to have a better
reproducibility than serum, which may result from the less complicated collecting
procedure for plasma, as it does not require time to coagulate and thus leads to less
exposure time at the room temperature. The large sample size is not only powerful
enough to detect metabolite concentration differences between the two matrices but also
makes it possible to further characterize the relationship between them.

We observed that metabolite concentrations were generally higher in serum and
this phenomenon may partly be explained by the so called volume displacement effect
(Kronenberg et al.,, 1998) which means that deproteinization of serum eliminates the
volume fraction of proteins and distributes the remaining small molecular weight

constituents in a smaller volume, thus making them more concentrated and leading to a
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higher serum concentration. However, the volume displacement effect usually accounts
for about 5% difference of the concentration, which means there are other reasons
causing the differences we observed. Concentration differences in some metabolites
were similar to those reported in previous studies and some differences were related to
coagulation processes. The higher arginine concentration in serum has been observed
before (Teerlink et al., 2002). The release of arginine from platelets during the
coagulation process might account for this difference.

Our observations that concentrations of some LPCs were higher in serum are
consistent with a former study (Aoki et al, 2002), who reported increased LPC
concentrations, due to the release of phospholipases by platelets activated by thrombin,
a process that also occurs upon coagulation. Glucose, which comprise the majority of
hexose, was found in an earlier study (Ladenson et al., 1974) to be 5% lower in plasma
than in serum. A similar difference was observed for hexose in our measurements.
Although the exact reason for this observation is not clear, a shift in fluid from
erythrocytes to plasma caused by anticoagulants might play a role (Sacks et al., 2002).
Serum also demonstrated a higher sensitivity in biomarker detection in the three
phenotypes (gender, diabetic status, smoking status) we chose. The generally higher
metabolite concentrations in serum than in plasma could contribute to this advantage.
Metabolite measurements in both matrices are subject to a certain level of background

noise, which might affect measurement accuracy, especially for metabolites with low
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concentrations. Thus plasma is more prone to this effect than serum, where metabolite
concentrations are generally higher. It was also proposed that the lower protein content
in serum might benefit small molecule analyses and improve overall sensitivity (Denery
et al., 2011). However, in our comparisons, the metabolites that differed significantly
between two phenotypes in serum but not in plasma are, nevertheless, close to the
significance level when plasma was used, an observation that is in agreement with the
existence of high correlations between both matrices. The high correlations between
plasma and serum measurements suggest that the shift in metabolite concentrations per
se does not necessarily introduce a bias in epidemiological studies, although the higher
concentrations in serum may provide some advantages. In general, our data indicate
that metabolite profiles from either matrix can be analyzed, as long as the same blood
sample is used. However, the better reproducibility in plasma and higher sensitivity in
serum need to be taken into account, as they might influence the results for the
identification of diagnostic biomarkers. Naturally, the metabolites we measured in our
experiment represent only a small part of the human blood metabolome. Accordingly, it
is yet to be determined in future studies whether similar observations can be made for

other metabolites.

4.2 Sex dimorphism

There have been only a few studies addressing metabolic differences between

males and females, and most of these studies were rather small in sample size and
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determined only a small number of metabolites (Doring et al., 2008; Geller et al., 2006).
We investigated a number of 131 metabolites in a large population based study with
sufficient statistical power to examine associations within subgroups. Our findings shed
light on the sex-specific architectures of human metabolome and provided clues on
biochemical mechanisms that might explain observed differences in susceptibility and
time course of the development of common diseases in males and females. Our data
provided new insights into sex-specific metabotype differences. Combining results from
linear regression with partial correlation analysis (resulting in a Gaussian graphical
model) yielded interesting insights into how sex-specific concentration differences
spread over the metabolic network (Figure 3). The analysis suggests that sex-specific
concentration differences affect whole metabolic pathways rather than being randomly
spread over the different metabolites. In addition, we found three interesting inter-class
associations between PCaa/PCae species and LPC species (highlighted in yellow in
Figure 5). Those pairs shared a strong partial correlation but displayed differential
concentration patterns with respect to gender effects. Furthermore, these pairs displayed
a fatty acid residue difference of C18:0, indicating that this fatty acid species might be a
key compound giving rise to opposing metabolic gender effects. Direct experimental
evidence indicated a role for sphingolipids (SMs and ceramides) in several common
complex chronic disease processes including atherosclerotic plaque formation,

