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Zusammenfassung

Obwohl Thermophorese, das heift die gerichtete Bewegung von Molekiilen in einem Temperaturgradi-
enten, schon vor mehr als 150 Jahren entdeckt wurde, ist ihre molekulare Ursache noch nicht restlos
geklart. Nichtsdestotrotz wird das Prinzip Thermophorese bereits in biomolekularen Bindungsmessun-
gen eingesetzt. Beide Themengebiete sind spannend und wert, wissenschaftlich behandelt zu werden.
In dieser Arbeit werden Experimente prisentiert, die einen groflen Parameterraum abdecken. Durch
diese Messungen konnte eine Kombination von Theorien zur molekularen Ursache iiberpriift und be-
stitigt werden. Damit lautet das erste Ergebnis dieser Arbeit, dass sich das Phanomen Thermophorese
aus verschiedenen, additiven Beitrdgen zusammensetzt. Einige davon konnen der ionischen Natur der
Molekiile zugeordnet werden und sind wirkungslos bei elektrisch neutralen Molekiilen. Der mikrosko-
pische Mechanismus dieser ionischen Thermophoresebeitridge wird im ersten Teil behandelt. Dabei wer-
den Arbeiten iiber das Kondensatormodell weitergefiihrt und ein zusétzlicher Beitrag diskutiert, den wir
in Analogie zur Festkorperphysik Seebeck-Effekt nennen. Durch die verschiedenen Beitriige ist es ge-
lungen, Theorien zu vereinen, die einerseits von einem lokalen, thermischen Gleichgewicht ausgehen,
oder andererseits ein Nicht-Gleichgewichts-Phinomen beschreiben. Das physikalische Verstindnis der
Thermophorese auf molekularer Basis kommt auch ihrer Anwendung zugute. In der Pharmazie werden
“Rasterfahndungen” durchgefiihrt, in denen die Bindungsaffinitét einer ganzen Molekiilbibliothek an ein
Zielmolekiil gemessen wird, um so die besten Kandidaten fiir einen neuen Wirkstoff heraus zu filtern.
Diese profitieren, wenn Thermophorese vorhergesagt und zum Beispiel der Einfluss des Puffers bestimmt
werden kann. Bindungskurven von Biomolekiilen kénnen heute schon in Zelllysat gemessen werden. Im
zweiten Teil der Arbeit werden zum ersten Mal Thermophoresemessungen in lebenden Zellen vorge-
stellt. Dies bereitet den Weg fiir Bindungsmessungen irn vivo. Um Thermophoresemessungen kompatibel
zu Zellkulturen zu gestalten, wurde der Aufbau in entscheidenden Teilen angepasst, unter Benutzung von

interner Totalreflexionsfluoreszenzmikroskopie (TIRF).



Abstract

Although thermophoresis, i.e. the directed movement of molecules in a temperature gradient, was dis-
covered more than 150 years ago, its molecular origin is not jet fully understood. Nonetheless ther-
mophoresis is used as a principle in biomolecular binding measurements. Both topics are interesting
and worth a scientific discussion. In this thesis, systematic experiments over a large parameter space
were conducted. From these measurements a combination of different theories about its molecular ori-
gin could be verified. Thus, the first result of this thesis is that the phenomenon thermophoresis consists
of different additive contributions. Some of them relate to the ionic nature of the molecule and are non-
existent when the molecule is electrically neutral. The microscopic mechanism of these ionic contribu-
tions to thermophoresis is discussed in the first part. It continues the work on the capacitor model and
explains a further contribution, which we call Seebeck effect in analogy to solid state physics. Through
the different contributions we bridge the gap between local thermodynamic equilibrium approaches and
non-equilibrium theories. Several applications will greatly benefit from understanding the molecular
physics of thermophoresis. Pharmacological screens are conducted to determine the binding affinity of
a whole molecular library to a target molecule and thus to identify the best candidates for a new drug.
These screens will be improved when thermophoresis can be predicted and for example the influence of
the buffer can be determined. Binding measurements of biomolecules can already be conducted in cell
lysate. The second part of this thesis will show thermophoresis measurements inside living cells for the
first time. This paves the way for in vivo binding measurements inside cells. To make thermophoresis
measurements compatible to cell culture, the setup was changed in great parts, now using total internal

reflection fluorescence (TIRF) microscopy.
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1 MOTIVATION

1 Motivation

Most molecules are too small to be moved with mechanical, optical, or magnetic tweezers [1]. Besides
chemical linking to surfaces, only two methods are known to move molecules in a fluid: electrophoresis
and thermophoresis. Electrophoresis has been known since 1937 [2] with a sound theoretically founda-
tion. Thermophoresis is less widely known and the underlying mechanism is poorly understood. It was
discovered more than 150 years ago [3, 4] for salt solutions, which had a higher concentration in the
cold part of a tubing than in the hot part. Later, thermophoresis was discovered for colloidal systems, but

already for an aqueous setting different theories are still discussed.

Up to now, thermophoresis could be measured, but could not yet be predicted quantitatively. A
variety of methods to measure thermophoresis have been explored. In a parallel plate geometry, mea-
surements are save from convection, but can take hours [5, 6]. Experiments in a micron sized setup are
much faster. Here two gold lines, 25 um apart, are alternatingly heated, and a concentration gradient
establishes [7]. A concentration gradient corresponds to a gradient of refractive index, in which a laser
beam is deflected and measured. Such a beam deflection method often requires sample concentrations on
the order of weight percent, which is hard to achieve with biological probes [8—10]. The same applies for
the thermal lensing method [11] and the thermal diffusion forced Rayleigh scattering [12, 13]. With the
thermal lensing method a partly absorbed beam locally heats the fluid and drives thermophoresis. The
expansion of water and the concentration gradient act as lenses, and the transmitted part of the beam is
analyzed for this lensing effect. With the thermal diffusion forced Rayleigh scattering method, a temper-
ature grid is established by absorbing an interference pattern with a molecule. This grid scatters a beam.
In a confocal microscope geometry short distances and fast measurements are achieved [14]. There, 3D
concentration information can be obtained, as the detection volume is restricted by a pinhole. With a flu-
orescent label, small molecule concentrations down to picomolar concentrations can be measured [15].
Braun and coworkers have shown that the thermal gradient for thermophoresis can be applied optically
by absorption of an infrared (IR) laser in a column of water within the thin sheet of solution [16, 17].

Matching the speed of axial thermophoresis was used to probe strong thermal gradients [14].

The strength of thermophoresis depends on the buffer, molecule size, shape, electric charge, and
hydration. Systematic experiments over a large parameter space are required to evaluate the different

theories — as presented in this thesis.

Although thermophoresis could not be predicted yet, it is used as a principle in biomolecular binding
measurements. To understand the complexity of biology, measurements of biomolecular reactions are
increasingly transferred from the test tube into living cells. Recent success in the life science industry
(Nanotemper Technologies) demonstrate the demand of such methods in the life science community.
They commercialized thermophoresis measurements for biomolecular studies to measure binding affini-
ties. This represents the step from measurements with surface fixation, like surface plasmon resonance
measurements (SPR) [18] or enzyme-linked immunosorbent assay (ELISA) [19], to measurements in

free solution and in the molecules native environment, e.g. cell lysate.
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Thermophoresis among other parameters is sensitive to the molecule’s size, charge, and conforma-
tion. Size will influence the mass diffusion. Charge will be discussed in the first part of this thesis and
the conformation influences the hydrophobicity and thus the non-ionic part of the Soret coefficient. At
least, one of these properties will change in a binding event, thus the binding event can be detected. In
a measurement, however, care must be applied not to change the buffer, since this will also influence
thermophoresis. Thus, thermophoresis measurements can be used to measure binding affinities of DNA
[20], proteins [21], pharmaceutical components [22], and even membrane receptors [23]. Recently, pro-
tein binding at the picomolar level was reported [15]. Not only binding to large partners can be detected,
but also the binding of, for example, the small ion Ca?*[21]. Thermophoresis became the basis for 140
publications in leading biology journals, including tubulin binding to transport proteins [24] and binding
studies of avian influenza to cell surface receptors [25]. When the fluorescent amino acid tryptophan is
present, additional labeling of the probe can be omitted [26]. In contrast to ELISA, thermophoresis mea-
surements can be conducted without surface fixation and in the molecule’s natural environment, such as
blood serum [27] or cell lysate [28].

The next step is transferring these measurements into living cells. The first steps to achieve this are
shown in the second part of this thesis. The measurement chamber needs to be adapted, since large ad-
herent eucaryotic cells are difficult to grow in very small capillaries. Additionally, it will be favorable to
measure more cells simultaneously to obtain good statistics, so the measurement with heating at a single
spot by an IR laser is changed as well. Since we change the core of thermophoresis measurements, the
new setup needs to be verified and first single thermophoresis measurements are performed. In the future

this will enable the combination of multiple thermophoresis measurements into binding measurements.



Part 1

Ionic Thermophoresis



2 THEORETICAL FOUNDATION

2 Theoretical Foundation

This chapter will pursue a theory introduced by Dhont [29] and Herzog [30] and and it will introduce
additional terms. As to start with some basic definitions, the thermophoretic velocity Vr of a particle in

a temperature gradient VT is described by the thermo-diffusion coefficient Dr:
Vr =—Dr-VT €))

So a movement toward the cold is defined with a positive thermo-diffusion coefficient. Often we will
find this direction, but thermophilic molecules and conditions also exist. Thermophoretic movement will
lead to an accumulation or depletion (concentration c¢) in cold and warm spots (concentration gradient

Vc¢) and trigger mass diffusion (diffusion coefficient D). The particle flux J then is
j=-Ve¢-D—c-Dr-VT 2

In a stable temperature distribution 7' eventually the steady state is reached, in which diffusion and
thermodiffusion exactly counterbalance each other and the particle flux vanishes. If connected to a

reservoir with concentration ¢y and temperature 7y the concentration distribution can be calculated by
Dr
¢(T)=co-exp {—D-(T—TO)] 3)

The ratio Dy /D = Sy is called Soret coefficient. The first part of this thesis will give a molecular expla-
nation on the phenomenon of ionic thermophoresis. We propose that the Soret coefficient is composed
of different, additive parts which we call the capacitor model S5, the Seebeck effect S32, a non-ionic

contribution S¥ and an ideal gas contribution 1/7:

Sy =SM L SSE L SN 1T 4)

To test the model thoroughly with all contributions mentioned in Eq. 4 implies measuring the Soret coef-
ficient in a broad, multidimensional parameter space. DNA was chosen as a model system because of its
excellent purity, the possibility of a fluorescent label, and generally well-known molecular parameters of
DNA. Due to the fluorescent label, very small concentrations can be measured. For the non-ionic contri-
bution the temperature is varied, and for the capacitor model the salt concentration is varied. Therefore,
the single stranded DNA length was chosen to be oligomeric (2 to 80 bases), so its hydrodynamic radius
is comparable to the Debye length. The range of Debye lengths was limited, since for short lengths the
DNA started to stick to the capillary walls (borosilicate glass) and long Debye lengths conflicted with
the ion input from the buffer. For the Seebeck effect, DNA was measured in many different, mostly

monovalent salt electrolytes.



4 CAPACITOR MODEL

3 Ideal Gas Contribution

Even an ideal gas shows thermophoresis if it is exposed to a temperature gradient. If one side of the
gas is hotter than the other side, then the gas molecules on the hot side have a higher mean velocity
compared to those on the cold side. Thus, the probability to change sides is larger for a fast moving, hot
particle than for a cold and slow molecule. This results in a net particle flow from the hot to the cold
part. These considerations can be also applied to fluids, although many more additional factors play a
role. The contribution stemming from the explicit temperature dependence of the diffusion coefficient is
called ideal gas contribution in Eq. 4. It is the one also occurring in an ideal gas, as is explained above.

The full theoretical derivation of it can be found in [29].

4 Capacitor Model

4.1 Spherical Capacitor

Moving from the ideal gas to thermophoresis in an aqueous surrounding, there will be more contributions
to the Soret coefficient (Eq. 4). In an electrolyte any charged particle will be screened by counter charges
on a screening length called Debye-Hiickel length. This can be viewed as a spherical capacitor (see
Fig. 1).

®
© I
© 5. ® W /////////,,///////////,,,,,//// .
@® “{ “||||n‘ X ////////////
® Op © @ﬁ y ////////*
xDHCC; A G“CB . )
® ® ©) | | /$
©60 O ?‘ﬂu‘" E-Field ///
: @%_ | ////////////////X
o © % mWW//////////////////////////i//////// x
® O

Figure 1: The screening of the charge of a spherical particle by counter ions in solution can be seen as
a capacitor. The particle with radius R is the inner sphere, the counter ions represent the outer sphere.
The two spheres are spaced by the Debye-Hiickel screening length Apy. The local electric field in this
capacitor can be used to calculate thermophoresis. Image courtesy of Herzog [30], electric field added.



4.1 Spherical Capacitor 4 CAPACITOR MODEL

As described in [29, 30] the capacitor model contribution to the Soret coefficient S%M can be derived

from the electric energy W stored in this spherical capacitor

cv_ 1L OW
ST =T or ®)
where
_ 0’
N SﬂSR(R/ADH—I-l) ©)

with the Boltzmann constant k, the absolute temperature 7', the permittivity of water £(T) = &.(T) + &
with the relative permittivity €,(7) and the vacuum permittivity &j, and the hydrodynamic radius of the
sample R. In the case of DNA in an aqueous salt solution the charge Q = Z, s - e (with the effective
charge number Z, ¢ and the elementary charge e) is independent of the temperature. The Debye-Hiickel
screening length Apy resembles the distance of the plates in the spherical capacitor. It is also called
Debye length for short or screening length. Herzog found the radius R of our model system DNA
to be independent of temperature[30], but Lipfert found a small temperature dependence [31]. Next
to the explicit temperature dependence of the Debye length, the permittivity of water depends on the
temperature [32]. Later on we will also need to model a temperature dependence of the concentration ¢;
of all (salt) ion species i with charge number z; present in the fluid. The Debye length and its temperature

derivation are

Apu(T) = @)

dipy  Apm [ 1

ot ~ 2 \1Vear ek ot ®)

with the Avogadro constant N4. The Debye length increases with decreasing salt concentration and

decreases with temperature. With this information the Soret coefficient can be calculated as

_ P
e a— o’ 1— 1_|_21DH Z%_La;l
T kT216medpn (R/ Apr +1)? R ) €dT Ycz? OT
- ’ B
_ Qo 1= (14 on) 9lne i )
~ kT2167edpy (R Apy +1)2 R )oInT  JInT

This equation can be verified by measuring different sized single stranded DNA in salt solutions of
various concentrations. As explained by Herzog [30] two limiting cases can be examined for Apy < R

and Apy > R. In the first case the screening length is small enough so the bending becomes negligible
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and the system behaves like a parallel plate capacitor with S(TjM linearly depending on the Apy, as was
experimentally verified by Duhr et al. [17, 33]. In the latter case the model resembles a point charge and
S(TjM over Apy is a plateau (see dashed lines in Fig. 3). As shown in this thesis, the other contributions of
Eq. 4 do not depend on the salt concentration. Thus, the capacitor model can be verified if the size of the
particles and the titrated Debye length are approximately the same size. By measuring Sy over Apy the

capacitor model can be compared to Eq. 9 with an additional offset from the other contributions.

We thus verified the capacitor model by measuring the Soret coefficient of single stranded DNA in
KClI solutions of various concentrations. We used DNA as a model system due to its well known prop-
erties, high purity, high charge, and availability in many sizes. The solution was filled into a rectangular
glass capillary with only 50 um height in order to suppress convection. The temperature of the capillary
and the solution was controlled, and a spot in the aqueous solution was heated with an infra-red (IR)
laser. A camera recorded the diffusion through a fluorescence microscope. For details about the setup

and the measurements see section 9.

The measurements are shown in Fig. 2. Eq. 9 was fitted to our data with two fee parameters: the
offset from the other contributions, and the effective charge number Z, s of the molecule. However,
these are no real fitting parameters, because the values of Z, ¢ reflect the known effective charge of DNA
in electrophoresis (see section 4.4) and the offset could be explained from the other Soret contributions.
As seen in Fig. 2, the data of the 80mer deviates for large Apy, marking the breakdown of the internal

shielding approximation.

10
e 80mer *® Smer
8F o 50mer *® 2mer

22mer

gG— 10mer o8 ° e .
S 4L 7 °
=3

= .
w 2L *
0

) ] ] ] ] ]

0 2 4 6 8 10 12
Apn [Nm]

Figure 2: Thermophoresis measurements (dots) of different single stranded DNA lengths (colors) plotted
across the Debye length Apy. The theoretical predictions are shown as solid lines.
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By rescaling Eq. 9 with the effective charge number of the particle and its size, S%M only depends on
the rescaled Debye length Apy /R and all data should fall onto this master curve (Eq. 10):

22
gom R e*-(R/Apn) (14 2Apy \ dlne 8§c,z, (10)
Tz, kT?167E(R/Apy + 1) R )oInT 9JInT

The data of Fig. 2 was replotted in this way in Fig. 3.
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Jou/R

Figure 3: The data of Fig. 2 was rescaled to fall onto one single master curve.

4.2 Divalent Ions

The capacitor model still holds for divalent ions (see. Fig. 4). Here the conversion from salt concentration
to Debye length is different, according to Eq. 7. Thus, we could only measure up to about Apy =
8 nm, before the buffer concentration affected the measurements. Also, the effective charge of the DNA
dropped to about 0.2 e per base and was only about half of the amount compared to the same DNA in a
monovalent electrolyte. This can be readily explained by the work of Lipfert [34], according to which
divalent ions screen the DNA charge much better than monovalent ions. Or it can be explained by the
work of O’Brien [35], where a decrease in the electric mobility is shown for higher-valent salts. There
a factor of 1/2 is mentioned for the electric mobility of divalent salts, which can be adopted, since the

electric mobility is directly proportional to the effective charge.

4.3 Expansion of Water

In addition to Eq. 9 one could include the thermal expansion of water. By heating, the sample concen-

tration c is diluted [32] by
ap(T)

AT
oT

8
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Figure 4: The capacitor model holds for electrolytes with divalent ions, but the effective charge of the
DNA is reduced to about 0.2 e as compared to the DNA in monovalent electrolytes with about 0.4 e.

with the density of water p(7'). This factor was already included in the work of Herzog [30]. The last

term of Eq. 9,
dInYciz?
i

olnT

(2

In our case the temperature expansion of water can be omitted, since its influence on Sf;M in our tem-
perature range (5 - 75 °C) is small. The influence is largest with 8.3% at Apy = O (infinitely high salt
concentration) and 75 °C with dInp/dInT = —0.21 and dIng/dInT = —1.6 (see Fig. 5).

can thus be rewritten in terms of p.

2ApH
R

_ %
 kT216meApy (R/ Apy +1)2

s (11)

dlne  Jdlnp
dInT JInT
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Figure 5: (A) Water expansion with temperature (B, C) Dielectric constant of water with temperature

(32]
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4.4 Charge Condensation

The amplitude of the Soret coefficient of the capacitor model measured over the Debye length scales
with the square of the effective charge (see Eq. 9). Thus, the effective charge can be fitted from those
measurements. In section 4.1 the effective charge was a fitting parameter, but actually it is known already

from electrophoresis as
u-k-T
e-D

with the electric mobility p. In a multi-particle collision dynamics simulation the concept of the Manning

Zepf = 12)

condensation was implemented [36]. There charges condense onto the DNA or RNA if the electric
potential is large enough, and an effective charge per base or a charge per base pair can be calculated. The
charge per base or per base pair (in units of the negative elementary charge ¢) decreases with increasing
length of the DNA. Interestingly, the values for the charge per base and per base pair, depending on
whether the DNA is single or double stranded, are almost identical. The reason for this is that the
spacing of the charges is very similar. This supports the hypothesis that this effective charge can be
used in the capacitor model. Herzog also measured only little difference when he calculated the effective
charge (also in units of the negative elementary charge e) from his Soret measurements. I extended his
measurements on both sides for the short 2mer and a long 80mer single stranded DNA (see. Fig. 6).
Our measurements confirm the simulations mentioned above [36] when the two negative charges of the
fluorescent label are added with similar spacing as in the DNA [30]. The pKa value of the fluorescent
6-Hex label is ~3 [37], so within the pH range of our experiments (5-9) it is always charged. With these
charges values for the charge per base higher than one can be achieved.

2.0 e ssDNA
< 15}k A ssRNA
o ® dsDNA
81.0F A dsRNA
g — Electrophoresis
g 0.5F ‘
°

11 1 1 | |

2510 22 50 80

Number of Bases

Figure 6: Charge per base in units of e (here negative) as yielded by the capacitor model. Data and
image of Herzog [30] with the 2mer and 80mer ssDNA added.
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S Non-Spherical Geometry

Short single stranded DNA of various sizes and Debye lengths is used as a model system to test the
spherical capacitor model experimentally (section 4). The main contribution is explained with a spherical
capacitor model. Interestingly, double and single stranded oligomers show very similar thermophoresis,
although the persistence length of double stranded DNA (dsDNA) and RNA (dsRNA) is much longer
than the sequences used by Herzog [30]. Although the persistence length of single stranded DNA is
10 A to 32 A, i.e. 2 to 7 bases short [31], and a spherical form of the molecule is likely, the shape
of double stranded oligomers might be better modeled as a rod, since their persistence length is about
170 base pairs [38]. Here we will explain in more detail, why such a spherical capacitor nevertheless can
be used as a good approximation. Previously, the effect of molecule geometry in thermophoresis was
studied for solid virus particles, with a contour length of 880 nm, a radius of 3.4 nm, and a persistence
length of 2.2 pym assuming a constant surface charge density and using modified Bessel functions to
describe the geometry [39]. Such an approach does not fit measurements for short DNA or RNA, since
in this approximation the particle is a long, thin cylinder and end effects are assumed to be negligible.
Alternatively an approximation of the shape as a string of spheres was proposed.

In this chapter, we follow a direct analytical method with a full geometrical description, valid for
all Debye lengths. We insert a cylindrical condensator into the previously studied spherical capacitor.
As usual with shielding capacitors we assume that the condensators are acting in parallel. A cylinder
capped with hemispheroids was also used in modeling of electrophoresis [40]. There it was found that
for a length-to-diameter ratio greater than about 3, the end caps of the cylinder have a negligible effect,
provided the length is chosen to yield a structure with the same volume. So, having proven with the
Manning theory and in experiments that single and double stranded oligomers have the same charge
(section 4.4), we will prove here that also differences in geometry are negligible. We find that single and
double stranded oligomers behave surprisingly similar.

Here, we will adapt the spherical capacitor model, which was first proposed by Dhont (3), to elon-
gated rods. The shape is modeled as a sphere, which is cut in halves, with an inserted cylinder of the

same radius R (compare Fig. 1 and Fig. 7). Thus, also the end effects can be included in the model.

5.1 Theory

For comparison we will calculate all three models: the sphere, the cylinder without end caps, and the
combined structure, which we call rod. The rod capacitor (capacitance C,,) is composed of two parallel
capacitors: a spherical capacitor (Csppere) and a cylindrical capacitor (Ceyjinger With the overall length L

reduced by 2R, i.e. the length of the end caps):

Csphere = 4meR (R/A‘DH + 1)
2mel

In ()'DH /R + 1)

Crod = Csphere + Ccylinder

Ccylinder (13)

11
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Figure 7: Molecular model to explain the Debye length dependence of thermophoresis. The spherical
capacitor model can be extended to rod shaped molecules such as short double stranded DNA. The shape
is modeled as a sphere, which is cut in halves with an inserted cylinder. The radius of the sphere and the
cylinder is R, the overall length is L. The charge of the elongated particle is screened by counter ions in
solution within the Debye length Apy. The combined capacitor is treated as a spherical and a cylindrical
capacitor in parallel. Image style according to Herzog [30].

with R the radius of the sphere and of the cylinder, and L the overall length, see Fig. 7. The energy stored
in a capacitor is W = Q?/ (2C), cf. Eq. 6, with Q = Z, /¢ e being the effective charge of the particle and

Z.ry the effective charge number in multiples of the elementary charge:

QZ
Wi phen
sphere 87eR (R/Apr + 1)
0*In(Apy/R+1
chlinder = ( 42:1;2 ) (14)
Q2
Wiod

4me 2R (R/2prr + 1)+ (L—2R)/In (Apr /R+ 1)]

Analogously to the Soret coefficient of a sphere St e (Eq. 9) and the Soret coefficient of the cylinder

ST eylinder €an be calculated as the temperature derivative of the electric energy (Eq. 5):

o _ Law
T = kror
2 dlne 22,
STsphere = Q 5 [1 — n <1 + DH):| (15)
kT2167eApy (R/Apg + 1) dInT R
dln
Q2 ADH (1_'_3111;) )LDH dlne
ST cylinder . —In 1])-
kT?4mel 2R (l[)TH_}_l) R olnT

The Soret coefficient of the rod St ,,4 18

12
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Q2
STrod: 5
kT247e 2R(ﬁ+1)+(L—2R)/1n(%H+1)}
LS (L—2R)%pt dlne (L—2R) %1 P T 2 ) B
Ao (M4 1)- (B 41) IIT [2m(Be 1) (BB +1) Aow In(*R% +1)

In case the length of the rod is exactly the diameter of the sphere (L = 2R), i.e. no cylinder is inserted,
the equation for the rod equals the spherical equation. The three equations are calculated in Fig. 8a
resembling a 22mer. Single stranded DNA with no secondary structure is a random coil roughly in the
shape of a sphere since the persistence length is about 2 to 7 bases [31]. The hydrodynamic radius of
the sphere depends on the DNA length, i.e. 2 nm and 3.7 nm for a 22mer and a 50mer, respectively.
However, the radius of the rod or the cylinder is that of the DNA strand: 1 nm and the length of double
stranded DNA is L = base pairs-0.34nm/base pair, i.e. 7.5 nm and 17 nm for the 22mer and the 50mer,
respectively.

5.2 Low Salt Limit

For the limit of high Debye lengths or low salt concentrations, the change in geometry from a spherical
to a rod structure should not affect the Soret coefficient. In the case of an infinite Debye length, a particle
can be considered a point charge, regardless of its shape. Formally, S7 cyjinger g0€s towards infinity for
low salt concentrations. However, for the rod the end effects become much more important: The surface
of the outer sphere (i.e. of the end caps) grows with A3,;, whereas the surface of the outer cylinder only

grows with Apy:

QZglns
lim S = lim Srg= inT 17
QLDHI/II?HOO T sphere QLDHI/II?HOO T rod kT28TeR ( )

So the Soret coefficient becomes constant for very large Apy, but for the rod this value is approached
very slowly as can be seen in Fig. 8). For the rod the final value, equal to a sphere with the same radius,
is approached only for Debye lengths far too long to be achievable for real electrolytes. Thus, the Soret
coefficient of an elongated particle is considerably lower than the Soret coefficient of a sphere with same

diameter and charge. It is about as large as the Soret coefficient of a particle with the same surface.

