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1 INTRODUCTION 

1.1 Nucleic acids as therapeutic agents 

A mind-boggling progress has been made in the identification of genes responsible 

for diverse cell processes. The completion of a Human Genome Project has provided 

myriad information on the target genes and thus vast advancement has been done in 

creation of tools that allow manipulating specific lethal genes and their functions. 

Numerous human diseases are now known to be of genetic origin, like Huntington‟s 

chorea [1], mucoviscidosis [2], hemophilia [3] etc. Hence, nucleic acid therapy 

presents a great prospect for the treatment of such genetic disorders in humans by 

modifying their cells genetically and being able to act only on the target responsible 

for the disease. In spite of their promises in healthcare, the role of nucleic acids as 

therapeutics is still in its infancy and their involvement in clinics modest. One reason 

lays in the complexity of genetic diseases (as for example cancer) which are usually 

caused by multiple gene mutations. Thus, there is no surprise that the first gene 

therapy human clinical trial protocol approved by the US RAC / Food and Drug 

Administration (FDA) was aimed at a monogenetic disorder, named severe combined 

immune deficiency (SCID) caused by a mutation of adenosine deaminase (ADA) 

gene only [4]. Patients' T cells were obtained from their blood, induced to proliferate 

in cell culture, transduced with the ADA retroviral vector to express the normal gene 

for adenosine deaminase and reinfused into patients [5]. In this and other similar 

trials [6] therapeutic DNA was applied to be delivered in the nucleus of the target 

cells to replace the defective or missing genes. With increasing knowledge and 

progress in genetics and genomics, additional approaches have been established 

where delivered nucleic acids can turn off genes by targeting the RNA which codes 

for the protein instead of coding for the protein product itself. The fundamental 

principle of oligonucleotide-mediated gene silencing is the binding of a target RNA 

through Watson-Crick base pairing. Single-stranded antisense oligonucleotides 

(ASOs) are capable to act as a single strand, whereas the small RNA duplex needs 

to be first incorporated into the RNA-induced silencing complex (RISC), followed by 

the separation of the strands. The passenger strand is lost, and the remaining guide 

strand guides RISC to the complementary or near-complementary region of target 

mRNA, suppressing the gene expression either by degrading mRNA or blocking 
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mRNA translation [7]. Unmodified single-stranded RNA oligonucleotides lack the 

stability and different modifications have been done to increase their resistance to 

nucleases. Chemical modifications like 2´-fluoro, or 2-O-methyl RNA or the 

introduction of phosphorothioate linkages can not only increase stability but have 

also shown an improved binding affinity of oligonucleotides for their complementary 

sequences. An ever higher affinity was obtained with the locked nucleic acid (LNA) 

having a bridge between the 2' and 4' position of the ribose locking it in the 

conformation ideal for binding to complementary sequences [8, 9]. Unmodified 

double-stranded short interfering RNA (siRNA) is much more stable, though rapidly 

cleared and thus chemical modifications are needed for improved in vivo results  [9, 

10]. As the nucleic acids are rapidly cleared from the body, local injection at the site 

of pathology has been inclined as administration route. The first RNAi-associated 

nucleotide reaching the market was antisense oligonucleotide for the local intraocular 

treatment of cytomegalovirus retinitis in patients with AIDS (Fomivirsen) [11], though 

it has been withdrawn from the European market based on the commercial reasons.  

The anti-vascular endothelial growth factor (anti-VEGF) RNA aptamer Pegaptanib 

[12] is another drug that has entered the market being utilized in the local treatment 

of acute macular degeneration. In spite of the abundance of clinical trials with 

antisense oligonucleotides to combat cancer, none of them has hit the clinics. 

Nevertheless, great hope has been laid in the siRNA therapy with the currently 

ongoing clinical studies showing encouraging results obtained with concomitant 

treatment in cancer [13]. In addition, over the past decades much effort has been 

done on improving the delivery systems that can reimburse for demanding 

biopharmaceutical characteristics of nucleic acids and help overcome the barriers of 

nucleic acid delivery. 

 

1.2 Challenges for nucleic acid-based therapies 

The nucleic acids applied systemically either naked or enclosed within a carrier 

encounter many challenges on their way towards the target cell compartment.  The 

already mentioned stability of nucleic acids against the enzymatic degradation by 

nucleases in the physiological fluids is the first challenge to be faced [14]. Upon 

reaching the target tissue, the therapeutic oligonucleotides need to cross the cell 
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membrane being internalized into the endosomes. The endocytosis pathways can be 

divided in clathrin-mediated endocytosis, caveolae-mediated endocytosis, 

macropinocytosis, and clathrin- and caveolae-independent endocytosis [15]. The 

cellular uptake can be improved by attachment of targeting ligands inducing the 

receptor-mediated endocytosis. The endosomal pathway begins with the early 

endosomes which mature into late endosomes, thereby becoming progressively 

acidic [16]. Therefore, after their entry into the cell by endocytosis, nucleic acids need 

to escape from the endosomes as these later convert into lysosomes causing nucleic 

acid digestion. The proton pump vacuolar ATPase generates acidification by 

accumulating protons in the endocytic vesicles. For the nucleic acids complexed 

within the cationic carriers, the capability of the polymer to mediate endosomal 

escape can mainly be attributed to their strong buffering capacity in the pH range 

from 5 to7 [16]. This proton sponge hypothesis was proposed by Boussif et al. It 

suggests that the protonation of the basic polymer triggers an influx of Cl- finally 

causing swelling and rupture of the endosomes [17]. Whereas siRNA only needs to 

reach the cytoplasm to interfere with translation, the plasmid needs to translocate to 

the nucleus to mediate gene expression. The cellular actin cytoskeleton hampers the 

migration of the plasmid to the perinuclear region [18]. Translocation into the nucleus 

presents another important challenge of gene delivery. The nuclear envelope 

contains nuclear pores allowing a passive transport with a limit of 70 kDa or 10 nm 

which is much less than the size of the naked pDNA or its polyplex [19]. Hence, 

nuclear entry by degradation of the nuclear membrane during mitotic cell division is 

believed to be a predominant factor. In slowly or non-dividing cells, the efficient 

nuclear translocation during mitosis is hampered and thus an active nuclear import 

through nuclear pore complex (NPC) can be exploited [20]. Recently, Gagnon et al. 

have identified RNAi factors within the cell nuclei that may broaden the investigation 

of RNAi-based therapeutics beyond the traditional targets in the cytoplasm to targets 

in the nucleus [21].  
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1.3 Non-viral carriers conquering barriers and promoting nucleic acid 

delivery 

Synthetic non-viral carriers have attracted a great deal of attention over the past 

decades as the generally more potent viral vectors have been associated with a 

number of safety concerns. Non-viral vectors can circumvent some of the problems 

related to the viral vectors such as limited size and type of the payload, endogenous 

virus recombination and recognition by the host immune system [22]. Moreover, the 

chemical mimics of viruses have an advantage in terms of simplicity and 

straightforwardness of the large-scale production. Especially cationic lipids and 

cationic polymers have emerged as promising gene vectors as they can form 

condensed complexes with the negatively-charged nucleic acids through electrostatic 

interactions. Polyelectrolyte complexes formed with nucleic acid and cationic lipids 

are called lipoplexes, whereas the complexes with polymers are designated as 

polyplexes [23]. Felgner et al. reported the first use of a cationic lipid for gene transfer 

in 1987 employing N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 

(DOTMA) which resulted in high transfection efficiency in vitro [24]. Apart from 

DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammoniumethyl sulfate 

(DOTAP) and dioleoylphosphatidylethanolamine (DOPE) represents the most 

commonly used cationic lipids [25]. The DOPE is usually used as a co-lipid due to its 

endosomolytic properties [26]. Among cationic polymers, several natural polymers 

such as chitosan [27], dendrimers such as polyamidoamines (PAMAM) and 

polypropylenimine (PPI) [28], polypeptides like polylysine (PLL) [29] or 

polyethylenimine (PEI) [30, 31] have attracted much attention with the letter emerging 

as a gold standard in gene delivery due to its high transfection potency based on its 

strong plasmid condensation and good buffering capacity promoting the endosomal 

escape. 

 

1.3.1 Nucleic acid compaction facilitating domains 

The non-viral carriers need to be able to stably compact nucleic acids in order to 

protect them from the enzymatic degradation. Thus, sufficient nucleic acid 

compaction is the first prerequisite for efficient gene delivery. However, its 
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reversibility is crucial, as the delivered nucleic acid needs to be available for 

subsequent transcription. The oligonucleotide binding is predominantly based on the 

electrostatic interactions between the positively charged groups of the carrier and 

negatively charged phosphate backbone of the nucleic acid. The polyplex properties 

are greatly determined by the polymer characteristics such as its size, shape, charge 

density and flexibility, as well as by the formulation conditions. Different nucleic acids 

call for different transfection agents as short siRNA with 42 negative charges cannot 

provide such stabilization as a much larger pDNA molecule with approx. 3000-fold 

more charges. Apart from electrostatic interactions, hydrogen bonding [32] and 

hydrophobic interactions can enhance the polyplex stability. The hydrophobic 

modifications of PEI are known to increase transfection efficiency. Several research 

groups demonstrated improved efficacy and reduced toxicity of PEI by conjugation of 

various hydrophobic chains [33-35]. Teo et al. systematically attached hydrophobic 

chains of different lengths (ethyl, octyl, deodecyl) and aromatic hydrophobic groups 

(benzyl, phenylurea) to the low molecular weight PEI (1.8 kDa) showing that the 

condensation capability and stability of the polyplexes can be easily adjusted and 

improved by controlling the degree of functional carbonate conjugation. Random 

modification of PEI nitrogens with tyrosines provided increased extracellular stability 

and enhanced siRNA transfection efficiency [36]. The self-assembly of tyrosine 

containing polymers into nanocarriers has been explained to be promoted through 

the π-π interactions of the aromatic rings of the neighboring tyrosines [37, 38]. The 

conjugation of pyridines to branched PEI25 kDa via thiourea linkages as well led to 

an improved siRNA delivery in vitro, and also considerably low toxicological profile 

[39]. 

 

1.3.2 Targeting ligands 

Efficient in vivo targeting to cancerous tissues still represents a considerable 

challenge for non-viral gene delivery systems. The upregulation of surface receptors 

in cancer tissues enables selective targeting to tumor cells using various targeting 

ligands. Above mentioned PLL was the first targeted cationic polymer conjugate ever 

applied for DNA packaging introduced in 1987 by Wu et al. [40, 41] with liver cell-

specific asialoglycoprotein receptor-mediated endocytosis already exploited for gene 

delivery in vitro and in vivo. Wagner et al. developed PLL-based carriers with 
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transferrin (Tf) serving as a ligand calling the process “transferrinfection” [42]. Several 

other groups have also applied Tf as a targeting ligand for nucleic acid delivery [43-

45]. The transferrin receptor (TfR) is ubiquitously expressed at low levels in most 

normal human tissues representing the main entry mechanism for the iron bound Tf, 

whereas its expression on malignant cells is several fold higher than on normal cells 

and highly dependent on the stage of the tumor [46]. To date, antibodies and 

antibody fragments [47, 48], aptamers [49], glycoproteins [50, 51], small molecules 

[52, 53] and peptides [54-57] are just a few of the targeting ligands classes that can 

recognize and bind to receptors over-expressed in tumors. Especially the latter have 

gained increasing attention based on the straight-forward identification of high-affinity 

and high-selectivity binding sequences by phage display, their low molecular weight, 

efficient tumor penetration and minimal immune response [58]. In this regard, 

peptides containing the arginine-glycine-aspartic acid sequence (RGD) binding to the 

integrin receptors [55, 57] have been widely investigated. Integrins are playing a key 

role in the adhesion, migration, invasion and proliferation of tumor cells and are 

usually expressed at low or undetectable values in normal tissues, but can be highly 

upregulated in tumor tissues [59]. Harbottle et al. synthesized in 1998 an oligolysine 

peptide having a RGD targeting domain attached showing efficient binding to the 

fibronectin and vitronection integrin receptors and efficient gene transfer upon 

addition a lysosomotropic agent [55]. Moreover, the members of receptor tyrosine 

kinases family have a crucial role in tumorigenesis and various therapeutics targeting 

these receptors have been investigated and approved for the cancer treatment [60, 

61]. Among them short peptides directed towards the growth factor receptors (EGFR, 

VEGFR) [62-65] have shown vast promise. Using a phage display library Li et al. 

identified a GE11 targeting peptide amino acid sequence YHWYGYTPQNVI that 

specifically and efficiently bound to EGFR [66]. Small ligand size and convenient 

synthesis, absence of EGFR signaling activation, increased surface levels of the 

EGFR during treatment with GE11-PEG-PEI poylpexes are the advantages of this 

phage display-derived ligand over its natural ligand EGF [63]. 

To enhance the selectivity and transfection efficacy of the single peptide ligand-

based nucleic acid carriers, dual-targeted carriers have been investigated which 

simultaneously address two different surface receptors over-expressed in tumor 

tissues. With this dual-ligand approach, non-viral carriers attempt to mimic more 

potent natural viral carriers like adenoviruses which concurrently target coxsackie–
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adenovirus receptor (CAR) and integrins avβ3 or avβ5 [67, 68]. Nie et al. have 

combined the short peptide B6 derived from a phage display as a substitute for 

natural Tf and RGD in PEGylated PEI-based carriers showing a clear synergy of 

dual-targeted over the single-targeted polyplexes [68]. Also PEI-based, a 

combination of YC25 peptide against fibroblast growth factor receptor (FGFR) and 

CP9 peptide binding to the integrins resulted in a significantly enhanced gene 

transfer in tumors with positive expression of FGF receptors and integrins [69]. 

 

1.3.3 Shielding domains 

Gene delivery systems need to circulate in the blood long enough to reach their 

target site, thereby avoiding recognition by the immune system. Plasma proteins 

(opsonins) can bind the polyplexes rapidly removing them from the circulation 

through the reticulo-endothelial system (RES) [70]. Hydrophilic polymers have been 

demonstrated as essential for nanoparticle surface shielding against unintended 

interactions with biological surfaces and for prolonging the circulation half-life. Among 

them, polyethylene glycol (PEG) has been the most widely used. It reduces the 

tendency of the particles to self-aggregate by providing sterical stabilization. 

Moreover, the incorporation of targeting ligands via PEG spacer arm has emerged as 

a platform for active targeting providing accessibility of the ligand to the target tissue. 

The PEG shielding moiety can be either covalently attached to the polymeric carrier 

[57, 71, 72] or the nanocarriers can be postPEGylated after polyplex formation [73, 

74]. Apart from PEG, other hydrophilic molecules have been exploited for reducing 

the surface charge such as N-(2-hydroxypropyl)methacrylamide (HPMA) [75, 76], 

dextran [77, 78], hyaluronan [79] or hydroxyethyl starch (HES) [80]. To develop 

carriers that could sense their environment and alter their behavior accordingly, 

various reversible shielding strategies were applied. 

Environmentally programmed chemical linkages sensing e.g. changes in the redox 

potential, pH or the concentration of different enzymes have been have proven to 

increase the transfection efficiency. Disulfide linkages are most commonly exploited 

in the gene delivery as they remain stable in the blood circulation but are cleaved in 

the reducing intracellular environment [81, 82]. The enzymatic activity of matrix 

metalloproteinases (MMPs) for site-specific cleavage of PEG/MMP-substrate peptide 
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was exploited by Hatakeyama et al., as MMPs are highly expressed in tumor cells 

and secreted into the extracellular space [83]. Furthermore, pH-sensitive systems 

have especially gained attention taking an advantage of lower pH values of the late 

endosomes and lysosomes (pH 4.5-6.5) as opposed to the higher extracellular pH 

values (pH 7.5). Miscellaneous acid-cleavable bonds were introduced ranging from 

ortho esters [84, 85], hydrazones [86], acetals [87, 88] etc. 

 

1.3.4 Endosomal escape facilitating domains 

The endosomal escape and efficient release of the payload in the cytosol represents 

a major bottleneck for the nucleic acid delivery. The incorporation of the lytic lipid 

domains into the polymeric carriers can be a way to overcome it. As lipids are the 

main component of the cell membrane, the modification of the polymeric carriers with 

the hydrophobic domains results in additional hydrophobic interactions between the 

membrane and the polyplexes, facilitating the cargo delivery in the cytosol. Several 

hydrophobic modifications have been exploited to date, e.g. oleic acid [89, 90], 

stearic acid [91-93], cholesterol [94, 95] etc. Moreover, the endosomolytic peptides 

derived from influenza virus haemagglutinin HA2 or melittin were introduced [96, 97]. 

Boeckle et al. demonstrated an enhanced endosomal escape and gene transfer 

efficiency by attaching the melittin sequence modified with glutamic acid residues to 

the PEI [98]. On the other hand the gold standard PEI has demonstrated high 

transfection efficiency due to the so called “proton sponge” effect. The ability of the 

PEI and many other polymeric carriers to mediate efficient nucleic acid delivery is 

predominantly attributed to their strong buffering capacity in the lower endosomal pH 

range. Amino acid histidine containing the imidazole ring (pKa 6.03) is known to 

increase buffering capacity in endosomes and can be therefore used as a functional 

group to improve the endosomal escape of the nanocarriers [99, 100]. The low 

transfection efficiency of chitosan related to its low endosomal escape was for 

example improved by implementation of the histidine via disulfide linkage [101]. 
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1.4 On the way towards precise carrier systems 

1.4.1 Dendrimers 

Although PEI exhibits good buffering capacity and high transfection efficiency, its 

inherent heterogeneity presents a limitation to its usage. Dendrimers represent an 

approach towards defined polymeric structures. They consist of a central core 

molecule that acts like a root from which a number of tree-like, highly branched arms 

originate in a symmetric manner. They are synthesized by covalent coupling of the 

branches and for each additional layer (generation) that is being added the reaction 

sequence is repeated. These hyper-branched molecules have distinctive 

characteristics with a well defined size and structure and low polydispersity index 

based on their stepwise synthesis being especially relevant [102]. Polyamidoamine 

(PAMAM) and polypropylenimine (PPI) dendrimers of different generations have 

been most investigated in terms of nucleic acid delivery. As both these commercially 

available dendrimers still leave room for improvement in transfection efficiency and 

cytotoxicity, several modifications of dendrimers have been performed addressing 

different challenges in nucleic acid delivery. For example, dendrimers were equipped 

with different targeting ligands. Sideratou et al. synthesized a folate functionalized 

PEGylated PPI with a high specificity towards the folate receptor and low toxicity 

[103]. Koppu et al. attached transferrin (Tf) as a targeting ligand to PPI by using 

dimethylsuberimidate (DMSI) as a crosslinking agent which resulted in rapid and 

sustained tumor regression in mice [104]. Apart from numerous other targeting 

ligands (e.g. EGF [105], LHRH [106], RGD [107]), several alternative dendrimer 

surface modifications efficiently enhanced different steps in pDNA or siRNA gene 

delivery like cellular binding, internalization or endosomal escape. In particular, 

several hydrophobic modifications, such as conjugation with different fatty acids (12-

16 carbons) [108, 109] or aromatic amino acid phenylalanine [110] have been proven 

as beneficial for gene delivery leading to increased interactions with biological 

membranes and transmembrane activity as well as to improved endosomal escape 

by endosome fusion or destabilization.  Moreover, simple modifications with arginine 

as additional cationic domain efficiently enhanced nucleic acid compaction and 

cellular uptake [111, 112]. Conjugation of proton sponge effect facilitating 

polyhistidines to the PAMAM surface resulted in an improved endosomal escape and 

high transfection efficiencies [113]. Surface acetylation of PAMAM dendrimers 
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furthermore reduced cytotoxicity whilst maintaining appreciable permeability [114]. 

Not only reduced cytotoxicity, but also temperature-sensitive surface property-

induced active targeting with local hyperthermia was achieved with the oxyethylene 

unit surface modification [115]. Apart from surface modifications, other strategies 

have been applied to enhance transfection efficiency of dendrimers. Nuclear 

packaging as one of the basic prerequisites for successful gene delivery was 

substantially improved for the low generation PPI by dendrimer anchorage onto the 

gold nanoparticles. The latter were not included in the formed polyplexes which 

eliminated any potential toxicity issues [116]. 

 

1.4.2 Sequence-defined carriers synthesized via solid-phase synthesis 

Another approach to synthesize defined monodisperse polymeric carriers offers the 

solid-phase synthesis (SPPS) introduced by Merrifield in 1963. The method enabled 

a stepwise addition of protected amino acids to a growing peptide chain that was by 

covalently bound to a solid resin particle. Due to fixing of the peptide on the resin, 

excess reagents and side-products can easily be washed away. The simplicity and 

quickness of the method was demonstrated by the synthesis of a model tetrapeptide 

[117]. A modification of this classical method was proposed by Hartmann et al. as a 

straightforward strategy for the synthesis of well-defined linear poly(amidoamines) 

(PAA)-polypeptides and PAA-PEG conjugates. This made possible to precisely 

position the functional moieties within the polymer chain to design user-defined 

multifunctional polymers with tailor-made properties [118]. Further modification of the 

method by Schaffert et al. enabled introduction of novel building blocks comprising 

diaminoethane motifs, essential for nucleic acid binding and endosomal buffering 

[119]. Therewith a library of >600 potent oligomers of different topologies (U-shape, 

T-shape, i-shape, combs) with various functional moieties (fatty acids, cysteines, 

histidines, targeting domains) was designed for efficient pDNA and siRNA delivery 

[120-124]. 
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1.5 Aims of the thesis 

Gene therapy carries a great potential of correcting genetic defects, yet its success is 

largely dependent on the suitable gene delivery vector. Different chemical 

approaches have been applied to develop polymeric carriers trying to surmount the 

extracellular and intracellular challenges of the nucleic acids delivery. However, the 

cytotoxicity of such potent cationic polymeric carriers related to polydispersity and 

lack of precise conjugation sites has limited their use. Thus, in the current thesis the 

focus was on the evolvement of novel precise polymeric nucleic acid carriers which 

allowed systematic determination of structure-activity relationships and revealed high 

gene transfer efficiency and good biocompatibility. 

The first aim of the thesis was to evaluate defined biodegradable oligomers for gene 

delivery of a higher molecular weight (Mw) as high Mw is generally associated with 

higher gene transfer efficiency. Due to the fact that high Mw often correlates with 

increased cytotoxicity, the structurally-precise non-toxic lower Mw dendrimer PPI 

should serve as a core to which sequence-defined oligo (ethane amino) amides 

comprising terminal cysteines were to be attached via disulfide linkages. In the 

reducing cytosol environment these disulfide bonds should be cleaved and the 

assembled high molecular weight carrier dissociated into non-toxic low molecular 

weight compounds. Thus, not only high transfection efficiency but also low toxicity 

profile of these novel carriers should be achieved and possibly correlated with the 

length of the attached oligo (ethane amino) amides. 

