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Summary

Schizophrenia is one of the most frequent psychiatric disorders and is associated with a
substantial part of worldwide disease burdon'. The clinical symptoms of patients with
schizophrenia can be separated into positive symptoms such as halluciations and delusions as
well as negative symptoms such as cognitive impairments, apathy, blunted affect and social
withdrawal®. It has been suggested that understanding the underlying pathophysiological
processes that give rise to these symptoms is a crucial step for the development of efficient
treatment for schizophrenia’. In the presented work two aspects of the clinical
symptomatology of schizophrenia are analyzed with respect to their potential neurobiological

correlate.

Following the dopamine-hypothesis, patients with schizophrenia exhibit an increase in
dopaminergic neurotransmission in the striatum which might be related to the experience of
positive symptoms™’. In the first publication evidence for this dopamine-hypothesis from in-
vivo neuroimaging studies was investigated in a comprehensive meta-analysis. Results are in
the line with the dopamine-hypothesis and point to an increase of striatal presynaptic

dopamine synthesis in schizophrenia:

- Howes OD¥*, Kambeit; J*, Kim E, Stahl D, Slifstein M, Abi-Dargham A*, Kapur S*
(2012): The nature of dopamine dysfunction in schizophrenia and what this means for

treatment. Arch Gen Psychiatry 69: 776—786. * these authors contributed equally

ISI Web of Knowledge: Archives of General Psychiatry (now: JAMA Psychiatry)
impact factor 2012: 13.77

5-year impact factor 2012: 14.47

Ranked 3rd of all psychiatry journals

The negative symptoms of schizophrenia such as cognitive impairments have frequently been
associated with changes of cerebral gray matter in numerous brain regions including the
hippocampus®”’. In the second publication, effects of a potential risk-gene on the
hippocampus are analyzed. Results indicate reduced hippocampal structure and function in

carriers of the met-allele of the BDNF polymorphism val(66)met:

- Kambeity JP*, Bhattacharyya S*, Kambeitz-Ilankovic LM, Valli 1, Collier DA, McGuire
P (2012): Effect of BDNF val(66)met polymorphism on declarative memory and its

1Y%



neural substrate: a meta-analysis. Neurosci Biobehav Rev 36: 2165-2177. * these

authors contributed equally

ISI Web of Knowledge: Neuroscience and Biobehavioral Reviews
impact factor 2012: 9.44
5-year impact factor 2012: 9.92

Ranked 12th of all neurosciences journals



Zusammenfassung

Schizophrenie ist einer der hdufigsten psychiatrischen Erkrankungen und verantwortlich fiir
einen substanziellen Anteil der weltweiten Gesundheitsbelastung'. Die klinischen Symptome
bei Patienten mit Schizophrenie werden eingeteilt in Positivsymptomatik wie Halluzinationen
und Wahnvorstellungen sowie Negativsymptomatik wie kognitive Beeintrdchtigungen,
Apathie, verflachter Affekt und sozialer Riickzug®. Die Aufklirung der pathophysiologischen
Prozesse welche der Entstehung von Positiv- und Negativsymptomatik zu Grunde liegen, ist
ein entscheidender Schritt um effiziente pharmakologisch Behandlung fiir Patienten bieten zu
konnen®. In der vorgestellten Arbeit sollen zwei Aspekte der klinischen Symptomatik

schizophrener Patienten im Bezug auf deren neurobiologischen Korrelate analysiert werden.

Nach der Dopamin-Hypothese zeigen Patienten mit paranoider Schizophrenie eine gesteigerte
dopaminerge Neurotransmission im Striatum®’. Dieser hyperdopaminerge Zustand ist steht
moglicherweise mit Positivsymptomatik in Verbindung®. In der ersten Publikation wurde die
Evidenz fiir die Dopamin-Hypothese aus in-vivo Neuroimagingstudien im Rahmen einer
Meta-Analyse iiberpriift werden. Die Ergebnisse unterstiitzen die Dopamin-Hypothese und

sprechen flir eine gesteigerte prasynaptische Dopamin-Synthese:

- Howes OD¥*, Kambeit; J*, Kim E, Stahl D, Slifstein M, Abi-Dargham A*, Kapur S*
(2012): The nature of dopamine dysfunction in schizophrenia and what this means for

treatment. Arch Gen Psychiatry 69: 776—786. * these authors contributed equally

ISI Web of Knowledge: Archives of General Psychiatry (now: JAMA Psychiatry)
impact factor 2012: 13.77

5-year impact factor 2012: 14.47

Ranked 3rd of all psychiatry journals

Die Negativsymptomatik wie zum Beispiel kognitive Beeintrdchtigungen wurden mit
strukturellen cerebralen Verdnderungen schizophrener Patienten in Verbindung gebracht -
insbesondere des Hippocampus®”’. Im Rahmen der zweiten Publikation wurde der Effekt
eines Risikogens auf den Hippocampus analysiert. Die Ergebnisse zeigen eine reduzierte
hippocampale Struktur und Funktion sowie reduzierte Gedéchtnisleistung bei Trigern des

Risiko-Allels:

VI



- Kambeity JP*, Bhattacharyya S*, Kambeitz-Ilankovic LM, Valli 1, Collier DA, McGuire
P (2012): Effect of BDNF val(66)met polymorphism on declarative memory and its
neural substrate: a meta-analysis. Neurosci Biobehav Rev 36: 2165-2177. * these

authors contributed equally

ISI Web of Knowledge: Neuroscience and Biobehavioral Reviews
impact factor 2012: 9.44
5-year impact factor 2012: 9.92

Ranked 12th of all neurosciences journals
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Introduction

Schizophrenia: epidemiology, clinical symptoms and pathophysiology

With a prevalence of 1 % in the general population schizophrenia is one of the main factors of
global disease burdon'. The disorder is associated with severe consequences for the individual
patients, their relatives as well as society. Schizophrenia usually onsets in early adulthood and
on average affects women as frequently as men.

The clinical picture of schizophrenia is variable and there is no clear core symptomatology
that is present in all cases and distinguishes schizophrenia from other mental disorders.
Typically symptoms of schizophrenia are classified into positive and negative symptoms®,
Positive symptoms include hallucinations, delusions, thought disorders as well as
disorganized behaviour. Negative symptoms include cognitive impairments, apathy, blunted
affect, social withdrawal and self neglect.

Despite substantial research effort to disentangle the pathophysiology of schizophrenia, the
specific causes remain unknown. Until today no single pathphysiological account exists that
could explain all the findings in a conclusive manner. However some aspects of the rich

symptomatology have been related to biological changes found in patients.

In the present work two important concepts of the pathophysiology of schizophrenia are
investigated. The first concept suggests a relationsship between positive symptoms and
abnormal dopaminergic neurotransmission in the striatum of patients with schizophrenia. This
theory is refered to as the dopamine-hypothesis of schizophrenia and is supported by
substantial evidence from multiple lines of research®. Three different aspects of striatal
dopaminergic neurotransmission are summarized in a separate meta-analysis. Implications for
our understanding of the pathophysiology of schizophrenia as well as for treatment of affected
patients are discussed.

The second concept focusses on decreased memory as an example of cognitive impairment in
patients with schizophrenia. It is suggested that carriers of a specific risk-allele might exhibit
altered hippocampal structure and function which might in turn result in impaired memory
performance. In three separate meta-analyses the effect of a genetic polymorphism in the gene
of the brain-derived neurotrophic factor (BDNF) on hippocampal structure and function is

investigated.



The dopamine hypothesis

The dopamine-hypothesis was originally based on indirect evidence such as the
psychotogenic effect of dopaminergic substances. For instance amphetamines, which increase
the extracellular concentration of dopamine, have been shown to induce psychotic symptoms
in patients with schizophrenia'’. More direct evidence for the involvement of dopamine in the
pathogenesis of schizophrenia was provided by the early investigation of dopamine

. . . . . 2
antagonists as antipsychotic medication'"!

. It was demonstrated that these drugs bind to the
post-synaptic dopamine receptor to block dopaminergic neurotransmission which results in a
reduction of symptoms in schizophrenic patients. Moreover, a relationship between the
receptor affinity of antipsychotic drugs and their antipsychotic potency has been reported'”.

These findings lead to the formulation of the dopamine hypothesis as a ,receptor

«l4

hypothesis*“ . It was stated that an increase of postsynaptic dopamine receptors might be the
cause of schizophrenia and that it could be treated with postsynaptic receptor blockade.

In a central article by Davis et al.” the dopamine hypothesis was reformulated to include the
current evidence at that time. Studies of cerebrospinal fluid as well as post-mortem brain
tissue samples did not support the notion of an overall increase of dopaminergic
neurotransmission in patients. In addition early neuroimaging studies in humans pointed to a
hypometabolism in cortical areas of schizophrenic patients which was not well explained by a
general excess of dopamine. Instead of a general hyperdopaminergic state, Davis et al.
claimed an imbalance in schizophrenia with subcortical hyperdopaminergia and cortical
hypodopaminergia. It was suggested that cortical decrease of dopaminergic neurotransmission
could be associated with negative symptoms while subcortical and in particular striatal
increase of dopaminergic neurotransmission might be associated with positive symptoms.

In a third and most recent formulation of the dopamine hypothesis, Howes & Kapur® further
specified the location of striatal hyperdopaminergia and suggested a link to genetic factors,
environmental factors as well as clinical symptoms. The in-vivo investigation of changes
dopaminergic neurotransmission in schizophrenia has become feasible with the introduction
of new radioligands that specifically bind to different molecular structures. Current results

15-19

show an increase of presynaptic dopamine synthesis ™. Most interestingly this increase is

20,2

already present in patients in the prodromal stage of psychosis™*' or in first-degree relatives

of schizophrenic patients™.
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Figure 1: Schematic illustration of a striatal dopaminergic synapse.



Memory impairment in schizophrenia

While positive symptoms often represent the most acute and dramatic changes in patients
with schizophrenia, it has been suggested that negative symptoms are most crucial for the
long-term outcome of patients™. This might be partly because pharmacological treatment can
efficiently improve positive symptoms, but has little effect on negative symptoms such as
cognitive impairment®*. Especially memory impairment has been frequently reported in
patients with schizophrenia®~°,

The pathophysiological mechanism underlying these redutions in memory function is not
clear. Recent meta-analyses show that patients with schizophrenia exhibit gray matter
reductions in brain regions involved in memory processing such as frontal and temporal

27-29

cortices”” . Particulary the volume of the hippocampus - one of the key regions in memory

9,8,7,6

formation - seems to be reduced in patients with schizophrenia . In the prodromal phase of

schizophrenia subjects exhibit attenuated cognitive functioning®® in a smiliar way.

Addionally, these individuals exhibit gray matter alterations’'~>

and these alterations progress
during the onset of psychosis™. Patients with predominantely negative symptoms such as
memory impairment typically exhibit greater gray matter changes then subjects with positive
symptoms™". Importantly, patients with schizophrenia exhibit not only structural brain
changes, but also functional abnormalities in multiple brain regions. Recent meta-analyses of
functional neuroimaging studies in patients performing memory tasks support a relationship

between cognitive symptoms and abnormal brain function®>’.

The endophenotype concept in the context of schizophrenia

Since relatives of patients with schizophrenia and especially monozygotic twins have an
increased risk of developing schizophrenia, it has been suggested that genetic factors play a
role in the pathogenesis. However, large-scale genome-wide association studies have shown
heterogenous results and no single gene locus could be indentified so far’®. To resolve this
discrepancy, it has been suggested that genetic effects might be too subtle to be observed on a
phenotypic level (e.g. the association between a genetic factor and psychiatric diagnose)®.
Instead it is recommended to relate genetic effects to an endophenotype (e.g. the association
between a genetic factor and reduced hippocampal volume). Such biological measures are
more proximal to the genetic expression and can potentially be measured more exactly than

clinical symptoms®. Following this endophenotypic approach, a number of studies have

4



investigated the influence of potential risk-genes for schizophrenia on brain structure and
function®'.

The gene coding for the brain-derived neurotrophic factor (BDNF) is among the most
interesting genes in the context of memory functioning. This neurotrophin is expressed in

*>% and takes an important role in structural

multiple brain areas including the hippocampus
synaptic changes associated with memory formation**. BDNF is synthesized presynaptically
as a precursor protein pre-pro-BDNF and subsequently cleaved into pro-BDNF and the
mature form of BDNF (see Figure 2). Both pro-BDNF and BDNF are secreted and can induce
action at the postsynapse45(p200). The evidence from multiple studies confirms a role of BDNF
in memory function and its crucial part in long-term potentiation**°.

The gene coding for the protein BDNF is located on chromosome 11. The functional single
nucleotide polymorphism (SNP) rs6265 leads to a substitution of a methionine (met) to a
valine (val) at codon 66 in the pro-region of BDNF. In a central study by Egan et al.*’ it was
shown there is less secretion of BDNF in carriers of the met-variant . Also human subjects
that carry the met-variant showed reduced memory performance as compared to val-
homozygotes*’. Several studies investigated the effect of BDNF on hippocampal structure,
hippocampal function and memory performance due to its role in memory formation and
synaptic plasticity. However, substantial heterogeneity persists regarding the results,

methodological details and investigated subjects, providing no clear picture of BDNF’s effect

on hippocampal structure and function.
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Publications

Publication #1: The nature of dopamine dysfunction in schizophrenia

and what this means for treatment

It has been argued that the investigation of the neurobiological underpinnings of the
schizophrenia is crucial to develop and provide efficient treatment strategies’. The dopamine-
hypothesis represents the most popular pathophysiological account of schizophrenia®’.
Multiple studies reported changes in striatal dopamine function when applying radiotracers
that specifically bind to dopamine receptors, to dopamine transporter or tracers that index
presynaptic dopamine synthesis (see ** for a review). The heterogeneity of the studies with
respect to the investigated patient samples and methodological details lead to inconsistent
results. Three separate meta-analyses of in-vivo neuroimaging studies have been conducted to
investigate the nature of the dopaminergic dysfunction in schizophrenia. The results indicate a
significant increase in presynaptic dopaminergic function in patients with schizophrenia
(Cohen’s d=0.79). There was no evidence for an alteration in dopamine transporter
availability and only limited evidence for a small elevation in D(2/3) receptor availability
(Cohen d=0.26). There was no significant change in D(2/3) receptor availability if analyses
was restricted to drug-naive patients. The presented results suggest that dopaminergic changes
are localized presynaptically. Most importantly, current pharmacological treatment which
works primarly at the postsynapse, does not affect this elevation. Future research for new

pharmacological treatment, should consider targeting presynaptic elevation of dopamine.



Publication #2: Effect of BDNF val(66)met polymorphism on declarative

memory and its neural substrate: a meta-analysis

The effects of the met(66)val polymorphism of the BDNF gene was investigated in a
comprehensive meta-analysis. In particular we were interested in the effects of this
polymorphism on hippocampal structure measured by structural magnetic resonance imaging
(MRI) studies and on hippocampal function measured by human memory performance and
functional MRI (fMRI) studies. A comprehensive literature search was conducted to indentify
all studies suitable for the meta-analyses. Our results indicate small but significant decrease of
hippocampal volume in carriers of the met-allele carriers and in line with this finding they
showed reduced memory performance across studies. There was a moderate-to-large effect in
met-allele carriers showing reduced response of the hippocampus in fMRI studies. These
results emphasise the role of BDNF in moderating variability of human memory performance
and in mediating some of the neurocognitive impairments underlying neuropsychiatric

disorders.
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ONLINE FIRST

META-ANALYSIS

The Nature of Dopamine Dysfunction
in Schizophrenia and What This Means for Treatment

Meta-analysis of Imaging Studies

Oliver D. Howes, BM, BCh, MA, MRCPsych, PhD, DM; Joseph Kambeitz, MD; Euitae Kim, MD, PhD; Daniel Stahl, PhD;
Mark Slifstein, PhD; Anissa Abi-Dargham, MD; Shitij Kapur, MD, PhD

Context: Current drug treatments for schizophrenia are
inadequate for many patients, and despite 5 decades of
drug discovery, all of the treatments rely on the same
mechanism: dopamine D, receptor blockade. Under-
standing the pathophysiology of the disorder is thus likely
to be critical to the rational development of new treat-
ments for schizophrenia.

Objective: To investigate the nature of the dopamin-
ergic dysfunction in schizophrenia using meta-analysis
of in vivo studies.

Data Sources: The MEDLINE, EMBASE, and PsycINFO
databases were searched for studies from January 1, 1960,
to July 1, 2011.

Study Selection: A total of 44 studies were identified
that compared 618 patients with schizophrenia with 606
controls, using positron emission tomography or single-
photon emission computed tomography to measure in
vivo striatal dopaminergic function.

Data Extraction: Demographic, clinical, and imaging
variables were extracted from each study, and effect sizes
were determined for the measures of dopaminergic func-
tion. Studies were grouped into those of presynaptic func-

tion and those of dopamine transporter and receptor avail-
ability. Sensitivity analyses were conducted to explore the
consistency of effects and the effect of clinical and imaging
variables.

Data Synthesis: There was a highly significant eleva-
tion (P<.001) in presynaptic dopaminergic function in
schizophrenia with a large effect size (Cohen d=0.79).
There was no evidence of alterations in dopamine trans-
porter availability. There was a small elevation in D, re-
ceptor availability (Cohen d=0.26), but this was not evi-
dent in drug-naive patients and was influenced by the
imaging approach used.

Conclusions: The locus of the largest dopaminergic ab-
normality in schizophrenia is presynaptic, which affects
dopamine synthesis capacity, baseline synaptic dopa-
mine levels, and dopamine release. Current drug treat-
ments, which primarily act at D, receptors, fail to tar-
get these abnormalities. Future drug development should
focus on the control of presynaptic dopamine synthesis
and release capacity.

Arch Gen Psychiatry.
Published online April 2, 2012.
doi:10.1001/archgenpsychiatry.2012.169

Author Affiliations:
Departments of Psychosis
Studies (Drs Howes, Kambeitz,
Kim, and Kapur) and
Biostatistics (Dr Stahl), Institute
of Psychiatry, King’s College
London, Camberwell, and
Psychiatric Imaging Group,
Medical Research Council
Clinical Sciences Centre,
Imperial College London,
Hammersmith Hospital

(Drs Howes and Kim), England;
and Department of Psychiatry,
Columbia University, New York
State Psychiatric Institute,

New York (Drs Slifstein and
Abi-Dargham).

CHIZOPHRENIA REMAINS ONE OF

the leading causes of global

disease burden in adults de-

spite more than 50 years of

drug development.' Under-
standing its neurobiology is critical for fu-
ture rational drug discovery.>? The dopa-
mine hypothesis of schizophrenia was first
proposed more than 30 years ago on the ba-
sis of indirect evidence. It received sup-
port from studies of postmortem brain tis-
sue that found increased striatal D, ; receptor
density and dopamine levels in patients with
schizophrenia and from studies of dopa-
mine and its metabolites in cerebrospinal
fluid.*® However, postmortem studies are
notable to measure some aspects of the do-

paminergic function, such as dopamine re-
lease, and are potentially biased by the ef-
fects of antipsychotic treatment and agonal
events, whereas the cerebrospinal fluid stud-
ies were inconsistent and unable to pro-
vide insights into the regional aspects of
dopamine dysfunction.”!' The introduc-
tion of positron emission tomographic
(PET) and single-photon emission com-
puted tomographic (SPECT) imaging en-
abled the investigation of in vivo cerebral
dopamine neurotransmission free of these
limitations.'!?

