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1 INTRODUCTION 

1.1 Hepatocellular carcinoma 

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third 

leading cause of cancer-related death. It accounts for 695,900 deaths per year and its 

incidence rate is increasing. Chronic liver injuries and cirrhosis caused by hepatitis B or C 

virus infection, alcoholic liver disease and inherited metabolic diseases contribute most 

frequently to the development of HCC.1, 2 Liver transplantation and surgical resection are 

the major choices of curative treatment for patients with early-stage HCC. Radiofrequency 

ablation (RFA), transarterial chemoembolization (TACE) and radioembolization are 

additional therapeutic options for intermediate-stage HCC. Nevertheless in most cases 

HCC is diagnosed at an advanced stage when these approaches are no longer feasible.3-5 

The only approved systemic therapeutic option for this stage is oral sorafenib treatment.6 

However, the prognosis for these patients is still poor, because the response to sorafenib 

remains low and the median overall survival is only extended by 2.8 months.7 Therefore, 

the development of novel targeted therapies for HCC is of paramount clinical importance. 

 

1.2 Cyclin dependent kinase 5 

Cyclin dependent kinase 5 (Cdk5) was discovered in the early 1990s8 and shares 60% 

structural identity with Cdk1 and Cdk2. Nevertheless Cdk5 is a unique member of the Cdk 

family with respect to its function and regulation. It is not a classical mediator of cell cycle 

progression, but it regulates the cytoarchitecture in the central nervous system (CNS) and 

thereby is important for neuronal development, function and disease. A huge number of 

studies investigated Cdk5 function in the CNS, but during recent years Cdk5 turned out 

not to be neuron specific. Some reports also indicate a role of Cdk5 in endothelial, 

epithelial, immune, and cancer cells.9, 10  
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1.2.1 Regulation of Cdk5 

Almost the complete knowledge about Cdk5 regulation up to now is gained in neuronal 

cells. In neurons, Cdk5 activity is mainly regulated by association with one of the two 

obligate Cdk5-specific activator proteins, p35 or p39. Both share about 57% amino acid 

homology.9, 11-13 Interestingly, p35 can mask the absence of p39, whereas p39 can 

compensate only some function of p35.9, 14  

These two activator proteins themselves are regulated by transcription and ubiquitin-

mediated degradation. In addition to the activation, p35/p39 determined the subcellular 

distribution of Cdk5, as a myristoylation motif targets them to cell membranes and cell 

periphery.11, 15 The activity of Cdk5 is reported to be also increased by phosphorylation at 

Tyr15. The responsible kinases are c-Abelson (c-Abl)16 and Fyn17 (Figure 1). However, the 

influence of this phosphorylation on Cdk5 activity is controversially discussed as 

Kobayashi et al. recently showed in neuronal cells that it has no activating effect on 

Cdk5.18 

 

 

Figure 1 Regulation of Cdk5. Cdk5 is activated by association with p35 or p39 and via 
phosphorylation at Tyr15 by e.g. c-Abl and Fyn. P35 and p39 are myristoylated and thus recruit 
Cdk5 by interaction to the cell membrane. Moreover, these activator proteins are regulated by 
ubiquitin-mediated degradation. 
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1.2.3 Function of Cdk5 in cancer 

Over the past decade, the compendium of extraneuronal functions of Cdk5 has 

expanded.10, 28, 29 Some publications suggested an association between Cdk5 and human 

cancer progression. Cdk5 has been implicated in the regulation of prostate cancer cell 

motility, proliferation of medullary thyroid carcinoma cells, and control of apoptosis in 

leukemia and astrocytoma cells.30-36 In pancreatic cancer Cdk5 activity is important for 

cancer formation, progression and systemic metastasis.37 Nevertheless, Cdk5‘s function 

in cancer is still insufficiently studied and nothing is known about its role in HCC. 

 

1.2.4 Pharmaceutical inhibition of Cdk5 

The first more or less specific Cdk5 inhibitors were olomoucine38 and roscovitine 

(Seliciclib, CYC202).39 Both compounds belong to the family of 2, 6, 9-trisubstituted 

purines (Figure 3) and interact with the ATP-binding pocket of the kinases. As this 

catalytic site is quite conserved throughout the Cdk family, it is hard to design selective 

inhibitors for one specific Cdk.40, 41 Various targets of these agents have been identified. 

Olomoucine inhibits mainly Cdk1, Cdk2, Cdk5 and ERK1,38, 41 whereas roscovitine targets 

Cdk1, Cdk2, Cdk5, Cdk7, Cdk9, ERK1/2 and pyridoxal kinase.39, 40 This pretended 

disadvantage can be turned into an advantage in context of clinical use, as at least the 

tumor progression is a multi-factorial disease and multi-target therapeutics might be 

favored.42, 43 

 

A 

 

B 

 

Figure 3 Chemical structure of (A) olomoucine and (B) (R)-roscovitine. 

In context of neurodegenerative diseases some companies are also developing new Cdk5 

inhibitors with increased specificity.44, 45 
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1.3 Aim of the study 

Development of novel efficient therapy for HCC is of paramount clinical importance, as the 

prognosis for patients with advanced HCC is still very poor. Few reports show an 

involvement of Cdk5 in tumor progression of e.g. prostate and pancreatic cancer. 

However, the knowledge on Cdk5‘s function in cancer is still incomplete and its role in 

HCC is completely unknown up to now. 

 

 

Therefore the aim of this study was to investigate the function of Cdk5 in HCC 

progression, focusing on the major hallmarks: tumor cell motility and tumor cell growth. In 

addition, the underlying mechanism of Cdk5’s influence in HCC cells was examined. 

Furthermore, novel therapeutic strategies for HCC should be evaluated by combining 

Cdk5 inhibition with established chemotherapeutics.  
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Compounds 

(R)-Roscovitine, aphidicolin, doxorubicin, etoposide and nocodazol were obtained from 

Sigma-Aldrich. Sn38 was obtained from Tocris Bioscience. ABT-888 and sorafenib were 

obtained from Enzo Life Sciences. 