The second aim was to evaluate a small library of oligomers with increasing Mw 

comprising only the diaminoethane containing building blocks as another approach to 

increase the carrier efficacy by increasing its Mw but maintaining the cytotoxicity 

profile low. Again the correlation between the increasing Mw and the biophysical and 

biological properties should be performed in order to find an optimal minimal length of 

the carrier that would allow efficient gene transfer already in the absence of 

additional functional moieties. The study should provide a better fundamental 

understanding to the diaminoethanes consisting oligomers prior to the succeeding 

steps of carrier functionalization. 

The third aim of the thesis was to test targeted receptor-specific carriers based on the 

highly functionalized oligo ethane (amino amide) oligomers. Therefore, a precise 
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conjugation technique was to be utilized for easy conversion of existing non-targeted 

oligomers from our library into FolA-targeted and shielded oligomers. The suitability 

of the method for gene delivery carriers should be verified. Moreover, the significance 

of such high-throughput method in a search for an optimal target-specific carrier 

should be demonstrated. 

The fourth aim was to investigate the potential to enhance the specificity and efficacy 

of targeted carriers by a dual-ligand approach. For this purpose, defined oligo 

(ethane amino) amides containing a PEG chain with a peptidic targeting ligand at its 

distal end prepared via all-in-one solid-phase synthesis were to be assessed. Integrin 

receptor-directed cyclic peptide cRGDfk, transferrin receptor-addressing peptide B6, 

and epidermal growth factor receptor-targeting peptide GE11 should serve as 

targeting ligands. Dual-receptor targeted pDNA polyplexes should be designed by 

combining two of the above peptides at various ratios, in order to find an optimal 

ligand combination. 

The final aim of the thesis was to optimize the oligomers towards potent, defined, 

targeted and shielded carriers. As a targeting moiety novel HGFR/c-Met receptor-

binding ligands were to be evaluated. Receptor-specific cell binding, cellular 

internalization and gene transfer of the novel targeted carriers should be 

demonstrated. The influence of increased shielding and enhanced polycationic part 

of the carrier should be investigated in vitro and in vivo.  Furthermore, the impact of 

the co-addition of a non-shielded oligomer on the compaction of the particles and 

resulting gene expression in vivo should be elucidated. 
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2 Materials and methods 

2.1 Chemicals and reagents 

Cell culture media, antibiotics and fetal calf serum (FCS) were purchased from 

Invitrogen (Karlsruhe, Germany), HEPES from Biomol GmbH (Hamburg, Germany) 

and glucose from Merck (Darmstadt, Germany). Plasmid pCMVLuc (encoding a 

Photinus pyralis luciferase under control of the CMV promoter) for in vitro 

experiments was produced with the Qiagen Plasmid Giga Kit (Qiagen, Hilden, 

Germany) according to the manufacturer specifications, pCMVLuc for in vivo 

experiments was purchased by Plasmid Factory (Bielefeld, Germany). Cy5-labeling 

kit was obtained from Mirus Bio (Madison, WI, USA). Luciferase cell culture lysis 

buffer and D-luciferin sodium salt were obtained from Promega (Mannheim, 

Germany). LPEI was synthesized by Wolfgang Rödl, LMU Biotechnology as 

described in [125]. Sequence-defined oligomers were synthesized by Dongsheng He, 

Ulrich Lächelt, Irene Martin, Edith Salcher, Claudia Scholz and Christina Troiber, all 

from LMU Pharmaceutical Biotechnology. 

 

2.2 Biophysical characterization 

2.2.1 Polyplex formation 

pCMVLuc (200 ng) and oligomers at indicated nitrogen/phosphate (N/P) ratios were 

diluted in separate tubes in 10 µL of 20 mM HEPES buffered 5% glucose pH 7.4 

(HBG) each. Only protonatable nitrogens were considered in the N/P calculations. 

The polycation solution was added to the nucleic acid, mixed vigorously up to 20 

times and incubated for 30 min at room temperature. 

 

2.2.2 Agarose gel shift assay for pDNA binding 

For pDNA gel-shift assay, a 1% agarose gel was prepared by dissolving agarose in 

TBE buffer (trizma base 10.8 g, boric acid 5.5 g, disodium EDTA 0.75 g, in 1 L of 

water) and boiling it up to 100 °C. After addition of GelRed for the detection of the 
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nucleic acid, the agarose solution was casted in the electrophoresis unit and left to 

form a gel. Polyplexes were prepared as described above containing 200 ng of pDNA 

in 20 µL HBG.  Next, 4µL of loading buffer (prepared from 6 mL of glycerine, 1.2 mL 

of 0.5 M EDTA, 2.8 mL of H2O, 0.02 g of bromphenol blue) were added to each 

sample before they were placed into the sample pockets. Electrophoresis was 

performed at 120 V for 80 min. 

 

2.2.3 Ethidium bromide assay for pDNA condensation 

Oligomer solution was added at increasing N/P ratios to 10 µg pDNA in 1 mL HBG 

containing 0.4 µg EtBr. After each addition the EtBr fluorescence was measured at 

the excitation wavelength λex = 510 nm and emission wavelength λem = 590 nm using 

a Cary Eclipse spectrophotometer (Varian, Germany). 0.4 µg EtBr in 1ml HBG 

presented blank value. Maximal fluorescence intensity was set 100% for the EtBr 

solution containing free nucleic acid (10 µg) and decrease in fluorescence was 

measured after stepwise addition of oligomer solution. 

 

2.2.4 Particle size and zeta potential measurement 

Particle size and zeta potential of formulations were measured by laser-light 

scattering using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, U.K.). 

10 µg pDNA were vigorously mixed with oligomers at N/P 12 in 100 μl HBG and 

incubated for 30 min. Just before dynamic light scattering (DLS) measurement 

polyplex samples were diluted to 1 mL in 20 mM HEPES pH 7.4 and transferred in a 

folded capillary cell (DTS1060). Zetasizer Nano ZS with backscatter detection 

(Malvern Instruments, Worcestershire, UK) was utilized, the equilibration time was 

set to 0 min, the temperature was 25 °C and an automatic attenuator was applied. 

The refractive index of the solvent, in our case water, was 1.330 and the viscosity 

0.8872, the refractive index of polystyrene latex (1.590) was fixed. Each sample was 

measured 3 times with 10 subruns. 
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2.2.5 pH titrations for determination of buffer capacity 

The oligomer sample, containing 15 μmol protonatable amines, was diluted in a total 

volume of 3.5 mL NaCl solution (50 mM) and the pH was adjusted to 2.1 by addition 

of 0.1 M HCl. Afterwards, a back titration with 0.05 M NaOH solution was performed 

with an automatic titration system (Titrando 905 from Metrohm, Germany) until pH of 

11 was reached. Furthermore a titration with 50 mM NaCl was performed and the 

consumption of NaOH in this control titration was substracted from the consumption 

in the oligomer titrations at the corresponding pH values. Percentage of buffer 

capacity C in a certain pH range (x – y), where ΔV stands for the volume 

consumption of NaOH in the considered pH range, was calculated according to 

equation (1). The pH titrations were performed by Claudia Scholz (PhD 2014, LMU 

Munich). 

 

 

2.2.6 Transmission electron microscopy 

A carbon coated 200 mesh copper grid (Plano GmbH, Wetzlar, Germany) was 

activated by mild plasma cleaning. Afterwards, one drop (10 µL) of the polyplex 

solution at N/P 12 prepared as described above was placed on the grid. Excess 

liquid was blotted off using filter paper until the grid was almost dry. Subsequently, 

the copper grid was incubated with 10 μL of a 1% phosphotungstic acid solution 

(PTA) (Science Services, Germany), air-dried as before and analyzed immediately by 

Dr. Markus Döblinger (LMU Munich) using a FEI Titan 80 - 300 operated at 80 kV. 

 

2.3 Biological characterization in vitro 

2.3.1 Cell culture 

Mouse neuroblastoma cells (N2A) were grown in Dulbecco‟s modified Eagle‟s 

medium (DMEM), human prostate cancer cells (PC3 and DU145) were cultured in 

RPMI-1640 medium, human cervix carcinoma KB cells were grown in folate free 

RPMI-1640 medium and hepatocellular carcinoma cells (Huh7) were grown in a 
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50:50 mixture of Dulbecco‟s modified Eagle‟s medium (DMEM) and Ham's F12 

medium, at 37 °C in humidified atmosphere containing 5 % CO2. All media were 

supplemented with 10% fetal calf serum (FCS), 4 mM stable glutamine, 100 U/mL 

penicillin, and 100 μg/mL streptomycin. 

 

2.3.2 Receptor levels estimation 

The surface receptor levels were determined on cells either in suspension or 

attached as in cell binding/internalization studies. In the first case, 800 000 cells were 

incubated in 100 μL buffer (10% FCS in PBS) containing monoclonal mouse anti-

human EGFR or HGFR/c-Met antibody (1:100 dilution) or IgG control for mouse 

primary antibodies (1:100 dilution) for 1 h on ice and subsequently washed twice with 

buffer (10% FCS in PBS). The cells were then stained with Alexa 488-labeled goat 

anti-mouse (1:400 dilution) secondary antibody for 1 h on ice, washed and 

counterstained with DAPI (1 μg/mL). In the second case, the cells were seeded into 

24-well plates coated with collagen at a density of 50 000 cells/well. After 24 h, cells 

were treated were incubated on ice with the monoclonal mouse anti-human EGFR 

antibody (1:500 and 1:5000 dilution) or IgG control in 500 μL medium for 30 min on 

ice and subsequently washed three times with PBS buffer. The cells were then 

stained with Alexa 488-labeled goat anti-mouse secondary antibody for 30 min on ice 

with the same dilutions (1:500 and 1:5000 dilution), washed again three times with 

PBS, detached with trypsin/EDTA and taken up in PBS with 10% FCS. The samples 

were then counterstained with DAPI (1 μg/mL) and analyzed on a Cyan™ ADP flow 

Cytometer (Dako, Hamburg, Germany) using Summit™ acquisition software 

(Summit, Jamesville, NY, USA). DAPI fluorescence was excited at 405 nm and 

detected with a 450/50 bandpass filter, Alexa-488 fluorescence was excited at 488 

nm and detected with a 530/40 nm bandpass filter. The percentage of EGFR positive 

cells was determined as compared to control IgG stained cells. The mean 

fluorescence intensity (MFI) corresponds to the arithmetic mean of the living cell 

population. 
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2.3.3 Cellular association 

The cells were seeded into 24-well plates coated with collagen at a density of 50 

000 cells/well. After 24 h, culture medium was replaced with 400 μL fresh growth 

medium. pDNA polyplexes (N/P 12) in 100 μL HBG, containing 1 µg pDNA (20% of 

the nucleic acid was Cy5-labeled) were added to each well and incubated on ice for 

30 min. Subsequently, cells were washed twice with 500 µL PBS. Cells were 

detached with trypsin/EDTA and taken up in PBS with 10% FCS. Cellular association 

was assayed by excitation of Cy5 at 635 nm and detection of emission at 665 nm. 

Cells were appropriately gated by forward/sideward scatter and pulse width for 

exclusion of doublets. DAPI (4',6-diamidino-2-phenylindole) was used to discriminate 

between viable and dead cells. Data were recorded by Cyan™ ADP flow Cytometer 

(Dako, Hamburg, Germany) using Summit™ acquisition software (Summit, 

Jamesville, NY, USA). 

 

2.3.4 Cellular internalization 

The appropriate cells were seeded into 24-well plates coated with collagen at a 

density of 50 000 cells/well. After 24 h, culture medium was replaced with 400 μL 

fresh growth medium. pDNA polyplexes (N/P 12) in 100 μL HBG, containing 1 µg 

pDNA (20% of the nucleic acid was Cy5-labeled) were added to each well and 

incubated at 37°C for either 30-45 min (in case of targeted oligomers) or 4 h (for 

untargeted oligomers). Subsequently, cells were washed twice with 500 µL PBS, 

containing 1000 I.U. of heparin, for 15 min to remove any polyplexes sticking to the 

cell surface. Cells were detached with trypsin-EDTA and taken up in PBS with 10% 

FCS. Cellular uptake was assayed by excitation of Cy5 at 635 nm and detection of 

emission at 665 nm. Cells were appropriately gated by forward/sideward scatter and 

pulse width for exclusion of doublets. DAPI (4',6-diamidino-2-phenylindole) was used 

to discriminate between viable and dead cells. Data were recorded by Cyan™ ADP 

flow Cytometer (Dako, Hamburg, Germany) using Summit™ acquisition software 

(Summit, Jamesville, NY, USA) and analyzed by FlowJo® 7.6.5 flow cytometric 

analysis software. 
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2.3.5 Nuclear association 

N2A cells were plated into 24-well plates coated with collagen at a density of 50 

000 cells/well. After 24 h, the culture medium was replaced with 400 μL fresh 

medium. pDNA polyplexes (N/P 12) in 100 μL HBG, containing 1 µg pDNA (20% of 

the nucleic acids were Cy5-labeled) were added to each well and incubated at 37°C. 

After 24h isolation of cell nuclei was performed as described by Grandinetti et al. 

[126]. N2a cells were pelleted by centrifugation using tabletop centrifuge (Heraeus 

Biofuge Fresco, DJB Labcare, UK) at 2000 rpmi at 4 °C for 10 min and resuspended 

in 2 mL of ice-cold PBS (phosphate-buffered saline) buffer containing 2 mM DTT, 1 

μg/mL protease inhibitor cocktail, and 40 μg/mL digitonin. The cells were incubated 

on ice for 5 min in order to permeabilize them. Nuclei from the permeabilized cells 

were then pelleted at 5000 g at 4°C for 10min and resuspended in 2 mL of ice-cold 

PBS containing 2 mM DTT and 1 μg/mL protease inhibitor cocktail and incubated 

again on ice for 5 min. Nuclei were then centrifuged at 5000 rpmi at 4°C for 10 min 

and resuspended in 500 μL PBS containing 10% FCS prior to flow cytometry 

analysis. Cellular association was assayed by flow cytometry as described above. 

 

2.3.6 Luciferase gene transfer 

Cells were seeded 24 h prior to pDNA delivery using 10 000 cells per well in 96-well 

plates. Transfection efficiency of the oligomers was evaluated using 200 ng 

pCMVLuc per well. All experiments were performed in quintuplicates. Before 

transfection, medium was replaced with 80 μL fresh medium containing 10% FCS. 

Polyplexes formed in 20 μL HBG in sterile Eppendorf caps at 25 °C were added to 

each well. In the case of experiments performed with the non-targeted oligomers, the 

polyplexes were incubated on cells for 24 h at 37 °C. LPEI at nontoxic optimum N/P 6 

with 24 h polyplex incubation on cells was used as positive control. In the case of 

targeted oligomers, a shorter 30-45 min polyplexes incubation with cells was used, 

followed by incubation with fresh medium containing endosomolytic agent 

chloroquine at concentration of 100 μM (for control experiments without chloroquine 

only fresh medium was added). After 4 h medium was again replaced by fresh 

medium and cells were further incubated for 20 h. LPEI at nontoxic optimum N/P 6 

with 4 h polyplex incubation on cells was used as positive control. HBG buffer was 

used as negative control. For all experiments 24 h after transfection, cells were 
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treated with 100 μL cell lysis buffer (25 mM Tris, pH 7.8, 2 mM EDTA, 2 mM DTT, 

10% glycerol, 1% Triton X-100). Luciferase activity in the cell lysate was measured 

using a luciferase assay kit (100 μL Luciferase Assay buffer, Promega, Germany) 

and a Centro LB 960 plate reader luminometer (Berthold Technologies, Germany). 

 

2.3.7 Cell viability assay (MTT assay) 

The cells were transfected in 96-well plates as described above. 24 h post 

transfection, 10 µL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide; 5 mg/mL) were added to each well reaching a final concentration of 0.5 

mg/mL. After an incubation time of 2 h, unreacted dye and medium were removed 

and the 96-well plates were stored at -80°C for at least one hour. The purple 

formazan product was then dissolved in 100 µL DMSO (dimethyl sulfoxide) per well 

and quantified measuring absorbance using microplate reader (Tecan Spectrafluor 

Plus, Tecan, Switzerland) at 530 nm with background correction at 630 nm. All 

studies were performed in quintuplicates. The relative cell viability (%) related to 

control wells treated only with 20 µL HBG was calculated as 

([A] test/[A] control) × 100%. 

 

2.3.8 Metabolic activity assay (CellTiter-Glo® assay) 

N2A cells were plated in 96-well plates at 5 000 cells/well. After 24 h, medium was 

replaced by fresh medium containing increasing concentrations of oligomers (0.01; 

0.1; 0.2; 0.4; 0.8 and 1mg/mL). After 48 h of incubation, half of the medium in the well 

(50 µL) was replaced by 50 µL of CellTiter-Glo® Reagent (Promega, USA). The 

relative metabolic activity was determined as the ratio of measured luminescent 

signal proportional to the amount of ATP present over the signal of untreated cells. 

For this purpose Lumat LB9507 luminometer (Berthold, Bad Wildbad, Germany) was 

used.  
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2.3.9 Fluorescence microscopy 

The Huh7 cells were seeded into eight-well chamber slides coated with collagen at a 

density of 30 000 cells/well. After 24 h, culture medium was replaced with 240 μL 

fresh growth medium. pDNA polyplexes (N/P 12) in 60 μL HBG, containing 600 ng 

pDNA (20% of the nucleic acid was Cy5-labeled) were added to each well and 

incubated at 37°C. After 45 min, DAPI was added and pictures were obtained using 

Zeiss Axiovert 200 fluorescence microscope (Carl Zeiss AG, Germany). 

 

2.3.10 Western blotting 

Huh7 cells (200 000 /well) were seeded in 4 ml medium using six-well plates. After 24 

h, medium was replaced with 2 ml fresh medium. The transfection polyplexes were 

performed as described above using 5 µg pDNA. After 45 min of incubation, the cells 

were lysed and total protein concentration was determined using a BCA assay. 30 μg 

of protein in loading buffer were applied per lane and were separated by SDS-PAGE 

under reducing conditions, blotted on nitrocellulose membrane and blocked with NET 

gelatine for 1 h at room temperature. Immunostaining was performed using Met 

(Santa Cruz Biotechnology, USA), phospho-Met (Cell Signalling, USA), Akt and 

phospho Akt antibodies (Cell Signaling, Germany) overnight at 4 °C. After the 

incubation with the applicable primary antibodies, membranes were washed three 

times for 15 min with NET gelatine before incubating with the adequate secondary 

peroxidase antibody for 1 h. When necessary the membranes were stripped in 2% 

SDS (w/v) with 0.8% (v/v) ß-mercaptoethanol in 0,07 M Tris/HCl solution for 1 h at 50 

°C. After another three washing cycles, the membranes were cut accordingly and the 

proteins were then visualized using Lumi-Light Western blotting substrate (Roche, 

Germany). 

 

2.3.11 Serum stability assay 

1 µg pDNA and the polymer at N/P 12 were diluted in separate tubes in HBG to a 

total volume of 12.5 µL. The polyplexes were formed and incubated for 30 min at 

room temperature. 112.5 µL of fetal bovine serum (FCS) were added to the samples 

to reach a final concentration of 90% FCS. The samples were then incubated with 
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FCS for 1, 10, 30 or 90 min at 37 °C. Where indicated, 100 I.U. heparin was added to 

the polyplexes incubated in serum. Agarose gel (1%) was prepared by dissolving 

agarose in TBE buffer. After addition of GelRed, the agarose solution was casted into 

an electrophoresis unit to form a gel. 4 µL loading buffer were added to the samples 

before they were placed into the sample pockets. Electrophoresis was performed at 

120 V for 80 min. 

 

2.3.12 Erythrocyte leakage assay 

Fresh, citrate buffered murine blood was washed several times with PBS. Washed 

murine erythrocyte suspension was centrifuged and the pellet was diluted to 5×107 

erythrocytes/mL with two different PBS buffers (pH 7.4, and 5.5). A volume of 75 μL 

of erythrocyte suspension and 75 µL of oligomer solution were added to each well of 

a V-bottom 96-well plate (NUNC, Denmark) resulting in final concentration of 5 µM 

oligomer per well. 1% Triton X-100 served as the positive control, addition of only 

PBS buffer of each pH to the erythrocyte suspension as the negative control. The 

plates were then incubated at 37 °C under constant shaking for 1 h. After 

centrifugation, 100 µL of the supernatant were analyzed for hemoglobin release 

measuring its absorbance at 405 nm with the microplate reader (Tecan Spectrafluor 

Plus, Tecan, Switzerland). 

 

2.4 Biological evaluation in vivo 

2.4.1 Luciferase gene transfer 

Animal experiments were carried out in female Rj:NMRI-nu (nu/nu) (Janvier, Le 

Genest-St-Isle, France). 5x106 Huh7 cells were inoculated subcutaneously into the 

left flank and experiments started approximately 12 days after tumor cell injection 

when the tumors reached the adequate size. For intratumoral administration, 

polyplexes containing 50 μg pCMVLuc (around 2.5 µg/g body weight) at N/P 12 in 

HBG in total volume of 60 µL were applied and mice were sacrificed after 24 h. 

Systemic gene transfer in tumor bearing mice was conducted using polyplexes 

containing 80 μg pCMVLuc (around 4 µg/g body weight) at N/P 12 in HBG in total 

volume of 200 µL. Polyplexes were injected into the tail vein and animals were 
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sacrificed 48 h after application. Tumors and/or organs were dissected and 

homogenized in cell culture lysis reagent using a tissue and cell homogenizer 

(FastPrep®-24, MP Biomedicals, USA). The samples were then centrifuged at 3000 g 

at 4 °C for 10 min to separate insoluble cell components. Luciferase activity was 

determined in the supernatant using a Centro LB 960 luminometer (Berthold, 

Germany). The animal experiments were performed together with Annika Herrmann 

(veterinary MD study, LMU). All animal procedures were approved and controlled by 

animal experiments ethical committee of Regierung von Oberbayern, District 

Government of Upper Bavaria, Germany, and carried out according to the guidelines 

of the German law of protection of animal life. 