Positron emission tomographic imaging
and SPECT imaging have been used to in-
vestigate dopaminergic parameters in
schizophrenia, beginning with studies of
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D, receptors'*" and later covering presynaptic func-

tion, including dopamine synthesis capacity, dopamine
release, and transporters'®' (see eAppendix [http:/www
.archgenpsychiatry.com] for further background on these
approaches). To our knowledge, there has not been a pre-
vious meta-analysis of the presynaptic or dopamine trans-
porter findings in schizophrenia, and since the previous
D,;; meta-analysis in drug-free or drug-naive patients,*
there have been a large number of new studies, which
approximately doubles the sample size.

The purpose of our meta-analysis is to synthesize the
PET and SPECT imaging findings on dopaminergic func-
tion in schizophrenia and to consider their implications
for the treatment of schizophrenia. We focus on the stria-
tum because it has the highest density of dopamine pro-
jections in the brain?' and because dopaminergic dys-
function in the striatum can be reliably imaged and has
been linked to the severity of symptoms, response to treat-
ment, and the onset of the disorder.”** We group find-
ings into studies of presynaptic dopaminergic function
(dopamine synthesis capacity, dopamine release, and syn-
aptic dopamine levels), dopamine transporter availabil-
ity, and dopamine receptor availability. The studies of
dopamine synthesis capacity are grouped with those of
dopamine release and synaptic dopamine levels (which
use pharmacological challenges that either deplete or re-
lease dopamine from presynaptic terminals) because ani-
mal?*?® and in vivo human evidence® indicates that they
index related aspects of dopaminergic function. How-
ever, the results are also given separately for these dif-
ferent methodological approaches for comparison. Re-
searchers can view the study data on, and add future
studies to, our open-access database and wiki (http:
/lwww.schizophreniadata.com.).

B METHODS ey

DATA SOURCES AND STUDY SELECTION

The PubMed, PsycINFO, and MEDLINE electronic databases
were searched in their entirety from January 1, 1960, to July 1,
2011. To be included in the meta-analysis, an article needed
to report in vivo PET or SPECT imaging findings on striatal
dopaminergic function in patients with schizophrenia and a con-
trol group, including the mean and standard deviations for both
groups. Current antipsychotic treatment was an exclusion cri-
terion for the studies of dopamine receptors because this af-
fects dopamine receptor binding potential® (see eFigure 1 for
search results and eAppendix for further details on the search
and inclusion-exclusion criteria).

DATA EXTRACTION

The main outcome measure was the difference in the dopa-
minergic imaging parameter between healthy controls and pa-
tients with schizophrenia. The following additional informa-
tion was extracted from all the studies: authors, year of
publication, population characteristics of the control and pa-
tient groups (group size, age, sex, antipsychotic use, diagno-
sis, and symptom ratings), characteristics of the PET or SPECT
imaging (radiotracer and other methodological factors re-
ported), scanner characteristics (scanner type and resolu-
tion), and modeling method.

DATA ANALYSIS

Separate meta-analyses were conducted for the studies of pre-
synaptic dopaminergic function, dopamine receptors, and dopa-
mine transporters. The standardized effect sizes of the indi-
vidual studies were entered in a random-effects meta-analytic
model.*'?? The summary effect sizes (Cohen d) were com-
puted using a restricted maximum-likelihood estimator.?® Pub-
lication bias was assessed using funnel plots. Heterogeneity was
assessed by calculating the I* value (I* values <50% indicate
low to moderate heterogeneity, whereas I> values >50% indi-
cate moderate to high heterogeneity).>* Leave-one-out sensi-
tivity analyses were conducted. Sources of bias and heteroge-
neity were evaluated using meta-regression (for publication year
and age) and subgroup analyses (for antipsychotic treatment,
illness duration, and imaging approach). A significance level
of P<<.05 (2-tailed) was used for all analyses (see eAppendix
for further methodological details).

BN RESULTS R

PRESYNAPTIC
DOPAMINERGIC FUNCTION

A total of 17 studies described in 15 publications (3 stud-
ies reported in 1 article””) met inclusion criteria. We ex-
cluded one of our articles® from the main analysis be-
cause it reports additional data on the same subjects
included in a previous report,*® although the data are used
in subanalyses in which there is no subject duplication,
and another article was excluded because the compara-
tor group was siblings.’” Overall, the studies include a
total of 231 patients and 251 controls. Study details are
reported in eTables 1 and 2. There was a significant el-
evation in schizophrenia, with a summary effect size of
d=0.79 (95% CI,0.52-1.07; z=5.65; P<.001; Figure 1).

HETEROGENEITY AND
SENSITIVITY ANALYSES

The I* value was 39.92% (95% CI, 0.00%-77.03%), in-
dicating low to moderate heterogeneity between stud-
ies. Although the regression test for funnel plot asym-
metry was not significant (z=1.52, P=.13), a visual
inspection of the funnel plot revealed asymmetry, indi-
cating possible publication bias. The trim-and-fill analy-
sis indicated that there were 3 potentially missing stud-
ies on the left side of the funnel plot (all with large standard
errors and small effect sizes; eFigure 2). Nevertheless, the
summary effect size remained large and highly signifi-
cant after correcting for these putatively missing studies
(corrected effect size: d=0.67 [95% CI, 0.37-0.94]; z=4.55,
P<.001; I*=48.83% [95% CI, 10.17%-81.01%]).

The summary effect size reached significance in all
cases in the leave-one-out analysis, with summary effect
sizes varying from d=0.73 to d=0.86 (all P<.001). Meta-
regression indicated that there was no influence of year
of publication (8=-0.02; F,15=0.99; P=.34) or subject
age (B=0.004; F,,,=0.015; P=.90). In case current an-
tipsychotic drug treatment confounded the results, the
meta-analysis was rerun exclusively for studies of drug-
free or drug-naive patients. This showed a significant el-
evation in drug-free or drug-naive patients compared with
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Standard

Study Year Effect (95% Cl)
Reith et al'® 1994 1.5194 (0.3748-2.6640)
Hietala et al*4 1995 0.9004 (—0.1639 to 1.9647)
Dao-Castellana et al4® 1997 0.3508 (—0.7480 to 1.4495)
Breier et al*3 1997 0.8766 (0.0201-1.7330)
Lindstrom et al*6 1999 1.0054 (0.1152-1.8957)
Hietala et al*7 1999 1.0246 (0.1486-1.9005)
Laruelle et al25 1999 0.9132 (0.4207-1.4058)
Elkashef et al®® 2000 -0.1313 (~0.8375 t0 0.5749)
Abi-Dargham et al®® 2000 1.0847 (0.3849-1.7844)
Meyer-Lindenberg et al4? 2002 1.8245 (0.4779-3.1711)
McGowan et al*8 2004 1.5549 (0.7028-2.4070)
Kumakura et al3® 2007 0.0990 (~0.7595 to0 0.9576)
Nozaki et al* 2009 0.1329 (—0.5046 t0 0.7704)
Howes et al*! 2009 1.1849 (0.2484-2.1215)
Kegeles et al*2 2010 0.6136 (—0.0549 to 1.2821)

Summary 0.7919 (0.5173-1.0666)

zScore

2.6018
1.6581
0.6257
2.0060
2.2136
2.2924
3.6342
-0.3644
3.0382
2.6556
3.5766
0.2261
0.4087
2.4797
1.7989

5.6518
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Figure 1. Studies of presynaptic dopaminergic function.®2%3-4 The forest plot shows the effect sizes and 95% Cls of the difference between patients with
schizophrenia and controls, by study. There was evidence of a significant elevation in schizophrenia with a summary effect size of d=0.79 (diamond).
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Figure 2. Effect sizes for studies of presynaptic dopaminergic function, by
antipsychotic treatment history. In the box plot, the horizontal line represents
the median, the whiskers indicate the lowest and highest data points that are
within 1.5 the interquartile range, and data outside this range (circles if
present) are regarded as potential outliers.

controls (n=13, d=0.69 [95% CI, 0.36-1.01]; z=4.14;
P<.001; I*’=46.46% [95% CI, 0.00%-85.31%]). The ef-
fect sizes for the studies grouped by antipsychotic treat-
ment are shown in Figure 2.

The effect sizes grouped by imaging method are
shown in eFigure 3. There was a significant elevation in
schizophrenia when the meta-analysis was restricted to
the studies using radiolabeled L-3,4-dihydroxyphenyl-
alanine (dopa) (n=11; d=0.78 [95% CI, 0.38-1.18];
2=3.82; P=.0001; I’=52.62% [95% CI, 3.19%-84.02%]).
The effect sizes were similarly positive in the studies of
dopamine release (d=1.35 in Abi-Dargham etal,” d=0.88
in Breier et al,” and d=0.91 in the Laruelle et al®* report
combining 3 cohorts) and in the studies of synaptic dopa-
mine levels (d=1.09 and d=0.61), but there were too few
studies to rerun the meta-analysis separately for these
approaches.

DOPAMINE TRANSPORTER

Eleven studies met inclusion criteria, providing data on
a total of 152 patients and 132 healthy controls. Study
details are shown in eTables 3 and 4. There was no evi-
dence of a significant difference between patients with
schizophrenia and controls (d=-0.34 [95% CI, -0.75 to
0.07]; z=-1.64; P=.10; Figure 3).

HETEROGENEITY AND SENSITIVITY ANALYSES

The I* value was 64.04% (95% CI, 25.22%-88.99%), in-
dicating moderate to large heterogeneity between stud-
ies. There was no evidence for publication bias (regres-
sion test for funnel plot asymmetry: z=-1.75; P=.08; no
missing studies estimated by trim-and-fill analysis; see eFig-
ure 4 for the funnel plot) and no significant effect of year
of publication (=-0.01; F,4=0.04; P=.85) orage (=0.02;
F,4=0.25; P=.63) on the effect size. The subgroup analy-
ses found no group differences (eAppendix).

DOPAMINE RECEPTORS
D,;; Receptors

Twenty-two studies met inclusion criteria, providing data
on 337 patients and 324 healthy controls (data from Wong
et al” form part of a subsequent larger data set®?). The
population characteristics and methodological details of
the studies are shown in eTables 5 and 6. There was a
significant elevation in schizophrenia with a summary
effect size of d=0.26 (95% CI,0.001-0.52; z=1.97; P=.049;
Figure 4).

Heterogeneity and Sensitivity Analyses

The I? value was 63.93% (95% CI, 39.65%-84.81%), in-
dicating moderate to large heterogeneity between stud-
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Study

Laakso et al’!
Laruelle et al®?
Laakso et al*®
Lavalaye et al®
Hsiao et al%
Yang et al®
Yoder et al®”
Mateos et al58
Mateos et al*®
Schmitt et al60
Arakawa et al®!

Summary

Standard

Year Effect
2000 0.0928
2000 -0.3836
2001 -0.9534
2001 0.0655
2003 0.2097
2004 0.0445
2004 -0.0156
2005 -1.6997
2007 -1.2643
2008 -0.4463
2009 0.7214
-0.3376

(_
(_
(-
(_
(_
(_
(_
(_
(_
(-
(_

(95% CI)

0.8317 10 1.0172)
0.9674 to 0.2002)
1.9876 10 0.0807)
0.8112 t0 0.9423)
0.5926 10 1.0121)
0.7737 10 0.8627)
0.8921 10 0.8610)
2.5722 10 -0.8272)
1.9963 to —0.5322)
1.1703 10 0.2776)
0.2007 to 1.6436)

(~0.7412 10 0.0661)

zScore

0.1967
-1.2879
-1.8070

0.1465

0.5123

0.1066
-0.0348
-3.8183
-3.3849
-1.2083

1.5334

-1.6392
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Figure 3. Studies of dopamine transporter availability.'" The forest plot shows the effect sizes and 95% Cls of the difference between patients with schizophrenia
and controls, by study. The 95% CI for the summary effect size (diamond; d=0.34) includes 0, indicating no significant difference between patients with

schizophrenia and controls.

Standard
Study Year Effect (95% Cl) zScore
Crawley et al®’ 1986 0.8889 (0.0665-1.7113) 2.1185
Farde et al'4 1990 0.3447 (—0.2968 to 0.9862) 1.0532
Martinot et al8 1990 0.1116 (—0.6892 t0 0.9124) 0.2732
Martinot et al®4 1991 0.3969 (~0.3000 to 1.0939) 1.1163
Tune et alf2 1993 1.6024 (0.8974-2.3075) 4.4548
Hietala et al®® 1994 0.3337 (—0.4963 t0 1.1637) 0.7879
Martinot et al65 1994 0.0000 (—0.8765 t0 0.8765) 0.0000
Pilowsky et al”® 1994 -0.1042 (-0.7244 10 0.5161) -0.3292
Pedro et al”! 1994 0.0927 (—0.6667 t0 0.8522) 0.2393
Nordstrom et al56 1995 0.7003 (—0.3790 to 1.7796) 1.2717
Laruelle et al™ 1996 05116 (—0.2412 10 1.2644) 1.3319
Okubo et al®® 1997 0.2188 (—0.4460 to 0.8836) 0.6450
Breier et al*3 1997 0.0000 (-0.818110 0.8181) 0.0000
Abi-Dargham et al?0 1998 0.0457 (—0.6701 t0 0.7614) 0.1251
Abi-Dargham et al® 2000 0.3154 (—0.3420 t0 0.9727) 0.9402
Yang et al® 2004 -0.1397 (—0.9588 t0 0.6795) -0.3342
Talvik et al”® 2006 -0.2016 (—0.8661 to 0.4630) -0.5945
Corripio et al™ 2006 2.3291 (1.3689-3.2892) 47543
Schmitt et al” 2009 -0.9150 (—1.6895 to —0.1404) -2.3153
Kessler et al’® 2009 -0.4429 (—1.2888 t0 0.4030) -1.0261
Kegeles et al”” 2010 0.0735 (—0.5800 to 0.7271) 0.2205
Kegeles et al*2 2010 0.0155 (—0.5825 t0 0.6134) 0.0507
Summary 0.2587 (0.0010-0.5165) 1.9674

P Value
.03 —a—
29 H—
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.26 B—
<.001 —Hl—
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99 —n
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.81 —h—
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Figure 4. Studies of D, receptor availability.' 3424350566277 The forest plot shows the effect sizes and 95% Cls of the difference between patients with schizophrenia
and controls, by study. There was evidence of a small increase in D, receptor availability in schizophrenia with a summary effect size (diamond) of d=0.26.

ies. There was no evidence for publication bias (regres-
sion test for funnel plot asymmetry: z=1.32; P=.19; no
missing studies estimated by trim-and-fill analysis; see
eFigure 5 for the funnel plot) and no significant effect
of year of publication (3=-0.03; F;,0=2.27; P=.15) or
age (3=0.01; F, ,5=0.34; P=.57) on the effect size.

In the leave-one-out analysis, the effect sizes varied from
d=0.18 to d=0.32 (with P values from .11 to .01, respec-
tively) and were not significant on 14 of the 22 iterations.
We repeated the meta-analysis, including a study” ini-
tially excluded owing to the relatively short antipsy-

chotic drug washout period, and found a nonsignificant
effect size of d=0.25 (95% CI, -0.01 to 0.51; z=1.8753;
P=.06; ’=62.75% [95% CI, 38.65%-84.13%]). The sub-
group analyses identified no significant difference be-
tween patients and controls in studies exclusively of an-
tipsychotic-naive patients or in studies that used benzamide
radiotracers, whereas significant differences were found
in studies that included patients who had received prior
antipsychotic treatment or that used butyrophenone ra-
diotracers (see eAppendix for these analyses and compari-
sons of illness duration between subgroups).
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Other Dopamine Receptors

We identified 4 studies of D, receptor availability in un-
treated patients,”! too few to permit meta-analysis.
None of these found a significant difference in striatal
D, availability between patients with schizophrenia and
controls, although one study® found a trend toward an
increase in antipsychotic-naive patients but not drug-
free patients (see eAppendix for overview).

STRIATAL SUBREGIONS

We repeated the meta-analyses for the caudate and pu-
tamen separately. In the studies of presynaptic func-
tion, there was a significant elevation in schizophrenia
for the putamen (see eAppendix for details: d=0.51 [95%
CI, 0.14-0.88]; z=2.72; P=.007) but not the caudate.
There were no significant differences in the caudate or
putamen between patients and controls in the studies of
dopamine transporter or D, receptor availability (see eAp-
pendix for details).

B COMMENT By

The main findings from our meta-analyses are that pre-
synaptic dopaminergic function is altered in schizophre-
nia, with a large effect size (d=0.79), and that there is
no difference in dopamine transporter availability and a
small elevation in D, receptor availability, although the
latter finding was not consistent. These findings are sum-
marized schematically in Figure 5.

METHODOLOGICAL CONSIDERATIONS

One methodological consideration common to all meta-
analyses is that they are limited by the quality of the stud-
ies that are included. We included all relevant studies and
did not apply quality screening because this may intro-
duce other biases, although this involves pooling find-
ings from studies using different radiotracers, scanners,
and methods of data collection and pharmacokinetic analy-
sis. We have summarized these variables (eTables 1-6) to
enable readers to make judgments about individual stud-
ies. Although including all studies has the advantage of
reducing selection biases and increasing the generalizabil-
ity of findings, there is a risk of diluting effects.

There was low to moderate heterogeneity in the stud-
ies of presynaptic dopaminergic function, which sug-
gests that there is consistency across studies. However,
there was moderate to large heterogeneity in the studies
of dopamine transporter and D, receptor availability. Po-
tential sources for this were evaluated in secondary analy-
ses and are discussed herein. Nevertheless, because the
random-effects model used in the meta-analyses does not
assume homogeneity of effects, our findings should be
robust to heterogeneity.

Presynaptic Dopaminergic Function

Although the trim-and-fill analysis indicated that there
may be missing studies, the elevation in patients re-

Healthy Controls

Dopamine D receptors

vesicles @ \
0] Q| — T S

@

T

. Dopamine
transporter

Patients With Schizophrenia

Figure 5. Schematic diagram summarizing the findings from our
meta-analyses of dopamine function in schizophrenia. The diagram shows
that the major dopaminergic abnormality in schizophrenia is presynaptic. The
main findings from our meta-analyses are that presynaptic dopaminergic
function is altered in schizophrenia, with a large effect size (d=0.79), and
that there is no difference in dopamine transporter availability and a small
elevation in D,y receptor availability, although the latter finding was not
consistent.

mained large and highly significant after correcting for
putatively missing studies. There was a highly signifi-
cant and large effect size in all the iterations of the leave-
one-out analysis, which indicates that the elevation in pre-
synaptic dopaminergic function was not dependent on
the inclusion of any one study. We found a large posi-
tive effect size when the meta-analysis was restricted to
studies that used radiolabeled dopa to index dopamine
synthesis capacity, and although there were insufficient
studies to permit separate meta-analyses, there were simi-
lar positive effect sizes in the studies that used a-meth-
ylparatyrosine or amphetamine challenges, which sug-
gests that the elevation is consistent across technique. The
elevation was evident when studies of patients cur-
rently receiving antipsychotic treatment were excluded
from the meta-analysis, which indicates that antipsy-
chotic treatment is unlikely to explain the effect. We can-
not, however, exclude the possibility that prior treat-
ment had a persistent effect in the studies of drug-free
patients, although Figure 2 indicates that, in absolute
terms, the effect sizes were at least as great in the studies
of drug-naive patients as in the studies of patients who
had received prior treatment, which suggests that this is
not the case.

