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SUMMARY 

 

The fixation of beneficial variants leaves genomic footprints characterized by a reduction 

of genetic variation at linked neutral sites and strong, localized allele frequency 

differentiation among subpopulations. In contrast, for phenotypic evolution the effect of 

adaptation on the genes controlling the trait is little understood. Theoretical work on 

polygenic selection suggests that fixations of beneficial alleles (causing selective sweeps) are 

less likely than small-to-moderate allele frequency shifts among subpopulations. This 

thesis encompasses three projects in which we have experimentally addressed the issue of 

selective sweeps vs. allele frequency shifts in the context of polygenic adaptation. We 

studied three X-linked QTL underlying variation in chill coma recovery time (CCRT), a 

proxy for cold tolerance, in Drosophila melanogaster from temperate (European) and tropical 

(African) environments. The analysis of these QTL was performed by means of selective 

sweep mapping and quantitative complementation tests coupled with expression assays.  

While the results of the selective sweep mapping approach identified a gene (CG4491) 

that is unlikely to be affecting CCRT, quantitative and gene expression analyses revealed 

two linked candidate genes (brk and CG1677) that appear to differ in their evolutionary 

histories. We found that the difference in expression of the gene brk between populations 

affects CCRT variation. Cold tolerant flies from the temperate zone have a lower 

expression of this gene than cold sensitive flies from the tropics. We found that a likely 

cause of this difference is variation in a cis-regulatory element in the brk 5’ enhancer 

region. Sequence variants in this element exhibit moderate frequency differences between 

populations from temperate and tropical environments, forming two latitudinal clines: 

one from the equator to the north and another one in opposite direction to the south. In 

contrast, the other gene within the same QTL (CG1677), which is linked to brk, showed no 

measurable effect on cold tolerance but is a likely target of strong positive selection 

leading to a selective sweep in the European population.  

These results are consistent with the aforementioned theoretical predictions about 

footprints of selection in polygenic adaptation. They are also proof of the conceptual bias 

incurred when identifying candidate genes within a QTL via selective sweep mapping, at 

least in naturally evolving populations. The challenge for the evolutionary genetics 

community in the coming years is to develop statistical tools that are as powerful and 
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robust as those already available to map selective sweeps to identify sites in the genome 

where allele frequency shifts have occurred due to adaptive evolution at the phenotypic 

level.  

Finally, the last section of the results is a report of a new population genetics dataset. It 

consists of a collection of 80 inbred lines from a natural D. melanogaster population in 

Sweden and 19 full genome sequences derived from this sample. We hope this material 

will provide us with further insight into the processes underlying adaptation to novel and 

stressful environments. 
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I – INTRODUCTION 

 

 

 

 

 

1.1 VIEWS OF ADAPTATION 
 

Adaptation is defined as the movement of a population towards a phenotype that best fits 

the present environment (Orr 2005). According to this definition, adaptation is a process 

distinguishable from other types of evolutionary change by the benefit it confers. 

Adaptation is typically documented by following the change of a trait over time or by 

inferring how it changed. To be considered adaptive, this change has to be accompanied 

by an increase in biological fitness. In practice, however, biological fitness cannot be 

directly scored; empiricists rely on measuring its components, such as viability, growth 

rate, fecundity, or reproductive success. Although seemingly straightforward, this 

approach may not be applicable to all species or ecological contexts. Thus, the assessment 

of fitness depends heavily on the type of organism being studied and whether the 

researcher can measure relevant proxies for fitness. In order to understand adaptation, it 

is important to understand how it happens. Existing models and empirical evidence 

gathered in the last 100 years have provided great insight into the matter, but are not yet 

flexible enough to account to for the complexities of biological systems. Thus, the study of 

adaptation is still a challenge for evolutionary biologists. 



1.1  VIEWS OF ADAPTATION  

 

 15 

This dissertation responds to this challenge and may be seen as a brick freshly laid atop 

the growing edifice of knowledge constructed with the purpose of understanding 

evolution. A look at the foundations whereupon it lies is useful to understand its location 

in the developing structure1. This introductory chapter provides an overview of the 

concepts and approaches in evolutionary biology that were central to the development of 

this thesis.  Without diving too deeply into the theories and evolutionary models, I provide 

a chronological view of the main developments of the study of adaptation. This is 

followed by an overview of the ideas and tools that population and quantitative genetics 

have created to study adaptation. This chapter ends with the specific research question 

that motivated this doctoral dissertation. 

The notion of biological adaptation has long been present in the perception of the 

natural word. In the middle of the 19th century, adaptation was regarded as the inevitable 

consequence of evolution. The view of evolution championed by J.B. Lamarck posed that 

adaptation was the perfected state of form with respect to a given environment. It relied, 

however, on the idea of supernatural intervention to ignite the process leading to 

adaptation (Koonin 2009). The Darwinian conception of evolution went beyond this 

mere statement and introduced natural selection as the mechanism whereby adaptation 

was possible. Darwinism explained how change, via natural selection, was able to mold 

biological structures (phenotypes). It posed that phenotypes would gradually change 

building on preexisting slight successive variants. This view came to be recognized as the 

micro-mutational model, and constituted one of the cornerstones of quantitative genetics 

(Orr 2005). Neither Lamarckism nor Darwinism had the right conception of the 

mechanisms of inheritance, which made them fail when explaining how beneficial 

changes could be passed on to subsequent generations. In spite of this limitation, by the 

end of the 19th century the Darwinian view of adaptation was the only solid framework to 

study the diversity of forms, function and behavior existing in nature. The idea that a 

process such as natural selection could shape the interactions between organisms and 

their environments constituted the first truly rational hypothesis in biology (see for 

example Nilsson (1998) for an example of plant-pollinator coevolution). 

                                                        
1 This metaphor refers to that in the correspondence C. Darwin and the Scottish surgeon and 
paleontologist H. Falconer in which Darwin's ideas of evolution are equated to the foundations of a 
building, namely Milan's cathedral (See Gould 2002, p. 3).  Gould himself is the author of another 
architectural metaphor that illustrates his criticism of the adaptationist program (Gould and 
Lewontin 1979). 
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The 20th century started with the missing piece of puzzle, when G. Mendel's laws of 

inheritance were made available to the broad scientific community (Von Tschermak-

Seysenegg 1951). This propelled developments in mathematical biology, which provided 

the first formal approach to evolution. Mendel's work also shed new light to understand 

the function of already-known nucleic acids and chromatin as the substance of inheritance 

(Moore 1983).  With a solid view of inheritance a tractable way to understand adaptation 

emerged; the essence of evolution was to be distilled at the genetic level (Lewontin 1997). 

The source of the variation that Darwinism considered as the starting point for 

evolution was attributed to mutation and what followed for evolutionary models was to 

explain the fate of new mutations within populations. Three outcomes were envisioned 

for these mutations, (i) they appear and get lost, (ii) they remain in the population at 

intermediate frequency, or (iii) they reach fixation. These fates are dependent on 

parameters such as population size, reproductive strategies and, most importantly, on 

whether a new mutation confers any benefit to its bearer. Theoreticians came to realize 

that chance alone could be sufficient to govern the destiny of new mutations; for instance, 

in small populations mutations can become fixed by chance (genetic drift). 

Around 1940, and the subsequent three decades, the evolutionary biology community 

worked actively under a hardened neo-Darwinian (adaptationist) paradigm. In their view 

of adaptation all new beneficial mutations were to be seen by selection and then taken to 

fixation. Other mechanisms such as purifying selection (whereby deleterious mutations 

are eliminated so that unfit phenotypes are purged from the population) were described 

but considered merely as accessory to adaptation. Moreover, any role of genetic drift was 

neglected. There was a sound reticence to admit that stochasticity could have any 

important role in evolution (see Gould 2002 on Dobzhansky's 1951 edition of Genetics 

and the origin of species).  

The adaptationist view of evolution, as depicted by Darwinism, guided biological 

research for almost 70 years; until strong criticism of this research program was eventually 

heard (Gould and Lewontin 1979). If adaptation is to be invoked as the phenomenon 

leading the evolution of form, function and behavior, sufficient evidence has to be 

provided. Gould and Lewontin’s (1979) reaction against the adaptationist view was also a 

call for scientists to consider alternative possibilities other than adaptation, e.g. selection 

could have indirectly shaped the putative adaptive trait because of correlation with the 

actual target of selection or the trait having evolved by chance. Adaptive hypotheses 
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should be treated as susceptible to being falsified.  This marked the beginning of an era of 

statistical developments in the study of evolution (Barrett and Hoekstra 2011). At the 

phenotype level, the task of finding ways to disentangle the effect of selection and drift was 

undertaken by Lande (1983). However, the best approach to the study of adaptive 

evolution remained the careful observation and documentation of change in natural 

populations over several generations, an endeavor successful in a limited number of cases 

(see Grant and Grant 2002). 

Gould and Lewontin's 1979 paper accompanied a challenging period for the study of 

adaptation, especially in the field of molecular evolution. Already a decade earlier, 

Kimura's work on the role of genetic drift in evolution generated a new research program, 

which focused on neutral evolutionary processes and almost obliterated the interest for 

the study of selection (Jukes 2000; Koonin 2009). The neutral theory maintained that the 

majority of mutations that are fixed in the course of evolution are selectively neutral (or 

nearly neutral), so their fixation occurs via random drift. However, if mutations do have a 

negative effect on fitness, for instance those occurring in functionally constrained parts of 

a protein, purifying selection will operate to maintain the functional status quo. The 

statement of this theory that challenged the reign of adaptationism was that beneficial 

mutations were so rare that the contribution of positive selection to molecular evolution 

could be neglected. 

The central premise of the neutral theory is in itself a prediction; if neutral evolution 

was that pervasive, then one should expect more differences between species in 

functionally less important sequences. This prediction has been confirmed by protein 

coding gene comparisons among mammalian species. Non-coding parts of the genes and 

synonymous sites evolve faster than non-synonymous ones (Kreitman 1996; Makalowski 

and Boguski 1998). However, not all neutral expectations have been met; for instance, the 

existence of codon bias in Escherichia coli, Sacharomyces cereviciae and Drosophila (Akashi 1995) 

was a finding against pan-neutrality. The fact that a codon type is preferred over the 

other possible ones suggests that some level of selection operates at supposedly neutral 

synonymous sites (Kreitman 1996).  Another aspect of protein evolution that contradicts 

neutral evolution is the existence of unequal ratios of non-synonymous to synonymous 

divergence with respect to non-synonymous to synonymous polymorphism. This 

observation was made by MacDonald and Kreitman (1991) when studying the alcohol 

dehydrogenase (Adh) gene in three Drosophila species, leading to the conclusion that 
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positive selection has driven the evolution of this protein. 

The work of MacDonald and Kreitman (1991) provided one of the first molecular tests 

of the neutral model. Its application to larger gene sequence datasets has revealed that 

adaptive evolution in the genome is more common than argued by the neutral theory; for 

instance 35% of the assessed amino acid substitutions between humans and old world 

monkeys have been driven by positive selection, while up to 45% of amino acid 

substitutions were driven by positive selection in the divergence between Drosophilid 

species (Bierne and Eyre-Walker 2004). These estimates account for spurious false 

positives due to the effect of weak selection and codon bias.  The statistical tractability of 

the predictions of the neutral theory made it the ideal null hypothesis to test adaptive 

evolution at the molecular level. A rich statistical toolkit developed in the last 30 years 

provides evolutionary geneticists with the means to accept or reject adaptive hypotheses 

(Hudson et al. 1987; Tajima 1989; Fay and Wu 2000; Kim and Stephan 2002). 

In the history of evolutionary genetics, the study of adaptation from DNA sequence 

data has primarily focused on coding DNA. However the fast evolving fields of functional 

genomics and transcriptomics have attested to the relevance of non-coding DNA in 

evolution. One of the functions of non-coding DNA is to tune the level of expression of 

nearby genes. Sequences with this function are known as cis-regulatory elements Because 

non-coding DNA is also a source of phenotypic variability, its role in evolution has been 

well documented (see for example King and Wilson 1975; Carroll 2005; Gompel et al. 

2005; Rubinstein and De Souza 2013). In fact, cis-elements have been identified as targets 

of positive selection in humans (Enattah et al. 2007) and Drosophila (Saminadin-Peter et al. 

2012; Glaser-Schmitt et al. 2013). 

Currently the fields of functional genomics, transcriptomics and systems biology 

provide new tools to reveal the mechanisms that bridge genetic and phenotypic variation 

in natural populations. A major goal of evolutionary biology is to extend the existing 

theoretical framework to study adaptation allowing for more realistic models in which 

new data can be sensibly explained. In the following two of the main approaches to study 

adaptation will be described. Each approach has been developed within the two central 

disciplines of evolutionary biology: population and quantitative genetics. 
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1.2 POPULATION GENETICS AND ADAPTATION 
 

1.2.1 Adaptation in sequence space 

The theoretical approach to study adaptation dates back to S. Wright, who in 1932 

depicted his ideas about adaptation in the form of a fitness (or adaptive) landscape 

(Dietrich and Skipper 2012). Wright’s adaptive landscape represents the genetic 

constitution of a population. It could be represented by points in an n-dimensional space, 

with each point representing a unique genetic combination of alleles at n loci. The 

biological fitness associated with each particular genetic combination was then 

represented by a value on a further dimension, so that these fitness values form a surface 

with valleys and peaks, where the latter represent areas of high fitness and the former 

depict the least fit (disadvantageous) genetic compositions. During adaptation, selection 

will push average population fitness values to those situated on the peaks of the landscape. 

Once populations are sitting on the peaks of higher fitness, the process is completed. 

However, when new environmental conditions arise and new fitness maxima are created, 

a new bout of adaptation will start, and the population will climb up a new hill (Orr 

2005).  

Population genetics aims at understanding the processes that shape genetic variability. 

Therefore population geneticists study evolution in sequence space. Although the reign of 

the neutral theory represented something similar to the dark ages for the study of 

adaptation, Wright’s adaptive landscapes were reframed to study the dynamics of 

adaptation using protein sequence data, already available in the 1960s (Maynard Smith 

1970). Almost a decade later the same model was reinterpreted using DNA sequences 

(Gillespie 1984). Maynard Smith and Gillespie’s reinterpretation of adaptive landscapes 

led to the development of so-called mutational landscapes (Orr 2005; Dietrich and 

Skipper 2012). 

Mutational landscapes arise in a space of nucleotide sequences, say genes, in which 

sequences are arranged in such a way that sequences that differ from one another by a 

single mutation are adjacent while highly divergent sequences are found far from one 

another. The landscape arises when each sequence is given a fitness value, which is 

plotted onto a new dimension. The process of adaptation explained by this mutational 

landscape follows roughly the same idea as fitness landscapes. Imagine a population that 
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is fixed for a given DNA sequence of length L (L being the number of nucleotides). Due to 

a change in the environment or the colonization of new habitats the wild type sequence, 

which has been so far the fittest, no longer has the highest fitness value. Adaptation will 

occur when new fitter mutants of this wild type appear.  

Gillespie stated that a maximum of 3L new sequences might appear if all sites mutate, 

because each base in the wild type sequence has only three other possibilities to mutate. 

Gillespie also pointed out that mutants that matter occur at single bases. Double or triple 

mutations were extremely rare and could be safely disregarded (Orr 2008; Gillespie 

1984). Another important aspect of this model is that only a small fraction of the possible 

new alleles will be beneficial, while the vast majority will have neutral or deleterious 

effects on fitness. Their destiny will be dictated by genetic drift and purifying selection, if 

population sizes allow so. 

The empirical bases to study adaptation in population genetics came from 

experimental bacterial evolution first performed in the 1950s, providing substantial 

information on how selection shapes genetic diversity in bacterial populations. The work 

by Atwood et al. (1951) on E. coli showed that among populations of auxotrophic bacteria 

rare beneficial mutants (that originate from prototrophic bacteria2) appear and rapidly 

become the dominant type in the culture; in other words, new advantageous mutants 

become fixed via selective sweeps. The process is completed upon fixation and resumes 

only when a new fitter mutant occurs in the current wild type background. This situation 

is described as the sequential fixation of new mutants. Through time, these fast fixation 

events alternate with periods in which new beneficial mutants occur. This periodic 

selection scenario was central for the development of Maynard Smith and Haigh’s (1974) 

ideas on the fixation of a new beneficial mutation in a sexually reproducing organism, i.e. 

in the presence of recombination. This led to the selective sweep model (Kaplan et al. 

1989; Stephan et al. 1992; Barton 2000), the simplest and best studied way to describe 

positive selection in sequence space. 

Selective sweep theory states that neutral variants in proximity to the target of 

selection will increase in frequency or fix along with the beneficial allele, a phenomenon 

known as genetic hitchhiking. Consequently genetic variants are substantially reduced in 

                                                        
2 Strains that possess the enzymatic machinery to synthesize a given metabolite are called 
prototroph. By contrast, an auxotroph is a strain that by mutation lost the mechanism to synthesize 
the metabolite.  
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the neighborhood of the selected site, unless recombination is frequent enough to mitigate 

the loss of linked neutral variants by creating haplotypes that encompass the selected 

allele. As expected, the larger the distance to the target of selection the higher the chance 

of recombination events. This creates a signal of selective sweeps characterized by valleys 

of genetic polymorphism centered on the target of selection (Kim and Stephan 2002).  

 

1.2.2 Selective sweeps and the site frequency spectrum 

The study of the properties of the signal of selective sweeps has facilitated the 

development of statistical approaches to identify instances of positive selection in sequence 

data from natural populations, reviewed in Pavlidis et al. (2008) and Stephan (2010). The 

feature of the selective sweep model that has been most intensely studied is its effect on 

neighboring genetic variation. As a consequence of hitchhiking the expected reduction of 

heterozygosity generates a new distribution of allele classes (the site frequency spectrum, 

SFS3), compared to cases where no selection has occurred (Kim and Stephan 2002; 

Jensen et al. 2005; Thornton et al. 2007).   

A distorted SFS is characterized by showing an excess of rare (low frequency) variants 

(Tajima 1989) as well as an excess of fixed or nearly fixed derived variants (Fay and Wu 

2000). The first statistical tests for sequence data made use of this expected differences 

between allele classes under selective and neutral scenarios (Tajima 1989). Tajima’s D 

statistic, for example, compares two estimators of genetic diversity parameter (θ), one that 

reflects the average number of nucleotide differences among two sequences, θπ  (Tajima 

1983), and the other based on the number of polymorphic sites, θW (Watterson 1975).  

As mentioned before, positive selection increases the proportion of rare variants, thus 

inflating the value of θW relative to θπ. When Tajima’s D is calculated, a negative value 

reflects the excess of rare variants rejecting the neutral hypothesis in favor of positive 

selection. Subsequently, Fu and Li (1993) as well as Fay and Wu (2000) based their tests 

on the effect of the excess of high-frequency derived variants, thus increasing the power to 

distinguish selection from neutral scenarios. However, even if such power is achieved, 

another problem arises when accounting for spurious signals of positive selection. Genetic 

drift and selection are not the only forces that shape genetic variation in natural 

                                                        
3 The site frequency spectrum is one the summary statistics it captures all mutation classes 
that segregate in population. This spectrum is represented by a histogram of frequencies.  
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populations, but demographic events (population history events) also do. For instance, 

recent population size changes, such as bottlenecks, also reduce genetic diversity and can 

reshape the SFS in ways very similar to that achieved by selection (Thornton and Jensen 

2007). However, demographic events are expected to affect the entire genome, while 

selection has a localized effect.  

The following generation of tests for selection focused on the whole breadth of the 

SFS. For example Kim and Stephan (2002) developed a test based on the ratio between 

the likelihood of a null (neutral evolution model) and the alternative (selective sweep) 

hypotheses. In their approach, false positives due to demographic events can be detected 

when this confounding factor is accounted for in the null hypothesis. However, this is only 

possible if the right demographic history of the population under study is known 

(Thornton & Jensen 2007). Unfortunately, this information is available only for some 

populations of model species such as Arabidopsis thaliana (François et al. 2008), Drosophila 

melanogaster (Stephan and Li 2007; Laurent et al. 2011; Duchen et al. 2013), and humans 

(Excoffier et al. 2013). 

Hence, it was necessary to develop tests that account for demography even if the 

correct history is unknown. The method of Nielsen and colleagues, implemented in 

SweepFinder (Nielsen et al. 2005), fulfilled this need. It is a likelihood ratio test, similar to 

the Kim-Stephan test. However, the method derives the null hypothesis using the 

background pattern of variation of the data itself. As larger genome-wide sequence 

datasets accumulate, greater computational power and efficient algorithms are required to 

conduct satisfactory analyses and compare for instance data sets from a decade ago 

(Glinka et al. 2003) with current ones (Langley et al. 2012; Mackay et al. 2012). Fully aware 

of this need, Pavlidis and colleagues (2013) presented their improved, more stable, and 

scalable implementation of SweepFinder. It is the state-of-the-art method to detect 

selective sweeps on genomic data. 

1.2.3 Selective sweeps and linkage disequilibrium 

Another consequence of genetic hitchhiking is the pattern of linkage disequilibrium (LD) 

that is left after the sweep is completed (Kim and Stephan 2002; Przeworski 2002). Such 

an LD pattern emerges from the action of recombination during the early phases of the 

sweep generating haplotype structure (Pfaffelhuber et al. 2008). Kim & Nielsen (2004) 

performed a study of the genealogy of the sites adjacent to the target of selection, reaching 



1.2  POPULATION GENETICS AND ADAPTATION 

 23 

the following conclusions: (i) a high level of LD is expected in regions close, but not 

immediately adjacent, to the site where the fixation of the beneficial allele occurred. (ii) 

Once the chromosomal fraction under study is divided by the location of the beneficial 

mutation, a high level of LD is expected within each side but not across the two sides. (iii) 

The probability of observing a high frequency of derived alleles in the sample is greater in 

regions where LD is strong. A composite likelihood method based on the statistic (ω) that 

captures these three features of LD was developed (Kim and Nielsen 2004). With this 

approach, if the two initial conditions are met, the calculated ω value should be 

maximized signaling the occurrence of a selective sweep. It has been shown that the ω 

statistic has good power to detect genuine signals of selection in populations that 

experienced population size bottlenecks (Jensen et al. 2007). This motivated Pavlidis and 

colleagues (2010) to explore the utility of applying the ω statistic together with the SFS-

based method of SweepFinder, to gain accuracy in the detection of selective sweep targets 

in populations that have experienced recent bottlenecks. An approach based on the 

combination of these two aspects of genetic hitchhiking is regarded as a promising way to 

capture footprints of selection in whole-genome sequence datasets. 

 

1.2.4 Selective sweeps and population differentiation 

A third feature of positive selection in spatially structured populations is locus-specific 

allele frequency differentiation (Lewontin and Krakauer 1973; Beaumont 2005). The 

distribution of allele frequency differentiation values between two or more populations 

results from the interplay of random processes and selection across the entire genome. 

Sites that show above-average allele frequency differences, measured by estimates of the 

parameter FST (Weir and Cockerham 1984), are likely subjects of positive directional 

selection, while sites with substantial below-average FST values are evolving under 

balancing or strong purifying selection. Relying on this rationale, Lewontin and Krakauer 

(1973) developed the first FST based method to identifying loci evolving under selection. 

The approach, however, was strongly criticized (see Nei and Maruyama 1975) because of 

its unrealistic demographic assumptions that all subpopulations have the same splitting 

time from the ancestral source population and that the number of migrants exchanged 

among them was the same. In addition, the fact that the neutral FST distribution used to 

identify outliers depended on demographic assumptions was also a subject of strong 
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debate (see Beaumont 2005 and recently Bierne et al. 2013).  