 

2.4.2 Quantitative real time polymerase chain reaction 

For pDNA quantification by real-time PCR (RT-PCR) in tumors, polyplexes were 

administered as described above. Total DNA was isolated according to 

manufacturer's instructions using peqGOLD guanidinisothiocynate/phenol method 

(Peqlab, Germany). Quantitative RT-PCR was then performed on a LightCycler 480 

system (Roche) using UPL Probe #84 (Roche) and Probes Master (Roche). The 

following primer sequences were used: reverse primer 5'-CCC CGT AGA AAA GAT 

CAA AGG-3' and forward primer 5'-GCT GGT AGC GGT GGT TTT T-3'. The pDNA 

dilution series were run in parallel to allow the absolute quantification. 

 

2.5 Statistical analysis 

All values are stated as mean ± SD unless otherwise indicated. The number of 

replicates is indicated in the corresponding methods section. For statistical analysis, 

student‟s t-tests were performed (*p<0.05; **p<0.01; ***p<0.001). 
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3 RESULTS 

3.1 Polypropylenimine dendrimers bioreducibly tailored with 

sequence-defined oligo (ethane amino) amides as gene delivery systems 

Efficient pDNA delivery with cationic polymers is known to be dependent also on the 

polymer size. For instance, a relatively high molecular weight (Mw) of linear PEI 

(LPEI) of 22 kDa is required for high transfection efficiency. However, its high Mw is 

also strongly associated with carrier toxicity [127, 128]. Due to its static structure, 

accumulation in cells or organs of living systems can occur, causing undesired toxic 

effects. Low Mw cationic gene carriers, on the other hand, may not provide sufficient 

polyplex stability in vivo during blood circulation [129-131]. Therefore, a connection of 

non-toxic small Mw compounds by biodegradable linkages into larger polymeric 

structures presents a possible solution [129, 130, 132-136]. Previously, in our lab 

Russ et al. [137] presented a method for assembly of so-called “pseudodendrimers” 

by connecting low Mw oligoethylenimine (OEI) units with the biodegradable linker 

hexanedioldiacrylate (HD) resulting in efficient and biocompatible gene carriers. In a 

subsequent work, the structurally better defined dendrimers G2 or G3 

polypropylenimine (PPI) were used as core structures and connected with the same 

HD linker to either PPI or oligoethylenimine surface units [138]. Nevertheless, 

uncertainty of the resulting structures still remained due to their polydisperse nature 

and absence of precise connection sites between core and surface units. For the 

current evaluation, we chose PPI as a core of our carriers with a focus on generating 

more defined biodegradable gene vectors with higher Mw and biocompatibility (Edith 

Salcher, PhD thesis LMU 2013). PPI and other dendrimers have already previously 

gained much attention in gene delivery [139, 140] due to a well defined size and 

structure, monodispersity and especially high ratio of multivalent surface moieties to 

molecular volume which offers multiple attachment sites for various domains such as 

shielding and targeting domains. In order to overcome the main limitations of PEI, 

polydispersity and cytotoxicity, analogs have recently been designed based on the 

artificial amino acid succinoyl-tetraethylene pentamine (Stp) [119]. Stp contains the 
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1,2-diaminoethane motif also present in PEI and responsible for nucleic acid 

complexation and endosomal buffering [120, 121]. In the current study such small, 

sequence-defined linear oligomers consisting of increasing number of Stp units were 

used attached as octamers to a PPI core. 

 

3.1.1 Design of oligo(ethanamino)amides-equipped polypropylenimines 

Small Stp oligomers [141] mediate efficient gene transfer only upon cysteine 

incorporation and disulfide-based oligomerization into larger structures. These 

sequence-defined linear oligomers consisting of increasing number of Stp units [119] 

were used for modification of the PPI core (Edith Salcher, PhD thesis, LMU 2013). 

 

Scheme 1. Schematic presentation of defined dendritic structures consisting of PPI G2 core linked via disulfide 

linkages to sequence-defined Stp oligomers and their biodegradation in the reducing cytosol environment [142]. 

 

Low generation 2 (G2) PPI [143] was chosen due to its lower cytotoxicity and 

moderate efficiency concerning pDNA gene transfer. Disulfide bonds were introduced 

as a biodegradable linkage between the PPI core and linear Stp oligomers, as these 

can be generated in a controlled manner and are rather stable in the extracellular 

environment, not leading to polymer degradation until reaching the reducing cytosolic 

environment. In order to enable efficient reaction of PPI with cysteine-containing 

linear Stp oligomers (Scheme 1), the eight primary amines on the surface of PPI G2 
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were amidated with an activated cysteine derivative and then reacted with cysteine-

containing linear oligomers (separately synthesized by solid-phase supported 

synthesis) containing one C-terminal cysteine and 1 to 5 Stp units). The library of 

resulting synthesized PPI conjugates (synthesis by Edith Salcher and Claudia 

Scholz, LMU Pharmaceutical Biotechnology, see [142]) is presented in Table 1. 

 

Table 1. Identification numbers, sequences, abbreviations and number of Stp units and protonatable amines of 

the synthesized conjugates. 

Conjugate 

(Polymer Id) 

Sequence Abbreviation n (Stp units) Protonatable 
Amines 

418 PPI-(C-C-Stp)8 PPI-Stp1 1 46 

427 PPI-(C-C-Stp2)8 PPI-Stp2 2 70 

428 PPI-(C-C-Stp3)8 PPI-Stp3 3 94 

430 PPI-(C-C-Stp4)8 PPI-Stp4 4 118 

536 PPI-(C-C-Stp5)8 PPI-Stp5 5 142 

PPI G2   0 14 

 

3.1.2 Biophysical characterization of polypropylenimines 

The ability of synthetic gene carriers to condense pDNA to nanosized particles is a 

crucial requirement for successful gene delivery. Therefore, the pDNA binding ability 

of synthesized PPI conjugates was first evaluated by EtBr exclusion assay (Figure 

1A). LPEI was used as a “positive control” displaying the fastest and the greatest 

decrease in the intercalator fluorescence and therewith the highest compaction ability 

already at low N/P ratios. For unmodified PPI G2 with increasing N/P ratios the 

fluorescence decreased at a slightly slower rate than for LPEI, though at N/P ratios 

above around 8 PPI G2 was able to extinguish fluorescence to the same extent as 

LPEI. Of the novel Stp conjugates, the PPI conjugate with the highest number of Stp 

units, PPI-Stp5, also exhibited good pDNA compaction ability. With conjugates 

comprising 2-4 Stp units per branch, moderate reductions in EtBr fluorescence were 

obtained. The lowest binding capacity was observed for the conjugate with only 1 Stp 

unit per branch. The gel-shift assays for pDNA binding (Figure 1B) were in 

accordance with the findings above showing the best binding for PPI-Stp5 conjugate. 
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Figure 1. pDNA compaction ability of PPI G2 and its analogues with Stp units attached to a dendritic core. A) 

EtBr exclusion assay. Oligomer solution was added at increasing N/P ratios to 10 µg pDNA containing 0.4 µg 

EtBr. Reduction of EtBr fluorescence was calculated as percentage of maximal fluorescence of EtBr containing 

pDNA solution. B) pDNA binding assay by electrophoresis. The gel retardation of polyplexes at increasing N/P 

ratios was compared to the shift of plain pDNA. 

 

This was the only PPI conjugate, apart from unmodified PPI G2, that exhibited a 

complete cargo binding at all N/P ratios. Size measurements of polyplexes at N/P 12 

(Table 2) revealed that all Stp modified PPI conjugates form nanoparticles with pDNA 

of around 150-400 nm, acceptable for potential in vivo experiments [144]. The size of 

the particles increased with the number of Stp units up to 4 Stp units per conjugate 

branch. The PPI-Stp5/pDNA nanoparticles had a somewhat smaller (~270 nm) size. 

Their polydispersity index as an indicator of heterogeneity of sizes of the analyzed 

particles, calculated from a Cumulants analysis of the dynamic light scattering (DLS)-

measured intensity autocorrelation function was also somewhat lower which was in 

line with good compaction ability of PPI-Stp5 as described above. However, all 

polydispersity indices were below 0.7, the value above which the samples are (due to 

their broad size distribution) unsuitable for the DLS technique. The unmodified PPI 

G2 on the other hand formed very large particles of around 1.2 µm with high 

polydispersity pointing out to the necessity of its surface modification. All polyplexes 

displayed similar positive surface charge with zeta potentials of around 20-30 mV 

(Table 2). 
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Table 2. Particle size, polydispersity index and zeta potential of PPI conjugate/pDNA polyplexes formed at N/P 

12. The measurements were performed by Edith Salcher (PhD 2013, LMU). 

Conjugate Mean Size (nm) Mean Polydispersity 
Index (PI) 

Mean Zeta Potential 
(mV) 

PPI-Stp1 155.3 ± 60.6 0.140 ± 0.04 21.7 ± 0.3 

PPI-Stp2 272.8 ± 94.8 0.245 ± 0.01 25.6 ± 1.3 

PPI-Stp3 321.5 ± 32.9 0.320 ± 0.01 32.1 ± 1.3 

PPI-Stp4 369.6 ± 90.9 0.349 ± 0.01 20.3 ± 0.5 

PPI-Stp5 266.7 ± 29.5 0.278 ± 0.03 29.5 ± 0.6 

PPI G2 1198 ± 636 0.496 ± 0.02 27.1 ± 1.6 

 

3.1.3 Biological in vitro characterization 

Cellular internalization studies were performed on two different cell lines, mouse 

neuroblastoma (N2a) and humane prostate cancer (PC3) cells, to investigate any cell 

line dependent behavior of PPI conjugate/pDNA polyplexes. For this purpose 

fluorescently labeled (Cy5) pDNA was used. After pDNA transfection the cellularly 

bound but not internalized polyplexes were removed by polysaccharide heparin, 

taking advantage of its negative charge density. The flow cytometry results are 

displayed as histograms plotting the Cy5 fluorescence intensity against the number of 

events.  

 

Figure 2. Cellular internalization of PPI conjugate/Cy5-pDNA polyplexes formed at N/P 12 assayed 4h after 

transfection. Flow cytometry experiments were performed on A) N2a and B) PC3 cells. DAPI was used to 

discriminate between viable and dead cells. 

 



   RESULTS 

28 

They showed that all Stp modified PPI conjugates were taken up by the cells to a 

similar extent. Unmodified PPI G2 on the other hand, in spite of the presence of 

bigger polyplex aggregates, showed much lower cellular internalization of polyplexes 

than the Stp modified conjugates. Almost no difference was observed between 

cellular internalization on N2a (Figure 2A) and PC3 cells (Figure 2B). 

 

Figure 3. Luciferase gene transfer on A) N2a and B) PC3 cells and corresponding cell viabilities (MTT assay) on 

C) N2a and D) PC3 cells. The luciferase activity in the cell lysates was analyzed 24h after transfection. LPEI was 

used as a positive control, HBG buffer treated cells served as a background. Cell viability was related to control 

wells treated only with HBG. Data are presented as mean values (±SD) out of quintuplicate.  

 

Next, gene transfer studies (Figure 3) were performed evaluating polyplexes at 

different N/P ratios and luciferase gene expression in both cell lines. Results in the 

two cell lines were similar with the exception of a higher N/P dependence with N2a 
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(Figure 3A) as compared to PC3 (Figure 3B) cells. With the increasing number of Stp 

units per dendrimer branch the transfection efficiency generally increased, reaching 

its optimum again for the PPI-Stp5 conjugate, at a similar level as the “gold standard” 

LPEI. PPI G2 showed only moderate efficacy (around 1 log unit below LPEI). None of 

the synthesized polyplexes affected the cell viability (Figure 3C, D) as determined 

with MTT assay, thus displaying high biocompatibility at applied conjugate amounts. 

Favorable transfection results depend not only on sufficient polyplex stability (Figure 

1) and cellular uptake (Figure 2), but also on subsequent steps, including escape 

from the endocytic vesicles and transport to and into the nucleus. To further elucidate 

the delivery process, we tested the proton sponge activity of polyplexes (considered 

as important for endosomal escape). pH titrations of PPI G2 and the two most potent 

PPI-Stp conjugates, PPI-Stp4 and PPI-Stp5, were performed. Consistent with the 

higher transfection efficiency, both PPI-Stp conjugates exhibited a higher total 

buffering capacity (approximately 30%, Figure 4A) in the endolysosomal pH range 

from pH 7.4 to pH 5.0, as compared to PPI G2 (22% buffering capacity). Evaluation 

of the relative buffer capacities more in detail at different pH ranges within the 

endolysosomal pH range for the two conjugates displayed an increase in buffer 

capacity with an increasing pH, with a maximum around pH 7 (Figure 4B). 

 

Figure 4. (A) Total buffer capacity in the endolysosomal pH range (from pH 7.4 to pH 5.0) and (B) relative 

protonation distribution at different pH ranges within the endolysosomal pH range of PPI-Stp4 and PPI-Stp5 

conjugates compared to PPI G2. The experiment was carried out by Claudia Scholz (PhD thesis 2014, LMU). 

 

The opposite was observed for PPI G2, exhibiting the highest buffering capacity at 

the lowest pH 5. Furthermore, an erythrocyte leakage assay was performed (Figure 

5) to evaluate the lytic activity of the conjugates and its possible contribution to 

endosomal escape. For this purpose hemoglobin release was measured at different 
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pH values (pH 7.4, 6.5, 5.5) at the conjugate concentration of 5 µM. PPI conjugates 

did not mediate any significant lytic activity, consistent with their low cytotoxicity. 

 

Figure 5. Erythrocyte leakage assay at different pH values: PPI conjugates were incubated on erythrocytes at the 

concentration of 5 µM at 37°C at indicated pH values. Hemoglobin release was measured after 1 h. 

 

In the following, to determine the further intracellular delivery fate of the PPI 

conjugate/pDNA polyplexes towards the cell nucleus, N2a cells were transfected with 

the Cy5-pDNA polyplexes at N/P 12, analogously as in the case of cellular 

internalization studies. After 24h cell nuclei were isolated and analyzed by flow 

cytometry (Figure 6). It is important to emphasize that in these „nuclear association‟ 

studies we cannot discriminate whether polyplexes are attached to the nuclei surface 

or whether the signals derives from pDNA already internalized by the nuclei. In any 

case, the resulting histograms were well in accordance with the luciferase reporter 

gene expressions in N2a cells. The PPI-Stp1/pDNA polyplexes showed the weakest 

nuclear association, whereas the PPI-Stp5/pDNA polyplexes the highest association 

with the nuclei (Figure 6). 

In further assessment of the influence of PPI surface modifications on the 

cytotoxicity, an ATP assay was performed where the metabolic activity of cells after 

treatment with increasing concentrations of PPI conjugates was analyzed after 48h. 

Figure 7 presents the relative metabolic activity of N2a cells defined as a ratio of 

measured ATP content over the ATP content of untreated cells. 
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Figure 6. Nuclear association of PPI conjugate/Cy5-pDNA polyplexes formed at N/P 12 using N2a cells. Flow 

cytometry experiments with the isolated nuclei were performed 24h after transfection. 

 

At lower dendrimer concentrations no reduction of metabolic activity was observed 

for all the applied conjugates, whereas above 0.2 mg/mL unmodified PPI G2, in 

contrast to all Stp modified conjugates, showed significant cytotoxicity; this highlights 

the importance of the surface modification of PPI G2. 

 

 

Figure 7. Relative metabolic activity of N2a cells after treatment with PPI conjugates for 48 h determined with 

CellTiter-Glo
®
 and defined as the ratio of measured ATP content over the ATP content of untreated cells. The 

metabolic activity was determined as the ratio of measured luminescent signal over the signal of untreated cells. 
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3.1.4 Biological in vivo characterization 

According to the above biophysical and biological studies the most promising Stp 

modified conjugate, PPI-Stp5, was further evaluated in studies in vivo and compared 

to PPI G2 dendrimer. Both dendrimers sufficiently bound their cargo in serum as 

shown by pDNA gel shift assay after incubation of polyplexes in 90% FCS for 1, 10, 

30 or 90 min (Figure 8A).  

 

                                            

Figure 8. A) Polyplex stability in 90% FCS at 37 °C at different time points: Polyplexes of PPI G2/pDNA and PPI-

Stp5/pDNA were incubated at room temperature for 30 min in order to allow polyplex formation. Subsequently, 

FCS was added followed by incubation for 1, 10, 30 or 90 min. Heparin (50 I.U.) was added to dissociate the 

polyplexes. Lane 1 shows the plain pDNA with added FCS, lanes 2-5 polyplexes at different FCS incubation times 

and lane 6 the polyplexes with the longest FCS incubation time (90 min) and heparin addition. B, C, D) Luciferase 

gene expression 48 h after i.v. administration of PPI G2/pDNA and PPI-Stp5/pDNA polyplexes at N/P 12 into N2a 

tumor bearing mice (N=4, mean±SEM) in B) tumor, C) lung and D) liver. Luciferase gene expression is presented 

as relative light units per organ or tumor weight (RLU/mg of organ). Lysis buffer RLU values were subtracted. 

Liver weight was around 1.5 g, lung weight around 190 mg and N2a tumor weight 433±134 mg. The animal 

experiments were performed together with Annika Herrmann (veterinary MD study, LMU). 
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Only upon heparin addition after 90 min of FCS incubation the polyplexes partially 

dissociated. In vivo experiments were performed in N2a tumor-bearing mice. When 

the tumors reached the necessary size, PPI-Stp5 and PPI G2 polyplexes at N/P 12 

were injected into the tail vain of the mice. After 2 days mice were sacrificed, organs 

collected and homogenized in lysis buffer and subsequently centrifuged. Luciferase 

activity measurements of the supernatant resulted in significant gene expressions in 

tumor, lung and liver (Figure 8), whereas hardly any gene transfer could be observed 

in kidney, spleen and heart (data not shown). The gene expression of PPI G2 

polyplexes in the lung and liver may be attributed to the lower colloidal polyplex 

stability and aggregate formation into micrometer-sized structures (see Table 2), 

consistent with accumulation in lung capillaries and rapid clearance. For PPI-Stp5 

polyplexes, lower luciferase transgene expressions in the lung (Figure 8C) and in the 

liver (Figure 8D) were found than for PPI G2/pDNA polyplexes. Notably, PPI-Stp5 

polyplexes enabled significantly higher gene transfer in N2a tumor as compared to 

PPI G2 (Figure 8B). 

 

3.2 Sequence-defined linear oligo (ethane amino) amides of increasing 

length in gene delivery 

As mentioned above, the cytotoxicity and polydispersity of PEI constitute main 

drawbacks for further clinical development and evidence has emerged indicating that 

the cytotoxicity of cationic polymers is often correlated with their molecular weight 

(Mw) [145-147]. Therefore, several studies have been performed replacing the 

effective PEI structures (approximately 25 kDa, linear or branched) with their analogs 

to decrease cytotoxicity while simultaneously maintaining or even increasing their 

efficiency. These include the oligomerization of low molecular weight (LMw) PEI via 

biodegradable linkages [148, 149], the attachment of LMw PEI to other polymer 

backbones [150] or the functionalization of the amine groups of PEI for the purpose 

of changing its chemical and thus biological properties [39, 151]. We previously 

demonstrated that the implementation of PEI-mimicking 1,2-diaminoethane motif 

containing artificial amino acids like succinoyl-tetraethylene pentamine (Stp) in 

nucleic acid carriers enables highly efficient gene transfer and contributes to nucleic 

acid binding, endosomal buffering and endosomal escape [120, 141]. A simple linear 
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sequence of 5 Stp units was found inactive in gene transfer [120]. This was not 

surprising as the number of only 16 protonatable nitrogens was much smaller than 

the approximately 500 (±200) protonatable nitrogens of standard LPEI. The small 

precise oligomer was not able to form stable polyplexes with nucleic acids. However, 

when these short 5 Stp units chains were bioreducibly attached to each of the eight 

branches of the PPI dendritic core (see chapter 3.1 above), a high transfection 

efficiency comparable to the gold standard linear PEI (LPEI) was achieved (Figure 

3A, B). For the development of more effective transfection carriers without the need 

for a dendritic core, additional moieties such as cysteines [141, 152], which stabilize 

polyplexes by disulfide-formation between oligomers, tyrosine trimers [121] or fatty 

acids [120, 123], which provide hydrophobic stabilization of formed nanoparticles, 

had to be incorporated. Here, the fundamental question was whether the linear Stp 

oligomers alone, without any further functional modification, could serve as pDNA 

carriers above a certain oligomer size threshold, similar as LPEI does. For this 

purpose a series of linear oligomers was synthesized (synthesis by Claudia Scholz, 

PhD thesis 2014, LMU), in which the number of Stp repeats was consecutively 

increased from 5 to 40 units (comparable to the number of Stp units in PPI-Stpx 

conjugates having from 8 to 40 Stp units; see Scheme 1), resulting in oligomers with 

a Mw of 1.5 to 11 kDa. 

 

3.2.1 Design of carriers of increasing lengths 

Previous studies have demonstrated the suitability of the diaminoethane motif 

containing artificial amino acid Stp to be applied for an assembly of the sequence-

defined carriers for gene delivery via solid-phase assisted synthesis. Here, a small 

library of linear oligo (ethane amino) amides of increasing lengths without any 

additional functional domains was evaluated. The synthesized oligomers consisted of 

5, 10, 15, 20, 30 and 40 Stp units (synthesis by Claudia Scholz, see [153]). As the 

two primary amino groups of the tetraethylene pentamine (tp) are bound in amide 

bonds of the oligomers backbone, each Stp unit provides three protonatable 

secondary amino nitrogens available for electrostatic interactions with the oppositely 

charged nucleic acid (Scheme 2). A C-terminal terminal tryptophane was included for 

a better analytical characterization. 
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Scheme 2. Chemical structure of the oligomers Stpn-W. 

 

Table 3. Sequences of oligomer structures written from N- to C-terminus and the corresponding molecular 

weights [Da]. 

 

 

 

 

 

 

 

 

3.2.2 Biophysical characterization of the carriers 

First, the pDNA binding characteristics of the synthesized oligomers were examined 

by means of agarose gel electrophoresis. The shifts in the gel revealed that with an 

increasing number of Stp units in the carrier the polyplex stability improved. Stp5-W 

was not able to form stable polyplexes even at the highest tested N/P ratio of 24, 

Stp10-W showed a partial pDNA binding from N/P 12 to 24. Stp15-W displayed a 

complete binding at N/P 18 and higher, whereas all polymers with 20 or more Stp 

units exhibited complete pDNA binding already at N/P 12 and partial binding at N/P 6 

and 3 (Figure 9). 

Compound Sequence Calculated molecular 
weight (Da) 

681 Stp5-W 1561,0 

643 Stp10-W 2917,8 

644 Stp15-W 4274,6 

645 Stp20-W 5650,6 

554 Stp30-W 8345,0 

555 Stp40-W 11058,6 
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Figure 9. pDNA binding capability determined by gel shift assay at increasing N/P ratios. The experiment was 

performed by Claudia Scholz (PhD thesis 2014, LMU). 

