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Zusammenfassung

Wir untersuchen stark gekoppelte Phänomene unter Verwendung der Dualität
zwischen Eich- und Gravitationstheorien. Dabei liegt ein besonderer Fokus einer-
seits auf Vortex Lösungen, die von einem magnetischem Feld verursacht werden,
und andererseits auf zeitabhängigen Problemen in holographischen Modellen. Das
wichtigste Ergebnis ist die Entdeckung eines unerwarteten Effektes in einem ein-
fachen holografischen Modell: ein starkes nicht abelsches magnetisches Feld verur-
sacht die Entstehung eines Grundzustandes in der Form eines dreieckigen Gitters
von Vortices.

Die Dualität zwischen Eich- und Gravitationstheorien ist ein mächtiges Werk-
zeug welches bereits verwendet wurde um stark gekoppelte Systeme vom Quark-
Gluonen Plasma in Teilchenbeschleunigern bis hin zu Festkörpertheorien zu be-
schreiben. Die wichtigste Idee ist dabei die der Dualität: Eine stark gekoppelte
Quantenfeldtheorie kann untersucht werden, indem man die Eigenschaften eines
aus den Einsteinschen Feldgleichungen folgenden Gravitations-Hintergrundes be-
stimmt.

Eine der Gravitationstheorien, die in dieser Arbeit behandelt werden, ist ei-
ne Einstein–Yang–Mills Theorie in einem AdS–Schwarzschild Hintergrund mit
SU(2)-Eichsymmetrie. Der Ansatz für das Eichfeld ist so gewählt, dass die zu-
gehörige Quantenfeldtheorie einem externen Magnetfeld ausgesetzt ist. Oberhalb
eines kritischen Magnetfeldes wird die Konfiguration instabil und zeigt einen Pha-
senübergang zu einem Supraleiter.

Die Instabilität wird mit zwei Ansätzen untersucht. Zum einen werden Fluk-
tuationen des Hintergrunds betrachtet und die Quasinormalmoden analysiert.
Zum anderen zeigt die numerische Analyse der Bewegungsgleichungen, dass das
effektive Schrödinger-Potential mit stärker werdendem Magnetfeld sich so lange
verändert, bis ein gebundener Zustand möglich wird. Der sich ergebende supra-
leitende Grundzustand ist durch ein dreieckiges Vortexgitter gegeben, wie eine
störungstheoretische Entwicklung über einem kleinen Parameter proportional zur
Größe des Kondensats zeigt. Zur Bestimmung des energetisch bevorzugten Zu-
stands wird mithilfe der holographischen Übersetzungsvorschrift die Gesamtener-
gie verschiedener Lösungen berechnet. Hierfür wird die Lösung der Bewegungsglei-
chungen zur dritten Ordnung in oben genanntem Parameter berechnet. Zusätzlich
wird gezeigt, dass dieses Ergebnis auch für den Fall einer AdS–hard wall Geometrie
gilt, also einer Feldtheorie mit Confinement.

Als nächstes erweitern wir das einfache Gravitationsmodell um ein chemisches
Potential und wiederholen die Untersuchung. Sind das chemische Potential, das
magnetische Feld oder beide groß genug, so befindet sich das System in einer su-
praleitenden Phase. Wir berechnen das Phasendiagramm des Systems numerisch.
Der Grundzustand der supraleitenden Phase nahe dem Phasenübergang ist ein
dreieckiges Vortexgitter, wobei der Gitterabstand nur von der Stärke des magne-
tischen Feldes abhängt. Die Relevanz dieser Ergebnisse wird im Zusammenhang
mit inhomogenen Grundzuständen in holographischen Supraleitern diskutiert, ei-
nem Themengebiet welches in letzter Zeit viel Interesse auf sich gezogen hat. Die
erhaltenen Resultate sind nicht nur aufgrund der vorher unbekannten inhomoge-
nen Lösung der Gravitationstheorie mit Schwarzem Loch neuartig. Es ist auch
interessant, dass ein großes magnetisches Feld die Vortexstruktur im Grundzu-
stand induziert anstatt sie zu unterdrücken.
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Des Weiteren untersuchen wir zeitabhängige Phänomene in einer holographi-
schen Erweiterung des Kondomodells. Letzteres beschreibt ein einfaches Modell in
der Festkörperphysik, in welchem eine magnetische Verunreinigung stark an ein
Elektronenreservoir koppelt. Die holographische Beschreibung erfordert Techniken
der numerischen Relativitätstheorie und erlaubt uns die Entwicklung des Systems
nach einem plötzlichen Sprung in der Kopplungskonstante zu simulieren.

Diese Doktorarbeit basiert auf Ergebnissen, die der Autor während des Studi-
ums am Max-Planck-Institut-für-Physik in München, Deutschland unter der Be-
treuung von PD Dr. J. K. Erdmenger von August 2011 bis Mai 2014 erreicht hat.
Die relevanten Veröffentlichungen sind:

[1] M. Ammon, J. Erdmenger, P. Kerner, and M. Strydom, “Black Hole
Instability Induced by a Magnetic Field,” Phys.Lett. B706 (2011) 94–
99, arXiv:1106.4551 [hep-th],

[2] Y.-Y. Bu, J. Erdmenger, J. P. Shock, and M. Strydom, “Magnetic field
induced lattice ground states from holography,” JHEP 1303 (2013) 165,
arXiv:1210.6669 [hep-th].
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Abstract

We study strongly-coupled phenomena using gauge/gravity duality, with a par-
ticular focus on vortex solutions produced by magnetic field and time-dependent
problems in holographic models. The main result is the discovery of a counter-
intuitive effect where a strong non-abelian magnetic field induces the formation of
a triangular vortex lattice ground state in a simple holographic model.

Gauge/gravity duality is a powerful theoretical tool that has been used to
study strongly-coupled systems ranging from the quark-gluon plasma produced at
particle colliders to condensed matter theories. The most important idea is that
of duality: a strongly coupled quantum field theory can be studied by investi-
gating the properties of a particular gravity background described by Einstein’s
equations.

One gravity background we study in this dissertation is AdS–Schwarzschild
with an SU(2) gauge field. We switch on the gauge field component that gives
the field theory an external magnetic field. When the magnetic field is above a
critical value, we find that the system is unstable, indicating a superconducting
phase transition.

We find the instability in two ways. Firstly, we do a quasinormal mode analysis,
studying fluctuations about the background. Secondly, we rewrite the equations in
Schrödinger form and numerically find that, as the magnetic field is increased, the
potential deepens until it is capable of supporting a bound state. Next we show
that the resulting superconducting ground state is a triangular vortex lattice. This
is done by performing a perturbative expansion in a small parameter proportional
to the condensate size. After solving the equations to third order, we use the
holographic dictionary to calculate the total energy of different lattice solutions
and identify the minimum energy state. In addition, we show that the result holds
in an AdS–hard wall model as well, which is dual to a confining theory.

Next we extend the simple gravity model to include a chemical potential and
repeat the analysis. When the chemical potential, magnetic field or both are large,
the system is in a superconducting phase. We calculate the precise phase diagram
numerically. The ground state in the superconducting phase near the phase tran-
sition line is shown to be a triangular vortex lattice with lattice spacing depending
only on the magnetic field strength. We comment on the relevance of the results
to the study of inhomogeneous ground states in holographic superconductors, a
topic in which there has been much interest recently. Our results are novel not
only because of the previously unknown inhomogeneous black hole solution, but
also because of the effect of a large magnetic field inducing rather than inhibiting
the vortex lattice ground state in a holographic model.

We also study time-dependent phenomena in a holographic generalisation of
the Kondo model, a simple condensed matter model of a magnetic impurity cou-
pled strongly to a sea of electrons. This requires techniques from numerical rel-
ativity and allows us to determine the response of the system to a quench in the
coupling.

This dissertation is based on work the author did during a PhD fellowship
under the supervision of PD Dr. J. K. Erdmenger at the Max-Planck-Institut
für Physik in Munich, Germany from August 2011 to May 2014. The relevant
publications are:
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Samevatting

Ons bestudeer sterk gekoppelde fenomene deur die gebruik van dualiteit tus-
sen ykteorieë en gravitasieteorieë. Ons fokus spesifiek op vorteks oplossings wat
deur magnetiese velde voortgebring word, asook tyd-afhanklike probleme in holo-
grafiese modelle. Die belangrikste resultaat is die ontdekking van ’n onverwagte
effek waar sterk nie-abelse magnetiese velde ’n driehoekige vorteksrooster grond-
toestand uitlok in ’n holografiese model.

Die dualiteit tussen ykteorieë en gravitasie is ’n nuttige instrument wat al ge-
bruik is om sterk-gekoppelde stelsels te bestudeer wat wissel van die kwark-gluon
plasma, wat geproduseer is by deeltjieversnellers, tot gekondenseerde materie teo-
rieë. Die belangrikste begrip is dualiteit: ’n sterk gekoppelde kwantumveldteorie
kan bestudeer word deur die eienskappe van ’n spesifieke swaartekrag agtergrond,
wat beskryf word deur Einstein se vergelykings, te ondersoek.

Een swaartekrag agtergrond wat ons bestudeer is AdS–Schwarzschild met ’n
SU(2) ykveld. Ons skakel die ykveld komponent aan wat in die veldteorie duaal
is aan ’n eksterne magnetiese veld. Wanneer die magnetiese veld bo ’n spesifieke
waarde val, vind ons dat die stelsel onstabiel is, wat dui op ’n supergeleidende fase
oorgang.

Ons vind die onstabiliteit op twee maniere. Eerstens, doen ons ’n quasinormale
modus analise, waarin ons versteurings van die agtergrond bestudeer. Tweedens,
herskryf ons die vergelykings in Schrödinger vorm en vind numeries dat soos die
magnetiese veld sterker word, verdiep die potensiaal totdat dit diep genoeg is vir
’n gebonde toestand om te vorm. Volgende wys ons dat die gevolglike supergelei-
dende grondtoestand ’n rooster van driehoekige vortekse is. Dit word gedoen deur
die uitvoering van ’n versteuringsuitbreiding in ’n klein parameter wat proporsio-
neel is tot die grootte van die kondensaat. Na die oplossing van die vergelykings
tot op die derde orde, gebruik ons die holografiese vertalingsvoorskrif om die totale
energie van verskillende rooster oplossings te bereken en die minimum energie toe-
stand te identifiseer. Daarna wys ons dat die gevolge in ’n AdS–hard wall model
ook waar is. Die AdS–hard muur model is duaal tot ’n teorie met confinement.

Volgende brei ons die eenvoudige swaartekrag model uit sodat dit ’n chemiese
potensiaal in sluit en dan herhaal ons die analise. Wanneer die chemiese poten-
siaal, magnetiese veld of albei groot is, is die stelsel in ’n supergeleidende fase.
Ons bereken die fase diagram numeries. Die grondtoestand in die supergeleidende
fase naby die fase-oorgangslyn vorm ’n driehoekige vorteksrooster met rooster
spasiëring wat afhang van die sterkte van die magnetiese veld. Ons lewer kom-
mentaar op die toepaslikheid van die resultate tot nie-homogene grondtoestande
in holografiese supergeleiers, ’n onderwerp waarin daar onlangs baie belangstelling
was. Die nuwigheid van ons resultate lê in beide die voorheen onbekende swart-
kolk oplossing en die effek van ’n groot magnetiese veld wat die vorteksrooster
grondtoestand in ’n holografiese model eerder voortbring as verhinder.

Ons bestudeer ook tyd-afhanklike fenomene in ’n holografiese veralgemening
van die Kondo model, ’n eenvoudige gekondenseerde materie model van ’n mag-
netiese onreinheid wat sterk koppel aan ’n see van elektrone. Dit vereis tegnieke
van numeriese relatiwiteit en laat ons toe om die reaksie van die stelsel te bepaal
na ’n vinnige sprong in die koppeling.

Hierdie verhandeling is gebaseer op die werk wat die skrywer tydens ’n PhD
program onder die toesig van PD Dr JK Erdmenger by die Max Planck-Institut-
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“The quantum theory of black holes . . . is a ‘trackless swamp’ with many false
but seductive paths and no maps. . . . The true path through the swamp at times
becomes so narrow it seems to be a dead end, while all around false paths beckon.
Beware the will-o’-the-wisp and don’t lose your nerve.”

— Leonard Susskind and James Lindesay



Chapter 1

Introduction

A black hole has entropy. This simple fact shook up fundamental physics when
first discovered, but at the time no one could have predicted that it would end up
bringing together such diverse areas of physics as gravity, quantum field theory,
fluid dynamics, condensed matter theory and heavy ion interactions. And, as this
thesis shows, it has revealed some remarkable properties in systems we thought
we understood.

Classically, black holes should have no entropy at all. They are some of the
simplest solutions to Einstein’s equations, completely determined by just a few
parameters like mass, charge and angular momentum. But quantum theory brings
in extra degrees of freedom. Near the event horizon there is a quantum soup of
particles, created from the vacuum in the gravitational background. It is there
that we obtain the clearest glimpse of a theory of quantum gravity.

But the two theories, quantum mechanics and general relativity, work together
in a surprising way. The entropy of a black hole is proportional to the area of its
event horizon [5, 6]. In other words, all the information about the black hole can
be written in the quantum particles living at its edge, approximately one bit per
Planck area. Moreover, it is impossible to have an equivalent region of space
that has a higher entropy. From here we are led naturally to the holographic
principle [7,8]. It states that the description of a volume of space can in some way
be encoded on the boundary of that volume. If we take this conjecture further,
it implies that we can treat two theories, one on the d-dimensional boundary
and one in the (d + 1)-dimensional interior, as one and the same. The theories
are dual: both contain exactly the same physical information. It is through a
specific realisation of this holographic duality that we can relate diverse areas of
physics, studying one area by solving equations in another. The two areas we
study in this thesis, a gauge theory in d dimensions and a gravity theory in (d+1)
dimensions, are related by gauge/gravity duality, a field that not only provides
profound insights into the interplay between gravity and quantum theory, but
also yields fruitful applications.

The most successful gauge theory to date is the standard model of particle
physics. It has withstood experimental scrutiny up to energies of order 100 GeV [9],
culminating in the long-anticipated discovery of a Higgs boson in 2012 [10,11]. Its
gauge group, SU(3)C×SU(2)L×U(1)Y , signifies its theoretical success because of
the simple way it encapsulates three of the four fundamental forces. The SU(3)C
component describes quantum chromodynamics, the theory of the strong interac-
tion between gluons and quarks. The SU(2)L × U(1)Y component describes the
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2 Chapter 1. Introduction

electroweak force. At low energies it is broken by the Higgs mechanism [12–14]
to the electromagnetic U(1)em group, leaving massive W± and Z0 bosons, the
mediators of the weak force. The gauge bosons as well as the associated matter
particles, the quarks, leptons and the Higgs scalar itself, make up the entirety of
the standard model and have all been observed by experiment.

Gravity, on the other hand, is conspicuously absent from the standard model.
It is described by an entirely classical theory, Einstein’s general relativity [15].
General relativity concerns spacetime itself, forming the backdrop for the physics
of the standard model. It has also enjoyed much experimental success, from ex-
plaining the curvature of starlight around the sun to the possible confirmation
of gravitational waves and the theory of inflation by the recent BICEP2 experi-
ment [16,17].

One of the goals of contemporary fundamental physics research is to unify the
three forces of the standard model with gravity. Unification can lead to greater
understanding of the underlying physics as well as to new predictions. Maxwell
showed how to relate electricity and magnetism, which brought greater insight into
the field of optics and the nature of light. Electroweak unification predicted the
existence of the Higgs particle in addition to showing that the weak and electro-
magnetic forces join into a single force at energies of the order 100 GeV. At even
higher energies it is expected that the electroweak force and strong force also unify
and can be described by a single coupling constant. A framework describing this
unification is known as a grand unified theory [18], or GUT. Unifying a GUT with
gravity, which would involve incorporating the principles of quantum mechanics
into general relativity, would provide a theory of everything.

The most promising candidate for a theory of everything is string theory [19–
21]. It starts from the slightly absurd premise that, on a fundamental level, matter
does not consist of point particles but rather of extended 1-dimensional objects
called strings. The different vibration modes of the strings give rise to particles
with different spin, charge and mass. What makes string theory promising is found
in the oscillations of closed strings — a spin-2 particle, the graviton. So string
theory has all the right ingredients: it is a quantum theory with a graviton in its
spectrum, and it is believed to be consistent and UV finite.

But this humble starting point of quantum strings has an impressive array of
further repercussions. For consistency of the quantum theory, more specifically for
the cancellation of gauge anomalies, string theory requires 10-dimensional space-
time. These extra dimensions have not been observed, so it has to be assumed
that they are compact with small volume. Another repercussion is the existence
of higher-dimensional objects in addition to strings. In addition to having closed
strings that form loops, there are also open strings with endpoints. These end-
points must end on higher-dimensional surfaces called D-branes [22, 23].

There has so far been no experimental test providing evidence for string theory,
but its theoretical success is unquestioned. By studying D-branes, Juan Maldacena
provided the first concrete example of the holographic principle [24]. Maldacena
looked at the D-branes from two different perspectives: a low energy, near horizon
perspective and a far away, long wavelength perspective. Although they appeared
to give rise to different theories from these different points of view, he reasoned
that they must still describe the same physical system. They are, after all, a
single D-brane construction viewed in a low energy limit. So he had found two
different theories describing the same physics — in other words, he had found a
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duality. Moreover, the two theories are set in differing numbers of dimensions, so
the duality is holographic. On the one hand is a theory of type IIB supergravity
in five non-compact dimensions. On the other is a conformal supersymmetric
gauge theory in four dimensions. Crucially, the latter theory does not contain
gravity. But the two theories do contain the same information — and have the
same entropy.

The duality is known as the AdS/CFT correspondence, and the conjecture is
stated in three different forms. In its weak form, the higher-dimensional theory is
a type IIB supergravity on AdS5 × S5. Meanwhile, the lower-dimensional theory
is a conformal field theory, N = 4 super Yang–Mills theory in (3 + 1)-dimensions
with gauge group SU(N). The field theory is strictly in the large N and strong
coupling limits, N,λ → ∞. Relaxing these restrictions gives different forms. In
the strong form, the strong coupling restriction is relaxed in the field theory, which
means that the gravity theory becomes a classical type IIB string theory. Relaxing
the large N limit in the field theory gives the strongest form, where the gravity
side is a full quantum type IIB superstring theory on asymptotically AdS5 × S5.

The stronger forms of the duality are not understood as well as the weak form,
but the weak form can easily be generalised in other directions. The first thing to
do is add a black hole to the gravity spacetime [25]. This brings us back to where
the idea of holography started — by considering the implications of a black hole’s
entropy. The dual description of the black hole spacetime is, appropriately, a field
theory at a specific temperature, with the temperature equal to the black hole’s
black body temperature. And it can be shown that the entropy of the field theory,
calculated in the usual way from its free energy, is precisely equal to a quarter of
the area of the black hole horizon in Planck units, just as Bekenstein and Hawking
showed it ought to be.

N = 4 super Yang–Mills theory is conformal, unlike the QCD of the standard
model. To break the conformal symmetry in the gauge theory, we need to ensure
that the physics is in general not the same on different energy scales. On the
gravity side of the duality, the energy scale is identified with the radial position in
AdS space, with positions closer to the AdS boundary corresponding to higher
energies. So conformal symmetry can be broken by, for example, choosing a
gravity solution with a dilaton field changing as a function of the radial coordinate.
Different radial positions then have different values of the dilaton field. On the
field theory side, this introduces a renormalisation group flow.

Further generalisations serve to make the AdS/CFT duality more applicable
to real-world systems, breaking it away from the specific super Yang–Mills and
supergravity theories to become the more general gauge/gravity duality [26, 27].
A chemical potential is added to the field theory by imposing a non-vanishing
boundary condition on the time component of the gauge field vector potential.
Matter fields behaving like quarks are added through the introduction of light D7-
branes to the gravity background. Magnetic fields in the field theory are simply
described by magnetic fields in the gravity theory. A well-defined dictionary exists,
mapping field theory expectation values and properties to quantities on the gravity
side. And because the two sides are dual, any physical quantity calculated on one
side must agree with the corresponding quantity on the other side.

This latter point makes gauge/gravity duality an especially powerful tool,
because, coming from the weak form of the AdS/CFT conjecture, it is also a
strong/weak coupling duality. The gravity side is weakly coupled, while the field
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theory side is considered in a limit where the coupling constant formally tends
to infinity. By exploring solutions to Einstein’s equations on an Anti-de Sitter
background we can therefore provide answers to the question, how does strongly
coupled matter behave?

To understand why this is an important question, let us focus on the example of
quantum chromodynamics. QCD is asymptotically free [28,29], meaning that the
coupling is weak at high energies but strong at low energies. The standard method
for calculating observables in field theories is to make a perturbative expansion in
terms of the coupling constant, with each term of the expansion represented as
a Feynman diagram for intuitive clarity. Since the expansion is asymptotic, this
technique does not work when the coupling constant is large. So at low energies,
QCD cannot be solved with the perturbative approach.

A possible method for solving QCD at low energies is lattice QCD, a particular
lattice gauge theory formulated on a discrete grid of points in spacetime. The
discretisation renders the otherwise infinite-dimensional path integrals finite. They
can then be calculated using the Monte Carlo method. Lattice QCD has had some
great successes, such as the calculation of the mass of various light hadrons with
errors of only a few percent [30]. It does however have some downsides. Lattice
gauge theories require a Euclidean time action so that the weighting factor in the
path integral causes the integral to converge faster. This means that it is almost
impossible to simulate dynamical processes.

Strongly coupled systems are also common in condensed matter physics. Here
again there is a standard approach for some models: the Landau–Fermi liquid
theory [31]. A Landau–Fermi liquid successfully models the normal state of many
metals at low temperature. It rests on two key ideas, the Pauli exclusion principle
and the notion of adiabaticity. Consider a system of non-interacting fermions at
low temperature. By the exclusion principle, they occupy all the momentum states
p < pF , where pF is the Fermi momentum. The higher momentum states are not
occupied. Now we adiabatically switch on interactions between the particles. This
should induce a continuous change in some of the dynamic properties of the par-
ticles, such as their effective mass, since their dynamics is altered by interactions.
The new, effective particles are known as quasiparticles. Provided there are no
singularities in the total energy of the system as we switch on interactions — the
process is adiabatic — the new system should be similar to the old system. There
should be a one-to-one correspondence between particles in the non-interacting
theory and quasiparticles in the interacting theory. This one-to-one correspon-
dence is however far from clear in a strongly coupled system, where the notion
of quasiparticles is not even well-defined. As a result, there are strongly-coupled
theories where the Landau–Fermi liquid description is, unsurprisingly, not appli-
cable.

One example of strongly-coupled systems where the Landau–Fermi liquid de-
scription breaks down is in high-temperature superconductors. These are materials,
such as the famous cuprates [32], that behave as superconductors with a critical
temperature above 30 Kelvin. Conventional superconductors, described by BCS
theory and its extensions, have critical temperatures that are far lower, typically
of the order a few Kelvin. There is so far no satisfying theoretical explanation for
high-temperature superconductivity.

Perhaps even more important than providing a rare theoretical insight into the
behaviour of strongly-coupled matter is that gauge/gravity duality also addresses
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the question of the universal behaviour of field theories. That is, it helps us to
find whether there are any properties that large classes of field theories are likely
to share. The most celebrated result is the ratio of shear viscosity to entropy
density [33],

η

s
=

1

4π

~
kB
. (1.1)

It has been shown that for a broad class of strongly coupled field theories with a
gravity dual, the matter content of the theory will respect this relation. Moreover,
it is conjectured that this value of η/s is a lower bound for a wide class of thermal
quantum field theories.

The quark-gluon plasma, a phase of quark matter at high temperature, high
density or both, is the perfect candidate for a test of the η/s prediction. This is
because it is a strongly coupled fluid. Quark-gluon plasma can be observed slightly
above the confinement/deconfinement temperature, that is, between temperatures
of 175 MeV and 250 MeV, in heavy ion collisions. And indeed, experiments at
Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) have
found that quark-gluon plasma has a small value of η/s [34]. This agrees very
well with the gauge/gravity prediction, a result which cannot be replicated with
perturbative methods. The RHIC results also indicate that η/s for the quark-
gluon plasma is slightly above 1/4π — the conjectured universal bound holds!

The concept of a shear viscosity is only defined for fluids. In order to get an
effective description of a strongly coupled field theory as a fluid, we need to take the
hydrodynamic limit. In this limit we consider only the behaviour of the system
over long distances and long times and neglect the microscopic details. Fluids
are described in terms of temperature, pressure and density — thermodynamic
variables. But thermodynamics applies to systems in equilibrium. The trick is to
coarse-grain the space over which the field theory is defined. We break it up into
patches and assume each patch is an equilibrium system with specific values of
the thermodynamic variables. At long distance and time scales, this is realistic.
We then zoom out of the picture even further and promote the thermodynamic
variables to functions of space and time, effectively obtaining a “temperature field”
T (x).

This procedure is usually carried out in field theories, but in gauge/gravity du-
ality it is done on the gravity side [35]. The result is startling. The coarse-graining
procedure is done over tube-like patches of the AdS bulk spacetime stretching from
the black hole horizon to the boundary. Each of these tubes corresponds to a patch
with a different temperature, so the black hole horizon radius varies from tube to
tube. To find the precise variation of the background geometry, we need to use
Einstein’s equations. And when imposing Einstein’s equations on the metric coef-
ficients dual to velocity vector fields in the boundary theory, we see the emergence
of the relativistic Navier–Stokes equations. Gravity, we find, contains knowledge
of fluid dynamics!

From toy models of QCD and the quark-gluon plasma to Navier–Stokes equa-
tions hidden within Einstein’s, we have found that exploring what is hidden by a
black hole’s entropy can reveal a lot of physics. This thesis continues the process
with the author’s own original work. We study superconductors using holography
and find one with a peculiar twist. We show how this is related to an old question
about the QCD ground state. We then move on and discuss a different model,



6 Chapter 1. Introduction

based on a condensed matter system, and show how gauge/gravity duality can
help us understand time-dependent processes there.

An important concept to understand during these discussions is that of a
holographic superconductor [36, 37]. We turn to these next.

Holographic superconductors and magnetic fields

Superconductivity is a result of symmetry breaking. The presence of a U(1) elec-
tromagnetic gauge symmetry, dynamically broken down to a discrete subgroup, is
all a field theory needs in order to exhibit the spectacular phenomenology of a su-
perconductor. This fact has been known for a long time but is clearly explained by
Weinberg for high energy theorists in [38]. From electromagnetic gauge invariance
we get that the system must have an infinite DC (zero frequency) conductivity
and must expel magnetic fields. The latter feature is known as the Meissner–
Ochsenfeld effect [39]. Due to this effect, magnetic fields decay exponentially at
the boundary of a superconducting sample, and if the field gets too strong the
sample is forced back into its normal phase. Magnetic fields and superconductors,
according to this conventional wisdom, should not coexist.

Given the minimality of the circumstances that create a superconductor, it
should perhaps not be surprising that we can find holographic dualities where the
field theory has a superconducting phase. We just need a spontaneously broken
U(1) group. What this means on the gravity side, however, is somewhat surprising
and it caused people to think more deeply about black hole no-hair conjectures.
The gravity dual to a condensed operator that breaks the U(1) at low temperature,
it turns out, is a hairy black hole solution. The operator is dual to a field that
is part of a stable, static black hole configuration. No-hair conjectures claim that
such a configuration is impossible for certain backgrounds.

Unsurprisingly, holographic superconductors have the same properties as the
usual field theory superconductors. They can be set up so that above a critical
temperature, the system is in the normal, unbroken phase. Below the critical
temperature the U(1) symmetry is dynamically broken. On the gravity side this
means that a stable non-vanishing field configuration is possible below a certain
black hole horizon radius but not above. And by examining small electric field
fluctuations about the gravity background it is possible to determine the optical
(frequency dependent) conductivity in the field theory and find its DC divergence.
Turning on a magnetic field has the effect of making the stable field configuration
energetically unfavourable, destroying the superconducting phase.

It is natural to think that holographic superconductors can help lead to an
understanding of high-temperature superconductivity. They are models of super-
conductivity in strongly coupled theories. They abandon the quasiparticle de-
scription completely; there is no need to describe electrons that come together in
Cooper pairs. There is only an operator condensing below a critical temperature.
These are powerful ideas, and while holography has not yet solved the problem of
high-temperature superconductivity, as always it improves our understanding of
strongly coupled matter.

As an example of what we can learn, consider the phase diagram in figure 1.1,
taken from [40]. The authors of this figure were studying a gauge/gravity model
where the field theory at finite temperature has an SU(2) isospin symmetry and a
U(1) baryon symmetry. On the gravity side this corresponds to adding D7-branes
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Figure 1.1: The phase diagram in chemical potential µ and temperature T of a
gauge/gravity model with SU(2) × U(1) flavour symmetry, studied in [40]. For
small temperature and chemical potential, the mesons are stable. At large tem-
peratures they “melt” into the background soup of particles. At large chemical
potential the system is superconducting. This model served as inspiration for one
of the main results of this thesis.

aligned in a particular way so that the setup is stable. Studying fluctuations of
the branes yields results about the bound states formed by the two flavours of
particles in the isospin group spectrum. Using the language of QCD, these bound
states are naturally seen as mesons. By studying the mesons at different values of
the chemical potential, implemented in the boundary conditions of a gauge field on
the gravity side, and temperature, coming from the black hole, the phase diagram
in figure 1.1 is found. It shows that the mesons are stable at low temperature and
chemical potential, that they “melt” into the background particle soup at high
temperatures, and that they undergo a superconducting phase transition at high
chemical potential. So we learn that there are superconducting phases, in what
can be seen as a toy model for QCD, that are reached by making the chemical
potential large enough. Are there other ways to obtain a superconducting phase?

If we are willing to entertain the idea that magnetic fields are not always incom-
patible with superconductors, we find that the startling answer is yes! This is one
of the main results of this thesis, being an outcome of the study of a simple gauge/-
gravity model — slightly simpler than the one in [40]. The gravity side has an
SU(2) Yang–Mills [41] field and a black hole. In the field theory this corresponds
to an SU(2) global symmetry and a finite temperature. Treating a U(1) subgroup
as an electromagnetic component, we switch on an external magnetic field. When
that magnetic field is strong, above some critical value Bc, the U(1) electromag-
netic subgroup is spontaneously broken by other components of the Yang–Mills
field. The system undergoes a superconducting phase transition because of the
magnetic field, rather than the magnetic field suppressing superconductivity.

We can complete the picture, studying the interplay between chemical potential
and magnetic field. The resulting phase diagram, figure 1.2, shows how the border
between the superconducting and normal phases changes as µ and B are varied.
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Our model is a little different from the one in [40], but the two theories agree
on the presence of a superconducting phase at large chemical potential. And the
magnetic field helps to bring down the value of chemical potential required to
enter the superconducting phase.

B
π2T 2

µ
πT

Figure 1.2: The B-µ phase diagram. The white region is the normal, uncondensed
phase. The shaded region is the condensed phase. This result is calculated in
chapter 6.

This exotic effect has an equally exotic ground state. By focusing on a region
of the phase diagram where the condensing fields are still small, that is, near the
phase transition line, we can find the precise form of the energy-minimising state.
The surprise is that the ground state in inhomogeneous, in stark contrast with
the homogeneous ground state found when only µ is non-zero. The magnetic field
induces a condensate that not only breaks a U(1) symmetry, but also translation
symmetry. The magnitude of the condensed field, and thus the magnitude of
the operator condensate in the field theory, is shown in figure 1.3. It forms a
triangular lattice of Abrikosov vortices. The lattice spacing is determined by the
strength of the magnetic field B; the stronger B, the more tightly the vortices
are bound. When B vanishes the lattice spacing diverges, leaving a homogeneous
ground state.

Abrikosov vortices were first discovered in certain superconductors called type-
II superconductors [42,43]. They are due to the interaction between the supercon-
ducting condensate and an external magnetic field, but the mechanism is different
from the one in this thesis. In type-II superconductors a small magnetic field pokes
holes in the scalar condensate, each hole corresponding to a quantum of magnetic
flux. Magnetic flux is conserved, so dialling up the strength of the field leads to
more flux tubes forced through the condensate. Eventually the entire supercon-
ducting sample vanishes, replaced by a homogeneous magnetic field. But right
before the critical point at which that happens, the flux tubes get packed tightly
throughout the sample. They exert a repulsive force on each other, so they do
not overlap. The configuration that minimises the ground state is the triangular
lattice, the same configuration found in the very different model in this thesis.

Abrikosov vortices show up in many more superconducting systems. The type-
II example above is what happens in BCS superconductors [44, 45]. The vortex
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Figure 1.3: The magnitude of the condensed operator in the field theory of the
simple gauge/gravity model with SU(2) symmetry that we study in this thesis. At
the centre of the dark vortices, the condensate vanishes. Lighter values correspond
to larger values of the condensate. The magnitude is normalised to the maximum
value it takes. The dimensions are displayed in units of the critical magnetic field
strength at zero chemical potential. This result is calculated in chapter 5.

lattice is described well by Ginzburg–Landau theory [46] and its relativistic gen-
eralisation, the Higgs model. But they also appear in phenomenological models
of QCD. The simplest such toy model is SU(2) Yang–Mills theory in (3 + 1)-
dimensions, where a gluon field condenses to form a triangular lattice in the pres-
ence of a magnetic field [47–51]. A similar effect is seen in the Nambu–Jona-Lasinio
model and the DSGS model [52–57]. Electroweak theory also contains vortex lat-
tice solutions. [58–61]

But just because vortex lattices appear in different models does not mean that
their rediscovery in gauge/gravity duality is not interesting. Their appearance
in our model as a result of a strong magnetic field shows that the effect is more
general. It survives the large N limit that gauge/gravity duality requires. It has
a gravity dual given by a novel black hole solution. And finally, the model is so
simple that it seems likely we should see the effect in a broad class of theories, a
hint at the universality of vortex lattice solutions.

The Kondo effect

Take a Landau–Fermi liquid of electrons and add a single magnetic spin impurity.
At high energies, this is not interesting: the system behaves as an ensemble of free
electrons decoupled from a magnetic impurity. Lower the temperature, however,
and the impurity starts to couple to the electrons. The coupling increases as the
temperature is lowered until, at the Kondo temperature, it diverges. The impurity
forms a strongly coupled state bound to the electrons. In this state, the impurity’s
spin is completely screened. This strongly coupled phenomenon is known as the
Kondo effect [62].

The Kondo effect is an example of a condensed matter system to which we can
apply gauge/gravity duality [63]. We can in particular use it to learn more about
the strongly coupled regime. But it can also help us learn about the duality itself,
because the Kondo model has been studied in detail for decades and a solution
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based on numerical renormalisation group methods exists [64]. It is rare that
we find a strongly coupled field theory with known results that we can use as
independent confirmation of a gauge/gravity model.

In this thesis we are particularly interested in studying time-dependent phe-
nomena in a holographic Kondo model, and the associated technical challenges to
be overcome. The Kondo coupling depends on the temperature and has a definite
value once the system is in thermal equilibrium. But there are experiments in
systems analogous to the Kondo setup where it is possible to effectively alter the
value of the coupling for a short time, then watch it relax back to its equilib-
rium value. In this thesis we study this problem. We quench the effective Kondo
coupling in the holographic Kondo model presented in [63]. On the gravity side,
this involves implementing time-dependent boundary conditions in a scalar field.
The resulting partial differential equations must be solved using techniques from
numerical relativity.

The work is ongoing, but there are some preliminary results, calculated in a
limit where the scalar field does not backreact onto the background geometry.

Achievements of this thesis

The original results in this thesis focus on holographic superconductors. Both the
vortex lattice solutions and the strongly-coupled phase of the holographic Kondo
model come about through superconducting phase transitions. The focus is specif-
ically on inhomogeneous ground states. This is interesting from the perspective
of both condensed matter physics and black hole physics. The inhomogeneous
ground states correspond to novel black hole solutions.

In particular, for our study of inhomogeneous ground states we focus on a
simple holographic model where the gravity theory is on an asymptotically AdS5

background. We consider two different models, described in section 5.1. In the
first, the AdS5 contains a black hole horizon at a fixed radial distance. This models
a finite-temperature field theory. In the second the geometry is cut off at a fixed
radial distance, yielding a confining field theory. In both models we also include
an SU(2) Yang–Mills field and switch on a magnetic component B. We find:

1. A black hole instability from the magnetic field
Increasing the strength of the magnetic field induces an instability in the
background solution. We find this instability through the use of a quasinor-
mal mode analysis in section 5.3.2. The instability indicates that the black
hole background with a single magnetic component of the Yang–Mills field
is not stable when B is above a critical value Bc. Additional components of
the Yang–Mills field need to be switched on as well.

This result was published in [1, 3].

2. The new ground state forms a triangular vortex lattice
Finding the new ground state requires a perturbative expansion. This is
only accurate when the condensate is small, which is the case at values
near Bc. We perform the perturbative analysis, solving the equations up
to third order. At first order we can tell that the ground state should be
a lattice. To find the precise form of the lattice, whether it is for example
square, triangular, rhombic or parallelogrammic, we need to calculate the
free energy of each configuration. This we can only do by going to third
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order in the expansion. The results are presented in sections 5.8 and 5.9.
The triangular lattice has the smallest total energy.

This result was published in [2, 4].

3. The µ-B phase diagram
In section 6.1 we augment the model by including a finite chemical potential
µ as well. We repeat the stability analysis to find the µ-B phase diagram.
We again calculate the free energy to third order with µ nonzero and find
that the triangular lattice is the minimal energy solution near the phase
transition line.

In chapter 7 we shift focus to a different model, the holographic Kondo model
developed in [63]. It is set in AdS3, dual to a (1 + 1)-dimensional field theory.
The spatial dimension in the field theory is bisected by an impurity, modelled on
the gravity side as a brane stretching from the AdS3 boundary into its bulk. The
brane spans an AdS2 subspace of the AdS3. It contains a scalar field which lets
us determine the Kondo coupling.

4. Time-dependent problems in the holographic Kondo model
In section 7.4 we give the Kondo coupling a time-dependent quench while
working in the probe limit. We numerically calculate the response of the
system. This involves solving a numerical relativity problem with a bulge in
a scalar field propagating into the black hole. We present the results of the
computation done in two different ways.

Structure of this thesis

The outline of this thesis is as follows.

Chapter 2 We give motivation for the AdS/CFT correspondence and then dis-
cuss its original “derivation” by Maldacena in terms of a D-brane construc-
tion. We then show how the correspondence can be generalised.

Chapter 3 We discuss magnetic vortex solutions, first in the context of Ginzburg–
Landau superconductors and their relativistic generalisation, then in the
context of phenomenological models of QCD. We discuss how they can be
created by external magnetic fields.

Chapter 4 We explain what a holographic superconductor is and present the
construction of some simple holographic superconductor models. We also
explain how the more realistic models have inhomogeneous ground states,
and give examples.

Chapter 5 We present original work by the author showing that a strong SU(2)
magnetic field can lead to a superconducting phase transition in a simple
holographic superconductor model. We go on to find the ground state in
the superconducting phase and show that it forms a triangular Abrikosov
lattice.

Chapter 6 Continuing the original work of the preceding chapter, we present two
possible extensions to the model. The first includes a finite chemical poten-
tial. We find that the minimum energy state is also a triangular Abrikosov
lattice.
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Chapter 7 After a brief introduction to the Kondo problem and the various
approaches to solving it, we discuss a holographic Kondo model from the
literature. We then do an original study of time-dependent phenomena in
this model.

Chapter 8 We give concluding remarks and an outlook on future work.

Conventions

In this thesis we set c = ~ = kB = 1. We always use the “mostly plus” metric
convention, where only the time component of the metric has a minus sign. The
word vev is an acronym for vacuum expectation value.



Chapter 2

Gauge/gravity duality

In 1997 Juan Maldacena published a landmark paper [24] conjecturing a duality
between N = 4 Super Yang–Mills theory in 4 dimensions and a type IIB super-
string theory on AdS5 × S5. Through this AdS/CFT correspondence it suddenly
became clear how a specific quantum field theory and general relativity on a given
background could be viewed as two sides of the same coin. This new under-
standing not only gives insight into quantum gravity, but is also the first concrete
example of the holographic principle, first proposed by Gerard ’t Hooft [7] and
Leonard Susskind [8]. Most importantly for this thesis however is that the corre-
spondence gives new insight into strongly coupled field theories. In its simplest
form, it provides a model relating a strongly coupled gauge theory to a weakly
coupled gravity theory. By solving Einstein’s equations it is possible to calculate
properties — such as operator dimensions and expectation values — in a strongly
coupled regime where perturbation theory is not applicable. And by generalising
the original correspondence to field theories other than N = 4 Super Yang–Mills,
applications to strongly-coupled condensed matter systems or toy models of QCD
become possible.

In a 2010 lecture series Joseph Polchinski presented an intuitive motivation for
the AdS/CFT duality [65]. Polchinski starts by asking a question: Is it possible to
form a spin-2 graviton as a bound state of two spin-1 gauge bosons? The answer
turns out to be no. It comes in the form of a no-go theorem due to Weinberg
and Witten [66]. The no-go theorem applies to an arbitrary field theory with a
Lorentz-covariant energy-momentum tensor Tµν and a massless spin-2 particle in
the spectrum. Consider the matrix element

〈massless spin 2, k|Tµν |massless spin 2, k′〉. (2.1)

Weinberg and Witten show that this matrix element cannot exist — it has con-
tradictory properties. The intuitive reasoning behind this is that it represents a
local observable, and it is known that in general relativity it is impossible to define
local observables. This is because there is no invariant local way of specifying a
position in general relativity.

As we learned from the classic example of the Coleman–Mandula theorem,
however, a no-go theorem is only as strong as its assumptions. And by relaxing one
of the assumptions, there is still a way to make this idea work. The trick is in the
holographic principle — we introduce an extra dimension. A black hole’s entropy
is proportional to its area in Planck units, not its volume [5, 6]. This is a hint
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that the number degrees of freedom in a given volume in a gravitational theory
is proportional to the surface area of the volume, and that a quantum gravity
theory should be formulated in terms of degrees of freedom on a lower-dimensional
surface. So the hidden assumption in the Weinberg–Witten theorem is that the
spin-2 bound state exists in the same number of dimensions as its constituents. If
we follow the hint from the black hole entropy formula, we can postulate that this
graviton actually lives in a spacetime with one higher dimension.