 

2.1.2 Reagents and technical equipment 

Table 1   Biochemicals, inhibitors, dyes and cell culture reagents 

Reagent Producer 

32P-γ-ATP Hartmann Analytic, Braunschweig, Germany 

AEC substrate Vector Laboratories, Burlingame, CA, USA 

ApopTag® Plus Fluorescein In Situ 
Apoptosis Detection Kit (S7111) 

Chemicon International, Atlanta, GA, USA 

Bovine serum albumin (BSA) Sigma-Aldrich, Taufkirchen, Germany 

Bradford ReagentTM Bio-Rad, Munich, Germany 

Collagen G Biochrom AG, Berlin, Germany 

Complete® Roche diagnostics, Penzberg, Germany 

Dulbecco’s Modified Eagle Medium 
(DMEM) 

PAA Laboratories, Pasching, Austria 

DMSO Sigma-Aldrich, Taufkirchen, Germany 

DharmaFECT Transfection reagent Thermo Scientific, Waltham, MA, USA 

FCS Biochrom AG, Berlin, Germany 

FluorSaveTM Reagent Merck, Darmstadt, Germany 

Mayer’s Hematoxylin Solution Sigma-Aldrich, Taufkirchen, Germany 

Histone H1 (Type III from calf thymus) Sigma-Aldrich, Taufkirchen, Germany 

Hoechst 33342 Sigma-Aldrich, Taufkirchen, Germany 

ibiTreat µ-slides ibidi GmbH, Munich, Germany 
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Reagent Producer 

Matrigel® BD Biosciences, Bedford, MA, USA 

Nitrocellulose membrane Hybond-ECLTM, Amersham Bioscience, 
Freiburg, Germany 

NucleofectorTM Kit T Lonza, Basel, Switzerland 

Sodium fluoride (NaF) Merck, Darmstadt, Germany 

Sodium orthovanadate (Na3VO4) ICN Biomedicals, Aurora, Ohio, USA 

Page RulerTM Prestained Protein 
Ladder 

Fermentas, St. Leon-Rot, Germany 

Penicillin PAA Laboratories, Pasching, Austria 

Phenylmethylsulfonylfluoride (PMSF)  Sigma Aldrich, Munich, Germany 

Propidium iodide Sigma-Aldrich, Taufkirchen, Germany 

Protein G agarose beads Sigma-Aldrich, Taufkirchen, Germany 

RPMI 1640 PAA Laboratories, Pasching, Austria 

Streptomycin PAA Laboratories, Pasching, Austria 

Triton X-100 Merck, Darmstadt, Germany 

Transwell Permeable Supports (8 µm 
pore polycarbonate inserts) 

Corning Incorporated, New York, NY, USA 

Vectastain® Universal Elite ABC Kit Vector Laboratories, Burlingame, CA, USA 

X-ray film (Super RX) Fuji, Düsseldorf, Germany 

 

Table 2   Technical equipment 

Name Producer 

Axioskop microscope Zeiss, Jena, Germany 

Axiovert 25 / 200 microscope Zeiss, Jena, Germany 

Canon 450D camera Canon, Krefeld, Germany 

Canon DS 126181 camera Canon, Krefeld, Germany 

Curix 60 Agfa, Cologne, Germany 

FACSCalibur Becton Dickinson, 

Heidelberg, Germany 

Mikro 22R centrifuge Hettich, Tuttlingen, Germany 

NucleofectorTMII Amaxa, Cologne, Germany 

Olympus DP25 camera Olympus, Hamburg, Germany 

Olympus BX41 microscope Olympus, Hamburg, Germany 
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Name Producer 

Odyssey 2.1 LI-COR Biosciences, 

Lincoln, NE, USA 

SpectraFluor PlusTM Tecan, Crailsheim, Germany 

Vi-Cell™ XR Beckman Coulter, Fullerton, CA, USA 

xCELLigence System Roche Diagnostics, Mannheim, Germany 

Zeiss LSM 510 Meta confocal laser 
scanning microscope 

Zeiss, Jena, Germany 

  

2.2 Cell culture  

2.2.1 Solutions and reagents 

The following solutions and reagents were used for the cultivation of HCC cells. 

Table 3   Solutions and reagents for cell culture 

PBS (pH 7.4)  PBS+Ca2+/Mg2+ (pH 7.4) 

NaCl  132.2 mM  NaCl  137 mM 

Na2HPO4  10.4 mM  KCl 2.68 mM 

KH2PO4  3.2 mM  Na2HPO4  8.10 mM 

H2O   KH2PO4  1.47 mM 

   MgCl2  0.25 mM 

   H2O   

 

Growth medium  Freezing medium 

DMEM 500 ml  DMEM 70% 

FCSgold 

(not heat-inactivated) 

50 ml  FCSgold 

(not heat-inactivated) 

20% 

   DMSO 10% 

 

Trypsin/EDTA (T/E)  Collagen G 

Trypsin  0.05%  Collagen G 0.001% 

EDTA  0.20%  PBS  

PBS      
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2.2.2 Cell lines 

HUH7 and HepG2 cells were obtained from Japanese Collection of Research 

Bioresources (JCRB) and German Research Centre of Biological Material (DSMZ) 

(ACC180), respectively. All cells were grown in DMEM supplemented with 10% fetal calf 

serum (FCS). Cells were cultured under constant humidity at 37°C and with 5% CO2 in an 

incubator. All culture flasks, multiwell-plates and dishes were first coated with collagen G 

(0.001% in PBS) before seeding the cells. 

 

2.2.3 Passaging 

After reaching confluency, cells were either sub-cultured 1:2 - 1:10 in 75 cm2 culture flasks 

or seeded either in multiwell-plates or dishes for experiments. For passaging, medium 

was removed and cells were washed with PBS before incubation with trypsin/ethylene 

diamine tetraacetic acid (EDTA) (T/E) for 1-2 min at 37°C. Thereafter, cells were gradually 

detached and the digestion was stopped using growth medium. After adjusting the cell 

concentration in growth medium and cells were plated. 

 

2.2.4 Freezing and thawing 

For freezing, confluent cells from a 150 cm2 flask were trypsinized, centrifuged 

(1,000 rpm, 5 min, 20°C) and resuspended in ice-cold freezing medium. 1.5 ml aliquots 

were frozen in cryovials. After storage at -80°C for 24 h, aliquots were moved to liquid 

nitrogen for long term storage. 

For thawing, a cryovial was warmed to 37°C and the content was immediately dissolved in 

prewarmed growth medium. In order to remove DMSO, cells were centrifuged, 

resuspended in fresh growth medium and plated in a 25 cm2 culture flask. The next day 

cells were washed carefully and after reaching about 80% confluency transferred to a 

75 cm2 culture flask. 
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2.3 Transfection experiments 

2.3.1 Cdk5 and p27Kip1 siRNA 

Cells were transfected for 24 h to 7 d by lipofection using DharmaFECT Transfection 

reagent or by electroporation using NucleofectorTMII according to the manufacturer’s 

protocol. For Cdk5 silencing two different ON-TARGETplus Cdk5 siRNA were used in an 

equal mixture (J-003239-09 and J-003239-10; Thermo Scientific). Furthermore, ON-

TARGETplus CDKN1B siRNA SMARTpool (L-003472-00; Thermo Scientific) was used for 

p27Kip1 silencing and ON-TARGETplus Non-targeting (nt) siRNA (D-001810-01; Thermo 

Scientific) served as transfection control. Silencing efficiency was examined by Western 

blot analysis. 