The radiolabeled dopa studies used several different
analytic and imaging methods, including the simple ra-
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tio approach that does not account for many of the com-
plexities of radiolabeled dopa analysis and is highly de-
pendent on scanning duration,®? factors that may
contribute to the negative effect size in the only study to
use this approach.?® Nevertheless, that the elevation in
schizophrenia was evident across studies using a variety
of methods and analytic approaches suggests it is robust.

The elevation in presynaptic dopaminergic function
could be due to an increased density of dopamine ter-
minals in the striatum. However, this interpretation is
unlikely for 2 reasons: first, there is no evidence of a simi-
lar elevation in dopamine transporter availability in our
meta-analysis or in the vesicular monoamine trans-
porter (both in vivo markers of dopamine neuron ter-
minal density),*# and, second, dopamine neuron num-
bers are not elevated in postmortem samples.® Thus, this
indicates that the increased dopamine synthesis capac-
ity and dopamine release reflect functional changes rather
than increased neuronal density. Although elevated dopa-
mine synthesis capacity could reflect increased enzyme
activity in compensation for reduced dopa or dopamine
levels, this interpretation is not consistent with the evi-
dence that synaptic dopamine levels and dopamine re-
lease, respectively, are also increased and positively cor-
related.” Together, the presynaptic studies thus suggest
that there is increased dopaminergic activity reflected in
increased dopamine synthesis capacity and increased
dopamine release.” This is consistent with evidence of
increased turnover of striatal dopamine in schizophre-
nia.* Further work is needed to determine whether dopa-
mine synthesis capacity is related to dopamine release
in schizophrenia, as has been found for synaptic dopa-
mine and dopamine release,” and whether other as-
pects of dopaminergic function (eg, conversion of tyro-
sine to dopa, and dopamine catabolism) are also abnormal.

Dopamine Transporter Availability

There was no evidence of publication bias. Antipsy-
chotic treatment is unlikely to explain our finding be-
cause most of the patients in the dopamine transporter
studies were drug-naive, and the lack of difference be-
tween patients and controls was also evident when the
studies of treated patients were excluded. A likely source
of the heterogeneity between studies is the number of dif-
ferent radiotracer imaging approaches used, although we
were not able to formally assess this. Differences in clini-
cal characteristics, such as variation in the severity and
phase of illness and in drug-free intervals, are evident be-
tween studies (eTables 3 and 4) and may be a further
source of heterogeneity between studies.

Dopamine Receptor Availability

There was no evidence of publication bias. There was no
significant difference between patients and controls on
14 of the 22 iterations of the leave-one-out analysis, which
indicates that the finding of a difference in the meta-
analysis is not robust. In the sensitivity analyses, we could
not detect a difference between patients and controls when
the meta-analysis was restricted to purely drug-naive pa-
tients or when it was restricted to patients who had re-

ceived prior treatment scanned with benzamide radio-
tracers. The 2 studies®*® that used ergot radiotracers
included a mixture of drug-naive and previously treated
patients and found no difference between patients and
controls, in line with the findings with benzamide ra-
diotracers. However, when the meta-analysis was re-
stricted to butyrophenone radiotracers, there was an el-
evation in patients. Interestingly, this was not evident in
the one butyrophenone study®® exclusively of drug-
naive patients. These further analyses thus suggest that
the imaging approach used and the inclusion of patients
who had received prior antipsychotic treatment are likely
to contribute to the inconsistency in the meta-analysis.
Other differences in clinical characteristics may also con-
tribute to this inconsistency: in particular, duration of
illness (which was shorter in the drug-naive patients),
whether illness duration included the prodrome, and the
nature and severity of symptoms (eTable 6).

There are differences in the pharmacokinetic proper-
ties of the different radiotracers and in the analytic meth-
ods used to characterize them and their pharmacody-
namics,**® so it is not possible to disentangle which of
these factors might underlie the effect of imaging ap-
proach on our findings. For example, in comparison with
the benzamide radiotracer raclopride, in membrane, slice,
and cell preparations, the butyrophenone radiotracers N-
methylspiperone and spiperone have shown paradoxi-
cal binding decreases following dopamine depletion®-°
and either increases or no overall change following stimu-
lated release.®*! Some studies,’* although not all,”* have
found that spiperone has a greater tendency to bind to
internalized receptors than does raclopride. N-methyl-
spiperone and spiperone also have a higher affinity for
D,/ receptors than does raclopride (K, values for N-
methylspiperone and spiperone are in the picomolar range
and, those for raclopride are in the nanomolar range),
and they have slower kinetics,*® which makes it more dif-
ficult to obtain quantitative estimates from short-
duration PET studies and necessitates the use of a dif-
ferent kinetic model for analysis."”

When evaluating the sensitivity analyses, it is also im-
portant to consider that the risk of type II errors in-
creases when the number of studies is reduced, and there
is an inevitable decrease in the precision of the estimate.
This is reflected in the wide confidence intervals for the
drug-naive and drug-free groupings, and therefore the
finding of a lack of a significant difference in the drug-
naive studies needs to be seen in the context of the re-
duced power to find such a difference. Finally, elevated
baseline synaptic dopamine in schizophrenia could po-
tentially make group differences harder to detect. Nev-
ertheless, overall, one can conclude that, although there
was a small elevation in D, receptor availability, it was
not a consistent finding and was not present in drug-
naive patients, although some caveats remain.

IMPLICATIONS FOR THE DOPAMINE
HYPOTHESIS OF SCHIZOPHRENIA

Our findings provide in vivo evidence to support the dopa-
mine hypothesis of schizophrenia. Early versions of this
hypothesis could only conjecture the nature of the ab-
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normality.®* This meta-analysis provides evidence to
specify that the major dopaminergic abnormality in
schizophrenia is a presynaptic one, affecting dopamine
synthesis capacity and release, and that, in contrast, the
overall effect on D, receptor availability is small. This
view is supported by findings of elevated dopamine syn-
thesis capacity in drug-naive individuals in the pro-
drome to schizophrenia?* and of a further increase asso-
ciated with the onset of the psychotic disorder.” There
is also evidence of specificity because this presynaptic do-
paminergic dysfunction is not seen in nonpsychotic af-
fective and anxiety disorders (see review by Howes et al'®).
Although we were unable to examine symptoms in our
meta-analyses, the challenge studies'™*° link elevated dopa-
mine release to positive rather than negative symptoms.

Although our findings support proposals that dopa-
minergic dysfunction is a final common pathway to psy-
chosis, they do not address the issue of what drives the
presynaptic striatal alterations. One candidate is de-
creased D;-mediated dopaminergic neurotransmission in
the frontal cortex (see Fusar-Poli et al’® and Meyer-
Lindenberg et al* and review by Heinz et al’’). Another
candidate, supported by preclinical models and some hu-
man findings,”®'® is glutamatergic dysfunction.

Our finding that dopamine transporter availability is
unaltered indicates that there is no elevation in trans-
porter levels that might compensate for elevated dopa-
mine release. It may also explain the later age of onset of
schizophrenia in women than men, because women tend
to have higher dopamine transporter availability than men,
which naturally declines with age in both sexes.'®! Al-
though our findings indicate that transporter availabil-
ity is unaltered, it remains possible that transporter func-
tion is altered in schizophrenia.

Because we focused on the striatum, it is not possible
to know whether our presynaptic findings are specific
to the striatum or whether they are also relevant to do-
paminergic projections to other brain regions, and fu-
ture work will need to evaluate the extrastriatal dopa-
mine system. Our analyses of striatal subregions suggest
that the presynaptic elevation may be localized to the pu-
tamen. However, these findings should be considered as
exploratory because not all studies provided data and be-
cause the resolution of scanners varied markedly (eTable
1). The putamen localization contrasts with recent find-
ings focusing on functional, as opposed to purely ana-
tomical, subregions of the striatum, which have sug-
gested that the dopaminergic dysfunction is localized in
a part of the caudate nucleus that is linked to associative
cortical regions.”** Unfortunately, there were too few
studies for the functional subregions to be examined in
our meta-analysis, and therefore studies using high-
resolution scanners are warranted to examine subre-
gional effects further.

IMPLICATIONS FOR TREATING SCHIZOPHRENIA

The current drug treatments for schizophrenia were dis-
covered prior to the notions of dopamine as a neurotrans-
mitter and prior to our ability to measure its function in
vivo in humans. They were the outcome of empiricism
and serendipity, rather than rational drug design based

on pathophysiology. It has transpired that the major mode
of action of all currently licensed antipsychotic drugs is
to block D, receptors.”!** However, our meta-analysis in-
dicates that, by blocking D, receptors, current drugs are
acting downstream of the locus of the largest dopami-
nergic abnormality in the disorder. Thus, although an-
tipsychotics suppress overall neurotransmission, they fail
to target the major dopaminergic abnormality. Further-
more, our finding that the D,; alterations were not pres-
ent in drug-naive patients suggests that D,; receptor al-
terations are not intrinsic to the illness but are secondary
to prior antipsychotic treatment. Although studies are
needed to test this after accounting for the factors al-
ready discussed, this interpretation is consistent with ani-
mal evidence that antipsychotics result in D,,; receptor
upregulation'® and with evidence that withdrawing an-
tipsychotic drugs in humans uncovers elevated D, re-
ceptor availability.'®* It is not surprising that when an-
tipsychotics are stopped (usually by the patient), when
there is nothing to suppress the dysregulated presynap-
tic dopaminergic system, and when there is a poten-
tially supersensitive postsynaptic receptor system, then
there is a high risk of relapse.

Our findings indicate that, rather than focusing ex-
clusively on postsynaptic receptors, future treatments
should target the presynaptic control of dopamine syn-
thesis and release. Interestingly, one of the first effective
drug treatments for schizophrenia was reserpine,'® and
more recent data show that use of a-methylparatyro-
sine is associated with a rapid and profound reduction
in psychotic symptoms.*® Because both of these drugs de-
plete the store of presynaptic dopamine, there is thus proof
of principle that, by acting on the presynaptic dopami-
nergic system, we can treat the psychosis. However, al-
though presynaptic dopamine depletion seems logical
from a pathophysiological perspective, it raises a tech-
nical challenge because dopamine and norepinephrine
share part of the same synthetic pathway. Thus, treat-
ments that interfere with dopamine also risk affecting nor-
epinephrine synthesis, leading to undesirable adverse ef-
fects. Therefore, future efforts at presynaptic modulation
will need to go beyond the simple depletion of dopa-
mine or blockade of its synthesis because the cost-
benefit ratio of this is unlikely to be therapeutically vi-
able. Future efforts will also probably need to show some
regional selectivity if they are to avoid altering dopa-
mine neurotransmission in the frontal cortex and poten-
tially worsening negative symptoms and cognitive im-
pairments, both of which have been linked to frontal
cortical D, receptor availability in schizophrenia.®

Interestingly, patients who respond less well to anti-
psychotic drugs have been found to show lower synap-
tic dopamine levels,* and findings indicate that treatment-
resistant patients show normal dopamine synthesis
capacity.'® These findings suggest that psychotic symp-
toms in some patients may be unrelated to dopaminer-
gic function, at least as indexed by these imaging tech-
niques.

Although we did not find a major alteration in dopa-
mine transporter or D,; receptor availability, there could
nevertheless be other functional alterations. In fact, this
is indirectly suggested by findings that patients with
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schizophrenia are supersensitive to the psychotogenic ef-
fects of the D, receptor agonist apomorphine when given
at high doses.'" Interestingly, when apomorphine is given
at low doses, which are thought to have a preferential
presynaptic action to reduce dopaminergic transmis-
sion, it has an antipsychotic effect.!® D, receptors may
exist in forms with differing affinities for dopamine, and
it has been proposed that there is an excess of the high-
affinity form in schizophrenia.'”” However, the firstin vivo
study'® in schizophrenia using a radiotracer selective for
the high-affinity form found no evidence of alterations,
although a significant caveat is that this radiotracer also
shows appreciable binding to D5 receptors. Notwith-
standing this, other aspects of D,; receptor function (such
as internalization or signal transduction) or the func-
tion of other dopamine receptors could be abnormal in
schizophrenia and warrant investigation in patients. If
these or other aspects of D, function are abnormal, this
would suggest new drug targets, and even if D, function
is unaltered, finding new ways to intervene at this level
could still be useful to counteract the effects of presyn-
aptic dysfunction on dopamine neurotransmission.

An attractive feature of the present findings is that the
pathophysiological target (ie, increased dopamine syn-
thesis capacity and dopamine release) can now be mea-
sured in preclinical models and humans using exactly the
same molecular imaging techniques as has been done for
dopamine transporters and D,;; receptors.''® So, al-
though most of the animal models used to develop an-
tipsychotics in the past have had to rely on indirect mea-
sures (such as amphetamine-induced locomotion or
conditioned avoidance response abolition), the present
tindings provide a pathophysiological target that can be
directly measured in animals. With advances in small ani-
mal imaging and experimental human studies, it should
be possible to induce the precise presynaptic abnormal-
ity in animal models and to measure the response to new
medications in animals and in experimental human mod-
els in the same way.

In conclusion, there is consistent evidence of presyn-
aptic dysfunction in schizophrenia with a large effect size
but no evidence of a compensatory increase in dopa-
mine transporter availability to buffer the system. D,; re-
ceptor upregulation is small and not detected in antipsy-
chotic-naive patients. These findings suggest that drug
development should target the presynaptic regulation of
dopamine synthesis and release.
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eAppendix
Supplementary Background

A number of PET and SPECT imaging techniques have been used to study in vivo dopaminergic
function in schizophrenia. Dopamine synthesis capacity can be indexed using two radiolabeled
homologues of /-3,4-dihydroxy-phenylalanine (DOPA): [B-'C]L-DOPA ([*'C]-DOPA) and 6-[**F]fluoro-
DOPA ([*®F]-DOPA).> 2 Brain metabolism of radiolabeled-DOPA parallels that of endogenous L-DOPA.?
In dopamine neurons, these radiotracers are converted by aromatic L-amino acid decarboxylase
(AADC) into [*'C]dopamine and 6-[**F]fluoro-dopamine, respectively, and trapped in vesicles in the
nerve terminals ready for release (see review'). AADC is a regulated enzyme and its activity in
dopamine neurons is relative to other aspects of dopamine metabolism.* AADC is present in other
monoaminergic neurons in addition to dopamine neurons.’ Nevertheless, radiolabeled-DOPA uptake
in the striatum is predominantly due to dopaminergic innervation, is highly correlated with striatal
dopamine levels in post mortem brains, and responds to experimental manipulation of brain
dopaminergic systems.‘:"8

The next stage of dopaminergic transmission is dopamine release into the synapse. Synaptic levels of
dopamine can be indexed by imaging the effect of competition between dopamine and radiotracers
which selectively bind to dopamine D2/3 receptors, such as [*'C]-raclopride, and [*2I]-
iodobenzamide, on the availability of these receptors.’ The competition model indicates that
radiotracer binding will decrease when synaptic dopamine levels are increased, for example with
dopamine release after amphetamine administration, and conversely that binding will increase
when synaptic dopamine levels are reduced, for example after depletion of presynaptic dopamine
stores achieved with alpha-methyl-paratyrosine (AMPT) administration (see reviews * '°). Supporting
this, in vivo animal studies show that specific binding by the radiotracer decreases monotonically
with increasing dopamine levels measured by microdialysis."* Studies have shown that the
competition model alone does not account for all of the observations yielded by these imaging
paradigms, and that receptor trafficking likely plays a role, but nevertheless, changes in radiotracer
binding are related to the overall net effects of these events, which are a direct consequence of the
change in dopamine tone produced by pharmacological or other challenges.** **

Following its release, dopamine diffuses across the synapse to act on post-synaptic dopamine
receptors. A large number of radiotracers have been developed to image D2 receptors, including
benzamides (including [*'C]-raclopride, [*®F]-fallypride, [*'C]-FLB457 and [*?|]-iodobenzamides),
ergot derivatives (including ["°Br]-bromolisuride) and the butyrophenones (including [*®F]-spiperone,
%1 These do not distinguish D2 from D3
receptors or pre- from post-synaptic receptors and vary somewhat in their properties, including

[*'C]-spiperone, ["°Br]-bromospiperone, and [*'C]-NMSP).

selectivity for D2/3 receptors over D4 receptors and kinetics (see'® and discussion). Selective tracers
are also available for D1 receptors and are being developed for D4 and D5 receptors.

Subcortical dopaminergic neurotransmission is predominantly terminated by dopamine diffusion out
of the synapse and reuptake into the nerve terminal by dopamine transporters. Dopamine

© 2012 American Medical Association. All rights reserved.

Downloaded From: http://archpsyc.jamanetwork.com/ on 07/04/2014



transporters can be imaged using PET or SPECT radiotracers such as [123I]-B—CIT, TRODAT, [11C]-
cocaine, [11C]-methylphenidate, [18F]CFT ([18F]-WIN 35,428) and [*'C]-PE21.**
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Supplementary Methods

The following keywords were used in the database searches: “Positron Emission Tomography”, OR
“PET”, OR “Single photon emission tomography”, OR “SPET”, OR “Single Photon Emission Computed
Tomography” OR “SPECT”; AND “dopamine”, OR “dopamine release”, or “dopamine synthesis”, or
“dopamine availability”, OR “dopamine transporter”, OR “dopamine reuptake”, OR “dopamine
receptor”; AND “schizophrenia”, OR “psychosis”, OR “schizophreniform”.

The inclusion criteria were: peer-reviewed studies that reported an in vivo measure of striatal
dopaminergic function in patients with a diagnosis of schizophrenia and in a healthy control group.
We excluded case studies, reviews, studies of patients with co-morbid neurological diagnoses, and
duplicate publications. The abstracts of all papers identified by the search were screened by OH, EK
& JK to determine if they met inclusion criteria. If the abstract indicated the study potentially met
inclusion criteria, or where there was any uncertainty, the full text of the paper was reviewed to
identify studies that met all the inclusion criteria and to ensure they did not have any of the
exclusion criteria. Where there was uncertainty, authors were contacted to confirm that no overlap
in the studied participants existed between papers. Current antipsychotic treatment was an
exclusion criterion for the studies of dopamine receptors, because this affects dopamine receptor
binding potential.”® Where antipsychotic treatment was stopped prior to scanning we looked for
evidence that there was a sufficient wash-out period (at least 5 times longer than the half-life of the
antipsychotic drug in plasma) such that residual antipsychotic occupancy of D2/3 receptors was
unlikely.

Meta-analytic Procedure

The statistical analysis of the extracted data was conducted using the R statistical programming
language version 2.10.1 with the packages ‘rmeta’ and ‘metafor’.’® Most studies reported data for
the whole striatum. However, some only reported data for striatal sub-regions (caudate nucleus and
putamen) without reporting values for the whole striatum. In order to achieve higher comparability
between studies where data for the whole striatum was not available, an effect size for the whole

striatum was calculated.

For studies where data for the whole striatum was not available, the effect size for the whole
striatum was calculated by averaging the means of the dopaminergic index in putamen and caudate
nucleus weighted by their volume to reflect the relatively larger contribution of the putamen to the
overall striatal volume. Where volumes were not reported, the following volumes, derived from
healthy controls (n=34, mean age=32.5 (SD=8.8) years), were used: mean (SD) volume (mm?®):
putamen=8805 (994), caudate=5562 (865)). When estimating the standard deviation of this striatal
measure, we accounted for the dependency of measures in striatal subregions by assuming a
correlation of r = 0.5 between measures in striatal sub-regions.