The hidden extra dimension actually appears in some places in QCD phe-
nomenology. One example comes from the BFKL analysis of the pomeron. In
this analysis a gluon pair is described in terms of its centre of mass coordinates
and the separation z. It turns out that the gluon pair wave function satisfies a
5-dimensional wave equation — one dimension higher than its constituent quarks
— and interactions are approximately local in z. So the separation z behaves like
an extra spacetime dimension.

It is natural to ask what this 5-dimensional space could be. To answer this,
let us consider a field theory that is easy to deal with — a conformal field theory.
In such a theory, all distance scales look the same. In particular, if we rescale the
gluon pair, the centre of mass coordinates and separation scale z should scale in
the same way. The most general space that is invariant under both this rescaling
symmetry and 4-dimensional Minkowski symmetry is described by the metric

ds2 = L2dz
2 + ηµνdx

µdxν

z2
. (2.2)

This is the metric for the Poincaré patch of 5-dimensional Anti-de Sitter space
(AdS5).

The intuition we have so far is the following. We are trying to see if a spin-
2 graviton can emerge as a bound state of gauge bosons. In order to sidestep
the Weinberg–Witten theorem, we claim that the resulting graviton lives in a
space with one more dimension by appealing to the holographic principle. For
a 4-dimensional CFT, the higher dimensional space is AdS5. The CFT can be
thought of as living on the boundary of the AdS5. The CFT is also dual to the
gravity theory, by which we mean that it should exactly describe the gravity theory
in the AdS5 bulk and vice versa.

In order for this picture to make sense, we need to enforce two limits. The first
is that the field theory coupling is strong. Only then can we be sure that the two
gauge bosons are bound tightly enough that they really behave like a graviton.
The second is that we want to use classical Einstein gravity, so the AdS radius L
must be large compared to the Planck length.

Using the holographic principle, it is simple to show that large L means that
the dual field theory has a large number of degrees of freedom per site. We do the
calculation for a d-dimensional field theory dual to a (d + 1)-dimensional gravity
theory. Firstly, the holographic principle says that

Area of boundary

4GN
≡ Nd, (2.3)

where Nd is the number of degrees of freedom in the field theory and GN is the
(d + 1)-dimensional Newton constant. Both sides of this equation are infinite,
so we need to regulate by putting the boundary on a lattice. Suppose that the
boundary is a d-dimensional box of side length R and that each site has side length
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ε. Then if we have a gauge theory with gauge group SU(N), so there are roughly
N2 gluons, the total degrees of freedom in the theory goes like

Nd ∼
(
R

ε

)d−1

N2. (2.4)

On the gravity side, we need to calculate the area of the boundary, A. It is

A =

∫
Rd−1,z→0

dd−1x
√
−g =

∫
Rd−1,z→0

dd−1x
Ld−1

zd−1
, (2.5)

where g is the determinant of the AdSd+1 metric. The area diverges in two ways.
The first is from the integration over Rd−1, and the second is from integrating too
close to the boundary. We again put the boundary on a box of side length R, and
we integrate only until z = ε. This ε is roughly the same as the one in the field
theory picture, because it also imposes a minimum separation length z. We then
have

A =

∫ R

0
dd−1x

Ld−1

εd−1
=

(
RL

ε

)d−1

. (2.6)

Using this result with equations (2.3) and (2.4) then gives

N2 ∝ Ld−1

GN
, (2.7)

which was what we claimed. A large AdS radius means that there are a large
number of fields in the dual field theory. In fact, we will see in the more precise
motivation for the AdS/CFT correspondence that the field theory is a large N
field theory when the gravity theory is classical. Appendix A contains a brief
introduction to the large N limit.

In this intuitive motivation for the AdS/CFT correspondence we have not
mentioned anything about string theory. However, Maldacena’s original 1997
publication used a D-brane construction to motivate the correspondence. In the
next section we look at that motivation in some detail and in the process make the
formulation more precise. We describe a detailed matching of parameters on both
sides of the duality, as well as introducing the AdS/CFT dictionary for calculating
operator expectation values from fields in the gravity theory. In section 2.3 we then
show that the correspondence can be generalised, beyond AdS space and conformal
field theory, to what should more appropriately be called gauge/gravity duality.
This sets us up for the discussion of holographic superconductors in chapter 4,
after a detour to discuss vortex line solutions in field theory without holography
in chapter 3.

2.1 The original AdS/CFT correspondence

The motivation in the previous section gives an intuitive overview of why we
can expect the AdS/CFT correspondence is true. In this section we make that
intuition more precise by presenting Maldacena’s original argument [24]. There
are two excellent early reviews of this topic, a set of lecture notes by D’Hoker and
Freedman [67] and an article known as the “MAGOO” review after its authors
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Aharony, Gubser, Maldacena, Ooguri and Oz [68]. We follow a combination of
both of these reviews in this section.

The picture to start with is that of a stack ofN D3-branes in (9+1)-dimensional
asymptotically Minkowski space in type IIB string theory. The branes are parallel
and directly on top of each other in a (3 + 1)-dimensional subspace of the full
spacetime. By taking the low energy limit of this setup in two different ways, we
will find two different theories, which we then identify. One of these theories is
N = 4 super Yang–Mills (SYM) theory in (3 + 1)-dimensions, and the other is
type IIB string theory compactified on AdS5 × S5.

There are two kinds of perturbative excitations of string theory in this asymp-
totically Minkowski spacetime, open strings and closed strings. Looking at the
setup from the perspective of these different types of strings will give the two
different dual theories. The closed strings are excitations of empty space and give
rise to spin-2 modes, that is, they give rise to gravity. At low energies, below
the string scale 1/ls, only the gravity multiplet of type IIB supergravity remains.
Open strings on the other hand have their endpoints on the D3-branes and de-
scribe excitations of the D-branes. Since these strings live on the worldvolume
of the branes, they give rise to the SYM gauge theory. Below we make this de-
scription more detailed, and end up with the precise formulation of the AdS/CFT
correspondence.

2.1.1 The open string picture

The open string picture focuses on the D-brane worldvolume theory, although
closed strings are also considered. In general an open string stretched between
two D-branes has a minimum length and thus a minimum mass. Since we are
considering a stack of coincident D-branes, however, massless open string excita-
tions exist. If we consider energies below the string scale, then only these massless
modes are excited. An effective Lagrangian for both open and closed massless
string states can be written down. It takes the form

S = Sbulk + Sbrane + Sint. (2.8)

The term Sbulk describes the dynamics of the closed strings. It is the action of
(9 + 1)-dimensional type IIB supergravity plus some higher curvature corrections.
The term Sbrane is defined on the D3-brane worldvolume, since it only includes
open string modes. It is the action of N = 4 super Yang–Mills theory with gauge
group SU(N). It also contains higher order corrections such as α′2tr

(
F 2
)
, but

these vanish in the low energy (α′ → 0) limit. The term Sint represents interactions
between the brane modes and the bulk modes.

To see why the action term Sbrane should give N = 4 super Yang–Mills, con-
sider the open strings on the stack of branes. If the stack has only one brane, so
that N = 1, a massless open string excitation brings a U(1) gauge symmetry on
what is effectively (3+1)-dimensional flat space. The brane is a 1/2 BPS object, so
it breaks half of the supersymmetries to yield N = 4. We thus have a U(1) gauge
theory with N = 4 Poincaré supersymmetry. In the low energy approximation,
this theory is free.

Now consider N > 1 D3-branes in the stack. Open string states attached to
these branes now have labels corresponding to the branes on which they end. These
labels are known as Chan–Paton factors. Since the branes are all indistinguishable
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(they are on top of each other), the Chan–Paton brane labels can be reassigned
between the branes according to a U(N) symmetry group. This explains why the
effective theory on the brane has a U(N) = SU(N) × U(1) gauge group. The
U(1) factor can be ignored, however; it corresponds to the overall position of the
branes so it may be neglected when considering only the worldvolume theory.

The bulk term Sbulk describes a free supergravity theory. The part of the
action containing the graviton can be expanded schematically as

Sbulk ∼
1

2κ2

∫
d10x
√
−gR ∼

∫
(∂h)2 + gs(α

′)2(∂h)2h+ . . . , (2.9)

where we have written the action as g = η+ κh and used that κ ∼ gs(α′)2. In the
low energy limit, κ → 0 and so the interaction terms drop out. The same thing
happens for the parts of the action containing the other supergravity fields.

In the same way, the interaction term Sint also vanishes in the low energy
limit. In the open string picture we thus have a worldvolume SYM gauge theory
decoupled from a free (9 + 1)-dimensional supergravity theory in the low energy
limit.

2.1.2 The closed string picture

The low energy limit from the closed string point of view involves studying the
supergravity setup in more detail. The metric for the stack of N D3-branes in
(9 + 1)-dimensional type IIB supergravity can be written as

ds2 =

(
1 +

L4

y4

)− 1
2

ηµνdx
µdxν +

(
1 +

L4

y4

) 1
2 (
dy2 + y2dΩ2

5

)
. (2.10)

The xµ are the brane worldvolume coordinates. y and Ω5 are the transverse
coordinate, with y providing a measure of radial distance from the branes. L is
the radius of the D3-branes, and it can be shown to satisfy the relation

L4 = 4πgsN(α′)2. (2.11)

In addition the solution contains a self-dual 5-form field strength

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1, (2.12)

where H(y) = 1 + L4

y4 .

We see from the metric component gtt that the energy Ey of an object measured

at y is related to the energy E measured at infinity by E =
(

1 + L4

y4

)− 1
4
Ey, which

is the observed redshift. In other words, the same object would look to an observer
at infinity as if it had lower and lower energy as it gets moved closer to the branes.
This means that there are two kinds of low energy excitations that an observer
at infinity sees. The first is from excitations that are brought arbitrarily close to
the branes at y = 0. The second is from massless excitations with wavelengths
much larger than the brane radius L and are thus blind to the branes. These two
types of excitations decouple from each other in the low energy limit, because the
long wavelength excitations do not see the brane and the near horizon excitations
cannot escape the brane’s gravitational potential.
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Asymptotically
Minkowski
space

N D3
branes

AdS5 × S5

Figure 2.1: A visual representation of the near-brane limit. Asymptotically the
spacetime is Minkowski. Near the branes it tends to AdS5 × S5. In the open
string picture, the region on the branes becomes N = 4 super Yang–Mills theory
with gauge group SU(N). This led Maldacena to propose that there is a duality
between the two theories.

To examine the system near the branes, we define the coordinate u = L2

y and
take the limit where u� L. The metric becomes

ds2 =
L2

u2
ηµνdx

µdxν +
L2

u2
du2 + L2dΩ2

5. (2.13)

This is the metric for the space AdS5×S5, with AdS radius L and radius coordinate
u. The boundary of the AdS space is at u = 0. This setup is illustrated in
figure 2.1.

2.1.3 Maldacena’s conjecture

The previous sections presented two pictures of the low energy limit. From the
open string point of view there is a free supergravity theory in (9 + 1)-dimensions
and an N = 4 super Yang–Mills gauge theory. From the closed string point of
view there is the same free supergravity theory (9 + 1)-dimensions and a type
IIB supergravity theory on AdS5 × S5. The Maldacena conjecture is that these
two theories are dual, meaning that they are exactly equivalent descriptions of the
same physical system.

The full AdS/CFT conjecture is slightly more general than the motivation
described above. It comes in three different forms.

The strongest form

The strongest form of the AdS/CFT correspondence states that there is an equiv-
alence between N = 4 super Yang–Mills theory in (3+1)-dimensions with gauge
group SU(N) and full type IIB superstring theory on AdS5×S5. There is a match-
ing of parameters, with the Yang–Mills coupling constant related to the string cou-
pling constant by g2

YM = 4πgs, and the AdS radius L given by L4 = 4πgsN(α′)2.
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The field-operator map, to be explained below, holds. In addition, the flux of the
F5 form over the S5 is constrained by

∫
S5 F5 = N . This form of the correspon-

dence holds for all values of the parameters L, gs, α
′ and N . For this reason it is

difficult to test. In particular, when gs and α′ are not small, we are in the regime
of full non-perturbative quantised type IIB superstring theory.

The strong form

The strong form of the conjecture is obtained by taking the ’t Hooft limit of
the theory in the strongest form. The ’t Hooft limit [69] is defined by sending
N → ∞ while keeping λ = g2

YMN fixed. It has the effect of suppressing all non-
planar Feynman diagrams in a perturbative expansion of the gauge theory. Since
gs = λ

N � 1, the superstring theory becomes classical, and α′ remains finite.

The weak form

The weak form of the conjecture is obtained by taking the additional large λ-
limit. Taking these two limits together is known as the Maldacena limit. The
correspondence turns into one between an N = 4 super Yang–Mills theory at
strong coupling (λ� 1) with gauge group SU(N) for N large in (3+1)-dimensions
and a classical type IIB supergravity in the bulk. The large λ limit is equivalent to
the small α′ limit through the relation L4 = λ(α′)2, which turns the string theory
into a supergravity theory.

Soon after Maldacena proposed the conjecture, Edward Witten expanded upon it
in [25]. He introduced a precise matching between fields in the bulk AdS5 × S5

and operators in the dual field theory. The idea is that the bulk fields tend to a
specific value on the boundary of the AdS space. Conceptually one can think of
the boundary as where the field theory “lives”1. The boundary values of the fields
become sources for operators in the dual field theory. More precisely, for a bulk
theory with fields φ,

Zbulk [φ(u, ~x)|u→0 = φ0(~x)] ≡
〈
e
∫
d4xφ0(~x)O(~x)

〉
, (2.14)

where the Z is the partition function of the bulk theory, and the correlator is
calculated in the dual field theory. O is an operator in the field theory. This is
known as the field-operator map. It makes it possible to do actual calculations
using the correspondence, and will be very useful in this thesis.

The AdS/CFT correspondence is a holographic duality. This means that all the
degrees of freedom of a theory with gravity in (4+1)-dimensions can be described
by a theory in (3 + 1)-dimensions — one dimension lower. The most famous
evidence that a theory of quantum gravity is expected to have this behaviour comes
from the Bekenstein bound, which states that the maximum entropy of a volume
of space is Smax = Area/4GN [70]. The intuitive argument for this is simple.
Suppose that this bound was violated and there is some volume of space with
entropy higher than Smax. Then throw in more matter. The entropy should not
decrease. When enough matter is thrown in, the volume should turn into a black
hole, which has entropy Smax. Provided that the second law of thermodynamics is

1Be careful though — in the near-brane limit (2.13), the brane worldvolume is actually at
u =∞, deep in the bulk!
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not violated, this is a contradiction. Therefore the Bekenstein bound holds. And
notice what this implies — the number of degrees of freedom of a system scales
like the area of the boundary of the region, not as its volume. Standard quantum
field theories do not behave in this way. The holographic principle is a way of
understanding this result.

The weak form of the correspondence is the one that has been studied the most
and for which the most evidence has accumulated. It is a strong/weak coupling
duality, making it very useful. We can find results in a strongly coupled field
theory by doing calculations in a weakly coupled gravity theory. It can also be
generalised to what should more appropriately be called gauge/gravity duality.
Extensions to the correspondence include adding a black hole to the bulk, which
induces a finite temperature in the dual field theory. It is also possible to add a
chemical potential. This is done by specifying a boundary value for a bulk gauge
field. Both of these ingredients are important for this thesis’ main results.

2.1.4 Matching symmetries

A first simple test of the correspondence is that the symmetries on both sides of the
duality should be identical. This is indeed the case, as we now show, following [67].
N = 4 super Yang–Mills theory in (3+1)-dimensions has the continuous global

symmetry group SU(2, 2|4).2 This group is made up of the following ingredients.

Conformal symmetry is generated by translations Pµ, Lorentz transformations
Mµν , dilations D and special conformal transformations Kµ. They form the
group SO(2, 4) ∼ SU(2, 2).

Poincaré supersymmetries are generated by the supercharges Qaα and their
conjugates Q̄α̇a, where a = 1 . . . 4.

R-symmetry is the symmetry under which the supercharges transform among
each other. It forms the group SU(4)R ∼ SO(6).

Conformal supersymmetries are needed to close the algebra. The Poincaré
supersymmetries and the special conformal transformations Kµ do not com-
mute. Their commutators give the conformal supersymmetry supercharges
Sαa and their conjugates S̄aα̇.

These global symmetries also exist on the gravity side. The maximal bosonic
subgroup of SU(2, 2|4) is SU(2, 2) × SU(4)R ∼ SO(2, 4) × SO(6). But SO(2, 4)
is the isometry group of AdS5 and SO(6) is the isometry group of S5, so the
bosonic subgroups match easily. The matching of the supersymmetries works as
follows. Half of the 32 Poincaré supersymmetry generators of type IIB superstring
theory are broken by the stack of N D3-branes. In the AdS limit, however, the 16
remaining supersymmetries are supplemented by another 16 conformal symmetries
that are not preserved in the full D3-brane background. The result is an SU(2, 2|4)
global symmetry group on the gravity side.

Note that only global symmetries match. Gauge symmetries are redundancies
of the description, so they are not relevant to the physics of the two theories. This

2 N = 4 super Yang–Mills theory also has an S-duality symmetry. In the ’t Hooft limit this is
no longer consistent, however. Since we are only interested in the weak form of the correspondence
in this thesis, we will neglect this symmetry.
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fact has practical importance. In later sections when we consider holographic
superconductors, we look at spontaneous gauge symmetry breaking on the gravity
side. On the field theory side however, because only the global part of the gauge
symmetries is mapped, this corresponds to the breaking of a global symmetry.

2.2 Practicalities

How do we use the holographic dictionary (2.14) to do practical calculations?
The main difficulty with the dictionary is that it has the partition function of a
gravity theory on AdS5 × S5 on one side of the equation. But this is actually
easy to address. If we focus on the weak form of the correspondence, the gravity
theory is classical so the partition function is described well by the saddle point
approximation,

Zbulk ≈ e−Son−shell , (2.15)

where Son−shell is the on-shell gravity action. This means that we should be able
to calculate field theory correlation functions by taking functional derivatives of
e−Son−shell .

2.2.1 Example with a gauge field

Let us see how this works in practice with an example. In chapter 5 we consider a
model with an SU(2) gauge field in the bulk gravity theory. The classical gravity
background is AdS5; we have integrated out the S5. The model exhibits sponta-
neous symmetry breaking, which results in some of the gauge field components
becoming nonzero spontaneously, without a source. We can calculate the resulting
vev in the field theory by making use of the dictionary relation

e−WCFT[A(0)] = 〈e
∫
∂AdS A

(0)
µ Jµ〉 = e−Son−shell . (2.16)

The minus sign on the right-hand side is because we have Wick-rotated to Eu-
clidean space. WCFT is the field theory effective action. Here A(0) is the value
of the gauge field A at the AdS boundary. It acts as a source in the boundary
field theory. In the setup of chapter 5, the only source we want in the field theory
comes from the component A3

y = xB, producing the magnetic field. For the other
gauge field components there should be no explicit source.

The vev is found through the variation

〈Jµ〉 =
δWCFT

δA(0)
µ

∣∣∣∣∣
A(0)
µ =0

=
δSon−shell

δA(0)
µ

∣∣∣∣∣
A(0)
µ =0

. (2.17)

The second equality makes use of the gauge/gravity dictionary.
The trick to solving equation (2.17) for the vev is to recall the Hamilton–

Jacobi equation from classical mechanics. This equation involves variations of the
boundary value of a field. We reproduce the relevant part of that derivation here.
Consider a general action

S =

∫
ddx

∫ uf

ui

du L(Aµ, ∂µAν). (2.18)
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The x-directions are unbounded, while ui ≤ u ≤ uf . We assume that this action
is on-shell, and consider what happens when we vary the value of Aµ at ui by
a small amount, while keeping Aµ fixed at the other boundary, u = uf . Since
the action is on-shell, Aµ satisfies the equations of motion, so in general Aµ(u)
changes for all ui ≤ u < uf as we change its value at ui. The variation is thus

Aµ(u)→ Aµ(u) + δAµ(u), (2.19)

δAµ(ui) = δAi,µ, δAµ(uf ) = 0.

Under this variation, the on-shell action changes as

δSon−shell =

∫
ddx

∫ uf

ui

du

(
∂L
∂Aν

δAν +
∂L

∂ (∂µAν)
δ (∂µAν)

)
=

∫
ddx

∫ uf

ui

du

(
∂µ

∂L
∂ (∂µAν)

δAν +
∂L

∂ (∂µAν)
∂µδAν

)
=

∫
ddx

∫ uf

ui

du ∂µ

(
∂L

∂ (∂µAν)
δAν

)
=

∫
ddx

∂L
∂ (∂uAν)

δAν
∣∣∣∣uf
ui

= −
∫
ddx

∂L
∂ (∂uAν)

(ui)δAν(ui). (2.20)

We used the Euler–Lagrange equations (because the action is on-shell) to get to
the second line. This completes our formula for the vev:

〈Jµ〉 =
δWCFT

δA(0)
µ

∣∣∣∣∣
A(0)
µ =0

=
δSon−shell

δA(0)
µ

∣∣∣∣∣
A(0)
µ =0

= −
∫
d4x

∂L
∂ (∂uAµ)

∣∣∣∣
u=0

. (2.21)

It is interesting to note that the above derivation holds even though the on-shell
Yang–Mills action can be written as

Son−shell =− 1

4ĝ2

∫
dd+1x

√
−gF aµνF aµν

=− 1

2ĝ2

∫
∂AdS

ddx
√
−γnµAaνF aµν

+
1

4ĝ2

∫
AdS

dd+1x
√
−gεabcAaµAbνF cµν , (2.22)

where we integrated by parts and substituted in the equations of motion. nµ is
the normal vector to the boundary at u = ε, pointing outwards, and thus given
by n = − 1√

guu
∂
∂u . The second term on the right-hand side, the bulk term, is not

present in non-interacting theories. This bulk term should seemingly influence the
calculation of the condensate when varying with respect to the boundary value.
It turns out that it makes no contribution, which is due to the derivation (2.20).

Expanding the gauge field near the AdS boundary, equations (2.16) and (2.21)
tell us that we should get

Aaµ(u, x)
∣∣
u→0

= saµ(x) + vaµ(x)u2 + . . . , (2.23)

where saµ(x) is the field theory source and vaµ(x) is the field theory vacuum expec-
tation value.
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One subtlety that we glossed over in equation (2.17) is that the on-shell action
is not necessarily finite. This is due to the infinite volume of AdS space. In order
to get finite quantities it is therefore necessary to regulate the action. This is a
complex subject, and a good set of lecture notes on the topic is [71]. Here we
simply point out that for the SU(2) Yang–Mills action, the necessary counterterm
to add is

SCT = − L

4ĝ2

∫
ddx
√
−γ log(ε)F aµνF

aµν . (2.24)

where γ is the (determinant of the) induced metric on the surface at z = ε. In the
limit ε→ 0, the total action including this counterterm is finite.

2.2.2 More general operators

N = 4 super Yang–Mills is conformal with superconformal symmetry group
SU(2, 2|4), so its operators can be characterised by the way they transform un-
der this group. In particular, an operator O in a conformal theory is labelled by
its scaling dimension ∆. Through the AdS/CFT correspondence, an operator’s
scaling dimension is related to the mass of a dual field φ.

To see this, consider a scalar field φ in the gravity theory dual to the operator
O. The scalar field satisfies the wave equation(

�g −m2
)
φ = 0, (2.25)

where �g is the Laplacian associated to the metric g defined in (2.13). The
asymptotic solution for φ in these coordinates is

φ(r) ∼ u4−∆A+ u∆B + . . . , (2.26)

where the quantity we have labelled as ∆ is given by ∆ = 2 +
√

4 + L2m2. For
m2 > 0, the first term is non-normalisable while the second term is normalisable.
This situation is slightly more complicated than the one for the gauge field, because
now the boundary value of φ (as u→ 0) does not exist. Instead we need to define
the field theory source by

φ0 = lim
u→0

u∆−4φ(u) = A. (2.27)

We can then use the dictionary (2.14) to find that B = 〈O〉. Since φ is a scalar, it
has scaling dimension zero. This implies that A has scaling dimension 4−∆ and
〈O〉 has scaling dimension ∆.

This analysis can be repeated for fields of arbitrary spin. Because the gravity
equations of motion are different for fields of different spin, the boundary asymp-
totics also changes. The relations between masses on the AdS5 gravity side and
scaling dimensions on the (3 + 1)-dimensional field theory side are [67]

scalars m2L2 = ∆(∆− 4)
spin 1/2, 3/2 |m|L = ∆− 2

p-form m2L2 = (∆− p) (∆ + p− 4)
spin 2 m2L2 = ∆(∆− 4).
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0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D7 × × × × × × × ×

Table 2.1: The alignment of the D-branes in the D3/D7 setup in (9+1)-dimensional
flat space. The integers in the first row represent the coordinate directions x0–x9.
The time coordinate is x0. This setup is stable.

These relations only hold in AdS5 and for when the field is normalised in such a
way that it satisfies the Klein–Gordon equation. For scalar fields this is automatic,
but for fields with other spins this does not necessarily hold. The easiest way to see
when a field will satisfy the Klein–Gordon equation is to look at its kinetic term
in the action. For a scalar, there is one metric factor in gµν∂µφ∂νφ. For a vector
there are two: gµνgστ∂µAσ∂νAτ . So in (2.23) we got that ∆ = 0, 2 for the gauge
field. To get the scalar’s normalisation, we would have to absorb a factor of L/u
into each of the two A’s. This extra factor has the effect of changing ∆→ ∆− 1
in the boundary expansion of A, in agreement with the formula for 1-forms in the
table above.

2.3 Extensions

Ever since Maldacena discovered the original AdS/CFT correspondence with a
gravity theory on AdS5×S5, a number of other holographically dual theories have
been found. The simplest extension is to start from a stack of extremal black
D3-branes, which amounts to generalising the AdS5 part of the metric to AdS5–
Schwarzschild, adding a black hole. The black hole adds a temperature to the SYM
theory. This was already done by the time Witten elucidated the correspondence
in [25]. With a finite temperature it is possible to study thermodynamics in the
field theory. A natural next step was to add a chemical potential, which is easily
implemented in the boundary conditions of the gravity gauge field.

In 2002 Karch and Katz proposed another extension [72] that added flavour to
the field theory. The idea is to add a stack of Nf probe D7-branes to the original
stack of N D3-branes. The probe limit is a valid approximation when Nf � N .
The setup is stable when the branes are aligned as in table 2.1. The near-D3-brane
limit is then taken as before to give a gravity theory on AdS5×S5 with D7-branes
spanning the AdS5 and an S3 subspace of the S5. The D7-branes break the S5

rotational symmetry.

On the field theory side, the D3-D7 setup gives an N = 2 supersymmetry
SU(N) gauge theory that has Nf hypermultiplets in the fundamental represen-
tation of the gauge group as well as the usual N = 4 super Yang–Mills degrees
of freedom. The N = 4 fields arise from the massless open string modes with
endpoints only on the D3-branes (3-3 strings) as before. The N = 2 fundamental
hypermultiplets come from open strings stretched between the D3 and D7 branes
(3-7 strings). The 7-7 strings decouple in the Maldacena limit and the U(Nf )
gauge group becomes a global flavour group. Using this setup, it becomes possible
to model fields with the same symmetries as quarks and mesons, see [27].

In 2004 Tadakatsu Sakai and Shigeki Sugimoto proposed a holographic setup
that can be thought of as describing (3+1)-dimensional largeN QCD with massless
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0 1 2 3 (4) 5 6 7 8 9

D4 × × × × ×
D8-D8 × × × × × × × × ×

Table 2.2: The alignment of the D-branes in the Sakai–Sugimoto setup in (9 + 1)-
dimensions. The integers in the first row represent the coordinate directions x0–x9.
The time coordinate is x0. The x4 direction is compactified on a circle.

flavours [73,74]. It is constructed in a type IIA superstring theory with Nf probe
D8- and D8-branes in a background containing a stack of N D4-branes with the
x4 direction compactified on a circle. There are anti-periodic boundary conditions
for the fermions on the circle, which cause the fermions arising from the 4-4 strings
to gain masses of order the inverse circle radius, breaking supersymmetry. The
brane alignment is indicated in table 2.2.

The field theory interpretation of the Sakai–Sugimoto duality comes from the
worldvolume theory on the D4-branes. In the UV it is a (4+1)-dimensional theory
with quarks living on defects (the D8- and D8-branes). In the IR the theory is
(3 + 1)-dimensional, though. The most important feature of this model however
is that it exhibits chiral symmetry breaking. The D8- and D8-branes provide a
U(Nf )× U(Nf ) symmetry group. This is spontaneously broken when the branes
join into a single curved D8-brane, leaving only a single U(Nf ) subgroup. The
symmetry breaking results in a Nambu–Goldstone boson that can be identified
with the pion.

Because it is more similar to QCD than other holographic models, the Sakai–
Sugimoto model also has many applications. Relevant to this thesis is the work
by [75], in which a similar instability at large magnetic field to the one presented
in chapter 5 was found.

As a final example of a holographic duality arising from a string theory brane
setup, we briefly discuss the ABJM model, first presented by Ofer Aharony, Oren
Bergman, Daniel Louis Jafferis and Juan Maldacena in 2008 [76]. The field theory
side of this duality is a (2 + 1)-dimensional N = 6 superconformal Chern–Simons
matter theory with gauge group U(N) × U(N) and Chern–Simons levels k and
−k. The gravity side, valid in the large N limit, is M-theory on AdS4 × S7/Zk.
It is also possible to take the ’t Hooft limit where N becomes large but the ratio
N/k remains fixed. Then the gravity side becomes type a IIA string theory on
AdS4 × CP3. The brane construction motivating this theory is a stack of M2-
branes placed at the singularity of the conifold C4/Zk. The conifold singularity
is necessary to create the S7/Zk compact space. Otherwise, for M2-branes in
asymptotically flat space, the near horizon solution is simply AdS4 × S7.

The ABJM model sparked a mini-revolution in the field as researchers rushed
to uncover the implications of the new duality. With more than 10 years of
hindsight since the original AdS/CFT correspondence, it was clear which were the
right questions to ask and understanding of the ABJM duality progressed rapidly.
In [77], the author of this thesis and collaborators had a hand in uncovering some
of the properties of dual giant gravitons in the gravity model. These are D2-
branes wrapping an S2 ⊂ AdS4. We give the giants an angular momentum in the
compact CP3, and analyse the stability of the setup. As 1

2 -BPS objects, the giants
are protected against strong coupling corrections and so form an excellent set of
states for probing the non-perturbative sector of type IIA string theory. They are
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dual to Schur polynomials of scalar fields on the field theory side.

The extensions we have mentioned so far are all examples of what are known
as top-down models. These are models that are motivated from explicit brane
constructions in string theory. They are seen as more rigorous because they pro-
vide a precise matching of parameters between the two dual theories and the full
Lagrangians on both the field theory and the supergravity theory are known. An-
other approach is to study bottom-up models. In these we aim to model a strongly
coupled field theory holographically by describing the properties it should have.
We then produce an ad hoc construction of a gravity dual by implementing the
specific properties we would like the field theory to have. For example, suppose
we wish to study a finite-temperature field theory in (2 + 1)-dimensions with vec-
tor fields transforming under a global SU(2) symmetry. We would then choose a
gravity dual on an asymptotically AdS4–Schwarzschild background with an action
that includes an F 2 term for an SU(2) Yang–Mills gauge field.

Bottom-up models have the advantage that we can choose exactly what ingredi-
ents we want the field theory to have and construct the gravity action accordingly.
The disadvantage though is that we do not know the precise Lagrangian of the
field theory, or indeed whether the field theory dual is well-defined. The motiva-
tion for studying such models is that we can search for universal properties that
hold for broad classes of field theories. A famous example is the Kovtun, Son and
Starinets result [33] for the universality of the shear viscosity over entropy density
ratio η/s = ~

4πkB
. This was shown to hold in a broad class of strongly interacting

field theories that have a particular type of gravity dual. The dual theory must
be isotropic3 Einstein gravity in an asymptotically Anti-de Sitter black hole back-
ground. The authors of [33] conjecture that this result for η/s is a lower bound
for a wide class of systems.4 So even though a bottom-up model was studied, the
result was profound and conjectured to be applicable to many different systems.
For most of the rest of this thesis we work mainly with bottom-up models.

In the remainder of this section we review the description of field theories at
finite temperature and chemical potential, and then show how these properties
can be added to a holographic system. This prepares the discussion for the study
of holographic superconductors in chapter 4.

2.3.1 Finite temperature in field theory and chemical potentials

There is a relationship between the generating functional of quantum field the-
ory and the partition function of statistical mechanics that makes it possible to
use quantum field theory techniques to calculate thermodynamic properties of a
system. In this section we review this relationship briefly.

The first concept we need to introduce is the statistical density matrix, which
can be represented by an operator that we call ρ̂. It is used to describe a system
with an uncertain preparation history — all that is known is the probability with
which the system is in a certain pure quantum state. We illustrate its definition
with an example. Suppose a system is in a state |ψ〉. We know that the expected
value of an operator O is given by 〈O〉 = 〈ψ|O|ψ〉. Now suppose the system is

3 Note that in Einstein gravity with spontaneously broken rotational symmetry, the ratio η/s
is non-universal; see [78].

4Interestingly, it is also possible to find a fermionic analogue of this universal bound. This
was done in [79].
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prepared in such a way that it could be in state |ψ1〉 with probability p or state
|ψ2〉 with probability (1 − p). The two states are orthonormal. In general it is
not possible to find a single state |ξ〉 such that the expectation value of O is given
by 〈ξ|O|ξ〉. The way to find the expectation value is by using the density matrix
operator, and then

〈O〉 =
trOρ̂
trρ̂

. (2.28)

The trace is defined as the sum over basis states, that is,

trÂ =
∑
i

〈ψi|Â|ψi〉, (2.29)

where {|ψi〉} forms a complete orthonormal basis for the Hilbert space. In this
example, we see that the density matrix operator must be given by

ρ̂ = p|ψ1〉〈ψ1|+ (1− p)|ψ2〉〈ψ2|. (2.30)

To check,

〈O〉 =
trOρ̂
trρ̂

(2.31)

=
p〈ψ1|O|ψ1〉〈ψ1|ψ1〉+ (1− p)〈ψ2|O|ψ2〉〈ψ2|ψ2〉
p〈ψ1|ψ1〉〈ψ1|ψ1〉+ (1− p)〈ψ2|ψ2〉〈ψ2|ψ2〉

(2.32)

= p〈ψ1|O|ψ1〉+ (1− p)〈ψ2|O|ψ2〉, (2.33)

which is what we want. From this it is clear that a general definition for the
density matrix operator in a Hilbert space with basis {|ψi〉} is

ρ̂ =
∑
i

pi|ψi〉〈ψi|, (2.34)

and thus an element of the density matrix is given by (ρ)ij = 〈ψi|ρ̂|ψj〉. Some
restrictions on this definition are that [80]

1. trρ = 1, which says that the total probability
∑

i pi = 1,

2. ρ = ρ†, the hermiticity condition,

3. pi ≥ 0, so all the eigenvalues (probabilities) are non-negative.

The statistical density matrix operator is the fundamental object in equilibrium
statistical mechanics. For the grand canonical ensemble, it is defined as

ρ̂ = exp
[
−β
(
H − µiN̂i

)]
, (2.35)

where H is the Hamiltonian of the system, µi are the chemical potentials and
N̂i are the number operators associated with those chemical potentials. If {|ψn〉}
form a complete set of orthonormal energy eigenstates, then the grand canonical
partition function is given by

Z = trρ̂ =
∑
n

〈ψn| exp
[
−β
(
H − µiN̂i

)]
|ψn〉 (2.36)

=
∑
n

e−β(En−µiNi)〈ψn|ψn〉 (2.37)

=
∑
n

e−β(En−µiNi). (2.38)
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Now consider a scalar field theory. Recall that, using the path integral formal-
ism, we have that [81]

〈ψa|e−iHtf |ψa〉 =

∫
[dπ]

∫ ψ(~x,t)=ψa(~x)

ψ(~x,0)=ψa(~x)
[dψ]ei

∫ tf
0 dt

∫
ddx[π(x)∂tψ(x)−H(π,ψ)] (2.39)

for some state |ψa〉, where ψ(x) is a field with conjugate momentum π(x) = ∂tψ(x)
and H =

∫ tf
0

∫
ddxH. The integration over ψ(x) must begin and end with ψ(~x)

while the integration over π(x) has no restrictions. The partition function (with
no chemical potentials) is given by

Z = tr e−βH =
∑
a

∫
dψa〈ψa|e−βH |ψa〉. (2.40)

If we identify β = tf and switch to an imaginary time variable, τ = it, then we
get

Z =

∫
[dπ]

∫
PBC

[dψ] exp

{∫ β

0
dτ

∫
ddx [iπ(x)∂τψ(x)−H(π(x), ψ(x))]

}
, (2.41)

where “PBC” stands for “periodic boundary conditions” and means that the in-
tegration over ψ(x) is constrained such that ψ(~x, 0) = ψ(~x, β), but because of the
trace the initial condition is not fixed and must take all values.

Let us now see how to add a chemical potential. The thermodynamic dual
of the chemical potential is the charge, and in order to have charge we need to
augment this theory to a complex scalar field theory. We can consider a simple
theory with a Hamiltonian given by

H = π†π +∇ψ† · ∇ψ + V (ψ†, ψ), (2.42)

where the canonical momentum π = ∂tψ
† and a conserved current density

jµ = i(ψ†∂µψ − ψ∂µψ†). (2.43)

The conserved charge is the time component of the current,

N =

∫
ddxN =

∫
ddx i(ψ†π† − ψπ). (2.44)

We can use this and the definition (2.36) to write the grand canonical partition
function as

Z =

∫
[dπ†][dπ]

∫
PBC

[dψ†][dψ]e
∫ β
0 dτ

∫
ddx[iπ†∂τψ†+iπ∂τψ−H(π,ψ)+µN (π,ψ)], (2.45)

where we replaced H → H−µN , with µ the chemical potential. If we now expand
the integrand in the exponential, it can be written as

−
[
π† − i(∂τ − µ)ψ

] [
π − i(∂τ + µ)ψ†

]
− (∂τ + µ)ψ† (∂τ − µ)ψ −∇ψ† · ∇ψ − V (ψ†, ψ). (2.46)

Only the first term depends on the conjugate momenta. If we think of the contri-
butions−i(∂τ−µ)ψ and−i(∂τ+µ)ψ† as nothing more than shifts in the integration
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variables, we can integrate out the first term to get some constant factor. We will
ignore this constant factor because normalising the partition function will make
it go away. Restoring the Minkowski time variable, we get

Z =

∫
[dψ†][dψ]ei

∫ tf
0 dt

∫
ddx[(∂t+iµ)ψ†(∂t−iµ)ψ−∇ψ†·∇ψ−V (ψ†,ψ)]. (2.47)

We recognise the integrand of the exponent to be an effective Lagrange density.
The µ has the effect of changing the time derivative to ∂t − iµ. This is exactly
the covariant derivative one gets when switching on a gauge field with time com-
ponent At = µ! This trick comes in handy for introducing a chemical potential
to a holographic theory. Note however that the chemical potential only requires
switching on the time component, and that there is no kinetic term for A in the
Lagrangian. It is thus not the same as having a theory with a dynamical field.

The above explanation was general, but we can now apply it to the AdS/CFT
correspondence. By considering a bulk theory that contains a gauge field A, we
can switch on a chemical potential in the dual field theory by setting At = µ. As
we saw in (2.23), according to the gauge/gravity dictionary the expansion of A in
(4 + 1)-dimensions is

At ∼ µ+ 〈J t〉u2 + . . . , (2.48)

since Aµ is a source for a vector operator Jµ. The time component of a vector
current is a density. We also know J t must be a density because it couples to
the chemical potential. Thus, in switching on a gauge field and calculating its
asymptotic behaviour, we can create a dual gauge theory with both a chemical
potential and a finite density that we can calculate from the gravitational side.

2.3.2 Black holes and thermal field theories

Having reviewed how to describe a field theory with a finite temperature, we show
how in the dual gravity theory finite temperature is described by a black hole. We
focus on the simple example where the gravity dual is AdS–Schwarzschild, but the
basic idea generalises to other black hole backgrounds.

If we repeat Maldacena’s argument using a stack of extremal black D3-branes
instead, we can extend the AdS metric (2.13) to the metric for AdS5–Schwarzschild
space crossed with S5. Let us take the bottom-up philosophy and neglect the com-
pact S5 space because we are not interested in the field theory SU(4)R symmetry.
This is a consistent truncation to states with vanishing S5 angular momentum on
the gravity side. Let us also generalise the setup to (d + 1)-dimensions, which is
dual to a d-dimensional field theory. The metric we are interested in is

ds2 =
L2

u2

(
−f(u)dt2 +

du2

f(u)
+ δijdx

idxj
)
, (2.49)

where f(u) = 1− ud

udH
is a blackening factor and i = 1, . . . , d− 1.

We now do a Wick rotation by defining τ = it and also define the new coordi-
nate ρ2 = u− uH . If we take the near-horizon limit, then ρ2/uH � 1, and we can
expand f(u) = f(uH) + ρ2f ′(uH) = ρ2f ′(uH). The metric becomes

ds2 =
L2

u2

4

f ′(uH)

[
ρ2

(
f ′(uH)

2

)2

dτ2 + dρ2 +
f ′(uH)

4
δijdx

idxj

]
. (2.50)
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If we define φ = f ′(uH)
2 , the first two terms in the brackets are nothing but the

metric on a two-dimensional flat surface. If 0 ≤ φ ≤ φmax < 2π, this surface is a
cone, if 0 ≤ φ < φmax > 2π, the surface is a saddle, and if 0 ≤ φ ≤ 2π then the
surface is a 2-plane. The space we started out with is regular everywhere on the
horizon, so in these new coordinates it must be as well. Demanding regularity, we
must choose the 2-plane because the other flat surfaces have a singularity at ρ = 0.
This means we must choose that 0 ≤ τ < 4π

f ′(uH) , which translates to making the
identification τ ∼ τ + πuH .