5.3 High Salt Limit

For the limit of high salt concentrations, i.e. small Debye lengths, the capacitance changes with surface
area similar to a plate capacitor, since the area of the two plates hardly differs. The Soret coefficient of a
plate capacitor is linear in Debye length. Here, the spherical part and the cylindrical parts are separated,
because the shielding of both parts does not overlap for such small screening lengths. The area for a
spherical and a rod like molecule of the same radius will differ, and thus the slope of the Soret coefficient

will differ. However, the capacitor part of the Soret coefficient will in both cases vanish for the limit of

13
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Figure 8: Calculation of the cylinder, rod and sphere models for a 22mer DNA. (a) The single strand
is modeled as a sphere with radius R = 2 nm and the double strand is modelled as a cylinder and a rod
with R = 1 nm and length L = 7.5 nm. Between rod and sphere there are only small differences. (b)
In comparison to the sphere of (a), we plot rods with different aspect ratios L/(2R), but with the same
surface area as the sphere. For experimentally accessible Debye lengths, the rods behave similarly to the
sphere up to about an aspect ratio of 9. A 22mer and a 50mer dsDNA have aspect ratios of 3.75 and 8.5,
respectively. The Soret coefficients were calculated at temperature 7 = 25 °C with an effective charge
of 0 = —10e.

very high salt concentrations. The surface of the two capping half spheres at the end of the rod (together
4R’7) is exactly as large as the surface of the additional cylinder, if the cylinder was extended all the
way to the end (2nRL with L = 2R). Thus, for the limit of high salt concentration the Soret coefficient of

the rod is equal to the Soret coefficient of a cylinder without end effects.

) 0? dlne
lim § = 1— A
Aons0” T SPhere 167kT2eR2 \\  9InT ) "PH
. 0? dlne 2R .
lim S7 ey = ———(1—-——— | Apg=—- lim § 18
Z,D}-;IEO T cylinder STkT2eLR JInT DH I ),D}-;IEO T sphere (18)
, 0? dlne .
lim Sz, = ———— | 1—=—— | Apg = lim St yinder
homs0” T T BakTZeLR \©  9InT ) P T g linde

This agrees with the approximations by Wang et al. [39]. They calculated and compared the Soret
coefficient of a particle with constant surface charge. We, in contrast, calculate and compare the Soret
coefficient for a particle with constant charge. In our experiments we know the effective charge of the
molecule, given by a constant charge per length. In addition, this charge is approximately the same
for single and double stranded DNA, as discussed further in section 4.4. If a constant surface charge
is maintained, then the charge Q scales with the aspect ratio L/(2R). Since the Soret coefficient is
proportional to the square of the charge Q, our equation matches the one of Wang [39] for the limit of
high salt concentrations.

The sphere in Fig. 8b again models a 22mer ssDNA. Additionally rods of different aspect ratios but

with the same surface areas are shown. The aspect ratios for the 22mer and the 50mer are 3.75 and 8.5,

14



5 NON-SPHERICAL GEOMETRY 5.4 Experiments

respectively. Deviations from the spherical model kick in for dsDNA longer than about 50 bases, i.e. an
aspect ratio L /(2R) = 9. For comparison, the persistence length of dsDNA is at about 170 bases [38].
Considering this, the theoretical Soret coefficients are similar for single and double stranded oligomers in
the range of experimentally accessible Debye lengths. The effects of the elongated shape and the smaller

radius approximately cancel each other.

5.4 Experiments

Since the theoretical curves are alike, measurements of double stranded DNA can be fitted equally well
with a spherical and a rod like model (Fig. 9). As free fitting parameters we choose the effective charge
number and a molecule specific offset, which includes other contributions to the Soret effect from Eq. 4.
Both the spherical and the rod model yield very similar effective charge numbers as fitting parameter
(Table 1). Since the charge of a particle enters Eq. 16 quadratically, one could expect a factor 4 dif-
ference between single stranded and double stranded DNA and RNA. However, their Soret coefficients
are quite similar (see Fig. 9) with a similar effective charge. According to the Manning theory [36] and
electrophoresis measurements [41] single stranded and double stranded oligomers have approximately
the same effective charge and electric mobility. As we discuss and see here, this similarity also translates

to thermophoresis.

(@ 0.16 () 0.16 (©) 0.16

| 22mer DNA 22mer RNA
! o ssDNA e dsDNA n ssRNA Ao dsRNA
0.12 0.12k - - sphere fit sphere fit 012k - - spherefit —rodfit
— rod fit sphere fit

= 0.08 = 0.08f } i { % = 0.08f ; 1 ]
- = -
%) 50mer DNA 7] 9]
i T L+—1
0.04f{ © sSDNA e dsDNA 0.04f8-¥ ¢ 0.04F
4= sphere fit — rod fit
sphere fit ¢
0.00 L L 0.00 L L 0.00 L L
0 5 10 15 0 5 10 15 0 5 10 15
hpn [Nm] Apy [Nm] hpy [Nm]

Figure 9: The thermophoresis of double stranded DNA and RNA can be fitted as a rod with radius
R =1 nm and a length of L = 7.5 nm and 17 nm for 22mer and 50mer, respectively. Single stranded
oligonucleotides can be seen as spheres with a hydrodynamic radius of 2 nm and 3.7 nm for the 22mer
and the 50mer, respectively. However, the respectively other model geometry can be similarly fitted to
the thermophoresis measurements. The sphere and the rod fit and yield very similar effective charges
Z, ¢ for the double stranded measurement data (see Table 1). The Debye length was titrated using KCl
including the 1 mM TRIS buffer at pH 7.8. The measurements were conducted at 25 °C. Data courtesy
of Herzog [30].

We have shown that single and double stranded DNA of the same length behave surprisingly similar
in a temperature gradient. We derived an analytical capacitor model for elongated rods with arbitrary

Debye lengths. The cylindrical capacitor without end caps diverges for large Debye lengths, but the
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5.4 Experiments 5 NON-SPHERICAL GEOMETRY

Table 1: Parameters for the different fitting models in Fig. 9. We fitted Z, sy and assumed the radius to be
R =2.0 nm and R = 3.7 nm based on PEG-free measurements of the diffusion coefficient. Temperature
was 25 °C, relative permittivity of water & = 78 and its temperature derivative dIng/dInT = —1.35.
There was a free offset parameter to account for other contributions to the Soret coefficient.

Fig. 9 Ze ff
50mer ssDNA sphere | 20.3+1.3
50mer dsDNA sphere | 19.5+1.0

50mer dsDNA rod 18.6+1.0
22mer ssDNA sphere | 11.6+0.4
22mer dsDNA sphere | 7.1£1.0

22mer dsDNA rod 6.9+1.0
22mer ssRNA sphere | 12.94+0.6
22mer dsRNA sphere | 9.74+0.3

22mer dsRNA rod 9.3+£03

spherical and the rod shaped capacitor behave alike for all possible Debye lengths — theoretically and in
the experiments.
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6 SEEBECK EFFECT

6 Seebeck Effect

Not only the probe particles, in our case the DNA, will move in a temperature gradient due to ther-
mophoresis, but also the salt ions in the electrolyte. This was how thermophoresis was discovered in the
first place [3, 4]. The different ion species can have different Soret coefficients, which are known from
thermo-electric measurements and can be seen in Table 2. The cations and anions will accumulate at the
hot and cold sides to different extents, as visualized in Fig. 10. This charge separation will result in an
electric field, in which charged probe particles, like the DNA in our case, and all other ions will exhibit
common electrophoresis. This effect is macroscopically indistinguishable from thermophoresis and thus
discussed here. It is called Seebeck effect in analogy to the thermo-voltages in solid state physics. Alter-
natively, a more descriptive name is thermo-electrophoresis. Since the pioneering salt species dependent
Soret measurement of Putnam and Cahill [42] a contribution to thermophoresis from the Seebeck effect

has been suspected, but not demonstrated without fitting parameters.

Cl K*

o cr
) K* .
cr- Cl OO @O K+ Cl K+
Warm < ¢° IS5 Cold .
K* cl Q o 0) Ccl- K* K*
o © K* ¢
CI- + cl-
K K+

5.(K*)> Sy(cl)

Figure 10: Differential thermophoresis of the salt ions themselves (here: potassium chloride) will lead
to an electric field. In this, the charged particle (here: DNA) will experience electrophoresis. This is
called the Seebeck effect and it is considered part of thermophoresis, since it it indistinguishable from it.

6.1 Calculation of the Seebeck Effect

To calculate the Seebeck effect we follow the argumentation of Guthrie and Wiirger [43, 44] who treated
the case with monovalent salts. Eq. 2 on page 4 is expanded by electrophoresis (electric mobility u and
electric field E ) to

j=-V¢-D—¢-VT-Dr+c-u-E (19)

For the salt ions we use the approximation [41]

._Zi'e'Di
" kT

(20)

with the charge number z; of the i-th ion species, the elementary charge e, and the Boltzmann constant

k. For the highly charged DNA this definition of the electric mobility can be used to define an effective
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6.1 Calculation of the Seebeck Effect 6 SEEBECK EFFECT

charge number Z,¢r. Eq. 19 is valid for every ion species i, in solution. Thus, we can sum over all ion

species i and after considering the neutrality condition

Y ziVei=0 (21)
i
we can solve for the electric field oS
ZiCidTi
- k-T-VT %5
E— L - (22)
e Yzic
1

This electric field is proportional to the concentration weighted average of Soret coefficients of the ions
present in solution, and thus the highly concentrated salts dominate the sums. In our experiments we used
1 um DNA in several mM salt and TRIS buffer. So although the DNA is highly charged, its influence
on E is only marginal because of its small concentration. The same argument holds for H3O* and OH—,
although their Soret coefficients is higher than for the salts by a factor of ten to twenty (see Table 2).
Their concentration is too small if the pH is at physiological values; e.g. at pH 7 the concentration of
H3O™ and OH™ ions is 0.1 uM.

Table 2: Soret coefficients and electrophoretic mobilities of different ion species. Values of the hydro-
dynamic radius R, mass diffusion coefficient D, electric mobility u, and Soret coefficient S; were used
to calculate the Seebeck effect in Fig. 11 and Fig. 12. The Soret coefficients S; were taken from [45]
and [46]. The values of ion conductivities were taken from [32] and converted to mobilities (. The
diffusion coefficients D from [32] were converted to a hydrodynamic radius using the Einstein-Stokes
relation [47].

| Ton | D[um?s] | R[A] [ pu [m¥Vs] | S [1/K] |

Cay 792 2.76 6.16E-8 1.33E-2
K+ 1957 1.12 7.62E-8 | 3.51E-3
Li* 1029 2.12 4.01E-8 | 7.18E-4

Mg?* 706 3.09 | 5.49E-8 | 1.22E-2
Na* 1334 1.64 | 5.19E-8 | 4.69E-3

NiZt 661 3.30 | 5.14E-8 | 1.26E-2
Br- 2080 1.05 | 8.09E-8 | 8.13E-4
Cl- 2032 1.07 | 791E-8 | 7.18E-4
F- 1475 148 | 5.74E-8 | 5.32E-3
I~ 2045 1.07 | 7.96E-8 | -2.10E-3
OH~ 5273 0414 | 2.05E-7 | 2.33E-2

H30* 9311 0.234 | 3.62E-7 1.80E-2

The charge of the DNA is stable between pH 5 and 9, and in this range the Soret coefficient does not
change significantly [30]. At extreme pH values these ions will have an effect [10] so we always included
a small amount of TRIS buffer. Due to the temperature dependence of the TRIS dissociation constant
pKa, the pH changes with a rate of -0.03 1/K. The pKa value of the fluorescent 6-Hex label is ~3 [37], so
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6 SEEBECK EFFECT 6.2 Verification of the Seebeck Effect

within the pH range of our experiments it is always charged. The kinetics of pH equilibration are known
to be much faster than the diffusive kinetics of thermophoresis.
By inserting the calculated electric field (Eq. 22) into Eq. 19 we get the Soret coefficient and the
contribution of the Seebeck effect as
2iCiSTi
§SE _ k-T - Upna ; e
= — . - (23)
e-Dpya  Xzic
4

6.2 Verification of the Seebeck Effect

The question is how the Seebeck effect can be verified experimentally and distinguished from the other
contributions? If we use a monovalent salt as the electrolyte, the concentration dependence cancels in
Eq. 23, since there is an equal amount of anions an cations. As long as the electrolyte composition is not
changed, all ¢; are reduced to the constant stochiometric ratio, and the ionic strength (or Debye length)
can be varied without varying the Seebeck effect. Thus, we have a salt concentration independent, but
salt species dependent factor. If we measure Sz in various salt concentrations and various salt species, we
can fit the capacitor model to the data for each species with an offset coming from the other contributions
in Eq. 4. This data and the capacitor model fits are shown in Fig. 11. We extrapolate the capacitor
model fits to the limit of zero Debye length and thus S$# vanishes, since for small Debye lengths S
is proportional to the Debye length (Eq. 9). We know the temperature and can subtract the ideal gas
contribution from this offset. The remaining non-ionic part does not depend on the salt species (see
section 7). Thus, it can be separated as a constant by varying the salt species. The theory from Eq. 23 with
the values from Table 2 can then be compared to the experimental results of the Seebeck contribution,
i.e. to the Soret coefficient as shown in Fig. 12. Here the electric mobility was a fitting parameter and we
found pupys = —1.24+0.13, —2.6 £0.24, and —1.2+£0.13- 10~8m?/Vs for the 2mer, 22mer, and 80mer,

respectively.

Next to the DNA measurements we also measured the positively charged fluorescent dye Rhodamine
6G in the different salt species. Since it has only one positive charge, the amplitude of the capacitor
model measured over the Debye length is small. Furthermore, the molecule is very small compared to the
DNA, and thus the transition region from the plate capacitor regime (Apy < R) to the point charge regime
(Apg > R) is at very high salt concentrations. Since Rhodamine 6G is prone to sticking to the capillary
walls especially at high salt concentrations, we coated the walls with the positively charged poly-L-lysine
before the measurement and kept the salt concentration at 10 mM. In Fig. 12 the measurements with
lithium salts seem to deviate from the theoretical expectations. Lithium is the smallest of the positively
charged ions and is suspected to interact with DNA [49], possibly perturbing hydrogen bonds [50]. Also
Lipfert et al. measured that lithium screens the macromolecule’s charge better than the larger potassium
or sodium [34]. This results in a different effective charge of the DNA in lithium electrolytes, which was

not considered in the theory.
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Figure 11: Soret coefficient of DNA with different lengths in the first three panels. For the Rho-
damine 6G no dependence over the Debye length was measured, and thus S5 cannot be subtracted.
All measurements were done in different salt concentrations (x-axis) of different salt species (colors).
For each salt species we fitted the capacitor model to the data and extrapolated it to Apy = 0, so we could
separate the Seebeck effect from this offset. Most data for 22mer from Gotz [48].

6.3 Influence on the Capacitor Model

The contribution of the capacitor model to thermophoresis as described in section 4.1 depends on the
salt concentration. We just derived that the salt concentration also depends on the temperature field. The
last term in Eq. 9 on page 6 already considers a temperature dependent distribution of the salt ions in the

electrolyte around a particle. This is given by the Soret coefficient S7; of the i-th ion species.

dc;
775 =—=S87i"¢i (24)
With this Eq. 9 becomes
TY Sriciz?
§CM _ 0 1—(1+ 22pn \ T de + ﬂ (25)
T 7 kr216medpy (R A +1)? R ) edT  Ycz?
i
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Figure 12: If all other contributions are subtracted from the Soret coefficient (S5° = Sy —SM — 1/T —
S$M), the Seebeck contribution is obtained and can be compared to the theoretical value from Eq. 23
with the molecule’s parameter and the values of Table 2.

The difference between this effect and the Seebeck effect is that the capacitor model always depends
on the charge squared, and with the Seebeck effect also the sign of the charge can be tested. Here and
in Eq. 25 the valency of the ions is squared both times. In the case of only one monovalent salt in the

electrolyte we have as many cations as anions and Eq. 25 can be further simplified to

2 22, T de

SEM kT2167r87LD,?(R/7LDH+ o [1 - <1 + 1?H> Sop HT- <S> (26)
with < S7 > the average Soret coefficient of the anion and cation. This changes the Soret coefficient, as
can be seen in Fig. 13. To evaluate the relevance of this deviation we can compare the figure directly to the
measurements in Fig. 3 on page 8. There also for a homogeneous salt concentration the theoretical curve
is shown, which is identical to the one in Fig. 13 Here, for the limit of low salt concentration, no change
is detected. For the limit of high salt concentration we get a different slope, but the master curve still
311;‘; decreases with increasing
temperature. At 15 °C and with potassium chloride at S7(K*) = 3.63-1073 1/K, S7(ClI7) = 7.43 -
1074 1/K, dlng/dInT = —1.3, Apy /R = 1 this contribution is 12.1% and at 75 °C with dlng/dInT =
—1.58itis 12.4% of S%M (see Fig. 5 on page 9).

vanishes. The temperature dependence of this contribution is small, as

6.4 Container Walls

To evaluate whether the glass container walls influence the electric field we implemented a 1D FEMLAB
simulation. We compared a linear temperature gradient, which presses the salt ions against the chamber
walls, with an artificial temperature gradient of the same strength, which peaks in the free fluid center.
The chamber size was 10 um and the electrolyte consisted only of 10 uM KCI. The boundary conditions

were set as following: In the upper graphs in Fig. 14 the potential and ion concentrations were fixed in
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Figure 13: The Soret coefficient of the salt ions will change the salt concentration, and thus the Debye
length, in a temperature dependent way. This influences the master curve.

the center of the chamber to 0 V and bulk concentrations, and the boundaries were put to insulation and
symmetry. In the lower graphs we applied continuity in the center and at the boundaries the potential
was fixed to zero, and the ion concentrations were fixed to bulk concentrations. By setting the chamber
walls to a fixed potential, we imitate the changed potential due to the OH™ groups of the glass surface.
As shown on the left sides of Fig. 14, the temperature gradient was VT = 10° K/m with the sign
depending on the sign of the temperature gradient. The analytical solution (right side, red lines) for the
electric field according to Eq. 22 with the Soret coefficients of the ions of Table 2 on page 18 would be
E =36.1 V/m (sign depending on the sign of the temperature gradient) and the Debye length according
to Eq. 7 Apy =0.137 pm. The result of this simulation is that the electric field can not change faster
than on the scale of the Debye length. The potential of the wall will be screened, which is not accounted
for in the analytical equation. However, an electric field can build up to the same extent also in the free

solution.
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Figure 14: Analytical solution (red) and finite element simulations (black) of the Seebeck field of KCl
(right side) in a given temperature field (left side). In the upper panels the glass walls at -5 ym and 5 pm
distort the electric field, in the lower panels there are no glass walls and the salt ions accumulate in the
free fluid at O um. The electric field cannot change faster than at the scale of the Debye length.
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7 Non-Ionic Contribution

While the capacitor model only gives positive S, the Soret coefficient from the Seebeck effect S;E
can have both positive and negative signs. Herzog found negative Soret coefficients mainly for low base
temperatures and high salt concentrations [30]. So we need a temperature dependent effect and use the

empiric equation for DNA and other charged particles [11]

Y= s [1 —exp (T*T_T>] (27)

0

which can nicely be fitted to our experimental data (Fig. 15). Besides the temperature 7 there are the
fitting parameters S7:, T* and Ty in Eq. 27. For Fig. 15 Herzog’s data was revised by subtracting the

Seebeck contribution (cf. section 6) and refitting.

(a) (b)6
S m ssDNA
— 4 O ssRNA
Lo <
O ~
S, S
s -5 ¢ S50mer 2
o A 22mer &
m 10mer
-10 ® Smer 0
1 1 1 1 1 1 1 1
10 30 50 70 510 22 50
Temperature [°C] Bases

Figure 15: (a) Non-ionic contribution to the Soret coefficient is temperature dependent. Data and image
from Herzog [30] modulated by subtracting S?E and refitting. (b) S7 is the amplitude of the non-ionic
contribution and scales with the number of bases (one strand counted). This indicates that the non-ionic
contribution could stem from a short ranged molecule-water interaction located in a thin tube around and
along the molecule.

The magnitude of the change in Soret coefficient ST scales with the DNA length (see Fig. 15b). The
reason for this is that Sj}” is attributed to the molecule-water interaction. This is a short-range interaction
and thus also takes place inside the random coil of DNA all along its length, rather than interacting
with the whole particle at once. We suspect that the basis of Eq. 27 is the energy in the hydration
layer. Hydrogen bonds typically show a pronounced temperature dependence. A future starting point
for a molecular understanding of this equation might be the joint density functional theory, developed in
the chair of Tomas Arias [51], who calculated exactly the energy of the hydration shell around an ion.
When studying uncharged molecules Eq. 27 might not apply and the temperature dependence might be
different. Wienken showed that the binding of a single calcium ion can be detected with thermophoresis

measurements [21]. Here the confirmation of the molecule changed, also changing the hydration energy.
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7 NON-IONIC CONTRIBUTION

Otherwise, if no specific binding is present, the non-ionic contribution to the Soret coefficient does not
depend on the salt concentration and in Fig. 12 we kept Sj}” constant per molecule.

The next question is whether we can attribute all temperature dependence of the Soret coefficient
to S)!. Assuming a constant heat of transport Q} [45] the Soret coefficients of the salt ions varies with
Sti = QF /kT?. Thus, S5F also depends on the temperature. We measured the temperature dependence
of 22mer ssDNA in different salt solutions LiBr, KI, KF, KCl (see Fig. 16). The measurements over salt
concentrations were extrapolated to Apy = 0 to subtract SgM .

In Fig. 12 we measured S‘}E at 25°C as -0.0070, 0.211, -0.0057, and 0.0137 1/K for LiBr, KI, KF, and
KCl, respectively. These values were subtracted as constants in Fig. 16 to bring the curves to approxi-
mately the same height. The remaining temperature increase does not depend on the salt species and is
identical for all salts. This means that either there is no temperature dependence of S%E , Or it is common

to all salts.
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Figure 16: S/ over temperature. We deducted S$ from the Soret coefficient by extrapolating to Apy =
0 and subtracted a constant S;E , which we measured in Fig. 12 as -0.0070, 0.211, -0.0057, and 0.0137 1/K
for LiBr, Kl, KF, and KClI, respectively, to bring them to the same height. The remaining temperature
increase does not depend on the salt species. Thus, there is no temperature dependence of S5, besides
the constant number, which we subtracted. The measurements in KCl buffer are from [30].
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8 CONCENTRATION DEPENDENCE

8 Concentration Dependence

8.1 Simulations

In our experiments we used a sample concentration of 1 uM. This is sufficient, since we use a fluorescence
microscope for concentration measurements. Particle-particle interactions [8, 52, 53] are not expected to
contribute at this concentration level, and thus they were not considered. Typically, non-fluorescent mea-
surements of thermophoresis are performed in 100-1000 fold higher concentrations, where an empiric
concentration correction has to be applied [7, 8]. Other methods use a beam deflection method, where
the concentration is detected via the refractive index [8—10]. Further methods are thermal lensing [11] or
the thermal diffusion forced Rayleigh scattering [12, 13]. These methods need up to a weight percent of
concentration. Our concentration of 1 um is also far below the overlap concentration, as defined as the
concentration, where the macromolecules start to overlap due to their spacial extension. For the larges
molecule in our experiments, the 80mer with a hydrodynamic radius of 6 nm, the overlap concentration
is about 1mM.

Due to the low sample concentration we could neglect its influence on the Debye length and on the
electric field. However, DNA is a poly-ion and will have some influence on the Debye length and on
the electric field. To better understand this influence we implemented a 1D radial finite element method
FEMLAB 3.1 (COMSOL AB). We used the Nernst-Planck chemical engineering module, but we substi-
tuted the first differential equation for the electric potential with a Poisson equation. In addition to mass
diffusion and electrophoresis, which are provided as a FEMLAB module ready to use, thermo-diffusion
was implemented for the salt cation and anion. The 80mer ssDNA was included as an ion with 1 uM con-
centration and with the charge number Z, sy = —7 as determined in our measurements. Corresponding to
the charged DNA we included the counter ions by increasing the cation concentration to ensure overall
charge neutrality. This poly-ion now contributed to the Debye length. The DNA also contributed to the
electric field with its full Soret coefficient Y +1/T +S$M. We keep the DNA concentration constant in
our experiments in order to have constant intensity by constant fluorophore concentration. This changed
the composition of the electrolyte. The effect of the DNA is small in principle, but noticeable for low
salt concentrations, i.e. larger Debye lengths, as can be seen in Fig. 17a. The simulation closely matched
the analytical solution for S3¢ (Eq. 23) of the different salt species.

There are other ions in the electrolyte, which we also need to consider: H3O" and OH™. Their
concentrations depends on the pH and with their large Soret coefficients (see Table 2) they will contribute
to the electric field. Their influence can be seen in Fig. 17b. When the pH is between 5 and 9, the charge
of the DNA is constant [54], so we kept the pH in this region. Longer DNA has a higher Soret coefficient
and higher charge and thus more influence on the Seebeck effect than short DNA, as can be seen in
Fig. 17c.

To summarize, the contribution to the electric field of the H3O" and OH™ ions and the probe particle
itself are negligible, as long as their concentration is small compared to the salt, although they have a

large Soret coefficient and are highly charged, respectively.
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Figure 17: (a) In a finite element method simulation with FEMLAB we confirmed the analytical result
of Eq. 23 that S%E is mainly independent of the Debye length, but changes with the salt species. Shown
for an 80mer DNA at pH 7 in different salts. Both DNA and H3O™", OH™ ions contribute to the electric
field. (b) Close to pH 7 the influence of the H30™ and OH™ ion concentration is negligible compared
to the salt concentration in the mM range, despite their large Soret coefficients. Here shown for an
80mer DNA which reacts to the electric field but does not contribute to it. (c) Also, the influence of
1 uM DNA is minor, although it is highly charged. The cases shown are when the DNA does not
contribute to the electric field (broken line) and when it contributes with its charge and a Soret coefficient
of SN +1/T + S$M, with the latter depending on the salt concentration.

8.2 TRIS Buffer

There are still other ions in the solution: The buffer TRIS-HCI will be partly protonated corresponding
to its buffer capacity. At pH 7.5 most of the molecules will be protonated.

[TRIS] +[TRIS—H"]

[TRIS_H+] = 10PH—pKa(T)

(28)

with pKa the acid dissociation constant and the brackets indicating the concentration. Although we only
added 0.5 mM to 1 mM of total TRIS, it is considerably higher concentrated than the DNA, the influence
of which we calculated in the last paragraph. The Soret coefficient of the protonated TRIS molecule
was not found in literature and it is difficult to measure, since a fluorescent label would change the
small molecule considerably. Thus, we assumed its Soret coefficient to be zero. Its counter ion is the
chloride ion from the hydrochloric acid, with which the pH was titrated. The electrically neutral TRIS
molecules don’t contribute to Eq. 22. Now we can calculate and simulate the influence of TRIS on the
Soret coefficient (see Fig. 18). As probe particle we used 80mer ssDNA with Z, ;r = 7. The Debye length
was titrated with KCl plus a constant 1 mM TRIS pH 7.5.
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8.3 Concentration Measurements 8 CONCENTRATION DEPENDENCE

0.012 . . . .
0010j® ® © © o o o o o
®
®
¥ 0.008} ® .
hat ®
o (O]
- i |
¢ 0.006 ®
® noH,0", OH, TRIS
0.004F ® with H,0", OH' ® 1
pH = 7.5; 1mM TRIS
0.002 : - - -
0 2 4 6 8 10

Apy [Nnm]

Figure 18: Influence of the TRIS molecule on the Seebeck effect.