The reassessments of the method, however, yielded success from the mid-1990s until 

the present. These focused on overcoming the limitations imposed by demography 

(Beaumont and Nichols 1996; Beaumont  and Balding 2004; Riebler et al. 2008). The 

work of Beaumont and Balding (2004) considers a string of J loci sampled within an array 

of I populations, each unique ij combination corresponds to a model-based FSTij 

coefficient. In turn, each FSTij is decomposed into locus and population effects represented 

by variables (α) and (β), respectively. The locus effect αi is shared across populations and 

all sites within a given population share the population effect βj. If selection is responsible 

for any given FST, it is represented by the locus-specific variable α, while demographic 

aspects are accounted for by β, which affects all loci within one population. Even though 

this reassessment provides an elegant and intuitive way to account for demography, 

relaxing many of the assumptions, there is still the concern that the approach does not 

provide a rigorous way to test the hypothesis that a locus is subject to selection (Foll and 

Gaggiotti 2008). 

Riebler et al. (2008) approached the issue by introducing a locus-specific auxiliary 

variable (δi), which indicates that a locus is under selection if its posterior probability is 

larger than a threshold value obtained by simulation. Foll and Gaggiotti’s (2008) way to 

address the problem is also Bayesian. However, they determine which locus is under 

selection by estimating the posterior probability of two models, one that invokes selection, 

while the other excludes it. The decision of which model best explains the data is made 

based on the obtained ratio of these two posterior probabilities, i.e. Bayes factors. In 

addition, the problem of multiple testing is addressed by calculating false discovery rates 

(Foll and Gaggiotti 2008). 

 

1.2.5 Positive selection in the genome 

The preceding sections dealt with approaches to identify positive selection on genetic data 

based on the features of the selective sweep model. A common aspect of the extensive 

research done in this area is the need for improvement of the tests in order to keep up 

with the increasing complexity of the data and the need to increase statistical power while 

minimizing error, particularly false positives. It is important to emphasize that these 

methods are based on the selective sweep model. There are other models of positive 
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selection that relax some of the major assumptions of the selective sweep model, for 

example the soft sweep model does not require that the beneficial alleles are new 

mutations or low-frequency migrants. Instead, standing variants with neutral or slightly 

deleterious effects on fitness can become advantageous upon sudden environmental 

changes and may go to fixation (Hermisson and Pennings 2005). Positive selection 

scenarios like this are thought to be as important as classical selective sweeps for 

adaptation (Pritchard and Di Rienzo 2010; Pritchard et al. 2010). However, since they do 

not leave strong characteristic signals in the genome when they occur (Przeworski et al. 

2005), they are virtually impossible to detect with the methods previously described. 

A compelling example of adaptation in humans is provided by lactase, the enzyme that 

hydrolyzes lactose, the main sugar in milk. The expression of the lactase gene evolved 

such that individuals beyond weaning age can use milk as an energy source. This trait has 

evolved in parallel in dairy farming populations in Europe, East Africa, and the Middle 

East (Bersaglieri et al. 2004; Enattah et al. 2008; Tishkoff et al. 2007). Another example of 

positive selection in human populations is found at the gene SLC24A5, this gene is one of 

those responsible for skin pigmentation. A derived, light-skin variant of this gene has been 

fixed in European populations (Lamason et al. 2005). Its fixation has been correlated with 

improved vitamin D synthesis in Caucasian populations (Jablonski and Chaplin 2012). In 

model organisms, such as Drosophila, a considerable effort has been put into characterizing 

genome-wide sequence variation with the aim of pinpointing patterns that can be 

unequivocally assigned to the action of positive selection. These patterns have been found 

within or around several genes, e.g. the php-p gene region and the diminutive and timeless 

genes (Jensen et al. 2007; Tauber et al. 2007; Beisswanger  and Stephan 2008).  

In all of these cases a priori knowledge of gene function paved the way to connect 

selection at the molecular level with an adaptive phenotype, for instance, diapause onset 

in the case of timeless, a trait that is tightly linked with latitudinal adaptation. In cases such 

as the unc-119/brk gene region (Glinka et al. 2006) or HDAC6  (Svetec et al. 2009) the 

phenotypic link remains obscure. Such situations constitute the ground for the criticism to 

the population genetics approach to the study of adaptation. The identification of sites in 

the genome that have experienced positive selection can provide estimates of how 

important selection is in evolution, even when the actual change in fitness is not assessed. 

However, by overlooking the phenotypic side of adaptation, no complete picture of the 

process of adaptation can be obtained. 
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1.3 QUANTITATIVE GENETICS AND ADAPTATION 

1.3.1 Polygenic traits 

Phenotypic variation occurs naturally within populations. All traits exhibit a certain 

degree of variation. The distribution of the traits can be either discrete or continuous. 

Phenotypes of the former category are, for instance, those observed by G. Mendel in 

Pisum sativum such as seed color (yellow or green), seed shape (round or wrinkled), flower 

position (axial or terminal) or in human diseases, such as alkaptonuria as described by A. 

Garrod in 1902 (Scriver 2008). Continuous traits include body size, body fat content, 

photosynthetic rate, growth rate, flowering time, etc. Single genes underlie discrete traits, 

such as those mentioned above. For historical reasons, traits with this simple genetic 

architecture were named Mendelian traits. 

Around 1900, although animal breeders and physicians were well aware that 

continuous traits were highly heritable, the exact genetic mechanisms underlying these 

traits remained a mystery. The British Biometric School, led by F. Galton, K. Pearson 

and W.F. Weldon, set to study continuous traits. They developed a considerable amount 

of statistical tools to trace their inheritance and study their role in evolution, which was 

based on Darwinian micro-mutational ideas (Lynch and Walsh 1998; Barton  and 

Keightley 2002; Orr 2005). It was difficult at that time to consider that the continuous 

and Mendelian traits shared the same hereditary and evolutionary properties. 

R. Fisher's theoretical contribution to the study of quantitative traits closed the gap 

between Mendelian and continuous, or complex, traits. Fisher showed in 1918 that a 

continuous phenotypic distribution could result from the effect of several loci. The more 

genes involved, the smother the distribution. It was necessary to assume that the effects of 

each locus were small and purely additive. This result, however, did not prompt an 

interest in investigating mutation rates and fitness effects at each of the loci affecting a 

continuous trait. It was necessary to know what loci to look at in the first place. Gene 

mapping techniques were already available at that time, but they were more useful to 

researchers working on monogenic traits than continuous ones (see Stutervant 1913).  

Further developments of the theory of adaptation, also contributed by Fisher, partly 

justified the lack of interest in single locus effects (Orr 2005): if the trait of interest is 

governed by an infinite number of genes, all of them exerting an equally small effect, the 

most effective way to study their role in evolution is by considering their aggregate effect 
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on fitness. Fisher found out that new mutations with infinitesimally small phenotypic 

effects are more likely to be beneficial than those of larger effect. A conclusion drawn 

from this result is that small mutations are the genetic basis of adaptation (this theoretical 

finding is at the core of his so called geometric model, see Orr 2005 for a review). Later, 

Kimura would reevaluate Fisher’s results to conclude that alleles of medium effect size 

were most important in adaptation (Orr 2005). 

Data from artificial selection experiments seemed to provide support for the geometric 

model. For instance, a sustained response to selection has been reported in plants and 

animals. Selection for increased abdominal bristle number in Drosophila steadily continued 

for up to 90 generations (Yoo et al. 1980), and selection for oil content in maize kernels 

was possible for about 20 years (a period of time that corresponds to approximately 70 

maize generations). In the latter experiment, selected lines changed from an original 4.7% 

to a current 20% oil content (Laurie et al. 2004). One can easily imagine that with high 

heritability and a trait architecture based on thousands of loci with very small effects, such 

long-term response to selection can be maintained. 

The refinement of gene-mapping techniques and the development of marker-based 

genetic maps in model species, as well appropriate statistical methods, allowed the 

localization of genetic factors affecting continuous traits, best known as quantitative trait 

loci (QTL) (Lander and Botstein 1989; Falconer and Mackay 1996). The accumulating 

body of QTL studies soon revealed that complex traits are governed by a finite number of 

loci, and that not all loci have the same allele effects and that these effects tend to be 

exponentially distributed (Mackay 2001). In Drosophila, traits such as sensory bristle 

number (Gurganus et al. 1999; Mackay and Lyman 2005), wing shape (Weber 1999), and 

longevity (Nuzhdin et al. 1997; Valenzuela et al. 2004; Wilson et al. 2006) showed this 

genetic architecture. Such evidence, at odds with Fisher's geometric model, suggests that 

mutations with big effects are also important for adaptation (Orr 1998). Ingenious 

developments of the methods to reveal the genetic composition of complex traits have 

made possible the fine mapping of QTL down to quantitative trait genes (QTGs) and 

even to SNPs, giving rise to the concept of a quantitative trait nucleotide (QTN). Thanks 

to these approaches we are learning that complex traits in humans and other species are 

even more “polygenic” than suggested by classical QTL mapping approaches (Risch and 

Merikangas 1996; Mackay 2001; Mackay et al. 2009).  



1.3  QUANTITATIVE GENETICS AND ADAPTATION 

 28 

1.3.2 Polygenic adaptation 

The possibility of identifying the genes and nucleotide variants that affect complex traits 

opens new avenues to study how these traits evolve, especially how adaptation proceeds 

when several genes affect a fitness-associated trait (Rockman 2012). An attractive 

approach to do so is to extend current theory of positive selection on single loci to the 

polygenic case (Chevin and Hospital 2008).  

In contrast to the ideas of adaptation at a single locus, in which a beneficial allele is 

driven to fixation by positive selection (see section 1.2), polygenic adaptation does not 

require new beneficial mutants and may not lead to the fixation of beneficial alleles. 

Selection acts on standing genetic variation at all involved loci (Barton  and Turelli 1989; 

Falconer and Mackay 1996; Chevin and Hospital 2008; Messer and Petrov 2013). 

Thereby populations adapt by allele frequency shifts at many loci if environmental 

changes result in a new phenotypic optimum. Once the average phenotype in the 

population matches the new optimum the intensity of selection will decrease. While this 

process could allow very rapid adaptation, no conspicuous footprints will be left on linked 

neutral variants making this selective event difficult to detect with current population 

genetic methods.  

Nevertheless the chance for the fixation of beneficial quantitative alleles is not 

negligible, at least in theory. Recently, Pavlidis et al. (2012) analyzed a model with n loci 

controlling a trait under stabilizing selection. They conclude that multilocus response to 

selection may in some cases prevent selective sweeps from being completed, but that 

conditions causing this to happen strongly depend on the genetic architecture of the trait. 

For instance, the probability of fixation of selected mutations decreases with the number n 

of loci involved and also depends on their effect sizes. Fixations are more common when 

the effects are about equal (in absolute size). This could partly explain the relative success 

that selective sweep (or hitchhiking) mapping approaches have achieved as QTL mapping 

tools (Nuzhdin and Turner 2013). 
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1.4 COLD TOLERANCE IN D. MELANOGASTER: A CASE STUDY OF 
ADAPTATION  

 

Temperature is one the most important abiotic factors that determines species abundance 

and distribution (Hoffmann and Blows 1994; Hoffmann et al. 2005; Geber 2011). Its effect 

on life history traits such as growth (developmental time); sexual maturation and 

reproduction has been well documented in insects (Régniere et al. 2012). Cold 

temperatures are inherent features of thermally heterogeneous habitats, becoming more 

pronounced with latitude or altitude. Cold represents one of the sources of environmental 

stresses to which animals have evolved numerous physiological strategies to counteract its 

negative effects (Ayrinhac et al. 2004; Hoffmann et al. 2005; Koštál et al. 2007). A key quest 

is to understand how organisms cope with cold, identifying the mechanisms that allow 

them to survive and reproduce successfully under sustained cold conditions. 

D. melanogaster is a suitable organism to study cold adaptation. Since its origin in Sub-

Saharan Africa, the fruit fly has spread all over the world and adapted to diverse climatic 

conditions (David and Capy 1988; Pool and Aquadro 2006). Although D. melanogaster 

diverged from its closest relative Drosophila simulans around 2.3 Mya (million years ago) (Li 

et al. 1999), the first out-of-Africa migration event took place around 19,000 ya, when the 

African and non-African populations first separated. Subsequently, multiple colonization 

events happened in the last 10,000 years including the colonization of Asia ~5000 ya 

(Laurent et al. 2011), Australia ∼1000 ya (Lachaise et al. 1988), and North America ∼300 

ya (Keller 2007; Duchen et al. 2013).  

Two aspects are relevant from D. melanogaster's colonization history. First, the time 

spent in Africa by this organism, from its origin until the first out-of-Africa migration 

event, was long enough to generate sufficient genetic diversity on which selection can act. 

Second, the fly has successfully colonized multiple environments, which include high 

latitude zones with extreme ambient temperature fluctuations. For instance, viable 

populations have been reported in Scandinavia (Bächli et al. 2005), North America (Keller 

2007), southern Australia and Tasmania (Hoffmann and Parsons 1989). With this 

background, it is clear that such a successful establishment in temperate zones has been 

aided by the development of strategies to cope with cold stress (Kimura 1988; Izquierdo 

1991; Goto et al. 1999; Gibert et al. 2001). 
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For outdoor D. melanogaster populations, cold stress tolerance is positively correlated 

with latitude (Hoffmann et al. 2001; Kimura 2004). This pattern has been observed in the 

two hemispheres, namely along the Australian and North American east coasts. Flies 

collected in high latitude locations of these continents consistently exhibit more cold stress 

resistance than their subtropical and subtropical/tropical conspecifics (Hoffmann et al. 

2002; Schmidt et al. 2005; Svetec et al. 2011). There are several methods to assess cold 

stress resistance in D. melanogaster (see Hoffmann et al. 2003b for a review). Briefly, cold 

tolerance assessments are done by exposing flies to either freezing (< -5 ºC) or chilling (∼0 

ºC) temperatures for a given amount of time. In the case of exposure to below-zero 

temperatures, individual survival is scored, while under less life-threatening chilling 

conditions that induce a coma-like state, the time to recover from the chill-induced coma 

is recorded as measure of stress resistance. Flies that take less time to return to an upright 

position are regarded as more cold resistant. Although cold shock resistance and chill 

coma recovery time (CCRT) are proxies for cold tolerance, the physiological changes 

triggered by these stimuli may have different underlying mechanisms (Macmillan  and 

Sinclair 2011).  

Currently, the available full-genome sequences from different worldwide populations 

of D. melanogaster constitute the most complete whole-species range catalogue of genetic 

variants. This variation can be studied to identify latitudinal and attitudinal patterns that 

lead to the inference of adaptation to cold environments. Tropical and temperate 

populations are already part of the datasets. Thus far, Africa is the best-sampled continent 

(Pool et al. 2012), followed by North America (Mackay et al. 2012, DGRP) and to a lesser 

extent, Europe (Pool et al. 2012). Given the great potential of these datasets for conducting 

comprehensive population and quantitative genetic analyses on a species-wide scale and 

considering the current bias towards tropical/ancestral populations, it is necessary to 

direct further sampling efforts to higher latitudes. The inclusion of alleles naturally 

selected in extreme environments can help us understand where in the genome of the fly 

reside the keys to its successful colonization of the world. 

The study of variation in CCRT in D. melanogaster has revealed a significant heritable 

component, leading to the conclusion that cold stress resistance is indeed an evolvable 

trait (Hoffmann et al. 2001; Anderson et al. 2005). The availability of a suitable genetic 

toolkit for this species has served as a means to dissect the molecular basis of CCRT. By 

means of recombination mapping, QTL have been mapped onto chromosome 3R 
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(cytological intervals 76B-87B and 73A–90B). These QTL explain 10–35% of the total 

variation in CCRT. QTL on the X chromosome have also been identified and explain up 

to 14% of the variation for CCRT between European and African strains of D. 

melanogaster (Svetec et al. 2011). The main drawback of this mapping strategy is its lack of 

resolution. The aforementioned QTL intervals are on the order of 1Mb in length and 

often contain hundreds of annotated or computationally predicted genes that can be 

potentially associated with the phenotype, making downstream gene validation analysis a 

laborious endeavor.  

The implementation of genetic complementation tests in the quantitative genetics 

context has served as a way to reduce the size of QTL intervals, hence reducing the 

number of likely associated genes (Mackay 2001). This is achieved by comparing the 

effects on the phenotype of chromosomal aberrations, chromosomes with deleted 

fragments or deficiencies vs. those of complete chromosomes. In classical genetics, 

complementation testing has been used to find the role of a given gene by comparing 

phenotype effects of wild type allele vs. a recessive mutant (Mackay 2001). In the case of 

quantitative deficiency complementation tests, chromosomal deletions assume the role of 

the mutation, and a deletion that reveals effects similar to those of the entire QTL are 

regarded as complementation failures (Pasyukova et al. 2000). However, the interpretation 

of a quantitative failure to complement is subject to several caveats (Mackay 2001; Service 

2004). So far, quantitative complementation tests have been used to achieve high-

resolution mapping of a QTL affecting lifespan (Pasyukova et al. 2000; Wilson et al. 2006), 

leading to the identification of candidate QTGs for this trait (De Luca et al. 2003; 

Pasyukova et al. 2004). In the case of CCRT, successful fine mapping of a QTL to a 

causative QTG has been done on the basis of previous knowledge of the genes' 

association with stress resistance, as in the case of Smp-30 and Frost on chromosome 3R 

(Clowers et al. 2010). 

Available full genome sequence data of fly panels with reported variation for CCRT 

allows for the association of genetic variants at the nucleotide level, single nucleotide 

polymorphism (SNPs), with a given score for CCRT. This approach constitutes a huge 

leap in mapping resolution compared to QTL mapping. Mackay et al (2012) conducted 

such genome wide association study (GWAS) and found significant association (P< 10-5) of 

295 SNPs (out of ~2.5 million) with variation for CCRT in a sample of 168 inbred strains 

of the Drosophila melanogaster genetic reference panel (DGRP). These significant 295 SNPs, 
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interspersed across the genome, can explain up to 78% of the observed phenotype 

variation. However, as pointed out by the authors, although this list of candidate SNPs is 

likely to be enriched for true QTNs, the actual QTN can be in linkage disequilibrium 

with the trait-associated SNPs and in some instances the association with the phenotype 

may be spurious; that is the candidate SNP has no effect whatsoever on CCRT. 

Furthermore, if the associated SNP is not part, or at least in proximity, of any annotated 

gene, then its functional validation turns into a genome annotation endeavor at a local 

scale. Systems biology approaches can contribute to uncover of variants affecting CCRT 

(Ayroles et al. 2009)  

 

1. 5 OBJECTIVE AND STRUCTURE OF THIS THESIS 
 

This work represents an experimental approach to study positive selection at polygenic 

traits. The main research question addressed in this study is whether loci underlying traits 

that experienced adaptive evolution show footprints of positive selection and, if so, what 

sort of positive selection signal do they exhibit. In the same spirit as Svetec (2009) and 

Werzner (2011), we used cold tolerance as the complex trait that has evolved adaptively in 

temperate populations of D. melanogaster. The QTL that affect this trait were previously 

identified by Svetec et al (2011). Here we studied three of these QTL with the aim of 

increasing their mapping resolution so that the mode of evolution of these genomic 

intervals can be studied via population genetic analyses. This approach provides empirical 

data to test emerging models of polygenic selection. The way we undertook this task was 

through three different projects that are presented in sections 1 through 3 of chapter 2 

(Results).  

In section 2.1, we use a selective sweep mapping approach to study the genes of the X-

linked QTL encompassing cytological regions 13E-20E (Sevetc 2009; Werzner 2011; 

Svetec et al. 2011). In doing so, we establish a link to a previously reported selective sweep 

in this region (Li and Stephan 2006) analyzing in greater detail the evolutionary history of 

the cytological interval 15E. 

In section 2.2, we focus on a combined quantitative and functional approach to fine 

map the broadest QTL affecting cold tolerance mapped by Svetec (2009) and Werzner 

(2011), spanning the cytological region 6C-11D. This QTL is by far the one with the 

largest effect on the trait.  
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Section 2.3 revisits the population genetics of a QTL. In this part, we use SFS and FST-

based methods to better understand the evolutionary history of the chromosomal region 

containing the candidate QTGs identified in section 2.2. These analyses document one of 

the strongest signals of positive selection in European D. melanogaster.  

Section 2.4 reports on a satellite project that is relevant because of its long-term 

implications for the study of molecular evolutionary biology in our research group. In this 

chapter we introduce a new full-genome sequence dataset of a Scandinavian D. 

melanogaster population and gauge its potential to study adaptation to high latitude 

ecological conditions in a natural population.  

Finally, chapter 3 consists of a discussion of the findings reported in the preceding 

chapter and chapter 4 presents a unified Materials and Methods section. 
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II – RESULTS 

 
 
 
 

 

2.1 SELECTIVE SWEEP MAPPING OF A QTL FOR COLD STRESS 
TOLERANCE  

 

2.1.1 Co-localized QTL and valleys of genetic variation  

Positive selection drives the evolution of ecologically relevant traits such as cold stress 

tolerance in D. melanogaster. There is growing evidence that supports the polygenic nature 

of this phenotype (Mackay et al. 2012). The question that arises from an evolutionary 

perspective is whether the underlying loci bear footprints of positive selection, and if so, to 

what extent they do. Currently, the selective sweep model is a well-studied case of positive 

selection in sequence space describing the effect that the fixation of  a beneficial mutation 

leaves on neighboring neutral variation (see section 1.2). The characteristic signal of a 

selective sweep can be used to assist the fine mapping of QTL affecting an adaptive trait 

(Nuzhdin et al. 2007). Recently, Svetec (2009) and Werzner (2011) identified X-linked 

genetic factors underlying the difference in cold stress tolerance between two natural 

populations of Drosophila melanogaster, one from the Zimbabwean shore of Lake Kariba and 

the other from the seaside locality of Leiden, in the Netherlands. The results of their work 

revealed a series of QTL along the entire X chromosome.  
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These QTL map to the following cytological intervals in both sexes: 6C-10B, 8E-11D 

and 13E-20E. Because of the breadth of these intervals, up to 1,000 genes are potential 

QTGs for cold stress tolerance. Moreover, the lack of bona fide candidate genes located on 

the X does not facilitate the sorting of our potential QTGs by functional relevance. The 

interval at 13E-20E has an approximate length of 6.7 Mega base pairs (Mb) and co-

localizes with a previously identified selective sweep exclusive to the Netherlands 

population (Li and Stephan 2006). Taking advantage of the co-occurrence of these two 

signals in the same chromosomal interval, we explored the possibility to conduct a fine 

scale reassessment of this region using a selective sweep mapping strategy. Our approach 

was viable because: (i) the QTL is significant in both male and female flies and does not 

exhibit QTL–sex interactions and, (ii) the sweep is specific to the Dutch population. This 

means that the beneficial allele involved in adaptation to the new environmental 

conditions is more likely to be observed in temperate populations. The sweep region in 

question encompasses ~86 kb, located exactly at cytological band 15E. Li and Stephan 

(2006) determined the sweep-like features of this window by studying the SFS of three 

500-bp fragments scattered along this interval. They noticed that the lowest point of 

genetic variation in the Netherlands was seen in the fragment located in the 3.5-kb long 

region between genes CG16700 and CG4991.  