myocardial infarction, cardiomyopathy, pancreatic beta cell failure, insulin resistance,
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coronary heart disease and T2D (Holland and Summers, 2008; Yeboah et al., 2010).
Evidences showed that in young children (between birth and 4 years old, with low
levels of sex-hormones) there may already have been significant sex-specific differences
in plasma sphingolipid concentrations (Nikkila et al., 2008). Our observations described
new sex-specific differences, while other lipid-derived molecules, like bile acids, were
already demonstrated not to be sex-specific (Rodrigues et al, 1996). Therefore
sphingomyelins represent important intermediate phenotypes. The concentration
differences between males and females of acylcarnitines described in this study coincide
with previous findings showing that carnitine (C0) and acetylcarnitine (C2)
concentrations were higher in males than in females (Reuter et al., 2008; Slupsky et al.,
2007). Phosphatidylcholines, as demonstrated in this study, are another gender-specific
phenotype. Ghrelin (controlling energy homeostasis and pituitary hormone secretion in
humans) levels have been shown to be similar in men and women and did not vary by
menopausal status or in association with cortisol levels (Purnell et al., 2003). These
findings of our and other studies urgently suggest when using metabolites for disease
prediction sex has to be strictly taken into account. As global ‘omics’-techniques are
more and more refined to identify more compounds in single biological samples, the
predictive power of these new technologies will greatly increase. Metabolite
concentration profiles can be used as predictive biomarkers to indicate the presence or

severity of a disease depending on sex. Our study provides new important insights into
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sex-specific differences of cell regulatory processes and underscores that studies should
consider gender-specific effects in design and interpretation. Our findings also help to
understand the biochemical mechanisms underlying sexual dimorphism, a phenomenon
which may explain the differential susceptibility to common diseases in males and

females.

4.3 Novel markers for pre-diabetes

Using a cross-sectional approach (KORA S4, F4), we analyzed 140 metabolites
and identified three (glycine, LPC (18:2) and C2) that are IGT-specific metabolites with
high statistical significance. Notably, these three metabolites are distinct from the
currently known T2D risk indicators (e.g., age, BMI, systolic BP, HDL cholesterol,
HbAlc, fasting glucose and fasting insulin). A prospective analysis (KORA S4-F4) shows
that low levels of glycine and LPC at baseline predict the risks of developing IGT and/or
T2D. Glycine and LPC especially were shown to be strong predictors of glucose
tolerance, even 7 years before disease onset. Moreover, those two metabolites were
independently replicated in the EPIC-Potsdam cross-sectional study. Finally, based on
our analysis of interaction networks, and supported by gene expression profiles, we
found that seven T2D-related genes are functionally associated with the three IGT

candidate metabolites.
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4.3.1 Different study designs reveal progression of IGT and T2D

From a methodological point of view, our study is unique with respect to the
large sample sizes and the availability of metabolomics data from two time points. This
allowed us to compare results generated with cross-sectional and prospective
approaches directly, as well as with results from prospective population-based cohort
and nested case—control designs. We found that individuals with IGT have elevated
concentrations of the acetylcarnitine C2 as compared with NGT individuals only in the
cross-sectional study, whereas C2 was unable to predict IGT and T2D seven years before
the disease onset. We speculate that the acetylcarnitine C2 might be an event with a
quick effect.

Our analysis could replicate four out of the five branched-chain and aromatic
amino acids recently reported to be predictors of T2D using a nested case—control study
design (Wang et al., 2011). However, the population-based prospective study employed
in our study revealed that these five amino acids are in fact not associated with future 2-
h glucose values. It should be taken into account, however, that more pre-diabetes
individuals (~ 50%) were in the control group of that study design, and that these
markers were unable to be extended to the general population (with only 0.4%
improvement from the T2D risk indicators as reported in the Framingham Offspring
Study) (Wang et al., 2011). Most likely, changes in these amino acids happen at a later

stage in the development of T2D (e.g., from IGT to T2D); indeed, similar phenomenon
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was also observed in our study (Figure 10D). In contrast, we found that combined
glycine, LPC (18:2) and C2 have 2.6 and 1% increment in predicting IGT and T2D in
addition to the common risk indicators of T2D. This suggests they are better candidate

for early biomarkers, and specifically from NGT to IGT, than the five amino acids.

4.3.1 IFG and IGT should be considered as two different phenotypes

By definition (WHO, 1999; ADA, 2010), individuals with IFG or IGT or both are
considered as pre-diabetics. Yet we observed different behaviors regarding the change
of the metabolite panel from NGT to i-IFG or to IGT, indicating that i-IFG and IGT are
two different phenotypes. For future studies, we therefore suggest separating IFG from

IGT.