 

2.3.2 Cdk5 shRNA 

For the lentiviral transduction of HUH7 cells with Cdk5 shRNA and nt shRNA Cdk5 

MISSION® shRNA Lentiviral Transduction Particles (Vector: pLKO.1-puro; SHCLNV-

NM_004935; Clone ID: (1) TRCN0000021465, (2) TRCN0000021466, (3) 

TRCN0000021467, (4) TRCN0000194974, (5) TRCN0000195513; Sigma-Aldrich) and 

MISSION® pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles 

(SHC002V; Sigma-Aldrich) as a control were used according to the manufacturer’s 

protocol. HUH7 cells were transduced with a multiplicity of infection (MOI) of one. 

Successfully transduced cells were selected by adding 2 µg/mL puromycin to the medium. 

After selection, the concentration of puromycin was reduced to 1 µg/mL for subsequent 

cultivation of the cells. By this the stable transfection of HUH7 cells with Cdk5 or nt shRNA 

could be ensured. Cdk5 knockdown of the different shRNA clones was examined by 

Western blot analysis and most efficient clone number 1 and 4 were used for further 

experiments. 
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2.4 Western blot analysis 

Cells were washed once with ice-cold PBS, lysis buffer was added and cells were frozen 

at -80°C. Afterwards, cells were scraped off and debris was removed by centrifugation 

(14,000 rpm, 10 min, 4°C). In order to employ equal amounts of protein in all samples for 

Western blot analysis, protein concentrations were determined using the Bradford assay. 

After measurement, protein concentration was adjusted by adding SDS sample buffer and 

samples were heated at 95°C for 5 min. Proteins were separated by SDS-PAGE and 

transferred to nitrocellulose membranes by electro tank blotting. The membrane was 

blocked in 5% non-fat dry milk powder (Blotto) for 2h. Antibody incubation was done 

overnight at 4°C. Secondary antibodies were HRP-coupled or conjugated with an IR-

fluorescent Reagent. Chemiluminescence was detected with ECL substrate and exposure 

to X-ray films or fluorescence was detected with LI-COR Biosciences Odyssey®. 

 

 

Table 4   Solutions and reagents for Western blot analysis 

Lysis buffer   5x SDS sample buffer  

Tris/HCl 50 mM  Tris/HCl pH 6.8 3.125 M 

NaCl 150 mM  Glycerol 50% 

Nonidet NP-40 1%  SDS 5% 

Sodium deoxycholate 0.25%  DTT 2% 

SDS 0.10%  Pryonin Y 0.025% 

activated Na2VO4 300 µM  H2O  

NaF 1 mM    

β-glycerophosphate 3 mM    

pyrophosphate 10 mM    

H2O     

add before use:     

Complete® EDTAfree 4 mM    

PMSF 1 mM    

H2O2 600 µM    
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Separation gel 7.5%/10%/12%/15%  Stacking gel   

RotiphoreseTM Gel 30 25%/33%/ 

40%/50% 

 RotiphoreseTM Gel 30 17% 

Tris (pH 8.8) 375 mM  Tris (pH 6.8) 125 mM 

SDS 0.1%  SDS 0.1% 

TEMED 0.1%  TEMED 0.2% 

APS 0.05%  APS 0.1% 

H2O   H2O  

 

Electrophoresis buffer  Tank buffer  

Tris 4.9 mM  Tris base 48 mM 

Glycine 38 mM  Glycine 39 mM 

SDS 0.1%  Methanol 20% 

H2O   H2O  

 

Table 5   Primary antibodies 

Antigen Product no. Provider Dilution In 

actin MAB1501 Millipore 1:1,000 Blotto 1% 

Akt #9272 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

p-Akt (Ser473) #9271 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

p-ATM (Ser794) ab119799 abcam 1:1,000 BSA 5% 

p-ATM (Ser1981) #5883 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

p-ATR (Ser428) #2853 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

p-BRCA1 (Ser1524) #9009 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

p-cdc2 (Tyr15) #9111 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

Cdk5 AHZ0492 Invitrogen 1:1,000 Blotto 1% 

p-Cdk5 (Tyr15) EP762RY Epitomics 1:1,000 BSA 5% 

p-Chk1 (Ser345) #2348 
Cell Signaling 
Technology 

1:1,000 BSA 5% 
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Antigen Product no. Provider Dilution In 

p-Chk2 (Thr68) #2661 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

CREB #9104 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

p-H2A.X (Ser139) #2577 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

p27Kip1 610241 
BD Transduction 
Laboratories 

1:1,000 Blotto 1% 

p35 sc-820 
Santa Cruz 
Biotechnology 

1:500 Blotto 1% 

β-tubulin #2146 
Cell Signaling 
Technology 

1:1,000 BSA 5% 

 

Table 6   Secondary antibodies 

Antibody Product no. Provider Dilution in 

Goat anti-mouse IgG1: 
HRP 

BZL07046 Biozol 1:1,000 Blotto 1% 

Goat anti-rabbit: HRP 
(H + L) 

111-035-144 Dianova 1:1,000 Blotto 1% 

Alexa Fluor® 680 Goat 
anti-mouse IgG (H + L) 

A - 21057 Molecular Probes 1:10,000 Blotto 1% 

IRDye™ 800CW Goat 
anti-rabbit IgG (H + L) 

926-32211 
LI-COR 
Biosciences 

1:10,000 Blotto 1% 

 

2.5 Nuclear/cytoplasmic fractionation 

Cells were washed once with ice-cold PBS, before additionally PBS is added. Afterwards 

cells were scraped off carefully, centrifuged (1,500 rpm, 10 min, 4°C) and the cell pellet 

was resuspended in nuclear extraction buffer A. After incubation on ice for 15 min, 

Nonidet P-40 (0.625%) was added, followed by vigorous vortexing. Probes were 

centrifuged (12,000 rpm, 1 min, 4°C) and supernatants as cytoplasmic fraction was 

removed. The pellet was incubated for 20 min at 4°C in nuclear extraction buffer B. After 

centrifugation (12,000 rpm, 5 min, 4°C) the supernatant as nuclear fraction was collected. 

In all fractions protein concentration was determined and adjusted by adding lysis buffer. 
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Afterwards the samples were either mixed with 5x SDS sample buffer for Western Blot 

analysis or were further used for immunoprecipitation and kinase activity assay. 