Further characterization of this sweep region requires more detailed sequence data 

from both the Netherlands and Zimbabwean populations. We therefore increased the 

amount of SNPs by sequencing 12 additional fragments along the 86 kb region. These 

fragments were placed in non-coding regions, such that the average distance between 

them was 10 kb. In addition we also sequenced the entire CG16700 – CG4991 intergenic 

region. With this new dataset we calculated a suite of summary statistics including genetic 

diversity estimates θW and θπ, haplotype diversity (H) and average LD (ZnS). Since the two 

genetic diversity estimates are explicitly related to the SFS of the region and this was 

previously explored (Li and Stephan 2006), we show them together with the other 

summary statistics in Appendix A. Alternatively, haplotype diversity and average LD 

estimates per fragment, are loosely associated with the SFS and convey information that 

we want to explore further in this section. The profile obtained for ZnS within each 

fragment in both populations is shown in Figure 1A. This profile had a distinctive pith-

like shape in the Netherlands with above-average ZnS values on both sides of the selective 

sweep at relative positions 32,900 and 35,900.  
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Figure 1. LD patterns at 15E. 

A) LD (ZnS) profile for a set of 12 fragments located in the 86 kb region of interest as 15E. Note the 
pit-like behavior of ZnS around relative position 34,000 in the Netherlands population. B) LD 
matrix for 69 relevant SNPs in the approximately 18-kb long CG16700 – CG4991 gene region. 
Patterns of LD (r2) are shown above the diagonal and P values from Fisher’s exact test below the 
diagonal. Notice the LD block structure of this dataset, the SNPs 8,220 to 9,293 form an LD block 
that is not LD with the other adjacent SNPs. 
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The two flanks of the 3-kb long pit-like reduction in sequence diversity show haplotype 

diversity values above 50%. This pattern is reminiscent of the theoretical expectation of 

LD blocks at the flanks of selective sweep regions (Kim and Nielsen 2004). 

We conducted a fine scale LD analysis for this region available next generation 

sequence data from the Netherlands population (see Material and Methods, Table 8). We 

obtained pairwise LD estimates for all LD informative SNPs within a 17 kb window 

centered on the CG16700 - CG4991 gene region. The resulting LD matrix (Figure 1B) 

comprises a total of 62 SNPs that do not include singletons. Interestingly, the two sets of 

SNPs at both sides of the sweep form two noticeable LD clusters (framed within the 

matrix.) We noticed that the right-hand side LD cluster is composed of three SNPs within 

a range of 100 bp, which seems to be part of a yet broader cluster in course of erosion. 

With this LD matrix we could also observe how LD is broken across the two main LD 

blocks. 

 

 

2.1.2 Positive selection in the CG16700 - CG4991 region 

In order to quantify the extent to which this LD pattern agrees with the expected selective 

sweep scenario, we subjected the 6 kb region comprising the coding region of CG4991 

and its 5’ UTR to a formal LD analysis using the ωMAX statistic (Kim and Nielsen 2004). 

The profile of the ω statistic in this region for the Netherlands is shown in Figure 2A. The 

dashed line indicates the 95th percentile of ωMAX, which we obtained by neutral 

simulations (see Materials and Methods). With a P-value of 0.037 the observed maximum 

of the distribution of ω values is located within the 3 kb between the coding regions of 

CG16700 and CG4991, most precisely between relative positions 1.3 to 2 kb. While this 

statistical approach confirmed the presence of a selective sweep immediately upstream of 

the coding region of CG4991, the question still remains as to what the exact location of 

the selected variant is. The approximately 700 bp that encompass the target of selection 

are devoid of any variation in the Netherlands, so in principle any of these 700 sites could 

bear the beneficial allele. To address this question we made use of available full genome 

sequence data from other African D. melanogaster populations (Pool et al. 2012) with which 

we explored patterns of allele frequency differentiation per site.  
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Figure 2. Selective sweep mapping at cytological interval 15E.  

The tests were conducted on the 6 kb encompassing the interval between genes CG16700 and  
CG4991 (in this case it is also the 5’ UTR) and the entire coding region of the latter. A) Omega 
statistics (ω) maximizes between positions 1.6 and 2 kb from the relative point of origin. B) Model-
based FST values for 422 SNPs from a dataset including two European and five of African samples 
(see Materials and Methods). Notice the outlier SNP positions with above and below average FST 

values, in particular those showing high differentiation enriched in 5’UTR of CG4991 (indicated by 
a red arrow). FDR of 5% thresholds are marked as orange dashed lines.  
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Positive selection may fix beneficial alleles in local populations increasing the level of 

allele frequency differentiation among localities within the entire population range 

(Lewontin and Krakauer 1973). We subjected the SNP dataset derived from the 

Netherlands and five African populations to an FST analysis implemented in BayeScan 

(Foll and Gaggiotti 2008). We obtained FST coefficients for a total of 422 SNPs, with an 

average FST coefficient of 0.3213. FST values per SNP are shown in Figure 2B. The 

handful of SNPs with FST values reflecting the highest differentiation across populations 

are well above 0.55, and are considered significant outliers at a FDR rate of 5% (orange 

dashed line). The three top significant outlier SNPs are located at relative positions 1,994 

(FST=0.5755, q-value=0.0062), 1,799 (FST=0.5554, q-value=0.0050), and 447 

(FST=0.5551, q-value=0.0085). Interestingly, the first two of these SNP are located within 

the 700-bp target of selection identified with the ω statistic (Figure 2A,B). In addition, 

BayeScan also detected a significant outlier SNP at 4,686 with an FST value of 0.1371 (q-

value=0.0536), located in exon 1 of CG4991. By inspection of the corresponding 

polymorphism table (data not shown), the same allele is kept at low frequency in all 

populations; therefore this site is a suspected target of purifying selection. 

We gained great insight characterizing this selective sweep and identified a cluster of 

SNPs in the region between CG16700 and CG4991 as putative targets of positive selection. 

A crucial question remains, whether these SNPs are also affecting CCRT. Our first 

thought was that, because of their location (immediately upstream of CG4991) these SNPs 

could be affecting the expression of CG4991. We conducted gene expression assessments 

via qPCR in lines from Zimbabwe and the Netherlands and observed that expression of 

this gene is on average higher in European flies than in African ones. Furthermore, we 

also noticed that there is more variation in the level of expression of this gene among 

Dutch lines than among Zimbabwean ones (Figure 3). Although we measured gene 

expression in flies of both sexes separately we did not observe any sex-specific expression 

difference. 

The exact opposite pattern of expression was observed for CG16700. For this gene we 

detected a ~1.5 fold difference in average expression between populations, however it was 

not significant. The difference between sexes was significant only in the Netherlands 

(P>0.05). Interestingly for CG16700 variation among Dutch lines is ostensibly lower than 

among Zimbabwean flies (Figure 3). 
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Figure 3. Expression assays of candidate genes at interval 15E. 

 
Expression of genes CG16700 and CG4491 was measured at the constitutive level in flies of both 
sexes from a temperate population the Netherlands (NL) and a tropical location Zimbabwe (ZK). 
Expression level of these candidate genes was normalized respect to that of ribosomal gene RpS20. 
The height of the bars represents the mean of three calibrated normalized relative quantities 
(CNRQ) per population per sex, per gene rescaled to that of the NL females. Error bars also 
represent rescaled confidence intervals. Levels of significance for tests of differences in expression 
levels among treatments within and between populations are indicated with asterisks, P<0.05 (*), 
P<0.01(**) and P<0.001(***). 
 
 
 

This selective sweep-based strategy revealed an intergenic region targeted by selection 

with a still unclear functional role. Since the target of selection is located upstream of 

CG4991, it is sensible to think that the expression of this gene is the phenotype being 

tuned by selection. Interestingly, our qPCR assays (Figure 3) evidenced a non-buffered (i.e. 

variable) CG4991 expression pattern among Dutch lines. This result may suggest that the 

aim of selection here is to promote plasticity in gene expression, rather than reducing its 

variation. However, before formulating any hypothesis on this assumption, it is important 

to determine the functional role of this intergenic target of selection and establish how it 

affects the expression of its two flanking genes; CG4991 and CG16700 in European and 

African populations. Only then it should be possible to evaluate the possibility of a link 

between this selective event and cold stress tolerance. Further discussion of this selective 

sweep mapping approach is provided in section 6.2.2.  
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2.2 FINE MAPPING OF A QTL FOR COLD TOLERANCE  

2.2.1 Quantitative complementation mapping  

The use of selective sweep mapping to aid the characterization of QTL affecting adaptive 

traits is justified by the expectation that the loci influencing an adaptive phenotype (that 

has been changed by directional selection) also show footprints of positive selection. 

However, because of the hard sweep model assumptions upon which the methods are 

built, only strong signals of selection can be detected. Due to this conceptual bias we 

might overlook other selection events where the fixation of the beneficial allele did not 

occur. In fact, it has been suggested that this scenario is more common than hard sweeps 

in the case of polygenic selection (Pritchard and Di Rienzo 2010). An additional weakness 

of the approach is that it does not provide conclusive evidence to establish a functional 

connection between the site (or gene) target of selection and the studied phenotype. This 

is especially true when mapped QTL are broad and contain several candidate genes. In 

this section we undertook a quantitative genetics approach that avoids the biases inherent 

to selective sweep mapping and explores the functional link between the genotype and the 

phenotype. The aim here is to find candidate QTGs for cold tolerance within the QTL 

mapped by Svetec et al. (2011). The approach presented here is based on two quantitative 

variants of genetic complementation tests (Pasyukova et al. 2000; Mackay 2001) assisted by 

gene expression assays. 

We started by dissecting two X-linked QTL that affect the difference in chill comma 

recovery time (CCRT) between African and European populations of D. melanogaster, as 

reported by Svetec et al. (2011). These QTL encompass to the cytological interval at 6C-

11D (of approximately 6.2 Mb in length). We dissected this interval via quantitative 

complementation tests with 24 overlapping chromosomal deletions spanning 94% of this 

interval. The chromosome fractions making up the remaining 6% of this interval were left 

untested due to lack of suitable deletions. The Dutch and Zimbabwean versions of the X 

chromosome used in these tests are contained in fly lines A* and E*, created by 

introgression of one X chromosome from a population of the Netherlands and one from 

Zimbabwe into a common laboratory strain (Svetec et al. 2011). Hence, these two lines 

bear different X-linked alleles while the rest of the major nuclear chromosomes and 

mitochondrial DNA is the same. These two lines are the parents of the X-recombinant 

population employed to map the QTL that concerns us in this project (see Svetec 2009). 
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With a set of 24 deficiencies (Figure 4) we could potentially uncover the effect of line-

specific alleles (line-specific refers to the type of X chromosome involved in the test, which 

is either African or European) at 588 (95%) of the 622 annotated and computationally 

predicted genes within the interval. A total of 14 of the 24 tested deficiencies showed 

significant line effects at the 5% level, whereas 9 of 24 showed a significant effect of the 

genomic background on CCRT scores (with the term “genomic background” we refer to 

the involved deletion and balancer chromosomes; see Materials and Methods). We 

observed failure to complement in 4 of the 24 tested deletions (Table 1, Figure 4). Failure 

to complement implied both a significant effect of line (L) and a significant ‘line by 

genomic background’ interaction (L x G) as long as the differences in CCRT followed the 

expected direction. That is, shorter CCRT times for flies bearing the E* X chromosome 

in the presence of the deletion compared to the corresponding flies bearing the A* X 

chromosome in the presence of the same deletion, while showing no difference between 

the CCRT of the flies bearing the E* and A* X chromosomes in the presence of the 

balancer chromosome. 

Deletion Df(1)ED6906 encompasses a fragment of 210 kb; this deletion was one of the 

two that revealed a highly significant failure to complement (Table 1, Figure 4). The 

difference between the means of the CCRT scores for the flies bearing this deletion is 

9.18 minutes, whereas that of the flies harboring the balancer chromosome is 1.82 

minutes (Table 1). In other words, E*/ Df(1)ED6906  flies woke up on average 4.87 

minutes faster than their respective balancer counterparts and that A*/ Df(1)ED6906 flies 

recovered on average 4.37 minutes later than flies in the respective balancer background. 

Deletions Df(1)C128, Df(1)BSC592 and Df(1)BSC537 also failed to complement as 

revealed by the significant line and L x G effects. However, for the two last deletions these 

effects were marginally significant. Their respective differences in average CCRT 

between the E* and A* X chromosomes in the deficiency and balancer backgrounds can 

be seen in Table 1. 

The fact that we used a set of overlapping deficiencies allowed us to better define the 

stretch that revealed quantitative failure to complement. With respect to the 210-kb long 

span of deletion Df(1)ED6906, the 67.15 kb overlapping with deletion Df(1)BSC536 were 

subtracted from the stretch of interest (Figure 4). Furthermore, the results of the 

complementation tests with yet another overlapping deficiency at the same end 

(Df(1)BSC711) allowed us to subtract additional 19.64 kb from the 210 kb encompassing 
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Df(1)ED6906 (Table 1, Figure 4). At the other end of deletion Df(1)ED6906, its overlap 

with deletion Df(1)HA32 is not known at the base pair level. Thus, the redefined fraction 

of interest under deletion Df(1)ED6906 encompasses a total of 124 kb (between 

coordinates 7,089,000 and 7,212,999). We determined, in a similar way, the fraction of 

interest under deletions Df(1)C128, Df(1)BSC592 and Df(1)BSC537. 

This fine mapping approach, based on overlapping deletions, has allowed us to reduce 

the number of initial candidate genes within the QTL under study, from 622 to a subset 

of 89. A total of 7 genes are located within the 124 kb uncovered by deletion 

Df(1)ED6906, a total of 14 genes were uncovered by deletion Df(1)HA32, 19 genes by 

Df(1)BSC592, and 49 genes by Df(1)BSC537. This is remarkable given the substantial 

fraction of uncharacterized genes in the 6.2 Mb of the QTL defined by Svetec et al. (2011) 

and the absence of known a priori candidate genes for CCRT in this chromosomal region. 

 
 
 
 
 

Table 1.    Deficiency analysis of QTL at 6C-11D affecting CCRT in female flies  

(next page). 

 
This table summarizes quantitative deficiency tests performed with the listed deletions. Δdef is the 
difference between the average CCRT of flies bearing E* and A* chromosomes in the presence of 
a given deletion. Negative differences suggested the presence of CCRT reducing alleles at sites 
potentially uncovered by the deletion.  Δbal is the difference between the average CCRT of flies 
bearing E* and A* chromosomes in the presence of a given balancer chromosome. Note that 
deletions held with the same balancer show the same the Δbal values.  P L is the value for the line 
effect (E* or A*) from two-way Anova analysis.  P G is the value for the genomic background effect 
(deletion or balancer) effect from two-way Anova analysis. P L x G P is the value for the 
interaction between the two above-mentioned variables.  
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Table 1. Deficiency analysis of QTL at 6C-11D affecting CCRT in female flies 
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Figure 4. Map of tested deletions within the QTL interval under study. 

 
All deletions, represented by green or blue bars, span a known fraction of X chromosome. 
Deletion breakpoints at the base pair level are known for all deletions except Df(1)HA32 and 
Df(1)C128, for which only cytological bands are reported. Both physical and cytological 
coordinates are provided. The 24 deletions represented in green represent the minimum set 
spanning the 5.8 Mb QTL interval, deletions in blue were tested upon failure to complement of 
one of the overlapping deletion in green. Fractions of the QTL interval with light grey shading 
indicate regions of interest under deletions that show failure to complement. Red borders of this 
grey background indicate highly significant failure to complement P<<0.01 
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While most of the known QTL for this phenotype in D. melanogaster have been found 

on chromosomes 2 and 3 with a vague suggestion of sex-specific effects of the X 

chromosome (Morgan & Mackay, 2006; Norry et al. 2008) compelling evidence of the 

existence of X-linked QTL affecting cold tolerance in natural populations has been 

provided only by Svetec et al. (2011). Our set of 89 candidate genes is heterogeneous 

regarding the types of existing functional annotations and only few of them have a 

reported association with cold tolerance. We reduced this set of genes to those 

encompassed by the most highly significant deletion Df(1)ED9606. There is also evidence 

of association with chill coma recovery time for some genes encompassing this deletion 

(Ayroles et al. 2009; Mackay et al. 2012). 

To test the effect of the candidate genes uncovered by deletion Df(1)ED9606 on 

CCRT we conducted single-gene based quantitative complementation tests. We made use 

of commercially available fly strains with P-element insertions disrupting the expression of 

three candidate genes; CG1677, unc-119 and brk.  The three tests, carried out in an 

analogous way as with the deletions revealed one case of quantitative failure to 

complement (Table 2). The tested P-element insertion disrupting the expression of gene 

brk showed a significant difference in the CCRT of the in the E* and A* background 

respect to that of the balancers. The effect excreted by this insertion in is a reduction of 

CCRT of about 5 minutes in the presence of the European-derived X chromosome.  

 

Table 2. P-element analysis of candidate genes affecting CCRT in female flies. 

 
This table summarizes quantitative deficiency tests performed with the listed P-element 
insertions. Δmut is the difference between the average CCRT of flies bearing E* and A* 
chromosomes in the presence of a given P-element. Negative differences suggest the presence of 
CCRT-reducing alleles at the gene affected by the tested P-element. The other symbols are 
defined in Table 1.  

 

  
    

         
   

              

              

              



2.2  FINE MAPPING OF A QTL FOR COLD TOLERANCE 

 49  

2.2.2 Candidate gene expression analyses coupled to CCRT 

We conducted expression analyses for six of the candidate genes under deletion 

Df(1)ED9606. qPCR assays were performed on cDNA prepared from pools of female flies 

from the Netherlands and Zimbabwe (see Materials and Methods). Expression of 

candidate genes was measured at two moments after cold stress exposure as well as under 

control conditions. The two post-cold stress time points were; 10 minutes immediately 

after the end of cold stress and 15 minutes after flies recovered from chill coma. Controls 

consisted of flies of the same lines that were not subjected to cold stress  

Of the six genes, CG1958 and brk showed significant differences in constitutive 

expression levels between the Netherlands pool and the Zimbabwean pool (P<0.01). In 

both cases the genes were over-expressed in Zimbabwe. The same general trend was also 

observed for the other four genes (Figure 5). Average expression level appeared to be 

unaffected by cold stress within pools at 10 minutes during recovery from chill coma. At 

this time point, the only highly significant difference between pools was observed at brk 

(P<0.001). Expression levels measured at 15 minutes after recovery from chill coma 

revealed one significant difference within pools: brk was significantly over-expressed with 

respect to controls in the Netherlands pool (P<0.05). Between-pool contrasts at 15 

minutes after recovery from chill coma revealed only a significant difference for brk 

(P<0.01). 

 

 

Figure 5.  Expression assays of candidate genes at interval 7A3-7B1  

(next page). 

 
Expression of genes located in the significant fraction under deletion Df(1)ED6906 was measured 
under two cold stress and control conditions in pools of flies from a temperate population the 
Netherlands (NL) and a tropical location Zimbabwe (ZK). Expression level of these candidate 
genes was normalized respect to that of ribosomal genes RpS20 and RpL32. The height of the bars 
represents the mean of three calibrated normalized relative quantities (CNRQ) per pool per gene 
rescaled to that of the corresponding ZK control. Error bars also represent rescaled confidence 
intervals. Levels of significance for tests of differences in expression levels among treatments within 
and between populations are indicated with asterisks, P<0.05 (*), P<0.01(**) and P<0.001(***).  
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Figure 5. Expression assays of candidate genes at interval 7A3-7B1 
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2.2.3 Genetic variation at brk enhancer region 

The results from the quantitative complementation tests and candidate gene expression 

analyses suggest that brk is involved in the CCRT difference between E* and A* lines. 

This difference in expression levels was also observed between the populations from 

which the E* and A* X chromosomes were derived. Therefore we suspected that a 

quantitative trait variant or a QTN was located upstream of brk, in its reported enhancer 

region (Pyrowolakis et al. 2004; Yao et al. 2008), thereby acting a cis-regulatory element of 

its expression.  

We employed the E* and A* lines to sequence the ~16.6 kb encompassing the 

intergenic region upstream of brk (between coordinates 7,185,337 and 7,201,972). The 

alignment of the two sequences revealed a total of 241 nucleotide differences (see Figure 

6A) and 76 structural variants (indels). From these indels 12% were found to be due to 

loss or gain of short tandem repeats. The other 88% of the variants encompasses single 

nucleotide indels (40 of 67 cases), followed in number by dinucleotide indels in 6 of the 67 

cases.  Indels of sizes ranging from three to less than 10 nucleotides make up 21% (14 of 

67) of the cases while indels of 10 or more nucleotides add to the remaining 10% (7 of 67). 

All relative positions (considering the first position of brk 5’ UTR as point zero) of these 

differences between the two lines are depicted in Figure 6A-B.  

In the absence of annotated transcription enhancers in the 16.6 kb upstream of brk, we 

used community resource-based information to narrow the list of observed nucleotide 

differences and structural differences between E* and A* to a handful of putative cis-

elements responsible for the observed brk expression pattern and the detected difference in 

CCRT between the A* and E* lines. First, we looked at reported SNPs associated with 

CCRT in the D. melanogaster genetic reference panel (DGRP). One such SNP, located 

3,268 bp upstream of brk (-3,268A/T) was shown to have a highly significant association 

with CCRT in the DGRP (Figure 6C). Second, we looked for enrichment of DNA-

protein interaction sites in the Encyclopedia of DNA elements (modeENCODE). 
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Figure 6. Catalogue of sequence variants along the enhancer region of brk. 

 
A) Differences detected between A* and E* sequences. B) Structural variants (indels) from single to 
dinucleotide indels, 5 to 7 bp indels and higher than 10 bp. C) Location of a SNP associated with 
chill coma recovery time in a North American D. melanogaster population. D) Fractions of the 
interval (depicted as solid bars) with reported interactions with one transcription factor (CREB) in 
adult flies of both sexes. E) Predicted binding sites for CREB along the A* and E* sequences. F) Set 
of 89 SNPs, with contrasting alleles between A* and E* sequence, and segregating with frequency 
higher than 10% in a sample of 27 European and African lines for which CCRT is known. LD 
estimates between these pairs of these sites were obtained to identify G) blocks of three or more 
consecutive sites in with LD higher than 0.8, depicted as blue numerated bars. All sites presented 
in relative distance respect to the transcription origin of brinker as point zero. 
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This search revealed that the 9 kb upstream of brk are enriched for DNA-protein 

interaction sites as reported by chromatin immunoprecipitation-on-chip (ChIP-on-chip) 

assays on adult fly material using CREB-binding protein (CBP) antibodies to precipitate 

the DNA-protein complexes (Figure 6D). CBP is a known transcription co-regulator 

encoded in Drosophila by the gene nejire. The corresponding protein CBP (or Nejire) is 

recruited by CREB. The resulting protein complex regulates the transcription of 

downstream genes. This piece of information prompted us to look for differences in 

CREB binding motifs between the E* and A* sequences. Using a position-weight-matrix 

approach we predicted a total of 17 transcription factor binding sites (TFBS) for CREB in 

the 16.6 kb upstream of brk plus one in its 5' UTR in the E* sequence, while in the A* 

sequence only 16 CREB binding sites were found upstream of brk and one in its 5' UTR.  

The locations of the predicted TFBS are shown in Figure 6E. The presence/absence of 

TFBS No. 2 (between relative positions  -1,225 and -1,230) represents the only difference 

between the two sequences. 

In addition to the community-resource search for putative TFBS upstream of brk, we 

conducted a linkage disequilibrium (LD) assisted search for sets of three or more 

consecutive SNPs forming haplotypes with presumed functional roles. Following De Luca 

et al. (2003) and Clowers et al. (2010), we calculated pair-wise LD tests between SNPs from 

an alignment of next-generation sequence data of 27 D. melanogaster lines of European and 

African origin that include the parents of the E* and A* strains for which we previously 

scored CCRT. After excluding sites with minor allele frequency of 10% (or less) as well as 

sites with less than 50% data, we retained a total 89 LD informative SNPs (Figure 6F). 

The resulting LD matrix (Appendix B) depicts association levels around 0.5 between sites 

scattered along the 16.6 kb.  