We did not find the decrease in the Soret coefficient with increasing Debye length to be as strong
as the theoretical prediction in Fig. 18. In the experiments in Fig. 2 only for the 80mer and the 22mer
a slight reduction can be found, but not for the 50mer. If the Soret coefficient of the protonated TRIS
molecule is not zero, but closer to the potassium ion, the theoretical effect also vanishes. Thus, within

experimental error we could not find an effect of the TRIS ion.

8.3 Concentration Measurements

The small influence of the DNA on the Soret coefficient, as discussed in section 8.1, might be just mea-
surable. Thus, we measured differently concentrated DNA from 0.2 to 26 uM of 50mer ssDNA in 10 mM
KCl, 1 mM TRIS pH 7.8, 0.05% vol. of Tween. The results are shown as dots in Fig. 19. The LED in-
tensity was adapted to reach the same fluorescence for all sample concentrations. As in all experiments,
differential bleaching was corrected for, especially for the lower concentration samples. To describe the
concentration dependence analytically, we considered the influence of the DNA concentration and its
additional K™ counter ions on the Debye length in the capacitor model part SgM of the Soret coefficient.
In addition, the DNA contributes to the electric field (Eq. 22) with St pya = 1/T + SY¥! + S$M. In order
to calculate the Seebeck contribution S*;E , we assumed the following constants for the 50mer interpo-
lated from the measured values for the 22mer and the 80mer: the hydrodynamical radius R = 4 nm, the
effective charge number for the capacitor model Z. s = —16.5, the temperature 7' = 25 °C, the electric
mobility 4 = 1.44-10~% m?Vs, and the non-ionic part of the Soret coefficient S}’ = —0.016 1/K. The
theoretical prediction using these values can be seen as a line in Fig. 19. The measured DNA concen-
tration dependence of thermophoresis can be fully explained by the Seebeck effect and the capacitor

model.
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Figure 19: The dependence of the Soret coefficient on the concentration of the sample molecule, here
50mer single stranded DNA, was measured (dots) and calculated (line).

8.4 PEG Crowding Agent

Here we shortly recapitulate the theoretical influence of a crowding agent on thermophoresis through
depletion forces. If the sample concentration is on the order of weight percent, or if a crowding agent
is present in the solution e.g. PEG (polyethylenglycol), an additional excluded volume effect can be
noticed in thermophoresis measurements and should be added to Eq. 4 on page 4. It can be calculated

according to [55-57]. The change in Soret coefficient for the molecule of interest, here DNA, is then
ASy = —2m(SPEC —1/T)Rpna - Ragc - cpEG (29)

with SPEC the infinite dilution Soret coefficient of the crowding agent, e.g. PEG, and Rpgg its hy-
drodynamic radius, Rpya the hydrodynamic radius of the particle of interest, e.g. DNA, and cpgg the
concentration of the crowding agent.

The Soret coefficient of the molecule of interest, which has a low concentration, depends on the Soret
coefficient of the crowding agent, which is added, as well as on its concentration: If the Soret coefficient
of the crowding agent has the same sign as the one of the probed molecule, the crowding agent will
accumulate on the cold side and displace the molecule of interest. As an example, Jiang et al. measured
the Soret coefficient of beads in a solution of the crowding agent PEG without salt [55].

We conducted salt-dependent experiments of 22mer ssDNA and dsDNA and 50mer ssDNA in 3 %wt.
and 6 %wt. We used PEG at a molecular weight of 10000 Da, like Maeda et al. [57]. Since pure PEG
is a solid with a density of 1.2 g/cm3, we convert the reported 5 %vol. in solution to 6 %wt in our
experiments.

Maeda et al. argue that they do not observe accumulation for single stranded molecules. We cannot
confirm this and find accumulation for both single and double stranded DNA in PEG. In Fig. 20a both
ssSDNA and dsDNA of 22mer length show accumulation at 25 °C, in 3 % and 6 % wt. PEG. Accumulation

is found when the Soret coefficient becomes negative, i.e. the molecules wander towards the hot side.
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8.4 PEG Crowding Agent 8 CONCENTRATION DEPENDENCE

As expected from Eq. 29, we find a higher accumulation, i.e. lower Soret coefficients, for higher PEG
concentrations.

The reduction in the Soret coefficient caused by PEG is stronger for larger molecules, since the DNA
radius enters Eq. 29 (Fig. 20a and b). The difference is even larger, if we consider that without PEG the
larger 50mer DNA has a higher Soret coefficient than the smaller 22mer (Fig. 2). As in Maeda et al. [57],
we do find higher accumulation for the 50mer than for the 22mer.

In contrast to the study of Maeda et al. we find an increase in the Soret coefficient toward small salt
concentration (Fig. 20a and b). This most likely is a result of the capacitor model discussed earlier. For
high salt concentrations we see an increase in the Soret coefficient, similar to Maeda et al. [57], which
cannot easily be explained and could be the result of DNA-PEG interactions, or artifacts from sticking
to the capillary walls. We marked these data points with a circle in Fig. 20 and only fit the spherical
capacitor model to the data with longer Debye lengths (for fit parameters see Table 3). If we assume
that the hydrodynamic radius does not depend significantly on the PEG and salt concentration, the fit
yields about half of the effective charge which is found in aqueous solutions. Alternatively, if we assume
the DNA charge to be independent of PEG, a larger radius of the DNA would have to be assumed, in
contradiction to the crowding effect. Probably the influence responsible for the strong increase of the
Soret coefficient towards very small Debye lengths continues on to longer Debye lengths, but is weaker
there. Thus, the shape of this influence is contrary to the shape of the capacitor model and apparently
decreases the amplitude from the capacitor model. In the capacitor model a larger charge increases the

amplitude with a higher plateau.
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Figure 20: Measurement of ssDNA and dsDNA in aqueous NaCl solutions in the presence of the crowd-
ing agent PEG 10000. (a,b) In contrast to the study of Maeda et al. [S7] we find negative Soret coef-
ficients, i.e. accumulation also for ssDNA. (c) The sign change is no fundamental difference between
ssDNA and dsDNA, but merely the result of different contributions to the Soret coefficient as is shown
by a temperature variation. Higher PEG concentration leads to more negative Soret coefficients.

One should not discriminate too strictly between positive and negative Soret coefficients, as the sign
is merely a result of which of the components of the Soret coefficient are stronger in the actual conditions.
For example, the base temperature of the experiment is varied in Fig. 20c without varying the infra-red

laser power and the temperature increase. This will cause a change in the sign, here shown for S0mer
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8 CONCENTRATION DEPENDENCE 8.4 PEG Crowding Agent

Table 3: Parameters for the fits in Fig. 20. We fitted Z, s, and assumed the radius to be R = 2.0 nm
and R = 3.7 nm based on PEG-free measurements of the diffusion coefficient. Temperature was 25 °C,
relative permittivity of water €. = 78 and its temperature derivative dIng/dInT = —1.35 . There was a
free offset parameter to account for other contributions to the Soret coefficient

Fig. 20 | Zeyr |
50mer ssDNA 3% PEG | 6.24+0.9
50mer ssDNA 6% PEG | 10.6+1.4
22mer ssDNA 3% PEG | 6.1+0.4
22mer ssDNA 6% PEG | 4.24+0.3
22mer dsDNA 3% PEG | 4.7+£0.4
22mer dsDNA 6% PEG | 3.4+0.5

ssDNA in PEG, but a similar dependence is measured in section 7. We fitted the empiric Eq. 27 on
page 24 to the data, which was shown to fit DNA for diluted solutions without a crowding agent. This
fit yielded S7 = 0.052+0.013 and 0.024 +0.017, T* =32.4+£2.7 and 73.8 6, and T = 35.4+9.8 and
46.0 £ 15.2 for the 3% and 6% PEG solutions, respectively.

We reassessed the thermophoresis in the crowding agent PEG for single and double stranded DNA
[57], but now with covalent markers and cannot confirm a sign change between single and double
stranded DNA. Even for 3% and 6% PEG we can fit the salt dependence of DNA thermophoresis with the
capacitor model. With PEG both single and double stranded DNA accumulate and deplete to comparable

extents.
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9 MATERIALS AND METHODS

9 Materials and Methods

9.1 Setup

Measurements were performed with an upright fluorescence microscope (Zeiss Vario Scope.Al) using
an air objective (Partec 40x/0.80 NA), a CCD camera (Andor Luca DL-658M-TIL), and heating from an
infrared laser (Fibotec, wavelength 1480 nm absorbed in water, typical emission power 28 mW) [17, 21],
coupled into the optical path right above the objective. To keep the sample volume low and convection
artifacts below experimental error, measurements were performed in thin borosilicate capillaries with an
inner rectangular cross section of 50 x 500 um? (VitroCom Vitrotubes #5005-050). The thin sample and
low numerical aperture ensured fluorescence intensity, which was recorded by the camera, was integrated

over the capillary height. For a sketch of the setup with its capillary, see Fig. 21.

camera images

fluorescent

- microscope
water with | = |
IR spot ~ 70pum 50pum x 500pum

capillar
IR laser priary

Figure 21: Experimental setup and capillary

9.2 Probes

Single stranded DNA in lengths 2, 5, 10, 22, 50, and 80 bases, covalently labeled at the 5’ end with the
fluorescent dye HEX (6-carboxy-2’,4,4’,5’,7, 7’ -hexachlorofluorescein) (Biomers, Germany) was diluted
to 1 uM. The DNA sequences can be seen in Table 4. They were designed to form a random coil
and exhibit no secondary structure like hair pins. Their Soret coefficients were measured in various
electrolytes at 15 °C, except when stated differently.

The electrolyte contained one of the following salts KBr, KCI, KF, KI, NaBr, NaCl, NaF, Nal, LiBr,
LiCl, Lil, CaCly, MgCl,, and was buffered with 1 mM TRIS (2-amino-2-hydroxymethyl-propane-1,3-
diol) to a pH of 7.8 at 25 °C. To avoid sticking of the DNA to the capillary walls we added up to
0.1% vol. of Tween 20 in some measurements. Test measurements using 0.02%, 0.05% or 0.1% vol. of
Tween 20 revealed no measurable difference in the Soret coefficient. In measurements for the Seebeck
effect, the concentration of TRIS was generally reduced to 0.5 mM and titrated to pH 7.5 at 25 °C.
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Table 4: DNA sequences

2mer 5’-Hex-TA-3’

Smer 5’-Hex-TAG GT-3’

10mer 5’-Hex-TAG GTC TAA T-3’

22mer 5’—-Hex—ATT GAG ATA CAC ATT AGA ACT A-3’

50mer 5’—-Hex—ATA ATC TGT AGT ACT GCA GAA AACTTG TGG GTT ACT GTT
TAC TAT GGG GT-3’

80mer 5’-Hex—CCT AAA GTC ATT GCT CCG AAT ATC TAC ACC GAA CCT AGA
AAG TTG CTG ATA CCC GAT GTT TGT TTG ATT GTG AGT TGA GG-3’

The profile of the heating spot was measured using the pH dependent fluorescence of the dye BCECF
(acid form, Invitrogen B-1151) at a concentration of 50 uM in the temperature dependent pH of 10 mM
TRIS-HCI (pH 7.8. at 25 °C). The temperature profile above base temperature was fitted in two dimen-
sions with a Lorentzian AT (r) = AT/ (1+r%/w?). This revealed the heat center, width w, and peak
temperature rise AT,,,. The width varied between 30 and 70 & 5 pm, well smaller than the field of view,
depending on the experiment with a peak temperature increase AT}, between 1.4 and 4.0 4+ 0.1 K.

The temperature of the surrounding bulk sample, also called the chamber base temperature, was
controlled with Peltier elements (Telemeter Electronic GmbH, PC-128-10-05) and a heat bath to fix the
temperature on the back side of the Peltier elements. The thin chamber height of 50 pym and the moderate
temperature rise of less than 4 K kept thermal convection negligible. The measurement was automated
with LabVIEW (National Instruments) controlling LED, IR, motorized stage, temperature, and camera
trigger. The concentration of the fluorescently labeled DNA was recorded in space and time with the
camera, imaging at 5 Hz [17, 58]. The initial fluorescence of the equilibrated sample was imaged for 5 s,
followed by 120 s of thermophoresis under infrared heating, and 120 s of back-diffusion with the laser

switched off again.

9.3 Analysis

Since I continued Herzog’s experiments [30] and used a similar if not identical setup, the measurements
and analysis were the same. The experiment was designed to measure both the Soret coefficient S7 and
the diffusion coefficient D. Including pipetting errors and camera noise, the systematic error for the Soret
coefficient was estimated to be about 12% [30]. The diffusion coefficients D(T') of single stranded DNA
of length 2, 5, 10, 22, 50, and 80 bases at 15°C were 180, 153, 126, 107, 55, and 35 um?/s, respectively,
confirming the values found by Herzog [30]. From these values, the hydrodynamic radii could be calcu-
lated with the Einstein-Stokes equation [47] to 1.2, 1.4, 1.7, 2.0, 3.8, and 6.0 nm. These hydrodynamic
radii were used for fitting in Eq. 9 on page 6. For analysis, the sequence of measured images, i.e. the flu-
orescence for all times over the whole field of view of the camera was loaded into a LabVIEW program.
After background correction, the measured fluorescence data was circularly averaged around the heating

center, which was determined in the temperature profile. As result, even small concentration changes at
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large radii could still be detected, since many pixels could be used for averaging. The LabVIEW pro-
gram triggered a radial symmetrical 1D FEMLAB simulation, which can be obtained from the authors.
Width and peak temperature rise of the determined heating profile were fed into the simulation. The
program then determined the concentration along the radius for all times, and with this the fluorescence,
which was compared to the measured data. The fitting parameters were the Soret coefficient S7, the
mass diffusion coefficient D, the temperature dependence of fluorescence, and the bleaching time scale.
Temperature, diffusion and bleaching have time scales of approximately 100 ms, 10 s and 1000 s, so
they could be separated and fitted independently. After fitting, the simulation followed the experimental
fluorescence data in the full radius-time evolution. Thus, the parameters could be precisely fitted, and
experimental artifacts could be detected and excluded, such as empty capillaries, flow drift in in the cap-
illary, inhomogeneous illumination, or a possibly unstable heating profile. With this fitting procedure

particularly the Soret coefficient St and the diffusion coefficient D could be determined independently.
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10 Conclusion

In the first part of this thesis we have shown that the effect thermophoresis is composed of different con-
tributions. Therefore, in different conditions different parts dominate the effect, and we observe different
behavior. Our model has been developed for charged particles, highly diluted in aqueous solutions, and
at moderate temperature gradients. Our results bridge the gap between phoretic and the diffusive theo-
ries. On the one hand the Seebeck effect supports a non-equilibrium model, where global electric field
from the Seebeck effect is completely shielded and motion is the result of surface effects only. Here the
analogy between thermophoresis and electrophoresis can be drawn [59] and it can be called a thermo-
electrophoretic approach. On the other hand, the capacitor model is based on a local equilibrium, where
the particles diffuse and distribute according to the Boltzmann law. Here the total energy of the local elec-
tric field around a particle changes in the temperature gradient. Our experiments strongly indicate that
this thermodynamic approach is also valid for thermophoresis. In the moderate temperature gradients,
only moderate concentration gradients establish and the concentration never changes by more than 50%
of the initial concentration, and a local equilibrium on the size of the particle exists. The Péclet number
(Pe) of the molecules is well below one even for the largest DNA (80mer) used in these experiments. We
can conservatively estimate the Péclet number with the particle radius R = 10 nm, S7 = 0.1 K~ !, and 5K

temperature difference over 10 um as
Pe=R-SyVT =10nm-0.1K'-5K/10um = 5-10~* (30)

Thus, the particle motion is better described by a diffusion than by a directed, ballistic motion. Dur-
ing the experiment the molecule can diffusively explore all regions and thermodynamic fluctuations are
larger than thermodynamic forces. Our theoretical approach correctly predicts a complex, nonlinear size
transition, a salt-species dependent offset, and the dependence of thermophoresis on the molecule con-
centration. We validate the model internally by comparing the charge of the capacitor model (Fig. 6 on
page 10) with the electric mobility derived from the Seebeck effect (section 6.2). They can be converted
to effective charges by

Ze ff=H kl (3 1)

eD

which results in -1.7 £ 0.2 and -6.3 + 0.6 for the 2mer and the 22mer, respectively, slightly smaller than
the theoretical values of -3.4 and 11.9 from molecular dynamic simulations [36]. On the other hand, the
fit with the capacitor model resulted in effective charges Z, sy = —2.540.5 and —11.0£0.3 for the 2mer
and 22mer, respectively. Considering the experimental errors, we find the match between the charge
from the Seebeck effect and the charge from the capacitor model convincing. Thus, we have a parameter
free model to quantitatively predict thermophoresis, if the molecular parameters from electrophoretic
measurements are known. Alternatively, it is possible to measure the effective charge with the proposed
thermophoretic measurement. Where the capacitor model accurately yields the absolute value of the

molecule’s charge, the Seebeck effect allows to directly infer the sign and magnitude of the charge.
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Part 11

Thermophoresis Inside Living Cells
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11 Introduction

The complexity of biology requires that measurements of biomolecular interactions have to be transferred
from the test tube to the living cell — “the test tube of the 21st century” [60]. In the first part of this
thesis, the molecular origin of thermophoresis has been examined. We have shown that thermophoresis
is sensitive to a variety of parameters. Recently, Microscale Thermophoresis has been successful to
measure binding affinities in cell lysate [28], but it is not possible to measure inside a living cell with
this device from Nanotemper Technologies. Besides in vitro applications of thermophoresis, thermal
gradients are unique, since they transcend material boundaries and, similar to light fields, are therefore
capable of probing molecules even inside living cells. For example, electrical fields are shielded by the
cell membrane and electrophoresis inside cells cannot be achieved. The second part of this thesis will
bridge the gap and show thermophoresis measurements inside living cells for the first time. For this, a
fluorescent microscope setup was used with the central parts modified compared to the commercialized
system. We establish an imaging paradigm where the thermal gradient is along the optical axis.

The adherent cells grow on a standard cover slip, and are then inserted into the measurement setup
on the cold side opposing an optically heated plate on the bottom. Fluorescence detection is restricted by
using TIRF microscopy to the top side, imaging the upward thermophoretic movement towards the cold.
Therefore, as the thermophoretic movement is directed perpendicular to the camera plane, thermophore-
sis can be recorded in parallel for every pixel of the image. With this approach full 3D information of
thermophoresis is obtained. These changes allow measuring inside adherent, eucaryotic cells and in vivo

binding measurements become a realistic goal.
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12 Materials and Methods

12.1 Setup

The experiments were conducted with the following setup: An upright fluorescence microscope (Zeiss
Axiotech) was equipped with an IR laser (Fibotec, wavelength 1480 nm, max. 300 mW) for heating, and
a 488 nm laser (single mode coupled laser, < 50 mW, Visitron Systems GmbH) for TIRF illumination
(Fig. 22a). The TIRF laser was focused on the side of the back focal plane of the objective (Nikon, Apo
TIRF 100x 1.49 NA oil) and coupled into the light path right above the objective with a dichroic beam
splitter (dual line beam splitter z491/561 or dual line notch beam splitter 555/646, AHF Analysentech-
nik). The excitation filter had enough bandwidth (480/80 and 620/60) to allow the LED illumination light
to pass to a good extent the narrow dichroic beam splitter, with which the TIRF excitation was coupled
into the light path. As a result, epi-illumination with the LED and TIRF illumination were both possible

within the same setup.

12.2 Chamber

Listed from bottom to top, the sample chamber consisted of a 2 mm thick glass slide coated on the top
side with 300 nm chromium and a protective 60 nm silicon oxide to prevent a toxic influence on the cells.
The aqueous solution was placed on top of the coated glass slide, supplemented with a paraffin oil ring to
prevent evaporation. The top of the sandwich structure was formed by a 130 um thick borosilicate glass
cover slip held in place with 12.5 pm thick mylar foil spacers. For cell measurements the cover slip had
cells adhering to it upside down.

A spot at the lower interface to the sample was heated by absorbing IR light in the chromium layer.
The spot size could be varied with the IR focus. The top cover slip, connected to the immersion oil, acted
as heat sink. A camera (PCO sensicam uv) recorded the fluorescence images over time. The images were
corrected by subtracting the dark noise of the camera and then normalized by the initial fluorescence in

absence of IR heating, in order to correct for inhomogeneous fluorescence and illumination.

12.3 Optics

For DNA measurements in Fig. 27 the IR laser was focused onto the chromium layer (HWHM = 65 um
Fig. 22b). Here, both lateral and vertical thermophoresis could be imaged and compared. In the bead and
cell measurements (Fig. 24 and 28) the IR laser was defocused (HWHM ~ 300 um Fig. 22¢) to minimize
lateral thermophoresis. Then the temperature gradient was mostly vertical and hardly varied over the field
of view. The chamber height without cells was about 20 um to suppress convection, and was measured
optically by focusing the microscope to its boundaries and comparing to a similarly high reference step
calibrated with an atomic force microscope. For TIRF illumination we focused on the upper cover slip-
glass interface, for LED illumination (except in the bead measurements) to the middle of the chamber. A

LabVIEW program automated the measurement. The camera recorded the fluorescence before, during
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and after IR heating. Between measurements the sample was left for several minutes to fully equilibrate,

or it was moved to measure an unaffected area.

12.4 Bead Measurements

For the high temperature gradient study in section 14.2 we used polystyrene particles (Invitrogen Flu-
orospheres carboxylate-modified microspheres yellow-green fluorescent, actual diameter 1.95 um, and
crimson fluorescent, actual diameter 1.1 um), which were washed several times by centrifugation and
resuspension in ultra-pure water before diluting them in the final solution. The final concentration of the
beads was 5 pM. An air objective (Zeiss EC Plan-NEOFLUAR 40x 0.9 NA) was used with a 0.5x camera
adapter (Carl Zeiss Microscopy GmbH, Video-Adapter 60 C %2”) for a larger field of view to obtain bet-
ter particle counting statistics. A sapphire cover slip (Sappro GWI; Grazyna Walawski Industriesaphire,
170 pm thick, 12 mm diameter) was used as a heat sink on the top, prohibiting TIRF illumination due to
birefringence, but allowing the application of large temperature gradients at constant temperature, even-
tually triggering clustering from flow interactions [61]. Particles arriving at the top chamber boundary
were counted by integrating the fluorescence pixels above a certain threshold. For this, the high numer-
ical aperture objective was focused on the upper interface to the sample. The beads were classified as
being at the upper lid, when they were in focus and their image was only a few pixels wide with the
intensity above a defined threshold. To quantify the number of beads at the upper plate, the summed
intensity of every pixel above this threshold was computed. An unfocused bead has its intensity smeared
over many pixels, so the intensity per pixel was below the threshold and was not counted at all. The IR
laser covered 5 times the field of view, and a pure vertical temperature gradient could be assumed. In
order to achieve the even higher temperature gradients in Fig. 26 over a large area, a more powerful IR
laser was used (IPG Laser, Thulium Fiber Laser, max. 10W, 1940 nm).

12.5 Temperature Profile

The temperature profile was measured using the fluorescent dye BCECF (2°,7’-Bis-(2-carboxyethyl)-5-
(and-6)-carboxyfluorescein) in TRIS-HCI (Tris(hydroxymethyl)-aminomethan) buffer pH 7.6. BCECF
has a pH dependent fluorescence, and TRIS has a temperature dependent acidity constant with roughly
dpKa/dT = —0.031 1/K. Thus, the pH changes with temperature as visible through the dye’s changed
fluorescence. Higher temperature results in less fluorescence. Under LED illumination the lateral tem-
perature distribution was imaged, averaging across the thickness of the chamber. A three-dimensional
impression of the temperature distribution was subsequently gained from the finite element simulation
(Fig. 22b, ). A two-dimensional Lorentzian AT = AT}, /(1 + (r/w)?) was then fitted to the image, with
r the distance from the heat center, and three free parameters: peak temperature rise A7}, above ambient
temperature, center of the heat spot, and width w. These parameters were then used in the analysis of the

measurements (section 13.1).
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12.6 DNA Measurements

Thermophoretic imaging of DNA (section 14) was performed with lengths 0.6, 1, 3, and 20 kilo base
pairs (kbp) from Fermentas (SM1461, SM1671, SM1711, SM1541) at 50 uM base pair concentration,
labeled with 2 um TOTO-1 iodide (Invitrogen) in 1 mM KCl pH 5 (Fig. 27A) or in 1mM TRIS buffer
pH 7.4 (Fig. 27B). Thus, on average every 25 base pairs a dye molecule was bound. For the latter
experiments, the cover slip was coated with bovine serum albumin (BSA, Roth, Albumin Fraktion V) to
reduce adhesion of the DNA to the surfaces of the chamber. For this, the cover slips were cleaned with
Hellmanex II (Hellma Optics), water, and isopropanol each for 10 min in the ultrasound bath, then dried
with nitrogen and incubated for one hour at room temperature with 10 mg/ml BSA. As expected, the
response time of the system strongly depends on the distance, which the molecules need to diffuse, i.e.
here the chamber height versus the heating spot width. The chamber heights were individually measured

for the different samples (see section 12.3).

12.7 Cell Culture

Adherent HeLa cells (ATCC CCL-2, LGC Standards) were grown in minimum essential medium (Eagle)
with 2 mM L-glutamine and Earle’s salts adjusted to contain 2.2 g/l sodium bicarbonate, 0.1 mM non-
essential amino acids, 1.0 mM sodium pyruvate and supplemented with 10% fetal bovine serum (FCS).
The cells were regularly split about 1:5 twice per week. The cover slips were cleaned in an ultrasonic
bath with Hellmanex II (Hellma Optics), ultra-pure water, and isopropanol, dried with nitrogen, sterilized
in an autoclave, and coated with approximately 5 pg/cm? poly-L-lysine (Biochrom AG) by incubating

for 30 min at room temperature prior to seeding cells on them.

12.8 Cell Transfection and Measurements

The cells were grown on the cover slips overnight and stained before the measurement with BCECF-AM
by incubating for 1 hour with 2 uM BCECF-AM ester (2°,7’-Bis-(2-carboxyethyl)-5-(and-6)- carboxyflu-
orescein acetoxymethyl ester, VWR International GmbH Deutschland). Alternatively, they were stained
by lipofection with 21mer double stranded DNA, which was covalently labeled with Cy 5 (sequence
5’-Cy 5-GTT GGA AGG TGG TCA AGG TGC-3’ with the unlabeled complement, metabion interna-
tional AG). The DNA was brought into the cell with the reagent Roti-Fect PLUS (Carl Roth) according
to the instructions. BCECF-AM can diffuse through the cell membrane. Inside the cell, it is cleaved into
BCECEF, a form in which it fluoresces and diffuses out again only at a very small rate [62]. The cells were
rinsed with phosphate buffered saline PBS (137 mM NaCl, 2.7 mM KCI, 10 mM NaHPO,, and 2 mM
KH2PO4, pH 7.4) and together with the cover slip they were assembled onto the chamber. Measure-
ments at room temperature were possible for up to one hour in normal cell morphology. Cell viability
was tested with the inherent BCECF-AM test [63]. We refrained from measuring very bright cells, since

we suspected that these cells were under less physiological conditions with too much fluorophore inside.