 

Table 7   Nuclear extraction buffer A and B 

Nuclear extraction buffer A  Nuclear extraction buffer B 

HEPES pH 7.9 10 mM  HEPES pH 7.9 20 mM 

KCl 10 mM  NaCl 0.4 mM 

EDTA 0.1 mM  EDTA 0.1 mM 

EGTA 0.1 mM  EGTA 0.1 mM 

DTT 1 mM  DTT 1 mM 

PMSF 0.5 mM  PMSF 0.5 mM 

Complete® EDTAfree 1 mM  Complete® EDTAfree 1 mM 

H2O   Glycerol 25% 

   H2O  

 

2.6 Immunoprecipitation 

Cells were harvested with IP lysis buffer (Table 8), scraped off and kept on ice for 30 min. 

Afterwards samples were centrifuged (14,000 rpm, 10 min, 4°C) and protein 

concentrations were determined in the supernatants. Cell lysates were incubated with 

2 µg antibody (Cdk5; sc-173, Santa Cruz Biotechnology) per 500 µg protein amount over 

night at 4°C. Thereafter, 25 µL packed Protein G Agarose beads with IP lysis buffer were 

added to each sample. After 3 h of incubation at 4°C, the beads were spun down and 

washed three times with lysis buffer. 

 

2.7 Kinase activity assay 

Beads from Cdk5 immunoprecipitation were resuspended in 50 µL kinase buffer. In 

addition, 2 µM ATP, 10 µCi 32P-γ-ATP and 0.05 µg/µL histone H1 (Type III from calf 

thymus) as a substrate were added to each sample and the enzyme reaction was carried 

out at 30°C for 20 min. For termination samples were mixed with 5x SDS sample buffer 
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and boiled for 5 min at 95°C. Aliquots of each sample were loaded onto a 12% SDS 

PAGE gel and electrophoresis was run. For autoradiography, an X-ray film was placed on 

the gel for 4 to 48 h at -80°C. 

 

Table 8   IP lysis buffer and kinase buffer 

IP lysis buffer  Kinase buffer 

Tris/HCl pH 7.5 50 mM  HEPES pH 7.0 

NaCl 250 mM  MgCl2 10 mM 

EDTA pH 8.0 1 mM  DTT 1 mM 

NaF 10 mM  NaF 1 mM 

SIGMAFAST™  1x  Na3VO4 1 mM 

Protease Inhibitor   PMSF 1 mM 

H2O   β-glycerophosphate 3 mM 

   Complete® EDTAfree 4 mM 

   H2O  

 

2.8 Human HCC microarrays 

Tissue microarray (TMA) containing human HCC samples as well as matched 

surrounding non-tumor tissue was kindly provided by Dr. E. De Toni (Department of 

Medicine II, University Hospital Großhadern, University of Munich, Germany).46 The 

included HCC patients had been treated with liver transplantation or partial hepatectomy 

at the University Clinic Munich Großhadern between 1985 and 2008.  

 

2.9 Immunohistochemistry 

2.9.1 Cdk5 and Ki-67 

5 µm sections of the TMA or tumor tissue from the HUH7 xenografts were used for 

immunohistochemical staining. The slides were deparaffinized in xylene (15 min) and 

rehydrated through descending concentrations of ethanol (20 min in 100% and 20 min in 
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95%). For antigen retrieval sections were boiled in sodium citrate buffer (10 mM sodium 

citrate, 0.05% Tween 20, pH 6.0) for 20 min. Endogenous peroxidase was blocked by 

incubation in 7.5% hydrogen peroxide for 10 min. Between the different steps the slides 

were always washed two times with PBS. Cdk5 antibody (ab40773; abcam) or Ki-67 

antibody (ab15580; abcam), diluted 1:100 in PBS, was applied as primary antibody for 1 h 

at room temperature. For antibody detection Vectastain® Universal Elite ABC Kit was 

taken according to the manual and AEC was used as a chromogen. Slides were 

counterstained with hematoxylin for 1 min and washed with distillated water. Finally, 

stained sections were embedded in FluorSaveTM Reagent mounting medium and covered 

with glass coverslips. Images were obtained with an Olympus BX41 microscope and an 

Olympus DP25 camera. 

 

2.9.2 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

Apoptotic cells in 5 µm sections from tumors derived from HUH7 xenografts were 

visualized using the ApopTag® Plus Fluorescein In Situ Apoptosis Detection Kit according 

to the manual. Cell nuclei were counterstained with 5 µg/mL Hoechst 33342 in PBS 

containing 1% BSA for 60 min. Stained sections were mounted with FluorSaveTM Reagent 

mounting medium. Images were obtained with a Zeiss LSM 510 Meta confocal laser 

scanning microscope. 

 

2.10 Immunostaining 

HCC cells were seeded in 8-well ibiTreat µ-slides. Afterwards, cells were washed once 

with ice-cold PBS+Ca2+/Mg2+ and fixed in 4% formaldehyde for 15 min, following one 

washing step with PBS. For permeabilization 0.2% Triton X-100 in PBS was applied for 

2 min. After washing with PBS, unspecific binding was blocked by incubation with 0.2% 

BSA in PBS for 20 min. Cells were incubated with the primary antibody against Cdk5 

(AHZ0492; Invitrogen), p27Kip1 (610241; BD Transduction Laboratories), Ki-67 (ab15580, 

abcam) and p-H2A.X (#2577; Cell Signaling Technology), diluted 1:100 in PBS containing 

0.2% BSA, for 1 h. Afterwards, cells were washed with PBS and incubated with Alexa 

Fluor® 488 or 546-conjugated secondary antibody (Invitrogen), diluted 1:400, together with 

5 µg/mL Hoechst 33342 in PBS containing 0.2% BSA for 30 min. After washing again with 
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PBS, stained cells were covered with FluorSaveTM Reagent mounting medium and glass 

coverslips. Images were obtained with a Zeiss LSM 510 Meta confocal laser scanning 

microscope. 

 

2.11 Proliferation assays 

2.11.1 Crystal violet staining 

HCC cells were seeded into 96-well plates. After 24 h incubation, cells in a reference plate 

were stained with crystal violet, serving as initial cell number. The cells in the remaining 

plates were either left untreated or stimulated with increasing concentrations of 

roscovitine. Upon an incubation period of 72 h, the medium was removed and cells were 

stained with 100 µL crystal violet solution for 10 min at room temperature. After washing 

with distilled water, the bound dye was solubilized by adding 100 µL of dissolving buffer. 

The absorbance was measured at 550 nm in a plate-reading photometer. 