4.3.2 Glycine

The observed decrease in the serum concentration of glycine in individuals with
IGT and dT2D may result from insulin resistance (Pontiroli et al., 2004). It was already
reported that insulin represses ALAS-H expression (Phillips and Kushner, 2005). As
insulin sensitivity progressively decreases during diabetes development (Feerch et al.,
2009; McGarry, 2002; Stumvoll et al., 2005; Tabak et al., 16), it is expected that the
expression levels of the enzyme increase in individuals with IGT and dT2D, since ALAS-
H catalyzes the condensation of glycine and succinyl-CoA into 5-aminolevulinic acid
(Bishop, 1990). This may explain our observation that glycine was lower in both

individuals with IGT and those with dT2D. However, the level of fasting insulin in IGT

91



and T2D individuals was higher than in NGT participants in the KORA S4 study,

suggesting that yet undetected pathways may also play roles here.

4.3.3 Acetylcarnitine C2

Acetylcarnitine is produced by the mitochondrial matrix enzyme, CrAT, from
carnitine and acetyl-CoA, a molecule that is a product of both fatty acid (3-oxidation and
glucose oxidation and can be used by the citric acid cycle for energy generation. We
observed higher transcriptional level of CrAT in indivi duals with IGT and T2D, most
probably due to an activation of the peroxisome proliferator activated receptor alpha
(PPAR-a) pathway in peroxisomes (Horie et al., 1981). Higher expression of CrAT would
explain the elevated levels of acetylcarnitine C2 in IGT individuals. Although it is not
clear if mitochondrial CrAT is overexpressed when there is increased fatty acid b-
oxidation (e.g., in diabetes; Noland et al, 2009), it is expected that additional
acetylcarnitine will be formed by CrAT due to increased substrate availability (acetyl-
CoA), thereby releasing pyruvate dehydrogenase inhibition by acetyl-CoA and
stimulating glucose uptake and oxidation. An increase of acylcarnitines, and in
particular of acetylcarnitine C2, is a hallmark in diabetic people (Adams et al., 2009).
Cellular lipid levels are increased in humans with IGT or overt T2D who also may have
altered mitochondrial function (Szendroedi et al., 2007). Together, these findings reflect

an important role of increased cellular lipid metabolites and impaired mitochondrial b-
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oxidation in the development of insulin resistance (Koves et al., 2008; McGarry, 2002;

Szendroedi et al., 2007).

4.3.4 LPC (18:2)

In our study, individuals with IGT and dT2D had lower cPLA2 transcription
levels, suggesting reduced cPLA2 activity. As a result, a concomitant decrease in the
concentration of arachidonic acid (AA), a product of cPLA2 activity, is expected. AA has
been shown to inhibit glucose uptake by adipocytes (Malipa et al., 2008), in a mechanism
that is probably insulin independent and that involves the GLUT-1 transporter.
Therefore, our findings may point to regulatory effects in individuals with IGT, since the

inhibition of AA production would result in an increased glucose uptake.

4.3.5 Limitations

While our metabolite profiles provide a snapshot of human metabolism, more
detailed metabolic profile follow-ups, with longer time spans and more time points, are
necessary to further evaluate the development of the novel biomarkers. Moreover, the
influence from long-term dietary habits should not be ignored, even though we used
only serum from fasting individuals (Altmaier et al, 2011; Primrose et al., 2011).
Furthermore, additional tissue samples (e.g., muscle and adipocytes) and experimental

approaches are needed to characterize the causal pathways in detail.
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4.3.6 Conclusions

Three novel metabolites, glycine LPC (18:2) and C2, were identified as pre-
diabetes-specific markers. Their changes might precede other branched-chain and
aromatic amino acids markers in the progression of T2D. Combined levels of glycine,
LPC (18:2) and C2 can predict risk not only for IGT but also for T2D. Targeting the
pathways that involve these newly proposed potential biomarkers would help to take

preventive steps against T2D at an earlier stage.
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Summary

This thesis presented three metabolomics studies using the KORA cohort. The
main aim of the thesis was to more thoroughly understand the role of the metabolome in
complex phenotypes including differences in blood matrix, sex, and how the metabolite
profiles change in a complex disease like type 2 diabetes (T2D).

All measured metabolites were filtered using strict quality controls to exclude
artifacts. By collecting serum and plasma samples from the same 377 individuals, we
found that the concentrations in plasma and serum were highly correlated, with both
providing good reproducibility, although plasma was slightly better. On the contrary,
serum showed higher concentrations and therefore is more likely to detect differences in
the metabolite concentrations in serum.

With regards to the second topic of the thesis, we also demonstrated that 102 of
131 metabolites had significantly different metabolite concentrations by comparing
males and females. Altogether, more than 3300 KORA individuals were analyzed and all
analyses were Bonferroni corrected.