We investigated the validity of this approach by using two studies included in the meta-analysis
where data were available for the putamen and caudate and for the whole striatum.”” *® we
evaluated the intra-class correlation coefficient (ICC) for the whole striatal values determined by
combining data from the caudate and putamen as described above and the values for the whole
striatum reported in these studies using a mixed effects two-way ANOVA."” The ICC was high
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(ICC=+0.98, F(24,24)=94.3, p<0.0001, 95%-CI for ICC: 0.95 to 0.99), indicating that our approach to
combining regions gives an accurate estimate of the whole striatal values.

The standardized effect sizes of the individual studies were entered in a random-effects meta-

| 221 which does not assume homogeneity amongst studies. The summary effect sizes

analytic mode
(Cohen’s d) were computed using a restricted maximum-likelihood estimator.?? Heterogeneity was
assessed in the studies by calculating the I value, which is a sample size independent measure that
describes the percentage of total variation across studies that is due to heterogeneity rather than
chance.” I values of 25%, 50%, and 75% can be interpreted as indicating low, moderate and high

heterogeneity respectively.”

Where there was a significant difference between patients and controls in the meta-analysis, a
sensitivity analysis was conducted using the leave-one-out approach, which re-runs the meta-
analysis repeatedly with a different study excluded on successive iterations.

We evaluated potential sources of heterogeneity in the effect sizes and the influence of possible
confounding factors in the following ways. The potential effects of publication year and the age of

20 Additionally, to investigate the influence of

subjects was evaluated using meta-regression.
antipsychotic treatment, where there were >5 studies in a group, we re-ran the meta-analyses
separately for studies grouped by antipsychotic treatment (drug-naive/ drug-free or currently
receiving drug treatment). Where there were <5 studies in a group we plotted the individual effect
sizes but did not enter them into a meta-analysis because this becomes unreliable with a small
numbers of studies. We used the same approach to investigate whether the different radiotracer
imaging methods used contributed to heterogeneity (see Supplementary Tables 1-6 for the

groupings).

Publication bias was evaluated by inspection of the funnel plot for evidence of asymmetry. A funnel
plot is a plot of each study's effect size on the x-axis against its standard error (1/precision).
Publication bias is suggested if trials in the left hand corner (small precision and small effect size) are
omitted, creating a degree of asymmetry in the funnel plot. Publication bias was further evaluated
using a regression test for funnel plot asymmetry, and the trim-and-fill analysis, which provides an

estimate of the meta-analysis if there has been publication bias.** %

Supplementary Results

Dopamine transporter- sub-group analyses
We repeated the meta-analysis including only studies of patients who were drug-naive (6 studies).

This showed no significant difference between patients and controls (d=-0.44; 95%-Cl: -0.99 to 0.12,
z=-1.54, p=0.12, 1’>=69.28%, 95%-C| for I*: 25.48 to 93.81%). There was no significant difference in
illness duration between drug-naive subjects (mean (sd) =13 (11) months) and subjects taking
antipsychotic drugs (mean (sd) = 150 (43) months; t=4.44, df=1.04 (corrected for unequal variances),
p=0.13). There were too few studies of patients currently taking neuroleptics (n=4) or of drug-free
patients (n=1) to enable separate meta-analysis and insufficient studies in each group to enable a
separate meta-analysis for the different radiotracer imaging approaches used.

Dopamine receptor- sub-group analyses
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Studies were grouped into those of patients who had never received antipsychotic treatment (drug
naive) and those including patients who had received previous antipsychotic drug treatment (prior
treatment). The antipsychotic-naive group (n=6 studies) showed no significant difference between
patients and controls (see Supplementary Figure 6, d=0.27, 95%-Cl: -0.57 to 1.11, z=0.62, p=0.53,
1’=86.08%, 95%-Cl of 1*: 63.02 to 97.88 %). However, the prior treatment group (n=15 studies)
showed evidence of an elevation in D2/3 receptors in patients (d=0.28, 95%-Cl: 0.03 to 0.52, z=2.20,
p=0.03, 1°=40.96%, 95%-Cl of I’: 0 to 76.44%). The duration of illness was significantly longer in the
prior treatment patients (mean (sd)=124 (63) months) than in drug-naive patients (mean (sd)= 15 (4)
months, t =-4.21, df=5.1 (corrected for unequal variances), p=0.008).

The effect sizes for the different radiotracer imaging methods used are shown in Supplementary
Figure 7. The meta-analysis was re-run separately for the studies that used a benzamide and for
those that used a butyrophenone radiotracer (there were too few studies to enable this for those
using ergot derivative radiotracers). There was no significant difference between patients and
controls in the studies using a benzamide radiotracer (n=14; d=0.13, 95%-Cl: -0.19 to 0.44, z=0.78,
p=0.44, 1°’=63.26%, 95%-Cl of I*: 63.26 to 89.40%). There was, however, a significant elevation in the
patients in the studies that used a butyrophenone radiotracer (n=5; d=0.71, 95%-Cl: 0.14 to 1.28,
z=2.44, p=0.01, 1°’=60.85%, 95%-Cl of 1*: 0 to 94.52 %). There was no significant difference in duration
of illness between studies using benzamides (mean (sd) = 75 (79) months) and those using
butyrophenones radiotracers (mean (sd) = 129 (44) months, t=1.23, df=3.2 (corrected for unequal
variances), p=0.3).

Given that most of the studies that used butyrophenone radiotracers included patients who had
received prior antipsychotic treatment, prior treatment and radiotracer used were potentially
confounded. To explore this we excluded the studies that had used butyrophenones, and repeated
the meta-analysis of the remaining studies of patients who had received prior antipsychotic
treatment (n=11). This found no significant difference between patients and controls (d=0.09, 95%-
Cl: -0.13 to 0.32, z=0.81, p=0.41; Supplementary Figure 6), and low heterogeneity (1°=0%, 95%-C| of
1>: 0 to 42.11 %).

Dopamine D1 receptors

We identified six studies that measured striatal D1 receptor availability in patients with

schizophrenia, although two studies included patients who were taking antipsychotic drugs at the

2631 Three of the studies, comprising 43 patients in total (23 antipsychotic free and

27-29

time of scanning.

20 antipsychotic naive), found no difference in striatal D1 availability
26, 30

, Whilst two, comprising 15
patients in total (all taking antipsychotic drugs) found a reduction , and one found a trend-level
increase in antipsychotic-naive patients (n=12) that was not present in previously treated but drug
free patients (n=13). Although the investigators in the two studies that found a reduction selected
patients who were taking antipsychotic drugs with relatively low affinity for D1 receptors,
antipsychotic occupancy of D1 receptors cannot be excluded and could explain the reduction in
these two studies. There were too few studies of drug free patients to enable a meta-analysis of

striatal D1 availability in schizophrenia.

Meta-analysis for striatal sub-regions
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To evaluate whether our analyses for the whole striatum were obscuring important sub-regional
differences, we repeated the meta-analysis for striatal sub-regions where sufficient data were
available (a minimum of five studies). There were sufficient studies to enable this for the caudate
and putamen, but not for the nucleus accumbens or for functional sub-divisions of the striatum.

Pre-synaptic dopaminergic function studies
Caudate:

Eight studies provided data for the caudate. The meta-analysis of these studies found no significant
difference between patients and controls (d=0.37, z=1.57, p=0.12, 95%-Cl: -0.09-0.82, 12=54.04%,
95%-Cl of 12: 0-90.74%).

Putamen:

Eight studies provided data for the putamen. The meta-analysis of these studies found a significant
elevation in schizophrenia, with an effect size of d=0.51 (z=2.71, p=0.007, 95%-Cl: 0.14-0.88,
12=29.98%, 95%-Cl of 12: 0-80.07%).

Dopamine transporter studies
Caudate:

Eight studies provided data for the caudate. The meta-analysis of these studies found no significant
difference between patients and controls (d=-0.43, z=-1.60, p=0.11, 95%-Cl: -0.95 to -0.09,
12=65.09%, 95%-Cl of 12: 20.25 to -91.48%).

Putamen:

Eight studies provided data for the putamen. The meta-analysis of these studies found no significant
difference between patients and controls (d=-0.4, z=-1.41, p=0.16, 95%-Cl: -0.95 to -0.15, 12=68.97%,
95%-Cl of 12: 28.83-92.51%).

Dopamine D2/3 receptor availability
Caudate:

Five studies provided data for the caudate. The meta-analysis of these studies found no significant
difference between patients and controls (d=0.32, z=0.96, p=0.33, 95%-Cl: -0.33 to -0.97, 12=78%,
95%-Cl of 12: 36.98-97.48%).

Putamen:

Five studies provided data for the putamen. The meta-analysis of these studies found no significant
difference between patients and controls (d=0.02, z=0.13, p=0.9, 95%-Cl: -0.3 to -0.34, 12=0%, 95%-
Cl of 12: 0-90.88%).
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Supplementary Figures

eFigure 1: Flowchart showing how the papers were identified for inclusion

578 articles identified

498 papers excluded:

Review of -232 treatment
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-140 not original data

(eg: reviews)
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*Notes:

3334 with

new data from an additional study. As this is the most complete data set, we used this report in the

Presynaptic dopaminergic function: one paper®* combined data from two previous studies

main meta-analysis but include data from the other studies in sub-analyses where there is no
overlap in subjects, and for this reason these papers are also reported in the Tables. One study was
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of patients with schizophrenia and their well siblings. This study was excluded because the
comparator group was related to the patients.*

Dopamine transporter availability: One study was excluded because the patients had a co-morbid
neurological disorder associated with dopamine neuron loss (parkinson’s disease) in addition to
schizophrenia®®, and another was excluded as data were only reported as percentage of control
values without reporting actual values.*’

Dopamine receptor availability: one paper®® combined data from one previous study?® with
additional new data and was used as it is the most complete data set. One study included subjects
who were scanned 7 days after stopping antipsychotic treatment, and was excluded from the main
analysis because of the risk of residual antipsychotic occupancy of D2/3 receptors (see above), but
was included in a further sensitivity analysis.*°
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eFigure 2

Studies of presynaptic dopaminergic function: Funnel plot showing the effect sizes for each
study (studies using radiolabeled DOPA [filled circles]; alphamethyl-para-tyrosine [AMPT;
filled squares] to index synaptic dopamine levels; amphetamine [AMPH,; filled triangles] to
index dopamine release) and potentially missing studies (open circles) based on the trim-
and-fill analysis, which assumes the effect sizes follow a normal distribution.
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eFigure 3

Studies of presynaptic dopaminergic function: Showing the effect sizes by imaging approach
used in the studies. Where n>4 studies in a group, the effect sizes are summarised using a
boxplot (in the boxplot in the boxplot the band is the median and the whiskers indicate the
lowest and highest data points that are within 1.5 * the inter-quartile range, and data
outside this range (circles if present) are regarded as potential outliers), otherwise the effect
size for each study is plotted). Studies using change in radiotracer binding following AMPT or
amphetamine are grouped as ‘synaptic dopamine’ and ‘dopamine release’ respectively (
effect sizes shown for Laruelle et al 1999, which combines 3 dopamine release studies and is
used in the main meta-analysis as it is the most complete data-set; Breier et al, 1997; and
Abi-Dargham et al 2009, although this latter study is not included in the main meta-analysis
because the subjects also took part in the Abi-Dargham et al 2000 AMPT study). Studies
using radiolabeled DOPA radiotracers are in the ‘dopamine synthesis capacity’ group
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eFigure 4

Studies of the dopamine transporter: Funnel plot showing the effect sizes for each study
(studies using TRODAT [filled circles]; PE2I [filled square]; FCFT [filled triangle];FBCIT [open
circles]; CbetaCFT [open square]).
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eFigure 5

Studies of D2 receptor availability: Funnel plot showing the effect sizes for each study
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eFigure 6

Studies of D2 receptor availability: Boxplots of the effect sizes for studies by antipsychotic
treatment history (in the boxplots the band is the median and the whiskers indicate the
lowest and highest data points that are within 1.5 * the inter-quartile range, and data
outside this range (circles if present) are regarded as potential outliers).
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eFigure 7

Studies of D2 receptor availability: Effect sizes by class of radiotracer used in the studies.
Where n>4 studies in a group the effect sizes are summarised using a boxplot (the band is
the median and the whiskers indicate the lowest and highest data points that are within 1.5
* the inter-quartile range, and data outside this range (circles if present) are regarded as
potential outliers)
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eTable 1. Methodological characteristics of the studies of presynaptic dopaminergic function

Radio-

PO over 2 days

D - Resoluti
Author PET Tracer Imaging approach tracer ru.gs admmlst?red Scanner Type esolution Outcome Reference region
X prior to scanning (FWHM mm) Measure
delivery
PC-2048B;
Reith et al 1994" ["®*FIFluoro-L-DOPA single scan bolus - C-20488; na ks cortex
Scanditronix
Hietala et al 19957 [lgF]FIuoro—L—DOPA single scan bolus - ECAT 931/08-12 na ki occipital cortex
Dao—glzai'tgegll;a3na et [ISF]FIuoro»L—DOPA single scan bolus - ECAT-Siemens 953-B 6.26 k; occipital cortex
Hietala et al 1999" [mF]FIuoro-L—DOPA single scan bolus Carbidopa: 100 ,mg' ECAT 931/08-12 na ki occipital cortex
4 1.5h pre-scanning
‘g Lindstroem et al 1 ) -
2 1999° [""CIDOPA single scan bolus - GEMS PC2048-15B 5 ki occipital cortex
<< N N
a Elkashef et al 18 . Carbidopa: 150 mg 2048-15B; uptake ratio .
8 2000° [ FlFluoro-L-DOPA single scan bolus amino acid infusion Scanditronix 65 (striatum/ ref) occipital cortex
3 Meyer- PC-2048-153;
g Lindenberg et al ["®*FIFluoro-L-DOPA single scan bolus Carbidopa: 100 mg . = 6.5 ki occipital cortex
o 2002’ Scanditronix
2 McG | Carbid 150 HR++/966 EXACT
° cGowan et a 18 . arbidopa: mg, ++, ; .
© -L- .
S 2004° ["°F]Fluoro-L-DOPA single scan bolus Entacapone: 400 mg CTI PET Systems 4.8 k; occipital cortex
Kumakurag etal [*®F]Fluoro-L-DOPA single scan bolus Carbidopa: ng/kg, 1h ECAT, EXACT 47, na Kin™™? cerebellum
2007 pre-scanning Siemens
Nozaki et al 11 . ECAT/EXACT HR; -
2009 ["CIDOPA single scan bolus - CTI-Siemens 7.5 ki occipital cortex
Howes et al 18 . Carbidopa: 150 mg, HR++/966 EXACT;
009" ["°F]Fluoro-L-DOPA single scan bolus Entacapone: 400 mg CTI PET Systems 4.8 ki cerebellum
LarueIIeSt al [211BZM two scan (b.aselme .bolu.s+ active scan.: 0.3 mg/kg PRISM 3000 Picker 11 ABP occipital cortex
" 1996 and active) infusion amphetamine IV bolus
[ N N N
2 + :0.
% 3 Breier et al 1997% [11C]Raclopride two scan (b'asellne 'bolu's active scan: 0 2' mg/kg General Electric 6 ABP cerebellum
8% and active) infusion amphetamine Advance
T — - - - -
e .“s’ Abi DarghalT etal [211BZM two scan (b.aselme .bolu.s+ active scan.. 0.3 mg/kg PRISM 3000 Picker 11 ABP occipital cortex
£ E 1998 and active) infusion amphetamine IV bolus
ES Laruelle et al 123 two scan (baseline bolus+ active scan: 0.3 mg/kg ) -
©
g2 1999% [11BZmMm and active) infusion amphetamine IV bolus PRISM 3000 Picker 11 ABP occipital cortex
e E f frontal
& Abi-Dargham et al (211BZM two scan (baseline bolus+ active scan: 0.3 mg/kg na na ABP av::\adgifci :;)anl a
2009* and active) infusion amphetamine IV bolus P
cortex
. . . . 1 average of frontal
o @ Abi Darghalr7n etal [21)1BZM two scan (b.asellne .bolu.s+ active scan: 8g AMPT PRISM 3000 Picker 11 ABP and occipital
s EF 3 2000 and active) infusion PO over 2 days
e g % 5 cortex
c 3 3 i . R
a _§' <4 Kegeles et al [""CJRaclopride two scan (baseline bolus+ actl\:: S/C;nAij;llG'g ECAT/EXACT HR; 4.4/ ABP cerebellum
2010" P and active) infusion g/ke CTI-Siemens 4.1
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'alpha-methyl-para-tyrosine; Ks «:°)=relative activity of dopa decarboxylase, K;=utilization rate constant of DOPA relative to a reference region; k,,”*=net blood-brain DOPA
clearance, BP=binding potential, FWHM=full width half maximum
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eTable 2. Subject characteristics of the studies of presynaptic dopaminergic function