Table 9   Crystal violet solution and dissolving buffer 

Crystal violet solution  Dissolving buffer 

Crystal violet 0.5%  Trisodium citrate 50 mM 

Methanol 20%  Ethanol 50% 

H2O     

 

2.11.2 Impedance measurement 

Proliferation of HCC cells with stable Cdk5 knockdown was determined using the 

xCELLigence System from Roche Diagnostics. HUH7 cells were seeded at a density of 

2,000 cells per 100 µL in equilibrated E-plates. After synchronizing the cells by treatment 

with 10 µM aphidicolin for 24 h, cells were either left untreated or treated with different 

substances as indicated for 72 h. The cell index, which is proportional to the cell number, 

was measured every hour and normalized to the value at the time of aphidicolin release. 

In the end the doubling time was evaluated by the xCELLigence software. 

 



2  MATERIALS AND METHODS 28 
  
 

 

2.12 Colony formation assay 

The colony formation assay is an in vitro long term cell survival assay to determine the 

effectiveness of cytotoxic agents based on the ability of a single cell to form a colony. 

HCC cells were seeded into 6-well plates and treated as indicated for 24 h. Subsequently, 

cells were trypsinized and reseeded in fresh medium with 10,000 cells per well in 6-well 

plates. Upon an incubation period of 7 d, cells were stained with crystal violet solution 

(Table 9) for 10 min at room temperature. After washing with distilled water, the bound 

dye was solubilized by adding 1 ml dissolving buffer (Table 9). The absorbance was 

measured at 550 nm in a plate-reading photometer. 

 

2.13 Motility assays 

2.13.1 Boyden Chamber assay 

Transwell® permeable supports (8 µm pore polycarbonate inserts) were used according to 

the manufacturer’s instructions. The transwell inserts were coated with collagen G to 

measure the migration and with Matrigel® to measure the invasion of tumor cells. Inserts 

were added to 24-wells containing 700 µL DMEM (negative control) or DMEM containing 

10% FCS. 100,000 cells in DMEM or DMEM containing indicated agents were added to 

the inside compartments and allowed to migrate for 16 h. Afterwards cells on both sides of 

the insert were stained by crystal violet. Cells on the upper side were removed by using 

cotton swabs and cells attached to the bottom were photographed using a Zeiss Axiovert 

25 microscope and a Canon 450D camera. Eight pictures for each sample were taken and 

the number of cells was counted. 

 

2.13.2 Wound healing assay 

In the wound healing assay, also called scratch assay, a confluent cell monolayer is 

wounded and the ability of the cells to migrate and close the artificial scratch is 

determined. HCC cells were seeded in 24-well plates. After reaching confluence, cells 

were scratched using a pipette tip of a micropipette. The wounded monolayers were 

washed twice with PBS to remove floating cellular debris before adding fresh medium or 

medium containing roscovitine. After about 24 h of migration, cells were washed with PBS 
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2.15.2 Tumor cell implantation 

Normal HUH7 cells or HUH7 cells with Cdk5 knockdown were harvested at about 70% 

confluency and 3.3*106 cells in 100 µl PBS were injected subcutaneously into the flank of 

SCID mice. The number of animals per group is indicated in the corresponding figure 

legend. 

Animals were checked regularly for tumor progression. Tumor volume was determined 

using a digital measuring slide (Digi-Met, Preisser, Gammertingen, Germany). Each 

measurement consisted of three parameters, length (a), width (b) and height (c) and 

tumor volume was calculated by the formula a*b*c*π/6 (with a, b and c indicating the three 

parameters and π/6 as correction factor for tumor shape). 

 

2.15.3 Intraperitoneal application of roscovitine and irinotecan 

Roscovitine and irinotecan were injected intraperitoneally (100 µL; solvent: 

PBS/DMSO/Solutol 17:1:2). For roscovitine treatment alone, application was carried out 

every day with 150 mg/kg (body weight)/d for seven days, beginning seven days after 

implantation. In the combinatorial treatment, the injections began ten days after 

implantation with 150 mg/kg/d roscovitine injected 3-times and 10 mg/kg/d irinotecan 2-

times per week for 4 weeks. 

 

2.15.4 Isolation of tumors 

For investigation of tumor size mice were sacrificed by neck fracture. Tumors were 

removed and weight and volume was determined. Afterwards tumors were fixed with 4% 

paraformaldehyde in PBS for one day and with 1% paraformaldehyde for additional three 

days prior to embedding in paraffin. 

 

2.16 Statistical analysis 

All experiments were performed at least three times unless otherwise indicated in the 

figure legend. Data are expressed as mean ± SEM. Statistical analysis was performed 

with SigmaPlot® software version 10.0 (Systat Software Inc., Chicago, USA). Statistical 

tests are indicated in the figure legend. Statistical significance was considered if p<0.05. 
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3 RESULTS 

3.1 Cdk5 expression is increased in human HCC 

Analysis of Cdk5 in a human HCC tissue microarray46 (Figure 6A) was performed in 

cooperation with Prof. Dr. med. Thomas Kirchner and Prof. Dr. med. Doris Mayr from the 

Institute of pathology and Dr. med. Enrico de Toni from the Department of Internal 

Medicine II of the University of Munich. The evaluation of the microarray revealed an 

increased expression of Cdk5 in human HCC (41.3% with high Cdk5 expression; n=179) 

in comparison to corresponding normal liver tissue (26.4% with high Cdk5 expression; 

n=174). This was confirmed by immunoblots of HCC and corresponding normal liver 

patient samples, where expression of Cdk5 and its activator p35, was increased in HCC 

(Figure 6B). In line, the HCC cell lines HepG2 and HUH7, which were used for further 

studies, showed expression of Cdk5 and p35 (Figure 6C) and Cdk5 activity (Figure 6D). 
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3.3.3 Cdk5 gets activated by DNA damage and is involved in DNA damage 

response 

Our data demonstrated a role of Cdk5 in the nucleus during G2/M phase. During this 

phase DNA damage response and repair mechanism take place, which are especially 

important for highly proliferating cells as HCC cells. We started out to investigate whether 

Cdk5 affects the response of HCC cells to DNA damage inducing agents and the other 

way around, if DNA damaging agents affect Cdk5. With respect to the latter, we used 

Sn38, an active metabolite of the topoisomerase inhibitor irinotecan, as well as ABT-888, 

an inhibitor of PARP as DNA damage inducing chemotherapeutics. Both drugs led to an 

increase of phosphorylated Cdk5 (Figure 14A) and enhanced Cdk5 activity in the nucleus 

(Figure 14B). Importantly, cells which do not express Cdk5 responded with increased 

amount of DSB indicated by p-H2A.X upon Sn38 exposure in comparison to control cells 

(Figure 14C, D). To examine whether this increase is due to an enhanced induction or 

persistence of DSBs, we analyzed the p-H2A.X after removal of the DNA damage agent. 