As we learned in the previous section, making a periodic identification in an
imaginary time variable τ ∼ τ + β is the way to produce the partition function of
a field theory at a finite temperature T = 1/β. We thus see that introducing a
black hole in the AdS space is equivalent to making the boundary theory a finite
temperature field theory. The temperature is T = d

4πuH
. This is the Hawking

temperature of the black hole.
Now that we have a temperature, we can do more thermodynamics. We stay

in the Euclidean signature. The gravity setup is described by the action

SE = − 1

2κ2

∫
dd+1x

√
g (R− 2Λ) +

1

2κ2

∫
u→0

ddx
√
γ

(
−2K +

2(d− 1)

L

)
.

(2.51)

The action is split into a bulk part integrating over the full space with metric
g and a boundary part with induced metric γ. κ2 is the gravitational coupling
in (d + 1)-dimensions. The bulk integral contains the Einstein–Hilbert term and

the cosmological constant, which is Λ = −d(d−1)
2L2 in Anti-de Sitter space. There

are also two boundary terms. The first is the Gibbons–Hawking–York boundary
term [82, 83]. This is necessary so that the variational principle is well-defined
on manifolds with a boundary. K is the trace of the extrinsic curvature, K =
Pµν∇µnν , where Pµν = gµν − nµnν is a projector onto the boundary and nµ is
the outward-pointing normal to the boundary surface. The final term is a local
counterterm. It is necessary for holographic renormalisation, so that the on-shell
action is finite. It serves the same purpose as the counterterm (2.24).

Plugging the Euclidean version of the metric (2.49) into the action, we find

SE = −(4π)dLd−1

2κ2dd
Vd−1T

d−1, (2.52)

where Vd−1 is the spatial volume of the field theory. One thing to be careful about
when doing this calculation is that the bulk integral goes from u = 0 to u = uH ,
that is, the integral does not reach beyond the horizon. Now we can use the
gauge/gravity dictionary to calculate the CFT partition function,

ZCFT = e−SE . (2.53)

From the partition function we can calculate the free energy

F = −T lnZ = −(4π)dLd−1

2κ2dd
Vd−1T

d, (2.54)

and the entropy

S = −∂F
∂T

=
(4π)dLd−1

2κ2dd−1
Vd−1T

d−1. (2.55)
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This calculation made use of the gauge/gravity dictionary. But it agrees with
the Bekenstein–Hawking entropy formula, as we can check. The area of the black
hole event horizon is simply given by the volume integral

A =

∫
u=uh,t=fixed

dd−1x
√
−g =

(
L

uH

)d−1

Vd−1. (2.56)

Using the entropy formula and T = d
4πuH

we get

S =
A

4GN
=

2πA

κ2
=

(4π)dLd−1

2κ2dd−1
Vd−1T

d−1. (2.57)

As promised, the gauge/gravity dictionary reproduces the results known from the
Bekenstein–Hawking entropy formula!

2.4 Summary

Maldacena’s conjecture gave us the foundations on which to build gauge/gravity
duality. In its original, weak form it claims that there is a duality between N = 4
super Yang–Mills theory with gauge group SU(N) at large N and classical type
IIB supergravity theory on AdS5×S5. But we can generalise the duality. We can
add a finite temperature, chemical potential or flavour. We can also build bottom-
up models where we choose the number of dimensions or the matter content. The
result is a recipe for constructing strongly coupled field theories in which it is
possible to calculate results by solving Einstein’s equations.

In the following chapters we use this powerful recipe to learn about strongly
coupled systems. The original results in chapter 5 concern Abrikosov vortices in
holographic superconductors, while the results in chapter 7 focus on a particular
holographic Kondo model. In preparation for these chapters, we first discuss
Abrikosov vortices in chapter 3 and holographic superconductors in chapter 4.
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Chapter 3

Magnetic vortex lines

Vortex lines were the first of the topological objects discovered in gauge theories
with spontaneously broken symmetry. They are found in the Ginzburg–Landau
model of superconductivity in type-II superconductors, in the work by Ambjørn,
Nielsen and Olesen resulting from a gluon instability [47–51] or a W -boson insta-
bility [58–61], and in various phenomenological models of QCD from a ρ-meson
instability [52–57]. The original work presented in this thesis adds to the list: they
also show up in holographic superconductors where the instability is triggered by
an SU(2) magnetic field.

In this chapter, however, we review what is known about vortex lines. We give
an overview of how vortex lines arise in Ginzburg–Landau theory in section 3.1.
This overview serves the additional purpose of introducing conventional supercon-
ductors, providing background for the study of holographic superconductors in
chapter 4. In section 3.2 we make the Ginzburg–Landau model relativistic and
encounter the Nielsen–Olesen vortex. We explore the structure of the vortex; at
its core, the superconducting condensate vanishes and at its border the magnetic
field decays exponentially. Section 3.3 defines what a type-II superconductor is
and explains that it can exhibit a full lattice of vortices. Finally, in section 3.4 we
pick two QCD toy models and study the instabilities that lead to similar vortex
lattices there. These instabilities are especially relevant to the original work in
this thesis because they are also induced by a magnetic field.

3.1 Ginzburg–Landau effective field theory model

The first microscopic theory of superconductors was developed in 1957. It provides
a good description of low-temperature superconductors and is known as BCS
theory, after John Bardeen, Leon Cooper and John Schrieffer [44,45]. The theory
describes the condensation of Cooper pairs of electrons at low enough temperatures
into a boson-like state. The presence of this state acts as an order parameter for
superconductivity. The theory was so successful that it won its discoverers the
Nobel prize in physics in 1972. The full microscopic theory of superconductivity
is however too complex for our needs, so instead we focus on an effective theory
that hides the unnecessary details. This theory is Ginzburg–Landau theory.

Ginzburg–Landau theory was developed by Vitaly Ginzburg and Lev Lan-
dau [46] in 1950, before the microscopic theory was understood. In a showcase
of startling physical intuition, Ginzburg and Landau gave the central role of the

33
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theory to a “pseudowavefunction” φ(~x). φ(~x) acts as the order parameter for the
onset of superconductivity. When Gor’kov showed in 1959 [84] that the theory is
a limiting case of BCS theory, it became clear that φ(~x) is the wavefunction of the
Cooper-paired electrons, with ns(~x) = |φ(~x)|2 representing their local density.

Ginzburg–Landau theory is a generalisation of the earlier London theory of
superconductivity in that it can deal with non-linear responses to ns and ns can
vary in space. It also reproduces the London equations. At temperatures near Tc,
where the superconducting phase transition occurs, the theory best approximates
BCS theory since here the spatial variations of φ(~x) and the gauge field A(~x)
are small. As such it is useful for describing the macroscopic behaviour of a
superconducting system where free energy rather than the detailed spectrum of
excitations is important. Moreover, it is simpler than BCS theory for dealing with
spatially inhomogeneous ground states.

The main postulate of Ginzburg–Landau theory is that if φ(~x) varies slowly in
space and is small, its free energy density can be written as an expansion

fs = fn + α̃|φ|2 +
β

2
|φ|4 +

1

2m
|(∇− ieA)φ|2 + . . . , (3.1)

where fn and fs are the free energy density in the normal and superconducting
phases, respectively. m and e are the effective mass and charge of φ. Given that
β is positive, the idea is that α̃ < 0 below Tc and α̃ > 0 above Tc, and so the
mechanism behind superconductivity is nothing but the Higgs mechanism. For
this reason it makes sense to define α̃ = α(T − Tc), where α is a positive constant
with dimensions of mass. The linear dependence of α̃ on T makes sense when
considering the series expansion of α̃(T ) near Tc.

Notice that the model written above is non-relativistic. One way of generalising
to the relativistic case indeed gives the Higgs model. From a modern field theory
perspective, Ginzburg–Landau theory is easier to understand via the Higgs model,
from which fs can be derived. We thus consider the Abelian Higgs Lagrangian,

L = −(∂µ − ieAµ)φ(∂µ + ieAµ)φ∗ −m2|φ|2 − λ|φ|4 − 1

4
FµνF

µν . (3.2)

We can easily obtain fs from this Lagrangian. Assume that the system is static,
so that ∂tφ = 0. We also go to Coulomb gauge, ∇ ·A = 0, which in the absence
of source charges means that At = 0. Lagrangian (3.2) then becomes

−L =
1

2
(∇×A)2 + |(∇− ieA)φ|2 +m2|φ|2 + λ|φ|4 + . . . . (3.3)

Setting m2 = α(T − Tc) and λ = β/2 gives the expression for fs above.
The equations of motion for this theory are

(∂µ − ieAµ)2φ = m2φ+ 2λ|φ|2φ, (3.4)

∂νFµν = ejµ ≡ −ie(φ∗∂µφ− φ∂µφ∗)− 2e2Aµ|φ|2. (3.5)

Spontaneous symmetry breaking occurs when m2 < 0. Then the minimum of the
potential is at

ns ≡ |φ0|2 = −m
2

2λ
=

α

2λ
(Tc − T ). (3.6)
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Clearly φ is an order parameter for the onset of superconductivity: when T > Tc,
φ = 0 and when T < Tc, φ 6= 0. Note also the mean field behaviour, φ ∼
(1− T/Tc)

1
2 , where the critical exponent is 1

2 .

Now consider the current (3.5) associated to the U(1) symmetry of (3.2). When
T < Tc and the field φ varies only slightly over the distance of the system, the
second term dominates and

j =
em2

λ
A = −2e|φ0|2A ≡ −k2A. (3.7)

This is one of the London equations, first written down in 1935 by the London
brothers [85], relating the superconducting current and the surrounding electro-
magnetic field.1 Since E = −∂tA = 0 and Ohm’s law tells us that E = Rj, we have
found that R = 0. This is one of the defining characteristics of a superconductor.

One effect of great importance to this thesis was discovered experimentally in
1933. The Meissner–Ochsenfeld effect, named after the experimenters [39], is that
superconductors expel magnetic fields. The Higgs model explains it as follows.
We start from Ampère’s law,

∇×B = j, (3.8)

and take the curl of both sides. Using ∇ · B = 0 and applying the London
equation (3.7) gives

∇2B = k2B. (3.9)

According to this equation, the background magnetic field outside a supercon-
ducting sample decays exponentially inside the sample. As we show in the next
section, the characteristic decay length is 1/k = 1/

√
2e|φ0|. What we learn is that

any weak enough external magnetic field is effectively expelled from a supercon-
ducting sample. Moreover, it turns out that when the magnetic field is strong
enough the superconducting state is destroyed completely.

3.2 The Nielsen–Olesen vortex

We saw in the previous section that, in certain circumstances to be detailed later,
a magnetic field completely destroys a superconducting phase. This is the situ-
ation in what are known as type-I superconductors. In type-II superconductors,
however, it is possible to have a relatively weak magnetic field coexist with the
superconducting condensate. The magnetic field can poke a hole in the conden-
sate, with this “hole” filled instead with a magnetic field vortex. This section is
devoted to describing such a vortex.

The Abrikosov vortex of type-II superconductors was first discovered by Alexei
Abrikosov in 1956 [42]. These vortices are present in Ginzburg–Landau theory.
The vortices in the relativistic model of the previous section are known as Nielsen–
Olesen vortices. In this section we carefully follow [86], the original work by Nielsen
and Olesen that first constructed these vortices in the Higgs model in 1973.

1 Note that this equation is not gauge invariant. This comes from the approximation that the
derivative terms in the definition (3.5) of jµ is small. Remember that when using the London
equations we have to be in the Coulomb gauge, ∇ ·A = 0.
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When [86] was published, the dual resonance model of string-like hadronic
matter based on [87] was still popular. This stringy model was later abandoned
as a model of hadrons with the rise of QCD, but ultimately provided the seeds for
the growth of string theory. Nevertheless, it did have some experimental success;
it explained the Regge trajectory in meson scattering experiments.

Even with a string model, Nielsen and Olesen pointed out it was however still
reasonable to expect that relativistic physics is described by field theory. They
therefore tried to cook up a field theory with string-like structures. It turns out to
be relatively easy to find vortex line solutions in the Higgs model with equations
of motion identical to those of the Nambu dual string in a certain limit. This
limit is that the string’s radius of curvature is much larger than the width of the
string.2

To find vortex solutions, we start by writing the scalar from (3.2) as

φ = |φ|eiχ. (3.10)

From equation (3.5) we then get

Aµ = − jµ
2e|φ|2

+
1

e
∂µχ. (3.11)

We consider a magnetic field B = Fxy in the z-direction. Assume there is no
current. The magnetic flux going through a unit square in the xy-plane is given
by

Φ =

∫
Fµνdσ

µν =

∮
Aµdx

µ =
1

e

∮
∂µχdx

µ, (3.12)

where dσµν is a two-dimensional surface element. Now we learn something inter-
esting. Since φ is single-valued, χ changes by 2πn as we go around a closed loop,
for integer n. Thus,

Φ = nΦ0, Φ0 =
2π

e
. (3.13)

The flux lines are quantised! This leads to a new interpretation of B: it is a
measure of the number of flux lines passing through a unit square in the xy-plane.

Each flux line corresponds to a string-like vortex. Let us find a vortex solution
from the equations of motion. We look for a cylindrically symmetric solution with
z the axis of rotation. Choosing the gauge At = 0, this means we are looking for
solutions of the type Aθ ≡ A(r), and Ar = Az = 0. r is the radial coordinate and
θ is the angular coordinate. From (3.12) we see that the flux is thus

Φ(r) = 2πrA(r), (3.14)

so that the magnetic field is

B =
1

2πr

d

dr
Φ(r) =

1

r

d

dr
(rA(r)) . (3.15)

2While Nielsen and Olesen tried to obtain string-like behaviour from field theory, the author
of this thesis hopes to obtain field theories from string theory. Interestingly, in both approaches
we end up at the Nielsen–Olesen vortex line.
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With this ansatz the equations of motion (3.4) and (3.5) become

−1

r

d

dr

(
r
d

dr
|φ|
)

+

[(
1

r
+ eA

)2

+m2 + 2λ|φ|2
]
|φ| = 0, (3.16)

− d

dr

(
1

r

d

dr
(rA)

)
+ 2|φ|2

(
e2A+

e

r

)
= 0. (3.17)

An analytic solution to these equations is not available, but we can make some
approximations. The vortex is localised near the origin, r = 0. For large r, we
expect A to decay and φ to be constant. Solving (3.16) under these assumptions,
it is easy to show that

|φ| ≈ φ0 =

√
−m2

2λ
. (3.18)

This corresponds to the minimum of the Higgs potential, (3.6), as expected. More-
over, at large r we get that the magnetic field decays as

B ∼

√
πφ0√
2er

e−
√

2eφ0r. (3.19)

The picture that is emerging so far agrees with what we discussed in the previous
section. At low energies, in the superconducting phase, we find a constant con-
densate φ0. When we introduce a magnetic field, it penetrates the condensate and
decays with the characteristic length λP given by

1

λP
=
√

2eφ0. (3.20)

This is known as the penetration depth of the magnetic field. We mentioned that
a magnetic field destroys the superconducting phase, so we should find that the
condensate also decays inside the magnetic vortex. To investigate this, we look at
fluctuations ρ of φ about the vacuum solution φ0. We write

|φ| = φ0 + ρ(x) (3.21)

and look at the potential V (φ) = m2φ2 + λφ4. Its quadratic order term in ρ is
−2m2ρ2. This implies that ρ has a Yukawa-type solution of the form

ρ(x) ∼ e−
√
−m2r. (3.22)

From this we can define the new characteristic length, known as the coherence
length, by

ξ =
1√
−m2

. (3.23)

ξ is the approximate distance over which φ recovers its vacuum value.

Figure 3.1 summarises what we have learned about the vortex solution. In the
next section we describe how this relates to type-II superconductors.
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r

φ0

|φ|

ξ
λP

Figure 3.1: The approximate radial profile of the vortex solution. |φ| goes to a
constant at large r and vanishes within the vortex. B decays with penetration
depth λP and |φ| decays back to the vacuum solution with coherence length ξ.

3.3 A vortex lattice in type-II superconductors

We now have enough information to define the difference between type-I and type-
II superconductors. We need to define the Ginzburg–Landau parameter, which is
simply the ratio κ = λP /ξ between the penetration depth and the coherence
length. In the (non-relativistic) Ginzburg–Landau theory, it was shown that the
behaviour of the superconductor changes depending on κ. For 0 < κ < 1/

√
2

the system is known as a type-I superconductor. For κ > 1/
√

2 it is a type-II
superconductor.

Type-I superconductors do not have magnetic vortex solutions in the standard
Ginzburg–Landau treatment. At low temperature, in a superconducting sample
where φ = φ0, turning on an external magnetic field with large enough magnitude
B would return the system to the normal phase. That is, there exists some
critical value Bc of the external magnetic field above which the superconductivity
is destroyed and 〈φ2〉 = 0. The magnetic flux lines are expelled from the sample
until they are strong enough to destroy the whole condensate.

Type-II superconductors are different. There are two critical values of the
magnetic field. Increase an external magnetic field beyond the first, Bc1 , and the
magnetic flux lines start to pierce the condensate, forming vortex line solutions
throughout the sample. Each of these vortices is described by the solution depicted
in figure 3.1. As we described earlier, each vortex has a unit of magnetic flux, so
increasing B increases the number of vortices. Eventually, at the second critical
value Bc2 , the magnetic field has poked so many holes in the condensate that it
vanishes completely. Above Bc2 we are again in the normal phase.

The difference between the behaviours of the two superconductors can be
traced to the surface energy of the condensate. Type-I superconductors have
a positive surface energy. The qualitative argument for this is that there is an en-
ergy cost ∼ ξB2

c for the change of φ from its superconducting value to zero, with a
gain of only ∼ λPB2

c from reducing the magnetic field energy. Since the boundary
between the superconducting state and the normal state costs energy, type-I su-
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perconductors try to minimise the boundary length. For type-II superconductors,
on the other hand, the argument is reversed. They have a negative surface energy
so the boundary length is maximised for every unit of magnetic flux. This means
that every flux tube is surrounded by superconducting condensate.

It is particularly interesting and relevant for this thesis to look at the ground
state of a type-II superconductor at a magnetic field B beneath but very close
to Bc2 . In this parameter regime, the maximum number of magnetic flux tubes
have penetrated the condensate without destroying it. The flux tubes are parallel
and arranged regularly. It turns out that the arrangement that minimises the
total free energy of the setup is a triangular lattice. Next we present some of the
calculations that substantiate these claims. We follow the presentation in [51]. In
chapter 5 we show that in a simple holographic model, we find the same triangular
lattice ground state.

To derive the vortex lattice solution we start with equations (3.4) and (3.5). As
before, we choose an external magnetic field B = Fxy pointing in the z-direction.
The gauge choice is that Aµ = Bxδyµ. B is smaller than, but very close to, Bc2.
Then we are close to the transition point to the normal phase, so the quantity |φ|2
is very small. This means we can work with an expansion in small |φ| so that

Fxy = B +O(|φ|2), Fµν = O(|φ|2) otherwise, (3.24)

and we can linearise the equations of motion to give

(∂µ − ieBxδyµ)2 φ = m2φ, (3.25)

∂νFµν = 2e2|φ|2
(

1

e
∂µχ−Bxδyµ

)
. (3.26)

In the second equation we used the decomposition (3.10). Using the Fourier trans-
form and factoring out the t and z dependence,

φ =

∫
dk

2π
eikyh(x)f(t, z), (3.27)

we get a shifted quantum harmonic oscillator equation for h given by

−1

2
∂2
xh+

e2B2

2
(x− k

eB
)2h = −m

2

2
h. (3.28)

Here k
eB is the x-position of the center of the classical Larmor orbital. The

spectrum is discrete; there are solutions only for certain values B = BN , where
N = 0, 1, 2, . . . . These values are given by(

N +
1

2

)
eBN = −m

2

2
(3.29)

We are interested in the ground state, so it makes sense to focus only on the lowest
energy state where B = B0. The solution for φ then becomes

φ =

∫
dk

2π
c(k) exp

{
iky − 1

2
eB

(
x− k

eB

)2
}
f(t, z). (3.30)
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Here c(k) is an arbitrary function of k. Using equation (3.26) it is then possible
to show that

Fxy = B − e|φ|2. (3.31)

To derive these solutions, we have made use of only the linear order equations.
This is why the solution (3.30) is so general. To find the ground state of the system,
we need to determine the function c(k). This can only be done by going to higher
order. The calculation is somewhat involved so we postpone the discussion to
chapter 5, where we encounter this problem again. In that case we solve it for a
simple holographic model by minimising the free energy of the system.

In this Higgs model, c(k) is found by minimising the Gibbs free energy [51].
As mentioned above, the result is a triangular lattice of vortex flux lines; it is
identical to the result depicted in figure 5.8.

3.4 Quantum chromodynamics and strong magnetic
fields

There is a remarkable similarity between Abrikosov vortices in type-II supercon-
ductors and the ground state of various phenomenological models of quantum
chromodynamics at strong magnetic fields. It was pointed out in the 1970’s that
in the presence of a background colour-magnetic field, a non-abelian gauge the-
ory forms an unstable gluon mode [47]. There quickly ensued a flurry of papers
exploring what this instability means for QCD [48–51]. These showed a number
of interesting results, one of which is that in a popular phenomenological model
of QCD, SU(2) Yang–Mills theory, the ground state in the presence of a back-
ground colour-magnetic field contains randomly distributed vortex lines that are
similar to Abrikosov vortices. These vortices were again discovered in studying
electroweak theory [58–61], where it is the W -boson that condenses. Recently a
series of papers by Maxim Chernodub and collaborators, working in a different
model, presented similar results for a U(1) magnetic field and ρ-meson condensate
in various QCD models [52–57]. Since one of the main results of this thesis is that
simple holographic models exist that contain vortex lattices as a ground state in
the presence of a strong flavour-magnetic field, it is useful to review the earlier
work here.

3.4.1 SU(2) Yang–Mills

We start with the instability found in pure SU(2) Yang–Mills theory in (3 + 1)-
dimensional flat space by Ambjørn and Olesen, closely following [47,51]. Defining
the new field

Wµ =
1√
2

(
A1
µ + iA2

µ

)
, Aµ = A3

µ, (3.32)
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the Lagrangian can be written as

LYM =− 1

2

(
D̄µW̄ν − D̄νW̄µ

)
(DµW ν −DνWµ)

− D̄µW̄
µDνW

ν − 1

4
F 2
µν −

1

2
(∂µA

µ)2

− ig (∂µAν − ∂νAµ) W̄µW ν

+
1

4
g2
(
WµW̄ν −WνW̄µ

)2
, (3.33)

where

Dµ = ∂µ − igAµ,
Fµν = ∂µAν − ∂νAµ. (3.34)

The authors then switch on a homogeneous colour-magnetic field B in the 3-
direction, choosing the gauge such that Ay = Bx. The linearised equations of
motion for Wµ then become

− (∂ν − igAν)2Wµ + 2igFµνWν = 0. (3.35)

The second term in these equations is the crucial one. It is due to the magnetic
moment of the gluon, and is responsible for an imaginary component of the vacuum
energy. From [47], the vacuum energy can be written as a sum over energy modes
of Wµ as

Evac =
V gB

4π2

∫ ∞
−∞

dkz

∞∑
n=0

{√
2gB

(
n+

3

2

)
+ k2

z +

√
2gB

(
n− 1

2

)
+ k2

z

}
,

(3.36)

where V is the volume of all space and kz is the z-momentum. The two terms in
the integrand correspond to the different spin modes S3 = ±1 of the Wµ field. The
instability comes from the second term, when n = 0 and Evac becomes imaginary.

In [47], the vacuum energy is also calculated for a scalar field and a fermion.
In those cases there is no unstable mode. For the scalar this is due to its lack of
spin. For the fermion this is due to an extra sign that comes in because of Fermi
statistics.

For the spin-1 field Wµ, however, the unstable mode W
(0)
µ is present. It is

stabilised when it takes the particular form

W (0)
x = −iW (0)

y ≡W (0), (3.37)

where W (0) takes the same form as the quantum harmonic oscillator wave function.
This is given by

W (0) =

∫
dk

2π
c(k) exp

{
−1

2
gB

(
x− k

gB

)2

+ iky

}
f(t, z), (3.38)

where f is an arbitrary function of t and z and c is an arbitrary function of k.
This is exactly the same function that one obtains for the condensate in type-II
superconductors to linear order, the solution (3.30). Again, it is also the same
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function that we obtain to linear order in chapter 5. When imposing the appro-
priate conditions on f , which come from the higher order equations and a physical
argument, this function represents the condensate in a magnetic vortex lattice.

The physical argument works as follows. From the vacuum energy (3.36) we
can see that the zero mode is only unstable for k2

z < gB. This means that
the vacuum energy becomes imaginary when the external colour-magnetic field is
constant over too large a distance. This means that it can’t be constant. The
next simplest thing is that the field is periodic — a lattice. Assuming periodicity
and a state that minimises the energy, it is possible to put some constraints on f ,
and the end result is a lattice of Abrikosov vortices. We explain how this works
in detail in section 5.4 for our holographic setup.

How is it that this solution is so similar to type-II superconductors? This is
easy to see with a bit more work. It’s possible to show that, to this order, the
only vanishing part of the field strength tensor F up to anti-symmetry is

F 3
xy = B − 2g|W (0)|2. (3.39)

From this the authors of [51] show that the classical energy is

E =
1

2

∫
d3x

(
F 3
xy

)2
=

∫
d3x

[
1

2
B2 − 2gB|W (0)|2 + 2g2|W (0)|4

]
. (3.40)

As noted in [48], this is very similar to the Higgs potential. The term −2gB|W (0)|2,
coming from the gluon’s magnetic moment, is seen to yield something like a Higgs
mass term.

Based on the calculations that we have only roughly summarised above, the
picture of the QCD vacuum at the beginning of the 1980’s was different from
our understanding today. Asymptotic freedom had already been discovered, so
it was known that such weak coupling calculations could hold at small distance
scales. The proposal by [48–51] was therefore that at short distances QCD is
dominated by the “spaghetti vacuum”. This colourful name is an apt description
of the long tubes of intertwined colour-magnetic vortices, not entirely static or
z-independent due to quantum fluctuations. The spaghetti vacuum is also divided
up into domains in which the vortices have roughly the same orientation in both
coordinate and colour space. The domains are distributed randomly, so at large
scales there is sufficient disorder that Lorentz and colour symmetries of the vacuum
are effectively present.

This picture can explain quark confinement. The idea is that as a single quark
moves through the vacuum it collides with vortices. This process adds a random
phase to the quark as it moves through the domains. When summing over all
the paths, a single quark would build up a very large free energy compared to
quarks travelling in colour singlets. This effectively prohibits quarks in isolation.
Quark–anti-quark pairs are confined by a linear potential due to a colour-electric
string between the two charges [48].

3.4.2 The DSGS model

The next model we look at is the DSGS model, constructed by Djukanovic,
Schindler, Gegelia and Scherer in [88]. It is an effective model of ρ-mesons in
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quantum electrodynamics. We see a similar pattern. A vector mode, in this case
a ρ-meson, becomes unstable at large magnetic field. The ground state is again
a triangular vortex lattice, described to linear order by a solution with the same
form as (3.30). It was first shown that the triangular lattice is the ground state
in [52]. Since the linear order lattice solution is again obtained by solving a quan-
tum harmonic oscillator equation as before, we do not repeat the calculation. We
only show the instability.

The DSGS Lagrangian is given by

L =− 1

4
FµνF

µν − 1

2
(Dµρν −Dνρµ)† (Dµρν −Dνρµ) +m2

ρρ
†
µρ

µ

− 1

4
ρ(0)
µν ρ

(0)µν +
m2
ρ

2
ρ(0)
µ ρ(0)µ +

e

2gs
Fµνρ(0)

µν . (3.41)

Here Dµ = ∂µ + igsρ
(0)
µ − ieAµ is the covariant derivative, gs is the ρππ coupling,

Aµ is the photon field that has field strength Fµν = ∂µAν − ∂νAµ, the fields

ρµ =
(
ρ

(1)
µ − iρ(2)

µ

)
/
√

2 and ρ(0) ≡ ρ(3) are charged and neutral vector mesons

with mass mρ and ρ
(0)
µν = 2∂[µρ

(0)
ν] − 2igsρ

†
[µρν].

The last term in (3.41) describes a coupling between the electromagnetic field
and the ρ-mesons. It plays an important role in the creation of a superconducting
phase.

In [89] the energy density was calculated to second order. The quadratic part
is

ε(2)(ρµ) =
∑

i,j=x,y

ρ†iMijρj +m2
ρ

(
ρ†tρt + ρ†zρz

)
, (3.42)

with

M =

(
m2
ρ ieB

−ieB m2
ρ

)
. (3.43)

The mass terms for ρt and ρz do not change with B. For ρx and ρy this is not
the case — these components have a non-diagonal mass matrix M that depends
on B. The eigenvalues and eigenvectors of M are

µ2
± = m2

ρ ± eB, ρ± =
1√
2

(ρx ∓ iρy) . (3.44)

We see that the ρ− state is unstable at sufficiently strong magnetic field. When
B > Bc = m2

ρ/e, the state has a negative effective mass, producing a tachyonic
mode. The tachyonic mode then leads to a spontaneous symmetry breaking of
the QCD vacuum, producing a ρ-meson condensate. The condensate consists of
charged mesons.

The physical picture of what is happening goes like this. The quantum vacuum
is a seething soup of virtual particles. In the presence of a strong magnetic field,
some of these virtual particles become real. Real quarks emerge from the vacuum.
They consist of both positive and negative charges, but the net charge is zero. As
well as the electromagnetic charge, quarks have colour, and the colour force causes
them to form a bound state of charged ρ-mesons. It is the interplay between the
colour force binding the quarks and the electromagnetic force enabling the flow of
current that produces the superconductivity. That is why the last interaction term
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Figure 3.2: A qualitative phase diagram for the QCD vacuum as a function of
temperature T and magnetic field B, according to [89]. The region of interest is
the one labelled “Anisotropic superconductor”. This figure was taken from [89].

in (3.41) is important. The ρ-mesons play the role of the Cooper pairs in BCS
theory. In BCS theory there is also an interplay between two forces. From the
photons there is a repulsive interaction between electrons and from the phonons
there is an attractive interaction causing the formation of Cooper pairs. There
is thus an analogy between the QCD superconductivity and conventional BCS
superconductivity.

If these ideas are correct, the QCD vacuum becomes superconducting at mag-
netic field values of the order 1016 Tesla, which is around the hadronic scale. At
the Large Hadron Collider in Geneva it is expected that magnetic fields of this
order should be created in heavy ion collisions [56]. Such strong magnetic fields
are the result of off-center ion collisions. An experimental signature would be an
excess in the production of ρ-mesons.

This model does however approximate the ρ-mesons as pointlike particles,
which is not accurate. ρ-mesons have a radius of roughly rρ ∼ 0.5 fm, which is
of the same order as the radii of the lowest Landau levels at the critical magnetic
field strength. This problem is overcome in [89] by investigating a model going
beyond the point-like approximation as well and finds qualitatively similar results.

The author of [89] also makes a prediction about what the phase diagram of
finite-temperature QCD should look like. It is shown in figure 3.2. The region
of interest is the one labelled “Anisotropic superconductor”. It shows that when
the magnetic field is large compared to the temperature, the QCD vacuum con-
denses and becomes superconducting. In chapter 6 we present the analogous phase
diagram for our model.
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Holographic superconductors

In the previous chapter we saw some of the basic properties of a superconductor:
it exhibits spontaneous symmetry breaking at low temperature, resulting in a non-
vanishing vacuum expectation value of some operator. Infinite DC conductivity
and the Meissner–Ochsenfeld effect then follow as a result of electromagnetic gauge
invariance. The spontaneous symmetry breaking typically, although as this thesis
shows, not always, follows from the lowering of the temperature beneath a critical
value. In this chapter we review some of the early and simplest holographic super-
conductor models. They are bottom-up holographic models, constructed with the
goal of reproducing all the properties a superconductor must have. In section 4.3
we discuss the possibility of making holographic superconductors more realistic
by breaking translation invariance in the ground state. Inhomogeneous ground
states are actively being studied and have shown some startling agreement with
experiment.

How do we go about building a superconductor holographically? There are
two essential requirements, a finite temperature and an order parameter. As
we explained in section 2.3.2, creating a finite-temperature field theory requires
placing a black hole in the gravity dual. The temperature T of the field theory
is then the Hawking temperature of the black hole. The second requirement,
the field theory order parameter, is a quantity that is zero in the normal phase
and nonzero in the superconducting phase. This quantity is provided by the vev
of the operator that undergoes spontaneous symmetry breaking as the system
enters the superconducting phase. The simplest operator O to include in the
field theory is a scalar operator, which is dual to a scalar field φ in the gravity
theory. When the superconducting order parameter is a scalar condensate, it is
known as an s-wave superconductor. On the other hand, if the order parameter
is a vector, the superconductor is a p-wave, and if it is a spin-2 order parameter
then the superconductor is a d-wave. We give examples of s-wave and p-wave
superconductors below.

As we mentioned, a black hole is one of the crucial ingredients in a holographic
superconductor. AdS black holes are different from black holes in asymptotically
flat space in that they have a positive specific heat, similar to objects we experience
every day. This means that their temperature increases when matter is added to
them. In other words, the temperature of an AdS black hole is proportional to its
radius, as we saw in section 2.3.2. So in order to produce a gravitational system
that behaves like a superconductor, we need to create an AdS black hole with
a critical radius. When it is above that critical radius in size, the ground state

45
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solution outside the horizon should be vacuum AdS. When the size is below the
critical radius, the (static) ground state should contain a field with non-trivial
profile. In other words, the black hole solution should have “hair”.

In 2008, Steven Gubser [36], followed by Sean Hartnoll, Christopher Herzog
and Gary Horowitz [37], were the first to give explicit examples of a holographic
s-wave superconductor. The gravity setup contains an AdS–Reissner–Nordström
black hole and a scalar field. Soon after in [90,91] Steven Gubser and Silviu Pufu
presented a holographic p-wave superconductor using an SU(2) Yang–Mills field
instead of a scalar. For the holographic d-wave there is still no really satisfactory
model. A bottom-up approach was first used in [92], where the authors used a
charged spin-2 field. This model had problems with the equations for the spin-2
field, which were not consistent and had issues with causality. There have been a
number of attempts to address these issues, including an attempt to construct a
top-down model of the d-wave superconductor in [93].

There is one point worth mentioning before we review these holographic su-
perconductor models. Technically, the field theory dual is not a superconductor
but rather a superfluid. A superconductor is the result of the spontaneous break-
ing of a gauge symmetry, whereas in a superfluid it is a global symmetry that
is broken. In all the examples we look at we will indeed be breaking a gauge
symmetry spontaneously in the bulk, but as we have seen, in gauge/gravity dual-
ity gauge symmetries in the gravity theory map to global symmetries in the field
theory. However, the field theory can still be thought of as a weakly gauged su-
perconductor, which means that the gauge field coupling is small1. Moreover, the
term holographic superconductor has become the established way of referring to
gauge/gravity models with spontaneous symmetry breaking, so we will continue
to use it in this thesis.

4.1 A holographic s-wave superconductor

To create a simple holographic s-wave superconductor, we need an AdS–black
hole background where the black hole has scalar hair when it has a radius below
a critical value and no hair above that value. In flat space there are “no-hair”
theorems explaining why this is impossible. The essence of the argument is that
any scalar field present would either fall into the black hole or radiate away to
infinity — there is no stable middle ground. In asymptotically AdS space how-
ever, this is possible. To get the scalar field remaining static outside the horizon,
the gravitational attraction is overcome by using a charged Reissner–Nordström
black hole. And thanks to the AdS geometry, matter cannot radiate away to in-
finity. Intuitively one can imagine that there is a balance between the attractive
gravitational force and the repulsive electrostatic force. This makes it possible
for a stable non-trivial scalar field profile to form. Moreover, the stability of this
system depends on the size of the black hole, since making the black hole size
too large relative to its charge would destabilise it. This is precisely the effect we
need. Figure 4.1 shows an intuitive picture of the geometry before and after the
condensate forms.

1 This point is subtle, because although we do strictly have a broken global U(1), there are
ways of seeing the Meissner–Ochsenfeld effect in holography [94]. This effect depends on there
being a massive photon, a result of gauge symmetry breaking.
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Figure 4.1: An intuitive picture of the holographic superconductor. Anti-de Sitter
space is represented with the radial coordinate increasing upwards. The horizon
is the limit in the IR of the geometry. The field theory can be thought of as living
on the boundary, the plane at the top. The green shade is meant to depict the
electric field, sourcing a chemical potential at the boundary. The blue shaded
area is the scalar condensate. The top picture shows the uncondensed phase. The
bottom picture shows the condensed phase.

Let us make this intuition more precise. We closely follow the exposition
of [37,95]. We consider a simple system with a superconductor in 2+1 dimensions
dual to a 3+1-dimensional planar Schwarzschild anti-de Sitter black hole. The
action is

S =

∫
d4x
√
−g
(
R+

6

L2
− 1

4
FµνF

µν − 1

2
|∇µφ− iqAµφ|2 −

1

2
m2|φ|2

)
. (4.1)

This is just general relativity with an added scalar field φ coupled to electromag-
netism. The cosmological constant is negative and given by Λ = −3/L2, as is
usual for AdS space.

To make this simple example even simpler, we work in the probe limit. Notice
that we can rescale the matter fields to Aµ = Ãµ/q and φ = φ̃/q. Then the matter
part of the action has an overall factor of 1/q2 in front. The probe limit is when
we take q → ∞, so that the matter part of the action is infinitesimal compared
to the geometry part. The effect is that the fields can feel the influence of the
geometry, but they do not influence the geometry in return. In other words, there
is no metric backreaction. The problem simplifies in this limit, but most of the
interesting physics remains. From now on we work with the rescaled fields but
drop the tildes.
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The metric for the AdS4–Schwarzschild black hole, which remains fixed in the
probe limit, is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2). (4.2)

In these coordinates the AdS boundary is at r → ∞. Here the blackening factor
is

f(r) =
r2

L2

(
1−

r3
H

r3

)
, (4.3)

with L the AdS radius and rH the Schwarzschild radius. The Hawking temperature
of the black hole can be calculated to be

T =
3rH
4πL2

. (4.4)

We specialise to the case where m2 = −2/L2. This is negative, but perfectly al-
lowed in AdS space because it is still above the Breitenlohner–Freedman bound [96].
Breitenlohner and Freedman showed that a gravity solution with scalars in AdSd+1

spacetime is stable as long as the mass satisfies

m2 ≥ m2
BF = − d2

4L2
. (4.5)

In flat space m2 should always be positive, but in AdS space there is a lot of volume
at large radius that allows positive gradient energy to compensate for negative m2.

Which gauge field components do we want to switch on? We can invoke gauge
redundancy to set one of the components to zero. In fact this is something we
must always do because there is no field theory dual to the gauge redundancy
— only physical symmetries are mapped. This is in particular seen from how

the gauge/gravity dictionary treats boundary values A
(0)
µ of the gauge field as the

source term A
(0)
µ Jµ in the field theory dual. On the gravity side µ runs over more

dimensions than on the field theory side2. The canonical choice is to set Ar = 0.
The only gauge field components we can consider switching on are then At, Ax
and Ay. It turns out to be enough to switch on At. We also assume that the fields
depend only on r, that is, the plane symmetry

φ = φ(r), At = At(r). (4.6)

We chose to turn on At(r) because its boundary value is the field theory
chemical potential associated to the global U(1) symmetry dual to Aµ’s gauge
symmetry on the gravity side. However, it results in a nonzero field strength
component Ftr, which means there is a radial electric field. What sources this
electric field? If we were not neglecting backreaction, we would have needed a
charged Reissner–Nordström black hole. In the probe approximation, however, an
infinitesimal (that is, negligible) charge on the black hole is sufficient to source
the electric field.

2This of course makes sense because when you take the pullback of Aµ to the boundary, there
is no Ar component.
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Using the ansatz (4.6), the equations of motion become

φ′′ +

(
f ′

f
+

2

r

)
φ′ +

(
(At)

2

f2
+

2

L2f

)
φ = 0, (4.7)

A′′t +
2

r
A′t −

2φ2

f
At = 0. (4.8)

In the second of these equations we can see that a non-zero φ means that the At
equation has a mass term. φ in this way triggers a Higgs mechanism.

To impose boundary conditions, consider the following. At the horizon we
need gµνAµAν = gtt(At)

2 to remain finite, which of course means we need to set
At(rH) = 0. It is not obvious why we need to stop the vector potential from
diverging when all that should really matter is that the physical electromagnetic
field remains finite. Perhaps the divergence can be gauged away. This cannot be
done, however, because with our gauge choice Ar = 0 comes the restriction that
a gauge transformation λ can no longer depend on r 3. Thus the r-dependence
of At cannot be changed with a gauge transformation, and it must be zero at
the horizon. Another boundary condition comes from multiplying (4.7) by f and
evaluating it at r = rH . One finds that φ(rH) and φ′(rH) are not independent.

For boundary conditions at the AdS boundary, we can expand the field asymp-
totically to get the form that should be familiar from section 2.2.2,

φ =
φ(1)

r
+
φ(2)

r2
+ . . . (4.9)

At = µ− ρ

r
+ . . . . (4.10)

Usually φ has a normalisable and an non-normalisable mode. Since the mass is
negative, however, both modes are normalisable. We impose a boundary condition
by choosing one of these to be zero, say φ(1) = 0. It is necessary to have this zero
so that no explicit source term is added to the boundary theory Lagrangian. Now
φ(2) = O2 is the expectation value of the scalar operator that we want to be
the order parameter for the transition into the superconducting phase. In the
expansion for At, µ is the chemical potential of the boundary theory, as usual,
and ρ is the charge.