Authors Controls Patients
Inclusion Total Positive s’“::a::;
N Age mean N Age mean Diag- R Exclusion lliness Antipsychotic symptom symptom ymp
1 criteria for . . score
(m/f) (sd)/yr (m/f) (sd)/yr nosis R . criteria duration treatment score (mean score
diagnosis (mean [sd])
[sd]) (mean [sd])
Reith et al 13 36 5 38 14 4 naive, 1 free for PANSS: PANSS: PANSS:
All Sz DSM-III-R !
1994 (9/4) (13) (5/0) (4) > s na years >3 years 58 (na) 14(3) 12(2)
8 27 7 26 PANSS:
Hietala et al 1995 All Sz DSM-III-R na 24 months all drug naive na na
(6/2) (7) (4/3) (7) & 81(14)
neurological/ severe
Dao-Castellana et 7 25 6 26 All'Sz DSM-III-R somatic disorders, 6 2 naive, 4 free for PANSS: PANSS: PANSS:
al 1997 (na) (5) (na) 9) alcoholism, years >4 months 94 (na) 21(12) 33(7)
toxicomania
13 7S2,3 PANSS: 77.6
Hietal 11 .4 (9.4 10 (4, 29. . ! DSM-III-R 7 h All nai
ietala et al 1999 (8/5) 30.4 (9.4) 0 (4/6) 9.6 (8.8) <7D S na months naive (na) na na
abnormality on CT,
Lindstroem et al 10 31 EEG or routine blood 31.08 10 naive, 2 drug
12 (10/2 All Sz DSM-III-R !
8 1999 (8/2) na (10/2) (na) S S tests, positive urine months free for >2 years na na na
i drug screen
k] medical/ neurological .
< Elkashef et al 13 34.6 . 10 taking drugs, 9
. -1 Icohol .
8 2000 (8/5) (10.75) 19 (15/4) 36.3 (na) All SZ DSM-III-R disorders, alcohol or 17.3 years drug free na na na
=) drug abuse
-l
O Meyer-
= >
2 Lindenberg et al 6 34 6 3 All Sz DSM-III-R na na all free for 26 na na na
2 (5/1) (na) (5/1) (na) weeks
3 2002
S neurologic/serious
s} McGowan et al Lo All on long-term CASH: CASH: CASH:
o -
2004 12 (12/0) 38.3(7.1) 16 (16/0) 39.9 (11.3) All SZ DSM-IV physical illness, na drug treatment 10.6 (na) 4.2 (na) 6.3 (na)
substance abuse
Kumakura et al 8 psychoactive 3 naive, 6 free for PANSS: PANSS: PANSS:
2007 15 (15/0) 37.3(64) (8/0) 373 (6:3) All sz DSM-Iv medication na >6 months 80.2 (4.7) 15.4(3.5) | 23.6(4.0)
brain disease,
substance abuse, or
Nozaki et al 20 4 26.4 PANSS: 79.2 PANSS: PANSS:
(9. 18 (1 6(7.4 All Sz DSM-IV i 14 naive, 4 fi
2009 (10/ 10) 35.1(9.5) 8(10/8) 35.6 (7.4) S S| ep|50(.je of mood months naive, 4 free (21.4) 22.6(73) 17.1 (6.5)
disorder
neurologic/ medical
12 7 36.0 iliness, head injury, 2 naive, 5 free for PANSS: 61.7 PANSS: PANSS:
Howes et al 2009 (8/4) 24.3 (4.6) (5/2) (14.7) Allsz DSM-v alcohol or drug abuse na >8 weeks (31.0) 17.0(7.0) | 16.1(10.0)
or dependence
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other DSM-IV axis |
diagnosis, substance

dependence, severe
medical conditions

>20 days

Laruelle et al 41 42 14 all free (mean free BPRS: PANSS: PANSS:
15 (14/1 15 (14/1 All Sz DSM-IV
1996 (14/1) ) (1471) 2) abuse or dependence, years period=192 days) 37(3) 16.1(17) | 14.9(L5)
severe medical
g condition
=§ illegal drug
k] dependence and/or
@ . 12 significant drug abuse, 6.6 4 naive, 7 free for BPRS: BPRS:
(= -
£ Breier et al 1997 ©/3) 29.2(9.01) | 11(8/3) | 32.4(9.95) All sz DSM-IV cevere head trauma, Jears 514 days 288(7.2) 67 (28) na
.E significant medical
£ condition
g other DSM-IV axis |
g Abi-Dargham et 40 4 diagnosis, substance |, () BPRS: PANSS: PANSS:
S 15(12/3 15(12/3 All Sz DSM-IV 2 naive, 13 f ’ ) )
o al 1998 (12/3) (11) (12/3) ) abuse or dependence, FE) naive, 13 lree 44 (11) 185(5.1) | 19.6(7.0)
[ severe medical
.g conditions
E other DSM-IV axis |
o diagnosis, substance .
2 Laruelle et al 40 40 / 7 naive, 27 free for PANSS: PANSS:
o ~ 3
1999 36 (32/4) 9) 34 (28/6) ©) All Sz DSM-IV abuse or depen'dence, na 104 days (mean) na 17.5 (6.2) 16.8 (6.6)
severe medical
conditions
Abi-Dargham et 8 28 6 28 .
al 2009 6/2) 8) 4/2) (8) All SZ DSM-IV Na FE all drug naive na na na
. other DSM-IV axis | PANSS:
5 Abi-Dargham et 31 18 31 diagnosis, substance 8 naive, 10 free for FE: PANSS: PANSS:
= : . A : :
H al 2000 18 (11/7) (8) (11/7) (8) All SZ DSM-IV abuse or depen'dence, na 139 days (mean) 71 (1?) 18.2 (6) 13.8 (5.4)
° severe medical Chronic:
E ] conditions 63 (11)
s -§ weight <50kg or>
3 E 115kg, other DSM-IV 6 naive, 4 free for
L2 Kegeles et al 18 29 axis | diagnosis, ! PANSS: 78.6 PANSS: PANSS:
- - >
5 2010 18 (13/5) 29(7) (13/5) @) AllSz DSM-IV substance abuse or na 21 year, 8 free for (20.6) 217(7.1) | 17.1(5.9)
>
(7]

1SZ:schizophrenia, SZD=schizo-affective disorder

2merged patient sample including antipsychotic untreated and treated patients

*no significant difference between number of smokers in healthy and patients group

4

includes all subjects from Laruelle et al. (1996), Abi-Dargahm et al. (1998) and 10 new subjects

*The AMPT data for these subjects is reported in Abi-Dargham et al. (2000)
AMPT=alpha-methyl-para-tyrosine, PANSS=Positive And Negative Syndrome Scale, FE=first episode of psychosis, BPRS=Brief Psychiatric
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Rating Scale, CASH=Comprehensive Assessment of Symptoms and History , Chronic=multiple episode of psychosis, DSM=Diagnostic and
Statistical Manual
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eTable 3. Methodological characteristics of the studies of dopamine transporter availability

Author PET Tracer thg;i)‘t’:;er Scanner Type RESOIUt::‘)(FWHM Outcome Measure Reference region
Aral;e(z)v(\)/glgt al [“cIPE2I bolus ECAT EXACT HR+ Na BPnp Cerebellum
Hi;gg;zztoal [*"Tc]TRODAT-1 bolus Siemens Multi-SPECT 3 Na BPnp occipital cortex
Laazlg‘goff al [*FICFT bolus ECAT 931/08-12(CTI) Na BPwo Cerebellum
Lavalaye gtal [*FICFT bolus ECAT 931/08-12(CTi) Na BPuo Cerebellum
Lar;ggggt al [2g-CIT bolus Picker PRISM 3000 9-11 BPypt+1 occipital cortex
Lav;l(e;(\)/;.\zft al 2 1Fp-CIT bolus Na 7.6 BPno occipital cortex
Ma;gg;st al 2IFP-CIT bolus Helix, G.E.M.S. 10 BPyp+1 occipital cortex
Ma;eozc;ze;t al [21Fp-CIT bolus Helix, G.E.M.S. 10 BPnp+1 occipital cortex
Yazrggo Zﬁf' [®"Tc]TRODAT-1 bolus GE Sigma CV-| Na BPyo+1 cerebellum
Y°;§5;Ea' [McIB-CFT bolus Siemens ECAT 951R, EXACT HR+ (CTI) Na BPwo cerebellum
Schzn(;i;;gt al (™ cJTRODAT-1 bolus Picker PRISM 3000 Na BPno cerebellum
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eTable 4. Subject characteristics of the studies of dopamine transporter availability

Authors Controls Patients
Age Age ) Diagnostic ' ' . Total Positive Negative
N N Diagn- ., . Exclusion lliness Antipsychotic symptom symptom symptom
mean mean g inclusion . N
(m/f) (sd)/yr (m/f) (sd)/yr osis criteria Criteria duration treatment score score score
y y (mean [sd]) (mean [sd]) (mean [sd])
Arakawa - "
ot al 12 33.2 8 36.5 All Sz DSM-IV substance abuse, brain disease or 32.1 6 naive, 2 free PANSS: PANSS: PANSS:
2009 (10/2) (12.0) (6/2) (9.5) epilepsy months for >6 months 77.8 (18.8) 17.8 (4.8) 18.9 (6.5)
age <16 or >45 years old, other DSM-
Hisao et 12 29.8 12 25.9 IV axis | diagnosis, substance abuse or .
al 2003 (2/10) (8.6) (2/10) (7.7) Allsz DSM-v dependence, severe medical 0.8 years 12 naive na na Na
conditions
Laakso 9 29.9 9 30.1
et al : . All Sz DSM-III-R Na 9 months 9 naive na na Na
(6/3) (5.6) (6/3) (7.0)
2000
Lavalaye
et al 8 353 8 37.1 All Sz DSM-IV Na 119 All on AP Tx. na na Na
(na) (5.7) (na) (5.7) months
2001
Laruelle age <18 or >55 years old, other DSM- 8 free for mean
ctal 22 39.0 24 41.0 All S DSM-IV IV axis | diagnosis, substance abuse or 15 (sd)=18 (11) na na Na
2000 (20/2) (8.0) (22/2) (8.0) dependence, severe medical years days, 16 on AP
conditions TX.
Lavalaye
10 20.3 10 22.1 9S7,1 335 . PANSS: PANSS:
2935'1 (7/3) (0.5) /1) | 37 | s pSM-v Na months 10 naive na 22.8(3.8) 18.9 (6.7)
Mateos CNS medications, CNS disorder PANSS: PANSS:
1 27. 2 26. ! ! 4.
etal (6/(:1) @ 30) (14(/)6) (4680) All SZ DSM-IV bipolar disorder, substance monsths All on AP Tx.* na 27.8(5.3)# 25.8 (4.3)”
2005 : : dependence 27.4(4.5)° 24.4(7.3)°
Mateos 15 29.0 20 26.0 E.N ilr:re 3;52:505 Slll\‘bssili;ireder, PANSS: PANSS:
etal /7) 7 6) (14/6) 5 6) Al SZ DSM-IV dep endence. nositive drug screen 4 months 20 naive* na 28.25(9.43)" | 22.63(6.50)"
2007 : : P » POSItIVE arug 30.75(3.84)° | 24.17(8.71)°
(except for cannabis)
any medical or CNS diseases/head
Yang et 12 333 11 26.3 . . . s . PANSS:
All Sz DSM-IV injury, antipsychotic, ECT, or lithium 1.3 years 11 naive na Na
al 2004 (9/3) (12.9) (6/5) (10.2) treatment, substance dependence 63.8(10.8)
1 naive, 1 free
Yoder et 10 45.0 10 40.5 !
All SZ DSM-IV Na na for 1 month, 8 na na Na
al 2004 (7/3) (18.3) (8/2) (na) on AP Tx
Sce'l”;:tt 12 305 20 293 All Sz DSM- trzzrr;oz'elift:lc(:)rhir;tg:?IT;::ISZ:Eg na 20 naive na PANSS: PANSS:
2008 (9/3) (7.98) (18/2) (6.51) IV/ICD-10 abuse, CNS comorbidity 30.65 (7.65) 29.50 (6.45)
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SZD=schizo-affective disorder, CNS=central nervous system; *Patients were grouped by whether they showed antipsychotic-induced parkinsonism (*) or not (s) at the point of scanning or, in the case of antipsychotic
naive patients, to subsequent antipsychotic treatment
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eTable 5. Methodological characteristics of the studies of dopamine receptor availability

scanner

Radiotracer Resolution X
Author PET Tracer R Scanner Type Outcome Measure Reference region
delivery (FWHM mm)
29 76 . IGE 400AT gamma
Crawley et al 1986 ["°Br]Bromospiperone Bolus Na BPno+1 Cerebellum
camera
Martinot et al 1990 [7GBr]Bromospiperone Bolus LETI TTVO1 Na BPypt+1 Cerebellum
(%]
(]
S Tune et al
E [IIC]NMSP Bolus NeuroECAT PET Na Brmax Cerebellum
g 1993*
,E'
@ . 3 " Scanditronix PC 2048-
Nordstrém et al 1995 ["CINMSP Bolus 158 Na Bimax Cerebellum
Okubo et al 1997% [*CINMSP Bolus PCT3600W40 Na ks Cerebellum
Farde et al
[uC]RacIopride Bolus PC-384-7B Na Brmax Cerebellum
1990**
Hietala et al 1994 [*'CIRaclopride Bolus ECAT 931/08-12 Na Brmax Cerebellum
bolus+
Breier et al 1997" [uc]RacIopride GE Advance scanner Na BPnp Cerebellum
2 infusion
3
£ Talvik et al 2006™ ["'CIRaclopride Bolus ECAT EXACT 47 4 BPyo Cerebellum
bolus+
Kegeles et al 2010" [uC]RacIopride ECAT EXACT HR+ 4.1 BPno Cerebellum
infusion
SME 810 SPECT brain
Pilowsky et al 1994"* [118zm Bolus 7-9 BPyo+1 frontal cortex
scanner
Pedro et al 1994°%* [mI]IBZM Bolus SME 810 SPECT brain na BPno+l frontal cortex
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Laruelle et al 1996™ [mI]IBZM bolus + infusion PRISM 3000 11 BP; occipital cortex
Knable et al 1997 [*n18zm Bolus CERASPECT 11.5 BPxo occipital cortex
I-Dargham eta olus + Intusion 3 ocaplta cortex
Abi-Dargh 11998™ [*n18zm bolus + infusi PRISM 3000 11 BP ipital
Yang et al 2004”° 1iBzm Bolus Na Na BPyo+1 Cerebellum
orripio et a olus elix, a o+ occipital cortex
Corripi 12006 ['111BZM Bol Helix, GEMS N BPyo+1 ipital
average of frontal and
Abi-Dargham et al 2000 ['111BZM bolus + infusion PRISM 3000 XP 11 BPno ge )
occipital regions
chmitt et a olus a ND rontal cortex
Schmi 12009 [*118zm Bol PRISM 3000 XP N BP f I
esslereta allypriae olus vance scanner a ND erepellum
Kessl 12009" [®FIFallyprid Bol GE Ad N BP Cerebell
Kegeles et al 2010" [wF]FaIIypride Bolus ECAT EXACT HR+ Na BPnp Cerebellum
o Martinot et al 1991* [7GBr]BromoIisuride Bolus LETI TTVO1 Na BPno+1 Cerebellum
2
®
2
b
o
L
)
i Martinot et al 1994* Bolus LETI TTVO1 na BPno+l Cerebellum
[®Br]Bromolisuride

FWHM=full width half maximum; *there is potential subject overlap between these studies (attempts to contact the authors failed)—the meta-analysis is repeated excluding one study on

www.schizoprenia.com.
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eTable 6. Subject characteristics of the studies of dopamine receptor availability

Method Authors Controls Patients
Iliness - .
Age Age . Diagnostic . duration . . Total Positive Negative
N N Diag- . R Exclusion Antipsychotic symptom symptom symptom
mean mean 1 inclusion L (mean
(m/f) (m/f) noses . Criteria treatment score (mean score (mean score (mean
(sd)/yr (sd)/yr criteria unless (sd]) (sd]) (sd])
stated)
Crawley et al 13 41.2 12 44.3 11SZ,1 na Na 13.4 4 naive, 8 free na na Na
1986 (11/2) (10.3) (10/2) (18.2) PD years for > 4 months
Martinot et 12 28.7 12 28.7 All SZ DSM-III 3iz;?:t\:)ez;r:ir:?rlzdpij:t?;: na 9 naive, 3 free na CPRS: CPRS:
al 1990 (na) (10.3) (12/0) (8.7) . for > 1 year 42.6(29.8) 57.6 (25.1)
" free for a week prior to scan
% stroke, mental retardation, BPRS:
< Tune et al 17 39 25 34.88 All S DSM-IIIR significant head trauma, 8.16 18 naive, 7 free BPRS: BPRS: 7.08 (0.61)
< 1993 (13/4) (5.93) (17/8) (7.08) seizure disorder, past ECT, years for > 4 months 47.2 (5.9) 13.0 (0.94) SANS:
2 stroke 37.79 (22.66)
2 Nordstrom et Y 277 Y 284 452,3 DSM-III-R zl:gy:'nﬁilgr:.ia;m:: or:i:; 22 7 naive BPRS: na Na
al 1995 (7/0) (6.8) (5/2) (5.7) SZD injury, alcohol o drug abuse months 33 (4)
Okubo et al
18 27.7 17 27.4 24 10 naive, 7 free
1997 (na) (5.6) (na) (5.9) Allsz ICD-10 Na months for > 2 weeks na na Na
Median: CPRS
Farde et al 20 27.5 18 24.2 organic brain disorder/ head 10 N
- le: 12.
1990 (10/10) | (49) | @o/8) | (33) All'sz DSM-IE | injury, drug or alcohol abuse, | months” 18 naive S“bs‘(:; ‘;) 0 na Na
. long-term intensive
Hietala et al 10 26.8 13 25.2 X 18.7 . BPRS:
1994 (6/4) (7.3) (9/2) (6.8) All SZ DSM-III-R psychothel:a;?y, serious months 13 naive 51.4(18.9) na Na
somatic illness
drug dependence or
n Breier et al 12 29.2 11 324 significant drug abuse, 6 naive, 5 free BPRS:
3 1997 ©3) | e26) | ©3) | e30 | AT psm-v severe head trauma, B6years | o> 14 days 28.8(7.2) na Na
E significant medical condition
S . rimary substance use "
3 Pilowsky et al 20 31.0 20 31.0 P 36 17 naive, 3 free
o0 . . . ,
All SZ DSM-III-R h | N
1994 (11/9) (7.8) (11/9) (8.5) S S disorder, isller::eosszs physica months for > 5 years na na a
Pedro et al 15 33 12 335 AllSZ DSM-II-R dizg:;::y:::zzasncs “S‘?:al 4.02 10 naive, 2 free BPRS: BPRS: 22.25 BPRS:
1994 (9/6) (na) (6/6) (9.7) ol phy years for>6months | 56.3(10.2) (7.07) 8.5 (5)
Laruelle et al 15 41 15 42 All SZ DSM-IV other DSM-IV axis | 14 years 1 naive, 14 free BPRS: PANSS: 16.6 PANSS: 14.9
1996 (14/1) (SE: 2) (14/1) (SE:2) diagnosis, substance abuse for 221 days 37(3) (1.7) (1.5)
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1 naive, 20 free

Knable et al 16 28.8 21 35.8 19Sz,2 14.5
! DSM-IV N f =25.
1997~ (11/5) (7.8) (18/3) (9.0) szD S 2 years or ":;i:w >6 na na na
other DSM-IV axis |
Abi-Dargham 15 40 15 41 All S DSM-IV diagnosis, substance abuse 17 years 2 naive, 13 free BPRS: PANSS: 18.5 PANSS: 19.6
et al 1998 (12/3) (11) (12/3) (9) or dependence, severe for >22 days 44 (11) (5.1) (7.0)
medical conditions
other DSM-IV axis | 8 naive. 10 free PANSS:
Abi-Dargham 18 31 18 31 diagnosis, substance abuse ! 71(12)
All SZ DSM-IV for 139d
et al 2000 (11/7) (8) (11/7) (8) or dependence, severe na Or(mean;!ys (naive) na na
medical conditions 63 (11) (free)
medical/ neurological
diseases, ECT, lithium
Yang et al 12 33.26 11 26.25 ! ! " PANSS: 63.8
All SZ DSM-IV treatment, alcohol or 1.3 years 11 naive na na
2004 (9/3) (12.93) (6/5) (10.22) substance dependence, or (10.8)
head injury
Corripio et al 18 24.2 11 25.6 substance abuse . PANSS:
All SZ DSM-IV ! 11
2006 (10/8) (4.4) (6/5) (4.5) S S neurological disease na naive 71.1(11.4) na na
Talvik et al 17 18 28.8 psychiatric comorbidity, . PANSS: 80.4 PANSS: PANSS:
N All SZ DSM-IV >1 18
2006 (13/4) 2 (9/9) (10.5) head injury, drug addiction vear naive (20.9) 21.9(4.6) 20.1(9.6)
Schmitt et al 10 324 23 28.2 195Z,2 DSM-IV/ICD- na na 3 naive BPRS: PANSS: 29.1 PANSS: 29.1
2009 (5/5) (12.73) (19/4) (6.23) SZD, 2 BP 10 73.6 (na) (na) (na)
Kessler et al 11 316 11 305 AllSZ DSV significant medical . 4 "a“’;’: free Bpiizfli')t,em SAPS: SANS:
2009 (5/6) (9.2) (6/5) (8.0) conditions, substance abuse > 3 weeks 8.8 (7.'0) 9.8 (3.1) 9.4 (4.0)
weight <50kg or> 115kg,
Kegeles et al 18 29 18 29 Alls DSV diag‘:‘?j: Zim;':ni):z;use o 6naive, 12 free | PANSS:78.61 | PANSS:21.72 | PANSS:17.17
201 1 7 1 ! for =2 20. 7.12 .
010 (13/5) (7) (13/5) (8) or dependence, severe or 2 20 days (20.63) ( ) (5.99)
medical conditions
Kegeles et al 22 26 21 31 All Sz DSM-IV m:jlsclaldli!nizssli:t:jt:s?asl:ﬂczv na 5;‘;'\12,113::9 PANSS: na na
2010 (17/5) (6) (14/7) (12) gnosts, 4 64 (15)
abuse (mean)
Men: age <18 years old,
Martinot et 14 23 19 22(4) schizophrenic disorder, 10 naive, 9 free
All SZ DSM-III
" al 1991 (14/0) (4) (12/7) Female: S S unable to remain medication na for 2 6 months na na na
.g 24(6) free for 1 week before scan
© -
2 DSM. i Age<18 or >25 years old,
5 R:undiffer- "
b= entiated/di- marked positive symptoms,
S Martinot et 10 21 10 20 All S <organised lifetime neuroleptic na 8 naive, 2 free na SAPS: SANS:
s al 1994 (na) (2) (na) (2) sulf—t os exposure >1 month, unable for >4 months 19.1 (13.8) 87.2 (14.2)
ypes, to remain medication free
SANS
for 1 week before scan
score>55
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PD: Psychotic depression; SZD: Schizo-affective disorder; BP: Brief Psychotic disorder; CPRS: Comprehensive Psychopathological Rating Scale; BPRS: Brief Psychiatric Rating Scale; PANSS: Positive And Negative
Syndrome Scale; SAPS: Scale for the Assessment of Positive Symptoms; SANS: Scale for the Assessment of Negative Symptoms; ECT=electro-convulsive therapy