Increased DSBs in Cdk5 silenced cells which occur directly after stimulation with Sn38 

does not persist after removal of the DNA damaging agent (Figure 14E). Thus Cdk5 

seems to be involved in the induction of DSBs rather than their persistence.  
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3.3.4 Cdk5 influences DNA damage checkpoint regulation 

The next question was how Cdk5 knockdown causes enhanced DNA damage in HCC 

cells. The topoisomerase I inhibitor Sn38 causes a cell cycle arrest in the G2/M phase in 

control HUH7 cells (Figure 15A). Interestingly, Cdk5 shRNA cells display an increased 

number of cells in the G0/G1 phase upon Sn38 treatment. This effect is not restricted to 

Sn38 as induction of DNA damage by the PARP inhibitor ABT-888 showed the same 

result (Figure 15A). However, if treating the cells with nocodazol, which interferes with 

spindle formation rather than DNA, control as well as Cdk5 knockdown cells arrest equally 

in G2/M phase (Figure 15A). These results together indicate that this overcome of G2/M 

cell cycle arrest occurs only if it is induced by DNA damage. To illustrate whether Cdk5 

knockdown cells arrest already in G0/G1 phase due to DNA damage agents and never 

reach the G2/M phase, or whether they overcome the G2 arrest caused by DNA damage, 

get into G0/G1 phase and accumulate here, we observed the cell cycle at different time 

points during stimulation with Sn38 after synchronizing the cells (Figure 15B). At 8 h to 

12 h after synchronization and Sn38 treatment most of control as well as Cdk5 shRNA 

cells are in G2/M phase. Then the population of cells in G0/G1 phase increased slightly 

during the next 12 h in the control cells, however this population was significantly higher in 

Cdk5 knockdown cells. Obviously Cdk5 is important for activation of the G2/M checkpoint 

and loss of Cdk5 let HCC cells overcome the arrest caused by treatment with DNA 

damage agents. This defect in DNA damage induced checkpoint activation could be the 

cause for the higher amount of DSBs in Cdk5 knockdown cells as Cdk5 knockdown cells 

probably do not stop replicating the DNA.  
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3.3.5 Cdk5 is important for ATM phosphorylation 

In search for the target responsible for Cdk5 induced DNA damage response and 

checkpoint activation the ataxia telangiectasia mutated (ATM) and ataxia telangiectasia 

and Rad3-related (ATR) signaling cascade gained attention. As expected, stimulation of 

HCC cells with Sn38 or ABT-888 led to an increase in ATM phosphorylation due to DNA 

damage. Interestingly, the Cdk5 knockdown cells showed a decreased phosphorylation of 

ATM at Ser1981, which is crucial for its activity (Figure 16A, B). However, there was no 

difference in phosphorylation of ATR due to Cdk5 inhibition and also its downstream 

target the checkpoint kinase (Chk) 1 was unaffected. In contrast, the downstream targets 

of ATM were influenced by Cdk5. Chk2 gets directly phosphorylated by ATM and 

therefore the phosphorylation at Thr68 was reduced in Cdk5 knockdown cells. In addition, 

the breast cancer 1 (BRCA1) protein and cyclin dependent kinase 1 (cdc2) were less 

phosphorylated due to Cdk5 inhibition. Thus ATM is suggested to be an important player 

of Cdk5 in HCC.  
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This combined therapy reduces HCC cell proliferation directly from the beginning of 

treatment. In hospital routines, chemotherapy treatment is given in cycles to attack cancer 

cells most effectively, whereas the body’s normal cells have time to recover in between. 

To get closer to this patient situation, we further tested the combinatorial treatments in 

clonogenic survival assays (Figure 18A). Remarkably, stimulation with all tested DNA 

damage agents and Cdk5 downregulation decrease significantly colony formation ability of 

HCC cells. The profound effect is due to the combined effects of decreased proliferation 

and enhanced apoptosis in Cdk5 knockdown cells 7 days after short-term stimulation 

(Figure 18B). Moreover, these in vitro results could be verified in vivo, as the combined 

systemic treatment of the Cdk5 inhibitor roscovitine and irinotecan, the therapeutically 

used prodrug of Sn38, increased inhibition of tumor growth in a HCC xenograft model 

(Figure 18C).  
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4 DISCUSSION 

Prognosis for patients with advanced stage HCC, i.e. when curative surgery is no longer 

feasible, is very poor. Up to now, oral treatment with the multi tyrosine kinase inhibitor 

sorafenib represents the only approved systemic therapeutic option for advanced stage 

HCC.6 However, its therapeutic success is limited, because response remains low and the 

median overall survival is only extended by 2-3 months.7 This urgently demands for new 

systemic treatment strategies for HCC therapy.  

 

4.1 Cdk5 is an important mediator in HCC progression 

Our present study provides evidence for Cdk5 as a novel target for HCC therapy. In fact, 

we demonstrate for the first time a crucial role of Cdk5 in HCC progression and thereby 

extend the rare knowledge of Cdk5 in cancer. Increased expression of Cdk5 and p35 in 

HCC tissue in comparison to healthy liver tissue goes along with pancreatic cancer49 and 

non-small cell lung cancer, where high expression of Cdk5/p35 is related to poor patient 

prognosis.50  

Moreover in our study, we showed that genetic and pharmacologic inhibition of Cdk5 

decreases significantly HCC cell motility and invasion. Remarkably, Cdk5 controls 

proliferation of HCC cells and inhibits tumor growth in vivo. These findings are partly in 

line with the few publications about Cdk5 in other cancer types, but also reveal a specific 

functional profile and signaling of Cdk5 in HCC. In prostate cancer, Cdk5 regulates cell 

motility and metastatic potential,36 but has no influence on tumor growth, whereas in 

pancreatic cancer, similar to HCC, Cdk5 is involved in the whole tumor progression 

including cell proliferation and motility.37 In pancreatic cancer, Cdk5 acts via activation of 

Ral effector pathway which is essential for oncogenic Ras signaling.37 Furthermore, 

dysregulated high activity of Cdk5 in C cells of the thyroid gland was reported to initiate 

the formation of medullary thyroid carcinoma via phosphorylation of retinoblastoma 

protein.34 Regarding the fact that Cdk5 affects cancer genesis as shown in 

neuroendocrine thyroid cancer it might be reasonable to study the role of Cdk5 in HCC 

onset mostly driven by liver cirrhosis and hepatitis infection in future projects. 
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4.2 Cdk5 regulates DNA damage response and checkpoint 

activation via ATM pathway 

Our results imply a Cdk5 driven signaling which is so far unique and novel in HCC. We 

suggest ATM signaling as Cdk5 downstream pathway responsible for its synergistic 

effects with DNA damage agents in HCC. 