With these boundary conditions fixed, there is now just one free parameter,
an overall scale. This can be chosen arbitrarily to solve the equations numerically.
We are not interested in the exact form these solutions take, but rather how
the order parameter O2 changes with temperature. Here one has to be careful
when plotting the dependence, because the boundary theory is conformal so the
temperature can be rescaled to any value. This is reflected in the bulk theory by
the way we can scale the coordinates r → ar and (t, x, y) → (t, x, y)/a to leave
the metric invariant and the field At → aAt to leave the field equations invariant.
To avoid this scaling symmetry it makes sense to plot dimensionless quantities,
such as

√
O2/µ versus T/µ. What one finds is precisely that there is a critical

temperature Tc such that O2 vanishes when T > Tc and is non-zero when T < Tc.
This is the behaviour that we want from superconductivity. Due to this critical
temperature Tc, it makes sense to plot

√
O2/Tc versus T/Tc, which is equivalent

to the scaling by µ. This is what is done in figure 4.2. Near Tc, we see there

3See chapter 5 for more information.
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Figure 4.2: The condensate O2 as a function of T near the critical temperature
Tc. Near Tc there is a square root behaviour O2 ∼ T 2

c (1− T/Tc)1/2.

is a square root behaviour O2 ∼ T 2
c (1 − T/Tc)1/2, which is as predicted by the

Ginzburg–Landau model.
The reason we see this behaviour comes from looking more closely at the equa-

tion for φ, (4.7). It has an effective mass term that looks like
(
(At)

2/f2 + 2/L2f
)
φ.

Keeping in mind that we have chosen the mass of the scalar field to be negative,
because the first term has the same sign as the mass term we can tell that it is
also negative. When At grows (as it has to when we’re decreasing T/µ) the effec-
tive squared mass becomes more and more negative. Eventually, at T = Tc, it is
negative enough for φ to be unstable, at which point a second solution becomes
possible with non-zero φ. We say that φ condenses. The order parameter O2

for this second solution is also nonzero. This idea is key to all the examples of
superconductivity we will be looking at in this thesis.

The nonzero condensate is scalar hair developed by the black hole. One can
calculate the free energy of the boundary field theory for both solutions, with the
condensate and without, at the same temperature below Tc, and find that it is
always lower in the case with scalar hair. It is thus an energetically favoured state.

It may seem strange that this superconductor has a nonzero charge (ρ in the
expansion for At above) when superfluids normally are supposed to be neutral.
This comes from the way in which we are building the bottom-up model of the
superconductor, since we can not specify a detailed microscopic description of
the dual field theory. The best way to think about it is that the field theory
models the electrons in the superconductor but not the lattice [95]. Indeed, the
theory is invariant under translations. In section 4.3 we discuss the efforts to
break translation invariance in the field theory, which give rise to more realistic
superconductor models.

4.1.1 The optical conductivity

Of course, we cannot be sure that a system is a superconductor unless we calculate
its optical conductivity and find a δ-function peak at zero frequency. To do this
we need some spatial component of the current. It does not matter which because
the theory is symmetric under spatial rotations. We pick Jx. To find this quantity
in the boundary field theory we should of course switch on the field Ax in the
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bulk. Since we need a current with a frequency dependence, we give Ax a time
dependence of the form e−iωt. Its equation of motion is then

A′′x +
f ′

f
A′x +

(
ω2

f2
− 2φ2

f

)
Ax = 0. (4.11)

An important boundary condition for the field Ax at the horizon is that it be
propagating into the black hole. This is important not only for physical reasons
(nothing comes out of a black hole), but also because, as Son et al. showed in [97],
this boundary condition means that the Green’s function calculated in the dual
field theory is the retarded Green’s function, corresponding to causal propagation.
We look at this in detail in chapter 5.

The asymptotic behaviour of Ax at large AdS radius is

Ax = A(0)
x +

A
(1)
x

r
+ . . . . (4.12)

A
(1)
x is of course the vacuum expectation value of the current that we are looking

for, 〈Jx〉. The gauge/gravity dictionary also tells us that A
(0)
x is a source field

in the boundary theory. The electric field in the boundary theory is thus Ex =

∂xA
(0)
t − ∂tA

(0)
x = −Ȧ(0)

x = iωA
(0)
x . Now we can use Ohm’s law to find the

conductivity,

σ(ω) =
〈Jx〉
Ex

= − iA
(1)
x

ωA
(0)
x

. (4.13)

One can solve equation (4.11) numerically. The real part of the conductivity as a
function of frequency is plotted in figure 4.3 for various temperatures. The figure
was taken from [37].

When T > Tc, the conductivity is nonzero and independent of frequency. The
thing to notice is the formation of a gap where the conductivity vanishes for low
frequencies. This is a common feature in superconductors [98]. Importantly, there
is also a delta function in σ at ω = 0. This is difficult to see from the numerical
calculations, but is more obvious when one looks at the imaginary part of the
conductivity, plotted in figure 4.4. The imaginary part shows a pole. There is
a mathematical relationship between the real and imaginary parts of a complex
function that is analytic in the upper half-plane. Moreover, we know that the
conductivity is such a complex function because Toll proved in [99] that response
functions are analytic in the upper half-plane if and only if they are causal. The
relationship that they fulfil is given by the Kramer-Kronig relations, one of which
is

Imσ(ω) = − 1

π
P
∫ ∞
−∞

Reσ(ω′)

ω′ − ω
dω′. (4.14)

P denotes the Cauchy principle value. From this relation it is easy to see that
there is a pole in the imaginary part of the conductivity if and only if there is
delta function at the same ω in the real part of the conductivity. We easily see
this pole in figure 4.4.

The overall result is thus that we see the behaviour of a superconductor in the
dual field theory — it has an infinite DC conductivity and a gap in which there is
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Figure 4.3: The real part of the conductivity σ as a function of frequency, rescaled
by the critical temperature Tc, for various values of the temperature. The top flat
line is the conductivity for all values of T > Tc, where there is no condensate. As
the temperature decreases, a gap forms and becomes wider. This figure was taken
from [37].
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Figure 4.4: The imaginary part of the conductivity σ as a function of frequency,
this time rescaled by the condensate

√
〈O2〉, for various values of the temperature.

The pole at ω = 0 is easy to see. This figure was taken from [37].
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no conductivity for low frequencies. This is neatly explained by the gravity dual,
encoding all this information in the form of a black hole with a gauge field that is
stable at zero frequency. At higher frequencies, where we see finite conductivity in
the field theory, there must be dissipation. Dissipation is represented in the gravity
theory by the gauge field falling into the black hole and losing energy. If we were
not using the probe approximation and had included back reaction, this process
would cause the black hole to grow, increasing the temperature. An increase
in temperature is exactly what is expected in the field theory when dissipation
occurs, so the interpretation is consistent.

4.2 A holographic p-wave superconductor

It was shown in [90, 91] that it is also possible to construct a holographic p-wave
superconductor, where the condensate breaks rotation invariance by singling out
a direction in space. In this section we review some of the ideas of [91]. They are
essentially the same ideas as for the s-wave, the main difference being that instead
of a scalar field condensing, we have an SU(2) gauge field. We also consider the
setup in (4 + 1)-dimensions, instead of the (3 + 1)-dimensional model of [91], to
bring it closer to the author’s main work in chapter 5.

Although technically this model is bottom-up, it can still be viewed as a certain
low-energy limit of the D3-D7 brane model described in section 2.3. The SU(2)
Yang–Mills action is the low-energy effective action on the Nf = 2 probe D7
branes. It comes from taking the small field strength limit of the DBI action. The
SU(2) gauge symmetry maps to an SU(2) global symmetry on the field theory,
which can be viewed as an isospin symmetry. Similar to the s-wave model where
we switched on a U(1) chemical potential, here we switch on an isospin chemical
potential for the U(1)3 subgroup of SU(2).

In this section we use the background and action from chapter 5. Further
details about the convention are given there. The (4 + 1)-dimensional theory on
AdS5–Schwarzschild space is specified by the action

S =

∫
d5x
√
−g
{

1

2κ2

(
R+

d(d− 1)

L2

)
− 1

4ĝ2
F aµνF

aµν

}
. (4.15)

As before we take the probe limit, so that 1
4ĝ2F

2 → 0 and we can neglect backre-
action on the geometry. The fixed background metric is then the same as before,

ds2 =
L2

u2

(
−f(u)dt2 + dx2 + dy2 + dz2 +

du2

f(u)

)
, (4.16)

with f(u) = 1− u4

u4
H

. The AdS boundary is at u→ 0. The Hawking temperature

of the black hole is T = 1/πuH . We use the scaling symmetry of the background
to set uH = 1.

The SU(2) gauge field is A = Aaµτadxµ, for a = 1 . . . 3. The Lie algebra basis

is given by τa = σa

2i , with σa the Pauli matrices. The simple gauge field ansatz

A = Φ(u)τ3dt+ w(u)τ1dx (4.17)

is enough to ensure the non-trivial dynamics that we need. The boundary value
of Φ, the A3

t component, is equal to the isospin chemical potential. Its presence
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explicitly breaks the SU(2) gauge symmetry of the theory to U(1). The function
w is the one that condenses, breaking the remaining U(1) symmetry. Additionally,
it separates out the x-direction as special, breaking SO(3) rotational symmetry.
When the temperature is high, w(u) = 0. Below a critical temperature Tc, w
is a nontrivial function that is non-vanishing at the horizon. It vanishes at the
boundary though because we are modelling a spontaneously broken symmetry in
the field theory, that is, the breaking happens without a source.

The equations of motion are

0 = Φ′′ − Φ′

u
− Φw2

f
, (4.18)

0 = w′′ +

(
f ′

f
− 1

u

)
w′ +

Φ2w

f2
. (4.19)

These are similar to the s-wave equations (4.7)–(4.8), so it is no surprise that we get
the same superconductor behaviour. Also, we can see now why it is important to
have a non-abelian gauge field. The component w has an effective mass term Φ2/f2

that comes from the coupling of the gauge field components among themselves.
This would not have been present in the equation of an abelian gauge field. We
again see that as Φ2 gets larger, corresponding to higher chemical potential or
lower temperature, the effective mass-squared of w gets more negative, eventually
resulting in an instability.

The components have boundary expansions

Φ = µ+ Φ2u
2 +O(u6), (4.20)

w = w2u
2 +O(u4). (4.21)

Here µ is the isospin (U(1)3) chemical potential, and so Φ2, as the subleading
term, is proportional to the charge density associated with the U(1)3 symmetry. In
other words, by the gauge/gravity dictionary, vev of the current component 〈J3

t 〉 ∝
Φ2. Similarly we have 〈J1

x〉 ∝ w. In chapter 5 we calculate the proportionality
constants for these quantities exactly.

Because we are in a bottom-up model, it is impossible to know the precise
form of the current Jaµ . But by comparing to the D3-D7 setup we can make a
rough guess [100]. The D7-branes add an N = 2 supersymmetric hypermultiplet
to the field theory with fermions ψi and scalars φj . There are Nf = 2 flavours,
which we label u and d, which transform under the SU(2) global isospin group.
The chemical potential is then a source for the operator

J3
t ∝ ψ̄σ3γ0ψ + φσ3∂tφ

= ψ̄uγ0ψu + φu∂tφu − ψ̄dγ0ψd − φd∂tφd (4.22)

= nu − nd.

The σi are Pauli matrices acting as a basis for the flavour symmetry and γµ are
the Dirac matrices. ψ = (ψu, ψd) and φ = (φu, φd) and so nu and nd are the
respective charge densities of the isospin fields. Similarly, the condensate takes
the form

J1
z ∝ ψ̄σ1γzψ + φσ1∂zφ. (4.23)
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Figure 4.5: The condensate O2 as a function of T near the critical temperature
Tc. Near Tc there is a square root behaviour O2 ∼ T 2

c (1 − T/Tc)1/2. This plot is
similar to the case of the s-wave, figure 4.2.

If a microscopic Lagrangian could be written down for our bottom-up model’s
field theory, it would probably be similar to this.

As in the previous section, we can calculate the form of the condensate as a
function of the temperature. The result is plotted in figure 4.5. We see that the
condensate has the usual mean field behaviour where it scales as (Tc − T )

1
2 near

T = Tc.
The other choice we could have made for the gauge field ansatz is

A = Φ(u)τ3dt+ w(u)
(
τ1dx+ τ2dy

)
. (4.24)

The equations of motion become

0 = Φ′′ − Φ′

u
− 2Φw2

f
, (4.25)

0 = w′′ +

(
f ′

f
− 1

u

)
w′ +

Φ2w

f2
− w3

f
. (4.26)

They are similar to equations (4.18)–(4.19) and w also condenses at low enough
temperatures. In this case as w condenses it means that both 〈J1

x〉 and 〈J2
y 〉

condense simultaneously in the field theory. In [91] this is called a p + ip-wave
superconductor to distinguish it from the p-wave above.

When w = 0, the equation for Φ is the same for both the p-wave and the p+ip-
wave. Moreover, when doing a stability analysis by considering fluctuations about
the w = 0 solution in both setups, the equations of motion for the fluctuations are
also identical. This means that the fluctuations become exponentially growing at
identical values of T , so that the critical temperature Tc when a condensate forms
is the same for both the p-wave and the p+ ip-wave setups.

Of the two different condensates that can exist at the same temperature, which
one is the real ground state? According to [91], the p-wave. There the authors did
a standard stability analysis by investigating fluctuations about the p + ip-wave
background above and below Tc and found that the fluctuations were exponentially
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growing. See figure 7 of [91]. This fact is important for the models of chapters 5
and 6. In those models we switch on a magnetic field and find the stable ground
state. As the magnetic field tends to zero, the ground state tends towards the
p+ ip-wave state, so we know that it cannot be stable.

4.3 Inhomogeneous ground states

The hairy black hole solutions of the previous section act as an inspiration to
search for even more novel black hole backgrounds. And it turns out there is
a very rich landscape of solutions if one looks for inhomogeneous ground states.
This has been a subject of intense study over recent years, not only for its intrinsic
interest but also for the tantalising prospect of applications to strongly coupled
field theories such as QCD and real-world condensed matter systems. Condensed
matter systems typically do not have translation invariance — the superconductor
models of the previous system would be more realistic if they contained a lattice.
Finding out when inhomogeneous ground states emerge spontaneously is also of
interest. We saw in chapter 3 that an early model of the QCD vacuum has spon-
taneously emerging vortex lattices. Since this effect also exists in further models
with non-abelian gauge fields, the question of the universality of spontaneously
emerging lattices arises.

4.3.1 Explicit symmetry breaking

We start the exploration of holographic models with inhomogeneous ground states
by considering the work of Gary Horowitz, Jorge Santos, David Tong in [101].
Their motivation was to build a more realistic condensed matter model by includ-
ing what many prior models had left out — a lattice. The translation invariance
of the field theory directions means that the real part of the optical conductivity
has a delta peak at zero frequency (infinite DC conductivity) for all temperatures,
even outside the superconducting phase4. The authors of [101] chose the simplest
way to overcome the translation invariance and introduce a lattice by imposing
one explicitly in the boundary conditions. Their model is similar to the one from
section 4.1. They use Einstein–Maxwell theory with a neutral scalar field that has
m2 = −2/L2. They also do not neglect backreaction, so they have a charged black
hole and numerically solve for the effect of the matter fields on the geometry. The
lattice boundary conditions are imposed in the source of the scalar Φ. For the
boundary expansion

Φ = uφ1 + u2φ2 +O(u3), (4.27)

(where u is the radial coordinate) the source was chosen to be

φ1(x) = A cos(kx), (4.28)

for some amplitude A and wave number k. As in the earlier s-wave model, there
is an electric field coming from the At component that provides a field theory

4 We did not see this in the example of section 4.1. In that example the conductivity is
finite and independent of frequency for T > Tc. The reason for this is the probe limit, which
made the scalar decouple from the geometry and so the electric and energy currents decouple.
This implicitly breaks translation invariance. Going away from the probe limit gives infinite DC
conductivity in the normal phase; see [94].
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chemical potential. In [101] it is chosen to be constant. Earlier work however
considered a modulated chemical potential instead of a modulated scalar source,
such as [102,103].

With the boundary conditions chosen, the first step is to solve the Einstein–
Maxwell equations numerically. This yields solutions for Φ, the gauge field A and
the metric g in two variables, u and x, due to Φ imprinting its modulated form
on A and g. Next the authors calculate the optical conductivity, which is done
by considering fluctuations of the gauge field about the background. This is an
involved numerical computation, but the results in the end are striking. Instead
of an infinite DC conductivity, the delta peak in broadened into a Drude peak,

σ(ω) ≈ Kτ

1− iωτ
, (4.29)

at low frequencies. Here K is an overall constant determined from the numerical
data. τ is relaxation time of the system. In the Drude model, it would correspond
to the typical time scale it would take electrons in the material to stop moving after
the applied electric field has been switched off. In real materials the relaxation is
typically due to impurities and finite temperature effects.

At high frequencies, the optical conductivity rises to a positive constant. This
is not something that is measured experimentally, but in the high frequency limit
the lattice can be neglected. The constant conductivity is a property of (2 + 1)-
dimensional conformal field theories.

Intermediate frequencies, however, hold the biggest surprise. There the optical
conductivity takes the form

|σ(ω)| ≈ B

ω2/3
+ C, (4.30)

for constants B and C. This power-law falloff is remarkable because experimental
measurements of certain cuprate high-temperature superconductors yield the same
result. For example, figure 3 of [104] shows the power law behaviour of the optical
conductivity measured in Bi2Sr2Ca0.92Y0.08Cu2O8+δ, a cuprate. It is measured to
be |σ(ω)| = Cω−0.65, agreeing very well with the holographic result.

The authors continued studying the effect of lattices in later work. In [105] they
consider, among others, a model in asymptotically AdS5 space. This model has a
different scaling behaviour at intermediate frequencies. There |σ(ω)| ≈ Cω−

√
3/2.

In [106] they are back in AdS4, but then they also work out properties of the system
in the superconducting phase, which they did not do in their earlier work. They
find that the system has a normal fluid component in addition to the superfluid
component. The normal fluid displays an optical conductivity Drude peak at low
frequencies and the same ω−2/3 scaling at intermediate frequencies.

4.3.2 Spontaneous symmetry breaking

It is more surprising when inhomogeneous ground states emerge spontaneously.
Over the years a number of mechanisms that lead to dynamically generated in-
homogeneities have been uncovered. The first approach involved a Yang–Mills–
Chern–Simons theory in an AdS5 QCD model in [107]. The key feature of this
bottom-up model is the Chern–Simons term. Its presence causes the emergence
of an anisotropic ground state of vector mesons that breaks both rotation and
translation symmetry, reminiscent of the smectic phase of liquid crystals.
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A number of other works have made use of the Chern–Simons term in various
gravitational backgrounds to produce models that exhibit spontaneous inhomo-
geneous ground states [108–111]. Some of the ground states are helical, such as
in [112–115]. One interesting aspect of these results is the simple but powerful
quasinormal mode analysis used to uncover them. We explain quasinormal modes
in more detail in section 5.3.2.

As an example, we look at the model by Shin Nakamura, Hirosi Ooguri and
Chang-Soon Park in [112]. It Einstein–Maxwell–Chern–Simons theory with action
given by

S =
1

16πGN

∫
d5x

{√
−g
(
R+

12

L2
− L2

4
FµνF

µν

)
+ αL3F ∧ F ∧A

}
. (4.31)

L is the AdS radius which we set to unity. The gravity background is the Reissner–
Nordström black hole in asymptotically AdS5 spacetime with metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2d~y2, (4.32)

where the blackening factor is given by

f(r) = r2

[
1−

(
1 +

µ2

3r2
+

)(r+

r

)4
+

µ2

3r2
+

(r+

r

)6
]
. (4.33)

In addition, the black hole sources a field strength given by

F = −
2µr2

+

r3
dt ∧ dr. (4.34)

There are several adjustable parameters in this model. The field theory tem-
perature is given by

T =
r+

2π

(
2− µ2

3r2
+

)
, (4.35)

and the chemical potential µ can be used to define dimensionless ratios such as
T/µ as usual. α, the Chern–Simons coupling, can also be adjusted and in [112]
they do precisely that. They find that for α > αc, there is a critical temperature
Tc(α) below which the background becomes unstable. The remarkable thing about
the instability is that it only happens at finite momentum k. This suggests a new
ground state that breaks translation invariance.

More precisely, consider fluctuations of the metric and the gauge field about
the background. The fluctuations should be small so that the equations of mo-
tion can be linearised. They have time and space dependence ∼ e−iωt+ikx. The
equations of motion thus depend explicitly on ω and k. Pick a value of k and the
adjustable parameters T and α and determine the value ω needs to take to satisfy
the equations of motion. It turns out that for α big enough and T small enough,
there are nonzero values of k that require ω to have a positive imaginary part,
leading to exponentially growing fluctuations. This is the instability. It does not
occur at k = 0.

This simple analysis, which involves solving linear differential equations in
a single variable r, leads to a more interesting field theory condensate than we
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have seen so far in this chapter. The condensate, related in the usual way to the
subleading term in the boundary expansion of the gauge field, takes the form

〈 ~J(x)〉 = Re
(
~ueikx

)
, (4.36)

for a chosen value of k, where ~u is a polarisation vector obeying

~k × ~u = ±i|k|~u. (4.37)

The analysis in [112] indicates that the sign on the right-hand side should be the
same as the sign of −αµ. In other words, the sign of the Chern–Simons coupling
determines whether the circular polarisation of the expectation value is counter-
clockwise or clockwise. Chern–Simons terms are parity violating, so it is not
surprising that α should have this effect. The condensate is a helix; it breaks both
translation and rotation symmetry but preserves a combination of the two. This
configuration is similar to the cholestric phase of liquid crystals.

In the follow-up work [113], the authors go beyond the linearised analysis to
find the form of the ground state more precisely. They also show that in the limit
of large α, the phase transition is second order.

4.3.3 Magnetic fields

The early studies of magnetic fields in s-wave superconductors were simply aiming
to see whether the Meissner–Ochsenfeld effect could be reproduced. In [116, 117]
it was found that it could. In simple s-wave models turning on a magnetic field
has the tendency to reduce the overall magnitude of the condensate in the super-
conducting phase. There is also a critical value Bc of the magnetic field above
which no condensate would form.

But even in these simple models there are signs of a much richer ground
state structure. In [116] it was found that the s-wave in asymptotically (3 + 1)-
dimensional AdS space has a charged scalar condensate that is inhomogeneous in
the boundary directions. The effective mass of the scalar has a contribution from
the square of the magnetic field with the opposite sign to the electric field con-
tribution, so that it tends to inhibit the formation of the superconducting phase.
The condensate shares the solution of the quantum harmonic oscillator wavefunc-
tion in one dimension. The magnetic field has the effect of localising the charged
condensate into Landau levels. The lowest of these levels has a Gaussian profile,
or “droplet”.

The study of this system’s ground state was made more precise in [118, 119].
There it was revealed that the droplet is not the only type of solution for the
charged scalar condensate at finite magnetic field. There is also a vortex solution.
The vortex solution is strikingly similar to the solution of figure 3.1. The conden-
sate is zero at the origin, the centre of the vortex, and constant at spatial infinity,
while the magnetic field is finite at the centre and decays at infinity. The authors
argue that the two types of solution appear at different regions in the (B, T ) phase
diagram. They claim that the droplets appear only above a critical value of B
and thus do not appear in the superconducting phase. It is doubtful whether they
then form an energetically favourable ground state. The vortices however do form
in the superconducting phase, at low enough B. They trap the magnetic flux into
tubes, as is familiar from type-II superconductors.
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With the single vortex solution in hand, the next step was to find out whether
holographic superconductors support vortex lattice solutions like those in type-II
superconductors and whether they form a ground state. The challenge was taken
up by Kengo Maeda, Makoto Natsuume and Takashi Okamura in [120]. They
studied a (3+1)-dimensional gravity model of a holographic s-wave superconductor
and, following an analysis similar to Abrikosov’s, found that it behaves as a type-II
superconductor.

The Maeda et al. model is Einstein–Maxwell with a complex scalar. The
effective action is

S =

∫
d4x
√
−g
(
−1

4
FµνFµν − | (∇µ − iAµ) Ψ|2 −m2|Ψ|2

)
. (4.38)

The action is effective because the gravitational part is ignored; we are in the
probe limit. Fµν is the field strength of the U(1) gauge field Aµ. The background
is AdS4–Schwarzschild with metric

ds2 =
L2α2

u2

(
−h(u)dt2 + dx2 + dy2

)
+
L2

u2

du2

h(u)
, (4.39)

where α(T ) = 4πT
3 = uH

L2 , L is the AdS radius, uH is the horizon radius, T is
the field theory temperature, and h(u) = 1 − u3. We set uH = 1 for simplicity.
The complex scalar has mass m2 = − 2

L2 , as in section 4.1. With this choice, the
equations of motion yield the boundary expansion

Ψ = ψ1u+ ψ2u
2 +O(u3). (4.40)

Because m2 is negative and so there is no unnormalisable mode, either ψ1 or ψ2

can be interpreted as the vev of the scalar operator in the dual theory, with scaling
dimensions ∆ = 1 or ∆ = 2, respectively. We choose to interpret ψ1 as the source
and set it to zero for spontaneous symmetry breaking. Finally, there should be
an electric and a magnetic field. The electric field determines the field theory
chemical potential by µ = At|u=0, as usual, and the magnetic field gives the field
theory external magnetic field by B = Fxy|u=0.

As explained in section 3.3, type-II superconductors have two critical magnetic
field values Bc1 and Bc2 . The aim is to model the ground state of the holographic
superconductor just below Bc2 , where the condensate is small and we expect to find
a vortex lattice. We know from [118, 119] that Bc2 exists in holographic models,
because they found a critical magnetic field above which the vortices cease to
exist. The approach is thus to fix a value for T , which corresponds to fixing µ,
small enough so that the system is in the superconducting phase. Then adjust
the magnetic field B such that B < Bc2 and ε = (Bc2 −B)/Bc2 � 1. The small ε
allows us to make an expansion about the normal phase solution,

Ψ(x, y, u) = ε1/2ψ1(x, y, u) + ε3/2ψ2(x, y, u) + . . . (4.41)

Aµ(x, y, u) = A(0)
µ (x, y, u) + εA(1)

µ (x, y, u) + . . . , (4.42)

where the zeroth order solution is given by

A
(0)
t = µ(1− u), A(0)

x = 0, A(0)
y = Bc2x, (4.43)



4.3. Inhomogeneous ground states 61

and Ψ = 0. This expansion was first made by Abrikosov in [42], and is also what
we do in chapter 5.

Solving the equations to linear order, one finds the general solution

ψ1(x, y, u) =
1

L2

∑
l,m,n

Cl,m,ne
inky−Bc2

2

(
x− nk

Bc2

)2

Hm

[√
2Bc2

(
x− nk

Bc2

)]
ρl(u).

(4.44)

This should be reminiscent of the solution (3.30), and we encounter it again in
chapter 5. The x-dependent part of the exponent times the Hermite polynomials
Hm is nothing but the quantum harmonic oscillator solution found in [116]. Fo-
cusing only on the lowest energy solution with m = 0, we again get the droplet
form. In the radial direction, the general solution also contains a tower of modes
given by ρl(u). There is no closed form solution for the ρl, so they have to be
solved for numerically. Since we are looking for the ground state, we can again
focus on the lowest energy solution ρ0. The Cl,m,n and k are constants that need
to be fixed by solving the equations to higher order in ε and calculating the free
energy. Maeda et al. do this, and it turns out that they take values that yield the
triangular lattice vortex solution in the x- and y-directions for ψ1, which means a
triangular lattice condensate in the field theory.

There are some remarks to be made about this model. Firstly, it shows that
one of the simplest holographic superconductor models, the s-wave, behaves like
a type-II superconductor rather than a type-I. The Meissner–Ochsenfeld effect
is present; the magnetic field reduces the size of the condensate and eventually
destroys it completely. Also, right beneath the critical magnetic field Bc2 , an
vortex lattice forms.

Secondly, this model is microscopic, not effective as with Ginzburg–Landau.
The gravity setup is exactly dual to a field theory where there are no electrons
being bound into Cooper pairs. There are no quasiparticles whatsoever because
the theory is strongly coupled. What there is is a strongly coupled theory with
a scalar operator that condenses below a certain temperature. The gravitational
description looks like an effective description at long wavelength like the Ginzburg–
Landau model because of the large N limit.

Finally, given that all our intuition about the Ginzburg–Landau model is being
verified by studying the s-wave holographic superconductor, it is quite surprising
that the result is so different for the p-wave. As we show in chapter 4, the magnetic
field contributes to the effective mass of a non-abelian gauge field with the opposite
sign. The magnetic field tends to induce superconductivity rather than destroy
it. The vortices are still present, but they appear above the critical magnetic field
value that induces superconductivity. And indeed, the ground state is a triangular
lattice.

Before we move to considering the p-wave, the main original work of this
thesis, we consider the broader context of magnetic field-induced ground states.
Vortex lattices are not the only exotic ground states that make an appearance in
holography. Various striped phases have been found for example in [121] and [122].
These works consider top-down brane models from 11-dimensional supergravity.
The latter shows that there is an infinite family of solutions from supergravity that
exhibit a magnetically induced instability resulting in an inhomogeneous ground
state. This sort of work is important because it shows that inhomogeneous ground
states do not only arise from bottom-up models.
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Finally, translation invariance can also be broken with magnetic monopoles.
This was studied in an AdS4 background in [123] and [124]. The magnetic
monopoles are solutions of Yang–Mills–Higgs theory with gauge group SU(2). In
a certain limit where the monopole magnetic charge becomes large, a “monopole
wall” is formed. This is a monopole solution where the radius of the monopole is
large enough to be treated as a plane. It was shown in [123] that there is a W
boson instability in this background. In [124] the new ground state resulting from
the instability was found numerically, and it was shown to be a hexagonal lattice.



Chapter 5

Holographic lattice ground
states from a magnetic field

Take a simple gauge/gravity model on AdS5 with either a black hole or a hard
wall cutoff in the bulk. Add an SU(2) gauge field and switch on a magnetic
component with magnitude B. For small B, this is a stable, normal phase solution.
It is invariant under a U(1) gauge symmetry, a subset of the full SU(2) symmetry
present when B vanishes. Increase B, however, and the remaining gauge symmetry
is broken. For B above a critical value Bc, the solution is unstable. For a solution
to be stable when B > Bc, other components of the gauge field must be nonzero.
These other components are analogous to W -bosons. For B near Bc, they form a
triangular vortex lattice ground state. This is the superconducting phase. In the
dual strongly coupled field theory, the vortex lattice is present in the expectation
value of a vector condensate.

This model is important in the context of chapter 4. As a holographic super-
conductor, it tells us that the superconducting phase transition can be triggered
by a large enough non-abelian magnetic field. In addition, it features the sponta-
neous production of an inhomogeneous lattice ground state. Lattice ground states
are crucial for the development of more realistic holographic condensed matter
models so it is important to understand how they can come about. A holographic
superconductor without a lattice tends to have infinite DC conductivity simply
because of translation invariance of the ground state.

Moreover, our model might have implications for QCD. As we saw in chapter 3,
there are various toy models of QCD that have vector particle condensates — either
gluons, W -bosons or ρ-mesons — in the presence of strong magnetic fields. In this
chapter we provide evidence that the effect is more general since it appears in two
simple holographic models. We should thus not exclude the possibility that QCD
itself has such lattice ground states.

This chapter is devoted to the details of the calculation in this model. It is
based on the author’s original work in [2]. We first describe the holographic model
in section 5.1. We move on to the perturbative strategy needed to find the ground
state in section 5.2. In section 5.3 we study the equations to linear order, where
we show that an instability exists using both a quasinormal mode analysis and a
Schrödinger potential analysis. Section 5.4 describes the possible lattice solutions
that are valid at linear order. Identifying the triangular lattice as the ground
state requires going to higher order. We show the reason for this by discussing
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the field theory’s ground state energy in section 5.5. We then solve the equations
and present the results.

The instability in the normal phase solution was first found by the author and
collaborators in [1, 3], while the ground state of the superconducting phase was
found in [2, 4].

5.1 Holographic Setup

5.1.1 Geometry

The system we study is an Einstein–Yang–Mills theory on the (Poincaré patch of)
an asymptotically AdS5 with an SU(2) gauge field. The action is given by

S =

∫
d5x
√
−g

{
1

16πGN
(R+ Λ)− 1

4ĝ2
tr(FµνF

µν)

}
, (5.1)

where ĝ is the Yang–Mills coupling, GN in the 5D gravitational constant and L is
the AdS5 radius. R is the Ricci scalar and F is the Yang–Mills field strength.

We consider the probe approximation, where the Yang–Mills term is small
compared to the Einstein–Hilbert term, so that the backreaction of the gauge
fields onto the geometry can be neglected. We thus choose a fixed 5-dimensional
AdS-Schwarzschild background geometry. The metric is

ds2 =
L2

u2

(
−f(u)dt2 + dx2 + dy2 + dz2 +

du2

f(u)

)
, (5.2)

where the asymptotically AdS region is at u→ 0.
We study two different models that turn out to have very similar properties.

The first is a finite temperature model first proposed in [25]. In this case f is a

blackening factor given by f(u) = 1− u4

u4
H

, which results in the AdS–Schwarzschild

geometry. uH the location of the planar black hole horizon. The Hawking tem-
perature of the black hole is T = 1/πuH .

The second model was introduced in [125, 126] as a simple attempt to model
confinement holographically. The idea is to simply terminate the AdS geometry
at a finite radial distance u = uC and impose Neumann boundary conditions on
the fields there. It is therefore called the hard wall cutoff model. In this model we
set f(u) = 1, so it corresponds to a zero-temperature theory if we let uC → ∞.
The reason why this can be thought of as a crude model of confinement is that
the part of the geometry corresponding to the IR of the field theory is absent.
This constrains the fields to live in the UV, effectively confining them to a small
space. Matching this model with QCD means choosing the cutoff scale such that
uC ∼ 1/ΛQCD.

In both models the geometry has a scaling symmetry. The metric is unchanged
if each coordinate is rescaled by xµ → λxµ for constant λ, as long as we also scale
uH and uC . This means that, without loss of generality, we can set uH = uC =
1. This is simply a choice of units. Factors of uH and uC can be restored by
dimensional analysis.

Unless otherwise noted, the following discussion will be independent of the
particular model we are using. We specialise to the AdS–Schwarzschild model
when performing the stability analysis because that involves features specific to
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finite-temperature field theory. Also, when we get to the numerics, results from
the two models are presented separately.

5.1.2 The Yang–Mills action

The relevant part of the action simplifies to

S = − 1

4ĝ2

∫
d5x
√
−g tr (FµνF

µν) , (5.3)

with the equations of motion

∇µF aµν + εabcAbµF cµν = 0. (5.4)

The SU(2) gauge field is A = Aaµτadxµ, for a = 1 . . . 3. We use the convention

where the Lie algebra basis is given by τa = σa

2i , with σa the Pauli matrices, and
the structure constants fabc are defined by [τa, τ b] = εabcτ c so that fabc = εabc.
With these definitions, the components of the field-strength tensor F = dA+A∧A
become

F aµν = ∂µAaν − ∂νAaµ + εabcAbµAcν . (5.5)

As mentioned at the start of the chapter, the main aim of this chapter is to
look at the effect of a strong (flavour-)magnetic field given by F 3

xy = B, with all
other components of F aµν vanishing. We will see that when B becomes large1,
other components of F become non-zero dynamically. To get a consistent set of
equations we therefore consider a gauge field A of the form

A =
∑

a=1,2,3,µ=x,y

Aaµ(t, x, y, u)τadxµ. (5.6)

It turns out that we could turn off the t and z dependence of the gauge field and
still have consistent equations. This simplifies the equations. Turning off the t
dependence guarantees a static solution. Turning off the z dependence, where the z
direction is parallel to the magnetic field, yields a lattice in the x, y-plane. For the
moment we leave the t-dependence in the ansatz. This allows us to consider time-
dependent perturbations while discussing the linearised solutions to the equations.
When going to higher order, however, we turn the t-dependence off.

The action (5.3) has an SU(2) gauge freedom. For the ansatz above to make
sense, we need to specify how the gauge is fixed. It is therefore important to under-
stand how gauge transformations affect the system. Under a gauge transformation
eiΛ(xµ), A transforms as

Aµ → Aµ + δAµ = eiΛAµe−iΛ − i∂µeiΛe−iΛ. (5.7)

When Λ(xµ) is an infinitesimal transformation, this becomes

δAaµ = DµΛa = ∂µΛa + εabcAbµΛc. (5.8)

1Since we have chosen the units where uH = 1 or uC = 1, B is a dimensionless quantity.
Restoring the units, the statement is that Bu2

H = B/(πT )2 or Bu2
C ∼ B/Λ2

QCD is large, or that
B is large compared to the radial scale of the background.
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The gauge transformations give us the freedom to fix the gauge Aau = 0. We work
in this gauge from now on. This does not, however, fix all the gauge symme-
try. There are still gauge transformations that leave the choice Aau = 0 intact.
From (5.8) we see that for gauge transformations δAau = 0, we can still choose
Λ = Λ(t, x, y, z).

Choosing the solution F 3
xy = B, with all other components vanishing, breaks

this remaining gauge symmetry. Only U(1) transformations of the form Λ =
Λ3(t, x, y, z)τ3 leave the choice for F invariant. For B large enough, all the com-
ponents in (5.6) become nonzero due to the dynamics; this breaks the remaining
symmetry. We thus claim to have a superconductor, because the U(1) symmetry
is broken dynamically2. Taking the linear combinations E±µ = A1

µ ± iA2
µ gives

fields that transform in the fundamental of the remaining gauge symmetry. It can
be checked from (5.8) that E±µ → (1 ∓ iΛ3)E±µ whenever Λ = Λ3τ3. Later on we
work only with the fields E+, which we rename to E .

5.1.3 Reading off field theory quantities

We learned in section 2.2.1 how to find the dual field theory source and expectation
value from the boundary data of the gauge field. Equations (2.16) and (2.21) imply
that in an expansion of the gauge fields near the AdS boundary, the leading term
is the source and the subleading term is proportional to the vev. The field A3

x,y

has a boundary expansion given by

A3
x,y

∣∣
u→0

= s(3)
x,y + v(3)

x,yu
2 + . . . , (5.9)

where s
(3)
x,y is the value of the source, which in this case is the externally applied

magnetic field potential. v
(3)
x,y is proportional to the vev, corresponding to the

magnetisation. We set the boundary conditions so that the applied magnetic field
is not corrected by the higher order perturbations in ε, whereas the magnetisation
will obtain a non-zero value.

Similarly, the fields A1,2
x,y have a boundary expansion given by

A1,2
x,y

∣∣
u→0

= s(1,2)
x,y + v(1,2)

x,y u2 + . . . , (5.10)

where s
(1,2)
x,y corresponds to the source of the operator that will condense to break

the U(1) symmetry. We adjust the boundary conditions in such a way that this

vanishes. This means that the symmetry breaking is spontaneous. v
(1,2)
x,y is pro-

portional to the vacuum expectation value of this operator, which we read off to
find the resulting supercurrent in the superconducting phase.

Boundary conditions are also imposed on the fields in the IR. In the case of
the black hole background, we impose regularity at the horizon and in the case of
the hard wall model we impose Neumann boundary conditions.

5.2 Perturbative strategy

Substituting the ansatz (5.6) into equation (5.4) yields nine coupled partial dif-
ferential equations in the variables t, x, y and u. Of these nine equations of

2 Technically the field theory dual to this model is a superfluid, not a superconductor. This is
because the U(1) gauge symmetry in the bulk theory gets mapped to a global symmetry in the
field theory. We can think of it as a “weakly-gauged” superconductor.
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motion, six are dynamical equations for each field A1,2,3
x,y , and three equations are

constraints. The constraint equations arise from the equations of motion for the
components A1,2,3

u , which were chosen to be zero using gauge symmetry. A general
solution to these equations is presumably not available in closed form. We make a
perturbative ansatz and solve them order by order, as Abrikosov first did to find
vortices in type II superconductors. Our strategy is based on Abrikosov’s and is
explained in the current section.

5.2.1 The comparison to Ginzburg–Landau theory

For clarity we rewrite the Ginzburg–Landau equations (3.4)–(3.5) as

(−i∇−A)2 φ− φ+ |φ|2φ = 0, (5.11)

∇×∇×A = −i (φ∗∇φ− φ∇φ∗)− |φ|2A. (5.12)

Only the structure of these equations is important, so we have ignored constant
factors. Here φ is the wave function of Cooper pairs, and A is the electromagnetic
vector potential. The nine equations of motion in our system can be split into two
groups that roughly correspond to the two equations above.

The first of the two groups, hereafter called the condensate equations, contains
the six equations for the fields A1,2

x,y,u. The superconducting condensate of the dual
field theory, which is like φ above, is found by differentiating the on-shell action
with respect to the boundary values of A1,2

x,y, as in equation (2.21). Of the six
equations in this group, the dynamical equations are for A1,2

x,y and the constraint3

equations are for A1,2
u . So this first group is analogous to equation (5.11).

The analogy can be made more clear. As mentioned above, we can make
the field definitions Ex,y = A1

x,y + iA2
x,y. Doing so allows us to combine the six

real equations into three complex equations, two dynamical and one constraint.
The constraint equation relates Ex and Ey such that there is only one complex
degree of freedom left, which is analogous to the state φ. All this is hard to see
at the non-perturbative level, but it illustrates the strategy we follow for solving
the equations at each order: we use the constraint equation to reduce the two
dynamical equations into one, and then solve it.

The second group of equations, which we call the magnetic field equations, is
for the fields A3

x,y,u, corresponding to A in equation (5.12) above. There are three
such equations, one of which is a constraint. At each order we will be able to use
the constraint to separate the equations into one for A3

x and one for A3
y.