It was not surprising to observe this pattern of LD since the employed set of 27 lines 

was not sampled from the same population instead they constitute a pool of African and 

European lines (in similar numbers). These two populations have been previously shown 

to have demographic histories that have led to SNP allele frequency differentiation. 

Moreover, it has also been reported that the European fraction of the pool exhibits a 

reduction in genetic polymorphism consistent with a footprint of positive selection. Hence 

this pooling strategy led to an artificial creation of LD. To overcome this limitation, we 

defined an LD threshold of r2 ≥0.8 for the sets of at least three consecutive SNPs to define 

LD blocks of interest.  We prioritized all reported differences between E* and A* based 
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on the outcomes of the previous approaches. We defined the top two relevant fragments 

upstream of brk. These correspond to relative positions -784 to -1,243 (including the 

CREB binding site difference and LD block 1) and positions -3,016 to -3,553 (including 

the CCRT associated SNP -3,268A/T and LD block 2) (Figure 6G). 

We re-sequenced these two fragments in European and Southeast African inbred lines. 

This set of lines included those previously used to assay candidate gene expression. Upon 

inspection of the alignments of the 460-bp fragment between relative positions -784 to -

1,243 (Figure 7A), we found that the predicted CREB binding motif “GACGT” is present 

in 90% of the European lines, while in the Southeast African lines it occurs in 33% of the 

cases. Absence of this predicted binding sites in Africa could be due to two mutational 

events:  allele variants at SNP -1,226 or a 73-bp long deletion encompassing relative 

position -1,230 to -1,158. This structural variant is in 20% in the Zimbabwean sample. 

There is no evidence, however, that the absence or presence of this motif causes the 

pattern of brk expression observed in the wild type lines. Intuitively, the presence of an 

extra TFBS for CREB in Europe should lead to higher expression of brk, but expression is 

higher in the Zimbabwean pool.  

Next we turned our attention to the 534-bp fragment between positions -3,000 to -

3,553 (Figure 7B).  This fragment depicts a pattern of SNPs and deletions more complex 

than that revealed by next-generation sequence data.  In this fragment, the SNPs 

belonging to LD block 2, -3,503T/C, -3,479G/C, are in LD with two adjacent 6-bp long 

indels at relative positions -3,474 and -3457. These two deletions correspond to the 12-bp 

indel initially observed when comparing the sequences of A* and E* lines only. The other 

two SNPs of LD block 2, -3,409T/C and -3,355T/C, show a clear association in the 

European lines with the 7-bp deletion at position -3,298, also observed when comparing 

the A* and E* lines. Another important finding of this re-sequencing approach is that a 

low frequency 8-bp indel at position -3,271 encompasses the previously reported SNP 

associated with CCRT at position -3,268 (Mackay et al. 2012). However, our data indicate 

that this polymorphism corresponds to an indel and not to a SNP.  
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Figure 7. Polymorphism tables of chosen fragments upstream of brk. 

 
A) Between relative positions -784 and -1,243 from the origin of brk’s 5’ UTR a fragment of 
interest was resequenced in lines from the Netherlands (NL) and Zimbabwe (ZK).  The table 
depicts nucleotide (SNP) and structural variants (indels) of two D. melanogaster population, including 
E* (top line) and A* (bottom line) plus two out-groups (D. simulans and D. sechellia). Light blue and 
orange indicate the inferred ancestral state of the SNP considering the two outgroups in NL and 
ZK respectively, whereas darker tones of the same color represent the derived allele. Deletions are 
indicated in white background. Note the presence of the CREB binding site (BS) motif “GACGT” 
in NL, which is less frequent in ZK due to mutation or loss because of deletion (Indel V). The 
acquisition of this motif occurred in the melanogaster lineage based on its absence in the out-group 
species. B) Polymorphism table of a 534-bp fragment between relative positions -3,000 to -3,553 
upstream of brk. As in panel A, the table depicts SNPs and structural variants (indels) in NL and 
ZK, including E* (top line) and A* (bottom line) plus two out-groups (D. simulans and D. sechellia). 
Deletions are indicated in white background. Relative position -3,268 marked with an asterisk is 
highly associated with CCRT in the Raleigh population. 
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2.2.4 Frequency shift of variants likely associated with CCRT  

We rely on experimental evidence obtained by Yao and colleagues (2008) that several 

elements upstream of brk affect its expression levels in developmental stages. However, we 

should make clear that we ignore whether this is also the case for adult flies (and under 

stress conditions). For the sake of our investigation, it is important to underline a point 

originated from the observation of the polymorphism tables in Figure 8A. The 

frequencies with which these deletions (and associated SNPs) occur in the Netherlands 

and Zimbabwe suggest a pattern of intercontinental differentiation.  

We studied the frequencies of the haplotypes defined solely by the number of deletions 

(Figure 8B) and observed that the haplotype group represented by the E* line (ND 

haplotype) encompasses three deletions and is found in 60% of the Dutch flies, while it is 

seen in less than 30% in the Zimbabwean (SEA) flies. Moreover, this ND haplotype 

exhibited a frequency shift across continents (Figure 8C). The fact that the frequencies of 

this haplotype are also correlated with the latitude (an important geographical variable 

that is in turn associated with climate) is a strong motivation to further evaluate the effect 

of these structural variants on CCRT. In fact, we initiated the study of the potential effect 

of the ND haplotype on both brk expression levels and CCRT with a simple qPCR assay 

using lines from Europe and Africa (see Appendix C). The results were not conclusive 

enough to substantiate (or rule out) the claim of involvement of the haplotype on the two 

traits of interest. However, this is a first step in the examination of brk as one of the QTGs 

underlying the CCRT and whether this detected allele frequency shift is a genuine 

footprint of polygenic adaptation. 
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Figure 8. Allele frequency shift at a putative cis-regulatory element for brk. 

 
A) Four haplotypes defined by the presence/absence of deletions and their numbers in the 
fragment. B) Frequencies of the haplotypes at the extremes along a latitudinal gradient of D. 
melanogaster populations; EUR is a pool of NL and FR (French) lines, RG denotes Rwandan lines, 
and SEA the groups ZK and ZI (Zambian) lines. 
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2.3 POPULATION GENETICS REVISITED 

 

2.3.1 Patterns of variation under deletion Df(1)ED6906  

The results of the QTL fine mapping strategy in the preceding section allowed us to 

define small chromosomal intervals that containing tractable numbers of candidate QTNs 

affecting CCRT. One of these fragments was uncovered by deletion Df(1)ED6906. 

Having deified this region free of population genetics biases we then investigated its 

pattern of genetic variation using a comprehensive array of D. melanogaster SNPs.  We were 

particularly interested in identifying conspicuous signals of non-neutral evolution. For this 

purpose we calculated a set of summary statistics on a 2-kb, non-overlapping window 

basis using next-generation sequence data from the two European (the Netherlands and 

France) and two African (Rwanda and Southeast Africa) populations. The Netherlands 

population and a set of Southeast African lines represent the gene pools from which the 

E* and A* lines were derived. The additional two populations consisted of French and 

Rwanda sequence data from the DPGP (Pool et al. 2012). These four populations allowed 

us to draw conclusions about the patterns of variation in temperate and tropical 

populations. 

For each population we obtained nucleotide diversity estimates measured by the 

average number of pair-wise differences (θπ) and Watterson’s estimator (θW). Both 

European populations showed a three to four-fold reduction in nucleotide diversity with 

respect to the African populations. For instance, average θπ (± SD) were 0.0010 (± 

0.0007) and 0.0008 (± 0.0007) for the Netherlands and France, respectively, while the 

values for Rwanda and the Southeast African pool were 0.0031 (± 0.0011) and 0.0034 (± 

0.0011), respectively. The averages of the two genetic variability estimates are shown in 

Table 3. The entire profile of variation can be observed in Figure 9. This figure depicts 

the values of the 2-kb windows along the region of 124 kb in the four populations. 

Interestingly the plots for the Netherlands and France reveal a 40-kb long fragment with 

θπ values as low as 1 SD from their respective averages over the entire 124-kb region. This 

low polymorphism region spans the windows from 66 to 106 kb. This pattern is in 

contrast to that observed in the two African populations for the same coordinates, for 

which nucleotide diversity values tend to be above their respective population averages. 
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This profile of genetic variability prompted us to study the pattern of population 

differentiation and divergence. The average population differentiation, as revealed by FST 

(Nei and Li 1979), clearly reflected the continental groupings (Table 4). The lowest FST 

values were reported between the Netherlands and France, as well as between Rwanda 

and the Southeast African pool. The behavior of window-based FST estimates between 

each of the European populations and the Southeast African pool revealed a trend to 

group high FST values along the fragment with the lowest values of genetic diversity in the 

European populations (between relative positions 95,000 and 109,000; Figure 9). In 

addition, the values for genetic divergence with respect to D. simulans are shown in Table 

3 and plotted in Appendix D. 

 

 

Table 3. Summary statistics at 7A3-7B1 in four D. melanogaster populations. 

Population 
Diversity estimators (mean ±SD) Dxy 

(mean ±SD) 
Tajima's D 

(mean ±SD) θπ θW 

NL 0.0010 ±0.0007 0.0010 ±0.0006 0.0953 ±0.0352 -0.4995 ±1.0403 

FR 0.0008 ±0.0007 0.0008 ±0.0006 0.1042 ±0.0382 -0.1010 ±0.8699 

RG 0.0031 ±0.0011 0.0041 ±0.0013 0.1286 ±0.0422 -0.9671 ±0.4024 

SEA 0.0034 ±0.0011 0.0042 ±0.0012 0.1248 ±0.0482 -0.7834 ±0.3875 
 

   

 

 

Table 4. FST at 7A3-7B1. 

FST (mean ±SD) 

 FR RG SEA 

NL 0.1180 ±0.1446 0.3148 ±0.1425 0.3223 ±0.1402 

FR  0.2733 ±0.1346 0.2676 ±0.1420 

RG   0.0998 ±0.0929 
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Figure 9. Polymorphism and between-population differentiation at 7A3-7B1. 
 

Nucleotide diversity (θπ) was obtained for consecutive 2-kb long windows in four different 
populations: the Netherlands  (NL), France (FR), Rwanda (RG) and a pool of Southeast African 
(SEA) lines sampled around Lake Kariba in Zimbawe and Zambia. The SEA profile is shown in all 
three θπ panels for sake of comparison, because SEA is thought to be the ancestral range of D. 
melanogaster. Below each θπ panel, inter population differentiation profiles are shown. 
Differentiation (FST) was calculated as normalized distance of Nei. Thin, continuous lines represent 
the average value for each summary statistic across the 62 windows, dashed lines represent 1 SD 
above and below the corresponding summary statistic mean. 
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2.3.2 Testing neutrality 

Thus far, our findings have suggested the effect of evolutionary forces leading to a 

conspicuous reduction in genetic variability along the chromosomal interval at 7A3-7B1 

in the two European populations. This feature was accompanied by enrichment, within 

the same interval, for fragments with above-average genetic differentiation between 

temperate and tropical (African) populations. In the light of these observations it is 

important to establish whether this pattern of variation in Europe was created by positive 

selection or is a consequence neutral process such as genetic drift or the complex 

demographic history of non-African D. melanogaster flies (Laurent et al. 2011). The first step 

we made to clear this question was to explore the relationship between the values of θπ, 

and θW, as measured by Tajima’s D statistic (Tajima 1989). Under neutral evolution, the 

quantities obtained for these two estimators should be statistically the same. If differences 

are detected these can be attributed to non-neutral processes such as demography, 

selection or the combination of the two. 

 Tajima’s D values (shown in Table 3 and plotted in Figure 10) were overall negative 

in the four populations. Among the four populations, France showed the least negative 

average D value, while Rwanda exhibited the top negative average value (Table 3). We 

did not explicitly tested whether the window-based D values per population were 

statistically different from zero; instead we used the distribution of obtained values to 

identify outlier windows above and below 1 SD of the reported mean. A total of 4 

windows (at relative positions 35 kb, 77-79 kb and 95 kb) showed outlier values below 1 

SD in both European populations. Above 1 SD of the respective means, another four 

windows were common outliers to the Netherlands and France (located at 37 kb, 53 kb, 

87 kb and 109 kb). Figure 10 also shows, for the two European populations, a stretch of 

below-average D values that extends for ~40 kb (windows 66-106 kb) interrupted by a 

positive peak at 87 kb. In contrast, the two African populations show a less variable 

Tajima's D pattern. The top negative peaks shared by both populations are centered on 

are positions 19-89 kb, 91 - 109 kb and 113 kb. The highest Tajima's D values (close to 

zero) are seen from windows at 51 to 65 kb. 
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Figure 10. Tajima’s D at cytological region 7A3-7B1. 
 

Tajima’s D (D) profiles, along the 124 kb of interest are shown in paired panels for each scrutinized 
population: the Netherlands  (NL), France (FR), Rwanda (RG), and Southeast Africa (SEA). Thin, 
continuous lines represent the average value for each summary statistic across the 62 windows, 
dashed lines represent 1 SD above and below the corresponding summary statistic mean. 
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2.3.3 CLR and FST scans for positive selection 

The patterns of polymorphism observed in the region of interest in the European and 

African populations revealed a conspicuous reduction of genetic variability and a negative 

Tajima’s D in both European populations that extends for approximately 40 kb in the 

124-kb region. This reduction has been already identified as a footprint of positive 

selection in non-African populations (Glinka et al. 2006; Langley et al. 2012). In this work, 

motivated by the link with a QTL for chill coma recovery, we conducted an exhaustive 

analysis of this region to further document the historical footprint left by positive selection 

in this chromosomal region. 

We studied the site frequency spectrum (SFS) of the region for the available European 

sample (pooling the Netherlands and French lines) and subjected the SNP dataset to the 

composite likelihood ratio (CLR) test implemented in the program SweeD (Pavlidis et al. 

2010). This likelihood ratio was computed between a selective sweep model and a neutral 

model that is calibrated with the genomic background frequency spectrum. The 

background SFS was obtained from 20 Mb of the X chromosome, excluding the telomere 

and centromere regions (see Materials and Methods). In our region of interest the 

fragment between relative positions 63,000 and 107,000 exhibits a SFS that is in contrast 

to that of the genomic background and is better described by a selective sweep model 

(Figure 11A). The CLR values obtained for this interval (ΛCLR>300) are above the 

significance threshold of 72 that corresponds to the 95th quantile of the top CLR values 

of 100 simulated sub-genomic regions of 5 Mb. This value did not increase when larger 

genomic regions were simulated (Appendix E). Simulations were based on our current 

understanding of the demographic history of European populations (Laurent et al. 2011). 

Furthermore the observed CLR peak falls within the top 1% of CLR values along the 

entire X chromosome (Appendix F)  

A remarkable aspect of the fragment with the highest CLR values is its absence of 

variation in the coding regions of genes CG1958, CG1677, CG5059, and unc-119 (see their 

location in Figure 11). However, this feature greatly limited the power of the test in 

identifying targets of selection. To circumvent this problem, we explored another feature 

of positive directional selection, namely that this type of selection may cause allele 

frequency shifts at target loci in structured populations.  
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Therefore measures of population differentiation (FST) can be used to look for targets 

of selection in genome-wide SNP datasets. We obtained model-based FST coefficients for 

each SNP within the QTL of interest in an intercontinental group of D. melanogaster 

populations (see Materials and Methods). We considered SNP data from seven 

populations along a south-north gradient across Africa and Europe: South Africa, 

Southeast Africa, Rwanda, Cameroon, Ethiopia, France, and the Netherlands. Using 

BayeScan (Foll and Gaggiotti 2008), we obtained FST values from a total of 7,316 SNPs 

with and an average FST of 0.2621 and revealed four outlier SNPs that showed the highest 

differentiation across populations at a FDR of 5% (Figure 12B). These four SNPs are 

located within the 40-kb long fragment enriched for SNPs showing significant CLR values 

between positions 65,000 and 105,000. The 65-kb and 19-kb long flanking regions to the 

left and right of the 40 kb fragment are enriched for SNPs showing below- average FST 

values (Figure 12B). However, none of these SNPs with low differentiation across 

populations is significant at the 5% FDR. 

 

 

 

 

Figure 11.    Evidence of positive selection at 7A3-7B1 

(next page). 

 

A) Likelihood (CLR) profile along the 124 kb at 7A3-7B1 using SNP data of two pooled European 
D. melanonagster from the Netherlands and France. Two significance thresholds are depicted. The 
solid line corresponds to the average of the top 1% CLR values for the X chromosome in Europe 
and the dashed red line represents the significance threshold from simulations of equivalent sub-
genomic regions. Note that the CLR profile does not overlap with the putative cis-acting element 
upstream of brk that is likely to cause expression and cold tolerance differences between tropical 
and temperate populations and was described in section 2.2. This element encompasses relative 
positions 109,442 to 109,976. B and C) Model-based FST values for 7,364 SNPs from a 6-
population dataset: the Netherlands and France as one single population, Ethiopia, Cameroon, 
Rwanda, Southeast Africa and South Africa. The top SNPs above the false discovery rate of 5% 
are indicated and constitute candidate positions for directional selection across the intercontinental 
dataset. D) Model-based FST coefficients for 7,095 SNPs from a 5-population dataset where only 
the African populations in panel A were considered. For both panels the dashed line corresponds 
to the FST value of a false discovery rate (FDR) of 5%. 
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Figure 11. Evidence of positive selection at 7A3-7B1.
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The demographic models of the populations used in the analysis could have an effect 

on the results. For instance, the fact that the two European populations were derived from 

the same ancestral bottleneck constitutes a violation of BayeScan’s demographic model. 

Therefore, we ran Bayescan on the same dataset treating the two European populations 

as one. The results show a substantial decrease in the number sites with below-average 

FST values but the same outliers of high differentiation remained (Figure 11C). 

Interestingly, the exclusion of European populations from the analysis did not change the 

pattern of highly differentiated, outlier SNPs (Figure 11D). This suggests that the 

phenomenon of allele frequency differentiation at candidate SNPs had already started 

within the African continent. 

Among the outlier SNPs that show high differentiation across the entire 

intercontinental dataset, the top ones are 86,661C/T (FST=0.4697, q-value=0.0024)	
  and 

86,670T/C (FST=0.4653, q-value=0.0042). These two non-synonymous SNPs are located 

in exon 5 of the computationally predicted gene CG1677 and show alleles in perfect LD 

(Figure 12A). The TT haplotype (86,661T – 86,670T) is in high frequency in the 

Southeast African samples and intermediate in Rwanda; its frequency decreases with 

increasing latitude to be replaced in the European populations by the CC haplotype 

(Figure 12B). Both SNPs predict changes in the amino acid sequence of the protein. The 

common Southeast African form of the protein codes for a threonine (Thr) and an 

asparagine (Asn) at residues 936 and 939, while the cosmopolitan form has an alanine 

(Ala) and aspartic acid (Asp) at these two positions.  

The third highly significant SNP is 80,089A/G (FST=0.4145, q-value=0.0313) located 

between genes CG1958 and CG1677. It is an outlier because of the contrasting differences 

in allele frequencies between Southeast African populations and West Africa (Cameroon) 

(Figures 12B). The putatively ancestral allele is most frequent in South Africa, Ethiopia 

and Europe, intermediate in Rwanda, and in Congo the derived allele G is fixed. Our 

fourth top SNP 101,154C/G (FST=0.4067, q-value=0.0480) that is located 5 kb upstream 

of gene unc-119 shows allele frequency changes following a south to north gradient 

(Figures 12B and 13B). The Southeast African populations exhibit the derived variant G 

in low frequency while in Rwanda this allele has higher frequency, but is still considered 

low to intermediate. In western Africa and Ethiopia the variant was fixed. Non-African 

lines are also fixed for allele G at this position. There is no evidence for LD of this SNP 

with adjacent SNPs. 
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Figure 12. Allele frequency change at highly differentiated SNPs at 7A3-7B1. 

 
A) European and Southeast African D. melanogaster haplotypes for the two non-synonymous SNPs  
(86,661-86,670) in intron 5 of gene CG1677. These two SNPs correspond to amino acid positions 
939 and 936. B) Allele frequencies of the four top differentiated SNPs across seven different 
populations along a latitudinal gradient. Populations are as follows: the Netherlands and France 
(EUR), Ethiopia (ED), Cameroon (CO), Rwanda (RG), Southeast Africa (SEA), and South Africa 
(SP) (see Materials and methods). 
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2.3.4 A likely case of compensatory evolution at CG1677 

Insights into the evolution of the four significantly differentiated polymorphisms described 

above may be inferred from the two coding SNPs that cause the amino acid differences 

between the African and cosmopolitan versions of peptide CG1677. Two aspects are 

especially interesting about this discovery. First, the close proximity of the two involved 

amino acid positions (936 and 939) and second the pattern with which the amino acid 

combinations are observed across continents.  In Southeast Africa both combinations 

Thr-Asn and Ala-Asp, are present at sites 936 and 939 respectively, where the former is 

more common and no other combinations exist. In Europe, however, Ala-Asp is fixed 

(Figure 12A). These facts could reflect a compensatory evolution scenario. However, it is 

difficult to study in detail this hypothesis in the absence of tertiary structure of protein 

CG1677. After subjecting the primary sequence of the protein, in its two versions (E14 

and ZK157), to a structure prediction program (Kelley and Sternberg 2009), we observed 

that both amino acid positions are part of an α-helix; i.e., they are located on neighboring 

helix turns and can therefore interact. Interestingly, Thr and Asn can form one hydrogen 

bond between their side-chains more than Ala-Asp. Because of a homology search at 

Uniprot (Uniprot-Consortium 2014) we could also establish that residues 415 to 450 likely 

comprise its zinc finger domain, presumably the active site of this protein. 

This likely case of compensatory evolution could explain the observed selective sweep. 

It is interesting to reconstruct the mutational events at the codons corresponding to 

residues 936 and 939. First, we looked at patterns of background variation of the TT and 

CC haplotypes in the Sub-Saharan African populations where these are found. We 

observed that variation in the TT background is higher, which attests for its ancestral 

status within the D. melanogaster lineage. However, the presence of a CT haplotype in the 

out-groups suggests that a transition C → T at position 86,661 occurred early in D. 

melanogaster. Subsequently the reverse transition (T → C) occurred at 86,670, which in 

turn was compensated by back mutation (T → C) at position 86,661. This succession of 

point mutations may have created the CC haplotype currently observed in cosmopolitan 

D. melanogaster. We support this conclusion based on an ancestral state reconstruction 

analysis conducted with all available Drosophilid sequences of the gene CG1677 (data not 

shown).  
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2.4 SWEDISH FLIES 
 

2.4.1 The edge of the D. melanogaster habitat range 

For several Drosophila species habitat range borders usually entail high latitudinal and 

altitudinal locations with heterogeneous climate conditions (Kellerman et al. 2009). 

Climate conditions such as temperature experience daily and seasonal fluctuations, which 

become more pronounced as latitude increases. The low temperatures that characterize 

high latitude locations are stressful for D. melanogaster and therefore set the edge of its 

habitat range. Both, cold stress tolerance and reproductive diapause are traits associated 

with overwintering behavior that have been well documented in flies from high latitudes 

(Izquierdo 1991; Goto et al. 1999; Hoffmann et al. 2003a). These traits have evolved as 

adaptations in these particular environments (Hoffmann et al. 2003a; Ayrinhac et al. 2004; 

Kimura 2004). While some researchers maintain that edge populations are ideal systems 

to study adaptation to novel habitats (Hoffmann and Blows 1994), others have suggested 

that the demographic conditions of these edge populations may not facilitate the 

operation of positive directional selection  (Kawecki 2008; Sexton et al. 2009). 