40



12 MATERIALS AND METHODS 12.8 Cell Transfection and Measurements

Alternatively, we used HeLa cells with a green fluorescent ribosomal protein (obtained from Ina
Poser from Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany). The
human cell line HeLa-Kyoto was stably transfected with a GFP-tagged BAC expressing human RPL10
(BACID: CTD-2511C7 (human DNA) gene: RPL10 (ENSG00000147403) internal ID: MCP_ky_3296).
The stop codon of RPL10 was replaced by a BAC-tagging cassette (LAP-tag). Correct integration was
verified by PCR and sequencing. The culture conditions were DMEM (high glucose), and 10% FCS. To
maintain selection the antibiotic G418 (Invitrogen) was added in 400 pg/ml. The cells in this cell pool
were differently bright, since they had a different amount of GFP copies. As the GFP labeled ribosomal

protein was not over-expressed, they were darker than the cells, which we had loaded with more BCECF.
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13 Finite Element Calculations

A finite element simulation method (FEMLAB 3.1, COMSOL AB) was used to model the experiments
both without and with cells.

13.1 Temperature Field Model

For the temperature model we used a two-dimensional radial simulation with a chamber height of 10 um
and a cover slip height of 130 um. The chamber radius was 0.5 mm. As modules we used incom-
pressible Navier-Stokes to model convection in water (viscosity n = ImPas(1 4+ 0.022AT); density
p = 988kg/m*(1 —0.00031/K AT)) and heat conduction in the water with 0.597 W/mK and in the
glass cover slip with 0.8 W/mK, with the additional constants heat capacity of water 4187 J/(kgK) and of
the cover slip 700 J/kgK with the glass density of 2480 kg/m3. The temperature rise was set in the lower
boundary of the chamber to AT,/ (1 +(r/ w)z) with r the radial coordinate, the peak temperature
AT = 5 K, and the width w = 15 pm or 150 pm.

13.2 Bead Thermophoresis Model

For the bead simulation a one-dimensional (non-radial) diffusion model was set up with chamber height
h = 20 pm and the following parameters: bead radius Rp.,; = 1 pm, dynamic viscosity 1 = 1 mPas,
gravity go = 9.81 m?/s2, Boltzmann constant k = 1.38 10723 J/K, base temperature Ty = 300 K, temper-
ature gradient VT = —0.07,—-0.14,—0.21,—0.31, —0.4 K/m, a mass density difference of the dye soaked
beads to water of Ap = 60 kg/m3, the mass diffusion constant of the beads D = kTj/ (67N Rpeaq ), their
thermodiffusion constant Dy = 2.8 pm?(sK), sedimentation force and velocity Fy.g = 4/ 3RZ cad TAP &0
and Vyey = Fyeq /(6N Rpeaa ), respectively, the times start = 10 s and end = 210 s, the initial concentration
distribution

co = hFyeq/ (KT ) exp (—Fyeqx/(kT)) (32)

and the temporal temperature gradient V7' = (r > start) (t < end) VT . The differential equation was set
up with the particle flux —DVc¢ — D7VT ¢ — Vyqc and the fluorescence was integrated over 2 um from

the top.

13.3 DNA Thermophoresis Model

To analyze the DNA a two-dimensional, radial FEMLAB model was set up. We simulated the tempera-
ture increase, and with this temperature gradient we simulated the fluorophore concentration, determining
the fluorescence intensity in the measurements. We used the FEMLAB modules heat transfer by con-
duction, incompressible Navier-Stokes, convection and diffusion with following parameters: heat con-
duction of water 0.597 W/mK and of the glass cover slip 0.8 W/mK, heat capacity of water 4187 J/kgK
and of the cover slip 700 J/kgK with the glass density of 2480 kg/m3, the cover slip thickness = 130 um,

chamber radius = 1 mm. The measured chamber height 4 directly influenced the geometry of the model.
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The mass diffusion coefficient D and thermo-diffusion coefficient Dy varied when the model was fitted
to the data. The bleaching rate k,ss and the TIRF penetration depth or LED focus height 4 depend on

the illumination.

We modeled the temperature increase in the chromium layer by setting the temperature rise in the

lower boundary of the chamber to a Lorentzian modulated with a smoothed Heaviside function:
AT = ATyar/ (1+ rz/wz) flc2hs (t — start,H) flc2hs (end —t,H) (33)

with the time ¢ and the radial coordinate . The peak temperature rise AT, and width w were taken
from the heat spot measurement. The heat equilibration time was H = 0.1 s, and the IR switching times
start = 60s and end = 120 s, which were later rescaled to 0 s and 60 s. We set the outer boundaries and

the top of the cover slip to zero temperature increase.

For convection we used the density of water p = 998 kg/m3 and its viscosity 7 = 1 mPas. Thus,
the buoyancy volume force is F, = AT -310741/K - pgo =~ 3AT N/(m3K). The fluorescence distribution
then is F = ¢(1 — T't), with the fluorophore concentration ¢ and the known temperature dependence o

fluorescence of the fluorophore.

The initial fluorophore concentration ¢y was set to 1 everywhere and the initial temperature rise to 0.
The differential equation system was modified in the particle flux as —r(DVec+ D7y VT). In the source
term we find the bleaching either for TIRF illumination

R:—Ck(,ff exp((z—h)/l) (34)

or for LED illumination
R:—Ckoff/ (1+|Z—h’2/12) (35)

Thus, in TIRF illumination only the fluorophores close to the cover slip are subject to bleaching. The

fluorescence was then inferred from the simulation by
F/(1+z—h*/A%) /h (36)

for LED illumination, or by
F-exp((z—h)/A) /A (37)

for TIRF illumination with z the height coordinate.

The solid lines in Fig. 27 are theoretical predictions, using the finite element simulation strategy
discussed above. To fit these traces of different laser powers (Fig. 27a) and different DNA lengths
(Fig. 27b) we used the parameters from Table 5.
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Table 5: Parameters for the simulations in Fig. 27 on page 51

Fig. 27a Fig. 27b
DNA length 1 kbp 0.6, 3, and 20 kbp
w 65 um 65 um
AT ax 0,4.5,10,or I5K 6 K
h 13 um 16.4, 19.3, or 25.5 um
D 10 um?/s 14, 6.0, or 2.5 um?/s

Dr 2.8 um?%(sK) 2.2,1.5,0r 1.1 um?sK
a 1.2 %/K 1.7 %/K
koffLED 0.035 %l/s 0.06 %/s
ko fTIRF 5 %ls 0.06 %/s
A 200 nm 100 nm

13.4 Intracellular Thermophoresis Model

We assumed that cells consist primarily of water [64]. Therefore, their presence hardly disturbs the ver-
tical temperature gradient. As a result, the simulation could be reduced to one vertical dimension with
constant temperature gradient. We estimate that the chamber height was higher than in non-cell measure-
ments due to cell culture procedures, roughly about 30 um, allowing an estimation of the applied thermal
gradient. For the cell simulations we used a one-dimensional, purely diffusive model with parameters:
mass diffusion coefficient D = 3 um?/s for BCECF and D = 0.1 pm?/s for the 21mer DNA, TIRF pene-
tration depth A = 200 nm. Start and end times for the IR laser were set according to the experiments and
later rescaled to O s and 30 s. Heat equilibration time was set to H = 0.2 s. With this the temperature

gradient and thus the thermophoretic velocity V7 could be modulated with time ¢ as
V= Vr (1 —exp ((start —t)/H)) (t > start) — v (1 —exp((end —t)/H)) (t > end) (38)

V. is required to model switching heating on and off in the simulation. It approaches V7 when the heating

is switched on and approaches zero at other times.

Bleaching depends on the illumination and is found in the source term of the differential equation for
TIRF illumination to be
R = —ckoprexp((x—h)/A) (39)

or for LED illumination to be
R= *Ckoff/(lJr‘X*]’lF/lz) (40)

with x being the height coordinate. The particle flux was defined as —DVec¢+ V. ¢. The initial concen-
tration was set to 1 everywhere and the initial temperature rise to 0. The concentration was read from
the simulation and weighted with the LED illumination ¢/ (1 + |x — h|*A?) /h or weighted with the TIRF
illumination cexp ((x — &) /A) /A. Subsequently, the temperature dependence T jump = aAT with « the
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temperature dependence of the dye and Dy the temperature rise, was included by multiplication with
1 —T jump (exp ((end —t)/H) —exp ((start —t)/H)) (41)
after the IR was turned off again, and by
1 —T jump (1 —exp((start —t)/H)) (42)

for the time after the IR was turned on and before it was turned off again. For the two-dimensional
cell model, the model is identical, except that the height coordinate is called z. The readout is then
¢/ (14 |z[*/A?%) /h for LED illumination with & being the height in the center 10 um and cexp (z/A) /4
for TIRF illumination .
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14 Setup Verification

In this section we test the setup. With it we can compare vertical and lateral thermophoresis. In vertical
thermophoresis the molecules usually move upwards and are pressed against the cover slip. This can be
obtained when the IR is defocused and the whole bottom is heated. In lateral or horizontal thermophoresis
the molecules move outwards toward the unheated, surrounding bulk. Sometimes, however, when their
Soret coefficient is negative, the molecules move exactly to the other direction. Horizontal or lateral
movement was examined in detail in the first part of this thesis when we heated inside the water. If the
heating is focused to a small spot in the chromium layer (Fig. 22b without cells), the molecules move in
both directions, and thus those two directions can be compared.

We use a thin sheet of solution to suppress convection. Previous measurements [17] showed that
convection is negligible when the measurement chamber is flat enough. We apply the temperature gra-
dient with a cold top and a warm bottom. The latter was heated by an IR laser, which is absorbed in
a chromium layer directly at the sampler border. Fluorescence detection is restricted to the top side by
using TIRF microscopy, imaging the upward thermophoretic movement towards the cold. In this geom-
etry every camera pixel can simultaneously and independently measure thermophoresis, since the image
plane is normal to the thermophoretic movement. For details on the components used see section 12.1.
The temperature profile was measured using the fluorescence of BCECF as described in section 12.5.
Under LED illumination the lateral temperature distribution is imaged, averaging across the thickness of
the chamber. The images and the known geometry were used to fit a three-dimensional finite element

calculation (Fig. 22b and c).

14.1 Chromium Layer

We confirmed that the chromium layer absorbed all the infra-red (IR) light by measuring the transmission
of the IR laser through the chromium coated glass slide with a power meter (PM100USB and S310C
Thorlabs GmbH). As a result, the upward movement of the particles could not be influenced by photonic
pressure. As additional check we performed experiments under TIRF detection without chromium. The
resulting lack of a vertical temperature gradient coincided with an undetectable vertical net movement of

the molecules.

14.2 Bead Measurements

We first used polystyrene beads to confirm the thermal transport approach. In a 20 pm high chamber
comparably large polystyrene beads with Radius Rp.,s = 1 um sediment and in the beginning of a mea-
surement and sit on the bottom of the chamber in a Boltzmann distribution. During the measurement,
particularly when the heating is turned on and a temperature gradient applies, the beads are transported to
the top side where they are detected via fluorescence. At the top of the chamber the thermophoresis en-
forces an inverted exponential sedimentation distribution. In the steady state thermophoresis is balanced

by sedimentation and diffusion. Fig. 23 shows their distribution for various times of the experiment. A
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Figure 22: Setup. (a) Two illumination paths were implemented in an upright fluorescence microscope
setup: normal epi-illumination with LED, and TIRF illumination. Heating is provided from below by
an IR laser that was absorbed by a chromium layer at the lower sample interface. The temperature
simulations are shown for a 10 um thick chamber with variable IR spot in the shape of a Lorentzian and
with variable focus width: (b) 15 um and (c) 150 um, and peak temperature 5 K. The molecules move
along the temperature gradient, indicated by arrows.

one-dimensional finite element simulation was used to model the combined gravitational, diffusional,

and thermophoretic movement of the beads. Details about the simulation can be found in section 13.2.

The bead concentration at the top was detected by fluorescence with a special mode specified in
section 12.3. With increasing temperature gradient the beads travel across the chamber with increasing
speed, and from their velocity the diffusion coefficient can be calculated according to Eq. 1 vy =-DrVT.
For shallow thermal gradients they can barely overcome sedimentation, which was calculated from the
weight difference to water of Ap = 60 kg/m?3 (Fig. 24). With the known mass diffusion coefficient of
the beads (D = 0.20 um?/s) interfered from their radius, the only fitting parameter is the thermophoretic
mobility Dy which was fitted to a constant value of 2.8 +-0.5 um?/(sK) for all measured thermal gradients.

For further bead measurements see the Bachelor thesis of Passvogel [65].

The setup is also suitable to apply high temperature gradients, due to the complete absorption of
the IR light at the chromium layer, the small chamber height, and the sapphire as heat sink. For large
particles, e.g. um sized polystyrene spheres, it is possible to reach Péclet numbers larger than one. The
measurement setup allows to probe thermophoresis for Péclet numbers smaller and larger than one [61].
At the highest temperature gradient of 0.2 K/um the Péclet number reaches Pe = (R-VT -Dy /D) = 2.7,

indicating that the comparably large beads and the considerable thermal gradient allow for a ballistic,
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Figure 23: Imaging thermophoresis with beads. (a) Polystyrene particles with radius R = 1 um initially
sediment and during the measurement move upwards to be imaged at the top the top of the chamber.
Simulation shown for a gradient of VT = 0.2 K/um.
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Figure 24: Imaging thermophoresis with beads. Fluorescence is used to image the concentration of the
beads at the top of the chamber. With increasing thermal gradient the transit times of the beads become
shorter. All measurements are described with a thermophoretic mobility of Dy = 2.8 +0.5 um?%sK and
the mass diffusion coefficient D = 0.20 um?/s known from the particle radius.

not a diffusional particle movement. At the lowest temperature gradient of 0.07 K/um thermophoresis
is barely able to overcome sedimentation and Pe = 0.98, and Pe < 1 can be reached for molecules and
beads with smaller radius. This way the transition in thermophoresis between the diffusive and the
ballistic regime of particle transport can be examined. In the limit of small temperature gradients a local
equilibrium approach proved successful [29, 33]. The limit is given in [61] as VT < (R-S7)~ !, i.e. for
Péclet numbers Pe > 1. For these conditions the particles cluster at the upper glass surface (cf. Fig. 25)
due to the Marangoni-like fluid flow around them [61]. This was observed in the measurements with
high temperature gradients in Fig. 24.

Above this limit the theoretical foundation is unclear, since for example the Debye-Hiickel shielding
sphere might be distorted. The thermophoretic mobility D7 or the Soret coefficient S7 might change
with the temperature gradient. Discrepancies have been measured into both directions: Here we measure
an increase in Dy, and in [33] a decrease for high VT is indicated. Converting the laser current into
an actual temperature gradient is difficult. The optical laser power was measured with a pyrometer,

and it is approximately linear with the laser current (see Fig. 26). The absorption on the chromium
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10 pum

Figure 25: Clustering 2 um beads on the upper surface. Fluorescent image of beads clustering when
pressed against the glass cover slip and when the temperature gradient exceeds VT > (R-Sr)~!.

layer (about 300 nm thick) was checked to be complete, so the temperature gradient can be assumed
to be linear with the measured laser power. The beads at the top could be counted. In Fig. 26 the
measurements of the velocity V7 of 1 um red fluorescent polystyrene particles is shown in different
buffers with 10 mM monovalent salt. If Dy was a constant, we would expect Vr to rise linearly with
the temperature gradient or the IR laser power or the IR current, but our measurements deviate from this
linearity. The measurements in Fig. 26 bend upwards at about 1.2 A and show a higher velocity than

expected from the low temperature gradient regime.
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Figure 26: Thermophoretic drift velocity for different temperature gradients. The IR power is approx-
imately linear with the IR current, but the thermophoretic velocity of 1 um red fluorescent polystyrene
particles bends upwards at about 1.2 A. The measurement was repeated in different electrolytes.

A higher D7 is actually expected: Since we need to heat the bottom glass plate more for higher
temperature gradients, the average temperature of the sample is higher. In section 7 we also found a
higher Soret coefficient for higher base temperatures. Additionally, the mass diffusion coefficient will
increase with higher temperature, with the explicit temperature dependence, and with the decreasing

viscosity of water 1:
kT

D=
6TNR

(43)
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So even for a constant Soret coefficient, we expect higher Dy at higher temperatures.

14.3 DNA Measurements

Before performing measurements in cells, the imaging thermophoresis configuration using TIRF detec-
tion was first tested with DNA where sedimentation is not an issue (Fig. 27). We study the case where
focused heating (Fig. 22b) combines vertical and lateral thermophoresis. With epi-illumination using an
LED detection averages across the chamber height, and only the lateral outwards movement is detected.
Under TIRF illumination both the coaxial upward and lateral outward component of thermophoresis is
measured.

We used DNA of different length as a molecular test system due to their well-established parame-
ters. Measurements were performed at different thermal gradients under both TIRF and LED detection
(Fig. 27 dotted lines). Fluorescence at the heat spot center was recorded at 3 Hz. When heating is turned
on (t = 0 s), fluorescence drops within < 1 s due to its inherent temperature dependence. Under TIRF il-
lumination this drop is superimposed with the fluorescence rises due to the upward molecule movement.
This is later decreased by the lateral outward thermophoresis due to the focused heating spot. The ther-
mophoretic amplitude increases for an increasing temperature gradient (Fig. 27a). Under epi-fluorescent
LED illumination only the temperature dependence and the lateral outward depletion of the molecules
is visible. Measurements with longer DNA strands show slower diffusion, and the coaxial upward ther-
mophoresis is detected, since the lateral thermophoresis does not yet equilibrate within the heating time
of 60 s (Fig. 27b). After switching off the temperature gradient (+ = 60 s) back-diffusion equilibrates the
thermophoretic perturbation of DNA concentration.

We quantified the DNA measurements with the known molecular parameters in a two-dimensional,
radial finite element simulation (section 13.3). We implemented heat conduction, diffusion, thermophore-
sis, bleaching under TIRF or LED illumination, temperature dependence of the fluorescent dye, and
a possible thermal convection flow. The resulting fluorescence traces fit the experimental measure-
ments in detail over a wide range of temperature gradients and DNA lengths (Fig. 27). The mass
diffusion coefficient could be determined by the model to D = 14, 10, 6.0, 2.5 um?/s for the lengths
of 0.6, 1, 3, 20 kbp, respectively, which agreed with literature values [66]. The only unknown parame-
ter was the thermophoretic mobility Dr. For the measured DNA lengths of 0.6, 1, 3, 20 kbp we found
Dy =2.2,2.8,1.5,1.1 um?%sK, confirming previous measurements of DNA thermophoresis [17]. In-
terestingly, we could fit both the coaxial and lateral thermophoresis traces with the same value for the

thermophoretic mobility D7. For details on the fits see section 13.3.
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Figure 27: The IR laser was focused to a small spot (HWHM = 65 um) and moved the molecules
upwards coaxially and outwards laterally. The fluorescence above the heat spot center was detected with
TIRF. Epi-fluorescence LED illumination did not discriminate across the chamber height. Measurements
(dotted line) were conducted with (a) 1 kbp DNA in different temperature gradients and (b) different
DNA lengths in the same temperature profile. Finite element simulations described the thermophoretic
molecule movement in detail (solid lines).
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15 Cell Experiments

We imaged thermophoresis inside living cells after fully understanding thermophoresis traces under the
TIRF detection and coaxial heating. The measured fluorescence traces of thermophoresis inside living

HelLa cells are shown in Fig. 28.

15.1 Cell Measurements

The IR heating laser was turned on between times O s and 30 s. As before, the temperature dependence
of the fluorophore results in a sudden drop of the signal, after the IR is switched on, and a reverted
increase after heating is switched off again. As before, control measurements under epi-fluorescence
LED illumination were conducted. Here an axial, upward fluorophore motion cannot be resolved and
only the temperature jump is visible (Fig. 28a). With LED illumination the temperature jump is slightly
larger than under TIRF illumination, since the LED excites the fluorescence deeper in the chamber, where
it is warmer (see Table 6). Lateral thermophoresis is also not expected due to the more defocused heating
in the cell measurements (see Fig. 22¢). Fig. 28b shows a measurement of 21 base pair DNA, while the
other measurements report the movement of the pH sensitive dye BCECF. As before, the measurements
were fitted with finite element simulations as detailed in the supplementary section. All parameters are
listed in Table 6.

Interestingly, the diffusion of BCECF was found to be D = 3 um?/s, considerably slower than the
free buffer values from the cytoplasm of 100 um?'s reported using FRAP analysis of the mobile frac-
tion [67]. For the measurements with 21mer double stranded DNA we find a diffusion coefficient of
0.1 um?/s, which is also reduced compared to the reported 20 um?/s [68]. Since this method actively
moves the molecules, it measures the average over all fractions mobile and possibly immobile. The main
contribution in slowing down diffusion is thought to be the collision with other macromolecules, and the
effect is stronger for larger molecules [68, 69]. Thus, a size dependent further reduction of these values
is expected when thermophoresis of biomolecules bound to other molecules is considered. We also tried
to measure larger molecules (ribosomes with GFP label section 6), but the reduction of diffusion made
it impossible to detect sufficient (thermophoretic) movement. Thermophoresis, in contrast to all other
techniques, actively moves the molecules and therefore probes their mobility on a global scale. As a
result, interactions with the cytoplasm at a larger scale can be probed by thermophoresis.

Interestingly, for BCECF the thermophoretic mobility is unaffected by the cell. The measured value
of Dr =4.4£2 um?/(sK) is well compatible with the reported in vitro value of Dy = 7.5um?/(sK) [17].
In contrast, the DNA probe is reduced both in diffusion and thermophoretic mobility with a value of
D7 =0.12 um?/(sK) as compared to Dy = 1pm?/(sK) [70]. These measurements suggest that molecular
interactions inside a cell can be differentiated between affecting thermophoretic mobility or diffusivity.

In Fig. 28c and d the thermophoresis traces show a curved fluorescence decrease during thermophore-
sis which could not be readily explained even with TIRF bleaching dynamics in the one-dimensional

simulations (broken line). We propose that this effect is due to the inhomogeneous thickness of the in-
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Figure 28: Thermophoresis measurements of DNA and BCECF in the cytoplasm of living cells. On
the left sides, the fluorescence image of representative cells are shown. Thermophoresis of molecules
was detected by TIRF fluorescence imaging over time. The time traces on the right correspond to the
intensities in the black squares in the cell image.(a) The dye molecule BCECF is moved to the cold side
after a fast fluorescence decrease due to its temperature dependence. Control measurements under epi-
illumination with LED demonstrate that the fluorescence increase stems only from the vertical movement
of the fluorophore. (b) Double stranded DNA with 21 bases showed slower thermophoresis with a larger
accumulation magnitude than BCECF. (c¢) The extracellular background trace is darker, does not show
the thermophoresis signature, and is not affecting the thermophoresis measurement significantly. The
bending of the trace is understood with the cone-shaped cell geometry. (d) Measurements in higher
temperature gradients show an expected increase in the thermophoretic amplitude.
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dividual cell, leading to a temporarily build-up of lateral concentration inhomogeneities within the cells
that subsequently equilibrate. We modeled such a cell in a two-dimensional radial geometry, as a cone
with height 10 um and radius 20 um, the readout being above the center, but still with a purely ver-
tical, constant temperature gradient. This two-dimensional model could explain the curved cell traces
(section 13.4).

Background fluorescence could be measured next to a cell (Fig. 28c, white box). Even for this
example of high background levels compared to the non-cell measurements, its minor dynamics upon

heating did not significantly affect the thermophoretic analysis.

The setup geometry is capable of simultaneously measuring vertical thermophoresis in cells at var-
ious positions in the field of view of the camera. For the used molecule systems we did neither expect
nor record significant deviations of Dy and D across the image of the cell. It is interesting to note that
the reallocation of the molecules by thermophoresis resulted in a much reduced kinetics of the back-
diffusion dynamics which could not be fully accounted for by the thermophoretic model for the cell
measurements. They were perfectly understood for the measurements without the cells. This points to
a yet to be understood cellular dynamics induced by the global application of a temperature field. One

should note that the cells are located at the cold side of the chamber.

In Fig. 28d traces with different heating intensities are shown. At a 5-fold higher temperature gradi-
ent, a larger thermophoretic amplitude is found after the also increased temperature jump. The diffusion
coefficient is not affected and traces are well fitted by the thermophoretic model. Thermophoretic mobil-
ity raises slightly more than expected from temperature dependent in vitro data [17, 70], indicating that

intracellular binding inside the cell is reduced by the increased temperature.

Table 6: Parameters used for the simulations in Fig. 28. At varying laser powers different temper-
ature gradients VT were applied. The temperature dependence ¢ of the used fluorophore was fitted,
but not calibrated due to an unknown pH dependence upon temperature changes inside the cell. The
thermophoretic mobility of BCECF and DNA could be determined from the thermophoretic velocity v
used to fit the fluorescence transients. We implemented bleaching for TIRF and LED illumination in the
simulation with a bleaching rate kpj.qc;. TIRF illumination only bleached the fluorophores close to the
cover slip with a penetration depth of A =200 nm. The chamber height is denoted with 4. Grey columns
denote fitting parameters, others are measured or derived values.

Fig. 28 Mole- vT a-AT h Vr Dy letiiady D
cule | [K/um] | [%] | [um] | [um/s] | [um?/(sK)] | [%/s] | [um?/s]
(a) TIRF BCECF | 0.076 20 8 0.24 3.2 15 3
(a) LED BCECF | 0.076 15 8 0.24 3.2 0.2 3
(¢) 1D BCECF | 0.17 45 8 0.60 3.6 35 3
(c) 2D BCECF 0.17 45 cone | 0.66 4.0 15 3
(d) 1D BCECF | 0.034 21 10 0.15 4.4 13 3
(d) 2D, 5xIR | BCECF 0.17 47 cone | 1.32 8.0 10 4
(b) DNA 22mer 0.17 22 5 0.021 0.12 0 0.1
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15.2 Repeated Heating

In several experiments we heated the same cells twice. One such case can be seen in Fig. 28d. There
the first heat pulse was for 30 s with only a moderate temperature increase of 5 K. The second pulse
was after 210 s with a higher temperature gradient (A7}, = 24 K) and did show thermophoresis. In
another measurement we heated the cells twice with only 100 s in between and both with high laser
power (AT.c = 24 K). As can be seen in Fig. 29, very little vertical thermophoresis can be detected the

second time.

norm. Fluorescence

0.6
-10 0 30 50

Figure 29: When the cell is repeatedly heated, it does not always show vertical thermophoresis.

The assumption is that the decrease of the second thermophoresis is due to a cell reaction, triggered
by the high temperature increase. In the future, it would be interesting to perform more measurements
and examine, whether there is a threshold for the temperature, and whether it reduces with more time

between the measurements.

15.3 Intracellular Thermophoresis

It is important that the temperature spot is wide. Otherwise cells not directly above the heating center
will experience a horizontal component of thermophoresis. After the initial fluorescence increase, traces
on one side of these cells will show further increase, and traces from the other side will show a decrease
(see Fig. 30). In a finite element simulation we simulated two cells, one directly above the temperature
spot and one 50 um to the side. We simulated the temperature distribution, the concentration distribution
of the fluorophore in the cells and the time traces of the fluorophore concentration in different positions
at the cover slip, which represents the brightness in the TIRF measurements (Fig. 30). The heat spot
was moderately wide (HWHM=150 um), so the temperature gradient is only slightly angled. The two-
dimensional simulation included diffusion with the diffusion coefficient D = 50 um?/s, thermophoresis
with the thermodiffusion coefficient Dy = 5 pm?/(sK), heat conduction, and a Lorentzian temperature
profile in the chromium layer with a peak temperature increase of A7, = 5 K and width w = 150 pm.
Furthermore, the analysis of the cell traces is not as straightforward as without cells. Extracellular

traces from one spot can be evaluated in the steady state by the simple equation

ci = exp(—St(T - Ty)) (44)
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with ¢ and T the concentration and temperature in the steady state with heating and ¢y and 7p the
values in the bulk or the initial values. Since the spot in the cell is not diffusively connected to a bulk
reservoir, the size and shape of the cell has to be taken into account (see the cell model section 13.4). In
contrast, it is possible to take two points inside one cell and compare their concentrations in the steady
state. Since the image of a real cell does not have the same intensity everywhere, we calculate for every
pixel the change in intensity during the heating, normalized by the initial intensity right after the IR laser
was turned on. The result can be seen in Fig. 31. It is interesting how the two cells in the image behave
differently and the cellular structure emerges with the cell nucleus. The thermophoresis corresponds to

the cell thickness at each point with thicker parts being brighter.