 

The improvement in pDNA condensation ability through oligomer elongation was 

confirmed in the EtBr exclusion assay were the decrease in fluorescence, resulting 

from higher EtBr exclusion by polyplex formation after oligomer addition, increased 

with increasing Mw of the oligomers (Figure 10). LPEI still displayed a higher pDNA 

condensation ability compared to the best-performing Stp oligomer.  

 

Figure 10. pDNA binding capacity of LPEI and linear Stp oligomers. EtBr exclusion assays with increasing N/P 

ratios obtained by stepwise addition of the oligomer to pDNA solution at pH 7.4. 100 % value displays 

fluorescence intensity of pDNA and EtBr before the addition of the polymer. The experiment was performed by 

Claudia Scholz (PhD thesis 2014, LMU). 

 

Next, the influence of the carrier length on the cellular uptake was investigated in 

order to define the minimum length of the oligomer necessary for successful cellular 

internalization of the polyplexes (Figure 11). In accordance with the pDNA binding 
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studies, the polyplexes formed with Stp5-W showed only a weak uptake in N2a cells, 

which was then already remarkably enhanced for the Stp10-W polyplexes and further 

improved for Stp15-W polyplexes (Figure 11A). Nanoparticles formed with oligomers 

containing more Stp units (20, 30 or 40) all showed similarly high cellular 

internalization properties (Figure 11B). 

The influence of the oligomer Mw on transfection efficiency was examined by 

luciferase reporter gene expression in N2a cells (Figure 12). Whereas the smallest 

Stp oligomer Stp5-W was completely inactive, increasing the number of Stp units led 

to a continuously improving gene transfer. Stp15-W at its highest N/P ratio 24 already 

exceeded the activity of LPEI at its optimum, non-toxic N/P ratio of 6. Stp30-W 

displayed the highest transfection efficiency of all tested oligomers, outnumbering 

LPEI 6-fold. An additional elongation to 40 Stp units could not further improve pDNA 

delivery. Altogether the results nicely demonstrated a positive impact of increasing 

Mw on transfection efficiency. 

 

 

Figure 11. Cellular internalization of Cy5-labeled DNA/oligomer complexes at N/P 12 determined by flow 

cytometry in N2A cells after 4 h at 37 °C. a) Stp5-W = red, Stp10-W = dark blue, Stp15-W = light green; b) Stp20-

W = orange, Stp30-W = dark green, Stp40-W = light blue. X-axis represents the intensity of the Cy5 signal and 

“Count” the number of cell counts with according fluorescence signal after appropriate gating. All incubations were 

performed in standard serum-supplemented culture medium. In the internalization studies, cells were washed for 

15 min with heparin to remove polyplexes on the cell surface. 
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Figure 12. Luciferase gene transfer by LPEI and linear Stp oligomers in N2A cells at N/P ratios 6, 12 and 24. 

 

3.2.3 Cytotoxicity 

As important biological characteristics we next determined the cytotoxicities of the 

synthesized carriers by two different methods: MTT and CellTiter-Glo® assay. 

Regardless of their length, the polyplexes formed with the synthesized oligomers did 

not exhibit any significant cytotoxicity with the MTT assay which measures the 

mitochondrial redox state as a quantification of cell viability. Also LPEI at the optimum 

N/P 6 caused no noteworthy reduction in cell viability detectable by the MTT assay                                      

Figure 13). When the oligomers were tested as free oligomers at increasing 

concentrations with the CellTiter-Glo® assay which measures intracellular ATP levels, 

considerable differences in cytotoxicity were observed between them (Figure 14). For 

cells treated with LPEI already at a concentration of 0.2 mg/ mL metabolic activity 

was lost, whereas for Stp40-W, the most toxic of the linear Stp oligomers, still 90 % 

residual metabolic activity was observed at a concentration of 0.4 mg/ml. For the Stp 

oligomers, toxicity levels were very low; nevertheless a clear increase of toxicity was 

detected with increasing Mw. While Stp5-W did not show any toxicity at any 

examined concentration, all oligomers with 15 or more Stp units displayed a reduced 

metabolic activity (below 20 %) at the highest tested concentration of 1.0 mg/ mL. It 

has to be emphasized that oligomer concentrations as used in optimum transfection 

experiments are around 10 µg/ mL. 
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Figure 13. Metabolic activity after treatment of N2a cells with polyplexes as determined with MTT assay. Cell 

viability was related to control wells treated only with HBG. 

 

 

Figure 14. Metabolic activity of N2A cells treated with increasing LPEI or oligomer concentrations determined by 

CellTiter-Glo® assay. A metabolic acitivity of 100% was defined for untreated cells and all other values refer to 

this value. 

 

 

3.3 Native chemical ligation as a screening tool for easy conversion of 

sequence-defined oligomers into targeted pDNA carriers 

Native chemical ligation (NCL) is a chemoselective conjugation reaction [154, 155] 

that forms an amide bond by transthioesterification followed by intramolecular 

nucleophilic rearrangement between a thioester and N-terminal cysteine. Blanco-
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Canosa et al. published a variation compatible with SPPS [156]. Two prerequisites 

are necessary for the successful ligation: i) an oligomer with an N-terminal cysteine, 

and ii) a ligation partner with a C-terminal, aromatic N-acylurea moiety (such as N-

acyl-benzimidazolinone, Nbz). This simple reaction can occur under mild conditions 

in aqueous solution, and gives almost quantitative yields. NCL has been largely 

applied on the total synthesis of proteins and larger peptides, but not for nucleic acid 

carriers. In our lab, Christina Troiber (LMU thesis 2013) and Can Yang Zhang 

(visiting PhD student in 2013) applied NCL for converting sequence-defined 

oligomers into targeted oligomers. 

 

3.3.1 Design of targeted and shielded oligomers of different topologies via 

native chemical ligation 

The two applied NCL ligation substrates 500 and 501 (Table 4) contain a precise 

bifunctionalized PEG of 24 monomer units and either folate as targeting ligand (Nbz-

G-PEG24-FolA, 500) or alanine as a control (Nbz-G-PEG24-A, 501). For modification 

by NCL, six succinoyl-tetraethylene pentamine (Stp) or succinoyl-pentaethylene 

hexamine (Sph) containing cationic oligomers of different topologies and 

modifications [121, 122] were selected as core oligomers. They can be divided in 2-

arm oligomers, three 3-arm oligomers and one 4-arm oligomer (see Scheme 3). 

These structures were previously identified as active pDNA transfection agents [120-

122]. Each oligomer arm is terminated by a cysteine (C or N-terminal) which 

stabilizes polyplexes by intermolecular disulfide bond formation. 

 

Table 4. Activated control and FolA-targeted substrates for NCL. 

Id Sequence 

501 Nbz-G-PEG24-A
 

500 Nbz-G-PEG24-FolA 
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Scheme 3. Oligomer library for the NCL reaction. 

 

 

Table 5. Oligomers synthesized via NCL reaction (Sequences from left: C- to N-terminus). Syntheses performed 

by Can Yang Zhang, Visiting PhD student , LMU 2013) 

Id Sequence Topology 

659 C-Y3-STP2-K(K)-STP2-Y3-C-G-PEG24-A 2-arm 

660 C-Y3-STP2-K(K)-STP2-Y3-C-G-PEG24-FolA  

661 C-STP2-K(K-(Y3)2)-STP2-C-G-PEG24-A  

662 C-STP2-K(K-(Y3)2)-STP2-C-G-PEG24-FolA  

663 C-SPH3-K(SPH3-C)-SPH3-C-G-PEG24-A 3-arm 

664 C-SPH3-K(SPH3-C)-SPH3-C-G-PEG24-FolA  

665 C-STP3-K(STP3-C)-STP3-C-G-PEG24-A  

666 C-STP3-K(STP3-C)-STP3-C-G-PEG24-FolA  

667 C-Y3-STP3-K(STP3-Y3-C)-STP3-Y3-C-G-PEG24-A  

668 C-Y3-STP3-K(STP3-Y3-C)-STP3-Y3-C-G-PEG24-FolA  

669 A-K-(H-K-(H-SPH)3-H-C)2)-H-K-(H-(SPH-H)3-C)-(H-SPH)3-H-C-G-
PEG24-A 

4-arm 

670 A-K-(H-K-(H-SPH)3-H-C)2)-H-K-(H-(SPH-H)3-C)-(H-SPH)3-H-C-G-
PEG24- FolA 
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Therefore the number of arms/number of cysteines is beneficial for transfection. Only 

the N-terminal cysteines are substrates for NCL, but sulfhydryl groups are 

regenerated. Incorporated tyrosine trimers (in 465, 468, 589) are supposed to 

stabilize polyplexes by aromatic ring interactions [121, 157]. Histidines and Sph 

building blocks were incorporated into the selected 4-arm structure 606, for an 

improved proton-sponge effect recently shown to facilitate endosomal escape [122]. 

Regardless of the number of polycationic arms and N-terminal cysteines, for all 

oligomers a 1: 1 molar ratio of cationic oligomer and ligation agent Nbz-G-PEG24-

FolA or Nbz-G-PEG24-A, respectively, was used, in order to preferentially obtain only 

one polycationic arm coupled with the shielding and targeting domain. Thus, by NCL 

a small library of twelve PEG-shielded oligomers (659-670; Table 5) with or without 

FolA-targeting was synthesized by Can Yang Zhang (visiting PhD student, LMU 

2013). 

 

3.3.2  Biophysical characterization 

Agarose gel shift assays (Figure 15) demonstrated efficient pDNA binding for all NCL 

conjugates already at lower N/P ratios. The lowest binding was observed with the 2-

arm structures having the lowest number of polycationic arms. Particle size 

measurements were determined with DLS (Table 6). The pDNA polyplexes formed 

with the PEGylated oligomers were between 100 nm and 300 nm. The zeta potential 

measurements of polyplexes formed with the NCL modified conjugates and pDNA 

are presented in Figure 16. As expected, the highest zeta potential was observed for 

the unmodified oligomers (depending on the structure, +15 to +30 mV), the lowest for 

folate-PEG polyplexes (+1 to +5 mV). The alanine-PEG negative controls showed a 

medium-low zeta potential (+1 to +10 mV), always slightly higher than the folate-PEG 

analogs, most probably because of the protonatable amine of the terminal alanine. 
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Figure 15. pDNA binding (agarose gel shift) assays of linear 2-arm (A), 3-arm (B) and 4-arm structures (C). The 

experiment was performed by Can Yang Zhang (visiting PhD student at LMU). 

 

Table 6. Particle sizes of polyplexes (N/P 12 for pDNA, N/P 16 for siRNA) formed in HEPES buffer determined 

with DLS. Variations refer to the median of three measurements of the same sample. The experiment was 

performed by Can Yang Zhang (visiting PhD student at LMU). 

Id Modification Topology Z-average (nm) 

659 A-control 2-arm 270.5 ± 32 

660 FolA-targeted 150.8 ± 17 

661 A-control 217.6 ± 20 

662 FolA-targeted 224.3 ± 12 

665 A-control 3-arm 151.1 ± 13 

666 FolA-targeted 253.4 ± 9 

667 A-control 326 ± 11 

668 FolA-targeted 233.8 ± 15 

663 A-control 126.2 ± 14 

664 FolA-targeted 190 ± 12 

669 A-control 4-arm 183.3 ± 9 

670 FolA-targeted 247.3 ± 16 
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Figure 16. Zeta potential of pDNA polyplexes at N/P 12, formed in HEPES buffer. Each data value represents 

mean±SD of 3 experiments. The experiment was performed by Can Yang Zhang (visiting PhD student at LMU). 

 

To simulate in vivo conditions, the stability of the FolA-modified pDNA polyplexes 

was additionally evaluated in serum. The pDNA polyplexes were incubated in fetal 

calf serum (FCS) for 1, 10, 30 or 90 min and subsequently subjected to gel 

electrophoresis. The retardation in gel revealed a partial instability of 2-arm 

oligomers, whereas the other oligomers remained stable even after the addition of 

highly negatively charged heparin (Figure 17). 

 

 

Figure 17. Stability of pDNA polyplexes (N/P 12) in serum. pDNA complexation of FolA-PEG-modified oligomers 

662, 660, 666, 668 and 670 in the presence of 90% fetal bovine serum as detected by agarose gel shift. Where 

indicated (last lanes), heparin was added to the polyplexes after incubation in FCS for 90 min to evaluate the 

influence of this highly negatively charged biological molecule on polyplex stability. 
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3.3.3 Biological evaluation 

The cellular internalization of polyplexes formed with Cy5-labeled pDNA using folate 

receptor-rich KB cells is presented in Figure 18. For 2-arm structures with peripheral 

tyrosines, polyplexes formed with unmodified oligomer 465 or alanine-PEG 659 

displayed almost no pDNA uptake after 45 min incubation (Figure 18-upper row). The 

folate-targeted 660 polyplexes showed the amplest shift to the right compared to 

control, demonstrating the highest pDNA cellular uptake. Also in the case of 3-arm 

structures, the unmodified oligomer 386 did not mediate any cellular internalization, 

the alanine-PEG 665 interestingly displayed an increased cellular internalization and 

the folate-modified oligomer 666 again showed the highest uptake. The similar 

results were obtained with other oligomers with increased number of polycationic 

arms regardless of tyrosine or histidine modification. 

 

 

Figure 18. Cellular internalization of Cy5-labeled pDNA (N/P 12) polyplexes after 45 min (above) and 4 h (below) 

determined by flow cytometry. The intensity of the Cy5 signal resembles the amount of polyplexes binding with 

KB cells. “Count” represents cumulative counts of cells with indicated Cy5 fluorescence after appropriate gating 

by forward/sideward scatter and pulse width. Dead cells (DAPI positive, less than 2%) were excluded from 

analysis. Unmodified oligomers are presented in green, FolA-modified in blue, alanine controls in red and HBG 

buffer only treated cells in grey. 
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With increased polyplex incubation time (4 h) for all oligomers (Figure 18-lower row), 

modified or not, an increased cellular internalization was observed leading to partial 

unspecific uptake of initial unmodified oligomers and very high uptake of FolA-

targeted polyplexes. Furthermore, pDNA cell binding studies were performed 

showing similar results to the uptake studies (Figure 19), though with a higher binding 

of the unshielded oligomers polyplexes as compared to the cellular internalization. 

Two of the oligomer triplets (468, 512) displayed untypical cell binding profiles with 

hardly any differences between unmodified, A-PEG and Fol-PEG (Figure 20). 

 

 

Figure 19. Cellular association of Cy5-labeled pDNA (N/P 12) polyplexes after 45 min and 4 h analyzed by flow 

cytometry. Dead cells (DAPI positive, less than 2%) were excluded from analysis. Unmodified oligomers are 

presented in green, FolA-PEG oligomers in blue, alanine-PEG controls in red and HBG buffer only treated cells in 

grey. 
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Figure 20. Cellular association study using flow cytometry. Two-arm oligomers with central tyrosine trimers 

modified (A); 3-arm oligomers with Sph block (B). 

 

3.3.4 Folate receptor-targeted pDNA transfection 

Transfection efficacies of control alanine-PEG, targeted folate-PEG, and non-

modified cationic oligomers were assessed (Figure 21). Folate receptor-rich KB cells 

were incubated with polyplexes for a relatively short incubation time (45 minutes at 

37 °C) in order to monitor active, specific cell interactions. Optionally chloroquine was 

added to investigate to which extent endosomal escape presents a bottleneck in 

gene transfer. The PEGylated 2-arm oligomers with central oligotyrosines (661 and 

662) displayed no increase in luciferase expression (Figure 21A) compared to their 

unmodified precursor (468). This is well consistent with the cell association data 

(Figure 20). Modification of oligomer 465 with peripheral oligotyrosines (Figure 21B) 

resulted in decreased transfection efficiency for the alanine-PEG control 659, but an 

increased luciferase activity for the PEGylated targeted folate-PEG conjugate 660. 

The chloroquine-dependent expression was more than 3 log units higher as 

compared to the alanine control. Thus, the oligomers with peripherally positioned 

tyrosines turned out to be beneficial over the oligomers with centrally positioned 

tyrosines as observed also with the cellular association studies (Figure 18). Three-

arm oligomers comprising Stp building block (Figure 21C) showed moderate activity 

only upon chloroquine addition and for the folate-targeted polymer 666 mainly at the 

lowest N/P ratio. Replacing the Stp backbones of 3-arm oligomers by Sph building 

blocks (663, 664) gave similar moderate results (Figure 21E). After modification of 3-

arm oligomers with tyrosine trimers pDNA transfection efficacy was greatly improved 

(Figure 21D). Compared to 3-arm conjugate without tyrosines (666), the tyrosine 

containing folate-targeted oligomer (668) showed up to 40-fold higher transfection 
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activity. The highest activity was obtained in the presence of chloroquine, whereas 

the alanine-PEG control 667 was ineffective. Finally, the 4-arm oligomers derived 

from the histidine-rich oligomer 606 were analyzed (Figure 21F). 

 

 

Figure 21. Folate receptor-targeted pDNA transfection. Luciferase gene transfer by pDNA polyplexes in KB cells 

without (gray bars) or with chloroquine incubation (black bars). Polyplexes were formed at indicated N/P ratios 

with 2-arm oligomers with central (A) or peripheral (B) oligotyrosines; 3-arm Stp oligomers without (C) or with 

oligotyrosines (D); 3-arm oligomers comprising Sph building block (E) and 4-arm Sph containing oligomer with 

histidines (E). Each row compares A-PEG, FolA-PEG or unligated oligomers. 

 

The control A-PEG polymer 669 mediated no significant pDNA transfection with or 

without chloroquine addition. Targeted folate-PEG 670 polyplexes displayed a high 

efficiency being superior to that of unmodified oligomer 606 and far less dependent 

on chloroquine addition than in the case of other oligomers. The number of 

polycationic arms of carriers played a superior role as compared to the influence of 

different (Stp or Sph) cationic building blocks, providing increased gene transfer with 
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increasing number of polycationic arms. In summary, for all NCL modified oligomers, 

the incorporation of alanine-PEG oligomer led to decreased gene transfer, whereas 

the targeted folate-PEG oligomers generally showed the highest transfection 

efficiency reaching the transfection efficiencies comparable to those of FolA-targeted 

PEGylated 356 structure [158] synthesized via all-in one solid phase synthesis 

(Figure 22). The peripheral tyrosine trimer modification was more efficient than the 

central modification. 

 

 

Figure 22. Folate receptor-directed pDNA transfection of KB cells with an adequate control. Two-arm FolA-

targeted PEGylated oligomers 356 as synthesized via all-in one solid phase synthesis as published [52] presents 

a folate receptor targeted positive control oligomer for pDNA transfection. A) pCMVLuc luciferace reporter gene 

transfections with pDNA polyplexes without (gray bars) or with (black bars) chloroquine incubation and B) 

corresponding cell viabilities determined with MTT assay. 

 

In parallel to gene transfer studies, MTT assays were performed to evaluate the cell 

viabilities of transfected cells. Importantly, no significant cytotoxicity was observed for 

all tested pDNA polyplexes. Only chloroquine addition led to a slight reduction in cell 

viability (Figure 23). The improved gene transfer (Figure 21) of PEG-folate oligomers 

with increased complexity (tyrosine modification, increased number of arms) and 

convenience of using an existing oligomer library highlights the great utility of NCL for 

this purpose. 
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Figure 23. Cell viability of KB cells after transfection with pDNA polyplexes determined by MTT assay at different 

N/P ratios. Black indicates without chloroquine, gray with chloroquine incubation. 

 

 

3.4 Dual-targeted polyplexes based on sequence-defined peptide-PEG-

oligoaminoamides 

Apart from the above mentioned small molecule folic acid [52, 159, 160], short 

peptides and their mimetics derived from phage-display screens have gained 

increasing attention as targeting ligands for receptors over-expressed on the surface 

of miscellaneous tumor cells [58, 161]. Receptor targeting may serve at least two 

purposes: specific cell attachment, and enhanced cellular uptake. As the single 

peptide ligand-based nucleic acid carriers often remain unsatisfactory with regard to 

either selectivity or their transfection efficacy, dual-targeted carriers simultaneously 
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addressing two different surface receptors over-expressed in tumor tissues have 

been investigated. With this dual-ligand approach, non-viral carriers should mimic the 

entry of potent natural viruses like adenoviruses which concurrently target coxsackie–

adenovirus receptor and integrin avβ3 or avβ5 receptors [67, 68]. A combination of 

YC25 peptide against fibroblast growth factor receptor and CP9 peptide binding to 

the integrins was reported to mediate a significantly enhanced PEI-based gene 

transfer in tumors with positive expression of FGF receptors and integrins [69]. 

Previously, combined Tf- and RGD-containing PEGylated PEI-based carriers, 

showed a clear synergy of dual-targeted over single-targeted polyplexes [162]. 

In this thesis, the dual-targeting concept was applied for the first time in the context of 

novel sequence-defined oligo (ethane amino) amide oligomers [119, 120]. The 

following targeting ligands via a bridging polyethylene glycol (PEG) chain: short cyclic 

RGD peptide [57, 163-165] targeting the integrin receptor, B6 ligand [57, 122, 166] 

targeting the TfR, and GE11 peptide [63, 66, 167] targeting the epidermal growth 

factor receptor (EGFR). Thus, B6-PEG-STP and c(RGDfK)-PEG-STP conjugates 

were synthesized as described before [57]. Pairs of these targeted PEGylated 

sequence-defined carriers were combined at different oligomer ratios and used for 

pDNA polyplex formation at two different N/P ratios, in order to find optimal dual-

targeted carriers being superior to the single-targeted carriers. 

 

3.4.1 Design and biophysical characterization of single- and dual-targeted 

polyplexes 

Three different peptidic ligands c(RGDfK), B6 (GHKAKGPRK) and GE11 

(YHWYGYTPQNVI), were selected for pDNA polyplex targeting to three different 

surface receptors over-expressed in tumors. For this purpose, targeted PEGylated 

Stp oligomers (Table 7) comprising C-terminal targeting peptide, a monodisperse 

polyethylene glycol (PEG) moiety with 24 oxyethylene units, lysine as branching 

point, and two cationic arms each bearing four repeat units of the artificial amino 

acids succinoyl-tetraethylene pentamine (Stp), completed by an N-terminal cysteines, 

were utilized (Table 7). The oligomers were synthesized by Ulrich Lächelt and 

Dongsheng He, PhD students LMU. The PEG moiety had been introduced for 
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subsequent polyplex surface shielding, and the cysteines for subsequent polyplex 

stabilization by disulfide bond formation as described before [120]. 