Populations in marginal habitats have lower population densities relative to core 

habitats and are more fractionated in space (Vucetich and Waite 2003). Furthermore, 

edge populations experience high connectivity with core populations characterized by a 

highly asymmetrical dispersal (Kawecki 2008). Because core populations produce more 

individuals these will be more likely to migrate towards edge populations than the other 

way round. With small population sizes the destiny of beneficial mutations, if they get to 

occur in situ, is primarily dictated by genetic drift. Beneficial mutations can also arrive 

from core populations. Even then, their benefit has to be high enough to escape loss to 

drift. The general view is that the majority of mutations brought by migrants from core 

populations will be maladaptive in edge environments (Kirkpatrick and Barton 1997; 

Kawecki 2008). However, this detrimental effect of migration is only expected when there 

is a steep transition of environmental conditions between core and edge locations. If the 

change of ecological conditions across habitats is smoother, migration from core 

populations to the edges may bring a higher proportion of alleles beneficial in edge 

localities (Kirkpatrick and Barton 1997). Likewise, further inclusion of ecological 

dynamics at habitat edges, such as interspecific competition, may increase the chances of 
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adaptive evolution (see Sexton et al. 2009 for a review). Although edge populations may 

be regarded as genetically depauperate (due to their low levels of genetic variation) they 

may still respond to selection on ecological traits (see selection on desiccation resistance in 

Drosophila serrata, Blows and Hoffmann 1993). This implies that the adaptive potential of 

edge population may be unaffected by their demographic situation (Willi et al. 2006).  

The latitudinal edges of D. melanogaster's current distribution are not known with 

geographic precision. However, these are expected to be variable and strongly dependent 

on both, insect own dispersal capacity and the speed with which global warming creates 

favorable conditions for successful northward and southward colonization of new 

territories (Régnière et al. 2012; Rodríguez-Trelles et al. 2013). A fairly good 

approximation of how far D. melanogaster has gone and of where edge populations are 

located can be derived from reports on natural populations worldwide. The east coasts of 

Australia and Tasmania are by far the best-sampled locations with a latitudinal extreme 

reported as far as 43º S (Hoffmann et al. 2002). In the Americas the reported 

southernmost population was in central-south Argentina at 38º S (Fallis et al. 2011), while 

in North America, flies have been sampled at latitudes between 44º and 45º N (Capy et al. 

1993; Schmidt and Paaby 2008). In Europe, D. melanogaster has been sampled in 

Scandinavia at latitudes between 55º and 60º N (Hale and Singh 1991). Moreover, 

natural populations have been reported in the warmest periods of the year at higher 

latitudes in Sweden and Finland (Bächli et al. 2005); A. Saura personal communication). 

As a first step to conduct studies aimed at understanding the evolutionary dynamics 

that take place in edge populations, particularly whether they have successfully adapted to 

local conditions, we sampled D. melanogaster in the urban area of Umeå (in northern 

Sweden). These flies were parental to a collection of 80 inbred lines, currently kept in our 

laboratory. This section is meant to introduce this Umeå collection, reporting on aspects 

of the collection and the generation of sequence data at a genome-wide scale. While a 

thorough description of genome variability patterns in this population is beyond the 

intended scope for this section, we revisited chromosomal region 7A3-7B1  (of interest in 

section 2.3) and provide a glance of how variation appears at this QTL region in the 

Swedish population. 

 



2.4  SWEDISH FLIES 

 

71 

2.4.2 The Umeå collection and its 19 genomes 

Towards the end of the warm season in the second half of August 2012 we collected a 

total of 106 gravid females in the lapse of one week in the urban area of Umeå (63° 49' N, 

20° 15' E). The exact sampling places are indicated in Figure 13A. These trap places were 

primarily chosen because of their likelihood of being visited by flies as well as by the 

intention of evenly sampling Umeå's city center. Sampling on a single spot would increase 

the chance of bias towards few fly families, which could lead to wrong conclusions upon 

genetic variability analyses. Trap site yield was highly heterogeneous across the entire 

sampling area. We obtained flies from 9 of the 20 trap sites and observed that not all sites 

contributed equal numbers of flies to the whole collection. For instance, 78% of the final 

number of female flies came from 3 of them (Figure 13A,B). In situ inspection of trapped 

flies revealed that only flies of D. melanogaster or D. simulans were collected. The next step 

after collection was the species diagnosis of the collected females. 
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Figure 13. Details of Umeå fly sampling and sequencing project. 
 

A) Location of traps in Umeå city center (marked with brown squares). Traps that flies were 
found are marked with an additional blue pin. B) A total of 106 female flies were collected by 
the end of the week. The pie chart shows the fraction of flies contributed by each sampling 
location.  C) List of D. melanogaster lines from the Umeå collection that were sequenced. The 
list is sorted by collection site. 
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Using a molecular species diagnosis protocol we determined that the total of 96 surviving 

females brought from Sweden belong to the species D. melanogaster. We confirmed this 

diagnosis by conducting a batch of crosses with D. simulans males and monitoring offspring 

viability (see Materials and Methods). Subsequently we initiated a full sibling inbreeding 

protocol that we maintained for 10 generations to obtain a total 80 inbred lines. These 

lines are currently maintained in our stock collection. All inbred lines were given names 

consisting of the abbreviation “SU” that stands for Sweden and Umeå, followed a given 

line number. 

This Umeå collection is to our knowledge the largest set of wild type inbred lines from 

a high latitude location. The phenotypic characterization of these lines for phenotypes 

relevant to high latitude locations such us cold stress tolerance was already initiated in our 

laboratory. Swedish flies have showed on average the shortest recovery times from chill 

induced coma (K. von Heckel, unpublished results). The goal, however is to obtain a view 

of genome wide variability patters for this population.  

We prepared a total of 20 lines for full genome sequencing using Illumina technology. 

These 20 lines were chosen across different sampling spots (Figure 13C). Aware of the fact 

that localized residual heterozygosity found in genomes of inbred lines complicates the 

course of population genetics analyses, we used genomes of haploid embryos as material 

for the sequencing process. Haploid embryos from each chosen line were generated 

following the method of Langley et al. (2011) and their genomic material fully sequenced. 

We obtained 19 full genomes from this sequencing effort (Table 5). The embryo of line 

SU20 was virtually devoid of any nuclear DNA, despite having passed embryo DNA 

assessments (see Materials and Methods).  

Within the 19 Umeå genomes there is substantial variation regarding sequence depth 

and coverage (see Table 5). A total of 14 genomes can be regarded as the “high quality” 

sequence set. Across this high quality group, the mean sequence depth was 59X (±22.5X) 

with an average value of median sequence depth of 51.2X (±22X). Sequence coverage in 

this group is homogenous with a mean of 68.84% (±0.96). The remaining 5 genomes 

make up the low quality set with both average mean and median depth of 4X and 

coverage of 51.3 % (±13.97). We observed no correlation between mean depth and 

genomic coverage (Spearman ρ= 0.51971, P>0.01). 
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Table 5. Assembly statistics of the 19 Umeå genomes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this table, ‘Nuc gen reads’ shows the fraction of the reads per embryo that aligned to nuclear D. 
melanogaster genome reference assembly (see Material and Methods). Heterozygous sites indicate the 
fraction of position where more than one base was observed. The four columns related to sequence 
depth provide an idea of the distribution of values for this variable per embryo. Note that all 
positions of the reference genome (including the mitochondrial genome) are taken into account. 
Coverage reports the fraction of the reference assembly that was covered by reads derived from 
each sequenced embryo.  
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2.4.3 A preview of selection patterns in Umeå 

After having generated this valuable Swedish D. melanogaster dataset, it is impossible to 

refrain from looking into variability patterns across regions (and even entire 

chromosomes) of interest. We examined some genomic regions in this Swedish population 

and briefly report our findings. Because of the interest generated by the results presented 

in sections 2.2 and 2.3, we looked at the X-linked 124-kb long QTL region (at 7A3-7B1). 

We retrieved the 14 core sequences of the Swedish set for this region from our server and 

run our pipeline to obtain standard summary statistics (see Materials and Methods). It was 

not surprising to learn that average values of sequence diversity and divergence with D. 

simulans were on the range reported for other European populations (Table 6) and that the 

approximately 40 kb reduction of heterozygosity that characterizes the European selective 

sweep was also present in this Swedish population (Figure 14A).  

A remarkable feature revealed by pair-wise FST estimates among European and 

African populations is that, for this region, Sweden is on average the least differentiated of 

the three European populations with respect to the Africans, and among Europeans 

Sweden and France are the closest pair (Table 7). The immediate scenario that comes to 

mind when looking this pattern of population differentiation is that Sweden exchanges 

more migrants with France and Africa than with its closest geographic population the 

Netherlands, in fact it seems as if the Netherlands were the most isolated of all five 

populations.  

While there are several hypotheses that emerge to provide explanations to this 

counterintuitive observation, we have to remember that this fragment represents only a 

small part of the genome and that conclusions drawn here should be treated with caution. 

A detailed modeling of gene flow among these populations using the available genome 

wide pattern of variation will certainly shed light on this matter. Another reason for this 

observed pattern of genetic differentiation might be that the Dutch sample does not 

reflect the status quo of this population. Unlike the Swedish or French collections that took 

place within the last 5 years (Pool et al. 2012), Dutch flies were collected ~14 years ago. 

Such 10-year lapse between samplings may have captured different population dynamics 

marked by recent, improved dispersal (because of intensified fruit trade) and accentuated 

by current global warming. 
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Table 6. Summary statistics at 7A3-7B1 in three European D. melanogaster populations. 

Population θW (mean ±SD) θπ  (mean ±SD) Dxy (mean ±SD) 

SU 0.0008 ±0.0005 0.0008 ±0.0006 0.11160 ±0.04213 

NL 0.0010 ±0.0006 0.0010 ±0.0007 0.09529 ±0.03522 

FR 0.0008 ±0.0006 0.0008 ±0.0007 0.10423 ±0.03817 

 

Table 7. FST at 7A3-7B1 among five D. melanogaster populations. 

FST (mean ±SD) 

 SU NL FR RG 

NL 0.1472 ±0.1462       

FR 0.1023 ±0.1796 0.1180 ±0.1446     

RG 0.2464 ±0.1480 0.3148 ±0.1425 0.2733 ±0.1346   

SEA 0.2312 ±0.1487 0.3223 ±0.1402 0.2676 ±0.1420 0.0998 ±0.0929 
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Figure 14. Patterns of genetic variation at 7A3-7B1 in Sweden. 

 

A) Nucleotide diversity (θπ) obtained for consecutive 2-kb long windows in Sweden (SU), light 
blue, and a pool of Southeast African (SEA) lines sampled around Lake Kariba in Zimbawe and 
Zambia in orange. B) Differentiation (FST), between SU and SEA calculated as normalized 
distance of Nei. C) Likelihood (CLR) profile along the 124 kb at 7A3-7B1 using SNP data of 
Sweden, with significance thresholds as in Figure 11. In panels A and B, thin, continuous lines 
represent the average value for each summary statistic across the 62 windows, dashed lines 
represent 1 SD above and below the corresponding summary statistic mean. 
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Finding evidence for positive selection in the genome is another intended goal of the 

analysis of this Swedish dataset. We conducted a X chromosome wide search for 

footprints of selective sweeps based on the analysis of the SFS, using the program SweeD 

(Pavlidis et al. 2013), just as we did with the X chromosome dataset from the Netherlands 

and France in the preceding section. The sweep-like CLR profile, observed in the 

Netherlands and France at 7A3-7B1 was also detected in our Swedish population (Figure 

14C). Although the demographic modeling of this population has not yet been completed, 

which leaves us without a proper scenario to test this selective hypothesis; this selective 

sweep likely reflects an authentic signal of positive selection, as revealed by its height 

along the X chromosome scan (Figure 15).  

The comparison of the Swedish CLR profile with that of the Netherlands and France 

(as one population) reveals strong similarities in the location of selective sweeps, yet the 

heights of the corresponding peaks might be different. This is a likely reflection of the 

common evolutionary history of these European populations, for instance the peak under 

deficiency Df(1)ED6906 at 7.2 Mb is the highest among all observed in both datasets. 

Interestingly, the 0.5 Mb neighborhood where this peak is located appears as the most 

conspicuous selective sweep hotspot along the X chromosome. There are also other likely 

cases of selective sweeps private to the Swedish population, for example a series of peaks 

at 14.2 Mb that are not observed in the Netherlands or France. By obtaining CLR 

profiles along broad genomic regions, such that presented here, we can now locate 

selective sweeps with unprecedented precision. The task that still remains a challenge is to 

functionally characterize these selective sweeps and put these results in the light of trait 

evolution (Ober et al. 2012).  

 

 

Figure 15 .   CLR profile along the X chromosome in three European populations of 

D. melanogaster (opposite page). 

 
CLR values above significance line at 72 (see chapter 4 and methods section for SweeD) mark 
putative selective sweep regions. Note how these regions are shared by both European datasets. 
The red arrow at 7.2 Mb indicates the CLR of the region under deficiency Df(1)ED6906. 
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Figure 15. CLR profile along the X chromosome in three European populations of D. 
melanogaster. 
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III – DISCUSSION 

 

 

 

 

3.1 THE GENOMIC BLUEPRINT OF COLD TOLERANCE 
 

3.1.1 X-linked variation affecting CCRT: from QTL to QTGs  

The interest in revealing the genetic basis of complex traits has, thus far, been mostly 

limited to the field of quantitative genetics. For an evolutionary quantitative geneticist, the 

interest goes beyond cataloguing genes (or their variants) that affect a given phenotype. 

The aim is to use this knowledge to understand the direction of evolution in traits and the 

constraints that are placed on them (Lynch and Walsch 1998). As population geneticists, 

we have joined this “gene mining endeavor” (see Rockman 2012) with a more specific 

goal in mind, namely to investigate whether selection on these traits is also reflected in its 

underlying genes. In the current study, we were particularly interested in knowing 

whether these genes also bear the footprints of selective sweeps. We started by defining 

our phenotype of interest: cold tolerance. This trait is assessed in D. melanogaster by scoring 

the time to recover after chill-induced coma. Subsequently, we developed an 

experimental design to identify the genes (and their variants) that affect this phenotype in 

order to define the appropriate genomic regions for population genetics analyses. 

Although the entire genome is expected to harbor variants of interest, here we restricted 

our search to the X chromosome where no cold tolerance genes have been reported up to 

this point (Svetec et al. 2011).  



3.1  THE GENOMIC BLUEPRINT OF COLD TOLERANCE 

 

 83 

Our results confirm recent findings that the X chromosome harbors variants that 

affect CCRT. Initial evidence of substantial X-linked variation associated with CCRT 

came from transcriptome analyses by (Ayroles et al. 2009) and (Telonis-Scott et al. 2009). 

Subsequently, we revealed the first set of X-linked QTL for cold tolerance (Svetec et al. 

2011). A total of six QTL with significant additive effects on CCRT were identified. 

These QTL encompass broad chromosomal regions, each containing hundreds of genes 

that can, in principle, be regarded as candidate QTGs. Furthermore, these QTL were 

affected by sex-specific and QTL - QTL (epistatic) effects. This is a fact that complicates 

the elucidation of how these QTL may influence the phenotype (Phillips 2008; Mackay 

2014). For instance, the QTL at 0 cM is only detected in male flies (and explains up to 

9.30 % of the phenotype variance) and the QTL at 9 cM is only detected in female flies 

(explaining 5.63% of the phenotype variance). These sex-specific effects can arise from 

actual sex differences in the architecture of the trait or merely represent a lack statistical 

power to reveal its effect in the other sex (Mackay 2001; Svetec et al. 2011). Epistatic 

interactions in the context of QTL mapping, if not considered carefully, may promote 

misleading interpretations. For instance, chromosomal intervals may appear as QTL with 

spurious additive effects. These cases usually occur when there are interactions among 

two or more factors, which on their own do not have any effect on the phenotype. In the 

work of Svetec and colleagues (2011) the level of resolution within each QTL was mainly 

limited by the density of markers employed to define mapping intervals. The question still 

remains, however, whether each QTL interval represents a single QTL or arises from the 

interaction of another smaller QTL nestled within.  

Dissecting these QTL is the only possible way to identify the underlying genes and 

reveal whether sex-specific QTL or epistatic interactions are responsible for the assigned 

effect on the phenotype. In this work, we opted for two parallel approaches to carry out 

the dissection of the three X-linked QTL for CCRT reported by Svetec et al. (2011). One 

approach consisted of selective sweep mapping (also known as hitchhicking mapping, see 

Nuzhdin and Turner 2013) applied to the QTL interval at 56 cM (cytological interval 

13E-20E). The other method was deficiency-based quantitative complementation 

mapping (Pasyukova et al. 2000; Mackay 2001), carried our on the QTL at 17 cM 

(cytological interval 6C-10B) and at 24 cM (cytological interval 8E-11D).  In the following 

section, we discuss the results of the quantitative deficiency mapping approach. The 

results obtained with the selective sweep mapping method are discussed in section 6.2.2.  
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The QTL intervals at 17 and 24 cM were chosen because they have substantial 

overlap with each other and exert individual additive effects of CCRT, while exhibiting 

epistatic interactions in flies of both sexes (Svetec et al. 2011). This is advantageous, 

because quantitative complementation tests for X-linked QTL in D. melanogaster can only 

be conducted in the homogametic sex. We used a minimal set of 24 deficiencies that we 

tested in female flies revealing potential allelic (or additive) effects on CCRT at the 

following cytological intervals: 7A3-7B1 (Df(1)ED6906); 7D1-7D5 (Df(1)C128); 7F1-8A2 

(Df(1)BSC592); 8C-8E (Df(1)BSC537). Of these four intervals, the first two had highly 

significant, likely additive effects. The comparison of the location of these new intervals 

with respect to the span of the initial QTL reveals that (i) the QTL at 17 cM is split into 

two significantly linked intervals and (ii) the initial QT at 24 cM does not seem to be 

represented by any of the deficiencies that failed to complement except for Df(1)BSC537 

at the interval 8C-8E. 

The apparent differences between the original QTL intervals and those revealed by 

our deficiency mapping approach can be readily explained. For example, the fact that the 

QTL at 17 cM is now split in smaller intervals, each with additive effects on the trait in 

question, is a common feature of QTL fine mapping methods. This has been seen 

elsewhere within QTL for longevity (Pasyukova et al. 2000), olfactory behavior (Fanara et 

al. 2002), starvation resistance (Harbison et al. 2004), and locomotor behavior (Jordan et al. 

2006). The commonly accepted explanation for this observation is that many broad 

intervals detected by recombination mapping methods represent the compound signal of 

multiple linked factors. Successful confirmation of the individual effects of the smaller 

QTL by functional tests has been achieved in several cases (Mackay 2001). Likewise, the 

overlap of several linked SNPs, identified via GWA studies, with known QTL for the 

same trait is further evidence of this explanation, and it emphasizes the underestimation 

of the associated factors while overestimating its effects (Mackay et al. 2009) as a general 

feature of recombination mapping as a method. On the other hand, the lack of 

correspondence between the deficiencies within the cytological interval at 24 cM should 

not be used as an argument to rule out the existence of this QTL. A parallel approach, 

such as GWA study, may substantially help with the resolution of these conflicting results. 

In the next section, we will consider the greatest weakness of quantitative 

complementation testing, namely that it cannot distinguish between additive and epistatic 

failures to complement. 
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3.1.2 Ubiquitous epistasis 

Variation in quantitative traits arises by the interaction between genes, non-coding 

functional and sites throughout the genome. This may provide the elements for charting 

traits in the genome in order to understand their potential to evolve (Mackay 2014). 

Epistasis is a term coined by Bateson (1909) to describe the ability of a gene to ‘‘mask’’ the 

influence of mutations at another gene on a given phenotype (Cordell 2002). The same 

phenomenon, but from a population genetics perspective, was described by Fisher in 

1918 under the term ‘epistacy’. Specifically, epistacy refers to the statistical deviation of 

multilocus genotype values from an additive model for the value of a phenotype (Phillips 

2008). Although the term epistacy is seldom used in the contemporary lexicon, both ideas 

of epistasis pertain to quantitative genetics, and are of particular importance in QTL 

mapping approaches (Lynch and Walsh 1998; Mackay 2001, Phillips 2008). 

As previously discussed, the X-linked QTL reported by Svetec et al. (2011) at 17 cM 

and at 24 cM revealed a significant epistatic interaction.  In order to determine which 

genes within each interval are likely to be interacting, we dissected these two QTL with a 

deficiency complementation test approach (chapter 3). Although we initiated the 

discussion of these results in the preceding section, here we focus exclusively on the effect 

that epistasis may have contributed to our results. Using quantitative complementation 

tests with deficiencies that served as the genomic background of two X chromosomes 

derived from European and African populations (Svetec et al. 2011), we observed that the 

intervals at 7A3-7B1 (Df(1)ED6906) and 7D1-7D5 (Df(1)C128) showed a significant 

failure to complement. However, this result does not have a unique interpretation. A 

failure to complement may arise from purely additive effects of alleles uncovered by the 

deficiency (the expected explanation) or by interactions between these uncovered alleles 

and other sites in the genome (Falconer and Mackay 1996; Pasuykova et al. 2000, Mackay 

2001).  

Our results are likely cases of allelic failure to complement, though we cannot fully 

discount the concomitant epistatic effects that became evident in the ANOVA analyses 

(Table 1). We noticed that for both deletions, the expected L x G effect was also 

accompanied by a highly significant L effect. By looking back at our experimental design, 

we can find the likely source(s) of this epistatic effect. Since we used the E* and A* lines in 

deficiency tests and not their wild type progenitors, NL14 and ZK157, we may arguably 

be able to restrict the source of epistasis to the X chromosome. There is still uncertainty as 
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to how much of the two observed failures to complement are due to epistasis. Although 

we lack additional information to provide an answer to this question, we suggest that one 

way to disentangle any possible epistatic and additive effects on CCRT is by testing the 

same deficiencies with lines where smaller intervals of the two wild type derived X 

chromosomes are introgressed on the same genetic background. Doing so would control 

for the effects due to the genetic background. We want to emphasize, however, that such 

an approach is beyond the scope of this thesis and that the impossibility to rule out any 

effect of epistasis in our findings does not interfere with our major goals in this work. 

Furthermore, all of the other methods thus far employed to identifying candidate genes 

for cold stress tolerance in the literature (e.g. GWAS (Mackay et al. 2012), transcriptome 

analyses on artificially selected populations (Telonis-Scott et al. 2009) or in naturally 

evolved populations (Ayroles et al. 2009)) are also sensitive to the confounding effects of 

epistasis (Huang et al. 2012). Since epistasis is inherent to biological systems (Remold and 

Lenski 2004; Shao et al. 2008), the best course of action is to treat it as an asset or a tool, 

instead of a nuisance, when mapping the QTL or QTNs that affect complex traits (see 

Verhoeven et al. 2010). Consequently, in the remainder of this chapter, epistasis is invoked 

to describe the ways in which our candidate genes might be contributing to variation in 

cold stress tolerance. 

In spite of the unpredictable nature of epistasis, a handful of candidate genes for 

CCRT and other related proxies of cold stress tolerance appear consistently among 

previous investigations (see Hoffmann et al. 2003b for a review). A common function 

among these genes is their role in known physiological processes that lead to cold-induced 

coma or that are able to reverse this state (reviewed in Macmillan  and Sinclair 2011). For 

instance, the involvement of heat shock protein genes, such as hsp70 in CCRT is easy to 

understand, considering the protective role of these proteins against the damaging effects 

of temperature extremes (Hoffmann et al. 2003b; Colinet et al. 2009). Another important 

example is Smp-30, a gene that encodes as 33kD protein involved in Ca2+ ion homeostasis, 

since loss of ion homeostasis is one of the well-studied physiological disturbances induced 

by cold stress in insects (Macmillan et al. 2012). Smp-30 is currently the best-studied 

candidate gene for CCRT, even in the context of population genetics (see Clowers et al. 