5.2.2 The gauge field perturbative expansion

Our strategy works as follows. We first choose a constant external magnetic field,
B, by setting A3

y = xB and A3
x = 0. For B less than some critical value Bc,

this configuration with all other components zero solves the equations of motion.
This is the normal phase of the superconductor. We will show that the system
enters a superconducting phase when the magnetic field is increased beyond some
critical value Bc. In this phase, the ground state has a non-trivial profile for all
the fields in the ansatz equation (5.6). We look for this configuration at some

3Recall that we have set Aau = 0. However, its equations of motion still impose constraints on
the other fields.
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value of B infinitesimally above Bc, where the condensate is still small. This lets
us do a perturbative expansion in a small parameter ε ∼ B−Bc

Bc
. To make the

exposition clearer we leave this parameter ε explicit when studying the expansion.
However, it will be absorbed into the definition of the perturbative corrections to
the fields when we come to minimising the energy. We thus write an ansatz for
the expansion in the form

A3
y = xBc + εA3

y + ε2a3
y + . . . ,

Aaµ = εAaµ + ε2aaµ + . . . for (a, µ) 6= (3, y), (5.13)

and solve the equations order by order in ε.

Having defined the ansatz for our gauge potential in equation (5.13) we can
learn more about the perturbative expansion by studying the non-linear structure
of the equations of motion. The equation for A3

u is

−A2
x∂uA1

x −A2
y∂uA1

y +A1
x∂uA2

x +A1
y∂uA2

y + ∂y∂uA3
y + ∂x∂uA3

x = 0. (5.14)

We see that the magnetic field components appear in the linear terms, while the
condensate components appear in quadratic terms. This suggests that a contribu-
tion to the condensate components that is first order in the perturbative expansion
influences a second order contribution in the magnetic field components. More
generally, an odd order contribution to the condensate components influences an
even order contribution to the magnetic field components.

This structure is common throughout all the equations of motion. It turns out
that terms in the perturbative expansion of the magnetic field components that
have an odd order vanish. The even order terms in the condensate components
can then also be set to zero. We can thus constrain the expansion ansatz of
equation (5.13) to

Ex,y = εEx,y + ε3ex,y +O(ε5),

A3
y = xBc + ε2a3

y +O(ε4), (5.15)

A3
x = ε2a3

x +O(ε4).

Here the calligraphic letters denote the non-perturbative fields. Ex,y and ex,y are
first and third order contributions to the condensate components, respectively,
while a3

x,y are second order corrections to A3
x,y.

Because of this convenient expansion of the fields, the condensate components
and the magnetic components decouple at each order. That means that at each
order, we only need to work with fields we have already solved at previous orders.
Our strategy is thus to solve for the fields in the following sequence:

Ex,y = εEx,y

��

+ ε3ex,y + O(ε5),

A3
y

A3
x

=

=

xBc + ε2a3
y

ε2a3
x

>>

+ O(ε4),

+ O(ε4).

In the next section we start with the linear order solution, which will shed more
light on the procedure that must be implemented at higher orders.
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5.3 The linearised equations

We can extract many interesting features of the physics of the system by solving
the equations to linear order. The most remarkable thing we find at linear order
is that the equations have a nontrivial solution in a certain parameter range —
when B is larger than some critical value, Bc. This nontrivial solution, as we show
in a later section by going beyond linear order, represents a state with lower free
energy than the trivial solution and so it is the preferred state.

Another remarkable feature is the precise form of the solutions. At linear order
the equations are separable. This means our work is divided between two compo-
nents — the form of the solution in the boundary field theory’s spatial directions
and the radial profile of the solution. Both components tell an interesting story.
The spatial component tells us that the field theory condensate is made up of
vortices. At this order the vortices do not interact, but we eventually show by
going to higher order that they form a triangular lattice in their ground state.

From the radial component we can tell the renormalisation behaviour of the
dual field theory. The fields’ radial profile vanishes at the boundary, in the field
theory’s UV, and is nonzero in the bulk, the field theory’s IR. The new ground
state thus shows the emergence of a lattice at low energies.

In this section we first use the linearised equations to show that the trivial
solution is not stable. This is done by considering small fluctuations of the fields
about the trivial solution. These fluctuations grow exponentially above a critical
value Bc of the magnetic. This indicates an instability of the trivial solution and
suggests the presence of a different ground state. This stability analysis goes hand-
in-hand with finding the general form of the new ground state. In the next section
we show how to obtain vortices distributed in a lattice from this general form.

5.3.1 Separating the equations

To study fluctuations about the trivial solution, we assume that the fields have
time dependence proportional to e−iωt. Using the expansion (5.15), we then find
that the linear order equations of motion (in complex form) are

0 = iBx∂uEy + ∂y∂uEy + ∂x∂uEx, (5.16)

0 =

(
B2x2 − ω2

f

)
Ex − iBEy +

(
f

u
− f ′

)
∂uEx − f∂2

uEx − 2iBx∂yEx

− ∂2
yEx + iBx∂xEy + ∂x∂yEy, (5.17)

0 =

(
2iB − ω2

f

)
Ex +

(
f

u
− f ′

)
∂uEy − f∂2

uEy

+ iBx∂xEx + ∂x∂yEx − ∂2
xEy. (5.18)

Here, as above, f(u) = 1− u4 for the AdS Schwarzschild model and f(u) = 1 for
the hard wall model.

These equations can be solved by following Abrikosov [43], where he uses a
rather elegant trick. First we assume that the solution is independent of y, which
gets rid of all the terms with y-derivatives in the equations. This allows us to
solve for Ey in terms of Ex, giving the solution

Ey =
i

Bx
∂xEx. (5.19)
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The next thing to notice is that the equations are separable, so we make the ansatz
Ex = X(x)U(ω, u). We then solve the equations for X and U , and afterwards
restore the y-dependence using a cunning observation about our gauge choice.
We chose the gauge where A3

y = xB, but we could equally well have chosen that
A3
y = xB − k, for some constant k. This gives the same physical magnetic field,

namely Fxy = B. Since the equations of motion now have x − k/B everywhere
that x appeared, the solution to Ex in this different gauge is now Ex = X(x −
k/B)U(ω, u). From (5.7) we see that the change A3

y = xB → xB − k is the
result of the gauge transformation Λ3 = −yk. But also notice from the gauge
transformations that this transforms

Ex → e−iΛ
3
Ex = eikyEx. (5.20)

In terms of the solution functions,

Ex = X(x)U(ω, u)→ eikyX(x)U(ω, u) = X(x− k/B)U(ω, u). (5.21)

In other words, once we have the solution X(x)U(ω, u) in our original gauge,
we know that e−ikyX(x − k/B)U(ω, u) is also a solution. In general, since the
equations of motion are linear PDE’s (to this order), the solution is

Ex =
∑
n

e−inkyX

(
x− nk

B

)
U(ω, u). (5.22)

The y-dependence is restored!
The next step is then to find X and U . Here there are no elegant tricks and the

equations have to be solved by brute force. The constraint equation (5.16) fixes
Ey in terms of Ex, and then the equation of motion for Ey, (5.18), becomes the
x-derivative of equation (5.17). So there is only one separable equation to solve.
It yields the equations for X(x) and U(ω, u),

−C = B2x2 +
2X′

x −X
′′

X
, (5.23)

C = −ω
2

f
+

(
f
u − f

′
)
U ′ − fU ′′

U
, (5.24)

where C is the separation constant and prime denotes differentiation with respect
to u.

The X equation

The X equation is identical to the one for the quantum harmonic oscillator. To

solve it, first define a function Y (x) such that X(x) = e−
B
2
x2
Y (x). We will assume

that B > 0. This analysis will be slightly modified for B < 0 but should still work.
Then (5.23) becomes

xY ′′(x)− 2(Bx2 + 1)Y ′ + x(B − C)Y = 0. (5.25)

Now we change variables to y = Bx2 to get

yY ′′(y) +

(
−1

2
− y
)
Y ′ − C −B

4B
Y = 0. (5.26)
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This is the confluent hypergeometric differential equation, also known as Kum-
mer’s differential equation. It has solutions

Y (x) = A 1F1

(
C −B

4B
;−1

2
;Bx2

)
+ B U

(
C −B

4B
;−1

2
;Bx2

)
. (5.27)

1F1(a; b; z) and U(a; b; z) are the confluent hypergeometric functions of the first
and second kind, respectively. We need to analyse the asymptotic behaviour of
these functions to find out when they will produce physical solutions that are
regular for all x. As x→∞,

1F1(a; b;Bx2) ∼ eBx
2
(Bx2)a−b

(
Γ(b)

Γ(a)
+O

(
1

x2

))
+

(−Bx2)−aΓ(b)

Γ(b− a)

(
1 +O

(
1

x2

))
. (5.28)

Looking at the first term, it is clear that this function will blow up exponentially
at infinity, except in the special case where the 1/Γ(a) diverges and cancels out
the exponential. This happens whenever a = −n for n ∈ N. (Recall that in X(x),

this term is multiplied by e−
B
2
x2

, which is not enough to cancel the exponential
divergence.) So for a = −n, this expansion does not hold. There is another identity
we can use for a = −n, and in fact it shows that 1F1 becomes the polynomial

1F1

(
−n; b;Bx2

)
=

n!

(b)n
Lb−1
n (Bx2), (5.29)

where Lb−1
n is the nth generalized Laguerre polynomial and (·)n the Pochhammer

symbol.
Using an identity we can write the second term in Y (x) as

U

(
a;−1

2
;Bx2

)
=

Γ(3
2)

Γ(a+ 3
2)

1F1

(
a;−1

2
;Bx2

)
+

Γ(−3
2)

Γ(a)
(Bx2)

3
2 1F1

(
a+

3

2
;
5

2
;Bx2

)
. (5.30)

This shows that U(a;−1
2 ;Bx2) ∼ eBx

2
as x → ∞ unless a = −n or a = −n − 3

2 ,
and it is indeed possible to show that U is a polynomial for these values of a. To
do this, we use the identities

U

(
a;−1

2
; z

)
=
−1

2 + z

−1
2 − a

U

(
a;

1

2
; z

)
− z

−1
2 − a

U

(
a;

3

2
; z

)
, (5.31)

U

(
−n

2
;
1

2
; z

)
= 2−nHn

(√
z
)

for n ∈ N, (5.32)

U

(
1

2
− n

2
;
3

2
; z

)
=

2−n√
z
Hn

(√
z
)

for n ∈ N, (5.33)

where Hn are the Hermite polynomials, to show that, for a = −n− 3
2 ,

U

(
−n− 3

2
;−1

2
;Bx2

)
=

z − 1
2

n+ 1
2−2n−3H2n+3

(√
Bx2

)
−
√
z

n+ 1
2−2n−4H2n+4

(√
Bx2

)
. (5.34)
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This is a polynomial and thus regular for all x. For a = −n, we simply need the
identity

U
(
−n; c;Bx2

)
= (−1)nn!Lc−1

n (Bx2) (5.35)

to see that U reduces to a polynomial.

We thus see that the solutions for X(x) blow up exponentially for large x,
unless a takes some particular values. At these particular values X(x) becomes an
exponentially suppressed polynomial. These solutions are physical. We would like
the physical solution with least energy, since this is the state that will condense
first. Since the energy of a quantum state increases with the number of roots, this
means we need to pick the polynomial solution with no roots. This corresponds
to choosing a = 0. In our case, a = C−B

4B , or B = C
1+4a . This means that the

constraint we have on a to produce physical solutions translates to a constraint
on C. Since B > 0, this means C > 0. Note that higher values of a cannot then
be chosen, since they would change the sign of B.

The U equation

Choosing the lowest Landau level solution for X gives that the separation constant
C = B. This turns equation (5.24) into

U ′′ +
(
f ′

f
− 1

u

)
U ′ +

(
B

f
+
ω2

f2

)
U = 0. (5.36)

The thing to notice here is that the equation has an effective mass term for U ,
and that the square of the mass is negative for large B and ω. This suggests that
when we solve the equation, we will find a non-trival profile for U at large B. In
the next subsection we will investigate that further. In this subsection we look at
the behaviour of the U equation at its domain boundaries.

The equation is most subtle for the AdS–Schwarzschild model, when f(u) =
1 − u4. It has regular singular points at u = 1, the location of the black hole
horizon. The way to get around the singular points and solve the equation is to
use the Frobenius method. We write U(ω, u) = (1 − u)νF (u), and assume that
U(ω, u) ∼ (1 − u)ν at u ≈ 1, which is the same as requiring F (u) → 1 as u → 1.
In this limit the equation becomes

0 = ν(ν − 1)(1− u)ν−2 + ν
3u3 + 1

u

1− u4
(1− u)ν−1

+

(
B

1− u4
+

ω2

(1− u4)2

)
(1− u)ν (5.37)

⇒ 0 = ν(ν − 1) +
ν
(
3u3 + 1

u

)
(1 + u2)(1 + u)

+
B(1− u)

(1 + u2)(1 + u)
+

ω2

(1 + u2)2(1 + u)2
.

(5.38)

Evaluating this at the horizon gives ν = ± iω
4 . The two possible solutions cor-

respond to waves travelling into or out of the horizon. Since it is a black hole,
the physical option would be to have waves propagating only into the horizon.
This also agrees with the prescription for calculating retarded Green’s functions
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that was proposed by [97]. We see which solution is ingoing by looking at the
near-horizon behaviour of the field, given by

Ex(t, x, u) ∼ e−iπTωtU(u) (5.39)

= e−iπTωt±i
ω
4

ln(1−u). (5.40)

From this it is clear that the ingoing wave, going to larger u, is given by the
solution U = (1− u)−i

ω
4 F (u).

In the hardwall model, the geometry ends at u = 1 but is otherwise entirely
regular there. We impose the boundary condition U ′(1) = 0.

It is also instructive to look at the behaviour of equation (5.36) near the bound-
ary. The boundary behaviour is identical for both models. At u ≈ 0, it becomes

U ′′ − U
′

u
+ (ω2 +B)U = 0. (5.41)

Using the ansatz that U ∼ u∆ near the boundary, we get

∆(∆− 1)u∆−2 −∆u∆−2 + (ω2 +B)u∆ = 0, (5.42)

which has solutions for ∆ = 0 and ∆ = 2.

5.3.2 Fluctuation stability analysis

Since X is independent of ω, we can focus only on the radial equation to analyse
the fluctuations. We also focus only on the AdS–Schwarzschild model, because
the finite temperature makes it more interesting and realistic. Note however that
this stability analysis is not strictly necessary, so we do not need to repeat it for
the hard wall model. In later sections we find the new ground state directly, so
its existence does not need to be proved first. The stability analysis does however
introduce some interesting physical concepts, so we include it here.

We analyse the instability of the system for various values of B in two ways.
The first is by using quasinormal modes, which we first introduced in section 4.3.
As we have mentioned, the correct boundary conditions for the radial equa-
tion (5.36) are the infalling condition at the horizon and vanishing condition at
the boundary. When these are imposed, equation (5.36) has solutions only for
particular values of ω. It was shown in [127] that when B = 0, the possible values
of ω are ωn = n(±2−2i). The fact that these frequencies can be imaginary should
not be surprising. Recall that the fluctuations have a time dependence that goes
like e−iωt. When ω is purely real the fluctuation is a standing wave, also known
as a normal mode. When ω has a negative imaginary part, the fluctuation gets
exponentially smaller. This dissipation of the energy of the fluctuation comes from
the ingoing boundary conditions at the horizon — energy is falling into the black
hole. Because of the dissipation, this is no longer a normal mode but is rather
called a quasinormal mode. The (complex) frequency of a quasinormal mode is its
quasinormal frequency. When the quasinormal frequencies have a positive imag-
inary part, the fluctuations blow up. This indicates an instability in the gauge
field, and is the signal we are looking for that a non-trivial profile of the gauge
field (and thus a condensate in the dual theory) is forming.

The easiest way to investigate the quasinormal frequencies is by looking at the
retarded Green’s function dual to the fluctuations. This is because the quasinormal
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frequencies are the locations of the poles of the Green’s function. We thus first
look at Son et al.’s prescription for calculating the retarded Green’s function to
see why this is, and then analyse the motion of the quasinormal frequencies in the
complex plane as a function of the background magnetic field.

The second approach we use is a Schrödinger potential analysis, where we
rewrite the radial equation as a Schrödinger equation and look for the formation
of bound states. This we do in section 5.3.4.

5.3.3 The poles of the retarded Green’s function

The first part of the prescription from [97] requires choosing infalling boundary
conditions for the bulk field near the black hole horizon. We have already imposed
those conditions above. Now we work out the retarded Green’s function dual to
the fluctuations by using the AdS/CFT dictionary described in chapter 2.

First we Fourier transform the gauge field in the boundary directions,

Aaµ(x, u) =

∫
d4k

(2π)4
eik

ixiÃaµ(ki, u), (5.43)

and substitute it into the on-shell action (2.22) to give

Son-shell =− 1

2ĝ2

∫
d4k

(2π)4

√
−γnu

(
Ãaν(−ki, u)∂uÃ

a
ν(ki, u)

− Ãaν(−ki, u)∂νÃ
a
u(ki, u)

)∣∣∣
u=ε

. (5.44)

We ignored the bulk term in (2.22) because it vanishes at linear order. In our case
Ãu = 0, so the second term disappears. The next step is to write the bulk field in
momentum space as

Ãaµ(ki, u) = paµ(ki, u)Ãa0µ(ki) (no sum), (5.45)

where Aa0µ(ki) is the boundary (u = ε) value of Aaµ(ki, u), and paµ(ki, u) gives its

u-dependence, with limu→0 p
a
µ(ki, u) = 1. Then,

Scl = − 1

2ĝ2

∫
d4ki

(2π)4

√
−γnugµνÃa0µ(−ki)paµ(−ki, u)∂up

a
ν(ki, u)Ãa0ν(ki)

∣∣∣∣
u=ε

.

(5.46)

According to the recipe proposed by [97], we now know that the retarded
Green’s function in the boundary theory is given by

(GR)abµν(ki) = −i
∫
d4xe−ik

ixiθ(t)〈[Jaµ(ki), Jbν(0)]〉

= −
∫
d4xe−ik

ixiθ(t)
δ2Scl

δAaµ0 (x)δAbν0 (0)

=
1

ĝ2

√
−γnuδabgµνpaµ(−ki, u)∂up

b
ν(ki, u)

∣∣∣∣
u→0

, (5.47)

with no sum over the indices. Using equation (5.45), we can rewrite this as

(GR)abµν(ki) =
1

g2

√
−γnuδabgµν

Ãaµ(−ki, u)

Ãaµ(−ki, 0)

∂uÃ
b
ν(ki, u)

Ãbν(ki, 0)

∣∣∣∣∣
u→0

. (5.48)
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Now, we changed variables to the E±µ fields, so we should write the Green’s
function in terms of these fields as well. A change of variables gives

(GR)+−
µν (ki) = −i δ2Scl

δE+µ(ki)δE−ν(0)

= − i
4

δ2Scl

δA1µ(ki)δA1ν(0)
− i

4

δ2Scl

δA2µ(ki)δA2ν(0)

− 1

4

δ2Scl

δA2µ(ki)δA1ν(0)
+

1

4

δ2Scl

δA1µ(ki)δA2ν(0)

=
1

4
(GR)11

µν(ki) +
1

4
(GR)22

µν(ki), (5.49)

where we used (5.47) to get to the last line. The other components are

(GR)−+
µν (ki) =

1

4
(GR)11

µν(ki) +
1

4
(GR)22

µν(ki), (5.50)

(GR)++
µν (ki) = 0, (5.51)

(GR)−−µν (ki) = 0. (5.52)

Since E±x is separated as E±x = U(ω, u)X̃(q), where ki = (ω, q, 0, 0), we can focus
solely on the u (and ω) dependence of the Green’s function to get

(GR)+−
xx (ω) ∼ U ′(ω, u)

U(ω, 0)

∣∣∣∣
u→0

. (5.53)

We see that zeroes of U(ω, 0) give poles in the retarded Green’s function. But these
zeroes are precisely the vanishing Dirichlet boundary conditions we need to impose
for fluctuations. Thus, since the physical modes fluctuate at the quasinormal
frequencies, we have shown that the quasinormal frequencies are at the locations
of the poles in the retarded Green’s function.

There is a nice way of interpreting poles in the Green’s function with a negative
imaginary part. Consider a pole in the Green’s function at ω0−iΓ, with ω0,Γ > 0.
It looks like

GR(ω) ∼ 1

ω − ω0 + iΓ
. (5.54)

Since the spectral density is R(ω) = −2 ImGR(ω), this pole gives a spectral
density that looks like

R(ω) ∼ 2Γ

(ω − ω0)2 + Γ2
, (5.55)

which is a peak located at ω0 with a width given by Γ. Thus, in the spectral
density where one only looks at real ω, it makes sense to interpret these peaks
as quasi-particles with a lifetime of 1/Γ. Of course, this applies only when the
imaginary part of the frequency ω is negative, because the fluctuations blow up
otherwise.

We can plot the Green’s function in equation (5.53) as a function of the fre-
quency ω. For this it is required to calculate U(ω, u) and U ′(ω, u) at the AdS
boundary. We do this by integrating numerically from the horizon to the bound-
ary. To avoid numerical infinities, the idea is to start at just outside the horizon,
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Imω

Reω

B = 0

Figure 5.1: The movement of the poles of the Green’s function at increasing
B. The two lowest order poles (with imaginary part closest to zero) start at
ω = ±2−2i. They move towards the imaginary axis, merge, then split again. The
merging happens when B ≈ 1.92. One pole then moves downward, away from 0
and outside the range of the figure. The other, which is drawn, moves towards 0
and eventually crosses the real axis into the upper half-plane when B = Bc ≈ 5.15.

ustart = 1 − 10−5, and integrate to just before the boundary at uend = 10−5. We
then of course need to find U(ω, ustart). This is done by expanding U(ω, u) in a
Taylor series near u = 1 and fixing U(ω, 1) = 1, and then we can calculate the
series coefficients that satisfy the equation of motion. U(ω, u) looks like

U(ω, u) = (1− u)−i
ω
4

(
1 +
−2ω + (3ω2 + 4B)i

8(ω + 2i)
(u− 1) + . . .

)
, (5.56)

which can be used to find U(ω, ustart). We then plot the result for various values
of ω and B to find the poles and how they move as B changes. The result for the
two lowest-order poles is plotted in figure 5.1.

When B = 0, the lowest-order poles start off at ω = ±2 − 2i. Increasing B,
they move towards the imaginary axis until they merge. They then split again as
B is increased further, with one pole moving towards negative imaginary values
and the other moving towards positive imaginary values. Eventually the pole
moving upwards crosses the real axis at a critical value of the magnetic field, Bc.
This is the instability we were looking for. This instability means that the field
gains a nontrivial profile, producing the condensate in the dual field theory.

Note also that the instability happens at ω = 0. This means we can switch off
the time-dependence of the equations and find a static new ground state. Also,
every time a higher order pole ωn reaches the origin we have a solution U with
ω = 0. These are however higher energy solutions to U . Since we wish to find a
new ground state, we focus on the lowest energy case, which is when the first pole
reaches the origin.
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5.3.4 Schrödinger potential analysis

The second qualitative way of understanding the instability comes from rewriting
the radial equation (5.36) as a Schrödinger equation of the form

−∂2
R∗ψ + VSψ = Eψ. (5.57)

The Schrödinger potential VS then determines the possible values of the energy
spectrum E = ω2. R∗ is a coordinate that we define below. To rewrite equa-
tion (5.36) as a Schrödinger equation, we follow the procedure described in the
appendix of [128].

We first switch to the radial AdS coordinate r = 1
u . Recall that with this

coordinate, the horizon is at r = 1 while the boundary is at r = ∞. Making the
replacement, equation (5.36) becomes(

2− 1

r4
− r4

)
U ′′ +

(
1

r5
+

2

r
− 3r3

)
U ′ +B

(
−1 +

1

r4

)
U = ω2U. (5.58)

Using the definitions

H0 =

(
r2 − 1

r2

)2

, (5.59)

H1 =
1

r
− r3, (5.60)

H2 = −B +
B

r4
, (5.61)

this becomes

−H0

H1
∂r (H1∂rU) +H2U = ω2U. (5.62)

Next we write U as the product of two functions of r, U(ω, r) = h(r)ψ(ω, r). Then

−H0ψ
′′ −H0

(
2
h′

h
+
H ′1
H1

)
ψ′ +

[
H2 −H0

(
h′′

h
+
H ′1
H1

h′

h

)]
ψ = ω2ψ. (5.63)

By introducing a new coordinate

R∗ =

∫ ∞
r

dr̄√
H0(r̄)

=
1

4
(π + 2arccoth r − 2arctan r) , (5.64)

the first term becomes −H0ψ
′′ = −∂2

R∗
ψ +

∂R∗H0

2H0
∂R∗ψ. We can then set

h =
H

1
4
0

H
1
2
1

, (5.65)

which will eliminate all terms in ψ′. The resulting equation is

−∂2
R∗ψ + VSψ = ω2ψ (5.66)
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Vs

R∗

Figure 5.2: The Schrödinger potential at different values of B. It is helpful to
compare this with figure 5.1. From top to bottom, the curves show the potential
at the values B = 0, 1.92, 5.15 and 10. The first curve shows the potential when
there is no magnetic field, the second one is for the value of B at which the poles
merge on the imaginary axis, the third is for the value at which the first pole
crosses the real axis, and the final value is to see what the potential does at higher
B. We see that a potential well forms with negative potential energy. The value
B = 1.92 is roughly where the curve first dips below zero, which is where the poles
in figure 5.1 merge.

where

VS = H2 −H0

(
h′′

h
+
H ′1
H1

h′

h

)
(5.67)

=

(
−1 + r4

) (
5− 4Br2 + 3r4

)
4r6

(5.68)

=

(
1− u4

) (
3− 4Bu2 + 5u4

)
4u2

. (5.69)

This is the potential in the Schrödinger equation.

The coordinate R∗ is like the “tortoise” coordinate from Schwarzschild space-
time. Near the event horizon, as r → 1, H0 ≈ (r−1)2, which gives R∗ ∼ − ln(r−1)
and so R∗ → +∞. For large r, H0 ∼ r4, giving R∗ ∼ 1

r → 0. H0 is positive every-
where whenever r > 1, so R∗ is a monotonic function.

Equation (5.64) needs to be inverted numerically to get r as a function of R∗.
It requires a simple root-finding algorithm. Once this is done, we can plot the
potential for various values of B, as in figure 5.2.

Solving the Schrödinger problem that we have set up with the appropriate
boundary conditions, we can analyze the quasinormal modes. The appropriate
boundary condition, as before, is that we choose infalling waves at the horizon,
R∗ → ∞. We see that there is an infinite potential wall at R∗ = 0, which
makes sense since this corresponds to the AdS boundary. We thus need to impose
vanishing boundary conditions at this potential wall.

Infalling boundary conditions at the horizon, as we calculated before, mean
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that

U ∼ e−i
ω
4

ln(1−u) (5.70)

∼ e−i
ω
4

ln(r−1) (5.71)

⇒ hψ ∼ ei
ω
4
R∗ . (5.72)

The definition of h in equation (5.65) shows that it does not depend on ω, so it
must be that ψ ∼ ei

ω
4
R∗ as R∗ →∞.

For small values of B, the potential is monotonically decreasing. Generally in
such a case we expect the energy eigenvalues to be complex. We thus suppose
that ω = Ω+ iΓ, for Ω and Γ real. The energy becomes E = ω2 = Ω2−Γ2 +2iΩΓ.
The imaginary part of the energy can be positive or negative, describing either a
growing or a decaying mode. The growing modes might appear to be a problem,
but since the Schrödinger potential analysis is just an analytical tool, one should
not assign these modes any physical significance.

For B big enough, a potential well forms, and eventually it becomes possible for
ψ to form a bound state. For such a bound state, ψ should decay exponentially to-

wards the horizon. Given the boundary condition there, ψ ∼ ei
ω
4
R∗ ∼ e−

Γ
4
R∗ , this

means that we expect Γ > 0. In other words, a bound state in a negative-energy
well is a sign that a quasinormal mode has crossed the real axis to positive imag-
inary values. This agrees with our previous analysis of the quasinormal modes.

5.4 Lattice solutions

In the process of showing the existence of a new ground state, we have also found
the general form that this ground state takes to linear order and at low energy.
We have shown that the lowest Landau level solution is given by

Ey = −iEx, (5.73)

Ex =

∞∑
n=−∞

Cne
−inky− 1

2
Bc
(
x− nk

Bc

)2

U(u), (5.74)

where k and the Cn are constants and U satisfies equation (5.36) with ω = 0.
As mentioned earlier, there are multiple such functions U , but we take the lowest
energy one. For the AdS Schwarzschild model we get Bc ≈ 5.1 and for the hard
wall model we get Bc ≈ 5.84.

It should be noted that the solution (5.74) for Ex agrees (except for the factors
of U(u) and f(t, z)) with the linear order solutions we found for the various models
in chapter 3. In equations (3.30) and (3.38) however we chose the continuous form
of the solution, whereas here we replaced the integral with a sum. This is so that
we only have discrete coefficients Cn to deal with rather than functions c(k).

Depending on the values of the parameters Cn and k (to be determined by
the higher order equations in the perturbative expansion), Ex corresponds to
different inhomogeneous functions in the x, y-plane. We are particularly interested
in finding those with lattice symmetries that represent evenly spaced vortices
running in the z direction in the gauge theory.

4This is the zero of the Bessel function of the first kind J0(
√
B).
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Before going beyond linear order, we discuss the possible solutions we can ex-
pect. The number of coefficients specifying a configuration can make the problem
of finding the lowest energy solution unmanageable without making use of some
symmetries. We can argue that, since nothing in the setup is explicitly break-
ing translational invariance in the x, y-directions, the solution should be a highly
symmetric lattice. How this comes about and what lattice shapes are possible is
the subject of this section.5

5.4.1 The Abrikosov lattice solution

The key step is to assume that, in order for |Ex| to be a lattice solution, the
coefficients Cn must have the same magnitude |Cn|. Moreover they should be
periodic in some integer P , that is, Cn = Cn+P .

In [42], Abrikosov first studied the simplest solution, a square lattice. In this
case, P = 1, implying that Cn = C for all n, and k =

√
2πBc. Later Kleiner et

al. in [130] generalised the analysis by looking at P = 2, with C1 = ±iC0 = ±iC.
This choice of coefficients specifies a general rhombic lattice, with the shape of the
rhombus controlled by varying k. In particular, a square lattice can be obtained by
choosing k =

√
πBc. This square lattice is the same as Abrikosov’s solution with

P = 1, but it is rotated by π/4 and translated. A triangular lattice is obtained by

choosing k = 3
1
4
√
πBc.

To show how this works, we first substitute P = 2 and C1 = iC0 = iC into
the solution for Ex, which simplifies to

Ex = C
∞∑

n=−∞
e
iπ

2
n2−inky− 1

2
Bc
(
x− nk

Bc

)2

U(u). (5.75)

It is then easy to see the symmetries |Ex(x+[m+ 1
2q]Lx, y+[n+ 1

2q]Ly)| = |Ex(x, y)|
for integers m, n and q. Lx and Ly are the lengths of the lattice cell in the x and
y directions, and are given by Lx = 2k/Bc and Ly = 2π/k. See figure 5.3.

We follow the approach of [130], which is to compute the energy density of
the lattice for a range of values of the ratio Lx/Ly = k2/πBc. This essentially
means that we vary k. The energy is computed numerically from the analytic
expressions we obtain at each order in the following sections. What we find agrees
with their result that the triangular lattice has the lowest energy of the P ≤ 2
solutions. When doing this, magnetic flux conservation is an important constraint.
The total applied magnetic field per unit area is constant, and each lattice cell
corresponds to a vortex with a single quantum of magnetic flux. This means that
when comparing the energy of different lattices, we should make sure that they
have the same magnetic flux per unit area, which in turn means that their lattice
cells have the same area. Fortunately with this ansatz that is always the case since
the area LxLy = 4π/Bc is independent of k.

In the following sections we calculate analytic expressions for the higher order
corrections to the gauge field. We keep P and the coefficients Cn general, except
for imposing the periodicity condition Cn = Cn+P .

5A review of this topic is given in [129].
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Figure 5.3: A lattice cell, illustrating the meanings of Lx and Ly for a fixed area
cell.

5.5 The gauge theory ground state energy

At this stage we have a linear order solution with the free parameters k, P and
Cn for n = 0 . . . P − 1. As we saw in the previous subsection, we can change
these parameters to fix different lattice configurations. The reason they are free
is because at linear order the different vortices do not interact. Ideally we would
like to include interactions and find the ground state solution. The question we
therefore wish to answer is, “Which lattice solution minimises the energy?”

To calculate the energy, we appeal to the holographic dictionary. In the AdS
Schwarzschild model we have a finite temperature field theory with no chemical
potential. This implies we are in the canonical ensemble. The holographic dictio-
nary then tells us that the free energy is given by F/T = − lnZ = −Son-shell. In
the hard wall case, we are simply calculating the energy of the field configuration,
which is defined in terms of the classical action in the same way.

Since we are only interested in whether the energy of a particular supercon-
ducting solution is lower than that of the normal phase solution, we can simply
calculate the difference ∆F = Fs − Fn and thus do not need to implement holo-
graphic renormalisation. Here Fs is the energy of the superconducting phase,
while Fn is the normal phase energy with A3

y = xB and all other components
zero. We also need to take care of the fact that Son-shell diverges when we perform
the integral over the Minkowski directions. This is easy to fix by considering the
energy density6 Ω, which is obtained by integrating Son-shell only over the world
volume of one lattice cell and dividing by its volume.

To which order do we need to go to calculate the minimum energy state? Ω has
terms that are quadratic and quartic in the gauge potential. To linear order we
can only calculate the quadratic order terms. We need the quartic terms however
because they ensure that the energy is bounded from below — they have an overall
positive coefficient. The quartic terms have lowest perturbative contributions of
order ε4. One might expect contributions of order ε3 coming from the zeroth order

6We divide the free energy by T in the finite temperature model to get a dimensionless Ω.
This means that in both models, our total dimensionless energy is simply -Son-shell.
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magnetic field contribution multiplied by three first order corrections. However,
from equation (5.15) it can be shown that such terms do not arise. Thus we should
expect to expand to third order inA1,2

x,y and fourth order inA3
x,y . However, it turns

out that going to fourth order is not necessary because inserting ansatz (5.15) into
the action of equation (5.3), we find that the only fourth order terms from A3

x,y

that appear at the fourth order of the action are proportional to ∼ ∂ya(4)3
x −∂xa(4)3

y .

Here a
(4)3
x and a

(4)3
y are the fourth order corrections to A3

x and A3
y, respectively.

This term respects the lattice symmetries, thus on performing the integration over
the lattice cell to get the energy density, it vanishes by Stokes’ theorem. So in
order to obtain an energy functional that is bounded from below and includes
vortex interactions, we need to complete the calculation to third order. We do
this in the following section.

5.6 Solving the equations to higher orders

In this section we solve the equations of motion up to third order in the pertur-
bation parameter, with some of the more technical details left for the appendix.

The second order corrections to the gauge fields contribute to the potentials
A3
x and A3

y, that is, a3
x and a3

y in (5.15). These fields source the external magnetic
field and the magnetisation. We impose that these corrections must vanish at the
AdS boundary, so that the dual field theory has a constant applied magnetic field.
We find however that they do not vanish throughout the bulk. In particular they
develop non-vanishing subleading terms in the boundary expansion, representing
a magnetisation in the field theory.

In appendix B.1 we explain how the equations for the Fourier modes of the
fields a3

x and a3
y can be decoupled. This yields the following equations

u∂u

(
f

u
∂uâ

3
x,y(m,n, u)

)
−
(
k2n2 +

4B2
cm

2π2

k2P 2

)
â3
x,y(m,n, u)

+ Tx,ye
− k

2n2

4Bc
+ inmπ

P
−Bcm

2π2

k2P2

(
P−1∑
l=0

e
2ilmπ
P C̄lCl+n

)
U2 = 0, (5.76)

where

Tx = −i
√
Bcπ

P
n, Ty = 2i

π3/2B
3/2
c

k2P 2
m, (5.77)

and

a3
x,y(x, y, u) =

∑
m

∑
n

e−i
2πmBc
Pk

x−inky â3
x,y(m,n, u). (5.78)

As before, P defines the periodicity in the Cn. The parameters m and n corre-
spond to the Fourier space levels of these fields. In order to calculate the solution
a3
x,y(x, y, u) we will in theory need to solve these equations for all values of m and
n. However, it will turn out to be sufficient to only study the first few Fourier
modes. The numerical procedure for solving these is explained in section 5.7

At third order we are studying the perturbative corrections to the condensate.
Here we calculate the corrections ex and ey. It is reasonable to assume that the
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answer is of the form

εEx + ε3ex = ε
∞∑

n=−∞

(
CnU(u) + ε2cx,n(u)

)
e
−inky− 1

2
Bc
(
x− nk

Bc

)2

, (5.79)

εEy + ε3ey = ε
∞∑

n=−∞

(
−iCnU(u) + ε2cy,n(u)

)
e
−inky− 1

2
Bc
(
x− nk

Bc

)2

, (5.80)

where we have made use of equation (5.73) to relate the first order terms CnU(u)
in Ex and Ey. c(x,y),n(u) is the first perturbative correction to the condensate where
the u dependence is a function of n in contrast to the first order term.

We can write ex and ey in Fourier space, then use the three condensate equa-
tions discussed in section 5.2.1 to calculate these corrections. The one constraint
equation can be used to decouple the other two equations. We then have one equa-
tion for cx,n(u) and one for cy,n(u). Further details are provided in appendix B.2.

5.7 Numerical solutions

Having separated the equations into ordinary differential equations in u by the
method outlined in the appendices, we can now solve them numerically. Both the
second and third order equations take the same general form, given by

u∂u

(
f

u
∂uφ

)
+G(m,n)φ+H(m,n, u) = 0. (5.81)

This equation can be solved numerically by picking some parameters for Cn and
k that give a particular lattice and then using a shooting method to integrate
from u = 1 (the horizon/hard wall cutoff) to u = 0 (the AdS boundary). It is
an inhomogeneous second order differential equation, so there are two integration
constants. The first is fixed by imposing regularity at the horizon or Neumann
boundary conditions at the hard wall cutoff. This fixes the value of ∂uφ(1). The
second constant is obtained by demanding that φ(0) = 0, so that the fields vanish
at the AdS boundary. This vanishing corresponds to both the magnetic field
strength corrections and the source for the condensate being set to zero. We fulfil
this boundary condition by adjusting φ(1). Unlike in the case of the first order
equations, the equations here are not homogeneous and thus the source sets a scale
with which the value φ(1) can be compared. Changing φ(1) in this case thus acts
as more than just a scaling for the solution and so is used as the tuning parameter
to satisfy the UV constraint.

For all of the equations, we can implement this procedure for arbitrary integers
m and n, corresponding to the different Fourier modes of the gauge fields. This
will then give a Fourier coefficient â3

x,y(m,n, u) that can be used to determine
a3
x,y(x, y, u). Fortunately we do not have to do the calculation for many different

values of m and n, because as the values get large, the source term gets suppressed
exponentially. This can be seen in equation (5.76) for the second order terms and
is true also for the third order equation. For a vanishing source, the equations for
â3
x or â3

y have only the trivial solution. This means that â3
x,y(m,n, u) is negligibly

small for large m or n, and we can therefore truncate the Fourier series for a3
x,y

beyond m,n ≈ 3.
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5.8 Results

5.8.1 Finding the minimum energy state

As explained above, we wish to find the values of the parameters k, P and Cn =
Cn+P that give the minimum energy state. These parameters define the shape
of the lattice. Our analysis is only valid for B slightly above Bc, where Bc is
determined by a stability calculation such as the one in section 5.3.3. The first
step is thus to pick a value for B in this vicinity. We then choose a set of lattice
parameters that give us the lattice solution we wish to consider. As mentioned
in [129], for lattice solutions all the Cn must have the same magnitude C. We can
therefore fix Cn up to the normalisation C, along with a value of k, according to the
discussion in section 5.4.1. We then substitute these values into the energy density
that was defined in section 5.5. It takes the form ∆Ω = a1εC + a2ε

2C2 + . . . . At
this point we see that we can redefine C by absorbing a factor of ε, which we call
Cε. Cε is the only parameter left unfixed up to this point in the analysis. Here the
ai are values that are calculated numerically from substituting the solutions to the
equations of motion into the expression for the energy derived in appendix B.3.
∆Ω forms a Mexican hat potential, which is easy to minimise numerically. An
illustration of this procedure is shown in figure 5.4. The plot in figure 5.5 shows

∆Ω

Cε

Figure 5.4: The change in energy density in units of temperature as a function
of Cε, the overall condensate scale. The leftmost curve corresponds to B = Bc,
which is never negative for nonzero condensate. Curves for B < Bc are similar.
Increasing B beyond Bc yields the curves to the right, and we see the formation
of a clear minimum of the energy that is lower than the energy of the normal
phase. The dashed line traces out the minimum of each of these curves, which
corresponds to the energetically preferred size of the condensate as a function
of B. This plot was generated in the AdS Schwarzschild model for P = 2 and
k = 3

1
4

√
πB, corresponding to a triangular lattice. B takes the values B ≈

Bc, 1.04Bc, 1.07Bc, 1.1Bc from left to right. Changing P and k to correspond to
different lattices or using the hard wall model yields qualitatively similar results.

the energy-minimising value of Cε as a function of magnetic field near the phase
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B

Cε

Figure 5.5: Cε ∼ the overall condensate size for the AdS Schwarzschild solution
in units of the temperature, as a function of the external magnetic field B. For
B < Bc, the condensate is zero, and for B slightly above Bc, we see a (B −
Bc)

1
2 scaling behaviour. This plot was generated for P = 2 and k = 3

1
4

√
πB,

corresponding to a triangular lattice. The plot for different lattices in both the
AdS Schwarzschild and hard wall models is the same, up to a scaling of the B
and Cε axes. For the triangular lattice, the AdS Schwarzschild model has scaling
behaviour Cε = 0.58(B− 5.1)

1
2 and the hard wall model has Cε = 0.53(B− 5.8)

1
2 .

transition at Bc. It shows that Cε ∼ (B −Bc)
1
2 , so the condensate7 has a critical

exponent of 1/2. A fit to the numerical data for the triangular lattice gives that

Cε = 0.58(B −Bc)
1
2 in the AdS Schwarzschild model and Cε = 0.53(B −Bc)

1
2 in

the hard wall model.