The ATM and ATR signaling cascade is the major response to DNA damage and acts 

thereby on different axes: it regulates cell cycle arrest, activates DNA repair mechanisms, 

and induces cell death.51 ATM acts as sensor for the DNA damage and as transducer for 

the response. In the role of the latter, ATM activates several proteins, like BRCA1, which 

is involved in DNA damage repair,52 the checkpoint kinase 2 (Chk2) and p53. P53 can be 

directly phosphorylated by ATM or indirect via Chk2. The activated p53, in turn, can 

trigger cells to apoptosis or to cell cycle arrest in the G1 phase.51 ATR is another protein 

with a role as transducer in response to DNA damage. As ATR shares high sequence 

homology to ATM, there is a high degree of redundancy in the DNA damage response 

pathways. However, in general, Chk1 is preferentially phosphorylated by ATR, while Chk2 

is the favored ATM substrate.53 Different isoforms of the Cdc25 phosphatase are the 

important key targets of Chk1 and Chk2. Cdc25A regulates progression through S phase, 

and Cdc25B and Cdc25C control mitotic entry.54 The phosphorylation by Chk1 and Chk2 

causes an inactivation of Cdc25 phosphatase. Thus, the ATR/ATM-Chk1/Chk2-Cdc25 

pathways regulate the G1/S and G2/M checkpoints, respectively (Figure 21).  
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of cell cycle, if located in the nucleus,48 whereas in HCC we showed that only cells with 

Cdk5 located in the nucleus are positive for the proliferation marker Ki-67. Along this line, 

one could suggest that function and regulation of Cdk5 in HCC are in parallel to 

neurons, i.e. ATM might be a direct target, but this cannot be transferred without further 

evaluation. 

In addition, we showed that Cdk5 inhibition enhances the response of HCC cells to 

different DNA damaging agents, including topoisomerase inhibitors irinotecan, etoposid 

and doxorubicin, and the PARP inhibitor ABT-888. Our data are in line with studies in 

other cancer types, where an involvement of Cdk5 in DNA damage response has been 

shown.58, 59 However, up to now the ATM signaling is not well investigated in HCC. Thus, 

our results represent an important step in introducing Cdk5 and the ATM pathway as 

possible target for HCC therapy.  

 

4.3 Combination of Cdk5 inhibition with DNA damage agents 

presents a novel therapeutic option for HCC 

Our clinical most important finding showed that combination of Cdk5 inhibition with 

different DNA damage inducing chemotherapeutics synergistically inhibits HCC tumor 

progression by decreasing cell growth and inducing cell death. These results suggested 

novel and promising therapeutic strategies for therapy of patients with advanced stage 

HCC. We tested different DNA damage agents, like irinotecan, ABT-888, etoposid and 

doxorubicin, for the combined treatment with Cdk5 inhibition. 

The PARP inhibitor ABT-888 is up to now mostly studied in preclinical models of different 

cancer types, like glioblastoma, colorectal cancer and prostate cancer.60-62 Some 

publications show also a synergistic effect of ABT-888 with DNA damage induction by 

chemotherapeutics or radiation.63, 64 Our study indicates a benefit of combining this PARP 

inhibitor with Cdk5 inhibition. A combination of Cdk5 inhibition with PARP inhibition and 

DNA damage induction for treatment of HCC patients could represent an additional 

option. 

Doxorubicin is given for treatment of HCC mostly via TACE.65 In some case reports 

doxorubicin is also applied systemically, but the response rate is only 2-10%.66, 67 The 

combination of doxorubicin with cisplatin, interferon and fluorouracil enhances the 

response rate to 20%. However, this is associated with significant toxicity including two 

treatment related deaths.68  
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Irinotecan is well-established as single as well as combination approaches in treatment of 

other cancer types like e.g. metastatic colorectal cancer.69 Importantly, few single case 

reports show a response of HCC patients to irinotecan.70-72 Although potentially effective, 

high dose chemotherapy with irinotecan leads to gastrointestinal and vascular side 

effects, which clearly limits the therapeutic success.73  

Of note, by combining the DNA damage inducing chemotherapeutics with Cdk5 inhibitors, 

as proposed here, the dose can be reduced. This might diminish the problem of high 

toxicity due to the DNA damage agents, as Cdk5 inhibition appears to be well tolerated 

without the typical side effects associated with chemotherapy.74 

In summary we introduced these chemotherapeutics in combination with Cdk5 inhibition 

as new therapeutic strategies. 

 

4.4 Cdk5 inhibition increases efficacy and response to 

sorafenib treatment 

Up to now, sorafenib is the standard first-line systemic drug for treatment of advanced 

HCC. However, its therapeutic benefit is limited, because the overall survival is only 

extended by 2-3 months and due to resistance the response remains low.7 In our work, we 

showed that the efficacy of sorafenib treatment can be enhanced by combination with 

Cdk5 inhibition as combined therapy inhibits synergistically HCC tumor growth and 

prevents sorafenib induced HCC cell migration.  

Sorafenib inhibits a variety of different tyrosine kinases including vascular endothelial 

growth factor receptor (VEGFR-) 1, VEGFR-2, VEGFR-3, platelet-derived growth factor 

receptor (PDGFR-) β, RET, c-KIT, FMS-like tyrosine kinase-3, and also the RAF/mitogen-

activated protein kinase (MAPK)/extracellular signaling-regulated kinase (ERK) pathway 

by targeting Raf-1 and B-Raf.75, 76 The phosphatidylinositol 3-kinase (PI3K)/Akt and the 

MAPK signaling pathways are most important for HCC progression. While the MAPK 

pathway is inhibited by sorafenib, it is reported that Akt is activated by sorafenib as a 

compensatory mechanism. In addition, the resistance to sorafenib could be reversed by 

Akt inhibition, suggesting that the Akt pathway is involved in sorafenib resistance.77-79 

Fujimaki et al. suggest that the sorafenib mediated Akt phosphorylation occurs via ATM 

activation.77 As our findings already showed that Cdk5 inhibition prevents ATM and Akt 

phosphorylation, this could be the mechanistical explanation for the synergistic effect of 



4  DISCUSSION 64 
  

 

combining sorafenib with Cdk5 inhibition. This combination is a new therapeutic approach 

to enhance sorafenib treatment response and efficacy. 