Furthermore, we quantified 140 metabolites in 4297 fasting serum samples from
KORA with a view to identifying the candidate biomarkers of pre-diabetes. Three
metabolites (glycine, LPC 18:2 and acetylcarnitine) were found to have significantly
altered levels in impaired glucose tolerance (IGT) individuals. Lower levels of glycine

and LPC were also proven to be predictive for IGT as well as for T2D. All these
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identified metabolites were independent of previously identified diabetes risk factors.
Further investigations including a systems biology approach were performed and we
identified seven T2D-related genes which were linked to T2D through functional related
enzymes; a theory which was confirmed by expression data.

Metabolomics, which studies the intermediates and end products of biological
processes, is a useful tool in biomedical research, particularly for metabolic diseases.
When proper quality controls are applied and the effects of the complex confounders
(e.g. sex) are unveiled, the relationships between the metabolome and the diseases
become even clearer. The findings in our T2D study proved that mining the metabolite
profiles can help to detect novel disease markers as well as new pathways which can

potentially be targeted to prevent the disease.
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Zusammenfassung

In dieser Doktorarbeit werden drei Metabolomics-Studien der KORA Kohorte
behandelt. Das Ziel dieser Doktorarbeit war es, ein besseres Verstandnis der Rolle des
Metabolismus von komplexen Phéanotypen anhand von Unterschieden im Blutbild, des
Geschlechts und anhand von Verdnderungen des Metabolitenprofils bei
multifaktoriellen Krankheiten wie Typ 2 Diabetes mellitus zu erhalten.

Um Artefakte auszuschliefen wurden strikte Qualitatskontrollen aller
gemessenen Metaboliten durchgefiihrt. Durch die Analyse von Blutplasma und -serum
von 377 Personen konnten wir zeigen, dass die Konzentrationen der Metaboliten in
Blutplasma wund -serum stark Kkorrelieren und dariiber hinaus eine hohe
Reproduzierbarkeit zeigen, bei der Blutplasma besser abschneidet. Im Gegensatz dazu
zeigt das Blutserum hohere Metabolitenkonzentrationen und konnte deswegen besser
fiir den Nachweis von Konzentrationsunterschieden geeignet sein.

Ein weiteres Ergebnis dieser Doktorarbeit war der Nachweis von signifikanten
geschlechtsspezifischen Unterschieden der Konzentrationen von 102 der ausgewerteten
131 Metaboliten. Dabei wurden die Daten von mehr als 3300 Personen der KORA
Kohorte verwendet und die Analysen einer konservativen Bonferroni-Korrektur
unterzogen.

Dariiber hinaus identifizierten wir potentielle Biomarker fiir Pra-Diabetes durch

die Analyse von 140 Metaboliten in niichtern abgegebenen Blutseren von 4297 Personen
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der KORA Kohorte. Wir konnten zeigen, dass Personen mit gestorter Glukosetoleranz
(IGT) signifikant unterschiedliche Konzentrationen von drei Metaboliten (Glycin,
lysoPhosphatidylcholine (LPC) 18:2 und acetylcarnitine) im Vergleich zu gesunden
Personen aufweisen. Dariiber hinaus konnten wir nachweisen, dass geringere
Konzentrationen der Metaboliten Glycin und LPC bei Probanden mit Typ 2 Diabetes
oder IGT vorhanden sind. Die in dieser Studie identifizierten Metaboliten sind
biologisch unabhdngig von zuvor entdeckten Diabetes Risikofaktoren. Durch weitere
Analysen und die Einbeziehung systembiologischer Ansitze entdeckten wir sieben
Diabetesrisiko Susseptibilitatsgene, welche durch Expressionsdaten bestatigt wurden.
Metabolomics welches auf der Analyse von Stoffwechselzwischen- und
Endprodukten basiert, ist eine wertvolle Methode besonders in der biomedizinischen
Forschung, um Krankheitsmechanismen aufzukldren. Nachdem angemessene
Qualitatskontrollen etabliert und der Einfluss von komplexen Storfaktoren (z.B. das
Geschlecht) aufgeklart wurden, konnte der Zusammenhang zwischen Krankheit und
Metabolismus weiter an Klarheit gewinnen. Die Entdeckungen in unserer T2D Studie
zeigen, dass die Analyse von Konzentrationsprofilen helfen kann neue
Krankheitsrisikomarker genauso wie neue Wirkungspfade zu identifizieren, die

moglicherweise das Ziel zur Heilung einer Krankheit sein konnten.
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