Having minimised with respect to Cε for a given value of B and a given lattice
configuration, we can plot the difference in the energy between the normal and
superconducting states. Figure 5.6 shows ∆Ω, the difference between the energy
density in the superconducting and normal phases, as a function of external mag-
netic field for two different lattices. The first lattice is square, and the second is
triangular. Both are described in section 5.4.1.

The curves plotted in figure 5.6 are the result of calculations in the AdS
Schwarzschild model, but we get the same results up to a rescaling of the axes for
the hard wall model. In the AdS Schwarzschild model, the critical magnetic field
Bc ≈ 5.1, while in the hard wall model Bc ≈ 5.8. Each curve shows that the free
energy density is proportional to (B −Bc)2. This shows that the phase transition
is second order, as expected if one looks at the analogous case in Ginzburg-Landau
theory. There one can show ( [98]) that the free energy is proportional to (T − Tc)2,
where Tc is the phase transition critical temperature.

5.9 An analysis of P = 2 solutions

We now specialise to the case where the periodicity of the Cn is P = 2. This
describes a general rhombic lattice solution which includes both the triangular and

7Note that only the combination εC is physically relevant, not C or ε independently.
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Bc

∆Ω

Figure 5.6: The change in energy density (compared to the normal phase) for
the triangular and square lattices as the external applied magnetic field is varied.
The phase transition happens at Bc ≈ 5.1, which is where the coordinate axes are
centred. ∆Ωsquare −∆Ωtriangle is so small that the two plots are almost on top of
each other. This is for the AdS Schwarzschild model, but the plots for the hard
wall model are identical except for the scale on the axes. In the hard wall model,
Bc ≈ 5.8.

square lattices. The P = 1 square lattice can be found within the P = 2 solutions
up to translation and rotation. We here perform the analysis done in [130] as
described at the end of section 5.4.1.

The energy difference as a function of R is plotted in figure 5.7. By looking at
the form of equation (5.75), it is possible to see that the triangular lattice occurs for
R = Lx/Ly =

√
3 and R = 1/

√
3. In general, R and 1/R give the same lattice but

with the x and y directions flipped. This is why figure 5.7 displays the symmetry
∆Ω(R) = ∆Ω(1/R). The triangular lattice corresponds to a global minimum of
the energy as a function of R, as seen from the figure. There is a local maximum for
the square lattice, which is when R = 1. As R → ∞ (or R → 0), the free energy
increases. Intuitively one can understand this by making use of the properties
of Abrikosov vortices that we understand from type II superconductors. These
vortices repel. Since R → ∞ and R → 0 correspond to elongating the rhombic
lattice cell (while keeping the area constant) neighbouring vortices are squeezed
together, and since they repel, this is energetically unfavourable.

We can calculate the condensate in the minimum energy state using equa-
tion (2.21). The result, to linear order in ε, is

〈J+
x 〉 ≡

δSon−shell

δE
(0)
x

=
L

2ĝ2
UsubCε

∞∑
n=−∞

e
−iπ

2
n2+inky− 1

2
Bc
(
x− nk

Bc

)2

(5.82)

The AdS radius can be related to field theory quantities through the relation
L4 = 2λα′2, where λ is the ’t Hooft coupling and α′ the string tension. The factor
Usub is equal to the subleading term in the boundary expansion of U(u). Using
equation (5.36) it is possible to show that

Usub = Bc

∫ uH

0

U(u)

u
du, (5.83)
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∆Ω

R

Figure 5.7: The change in free energy density as a function of R = Lx/Ly, the ratio
of side lengths of a constant area lattice cell. This plot is for the AdS Schwarzschild
model, but the plot for the hard wall model is identical up to a rescaling of the
axes. When R = 1, the lattice is square and the free energy achieves a local
maximum. When R =

√
3 and 1/

√
3, the lattice is triangular and the free energy

is at a global minimum. Note that the plot has the symmetry ∆Ω(R) = ∆Ω(1/R),
which simply corresponds to swapping the x, y-axes.

so it can be determined numerically. In figure 5.8 we present the contour plot of

3
1
4

√
8 ĝ4

L2U2
subC

2
ε
|〈J+

x 〉|
2
, the modulus squared of the condensate in the x, y-plane for

the minimum energy solution corresponding to the triangular lattice. The factors
are chosen so that the maximum value is 1. Inserting the numerical values, we

find that the maximum value the condensate takes is |〈J+
x 〉| = 1.0 L

ĝ2 (B −Bc)
1
2

for the AdS Schwarzschild model, where Bc ≈ 5.1, and |〈J+
x 〉| = 1.3 L

ĝ2 (B −Bc)
1
2

for the hard wall model, where Bc ≈ 5.8.

Figure 5.8: A contour plot of 3
1
4

√
8 ĝ4

L2U2
subC

2
ε
|〈J+

x 〉|
2
, the modulus squared of the

field theory condensate dual to Ex in the ground state triangular lattice. At the
center of the dark vortices, the condensate vanishes.

We could also plot the magnetisation of the ground state, which is found from
the normalisable term in the boundary value expansion of ∂xa

3
y − ∂ya3

x. However,
it takes the same form as the absolute value of the condensate and the numerics
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indicates that it differs only up to a scale.

5.10 Conclusion

In this chapter we have shown that two simple asymptotically AdS gravity models
with an SU(2) Yang–Mills field are unstable when a magnetic component of that
field becomes large enough. This instability indicates that there exists a new
ground state. We showed that this new ground state contains vortex lines. To
find the minimum energy configuration of these vortex lines, we argued that there
was nothing influencing the large scale translation symmetry of the setup, so
they must be aligned in a lattice pattern. We then enumerated various lattice
configurations and calculated the energy of each. Of the lattice configurations we
tried, we found that the triangular lattice has the lowest energy. This must be the
ground state. This result agrees with the case for type-II superconductors [130].

This solution is potentially interesting for condensed matter models, where, as
we have already argued, a lattice is essential for getting realistic phenomenology.
It could also have implications for QCD. Since very strong magnetic fields are
present in highly off-centre collisions at heavy ion colliders, perhaps it is possible
to observe an effect such as an excess in ρ-meson production, as predicted by [53].

It is important to understand how universal the result is. We saw it in two
different holographic models. In the next chapter we see it still holds even when
we switch on a chemical potential. We also know that it appears in many other
models. In all these cases, the ground state is a triangular lattice. Finding a
proof of universality would require investigating the phenomenon in more gravity
backgrounds to see at which point it breaks down.

Another avenue for investigation is to find out how matter interacts with the
vortex lattice. In the second half of the next chapter we show how to approach
this question by adding fermion zero modes.



Chapter 6

Extending the holographic
lattice ground state model

The gauge/gravity model of the previous chapter is beautifully simple. A single
SU(2) Yang–Mills gauge field is robust enough to act as both magnetic field or-
der parameter and condensate. But this simplicity means that it can easily be
extended. The goal of the present chapter is to consider two possible extensions:
we add a finite chemical potential in section 6.1 and we add probe fermions in
section 6.2.

6.1 Adding the chemical potential

The first extension is to switch on a chemical potential µ in addition to the mag-
netic field B. We repeat the perturbative analysis of the previous chapter, finding
the values of µ and B at which the system becomes unstable. This allows us to
draw a two-dimensional phase diagram showing the normal and superconducting
phases. We also give a picture of how the lattice changes at various points in the
phase diagram in figure 6.3. At second order we compute the corrections to the
charge density, showing how the vortices squeeze U(1) charge to the side. This
could not be done in the previous chapter; it is derived from the corrections to the
gauge field component providing the chemical potential. Finally, in section 6.1.6
we calculate the free energy of the system and show that the triangular lattice is
still the ground state even for finite chemical potential.

This is work that was done by the author, but was never published due to
the appearance of similar work by Kenny Wong in [131]. Wong’s work is based
on [1,2], but uses an AdS4 instead. He does not continue the calculation to third
order, though, and has no results for the free energy. This chapter contains the
only calculation showing that the triangular lattice is still a ground state it finite
chemical potential that the author is aware of.

6.1.1 The ansatz

Consider the AdS–Schwarzschild model of chapter 5. The geometry is still de-
scribed by the metric

ds2 =
L2

u2

(
−f(u)dt2 + dx2 + dy2 + dz2 +

du2

f(u)

)
, (6.1)
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with f(u) = 1− u4 and we still look at the action in the probe limit given by

S = − 1

4ĝ2

∫
d5x
√
−g tr (FµνF

µν) , (6.2)

with equations of motion

∇µF aµν + εabcAbµF cµν = 0. (6.3)

The difference is that the ansatz is slightly modified to include a chemical potential.
In addition to the magnetic field B, we add a chemical potential by imposing it
as a boundary condition to the A3

t component. This means that the ansatz (5.13)
becomes

A3
t = µc − u2µc + εA3

t + ε2a3
t + . . . ,

A3
y = xBc + εA3

y + ε2a3
y + . . . ,

Aaµ = εAaµ + ε2aaµ + . . . for (a, µ) 6= (3, y) or (3, t), (6.4)

where the form of A3
t at zeroth order was chosen because it satisfies the equations

of motion when ε = 0.

The goal is similar to before. We perform a perturbative expansion in ε, which
is a parameter proportional to the overall condensate size. This means that we
restrict our view to the parameter range in which the condensate is small — we
start exactly at the superconducting phase transition that occurs at B = Bc and
µ = µc and calculate small corrections in ε going into the superconducting region
of the phase diagram.

One motivation for the ansatz (6.4) is based on what we know from [91]. There
it was shown that the field theory dual to the SU(2) Yang–Mills holographic model
above undergoes a phase transition at small temperature and zero magnetic field.
The new phase has the same symmetries as a p-wave superfluid. Small temperature
corresponds to large chemical potential, since conformal symmetry means that
only the ratio T/µ is physically relevant. This means that, at B = 0, the system
we are considering is in a superconducting phase for µ above a critical value µc.
So we know that we are in the superconducting phase for µ > µc when B = 0 and
for B > Bc when µ = 0. What does the phase diagram look like for both B and
µ nonzero? In other words, what is the shape of the curve described by (Bc, µc)?
To answer this we turn to the linearised equations of motion.

6.1.2 The linear order equations of motion

Substituting ansatz (6.4) into the equations of motion (6.3) yields

0 = iµcu
2∂uEt − iµc∂uEt − 2iµcuEt

+ iBcxf∂uEy + f∂y∂uEy + f∂x∂uEx (6.5)

0 = −B2
cx

2Et + 2iBcx∂yEt −Bcµcu2xEy +BcµcxEy

+ ∂2
yEt + ∂2

xEt + iµcu
2∂xEx − iµc∂xEx + iµcu

2∂yEy − iµc∂yEy

− f∂uEt
u

+ f∂2
uEt (6.6)
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0 = B2
cx

2Ex − 2iBcx∂yEx + iBcx∂xEy − iBcEy

+
iµcu

2∂xEt
f

− iµc∂xEt
f

− f ′∂uEx − f∂2
uEx +

f∂uEx
u

− ∂2
yEx

− µ2
cu

4Ex
f

+
2µ2

cu
2Ex
f

− µ2
cEx
f

+ ∂x∂yEy (6.7)

0 = −
Bcµc

(
u2 − 1

)
xEt

f
+ iBcx∂xEx + 2iBcEx +

iµc
(
u2 − 1

)
∂yEt

f

+ ∂x∂yEx +

(
f

u
− f ′

)
∂uEy − f∂2

uEy − ∂2
xEy −

µ2
c

(
u2 − 1

)2
Ey

f
(6.8)

0 =
Ez

(
B2
cx

2f − µ2
c

(
u2 − 1

)2)
f

− 2iBcx∂yEz +

(
f

u
− f ′

)
∂uEz

− f∂2
uEz − ∂2

yEz − ∂2
xEz (6.9)

to linear order. We would like to find a ground state so we search only for static
solutions.

We kept fluctuations in all the components of the gauge field (except of course
Au) so that it is possible to analyse how the equations couple. The first thing to
notice is that Ez clearly decouples from the other components. This means that we
can consistently set it to zero. The only thing that needs to be checked is that Ez
does not condense in regions of the phase diagrams where the other components
have not already condensed. If Ez condenses first, then the new ground state is
given by its profile, and we should not have set it to zero. However, by solving the
equation (6.9) using separation of variables, we checked that Ez does not condense
for small B and µ before the components Ex and Ey do.

Et couples to Ex and Ey, but it can also be consistently set to zero. The
reason for doing this can be understood by looking at the equations of motion.
Whenever µc is small or Ex and Ey describe the lattice solution from chapter 5,
Et effectively decouples from Ex and Ey. So we can solve for Et as if the other
components were zero. Doing that, we find that Et does not depend on µc, only
on Bc. And in fact, there is no solution for Et, for any value of Bc, that satisfies
the boundary conditions. The boundary conditions are that Et vanishes at the
horizon by regularity and vanishes at the AdS boundary because we do not want
a field theory chemical potential. This motivates us to ignore the effect of Et and
set it to zero.

6.1.3 Results from first order

The equations for Ex and Ey are again separable, and the solution is given by

Ey = −iEx, (6.10)

Ex =

∞∑
n=−∞

Cne
−inky− 1

2
Bc
(
x− nk

Bc

)2

U(u), (6.11)

as before. The difference is in the equation for U(u), which is slightly modified.
It is now

0 =

(
Bcf + µ2

c

(
u2 − 1

)2)
f2

U +

(
f ′

f
− 1

u

)
U ′ + U ′′. (6.12)
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Exploring the phase diagram is now as simple as solving this ordinary differential
equation numerically. The boundary conditions are that U vanishes at the AdS
boundary (u = 0) and is regular at the horizon (u = 1 in dimensionless units). Bc
and µc are two adjustable parameters. Previously we only had the one adjustable
parameter Bc that we adjusted until we found a lowest order solution U that
respects the boundary conditions. Now we can choose any value of Bc and adjust
µc until U respects the boundary conditions. As usual, the key point here is that
we choose the lowest order solution for U — the one with no roots except at the
boundary — so that we get the lowest energy solution, which corresponds to the
first mode that will condense.

We solve equation (6.12) using the shooting method, shooting from u = 1
to u = 0. This is done by choosing values for Bc between 0 and 5.11 and then
varying µc. The aim is to find the value of µc that makes U vanish at u = 0. The
boundary condition at the horizon is that U ′ = 1, as described in chapter 5. Due
to the singularities in equation (6.12) at the boundary and horizon, the numerical
integration is done from u = 1− 10−5 to u = 10−5. We also calculate the horizon
expansion of U to third order in order to get an accurate analytical expression for
U at u = 1− 10−5.

A representative plot of U(u) is given in figure 6.1. The resulting phase diagram
is given in figure 6.2. The white region of the diagram depicts the normal phase,
while the shaded region contains the condensed phase. The linearised solution
to the equations (6.10) and (6.11) is valid along the phase transition line. The
most striking feature of the phase diagram is that it indicates that the critical
temperature for the onset of superconductivity is increased — since µ is decreased
– for stronger magnetic field.

u

U(u)

Figure 6.1: A representative plot of U as a function of u. The AdS boundary
is at u = 0 and the horizon is at u = 1. The parameters chosen are Bc = 2 and
µc ≈ 3.2.

It is worth considering the ground state along the phase transition line in more
detail. We know that at µ = 0 the magnitude of the vector condensate vev for the
ground state solution in the field theory has the contours shown in figure 5.8. This
Abrikosov lattice solution depends only on Bc, since µc only influences the shape

1Recall from chapter 5 that the phase transition occurs at approximately 5.1 for µ = 0.
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B
π2T 2

µ
πT

Figure 6.2: The B-µ phase diagram. The white region is the normal, uncon-
densed phase. The shaded region is the condensed phase. The ground state
solutions (6.10) and (6.11) are approximately correct on the phase transition line
(Bc, µc).

of U . This means that as we trace the phase transition line up towards greater
µc, so that Bc decreases, the lattice spacing and the vortex radius both increase.
This makes sense: as the magnetic field is decreased, the individual vortices are
no longer bound together as tightly. When B vanishes, the vortex radius diverges.
Then the solutions (6.10) and (6.11) reduce to the p+ ip-wave solution from [91];
they become homogeneous. Figure 6.3 shows these expanding vortices for various
values of B.

This intuition is confirmed by calculating the free energy of the triangular
lattice ground state as we vary Bc and µc. To do this we continue the calculation
to third order.

6.1.4 Results from second order

The second order equations of motion are the same as those from chapter 5 with
one key difference: as expansion (6.4) shows, there is now an a3

t component.
Serendipitously, this component decouples from the rest. Its equation of motion
is

0 = f∂2
ua

3
t −

f∂ua
3
t

u
+ ∂2

ya
3
t + ∂2

xa
3
t + 2µc

(
u2 − 1

)
ĒxEx. (6.13)

The boundary conditions are simple. By regularity at the horizon, a3
t must vanish

there. At the AdS boundary, we do not wish for it to make a contribution to the
chemical potential, so we set it to zero there as well.

When µc = 0, the source of the equation vanishes. For vanishing source there
is no nontrivial solution for a3

t satisfying the boundary conditions. a3
t should

therefore be set to zero when there is no chemical potential. This is consistent
with chapter 5.

Equation (6.13) is a partial differential equation. We can solve it as before by
making use of the lattice periodicity that we know the full background solution



94 Chapter 6. Holographic lattice extensions

B = 5.1 B = 4

B = 3 B = 2

B = 1 B = 0.01

B = 0

y
√
B
c

x
√
Bc

y
√
B
c

y
√
B
c

y
√
B
c

x
√
Bc

Figure 6.3: The contour lines of the magnitude of the vector condensate for
various values of B. The x and y directions are presented in units of

√
Bc, where

Bc is the critical magnetic field value when µ = 0. From the numerics, Bc ≈ 5.1
in our model. The entire vortex lattice gets bigger as B decreases, which makes
sense because the vortices are not as tightly bound in a weaker magnetic field.

must have. This lets us use the Fourier series decomposition

a3
t (x, y, u) =

∑
m

∑
n

e−i
2πmBc
Pk

x−inky â3
t (m,n, u), (6.14)
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x
√
Bc

y
√
B
c

Figure 6.4: The structure of the corrections to the charge density 〈J3
t 〉. Darker

regions are where the charge density has smaller magnitude. We see that there is
less charge inside the vortex cores.

the equation of motion for â3
t becomes

f∂2
uâ

3
t −

f

u
∂uâ

3
t −

(
k2n2 +

4B2
cm

2π2

k2P 2

)
â3
t (m,n, u)

+
2
√
πBc
kP

µc
(
u2 − 1

)
e−

k2n2

4Bc
+ inmπ

P
−Bcm

2π2

k2P2

(
P−1∑
l=0

e
2ilmπ
P C̄lCl+n

)
U2 = 0. (6.15)

To solve for â3
t we therefore have to pick values of Bc and µc, solve for U , and

finally pick a lattice solution by fixing P and Cl. â
3
t must vanish at the horizon

and the AdS boundary, so we use the shooting method by varying ∂uâ
3
t

∣∣
u=1

. The
numerical integration is done from u = 1− 10−5 to u = 10−5.

From the gauge/gravity dictionary we know that the boundary falloff of A3
t

gives the field theory charge density,

A3
t ∼ µ+ u2〈J3

t 〉+O(u4). (6.16)

From (6.4) we know that the zeroth order contribution to 〈J3
t 〉 is −µc. By doing a

fit to our numerical solutions for â3
t and putting everything together using (6.14),

we can thus find the O(ε2) corrections. The result is plotted in figure 6.4 for a
representative value of Bc and µc and a triangular lattice.

The result for the magnetisation, from the A3
x and A3

y components, is precisely
the same as in chapter 5. There is not even a factor of µc entering the A3

x and
A3
y equations of motion. It only enters implicitly; the value of Bc is different, of

course, depending on µc.

6.1.5 Results from third order

As in chapter 5, we continue the expansion to third order with the ansatz

Ex,y = εEx,y + ε3ex,y +O(ε5). (6.17)

There are four equations of motion at this order. There is a constraint equation,
which is identical to (B.13). There are equations of motion for both ex and ey.
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These are similar to (B.14) and (B.15) except that they also contain source terms
proportional to µc or a3

t . Finally there is a second constraint equation, which
would have been the equation of motion for et if et were not set to zero. It can be
checked that this constraint equation is equivalent to the first.

6.1.6 The free energy results

The calculation of the free energy proceeds as in section 5.8. We find the free
energy density ∆Ω, which we define to be the free energy −TSon−shell divided by
the volume of a lattice cell (given by 4π

Bc
) and also divided by the temperature T .

As before, the process is very similar to that in appendix B.3. The difference is
that now there are terms including µc and a3

t in the expression for the free energy.
In addition, in the normal phase the on-shell action is given by

Son−shell =
1

4ĝ2

∫
d5x
√
−gF aµνF aµν

=
LV
4ĝ2

∫ 1

0
du

(
B2
c

u
− 4uµ2

c

)
, (6.18)

where V is the volume of the boundary directions. The renormalisation countert-

erm (2.24) gets rid of the term B2
c
u , cancelling the divergence as it should. The

other term is finite, but we still subtract it because we are only interested in the
free energy difference compared to the normal phase.

Having established the analytical form of ∆Ω as in appendix B.3, we can do
the numerical integration to find ∆Ω near the phase transition line in the (B,µ)
phase diagram (figure 6.2). We know that the triangular lattice is the ground state
configuration for B slightly above Bc when µ = 0, so it is natural to check whether
it remains a thermodynamically preferred state for µ 6= 0. As figure 6.5 shows, it
does. There we plot ∆Ω near the phase transition line, at (B,µ) = 1.01(Bc, µc),
once as a function of both B and once as a function of µ. The important thing to
notice is that ∆Ω remains negative.

Now that we know that the triangular lattice solution is preferred to the normal
state solution, the next question to ask is whether the triangular lattice solution is
preferred to other lattice solutions. To find the answer we repeat the calculation
of section 5.9. That is, we choose a value of Bc, which gives a corresponding value
of µc. This gives us the point in the phase diagram (B,µ) = 1.01(Bc, µc) near the
critical line. At this point, we adjust k such the the ratio R of the lattice side
lengths changes. We calculate ∆Ω for every value of B, µ and R. The result is
plotted in figure 6.6. In the plot, B runs from 0 to approximately 5.1, and R runs
from 1 to 4. Values of R less than 1 are excluded because they can be obtained
by symmetry, since ∆Ω(R) = ∆Ω(1/R). To make the presentation clearer, we
have subtracted ∆Ω|R=1 so that the left edge of the figure is normalised to zero.
The black line in the figure is the line of minimum ∆Ω as a function of B. It is
always at R ≈

√
3. The ground state when including a chemical potential is still

a triangular lattice!
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B

µ

∆Ω

∆Ω

Figure 6.5: The change in free energy density compared to the normal phase
solution, ∆Ω. It was calculated for the triangular lattice solution near the critical
(Bc, µc) line in the phase diagram. More specifically, this plot shows ∆Ω calculated
at (B,µ) = 1.01(Bc, µc). The important thing to notice is that ∆Ω is negative,
so the triangular lattice solution is preferred to the normal phase. The two plots
contain the same information, but with respect to different parameters.

6.2 Adding probe fermions

No physically realistic system is complete without fermions. Their presence gives
rise to a range of fascinating phenomena, from chiral symmetry breaking in QCD
to novel topological properties in condensed matter systems. In this section we
explain how to investigate their effect on the holographic vortex lattices from
section 6.1.

In the context of Nielsen–Olesen vortex strings in abelian gauge theory, the
presence of fermions was already studied in the early 1980’s [132, 133]. It was
discovered that massless fermions split into left- and right-moving modes that
travel back and forth along the vortex cores. If they are given some electric
charge and an electric field is switched on, the electric field breaks the balance. A
net dissipationless electric current is produced along the vortex core. In [133] it
was called a “superconducting string”. Interestingly, one motivation for studying
such strings was astrophysical; it was hoped that they could be observed passing
through galactic magnetic fields.
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R

B

∆Ω(B,R)−∆Ω(B, 1)

Figure 6.6: The change in free energy density ∆Ω as a function of B(µ) and R,
normalised by subtracting ∆Ω|R=1 so that the left edge of the plot is fixed to
zero. This subtraction does not change the location of the minimum line, which
is indicated in black on the figure. ∆Ω(B,R) itself is negative over the whole
domain. The minimum is at R =

√
3, the value for the triangular lattice.

Fermion zero modes have also been studied more recently in vortex lattice
backgrounds. In [134] a simple SU(2) Yang–Mills theory in (2+1)-dimensional flat
space was coupled to fundamental Dirac fermions. As we know from section 3.4,
turning on an SU(2) magnetic field in this setup yields a magnetic vortex lattice
ground state. Starting from this lattice, the authors of [134] studied the spectrum
of fermion zero modes and found that it contains two Dirac points per fermion
flavour. A Dirac point is a point in the Brillouin zone where the fermion dispersion
relation is linear, meaning it is described by the Dirac equation. A similar study is
done in [135] where the authors consider a (3 + 1)-dimensional phenomenological
model of QCD instead. They find an exact solution for the fermion zero modes
and study its properties.

It would be interesting to find the holographic perspective on these results.
What, if anything, changes when we consider fermions in a holographic model
instead? With the vortices in a gravitational background, how does that influence
the fermions’ behaviour? In this chapter we present the setup and process needed
to study these questions.

6.2.1 Holographic setup

Fermion representations are simpler to deal with in a (3 + 1)-dimensional holo-
graphic model than a (4+1)-dimensional model. We therefore consider the model
presented in [131] with an AdS4 background. Here the dual field theory is (2 + 1)-
dimensional so that fundamental fermions are represented by 2-component spinors.

The bosonic part of the action is SU(2) Einstein–Yang–Mills,

Sbosonic =

∫
d4x
√
−g

{
1

2κ2

(
R+

6

L2

)
− 1

4ĝ2
F aµνF

aµν

}
, (6.19)

where ĝ2 is now dimensionless since we are in (3+1)-dimensions and L is the AdS
radius. As before, we consider a black hole background with a magnetic field and a
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chemical potential. One advantage of working in the lower number of dimensions
is that we can now find an exact solution away from the probe approximation. If
we define the dimensionless ratio

γ =
2ĝ2L2

κ2
, (6.20)

the background solution has geometry given by the metric

ds2 =
L2

u2

(
−f(u)dt2 +

du2

f(u)
+ dx2 + dy2

)
. (6.21)

Here f(u) is given by

f(u) = 1− (4− 4πTuH)
u3

u3
H

+ (3− 4πTuH)
u4

u4
H

, (6.22)

where uH is the horizon radius and T is the field theory temperature. T and uH
satisfy the relation

T =
1

4πuH

(
3− 1

γ

(
B2u4

H + µ2u2
H

))
, (6.23)

for magnetic field B and chemical potential µ in the field theory. The U(1) subset
of the SU(2) gauge field Aaµ describing the background electric and magnetic fields
is given by

A3
y = Bx, A3

t = µ(1− u/uH). (6.24)

We rescale the coordinates to set uH = 1, as before.
This AdS4 model has a phase diagram similar to the one in figure 6.2, as shown

in [131]. In particular, for certain values of B and µ the equations of motion induce
the condensation of a triangular vortex lattice, given to linear order by

Ex = C
∞∑

n=−∞
exp

{
i
π

2
n2 − inky − 1

2
B

(
x− nk

B

)2
}
U(u), (6.25)

Ey = −iEx, (6.26)

Cn = Cn+2, k = 31/4
√
πB, (6.27)

where Ex,y ≡ A1
x,y + iA2

x,y and Ēx,y ≡ A1
x,y − iA2

x,y. U(u) is determined by solving(
Bf + µ2(u− 1)2

)
f

U +
f ′

f
U ′ + U ′′ = 0, (6.28)

subject to the boundary conditions U(1) = 1 and U(0) = 0.
One thing to note about the solution above is that, although we are considering

metric backreaction, we are only considering it for the influence of A3
y and A3

t . The
lattice components Ex and Ey are treated as probes; we have not been able to
find a way of expressing their effect on the geometry analytically. As such, the
overall scale C should be kept small for this to be a valid approximation. This is
equivalent to saying that we should not venture too far into the superconducting
part of the phase diagram in figure 6.2, otherwise the approximation breaks down.
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Now we add fermions. They are also taken to be in the probe limit. We add
the term

Sfermion =

∫
d4x
√
−giψ̄

(
/D −m

)
ψ + Sbdy (6.29)

to the action, where /D is defined as

/D = ΓMDM = ΓM
(
∂M − iAM +

1

4
ωabMΓab

)
. (6.30)

ΓM are the gamma matrices in (3 + 1)-dimensions and ωabM is the spin connection,
defined by

ωMab = eNb∂Me
N
a + eNbΓ

N
MP e

P
a , (6.31)

with eµN the vielbeins2.
It is not clear from the gauge/gravity dictionary (2.14) how exactly to extract

field theory information from the bulk fermions. For one thing, in the bulk theory
fermions are represented by 4-component Dirac spinors, while in the boundary
theory Dirac spinors have only 2 components. In addition, the Dirac equation is
first order, so one needs to be careful in imposing Dirichlet boundary conditions
for the fermions. There is however a prescription that we follow, first proposed
by [136], and later refined by [137,138].

The first step is to form the projectors

Γ± =
1

2
(1± Γu) (6.32)

from the gamma matrices so that ψ± = Γ±ψ and we can write

ψ =

(
ψ+

ψ−

)
. (6.33)

If we calculate the canonical momenta in r-slicing from the action (6.29), we find
that

Π+ = −
√
−ggrrψ̄−, Π− =

√
−ggrrψ̄+. (6.34)

In other words, ψ+ and ψ− are conjugate to each other. Fixing both of them would
fix the solution everywhere, which would clearly be incorrect since, for example,
we could end up with a solution that is irregular in the interior. The solution is to
fix the boundary value of only half of the components. We choose to fix ψ+ and
then determine ψ− from the Dirac equation and regularity in the interior. Now
ψ+ has the correct number of components to act as a source for the field theory
fermionic operator.

The action (6.29) has a boundary term. It is necessary for the variational
principle to be well-defined on a spacetime with boundary. In our case it is given
by

Sbdy = i

∫
d3x
√
−γ

(
ψ̄+ψ−

)∣∣∣∣
u→0

, (6.35)

2 Conventions: M , N , . . . run over the spacetime directions. a, b, . . . run over the tangent di-
rections. If we refer to a specific tangent-space gamma matrix, the component will be underlined,
as in Γu.
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where γ is the determinant of the boundary metric. This term is crucial for
calculating fermionic correlators.

Now we specialise to a specific basis. The gamma matrices we use are

Γu =

(
1 0
0 −1

)
, Γi =

(
0 γi

γi 0

)
, (6.36)

where the superscript index i denotes t, x, y and

γt = iσ3, γx = σ1, γy = σ2, (6.37)

with σi the Pauli matrices.
The fermions and gauge field can be split up by their colour components as

ψ =

(
ψ1

ψ2

)
, AM =

∑
a

AaM ta, with ta =
1

2
σa, a = 1, 2, 3. (6.38)

These two fermion components couple to the 3-component of the gauge field with
opposite charge. Note that this choice of generators τa is different from that
chosen in the previous chapters, but it does not change the equations of motion
for each gauge field component.

6.2.2 Solving the Dirac equation

From the action (6.29) we derive the Dirac equation(
/D −m

)
ψ = 0. (6.39)

Substituting in the metric and gauge field, this gives(√
f(u)Γu

(
f ′(u)

4f(u)
− 3

2u
+ ∂u

)
+

Γt√
f(u)

(
∂t ∓

iΦ(u)

2

)
+Γx∂x + Γy

(
∂y ∓

1

2
iBx

)
− m

u

)
ψ1,2(t, x, y, u)

=
1

2
(∓Γy + iΓx) (A1

x(x, y, u)∓ iA2
x(x, y, u))ψ2,1(t, x, y, u). (6.40)

In these equations we have absorbed the factor of the AdS radius L into the
fermion mass m and Φ(u) = A3

t = µ(1−u). We see that ψ1 and ψ2 are oppositely
charged under the magnetic U(1) subgroup.

Solving with no lattice

In general the partial differential equations (6.40) are hard to solve, so we start
with a simple case: the lattice is not present. If we assume the lattice vanishes,
the equations become separable,

(U∓(t, u) + V∓(x, y))ψ1,2(t, x, y, u) = 0 (6.41)

where

U∓(t, u) =
√
f(u)Γu

(
f ′(u)

4f(u)
− 3

2u
+ ∂u

)
+

Γt√
f(u)

(
∂t ∓

iΦ(u)

2

)
− m

u
, (6.42)

V∓(x, y) = Γx∂x + Γy
(
∂y ∓

1

2
iBx

)
. (6.43)
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These equations were solved in [139]. The solution is

ψ1,2(t, x, y, u) =

∫
dω

2π

dq

2π
e−iωt−iqy−

1
4
B(x+ 2q

B
)2
∑
n

ψ̃1,2
n (ω, x, q, u), (6.44)

where we defined

ψ̃1
n≥0 =


Ĥn(x, q)R1

+

Ĥn−1(x, q)R1
+

Ĥn(x, q)R1
−

−Ĥn−1(x, q)R1
−

 ψ̃1
n<0 =


Ĥ−n(x, q)R1

+

−Ĥ−n+1(x, q)R1
+

Ĥ−n(x, q)R1
−

Ĥ−n+1(x, q)R1
−

 (6.45)

ψ̃2
n≥0 =


Ĥn−1(x, q)R2

+

−Ĥn(x, q)R2
+

Ĥn−1(x, q)R2
−

Ĥn(x, q)R2
−

 ψ̃2
n<0 =


Ĥ−n+1(x, q)R2

+

Ĥ−n(x, q)R2
+

Ĥ−n+1(x, q)R2
−

−Ĥ−n(x, q)R2
−

 (6.46)

with

Ĥn(x, q) =
2−n/2√
n!

Hn

(
Bx− 2q√

2B

)
n ≥ 0, (6.47)

Ĥ−1(x, q) = 0, (6.48)

and Hn are the Hermite polynomials. The R1,2
± are functions of ω, u, and n that

can be solved for numerically.
These solutions tell a familiar story. The fermions are trapped in a back-

ground magnetic field pointing in the radial direction. The magnetic field holds
the fermions in localised bundles in the shape of quantum harmonic oscillator
wavefunctions. These bundles are Landau levels and they have discrete energy
levels En. Because of this trapping, the fermions have fewer degrees of freedom.
The momenta kx and ky they would have in the absence of a magnetic field is
replaced by a single discrete parameter n, the Landau level.

The energy levels are E2
n = 1

2B (2n+ 1 + 2s), where the spin takes values
s = ±1

2 . The term dependent on s is analogous to Zeeman splitting of the energy
levels. The spin down part for n = 0 exactly cancels the zero-point energy, so the
resulting lowest Landau level has vanishing energy.

The full solution is a sum over the Landau levels as well as a sum over the
radial components R1,2

± . The two components Ĥn and R are related to each other

via a constant Ln =
√
nB. Ln appears as a separation constant in the equations.

If we focus on zero modes as in [135], we should neglect the higher order terms.
It is however also possible to keep the higher order terms as was done in [139].
There the authors treat Ln as a continuous parameter and calculate the Green’s
function as a function of frequency ω and Ln. This is a good approximation at
large values of n, where the spacing between the levels goes like 1√

n
.

Ansatz with lattice

Since the system without a lattice background has already been solved in [139], we
focus instead on including the lattice. We specialise on the zero modes, so select
only the n = 0 case, and use an ansatz similar to the one from [134],

ψ1,2(t, x, y, u) =

∫
dω

2π

dq

2π
e−iωt∓iqy−

1
4
B(x+ 2q

B
)2
ξ1,2(ω, q, u), (6.49)
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where the −iqy is for ψ1 and the +iqy is for ψ2. This relative sign comes from
the fact that they have opposite charges under the 3-component of the gauge
field. The motivation for this ansatz is that it is the same as the solution for the
zero mode in the absence of the lattice, except that ξ has a q-dependence. The
q-dependence is meant to capture the lattice effects on ψ.

Substituting the ansatz (6.49) into the equation (6.40) gives

∫
dq

2π

[√
f(u)Γu

(
f ′(u)

4f(u)
− 3

2u
+ ∂u

)
− i Γt√

f(u)

(
ω ± Φ(u)

2

)

−
(
q +

1

2
Bx

)
(Γx ± iΓy)− m

u

]
e∓iqy−

1
4
B(x+ 2q

B
)2
ξ1,2(ω, q, u)

=

∫
dq

2π

i

2
(Γx ± iΓy)×

(A1
x(x, y, u)∓ iA2

x(x, y, u))e±iqy−
1
4
B(x+ 2q

B
)2
ξ2,1(ω, q, u), (6.50)

where we have acted on both sides with
∫
dt eiω

′t and replaced ω′ → ω, so we are
now working in frequency space. Next we do the inverse Fourier transform in the
y-direction. Acting with

∫
dy e±iq

′y and replacing q′ → q gives[√
f(u)Γu

(
f ′(u)

4f(u)
− 3

2u
+ ∂u

)
− i Γt√

f(u)

(
ω ± Φ(u)

2

)

−
(
q +

1

2
Bx

)
(Γx ± iΓy)− m

u

]
e−

1
4
B(x+ 2q

B
)2
ξ1,2(ω, q, u)

=
i

2
U(u) (Γx ± iΓy)×

C
∑
n

e∓i
π
2
n2− 1

2
B(x−nk

B
)2
e
− 1

4
B
(
x− 2(q+nk)

B

)2

ξ2,1(ω,−q − nk, u). (6.51)

If this equation were separable in the usual way, we would now be able to divide
by the part of the solution that depends only on x and throw away that part of
the equation. In this equation however we use a different trick. Instead of dividing
out by an x-dependent factor, we integrate the whole equation with respect to x;
that is, we apply the operation

∫∞
−∞ dx. We then obtain[√

f(u)Γu
(
f ′(u)

4f(u)
− 3

2u
+ ∂u

)
− i Γt√

f(u)

(
ω ± Φ(u)

2

)
− m

u

]
ξ1,2(ω, q, u)

=
i

2
U(u) (Γx ± iΓy) C√

3

∑
n

e∓i
π
2
n2− (kn+2q)2

6B ξ2,1(ω,−q − nk, u). (6.52)

Now consider an expansion in small condensate, where C → εC for small ε > 0
and ξ1,2 = ξ1,2

(0) + εξ1,2
(1) + . . . . This is similar to the expansion done in chapter 5.

Let us also write the equation schematically as

Lξ1,2(ω, q, u) = Â εC
∑
n

e∓i
π
2
n2− (kn+2q)2

6B ξ2,1(ω,−q − nk, u). (6.53)



104 Chapter 6. Holographic lattice extensions

Perturbatively, equation (6.52) becomes

Lξ1,2
(0)(ω, q, u) = 0, (6.54)

Lξ1,2
(i+1)(ω, q, u) = Â C

∑
n

e∓i
π
2
n2− (kn+2q)2

6B ξ2,1
(i) (ω,−q − nk, u). (6.55)

Because the operator L is independent of q, so is ξ1,2
(0) . In particular this means

that ξ1,2
(0)(ω, q, u) = ξ1,2

(0)(ω, q+ k, u). By induction one can prove that this holds at
all orders. If we assume it holds at order i, then

Lξ1,2
(i+1)(ω, q + k, u) = Â C

∑
n

e∓i
π
2
n2− (k(n+2)+2q)2

6B ξ2,1
(i) (ω,−q − (n+ 1)k, u) (6.56)

= Â C
∑
n

e∓i
π
2
n2− (k(n+2)+2q)2

6B ξ2,1
(i) (ω,−q − (n+ 2)k, u) (6.57)

= Â C
∑
n

e∓i
π
2
n2− (kn+2q)2

6B ξ2,1
(i) (ω,−q − nk, u) (6.58)

= Lξ1,2
(i+1)(ω, q, u). (6.59)

Since this holds for all ω, q and u, we conclude that ξ1,2(ω, q+ k, u) = ξ1,2(ω, q, u)
to all orders. Then equation (6.52) becomes[√

f(u)Γu
(
f ′(u)

4f(u)
− 3

2u
+ ∂u

)
− i Γt√

f(u)

(
ω ± Φ(u)

2

)
− m

u

]
ξ1,2(ω, q, u)

=
i

2
U(u) (Γx ± iΓy) ξ2,1(ω,−q, u)

C√
3

∑
n

e∓i
π
2
n2− (kn+2q)2

6B (6.60)

=
i

2
U(u) (Γx ± iΓy) ξ2,1(ω,−q, u)

Ce
∓2iq2

(
√

3±3i)B√
1
2

(√
3± 3i

)×
ϑ3

(
2 4
√

3
√
πq(

±3i+
√

3
)√

B
, e
− 6π
±3i+

√
3

)
. (6.61)

and we can evaluate it numerically.
The action’s boundary term, from which we calculate the Green’s function, is

then given by

Sbdy = i

∫
∂
d3x
√
−γ

(
ψ̄1

+ψ
1
− + ψ̄2

+ψ
2
−
)∣∣∣∣
u→0

= i
√
−γ
√

2π

B

∫
dω

2π

dq

2π

(
ξ̄1

+ξ
1
− + ξ̄2

+ξ
2
−
)∣∣∣∣
u→0

. (6.62)

The boundary expansion, derived from the equations of motion, is

ξ1,2
+ (ω, q, u) ∼ u

3
2

+mA1,2(ω, q) + u
3
2
−m+1B1,2(ω, q),

ξ1,2
− (ω, q, u) ∼ u

3
2
−mD1,2(ω, q) + u

3
2

+m+1C1,2(ω, q). (6.63)

The horizon expansion is

ξ = (1− u)−
1
4
− iω

4πT

(
ξ(0) +

√
1− uξ(1) +O(1− u)

)
. (6.64)
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Taking the functional derivative of Sbdy, it can be shown that the Green’s
function is

GR (αβ)(ab) = −iM(αδ)ab(γt)δβ, (6.65)

where we have suppressed the spinor and SU(2) indices. M is obtained from

D(α)(a) =M(αβ)(ab)A(β)(b). (6.66)

6.2.3 Outlook

In this section we have only set up the equations. We showed that without the
lattice background, the problem reduces to one already solved in a similar system
in [139]. With the lattice background, we can do a perturbative expansion. We
found that, assuming the answer can be described perturbatively, it is possible to
solve for all orders at once by solving a single equation numerically. Of course,
since we expect topological effects to play a role, the validity of this assumption
is not entirely clear.