Table 7. Oligomer ID numbers, sequences and abbreviations. 

Oligomer Id Sequence Abbreviation 

188 A-PEG24-K[Stp4-C]2 A-PEG-STP 

391 c(RGDfK)-PEG24-K[Stp4-C]2 RGD-PEG-STP 

203 B6-PEG24-K[Stp4-C]2 B6-PEG-STP 

186 GE11-PEG24-K[Stp4-C]2 GE11-PEG-STP 

 

The ability of polymeric carriers to complex nucleic acids is the first prerequisite for 

successful gene delivery. Thus, the pDNA binding capacity of the synthesized 

targeted oligomers was evaluated at the oligomer/pDNA mixing ratios N/P 6 and N/P 

12 by means of agarose gel-shift assay.  All targeted oligomers were able to bind 

their cargo as demonstrated by the electrophoretic gel retardation (Figure 24A). Each 

of the targeted conjugates was then co-formulated prior to pDNA polyplex formation 

with another targeted conjugate directed towards a different surface receptor, yielding 

dual-ligand polyplexes. These polyplexes were assembled using different ratios of 

the two oligomers. Again, polyplexes were formed at the total N/P 6 or N/P 12 and 

subjected to gel electrophoresis (Figure 24B, C). All dual-targeted polyplexes 

exhibited full pDNA binding without migration in the gel.  

 

Figure 24. pDNA binding ability of A) single-targeted oligomers at N/P 6 and N/P 12, and dual-targeted 

formulations of oligomers at total B) N/P 6 or c) N/P 12. Numbers in B) and C) indicate the N/P ratio of each 

targeted oligomers in the dual-targeted polyplex. 

 

The synthesized oligomers formed with pDNA nano-sized polyplex particles (< 400 

nm, Table 8). The alanine control and RGD- or GE11-equipped single-ligand 

polyplexes revealed low surface charge with zeta potentials below 6 mV, whereas the 
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polyplexes formed with the B6-STP oligomer yielded higher zeta potentials of around 

20 mV. With increased N/P ratio a minor increase in nanoparticles surface charge 

was observed (Table 8). Dual-targeted polyplexes were of similar sizes (Table 9). 

Their surface charges were in accordance with the values obtained with the single-

targeted polyplexes. The zeta potential of all B6-containing dual-targeted polyplexes 

was between 10 and 20 mV that increased with increased amount of B6-STP 

oligomer in the polyplex. The influence of the mixing ratio on the zeta potential was 

more pronounced at the lower N/P 6, whereas at the higher N/P 12 less impact of the 

ratio between the oligomers was observed. The RGD- and GE11-containing dual-

targeted polyplexes had a lower surface charge below 4 mV. 

 

3.4.2 Biological evaluation of single-targeted polyplexes 

Following the efficient formation of stable and adequately sized nanoparticles, the 

cell binding represents the next crucial step towards efficient gene transfer. Thus, the 

cellular association of targeted and fluorescently (Cy5) labeled pDNA polyplexes was 

assayed using the prostate cancer cell line DU145 over-expressing integrins [162], 

transferrin receptor [162] and epidermal growth factor receptor [168]. First, single-

targeted polyplexes were investigated for their cell association. To highlight selective 

differences, all evaluations were performed after a short incubation time of only 30 

min at 4 °C. Flow cytometry histograms plotting the Cy5 fluorescence intensity 

against the number of events are displayed for polyplexes at N/P 6 (Figure 25A) and 

N/P 12 (Figure 25B). Practically no cell binding was observed for alanine control 

polyplexes. The RGD- and B6-decorated polyplexes showed a clear targeting effect; 

a much higher cell binding at N/P 6 (Figure 25A) that even increased at higher N/P 

12 (Figure 25A). The histograms obtained with the labeled EGFR-binding GE11-

PEG-STP polyplexes revealed distinctly different, bimodal association property; a 

subpopulation of cells hardly binding the polyplexes and another cell subpopulation 

exhibiting a very high polyplex association was observed. EGFR expression on 

DU145 cells is unimodal (see Figure 26), when sufficient amount of anti-EGFR 

antibody is applied, ruling out heterogeneous receptor expression as reason for the 

bimodal polyplex binding. Nevertheless, the association data indicate that a certain 

targeting ligand threshold should be achieved in order to be able to target all the 

cells. Also here the cell binding increased with a higher N/P ratio. Following cell 
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surface binding, cellular uptake of the polyplexes represents the next gene delivery 

step. This process can be quite fast (within few minutes to less than an hour) or 

slower (over several hours). To obtain an impression on uptake kinetics, the cellular 

internalization studies were performed at an early time point after 30 min incubation 

at 37 °C using flow cytometry. Not internalized polyplexes were removed by a 

heparin wash. The Cy5 fluorescence and the corresponding histograms (Figure 27) 

revealed that at both analyzed N/P ratios the cellular uptake of RGD-, GE11-, or B6-

equipped single-targeted polyplexes very much resembles their cell association. 

 

Figure 25. A, B) DU145 cell association of polyplexes formed with Cy5-labeled pDNA and each of the single-

targeted oligomers (RGD-PEG-STP, B6-PEG-STP, GE11-PEG-STP) or alanine control as analyzed by flow 

cytometry. Logarithmic X-scale represents the Cy5 fluorescence of bound polyplexes. “Count” represents 

cumulative counts of cells with indicated fluorescence after appropriate gating by forward/sideward scatter and 

pulse width. Dead cells (DAPI positive, less than 2 %) were excluded from analysis. C, D) Luciferase reporter 

gene expression and E, F) cell viability (MTT) assays performed at 24 hours after transfection. linPEI was used a 

positive control, HBG treated cells served as background. Cell viability was calculated as percentage to cells 

treated with HBG. Data are presented as mean value (±SD) out of quintuplicate. The experiments were performed 

with polyplexes formed at N/P 6 (left) and N/P 12 (right). 
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     A) 

 

 

 

 

 

 

 B)      C) 

 

Figure 26. A) Estimated EGFR receptor expression levels on DU145 cells in suspension. B) Estimated EGFR 

receptor expression levels on attached DU145 cells at B) 1:500 and C) 1:5000 antibody dilution. 

 

 

Figure 27. Cellular internalization of single-targeted polyplexes formed with RGD-PEG-STP, GE11-PEG STP or 

B6-PEG-STP, or alanine control polyplexes at A) N/P 6 and B) N/P 12. Flow cytometry experiments were 

performed on DU145 cells, extracellularly bound polyplexes were removed by heparin. DAPI was used to 

discriminate between viable and dead cells. 
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Next, luciferase pDNA transfections with single-targeted polyplexes were performed 

using only 30 min short incubations with DU145 cells. Gene expression levels (Figure 

25C and D) and cell metabolic activities (Figure 25E and F) were determined after 24 

hours. Escape of polyplexes from endosomes is a known bottleneck in gene transfer 

[169]. Therefore, to rule out a significant influence of the endosomal escape step, all 

transfections were performed in the presence of the lysosomotropic agent 

chloroquine [170]. At N/P 6 (Figure 25), the alanine control polyplexes yielded 

practically no gene transfer, whereas the B6-PEG-STP polyplexes led to the highest 

gene transfer, exceeding the alanine control 110-fold. Despite the 30 min short 

polyplex incubation with cells, gene expression was comparable to that of linear PEI 

(linPEI) with a much longer incubation time of 4 h. RGD-PEG-STP and GE11-PEG-

STP polyplexes at N/P 6 mediated only low transfection levels. In accordance with 

the cell association studies, at N/P 12 all targeted polyplexes (RGD-PEG-STP, B6-

PEG-STP and GE11-PEG-STP) revealed higher transfection efficiencies (Figure 

25D) still showing a significant targeting effect over the alanine control. Interestingly, 

at N/P 12 the GE11-decorated polyplexes displayed the highest gene transfer of all 

targeted polyplexes. In all transfection studies, the cell viability assay (Figure 25E, F) 

did not reveal any significant cytotoxicity of the polyplexes. The only minor reduction 

in metabolic activity (<20 %) can be attributed to the addition of chloroquine as 

shown before [57, 122]. 

 

3.4.3 Biological evaluation of dual-targeted polyplexes  

The dual-targeted polyplexes simultaneously addressing two different receptors over-

expressed on the cell surface of DU145 cells were compared to the single-targeted 

polyplexes to find an optimal dual-ligand combination. Thus, the synthesized targeted 

carriers were co-formulated at different oligomer combinations and different ratios as 

described above in their biophysical characterization, in order to investigate any 

synergistic effects of either RGD and B6, RGD and GE11 or GE11 and B6 ligand 

combination. 
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Ligand Combination cRGD and B6 

First, the dual-targeted combination of RGD and B6 targeting ligands was analyzed. 

Cell association studies of co-formulated RGD-PEG-STP and B6-PEG-STP 

oligomers at total N/P 6 (Figure 28) revealed a clear shift of the histogram curve 

towards the higher fluorescence as compared to each single-targeted polyplexes, 

demonstrating an obvious dual-targeting effect at both analyzed ratios (4:2 and 2:4) 

of targeting oligomers in the polyplex. The same was observed with the luciferase 

reporter gene expression assay (Figure 28). 

               

Figure 28. A, B) DU145 cell association of single-targeted polyplexes (RGD, B6) as compared to dual-targeted 

polyplexes at 2:4 and 4:2 ratios. C, D) Luciferase reporter gene expression obtained with dual-targeted polyplexes 

as compared to single-targeted polyplexes and E, F) cell viability (MTT) assays performed in parallel. Data are 

presented as mean value (±SD) out of quintuplicate. The experiments were performed using polyplexes with N/P 

6 (left) and N/P 12 (right). 
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Up to 20-fold higher expression was obtained with dual-targeted polyplexes as 

compared to the single-targeted B6-STP polyplexes and up to 800-fold higher than 

for the single-targeted RGD-PEG-STP polyplexes. Interestingly, already a minor 

addition of the B6-PEG-STP conjugate to the RGD-PEG-STP conjugate (see the 5:1 

ratio) led to a 13-fold higher reporter gene expression. 

Increasing the total N/P ratio to 12, the cell association of dual-targeted polyplexes 

remained comparable to that at N/P 6 (Figure 28B). However, the cell binding of the 

single-targeted oligomers was higher and hence the dual-targeting effect at N/P 12 

as compared to N/P 6 diminished. Consistently, in the pDNA transfections (Figure 

28D) the RGD and B6-containing dual-targeted polyplexes at N/P 12 were superior to 

the single-targeted RGD polyplexes (up to 32-fold), though up to only 2.2-fold higher 

luciferase expression was obtained as compared to B6-PEG-STP polyplexes. The 

cell viability assay of pDNA transfections again did not show any significant 

cytotoxicity (Figure 28E, F). The similar lack of cytotoxicity was observed for both 

other dual-ligand combinations (see next two sections; Figure 30, 32E, F). 

Interestingly cellular uptake studies performed at the early 30 min time point of 

transfection (Figure 29A, B) showed a faster uptake for all B6-containing single or 

dual polyplexes at the lower N/P ratio of 6, consistent with analogous previous PEI 

polyplex studies [162]. 

 

 

Figure 29. Cellular internalization of RGD- and B6-containing dual-targeted polyplexes at two different ratios as 

compared to the single-targeted polyplexes at a total A) N/P 6 and B) N/P 12. Flow cytometry experiments were 

performed on DU145 cells, extracellularly bound polyplexes were removed by heparin. DAPI was used to 

discriminate between viable and dead cells. 
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Ligand Combination cRGD and GE11 

Next, the integrin targeting cRGD peptide was combined with the epidermal growth 

factor receptor targeting GE11 peptide ligand. Cell binding studies at the total N/P 6 

(Figure 30A) displayed moderate cell attachment of dual-targeted polyplexes at 

RGD:GE11 ratio of 2:4, while a reverse ratio of 4:2 led to a greatly ameliorated cell 

attachment exceeding both single-targeted GE11-PEG-STP and B6-PEG-STP 

polyplexes. 

 

Figure 30. A, B) DU145 cell association of single-targeted polyplexes (RGD, GE11) as compared to dual-targeted 

polyplexes at 2:4 and 4:2 ratios. C, D) Luciferase reporter gene expression obtained with dual-targeted polyplexes 

as compared to single-targeted polyplexes and E, F) cell viability (MTT) assays performed in parallel. Data are 

presented as mean value (±SD) out of quintuplicate. The experiments were performed with polyplexes at N/P 6 

(left) and N/P 12 (right). 
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In contrast to pure GE11-PEG-STP polyplexes which trigger bimodal cell binding, an 

increased uptake was found for the majority of cells. The cellular uptake studies 

yielded similar results (Figure 31). The findings were confirmed in luciferase gene 

transfer studies (Figure 30C). With increasing fraction of RGD as compared to GE11 

(up to 5:1) an increased luminescence signal was achieved going greatly beyond (up 

to 190-fold) both single-targeted polyplexes. For polyplexes formed at total N/P 12 

the situation was reversed (Figure 30B and D), due to the very high transfection 

potency of GE11-PEG-STP single polyplexes at this higher ratio. The highly bimodal 

cell attachment however shifts towards a unimodal cell binding as observed for the 

RGD-PEG-STP polyplexes.  

 

Figure 31. Cellular internalization of RGD- and GE11-containing dual-targeted polyplexes at two different ratios 

as compared to the single-targeted polyplexes at a total A) N/P 6 and B) N/P 12. Flow cytometry experiments 

were performed on DU145 cells, extracellularly bound polyplexes were removed by heparin. DAPI was used to 

discriminate between viable and dead cells. 

 

Ligand Combination GE11 and B6 

Also the third investigated combination GE11 and B6 demonstrated an evident dual-

targeted effect at the N/P 6 ratio. GE11- and B6-equipped dual-targeted polyplexes 

at both tested oligomer mixing ratios displayed a homogenous very high cell binding 

being markedly superior to the cell attachment of both single-targeted polyplexes 

(Figure 32A). The cellular internalization of dual-targeted polyplexes was comparable 

to the cell association, however, was less evident as the uptake of single-targeted 

polyplexes at N/P 6 was shifted to higher Cy5 fluorescence values (Figure 33A). The 

pDNA transfections confirmed the synergistic effect of both targeting ligands at N/P 6 

(Figure 32C). The highest transfection efficiency was obtained at the GE11:B6 ratio 

of 4:2 exceeding that of B6-containing single-targeted polyplexes 40-fold. 
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Figure 32. A, B) DU145 cell association of single-targeted polyplexes (GE11, B6) as compared to dual-targeted 

polyplexes at 2:4 and 4:2 ratios. C, D) Luciferase reporter gene expression obtained with dual-targeted polyplexes 

as compared to single-targeted polyplexes and E, F) cell viability (MTT) assays performed in parallel. Data are 

presented as mean value (±SD) out of quintuplicate. The experiments were performed with polyplexes formed at 

N/P 6 (left) and N/P 12 (right). 

 

At higher total N/P ratio of 12, the polyplexes with the GE11:RGD ratio of 4:8 showed 

only a moderate dual-targeting effect according to cell binding studies (Figure 32B). 

In fact, the reporter gene expression of dual-targeted polyplexes at N/P 12 (Figure 

32D) was, apart from GE11:B6 ratio of 2:10, lower than of the single-targeted 

polyplexes and also notably lower than of the dual-targeted polyplexes at total N/P 6. 

Interestingly, although the GE11- and B6-equipped dual-targeting polyplexes at 8:4 

ratio exhibited only a moderate cell binding (Figure 32B), in the cellular internalization 

studies (Figure 33B) the same polyplexes displayed the highest shift of the curve to 

the right pointing at a dual-targeting effect. 
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Figure 33. Cellular internalization of GE11- and B6-containing dual-targeted polyplexes at two different ratios as 

compared to the single-targeted polyplexes at a total A) N/P 6 and B) N/P 12. Flow cytometry experiments were 

performed on DU145 cells, extracellularly bound polyplexes were removed by heparin. DAPI was used to 

discriminate between viable and dead cells. 

 

Table 8. Particle size and zeta potential of single-targeted polyplexes formed at N/P 6 and N/P 12. 

 

Table 9. Particle size and zeta potential of dual-targeted polyplexes at different ratios formed at total N/P 6 and 

N/P 12. 

Oligomer N/P Ratio Mean size (nm) Zeta potential 

(mV) 

RGD and B6 6 2:4 125.8 ± 13.9 16.4 ± 1.19 

 6 4:2 145.6 ± 28.5 11.4 ± 0.81 

 12 4:8 200.4 ± 22.7 16.0 ± 0.90 

 12 8:4 203.7 ± 42.5 15.2 ± 0.32 

RGD and GE11 6 2:4 287.4 ± 38.3 2.4 ± 0.52 

 6 4:2 295.2 ± 41.9 2.9 ± 0.39 

 12 4:8 347.5 ± 46.2 3.9 ± 0.30 

 12 8:4 397.2 ± 64.3 3.2 ± 0.23 

GE11 and B6 6 2:4 216.9 ± 72.2 18.8 ± 0.12 

 6 4:2 384.1 ± 77.5 13.7 ± 0.06 

 12 4:8 175.4 ± 24.8 18.6 ± 0.75 

 12 8:4 227.2 ± 10.9 17.6 ± 0.67 

 

 

Oligomer Abbreviation N/P Mean Size (nm) Zeta Potential (mV) 

188 Ala-PEG-STP 6 185.9 ± 8.74 2.8 ± 0.35 

  12 198.3 ± 21.0 4.7 ± 0.24 

391 RGD-PEG-STP 6 375.4 ± 51.8 2.5 ± 0.24 

  12 269.8 ± 39.4 5.5 ± 1.60 

203 B6-PEG-STP 6 202.3 ± 54.3  20.4 ± 0.80  

  12 186.4 ± 81.6 21.6 ± 0.95 

186 GE11-PEG-STP 6 224.1 ± 96.5 2.0 ± 0.49 

  12 233.5 ± 54.9 2.8 ± 0.61 
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3.5 Targeted c-Met receptor-directed oligo(ethanamino) amides for 

efficient gene transfer in vitro and in vivo 

The receptor tyrosine kinase HGFR/c-Met is over-expressed in epithelial-derived 

tumors as well as in stromal and interstitial cell-derived tumors such as sarcomas 

[171]. Binding of the natural ligand hepatocyte growth factor (HGF) to c-Met 

stimulates cell motility and migration, triggers mitogenesis and morphogenesis and 

thereby promotes oncogenesis and tumor progression. Therefore, different 

approaches based on c-Met signaling have been refined in cancer treatment: 

development of (1) antagonists preventing HGF receptor binding to cell surface c-

Met, (2) cytosolic active tyrosine kinase inhibitors and (3) antagonists of the 

interactions between activated receptors and downstream effectors [172]. To date, 

targeting c-Met over-expressed in cancer tissues has been mostly limited to a variety 

of receptor binding antibodies intended primarily for in vivo imaging [173-175]. 

Conjugation of an anti-c-Met antibody fragment to the chemotherapeutic drug 

doxorubicin led to more effective antitumor activity [176]. Nguyen et al. demonstrated 

enhanced gene transfer selectivity to hepatocarcinoma cells using retrovirus 

displaying single-chain variable-fragment (scFv) directed against the c-Met receptor 

[177]. Surprisingly, despite the known oncological relevance of the c-Met proto-

oncogene, up to now it has not been utilized for non-viral receptor-targeted gene 

delivery. 

 

3.5.1 Suitability of c-Met binding ligands for targeted gene delivery with 

sequence-defined oligomers 

For the first time we evaluated the two c-Met binding ligands cMBP1 and cMBP2 in 

terms of nucleic acid delivery. Solid-phase supported synthesis was utilized for the 

assembly of targeted and shielded oligomers (Scheme 4). By this method, the 

targeting ligand (cMBP1 or cMBP2) can be directly attached to the multifunctional 

oligomers within a single solid-phase synthesis, providing high-precision conjugates 

(synthesis by Ulrich Lächelt, PhD LMU, 2014). The first-generation targeted 

oligomers (Scheme 4-I) consist as the oligomers in previous chapter of a 

monodisperse polyethylene glycol (PEG) moiety with 24 oxyethylene units for the 
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reduction of unspecific interactions with blood components, lysine as a branching 

point, polycationic core comprising four repeating units of the novel artificial amino 

acids succinoyl-tetraethylene pentamine (Stp) for nucleic acid packaging, endosomal 

buffering and endosomal escape [120, 152], as well as an N-terminal cysteine 

residue at the end of each polycationic arm for redox-sensitive beneficial polyplex 

stabilization [120, 121, 153]. 

 

Scheme 4. Schematic overview of the synthesized oligomers. A, K, H and C represent the α-amino acids in a 

one-letter-code, L stands for the targeting ligand or the corresponding control. Syntheses were performed by 

Ulrich Lächelt and Dongsheng He, PhD students LMU. 

 

The resulting cMBP1-targeted conjugate was denoted as oligomer #1 and the 

cMBP2-containing conjugate as oligomer #2. A non-targeted alanine oligomer (#3) 

was constructed as a control. Sequences are displayed in Table 10. 
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Table 10. Synthesized oligomers with assigned numbers, topologies and structures in corresponding Scheme 4, 

sequences and identification numbers (compound ID). 