15.4 Size Dependence

In measurements with pure BCECF or Cy 5 in aqueous solutions we could not observe thermophoresis,
because the molecules diffuse too fast and the temperature equilibration cannot be distinguished from
the upward thermophoretic movement. So only the slower, lateral movement was seen and TIRF and
LED illumination yielded the same result (see Fig. 32. Thus, we switched to larger molecules for our
in vitro measurements: long double stranded DNA of several kilo base pairs (see section 14.3), or large
polystyrene beads of 20 nm up to 2 um diameter (see Fig. 33 and section 14.2). Fig. 33 also shows that
the TIRF system was working when the BCECF measurements were taken, since we could detect axial
thermophoresis for the beads.

Thus, we looked for a cell system with large fluorescent molecules diffusing in the cytoplasm. In
Fig. 34 we show thermophoresis measurements of cells, which had a green fluorescent ribosomal pro-
tein. However, the diffusion constant for such big objects is greatly reduced in the cytoplasm (compare
the measured diffusion constants in section 15.1), so even in the prolonged heating time of 3 min we
could not detect thermophoresis. Additionally, bleaching was strong, since the dye concentration was
smaller compared to the other cell experiments in Fig. 28. There we could load the cells with high dye

concentrations, whereas the cells here only expressed the labeled protein at normal level.
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Figure 30: (a) Temperature simulation in a 10 um high chamber, with a heating width of 150 um for an
only slightly angled temperature gradient. (b) Concentration simulation with one cell directly above the
heating center and one cell 50 um to the side. Positions where the time traces are shown are numbered.
(c) Time traces at the different positions first show an increase for axial thermophoresis and later a further
increase or a decrease according to lateral thermophoresis.

Figure 31: On the left the normal fluorescence image of the cells under TIRF illumination is shown, on
the right the normalized change in fluorescence during the heating.

57



15.4 Size Dependence 15 CELL EXPERIMENTS

1.0 fesmstnass
BCECF

° — LED
(8]
[&]
(7]
o
S
E 08 [~

07 1 1 1

0 30 60 90 120
Time [s]

Figure 32: In diluted aqueous solutions the diffusion of the small fluorophore is too fast to resolve
vertical thermophoresis before lateral thermophoresis sets in.
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Figure 33: Axial thermophoresis is measured qualitatively in different IR laser powers, i.e. different
temperature gradients.

450

400 Ribosome

350
300

Fluorescence

250

200I..I..I..I..I..I..
10 70 130 190 250 310 370

Time [s]

Figure 34: Measurements of green ribosomes only show bleaching, but no thermophoretic movement,
since they are too big to diffuse in the crowded cell even during this prolonged measurement time of
three minutes heating.
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16 CONCLUSION

16 Conclusion

In this second part of the thesis a new geometry is proposed for thermophoresis measurements inside
living cells. We have developed a TIRF-based measurement geometry, which allows to perform ther-
mophoresis measurements with two-dimensional resolution on the micrometer scale. In this new ge-
ometry, we detect vertical thermophoresis, when the molecules are accumulated at the top cover slip.
The results are compared with known epi-fluorescence measurements in the lateral geometry, which is
known for example from the first part of this thesis. We measure different lengths of long double stranded
DNA in different temperature gradients with TIRF and epi-LED illumination. We show that the physical
processes involved in this new geometry can be quantitatively understood. Furthermore, we present for
the first time thermophoresis measurements of fluorescent dyes and DNA inside living cells, acquired
with the vertical thermophoresis setting. These measurements represent the first step towards in vivo
binding studies. Biomolecular binding studies are already conducted in cell lysate [28] using Microscale
Thermophoresis. This horizontal geometry of Microscale Thermophoresis [20, 28] had to be adapted to
cell cultures in central parts. With the new method, binding measurements will soon also be possible in

living cells.
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17 ABBREVIATIONS

17 Abbreviations

17.1 Mathematical Symbols

€o

Ci
CPEG
Ve

Dr

end

i

&
&
flc2hs

F, sed

koffTIRF
kofrLED

koff OF Kpleach
L

A

ApH

U

Ny

n

Pe

Q

QZylinder

temperature dependence of the fluorophore

concentration

bulk concentration

concentration of i-th ion species
concentration of PEG molecule
concentration gradient vector

mass diffusion coefficient
thermo-diffusion coefficient
elementary charge

time, when the IR laser is turned off
electric field vector

dielectric permittivity

relative dielectric constant

vacuum permittivity

smoothed Heaviside function of FEMLAB
fluorescence

sedimentational force

chamber height

heat equilibration time

gravitational acceleration

particle flux vector

Boltzmann constant

bleaching off-rate with TIRF illumination
bleaching off-rate with LED illumination
bleaching off-rate generally

length of the cylinder in the molecule
penetration depth of TIRF field
Debye-Hiickel screening length
electric mobility

Avogadro constant

dynamic viscosity

Péclet number

electric charge

electric charge of the cylinder
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%/K

M or mol/l

M or mol/l

M or mol/l

M or mol/l

M/m

m?/s

m?/sK

1.602 10712 As
]

V/m

As/Vm

As/Vm

8.854 x107 12 As/Vm
function

a.u.

m

S

9.81 m/s?

mol/s

1.381 x1072 J/K
9ols

%ls

9ol's

m

m

m

m?2/Vs

6.022 x10%* 1/mol
Pas
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17 ABBREVIATIONS

QS phere
Q per Base

Rbead
RpeG

Ap
start
St
SM
s¥
SI;EG
S3F

00

T

AST
<S>

~

T*
T jump
AT
ATcen
ATan
VT

vT

Vsed

electric charge of the sphere

charge per base or per base pair for single stranded or double
stranded DNA / RNA, respectively

radial coordinate

radius, or reaction rate to model bleaching (depending on
context)

radius of the bead

radius of the crowding agend PEG

thermal expansivity of the water or fluid, or mass density of
water (depending on context)

mass density difference of dye soaked beads to water

time, when the IR laser is turned on

Soret coefficient

capacitor model contribution to the Soret coefficient
non-ionic part of the Soret coefficient

Soret coefficient of the crowding agent PEG

Seebeck contribution to the Soret coefficient

fitting parameter - amplitude of the change in the Soret
coefficient

change in the Soret coefficient

average Soret coefficient of the two salt ions

time

absolute temperature

fitting parameter

fitting parameter - temperature, where Sy’ changes sign
temperature sensitivity of the dye = aAT

temperature difference or temperature increase

temperature increase in the cell

peak temperature

temperature gradient vector

temperature gradient modulated with the fact if the IR laser is
turned on (vector)

sedimentation velocity vector

thermophoretic velocity vector

thermophoretic velocity modulated with the fact if the IR laser
is turned on (vector)

HWHM width of the Lorentzian heating spot

electric work or energy stored in the capacitor
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1/K or kg/m3

kg/m3
s

1/K
1/K
1/K
/K
1/K
1/K

/K
1/K

ANAAARAARARC



17 ABBREVIATIONS 17.2 Abbreviations

xorz vertical coordinate m

Zi electric charge number of the i-th ion species in multiples of ¢  number
Zerf effective charge number of the molecule in multiples of e number
[...] concentration of the molecule within M or mol/l

17.2 Abbreviations

BCECF 2’,7’-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein
BCECF-AM  2’,7’-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester
bp or kbp base pairs or kilo base pairs (unit)
BSA bovine serum albumin
CCD charge-coupled device
Cy5 fluorescent cyanine dye 3H-Indolium
DNA deoxyribonucleic acid
dsDNA double stranded deoxyribonucleic acid
dsRNA double stranded ribonucleic acid
ELISA enzyme-linked immunosorbent assay
FCS fetal calf serum
Hex or 6-Hex 6-carboxy-2 ,4,4,5,7,7 -hexachlorofluorescein
HWHM half width half maximum of the heat Lorentzian spot is equal to the w
IR infra-red
LED light-emitting diode
MST Microscale Thermophoresis
NA numerical aperture
PBS phosphate buffered saline
PEG polyethylene glycol
pKa acid dissociation constant
RNA ribonucleic acid
SPR surface plasmon resonance
ssDNA single stranded deoxyribonucleic acid
ssRNA single stranded ribonucleic acid
TIRF total internal reflection fluorescence
TOTO-1 Quinolinium based fluorescent dye
TRIS tris(thydroxymethyl)aminomethane or 2-Amino-2-hydroxymethyl-propane-1,3-diol
1D, 2D, 3D one-, two-, or three-dimensional
..mer oligomer (here DNA / RNA) with ... bases
40x 100x magnification of the objective

63



BIBLIOGRAPHY

18

[1]

(2]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

References

Funk M, et al. (2009) Constant power optical tweezers with controllable torque. Optics Letters
34:139-141.

Tiselius A (1937) A new apparatus for electrophoretic analysis of colloidal mixtures. Transactions
of the Faraday Society 33:524-531.

Ludwig C (1856) Diffusion zwischen ungleich erwdarmten Orten gleich zusammengesetzter
Losung. Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen
Akademie der Wissenschaften p 539.

Soret C (1879) Sur I’etat d’équilibre que prend au point de vue de sa concentration une dissolu-
tion saline primetevement homogene dont deux parties sont portées a des températures difféntes.
Archives de Geneve 3:48.

Snowdon PN, Turner JCR (1960) The Soret effect in some 0.01 normal aqueous electrolytes.
Transactions of the Faraday Society 56:1409.

Chan J, Popov JJ, Kolisnek-Kehl S, Leaist DG (2003) Soret coefficients for aqueous polyethylene
glycol solutions and some tests of the segmental model of polymer thermal diffusion. Journal of
Solution Chemistry 32:197-214.

Putnam SA, Cahill DG, Wong GCL (2007) Temperature dependence of thermodiffusion in aqueous
suspensions of charged nanoparticles. Langmuir 23:9221-9228.

Piazza R, Guarino A (2002) Soret effect in interacting micellar solutions. Physical Review Letters
88:208302.

Braibanti M, Vigolo D, Piazza R (2008) Does thermophoretic mobility depend on particle size?
Physical Review Letters 100:108303.

Vigolo D, Buzzaccaro S, Piazza R (2010) Thermophoresis and thermoelectricity in surfactant
solutions. Langmuir 26:7792-7801.

Iacopini S, Rusconi R, Piazza R (2006) The macromolecular tourist: Universal temperature de-
pendence of thermal diffusion in aqueous colloidal suspensions. The European Physical Journal E
19:59-67.

Kohler W (1993) Thermodiffusion in polymer solutions as observed by forced Rayleigh scattering.
The Journal of Chemical Physics 98:660.

Kishikawa Y, et al. (2012) Temperature dependence of thermal diffusion for aqueous solutions of
monosaccharides, oligosaccharides, and polysaccharides. Physical Chemistry Chemical Physics
14:10147.

64



BIBLIOGRAPHY BIBLIOGRAPHY

[14] Jung H, Gusev VE, Baek H, Wang Y, Diebold GJ (2011) Ludwig—Soret effect in a linear tempera-
ture field: Theory and experiments for steady state distributions. Physics Letters A 375:1917-1920.

[15] Jerabek-Willemsen M, et al. (2014) Microscale thermophoresis: Interaction analysis and beyond.

Journal of Molecular Structure In Press.

[16] Braun D, Libchaber A (2002) Trapping of DNA by thermophoretic depletion and convection.
Physical Review Letters 89:188103.

[17] Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proceedings of the
National Academy of Sciences 103:19678—19682.

[18] Guo X (2012) Surface plasmon resonance based biosensor technique: a review. Journal of Biopho-
tonics 5:483-501.

[19] Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay
of immunoglobulin G. Immunochemistry 8:871-874.

[20] Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D (2010) Optical thermophoresis for quantifying
the buffer dependence of aptamer binding. Angewandte Chemie International Edition 49:2238—
2241.

[21] Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological

liquids using microscale thermophoresis. Nature Communications 1:100.

[22] Pollack SJ, et al. (2011) A comparative study of fragment screening methods on the p38« kinase:
new methods, new insights. Journal of Computer-Aided Molecular Design 25:677-687.

[23] Corin K, et al. (2011) A robust and rapid method of producing soluble, stable, and functional
G-protein coupled receptors. PloS one 6:¢23036.

[24] Bhogaraju S, et al. (2013) Molecular basis of tubulin transport within the cilium by IFT74 and
IFT81. Science 341:1009-1012.

[25] Xiong X, et al. (2013) Receptor binding by a ferret-transmissible HS avian influenza virus. Nature
497:392-396.

[26] Seidel SAI, et al. (2012) Label-free microscale thermophoresis discriminates sites and affinity of
protein-ligand binding. Angewandte Chemie International Edition 51:10656—10659.

[27] Lippok S, et al. (2012) Direct detection of antibody concentration and affinity in human serum
using microscale thermophoresis. Analytical Chemistry 84:3523-3530.

[28] Seidel SAIL et al. (2013) Microscale thermophoresis quantifies biomolecular interactions under

previously challenging conditions. Methods 59:301-315.

65



BIBLIOGRAPHY BIBLIOGRAPHY

[29] Dhont JKG, Wiegand S, Duhr S, Braun D (2007) Thermodiffusion of charged colloids: single-
particle diffusion. Langmuir 23:1674—1683.

[30] Herzog M (2012) Ph.D. thesis (Systems Biophysics, Physik Department, Ludwig-Maximilians-

Universitdt Miinchen).

[31] Sim AYL, Lipfert J, Herschlag D, Doniach S (2012) Salt dependence of the radius of gyration
and flexibility of single-stranded DNA in solution probed by small-angle x-ray scattering. Physical
Review E 86:021901.

[32] Lide DR (2001) CRC Handbook of Chemistry and Physics (CRC Press), 82nd edition.

[33] Duhr S, Braun D (2006) Thermophoretic depletion follows Boltzmann distribution. Physical Re-
view Letters 96:168301.

[34] Lipfert J, Doniach S, Das R, Herschlag D (2014) Understanding nucleic acid-ion interactions.

Annual Review of Biochemistry In Press.

[35] O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. Journal
of the Chemical Society, Faraday Transactions 2 74:1607.

[36] Hickey OA, Shendruk TN, Harden JL, Slater GW (2012) Simulations of free-solution electrophore-
sis of polyelectrolytes with a finite Debye length using the Debye-Hiickel approximation. Physical
Review Letters 109:098302.

[37] Haugland RP, Spence MTZ, Johnson ID, Basey A (2005) The handbook: A guide to fluorescent
probes and labeling technologies (Invitrogen Corp.), 10th edition.

[38] Stellwagen E, Stellwagen NC (2002) Determining the electrophoretic mobility and translational
diffusion coefficients of DNA molecules in free solution. Electrophoresis 23:2794-2803.

[39] Wang Z, Kriegs H, Buitenhuis J, Dhont JKG, Wiegand S (2013) Thermophoresis of charged col-
loidal rods. Soft Matter 9:8697.

[40] Allison SA, Mazur S (1998) Modeling the free solution electrophoretic mobility of short DNA
fragments. Biopolymers 46:359-373.

[41] Stellwagen E, Lu, Stellwagen NC (2003) Unified description of electrophoresis and diffusion for
DNA and other polyions. Biochemistry 42:11745-11750.

[42] Putnam SA, Cahill DG (2005) Transport of nanoscale latex spheres in a temperature gradient.
Langmuir 21:5317-5323.

[43] Guthrie G, Wilson JN, Schomaker V (1949) Theory of the thermal diffusion of electrolytes in a
Clusius column. The Journal of Chemical Physics 17:310.

66



BIBLIOGRAPHY BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Wiirger A (2008) Transport in charged colloids driven by thermoelectricity. Physical Review Letters
101:108302.

Takeyama N, Nakashima K (1988) Proportionality of intrinsic heat of transport to standard entropy
of hydration for aqueous ions. Journal of Solution Chemistry 17:305-325.

Petit CJ, Hwang MH, Lin JL (1986) The Soret effect in dilute aqueous alkaline earth and nickel
chloride solutions at 25°C. International Journal of Thermophysics 7:687-697.

Einstein A (1905) Uber die von der molekularkinetischen Theorie der Wirme geforderte Bewegung

von in ruhenden Fliissigkeiten suspendierten Teilchen. Annalen der Physik 322:549-560.

Gotz A (2012) Bachelor thesis (Systems Biophysics, Physik Department, Ludwig-Maximilians-

Universitidt Miinchen).

Dong Q, Stellwagen E, Stellwagen NC (2009) Monovalent cation binding in the minor groove of
DNA A-tracts. Biochemistry 48:1047-1055.

Stellwagen E, Dong Q, Stellwagen NC (2005) Monovalent cations affect the free solution mobility
of DNA by perturbing the hydrogen-bonded structure of water. Biopolymers 78:62—68.

Sundararaman R, Letchworth-Weaver K, Arias TA (2014) A recipe for free-energy functionals of
polarizable molecular fluids. The Journal of Chemical Physics 140:144504.

Dhont JKG (2004) Thermodiffusion of interacting colloids. I. A statistical thermodynamics ap-
proach. Journal of Chemical Physics 120:1632-1641.

Dhont JKG (2004) Thermodiffusion of interacting colloids. II. A microscopic approach. Journal
of Chemical Physics 120:1642—-1653.

Chatterjee S, et al. (2006) The chemical nature of the 2’-substituent in the pentose-sugar dictates
the pseudoaromatic character of the nucleobase (pKa) in DNA/RNA. Organic & Biomolecular
Chemistry 4:1675.

Jiang HR, Wada H, Yoshinaga N, Sano M (2009) Manipulation of colloids by a nonequilibrium
depletion force in a temperature gradient. Physical Review Letters 102:208301.

Wiirger A (2010) Thermal non-equilibrium transport in colloids. Reports on Progress in Physics
73:126601.

Maeda YT, Tlusty T, Libchaber A (2012) Effects of long DNA folding and small RNA stem-loop
in thermophoresis. Proceedings of the National Academy of Sciences 109:17972-17977.

Reineck P, Wienken CJ, Braun D (2010) Thermophoresis of single stranded DNA. Electrophoresis
31:279-286.

67



BIBLIOGRAPHY BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Parola A, Piazza R (2004) Particle thermophoresis in liquids. The European Physical Journal E
15:255-263.

Xie XS, YuJ, Yang WY (2006) Living cells as test tubes. Science 312:228-230.

Weinert FM, Braun D (2008) Observation of slip flow in thermophoresis. Physical Review Letters
101:168301.

Kolber MA, Quinones RR, Gress RE, Henkert PA (1988) Measurement of cytotoxicity by target cell
release and retention of the fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF). Journal
of Immunological Methods 108:255-264.

Leeder J, Dosch HM, Harper P, Lam P, Spielberg S (1989) Fluorescence-based viability assay for
studies of reactive drug intermediates. Analytical Biochemistry 177:364-372.

Ellis R (2001) Macromolecular crowding: obvious but underappreciated. Trends in Biochemical
Sciences 26:597-604.

Passvogel S (2011) Bachelor thesis (Systems Biophysics, Physik Department, Ludwig-

Maximilians-Universitit Miinchen).

Pluen A, Netti PA, Jain RK, Berk DA (1999) Diffusion of macromolecules in agarose gels: Com-
parison of linear and globular configurations. Biophysical Journal 77:542-552.

Kao HP, Abney JR, Verkman A (1993) Determinants of the translational mobility of a small solute
in cell cytoplasm. The Journal of Cell Biology 120:175-184.

Dauty E, Verkman AS (2005) Actin cytoskeleton as the principal determinant of size-dependent
DNA mobility in cytoplasm: A new barrier for non-viral gene delivery. Journal of Biological
Chemistry 280:7823-7828.

Lukacs GL, et al. (2000) Size-dependent DNA mobility in cytoplasm and nucleus. Journal of
Biological Chemistry 275:1625-1629.

Reichl M, Herzog M, Gétz A, Braun D (2014) Why charged molecules move across a temperature
gradient: The role of electric fields. Physical Review Letters 112:198101.

68



BIBLIOGRAPHY BIBLIOGRAPHY

Acknowledgments

This work would not have been possible without the work, help, support and advice of supervisors,
colleagues, friends, and family. All achievements described in this dissertation I owe to them, any errors
and omissions are my own.

Dieter Braun: He taught me how to become a scientist. Thank you! Also thanks for being available
just across the desk.

To my Bachelor students Alexandra Gotz and Stefan Passvogel: Thank you for your work, help, and
ten weeks of good collaboration each. It was a pleasure to work with you.

All Braunies (approximately in order of appearance): Christof Mast, who knows all about everything
and shares it if he’s not occupied by others; Mario Herzog, from whom I inherited many projects, some of
them still unfinished... Hubert Krammer for the introduction to unCeNSiert and his view on things in life;
Natan Osterman, your optimism helped me getting started; Manuel Wolff for discussions and working
on related topics; Susanne Seidel, the chemist, biologist, insert what you need, and molecular medicine
expert; Friederike Moller supporting the tea fraction; Simon Lanzmich for help with computer problems;
Georg Urtel, Matthias Morasch and Lorenz Keil, with you the hours in the lab are never boring; Franziska
Kriegl for your support. And thanks to all the others whom I forgot to mention. Thanks to the Gambies
for the cell culture possibilities and the sophisticated chemistry lab.

Martin Benoit, Laura Kellermann, Hanna Engelke, Pablo Dominguez, Rainer Szalata, and all the
others from unCeNSiert: Your music keeps me going!

Most of all to my family: Thank you for your help and for your belief that I can do this. Without you

this thesis would never have started and it would never have finished.

69



BIBLIOGRAPHY

19 Publications

[1] Reichl MR, Herzog M, G6tz A, Braun D (2014) Why charged molecules move across a temperature
gradient: The role of electric fields. Physical Review Letters 112:198101.

[2] Reichl MR, Braun D (submitted) Thermophoresis measurements in living cells using total internal

reflection fluorescence microscopy. Nature Physics.

[3] Reichl MR, Herzog M, Braun D (submitted) Understanding the similar thermophoresis of single and
double stranded DNA and RNA. Nucleic Acids Research.

70



PRL 112, 198101 (2014)

PHYSICAL REVIEW LETTERS

week ending
16 MAY 2014

Why Charged Molecules Move Across a Temperature Gradient:
The Role of Electric Fields

Maren Reichl, Mario Herzog, Alexandra Gotz, and Dieter Braun®
Systems Biophysics, Physics Department, Nanosystems Initiative Munich and

(Received 6 February 2014; revised manuscript received 2 April 2014; published 13 May 2014)

Methods to move solvated molecules are rare. Apart from electric fields, only thermal gradients are
effective enough to move molecules inside a fluid. This effect is termed thermophoresis, and the underlying
mechanisms are still poorly understood. Nevertheless, it is successfully used to quantify biomolecule
binding in complex liquids. Here we show experiments that reveal that thermophoresis in water is
dominated by two electric fields, both established by the salt ions of the solution. A local field around the
molecule drives molecules along an energy gradient, whereas a global field moves the molecules by a
combined thermoelectrophoresis mechanism known as the Seebeck effect. Both mechanisms combined
predict the thermophoresis of DNA and RNA polymers for a wide range of experimental parameters. For
example, we correctly predict a complex, nonlinear size transition, a salt-species-dependent offset, a
maximum of thermophoresis over temperature, and the dependence of thermophoresis on the molecule

Center for NanoScience Ludwig-Maximilians-Universitidt Miinchen, Amalienstrasse 54, 80799 Miinchen, Germany

concentration.

DOI: 10.1103/PhysRevLett.112.198101

Introduction.—Thermophoresis is the motion of mole-
cules induced by a temperature gradient, often also referred
to as the Soret effect, thermodiffusion, or thermal diffusion.
Typically, the molecule concentration depletes at positions
of locally enhanced temperature. The strength of depletion
is parameterized by the Soret coefficient St [1,2] and given
by ¢ = coexp[—Sy(T — T,)] with the depleted concentra-
tion c¢ at varying temperature 7" at a bulk concentration and
temperature ¢, and T, respectively. Predictive models to
calculate S7 based on molecule parameters are missing.
Often, the nonequilibrium analogy between thermophoresis
and electrophoresis is assumed while a local equilibrium
considerations are not considered.

For the last 3 years, a growing number of biologists have
used thermophoresis as a method [3,4] for quantifying
biomolecule binding [5-10]. Also, central questions of
molecular evolution were addressed by thermophoretic traps
[11-13]. Despite the general interest in the topic, the above
applications of thermophoresis are missing a solid theoretical
foundation at the moment.

To approach the problem, systematic experiments over a
large parameter space are required. Polymers in nonaque-
ous solutions show a clear scaling behavior with molecular
weight [14] and isotope composition [15]. The mass
dependence of thermophoresis in silica melts [16] suggested
a quantum mechanical treatment [17,18]. Polystyrene beads
and long double-stranded DNA of various size were studied
[19,20], suggesting a plate capacitor model [21]. Size-
dependent measurements of polystyrene beads at constant
Debye length, however, disputed the results [22].

Here, single- and double-stranded DNA and RNA
of different lengths were measured for various salt

0031-9007/14/112(19)/198101(5)
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concentrations, salt species, and temperatures. The experi-
ments test the size transition of the capacitor model,
especially for Debye lengths larger than the molecule size.
In addition, they probe a thermoelectric Seebeck contribu-
tion, suggested by experiments [23] and theoretical treat-
ments [24,25]. Oligonucleotides offer a precise length
definition, excellent purity, and fluorescence-based mea-
surements at low concentrations. Many molecular param-
eters are known for oligonucleotides.

Theory.—In the following, thermophoresis is described
with a combination of four molecular mechanisms, fully
described in the Supplemental Material Sec. S1 [26]:

Sy = SEM 4 SEL + SN+ 1/T (1)
The capacitor model [21] described in Fig. 1(a) leads to

SCMi: ezR//lDH
T 7% 16mkgTe,e0(1 + R/ Apy)?
< (1 Olnp(T) OJlne.(T) !
OlnT OlnT

2ApH
+2on)),

(@)

As seen, the right-hand side only depends on constants
and a rescaled Debye length Ap /R with the hydrodynamic
molecule radius R. The Seebeck effect is visualized in
Fig. 1(b) and is derived analogously to the monovalent salt
cases [24,25]:

© 2014 American Physical Society
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is a nonlinear size transition depending on Apy/R. (b) The
differential Soret coefficients of ions in solution, here K+ and
CI™, create a global electric field. The resulting electrophoresis
cannot be readily distinguished from thermophoresis. This
Seebeck effect results in an ion-species-dependent offset SE-
that is independent of the Debye length for the used experimental
conditions.
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Finally, the temperature dependence of nonionic con-
tributions are fitted empirically [27] according to

Sy = 5% {1 —exp (T*T_ T)] )

0

EL _
St =

3)

The small contribution 1/7 is based on the temperature
dependence of the diffusion coefficient.