#=mean duration of iliness was 1.9 years including the prodrome to the first psychotic episode, range: 1-72 months*; ~excluded from the main analysis because the antipsychotic wash-out 7 days in some patients
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Article history: Brain derived neurotrophic factor (BDNF) is a critical component of the molecular mechanism of memory
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(SNP), has been linked to variability in human memory performance and to both the structure and phys-
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iological response of the hippocampus, which plays a central role in memory processing. However, these
effects have not been consistently reported, which may reflect the modest size of the samples studied to

IgeDyl\\I/\]/:ords: date. Employing a meta-analytic approach, we examined the effect of the BDNF val®met polymorphism
Brain-derived neurotrophic factor on human memory (5922 subjects)_an_d hippocampal structure (2985 subjects) and physi.olo.gy (362 sub-
Hippocampus jects). Our results suggest that variations in the rs6265 SNP of the BDNF gene have a significant effect
Hippocampal volume on memory performance, and on both the structure and physiology of the hippocampus, with carriers of
Declarative memory the met allele being adversely affected. These results underscore the role of BDNF in moderating variabil-
MRI ity between individuals in human memory performance and in mediating some of the neurocognitive
impairments underlying neuropsychiatric disorders.
© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Human declarative memory function has a heritability of
about 50% (McClearn et al., 1997). This suggests that naturally
occurring genetic variations (Egan et al., 2003; de Quervain and
Papassotiropoulos, 2006) may account for a large proportion of the
variance in this fundamental cognitive function. Impairments in
memory function are a key feature of many neuropsychiatric dis-
orders, including schizophrenia and mood disorders (Aleman et al.,
1999; Torres et al., 2007). Among the genes that are known to affect
human memory function, the gene coding for the brain derived
neurotrophic factor (BDNF) is of particular interest because of the
critical role played by the BDNF protein in regulating the struc-
ture and function of neurons, including those involved in memory
formation (Bekinschtein et al., 2007, 2008). In the hippocampus,
a region that is central to declarative memory formation (Milner
et al., 1998), BDNF has been shown to be essential and sufficient
for the induction of long-term potentiation (Pang et al., 2004;
Pastalkova et al., 2006), a form of synaptic plasticity that underlies
memory formation (Bliss et al., 1993) as well as for the persistence
of memories that have already been formed (Bekinschtein et al.,
2007).

BDNF is a member of the neurotrophin family (Reichardt, 2006).
Itis expressed throughout the brain in cortical and subcortical areas
(Yan et al., 1997), particularly in the hippocampus (Murer et al.,
2001). Selective alterations in hippocampal BDNF expression have
been reported during and after hippocampus-dependent learning
(Mizuno et al., 2000). The gene coding for BDNF (Liu et al., 2005) is
located at chromosome 11. It codes for a precursor peptide (pre-
pro-BDNF), which is successively cleaved to generate pro-BDNF
and mature BDNF, both of which are secreted and extracellularly
active (Pang et al., 2004). The only functional single nucleotide
polymorphism (SNP) identified in the BDNF gene (OMIM 113505)
results in a methionine (met) to valine (val) substitution at codon
66 in the pro-region of BDNF (rs6265). The met variant of the
precursor peptide has been associated with impaired intracellu-
lar trafficking of pro-BDNF into dendrites and vesicles as well as a
reduction in activity-dependent secretion, the process that plays a
major role in the regulation of extracellular levels of BDNF (Egan
et al,, 2003). These functional effects of the SNP appear to have
several deleterious consequences for hippocampal structure and
function.

Consistent with evidence from genetic manipulation studies
(Mizuno et al., 2000; Heldt et al., 2007), impairments in episodic
memory performance (Egan et al., 2003; Hariri et al., 2003;
Dempster et al., 2005a), and alterations in hippocampal structure
(Pezawas et al., 2004; Szeszko et al., 2005; Bueller et al., 2006;
Nemoto etal., 2006; Schofield et al.,2009) and function (Hariri et al.,
2003; Hashimoto et al., 2008) have been reported in human carriers
of the met allele. However, it is unclear to what extent functional
variation in the BDNF gene associated with the val®®met polymor-
phism underlies inter-individual variability in human declarative
memory function, and in the structure and physiology of the hip-
pocampus. Not all studies have consistently reported an effect of
BDNF val®®met polymorphism on memory performance (Strauss
et al., 2004; Zivadinov et al., 2007; Matsuo et al., 2009) and hip-
pocampal structure (Dutt et al., 2009; Joffe et al., 2009). Moreover,
whether the effects of BDNF on grey matter volume are restricted
to the hippocampus or are part of a more general effect on grey
matter volume across the brain is unclear (Toro et al., 2009). The
inconsistency across studies may reflect limited sample sizes, as
well as variations between studies in the clinical diagnosis (Ho etal.,
2006; Chepenik et al., 2009; Lau et al., 2010; Matsuo et al., 2009;
Cerasa et al., 2010), gender (Ozan et al., 2010) and age (Nemoto
et al., 2006; Li et al., 2010) of the subjects. A better understanding
of the effects of variations in the BDNF gene on memory function

is also important because of the role of BDNF and memory impair-
ments in the major psychiatric disorders, including schizophrenia
(Muglia et al., 2003), bipolar disorder, depression (Strauss et al.,
2009), and anxiety (Chen et al., 2006).

Meta-analytic methods provide a way to statistically integrate
the results from a large number of separate studies, thereby
improving the power to detect significant effects, as well as the
influence of potential confounding factors. In this study, we con-
ducted three separate meta-analyses to examine the extent to
which inter-individual variability in human memory function is a
function of variation in the BDNF gene and whether that variabil-
ity may reflect the effects of the BDNF gene on the structure and
function of the hippocampus, the key neural substrate for declara-
tive memory. We also report the influence of potential confounding
factors on the effect of the BDNF polymorphism such as clinical
diagnosis, laterality, age, gender or publication bias.

2. Methods
2.1. Search strategy and selection of studies

The PubMed database was searched and all studies reporting
effects of the val®¢met polymorphism on performance in declarative
memory tasks, hippocampal volume and hippocampal activation
until the 1st of August 2011 were included, regardless of gen-
der, ethnicity or diagnostic group. For the literature search we
used a combination of search terms describing the BDNF gene
(“BDNF” or “brain-derived” or “neurotrophic factor”) and search
terms describing the BDNF-polymorphism (“val®¢met” or “rs6265”
or “polymorphism”) and restricted the time of publication to the
1st of August 2011. For the meta-analysis of episodic memory,
we added search terms describing hippocampal memory function
(“memory” or “hippocampus”). For the meta-analysis of hippocam-
pal volume and hippocampal physiology we used the same initial
search terms by adding the search term describing the hippocam-
pus (“hippocampal” or “hippocampus” or “MRI”).

We excluded studies that investigated patients with neurolog-
ical disorders. In order to investigate the effect of the val¢met
polymorphism in context of a psychiatric diagnosis but also in
healthy subjects, we included psychiatric as well as healthy popu-
lations. All studies that examined the effect of the BDNF gene on
hippocampal physiology employing functional MRI (fMRI) were
included, irrespective of the specific cognitive processes that were
examined, as only a limited number of studies have reported this in
the context of a declarative memory task. The bibliographies of the
selected publications were hand-searched for further studies. As
the met homozygote variant is rare in the general population, most
studies merged met homozygotes with val/met heterozygotes to
compare val homozygotes with met carriers.

2.2. Data extraction

For each selected study, the following information was
extracted: publication (names of the authors, publication year),
sample characteristics (sample size, Hardy-Weinberg-equilibrium,
diagnostic group, gender, age, medication, val and met carriers).
In general, measures (mean of memory performance, mean of
hippocampal volume, mean of hippocampal response, size of geno-
typing groups, p-values, t statistic, F statistic) that allowed us to
quantify the effect-size (cohen’s d) were extracted.

The main outcome measure for the first meta-analysis was the
standardized mean difference (SMD) between val and met carriers
in performance during memory tasks. In order to maximize the sta-
tistical power of the analysis and to ensure optimal use of all the
available data, we initially included all studies reporting the effects



J.P. Kambeitz et al. / Neuroscience and Biobehavioral Reviews 36 (2012) 2165-2177 2167

of BDNF val®®met polymorphism on declarative memory tasks. As a
range of different memory tasks were used in these studies, we car-
ried out additional analyses including only studies that employed
an identical memory task [Wechsler Memory Scale-revised (WMS-
R)] resulting in a more homogeneous group. This allowed us to
examine whether the effect evident in the more inclusive first-
level meta-analysis was consistently replicated in the subsequent
analyses that included more homogeneous studies.

The main outcome measures for the second and third meta-
analyses respectively were SMD in hippocampal grey matter
volume and task-related change in hippocampal blood oxygen-
level dependent (BOLD) response (‘hippocampal-response’) as
measured by fMRI. If information published with the studies was
not sufficient to calculate a mean effect-size between val/val and
met carriers, authors were contacted and asked to supply further
data. If sufficient data could not be obtained, studies were not
included in the meta-analysis. In case the Hardy—Weinberg equi-
librium (HWE) was not reported, it was computed from the given
allele frequencies using the x2-test.

2.3. Data analysis

Statistical analysis of the extracted data was conducted using
the R statistical programming language version 2.10.1 with the
package ‘metafor’ (Viechtbauer, 2010; R Development Core Team,
2012). The individual effect-size for each study was entered into a
random-effects model as this approach does not assume between-
study homogeneity in effect-size and therefore allows inferences to
be drawn from a potentially heterogeneous group of studies that
are valid for the whole population (Hedges et al., 1985; Hedges
and Vevea, 1998). The heterogeneity across studies was assessed
by the inconsistency parameter I2 (Higgins et al., 2003). The sum-
mary effect-sizes (cohen’s d) were computed using a restricted
maximume-likelihood estimator. In order to test for publication bias
resulting from a greater likelihood of positive results getting pub-
lished, visual inspection of funnel plots was carried out for each
meta-analysis followed by linear regression analysis to test for fun-
nel plot asymmetry (Egger’s test) (Egger et al., 1997). In case of
potential bias by selective publication as indicated by the Egger’s
test, a trim-and-fill approach was used (Duval and Tweedie, 2000).
This method identifies potentially missing studies in a funnel-
plot and corrects summary effect-size estimates by adding missing
studies. Meta-regression analyses were run including publication
year, diagnosis, gender and age as factors to evaluate the source
of heterogeneity in the effect-sizes and to check the influence
of potential confounding variables. In case studies reported F-
statistics from ANOVA with three groups (val/val-, val/met- and
met/met-carrier), we corrected the F-value in order to be compa-
rable with F-values obtained employing a 2-way ANOVA following
the formula: Fewo-way = Fihree-way - (1 —2)/(n — 3)), with n repre-
senting the total sample size of all three groups combined.

3. Results

3.1. Effect of the val®®*met polymorphism on declarative memory
performance

We detected 134 potential studies that were screened according
toourinclusion criteria. One hundred and six studies were excluded
as either no episodic memory performance was reported, no BDNF-
genotypes were reported, patients with a neurological disorder
were investigated, no original data was reported (review article
or meta-analysis), no human population was investigated (animal
study) or there was an overlap in the investigated sample with other
studies already included in the meta-analysis (see Fig. 1). Therefore

[ 134 articles identified ]

68 papers excluded
+ 36 no memory function assesed
+ 10 reviews

Revi § + 13 animal studies

a!::tf::t‘; — + 2 ot English
+ 7 patients neurclogical disorder

v
[ 66 articles ]

38 papers excluded:

+ 26 no memory function assesed

+ 5 reviews

« 3 overlap with other studies

+ 2 data not suitable for effect size calculation
« 2 not in English

Full content of

papers reviewed |L___ >

v
[ 28 papers included in ]

meta-analysis

Fig. 1. Flow-chart of describing the number of studies excluded at each step for the
meta-analysis of association studies of the val®®met polymorphism and declarative
memory performance.

28 studies published between 2003 and 2011 matched the search
criteria ((Hariri et al., 2003; Egan et al., 2003; Strauss et al., 2004;
Tan et al., 2005; Dempster et al., 2005b; Harris et al., 2006; Ho et al.,
2006; Hashimoto et al., 2008; Miyajima et al., 2008; Raz et al., 2008;
Li et al., 2009; Matsuo et al., 2009; Schofield et al., 2009; Gong et al.,
2009; Baig et al., 2010; Benjamin et al., 2010; Karnik et al., 2010;
Cathomas et al., 2010; Richter-Schmidinger et al., 2011; Sambataro
et al., 2010; van Wingen et al., 2010; Cerasa et al., 2010; Chung
et al,, 2010; Dennis et al., 2011; Kanellopoulos et al., 2011; Laing
etal,, 2011; Voineskos et al.,2011; Gruber et al., 2012), see Table 1).
From the remaining studies, data were extracted from 32 indepen-
dent samples resulting in a final sample of 5922 subjects. No study
showed significant deviation from the HWE equilibrium.

The random-effects analysis revealed a summary effect-size of
d=0.16 (95%-CI: 0.08-0.23, z=4.0785, p<0.0001, I2 = 34.98%, 95%-
ClIfor I2: 6.07-77.43%), with the met carriers performing worse than
the val homozygotes (see Fig. 2a). However there was evidence for a
potential publication bias (z=2.2464, p=0.0247, Fig. 2b). In order to
account for this potential bias trim-and-fill was carried out revea-
ling n=6 potentially missing studies. In the corrected model there
was a significant summary effect size of d=0.1 (95%-CI: 0.01-0.2,
z=2.0872, p=0.04, I2=61.87%, 95%-Cl for I?: 47.18-77.43%). Meta-
regression with year of publication revealed no significant effect
(beta=-0.0095, F(1,30)=0.2833, p=0.5985, see Fig. 2c). Further
regression analysis showed no effect of the potential confounding
factors such as age, sex ratio or met carrier ratio (all p>0.1).

In order to address the heterogeneity between the investigated
studies arising from the inclusion of patient and healthy samples
as well individuals with different psychiatric diagnoses, we carried
out further sensitivity analyses using more homogeneous sub-
groups of studies. Random-effects analysis with 21 samples of only
healthy subjects (n=4262) showed an effect size of d=0.15 (95%-Cl:
0.06-0.23,z=3.2069, p=0.001, I? =35.35%, 95%-CI for I?: 0-77.43%).
However, the Egger’s test (z=2.2748, p=0.0229) suggested poten-
tial publication bias. In order to account for this potential bias
trim-and-fill was carried out revealing n=6 potentially missing
studies. In the corrected model there was a non-significant trend for
the summary effect-size: d =0.09 (95%-Cl: 0-0.18,z=1.865, p =0.06,
2=42.6%, 95%-Cl for I?: 15.24-77.43%). Random-effects analysis
with only the patient sample (11 samples: n=1660) showed a sig-
nificant effect size of d=0.2 (95%-CI: 0.01-0.39, z=2.055, p=0.04,
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Table 1
Studies included in the meta-analysis of the effect of the val®®met polymorphism and declarative memory performance.
Study Population Allele frequency Memory test
First author Year Diagnosis n Age Male Female val/val met-carriers
Egan 2003 Healthy 641 36.21 363 278 435 206 WMS-R logical memory test (delayed recall)
Hariri 2003 Healthy 28 30.6 16 12 14 14 Recall complex scenes
Strauss 2004 Depression/ 62 184 na na 43 19 WMS-R logical memory test (delayed recall)
dysthymia
Dempster 2005 Healthy 114 na na na 84 30 WMS-R logical memory test (delayed recall)
Tan 2005 Schizophrenia 108 21.7 70 38 19 89 WMS-R logical memory total score
Harris 2006 Elderly 460 79 186 274 303 157 WMS-R logical memory test (delayed recall)
Ho 2006 Healthy 144 279 65 79 95 49 Verbal memory battery composite score
Ho 2006 Schizophrenia 293 2739 213 80 182 111 Verbal memory battery composite score
Hashimoto 2008 Healthy 58 12 46 17 41 WMS-R logical memory test (delayed recall)
Miyajima 2008 Elderly 722 63 na na 471 251 Recall word list
Raz 2008 Healthy 103 53.24 30 73 62 41 WMS-R logical memory test (delayed recall)
Gong 2009 Healthy 679 na na na 202 477 Recall word list
Li 2009 Healthy 110 na na na 64 46 WMS-R logical memory test (delayed recall)
Matuso 2009 Mixed? 84 3537 24 60 53 31 California Verbal Learning Test 2
Schofield 2009 Healthy 475 324 233 242 282 193 Verbal list learning
Baig 2010 Healthy 58 2623 23 35 39 19 Verbal memory task
Benjamin 2010 Mixed® 264 69.6 110 154 171 93 WMS-R logical memory test (delayed recall)
Cathomas 2010 Healthy 333 228 101 232 203 130 recall word list
Cerasa 2010 Healthy 32 30.51 15 17 14 18 Rey Auditory Verbal Learning Test (delayed recall)
Chung 2010 Schizophrenia 47 38.5 47 0 14 33 Rey Auditory Verbal Learning Test (delayed recall)
(violent)
Chung 2010 Schizophrenia 48 37.9 48 0 14 34 Rey Auditory Verbal Learning Test (delayed recall)
(non-violent)
Dennis 2010 Healthy 22 2355 11 11 11 11 Relational memory task
Kanellopoulos 2010 Depressed 33 72.31 12 21 17 16 Hopkins Verbal Learning Test (delayed recall)
Karnik 2010 Healthy 149 na na na 929 50 WMS-R logical memory test (immediate recall)
Richter-Schmidinger 2010 Healthy 135 2456 44 91 84 51 Inventar zur Gedadchtnisdiagnostik (delayed recall)
Sambataro 2010 Healthy 125 4095 60 65 80 45 Recall complex scenes
van Wingen 2010 Healthy 47 na na na 32 15 Face recognition
Gruber 2011 Healthy 39 na na na 23 16 VLMT®
Gruber 2011 Schizophrenia 40 na na na 21 19 VLMT®
Gruber 2011 Bipolar 40 na na na 21 19 VLMT¢
Laing 2011 Healthy 360 72.7 189 171 248 112 Verbal list learning
Voineskos 2011 Healthy 69 46 44 25 41 28 RBANSH

2 Subjects with borderline disorder and healthy controls.

b Subjects with major depressive disorder and healthy controls.