2010). In this work, we gathered initial evidence suggesting that brk is the first X-linked 

gene that might be involved in CCRT and cold tolerance, this is discussed in the 

following section. 
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3.1.3 Candidate QTG: brk 

Our current understanding of the molecular role of brk comes from the field of 

developmental biology. Brk is a transcription factor with DNA-binding properties. During 

early development this protein targets and represses the expression of genes that belong to 

the Decapentaplegic (Dpp) network (Kirkpatrick et al. 2001). Both Brk and Dpp are 

necessary for successful patterning of embryonic and larval structures. In the developing 

wing, Brk triggers an apoptosis cascade in cells with impaired Dpp signaling (Minami et al. 

1999; Moreno et al. 2002; Ziv et al. 2009), however, the mechanisms behind this apoptotic 

pathway remain poorly understood (Suissa et al. 2011). The expression of brk is itself 

negatively regulated by the presence of Dpp. Dpp signals the formation of yet another 

expression repressor protein complex called SMM (so named for its three constituent 

proteins: Schnurri, Mad and Medea), which binds to multiple modular enhancers along 

the 16 kb-long promoter region of brk to repress its expression (Pyrowolakis et al. 2004; 

Yao et al. 2008).  

To our knowledge, our work is the first suggesting the involvement of brk in an adult 

phenotype. The results from a series of expression analyses suggest that the difference in 

the level of brk expression between Zimbabwean and Dutch flies is likely associated with 

the average CCRT observed between these two populations (Figure 5). The actual 

challenge is identifying the genetic variants that could bridge these two phenotypes. In 

addressing this challenge, we found a haplotype consisting of a set of SNPs and deletions 

located 3 kb upstream of brk, exactly where transcription factor binding sites affecting brk 

expression were identified (Yao et al. 2008). We hypothesized that this haplotype could 

help us explain, at least to some extent, the different expression levels of brk between 

populations, as well as a fraction of the quantitative variation in CCRT. We did not find 

clear evidence to support these hypotheses. The inbred lines that were employed to assess 

correlations with the presence or absence of the haplotype did not reveal significant 

differences in brk expression between populations or between treatments. However, a 

trend among the lines of African origin was observed (Appendix C). When these 

observations are taken together (Figure 5, and see Hutter et al. 2008), the case can be 

made that brk is strongly influenced by its genetic background (Mackay 2001, Huang et al. 

2013 Mackay 2014). Moreover, the effect of genetic background might also help us 

understand why a SNP located approximately 3kb upstream of brk shows substantial 

association with CCRT (Mackay et al. 2012) in the North American population of 



3.1  THE GENOMIC BLUEPRINT OF COLD TOLERANCE 

 

 88 

Raleigh, which is a product of admixture of African and European gene pools (Duchen et 

al. 2013). This may also explain why the same site may have an effect on the trait in 

African flies and not in European ones.  

Detected QTL-QTL interactions are likely reflections of underlying gene-gene 

interactions for a given phenotype. This may be an explanation for the interaction 

revealed by Svetec et al. (2011) between QTL at 17 and 24 cM and the potential epistatic 

effect of the intervals at 7A3-7B1 and 7D1-7D5 with other functional elements located 

elsewhere on the X chromosome. Our candidate gene brk could be one of these 

interacting factors. Reviewing literature in which brk is mentioned, we found a rich list of 

transcription factors and cofactors with binding sites within the 9 kb upstream of brk's 5' 

UTR (Anderson et al. 2005b; Yao et al. 2008; Negre et al. 2011). Since the phenotype of 

interest here is measured in adult flies, we reduced the list of interacting transcription 

factors to those with experimental evidence of expression in adult flies.  There were three 

proteins of top interest that conformed to our criterion: Nejire (CG15319), CrebA 

(CG7450), and CrebB (CG6103).  

It is possible that Nejire and CrebA/B are members of a transcriptional network that 

includes brk and are also activated in response to cold stress. Current experimental 

evidence suggests that these three genes have a moderate response to cold stress. 

However, considering that gene expression is a trait that is highly dependent on genetic 

background, it is better to take this information with caution and study these genes within 

each of our fly populations. Furthermore, it might be relevant to mention that nejire is just 

one of the many X-linked genes located in the cytological interval spanned by the QTL at 

24 cM. 

Nevertheless, experimental validation of these gene-gene interaction hypotheses is 

required to check whether they actually have a role on cold stress tolerance variation or 

any other trait related to environmental adaption.  The relationship of brk expression to 

variation in CCRT may be further addressed by following a mapping strategy for variants 

affecting its expression, for instance as part of an “expression QTL” (eQTL) mapping 

effort (Sun and Schliekelman 2010; Zichner et al. 2013), by directly studying the candidate 

eQTG for the genes of interest (nejire and CrebA/B), or by performing protein 

immunoprecipitation assays under cold stress conditions. The latter approach could 

provide an insight into the transcriptional networks that are activated during stress 

response, revealing the set of transcription factors and their respective binding sites that 
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are active under cold stress. Moreover, performing these analyses in lines with contrasting 

CCRT such as NL14 and ZK157 and/or their X chromosome introgressed derivate E* 

and A* can tell us about the transcriptional differences that underlie their cold stress 

tolerance differences and to what extent X-linked allelic differences are reflected in this 

difference or are masked by the isogenic background. 

 

 3.2 THE MEANING OF SELECTIVE SWEEPS AT A QTL 
 

At the interval 7A3-7B1, when Df(1)ED6906 was deleted, we detected and characterized 

one of the strongest signatures of positive selection in the D. melanogaster genome. In fact, it 

appeared as the single strongest selection signature on the entire X chromosome (see 

Figure 11 and Appendix F). Although we have not estimated its selection coefficient, we 

the CLR values reveal that the SFS of this region is exceptionally biased towards fixed 

and high frequency derived variants, in comparison to the rest of the X chromosome in 

European D. melanogaster. This is an unequivocal sign of the effect of positive selection in 

molecular space.  The sweep region encompasses about 40 kb with boundaries that are 

sharply defined. Of the seven candidate genes mapped to this cytological interval, the 

coding region of four of them (CG1958, CG1677, CG2059, and unc-119) are found within 

the selective sweep. We observed that brk and approximately 11 kb of its upstream 

enhancer region are left outside this selective sweep.  

After having found such a strong signal of positive selection involving four different 

coding regions, it was necessary to determine the exact target of selection. To achieve this, 

we studied patterns of allele frequency differentiation in a panel of European and African 

(derived and ancestral) populations. This is an approach that proved to be of enormous 

utility, since the information offered by the European population alone would have been 

limited, due to their virtual absence of variation along the 40 kb sweep interval.  With 

these FST-based analysis (Foll and Gaggiotti 2008), we observed that highly differentiated 

SNPs are enriched within the sweep area (Figure 11), and that the top SNPs were found 

within the coding region of CG1677, in the intergenic space between CG1958 and 

CG1677 and upstream of unc-119. 
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3.2.1 Candidate gene: CG1677 

The most interesting candidate target of selection is composed of two SNPs at relative 

positions 86,661 and 86,670, within exon 5 of CG1677. Recent work on correlated 

evolution of tightly linked sites in the Drosophila genome, suggests that such cases are well 

explained by compensatory evolution (Callahan et al. 2011). In our case, each of these 

SNPs codes for amino acid differences at residues 936 and 939 of the peptide CG1677. In 

the Southeast African sample, the amino acid combinations Thr-Asn and Ala-Asp are 

both present, while in Europe the combination Ala-Asp is fixed (Figure 12A). An exciting 

result came with the model of the secondary structure of CG1677 (Kelley and Sternberg 

2009) where we observed that both amino acid positions seem to be part of an α-helix, a 

configuration that implies an interaction of the amino acids at these positions.  

Interestingly, Thr and Asn can form one hydrogen bond more between their side-

chains more than Ala-Asp. The combination Thr-Asn may therefore make the protein 

more heat stable than Ala-Asp (Perl and Schmid 2002), which could be advantangeous  in 

tropical Africa, given that ambient temperature is an important variant affecting life 

history traits in fruit flies. Conversely, the combination Ala-Asp may lead to a less rigid 

structure and thus a possibly more efficient protein, which may be an advantage in the 

temperate climate of Europe. Ancestral state reconstruction (Lewis 2001) shows that the 

Thr-Asn combination represents the ancestral state with high probability and that Ala-

Asp arose through two point mutations within the D. melanogaster lineage (section 2.3). 

Since the intermediate states are not observed in the European and African population 

samples, the transition from Thr-Asn to Ala-Asp probably follows a compensatory 

evolution model (Kimura 1985; Innan and Stephan 2001) in which the intermediates are 

assumed to be strongly deleterious.  

There are several possible explanations for why selection may have targeted these two 

amino acid positions in the peptide CG1677. The gene is homologous to the human 

spliceosomal protein ZC3H18, with a Zinc finger domain for binding with RNA 

molecules (Andersen et al. 2013).  By alignment with vertebrate homologous proteins 

sequences, we determined that the sites we believe were targeted by selection do not 

belong to the Zinc finger domain, which is likely the active site of the protein. 

Experimental evidence from Herold et al. (Herold et al. 2009) revealed that CG1677 is one 

of the spliceosomal proteins in the fly that physically interacts with at least 18 other 
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proteins while performing its RNA editing task. In the absence of a resolved tertiary 

structure of the protein that would allow us to determine where, in space, residues 936 

and 939 are located, we can only speculate that these residues may be involved in 

spliceosomal assembly by directly participating in protein-protein interaction. It is 

plausible that compensatory evolution had taken place at these two positions to maintain 

(or optimize) the stability of the spliceosome in new environmental conditions, for instance 

at lower average temperatures. Finally, we should mention that although ‘regulation of 

gene expression’ is not a common biological category among genes associated with cold 

stress, two other genes on chromosome 3 (recently identified as candidate genes for 

CCRT) Taf5, and lsm10, also belong to this functional group. This is especially true for 

Lsm10, which is a part of the U7 small nuclear ribonucleoprotein complex (U7 snRNP), 

and plays an essential role in pre-mRNA processing (Fallis 2012). 

The other two significantly differentiated SNPs in the sweep region 7A3-7B1 occur in 

noncoding locations at relative position 80,089, between genes CG1958 and CG1677, and 

at relative position 101,154, within the large intron of CG1677 (see gene model below 

Figure 11D). Considering the distance between these two sites one important question 

arises here: namely whether these SNPs are hitchhiking with the two sites in exon 5 of 

CG1677, or are themselves independent targets of selection. Our BayeScan results in 

Figure 11D and Figure 12B already suggest that a strong process of allele frequency 

differentiation might have been occurred within the African continent. For example, it 

seems that SNP 80,089 might constitute, or be linked to, yet another target of selection 

perhaps involving CG1958, which, has been reported as a rapidly evolving, strongly male-

biased gene in flies of European origin (Hutter et al. 2008; Graveley et al. 2011). In 

addition, our qPCR assays (Figure 5) indicate that the expression of this gene in female 

African flies is higher and more variable than in Europe. Based on our data, it is 

impossible to determine whether the sex-biased pattern is reversed in Africa. In the 

African population, we studied expression for this gene in female flies only. Nevertheless, 

this may be a point of importance for future study, specifically looking at the meaning of 

such a strong selective sweep signal within a genomic region for relevance to cold stress 

tolerance. 
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3.2.2 Targets of positive selection and candidate QTG? 

Thus far, we have discussed the role of one of the candidate genes as a likely target of 

selection, responsible for the selective sweep that was documented at the interval 7A3-7B1 

under deletion Df(1)ED6906. This interval, as well as that at 15E, within the QTL at 56 

cM (Svetec et al. 2011), contains other genes that may also be targets of selection. Of all 

the possible causes of positive selection, we are currently interested in climate-driven 

selection, which we investigated with QTL for CCRT. Furthermore, because of co-

localization of these sweeps within the QTL for CCRT, we expected a causal association 

between the selective event and the evolution of the trait under consideration. In other 

words, we used selective sweep mapping as a criterion to prioritize candidate QTGs 

affecting CCRT.  Our results, however, do not suggest that the genes under the 

investigated sweep regions are strongly related to the cold-stress phenotype. As revealed 

by quantitative complementation tests (Table 2) and gene expression analyses (Figure 5), 

brk is the only candidate gene that was induced by cold stress and it is located outside the 

sweep region. The remaining genes within the sweep region (CG1958, CG1677, CG2059 

and unc-119) did not show cold related changes in their expression levels (Figure 5). 

Although CG1958 is differentially expressed at the constitutive level between Dutch and 

Zimbabwean flies, this difference remains unaltered with stress (Figure 4). Furthermore, 

we have carried out quantitative complementation tests on two of the four genes under 

the sweep (CG1677 and unc-119) where P-element insertions disrupting the expression of 

the genes were available. None of these tests (performed in the same way as with the 

deletions) revealed quantitative failure to complement (Table 2). Concordant results have 

been obtained when assessing expression levels of these genes at 7A3-7B1 in a D. 

melanogaster laboratory strain after cold stress (Graveley et al. 2011). 

 A similar situation can be seen with candidate genes CG4491 and CG16700, flanking 

the sweep at 15E. However, one exception should be noted. Ayroles et al. (2009) showed 

an association between CG16700 transcript variation and CCRT in a North American fly 

population. This suggests, once again, that in the cytological region 15E, the likely target 

of the selection (CG4991) is different from the gene that might be influencing cold stress 

responses. However, the fact that CG4991 is the target of selection (and not CG16700) is 

not clearly established by our results. Note that (in Figure 3) the expression level of 

CG4991 does not differ between the Netherlands and Zimbabwe, and that the high levels 

of gene expression variation within the former population disagree with the expected 
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effect of selection as a buffering agent of phenotypic variation (Zhou et al. 2012). The case 

of gene CG9509, also a detected target of selection in Non-African D. melanogaster, is a 

clearer example of canalization of gene expression (Glaser-Schmitt et al. 2013). 

Does this mean that selective sweep (or hitchhiking) mapping is a flawed approach to 

fine mapping of QTL affecting selection-driven traits? Hitchhiking mapping was 

envisioned as a QTL mapping tool in the late 1970s, however only two decades later did 

it start to be applied in model species for a variety of phenotypes (Keightley and Bulfield 

1993; Keightley 1998; Nuzhdin et al. 2007; Turner et al. 2011; Remolina et al. 2012). A 

common feature of these studies is that selection for the trait of interest was carried out 

experimentally, using populations that were also established in the laboratory. Under 

these conditions, initial allele frequencies at marker loci were known from the onset as a 

baseline. Therefore, at the end of the selection regime, the detected differences in allele 

frequencies between control and treatment populations, like those predicted under 

selective sweep theory, can be attributed to the applied selective pressure. This 

observation raises two contrasting points with respect to our approach. The first point is 

that we conducted our fine mapping protocol in a naturally evolved population from a 

temperate location. Although we only focused on cold stress tolerance, we are aware that 

in natural conditions, in addition to this phenotype, other traits were naturally selected 

(see Werzner 2011). This explains the fact that our results show co-localization of selective 

sweeps and QTL for CCRT but do not reveal a causal correlation.  

The second point is that in these artificial selection experiments (e.g. Nudzhin et al 

2007), the methods that were used to identify the divergent genomic regions between 

selected and control populations could not assess the final allele frequencies after the 

selection regime was completed. Thus, the fraction of the identified differentiated 

genomic regions (or QTL) in which fixation of beneficial alleles actually occurred remains 

a mystery. This is important because in our selective sweep mapping approach we can 

only identify regions of the genome where the fixation of alleles has occurred. 

Interestingly, recent implementation of next generation sequencing technology within 

hitchhiking mapping protocol sheds light on this matter. Turner et al. (2011) selected for 

body size in D. melanogaster (in both directions) for 100 generations and determined 

genome wide levels of allele frequency differentiation among evolved and control 

populations once selection ceased. On average, 12% of the SNPs in which significant 

frequency changes were seen correspond to differences >0.95 (i.e. fixation of, arguably, 
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beneficial and linked neutral alleles). 

It seems that hard sweeps represent only a small, yet non-negligible, fraction of the 

changes in allele frequencies driven by selection on multilocus traits. The fixation of 

beneficial alleles has been documented at genes associated with the domestication and 

development of breeds in economically important organisms such as chickens (Rubin et al. 

2010), dogs (Axelsson et al. 2013), and pigs (Rubin et al. 2012). But, this has also been 

documented in natural populations, such as coat color in deer mice (Peromyscus polionotus) 

(Linnen et al. 2013) or lateral plate armor in three-spine sticklebacks (Gasteroseus aculeatus) 

(Cano et al. 2006; Barrett and Hoekstra 2011). One can argue, however, that reduced 

pleiotropic effects of these genes on other ecological/life history traits frees them from any 

selective interference, therefore their response to directional selection is akin to that on 

monogenic traits. In conclusion, the use of population genetics approaches, focused on 

hard selective sweep mapping, to characterize QTL affecting polygenic traits such as cold 

stress tolerance, may not be sufficient to reveal the loci that harbor the fraction of genetic 

variation that matters for the evolution of the trait. 

 

3.2.3 Allele frequency shifts at a QTL 

The key changes in polygenetic adaptation are likely to occur in the parts of the allele 

differentiation spectrum that represent intermediate allele frequency changes due to 

selection.  In other words, the allele frequency shifts between populations. While 

theoretical results are succeeding in promoting the paradigm change from viewing 

adaptation as occurring mostly by the fixation of new variants (hard sweeps), there is also 

increasing acknowledgement of situations where selection occurs on standing genetic 

variation that does not lead fixation of beneficial alleles (Chevin and Hospital 2008; 

Pritchard and Di Rienzo 2010; Pritchard et al. 2010). We need to be able to detect these 

shifts at loci affecting adaptive traits in natural populations to gain a better understanding 

of this phenomenon. 
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In the present work, we conclude that brk is the prime candidate gene affecting 

variation in cold tolerance (among the seven genes uncovered by deletion Df(1)ED6906). 

In all the assessed D. melanogaster populations, we observed that genetic variation around 

brk is not lost, and particularly in European populations it is much higher than in the 

adjacent sweep region (see Figures 10, 11A).  We defined a series of indel polymorphisms 

in the enhancer region of brk  (Figures 7 and 8) at relative positions 109,442 to 109,976 

(i.e. about 3 kb upstream of brk's 5' UTR) and thus also outside the sweep region. Using an 

extended sample of populations from the DGPG2 project (Pool et al. 2012), we 

investigated the frequencies of this indel polymorphism in these populations. We classified 

the indel polymorphism into non-deletion haplotypes and three classes of deletions (see 

Figure 8). Based on linear regression analysis of the frequencies of the non-deletion 

haplotypes, we detected two antiparallel latitudinal clines where one spans from the 

populations near the equator (Rwanda, Gabon, Cameroon, Ethiopia, and Nigeria) to the 

north (France and the Netherlands) and another one from the equator to the south 

(Southeast Africa and South Africa) (P<0.05 in both cases; Figure 7C). Unlike well-studied 

cases of clinal variation in metabolic genes in Drosophila (e.g. the Adh gene) (Kreitman 1983; 

Hoffmann and Weeks 2007), both the functional and selective significance of the 

geographic correlation reported here for variants at the enhancer region of brk has yet to 

be established. There is the outstanding question about whether this search can be done 

at genomic scales.  

Allele frequency shifts associated with environmental adaptation have been already 

reported in humans (Hancock et al. 2010; Pritchard et al. 2010; Hancock et al. 2011).  

These studies made use of geographic or climatic variables to support the hypothesis that 

observed allele frequency shifts at tested SNPs were driven by selection. The underlying 

idea of their approach was to find loci where the allele frequencies showed unusually 

strong correlations with the environmental variable (Coop et al. 2010; Günther and Coop 

2013). Clearly FST is the summary statistic that can capture frequency shifts across 

populations (Hancock et al. 2010), but the successful implementation of this method 

requires the development of a null model in which the confounding effects of shared 

ancestry, gene flow, and genetic drift are considered (Beaumont 2005; Coop et al. 2010). 

Moreover, sampling error or uneven sample sizes among populations can also create false 

correlations between allele frequencies and environmental variables.  
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Given these issues, there are two main conclusions to be drawn from our experience 

with the brk enhancer region. Namely, (i) Although all the SNPs within the entire 

enhancer region of brk were subjected to an FST-based test of selection (Foll and Gaggiotti 

2008; Gaggiotti and Foll 2010), the fact that the allele frequency shift that we reported by 

other methods, had remained undetected by this FST analysis, attests to the insensitivity of 

many of the most powerful approaches in population genetics to identify cases of 

polygenic selection and (ii) however significant, the correlation between latitude and 

frequencies of insertion-deletion haplotype in brk enhancer region maybe spurious. Any 

future effort to find local adaptation in Drosophila should follow the considerations of Coop 

et al (2010) and integrate all available genomic resources such that more continents and 

geographic regions are better represented in the analyses.  

 

3.3 OLD QUESTIONS IN THE LIGHT OF NEW DATA 
 

For a long time, evolutionary biologists have been interested in understanding the effects 

of mutation, recombination, genetic drift, selection, demographic dynamics, migration, 

etc. on the genetic composition of organisms and populations. However, these questions 

have been chiefly addressed at a theoretical level, and only in the last 50 years, in an 

empirical manner, using genetic markers such as allozymes, RFLPs, microsatellites or a 

handful of genes. Although these studies represent a substantial deal of effort by the 

scientific community, the level of understanding of the initial phenomena is still 

incomplete. High throughput DNA sequencing technologies were developed with the 

promise of providing scientists with access to the genomes and its secrets. For evolutionary 

biologists this has also meant an opportunity to grasp the whole breadth of variation 

contained within populations. Nevertheless, several technical difficulties have had to be 

overcome before these technologies could properly assist Drosophila population geneticists 

in their research. 

Thus far, the DPGP is the leading D. melanogaster sequencing effort with an 

unprecedented sampling program on the African continent (Pool et al. 2012). By the end 

of its second phase, it has yielded a number of 139 genomes representing 21 African 

populations and 1 European population. Efforts undertaken by other laboratories have 

sequenced populations from around the globe. For instance, Kolaczkowski et al. (2011) 

sequenced populations at the extremes of a latitudinal gradient in Australia; Fabian et al. 
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(2012) concentrated on three populations along the east coast of the United States; 

Campo et al. (2013)  focused on  the North American west coast. With a total of 168 fully 

sequenced inbred lines from Raleigh (North Carolina), the DGRP represents the largest 

data collection from a natural population (Mackay et al. 2012). D. melanogaster populations 

from the Middle East (Hübner et al. 2013) and Malaysia (W. Stephan, unpublished data) 

have also been completed.  Our own sequencing effort is, to our knowledge, the only one 

that is meant to investigate the genetic composition of a high latitude population of D. 

melanogaster.

In spite of its 19 sequenced lines, representing a middle-of-the-ground sequencing 

effort, the sequence quality of the Umeå dataset is high. First, we dealt with residual 

heterozygosity by sequencing haploid embryos (Langley et al. 2011). As expected, the 

reported fraction of heterozygous positions after completing the sequence reads to the 

reference genome was on average 0.00015%.  Second, our average sequence depth of 

59.4X is 3 times higher that achieved by DGRP and 6-fold higher than that of the 

Australian east coast, and the North American east and west coasts. This increases our 

power to determine which of our SNPs are likely representing true natural variants and 

which are artifacts of the sequencing process. This, therefore, enhances the reliability of 

the conclusions that can be drawn from our dataset. 