Results.—We first test the capacitor model contribution
SEM  Single-stranded DNA and RNA form a spherical coil
due to their short persistence length. For elongated shapes,
the dependence on A,y is expected to be very similar [28].
Inside the hydrodynamic radius R, adsorbed ions reduce
the bare charge to the effective charge Z, ;. Toward the
periphery, the molecule is shielded within the Debye length
Apy created by the ions in solution [Fig. 1(a)]. Depending
on the size ratio Apy /R, the capacitor can be approximated
as a plate capacitor when A,y < R. This plate capacitor
case was studied previously [29], and S$M rises linearly
with Apy. For the size regime Apy < R, the shielding
capacitor becomes a point charge, and according Eq. (2),
the Soret coefficient should saturate toward a constant
value.

As shown in Fig. 2(a), the measurements confirm this
nontrivial prediction of the capacitor model without the
need to fit of the molecule or its effective charge. We
measured single-stranded DNA with lengths of 2, 5, 10,
22, 50, and 80 bases. For short DNA, a transition of the
measured Soret coefficients toward a constant value is

FIG. 2 (color online). Nonlinear size transition of capacitive
thermophoresis. (a) The Soret coefficient Sy is measured for
single-stranded DNA with lengths of 2, 5, 10, 22, 50, and 80
bases and plotted against Debye length Ay at 15°C. The radius
R is measured from diffusion; the effective charge describes the
amplitude, and a constant offset Sy (Apy = 0) = SEL + SN 4+ 1/T
is determined. (b) After rescaling the data according to Eq. (2),
the measurements fall onto a single master curve and confirm in
detail the size transition of the capacitor model. Broken lines
denote the limiting cases for Apy < R and Apy > R. (c) The
effective charge per base fitted from the capacitor model
decreases with increasing length. The number of bases is used
as a measure of molecule length; thus, only half of the bases of
the double stranded species is counted. It matches the effective
charge known from electrophoresis shown as a solid line [32].
(d) Thermophoresis measurements using divalent salt ions
equally follow the same capacitor model.

found at small 4,5, whereas longer DNA first rises linearly
and bends but does not fully saturate in the tested Apy
regime. The data can be fitted by Eq. (2) with the hydro-
dynamic radius R measured through the diffusion coef-
ficient (Supplemental Material S3 [26]). The amplitude of
the curve is adjusted by the effective charge number Z, ¢
and later compared to the effective charge known from
electrophoresis. Contributions from the capacitor model
vanish for Apy = 0, and thermophoresis is given by
SEL + SN+ 1/T, which does not depend on Apy. After
subtracting this offset, the data are rescaled by Z> ir /R and

plotted against a rescaled Debye-axis Apy/R with the
measured radius R. All measurements fall onto the single
master curve of the capacitor model Eq. (2) [Fig. 2(b)].
Initially, the effective charge number Z,; is a fitting
parameter of the capacitor model. To compare with electro-
phoresis, it is divided by the number of bases (or base pairs
for the double stranded species) and plotted versus DNA
length in Fig. 2(c). It decreases with DNA length. This
effect is known for DNA from electrophoresis and attrib-
uted to Manning condensation [30-32]. A most recent
model using multiparticle collision dynamics [33] is plotted
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as a solid line. The effective charge from electrophoresis
matches the effective charge determined from thermopho-
resis by the capacitor model remarkably well.

Very similar results are found for single-stranded
RNA (Supplemental Material S3 [26]). As known from
electrophoresis, the effective charge of double-stranded
DNA or RNA does not differ much from their single-
stranded versions [31]. The same is found for the charges
determined from thermophoresis. The 80mer deviates for
large Apy, marking the breakdown of the internal shielding
approximation. To test the generality of the approach, we
measured 22mer single-stranded DNA using the divalent
salts CaCl, and MgCl, [Fig. 2(d)]. The Debye length
includes now the different contributions from the used
monovalent and divalent ion concentrations. As seen, the
capacitor model equally describes the measurements for
divalent ions. The effective charge per base is twofold
smaller (0.2e per base), but a similar decrease of the electric
mobility for higher valent salts is known [34]. Overall,
the temperature dependence of the energy stored in the
ionic shielding describes the salt-concentration-dependent
contribution in thermophoresis remarkably well.

Since the pioneering salt-species-dependent measure-
ment of Putnam and Cahill [23], a contribution to thermo-
phoresis from the Seebeck effect was suspected but not
demonstrated without fitting parameters. Salt ions follow a
differential thermophoretic pattern, create an electric field,
and move molecules by electrophoresis. Under our exper-
imental conditions, we expect that this thermoelectric effect
leads to a salt-species-dependent but salt-concentration-
independent offset of the capacitor model (Supplemental
Material S5 [26]). Neither the large Soret coefficient of
OH™, H;0O™ nor the highly charged DNA itself contributes
significantly as the millimolar salt concentrations dominate
the sums in Eq. (3).

The measurement of negatively charged 2mer, 22mer,
and 80mer single-stranded DNA and of positively charge
rhodamine 6G for varying concentrations of KBr, KCI, KF,
KI, NaBr, NaCl, NaF, Nal, LiBr, LiCl, and Lil is shown in
the Supplement Material S5 [26]. The dependence of St on
the Debye length can be fully described by the capacitor
model, but an additional offset of the Soret coefficient is
found that depends on the salt species. In Fig. 3(a), we
compare the offset minus 1/7 minus a constant S} to the
Seebeck theory using published Soret coefficients of the salt
species [36,37]. A very convincing match between the
measured SE- and the theoretical Seebeck effect is found.

We check the model internally by comparing the
charge of the capacitor model [Fig. 2(c)] with the charge
derived from the Seebeck effect. The electric mobility
is fitted from the differential thermophoresis and reveals
Upna =—1.24+0.13, —2.6+£0.24, and —1.21+0.13 x
10~® m?/Vs for the 2mer, 22mer, and 80mer, consistent
with literature values (see the Supplemental Material
S5 [26]). Note that the Seebeck effect depends on the sign

16 MAY 2014
(a) T T (b) 5m T T
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X ol e 2mer -
S m 22mer v
=2 ] v 80mer EFF _|e
= 1k aF {4 &
£ identity LiBr g 4 i
£ LiCl .
o ok ker | S |®e
? o KCI 73
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1S 1 m g NaBr |
Hy LiCl, LiBr K 31 S0 Somer
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@ _ v| 1 1 Nal 1 1 ™ |nm
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() (d)
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| 10mer
< of g ®
o i o
=2 < °[mssna o,
5,0 S ;;;fny' =0
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Bases -5 22mer A Onm
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FIG. 3 (color online). Seebeck contribution and dependence
on concentration and temperature. (a) The Seebeck contribution
SEL is extracted from salt-species-dependent measurements
(Supplemental Material S5 [26]) by extrapolating to Apy =0,
subtracting 1/T, and removing the nonionic, molecule-specific
contribution S¥’ according to Eq. (1). The theoretical Seebeck
contribution [Eq. (3)] matches the experimental SZ- for positively
charged rhodamine 6G and negatively charged 2mer, 22mer, and
80mer ssDNA, with small deviations of lithium salts for 22mer
and 80mer. (b) The DNA concentration dependence of thermo-
phoresis matches the prediction based on the Seebeck effect.
(c) After subtracting S&M, SEE, and 1/T from the measurements,
the remaining nonionic contribution S¥/ matches the empirical
Eq. (4) proposed by Piazza [35]. Its magnitude S$° scales linearly
with DNA length (inset). (d) Ionic thermophoresis decreases with
temperature [Eq. (2)] but increases with the nonionic contribution
[Eq. (4)]. Their combination directly explains the nontrivial
maximum of thermophoresis at intermediate temperatures.

of the charge, in contrast to S%M . As predicted, measure-
ments of the positively charged dye rhodamine 6G invert
the order of the salt species.

Interestingly, the measured DNA concentration depend-
ence of thermophoresis [Fig. 3(b)] can be fully explained
by the Seebeck effect and the capacitor model
(Supplemental Material S6 [26]). The oligonucleotide
charge does not change between the two relevant pK,
values of oligonucleotides above 4.3 or below 8.7 [38].
In confirmation of the model, the Soret coefficient of DNA
is constant within a pH of 5-9 (Supplemental Material
S4 [26]). Outside this pH range, thermophoresis drops
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as expected from the reduced nucleotide charge. This also
supports the theoretically expected negligible contribution
to the Seebeck effect from OH~ and H;O" ions
(Supplemental Material S5 [26]). While OH~ and H;O"
ions have large Soret coefficients, their micromolar con-
centration near neutral pH cannot compete against the
millimolar salt concentrations in Eq. (3). These results do
not contradict reports measuring without buffer at high pH
[39]. On the same grounds, a possible constant Seebeck
contribution from the unknown Soret coefficient of the
TRIS buffer was neglected.

After subtracting the Seebeck effect SFE, subtracting
the ideal gas contribution 1/7, and extrapolating the
capacitor model S$M toward A,y — 0, we are left with
the nonionic contribution S¥ [Eq. (1)]. As seen in Fig. 3(c),
the measured S)! rises characteristically over temperature
and can be fitted with the empirical Eq. (4). As shown in the
inset, the nonionic amplitude S$° shows a linear depend-
ence on DNA (or RNA) length as expected for a local,
molecule-solvent interaction across the area of a thin tube
around the polymer.

The temperature dependence of thermophoresis in
Fig. 3(d) shows a maximum that is increasingly prominent
for increasing Debye length. This nontrivial dependence
is readily described by Eq. (1). Since the condensed
charges do not depend significantly on temperature, S$M
decreases as the temperature increases according to Eq. (2).
The nonionic contribution SY’ rises over the temperature
[Eq. (4)]. The small Seebeck term SEL is largely temperature
independent. Without additional parameters, the mea-
surements are fully described [Fig. 3(d), lines]. As shown
in the Supplemental Material S7 [26], two-dimensional
measurements over Debye length and temperature are fully
predicted by Eq. (1).

Discussion.—Our analysis of the experiments suggests
that a thermodynamic approach is valid for thermophoresis.
The total energy of a molecule differs along a thermal
gradient, in contrast to electrophoresis where the fully
shielded molecule shows no potential energy difference
in an electric field. Typical for thermophoresis and includ-
ing our measurements, depleted concentrations never
drop below 50% of the bulk concentration. The diffusion
back into the heated region can be achieved by thermo-
dynamic fluctuations over the time of the experiment. The
Peclet number (Pe) of the molecules, also termed the
Brenner number, is smaller than one even for the largest
80mer ssDNA used in this work, Pe = RS;VT =
10 nm x 0.0001 K~! x 5 K/50 um = 10~*, documenting
the diffusion-dominated molecule motion. All of the above
substantiate a local equilibrium approach to thermopho-
resis. Fluorescence imaging allows us to measure at a 1-pM
molecule concentration, more than 3 orders of magnitude
smaller than the overlap concentration c*. The average
molecule distance is 120 nm, more than tenfold larger than
the diameter of the largest measured molecule. Therefore,

we do not include concentration-dependent effects in
Eq. (1) [40,41].

Understanding thermophoresis on a molecular level is
highly beneficial to use thermophoresis in biomolecular
binding studies [3-10,42]. Using the successful model of
thermophoresis, the changes of S; upon molecule binding
can be quantitatively predicted. Also, since the electro-
phoretic mobility is measured all optically by measuring
thermophoresis for different salt species [Fig. 3(a)], direct
inference on the sign and magnitude of a charged molecule
becomes possible.
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Why charged molecules move across a temperature ghent
Maren Reichl, Mario Herzog, Alexandra G6tz and Biddraun

S1 Theory
Capacitor Moddl. In this model, the energy inside the Debye screpdiives thermophoresi4 (2. A

spherically approximated molecule with effectiveaxde numbeiZes is shielded by the ions of the
solution. The shielding potential decays with thebipe length

Ao = \/g(T)kBT /[NAeZZ q 42}

where Na denotes the Avogadro constaatthe elementary charge, the concentrationz; the charge

number of tha-th ion type ks the Boltzmann constant, the absolute temperaturgfl) = &(T) &o, with
&(T) the relative permittivity of the solvent amglthe vacuum permittivity. The Debye length increase
with decreasing salt concentration and decreasistamperature. The detailed theoretical argum@&nt (
can be abbreviated as follows. Let us considerdifiesive shielding as a spherical capacitor wiile t
hydrodynamic radiu® of the molecule and the distance between the plites by the temperature
dependent Debye lengtb(T) (Fig. 1a). Under low thermophoretic depletion anuall Peclet numbers,
we can use a local equilibrium approach and ingtrphe steady state thermophoretic depletion

c=¢ exd-S; (T -T,)| as a Boltzmann distribution {3 with index0 indicating the bulk properties. As

described by2) the capacitor model contribution to the Soretfficient S;°™ can be derived from the
electric energyV stored in the spherical capacitor:

1w

koT 0T

W = Qeff2
87ER(R/ Ay, +1)

In the case of DNA in an aqueous salt solutiors efifective charg®et = Zett € does not significantly
depend on the temperature. Also to a good apprdidmave found that the hydrodynamic radRisloes
not depend on temperature. However, the permittioit water depends on the temperatud® (n
addition to the equation of Dhont one could incltige thermal expansion of water, which when heated
dilutes the sample concentratioiwith the density of wates (4). The Debye length then requires to be
differentiated with respect to the temperature:
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Here,Z.« denotes the effective charge number of the probelécule in units oé. The hydrodynamic
radius R of the molecule is determined using the measunffidsbn coefficient D. However, the
temperature expansion of water can be omittedgesitscinfluence or§'“™ in our temperature range is
small. At its maximum folpy = O (infinitely high salt concentration) and 75 it@ontributes only 8.3%

dlnp =-021and

ainT oinT

dlne — 16,

with

By rescaling the Debye length with particle radRisnd the Soret coefficient witR and Zei, we
obtain a molecule independent master curve of thphoresis based on the capacitor model:

sem R _ &R/ p {1_ alnp(T) _ alne, (T)(1+ 2pH ﬂ
ngf 167Z'kBT28r80 (1+ R/ADH )2 aInT a|nT R

To better understand the size transition, let ussicer the casesn/R— 0 andApy/R — o For
vanishing Debye length the spherical capacitor behdike a parallel plate capacitor and the Soret
coefficient increases linearly with the Debye ldnigy (5, 6).

2
lim S '_‘2’ __e /‘DHZ/R [1_ alnp(T)_alner(T)j
doum0 ™t Z5 16ekgTPee,\ OINT - olnT

For Debye lengths larger than the particle radivespbtain a spatially isolated point charge and &n
constant Soret coefficient

. wR_ -¢€ Langr(T)
Apm — Z%  8wkyT?ee, OInT

Seebeck Effect. The ions in solution also experience thermophoreliisce their Soret coefficients
differ for each ion species - something which iswn from thermo-electric measurements - long raggin
electric fields build up in a temperature gradi@gfig. 1b). What follows is common electrophoredisilb
charged species in this electric field. The resgltimvement is macroscopically indistinguishablariro
thermophoresis and leads to an additional contahub the Soret coefficient.

In analogy to solid state physics, we call thigeffthe Seebeck effect. The theory for monovaldtg sa



was first described by Guthri€)(and further discussed by Wurgeé).(The particle fluxj for each
species consists of mass diffusion (diffusion coefficidd}, thermophoresis (thermophoretic mobility
D) and electrophoresis (electric mobilityand electric fielcE). In the steady state, the particle flux for
each species is zero:

0=j; =-Dlc - DT + 4 GE
Z; e,

B

For the salt ions we use the approximaiz = with charge number,. After considering the

neutrality condition ZZi Og =0 and summing over all speciewe find:
i

_keT OO DZ‘ 4GS

e YZ'm

Please note that the thermal conductivity of thdlesde does not significantly differ from the

E

surrounding water. Therefore there is no signifiadistortion of the thermally induced electric daby
the Seebeck effect due to the presence of the mabdeoule. For highly thermal conducting particles
such as gold, this could be however differénte to the low DNA concentration in our experimeots

1 uM, DNA does not significantly contribute to tlwencentration-weighed sum with dissolved ion
concentrations larger than 0.5 mM. Likewise, du¢h neutral pH, no significant contributions oéth
OH or H:O" ions are found (supplementary material S4). TheADherefore follows the electric fields
with mobility upna. The result is an additional contribution to theed coefficient given by

__KkgT Lipna le 465

SEL
eDpna Zziz 6,
i

Non-lonic Contributions. Above terms describe the ionic contributions torrim@phoresis. The
remaining Soret coefficiens/"' does not depend on the ion compositions of thetisol (except
indirectly in the case when the folding of the piotdepends on the ions) and is attributed to the
molecule — water interaction. Its empirically déised footprint 9) is a temperature dependence with

NI _ e g T*-T
e fouf'7)

Due to the local structure of water, its amplitiglexpected to scale with the local surface stractd

fitting parameterd*, Ty, andSr™:

the molecule.



S2 Materials and Methods

Measurements were performed with an upright flumeese microscope (Zeiss Vario Scope.Al) using
an air objective (Partec 40x/0.80 NA), a CCD can{é&mrdor Luca DL-658M-TIL) and heating from an
infrared laser (Fiboted, = 1480 nm absorbed in water, typical emission pad8mWw) 6, 18, coupled

into the optical path right above the objective. KBeep convection artifacts below experimental error
measurements were performed in borosilicate cadawith an inner rectangular cross section of
50 x 500 pm?2 (VitroCom Vitrotubes #5005-050). Theatsample, low numerical aperture and moderate
concentration depletion (<50%) ensured that tentperaand concentration profiles were equally
averaged along the optical axis. For a sketche&#tup with its capillary, see Fig. S1.

< N\

camera images fluorescent

microscope
water with | — |
IR spot ~ 70um 50légﬂp>i<”gcr)$um
IR laser

Figure S1. Experimental Setup and Capillary

Synthetic DNA and RNA labeled at the 5’ end witle ftuorescent dye HEX (6-carboxy-2',4,4',5',7,7'-
hexachlorofluorescein) (Biomers, Germany) weretdduto 1 pM. Single stranded DNA (ssDNA) was
measured in lengths of 2, 5, 10, 22, 50 and 80shasegle stranded RNA (ssRNA) in lengths of 5,22,
bases, double stranded DNA (dsDNA) in 22, 50 basespand double stranded RNA (dsRNA) in 22
base pairs.



The following sequences were used in the experignent

DNA

2mer: 5'-Hex-TA-3'

5mer: 5'-Hex-TAG GT-3'

10mer: 5'-Hex—-TAG GTC TAAT-3'

22mer: 5'-Hex—ATT GAG ATA CAC ATT AGAACT A-3'

50mer: 5'-Hex—ATA ATC TGT AGT ACT GCA GAAAAC TTGGG GTT ACT GTT TAC TAT GGG
GT-3'

80mer: 5-Hex—CCT AAA GTC ATT GCT CCG AAT ATC TAC@C GAA CCT AGAAAG TTG CTG
ATACCC GAT GTTTGTTTGATT GTG AGT TGA GG-3'

RNA

Smer: 5'-Hex-UAG UU-3'

10mer: 5'-Hex—-UAG UUC UAA U-3'

22mer: 5'-Hex—AUU GAG AUA CAC AUU AGAACU A-3'

50mer: 5'-Hex—-AUA AUC UGU AGU ACU GCA GAA AAC UUG GG GUU ACU GUU UAC UAU
GGG GU-3'

Double stranded probes contained an equal amoucbmplementary sequence. These probes were
hybridized at stock concentrations prior to theegikpent. The Debye lengtlyy was titrated using one
of the following salts KBr, KCI, KF, KI, NaBr, NaCINaF, Nal, LiBr, LiCl, Lil, CaC}, MgCl,, and
monovalent 1 mM TRIS (2-amino-2-hydroxymethyl-propdl,3-diol) at a pH of 7.8 at 25 °C. To keep
sticking to the capillary walls in check, we addgdto 0.1% vol. of Tween 20 in some experimentst Te
measurements using 0.02%, 0.05% or 0.1% vol. ofeiv&® revealed no measurable difference in the
Soret coefficient. The Debye lengtby = 13.8 nm was achieved by buffering with only M TRIS
without additional salt. In measurements for theldfgek effect, the concentration of TRIS was geheral
reduced to 0.5 mM and titrated to pH 7.5 at roomperature.

The profile of the intermittent local optical hesjiwas measured using the temperature dependent
fluorescence of the dye BCECF (acid form, Invitnod®1151) at a concentration of 50 uM in 10 mM
TRIS, pH 7.8. The temperature profile was fitted two dimensions with a Lorentzian
T(r) = To + AT w2[r>+w?). This revealed the heat center and the width. Wikh was varied between
w =30 and 70 £5 um depending on the experimertt witemperature increadd betweenl.4 and
4.0+0.1 K.

The chamber base temperature was controlled biePelements (Telemeter Electronic GmbH, PC-
128-10-05) and a heat bath. The chamber heigh® pfmd and the moderate temperature rise of less than
4 K above base temperature kept thermal conveshoealer than 0.6 pum/s, well below the error of the
concentration measurement as confirmed by finitemeht simulations of the experiment. The
measurement was automated and the LED, IR, motbstage, temperature, and camera trigger were
controlled with LabVIEW. The oligonucleotide contetion response in space and time was recorded at
5 Hz by fluorescence imaging of the covalently lib#tEX label b, 6). Five seconds of the equilibrated
sample were imaged, followed by 120 seconds ofribphoretic depletion under optical heating and 120
seconds to monitor the back-diffusion after switchoff the laser.



The dynamics of the whole experiment was modeledaayalyzed to extract both the Soret coefficient
Sr and the diffusion coefficienD. Including pipetting errors and camera noise, \génate the
systematic error for the Soret coefficient to 1284thin error bars, the fitted diffusion coefficiendid
not depend on the Debye length (supplementarynmdtion S3). At 15°C, we found for single stranded
DNA of length 2, 5, 10, 22, 50 and 80 bases a Dédiygth-averaged diffusion coefficieB{(T) of 180,
153, 126, 107, 55, and 35 pm?/s. From these theodydamic radii were calculated with the Einstein-
Stokes formulai9) to 1.2, 1.4, 1.7, 2.0, 3.8, and 6.0 nm. DiffusiowefficientsD(T) changed with
temperature in accordance to viscosity. No sigaiftcchange oR over temperature had to be considered.
A LABVIEW program was used to trigger the fluoresce prediction of a radial symmetrical 1D
FEMlab simulation, which can be obtained from thdhars, and fit it to the optically detected
fluorescence. The detection as well as simulasatetermined for all times over the whole fieldviaw
of the camera, and circularly averaged around #aitg spot. As result, the small concentratiomgea
found for large radii are still detected since maiRels can be used for averaging including 8x&inig
of the camera head. The heating profile, determimeBCECF fluorescence, was fed into the FEMLAB
simulation by a Lorentzian fit of the heating spite fitting parameters were the Soret coefficignthe
mass diffusion coefficiend, the temperature dependence of fluorescence anbi¢glaching time scale.
Temperature, diffusion and bleaching equilibratédime scales of typically 100ms, 10s and 1000s,
allowing to fully separate them along the time akigting was only stopped when the complete radius
time images of the simulation reproduced the expental radius-time fluorescence image in all dstail
(Fig. S2, blue images on the right). This allowedptecisely fit above parameters and to check for
experimental artifacts such as flow drift in theawstber, incomplete correction for bleaching or
inhomogeneous illumination or a possible unstabklgtihg profile. Most important were the measurement
values ofSy andD which are extracted independently with this praced
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Figure S2. Front panel view of the LABVIEW analysisprogram.



S3 Data analysis for the Capacitor Model and determation of the hydrodynamic Radius

We deduced the diffusion coefficietfrom the fluorescence change of the area aroumthter spot
and over a local heating and back-diffusion cy€lee measured diffusion coefficieridsdid not show a
strong dependence on the salt concentration arméftimie on the Debye shielding lengiby. The
measurement oD becomes noisier when the thermophoretic deplaidow, i.e. at low temperatures
and small Debye lengtlbn. The absence of clear trends in the measuremeétiie bydrodynamic radius
R with respect to the Debye length motivated usvierageR values over the Debye length. Also, within
experimental error, the hydrodynamic radridid not depend on the base temperature of theriexget
(Fig. S3 and averages ovgyy in table S1).
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Figure S3. Hydrodynamic radius versus Debye length.

Table S1. Averaging over the Debye length yields ¢hfollowing hydrodynamic radii.

Sample Radius [nm] Sigma [nm]
smer ssDNA 1.35 0.2
10mer ssDNA 1.71 0.3
22mer ssDNA 2.01 0.5
50mer ssDNA  4.53 0.4
smer ssRNA 1.47 0.1
10mer ssRNA 1.88 0.3
22mer ssRNA 1.91 0.6
22mer dsDNA 2.01 0.9
50mer dsDNA  3.69 0.4
22mer dsRNA 2.28 0.3



For modeling the electrophoretic charge in Fig. &g compare it to the results of the capacitor
model, we added the two fixed charges from then8-label HEX to the charge of the oligomer. The
charge of the dye is included into the model aswfas a backbone charge. This means that therliioke
the dye is assumed to be similar in terms of chadeyesity as the phosphate backbone, leading to the
same Manning condensation in the modeling. The isasonable approximation. As result, the attached
dye was modeled as if two more bases were attaolieé molecule.

Please note that we do not model the counter chdrgen Manning condensation to be temperature
dependent and thus contributing to thermophorédfis.also measured single stranded RNA, double
stranded DNA and double stranded RNA. In the cdsiooble stranded species, only lengths above 22
base pairs were considered since shorter strantisimeesingle strands for elevated temperaturesd an
low salt concentrations. While this melting trammsitcan be measured with thermophore$@),(it is not
the aim of our systematic study. Therefore we amreid the Debye length dependence of the double
stranded species only below room temperature. &stghnded RNA was however measured for different
lengths (5,10 and 22 bases) and also over temperafée document the measurement at 35°C in
Fig. S4a, the other measurements are includedyinS8 on the bottom right.

As seen, the capacitor model describes the measuatenvery well for single stranded RNA and
reasonably well for the double stranded speciesaylthie to the large persistence length the sieric
assumption is rather a rough approximation thatself depends on the Debye length. While double
stranded RNA is described very well, double stranB&A shows significant scatter (Fig. S4b). In all
cases, we derived the effective charge per base tihe measurements and included them in Fig. 2c for
comparison with the electrophoresis data for sisgi@nded DNA.

As expected due to their similar charge structsmegle stranded RNA shows within experimental
error the same effective charge than single stichid¢A (Fig. 2c and Fig. S4b). As already found tloe
plate capacitor limit10), the Soret coefficient of double stranded DNA &MA does not differ much
from their single stranded versions, despite theminal two-fold higher charge per base pair. Also
electrophoresis short double and single stranded Biow very similar electrophoretic mobilitiesly.
Possibly, this points towards a stronger chargalensation from the higher charge density. For farge
DNA lengths the charge per base pair drops toe(d@ double stranded DNA, converging well to the
previously published value of 0.Efor long DNA in the range of 50-50000 base péis (

To test the generality of the approach, we measPeder single stranded DNA in CaGind MgC}
(Fig. 2d). As seen, the general capacitor modedridess the measurements well with an effective gdnar

numberZqs and the offse S, (A,, =0) =S + S +1/T as fitting parameter. For both ions, we find a

smaller charge per bas®rnasd Of 0.2€, two fold smaller than the Ogtfound for single stranded DNA
in monovalent salts. A similar decrease of thetalemobility for higher valent salts, was docunesht
before (2).
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Figure S4. Size transition inSy for single stranded RNA and double stranded RNA ad DNA.