No. Structure in 
Scheme 4 

Topology Sequence (C to N Terminal) ID 

#1  

 

 

2-arm; w/o His 

1 PEG 

K[dPEG24-K(Stp4-C]2-cMBP1 696 

#2 K[dPEG24-K(Stp4-C)2]-cMBP2 443 

#3 A-dPEG24-K[Stp4-C]2 188 

#4 I)  K[dPEG24-K(Stp4-C)2]-cMBP2sc1 697 

#5 K[dPEG24-K(Stp4-C)2]-cMBP2sc2 698 

#6 K[dPEG24-K(Stp4-C)2]-cMBP2sc3 699 

#7 K[dPEG24-K(Stp4-C)2]-cMBP2sc4 700 

#8  

II) 

2-arm; with His 

1 PEG 

K[dPEG24-HK[H-(Stp-H)4-C]2]-cMBP2 442 

#9 A-dPEG24-HK[H-(Stp-H)4-C]2 440 

#10  

III) and IV) 

2-arm; with His/Ala 

2 PEG 

K[(dPEG24)2-HK[H-(Stp-H)4-C]2]-cMBP2 694 

#11 K[(dPEG24)2-AK[A-(Stp-A)4-C]2]-cMBP2 695 

#12 A-(dPEG24)2-HK[H-(Stp-H)4-C]2 616 

#13  

V) 

4-arm; with His 

1 PEG 

K[dPEG24-K(HK(H-(Sph-H)3-C)2)2]-cMBP2 677 

#14 A-dPEG24-K[HK(H-(Sph-H)3-C)2]2 678 

#15 VI) 3-arm; with His C-H-(Stp-H)3-K-[(H-Stp)3-H-C]2 689 

#16 VII) 4-arm; with His AK[HK(H-(Sph-H)3-C)2]2 606 

 

All three oligomers decorated with cMBP1, cMBP2 or alanine were able to fully 

complex pDNA already at the low N/P ratio of 6 as observed from the complete 

polyplex retention in gel (Figure 34A). Fulfilling this first prerequisite, cell association 

studies were performed using the hepatocellular carcinoma (Huh7) cell line. Flow 

cytometry with help of an anti-c-Met antibody confirmed high receptor expression in 

almost 100% Huh7 cells (Figure 35). 
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Figure 34. A) pDNA binding assay by electrophoresis. Gel retardations of cMBP1-, cMBP2-containing and 

alanine control polyplexes at increasing N/P ratios were compared to the mobility of the free pDNA.  B) Cell 

association of oligomer/Cy5-pDNA polyplexes at N/P 12 to Huh7 cells after 30 min incubation at 4°C as 

determined by flow cytometry. Logarithmic X-scale represents Cy5 fluorescence of polyplexes bound to Huh7 

cells. “Count” represents the cumulative counts of cells with indicated Cy5 fluorescence after appropriate gating 

by forward/sideward scatter and pulse width. C) Fluorescence microscopic images of the cellular uptake of the 

cMBP1-, cMBP2-containing and alanine control polyplexes formed with Cy5-labeled pDNA at N/P 12 (blue: DAPI 

staining, red: Cy5).  D) Luciferase gene transfer in Huh7 cells without (no pattern) or with (pattern) the addition of 

endosomolytic chloroquine, as obtained with the cMBP1- and cMBP2-containing polyplexes in comparison to the 

alanine control polyplexes (45 min incubation). Linear PEI 22 kDa (linPEI) at optimal non-toxic ratio (N/P 6, w/w 

0.8; 4 h incubation) was used a positive control, HBG treated cells served as a negative control. Data are 

presented as mean value (±SD) out of quintuplicate.  E) Corresponding cell viability (MTT) assay. Cell viability 

was calculated as percentage to cells treated with HBG. 

 

Using Cy5-labeled pDNA, the cMBP1-targeted polyplexes (#1) displayed efficient cell 

binding (>90% of cells) and the cMBP2-containing polyplexes (#2) an even more 

effective cell attachment of >95% (Figure 34B). The alanine control oligomer (#3) 

showed far lower cellular attachment. To exclude a cell line dependency for the 

ligand binding specificity, and to prove the usefulness of the novel ligands on 

different c-Met expressing cell lines, cell binding experiments were additionally 

performed on the prostate cancer cell line DU145 which also exhibited high c-Met 

receptor expression, though at a slightly lower intensity in comparison to the Huh7 

cell line (Figure 35). The cell binding studies on DU145 cells resulted in a similarly 
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high binding for cMBP1- and cMBP2-equipped polyplexes, and insignificant cell 

association for the alanine control polyplexes (Figure 36). 

 

Figure 35. HGFR/c-Met receptor levels on A) Huh7 and B) DU145 cell line showing the results obtained with the 

monoclonal mouse anti-human HGFR/c-Met antibody and IgG control. Alexa 488-labeled goat anti-mouse 

secondary antibody was used for the detection of receptor expression by flow cytometry. MFI stands for mean 

fluorescence intensity. 

 

Figure 36. A) DU145 prostate carcinoma cell binding of cMBP1- and cMBP2-targeted Cy5-pDNA polyplexes after 

30 min incubation at 4°C, as compared to alanine control polyplexes.  B) Luciferase reporter gene expression of 

cMBP1- and cMBP2-targeted and alanine control polyplexes on DU145 cells with (pattern) or without (no pattern) 

the addition of chloroquine.  C) Cell viability assay performed in parallel. Data are presented as mean value (±SD) 

out of a quintuplicate. 
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Following the cellular binding studies, the internalized cMBP1- (#1), cMBP2- (#2) and 

non-targeted (#3) polyplexes were imaged using the fluorescence microscopy (Figure 

34C). The images revealed an intracellular uptake of the labeled nucleic acid in the 

case of the cMBP2-containing polyplexes, somewhat less for cMBP1-targeted 

polyplexes, and its absence with the control polyplexes. The c-Met-targeting effect 

was finally confirmed also by pDNA transfections. As the endosomal escape 

represents one of the greatest drawbacks in gene delivery, an endosomolytic agent 

chloroquine [170, 178] was added to the cell culture medium after transfections. In 

line with the cell binding and uptake studies, with only a short 45 min polyplex 

incubation on Huh7 cells, and upon addition of chloroquine (presented in pattern 

bars), the highest luciferase gene expression was obtained with the cMBP2-

decorated polyplexes, exceeding the linear PEI polyplexes (linPEI) with 4 h 

incubation on cells for almost 1 log unit (Figure 34B). Also for the cMBP1 ligand a 

high reporter gene expression and significant targeting effect over alanine control 

polyplexes was observed, though more than one log unit lower as compared to 

cMBP2. In the absence of chloroquine, an only moderate or practically no gene 

transfer was seen for the cMBP2 or cMBP1 ligand, respectively. The significant 

activity of cMBP2 polyplexes may partially be attributed to the presence of several 

endosomal escape facilitating histidines (see chapter 3.4.2 below) in the cMBP2 

ligand itself. Cytotoxicity studies performed alongside showed no negative effects of 

applied polyplexes on the cell viability, apart from a minor cytotoxicity caused by the 

chloroquine incubation (Figure 34E). Analogous gene transfer (Figure 36B) and cell 

viability studies (Figure 36C) on DU145 cells led to similar results. Luciferase 

expression was roughly one log unit lower which is in line with lower c-Met 

expression in the prostate cancer cell line (Figure 35). 

The cMBP2 ligand showed a better delivery effect on two different cell lines than 

cMBP1. Therefore, the specificity of this more potent ligand was analyzed in more 

detail prior to successive carrier optimization. For this reason, four scrambled 

sequences chosen by random computer-supported permutation (cMBP2sc1 (#4): 

LHHHDRKSSIHH, cMBP2sc2 (#5): KSHHRDHIHLHS, cMBP2sc3 (#6): 

HHSIHRLHHKSD and cMBP2sc4 (#7): RKIHHHLHSHSD) were synthesized and 

conjugated to the same initial oligomer structure as above (Scheme 4-I, Table 10). 

These control oligomers displayed the expected complete pDNA binding (Figure 

37A). In the cell association studies the four scrambled sequence-decorated polyplex 
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types hardly bound to the cell surface of the Huh7 (Figure 37B) and DU145 (Figure 

37C) cells, i.e. in a similar extent as the alanine control polyplexes, confirming the 

target specificity of the cMBP2 ligand. 

 

Figure 37. A) pDNA binding assay by electrophoresis. Gel retardation of the scrambled peptide-equipped 

polyplexes at increasing N/P ratios was compared to the shift of free pDNA.  B, C)  Cellular association of 

polyplexes formed with Cy5-labeled pDNA and conjugates with the conjugated scrambled sequences on  B) 

DU145 and  C) Huh7 cells after 30 min incubation at 4 °C as determined by flow cytometry. 

 

3.5.2 cMBP-containing polyplexes do not activate c-Met tyrosine kinase 

signaling 

In the next step the possible HGFR/c-Met receptor activation after polyplex 

administration was investigated. As the binding of its natural ligand hepatocyte 

growth factor (HGF) causes the c-Met phosphorylation and downstream signaling, 

the direct receptor phosphorylation was investigated by Western blot using phospho-

Met antibody against the phosphorylated receptor form. Only when applying HGF as 

a positive control, clear receptor activation could be observed. None of the 

polyplexes regardless of the ligand mediated any receptor phosphorylation (Figure 

38A). The similar results were obtained when investigating the activation of the c-Met 

downstream protein Akt. As expected, the downstream signaling and Akt 

phosphorylation was observed only when plain HGF was applied (Figure 38B). 
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Figure 38. Lack of c-Met receptor activation. Huh7 cells were treated either with cMBP1-targeted (lane 1), 

cMBP2-containing (lane 2) or alanine control (lane 3) polyplexes at N/P 12. HBG buffer (lane 4) was used as a 

negative control and natural ligand hepatocyte growth factor (HGF) (lane 5) as a positive control. After 1 h 

incubation, total cell lysates were subjected to Western blot analysis and incubated with A) p-Met and Met and B) 

P-Akt and Akt antibodies. 

 

3.5.3 Carrier optimization: Implementation of histidines and extension of 

polyethylene glycol chain 

The high transfection efficiency of the initial oligomers (Scheme 4-I) was dependent 

on the presence of chloroquine. Therefore endosomal escape facilitating histidines 

[100, 101] were further implemented into the oligomer backbone before each 

(oligoethanamino)amide building block of the polycationic arms as well as prior to the 

lysine branching point, bringing forth the cMBP2-containing oligomer #8 and its non-

targeted alanine counterpart #9 (Scheme 4-II and Table 10). Apart from modifications 

of the polycationic part, the PEG chain offers another option to alter the properties of 

the targeted polyplexes. For this purpose, cMBP2-containing (#10) and alanine 

control (#11) oligomers having an additional second PEG moiety of 24 oxyethylene 

units as well as histidines in the polycationic backbone were synthesized (Scheme 4-

III, Table 10). Another control oligomer contains alanines replacing the backbone 

histidines (#12, Scheme 4-IV). 

First, pDNA compaction ability of the cMBP2-containing initial oligomer (#2), 

histidines-enriched oligomer with one PEG24 chain (#8) and more highly shielded two 

PEG24 chains comprising oligomers (#10 and #11) was compared by ethidium 

bromide exclusion assay (Figure 39A). The nonPEGylated linPEI was used as 

positive control, leading to a greatest decrease in the intercalator fluorescence and 
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therewith the highest cargo compaction capacity. The original PEG24 (~ 1000 Da) 

cMBP2-containing oligomer #2 (Scheme 4-I) without histidines in the carrier 

backbone also displayed a high compaction ability. The histidine implementation (#8) 

led to a slightly diminished pDNA compaction. The targeted oligomers with two 

PEG24 (~ 2000 Da) chains (#10, #11) displayed similar pDNA compaction. 

Next, the biological efficiency of these modified oligomers was investigated. In 

cellular internalization experiments (Figure 39) the histidines-enriched polyplexes (#8, 

#9; Scheme 4-II) were first compared to the polyplexes formed with the initial 

oligomers without the histidines (#2, #3; Scheme 4-I). A pronounced targeting effect 

was observed for both cMBP2-containing polyplexes #8 and #2. The histidines 

implementation, as expected, caused no significant change in the cellular uptake. 

Hardly any difference could be observed between the cMBP2-decorated oligomers 

plus/minus histidines. Both types of alanine control polyplexes (#3 and #9) displayed 

practically no cellular uptake, with the histidines modification causing a slightly 

increased cellular internalization (Figure 39B). Furthermore, the cellular uptake of the 

polyplexes formed with the oligomers having two PEG24 chains was analyzed (Figure 

39C). Both cMBP2-containing PEG48 oligomers (#10 and #11) showed high cellular 

internalization, comparable to the targeted PEG24 polyplexes before in Figure 39B. 

No difference between the oligomers with the histidine (#10) or alanine (#11) spacers 

in the polycationic part was observed (Figure 39C). The non-targeted oligomer (#12) 

once more displayed very low cellular internalization. In contrast to the cell uptake 

studies, the luciferase gene transfer studies revealed an immense influence of 

histidines on pDNA transfection efficiency. In the absence of the endosomolytic 

chloroquine (no pattern), the histidines-modified cMBP2-containing oligomer #8 

displayed a greatly enhanced gene transfer (100-fold) as compared to the original 

structure without the histidines (#2); pointing out to markedly improved endosomal 

buffering and endosomal escape of the targeted polyplexes (Figure 39D). 
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Figure 39. Influence of histidines addition and enhanced PEG shielding.  A) pDNA compaction ability determined 

by EtBr exclusion assay. Oligomer solution was added at increasing N/P ratios to 10 µg pDNA containing 0.4 µg 

EtBr. Reduction in EtBr fluorescence was determined as percentage of maximal fluorescence of EtBr containing 

pDNA solution.  B) Cellular internalization of the Cy5-pDNA polyplexes (N/P 12) of the oligomers with one PEG24 

chain analyzed by flow cytometry after 45 min incubation at 37 °C followed by removal of extracellularly bound 

polyplexes; cMBP2-containing polyplexes are presented in red (#2 and #8), alanine controls in black (#3 and #9). 

Initial oligomer structures are displayed with a solid line, histidine modified oligomers with a dotted line. HBG 

treated cells are presented in grey. C) Cellular internalization of the polyplexes (N/P 12) formed with oligomers 

comprising two PEG24 chains; cMBP2-containing polyplexes are presented in red (dotted line for the oligomer 

with the histidine (#10) spacers and solid line for the oligomer with the alanine (#11) spacers), alanine control 

(#12) polyplexes in black.  D) Luciferase reporter gene expression in Huh7 cell line with (pattern) or without (no 

pattern) chloroquine and E) cell viability assay performed in parallel. linPEI was used a positive control, HBG 

treated cells served as background. Cell viability was calculated as percentage to cells treated with HBG. Data 

are presented as mean value (±SD) out of quintuplicate.  
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In the presence of chloroquine (patterned bar) the transfection efficiency remained 

unchanged. The cMBP2- and histidine- containing oligomer with a second PEG24 

chain #10 led to reduced transfection efficiency as compared to the less shielded #8 

polyplexes. Replacing the histidines in the backbone with the alanine spacers #11 led 

to comparably efficient gene transfer with the chloroquine incubation, whereas in the 

absence of chloroquine vastly diminished transfection efficiency was obtained due to 

reduced endosomal escape. The alanine control with two PEG24 units #12 mediated 

only a minor luciferase expression. The MTT assay (Figure 39E) showed no 

reduction in cell viability for all applied polyplexes. Only in the presence of 

chloroquine a minor cytotoxicity was observed. Similar effects of histidines and 

additional PEG units were observed also with the DU145 cell line (Figure 40A-C) 

confirming the generality of effects of the applied modifications. 

 

Figure 40. A) Internalization of Cy5-pDNA polyplexes (N/P 12) into DU145 cells analyzed by flow cytometry; 

cMBP2-targeted polyplexes are presented in red, alanine controls in black. Initial oligomeric structures are 

displayed with a solid line, histidine modified oligomers with a dotted line. HBG treated cells are presented in grey. 

“Count” represents cumulative counts of cells with indicated Cy5 fluorescence after appropriate gating by 

forward/sideward scatter and pulse width. B) Luciferase gene transfer with histidines and additional PEG24 chain 

modified oligomers on DU145 cells with (pattern) or without (no pattern) the addition of chloroquine. C) 

Corresponding cell viabilities (MTT assay). 
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Furthermore, Western blotting was performed with the histidines-enriched PEG24 

oligomers. As before with their non-histidine analogs, no c-Met receptor activation of 

Huh7 cells was found (Figure 41). 

 

Figure 41. Lack of HGFR/c-Met receptor activation with histidines-enriched polyplexes.  Huh7 cells were treated 

either with HBG buffer (lane 1) or hepatocyte growth factor (HGF) (lane 2), cMBP2-targeted (lane 3) or alanine 

control (lane 3) polyplexes (N/P 12). After 1 h incubation, total cell lysates were subjected to Western blot analysis 

and incubated with A) p-Met and Met and B) P-Akt and Akt antibodies. 

 

3.5.4 Carrier optimization: Implementation of additional polycationic arms 

As the next step in optimization, further modifications of the polycationic part of the 

carrier were made. A cMBP2- and histidine-containing oligomer was synthesized 

having in the carrier backbone four instead of two polycationic arms, and designated 

as oligomer #13 and its alanine counterpart as #14 (Scheme 4-V). Moreover, in these 

two new highly branched oligomers, the Stp building block was replaced by the Sph 

building block with one additional diaminoethane repeat (Scheme 4). The EtBr 

exclusion assay indeed displayed a slightly improved pDNA compaction of the 

histidines containing 4-arm oligomer #13 in comparison to 2-arm oligomer #8 (Figure 

42A). The cellular internalization studies of the cMBP2-containing polyplexes formed 

with this oligomer displayed a clear targeting effect over its alanine control #14, 

though surprisingly a less pronounced cellular uptake than with its 2-arm analog #8 

(Figure 42B). Also in the luciferase gene transfer studies, a significant targeting effect 

was observed with cMBP2-containing 4-arm oligomers #13 as compared to its 

alanine control analog (Figure 42C). However, in line with the cellular uptake studies, 

approximately one log unit lower gene transfer was achieved with the 4-arm oligomer 

polyplexes as compared to the 2-arm oligomer #8 polyplexes (Figure 42D). Once 

more, none of the polyplexes caused any significant cytotoxicity (Figure 42D). To 

sum up, increment in the number of polycationic arms did not provide any benefit in 

the case of cMBP2-containing polyplexes in vitro. 
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Figure 42. Influence of additional polycationic arms.  A) pDNA compaction ability determined by EtBr exclusion 

assay comparing cMBP2-containing 2-arm (#8) and 4-arm (#13) oligomers. Reduction in EtBr fluorescence was 

determined as percentage of maximal fluorescence of EtBr containing pDNA solution. B) Cellular internalization of 

the polyplexes (N/P 12) of the cMBP2-containing (#13) and alanine control (#14) 4-arm oligomers analyzed with 

flow cytometry using Cy5-labeled pDNA.  C) pDNA transfection efficiencies of 4-arm structures with (pattern) or 

without chloroquine (no pattern) and  D) corresponding cell viabilities. Data are presented as mean value (±SD) 

out of a quintuplicate. 

 

3.5.5 Confirmation of cMBP2-mediated targeting in vivo 

Due to the fact that the histidines-enriched 2-arm oligomer #8 with one PEG24 unit 

yielded the most promising cellular uptake and gene transfer in vitro, this oligomer 

was then selected for first in vivo studies. An additional PEG24 chain had not shown 

any favorable effects in vitro, yet it might be beneficial in vivo influencing the polyplex 

biodistribution and the ligand accessibility. For this purpose, also the histidines-

enriched oligomer with two PEG24 units #10 was chosen for further experiments and 

compared to its less shielded analog #8. Prior to in vivo experiments the polyplex 

stability in serum was evaluated ex vivo. The pDNA polyplexes were incubated in 

fetal bovine serum (FCS) for 1, 10, 30 or 90 min and subsequently subjected to gel 
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electrophoresis. All polyplexes, regardless of the ligand or extent of shielding, 

displayed a complete stability in 90% FCS and remained stable also after addition of 

a highly negatively charged heparin (Figure 43A).  

 

  

 

 

Figure 43. In vivo confirmation of the cMBP2 targeting effect. A) Stability of polyplexes in serum. pDNA binding of 

oligomers #9, #8, #12 and #10 in the presence of 90% fetal bovine serum (FCS) analyzed by means of an 

agarose gel shift assay. Polyplexes at N/P 12 were incubated at room temperature for 30 min in order to allow 

polyplex formation. Next, FCS was added and polyplexes were further incubated for 90, 30, 10 or 1 min. As 

indicated (last lane), heparin was added to the polyplexes after incubation in serum for 90 min. B) Luciferase gene 

expression 24 h after intratumoral administration of pCMVL polyplexes at N/P 12 into Huh7 tumor bearing mice. 

Luciferase gene expression is presented as relative light units per tumor (RLU/tumor; N=5, mean±SEM)). Lysis 

buffer RLU values were subtracted. The Huh7 tumor weights were 387±146 mg. The animal experiments were 

performed together with Annika Herrmann (veterinary MD study, LMU). 

 

Subsequent in vivo experiments were conducted in subcutaneous Huh7 tumor-

bearing mice. Polyplexes (50 µg pDNA in 60 µL) were injected intratumorally. The 

results of luciferase gene transfer (Figure 43B) were in accordance with in vitro 

studies, revealing a significant cMBP2 targeting effect in the case of #8 polyplexes, 

with a 15-fold higher gene expression than the alanine #9 control polyplexes. The 

oligomer #10 with higher PEG content displayed a less pronounced gene expression, 

but a targeting effect compared with its alanine control #12 (7-fold lower expression). 

Alongside, as another confirmation of a cMBP2 targeting effect in vivo, quantitative 

polymerase chain reaction was performed for the absolute quantification of the 

plasmid amount retained in tumors after local application of polyplexes. In line with in 

vivo luciferase gene transfer studies, the highest amount of the plasmid in tumor was 

obtained with the cMBP2-containing one PEG24 chain containing oligomer (#8), being 

significantly (almost 10-fold) higher as compared to its non-targeted analog #9 and 

(>3-fold) to the cMBP2-PEG48 containing polyplexes #10 (Figure 44). 
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Figure 44. Quantification of pCMVLuc detected in tumors at 24 h after intratumoral injection of cMBP2-targeted 

and alanine control polyplexes (N/P 12) with either one or two PEG24 chains as determined with qPCR (N=4, 

mean±SEM). The animal experiments were performed together with Annika Herrmann (veterinary MD study, 

LMU). 

 

3.5.6 Intravenous application of c-Met-directed polypexes 

As the intratumoral studies using cMBP2- and histidine-containing oligomer #8 

displayed promising results, this oligomer was consequently chosen for further in vivo 

studies. This time the polyplexes (80 µg pDNA in 200 µL) were injected intravenously 

and the mice were sacrificed two days after #8 and control #9 polyplex 

administrations. The subsequent analysis of luciferase expression in tumors of the 

mice treated with the cMBP2-decorated polyplexes (#8) showed moderate 

expression levels in various organs and did not reveal any significant targeting effect 

over the non-targeted polyplexes (Figure 45A). As shown above in vitro and upon 

intratumoral administration, the increase to an even 2-fold higher PEG content was 

found as unfavorable. 