The first population genetics question that our Swedish dataset will help investigate, 

together with DPGP2 dataset, deals with gene flow (Wright 1931).  The immediate goal is 

to be obtain the estimates of migration rates between continents, a task that is currently 

being undertaken within an approximate Bayesian computation framework (Duchen 

2013). If these estimates can be successfully obtained, we would able to understand the 

population dynamics taking place near the latitudinal border of D. melanogaster’s habitat 

range. We would be able to know, for instance, what European (or Mediterranean) 

populations exchange migrants with Scandinavia. Furthermore, it is still unknown 

whether Northern European populations overwinter in situ or whether they die out by the 

end of the warm season (Izquierdo 1991). If the latter scenario is true, Northern European 

populations are likely to be reestablished in late spring by migrants from warmer areas in 

the south. 

 A long term goal, however, is to develop methods to understand how much of the 

genetic variation that is shared by two or more populations can be unequivocally assigned 

to the homogenizing effect of gene flow and that of shared ancestry. If we could 
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determine which variants are new in the population because of gene flow, we would be 

able to proceed with testing hypotheses about the maladaptive effects of gene flow from 

habitat cores towards habitat edges (Kirkpatrick and Barton 1997; Kawecki 2008). This is 

a project for which our Umeå collection is suitable. Of course, knowing how allele 

frequencies change due to migration is not enough to fully address such questions. It is 

also necessary to know which alleles are potentially maladaptive, for instance those that 

affect life history traits and those traits, which increase survival in temperate 

environments. This requires knowledge of the genetic architecture of these traits in 

northern European populations, an endeavor we have just started with the present work 

(see also Svetec et al. 2011).  

Regarding the genetic basis of phenotypic variation, the level of understanding 

achieved with the DGRP population has no parallel. The DGRP has served to associate 

standing genetic variation with organismal phenotypes such as time to develop, lifespan, 

starvation resistance and CCRT (Mackay et al. 2012). Genetic variation has also been 

associated with transcriptome variation, by mapping cis-acting elements (or cis-eQTL) 

(Massouras et al. 2012). These studies have paved the way to address more complicated 

questions in systems biology, such as: how stable the transcriptome is to environmental 

disturbances (Zhou et al. 2012)? And how does epistasis governs phenotype variation 

(Huang et al. 2012)? From this last study we have learned an important lesson. The effect 

of any genetic variant is strongly dependent on the composition of its genetic background.  

New genetic backgrounds (presence or absence of alleles at other sites in genome) give rise 

to new interactions and therefore to new ways of building phenotypes (Mackay 2014). By 

extension, this is true for the genes, functional elements, or QTL where the variant 

resides. This has important implications if we intend to use our Umeå collection to study 

adaptation to temperate environments using candidate gene lists reported elsewhere 

(Mackay et al. 2012). We can, for instance, consider the variants known to be affecting 

CCRT in the DGRP as our candidate QTNs, but we need to prove that these variants 

also have the expected effect to avoid erroneous conclusions. Alternatively we could 

conduct an association study and, in the end, compare the reproducibility of the results 

between studies. However, because of the reason presented above, the reproducibility is 

expected to be low (Huang et al. 2012; Rockman 2012; Mackay 2014). 
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The increasing complexity of the datasets used by evolutionary geneticists to test their 

hypotheses facilitates the desire of getting an accurate picture of what occurs in nature, 

but with the possibility of controlling as many variables as possible. The roughly 100 years 

that have elapsed between the dihybrid crosses conducted by Bateson (1909) and Huang 

and colleague's (2013) use of the DGRP to study complex phenotypes, have served to 

make us appreciate the pervasiveness of epistatic interactions. However, we are still far 

from being able to predict its occurrence. This, in turn, may be a consequence of how 

little we understand the way genomes work. The challenge for evolutionary geneticists is 

to link the study of genetic variability present within populations with its phenotypic 

dimension. 

 

3.4 CONCLUSIONS AND PERSPECTIVES 
 

The interest in understanding the genetic basis of cold stress tolerance in D. melanogaster is 

the common motivation to the different projects that comprise this dissertation. Cold 

tolerance is a phenotype that reflects the adaptation of the fly to temperate environments. 

We focused on the contribution of genetic loci on the X chromosome and reported the 

first X-linked candidate genes for this phenotype based on quantitative and population 

genetic approaches, in combination with expression studies. We summarize the emerging 

picture below.  

The pattern of expression of the candidate gene brk is highly population-dependent 

and is governed by both cis and trans factors. We also observed that one of the putative cis-

elements of brk shows a moderate change in frequency between natural populations along 

a latitudinal cline from tropical to temperate regions. Such frequency shifts are considered 

signatures of positive selection affecting traits controlled by many loci. 

The case of CG1677 is different and likely unrelated to CCRT. Although the gene is 

located near brk, CG1677 exhibits some of the strongest signatures of a selective sweep on 

the entire X chromosome observed thus far in European D. melanogaster populations: (i) the 

largest CLR values and (ii) significant differentiation at two non-synonymous SNPs 

between temperate and tropical populations. The fact that the two non-synonymous 

SNPs are part of a α-helix such that the encoded amino acids can interact and form 

different numbers of hydrogen bonds between their side-chains provides insights into the 
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functional significance of our finding. However, we found no evidence that CG1677 

affects CCRT, and the selective sweep observed at CG1677 does not overlap with the 

observed allele frequency shift in the 5’ UTR of brk. Thus, since cold stress tolerance is a 

quantitative trait controlled by many QTL and brk is one of the genes involved (in 

contrast to CG1677), the signatures of selection we detected at these two genes are 

consistent with the theoretical predictions. 

The conclusions we may draw from the involvement of genes CG4991 and CG16700 

in CCRT are similar to the case of CG1677. Although these two genes are involved in in 

different selective sweeps in European populations of D. melanogaster, they also co-localize 

with a QTL affecting the CCRT. We have no further substantive evidence for the 

involvement of either of these genes in CCRT.  Selective sweep mapping is theoretically a 

sensible approach to identifying genes associated with adaptive phenotypes. However, 

when used as a mapping tool in naturally evolved populations, the results should be 

treated with caution and substantiated with functional assays. 

With the aim of extending available resources both at the genetic and phenotypic level 

that allow us investigate the evolution of cold tolerance mechanisms in natural 

populations, we collected D. melanogaster from a Scandinavian population, established a 

panel of 80 inbred lines and fully sequenced 20 of them. We have just begun to initiate 

the genetic characterization of this population, analyzing genome wide variation with 

population genetic approaches. We expect this resource will soon be used for quantitative 

genetics work. Although we did not aim to study epistasis, we realized how pervasive its 

effects are on phenotypic evolution. In the future we expect to make use of epistasis as tool 

to understand how phenotypic variation arises and not as a nuisance that should be 

excluded or minimized in the models to study complex traits. 

In this work, by bringing together quantitative and population genetics approaches to 

address the question whether genes underlying complex traits show footprints of positive 

selection, we have made evident that the current models to study adaptation in sequence 

space (selective sweeps) might be able to explain only a small fraction of the evolutionary 

dynamics that underlie the phenomenon of polygenic adaptation. The challenge for the 

evolutionary genetics community in the following years is to develop statistical tools to 

identify and characterize these other instances of selection (i.e. allele frequency shifts) 

whereby adaptation at the phenotypic level can be achieved. 
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IV – MATERIALS AND METHODS 

 

 

 

 

 

4.1 POPULATION GENETICS ANALYSES 
 

4.1.1 Wild type fly stocks, next generation sequence data  

Throughout the chapters that comprise this dissertation different D. melanogaster sequence 

datasets were employed in the analyses. Sequences were produced either by sanger 

method using the fly stocks maintained in our laboratory or obtained with Illumina 

technology of the same stocks as well as others derived to other African and European 

natural populations. These full genome datasets were completed as part of collaborative 

efforts with the lab of Prof. Charles Langley at UC Davis. (Langley et al. 2011; Pool et al. 

2012). Publically available whole genome sequences generated by Illumina NGS 

technology for African and European D. melanogaster populations reported in Table 8 were 

retrieved from the DPGP (www.dpgp.org.Information). In addition some of the fly stocks 

were kindly donated to our fly collection by Professor C. Langley. 
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Table 8. Catalogue of wild type lines and NGS datasets used in this study. 
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The analyses we conducted in chapter 2 we done on sequence fragments with the 

Sanger method in our laboratory. Study patters of variation via summary statistics (see 

below) in the Netherlands and Zimbabwean Lake Kariba populations, within in a region 

of ~86 kb with coordinates  (16,960,095 to 17,046,326). The exact location of fragments 

within this region as well as the information about their primers is provided in Appendix 

G.	
   In Chapter 4, we used exclusively next generation sequence data of European 

populations the Netherlands and France as well as two African Rwanda and Southeast 

Africa pooling data from geographically close sampling sites. With these datasets we 

obtained summary statistics for the X chromosome regions under the QTL for CCRT 

uncovered by the deletion Df(1)ED9606; i.e., a total of 124 kb between coordinates 

7,089,000 and 7,212,999. 	
  
The following quality control steps during the initial handling of the sequence data 

were used: (i) nucleotides with a PHRED score lower than 21 were set to 'N'.  Unless 

otherwise stated, this quality criterion was applied to all analyses in which DPGP2 

sequence data were used.  (ii) If a given polymorphic site in the alignment showed a 

frequency of N higher than 10% it was excluded from the analysis. The following 

summary statistics were then computed on 2-kb long non-overlapping windows (or in 

fragments of ~570 pb in length for Chapter 2): θπ (Tajima 1983), θW (Watterson 1975), 

and divergence (Dxy) to the out-group (Nei 1987). Haplotype diversity H (Depaulis and 

Veuille 1998) and average allelic association estimates based on LD, (ZnS) (Kelly 1997) In 

addition pairwise FST were calculated as normalized Nei (Nei and Li 1979) and Tajima's D 

(1989) and were also obtained with a summary statistic calculator written by P. Duchen. 

 

4.1.2 Composite likelihood ratio test for positive selection 

To investigate whether the observed SFS in the region of interest is compatible with the 

one expected after a selective sweep we calculated the composite likelihood ratio (CLR) 

statistic (Kim and Stephan 2002; Nielsen et al. 2005; Pavlidis et al. 2010) as it is 

implemented in the software SweeD (Pavlidis et al. 2013). This likelihood ratio test statistic 

compares a selective sweep model and a neutral model that is calibrated with the genomic 

background frequency spectrum. We used the parallel version of the software (SweeD-P) 

to calculate the CLR statistic along the complete X chromosome in our European 

samples (19 lines from the Netherlands and France in chapter 4 and 14 Swedish lines in 

chapter 5). In addition to the classes of the SFS (i.e. 1 to n-1, where n is the sample size), 
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we considered two additional site classes consisting of monomorphic sites in the European 

sample and polymorphic in the Rwandan sample. Extending the SFS in this way was 

shown to improve the power of the method to detect selective sweeps (Nielsen et al. 2005). 

SweeD was run on a 16-core CPU using the command line option “- -monomorphic” 

with 500,000 grid points. The background SFS was taken from the complete X 

chromosome. However, following Pool et al. (2012) we excluded from the analysis 

telomere and centromere regions of the X chromosome due to their very low 

recombination rate. The coordinates of the excluded regions range from the origin until 

position 2,222,391 for the telomere and from position 20,054,556 to the end for the 

centromere region. Finally we compared the CLR profile of our region of interest to the 

profile calculated for the complete chromosome. 

The significance level of the CLR-test statistic was calculated by simulating large 

genomic regions with the coalescent simulator fastsimcoal2 (Excoffier and Foll 2011) 

under a neutral model that takes into account our current knowledge of the demography 

of European populations of D. melanogaster (Laurent et al. 2011). For every one of the 

simulated datasets we computed the CLR-test statistic in the same way as we did for the 

observed dataset and recorded the maximum CLR value. We used the 95th quantile of 

the distribution of top CLR values as our significance threshold. Since this analysis 

becomes computationally intensive as the size of the simulated genomic region increases, 

we investigated the relation between the threshold value and the size of the simulated 

region. We simulated batches of 100 datasets or increasing size from 50 to 5000 kb in 

length and took the asymptotic value reached as the chromosomal threshold (Appendix 

E). 

 

4.1.3 LD-based test: the ω statistic 

Of the selective sweep map of the X chromosome inferred by Li and Stephan (2006) that 

consisted of 54 and 55 putative 100-kb long fragments in the Zimbabwean and Dutch 

populations, respectively, where sweeps were identified, we investigated one region in 

detail (window 55 in the Netherlands, cytological position 15E). We chose this region 

because it fulfills necessary conditions for the occurrence of a complete sweep in the 

Netherlands and may be contributing to the reduced CCRT observed in this population: 

(i) the sweep co-localizes with a QTL, namely the QTL at position 56 cM (cytological 
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position 13E-20E, Figure 3), which is significant in both males and females and is lacking 

QTL–sex interactions; (ii) the sweep is specific to the Netherlands. Because the sweep is 

observed in this population, but not in Zimbabwe, allelic differences at the gene(s) 

affecting the trait may therefore be found.  

Previously, Li and Stephan (2006) identified this sweep region in the Netherlands using 

the site frequency spectrum of SNPs averaged with three of 500-bp long fragments that 

span a 100-kb window. Here, we increased the amount of sequence data in window 55 in 

two steps as described by Svetec et al. (2009): first, 12 additional fragments of 500-bp 

length were PCR-amplified and re-sequenced in both the Netherlands and Zimbabwean 

samples used by Li and Stephan (2006) (all available ZK and NL stocks Table 8), and 

second, a region of 6.4 kb (between absolute positions 16,992,569 and 16,998,925; release 

5.29 of Flybase, http://flybase.org) was completely re-sequenced in these 23 lines. This 

fine-scale analysis allowed us to determine the target of selection very precisely (i.e. down 

to the level of individual genes) 

This data set was then subjected to an analysis of linkage disequilibrium (LD) using the 

w statistic (Kim and Nielsen 2004). Elevated values of w provide evidence of a selective 

sweep, and the peak of this statistic (ωMAX) indicates the location of the target of selection 

in the genome (Pavlidis et al. 2010). Positions containing insertions or deletions (indels) 

were excluded. To assess the statistical significance of the maximum value ωMAX, we ran 

10,000 neutral simulations with the ‘ms’ software (Hudson 2002). The demographic 

scenario of the Netherlands (Li & Stephan 2006) was considered as the null hypothesis. 

The mutation rate (1.47 · 10-9) was estimated from the observed number of 

polymorphisms in the African population using the method of (Živković and Wiehe 2008). 

Thus, the African population was used as a proxy for selective neutrality. The 

recombination rate (3.6 · 10-8) was obtained from the D. melanogaster recombination rate 

calculator (Fiston-Lavier et al. 2010). Only the European subset of each simulation was 

used to assess the significance of ωMAX. 

 

4.1.4 FST-based scan for positive selection 

For the set of FST analyses performed with BayeScan (Foll and Gaggiotti, 2008), input files 

were prepared following the author’s instructions. The different runs were done using 

default parameters. Sequence data was obtained from the DPGP samples of the 
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Netherlands, France, Ethiopia, Cameroon, Rwanda, Southeast Africa and South Africa 

(Table 8). SNP exclusion criteria were as follows: positions showing more than two 

segregating alleles as well as sites with less than 50% base calls in one population were 

excluded from the analysis. 

 

 

4.2 QUANTITATIVE GENETICS AND GENE EXPRESSION EXPERIMENTS 
 

4.2.1 Mutant fly stocks 

In order to conduct quantitative complementation tests on chromosomal deletions and P-

element insertions targeted to disrupt candidate genes, a set of available deficiency/gene 

disruption lines were ordered at the Bloominton stock center. The set of tested X-linked 

deletions spans a chromosome fraction of 5.8 Mb, between coordinates 6,642,419 and 

12,461,494 that correspond to cytological bands 6C to 11B. A total of 24 overlapping 

deletions with known breakpoints at the sequence level in 92% of the cases constituted the 

minimum number of available deletions covering the 5.8 Mb of interest. Additional 

deficiencies were tested if deemed necessary.  In the cases in which gene disruption was 

tested the following P-element insertions were used: P[EPgy2]CG1677EY06475 disrupting 

gene CG1677, P[SUPor-P]brkKG08470  for brinker and P[w[+mC],y[+mDint2]=EPgy2]unc-

119EY20221 for unc-119 . Bloomington identification numbers of each line are provided in 

Appendix H. 

Prior to CCRT scoring experiments, virgin female flies bearing the deficiency 

chromosome/P-element insertion and the respective balancer were mated with males of 

the A* and E* lines, respectively. Eggs were allowed to develop in the same medium in 

which they were laid at 23 ºC. Female F1 were sorted upon hatching by phenotype as 

balancer or deletion/P-element insertion bearer. Since all balancer types used to maintain 

the deletions have a dominant mutation for eye shape at locus Bar (B1), F1 flies exhibiting 

the B1 mutant phenotype were considered as balancer bearers, while wild type 

appearance was indicative of bearing the deletion/P-element insertion. Sorted flies were 

kept at same room temperature until CCRT scoring on their 4-6th day of life. 
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4.2.2 CCRT scoring 

Once flies reached 4-6 days of age they were scored for CCRT following the protocol as 

in Svetec et al (2011). Briefly, flies were transferred to glass vials without anesthesia and 

placed in an ice-water bath of 0 °C for 7 hours. At the end of this time period flies were 

brought back to room temperature (23 °C) and observed in time intervals of 1 minute. 

The minute in which a fly was standing on its feet was recorded as its CCRT.  

 

4.2.3 Quantitative complementation tests on deficiencies and P-element insertions 

On average 35 female flies per each of the four resulting genotypes E*/def, A*/def  (or 

E*/mut, A*/mut, for P-element insertions), E*/bal, and A*/bal were scored.  For ANOVA 

analysis on log-transformed CCRT scores per genotype, line (L) and genomic background 

(G) were kept as fixed effects. We focused on the significance of the interactions of these 

two factors (L x G) as well as on the following two conditions to call the procedure 

quantitative failure to complement: (i) the differences in CCRT for the genotypes bearing 

the balancer had to be small or negligible compared with that of the genotypes bearing 

the deletion/P-element insertion. (ii) In the latter case the E*/def (or E*/mut) flies should 

show a reduced CCRT with respect to the A*/def (or A*/mut) genotypes. These conditions 

should be satisfied in order to control for false positives arising from epistatic interactions 

between alleles at loci other than the one under consideration.  Bonferroni correction was 

applied to control for multiple testing.   

 

4.2.4 Gene expression assays 

Assessments of expression levels of candidate genes coupled with chill stress lines were 

conducted using 4-6 days old female flies belonging to the Netherlands population 

(isofemale lines: NL01, NL12, NL14, NL15, NL16, NL18, NL19, NL20) and the 

Zimbabwean population (isofemale lines: ZK84, ZK131, ZK145, ZK157, ZK186, 

ZK229, ZK377, ZK398). Flies were reared at 23 ºC and subjected to cold stress in the 

same manner as reported for CCRT scoring. For all treatments and controls we used 

three flies per line. The same amount of flies per line were snap frozen in liquid nitrogen 

at 10 minutes after being brought to room temperature while three remaining flies per 

line were scored for their CCRT and frozen 15 minutes after the minute in which they 

were reported as recovered. Control flies, which remained at 23 °C in glass vials during 
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the seven hours of treatment, were also snap frozen at the end of this time period. Frozen 

material was stored at -80 ºC until RNA extractions were performed. Population pools 

per line/treatment were made prior to RNA extraction. Each population pool per 

treatment consisted of eight flies of the same population. Three population pools per 

treatment were made for both the Netherlands and Zimbabwe.  

In section 2.1, however, flies of both sexes were used to study the expression of genes 

CG4991 and CG16700 only at the constitutive level (i.e. flies were not cold-stressed).  In 

addition, as reported in Appendix C, we conducted expression assays especially for gene 

brk were conducted with 4-6 days old female flies of the following lines NL14, NL20, 

NL19, ZI507, ZK84, ZK145, ZK157. Assessments coupled with cold stress were 

conducted as above, except that the number of flies used per line per treatment was 12. 

This allowed us making three pools per line per treatment with each pool of four flies 

each. 

. 

4.2.5 RNA extraction and cDNA synthesis 

RNA was extracted from pools within line (see Appendix C) or population using the 

MasterPure RNA Purification Kit (Epicentre Biotechnologies, Madison, WI), followed by 

DNAse treatment. Purified RNA was quantified with a nanodrop apparatus and tested 

for genomic DNA contamination based on a PCR (Phusion) protocol using a primer pair 

binding in non-transcribed regions of the X chromosome. (Primer code: X-1435, see 

Appendix G for further details). Samples tested positive for genomic DNA were excluded 

from downstream protocols. cDNA synthesis was performed with SuperScript III Reverse 

Transcriptase (Invitrogen, Carlsbad, CA) on 1400 ng of RNA per reaction.  

 

4.2.6 RT-qPCR and expression level analyses 

RT-qPCR assays for candidate genes under cytological region 7A: CG1958, CG1677, 

CG2059, unc-119, brk and Atg5 were done with primers designed using the online tool 

QuantPrime (www.quantprime.de) (Appendix G) to match all possible transcript types per 

candidate gene. For candidate genes at 15E: CG16700 and CG4991 QuantiTect Primer 

Assays(Dm_CG16700_1_SG and Dm_CG4991_1_SG, Qiagen Carlsbad, CA) were 

employed. The ribosomal genes RpS20 and RpL32 were taken as reference genes, against 

which relative gene expression levels of our genes of interest were normalized. RT-qPCR 
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assays consisted of a total of three biological replicates each run in triplicate and were 

conducted on a Real-Time thermal cycler CFX96 platform (BioRad, Hercules, CA). 

Each reaction was taken to a final volume of 10µl using iQ™ SYBR® Green Supermix 

(BioRad, Hercules, CA). Further details of the experimental setup, such as amplification 

efficiencies assessments with dilution series can be provided upon request.  

Obtained Cq values per replicate within line (or pool) and treatment were transformed 

to calibrated normalized relative quantities (CNRQ) following Hellemans et al. (2007). 

Log transformed CNRQs were then used to test the hypothesis of expression differences 

between pairs of lines (or pool) within and between treatments. For this purpose Welch 

two-sample t-tests were performed on comparisons with fold differences above a threshold 

(defined by variance between technical replicates). Benjamini and Hochberg's (1995) P-

value correction was applied to control for false positives, due to the high number of 

simultaneous tests performed. 

 

4.2.7  Transcription factor binding site prediction 

Genomic locations enriched with specific transcription factors (TF) at the adult stage in 

the 16.6 kb region upstream of brk were identified using the modENCODE database 

(Negre et al. 2011). The only TF that was found to be enriched in this region is Nejire (also 

called CREB-binding protein or CBP), which is known to interact physically with the 

DNA-binding TF cAMP response element binding (CREB). TFBS for CREB were then 

predicted in the E* and A* lines using a position-weight-matrix (PWM) approach 

implemented in the program Patser (Hertz and Stormo 1999). The PWM used to 

describe the binding motif of CREB was taken from FlyFactorSurvey 

(www.pgfe.umassmed.edu/ffs). CREB binding site profiles were compared between E* 

and A* to identify gain or loss of TFBS in these two lines. Finally, allelic frequencies of 

mutations that are responsible for modifications of CREB TFBS were calculated in our 

population sample. 

 

4.2.8 Resequencing of the 16.6 kb upstream of gene brk  

In order to catalogue all nucleotide and structural differences between the E* and A* lines 

that may be associated with the phenotype difference between these two fly lines, the 

entire 16.6 kb corresponding to the intergenic region upstream of brk were sequenced in 



4.2  QUANTITATIVE GENETICS AND GENE EXPRESSION EXPERIMENTS 

 

 111 

these two lines. Primers for PCR amplification of overlapping fragments of approximately 

700 bp spanning the intergenic region plus the 5' UTR of brk were designed with the 

program Primer 3' using the sequence reference between coordinates 7,185,337 and 

7,201,971 of D. melanogaster genome sequence release 5.53 (Flybase). Genomic DNA was 

prepared from single E*(NL14) and A*(ZK157) males, PCR amplified and sequenced 

with the Sanger method on both strands. Alignment of the two E* and A* sequences and 

identification of differences were done with the aid of the program Seaview (Gouy et al. 