(a) Highly similar to the findings for single strandBiNA in Fig. 2a, we confirm the size transition
of the capacitor model also for single stranded RMithout fitting the radiuR that was measured
from the diffusion coefficienD. (b) The thermophoresis of single and double gdrnDNA and
RNA with a length of 22 bases is very similar aygblogical salt concentrationddy = 0.8 nm).

At lower salt concentration, single stranded mdesactually show a higher Soret coefficient than
the double stranded versions at room temperature.



S4 pH Dependence

Table S2. Thermophoresis of DNA is insensitive tohbgiven that its charge remains constant.

Soret Coefficient [1/K] pH Buffer

-0.0270 13 no buffer
-0.0070 12 no buffer
0.0530 11 no buffer
0.0530 10 no buffer
0.0661 4 no buffer
0.0470 3 no buffer
-0.0081 13 1ImM TRIS
-0.0051 12 ImM TRIS
0.0810 11 ImM TRIS
0.0781 10 ImM TRIS
0.0811 7 1mM TRIS
0.0851 4 1mM TRIS
0.0431 3 1mM TRIS

In all experiments, the buffer TRIS keeps the ptueadetween 8.4 (5 °C) and 6.5 (75 °@Y(28.
TRIS has a temperature dependent dissociationamnso the pH changes with -0.03 1/K in the heated
region with negligible effects both d&“M and S (Fig. S6b). Buffering is required to ensure the pH
value even for the small volume-to-surface ratithie capillary setting. The pKalue of the 6-Hex label
is ~3 R9). The kinetics of pH equilibration are known to tmeich faster than the diffusive kinetics of
thermophoresis.

As seen in the table S2, the Soret coeffici®nbf 50mer ssDNA was measured for buffered and
unbuffered solutions at various pH values. Betwpen4 and 11 the buffered pH changes the Soret
coefficient less than 10%, well within the errormgias of the measurement. Outside the pH range, the
thermophoresis drops sharply as expected from édaced charge of the DNA. Measurements were
performed at 25 °C and under the presence of 10\ K

1C



S5 Data analysis to detect the Seebeck Effect

We measured negatively charged 2mer, 22mer andr8§ingle stranded DNA and positively charge
Rhodamine in varying concentrations of KBr, KCI, K&, NaBr, NaCl, NaF, Nal, LiBr, LiCl and Lil
(see Fig. S5).
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Figure S5. Measurements of Seebeck effedihe Soret coefficient of 2mer, 22mer and 80mer
single stranded DNA (ssDNA) ovépy shows a salt species dependent offset in additiaine
characteristic curve of the capacitor model. Fop Z2ebye length, the capacitor contributi®™
vanishes. For Rhodamine, measurements were naapeidted, but taken aipn=3 nm for
simplicity.

We fit the measurements as before with the capaditodel S°™ and attribute the salt-species
dependent shift t&"" according to eq. 1 for vanishing capacitor coniitn at zero Debye length:
Sr(hon = 0) =SF- + SV + 1/T. The measure8;=" is obtained by subtracting a salt independentteons
1T + S and is plotted over the theoretical Soret contiiruS;™- which was calculated from eq. 3. The
common non-ionic thermophoresis backgro@t was fitted to -0.00025 + 0.00033, -0.016 + 0.0011,
and -0.013 £ 0.0015 1/K for the 2mer, 22mer, anth&0) respectively.

We foundppna = -1.2 + 0.13, -2.6 + 0.24, and -1.2 + 0.13 X167/V/s for the 2mer, 22mer, and 80mer,
consistent with literature values. In terms of dbigovaluesp drops again for the 80mer, a phenomenon
known from electrophoresis measuremerits, (13. An effective charge can be computed with the
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relation Z, :/,1[—-::-), which results in -1.7 £ 0.2 and -6.3 £ 0.6 foe tBmer and the 22mer, slightly
€

smaller than the theoretical values -3.4 and -If.%ig. 2c (3). On the other hand, the fit by the
capacitor model resulted in effective char@gg=-2.5+ 0.5 and -11.0 £ 0.3 for the 2mer and 22me
respectively.Considering the experimental errors, we find thetcimebetween the charge from the
Seebeck effect and the charge from the capacitdehcmnvincing.

In contrast to the capacitor model the Seebeckctefiepends on the charge sign. The positively
charged dye Rhodamine 6G indeed inverts the ordsalb species in the thermophoretic shift (Fig. S5
lower right). With a positive mobilitylrnodamine= 2.2 + 0.39 x18 m?/Vs, the measurements again
collapse on the theoretical expectations in Fig. Ba mobility is close to the literature value of
1.4 +0.06 x18 m%Vs (14). The effective charge derived by the Seebeclceffel.4 + 0.3, close to the
single charge expected for Rhodamine 6G.

Only measurements of longer DNA using lithium i@iew an unexpected negative Seebeck shift.
The Debye shielding theory does not account fag sizd coordination effects. Lithium is suspected to
interact with DNA (5), possibly perturbing hydrogen bond$); As a result, it can change the prediction
for SV through a salt species dependent change of ticera@oretic mobility. A good review on the
ionic shielding of DNA and RNA can be found ih7]. Thermophoretic and electrophoretic literature

values in table S3 for the salt species were usedltulate the Seebeck effect.

Table S3. Soret coefficients and electrophoretic rhdities of ion species.Values of the
hydrodynamic radiu®, mass diffusion coefficierd, electric mobilityp, and Soret coefficierts:
used to calculate the Seebeck effect in Fig. 3a. Jbret coefficientSr were taken from25) and
(26). The values of ion conductivities were taken fr¢fh and converted to mobilitieg. The
diffusion coefficientsD from (4) were converted to a hydrodynamic radius using Ehestein-
Stokes relation1(9).

lon D [um?/s] RI[A] m[maVs] St[lK]
ca® 792 2.76 6.16E-8 1.33E-2
K* 1957 1.12 7.62E-8 3.51E-3
Li* 1029 2.12 4.01E-8 7.18E-4
Mg** 706 3.09 5.49E-8 1.22E-2
Na® 1334 1.64 5.19E-8 4.69E-3
Ni** 661 3.30 5.14E-8 1.26E-2
Br’ 2080 1.05 8.09E-8 8.13E-4
cr 2032 1.07 7.91E-8 7.18E-4
F 1475 1.48 5.74E-8 5.32E-3
I 2045 1.07 7.96E-8 -2.10E-3
OH 5273  0.414 2.05E-7 2.33E-2
H,O" 9311  0.234 3.62E-7 1.80E-2

For better understanding of the molecular procegsatermo-electrophoresis, we simulated our
measurements with a 1D radial finite element metfRBMLAB 3.1 (COMSOL AB). The analysis of the
data started from the eq. 3. We used the NernsicRlehemical engineering module, but substituted th

12



first differential equation with a Poisson equati®dhe simulation closely matched the analyticalsoh
for S of the different salt species. Additionally to matiffusion and electrophoresis coming with the
module, thermo diffusion was implemented for th& sation and anion and thes8&" and OH ions
present, as determined by the pH. The electrid fald thusS;™" is mainly independent of the salt
concentration (Fig. S6a). When the pH is betweemd 9 the charge of the DNA is consta2@)( The
contribution to the electric field of thes8" and OH ions (Fig. S6b) and the probe particle itself
(Fig. S6¢) is negligible as long as their concermmis small compared to the salt, although thayeha

large Soret coefficient and are highly chargedyeetvely.
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Figure S6. Checking the ion concentration dependercof the Seebeck-Effect(a) In a finite
element method simulation with FEMLAB we confirmék analytical result of eq. 3 tha¢" is
mainly independent of the Debye length, but changés the salt species. (b) Close to pH 7 the
influence of the KHO" and OH ion concentration is negligible against the satliaentration in the
mM range, despite their large Soret coefficient3.Also, the influence of 1uM DNA is minor
although it is highly charged. Shown are the cag®n the DNA does not contribute to the electric
field (broken line) and when it contributes witls icharge an&™ + 1/T + S\“M, with the latter
depending on the salt concentration.
The Seebeck effect is not affected by and doesrempiire the container walls for accumulation or
depletion of ions (Figure S7). In black, the firllement calculation includes also charge accumnoulait
the boundaries at x =-5 um and x = +5 um. At botiations, the thermal gradient ends at the coetain
wall and within the Debye length of the simulatithre electric field drops to zero at the contaifan
from this Debye shielding, however, the analytisallution (red solid line) determines the electreddf
(Figure S7a). The same applies if the thermal gradis changed within the solution without the
interactions of a surface (Figure S7b). In concdnsihe analytical linearity between the electréd of
the Seebeck effect and the thermal gradiépalways holds, irrespective whether the thermatligrat is
perpendicular to a boundary of the container or Imobur experiments, temperature is applied pair&dl

the container walls by infrared heating of watemikr to Figure S7b.
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Figure S7. Boundary geometry of the container wallsloes not change the Seebeck effethe
electric field of the fully simulated Seebeck efféblack) follows the analytical solution (red)
proportional to the thermal gradient according(79. This dependence is independent on the
container boundaries. (a) The temperature gradsempplied at the container walls. Within the
Debye length, the electric field changes as ioesadtracted to the container walls. For a distance
from the container walls that is larger than theby@e length, the electric field is constant and
follows the analytical solution plotted in red. (bpe same is found if the temperature gradient
makes a swift change within the fluid, independeoin the container walls. The electric field of
the Seebeck effect can only change within a leagéhe determined by the Debye length. After this
length scale, the simulation follows the analytisalution in red. For this example simulation, we
used a 1D nonradial geometry with a chamber lengttOpm. A concentration of 10uM KCI was
used to tune the Debye length to 0.137 um, weiblsn the plots and easily converging with an
average sized calculation grid. The temperaturdigna was fixed to 1 K/um. Other parameters
such as were taken as documented before, i.e.iffusioh coefficients D(K+)=1.957xIdm?’s,
D(Cl-)=2.032 x10m2¥s, electrophoretic mobilities p(K+)=7.628Mm2/Vs, u(Cl-)=-
7.91x10° m?/Vs and Soret coefficients;@&+)=3.51x10° 1/K and $(Cl-)=7.18 x10° 1/K. This
resulted in the analytical electric field of E $87x10°eV/K x 300K x 16 K/m/e x (3.51x10 1/K
-7.18 1/K) / 2 = 36.1 V/m in accordance with ti@dation.
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S6 Dependence on DNA Concentration: Seebeck and Gagity Model contributions
Our experiments were conducted with 1 uM DNA/RNA©entration. Particle-particle interactions

are not expected to contribute at this concentrdgwel 1,22 and particle-particle interaction®1(-23
were not considered. Typically non-fluorescent meaments of thermophoresis are performed in 100-
1000 fold higher concentrations where an empiriecentration correction has to be appli2d,(29.

To evaluate the influence of the sample concepimatve measured the Soret coefficient from 0.2 to
26 UM of 50mer ssDNA in 10 mM KCI, 1mM TRIS pH 7@05% vol. of Tween. The excitation light
from an LED was adapted to reach the same fluonesc@tensity for all sample concentrations. Aalin
experiments, differential bleaching was correctadipularly for the lower concentration samples.

As shown in Fig. 3b and Fig. S6c, concentrationedéelgnt contributions are explained by the
concentration dependent change of the Debye lesigha changed contribution to the Seebeck effect.
Both effects are generally small for the used pMADddNcentrations in our experimental conditions.
However, the effect can be measured.

To describe the concentration dependence analyficgé considered the influence of the DNA
concentration and its 'Kcounter ions on the Debye length in the capacitodel partS;“™ of the Soret
coefficient. In addition, the DNA contributes toetklectric field (eq. 3) wittSrpna= 1/T +S™ + SM.

To calculate the Seebeck contributi@®, we assumed the following constants for the 5Omer
interpolated from the measured values for the 2Zandrthe 80mer: the hydrodynamical radius 4 nm,

the effective charge number for the capacitor m@dgk -16.5, the temperature T = 25°C, the electric
mobility p = 1.44x1G m?/Vs, and the non ionic part of the Soret coefficigh' = -0.016 1/K.



S7 Non-ionic Contribution and 2D Fit.
The non-ionic contributions in Fig. 3c almost havecommon intersection, suggesting a possible

master curve. However small remaining shifts fer different DNA lengths make the fitting valuesTgf
and T* scatter with average valuesTf=14 +5 °C andl'* = 28 £ 16 °C (table S4). Notably, the value
of T* agrees with the previously determinEd= 18 °C for long double stranded DNB)(In contrast to

the amplitude valt St , which scales linearly with the length of the puobr (inset in Fig. 3c), no clear

interpretation could be found for the fit paramef&randT which we document in the table S4:

Table S4. Fit parameter values foiTy and T.

Sample To [°C] Tosigma  T*[°C] T* sigma
5mer ssDNA 18 4.3 48 15
10mer ssDNA 19 2.7 23 2.5
22mer ssDNA 7.8 2.0 14 2.8
50mer ssDNA 14 2.7 15 2.0
Smer ssRNA 9.5 4.5 40 66
10mer ssRNA 13 3.2 31 8.5
22mer ssRNA 24 3.7 57 8.7
22mer dsDNA 12 2.8 9.5 1.8
50mer dsDNA 12 2.4 13 1.9
22mer dsRNA 15 1.8 31 3.4

In combination of all contributions of eq. 1, wepext that the microscopic model should predict the
Soret coefficient for various molecule lengths otemperature and Debye length without additional
fitting parameters. In Fig. S8 the Soret coeffiti€nis plotted two-dimensionally (thin lines) and full
described with the model (eq. 1, thick lines). €oapitulate previous discussions, the data of Zgs
found from a horizontal cut through Fig. S8, Fid.8e vertical cuts at various Debye lengths agd 36
is an extrapolated vertical cut &y = 0. As can be seen, all experimental data is aaibunted for by
ed. 1 over a large temperature and salt rangeriglesand double stranded DNA and RNA with various
lengths. This demonstrates the prediction poweroof microscopic thermophoresis model in a
multidimensional parameter space.

1€
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Figure S8. Two dimensional data sefThe combination of ionic shielding, thermo-electiogesis,
and non-ionic predictions of the Soret coefficiegiteq. 1 yields a robust description (broad lines)
of the measurement set (thin lines) over tempezaamd Debye length. Here, the constant offset

from S + SV + 1/T, and the charge per base are fitted variables.
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Thermophoresisimaging inside living cells

Maren Reichl and Dieter Braun

Systems Biophysics, Physics Department, NanoSysiatragive Munich and Center for
Nanoscience, Ludwig-Maximilians-Universitat Minch&malienstrasse 54, 80799
Minchen, Germany

The complexity of biology requires that measuremeaitbiomolecular interactions have to
be performed inside the living cell. While electinopesis is prohibited by the cell membrane
inside cells, the movement of molecules along gotFature gradient appears feasible. This
thermophoresis could recently quantify binding raffes in vitro at picomolar levels and
perform pharmaceutical fragment screens. Here vemgdd the measurement paradigm to
enable measurements inside living cells. The thegnadient is now applied along the
optical axis and measures thermophoretic propeftiesach pixel of the image. We verify
the approach for polystyrene beads and DNA of waritengths using finite element
modeling. Thermophoresis inside living cells iseatdl record thermophoretic mobilities and
intracellular diffusion coefficients across the Whaytoplasm. Interestingly, we find a 30-
fold reduced diffusion coefficient inside the catidicating that molecular movement across

the cell cytoplasm is slowed down due to molecatawding.



Introduction. Thermophoresis is the movement of molecules inngpésature gradient. Its
strength is sensitive even to minute binding eveall®wing Microscale Thermophoresis
(MST) to measure binding affinities of DNAproteins’, pharmaceutical componeritsand
even membrane receptdrs When the fluorescent amino acid tryptophan isseme
additional labeling of the probe can be omitteRecently, protein binding at the picomolar
level was reportedl In contrast to enzyme-linked immunosorbent as$ByISA),
thermophoresis measurements can be conducted wishioiace fixation in the molecule’s
natural environment, such as blood sefuon cell lysaté. The method was commercialized
by Nanotemper and has lead to many insights intapbex biological system&*, including
tubulin binding to transport proteindand binding studies of avian influenza to cellface

receptors™,

Besides abovén vitro applications of thermophoresis, thermal gradiearts unique since
they transcend material boundaries and, simildigtd fields, are therefore capable to probe
molecules even inside living cells. For examplectlcal fields are shielded by the cell
membrane and electrophoresis inside cells cannotadteeved. In order to achieve
thermophoresis in living cells, the previous honta geometry of Microscale
Thermophoresis® had to be adapted to cell cultures. Here we egpéowvertical gradient
across a sandwich chamber. The adherent cells gnow standard cover slip, and are then
inserted into the measurement setup. With this agapr, in vivo thermophoresis from
molecules inside cells can be obtained. And whemnmibphoresis data from inside living

cells is available, binding measurementsivo become a realistic goal.

A variety of other methods to measure non-bioldgicarmophoresis have been explored. In
a parallel plate geometry measurements are sawe éanvection, but can take hours to
complete’®*® Experiments in a micron-sized interdigitated petme much fastér. In the

beam deflection method, a gradient of refractivieinis measuretf*?° Often, this requires



sample concentrations in the order of weight pedrcéypically hard to achieve with
biological probes without aggregation artifacts.eTéame applies for the thermal lensing
method?* and thermal diffusion forced Rayleigh scattefifif In confocal microscope
geometry short distances and fast measurementxhieved”. Matching the speed of axial
thermophoresis was used to probe strong thermdlegrs>. With a fluorescent label small

molecule concentrations down to picomolar concéiotra can be measuréd

Results. We use a thin sheet of solution where we applytehgperature gradient with a cold
top and a warm bottom. Fluorescence detectiorsisiceed by using TIRF microscopy to the
top side, imaging the upward thermophoretic moveanm@nards the cold. In this geometry,
every camera pixel can simultaneously and indepehdeneasure thermophoresis. For
details on the setup see supplementary material t8inperature profile was measured using
the fluorescence of BCECF (see supplemental mtddader LED illumination, the lateral
temperature distribution is imaged, averaging acrbe thickness of the chamber. The
images and the known geometry were used to fit reettdimensional finite element

calculation (Fig. 1b, c).
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Figure 1. Setup(a). Two illumination paths were integrated into apright
fluorescence microscope setup: normal epi-illumoratwith LED and TIRF
illumination. Heating is provided from below by B laser that was absorbed
by a chromium layer. The temperature simulations sinown for a 10 um
thick chamber with variable IR spot focus width) b um and (c) 150 pum.

The molecules move along the temperature gradiasitated by arrows.

We first used polystyrene beads to confirm therttatransport approach. In a 20 pm high
chamber, comparably large beads with RadRis 1 um which are in the beginning
sedimented to the bottom of the chamber are duhagneasurement transported to the top
side where they are detected via fluorescence (Eiga). As shown for various times of the
experiment, a one-dimensional finite element sitawas used to model the combined
gravitational, diffusional and thermophoretic mowath of the beads. At the top of the

chamber, the thermophoresis enforces an invertednential sedimentation distribution.
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Figure 2. Imaging thermophoresis with beads. (a) Polystyrpasicles with
radius R = 1 um initially sediment and during theasurement move upwards
to be imaged at the top the top of the chamberulgion shown for a

gradient of OT = 021K/um. (b) Fluorescence is used to image the

concentration of the beads at the top of the chanWigh increasing thermal
gradient, the transit times of the beads becometsh®\ll measurements are
described with a thermophoretic mobility of 2.840.5 um?/sK and the

mass diffusion coefficient D = 0.20 fisiknown from the particle radius.

The bead concentration at the top was detectetubyekcence. With increasing temperature
gradient, the beads travel across the chamberimgtieasing speed; = D; [IUT , while for
shallow thermal gradients, they can barely overc@e@mentation, which was calculated
from the weight difference to water dp =60kg/m® (Figure 2b). With the known mass

diffusion coefficient of the beadD(= 0.20 prf/s) interfered from their radius, the only
fitting parameter is the thermophoretic mobilidy which was fitted to a constant value of
2.8 £ 0.5 um?/(sK) for all measured thermal gratiefhe measurement setup allows to
probe thermophoresis for Péclet numbers larger tiwity >°. At the highest gradient of

0.2 K/um, the Péclet number reacheBe=(ROTD,/D)=27, indicating that the

comparably large beads and the considerable thegraalient allow for a ballistic, not a
diffusional particle movement. For the high tempara gradients also clustering at the cover

slip was observetf.

Before performing measurements in cells, the inggirermophoresis configuration using
TIRF detection was first tested with DNA where seelintation is not an issue (Fig. 3). We
study the case where focused heating (Fig. 1b) owslvertical and lateral thermophoresis.
With epi-illumination using an LED, detection avges across the chamber height and only

the lateral outwards movement is detected. UndeFTillumination, both the coaxial upward



and lateral outward component of thermophoresisaasured.

We used DNA of different length as a molecular ®gtem due to their well-established
parameters. Measurements were performed at difféhenmal gradients under both TIRF
and LED detection (Fig. 3 dotted lines). Fluoreseeat the heat spot center was recorded at
3 Hz. When heating is turned on=0 s), fluorescence drops within < 1 s due tankerent
temperature dependence. Under TIRF illuminations dirop is superimposed with the
fluorescence raises due to the upward molecule mewme This is later decreased by the
lateral outward thermophoresis due to the focusedtitg spot. The thermophoretic
amplitude increases for increasing temperatureigmadFig. 3a). Under epifluorescent LED
illumination, only the temperature dependence d&mal lateral outward depletion of the
molecules is visible. Measurements with longer D&trands show slower diffusion and the
coaxial upward thermophoresis is detected sincelatexal thermophoresis does not yet
equilibrate within the heating time of 60 s (Fifp)3After switching off the temperature
gradient (=60 s), back-diffusion equilibrates the thermagiic perturbation of DNA

concentration.

We quantified the DNA measurements with the knowaletular parameters in a two
dimensional, radial finite element simulation (slgmpentary information). We implemented
heat conduction, diffusion, thermophoresis, bleaghunder TIRF or LED illumination,
temperature dependence of the fluorescent dye gus$sble thermal convection flow. The
resulting fluorescence traces fit the experimemaasurements in detail over a wide range of
temperature gradients and DNA lengths (Fig. 3). iitass diffusion coefficiend could be
determined by the model © = 14, 10, 6.0, or 2.5 um?/s, for the lengths &, @, 3, and
20 kbp, respectively, which agreed with literatuadues®. The only unknown parameter was
the thermophoretic mobilit{pr. For the measured DNA lengths of 0.6, 1, 3, an#&l#f) we

found Dr=2.2, 2.8, 1.5, or 1.1 um?skK, confirming previooeasurements of DNA



thermophoresi§'. Interestingly, we could fit both the coaxial atederal thermophoresis
traces with the same value for the thermophoreubility Dt. For details on the fits, see the

supplementary material.
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Figure3. The IR laser was focused to a small spot (HWHM 3169 and moved the
molecules upwards coaxially and outwards laterallite fluorescence above the heat spot
center was detected with TIRF. Epifluorescence llEiination did not discriminate across
the chamber height. Measurements (dotted line) veereducted with (a) 1 kbp DNA in
different temperature gradients and (b) differenNA lengths in the same temperature
profile. Finite element simulations described thermophoretic molecule movement in detail

(solid lines).
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Figure4. Thermophoresis measurements of DNA and BCECF @& th
cytoplasm of living cells. Thermophoresis of mdieswvere detected by TIRF
fluorescence imaging over time. (a) The dye moeeB@ECF is moved to the
cold side after a fast fluorescence decrease duts temperature dependence.
Control measurement under epi-illumination with LEBmonstrate that the
fluorescence increase stems only from the verticedvement of the
fluorophore. (b) Double stranded DNA with 21 basssowed slower
thermophoresis with a larger accumulation magnitdiden BCECF. (c) The
extracellular background trace is darker, does sbbw the thermophoresis

signature and is not affecting the thermophoresegasnrement significantly.



The bending of the trace is understood by the cbraged cell geometry. (d)
Measurements in higher temperature gradients shiowx@ected increased in

the thermophoretic amplitude.

We confirmed that the chromium layer absorbedradlibfra-red (IR) light by measuring the
transmission of the IR laser through the chromiuwated glass slide with a power meter
(PM100USB and S310C Thorlabs GmbH). As a resudtughward movement of the particles
could not be influenced by photonic pressure. Aglitamhal check, we performed
experiments under TIRF detection without chromiuhime resulting lack of a vertical

temperature gradient coincided with an undetectadiical net movement of the molecules.

We imaged thermophoresis inside living cells afitdlly understanding thermophoresis traces
under the TIRF detection and coaxial heating. Theasured fluorescence traces of
thermophoresis inside living HelLa cells are shown Fig. 4. On the left sides, the
fluorescence image of representative cells are shde fluorescence time traces on the

right correspond to the intensities in the blackasgs in the cell image.

The IR heating laser was turned on between times@d 30 s. As before, the temperature
dependence of the fluorophore results in a sudden af the signal, after the IR is switched
on and a reverted increase after heating is aguaiitcteed off. As before, control
measurements under epifluorescence LED illuminati@re conducted. Here, an axial,
upward fluorophore motion cannot be resolved anly ¢ime temperature jump is visible
(Fig. 4a). With LED illumination the temperaturemp is slightly larger than under TIRF
illumination, since the LED excites the fluorescerteeper in the chamber, where it is
warmer (see Table I). Lateral thermophoresis is ats expected due to the more defocused
heating in the cell measurements (see Figure 1g).4B6 shows a measurement of 21 base
pair DNA while the other measurements report thevenwent of the pH sensitive dye

BCECF. As before, the measurements were fitted finite element simulations as detailed



in the supplementary section. All parameters atediin Table I.

Interestingly, the diffusion of BCECF was found®D = 3 pm?/s, considerably slower than
the free buffer values from the cytoplasm of 10®smeported using FRAP analysis of the
mobile fraction”. For the measurements with 21mer double strandid,Dve find a
diffusion coefficient of 0.1 um2/s, also reducednpared to the reported 20 pnfsSince
this method actively moves the molecules, it mezstine average over all fractions mobile
and possibly immobile. The main contribution invgllog down diffusion is thought to be the
collision with other macromoleculé®® So a size dependent further reduction of these
values is expected when thermophoresis of biom@dscbound to other molecules is
considered. We also tried to measure larger matsc(ribosomes with GFP label), but the
reduction of diffusion made it impossible to deteafficient (thermophoretic) movement.
Thermophoresis, in contrast to all other techniguwedively moves the molecules and
therefore probes their mobility on a global scAle.a result, interactions with the cytoplasm

at a larger scale can be probed by thermophoresis.

Interestingly for BCECF, the thermophoretic moyiig unaffected by the cell. The measured
value of Dr=4.4 £ 2 um?/(sK) is well compatible with the oefed in vitro value of
Dr=7.5pum?(sKf’. In contrast, the DNA probe is reduced both irffudion and
thermophoretic mobility with a value ofDr=0.12 um?(sK) as compared to
Dr = 1 um?/(sK)**. These measurements suggest that molecular itieradnside a cell can

be differentiated between affecting thermophonetability or diffusivity.