¢ Verbal Learning Memory Test.

d Repeatable battery for the assessment of the neuropsychological status.

12 =58.15%, 95%-ClI for I?: 0-77.43%) and no evidence for a publica-
tion bias (z=0.2998, p=0.7643).

Random-effects analysis including all the studies that employed
the same memory task (WMS-R) (9 studies including patients and
healthy subjects; n=1920), resulted in a non-significant trend for
a summary effect-size of d=0.22 (95%-CI: —0.04 to 0.48, z=1.6582,
p=0.1, 2=82.81%, 95%-CI for I2: 57.63-77.43%) with no evidence
for a publication bias (z=1.3889, p=0.1648).

3.2. Effect of the val®®*met polymorphism on hippocampal volume

We detected 108 potential studies that were screened accord-
ing to our inclusion criteria. Eighty-four studies were excluded as
either no hippocampal volume was reported, no BDNF-genotypes
were reported, no original data was reported (review article or
meta-analysis), only post-mortem data was reported or no human
population was investigated (animal study). Among those, three
further studies were excluded as the data reported did not allow
computation of effect size estimated and contacting the authors
for additional information was unsuccessful (see Fig. 3). There-
fore 24 studies published between 2004 and 2011 matched the
search criteria ((Pezawas et al., 2004; Szeszko et al., 2005; Bueller
et al,, 2006; Nemoto et al., 2006; Frodl et al.,, 2007; Miyajima
et al., 2008; Montag et al., 2008; Stern et al., 2008; Takahashi
et al., 2008; Joffe et al., 2009; Koolschijn et al., 2010; Thomason
et al,, 2009; Toro et al., 2009; Chepenik et al., 2009; Dutt et al.,
2009; Jessen et al., 2009; Benjamin et al., 2010; Karnik et al., 2010;

Richter-Schmidinger et al., 2011; Soliman et al., 2010; Cerasa et al.,
2010; Gonul et al., 2011; Cole et al., 2011; Gruber et al., 2012), see
Table 2). From these, we extracted data from 35 independent sam-
ples, resulting in a final sample of 2985 subjects. No study showed
significant deviation from the HWE equilibrium. Analysis employ-
ing the random-effects model led to a summary effect-size d=0.12
(95%-CI: —0.01t0 0.26,z=1.8621, p=0.06, I?> = 62.56%, 95%-CI for I*:
44.04-82.63%, see Fig. 4a) that was significant at a trend level, with
a smaller hippocampal volume in met carriers as compared to the
val homozygotes.

However, the Egger’s test (z=3.1628, p=0.0016, see Fig. 4b)
suggested that there was potential publication bias. In order to
account for this potential bias, trim-and-fill analysis was car-
ried out revealing n=9 potentially missing studies. The corrected
model showed a non-significant effect-size of d=-0.03 (95%-
Cl: —0.19 to 0.12, z=-0.4393, p=0.7, >=76.81%, 95%-CI for I*:
68.36-82.63%).

Investigation of the potential sources for this bias in the con-
ducted meta-analysis revealed a significant decrease in effect-size
over the years (beta=—0.11,F(1,33)=8.8554, p = 0.0054, see Fig. 4c).
In order to estimate the summary effect-size accounting for this
effect of year of publication, a mixed-model was calculated with
year of publication as a covariate. The model accounting for the
covariate showed a summary effect-size of d=0.11 (95%-CI: 0-0.21,
z=1.9586, p=0.05, I2 =NA%, 95%-CI for I2: NA to 81.16%). Further
meta-regression analysis revealed no effects of the factors age, gen-
der ratio, met carrier ratio and diagnosis (all p>0.1).
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95%-ClI
A study year d upper lower z-score p-value met-carrier > val/val val/val > met-carrier
Egan 2003 0.1668 0.0008 0.3328  1.9693  0.0489 HlH
Hariri 2003 0.9016 0.1241 1.6791 2.2727 0.0230 :
Strauss 2004 -0.1724 -0.7132 0.3684 -0.6249  0.5320 —
Dempster 2005 0.6213 0.1967 1.0459 2.8681 0.0041 D o——
Tan 2005 1.1631 0.6440 1.6821 4.3919 <0.0001 é —e
Harris 2006 -0.1255 -0.3264 0.0755 -1.2237  0.2211 -
Ho 2006 0.2100 -0.1356 0.5556 1.1910 0.2336 [ —
Ho 2006 0.0713 -0.1648 0.3074 0.5920  0.5539 —0—
Hashimoto 2008 0.5414 -0.0325 1.1153  1.8490  0.0645 —
Miyajima 2008 0.1633 0.0099 0.3167 2.0865 0.0369 1—.—|
Raz 2008 -0.1211 -0.5160 0.2738 -0.6011 0.5478 A
Gong 2009 -0.0788 -0.2434  0.0858 -0.9385  0.3480 HElH
Li 2009 0.0523 -0.3266 0.4312 0.2704 0.7869 —a
Matuso 2009 0.2048 -0.2395 0.6490 0.9033  0.3663 —
Schofield 2009 0.2126  0.0290 0.3962 2.2698  0.0232 |—.—|
Baig 2010  0.2341 -0.3159  0.7841 0.8344  0.4041 —a
Benjamin 2010 0.1299 -0.1229 0.3826 1.0070 0.3139 —a—
Cathomas 2010 0.1086 -0.1117 0.3289  0.9660  0.3340 =
Cerasa 2010  0.2067 -0.4935 0.9070 0.5786  0.5628 —_—
Chung 2010 0.5498 -0.0823 1.1818 1.7048 0.0882 k%—————a——————ﬁ
Chung 2010 -0.1857 -0.8119  0.4406 -0.5811 0.5612 |—-—.—|
Dennis 2010 0.5364 -0.3142 1.3870 1.2359  0.2165 [ - |
Kanellopoulos 2010 -0.1167 -0.8000 0.5665 -0.3349 0.7377 —e
Karnik 2010 0.0581 -0.2820 0.3982  0.3347  0.7378 —a—
Richter-Schmidinger 2010  0.2121 -0.1367 0.5610 1.1918  0.2333 ———
Sambataro 2010 0.1485 -0.2172 0.5142 0.7960 0.4261 |—-—I—|
van Wingen 2010 0.0923 -0.5213 0.7059 0.2948 0.7681 e
Gruber 2011 0.0195 -0.6186 0.6575  0.0598  0.9524 —_——
Gruber 2011 0.1314 -0.4899 0.7526 0.4145 0.6785 |
Gruber 2011 0.3413 -0.2838 0.9663 1.0700  0.2846 —_
Laing 2011 0.2221 -0.0016 0.4458 1.9459 0.0517 |—.—|
Voineskos 2011 0.5201 0.0318  1.0083 2.0876  0.0368 —
RE model 0.1577  0.0819  0.2334 4.0785  <0.0001 K 2
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Fig. 2. (a) Meta-analysis (random-effects model) of association studies of the val® met polymorphism and declarative memory performance. Position of the boxes represents
the effect-size of each study, with the size of the box proportional to the size of the study. 95% CI are indicated by error bars. At the bottom of the figure a summary effect-size
across all the studies is shown, (b) funnel plot of studies investigating effects of the val®®met polymorphism on declarative memory, (c) meta-regression of the effect of the
val’¢met polymorphism on declarative memory and year of publication.



2170

Table 2

J.P. Kambeitz et al. / Neuroscience and Biobehavioral Reviews 36 (2012) 2165-2177

Studies included in the meta-analysis of the effect of the val®®met polymorphism and hippocampal volume.

Study Population Gender Allele frequency Normalization

First author Year Diagnosis n Age Male  Female val/val met-carriers  Brainvolume Age  Gender  Scanner type
Pezawas 2004 Healthy 111 325 56 55 69 42 + + + 15T
Szeszko 2005 Mixed? 44 26.2 24 20 27 17 + - + 15T
Bueller 2006 Healthy 36 27 14 22 21 15 + - - 15T
Nemoto 2006 Healthy 109 36.2 38 71 41 68 - - - 15T
Frodl 2007 Healthy 60 41.6 29 31 37 23 + - - 15T
Frodl 2007 Depression 60 442 29 31 40 20 + - - 15T
Miyajima 2008 Healthy 61 na na na 43 18 + - - 15T
Montag 2008 Healthy 87 2391 24 63 54 33 + + + 15T
Stern 2008 Healthy 50 30.52 33 17 38 12 + - - 3.0T
Takahashi 2008 Healthy 29 24.2 17 12 13 16 + - - 15T
Takahashi 2008 Schizophrenia 33 25.6 20 13 12 21 + - - 15T
Chepenik 2009 Healthy 18 21-56 6 12 12 6 + + + 15T
Chepenik 2009 Bipolar 20 18-58 9 11 12 8 + + + 15T
Dutt 2009 Schizophrenia 128 36.16 82 46 89 39 - - - 15T
Dutt 2009 At risk® 193 48.19 81 113 136 58 - - - 15T
Dutt 2009 Healthy 60 40.79 28 33 44 17 - - - 15T
Jessen 2009 Healthy 30 na na na 24 6 + - - 15T
Jessen 2009 Depression 79 48.2 27 52 47 32 + - - 15T
Joffe 2009 Healthy 113 na na na 68 45 - + + 15T
Koolschijn 2009 Healthy 90 38.19 56 34 59 31 + - - 15T
Koolschijn 2009 Schizophrenia 87 36.05 71 16 55 32 + - - 15T
Thomason 2009 Healthy 29 na 9 20 17 12 + - - 3.0T
Toro 2009 Healthy 331 12-19 159 172 217 114 - - - 1.0T
Benjamin 2010 Mixed® 264 69.6 110 154 171 93 + + + 15T
Cerasa 2010 Healthy 155 40.25 59 96 99 56 + + + 15T
Gonul 2010 Healthy 40 29.76 17 23 24 16 + + + 15T
Gonul 2010 Depression 33 33.75 8 25 15 18 - - - 15T
Karnik 2010 Healthy 129 49.3 59 70 87 42 + - - 15T
Richter-Schmidinger 2010 Healthy 135 24.52 44 91 91 84 - - - 15T
Soliman 2010 Healthy 70 24.9 36 34 35 35 + - - 3.0T
Cole 2011 Healthy 111 33 55 56 68 41 + - - 15T
Cole 2011 Depression 84 48.82 27 57 47 32 + - - 15T
Gruber 2011 Healthy 39 na na na 24 15 + - - 15T
Gruber 2011 Schizophrenia 33 na na na 20 13 + - - 15T
Gruber 2011 Bipolar 34 na na na 16 18 + - - 15T

2 Healthy controls and patients with schizophrenia.
b Relatives of subjects with schizophrenia.
¢ Healthy controls and patients with depression.

[ 108 articles identified ]

56 papers excluded:
+ 29 no hippocampal volume reported
=11 animal study
Review of r— + 10 reviews
abstracts + 4 no Val66Met genotyping reported
* 1 post-mortem study
+ 1 study not in English
v
[ 52 articles
28 papers excluded:
Full content of = 17 no hippocampal volume reported
papers revi - « 4 data not suitable for effect size calculation
L + 3 overlap with other included studies
= 2 no Val66Met genotyping reported
* 2 review
A 4

24 papers included in
meta-analysis

Fig. 3. Flow-chart of describing the number of studies excluded at each step for the
meta-analysis of association studies of the val® met polymorphism and hippocampal
grey matter volume.

In order to further address the issue of heterogeneity between
studies, we carried out a sensitivity analysis, first with the sub-
group of studies that reported the effects in healthy subjects and
then a further sub-group analysis of those studies that normalized
the hippocampal volume measures to total brain volume. There

was no significant effect of diagnosis (healthy vs patient popula-
tion) or normalization to total intracranial volume on effect-size
estimates (see supplementary results). Analysis in a more homoge-
nous sample of only healthy subjects whose hippocampal volumes
had been normalized with regard to total intracranial volume (14
studies, 939 subjects) revealed a significant effect size of d=0.25
(95%-CI: 0.02-0.47, z=2.1139, p=0.03, I>=61.09%, 95%-CI for I*:
22.74-82.63%) and no evidence for a publication bias (z=1.4302,
p=0.1527) or year of publication (beta=-0.099, F(1,11)=3.5404,
p=0.0866). Further analyses of samples restricting the analyses to
studies (n=31)thatemployed a MR scanner of similar field strength
(1.5T), only healthy subjects and only patients resulted in effect-
size estimates in the similar range as that obtained with the total
sample (see supplementary results).

3.3. Effect of the val®®met polymorphism on hippocampal
activation

We detected 107 potential studies that were screened accord-
ing to our inclusion criteria. Ninety-seven studies were excluded
as either no hippocampal activation was reported, no BDNF-
genotypes were reported, no original data was reported (review
article or meta-analysis) or no human population was investigated
(animal study). Therefore, 10 studies published between 2003 and
2011 matched the search criteria. They examined hippocampal
physiology as measured by the blood oxygen level dependent
(BOLD) response, employing paradigms that engaged a wide-
range of cognitive processes, including episodic memory, working
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95%-ClI
A study year d upper lower z-score p-value met-carrier > val/val val/val > met-carrier
Pezawas 2004 0.6100 0.2181 1.0019 3.0510 0.0023 R S —
Szesko 2005 1.0225 0.3792 1.6659 3.1152 0.0018 : —————————
Bueller 2006 0.7733 0.0871 1.4596 2.2087 0.0272 T —
Nemoto 2006 -0.0256 -0.4131 0.3620 -0.1294 0.8970 —a—
Frodl 2007 0.4113 -0.1143 0.9369 1.6337 0.1251 s
Frodl 2007 0.5997 0.0524 1.1471 2.1475 0.0318 —_—
Miyajima 2008 0.1570 -0.3939 0.7079 0.5586 0.5765 -
Stern 2008 0.0906 -0.5577 0.7389 0.2738 0.7842 —a
Takahashi 2008 0.5094 -0.2341 1.2528 1.3428 0.1794 . |
Takahashi 2008 0.5270 -0.1935 1.2476 1.4335 0.1517 —_
Chepenik 2009 1.1245 0.0780 21711 2.1060 0.0352 : g
Chepenik 2009 1.3929 0.3609 2.4249 2.6453 0.0082 : >
Dutt 2009 0.0828 -0.2937 0.4593 0.4311 0.6664 —a—
Dutt 2009 -0.0895 -0.3973 0.2183 -0.5699 0.5688 —a—
Dutt 2009 0.2847 -0.2791 0.8485 0.9896 0.3223 e
Jessen 2009 0.3146 -0.1377 0.7669 1.3634 0.1728 e
Jessen 2009 -0.2762 -0.7275 0.1750 -1.1997 0.2303 ——
Joffe 2009 -0.1721 -0.5494 0.2052 -0.8942 0.3712 —a—
Koolschijn 2009 0.6400 0.1953 1.0847 2.8205 0.0048 D
Koolschijn 2009 -0.7631 -1.2133 -0.3128 -3.3215 0.0009 s :
Montag 2009 0.0247 -0.4083 0.4578 0.1120 0.9108 k————i————4
Thomason 2009 -0.3644 -1.1093 0.3805 -0.9587 0.3377 I :
Toro 2009 0.1915 -0.0357 0.4187 1.6519 0.0986 -
Benjamin 2010 -0.2319 -0.4852 0.0214 -1.7943 0.0728 |—.—|
Cerasa 2010 0.0000 -0.3277 0.3277 0.0000 1.0000 —a—
Karnik 2010 -0.0015 -0.3698 0.3667 -0.0081 0.9935 [ S—
Richter-Schmidinger 2010 -0.3191 -0.6691 0.0309 -1.7867 0.0740 ——
Soliman 2010 -0.4661 -0.9435 0.0112 -1.9140 0.0556 [ S —
Cole 2011 -0.0652 -0.4528 0.3225 -0.3295 0.7418 —a—
Cole 2011 0.0659 -0.4075 0.5394 0.2730 0.7849 | ——
Gonul 2011 -0.1205 -0.8064 0.5653 -0.3444 0.7305 [ ———_— T ————
Gonul 2011 0.6250 -0.0479 1.2979 1.8203 0.0687 e
Gruber 2011 0.2076 -0.4392 0.8543 0.6291 0.5293 s
Gruber 2011 -0.1201 -0.8190 0.5788 -0.3368 0.7362 e
Gruber 2011 0.1008 -0.5730 0.7747 0.2932 0.7693 |
RE model 0.1242 -0.0065 0.2550 1.8621 0.0626
[ I I |
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Fig. 4. (a) Meta-analysis (random-effects model) of association studies of the val®®met polymorphism and hippocampal grey matter volume. Position of the boxes represents
the effect-size of each study, with the size of the box proportional to the size of the study. 95% CI are indicated by error bars. At the bottom of the figure a summary effect-size
across all the studies is shown, (b) funnel plot of studies investigating effects of the val®®met polymorphism on hippocampal volume, (c) meta-regression of the effect of the
val’®met polymorphism on hippocampal volume and year of publication.
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[ 108 articles identified ]

48 papers excluded:

+ 27 no fmri data reported
+ 11 animal study

* 8 review

* 1 not in English

« 1 post-mortem study

Review of
abstracts

pr—

\J

[ 60 articles

50 papers excluded:
+ 41 no fmri data reported
'; +5no\ genotyping reported
= 3 review
« 1 only connectivity data available

Full content of
papers revi

v

10 papers included in
meta-analysis

Fig. 5. Flow-chart of describing the number of studies excluded at each step for the
meta-analysis of association studies of the val® met polymorphism and hippocampal
activation.

memory, decision-making, and emotional processing. From those,
we extracted data from 12 independent samples resulting in a
final sample of 362 subjects ((Egan et al., 2003; Hariri et al., 2003;
Hashimoto et al., 2008; Gasic et al., 2009; Lau et al., 2010; Schofield
et al., 2009; Cerasa et al., 2010; Dennis et al., 2011; van Wingen
et al., 2010; Banner et al., 2011), see Table 3). No study showed
significant deviation from the HWE.

A random-effects model showed a summary effect-size of
d=0.59 (95%-CI: 0.01-1.16, z=2.0106, p=0.0444, I? = 82.84%, 95%-
Clfor I2: 65.12-94.3%, see Fig. 6a). Funnel plot analysis of the studies
revealed no evidence for a publication bias (z=0.7820, p=0.4342,
see Fig. 6b). Meta-regression with year of publication revealed
no significant effect (beta=-0.1114, F(1,10)=1.0982, p=0.3193).
There was no effect of the factors gender-ratio or ratio of met car-
riers (p>0.1). There was a non-significant trend for an effect of
mean age of the studied population (beta=0.065, F(1,10)=4.0762,
p=0.0711) with older populations exhibiting stronger effects of the
polymorphism on hippocampal response (Figs. 4-6).

Restricting the sample to only healthy populations (11 samples,
335 subjects) showed a significant summary effect-size of d=0.69
(95%-CI: 0.09-1.28, z=2.2479, p=0.02, I>=82.59%, 95%-Cl for I:
63.49-94.3%) with no evidence for a publication bias (z=0.7133,
p=0.4756).