 

4.5 Cdk5 represents a novel drugable target for HCC therapy 

One of the earliest and most popular Cdk5 inhibitors is roscovitine. However, it is far from 

selectively inhibiting Cdk5 as it also targets Cdk1, Cdk2, Cdk7, Cdk9, ERK1/2 and 

pyridoxal kinase.39, 40 During last years, many groups tried to develop new Cdk5 inhibitors 

with improved potency and selectivity using roscovitine as mother substance80-82 and also 

other lead structures, e.g. Dinaciclib (SCH 727965).83-85 Most of these compounds show 

an increased potency for Cdk5 inhibition, but they still share the problem of selectivity as 

they target at least also Cdk1 and Cdk2. This selectivity problem occurs due to their 

interaction with the ATP-binding pocket which is quite conserved throughout the Cdk 

family. A new approach is the inhibition of the interaction of Cdk5 and its activators.86, 87 

These inhibitors mainly target the interaction of Cdk5 and p25, the truncated form of p35, 

which is associated with a dysregulated activity of Cdk5 and therefore with pathogenesis 

of neurodegenerative diseases. Zeng et al. reported that a short peptide called CIP (Cdk5 

inhibitory peptide), which is derived from p35, specifically inhibits the Cdk5/p25 activity, 

without affecting the activity of Cdk1 or Cdk5/p35.88, 89 Thus, targeting the interaction of 

Cdk5 and its activators represents a promising option for developing selective Cdk5 

inhibitors. However, to use this approach in HCC, it is important to elucidate first if Cdk5 

activity in HCC depends also on binding to p35 and p25, like in neurons, or on different 

proteins. 

 

4.6 Conclusion and further perspectives 

In conclusion, this study for the first time presents a novel and crucial function of Cdk5 in 

HCC cell motility and tumor growth. We showed that inhibition of Cdk5 potentiates the 

antitumor effects of different DNA damage agents and sorafenib in hepatoma cells and 

suggested a specific signaling pathway for these effects. Our work demonstrate Cdk5 as a 

drugable target in HCC and proposes the combination of DNA damage inducing 

chemotherapeutics or sorafenib and Cdk5 inhibition as a novel and promising therapeutic 

strategy for this almost lethal disease.  
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5 SUMMARY 

For a long time cyclin dependent kinase 5 (Cdk5) was thought to be of exclusive 

importance in neuronal cells. However, recently increasing evidence suggests a function 

of Cdk5 in cancer progression. In the present study, we examined the role of Cdk5 in 

hepatocellular carcinoma (HCC), a highly chemoresistant cancer with poor prognosis. 

Consequently, development of novel targeted therapies for HCC is of paramount clinical 

importance. Analysis of human HCC patient samples showed an increased expression of 

Cdk5 as compared to normal liver tissues. Functional ablation of Cdk5 significantly 

decreases HCC cell proliferation and clonogenic survival, and reduces cell motility and 

invasion. Of note, genetic as well as pharmacologic inhibition of Cdk5 also shows in vivo 

efficacy in a HCC xenograft mouse model. Investigating the mechanism behind these 

functional effects revealed that Cdk5 is most active in the nucleus of cells in G2/M phase. 

In this cell cycle phase DNA damage response takes place, which is affected by Cdk5 

inhibition. Furthermore, Cdk5 leads to phosphorylation of Ataxia Telangiectasia Mutated 

(ATM) and thereby influence its downstream signaling. Importantly, combination of Cdk5 

inhibition with different DNA damage inducing chemotherapeutics or the first-line systemic 

drug sorafenib inhibits synergistically HCC tumor progression.  

 

 

In conclusion, we introduce: 

1. Cdk5 as a novel drugable target for treatment of HCC 

2. The combination of Cdk5 inhibition and DNA damage agents as a novel 

therapeutic approach 

3. An increased efficacy of sorafenib treatment by combing with Cdk5 inhibition 
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7 APPENDIX 

7.1 Abbreviations 

AEC 3-amino-9-ethylcarbazole 

ANOVA Analysis of variance between groups 

APS  ammonium persulfate 

ATM  ataxia telangiectasia mutated 

ATP  adenosine-5’-triphosphate 

ATR  ataxia telangiectasia and Rad3 related 

BRCA1 breast cancer 1 

BSA bovine serum albumin 

c-Abl  c-Abelson 

cdc2 cell division cycle protein 2 

Cdk cyclin dependent kinase 

Chk checkpoint kinase 

CIP Cdk5 inhibitory peptide 

CNS central nervous system 

CREB cyclic adenosine monophosphate response element-binding 

DMEM Dulbecco’s Modified Eagle Medium 

DMSO  dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DSMZ German Research Centre of Biological Material 

DTT dithiothreitol 

ECL enhanced chemiluminescence 

EDTA ethylenediaminetetraacetic acid 

EGTA ethylene glycol tetraacetic acid 

ERK extracellular signal-regulated kinases 

FACS  fluorescence activated cell sorter 

FCS  fetal calf serum 

FL2-A fluorescent channel 2 area 

FL2-H fluorescent channel 2 height 

FS fluorochrome solution 
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HCC hepatocellular carcinoma 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP  horseradish peroxidase 

JCRB Japanese Collection of Research Bioresources 

MAPK mitogen-activated protein kinase 

min  minute 

MOI  multiplicity of infection 

PBS phosphate buffered saline 

PDGFR platelet derived growth factor receptor 

PI propidium iodide 

PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase 

PMSF phenylmethylsulfonyl fluoride 

RFA  radiofrequency ablation 

RNA  ribonucleic acid 

rpm revolutions per minute 

SCID severe combined immunodeficiency 

SDS sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM standard error of the mean value 

shRNA short hairpin ribonucleic acid 

siRNA small interfering ribonucleic acid 

TACE transarterial chemoembolization 

T/E trypsin/EDTA 

TEMED N, N, N’, N’ tetramethylethylene diamine 

TMA tissue microarray 

Tris trishydroxymethylaminomethane 

TUNEL terminal deoxynucleotidyl transferase mediated deoxyuridine 

triphosphate Nick End Labeling 

Tyr tyrosine 

VEGFR vascular endothelial growth factor receptor 
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versteht. Henri, Julia und Lina, Danke auch für den Spaß, den wir außerhalb der Uni 

hatten und, dass ich dank euch jetzt viel fitter bin. 

Ich möchte mich auch bei meinem Masteranden Max bedanken, für die riesige Hilfe im 

Labor und dafür, dass ich jetzt fast Fußball spielen kann. 

Dani, Jessica und Bettina möchte ich danken für die kommunikativen Mittagessen. Und 

zusammen mit Steffi und Isabella für den lustigen Austausch außerhalb der Uni. 

Ein großes Dankeschön gilt auch meiner Familie, die mir alles ermöglicht hat und mich 

immer unterstützt. Besonders möchte ich mich auch bei meinen Geschwistern bedanken, 

die wirklich immer und in jeder Lebenslage für mich da sind. 

Mischa, ein riesen Dankeschön, dass ich mich immer auf dich verlassen kann, für deine 

nicht endende Motivation und dass ich dank dir auch an einem schlechten Tag glücklich 

bin.  

 