We could also decide to take not only the lowest Landau level solution. Then
the ansatz would turn into the solution (6.44), but with the R1,2

± upgraded to be
functions of q as well. As before, the q-dependence of these radial functions is
supposed to make up for the presence of the lattice. This is exactly the same
procedure as in [134]; the only difference is that they only consider the lowest
Landau level solutions. Note that in that case, half of the components are zero.

In this case it might be possible to repeat the calculation of the previous section
with this more general ansatz. The Hermite polynomials have nice orthogonality
properties that should allow us to project out all but one Landau level at a time.
If that works, all the other tricks we use should work out as well. We leave this
for future work.
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Chapter 7

The holographic Kondo model

Consider a Landau–Fermi liquid of electrons with a single magnetic impurity.
Both the electrons and the impurity are in a fundamental representation of SU(2)
and have spin 1

2 . This is known as the Kondo model and was introduced by Jun
Kondo in 1964. The model was a theorist’s answer to an outstanding experimental
puzzle. Measurements of the resistivity ρ of gold with iron impurities in 1934
by [140] indicated a pronounced minimum in the temperature-dependent ρ(T )
at low temperatures. Standard Landau–Fermi liquid theory predicts that ρ is
monotonically increasing with temperature. This feature of the resistivity having
a minimum is known as the Kondo effect, since Kondo showed in [62] that his model
reproduces the resistivity minimum. But his calculation was done perturbatively
and his result also predicts that the resistivity diverges as T → 0, a regime where
the perturbative expansion breaks down. Experimentally the resistivity stays
finite at small temperature. Understanding what happens in the Kondo model
when T → 0 became known as the Kondo problem.

The Kondo model fascinated theorists because it is a very simple example of
a strongly coupled system. It is asymptotically free, so in the UV the impurity
is effectively decoupled from the fermions. But lower the temperature and the
Kondo coupling of the impurity to the conduction electrons increases. At the
Kondo temperature TK , a temperature lower than where the resistivity minimum
is found, the Kondo coupling diverges. The conduction electrons bind strongly to
the impurity, forming a Kondo singlet.

Because of the strong coupling, a variety of techniques were developed in an
attempt to extract exact results from the Kondo model. However, none of these ap-
proaches were reliable until Kenneth Wilson developed the renormalisation group.
The Kondo model was one of renormalisation group theory’s first big successes [64].

The Kondo model can be seen as a toy model for QCD as well. The diver-
gence of the Kondo coupling at a given temperature is an example of dimensional
transmutation that generates an energy scale. Below this scale there is a strongly
coupled bound state. This is reminiscent of quark confinement. The asymptotic
freedom completes the analogy.

The Kondo model is also interesting because it can easily be extended. In the
1990’s a series of papers by Affleck and Ludwig [141–146] emerged that study the
Kondo model in the particular limit where it can be described by a CFT. It is also
possible to promote the SU(2) spin group to SU(N) and take the large N limit.
These two limits make the model a candidate for the application of gauge/gravity
duality, if a suitable gravity dual can be constructed.

107
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Such a holographic model was constructed in [63]. There the authors first take
a top-down approach. They present a D-brane construction and take the Malda-
cena limit, resulting in a large N conformal field theory. By aligning the branes in
the appropriate way, they can arrange for an impurity and a scalar operator, the
condensation of which indicates the formation of the Kondo singlet. The authors
then take the salient features of this D-brane construction and build a bottom-up
model. The bottom-up model has the advantage of being less complicated for cal-
culations. They find the Kondo coupling as a function of temperature, and then
investigate the transition to the Kondo singlet state at low temperatures.

With a holographic Kondo model in hand, it makes sense to investigate the
properties that use the correspondence’s strengths. These include the calculation
of entanglement entropy and the study of time-dependent phenomena. In this
chapter we choose the latter. We consider what happens when the Kondo cou-
pling at a given temperature is given a time-dependent quench. Using numerical
techniques for solving partial differential equations, we then investigate the time
scale it takes for the system to return to equilibrium.

This study is related to a recent experiment by [147]. There the authors study
a system with a quantum dot, where the dot is similar to the Kondo impurity.
Initially the dot has no net spin, but by hitting it with photons of the right wave-
length, they can knock an electron out, decreasing the dot’s occupation number.
This “quenches” the system, suddenly putting it in a state where there is a net
spin impurity localised in the conduction band. This amounts to effectively turn-
ing on a Kondo coupling. The subsequent evolution of the system can then be
measured.

This chapter is divided into the following sections. We first give a review of
the Kondo model in section 7.1. We then present the holographic Kondo models
from [63]. The top-down model is discussed in section 7.2. A review of the bottom-
up model as well as the superconducting solutions found in the static setup is
then presented in section 7.3. The sections thereafter contain original work by the
author of this thesis and collaborators. Section 7.4 discusses time-dependence.
We add a Gaussian quench to the Kondo coupling, then find the evolution of the
system. In the final section we summarise the results and outline future work.

7.1 Introduction to the Kondo model

As mentioned at the start of the chapter, the Kondo model describes a Fermi
liquid of free electrons and a single magnetic impurity. As an example, in the
experiment done in [140] the setup was gold with iron impurities. More recently
the Kondo effect has also been seen in quantum dots [148]. A quantum dot is an
isolated island of electrons within a material that has a magnetic spin.

The Kondo model is a special case of the Anderson model. The picture to
have in mind is depicted in figure 7.1. It represents an impurity in the conduction
band of electrons. The Fermi energy of the electrons is given by εF . The impurity
has energy levels filled with various levels of electrons. Levels with more electrons
have higher energy thanks to the Coulomb interaction between the electrons. The
energy of the level with one electron is εd and the energy of one level higher is
εd + U , where U is the Hubbard energy, the typical strength of the Coulomb
interaction between two electrons. To get the Kondo model, the energies εF , εd
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εd

εF

εd + U

Figure 7.1: The illustration to have in mind for the Anderson model. The impurity
is shown in the centre and the conduction band electrons with Fermi energy εF are
on either side. Two energy levels in the impurity with energies εd and εd + U are
shown. The lower is occupied by a single electron and the upper by an electron
pair. The energies are adjusted for this material so that εd < εF < εd + U . To
obtain the Kondo model we assume U is large enough that all energy levels except
the one with a single electron can be neglected.

and U are chosen in such a way that εd < εF < εd + U , so that only the energy
level with a single electron comes into play. The other energy levels are neglected.
The single electron provides the magnetic impurity.

Following [63,149], we can describe the Kondo model with the Hamiltonian

HK = ψ†α
−∇2

2m
ψα + λ̂Kδ(~x)~S · ψ†α~ταβψβ. (7.1)

The first term is the kinetic term for the fundamental SU(2) conduction band

electrons ψα with spins α =↑ or α =↓. m is the electron mass. ψ†α is a creation
operator and ψα an annihilation operator. The second term describes interactions
between the electrons and the impurity. The δ-function localises the impurity at
~x = 0. The vector ~τ is a basis for the SU(2) generators given by τa = 1

2σ
a, where

σa are the Pauli matrices. ~S is the spin of the impurity. Finally, λ̂K is the Kondo
coupling. The coupling is called anti-ferromagnetic if λ̂K > 0 and ferromagnetic
if λ̂K < 0.

By using perturbation theory, Jun Kondo showed in [62] that the temperature-
dependence of this system’s resistivity is

ρ ∼ ρ0 + aT 5 + λ̂K log

(
T

TF

)
. (7.2)

Here aT 5 > 0 is a term that comes from the effect of lattice vibrations and TF
is the Fermi temperature of the system. In a Fermi liquid without the impurity,
the resistivity would be monotonically increasing with temperature. Thanks to
the log term coming from the impurity, however, we find that the resistivity has
a local minimum at

Tmin ∼ −
(
a/λ̂K

)1/5
(7.3)

and diverges at low temperatures. The minimum agrees with the experimental
findings of [140]. The low-temperature divergence, however, does not agree with
experiment and is interpreted as coming from the breakdown of perturbation the-
ory in the low-temperature regime. What experiments show is that the resistivity
actually approaches a finite value at low temperatures.
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Figure 7.2: The magnetic impurity at temperatures below TK , where the Kondo
coupling is large. The impurity and the conduction electrons form a strongly
coupled spin singlet, screening the magnetic moment of the impurity completely.

Kondo also showed that the coupling λ̂K runs with temperature scale. The
perturbative result is

λ̂K(T ) =
λ̂K0ne

1 + neλ̂K0 log(T/TF )
, (7.4)

where ne is proportional to the conduction electron density. When λ̂K0 < 0, the
ferromagnetic case, we see that λ̂K goes to zero at low temperature so the ground
state is a free fermion system. When λ̂K0 > 0, however, the situation is far
more interesting. The coupling goes to zero in the UV, so it exhibits asymptotic
freedom. There is also a divergence at the dynamically generated scale

TK = TF e
−1/neλ̂K0 , (7.5)

the Kondo temperature. This shows that at low energies the conduction electrons
are strongly coupled to the impurity, as in figure 7.2, forming the Kondo singlet.
It also turns out that at low energies the Kondo singlet’s spin is absent due to
being completely screened, and the remaining unbound electrons form a Fermi
liquid with the boundary condition that the electron wavefunction must vanish at
the impurity. Also, the transition to this new state at the Kondo temperature is
a crossover, not a phase transition. For diverging coupling, perturbation theory
should definitely no longer hold, so we have the Kondo problem: what is the
solution of the Kondo model at low temperatures when λ̂K > 0?

We already know that gauge/gravity duality is helpful for solving problems at
strong coupling. But the Kondo model as described is still not in a form amenable
to AdS/CFT techniques. For that we need to generalise it first. We generalise it
in two ways in the next two sections. First we explain how it can be turned into
a conformal field theory, and then we take the large N limit.

The CFT approach

The CFT approach to the Kondo model was developed in the 1990’s in a series of
papers by Ian Affleck and Andreas Ludwig [141–146]. The idea is to reduce the
problem to one dimension by doing a partial wave decomposition of the electrons.
We retain only the s-wave state, so there is spherical symmetry centred at the
impurity and the angular coordinates can be integrated out, leaving only the
radial direction. The next step is to linearise the dispersion relation about the
Fermi momentum kF . This is valid at energies far below kF . We are left with only
in-going and out-going s-wave fermions. These can be described as left-moving
and right-moving. But we can get rid of the right-movers with a trick. We extend
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the radial axis to negative values and reflect the right-movers about the origin,
turning them into left-movers. The resulting Hamiltonian is then

H =
vF
2π
ψ†Li∂xψL + vFλKδ(x)~S · ψ†L~τψL. (7.6)

Here ψL are the left-moving fermions, vF is the Fermi velocity vF = kF /m and

λK =
k2
F

2π2vF
λ̂K . From now on we choose vF = 1 for simplicity. This model is in

(1+1)-dimensions, so the Kondo coupling λK is dimensionless, δ(x) has dimension
one, ~S is dimensionless and ψL has dimension 1/2.

The symmetry group of this new reduced model is now much larger. In par-
ticular, in the UV and the IR, the model is conformal and their symmetry groups
match. This larger symmetry group can be used to calculate the complete spec-
trum of the theory, giving a complete solution to the Kondo problem.

The large N approach

Let us enhance the symmetry group of the Kondo model. In the original model the
impurity transforms under the spin SU(2) group. We promote this to SU(N). In
addition we can consider multiple channels of electrons. A channel is what particle
physicists call “flavour”. If there are k channels, the total gauge symmetry group
becomes SU(N)×SU(k)×U(1), where SU(k) is the channel symmetry and U(1)
the charge symmetry.

Having generalised to SU(N), we can take the large N limit. This is well-
defined if we simultaneously send N → ∞ and λK → 0, keeping NλK fixed. In
this limit, the Kondo model gets another dynamically-generated temperature scale
Tc, below which the system is in a superconducting phase. Let us explain how
this works.

We represent the impurity spin ~S in terms of slave fermions χ. This is a
technique where we artificially increase the number of degrees of freedom in the
Hilbert space by decomposing physical fields into multiple unphysical fields. We
choose that the slave fermions χ transform in the fundamental representation of
SU(N) and that

Sa = χ†T aχ, a = 1, 2, . . . , N2 − 1. (7.7)

T a are the generators of SU(N) in fundamental representation. Rotating the phase
of χ leaves Sa invariant, so the theory gains an additional U(1) symmetry. With
the additional symmetry and artificial degrees of freedom, we should introduce a
constraint to project onto the physical states in the Hilbert space. The constraint
is simple: we choose χ†χ = q. q is fixed by the representation that we choose for
SU(N). For a totally anti-symmetric representation of SU(N) where the Young
tableau is a single column, that column has q boxes.

Now we can rewrite the interaction term of the Hamiltonian (7.6). We make
use of the identity

∑
a

T aαβT
a
γδ =

1

2

(
δαδδβγ −

1

N
δαβδγδ

)
, α, β, γ, δ = 1, . . . , N (7.8)



112 Chapter 7. The holographic Kondo model

for SU(N) group generators. This gives

λKδ(x)
(
ψ†LT

aψL

)
Sa = λKδ(x)

(
ψ†LT

aψL

)(
χ†T aχ

)
=

1

2
λKδ(x)

[
OO† − q

N

(
ψ†LψL

)]
, (7.9)

where we defined the operator O ≡ ψ†Lχ and used χ†χ = q. The operator O
is a function of time only because χ cannot propagate away from the impurity.
It transforms under the bifundamental of SU(k) × U(1) and has minus the U(1)
charge of the electron. It is also a singlet of SU(N), which is why the authors
of [63] decide to call OO† a double-trace deformation even though it is not really
the trace of a matrix. O has classical mass dimension 1/2.

In the large N limit, it turns out that the system undergoes a second-order
mean field phase transition at a temperature Tc, which is on the order of TK . 〈O〉
is an order parameter for this phase transition. When T ≥ Tc, 〈O〉 = 0, and it is
nonzero for T < Tc. This condensation represents the fermions ψL getting stuck
to the impurity fermions χ, creating the Kondo singlet. In other words, in the
large N limit the Kondo effect, where a Kondo singlet gets formed, is a phase
transition into a superconducting phase.

One interesting point to note is that the condensation of O is a spontaneous
breaking of the gauge symmetry, which should be impossible in (1+1)-dimensions
due to the Mermin–Wagner theorem [150]. The reason it works here is because of
the large N limit. If 1/N corrections are taken into account, the effect is changed
from a sharp phase transition at Tc to a smooth crossover transition around Tc.

It should also be pointed out that the large N approximation is only valid at
low temperatures. This is because when T > Tc, the model reduces to a system
of free chiral fermions ψL. Calculating anything at high temperatures requires
taking 1/N corrections into account.

Summary

The Kondo model describes an impurity carrying a net spin in a Fermi liquid
of fermions, typically the conduction band of a metal. In the UV, the impurity
is effectively decoupled from the fermions since the system exhibits asymptotic
freedom. Lowering the temperature, the coupling gets stronger. Eventually a
minimum in the resistivity is reached, which is one experimental signature of
the Kondo effect. As the temperature is lowered further, the Kondo coupling
eventually diverges at the Kondo temperature TK . Below this scale the impurity
is in a strongly coupled bound state with the conduction band electrons, known as
the Kondo singlet. In the limit where T → 0, the singlet’s spin vanishes because
it is completely screened. The conduction band electron wavefunction vanishes
at the singlet. This is intuitively because the singlet is so strongly bound that it
needs an infinite amount of energy for the electrons to penetrate it.

We can make the Kondo model amenable to gauge/gravity techniques by turn-
ing it into a conformal field theory with gauge group SU(N) at large N . This is
done by taking a partial wave decomposition of the electrons and retaining only
the s-wave states, yielding an effective (1 + 1)-dimensional theory, and linearis-
ing the dispersion relation about kF . The SU(2) spin group of the impurity is
promoted to SU(N) and the large N limit is taken. Now the Kondo model is a
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N5 D5’s

3-3
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7-5 5-7
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7-3

Figure 7.3: A sketch of the top-down holographic Kondo model from [63]. There
are Nc D3-branes, N5 D5-branes and N7 D7-branes, with N5 � Nc and N7 � Nc.
The different kinds of open strings stretching between the branes are also shown.
This figure was taken with permission from [149].

superconductor. There is a critical temperature Tc of the same order as TK below
which a “double-trace” operator O condenses. The condensation of this operator
indicates the onset of superconductivity as well as the formation of the Kondo
singlet.

With the Kondo model understood, it is possible to construct a holographic
dual. There are two approaches we can take, and both are described in [63]. In
their top-down approach, the authors present a D-brane construction and take
the Maldacena limit, resulting in a large N field theory with an impurity and an
operator O. The top-down construction is however quite complicated, so they
also propose a bottom-up model with the salient properties. We give a brief
overview of the top-down construction before moving to the bottom-up model
and investigating time-dependent solutions to the Kondo coupling.

7.2 The top-down holographic Kondo model

In [63] the authors consider the following D-brane intersection in type IIB string
theory:

0 1 2 3 4 5 6 7 8 9

Nc D3 × × × ×
N5 D5 × × × × × ×
N7 D7 × × × × × × × ×

There are different kinds of open strings described by the branes on which they
end. These are illustrated in figure 7.3. The worldvolume of each stack of Dq-
branes has a (q + 1)-dimensional maximally supersymmetric super Yang–Mills
theory with gauge group U(Nq). This theory comes from the q-q strings. Each
worldvolume theory has a Yang–Mills coupling gq related to the string coupling
gs and α′ as g2

q ∼ gsα
′(q−3)/2. We also define a ’t Hooft coupling for each theory

as λq = Nqg
2
q .
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As with the original AdS/CFT correspondence, we are interested in the limit
where Nc is large, so there are many D3-branes. We treat the D5-branes and
D7-branes as probes. There should not be enough of them to backreact onto the
geometry, so N5 � Nc and N7 � Nc. As before, in sending Nc → ∞ we keep λ3

fixed and then send it to infinity as well. When doing this the ’t Hooft couplings
λ5 and λ7 are suppressed by powers of 1/Nc so they vanish. As a result, the
5-5 and 7-7 strings decouple from the D3-brane worldvolume theory so their only
relevant contribution is the global U(N5) and U(N7) symmetry groups.

The worldvolume theory we are interested in is that on the D3-branes. In the
Maldacena limit, the 3-3 strings give the usual N = 4 super Yang–Mills theory
with gauge group SU(Nc). We also saw that the theories arising from the 5-5
and 7-7 strings decouple. What is more interesting is the contribution from the
brane intersections. The 3-7 and 7-3 strings give rise to chiral fermions. They
live on the (1 + 1)-dimensional intersection between the D3- and D7-branes, so
they can be thought of as the conduction band electrons. Also, they transform
under an SU(Nc) × SU(N7) × U(1) current algebra, reminiscent of the spin and
channel symmetries of the previous section. The 3-5 and 5-3 strings, on the other
hand, live in a (0+1)-dimensional space that should describe the Kondo impurity.
They give rise to the slave fermions. Finally, the 5-7 and 7-5 strings describe the
interaction between the impurity and the conduction band.

Let us turn to the gravity side. The near-horizon limit of the D3-branes, as
we know, gives AdS5 × S5. The probe D7-branes fill up an AdS3 × S5 subspace
of the AdS5×S5. The duals of the field theory chiral fermions are Chern–Simons
fields living on the D7-brane worldvolume. Integrating out the S5 directions, this
is a Chern–Simons field living on AdS3. The D5-branes span an AdS2 subspace of
the AdS3. This subspace contains, among other fields, a gauge field which is dual
to a charge on the impurity.

The final component on the gravity side comes from the D5/D7 intersection.
It represents the Kondo coupling. This intersection contains a tachyonic field that
transforms in the bifundamental under U(N7)× U(N5) but is a singlet under the
spin symmetry SU(Nc). The operator O has precisely the correct properties to be
identified with the operator defined in equation (7.9). It is dual to a scalar field.

In this section we gave a very rough overview of the top-down Kondo model.
The authors of [63] however give a much more detailed treatment.

7.3 The bottom-up holographic Kondo model

The bottom-up model proposed in [63] takes only the essential ingredients from
the top-down model. Since the full (3+1)-dimensional super Yang–Mills theory is
unnecessary, it makes sense to look at only the AdS3 as the complete spacetime,
with a black hole for temperature. In that spacetime the authors place a level-N
Chern–Simons field to be dual to the chiral fermions, as well as a brane stretching
out in only the radial and time directions. This brane is localised on the boundary;
it represents the impurity. It spans an AdS2 subspace and contains a Yang–Mills
gauge field and a complex scalar dual to an operator O.

In this section we review the bottom-up holographic setup in detail, derive
the equations of motion and show how they were solved in [63] to give the su-
perconductor solution. This solution then sets the stage for the time-dependent
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calculations we present in later sections.

7.3.1 Holographic setup

The gravity background is a fixed (2+1)-dimensional AdS–Schwarzschild (or BTZ)
black hole, with metric

ds2 =
1

z2

(
−h(z)dt2 +

dz2

h(z)
+ dx2

)
,

h(z) = 1− z2

z2
H

. (7.10)

Here z is the holographic coordinate with the AdS boundary at z = 0 and the
horizon at z = zH . x is a spatial coordinate and t a time coordinate. In these
coordinates the AdS radius is set to unity and the Hawking temperature is T =
1/(2πzH).

The geometry has a scaling symmetry. The scale transformation

(t, z, zH , x)→ λ(t, z, zH , x) (7.11)

leaves the metric invariant. We will thus use this freedom to choose the geometry
size where zH = 1, and work in these “dimensionless” units from now on. Note
that this is not a change of coordinates, which is a passive transformation. The
coordinate choice was fixed by setting the AdS radius to unity. This is a rescaling
of the geometry, which is an active transformation. From now on, any further
scale in the setup will not leave the physics invariant when rescaled, because it is
implicitly compared to zH , that is, it takes a value in units of zH . Factors of zH
can always be restored by dimensional analysis.

The model has a level-N U(k) Chern–Simons gauge field, which is dual to both
the charge U(1) and channel SU(k)N currents. The action for this field is given
by

SCS = −N
4π

∫
tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (7.12)

A is the Chern–Simons field and F = dA + A ∧ A its field strength. For our
purposes we choose N = 1.

Furthermore, the AdS3 space has an AdS2 subspace on which additional fields
are localised. The AdS2 is located at x = 0; this is meant to model the Kondo
impurity in the boundary field theory. It contains a gauge field and a scalar,
described by the action

SAdS2 = −N
∫
d3xδ(x)

√
−g
(

1

4
trfmnfmn + gmn (DmΦ)†DnΦ +M2Φ†Φ

)
.

(7.13)

f = da + a ∧ a is the field strength for the gauge field a. The indices m, n run
over the z and t coordinates only. Φ is a scalar coupling in the bifundamental
representation to both gauge fields through the covariant derivative Dm. Each
gauge field is the connection for a U(1) gauge group, so the covariant derivative
is simply

DmΦ = ∂mΦ + iAmΦ− iamΦ, (7.14)



116 Chapter 7. The holographic Kondo model

where the scalar’s U(1) charges are ±1.
The equations of motion become

εnµνFµν = −4πδ(x)Jn, (7.15)

∂m
(√
−ggmpgnqfpq

)
= −Jn, (7.16)

1√
−g

∂m
(√
−ggmn∂nΦ

)
= ∆m∆mΦ− 2i∆m∂mΦ

− i√
−g

∂m
(√
−g∆m

)
Φ +M2Φ. (7.17)

The current Jm is defined as

Jm ≡ 2
√
−ggmn

(
Φ∂nΦ† − Φ†∂nΦ− 2i∆nΦΦ†

)
(7.18)

and we also made use of the definition

∆m ≡ Am − am. (7.19)

The current is conserved, so ∂nJ
n = 0 is another equation of motion, although

not independent of the equations (7.15)–(7.17).
Before we can solve these equations, we need to specify a gauge to work in.

There are two U(1) gauge fields, and their gauge freedom allows us to set one
component of each to zero. We choose to set az = Az = 0. It is then straight-
forward to show that we can also consistently switch off At. Doing this, we find
that equations (7.16) and (7.17) no longer contain Ax. This means that at and Φ
can be solved for independently of Ax. They do still source Ax in equation (7.15),
however, so after their solution has been found, they can be substituted in to solve
for Ax. The main task, then, is to solve for at(t, z) and Φ(t, z).

Near the boundary, equation (7.16) can be solved to show that

at �
Q

z
+ µ+ . . . . (7.20)

Here limz→0
√
−gf tz = −Q is the electric flux at the boundary and µ the chemical

potential of the dual field theory.
The complex scalar Φ is dual to the operator O. In order to match this

operator with the operator in equation (7.9), the complex scalar Φ should have
scaling dimension 1/2. This means the scalar must have an effective mass that
coincides with the Breitenlohner-Freedman bound. If Φ has a boundary expansion
that goes like z∆± as z → 0, equation (7.17) tells us that

∆± =
1

2
± 1

2

√
1 + 4(M2 −Q2). (7.21)

We therefore need that ∆+ = ∆− = 1
2 , and to achieve this we choose M = 0 and

Q = −1
2 . As a result, because the exponents of both of the leading terms are the

same, we need to introduce a logarithm so that

Φ � α
√
z ln(Λz) + β

√
z + . . . , (7.22)

where Λ is an arbitrary energy scale needed to make the argument of the logarithm
dimensionless.
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7.3.2 The Kondo coupling

The field theory Lagrangian has the “double-trace” deformation proportional to
κOO†, where κ is the Kondo coupling. The boundary conditions for such a defor-
mation need to be treated with care, as shown in [151,152]. The correct condition
to use is

α = κβ. (7.23)

This relation is derived as follows. Suppose a perturbation W is added to the
field theory action, where W (x,Oi, dOi) is some function of spacetime, operators
and derivatives of operators, and that the operators Oi are dual to fields φi with
boundary expansions

φi = αi(x)z∆− + βi(x)z∆+ + . . . . (7.24)

If, for example, W =
∫
ddxf(x)O(x), then we know from the standard AdS/CFT

dictionary that α ∼ f is the source for the vacuum expectation value β ∼ O. We
can write this relationship as

α =
δW (x, β)

δβ
. (7.25)

The idea presented in [151,152] is to use precisely this formula as a generalisation of
the standard case. We substitute Oi → βi so that W (x,Oi, dOi)→W (x, βi, dβi),
then use the formula.

For the holographic Kondo model, the field theory has the term

W ∼ κ

2

∫
d3xOO† (7.26)

in the action. This reproduces the relationship (7.23). The first two terms in the
expansion (7.22) then become

Φ � β
√
z (κ ln(Λz) + 1) . (7.27)

Now, the value of Φ cannot depend on the choice of Λ. On the gravity side, this
is because Φ satisfies a second order differential equation and so it only has two
degrees of freedom determined by β and κ. On the field theory side, this means
that the source and vev must be independent of Λ. Thus Λ is like a renormalisation
group energy scale. Demanding the invariance of (7.27) under a change in energy
scale Λ means that β and κ must change. Suppose we start with the values β0,
κ0 and Λ0, then changing to energy scale Λ means that

κ =
κ0

1− κ0 ln
(

Λ
Λ0

) (7.28)

and β0κ0 = βκ. So κ and β are renormalised depending on the energy scale Λ.

The renormalisation scale is an additional unphysical scale that needs to be
fixed. For every solution for Φ, there is a single parameter’s worth of values for
κ and β. Earlier we fixed the temperature of the model by choosing zH = 1, so
it makes sense to use this choice to fix Λ as well. So when given a solution Φ, we
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κT

2πT
Λ0

Figure 7.4: The value of κT plotted as a function of 2πT
Λ0

for a representative

negative value of the coupling κ = −1. There is a divergence at 2πT
Λ0

= e−1 which

we identify as the Kondo temperature TK = 1
2πΛ0e

−1.

use ΛT = 1/zH = 2πT (which simply equals one in our dimensionless units) to
determine κT and βT .

Using the renormalisation equation (7.28) we can also work out how κT should
change with energy scale. Suppose that κ = −1 at some energy scale Λ0, where
we chose it to be negative because we want an anti-ferromagnetic coupling. We
then have

κT = − 1

1 + ln
(

2πT
Λ0

) . (7.29)

Figure 7.4 shows κT plotted as a function of 2πT
Λ0

. It shows that κT diverges at a

certain temperature, which we call the Kondo temperature TK = 1
2πΛ0e

−1. Using

this definition with equation (7.29), we get that T/TK = e−1/κT . Note how well
this corresponds to the running of the Kondo coupling in (7.4)!

7.3.3 Superconductivity

It was shown in [63] that this model undergoes a superconducting phase transition
when the temperature is below a critical value Tc, which is less than TK for anti-
ferromagnetic coupling. The new ground state is found using a shooting method,
which we will briefly outline in this section. Since we are only interested in ground
states, we search for static solutions. In the next section we turn our attention to
solving the time-dependent system.

The static equations of motion in the background (7.10) are

0 =
a2
tΦ

(1− z2)2 −
2zΦ′

1− z2
+ Φ′′, (7.30)

0 = Φ(Φ†)′ − Φ†Φ′, (7.31)

0 = a′′t +
2a′t
z

+
2atΦΦ†

z2 (z2 − 1)
− iΦ†Φ′

z2
+
iΦ(Φ†)′

z2
. (7.32)
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It is clear that we can choose Im(Φ) to be zero. Defining φ = Re(Φ), we have only
two remaining equations,

0 =
a2
tφ

(1− z2)2 −
2zφ′

1− z2
+ φ′′, (7.33)

0 = a′′t +
2a′t
z

+
2atφ

2

z2 (z2 − 1)
. (7.34)

The fields φ and at each have a second order equation of motion. This means
there are four integration constants in total: Q, µ, κ and β. Above we fixed
Q = −1

2 , fixing one of the constants. There are two further constraints coming
from regularity at the horizon z = 1.

The first regularity constraint is that we need gmnaman = gtt(at)
2 to remain

finite at the horizon, which of course means we need to set at = 0 at z = 1. As
we have already explained in previous chapters, it is not obvious why we need to
stop the vector potential from diverging when all that should really matter is that
the physical electromagnetic field remains finite. Perhaps the divergence can be
gauged away. This cannot be done, however, because we have already made the
gauge choice az = 0. Any further gauge transformations λ can be functions only of
t1. Thus the z-dependence of at cannot be changed with a gauge transformation,
and it must be zero at the horizon.

The second regularity constraint can be found by working out the series expan-
sion of equation (7.33) about z = 1 and determining the coefficient of the singular
term, which must vanish. This gives us a Neumann boundary condition for φ:
∂zφ = 0 at z = 1.

Given that three of the four constants are thus fixed, the solution space is
parameterised by only the chemical potential µ. As explained earlier, varying µ is
equivalent to varying the temperature of the system. The procedure is therefore
to choose a temperature, fixing µ, and then find the values of κ and β that give
profiles for φ and at that solve the equations of motion. This procedure is the
essence of the shooting method. For given values of Q, µ, κ and β, we can
numerically integrate the equations from z = 0 to z = 1 and determine to what
extent they violate the horizon boundary conditions. We vary κ and β until the
horizon boundary conditions are satisfied within numerical tolerance.

One thing that we glossed over in the previous paragraph is how to impose the
initial boundary conditions at z = 0. Since the equations of motion are singular
there, this is not possible. We instead have to impose conditions at z = ε and
start the integration there. This means we need to know the values of the fields
at z = ε before we start. These are found by working out the first few terms
of the asymptotic expansion of φ and at at z = 0. It turns out that this is not
so straightforward because of the presence of powers of ln z in the expansion. In
appendix C we present an algorithm for computing these terms for the full system
of time-dependent equations. This allows us to find the boundary expansion for
the static fields to tenth order and thus execute the shooting method to find the
field profiles.

The main numerical result obtained is that the holographic Kondo model ex-
hibits spontaneous symmetry breaking below a critical temperature, the hallmark
of a superconductor. The system is in a superconducting phase when µ > 1

2 , which

1See the end of section 5.1.2 for more details.
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T
Tc

κβ√
Tc

Figure 7.5: κβ as a function of temperature, showing the condensation of O below
Tc. A fit to the data, done in [63], reveals that the phase transition is mean-field,
with 〈O〉 ∼ (T − Tc)1/2.

in dimensionful units means that T
µ <

1
π . In this phase φ has a non-vanishing pro-

file and κ and β are of course non-zero. When µ < 1
2 , φ, κ and β vanish. κβ as a

function of temperature is plotted in figure 7.5. What is not shown in the figure
is that κβ approaches a constant as T → 0. From figure 7.4 we know that this
means that κ→ 0 and β →∞ as T → 0.

7.4 The time-dependent Kondo model in the probe
scalar limit

As explained in the introduction, what we would like to do is induce a quench in
the Kondo coupling κ. This means that we start from one of the static solutions
outlined in the previous section where κ has some fixed value, then add a Gaussian
bump κ ∼ κ0 + e−σ

2t and see how the system evolves.
Unfortunately this is technically hard to do. Let us look at the boundary

(z → 0) expansion for the scalar, given by

φ(z) � α
√
z ln z + β

√
z − 1

3
α3z3/2(ln z)4 +O(z3/2(ln z)3). (7.35)

Recall that α = κβ. This means that β is an overall factor of the two largest terms
of φ near the boundary. A numerical algorithm that attempts to find β given κ is
likely to find the solution β = 0 near the boundary, and not the real solution we
are looking for.

As a first approach we therefore work instead with α and β directly. We
promote α and β to time-dependent functions. We implement the quench by
fixing α to a Gaussian function, α(t) ∼ α0 + e−σ

2t2 , and then determine how β
responds. Afterwards we can read off κ = α/β as a result of the quench. We can
then try to tune the quench in α so that it gives the form of κ we would like.

At early times α and β take values from the static solution. The quench induces
a “bump” in φ near the boundary, which travels into the bulk as a result of the
wave equation that φ satisfies. In the usual AdS–Schwarzschild coordinates, this
bump takes an infinite amount of asymptotic time to reach the black hole horizon.
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Instead, it makes more sense to move to Eddington–Finkelstein coordinates, where
φ dies down to an almost-vanishing profile soon after the peak of the Gaussian in
the quench.

We approach the problem as follows. In the next section we write down the
time-dependent equations in Eddington–Finkelstein coordinates and show how
the gauge-fixing from the AdS–Schwarzschild coordinates carries over to the new
coordinates. The fields on the brane decouple from the Chern–Simons field, so we
have three coupled time-dependent equations for the brane fields left over. These
three equations correspond to the three real fields of interest on the brane — one
gauge field component and the complex scalar’s two components. We then make
an assumption: we assume that the gauge field is fixed then solve only for the
scalar, treating the scalar as a probe. This allows for a check of the numerical
methods. We solve the probe scalar using two different methods. The first is
through separation of variables, where we have a high degree of control over the
numerics because we only have to solve ordinary differential equations. The second
method is by using a time-marching scheme, where we solve the equations at a
given spatial slice and then integrate the solutions in time to get a solution for
the next spatial slice. The solution using this method agrees with the solution
from separation of variables, so we have confidence in the method. The next step
is then to generalise it to include backreaction of the scalar onto the gauge field.
This is left for future work.

7.4.1 Equations in Eddington–Finkelstein coordinates

We convert to Eddington–Finkelstein coordinates by defining a new time coordi-
nate, v, by

dv = dt− dz

h(z)
. (7.36)

This means that the metric (7.10) becomes

ds2 = −h(z)

z2
dv2 − 2

dvdz

z2
(7.37)

Using the explicit expression for h from (7.10), we can integrate to find that

v = t− arctanh z. (7.38)

Note that v and t are the same at boundary.

In these new coordinates, the gauge field A becomes

At → Av Az → −
1

h
Av +Az. (7.39)

To fix the gauge in AdS–Schwarzschild coordinates, one usually sets the radial
component of the gauge field, in this case Az, to zero. This same gauge in EF
coordinates becomes Az = 1

hAv. We also choose az = 1
hav. Furthermore we can

consistently choose Av = 0.
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Using this ansatz, the equations of motion (7.15)–(7.17) become

0 = ∂vAx + 2πiδ(x)
(

Φ† (∂vΦ− h∂zΦ) + Φ
(
h∂zΦ

† − ∂vΦ†
))

, (7.40)

0 = ∂zAx + 2πiδ(x)

(
Φ∂zΦ

† − Φ†∂zΦ +
2iavΦΦ†

h

)
, (7.41)

0 =
z2∂2

vav
h

− z2∂z∂vav + ihΦ†∂zΦ− iΦ
(
h∂zΦ

† − ∂vΦ†
)
− iΦ†∂vΦ, (7.42)

0 = +z2h∂2
zav − z2∂z∂vav + 2zh∂zav +

(
z2h′

h
− 2z

)
∂vav

− 2avΦΦ† + ih
(

Φ∂zΦ
† − ∂zΦΦ†

)
, (7.43)

0 = ∂2
zΦ− 2∂z∂vΦ

h
+
h′∂zΦ

h
+

2iav∂vΦ

h2
+

Φ
(
iz2∂vav + z2a2

v −M2h
)

z2h2
. (7.44)

The first two are equations of motion for the Chern–Simons field. These are the
only equations in which Aµ appears, so they should be solved after Φ and am are
known.

7.4.2 Solving for the scalar probe using separation of variables

As a first step we treat the scalar Φ as a probe on top of a fixed solution for the
gauge field. Solving for av when Φ = 0 gives

av =
Q

z
+ µ, (7.45)

where we choose Q = −1/2. Because av must vanish at z = 1 for regularity, we
have that µ = 1/2.

Using this solution for av and choosing M = 0, the scalar equation (7.44)
becomes

0 = ∂2
zΦ +

2∂z∂vΦ

z2 − 1
+

2z∂zΦ

z2 − 1
+

i∂vΦ

(z − 1)z(z + 1)2
+

Φ

4z2(z + 1)2
. (7.46)

We can solve this using the separation of variables ansatz

Φ(z, v) = Z(z)V (v), (7.47)

which gives the equations

0 = V ′ + iSV, (7.48)

0 = Z ′′ +
2(z − iS)Z ′

z2 − 1
+

(4Sz + z − 1)Z

4(z − 1)z2(z + 1)2
. (7.49)

for Z(z) and V (v). We chose iS as the separation constant. The equation for V
is easy enough to solve analytically. The full solution for Φ is therefore

Φ =
∑
n

Cne
−iSnvZn(z, Sn) (7.50)

with constants Cn and Sn that we can choose and the functions Zn(z, Sn) that
we have to solve for numerically. Happily equation (7.49) for Zn is an ordinary
differential equation.
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How do we choose Cn and Sn? We wish to impose a time-dependent function
α(v). The boundary expansion of Zn is

Zn � αn
√
z log z + βn

√
z +O(z3/2 log z). (7.51)

From this we can fix Cn and deduce that

α(v) =
∑
n

αne
−iSnv, β(v) =

∑
n

βne
−iSnv. (7.52)

We can also fix Sn so that these expansions become Fourier series expansions, or
indeed take the continuum limit and turn the sums into Fourier transforms. It is
easier to work with discrete methods numerically, so we choose to take a Fourier
series with Sn = 2πn

L and make the quench α(v) periodic, so that

α(v) =
∑
n

αne
−i 2πn

L
v, (7.53)

where L is the period of α.

We thus have a clear strategy. We choose a quench function α(v) and do a
Fourier transform to determine the coefficients αn. Taking a coefficient αn and
Sn = 2πn

L as input, we solve equation (7.49) using the shooting method described
in the previous section. This gives us a coefficient βn. Using βn we can reconstruct
β(v) via the inverse Fourier transform.

Using this strategy we plot the result for a Gaussian quench in figure 7.6.
In this figure we choose to quench about a vanishing condensate, so the system
starts at Tc. The quench is a “shake” in the boundary conditions of the scalar field,
producing a bump that flows into the black hole horizon. If metric backreaction
is taken into account, this should result in the black hole growing in size, raising
the temperature of the field theory.

The separation of variables method is simple to implement and the numer-
ical results are stable. However, it cannot be generalised to include gauge field
backreaction. In this respect the time-marching method described in the following
section is superior.

7.4.3 Solving for the scalar probe using a time-marching method

One thing to realise about the probe scalar solution from the previous section
is that it is real. It certainly makes sense that we can choose Φ to be real at
the boundary using a residual v-dependent gauge transformation, but we cannot
choose it to be real for all z. This is because we have already used a z-dependent
gauge transformation to fix Az = az = 0. In fact, when we include gauge field
backreaction we will find that the imaginary part of Φ is in general not zero. For
the probe limit, however, we can neglect Im Φ, and work only with the real part
φ = Re Φ.

With this choice the equation (7.44) becomes

∂v∂zφ = − (1− z)2φ

8z2 (z2 − 1)
+

1

2

(
1− z2

)
∂2
zφ− z∂zφ (7.54)

≡ F (φ, ∂zφ, ∂
2
zφ, z), (7.55)
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v

β(v)

α(v)

Figure 7.6: The response of β(v) to a Gaussian quench in α(v) is plotted. It was
calculated using the separation of variables method. Here we choose to quench
about a vanishing condensate, so the system is at T = Tc. The quench profile for

α is α(v) = 0.3e−
(v−1)2

0.05 .

where we have written it in a form that makes integration in v easier, and defined
the function F .