Therefore for further optimization, the opposite direction was taken towards 

enhanced dimension of the polycationic oligomer part. Thus, the polyplexes formed 

with the PEGylated 4-arm oligomers #13 and #14 (Scheme 4-V) although they 

showed no improvement in vitro (Figure 42C), were subjected to the intravenous 

administration studies. 
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Figure 45. Improving gene transfer after intravenous administration by combination of 2-arm PEGylated cMBP2-

containing oligomer #8 or alanine control oligomer #9 with non-PEGylated 3-arm oligomer #15.  A) In vivo gene 

expression 48 h after i.v. administration of #8 and #9 polyplexes at N/P 12 into Huh7 tumor bearing mice (N=5, 

mean±SEM) in tumor, lung and liver.  B) EtBr exclusion assay comparing single oligomer polyplexes of #8 and 

combination polyplexes of #8 plus #15 at the adequate ratio (oligomer #8 at 70% and oligomer #15 at 30% of the 

total N/P).  C) Transmission electron microscopy images (Markus Döblinger, Department of Chemistry, LMU) of 

polyplexes (N/P 12) formed (I and III) with single oligomer #8 and (II and IV) with the combination of oligomers #8 

and #15.  D) Cellular internalization comparing the cellular uptake of the Cy5-labeled pDNA polyplexes formed 

with the cMBP2-containing (#8 + #15) and alanine control (#9 + #15) polyplexes.  E) Serum stability of 

combination polyplexes (total N/P 12) formed with cMBP2 or alanine control oligomers analyzed at different 

serum incubation times by an agarose gel shift assay. Where indicated, heparin was added to polyplexes after 

incubation in serum for 90 min.  F) In vivo gene expression in tumor, lung and liver at 48 h after i.v. administration 
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of the combination polyplexes at N/P 12 into Huh7 tumor bearing mice (N=5, mean±SEM). Luciferase gene 

expression is presented as relative light units per organ or tumor (RLU/organ). Lysis buffer RLU values were 

subtracted. Liver weight was around 1.6 g, lung weight around 230 mg and Huh7 tumor weight 452±189 mg. The 

animal experiments were performed together with Annika Herrmann (veterinary MD study, LMU). 

 

 

Figure 46. A) Serum stability of the polyplexes (N/P 12) formed with 4-arm PEGylated cMBP2-targeted (#14) or 

non-targeted control (#13) oligomers analyzed at different serum incubation times by an agarose gel shift assay. 

Where indicated, heparin was added to the polyplexes after incubation in serum for 90 min. B) In vivo gene 

expression at 48 h after i.v. administration of pCMVLuc polyplexes formed with the cMBP2-targeted (#13) and 

alanine control (#14) 4-arm PEG24 oligomers at N/P 12 into Huh7 tumor bearing mice (N=5, mean±SEM) in tumor, 

lung and liver. Luciferase gene expression is presented as relative light units per organ or tumor (RLU/organ). 

Lysis buffer RLU values were subtracted. Liver weight was around 1.5 g, lung weight around 210 mg and Huh7 

tumor weight 282±197 mg. The animal experiments were performed together with Annika Herrmann (veterinary 

MD study, LMU). 

 

Encouragingly, these more polycationic oligomers indeed triggered a significant 

cMBP2 targeting-dependent gene expression in the distant tumor (Figure 46), though 

expression levels were moderate and similar as in other organs (liver and lung). 

In order to further improve cMBP2 targeting also upon intravenous administration, an 

alternative approach was considered in optimizing the nanoparticles. For this 

purpose, a novel compacting 3-arm oligomer #15 (Scheme 4-VI) was synthesized 

being devoid PEG but having three oligocationic arms of the repeating Stp units with 

alternating histidines and terminal cysteines that are supposed to disulfide-crosslink 

with the terminal cysteines of the targeted PEGylated oligomer. This new compacting 

oligomer #15 was mixed with the PEGylated cMBP2-containing 2-arm oligomer #8 at 

an optimized 30:70 cationic ratio to reach the total N/P ratio of 12 (oligomer #15 at 

N/P 3.6 and oligomer #8 at N/P 8.4) prior to polyplex formation with the pDNA. The 

resulting combination polyplexes were first evaluated for their pDNA compaction 

ability and compared to polyplexes formed with only oligomer #8. The decreased 
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fluorescence in the EtBr exclusion assay confirmed an increased pDNA compaction 

(Figure 45B). Transmission electron microscopy images revealed profound change in 

nanoparticles shape when the oligomer #8 was mixed with the non-PEGylated 

oligomers #15. The single oligomer #8 polyplexes (Figure 45C, I and III) formed 

rather longer spaghetti-like structures of several hundred nanometers, whereas the 

novel combination polyplexes (Figure 45C, II and IV) led to preferred formation of 

either approx. 50 nm round-shaped toroidal nanoparticles or 100-150 nm short 

nanorods. Next, the preservation of the cMBP2 target-specificity for such bi-

oligomeric polyplexes needed to be analyzed, as the co-addition of the 30% 

positively charged non-shielded oligomer might reduce the effects of the surface 

shielding and targeting. The cellular internalization studies using Cy5-labeled pDNA 

revealed a far higher cellular uptake of the cMBP2-containing combination polyplexes 

(#8 + #15) as compared to their alanine control analogs (#9 + #15) (Figure 45D), 

although the uptake was somewhat lower as compared to the cellular internalization 

of the single oligomer #8 polyplexes tested before (Figure 45B). Nevertheless, the 

receptor-specificity was well maintained and the alanine control combination 

polyplexes exhibited practically no cellular uptake (Figure 45D). Prior to in vivo 

experiments, the stability of combination polyplexes in serum was evaluated. The ex 

vivo pDNA compaction studies in 90% FCS confirmed their intactness in serum 

(Figure 45E). Finally, the compacted polyplexes were injected intravenously in the 

subcutaneous Huh7 tumor-bearing mice. Remarkably and in sharp contrast to #8 

polyplexes (Figure 45A), with the cMBP2-containing (#8 + #15) polyplexes a greatly 

increased luciferase expression was achieved in the tumor (Figure 45F) exceeding 

the signal of the non-targeted compacted control (#9 + #15) polyplexes by 22-fold 

and, excitingly, of the cMBP2-equipped mono-oligomer (#8) polyplexes by 35-fold 

(Figure 45A). Remarkably, the luciferase expression in the tumor was up to 50-fold 

higher than in the lung or liver (Figure 45F). 

To investigate whether this co-addition effect is specific for the added compacting 

oligomer #15 or it can be achieved also by the addition of another non-shielded 

oligomer a different oligomer combination was evaluated in polyplex formation. 

Instead of 3-arm oligomer #15, a 4-arm polycationic oligomer comprising Sph 

building blocks (Scheme 4-VII) was combined with the PEGylated targeting oligomer 

#8 to the total N/P ratio of 12 as above. This combination resulted in only minor 

additional decrease in EtBr fluorescence as compared to the single oligomer #8 
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(Figure 47A) and slightly lower cellular uptake of the cMBP2-containing polyplexes 

(Figure 47B) as compared to the 3-arm oligomer combination (Figure 45D). The 

stability in serum was again confirmed (Figure 47C). The intravenous application of 

these combination polyplexes again led to a significant cMBP2 targeting effect 

(Figure 47D), though with a lower luciferase expression in tumor and, interestingly, 

increased gene transfer in the lung. 

 

Figure 47. A) pDNA compaction ability of combination polyplexes of 2-arm PEGylated oligomer (#8) and 4-arm 

compacting oligomer (#16) compared to single oligomer polyplexes formed only with the oligomer (#8) as 

determined by EtBr exclusion assay.  Oligomer solution was added at increasing N/P ratios to 10 µg pDNA 

containing 0.4 µg EtBr. Reduction in EtBr fluorescence was determined as percentage of maximal fluorescence of 

EtBr containing pDNA solution.  B) Cellular uptake of combination polyplexes (total N/P 12) comparing the 

cMBP2-targeted (red line) and alanine control (black line) nanoparticles by Huh7 cells after 45 min at 37°C and 

removal of cell surface-bound polyplexes.  “Count” represents cumulative counts of cells with indicated Cy5 

fluorescence after appropriate gating by forward/sideward scatter and pulse width. Dead cells (DAPI positive, less 

than 2%) were excluded from analysis.  C) Serum stability analyzed by gel-shift assay. Polyplexes (N/P 12) were 

incubated for 30 min with subsequent incubation in 90% serum for 1, 10, 30 or 90 min. Where indicated, heparin 

was added to the polyplexes to evaluate the influence of this highly polyanionic molecule on polyplex stability.  D) 

In vivo gene expression 48 h after i.v. administration of  cMBP2-targeted (#8 + #16) and alanine control (#9 + 

#16) combination polyplexes at total N/P 12 (oligomer #8 or #9 at 70% and oligomer #16 at 30% of the total N/P) 

into Huh7 tumor bearing mice (N=5, mean±SEM) in tumor, lung and liver. Luciferase gene expression is 

presented as relative light units per organ or tumor (RLU/organ). Lysis buffer RLU values were subtracted. Liver 

weight was around 1.5 g, lung weight around 210 mg and Huh7 tumor weight 438±152 mg. The animal 

experiments were performed together with Annika Herrmann (veterinary MD study, LMU).
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4 DISCUSSION 

4.1 Evaluation of polypropylenimine dendrimers bioreducibly tailored 

with sequence-defined oligo(ethanamino)amides as gene delivery 

systems 

Synthetic nucleic acid carrier systems gained increasing attention during the last 

decades as they offer the opportunity to overcome drawbacks associated with the 

viral vectors. High Mw of cationic polymers can be on the one hand associated with 

good transfection efficacy, on the other hand also with increased cytotoxicity [127]. 

Gene carriers with environment-triggered biodegradation characteristics have the 

potential to overcome this dilemma [179-181]. Encouraging proof of concept studies 

have been made using oligomers cross-linked via degradable ester and disulfide 

bonds; however these carriers often lack precision with respect to coupling sites and 

product molecular weight [137, 182]. The symmetrical dendrimer structure presents a 

known effective strategy to increase the Mw of polymers while maintaining a defined 

structure [111, 183]. In our current concept we tested small, linear, sequence-defined 

oligomers based on the unnatural oligoamino acid succinoyl-tetraethylene pentamine 

(Stp) [119] coupled to the symmetrical polypropylenimine dendrimer G2 core. This 

protonatable Stp repeat unit is responsible for the favorable transfection properties, 

mediating electrostatic binding with pDNA and additional buffering capacity upon cell 

entry into endolysosomal compartments [184]. Biodegradability was achieved by 

modification of the eight primary amines on the PPI G2 surface with activated 

cysteines, making them feasible for reaction with free thiols. Linear oligomers, 

consisting of increasing number (1-5 units) of the cationic building block Stp and a C-

terminal cysteine in free thiol form, were coupled to this activated core to create 

reducible disulfide linkages. Thus, five compounds with increasing Mw were 

assembled (PPI-Stp1, PPI-Stp2, PPI-Stp3, PPI-Stp4, PPI-Stp5) and compared to 

unmodified PPI G2 regarding their biophysical and biological properties necessary to 

overcome the drawbacks of different delivery steps. As initial requirement, a sufficient 

nucleic acid binding is necessary for stable dendriplex formation of adequate sizes. 

Higher-generation dendrimers are usually required for satisfactory binding of 
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especially smaller siRNA molecules, whereas lower-generation dendrimers lacking 

the multivalency may enable sufficient interactions with larger RNA molecules or 

DNA molecules [116, 185]. Interactions between our Stp modified PPI dendrimers 

and pDNA were evaluated from the ability of dendrimers to displace the intercalating 

dye and pDNA binding assay. The binding affinity mainly increased with the oligomer 

chain length, whereas only the conjugate with the highest number of Stp units 

efficiently bound pDNA at all N/P ratios. The unmodified PPI G2 as well showed 

effective DNA complexation, similar as reported by Choi et al., where native PAMAM 

interestingly displayed more efficient pDNA complex formation than arginine or lysine 

surface modified PAMAM. The latter was explained with higher pKa values of primary 

dendrimer amines as compared with the α-amines of lysines or arginines included in 

charge ratio calculations [112]. 

Although unmodified PPI G2 displayed good pDNA binding by EtBr exclusion assay 

and agarose gel shift, it formed very large aggregates with pDNA (> 1µm). In line with 

this, Tang et al. demonstrated that the unmodified dendrimers usually appear as 

clusters in electron micrographs with their diameters above 1000 nm; else typically 

formed toroidal complexes aggregate in solution [186]. In contrast to unmodified PPI 

the Stp-modified conjugates formed nanoparticles of adequate sizes (150-400 nm). 

Subsequent cellular internalization studies also demonstrated the necessity for 

surface modification. Stp modification led to substantially improved cellular uptake of 

pDNA polyplexes. Apart from pDNA binding and cellular uptake, the endosomal 

escape presents a critical requirement for efficient gene delivery. For PEI and related 

carriers, protonation capacity of polymer within the endolysosomal pH range has 

been found associated with improved vesicular escape to the cytosol (so-called 

„proton-sponge effect‟) [22, 187, 188]. Mostly histidine surface modifications of 

dendrimers have shown to increase the buffer capacity within the endolysosomal pH 

range, especially in the lowest pH ranges [112]. Acidimetric titrations of conjugates 

PPI-Stp4 and PPI-Stp5 also revealed an improved total buffering capacity in the 

endolysosomal pH range as compared to PPI G2. The best buffering capacity of the 

two Stp modified conjugates was observed at the pH range between 6 and 7.4, 

providing high buffering capacity already in an early endosome phase. Consistent 

with endosomal escape, an increase in nuclear association of Cy5 labeled pDNA was 

observed for PPI-Stp2 to PPI-Stp5 (but not PPI-Stp1 or unmodified PPI). Highest 

luciferase gene transfer levels, exceeding those of unmodified PPI, were observed 
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for PPI-Stp3 to PPI-Stp5 (Figure 3). Extending the Stp oligomers sequence from 

three to five Stp units apparently did not significantly further enhance gene transfer 

(at least in vitro), despite favorable stability data (Figure 1). Cytotoxicity of dendrimers 

and other gene delivery carriers is a major issue in successful gene therapy. A 

microarray analysis revealed many of the intrinsically altered genes after treatment 

with PPI G2 and G3 dendriplexes on two human cell lines [189]. Several surface 

modifications have been exploited in order to reduce the cytotoxicity [114, 115, 190]. 

Due to the dissociation of our Stp modified conjugates in the reducing cytosol 

environment, in spite of a high MW, a reduced cytotoxicity based on dissociation in 

the cytosol should be achieved. Under pDNA transfection conditions no cytotoxicity of 

polyplexes was visible (MTT assay). A metabolic activity ATP assay with N2a cells 

treated with PPI conjugates at higher concentrations disclosed a far higher 

cytotoxicity for the unmodified PPI G2 (at concentrations above 0.2 mg/mL) as 

compared to the Stp conjugates. Compaction of the dendrimers with pDNA generally 

reduces toxicity [139], and one has to keep in mind that for the metabolic ATP activity 

assay high concentrations of cationic carriers were used (the lowest 0.01 mg/mL 

conjugate concentration would correspond to approximately N/P 30 for PPI G2 and 

N/P 8 for Stp modified conjugates). 

Based on promising in vitro data the PPI conjugate with the longest Stp chains, PPI-

Stp5, was further investigated in vivo and examined in comparison with PPI G2. 

Transgene expression for both polyplex types was predominantly found in tumor, 

lung and liver (Figure 8). PPI G2 polyplexes resulted in a significantly higher reporter 

gene expression in the lungs and liver as compared to PPI-Stp5. The lung expression 

might in part be due to the large size and aggregate formation of the PPI G2 

polyplexes that could lead to the entrapment of the polyplexes in the pulmonary 

vasculature [191, 192]. In contrast gene reporter expression in tumors was 

significantly higher for the smaller PPI-Stp5 conjugate. Although the exact reason is 

not proven, this finding is compatible with a better systemic distribution and 

accumulation of these polyplexes in tumor tissues due to tumor-selective enhanced 

permeability and retention (EPR) effect [193]. In brief, first in vivo studies confirm the 

possible relevance of precise conjugates by bioreducible attachment of oligo (ethane 

amino) amides to the octavalent PPI G2 dendritic core. Of all evaluated structures, 

PPI-Stp5 seems to be the most promising candidate for pDNA delivery, exhibiting 

good nucleic acid binding, medium-low particle size, the highest cellular uptake, low 
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cytotoxicity and the most efficient gene transfer. The data demonstrate that the 

simple unmodified linear Stpx oligomer series, which because the small size per se is 

ineffective [141], by precise attachment to PPI can be converted into effective gene 

carriers. This proof of concept obviously may be extended to attachment of more 

potent, better stabilizing [120, 121] and functional, targeted and shielded [57], 

sequence-defined oligomers. 

 

4.2 Evaluation of sequence-defined linear oligo (ethane amino) amides 

of increasing length in gene delivery 

Increasing repeat units of artificial amino acid succinoyl-tetraethylene pentamine 

(Stp) [119] containing the diaminoethane motif like the transfection agent PEI [194, 

195] were applied for the assembly of well-defined linear peptide-like carriers without 

any dendritic core or other functional groups. The gold standard LPEI, containing 

approximately 500(±200) protonatable nitrogens [137], obviously has a far larger 

average polymer size than previously synthesized Stp oligomers; a linear oligomer of 

5 Stp units did not facilitate pDNA delivery [120]. In addition, Stp and oligomers differ 

from LPEI by an amide-bonded succinic acid linker every fifth or sixth ethanamino 

unit.  

To address the question whether longer linear Stp oligomers can mimic LPEI in gene 

transfer efficacy, the influence of increasing the Mw of linear oligo (ethane amino) 

amides on pDNA mediated gene transfer and cytotoxicity was investigated. We 

demonstrated that - beyond a critical oligomer size - indeed the diaminoethane motif 

containing building blocks enable efficient gene transfer without the need for further 

functional modifications. In agreement with the previous studies [141], initial pDNA 

complexation studies with agarose gel shift assay and EtBr exclusion assay showed 

almost no pDNA binding with the shortest 5 Stp oligomer. With increasing number of 

Stp units, improved binding characteristics were observed. Such polyplex 

stabilization can be attributed to multivalent electrostatic interactions between the 

pDNA and oligomers carrying more positive charges per molecule. The subsequent 

cellular internalization studies were in accordance with the pDNA binding studies 

demonstrating very low cellular uptake of the Stp5-W oligomer that greatly increased 
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with increased carrier length reaching maximum already with 15 Stp units. Similarly, 

the gene transfer experiments exhibited a clear increase in transfection efficiency 

with increasing Mw. Interestingly; Stp15-W with an Mw of around 4.3 kDa exceeded 

the LPEI transfection level but only at the highest tested N/P ratio of 24. Stp30-W, 

containing 91 protonatable nitrogens, displayed a greater gene transfer than LPEI 

already at N/P ratio 3, indicating the excellent capability of these carrier systems for 

pDNA delivery. As Stp40-W achieved similar pDNA transfection levels but did not 

exceed the performance of Stp30-W, we assume that an optimum length was 

reached at around 30 units and further elongation does not result in a greater benefit. 

The cytotoxicity of the cationic polymer PEI represents one of the major concerns in 

gene delivery. It causes toxic effects by versatile mechanisms such as cytosolic and 

mitochondrial membrane damage as well as necrotic-like and apoptotic changes 

[127, 128, 196, 197]. Thus, the comparison between LPEI and the synthesized Stp 

oligomers of increasing Mw is particularly relevant. As above in the case of PPI 

dendrimers bioreducibly modified with sequence-defined oligo (ethane amino) 

amides, MTT assay performed in parallel with the pDNA transfection experiments 

revealed no reduction in cell viability after treatment of cells with the pDNA 

polyplexes. On the other hand, applying the oligomers only, the CellTiter-Glo® 

cytotoxicity assay revealed at least 10-fold reduction of toxicity of the Stp-based 

oligomers in comparison to the commonly used LPEI, whereby the cytotoxicity clearly 

correlated with Mw. Not only the lower Mw of Stp30-W, but also the succinate spacer 

between the oligoamine units may contribute to the favorable biocompatibility of the 

Stp oligomers over standard PEIs. In fact, previous work demonstrated about 10-fold 

reduced toxicity of randomly branched PEI 25 kDa upon partial amidation with 

propionic or succinic acid [31]. 

 

4.3 Evaluation of native chemical ligation as a screening tool for easy 

conversion of sequence-defined oligomers into targeted pDNA carriers 

Previously, a polymer library of >600 diaminoethane motif containing sequence-

defined oligomers has been reported [120, 141]. Various functional domains have 

been identified as crucial for promoting gene transfer, e.g. terminal cysteines for 

polyplex stabilization via disulfide bridging, tyrosine trimers incorporation for 
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additional polyplex stabilization via π-π interactions [121]. Histidines were included 

for an improved endosomal escape based on their buffering capacity in the 

endosomal pH-range [101, 122]. Also different topologies and increasing number of 

polycationic arms were demonstrated to have a crucial role in the oligomer 

transfection efficiency. However, all these oligomers were untargeted and would in 

vivo lead to unspecific tissue accumulation and unwanted side-effects. By 

conjugating targeting moieties, e.g. ligands, to a polymeric carrier the expression in 

specific tissues can be enhanced and adverse effects minimized. Thus, the idea was 

to employ a novel strategy to easily convert the existing non-targeted oligomers from 

our library into ligand-modified oligomers. The folic acid, targeting the human folic 

acid receptor, which is over-expressed on the surface of several tumor cells, was 

chosen as a targeting ligand. Furthermore, carrier PEGylation and attachment of the 

targeting ligands to the distal end of the PEG chain improves its ligand accessibility 

and at the same time masks the positive surface charge of the polyplexes and 

prolongs the blood circulation half-life [198]. Therefore, NCL was here employed and 

demonstrated as powerful method to convert a small library of sequence-defined 

transfection oligomers with N-terminal cysteines of different topological structures into 

receptor-targeted and PEG-shielded carriers. Analyzing triplets (A-PEG or folate-

PEG ligated, or unligated) of six different carrier types (2-arm oligomers with central 

or peripheral tyrosine trimers, 3-arms without or with tyrosine trimers, 4-arm 

oligomers with histidines) for polyplex formation and pDNA gene transfer provided 

the following predictable and unpredictable results. All NCL-modified oligomers 

displayed good cargo binding (Figure 15) in an agarose gel shift assay and formed 

particles below 350 nm (Table 6) stable in serum (Figure 17) and hence suitable for 

potential in vivo experiments. As expected, polyplexes of oligomers with folate-PEG 

have strongly reduced zeta potential (Figure 16) and still higher cell binding (Figure 

19) and cellular uptake (Figure 18) than unmodified oligomers or A-PEG negative 

controls. Consistent with folate-receptor-specific cell binding, pDNA polyplexes of the 

targeted oligomers mediate much higher gene transfer than the negative controls. 