In Figure 4c and d, the thermophoresis traces shawurved fluorescence decrease during
thermophoresis which could not be readily explaiaeen with TIRF bleaching dynamics in
the 1D simulations (broken line). We propose tlég effect is due to the inhomogeneous
thickness of the individual cell, leading to a temarily build-up of lateral concentration

inhomogeneities within the cells that subsequeatjyilibrate. We modeled such a cell in a



2D radial geometry, as a cone with height 10 umraails 20 um the readout being above
the center, but still with a purely vertical, cardttemperature gradient. This 2D model could
explain the curved cell traces (see supplementatemal). Background fluorescence could
be measured next to a cell (Fig. 4c, white box)erkEfor this example of high background
levels compared to the non-cell measurements, it®nmdynamics upon heating did not

significantly affect the thermophoretic analysis.

The setup geometry is capable of simultaneouslysore®y vertical thermophoresis in cells
at various positions in the field of view of thexeara. For the used molecule systems, we did
neither expect nor record significant deviation®efandD across the image of the cell. It is
interesting to note that the reallocation of thdenoles by thermophoresis resulted in a much
reduced kinetics of the back-diffusion dynamics akhcould not be fully accounted for by
the thermophoretic model for the cell measuremehike they were perfectly understood for
the measurements without the cells. This pointa @t to be understood cellular dynamics
induced by the global application of a temperafigkl. One should note that the cells are

located at the cold side of the chamber.

In Fig. 4d traces with different heating intenstere shown. At a 5-fold higher temperature
gradient, larger thermophoretic amplitude is foaftér the also increased temperature jump.
The diffusion coefficient is not affected and trecare well fitted by the thermophoretic
model. Thermophoretic mobility raises slightly motlean expected from temperature
dependent in vitro datd®! indicating that intracellular binding inside tbell is reduced by

the increased temperature.

Conclusion. In this paper thermophoresis was performed inlsiiteg cells for the first time.
We have developed a TIRF-based measurement geommdiigh allows to perform
thermophoresis measurements with two-dimensiorsalugon on the micrometer scale. We

compare our results with known epi-fluorescence sueanents of the thermophoresis of
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DNA and show that the physical processes involvethis geometry can be quantitatively
understood. Furthermore, we present data of themoregis measurements of fluorescent
dyes and DNA inside living cells acquired with thertical thermophoresis setting.
Biomolecular binding studies are already conductedcell lysate®. Comparable to
electrophoresis in vitro, thermophoresis has themi@l to perform in vivo measurements of
various fluorescently labeled biomolecules inside living cell. Since the shown method
allows for parallel imaging with micrometer resadut and is able to resolve thermophoretic
mobilities and diffusion coefficients, further démgments bode well to allow the

guantification of biomolecule affinities inside iing cells.

Table |. Parameters used for the simulations in Fig. 4. Atious laser power, different
temperature gradients T were applied. The temperature dependemceof the used
fluorophore was fitted, but not calibrated due te anknown pH dependence upon
temperature changes inside the cell. The thermagittomobility of BCECF and DNA could
be determined from the thermophoretic velocitysed to fit the fluorescence transients. We
implemented bleaching for TIRF and LED illuminatimnthe simulation with a bleaching
rate keach TIRF illumination only bleached the fluorophomsse to the cover slip with a
penetration depth of = 200 nm. The chamber height is denoted with ley@olumns denote

fitting parameters, others are measured or derivallies.

Fig. 4 Mole- Ut ATa h vr Dr  Koean D
cule [K/um] [%0] [um] | [um/s] [um?3/sK] @ [%/s] [um?/s]

(@) TIRF BCECF 0.076 20 8 0.24 3.2 15 3
(a) LED BCECF 0.076 15 8 0.24 3.2 0.2 3
(c) 1D BCECF 0.17 45 8 0.60 3.6 35 3
(c) 2D BCECF 0.17 45 cone 0.66 4.0 15 3
(d) 1D BCECF 0.034 21 10 = 0.15 4.4 13 3
(d) 2D, 5xIR BCECF 0.17 = 47  cone 1.32 8.0 10 4
(b) 1D DNA 0.17 22 5  0.02 0.12 0 0.1
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Supplemental Material

Materials and Methods.

Setup. The experiments were conducted at the following setup: An upright fluorescence microscope
(Zeiss Axiotech) was equipped with an IR laser (Fibotec, A = 1480 nm, max. 300 mW) for heating,
and a 488 nm laser (single mode coupled laser, <50 mW, Visitron Systems GmbH) TIRF
illumination (Fig. 1a). The TIRF laser was focused on the side of the back focal plane of the
objective (Nikon, Apo Tirf 100x 1.49 NA oil) and coupled into the light path right above the
objective with a dichroic beam splitter (dual line z491/561 or dual line notch 555/646, AHF
Analysentechnik). The excitation filter had enough bandwidth (480/80 and 620/60) to allow the
LED illumination light to pass the narrow dichroic beam splitter, with which the TIRF excitation
was coupled into the light path. As a result, epi-illumination with the LED and TIRF illumination

were both possible within the same setup.

Chamber. Listed from bottom to top, the sample chamber consisted of a 2 mm thick glass slide
coated on the top side with 300 nm chromium and protective 60 nm silicon oxide to prevent a toxic
influence on the cells. The aqueous solution was placed on top of the coated glass slide,
supplemented with a paraffin oil ring to prevent evaporation. The top of the sandwich structure was
formed by 130 pm thick borosilicate glass cover slip held in place with 12.5 pm thick mylar foil
spacers. For cell measurements, the cover slip had cells adhering to it upside down. A spot at the
lower interface to the sample was heated by absorbing IR light in the chromium layer. The spot size
could be varied with the IR focus. The top cover slip, connected to the immersion oil, acts as heat
sink. A camera (PCO sensicam uv) recorded the fluorescence images over time. The images were
corrected by subtracting the dark noise of the camera and then normalized by the initial

fluorescence in absence of IR heating, to correct for inhomogeneous fluorescence and illumination.

Optics. For DNA measurements in Figure 3, the IR laser was focused onto the chromium layer
(HWHM = 65 um). Here, both lateral and vertical thermophoresis could be imaged and compared
(Fig. Ib). In the bead and cell measurements (Figure 2 and 4) the IR laser was defocused
(HWHM = 300 pm) to minimize lateral thermophoresis. Then the temperature gradient was mostly
vertical and hardly varied over the field of view (Fig. 1c). The chamber height without cells was
about 20 um to suppress convection, and was measured optically by focusing the microscope to its
boundaries and comparing to a similarly high reference step calibrated with an atomic force
microscope. For TIRF illumination we focused on the upper cover slip-glass interface, for LED
illumination (except in the bead measurements) to the middle of the chamber. A LabVIEW program

automated the measurement. The camera recorded the fluorescence before, during and after IR
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Abstract. Thermophoresis is the movement of molecules in a temperature gradient. We found
that single and double stranded oligomers behave surprisingly similar although one would
naively expect that the doubled charge should a show four times stronger thermophoresis
according to the recently proposed capacitor model to describe thermophoresis. However, we
find very similar thermophoretic depletion in all conditions. We extend the spherical capacitor
model to rod shaped double stranded DNA and RNA. As shown by the analysis, the major
reason is not the difference in geometry, but a similar value for the charge per base and
charge per base pair, a behavior also inferred from electrophoresis data. Interestingly, we find
above similarity in thermophoresis also under the addition of crowding agents such as
polyethylene glycol, in contradiction to previously published data. Overall the analysis
documents the continuous progress in the microscopic understanding of biomolecule
thermophoresis.

INTRODUCTION

The molecular origin of thermophoresis of charged particles such as short DNA or RNA was recently
elaborated for various sizes and Debye lengths (1). The main contribution is explained with a
spherical capacitor model. Interestingly, double and single stranded oligomers show very similar
thermophoresis although the persistence length of double stranded DNA (dsDNA) and RNA (dsRNA)
is much longer than the sequences used, and the spherical shape of a random coil cannot be fully
assumed. Here, we will explain in more detail, why such a spherical capacitor nevertheless can be
used as a good approximation. Previously, the effect of molecule geometry in thermophoresis was
studied for solid virus particles, with a contour length of 880 nm, a radius of 3.4 nm and a persistence
length of 2.2 um (2) assuming a constant surface charge density and using modified Bessel functions
to describe the geometry. Such an approach is not matching the geometry of short double stranded
DNA or RNA since these viruses are always larger than the Debye length and end effects are
assumed to be negligible. Alternatively it was proposed to approximate the shape as a string of
spheres (2). Here, we follow a direct analytical method with a full geometrical description, valid for all
Debye lengths. We insert a cylindrical condensator into the previously studied spherical capacitor

(1,3). All shielding capacitors are assuming that the condensators are in acting in parallel. A cylinder
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capped with hemispheroids was also used in modelling of electrophoresis (4). There it was found that
for a length-to-diameter ratio greater than about 3, the end caps of the cylinder have a negligible
effect, provided the length is chosen to yield a structure with the same volume. The subsequent study
will show in detail that the geometry of DNA does not significantly affect the thermophoresis under

near physiological salt concentrations and a length below 50 bases.

In the second part of this study, we will discuss an additive contribution to the Soret coefficient, i.e. the
strength of thermophoresis, originating in the depletion force. Maeda et al. (5) reported a fundamental
difference between single stranded DNA (ssDNA) and dsDNA, claiming that crowding selects for
double stranded DNA motives. We repeated their experiments, but now with identical fluorescence
labels covalently attached to the DNA and not using intercalating dyes for the double stranded
measurements. We could not confirm their results. Even under crowding, ssDNA and dsDNA behave

very similar.
MATERIAL AND METHODS

The setup consisted of a modified fluorescent microscope with infra-red heating as described
previously (1). The following sequences were used in the experiments, where the first strand was
labelled at the 5’ end with the fluorescent dye Hex (6-carboxy-2',4,4'5',7,7'-hexachlorofluorescein)
(labelled oligomers from Biomers, Germany). The sequences were designed to have minimal

secondary structure also in the single stranded version to form a random coil.

DNA
22mer: 5'-Hex—-ATT GAG ATA CAC ATT AGA ACT A-3'

50mer: 5'-Hex—ATA ATC TGT AGT ACT GCA GAA AAC TTG TGG GTT ACT GTT TAC TAT GGG
GT-3

RNA
22mer: 5'-Hex—AUU GAG AUA CAC AUU AGA ACU A-3

50mer: 5'-Hex—AUA AUC UGU AGU ACU GCA GAA AAC UUG UGG GUU ACU GUU UAC UAU
GGG GU-3'

Double stranded probes contained an equal amount of complementary sequence. DNA and RNA
were used in a final concentration of 1 uM. The buffer for the first experiments in Fig. 3 contained
1 mM TRIS (2-amino-2-hydroxymethyl-propane-1,3-diol) with pH 7.8 at 25 °C and the Debye length
was titrated with KCI. For the later experiments in Fig. 4 we used PEG Poly(ethylene glycol) 10000
(Fluka, Sigma Aldrich) as crowding agent. The buffer for the 22mer contained 10 mM TRIS pH 7.5
and for the 50mer it contained 1 mM TRIS pH 7.8. Here, the Debye length was titrated using NaCl. In

all experiments, the monovalent TRIS buffer was accounted for when calculating the Debye length.



RESULTS AND DISCUSSION
Non-spherical Geometry

In previous studies short DNA was used as a model system to experimentally test the capacitor model
of thermophoresis (1). Although the persistence length of single stranded DNA is 10 A to 32 A, i.e. 2
to 7 bases short (6), and a spherical form of the molecule is likely, the shape of double stranded
oligomers might be better modelled as a rod, since their persistence length is about 170 base pairs
(7). Wang et. al. (2) calculated the Soret coefficient for a long cylinder with neglected end effects and
for a known surface charge density and they found that the rod could be approximated as a string of
spheres. Here, we will adapt the spherical capacitor model, which was first proposed by Dhont (3), to
elongated rods. The shape is modelled as a sphere, which is cut in halves, with an inserted cylinder of
the same radius (see Fig. 1). Thus, also the end effects can be included in the model. For comparison
we will calculate all three models: the sphere, the cylinder without end caps, and the combined

structure, which we call rod.

Theory. The rod capacitor (capacitance C,,q) is composed of two capacitors in parallel: a spherical
capacitor (Csphere) and a cylindrical capacitor (Ceyinger With the length L reduced by 2R, i.e. the length of

the end caps),

Csphere = 47ER(R/A DH + 1)
C _ 27EL

cylinder In ()I iR+ 1) (1)
Crod = Csphere + Ccylinder

with € being the dielectric constant of water,

&KT
NAeZZ c,z* the Debye-Hiickel screening
i

length, or Debye length in short, k the Boltzmann constant, T the absolute temperature, N, the
Avogadro constant, e the elementary charge, c¢; the concentration of the ion species i and z; the

charge number of the ion species i, R the radius of the sphere and of the cylinder, and L the overall

length, see Fig. 1. The energy stored in a capacitor is W =Q?/(2C), with Q = Ze being the
effective charge of the particle, and Z; the effective charge number in multiples of the elementary

charge e.
QZ
W =
e 8reR(R/ Aoy +1)
_ QIn(gy /R+1)

W, inder — 2
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Thus, the Soret coefficient of the sphere St gphere, the cylinder St yiinger, and the rod Syoq can be

calculated as a temperature derivative of the electric energy as demonstrated in literature (3,1):

10w
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In case the length of the rod is exactly the diameter of the sphere (L = 2R), i.e. no cylinder is inserted,
the equation for the rod does yield the spherical equation. The three equations are calculated in
Fig. 2a resembling a 22mer. Single stranded DNA with no secondary structure is a random caoil
roughly in the shape of a sphere since the persistence length is about 2 to 7 bases (6). The
hydrodynamic radius of the sphere depends on the DNA length, i.e. 2 nm and 3.7 nm for a 22mer and

a 50mer, respectively. However, the radius of the rod or the cylinder is that of the DNA strand: 1 nm

and the length of double stranded DNA is L =base pairs [0.34nm/basepair  je. 7.5nm and

17 nm for the 22mer and the 50mer, respectively.

Low salt limit. For the limit of high Debye lengths or low salt concentrations, the change in geometry
from a spherical to a rod structure should not affect the Soret coefficient. In the case of an infinite
Debye length, a particle can be considered a point charge, regardless of its shape. Formally, St cyinger

goes to infinity for low salt concentrations, but for the rod the end effects become much more
. . . 2
important, since the surface of the outer sphere (i.e. of the end caps) grows as Apy ~, whereas the

surface of the outer cylinder only grows with A DH .

_ ~2 0lng

. -1 — oInT
S = S j—A 1 4
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So the Soret coefficient becomes constant for very large Apy. For the rod the final value equal to a
sphere with the same radius, is approached only for Debye lengths far too long to be achievable for

real electrolytes. Thus, the Soret coefficient of an elongated particle is considerably lower than the



Soret coefficient of a sphere with same diameter and charge, and it is about as large as the Soret

coefficient of a particle with the same surface.

High salt limit. For the limit of high salt concentrations, i.e. small Debye lengths, the capacitance
changes with surface area similar to a plate capacitor, since the area of the two plates hardly differs.
The Soret coefficient of a plate capacitor is linear in Debye length. Here, the spherical part and the
cylindrical parts are separated, because the shielding of both parts does not overlap for such small
screening lengths. The area for a spherical and a rod like molecule of the same radius will differ, and
thus the slope of the Soret coefficient will differ. However, the capacitor part of the Soret coefficient

will in both cases vanish for the limit of very high salt concentrations. The surface of the two capping
half spheres at the end of the rod (together 4R27T) is exactly as large as the surface of the additional

cylinder, if the cylinder was extended all the way to the end (27IRL with L =2R). Thus, for the
limit of high salt concentration the Soret coefficient of the rod is equal to the Soret coefficient of a

cylinder with neglected end effects.
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This agrees with the approximations by Wang et al. (2). They calculated and compared the Soret
coefficient of a particle with constant surface charge. In contrast, we calculate and compare the Soret
coefficient for a particle with constant charge, since in our experiments we know the effective charge
of the molecule, given by a constant charge per length (1,3). And this charge is approximately the
same for single and double stranded DNA (1,8). If a constant surface charge is maintained, then the
charge Q scales with the aspect ratio L/(2R). Since the Soret coefficient is proportional to the square

of the charge Q, our equation matches the one of Wang (2) for the limit of high salt concentrations.

The sphere in Fig. 2b again models a 22mer ssDNA. Additionally rods of different aspect ratios but
with the same surface areas are shown. The aspect ratios for the 22mer and the 50mer are 3.75 and
8.5, respectively. Only for dsDNA longer than about 50 bases, i.e. an aspect ratio L /(2R) = 9 we start
to see deviations from the spherical curve. For comparison, the persistence length of dsDNA is at
about 170 bases (7). Considering this, the theoretical Soret coefficients are similar for single and
double stranded oligomers in the range of experimentally accessible Debye lengths. The effects of the

elongated shape and the smaller radius approximately cancel each other.

Experiments. Since the theoretical curves are alike, measurements of double stranded DNA can be
fitted equally well with a spherical and a rod like model (Fig. 3). As free fitting parameters we choose

the effective charge number and a molecule specific offset, which includes other contributions to the



Soret effect such as the ideal gas contribution 1/T, the non-ionic contribution or the Seebeck effect,
which were all discussed previously (1). Also, the depletion contribution is included, which will be
discussed in the second part of this paper. Both the spherical and the rod model yield very similar
effective charge numbers as fitting parameter. Since the charge of a particle enters equation 3
quadratically, one could expect a factor 4 difference between single stranded and double stranded
DNA and RNA. However, their Soret coefficients are quite similar (see Fig. 3) with a similar effective
charge. According to the Manning theory (8) and electrophoresis measurements (9) single stranded
and double stranded oligomers have approximately the same effective charge and electric mobility.

As we discuss and see here, this similarity translates also to thermophoresis.
Crowding agent Polyethylenglycol

Theory. Here we shortly recapitulate the theoretical influence of a crowding agent on thermophoresis
through depletion forces. As will be seen, also theoretically there is no difference between single and
double stranded DNA, when their radii is alike. If the sample concentration is on the order of weight
percent, or if a crowding agent e.g. PEG (Polyethylenglycol) is present in the solution, an additional
excluded volume effect can be noticed in thermophoresis measurements and should be added. It can
be calculated according to (10,11,5). The change in Soret coefficient for the molecule of interest, here
DNA, is then:

AS, =-2mS -1/ T)RDNARgEGCPEG (6)

PEG
with ST the infinite dilution Soret coefficient of the crowding agent, e.g. PEG, and Rpgg its
hydrodynamic radius, Rpna the hydrodynamic radius of the particle of interest, e.g. DNA, and cpgs the

concentration of the crowding agent.

The Soret coefficient of the molecule of interest, which has a low concentration, depends on the Soret
coefficient of the crowding agent which is added as well as on its concentration: If the Soret coefficient
of the crowding agent has the same sign as the one of the probed molecule, the crowding agent will

accumulate on the cold side and displace the molecule of interest. As an example, Jiang et al.

measured the Soret coefficient of beads in a solution of the crowding agent PEG without salt (10).

Experiments. We conducted salt-dependent experiments of 22mer ssDNA and dsDNA and 50mer
ssDNA in 3 %wt. and 6 %wt. We used PEG at a molecular weight of 10 000 Da, very similar to Maeda
(5). Since pure PEG is a solid with a density of 1.2 g/cm3, we convert the reported 5 %vol. in solution

to 6 %wt in our experiments.

They argue not to observe accumulation for single stranded molecules. We cannot confirm this and
find accumulation for both single and double stranded DNA in PEG. In Fig. 4a both ssDNA and
dsDNA of 22mer length show accumulation at 25 °C, in 3 % and 6 % wt. PEG. Accumulation is found

when the Soret coefficient becomes negative, i.e. the molecules wander towards the hot side. As



expected from equation 6, we find a higher accumulation, i.e. lower Soret coefficients, for higher PEG

concentrations.

The reduction in the Soret coefficient caused by PEG is stronger for larger molecules, since the DNA
radius enters equation 6 (Fig. 4a and b). The difference is even larger, if we consider that without
PEG the larger 50mer DNA has a higher Soret coefficient than the smaller 22mer (Fig. 3). As in Ref.

(5), we do find higher accumulation for the 50mer than for the 22mer.

In contrast to their study we find an increase in the Soret coefficient toward small salt concentration
(Fig. 4a,b). This most likely is a result of the capacitor model discussed earlier. For high salt
concentrations we see an increase in the Soret coefficient, similar to Maeda et al. (5), which cannot
easily be explained and could be the result of DNA-PEG interactions, or artifacts from sticking to the
capillary walls. We marked these data points with a circle in Fig. 4 and only fit the spherical capacitor
model to the data with longer Debye lengths (for fit parameters see table I). If we assume that the
hydrodynamic radius does not depend significantly on the PEG and salt concentration, the fit yields
about half of the effective charge which is found in agueous solutions. This could mean that residual
charge could enter the solution with PEG and thus lead in reality to a reduced Debye length.
Alternatively, if we assume the DNA charge to be independent of PEG, a larger radius of the DNA
would have to be assumed, in contradiction with the crowding effect. Probably the influence
responsible for the strong increase of the Soret coefficient towards very small Debye lengths
continues on to longer Debye lengths, but is weaker there. Thus the shape of this influence is contrary
to the shape of the capacitor model and apparently decreases the amplitude from the capacitor

model. In the capacitor model, a larger charge increases the amplitude with a higher plateau.

One should not discriminate too strictly between positive and negative Soret coefficients, as the sign
is merely a result of which of the components of the Soret coefficient are stronger in the actual
conditions. For example, the base temperature of the experiment is varied in Fig. 4c without varying
the infra-red laser power and the temperature increase. This will cause a change in the sign, here
shown for 50mer ssDNA in PEG, but a similar dependence was measured before in water (1). We

fitted the empiric equation based on Ref (12)

*

- T*-T
Srzs{l-exp = } @)
0

to the data which was shown to fit DNA for diluted solutions without a crowding agent. It yielded
St”=0.052 +0.013 and 0.024 + 0.017; T*=32.4 + 2.7 and 73.8 £ 6; T, = 35.4 + 9.8 and 46.0 + 15.2

for the 3% and 6% PEG solutions, respectively.



CONCLUSION

We have shown that single and double stranded DNA of the same length behave surprisingly similar
in a temperature gradient. We derived an analytical capacitor model for elongated rods which with
arbitrary Debye lengths. The cylindrical capacitor without end caps diverges for large Debye lengths,
but the spherical and the rod shaped capacitor behave alike for all possible Debye lengths —
theoretically as well as in the experiments. We reassessed the thermophoresis in the crowding agent
PEG for single and double stranded DNA (5), but now with covalent markers and cannot confirm a
sign change between single and double stranded DNA. Even for 3% and 6% PEG, we can fit the salt
dependence of DNA thermophoresis with the capacitor model. With PEG, both single and double

stranded DNA accumulate and deplete to comparable extends.
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TABLE AND FIGURES LEGENDS

Figure 1. Molecular models to explain the Debye length dependence of thermophoresis. (a) A
charged molecule, here DNA, is screened by the counter ions in solution. This can be modelled as a
spherical capacitor with the molecule as the inner shell with radius R and the counter ions as the
outer sphere. The charge of the molecule is screened within the Debye length Apy, thus two spheres
are separated by the Debye screening length. (b) The spherical capacitor model can be extended to
rod shaped molecules such as short double stranded DNA. The shape is modelled as a sphere, which

is cut in halves with an inserted cylinder. The radius of the sphere and the cylinder is R, the overall

iy iy
N

O o+
L
O, MW
[

+

+
= v

=—

x
———
=

=

iy o 4
* ””M////ﬂ”///l//l//////ﬂ@ @ ”M////////////Illl////////////lllll/////////////lllﬁ
+ o+

L

!
8 //W///m///////////

length is L. The capacitor is also treated as a spherical and a cylindrical capacitor in parallel.
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Figure 2. Calculation of the cylinder rod and sphere models for a 22mer DNA. (a) The single strand is
modelled as a sphere with radius R = 2 nm and the double strand as a cylinder and a rod with
R=1nm and length L =7.5nm. Between rod and sphere not much difference is found. (b) In
comparison to the sphere of (a), we plot rods with different aspect ratios L /(2R) but with the same
surface area as the sphere. For experimentally accessible Debye lengths, the rods behave similar to
the sphere up to about an aspect ratio of 9. A 22mer and a 50mer dsDNA have aspect ratios of 3.75
and 8.5, respectively. The Soret coefficients were calculated at temperature T =25°C with an

effective charge of Q =

-10 e.
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Figure 3. The thermophoresis of double stranded DNA and RNA can be fitted as a rod with radius
R =1nm and a length of L =7.5 nm and 17 nm for 22mer and 50mer, respectively. Single stranded
oligonucleotides can be viewed as spheres with a hydrodynamic radius of 2 nm and 3.7 nm for the
22mer and the 50mer, respectively. However, the respectively other model geometry can be similarly
fitted to the thermophoresis measurements. The sphere and the rod fit and yield very similar effective
charges Z.s for the double stranded measurement data (see Table 1) The Debye length was titrated

using KCl including the 1 mM TRIS buffer at pH 7.8. The measurements were conducted at 25 °C.
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Figure 4. Thermophoresis measurement of sSSDNA and dsDNA in aqueous NaCl solutions with PEG
as a crowding agent. (a, b) Increased PEG concentration leads to more negative Soret coefficients.
Circled data points were excluded from the fits. At low Debye length we suspect sticking interactions
to the measurement chamber or to PEG. In contrast to the study of Maeda (5) we find negative Soret
coefficients, i.e. accumulation also for ssDNA. Notably, we used covalently bound dyes for both
dsDNA and ssDNA measurements, not intercalating dyes for the dsDNA measurements as in (5). The
spherical capacitor model was fitted to the data with large Debye lengths. (c) The sign change is no
fundamental difference between ssDNA and dsDNA, but merely the result of different contributions to
the Soret coefficient as is shown by measurements under varied base temperature. The empiric
temperature dependence of Ref (13) was fitted to the data. The 50mer was measured in 1 mM TRIS
buffer pH 7.8, the 22mer in 10 mM TRIS pH 7.5. TRIS was accounted for when titrating with NacCl.

Measurements were conducted at 25 °C (a, b) and 10 mM NacCl (c).
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Table I. Parameters for the fits in Fig. 3 and Fig. 4. We fitted Z.z and assumed the radius to be

R=20n$m and R=3.7nm based on PEG-free measurements of the diffusion coefficient.

=78

Temperature was 25°C, relative permittivity of water

derivative olng/oInT=-1.35 )
Fig. 3 without PEG Lest
50mer ssDNA sphere 20.3+1.3
50mer dsDNA sphere 195+1.0
50mer dsDNA rod 18.6 £ 1.0
22mer ssDNA sphere 11.6+0.4
22mer dsDNA sphere 7.1+1.0
22mer dsDNA rod 6.9+1.0
22mer ssRNA sphere 12.9+ 0.6
22mer dsRNA sphere 9.7+0.3
22mer dsRNA rod 9.3+0.3
Fig. 4 with PEG Zett
50mer ssDNA 3% PEG 6.2+0.9
50mer ssDNA 6% PEG 10.6 +1.4
22mer ssDNA 3% PEG 6.1+0.4
22mer ssDNA 6% PEG 4.2 +0.3
22mer dsDNA 3% PEG 47+0.4
22mer dsDNA 6% PEG 3.4+0.5
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