The idea behind a time-marching scheme is simple. We first notice that equa-
tion (7.54) has only one term with a v-derivative, which we have written on the
left-hand side of the equation. We foliate spacetime in the v-direction and solve
for φ in discrete steps on these v-slices. Before the quench, on the first v-slice,
φ takes its initial static value and its spatial derivatives are zero. Then for each
consecutive v-slice we can solve for φ (and its z-derivatives) based on their values
on the previous v-slice using the formula (7.54). To find φ on v-slice n + 1, we
discretise the v-derivative so that

∂zφ|vn+1
= ∂zφ|vn + (vn+1 − vn) F |vn . (7.56)

We can then find φ by numerically integrating ∂zφ from z = 0 and imposing the
boundary condition φ|z=0 = 0 to fix the integration constant. Note that this
method uses explicit Euler integration for proceeding to the next v-slice, which
has a global error of order O(vn+1−vn). It is however easy to replace this method
with fourth-order Runge–Kutta integration since the equation is already in the
correct form. The global error is then of order O(vn+1 − vn)4. We thus use the
Runge–Kutta method for greater running speed and result accuracy.

There are a number of problems with this naive approach, and they are all
related to boundary conditions at z = 0. First, looking at the boundary expan-
sion (7.35) of φ, it is clear that ∂zφ is divergent at the boundary. This means
that it is not possible to assign a numerical value to ∂zφ at z = 0. To solve this
we decrease the domain of φ from 0 ≤ z ≤ 1 to ε ≤ z ≤ 1 − ε, where ε is a
small numerical quantity that we can choose. In this domain all the fields and
their derivatives are finite, and boundary conditions are imposed at z = ε by us-
ing analytic boundary expansions of the fields. This solution is still not perfect,
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however, because even though ∂zφ|z=ε is not singular, it still diverges and thus
causes numerical error.

The second problem with the approach above is that it is not clear how to
impose α(v). We solve this by defining a new field,

φ̃(v, z) = φ(v, z)− α(v)
√
z ln z − β(v)

√
z. (7.57)

With this new field definition, equation (7.44) for φ becomes

0 = (z + 1)
(
z2 − 1

)
∂2
z φ̃+ 2z(z + 1)∂zφ̃+ 2(z + 1)∂z∂vφ̃+

(z − 1)φ̃

4z2

+

(
3z2 + 3z + 2

)
β + 8(z + 1)α′ + 8z(z + 1)α+ 4(z + 1)β′

4
√
z

+
ln z

((
3z2 + 3z + 2

)
α+ 4(z + 1)α′

)
4
√
z

. (7.58)

and equation (7.54) becomes

∂v∂zφ̃ =
1

2

(
1− z2

)
∂2
z φ̃− z∂zφ̃−

(1− z)2φ̃

8z2 (z2 − 1)

+
β
(
2− 3z3 + z

)
− 4

(
z2 − 1

)
(∂vβ + (ln z + 2)α′)

8
√
z (z2 − 1)

+
α
((

2− 3z3 − z + 2z
)

ln z − 8z
(
z2 − 1

))
8
√
z (z2 − 1)

≡ F̃ (φ̃, ∂zφ̃, ∂
2
z φ̃, z, α, β, ∂vβ). (7.59)

Now α and β appear explicitly. We set α directly by performing the quench,
but we need to solve for β. A differential equation that is first order in v results
from the boundary condition on φ̃. This allows us to integrate β (in v) while
simultaneously integrating φ̃. We are effectively treating β as a separate field that
needs to be solved for. Also notice from the expansion (7.35) that ∂zφ̃ is not
divergent at the boundary. This should result in increased numerical accuracy at
the boundary.

Given the field definition φ̃ and the cutoff at z = ε, the modified procedure for
solving for φ on each v-slice works as follows. We start on the first v-slice with
φ̃, α and β all taking their initial, static values. Then for each consecutive v-slice
n+ 1, we use

∂zφ̃
∣∣∣
vn+1

= ∂zφ̃
∣∣∣
vn

+ (vn+1 − vn) F̃ (φ̃, ∂zφ̃, ∂
2
z φ̃, z, α, β, ∂vβ)

∣∣∣
vn
. (7.60)

At v-slice n we know the value of all the fields except for ∂vβ. To determine ∂vβ,
we use the boundary condition on φ̃ at the horizon, z = 1. The horizon expansion
for the equation for of motion for φ̃ is

∂zφ̃(z = 1) + ∂z∂vφ̃(z = 1) + ∂vα+ α+ ∂vβ
2 + β

2

z − 1
+O(z0) = 0, (7.61)

which implies the constraint

F̃ (φ̃, ∂zφ̃, ∂
2
z φ̃, z, α, β, ∂vβ) + ∂zφ̃+ ∂vα+ α+

∂vβ

2
+
β

2

∣∣∣∣
z=1

= 0. (7.62)
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v

β(v)

Figure 7.7: β as a function of v, which corresponds to AdS–Schwarzschild time t

at the boundary. The quench profile for α is α(v) = 0.3e−
(v−1)2

0.05 . This solution
agrees with that found in figure 7.6, up to an overall scale that is due to a slight
dependence of the numerics on the size of the cutoff ε.

In this constraint equation, we know the value of all the fields except for ∂vβ at
v-slice n, so we can use it to solve for ∂vβ.

We then use that value of ∂vβ to both solve for ∂zφ̃ and β at v-slice n + 1,
again using the Runge–Kutta method. At the end of the computation we will
have directly solved for both φ and β. For a Gaussian quench as described in the
previous section, we get the profile for β depicted in figure 7.7. Gratifyingly, this
plot is qualitatively similar to the results from the separation of variables approach
in figure 7.6. There are two main differences. Firstly, there is a slight difference
in the overall scale of the two figures. This can be traced back to the effect of
varying the size of the cutoff ε. Some more work is required to make the results
stable against changes in ε. Secondly, in figure 7.7, β vanishes at early and late
times. It vanishes at early times by the initial conditions. In figure 7.6, β does
not vanish at early times because there are no initial conditions set. We leave it
for future work to investigate these initial conditions further.

7.5 The time-dependent Kondo model with gauge field
backreaction

Now we turn to the question of solving the full set of coupled equations (7.42)–
(7.44). So far we have not solved the technical challenges of getting the numerics
under control, so in this section we outline the approaches and the difficulties.

The main challenge comes from the boundary expansion of the fields. The
expansion is asymptotic, not a Taylor series expansion. The logarithmic terms
mean that the singularity at z = 0 is essential and so a series expansion about
z = 0 is impossible. An algorithm for calculating the boundary expansion is
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presented in appendix C. The first few terms are

φ1 � α1(v)
√
z log(z) +

√
zβ1(v)

− z3/2 log4(z)

(
1

3
α1(v)α2(v)2 +

1

3
α1(v)3

)
+O

(
z3/2 log3(z)

)
, (7.63)

φ2 � α2(v)
√
z log(z) +

√
z
α2(v)β1(v)

α1(v)

− z3/2 log4(z)

(
1

3
α1(v)2α2(v) +

1

3
α2(v)3

)
+O

(
z3/2 log3(z)

)
, (7.64)

av � −
1

2z
+ µ(v)

− log(z)

(
α1(v)2 + α2(v)2

) (
−2α1(v)β1(v) + 2α1(v)2 + β1(v)2

)
α1(v)2

+ log2(z)

(
−α2(v)2β1(v)

α1(v)
− α1(v)β1(v) + α1(v)2 + α2(v)2

)
+ log3(z)

(
−1

3
α1(v)2 − α2(v)2

3

)
+O

(
z log4 z

)
, (7.65)

where we defined Φ = φ1 + iφ2. The constraint equation imposes a restriction on
the coefficient β2, which is why β2 does not appear in the expansion. We can use
the residual gauge freedom to set α2 = β2 = 0, and then the first terms in φ2’s
expansion would appear at O

(
z3/2 log z

)
.

This boundary expansion presents several challenges. Because of the loga-
rithms, the consecutive terms get smaller very slowly. This means that we either
need to take many terms in the expansion, or start the numerical integration very
close to the boundary. Both approaches have drawbacks. Figure 7.8 shows a typi-
cal numerical solution for φ1 in the static case, which was found using the shooting
method. We see that the solution is very steep near the boundary, which means
that a lot of grid points need to be used, raising the computational cost. Finally,
imposing boundary conditions is a challenge. The standard numerical techniques
impose Neumann or Dirichlet boundary conditions. In our case this is impossible
because of the singularity at z = 0. We cannot, for example, impose α1 as a
Dirichlet boundary condition and read off β1 from the derivative of the solution.
Instead we need to use the boundary expansion and work at small ε, bringing in
an expansion truncation error.

Given the challenges, there are several broad classes of approaches we can take
to solve the equations.

Time-marching scheme
We could generalise the time-marching scheme discussed in section 7.4.3.
This seems to be the most promising approach. The main difficulty is that
the equations can no longer be written in the form ∂vπ = F (φi, av, z), where
π = φi or av. In other words, we can no longer use an explicit numerical
method but have to resort to an implicit method. In an implicit method we
have to impose a discretisation

∂vπ =
π(vn+1)− π(vn)

vn+1 − vn
(7.66)
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φ1

z

Figure 7.8: φ1 as a function for z for the values α1 = 0.10, β1 = 0.65 and
µ = 0.55.

to turn the equations of motion into an algebraic equation in v. We then
solve the algebraic equations numerically for π(vn+1). Due to non-linear
terms in the equations such a method still introduces both numerical error
and the chance that it would find the wrong algebraic solution, but it should
work in principle. An example of an implicit method worth trying is the
Crank–Nicolson method.

Relaxation method
It is quick and easy to find an initial guess for the field solutions. We could
take the quasi-static solution, which is where we use for example the shooting
method to solve for a static solution at each time slice n, given the value of
α(vn) at that time slice. Figure 7.9 shows the quasi-static solution for φ1

for a given quench over α1(v). We could also take the probe limit solution
from section 7.4.3.

A relaxation method takes this initial guess and uses the equations of motion
to refine it. One way of doing this is to choose a grid point, discretise the
equations and solve for the value of the grid point given the values of the
neighbouring grid points. This is repeated for all grid points and iterated
until the desired accuracy is achieved.

Iterative approach
In what we term an iterative approach, we solve for each of the fields assuming
that the others are fixed. It is similar to a relaxation method. For example,
we start with Φ = 0 then solve for av. Then we take that solution for av,
substitute it back into the equations for Φ and solve for Φ. Taking that
solution for Φ we can again solve for av, getting a more accurate solution
this time. We keep iterating this procedure, solving for one field then the
other, until we have reached a desired accuracy.

Note that we did not specify how to solve for the fields at each step. We could
use one of the other approaches for this, combining the iterative approach
with another.
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φ1(z, v)

v

z

Figure 7.9: The quasi-static solution for φ1 as a function of z and v. The quench

is α1(v) = 0.1 + 0.1 exp
(
− (v−2.5)2

0.52

)
.

Perturbative technique
If all else fails, we could fall back on perturbation theory. The idea is to
start with some initial solution, such as the quasi-static solution of figure 7.9,
and expand about it in a small corrections parameter. We then solve the
equations numerically order by order. The advantage is that the equations at
each order are linear, with a source known numerically. With no non-linear
terms in the equations, they could be discretised into matrix equations,
which are easily inverted.

7.6 Concluding remarks

The Kondo model has been studied ever since Jun Kondo’s seminal work in 1964.
Even though much is known about it, it still serves as fertile ground for study. It
was the first major success of Wilson’s numerical renormalisation group method,
and it has been fruitfully investigated in the conformal and the large N limits.
Recently with the work of [63] it also became a playground for holographic tech-
niques.

In this chapter we investigated the bottom-up holographic model proposed
in [63] and made it time-dependent. The goal is to study relaxation times: if
we quench the Kondo coupling with a certain profile, how long does it take the
system to relax, and does it relax to the same ground state? We addressed this
question in a particular probe limit and outlined numerical methods for solving it
generally.

There are however other interesting questions to ask about the holographic
Kondo model. For example, can we calculate the entanglement entropy of the
model, and find quantitatively how the impurity gets bound to the rest of the
system as the temperature is lowered? In gauge/gravity duality, the entanglement
entropy between two regions in the boundary theory is found using the Ryu–
Takayanagi prescription [153]. According to the prescription, the entanglement
entropy is equal to the (properly regularised) area of the minimal surface in the
bulk AdS spacetime that has its boundary on the border on the AdS boundary
between the two regions of interest.



130 Chapter 7. The holographic Kondo model

Without taking metric backreaction into account, however, any minimal sur-
face calculation will give the same results as it would if the brane were absent.
So we can only find nontrivial entanglement entropy results if we find precisely
how the brane at x = 0, as well as the matter fields living on it, deform the
background. Fortunately gravity in (2+1)-dimensions is “trivial”, simplifying the
problem. What this means is that there are no propagating degrees of freedom
in the spacetime curvature tensors. Every small patch with vanishing energy-
momentum tensor in the space is locally isometric to AdS3. And since the Chern–
Simons field does not contribute to the energy-momentum tensor, the only source
of energy density is the brane.

The visualisation of the model with metric backreaction is depicted in fig-
ure 7.10. The brane divides the space in half, with the halves labelled by M±.
Each half must be locally AdS3 (or BTZ if we include a black hole), and they must
be glued together at the brane. The brane is described by the embedding func-
tions x±(z) in each half. The goal is then simply to find the embedding functions
and identify the points in the separate halves specified by coordinates x±(z) for
all z. The embedding functions can be found using the Israel junction conditions
developed in [154], {

Kij
}
Tij = 0, (7.67)

[Kij − γij trK] = −κTij , (7.68)

where

{A} ≡ 1

2
(A+ +A−), (7.69)

[A] ≡ A+ −A−, (7.70)

for a tensor A defined on both halves, K± are the exterior curvatures of the
respective embeddings and T is the energy-momentum tensor on the brane. These
junction conditions simply say that the metric is continuous across the brane, that
is, g+ = g− on the brane, and that K± have well-defined limits from both halves
to the brane. They are derived from Einstein’s equations and the conservation of
the energy-momentum tensor.

Once the embedding functions are found via the Israel junction conditions,
which requires knowing the energy-momentum tensor on the brane and therefore
having a full numerical solution for the fields Φ and a, the geometry is specified
completely. The entanglement entropy can then be calculated. We leave the
details for future work, but we can speculate as to what will happen. For T > Tc,
the scalar condensate vanishes and we should see minimal entanglement entropy
between a region including the impurity and the rest of the field theory. When the
temperature drops below Tc, the scalar condenses and contributes to the energy-
momentum on the brane. This changes the embedding in such a way that the
minimal surface changes and the entanglement entropy grows larger. If this is
true, it will be a nontrivial test of the validity of the bottom-up holographic
Kondo model.
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x = 0
z = 0

z = zh

x−(z) x+(z)

(M+, g+)(M−, g−)

Figure 7.10: The model with metric backreaction. On either side of the brane, the
spacetime has to be AdS3 (or BTZ because if it has a black hole). The spacetime
on either side of the brane,M+ andM−, need to be “glued” together in some way.
This gluing is done using the Israel junction conditions. These provide equations
of motion for the embedding functions x±(z) of the brane. This figure was taken
from [149] with permission.
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Chapter 8

Conclusion

Gauge/gravity duality has its origins in the black hole information paradox, but
in spite of this abstract beginning it has turned into a powerful tool with many
applications. In this thesis we have used this tool to uncover some of the startling
behaviours a strongly coupled system can display.

But a second theme intertwined with our exploration is that of symmetry
breaking. Our model of chapter 5 starts with an SU(2) gauge field and then
we turn on a magnetic component explicitly. The remaining solution has a U(1)
gauge symmetry. Increasing the magnetic field beyond a critical value causes that
remaining U(1) symmetry to be broken spontaneously.

A spontaneously broken U(1) symmetry is the defining characteristic of a su-
perconductor. We saw in chapter 3 how the successful Ginzburg–Landau model,
an effective description of BCS theory, obtains its essential phenomenology from
the Higgs mechanism, which is nothing but U(1) gauge symmetry breaking. In
chapter 4 we showed how this simple mechanism can be applied to gauge/gravity
duality to construct holographic superconductors. These are holographic models
where the focus is on constructing a gravitational background that exhibits sym-
metry breaking, typically through the condensation of a field. Here the symmetry
breaking is typically the result of an interplay between gravity and the charge
of the field, where the two forces balance in a certain regime so that stable field
modes can form. This is exactly the case for our model from chapter 5 as well:
when the magnetic field becomes strong enough compared to the gravitational
pull from the black hole, it teases out the other gauge field components through
the non-abelian dynamics, causing them to assume a triangular lattice form.

On the field theory side, we learn that the symmetry breaking effects we un-
derstand from weak coupling also hold at strong coupling. For example, as we
saw in chapter 4 for the holographic s-wave superconductor, a U(1) symmetry is
broken by a condensing scalar operator. In this new phase the DC conductivity
is infinite, as with superconductors at weak coupling. The difference in strongly
coupled models is that there is no quasiparticle description. Whereas BCS the-
ory describes electrons coming together in Cooper pairs triggering the symmetry
breaking, in the field theories in holographic models it only makes sense to talk
of condensates of operators. This is not because holographic models are in some
sense effective in that they hide the microscopic degrees of freedom. On the con-
trary, gauge/gravity duality tells us that the gravity model is dual to an exact
microscopic description of a field theory. The fact that we see only a condensing
operator is due to the strong coupling and the large N limit.

133
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But as we discussed in section 4.3, sometimes breaking a U(1) symmetry is not
enough. There is a diverse landscape of novel black hole backgrounds that emerge
from a phase transition that breaks both the U(1) gauge symmetry and translation
symmetry. Our model from chapter 5 shows a small glimpse of this landscape, with
the vista slightly extended in chapter 6 by the addition of a chemical potential.
But the view is intriguing: a phase diagram depending on chemical potential µ
and magnetic field B. The magnetic field enhances superconductivity and induces
a triangular vortex lattice ground state. The lattice spacing is adjusted by varying
B and, indirectly, µ. On the gravity side, this is a novel black hole solution. In the
field theory, this is evidence that the superconducting phase in a strongly coupled
system can be triggered by a magnetic field, rather than being inhibited by it,
with a ground state similar to an Abrikosov lattice. And these solutions may be
novel and interesting, but they are also important for applications. To build a
better toy condensed matter model, it is essential to include a lattice.

Even though the Kondo model of chapter 7 is not intended to be a model
of superconductivity, it still exhibits spontaneous U(1) symmetry breaking. The
Kondo model represents a magnetic impurity in a sea of electrons. In the holo-
graphic model, the condensing of a scalar operator below a critical temperature
signals the formation of a bound state between the impurity and the electrons.
This phase transition is an unintentional artefact of the large N limit because
the original Kondo model only has a crossover, but it underscores the ubiquity of
spontaneously broken symmetries and the diversity in phenomenology they can
lead to.

Vistas

The formation of a triangular vortex lattice in a simple gravity background due to
an SU(2) magnetic field is an interesting discovery, but we have not answered any
questions about its universality. We saw in chapter 3 that vortex lattices appear
in many different contexts. Is it possible to identify a minimal set of ingredients
they require? Is it always the triangular lattice that has the minimum energy, or
are there circumstances in which it becomes distorted? Investigating these vortex
lattices in other gravitational contexts could help answer these questions.

Moreover, we can ask how other matter interacts with the vortex lattice. In
section 6.2 we showed how it could be possible to add fermions. It would be inter-
esting to see whether the vortex lines maintain their superconducting properties
in a nontrivial gravity background, as well as investigating the effect the vortex
line topology has on the fermions’ behaviour. We can then ask whether the lattice
produces fermion spectral functions in the field theory similar to those observed
in analogous condensed matter systems.

Investigations in the holographic Kondo model are just beginning. The results
in chapter 7 are obtained in a probe approximation. The obvious next step is to
extend the numerical algorithms to deal with backreaction onto both the gauge
field and the geometry. This would allow us to answer questions about the en-
tanglement entropy of the system as the temperature is decreased and the Kondo
singlet is formed.

The easy holographic condensed matter models have been constructed, so the
next question is how realistic they can be made. A lattice is an obvious require-
ment, so the spontaneously generated lattice presented in this thesis is welcome, as
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evidenced by the many researchers investigating spontaneously generated ground
states in holography today. But there is more to be done. One notoriously difficult
generalisation to be made in holographic models is to go away from the large N
limit. This would not only allow us to see a crossover rather than a phase tran-
sition in the holographic Kondo model, but would allow for more realistic models
of QCD as well.

More broadly, where will the holographic principle lead us next? Is the whole
universe a hologram, as Leonard Susskind asks? The question of quantum gravity
is certainly not yet settled, but just in asking it we come to touch many different
areas of physics. If this is any guide, the one thing we can say for sure is that
there is more to be found in the hidden degrees of freedom on a black hole’s edge.
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Appendix A

Large N expansion in gauge
theories

In all the gauge/gravity models discussed in this thesis, the gauge theory is con-
sidered in a particular limit — the large N limit. In this section we explain what
that means. A pedagogical introduction to this topic can be found in [155].

Consider the toy model discussed in [26], with a scalar transforming in the
adjoint of an SU(N) gauge group. The Lagrangian is given by

L ∼ tr {∂µφ∂µφ}+ gtr
{
φ3
}

+ g2tr
{
φ4
}
, (A.1)

where the trace is over the gauge indices and φ is written with gauge group gen-
erators T a as φ = φaT a. With a rescaling φ→ gφ this becomes

L ∼ 1

g2

(
tr {∂µφ∂µφ}+ tr

{
φ3
}

+ tr
{
φ4
})
. (A.2)

The propagator in this theory can be calculated using the SU(N) completeness
relation

N2−1∑
a=1

(T a) j
i (T a) l

k =
1

2

(
δ l
i δ

j
k −

1

N
δ j
i δ

l
k

)
. (A.3)

This yields

〈φ j
i (x)φ l

k (y)〉 = 〈φa(x)φb(y)〉(T a) j
i (T b) l

k

=

(
δ l
i δ

j
k −

1

N
δ j
i δ

l
k

)
g2

4π2(x− y)2
. (A.4)

Since we are interested in the limit as N → ∞, the second term above vanishes
and we have that the propagator is proportional to g2. The interaction vertices,
as can be seen from A.2 are proportional to 1/g2, while loops are proportional to
N due to the trace over the colour indices.

As it stands, the perturbative expansion of this theory is senseless; diagrams
with higher loops have a higher power of N and thus the terms get larger and
larger. To rectify this, Gerard ’t Hooft in [69] introduced what is now known as
the ’t Hooft coupling:

λ = g2N. (A.5)
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The large N limit is then taken while keeping λ fixed. This means that a general
diagram, containing propagators, vertices and loops, gives the contribution(

λ

N

)E (N
λ

)V
NF . (A.6)

Here E is the number of propagators, V is the number of vertices and F is the
number of loops. We can make use of Euler’s formula for graphs to simplify this
expression. The Euler characteristic χ = V −E+F is related to the genus g of the
lowest-dimensional orientable surface on which the diagram can be drawn (with
no crossings) as

χ = V − E + F = 2− 2g. (A.7)

This means that a diagram in this theory contributes

λE−VNV−E+F = λE−VN2−2g. (A.8)

Now we can see that, thanks to the ’t Hooft limit, the more complicated non-planar
diagrams can be neglected in the perturbative expansion.
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Appendix B

Vortex lattice solution to
higher orders

B.1 Deriving the equations for a3
x,y

We substitute the ansatz (5.15) into the full equations of motion and neglect terms
beyond quadratic order in ε. To get rid of all appearances of Ey, we use the relation
that Ey = −iEx from (5.73). Then we find that there are only three equations in
which the fluctuations a3

x,y appear. We focus on those three equations.
The simplest equation of the three is the constraint equation, which came from

the equation of motion for A3
u. To quadratic order, this equation is simply

∂u∂xa
3
x + ∂u∂ya

3
y = 0. (B.1)

The first thing to do is integrate with respect to u. This gives an integration
constant, but by the fact that both a3

x and a3
y must vanish at u = 0, this integration

constant vanishes. So the even simpler constraint is

∂xa
3
x + ∂ya

3
y = 0. (B.2)

This is all we need to decouple the other two equations in a3
x and a3

y. These
equations now become

0 =
3

2
Ex∂yĒx +

3

2
Ēx∂yEx −

1

2
iEx∂xĒx +

1

2
iĒx∂xEx

+ u∂u

(
f

u
∂ua

3
x

)
+ ∂2

ya
3
x + ∂2

xa
3
x, (B.3)

0 =−BcxĒxEx −
1

2
iEx∂yĒx +

1

2
iĒx∂yEx

− 3

2
Ex∂xĒx −

3

2
Ēx∂xEx + u∂u

(
f

u
∂ua

3
y

)
+ ∂2

ya
3
y + ∂2

xa
3
y, (B.4)

which are partial differential equations with sources that come from the linear
order solutions. These two equations only differ by their source terms, so we will
focus on a3

x. a3
y should be similar. Using the expression (5.74), we can see that

the source term is periodic with y ∼ y + 2π
k . a3

x must have the same periodicity,
so we can write it as a Fourier series,

a3
x(x, y, u) =

∞∑
n=−∞

e−inkyã3
x(x, n, u). (B.5)
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The equation becomes

∑
m

−ie−
1
2
Bc
(
− km
Bc

+x
)2
− 1

2
Bc
(
− k(n+m)

Bc
+x
)2

knC̄mCn+mU2

−k2n2ã3
x + u∂u

(
f

u
∂uã

3
x

)
+ ∂2

xã
3
x = 0. (B.6)

We notice that the source term in this equation is periodic in the x-direction;
x ∼ x+ Pk

Bc
. This lets us expand ã3

x as a Fourier series in x as well:

ã3
x =

∑
m

e−i
2πmBc
Pk

xâ3
x(m,n, u). (B.7)

Writing the source term as a series lets us then obtain the equation (5.76) for the
coefficients â3

x(m,n, u).

Calling the source term S(x), the näıve way of finding its Fourier coefficients
is to use the formula

S̃n =
Bc
Pk

∫ Pk
Bc

0
ei

2πnBc
Pk

xS(x). (B.8)

However, the source terms contains Gaussians, and those are much easier to inte-
grate when the domain of integration is the entire real line. So we do the following
trick. Doing a continuous Fourier transform on a periodic function gives a sum of
δ-functions, ∫

dx eipxS(x) =

∫
dx eipx

∑
m

e−i
2πmBc
Pk

xS̃n

= 2π
∑
m

S̃nδ

(
p− 2πmBc

Pk

)
. (B.9)

The coefficients in front of the δ-functions are what we are looking for. We get∫
dx eipxS(x) = −

√
π

Bc

∑
m,n

ie−
k2n2

4Bc
+ ikmp

Bc
+ iknp

2Bc
− p2

4Bc knC̄mCm+nU2. (B.10)

Using

∞∑
m=−∞

f(m) =
∞∑

m=−∞

P−1∑
l=0

f(Pm+ l) (B.11)

and then using the symmetry Ci+P = Ci, the only m-dependence remaining in

the sum comes from e
ikPmp
Bc . Making use of the identity

∞∑
m=−∞

eimq = 2π

∞∑
m=−∞

δ(q − 2πm) (B.12)

and δ(αx) = δ(x)
|α| gives us the sum over δ-functions from (B.9). Then we can

simply read off the coefficients S̃n. This gives us the equation (5.76).
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B.2 Deriving the equations for cx,n, cy,n

The third order equations of motion are

0 = ia3
x∂uEx + a3

y∂uEx − iEx∂ua3
x − Ex∂ua3

y + iBcx∂uey + ∂y∂uey + ∂x∂uex,

(B.13)

0 = −iBcxa3
xEx − 2Bcxa

3
yEx − ĒxE2

x − a3
x∂yEx + 2ia3

y∂yEx − a3
y∂xEx

− 2Ex∂ya
3
x + iEx∂ya

3
y + Ex∂xa

3
y + iBcey − iBcx∂xey − ∂x∂yey

−B2
cx

2ex + 2iBcx∂yex + ∂2
yex + u∂u

(
f

u
∂uex

)
(B.14)

0 = Bcxa
3
xEx + iĒxE

2
x − ia3

x∂yEx + 2a3
x∂xEx − ia3

y∂xEx

+ iEx∂ya
3
x + Ex∂xa

3
x − 2iEx∂xa

3
y − iBc (2ex + x∂xex)

− ∂x∂yex + ∂2
xey + u∂u

(
f

u
∂uey

)
. (B.15)

The first of these is the constraint equation. We use it to relate ex and ey. In
order to do this, we first simplify it by noticing that, since

ey =
∞∑

n=−∞
cy,n(u)e

−inky− 1
2
Bc
(
x− nk

Bc

)2

, (B.16)

we have that iBcx∂uey + ∂y∂uey = −i∂x∂uey. We can then integrate the entire
equation with respect to u, imposing vanishing boundary conditions at the AdS
boundary. The constraint equation then simplifies to

0 = −2i
Ex
U
Jx − 2

Ex
U
Jy + ia3

xEx + a3
yEx + ∂xex − i∂xey, (B.17)

where

Jx,y(x, y, u) =

∫ u

0
U(ũ)∂ũa

3
x,y(x, y, ũ)dũ. (B.18)

This allows us to eliminate ex in equation (B.15) (after differentiating it by x). We
write each function as a Fourier series in y and find an equation for the coefficients
cy,n. At this point the equation still has an x dependence, which can be eliminated
by multiplying the equation by (nk − Bcx) to make it an even function in x and
then integrating

∫∞
−∞ dx. In doing so we use the solution for Ex and the form for ey

given by (B.16), as well as the Fourier series representation of the other functions.
Once this is done, we are left with an equation for ey in the form (5.81).

The resulting equation for cy,n is

0 =

∞∑
q,r=−∞

e− 2πq(ik2P (n−r)+Bcπq)
k2P2

Cn−r
(
−2
(
k2Pr + 2iBcπq

)
Ĵx,qr

)
kP

(B.19)
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+
Cn−r

((
2ik2Pr − 4Bcπq

)
Ĵy,qr +

(
2iBcπqâ

3
x +

(
−ik2Pr + 4Bcπq

)
â3
y

)
U
)

kP


−
ie−

k2(3r2−3rq+q2)
3Bc

(
3Bc + 2k2q(−2r + q)

)
C̄n+qCn+rCn−r+qU3

3
√

3Bc


−Bccy,n + u∂u

(
f

u
∂ucy,n

)
, (B.20)

where

Ĵi,qr(u) =

∫ u

0
U(ũ)∂ũâ

3
i (q, r, ũ)dũ, (B.21)

for i = x, y.
A similar procedure gives the constraint equation in terms of the coefficients,

0 = cx,n(u)− icy,n(u)

+
1

PkBc

∞∑
q,r=−∞

{
e−

2πq(ik2P (n−r)+Bcπq)
k2P2

(
−ik2Pr + 2Bcπq

)
Cn−r

×
(

2Ĵx,qr − 2iĴy,qr − (â3
x,qr − iâ3

y,qr)U(u)
)}

. (B.22)

Once the coefficients cy,n are found, we use this to calculate cx,n.

B.3 Calculating the energy

The difference between the energy of the superconducting phase and that of the
normal phase is

∆F =
1

4ĝ2

∫
d5x
√
−g
(
F aµνF

aµν
∣∣
superconducting

− F aµνF
aµν
∣∣
normal

)
. (B.23)

Note that for the AdS Schwarzschild model we implicitly divided by the tem-
perature to make the energy dimensionless. We calculate the energy density by
averaging over the domain 0 ≤ y < 2π

k , 0 ≤ x < Pk
Bc

, 0 ≤ u ≤ 1 and t, z ∈ R.
Since the integrand is independent of t and z, the averaging amounts to simply
dropping the integration over those variables. In the following expression we use

Ex,y = A1
x,y + iA2

x,y =
∑
n

C(x,y),n(u)e
−ikny− 1

2
Bc
(
x− nk

Bc

)2

, (B.24)

we write A3
x = a3

x and A3
y = xB+a3

y, and call the averaged energy ∆Ω. The result
is

4ĝ2∆Ω =

∫
du

{
Ω1(u) +

∞∑
m,n=−∞

[Ω2(m,n, u) + Ω3(m,n, u) + Ω4(m,n, u)]

∞∑
m,n,p,q=−∞

Ω5(m,n, q, r, u)

}
, (B.25)
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where

Ω1 =

√
πB

kPu

P−1∑
l=0

B

2

∑
j=x,y

(
f∂uC̄j,l∂uCj,l + C̄j,lCj,l

)
+ 3(iC̄y,lCx,l − iC̄x,lCy,l)

 ,

(B.26)

Ω2 =
1

u

∥∥∥∥knâ3
x(m,n, u)− 2Bmπ

kP
â3
y(m,n, u)

∥∥∥∥2

+
f

u

∑
j=x,y

∥∥∂uâ3
j (m,n, u)

∥∥2
, (B.27)

Ω3 =

√
πB

2k2P 2u

P−1∑
l=0

e−
k2m2

4B
− i(2l+m)nπ

P
−Bn

2π2

k2P2 ×[(
3k2mP + 2iBnπ

)
â3
x(n,m, u)C̄x,l+mCy,l

+ â3
x(n,−m,u)C̄y,l

((
3k2mP + 2iBnπ

)
Cx,l+m − 2ik2mPCy,l+m

)
+ â3

y(n,−m,u)Cx,l+m
(
−4iBnπC̄x,l +

(
ik2mP + 6Bnπ

)
C̄y,l
)

+ â3
y(n,m, u)C̄x,l+mCy,l

(
−ik2mP − 6Bnπ

)]
, (B.28)

Ω4 =− 1

4kPu

√
πB

2
e−

k2(m2+n2)
2B ×

P−1∑
l=0

(
C̄y,l+mC̄y,l+nCx,lCx,l+m+n − 2C̄x,l+mC̄y,l+nCx,l+m+nCy,l

+ C̄x,lC̄x,l+m+nCy,l+mCy,l+n
)
, (B.29)

Ω5 =

√
πB

Pku

P−1∑
l=0

e−
k2m2

4B
− i(2l+m)nπ

P
−Bn

2π2

k2P2 ×[
â3
y(n− q,−(m+ r), u)â3

y(q, r, u)C̄x,lCx,l+m

− â3
x(n− q, r, u)â3

y(q,m− r, u)C̄x,l+mCy,l
− â3

x(n− q, r, u)â3
y(q,−(m+ r), u)C̄y,lCx,l+m

+ â3
x(n− q,−(m+ r), u)â3

x(q, r, u)C̄y,lCy,l+m
]
. (B.30)

In these expressions, Cx,n and Cy,n are functions of u. Their complex conjugates
are given by C̄x,n and C̄y,n, respectively. All the infinite sums in the energy (B.25)
can be terminated at a small finite value because of exponential suppression in
the Ω1...5 terms.

In deriving this, it helps to make use of the formulae∫ L

0
dx

∞∑
m=−∞

e−
Bc
2

(x−mL)2

=

∫ ∞
−∞

dxe−
Bc
2
x2
, (B.31)

∫ L

0
dx

∞∑
m,n=−∞

e−
Bc
2 (x−mLP )

2−Bc
2 (x−nLP )

2

h(x,m, n) (B.32)

=

∫ ∞
−∞

dx

P−1∑
l=0

∞∑
m=−∞

e−
Bc
2 (x−mLP )

2−Bc
2 (x− lLP )

2

h(x,m, l), (B.33)

where the latter is valid whenever h(x,m, n) = h(x+ L,m+ P, n+ P ).
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Appendix C

Mathematica code: The
holographic Kondo model

The following code was written in Mathematica 9.0. It calculates the boundary
asymptotic expansions of the fields Φ = φ1 + iφ2 and av as functions of z and
v about z = 0. It takes equations (7.42)–(7.44) as input; to run the code, these
equations need to have been stored in eom[Phi1], eom[av, 1] and eom[av, 2].

ExpandAllBnd [ o rde r ] := Module [{
AssignReplacements , i , j , repExpansion , c o e f f , eqnList ,
equat i onSe r i e s , s o lveForL i s t , orderIdx , orderFin i shed ,
e x i tC a l c u l a t i on , t imeDelta } ,

(∗ Give t h i s func t i on the output o f So lve . ∗)
repSo lut ionFunct ion = {

HoldPattern [ A [ pa ]−>B ] :> A −> Function [{ pa } ,B]
} ;

(∗ Apply func to each term in expr . ∗)
TermByTerm [ expr , func ] := (

I f [MatchQ [ expr , a +b ] ,
Plus@@( func /@Level [ expr , 1 ] ) ,
func [ expr ]

]
) ;

(∗ Finds pa t t in expr and re turns i t s p r e c i s e form in expr .
Returns a l i s t o f a l l occurrences . ∗)

FindPattern [ expr , pa t t ] := Part [ expr ,##]& @@ #& /@ Position [ expr , patt ] ;

AssignReplacements [ r e p s L i s t ] :=(
Scan [ ( Evaluate [ # [ [ 1 ] ] ] = # [ [ 2 ] ] ) & , reps ] ;

) ;

repExpansion [ currentOrder ] := {
Phi1 −> Function [{ z , v} ,

Alpha1 Sqrt [ z ]Log [ z ] + Beta1 Sqrt [ z ] +
Sum[ z ˆ ( (2 i i +1)/2)

Sum[ c o e f f [ Phi1 , i i , j j ] [ v ]Log [ z ] ˆ j j ,
{ j j ,0 ,4+ i i ( i i −1)}

] ,
{ i i , 1 , currentOrder+1}

]
] ,

Phi2 −> Function [{ z , v} , 0 ] ,

av−>Function [{ z , v} , 1/ z (−1/2) + Mu +
Sum[ zˆ i i
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Sum[ c o e f f [ av , i i +1, j j ] [ v ]Log [ z ] ˆ j j ,
{ j j ,0 ,3+1/2 i i (3 i i −1)}

] ,
{ i i , 0 , currentOrder+1}

]
]

} ;
c o e f f [ av ,1 ,0 ]=Function [{ v} , 0 ] ;
eqnLi s t={eom [ Phi1 ] , eom [ av , 2 ] , eom [ av , 1 ] } ;

For [ i =1, i<=Length [ e q u a t i o n S e r i e s ] , i ++,
e q u a t i o n S e r i e s [ [ i ] ]= Select [ e q u a t i o n S e r i e s [ [ i ] ] , (#=!=0)&] ;

] ;

e x i t C a l c u l a t i o n=False ;

For [ o rder Idx =1, orderIdx<=order , order Idx++,
Module [{ orderEquat ions } ,

orderEquat ions=Expand [ # [ [ ( order Idx ) ] ] ] & /@ e q u a t i o n S e r i e s ;

(∗ S p l i t t h e s e up in to equa t ions f o r c o e f f i c i e n t s o f Log terms . ∗)
orderEquat ions=(CoefficientList [# , Log [ z ] ] )& /@ orderEquat ions ;

o rde rF in i shed=False ;
While [ ! o rderFin i shed ,

Module [{ c o e f f i c i e n t E q u a t i o n s , shortestEquat ionIndex ,
shortestEquat ionLength , shortestEquat ion , equationLength } ,

(∗ Get the l a r g e s t c o e f f i c i e n t equat ion fo r each eom. ∗)
c o e f f i c i e n t E q u a t i o n s = ConstantArray [ 0 , Length [ orderEquat ions ] ] ;
For [ i = 1 , i <= Length [ c o e f f i c i e n t E q u a t i o n s ] , i ++,

j = Length [ orderEquat ions [ [ i ] ] ] ;
While [ ( j>0) && (Expand [ orderEquat ions [ [ i , j ] ] ]===0) ,

j−−;
orderEquat ions [ [ i ] ] = orderEquat ions [ [ i ] ] [ [ 1 ; ; j ] ] ;

] ;
I f [ j >0, c o e f f i c i e n t E q u a t i o n s [ [ i ] ] = orderEquat ions [ [ i , j ] ] ] ;

] ;
c o e f f i c i e n t E q u a t i o n s = Select [ c o e f f i c i e n t E q u a t i o n s ,#=!=0&];

shortestEquat ionLength = Inf inity ;
For [ j =1, j <= Length [ c o e f f i c i e n t E q u a t i o n s ] , j ++,

With [{ c o e f f P a t t e r n =
FindPattern [ c o e f f i c i e n t E q u a t i o n s [ [ j ] ] , c o e f f [ ] ] } ,

I f [ FindPattern [ coe f fPat t e rn , c o e f f [ , o rder Idx +1, ] ]=!={} ,
Continue [ ] ;

] ;
equationLength=Length [ c o e f f P a t t e r n ] ;

] ;
I f [ equationLength < shortestEquat ionLength ,

shortestEquat ionLength = equationLength ;
shorte s tEquat ionIndex = j ;

] ;
] ;

I f [ shortestEquat ionLength == Infinity ,
Print [ ”No equat ions l e f t at t h i s order . ” ] ;
o rde rF in i shed = True ;
Break [ ] ;

] ;

(∗ S imp l i f y shor t e s tEqua t ion so t ha t the r e s u l t i n g
c o e f f i c i e n t has a sma l l e r ana l y t i c expres s ion . ∗)

shor te s tEquat ion = TermByTerm [
Expand [ c o e f f i c i e n t E q u a t i o n s [ [ shortes tEquat ionIndex ] ] ] ,
Simplify

] ;

With [{ c o e f f S o l u t i o n = Flatten [
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Solve [ shor te s tEquat ion==0, FindPattern [
shortes tEquat ion , c o e f f [ ] [ v ]

]
]

]
} ,
AssignReplacements [

Simplify [ c o e f f S o l u t i o n ,TimeConstraint−>1] / .
r epSo lut ionFunct ion

] ;
] ;

] ;
] ;

Put[(#−>Function [{ z , v} , Evaluate [
#[z , v ] / . repExpansion [ order ] / . c o e f f [ ] [ ]−>0

]
])& /@ {Phi1 , Phi2 , av } ,
FileNameJoin [{NotebookDirectory [ ] ,

” data ” , ” BoundaryExpansionIntermediate .m” } ] ] ;
I f [ e x i tC a l c u l a t i o n ,Break [ ] ] ;

] ;
] ;
(∗ Return expansion . ∗)
(#−>Function [{ z , v} ,Evaluate [

Collect [ (#[ z , v ] / . repExpansion [ order ] / . c o e f f [ ] [ ]−>0) ,{z ,Log [ z ] } ]
] ] )& /@ {Phi1 , Phi2 , av}

] ;
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