Not predictable was the advantage of peripheral over the central tyrosine trimer 

modification for 2-arm structures (Figure 21). This highlights the importance of 

sequence-defined positioning into specific topologies. The incorporation of stabilizing 

tyrosine trimers in the 3-arm structure led to an improved transfection efficiency of the 

unmodified oligomers in KB cells (Figure 21). Similar was observed before with N2a 
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cells [121]. The positive effect of tyrosines after NCL ligation was maintained leading 

to a significantly improved cellular uptake of tyrosine trimer-enriched FolA-modified 

structures (Figure 18) and greatly enhanced reporter gene expression (Figure 21). 

The replacement of the Stp building block by the Sph building block in the 3-arm 

oligomers did not have any favorable effects (Figure 21). Obviously, the number of 

polycationic arms and inclusion of endosomal escape promoting histidines also 

played an important role. Comparing the FolA-equipped 3-arm oligomer with Sph 

building blocks and the 4-arm histidines-enriched Sph oligomer, an up to 3-log units 

higher luciferase gene transfer was obtained with the more highly polycationic 

structure, although the unmodified oligomers did not differ much in the transfection 

efficiency. Thus, most important and critical for further carrier optimization is the 

observation that the ranking in efficiency of non-PEGylated oligomers strongly differs 

from PEG-ligated oligomers. In other words, screening libraries of unshielded 

oligomers is not reliable for subsequent optimization of targeted shielded analogs. To 

solve this dilemma, native chemical ligation is a most convenient tool for easily 

converting untargeted into targeted oligomers libraries making a search for an 

optimal carrier in vivo less time- and cost-consuming. Here, folate was applied as a 

targeting ligand, but NCL can be utilized to various different ligands.  Encouraging 

lead structures obtained by NCL ligation may then be optimized by all-in-one solid 

phase synthesis for in vivo application [52, 122]. 

 

4.4 Dual-targeted polyplexes based on sequence-defined peptide-PEG-

oligoaminoamides 

For active cell targeting, viruses frequently capitalize on dual-receptor binding. With 

the intention to mimic this natural process and thus enhance the transfection 

efficiency of targeted carriers, a dual peptide-based approach for targeting cancer 

cells was evaluated. Different combinations of the following targeting ligands were 

investigated; integrin receptor targeting cyclic RGD ligand, transferrin receptor (TfR) 

targeting B6 peptide and epidermal growth factor receptor (EGFR) targeting GE11. 

The latter was for the first time conjugated to a sequence-defined nucleic acid carrier. 

Integrins are playing a key role in the adhesion, migration, invasion and proliferation 

of tumor cells and are usually expressed at low levels in normal tissues, but can be 
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highly upregulated in tumor tissues [59]. EGFR has a crucial role in tumorigenesis 

and various therapeutics targeting these receptors have been developed for cancer 

treatment [60, 61]. The TfR which triggers the main uptake for protein iron is over-

expressed on malignant cells related to the tumor stage [46, 199]. The advantages of 

dual-targeted over single-targeted formulations were already demonstrated in 

combinations with RGD-containing peptides [162, 200, 201]. In particular 

simultaneous targeting of integrin and TfR has shown encouraging results. Tf and 

RGD peptide were conjugated to a thermosensitive nanogel carrying doxorubicin and 

exhibited an improved targeting and anti-tumor effect [202]. This was demonstrated 

also by the conjugation of Tf and cRGDfk to a hyperbranched copolymer yielding 

paclitaxel-loaded nanoparticles with enhanced intracellular uptake [203]. Tf-modified 

cRGDfk-paclitaxel micelles significantly prolonged retention in glioma tumor and 

peritumoral tissue [204]. Also in our previous work using PEI-based polyplexes [162] 

the advantage of the combination of TfR targeting short peptide B6 and integrin 

binding RGD was demonstrated. Few other studies have reported the benefits of 

growth factor receptor ligands in dual-targeting systems [205]. PEI polyplexes 

containing a combination of fibroblast growth factor receptor targeting peptide and 

integrin targeting peptide were tested [69]. Moreover, PEI polyplexes containing Tf 

and the EGFR binding transforming growth factor alpha displayed intensified 

receptor-mediated endocytosis [206]. 

Herein, the synthesized shielded targeting oligomers (RGD-PEG-STP, B6-PEG-STP 

and GE11-PEG-STP) were first investigated in single-targeted polyplexes formed 

with pDNA at two different N/P ratios, 6 and 12. All three oligomers showed good 

cargo binding and polyplex formation of adequate sizes (Figure 24, Table 8). 

Successful targeting with these peptide ligand-equipped single-oligomer polyplexes 

as compared to their alanine control was confirmed by means of DU145 prostate 

cancer cell binding (Figure 25A, B), cellular internalization (Figure 27) and pDNA 

transfection (Figure 25C, D). pDNA transfections were performed in the presence of 

the endosomolytic agent chloroquine [170] in order to reduce the endosomal escape 

bottleneck as limiting barrier in the delivery process and focus on the ligand effect. 

When formulated at the N/P ratio of 6, pDNA complexation is already complete. All 

three dual targeting polyplex combinations of RGD-PEG-STP and B6-PEG-STP 

(Figure 28), RGD-PEG-STP and GE11-PEG-STP (Figure 30), and GE11-STP and 

B6-STP (Figure 32) showed strongly enhanced cell binding and transfection activity 
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compared with single targeting polyplexes. Transfection activity correlated well with 

cell association. The GE11/B6 combination showed the highest efficiency. Not only 

the combination of peptide ligands, but also the ratio between the targeting ligands 

played a key role. GE11/B6 (oligomer molar ratio of 4:2) > RGD/B6 (4:2) > 

RGD/GE11 (5:1) were the optimum combinations. With regard to the RGD/B6 

targeting, our previous data in the PEI polyplex system suggest that RGD (integrin 

binding) had a major contribution in cell binding, whereas B6 enhanced the cellular 

uptake [162]. The current studies well confirm an enhanced cell binding by combining 

B6 with RGD, and cellular uptake studies demonstrate B6 as responsible for a 

pronounced uptake (Figure 29). 

Interestingly, in contrast to cRGD and B6 which both displayed rather homogenous 

monomodal cell association, peptide GE11 polyplexes displayed bimodal cell 

binding: a large proportion of cells displayed no polyplex binding, whereas a low 

percentage of cells showed very high cell association. In dual targeting, incorporation 

of GE11 increased the unimodal association of RGD (Figure 30) and B6 (Figure 32). 

The reasons remain to be clarified. The GE11 peptide had been previously 

demonstrated to bind the EGFR with 20-fold lower affinity than the native ligand EGF. 

Native GE11 peptide itself did not display satisfactory EGFR binding as opposed to a 

GE11-PEG-PEI conjugate [167]. High receptor densities and other help in cell 

binding, likewise ligand multivalency and positive polyplex charges are needed for 

cell association. This hypothetical model is further supported by the fact that GE11 

polyplex binding is strongly influenced by enhancing the N/P ratio towards positive 

polyplex charge. When single and dual targeted polyplexes were formulated at a 

higher N/P ratio of 12, both cell binding and transfection levels further increased, 

especially for GE11 polyplexes. The further enhancements have to be regarded as 

indirect effects such as increased unspecific cell binding by positive oligomer charges 

as well as contribution of free, uncomplexed oligomers as previously observed for 

PEI polyplexes [22]. Thus not surprisingly, at the higher N/P 12 ratio, due to the high 

cell bindings and transfections already of single targeting polyplexes, dual 

combination effects were less pronounced or absent. 
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4.5 Evaluation of targeted c-Met receptor-directed oligo (ethane amino) 

amides for efficient gene transfer in vitro and in vivo 

As c-Met presents an encouraging target receptor in cancer therapy, we applied two 

phage display library derived c-Met binding peptides (cMBP 1 and 2) and evaluated 

their suitability as targeting ligands in gene delivery. The first peptide herein 

designated as cMBP1 with the amino acid sequence YLFSVHWPPLKA was 

previously proven to specifically bind to c-Met, thereby competing with its natural 

ligand hepatocyte growth factor in a dose dependent manner and inhibiting tumor cell 

proliferation in vitro. The nuclear imaging experiments with the radioiodinated cMBP1 

verified its potential as a diagnostic agent for tumor imaging [207]. Kim et al. utilized 

another c-Met binding ligand here called cMBP2 having the amino acid sequence 

KSLSRHDHIHHH. They reported 125I-radiolabeled cMBP2 targeting in vitro and in 

vivo [208] as well as demonstrated the possibility to apply this ligand for specific 

optical imaging by employing the cyanine dye 5.5 (Cy5)-conjugated Gly-Gly-Gly 

(GGG)- or 8-aminooctanoic acid (AOC)- linker modified cMBP2 [209].  

Both c-Met binding peptides were for the first time applied as a targeting ligand for 

receptor-mediated gene transfer. The cMBP2 ligand showed superiority over another 

c-Met binding peptide ligand denoted as cMBP1. The cMBP2 ligand was conjugated 

to monodisperse sequence-defined oligomers, comprising polyethylene glycol (PEG) 

units for shielding and 1,2-diaminoethane motif containing artificial amino acids for 

alleviation of crucial steps in gene delivery. Terminal cysteines were provided for 

disulfide-based increased pDNA polyplex stability and redox-sensitive cargo release 

within the cells [210]. The novel cMBP2-decorated polyplexes synthesized as all-in-

one solid-phase synthesis resulted in noteworthy target-specific gene transfer 

efficiency in vitro, though only upon addition of an endosomolytic agent chloroquine 

(Figure 34). Chloroquine accumulates in endosomes by protonation, triggers osmotic 

swelling and thereby promotes release of the entrapped nanoparticles. Thus, 

additional histidines were implemented in the oligomeric structure for improved 

endosomal escape. The buffering capacity of the histidines, based on their imidazole 

ring with the pKa around 6 that can be protonated in slightly acidic pH of the 

endosomes, can greatly ameliorate the endosomal release of the polyplexes [122, 

211, 212]. The histidines-enriched polyplexes indeed led to a significantly improved 
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gene transfer already in the absence of chloroquine (Figure 39). A slightly reduced 

cargo binding was observed upon incorporation of histidines. This effect was 

previously observed also for the non-PEGylated Stp oligomers and explained in 

relation to the influence of unprotonated histidines on the relative oligomer 

cationization [122]. Moreover, hydrophilic polymers such as PEG have been verified 

as indispensable for nanoparticle surface shielding against unintended interactions 

with biological surfaces, inhibition of activation of the complement system and 

prolongation of the circulation half-life. The length of the PEG spacer not only 

influences the accessibility of the targeting ligand to the tumor tissue, but can also 

alter the polyplex biodistribution. Several studies have reported favorable effects with 

an increasing PEG length, whereas other studies have favored shorter PEG chains 

and emphasized that the shielding needs to be adjusted individually to the carrier and 

peptidic ligand [198, 213-217]. Incorporation of additional PEG24 chain led to 

somewhat reduced gene transfer of cMBP2-containing polyplexes in vitro (Figure 39). 

Apart from implementation of the functional moieties within each polycationic arm, 

addition of extra polycationic arms and design of more highly branched oligomers has 

previously been proven as favorable for different steps of gene delivery process of 

non-targeted conjugates [120, 152]. Thus, more highly branched cMBP2-decorated 

4-arm conjugates were synthesized. The Stp building block was furthermore 

substituted with a Sph building block. This replacement was based on our recent 

reports on non-targeted structures showing an improved nucleic acid compaction and 

gene transfer with the novel Sph building block [122, 152]. However, doubling the 

number of polycationic arms in the cMBP2-containing polyplexes did not lead to any 

additional favorable effect on the gene expression in vitro (Figure 42). As c-Met 

activation causes an increased cell proliferation and invasion [218] and could 

therewith lead to unwanted side effects of the cMBP-mediated gene delivery, it was 

essential to analyze it. The western blots demonstrated that the novel cMBP-

equipped polyplexes do not induce c-Met receptor phosphorylation and its 

downstream signaling (Figure 38, Figure 41). Following the encouraging experiments 

in vitro, first in vivo studies with local injection of histidines-enriched polyplexes were 

conducted. Importantly, regardless of the extent of shielding, the cMBP2-equipped 

polyplexes showed much higher reporter gene expression in tumor than their control 

polyplexes. The in vivo results were in accordance with in vitro studies favoring less 

shielded polyplexes formed with oligomers having only one PEG24 chain (Figure 43, 
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Figure 44). However, when intravenously administering these, upon local injection 

more potent, less shielded polyplexes, disappointingly, no cMBP2-targeting effect 

was obtained at first (Figure 45). These disappointing results pointed out to additional 

requirements of the systemic delivery in comparison to cell culture or regional 

intratumoral delivery. The evaluated oligomers contain a very high content of PEG 

(same number of ethyleneglycol units as protonatable Stp nitrogens already in the 

case of PEG24 oligomers) which had revealed imperfect pDNA compaction in a 

previous in vitro study [57]. Thus, in spite of no beneficial effects of augmented 

polycation part in vitro, polyplexes formed with the targeted four-arm oligomers were 

injected intravenously resulting in only fairly increased c-Met targeting effect (Figure 

46). 

Hence, instead of directly tuning the chemical oligomer structure, the desired two 

nanoparticle functions, pDNA compaction on the one hand, targeting and surface 

shielding on the other hand, were distributed between two different sequence-defined 

oligomers with or without PEG-content. As shown before [57], the PEG chains 

presumably not only shield the surface of the nanoparticles, but also interfere with the 

condensation process between the pDNA double strands. PEG-free analogs 

however were shown to mediate effective compaction of pDNA into rod- or toriod-like 

structures [57]. Here, the cMBP-equipped PEGylated polyplexes formed rather long 

spaghetti-like structures, whereas the co-addition of only 30 % (of the total N/P ratio) 

of the non-shielded oligomer led to a greatly improved particle formation in rod- and 

round-shaped nanoparticles and remarkably, a significantly improved gene transfer in 

tumor (Figure 45, 47). Apparently, the co-formulation of non-shielded compacting 

oligomers can significantly alter the nanoparticle compaction and shape. 

Interestingly, only intravenous in vivo studies and not in vitro transfections were able 

to disclose the advantage of polyplex compaction; this appears as important 

requirement to improve targeted gene transfer in vivo. 
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5 SUMMARY 

Nucleic acids delivery manifests the future of medicines though the limitations of the 

currently available carriers are impeding its breakthrough. From the outset of the 

cationic polymers as nucleic acids delivery agents onwards, LPEI has arisen as most 

ubiquitously used transfection agent. Myriad of modifications of LPEI improved its 

efficacy and diminished its cytotoxicity. Still, its high molecular weight and 

polydispersity remain critical issues setting back the related clinical studies and 

potential use in medicine. A development of monodisperse precise polymeric carriers 

mimicking LPEI in its potency but with diminished toxic effects might be a key to the 

solution. Thus, by exploiting solid-phase synthesis, diaminoethane motif containing 

building blocks (e.g. Stp, Sph) were developed allowing an assembly of user-defined 

monodisperse and biocompatible oligomers and their easy and site-specific 

modification. 

The extensively investigated low generation dendrimers like PPI have previously 

demonstrated tolerable toxicity, though also the necessity of surface modification to 

enhance their gene transfer capacity. Hence, in this thesis disulfide-based 

conjugates of sequence-defined oligo (ethane amino) amide oligomers of different 

lengths possessing one to five Stp units with the PPI dendritic core were used. In this 

manner both defined and biodegradable Stp modified gene carriers were available 

avoiding polydispersity and cytotoxicity related to higher molecular weight but 

displaying encouraging properties for pDNA delivery in vitro. With increasing Stp 

chain an increased cargo binding, cellular internalization and gene transfer were 

obtained. The most promising conjugate with the highest number of Stp units per 

branch furthermore displayed promising results in vivo after intravenous injection. 

As the next step, a gradual elongation of the Stp chain and increase of Mw was again 

correlated with the relevant biophysical and biological properties for polymer-based 

gene transfer. In this case, however, an optimal carrier containing only the 

diaminoethane motifs without a dendritic core or any other functional domains was 

pursued. The carrier with a length of 30 Stp units was demonstrated as an ideal LPEI 

mimic with a six-fold higher transfection efficiency and ten-fold lower cytotoxicity. 
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Moreover, the study provided fundamental insights in the pertinence of sequence-

defined oligo (ethane amino) amide oligomers as gene delivery systems. 

Non-targeted carriers are usually related to unspecific tissue accumulation and 

undesired adverse effects. Efficient targeting to cancerous tissues still represents a 

major challenge in gene delivery. Thus, a novel method, NCL, was applied allowing 

easy and fast modification of non-targeted into targeted polymeric nucleic acid 

carriers. Folic acid targeting the over-expressed folic acid receptor was employed as 

a ligand. The resulting gene transfer studies using the assembled FolA-equipped 

conjugates showed high cellular uptake, association and gene transfer in contrast to 

non-targeted control confirming the suitability of the method. NCL allowed high-

throughput modification and screening of different terminal cysteines-containing 

untargeted oligomers simplifying and facilitating the search for an optimal targeted 

carrier that could be a potential potent delivery agent in vivo. 

Not only naturally occurring small molecules like FolA, but also various short peptides 

have shown vast potential as targeting ligands due to their reduced risk of 

unforeseen side-reactions. Moreover, for enhanced receptor-specific gene transfer, 

the dual-ligand targeting approach has been exploited. Such dual-targeting concept 

has thus been applied to pDNA polyplexes of recently developed sequence-defined 

succinoyl-tetraethylenepentamine (Stp)-PEG based oligomers. The dual-peptide 

equipped nanocarriers simultaneously recognizing either integrin and TfR, integrin 

and EGFR, or EGFR and TfR led to significantly enhanced cell binding and 

transfection efficiency in prostate cancer cells expressing all three receptors. The 

extent of dual targeting was demonstrated as strongly dependent on the ratio 

between the two ligand-targeted oligomers and had to be carefully investigated for 

each pair of the targeting peptides. Concurrent addressing of TfR and the epidermal 

growth factor receptor turned out to be the most effective strategy for the investigated 

polyplexes. 

Furthermore, for the first time the proto-oncogene c-Met / hepatocyte growth factor 

which is over-expressed in many solid tumors was applied for non-viral tumor-

targeted gene delivery. The selected c-Met-binding peptide called cMBP2 was 

confirmed as a potent and very promising targeting ligand. Incorporating this peptide, 

novel c-Met directed nanocarriers were developed for efficient gene delivery in vitro 

and, notably, successful c-Met targeted systemic gene transfer in vivo. A recent 
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combination of solid-phase supported peptide and polymer synthesis enabled easy 

modifications and implementation of various peptidic and artificial functional groups. 

This provides an optimal tool for determination of structure-activity relationships and 

optimization of gene carriers. The carriers were thus readily functionalized with c-Met 

targeting peptides, PEG for shielding against unintended interactions with biological 

surfaces, and cysteines for additional polyplex stabilization via bioreversible disulfide 

bond formation. Further optimization with the endosomal escape promoting histidines 

yielded an oligomer which displayed high luciferase expression in tumor upon 

locoregional administration. For intravenous administration, a new form of pDNA 

polyplexes, containing both a pDNA compacting oligomer and a surface-shielding 

cMBP2-PEG-oligomer, had to be formulated for successful systemic and receptor-

mediated gene transfer into distant tumors. The designed c-Met directed polyplexes 

emphasize the importance of each functional moiety and the proper relation of the 

polycationic part in relation to the shielding part within the nanoparticle. Moreover, the 

clear-cut functional findings with precise oligomers present a very useful springboard 

for further chemical evolution of biocompatible receptor-targeted nucleic acid carriers. 
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6 APPENDIX 

6.1 Abbreviations 

ADA  Adenosine deaminase 

AIDS  Acquired immunodeficiency syndrome 

AOC  8-aminooctanoic acid 

ASO  Allele-specific oligonucleotide 

ATP  Adenosine triphosphate 

BCA  Bicinchoninic acid 

cMBP  c-Met binding peptide 

CMV  Cytomegalovirus 

Cy5  Cyanine 5 

DAPI  4',6-diamidino-2-phenylindole 

DLS  Dynamic light scattering 

DMEM Dulbecco´s modified eagle´s medium 

DMSI  Dimethylsuberimidate 

DMSO Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

DOPE  Dioleoylphosphatidylethanolamine 

DOTAP N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammoniumethyl sulfate 

DOTMA N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 

DTT  Dithiothreitol 

EDTA  Ethylenediaminetetraacetic acid 

EGF  Epidermal growth factor 

EGFR  Epidermal growth factor receptor 

EPR  Enhanced permeability and retention  effect  

EtBr  Ethidium bromide 
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FCS  Fetal calf serum 

FDA  Food and drug administration 

Fmoc  9-Fluorenylmethyloxycarbonyl 

FolA  Folate 

GelRed Intercalating nucleic acid stain 

HBG  HEPES buffered glucose 

HD  Hexanedioldiacrylate 

HEPES N-(2-hydroxyethyl)piperazine-N´-(2-ethanesulfonic acid) 

HES  Hydroxyethyl starch 

HGF  Hepatocyte growth factor 

HGFR  Hepatocyte growth factor receptor 

HPMA  N-(2-hydroxypropyl)methacrylamide 

LHRH  Luteinizing-hormone-releasing hormone 

LNA  Locked nucleic acid 

LPEI  Linear polyethylenimine 

MMP  Matrix metalloproteinase 

mRNA  Messenger RNA 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

Mw  Molecular weight 

Nbz  N-acyl-benzimidazolinone 

NCL  Native chemical ligation 

OEI  Oligoethylenimine 

PAA  Poly(amidoamine) 

PAMAM Polyamidoamine 

PBS  Phosphate buffered saline 

pCMVLuc Plasmid encoding firefly luciferase under the control of CMV promotor 

pDNA  Plasmid DNA 

PEG  Polyethylene glycol 

PEG24 Polyethylene glycol with 24 ethylene glycol units 

PEI  Polyethylenimine 
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PLL  Polylysine 

PPI  Polypropylenimine 

PTA  Phosphotungstic acid solution 

RAC  Recombinant Advisory Committee 

RES  Reticuloendothelial system 

RGD  Arginylglycylaspartic acid 

RISC  RNA-induced silencing complex 

RNA  Ribonucleic acid  

RPMI  Roswell Park Memorial Institute medium 

RT-PCR Reverse transcription polymerase chain reaction 

SCID  Severe combined immune deficiency 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

siRNA  Small interfering RNA 

Sph  Succinoyl-pentaethylenhexamine 

SPPS  Solid-phase peptide synthesis 

Stp  Succinoyl-tetraethylenpentamine 

TBE  Tris/Borate/EDTA buffer solution 

TfR  Transferrin receptor 

Tris  Tris(hydroxymethyl)aminomethane) 

VEGF  Vascular endothelial growth factor 
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