2010). All reported differences were also ascertained by inspection of the alignment.  

The fractions of this 16.6 kb containing polymorphisms that can explain the difference 

in gene expression levels between Europe and Africa were likewise resequenced in the 

following populations the fly stocks Netherlands, Zimbabwe (Lake Kariba) and Zambia 

(ZI), (Table 8)  

 

4.2.9 Linkage disequilibrium matrix 

LD estimations for SNP pairs within the 16.6 kb upstream of brinker were obtained using 

Hill and Robertson’s r2 (Hill and Robertson 1968). LD informative SNPs were sites for 

which minor frequency alleles were above 10% and the site had less than 50% N. 

Significance of pairwise LD was determined using Fisher’s exact test (Weir 1996). The 

pooled D. melanogaster set used for these LD estimations included lines from the following 

DPGP populations: NL=10, FR=3, RG=8, ZI=1, ZK=3 and the sequences of the E* and 

A* lines. 

 

4.2.10  Prediction of the protein structure of CG1677  

To gain insight into the functional significance of the detected amino acid substitutions at 

gene CG1677, we subjected the primary protein sequences of the lines A* and E* to a 

homology-based secondary structure prediction using the tool Phyre2 (Kelley and 

Sternberg 2009) and conducted a Blast-based search for homologue sequences from 

invertebrate and vertebrate accessions at (www.uniprot.org) (Uniprot-Consortium 2014). 

In addition, we conducted an ancestral state reconstruction analysis (Lewis 2001) with all 

available Drosophilid sequences of this gene to reconstruct the sequence of mutational 

events behind the amino acid substations observed in our D. melanogaster populations. 
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4.3 SWEDISH FLIES COLLECTION AND SEQUENCING 
 

4.3.1 Fly collection  

The Swedish city of Umeå (63° 49' 30'' N, 20° 15' 50'' E) was visited between August 17th 

and 23rd 2012 to collect local D. melanogaster. The sampling was made following Pool’s 

(2009) guidelines. In order to establish our sampling sites we took advantage of the grid-

like layout of the city center to locate points where D. melanogaster was likely to be found 

(Figure 13). These included backdoors of public establishments such as cafés and 

restaurants, as well as protected sites with trash containers usually located near parking 

lots. Traps were prepared in situ, using empty plastic bottles of juice with banana inside as 

bait as suggested by Pool (2009). Once traps were located, they were checked twice a day 

and harvested the following day. Traps were emptied after having anaesthetized flies with 

FlyNap (Carolina Biological Supply. Burlington, NC). Females and males were separated 

and the former relocated in coded food vials (one individual per vial). By the end of the 

week, on August 24th, a total of 106 vials were kept in an incubator at the Centre for 

Evolutionary Biology at Uppsala University and shipped to our lab in Munich the 

following week.  

 

4.3.2 Species diagnosis and isofemale lines 

Of all possible Drosophilids that could have been sampled in Umeå, D. melanogaster and D. 

simulans are the most difficult to tell apart in the field. The shape of the male genital arch 

is the only reliable morphological diagnostic character (Davis et al. 1996) however; 

molecular diagnosis of the species status is an efficient and straightforward alternative. We 

designed a molecular diagnosis assay based on differences between enzyme digestion 

patterns for D. melanogaster and D. simulans at the mitochondrial gene Cytochrome C 

oxidase subunit I (COI). With a set of appropriate primers (Appendix G) a fragment of 

COI gene was PCR amplified from DNA of daughters from collected females. We also 

obtained DNA from known D. melanogaster and D. simulans lines kept in our laboratory. 

The approximately 300 bp long amplicons were digested with endonucleases  MnII and 

AciI (New England Biolabs, Frankfurt, Germany). Within the amplicon, the target 

sequences of these restriction enzymes include fixed differences between the two species. 

D. melanogaster amplicons were digested by MnII generating two fragments of 110 and 200 
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bp, respectively. In the presence of the enzyme AciI, only the D. simulans versions of the 

amplicon were digested, generating two fragments of similar sizes. Digested products were 

run on 1.5% agarose gels and inspected to assign species status of the lines. 

In addition to this molecular species diagnosis we set up crosses between female 

virgin daughters from collected females with D. simulans males. After mating females 

were allowed to lay eggs for two days then all adults were removed. The content of 

each vial was monitored for the presence of adults of both sexes. The absence of male 

offspring during within each vial was taken as an indication that mothers were D. 

melanogaster (Davis et al. 1996). Once the species status of the collection was 

determined, the inbreeding scheme was initiated. Full sibling-inbreeding scheme was 

initiated with daughters and collected females. This inbreeding scheme was 

maintained for 10 generations.  

 

4.3.3 Haploid embryo preparation 

Aware of the complications caused by residual heterozygosity in population genetics 

analyses of full genome sequencing datasets obtained from DNA of inbreed lines we 

prepared chosen line's genomic material following Langley et al (2011). This protocol 

requires the generation of haploid embryos from which genomic DNA is obtained and 

prepared for sequencing. Haploid embryos were derived from crosses of virgin female flies 

belonging to 20 chosen Umeå isofemale lines with mutant males homozygous for the 

mutation ms(3)K811 (Bloomington stock number 5252). This mutation was isolated from 

nature by Fuyama (1984), and genetically characterized by (Yasuda et al. 1995). The 710 

bp long locus ms(3)K81, mapped to 97D4 encodes  a paternal-specific protein essential for 

the development of the male pronucleus before the first zygotic division. The sperm of 

males homozygous for the mutation ms(3)K811 has normal  motility and is able to enter  

the egg at fertilization. However, eggs fertilized by bearers of this mutation undergo 

arrested embryogenesis. Around 75% of these embryos stop development after several 

nuclear divisions, while the remainder develops beyond blastoderm but does not hatch as 

larvae. These late-arrestment fraction of the embryos has haploid karyotypes. The 

haploid genome that is present within these embryos is derived from the maternal 

pronucleus (Yasuda et al. 1995). 

A total of 20 isofemale lines were chosen for whole genome sequencing using Illumina 
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technology (Figure 13C, Table 5). This set of 20 lines comprises a representative sample 

of the Umeå collection. We chose these lines so that every sampling location would be 

fairly represented in the final sequence set, thereby lowering the chance of obtaining 

population genetics information on a single family. Haploid embryos per line were 

obtained as follows. Four virgin female files of each chosen isofemale line were allowed to 

mate with an equal number of males homozygous for the ms(3)K811 genotype, keeping 

each mating pair in its own vial for 24 hours. Mated females were then transferred to 

molasses agar plates, as oviposition substrate. Plates were sealed and kept in the incubator 

at 26 ºC for another 24 hours. Subsequently, females were transferred back to the mating 

vials for 1.5 weeks to monitor presence of larvae. Have these been observed it would have 

indicated that females were not virgin or that the mutant male phenotype was 

misclassified. Once 24 hours elapsed, all eggs in the agar plates were harvested and 

dechorionated under the stereomicroscope. All dechorionated eggs were screened for 

signs of development beyond gastrula stage (Langley et al. 2011).  Embryos that met this 

criterion were individually transferred to sterile 200 ml PCR reactions tubes with 3 µl of 1 

% PBS and frozen at -80 ºC, until next use 

Lysis of embryos is a required first step in the process of whole genome amplification 

with the QIAGEN REPLI-g Midi kit (QIAGEN, Hilden, Germany). However, before 

lysates were further processed we took a 2 µl aliquot, and preserved the reminder at -30 

ºC. Each aliquot was diluted in water and employed to assess the relative proportions of 

nuclear, mitochondrial and Wolbachia sp. DNA within each embryo. This step was 

necessary to double check the screening of embryos and maximize the yield of nuclear 

DNA sequence reads. With a standard qPCR assay, we compared Cq values of each 

DNA target and from there we inferred their respective proportions per embryo. Each 

qPCR reaction was taken to a final volume of 10µl using iQ™ SYBR® Green Supermix 

(BioRad, Hercules, CA), the corresponding primer pairs for each DNA type (Appendix G) 

and the diluted embryo lysate. Reactions were run on a Real-Time thermal cycler 

CFX96 platform (BioRad, Hercules, CA). Annealing temperatures of the three primer 

pairs were optimized so that the three assays per lysate could be run simultaneously. 

Additional details are provided in Appendix I. This protocol was modified from that 

kindly provided by C. Cardeno at C. Langley's laboratory at UC Davis. 

Embryo lysates in which we detected mitochondrial and nuclear DNA within expected 

Cq-value ratios while exhibiting the lowest content of Wolbachia sp. DNA (see Appendix I) 
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were used as starting material for whole genome amplification. This step was done using 

the QIAGEN REPLI-g Midi kit (QIAGEN, Hilden, Germany) with the 8 µl of embryo 

lysates that were spared at -30. After protocol completion, 3 µl of a 1:100 dilution from 

the amplified material were run on a 1% agarose gel to visualize the amplification 

product. This should be seen as an intense band above 10 kb. 

 

4.3.4 Illumina sequencing and assembly of reads 

We determined DNA concentration of the randomly amplified DNA from haploid 

embryos using the Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE) 

with 1 µl of a 1:100 dilution of amplified DNA in molecular grade water. Up to 10 µg (~ 

200 ng/µl) of DNA, were employed to construct standard genomic libraries for paired-

end sequencing with Illumina technology. Both library construction and sequencing took 

place at GATC Biotech (Konstanz, Germany). Sequencing of the resulting 20 libraries 

was performed on an Illumina HiSeq 2000 machine. The sequencing method was paired 

end with reads of 100 bp in length. 

Paired end reads were aligned to the D. melanogaster reference genome (Release 5 of the 

Berkley Drosophila Genome Project). For this purpose we used the program BWA version 

0.59 (Li et al. 2008) with default settings and the ‘‘-I’’ flag.  Reads with BWA mapping 

quality scores less than 20 were excluded from the assembly. This measure reduces 

coverage biases due to ambiguously mapping reads. Once alignment to the reference 

genome was completed we used the program SAMtools version 0.1.16 (Li et al. 2009), to 

generate the consensus sequence of each assembly. All putatively heterozygous sites were 

masked to ‘N’, as well as sites within 10 bp of a consensus structural variant (i.e. indels). 

Only the euchromatic fraction of D. melanogaster major chromosomes (X, 2L, 2R, 3L and 

3R) was considered after assembly. The resulting fastq files were subsequently deposited 

in the next generation sequence server of our department. When retrieving any required 

genomic fragment or full chromosome a quality threshold (PHRED score) has to be 

provided.  Nucleotide positions with PHRED scores lower than the specified value is 

automatically masked to 'N'. 
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APPENDIX A 
 

 

 

Selected summary statistics table for the sweep region at 15E 
FIN is the fragment name. x is the relative position of the mid point of the fragment (used also in 
the x axis in Figure 1A). (L) Fragment length, (S) number of segregating sites per fragment, (θW) 
Watterson’s estimator of genetic diversity, (θπ).  (D) Tajima's D. (H) haplotype diversity index, ZnS 
average LD per fragment. 
 

          
         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         
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APPENDIX B 

 

Linkage disequilibrium (LD) matrix of 89 informative SNPs in 16.6 kb upstream of brinker (brk) in a 
panel of 27 D. melanogaster lines. All positions are numbered with respect to the origin of brk's 5' 
UTR at 7,201,972 as position zero. Patterns of LD (r2) are shown above the diagonal and P values 
from Fisher’s exact test below the diagonal. LD block 1 is proximal to the transcription start of brk. 
It is formed by three SNPs at relative positions -806A/C, -874T/C and -906G/T, and spans a total 
of 100 bp. The second LD block spans a total of 150 bp and is made up of four SNPs: -3,503T/C, 
-3,479C/G, -3,409T/C, and -3,355T/C.  The third block encompasses 240 bp and includes six 
SNPs distributed in two groups of consecutive sites in LD. SNPs  -6,673G/T, -6,672G/T and -
6,607C/A form the first sub-block to the left and SNPs -6,462A/T, -6,446T/A and -6,435G/A 
constitute the second sub-block to the right. 
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














































































































































































































































































































































































 

                

  
























 
























































 
 
 



 
 
 












 
 
 
 





 
 
 



       

 
      
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APPENDIX C 
 

 

Results gene expression with brk based on defined haplotypes 

 

 

To test whether the observed pattern of deletion frequencies may partly explain the 

expression difference for brk between the Netherlands and Zimbabwe (Figure AC1), we 

hypothesized that an increased number of deletions may result in lower DNA-

transcription factor interaction and therefore reduce the amount of brk transcripts in 

comparison with sequences in which deletions are absent. To evaluate this prediction we 

conducted a new round of expression assays for brk in lines, from each continent, 

harboring the haplotypes without deletions (ND), the haplotype with the three deletions 

(I-II-III), as well as the intermediate haplotypes (deletions I-II) and (deletion III) (Figure 

AC1 A). 

The observed constitutive expression levels and also those 15 minutes after recovery 

showed a trend towards lower average expression with increasing number of deletions in 

the African lines, which is consistent with the above hypothesis (Figure AC1 B). However, 

in the European sample (in which the haplotype with deletion III is absent) this trend was 

not observed. The expression level was roughly the same regardless of the number of 

deletions.  

The emerging picture from these results suggests that brk expression levels and its 

potential role in cold tolerance are population dependent, being tuned by the interaction 

of putative cis-regulatory elements, such that we defined here, and not yet identified trans-

acting factors. These results highlight the prominent role of gene-by-gene interactions in 

both transcriptional variance and complex phenotypes. Functional work is needed to 

analyze these hypotheses in greater detail.  
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Figure 1 of Appendix C (AC1). A) Line-specific brk expression profiles. European and African lines 
were chosen based on the defined haplotypes (notice matching colors of the labels). Gene 
expression assays were done per line in control and cold stress conditions (15 minutes after 
recovery from chill coma). Average CCRT among replicates is reported below each line label. 
Expression levels of brinker were normalized with respect to that of ribosomal genes RpS20 and 
RpL32. The height of the bars represents the mean of three calibrated normalized relative 
quantities (CNRQ) per line rescaled to that of the corresponding ZK157 control. Error bars also 
represent rescaled confidence intervals. 
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APPENDIX D 
 

 

 

 

 

 

 

Divergence (Dxy) along the 124 kb of interest calculated for each studied population: the 
Netherlands  (NL), France (FR), Rwanda (RG) and a pool of Southeast African (SEA) lines with 
respect to an homologous sequence of D. simulans. Calculations were done for 62 consecutive 
windows of 2 kb each. 
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APPENDIX E 
 

 

 

Composite likelihood ratio (CLR) thresholds vs. simulated fragment size. CLR thresholds, i.e. the 
top 5% CLR values of 100 simulated fragments of lengths from 5 to 5000 kb reach an asymptotic 
value around 72 at fragment size ≥3000 kb. 
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APPENDIX F 

 
 
Composite likelihood ratio (CLR) test results for 18 Mb of a sample of 19 European (the 
Netherlands and French) D. melanogaster X chromosomes.  For this chromosome-wide test all 
categories (0 to n) of the SFS were included. Significance threshold at CLR 72 was obtained from 
simulated subgenomic datasets (see text and Figure 8.3.2). The CLR peak above 300 between 
positions 7.0 and 7.5 Mb corresponds to that depicted in detail in Figure 11. 
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APPENDIX G 

List of all primers employed in this dissertation 

 

 

 

             
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

             
       
       
       
       
       
       

       
       

       
       
       
       

       
     

   

























  






















APPENDIX G 

 

 126 

 

Appendix G.  Primer information for resequencing of 16.6 kb upstream of brk 
 
AL is the length of the amplicon in base pairs 
TA is annealing temperature  
Primer pairs with (*) were used to resequenced the fragment of interest between relative positions -
3,000 to -3,553 or LD block 2 (Figure 7B) 
Primer pairs with (**) were used to resequenced the fragment of interest between relative positions 
-784 and -1,243 or LD block 1 (Figure 7A) 
Primer pair (§) was used to check for the quality of DNA digestions during RNA purification 
protocol.  
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APPENDIX H 
List of all mutant lines from Bloomington (www.flystocks.bio.indiana.edu) 

 
     

 


  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

     



 
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APPENDIX I 

Protocol Haploid Embryo 

 

Lysing Embryo 
(Qiagen REPLI-g reagents) 

 
1.  Thaw Qiagen reagents (REPLI-g Midi, 150045) – PBS, Buffer D2 
(denaturation buffer), and Stop Solution. 

• Prepare sufficient Buffer D2; 3.5 µl per embryo 
o D2 = 5 µl DTT + 55 µl Reconstituted Buffer DLB 

 
Use microscope for steps 3-6. 
 
3.  Add 3.5 µl of Buffer D2. 
6.  Crush/Pop/Grind-up embryo with pipet tip. 

• TIP:  Try putting embryo into a bubble of D2+PBS (6.5 µl total) on side of 
tube. 

 
7.  Vortex/spin-down and incubate on ice for 10 minutes. 

• If lysing more than one embryo, make sure that each embryo is on ice for 
only 10 minutes.  

 
8.  Add 3.5 µl Stop Solution.  Vortex/spin-down. 
 
9.  Dilute the lysed embryo 1:10 in for a total volume of 20 µl: 

• 2 µl of lysed embryo + 18 µl of water = 20 µl total volume 
 
10. Use the 1:10 dilution for qPCR assay.  Return the lysed embryo to the -20°C. 
 
 

qPCR 
(Real-Time thermal cycler CFX96, BioRad) 

Things to note: 

 
• BioRad = 96-well plate; rows = A-H; columns = 1-12 
• 3 assays per plate = mtDNA, nucDNA, Wolbachia DNA 
• Each embryo in duplicate per assay 
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• 10 µl reaction per well 
•  

1. Make three master mixes:  
1) mtDNA primers  
2) nucDNA primers 
3) Wolbachia primers 

 
• mtDNA primers (ND5) – 374 bp amplicon 

CTTCGACTTCCAAGACGTTC 
CCTAAAGCTCATGTTGAAGCTC 

• nucDNA primers (3R)K – 246 bp amplicon 
TCTGACCCACTCTCCACTTG 
TCGAATGATATACGAAGCGTTTAC 

• Wolbachia primers (Wsp_qp_1L and Wsp_qp_1R) 350 bp amplicon 
CCATATGTTGGTATTGGTGCAG 
ATTCAACACGTGCAGTTTCATC 

 

Master mix preparation table for a reaction volume of 10 µl: 
 

  
1 

reaction 
3 

reactions 
12 (+2) 

reactions 
36 (+3) 

reactions 
l PCR-grade water 3.1 9.3 43.4 120.9 

iQ SYBR-Green super mix (2x) 5 15 70 195 
10 µM forward primer 0.2 0.6 2.8 7.8 
10 µM reverse primer 0.2 0.6 2.8 7.8 

 

 
2.  After adding 8.5 µl of master mix to wells, add 1.5 µl of 1:10 embryo lysate 
per well. 

• MAKE SURE THAT THE SEAL IS ON SECURELY ON THE PLATE!! 
(Evaporation of reaction will give false results) 
• Use Figure 1 for set-up. 

 
3.  Thermal cycling parameters for program “Embryo test” 

a) 95°C for 5 min 
b) 95°C for 30 sec 
c) 56°C for 30 sec 
d) 72°C for 45 sec; data acquisition at this step 

set steps b-d for 40 cycles 
e) 72°C for 10 min 
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4.  Set program “Embryo test” in BioRad CFX96 
Fill in well information with the corresponding data of embryo number and line  
as well as DNA type as target (follow example in Figure AI1) 
5.  Run the program (Ask for help if doing it for the first time) 
 
 
 
 
 
 
 
Figure AI1. qPCR 96-well plate example. Note the embryo names containing the 

line and embryo number 
 

Checking embryo quality 
 
5.  Once the program has finished, save results. 
 
6.  Use lab Mac to fill in Excel sheet “Embryo qPCR results”. (See Figure AI2).  
Make sure you have the following information from each of the duplicate runs 
per embryo per target DNA:. 

• Mean Cq embryo/DNA type = average Cq of individual embryo lysate for locus 
• Cq sd = (standard deviation) of individual embryo lysate for locus  
• Nuc/Mito = (mean Cq nuc)/(mean Cq mito) of individual embryo lysate 
• Nuc/Wol = (mean Cq nuc)/(mean Cq wol) of individual embryo lysate 

 
7.  Embryo lysates with Cq value ratios (Nuc/Mito ≤ 2.5) and (Nuc/Wol < 1.2, 
ideally less than 1.0) will be further prepared for sequencing.  
 
Important considerations for embryo selection include:  

• Cq values of Mitochondrial and Nuclear DNA should be lower than 35. Best 
eggs show Cq values below cycle 30. As can be seen in Figure AI2 water is 
used to determine the cycles in which there is primer dimer signal (this occurs 
around cycle 40) 

• Wolbachia may not be present in the tested embryo; therefore may not be 
detected at all. As long as Mitochondrial and Nuclear DNA are detected and 
their ratios match the expected values, the embryo can be used for 
sequencing.  

           
            
            
             
             
             
            
            
            

 
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KEEP the original embryo lysates.  Throw-out original embryo lysates for those 
did not meet quality criteria; these are failures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure AI2. Haploid embryo quality assessment. 
Profiles of DNA content of selected embryos, SU94-GS, SU08-GS and SU5-1 met 
successfully met quality standards and also yielded high quality sequence data (see 
Table 5). Embryos SU23-1 and SU77-1 passed quality control but did not yield high 
quality genome sequences (Table 5). All other SU5 embryos were characterized by a 
low content of nuclear DNA.  
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Whole Genome Amplif ication (WGA) of Embryo 
(Qiagen REPLI-g reagents) 

 
1.  Thaw REPLI-g Midi DNA Polymerase on ice.  Thaw all other components at room 

temp, vortex, and spin. 
• If precipitate in reaction buffer after thawing, vortex for 10 sec. 

 
2.  Prepare a WGA master mix (mm), vortex and spin.  Make an additional 10% if 

more than one reaction. 
• 32 µl WGA mm per embryo 

o 8 µl nuclease-free water 
o 23.2 µl REPLI-g Midi Reaction Buffer 
o 0.8 µl REPLI-g Midi DNA Polymerase 

 

3.  Add 32 µl master mix to 8 µl of denatured embryo lysate (2 µl of the original 10 µl 
was used for 1:10 dilution for the qPCR embryo assay). 

 
4.  Incubate at 30°C o/n. 
 
5.  Inactivate REPLI-g Midi DNA Polymerase by incubating at 65°C for 3 min. 
 

Evaluation of WGA 
(1% agarose gel) 

1.  Pour 1% agarose gel.  Use a comb with wells for WGA samples, 1 Kb ladder, 
and 3 lambda DNA samples (125 ng, 250 ng, and 500 ng). 

 
2.  Use 8-well strip tubes to prepare WGA samples. 
• 1:10 dilution of WGA reaction; 20ul total volume (2 µl sample + 18 µl water) 
• Add 4 µl loading dye. 
• Vortex and spin down. 
• Load 6 µl in well. 

 
3.  Prepare known concentrations of lambda DNA using 100ng/ul working stock. 
• 125ng = 1.25 µl of stock 
• 250ng = 2.5 µl of stock 
• 500ng = 5.0 µl of stock 

 
4.  Load gel.  
• Note: 

o 6 µl of diluted WGA embryo per well 
o Prior to loading the three lambda DNAs, add 1ul of loading dye to each. 
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