In order to further address the issue of heterogeneity between
studies, arising as a result of different cognitive paradigms
employed by the studies included in this meta-analysis, we carried
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out a sensitivity analysis that was restricted to the subset of studies
that employed a memory task (either episodic or working memory;
7 samples; 216 subjects). The random-effects model show a non-
significant summary effect-size of d=0.53 (95%-CI: —0.48 to 1.53,
z=1.0316, p=0.3023, I> =88.09%, 95%-CI for I*: 65.15-94.3%) with
no evidence for a publication bias (z=—-0.8033, p=0.4218).

4. Discussion

We conducted three separate quantitative reviews using a
meta-analytic approach to investigate the effect of the val’¢met
polymorphism of the BDNF gene on declarative memory function
in humans, and on the structure and physiology of the hippocam-
pus. We found evidence that declarative memory performance,
hippocampal volume and hippocampal activation are all reduced
in carriers of the met allele compared to val homozygotes. These
results point to a modest but consistent role of this polymorphism
in mediating the individual variability in hippocampal structure,
activation and hippocampus-mediated cognitive functioning. As it
is unlikely that BDNF is the only gene that mediates the individ-
ual variability in hippocampal structure (Callicott et al., 2005; Tan
et al,, 2011), activation and memory functioning (de Frias et al.,
2004; Kauppi et al.,, 2011), the modest effect-sizes noted here,
nevertheless may reflect a biologically meaningful role of this BDNF
polymorphism in mediating inter-individual variability in this spe-
cific cognitive function and its underlying neural substrate. This is
consistent with the evidence from basic research indicating the role
of BDNF in memory function (Bekinschtein et al., 2007, 2008) and
the hippocampus (Pang et al., 2004; Pastalkova et al., 2006).

Random-effects analysis of the effect of the val®®met polymor-
phism on hippocampus-mediated declarative memory function
revealed a small effect-size (d=0.16) that was not explained by
potential confounding variables such as age, gender, diagnosis or
met carrier status. Moreover, restricting the analysis to studies
employing the same declarative memory task revealed an even
larger effect of variation in BDNF gene on memory performance,
despite the sample being smaller (but more homogeneous). How-
ever we cannot exclude the possibility that the results of the main
meta-analysis of memory function might have been biased by the
different tests used to assess memory. Those differ with respect
to the type of information being stored (verbal information or
complex scenes) or the duration of storage (long-term or short-
term) and thus might measure related but not identical cognitive
constructs. The effect-size in the total sample of d=0.16 corre-
sponds to 0.64% of the variance in memory performance, slightly
smaller than the effect (2%) of the gene coding for the catechol-
o-methyltransferase (COMT) enzyme on memory (de Frias et al.,
2004) and smaller than the 5% that has been attributed to variation
in a cluster of seven memory-associated SNPs (adenylyl cyclase,
PKA, CAMKII, NMDA receptor, metabotropic glutamate receptor

Table 3
Studies included in the meta-analysis of the effect of the val®met polymorphism and hippocampal activation.
Study Population Allele frequency Method
First author Year Diagnosis n Age Male Female val/val met-carriers Scanner type Task
Egan 2003 Healthy 13 38.80 10 3 8 5 1.5/3.0T n-back
Egan 2003 Healthy 17 29.90 10 7 12 5 1.5/3.0T n-back
Hariri 2003 Healthy 28 30.60 16 12 14 14 3.0T Encoding/retrieval of complex scenes
Hashimoto 2008 Healthy 58 36.40 12 46 17 41 15T Encoding/retrieval of complex scenes
Schofield 2008 Healthy 37 30.14 19 18 20 17 15T Oddball-task
Gasic 2009 Healthy 29 28.86 16 13 21 8 3.0T Relative preference task
Banner 2010 Healthy 21 na na na 16 5 15T Spatial navigation memory task
Cerasa 2010 Healthy 32 30.45 15 17 18 14 15T n-back
Dennis 2010 Healthy 22 22.55 11 11 11 11 15T Relational memory task
Lau 2010 Healthy 31 13.71 14 17 23 8 3.0T Emotional pictures
Lau 2010 Depression 27 13.44 12 15 18 9 3.0T Emotional pictures
van Wingen 2010 Healthy 47 38.00 13 34 32 15 15T Encoding/retrieval of face pictures
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95%-Cl
A study year d upper lower z-score p-value met-carrier > val/val val/val > met-carrier
Egan 2003 1.8015 0.4870 3.1160 2.6860 0.0072 —_—
Egan 2003 1.3573 0.2187 2.4960 2.3364 0.0195 —_——
Hariri 2003 0.7556 -0.0111 1.5224 1.9315  0.0534 |—-—|
Hashimoto 2008 1.3846 0.7657 2.0036 4.3843 <0.0001 ——
Schofield 2008 -0.7060 -1.3722 -0.0397 -2.0768 0.0378 I—I—|
Gasic 2009 1.0754  0.2154 1.9355 24508 0.0143 —a—
Lau 2009 0.1925 -0.6134 0.9984 0.4682 0.6396 |—-—|
Lau 2009 -0.4359 -1.2444 0.3727 -1.0566  0.2907 |—.—-—|
Cerasa 2010 1.5608 0.7645 2.3571 3.8419  0.0001 —a—
van Wingen 2010 0.7948 0.1608 1.4288  2.4571 0.0140 —a—
Dennis 2010 -1.5606 -2.5151 -0.6061 -3.2046 0.0014 —a
Banner 2011 1.1589  0.0953 2.2225 2.1356  0.0327 |—-—|
RE model 0.5895 0.0149 1.1641 2.0106 0.0444 :
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Fig. 6. (a) Meta-analysis (random-effects model) of association studies of the val®*met polymorphism and hippocampal activation. Position of the boxes represents the
effect-size of each study, with the size of the box proportional to the size of the study. 95% CI are indicated by error bars. At the bottom of the figure a summary effect-size
across all the studies is shown, (b) funnel plot of studies investigating effects of the val®®met polymorphism on hippocampal activation.

and PKC) (de Quervain and Papassotiropoulos, 2006). It is unclear
whether the effect of BDNF on memory function is the result of
a general effect on cognitive performance rather than a domain-
specific effect on declarative memory processing, as it may also

affect working memory performance (Echeverria et al., 2005; Egan
et al., 2003; Rybakowski et al., 2003, 2006; Zivadinov et al., 2007)
and cognitive processing speed (Miyajima et al., 2008). However,
studies investigating the effect of the val°¢met polymorphism on
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general cognitive ability as measured by the IQ have not shown
a consistent effect (Egan et al., 2003; Hansell et al., 2007). As the
majority of studies investigated patients with schizophrenia who
received antipsychotic medication, this might represent a further
potential confound in our analysis as antipsychotic medication has
been shown to affect memory function (Riedel et al., 2010).

We then examined whether the effect of genetic variation in
BDNF on declarative memory performance could be accounted for
by its effect on the structure of the hippocampus, the principal
neural substrate for declarative memory processing. A recent meta-
analysis reported significant effects of the BDNF polymorphism on
hippocampal volume (Hajek et al., 2012). However this analysis
was based on a comparably small sample as authors restricted their
analysis to only healthy subjects and manual tracings of hippocam-
pal volumina.

Following a more comprehensive approach we only found a
small non-significant effect (d=0.12) on hippocampal volume.
Restricting the analysis to studies (n=17) that reported hippocam-
pal volume normalized to ICV did not change the magnitude of the
effect (d=0.14).

However restricting our analysis to a more homogenous sam-
ple of only healthy controls samples with the hippocampal volume
normalized to total intracranial volume revealed a significant effect
size (d=0.25) with no evidence for a publication bias or effect of
year of publication. This effect is slightly smaller than the effect
size of d=0.41 found in a comparable analysis on a more restrictive
sample (Hajek et al., 2012).

The magnitude of the effect of variation in the BDNF gene on hip-
pocampal volume that we have reported needs to be considered
in light of heritability estimates of between 40 and 69% for hip-
pocampal volume (Peper et al., 2007) and a relatively large effect
(d=0.39) of the COMT gene on hippocampal grey matter volume
(Ehrlich et al., 2010). It has also been argued that the effect of
the val®®*met BDNF polymorphism on hippocampal grey matter is
a reflection of its effect on total brain volume (Toro et al., 2009),
consistent with the ubiquitous expression of the gene in the brain.
BDNF risk allele carriers have been shown to exhibit grey mat-
ter volume changes in regions beyond the hippocampus like the
parahippocampal gyrus (Nemoto et al., 2006; Sublette et al., 2008;
Takahashi et al., 2008; Gatt et al., 2009; Montag et al., 2009), the
amygdala (Sublette et al., 2008; Takahashi et al., 2008; Gatt et al.,
2009; Montagetal.,2009) and the frontal lobe (Pezawas et al., 2004;
Szeszko et al., 2005; Ho et al., 2006; Takahashi et al., 2008; Varnds
et al., 2008; Toro et al., 2009). A stronger effect-size including only
studies (Pezawas et al., 2004; Szeszko et al., 2005; Agartz et al.,
2006; Bueller et al., 2006; Nemoto et al., 2006; Frodl et al., 2007;
Takahashi et al., 2008; Miyajima et al., 2008; Chepenik et al., 2009;
Jessen et al., 2009; Koolschijn et al., 2010; Benjamin et al., 2010;
Soliman et al., 2010) that normalized hippocampal volume meas-
ures to total ICV suggests a region-specific effect of BDNF valS6met
polymorphism on hippocampal volume that is unlikely to be the
result of a more generalized effect on total brain volume. It is worth
noting that a majority of the patients with schizophrenia that were
investigated in the studies reviewed here had received antipsy-
chotic medication. Numerous studies have reported an effect of
such treatment on brain morphology in patients with schizophre-
nia (Smieskova et al., 2009; Ho et al,, 2011). Thus antipsychotic
treatment might have affected a potential difference in the effect
of the BDNF-polymorphism between patients with schizophrenia
and healthy controls. Nevertheless, the effects of BDNF val6met
polymorphism on hippocampal volume remain significant when
only studies involving healthy controls were included in the meta-
analyses.

Finally, we examined whether variations in the BDNF gene have
an effect on hippocampal physiology. To address this, we inves-
tigated the effect of the val®®met polymorphism on task-related

hippocampal response, as measured using fMRI. The random-
effects model showed a significant and high effect-size of d=0.59
comparable to another meta-analysis (Munafo et al., 2008) that
reported the effect of the 5-HTTLPR polymorphism on amygdala
activation (d=0.59). These effects were not attributable to the con-
founding effects of age, gender, diagnosis or the ratio of met carriers.
Moreover, when the analysis was restricted to only studies that
involved memory tasks, as opposed to other cognitive processes,
we found a comparable effect-size (d =0.53) with no evidence for a
publication bias. This effect was however smaller compared to that
reported for COMT on hippocampal signal change (d=1.3) during a
memory task (Bertolino et al., 2006).

In summary, our meta-analyses of the literature indicate that
a functional polymorphism of the BDNF gene associated with the
val®®met polymorphism significantly modulates declarative mem-
ory function, and the structure and physiology of the hippocampus.
Effects of age, gender, diagnosis or met-carrier status did not
account for these effects. It is possible that we did not observe
a significant effect of diagnosis on any of the measures because
fewer studies examined patient samples, with only modest sample-
sizes. Further, the heterogeneity of psychiatric diagnoses in the
patient samples precluded any meaningful estimation of effect-size
in patients. However, the separate analyses with only healthy and
patient samples attest to the consistency of the results. Overall,
these results suggest that a naturally occurring functional varia-
tion in the BDNF gene accounts for a significant proportion of the
normal inter-individual variation in human memory function. Our
meta-analyses were mainly carried out on separate sets of studies
of memory performance, hippocampal structure and hippocampal
physiology, as opposed to studies that examined all three meas-
ures in the same sample. Thus, we were not able to explore the
extent to which the effects of BDNF at the behavioural level were
accounted for by its effects on hippocampal structure and/or phys-
iology. However, we found that the effect of variation in the BDNF
gene on memory performance was weaker than the effect on the
physiological response of the hippocampus. This is consistent with
the suggestion that measures such as neural physiology may be
more proximate and hence more sensitive to the effect of functional
genetic polymorphisms on gene products and function, than meas-
ures that are more distant such as behaviour (Hariri et al., 2006).
However in a comprehensive analysis of a COMT-polymorphism it
has been shown that in fact associations with schizophrenia as a
psychiatric diagnosis are not weaker than associations with poten-
tial endophenotypes (Flint and Munafo, 2007). We examined the
effect of BDNF on hippocampal physiology as determined by fMRI
while performing a variety of cognitive and emotional processing
tasks. Thus, greater effect of BDNF on hippocampal activation as
compared to memory performance may simply reflect a greater
penetrance of the effect of this polymorphism on general hip-
pocampal physiology, that is not exclusively attributable to its role
in memory processing.

It is important to exercise caution in interpreting the sig-
nificance of these results. Firstly, we identified significant
heterogeneity in all three sets of meta-analyses. This may reflect
the fact that a complex interaction between multiple potential
confounding factors such as other cognitive processes (work-
ing memory, IQ, processing speed), other genes, gene-gene and
gene-environment interactions may have affected the results
presented here. Apart from the BDNF-polymorphism that we inves-
tigated, variations in a number of other genes have been shown
to affect memory processes and might thus have influenced the
results (Papassotiropoulos et al., 2006). It has been suggested that
other genetic polymorphisms might interact with secretion or tran-
scription of BDNF and might thus be relevant to the effect of the
BDNF-polymorphism (Pezawas et al., 2008). Similarly, potential
interactions between genes and environmental factors such as early
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life stress may also have affected these results (Gatt et al., 2009). It
is also possible that the effect of the BDNF-polymorphism on other
cognitive processes that are related to memory function might be
a confounding factor in this analysis.

Another important factor that needs to be kept in mind is the
role of selective publication as a potential confounder. There is evi-
dence that the reporting of results is biased by positive selection
of significant results (Easterbrook et al., 1991). As meta-analyses
are restricted to the available data in the form of publications, this
might result in an overestimation of the summary effect sizes. In
our analysis we have tried to address this problem by carefully
investigating the data for evidence of publication bias. In a set of
unbiased studies, effect-sizes are assumed to scatter symmetrically
around the summary effect-size. Publication bias is assumed to lead
to a violation of the symmetry of this distribution of effect-sizes.
Therefore, typical meta-analytic procedures include visualization
of available studies in funnel-plots and subsequent inspection of
symmetry by a regression test (Egger et al., 1997). If there was
evidence of publication bias, we used trim-and-fill procedures to
estimate the summary effect-size after controlling for publication
bias (Peters et al., 2007).

Changes in hippocampus-mediated memory function and in
hippocampal activation and volume are considered to be critical
in schizophrenia (Tamminga et al., 2010). Abnormal hippocampal
activation has also been reported in mood disorders (Lau et al.,
2010). Evidence from genetic association studies also point toward
arole of variation in the BDNF gene in schizophrenia (Muglia et al.,
2003; Nanko et al., 2003), bipolar disorder and depression (Strauss
et al., 2009) as well as anxiety (Chen et al., 2006). Moreover psy-
chiatric disorders including schizophrenia have been shown to be
associated with decreased BDNF serum levels (Green et al., 2011),
reduced BDNF expression in the hippocampal formation (Iritani
etal.,2003)and variations in the BDNF gene have also been reported
to play a role in treatment response to schizophrenia. Results
from the meta-analyses presented here suggest how variation in
the BDNF gene may mediate critical neurocognitive impairments
observed in various neuropsychiatric conditions.
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Supplementary RESULTS:
Effect of diagnosis on estimated effect size

Meta-analysis employing the random-effects model that only included studies in
healthy subjects (23 samples; 2086 subjects) showed a significant effect size of
d=0.13 (95%-CI: 0 to 0.27, z=1.9225, p=0.0499, 12=50.74%, 95%-CI for 12: 17.94 to
82.63%) and evidence for a publication bias (z =2.1192, p = 0.0341).

A trim-and-fill approach detected n=2 potentially missing studies and after correction
the random-effects model showed a non-significant effect size of d=0.06 (95%-CI: -
0.09 t0 0.2, z=0.7483, p=0.5, 12=60.4%, 95%-ClI for 12: 39.61 to 82.63%).

In studies including only patient populations (10 samples; 591 subjects) the summary
effect size of the d=0.07 (95%-CI: -0.2 to 0.34, z=0.4939, p=0.6214, I’=63.22%,
95%-ClI for I’: 25.72 to 81.16%) and evidence for a publication bias (z = 2.1525, p =
0.0314). Trim-and-fill approch did reveal n=1 any potentially missing studies. The
trim-and-fill corrected model showed a non-significant effect size of d=-0.01 (95%-
CI: -0.35 t0 0.34, z=-0.0322, p=1, 12=73.43%, 95%-ClI for 12: 46.39 to 82.63%).

Direct comparisons of the summary effect size between studies using of healthy
controls and studies of patients by two-sample t-test was not significant (p>0.1).

Effect of normalization on estimated effect size

As some of the studies reported hippocampal volume measures normalized to the total
intracranial volume (ICV) whereas others did not, the meta-analysis was re-run for
normalized (21 samples; 1521 subjects) and non-normalized (12 samples; 1316
subjects) studies separately. Employing the random-effects model, this resulted in an
effect-size of d=0.14 (95%-CI: -0.06 to 0.35, z=1.4027, p=0.2, 12=69.9%, 95%-CI for
12: 47.96 to 82.63%) and evidence for publication bias (z = 2.6193, p = 0.0088) for
the normalized studies. A trim-and-fill approach detected n=3 potentially missing
studies and after correction the random-effects model showed a non-significant effect
size of d=0.06 (95%-CI: -0.16 to 0.27, z=0.5246, p=0.6, 12=73.69%, 95%-CI for 12:
58.42 to 82.63%).

For the non-normalized studies there was an effect size of d=0.11 (95%-CI: -0.07 to
0.29, z=1.2138, p=0.2, 12=53.74%, 95%-CI for 12: 6.04 to 82.63%) with no evidence
for publication bias (z = 1.6706, p = 0.0948).

Direct comparisons of the summary effect size between studies using normalized
hippocampal volume and studies using uncorrected measures by two-sample t-test
was not significant (p>0.1).

A random-effects model on a subset of studies (14 studies, 939 subjects) that only
included healthy subjects and also normalized hippocampal volumes with respect to
total brain volume (or total intracranial volume) showed a significant effect size of
d=0.25 (95%-CI: 0.02 to 0.47, z=2.1139, p=0.03, [2=61.09%, 95%-CI for 12: 22.74 to
82.63%) and no evidence for a publication bias (z = 1.4302, p = 0.1527) and no effect
of year of publication (beta=-0.099, F(1,11)=3.5404, p=0.0866).



Effect of magnetic field strength on estimated effect size

A random-effects model of studies that used scanners with a magnetic field strength
of 1.5 T (31 samples, 2505 subjects) showed a significant effect size of d=0.16 (95%-
CI: 0.01 to 0.3, z=2.1366, p=0.03, 12=63.31%, 95%-CI for 12: 43.26 to 82.63%) with
evidence for a publication bias (z = 4.6621, p < .0001). A trim-and-fill approach
detected n=12 potentially missing studies and after correction the random-effects
model showed a non-significant effect size of d=-0.05 (95%-CI: -0.22 to 0.13, z=-
0.5224, p=0.6, 12=78.83%, 95%-CI for 12: 70.5 to 82.63%).
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